7 downloads
198 Views
124KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
FBGBKL?JKL?J:PBB :JKL
F:L?F:LBQ?KDBCN:DMEVL?L D:N?>J:MJ:GUOB L?HJBB
ih\ukr_cfZl_fZlbd_^eyklm^_glh\dmjkZ aZhqgh]hhl^_e_gby]_heh]bq_kdh]hnZdmevl_lZ QZklv
KhklZ\bl_eb=;KZ\q_gdh K:LdZq_\Z
-2<\_^_gb_ GZklhysb_ f_lh^bq_kdb_ mdZaZgby ij_^gZagZq_gu ^ey klm^_glh\-aZhqgbdh\ ]_heh]bq_kdh]h nZdmevl_lZ b kh^_j`Zl h[sb_ f_lh^bq_kdb_ mdZaZgby ih bamq_gbx jZa^_eh\ \ukr_c fZl_fZlbdb ©:gZeblbq_kdZy ]_hf_ljbyª ©
(x2 − x1 )2 + ( y1 − y 2 )2
= M 1M 2 .
(1)
>_e_gb_hlj_adZ\^Zgghfhlghr_gbb >Zgulhqdb M 1 (x1 ; y1 ) b M 2 (x 2 ; y 2 ) =h\hjylqlhlj_lvylhqdZ M (x; y ) e_`ZsZy gZ ^Zgghc ijyfhc ^_ebl hlj_ahd M 1 M 2 \ M M ( λ -iheh`bl_evgh_keblhqdZ hlghr_gbb λ _keb λ = ± 1 MM 2 M e_`blf_`^mlhqdZfb M 1 b M 2 bhljbpZl_evgh_keblhqdZ M e_`bl \g_ hlj_adZ M 1 M 2 Dhhj^bgZlu lhqdb M (x; y ) , ^_eys_c hlj_ahd M 1 M 2 \ hlghr_gbb λ hij_^_eyxlky ih nhjfmeZf x + λx 2 y + λy 2 (2) x= 1 ; y= 1 , (λ ≠ −1) . 1+ λ 1+ λ Dhhj^bgZluk_j_^bguhlj_adZhij_^_eyxlkyihnhjfmeZf x + x2 y + y2 ;y = 1 x= 1 . (3) 2 2 IehsZ^v lj_m]hevgbdZ k \_jrbgZfb A(x1 ; y1 ), B (x 2 ; y 2 ), C (x3 ; y 3 )gZoh^blkyihnhjfme_ 1 S = x1 ( y 2 − y3 ) + x 2 ( y3 − y1 ) + x3 ( y1 − y 2 ) . (4) 2
H[s__mjZ\g_gb_ijyfhc MjZ\g_gb_\b^Z Ax + By + C = 0,
-3-
(5)
]^_ A, B, C -ihklhyggu_dhwnnbpb_glu A 2 + B 2 ≠ 0 ; x b y dhhj^bgZlu ex[hc lhqdb hij_^_ey_l gZ iehkdhklb g_dhlhjmx ijyfmx MjZ\g_gb_ gZau\Z_lkyh[sbfmjZ\g_gb_fijyfhc. MjZ\g_gb_ijyfhckm]eh\ufdhwnnbpb_glhf MjZ\g_gb_\b^Z y = kx + b (6) gZau\Z_lky mjZ\g_gb_f ijyfhc k m]eh\uf dhwnnbpb_glhf. k – m]eh\hc dhwnnbpb_gl k = tgα ( α - m]he f_`^m ijyfhc b iheh`bl_evgufgZijZ\e_gb_fhkbOx ). M]hef_`^mijyfufb Hkljucm]he ϕ f_`^mijyfufb y = k1 x + b1 b y = k 2 x + b2 hij_^_ey_lkyihnhjfme_ k −k (7) tgϕ = 2 1 , k1k 2 ≠ −1 . 1 + k1k 2 Mkeh\b_iZjZee_evghklbijyfuo (8) k1 = k 2 . Mkeh\b_i_ji_g^bdmeyjghklbijyfuo 1 k1 = − beb k1k 2 = −1 . (9) k2 MjZ\g_gb_ijyfhckm]eh\ufdhwnnbpb_glhf k ijhoh^ys_c q_j_a^Zggmxlhqdm M 0 (x0 ; y 0 )bf__l\b^ ( 10 ) y − y 0 = k (x − x0 ), k ≠ 0 . MjZ\g_gb_ijyfhcijhoh^ys_cq_j_a^\_lhqdb MjZ\g_gb_ ijyfhc ijhoh^ys_c q_j_a ^\_ aZ^Zggu_ lhqdb M 1 (x1 ; y1 ) b M 2 (x 2 ; y 2 ) bf__l\b^ y − y1 x − x1 ( 11 ) ; x2 ≠ x1 ; y 2 ≠ y1 . = y 2 − y1 x2 − x1 M]eh\hcdhwnnbpb_glwlhcijyfhchij_^_ey_lkyihnhjfme_ y − y1 k= 2 . x2 − x1
-4MjZ\g_gb_ijyfhc\hlj_adZo MjZ\g_gb_\b^Z x y ( 12 ) + = 1; a ≠ 0; b ≠ 0 a b gZau\Z_lkymjZ\g_gb_fijyfhc\hlj_adZo A^_kv a b b -Z[kpbkkZbhj^bgZlZlhqdbi_j_k_q_gbyijyfhc khkvxOx bhkvxOy khhl\_lkl\_ggh GhjfZevgh_mjZ\g_gb_ijyfhc MjZ\g_gb_\b^Z ( 13 ) x cosα + y sin α − p = 0 gZau\Z_lky ghjfZevguf mjZ\g_gb_f ijyfhc A^_kv p - ^ebgZ i_ji_g^bdmeyjZhims_ggh]hbagZqZeZdhhj^bgZlgZijyfmx α m]hef_`^mwlbfi_ji_g^bdmeyjhfbiheh`bl_evgufgZijZ\e_gb_f hkbOx . Qlh[u h[s__ mjZ\g_gb_ ijyfhc ijb\_klb d ghjfZevghfm \b^m gZ^h\k_qe_gumjZ\g_gby mfgh`blvgZghjfbjmxsbc 1 . fgh`bl_ev M = ± A2 + B 2 >ey M gZ^h\aylv©ª_keb C < 0 agZd©-ª_keb C > 0 . JZkklhygb_hllhqdb^hijyfhc JZkklhygb_ d hl ^Zgghc lhqdb M 0 (x0 , y 0 ) ^h ijyfhc Ax + By + C = 0 hij_^_ey_lkyihnhjfme_ Ax0 + By 0 + C d= . ( 14 ) 2 2 A +B Hdjm`ghklv Hdjm`ghklv – wlh fgh`_kl\h lhq_d iehkdhklb M (x; y ) , jZ\ghm^Ze_gguohl^Zgghclhqdb C (a; b ) . MjZ\g_gb_hdjm`ghklbbf__l\b^ ( 15 ) (x − a )2 + ( y − b )2 = R 2 , C (a; b ) -p_gljhdjm`ghklb R -jZ^bmkhdjm`ghklb Weebik Weebik – wlh fgh`_kl\h lhq_d iehkdhklb M (x; y ) kmffZ jZkklhygbc dhlhjuo ^h ^\mo lhq_d F1 (− c;0 ) b F2 (c;0 ) _klv \_ebqbgZihklhyggZyjZ\gZy 2a (2a > 2c ) .
-5DZghgbq_kdh_ijhkl_cr__ mjZ\g_gb_weebikZbf__l\b^ x2 y2 ( 16 ) + = 1. a 2 b2 A^_kv a, b - ihemhkb weebikZ F1 b F2 - nhdmku weebikZ c = ε < 1 lZd dZd a > c gZau\Z_lky a 2 = c 2 + b 2 Qbkeh a wdkp_gljbkbl_lhfweebikZ NhdZevgu_jZ^bmku r1 = F1 M b r2 = F2 M hij_^_eyxlkyih nhjfmeZf r1 = a + εx; r2 = a − εx. =bi_j[heZ =bi_j[heZ – wlh fgh`_kl\h lhq_d iehkdhklb M (x; y ) , Z[khexlgZy \_ebqbgZ jZaghklb jZkklhygbc dhlhjuo ^h ^\mo lhq_d F1 (− c;0 ) b F2 (c;0 ) _klv \_ebqbgZ ihklhyggZy jZ\gZy 2a ( 2 a < 2c ) . F1 M − F2 M = 2a . F1 b F2 -nhdmku]bi_j[heu r1 = F1 M b r2 = F2 M -nhdZevgu_ jZ^bmku DZghgbq_kdh_mjZ\g_gb_]bi_j[heu x2 y2 − = 1. ( 17 ) a2 b2 A^_kv a, b - ihemhkb ]bi_j[heu ^_ckl\bl_evgZy b fgbfZy khhl\_lkl\_ggh c2 = a2 + b2 . c Qbkeh = ε > 1 lZddZd a < c ) –wdkp_gljbkbl_l]bi_j[heu a NhdZevgu_jZ^bmkuhij_^_eyxlkyihnhjfmeZf r1 = εx + a ; r2 = εx − a . =bi_j[heZ khklhbl ba ^\mo \_l\_c jZkiheh`_gguo hlghkbl_evgh hk_c dhhj^bgZl LhqdZ O - p_glj ]bi_j[heu Lhqdb A1 (− a;0 ) b A2 (a;0 ) - \_jrbgu i_j_k_q_gby k hkvx Ox b ]bi_j[heu=bi_j[heZbf__l^\_Zkbfilhlu y = ± x ?keb a = b , a lh]bi_j[heZgZau\Z_lkyjZ\ghklhjhgg_c =bi_j[heu
-62
2
2
2
x y y x 1 − = − =1 b a2 b2 b2 a2 gZau\Zxlkykhijy`_ggufb IZjZ[heZ IZjZ[heZ – wlh fgh`_kl\h lhq_d iehkdhklb M (x; y ) , p jZ\ghm^Ze_gguohl^Zgghclhqdb F ,0 gZau\Z_fhcnhdmkhfb 2 p ^Zgghcijyfhc x = − gZau\Z_fhc^bj_dljbkhc 2 DZghgbq_kdh_mjZ\g_gb_iZjZ[heubf__l\wlhfkemqZ_\b^ y 2 = 2 px , FM = r -nhdZevgucjZ^bmkhij_^_ey_lkyihnhjfme_ p r = x + , ( p > 0 ). 2
\lhjh]h ihjy^dZ gZau\Z_lky qbkeh a a12 h[hagZqZ_fh_kbf\hehf 11 bhij_^_ey_fh_jZ\_gkl\hf a 21 a 22 a11 a12 = a11a 22 − a 21a12 . ( 1) a 21 a 22 Hij_^_ebl_e_f lj_lv_]h ihjy^dZ gZau\Z_lky qbkeh hij_^_ey_fh_jZ\_gkl\hf a11 a12 a13 a a a a a a a21 a22 a23 = a11 22 23 − a12 21 23 + a13 21 22 .( 2 ) a32 a33 a31 a33 a31 a32 a31 a32 a33 Kbkl_fu^\moebg_cguomjZ\g_gbck^\mfyg_ba\_klgufb Kbkl_fZ a11 x + a12y = b 1 (3) a x a y b + = 21 22 2 bf__lj_r_gb_
b1 a12 b a 22 , x= 2 a11 a12 a 21 a 22 ]^_ ∆ =
a11 a 21
a11 a y = 21 a11 a 21
-7b1 b2 , a12 a 22
(4)
a12 . a 22
Kbkl_fZ ^\mo h^ghjh^guo ebg_cguo mjZ\g_gbc k lj_fy g_ba\_klgufb a11 x + a12 y + a13 z = 0 (5) 0 a x a y a z + + = 22 23 21 bf__lj_r_gb_ a a13 a a13 a a12 , y = −t 11 , z = t 11 , x = t 12 a 22 a 23 a21 a23 a 21 a 22 ]^_ t -ijhba\hevgh_qbkeh Kbkl_fZ lj_o h^ghjh^guo ebg_cguo mjZ\g_gbc k lj_fy g_ba\_klgufb a11 x + a12 y + a13 z = 0 a 21 x + a 22 y + a 23 z = 0 a x + a y + a z = 0 32 33 31 bf__l hlebqgu_ hl gmey j_r_gby lh]^Z b lhevdh lh]^Z dh]^Z hij_^_ebl_evkbkl_fu a11 a12 a13 (7) ∆ = a 21 a 22 a 23 = 0. a31 a32 a33 Kbkl_fZlj_oebg_cguomjZ\g_gbck^\mfyg_ba\_klgufb a11 x + a12 y = b1 (8) a 21 x + a 22 y = b2 a x + a y = b 32 3 31 a11 a12 b1 kh\f_klgZ dh]^Z a 21 a 22 b2 = 0 b kbkl_fZ g_ kh^_j`bl a31 a32 b3 ihiZjghijhlb\hj_qb\uomjZ\g_gbc
-8Kbkl_fZlj_omjZ\g_gbcklj_fyg_ba\_klgufb a11 x + a12 y + a13 z = b1 a 21 x + a 22 y + a 23 z = b2 a x + a y + a z = b 32 33 3 31 ijbmkeh\bbqlh a11 a12 a13 ∆ = a 21 a 22 a 23 ≠ 0 a31 a32 a33 bf__l_^bgkl\_ggh_j_r_gb_ ∆y ∆ ∆ x= x, y= , z= z , ∆ ∆ ∆ ]^_ b1 a12 a13 a11 b1 a13 a11 ∆ x = b2 a 22 a 23 , ∆ y = a 21 b2 a 23 , ∆ z = a 21 b3 a32 a33 a31 b3 a33 a31
(9)
( 10 ) a12 a 22 a32
b1 b2 . b3
G_kh\f_klgu_bg_hij_^_e_ggu_kbkl_fu Imklv hij_^_ebl_ev kbkl_fu ∆ = 0 Lh]^Z \hafh`gu ke_^mxsb_kemqZb we_f_glu ^\mo kljhd hij_^_ebl_ey ijhihjpbhgZevgu a a a gZijbf_j 11 = 12 = 13 = m Lh]^Z a 21 a 22 a 23 Z _keb b1 ≠ mb2 lhkbkl_fZg_kh\f_klgZ [ _keb b1 = mb2 lhkbkl_fZg_hij_^_e_ggZ_kebi_j\h_b lj_lv_mjZ\g_gbyg_ijhlb\hj_qb\u < hij_^_ebl_e_ ∆ g_l kljhd k ijhihjpbhgZevgufb we_f_glZfbLh]^Zkms_kl\mxlqbkeZ C1 b C 2 hlebqgu_hlgmey ijbdhlhjuo mL1 + nL2 = L3 b Z _keb mb1 + nb2 ≠ b3 lhkbkl_fZg_kh\f_klgZ [ _keb mb1 + nb2 = b3 lh kbkl_fZ g_hij_^_e_ggZ ]^_ Li (i = 1,2,3) -e_\u_qZklbmjZ\g_gby Dhfie_dkgu_qbkeZ Hij_^_e_gb_ Dhfie_dkguf qbkehf gZau\Zxl qbkeZ \b^Z a + ib ]^_ a b b - ^_ckl\bl_evgu_ qbkeZ Z i 2 = −1 fgbfZy _^bgbpZ ( 11 ) i 3 = −i; i 4 = 1; i 5 = i bl^
-9Keh`_gb_ \uqblZgb_ mfgh`_gb_ b \ha\_^_gb_ \ kl_i_gv dhfie_dkguo qbk_e \uihegyxl ih ijZ\beZf wlbo ^_ckl\bc gZ^ fgh]hqe_gZfbkaZf_ghckl_i_g_cqbkeZ i ihnhjfmeZf Ljb]hghf_ljbq_kdZynhjfZdhfie_dkgh]hqbkeZ Dhfie_dkgh_ qbkeh z = a + ib hij_^_ey_lky iZjhc \_s_kl\_gguoqbk_e (a; b )bihwlhfmbah[jZ`Z_lkylhqdhc M (a; b ) iehkdhklbbeb__jZ^bmkhf\_dlhjhf r = OM >ebgZwlh]h\_dlhjZ gZau\Z_lkyfh^me_fdhfie_dkgh]hqbkeZ r = a 2 + b 2 Zm]he ϕ k hkvx Ox gZau\Z_lky Zj]mf_glhf dhfie_dkgh]h qbkeZ LZd dZd x = r cos ϕ , y = r sin ϕ lh ( 12 ) z = r (cos ϕ + i sin ϕ ). >_ckl\by gZ^ dhfie_dkgufb qbkeZfb \ ljb]hghf_ljbq_kdhc nhjf_ r1 (cos ϕ1 + i sin ϕ1 )⋅ r2 (cos ϕ 2 + i sin ϕ 2 ) = 1) , ( 13 ) r1 ⋅ r2 [cos(ϕ1 + ϕ 2 ) + i sin (ϕ1 + ϕ 2 )] 2)
r1 (cos ϕ1 + i sin ϕ1 ) r1 = [cos(ϕ1 − ϕ 2 ) + i sin (ϕ1 − ϕ 2 )] , ( 14 ) r2 (cos ϕ 2 + i sin ϕ 2 ) r2
[r (cos ϕ + i sin ϕ )]n
= r n (cos nϕ + i sin nϕ ) , ϕ + 2kπ ϕ + 2kπ 4) Wk = n r (cos ϕ + i sin ϕ ) = n r cos + i sin n n ]^_ k = 0,1,2,..., (n − 1).
3)
( 15 ) ,( 16 )
3. FZl_fZlbq_kdbcZgZeba Ij_^_eu Qbkeh A gZau\Z_lky ij_^_ehf nmgdpbb f (x) ijb x → a , _keb^eyex[h]hkdhevm]h^ghfZeh]h ε > 0 gZc^_lkylZdh_ δ > 0 , qlh ijb 0 < x − a < δ ⇒ f ( x) − A < ε Ibrml lim f ( x) = A . x→a
IjZdlbq_kdh_ \uqbke_gb_ ij_^_eh\ hkgh\u\Z_lky gZ ke_^mxsbo l_hj_fZo ?kebkms_kl\mxldhg_qgu_ij_^_eu lim f ( x) b lim g ( x) lh x→a
1)
lim[ f ( x ) + g ( x)] = lim f ( x) + lim g ( x) , x→a
x →a
x→a
x→a
(1)
2)
- 10 lim[ f ( x ) ⋅ g ( x)] = lim f ( x ) ⋅ lim g ( x ) ,
(2)
3)
f ( x) f ( x) lim x→a = lim ijb lim g ( x) ≠ 0 ) . x→a g ( x) x→a lim g ( x)
(3)
x→a
x→a
x→a
x →a
BkihevamylZd`_ke_^mxsb_ij_^_eu ln(1 + α ) sin α 1) lim = 1, 3) lim =1 , α →0 α α →0 α 2)
1 α
lim (1 + α ) = e ,
α →0
5)
4)
aα − 1 lim = ln a α →0 α
m 1+ α ) −1 ( lim =m
α A^_kv α = α (x) -[_kdhg_qghfZeZynmgdpby lim α (x ) = 0 .
(
x →a
(4)
α →0
.
)
KjZ\g_gb_[_kdhg_qghfZeuo Imklv α (x) b β (x) [_kdhg_qghfZeu_ijb x → a ?keb α ( x) = 1 lh [_kdhg_qgh fZeu_ gZau\Zxlky wd\b\Ze_glgufb lim x→a β ( x) Ibrml α ~ β . L_hj_fZ ?keb hlghr_gb_ ^\mo [_kdhg_qgh fZeuo bf__l ij_^_e lh wlhl ij_^_e g_ baf_gblky ijb aZf_g_ dZ`^hc ba [_kdhg_qghfZeuowd\b\Ze_glghc_c[_kdhg_qghfZehclh_klv_keb α lim = m,α ~ α1 , β ~ β1 lh x →a β α α lim 1 = lim = m . (5) x →a β x →a β 1 Ihe_agh bkihevah\Zlv wd\b\Ze_glghklv ke_^mxsbo [_kdhg_qghfZeuo_keb α → 0 lh sin α ~ α , tgα ~ α , arcsin α ~ α , arctgα ~ α , ln(1 + α ) ~ α , aα − 1 ~ α ln a,
(1 + α )m − 1 ~ α ⋅ m.
( 5/ )
>bnn_j_gpbjh\Zgb_nmgdpbc Hij_^_e_gb_Ijhba\h^ghchlnmgdpbb y = f (x) \lhqd_ x gZau\Z_lkydhg_qgucij_^_e ∆y f (x + ∆x ) − f ( x) lim (6) = lim = f / ( x) . ∆x →0 ∆x →0 ∆x ∆x
- 11 GZoh`^_gb_ ijhba\h^ghc gZau\Z_lky ^bnn_j_gpbjh\Zgb_f nmgdpbb Hkgh\gu_ijZ\beZ^bnn_j_gpbjh\Zgby Imklv C = const , u = u (x), v = v(x) - ^bnn_j_gpbjm_fu_ nmgdpbb Lh]^Z / / 3) (u ± v ) = u / ± v / ; 1) C / = 0; 2) (Cu ) = Cu / ; /
/ / u u v − uv 5) = ; 4) (uv ) = u v + uv ; v2 v _keb y = f (u ), u = u (x), lh y / ( x) = y / (u ) ⋅ u / ( x) ijZ\beh^bnn_j_gpbjh\Zgbykeh`ghcnmgdpbb /
/
/
(7)
Ijhba\h^gZykl_i_ggh-ihdZaZl_evghcnmgdpbb
(u ) = v ⋅ u v /
v −1
⋅ u / + u v ⋅ ln u ⋅ v / , ]^_ u = u ( x), v = v( x) -^bnn_j_gpbjm_fu_nmgdpbb
(8)
AZ^Zqbkj_r_gb_f AZ^ZqZGZclbm]hef_`^mijyfufb : 4 x + 2 y − 5 = 0 b 6 x + 3 y + 1 = 0 ; 3x − y − 2 = 0 b 3x + y − 1 = 0 . J_r_gb_ Ijb\_^_f mjZ\g_gby d \b^m mjZ\g_gbc ijyfuo k m]eh\ufdhwnnbpb_glhfi 5 : 4 x + 2 y − 5 = 0 ⇒ y = −2 x + ⇒ k1 = −2 2 1 6 x + 3 y + 1 = 0 ⇒ y = −2 x − ⇒ k 2 = −2 . 3 M]eh\u_ dhwnnbpb_glu wlbo ijyfuo jZ\gu ke_^h\Zl_evgh, ijyfu_iZjZee_evgu ϕ = 0. ; 3x + y − 2 = 0 ⇒ y = 3x − 2 ⇒ k1 = 3 3x + y − 1 = 0 ⇒ y = − 3x + 1 ⇒ k 2 = − 3 . Ihnhjfme_i ihemqbf −2 3 − 3− 3 = = 3;ϕ = 60 o. tgϕ = −2 1− 3 ⋅ 3
- 12 AZ^ZqZ Wdkp_gljbkbl_l ]bi_j[heu jZ\_g 2 GZclb ijhkl_cr__mjZ\g_gb_]bi_j[heuijhoh^ys_cq_j_alhqdm M 2 ;1 .
(
)
c = 2 beb a c 2 = 2a 2 LZd dZd c 2 = a 2 + b 2 lh a 2 + b 2 = 2a 2 beb a 2 = b 2 . Ke_^h\Zl_evgh]bi_j[heZjZ\ghklhjhggyy Ih^klZ\bf dhhj^bgZlu lhqdb M 2 ;1 \ mjZ\g_gb_ i J_r_gb_ Wdkp_gljbkbl_l ]bi_j[heu
( )
(
)
2 − (1) = a 2 beb a 2 = 1 . ihemqbf 3) Bkdhfh_mjZ\g_gb_]bi_j[heubf__l\b^ x 2 − y 2 = 1 . 2
2
AZ^ZqZGZclb\k_agZq_gby 6 1 . J_r_gb_Ljb]hghf_ljbq_kdZynhjfZ z = 1 bf__l\b^ z = 1 cos 0 o + i sin 0 o
(
)
0 + 2kπ 0 + 2kπ + i sin Wk = 6 z = 6 1 cos = 6 6 kπ kπ 2kπ 2kπ = cos + i sin = cos + i sin , k = 0,1,2,...5 6 6 3 3 AZ^ZqZJ_rblvkbkl_fmmjZ\g_gbc 3 x + 2 y − z = 0 x + 2 y + 9 z = 0. x + y + 2z = 0 J_r_gb_Bf__f 3 2 −1 2 9 1 9 1 2 1 2 9 =3 −2 −1 = −15 + 14 + 1 = 0. 1 2 1 2 1 1 1 1 2 Ke_^h\Zl_evgh kbkl_fZ bf__l j_r_gby hlebqgu_ hl gme_\h]h J_rZ_f kbkl_fm i_j\uo ^\mo mjZ\g_gbc Lj_lv_ mjZ\g_gb_y\ey_lkyboke_^kl\b_f 3x + 2 y − z = 0 . x + 2 y + 9z = 0 IhnhjfmeZfi ihemqbf
- 13 2 −1 3 −1 3 2 x=t = 20t; y = −t = −28t; z = t = 4t. 2 9 1 9 1 2 sin (x − 3) . x →3 x 2 − 4 x + 3
AZ^ZqZGZclb lim
x − 3 → 0 ke_^h\Zl_evgh, J_r_gb_ Ijb x → 3 / sin( x − 3) ~ x − 3 i Bkihevamy i l_hj_fm h[ wd\b\Ze_glghklb[_kdhg_qghfZeuobf__f x−3 sin (x − 3) 1 1 = lim = lim = . lim 2 x →3 x − 4 x + 3 x →3 (x − 3)(x − 1) x →3 x − 1 2 cos 4 x − cos 2 x . x →0 arcsin 2 3x
AZ^ZqZGZclb lim
J_r_gb_Ihnhjfme_ljb]hghf_ljbb 4x + 2x 4x − 2x = −2 sin 3x sin x. cos 4 x − cos 2 x = −2 sin sin 2 2 sin 3 x ~ 3 x, sin x ~ x, arcsin 3x ~ 3x lh _klv Ijb x → 0 2 2 (arcsin 3x ) ~ (3x ) Ihwlhfm cos 4 x − cos 2 x 2 − 2 sin 3x sin x − 2 ⋅ 3x ⋅ x lim = lim = lim =− . 2 2 2 x →0 x →0 x →0 3 arcsin 3x arcsin 3x (3x ) AZ^ZqZGZclbijhba\h^gu_nmgdpbc
(
) y = ln (x + 5)
1) y = 2 x 3 + 5 2)
4
2
2
3) y = x x . J_r_gb_ H[hagZqbf 2 x 3 + 5 = u lh]^Z y = u 4 Ih ijZ\bem ^bnn_j_gpbjh\Zgbykeh`ghcnmgdpbbiZjZ]jZn bf__f
( ) ⋅ (2 x
y/ = u4
/ u
(ln(x
2
2)
+5
3
))
/
+5
=
)
/ x
( )
(
)
3
= 4u 3 6 x 2 = 24 x 2 2 x 3 + 5 .
2x . x2 + 5
- 14 A^_kvhkgh\Zgb_bihdZaZl_evaZ\bkylhl x ; u = x; v = x 2 . Ihnhjfme_ ihemqZ_f
(x ) = x (x ) = x x2
/
x2
/
2
⋅ xx
x 2 +1
2
−1
2
⋅ 1 + x x ⋅ ln x ⋅ 2 x
(1 + 2 ln x ) Dhgljhevgu_aZ^Zgby
(
)
x −1 x →1 x − 1 x −1 \ lim 3 x →1 x − 1 sin x − sin a ] lim x→a x−a x x ^ lim x →∞ x + 1 5. GZclbijhba\h^gu_nmgdpbc [ lim
Z y =
1 ln x x
3x − x 3 [ y = arctg 1 − 3x 2 1 1 \ y = ln1 − + x x ] y = ln sin xtg x − x ^ y = 2 xtg 2 x + ln cos 2 x − 2 x 2 .
1.
2. 3.
4.
- 15
(
[ lim x →1
3
)
x 2 − 23 x + 1
(x − 1)2
x2 − 2x + 6 − x2 + 2x − 6 \ lim x→3 x2 − 4x + 3 cos mx − cos nx ] lim x→0 x2 tgπx ^ lim x→−2 x + 2 GZclbijhba\h^gu_nmgdpbc Z y = cos 5 (7 x + 9) [ y = 3 x + x + 1 \ y = ln 3 (5 x + 1) x ] y = sin 3x + 9
^ y = (ctgx )
x3
x + 2y + z = 2 3. J_rblvkbkl_fmmjZ\g_gbc 3x + 2 y + z = 4 4 x + 3 y − 2 z = 9
- 16 -
4. GZclb x
x +8 Z lim x →∞ x − 2 sin x − cos x [ lim π π − 4x x→ 4
4 + x + x2 − 2 \ lim x→−1 x +1 1 − cos 5 x ] lim x→0 1 − cos 3 x sin 2 x ^ lim x→0 ln(1 + x) 5. GZclbijhba\h^gu_nmgdpbc Z y = arccos 1 − 2 x [ y = cos 5 (3 x + 1) \ y = x arcsin x x +1 ] y = x+ x ^ y = 2 cos
2
5
x −3 cos x
.
Ebl_jZlmjZ 1. RbiZq_\ <K