1
. . . .
, . . , . .
, 2004
,
2
! "
. . . .
# $# # $#"
, . . , . .
, 2004
%
,
3
581.1 28.57 84 ! "# !
...
177 downloads
235 Views
6MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
1
. . . .
, . . , . .
, 2004
,
2
! "
. . . .
# $# # $#"
, . . , . .
, 2004
%
,
3
581.1 28.57 84 ! "# !
$
$: %. . . ". .)
( +. . + 84
%. . .,
%
* , %. . . ". .
, ). .
, .. . . +. .,
, ".+.
, ).-.
/ (! . %. ! "#, 2004. - 141 .
$ &
.'.
&
.'.
)–
:
%
*
ISBN
$ & %
(
( $. + & ,
%
% ,
* $
%
& !
%
%
$ , . +
% %
/
$ $ ( , & ( ,
,
/
& % $
$ $ $ % $
%
%
% %
% $
. + . , (
.% $ / $
$
$ $
% % *
"#
$
(
/ %
* $ ,
& %
( .
%$. , $ , ,
, & % .
% $ $ %% . 97-04-48080, 99-04-48121, 00-04-48093, 01-04-48953, 02-04-48728, 02-0448999, 03-04-48151 % % # .
ISBN
28.57
4
1. &$#
#
* $ %
. $
% . 0 % , . % &
( $ . $ .
. $
,
% $ $$ (
. %
%
& %
$
% $
(
$
. 1
% * $ %
.
% $
(
(#
(
, 1983), $ % ., 1990; $ 0 , , 1983) . *
, 1979; , 1992), * $ , 1974) % (Murata, Los, 1997).
+ , $ %
%
0
%$
$ %
,
$ ,
&
$
. !% & ( ,
$ *
% *% $
%
*
0
$$ (+ % ., 1987), - 34 (Guy, 1990). . *
% /
,
$0 % ., 1993),
.%
$ ( & $
$: , , $ ( ,( * $ . % % ( . $ % * % % % $
$
(2 ( ( (
$
%$. #
% %$,
0
(
/ %
$ %
0
5
,
.% (
&
, 0 0
0 %
, $
& $
, & &
1998).
,
. $. +
%
. 0 ( UCP- % $ $$ 0 ( (Jezek et al., 1998; Maia et al.,
$
%
& (
%
* %$
(
, * $
% &
$.
/ &
$
% $
,
%
$ .+ .
$ /
%
%
*
$
,
% ,
% % /
%$.
+
$ ( %
.
%
$
( ,
%
&
( $ (
* $ %
,
,&
$
, $
$ %
$ *. $
. *
%
$ ,
&
( $ % $
.%
/ $
/ $ ,
%
$ &
*
( $ % ($
%% . & % & % * $ % 1998-2003 % ( $ 97-04-48080, 99-04-48121, 00-04-48093, 01-04-48953, 02-04-48728, 03-04-48151). % % $ % % & +. .+ , . % $ 0 , % % *. $ . 3 - %. . . ). . , . 4 - %. . . ".+. , . 5 - . . . -.). . " $ $ . * * % & ,
6
% / : . . . .+. , . . . ".5.6 , ". ." , #.-. ( . 3), . . . !. .) * $ , . . . +.+. , %. . . 2. . . , #.". ( . 4), . . . #.#.+ , . . . -. . 2.7. ( .5).
7
2.
'#
(
"#
$(
#$ &
%
+
* $ / $ . (Secale cereale L., , , $ ), ($ (Triticum aestivum L., ($ : 1, " * % 114, " * % 24, * ,1 , , $ 11, 8, 460) 1 0 1D, 6D, 1A 6" ($ " * % 114); ($ (Triticum aestivum L., , " -86 2 -80, , ); $ (Elymus sibiricus L.) $ (Zea mays L., % + 36). + / * . / $ (Pisum sativum L.), $ $ (Cucurbita pepo L.) % (Helianthus sativum L.). 2 $ ($, . $ % : $ . ($ % % $ 3, 0,0 4, -7 -10 % . $ 0 4 . $ $ $ %$ - 15, 25 5 . * % 0 $ % .. : 40-1 R. rubra, $% $ * ; 8-74-D694 S. cerevisiae, $ & S. Lindquist (, , 4"); CAI4 C. albicans, % $ % W.K. Huh ( * , ). .. $ 0 % YEPD (% .. / -5 / ; 10 / ; - 20 / ). %$ % $ $ %$ % (15 / ). + % / % .. %% . % YEPD 30 .
+ . ) 46-2 D. vanrijiae,
!
%
*
$ $ : .
$ $.
% %
% /
(
% ,
8
% , 1988). . $ .
+ (
* 5 – 10 , %
( % " , [14 ]-
(
(
* %
/
.
!
(
%
$% $
% $ , . 7
$ * %
%
& % 23, 35% (
0
* *
% $
0* 1980).
,
% % ., 1991).
(+
.
(
$% (+
(
* $ ,
$ %
$ % $% .
$ $ $
0
(
*
% && ! ,
%
. ,
18,
0 *
6% $% . % && ( * ( & % $ (Lichtenstein, Dreiper, 1985). 9 0* ( & 20000 g 1 * % / & . % % ) /%% (1982) % : (1957). %
$
1 #-1, $
$ $
*
1 7 0.1% (Stupnikova et
$ 0 ( (
Tween-20
" % al., 2001).
%
%
34 310 ( ($, $
,
* $ 0* $% 25 . % 0
0 $ $
9
% && 1988). * (
&
("
% ., $
$,
$
% ., 1991).
+
*
$ $ % $ $ $ % * $ : Pleurotus ostreatus (Fr.) Kumm. ( $ % 1, 1, “2 ”, 234 $% $ * $ * ); P. ostreatus ( $ #1, NK-35, “Denita”, U2 $ $ ( ); Pleurotus citrinopileatus Sing. ( #32, $% $ . % * * , % $ #32/2, $ % $ , * $ * ); Flammulina velutipes (Fr.) Karst ( “! ”, $ $ $% . ); % Lycoperdon sp., $% $ $ + $ . 7 (
$ 0 “
)
* ” % $ ( ( * , . 3$ ($ (Triticum aestivum 27 . &
* * $ 0
$
7 ( * %
% $ : ) .%
* %
% . (
0
.% –12 ; % $
.
.
2, –4, –10, –15 –4 –6 . ! .% % % $
(
.% % $ .%
(8 o 21 C. + . % $ % , 1987). + / $ L.) * * .
%
% $ % ( . % %
%
$
,
4
–12 ; –37 ; ( . 21
(
% $
( (
.
(–8
5
)
) ) )
10
“
). 9 (
* 2-3
”
.
(21 .
%
%
%
%
19
% $ $ % % & ( .
% !
%
%
$
.
( % (Straatsma et al., 1991) , 1988), % $ -
(
/&& ( % * -
. % $
% . ,
( ,
( [ C]- ( 14
$
% (
%$% $
%
.
$
* $ ,
% $
% .
$ !
$
&
/
& '
&
*
(1972) &
%
"")
-Na
% % & ( (Laemmli, 1970), * % PROTEAN II (“Bio-Rad”, 4"), % . ! $ * % & & % & . /
&
( $ 0
% %
%
,
" % % (
%
%
.
"") %
'
& 2,5-% &
7 / * % ., 2000). %
/
&
/
&
& ( (“Sigma”, 4") % ( & $% $ * * * $
:/ Mini( 2,5-
$ % . %
%
,
11
%
*
16
& $ !
15 $
0
%
0
%
+$
$
$
*
$
&
$
$ 1:1000.
$
% % , (“Sigma”, 4").
& $ Sigma Scan Pro.
0 "
( & %
$ &
$
%
$
*
(/
$ %
. " T.J. Close ( 4"). RAB-16 % $ . " $ J. Mundy ( ). %
& ,
*,
% / % 1.4 (2 % * $ (
$ ; ).
$
) , 1973) & !#-105 (+ 34 310 & ( * %$ * ( * $ $ :% I - <,% II ( , % III - #" # % IV 27 ( - -& % ). ( , #" # % / I * (3 7). 7 % * $ 5-90 0 0 . %
% &
( &
*
( (
% & ( !: .
!:
* $
% ., 1989). ! % % $ % !:) % % & ( * ( * , 1977). $ %$ * ( % * . $ ( $ , & ( *
12
% , *
$
, $ (1:1000) : 1) 0 % * % % ( $ % & T.J. Close, 4"); 2) 34 310 ( % $ ".+. , , 3) PUMP – Plant Uncoupling Mitochondrial Protein ( % $ Dr. P. Arruda, ); 4) & AFP III $ , % $ % Hoshino (6 ). %
$
$
!
* $
%
0 15 $ $ ); $ $ T. %
/ . (
27 .
1
/ %
!
% .
3-4
$ .
/
; " YEPD / $ % % . *
$ 0 %$ 107
(
(
$
,
60
% .. $ 0 14-16 30 . % % . " * $ % .. YEPGal, $ $ OD 0.3-0.4, ( ( 107 / .
$ %
% % .. &
*
%$ % YEPD , * (/ % ), % 30 % .. $ . .
1,4 $
/ %
% % .. % YEPD
YEPGal
% * .
* 1
% .. %
,(
%
13
$ %
(
,
(
% .
$ %
.% %
$ 30 . +$.
(
45o
50o
, % $ * % ..
%
(
0 YEPD. 24-48 %
%
%
%
%
. 3. )#
# $
# %
&( # # #")#
#
&& $ )
*
( $ .% % ( .%
$$ $ .%
, $ ,
$ . . , % % ( % ( $ $ % COR(Cold Regulated proteins) " , , %*, ( " - % ( * $ . 0 $ % & ( * (Anderson et al., 1994a,b Close, 1996; Jezek et al., 1998; Thomashow, 1998; Voinikov et al., 1998; Yu, Griffith, 1999). + % % , * $ % & * $ . $ * * (Houde et al., 1995; Kawczynski, Dhindsa, 1996). / % & % % $ $ * $ $ % % % $ % RAB, $ " . ' $ & ( . ,
14
* $ (Sarhan et al., 1997).
$
. 1. # Na. R-250. COR-
#
($ 13%15 "
,
,
,
% &
* $ 1
*
*
9
. -
. # . 1, 3, 5, 7, 9 –
0
0 ;% $ . (Regulated abscisic acid, . . " $ . % *
&
40 .
! ,
( COR* , % % % RAB% ( * $ ) * * / % .
15
3.1.
,
#
* ,
$
/
% $ $ % % T. aestivum % (
($ . # ($ * $ COR( . 1).
1 50
41
40
*
% 209, 196, 169, 66,
. % . /
* * $ 0 %
%
% 9 , 0 ($.
* &
%
%
&
& .
% ( 209, 196, 66
. % .
* $ ($ $
% (
% COR-
,
*
* % .
,
0 .
.
$
, *
2 *
(
($ * $
,
1 .%
. , $. - 32 ±4%, % * $ .
0
–8 15± 2.9%, - 61 ± 4%. 2 .% % , $
2 , , - 23 ± 3%, ,
*
.
%
$
16
. $ ,
% $ $ COR* $ ($ " ($ 1
/ / .%
( $ /&& ( $ $
% $ -80, -1
$
* $
* % .
0 -
%
% $ % / * (
$
. ,
(
* * .
$. –0,87…–0,96. + $ $ (. $
$
*
* (
* $
% % $ % 1 , $ % ( & % % T. aestivum ( . 2).
.
1
+
$
,
*, ($
%
,
!% .%
$ , $% -86, 2 ,
$ (
/
%
$ * $ COR* .% ( ( . 2 , 1 , COR( -1 $ $ % $
. ($, $
$ ,
%
%
,
$ & ( % *, % . ( $ * . * % . % $ * / * ($ * * 209, 196, 169, 66 50 . . . .% $ $ .
17
. $ &
. 2. 2
* (
% (
$ .
%
,
%$* $ ( )
$
($ -Na.
22
0
.),
$
–
3). % . . * , .
/
–
,
DI(II), -86, %&
(3
, 220 . + 9 %
,
. . 1–3 -80, ' , (4 , 0 , 4 .). $
$ %
% % % ( . 209, 196, 66, 50 41 % $ RAB% . , % % RAB. . $ * $ $ & ( . $ COR" ( .
($, .
%
: ).
0 COR-
0 % T. aestivum.
! #
(
* $ (")
$
10%R-250.
, ! #
1; 4–7 -
$
18
. 3. 2
/
* $ $ ($
% (
RAB-
%
% $ * $ (") % T. aestivum.
$
%$, ( )
# 10%# &
RAB-
-Na, RAB.)# . 2.
. +
.*
, –
3.2. COR-
T. aestivum, %
$
$
,
$
$
&
.
0
% * $ $
,
% &
%$,
, ($, . $
$ $ % % 0
* *
COR$
/ (
(
/
(1:1000). .
. # %
%
* $ $
. $
% $ * $
, .% COR-
19
% .
$ +
* %
% 41
% RAB-
$
*, .
% ,
. 209, 196, 66, 50
$
$ , $ ( . 4, "). + , % $ COR, & . !% % . % $ $ , , * / , % (Houde et al., 1992; Antikainen et al., ! % ( $$ % * $ % . & $ ( 15 ) % * * $ . ; , * ( 15 ) $ $ % . * * ( % * $ /
&
, % RAB-
%
,
(
. 1990). %
&
1997). . . ' ,
, % , ,
/
-
.2 %
$ &
.% (
% , $
( .
%
0 ( . 4, ).
$, $
* - % (
0
* $
% $ ($ (Guy,
0
$ % , $
(
.
% & . 0 $
%
* . *
% ( $ % . $ * .%
%
* RAB0 .
20
$
%
$
0
$ % . + (
0 %
“
.%
. 4. '
& % 0
%
%
,
–
COR-
”
* $ " ,
"") -Na (") % $ RAB ( ) 0 ( .
% 10%# & + ! (1:1000). ) # $
"
.
,
( &
$
%
* $
# ( -Na ( ); ( ) (1:1000) RAB. RAB,! " " # .
, ($
!
21
$ * %$ (
/
. / $ . 5).
,
$ ,
*
*
*, %
(15
. 5.
.
). +
0
(
%
*
$ (
Na.
,
%
=
,
%$* $ $
$
$ ($
16.04). 13%R-250. .
,
.
15
22
35%, 0 1-2 - 55 51%,
% (
%$
25 .
&
)
(5
)
* * $
,
% 25 $ &
$
(
( (
%*
% .
5
%$ % /
. 5).
$ ) ,
& $ COR%
$
$
/ .
# % %
%
%
*, * $ CORRAB-
%
, % /
% % , % .
.
. .
. 2 * $ 196, 66, 50 41 -
%
0
$
$ ,
-
-/
% ,
( (
;
$ / %
$ (
. $ $
$ 209, $:
/
;
-
&
, COR-
( ,& $
% . COR-
%
( %
.
/ %
%$ %%
%
%) % . *
%
, ;
RAB$ "
23
3.3 C
COR-
,
,
. % * $
( & COR-
% * $
% $ ($, 0
.
$.
* $ -
$ $
(
$
% .6).
($ . $ % $ - 209, 50 41 .
. 6. 2 0
* $
! " ). 1, 3, 5 – , " - , + 9
,
! "
$ . $
R-250. , ! # (
. ) "
0
,
$
. 13%-
Na. (
,
%
COR$
$
.$
" # ,
4 (1, 5) 100 (3). 2, 4, 6 – (2, 6 – 4 , 220 ; 5 – 4 , 260 ).
24
% $ % ( %
$ $ . $
* $
%$, ,
($. + $ .
3.4.
-
COR!
$ * $ " , 2 ,
. $ COR-
% ( %
% & ,
*
/
$ % (
%
.
% *
%
(
(
. 7).
$
. – 12 209, 200, 97, 66, 56, 50, 46, 41, 37 . 228, 209, 196, 97, $ – 13 % 46, 42, 41, 37, 32, 30, 28 26 ( +
.
% . 233, 223, 32 , ($ – 11 66, 56, 50, 48, 46, 41 32 , . 219, 214, 178, 66, 54, . 7). .
% . * 5 200, 50 41 , ($ – 6 209, 196, 169, 66, 50, 41 , 50, 46, 35, 31, 27, 24, 22 ( . 6).
. $–7
% , $ -, % $ & ( , % ( % , " , $ . * " ( % % ( $ $ . COR% , $ ( & % ( , : . - 215 , ($ - 169 , $ – 50 35 ( . 6). *
*
* $
COR-
215, 209, % . .
25
.
7.
$ (" ($, .
0
( )
)
$ " $. 13%-
( -Na. &
(
+ 220 , (3 , 220 + 1 3.5. "
% ( !%
%
.
,
! #
,
* $
"
"
. – ); – , 220 , (
..
(4
,
).
COR-
% $
$
RAB
$ $
! 24 ,
" - % ( % , (
* $ /
$ (Goday et al., 1994; Houde et al., 1995; Sarhan et al., 1997). $ . $ $ , .
26
7
%
&
$ $ , % % RAB . . % . + * * $ , $ 0 % $ % % % $ ( . 8).
. 8. ! 0 %
*
$,
% $ * $ %
%
$
%
. $ .%
$,
$
%
.
$ ! "
# #
%
. $
* $
!
(
" # ,
! ;
" (10%)
(
#
&
&
,
& (1:1000). / 0 & + ! ". – - "
.
63
,
1& .
52 * $ % . ,
* ! %
% *
# %
0 . % .
* %
*
$ *
* $ %
$
0 %
%
/ .
0 ;
0 !
* %
!
%
+
% * $ $ .
%
% *,
(
" –
27
%
%
(
$ %
% .
% $ “ 0
% .
52 ”%
($ “ 0 ” % $
RAB-
%$ * $ 63
( . 9).
(
.
$ & ( RAB ( . 10).
*
$
% .
,
.
.
%
63
%
, %
. , (
%
25 20
,
10
++
15
5 0
1
2
3
-.
. 9. ! %
1 2
/
3 0
4
1
*
%
52 , , , ,
2
3 4
%
&
(
.
*
, !
. ( 52 52 63 63
4
63
)
. .1–
" " " "
! ! ! ! !
, " "; 2 – "; 3 – "; 4 – ".
&0 ! . . . .
" " " "
28
!
, .
. %
“ ($
* $ ”
“ $
% .
/
$. “ % . ,
$ %
$ % . *
' , RAB-
,
63 $
$
,
.
/
% * $
10. %
. (
$ RAB* $
. 11).
%$, $
. , ! . ! .
.
( 8.
* $ RAB55, 60, 65 * $ ( 0 $ ,
%
%$,
$ 0 . RAB-
.
+
-
, * $ ” / % & (
.
* % .
$ ”
55, 60, 66 % % ,
($ $
% $
, "
.
29
. 11. 2 %
RAB-
* $ $
%$, $% .
$
%
! !
!
;
(10%)
# ,
"
#
"
( #
& & , RAB (1:1000). / 0 & + ! , ". + #
+ . ,
*,
& 1&
!
.
0
+
RAB-
%
$ $,
RAB-
. 10). #
% % $
% .% % % & % 0
103 %
. 0 .% % %
* /
, $ , / ( . + . $ % $ COR-
%$. 3.6.
1 2
13 2 -
# %
* (
" .
%
$ (
"
$
,
%
+ * &
+ /
-
30
, 0
% $
0 $
/ * $ al., 1998). -0
* %
.
* $ $ $ %
( %
(
%
$ $
0 , %*, (Smith, 1993; 7 , 1993; Hoshino et % % % , % $ ( * $ . + . * 0 0 * $ ( $ . % ( . $ .
$
$
%
(
%
%
. :
34 ( % ), % , % , % % % ( * $ (Neven et al., 1993; Sieg et al., 1996; Hon et al., 1994). $ % $ , % 0 $, 0 $ $ 0 , % . $ % * $ ( & , 1994; & % ., 1994; & % ., 2000 , ; & , 2001; 6 % ., 1998; Matsumoto, 1994; Matsumoto, 1997; Newsted et al., 1994; Hoshino et al., 1998). !% % $ $ $ % $ . +
( &
%
% , . $ . * $ ( * $ 2000 , ; , ) % , 1998; % $ / . *
0 $ ,
$ &
% ( & , 2001), %
$ % % ., %
&
. %
$ & $
; %
% ( $,
% %*
%$
%
31
Agaricales,
*
%
% ,
.
% ,
$ 9 *
& $
,
(
/
* % $
$ % %
* .
*
(
% $
$
(
%
$ % % .
% . ( % : 1) ( * ( * $ & . $ $ $ * % $ % , : % % & $ % & ( $ $ $ /&& % .% $ / * $ %
3.7. #
#
$
%
* .
% 0 * $ ,
$ *
( & $
% $ (
%
; 2) $
% $ ; 3) % $ $ , PUMP, 34 310 III $ , ( % $ ; * / ; 4) % * % & ( .% $ ( % $ * $ . (
$
* 0
/
$
$
% %
(
32
/ 1.
2
* ( . (–120 ) P. ostreatus ( 1, U2, H1, C1, Denita) P. citrinopileatus (H32, H32/2). M+m, n=9.
+
, 4
%
-
++
- +
, - +
0
0
,%
,
Pp1
3.8+0.21
3.2+0.06
-15.8
U2
4.9+0.06
5.0+0.3
2.0
H1
5.0+0.08
6.3+0.06
26.0
C1
4.5+0.25
5.7+0.19
26.7
Denita
4.6+0.31
6.0+0.31
30.4
H-32
4.0+0.27
1.3+0.04
-67.5
H32/2
3.7+0.14
1.5+0.09
-59.5
.
* $
( (
$ ( %
/
(
( * P. citrinopileatus –6 .
* $ .
* $ % $ $% . “ * $
%
*
% $ $. % $ . * $ ”
–4 $ * , P. ostreatus % . % % $ P. citrinopileatus 67% 43%, #32/2 - 59% 55%, 16%, . * ( P. ostreatus *( . 1, 2). 2 % $
.
% $
P. ostreatus –12 % $ . .+/
. *
1–
5% * $
33
+
2
/ 2.
/&& ( (–120 ) P. ostreatus ( 1, U2, H1, C1, Denita) citrinopileatus (H32, H32/2). M+m, n=9.
( ) P.
.
(
4
++
+
)
$ - + 0
, - +
0
,
%
Pp1
48.0+0.45
45.6+1.66
-5.0
U2
70.6+0.29
86.4+0.80
22.4
H1
105.1+1.65
158.5+0.6
50.8
C1
69.2+2.59
92.4+1.66
33.5
Denita
108.7+2.6
159.3+1.19
46.6
H-32
30.0+0.42
17.0+0.11
-43.3
H-32/2
25.9+1.24
11.6+1.0
-55.2
+ “ *
: , %”
&
“
, %” .
* $ %
$ .
$ U2, H1, C1 P. ostreatus, #32 P. citrinopileatus “! ” F. velutipes $ $ . * . –37 . !( & * .% . “! ” F. velutipes $ . / (% $ % $). . –37 ( P. ostreatus % ( $ ( . P. citrinopileatus % * $ ( , ( “ * $ ” $ % . $ $ ( . 12). 4
,
34
"
+
. 12. +
(
, $ 0 . (
$ U2 (",
“
$
&
*
”
, % *
% %
( ( ( .
$ * $
% $
3.8. &
$
% * *
$, .
.
(
. * % 0 ( F. velutipes, $ P. ostreatus, $ P. citrinopileatus.
$
"")
* $ $ %
( * -Na.
P.
$
. (
)
–37
.
.
2 % $ % $
*
P. ostreatus, #32 (+, )).
( citrinopileatus, ", + ( 21 ; , ) - /
)
/
* $ % $ &
%:
35
. 13. velutipes ( $% $ '
&
$ ( F. ”) P. citrinopileatus ( #32), * $ ” .% $ ( . $
“
“! %
%
13% "")
-Na.
( F. velutipes %$ 72 81 * ( , $% . –15 ( . + ( , 4 –10 , “ * ” ( ( . 13). “ * ” ( $ 21 , % $ – 18 . +
. 14.
% ( ostreatus ( 1), $% “ * $ ( .
$ .%
$ %
$ $ % $ % $ ”
P. .%
$ 13% -Na.
36
( * $ % P. citrinopileatus $ $ * $ . * % % , . * ( . $ . –15
.% + %
%
(
. 13).
%
,
,
,
% $ .
$ ( $ / $ (
$ $
–10
$ 1
%
$
26
( * 41 37 (
*
. , . (
44
,
( % %
% * . $ ( ( . 14). 20, 34 45 P. ostreatus
*
(
.
$
%
* $
.%
4 . !
.% $
.% % %
% $ / . $ $ 69, 64, 60, 58 43 . “ ”, % ( % $ , 50 . ( . 14). $
*
H1 P. ostreatus $ #32 * $,
.% ( %
+ ,
% (
–
.% % $ $
( ,
15). “ ( ( #1 P. ostreatus $ P. citrinopileatus #32 / ( * 65 38 . + % $ %
,
. $
$ $
% % 66
$
$ %
(
.
* $ ” % $. . % 73 34 . ostreatus
37
#1
%
$ %
$ % . ! .% 110 120 .
$ *
0 “
0
* $ ”
% $
. 15. $ $ % ( % $ '. ostreatus citrinopileatus #32, $% $ .% $ ( . '
& $ +$ %
“ %
” %
%
-Na. %
( 0
*
( P. * $ ”
#1 “
/
% % .+
$
13% "")
%
* %
.
( 0
,/
. $
,
&
$
(
0 $ $.
* $
38
3.9.
,
,
!
!
( * $
%
( $
,
$ $
$ % ,
$
. 16. ( P. ostreatus ( %
% $ % $
$ % $ #1) P. citrinopileatus ( % $ % .
%
#32)
13% % & (
&
$ $
%
%
, $ ,
-Na. 0
$
0 0
%
/ %
. %
,
% % % % (
,
%
$ ,
* ( *
% $
.+ % % % $ %$ P. ostreatus P. citrinopileatus .
% $ “
( . 16), (
( ”,
39
76, 71, 66, 57, 53 24 P. ostreatus #1, – ( P. citrinopileatus . $ * * #32. (
$ $
. $ ( %$ 70, 66, 57 53 #32. 24, 71 76 % 70 * $ * ( . 16).
#1, !
+ “ * $ ” P. ostreatus %$ * 24 , %
$ –4 % $ % $% % % $ 24, 57, 66 . +
. #1 $ $ % $ * -
. 17.
57
66
$
% % $ #1)
ostreatus ( %
%
%
(
. 17). $ P.
$
% . 13% -Na. % ( 66, 70 (
%
$ % *
71 (
/ * $
% .
% ( $ – ( ,
%$%$ $ . $ . F. velutipes ( . 18). 24, 53, 57, “ ”, $ % . 26, 31 34 . % % $ # 70 71
* $
$ (
,
–15 .
24
# (
. ,
31 $
0
% . .
34, 53, 57
* * 66
40
*
%
. * 4 C ( . 18).
,
%
( . (
%
26
,
$
.%
. 18. $ %
$ F.
( velutipes %
%
%
$
% . 13% -Na. ,
%
%
$,
.
$ %$. ( $
*
* % % $
%
%
“ %
% $
$
% /
$
% % .% . .
%
$ % % $
$
”
*
/ % *
% .
$ . ,
$ $ . .
% , (
$
# %
, (
$
,
* ,
*
%
,
$
/ ,
$ %
% ( $
$ *
$ % * $
41
%
*
*
0 $ %
.
$ .
%
3.10. *
$ $
&
$ Hoshino (6 ). $ & ), . ( P. ostreatus *% *
$
(
& F. velutipes %
& ,
+
%
.%
$ % $ *
% $
% $
& . AFP % $ *
$ .7 90 ) III ( . 19).
0
#
*
&
% (46, 74, 79
%
III
$
III % $ $
0
%
&
*
$ ,
* $ ,
III.
&
T.
$ % $ $ (
%
$
% (
*
%
. +
*%
/
(
F. velutipes
P. ostreatus
* . * *
"
&
(80 & $ .%
%
( (
* *
F. velutipes.
* ( . 2 *%
3 ). *% F. velutipes,
20
-
% $ 0
42
$ P. ostreatus
(
*
. 19. $ ( F. velutipes P. ostreatus ( AFP III $ . -Na.
% $ “ % F.
” velutipes, ( *% * $ * “ % % .
, % 0 $
” *
$ /
/
.
% % ,
%
& %
(
%
%
.
. 20).
$ #1) 13%
$
%
0 . $ % $ & (
,
,
.% (
. * $
( *
$ .
43
. 20. 7
&
*% P. ostreatus (
(
velutipes. . ' ostreatus,
21
0 !
+ #
;
! -
); ). ' F. velutipes,
0 !
velutipes (–10
+
).
! . ' #
,
velutipes
.
( .
F. velutipes / % , % . *
#1)
F.
#
P.
P. ostreatus (-10 ! 21 ; D. ' ! # F.
/ .%
/
$
(
P. ostreatus , $ / F. . 21).
44
F. velutipes P. ostreatus
0,08
" ,
0,06 0,04 0,02 0 10
9
6
10
8
5
8
7
4
3
2
1
6
-0,02 -0,04 -0,06
!
-0,08 -0,1 -0,12 2
-0,14
4
12
14
16
,
%
,
. 21. 2
(
18
$ F. velutipes
(
P. ostreatus
#1).
3.11. '
!
PUMP $
0
,
!
() 310 .
0
(
%
$ .
% ,
$ *
$
$ 0 $ $ * $ PUMP
% % $ % ostreatus
( P. citrinopileatus.
% $
% 0 0 34 310 ( 310 ) $ ( 0 F. velutipes, P.
45
. 22. $ % ( F. velutipes, P. ostreatus ( #1) ( #32) PUMP.
$ P. citrinopileatus
15% +
*
$ % %
%$ !
-Na.
.% PUMP
. $ % %
$ PUMP ( , ( % $ . ( F. velutipes. * 2 ( . 22).
%
%$ 64 $ .
% *
. 23.
$ % $ ( F. velutipes, P. ostreatus ( #1) P. citrinopileatus ( #32) 34 310. 13% -Na.
. * %
;%
($ 56
66
,
34 310
46
%
$ “ %
. %
*
($ %
% . 23).
(
% 0 %
* $
“
”
* *
& & $, . *
3.12 & *
,
%
* (
, 310,
. 34 (
PUMP % ( . ' , $
$
* . . *
”
*
$
%
310 .! ;% .% ( * $ ( , % $
%
$ $
0
% * , %
( $,
%
–
% .
*
!
*
0
% $ /
0
$
$
%
%
$ % % (P. ostreatus P. citrinopileatus) / * $ * $ % .+ * . $% $ * $ % , * $% $ % ( & % $ .+ . % $ . * $% $ ( $ & & * $ % % * * % % $ / % ( & 0 . %
P. ostreatus, $% & & 0
U2 *
% $ %$
.% (
( 4)
, *
47
28%, %$ % $ , / /&& ( 30 ostreatus,
* $
* %$
, *, .
* $ (
,
%
* 0
%
$
20%. ' 3 / 0 0
. 0
(
/ –12 0 0
.
$$ 30
0 ,
* %
. 24). ( P. /&& ,
% * %$ . 24).
: 80% (
*
/&&
4
U2 " U2 " !
200
5
150
%
100
50
0 V3
V4
$ :
$
V3
V4
0+
. 24.
( * $
( P. ostreatus
U2.
U2 .
“
– -
0 & & "
, 0
* .% $ * $ "
$
$ :
30 +
/ (Triticum aestivum L.) $ (
% $
% ”
–12 $ /&& 0 %$ % % $ (
#
# ; U2 . 2 . M+m, n=3. P.
% $ % 4)
( $ . 25).
ostreatus, . * %$ * $ .% $ .,
48
.% ( #32 P. citrinopileatus $$ 0 * & & $ % , * & & 0 %$ ( 4) * 11%, %$ * $ * . 7%. , 30 ( % % . * 0 0 /&& ( . 26). , $ .% ( P. citrinopileatus, . % 0 0 /&& ( . 26). ! 0 0 /&& % $ .
%
5
150
U2 ) U2 ) !
100
50
0 V3
V4
$
$ :
V3
0+
. 25.
V4
$
$ :
30 +
( * $
( $ % P. ostreatus U2. U2 ! ; U2 % 2 ! . M+m, n=3.
% %
/ (Triticum aestivum L.) $ % $ – “ !” ! –12
49
150 32 M
5
100
%
32 " !
50
0 V3
V4
$ :
$
V3
V4
0+
. 26.
$ :
$
30 +
(
/ * $ % (Triticum aestivum L.) ( $ % $ ( P. citrinopileatus #32. 32 . – “ # ; 32 . 2 –12 # ,
2
$
( % (
$ > *
( * $ .%
* % $
$ PUMP,
% .+ % % .
% $ %
$ .
. . 34 310
,
, &
( %
$ & $ * % $
( $
#
,
.
”
“
(
% %
$ &
% P. ostreatus,
$ % $ * $ ”
$
% ,
% III
, $ %
. C $ F. velutipes P. ostreatus % * . % , % % $ 0 $ . 0 % 0 “. ”
50
,
$
.% % . * % % . $ ( *% $ .
. % % 0 . ,
%
$ $ (
( %*
*
%
%
(
(
)
,
.
*
% ,
*%
. ( $. %
% .). + / $, .% $ ”
“
.
$ % %
/ %
% .
* $
$
.
* $ $ ,
,
.%
% $ ( & $
(
*,
$
/
&
*
F. velutipes, 0-5 ., 0 $ $
$ %
*
%
“ $ % $ ” .
%
%
% %
, % .
%
$
%$
(
* $ 0 $ * %
.
$.
3.13 % ($ .
$
.
*
%
% *
*
.% . '
* $
% $
($, ($
. . +
% %
% ,
,
( . # % %
% % % % (
( $ %
,
%
%
( , .
51
% % %
% %
,
% $ 0
$ *
%
,
% ( RAB# *
, RAB-
RAB-
( 52
*
63 %
*
$
.
7 ( % % ( ( * ostreatus F. velutipes ( $ –37 . 4 $, $. .% / .
, . ( ( * $
%
$
$
% ),
$ % ,
. % . %
$ – %
$
& $ %
$.
* $ *
$
* *
( $
%
% % P. citrinopileatus . . $
*
$.
* $
(
$$ $
.
%
+ ( % $ citrinopileatus F. velutipes % $ % % %
%
* $ (
% $
%
,
P. citrinopileatus (
.
P.
$ $
P. ostreatus $ %
(
%
*
.
% $
/ . + . . $ * $
%
%
RAB-
%
%
(
$
( . %
103 ($ % %
$.
%
$ $
P. ostreatus, P. . $ , . % .% $ ,
(
%
$ .%
$ .
% $ %$ F. velutipes
( $
52
70
71 % % ( citrinopileatus % +
.
P. ostreatus F. velutipes % $ & $ & ( ( / * . + *% .
, III $ . & & $
&
(
velutipes P. ostreatus . F. velutipes, * , ( $ . $ (
$
+
(
F. : ,
% (
*%
( P. ostreatus * & & in vitro. ostreatus % * .% ( .
$ $
( * ,
0
/ P.
P. ostreatus, P. citrinopileatus F. velutipes . $ , % $ * $ 0 0 PUMP 34 310. , % $ PUMPs .% F. velutipes, % % % ( . (
+
*
%
%
* $ *
.7 &
. $ AFP %
& . ,
% .% 0
P.
P. ostreatus
(
%
0
(
% (
(
%
$ . P. ostreatus % .
( ,
(
, %
% ,
, $
* .
.% %$ . $ / (
$
( %
$ $ %
*
% . 0
$ * $ $ &
$ , , (
53
4. # "
! &
$ & 4 310 $: "#! #
0 * . 0
" # % " # %* (# * $
%
& ( ,
%
& & % % . 0 * & & , % 0 0 , .% $% , $ * , , ( ( . 0 . , $% % 0 0 . $ - UCP-1, UCP-2 UCP-3 (Ježek, Garlid 1998) * 0 0 & & * $ – PUMP (Vercesi et al, 1995), StUCP (Laloi et al, 1997), AtPUMP (Maia et al, 1998), AtUCP2 (Watanabe et al., 1999) 34 310 ( % ., 1996). % , 0 0 & ( $ , 0* $ 0 0 ( & & . + $ 0 0 % . % * $ $ (Ježek, Garlid 1998; Ricquier, Bouillaud 2000). + / . 1984). ($ % $ %
0
, $
.
.% %
$ %
%
,
0
. (Voinikov et al., % % % , 1987)
& & ,
/
%
/ ,
(+ % (
0
/
%,
54
310
% % ., 1996; Voinikov et al, 1998). « » 0 0 * $ $ 34 310 ( % ., 1996). &
# . ( ,
% $
*
( PUMP
. %
$ (
%
$
$ .
* *
,
& &
(
$
* ( Ricquier, Bouillaud 2000). !% % , % * % . $ . + . . %
,
%
%
.
4.1. & *
0 % . $ % 1989; Ježek, Garlid 1998; 0 ( & % % % $ / 0 !% $ % $ /
& & % % % $ , % ($ , & & , $ $
% 0 , 1987).
(+
*
/ . %
/ % .
%
%
* ,
$
55
#
200
1
2
180
# $ %
,%
160
3
( )
140 120
4
5
4
5
6
100 80
120
6
110 3
100 90
1
%
80
( ) 2
70 60
(")
. 27
(1) - –2
$ 0
, (3), . $ ! ", M+m n=5.
( )
*
(1 # (2), (4) - 00 . 100% !
4
%$ % ). % ! (5), : 10 !
: +
(6) - –10 , + 10 .
. !
".
56
% ( % % * $ , % / 0 0.5%
$ ( (
" .%
, & & % /
0 %
. ,
%
% $ . %
%$ , % % * $ $
($, , $
.
$) ) $ % 0 $ %
. $ / * /&& ( $(
,
. 27).
!
% / % % % * $ , - % , ;% % $ 34 310 , * . % , % $ ;% ( ( . 28). * , $ % $ 34 310 100, 85, 70, 59, 41, 39, 38 35 , $ $ . 80, 75, 70, 59 50 % %$ . 85, 70, 59 50 .3 . $ % , , 100 , 85, 70 59 $ $ 85 59 % % ( * % $ , % * $ , / % % * / $ $ % % * $ $ & ( , $ 34 310
.
$ *
$ 34 310 . $ %$ . %$ % / 59
,
, * % * $ %, %$ & (
57
. . 28 + * $ , (6) . (7)
(1)
-
( (3)
;%
(
00C (4) $ –10C 34 310 34 310.
,
() 310
* % %
$
.
% $ , * $
* $ 34 310 . + % / $ % % $ . . $ $ . %
&
% ,
/ $
. .
* $ (5)
* $
4.2. +
140
–1 C (2) $
$
* $ $ $, %
%
0
% *
. , *
. ($, .
,
230 ( 480 310 . $ * .
$ $ 110 . 29,"). 320 -
58
380 %
(
,
0
%
. 29,").
. 29. + % .
* $ (3)
$ 0 && 34 310 $ % $ ($. ' ;% $ (
(") (2), * $
$ ( ( )
$ (1), ($ (4)
34 310. ;%
$
/ & $
&
. ;%
$ $, $ "")
% ;% * 54 .
$
66
-
56
(
. , $ % $ .
. 2 * *
*
% $ (
-Na %
,
( ,
% %
. 34
59
310 $
$
$
* $ %
, $
%
* 34 310.
* $
$
+ % 34 310 $
&
$ , 140
,
.
% 34 310
( ,
% ( $
&
-
. 29,"),
$
% %
$
% . 29, ). % .
(
%
.
. 29, ). * $
,
.
$ %
%
*
$ %, $
( $
$ .
$
34 310 $ $ .+/ *
$ $ %
0 34 310 ;% (, $
.
. $ %
0 %
*
$ 310
«% %
*
$ . * % $ % $ (
*
* $ %
$ $ $
. % %
*
%
% $ 34 310 % $ .
,
2 .
. $ $ $
0
$
(
$ % ' & % .
* $
* $ 310 , % $ % , 230 , % 66 56 (
, .
%
»,
34 310 % 34 310 0
* /
.
60
(
.
30.
'
,
& (1),
% % $ (2) $ 3. (Secale cereale L.,
. ) 23 310; . * !
% % $
).
( .
! .
4.3. &
/ $
* $
$ (3) $
() 310 $ * ,
$ %
. $ % * $
&
(
$ .% ,
, 34 (
310
% $ 34 310
$ $
61
&
. ,
(
%
*
-
&
. %
+ (
$ % $
,
310
. $ 230
, $ %
15,"). + , . * . ( . % $ $ 320 - 330 , * 140 ( . 30,"). / & (
(
% . .
+
*
% /
34 310
$ .
% .
140
310
, $ % $ 34 310 . 30,"). + % & ( $ % $ 34 310 : . 470 . 230 $ . $ . , % . 320 - 330 % % % . 34 310 ,
$
%$% $
$ %
%
% 34 310
$
. *,
% % .
,
/
$ 0
$
! 310
470
% ,
2 % (
$, . *, %
, $ & % , $
( %
,
/
0 *
. .+ 470 * ( . . $
$
(
% , $ / % , ( & $ (Manniatis et al, 1982). . . 320 - 330 $ ( . 30, ).
, % $ &
.
$ $, (
,
% ,
. $
310 ,
310 , $
62
$
.
% $
34 310
$
*
$.
)
(-40 , 1 34 310 . $
$ $
$
&
, %
( $$ 34 310
* $
$ % $ & ( ( . 31,"). ( $ % . $ $ . 310 470 . + % & ( % % * % . . 470 , % . . 320 . + % * & ( % . . 320 . + . % $$ % . 470 ( . 31,"), $ $ . ( . 29, ). / $ , 34 310, $ $ & ( ( . 31,"). 3 310
( %
%
$ % (
470 310
,
$ . 31, ). +
(
* $ $
34 310
.
$ 30, ), $ .%
$ . %
( $ / % % $
$ $
. 6%
$ 0
%
% $ * $ / % 470 % % $ $ ( . 31, ). 7 % * $ 34 310 $ $ * $ ( . 30, ), . ( . 31, ).
63
. 31. ' % $ (2) 3/
&
$ %
* $
).
. ) 23 310; . * !
,
320 0 .% $
)
.
!
, . 470
% % * $ % %
. , $
$
0
( .
2
(1),
$ (-4 , 1 . (Secale cereale L.,
$ $
$
( (3)
$ &
(
.
. *, 310
( $ %
$ +
$
$ .
,
. ,
64
470
( % 0
.
&
% %
%
$ %
(
$, ,
%
( , $ % (CSP) Marahiel, 1997; Graumann, Marahiel, 1998).
&
4.4. %
$
, (+ 0 0
$ ( ,
%
% %
34 310
( %
% / / %
. ( ( % ( -
0 % .
30 !
* $ # (Graumann,
() 310
# %
$
(
$
% , 1988; Chou et al., 1989). $ 34 310, $ ( ( % $ $ % $ % % *, % 34 310 % . . $ % % * $ $ % 34 310 . -N / & "") ( . 32,"- , 3) $ ;% ( 34 310 % 34 310.
$
% - $$ / % * $ , % $ % , , % * $
%
(
( (
;% ( 34 310 . 32,"- ). ' .
* $
$ $.
65
. 32. ' % 1 –
+
&
(")
-
( )
%
($.
# in vitro (30 # 23 310 (30 # 23 310 # 23 310 0 37 );6 – 23 310 $
, ,
! ; 2 – ! 0 , 0 C); 3 – ! 0 , 0 C); 4 – ! 0 (3 + 37 ); 5 ! "4 (0.3 / " - . ,
) (3
% $ % % ( 34 310 $ . + % 0 $ 34 310 (Kolesnichenko et al., 2000). * ( $ * 34 310, . % 0 & & , .% $ % *% & 34 310 . : ( $ * & & % . + % / / ( % 0 ($ in vitro 0 34 310
66
%
,
*
0 .
*
$ ,
40 3 2
/
25
( ) 1
) #
30
2/
&
35
(
20 15 5
30
60
& '
90
,
3 1
2,5 *
2
( )
3
2 1,5 5
30
60
& '
. 33.
4 (") (
%$ ($
% 34 310. :1–
)
(
# "
# : 10 .
90
,
" + 10 .
"
0
0
( )
23 310), 2 # " 23 310, 3 – 23 310. . .±m, n=6-8.
67
34 310
% %
&
(
% (
*
& & & 34 310 /&& 0 , ( . 33). $ % * * . % . *, ( ,
% . '
$% 90
7 . &
% 34 310 * $
$ .
& *, $$ 0
%
/ ,
*
0 33). / $ . $ &
.
%
( % $ , * % 0 0 & $ 34 310 % & $ 34 310 % . % .% . ( % $ 0 0 34 310 . in vivo 0 % . &
0
34 310 , 0 0 %
() 310
310 $ $ % % (
%
( *,
%
% * 34 310 $ .
0 .% * 34 310 % $$
& &
*
* $ $
( $
%
$
4.5. & * ,
(
% %
& & *, 0 % ( , 34 310 % ( & * 0 $ % $
$ 34 , $ , % $ , $ , %
. + 310
% /
,
$ $ .
(
(
%
34 *,
68
% 34 310 (
%
60
0 . 34).
(
,
40,0 5 35,0
/
60
2/
30,0 25,0 20,0 0.09
.
34
1 4
34 310
0.175
0.25
310
* % 5
60 : 10
n=6
0.50
0 ($ 0 0 .
(
+ 10
.
0.75
% (
( . .±m,
. 2
34 310 (0.5 1 * * % 0 60 ( 0 . + 10 .
+
%
)
* $
%
: 10 .
. M±m, n=6. &-
&
!4 310
1 6 + ,
, 4* 0
+ , -. / 3 *
/ 3.
O2/
$
, 4*
$
41.1+1.7
1.88+0.05
48.4+0.8
1.59+0.10
23.1+2.2
3.41+0.14
37.2+0.1
2.10+0.11
23.3+2.4
3.26+0.32
31.4+1.1
2.32+0.11
22.4+1.9
3.56+0.44
36.2+2.2
2.16+0.20
/
.
69
5
+ . % $ in vivo 0 34 310, % 0 0 %
$ /&& % . .
$
,
310
$ * $ ( ( ) + % 0 %$
0
* ,
%
() 310 *
$
,
(
% %
( (
,
% (
% %
%
$,
( %
. $
.
, %
,
0 *
& ( 34 310 ( %
, (
.
.
%
* ,% $ $
4
% /&& ( %
34 310 $ %
$
%$ *,
($ 0
& & * ,
* /
,
( , ( & %
/
*
, $
/
0 .*
$
*
$
% ,
%
4.6. &
34 310 $ , $
% . *, ( $ *
% (
34 $
$ 34 310 % % % ) % % * $ in vitro 00 . ( & & ( . 3).
/
(
*
%$ ( . 35). $
$ $
%
.
,
70 ( B)
50
12
40
10 8 *
30
/
&
$ ,
#
( A)
&
10
(
O2/
20
0
6 4 2
1,2 '
. 35. +
1,8
- +, 310,
'
0
2,4
1,2
/
'
% $
–1
$ . ,
$
,
% 1
34 310
/&& (
,
2,4
/
$
$ 4 (")
0
1,8
- +, 310,
'
%$
*
%
%
* ( ). $ ,
$ $ &
( ,&
34 310
$ *
0 (
. 34 310 .
* 34 310.
34 310
* % %
.% *, $$ 34 310, $ $ * % %
/
( «
%
& & % % .
$
%
$
/
2 /
( .
,
%
»& , $ % 34 310
, $ ,
%
. ( $
$ , % %
( ( ( % .'
.
71
%
.
$
% $ $
% 4,
( & %
34 310
.%
/ ,
%
% 0 34 310. + $
*, %
, $ $
,
* % $ .
$
,
$ % .
$ ,
$
, %
$
.
*
0 %
$
/ , % ,
% % % * $ , . , 0 ;% ($ 34 310 . $ % . * 34 310 .
. $ % % * $
*
,
% / 34 310 %
$ $ $ ($ 0
& & ( . 4), . % ,
/ $ % . 2 ,
34 310 $ $$ %$ % *
$
/ % % % * $ 34 310 56 66 , .% %
* $ % . /&& ( $ & & / (
( %
$
% /
* $ -
& & , /
% /
%
$
“ 34 310
0 ” $
/&& ( % % .
, $
. ,
%
.
. 4). ( & $ . $( . 4). 34 310 $
72
/ 4.
2 +
$ 0.6
$ ( ) /&& (
: 10
.±m, n=3. &
34 310 (% ,% . 1.2 * & & 0 % $ % .
($, %$ %$ .
+ 10
.
. - !4 310
1
, 4*
6
$
, 4*
$
+ , 0
32.5+3.5
2.54+0.13
22.7+2.9
3.59+0.21
+ , -. /
24.9+2.4
3.91+0.30
12.4+2.10
4.53+0.15
19.2+2.9
4.50+0.23
12.4+2.6
7.00+1.29
19.5+2.8
3.65+0.15
19.6+2.1
3.65+0.16
3 *n
O2/
. ,
2 %
/
$
( & $ ( / % $ 34 310 % / $ * . & & . ! . * * & & % % * $ , - % , 34 310. ' ; % / % .
%
$
* $ %,
%
. , * 34 310,
&
0
%
/
0
. 34 310
% * $ % .,
, %
34 310
( .
$ *
73
/
% ( 0 % * / 34 310 (
%
$ $ & & % *
. 36),
/ ( &
$ % 0
$
% %$ % % 0 0 0
*
*2/ / ) 5:*, . – ! . 310 (0.3 .).
( # (10 .),
– +
34 310, .% .
.
. 36. '
5 (200
$ , %
$$ % % % /&&
.
% ,
23 310 (0.6
0 (10 # );
34
–
(
.), . . : 23 - 23 310 # )
74
310, /&& ( % 0 % 310 . & & 34 310
& & * 34 310 (
0 % % $ / %
*
0 , . 36). 2
$ %,
4.7. &
$ , 34
0 *
/
%$ $
&
0
( .
%
() 310
,
%
0
UCP
0
%
% $
%
, $ & ( et al., 1998). 0 % 0 0 /&& % %$ * ( % .
.
,
$ & (Palou 34 310 % % . *, % * $ $
, $$
$ * %
. .
34 310 % * $ $ %$ * ( % ($ $ , * 0 * & & % ($, $ % 34 310, $ * * I %$ * ( ( . 37), . . / 0 0 % 34 310. $ %$ * ( % $ 34 310 % * * * ( . 37). 2 % 34 310 % * $ $ %$ * ( % « » 0 0 .
75 ,
170
5
#$ %
160
30 60
150
90
%
140
#
130 120 110 100
I
II !
4
. 37
%
#
IV '!
%$ ($ in vitro
(
$ 100% ! + &6
0
0
$ 34 4
0 ",
! . M+m, n=6.
4.8. % !
( 310 /
$ %
*
310.
! %
III
!
23 310,
$ () 310
0 0 % 34 « » UCP- % $ * $ % .% $ $ * ( "), $ UCP- % $ 0 0 , 1989; Jarmuszkiewicz et al., 1998) $$ 0 . + % 34 * % $ / % $
310 0 0
34 310 . $
76
%
$
(
% 34 310 % . ( . 3, 5).
% ,
& &
0 %
$
%$
, ",
$ %
/ 5
2 34 310
+
" (
60 : 10
M±m, n=6.
%$ 0
0
% .
+ 10
.
.
. + !4 310
&
1
6
+ ,
, 4*
0
3 *
O2/
'
*
%
%
$
2.22+0.21
46.7+0.4
1.79+0.08
20.0+1.8
3.79+0.04
29.6+2.6
2.49+0.24
19.0+2.1
4.00+0.17
34.3+1.8
2.25+0.08
/
.
$ 34 310
,
$
.
0 $
0
/&&
.
() 310 ,
&
, 4*
35.4+1.0
% 4.9. &
$
0 % (" . *
.% % $ ),
$ 0 ,
$$
&
.% 0 $
% "
$
77
al., 1995).
*
(Purvis et %
&
(
% &
(Turrens, 1997).
$ 3
(
%
.
$
& (
UCP %
(Ricquier, Bouillaud, 2000), . 0 0 $ % & ( 0 . + 1994 % +. . $ (Skulachev, 1994; , 1998) $ $% ( * « » 0 , % $ % % * $. + / , % % & & 0 %$ " "2 , % ( ( !2, $ %$ * ( , $ % % % . + % $ 0 !2 •− ( !2 . ' % .% % % . + , , * 0 0 PUMP % & * . ( #2!2 (Kowaltowski et al., 1999). $ , & $ 0 0 UCP 0 , PUMP * % $ & ( * * " % (Boveris, Chance, 1973; Korshunov et al., 1997; Negre-Salvayre et al., 1997; Popov et al., 1997; Kowaltowski et al., 1998). * * $ % 34 310, & &
UCP-
$ $ $ $
%
$ (
*, .
$$
0 %
0 0 $ !:, $
78
(
$ !:
%
.
(
, PUMP ( $ ( !:
% ., 1996),
. *
0
0
% * #2!2 (Kowaltowski et al., 1998). ' % $ % . *, & ( * / % 34 310 % 0 / % . % ( * !: % . + / $ % $ 34 310 34 310 % ($.
9,0
/
&
-
310
7,0
6,0
#$
%
-.
. 38 + 34 310 (1 $ 34 310 (2
310
8,0
% ($ (
5,0
2
4,0
/
)
/ ) !: $
270 .
3,0
0
+
15
30
45
1
1 15 1
& '
30 1
45
2
!: ($ % ( !: ( 40%) $ ( % 270 . $ 34 310 $ $ % !: 50% ( . 38). % . % $ $ * *
% 1 % ; %
/
79
( (
% (
!: % $ in vitro !:
% %
%
$
*
,
*,
34 310 % . 2 *,
$
%
$ * $ 0 $
. & &
$ % ( $ %
,
$
/ % $ 34 310, 0 (Kowaltowski et al., 1998), * " % 0
%
/
$ !: % *, % %
.'
,
$
$ ($. $
%
$
%
% (
%
;
% %
/ %
( $
% . 0 0
.
+
. $
% % !: ( . 38). 34 310 ( , % !: * $ (
. (
60%,
% % * % ,
% (+
(
% $ $$
$
* 34 310 ( .
$
$$ 38). $
.
%
( «
, 1983; % . *, % $ . $ *
»,
1
34 310 ($ $$ / $ 30 $ !: * % 1,5 , * 34 310 % * . * ( . 38).
/
$ .% *
& ( % ., 1989). ' % $ /&& ( .% %
% & 34
% * $
310, , ,
80
«
% 0 %
/
.
0
4.10. &
+ !: $$
% . % $ / !: &
$ 34 310 & % * $
& .%
»
$ % ( !:,
$.
() 310
34 310 34 310
% / ,
(
%
% (
$
45,0
/ .
30,0
% #
35,0
-. &
40,0
1
25,0
2
#$ %
$
20,0
3
15,0 10,0 5,0 0,0 0,5 '
'
. 39. + ( & % 20 370 . % !:. (0,5 - 3
/
1 +, 310
$
2
/
$
(
* (3)
—
/
!: ($
& '
( (1),
)
%
/
,
/
&
34 310 .
% (2) $
(
&
& $
/
3
(
( %
(
34 310 ,
81
* $
% ( 0 /&& & & !: $ $ ( ( ( . 39). 34 310 !:, * $ % ( 0 /&& #" # $ ( ( 34 % ( 1 / , !: * % ( % * ( ( 34 % ( 0,5 / . /
.
( !: %
, $ . '
$
( .
$ 34 310
. *,
34 310
%
%
% ( $
$ !:
% . * $ %, !: .%
* $ . % (
% $ "
34 310
* % $
& $
( / / %
.
4.11. &
() 310 +,"
*
%
34 310 $ ,
$ ( $ !: 0 &&
% * $ $ ( %
%
($ *
$
%
0
. %
& % /
. +
%
$
& %
. .+
*
$ $ %
.
$
.
230
$ .
330-380
% . (
&&
%
. + 34 310 $
% &
$
82
* . ,
.+ % .
* $
34 310.
,
%$$
+ / $ , 34 310, $% $ ($, $ $ , % % * ( . 40). / , , $% $ ($, $ !:, , $% $ $, $ , $$ * $ !: % ( . 40). % , . $ , 0 % $ % * !: % $ $ $ , ( % , % * , / & ( 0 % ( $ % . . 40 + $% $ %
.
45
#
40
/
30
#.
25
%
&
35
20
!/ ! 0#
" '
% & & !:
15
#$
$
10 5 0
1
2
3
37
% .
, "
% % (
.
. !:
34 310 * (1), (2) (3) % ($ (
20
! 0
$
$ %
$
83
%
(Kowaltowski et al, 1998). / % * $ $ .% % * (Petit et al., 1996). * 34 310 % ( !: .% $ , % & ( / , « » % % , % % , ( !: % 0 « » 1996). + . % *, , - % , % 34 310, * , & * ( ( $ ($ $ $ ( !: (Kolesnichenko et al, 2001). * $
$ . /
$ % . ,
( ( & %
, ( $ .
4.12. ,
2
%
&
34 310 , /
(
* $ /
& & & ( (
, %
$ ( ( %
& & %$ * %$ * .+ $$
(
%
,
$$
34 310 % ( $ 0 0 $$ $ 34 310 % . , % $ %$ * . # * 0 %$ ( . # * $ $ % ( / * % * / /&& % % 34 310.
0 . in vitro % * 34 310 ( * * ,
84
$ 0 (PUMP StUCP) * 34 310 , $ * ( ( , $ 0 $ * % 0 0 0 , $ * 34 310. + / . 0 0 % 34 310 % $ 0 0 . 0
* $ 0 0 $ $ % $ . $ * $ 0 0 *, * $
34 310 $ & ( , . ( $ % % $ 34 310 , 0 % ;% ( . 56 66 . / ( , % * % & ( , $ $ / / & ( . * $ . * $ & ( , ( . . 470 310 , % & ( . 470 320-330 , % * & ( . 310 .! $ / % *, ( 310 % $ . 320 - 330 470 . %
, % . % . % . & ( 0 310
% % $
% % 310 % -
.
$
% . 470 .+ % . 470 . 320 $$ 320
470
$ &
34 310 ( $ ( *
, . + .
% $ % /
*
$ $ 34 % .
85
$ $ &
% (
.
$ .
$ %
$
% %
,
(CSPs) &
34 310 * $ (
(
( ( , * # (Jiang et al., 1998). + / . % . *, ( . 470 , $ % % $ * $ $, . . * ( ( .+ . & , $ 34 310 % % $ .% $ $ $, $% * % . , / $ $ $ * « $ » # , $ % . $ % $ . % * 0 % & 34 310 – « », « », . 2 , ( 0 0 34 310, 0 , , % . 34 310 , , 0 $ . , % 0 0 * , & , % . & %
$ 0
% % $ %
$ .
34
310 $ $
(
&
. $ 34 310 $
.
% * $ ( . $ 230
*
$ & $ ..+ .
86
. 310
/
& &
( ,
($ - 310 320-380
. * $
,
% $ *
% 310,
. % * ( (
, 0 ,
/ "
* $ " (
34 310
%
470 %
$
34 310 % . * $ / ( % «% »
.
% % $ * $ $ % % . % . 310, 230, 140 56 66 . % * $ %, . ($ 0 & $ 34 310, % / $ % * / 0 0 . ,
. $
,
$ 34 0 /&& / % . $% .% $% % 0 .
in vivo 0 0 34 310 % % % * $ . + % * $ / % % 0 0 %$ & & /&& % 34 310 . * / * / /&& % $ 34 310. ! in vivo 0 0 /&& , ( ( 34 310 % % $ % % * $ .% *, 0 & & / ( & $ % . ,
.%
*
% $
0 &
%
("
),
87
$
$$ "
,
.%
$
(Purvis et al., 1995; Turrens, 1997). 3 . $ & & ( UCP ( % (Ricquier, Bouillard, 2000), . 0 0 $ % & ( 0 . + 1994 % +. . $ (Skulachev, 1994) $ $% 0 & & , * % % 0 $ & % .' % .% % % . + , , * 0 0 PUMP % & * ( #2!2 (Kowaltowski et al., 1999). 2 . , $ 0 0 , % (Korshunov et , . % ( #2!2 al., 1999; Kowaltowski et al., 1999). + / $ % ( 34 310 ( $ % % . %
%
% * %
, $$
( + . 310
(
%
&
%
(
*, 0 / $,
$ * ,
,
$ . ,
«
$
!: $ % $ 34 310
% ( &
% % ( % *
$
/ * / / / 310 % 34 310 %
34 310 ($ / * $
!: % . % * , » %
* !:). $ 34 !: $ % ( !: % . *, $ . *, % & % %
% 34 (
88
( * $ % 1997), $ (Jones, 2000),
,
( , 1998). ,
% % «
" ' 34 310 , % ( *
$
(
(Reed, –2» (Apaf-2) .
( &
% % % ,
(PTP). % /
*
$ . *, $ % /
( ( 34 310 $ $ .%
$
$$
.
$
0 0
% !: % ( $
0
* $
$ 34 310 % , . $ %
%
. %
%
!:
$ % 0
.
0 /
/
% $ !:
* $ % ($,
$, % , $% $ * $ .+ / . % * $ / % $ 34 310 % , . % $ 0 * $ UCP- % 0 0 (Kowaltowski, Vercesi, 1999), $ 0 & & % % $ /&& . + / . *, +.+. (1998), $ 0 0 & & % , * 0 $ .2 , $ * . % * $ %, vivo 34 310 .% $ % $ , . % $ 0 0 , * & ( . .% $ % 34 310
%, $ ,
,
* in .+
89
« .% 5.
$
7"
%
!
» !:.
(
$ $
& # " 88#
(
#
+ . * & ( * & & / * % % % . !% % $ $ * $ % $ , 0 % * * ( % .. % & ( % . , % . ( ( "2 (Weitzel et al., 1987), % .. S. cerevisiae, $ & $ % , $ .% 0 % $ , %$ (Sanchez et al., 1992). , , (44 ) $ $ 0 * & & S. cerevisiae, * % 37 %% . * . .% * $ & & / (Patriarca, Maresca, 1990). % ;
$
%
% % .. .
*
$ *
/ %
$
. , . % ( $ % % .. S. cerevisiae % , petite(Mitchel, Morrison 1983; Weitzel et al., 1987). petite% * # , & ( / ( * %$ . ' % .% *, ( %
.
90
% * & & (Mitchel, Morrison, 1983; Weitzel et al., 1987). + $ $ % ( ( 24), & ( $ 0 .% 0 % (Parsell, Lindquist, 1993). , 24 & ( $ , & % % $ . !% .% % * % "2 % % . "2 . * .% 0 % (Nguyen, Bensaude, 1994). ' * $, . , $ % * / * & & $$ $ $ . % & $, $ (Ashburner, Bonner, 1979), % .% , % . * 0 % . $ , $ % * , % *, .% * $ , $ . * * % $ $ (Davidson et al., 1996; Sugiyama et al., 2000; Sugiyama et al., 2001). $ ( $ & % (" ) , . % % $ , I III % * / ( $ " * $ (Turrens, Boveris, 1980). / % $ & ( % % % %% . . .% $ , % $ % % % % % . * , Saccharomyces cerevisiae, $ / $ , % $ , / $ (Davidson et al., 1996). , % % , % *
91
,
*
.
*
* 2001).
*
+
*, *
% $
*
$ $ %
"2
0
*
!%
( * &
$
% ( % . S. cerevisiae % ( % /
$ 0 0 *
( %
0 (Almeida et al.,
%$ % .. % / . % % .. , $ $ % .. 0 . / /&& $ % $ % , . * 0 %
% %$ (Käppeli, 1986). !% % . ( ( $ % %$ . $ 0 , *& ( * . * (De Deken, 1966). % .. , %$ Debaryomyces vanrijiae Rhodotorula rubra, / , % * & & . .. albicans . . / & &
%
(
$ %
* $
* Candida .
,
vanrijiae, C. albicans, R. rubra S. cerevisiae, * & & "2 .
% % ,( * % .. $ %
* $ % D.
92
5.1. $$ " %
– 0
( % (
.%
( ,
%
"2 1998) &
$ %%
. % 1967).
.
%
(
*
/ 3.
% $, /
, ( 3 (Wilson, Chance, 1967). , * % * F1F0% "2 (Weber, Senior, * % $ , % (Brown-Peterson, Salin, 1995) (Misra, Fridovich, 1978). 9 % , , ( % $ & (Slater,
S. cerevisiae % $ . $ % / % %$ * , % % (De Deken, 1966). 1 * % S. o % cerevisiae % * % YEPD 30 C, 0.15 7 % 1 7 ( % % , %$ ( . 6). + S. cerevisiae % D. vanrijiae % */ * (72-74%) * % 0 % 2 7 % $ ( ) ), ( & * % $ (Vanlerberghe, McIntosh, 1997), $ $ %$ ( . 6). " * $ *, $ & ( * % $ ("!), %$ * ( , % % ( % , * ) . (
$ % .. % .%
93
* albicans $ % %$
%-
(
% % ., % .. /
%$ D. vanrijiae. ' %
C. $ 90%.
% .. * 2
'&&
%
* $
/ 6.
%$ % ..
S. cerevisiae D. vanrijiae C. albicans R. rubra
$ 2 2 mM
8.21 + 0.18
33.83 + 1.45 23.93 + 4.21
8.88 + 0.52
8.21 + 0.18
33.83 + 1.45 23.93 + 4.21
8.88 + 0.52
1 mM NaCN
0
8.75 + 1.43
2.27 + 0.11
4.43 + 0.29
NaCN +
0
0
0
1.71 + 0.17
0.15 mM NaN3
0
7.70 + 1.74
2.13 + 0.05
4.96 + 0.21
NaN3 +
0
0
0
1.74 + 0.26
a
(
0
" 30 C D. vanrijiae
+
'&& % %
) $ " %
-#
o
YEPD
. +
! O2 108
107
(
%$ R. rubra $ . * 50% %$ * % 0,15 M NaN3 1 M NaCN R. rubra. % 0 % 2 7 ) . % % * % 80%, %$ * .+ % ( % $ /&& %$ % .. . ' , * $ * * & & , %$ * . 7 % ( (1999) $ * $, ) %$ % .. Yarrowia lipolytica. %
(
%
94 (a)
8
/(+
3 10 7
)
10
2,
2
)
4
9
+
6
+ 2 +"
0 0
0,15
(+")
1
2
(2)
8
6
2,
2
)
4
9
+
/(+
3 10 7
)
10
0 0
(
. 41. '&& % ( ) --
(
#
#
0 " o 30 C
1
* 5
$
+ 2 +" (+")
10
(
(
( ) R. rubra.
% %
. -
* D. vanrijiae, C. albicans
YEPD 107
! O2
/ R. rubra
.
95
S. cerevisiae 0 %
%
% $
/
&
$ *
Veiga
,
*, %$ % .. , % .. ( (Veiga et al 2000).
R. rubra * % % ( % , %$ D. vanrijiae S. cerevisiae. $ * 0 % ( % ( " %$ * * Rhodotorula glutinis S. cerevisiae * (Matsunaka et al., 1966). / % $ /&& %$ R. rubra $ ( ( . $ ( ( % , 0 /&& %$ . ( ( 1 2 7 % %$ R. rubra 61 67%, % 0 % ) % % %$ ( . 41, ). % ( % * $ ( ( ( % % 5 10 7. / ( ( 0 % . *, % , $ *( . 41, ). 2 /&& % , ( % 0 % (Webb, 1963). $
%
$ %$ * $ 8,8 %
/ * %CAI4 C. albicans $ % D. vanrijiae * 0 %$ ( . 6). % ( * % $ , ( % * $ %$ (Huh, Kang 1999; Huh, Kang 2001), / CAI4 * % WH324 C. albicans 60 % YEPD c 10 7 ( ". ' %$ WH324, CAI4 % %%$ % 21,4 % ( . 42).
30 1 1
20
2,
+
/(+
3 10 7
)
96
10 9
3
)
2
2
0 CAI4
. 42. $
#
# (3).
YEPD
30 + 60
+
-
& + "
( & %$
*
,
* &
C.albicans.
*
WH324
7 %
%
WH324
*
CAI4
3
$. % .. %
0 0 % % .. (
3
% % % . 6). 7
( (
(
0,15
(1); . NaN3 (2); 10 6M
( (Slater, 1966) , % $ $ %
* . 43), % %$ ( (
/ 10
. 7
97
S. cerevisiae 33%, $ . - 24% (
14
R. rubra
S. cerevisiae
10
O2 ( + 2
8 6
2 0
4
0
1
5
10 "
. 43. '&& R. rubra -(
. -
(
% (
* $
5
10
, mM
YEPD 107
! O2
*
%
1
S. cerevisae.
0 / NADH %
0
%
0 " o 30 C
#
R. rubra . 43). #
12
)
/107
/+
)
%$ 0 %
%
, $ ( I), . NADH % %
, -
.
,
; II) * $.
S.
98
cerevisiae
I %$ (Joseph-Horne 2001).
*
(
,
-
,
%
5.2. $$ % .. D. vanrijiae, C. albicans S. cerevisiae, % 0 / ( * & % o (YEPD) 30 C % $ 45oC $ * . *( . 44). 2 , / %$ % .. $ % % % % . NaN3 * . * % .. D. vanrijiae. 44 $. * 0,15 7 % $ * * , * $ . % *, % % $ % D. vanrijiae . o % 30 C ( . 44, ). ' $ , - & ( . $ % . % . % . $ ( . 44, ). $. *
/&& % $.
*
, (
(
% .. %
% $ * (
S. cerevisiae % , 0 %
C. albicans . 44, ).
45 % (0,15 7) * R. rubra ( . 44, ). ! % / ( ( , , %$ ( . 6, . 42), . * R. rubra
* $ ,
* * $ $
99 &)
10
(%)
10
1
+
1
0,1
&10
(%)
100
+
100
&10
A)
0,01
0,01 0
15
30 &
0
60
&
)
, (%)
0,1
0,01
45
+,, (+
60
)
100
10
1
0,1
0
15
30 & +,, (+
45
60
0
15
)
--
0 (0,15 . –
45 . !%
YEPD at 30 C ( ( ;1 .–
$ *
( ( R. rubra
+,, (+
( )
60
45
#
)
;2 .% % 1
/
45 )
* R. rubra ( )
o
)
30 &
. 44. % vanrijiae ( ), S.cerevisiae ( ), C. albicans ( ) .
(
30
+
1
15
)
&10
(%)
10
&10
+,, (+
45
100
+
)
0,1
D.
" 45 C o
).
7
% .
100 (2)
, (%)
100
10
100
10
+ 1
&10
&10
+
, (%)
( )
0,1 0
5
10 &
15
+,, (+
20
1
0,1 0
( (
)
#
10 &
. 45. % rubra ( ), S.cerevisiae ( ), --
5
)
0 "
(
15
+,, (+
. YEPD 50oC ) 0,15 .
*
20
)
50
R.
.
. (50 ) * R. rubra * , % % . ( ( . *( . 45, ). 15 20 . % 0,15 7 NaN3 $. * R. rubra . * * 5 . $ $ % 50 % . 45 $ $ /&& S. cerevisiae, . +$. * $ % % $ $. * ( . 45, ). ,
2 $
%,
* albicans,
.
$ .
$. $.
. $ % % * % .. * R. rubra
% * %$ , $ /&& .. % S. cerevisiae C. D. vanrijiae.
101 )
10
(%)
10
1
+
1
0,1
&10 1
, (%)
100
+
100
&10
)
0,01 0
30
60
90
120
& +,, (min)
0,1 0,01 0
15
30
( (
0 "
# ) +
( %
0
60
& +,, (min)
. 46. % S.cerevisiae ("), C. albicans ( ), --
45
* .
45
YEPGal 45oC ) 0,15 .
/ $ /&& % * S. cerevisiae C. albicans $ 0 % (YPGal), %% . $ * %$ * (De Dekken, 1966). + $ * (Sanchez et al., 1992). S.cerevisiae ( . 46,a) * % $ 45 , ( . 44, ). " $ , C. albicans % ( . 46, ) * $ , % ( . 44, ), * , S. cerevisiae. !% , , % ( ( 0,15 7 0 0 C. albicans % % ( . 44, ), . ( ( % % ( . 46, ). % % % * 8-74-D694 S. cerevisiae, % . $. % * * 120 % ( . 46,a). 2 ,
102
$ %$
0
. 0 * % .. , & $
* $
NaN3 % .
/&& ,
%
5.3. $$
% ,
% ..
( ,
%
* ,
$
% % , % $ . % 1 7 NaCN D. vanrijiae % % $ % ( . 47, ), % . /&& , 0.15 7 % ( . 44, ) – . % .. . '&& ( % * S. cerevisiae $ 0 % * * , % % $ % ( % % . , 1 7 NaCN % $ * o 8-74-D694 S. cerevisiae 45 C ( . 47, ), * , %( . 44, ). $
2 R. rubra ( % .. %
% . 44, ),
% . *
. $ % . +
45
50 $ .
+
0
/
$$
/
* / (
. +
, (
%
%
%
$ R. rubra
( % D. vanrijiae, *
50 , . * S. cerevisiae % ( . 47, ). $
%
* % .. D. vanrijiae
$ 0
(
% % %
*
& &
,
103
(2)
10
+
10
&10
&10
1
0,1
1 0
15
30 &
+,, (+
45
60
0
)
15
30 & +,, (+
45
60
)
, (%)
10
+
100
1
&10
( )
100
(%)
100
+
(%)
( )
0,1
0,01 0
5
10 & +,, (+
15
20
)
. 47. ( % vanrijiae ( ), S.cerevisiae ( ) R. rubra ( ) -# (
0 " ( ).
)
YEPD 45oC ( , ) 1 . #
* D. . ( o 50 C ( )
104 (2)
100
Survival (%)
10
&10
+
(%)
( )
1
0,1 0
15
30
45
& +,, (+
. 48. vanrijiae ( )
0
# )
% .. * . 47, ). + .
/
% ,
/
%
% %
,
/ % ( petite-
$
* * /
. (petite&
% *
%
90
, $ % ,
%
( % * D. vanrijiae
48, ). *
).
0
$
7
/ %
, ( * S. cerevisiae & . $.
#
120
* D.
YEPGal 45oC ( .
% (
90
.
1 .#
%
60 Time, (min)
0 "
. 48, )
30
)
.
%$
1
0,1
60
% 0 (
10
( % S.cerevisiae ( )
-( (
100
% ( $)
$ ( . 47, % % % .. (
), – , .
* $ S. cerevisiae,
$ (Sugiyama et al., 2000). 45oC
105
50
&
(
Petite +
1, %
40 30
.
% % (
--
petite S.cerevisiae . YEPD
YEPGal ( #
20 &
10
49.
A
45oC ( & (
A
0 5
)
"
+ )
#
60
* *
*
.
120
petite-
(
NaCN
* ,
% (
%
,
/
/ petite-
( ) ()) 1 . .( )–
%
/
.%
60 120
"
petite 30 . %
0
. 49).
5.4. $$ $
* $
% .. . + * R. rubra.
50
5
M *
15
.
106
10
*
$
. 50). !% % S. cerevisiae $. $ . 50
5 7 % YEPD ( ), * 45 ( . 51, ). . ( * % *. # , / $ % * . 2 $. * $ * ( . 51, ), . 4 % % *. + / % % % * S. cerevisiae . albicans ( . 44, , ).
$.
,
* $ %
. 50.
100
+
,%
* R. rubra
10
.
%
--
1 "
&10
(
,
YEPD +
0,1
0,01 0
5
10 &
+,, +
15
20
30 " 50 ; 5 .
"
& ( ), (.).
107 ( )
(2)
10
"
+ 1
&10
&10
100
,%
10
+
,%
100
0,1 0
15
30 &
. 51. cerevisiae YEPD " & ( ), 5 .
45
1
0,1
"
0,01
60
0
+,, +
2
4
.
% +
--
" 45 (.).
( )
30 50
( );
. 52. S. cerevisiae
10
+
,%
8
* S.
100
&10
6
& +,, +
"
.
-YEPGal +
1
0,1 0
30
60
90
120
* %
"
& +,, +
(.).
" 30
& 45 ; ( ), 5 .
108
2 & $ &
52).
, . * 0 % .. R. rubra, . ( * * 0 % .. S. cerevisiae, $ % . $ . * % ( % $ . $ /&& * S. cerevisiae $ 0 % , % 0 / $ % * / % ( % . + % % , / . % . * S. cerevisiae ( .
5.5. # $$ %
$
%
$
%
*
% .. &
( (
% % $
% 0
( . ! 0 % .. % %
,
% .
$
, * $ ( * & $
$ / * % .. , $ 0 * $ % * % .. , . * .% & ( * , /
% . % . % * $ *, * * *
.
& &
* % &
( $
%
& & % ..
S. cerevisiae % %
109
.# , $ ( ( "2 % (Machida and Tanaka 1999). + .% , $ , 0* $ / $ ( (Parsell and Lindquist 1993) % % . "2 . * .% 0 % (Nguyen and Bensaude 1994). % * , $ % , 0 "2 / ( % % % .. , $ & * 0 & $ % . $ $ $ % * % 0 % .. . , , ( % S. cerevisiae % %$ * % , & ( * $ % (Mitchel and Morrison 1983; Weitzel et al., 1987). * $ 0 $% .% *, $ % % $ 0 S. cerevisiae % , % * 0 $ % % / .. % / * , * % % $ . . .
% .
"2
% /
% -
,
% (
* (
%,
%
$ $ ,
" % (Turrens and Boveris 1980). * " , , $ % (Davidson et al., 1996; Sugiyama et al., 2000; Davidson et al., 2001) / ( . $$ * $ ( ( " * . .2 , * *,
110
% .. % % *
( * $
petite * et al., 2000). !% $ % ( S. cerevisiae ( . 9). ( ( cerevisiae ,
"
%
* S. cerevisiae % /
.%
% *
Käppeli
(1986) $ * 0
, . $
,
% 0
%
( * $
% / $ % . *
/ % $
. $
*
"
,
.
$
, $ .
(
( 0* $ * $ , *
, / % S. cerevisiae (Hoogerheide 1975), ("7 (Thevelein and Winde 1999). % * $ * ( " % * % "2 % .
S. cerevisiae % , (Sanchez et al., 1992). ' 0 % . ' * / /&& $ % $ Moradas-Ferreira 2001) (Sanchez et al., 1992). & 24 # $ $% $
%
"2
( .
S.
/
*
.
$ (Sugiyama *
,
.
.
, # %
(
%
$
%
*
petite
% ,
% .
0
, $ % * * &
*
$ $ % . %$
* . .% ; * , (Costa and %$ 0 % $ . %
111
S. cerevisiae, % %
,
0 $
*
$ .% . #
%
& (
*
*
.
$,
,
( % (
("7
$ ", * $ (Thevelein and Winde 1999). / $ % , % ( . "2 ( ( " $ * * , % / , $ , * & & . % $ ( . $ * %$ . . ( " % "2 . 2 % . , ( $ " % ( S. cerevisiae (Thevelein and Winde 1999). " % , $ * S. cerevisiae, . % ( ( $ % $ ). ' * % *, $ % ( % .. 0 . 5.6. 7
% * $ * % .. , ( $.
7 % ( * % .. ,
*
% *
* $
$ $ 0
, 0
* $ * % .. , % /
-
.
0
* $ (
7
$
* &
$
$.
%
$ $ .
-
. .
$
112
0 % .. % % & &
* (
& ,
.% *
* *
/ *
.
#
. ,
*
%
%
%
.
%
,
%
*
6.
(
: ;#
# T. aestivum,
% % 0 % % 41 . +
$ RAB% . ,& $
/ ,
( # RAB.%
( -
$ (
.
% &
$
(
%
%
% 63
, % */
-
"
. %
% -
.
* % . * $ %
($ $
% – , .
$
COR.
*
209, 196, 66, 50
. %
$ & $
2
.7
% COR-
%
$ $
,
&
. %$,
.
"
%
,
%
. !
%
“ 0 ” . 103 * $ % ( , . $ COR.
%
* %
63 %
* 52 *
RAB-
$ *
$ ,
* $ , RAB. . $ $ /&&
113
(
% ,
(
). + %
%
, /
$ 34 310 /
*. 0
$ &
, % $ 310 % #
* * * .+
$$
(
( ( % %
,
0 %
,
(
% %
% (
;% /
( ,
(
/ $ (
0
. + (
PUMP, StUCP 0 % $
.
* $
$ &
,
$$
34 310 . $ 34 310 , . 56 66 . , % $ / & ( .! . $ . %
&
%
. 34 310 % in vitro ( $ % 0 0 % $ ( ( 34 % . , 34 310 $ %$ * ( % . & & 0 %$ & ( . # * $ $ % * / * * * / /&& , % 34 310.
* 34 310 34 310 0 0
&
0 ,
& & ( (
%
$
(
/
%$ %$
0
%
/&& & *
%% $
,
,
$
( $ 0 * $ * $ .
114
470 310 320-330 , 310 . ! *, ( 310 %
470
470
,
%
& %
*
. %
% . 310 470 % . % . & ( 0 310
.
.
$ . +
. $
.
$ %
&
470 320
, . +
320
470
(
(
* %
$ % / $
. % .
$ ,
*
$ $ 34 % .
.
$
34 310,
,
%
*
$,
% & 1998).
%
$$
$ &
al., ( %
320 - 330 (
% -
.
& ( $ / % .
$
% %
.
(
(CSPs) (
+
.
( . % %
$,
.
.
,
/ # ,
( &
,
$ $% * % $ * « % % $ .
. $
* $ (
, /
$
,
»
% * 34 310 – «
( ( * # (Jiang et . % . *, 470 , $ % $ * * .+ $ 34 310 $ .% $ $, $ $ $ . $ 0 % & »,
115
«
. + (
0
,
%
$ 34 310, 0 % . 34 310 , , 0 , % & , .
0
, . 0
* ,
0
»,
%
& %
$ 0
% %
34
310 $ $
( $
%
$
.
&
. $ 34 310 $
. 310
/
& &
% * * $ ( . $ . 230
.
.
( ,
($ - 310 320-380
. * $
,
$ .
% % $ * $ : $ % % . % . 310, 230, 140 56 66 . % * $ %, . ($ 0 & $ 34 310, % / $ % * / 0 0 . ,
% $ *
% 310,
. % * ( (
, 0 ,
/ «
* $ » (
34 310
%
$
$ & $ .+ . 470 - %
34 310 % . * $ / ( % «% » ,
$ 34 0 /&& / % . $% .% $% % 0 .
116
in vivo 0 0 , % $ 34 310, % % % * $ . + % * $ / % in vitro % 0 0 %$ & & /&& % 34 310 . * / */ /&& % $ 34 310. ! in vivo % $ % % * $ 0 0 /&& 34 310 % *, 0 & & / ( & $ % % * % / ( . ,
.% *
$ .%
% &
% ,
0 ("
), $
$
$$ " %
(Purvis et al., 1995; Turrens, 1997). 3 . $ & & ( UCP ( % (Ricquier, Bouillard, 2000), . 0 0 $ % & ( 0 . + 1994 % +. . $ (Skulachev, 1994) $ $% , 0 & & * % % 0 $ & % . ' % .% % % . + , , * 0 0 PUMP % & * ( #2!2 (Kowaltowski et al., 1999). 2 . , $ 0 0 , , . % ( #2!2 % (Korshunov et al., 1999; Kowaltowski et al., 1999). + / $ %
117
34 310 % .
( % % * %
%
, $$
( + . 310
(
$, * $ / % %
(
$
$
!: $ % $ 34 310
% ( * !:). $ 34 !: $ % ( !: % . *,
&
% % ( % *
%
' 34 310 , % ( *
%
&
$
/ * / / / 310 % 34 310 %
34 310 ($ / * $
(
*, 0 / $,
$
,
!: % . $ * $ % . *, * , % & , . , « » % % % , ( !: % ( , 1996).
$
0 0
% !: % ( $
.
0
0
$ % 0
% 34 (
/ /
% $ !:
* $ % ($,
%
, $% . %
$ .+ / * $ %, $ 34 310 % $ % $ /&& 0 & & , % % $ 0 * $ UCP- % $ 0 0 (Kowaltowski, Vercesi, 1999),. + / . *, , +.+. (1998), $ , 0 0 & & %
118
*
, .
0 $ ,
+$ % $ %
%$ ,
.%
% !: *
$ %$ $. /
$
$, $ ,
,
*
34 310 % , 34 310
% (
* / *
&
( %$ % 34 310
/
$ %
*
( %
*
($ %
( *, !:
, % ($. ' , 34 310
% % .
$. 2 .
, * $ %,
% ,
$
. *
% «
» (
& 34 310
% (
. +
(
.%
& & $
%
$ .
0 $ %
%
.
%
0
% . $ /&& , %
*% .
0 ,
,
, * $,
%
% $ ,
.
0
$
$ % , - % ( .
*% , 1960). *
(2
* $ .% $
(
$
!:. ,
% %
$ * in vivo 34 310 .% $ % $ 0 0 , . .% $
%
.. $,
!
$ $ $
* , * (Levitt, 1980). 0 $ ,
*
% * $ $
119
.53 . .
( $.
$ $ 1992; Anderson et al., 1995; Close, 1997). 2 ( /
$
(Griffith et al., , %
120
% 0 $ 53). + $ .
$ *
.+/
% & &
/
( %
,
%
%
(
(
/
/
$ *
%
( .+
% $ % $
. 34 310
,
(
&
$
%
% III
, $ %
,
. C $ F. velutipes P. ostreatus % * . % , % % $ 0 $ . 0 % 0 “. ” , , “ $ % $ ” .% % . % . * . F. velutipes, % 0-5 ., % . $ % 0 $ ( *% $ $ .
% %
.
$ % $ * $ ”
“
(
*
,
( $ & % P. ostreatus, $ . % % 0 . ,
$ $ (
( %*
( * $ .%
$ % . # % $
.
%
(
% $
$ PUMP,
$ %
& $
> *
.
.%
,
.
%
.
$ 0 $
$
%
$
*
$ %
% %
(
$
)
%
/ *
.% *
%
*, ,
* $ $
121
(
&
,
. % %
, *% % $ ( & $
. (
%
(
“
.
$ % %
/ %
%
%
.% $ ”
$
. *
% .). + / $,
$. .
,
* $
%
$
%$
(
* $ 0 $ * %
.
$. %
$
%
$
%
*
% .. &
( (
% % $
% 0
( . ! 0 % .. % %
,
% .
$
, * $ ( * & $
$ / * % .. , $ 0 * $ % * % .. , . * .% & ( * , /
% . % . % * $ *, * * *
.
& &
* %
( $
& .
% .
"2
$ (Machida ,
and $
.% $ (Parsell and Lindquist 1993) . *
& & % ..
S. cerevisiae % % .# , ( ( "2 % Tanaka 1999). + , 0* / $ ( % % . "2 .% 0 % %
122
(Nguyen and Bensaude 1994). % * 0 "2 ( % % .. , $ & 0 & $ $ $ $ % % 0 % .. , ( S. cerevisiae % % , & ( * $ % (Mitchel and Morrison 1987). * $ 0 $% $ % % $ 0 % , % * $ % . % / , * % % . . % /
% -
,
% (
* (
%,
,
$
, -
% /
% * % . * . % %$
, *
-
1983; Weitzel et al., .% *, S. cerevisiae 0 % / .* $
%
$ $ ,
" % (Turrens, Boveris, 1980). * " , , $ % (Davidson et al., 1996; Sugiyama et al., 2000; Davidson et al., 2001) / ( . $$ * $ ( ( " * . .2 , * *, % .. ( " % * $ * % * % . , petite S. cerevisiae $ * .% % * # (Sugiyama et al., 2000). !% / ( % * $ % ( petite
123
S. cerevisiae ( . 49). ( ( cerevisiae ,
,
%
%
% *
Käppeli
.
,
% ,
$
.
.
%
(1986) $ * 0
$ ,
% 0
%
"2
/ %
( * $
% / $ % . *
$ $
"
. $
* ,
( .
%
/
*
.
S.
. (
( 0* $ * $
, $ .
*
, / % S. cerevisiae (Hoogerheide 1975), ("7 (Thevelein and Winde 1999). % * $ * ( " % * % "2 % .
S. cerevisiae $ * % , , $ . (Sanchez et al., 1992). ' $ % % .% 0 % . ' * . ; * * / /&& * %$ , $ % $ & (Costa, MoradasFerreira 2001) %$ 0 (Sanchez et al., 1992). % $ & 24 . # $ $% * % S. cerevisiae, 0 , * % $ $ .% % * % . # , & ( * . $, ( ("7 $ ", % ( * $ (Thevelein, Winde 1999). / $ % , % ( . "2 $
0
124
( ,
, $
( "2 . 2 (
% ,
% ( and Winde
%
"
*,
$
*
* .
* $
, .
/
( %$
.
(
( %
& & $
% *
. " %
.
1999). " % * S. cerevisiae, % ( $ % $ ). ' $ % .. 0
$ " S. cerevisiae (Thevelein , $ . * % (
.
125
# & // . 1985. 278 .
"&& . 7 % / 7.: 7
. .,
) $
$
%
//
* %
1988. 228 . .
;% $ 16–17.
.,
/. %
" . ., ). . 2
* ) " . ) "
.-
.
. +$ :# .%
:#
) " %
$ 1983. ?5. . 81-85. ) " .
.%
). .,
. ., $
% "
.).
$ % . 1988. 2.35. .542-547.
.
% )./. :
. #
# ). . ($ //
$
.
"#
$ , 1987. 136 . %
'
, 1987. - .
( $
7...,
.
%,
.
$% * $ % // . . %. 1980. 2. 10, $ . 2.- . 121-125.
). ., 8 % $
*
;% $ % , 1988. - 143 .
) " ) #
-
. .,
). . 2 . #.: # . . ! %-
,
.
- ). :
%.
). .
). ., & ( , 1991.183 .
.5
!(
).). (
,
/.)., * $ ($ //
.)., ) " 0 1999. 2. 46. . 777-783. !
. .-
.
%.
0
« ! "#
0
» .
" ( ( in vivo in vitro //
126
. .7
!
.
- ., // )
" .236 – 276.
$ . 7.:
% '. +$% .
+ . .,
%. .
- 2. 32, +$ . 4. - . 30-36. .)., ./. 3
+ ./.,
$ . 7: 7 % . % ,
// 7
). .
$
2. . 199-202.
.)., * % 310 //
,
. .,
). ., .
. , .
"). ., $ %
. #.: #
$
).)., ) " % $ . 2000. 2.47. ?
. 7.: +$
, 1989. . 88-113. , 1973. 343 .
). . ( %$ % .. Yarrowia lipolytica // . 1999. 2.64. +$ . 8. .1123-1131.
. (
%
.5.
8
. - 1998.
&
4. ., $
% * $ //
0
//
7..., 8 # ).).
. 1991. %
" . ., ) "
0 1996. 2.43. .894-899. +
, 1979. 416
. .,
#
%
). .
. ! )
//
% + %
. .,
$. - -
& $ :
%. .,
+
% #
( 1 % , 1993. - 31 .
.)., ) " " . . $ 310 / * %$ "#. 1996. 2.350. .715-718.
). . + “
.
”,
$ ,
-
). ., * $
$ %
127
(
//
*, $ $ .2060-2063. +
). . ! % //
. 1996. 2.61,
$ .11.
/ ( . 1998. 2.63. ?11. .1570-1579.
+ ). . ' , 1989. 564 .
#
. 7.:
/. . 7 % % % $0 $ $ . $ // . 7.: 7 % ( , 1977. .63-64. . .
% $ /! .
%
&
%.: 4. .
5 . 757-776.
/
*
%
4. ., %
:
*& , .
)...,
5 4. ., % . . ! $ ( * $ % // 7 619. 5 . . ! ( * $
4. ., % $
% 5. - . 606-611.
(
-
$ . - 2001. -
/. .
% ( . - 1994. 2.63, ?5. - .
// 7
792-798.
%
% ( . - 1994. - 2.63, ?5. -
// % 2.37, ?2. - . 141-155. 5
( %$
& , 1973. .73-79.
// 7
4. . 9
5
$ $ //
%
).7. 7.: #
;
)..., .
. ., 2 ! % (
: . - 2000 . - 2.69, ?5. - . 612)..., 2 ! // 7
. ., .
%
(
: . - 2000 . - 2.69, ?
128
9 %
.7., ”
. 2 . % . 31.
., 0
//
(
%. .,
" . . “ . $
$ % , 26-29
$ II(X) 1998 . .-
%
.
$ . XX-XXI
; % ., - 1998. - 2.2. -
Almeida A, Almeida J, Bolanos JP, Moncada S. Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. // Proc. Natl. Acad Sci USA 2001 V.98. P.15294-15299. Anderson J.V., Haskell D.W., Guy C.L. Differential influence of ATP on native spinach 70-kilodalton heat-shock cognates // Plant Physiol. 1994a. V. 104. P. 1371-1380. Anderson L., Borg H., Mikaelsson M. Molecular weght estimation of proteins by electrophoresis in polyacrylamide gels of graded porosity // FEBS Lett. 1972. V. 20. P.199-202. Anderson M.D., Prasad T.K., Martin B.A. and Stewart C.R. Differential gene expression in chilling-acclimated maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance // Plant Physiol. 1994b. V. 105. P. 331-339. Antikainen M., Griffith M. Antifreeze protein accumulation in freezing-tolerant cereals // Physiol. Plant. 1997. V. 99. P. 423-432. Ashburner M., Bonner J.J. The induction of gene activity in Drosophilia by heat shock // Cell. 1979. V.17.? 2. P.241-254. Boveris A., Chance B. The mitochondrial generation of hydrogen peroxid. General properties and effect of hyperbaric oxygen // Biochem. J. 1973. V. 134. P. 707-716. Brown-Peterson N.J., Salin M.L. Purification and characterization of a mesohalic catalase from the halophilic bacterium Halobacterium halobium //J. Bacteriol. 1995. V.177. ?2. P.378-384. Chou M., Chen Y.-M., Lin C.-Y. Termotolerance of isolated mitochondria associated with heat shock proteins // Plant Physiol. 1989. V.89, N2. P.617-621.
129
Close T.J. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins // Physiol. Plant. 1996. V. 97. P. 795-803. Davidson J.F., Whyte B., Bissinger P.H., Schiestl R.H. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae // Proc. Natl. Acad. Sci. USA. 1996. V.93. ?10. P.51165121. Davidson JF, Schiestl RH. Cytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae. // J Bacteriol 2001 V.183. P:4580-4587. De Deken R.H. The Crabtree effect: a regulatory system in yeast // J. Gen. Microbiol. 1966. V.44. ?2. P.149-156. Esen A.A. A simple method for quantitative, semiquantitative and qualitative assay of protein // Annal. Biochem. 1978. V.89. P.264-273. Estabrook R.W. Mitochondrial respiratory control and the polarographic measurement of ADP:O ratio // Meth. Enzimology, Acad.Press: N-Y, London, 1967. V.10. P.41-47. Goday A., Jensen A.B., Culianez-Macia F.A., Alba M.M., Figueras M., Serratosa J., Torrent M., Pages M. The maize abscisic acid-resposive protein RAB17 is located in the nucleus and interacts with nuclear localization signals // Plant Cell. 1994. V. 6. P. 351-360. Graumann P., Marahiel M.A. A superfamily of proteins that contain the cold-shock domain // TIBS. 1998. V. 23. P. 286-290. Graumann P., Marahiel M.A. Effects of heterologous expression of CspB, the major cold shock protein of Bacillus subtilis, on protein synthesis in Escherichia coli // Molecular & General Genetics. 1997. V. 253, N 6. P. 745 - 752. Greenberg C.S., Cradock P.R. Rapid single-step membrane protein assay // Clin. Chem. 1982. V.28. N7. P. 1725-1726. Guy C.L. Cold acclimation and freezing stress tolerance: role of protein metabolism // Annual Review of Plant Physiology and Plant Molecular Biology. 1990. V.41. P.187-223.
130
Hon W.-C., Griffith M., Chong P., Yang D.S.C. Extraction and isolation of antifreeze proteins from winter rye (Secale cereale) leaves // Plant Physiol. -1994. - V. 104. - P. 971-980. Hoogerheide J.C. Studies on the energy metabolism during anaerobic fermentation of glucose by baker's yeast. // Radiat Environ. Biophys 1975. V.11. P.295-307. Hoshino T., Tronsmo A.M., Matsumoto N., Araki T., Georges F. Goda T., Ohgiya S., Ishizaki K. Freezung resistance among isolates of a psychrophilic fungus, Tiphula ishikariensis, from Norway // Proceedings of the NIPR Symposium on Polar Biology. – 1998. ?11. - P. 112-118. Houde M., Daniel C., Lachapelle M., Allard F., Laliberte S., Sarhan F. Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues // Plant J. 1995. V. 8. P. 583-593. Houde M., Dhindsa R.S., Sarhan F. A molecular marker to select for freezing tolerance in Gramineae // Mol. Gen. Genet. 1992. V. 234. P. 43-48. Huh W.K., Kang S.O. Characterization of the gene family encoding alternative oxidase from Candida albicans // Biochem. J. 2001. V.356. Pt. 2. P.595-604. Huh W.K., Kang S.O. Molecular cloning and functional expression of alternative oxidase from Candida albicans // J. Bacteriol. 1999. V.181. ? 13. P.4098-4102. Jarmuszkiewicz, W., Almeida, A.M., Sluse-Goffart, C.M., Sluse, F.E., Vercesi, A.E. Linoleic acid-induced activity of plant uncoupling mitochondrial protein in purified tomato fruit mitochondria during resting, phosphorylating, and progressively uncoupled respiration // J. Biol. Chem. 1998. V.273, N52. P.34882-34886. Ježek P., Engstova H., Zackova M., Vercesi A.E., Costa A.D.T., Arrud P., Garlid K.D. Fatty acid cycling mechanism and mitochondrial uncoupling protein // Biochim. Biophys. Acta. 1998. V.1365. P.319-327.
131
Ježek P., Garlid K. Mammalian Mitochondrial Uncoupling Proteins // The Int. J. Biochem. Cell Biol. 1998. V. 30. P. 1163 – 1168. Jiang W.N., Hou Y., Inouye M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone // Journal of Biological Chemistry. 1997. V 272, N 1. P. 196-202. Jones A. Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? // Trends in Plant Science. 2000. V. 5. P. 225-230. Joseph-Horne T., Hollomon D.W., Wood P.M. Fungal respiration: a fusion of standard and alternative components // Biochim. Biophys. Acta. 2001. V. 1504. ? 2-3. P. 179-195. Kappeli O. Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts // Adv. Microb. Physiol. 1986. V.28. P.181-209. Kawczynski W., Dhindsa R.S. Alfalfa nuclei contain coldresponsive phosphoproteins and accumulate heat-stable proteins during cold treatment of seedlings // Plant Cell Physiol. 1996. V. 37. P. 1204-1210. Kolesnichenko A.V., Zykova V.V., Grabelnych O.I., Koroleva N.A., Pobezhimova T.P., Konstantinov Yu.M., Voinikov V.K. Influence of CSP 310 and CSP 310-like proteins from cereals on mitochondrial energetic activity and lipid peroxidation in vitro and in vivo. // BMC Plant Biology, 2001, V. 1, N 1, pp. 1-6. Kolesnichenko A.V., Zykova V.V., Voinikov V.K. A comparison of the immunochemical affinity of cytoplasmic, mitochondrial and nuclear proteins of winter rye (Secale cereale L.) to a 310 kD stress protein in control plants and during exposure to cold stress // J. Therm. Biol. 2000. V.25, N3. P.203-209. Korshunov S.S., Korkina O.V., Ruuge E.K., Skulachev V.P. Starkov A.A. Fatty acids as natural uncouplers preventing generation of O -2 and H2O2 by mitochondria in the resting state // FEBS Letters. 1999. V. 435. P. 215 – 218.
132
Korshunov S.S., Skulachev V.P., Starkov A.A. High protonic potencial actuates a mechanism of production of reactive oxygen species in mitochondria // FEBS Letters. 1997. V. 416. P. 15-18. Kowaltowski A. J., Costa A. D. T., Vercesi A. E. Activation of the potato plant uncoupling mitochondrial protein inhibits reactive oxygen species generation by the respiratory chain // FEBS Letters. 1999. V. 425. P. 213 - 216. Kowaltowski A.J., Netto L.E.S., Vercesi A.E. The Thiol-specific antioxidant enzyme prevents mitochondrial permeability transition: evidence for the involvment of reactive oxygen species in this mechanism // J. Biol. Chem. 1998. V. 273. P. 12766-12769. Kowaltowski A.J., Vercesi A.E. Mitochondrial damage induced by conditions of oxidative stress // Free Radical Biology & Medicine. 1999. V. 26. P. 463-471. Laemmli U.K. Cleavage of structural proteins during the assembly of head bacteriphage t4 // Nature. 1970. V.227. P.680-685. Laloi M., Klein M., Riesmeier J.W., Muller-Rober B., Fleury Ch., Bouillaud F., Ricquier D. A Plant Cold-Induced Uncoupling Protein. // Nature. 1997. V. 389, P. 135 - 136. Lichtenstein C.P., Dreiper J. Genetic engineering of plants // DNA cloning. V.II. 1985. IRL Press, Oxford. P. 67-119. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the folin phenol reagent // J. Biol. Chem. 1957. V. 193. P.265-275. Machida K., Tanaka T. Farnesol-induced generation of reactive oxygen species dependent on mitochondrial transmembrane potential hyperpolarization mediated by F0F1-ATPase in yeast // FEBS Lett. 1999. V. 462. ? 1-2. P. 108-112. Maia I.G., Benedetti C.E., Leite A., Turcinelli S.R., Vercesi A.E., Arruda P. AtPUMP: an Arabidopsis Gene Encodinga Plant Uncoupling Mitochomdrial Protein // FEBS Lett. 1998. V.429. P. 403 – 406.
133
Manniatis T., Fritch E.F., Sambrook J. Molecular Cloning. A Laboratory Manual. // Cold Spring Harbor, Cold Spring Harbor Press. 1982. Matsumoto N. Ecological adaptation of low temperature plant pathogenic fungi to divers winter climates // Can. J. Plant Pathol. 1994. - V. 16. – P. 237-240. Matsumoto N. Evolution and adaptation in snow mold fungi // Soil Microorganisms. - 1997. - V. 50. – P. 13-19. Matsunaka S., Morita S., Conti S.F. Respiratory system of Rhodotorula glutinis I. Inhibitor tolerance and cytochrome components // Plant Physiol. 1966. V.41. ?8. P.1364-1369. Misra H.P., Fridovich I. Inhibition of superoxide dismutases by azide // Arch. Biochem. Biophys. 1978. V.189. ?2. P.317-322. Mitchel R.E., Morrison D.P. Assessment of the role of oxygen and mitochondria in heat shock induction of radiation and thermal resistance in Saccharomyces cerevisiae // Radiat.Res. 1983. V.96. ?1. P.113-117. Negre-Salvayre A., Hirtz C., Carrera G. Cazenave R., Troly M., Salvayre R., Penicaud L., Casteilla L. A role for the uncoupling protein-2 as a regulator of mitochondrial peroxide generation // FASEB J. 1997. V. 11. P. 809-815. Neven L.G., Haskell D.W., Hofig A., Li Q., Guy C.L. Characterization of a spinach gene responsive to low temperature and water stress // Plant Mol. Biol. - 1993. - V. 21. - P. 291-305. Newsted W. J., Polvi S., Papish B., Kendal E., Saleem M., Koch M., Hussain A., Cutler A.J., Georges F. A low molecular weight peptide from snow mould with epitopic homology to the winter flounder antifreeze protein // Biochem. Cell Biol. - 1994. - V. 72. - P. 152-156. Nguyen V.T., Bensaude O. Increased thermal aggregation of proteins in ATP-depleted mammalian cells // Eur. J. Biochem. 1994. V.220. ? 1. P.239-246. Palou A., Pico C., Bonet M.L., Oliver P. The uncoupling protein, thermogenin // Int. J. Biochem. Cell Biol. 1998. V.30. P.7-11.
134
Parsell D.A, Lindquist S. The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins // Annu.Rev.Genet. 1993. V.27. P.437-496. Patriarca E.J., Maresca B. Acquired thermotolerance following heat shock protein synthesis prevents impairment of mitochondrial ATPase activity at elevated temperatures in Saccharomyces cerevisiae // Exp.Cell Res. 1990. V.190. ? 3-4. P.57-64. Petit P.X., Susin S.A., Zamzami N., Mignotte B., Kroemer G. Mitochondria and programmed cell death: back to the future // FEBS Letters. 1996. V. 369. P. 7-13. Popov V.N., Simonian R.A., Skulachev V.P., Starkov A.A. Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria // FEBS Letters. 1997. V. 415. P. 87-90. Purvis A.C., Shewfelt R.L., Gegogeine J.W. Superoxide production by mitochondrial isolated from green bell pepperm fruit // Physiol. Plant. 1995. V.94, N4. P.743-749. Reed J.C. Cytochrome c: can’t live with it – can’t live without it // Cell. 1997. V. 91. P.559-562. Ricquier D., Bouillaud F. The Uncoupling Protein Homologues: UCP1, UCP2, UCP3, StUCP and AtUCP // Biochem. J. 2000. V. 345(2). P. 161 – 179. Sanchez Y., Taulien J., Borkovich K.A., Lindquist S. Hsp104 is required for tolerance to many forms of stress // EMBO J. 1992. V. 11. ? 6. P. 2357-2364. Sarhan F., Ouellet F., Vazquez-Tello A. The wheat wcs120 gene family. A useful model to understand the molecular genetics of freezing tolerance in cereals // Physiol. Plant. 1997. V. 101. P. 439445. Sieg F., Schroder W., Schmitt J.M., Hincha D.K. Purification and characterization of a cryoprotective protein (cryoprotectin) from leaves of cold acclimated cabbag // Plant Physiol. - 1996. - V. 111. P. 245-217.
135
Skulachev V.P. Lowering of the intracellular O2 concentration as a special function of respiratory systems of the cells // Biochemistry (Moskow), 1994. V. 59. P. 1910 – 1912. Slater E.C. Application of inhibitors and uncouplers for a study of oxidative phosphorylation. // Methods Enzymol. 1967. V.10. P.48-57. Smith D., Coulson G.E., Morris G.J. A comparative study of the morphology and viability of hyphae of Penicillium expansum and Phytophthora nicotianae during freezing and thawing // J. Gen. Microbiol. - 1986. - V. 132. – 2013 p. Straatsma G., Gerrits J. P. G., Gerrits T. M., Huub J. M. op den Camp, Leo J. L. D. van Griensven. Growth kinetics of Agaricus bisporus mycelium on solid substrate (mushroom compost) // Microbiol. - 1991. - V. 137. - P. 1471–1477. Stupnikova I.V., Borovskii G.B., Voinikov V.K. ABA-induction of cold hardy state and heat stable COR-proteins in maize seedlings and other cereals // Maize Genet. Cooperation Newsletter. 2001. V. 75. P. 29-30. Sugiyama K, Izawa S, Inoue Y. The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae // J.Biol.Chem. 2000. V.275. ?20. P.15535-15540. Sugiyama K, Kawamura A, Izawa S, Inoue Y. Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae. // Biochem. J. 2000 V.352 P.71-78. Thevelein J.M., de Winde J.H. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. // Mol. Microbiol. 1999. V.33 P.904-918. Thomashow M.F. Role of cold-responsive genes in plant freezing tolerance // Plant Physiol. 1998. V. 118. P. 1-7. Turrens J.F, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. // Biochem. J. 1980 V.191. P.421-427. Turrens J.F. Superoxide production by the mitochondrial respiratoty chain // Biosc. Rep. 1997. V. 17. P. 3-8.
136
Vanlerberghe G, McIntosh L. Alternative oxidase: From Gene to Function. // Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997 V. 48. P:703–734. Veiga A., Arrabaca J.D., Loureiro-Dias M.C. Cyanide-resistant respiration is frequent, but confined to yeasts incapable of aerobic fermentation // FEMS Microbiol. Lett 2000. V.190. ?1. P.93-97. Vercesi A. E., Martins I. S., Silva M. A. P., Leite H. M. F., Cuccovia I.M., Chaimovich H. PUMPing Plants // Nature. 1995. V.375. P.24. Voinikov V., Pobezhimova T., Kolesnichenko A., Varakina N., Borovskii G. Stress protein 310 kD affects the energetic activity of plant mitochondria under hypotermia // J. Therm. Biol. 1998. V. 23. P. 1-4. Voinikov V.K., Korzun A.M., Pobezhimova T.P., Varakina N.N. Effect of Cold Shock on the Mitochondrial Activity and on the Temperature of Winter Wheat Seedlings // Biochim. und Physiol. Pflanz. 1984. V.179. P.327-330. Watanabe A., Nakazono M., Tsutsumi N., Hirai A. AtUCP2: a Novel Isoform of the Mitochondrial Uncoupling Protein of Arabidopsis thaliana // Plant & Cell Physiol. 1999. V. 40. P. 1160 – 1166. Webb J.L. Enzyme and Metabolic Inhibitors. V.1. 1963. Academic Press New York. 949 p. Weber J., Senior A.E. Effects of the inhibitors azide, dicyclohexylcarbodiimide, and aurovertin on nucleotide binding to the three F1-ATPase catalytic sites measured using specific tryptophan probes //J. Biol. Chem. 1998. V.273. ? 50. P.33210-22215 Weitzel G., Pilatus U., Rensing L. The cytoplasmic pH, ATP content and total protein synthesis rate during heat-shock protein inducing treatments in yeast // Exp Cell Res. 1987. V.170. ?1. P.6479. Wilson D.F., Chance B. Azide inhibition of mitochondrial electron transport. I. The aerobic steady state of succinate oxidation // Biochim. Biophys. Acta. 1967. V.131. ? 3. P.421-430.
137
Yu X-M., Griffith M. Antifreeze proteins in winter rye leaves form oligomeric complexes // Plant Physiol. 1999. V. 119. P. 1361-1369.
138
- -,-#@
"-
$
:!+#A3 ! !1#",-# B ! "C -# B
$
$
*
24 34 #"
+
%
-
#" # -
% %
%
%
% %
%
%
$
$ !: ' 2" -
% /
%
(
COR-
- cold regulated proteins -
RAB-
- regulated abscisic acid -
UCP -
uncoupling proteins -
$ $ 0
0
% (
139
& #
#
1. ++- -# - ………………………………………………………4 2. ! D- 2A 3. 2 -
7-2! A
:- !+"# 6………….…….....7
!+A- -:
" 2-# B
! # 1 !2-7 - "2
3.1.
)
!+ +
,!
! # ….…..15
" 3.2. COR-
"
T. aestivum,
"
#
!
!
!
!…..……………………………………….…18
3.3 C
COR-
,
#
+
! -
! COR"+
!…..……..……….…24
# COR!
…….….….………23
!
#
+ &0 ! 3.5. 8
!
# ,
" 3.4.
………13
#!B " " 2"9
RAB
"
!
……………….………….…25
!
3.6.
!
#
…………………………………………………….29 3.7. .
!
3.8. ) 3.9.
" -
#
#
! …….……………....31
! " !
#
,
!
,
0 &0
+
…………....34
140
……………….……....38
" 3.10. 3.11. '
,
0 &0 PUMP
3.12 )
!
+
23 310
"……………….44
0
(
+
&
!
! 3.13
"………………………………..46
!
………………………….…………………50
4. -:! 3!:! !+!)! 4! " 7"
………………41
!
!B 310
7!:-
:6 #!B
: 7-3"# 17 -) :69
" 2 +#! 2
#- !2! A-
# 9
…………………53
4.1. )
! !
"
(
!
……………..……….….….54
+
4.2.
"
, #
!
+
+
!
! 23 310 !
!
…………………………..………………………..57 4.3. )
! "
! 23 310
+
!
# !
" - …………………….……………………………….60 4.4. / +
!
#
+
"
23 310……………………………………….64 4.5. )
23 310 !
4.6. )
#
+
&
"…………………………………...67 23 310
# ( "
(
( !
( !
+
&
"………….…….…69
141
4.7. )
23 310
#
!
+
"#
!
"……………………………………………………74
! 4.8. / +
+
!-
!
23 310…………………………75
0 &0 & 4.9. )
!
23 310
4.10. )
………….76
23 310
+ !
4.11. )
!
# ……….80
"
! 23 310
+
*8 4.12.
! !
!
# …....81
"
………………………………………………..83
5. !:@ 7 2!3!#
B + 2- 7!2!:- "#2#! 2
!E E -B…………………………………………………….…89 5.1.
"
!
!
!
&
- - "………………………..……………….92 5.2.
" - - "……………………………………………….……...98
5.3.
"
#
- - "…………………………………………….…….…..102 5.4.
" - - "…………………………………………….………..105
5.5. . !
"
!
!
- - "………………….………..108 5.6.
………………………………..….…………111
6. 1" :5,-# -…………………………………………………112 : 2- "2
"…………………….………………………………125