ìÑä 53(038) ÅÅä 22.3 Ñ26
è‚Ӊ Ò ‡Ì„ÎËÈÒÍÓ„Ó flÁ˚͇ Ç.à. ë˚˜Â‚‡
ÑÂÁ‡ Ö.à., ÑÂÁ‡ å.-å. ù̈ËÍÎÓÔ‰˘ÂÒÍËÈ ÒÎÓ‚‡¸ ‡ÒÒ...
85 downloads
219 Views
3MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
ìÑä 53(038) ÅÅä 22.3 Ñ26
è‚Ӊ Ò ‡Ì„ÎËÈÒÍÓ„Ó flÁ˚͇ Ç.à. ë˚˜Â‚‡
ÑÂÁ‡ Ö.à., ÑÂÁ‡ å.-å. ù̈ËÍÎÓÔ‰˘ÂÒÍËÈ ÒÎÓ‚‡¸ ‡ÒÒÚÓflÌËÈ / ÖÎÂ̇ ÑÂÁ‡, å˯Âθ-å‡Ë ÑÂÁ‡ ; [ÔÂ. Ò ‡Ì„Î. Ç.à. ë˚˜Â‚‡] ; åÓÒÍ. „ÓÒ. Ô‰. ÛÌ-Ú ; çÓχθ̇fl ‚˚Ò¯. ¯Í., è‡ËÊ. – å. : ç‡Û͇, 2008. – Ò. – ISBN 978-5-02-036043-3 (‚ ÔÂ.). Ç ÒÎÓ‚‡Â Ô˂‰ÂÌ˚ ÚÓÎÍÓ‚‡ÌËfl ÚÂÏËÌÓ‚ ‡ÒÒÚÓflÌËÂ, χ, ÏÂÚË͇, ÔÓÒÚ‡ÌÒÚ‚Ó Ë Ú.Ô., ‚ ÔËÏÂÌÂÌËË Í ‡Á΢Ì˚Ï ÒÙÂ‡Ï Ì‡ÛÍË Ë Â‡Î¸ÌÓÈ ÊËÁÌË. ÑÎfl ¯ËÓÍÓ„Ó ÍÛ„‡ ÒÔˆˇÎËÒÚÓ‚.
èÓ ÒÂÚË "Ä͇‰ÂÏÍÌË„‡" ISBN 978-5-02-036043-3
© Deza E., Deza M.-M., 2006 © ELSEVIER, 2006 © ÑÂÁ‡ Ö.à., ÑÂÁ‡ å.-å., 2008 © ë˚˜Â‚ Ç.à., Ô‚Ӊ ̇ ÛÒÒÍËÈ flÁ˚Í, 2008 © ꉇ͈ËÓÌÌÓ-ËÁ‰‡ÚÂθÒÍÓ ÓÙÓÏÎÂÌËÂ. àÁ‰‡ÚÂθÒÚ‚Ó "ç‡Û͇", 2008
2 ‡ÔÂÎfl 2006 „. ËÒÔÓÎÌËÎÓÒ¸ 100 ÎÂÚ ÒÓ ‰Ìfl Á‡˘ËÚ˚ ه̈ÛÁÒÍËÏ Û˜ÂÌ˚Ï åÓËÒÓÏ î¯ ‚˚‰‡˛˘ÂÈÒfl ‰ÓÍÚÓÒÍÓÈ ‰ËÒÒÂÚ‡ˆËË, ‚ ÍÓÚÓÓÈ ÓÌ ‚Ô‚˚ (‚ ‡Ï͇ı ÒËÒÚÂχÚ˘ÂÒÍÓ„Ó ËÁÛ˜ÂÌËfl ÙÛÌ͈ËÓ̇θÌ˚ı ÓÔ‡ˆËÈ) ‚‚ÂÎ ‡·ÒÚ‡ÍÚÌÓ ÔÓÌflÚË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. ÅÓΠ90 ÎÂÚ ÔÓ¯ÎÓ Ú‡ÍÊÂ Ò ÔÛ·ÎË͇ˆËË ‚ 1914 „. îÂÎËÍÒÓÏ ï‡ÛÒ‰ÓÙÓÏ Á̇ÏÂÌËÚÓÈ ÍÌË„Ë "éÒÌÓ‚˚ ÚÂÓËË ÏÌÓÊÂÒÚ‚", ‚ ÍÓÚÓÓÈ ËÏ ·˚· Ô‰ÒÚ‡‚ÎÂ̇ ÚÂÓËfl ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó Ë ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚. å˚ ÔÓÒ‚fl˘‡ÂÏ ‰‡ÌÌ˚È ù̈ËÍÎÓÔ‰˘ÂÒÍËÈ ÒÎÓ‚‡¸ Ò‚ÂÚÎÓÈ Ô‡ÏflÚË ˝ÚËı ‚ÂÎËÍËı χÚÂχÚËÍÓ‚ Ë Ëı ‰ÓÒÚÓÈÌÓÈ ÊËÁÌË ‚ ÚflÊÂÎ˚ ‚ÂÏÂ̇ Ô‚ÓÈ ÔÓÎÓ‚ËÌ˚ ïï ÒÚÓÎÂÚËfl.
åÓËÒ î¯ (1878–1973) ‚‚ÂÎ ‚ Ó·‡˘ÂÌË ‚ 1906 „. ÚÂÏËÌ eåcart (ÔÓÎÛÏÂÚË͇)
îÂÎËÍÒ ï‡ÛÒ‰ÓÙ (1868–1942) ‚‚ÂÎ ‚ Ó·‡˘ÂÌË ‚ 1914 „. ÚÂÏËÌ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
è‰ËÒÎÓ‚ËÂ
èÓÌflÚË ‡ÒÒÚÓflÌËfl fl‚ÎflÂÚÒfl Ó‰ÌËÏ ËÁ ÓÒÌÓ‚Ì˚ı ‚Ó ‚ÒÂÈ ˜ÂÎӂ˜ÂÒÍÓÈ ‰ÂflÚÂθÌÓÒÚË. Ç Ôӂ҉̂ÌÓÈ ÊËÁÌË ‡ÒÒÚÓflÌË ӷ˚˜ÌÓ ÓÁ̇˜‡ÂÚ ÌÂÍÓÚÓÛ˛ ÒÚÂÔÂ̸ ·ÎËÁÓÒÚË ‰‚Ûı ÙËÁ˘ÂÒÍËı Ó·˙ÂÍÚÓ‚ ËÎË Ë‰ÂÈ (Ú.Â. ‰ÎËÌÛ, ‚ÂÏÂÌÌÓÈ ËÌÚ‚‡Î, ÔÓÏÂÊÛÚÓÍ, ‡Á΢ˠ‡Ì„Ó‚, ÓÚ˜ÛʉÂÌÌÓÒÚ¸ ËÎË Û‰‡ÎÂÌÌÓÒÚ¸), ‚ ÚÓ ‚ÂÏfl Í‡Í ÚÂÏËÌ ÏÂÚË͇ Á‡˜‡ÒÚÛ˛ ËÒÔÓθÁÛÂÚÒfl Í‡Í Òڇ̉‡ÚÌÓ ÔÓÌflÚË ÏÂ˚ ËÎË ËÁÏÂÂÌËfl. Ç Ì‡¯ÂÈ ÍÌË„Â, Á‡ ËÒÍβ˜ÂÌËÂÏ ‰‚Ûı ÔÓÒΉÌËı „·‚, ‡ÒÒχÚË‚‡ÂÚÒfl χÚÂχÚ˘ÂÒÍÓ Á̇˜ÂÌË ˝ÚËı ÚÂÏËÌÓ‚, ÍÓÚÓÓ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ‡·ÒÚ‡ÍˆË˛ ËÁÏÂÂÌËfl. å‡ÚÂχÚ˘ÂÒÍË ÔÓÌflÚËfl ÏÂÚËÍË (Ú.Â. ÙÛÌ͈ËË d(x, y) ËÁ X × X ‚ ÏÌÓÊÂÒÚ‚Ó ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ˜ËÒÂÎ, Û‰Ó‚ÎÂÚ‚Ófl˛˘ÂÈ ÛÒÎÓ‚ËflÏ d(x, y) 0 Ò ‡‚ÂÌÒÚ‚ÓÏ ÚÓθÍÓ ÔË x = y, d(x, y) = d(x, y) Ë d(x, y) d(x, z) + d(z, y)) Ë ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ·˚ÎË ‚‚‰ÂÌ ÔÓ˜ÚË ‚ÂÍ Ì‡Á‡‰ å. (‚ 1906 „.) Ë î. ï‡ÛÒ‰ÓÙÓÏ (‚ 1914 „.) ‚ ͇˜ÂÒÚ‚Â ÒÔˆˇθÌÓ„Ó ÒÎÛ˜‡fl ·ÂÒÍÓ̘ÌÓ„Ó ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. ìÔÓÏflÌÛÚÓ ‚˚¯Â ̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇ d(x, y) d(x, z) + d(z, y) ÏÓÊÌÓ Ì‡ÈÚË ÛÊÂ Û Ö‚ÍÎˉ‡. ÅÂÒÍÓ̘Ì˚ ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡ ÔÓfl‚Îfl˛ÚÒfl Ó·˚˜ÌÓ Í‡Í Ó·Ó·˘ÂÌËfl ÏÂÚËÍË |x–y| ̇ ÏÌÓÊÂÒÚ‚Â ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ˜ËÒÂÎ. éÒÌÓ‚Ì˚ÏË Ëı Í·ÒÒ‡ÏË fl‚Îfl˛ÚÒfl ÏÂ˚ ÔÓÒÚ‡ÌÒÚ‚‡ (‰Ó·‡‚¸Ú ÏÂÛ) Ë ·‡Ì‡ıÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ (‰Ó·‡‚¸Ú ÌÓÏÛ Ë ÔÓÎÌÓÚÛ). é‰Ì‡ÍÓ, ̇˜Ë̇fl Ò ä. åÂ̄‡ (ÍÓÚÓ˚È ‚ 1928 „. ‚‚ÂÎ ÔÓÌflÚË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ‚ „ÂÓÏÂÚ˲) Ë ã.å. ÅβÏÂÌÚ‡Îfl (1953 „.), ËÌÚÂÂÒ Í‡Í Í ÍÓ̘Ì˚Ï, Ú‡Í Ë Í ·ÂÒÍÓ̘Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚‡Ï ÂÁÍÓ ÔÓ‚˚¯‡ÂÚÒfl. ÑÛ„ÓÈ ÚẨÂ̈ËÂÈ ÒÚ‡ÎÓ ÚÓ, ˜ÚÓ ÏÌÓ„Ë χÚÂχÚ˘ÂÒÍË ÚÂÓËË ‚ ÔÓˆÂÒÒ Ëı Ó·Ó·˘ÂÌËfl ÒÚ‡·ËÎËÁËÓ‚‡ÎËÒ¸ ̇ ÛÓ‚Ì ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. ùÚÓÚ ÔÓˆÂÒÒ ÔÓ‰ÓÎʇÂÚÒfl Ë ÒÂȘ‡Ò, ‚ ˜‡ÒÚÌÓÒÚË, ÔËÏÂÌËÚÂθÌÓ Í ËχÌÓ‚ÓÈ „ÂÓÏÂÚËË, ‰ÂÈÒÚ‚ËÚÂθÌÓÏÛ ‡Ì‡ÎËÁÛ, ÚÂÓËË ÔË·ÎËÊÂÌËÈ. åÂÚËÍË Ë ‡ÒÒÚÓflÌËfl ÒÚ‡ÎË ‚‡ÊÌ˚Ï ËÌÒÚÛÏÂÌÚÓÏ ËÒÒΉӂ‡ÌËÈ ‚ Ò‡Ï˚ı ‡ÁÌ˚ı ӷ·ÒÚflı χÚÂχÚËÍË Ë Â ÔËÎÓÊÂÌËÈ, ‚Íβ˜‡fl „ÂÓÏÂÚ˲, ÚÂÓ˲ ‚ÂÓflÚÌÓÒÚÂÈ, ÒÚ‡ÚËÒÚËÍÛ, ÚÂÓ˲ ÍÓ‰ËÓ‚‡ÌËfl, ÚÂÓ˲ „‡ÙÓ‚, Í·ÒÚÂÌ˚È ‡Ì‡ÎËÁ, ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı, ‡ÒÔÓÁ̇‚‡ÌË ӷ‡ÁÓ‚, ÚÂÓ˲ ÒÂÚÂÈ, χÚÂχÚ˘ÂÒÍÛ˛ ËÌÊÂÌÂ˲, ÍÓÏÔ¸˛ÚÂÌÛ˛ „‡ÙËÍÛ, χ¯ËÌÌÓ ÁÂÌËÂ, ‡ÒÚÓÌÓÏ˲, ÍÓÒÏÓÎӄ˲, ÏÓÎÂÍÛÎflÌÛ˛ ·ËÓÎӄ˲ Ë ÏÌÓ„Ë ‰Û„Ë ÓÚ‡ÒÎË Ì‡ÛÍË. ëÓÁ‰‡ÌË ̇˷ÓΠۉӷÌ˚ı ÏÂÚËÍ ÒÚ‡ÎÓ ˆÂÌڇθÌÓÈ Á‡‰‡˜ÂÈ ‰Îfl ÏÌÓ„Ëı ËÒÒΉӂ‡ÚÂÎÂÈ. éÒÓ·ÂÌÌÓ ËÌÚÂÌÒË‚ÌÓ ‚‰ÛÚÒfl ÔÓËÒÍË Ú‡ÍËı ‡ÒÒÚÓflÌËÈ, ‚ ˜‡ÒÚÌÓÒÚË, ‚ χÚÂχÚ˘ÂÒÍÓÈ ·ËÓÎÓ„ËË, ‡ÒÔÓÁ̇‚‡ÌËË Â˜Ë Ë Ó·‡ÁÓ‚, ‚˚·ÓÍ ËÌÙÓχˆËË. ç‰ÍË ÒÎÛ˜‡Ë, ÍÓ„‰‡ Ó‰ÌË Ë Ú Ê ÏÂÚËÍË ÔÓfl‚Îfl˛ÚÒfl ÌÂÁ‡‚ËÒËÏÓ ‰Û„ ÓÚ ‰Û„‡ ‚ Ú‡ÍËı Òӂ¯ÂÌÌÓ ‡ÁÌ˚ı ÒÙ‡ı, ͇Í, ̇ÔËÏÂ, ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÒÎÓ‚‡ÏË Ë ˝‚ÓβˆËÓÌÌÓ ‡ÒÒÚÓflÌË ‚ ·ËÓÎÓ„ËË, ‡ÒÒÚÓflÌË ã‚Â̯ÚÂÈ̇ ‚ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl Ë ‡ÒÒÚÓflÌË ï˝ÏÏËÌ„‡ – Ò ÔÓÔÛÒ͇ÏË ËÎË ı˝ÏÏËÌ„Ó‚Ó Ú‡ÒÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌËÂ. ç‡ÍÓÔÎÂÌ̇fl ËÌÙÓχˆËfl Ó ‡ÒÒÚÓflÌËflı ̇ÒÚÓθÍÓ Ó·¯Ë̇ Ë ‡ÁÓÁÌÂÌ̇, ˜ÚÓ ‡·ÓÚ‡Ú¸ Ò ÌÂÈ ÒÚ‡ÎÓ ÔÓ˜ÚË Ì‚ÓÁÏÓÊÌÓ. í‡Í, ̇ÔËÏÂ, ÍÓ΢ÂÒÚ‚Ó Ô‰·„‡ÂÏ˚ı ‚·-Ò‡ÈÚÓÏ "Google" ‚‚Ó‰ËÏ˚ı ‰‡ÌÌ˚ı ÔÓ ÚÂχÚËÍ "‡ÒÒÚÓflÌËÂ", "ÏÂÚ˘ÂÒÍÓÂ
8
è‰ËÒÎÓ‚ËÂ
ÔÓÒÚ‡ÌÒÚ‚Ó" Ë "ÏÂÚË͇" Ô‚ÓÒıÓ‰ËÚ 300 ÏÎÌ (Ú.Â. ÓÍÓÎÓ 4% Ó·˘Â„Ó Ó·˙Âχ ‚‚Ó‰ËÏ˚ı ‰‡ÌÌ˚ı), 12 ÏÎÌ Ë 6 ÏÎÌ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, Ë ˝ÚÓ ·ÂÁ Û˜ÂÚ‡ ‚ÒÂÈ Ô˜‡ÚÌÓÈ ËÌÙÓχˆËË, ˆËÍÛÎËÛ˛˘ÂÈ ‚Ì ÒÂÚË àÌÚÂÌÂÚ, ËÎË ÚÓ„Ó "Ì‚ˉËÏÓ„Ó" χÒÒË‚‡ ҂‰ÂÌËÈ, ÒÓ‰Âʇ˘ËıÒfl ‚ ‰ÓÒÚÛÔÌ˚ı ‰Îfl ÔÓËÒ͇ ·‡Á‡ı ‰‡ÌÌ˚ı. èË ˝ÚÓÏ ‚Òfl ˝Ú‡ Ó·¯Ë̇fl ËÌÙÓχˆËfl Ó ‡ÒÒÚÓflÌËflı ‚ÂҸχ ‡Á·Ó҇̇ ÔÓ ËÒÚÓ˜ÌË͇Ï, ‡ ‚ ÌÂÍÓÚÓ˚ı ‡·ÓÚ‡ı ÔÓ·ÎÂχÚË͇ ‡ÒÒÚÓflÌËÈ Í‡Ò‡ÂÚÒfl ̇ÒÚÓθÍÓ ÒÔˆËÙ˘ÂÒÍËı Ô‰ÏÂÚÓ‚, ˜ÚÓ „Ó‚ÓËÚ¸ Ó Â ‰ÓÒÚÛÔÌÓÒÚË ‰Îfl ÌÂÒÔˆˇÎËÒÚÓ‚ Ì ÔËıÓ‰ËÚÒfl. Ç Ò‚flÁË Ò ˝ÚËÏ ÏÌÓ„Ë ËÒÒΉӂ‡ÚÂÎË, ‚ ˜‡ÒÚÌÓÒÚË Ò‡ÏË ‡‚ÚÓ˚, ÒÚ‡‡˛ÚÒfl ͇̇ÔÎË‚‡Ú¸ Ë ı‡ÌËÚ¸ ‰‡ÌÌ˚Â Ó ‡ÒÒÚÓflÌËflı ÔËÏÂÌËÚÂθÌÓ Í ÒÓ·ÒÚ‚ÂÌÌ˚Ï ÒÙÂ‡Ï Ì‡Û˜ÌÓÈ ‰ÂflÚÂθÌÓÒÚË. Ç ÛÒÎÓ‚Ëflı ‡ÒÚÛ˘ÂÈ ÔÓÚ·ÌÓÒÚË ‚ ÏÂʉËÒˆËÔÎË̇ÌÓÏ ËÒÚÓ˜ÌËÍ ËÌÙÓχˆËË Ó·˘Â„Ó ÔÓθÁÓ‚‡ÌËfl Ó ‡ÒÒÚÓflÌËflı Ë ÏÂÚË͇ı ‡‚ÚÓ˚ ¯ËÎË ‡Ò¯ËËÚ¸ Ò‚Ó˛ ΢ÌÛ˛ ÍÓÎÎÂÍˆË˛ Ë ÒÓÁ‰‡Ú¸ ̇  ·‡Á "ù̈ËÍÎÓÔ‰˘ÂÒÍËÈ ÒÎÓ‚‡¸ ‡ÒÒÚÓflÌËÈ". ÑÓÔÓÎÌËÚÂθÌ˚ χÚ¡Î˚ ·˚ÎË ÔÓ˜ÂÔÌÛÚ˚ ËÁ ËÁ‰‡ÌËÈ ˝ÌˆËÍÎÓÔ‰˘ÂÒÍÓ„Ó ı‡‡ÍÚ‡, ‚ Á̇˜ËÚÂθÌÓÈ Ï ËÁ "å‡ÚÂχÚ˘ÂÒÍÓÈ ˝ÌˆËÍÎÓÔ‰ËË" ([Öå98]), "åˇ χÚÂχÚËÍË" ([Weis99]), "è·ÌÂÚ˚ "å‡ÚÂχÚË͇" ([êå]) Ë "ÇËÍËÔ‰ËË" ([WFE]). é‰Ì‡ÍÓ „·‚Ì˚Ï ËÒÚÓ˜ÌËÍÓÏ ËÌÙÓχˆËË ‰Îfl ÒÎÓ‚‡fl fl‚Ë·Ҹ ÒÔˆˇθ̇fl ÎËÚ‡ÚÛ‡. èÓÏËÏÓ ÒÓ·ÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌËÈ ‡‚ÚÓ˚ ‚Íβ˜ËÎË ‚ ÍÌË„Û ÏÌÓ„Ó Ó‰ÒÚ‚ÂÌÌ˚ı ÔÓÌflÚËÈ (ÓÒÓ·ÂÌÌÓ ‚ „Î. 1) Ë Ô‡‡‰Ë„Ï, ÔÓÁ‚ÓÎfl˛˘Ëı ÔËÏÂÌflÚ¸ Ô‡ÍÚ˘ÂÒÍË Ï‡ÎÓÔÓÌflÚÌ˚ ‰Îfl ÌÂÒÔˆˇÎËÒÚÓ‚ ÚÂÏËÌ˚, Ô‰ÒÚ‡‚ÎÂÌÌ˚ ‚ „ÓÚÓ‚ÓÏ ‰Îfl ËÒÔÓθÁÓ‚‡ÌËfl ‚ˉÂ. ÇÒ ˝ÚÓ, ‡ Ú‡ÍÊ ÔÓfl‚ÎÂÌË ÌÂÍÓÚÓ˚ı ‡ÒÒÚÓflÌËÈ ‚ Òӂ¯ÂÌÌÓ ËÌÓÏ ÍÓÌÚÂÍÒÚ ÏÓÊÂÚ ‰‡Ú¸ ÚÓΘÓÍ ÌÓ‚˚Ï ËÒÒΉӂ‡ÌËflÏ. Ç Ì‡¯Â ‚ÂÏfl, ÍÓ„‰‡ ˜ÂÁÏÂ̇fl ÒÔˆˇÎËÁ‡ˆËfl Ë ÚÂÏËÌÓÎӄ˘ÂÒÍË ·‡¸Â˚ ‚‰ÛÚ Í ‡ÁÓ·˘ÂÌ˲ ËÒÒΉӂ‡ÚÂÎÂÈ, ̇¯ ÒÎÓ‚‡¸ ‚˚ÔÓÎÌflÂÚ ÒÍÓ ˆÂÌÚÓÒÚÂÏËÚÂθÌÛ˛ Ë Ó·˙‰ËÌËÚÂθÌÛ˛ ÙÛÌ͈ËË, Ó·ÂÒÔ˜˂‡fl ‰ÓÒÚÛÔÌÓÒÚ¸ Ë ·ÓΠ¯ËÓÍËÈ Ó·ÁÓ ËÌÙÓχˆËË, ÌÓ ·ÂÁ Ò͇Ú˚‚‡ÌËfl Í Ì‡Û˜ÌÓÈ ÔÓÔÛÎflËÁ‡ˆËË Ô‰ÏÂÚ‡. ùÚÓ ÒÚÂÏÎÂÌË ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ Ó·‡ÁÓÏ Ò·‡Î‡ÌÒËÓ‚‡Ú¸ ËÁ·„‡ÂÏ˚È Ï‡Ú¡ΠÔ‰ÓÔ‰ÂÎËÎÓ ÒÚÛÍÚÛÛ Ë ÒÚËθ ÍÌË„Ë. чÌÌ˚È ÒÔ‡‚Ó˜ÌËÍ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÒÔˆˇÎËÁËÓ‚‡ÌÌ˚È ˝ÌˆËÍÎÓÔ‰˘ÂÒÍËÈ ÚÂχÚ˘ÂÒÍËÈ ÒÎÓ‚‡¸. éÌ ÒÓÒÚÓËÚ ËÁ 28 „·‚ ‚ ÒÂÏË ˜‡ÒÚflı ÔËÏÂÌÓ Ó‰Ë̇ÍÓ‚Ó„Ó Ó·˙Âχ. ç‡Á‚‡ÌËfl ˜‡ÒÚÂÈ Ô‰̇ÏÂÂÌÌÓ ‰‡Ì˚ ÔË·ÎËÊÂÌÌÓ ‚ ‡Ò˜ÂÚ ̇ ÚÓ, ˜ÚÓ ˜ËÚ‡ÚÂθ Ò‡ÏÓÒÚÓflÚÂθÌÓ ‚˚·ÂÂÚ ÚÂχÚËÍÛ ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ ÒÓ·ÒÚ‚ÂÌÌ˚ı ËÌÚÂÂÒÓ‚ Ë ÍÓÏÔÂÚÂÌÚÌÓÒÚË. í‡Í, ̇ÔËÏÂ, ˜‡ÒÚË II, III Ë IV, V ÔÓÚÂ·Û˛Ú ÓÔ‰ÂÎÂÌÌÓ„Ó ÛÓ‚Ìfl Á̇ÌËÈ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‚ ӷ·ÒÚË ˜ËÒÚÓÈ Ë ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍË, ‚ ÚÓ ‚ÂÏfl Í‡Í ÒÓ‰ÂʇÌË ˜‡ÒÚË VII ·Û‰ÂÚ ‰ÓÒÚÛÔÌÓ Î˛·ÓÏÛ ÌÂÒÔˆˇÎËÒÚÛ. É·‚˚ fl‚Îfl˛ÚÒfl ÔÓ ÒÛ˘ÂÒÚ‚Û Ô˜ÌflÏË ÚÂχÚËÍ ÔÓ ‡Á΢Ì˚Ï Ó·Î‡ÒÚflÏ Ï‡ÚÂχÚËÍË ËÎË ÔËÎÓÊÂÌËflÏ, ÍÓÚÓ˚ ÏÓ„ÛÚ ˜ËÚ‡Ú¸Òfl ÌÂÁ‡‚ËÒËÏÓ ‰Û„ ÓÚ ‰Û„‡. èË ÌÂÓ·ıÓ‰ËÏÓÒÚË „·‚‡ ËÎË ‡Á‰ÂÎ ÏÓ„ÛÚ Ô‰‚‡flÚ¸Òfl ͇ÚÍËÏ ‚‚‰ÂÌËÂÏ – ˝ÍÒÍÛÒÓÏ ÔÓ ÓÒÌÓ‚Ì˚Ï ÔÓÌflÚËflÏ. èÓÏËÏÓ Ú‡ÍËı Ô‰ËÒÎÓ‚ËÈ ÓÔËÒ‡ÌË ı‡‡ÍÚÂÌ˚ı ÓÒÓ·ÂÌÌÓÒÚÂÈ Ë Ó·Î‡ÒÚÂÈ ÔËÏÂÌÂÌËfl ‡ÒÒÚÓflÌËÈ ‰‡ÂÚÒfl ‚ ÚÂÍÒÚ ÒÍÓÂÂ Í‡Í ËÒÍβ˜ÂÌËÂ. Ä‚ÚÓ˚ ÒÚ‡‡ÎËÒ¸, ÔÓ Ï ‚ÓÁÏÓÊÌÓÒÚË, ÛÔÓÏË̇ڸ ÚÂı, ÍÚÓ Ô‚˚Ï ‚‚ÂÎ ÚÓ ËÎË ËÌÓ ÓÔ‰ÂÎÂÌË ‡ÒÒÚÓflÌËfl, ÔË ˝ÚÓÏ Ô‰·„‡Âχfl Ó·¯Ë̇fl ·Ë·ÎËÓ„‡ÙËfl ËÏÂÂÚ ˆÂθ˛ Ó·ÂÒÔ˜ËÚ¸ Û‰Ó·Ì˚È ËÒÚÓ˜ÌËÍ ‰Îfl ·˚ÒÚÓ„Ó ÔÓËÒ͇. ä‡Ê‰‡fl ËÁ „·‚ ÍÓÏÔÓÌÛÂÚÒfl Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ ÏÂÊ‰Û Â ‡Á‰Â·ÏË ÔÓÒÎÂÊË‚‡Î‡Ò¸ ‚Á‡ËÏÓÒ‚flÁ¸. ÇÒ Á‡„ÓÎÓ‚ÍË ‡Á‰ÂÎÓ‚ Ë Íβ˜Â‚˚ ÚÂÏËÌ˚ ‚˚ÌÂÒÂÌ˚ ÓÚ‰ÂθÌÓ ‚ Ô‰ÏÂÚÌ˚È Û͇Á‡ÚÂθ (ÓÍÓÎÓ 1500 ÔÛÌÍÚÓ‚) Ë Ó·ÓÁ̇˜ÂÌ˚ ÊËÌ˚Ï ¯ËÙÚÓÏ, ÂÒÎË ÚÓθÍÓ Ëı Á̇˜ÂÌË Ì ‚˚ÚÂ͇ÂÚ ËÁ ÍÓÌÚÂÍÒÚ‡. ùÚÓ Ó·Î„˜‡ÂÚ ÔÓËÒÍ ÓÔ‰ÂÎÂÌËÈ ÔÓ ÚÂχÚËÍ ‚ÌÛÚË „·‚˚ Ë ÔÓ ‡ÎÙ‡‚ËÚÛ ‚ Ò‡ÏÓÏ Û͇Á‡ÚÂÎÂ. íÂÍÒÚ˚ ‚‚‰ÂÌËÈ Ë ÓÔ‰ÂÎÂÌËfl ÓËÂÌÚËÓ‚‡Ì˚ ̇ Û‰Ó·ÒÚ‚Ó ‰Îfl
è‰ËÒÎÓ‚ËÂ
9
˜ËÚ‡ÚÂÎfl Ë Ï‡ÍÒËχθÌÓ ÌÂÁ‡‚ËÒËÏ˚ ‰Û„ ÓÚ ‰Û„‡. éÌË ÓÒÚ‡˛ÚÒfl ‚Á‡ËÏÓÒ‚flÁ‡ÌÌ˚ÏË ÔÓÒ‰ÒÚ‚ÓÏ Ó·ÓÁ̇˜ÂÌÌ˚ı ÊËÌ˚Ï ¯ËÙÚÓÏ ÚÂÍÒÚÓ‚˚ı ÒÒ˚ÎÓÍ (ÔÓ ÚËÔÛ ÙÓχڇ HTML Ò „ËÔÂÒÒ˚Î͇ÏË) ̇ ÒıÓÊË ÓÔ‰ÂÎÂÌËfl. åÌÓ„Ó ËÌÚÂÂÒÌ˚ı ҂‰ÂÌËÈ Ô‰ÒÚ‡‚ÎÂÌÓ ‚ ˝ÚÓÏ ·ËÓ„‡Ù˘ÂÒÍÓÏ ÒÔ‡‚Ó˜ÌËÍ ‡ÒÒÚÓflÌËÈ "äÚÓ ÂÒÚ¸ ÍÚÓ". èËχÏË Á‡ÌflÚÌ˚ı ÚÂÏËÌÓ‚ fl‚Îfl˛ÚÒfl ÓÚÌÓÒfl˘ÂÂÒfl Í ‚ÂÁ‰ÂÒÛ˘ÂÏÛ Â‚ÍÎË‰Ó‚Û ‡ÒÒÚÓflÌ˲ ‚˚‡ÊÂÌË "Í‡Í ‚ÓÓ̇ ÎÂÚ‡ÂÚ" (Ú.Â. ÔÓ ÔflÏÓÈ ÎËÌËË), "ÏÂÚË͇ ˆ‚ÂÚÓ˜ÌÓ„Ó Ï‡„‡ÁË̇" (͇ژ‡È¯Â ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË Ò ÔÓÏÂÊÛÚÓ˜Ì˚Ï ÔÓÒ¢ÂÌËÂÏ ÚÓ˜ÍË "ˆ‚ÂÚÓ˜ÌÓ„Ó Ï‡„‡ÁË̇"), "ÏÂÚË͇ ıÓ‰‡ ÍÓÌfl" ̇ ¯‡ıχÚÌÓÈ ‰ÓÒÍÂ, "ÏÂÚË͇ „Ӊ˂‡ ÛÁ·", "ÏÂÚË͇ ·Ûθ‰ÓÁ‡", ‡ÒÒÚÓflÌË ·ËÓÚÓÔ‡, "ÔÓÍÛÒÚÓ‚Ó ‡ÒÒÚÓflÌËÂ", "ÏÂÚË͇ ÎËÙÚ‡", "ÔÓ˜ÚÓ‚‡fl ÏÂÚË͇", ıÓÔ-ÏÂÚË͇ àÌÚÂÌÂÚ‡, Í‚‡ÁË-ÏÂÚË͇ „ËÔÂÒÒ˚ÎÓÍ WWW, "ÏÓÒÍÓ‚Ò͇fl ÏÂÚË͇", "‡ÒÒÚÓflÌË ÒÓ·‡ÍÓ‚Ó‰‡". äÓÏ ‡·ÒÚ‡ÍÚÌ˚ı ‡ÒÒÚÓflÌËÈ ‡ÒÒχÚË‚‡˛ÚÒfl Ú‡ÍÊ ‡ÒÒÚÓflÌËfl Ò ÙËÁ˘ÂÒÍËÏ ÒÓ‰ÂʇÌËÂÏ (ÓÒÓ·ÂÌÌÓ ‚ ˜‡ÒÚË VI). éÌË ÒÛ˘ÂÒÚ‚Û˛Ú ‚ ‰Ë‡Ô‡ÁÓÌ ÓÚ 1,6 × 10–35 Ï (‰ÎË̇ è·Ì͇) ‰Ó 7,4 × 1026 Ï (ÓˆÂÌË‚‡ÂÏ˚ ‡ÁÏÂ˚ ̇·Î˛‰‡ÂÏÓÈ ÇÒÂÎÂÌÌÓÈ, ÓÍÓÎÓ 46 × 1060 ‰ÎËÌ è·Ì͇). äÓ΢ÂÒÚ‚Ó ÏÂÚËÍ ·ÂÒÍÓ̘ÌÓ Ë ÔÓ˝ÚÓÏÛ Ô˜ËÒÎËÚ¸ Ëı ‚Ò Ì‚ÓÁÏÓÊÌÓ. é‰Ì‡ÍÓ ‡‚ÚÓ˚ ·˚ÎË ‚‰ÓıÌÓ‚ÎÂÌ˚ ÔËÏÂÓÏ ÛÒÔ¯ÌÓ„Ó ÒÓÒÚ‡‚ÎÂÌËfl ÚÂχÚ˘ÂÒÍËı ÒÎÓ‚‡ÂÈ ÔÓ ‰Û„ËÏ ·ÂÒÍÓ̘Ì˚Ï Ô˜ÌflÏ, ‚ ˜‡ÒÚÌÓÒÚË, ˆÂÎÓ˜ËÒÎÂÌÌ˚Ï ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏ, ̇‚ÂÌÒÚ‚‡Ï, ÒÎÛ˜‡ÈÌ˚Ï ÔÓˆÂÒÒ‡Ï, ‡ Ú‡ÍÊ ‡Ú·ÒÓ‚ ÙÛÌ͈ËÈ, „ÛÔÔ, ÙÛÎÎÂÂÌÓ‚ Ë Ú.Ô. äÓÏ ÚÓ„Ó, Ó·¯ËÌÓÒÚ¸ ÚÂχÚËÍË Á‡˜‡ÒÚÛ˛ ‚˚ÌÛʉ‡Î‡ ‡‚ÚÓÓ‚ ËÁ·„‡Ú¸ χÚÂˇΠ‚ ·ÍÓÌ˘ÌÓÈ ÙÓÏ ۘ·ÌÓ„Ó ÔÓÒÓ·Ëfl. ùÚÓÚ ÒÎÓ‚‡¸ ÓËÂÌÚËÓ‚‡Ì ‚ ÓÒÌÓ‚ÌÓÏ Ì‡ ̇ۘÌ˚ı ‡·ÓÚÌËÍÓ‚, Á‡ÌËχ˛˘ËıÒfl ËÒÒΉӂ‡ÌËflÏË Ò Ôӂ‰ÂÌËÂÏ ‡Á΢Ì˚ı ËÁÏÂÂÌËÈ, Ë ‚ ÓÔ‰ÂÎÂÌÌÓÈ Ï ̇ ÒÚÛ‰ÂÌÚÓ‚, ‡ Ú‡ÍÊ ËÌÚÂÂÒÛ˛˘ËıÒfl ̇ÛÍÓÈ fl‰Ó‚˚ı ˜ËÚ‡ÚÂÎÂÈ. Ä‚ÚÓ˚ ÔÓÔ˚Ú‡ÎËÒ¸ Óı‚‡ÚËÚ¸, ÔÛÒÚ¸ ‰‡Ê Ì ÔÓÎÌÓÒÚ¸˛, ‚ÂÒ¸ ÒÔÂÍÚ ÔËÍ·‰ÌÓ„Ó ËÒÔÓθÁÓ‚‡ÌËfl ÔÓÌflÚËfl ‡ÒÒÚÓflÌËfl. é‰Ì‡ÍÓ ÌÂÍÓÚÓ˚ ‡ÒÒÚÓflÌËfl Ì ̇¯ÎË ÓÚ‡ÊÂÌËfl ‚ ÍÌË„Â ÎË·Ó ÔÓ Ô˘ËÌ ÌÂı‚‡ÚÍË ÏÂÒÚ‡ (ËÁ-Á‡ ˜ÂÁÏÂÌÓÈ ÒÔˆËÙËÍË ËÎË ÒÎÓÊÌÓÒÚË Ô‰ÏÂÚ‡), ÎË·Ó ÔÓ Ì‰ÓÒÏÓÚÛ ‡‚ÚÓÓ‚. Ç ˆÂÎÓÏ Ó·˙ÂÏ ÚÂÍÒÚ‡ Ë Ò·‡Î‡ÌÒËÓ‚‡ÌÌÓÒÚ¸ ÒÓ‰ÂʇÌËfl (Ú.Â. ÓÔ‰ÂÎÂÌË ˆÂÎÂÒÓÓ·‡ÁÌÓÈ ‰ÓÒÚ‡ÚÓ˜ÌÓÒÚË ËÌÙÓχˆËË ÔÓ ÚÓÈ ËÎË ËÌÓÈ ÚÂÏÂ) fl‚ËÎËÒ¸ ÓÒÌÓ‚ÌÓÈ ÚÛ‰ÌÓÒÚ¸˛. å˚ ·Û‰ÂÏ ·Î‡„Ó‰‡Ì˚ ˜ËÚ‡ÚÂÎflÏ, ÍÓÚÓ˚ ‚˚Ò͇ÊÛÚÒfl Á‡ ‚Íβ˜ÂÌË ‚ ÒÎÓ‚‡¸ ͇ÍËı-ÎË·Ó ÔÓÔÛ˘ÂÌÌ˚ı ËÎË ‰ÓÔÓÎÌËÚÂθÌ˚ı ‡ÒÒÚÓflÌËÈ. Ç ÍÓ̈ ÍÌË„Ë ‰Îfl ΢Ì˚ı Á‡ÏÂÚÓÍ ˜ËÚ‡ÚÂÎÂÈ Ì‡ ˝ÚÛ ÚÂÏÛ Á‡ÂÁ‚ËÓ‚‡ÌÓ ÌÂÒÍÓθÍÓ ˜ËÒÚ˚ı ÒÚ‡Ìˈ. Ä‚ÚÓ˚ ‚˚‡Ê‡˛Ú ·Î‡„Ó‰‡ÌÓÒÚ¸ ÏÌÓ„ËÏ Î˛‰flÏ Á‡ Ó͇Á‡ÌÌÛ˛ ÔË Ì‡ÔËÒ‡ÌËË ‰‡ÌÌÓ„Ó ÒÎÓ‚‡fl ÔÓÏÓ˘¸ Ë ‚ ÔÂ‚Û˛ Ә‰¸ ܇ÍÛ ÅÂȷ‰ÂÛ, å˝Ú¸˛ Ñ˛ÚÛÛ, ùÏχÌÛ˝Î˛ ÉÂÂ, ܇ÍÛ äÛÎÂÌÛ, ÑÊËÌ ïÓ ä‚‡ÍÛ, ïËÓ¯Ë å‡˝ı‡‡, 넲 ëÔÂÍÚÓÓ‚Û, ÄÎÂÍÒ² ëÓÒËÌÒÍÓÏÛ Ë ñÁfl̸ˆ‡ÌÛ óÊۇ̄Û.
ëÓ‰ÂʇÌËÂ
è‰ËÒÎÓ‚Ë .................................................................................................................................
óÄëíú I. åÄíÖåÄíàäÄ êÄëëíéüçàâ É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl 1.1 ŇÁÓ‚˚ ÓÔ‰ÂÎÂÌËfl ........................................................................................................... 1.2 éÒÌÓ‚Ì˚ ÔÓÌflÚËfl, Ò‚flÁ‡ÌÌ˚Â Ò ‡ÒÒÚÓflÌËflÏË Ë ˜ËÒÎÓ‚˚ ËÌ‚‡Ë‡ÌÚ˚ ..................... 1.3 鷢ˠ‡ÒÒÚÓflÌËfl ................................................................................................................. É·‚‡ 2. íÓÔÓÎӄ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡ É·‚‡ 3. é·Ó·˘ÂÌËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ 3.1 m-ÏÂÚËÍË ............................................................................................................................... 3.2 çÂÓÔ‰ÂÎÂÌÌ˚ ÏÂÚËÍË .................................................................................................... 3.3 íÓÔÓÎӄ˘ÂÒÍË ӷӷ˘ÂÌËfl ................................................................................................ 3.4 ᇠԉ·ÏË ˜ËÒÂÎ ............................................................................................................... É·‚‡ 4. åÂÚ˘ÂÒÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl 4.1 åÂÚËÍË Ì‡ ÚÓÏ Ê ÏÌÓÊÂÒÚ‚Â ........................................................................................... 4.2 åÂÚËÍË Ì‡ ‡Ò¯ËÂÌËflı ‰‡ÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ .................................................................. 4.3 åÂÚËÍË Ì‡ ‰Û„Ëı ÏÌÓÊÂÒÚ‚‡ı .......................................................................................... É·‚‡ 5. åÂÚËÍË Ì‡ ÌÓÏËÓ‚‡ÌÌ˚ı ÒÚÛÍÚÛ‡ı
óÄëíú II. ÉÖéåÖíêàü à êÄëëíéüçàü É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË 6.1 ÉÂÓ‰ÂÁ˘ÂÒ͇fl „ÂÓÏÂÚËfl ..................................................................................................... 6.2 èÓÂÍÚ˂̇fl „ÂÓÏÂÚËfl ....................................................................................................... 6.3 ÄÙÙËÌ̇fl „ÂÓÏÂÚËfl ........................................................................................................... 6.4 ç‚ÍÎˉӂ‡ „ÂÓÏÂÚËfl ....................................................................................................... É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË 7.1 êËχÌÓ‚˚ ÏÂÚËÍË Ë Ëı Ó·Ó·˘ÂÌËfl ................................................................................... 7.2 êËχÌÓ‚˚ ÏÂÚËÍË ‚ ÚÂÓËË ËÌÙÓχˆËË ........................................................................ 7.3 ùÏËÚÓ‚˚ ÏÂÚËÍË Ë Ëı Ó·Ó·˘ÂÌËfl ................................................................................... É·‚‡ 8. ê‡ÒÒÚÓflÌËfl ̇ ÔÓ‚ÂıÌÓÒÚflı Ë ÛÁ·ı 8.1 鷢ˠÏÂÚËÍË Ì‡ ÔÓ‚ÂıÌÓÒÚflı ........................................................................................ 8.2 ÇÌÛÚÂÌÌË ÏÂÚËÍË Ì‡ ÔÓ‚ÂıÌÓÒÚflı ............................................................................... 8.3 ê‡ÒÒÚÓflÌËfl ̇ ÛÁ·ı ...............................................................................................................
ëÓ‰ÂʇÌËÂ
11
É·‚‡ 9. ê‡ÒÒÚÓflÌËfl ̇ ‚˚ÔÛÍÎ˚ı Ú·ı, ÍÓÌÛÒ‡ı Ë ÒËÏÔÎˈˇθÌ˚ı ÍÓÏÔÎÂÍÒ‡ı 9.1. ê‡ÒÒÚÓflÌËfl ̇ ‚˚ÔÛÍÎ˚ı Ú·ı ........................................................................................... 9.2. ê‡ÒÒÚÓflÌËfl ̇ ÍÓÌÛÒ‡ı .......................................................................................................... 9.3. ê‡ÒÒÚÓflÌËfl ̇ ÒËÏÔÎˈˇθÌ˚ı ÍÓÏÔÎÂÍÒ‡ı ...................................................................
óÄëíú III. êÄëëíéüçàü Ç äãÄëëàóÖëäéâ åÄíÖåÄíàäÖ É·‚‡ 10. ê‡ÒÒÚÓflÌËfl ‚ ‡Î„· 10.1. åÂÚËÍË Ì‡ „ÛÔÔ‡ı ........................................................................................................... 10.2. åÂÚËÍË Ì‡ ·Ë̇Ì˚ı ÓÚÌÓ¯ÂÌËflı ................................................................................. 10.3. åÂÚËÍË Â¯ÂÚÓÍ ............................................................................................................... É·‚‡ 11. ê‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı Ë ÔÂÂÒÚ‡Ìӂ͇ı 11.1. ê‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı Ó·˘Â„Ó ‚ˉ‡ ................................................................................ 11.2. ê‡ÒÒÚÓflÌËfl ̇ ÔÂÂÒÚ‡Ìӂ͇ı ........................................................................................... É·‚‡ 12. ê‡ÒÒÚÓflÌËfl ̇ ˜ËÒ·ı, ÏÌÓ„Ó˜ÎÂ̇ı Ë Ï‡Úˈ‡ı 12.1. ê‡ÒÒÚÓflÌËfl ̇ ˜ËÒ·ı ......................................................................................................... 12.2. ê‡ÒÒÚÓflÌËfl ̇ ÏÌÓ„Ó˜ÎÂ̇ı ............................................................................................... 12.3. ê‡ÒÒÚÓflÌËfl ̇ χÚˈ‡ı ..................................................................................................... É·‚‡ 13. ê‡ÒÒÚÓflÌËfl ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁ 13.1 åÂÚËÍË Ì‡ ÙÛÌ͈ËÓ̇θÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı ................................................................. 13.2 åÂÚËÍË Ì‡ ÎËÌÂÈÌ˚ı ÓÔ‡ÚÓ‡ı ................................................................................... É·‚‡ 14. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ 14.1 ê‡ÒÒÚÓflÌËfl ̇ ÒÎÛ˜‡ÈÌ˚ı ‚Â΢Ë̇ı ................................................................................ 14.2 ê‡ÒÒÚÓflÌËfl ̇ Á‡ÍÓ̇ı ‡ÒÔ‰ÂÎÂÌËfl .............................................................................
óÄëíú IV. êÄëëíéüçàü Ç èêàäãÄÑçéâ åÄíÖåÄíàäÖ É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚ 15.1 ê‡ÒÒÚÓflÌËfl ̇ ‚¯Ë̇ı „‡Ù‡ ......................................................................................... 15.2 ɇÙ˚, ÓÔ‰ÂÎflÂÏ˚ ‚ ÚÂÏË̇ı ‡ÒÒÚÓflÌËÈ ............................................................... 15.3 ê‡ÒÒÚÓflÌËfl ̇ „‡Ù‡ı .......................................................................................................... 15.4 ê‡ÒÒÚÓflÌËfl ̇ ‰Â‚¸flı ....................................................................................................... É·‚‡ 16. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl 16.1 åËÌËχθÌÓ ‡ÒÒÚÓflÌËÂ Ë Â„Ó ‡Ì‡ÎÓ„Ë .......................................................................... 16.2 éÒÌÓ‚Ì˚ ‡ÒÒÚÓflÌËfl ̇ ÍÓ‰‡ı ......................................................................................... É·‚‡ 17. ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı 17.1 èÓ‰Ó·ÌÓÒÚË Ë ‡ÒÒÚÓflÌËfl ‰Îfl ˜ËÒÎÓ‚˚ı ‰‡ÌÌ˚ı ............................................................ 17.2 Ä̇ÎÓ„Ë Â‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl ......................................................................................... 17.3 èÓ‰Ó·ÌÓÒÚË Ë ‡ÒÒÚÓflÌËfl ‰Îfl ·Ë̇Ì˚ı ‰‡ÌÌ˚ı ........................................................... 17.4 äÓÂÎflˆËÓÌÌ˚ ÔÓ‰Ó·ÌÓÒÚË Ë ‡ÒÒÚÓflÌËfl ....................................................................
12
ëÓ‰ÂʇÌËÂ
É·‚‡ 18. ê‡ÒÒÚÓflÌËfl ‚ χÚÂχÚ˘ÂÒÍÓÈ ËÌÊÂÌÂËË 18.1 ê‡ÒÒÚÓflÌËfl ‚ Ó„‡ÌËÁ‡ˆËË ‰‚ËÊÂÌËfl ................................................................................ 18.2 ê‡ÒÒÚÓflÌËfl ‰Îfl ÍÎÂÚÓ˜Ì˚ı ‡‚ÚÓχÚÓ‚ .............................................................................. 18.3 ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÍÓÌÚÓÎfl ........................................................................................... 18.4 åéÖÄ ‡ÒÒÚÓflÌËfl ...............................................................................................................
óÄëíú V. êÄëëíéüçàü Ç äéåèúûíÖêçéâ ëîÖêÖ É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı 19.1 åÂÚËÍË Ì‡ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔÎÓÒÍÓÒÚË . .......................................................................... 19.2 åÂÚËÍË Ì‡ ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚË ..................................................................................... É·‚‡ 20. ê‡ÒÒÚÓflÌËfl ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó 20.1 ä·ÒÒ˘ÂÒÍË ‡ÒÒÚÓflÌËfl ÇÓÓÌÓ„Ó ................................................................................. 20.2 ê‡ÒÒÚÓflÌËfl ÇÓÓÌÓ„Ó Ì‡ ÔÎÓÒÍÓÒÚË .................................................................................. 20.3 ÑÛ„Ë ‡ÒÒÚÓflÌËfl ÇÓÓÌÓ„Ó ............................................................................................. É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚ 21.1 ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ ........................................................................................... 21.2 ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ Á‚ÛÍÓ‚ .............................................................................................. É·‚‡ 22. ê‡ÒÒÚÓflÌËfl ‚ àÌÚÂÌÂÚÂ Ë Ó‰ÒÚ‚ÂÌÌ˚ı ÒÂÚflı 22.1 ëÂÚË, ÌÂÁ‡‚ËÒËÏ˚ ÓÚ ¯Í‡Î ............................................................................................... 22.2 ëÂχÌÚ˘ÂÒÍË ‡ÒÒÚÓflÌËfl ‚ ÒÂÚ‚˚ı ÒÚÛÍÚÛ‡ı ......................................................... 22.3 ê‡ÒÒÚÓflÌËfl ‚ àÌÚÂÌÂÚÂ Ë Ç·-ÒÂÚË .................................................................................
óÄëíú VI. êÄëëíéüçàü Ç ÖëíÖëíÇÖççõï çÄìäÄï É·‚‡ 23. ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË 23.1 ÉÂÌÂÚ˘ÂÒÍË ‡ÒÒÚÓflÌËfl ‰Îfl ‰‡ÌÌ˚ı Ó ˜‡ÒÚÓÚ „ÂÌÓ‚ .................................................. 23.2 ê‡ÒÒÚÓflÌËfl ‰Îfl ‰‡ÌÌ˚ı Ó Ñçä .......................................................................................... 23.3 ê‡ÒÒÚÓflÌËfl ‰Îfl ‰‡ÌÌ˚ı Ó ·ÂÎ͇ı ....................................................................................... 23.4 ÑÛ„Ë ·ËÓÎӄ˘ÂÒÍË ‡ÒÒÚÓflÌËfl ................................................................................... É·‚‡ 24. ê‡ÒÒÚÓflÌËfl ‚ ÙËÁËÍÂ Ë ıËÏËË 24.1 ê‡ÒÒÚÓflÌËfl ‚ ÙËÁËÍ ........................................................................................................... 24.2 ê‡ÒÒÚÓflÌËfl ‚ ıËÏËË .............................................................................................................. É·‚‡ 25. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓ„‡ÙËË, „ÂÓÙËÁËÍÂ Ë ‡ÒÚÓÌÓÏËË 25.1 ê‡ÒÒÚÓflÌËfl ‚ „ÂÓ„‡ÙËË Ë „ÂÓÙËÁËÍ ................................................................................ 25.2 ê‡ÒÒÚÓflÌËfl ‚ ‡ÒÚÓÌÓÏËË ................................................................................................... É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË 26.1 ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË ................................................................................................... 26.2 ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË .............................................................................
ëÓ‰ÂʇÌËÂ
13
óÄëíú VII. êÄëëíéüçàü Ç êÖÄãúçéå åàêÖ É·‚‡ 27. åÂ˚ ‰ÎËÌ˚ Ë ¯Í‡Î˚ 27.1 åÂ˚ ‰ÎËÌ˚ ......................................................................................................................... 27.2 ò͇Î˚ ÙËÁ˘ÂÒÍËı ‰ÎËÌ .................................................................................................... É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl 28.1 ê‡ÒÒÚÓflÌËfl, Ò‚flÁ‡ÌÌ˚Â Ò ÓÚ˜ÛʉÂÌÌÓÒÚ¸˛ ...................................................................... 28.2 ê‡ÒÒÚÓflÌËfl ÁËÚÂθÌÓ„Ó ‚ÓÒÔËflÚËfl ................................................................................ 28.3 ê‡ÒÒÚÓflÌËfl Ó·ÓÛ‰Ó‚‡ÌËfl ................................................................................................... 28.4 èӘˠ‡ÒÒÚÓflÌËfl .............................................................................................................. ãËÚ‡ÚÛ‡ ................................................................................................................................... è‰ÏÂÚÌ˚È Û͇Á‡ÚÂθ ...............................................................................................................
ó‡ÒÚ¸ I
åÄíÖåÄíàäÄ êÄëëíéüçàâ
É·‚‡ 1
鷢ˠÓÔ‰ÂÎÂÌËfl
1.1. ÅÄáéÇõÖ éèêÖÑÖãÖçàü ê‡ÒÒÚÓflÌË èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl d : ï × ï → ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ (ËÎË ÌÂÔÓıÓÊÂÒÚ¸˛) ̇ ï, ÂÒÎË ‰Îfl ‚ÒÂı x, y ∈ X ‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl: 1) d(x, y) ≥ 0 (ÔÓÎÓÊËÚÂθ̇fl ÓÔ‰ÂÎÂÌÌÓÒÚ¸); 2. d(x, y) = d(y, x) (ÒËÏÏÂÚ˘ÌÓÒÚ¸); 3. d(x, ı) = 0 (ÂÙÎÂÍÒË‚ÌÓÒÚ¸). Ç ÚÓÔÓÎÓ„ËË Ú‡Í‡fl ÙÛÌ͈Ëfl ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ ÒËÏÏÂÚËÍÓÈ. ÇÂÍÚÓ ÓÚ ı Í Û, ‰ÎË̇ ÍÓÚÓÓ„Ó ‡‚ÌflÂÚÒfl d(x, y), ̇Á˚‚‡ÂÚÒfl ÔÂÂÌÂÒÂÌËÂÏ. ê‡ÒÒÚÓflÌËÂ, ‡‚ÌÓ ͂‡‰‡ÚÛ ÏÂÚËÍË, ̇Á˚‚‡ÂÚÒfl Í‚‡‰‡ÌÒÓÏ. ÑÎfl β·Ó„Ó ‡ÒÒÚÓflÌËfl d ÙÛÌ͈Ëfl, ÓÔ‰ÂÎflÂχfl ÔË x ≠ y Í‡Í D (x, y) = = d(x, y) + c, „‰Â Ò = maxx, y, z ∈X(d(x, y) – d(x , z) – d(y, z)), Ë D(x, ı) = 0, fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ. èÓÒÚ‡ÌÒÚ‚Ó ‡ÒÒÚÓflÌËÈ èÓÒÚ‡ÌÒÚ‚ÓÏ ‡ÒÒÚÓflÌËÈ (ï, d) ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ï, Ò̇·ÊÂÌÌÓ ‡ÒÒÚÓflÌËÂÏ d. èÓ‰Ó·ÌÓÒÚ¸ èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl s : ï × ï → ̇Á˚‚‡ÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛ ̇ ï, ÂÒÎË s fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ, ÒËÏÏÂÚ˘ÌÓÈ, Ë ‰Îfl β·˚ı x, y ∈ X ËÏÂÂÚ ÏÂÒÚÓ Ì‡‚ÂÌÒÚ‚Ó s(x, y) ≤ s(x, x), ÍÓÚÓÓ Ô‚‡˘‡ÂÚÒfl ‚ ‡‚ÂÌÒÚ‚Ó ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ı = y. éÒÌÓ‚Ì˚ÏË ÔÂÓ·‡ÁÓ‚‡ÌËflÏË, ‰‡˛˘ËÏË ‡ÒÒÚÓflÌË (ÌÂÔÓıÓÊÂÒÚ¸) d ËÁ ÔÓ‰Ó·ÌÓÒÚË s, Ó„‡Ì˘ÂÌÌÓÈ 1 Ò‚ÂıÛ, fl‚Îfl˛ÚÒfl d = 1 − s, d =
1− s , d = 1 − s , d = 2(1 − s 2 ), d = arccos s, d = − ln s (ÒÏ. „Î. 4). s
èÓÎÛÏÂÚË͇ èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl d : ï × ï → ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ (ËÎË ÔÒ‚‰ÓÏÂÚËÍÓÈ) ̇ ï, ÂÒÎË d fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ, ÒËÏÏÂÚ˘ÌÓÈ, ÂÙÎÂÍÒË‚ÌÓÈ, Ë ‰Îfl β·˚ı x, y, z ∈ X ÒÔ‡‚‰ÎË‚Ó Ì‡‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇ d(x, y) ≤ d(x, z) + d(z, y). ÑÎfl β·Ó„Ó ‡ÒÒÚÓflÌËfl d ‡‚ÂÌÒÚ‚Ó d(x, x) = 0 Ë ÒÚӄӠ̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇ d(x, y) ≤ d(x, z) + d(y, z) „‡‡ÌÚËÛ˛Ú, ˜ÚÓ d fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ.
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
17
åÂÚË͇ èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl d : ï × ï → ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ï, ÂÒÎË ‰Îfl ‚ÒÂı x, y, z ∈ X ‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl: 1. d(x, y) ≥ 0 (ÔÓÎÓÊËÚÂθ̇fl ÓÔ‰ÂÎÂÌÌÓÒÚ¸); 2. d(x, y) = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = y (‡ÍÒËÓχ ÚÓʉÂÒÚ‚ÂÌÌÓÒÚË Ò‡ÏÓÏÛ Ò·Â); 3. d(x, y) = d(y, x) (ÒËÏÏÂÚ˘ÌÓÒÚ¸); 4. d(x, y) ≤ d(x, z) + d(z, y) (̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇). åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó åÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (X , d) ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ï, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ d. åÂÚ˘ÂÒ͇fl ÒıÂχ åÂÚ˘ÂÒÍÓÈ ÒıÂÏÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ˆÂÎÓ˜ËÒÎÂÌÌÓÈ ÏÂÚËÍÓÈ. ê‡Ò¯ËÂÌ̇fl ÏÂÚË͇ ê‡Ò¯ËÂÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÓÌflÚËfl ÏÂÚËÍË: ‰Îfl d ‰ÓÔÛÒÚËÏÓ Á̇˜ÂÌË ∞. èÓ˜ÚË-ÏÂÚË͇ èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. ê‡ÒÒÚÓflÌË d ̇ ï ̇Á˚‚‡ÂÚÒfl ÔÓ˜ÚËÏÂÚËÍÓÈ, ÂÒÎË Ì‡‚ÂÌÒÚ‚Ó 0 d(x, y) ≤ C(d(x, z1 ) + d(z1 , z2 ) +…+ d(zn , y)) ‚˚ÔÓÎÌÂÌÓ, ÔË ÌÂÍÓÚÓÓÈ ÍÓÌÒÚ‡ÌÚ ë > 1, ‰Îfl ‚ÒÂı ‡Á΢Ì˚ı x, y, z1 , …, zn ∈ X. åÂÚË͇ ÛÔÓ˘ÂÌÌÓ„Ó ÔÛÚË èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. åÂÚË͇ d ̇ ï ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ ÛÔÓ˘ÂÌÌÓ„Ó ÔÛÚË, ÂÒÎË ‰Îfl ÌÂÍÓÚÓÓ„Ó ÙËÍÒËÓ‚‡ÌÌÓ„Ó ë > 0 Ë ‰Îfl ͇ʉÓÈ Ô‡˚ ÚÓ˜ÂÍ x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ x = x0, x 1 , ..., xt = y, ‰Îfl ÍÓÚÓÓÈ d(x i–1, xi) ≤ C ÔË i = 1, …, t, Ë d(x, y) ≥ d(x 0 , x1) + d(x 1 , x2) + ... + d(xt–1, xt) – C, t
Ú.Â. ÓÒ··ÎÂÌÌӠ̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇ d(x, y) ≤
∑ d ( x i −1 , x i )
ÒÚ‡ÌÓ‚ËÚÒfl
i =1
‡‚ÂÌÒÚ‚ÓÏ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó Ó„‡Ì˘ÂÌÌÓÈ Ó¯Ë·ÍË. 䂇ÁˇÒÒÚÓflÌË èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl s : ï × ï → ̇Á˚‚‡ÂÚÒfl Í‚‡ÁˇÒÒÚÓflÌËÂÏ Ì‡ ï, ÂÒÎË d fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ Ë ÂÙÎÂÍÒË‚ÌÓÈ. 䂇ÁËÔÓÎÛÏÂÚË͇ èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl d : ï × ï → ̇Á˚‚‡ÂÚÒfl Í‚‡ÁËÔÓÎÛÏÂÚËÍÓÈ Ì‡ ï, ÂÒÎË d fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ Ë ÂÙÎÂÍÒË‚ÌÓÈ, Ë ‰Îfl ‚ÒÂı x, y, z ∈ X ÒÔ‡‚‰ÎË‚Ó ÓËÂÌÚËÓ‚‡ÌÌӠ̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇ d(x, y) ≤ d(x, z) + d(z, y).
18
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
䂇ÁËÏÂÚËÍÓÈ Äθ·ÂÚ‡ ̇Á˚‚‡ÂÚÒfl Í‚‡ÁËÔÓÎÛÏÂÚË͇ d ̇ ï ÒÓ Ò··ÓÈ ÓÔ‰ÂÎÂÌÌÓÒÚ¸˛: ‰Îfl ‚ÒÂı x, y ∈ X ËÁ ‡‚ÂÌÒÚ‚‡ d(x, y) = d(y, x) ÒΉÛÂÚ ‡‚ÂÌÒÚ‚Ó x = y. ë··ÓÈ Í‚‡ÁËÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl Í‚‡ÁËÔÓÎÛÏÂÚË͇ d ̇ ï ÒÓ Ò··ÓÈ ÒËÏÏÂÚËÂÈ: ‰Îfl β·˚ı x, y X ‡‚ÂÌÒÚ‚Ó d(x, y) = 0 ËÏÂÂÚ ÏÂÒÚÓ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d(y, ı) = 0. 䂇ÁËÏÂÚË͇ èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl d : ï × ï → ̇Á˚‚‡ÂÚÒfl Í‚‡ÁËÏÂÚËÍÓÈ Ì‡ ï, ÂÒÎË ‰Îfl ‚ÒÂı x, y ∈ X ËÏÂÂÚ ÏÂÒÚÓ Ì‡‚ÂÌÒÚ‚Ó d(x, y) ≥ 0, ÍÓÚÓÓ ÒÚ‡ÌÓ‚ËÚÒfl ‡‚ÂÌÒÚ‚ÓÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = y, Ë ‰Îfl ‚ÒÂı x, y, z ∈ X ÒÔ‡‚‰ÎË‚Ó ÓËÂÌÚËÓ‚‡ÌÌӠ̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇ d(y, x) ≤ d(x, z) + d(z, y). 䂇ÁËÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (X,d) ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ï, Ò̇·ÊÂÌÌÓ ͂‡ÁËÏÂÚËÍÓÈ d. ÑÎfl β·ÓÈ Í‚‡ÁËÏÂÚËÍË d ÙÛÌ͈ËË max{d(x, y), d(y, x)}, min{d(x, y), d(y, x)} d ( x, y) + d ( y, x ) Ë fl‚Îfl˛ÚÒfl (˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË) ÏÂÚË͇ÏË. 2 ç‡ıËωӂÓÈ Í‚‡ÁËÏÂÚËÍÓÈ d ̇Á˚‚‡ÂÚÒfl Í‚‡ÁˇÒÒÚÓflÌË ̇ ï, ÍÓÚÓÓ ۉӂÎÂÚ‚ÓflÂÚ ÒÎÂ‰Û˛˘ÂÈ ÛÒËÎÂÌÌÓÈ ‚ÂÒËË ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó Ì‡‚ÂÌÒÚ‚‡ ÚÂÛ„ÓθÌË͇: ‰Îfl ‚ÒÂı x, y, z ∈ X d(x, y) ≤ max{d(x, z), d(z, y)}. 2k-„Ó̇θÌÓ ‡ÒÒÚÓflÌË 2k-„Ó̇θÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË d ̇ ï, Û‰Ó‚ÎÂÚ‚Ófl˛˘Â 2k-„Ó̇θÌÓÏÛ Ì‡‚ÂÌÒÚ‚Û
∑
bi b j d ( xi , x j ) ≤ 0
1≤ i < j ≤ n n
‰Îfl ‚ÒÂı b ∈ n Ò
n
∑ bi = 0
Ë
i =1
∑
bi = 2 k , Ë ‰Îfl ‚ÒÂı ‡Á΢Ì˚ı ˝ÎÂÏÂÌÚÓ‚
i =1
x1, ..., xn ∈ X. ê‡ÒÒÚÓflÌË ÓÚˈ‡ÚÂθÌÓ„Ó ÚËÔ‡ ê‡ÒÒÚÓflÌËÂÏ ÓÚˈ‡ÚÂθÌÓ„Ó ÚËÔ‡ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË d ̇ ï , ÍÓÚÓÓ fl‚ÎflÂÚÒfl 2k-„Ó̇θÌ˚Ï ‰Îfl β·Ó„Ó k ≥ 1, Ú.Â. Û‰Ó‚ÎÂÚ‚ÓflÂÚ Ì‡‚ÂÌÒÚ‚Û ÓÚˈ‡ÚÂθÌÓ„Ó ÚËÔ‡
∑
bi b j d ( xi , x j ) ≤ 0
1≤ i < j ≤ n n
‰Îfl ‚ÒÂı b ∈ n Ò
∑ bi = 0 Ë ‰Îfl ‚ÒÂı ‡Á΢Ì˚ı ˝ÎÂÏÂÌÚÓ‚ x1, ..., xn ∈ X. i =1
ê‡ÒÒÚÓflÌË ÏÓÊÂÚ ·˚Ú¸ ‡ÒÒÚÓflÌËÂÏ ÓÚˈ‡ÚÂθÌÓ„Ó ÚËÔ‡, Ì fl‚ÎflflÒ¸ ÔË ˝ÚÓÏ ÔÓÎÛÏÂÚËÍÓÈ. ä˝ÎË ‰Ó͇Á‡Î, ˜ÚÓ ÏÂÚË͇ d fl‚ÎflÂÚÒfl L2-ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d2 – ‡ÒÒÚÓflÌË ÓÚˈ‡ÚÂθÌÓ„Ó ÚËÔ‡. (2k + 1)-„Ó̇θÌÓ ‡ÒÒÚÓflÌËÂ
19
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
(2k + 1)-„Ó̇θÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË d ̇ ï, ÍÓÚÓÓ ۉӂÎÂÚ‚ÓflÂÚ (2k + 1)-„Ó̇θÌÓÏÛ Ì‡‚ÂÌÒÚ‚Û
∑
bi b j d ( xi , x j ) ≤ 0
1≤ i < j ≤ n n
∑
‰Îfl ‚ÒÂı b ∈ n Ò
i =1
n
bi = 1 Ë
∑
bi = 2 k + 1, Ë ‰Îfl ‚ÒÂı ‡Á΢Ì˚ı ˝ÎÂÏÂÌÚÓ‚
i =1
x1, ..., xn ∈ X. (2k+1)-„Ó̇θÌӠ̇‚ÂÌÒÚ‚Ó Ò k =1 fl‚ÎflÂÚÒfl Ó·˚˜Ì˚Ï Ì‡‚ÂÌÒÚ‚ÓÏ ÚÂÛ„ÓθÌË͇. (2k+1)-„Ó̇θÌӠ̇‚ÂÌÒÚ‚Ó ‚ΘÂÚ 2k-„Ó̇θÌӠ̇‚ÂÌÒÚ‚Ó. ÉËÔÂÏÂÚË͇ ÉËÔÂÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË d ̇ ï, ÍÓÚÓÓ fl‚ÎflÂÚÒfl (2k+1)-„Ó̇θÌ˚Ï ‰Îfl β·Ó„Ó k ≥ 1, Ú.Â. Û‰Ó‚ÎÂÚ‚ÓflÂÚ „ËÔÂÏÂÚ˘ÂÒÍÓÏÛ Ì‡‚ÂÌÒÚ‚Û
∑
bi b j d ( xi , x j ) ≤ 0
1≤ i < j ≤ n n
‰Îfl ‚ÒÂı b ∈ n Ò
∑ bi = 1, Ë ‰Îfl ‚ÒÂı ‡Á΢Ì˚ı ˝ÎÂÏÂÌÚÓ‚ x1, ..., xn ∈ X. ã˛·‡fl i =1
„ËÔÂÏÂÚË͇ fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ Ë ‡ÒÒÚÓflÌËÂÏ ÓÚˈ‡ÚÂθÌÓ„Ó ÚËÔ‡. ã˛·‡fl L 1 -ÏÂÚË͇ fl‚ÎflÂÚÒfl „ËÔÂÏÂÚËÍÓÈ. ê-ÏÂÚË͇ ê-ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ d ̇ ï ÒÓ Á̇˜ÂÌËflÏË ËÁ ÏÌÓÊÂÒÚ‚‡ [0, 1], ÍÓÚÓ‡fl Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÍÓÂÎflˆËÓÌÌÓÏÛ Ì‡‚ÂÌÒÚ‚Û ÚÂÛ„ÓθÌË͇ d(x, y) ≤ d(x, z) + d(y, z) – d(x, z)d(z, y). ùÍ‚Ë‚‡ÎÂÌÚÌӠ̇‚ÂÌÒÚ‚Ó 1–d(x, y) ≥ (1–d(x , z))(1–d(z, y )) ÓÁ̇˜‡ÂÚ, ˜ÚÓ ‚ÂÓflÚÌÓÒÚ¸, Ò͇ÊÂÏ, ‰ÓÒÚ˘¸ ı ËÁ Û ˜ÂÂÁ z ÎË·Ó ‡‚̇ ‚Â΢ËÌ (1–d(x, z))(1–d(z, y)) (ÌÂÁ‡‚ËÒËÏÓ ÓÚ ‚ÓÁÏÓÊÌÓÒÚË ‰ÓÒÚ˘¸ z ËÁ ı Ë Û ËÁ z ), ÎË·Ó Ô‚˚¯‡ÂÚ Â (ÔÓÎÓÊËÚÂθ̇fl ÍÓÂÎflˆËfl). åÂÚË͇ ·Û‰ÂÚ ê-ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ÔÂÓ·‡ÁÓ‚‡ÌËfl òÂ̷„‡ (ÒÏ. „Î. 4). èÚÓÎÂÏ‚‡ ÏÂÚË͇ èÚÓÎÂÏ‚ÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ d ̇ ï , Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ̇‚ÂÌÒÚ‚Û èÚÓÎÂÏÂfl (‰Ó͇Á‡ÌÌÓÏÛ èÚÓÎÂÏÂÂÏ ‰Îfl ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡): ‰Îfl ‚ÒÂı x, y, u, z ∈ X d(x, y)d(u, z) ≤ d(x, u)d(y, z) + d(x, z)d(y, u). èÚÓÎÂÏ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÌÓÏËÓ‚‡ÌÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (V,||.||), ‚ ÍÓÚÓÓÏ Â„Ó ÏÂÚË͇ ÌÓÏ˚ ||x–y|| fl‚ÎflÂÚÒfl ÔÚÓÎÂÏ‚ÓÈ. çÓÏËÓ‚‡ÌÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ ÔÚÓÎÂÏ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ; Ú‡ÍËÏ Ó·‡ÁÓÏ, ÏÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó (ÒÏ. „Î. 6) fl‚ÎflÂÚÒfl ‚ÍÎˉӂÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ fl‚ÎflÂÚÒfl ÔÚÓÎÂÏ‚ÓÈ.
20
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
d ( x, y) , fl‚ÎflÂÚÒfl d ( x, z )d ( y, z ) ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl β·Ó„Ó z ∈ X ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d fl‚ÎflÂÚÒfl ÔÚÓÎÂÏ‚ÓÈ ÏÂÚËÍÓÈ ([FoSC06]). ÑÎfl β·ÓÈ ÏÂÚËÍË d ‡ÒÒÚÓflÌË d fl‚ÎflÂÚÒfl ÔÚÓÎÂÏ‚ÓÈ ÏÂÚËÍÓÈ ([FoSC06]). àÌ‚ÓβÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X \z, d z), „‰Â d ( x, y) =
ë··‡fl ÛθڇÏÂÚË͇ ë··ÓÈ ÛθڇÏÂÚËÍÓÈ (ËÎË ë-ÔÒ‚‰Ó‡ÒÒÚÓflÌËÂÏ) ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË d ̇ ï, ‰Îfl ÍÓÚÓÓ„Ó ÔË ÌÂÍÓÚÓÓÈ ÍÓÌÒÚ‡ÌÚ ë ≥ 1, ̇‚ÂÌÒÚ‚Ó 0 < d(x, y) ≤ C max{d(x, z), d(z, y)} ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı x, y, z ∈ X, ı ≠ Û. ÑÎfl Ú‡ÍÓ„Ó ‡ÒÒÚÓflÌËfl d ‡ÒÒÚÓflÌË d(x, y) = = inf d ( z i , z i +1 ), „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏ
∑ i
x = z0 , ..., zn+1), fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ. íÂÏËÌ ÔÒ‚‰Ó‡ÒÒÚÓflÌË ËÒÔÓθÁÛÂÚÒfl Ú‡ÍÊ ‚ ÌÂÍÓÚÓ˚ı ÔËÎÓÊÂÌËflı ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ÔÒ‚‰ÓÏÂÚËÍË, Í‚‡ÁˇÒÒÚÓflÌËfl, ÔÓ˜ÚË-ÏÂÚËÍË, ‡ÒÒÚÓflÌËfl, ÍÓÚÓÓ ÏÓÊÂÚ ·˚Ú¸ ·ÂÒÍÓ̘Ì˚Ï, ‡ÒÒÚÓflÌËfl Ò Ó¯Ë·ÍÓÈ Ë Ú.Ô. ìθڇÏÂÚË͇ ìθڇÏÂÚËÍÓÈ (ËÎË Ì‡ıËωӂÓÈ ÏÂÚËÍÓÈ) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ d ̇ ï, ÍÓÚÓ‡fl Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒËÎÂÌÌÓÈ ‚ÂÒËË Ì‡‚ÂÌÒÚ‚‡ ÚÂÛ„ÓθÌË͇: d(x, y) ≤ max{d(x, z), d(z, y)} ‰Îfl ‚ÒÂı x, y, z ∈ X. í‡ÍËÏ Ó·‡ÁÓÏ, ÔÓ Í‡ÈÌÂÈ Ï ‰‚‡ Á̇˜ÂÌËfl ËÁ d(x, y), d(z, y) Ë d(x, z) ÒÓ‚Ô‡‰‡˛Ú. åÂÚË͇ d fl‚ÎflÂÚÒfl ÛθڇÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡  ÒÚÂÔÂÌÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË (ÒÏ. „Î. 4) d α fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‰Îfl β·Ó„Ó ÔÓÎÓÊËÚÂθÌÓ„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ˜ËÒ· α. ã˛·‡fl ÛθڇÏÂÚË͇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ Ì‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ. åÂÚË͇ d fl‚ÎflÂÚÒfl ÛθڇÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ÔÂÓ·‡ÁÓ‚‡ÌËfl î‡ËÒ‡ (ÒÏ. „Î. 4) ÏÂÚËÍË Ì‡‚ÂÌÒÚ‚‡ ˜ÂÚ˚Âı ÚÓ˜ÂÍ. åÂÚË͇ ̇‚ÂÌÒÚ‚‡ ˜ÂÚ˚Âı ÚÓ˜ÂÍ åÂÚË͇ d ̇ ï Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ ̇‚ÂÌÒÚ‚‡ ˜ÂÚ˚Âı ÚÓ˜ÂÍ (ËÎË Ì‡Á˚‚‡ÂÚÒfl ‡‰‰ËÚË‚ÌÓÈ ÏÂÚËÍÓÈ), ÂÒÎË ËÏÂÂÚ ÏÂÒÚÓ ÛÒËÎÂÌ̇fl ‚ÂÒËfl ̇‚ÂÌÒÚ‚‡ ÚÂÛ„ÓθÌË͇: ‰Îfl ‚ÒÂı x, y, z, u ∈ X d(x, y) + d(z, u) ≤ max{d(x, z) + d(y, u), d(x, u) + d(y, z)}. ÑÛ„ËÏË ÒÎÓ‚‡ÏË, ËÁ ÚÂı ÒÛÏÏ d(x, y) + d(z, u), d(x, z) + d(y, u) Ë d(x, u) + d(y, z) ‰‚ ̇˷Óθ¯Ë ÒÓ‚Ô‡‰‡˛Ú. åÂÚË͇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ Ì‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ fl‚ÎflÂÚÒfl ‰Â‚ӂˉÌÓÈ ÏÂÚËÍÓÈ. ã˛·‡fl ÏÂÚË͇, Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ̇‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ, fl‚ÎflÂÚÒfl ÔÚÓÎÂÏ‚ÓÈ ÏÂÚËÍÓÈ Ë l1 -ÏÂÚËÍÓÈ. äÛÒÚ‡ÌËÍÓ‚‡fl ÏÂÚË͇ – ÏÂÚË͇, ‰Îfl ÍÓÚÓÓÈ ‚Ҡ̇‚ÂÌÒÚ‚‡ ˜ÂÚ˚Âı ÚÓ˜ÂÍ fl‚Îfl˛ÚÒfl ‡‚ÂÌÒÚ‚‡ÏË, Ú.Â. ‡‚ÂÌÒÚ‚Ó d(x, y) + d(u, z) = d(x, u) + d(y, z) ÒÔ‡‚‰ÎË‚Ó ÔË Î˛·˚ı Á̇˜ÂÌËflı u, x, y, z ∈ X.
21
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
åÂÚË͇ ÓÒ··ÎÂÌÌÓ„Ó Ì‡‚ÂÌÒÚ‚‡ ˜ÂÚ˚Âı ÚÓ˜ÂÍ åÂÚË͇ d ̇ ï Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ ÓÒ··ÎÂÌÌÓ„Ó Ì‡‚ÂÌÒÚ‚‡ ˜ÂÚ˚Âı ÚÓ˜ÂÍ, ÂÒÎË, ‰Îfl ‚ÒÂı x, y, z ∈ X ËÁ ÚÂı ÒÛÏÏ d(x, y) + d(z, u), d(x, z) + d(y, u), d(x, u) + d(y, z) ÔÓ Í‡ÈÌÂÈ Ï ‰‚ (Ì ӷflÁ‡ÚÂθÌÓ Ì‡Ë·Óθ¯ËÂ) ÒÓ‚Ô‡‰‡˛Ú. åÂÚË͇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÓÒ··ÎÂÌÌÓÏÛ Ì‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ fl‚ÎflÂÚÒfl ÓÒ··ÎÂÌÌÓÈ ‰Â‚ӂˉÌÓÈ ÏÂÚËÍÓÈ. ␦-„ËÔ·Ó΢ÂÒ͇fl ÏÂÚË͇ ÖÒÎË δ ≥ 0, ÚÓ ÏÂÚË͇ d ̇ ÏÌÓÊÂÒÚ‚Â ï ̇Á˚‚‡ÂÚÒfl ␦-„ËÔ·Ó΢ÂÒÍÓÈ, ÂÒÎË Ó̇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ ␦-„ËÔ·Ó΢ÂÒÍÓÏÛ Ì‡‚ÂÌÒÚ‚Û ÉÓÏÓ‚‡ (¢ ӉÌÓ ÓÒ··ÎÂÌˠ̇‚ÂÌÒÚ‚‡ ˜ÂÚ˚Âı ÚÓ˜ÂÍ): ‰Îfl ‚ÒÂı x, y, z, u ∈ X d(x, y) + d(z, u) ≤ 2δ + max{d(x, z) + d(y, u), d(x, u) + d(y, z)}. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) fl‚ÎflÂÚÒfl δ-„ËÔ·Ó΢ÂÒÍËÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡
{
}
( x. y) x 0 ≥ min ( x.z ) x 0 , ( y.z ) x 0 − δ 1 ( d ( x 0 , x ) + d ( x 0 , y) − d ( x, y)) – 2 ÔÓËÁ‚‰ÂÌË ÉÓÏÓ‚‡ ÚÓ˜ÂÍ ı Ë Û ËÁ ï ÓÚÌÓÒËÚÂθÌÓ ·‡ÁÓ‚ÓÈ ÚÓ˜ÍË x 0 ∈ X. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) fl‚ÎflÂÚÒfl 0-„ËÔ·Ó΢ÂÒÍËÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d Û‰Ó‚ÎÂÚ‚ÓflÂÚ Ì‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ. ä‡Ê‰Ó ӄ‡Ì˘ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, Ëϲ˘Â ‰Ë‡ÏÂÚ D, fl‚ÎflÂÚÒfl D-„ËÔ·Ó΢ÂÒÍËÏ. nÏÂÌÓ „ËÔ·Ó΢ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ln 3-„ËÔ·Ó΢ÂÒÍËÏ. ‰Îfl ‚ÒÂı x, y, z ∈ X Ë ‰Îfl β·Ó„Ó x0 ∈ X, „‰Â ( x, y) x 0 =
èÓ‰Ó·ÌÓÒÚ¸ ÔÓËÁ‚‰ÂÌËfl ÉÓÏÓ‚‡ èÛÒÚ¸ (ï, d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÙËÍÒËÓ‚‡ÌÌÓÈ ÚÓ˜ÍÓÈ x0 ∈ X. èÓ‰Ó·ÌÓÒÚ¸˛ ÔÓËÁ‚‰ÂÌËfl ÉÓÏÓ‚‡ (ËÎË ÔÓËÁ‚‰ÂÌËÂÏ ÉÓÏÓ‚‡, ÍÓ‚‡Ë‡ÌÚÌÓÒÚ¸˛) (.) x 0 ̇Á˚‚‡ÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸ ̇ ï, ÓÔ‰ÂÎflÂχfl ÔÓ ÙÓÏÛΠ( x. y ) x 0 =
1 ( d ( x 0 , x ) + d ( x 0 , y) − d ( x, y)). 2
ÖÒÎË (ï, d) fl‚ÎflÂÚÒfl ‰Â‚ÓÏ, ÚÓ ( x. y) x 0 = d ( x 0 [ x, y]). ÖÒÎË (X,d) – ÔÓÎÛÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÏÂ˚, Ú.Â. d(x, y) = µ(x∆y) ‰Îfl ·ÓÂ΂ÓÈ ÏÂ˚ µ ̇ ï , ÚÓ (x.y)ø = µ(x ∩ y). ÖÒÎË d fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÓÚˈ‡ÚÂθÌÓ„Ó ÚËÔ‡, Ú.Â. d ( x, y) = d E2 ( x, y) ‰Îfl ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ï ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n, ÚÓ (ı.Û)0 ·Û‰ÂÚ Ó·˚˜Ì˚Ï Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ Ì‡ n (ÒÏ. åÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl î‡ËÒ‡, „Î. 4). 1.2. éëçéÇçõÖ èéçüíàü, ëÇüáÄççõÖ ë êÄëëíéüçàÖå, à óàëãéÇõÖ àçÇÄêàÄçíõ åÂÚ˘ÂÒÍËÈ ¯‡ èÛÒÚ¸ (X,d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. åÂÚ˘ÂÒÍËÏ ¯‡ÓÏ (ËÎË Á‡ÏÍÌÛÚ˚Ï ÏÂÚ˘ÂÒÍËÏ ¯‡ÓÏ) Ò ˆÂÌÚÓÏ x0 ∈ X Ë ‡‰ËÛÒÓÏ r > 0 ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó B ( x 0 , r ) = {x ∈ X : d ( x 0 , x ) ≤ r}. éÚÍ˚Ú˚Ï ÏÂÚ˘ÂÒÍËÏ
22
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
¯‡ÓÏ Ò ˆÂÌÚÓÏ x0 ∈ X Ë ‡‰ËÛÒÓÏ r > 0 ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó B(x0, r) = = {x0 ∈ X : d(x 0 , x) < r}. åÂÚ˘ÂÒÍÓÈ ÒÙÂÓÈ Ò ˆÂÌÚÓÏ x0 ∈ X Ë ‡‰ËÛÒÓÏ r > 0 ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó S(x 0 , r) = {x0 ∈ X : d(x 0 , x) = r}. ÑÎfl ÏÂÚËÍË ÌÓÏ˚ ̇ n-ÏÂÌÓÏ ÌÓÏËÓ‚‡ÌÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (V,|| ⋅ ||) ÏÂÚ˘ÂÒÍËÈ ¯‡ B n = {x ∈ X : x ≤ 1} ̇Á˚‚‡ÂÚÒfl ‰ËÌ˘Ì˚Ï ¯‡ÓÏ, ‡ ÏÌÓÊÂÒÚ‚Ó Sn–1 = {x ∈ V : || x || = 1} – ‰ËÌ˘ÌÓÈ ÒÙÂÓÈ (ËÎË Â‰ËÌ˘ÌÓÈ „ËÔÂÒÙÂÓÈ). Ç ‰‚ÛÏÂÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ÏÂÚ˘ÂÒÍËÈ ¯‡ (ÓÚÍ˚Ú˚È ËÎË Á‡ÏÍÌÛÚ˚È) ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ‰ËÒÍÓÏ (ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÓÚÍ˚Ú˚Ï ËÎË Á‡ÏÍÌÛÚ˚Ï). åÂÚ˘ÂÒ͇fl ÚÓÔÓÎÓ„Ëfl åÂÚ˘ÂÒ͇fl ÚÓÔÓÎÓ„Ëfl – ÚÓÔÓÎÓ„Ëfl ̇ ï, ÔÓÓʉ‡Âχfl ÏÂÚËÍÓÈ d ̇ ï. ÖÒÎË (X,d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÓÔ‰ÂÎËÏ ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó ‚ ï Í‡Í ÔÓËÁ‚ÓθÌÓ ӷ˙‰ËÌÂÌË (ÍÓ̘ÌÓ„Ó ËÎË ·ÂÒÍÓ̘ÌÓ„Ó ˜ËÒ·) ÓÚÍ˚Ú˚ı ÏÂÚ˘ÂÒÍËı ¯‡Ó‚ B(x, r) = {y ∈ X : d(x, y) < r}, x ∈ X, r ∈ , r > 0. á‡ÏÍÌÛÚÓ ÏÌÓÊÂÒÚ‚Ó ÓÔ‰ÂÎflÂÚÒfl ÚÂÔ¸ Í‡Í ‰ÓÔÓÎÌÂÌË ÓÚÍ˚ÚÓ„Ó ÏÌÓÊÂÒÚ‚‡. åÂÚ˘ÂÒÍÓÈ ÚÓÔÓÎÓ„ËÂÈ Ì‡ (X,d) ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÓÚÍ˚Ú˚ı ‚ ï ÏÌÓÊÂÒÚ‚. íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÍÓÚÓÓ ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌÓ Ú‡ÍËÏ Ó·‡ÁÓÏ ËÁ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ̇Á˚‚‡ÂÚÒfl ÏÂÚËÁÛÂÏ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. åÂÚËÁ‡ˆËÓÌÌ˚ ÚÂÓÂÏ˚ – ÚÂÓÂÏ˚, ‰‡˛˘Ë ‰ÓÒÚ‡ÚÓ˜Ì˚ ÛÒÎÓ‚Ëfl ÏÂÚËÁÛÂÏÓÒÚË ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. ë ‰Û„ÓÈ ÒÚÓÓÌ˚, ÚÂÏËÌ ÏÂÚË͇ Û͇Á˚‚‡ÂÚ ÒÍÓ ̇ Ò‚flÁ¸ Ò ÏÂÓÈ, ÌÂÊÂÎË Ò ‡ÒÒÚÓflÌËÂÏ, ÔËÏÂÌËÚÂθÌÓ Í fl‰Û ‚‡ÊÌÂȯËı χÚÂχÚ˘ÂÒÍËı ÓÔ‰ÂÎÂÌËÈ, ̇ÔËÏÂ, ‚ ÏÂÚ˘ÂÒÍÓÈ ÚÂÓËË ˜ËÒÂÎ, ÏÂÚ˘ÂÒÍÓÈ ÚÂÓËË ÙÛÌ͈ËÈ, ÏÂÚ˘ÂÒÍÓÈ Ú‡ÌÁËÚË‚ÌÓÒÚË. á‡ÏÍÌÛÚ˚È ÏÂÚ˘ÂÒÍËÈ ËÌÚ‚‡Î èÛÒÚ¸ x, Û ∈ X – ‰‚ ‡Á΢Ì˚ ÚÓ˜ÍË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d). á‡ÏÍÌÛÚ˚Ï ÏÂÚ˘ÂÒÍËÏ ËÌÚ‚‡ÎÓÏ ÏÂÊ‰Û ı Ë Û Ì‡Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó I(x, y) = {z ∈ X : d(x, y) = d(x, z) + d(z, y)}. éÒÌÓ‚ÌÓÈ „‡Ù ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ éÒÌÓ‚ÌÓÈ „‡Ù (ËÎË „‡Ù ÒÓÒ‰ÒÚ‚‡) ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) – „‡Ù Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ ï, ‚ ÍÓÚÓÓÏ ıÛ fl‚ÎflÂÚÒfl ·ÓÏ, ÂÒÎË I(x, y) = {x, y}, Ú.Â. Ì ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÂÚ¸ÂÈ ÚÓ˜ÍË z ∈ X, ‰Îfl ÍÓÚÓÓÈ ‚˚ÔÓÎÌflÎÓÒ¸ ·˚ ‡‚ÂÌÒÚ‚Ó d(x, y) = d(x, z) + d(z, y). åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÏÓÌÓÚÓÌÌÓ ÓÚÌÓÒËÚÂθÌÓ ‡ÒÒÚÓflÌËfl åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÏÓÌÓÚÓÌÌ˚Ï ÓÚÌÓÒËÚÂθÌÓ ‡ÒÒÚÓflÌËfl, ÂÒÎË ‰Îfl β·Ó„Ó ËÌÚ‚‡Î‡ Ë ÒÛ˘ÂÒÚ‚ÛÂÚ I(x, x') Ë y ∈ X\I(x, x') ÒÛ˘ÂÒÚ‚ÛÂÚ x" ∈ X(x, x') Ú‡ÍÓ ˜ÚÓ d(y, x") > d(x, x'). åÂÚ˘ÂÒÍËÈ ÚÂÛ„ÓθÌËÍ íË ‡Á΢Ì˚ ÚÓ˜ÍË x, y, z ∈ X ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) Ó·‡ÁÛ˛Ú ÏÂÚ˘ÂÒÍËÈ ÚÂÛ„ÓθÌËÍ, ÂÒÎË Á‡ÏÍÌÛÚ˚ ÏÂÚ˘ÂÒÍË ËÌÚ‚‡Î˚ I (x, y), I(z, x) Ë I(z, x) ÔÂÂÒÂ͇˛ÚÒfl ÚÓθÍÓ ‚ Ó·˘Ëı ÍÓ̈‚˚ı ÚӘ͇ı.
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
23
åÓ‰ÛÎflÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÏÓ‰ÛÎflÌ˚Ï, ÂÒÎË ‰Îfl β·˚ı ÚÂı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y, z ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ u ∈ I(x, y) ∩ I(y, z) ∩ I(z, x). ç ÒΉÛÂÚ Òϯ˂‡Ú¸ ˝ÚÓ Ò ÏÓ‰ÛÎflÌ˚Ï ‡ÒÒÚÓflÌËÂÏ (ÒÏ. „Î. 10) Ë ÏÂÚËÍÓÈ ÏÓ‰ÛÎ˛Ò‡ (ÒÏ. „Î. 6). åÂÚ˘ÂÒÍËÈ ˜ÂÚ˚ÂıÛ„ÓθÌËÍ óÂÚ˚ ‡Á΢Ì˚ ÚÓ˜ÍË x, y, z, u ∈ X ÔÓËÁ‚ÓθÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) Ó·‡ÁÛ˛Ú ÏÂÚ˘ÂÒÍËÈ ˜ÂÚ˚ÂıÛ„ÓθÌËÍ, ÂÒÎË x, z ∈ I(y, u) Ë y , u ∈ I(x, z). ÑÎfl Ú‡ÍÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ˜ÂÚ˚ÂıÛ„ÓθÌË͇ ·Û‰ÛÚ ËÏÂÚ¸ ÏÂÒÚÓ ‡‚ÂÌÒÚ‚‡ d(x, y) = d(z, u) Ë d(x, u) = d(y, z). åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl Ò··Ó ÒÙ¢ÂÒÍËÏ, ÂÒÎË ‰Îfl β·˚ı ÚÂı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y, z ∈ X Ò y ∈ I(x, z) ÒÛ˘ÂÒÚ‚ÛÂÚ u ∈ X, Ú‡ÍÓ ˜ÚÓ x, y, z, u Ó·‡ÁÛ˛Ú ÏÂÚ˘ÂÒÍËÈ ˜ÂÚ˚ÂıÛ„ÓθÌËÍ. ë‚flÁÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl Ò‚flÁÌ˚Ï, ÂÒÎË Â„Ó ÌÂθÁfl ‡Á·ËÚ¸ ̇ ‰‚‡ ÌÂÔÛÒÚ˚ı ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚‡ (ÒÏ. ë‚flÁÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó, „Î. 2). ÅÓΠÒËθÌ˚Ï Ò‚ÓÈÒÚ‚ÓÏ fl‚ÎflÂÚÒfl ÔÛÚ¸ – Ò‚flÁÌÓÒÚ¸, ÔË ÍÓÚÓÓÈ Î˛·˚ ‰‚ ÚÓ˜ÍË ÏÓ„ÛÚ ·˚Ú¸ ÒÓ‰ËÌÂÌ˚ ÔÛÚÂÏ. åÂÚ˘ÂÒ͇fl ÍË‚‡fl åÂÚ˘ÂÒ͇fl ÍË‚‡fl (ËÎË ÔÓÒÚÓ ÍË‚‡fl) γ ‚ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (X,d) Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÌÂÔÂ˚‚ÌÓ ÓÚÓ·‡ÊÂÌË γ : I → X ËÌÚ‚‡Î‡ I ËÁ ‚ ï . äË‚‡fl ̇Á˚‚‡ÂÚÒfl ‰Û„ÓÈ (ËÎË ÔÛÚÂÏ, ÔÓÒÚÓÈ ÍË‚ÓÈ), ÂÒÎË Ó̇ fl‚ÎflÂÚÒfl ËÌ˙ÂÍÚË‚ÌÓÈ. äË‚‡fl γ : [a, b] → X ̇Á˚‚‡ÂÚÒfl ÊÓ‰‡ÌÓ‚ÓÈ ÍË‚ÓÈ (ËÎË ÔÓÒÚÓÈ Á‡ÏÍÌÛÚÓÈ ÍË‚ÓÈ), ÂÒÎË Ó̇ Ì ÔÂÂÒÂ͇ÂÚ Ò‡ÏÛ Ò·fl Ë γ(a) = γ(b). ÑÎË̇ l(γ) ÍË‚ÓÈ γ : [a, b] → X ÓÔ‰ÂÎflÂÚÒfl ÙÓÏÛÎÓÈ l( γ ) = sup d ( γ (ti ), γ (ti −1 )) : n ∈ , a = t0 < ... < tn = b . 1≤ i ≤ n
∑
ëÔflÏÎflÂχfl ÍË‚‡fl – ˝ÚÓ ÍË‚‡fl ÍÓ̘ÌÓÈ ‰ÎËÌ˚. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d), ‚ ÍÓÚÓÓÏ Í‡Ê‰˚ ‰‚ ÚÓ˜ÍË ÏÓ„ÛÚ ·˚Ú¸ ÒÓ‰ËÌÂÌ˚ ÒÔflÏÎflÂÏÓÈ ÍË‚ÓÈ, ̇Á˚‚‡ÂÚÒfl ë-Í‚‡ÁË‚˚ÔÛÍÎ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÔË Ì‡Î˘ËË ÌÂÍÓÚÓÓÈ ÍÓÌÒÚ‡ÌÚ˚ C ≥ 1, Ú‡ÍÓÈ ˜ÚÓ Í‡Ê‰‡fl Ô‡‡ x, y ∈ X ÏÓÊÂÚ ·˚Ú¸ ÒÓ‰ËÌÂ̇ ÒÔflÏÎflÂÏÓÈ ÍË‚ÓÈ Ï‡ÍÒËχθÌÓÈ ‰ÎËÌ˚ ëd(x, y). ÖÒÎË ë = 1, ÚÓ ˝Ú‡ ‰ÎË̇ ‡‚̇ d(x, y), Ú.Â. ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) fl‚ÎflÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ (ËÎË ÒÚÓ„Ó ‚ÌÛÚÂÌÌËÏ) ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÉÂÓ‰ÂÁ˘ÂÒ͇fl ÑÎfl ÔÓËÁ‚ÓθÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) „ÂÓ‰ÂÁ˘ÂÒÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓ Í‡Ú˜‡È¯‡fl ÏÂÚ˘ÂÒ͇fl ÍË‚‡fl, Ú.Â. ÎÓ͇θÌÓ ËÁÓÏÂÚ˘ÂÒÍÓ ‚ÎÓÊÂÌË ‚ ï. ÉÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ (ËÎË Í‡Ú˜‡È¯ËÏ ÔÛÚÂÏ) [x, y] ÓÚ ı ‰Ó Û fl‚ÎflÂÚÒfl ËÁÓÏÂÚ˘ÂÒÍÓ ‚ÎÓÊÂÌË γ : [a, b] → X Ò γ(a) = x Ë γ(b) = y. åÂÚ˘ÂÒ͇fl Ôflχfl – „ÂÓ‰ÂÁ˘ÂÒ͇fl, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ÏËÌËχθÌÓÈ ÏÂÊ‰Û ‰‚ÛÏfl β·˚ÏË Â ÚӘ͇ÏË; Ó̇ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ËÁÓÏÂÚ˘ÂÒÍÓ ‚ÎÓÊÂÌË ‚ÒÂ„Ó ‚ ï . åÂÚ˘ÂÒÍËÈ ÎÛ˜ Ë ÏÂÚ˘ÂÒÍËÈ ·Óθ¯ÓÈ ÍÛ„ Ô‰ÒÚ‡‚Îfl˛Ú ÒÓ·ÓÈ ËÁÓÏÂÚ˘ÂÒÍË ‚ÎÓÊÂÌËfl ‚ ï ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÔÓÎÛÔflÏÓÈ ≥0 Ë ÓÍÛÊÌÓÒÚË S(0, r).
24
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÉÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ‰‚ β·˚ ÚÓ˜ÍË ÒÓ‰ËÌÂÌ˚ „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ. éÌÓ Ì‡Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍË ÔÓÎÌ˚Ï, ÂÒÎË Í‡Ê‰˚È Ú‡ÍÓÈ ÓÚÂÁÓÍ fl‚ÎflÂÚÒfl ÔÓ‰‰Û„ÓÈ ÏÂÚ˘ÂÒÍÓÈ ÔflÏÓÈ. ÉÂÓ‰ÂÁ˘ÂÒ͇fl ‚˚ÔÛÍÎÓÒÚ¸ ÑÎfl ÔÓËÁ‚ÓθÌÓ„Ó „ÂÓ‰ÂÁ˘ÂÒÍÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) Ë ÔÓ‰ÏÌÓÊÂÒÚ‚‡ å ⊂ X ÏÌÓÊÂÒÚ‚Ó å ̇Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍË ‚˚ÔÛÍÎ˚Ï (ËÎË ‚˚ÔÛÍÎ˚Ï), ÂÒÎË ‰Îfl β·˚ı ‰‚Ûı ÚÓ˜ÂÍ ËÁ å ÒÛ˘ÂÒÚ‚ÛÂÚ ÒÓ‰ËÌfl˛˘ËÈ Ëı „ÂÓ‰ÂÁ˘ÂÒÍËÈ ÓÚÂÁÓÍ, ÍÓÚÓ˚È ÔÓÎÌÓÒÚ¸˛ ÔË̇‰ÎÂÊËÚ å; ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓ ‚˚ÔÛÍÎ˚Ï, ÂÒÎË Ú‡ÍÓÈ ÓÚÂÁÓÍ ÒÛ˘ÂÒÚ‚ÛÂÚ ‰Îfl β·˚ı ‰‚Ûı ‰ÓÒÚ‡ÚÓ˜ÌÓ ·ÎËÁÍËı ÚÓ˜ÂÍ ÏÌÓÊÂÒÚ‚‡ å. ꇉËÛÒÓÏ ËÌ˙ÂÍÚË‚ÌÓÒÚË ÏÌÓÊÂÒÚ‚‡ å ̇Á˚‚‡ÂÚÒfl ̇ËÏÂ̸¯Â ˜ËÒÎÓ r, Ú‡ÍÓ ˜ÚÓ ‰Îfl ‰‚Ûı β·˚ı ÚÓ˜ÂÍ ËÁ å, ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÍÓÚÓ˚ÏË
1 d ( x, y). 2
ÑÛ„ËÏË ÒÎÓ‚‡ÏË, ‡ÒÒÚÓflÌË D(c1, c2) ÏÂÊ‰Û Î˛·˚ÏË „ÂÓ‰ÂÁ˘ÂÒÍËÏË ÓÚÂÁ͇ÏË Ë c1 = [a1 , b 1 ] fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎÓÈ ÙÛÌ͈ËÂÈ. (ÑÂÈÒÚ‚ËÚÂθ̇fl ÙÛÌ͈Ëfl f, ÓÔ‰ÂÎÂÌ̇fl ̇ ÌÂÍÓÚÓÓÏ ËÌÚ‚‡ÎÂ, ̇Á˚‚‡ÂÚÒfl ‚˚ÔÛÍÎÓÈ, ÂÒÎË ÛÒÎÓ‚Ë f(λx + (1 – λ)y) ≤ λf(x) + (1 – λ)f(y) ‚˚ÔÓÎÌÂÌÓ ‰Îfl β·˚ı ı, Û Ë λ ∈ (0, 1).) èÎÓÒ͇fl ‚ÍÎˉӂ‡ ÔÓÎÓÒ‡ {(x, y) ∈ 2: 0 < x < 1} fl‚ÎflÂÚÒfl „ËÔ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û, ÌÓ Ì fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎÓÈ ÔÓ ÅÛÁÂχÌÛ. Ñ‚Â Î˛·˚ ÚÓ˜ÍË ÔÓÎÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ‚˚ÔÛÍÎÓ„Ó ÔÓ ÅÛÁÂχÌÛ, Ò‚flÁ‡Ì˚ ‰ËÌÒÚ‚ÂÌÌ˚Ï „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ. ÉÂÓ‰ÂÁ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) fl‚ÎflÂÚÒfl ÎÓ͇θÌÓ ‚˚ÔÛÍÎ˚Ï ÔÓ ÅÛÁÂχÌÛ (ÅÛÁÂχÌ, 1948), ÂÒÎË ‚˚¯ÂÛ͇Á‡ÌÌӠ̇‚ÂÌÒÚ‚Ó ‚˚ÔÎÓÌflÂÚÒfl ÎÓ͇θÌÓ. ã˛·Ó ÎÓ͇θÌÓ ëÄí(0) ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ÒÏ. „Î. 6) fl‚ÎflÂÚÒfl ÎÓ͇θÌÓ ‚˚ÔÛÍÎ˚Ï ÔÓ ÅÛÁÂχÌÛ Ë Î˛·Ó „ÂÓ‰ÂÁ˘ÂÒÍÓ ëÄí(0) ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎ˚Ï ÔÓ ÅÛÁÂχÌÛ, ÌÓ Ó·‡ÚÌÓ Ì‚ÂÌÓ. Ç˚ÔÛÍÎÓÒÚ¸ ÔÓ åÂÌ„ÂÛ åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ‚˚ÔÛÍÎ˚Ï ÔÓ åÂÌ„ÂÛ, ÂÒÎË ‰Îfl ‰‚Ûı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÂÚ¸fl ÚӘ͇ z ∈ X , ‰Îfl ÍÓÚÓÓÈ d(x, y) = d(x, z) + d(z, y), Ú.Â. ÛÒÎÓ‚Ë |I(x, y)| > 2 ËÏÂÂÚ ÏÂÒÚÓ ‰Îfl Á‡ÏÍÌÛÚÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ËÌÚ‚‡Î‡ I (x, y) = {z ∈ X : d(x, y) = d(x, z) + d(z, y)}. åÂÚ˘ÂÒÍÓÂ
25
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÒÚÓ„Ó ‚˚ÔÛÍÎ˚Ï ÔÓ åÂÌ„ÂÛ, ÂÒÎË Ú‡Í‡fl ÚӘ͇ z fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓÈ ‰Îfl ‚ÒÂı x, y ∈ X. èÓ‰ÏÌÓÊÂÒÚ‚Ó M ⊂ X ̇Á˚‚‡ÂÚÒfl d-‚˚ÔÛÍÎ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ (åÂÌ„Â, 1928), ÂÒÎË ‰Îfl β·˚ı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y ∈ X ËÏÂÂÚ ÏÂÒÚÓ ‚Íβ˜ÂÌË I(x, y) ⊂ M. îÛÌ͈Ëfl f : M → , ÓÔ‰ÂÎÂÌ̇fl ̇ d -‚˚ÔÛÍÎÓÏ ÏÌÓÊÂÒÚ‚Â M ⊂ X , ̇Á˚‚‡ÂÚÒfl d-‚˚ÔÛÍÎÓÈ ÙÛÌ͈ËÂÈ, ÂÒÎË ‰Îfl β·Ó„Ó z ∈ I(x, y) ⊂ M ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë f (z) ≤
d ( y, z ) d ( x, z ) f ( x) + f ( y). d ( x, y) d ( x, y)
ë‰ËÌ̇fl ‚˚ÔÛÍÎÓÒÚ¸ åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl Ò‰ËÌÌÓ ‚˚ÔÛÍÎ˚Ï (ËÎË ‰ÓÔÛÒ͇˛˘ËÏ Ò‰ËÌÌÓ ÓÚÓ·‡ÊÂÌËÂ), ÂÒÎË ‰Îfl β·˚ı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÂÚ¸fl ÚӘ͇ z ∈ X, ̇Á˚‚‡Âχfl Ò‰ËÌÌÓÈ ÚÓ˜ÍÓÈ m(x, y), ‰Îfl ÍÓÚÓÓÈ 1 ‚˚ÔÓÎÌfl˛ÚÒfl ‡‚ÂÌÒÚ‚‡ d(x, y) = d(x, z) + d(z, y) Ë d ( x, z ) = d ( x, y). 2 éÚÓ·‡ÊÂÌË m : ï × ï → X ̇Á˚‚‡ÂÚÒfl Ò‰ËÌÌ˚Ï ÓÚÓ·‡ÊÂÌËÂÏ (ÒÏ. ë‰ËÌÌÓ ÏÌÓÊÂÒÚ‚Ó); ÓÌÓ ·Û‰ÂÚ Â‰ËÌÒÚ‚ÂÌÌ˚Ï, ÂÒÎË Û͇Á‡Ì̇fl ‚˚¯Â ÚӘ͇ z ‰ËÌÒÚ‚ÂÌ̇ ‰Îfl ‚ÒÂı x, y ∈ X. èÓÎÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ Ò‰ËÌÌÓ ‚˚ÔÛÍÎÓ. ò‡Ó‚‡fl ‚˚ÔÛÍÎÓÒÚ¸ ë‰ËÌÌÓ ‚˚ÔÛÍÎÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ¯‡Ó‚Ó ‚˚ÔÛÍÎ˚Ï, ÂÒÎË Ì‡‚ÂÌÒÚ‚Ó d ( m( x, y), z ) ≤ max{d ( x, z ), d ( y, z )} ÒÔ‡‚‰ÎË‚Ó ‰Îfl ‚ÒÂı x, y, z ∈ X Ë Î˛·Ó„Ó Ò‰ËÌÌÓ„Ó ÓÚÓ·‡ÊÂÌËfl m(x, y). ò‡Ó‚‡fl ‚˚ÔÛÍÎÓÒÚ¸ ‚ΘÂÚ, ˜ÚÓ ‚Ò ÏÂÚ˘ÂÒÍË ¯‡˚ ‚ÔÓÎÌ ‚˚ÔÛÍÎ˚, Ë, ‚ ÒÎÛ˜‡Â „ÂÓ‰ÂÁ˘ÂÒÍÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ̇ӷÓÓÚ. 2
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ( 2 , d ( x, y) =
∑
xi − yi ) ¯‡Ó‚Ó ‚˚ÔÛÍÎ˚Ï ÌÂ
i =1
fl‚ÎflÂÚÒfl. ê‡ÒÒÚÓflÌ̇fl ‚˚ÔÛÍÎÓÒÚ¸ ë‰ËÌÌÓ ‚˚ÔÛÍÎÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌÌÓ ‚˚ÔÛÍÎ˚Ï, ÂÒÎË d ( m( x, y), z ) ≤
1 ( d ( x, z ) + d ( y, z )). 2
ÉÂÓ‰ÂÁ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ ‚˚ÔÛÍÎ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÒÛÊÂÌË ÙÛÌ͈ËË ‡ÒÒÚÓflÌËfl d(x, ⋅ ), x ∈ X ̇ ͇ʉ˚È „ÂÓ‰ÂÁ˘ÂÒÍËÈ ÓÚÂÁÓÍ fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎÓÈ ÙÛÌ͈ËÂÈ. ê‡ÒÒÚÓflÌ̇fl ‚˚ÔÛÍÎÓÒÚ¸ ÔÓÓʉ‡ÂÚ ¯‡Ó‚Û˛ ‚˚ÔÛÍÎÓÒÚ¸ Ë, ‰Îfl ÒÎÛ˜‡fl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ‚˚ÔÛÍÎÓ„Ó ÔÓ ÅÛÁÂχÌÛ, ̇ӷÓÓÚ. åÂÚ˘ÂÒ͇fl ‚˚ÔÛÍÎÓÒÚ¸ åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍË ‚˚ÔÛÍÎ˚Ï, ÂÒÎË ‰Îfl β·Ó„Ó ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y ∈ X Ë Î˛·Ó„Ó λ ∈ (0, 1) ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÂÚ¸fl ÚӘ͇
26
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
z = z(x, y, λ) ∈ X, ‰Îfl ÍÓÚÓÓÈ d(x, y) = d(x, z) + d(z, y) Ë d(x, z) = λd(x, y). åÂÚ˘ÂÒ͇fl ‚˚ÔÛÍÎÓÒÚ¸ ÔÓÓʉ‡ÂÚ ‚˚ÔÛÍÎÓÒÚ¸ ÔÓ åÂÌ„ÂÛ. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÒÚÓ„Ó ÏÂÚ˘ÂÒÍË ‚˚ÔÛÍÎ˚Ï, ÂÒÎË Ú‡Í‡fl ÚӘ͇ z(x, y, λ) fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓÈ ‰Îfl ‚ÒÂı x, y ∈ X Ë λ ∈ (0, 1). åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÒËθÌÓ ÏÂÚ˘ÂÒÍË ‚˚ÔÛÍÎ˚Ï, ÂÒÎË ‰Îfl β·˚ı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y ∈ X Ë Î˛·˚ı λ1, λ2 ∈ (0, 1) ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÂÚ¸fl ÚӘ͇ z = z(x, y, λ) ∈ X, ‰Îfl ÍÓÚÓÓÈ d(z(x, y, λ1), z(x, y, λ2) = |λ1–λ 2 |d(x, y). ëËθ̇fl ÏÂÚ˘ÂÒ͇fl ‚˚ÔÛÍÎÓÒÚ¸ ÔÓÓʉ‡ÂÚ ÏÂÚ˘ÂÒÍÛ˛ ‚˚ÔÛÍÎÓÒÚ¸, Ë Í‡Ê‰Ó ÔÓÎÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚˚ÔÛÍÎÓ ÔÓ åÂÌ„ÂÛ, fl‚ÎflÂÚÒfl ÒËθÌÓ ÏÂÚ˘ÂÒÍË ‚˚ÔÛÍÎ˚Ï. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÔÓ˜ÚË ‚˚ÔÛÍÎ˚Ï (å‡Ì‰ÂÎÍÂÌ, 1983), ÂÒÎË ‰Îfl β·˚ı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y ∈ X Ë Î˛·˚ı λ, µ > 0, Ú‡ÍËı ˜ÚÓ d(x, y) < λ + µ, ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÂÚ¸fl ÚӘ͇ z ∈ X, ‰Îfl ÍÓÚÓÓÈ d(x, z) < λ Ë d(z, y) < µ, Ú.Â. z ∈ B(x, λ) ∩ B(y, µ). åÂÚ˘ÂÒ͇fl ‚˚ÔÛÍÎÓÒÚ¸ ÔÓÓʉ‡ÂÚ ÔÓ˜ÚË ‚˚ÔÛÍÎÓÒÚ¸. Ç˚ÔÛÍÎÓÒÚ¸ ÔÓ í‡Í‡ı‡¯Ë åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ‚˚ÔÛÍÎ˚Ï ÔÓ í‡Í‡ı‡¯Ë, ÂÒÎË ‰Îfl β·˚ı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y ∈ X Ë Î˛·Ó„Ó λ ∈ (0, 1) ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÂÚ¸fl ÚӘ͇ z = z(x, y, λ) ∈ X, ڇ͇fl ˜ÚÓ Ì‡‚ÂÌÒÚ‚Ó d(z(x, y, λ), u) ≤ λd(x, u) + (1 – λ)d(y, u) ËÏÂÂÚ ÏÂÒÚÓ ‰Îfl ‚ÒÂı u ∈ X. ã˛·Ó ‚˚ÔÛÍÎÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÌÓÏËÓ‚‡ÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ fl‚ÎflÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ‚˚ÔÛÍÎ˚Ï ÔÓ í‡Í‡ı‡¯Ë, Ò z(x, y, λ) = λd + (1 – λ)y. åÌÓÊÂÒÚ‚Ó M ⊂ X fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎ˚Ï ÔÓ í‡Í‡ı‡¯Ë, ÂÒÎË z(x, y, λ) ∈ M ‰Îfl ‚ÒÂı x, y ∈ X Ë λ ∈ [0, 1]. í‡Í‡ı‡¯Ë ‰Ó͇Á‡Î ‚ 1970 „., ˜ÚÓ ‚ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â, ‚˚ÔÛÍÎÓÏ ÔÓ í‡Í‡ı‡¯Ë, ‚Ò Á‡ÏÍÌÛÚ˚ ÏÂÚ˘ÂÒÍË ¯‡˚, ÓÚÍ˚Ú˚ ÏÂÚ˘ÂÒÍË ¯‡˚ Ë ÔÓËÁ‚ÓθÌÓ ÔÂÂÒ˜ÂÌË ÔÓ‰ÏÌÓÊÂÒÚ‚, ‚˚ÔÛÍÎ˚ı ÔÓ í‡Í‡ı‡¯Ë, fl‚Îfl˛ÚÒfl ‚˚ÔÛÍÎ˚ÏË ÔÓ í‡Í‡ı‡¯Ë. ÉËÔ‚˚ÔÛÍÎÓÒÚ¸ åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl „ËÔ‚˚ÔÛÍÎ˚Ï, ÂÒÎË ÓÌÓ ÏÂÚ˘ÂÒÍË ‚˚ÔÛÍÎÓ Ë Â„Ó ÏÂÚ˘ÂÒÍË ¯‡˚ ӷ·‰‡˛Ú ·ÂÒÍÓ̘Ì˚Ï Ò‚ÓÈÒÚ‚ÓÏ ïÂÎÎË, Ú.Â. β·‡fl ÒËÒÚÂχ ‚Á‡ËÏÌÓ ÔÂÂÒÂ͇˛˘ËıÒfl Á‡Í˚Ú˚ı ¯‡Ó‚ ‚ ï ËÏÂÂÚ ÌÂÔÛÒÚÓ ÔÂÂÒ˜ÂÌËÂ. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) fl‚ÎflÂÚÒfl „ËÔ‚˚ÔÛÍÎ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ – ËÌ˙ÂÍÚË‚ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. èÓÒÚ‡ÌÒÚ‚‡ l∞m , l∞ Ë L∞ fl‚Îfl˛ÚÒfl „ËÔ‚˚ÔÛÍÎ˚ÏË, ‡ l2 – ÌÂÚ. åÂÚ˘ÂÒ͇fl ˝ÌÚÓÔËfl èÛÒÚ¸ ε > 0. åÂÚ˘ÂÒ͇fl ˝ÌÚÓÔËfl (ËÎË ε-˝ÌÚÓÔËfl) Hε(M, X) ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M ⊂ ï ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ( X,d) ÓÔ‰ÂÎflÂÚÒfl (äÓÎÏÓ„ÓÓ‚, 1956) Í‡Í Hε(M, X) = log2 N ε(M, X), „‰Â Nε(M, X) fl‚ÎflÂÚÒfl ̇ËÏÂ̸¯ËÏ ÍÓ΢ÂÒÚ‚ÓÏ ÚÓ˜ÂÍ ‚ ε-ÒÂÚË (ËÎË ε-̇Í˚ÚËË) ‰Îfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (M, d), Ú.Â. ‚ ÏÌÓÊÂÒÚ‚Â ÚÓ˜ÂÍ, Ú‡ÍËı ˜ÚÓ Ó·˙‰ËÌÂÌË ÓÚÍ˚Ú˚ı ε-¯‡Ó‚ Ò ˆÂÌÚ‡ÏË ‚ Û͇Á‡ÌÌ˚ı ÚӘ͇ı ̇Í˚‚‡ÂÚ å. èÓÌflÚË ÏÂÚ˘ÂÒÍÓÈ ˝ÌÚÓÔËË ‰Îfl ‰Ë̇Ï˘ÂÒÍÓÈ ÒËÒÚÂÏ˚ fl‚ÎflÂÚÒfl Ó‰ÌËÏ ËÁ ‚‡ÊÌÂȯËı ËÌ‚‡Ë‡ÌÚÓ‚ ˝„Ӊ˘ÂÒÍÓÈ ÚÂÓËË. åÂÚ˘ÂÒ͇fl ‡ÁÏÂÌÓÒÚ¸ ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) Ë Î˛·Ó„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ˜ËÒ· q > 0 ÔÛÒÚ¸ N x(q) ·Û‰ÂÚ ÏËÌËχθÌ˚Ï ÍÓ΢ÂÒÚ‚ÓÏ ÏÌÓÊÂÒÚ‚ Ò ‰Ë‡ÏÂÚÓÏ, Ì ÔÂ-
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
27
‚ÓÒıÓ‰fl˘ËÏ q, ÍÓÚÓ˚ ÌÂÓ·ıÓ‰ËÏ˚ ‰Îfl ̇Í˚ÚËfl ï (ÒÏ. åÂÚ˘ÂÒ͇fl ˝ÌÚÓÔËfl). ln( N (q ) óËÒÎÓ lim (ÂÒÎË ÓÌÓ ÒÛ˘ÂÒÚ‚ÛÂÚ) ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚ¸˛ q →0 ln(1 / q ) (ËÎË ‡ÁÏÂÌÓÒÚ¸˛ åËÌÍÓ‚ÒÍӄӖŇÎË„‡Ì‰‡, ‡ÁÏÂÌÓÒÚ¸˛ åËÌÍÓ‚ÒÍÓ„Ó, ÛÔ‡ÍÓ‚Ó˜ÌÓÈ ‡ÁÏÂÌÓÒÚ¸˛, ·ÓÍÒ-‡ÁÏÂÌÓÒÚ¸˛ ÔÓÒÚ‡ÌÒÚ‚‡ ï. ÖÒÎË Û͇Á‡ÌÌÓ„Ó ‚˚¯Â ԉ· Ì ÒÛ˘ÂÒÚ‚ÛÂÚ, ÚÓ ‡ÒÒχÚË‚‡˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÔÓÌflÚËfl ‡ÁÏÂÌÓÒÚË: ln( N (q ) 1. óËÒÎÓ lim ̇Á˚‚‡ÂÚÒfl ÌËÊÌÂÈ ÏÂÚ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚ¸˛ (ËÎË q →0 ln(1 / q ) ÌËÊÌÂÈ ·ÓÍÒ-‡ÁÏÂÌÓÒÚ¸˛, ‡ÁÏÂÌÓÒÚ¸˛ èÓÌÚfl„Ë̇–òÌËÂÎχ̇, ÌËÊÌÂÈ ‡ÁÏÂÌÓÒÚ¸˛ åËÌÍÓ‚ÒÍÓ„Ó). ln( N (q ) 2. óËÒÎÓ lim ̇Á˚‚‡ÂÚÒfl ‚ÂıÌÂÈ ÏÂÚ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚ¸˛ (ËÎË q →0 ln(1 / q ) ˝ÌÚÓÔ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚ¸˛, ‡ÁÏÂÌÓÒÚ¸˛ äÓÎÏÓ„ÓÓ‚‡–íËıÓÏËÓ‚‡, ‚ÂıÌÂÈ ·ÓÍÒ-‡ÁÏÂÌÓÒÚ¸˛). çËÊ ÔË‚Ó‰flÚÒfl ÔflÚ¸ ÔËÏÂÓ‚ ‰Û„Ëı, ÏÂÌ Á̇˜ËÏ˚ı ÔÓÌflÚËÈ ÏÂÚ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚË, ‚ÒÚ˜‡˛˘ËÂÒfl ‚ χÚÂχÚ˘ÂÒÍÓÈ ÎËÚ‡ÚÛÂ. 1. (ŇÁËÒ̇fl) ÏÂÚ˘ÂÒ͇fl ‡ÁÏÂÌÓÒÚ¸ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, – ÏËÌËχθÌÓ ͇‰Ë̇θÌÓ ˜ËÒÎÓ Â„Ó ÏÂÚ˘ÂÒÍÓ„Ó ·‡ÁËÒ‡, Ú.Â. Â„Ó Ì‡ËÏÂ̸¯Â„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ S, Ú‡ÍÓ„Ó ˜ÚÓ Ì ÒÛ˘ÂÒÚ‚ÛÂÚ ‰‚Ûı ÚÓ˜ÂÍ Ò ‡‚Ì˚ÏË ‡ÒÒÚÓflÌËflÏË ‰Ó ‚ÒÂı ÚÓ˜ÂÍ ËÁ S. 2. (ꇂÌӷӘ̇fl) ÏÂÚ˘ÂÒ͇fl ‡ÁÏÂÌÓÒÚ¸ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ – χÍÒËχθÌÓ ͇‰Ë̇θÌÓ ˜ËÒÎÓ Â„Ó ˝Í‚ˉËÒÚ‡ÌÚÌÓ„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡, Ú.Â. Ú‡ÍÓ„Ó, ˜ÚÓ Î˛·˚ ‰‚Â Â„Ó ‡Á΢Ì˚ ÚÓ˜ÍË ‡‚ÌÓÓÚÒÚÓflÚ ‰Û„ ÓÚ ‰Û„‡. ÑÎfl ÌÓÏËÓ‚‡ÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ˝Ú‡ ‡ÁÏÂÌÓÒÚ¸ ‡‚̇ χÍÒËχθÌÓÏÛ ˜ËÒÎÛ ÔÓÔ‡ÌÓ Í‡Ò‡˛˘ËıÒfl Ô‡‡ÎÎÂθÌ˚ı ÔÂÂÌÓÒÓ‚ Â„Ó Â‰ËÌ˘ÌÓ„Ó ¯‡‡. 3. ÑÎfl β·Ó„Ó Ò > 1 ÏÂÚ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚ¸˛ (ÔÓ ÌÓÏËÓ‚‡ÌÌÓÏÛ ÔÓÒÚ‡ÌÒÚ‚Û) dimc (X) ÍÓ̘ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl ̇ËÏÂ̸¯‡fl ‡ÁÏÂÌÓÒÚ¸ ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ÌÓÏËÓ‚‡ÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ 1 (V, || ⋅ ||), Ú‡ÍÓ„Ó ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ‚ÎÓÊÂÌË f : X → V Ò d ( x, y) ≤ f ( x ) − f ( y) ≤ c ≤ d ( x, y). 4. (Ö‚ÍÎˉӂÓÈ) ÏÂÚ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚ¸˛ ÍÓ̘ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl ̇ËÏÂ̸¯‡fl ‡ÁÏÂÌÓÒÚ¸ n ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n , Ú‡ÍÓ„Ó ˜ÚÓ (X, f(d)) fl‚ÎflÂÚÒfl Â„Ó ÏÂÚ˘ÂÒÍËÏ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ, „‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÌÂÔÂ˚‚Ì˚Ï ÏÓÌÓÚÓÌÌÓ ‚ÓÁ‡ÒÚ‡˛˘ËÏ ÙÛÌ͈ËflÏ f(t) ÓÚ t ≥ 0. 5. ëÚÂÔÂ̸˛ ÏÌÓ„ÓÏÂÌÓÒÚË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡ÂÚÒfl ˜ËÒÎÓ µ2 , „‰Â µ Ë σ2 fl‚Îfl˛ÚÒfl Ò‰ÌËÏ Ë ÓÚÍÎÓÌfl˛˘ËÏÒfl Á̇˜ÂÌËflÏË Â„Ó „ËÒÚÓ„‡ÏÏ˚ 2σ 2 ‡ÒÒÚÓflÌËÈ; ‰‡ÌÌÓ ÔÓÌflÚË ËÒÔÓθÁÛÂÚÒfl ‰Îfl ‚˚·ÓÍË ËÌÙÓχˆËË ÔË ÔÓËÒÍ ÓÚÌÓ¯ÂÌËÈ ·ÎËÁÓÒÚË. ê‡Ì„ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ê‡Ì„ÓÏ åËÌÍÓ‚ÒÍÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl χÍÒËχθ̇fl ‡ÁÏÂÌÓÒÚ¸ ÌÓÏËÓ‚‡ÌÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (V, || ⋅ ||), Ú‡ÍÓ„Ó ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ËÁÓÏÂÚ˘ÂÒÍÓ ‚ÎÓÊÂÌË (V, || ⋅ ||) → (X,d).
28
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
Ö‚ÍÎˉӂ˚Ï ‡Ì„ÓÏ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl χÍÒËχθ̇fl ‡ÁÏÂÌÓÒÚ¸ n-ÏÂÌÓÈ ÔÎÓÒÍÓÒÚË ‚ ÌÂÏ, Ú.Â. ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n , Ú‡ÍÓ„Ó ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ËÁÓÏÂÚ˘ÂÒÍÓ ‚ÎÓÊÂÌË n → (X,d). 䂇ÁË‚ÍÎˉӂ˚Ï ‡Ì„ÓÏ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl χÍÒËχθ̇fl ‡ÁÏÂÌÓÒÚ¸ n-ÏÂÌÓÈ Í‚‡ÁËÔÎÓÒÍÓÒÚË ‚ ÌÂÏ, Ú.Â. ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n , Ú‡ÍÓ„Ó ˜ÚÓ ‚ ÌÂÏ ÒÛ˘ÂÒÚ‚ÛÂÚ Í‚‡ÁËËÁÓÏÂÚËfl n → (X,d). ê‡Ì„ β·Ó„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, „ËÔ·Ó΢ÂÒÍÓ„Ó ÔÓ ÉÓÏÓ‚Û, ‡‚ÂÌ 1. ê‡ÁÏÂÌÓÒÚ¸ ï‡ÛÒ‰ÓÙ‡ ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) Ë Î˛·˚ı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı p, q > 0 ÔÛÒÚ¸ M pq ( X ) =
+∞
p ∑ (diam( Ai )) , „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ Ò˜ÂÚÌ˚Ï ÔÓÍ˚ÚËflÏ {Ai}i i =1
ÏÌÓÊÂÒÚ‚‡ ï Ò ‰Ë‡ÏÂÚÓÏ Ai ÏÂ̸¯Â q. ê‡ÁÏÂÌÓÒÚ¸ ï‡ÛÒ‰ÓÙ‡ (ËÎË ‡ÁÏÂÌÓÒÚ¸ ï‡ÛÒ‰ÓÙ‡-ÅÂÒËÍӂ˘‡, ‡ÁÏÂÌÓÒÚ¸ ÂÏÍÓÒÚË, Ù‡Íڇθ̇fl ‡ÁÏÂÌÓÒÚ¸) dim Haus(X,d) ÏÌÓÊÂÒÚ‚‡ ï ÓÔ‰ÂÎflÂÚÒfl Í‡Í inf p : lim M pq ( X ) = 0 . q→0 ã˛·Ó ҘÂÚÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ËÏÂÂÚ ‡ÁÏÂÌÓÒÚ¸ ï‡ÛÒ‰ÓÙ‡, ‡‚ÌÛ˛ 0; ‡ÁÏÂÌÓÒÚ¸ ï‡ÛÒ‰ÓÙ‡ ‰Îfl ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n ‡‚̇ n. ÑÎfl Í‡Ê‰Ó„Ó ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Â„Ó ‡ÁÏÂÌÓÒÚ¸ ï‡ÛÒ‰ÓÙ‡ Ó„‡Ì˘Â̇ ÏÂÚ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚ¸˛ Ò‚ÂıÛ Ë ÚÓÔÓÎӄ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚ¸˛ ÒÌËÁÛ. íÓÔÓÎӄ˘ÂÒ͇fl ‡ÁÏÂÌÓÒÚ¸ ÑÎfl β·Ó„Ó ÍÓÏÔ‡ÍÚÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) Â„Ó ÚÓÔÓÎӄ˘ÂÒ͇fl ‡ÁÏÂÌÓÒÚ¸ (ËÎË ‡ÁÏÂÌÓÒÚ¸ η„ӂ‡ ÔÓÍ˚ÚËfl) ÓÔ‰ÂÎflÂÚÒfl ͇Í
{
}
inf dim ( X , d ′) , d′
Haus
„‰Â d' – β·‡fl ÏÂÚË͇ ̇ ï, ÚÓÔÓÎӄ˘ÂÒÍË ˝Í‚Ë‚‡ÎÂÌÚ̇fl d, ‡ dim – ‡ÁÏÂÌÓÒÚ¸ Haus
ï‡ÛÒ‰ÓÙ‡. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÚÓÔÓÎӄ˘ÂÒÍÓÈ ï ̇Á˚‚‡ÂÚÒfl ̇ËÏÂ̸¯Â ˆÂÎÓ ÓÚÍ˚ÚÓ„Ó ÔÓÍ˚ÚËfl ÏÌÓÊÂÒÚ‚‡ ï (Ú.Â. ÔÓ‰‡Á‰ÂÎÂÌËÂ), Ú‡ÍÓ ˜ÚÓ ÌË ·ÓΠ˜ÂÏ n + 1 ˝ÎÂÏÂÌÚ‡Ï.
‡ÁÏÂÌÓÒÚ¸˛ ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ˜ËÒÎÓ n, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·Ó„Ó ÍÓ̘ÌÓ„Ó ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓ̘ÌÓ ÓÚÍ˚ÚÓ ÔÓ‰ÔÓÍ˚ÚË Ӊ̇ ËÁ ÚÓ˜ÂÍ ÏÌÓÊÂÒÚ‚‡ ï Ì ÔË̇‰ÎÂÊËÚ
î‡ÍڇΠíÓÔÓÎӄ˘ÂÒ͇fl ‡ÁÏÂÌÓÒÚ¸ β·Ó„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ì Ô‚˚¯‡ÂÚ Â„Ó ‡ÁÏÂÌÓÒÚË ï‡ÛÒ‰ÓÙ‡. î‡ÍÚ‡ÎÓÏ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‰Îfl ÍÓÚÓÓ„Ó ˝ÚÓ Ì‡‚ÂÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÒÚÓ„ËÏ. (è‚Ó̇˜‡Î¸ÌÓ å‡Ì‰Âθ·ÓÈÚ ÓÔ‰ÂÎËÎ Ù‡ÍÚ‡Î Í‡Í ÚӘ˜ÌÓ ÏÌÓÊÂÒÚ‚Ó Ò ÌˆÂÎÓ˜ËÒÎÂÌÌÓÈ ‡ÁÏÂÌÓÒÚ¸˛ ï‡ÛÒ‰ÓÙ‡). ç‡ÔËÏÂ, ÏÌÓÊÂÒÚ‚Ó ä‡ÌÚÓ‡, ‡ÒÒχÚË‚‡ÂÏÓÂ Í‡Í ÍÓÏÔ‡ÍÚÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓÒÚ‡ÌÒÚ‚‡ , d(x, y) = |x–y|), ӷ·‰‡ÂÚ ‡Áln 2 ÏÂÌÓÒÚ¸˛ ï‡ÛÒ‰ÓÙ‡ ; (ÒÏ. ‰Û„Û˛ ä‡ÌÚÓÓ‚Û ÏÂÚËÍÛ Ì‡ ÌÂÏ ‚ „Î. 11, 18). ln 3 ÑÛ„ÓÈ Í·ÒÒ˘ÂÒÍËÈ Ù‡ÍÚ‡Î, ÍÓ‚Â ëÂÔËÌÒÍÓ„Ó ÏÌÓÊÂÒÚ‚‡ [0,1] × [0,1], fl‚ÎflÂÚ-
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
29
Òfl ÔÓÎÌ˚Ï „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚‡ ( 2 , d(x, y) = ||x–y||1 ). íÂÏËÌ Ù‡ÍڇΠËÒÔÓθÁÛÂÚÒfl Ú‡ÍÊ ‚ ·ÓΠӷ˘ÂÏ ÒÏ˚ÒΠ‰Îfl Ó·ÓÁ̇˜ÂÌËfl Ò‡ÏÓÔÓ‰Ó·ÌÓÒÚË (Ú.Â., „Û·Ó „Ó‚Ófl, ÔÓ‰Ó·Ëfl ÔË Î˛·ÓÏ Ï‡Ò¯Ú‡·Â) Ó·˙ÂÍÚ‡ (Ó·˚˜ÌÓ – ÔÓ‰ÏÌÓÊÂÒÚ‚‡ n). ê‡ÁÏÂÌÓÒÚ¸ ÄÒÒÛ‡‰–燄‡Ú‡ ê‡ÁÏÂÌÓÒÚ¸˛ ÄÒÒÛ‡‰‡–燄‡Ú˚ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl ̇ËÏÂ̸¯Â ‰ÂÈÒÚ‚ËÚÂθÌÓ ˜ËÒÎÓ n (ËÎË ∞, ÂÒÎË Ú‡ÍÓ„Ó ˜ËÒ· n Ì ÒÛ˘ÂÒÚ‚ÛÂÚ), ‰Îfl ÍÓÚÓÓ„Ó ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓÌÒÚ‡ÌÚ‡ ë > 0, ڇ͇fl ˜ÚÓ ‰Îfl ‚ÒÂı s > 0 ËÏÂÂÚÒfl ÔÓÍ˚ÚË ï Â„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË Ò ‰Ë‡ÏÂÚ‡ÏË ≤ë s, ‚ ÍÓÚÓÓÏ Í‡Ê‰Ó ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ï ‰Ë‡ÏÂÚ‡ ≤s ÔÂÂÒÂ͇ÂÚÒfl Ò ≤n + 1 ˝ÎÂÏÂÌÚ‡ÏË ÔÓÍ˚ÚËfl. ê‡ÁÏÂÌÓÒÚ¸ ÄÒÒÛ‡‰‡–燄‡Ú˚ ·Û‰ÂÚ ÍÓ̘ÌÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d – ÏÂÚË͇ Û‰‚ÓÂÌËfl. íÓÔÓÎӄ˘ÂÒ͇fl ‡ÁÏÂÌÓÒÚ¸ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ì Ô‚˚¯‡ÂÚ Â„Ó ‡ÁÏÂÌÓÒÚË ÄÒÒÛ‡‰‡–燄‡Ú˚. ê‡ÁÏÂÌÓÒÚ¸ Û‰‚ÓÂÌËfl ê‡ÁÏÂÌÓÒÚ¸˛ Û‰‚ÓÂÌËfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl ̇ËÏÂ̸¯Â ˆÂÎÓ ˜ËÒÎÓ N (ËÎË ∞, ÂÒÎË Ú‡ÍÓ„Ó ˜ËÒ· N Ì ÒÛ˘ÂÒÚ‚ÛÂÚ), Ú‡ÍÓ ˜ÚÓ Í‡Ê‰˚È ÏÂÚ˘ÂÒÍËÈ ¯‡ (ËÎË, Ò͇ÊÂÏ, ÏÌÓÊÂÒÚ‚Ó ÍÓ̘ÌÓ„Ó ‰Ë‡ÏÂÚ‡) ÏÓÊÂÚ ·˚Ú¸ ÔÓÍ˚Ú ÒÂÏÂÈÒÚ‚ÓÏ Ì ·ÓΠ2N ÏÂÚ˘ÂÒÍËı ¯‡Ó‚ (ËÎË ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÏÌÓÊÂÒÚ‚) Ò ÔÓÎÓ‚ËÌÌ˚Ï ‰Ë‡ÏÂÚÓÏ. ÖÒÎË (X,d) ËÏÂÂÚ ÍÓ̘ÌÛ˛ ‡ÁÏÂÌÓÒÚ¸ Û‰‚ÓÂÌËfl, ÚÓ d ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ Û‰‚ÓÂÌËfl. ê‡ÁÏÂÌÓÒÚ¸ ÇÓθ·Â„‡–äÓÌfl„Ë̇ ê‡ÁÏÂÌÓÒÚ¸˛ ÇÓθ·Â„‡–äÓÌfl„Ë̇ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl ̇ËÏÂ̸¯‡fl ÍÓÌÒÚ‡ÌÚ‡ C > 1 (ËÎË ∞, ÂÒÎË Ú‡ÍÓ„Ó ˜ËÒ· C Ì ÒÛ˘ÂÒÚ‚ÛÂÚ), ‰Îfl ÍÓÚÓÓÈ ï ӷ·‰‡ÂÚ ÏÂÓÈ Û‰‚ÓÂÌËfl, Ú.Â. ·ÓÂ΂ÒÍÓÈ ÏÂÓÈ µ, Ú‡ÍÓÈ ˜ÚÓ µ( B ( x, 2 r )) ≤ Cµ( B , r )) ‰Îfl ‚ÒÂı x ∈ X Ë r > 0. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ӷ·‰‡ÂÚ ÏÂÓÈ Û‰‚ÓÂÌËfl ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Û‰‚ÓÂÌËfl, Ë Î˛·‡fl ÔÓÎ̇fl ÏÂÚË͇ Û‰‚ÓÂÌËfl ӷ·‰‡ÂÚ ÏÂÓÈ Û‰‚ÓÂÌËfl. äÓÌÒÚ‡ÌÚÓÈ ä‡„Â‡–êÛ· ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl ̇ËÏÂ̸¯‡fl ÍÓÌÒÚ‡ÌÚ‡ Ò > 1 (ËÎË ∞, ÂÒÎË Ú‡ÍÓ„Ó ˜ËÒ· Ò Ì ÒÛ˘ÂÒÚ‚ÛÂÚ), ‰Îfl ÍÓÚÓÓÈ B ( x, 2 r ) ≤ c B ( x, r ) ‰Îfl ‚ÒÂı x ∈ X Ë r > 0. ÖÒÎË Ó̇ ÍÓ̘̇ (Ò͇ÊÂÏ, ‡‚̇ t), ÚÓ Ï‡ÍÒËχθÌÓ Á̇˜ÂÌË ‡ÁÏÂÌÓÒÚË Û‰‚ÓÂÌËfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ÒÓÒÚ‡‚ËÚ 4t. ÄÒËÏÔÚÓÚ˘ÂÒ͇fl ‡ÁÏÂÌÓÒÚ¸ èÓÌflÚË ‡ÒËÏÔÚÓÚ˘ÂÒÍÓÈ ‡ÁÏÂÌÓÒÚË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ·˚ÎÓ ‚‚‰ÂÌÓ ÉÓÏÓ‚˚Ï. ùÚÓ – ̇ËÏÂ̸¯Â ˜ËÒÎÓ n, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·Ó„Ó s > 0 ÒÛ˘ÂÒÚ‚Û˛Ú ÍÓÌÒÚ‡ÌÚ‡ D = D(s) Ë ÔÓÍ˚ÚË ï Â„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË Ò ‰Ë‡ÏÂÚ‡ÏË, Ì Ô‚ÓÒıÓ‰fl˘ËÏË D , ‚ ÍÓÚÓÓÏ Í‡Ê‰Ó ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ï ‰Ë‡ÏÂÚ‡ ≤s ÔÂÂÒÂ͇ÂÚÒfl Ò ≤n + 1 ˝ÎÂÏÂÌÚ‡ÏË ÔÓÍ˚ÚËfl. ê‡ÁÏÂÌÓÒÚ¸ ÉÓ‰ÒËΖå‡ÍÍÂfl åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ËÏÂÂÚ ‡ÁÏÂÌÓÒÚ¸ ÉÓ‰ÒËΖå‡ÍÍÂfl n ≥ 0, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ˝ÎÂÏÂÌÚ x0 ∈ X Ë ‰‚ ÔÓÎÓÊËÚÂθÌ˚ ÍÓÌÒÚ‡ÌÚ˚ Ò Ë ë , Ú‡ÍË ˜ÚÓ
30
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
̇‚ÂÌÒÚ‚Ó ckn ≤ |{x ∈ X : d(x, x0) ≤ k}| ≤ Ckn ËÏÂÂÚ ÏÂÒÚÓ ‰Îfl Í‡Ê‰Ó„Ó ˆÂÎÓ„Ó ˜ËÒ· k 0. чÌÌÓ ÔÓÌflÚË ·˚ÎÓ ‚‚‰ÂÌÓ ‚ [GoMc80] ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ÏÂÚËÍË ÔÛÚË Ò˜ÂÚÌÓ„Ó ÎÓ͇θÌÓ ÍÓ̘ÌÓ„Ó „‡Ù‡. Å˚ÎÓ ‰Ó͇Á‡ÌÓ, ˜ÚÓ ÂÒÎË „ÛÔÔ‡ n ‰ÂÈÒÚ‚ÛÂÚ Ì‡ ‚¯Ë̇ı „‡Ù‡ ÚÓ˜ÌÓ Ë Ò ÍÓ̘Ì˚Ï ˜ËÒÎÓÏ Ó·ËÚ, ÚÓ ‰‡Ì̇fl ‡ÁÏÂÌÓÒÚ¸ ‡‚̇ n. ÑÎË̇ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ÑÎËÌÓÈ îÂÏÎË̇ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡ÂÚÒfl Ó‰ÌÓÏÂ̇fl ‚̯Ìflfl χ ï‡ÛÒ‰ÓÙ‡ ̇ X. ÑÎËÌÓÈ ïÂÈÍχ̇ lng(Y) ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M ⊂ X ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl sup{lng( M ′) : M ′ ⊂ M , M ′ < ∞}. á‰ÂÒ¸ lng(∅ ) = 0 Ë, ‰Îfl ÍÓ̘ÌÓ„Ó n
ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M' ⊂ X, lng(M') = min
∑ d( xi −1, xi ),
„‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ
i =1
ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏ x 0 , ..., xn, Ú‡ÍËÏ ˜ÚÓ {x i : i = 0, 1, ..., n} = M'. ÑÎËÌÓÈ òÂıÚχ̇ ÍÓ̘ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl n
inf
∑ ai2
ÔÓ ‚ÒÂÏ Ú‡ÍËÏ ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏ a1, ..., an ÔÓÎÓÊËÚÂθÌ˚ı ˜ËÒÂÎ, ˜ÚÓ
i =1
ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ï0, …, ïn ‡Á·ËÂÌËÈ ï ÒÓ ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË: 1. ï 0 = {X} Ë ïn = {{x} : x ∈ X}; 2. ï i ÔÓ‰‡Á·Ë‚‡ÂÚ ïi–1 ‰Îfl i = 1, …, n; 3. ÑÎfl i = 1,…, n Ë B, C ⊂ A ∈ Xi– 1 Ò B, C ∈ X i ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ ӉÌÓÁ̇˜ÌÓ ÓÚÓ·‡ÊÂÌË f ËÁ Ç Ì‡ ë, ˜ÚÓ d(x, f)(x)) ≤ ai ‰Îfl ‚ÒÂı x ∈ B. íËÔ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ íËÔ ÔÓ ÖÌÙÎÓ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ‡‚ÂÌ , ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡Í‡fl ÍÓÌÒÚ‡ÌÚ‡ 1 ≤ ë < ∞, ˜ÚÓ ‰Îfl Í‡Ê‰Ó„Ó n ∈ Ë Í‡Ê‰ÓÈ ÙÛÌ͈ËË f : {–1,1}n → X ËÏÂÂÚ ÏÂÒÚÓ Ì‡‚ÂÌÒÚ‚Ó
∑
d p ( f (ε ), f ( − ε )) ≤
ε ∈{−1,1}
n
n
≤ Cp
∑ ∑
j =1 ε ∈{−1,1}
d p ( f (ε1 ,..., ε j −1 , ε j +1 ,..., ε n ), f (ε1 ,..., ε j −1 , − ε j ,..., ε n )). n
Ň̇ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (V, || ⋅ ||) ÚËÔ‡ ÔÓ ÖÌÙÎÓ ËÏÂÂÚ ÚËÔ ÔÓ ê‡‰ÂχıÂÛ, Ú.Â. ‰Îfl ‚ÒÂı ı1 ,…,ın ∈ V ‚˚ÔÓÎÌflÂÚÒfl ̇‚ÂÌÒÚ‚Ó p
n
∑ ∑
ε ∈{−1,1}n j =1
εjxj
n
≤ Cp
∑
p
xj .
j =1
ÑÎfl ‰‡ÌÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ÒËÏÏÂÚ˘ÌÓÈ ˆÂÔ¸˛ å‡ÍÓ‚‡ ∞ ̇ ï fl‚ÎflÂÚÒfl ˆÂÔ¸ å‡ÍÓ‚‡ { l }l = 0 ̇ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓflÌËÈ {ı1,…,ım} ⊂ X c Ú‡ÍËÏ ÒËÏÏÂÚ˘Ì˚Ï ÔÂÂÌÓÒÓÏ m × m χÚˈ˚ ((aij)) ˜ÚÓ P(Zl+1 = xj : Zl = xj) = aij Ë 1 P(Z 0 = xi) = ‰Îfl ‚ÒÂı ˆÂÎ˚ı 1 ≤ i, j ≤ m Ë l ≥ 0. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) m
31
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
ËÏÂÂÚ ÚËÔ ÔÓ å‡ÍÓ‚Û (ÅÓÎÎ, 1992), ÂÒÎË supT Mp (X, T) < ∞, „‰Â Mp (X, T) – ڇ͇fl ∞ ̇ËÏÂ̸¯‡fl ÍÓÌÒÚ‡ÌÚ‡ C > 0, ˜ÚÓ ‰Îfl ͇ʉÓÈ ÒËÏÏÂÚ˘ÌÓÈ ˆÂÔË å‡ÍÓ‚‡ { l }l = 0 Ì ‡ ï ‚˚ÔÓÎÌflÂÚÒfl, ‚ ÚÂÏË̇ı ÓÊˉ‡ÂÏÓÈ ‚Â΢ËÌ˚ (Ò‰ÌÂ„Ó Á̇˜ÂÌËfl) [ X ] = xp( x ) ‰ËÒÍÂÚÌÓÈ ÒÎÛ˜‡ÈÌÓÈ ‚Â΢ËÌ˚ ï, ̇‚ÂÌÒÚ‚Ó
∑ x
d p ( ZT , Z0 ) ≤ TC pd p ( Z1 , Z0 ). åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÚËÔ‡ ÔÓ å‡ÍÓ‚Û ËÏÂÂÚ ÚËÔ ÔÓ ÖÌÙÎÓ. ëË· ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ èÛÒÚ¸ (X,d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò s ‡Á΢Ì˚ÏË ÌÂÌÛ΂˚ÏË Á̇˜ÂÌËflÏË dx,y. Ö„Ó ÒË· ÂÒÚ¸ ̇˷Óθ¯Â ˜ËÒÎÓ t, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·˚ı ˆÂÎ˚ı p, q ≥ 0 c p + q ≤ t ÒÛ˘ÂÒÚ‚ÛÂÚ ÏÌÓ„Ó˜ÎÂÌ fpq(s) ÒÚÂÔÂÌË, Ì Ô‚ÓÒıÓ‰fl˘ÂÈ
(
)(
) (( f
min{p, q}, Ú‡ÍÓÈ ˜ÚÓ ( dij2 p ) ( dij2 q ) =
)).
2 pq ( dij )
åÂÚ˘ÂÒÍËÈ ÙÛÌ͈ËÓ̇ΠÑÎfl ÒÎÛ˜‡fl ÍÓ̘ÌÓ„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M ⊂ X ‚ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (X,d) ÔËÏÂ˚ ÏÂÚ˘ÂÒÍÓ„Ó ÙÛÌ͈ËÓ̇· ̇ å Ô˂‰ÂÌ˚ ÌËÊÂ. 1 -˝Ì„Ëfl ÏÌÓÊÂÒÚ‚‡ å ÂÒÚ¸ ˜ËÒÎÓ ; Ó·˚˜ÌÓ = 1,2. p d ( x, y) x , y ∈M , x ≠ y
∑
ë‰Ì ‡ÒÒÚÓflÌË ÏÌÓÊÂÒÚ‚‡ å ÂÒÚ¸ ˜ËÒÎÓ
∑
1 d ( x, y). M ( M − 1) x , y ∈M
à̉ÂÍÒ ÇË̇ ÏÌÓÊÂÒÚ‚‡ å (ÔËÏÂÌflÂÏ˚È ‚ ıËÏËË) ÂÒÚ¸ ˜ËÒÎÓ
∑
1 d ( x, y). 2 x , y ∈M
ñÂÌÚ Ï‡ÒÒ˚ ÍÓ̘ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ å ÂÒÚ¸ ÚӘ͇ x ∈ M, ÏËÌËÏËÁËÛ˛˘‡fl ÙÛÌ͈ËÓ̇Πd 2 ( x, y).
∑
y ∈M
óËÒÎÓ ‚ÒÚÂ˜Ë óËÒÎÓÏ ‚ÒÚÂ˜Ë (ËÎË ˜ËÒÎÓÏ ÉÓÒÒ‡, χ„˘ÂÒÍËÏ ˜ËÒÎÓÏ) ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ ˜ËÒÎÓ r(X,d) (ÂÒÎË Ú‡ÍÓ ÒÛ˘ÂÒÚ‚ÛÂÚ), Ú‡ÍÓ ˜ÚÓ ‰Îfl Í‡Ê‰Ó„Ó ˆÂÎÓ„Ó n Ë Î˛·˚ı (Ì ӷflÁ‡ÚÂθÌÓ ‡Á΢Ì˚ı) x1,...,xn ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ x ∈ X, ‰Îfl ÍÓÚÓÓ„Ó r( X, d ) =
1 2
n
∑ d( xi , x ). i =1
ÖÒÎË ‰Îfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ˜ËÒÎÓ ‚ÒÚÂ˜Ë r(X,d) ÒÛ˘ÂÒÚ‚ÛÂÚ, ÚÓ „Ó‚ÓflÚ, ˜ÚÓ (X,d) ËÏÂÂÚ Ò‚ÓÈÒÚ‚Ó Ò‰ÌÂ„Ó ‡ÒÒÚÓflÌËfl Ë Â„Ó Ï‡„˘ÂÒ͇fl ÍÓÌÒÚ‡ÌÚ‡ r( X, d ) ÓÔ‰ÂÎflÂÚÒfl Í‡Í , „‰Â diam(X,d) = max d ( x, y) – ‰Ë‡ÏÂÚ (X,d). x , y ∈X diam( X , d ) ä‡Ê‰Ó ÍÓÏÔ‡ÍÚÌÓ ҂flÁÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ó·Î‡‰‡ÂÚ Ò‚ÓÈÒÚ‚ÓÏ Ò‰ÌÂ„Ó ‡ÒÒÚÓflÌËfl. Ö‰ËÌ˘Ì˚È ¯‡ {x ∈ V : ||x|| ≤ 1} ·‡Ì‡ıÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ (V, || ⋅ ||) ËÏÂÂÚ Ò‚ÓÈÒÚ‚Ó Ò‰ÌÂ„Ó ‡ÒÒÚÓflÌËfl Ò ˜ËÒÎÓÏ ‚ÒÚÂ˜Ë 1.
32
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
èÓfl‰ÓÍ ÍÓÌ„Û˝ÌÚÌÓÒÚË åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ӷ·‰‡ÂÚ ÔÓfl‰ÍÓÏ ÍÓÌ„Û˝ÌÚÌÓÒÚË n, ÂÒÎË Í‡Ê‰Ó ÍÓ̘ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, Ì fl‚Îfl˛˘ÂÂÒfl ËÁÓÏÂÚ˘ÂÒÍË ‚ÎÓÊËÏ˚Ï ‚ (X,d), ËÏÂÂÚ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó, ÒÓ‰Âʇ˘Â Ì ·ÓΠn ÚÓ˜ÂÍ, ÍÓÚÓÓ Ì ÏÓÊÂÚ ·˚Ú¸ ËÁÓÏÂÚ˘ÂÒÍË ‚ÎÓÊÂÌÓ ‚ (X,d). ꇉËÛÒ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ èÛÒÚ¸ (X,d) – Ó„‡Ì˘ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë M ⊂ X. åÂÚ˘ÂÒÍËÏ ‡‰ËÛÒÓÏ (ËÎË ‡‰ËÛÒÓÏ) ÏÌÓÊÂÒÚ‚‡ å ̇Á˚‚‡ÂÚÒfl ËÌÙËÏÛÏ ‡‰ËÛÒÓ‚ ÏÂÚ˘ÂÒÍËı ¯‡Ó‚, ÒÓ‰Âʇ˘Ëı å, Ú.Â. inf sup d ( x, y). çÂÍÓÚÓ˚ ‡‚ÚÓ˚ ̇Á˚‚‡˛Ú ‡‰ËÛÒÓÏ x ∈M y ∈M
ÔÓÎÓ‚ËÌÛ ‰Ë‡ÏÂÚ‡. ꇉËÛÒÓÏ ÔÓÍ˚ÚËfl ÏÌÓÊÂÒÚ‚‡ M ⊂ X ̇Á˚‚‡ÂÚÒfl max min d ( x, y), Ú.Â. ̇Ëx ∈X y ∈M
ÏÂ̸¯Â ˜ËÒÎÓ R, Ú‡ÍÓ ˜ÚÓ ÓÚÍ˚Ú˚ ÏÂÚ˘ÂÒÍË ¯‡˚ ‡‰ËÛÒ‡ R c ˆÂÌÚ‡ÏË ‚ ˝ÎÂÏÂÌÚ‡ı å ÔÓÍ˚‚‡˛Ú ï. Ö„Ó Ì‡Á˚‚‡˛Ú ¢ ÓËÂÌÚËÓ‚‡ÌÌ˚Ï ı‡ÛÒ‰ÓÙÓ‚˚Ï ‡ÒÒÚÓflÌËÂÏ ÓÚ ï Í å. åÌÓÊÂÒÚ‚Ó å ̇Á˚‚‡ÂÚÒfl ε-ÔÓÍ˚ÚËÂÏ, ÂÒÎË Â„Ó ‡‰ËÛÒ ÔÓÍ˚ÚËfl Ì Ô‚˚¯‡ÂÚ ε. ÑÎfl ‰‡ÌÌÓ„Ó ÔÓÎÓÊËÚÂθÌÓ„Ó ˜ËÒ· m ÏËÌËχÍÒËχθ̇fl ‡ÒÒÚÓflÌ̇fl ÍÓÌÙË„Û‡ˆËfl ‡Áχ m ÂÒÚ¸ m-ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ï Ò Ì‡ËÏÂ̸¯ËÏ ‡‰ËÛÒÓÏ ÔÓÍ˚ÚËfl. ꇉËÛÒÓÏ ÛÔÎÓÚÌÂÌËfl ÏÌÓÊÂÒÚ‚‡ M ⊂ X ̇Á˚‚‡ÂÚÒfl Ú‡ÍÓ ̇˷Óθ¯Â r, ˜ÚÓ ÓÚÍ˚Ú˚ ÏÂÚ˘ÂÒÍË ¯‡˚ ‡‰ËÛÒ‡ r Ò ˆÂÌÚ‡ÏË ‚ ˝ÎÂÏÂÌÚ‡ı å fl‚Îfl˛ÚÒfl ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËÏËÒfl, Ú.Â. min min d ( x, y) > 2 r. åÌÓÊÂÒÚ‚Ó å ̇Á˚‚‡ÂÚÒfl y ∈X y ∈M
ε-ÛÔÎÓÚÌÂÌËÂÏ, ÂÒÎË Â„Ó ‡‰ËÛÒ ÛÔÎÓÚÌÂÌËfl Ì ÏÂÌ ε. ÑÎfl ‰‡ÌÌÓ„Ó ÔÓÎÓÊËÚÂθÌÓ„Ó ˜ËÒ· m χÍÒËχθ̇fl ‡ÒÒÚÓflÌ̇fl ÍÓÌÙË„Û‡ˆËfl ‡Áχ m ÂÒÚ¸ m-ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ ï Ò Ì‡Ë·Óθ¯ËÏ ‡‰ËÛÒÓÏ ÛÔÎÓÚÌÂÌËfl. ê‡ÁÏ ̇ËÏÂ̸¯Â„Ó ε -ÔÓÍ˚ÚËfl Ì Ô‚ÓÒıÓ‰ËÚ ‡Áχ ̇˷Óθ¯Â„Ó ε ε -ÛÔÎÓÚÌÂÌËfl. -ÛÔÎÓÚÌÂÌË å fl‚ÎflÂÚÒfl ̇үËflÂÏ˚Ï, ÂÒÎË M ∪ {x} Ì fl‚ÎflÂÚ2 2 ε Òfl -ÛÔÎÓÚÌÂÌËÂÏ ‰Îfl Í‡Ê‰Ó„Ó x ∈ X\M, Ú.Â. å fl‚ÎflÂÚÒfl Ú‡ÍÊ ε-ÒÂÚ¸˛. 2 ùÍÒˆÂÌÚËÒËÚÂÚ èÛÒÚ¸ (X,d) – Ó„‡Ì˘ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. ùÍÒˆÂÌÚËÒËÚÂÚÓÏ ÚÓ˜ÍË x ∈ X ̇Á˚‚‡ÂÚÒfl ˜ËÒÎÓ e( x ) = max d ( x, y). óËÒ· max e( x ) Ë min e( x ) ̇Á˚‚‡˛ÚÒfl y ∈X
x ∈X
x ∈X
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‰Ë‡ÏÂÚÓÏ Ë ‡‰ËÛÒÓÏ (X,d). íÓ˜ÍË x ∈ X Ò Ï‡ÍÒËχθÌ˚Ï Â(ı) ̇Á˚‚‡˛ÚÒfl ÔÂËÙÂËÈÌ˚ÏË ÚӘ͇ÏË. åÌÓÊÂÒÚ‚‡ {x ∈ X : e(x) ≤ e(z) ‰Îfl β·Ó„Ó z ∈ X} Ë {x ∈ X : d ( x, y) ≤ d ( z, y)
∑
y ∈X
∑
y ∈X
‰Îfl β·Ó„Ó z ∈ X } ̇Á˚‚‡˛ÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÏÂÚ˘ÂÒÍËÏ ˆÂÌÚÓÏ (ËÎË ˆÂÌÚÓÏ ˝ÍÒˆÂÌÚËÒËÚÂÚ‡, ˆÂÌÚÓÏ) Ë ÏÂÚ˘ÂÒÍÓÈ Ï‰ˇÌÓÈ (ËÎË ˆÂÌÚÓÏ ‡ÒÒÚÓflÌËfl) ÔÓÒÚ‡ÌÒÚ‚‡ (X,d). k-ÔÓ‰ÏÌÓÊÂÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl M ⊂ X k-ωˇÌÓÈ, ÂÒÎË Ó̇ ÏËÌËÏËÁËÛÂÚ ÒÛÏÏÛ d ( x, M ), „‰Â d(x,M) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ.
∑
x ∈X
33
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
åÂÚ˘ÂÒÍËÈ ‰Ë‡ÏÂÚ åÂÚ˘ÂÒÍËÈ ‰Ë‡ÏÂÚ (ËÎË ‰Ë‡ÏÂÚ, ¯ËË̇) diam(M) ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M ⊆ X ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ÓÔ‰ÂÎflÂÚÒfl Í‡Í sup d ( x, y). x , y ∈M
ɇ٠‰Ë‡ÏÂÚ‡ ÏÌÓÊÂÒÚ‚‡ å ËÏÂÂÚ ‚¯Ë̇ÏË ‚Ò ÚÓ˜ÍË x ∈ M Ò d(x,y) = = diam(M) ‰Îfl ÌÂÍÓÚÓÓ„Ó y ∈ M, ‡ ‚ ͇˜ÂÒڂ · – Ô‡˚ Â„Ó ‚¯ËÌ Ì‡ ‡ÒÒÚÓflÌËË diam(M) ‚ (X,d). åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ‡ÌÚËÔÓ‰‡Î¸Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË ‰Ë‡ÏÂڇθÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ), ÂÒÎË ‰Îfl β·Ó„Ó x ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ ‰Ë‡ÏÂڇθÌÓ ÔÓÚË‚ÓÔÓÎÓÊ̇fl ÚӘ͇ – Â„Ó ‡ÌÚËÔÓ‰, Ú.Â. ‰ËÌÒÚ‚ÂÌÌÓ x' ∈ X, Ú‡ÍÓ ˜ÚÓ ËÌÚ‚‡Î I(x,x') ÒÓ‚Ô‡‰‡ÂÚ Ò ï. ïÓχÚ˘ÂÒÍË ˜ËÒ· ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ÑÎfl ‰‡ÌÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) Ë ÌÂÍÓÚÓÓ„Ó ÏÌÓÊÂÒÚ‚‡ D ÔÓÎÓÊËÚÂθÌ˚ı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ˜ËÒÂÎ D-ıÓχÚ˘ÂÒÍËÏ ˜ËÒÎÓÏ ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl Òڇ̉‡ÚÌÓ ıÓχÚ˘ÂÒÍÓ ˜ËÒÎÓ „‡Ù‡ D -‡ÒÒÚÓflÌËfl ‰Îfl (X,d), Ú.Â. „‡Ù‡ Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ ï Ë ÏÌÓÊÂÒÚ‚ÓÏ Â·Â {xy :d(x,y) ∈ D}. é·˚˜ÌÓ (X,d) fl‚ÎflÂÚÒfl lp -ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ë D = {1} (ıÓχÚ˘ÂÒÍÓ ˜ËÒÎÓ ÅẨ‡–èÂÎÂÒ‡) ËÎË D = [1–ε, 1+ε] (ıÓχÚ˘ÂÒÍÓ ˜ËÒÎÓ „‡Ù‡ ε-‰ËÌ˘ÌÓ„Ó ‡ÒÒÚÓflÌËfl). ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ÔÓÎËıÓχÚ˘ÂÒÍËÏ ˜ËÒÎÓÏ Ì‡Á˚‚‡ÂÚÒfl ÏËÌËχθÌÓ ˜ËÒÎÓ ˆ‚ÂÚÓ‚, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl Ó͇¯Ë‚‡ÌËfl ‚ÒÂı ÚÓ˜ÂÍ x ∈ X Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ ‰Îfl Í‡Ê‰Ó„Ó Í·ÒÒ‡ ˆ‚ÂÚ‡ ëi ÒÛ˘ÂÒÚ‚Ó‚‡ÎÓ Ú‡ÍÓ ‡ÒÒÚÓflÌË di, ˜ÚÓ·˚ ÌË͇ÍË ‰‚ ÚÓ˜ÍË ËÁ ëi Ì ̇ıÓ‰ËÎËÒ¸ ̇ ‡ÒÒÚÓflÌËË di. ÑÎfl β·Ó„Ó ˆÂÎÓ„Ó ˜ËÒ· t > 0 ıÓχÚ˘ÂÒÍÓ ˜ËÒÎÓ t-‡ÒÒÚÓflÌËfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ ˆ‚ÂÚÓ‚, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl Ó͇¯Ë‚‡ÌËfl ‚ÒÂı ÚÓ˜ÂÍ x ∈ X Ú‡Í, ˜ÚÓ·˚ β·˚ ‰‚ ÚÓ˜ÍË Ì‡ ‡ÒÒÚÓflÌËË ≤t ËÏÂ˛Ú ‡ÁÌ˚ ˆ‚ÂÚ‡. ÑÎfl β·Ó„Ó ˆÂÎÓ„Ó ˜ËÒ· t > 0 t-Ï ˜ËÒÎÓÏ Å‡·‡Ë ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl ÏËÌËχθÌÓ ˜ËÒÎÓ ˆ‚ÂÚÓ‚, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl Ó͇¯Ë‚‡ÌËfl ‚ÒÂı ÚÓ˜ÂÍ x ∈ X Ú‡Í, ˜ÚÓ·˚ ‰Îfl β·Ó„Ó ÏÌÓÊÂÒÚ‚‡ D ÔÓÎÓÊËÚÂθÌ˚ı ‡ÒÒÚÓflÌËÈ Ò |D| ≤ t ˆ‚ÂÚ‡ β·˚ı ‰‚Ûı ÚÓ˜ÂÍ, ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÍÓÚÓ˚ÏË ÔË̇‰ÎÂÊËÚ D, Ì ÒÓ‚Ô‡‰‡ÎË. éÚÌÓ¯ÂÌË òÚÂÈ̇ èÛÒÚ¸ (X,d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë V ⊂ X – Â„Ó ÍÓ̘ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó. ê‡ÒÒÏÓÚËÏ ÔÓÎÌ˚È ‚Á‚¯ÂÌÌ˚È „‡Ù G = (V,E) Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ V Ë ‚ÂÒ‡ÏË Â·Â d(x,y) ‰Îfl ‚ÒÂı x,y ∈ V. éÒÚÓ‚Ì˚Ï ‰Â‚ÓÏ í „‡Ù‡ G ̇Á˚‚‡ÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ËÁ |V| – 1 ·‡, Ó·‡ÁÛ˛˘Â ‰ÂÂ‚Ó Ì‡ V, Ò ‚ÂÒÓÏ d(T), ‡‚Ì˚Ï ÒÛÏÏ ‚ÂÒÓ‚ Â„Ó Â·Â. èÛÒÚ¸ MSTV – ÏËÌËχθÌÓ ÓÒÚÓ‚ÌÓ ‰ÂÂ‚Ó „‡Ù‡ G, Ú.Â. ÓÒÚÓ‚ÌÓ ‰ÂÂ‚Ó ÏËÌËχθÌÓ„Ó ‚ÂÒ‡ d(MSTV). åËÌËχθÌÓ ‰ÂÂ‚Ó òÚÂÈ̇ ̇ V ÂÒÚ¸ Ú‡ÍÓ ‰ÂÂ‚Ó SMTV, ˜ÚÓ Â„Ó ÏÌÓÊÂÒÚ‚Ó ‚¯ËÌ fl‚ÎflÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ ï, ÒÓ‰Âʇ˘ËÏ V, Ë d ( SMTV ) = = inf d ( MSTM ). M ⊂ X :V ⊂ M
éÚÌÓ¯ÂÌË òÚÂÈ̇ S t(X,d) ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ÓÔ‰ÂÎflÂÚÒfl Í‡Í inf
V⊂X
d ( SMTV ) . d ( MSTV )
34
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÑÎfl β·Ó„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ËÏÂÂÏ l2 -ÏÂÚËÍË (Ú.Â. ‚ÍÎˉӂÓÈ ÏÂÚËÍË) ̇ 2, ÓÌÓ ‡‚ÌÓ 1 -ÏÂÚËÍË
̇ 2 ÓÌÓ ‡‚ÌÓ
1 ≤ St ( X , d ) ≤ 1. ÑÎfl 2
3 , ‚ ÚÓ ‚ÂÏfl Í‡Í ‰Îfl l 2
2 . 3
åÂÚ˘ÂÒÍËÈ ·‡ÁËÒ èÛÒÚ¸ (X,d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. èÓ‰ÏÌÓÊÂÒÚ‚Ó M ⊂ X ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ·‡ÁËÒÓÏ ï, ÂÒÎË ‚˚ÔÓÎÌflÂÚÒfl ÒÎÂ‰Û˛˘Â ÛÒÎÓ‚ËÂ: d(x,s) = d(y,s) ‰Îfl ‚ÒÂı s ∈ M ‚ΘÂÚ x = y. ÑÎfl x ∈ X ˜ËÒ· d(x,s), s ∈ M ̇Á˚‚‡˛ÚÒfl ÏÂÚ˘ÂÒÍËÏË ÍÓÓ‰Ë̇ڇÏË ı. ë‰ËÌÌÓ ÏÌÓÊÂÒÚ‚Ó èÛÒÚ¸ (X,d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë y, z ∈ X – ‰‚Â Â„Ó ‡Á΢Ì˚ ÚÓ˜ÍË. ë‰ËÌÌÓÏ ÏÌÓÊÂÒÚ‚ÓÏ (ËÎË ·ËÒÒÂÍÚËÒÓÈ) ï ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó {x ∈ X : d(x,y) = d(x,z)} Ò‰ËÌÌ˚ı ÚÓ˜ÂÍ ı. ÉÓ‚ÓflÚ, ˜ÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ËÏÂÂÚ n-ÚӘ˜ÌÓ ҂ÓÈÒÚ‚Ó ·ËÒÒÂÍÚËÒ˚, ÂÒÎË ‰Îfl ͇ʉÓÈ Ô‡˚ Â„Ó ÚÓ˜ÂÍ Ò‰ËÌÌÓ ÏÌÓÊÂÒÚ‚Ó ËÏÂÂÚ Ó‚ÌÓ n ÚÓ˜ÂÍ. 1-íӘ˜ÌÓ ҂ÓÈÒÚ‚Ó ·ËÒÒÂÍÚËÒ˚ ÓÁ̇˜‡ÂÚ Â‰ËÌÒÚ‚ÂÌÌÓÒÚ¸ ÓÚÓ·‡ÊÂÌËfl Ò‰ËÌÌÓÈ ÚÓ˜ÍË (ÒÏ. ë‰ËÌ̇fl ‚˚ÔÛÍÎÓÒÚ¸). îÛÌ͈Ëfl ‡ÒÒÚÓflÌËfl îÛÌ͈Ëfl ‡ÒÒÚÓflÌËfl (ËÎË Îۘ‚‡fl ÙÛÌ͈Ëfl) ÂÒÚ¸ ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl ̇ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (X,d) (Ó·˚˜ÌÓ Ì‡ ‚ÍÎˉӂÓÏ ÔÓÒÚ‡ÌÒÚ‚Â n) f : X → 0, ÍÓÚÓÓ fl‚ÎflÂÚÒfl Ó‰ÌÓÓ‰Ì˚Ï, Ú.Â. f(tx) = tf(f) ‰Îfl ‚ÒÂı t ≥ 0 Ë ‚ÒÂı x ∈ X. îÛÌ͈Ëfl ‡ÒÒÚÓflÌËfl f ̇Á˚‚‡ÂÚÒfl ÒËÏÏÂÚ˘ÌÓÈ, ÂÒÎË f(x) = f(–x), ÔÓÎÓÊËÚÂθÌÓÈ, ÂÒÎË f(x) > 0 ‰Îfl ‚ÒÂı ı ≠ 0 Ë ‚˚ÔÛÍÎÓÈ, ÂÒÎË f(x + y) ≤ f(x) + f(y) c f(0) = 0. ÖÒÎË ï = n , ÚÓ ÏÌÓÊÂÒÚ‚Ó {x ∈ n : f(x) < 1} ̇Á˚‚‡ÂÚÒfl Á‚ÂÁ‰Ì˚Ï ÚÂÎÓÏ; ÓÌÓ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌÌÓÈ ÙÛÌ͈ËË ‡ÒÒÚÓflÌËfl. á‚ÂÁ‰ÌÓ ÚÂÎÓ ·Û‰ÂÚ Ó„‡Ì˘ÂÌÌ˚Ï, ÂÒÎË f ÔÓÎÓÊËÚÂθ̇, ÓÌÓ ·Û‰ÂÚ ÒËÏÏÂÚ˘Ì˚Ï ÓÚÌÓÒËÚÂθÌÓ Ì‡˜‡Î‡ ÍÓÓ‰Ë̇Ú, ÂÒÎË f ÒËÏÏÂÚ˘̇, Ë ‚˚ÔÛÍÎ˚Ï, ÂÒÎË f – ‚˚ÔÛÍ·. Ç˚ÔÛÍ·fl ÙÛÌ͈Ëfl ‡ÒÒÚÓflÌËfl èÛÒÚ¸ B ⊂ n – ÍÓÏÔ‡ÍÚ̇fl ‚˚ÔÛÍ·fl ӷ·ÒÚ¸, ÒÓ‰Âʇ˘‡fl ‚ Ò‚ÓÂÈ ‚ÌÛÚÂÌÌÓÒÚË Ì‡˜‡ÎÓ ÍÓÓ‰Ë̇Ú. Ç˚ÔÛÍÎÓÈ ÙÛÌ͈ËÂÈ ‡ÒÒÚÓflÌËfl (ËÎË ËÁÏÂËÚÂÎÂÏ, ÙÛÌ͈ËÂÈ ‡ÒÒÚÓflÌËfl åËÌÍÓ‚ÒÍÓ„Ó) dB(x,y) ̇Á˚‚‡ÂÚÒfl Í‚‡ÁËÏÂÚË͇ ̇ n, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl x ≠ y Í‡Í inf{α > 0 : y – x ∈ αB}. y − x2 , „‰Â x − z2 z – ‰ËÌÒÚ‚ÂÌ̇fl ÚӘ͇ „‡Ìˈ˚ ∂(x + B), ÔË̇‰ÎÂʇ˘‡fl ÎÛ˜Û, ‚˚ıÓ‰fl˘ÂÏÛ ËÁ ı Ë ÔÓıÓ‰fl˘ÂÏÛ ˜ÂÂÁ Û. èË ˝ÚÓÏ B = {x ∈ n : dB(0, x) ≤ 1} Ò ‡‚ÂÌÒÚ‚ÓÏ ÚÓθÍÓ ‰Îfl x ∈ ∂B . Ç˚ÔÛÍ·fl ÙÛÌ͈Ëfl ‡ÒÒÚÓflÌËfl ̇Á˚‚‡ÂÚÒfl ÔÓÎË˝‰‡Î¸ÌÓÈ, ÂÒÎË Ç – ÏÌÓ„Ó„‡ÌÌËÍ, ÚÂÚ‡˝‰‡Î¸ÌÓÈ, ÂÒÎË ˝ÚÓ ÚÂÚ‡˝‰, Ë Ú.‰. ÖÒÎË ÏÌÓÊÂÒÚ‚Ó Ç ˆÂÌڇθÌÓÒËÏÏÂÚ˘ÌÓ ÓÚÌÓÒËÚÂθÌÓ Ì‡˜‡Î‡ ÍÓÓ‰Ë̇Ú, ÚÓ dB fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ åËÌÍÓ‚ÒÍÓ„Ó (ÒÏ. „Î. 6), ‰ËÌ˘Ì˚È ¯‡ ÍÓÚÓÓÈ ÂÒÚ¸ Ç. ùÍ‚Ë‚‡ÎÂÌÚÌ˚Ï Ó·‡ÁÓÏ Ó̇ ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂ̇ ͇Í
35
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
ùÎÂÏÂÌÚ Ì‡ËÎÛ˜¯Â„Ó ÔË·ÎËÊÂÌËfl èÛÒÚ¸ (X,d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë M ⊂ X – Â„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚Ó. íÓ„‰‡ ˝ÎÂÏÂÌÚ u0 ∈ M ̇Á˚‚‡ÂÚÒfl ˝ÎÂÏÂÌÚÓÏ Ì‡ËÎÛ˜¯Â„Ó ÔË·ÎËÊÂÌËfl Í ‰‡ÌÌÓÏÛ ˝ÎÂÏÂÌÚÛ x ∈ X, ÂÒÎË d ( x, u0 ) = inf d ( x, u), Ú.Â. ÂÒÎË ‚Â΢Ë̇ d(x, u0) u ∈M
fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ d(x, M). åÂÚ˘ÂÒ͇fl ÔÓÂ͈Ëfl (ËÎË ÓÔ‡ÚÓ Ì‡ËÎÛ˜¯Â„Ó ÔË·ÎËÊÂÌËfl, ÓÚÓ·‡ÊÂÌË ·ÎËʇȯÂÈ ÚÓ˜ÍË) ÂÒÚ¸ ÏÌÓ„ÓÁ̇˜ÌÓ ÓÚÓ·‡ÊÂÌËÂ, ÒÚ‡‚fl˘Â ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ͇ʉÓÏÛ ˝ÎÂÏÂÌÚÛ d(x ∈ X) ÏÌÓÊÂÒÚ‚Ó ˝ÎÂÏÂÌÚÓ‚ ̇ËÎÛ˜¯Â„Ó ÔË·ÎËÊÂÌËfl ËÁ ÏÌÓÊÂÒÚ‚‡ å (ÒÏ. ê‡ÒÒÚÓflÌÌÓ ÓÚÓ·‡ÊÂÌËfl). åÌÓÊÂÒÚ‚ÓÏ ó·˚¯Â‚‡ (ËÎË ÒÂÎÂÍÚËÛÂÏ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ) ‚ ÔÓËÁ‚ÓθÌÓÏ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (X,d) ̇Á˚‚‡ÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚Ó M ⊂ X , ÒÓ‰Âʇ˘Â ‰ËÌÒÚ‚ÂÌÌ˚È ˝ÎÂÏÂÌÚ Ì‡ËÎÛ˜¯Â„Ó ÔË·ÎËÊÂÌËfl ‰Îfl Í‡Ê‰Ó„Ó x ∈ X. èÓ‰ÏÌÓÊÂÒÚ‚Ó M ⊂ X ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ ÔÓÎÛ-ó·˚¯Â‚‡, ÂÒÎË ËÏÂÂÚÒfl Ì ·ÓΠӉÌÓ„Ó Ú‡ÍÓ„Ó ˝ÎÂÏÂÌÚ‡, Ë ÔÓÍÒËÏË̇θÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ, ÂÒÎË ËÏÂÂÚÒfl Ì ÏÂÌ ӉÌÓ„Ó Ú‡ÍÓ„Ó ˝ÎÂÏÂÌÚ‡. ꇉËÛÒÓÏ ó·˚¯Â‚‡ ‰Îfl ÏÌÓÊÂÒÚ‚‡ å ̇Á˚‚‡ÂÚÒfl inf sup d ( x, y), ‡ ˆÂÌÚÓÏ x ∈X y ∈M
ó·˚¯Â‚‡ ‰Îfl ÏÌÓÊÂÒÚ‚‡ å – ˝ÎÂÏÂÌÚ x 0 ∈ X, ‡ÎËÁÛ˛˘ËÈ ‰‡ÌÌ˚È ËÌÙËÏÛÏ. ê‡ÒÒÚÓflÌÌÓ ÓÚÓ·‡ÊÂÌË ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) Ë ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M ⊂ X ‡ÒÒÚÓflÌÌ˚Ï ÓÚÓ·‡ÊÂÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÙÛÌ͈Ëfl fM : X → ≥ 0, „‰Â f M ( x ) = inf d ( x, u) ÂÒÚ¸ u ∈M
‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ d(x,M) (ÒÏ. åÂÚ˘ÂÒ͇fl ÔÓÂ͈Ëfl). ÖÒÎË „‡Ìˈ‡ Ç(å) ÏÌÓÊÂÒÚ‚‡ å ÓÔ‰ÂÎÂ̇, ÚÓ ÙÛÌ͈Ëfl ‡ÒÒÚÓflÌËfl ÒÓ Á̇ÍÓÏ gM ÓÔ‰ÂÎflÂÚÒfl Í‡Í gM ( x ) = − inf d ( x, u) ‰Îfl x ∈ M Ë Í‡Í gM ( x ) = inf d ( x, u) u ∈B( M )
u ∈B( M )
‚ ÓÒڇθÌ˚ı ÒÎÛ˜‡flı. ÖÒÎË å fl‚ÎflÂÚÒfl (Á‡ÏÍÌÛÚ˚Ï Ë ÓËÂÌÚËÛÂÏ˚Ï) ÏÌÓ„ÓÓ·‡ÁËÂÏ ‚ n, ÚÓ gM ·Û‰ÂÚ Â¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ˝ÈÍÓ̇· |∇g | = 1 ‰Îfl Â„Ó „‡‰ËÂÌÚ‡ ∇. ÖÒÎË ï = n Ë ‰Îfl Í‡Ê‰Ó„Ó x ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌÌ˚È ˝ÎÂÏÂÌÚ u(x) c d(x,M) = d(x,u(x)), (Ú.Â. å ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ó·˚¯Â‚‡), ÚÓ ||x–u(x)|| ̇Á˚‚‡ÂÚÒfl ‚ÂÍÚÓÌÓÈ ÙÛÌ͈ËÂÈ ‡ÒÒÚÓflÌËfl. ê‡ÒÒÚÓflÌËfl ÓÚÓ·‡ÊÂÌËfl ÔËÏÂÌfl˛ÚÒfl ÔË ÔÓ„‡ÏÏËÓ‚‡ÌËË ‰‚ËÊÂÌËfl Ó·ÓÚÓÚÂıÌ˘ÂÒÍËı ÛÒÚÓÈÒÚ‚ (å ‚˚ÒÚÛÔ‡ÂÚ Í‡Í ÏÌÓÊÂÒÚ‚Ó ÚÓ˜ÂÍ ÔÂÔflÚÒÚ‚ËÈ) Ë, „·‚Ì˚Ï Ó·‡ÁÓÏ, ÔË Ó·‡·ÓÚÍ ËÁÓ·‡ÊÂÌËÈ (‚ ˝ÚÓÏ ÒÎÛ˜‡Â å fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ ‚ÒÂı ËÎË ÚÓθÍÓ ÔÓ„‡Ì˘Ì˚ı ÔËÍÒÂÎÂÈ Ó·‡Á‡). èË ï = n „‡Ù {x, f M(x)) : x ∈ X) ‰Îfl d ( x,M) ̇Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸˛ ÇÓÓÌÓ„Ó ‰Îfl ÏÌÓÊÂÒÚ‚‡ å. ÑËÒÍÂÚ̇fl ‰Ë̇Ï˘ÂÒ͇fl ÒËÒÚÂχ ÑËÒÍÂÚ̇fl ‰Ë̇Ï˘ÂÒ͇fl ÒËÒÚÂχ ÂÒÚ¸ Ô‡‡, ÒÓÒÚÓfl˘‡fl ËÁ ÌÂÔÛÒÚÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d), ̇Á˚‚‡ÂÏÓ„Ó Ù‡ÁÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ë ÌÂÔÂ˚‚ÌÓ„Ó ÓÚÓ·‡ÊÂÌËfl f : X → X, ̇Á˚‚‡ÂÏÓ„Ó ˝‚ÓβˆËÓÌÌ˚Ï Á‡ÍÓÌÓÏ. ÑÎfl β·Ó„Ó x ∈ X Â„Ó Ó·ËÚ‡ ÂÒÚ¸ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ {fn(x)}n , „‰Â fn(x) = f(fn–1(x)) Ò f0 (x) = x. é·ËÚ‡ x ∈ X ̇Á˚‚‡ÂÚÒfl ÔÂËӉ˘ÂÒÍÓÈ, ÂÒÎË fn (x) = x ‰Îfl ÌÂÍÓÚÓÓ„Ó n > 0. é·˚˜ÌÓ ‰ËÒÍÂÚÌ˚ ‰Ë̇Ï˘ÂÒÍË ÒËÒÚÂÏ˚ ËÒÒÎÂ‰Û˛ÚÒfl (̇ÔËÏÂ, ‚ ÚÂÓËË ÛÔ‡‚ÎÂÌËfl) ‚ ÍÓÌÚÂÍÒÚ ÒÚ‡·ËθÌÓÒÚË ÒËÒÚÂÏ; ÚÂÓËfl ı‡ÓÒ‡, ÒÓ Ò‚ÓÂÈ ÒÚÓÓÌ˚, Á‡ÌËχÂÚÒfl χÍÒËχθÌÓ ÌÂÒÚ‡·ËθÌ˚ÏË ÒËÒÚÂχÏË.
36
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÄÚÚ‡ÍÚÓ – Ú‡ÍÓ Á‡ÏÍÌÛÚÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó Ä ÏÌÓÊÂÒÚ‚‡ ï, ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ÓÚÍ˚Ú‡fl ÓÍÂÒÚÌÓÒÚ¸ U ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä, ӷ·‰‡˛˘‡fl Ò‚ÓÈÒÚ‚ÓÏ lim d ( f n (b), A) = 0 ‰Îfl Í‡Ê‰Ó„Ó b ∈ U, Ú.Â. Ä ÔËÚfl„Ë‚‡ÂÚ ‚Ò ·ÎËÁÎÂʇ˘Ë n →∞
Ó·ËÚ˚. Ç ˝ÚÓÏ ÒÎÛ˜‡Â d (x,A) = inf d ( x, y) ÂÒÚ¸ y ∈A
‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ
Ë ÏÌÓÊÂÒÚ‚ÓÏ. ÑË̇Ï˘ÂÒ͇fl ÒËÒÚÂχ ̇Á˚‚‡ÂÚÒfl ı‡ÓÚ˘ÂÒÍÓÈ (ÚÓÔÓÎӄ˘ÂÒÍË ËÎË ÔÓ Ñ‚‡ÌË), ÂÒÎË Ó̇ fl‚ÎflÂÚÒfl „ÛÎflÌÓÈ (Ú.Â. ï ËÏÂÂÚ ÔÎÓÚÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ˝ÎÂÏÂÌÚÓ‚ Ò ÔÂËӉ˘ÂÒÍËÏË Ó·ËÚ‡ÏË) Ë Ú‡ÌÁËÚË‚ÌÓÈ (Ú.Â. ‰Îfl β·˚ı ‰‚Ûı ÌÂÔÛÒÚ˚ı ÓÚÍ˚Ú˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ Ä, Ç ÏÌÓÊÂÒÚ‚‡ ï ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ ˜ËÒÎÓ n, ˜ÚÓ f n ( A) ∩ B ≠ 0/) . åÂÚ˘ÂÒÍÓ ‡ÒÒÎÓÂÌË èÛÒÚ¸ (X,d) – ÔÓÎÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. èÓ‰ÏÌÓÊÂÒÚ‚‡ å1 Ë å2 ÏÌÓÊÂÒÚ‚‡ ï ̇Á˚‚‡˛ÚÒfl ˝Í‚ˉËÒÚ‡ÌÚÌ˚ÏË (‡‚ÌÓÓÚÒÚÓfl˘ËÏË), ÂÒÎË ‰Îfl Í‡Ê‰Ó„Ó x ∈ M1 ÒÛ˘ÂÒÚ‚ÛÂÚ y ∈ M 2 Ò d(x,y), ‡‚Ì˚Ï ı‡ÛÒ‰ÓÙÓ‚ÓÈ ÏÂÚËÍ ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË å1 Ë å2 . åÂÚ˘ÂÒÍÓ ‡ÒÒÎÓÂÌË ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ÂÒÚ¸ ‡Á·ËÂÌË ÏÌÓÊÂÒÚ‚‡ ï ̇ ËÁÓÏÂÚ˘ÂÒÍË ‚Á‡ËÏÌÓ ˝Í‚ˉËÒÚ‡ÌÚÌ˚ Á‡ÏÍÌÛÚ˚ ÏÌÓÊÂÒÚ‚‡. åÂÚ˘ÂÒÍÓ هÍÚÓ-ÔÓÒÚ‡ÌÒÚ‚Ó X/ ̇ÒΉÛÂÚ Ì‡ÚۇθÌÛ˛ ÏÂÚËÍÛ, ‰Îfl ÍÓÚÓÓÈ ‡ÒÒÚÓflÌÌÓ ÓÚÓ·‡ÊÂÌË fl‚ÎflÂÚÒfl ÔÓ‰ÏÂÚËÂÈ. ëÚÛÍÚÛ‡ ÏÂÚ˘ÂÒÍÓ„Ó ÍÓÌÛÒ‡ èÛÒÚ¸ (X, d, x0) – ÔÛÌÍÚËÓ‚‡ÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, Ú.Â. ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) Ò ÙËÍÒËÓ‚‡ÌÌÓÈ ÚÓ˜ÍÓÈ x0 ∈ X. ëÚÛÍÚÛÓÈ ÏÂÚ˘ÂÒÍÓ„Ó ÍÓÌÛÒ‡ ̇ ÌÂÏ fl‚ÎflÂÚÒfl (ÚӘ˜ÌÓ) ÌÂÔÂ˚‚ÌÓ ÒÂÏÂÈÒÚ‚Ó ft(t ∈ ≥ 0) ‡ÒÚflÊÂÌËÈ ÏÌÓÊÂÒÚ‚‡ ï, ÓÒÚ‡‚Îfl˛˘Ëı ËÌ‚‡Ë‡ÌÚÌÓÈ ÚÓ˜ÍÛ ı0 , Ú‡Í ˜ÚÓ d(ft(x,y), f t(y)) = td(x,y) ‰Îfl ‚ÒÂı ı, Û Ë ft ⋅ fs = fts. Ň̇ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ËÏÂÂÚ Ú‡ÍÛ˛ ÒÚÛÍÚÛÛ ‰Îfl ‡ÒÚflÊÂÌËÈ ft(x) = = tx(t ∈ ≥ 0). ֢ ӉÌËÏ ÔËÏÂÓÏ fl‚ÎflÂÚÒfl ‚ÍÎˉӂ ÍÓÌÛÒ Ì‡‰ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ÒÏ. åÂÚË͇ ÍÓÌÛÒ‡, „Î.9). åÂÚ˘ÂÒÍËÈ ÍÓÌÛÒ åÂÚ˘ÂÒÍËÏ ÍÓÌÛÒÓÏ Ì‡Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÔÓÎÛÏÂÚËÍ Ì‡ ÏÌÓÊÂÒÚ‚Â Vn = {1,…,n}. å‡Úˈ‡ ‡ÒÒÚÓflÌËÈ èÛÒÚ¸ (X = {x1,…,xn}, d) – ÍÓ̘ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. Ö„Ó Ï‡Úˈ‡ ‡ÒÒÚÓflÌËÈ – ˝ÚÓ ÒËÏÏÂÚ˘̇fl n × n χÚˈ‡ ((dij)), „‰Â dij = d(xi, xj) ‰Îfl β·˚ı 1 ≤ i, j ≤ n. å‡Úˈ‡ ä˝ÎË–åÂ̄‡ èÛÒÚ¸ (X = {x 1 ,…,xn}, d) – ÍÓ̘ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. å‡ÚˈÂÈ ä˝ÎË– åÂ̄‡ ‰Îfl ÌÂ„Ó fl‚ÎflÂÚÒfl ÒËÏÏÂÚ˘̇fl (n+1) × (n+1) χÚˈ‡ 0 CM ( X , d ) = T e
e , D
„‰Â D = (dij)) ÂÒÚ¸ χÚˈ‡ ‡ÒÒÚÓflÌËÈ ÔÓÒÚ‡ÌÒÚ‚‡ (X , d ), ‡ –n-‚ÂÍÚÓ, ‚Ò ÍÓÏÔÓÌÂÌÚ˚ ÍÓÚÓÓ„Ó ‡‚Ì˚ 1. éÔ‰ÂÎËÚÂθ χÚˈ˚ CM(X,d) ̇Á˚‚‡ÂÚÒfl ÓÔ‰ÂÎËÚÂÎÂÏ ä˝ÎË–åÂ̄‡.
37
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
å‡Úˈ‡ ɇÏχ èÛÒÚ¸ v1 ,…,vk – ˝ÎÂÏÂÌÚ˚ ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡. å‡ÚˈÂÈ É‡Ïχ fl‚ÎflÂÚÒfl ÒËÏÏÂÚ˘̇fl k × k χÚˈ‡ G( v1 ,...vk ) =
(( v , v )) i
j
ÔÓÔ‡Ì˚ı Ò͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ ˝ÎÂÏÂÌÚÓ‚ v1 ,…,vk. k × k χÚˈ‡ fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÔÓÎÛÓÔ‰ÂÎÂÌÌÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ˝ÚÓ Ï‡Úˈ‡ ɇÏχ. k × k χÚˈ‡ fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ – χÚˈ‡ ɇÏχ Ò ÎËÌÂÈÌÓ ÌÂÁ‡‚ËÒËÏ˚ÏË ÓÔ‰ÂÎfl˛˘ËÏË ‚ÂÍÚÓ‡ÏË. 1 G(v1,…,vk) = (( d E2 ( vi , v j ))) + d E2 ( v0 , v j ) − d E2 ( vi , v j ))), Ú.Â. Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË 2 〈,〉 ÂÒÚ¸ ÔÓ‰Ó·ÌÓÒÚ¸ ÔÓËÁ‚‰ÂÌËfl ÉÓÏÓ‚‡ ‰Îfl Í‚‡‰‡Ú‡ ‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl d E2 . k × k χÚˈ‡ (( d E2 ( vi , v j ))) ÂÒÚ¸ ‡ÒÒÚÓflÌË ÓÚˈ‡ÚÂθÌÓ„Ó ÚËÔ‡; ‚Ò ڇÍË k × k χÚˈ˚ Ó·‡ÁÛ˛Ú (ÌÂÔÓÎË˝‰‡Î¸Ì˚) Á‡ÏÍÌÛÚ˚È ‚˚ÔÛÍÎ˚È ÍÓÌÛÒ ‚ÒÂı Ú‡ÍËı ‡ÒÒÚÓflÌËÈ Ì‡ ‰‡ÌÌÓÏ k-ÏÌÓÊÂÒÚ‚Â. éÔ‰ÂÎËÚÂθ χÚˈ˚ ɇÏχ ̇Á˚‚‡ÂÚÒfl ÓÔ‰ÂÎËÚÂÎÂÏ É‡Ïχ; Â„Ó ‚Â΢Ë̇ ‡‚̇ Í‚‡‰‡ÚÛ k-ÏÂÌÓ„Ó Ó·˙Âχ Ô‡‡ÎÎÂÎÓÚÓÔ‡, ÔÓÒÚÓÂÌÌÓ„Ó Ì‡ v1 ,…,vk. àÁÓÏÂÚËfl èÛÒÚ¸ (X, dï) Ë (Y, dY) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. îÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl ËÁÓÏÂÚ˘ÂÒÍËÏ ‚ÎÓÊÂÌËÂÏ ï ‚ Y, ÂÒÎË Ó̇ ËÌ˙ÂÍÚ˂̇ Ë ‰Îfl ‚ÒÂı x, y ∈ X ËÏÂÂÚ ÏÂÒÚÓ ‡‚ÂÌÒÚ‚Ó dY(f(x), f(y)) = dX(x,y). àÁÓÏÂÚËÂÈ Ì‡Á˚‚‡ÂÚÒfl ·ËÂÍÚË‚ÌÓ ËÁÓÏÂÚ˘ÂÒÍÓ ‚ÎÓÊÂÌËÂ. Ñ‚‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡˛ÚÒfl ËÁÓÏÂÚ˘ÂÒÍËÏË (ËÎË ËÁÓÏÂÚ˘ÂÒÍË ËÁÓÏÓÙÌ˚ÏË), ÂÒÎË ÏÂÊ‰Û ÌËÏË ÒÛ˘ÂÒÚ‚ÛÂÚ ËÁÓÏÂÚËfl. ë‚ÓÈÒÚ‚‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚, ÒÓı‡Ìfl˛˘ËÂÒfl ËÌ‚‡Ë‡ÌÚÌ˚ÏË ÓÚÌÓÒËÚÂθÌÓ ËÁÓÏÂÚËÈ (ÔÓÎÌÓÚ‡, Ó„‡Ì˘ÂÌÌÓÒÚ¸ Ë Ú.Ô.), ̇Á˚‚‡˛ÚÒfl ÏÂÚs˘ÂÒÍËÏË Ò‚ÓÈÒÚ‚‡ÏË (ËÎË ÏÂÚ˘ÂÒÍËÏË ËÌ‚‡Ë‡ÌÚ‡ÏË). àÁÓÏÂÚËÂÈ ÔÛÚË (ËÎË ÎËÌÂÈÌÓÈ ËÁÓÏÂÚËÂÈ) fl‚ÎflÂÚÒfl ÔÂÓ·‡ÁÓ‚‡ÌËÂ ï ‚ Y (Ì ӷflÁ‡ÚÂθÌÓ ·ËÂÍÚË‚ÌÓÂ), ÒÓı‡Ìfl˛˘Â ‰ÎËÌÛ ÍË‚˚ı. ÜÂÒÚÍÓ ÔÂÂÏ¢ÂÌË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ÜÂÒÚÍËÏ ÔÂÂÏ¢ÂÌËÂÏ (ËÎË ÔÓÒÚÓ ÔÂÂÏ¢ÂÌËÂÏ) ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡ÂÚÒfl ËÁÓÏÂÚËfl (X,d) ̇ Ò·fl. ÑÎfl ÔÂÂÏ¢ÂÌËfl f ÙÛÌ͈Ëfl ÔÂÂÌÂÒÂÌËfl df (x) ‡‚̇ df (x, f(x)). èÂÂÏ¢ÂÌË f ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÔÓÒÚ˚Ï, ÂÒÎË inf d f ( x ) = d ( x 0 , f ( x 0 )) ‰Îfl ÌÂÍÓÚÓÓ„Ó x0 ∈ X, x ∈X
Ë Ô‡‡·Ó΢ÂÒÍËÏ ‚ ÓÒڇθÌ˚ı ÒÎÛ˜‡flı. èÓÎÛÔÓÒÚÓ ÔÂÂÏ¢ÂÌË ̇Á˚‚‡ÂÚÒfl ˝ÎÎËÔÚ˘ÂÒÍËÏ, ÂÒÎË inf d f ( x ) = 0 Ë ÓÒ‚˚Ï (ËÎË „ËÔ·Ó΢ÂÒÍËÏ) ‚ ÓÒڇθÌ˚ı x ∈X
ÒÎÛ˜‡flı. èÂÂÏ¢ÂÌË ̇Á˚‚‡ÂÚÒfl ÔÂÂÌÓÒÓÏ äÎËÙÙÓ‰‡, ÂÒÎË ÙÛÌ͈Ëfl ÔÂÂÌÂÒÂÌËfl df (x) fl‚ÎflÂÚÒfl ÍÓÌÒÚ‡ÌÚÓÈ ‰Îfl ‚ÒÂı x ∈ X. ëËÏÏÂÚ˘ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÒËÏÏÂÚ˘Ì˚Ï, ÂÒÎË ‰Îfl ÔÓËÁ‚ÓθÌÓÈ ÚÓ˜ÍË p ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ ÒËÏÏÂÚËfl ÓÚÌÓÒËÚÂθÌÓ ‰‡ÌÌÓÈ ÚÓ˜ÍË,
38
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
Ú.Â. Ú‡ÍÓ ÔÂÂÏ¢ÂÌË f p ˝ÚÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ˜ÚÓ fp (fp (x)) = x ‰Îfl ‚ÒÂı x ∈ X, Ë fl‚ÎflÂÚÒfl ËÁÓÎËÓ‚‡ÌÌÓÈ ÙËÍÒËÓ‚‡ÌÌÓÈ ÚÓ˜ÍÓÈ fp . é‰ÌÓÓ‰ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl Ó ‰ Ì Ó Ó ‰ Ì ˚ Ï (ËÎË ÒËθÌÓÚ‡ÌÁËÚË‚Ì˚Ï), ÂÒÎË ‰Îfl ͇ʉ˚ı ‰‚Ûı ÍÓ̘Ì˚ı ËÁÓÏÂÚ˘ÂÒÍËı ÔÓ‰ÏÌÓÊÂÒÚ‚ Y = {y 1 , ..., ym} Ë Z = {z1 , ..., zm} ÏÌÓÊÂÒÚ‚‡ ï ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÂÂÏ¢ÂÌË ï , ÓÚÓ·‡Ê‡˛˘Â Y ‚ Z. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÚӘ˜ÌÓ-Ó‰ÌÓÓ‰Ì˚Ï, ÂÒÎË ‰Îfl β·˚ı ‰‚Ûı Â„Ó ÚÓ˜ÂÍ ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÂÂÏ¢ÂÌËÂ, ÓÚÓ·‡Ê‡˛˘Â ӉÌÛ ËÁ ˝ÚËı ÚÓ˜ÂÍ ‚ ‰Û„Û˛. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â Ó‰ÌÓÓ‰ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ‚ ÒÓ˜ÂÚ‡ÌËË Ò ‰‡ÌÌÓÈ Ú‡ÌÁËÚË‚ÌÓÈ „ÛÔÔÓÈ ÒËÏÏÂÚËÈ. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍË Ó‰ÌÓÓ‰Ì˚Ï É˛Ì·‡ÛÏ–äÂÎÎË ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÂÒÎË {d(x, z) : z ∈ X} = {d(y, z) : z ∈ X} ‰Îfl β·˚ı x, y ∈ X. ê‡ÒÚflÊÂÌË èÛÒÚ¸ (X,d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë r – ‰ÂÈÒÚ‚ËÚÂθÌÓ ÔÓÎÓÊËÚÂθÌÓ ˜ËÒÎÓ. îÛÌ͈Ëfl f : X → X ̇Á˚‚‡ÂÚÒfl ‡ÒÚflÊÂÌËÂÏ, ÂÒÎË d(f(x), f(y)) = rd(x,y) ‰Îfl β·˚ı x, y ∈ X. åÂÚ˘ÂÒÍÓ ÔÂÓ·‡ÁÓ‚‡ÌË åÂÚ˘ÂÒÍÓ ÔÂÓ·‡ÁÓ‚‡ÌË ÂÒÚ¸ ‡ÒÒÚÓflÌËÂ, ÔÓÎÛ˜‡ÂÏÓÂ Í‡Í ÙÛÌ͈Ëfl ‰‡ÌÌÓÈ ÏÂÚËÍË (ÒÏ. „Î. 4). ÉÓÏÂÓÏÓÙÌ˚ ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡ Ñ‚‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚‡ (X, dï) Ë (Y, dY) ̇Á˚‚‡˛ÚÒfl „ÓÏÂÓÏÓÙÌ˚ÏË (ËÎË ÚÓÔÓÎӄ˘ÂÒÍË ËÁÓÏÓÙÌ˚ÏË), ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ „ÓÏÂÓÏÓÙËÁÏ ËÁ ï ‚ Y, Ú.Â. ڇ͇fl ·ËÂÍÚ˂̇fl ÙÛÌ͈Ëfl f : X → Y, ˜ÚÓ f Ë f–1 ÌÂÔÂ˚‚Ì˚ (ÔÓÓ·‡Á Í‡Ê‰Ó„Ó ÓÚÍ˚ÚÓ„Ó ÏÌÓÊÂÒÚ‚‡ ‚ Y fl‚ÎflÂÚÒfl ÓÚÍ˚Ú˚Ï ‚ ï). Ñ‚‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚‡ (X, dï) Ë (Y, dY ) ̇Á˚‚‡˛ÚÒfl ‡‚ÌÓÏÂÌÓ ËÁÓÏÓÙÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡Í‡fl ·ËÂÍÚ˂̇fl ÙÛÌ͈Ëfl f : X → Y, ˜ÚÓ f Ë f–1 fl‚Îfl˛ÚÒfl ‡‚ÌÓÏÂÌÓ ÌÂÔÂ˚‚Ì˚ÏË ÙÛÌ͈ËflÏË. (îÛÌ͈Ëfl g ·Û‰ÂÚ ‡‚ÌÓÏÂÌÓ ÌÂÔÂ˚‚ÌÓÈ, ÂÒÎË ‰Îfl β·Ó„Ó ε > 0 ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ δ > 0, ˜ÚÓ ‰Îfl β·˚ı x, y ∈ X ËÁ ̇‚ÂÌÒÚ‚‡ dX(x,y) < δ ÒΉÛÂÚ Ì‡‚ÂÌÒÚ‚Ó dY(g(x), f(y)) < ε; ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl fl‚ÎflÂÚÒfl ‡‚ÌÓÏÂÌÓ ÌÂÔÂ˚‚ÌÓÈ, ÂÒÎË ÔÓÒÚ‡ÌÒÚ‚Ó ï ÍÓÏÔ‡ÍÚÌÓ.) äÓÌÙÓÏÌÓ ÏÂÚ˘ÂÒÍÓ ÓÚÓ·‡ÊÂÌË èÛÒÚ¸ (X, dï) Ë (Y, dY) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. éÚÓ·‡ÊÂÌË f : X → Y ̇Á˚‚‡ÂÚÒfl ÍÓÌÙÓÏÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÓÚÓ·‡ÊÂÌËÂÏ, ÂÒÎË ‰Îfl β·˚ı x ∈ X d ( f ( x ), f ( y)) ÒÛ˘ÂÒÚ‚ÛÂÚ Ô‰ÂÎ lim Y , ÍÓÚÓ˚È fl‚ÎflÂÚÒfl ÍÓ̘Ì˚Ï Ë ÔÓÎÓÊËy→ x d ( x, y) ÚÂθÌ˚Ï. 䂇ÁËÍÓÌÙÓÏÌÓ ÏÂÚ˘ÂÒÍÓ ÓÚÓ·‡ÊÂÌË èÛÒÚ¸ (X, d ï) Ë (Y, dY) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. ÉÓÏÂÓÏÓÙËÁÏ f : X → Y ̇Á˚‚‡ÂÚÒfl Í‚‡ÁËÍÓÌÙÓÏÌ˚Ï (ËÎË ë-Í‚‡ÁËÍÓÌÙÓÏÌ˚Ï) ÏÂÚ˘ÂÒÍËÏ ÓÚÓ·‡ÊÂÌËÂÏ, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓÌÒÚ‡ÌÚ‡ ë, ڇ͇fl ˜ÚÓ ÒÓÓÚÌÓ¯ÂÌË lim sup
r→0
max{dY ( f ( x ), f ( y)) : d X ( x, y) ≤ r} ≤C min{dY ( f ( x ), f ( y)) : d X ( x, y) ≥ r}
39
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
‚˚ÔÓÎÌflÂÚÒfl ‰Îfl Í‡Ê‰Ó„Ó x ∈ X. ç‡ËÏÂ̸¯‡fl ڇ͇fl ÍÓÌÒÚ‡ÌÚ‡ ë ̇Á˚‚‡ÂÚÒfl ÍÓÌÙÓÏÌ˚Ï ‡ÒÚflÊÂÌËÂÏ. 䂇ÁËÍÓÌÙÓÏÌÓ ÓÚÓ·‡ÊÂÌË f ̇Á˚‚‡ÂÚÒfl Í‚‡ÁËÒËÏÏÂÚ˘Ì˚Ï, ÂÒÎË, ÍÓÏ ÚÓ„Ó, ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓÌÒÚ‡ÌÚ‡ ë', ڇ͇fl ˜ÚÓ max{dY ( f ( x ), f ( y)) : d X ( x, y) ≤ r} ≤C min{dY ( f ( x ), f ( y)) : d X ( x, y) ≥ r} ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı x ∈ X Ë ‚ÒÂı ÔÓÎÓÊËÚÂθÌ˚ı r. äÓÌÙÓÏ̇fl ‡ÁÏÂÌÓÒÚ¸ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) (è‡ÌÒ˛, 1989) fl‚ÎflÂÚÒfl ËÌÙËÏÛÏÓÏ ‡ÁÏÂÌÓÒÚË ï‡ÛÒ‰ÓÙ‡ ÔÓ ‚ÒÂÏ Í‚‡ÁËÍÓÌÙÓÏÌ˚Ï ÓÚÓ·‡ÊÂÌËflÏ ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ‚ ÌÂÍÓÚÓÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. ãËÔ¯ËˆÂ‚Ó ÓÚÓ·‡ÊÂÌË èÛÒÚ¸ Ò – ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡. ÑÎfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (X, dï) Ë (Y, d Y) ÙÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl ÎËԯˈ‚˚Ï ÓÚÓ·‡ÊÂÌËÂÏ (ËÎË Ò-ÎËԯˈ‚˚Ï, ÂÒÎË ÌÂÓ·ıÓ‰ËÏÓ ÛÔÓÏflÌÛÚ¸ ÔÓÒÚÓflÌÌÛ˛ Ò), ÂÒÎË Ì‡‚ÂÌÒÚ‚Ó dY ( f ( x ), f ( y)) ≤ cd X ( x, y) ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı x, y ∈ X. Ò-ÎËÔ¯ËˆÂ‚Ó ÓÚÓ·‡ÊÂÌË ̇Á˚‚‡ÂÚÒfl ÛÍÓ‡˜Ë‚‡˛˘ËÏ, ÂÒÎË Ò = 1, Ë ÒÊËχ˛˘ËÏ, ÂÒÎË Ò < 1. ÅË-ÎËÔ¯ËˆÂ‚Ó ÓÚÓ·‡ÊÂÌË èÛÒÚ¸ Ò > 1 – ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡. íÓ„‰‡ ‰Îfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (X, dï) Ë (Y, dY) ÙÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl ·Ë-ÎËԯˈ‚˚Ï ÓÚÓ·‡ÊÂÌËÂÏ (ËÎË Ò-·Ë-ÎËԯˈ‚˚Ï ÓÚÓ·‡ÊÂÌËÂÏ, Ò - ‚ÎÓÊÂÌËÂÏ), ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ ÔÓÎÓÊËÚÂθÌÓ ˜ËÒÎÓ r, ˜ÚÓ ‰Îfl β·˚ı x, y ∈ X ËÏÂ˛Ú ÏÂÒÚÓ Ì‡‚ÂÌÒÚ‚‡ rd X ( x, y) ≤ dY ( f ( x ), f ( y)) ≤ crd X ( x, y). ä‡Ê‰Ó ·Ë-ÎËÔ¯ËˆÂ‚Ó ÓÚÓ·‡ÊÂÌË fl‚ÎflÂÚÒfl Í‚‡ÁËÍÓÌÙÓÏÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÓÚÓ·‡ÊÂÌËÂÏ. ç‡ËÏÂ̸¯‡fl ÍÓÌÒÚ‡ÌÚ‡ Ò, ‰Îfl ÍÓÚÓÓÈ f fl‚ÎflÂÚÒfl Ò-·Ë-ÎËԯˈ‚˚Ï ÓÚÓ·‡ÊÂÌËÂÏ, ̇Á˚‚‡ÂÚÒfl ËÒ͇ÊÂÌËÂÏ f. ÅÛ„‡ÈÌ ‰Ó͇Á‡Î, ˜ÚÓ Í‡Ê‰Ó k-ÚӘ˜ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò-‚ÎÓÊËÏÓ ‚ ÌÂÍÓÚÓÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó Ò ËÒ͇ÊÂÌËÂÏ O(lnk). àÒ͇ÊÂÌË ÉÓÏÓ‚‡ ‰Îfl ÍË‚˚ı Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ Ï‡ÍÒËχθÌÓ ÓÚÌÓ¯ÂÌË ‰ÎËÌ˚ ‰Û„Ë Í ‰ÎËÌ ıÓ‰˚. Ñ‚Â ÏÂÚËÍË d1 Ë d2 ̇ ï ̇Á˚‚‡˛ÚÒfl ·Ë-ÎËÔ¯ËˆÂ‚Ó ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú Ú‡ÍË ÔÓÎÓÊËÚÂθÌ˚ ÍÓÌÒÚ‡ÌÚ˚ Ò Ë ë, ˜ÚÓ Ì‡‚ÂÌÒÚ‚Ó cd1(x,y) ≤ d2 (x,y) ≤ Cd 1 (x,y) ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı x, y ∈ X, Ú.Â. ÚÓʉÂÒÚ‚ÂÌÌÓ ÓÚÓ·‡ÊÂÌË ÂÒÚ¸ ·Ë-ÎËÔ¯ËˆÂ‚Ó ÓÚÓ·‡ÊÂÌË (X, d1 ) ‚ (X, d2 ). ꇂÌÓÏÂÌÓ ÏÂÚ˘ÂÒÍÓ ÓÚÓ·‡ÊÂÌË èÛÒÚ¸ (X, dï) Ë (Y, dY) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. îÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl ‡‚ÌÓÏÂÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÓÚÓ·‡ÊÂÌËÂÏ, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú Ú‡ÍË ‰‚ ÌÂÛ·˚‚‡˛˘Ë ÙÛÌ͈ËË g1 Ë g2 ËÁ ≥ 0 ‚ Ò·fl Ò lim gi (r ) = ∞ ‰Îfl i = 1, 2, ˜ÚÓ r →∞
̇‚ÂÌÒÚ‚‡ g1 ( d X ( x, y) ≤ dY ( f ( x ), f ( y)) ≤ g2 ( d X ( x, y)) ËÏÂ˛Ú ÏÂÒÚÓ ‰Îfl ‚ÒÂı x, y ∈ X.
40
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÅË-ÎËÔ¯ËˆÂ‚Ó ÓÚÓ·‡ÊÂÌË ÂÒÚ¸ ‡‚ÌÓÏÂÌÓ ÏÂÚ˘ÂÒÍÓ ÓÚÓ·‡ÊÂÌËÂ Ò ÎËÌÂÈÌ˚ÏË ÙÛÌ͈ËflÏË g1 Ë g2. åÂÚ˘ÂÒÍÓ ˜ËÒÎÓ ê‡ÏÒÂfl ÑÎfl ‰‡ÌÌÓ„Ó Í·ÒÒ‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (Ó·˚˜ÌÓ lp -ÔÓÒÚ‡ÌÒÚ‚), ‰‡ÌÌÓ„Ó ˆÂÎÓ„Ó ˜ËÒ· n ≥ 1 Ë ‰‡ÌÌÓ„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ˜ËÒ· Ò ≥ 1 ÏÂÚ˘ÂÒÍÓ ˜ËÒÎÓ ê‡ÏÒÂfl (ËÎË Ò-ÏÂÚ˘ÂÒÍÓ ˜ËÒÎÓ ê‡ÏÒÂfl) RM(c, n) fl‚ÎflÂÚÒfl ̇˷Óθ¯ËÏ ˆÂÎ˚Ï ˜ËÒÎÓÏ m , Ú‡ÍËÏ ˜ÚÓ ‚ ͇ʉÓÏ n-ÚӘ˜ÌÓÏ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ËÏÂÂÚÒfl ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó ‡ÁÏÂÓÏ m, ÍÓÚÓÓ Ò-‚ÎÓÊËÏÓ ‚ Ó‰ÌÓ ËÁ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ ËÁ (ÒÏ. [BLMN05]). Ò-ËÁÓÏÓÙËÁÏ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ èÛÒÚ¸ (X, dï) Ë (Y, dY) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. ãËԯˈ‚‡ ÌÓχ || ⋅ ||Lip ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÌ˙ÂÍÚË‚Ì˚ı ÓÚÓ·‡ÊÂÌËÈ f : X → Y ÓÔ‰ÂÎflÂÚÒfl Í‡Í f
Lip
=
dY ( f ( x ), f ( y)) . d X ( x, y) x , y ∈X , x ≠ y sup
Ñ‚‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚‡ ï Ë Y ̇Á˚‚‡˛ÚÒfl Ò-ËÁÓÏÓÙÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ËÌ˙ÂÍÚË‚ÌÓ ÓÚÓ·‡ÊÂÌË f : X → Y, Ú‡ÍÓ ˜ÚÓ ||f||Lip||f–1|| ≤ c. 䂇ÁËËÁÓÏÂÚËfl èÛÒÚ¸ (X, dï) Ë (Y, dY) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. îÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl Í‚‡ÁËËÁÓÏÂÚËÂÈ (ËÎË (ë,Ò)-Í‚‡ÁËËÁÓÏÂÚËÂÈ), ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ‰ÂÈÒÚ‚ËÚÂθÌ˚ ˜ËÒ· ë > 0 Ë c ≥ 0, Ú‡ÍË ˜ÚÓ C −1d X ( x, y) − c ≤ dY ( f ( x ), f ( y)) ≤ Cd X ( x, y) + c, Ë Y = ∪ BdY ( f ( x ), c), Ú.Â. ‰Îfl ͇ʉÓÈ ÚÓ˜ÍË y ∈ Y ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡Í‡fl ÚӘ͇ x ∈ X, ˜ÚÓ z ∈X
dY(y,f(x)) ≤ c. 䂇ÁËËÁÓÏÂÚËfl Ò ë = 1 ̇Á˚‚‡ÂÚÒfl „Û·ÓÈ ËÁÓÏÂÚËÂÈ (ËÎË ÔË·ÎËÊÂÌÌÓÈ ËÁÓÏÂÚËÂÈ). ëÏ. ê‡Ì„ Í‚‡ÁË‚ÍÎË‰Ó‚Ó„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. ÉÛ·Ó ‚ÎÓÊÂÌË èÛÒÚ¸ (X, dï) Ë (Y, dY) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. îÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl „Û·˚Ï ‚ÎÓÊÂÌËÂÏ, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ÌÂÛ·˚‚‡˛˘Ë ÙÛÌ͈ËË ρ1, ρ 2 : [0, ∞) → [0, ∞), Ú‡ÍË ˜ÚÓ ρ1(dX(x,y) ≤ (dY(f(x), ρ 2 (dX(x,y)) ‰Îfl ‚ÒÂı x, y ∈ X Ë lim ρ, t = +∞. t →∞
åÂÚËÍË d1 Ë d 2 ̇ ï ̇Á˚‚‡˛ÚÒfl „Û·Ó ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË ÏÂÚË͇ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú Ú‡ÍË ÌÂÛ·˚‚‡˛˘Ë ÙÛÌ͈ËË f, g: [0, ∞) → [0, ∞ ), ˜ÚÓ d1 ≤ f(d2 ) Ë d2 ≤ g(d1 ). ëÊËχ˛˘Â ÓÚÓ·‡ÊÂÌË èÛÒÚ¸ (X, dï) Ë (Y, dY) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. îÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl ÒÊËχ˛˘ËÏ ÓÚÓ·‡ÊÂÌËÂÏ ( Ë Î Ë ÒʇÚËÂÏ, ÒÚÓ„Ó ÛÍÓ‡˜Ë‚‡˛˘ËÏ ÓÚÓ·‡ÊÂÌËÂÏ) ÂÒÎË dY(f(x), f(y)) < dX(x,y) ‰Îfl ‚ÒÂı ‡Á΢Ì˚ı x, y ∈ X. ä‡Ê‰Ó ÒʇÚË ËÁ ÔÓÎÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ‚ Ò·fl ËÏÂÂÚ Â‰ËÌÒÚ‚ÂÌÌÛ˛ ÌÂÔÓ‰‚ËÊÌÛ˛ ÚÓ˜ÍÛ. çÂÒÚfl„Ë‚‡˛˘Â ÓÚÓ·‡ÊÂÌË ÑÎfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (X, dï) Ë (Y, dY) ÙÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl ÌÂÒÚfl„Ë‚‡˛˘ËÏ ÓÚÓ·‡ÊÂÌËÂÏ, ÂÒÎË dY(f(x), f(y)) < dX(x,y) ‰Îfl ‚ÒÂı x, y ∈ X. ä‡Ê‰‡fl ÌÂÒÚfl„Ë‚‡˛˘‡fl ·ËÂ͈Ëfl ËÁ ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇ Ò·fl ÂÒÚ¸ ËÁÓÏÂÚËfl.
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
41
ìÍÓ‡˜Ë‚‡˛˘Â ÓÚÓ·‡ÊÂÌË ÑÎfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (X, dï) Ë (Y, dY) ÙÛÌ͈Ëfl f : X → Y ̇Á˚‚‡ÂÚÒfl ÛÍÓ‡˜Ë‚‡˛˘ËÏ ÓÚÓ·‡ÊÂÌËÂÏ (ËÎË Ì‡үËfl˛˘ËÏÒfl, ÔÓÎÛÒÊËχ˛˘ËÏ ÓÚÓ·‡ÊÂÌËÂÏ), ÂÒÎË dY(f(x), f(y)) ≤ dX(x,y) ‰Îfl ‚ÒÂı x, y ∈ X. ã˛·ÓÂ Ò˛˙ÂÍÚË‚ÌÓ ÛÍÓ‡˜Ë‚‡˛˘Â ÓÚÓ·‡ÊÂÌË f : X → Y fl‚ÎflÂÚÒfl ËÁÓÏÂÚËÂÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ (X, dï) fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. èÓ‰ÏÂÚËfl ÂÒÚ¸ ÛÍÓ‡˜Ë‚‡˛˘Â ÓÚÓ·‡ÊÂÌËÂ, Ú‡ÍÓ ˜ÚÓ Ó·‡Á β·Ó„Ó ÏÂÚ˘ÂÒÍÓ„Ó ¯‡‡ fl‚ÎflÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ¯‡ÓÏ ÚÓ„Ó Ê ‡‰ËÛÒ‡. Ñ‚‡ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d) ̇Á˚‚‡˛ÚÒfl (ÔÓ ÉÓÛ˝ÒÛ) ÔÓ‰Ó·Ì˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ÛÍÓ‡˜Ë‚‡˛˘Ë ÓÚÓ·‡ÊÂÌËfl f : A → X , g : b → X Ë Ú‡ÍÓ χÎÓ ε > 0, ˜ÚÓ Í‡Ê‰‡fl ÚӘ͇ Ä Ì‡ıÓ‰ËÚÒfl ‚ ԉ·ı ε ÓÚ ÌÂÍÓÚÓÓÈ ÚÓ˜ÍË ÏÌÓÊÂÒÚ‚‡ Ç , ͇ʉ‡fl ÚӘ͇ Ç Ì‡ıÓ‰ËÚÒfl ‚ ԉ·ı ε ÓÚ ÌÂÍÓÚÓÓÈ ÚÓ˜ÍË ÏÌÓÊÂÒÚ‚‡ Ä Ë |d ( x, g(f(x))) – d(y, f(g(y)))| ≤ ε ‰Îfl ‚ÒÂı x ∈ A Ë y ∈ B. ä‡Ú„ÓËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ ä‡Ú„ÓËfl Ψ ÒÓÒÚÓËÚ ËÁ Í·ÒÒ‡ ObΨ, ˝ÎÂÏÂÌÚ˚ ÍÓÚÓÓ„Ó Ì‡Á˚‚‡˛ÚÒfl Ó·˙ÂÍÚ‡ÏË Í‡Ú„ÓËË, Ë Í·ÒÒ‡ åorΨ, ˝ÎÂÏÂÌÚ˚ ÍÓÚÓÓ„Ó Ì‡Á˚‚‡˛ÚÒfl ÏÓÙËÁχÏË Í‡Ú„ÓËË. ùÚË Í·ÒÒ˚ ‰ÓÎÊÌ˚ Û‰Ó‚ÎÂÚ‚ÓflÚ¸ Ô˜ËÒÎÂÌÌ˚Ï ÌËÊ ÛÒÎÓ‚ËflÏ. 1. ä‡Ê‰ÓÈ ÛÔÓfl‰Ó˜ÂÌÌÓÈ Ô‡Â Ó·˙ÂÍÚÓ‚ Ä Ë Ç ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÏÌÓÊÂÒÚ‚Ó ç(Ä,Ç) ÏÓÙËÁÏÓ‚. 2. ä‡Ê‰˚È ÏÓÙËÁÏ ÔË̇‰ÎÂÊËÚ ÚÓθÍÓ Ó‰ÌÓÏÛ ÏÌÓÊÂÒÚ‚Û H (A, B). 3. äÓÏÔÓÁˈËfl f ⋅ g ‰‚Ûı ÏÓÙËÁÏÓ‚ f : A → B, g : C → D ÓÔ‰ÂÎÂ̇, ÂÒÎË B = C, ‚ ˝ÚÓÏ ÒÎÛ˜‡Â Ó̇ ·Û‰ÂÚ ÔË̇‰ÎÂʇڸ H(A, D). 4. äÓÏÔÓÁˈËfl ÏÓÙËÁÏÓ‚ ‡ÒÒӈˇÚ˂̇. 5. ä‡Ê‰Ó ÏÌÓÊÂÒÚ‚Ó ç(Ä, Ä) ‚Íβ˜‡ÂÚ ‚ ͇˜ÂÒڂ ‰ËÌ˘ÌÓ„Ó ˝ÎÂÏÂÌÚ‡ Ú‡ÍÓÈ ÏÓÙËÁÏ idA, ˜ÚÓ f ⋅ idA = f Ë idA ⋅ g = g ‰Îfl β·˚ı ÏÓÙËÁÏÓ‚ f : X → Y Ë g : A → Y. ä‡Ú„ÓËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚, Ó·ÓÁ̇˜‡Âχfl Met (ÒÏ. [Isbe64]) – ˝ÚÓ Í‡Ú„ÓËfl, ‚ ÍÓÚÓÓÈ ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡ ‚˚ÒÚÛÔ‡˛Ú Í‡Í Ó·˙ÂÍÚ˚, ‡ ÛÍÓ‡˜Ë‚‡˛˘Ë ÓÚÓ·‡ÊÂÌËfl – Í‡Í ÏÓÙËÁÏ˚. Ç ‰‡ÌÌÓÈ Í‡Ú„ÓËË ‰Îfl Í‡Ê‰Ó„Ó Ó·˙ÂÍÚ‡ ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌ̇fl ËÌ˙ÂÍÚ˂̇fl Ó·ÓÎӘ͇; Ó̇ ÏÓÊÂÚ ·˚Ú¸ ÓÚÓʉÂÒÚ‚ÎÂ̇ Ò Â„Ó Ì‡ÚflÌÛÚÓÈ ÎËÌÂÈÌÓÈ Ó·ÓÎÓ˜ÍÓÈ. åÓÌÓÏÓÙËÁχÏË ‚ Met fl‚Îfl˛ÚÒfl ËÌ˙ÂÍÚË‚Ì˚ ÛÍÓ‡˜Ë‚‡˛˘Ë ÓÚÓ·‡ÊÂÌËfl, ‡ ËÁÓÏÓÙËÁχÏË – ËÁÓÏÂÚËË. àÌ˙ÂÍÚË‚ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ̇Á˚‚‡ÂÚÒfl ËÌ˙ÂÍÚË‚Ì˚Ï, ÂÒÎË ‰Îfl Í‡Ê‰Ó„Ó ËÁÓÏÂÚ˘ÂÒÍÓ„Ó ‚ÎÓÊÂÌËfl f : X → X' ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d) ‚ ‰Û„Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï', d') ÒÛ˘ÂÒÚ‚ÛÂÚ ÛÍÓ‡˜Ë‚‡˛˘Â ÓÚÓ·‡ÊÂÌË f' ËÁ X' ‚ ï Ò f ' ⋅ f = idX , Ú.Â. ï ÂÒÚ¸ ÂÚ‡ÍÚ ï'. ùÍ‚Ë‚‡ÎÂÌÚÌÓ, ï fl‚ÎflÂÚÒfl ‡·ÒÓβÚÌ˚Ï ÂÚ‡ÍÚÓÏ, Ú.Â. ÂÚ‡ÍÚÓÏ Í‡Ê‰Ó„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ‚ ÍÓÚÓÓ ÓÌÓ ‚ÎÓÊËÏÓ ËÁÓÏÂÚ˘ÂÒÍË. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) fl‚ÎflÂÚÒfl ËÌ˙ÂÍÚË‚Ì˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ „ËÔ‚˚ÔÛÍÎÓ. àÌ˙ÂÍÚ˂̇fl Ó·ÓÎӘ͇ èÓÌflÚË ËÌ˙ÂÍÚË‚ÌÓÈ Ó·ÓÎÓ˜ÍË fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÓÌflÚËfl ÔÓÔÓÎÌÂÌËfl äÓ¯Ë. èÛÒÚ¸ (ï, d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. éÌÓ ÏÓÊÂÚ ·˚Ú¸ ËÁÓÏÂÚ˘ÂÒÍË ‚ÎÓÊËÏÓ ‚ ÌÂÍÓÚÓÓ ËÌ˙ÂÍÚË‚ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ( Xˆ , dˆ ); ÂÒÎË ‚ÁflÚ¸
42
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
β·Ó ڇÍÓ ËÁÓÏÂÚ˘ÂÒÍÓ ‚ÎÓÊÂÌË f : X → Xˆ , ‰Îfl ÌÂ„Ó ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌÌÓ ̇ËÏÂ̸¯Â ËÌ˙ÂÍÚË‚ÌÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó ( X , d ) ÔÓÒÚ‡ÌÒÚ‚‡ ( Xˆ , dˆ ), ÒÓ‰Âʇ˘Â f (X), ÍÓÚÓÓ ̇Á˚‚‡ÂÚÒfl ËÌ˙ÂÍÚË‚ÌÓÈ Ó·ÓÎÓ˜ÍÓÈ ï . éÌÓ ËÁÓÏÂÚ˘ÂÒÍË ÚÓʉÂÒÚ‚ÂÌÌÓ Ì‡ÚflÌÛÚÓÈ ÎËÌÂÈÌÓÈ Ó·ÓÎӘ͠ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d). åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓ‚Ô‡‰‡ÂÚ ÒÓ Ò‚ÓÂÈ ËÌ˙ÂÍÚË‚ÌÓÈ Ó·ÓÎÓ˜ÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ fl‚ÎflÂÚÒfl ËÌ˙ÂÍÚË‚Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ç‡ÚflÌÛÚÓ ‡Ò¯ËÂÌË ê‡Ò¯ËÂÌË (ï', d') ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d) ̇Á˚‚‡ÂÚÒfl ̇ÚflÌÛÚ˚Ï ‡Ò¯ËÂÌËÂÏ, ÂÒÎË ‰Îfl ͇ʉÓÈ ÔÓÎÛÏÂÚËÍË d" ̇ X', Û‰Ó‚ÎÂÚ‚Ófl˛˘ÂÈ ÛÒÎÓ‚ËflÏ d"(x1, x 2 ) = d(x1, x 2 ) ‰Îfl ‚ÒÂı x 1 , x 2 ∈ X Ë d"(y1, y 2 ) ≤ d'(y1, y 2 ) ‰Îfl ‚ÒÂı y 1 , y 2 ∈ X', ËÏÂÂÏ d"(y1, y2) = d'(y1, y2) ‰Îfl ‚ÒÂı y1, y2 ∈ X'. ç‡ÚflÌÛÚ‡fl ÎËÌÂÈ̇fl Ó·ÓÎӘ͇ – ÛÌË‚Â҇θÌÓ ̇ÚflÌÛÚÓ ‡Ò¯ËÂÌË ï, Ú.Â. Ó̇ ÒÓ‰ÂÊËÚ, Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ͇ÌÓÌ˘ÂÒÍËı ËÁÓÏÂÚËÈ, ͇ʉÓ ̇ÚflÌÛÚÓ ‡Ò¯ËÂÌË ï, ÌÓ Ò‡Ï‡ ÒÓ·ÒÚ‚ÂÌÌÓ„Ó Ì‡ÚflÌÛÚÓ„Ó ‡Ò¯ËÂÌËfl Ì ËÏÂÂÚ. ç‡ÚflÌÛÚ‡fl ÎËÌÂÈ̇fl Ó·ÓÎӘ͇ ÇÓÁ¸ÏÂÏ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ÍÓ̘ÌÓ„Ó ‰Ë‡ÏÂÚ‡ Ë ‡ÒÒÏÓÚËÏ ‚ ÌÂÏ ÏÌÓÊÂÒÚ‚Ó X = {f : X → }. ç‡ÚflÌÛÚ‡fl ÎËÌÂÈ̇fl Ó·ÓÎӘ͇ T(X,d) ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d) ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó T(X,d) = {f ∈ X : f(x) = = sup ( d ( x, y) − f ( y)) ‰Îfl y ∈X
‚ÒÂı x ∈ X}, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ, ÔÓÓʉ‡ÂÏÓÈ Ì‡ T(X,d) ÌÓÏÓÈ f = sup f ( x ). x ∈X
åÌÓÊÂÒÚ‚Ó ï ÏÓÊÌÓ ÓÚÓʉÂÒÚ‚ËÚ¸ Ò ÏÌÓÊÂÒÚ‚ÓÏ {hx ∈ T(X, d) : hx(y) = d(y,x)} ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, Ò ÏÌÓÊÂÒÚ‚ÓÏ T0(X, D) = {f ∈ T(X, d) : 0 ∈ f(X)}. àÌ˙ÂÍÚ˂̇fl Ó·ÓÎӘ͇ ( X , d ) ÏÌÓÊÂÒÚ‚‡ ï ÏÓÊÂÚ ·˚Ú¸ ËÁÓÏÂÚ˘ÂÒÍË ÓÚÓʉÂÒÚ‚ÎÂ̇ Ò Ì‡ÚflÌÛÚÓÈ ÎËÌÂÈÌÓÈ Ó·ÓÎÓ˜ÍÓÈ T(X,d) Í‡Í X → T ( X , d ), x → hX ∈ T ( X , d ) : hX ( y) = d ( f ( y), x ). ç‡ÔËÏÂ, ÂÒÎË ï = {x 1 , x2}, ÚÓ T (X,d) fl‚ÎflÂÚÒfl ËÌÚ‚‡ÎÓÏ ‰ÎËÌ˚ d(x1, x2). åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓ‚Ô‡‰‡ÂÚ ÒÓ Ò‚ÓÂÈ Ì‡ÚflÌÛÚÓÈ ÎËÌÂÈÌÓÈ Ó·ÓÎÓ˜ÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ fl‚ÎflÂÚÒfl ËÌ˙ÂÍÚË‚Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ç‡ÚflÌÛÚÛ˛ ÎËÌÂÈÌÛ˛ Ó·ÓÎÓ˜ÍÛ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d) ÍÓ̘ÌÓ„Ó ‰Ë‡ÏÂÚ‡ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÌÓ„Ó„‡ÌÌ˚È ÍÓÏÔÎÂÍÒ. ê‡ÁÏÂÌÓÒÚ¸ Ú‡ÍÓ„Ó ÍÓÏÔÎÂÍÒ‡ ̇Á˚‚‡ÂÚÒfl ‡ÁÏÂÌÓÒÚ¸˛ ÑÂÒÒ‡ (ËÎË ÍÓÏ·Ë̇ÚÓÌÓÈ ‡ÁÏÂÌÓÒÚ¸˛) ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d). ÑÂÈÒÚ‚ËÚÂθÌÓ ‰ÂÂ‚Ó åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ̇Á˚‚‡ÂÚÒfl (ÔÓ íËÚÒÛ, 1977) ‰ÂÈÒÚ‚ËÚÂθÌ˚Ï ‰Â‚ÓÏ (ËÎË -‰Â‚ÓÏ), ÂÒÎË ‰Îfl β·˚ı x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌ̇fl ‰Û„‡ ÓÚ ı Í Û Ë ˝Ú‡ ‰Û„‡ – „ÂÓ‰ÂÁ˘ÂÒÍËÈ ÓÚÂÁÓÍ. ÑÂÈÒÚ‚ËÚÂθÌÓ ‰ÂÂ‚Ó Ú‡ÍÊ ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ‰Â‚ÓÏ (ÒΉÛÂÚ ÓÚ΢‡Ú¸ ÓÚ ÏÂÚ˘ÂÒÍÓ„Ó ‰Â‚‡ ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı, ÒÏ. „Î. 17). åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) fl‚ÎflÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌ˚Ï ‰Â‚ÓÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ fl‚ÎflÂÚÒfl ÔÛÚ¸-Ò‚flÁÌ˚Ï Ë 0-„ËÔ·Ó΢ÂÒÍËÏ ÔÓ ÉÓÏÓ‚Û (Ú.Â. Û‰Ó‚ÎÂÚ‚ÓflÂÚ Ì‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ). ÑÂÈÒÚ‚ËÚÂθÌ˚ ‰Â‚¸fl ÂÒÚ¸ ‚ ÚÓ˜ÌÓÒÚË ‰Â‚ÓÔÓ‰Ó·Ì˚ ÏÂÚ˘ÂÒÍË ÔÓ ÒÚ‡ÌÒÚ‚‡, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏË. Ñ‚ÓÔÓ‰Ó·Ì˚ ÏÂÚ˘ÂÒÍË ÔÓ
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
43
ÒÚ‡ÌÒÚ‚‡ ÔÓ ÓÔ‰ÂÎÂÌ˲ fl‚Îfl˛ÚÒfl ÏÂÚ˘ÂÒÍËÏË ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË ‰ÂÈÒÚ ‚ËÚÂθÌ˚ı ‰Â‚¸Â‚, ‡ ‰ÂÈÒÚ‚ËÚÂθÌ˚ ‰Â‚¸fl fl‚Îfl˛ÚÒfl ‚ ÚÓ˜ÌÓÒÚË Ë Ì ˙ ÂÍÚË‚Ì˚ÏË ÏÂÚ˘ÂÒÍËÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË ÒÂ‰Ë ‰Â‚ÓÔÓ‰Ó·Ì˚ı ÔÓÒÚ‡ÌÒÚ‚. ÖÒÎË (ï, d) – ÍÓ̘ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ Ì‡ÚflÌÛÚ‡fl ÎËÌÂÈ̇fl Ó·ÓÎӘ͇ í(ï, d) fl‚ÎflÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌ˚Ï ‰Â‚ÓÏ Ë ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í Â·ÂÌÓ ‚Á‚¯ÂÌÌÓ ÚÂÓÂÚËÍÓ-„‡ÙÓ‚Ó ‰Â‚Ó. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ ÔÓÎÌ˚Ï ‰ÂÈÒÚ‚ËÚÂθÌ˚Ï ‰Â‚ÓÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ „ËÔ‚˚ÔÛÍÎÓ Ë Î˛·˚ ‰‚Â Â„Ó ÚÓ˜ÍË ÒÓ‰ËÌfl˛ÚÒfl ÏÂÚ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ. èÎÓÒÍÓÒÚ¸ 2 Ò Ô‡ËÊÒÍÓÈ ÏÂÚËÍÓÈ Ë ÏÂÚËÍÓÈ ÎËÙÚ‡ (ÒÏ. „Î. 19) fl‚Îfl˛ÚÒfl ÔËχÏË -‰Â‚‡. 1.3. éÅôàÖ êÄëëíéüçàü ÑËÒÍÂÚ̇fl ÏÂÚË͇ ÑËÒÍÂÚ̇fl (ËÎË Ú˂ˇθ̇fl) ÏÂÚË͇ d ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ï, ÓÔ‰ÂÎflÂχfl Í‡Í d(x, y) = 1 ‰Îfl ‚ÒÂı ‡Á΢Ì˚ı x, y ∈ X (Ë d(x, x) = 0). åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ̇Á˚‚‡ÂÚÒfl ‰ËÒÍÂÚÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÄÌÚˉËÒÍÂÚ̇fl ÔÓÎÛÏÂÚË͇ ÄÌÚˉËÒÍÂÚÌÓÈ ÔÓÎÛÏÂÚËÍÓÈ d ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ï, ÓÔ‰ÂÎflÂχfl Í‡Í d(x, y) = 0 ‰Îfl ‚ÒÂı x, y ∈ X. ù͂ˉËÒÚ‡ÌÚ̇fl ÏÂÚË͇ ÑÎfl ÏÌÓÊÂÒÚ‚‡ ï Ë ÔÓÎÓÊËÚÂθÌÓ„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ˜ËÒ· t ˝Í‚ˉËÒÚ‡ÌÚÌÓÈ ÏÂÚËÍÓÈ d ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ï, ÓÔ‰ÂÎflÂχfl Í‡Í d(x, y) = t ‰Îfl ‚ÒÂı ‡Á΢Ì˚ı x, y ∈ X (Ë d(x, ı) = 0). (1, 2)-Ç-ÏÂÚË͇ ÑÎfl ÏÌÓÊÂÒÚ‚‡ ï (1, 2)-Ç-ÏÂÚË͇ d fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ï, Ú‡ÍÓÈ ˜ÚÓ ‰Îfl β·Ó„Ó x ∈ X ÍÓ΢ÂÒÚ‚Ó ÚÓ˜ÂÍ y ∈ X Ò d(x, y) = 1 Ì Ô‚˚¯‡ÂÚ Ç, ‡ ‚Ò ‰Û„Ë ‡ÒÒÚÓflÌËfl ‡‚Ì˚ 2. (1, 2)-Ç-ÏÂÚË͇ fl‚ÎflÂÚÒfl ÛÒ˜ÂÌÌÓÈ ÏÂÚËÍÓÈ „‡Ù‡ Ò Ï‡ÍÒËχθÌÓÈ ÒÚÂÔÂ̸˛ ‚¯ËÌ, ‡‚ÌÓÈ Ç. à̉ۈËÓ‚‡Ì̇fl ÏÂÚË͇ à̉ۈËÓ‚‡ÌÌÓÈ ÏÂÚËÍÓÈ (ËÎË ÓÚÌÓÒËÚÂθÌÓÈ ÏÂÚËÍÓÈ) ̇Á˚‚‡ÂÚÒfl ÒÛÊÂÌË d' ÏÂÚËÍË d (̇ ÏÌÓÊÂÒÚ‚Â ï) ̇ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ï' ÏÌÓÊÂÒÚ‚‡ ï. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X', d') ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X,d), ‡ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ‡Ò¯ËÂÌËÂÏ (X', d'). ÑÓÏËÌËÛ˛˘‡fl ÏÂÚË͇ èÛÒÚ¸ d Ë d1 – ÏÂÚËÍË Ì‡ ÏÌÓÊÂÒÚ‚Â ï. ÉÓ‚ÓËÚÒfl, ˜ÚÓ d1 ‰ÓÏËÌËÛÂÚ Ì‡‰ d, ÂÒÎË d1 (ı, Û) ≥ d(x, y) ‰Îfl ‚ÒÂı x, y ∈ X. ùÍ‚Ë‚‡ÎÂÌÚÌ˚ ÏÂÚËÍË Ñ‚Â ÏÂÚËÍË d 1 Ë d2 ̇ ÏÌÓÊÂÒÚ‚Â ï ̇Á˚‚‡˛ÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ÓÌË ÓÔ‰ÂÎfl˛Ú Ó‰ÌÛ Ë ÚÛ Ê ÚÓÔÓÎӄ˲ ̇ ï, Ú.Â., ÂÒÎË ‰Îfl ͇ʉÓÈ ÚÓ˜ÍË x0 ∈ X ÓÚÍ˚Ú˚È ÏÂÚ˘ÂÒÍËÈ ¯‡ Ò ˆÂÌÚÓÏ ‚ x0, Á‡‰‡ÌÌ˚È ÓÚÌÓÒËÚÂθÌÓ d1 , ÒÓ‰ÂÊËÚ ÓÚÍ˚Ú˚È ÏÂÚ˘ÂÒÍËÈ ¯‡ Ò ÚÂÏ Ê ˆÂÌÚÓÏ, ÌÓ Á‡‰‡ÌÌ˚È ÓÚÌÓÒËÚÂθÌÓ d2 , Ë Ì‡Ó·ÓÓÚ.
44
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
Ñ‚Â ÏÂÚËÍË d1 Ë d2 ·Û‰ÛÚ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ‰Îfl Í‡Ê‰Ó„Ó ε > 0 Ë Í‡Ê‰Ó„Ó x ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ δ > 0, Ú‡ÍÓ ˜ÚÓ ËÁ d1 (x,y) ≤ δ ÒΉÛÂÚ d2 (x,y) ≤ ε Ë Ì‡Ó·ÓÓÚ, ËÁ d2 (x,y) ≤ δ ÒΉÛÂÚ d1(x,y) ≤ ε. ÇÒ ÏÂÚËÍË Ì‡ ÍÓ̘ÌÓÏ ÏÌÓÊÂÒÚ‚Â fl‚Îfl˛ÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË; ÓÌË ÔÓÓʉ‡˛Ú ‰ËÒÍÂÚÌÛ˛ ÚÓÔÓÎӄ˲. èÓÎ̇fl ÏÂÚË͇ èÛÒÚ¸ (X,d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. ÉÓ‚ÓflÚ, ˜ÚÓ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ {x n }n , xn ∈ X ÒıÓ‰ËÚÒfl Í x* ∈ X, ÂÒÎË lim d ( x n , x ∗ ) = 0, Ú.Â. ‰Îfl β·Ó„Ó ε > 0 ÒÛ˘ÂÒÚ‚ÛÂÚ n →∞
n0 ∈ , Ú‡ÍÓ ˜ÚÓ d(xn, x*) < ε ‰Îfl β·Ó„Ó n > n0. èÓÒΉӂ‡ÚÂθÌÓÒÚ¸ {xn}n , x n ∈ X ̇Á˚‚‡ÂÚÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ äÓ¯Ë, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ n0 ∈ , ˜ÚÓ d(x n , xm) < ε ‰Îfl β·˚ı m, n > n0 . åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ÔÓÎÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÂÒÎË Í‡Ê‰‡fl Â„Ó ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ äÓ¯Ë ÒıÓ‰ËÚÒfl. Ç ˝ÚÓÏ ÒÎÛ˜‡Â ÏÂÚË͇ d ̇Á˚‚‡ÂÚÒfl ÔÓÎÌÓÈ ÏÂÚËÍÓÈ. èÓÔÓÎÌÂÌË äÓ¯Ë ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X , d ) Â„Ó ÔÓÔÓÎÌÂÌËÂÏ äÓ¯Ë Ì‡Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X* , d* ) ̇ ÏÌÓÊÂÒÚ‚Â X* ‚ÒÂı Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ äÓ¯Ë, „‰Â ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ {xn}n ̇Á˚‚‡ÂÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌÓÈ {yn}n , ÂÒÎË lim d ( x n , yn ) = 0. åÂÚË͇ d* ÓÔ‰ÂÎflÂÚÒfl Í‡Í n →∞
d ∗ ( x ∗ , y ∗ ) lim d ( x n , yn ) n →∞
‰Îfl β·˚ı x*, y* ∈ X, „‰Â {x n }n (ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, {y n }n ) – β·ÓÈ ˝ÎÂÏÂÌÚ ËÁ Í·ÒÒ‡ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË x* (ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ y * ). èÓÔÓÎÌÂÌË äÓ¯Ë (X* , d* ) fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌ˚Ï Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ËÁÓÏÂÚËË ÔÓÎÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ‚ ÍÓÚÓÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ‚Í·‰˚‚‡ÂÚÒfl Í‡Í ÔÎÓÚÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó. èÓÔÓÎÌÂÌËÂÏ äÓ¯Ë ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (, |x–y|) ‡ˆËÓ̇θÌ˚ı ˜ËÒÂÎ fl‚ÎflÂÚÒfl ˜ËÒÎÓ‚‡fl Ôflχfl (, |x–y|). Ň̇ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÔÓÔÓÎÌÂÌËÂÏ äÓ¯Ë ÌÓÏËÓ‚‡ÌÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (V , || ⋅ ||) Ò ÏÂÚËÍÓÈ ÌÓÏ˚ ||x–y||. ÉËθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÒÎÛ˜‡˛ ÌÓÏ˚ Ò͇ÎflÌÓ„Ó ÔÓËÁ‚‰ÂÌËfl x = ( x, x ). 鄇Ì˘ÂÌ̇fl ÏÂÚË͇ åÂÚË͇ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â – ‡ÒÒÚÓflÌËÂ) d ̇ ÏÌÓÊÂÒÚ‚Â ï ̇Á˚‚‡ÂÚÒfl Ó„‡Ì˘ÂÌÌÓÈ, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓÌÒÚ‡ÌÚ‡ ë > 0, ڇ͇fl ˜ÚÓ d(x,y) ≤ C ‰Îfl β·˚ı x, y ∈ X. í‡Í, ̇ÔËÏÂ, ÂÒÎË d – ÏÂÚË͇ ̇ ï, ÚÓ ÏÂÚË͇ D ̇ ï, ÓÔ‰ÂÎflÂχfl Í‡Í d ( x, y) D( x, y) = , Ó„‡Ì˘Â̇ Ë ë = 1. 1 + d ( x, y) åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) Ò Ó„‡Ì˘ÂÌÌÓÈ ÏÂÚËÍÓÈ d ̇Á˚‚‡ÂÚÒfl Ó„‡Ì˘ÂÌÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÇÔÓÎÌ ӄ‡Ì˘ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X,d) ̇Á˚‚‡ÂÚÒfl ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌ˚Ï, ÂÒÎË ‰Îfl Í‡Ê‰Ó„Ó ε > 0 ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓ̘̇fl ε-ÒÂÚ¸, Ú.Â. ÍÓ̘ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó M ⊂ X,
45
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
Ú‡ÍÓ ˜ÚÓ ‡ÒÒÚÓflÌË ÓÚ ÚÓ˜ÍË ‰Ó ÏÌÓÊÂÒÚ‚‡ ‰Îfl β·Ó„Ó (ÒÏ. ÇÔÓÎÌ ӄ‡Ì˘ÂÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó, „Î. 2). ÇÒflÍÓ ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl Ó„‡Ì˘ÂÌÌ˚Ï Ë ÒÂÔ‡‡·ÂθÌ˚Ï. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Â„Ó ÔÓÔÓÎÌÂÌË äÓ¯Ë fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. CÂÔ‡‡·ÂθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÒÂÔ‡‡·ÂθÌ˚Ï, ÂÒÎË ÓÌÓ ÒÓ‰ÂÊËÚ Ò˜ÂÚÌÓ ÔÎÓÚÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó, Ú.Â. ÌÂÍÓ ҘÂÚÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó, Ò ÔÓÏÓ˘¸˛ ÍÓÚÓÓ„Ó ÏÓ„ÛÚ ‡ÔÔÓÍÒËÏËÓ‚‡Ú¸Òfl ‚ÒÂ Â„Ó ˝ÎÂÏÂÌÚ˚. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÒÂÔ‡‡·ÂθÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ ‚ÚÓ˘ÌÓ-Ò˜ÂÚÌÓ, Ë ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ãË̉ÂÎÂÙ‡. åÂÚ˘ÂÒÍËÈ ÍÓÏÔ‡ÍÚ åÂÚ˘ÂÒÍËÈ ÍÓÏÔ‡ÍÚ (ËÎË ÍÓÏÔ‡ÍÚÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ‚Òfl͇fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ËÏÂÂÚ ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ äÓ¯Ë Ë ˝ÚË ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚË fl‚Îfl˛ÚÒfl ÒıÓ‰fl˘ËÏËÒfl. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌÓÂ Ë ÔÓÎÌÓÂ. èÓ‰ÏÌÓÊÂÒÚ‚Ó Â‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ Ó„‡Ì˘ÂÌÓ Ë Á‡ÏÍÌÛÚÓ. ëÓ·ÒÚ‚ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚Ï (ËÎË ÍÓ̘ÌÓ ÍÓÏÔ‡ÍÚÌ˚Ï), ÂÒÎË Î˛·ÓÈ Á‡ÏÍÌÛÚ˚È ÏÂÚ˘ÂÒÍËÈ ¯‡ ‚ ˝ÚÓÏ ÔÓÒÚ‡ÌÒÚ‚Â fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï. ÇÒflÍÓ ÒÓ·ÒÚ‚ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï. Ò-‡‚ÌÓÏÂÌÓ Òӂ¯ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ä‡Ê‰˚È ÒÓ·ÒÚ‚ÂÌÌ˚È ÏÂÚ˘ÂÒÍËÈ ¯‡ ‡‰ËÛÒ‡ r ‚ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ËÏÂÂÚ ‰Ë‡ÏÂÚ Ì ·ÓΠ2r. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl Ò-‡‚ÌÓÏÂÌÓ Òӂ¯ÂÌÌ˚Ï, 0 < c ≤ 1, ÂÒÎË ˝ÚÓÚ ‰Ë‡ÏÂÚ ÒÓÒÚ‡‚ÎflÂÚ Ì ÏÂÌ 2Òr. êç ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl êç ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÄÚÒÛ‰ÊË), ÂÒÎË Î˛·‡fl ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl ËÁ ÌÂ„Ó ‚ ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ‡‚ÌÓÏÂÌÓ ÌÂÔÂ˚‚ÌÓÈ. ä‡Ê‰˚È ÏÂÚ˘ÂÒÍËÈ ÍÓÏÔ‡ÍÚ fl‚ÎflÂÚÒfl êç ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÇÒflÍÓ êç ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï. èÓθÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó èÓθÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÌÓ ÒÂÔ‡‡·ÂθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ëÛÒÎË̇, ÂÒÎË ÓÌÓ fl‚ÎflÂÚÒfl ÌÂÔÂ˚‚Ì˚Ï Ó·‡ÁÓÏ ÔÓθÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. åÂÚ˘ÂÒ͇fl ÚÓÈ͇ (ËÎË mm-ÔÓÒÚ‡ÌÒÚ‚Ó) fl‚ÎflÂÚÒfl ÔÓθÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (X, d) Ò ·ÓÂ΂ÓÈ ‚ÂÓflÚÌÓÒÚÌÓÈ ÏÂÓÈ µ, Ú.Â. ÌÂÓÚˈ‡ÚÂθÌÓÈ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÙÛÌ͈ËÂÈ µ ̇ ·ÓÂ΂ÓÈ σ-‡Î„· ÏÌÓÊÂÒÚ‚‡ ï ÒÓ ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË: µ( An ) ‰Îfl β·ÓÈ ÍÓ̘ÌÓÈ ËÎË Ò˜ÂÚÌÓÈ ÒÓ‚ÓÍÛÔÌÓÒÚË µ(Ø) = 0, µ(X) = µ(∪ n An ) =
∑n
ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÏÌÓÊÂÒÚ‚ A n ∈ . èÛÒÚ¸ (X, τ) – ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. σ-‡Î„·ÓÈ Ì‡ ï ̇Á˚‚‡ÂÚÒfl ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï, ӷ·‰‡˛˘‡fl ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË:
46
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
0≥÷ ∈ @, X\U ∈ ‰Îfl U ∈ Ë ∪ n An ∈ ‰Îfl ÍÓ̘ÌÓÈ ËÎË Ò˜ÂÚÌÓÈ ÒÓ‚ÓÍÛÔÌÓÒÚË {An }n , An ∈ . σ-‡Î„·‡ ̇ ï, ÍÓÚÓ‡fl ÒÓÓÚÌÓÒËÚÒfl Ò ÚÓÔÓÎÓ„ËÂÈ Ì‡ ï, Ú.Â. ‚Íβ˜‡ÂÚ ‚Ò ÓÚÍ˚Ú˚Â Ë Á‡ÏÍÌÛÚ˚ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÏÌÓÊÂÒÚ‚‡ ï, ̇Á˚‚‡ÂÚÒfl ·ÓÂ΂ÓÈ σ-‡Î„·ÓÈ ÏÌÓÊÂÒÚ‚‡ ï . ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ·ÓÂÎÂ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, Ú.Â. ÏÌÓÊÂÒÚ‚Ó, Ò̇·ÊÂÌÌÓ ·ÓÂ΂ÓÈ σ-‡Î„·ÓÈ. åÂÚË͇ ÌÓÏ˚ ÑÎfl ‰‡ÌÌÓ„Ó ÌÓÏËÓ‚‡ÌÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (V, ||⋅ ||) ÏÂÚË͇ ÌÓÏ˚ ̇ V ÓÔ‰ÂÎflÂÚÒfl Í‡Í || x–y || åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (V, || x–y ||) ̇Á˚‚‡ÂÚÒfl ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÂÒÎË ÓÌÓ ÔÓÎÌÓÂ. èËχÏË ÏÂÚËÍ ÌÓÏ˚ fl‚Îfl˛ÚÒfl lp - Ë Lp -ÏÂÚËÍË, ‚ ˜‡ÒÚÌÓÒÚË Â‚ÍÎˉӂ‡ ÏÂÚË͇. åÂÚË͇ ÔÛÚË ÇÓÁ¸ÏÂÏ Ò‚flÁÌÓÈ „‡Ù G = (V,E). Ö„Ó ÏÂÚËÍÓÈ ÔÛÚË dpath ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ V, ÓÔ‰ÂÎflÂχfl Í‡Í ‰ÎË̇ (Ú.Â. ÍÓ΢ÂÒÚ‚Ó Â·Â) ͇ژ‡È¯Â„Ó ÔÛÚË, ÒÓ‰ËÌfl˛˘Â„Ó ‰‚ ‰‡ÌÌ˚ ‚¯ËÌ˚ ı Ë Û „‡Ù‡ G (ÒÏ. „Î. 15). åÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ÇÓÁ¸ÏÂÏ ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó ï Ë ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó (Û̇Ì˚ı) ÓÔ‡ˆËÈ Â‰‡ÍÚËÓ‚‡ÌËfl ̇ ï. åÂÚËÍÓÈ Â‰‡ÍÚËÓ‚‡ÌËfl ̇ ï ·Û‰ÂÚ ÏÂÚË͇ ÔÛÚË „‡Ù‡ Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ ï Ë Â·ÓÏ ıÛ, ÂÒÎË Û ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌÓ ËÁ ı ÔÓÒ‰ÒÚ‚ÓÏ Ó‰ÌÓÈ ËÁ ÓÔ‡ˆËÈ ‚ . åÂÚË͇ „‡ÎÂÂË ä‡ÏÂ̇fl ÒËÒÚÂχ – ÏÌÓÊÂÒÚ‚Ó ï (˝ÎÂÏÂÌÚ˚ ÍÓÚÓÓ„Ó Ì‡Á˚‚‡˛ÚÒfl ͇χÏË), Ò̇·ÊÂÌÌÓ n ÓÚÌÓ¯ÂÌËflÏË ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ~i, 1 ≤ i ≤ n. ɇÎÂÂfl – ڇ͇fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ͇Ï ı1 ,…, ım, ˜ÚÓ ıi ~j x i+1 ‰Îfl Í‡Ê‰Ó„Ó i Ë ÌÂÍÓÚÓÓ„Ó j, Á‡‚ËÒfl˘Â„Ó ÓÚ i. åÂÚË͇ „‡ÎÂÂË ÂÒÚ¸ ‡Ò¯ËÂÌ̇fl ÏÂÚË͇ ̇ ï, ÓÔ‰ÂÎflÂχfl Í‡Í ‰ÎË̇ ͇ژ‡È¯ÂÈ „‡ÎÂÂË, ÒÓ‰ËÌfl˛˘ÂÈ ı Ë y ∈ X (Ë Í‡Í ∞, ÂÒÎË ÒÓ‰ËÌfl˛˘ÂÈ x Ë y „‡ÎÂÂË Ì ÒÛ˘ÂÒÚ‚ÛÂÚ). åÂÚË͇ „‡ÎÂÂË fl‚ÎflÂÚÒfl (‡Ò¯ËÂÌÌÓÈ) ÏÂÚËÍÓÈ ÔÛÚË „‡Ù‡ Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ ï Ë Â·ÓÏ ıÛ, ÂÒÎË ı ~i y ‰Îfl ÌÂÍÓÚÓÓ„Ó 1 ≤ i ≤ n. êËχÌÓ‚‡ ÏÂÚË͇ ÇÓÁ¸ÏÂÏ Ò‚flÁÌÓ n-ÏÂÌÓ „·‰ÍÓ ÏÌÓ„ÓÓ·‡ÁË Mn . Ö„Ó ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı ÒËÏÏÂÚ˘Ì˚ı ·ËÎËÌÂÈÌ˚ı ÙÓÏ ((gij)) ̇ ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı ÏÌÓ„ÓÓ·‡ÁËfl Mn , ÍÓÚÓ˚ „·‰ÍÓ ËÁÏÂÌfl˛ÚÒfl ÓÚ ÚÓ˜ÍË Í ÚÓ˜ÍÂ. ÑÎË̇ ÍË‚ÓÈ γ ̇ Mn ‚˚‡Ê‡ÂÚÒfl ͇Í
∫γ ∑i, j gij dxi dx j ,
‡ ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ Mn , ̇Á˚‚‡Âχfl ËÌÓ„‰‡ ËχÌÓ‚˚Ï
‡ÒÒÚÓflÌËÂÏ, ÓÔ‰ÂÎflÂÚÒfl Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı β·˚ ‰‚ ÚÓ˜ÍË x, y ∈ Mn (ÒÏ. „Î. 7). èÓÂÍÚ˂̇fl ÏÂÚË͇ èÓÂÍÚË‚ÌÓÈ ÏÂÚËÍÓÈ d ̇Á˚‚‡ÂÚÒfl ÌÂÔÂ˚‚̇fl ÏÂÚË͇ ̇ n, Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ÛÒÎӂ˲ d(x, z) = d(x, y) + d(y, z) ‰Îfl β·˚ı ÍÓÎÎË̇Ì˚ı ÚÓ˜ÂÍ x, y, z, ‡ÒÔÓÎÓÊÂÌÌ˚ı ‚ ˝ÚÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË Ì‡ Ó·˘ÂÈ ÔflÏÓÈ. óÂÚ‚ÂÚ‡fl ÔÓ·ÎÂχ ÉËθ·ÂÚ‡ (1900 „.) ÒÓÒÚÓËÚ ‚ Í·Ò-
47
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
ÒËÙË͇ˆËË Ú‡ÍËı ÏÂÚËÍ; ˝ÚÓ Ò‰Â·ÌÓ ÚÓθÍÓ ‰Îfl ‡ÁÏÂÌÓÒÚË n = 2 ([Amba76]); ÒÏ. „Î. 6. ä‡Ê‰‡fl ÏÂÚË͇ ÌÓÏ˚ ̇ n fl‚ÎflÂÚÒfl ÔÓÂÍÚË‚ÌÓÈ. ä‡Ê‰‡fl ÔÓÂÍÚ˂̇fl ÏÂÚË͇ ̇ 2 fl‚ÎflÂÚÒfl „ËÔÂÏÂÚËÍÓÈ. åÂÚË͇ ÔÓËÁ‚‰ÂÌËfl ÇÓÁ¸ÏÂÏ n ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (X1 , d2 ), (X2 , d 2 ),…, (Xn , dn ). åÂÚËÍÓÈ ÔÓËÁ‚‰ÂÌËfl ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ‰Â͇ÚÓ‚ÓÏ ÔÓËÁ‚‰ÂÌËË X1 × X2 × …× Xn = = {x = (x 1 , x2,…, xn): x1 ∈ Xn } ÓÔ‰ÂÎflÂχfl Í‡Í ÙÛÌ͈Ëfl ÓÚ d1 ,…,dn (ÒÏ. „Î. 4). ï˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ ï˝ÏÏËÌ„Ó‚ÓÈ ÏÂÚËÍÓÈ dH ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ n , Á‡‰‡‚‡Âχfl Í‡Í |{i : 1 ≤ i ≤ n, xi ≠ yi}| ç‡ ·Ë̇Ì˚ı ‚ÂÍÚÓ‡ı x, y ∈ {0,1}n ı˝ÏÏËÌ„Ó‚Ó ‡ÒÒÚÓflÌËÂ Ë l1 -ÏÂÚË͇ ÒÓ‚Ô‡‰‡˛Ú. åÂÚË͇ ãË èÛÒÚ¸ m, n , m ≥ 2. åÂÚËÍÓÈ ãË d L e e ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ nm = = {0, 1, …, m − 1}n , ÓÔ‰ÂÎflÂχfl ͇Í
∑
min{| xi − yi |, m − | xi − yi |},
1≤ i ≤ n
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (
∑ m , d Lee ) fl‚ÎflÂÚÒfl ‰ËÒÍÂÚÌ˚Ï ‡Ì‡ÎÓ„ÓÏ ˝ÎÎËÔn
Ú˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. åÂÚË͇ ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË èÛÒÚ¸ Á‡‰‡ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÏÂÓÈ (Ω , , µ). èÓÎÛÏÂÚËÍÓÈ ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË (ËÎË ÔÓÎÛÏÂÚËÍÓÈ ÏÂ˚) d∆ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â µ = {A ∈ : µ() < ∞}, ÓÔ‰ÂÎflÂχfl Í‡Í µ(A∆B), „‰Â A∆B = (A ∪ B)\(A ∩ B) – ÒËÏÏÂÚ˘ÂÒ͇fl ‡ÁÌÓÒÚ¸ ÏÌÓÊÂÒÚ‚ Ä Ë B ∈ µ. ꇂÂÌÒÚ‚Ó d ∆(A, B) = 0 ËÏÂÂÚ ÏÂÒÚÓ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ µ(A∆B) = 0, Ú.Â. ÍÓ„‰‡ Ä Ë Ç ÔÓ˜ÚË ‚Ò˛‰Û ‡‚Ì˚. éÚÓʉÂÒÚ‚Îflfl ‰‚‡ ÏÌÓÊÂÒÚ‚‡ A, B ∈ µ, ÂÒÎË µ(A∆B) = 0, ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË (ËÎË ‡ÒÒÚÓflÌˠ çËÍÓ‰Ëχ–ÄÓÌÁfl̇, ÏÂÚËÍÛ ÏÂ˚). ÖÒÎË µ – ͇‰Ë̇θÌÓ ˜ËÒÎÓ, Ú.Â. µ(A) = | A | fl‚ÎflÂÚÒfl ÍÓ΢ÂÒÚ‚ÓÏ ˝ÎÂÏÂÌÚÓ‚ ‚ Ä, ÚÓ d∆(A, B) = | A∆B |. Ç ˝ÚÓÏ ÒÎÛ˜‡Â | A∆B | = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ä = Ç. A∆B ê‡ÒÒÚÓflÌË ÑÊÓÌÒÓ̇ ÏÂÊ‰Û k-ÏÌÓÊÂÒÚ‚‡ÏË Ä Ë Ç ‡‚ÌÓ = k− | A ∩ B | . 2 åÂÚË͇ ùÌÓÏÓÚÓ–ä‡ÚÓ̇ ÖÒÎË ËÏÂÂÚÒfl ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó ï Ë ˆÂÎÓ ˜ËÒÎÓ k, Ú‡ÍÓ ˜ÚÓ 2k ≤ | X |, ÚÓ ÏÂÚËÍÓÈ ùÌÓÏÓÚÓ–ä‡ÚÓ̇ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌÂÛÔÓfl‰Ó˜ÂÌÌ˚ÏË Ô‡‡ÏË (ï1, ï2) Ë (Y 1 , Y 2 ) ÌÂÔÂÂÒÂ͇˛˘ËıÒfl k-ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï, ÓÔ‰ÂÎflÂÏÓÂ Í‡Í min{| X1 \Y1 | + | X2 \Y2 |, | X1 \Y2 | + | X2 \Y1 |}.
48
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ê‡ÒÒÚÓflÌË òÚÂÈÌ„‡ÛÁ‡ ÑÎfl ÔÓÒÚ‡ÌÒÚ‚‡ Ò ÏÂÓÈ (Ω , , µ) ‡ÒÒÚÓflÌËÂÏ òÚÂÈÌ„‡ÛÁ‡ dSt ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â µ = {A ∈ : µ() < ∞}, ÓÔ‰ÂÎflÂχfl ËÁ ‡‚ÂÌÒÚ‚‡ µ( A∆B) µ( A ∩ B) = 1− , µ( A ∪ B) µ( A ∪ B) ÂÒÎË µ(A ∪ B) > 0 (Ë ‡‚̇fl 0, ÂÒÎË µ(A) = µ(B) = 0). é̇ ÒÚ‡ÌÓ‚ËÚÒfl ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ˝ÎÂÏÂÌÚÓ‚ ËÁ µ ; ÔË ˝ÚÓÏ ˝ÎÂÏÂÌÚ˚ Ä, Ç ∈ µ ̇Á˚‚‡˛ÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË µ(A∆B) = 0. | ( A∆B) | ê‡ÒÒÚÓflÌË ·ËÓÚÓÔ‡ (ËÎË ‡ÒÒÚÓflÌË í‡ÌËÏÓÚÓ) fl‚ÎflÂÚÒfl ˜‡ÒÚÌ˚Ï | ( A ∪ B) | ÒÎÛ˜‡ÂÏ ‡ÒÒÚÓflÌËfl òÚÂÈÌ„‡ÛÁ‡, ÔÓÎÛ˜ÂÌÌÓ„Ó ‰Îfl ͇‰Ë̇θÌÓ„Ó ˜ËÒ· µ(A) = | A | (ÒÏ. Ú‡ÍÊ ӷӷ˘ÂÌ̇fl ÏÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·ËÓÚÓÔ‡, „Î. 4). ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ d(x, A) ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ Ä ÏÌÓÊÂÒÚ‚‡ ï ÓÔ‰ÂÎflÂÚÒfl Í‡Í inf d ( x, y).
y∈A
ÑÎfl β·˚ı x, y ∈ X Ë Î˛·Ó„Ó ÌÂÔÛÒÚÓ„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä ÏÌÓÊÂÒÚ‚‡ ï ÒÔ‡‚‰ÎË‚ ÒÎÂ‰Û˛˘ËÈ ‚‡Ë‡ÌÚ Ì‡‚ÂÌÒÚ‚‡ ÚÂÛ„ÓθÌË͇: d(x, A) ≤ d (x,y) + d(x, A) (ÒÏ. ê‡ÒÒÚÓflÌÌÓ ÓÚÓ·‡ÊÂÌËÂ). ÑÎfl ‰‡ÌÌÓÈ ÚӘ˜ÌÓÈ ÏÂ˚ µ(ı) ̇ ï Ë ÙÛÌ͈ËË ¯Ú‡ÙÓ‚ ÓÔÚËχθÌ˚Ï Í‚‡ÌÚÓ‚‡ÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó B ⊂ X, Ú‡ÍÓ ˜ÚÓ
∫ p(d( x, B))dµ( x ) fl‚ÎflÂÚÒfl
̇ËÏÂ̸¯ËÏ ‚ÓÁÏÓÊÌ˚Ï. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË Ä Ë Ç ÏÌÓÊÂÒÚ‚‡ ï Á‡‰‡ÂÚÒfl Í‡Í ing d ( x, y). x ∈A, y ∈B
Ç ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË Ì‡Á˚‚‡ÂÚÒfl ‰ËÌ˘ÌÓÈ Ò‚flÁ¸˛, ‚ ÚÓ ‚ÂÏfl Í‡Í supx∈A,y∈Bd(x, y) ̇Á˚‚‡ÂÚÒfl ÔÓÎÌÓÈ Ò‚flÁ¸˛. ï‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇ ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ı‡ÛÒ‰ÓÙÓ‚ÓÈ ÏÂÚËÍÓÈ (ËÎË ‰ ‚ ÛÒÚÓÓÌÌËÏ ı‡ÛÒ‰ÓÙÓ‚˚Ï ‡ÒÒÚÓflÌËÂÏ) d Haus ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÒÓ‚ÓÍÛÔÌÓÒÚË ‚ÒÂı ÍÓÏÔ‡ÍÚÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ ï, Á‡‰‡‚‡Âχfl Í‡Í max{ddHaus (A, B), ddHaus(B, A)}, „‰Â ddHaus(A, B) = maxx∈A miny∈Bd(x, y) fl‚ÎflÂÚÒfl ÓËÂÌÚËÓ‚‡ÌÌ˚Ï ı‡ÛÒ‰ÓÙÓ‚˚Ï ‡ÒÒÚÓflÌËÂÏ (ËÎË Ó‰ÌÓÒÚÓÓÌÌËÏ ı‡ÛÒ‰ÓÙÓ‚˚Ï ‡ÒÒÚÓflÌËÂÏ) ÓÚ Ä Í Ç. àÌ˚ÏË ÒÎÓ‚‡ÏË, ddHaus(A, B) ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ ε (̇Á˚‚‡ÂÏÓ ڇÍÊ ‡ÒÒÚÓflÌËÂÏ ÅÎfl¯ÍÂ), Ú‡ÍÓ ˜ÚÓ Á‡ÏÍÌÛÚ‡fl ε-ÓÍÂÒÚÌÓÒÚ¸ Ä ÒÓ‰ÂÊËÚ Ç, ‡ Á‡ÏÍÌÛÚ‡fl ε-ÓÍÂÒÚÌÓÒÚ¸ Ç ÒÓ‰ÂÊËÚ Ä. åÓÊÌÓ ÔÓ͇Á‡Ú¸ Ú‡ÍÊÂ, ˜ÚÓ ‡‚ÌÓ ddHaus(A, B) sup | d ( x, A) − d ( x, B) |, x ∈X
49
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
„‰Â d(x, A) = miny∈A d(x, y) fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ. ï‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇ ÏÂÚËÍÓÈ ÌÓÏ˚ Ì fl‚ÎflÂÚÒfl. ÖÒÎË ‚˚¯ÂÔ˂‰ÂÌÌÓ ÓÔ‰ÂÎÂÌË ‡ÒÔÓÒÚ‡ÌËÚ¸ ̇ ÌÂÍÓÏÔ‡ÍÚÌ˚ Á‡ÏÍÌÛÚ˚ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç ÏÌÓÊÂÒÚ‚‡ ï, ÚÓ ddHaus(A, B) ÏÓÊÂÚ ·˚Ú¸ ·ÂÒÍÓ̘ÌÓÈ, Ú.Â. Ó̇ ÒÚ‡ÌÓ‚ËÚÒfl ‡Ò¯ËÂÌÌÓÈ ÏÂÚËÍÓÈ. ÑÎfl ÔÓ‰ÏÌÓÊÂÒÚ‚ Ä Ë Ç ÏÌÓÊÂÒÚ‚‡ ï, Ì ӷflÁ‡ÚÂθÌÓ Á‡ÏÍÌÛÚ˚ı, ı‡ÛÒ‰ÓÙÓ‚‡ ÔÓÎÛÏÂÚË͇ ÏÂÊ‰Û ÌËÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇ ÏÂÊ‰Û Ëı Á‡Ï˚͇ÌËflÏË. ÖÒÎË ï ÍÓ̘ÌÓ, ÚÓ d dHaus fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÔÓ‰ÏÌÓÊÂÒÚ‚ ï. ï‡ÛÒ‰ÓÙÓ‚Ó L p -‡ÒÒÚÓflÌË ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ı‡ÛÒ‰ÓÙÓ‚Ó L p -‡ÒÒÚÓflÌË ([Badd92]) ÏÂÊ‰Û ‰‚ÛÏfl ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË Ä Ë Ç ÏÌÓÊÂÒÚ‚‡ ï Á‡‰‡ÂÚÒfl Í‡Í (
∑ | d( x, A) − d( x, B) |
1 P p
) ,
x ∈X
„‰Â d(x, A) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ. é·˚˜Ì‡fl ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÒÎÛ˜‡˛ = ∞. é·Ó·˘ÂÌ̇fl ı‡ÛÒ‰ÓÙÓ‚‡ G-ÏÂÚË͇ ÇÓÁ¸ÏÂÏ „ÛÔÔÛ (G , ⋅, e), ‰ÂÈÒÚ‚Û˛˘Û˛ ̇ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (X, d). é·Ó·˘ÂÌ̇fl ı‡ÛÒ‰ÓÙÓ‚‡ G-ÏÂÚË͇ ÏÂÊ‰Û ‰‚ÛÏfl Á‡ÏÍÌÛÚ˚ÏË ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË Ä Ë Ç ÏÌÓÊÂÒÚ‚‡ ï Á‡‰‡ÂÚÒfl Í‡Í min d Haus ( g1 ( A), g2 ( B)),
g1 , g 2 ∈G
„‰Â d Haus – ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇. ÖÒÎË d(g(x), g(y)) = d(x, y) ‰Îfl β·Ó„Ó g ∈ G (Ú.Â. ÏÂÚË͇ d ΂ÓËÌ‚‡Ë‡ÌÚ̇ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í G), ÚÓ ‚˚¯ÂÛ͇Á‡Ì̇fl ÏÂÚË͇ ·Û‰ÂÚ ‡‚̇ ming∈G dHaus(A), g(B). åÂÚË͇ ÉÓÏÓ‚‡–ï‡ÛÒ‰ÓÙ‡ åÂÚËÍÓÈ ÉÓÏÓ‚‡–ï‡ÛÒ‰ÓÙ‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÁÓÏÂÚ˘ÂÒÍËı Í·ÒÒÓ‚ ÍÓÏÔ‡ÍÚÌ˚ı ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚, Á‡‰‡‚‡Âχfl Í‡Í inf dHaus(f(X), g(Y)) ‰Îfl β·˚ı ‰‚Ûı Í·ÒÒÓ‚ X* Ë Y * Ò Ô‰ÒÚ‡‚ËÚÂÎflÏË X Ë Y ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, „‰Â dHaus – ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇, ‡ ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚‡Ï å Ë ËÁÓÏÂÚ˘ÂÒÍËÏ ‚ÎÓÊÂÌËflÏ f : X → M, g : Y → M. ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÉÓÏÓ‚‡–ï‡ÛÒ‰ÓÙ‡. åÂÚË͇ èÛÒÚ¸ (X, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. ê‡ÒÒÏÓÚËÏ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÌÂÔÂ˚‚Ì˚ı ÓÚÓ·‡ÊÂÌËÈ f : A → X, g : B → X, …, „‰Â Ä, Ç, … fl‚Îfl˛ÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË n, „ÓÏÂÓÏÓÙÌ˚ÏË [0,1]n ‰Îfl ÙËÍÒËÓ‚‡ÌÌÓÈ ‡ÁÏÂÌÓÒÚË n ∈ . èÓÎÛÏÂÚËÍÓÈ î¯ dF ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ , Á‡‰‡‚‡Âχfl Í‡Í inf sup d ( f ( x ), g(σ( x ))), σ x ∈A
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÒÓı‡Ìfl˛˘ËÏ ÓËÂÌÚ‡ˆË˛ „ÓÏÂÓÏÓÙËÁÏ‡Ï σ : A → → B. é̇ Ô‚‡˘‡ÂÚÒfl ‚ ÏÂÚËÍÛ î¯ ̇ ÏÌÓÊÂÒÚ‚Â Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË f* = {g : dF(g, f) = 0}.
50
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ê‡ÒÒÚÓflÌË Ň̇ı‡–å‡ÁÛ‡ ê‡ÒÒÚÓflÌË Ň̇ı‡–å‡ÁÛ‡ dBM ÏÂÊ‰Û ‰‚ÛÏfl ·‡Ì‡ıÓ‚˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË V Ë W Á‡‰‡ÂÚÒfl Í‡Í ln inf || T || ⋅ || T −1 ||, T
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ËÁÓÏÓÙËÁÏ‡Ï T : V → W. éÌÓ ÏÓÊÂÚ ·˚Ú¸ Á‡ÔËÒ‡ÌÓ Ú‡ÍÊÂ Í‡Í ln d(V,W), „‰Â ˜ËÒÎÓ d(V,W) ÂÒÚ¸ ̇ËÏÂ̸¯Â ÔÓÎÓÊËÚÂθÌÓ d ≥ 1, Ú‡ÍÓ ˜ÚÓ BWn ⊂ T ( BVn ) ⊂ dBWn ‰Îfl ÌÂÍÓÚÓÓ„Ó ÎËÌÂÈÌÓ„Ó Ó·‡ÚËÏÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl T : V → W. á‰ÂÒ¸ ( BVn ) = {x ∈ V :|| x ||V ≤ 1} Ë ( BWn ) = {x ∈ W :|| x ||W ≤ 1} fl‚Îfl˛ÚÒfl ‰ËÌ˘Ì˚ÏË ¯‡‡ÏË ÌÓÏËÓ‚‡ÌÌ˚ı ÔÓÒÚ‡ÌÒÚ‚ (V,|| ⋅||V ) Ë (W,|| ⋅ ||W) ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. dBM(V,W) = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ V Ë W ËÁÓÏÂÚ˘Ì˚, Ë ÒÚ‡ÌÓ‚ËÚÒfl ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â Xn ‚ÒÂı Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË n-ÏÂÌÓ„Ó ÌÓÏËÓ‚‡ÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, „‰Â V ~ W, ÂÒÎË ÓÌË ËÁÓÏÂÚ˘Ì˚. 臇 (Xn , dBM) fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ̇Á˚‚‡ÂÏ˚Ï ÍÓÏÔ‡ÍÚÓÏ Å‡Ì‡ı‡– å‡ÁÛ‡. ê‡ÒÒÚÓflÌË ÉÎÛÁÍË̇–‡Ó‚‡ (ËÎË ÏÓ‰ËÙˈËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË Ň̇ı‡å‡ÁÛ‡) Á‡‰‡ÂÚÒfl Í‡Í inf{|| T || X → Y :| det T | = 1} ⋅ inf{|| T ||Y → X :| det T | = 1}. ê‡ÒÒÚÓflÌË íÓϘ‡Í–Ö„Âχ̇ (ËÎË Ò··Ó ‡ÒÒÚÓflÌË Ň̇ı‡–å‡ÁÛ‡) ÓÔ‰ÂÎflÂÚÒfl Í‡Í max}γ Y (id X ), γ X (id Y )}, „‰Â ‰Îfl ÓÔ‡ÚÓ‡ U : X → Y ˜ÂÂÁ γ Z (U ) Ó·ÓÁ̇˜‡ÂÚÒfl inf
∑
∑ || Wk |||| Vk || .
á‰ÂÒ¸
ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ Ô‰ÒÚ‡‚ÎÂÌËflÏ U = Wk Vk ‰Îfl Vk : X → Z Ë Vk : Z →Y, ‡ idz ÂÒÚ¸ ÚÓʉÂÒÚ‚ÂÌÌÓ ÓÚÓ·‡ÊÂÌËÂ. чÌÌÓ ‡ÒÒÚÓflÌË ÌËÍÓ„‰‡ Ì Ô‚˚¯‡ÂÚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â„Ó ‡ÒÒÚÓflÌËfl Ň̇ı‡–å‡ÁÛ‡. ê‡ÒÒÚÓflÌË 䇉ÂÚÒ‡ èÓÔÛÒÍ (ËÎË ‡Á˚‚) ÏÂÊ‰Û ‰‚ÛÏfl Á‡ÏÍÌÛÚ˚ÏË ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË ï Ë Y ·‡Ì‡ıÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ (V,|| ⋅ ||) ÓÔ‰ÂÎflÂÚÒfl Í‡Í gap(X,Y) = max{δ(X, Y), δ(Y,X)}, „‰Â δ(X,Y) = sup{infy∈Y ||x–y||: x ∈ X, ||x|| = 1} (ÒÏ. ê‡ÒÒÚÓflÌË ‡Á˚‚‡, „Î. 12 Ë åÂÚË͇ ‡Á˚‚‡, „Î. 18). ê‡ÒÒÚÓflÌË 䇉ÂÚÒ‡ ÏÂÊ‰Û ‰‚ÛÏfl ·‡Ì‡ıÓ‚˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË V Ë W fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ, ÓÔ‰ÂÎflÂÏÓÈ (ÔÓ ä‡‰ÂÚÒÛ, 1975) Í‡Í inf gap( B f (V ) , Bg( W ) ), Z, f ,g
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚‡Ï Z Ë ‚ÒÂÏ ÎËÌÂÈÌ˚Ï ËÁÓÏÂÚ˘ÂÒÍËÏ ‚ÎÓÊÂÌËflÏ f : V → Z Ë g : W → Z; Á‰ÂÒ¸ Bf(V) Ë Bg(W) ÒÛÚ¸ ‰ËÌ˘Ì˚ ÏÂÚ˘ÂÒÍË ¯‡˚ ·‡Ì‡ıÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ f(V) Ë g(W) ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. çÂÎËÌÂÈÌ˚Ï ‡Ì‡ÎÓ„ÓÏ ‡ÒÒÚÓflÌËfl 䇉ÂÚÒ‡ fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌË ÉÓÏÓ‚‡– ï‡ÛÒ‰ÓÙ‡ ÏÂÊ‰Û ·‡Ì‡ıÓ‚˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË U Ë W: inf d Haus ( f ( BV ), g( BW )), Z, f ,g
51
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚‡Ï Z Ë ‚ÒÂÏ ËÁÓÏÂÚ˘ÂÒÍËÏ ‚ÎÓÊÂÌËflÏ f : V → Z Ë g : W → Z; Á‰ÂÒ¸ dHaus – ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇. ê‡ÒÒÚÓflÌË ÔÛÚË ä‡‰ÂÚÒ‡ ÏÂÊ‰Û ‰‚ÛÏfl ·‡Ì‡ıÓ‚˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË V Ë W Á‡‰‡ÂÚÒfl (ÔÓ éÒÚÓ‚ÒÍÓÏÛ, 2000) Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ (ÓÚÌÓÒËÚÂθÌÓ ‡ÒÒÚÓflÌËfl ÔÛÚË ä‡‰ÂÚÒ‡) ‚ÒÂı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı V Ë W (Ë Í‡Í ∞, ÂÒÎË Ú‡ÍËı ÍË‚˚ı ÌÂÚ). ãËÔ¯ËˆÂ‚Ó ‡ÒÒÚÓflÌË ÇÓÁ¸ÏÂÏ ‰‚‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚‡ (X, dX) Ë (Y, dY). ãËԯˈ‚‡ ÌÓχ || ⋅ ||Lip ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÌ˙ÂÍÚË‚Ì˚ı ÙÛÌ͈ËÈ f : X → Y ÓÔ‰ÂÎflÂÚÒfl Í‡Í d ( f ( x ), f ( y)) || f || Lip = sup x , y ∈X , x ≠ y Y . d X ( x, y) ãËÔ¯ËˆÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÂÚ˘ÂÒÍËÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË (X, d X ) Ë (Y, dY) Á‡‰‡ÂÚÒfl Í‡Í ln inf || f || Lip ⋅ || f −1 || Lip , f
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ·ËÂÍÚË‚Ì˚Ï ÙÛÌ͈ËflÏ f : X → Y. ùÍ‚Ë‚‡ÎÂÌÚÌÓ, ÓÌÓ fl‚ÎflÂÚÒfl ËÌÙËÏÛÏÓÏ ˜ËÒÂÎ ln α, Ú‡ÍËı ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ·ËÂÍÚË‚ÌÓ ·ËÎËÔ¯ËˆÂ‚Ó ÓÚÓ·‡ÊÂÌË ÏÂÊ‰Û (X, dX ) Ë (Y, dY) Ò ÍÓÌÒÚ‡ÌÚ‡ÏË exp(-α), exp(α). éÌÓ ÒÚ‡ÌÓ‚ËÚÒfl ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÁÓÏÂÚ˘ÂÒÍËı Í·ÒÒÓ‚ ÍÓÏÔ‡ÍÚÌ˚ı ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚. чÌÌÓ ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ‡Ì‡ÎÓ„ÓÏ ‡ÒÒÚÓflÌËfl Ň̇ı‡–å‡ÁÛ‡ Ë, ‰Îfl ÒÎÛ˜‡fl ÍÓ̘ÌÓÏÂÌ˚ı ‚¢ÂÒÚ‚ÂÌÌ˚ı ·‡Ì‡ıÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚, ÒÓ‚Ô‡‰‡ÂÚ Ò ÌËÏ. éÌÓ ÒÓ‚Ô‡‰‡ÂÚ Ú‡ÍÊÂ Ò „Ëθ·ÂÚÓ‚ÓÈ ÔÓÂÍÚË‚ÌÓÈ ÏÂÚËÍÓÈ Ì‡ ÌÂÓÚˈ‡ÚÂθÌ˚ı ÔÓÂÍÚË‚Ì˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı, ÍÓÚÓ˚ ÏÓ„ÛÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ˚ n+ ËÁ ÓÚÓʉÂÒÚ‚ÎÂÌËÂÏ Î˛·ÓÈ ÚÓ˜ÍË ı Ò Òı,Ò > 0. ãËÔ¯ËˆÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ï‡ÏË ÑÎfl ÍÓÏÔ‡ÍÚÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ÔÓÎÛÌÓχ ãËԯˈ‡ || ⋅ ||Lip ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÙÛÌ͈ËÈ f : X → ÓÔ‰ÂÎflÂÚÒfl Í‡Í | f ( x ) − f ( y) | || ⋅ || Lip = sup x , y ∈X , x ≠ y . d ( x, y) ãËÔ¯ËˆÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ï‡ÏË µ Ë ν ̇ ï Á‡‰‡ÂÚÒfl Í‡Í sup
|| f || Lip ≤1
∫ fd(µ − ν).
ÖÒÎË µ Ë ν – ‚ÂÓflÚÌÓÒÚÌ˚ ÏÂ˚, ÚÓ ˝ÚÓ – ÏÂÚË͇ ä‡ÌÚÓӂ˘‡–å˝ÎÎÓÛÁ‡– åÓÌʇ–LJÒÒ¯ÚÂÈ̇. Ä̇ÎÓ„ÓÏ ÎËԯˈ‚‡ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û Ï‡ÏË ‰Îfl ÔÓÒÚ‡ÌÒÚ‚‡ ÒÓÒÚÓflÌËÈ ÛÌËÚ‡ÌÓÈ ë* -‡Î„·˚ fl‚ÎflÂÚÒfl ÏÂÚË͇ äÓÌ̇. ŇˈÂÌÚ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ÔÛÒÚ¸ (B(X), ||µ–ν||TV ·Û‰ÂÚ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, „‰Â Ç(ï) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı „ÛÎflÌ˚ı ·ÓÂ΂˚ı ‚ÂÓflÚÌÓÒÚÌ˚ı Ï ̇ ï Ò Ó„‡Ì˘ÂÌÌ˚Ï ÌÓÒËÚÂÎÂÏ Ë ||µ–ν||TV – ‡ÒÒÚÓflÌË ÌÓÏ˚, ÓÔ‰ÂÎflÂÏÓ ÔÓÎÌÓÈ ‚‡Ë‡ˆËÂÈ
∫X | p(µ) − p( ν) | dλ,
„‰Â p(µ) Ë p ( ν) fl‚Îfl˛ÚÒfl ÙÛÌ͈ËflÏË
ÔÎÓÚÌÓÒÚË Ï µ Ë ν ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÓÚÌÓÒËÚÂθÌÓ σ-ÍÓ̘ÌÓÈ ÏÂ˚
µ+ν . 2
52
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) ·Û‰ÂÚ ·‡ËˆÂÌÚ˘ÂÒÍËÏ, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓÌÒÚ‡ÌÚ‡ β > 0 Ë ÓÚÓ·‡ÊÂÌË f : B(X) → X ËÁ Ç(ï) ̇ ï, Ú‡ÍË ˜ÚÓ Ì‡‚ÂÌÒÚ‚Ó d(f(µ), f(ν)) ≤ βdiam(supp(µ + ν))|| µ–ν ||TV ÒÔ‡‚‰ÎË‚Ó ‰Îfl β·˚ı Ï µ, ν ∈ B(X). ä‡Ê‰Ó ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (X, d = || x–y ||) ÂÒÚ¸ ·‡ËˆÂÌÚ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ Ì‡ËÏÂ̸¯ÂÂ β ‡‚ÌÓ 1, Ë ÓÚÓ·‡ÊÂÌË f(µ) fl‚ÎflÂÚÒfl Ó·˚˜Ì˚Ï ˆÂÌÚÓÏ Ï‡ÒÒ˚
∫X xdµ( x ). ã˛·Ó ‡‰‡Ï‡‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó
(Ú.Â. ÔÓÎÌÓ ëÄí(0) ÔÓÒÚ‡ÌÒÚ‚Ó) ·Û‰ÂÚ ·‡ËˆÂÌÚ˘ÂÒÍËÏ Ò Ì‡ËÏÂ̸¯ËÏ β, ‡‚Ì˚Ï 1, Ë ÓÚÓ·‡ÊÂÌËÂÏ f(µ) ‚ ͇˜ÂÒڂ ‰ËÌÒÚ‚ÂÌÌÓÈ ÚÓ˜ÍË ÏËÌËÏÛχ ÙÛÌ͈ËË g( y ) =
∫X d
2f
( x, y)dµ( x ) ̇ ï.
äÓÏÔ‡ÍÚÌÓ ͂‡ÌÚÓ‚Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó èÛÒÚ¸ V ·Û‰ÂÚ ÌÓÏËÓ‚‡ÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË, ·ÓΠӷӷ˘ÂÌÌÓ, ÎÓ͇θÌÓ ‚˚ÔÛÍÎ˚Ï ÚÓÔÓÎӄ˘ÂÒÍËÏ ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ), ‡ V – Â„Ó ÌÂÔÂ˚‚Ì˚Ï ‰‚ÓÈÒÚ‚ÂÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ú.Â. ÏÌÓÊÂÒÚ‚ÓÏ ‚ÒÂı ÌÂÔÂ˚‚Ì˚ı ÎËÌÂÈÌ˚ı ÙÛÌ͈ËÓ̇ÎÓ‚ f ̇ V. ë··‡fl* ÚÓÔÓÎÓ„Ëfl (ËÎË ÚÓÔÓÎÓ„Ëfl ÉÂθه̉‡) ̇ V ÓÔ‰ÂÎflÂÚÒfl Í‡Í Ò‡Ï‡fl Ò··‡fl (Ú.Â. Ò Ì‡ËÏÂ̸¯ËÏ ÍÓ΢ÂÒÚ‚ÓÏ ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚) ÚÓÔÓÎÓ„Ëfl ̇ V, ڇ͇fl ˜ÚÓ ‰Îfl Í‡Ê‰Ó„Ó x ∈ V ÓÚÓ·‡ÊÂÌË Fx : V → , Á‡‰‡‚‡ÂÏÓ ÛÒÎÓ‚ËÂÏ Fx(f) = f(x) ‰Îfl ‚ÒÂı f ∈ V, ÓÒÚ‡ÂÚÒfl ÌÂÔÂ˚‚Ì˚Ï. èÓÒÚ‡ÌÒÚ‚ÓÏ ÔÓfl‰ÍÓ‚ÓÈ Â‰ËÌˈ˚ ̇Á˚‚‡ÂÚÒfl ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ (ÍÓÏÔÎÂÍÒÌÓÂ) ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (Ä, p − ) Ò ‚˚‰ÂÎÂÌÌ˚Ï ˝ÎÂÏÂÌÚÓÏ Â, ̇Á˚‚‡ÂÏ˚Ï ÔÓfl‰ÍÓ‚ÓÈ Â‰ËÌˈÂÈ, ÍÓÚÓÓ ı‡‡ÍÚÂËÁÛÂÚÒfl ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË: 1) ‰Îfl β·Ó„Ó a ∈ A ÒÛ˘ÂÒÚ‚ÛÂÚ r ∈ , Ú‡ÍÓ ˜ÚÓ a p − re; 2) ÂÒÎË a ∈ A Ë a p − re ‰Îfl ‚ÒÂı ÔÓÎÓÊËÚÂθÌ˚ı r ∈ , ÚÓ a p − 0 (‡ıËωӂÓÒÚ¸). éÒÌÓ‚Ì˚Ï ÔËÏÂÓÏ ÔÓÒÚ‡ÌÒÚ‚‡ ÔÓfl‰ÍÓ‚ÓÈ Â‰ËÌˈ˚ fl‚ÎflÂÚÒfl ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÒÂı Ò‡ÏÓÔËÒÓ‰ËÌÂÌÌ˚ı ˝ÎÂÏÂÌÚÓ‚ ÛÌËÚ‡ÌÓÈ C*-‡Î„·˚, ‰ËÌ˘Ì˚Ï ˝ÎÂÏÂÌÚÓÏ ‚ ÍÓÚÓÓÈ ÒÎÛÊËÚ ÔÓfl‰ÍÓ‚‡fl ‰ËÌˈ‡. á‰ÂÒ¸ C* -‡Î„·‡ fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚ÓÈ ‡Î„·ÓÈ Ì‡‰ , Ò̇·ÊÂÌÌÓÈ ÒÔˆˇθÌ˚Ï ËÌ‚ÓβÚË‚Ì˚Ï ÓÚÓ·‡ÊÂÌËÂÏ. é̇ ̇Á˚‚‡ÂÚÒfl ÛÌËÚ‡ÌÓÈ, ÂÒÎË ËÏÂÂÚ Â‰ËÌËˆÛ (˝ÎÂÏÂÌÚ, ÌÂÈڇθÌ˚È ÓÚÌÓÒËÚÂθÌÓ ÛÏÌÓÊÂÌËfl); Ú‡ÍË C * -‡Î„·˚ ‚ÂҸχ ÔË·ÎËÊÂÌÌÓ Ì‡Á˚‚‡˛Ú ¢ ÍÓÏÔ‡ÍÚÌ˚ÏË ÌÂÍÓÏÏÛÚ‡ÚË‚Ì˚ÏË ÚÓÔÓÎӄ˘ÂÒÍËÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË. íËÔ˘Ì˚Ï ÔËÏÂÓÏ ÛÌËÚ‡ÌÓÈ C* -‡Î„·˚ fl‚ÎflÂÚÒfl ÍÓÏÔÎÂÍÒ̇fl ‡Î„·‡ ÎËÌÂÈÌ˚ı ÓÔ‡ÚÓÓ‚ ̇ ÍÓÏÔÎÂÍÒÌÓÏ „ËηÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â, ÍÓÚÓÓ ÚÓÔÓÎӄ˘ÂÒÍË Á‡ÏÍÌÛÚÓ ‚ ÚÓÔÓÎÓ„ËË ÌÓÏ˚ ÓÔ‡ÚÓÓ‚ Ë Á‡ÏÍÌÛÚÓ ÓÚÌÓÒËÚÂθÌÓ ÓÔ‡ˆËË ‚ÁflÚËfl ÒÓÔflÊÂÌÌ˚ı ̇ ÏÌÓÊÂÒÚ‚Â ÓÔ‡ÚÓÓ‚. èÓÒÚ‡ÌÒÚ‚Ó ÒÓÒÚÓflÌËÈ ÔÓÒÚ‡ÌÒÚ‚‡ ÔÓfl‰ÍÓ‚ÓÈ Â‰ËÌˈ˚ ( A, p −, e) fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ S( A) = { f ∈ A+′ :|| f || = 1} ÒÓÒÚÓflÌËÈ, Ú.Â. ÌÂÔÂ˚‚Ì˚ı ÎËÌÂÈÌ˚ı ÙÛÌ͈ËÓ̇ÎÓ‚ f Ò || f || = f(e ) = 1. äÓÏÔ‡ÍÚÌÓ ͂‡ÌÚÓ‚Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó êËÙÙÂÎfl – ˝ÚÓ Ô‡‡ (Ä, || ⋅ ||Lip), „‰Â ( A, p −, e) ÂÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓfl‰ÍÓ‚ÓÈ Â‰ËÌˈ˚ Ë || ⋅ ||Lip – ÔÓÎÛÌÓχ ̇ Ä (ÒÓ Á̇˜ÂÌËflÏË ‚ [0, +∞]), ̇Á˚‚‡Âχfl ÎËԯˈ‚ÓÈ ÔÓÎÛÌÓÏÓÈ, ÍÓÚÓ‡fl Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÒÎÂ‰Û˛˘ËÏ ÛÒÎÓ‚ËflÏ: 1) ‰Îfl a ∈ A ‡‚ÂÌÒÚ‚Ó || a ||Lip = 0 ‚˚ÔÓÎÌflÂÚÒfl ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ a ∈ e;
É·‚‡ 1. 鷢ˠÓÔ‰ÂÎÂÌËfl
53
2) ÏÂÚË͇ d Lip ( f , g) = sup a ∈A:|| a || Lip ≤1 | f ( a) − g( a) | ÔÓÓʉ‡ÂÚ Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓflÌËÈ S(A) Â„Ó Ò··Û˛* ÚÓÔÓÎӄ˲. í‡ÍËÏ Ó·‡ÁÓÏ, Ï˚ ÔÓÎÛ˜‡ÂÏ Ó·˚˜ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (S(A), d Lip). ÖÒÎË ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓfl‰ÍÓ‚ÓÈ Â‰ËÌˈ˚ ( A, p −, e) fl‚ÎflÂÚÒfl C*-‡Î„·ÓÈ, ÚÓ dLip ÂÒÚ¸ ÏÂÚË͇ äÓÌ̇, Ë ÂÒÎË, ·ÓΠÚÓ„Ó, C*-‡Î„·‡ fl‚ÎflÂÚÒfl ÌÂÍÓÏÏÛÚ‡ÚË‚ÌÓÈ, ÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (S(A), dLip) ̇Á˚‚‡ÂÚÒfl ÌÂÍÓÏÏÛÚ‡ÚË‚Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. Ç˚‡ÊÂÌË ͂‡ÌÚÓ‚Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓfl‚ËÎÓÒ¸ ÔÓÚÓÏÛ, ˜ÚÓ ÏÌÓ„Ë ˝ÍÒÔÂÚ˚ ‚ ӷ·ÒÚË Í‚‡ÌÚÓ‚ÓÈ „‡‚ËÚ‡ˆËË Ë ÚÂÓËË ÒÚÛÌ Ò˜ËÚ‡˛Ú „ÂÓÏÂÚ˲ ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË ‚·ÎËÁË ‰ÎËÌ˚ è·Ì͇ ÒıÓÊÂÈ Ò „ÂÓÏÂÚËÂÈ Ú‡ÍËı ÌÂÍÓÏÏÛÚ‡ÚË‚Ì˚ı ë* -‡Î„·. ç‡ÔËÏÂ, ÚÂÓËfl ÌÂÍÓÏÏÛÚ‡ÚË‚ÌÓ„Ó ÔÓÎfl Ô‰ÔÓ·„‡ÂÚ, ˜ÚÓ Ì‡ ‰ÓÒÚ‡ÚÓ˜ÌÓ Ï‡Î˚ı (Í‚‡ÌÚÓ‚˚ı) ‡ÒÒÚÓflÌËflı ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ ÍÓÓ‰Ë̇Ú˚ Ì ÍÓÏÏÛÚËÛ˛Ú, Ú.Â. Ì‚ÓÁÏÓÊÌÓ ÚÓ˜ÌÓ ËÁÏÂËÚ¸ ÔÓÎÓÊÂÌË ˜‡ÒÚˈ˚ ÓÚÌÓÒËÚÂθÌÓ ·ÓΠ˜ÂÏ Ó‰ÌÓÈ ÓÒË. ìÌË‚Â҇θÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (U, d) ̇Á˚‚‡ÂÚÒfl ÛÌË‚Â҇θÌ˚Ï ‰Îfl ÒÂÏÂÈÒÚ‚‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚, ÂÒÎË Î˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (M, d M ) ËÁ fl‚ÎflÂÚÒfl ËÁÓÏÂÚ˘ÂÒÍËÏ ‚ÎÓÊÂÌËÂÏ ‚ (U , d), Ú.Â. ÒÛ˘ÂÒÚ‚ÛÂÚ ÓÚÓ·‡ÊÂÌË f : M → U, ÍÓÚÓÓ ۉӂÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ dM (x, y) = d(f(x, f(y) ‰Îfl β·˚ı x, y ∈ M. ä‡Ê‰Ó ÒÂÔ‡‡·ÂθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ÏÓÊÂÚ ·˚Ú¸ ËÁÓÏÂÚ˘ÂÒÍË ‚ÎÓÊÂÌÓ (ÔÓ î¯Â, 1909) ‚ (ÌÂÒÂÔ‡‡·ÂθÌÓÂ) ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó l∞. àÏÂÌÌÓ, d(x, y) = supi | d(x, ai) – d(y, a i) |, „‰Â ÂÒÚ¸ (a1 ,…,ai,...) ÔÎÓÚÌÓ ҘÂÚÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ ï. ä‡Ê‰Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ËÁÓÏÂÚ˘ÂÒÍË ‚ÎÓÊËÏÓ (ÔÓ äÛ‡ÚÓ‚ÒÍÓÏÛ, 1935) ‚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó L ∞(X) Ó„‡Ì˘ÂÌÌ˚ı ÙÛÌ͈ËÈ f : X → Ò ÌÓÏÓÈ supx∈X| f(x) |. èÓÒÚ‡ÌÒÚ‚Ó ì˚ÒÓ̇ ÂÒÚ¸ Ó‰ÌÓÓ‰ÌÓ ÔÓÎÌÓ ÒÂÔ‡‡·ÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ÛÌË‚Â҇θÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl ‚ÒÂı ÒÂÔ‡‡·ÂθÌ˚ı ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚. ÉËθ·ÂÚÓ‚ ÍÛ· fl‚ÎflÂÚÒfl ÛÌË‚Â҇θÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl Í·ÒÒ‡ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ ÒÓ Ò˜ÂÚÌÓÈ ·‡ÁÓÈ. ɇÙ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÎÛ˜‡ÈÌÓ„Ó „‡Ù‡ ù‰Â¯‡–êÂÌË (ÓÔ‰ÂÎflÂÏÓ„Ó Í‡Í ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÔÓÒÚ˚ı ˜ËÒÂÎ p ≡ 1(mod4), ̇ ÍÓÚÓÓÏ Ô‡‡ pq ·Û‰ÂÚ Â·ÓÏ, ÂÒÎË – Í‚‡‰‡Ú˘Ì˚È ‚˚˜ÂÚ ÔÓ ÏÓ‰Ûβ q) fl‚ÎflÂÚÒfl ÛÌË‚Â҇θÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl β·Ó„Ó ÍÓ̘ÌÓ„Ó ËÎË Ò˜ÂÚÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ò ‡ÒÒÚÓflÌËflÏË, ÔËÌËχ˛˘ËÏË ÚÓθÍÓ Á̇˜ÂÌËfl 0, 1 ËÎË 2. éÌÓ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ‰ËÒÍÂÚÌ˚È ‡Ì‡ÎÓ„ ÔÓÒÚ‡ÌÒÚ‚‡ ì˚ÒÓ̇. ëÛ˘ÂÒÚ‚ÛÂÚ ÏÂÚË͇ d ̇ , Ë̉ۈËÛ˛˘‡fl Ó·˚˜ÌÛ˛ (ËÌÚ‚‡Î¸ÌÛ˛) ÚÓÔÓÎӄ˲, ڇ͇fl ˜ÚÓ (, d) fl‚ÎflÂÚÒfl ÛÌË‚Â҇θÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl ‚ÒÂı ÍÓ̘Ì˚ı ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (ïÓίÚËÌÒÍËÈ, 1978). Ň̇ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó l∞n fl‚ÎflÂÚÒfl ÛÌË‚Â҇θÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl ‚ÒÂı ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (ï, d) Ò | X | ≤ n + 2 (ÇÛθÙ, 1967). Ö‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó n fl‚ÎflÂÚÒfl ÛÌË‚Â҇θÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl ‚ÒÂı ÛθڇÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (ï, d) Ò | X | ≤ n + 1; ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÒÂı ÍÓ̘Ì˚ı ÙÛÌ͈ËÈ f(t) : ≥0 → , Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ d(f, g) = sup{t : f(t) ≠ g(t)}, fl‚ÎflÂÚÒfl ÛÌË‚Â҇θÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl ‚ÒÂı ÛθڇÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (Ä. ãÂÏËÌ, Ç. ãÂÏËÌ, 1996).
54
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ìÌË‚Â҇θÌÓÒÚ¸ ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂ̇ Ë ‰Îfl ‰Û„Ëı ÓÚÓ·‡ÊÂÌËÈ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (ÔÓÏËÏÓ ËÁÓÏÂÚ˘ÂÒÍËı ‚ÎÓÊÂÌËÈ), ̇ÔËÏ ‰Îfl ·ËÎËԯˈ‚‡ ‚ÎÓÊÂÌËfl Ë ‰Û„Ëı. í‡Í, β·Ó ÍÓÏÔ‡ÍÚÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÌÂÔÂ˚‚Ì˚È Ó·‡Á ͇ÌÚÓÓ‚‡ ÏÌÓÊÂÒÚ‚‡ Ò Ì‡ÚۇθÌÓÈ ÏÂÚËÍÓÈ | x–y |, Û̇ÒΉӂ‡ÌÌÓÈ ÓÚ . äÓÌÒÚÛÍÚË‚ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó äÓÌÒÚÛÍÚË‚ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó – Ô‡‡ (ï, d), „‰Â ï fl‚ÎflÂÚÒfl ÌÂÍËÏ Ì‡·ÓÓÏ ÍÓÌÒÚÛÍÚË‚Ì˚ı Ó·˙ÂÍÚÓ‚ (Ó·˚˜ÌÓ ˝ÚÓ ÒÎÓ‚‡ ̇‰ ÌÂÍÓÚÓ˚Ï ‡ÎÙ‡‚ËÚÓÏ), ‡ d – ‡Î„ÓËÚÏ Ô‚‡˘ÂÌËfl β·ÓÈ Ô‡˚ ˝ÎÂÏÂÌÚÓ‚ ÏÌÓÊÂÒÚ‚‡ ï ‚ ÍÓÌÒÚÛÍ ÚË‚ÌÓ ‚¢ÂÒÚ‚ÂÌÌÓ ˜ËÒÎÓ d(x, y) Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ d ÒÚ‡ÌÓ‚ËÚÒfl ÏÂÚËÍÓÈ Ì‡ ï. ùÙÙÂÍÚË‚ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó èÛÒÚ¸ {xn }n∈ – ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ˝ÎÂÏÂÌÚÓ‚ Á‡‰‡ÌÌÓ„Ó ÔÓÎÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d), ڇ͇fl ˜ÚÓ ÏÌÓÊÂÒÚ‚Ó {xn : n ∈ } fl‚ÎflÂÚÒfl ÔÎÓÚÌ˚Ï ‚ (ï, d). èÛÒÚ¸ (m, n, k) – ͇ÌÚÓÓ‚Ó ˜ËÒÎÓ ÚÓÈÍË (n, m, k) ∈ 3 , a {qk}k∈ , ‡ – ÙËÍÒËÓ‚‡Ì̇fl Òڇ̉‡Ú̇fl ÌÛχˆËfl ÏÌÓÊÂÒÚ‚‡ ‡ˆËÓ̇θÌ˚ı ˜ËÒÂÎ. íÓÈ͇ (X, d,{xn }n∈ ̇Á˚‚‡ÂÚÒfl ˝ÙÙÂÍÚË‚Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ([Hemm02]), ÂÒÎË ÏÌÓÊÂÒÚ‚Ó {(n,m,k):d(x m, xn) < qk} fl‚ÎflÂÚÒfl ÂÍÛÒË‚ÌÓ Ô˜ËÒÎËÏ˚Ï. éÌÓ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ‡‰‡ÔÚ‡ˆË˛ ‚‚‰ÂÌÌÓ„Ó ÇÂÈı‡ÛıÓÏ ÔÓÌflÚËfl ‚˚˜ËÒÎflÂÏÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ËÎË ÂÍÛÒË‚ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡).
É·‚‡ 2
íÓÔÓÎӄ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡
íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, τ)) ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ï Ò ÚÓÔÓÎÓ„ËÂÈ τ, Ú.Â. ÒËÒÚÂÏÓÈ ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï, ӷ·‰‡˛˘Ëı ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË: 1) X ∈ τ, 0/ ∈ τ; 2) ÂÒÎË Ä, B ∈ τ, ÚÓ Ä ∩ B ∈ τ; 3) ‰Îfl β·ÓÈ ÒËÒÚÂÏ˚ {Aα}α, ÂÒÎË ‚Ò A∝ ∈ τ, ÚÓ ∪α Aα ∈ τ. åÌÓÊÂÒÚ‚‡ ËÁ τ ̇Á˚‚‡˛ÚÒfl ÓÚÍ˚Ú˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË, ‡ Ëı ‰ÓÔÓÎÌÂÌËfl ̇Á˚‚‡˛ÚÒfl Á‡ÏÍÌÛÚ˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË. ŇÁÓÈ ÚÓÔÓÎÓ„ËË τ fl‚ÎflÂÚÒfl ÒËÒÚÂχ ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚, ڇ͇fl ˜ÚÓ Í‡Ê‰Ó ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó ÂÒÚ¸ Ó·˙‰ËÌÂÌË ÏÌÓÊÂÒÚ‚ ËÁ ·‡Á˚. ë‡Ï‡fl „Û·‡fl ÚÓÔÓÎÓ„Ëfl ËÏÂÂÚ ‰‚‡ ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚‡ (ÔÛÒÚÓÂ Ë ÏÌÓÊÂÒÚ‚Ó ï) Ë Ì‡Á˚‚‡ÂÚÒfl Ú˂ˇθÌÓÈ (ËÎË ‡ÌÚˉËÒÍÂÚÌÓÈ) ÚÓÔÓÎÓ„ËÂÈ. ç‡Ë·ÓΠ‰Âڇθ̇fl ÚÓÔÓÎÓ„Ëfl ‚Íβ˜‡ÂÚ ‚Ò ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ‚ ͇˜ÂÒÚ‚Â ÓÚÍ˚Ú˚ı Ë Ì‡Á˚‚‡ÂÚÒfl ‰ËÒÍÂÚÌÓÈ ÚÓÔÓÎÓ„ËÂÈ. Ç ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (X, d) ÓÔ‰ÂÎËÏ ÓÚÍ˚Ú˚È ¯‡ Í‡Í ÏÌÓÊÂÒÚ‚Ó B(x,r) = {y ∈ X : d(x,y) < r}, „‰Â x ∈ X (ˆÂÌÚ ¯‡‡) Ë r ∈ , r > 0 (‡‰ËÛÒ ¯‡‡). èÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ ï, ÍÓÚÓÓ fl‚ÎflÂÚÒfl Ó·˙‰ËÌÂÌËÂÏ (ÍÓ̘ÌÓ„Ó ËÎË ·ÂÒÍÓ̘ÌÓ„Ó ˜ËÒ·) ÓÚÍ˚Ú˚ı ¯‡Ó‚, ̇Á˚‚‡ÂÚÒfl ÓÚÍ˚Ú˚Ï ÏÌÓÊÂÒÚ‚ÓÏ. ùÍ‚Ë‚‡ÎÂÌÚÌÓ, ÔÓ‰ÏÌÓÊÂÒÚ‚Ó U ÏÌÓÊÂÒÚ‚‡ ï ̇Á˚‚‡ÂÚÒfl ÓÚÍ˚Ú˚Ï, ÂÒÎË ‰Îfl β·ÓÈ ÙËÍÒËÓ‚‡ÌÌÓÈ ÚÓ˜ÍË x ∈ U ÒÛ˘ÂÒÚ‚ÛÂÚ ‰ÂÈÒÚ‚ËÚÂθÌÓ ˜ËÒÎÓ ε > 0, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·ÓÈ ÚÓ˜ÍË y ∈ X, Û‰Ó‚ÎÂÚ‚Ófl˛˘ÂÈ ÛÒÎӂ˲ d(x,y) < ε, ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë y ∈ U. ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÚÓÔÓÎӄ˘ÂÒÍËÏ, Ò ÚÓÔÓÎÓ„ËÂÈ (ÏÂÚ˘ÂÒÍÓÈ ÚÓÔÓÎÓ„ËÂÈ, ÚÓÔÓÎÓ„ËÂÈ, ÔÓÓʉ‡ÂÏÓÈ ÏÂÚËÍÓÈ d) ÒÓÒÚÓfl˘ÂÈ ËÁ ‚ÒÂı ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚. åÂÚ˘ÂÒ͇fl ÚÓÔÓÎÓ„Ëfl ‚Ò„‰‡ ÂÒÚ¸ T4 (ÒÏ. Ô˜Â̸ ÚÓÔÓÎӄ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ ÌËÊÂ). íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÍÓÚÓÓ ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌÓ Ú‡ÍËÏ Ó·‡ÁÓÏ ËÁ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ̇Á˚‚‡ÂÚÒfl ÏÂÚËÁÛÂÏ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. èÓÎÛÏÂÚ˘ÂÒ͇fl ÚÓÔÓÎÓ„Ëfl – ÚÓÔÓÎÓ„Ëfl ̇ ï, ÔÓÓʉ‡Âχfl ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ ÔÓÎÛÏÂÚËÍÓÈ Ì‡ ï. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ‰‡Ì̇fl ÚÓÔÓÎÓ„Ëfl Ì fl‚ÎflÂÚÒfl ‰‡Ê í0. 䂇ÁËÏÂÚ˘ÂÒ͇fl ÚÓÔÓÎÓ„Ëfl ÂÒÚ¸ ÚÓÔÓÎÓ„Ëfl ̇ ï, ÔÓÓʉ‡Âχfl Í‚‡ÁËÏÂÚËÍÓÈ Ì‡ ï. èÛÒÚ¸ (X, τ) – ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. íÓ„‰‡ ÓÍÂÒÚÌÓÒÚ¸˛ ÚÓ˜ÍË x ∈ X ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó, ÒÓ‰Âʇ˘Â ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó, ÍÓÚÓÓÂ, ‚ Ò‚Ó˛ Ә‰¸, ÒÓ‰ÂÊËÚ ı. á‡Ï˚͇ÌËÂÏ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ fl‚ÎflÂÚÒfl ̇ËÏÂ̸¯Â Á‡ÏÍÌÛÚÓ ÏÌÓÊÂÒÚ‚Ó, Â„Ó ÒÓ‰Âʇ˘ÂÂ. éÚÍ˚ÚÓ ÔÓÍ˚ÚË ÏÌÓÊÂÒÚ‚‡ ï ÂÒÚ¸ ÒËÒÚÂχ ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚, Ó·˙‰ËÌÂÌË ÍÓÚÓ˚ı ‡‚ÌÓ ï; Â„Ó ÔÓ‰ÔÓÍ˚ÚËÂÏ fl‚ÎflÂÚÒfl ÔÓÍ˚ÚË , Ú‡ÍÓ ˜ÚÓ Í‡Ê‰˚È Ó·˙ÂÍÚ ËÁ fl‚ÎflÂÚÒfl Ó·˙ÂÍÚÓÏ ËÁ ; Â„Ó ÔÓ‰‡Á‰ÂÎÂÌËÂÏ fl‚ÎflÂÚÒfl ÔÓÍ˚ÚË , Ú‡ÍÓ ˜ÚÓ Í‡Ê‰˚È Ó·˙ÂÍÚ ËÁ ÂÒÚ¸ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÌÂÍÓÂ„Ó Ó·˙ÂÍÚ‡ ËÁ . ëÂÏÂÈÒÚ‚Ó ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï ̇Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓ ÍÓ̘Ì˚Ï, ÂÒÎË Í‡Ê‰‡fl ÚӘ͇ ÏÌÓÊÂÒÚ‚‡ ï ËÏÂÂÚ ÓÍÂÒÚÌÓÒÚ¸, ÔÂÂÒÂ͇˛˘Û˛Òfl ÚÓθÍÓ Ò ÍÓ̘Ì˚Ï ˜ËÒÎÓÏ ˝ÚËı ÔÓ‰ÏÌÓÊÂÒÚ‚. èÓ‰ÏÌÓÊÂÒÚ‚Ó A ⊂ X ̇Á˚‚‡ÂÚÒfl ÔÎÓÚÌ˚Ï,
56
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÂÒÎË ÓÌÓ ËÏÂÂÚ ÌÂÔÛÒÚÓ ÔÂÂÒ˜ÂÌËÂ Ò Í‡Ê‰˚Ï ÌÂÔÛÒÚ˚Ï ÓÚÍ˚Ú˚Ï ÏÌÓÊÂÒÚ‚ÓÏ ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, ÂÒÎË Â‰ËÌÒÚ‚ÂÌÌ˚Ï ÒÓ‰Âʇ˘ËÏ Â„Ó Á‡ÏÍÌÛÚ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ fl‚ÎflÂÚÒfl Ò‡ÏÓ ÏÌÓÊÂÒÚ‚Ó ï. Ç ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (X, d) ÔÎÓÚÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ ·Û‰ÂÚ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó A ⊂ X, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·Ó„Ó x ∈ X Ë Î˛·Ó„Ó ε > 0 ÒÛ˘ÂÒÚ‚ÛÂÚ y ∈ A, Ú‡ÍÓ ˜ÚÓ d(x, y) < ε. ãÓ͇θÌÓÈ ·‡ÁÓÈ ÚÓ˜ÍË x ∈ X fl‚ÎflÂÚÒfl ÒÂÏÂÈÒÚ‚Ó ÓÍÂÒÚÌÓÒÚÂÈ ÚÓ˜ÍË ı, Ú‡ÍÓ ˜ÚÓ Í‡Ê‰‡fl ÓÍÂÒÚÌÓÒÚ¸ ÚÓ˜ÍË ı ÒÓ‰ÂÊËÚ ÌÂÍËÈ ˝ÎÂÏÂÌÚ ÒÂÏÂÈÒÚ‚‡ . îÛÌ͈Ëfl ËÁ Ó‰ÌÓ„Ó ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ‚ ‰Û„Ó ̇Á˚‚‡ÂÚÒfl ÌÂÔÂ˚‚ÌÓÈ, ÂÒÎË ÔÓÓ·‡Á Í‡Ê‰Ó„Ó ÓÚÍ˚ÚÓ„Ó ÏÌÓÊÂÒÚ‚‡ ·Û‰ÂÚ ÓÚÍ˚Ú˚Ï. ÉÛ·Ó „Ó‚Ófl, ‰Îfl ‰‡ÌÌÓ„Ó x ∈ X ‚Ò ·ÎËÁÍËÂ Í ı ÚÓ˜ÍË ÓÚÓ·‡Ê‡˛ÚÒfl ‚ ÚÓ˜ÍË, ·ÎËÁÍËÂ Í f(x). îÛÌ͈Ëfl f ËÁ Ó‰ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, dX ) ‚ ‰Û„Ó (Y, d Y) ·Û‰ÂÚ ÌÂÔÂ˚‚ÌÓÈ ‚ ÚӘ͠c ∈ X, ÂÒÎË ‰Îfl β·Ó„Ó ÔÓÎÓÊËÚÂθÌÓ„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ˜ËÒ· ε ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÓÎÓÊËÚÂθÌÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ ˜ËÒÎÓ δ, Ú‡ÍÓ ˜ÚÓ ‚Ò x ∈ X, Û‰Ó‚ÎÂÚ‚Ófl˛˘Ë Ì‡‚ÂÌÒÚ‚Û dX(x, c) < δ, ·Û‰ÛÚ Ú‡ÍÊ ۉӂÎÂÚ‚ÓflÚ¸ ̇‚ÂÌÒÚ‚Û dY(f(x), f(y)) < ε. îÛÌ͈Ëfl ̇Á˚‚‡ÂÚÒfl ÌÂÔÂ˚‚ÌÓÈ Ì‡ ËÌÚ‚‡Î I, ÂÒÎË Ó̇ ÌÂÔÂ˚‚̇ ‚ β·ÓÈ ÚӘ͠ËÌÚ‚‡Î‡ I. è˂‰ÂÌÌ˚ ÌËÊ Í·ÒÒ˚ ÚÓÔÓÎӄ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (‰Ó T 4 ) ‚Íβ˜‡˛Ú β·˚ ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. í0 -ÔÓÒÚ‡ÌÒÚ‚Ó í0-ÔÓÒÚ‡ÌÒÚ‚Ó (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó äÓÎÏÓ„ÓÓ‚‡) ÂÒÚ¸ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, τ), ̇ ÍÓÚÓÓÏ ‚˚ÔÓÎÌflÂÚÒfl í0-‡ÍÒËÓχ ÓÚ‰ÂÎËÏÓÒÚË: ‰Îfl ͇ʉ˚ı ‰‚Ûı ÚÓ˜ÂÍ x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó U, Ú‡ÍÓ ˜ÚÓ x ∈ U Ë y ∉ U ËÎË y ∈ U Ë y ∉ U (͇ʉ˚ ‰‚ ÚÓ˜ÍË fl‚Îfl˛ÚÒfl ÚÓÔÓÎӄ˘ÂÒÍË ÓÚ΢ËÏ˚ÏË). í1-ÔÓÒÚ‡ÌÒÚ‚Ó í1-ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï , τ), ̇ ÍÓÚÓÓÏ ‚˚ÔÓÎÌflÂÚÒfl í1--‡ÍÒËÓχ ÓÚ‰ÂÎËÏÓÒÚË: ‰Îfl ͇ʉ˚ı ‰‚Ûı ÚÓ˜ÂÍ x, y ∈ X ÒÛ˘ÂÒÚ‚Û˛Ú ‰‚‡ Ú‡ÍËı ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚‡ U Ë V, ˜ÚÓ x ∈ U Ë y ∉ U ËÎË y ∈ V Ë x ∉ V (͇ʉ˚ ‰‚ ÚÓ˜ÍË fl‚Îfl˛ÚÒfl ‡Á‰ÂÎÂÌÌ˚ÏË). í 1 -ÔÓÒÚ‡ÌÒÚ‚‡ ‚Ò„‰‡ fl‚Îfl˛ÚÒfl í 0 -ÔÓÒÚ‡ÌÒÚ‚‡ÏË. í2-ÔÓÒÚ‡ÌÒÚ‚Ó í2-ÔÓÒÚ‡ÌÒÚ‚Ó (ËÎË ı‡ÛÒ‰ÓÙÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, ‡Á‰ÂÎÂÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó) – ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï , τ), Û‰Ó‚ÎÂÚ‚Ófl˛˘Â ÛÒÎӂ˲ í 2-‡ÍÒËÓÏ˚: ͇ʉ˚ ‰‚ ÚÓ˜ÍË x, y ∈ X ËÏÂ˛Ú ÌÂÔÂÂÒÂ͇˛˘ËÂÒfl ÓÍÂÒÚÌÓÒÚË. í 2 -ÔÓÒÚ‡ÌÒÚ‚‡ ‚Ò„‰‡ fl‚Îfl˛ÚÒfl í1-ÔÓÒÚ‡ÌÒÚ‚‡ÏË. ê„ÛÎflÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ê„ÛÎflÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl ÓÍÂÒÚÌÓÒÚ¸ ÔÓËÁ‚ÓθÌÓÈ ÚÓ˜ÍË ÒÓ‰ÂÊËÚ Á‡ÏÍÌÛÚÛ˛ ÓÍÂÒÚÌÓÒÚ¸ ÚÓÈ Ê ÚÓ˜ÍË. í3-ÔÓÒÚ‡ÌÒÚ‚Ó í3 -ÔÓÒÚ‡ÌÒÚ‚Ó (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó ÇËÂÚÓËÒ‡, „ÛÎflÌÓ ı‡ÛÒ‰ÓÙÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó) ÂÒÚ¸ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÍÓÚÓÓ fl‚ÎflÂÚÒfl í1-ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ë Â„ÛÎflÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÇÔÓÎÌ „ÛÎflÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÇÔÓÎÌ „ÛÎflÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó íËıÓÌÓ‚‡) ÂÒÚ¸ ı‡ÛÒ‰ÓÙÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (ï, τ ), ‚ ÍÓÚÓÓÏ Î˛·Ó Á‡ÏÍÌÛÚÓ ÏÌÓÊÂÒÚ‚Ó Ä Ë Î˛·Ó x ∉ A fl‚Îfl˛ÚÒfl ÙÛÌ͈ËÓ̇θÌÓ ‡Á‰ÂÎÂÌÌ˚ÏË.
É·‚‡ 2. íÓÔÓÎӄ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡
57
Ñ‚‡ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç ÏÌÓÊÂÒÚ‚‡ ï ̇Á˚‚‡˛ÚÒfl ÙÛÌ͈ËÓ̇θÌÓ ‡Á‰ÂÎÂÌÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl f : X → [0,1], ڇ͇fl ˜ÚÓ f(x) = 0 ‰Îfl β·Ó„Ó x ∈ A, Ë f(y) = 1 ‰Îfl β·Ó„Ó y ∈ B. èÓÒÚ‡ÌÒÚ‚Ó åÛ‡ èÓÒÚ‡ÌÒÚ‚Ó åÛ‡ ÂÒÚ¸ „ÛÎflÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ‡Á‚ËÚËÂÏ. ê‡Á‚ËÚË – ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ { n }n ÓÚÍ˚Ú˚ı ÔÓÍ˚ÚËÈ, Ú‡ÍËı ˜ÚÓ ‰Îfl Í‡Ê‰Ó„Ó x ∈ X Ë Í‡Ê‰Ó„Ó ÓÚÍ˚ÚÓ„Ó ÏÌÓÊÂÒÚ‚‡ Ä, ÒÓ‰Âʇ˘Â„Ó ı, ËÏÂÂÚÒfl ˜ËÒÎÓ n, ‰Îfl ÍÓÚÓÓ„Ó ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë St(x, n) = ∪{U ∈ n : x ∈ U}, Ú.Â. {St(x, n)}n fl‚ÎflÂÚÒfl ·‡ÁÓÈ ÓÍÂÒÚÌÓÒÚÂÈ ‰Îfl ı. çÓχθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó çÓχθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó –ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ‰Îfl β·˚ı ‰‚Ûı ÌÂÔÂÂÒÂ͇˛˘ËıÒfl Á‡ÏÍÌÛÚ˚ı ÏÌÓÊÂÒÚ‚ Ä Ë Ç ÒÛ˘ÂÒÚ‚Û˛Ú ‰‚‡ ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚‡ U Ë V, Ú‡ÍËı ˜ÚÓ Ë A ⊂ U Ë B ⊂ V. í4-ÔÓÒÚ‡ÌÒÚ‚Ó í4 -ÔÓÒÚ‡ÌÒÚ‚Ó (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó íËÚÒ‡, ÌÓχθÌÓ ı‡ÛÒ‰ÓÙÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó) ÂÒÚ¸ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÍÓÚÓÓ fl‚ÎflÂÚÒfl í1-ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ë ÌÓχθÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) fl‚ÎflÂÚÒfl í4-ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÇÔÓÎÌ ÌÓχθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÇÔÓÎÌ ÌÓχθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó – ˝ÚÓ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ Î˛·˚ ‰‚‡ ‡Á‰ÂÎÂÌÌ˚ı ÏÌÓÊÂÒÚ‚‡ ËÏÂ˛Ú ÌÂÔÂÂÒÂ͇˛˘ËÂÒfl ÓÍÂÒÚÌÓÒÚË. åÌÓÊÂÒÚ‚‡ Ä Ë Ç Ì‡Á˚‚‡˛ÚÒfl ‡Á‰ÂÎÂÌÌ˚ÏË ‚ ï, ÂÒÎË Í‡Ê‰Ó ËÁ ÌËı Ì ÔÂÂÒÂ͇ÂÚÒfl Ò Á‡Ï˚͇ÌËÂÏ ‰Û„Ó„Ó. í5-ÔÓÒÚ‡ÌÒÚ‚Ó í5-ÔÓÒÚ‡ÌÒÚ‚Ó (ËÎË ‚ÔÓÎÌ ÌÓχθÌÓ ı‡ÛÒ‰ÓÙÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó) ÂÒÚ¸ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ‚ÔÓÎÌ ÌÓχθÌ˚Ï Ë í 1 -ÔÓÒÚ‡ÌÒÚ‚ÓÏ. í 5 -ÔÓÒÚ‡ÌÒÚ‚‡ ‚Ò„‰‡ fl‚Îfl˛ÚÒfl í4-ÔÓÒÚ‡ÌÒÚ‚‡ÏË. ëÂÔ‡‡·ÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ëÂÔ‡‡·ÂθÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ËÏÂÂÚÒfl Ò˜ÂÚÌÓ ÔÎÓÚÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó. èÓÒÚ‡ÌÒÚ‚Ó ãË̉ÂÎÂÙ‡ èÓÒÚ‡ÌÒÚ‚ÓÏ ãË̉ÂÎÂÙ‡ ̇Á˚‚‡ÂÚÒfl ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ Í‡Ê‰Ó ÓÚÍ˚ÚÓ ÔÓÍ˚ÚË ËÏÂÂÚ Ò˜ÂÚÌÓ ÔÓ‰ÔÓÍ˚ÚËÂ. è‚˘ÌÓ-Ò˜ÂÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl Ô‚˘ÌÓ-ÒÂÚÌ˚Ï, ÂÒÎË Í‡Ê‰‡fl Â„Ó ÚӘ͇ ӷ·‰‡ÂÚ ÎÓ͇θÌÓÈ Ò˜ÂÚÌÓÈ ·‡ÁÓÈ. ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl Ô‚˘ÌÓ-Ò˜ÂÚÌ˚Ï. ÇÚÓ˘ÌÓ-Ò˜ÂÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ‚ÚÓ˘ÌÓ-Ò˜ÂÚÌ˚Ï, ÂÒÎË Â„Ó ÚÓÔÓÎÓ„Ëfl ӷ·‰‡ÂÚ Ò˜ÂÚÌÓÈ ·‡ÁÓÈ. ÇÚÓ˘ÌÓ-ÒÂÚÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡ ‚Ò„‰‡ ‡Á‰ÂÎËÏ˚, Ô‚˘ÌÓ-Ò˜ÂÚÌ˚ Ë fl‚Îfl˛ÚÒfl ÔÓÒÚ‡ÌÒÚ‚‡ÏË ãË̉ÂÎÂÙ‡.
58
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÑÎfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ Ò‚ÓÈÒÚ‚‡ ·˚Ú¸ ‚ÚÓ˘ÌÓ-ÒÂÚÌ˚ÏË, ·˚Ú¸ ÒÂÔ‡‡·ÂθÌ˚ÏË Ë ·˚Ú¸ ÔÓÒÚ‡ÌÒÚ‚‡ÏË ãË̉ÂÎÂÙ‡ fl‚Îfl˛ÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË. Ö‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó n Ò Â„Ó Ó·˚˜ÌÓÈ ÚÓÔÓÎÓ„ËÂÈ Ú‡ÍÊ fl‚ÎflÂÚÒfl ‚ÚÓ˘ÌÓÒ˜ÂÚÌ˚Ï. èÓÒÚ‡ÌÒÚ‚Ó Å˝‡ èÓÒÚ‡ÌÒÚ‚Ó Å˝‡ ÂÒÚ¸ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ÔÂÂÒ˜ÂÌË β·Ó„Ó Ò˜ÂÚÌÓ„Ó ÒÂÏÂÈÒÚ‚‡ ‚Ò˛‰Û ÔÎÓÚÌ˚ı ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚ ‚Ò˛‰Û ÔÎÓÚÌÓ. ë‚flÁÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, τ) ̇Á˚‚‡ÂÚÒfl Ò‚flÁÌ˚Ï, ÂÒÎË ÓÌÓ Ì fl‚ÎflÂÚÒfl Ó·˙‰ËÌÂÌËÂÏ Ô‡˚ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÌÂÔÛÒÚ˚ı ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚. Ç ˝ÚÓÏ ÒÎÛ˜‡Â ÏÌÓÊÂÒÚ‚Ó ï ̇Á˚‚‡ÂÚÒfl Ò‚flÁÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ. íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, τ) ̇Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓ Ò‚flÁÌ˚Ï, ÂÒÎË ‚Òfl͇fl ÚӘ͇ x ∈ X ӷ·‰‡ÂÚ ÎÓ͇θÌÓÈ ·‡ÁÓÈ, ÒÓÒÚÓfl˘ÂÈ ËÁ Ò‚flÁÌ˚ı ÏÌÓÊÂÒÚ‚. íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, τ) ̇Á˚‚‡ÂÚÒfl ÔÛÚ¸-Ò‚flÁÌ˚Ï (ËÎË 0-Ò‚flÁÌ˚Ï), ÂÒÎË ‰Îfl ͇ʉÓÈ ÚÓ˜ÍË x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÛÚ¸ τ ÓÚ ı Í Û, Ú.Â. ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl γ : [0,1] → X Ò γ(x) = 0, γ(y) = 1. íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, τ) ̇Á˚‚‡ÂÚÒfl Ó‰ÌÓÒ‚flÁÌ˚Ï (ËÎË 1-Ò‚flÁÌ˚Ï), ÂÒÎË ÒÓÒÚÓËÚ ËÁ Ó‰ÌÓÈ ˜‡ÒÚË Ë Ì ËÏÂÂÚ ÍÛ„ÓÓ·‡ÁÌ˚ı "‰˚" ËÎË "Û˜ÂÍ", ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, ÂÒÎË Í‡Ê‰‡fl ÌÂÔÂ˚‚̇fl ÍË‚‡fl ÔÓÒÚ‡ÌÒÚ‚‡ ï fl‚ÎflÂÚÒfl ÒÚfl„Ë‚‡ÂÏÓÈ, Ú.Â. ÏÓÊÂÚ ·˚Ú¸ ÛÏÂ̸¯Â̇ ‰Ó Ó‰ÌÓÈ ËÁ  ÚÓ˜ÂÍ ÔÓÒ‰ÒÚ‚ÓÏ ÌÂÔÂ˚‚ÌÓÈ ‰ÂÙÓχˆËË. 臇ÍÓÏÔ‡ÍÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl Ô‡‡ÍÓÏÔ‡ÍÚÌ˚Ï, ÂÒÎË Î˛·ÓÂ Â„Ó ÓÚÍ˚ÚÓ ÔÓÍ˚ÚË ËÏÂÂÚ ÎÓ͇θÌÓ ÍÓ̘ÌÓ ÔÓ‰‡Á·ËÂÌËÂ. ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) fl‚ÎflÂÚÒfl Ô‡‡ÍÓÏÔ‡ÍÚÌ˚Ï. ãÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌ˚Ï, ÂÒÎË ‚Òfl͇fl Â„Ó ÚӘ͇ ӷ·‰‡ÂÚ ÎÓ͇θÌÓÈ ·‡ÁÓÈ, ÒÓÒÚÓfl˘ÂÈ ËÁ ÍÓÏÔ‡ÍÚÌ˚ı ÓÍÂÒÚÌÓÒÚÂÈ. ÉÛ·Ó „Ó‚Ófl, ‚Òfl͇fl χ·fl ˜‡ÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚‡ ÔÓıÓʇ ̇ χÎÛ˛ ˜‡ÒÚ¸ ÍÓÏÔ‡ÍÚÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. Ö‚ÍÎˉӂ˚ ÔÓÒÚ‡ÌÒÚ‚‡ n fl‚Îfl˛ÚÒfl ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌ˚ÏË. èÓÒÚ‡ÌÒÚ‚‡ p-‡‰Ë˜ÂÒÍËı ˜ËÒÂÎ Ú‡ÍÊ ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌ˚. ÇÔÓÎÌ ӄ‡Ì˘ÂÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌ˚Ï, ÂÒÎË ÓÌÓ ÏÓÊÂÚ ·˚Ú¸ ÔÓÍ˚ÚÓ ÍÓ̘Ì˚Ï ˜ËÒÎÓÏ ÔÓ‰ÏÌÓÊÂÒÚ‚ β·Ó„Ó ÙËÍÒËÓ‚‡ÌÌÓ„Ó ‡Áχ. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÂÒÎË ‰Îfl Í‡Ê‰Ó„Ó ÔÓÎÓÊËÚÂθÌÓ„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ˜ËÒ· r ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó ÓÚÍ˚Ú˚ı ¯‡Ó‚ ‡‰ËÛÒ‡ r, Ó·˙‰ËÌÂÌË ÍÓÚÓ˚ı ‡‚ÌÓ ï. äÓÏÔ‡ÍÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï , τ) ̇Á˚‚‡ÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï, ÂÒÎË ‚ÒflÍÓ ÓÚÍ˚ÚÓ ÔÓÍ˚ÚË ÏÌÓÊÂÒÚ‚‡ ï ËÏÂÂÚ ÍÓ̘ÌÓ ÔÓ‰ÔÓÍ˚ÚËÂ. Ç ˝ÚÓÏ ÒÎÛ˜‡Â ï ̇Á˚‚‡ÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ. äÓÏÔ‡ÍÚÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡ ‚Ò„‰‡ fl‚Îfl˛ÚÒfl ÔÓÒÚ‡ÌÒÚ‚‡ÏË ãË̉ÂÎÂÙ‡, ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌ˚ÏË Ë Ô‡‡ÍÓÏÔ‡ÍÚÌ˚ÏË. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ ÍÓÏÔ‡ÍÚÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ ÔÓÎÌÓÂ Ë ‚ÔÓÎÌ ӄ‡Ì˘ÂÌÌÓÂ. èÓ‰ÏÌÓ-
59
É·‚‡ 2. íÓÔÓÎӄ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡
ÊÂÒÚ‚Ó Â‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ Á‡ÏÍÌÛÚÓÂ Ë Ó„‡Ì˘ÂÌÌÓÂ. ëÛ˘ÂÒÚ‚ÛÂÚ fl‰ ÚÓÔÓÎӄ˘ÂÒÍËı Ò‚ÓÈÒÚ‚, ÍÓÚÓ˚ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ Ò‚ÓÈÒÚ‚Û ÍÓÏÔ‡ÍÚÌÓÒÚË ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚, ÌÓ Ì½͂˂‡ÎÂÌÚÌ˚ ‰Îfl Ó·˘Ëı ÚÓÔÓÎӄ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚. í‡Í, ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ ÍÓÏÔ‡ÍÚÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ fl‚ÎflÂÚÒfl ÒÂÍ‚Â̈ˇθÌÓ ÍÓÏÔ‡ÍÚÌ˚Ï (͇ʉ‡fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ӷ·‰‡ÂÚ ÒıÓ‰fl˘ÂÈÒfl ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛) ËÎË Ò ˜ Â Ú Ì Ó ÍÓÏÔ‡ÍÚÌ˚Ï (͇ʉÓ ҘÂÚÌÓ ÓÚÍ˚ÚÓ ÔÓÍ˚ÚË ӷ·‰‡ÂÚ ÍÓ̘Ì˚Ï ÔÓ‰ÔÓÍ˚ÚËÂÏ), ËÎË ÔÒ‚‰ÓÍÓÏÔ‡ÍÚÌ˚Ï (͇ʉ‡fl ‰ÂÈÒÚ‚ËÚÂθ̇fl ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl ̇ ‰‡ÌÌÓÏ ÔÓÒÚ‡ÌÚÒÚ‚Â fl‚ÎflÂÚÒfl Ó„‡Ì˘ÂÌÌÓÈ), ËÎË Ò··Ó Ò˜ÂÚÌ˚Ï ÍÓÏÔ‡ÍÚÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (͇ʉÓ ·ÂÒÍÓ̘ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó Ó·Î‡‰‡ÂÚ Ô‰ÂθÌÓÈ ÚÓ˜ÍÓÈ). ãÓ͇θÌÓ ‚˚ÔÛÍÎÓ ÔÓÒÚ‡ÌÒÚ‚Ó íÓÔÓÎӄ˘ÂÒÍËÏ ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓ (ÍÓÏÔÎÂÍÒÌÓÂ) ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó V, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ı‡ÛÒ‰ÓÙÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ò ÌÂÔÂ˚‚Ì˚ÏË ÓÔ‡ˆËflÏË ÒÎÓÊÂÌËfl ‚ÂÍÚÓÓ‚ Ë ÛÏÌÓÊÂÌËfl ‚ÂÍÚÓ‡ ̇ Ò͇Îfl. éÌÓ Ì‡Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓ ‚˚ÔÛÍÎ˚Ï, ÂÒÎË Â„Ó ÚÓÔÓÎÓ„Ëfl ӷ·‰‡ÂÚ ·‡ÁÓÈ, ‚ÒflÍËÈ ˝ÎÂÏÂÌÚ ÍÓÚÓÓÈ fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ. èÓ‰ÏÌÓÊÂÒÚ‚Ó Ä ÏÌÓÊÂÒÚ‚‡ V ̇Á˚‚‡ÂÚÒfl ‚˚ÔÛÍÎ˚Ï, ÂÒÎË ‰Îfl ‚ÒÂı x, y ∈ A Ë Î˛·Ó„Ó t ∈ [0,1] ÚӘ͇ tx + (1–t)y ∈ A, Ú.Â. ‚Òfl͇fl ÚӘ͇ ÓÚÂÁ͇, ÒÓ‰ËÌfl˛˘Â„Ó ı Ë Û, ÔË̇‰ÎÂÊËÚ Ä. ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (V,|| x–y ||) ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ) ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V Ò ÏÂÚËÍÓÈ ÌÓÏ˚ || x–y || fl‚ÎflÂÚÒfl ÎÓ͇θÌÓ ‚˚ÔÛÍÎ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ; ‚Òfl͇fl ÚӘ͇ ÔÓÒÚ‡ÌÒÚ‚‡ V ӷ·‰‡ÂÚ ÎÓ͇θÌÓÈ ·‡ÁÓÈ, ÒÓÒÚÓfl˘ÂÈ ËÁ ‚˚ÔÛÍÎ˚ı ÏÌÓÊÂÒÚ‚. ë˜ÂÚÌÓ-ÌÓÏËÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ë˜ÂÚÌÓ-ÌÓÏËÓ‚‡ÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓ ‚˚ÔÛÍÎÓ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (V, τ), ÚÓÔÓÎÓ„Ëfl ÍÓÚÓÓ„Ó Á‡‰‡ÂÚÒfl ˜ÂÂÁ Ò˜ÂÚÌÓ ÏÌÓÊÂÒÚ‚Ó ÒÓ‚ÏÂÒÚÌ˚ı ÌÓÏ || ⋅ ||1,… ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ, ÂÒÎË ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ {xn}n ˝ÎÂÏÂÌÚÓ‚ ÏÌÓÊÂÒÚ‚‡ V, fl‚Îfl˛˘‡flÒfl ÙÛ̉‡ÏÂÌڇθÌÓÈ ÓÚÌÓÒËÚÂθÌÓ ÌÓÏ || ⋅ ||i Ë || ⋅ ||j, ÒıÓ‰ËÚÒfl Í ÌÛβ ÓÚÌÓÒËÚÂθÌÓ Ó‰ÌÓÈ ËÁ ˝ÚËı ÌÓÏ, ÚÓ Ó̇ ·Û‰ÂÚ ÒıÓ‰ËÚ¸Òfl Í ÌÛβ Ë ÓÚÌÓÒËÚÂθÌÓ ‰Û„ÓÈ. ë˜ÂÚÌÓ-ÌÓÏËÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÏÂÚËÁÛÂÏ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ë Â„Ó ÏÂÚË͇ ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡Ì‡ Í‡Í ∞
|| x − y ||
∑ 2 n 1+ || x − yn||n . 1
n =1
ÉËÔÂÔÓÒÚ‡ÌÒÚ‚Ó ÉËÔÂÔÓÒÚ‡ÌÒÚ‚ÓÏ ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ï , τ) ̇Á˚‚‡ÂÚÒfl ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡ ÏÌÓÊÂÒÚ‚Â CL(X) ‚ÒÂı ÌÂÔÛÒÚ˚ı Á‡ÏÍÌÛÚ˚ı (ËÎË, ·ÓΠÚÓ„Ó, ÍÓÏÔ‡ÍÚÌ˚ı) ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï. íÓÔÓÎÓ„Ëfl „ËÔÂÔÓÒÚ‡ÌÒÚ‚‡ ï ̇Á˚‚‡ÂÚÒfl „ËÔÂÚÓÔÓÎÓ„ËÂÈ. èËχÏË Ú‡ÍÓÈ ÚÓÔÓÎÓ„ËË Û‰‡‡-ÔÓχı‡ ÏÓ„ÛÚ ÒÎÛÊËÚ¸ ÚÓÔÓÎÓ„Ëfl ÇËÂÚÓËÒ‡ Ë ÚÓÔÓÎÓ„Ëfl îÂη. èËχÏË Ú‡ÍÓÈ Ò··ÓÈ ÚÓÔÓÎÓ„ËË „ËÔÂÔÓÒÚ‡ÌÒÚ‚‡ fl‚ÎflÂÚÒfl ÏÂÚ˘ÂÒ͇fl ÚÓÔÓÎÓ„Ëfl ï‡ÛÒ‰ÓÙ‡ Ë ÚÓÔÓÎÓ„Ëfl LJÈÒχ̇. ÑËÒÍÂÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÑËÒÍÂÚÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, τ) Ò ‰ËÒÍÂÚÌÓÈ ÚÓÔÓÎÓ„ËÂÈ. Ö„Ó ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) Ò ‰ËÒÍÂÚÌÓÈ ÏÂÚËÍÓÈ: d(x, x) = 0, Ë d(x, Û) = 1 ‰Îfl x ≠ y.
60
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÄÌÚˉËÒÍÂÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÄÌÚˉËÒÍÂÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó – ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï , τ ) Ò ‡ÌÚˉËÒÍÂÚÌÓÈ ÚÓÔÓÎÓ„ËÂÈ. Ö„Ó ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÔÓÎÛÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) Ò ‡ÌÚˉËÒÍÂÚÌÓÈ ÔÓÎÛÏÂÚËÍÓÈ: d(x, Û) = 0 ‰Îfl β·˚ı x,y ∈ X. åÂÚËÁÛÂÏÓ ÔÓÒÚ‡ÌÒÚ‚Ó íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÏÂÚËÁÛÂÏ˚Ï, ÂÒÎË ÓÌÓ „ÓÏÂÓÏÓÙÌÓ ÌÂÍÓÚÓÓÏÛ ÏÂÚ˘ÂÒÍÓÏÛ ÔÓÒÚ‡ÌÒÚ‚Û. åÂÚËÁÛÂÏ˚ ÔÓÒÚ‡ÌÒÚ‚‡ ‚Ò„‰‡ fl‚Îfl˛ÚÒfl í2 -ÔÓÒÚ‡ÌÒÚ‚‡ÏË Ë Ô‡‡ÍÓÏÔ‡ÍÚÌ˚ÏË (‡ Á̇˜ËÚ ÌÓχθÌ˚ÏË Ë ‚ÔÓÎÌ „ÛÎflÌ˚ÏË) ÔÓÒÚ‡ÌÒÚ‚‡ÏË, ‡ Ú‡ÍÊ Ô‚˘ÌÓ-Ò˜ÂÚÌ˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË. íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓ ÏÂÚËÁÛÂÏ˚Ï, ÂÒÎË Î˛·‡fl Â„Ó ÚӘ͇ ӷ·‰‡ÂÚ ÏÂÚËÁÛÂÏÓÈ ÓÍÂÒÚÌÓÒÚ¸˛. íÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï , τ) ̇Á˚‚‡ÂÚÒfl ÔÓ‰ÏÂÚËÁÛÂÏ˚Ï, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÏÂÚËÁÛÂχfl ÚÓÔÓÎÓ„Ëfl τ ̇ ï, ·ÓΠ„Û·‡fl, ˜ÂÏ τ. çËÊ ‰‡Ì˚ ÚË ÔËχ ‰Û„Ëı Ó·Ó·˘ÂÌËÈ ÏÂÚËÁÛÂÏ˚ı ÔÓÒÚ‡ÌÒÚ‚. å-ÔÓÒÚ‡ÌÒÚ‚Ó åÓËÚ˚ – ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï , τ), ËÁ ÍÓÚÓÓ„Ó ÒÛ˘ÂÒÚ‚ÛÂÚ ÌÂÔÂ˚‚ÌÓ ÓÚÓ·‡ÊÂÌË f ̇ ÏÂÚËÁÛÂÏÓ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (Y, τ) , Ú‡ÍÓ ˜ÚÓ f Á‡ÏÍÌÛÚÓ Ë f1 (y) Ò˜ÂÚÌÓ ÍÓÏÔ‡ÍÚÌÓ ‰Îfl Í‡Ê‰Ó„Ó y∈ Y. M1 -ÔÓÒÚ‡ÌÒÚ‚Ó ë‰‡ –ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, τ ) Ò ·‡ÁÓÈ, ÒÓı‡Ìfl˛˘ÂÈ σ-Á‡Ï˚͇ÌË (ÏÂÚËÁÛÂÏ˚ ÔÓÒÚ‡ÌÒÚ‚‡ ËÏÂ˛Ú σ -ÎÓ͇θÌÓ ÍÓ̘Ì˚ ·‡Á˚). σ-ÔÓÒÚ‡ÌÒÚ‚Ó éÍÛflÏ˚ – ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, τ ) Ò σ-ÎÓ͇θÌÓ ÍÓ̘ÌÓÈ ÒÂÚ¸˛, Ú.Â. Ú‡ÍËÏ ÒÂÏÂÈÒÚ‚ÓÏ ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï, ˜ÚÓ ‰Îfl ‰‡ÌÌÓÈ ÚÓ˜ÍË x ∈ U („‰Â U – ÓÚÍ˚ÚÓ) ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ U ∈ , ˜ÚÓ x ∈ U ⊂ U (·‡Á‡ fl‚ÎflÂÚÒfl ÒÂÚ¸˛, ÒÓÒÚÓfl˘ÂÈ ËÁ ÓÚÍ˚Ú˚ı ÏÌÓÊÂÒÚ‚).
É·‚‡ 3
é·Ó·˘ÂÌËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚
çÂÍÓÚÓ˚ ӷӷ˘ÂÌËfl ÔÓÌflÚËfl ÏÂÚËÍË, ‚ ˜‡ÒÚÌÓÒÚË ÔÓÌflÚËfl Í‚‡ÁËÏÂÚËÍË, ÔÓ˜ÚË-ÏÂÚËÍË, ‡Ò¯ËÂÌÌÓÈ ÏÂÚËÍË, ·˚ÎË ‡ÒÒÏÓÚÂÌ˚ ‚ „Î. 1. Ç ‰‡ÌÌÓÈ „·‚ Ô‰ÒÚ‡‚ÎÂÌ˚ ÌÂÍÓÚÓ˚ ӷӷ˘ÂÌËfl, Ò‚flÁ‡ÌÌ˚Â Ò ÚÓÔÓÎÓ„ËÂÈ, ÚÂÓËÂÈ ‚ÂÓflÚÌÓÒÚÂÈ, ‡Î„·ÓÈ Ë Ú.Ô. 3.1. m-åÖíêàäà m-ïÂÏËÏÂÚË͇ÏÂÚË͇ èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl d : Xm+1 → ̇Á˚‚‡ÂÚÒfl m-ıÂÏËÏÂÚËÍÓÈ, ÂÒÎË d ÌÂÓÚˈ‡ÚÂθ̇, Ú.Â. d(x 1 ,…,xn+1) ≥ 0 ‰Îfl ‚ÒÂı x1,…, xn+1 ∈ X, ÂÒÎË d ‚ÔÓÎÌ ÒËÏÏÂÚ˘̇, Ú.Â. Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ d(x 1 ,…, xm+1 ) = d(xπ(1),…, xπ(m+1)) ‰Îfl ‚ÒÂı x1,…, xm+1 ∈ X Ë Î˛·ÓÈ ÔÂÂÒÚ‡ÌÓ‚ÍË π ˝ÎÂÏÂÌÚÓ‚ {1,…, m+1}, ÂÒÎË d Ô˂‰Â̇ Í ÌÛβ, Ú.Â. d(x1,…, xm+1 ) = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x 1 ,…, xm+1 Ì fl‚Îfl˛ÚÒfl ÔÓÔ‡ÌÓ ‡Á΢Ì˚ÏË, Ë ÂÒÎË ‰Îfl ‚ÒÂı x 1 ,…, xm+2 ∈ X ÙÛÌ͈Ëfl d Û‰Ó‚ÎÂÚ‚ÓflÂÚ m-ÒËÏÔÎÂÍÒÌÓÏÛ Ì‡‚ÂÌÒÚ‚Û: d ( x1 , …, x m +1 ) ≤
m +1
∑ d( x1,…, xi −1, xi +1,…, xm + 2 ). i =1
2-ÏÂÚË͇ èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl ̇Á˚‚‡ÂÚÒfl d : X → 2-ÏÂÚËÍÓÈ, ÂÒÎË d ÌÂÓÚˈ‡ÚÂθ̇, ‚ÔÓÎÌ ÒËÏÏÂÚ˘̇, Ô˂‰Â̇ Í ÌÛβ Ë Û‰Ó‚ÎÂÚ‚ÓflÂÚ Ì‡‚ÂÌÒÚ‚Û ÚÂÚ‡˝‰‡ d ( x1 , x 2 , x3 ) ≤ d ( x 4 , x 2 x3 ) + d ( x1 , x 4 , x 4 ) + d ( x1 , x 2 , x 4 ). ùÚÓ – ̇˷ÓΠ‚‡ÊÌ˚È ÒÎÛ˜‡È m = 2 ÔÓËÁ‚ÓθÌÓÈ m-ıÂÏËÏÂÚËÍË. (m, s)-ÒÛÔÂÏÂÚË͇ èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó Ë s – ÔÓÎÓÊËÚÂθÌÓ ‚¢ÂÒÚ‚ÂÌÌÓ ˜ËÒÎÓ. îÛÌ͈Ëfl d : Xm+1 → ̇Á˚‚‡ÂÚÒfl (m, s)-ÒÛÔÂÏÂÚËÍÓÈ ([DeDu03]), ÂÒÎË d ÌÂÓÚˈ‡ÚÂθ̇, ‚ÔÓÎÌ ÒËÏÏÂÚ˘̇, Ô˂‰Â̇ Í ÌÛβ Ë Û‰Ó‚ÎÂÚ‚ÓflÂÚ (m, s)-ÒËÏÔÎÂÍÒÌÓÏÛ Ì‡‚ÂÌÒÚ‚Û: d ( x1 , …, x m +1 ) ≤
m +1
∑ d( x1,…, xi −1, xi +1,…, xm + 2 ). i =1
(m, s)-ÒÛÔÂÏÂÚË͇ fl‚ÎflÂÚÒfl m-ÔÓÎÛÏÂÚËÍÓÈ, ÂÒÎË s ≥ 1.
62
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
3.2. çÖéèêÖÑÖãÖççõÖ åÖíêàäà çÂÓÔ‰ÂÎÂÌ̇fl ÏÂÚË͇ çÂÓÔ‰ÂÎÂÌ̇fl ÏÂÚË͇ (ËÎË G-ÏÂÚË͇) ̇ ‚¢ÂÒÚ‚ÂÌÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ) ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V ÂÒÚ¸ ·ËÎËÌÂÈ̇fl (‰Îfl ÒÎÛ˜‡fl ÍÓÏÔÎÂÍÒÌÓÈ ÔÂÂÏÂÌÌÓÈ – ÒÂÒÍËÎËÌÂÈ̇fl) ÙÓχ G ̇ V, Ú.Â. ÙÛÌ͈Ëfl G V × V (), ڇ͇fl ˜ÚÓ ‰Îfl β·˚ı x, y, z ∈ V Ë Î˛·˚ı Ò͇ÎflÓ‚ α, β ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: G(αx + βy, z ) = αG( x, z ) + βG( y, z ) Ë G( x, αy + βz ) = αG( x, z ) + β G( y, z ) „‰Â α = a + bi = a − bi Ó·ÓÁ̇˜‡ÂÚ ÍÓÏÔÎÂÍÒÌÓ ÒÓÔflÊÂÌËÂ). ÖÒÎË G – ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌ̇fl ÒËÏÏÂÚ˘̇fl ÙÓχ, ÚÓ ˝ÚÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ V Ë Â„Ó ÏÓÊÌÓ ËÒÔÓθÁÓ‚‡Ú¸ ‰Îfl ͇ÌÓÌ˘ÂÒÍÓ„Ó ‚‚‰ÂÌËfl ÌÓÏ˚ Ë ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÏÂÚËÍË ÌÓÏ˚ ̇ V. ÑÎfl ÒÎÛ˜‡fl Ó·˘ÂÈ ÙÓÏ˚ G Ì ÒÛ˘ÂÒÚ‚ÛÂÚ ÌË ÌÓÏ˚, ÌË ÏÂÚËÍË, ͇ÌÓÌ˘ÂÒÍË Ò‚flÁ‡ÌÌÓÈ Ò G, Ë ÚÂÏËÌ ÌÂÓÔ‰ÂÎÂÌ̇fl ÏÂÚË͇ ÚÓθÍÓ Ì‡ÔÓÏË̇ÂÚ Ó ÚÂÒÌÓÈ Ò‚flÁË ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı ·ËÎËÌÂÈÌ˚ı ÙÓÏ Ò ÌÂÍÓÚÓ˚ÏË ÏÂÚË͇ÏË ‚ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (ÒÏ. „Î. 7 Ë 26). 臇 (V, G) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ò ÌÂÓÔ‰ÂÎÂÌÌÓÈ ÏÂÚËÍÓÈ. äÓ̘ÌÓÏÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÌÂÓÔ‰ÂÎÂÌÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ·ËÎËÌÂÈÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÉËθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ç, Ò̇·ÊÂÌÌÓ ÌÂÔÂ˚‚ÌÓÈ G -ÏÂÚËÍÓÈ, ̇Á˚‚‡ÂÚÒfl „Ëθ·ÂÚÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ò ÌÂÓÔ‰ÂÎÂÌÌÓÈ ÏÂÚËÍÓÈ. ç‡Ë·ÓΠ‚‡ÊÌ˚Ï ÔËÏÂÓÏ Ú‡ÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ fl‚ÎflÂÚÒfl J-ÔÓÒÚ‡ÌÒÚ‚Ó. èÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó L ‚ ÔÓÒÚ‡ÌÒÚ‚Â (V, G) Ò ÌÂÓÔ‰ÂÎÂÌÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÓÊËÚÂθÌ˚Ï, ÓÚˈ‡ÚÂθÌ˚Ï ËÎË ÌÂÈڇθÌ˚Ï ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ ‚˚ÔÓÎÌÂÌËfl ̇‚ÂÌÒÚ‚ G(x, x) > 0, G(x, x) < 0 ËÎË G(x, x) = 0 ‰Îfl ‚ÒÂı x → L. ùÏËÚÓ‚‡ G-ÏÂÚË͇ ùÏËÚÓ‚‡ G -ÏÂÚË͇ ÌÂÓÔ‰ÂÎÂÌ̇fl ÏÂÚË͇ GH ̇ ÍÓÏÔÎÂÍÒÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V , ڇ͇fl ˜ÚÓ ‰Îfl ‚ÒÂı x , y ∈ V ËÏÂÂÚ ÏÂÒÚÓ ‡‚ÂÌÒÚ‚Ó G H ( x, y) = G H ( y, x ), „‰Â α = a + bi = a − bi ÓÁ̇˜‡ÂÚ ÍÓÏÔÎÂÍÒÌÓ ÒÓÔflÊÂÌËÂ. ê„ÛÎfl̇fl G-ÏÂÚË͇ ê„ÛÎfl̇fl G -ÏÂÚË͇ ÂÒÚ¸ ÌÂÔÂ˚‚̇fl ÌÂÓÔ‰ÂÎÂÌ̇fl ÏÂÚË͇ G ̇ „Ëθ·ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ç ̇‰ , ÔÓÓʉ‡Âχfl Ó·‡ÚËÏ˚Ï ˝ÏËÚÓ‚˚Ï ÓÔ‡ÚÓÓÏ í ÔÓ ÙÓÏÛΠG(x, y) = 〈T(x), y〉, „‰Â 〈,〉 – Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ ç. ùÏËÚÓ‚ ÓÔ‡ÚÓ Ì‡ „Ëθ·ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ç – ·ËÎËÌÂÈÌ˚È ÓÔ‡ÚÓ í ̇ ç, Á‡‰‡‚‡ÂÏ˚È Ì‡ ӷ·ÒÚË ÔÎÓÚÌÓÒÚË D(T) ÔÓÒÚ‡ÌÒÚ‚‡ ç ÔÓ Á‡ÍÓÌÛ 〈T(x), y〉 = = 〈x, T(y)〉 ‰Îfl β·˚ı x, y ∈ D(T). 鄇Ì˘ÂÌÌ˚È ˝ÏËÚÓ‚ ÓÔ‡ÚÓ ÎË·Ó ÓÔ‰ÂÎÂÌ Ì‡ ‚ÒÂÏ ç, ÎË·Ó ÏÓÊÂÚ ·˚Ú¸ ÌÂÔÂ˚‚ÌÓ ÔÓ‰ÓÎÊÂÌ Ì‡ ‚Ò ç Ë ÚÓ„‰‡ í = í * . ç‡ ÍÓ̘ÌÓÏÂÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ˝ÏËÚÓ‚ ÓÔ‡ÚÓ ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡Ì ˝ÏËÚÓ‚ÓÈ Ï‡ÚˈÂÈ (( aij )) = (( a ji )).
É·‚‡ 3. é·Ó·˘ÂÌËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚
63
J-ÏÂÚË͇ J-ÏÂÚË͇ – ÌÂÔÂ˚‚̇fl ÌÂÓÔ‰ÂÎÂÌ̇fl ÏÂÚË͇ G ̇ „Ëθ·ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ç ̇‰ ë, Á‡‰‡‚‡Âχfl ÌÂÍËÏ ˝ÏËÚÓ‚˚Ï ËÌ‚ÓβÚË‚Ì˚Ï ÓÚÓ·‡ÊÂÌËÂÏ J ̇ ç ÔÓ ÙÓÏÛΠG(x, y) = 〈J(x), y〉, „‰Â 〈,〉 – ÂÒÚ¸ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ ç. àÌ‚ÓβÚË‚ÌÓ ÓÚÓ·‡ÊÂÌË – ÓÚÓ·‡ÊÂÌË ç ̇ ç, Í‚‡‰‡Ú ÍÓÚÓÓ„Ó fl‚ÎflÂÚÒfl ÚÓʉÂÒÚ‚ÂÌÌ˚Ï ÓÚÓ·‡ÊÂÌËÂÏ. àÌ‚ÓβÚË‚ÌÓ ÓÚÓ·‡ÊÂÌË J ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂÌÓ ‡‚ÂÌÒÚ‚ÓÏ J = P + – P– , , „‰Â ê+ Ë ê – fl‚Îfl˛ÚÒfl ÓÚÓ„Ó̇θÌ˚ÏË ÔÓÂ͈ËflÏË ‚ ç, ‡ P + + P– = H. ê‡Ì„ ÌÂÓÔ‰ÂÎÂÌÌÓÒÚË J-ÏÂÚËÍË ÓÔ‰ÂÎflÂÚÒfl Í‡Í min{dim P+, dim P– }. èÓÒÚ‡ÌÒÚ‚Ó (H, G) ̇Á˚‚‡ÂÚÒfl J-ÔÓÒÚ‡ÌÒÚ‚ÓÏ. J-ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÍÓ̘Ì˚Ï ‡Ì„ÓÏ ÌÂÓÔ‰ÂÎÂÌÌÓÒÚË Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ èÓÌÚfl„Ë̇. 3.3. íéèéãéÉàóÖëäàÖ éÅéÅôÖçàü ó‡ÒÚ˘ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ó‡ÒÚ˘ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (å˝Ú¸˛Á, 1992) ÓÔ‰ÂÎflÂÚÒfl Í‡Í Ô‡‡ (X, d), „‰Â ï – ÌÂÍÓÚÓÓ ÏÌÓÊÂÒÚ‚Ó, ‡ d – ÌÂÓÚˈ‡ÚÂθ̇fl ÒËÏÏÂÚ˘̇fl ÙÛÌ͈Ëfl d : X × X → , ڇ͇fl ˜ÚÓ d(x, x) ≤ d(x, y) ‰Îfl ‚ÒÂı x, y ∈ X (Ú.Â. β·Ó ҇ÏÓ‡ÒÒÚÓflÌË x(x. x), χÎÓ), ı = Û, ÂÒÎË d(x, x) = d(x, y) = d(y, y) = 0 (í 0 – ‡ÍÒËÓχ ÓÚ‰ÂÎËÏÓÒÚË) Ë Ì‡‚ÂÌÒÚ‚Ó d(x, y) ≤ d(x, z) + d(z, y) – d(z, z) ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı x, y, z ∈ X (ÒËθÌӠ̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇). ÖÒÎË d fl‚ÎflÂÚÒfl ˜‡ÒÚ˘ÌÓÈ ÏÂÚËÍÓÈ, ÚÓ d(x, y) – d(x, x) ·Û‰ÂÚ Í‚‡ÁËÔÓÎÛÏÂÚËÍÓÈ Ë (X, d) ÏÓÊÂÚ ·˚Ú¸ ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÓ, ÂÒÎË Ï˚ ÓÔ‰ÂÎËÏ x p − y ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡ d(x, y) – d(x, x) = 0. ëıÓ‰ÒÚ‚Ó èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. îÛÌ͈Ëfl d : X × X → ̇Á˚‚‡ÂÚÒfl ÒıÓ‰ÒÚ‚ÓÏ Ì‡ ï, ÂÒÎË d ÒËÏÏÂÚ˘ÌÓ Ë ÂÒÎË ‰Îfl ‚ÒÂı x, y ∈ X ‚˚ÔÓÎÌflÂÚÒfl ÎË·Ó d(x, x) ≤ d(x, y) – ‚ Ú‡ÍÓÏ ÒÎÛ˜‡Â d ̇Á˚‚‡ÂÚÒfl ÒıÓ‰ÒÚ‚ÓÏ ‚Ô‰ ̇‚ÂÌÒÚ‚Ó, ÎË·Ó d(x, x) ≥ d(x, y) – ÚÓ„‰‡ d ̇Á˚‚‡ÂÚÒfl ÒıÓ‰ÒÚ‚ÓÏ Ì‡Á‡‰. ÇÒflÍÓ ÒıÓ‰ÒÚ‚Ó d ÔÓÓʉ‡ÂÚ ÒÚÓ„ËÈ ˜‡ÒÚ˘Ì˚È ÔÓfl‰ÓÍ Ɱ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÌÂÛÔÓfl‰Ó˜ÂÌÌ˚ı Ô‡ ˝ÎÂÏÂÌÚÓ‚ ï ÔÓÒ‰ÒÚ‚ÓÏ Á‡‰‡ÌËfl {x, y} Ɱ {u, ν} ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d(x, y) < d(u, ν). ÑÎfl β·Ó„Ó ÒıÓ‰ÒÚ‚‡ ̇Á‡‰ d ÒıÓ‰ÒÚ‚Ó ‚Ô‰ – d ÔÓÓʉ‡ÂÚ ÚÓÚ Ê ˜‡ÒÚ˘Ì˚È ÔÓfl‰ÓÍ. èÓÒÚ‡ÌÒÚ‚Ó -‡ÒÒÚÓflÌËfl èÓÒÚ‡ÌÒÚ‚Ó - ‡ Ò Ò Ú Ó fl Ì Ë fl ÂÒÚ¸ Ô‡‡ (X, f), „‰Â ï – ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‡ f fl‚ÎflÂÚÒfl τ-‡ÒÒÚÓflÌËÂÏ ÄÏË–åÛÚ‡‚‡ÍËÎfl ̇ ï, Ú.Â. ÌÂÓÚˈ‡ÚÂθÌÓÈ ÙÛÌ͈ËÂÈ f : X × X → , Ú‡ÍÓÈ ˜ÚÓ ‰Îfl β·Ó„Ó x ∈ X Ë Î˛·ÓÈ ÓÍÂÒÚÌÓÒÚË U ÚÓ˜ÍË ı ÒÛ˘ÂÒÚ‚ÛÂÚ ε > 0 c ÛÒÎÓ‚ËÂÏ {y ∈ X : f(x, y) < ε} ⊂ U. ã˛·Ó ÔÓÒÚ‡ÌÒÚ‚Ó ‡ÒÒÚÓflÌËÈ (X, d) ÂÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó τ-‡ÒÒÚÓflÌËfl ‰Îfl ÚÓÔÓÎÓ„ËË τ f, ÓÔ‰ÂÎÂÌÌÓÈ ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: A ∈ τf, ÂÒÎË ‰Îfl β·Ó„Ó x ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ ε > 0, Ú‡ÍÓ ˜ÚÓ {y ∈ X : f(x, y) < ε} ⊂ A. é‰Ì‡ÍÓ ÒÛ˘ÂÒÚ‚Û˛Ú ÌÂÏÂÚËÁÛÂÏ˚ ÔÓÒÚ‡ÌÒÚ‚‡ τ-‡ÒÒÚÓflÌËfl. τ-ê‡ÒÒÚÓflÌË f(x, y) Ì ӷflÁ‡ÚÂθÌÓ ‰ÓÎÊÌÓ
64
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
·˚Ú¸ ÒËÏÏÂÚ˘Ì˚Ï ËÎË Ó·‡˘‡Ú¸Òfl ‚ ÌÛθ ‰Îfl x = y; ̇ÔËÏÂ, e| x–y | fl‚ÎflÂÚÒfl τ-‡ÒÒÚÓflÌËÂÏ Ì‡ ï = Ò Ó·˚˜ÌÓÈ ÚÓÔÓÎÓ„ËÂÈ. èÓÒÚ‡ÌÒÚ‚Ó ·ÎËÁÓÒÚË èÓÒÚ‡ÌÒÚ‚Ó ·ÎËÁÓÒÚË (ÖÙÂÏӂ˘, 1936) – ÏÌÓÊÂÒÚ‚Ó ï Ò ·Ë̇Ì˚Ï ÓÚÌÓ¯ÂÌËÂÏ δ ̇ ÒÚÂÔÂÌÌÓÏ ÏÌÓÊÂÒÚ‚Â ê(ï) ‚ÒÂı Â„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚, ÍÓÚÓÓ ۉӂÎÂÚ‚ÓflÂÚ ÒÎÂ‰Û˛˘ËÏ ÛÒÎÓ‚ËflÏ: 1) ÄδÇ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÇδÄ (ÒËÏÏÂÚ˘ÌÓÒÚ¸); 2) Äδ(Ç ∪ ë) ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÄδÇ ËÎË Äδë (‡‰‰ËÚË‚ÌÓÒÚ¸); 3) ÄδA ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ A ≠ 0/ (ÂÙÎÂÍÒË‚ÌÓÒÚ¸). éÚÌÓ¯ÂÌË δ ÓÔ‰ÂÎflÂÚ ·ÎËÁÓÒÚ¸ (ËÎË ÒÚÛÍÚÛÛ ·ÎËÁÓÒÚË) ̇ ï. ÖÒÎË ÄδÇ Ì ‚˚ÔÓÎÌflÂÚÒfl, ÚÓ ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç Ì‡Á˚‚‡˛ÚÒfl Û‰‡ÎÂÌÌ˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË. ÇÒflÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) ÂÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó ·ÎËÁÓÒÚË: ÓÔ‰ÂÎËÏ, ˜ÚÓ ÄδÇ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d(A, B) = infx∈A,y∈B d(x, y) = 0. ã˛·‡fl ·ÎËÁÓÒÚ¸ ̇ ï ÔÓÓʉ‡ÂÚ (‚ÔÓÎÌ „ÛÎflÌÛ˛) ÚÓÔÓÎӄ˲ ̇ ï Á‡‰‡ÌËÂÏ Ì‡ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÔÓ‰ÏÌÓÊÂÒÚ‚ ï ÓÔ‡ÚÓ‡ Á‡Ï˚͇ÌËfl cl : P(X) → P(X) ÔÓ Á‡ÍÓÌÛ cl(A) = {x ∈ X : {x}δA}. ꇂÌÓÏÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó í‡ÍË ÚÓÔÓÎӄ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡ (Ò ‰ÓÔÓÎÌËÚÂθÌ˚ÏË ÒÚÛÍÚÛ‡ÏË) ‰‡˛Ú Ó·Ó·˘ÂÌËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚, ÓÒÌÓ‚‡ÌÌ˚ ̇ ‡ÒÒÚÓflÌËË ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË. ꇂÌÓÏÂÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (Ç˝Èθ, 1937) ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ï Ò ‡‚ÌÓÏÂÌÓÒÚ¸˛ (ËÎË ‡‚ÌÓÏÂÌÓÈ ÒÚÛÍÚÛÓÈ) – ÌÂÔÛÒÚ˚Ï ÒÂÏÂÈÒÚ‚ÓÏ ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï × ï, ̇Á˚‚‡ÂÏ˚ı ÓÍÛÊÂÌËflÏË Ë Ó·Î‡‰‡˛˘Ëı ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË: 1) ͇ʉÓ ËÁ ÔÓ‰ÏÌÓÊÂÒÚ‚ ï × ï, ÒÓ‰Âʇ˘Â ÏÌÓÊÂÒÚ‚Ó ËÁ , ÔË̇‰ÎÂÊËÚ ; 2) ‚ÒflÍÓ ÍÓ̘ÌÓ ÔÂÂÒ˜ÂÌË ÏÌÓÊÂÒÚ‚ ËÁ ÔË̇‰ÎÂÊËÚ ; 3) ͇ʉÓ ÏÌÓÊÂÒÚ‚Ó V ∈ ÒÓ‰ÂÊËÚ ‰Ë‡„Ó̇θ, Ú.Â. ÏÌÓÊÂÒÚ‚Ó {(x, x): x ∈ X} ⊂ ï × ï; 4) ÂÒÎË V ÔË̇‰ÎÂÊËÚ , ÚÓ ÏÌÓÊÂÒÚ‚Ó {(y, x) : (x, y) ∈ V} ÔË̇‰ÎÂÊËÚ ; 5) ÂÒÎË V ÔË̇‰ÎÂÊËÚ , ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ V ∈ , ˜ÚÓ (x, z) ∈ V ‚Ó ‚ÒÂı ÒÎÛ˜‡flı, ÍÓ„‰‡ (x, y), (y, z) ∈ V. ä‡Ê‰Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) fl‚ÎflÂÚÒfl ‡‚ÌÓÏÂÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. éÍÛÊÂÌË ‚ (ï, d) ÂÒÚ¸ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ï × ï, ÒÓ‰Âʇ˘Â ÏÌÓÊÂÒÚ‚Ó Vε = = {(x, y) ∈ X × X : d(x, y) < ε } ‰Îfl ÌÂÍÓÚÓÓ„Ó ÔÓÎÓÊËÚÂθÌÓ„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ˜ËÒ· ε. ÑÛ„ËÏ ·‡ÁÓ‚˚Ï ÔËÏÂÓÏ ‡‚ÌÓÏÂÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ fl‚Îfl˛ÚÒfl ÚÓÔÓÎӄ˘ÂÒÍË „ÛÔÔ˚. èÓÒÚ‡ÌÒÚ‚Ó ÔË·ÎËÊÂÌÌÓÒÚË èÓÒÚ‡ÌÒÚ‚Ó ÔË·ÎËÊÂÌÌÓÒÚË (ïÂËı, 1974) ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ï ÒÓ ÒÚÛÍÚÛÓÈ ÔË·ÎËÊÂÌÌÓÒÚË, Ú.Â. ÌÂÔÛÒÚÓÈ ÒÓ‚ÓÍÛÔÌÓÒÚ¸˛ ÒÂÏÂÈÒÚ‚ ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï, ̇Á˚‚‡ÂÏ˚ı ÒÂÏÂÈÒÚ‚‡ÏË ÔË·ÎËÊÂÌÌÓÒÚË, ÒÓ ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË: 1) ͇ʉÓ ÒÂÏÂÈÒÚ‚Ó, ÔÓ‰‡Á‰ÂÎfl˛˘Â ÒÂÏÂÈÒÚ‚Ó Ó ÔË·ÎËÊÂÌÌÓÒÚË, fl‚ÎflÂÚÒfl ÒÂÏÂÈÒÚ‚ÓÏ ÔË·ÎËÊÂÌÌÓÒÚË; 2) ͇ʉÓ ÒÂÏÂÈÒÚ‚Ó Ò ÌÂÔÛÒÚ˚Ï ÔÂÂÒ˜ÂÌËÂÏ fl‚ÎflÂÚÒfl ÒÂÏÂÈÒÚ‚ÓÏ ÔË·ÎËÊÂÌÌÓÒÚË;
É·‚‡ 3. é·Ó·˘ÂÌËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚
65
3) V ∈ , ÂÒÎË {cl(A): A ∈ V} ∈ , „‰Â Òl(A) = {x ∈ X : {{x}, A ∈ }; 4) 0/ ∈ , ‚ ÚÓ ‚ÂÏfl Í‡Í ÏÌÓÊÂÒÚ‚Ó ê(ï) ‚ÒÂı ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï Ì fl‚ÎflÂÚÒfl ÒÂÏÂÈÒÚ‚ÓÏ ÔË·ÎËÊÂÌÌÓÒÚË; 5) ÂÒÎË {A ∪ B : A ∈ ∞, B ∈ ε ∈ , ÚÓ ∞ ∈ ËÎË ε ∈ . ꇂÌÓÏÂÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡ fl‚Îfl˛ÚÒfl ‚ ÚÓ˜ÌÓÒÚË Ô‡‡ÍÓÏÔ‡ÍÚÌ˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË ÔË·ÎËÊÂÌÌÓÒÚË. èÓÒÚ‡ÌÒÚ‚Ó ÔË·ÎËÊÂÌËÈ ùÚË ÚÓÔÓÎӄ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡ ‰‡˛Ú Ó·Ó·˘ÂÌËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚, ÓÒÌÓ‚‡ÌÌ˚ ̇ ‡ÒÒÚÓflÌËË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ. èÓÒÚ‡ÌÒÚ‚Ó ÔË·ÎËÊÂÌËÈ (ãÓÛ, 1989) ÂÒÚ¸ Ô‡‡ (ï, D), „‰Â ï – ÌÂÍÓÚÓÓ ÏÌÓÊÂÒÚ‚Ó, ‡ D – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ, Ú.Â. ÙÛÌ͈Ëfl X × P(X) → [0, ∞] („‰Â ê(ï) fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ ‚ÒÂı ÔÓ‰ÏÌÓÊÂÒÚ‚ ï), Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ‰Îfl ‚ÒÂı x ∈ X Ë ‚ÒÂı A, B ∈ P(X) ÒÎÂ‰Û˛˘ËÏ ÛÒÎÓ‚ËflÏ: 1) D(x,{x}) = 0; 2) D(x,{x}) = ∞; 3) D(x, A ∪ B) = min{D(x, A), D(x, B)}; 4) D(x, A) ≤ D(x, A ε) + ε ‰Îfl β·˚ı ε ∈ [0, ∞], „‰Â Aε = {x : D(x, A) ≤ ε} ÂÒÚ¸ "ε-¯‡" Ò ˆÂÌÚÓÏ ‚ ı. ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) (·ÓΠÚÓ„Ó, β·Ó ‡Ò¯ËÂÌÌÓ ͂‡ÁËÔÓÎÛÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó) ÂÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó ÔË·ÎËÊÂÌËÈ Ò D(x, A), fl‚Îfl˛˘ËÏÒfl Ó·˚˜Ì˚Ï ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ. ÖÒÎË Ï˚ ËÏÂÂÏ ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌÓ ÒÂÔ‡‡·ÂθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) Ë ÒÂÏÂÈÒÚ‚Ó Â„Ó ÌÂÔÛÒÚ˚ı Á‡ÏÍÌÛÚ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚, ÚÓ ÙÛÌ͈Ëfl Å˝‰‰ÎË– åÓΘ‡ÌÓ‚‡ ‰‡ÂÚ ËÌÒÚÛÏÂÌÚ ‰Îfl ‰Û„Ó„Ó Ó·Ó·˘ÂÌËfl. ùÚÓ – ÙÛÌ͈Ëfl D : X × → , ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ÌËÊÌÂÈ ÔÓÎÛÌÂÔÂ˚‚ÌÓÈ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Â Ô‚ÓÈ ÔÂÂÏÂÌÌÓÈ, ËÁÏÂÂÌÌÓÈ ÓÚÌÓÒËÚÂθÌÓ ‚ÚÓÓÈ, Ë Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÒÎÂ‰Û˛˘ËÏ ‰‚ÛÏ ÛÒÎÓ‚ËflÏ: F = {x ∈ X : D(x, F) ≤ 0} ‰Îfl F ∈ Ë D(x, F1) ≥ D(x, F2 ) ‰Îfl x ∈ X ‚ÒflÍËÈ ‡Á, ÍÓ„‰‡ F1 , F2 ∈ Ë F1 ⊂ F2. ÑÓÔÓÎÌËÚÂθÌ˚ ÛÒÎÓ‚Ëfl D(x, {y}) = D(y, {x}) Ë D(x, F) ≤ D(x, {y}) + D({y}F) ‰Îfl ‚ÒÂı x, y ∈ X Ë ‚ÒÂı F ∈ ‰‡˛Ú Ì‡Ï ‡Ì‡ÎÓ„Ë ÒËÏÏÂÚËË Ë Ì‡‚ÂÌÒÚ‚‡ ÚÂÛ„ÓθÌË͇. ëÎÛ˜‡È D(x, F) = d(x, F) ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ó·˚˜ÌÓÏÛ ‡ÒÒÚÓflÌ˲ ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ ‰Îfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d); ÒÎÛ˜‡È D(x, F) = d(x, F) ‰Îfl x ∈ X\F Ë D(x, F) = –d(x, F\F) ‰Îfl x ∈ X ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÙÛÌ͈ËË ‡ÒÒÚÓflÌËfl ÒÓ Á̇ÍÓÏ („Î. 1). åÂÚ˘ÂÒ͇fl ·ÓÌÓÎÓ„Ëfl èÛÒÚ¸ ï – ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. ÅÓÌÓÎÓ„ËÂÈ Ì‡ ï ·Û‰ÂÚ Î˛·Ó ÒÂÏÂÈÒÚ‚Ó ÒÓ·ÒÚ‚ÂÌÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ Ä ÏÌÓÊÂÒÚ‚‡ ï, ‰Îfl ÍÓÚÓ˚ı ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÛÒÎÓ‚Ëfl: 1) ∪ A∈ A = X; 2) fl‚ÎflÂÚÒfl ˉ‡ÎÓÏ, Ú.Â. ÒÓ‰ÂÊËÚ ‚Ò ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ë ÍÓ̘Ì˚ ӷ˙‰ËÌÂÌËfl Â„Ó Ó·˙ÂÍÚÓ‚; ëÂÏÂÈÒÚ‚Ó fl‚ÎflÂÚÒfl ÏÂÚ˘ÂÒÍÓÈ ·ÓÌÓÎÓ„ËÂÈ ([Beer99]), ÂÒÎË, ·ÓΠÚÓ„Ó, ËÏÂ˛Ú ÏÂÒÚÓ ÛÒÎÓ‚Ëfl; 3) ÒÓ‰ÂÊËÚ Ò˜ÂÚÌÛ˛ ·‡ÁÛ; 4) ‰Îfl β·Ó„Ó Ä ∈ ÒÛ˘ÂÒÚ‚ÛÂÚ Ä ∈ , Ú‡ÍÓ ˜ÚÓ Á‡Ï˚͇ÌË ÏÌÓÊÂÒÚ‚‡ Ä ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚ÌÛÚÂÌÌËı ÚÓ˜ÂÍ ÏÌÓÊÂÒÚ‚‡ Ä. åÂÚ˘ÂÒ͇fl ·ÓÌÓÎÓ„Ëfl ̇Á˚‚‡ÂÚÒfl Ú˂ˇθÌÓÈ, ÂÒÎË ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ê(ï) ‚ÒÂı ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï; ڇ͇fl ÏÂÚ˘ÂÒ͇fl ·ÓÌÓÎÓ„Ëfl ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ
66
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
ÒÂÏÂÈÒÚ‚Û Ó„‡Ì˘ÂÌÌ˚ı ÏÌÓÊÂÒÚ‚ ÌÂÍÓÚÓÓÈ Ó„‡Ì˘ÂÌÌÓÈ ÏÂÚËÍË. ÑÎfl ‚ÒflÍÓ„Ó ÌÂÍÓÏÔ‡ÍÚÌÓ„Ó ÏÂÚËÁÛÂÏÓ„Ó ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ï ÒÛ˘ÂÒÚ‚ÛÂÚ ÌÂÓ„‡Ì˘ÂÌ̇fl ÏÂÚË͇, ÒÓ‚ÏÂÒÚËχfl Ò ‰‡ÌÌÓÈ ÚÓÔÓÎÓ„ËÂÈ. çÂÚ˂ˇθ̇fl ÏÂÚ˘ÂÒ͇fl ·ÓÌÓÎÓ„Ëfl ̇ Ú‡ÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ï ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÒÂÏÂÈÒÚ‚Û Ó„‡Ì˘ÂÌÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÌÂÍÓÂÈ ÌÂÓ„‡Ì˘ÂÌÌÓÈ ÏÂÚËÍÂ. çÂÍÓÏÔ‡ÍÚÌÓ ÏÂÚËÁÛÂÏÓ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ï ‰ÓÔÛÒ͇ÂÚ ·ÂÒÍÓ̘ÌÓ ÏÌÓ„Ó ÌÂÚ˂ˇθÌ˚ı ÏÂÚ˘ÂÒÍËı ·ÓÌÓÎÓ„ËÈ. 3.4. áÄ èêÖÑÖãÄåà óàëÖã ÇÂÓflÚÌÓÒÚÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó èÓÌflÚË ‚ÂÓflÚÌÓÒÚÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÓÌflÚËfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ÒÏ., ̇ÔËÏÂ, [ScSk83]) ÔÓ ‰‚ÛÏ Ì‡Ô‡‚ÎÂÌËflÏ: ‡ÒÒÚÓflÌËfl ÒÚ‡ÌÓ‚flÚÒfl ‡ÒÔ‰ÂÎÂÌËflÏË ‚ÂÓflÚÌÓÒÚË Ë ÒÛÏχ ‚ ̇‚ÂÌÒÚ‚Â ÚÂÛ„ÓθÌË͇ Ô‚‡˘‡ÂÚÒfl ‚ ÓÔ‡ˆË˛ ÚÂÛ„ÓθÌË͇. îÓχθÌÓ, ÔÛÒÚ¸ Ä – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÙÛÌ͈ËÈ ‡ÒÔ‰ÂÎÂÌËfl ‚ÂÓflÚÌÓÒÚË, ÌÂÒÛ˘Â ÏÌÓÊÂÒÚ‚Ó ÍÓÚÓÓ„Ó Ì‡ıÓ‰ËÚÒfl ‚ [0, ∞]. ÑÎfl β·Ó„Ó a ∈ [0, ∞] Á‡‰‡‰ËÏ εa ∈ A Í‡Í ε a (x) = 1, ÂÒÎË x > a ËÎË x = ∞ Ë ε a = 0, Ë̇˜Â. îÛÌ͈ËË ‚ Ä ·Û‰ÛÚ ÛÔÓfl‰Ó˜ÂÌ˚: ·Û‰ÂÏ Ò˜ËÚ‡Ú¸, ˜ÚÓ F ≤ G, ÂÒÎË F(x) ≤ G(x) ‰Îfl ‚ÒÂı x ≥ 0. äÓÏÏÛÚ‡Ú˂̇fl Ë ‡ÒÒӈˇÚ˂̇fl ÓÔ‡ˆËfl τ ̇ Ä Ì‡Á˚‚‡ÂÚÒfl ÓÔ‡ˆËÂÈ ÚÂÛ„ÓθÌË͇, ÂÒÎË Ó̇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ τ(F, ε0 ) = F ‰Îfl β·Ó„Ó F ∈ A, Ë τ(F, E) ≤ τ(G, H), ÂÒÎË Ö ≤ G, F ≤ ç. ÇÂÓflÚÌÓÒÚÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó – ˝ÚÓ ÚÓÈ͇ (ï, d, τ), „‰Â ï – ÏÌÓÊÂÒÚ‚Ó, d – ÙÛÌ͈Ëfl X × X → A Ë τ – ÓÔ‡ˆËfl ÚÂÛ„ÓθÌË͇, ڇ͇fl ˜ÚÓ ‰Îfl β·˚ı p, q, r ∈ X ‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl: 1) d(p, q) = ε 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ p = q; 2) d(p, q) = d(q, p); 3) d(p, r) ≤ τ(d(p, q), d(q, r)). 燂ÂÌÒÚ‚Ó 3 ÒÚ‡ÌÓ‚ËÚÒfl ̇‚ÂÌÒÚ‚ÓÏ ÚÂÛ„ÓθÌË͇, ÂÒÎË τ fl‚ÎflÂÚÒfl Ó·˚˜Ì˚Ï ÒÎÓÊÂÌËÂÏ Ì‡ . ÑÎfl β·Ó„Ó ı ≥ 0 Á̇˜ÂÌË d(p, q) ‚ ÚӘ͠ı ÏÓÊÂÚ ·˚Ú¸ ËÌÚÂÔÂÚËÓ‚‡ÌÓ Í‡Í "‚ÂÓflÚÌÓÒÚ¸ ÚÓ„Ó, ˜ÚÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ë q ÏÂ̸¯Â, ˜ÂÏ ı"; åÂÌ„Â Ô‰ÎÓÊËÎ ‚ 1942 „. ̇Á˚‚‡Ú¸ ‰‡ÌÌÓ ÔÓÌflÚË ÒÚ‡ÚËÒÚ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒ Ú ‚ Ó Ï . Ç ˝ÚÓÚ Ê ÔÂËÓ‰ ·˚ÎË ‚‚‰ÂÌ˚ ÔÓÌflÚËfl ̘ÂÚÍÓ ÓÔ‰ÂÎÂÌÌÓ„Ó (‡ÒÔÎ˚‚˜‡ÚÓ„Ó) ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ÒÏ. Ú‡ÍÊ [Bloc99]). é·Ó·˘ÂÌ̇fl ÏÂÚË͇ èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. èÛÒÚ¸ (G, +, ≤) – ÛÔÓfl‰Ó˜ÂÌ̇fl ÔÓÎÛ„ÛÔÔ‡ (Ì ӷflÁ‡ÚÂθÌÓ ÍÓÏÏÛÚ‡Ú˂̇fl), Ëϲ˘‡fl ̇ËÏÂ̸¯ËÈ ˝ÎÂÏÂÌÚ 0. îÛÌ͈Ëfl d : X × X → G ̇Á˚‚‡ÂÚÒfl Ó·Ó·˘ÂÌÌÓÈ ÏÂÚËÍÓÈ, ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÛÒÎÓ‚Ëfl: 1) d(x, y) = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = y; 2) d(x, y) ≤ d(x, z) + d(z, y) ‰Îfl ‚ÒÂı x, y ∈ X; 3) d ( x, y) = d ( y, x ), „‰Â α fl‚ÎflÂÚÒfl ÙËÍÒËÓ‚‡ÌÌ˚Ï ËÌ‚ÓβÚË‚Ì˚Ï ÓÚÓ·‡ÊÂÌËÂÏ G, ÒÓı‡Ìfl˛˘ËÏ ÔÓfl‰ÓÍ. 臇 (X, d) ̇Á˚‚‡ÂÚÒfl Ó·Ó·˘ÂÌÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÖÒÎË ÛÒÎÓ‚Ë 2 Ë Ú·ӂ‡ÌË "ÚÓθÍÓ ÚÓ„‰‡" ‚ ÛÒÎÓ‚ËË 1 ÒÌËχ˛ÚÒfl, Ï˚ ÔÓÎÛ˜‡ÂÏ Ó·Ó·˘ÂÌÌÓ ‡ÒÒÚÓflÌË d Ë Ó·Ó·˘ÂÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‡ÒÒÚÓflÌËÈ (X, d).
É·‚‡ 3. é·Ó·˘ÂÌËfl ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚
67
ê‡ÒÒÚÓflÌË ̇ ÔÓÒÚÓÂÌËË ÉÛÔÔ‡ äÓÍÒÚ‡ – „ÛÔÔ‡ (W, ⋅,1) ÔÓÓʉ‡Âχfl ˝ÎÂÏÂÌÚ‡ÏË {w1 ,…,
wn : ( wi w j )
mij
= 1,1 ≤ i, j ≤ n}. á‰ÂÒ¸ M = ((m ij)) – χÚˈ‡ äÓÍÒÚ‡, Ú.Â. ÔÓËÁ-
‚Óθ̇fl ÒËÏÏÂÚ˘̇fl (n × n)-χÚˈ‡, ڇ͇fl ˜ÚÓ m = 1, a ÓÒڇθÌ˚ Á̇˜ÂÌËfl – ÔÓÎÓÊËÚÂθÌ˚ ˆÂÎ˚ ˜ËÒ· ËÎË ∞. ÑÎË̇ l(x) ˝ÎÂÏÂÌÚ‡ x ∈ W ÂÒÚ¸ ̇ËÏÂ̸¯Â ˜ËÒÎÓ ÔÓÓʉ‡˛˘Ëı ÓÔ‡ÚÓÓ‚ w 1 ,…, wn, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl Ô‰ÒÚ‡‚ÎÂÌËfl ı. èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó (W,⋅,1) – „ÛÔÔ‡ äÓÍÒÚ‡. 臇 (X, d) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚÓÂÌËÂÏ Ì‡‰ (W,⋅,1), ÂÒÎË ÙÛÌ͈Ëfl d : X × X → W, ̇Á˚‚‡Âχfl ‡ÒÒÚÓflÌËÂÏ Ì‡ ÔÓÒÚÓÂÌËË, ӷ·‰‡ÂÚ ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË: 1) d(x, y) = 1 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = y; 2) d(x, y) = (d(x, y))–1; 3) ÓÚÌÓ¯ÂÌË ~i, Á‡‰‡‚‡ÂÏÓ ÛÒÎÓ‚ËÂÏ x ~i y, ÂÒÎË d(x, y) = 1 ËÎË w i, ÂÒÚ¸ ÓÚÌÓ¯ÂÌË ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË; 4) ‰Îfl ‰‡ÌÌÓ„Ó x ∈ X Ë Í·ÒÒ‡ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ë ËÁ ~i ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌÌÓ x ∈ C, Ú‡ÍÓ ˜ÚÓ d(x, y) ͇ژ‡È¯Â (Ú.Â. ̇ËÏÂ̸¯ÂÈ ‰ÎËÌ˚) Ë d(x, y) = d(x, y)w i ‰Îfl β·Ó„Ó y ∈ C, y ≠ y. ê‡ÒÒÚÓflÌË „‡ÎÂÂË Ì‡ ÔÓÒÚÓÂÌËË d ÂÒÚ¸ Ó·˚˜Ì‡fl ÏÂÚË͇ ̇ ï, Á‡‰‡‚‡Âχfl Í‡Í l(d(x, y)). ê‡ÒÒÚÓflÌË d – ˝ÚÓ ÏÂÚË͇ ÔÛÚË Ì‡ „‡ÙÂ Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ ï Ë ıÛ ‚ ͇˜ÂÒڂ ·‡, ÂÒÎË d(x, y) = w i ‰Îfl ÌÂÍÓÚÓÓ„Ó 1 ≤ i ≤ n. ê‡ÒÒÚÓflÌË „‡ÎÂÂË Ì‡ ÔÓÒÚÓÂÌËË ÂÒÚ¸ ÓÒÓ·˚È ÒÎÛ˜‡È ÏÂÚËÍË „‡ÎÂÂË (͇ÏÂÌÓÈ ÒËÒÚÂÏ˚ ï). ÅÛÎÂ‚Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÅÛ΂‡ ‡Î„·‡ (ËÎË ·Û΂‡ ¯ÂÚ͇) ÂÒÚ¸ ‰ËÒÚË·ÛÚ˂̇fl ¯ÂÚ͇ (B, ∨, ∧) Ò Ì‡ËÏÂ̸¯ËÏ ˝ÎÂÏÂÌÚÓÏ 0 Ë Ì‡Ë·Óθ¯ËÏ ˝ÎÂÏÂÌÚÓÏ 1, ڇ͇fl ˜ÚÓ Í‡Ê‰˚È ˝ÎÂÏÂÌÚ x ∈ B ӷ·‰‡ÂÚ ‰ÓÔÓÎÌËÚÂθÌ˚Ï ˝ÎÂÏÂÌÚÓÏ x, Ú‡ÍËÏ ˜ÚÓ x ∨ x = 1 Ë x ∧ x = 0. èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó Ë (B, ∨, ∧) – ·Û΂‡ ‡Î„·‡. 臇 (X, d) ̇Á˚‚‡ÂÚÒfl ·Û΂˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡‰ Ç , ÂÒÎË ÙÛÌ͈Ëfl d : X × X → B ӷ·‰‡ÂÚ ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË: 1) d(x, y) = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = y; 2) d(x, y) ≤ d(x, z) ∨ d(z, y) ‰Îfl ‚ÒÂı x, y, z ∈ X. èÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ ‡Î„·ÓÈ èÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ ‡Î„·ÓÈ ÂÒÚ¸ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ‰ËÙÙÂÂ̈ˇθÌÓ„ÂÓÏÂÚ˘ÂÒÍÓÈ ÒÚÛÍÚÛÓÈ, ÚÓ˜ÍË ÍÓÚÓÓ„Ó ÏÓ„ÛÚ ·˚Ú¸ Ò̇·ÊÂÌ˚ ÍÓÓ‰Ë̇ڇÏË ËÁ ÌÂÍÓÚÓÓÈ ‡Î„·˚, Í‡Í Ô‡‚ËÎÓ, ‡ÒÒӈˇÚË‚ÌÓÈ Ë Ò Â‰ËÌ˘Ì˚Ï ˝ÎÂÏÂÌÚÓÏ. åÓ‰Ûθ ̇‰ ‡Î„·ÓÈ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇‰ ÔÓÎÂÏ, Â„Ó ÓÔ‰ÂÎÂÌË ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌÓ ËÁ ÓÔ‰ÂÎÂÌËfl ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ÔÛÚÂÏ Á‡ÏÂÌ˚ ÔÓÎfl ̇ ‡ÒÒӈˇÚË‚ÌÛ˛ ‡Î„Â·Û Ò Â‰ËÌ˘Ì˚Ï ˝ÎÂÏÂÌÚÓÏ. ÄÙÙËÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ ‡Î„·ÓÈ fl‚ÎflÂÚÒfl ‡Ì‡Îӄ˘Ì˚Ï Ó·Ó·˘ÂÌËÂÏ ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇‰ ÔÓÎÂÏ. Ç ‡ÙÙËÌÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı ̇‰ ‡Î„·‡ÏË ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ ˝ÏËÚÓ‚Û ÏÂÚËÍÛ, ‚ ÚÓ ‚ÂÏfl Í‡Í ‰Îfl ÍÓÏÏÛÚ‡ÚË‚Ì˚ı ‡Î„· ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂ̇ ‰‡Ê ͂‡‰‡Ú˘̇fl ÏÂÚË͇. ÑÎfl ˝ÚÓ„Ó ‚ ÛÌËڇθÌÓÏ ÏÓ‰ÛΠÌÂÓ·ıÓ‰ËÏÓ ÓÔ‰ÂÎËÚ¸ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË 〈x, y〉, ‚ Ô‚ÓÏ ÒÎÛ˜‡Â ÒÓ Ò‚ÓÈÒÚ‚ÓÏ 〈x, y〉 = J(〈y, x〉), „‰Â J fl‚ÎflÂÚÒfl ËÌ‚ÓβÚË‚Ì˚Ï ÓÚÓ·‡ÊÂÌËÂÏ ‡Î„·˚, ‡ ‚Ó ‚ÚÓÓÏ ÒÎÛ˜‡Â ÒÓ Ò‚ÓÈÒÚ‚ÓÏ 〈x, y〉 = 〈y, x〉, n-åÂÌÓ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ ‡Î„·ÓÈ Á‡‰‡ÂÚÒfl Í‡Í ÏÌÓ„ÓÓ·‡ÁË ӉÌÓÏÂÌ˚ı ÔÓ‰ÏÓ‰ÛÎÂÈ (n + 1)-ÏÂÌÓ„Ó ÛÌËڇθÌÓ„Ó ÏÓ‰ÛÎfl ̇‰ ˝ÚÓÈ ‡Î„·ÓÈ. ǂ‰ÂÌË Ò͇ÎflÌÓ„Ó ÔÓËÁ‚‰ÂÌËfl 〈x, y〉 ‚ ÛÌËڇθÌÓÏ ÏÓ‰ÛΠÔÓÁ‚ÓÎflÂÚ Á‡‰‡Ú¸ ‚ ÔÓÒÚÓÂÌÌÓÏ Ò ÔÓÏÓ˘¸˛ ‰‡ÌÌÓ„Ó ÏÓ‰ÛÎfl ÔÓÂÍÚË‚ÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ˝ÏËÚÓ‚Û ËÎË, ‰Îfl ÒÎÛ˜‡fl ÍÓÏÏÛÚ‡ÚË‚ÌÓÈ ‡Î„·˚, Í‚‡‰‡Ú˘ÌÛ˛ ˝ÎÎËÔÚ˘ÂÒÍÛ˛ Ë „ËÔ·Ó-
68
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
΢ÂÒÍÛ˛ ÏÂÚËÍÛ. åÂÚ˘ÂÒÍËÈ ËÌ‚‡Ë‡ÌÚ ÚÓ˜ÂÍ ˝ÚËı ÔÓÒÚ‡ÌÒÚ‚ ÂÒÚ¸ ‡Ì„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌË W = 〈x, x〉–1 〈x, y〉 〈y, y〉–1 〈x, y〉. ÖÒÎË W – ‰ÂÈÒÚ‚ËÚÂθÌÓ ˜ËÒÎÓ, ÚÓ ËÌ‚‡Ë‡ÌÚ w, ‰Îfl ÍÓÚÓÓ„Ó W = cos2w, ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ı Ë Û ‚ ÔÓÒÚ‡ÌÒڂ ̇‰ ‡Î„·ÓÈ. ó‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ‡ÒÒÚÓflÌË èÛÒÚ¸ ï – ÔÓËÁ‚ÓθÌÓ ÏÌÓÊÂÒÚ‚Ó. èÛÒÚ¸ (G, ≤) – ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó Ò Ì‡ËÏÂ̸¯ËÏ ˝ÎÂÏÂÌÚÓÏ g0 , Ú‡ÍÓ ˜ÚÓ G = G\{g0 } ÌÂÔÛÒÚÓ, Ë ‰Îfl β·˚ı g1 , g2 ∈ G ÒÛ˘ÂÒÚ‚ÛÂÚ g3 ∈ G, Ú‡ÍÓ ˜ÚÓ g3 ≤ g1 Ë g3 ≤ g2 . ó‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ‡ÒÒÚÓflÌË ÂÒÚ¸ ÙÛÌ͈Ëfl d : X × X → G, ڇ͇fl ˜ÚÓ ‰Îfl β·˚ı x, y ∈ X ‡‚ÂÌÒÚ‚Ó d(x, y) = g0 ‚˚ÔÓÎÌflÂÚÒfl ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x =y. ê‡ÒÒÏÓÚËÏ ÒÎÂ‰Û˛˘Ë ‚ÓÁÏÓÊÌ˚ ҂ÓÈÒÚ‚‡. 1. ÑÎfl β·Ó„Ó g1 ∈ G ÒÛ˘ÂÒÚ‚ÛÂÚ g 2 ∈ G, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·˚ı x, y ∈ X ËÁ ̇‚ÂÌÒÚ‚‡ d(x, y) ≤ g2 ÒΉÛÂÚ Ì‡‚ÂÌÒÚ‚Ó d(x, y) ≤ g1 . 2. ÑÎfl β·Ó„Ó g1 ∈ G ÒÛ˘ÂÒÚ‚Û˛Ú g2 , g3 ∈ G, Ú‡ÍË ˜ÚÓ ‰Îfl β·˚ı x, y, z ∈ X ËÁ ̇‚ÂÌÒÚ‚ d(x, y) ≤ g2 Ë d(y, z) ≤ g2 ÒΉÛÂÚ Ì‡‚ÂÌÒÚ‚Ó (y, x) ≤ g1 . 3. ÑÎfl β·Ó„Ó g1 ∈ G ÒÛ˘ÂÒÚ‚ÛÂÚ g 2 ∈ G, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·˚ı x, y, z ∈ X ËÁ ̇‚ÂÌÒÚ‚ d(x, y) ≤ g2 Ë d(y, z) ≤ g2 ÒΉÛÂÚ Ì‡‚ÂÌÒÚ‚Ó d(y, x) ≤ g1 . 4. G Ì ËÏÂÂÚ ÔÂ‚Ó„Ó ˝ÎÂÏÂÌÚ‡. 5. d(x, y) = d(y, x) ‰Îfl β·˚ı x, y ∈ X. 6. ÑÎfl β·Ó„Ó g1 ∈ G ÒÛ˘ÂÒÚ‚ÛÂÚ g2 ∈ G, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·˚ı x, y ∈ X ËÁ ̇‚ÂÌÒÚ‚ d(x, y) <* g 2 Ë d(y, z) < * g 1 ÒΉÛÂÚ Ì‡‚ÂÌÒÚ‚Ó d(x, z) <* g 1 ; Á‰ÂÒ¸ p <* q ÓÁ̇˜‡ÂÚ, ˜ÚÓ ÎË·Ó p < q, ÎË·Ó Ì ҇‚ÌËÏÓ Ò q. 7. éÚÌÓ¯ÂÌË ÔÓfl‰Í‡ < fl‚ÎflÂÚÒfl ÎËÌÂÈÌ˚Ï ÔÓfl‰ÍÓÏ Ì‡ G. Ç ÚÂÏË̇ı Û͇Á‡ÌÌ˚ı ‚˚¯Â Ò‚ÓÈÒÚ‚ d ̇Á˚‚‡ÂÚÒfl: ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ‡ÒÒÚÓflÌË ÄÔÔÂÚ‡, ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl 1 Ë 2; ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ‡ÒÒÚÓflÌË ÉÓÎÏÂÒ‡ ÔÂ‚Ó„Ó ÚËÔ‡, ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl 4, 5 Ë 6; ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ‡ÒÒÚÓflÌË ÉÓÎÏÂÒ‡ ‚ÚÓÓ„Ó ÚËÔ‡, ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl 3, 4, Ë 5; ‡ÒÒÚÓflÌË äÛÂÔ‡–î¯Â, ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl 3, 4, 5 Ë 7. àÏÂÌÌÓ, ÒÎÛ˜‡È G = ≥0 ‡ÒÒÚÓflÌËfl äÛÂÔ‡–ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ V-ÔÓÒÚ‡ÌÒÚ‚Û î¯Â, Ú.Â. ԇ (X, d), „‰Â ï – ÏÌÓÊÂÒÚ‚Ó Ë d(x, y) – ÌÂÓÚˈ‡ÚÂθ̇fl ÒËÏÏÂÚ˘̇fl ÙÛÌ͈Ëfl d : X × X → (ÒÓÒ‰ÒÚ‚Ó ÚÓ˜ÂÍ ı Ë Û), ڇ͇fl ˜ÚÓ d(x, y) = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = y, Ë ÒÛ˘ÂÒÚ‚ÛÂÚ ÌÂÓÚˈ‡ÚÂθ̇fl ÙÛÌ͈Ëfl f : → Ò limt→0f(t) = 0 ÒÓ ÒÎÂ‰Û˛˘ËÏ Ò‚ÓÈÒÚ‚ÓÏ: ‰Îfl ‚ÒÂı x, y, z ∈ X Ë ‚ÒÂı ÔÓÎÓÊËÚÂθÌ˚ı r ̇‚ÂÌÒÚ‚Ó {d(x, y), d(y, z)} ≤ r ÔÓÓʉ‡ÂÚ Ì‡ÂÌÒÚ‚‡ d(x, z) ≤ f(r).
É·‚‡ 4
åÂÚ˘ÂÒÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl
ëÛ˘ÂÒÚ‚ÛÂÚ ÌÂχÎÓ ÒÔÓÒÓ·Ó‚ ÔÓÎÛ˜ÂÌËfl ÌÓ‚˚ı ‡ÒÒÚÓflÌËÈ (ÏÂÚËÍ), ËÒÔÓθÁÛfl ÛÊ Ëϲ˘ËÂÒfl ‡ÒÒÚÓflÌËfl (ÏÂÚËÍË). åÂÚ˘ÂÒÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl ÔÓÁ‚ÓÎfl˛Ú ÔÓÎÛ˜‡Ú¸ ÌÓ‚˚ ‡ÒÒÚÓflÌËfl Í‡Í ÙÛÌ͈ËË ÓÚ Á‡‰‡ÌÌ˚ı ÏÂÚËÍ (ËÎË Á‡‰‡ÌÌ˚ı ‡ÒÒÚÓflÌËÈ) ̇ Ó‰ÌÓÏ Ë ÚÓÏ Ê ÏÌÓÊÂÒÚ‚Â ï. Ç Ú‡ÍÓÏ ÒÎÛ˜‡Â ÔÓÎÛ˜ÂÌ̇fl ÏÂÚË͇ ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl ÔÂÓ·‡ÁÓ‚‡ÌÌÓÈ ÏÂÚËÍÓÈ. çËÊÂ, ‚ ‡Á‰. 4.1 ÔË‚Ó‰flÚÒfl ‚‡ÊÌÂȯË ÔËÏÂ˚ Ú‡ÍËı ÔÂÓ·‡ÁÓ‚‡ÌÌ˚ı ÏÂÚËÍ. èË Ì‡Î˘ËË ÏÂÚËÍË Ì‡ ÏÌÓÊÂÒÚ‚Â ï ÏÓÊÌÓ ÔÓÒÚÓËÚ¸ ÌÓ‚Û˛ ÏÂÚËÍÛ Ì‡ ÌÂÍÓÚÓÓÏ ‡Ò¯ËÂÌËË ï; ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ, ËÏÂfl ÒÂÏÂÈÒÚ‚Ó ÏÂÚËÍ Ì‡ ÏÌÓÊÂÒÚ‚‡ı ï1 ,…, ïn, ÏÓÊÌÓ ÔÓÎÛ˜ËÚ¸ ÌÓ‚Û˛ ÏÂÚËÍÛ Ì‡ ÌÂÍÓÚÓÓÏ ‡Ò¯ËÂÌËË ï1,…, ïn. èËÏÂ˚ Ú‡ÍËı ‡Ô‡ˆËÈ Ô‰ÒÚ‡‚ÎÂÌ˚ ‚ ‡Á‰. 4.2. ÖÒÎË ËÏÂÂÚÒfl ÏÂÚË͇ ̇ ï, ÒÛ˘ÂÒÚ‚ÛÂÚ ÏÌÓ„Ó ‡ÒÒÚÓflÌËÈ Ì‡ ‰Û„Ëı ÒÚÛÍÚÛ‡ı, Ò‚flÁ‡ÌÌ˚ı Ò ï, ̇ÔËÏ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï. éÒÌÓ‚Ì˚ ‡ÒÒÚÓflÌËfl ‰‡ÌÌÓ„Ó ÚËÔ‡ ‡ÒÒχÚË‚‡˛ÚÒfl ‚ ‡Á‰. 4.3. 4.1. åÖíêàäà çÄ íéå ÜÖ åçéÜÖëíÇÖ åÂÚ˘ÂÒÍÓ ÔÂÓ·‡ÁÓ‚‡ÌË åÂÚ˘ÂÒÍÓ ÔÂÓ·‡ÁÓ‚‡ÌË ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ï, ÔÓÎÛ˜ÂÌÌÓÂ Í‡Í ÙÛÌ͈Ëfl ‰‡ÌÌ˚ı ÏÂÚËÍ (ËÎË ‰‡ÌÌ˚ı ‡ÒÒÚÓflÌËÈ) ̇ ï . Ç ˜‡ÒÚÌÓÒÚË, ËÏÂfl ÌÂÔÂ˚‚ÌÛ˛ ÏÓÌÓÚÓÌÌÓ ‚ÓÁ‡ÒÚ‡˛˘Û˛ ÙÛÌÍˆË˛ f(x) ÓÚ x ≥ 0, ÍÓÚÓ‡fl ̇Á˚‚‡ÂÚÒfl ¯Í‡ÎÓÈ, Ë ÔÓÒÚ‡ÌÒÚ‚Ó ‡ÒÒÚÓflÌËÈ (X, d), ÏÓÊÌÓ ÔÓÎÛ˜ËÚ¸ ‰Û„Ó ÔÓÒÚ‡ÌÒÚ‚Ó ‡ÒÒÚÓflÌËÈ (X, d f), ̇Á˚‚‡ÂÏÓ ÏÂÚ˘ÂÒÍËÏ ÔÂÓ·‡ÁÓ‚‡ÌËÂÏ ¯ÍÓÎËÓ‚‡ÌËfl ÔÓÒÚ‡ÌÒÚ‚‡ ï, ÓÔ‰ÂÎflfl df(x, y) = f(d(x, y)). ÑÎfl Í‡Ê‰Ó„Ó ÍÓ̘ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ‡ÒÒÚÓflÌËÈ (X, d) ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡Í‡fl ¯Í‡Î‡ f, ˜ÚÓ (X, d f) fl‚ÎflÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ Â‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n . ÖÒÎË (X, d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‡ f – ÌÂÔÂ˚‚̇fl ‰ËÙÙÂÂ̈ËÛÂχfl ÒÚÓ„Ó ‚ÓÁ‡ÒÚ‡˛˘‡fl ÙÛÌ͈Ëfl Ò f(0) = 0 Ë Ì‚ÓÁ‡ÒÚ‡˛˘ÂÈ ÔÓËÁ‚Ó‰ÌÓÈ f, ÚÓ (X, df) ·Û‰ÂÚ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ÒÏ. ÏÂÚË͇ ÙÛÌ͈ËÓ̇θÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl). åÂÚË͇ d fl‚ÎflÂÚÒfl ÛθڇÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ f(d) ÂÒÚ¸ ÏÂÚË͇ ‰Îfl ͇ʉÓÈ ÌÂÛ·˚‚‡˛˘ÂÈ ÙÛÌ͈ËË f : ≥0 → ≥0. åÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl åÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌÌËfl – ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ï , ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÔÂÓ·‡ÁÓ‚‡ÌËÂÏ, Ú.Â. ÔÓÎÛ˜Â̇ Í‡Í ÙÛÌ͈Ëfl Á‡‰‡ÌÌÓÈ ÏÂÚËÍË (ËÎË Á‡‰‡ÌÌ˚ı ÏÂÚËÍ) ̇ ï. Ç ˜‡ÒÚÌÓÒÚË, ÏÂÚËÍÓÈ ÔÂÓ·‡ÁÓ‚‡ÌÌËfl ÏÓ„ÛÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ˚ ËÁ Á‡‰‡ÌÌÓÈ ÏÂÚËÍË d (ËÎË Á‡‰‡ÌÌ˚ı ÏÂÚËÍ d 1 Ë d2 ) ̇ ï β·ÓÈ ËÁ Û͇Á‡ÌÌ˚ı ÌËÊ ÓÔ‡ˆËÈ (Á‰ÂÒ¸ t > 0): 1) td(x, y) (t-¯Í‡ÎËÓ‚‡ÌËfl ÏÂÚË͇, ËÎË ‡ÒÚflÌÛÚ‡fl ÏÂÚË͇, ÔӉӷ̇fl ÏÂÚË͇); 2) min{t, d(x, y)} (t-ÛÒ˜ÂÌ̇fl ÏÂÚË͇);
70
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
3) max{t, d(x, y)} ‰Îfl ı ≠ Û (t-‰ËÒÍÂÚ̇fl ÏÂÚË͇); 4) d(x, y) + t ‰Îfl x ≠ y (t-ÔÂÂÌÂÒÂÌ̇fl ÏÂÚË͇); d ( x, y) 5) ; 1 + d ( x, y) d ( x, y) , „‰Â – ÙËÍÒËÓ‚‡ÌÌ˚È ˝ÎÂÏÂÌÚ ËÁ ï (ÏÂÚ6) dp( x, y) = d ( x, p) + d ( y, p) + d ( x, y) Ë͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·ËÓÚÓÔ‡); 7) max{d1 (x, y), d2 (x, y)}; 8) αd1(x, y) + βd2 (x, y), „‰Â (ÒÏ. ÏÂÚ˘ÂÒÍËÈ ÍÓÌÛÒ, „Î. 1). é·Ó·˘ÂÌ̇fl ÏÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·ËÓÚÓÔ‡ ÑÎfl ‰‡ÌÌÓÈ ÏÂÚËÍË d ̇ ÏÌÓÊÂÒÚ‚Â ï Ë Á‡ÏÍÌÛÚÓ„Ó ÏÌÓÊÂÒÚ‚‡ M ⊂ X Ó·Ó·˘ÂÌ̇fl ÏÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·ËÓÚÓÔ‡ dM ̇ ï ÓÔ‰ÂÎflÂÚÒfl Í‡Í d M ( x, y) =
d ( x, y) . d ( x, y) + infz ∈M ( d ( x, z ) + d ( y, z ))
àÏÂÌÌÓ dM(x, y) Ë tt 1-ÛÒ˜ÂÌË {1, d M(x, y)} fl‚Îfl˛ÚÒfl ÏÂÚË͇ÏË. åÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·ËÓÚÓÔ‡ ÂÒÚ¸ dM(x, y) Ò å, ÒÓÒÚÓfl˘ËÏ ÚÓθÍÓ ËÁ Ó‰ÌÓÈ ÚÓ˜ÍË, Ò͇ÊÂÏ, ; ‡ÒÒÚÓflÌË ·ËÓÚÓÔ‡ (ÒÏ. „Î. 23) ÔÓÎÛ˜‡ÂÚÒfl ‚ ÒÎÛ˜‡Â d(x, y) = |x∆y|, p = 0/ . åÂÚË͇ aÛÌ͈ËÓ̇θÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl èÛÒÚ¸ f : → – ‰‚‡Ê‰˚ ‰ËÙÙÂÂ̈ËÛÂχfl ‰ÂÈÒÚ‚ËÚÂθ̇fl ÙÛÌ͈Ëfl, Á‡‰‡Ì̇fl ‰Îfl ı ≥ 0, ڇ͇fl ˜ÚÓ f(0) = 0, f(x) > 0 ‰Îfl ‚ÒÂı ı ≥ 0 Ë f(x) ≤ 0 Ë ‰Îfl ‚ÒÂı ı ≥ 0. (f fl‚ÎflÂÚÒfl ‚Ó„ÌÛÚÓÈ Ì‡ [0, ∞]; ‚ ˜‡ÒÚÌÓÒÚË f(x + y) ≤ f(x) + f(y).) ÖÒÎË (X, d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ ÏÂÚË͇ ÙÛÌ͈ËÓ̇θÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl df ÂÒÚ¸ ÏÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ̇ ï, ÓÔ‰ÂÎÂÌ̇fl Í‡Í f(d(x, y)). åÂÚËÍË df Ë d – ˝Í‚Ë‚‡ÎÂÌÚÌ˚. ÖÒÎË d ÂÒÚ¸ ÏÂÚË͇ ̇ ï, ÚÓ, Ì ‡ÔËÏÂ, d αd(α > 0), d α (0 < 1), ln(1 + d), arcsinh d, arccosh (1 + d ) Ë ·Û‰ÛÚ ÏÂÚË͇ÏË 1+ d ÙÛÌ͈ËÓ̇θÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl ̇ ï. åÂÚË͇ ÒÚÂÔÂÌÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl èÛÒÚ¸ 0 < α ≤ 1. ÖÒÎË ‰‡ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d), ÚÓ ÏÂÚË͇ ÒÚÂÔÂÌÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl (ËÎË ÏÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ÒÌÂÊËÌÍË) ÂÒÚ¸ ÏÂÚË͇ ÙÛÌ͈ËÓ̇θÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl ̇ ï, ÓÔ‰ÂÎÂÌ̇fl Í‡Í (d(x, y))α. ÑÎfl ‰‡ÌÌÓÈ ÏÂÚËÍË d ̇ ï Ë Î˛·Ó„Ó α > 1 ÙÛÌ͈Ëfl dα fl‚ÎflÂÚÒfl ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ÚÓθÍÓ ‡ÒÒÚÓflÌËÂÏ Ì‡ ï. é̇ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‰Îfl β·Ó„Ó ÔÓÎÓÊËÚÂθÌÓ„Ó α ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d – ÛθڇÏÂÚË͇. åÂÚË͇ d fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Û‰‚ÓÂÌËfl ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ (ÄÒÒÛ‡‰, 1983) ÏÂÚË͇ ÒÚÂÔÂÌÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl dα ‰ÓÔÛÒ͇ÂÚ ·Ë-ÎËÔ¯ËˆÂ‚Ó ‚ÎÓÊÂÌË ‚ ÌÂÍÓÚÓÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ‰Îfl Í‡Ê‰Ó„Ó 0 < α ≤ 1 (ÒÏ. ÓÔ‰ÂÎÂÌËfl „Î. 1). åÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl òÂ̷„‡ èÛÒÚ¸ λ > 0. ÖÒÎË (X, d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ ÏÂÚËÍÓÈ ÔÂÓ·‡ÁÓ‚‡ÌËfl òÂ̷„‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÙÛÌ͈ËÓ̇θÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl ̇ ï,
71
É·‚‡ 4. åÂÚ˘ÂÒÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl
ÓÔ‰ÂÎÂÌ̇fl Í‡Í 1 – –λd(x,y) . åÂÚËÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl òÂ̷„‡ fl‚Îfl˛ÚÒfl ‚ ÚÓ˜ÌÓÒÚË ê-ÏÂÚË͇ÏË („Î. 1), ÍÓÚÓ˚ ÓÔ‰ÂÎfl˛ÚÒfl Ì ÙÛÌ͈ËÂÈ ÔÂÓ·‡ÁÓ‚‡ÌËfl, ‡ ÛÒËÎÂÌÌÓÈ ‚ÂÒËÂÈ Ì‡‚ÂÌÒÚ‚‡ ÚÂÛ„ÓθÌË͇. åÂÚË͇ Ó·‡ÚÌÓ„Ó Ó·‡Á‡ ÑÎfl ‰‚Ûı ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ (X, d X), (Y, dY) Ë ËÌ˙ÂÍÚË‚ÌÓ„Ó ÓÚÓ·‡ÊÂÌËfl g : X → Y ÏÂÚË͇ Ó·‡ÚÌÓ„Ó Ó·‡Á‡ (ËÁ (Y, dY) ÔÓ ) ̇ ï Á‡‰‡ÂÚÒfl Í‡Í dY(g(x), g(y)). ÖÒÎË (X, dX ) Ë (Y, dY) ÒÓ‚Ô‡‰‡˛Ú, ÚÓ ÏÂÚË͇ Ó·‡ÚÌÓ„Ó Ó·‡Á‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ g-ÔÂÓ·‡ÁÓ‚‡ÌËfl. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d), ‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl Ô‡‡ ÚÓ˜ÂÍ ı, Û ÒÓ‰ËÌÂ̇ ÒÔflÏÎflÂÏÓÈ ÍË‚ÓÈ, ËÌÚÂ̇θÌÓÈ ÏÂÚËÍÓÈ (ËÎË ÔÓÓʉÂÌÌÓÈ ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ), D ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ̇ ï, ÔÓÎÛ˜ÂÌ̇fl ËÁ d Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ ‚ÒÂı ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ‰‚ ‰‡ÌÌ˚ ÚÓ˜ÍË ı Ë y ∈ X. åÂÚË͇ d ̇ ï ̇Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ (ËÎË ÏÂÚËÍÓÈ ‰ÎËÌ˚, ÒÏ. „Î. 6), ÂÒÎË Ó̇ ÒÓ‚Ô‡‰‡ÂÚ ÒÓ Ò‚ÓÂÈ ÔÓÓʉÂÌÌÓÈ ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ. åÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl î‡ËÒ‡ ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) Ë ÚÓ˜ÍË z ∈ X ÔÂÓ·‡ÁÓ‚‡ÌË î‡ËÒ‡ ÂÒÚ¸ ÏÂÚ˘ÂÒÍÓ ÔÂÓ·‡ÁÓ‚‡ÌË Dz ̇ X\{z}, Á‡‰‡‚‡ÂÏÓÂ Í‡Í Dz(x, x) = 0, Ë ‰Îfl ‡Á΢Ì˚ı x, y ∈ X\{z} – Í‡Í Dz(x, y) = C – (x•y)z, 1 ( d ( x, z ) + d ( y, z ) = d ( x, y)) ÂÒÚ¸ 2 ÔÓËÁ‚‰ÂÌË ÉÓÏÓ‚‡ (ÒÏ. „Î. 1). èÂÓ·‡ÁÓ‚‡ÌË î‡ËÒ‡ ·Û‰ÂÚ ÏÂÚËÍÓÈ, ÂÒÎË C ≥ maxx,y∈X\{z} d(x, z). íÓ˜ÌÂÂ, ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ ˜ËÒÎÓ C0 ∈ (maxx,y∈X\{z},x≠y (x.y)z, maxx∈X\{z}d(x, z)], ˜ÚÓ ÔÂÓ·‡ÁÓ‚‡ÌË î‡ËÒ‡ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ë ≥ ë0 . éÌÓ fl‚ÎflÂÚÒfl ÛθڇÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d Û‰Ó‚ÎÂÚ‚ÓflÂÚ Ì‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ. Ç ÙËÎÓ„ÂÌÂÚËÍÂ, „‰Â ÓÌÓ ·˚ÎÓ ÔËÏÂÌÂÌÓ ‚Ô‚˚Â, ÚÂÏËÌ ÔÂÓ·‡ÁÓ‚‡ÌË î‡ËÒ‡ ËÒÔÓθÁÛÂÚÒfl ‰Îfl ÙÛÌ͈ËË d(x, y) – d(x, z). „‰Â ë ÂÒÚ¸ ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡, ‡ ( x. y)z =
åÂÚË͇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ËÌ‚ÓβÚË‚ÌÓ„Ó ÇÓÁ¸ÏÂÏ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) Ë ÚÓ˜ÍÛ z ∈ X. åÂÚËÍÓÈ ËÌ‚ÓβÚË‚ÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌÌËfl ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓ ÔÂÓ·‡ÁÓ‚‡ÌË dz ̇ X \{z}, Á‡‰‡‚‡ÂÏÓÂ Í‡Í dz ( x, y) =
d ( x, y) . d ( x, z )d ( y, z )
éÌÓ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‰Îfl β·Ó„Ó z ∈ X ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d ÂÒÚ¸ ÔÚÓÎÂÏ‚‡ ÏÂÚË͇ ([FoSC06]).
72
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
4.2. åÖíêàäà çÄ êÄëòàêÖçàüï ÑÄççéÉé åçéÜÖëíÇÄ ê‡ÒÒÚÓflÌËfl ‡Ò¯ËÂÌËfl ÖÒÎË d ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ Vn = {1,…, n} Ë α ∈ , α > 0, ÚÓ ËÒÔÓθÁÛ˛ÚÒfl ÒÎÂ‰Û˛˘Ë ‡ÒÒÚÓflÌËfl ‡Ò¯ËÂÌÌËfl (ÒÏ., ̇ÔËÏÂ, [DeLa97]). ê‡ÒÒÚÓflÌË ‡Ò¯ËÂÌÌËfl ÒÂÎÂ͈ËË gat = gat αd ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ Vn+1 = = {1,…, n+1}, Á‡‰‡‚‡ÂÏÓ ÒÎÂ‰Û˛˘ËÏË ÛÒÎÓ‚ËflÏË: 1) gat(1, n + 1) = α; 2) gat(i,n + 1) = α + d(1, i), ÂÒÎË 2 ≤ i ≤ n; 3) gat(i, j) = d(i, j), ÂÒÎË 1 ≤ i < j ≤ n. ê‡ÒÒÚÓflÌË gat d0 ̇Á˚‚‡ÂÚÒfl 0- ‡ Ò ¯ Ë Â Ì Ë Â Ï cÂÎÂ͈ËË ËÎË ÔÓÒÚÓ 0-‡Ò¯ËÂÌËÂÏ ‡ÒÒÚÓflÌËfl d. ÖÒÎË α ≥ max2≤i≤n d(1, i), ÚÓ ‡ÌÚËÔÓ‰‡Î¸ÌÓ ‡ÒÒÚÓflÌË ‡Ò¯ËÂÌÌËfl ant = ant αd ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ Vn+1, Á‡‰‡‚‡ÂÏÓ ÒÎÂ‰Û˛˘ËÏË ÛÒÎÓ‚ËflÏË: 1) ant(1, n + 1) = α; 2) ant(i, n + 1) = α – d(1, i), ÂÒÎË 2 ≤ i ≤ n; 3) ant(i, j) = d(i, j), ÂÒÎË 1 ≤ i < j ≤ n. ÖÒÎË α ≥ max1≤i,j≤n d(i,j), ÚÓ ÔÓÎÌÓ ‡ÌÚËÔÓ‰‡Î¸ÌÓ ‡ÒÒÚÓflÌË ‡Ò¯ËÂÌÌËfl Ant = Ant αd ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ V2n = {1,…,2n}, Á‡‰‡‚‡ÂÏÓ ÒÎÂ‰Û˛˘ËÏË ÛÒÎÓ‚ËflÏË: 1) Ant(i,n + i) = α, ÂÒÎË 1 ≤ i ≤ n; 2) Ant(i,n + j) = α – d(i, j), ÂÒÎË 1 ≤ i ≠ j ≤ n; 3) Ant(i, j) = d(i, j), ÂÒÎË 1 ≤ i ≠ j ≤ n; 4) Ant(n + i,n + j) = d(i,j), ÂÒÎË 1 ≤ i ≠ j ≤ n. éÌÓ fl‚ÎflÂÚÒfl ÂÁÛθڇÚÓÏ ÔÓÒΉӂ‡ÚÂθÌÓ„Ó ÔËÏÂÌÂÌËfl ÓÔ‡ˆËË ‡ÌÚËÔÓ‰‡Î¸ÌÓ„Ó ‡Ò¯ËÂÌËfl n ‡Á, ̇˜Ë̇fl Ò d. ê‡ÒÒÚÓflÌË ÒÙ¢ÂÒÍÓ„Ó ‡Ò¯ËÂÌËfl sph = sph αd ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ Vn+1, Á‡‰‡‚‡ÂÏÓ ÒÎÂ‰Û˛˘ËÏË ÛÒÎÓ‚ËflÏË: 1) sph(i,n + 1) = α, ÂÒÎË 1 ≤ i ≤ n; 2) sph(i, j) = d(i, j), ÂÒÎË 1 ≤ i < j ≤ n. ê‡ÒÒÚÓflÌË 1 ÒÛÏÏ˚ èÛÒÚ¸ d1 – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ï1, d2 – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ï2 Ë X1 ∩ X2 = {x0}. ê‡ÒÒÚÓflÌË 1 ÒÛÏÏ˚ d1 Ë d2 ÂÒÚ¸ ‡ÒÒÚÓflÌË d ̇ X1 ∪ X2 , Á‡‰‡‚‡ÂÏÓ ÒÎÂ‰Û˛˘ËÏË ÛÒÎÓ‚ËflÏË: ÂÒÎË x, y ∈ X1 , d1 ( x, y), d ( x, y) = d2 ( x, y), ÂÒÎË x, y ∈ X2 , d ( x, x ) + d ( x y), ÂÒÎË x ∈ X , y ∈ X . 0 0 1 2 Ç ÚÂÓËË „‡ÙÓ‚ ‡ÒÒÚÓflÌË 1 ÒÛÏÏ˚ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ÔÛÚË, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÓÔ‡ˆËË 1 ÒÛÏÏ˚ ‰Îfl „‡ÙÓ‚. åÂÚË͇ ÌÂÔÂÂÒÂ͇˛˘Â„ÓÒfl Ó·˙‰ËÌÂÌËfl èÛÒÚ¸ (Xt, d t), t ∈ T – ÒÂÏÂÈÒÚ‚Ó ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚. åÂÚËÍÓÈ ÌÂÔÂÂÒÂ͇˛˘Â„ÓÒfl Ó·˙‰ËÌÂÌËfl ·Û‰ÂÚ ÏÂÚË͇ ‡Ò¯ËÂÌËfl ̇ ÏÌÓÊÂÒÚ‚Â ∪ tXt × {t}, Á‡‰‡‚‡Âχfl Í‡Í d((x, t1), (y, t2)) = dt(x, y) ‰Îfl t1 = t2, Ë d((x, t1), (y, t2 )) = ∞ – Ë̇˜Â.
73
É·‚‡ 4. åÂÚ˘ÂÒÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl
åÂÚË͇ ÔÓËÁ‚‰ÂÌËfl èÛÒÚ¸ (X1 , d ), (X 2 , d 2 ),…, (Xn , d n ) – ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. íÓ„‰‡ ÏÂÚË͇ ÔÓËÁ‚‰ÂÌËfl ÂÒÚ¸ ÏÂÚË͇ ̇ ‰Â͇ÚÓ‚ÓÏ ÔÓËÁ‚‰ÂÌËË X1 × X2 ×…× Xn = {x = (x1, x2,…,xn) : x 1 ∈ X1 ,…, xn ∈ Xn } ÓÔ‰ÂÎflÂχfl Í‡Í ÙÛÌ͈Ëfl ÓÚ d1 ,…,dn . èÓÒÚÂȯË ÏÂÚËÍË ÔÓËÁ‚‰ÂÌËfl ÓÔ‰ÂÎfl˛ÚÒfl ͇Í
∑i =1 di ( xi , yi ); n
1)
2) (
∑ i =1 n
1
dip ( xi yi )) p , 1 < p < ∞;
3) max1≤i≤n d i(x i, yi); 4) min1≤i≤n {di(xi ,,yi}; n
∑ 2i 1 + idi (ixi ,iyi ) .
5)
1
d (x , y )
i =1
èÓÒΉÌË ‰‚ ÏÂÚËÍË fl‚Îfl˛ÚÒfl Ó„‡Ì˘ÂÌÌ˚ÏË Ë ÏÓ„ÛÚ ·˚Ú¸ ÔÓÒÚÓÂÌ˚ ‰Îfl ÔÓËÁ‚‰ÂÌËfl Ò˜ÂÚÌÓ„Ó ˜ËÒ· ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚. ÖÒÎË X 1 =… = Xn = , Ë d1 = … = dn = d, „‰Â d(x, y) = | x, y | fl‚ÎflÂÚÒfl ̇ÚۇθÌÓÈ ÏÂÚËÍÓÈ Ì‡ , ÚÓ ‚Ò ‚˚¯ÂÛ͇Á‡ÌÌ˚ ÏÂÚËÍË ÔÓËÁ‚‰ÂÌËfl Ë̉ۈËÛ˛Ú Â‚ÍÎË‰Ó‚Û ÚÓÔÓÎӄ˲ ̇ n-ÏÂÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â n. éÌË Ì ÒÓ‚Ô‡‰‡˛Ú Ò Â‚ÍÎˉӂÓÈ ÏÂÚËÍÓÈ Ì‡ n , ÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ ÂÈ. Ç ˜‡ÒÚÌÓÒÚË, ÏÌÓÊÂÒÚ‚Ó n Ò Â‚ÍÎˉӂÓÈ ÏÂÚËÍÓÈ ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ‰Â͇ÚÓ‚Ó ÔÓËÁ‚‰ÂÌËÂ ×…× n ÍÓÔËÈ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔflÏÓÈ ( , d) Ò ÏÂÚËÍÓÈ ÔÓËÁ‚‰ÂÌËfl, Á‡‰‡ÌÌÓÈ Í‡Í
∑i =1 d 2 ( xi , yi ). n
åÂÚË͇ ÔÓËÁ‚‰ÂÌËfl èÛÒÚ¸ (X, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò Ó„‡Ì˘ÂÌÌÓÈ ÏÂÚËÍÓÈ d. èÛÒÚ¸ X∞ = X ×…× X… = {x = (x1,…, xn,…): x 1 ∈ Xn ,…} – ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓËÁ‚‰ÂÌËfl ‰Îfl ï. åÂÚË͇ ÔÓËÁ‚‰ÂÌËfl ÂÒÚ¸ ÏÂÚË͇ ÔÓËÁ‚‰ÂÌËfl ̇ X∞, Á‡‰‡‚‡Âχfl Í‡Í ∞
∑ An d( xn , yn ), n =1
∞
„‰Â
∑ An
fl‚ÎflÂÚÒfl β·˚Ï ÒıÓ‰fl˘ËÏÒfl fl‰ÓÏ, ÒÓÒÚÓfl˘ËÏ ËÁ ÔÓÎÓÊËÚÂθÌ˚ı
n =1
1 . åÂÚË͇ (ËÌÓ„‰‡  ̇Á˚‚‡˛Ú ÏÂÚË2n ÍÓÈ î¯Â) ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ {xn}n ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ˜ËÒÂÎ, Á‡‰‡‚‡Âχfl Í‡Í ˝ÎÂÏÂÌÚÓ‚. é·˚˜ÌÓ ËÒÔÓθÁÛÂÚÒfl An =
∞
|x −y |
∑ An 1+ | nxn − nyn | , n =1
∞
„‰Â
∑ An n =1
fl‚ÎflÂÚÒfl β·˚Ï ÒıÓ‰fl˘ËÏÒfl fl‰ÓÏ Ò ÔÓÎÓÊËÚÂθÌ˚ÏË ˝ÎÂÏÂÌÚ‡ÏË,
74
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ÔÓËÁ‚‰ÂÌËfl ‰Îfl Ò˜ÂÚÌÓ„Ó ˜ËÒ· ÍÓÔËÈ ÏÌÓÊÂÒÚ‚‡ 1 1 (). é·˚˜ÌÓ ·ÂÂÚÒfl An = ËÎË An = n . n! 2 åÂÚË͇ „Ëθ·ÂÚÓ‚‡ ÍÛ·‡ ÉËθ·ÂÚÓ‚ ÍÛ· I χ 0 ÂÒÚ¸ ‰Â͇ÚÓ‚Ó ÔÓËÁ‚‰ÂÌË ҘÂÚÌÓ„Ó ˜ËÒ· ÍÓÔËÈ ËÌÚÂ∞
‚‡Î‡ [0,1], Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ
∑ 2 −i | xi − yi |
(ÒÏ. åÂÚË͇ ÔÓËÁ‚‰ÂÌËfl
i =1
î¯Â). Ö„Ó ÏÓÊÌÓ ÓÚÓʉÂÒÚ‚ÎflÚ¸ (Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó „ÓÏÂÓÏÓÙËÁχ) Ò ÍÓÏÔ‡ÍÚÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ó·‡ÁÛÂÏ˚Ï ‚ÒÂÏË ÔÓÒΉӂ‡ÚÂθ1 ÌÓÒÚflÏË {x n }n ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ˜ËÒÂÎ, Ú‡ÍËı ˜ÚÓ 0 ≤ x n ≤ , „‰Â ÏÂÚË͇ Á‡‰‡Ì‡ n ͇Í
∑ n = 1 ( x n − yn ) 2 . ∞
åÂÚË͇ ÍÓÒÓ„Ó ÔÓËÁ‚‰ÂÌËfl èÛÒÚ¸ (X, dï) Ë (Y, dY) – ‰‚‡ ÔÓÎÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ ‰ÎËÌ˚ (ÒÏ. „Î. 1) Ë f : X → – ÔÓÎÓÊËÚÂθ̇fl ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl. ÑÎfl ‰‡ÌÌÓÈ ÍË‚ÓÈ γ : [a, b] → X × Y ‡ÒÒÏÓÚËÏ Â ÔÓÂ͈ËË γ1 : [a, b] → Y Ë Ì‡ ï Ë Y, Ë ÓÔ‰ÂÎËÏ ‰ÎËÌÛ ÔÓ ÙÓÏÛΠb
∫a
| γ 1′ |2 (t ) + f 2 ( γ 1 (t )) | γ ′2 |2 (t ) dt.
åÂÚËÍÓÈ ÍÓÒÓ„Ó ÔÓËÁ‚‰ÂÌËfl ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ X × Y, Á‡‰‡‚‡Âχfl Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ ‚ÒÂı ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ‰‚ ‰‡ÌÌ˚ ÚÓ˜ÍË ËÁ X× Y (ÒÏ.[BuIv01]). 4.3. åÖíêàäà çÄ ÑêìÉàï åçéÜÖëíÇÄï àÏÂfl ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d), ÏÓÊÌÓ ÔÓÒÚÓËÚ¸ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÌÂÍÓÚÓ˚ÏË ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË ÏÌÓÊÂÒÚ‚‡ ï. éÒÌÓ‚Ì˚ÏË Ú‡ÍËÏË ‡ÒÒÚÓflÌËflÏË ·Û‰ÛÚ: ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ d(x, A) = infy∈A d(x, y), ÓÔ‰ÂÎflÂÏÓ ÏÂÊ‰Û ÚÓ˜ÍÓÈ x ∈ X Ë ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ A ⊂ X, ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË inax∈A,y∈B d(x, y), ÓÔ‰ÂÎflÂÏÓ ÏÂÊ‰Û ‰‚ÛÏfl ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË Ä Ë Ç ÏÌÓÊÂÒÚ‚‡ ï , ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇ ÏÂÊ‰Û ÍÓÏÔ‡ÍÚÌ˚ÏË ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË ï. ì͇Á‡ÌÌ˚ ‡ÒÒÚÓflÌËfl ‡ÒÒÏÓÚÂÌ˚ ‚ „Î. 1. Ç Ì‡ÒÚÓfl˘ÂÏ ‡Á‰ÂΠԉÒÚ‡‚ÎÂÌ Ô˜Â̸ ÌÂÍÓÚÓ˚ı ‰Û„Ëı ‡ÒÒÚÓflÌËÈ ˝ÚÓ„Ó ÚËÔ‡. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔflÏ˚ÏË ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔflÏ˚ÏË ÂÒÚ¸ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË ‚ 3 , „‰Â ‚ ͇˜ÂÒÚ‚Â ÏÌÓÊÂÒÚ‚ ·ÂÛÚÒfl ÒÍ¢˂‡˛˘ËÂÒfl ÔflÏ˚Â, Ú.Â. ‰‚ ÔflÏ˚Â, Ì ÎÂʇ˘Ë ‚ Ó‰ÌÓÈ ÔÎÓÒÍÓÒÚË. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔflÏ˚ÏË – ˝ÚÓ ‰ÎË̇ ÓÚÂÁ͇ Ëı Ó·˘Â„Ó ÔÂÔẨËÍÛÎfl‡, ÍÓ̈˚ ÍÓÚÓÓ„Ó ÎÂÊ‡Ú Ì‡ ÔflÏ˚ı. ÑÎfl Ë l1 Ë l2 , Á‡‰‡ÌÌ˚ı ‡‚ÂÌÒÚ‚‡ÏË l1 : x = pt, t ∈ Ë l2 : x = r + st, t ∈ , ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË ‚˚˜ËÒÎflÂÚÒfl ÔÓ ÙÓÏÛΠ| 〈 r − p, q × s 〉 | , || q × s ||2 „‰Â × – ‚ÂÍÚÓÌÓ ÔÓËÁ‚‰ÂÌË ̇ 3 , 〈,〉 – Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ 3, || ⋅||2 – ‚ÍÎˉӂ‡ ÌÓχ. ÑÎfl x = (x1, x2, x3), y = (y 1 , y2, y3) ËÏÂÂÚ ÏÂÒÚÓ ‡‚ÂÌÒÚ‚Ó x × y = = (x2y3 – x3y2, x3y1 – x1y3, x1y2 – x2y1).
É·‚‡ 4. åÂÚ˘ÂÒÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl
75
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÔflÏÓÈ ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÔflÏÓÈ ÂÒÚ¸ ˜‡ÒÚÌ˚È ÒÎÛ˜‡È ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ, „‰Â ‚ ͇˜ÂÒÚ‚Â ÏÌÓÊÂÒÚ‚‡ ‡ÒÒχÚË‚‡ÂÚÒfl Ôflχfl. Ç 2 ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ z = (z1 , z2 ) Ë ÔflÏÓÈ l: ax1 + bx2 + c 0 ‚˚˜ËÒÎflÂÚÒfl ÔÓ ÙÓÏÛΠ| az1 + bz 2 + c | . a2 + b2 Ç 3 ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ z = (z 1 , z 2 , z 3 ) Ë ÔflÏÓÈ l: x = p + qt, t ∈ ‚˚˜ËÒÎflÂÚÒfl ÔÓ ÙÓÏÛΠ|| q × ( p − z ) ||2 , || q ||2 „‰Â × – ‚ÂÍÚÓÌÓ ÔÓËÁ‚‰ÂÌË ̇ 3 Ë || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÔÎÓÒÍÓÒÚ¸˛ ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÔÎÓÒÍÓÒÚ¸˛ ÂÒÚ¸ ˜‡ÒÚÌ˚È ÒÎÛ˜‡È ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ ‚ 3 , „‰Â ‚ ͇˜ÂÒÚ‚Â ÏÌÓÊÂÒÚ‚‡ ‡ÒÒχÚË‚‡ÂÚÒfl ÔÎÓÒÍÓÒÚ¸. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ (z1 , z 2 , z 3 ) Ë ÔÎÓÒÍÓÒÚ¸˛ α : ax1 + bx2 + cx3 + d = 0 ‚˚˜ËÒÎflÂÚÒfl ÔÓ ÙÓÏÛΠ| az1 + bz 2 + cz 3 + d | . a2 + b2 + c2 ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓÒÚ˚ÏË ˜ËÒ·ÏË ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓÒÚ˚ÏË ˜ËÒ·ÏË – ˜‡ÒÚÌ˚È ÒÎÛ˜‡È ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ ‚ (, | n – m |), ‡ ËÏÂÌÌÓ ÏÂÊ‰Û ˜ËÒÎÓÏ n ∈ Ë ÏÌÓÊÂÒÚ‚ÓÏ ÔÓÒÚ˚ı ˜ËÒÂÎ P ⊂ . чÌÌÓ ‡ÒÒÚÓflÌË ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‡·ÒÓβÚ̇fl ‚Â΢Ë̇ ‡ÁÌÓÒÚË ÏÂÊ‰Û n Ë ·ÎËʇȯËÏ Í ÌÂÏÛ ÔÓÒÚ˚Ï ˜ËÒÎÓÏ. ê‡ÒÒÚÓflÌË ‰Ó ·ÎËÊ‡È¯Â„Ó ˆÂÎÓ„Ó ê‡ÒÒÚÓflÌË ‰Ó ·ÎËÊ‡È¯Â„Ó ˆÂÎÓ„Ó ÂÒÚ¸ ˜‡ÒÚÌ˚È ÒÎÛ˜‡È ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ ‚ (, | x – y |), ‡ ËÏÂÌÌÓ, ÏÂÊ‰Û ˜ËÒÎÓÏ x ∈ Ë ÏÌÓÊÂÒÚ‚ÓÏ ˆÂÎ˚ı ˜ËÒÂÎ ⊂ , Ú.Â. minn∈Z | x – n |. ÅÛÁÂχÌÓ‚‡ ÏÂÚË͇ ÏÌÓÊÂÒÚ‚ ÖÒÎË (X, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ ·ÛÁÂχÌÓ‚ÓÈ ÏÂÚËÍÓÈ ÏÌÓÊÂÒÚ‚ (ÒÏ. [Buse55]) fl‚ÎflÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÌÂÔÛÒÚ˚ı Á‡ÏÍÌÛÚ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ ï, ÓÔ‰ÂÎÂÌ̇fl Í‡Í sup | d ( x, A) − d ( x, B) | e − d ( p, x ) , x ∈X
„‰Â – ÙËÍÒËÓ‚‡Ì̇fl ÚӘ͇ ÏÌÓÊÂÒÚ‚‡ ï, ‡ d(x, A) = miny∈d d(x,y) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ. ÇÏÂÒÚÓ ‚ÂÒÓ‚Ó„Ó ÏÌÓÊËÚÂÎfl e–d(p,x) ÏÓÊÌÓ ‚ÁflÚ¸ β·Û˛ ÙÛÌÍˆË˛ ÔÂÓ·‡ÁÓ‚‡ÌËfl ‡ÒÒÚÓflÌËfl, Û·˚‚‡˛˘Û˛ ‰ÓÒÚ‡ÚÓ˜ÌÓ ·˚ÒÚÓ (ÒÏ. ï‡ÛÒ‰ÓÙÓ‚Ó Lp ‡ÒÒÚÓflÌËÂ, „Î. 21). î‡ÍÚÓ-ÔÓÎÛÏÂÚË͇ èÛÒÚ¸ (X, d) – ‡Ò¯ËÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (Ú.Â. ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÏÂÚËÍÓÈ, ÍÓÚÓ‡fl, ‚ÓÁÏÓÊÌÓ, ÏÓÊÂÚ ÔËÌËχڸ Á̇˜ÂÌË ∞) Ë ~ ÂÒÚ¸ ÓÚÌÓ¯ÂÌËÂ
76
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË Ì‡ ï . íÓ„‰‡ Ù‡ÍÚÓ-ÔÓÎÛÏÂÚËÍÓÈ fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â X = X / ~ Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË, ÓÔ‰ÂÎflÂχfl ‰Îfl β·˚ı x , y ∈ X Í‡Í m
d ( x , y ) = inf
m ∈
∑ d( xi , yi ), i =1
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏ x 1 , y1, x2, y2, y2,…, x m, ym Ò 1 ∈ x , ym ∈ y Ë yi ~ x i+1 ‰Îfl i = 1,2,…, m – 1. èË ˝ÚÓÏ Ì‡‚ÂÌÒÚ‚Ó d ( x , y ) ≤ d ( x , y ) ÒÔ‡‚‰ÎË‚Ó ‰Îfl ‚ÒÂı x, y ∈ X Ë d fl‚ÎflÂÚÒfl ̇˷Óθ¯ÂÈ ÔÓÎÛÏÂÚËÍÓÈ X ̇ Ò Ú‡ÍËÏ Ò‚ÓÈÒÚ‚ÓÏ.
É·‚‡ 5
åÂÚËÍË Ì‡ ÌÓÏËÓ‚‡ÌÌ˚ı ÒÚÛÍÚÛ‡ı
Ç ‰‡ÌÌÓÈ „·‚ ‡ÒÒχÚË‚‡˛ÚÒfl ÒÔˆˇθÌ˚ Í·ÒÒ˚ ÏÂÚËÍ, Á‡‰‡‚‡ÂÏ˚ı ̇ ÌÂÍÓÚÓ˚ı ÌÓÏËÓ‚‡ÌÌ˚ı ÒÚÛÍÚÛ‡ı Í‡Í ÌÓχ ‡ÁÌÓÒÚË ÏÂÊ‰Û ‰‚ÛÏfl ˝ÎÂÏÂÌÚ‡ÏË. í‡Í‡fl ÒÚÛÍÚÛ‡ ÏÓÊÂÚ ·˚Ú¸ „ÛÔÔÓÈ (Ò „ÛÔÔÓ‚ÓÈ ÌÓÏÓÈ), ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (Ò ‚ÂÍÚÓÌÓÈ ÌÓÏÓÈ ËÎË ÔÓÒÚÓ ÌÓÏÓÈ), ‚ÂÍÚÓÌÓÈ Â¯ÂÚÍÓÈ (Ò ÌÓÏÓÈ êËÒÒ‡), ÔÓÎÂÏ (Ò ‚‡Î˛‡ˆËÂÈ) Ë Ú.Ô. åÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ åÂÚËÍÓÈ ÌÓÏ˚ „ÛÔÔ˚ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ „ÛÔÔ (G, +, 0), ÓÔ‰ÂÎflÂχfl Í‡Í || x + (– y) || = || x – y ||, „‰Â || ⋅ || – ÌÓχ „ÛÔÔ˚ ̇ G, Ú.Â. ÙÛÌ͈Ëfl | ⋅ ||: G → , ڇ͇fl ˜ÚÓ ‰Îfl ‚ÒÂı x, y ∈ G ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: 1) || x || ≥ 0 c || x || = 0 Ò ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0; 2) || x || = || – x ||; 3) || x + y || ≤ || x || + || y || (̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇). ã˛·‡fl ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ d fl‚ÎflÂÚÒfl Ô‡‚ÓËÌ‚‡Ë‡ÌÚÌÓÈ, Ú.Â. d(x, y) = d(x + z, y + z) ‰Îfl β·˚ı x, y, z ∈ G. ë ‰Û„ÓÈ ÒÚÓÓÌ˚, β·‡fl Ô‡‚ÓËÌ‚‡Ë‡ÌÚ̇fl (‡‚ÌÓ Í‡Í Ë Î˛·‡fl ΂ÓËÌ‚‡Ë‡ÌÚ̇fl Ë, ‚ ˜‡ÒÚÌÓÒÚË, ·ËËÌ‚‡Ë‡ÌÚ̇fl) ÏÂÚË͇ d ̇ G ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚, ÔÓÒÍÓθÍÛ ÌÓχ „ÛÔÔ˚ ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡Ì‡ ̇ G Í‡Í || x || = d(x, 0). åÂÚË͇ F-ÌÓÏ˚ ÇÂÍÚÓÌÓ (ËÎË ÎËÌÂÈÌÓÂ) ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ ÔÓÎÂÏ ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó V, Ò̇·ÊÂÌÌÓ ‰ÂÈÒÚ‚ËflÏË ÒÎÓÊÂÌËfl ‚ÂÍÚÓÓ‚ + : V × V → V Ë ÛÏÌÓÊÂÌËfl ̇ Ò͇Îfl ⋅: F × V → V, Ú‡ÍËÏË ˜ÚÓ (V, +, 0) Ó·‡ÁÛÂÚ ‡·ÂÎÂ‚Û „ÛÔÔÛ („‰Â 0 ∈ V ÂÒÚ¸ ÌÛθ‚ÂÍÚÓ), ‡ ‰Îfl ‚ÒÂı ‚ÂÍÚÓÓ‚ x, y ∈ V Ë Î˛·˚ı Ò͇ÎflÌ˚ı ‚Â΢ËÌ a, b ∈ ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: 1 ⋅ x = x („‰Â 1 fl‚ÎflÂÚÒfl ÏÛθÚËÔÎË͇ÚË‚ÌÓÈ Â‰ËÌˈÂÈ ÔÓÎfl ), (ab) ⋅ x = a ⋅ (b ⋅ x), (a + b) ⋅ x = a ⋅ x + b ⋅ x Ë a ⋅ (x + y) = a ⋅ x + a ⋅ y. ÇÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ ÔÓÎÂÏ ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ˜ËÒÂΠ̇Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌ˚Ï ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÇÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ ÔÓÎÂÏ ÍÓÏÔÎÂÍÒÌ˚ı ˜ËÒÂΠ̇Á˚‚‡ÂÚÒfl ÍÓÏÔÎÂÍÒÌ˚Ï ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ . åÂÚË͇ F-ÌÓÏ˚ – ÏÂÚË͇ ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ) ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V, ÓÔ‰ÂÎÂÌ̇fl Í‡Í || x – y ||F, „‰Â || ⋅ ||F fl‚ÎflÂÚÒfl F-ÌÓÏÓÈ Ì‡ V, Ú.Â. ÙÛÌ͈ËÂÈ || ⋅ ||F : V → Ú‡ÍÓÈ ˜ÚÓ ‰Îfl ‚ÒÂı x, y ∈ V Ë ‰Îfl β·Ó„Ó Ò͇Îfl‡ ‡ Ò | a | = 1 ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: 1) || x ||F ≥ 0 Ò || x ||F = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0; 2) || ax ||F = || x ||F; 3) || x + y||F ≤ || x ||F + || y ||F (̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇). F-ÌÓχ ̇Á˚‚‡ÂÚÒfl -Ó‰ÌÓÓ‰ÌÓÈ, ÂÒÎË || ax ||F = | a |p || x ||F.
78
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
åÂÚË͇ F-ÌÓÏ˚ d fl‚ÎflÂÚÒfl ËÌ‚‡Ë‡ÌÚÌÓÈ ÏÂÚËÍÓÈ ÔÂÂÌÓÒ‡, Ú.Â. d(x, y) = = d(x + z, y + z) ‰Îfl ‚ÒÂı x, y, z ∈ V. à ̇ӷÓÓÚ, ÂÒÎË d fl‚ÎflÂÚÒfl ËÌ‚‡Ë‡ÌÚÌÓÈ ÏÂÚËÍÓÈ ÔÂÂÌÓÒ‡ ̇ V, ÚÓ || x ||F = d(x, 0) fl‚ÎflÂÚÒfl F-ÌÓÏÓÈ Ì‡ V. F * -ÏÂÚË͇ F * -ÏÂÚË͇ – ÏÂÚË͇ F-ÌÓÏ˚ || x – y || F ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ) ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V, ڇ͇fl ˜ÚÓ ‰ÂÈÒÚ‚Ëfl ÛÏÌÓÊÂÌËfl ̇ Ò͇Îfl Ë ÒÎÓÊÂÌËfl ‚ÂÍÚÓÓ‚ fl‚Îfl˛ÚÒfl ÌÂÔÂ˚‚Ì˚ÏË ÓÚÌÓÒËÚÂθÌÓ || ⋅ ||F. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ || ⋅ ||F ÂÒÚ¸ ÙÛÌ͈Ëfl || ⋅ ||F : V → ڇ͇fl ˜ÚÓ ‰Îfl ‚ÒÂı Ë ‚ÒÂı x, y, xn ∈ V Ò͇ÎflÌ˚ı ‚Â΢ËÌ ‡, ‡n ËÏÂÂÏ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: 1) || x ||F ≥ 0 c || x ||F = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0; 2) || ax ||F = || x ||F ‰Îfl ‚ÒÂı ‡ c | a | = 1; 3) || x + y||F ≤ || x ||F + || y ||F; 4) || anx ||F → 0 ÂÒÎË an → 0; 5) || axn || F → 0, ÂÒÎË xn → 0; 6) || anxn || F → 0 ÂÒÎË an → 0, xn → 0. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (V, || x – y || F ) Ò F* -ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl F* -ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ùÍ‚Ë‚‡ÎÂÌÚÌÓ, F * -ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (V, d) Ò Ú‡ÍÓÈ ËÌ‚‡Ë‡ÌÚÌÓÈ ÏÂÚËÍÓÈ ÔÂÂÌÓÒ‡ d , ˜ÚÓ ‰ÂÈÒÚ‚Ëfl ÛÏÌÓÊÂÌËfl ̇ Ò͇Îfl Ë ÒÎÓÊÂÌËfl ‚ÂÍÚÓÓ‚ fl‚Îfl˛ÚÒfl ÌÂÔÂ˚‚Ì˚ÏË ÓÚÌÓÒËÚÂθÌÓ ˝ÚÓÈ ÏÂÚËÍË. åÓ‰ÛÎflÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ fl‚ÎflÂÚÒfl F* -ÔÓÒÚ‡ÌÒÚ‚Ó (V, || ⋅ ||F), ‚ ÍÓÚÓÓÏ FÌÓχ | ⋅ ||F ÓÔ‰ÂÎflÂÚÒfl Í‡Í x || x || F = inf λ > 0 : ρ < λ , λ Ë ρ ÂÒÚ¸ ÏÓ‰ÛÎfl ÏÂÚËÁÓ‚‡ÌËfl ̇ V, Ú.Â. ڇ͇fl ÙÛÌ͈Ëfl ρ : V → [0, ∞], ˜ÚÓ ‰Îfl ‚ÒÂı x, y, xn ∈ V Ë ‚ÒÂı Ò͇ÎflÌ˚ı ‚Â΢ËÌ a, an ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: 1) ρ(x) = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0; 2) ÂÒÎË ρ(ax) = ρ(x), ÚÓ | a | = 1; 3) ÂÒÎË ρ(ax + by) ≤ ρ(x) + ρ(y), ÚÓ a + b = 1; 4) ρ(an x) → 0, ÂÒÎË an → 0 Ë ρ(x) < ∞; 5) ρ(axn) → 0, ÂÒÎË ρ(x n ) → 0 (Ò‚ÓÈÒÚ‚Ó ÏÂÚËÁÓ‚‡ÌËfl); 6) ‰Îfl β·Ó„Ó x ∈ V ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ k > 0, ˜ÚÓ ρ(kx) < ∞. èÓÎÌÓ F* -ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl F-ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ãÓ͇θÌÓ ‚˚ÔÛÍÎÓ F-ÔÓÒÚ‡ÌÒÚ‚Ó ËÁ‚ÂÒÚÌÓ ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁÂ Í‡Í ÔÓÒÚ‡ÌÒÚ‚Ó î¯Â. åÂÚË͇ ÌÓÏ˚ åÂÚË͇ ÌÓÏ˚ – ÏÂÚË͇ ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ) ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V, ÓÔ‰ÂÎflÂχfl Í‡Í || x – y ||, „‰Â || ⋅ || fl‚ÎflÂÚÒfl ÌÓÏÓÈ Ì‡ V, Ú.Â. Ú‡ÍÓÈ ÙÛÌ͈ËÂÈ || ⋅ ||: V → , ˜ÚÓ ‰Îfl ‚ÒÂı x, y ∈ V Ë Î˛·Ó„Ó Ò͇Îfl‡ ‡ ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: 1) || x || ≥ 0 Ò || x || = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0; 2) || ax || = | a | || x ||; 3) || x + y || ≤ || x || + || y || (̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇). ëΉӂ‡ÚÂθÌÓ, ÌÓχ || ⋅ || fl‚ÎflÂÚÒfl 1-Ó‰ÌÓÓ‰ÌÓÈ F-ÌÓÏÓÈ. ÇÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (V, || ⋅ ||) ̇Á˚‚‡ÂÚÒfl ÌÓÏËÓ‚‡ÌÌ˚Ï ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ËÎË ÔÓÒÚÓ ÌÓÏËÓ‚‡ÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
É·‚‡ 5. åÂÚËÍË Ì‡ ÌÓÏËÓ‚‡ÌÌ˚ı ÒÚÛÍÚÛ‡ı
79
ç‡ Î˛·ÓÏ ‰‡ÌÌÓÏ ÍÓ̘ÌÓÏÂÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ‚Ò ÌÓÏ˚ ˝Í‚Ë‚‡ÎÂÌÚÌ˚. ÇÒflÍÓ ÍÓ̘ÌÓÏÂÌÓ ÌÓÏËÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï. ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÏÓÊÂÚ ·˚Ú¸ ËÁÓÏÂÚ˘ÂÒÍË ‚ÎÓÊÂÌÓ ‚ ÌÂÍÓÚÓÓ ÌÓÏËÓ‚‡ÌÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Í‡Í Á‡ÏÍÌÛÚÓ ÎËÌÂÈÌÓ ÌÂÁ‡‚ËÒËÏÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó. çÓÏËÓ‚‡ÌÌÓ ۄÎÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë Û Á‡‰‡ÂÚÒfl Í‡Í d ( x, y) =
x y − . || x || || y ||
å‡ÎË„‡Ì‰‡ Á‡ÏÂÚËÎ ÒÎÂ‰Û˛˘Â ÛÒËÎÂÌˠ̇‚ÂÌÒÚ‚‡ ÚÂÛ„ÓθÌË͇ ‚ ÌÓÏËÓ‚‡ÌÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı: ‰Îfl β·˚ı x, y ∈ V ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë (2 – d(x, – y)) min{|| x ||, || y ||} ≤ || x || + || y || – || x + y|| ≤ (2 – d(x, –y)) {|| x ||, || x ||}. èÓÎÛÏÂÚË͇ ÔÓÎÛÌÓÏ˚ èÓÎÛÏÂÚËÍÓÈ ÔÓÎÛÌÓÏ˚ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ) ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V, Á‡‰‡‚‡Âχfl Í‡Í || x – y ||, „‰Â || ⋅ || fl‚ÎflÂÚÒfl ÔÓÎÛÌÓÏÓÈ (ËÎË Ô‰ÌÓÏÓÈ) ̇ V, Ú.Â. Ú‡ÍÓÈ ÙÛÌ͈ËÂÈ || ⋅ ||: V → , ˜ÚÓ ‰Îfl ‚ÒÂı x, y ∈ V Ë Î˛·Ó„Ó Ò͇Îfl‡ ‡ ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: 1) || x || ≥ 0 Ò || 0 || = 0; 2) || ax || = | a | || x ||; 3) || x + y || ≤ || x || + || y || (̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇). ÇÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (V, || ⋅ ||) ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÌÓÏËÓ‚‡ÌÌ˚Ï ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. åÌÓ„Ë ÌÓÏËÓ‚‡ÌÌ˚ ‚ÂÍÚÓÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡, ̇ÔËÏ ·‡Ì‡ıÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡, ÓÔ‰ÂÎfl˛ÚÒfl Í‡Í Ù‡ÍÚÓ-ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Û ˝ÎÂÏÂÌÚÓ‚ ÔÓÎÛÌÓÏ˚ ÌÛθ. 䂇ÁËÌÓÏËÓ‚‡ÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ fl‚ÎflÂÚÒfl ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó V, ̇ ÍÓÚÓÓÏ Á‡‰‡Ì‡ Í‚‡ÁËÌÓχ. 䂇ÁËÌÓÏÓÈ Ì‡ V ̇Á˚‚‡ÂÚÒfl ÌÂÓÚˈ‡ÚÂθ̇fl ÙÛÌ͈Ëfl || ⋅ || : → , Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ÚÂÏ Ê ‡ÍÒËÓχÏ, ˜ÚÓ Ë ÌÓχ, Á‡ ËÒÍβ˜ÂÌËÂÏ Ì‡‚ÂÌÒÚ‚‡ ÚÂÛ„ÓθÌË͇, ÍÓÚÓÓ Á‡ÏÂÌflÂÚÒfl ·ÓΠÒ··˚Ï ÛÒÎÓ‚ËÂÏ: ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓÌÒÚ‡ÌÚ‡ ë > 0, ڇ͇fl ˜ÚÓ ‰Îfl ‚ÒÂı x, y ∈ V ‚˚ÔÓÎÌflÂÚÒfl ̇‚ÂÌÒÚ‚Ó || x + y || ≤ C)|| x || + || y ||) (ÒÏ. èÓ˜ÚË-ÏÂÚË͇, „Î. 1). èËÏÂÓÏ Í‚‡ÁËÌÓÏËÓ‚‡ÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÍÓÚÓÓ Ì fl‚ÎflÂÚÒfl ÌÓÏËÓ‚‡ÌÌ˚Ï, ÏÓÊÂÚ ÒÎÛÊËÚ¸ ÎÂ·Â„Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó L p (Ω) Ò 0 < p < 1, ‚ ÍÓÚÓÓÏ Í‚‡ÁËÌÓχ Á‡‰‡ÂÚÒfl Í‡Í || f ||= (
∫Ω | f ( x ) |
p
dx )1 / p , f ∈ L p (Ω).
Ň̇ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó Å‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (ËÎË Ç-ÔÓÒÚ‡ÌÒÚ‚Ó) ÂÒÚ¸ ÔÓÎÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (V, || x – y||) ̇ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V Ò ÏÂÚËÍÓÈ ÌÓÏ˚ || x – y||. ùÍ‚Ë‚‡ÎÂÌÚÌÓ, ÓÌÓ fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï ÌÓÏËÓ‚‡ÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (V, || ⋅ ||). Ç ˝ÚÓÏ ÒÎÛ˜‡Â ÌÓχ || ⋅ || ̇ V ̇Á˚‚‡ÂÚÒfl ·‡Ì‡ıÓ‚ÓÈ ÌÓÏÓÈ. èËχÏË ·‡Ì‡ıÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ fl‚Îfl˛ÚÒfl: 1) l pn - ÔÓÒÚ‡ÌÒÚ‚‡, l p∞ - ÔÓÒÚ‡ÌÒÚ‚‡, 1 ≤ p ≤ ∞, n ∈ ;
80
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
2) ÔÓÒÚ‡ÌÒÚ‚Ó ë ÒıÓ‰fl˘ËıÒfl ˜ËÒÎÓ‚˚ı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ Ò ÌÓÏÓÈ || x || = = supn | x n |; 3) ÔÓÒÚ‡ÌÒÚ‚Ó ë0 ˜ËÒÎÓ‚˚ı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ, ÍÓÚÓ˚ ÒıÓ‰flÚÒfl Í ÌÛβ ÔÓ ÌÓÏ | x || = maxn | xn ||; 4) ÔÓÒÚ‡ÌÒÚ‚Ó C[pa, b ] ,1 ≤ p ≤ ∞ ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ Ì‡ [a, b] Ò L p -ÌÓÏÓÈ || f || p = (
b
∫a
1
| f (t ) | p dt ) p ;
5) ÔÓÒÚ‡ÌÒÚ‚Ó ëä ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ Ì‡ ÍÓÏÔ‡ÍÚ ä Ò ÌÓÏÓÈ || f || = = maxt∈K | f(t)|; 6) ÔÓÒÚ‡ÌÒÚ‚Ó (C [a,b])n ÙÛÌ͈ËÈ Ì‡ [a, b] Ò ÌÂÔÂ˚‚Ì˚ÏË ÔÓËÁ‚Ó‰Ì˚ÏË ‰Ó ÔÓfl‰Í‡ n ‚Íβ˜ËÚÂθÌÓ Ò ÌÓÏÓÈ || f ||n =
∑ k = 0 max a ≤ t ≤ b | f (k ) (t ) |; n
7) ÔÓÒÚ‡ÌÒÚ‚Ó Cn[I m] ‚ÒÂı ÙÛÌ͈ËÈ, ÓÔ‰ÂÎÂÌÌ˚ı ‚ m-ÏÂÌÓÏ ÍÛ·Â Ë ÌÂÔÂ˚‚ÌÓ ‰ËÙÙÂÂ̈ËÛÂÏ˚ı ‰Ó ÔÓfl‰Í‡ n ‚Íβ˜ËÚÂθÌÓ Ò ÌÓÏÓÈ ‡‚ÌÓÏÂÌÓÈ Ó„‡Ì˘ÂÌÌÓÒÚË ‚Ó ‚ÒÂı ÔÓËÁ‚Ó‰Ì˚ı ÔÓfl‰Í‡ Ì ·Óθ¯Â, ˜ÂÏ n; 8) ÔÓÒÚ‡ÌÒÚ‚Ó M [a,b] Ó„‡Ì˘ÂÌÌ˚ı ËÁÏÂËÏ˚ı ÙÛÌ͈ËÈ Ì‡ [a, b] Ò ÌÓÏÓÈ || f ||= ess sup | f (t ) | = inf sup | f (t ) |; e, µ ( e ) = 0 t ∈[ a, b ] \ e
a≤t ≤b
9) ÔÓÒÚ‡ÌÒÚ‚Ó Ä (∆) ÙÛÌ͈ËÈ, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ‡Ì‡ÎËÚ˘ÂÒÍËÏË ‚ ÓÚÍ˚ÚÓÏ Â‰ËÌ˘ÌÓÏ ‰ËÒÍ ∆ = {z ∈ : | z | < 1} Ë ÌÂÔÂ˚‚Ì˚ÏË ‚ Á‡Í˚ÚÓÏ ‰ËÒÍ ∆ Ò ÌÓÏÓÈ || f ||= maxz ∈∆ | f ( z ) |; 10) η„ӂ˚ ÔÓÒÚ‡ÌÒÚ‚‡ Lp(Ω), 1 ≤ p ≤ ∞; 11) ÔÓÒÚ‡ÌÒÚ‚‡ ëÓ·Ó΂‡ Wk,p(Ω), Ω ⊂ n, 1 ≤ p ≤ ∞ ÙÛÌ͈ËÈ f ̇ Ω, Ú‡ÍËı ˜ÚÓ f Ë Â ÔÓËÁ‚Ó‰Ì˚ ‚ÔÎÓÚ¸ ‰Ó ÌÂÍÓÚÓÓ„Ó ÔÓfl‰Í‡ k ËÏÂ˛Ú ÍÓ̘ÌÛ˛ Lp-ÌÓÏÛ, c ÌÓÏÓÈ || f ||k , p =
∑i = 0 || f (i) ||0 ; k
12) ÔÓÒÚ‡ÌÒÚ‚Ó ÅÓ‡ Äê ÔÓ˜ÚË ÔÂËӉ˘ÂÒÍËı ÙÛÌ͈ËÈ Ò ÌÓÏÓÈ || f || = sup | f (t ) | . – ∞< t < +∞
äÓ̘ÌÓÏÂÌÓ ‚¢ÂÒÚ‚ÂÌÌÓ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ åËÌÍÓ‚ÒÍÓ„Ó. åÂÚË͇ ÌÓÏ˚ ÔÓÒÚ‡ÌÒÚ‚‡ åËÌÍÓ‚ÒÍÓ„Ó Ì‡Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ åËÌÍÓ‚ÒÍÓ„Ó (ÒÏ. „Î. 6). Ç ˜‡ÒÚÌÓÒÚË, β·‡fl lp -ÏÂÚË͇ ÂÒÚ¸ ÏÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó. ÇÒ n-ÏÂÌ˚ ·‡Ì‡ıÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ fl‚Îfl˛ÚÒfl ÔÓÔ‡ÌÓ ËÁÓÏÓÙÌ˚ÏË: Ëı ÏÌÓÊÂÒÚ‚Ó ÒÚ‡ÌÓ‚ËÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï, ÂÒÎË ‚‚Ó‰ËÚÒfl ‡ÒÒÚÓflÌË Ň̇ı‡–å‡ÁÛ‡ dBM(V, W) = ln infT || T || ⋅ || T –1 ||, „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÓÔ‡ÚÓ‡Ï, ÍÓÚÓ˚ ‡ÎËÁÛ˛Ú ËÁÓÏÓÙËÁÏ T : V → W. lp -ÏÂÚË͇ lp -ÏÂÚË͇ dl p , 1 ≤ p ≤ ∞ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ n (ËÎË Ì‡ n), ÓÔ‰ÂÎÂÌ̇fl Í‡Í || x – y ||p , „‰Â lp -ÌÓχ || ⋅ ||p Á‡‰‡ÂÚÒfl Í‡Í n
|| x || p = (
∑ | xi | i =1
1 p p
) .
81
É·‚‡ 5. åÂÚËÍË Ì‡ ÌÓÏËÓ‚‡ÌÌ˚ı ÒÚÛÍÚÛ‡ı
ÑÎfl p = ∞ Ï˚ ÔÓÎÛ˜‡ÂÏ || x ||∞ = lim p →∞
p
∑i =1 | xi | p = max1≤ i ≤ n | xi | . åÂÚ˘ÂÒÍÓ n
ÔÓÒÚ‡ÌÒÚ‚Ó ( n , dl p ) ÒÓ͇˘ÂÌÌÓ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í l pn Ë Ì‡Á˚‚‡ÂÚÒfl l pn ÔÓÒÚ‡ÌÒÚ‚ÓÏ. lp -ÏÂÚË͇, 1 ≤ p ≤ ∞ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ x = {x n}∞n =1 ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ˜ËÒÂÎ, ‰Îfl ÍÓÚÓ˚ı ÒÛÏχ ËÏÂÂÚ ‚ˉ
∑ i =1 | x i | p ∞
(‰Îfl p = ∞ ÒÛÏχ
∑i =1 | xi |) fl‚ÎflÂÚÒfl ÍÓ̘ÌÓÈ, ÓÔ‰ÂÎflÂÚÒfl Í‡Í ∞
∞
(
∑ | xi − yi |
1 p p
) .
i =1
ÑÎfl p = ∞ ÔÓÎÛ˜‡ÂÏ maxi≥1|xi – yi |. ùÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓ͇˘ÂÌÌÓ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í l p∞ Ë Ì‡Á˚‚‡ÂÚÒfl l p∞ -ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ç‡Ë·ÓΠ‚‡ÊÌ˚ÏË fl‚Îfl˛ÚÒfl l1 –, l2- Ë l∞-ÏÂÚËÍË; l2 -ÏÂÚË͇ ̇ n ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ ‚ÍÎˉӂÓÈ ÏÂÚËÍÓÈ. l2 -ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ {x n }n ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ˜ËÒÂÎ, ‰Îfl ÍÓÚÓ˚ı
∑i =1 | xi |2 < ∞, ËÁ‚ÂÒÚ̇ Ú‡ÍÊ ∞
Í‡Í „Ëθ·ÂÚÓ‚‡ ÏÂÚË͇. ç‡ ‚Ò lp -ÏÂÚËÍË ÒÓ‚Ô‡‰‡˛Ú Ò Ì‡ÚۇθÌÓÈ ÏÂÚËÍÓÈ | x – y |. Ö‚ÍÎˉӂ‡ ÏÂÚË͇ Ö‚ÍÎˉӂ‡ ÏÂÚË͇ (ËÎË ÔËÙ‡„ÓÓ‚Ó ‡ÒÒÚÓflÌËÂ, ‡ÒÒÚÓflÌË "Í‡Í ÎÂÚ‡ÂÚ ‚ÓÓ̇") dE – ÏÂÚË͇ ̇ n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í || x = y ||2 = ( x1 − y1 )2 + … + ( x n − yn )2 . ùÚÓ Ó·˚˜Ì‡fl l2 -ÏÂÚË͇ ̇ n. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (n, dE), ÒÓ͇˘ÂÌÌÓ Ì‡Á˚‚‡ÂÚÒfl ‚ÍÎˉӂ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË ‚¢ÂÒÚ‚ÂÌÌ˚Ï Â‚ÍÎˉӂ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ). àÌÓ„‰‡ ‚˚‡ÊÂÌËÂÏ "‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó" Ó·ÓÁ̇˜‡ÂÚÒfl ÚÂıÏÂÌ˚È ÒÎÛ˜‡È n = 3, ‚ ÔÓÚË‚Ó‚ÂÒ Â‚ÍÎˉӂÓÈ ÔÎÓÒÍÓÒÚË ‰Îfl n = 2. Ö‚ÍÎˉӂ‡ Ôflχfl (ËÎË ‰ÂÈÒÚ‚ËÚÂθ̇fl ‚ÍÎˉӂ‡ Ôflχfl) ÔÓÎÛ˜‡ÂÚÒfl ÔË n = 1, Ú.Â. fl‚ÎflÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (, | x – y |) Ò Ì‡ÚۇθÌÓÈ ÏÂÚËÍÓÈ (ÒÏ. „Î. 12). Ç ‰ÂÈÒÚ‚ËÚÂθÌÓÒÚË n fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ (Ë ‰‡Ê „Ëθ·ÂÚÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ), Ú.Â. dE(x, y) = || x – y || = || x – y ||2 = = 〈 x − y, x − y 〉 , „‰Â 〈x, y〉 ÂÒÚ¸ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n, ÍÓÚÓÓ Ô‰ÒÚ‡‚ÎÂÌÓ ‚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ Ó·‡ÁÓÏ ‚˚·‡ÌÌÓÈ ÒËÒÚÂÏ (‰Â͇ÚÓ‚˚) ÍÓÓ‰ËÌ‡Ú ÙÓÏÛÎÓÈ 〈 x, y 〉 = gij xi yi , „‰Â gij xi yi . Ç Òڇ̉‡ÚÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú ËÏÂÂÏ 〈 x, y 〉 =
n,
∑ i, j
∑ i, j
gij = 〈ei, ej〉 Ë ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ ((gij)) fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ ÒËÏÏÂÚ˘ÌÓÈ n × n χÚˈÂÈ. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÔÓÒÚ‡ÌÒÚ‚Ó, Ò‚ÓÈÒÚ‚‡ ÍÓÚÓÓ„Ó ÓÔËÒ˚‚‡˛ÚÒfl ‡ÍÒËÓχÏË Â‚ÍÎˉӂÓÈ „ÂÓÏÂÚËË. ìÌËڇ̇fl ÏÂÚË͇ ìÌËڇ̇fl ÏÂÚË͇ (ËÎË ÍÓÏÔÎÂÍÒ̇fl ‚ÍÎˉӂ‡ ÏÂÚË͇) ÂÒÚ¸ l2 -ÏÂÚË͇ ̇ n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í || x − y ||2 = | x1 − y1 |2 +…+ | x n − yn |2 .
82
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (n, || x – y || 2 ) ̇Á˚‚‡ÂÚÒfl ÛÌËÚ‡Ì˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË ÍÓÏÔÎÂÍÒÌ˚Ï Â‚ÍÎˉӂ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ). ÑÎfl n = 1 ÔÓÎÛ˜ËÏ ÍÓÏÔÎÂÍÒÌÛ˛ ÔÎÓÒÍÓÒÚ¸ (ËÎË ÔÎÓÒÍÓÒÚ¸ Ä„‡Ì‰‡), Ú.Â. ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (, | z – u |) Ò ÏÂÚËÍÓÈ ÍÓÏÔÎÂÍÒÌÓ„Ó ÏÓ‰ÛÎfl | z – u |; | z | =| z1 + iz 2 |= z12 + z 22 Á‰ÂÒ¸ fl‚ÎflÂÚÒfl ÍÓÏÔÎÂÍÒÌ˚Ï ÏÓ‰ÛÎÂÏ (ÒÏ. Ú‡ÍÊ ͂‡ÚÂÌËÓÌ̇fl ÏÂÚË͇, „Î. 12). Lp -ÏÂÚË͇ Lp -ÏÂÚË͇ d L p , 1 ≤ p ≤ ∞ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ L p (Ω, , µ), Á‡‰‡Ì̇fl Í‡Í || f – g ||p ‰Îfl β·˚ı f, g ∈ L p (Ω, , µ). åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ( L p (Ω, , µ ), d L p ) ̇Á˚‚‡ÂÚÒfl Lp -ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË Î·„ӂ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ). á‰ÂÒ¸ Ω – ÌÂÍÓÚÓÓ ÏÌÓÊÂÒÚ‚Ó Ë fl‚ÎflÂÚÒfl σ-‡Î„·ÓÈ ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ Ω , Ú.Â. ÒÂÏÂÈÒÚ‚ÓÏ ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ Ω, Û‰Ó‚ÎÂÚ‚Ófl˛˘Ëı ÒÎÂ‰Û˛˘ËÏ Ò‚ÓÈÒÚ‚‡Ï: 1) Ω ∈ ; 2) ÂÒÎË A ∈ , ÚÓ Ω\A ∈ ; 3) ÂÒÎË A = ∪ i∞=1 Ai c Ai ∈ , ÚÓ A ∈ . îÛÌ͈Ëfl µ : → ≥0 ̇Á˚‚‡ÂÚÒfl ÏÂÓÈ Ì‡ , ÂÒÎË Ó̇ ‡‰‰ËÚ˂̇, Ú.Â. µ(∪ i ≥1 Ai ) = µ( Ai ) ‰Îfl ‚ÒÂı ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÏÌÓÊÂÒÚ‚ A i ∈ ,
∑ i ≥1
Ë Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ µ(0/) = 0. èÓÒÚ‡ÌÒÚ‚Ó Ò ÏÂÓÈ Ó·ÓÁ̇˜‡ÂÚÒfl ÚÓÈÍÓÈ (Ω, , µ). ÑÎfl ‰‡ÌÌÓÈ ÙÛÌ͈ËË f : Ω → ()  Lp-ÌÓχ ÓÔ‰ÂÎflÂÚÒfl Í‡Í || f || p =
1
∫Ω
f (ω ) p µ( dω ) p .
èÛÒÚ¸ L p (Ω, , µ) = L p (Ω) Ó·ÓÁ̇˜‡ÂÚ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÙÛÌ͈ËÈ f : Ω → (), ÍÓÚÓ˚ ۉӂÎÂÚ‚Ófl˛Ú ÛÒÎӂ˲ || f ||p < ∞. ëÚÓ„Ó „Ó‚Ófl, L p (Ω, , µ) ÒÓÒÚÓËÚ ËÁ Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ÙÛÌ͈ËÈ, „‰Â ‰‚ ÙÛÌ͈ËË ˝Í‚Ë‚‡ÎÂÌÚÌ˚, ÂÒÎË ÓÌË ÔÓ˜ÚË ‚Ò˛‰Û Ó‰Ë̇ÍÓ‚˚, Ú. ÏÌÓÊÂÒÚ‚Ó, ̇ ÍÓÚÓÓÏ ÓÌË ‡Á΢‡˛ÚÒfl, ӷ·‰‡ÂÚ ÌÛ΂ÓÈ ÏÂÓÈ. åÌÓÊÂÒÚ‚Ó L∞(Ω, , µ) ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ËÁÏÂËÏ˚ı ÙÛÌ͈ËÈ f : Ω → (), ‡·ÒÓβÚÌ˚ ‚Â΢ËÌ˚ ÍÓÚÓ˚ı ÔÓ˜ÚË ‚Ò˛‰Û Ó„‡Ì˘ÂÌ˚. ç‡Ë·ÓΠËÁ‚ÂÒÚÌ˚Ï ÔËÏÂÓÏ L p -ÏÂÚËÍË fl‚ÎflÂÚÒfl d L p ̇ ÏÌÓÊÂÒÚ‚Â L p (Ω, , µ ), „‰Â Ω – ÓÚÍ˚Ú˚È ËÌÚ‚‡Î (0,1), – ·ÓÂ΂‡ σ-‡Î„·‡ ̇ (0,1) Ë µ – η„ӂ‡ χ. ùÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓ͇˘ÂÌÌÓ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í Lp(0,1) Ë Ì‡Á˚‚‡ÂÚÒfl Lp(0,1)-ÔÓÒÚ‡ÌÒÚ‚ÓÏ. Ä̇Îӄ˘Ì˚Ï Ó·‡ÁÓÏ ÏÓÊÌÓ Á‡‰‡Ú¸ Lp-ÏÂÚËÍÛ Ì‡ ÏÌÓÊÂÒÚ‚Â C[ a, b ] ‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ Ì‡ [a, b]: b p d L p ( f , g) = f ( x ) − g( x ) dx a
∫
1/ p
.
83
É·‚‡ 5. åÂÚËÍË Ì‡ ÌÓÏËÓ‚‡ÌÌ˚ı ÒÚÛÍÚÛ‡ı
ÑÎfl p = ∞ d L∞ ( f , g) = max a ≤ x ≤ b | f ( x ) − g( x ) |. ùÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓ͇˘ÂÌÌÓ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í C[pa, b ] Ë Ì‡Á˚‚‡ÂÚÒfl C[pa, b ] -ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÖÒÎË Ω = , = 2Ω fl‚ÎflÂÚÒfl ÒÂÏÂÈÒÚ‚ÓÏ ‚ÒÂı ÔÓ‰ÏÌÓÊÂÒÚ‚ Ω Ë µ – ͇‰Ë̇θÌ˚Ï ˜ËÒÎÓÏ (Ú.Â. µ( A) = | A |, ÂÒÎË Ä – ÍÓ̘ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó Ω Ë µ(A) = ∞ – Ë̇˜Â), ÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
( L (Ω, 2 p
Ω
, | ⋅ | ), d L p
)Ël
∞ p -ÔÓÒÚ‡ÌÒÚ‚Ó
ÒÓ‚-
Ô‡‰‡˛Ú. ÖÒÎË Ω = Vn ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó, ÒÓÒÚÓfl˘Â ËÁ n ˝ÎÂÏÂÌÚÓ‚, = 2 Vn , Ë µ fl‚ÎflÂÚÒfl
(
͇‰Ë̇θÌ˚Ï ˜ËÒÎÓÏ, ÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó L p (Vn , 2 Vn , | ⋅ | ), d L p
)Ë
l pn -
ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓ‚Ô‡‰‡˛Ú. Ñ‚ÓÈÒÚ‚ÂÌÌ˚ ÏÂÚËÍË lp -ÏÂÚË͇ Ë lq -ÏÂÚË͇, 1 < p , q < ∞ ̇Á˚‚‡˛ÚÒfl ‰‚ÓÈÒÚ‚ÂÌÌ˚ÏË, ÂÒÎË 1/p + + 1/q = 1. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â, ÍÓ„‰‡ ˜¸ ˉÂÚ Ó ÌÓÏËÓ‚‡ÌÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (V , || ⋅ ||V ), ËÌÚÂÂÒ Ô‰ÒÚ‡‚Îfl˛Ú ÌÂÔÂ˚‚Ì˚ ÎËÌÂÈÌ˚ ÙÛÌ͈ËÓ̇Î˚ ËÁ V ‚ ÓÒÌÓ‚ÌÓ ÔÓΠ( ËÎË ). ùÚË ÙÛÌ͈ËÓ̇Î˚ Ó·‡ÁÛ˛Ú ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (V ′, || ⋅ ||V ′ ), ̇Á˚‚‡ÂÏÓ ÌÂÔÂ˚‚Ì˚Ï ‰‚ÓÈÒÚ‚ÂÌÌ˚Ï ‰Îfl ÔÓÒÚ‡ÌÒÚ‚‡ V. çÓχ || ⋅ ||V ′ ̇ V' Á‡‰‡ÂÚÒfl Í‡Í || T ||V ′ = sup|| x || ≤ 1 | T ( x ) |.
( )
çÂÔÂ˚‚Ì˚Ï ‰‚ÓÈÒÚ‚ÂÌÌ˚Ï ‰Îfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ l pn l p∞ fl‚ÎflÂÚÒfl lqn
(ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ
l p∞ ).
( )
çÂÔÂ˚‚Ì˚Ï ‰‚ÓÈÒÚ‚ÂÌÌ˚Ï ‰Îfl ÔÓÒÚ‡ÌÒÚ‚‡ l1n l1∞
l∞n
l∞∞ ).
fl‚ÎflÂÚÒfl (ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ çÂÔÂ˚‚Ì˚ ‰‚ÓÈÒÚ‚ÂÌÌ˚ ‰Îfl ·‡Ì‡ıÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ ë (ÒÓÒÚÓfl˘Â„Ó ËÁ ‚ÒÂı ÒıÓ‰fl˘ËıÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ Ò lⴥ-ÏÂÚËÍÓÈ) Ë C 0 (ÒÓÒÚÓfl˘Â„Ó ËÁ ‚ÒÂı ÒıÓ‰fl˘ËıÒfl Í ÌÛβ ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ Ò lⴥ-ÏÂÚËÍÓÈ) ÏÓ„ÛÚ ·˚Ú¸ ÂÒÚÂÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ Ë‰ÂÌÚËÙˈËÓ‚‡Ì˚ Ò l1∞ . èÓÒÚ‡ÌÒÚ‚Ó ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ èÓÒÚ‡ÌÒÚ‚ÓÏ ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ (ËÎË Ô‰„Ëθ·ÂÚÓ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ) ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (V , || x − y || ) ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ) ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ 〈 x, y 〉 Ú‡ÍÓ ˜ÚÓ ÏÂÚË͇ ÌÓÏ˚ || x − y || ÒÚÓËÚÒfl Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÌÓÏ˚ Ò͇ÎflÌÓ„Ó ÔÓËÁ‚‰ÂÌËfl || x || = 〈 x, x 〉 . ë͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË 〈 , 〉 ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ) ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V fl‚ÎflÂÚÒfl ÒËÏÏÂÚ˘ÌÓÈ ·ËÎËÌÂÈÌÓÈ (‚ ÍÓÏÔÎÂÍÒÌÓÏ ÒÎÛ˜‡Â ÔÓÎÛÚÓ‡ÎËÌÂÈÌÓÈ) ÙÓÏÓÈ Ì‡ V, Ú.Â. ÙÛÌ͈ËÂÈ 〈 , 〉 : V × V → (), Ú‡ÍÓÈ ˜ÚÓ ‰Îfl ‚ÒÂı x, y, z ∈ V Ë ‚ÒÂı Ò͇ÎflÌ˚ı ‚Â΢ËÌ α, β ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: 1) 〈 x, x 〉 ≥ 0 c 〈 x, x 〉 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0; 2) 〈 x, y 〉 = 〈 y, x 〉, „‰Â α = a + bi = a − bi ÓÁ̇˜‡ÂÚ ÍÓÏÔÎÂÍÒÌÓ ÒÓÔflÊÂÌËÂ; 3) 〈αx + βy, z 〉 = α 〈 x, z 〉 + β〈 y, z 〉. ÑÎfl ÍÓÏÔÎÂÍÒÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ ˝ÏËÚÓ‚˚Ï Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ, ‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó – ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ò ˝ÏËÚÓ‚˚Ï Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ .
84
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
çÓχ || ⋅ || ‚ ÌÓÏËÓ‚‡ÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (V , || ⋅ ||) ÔÓÓʉ‡ÂÚÒfl Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ‰Îfl ‚ÒÂı x, y ∈ V ËÏÂÂÚ ÏÂÒÚÓ ‡‚ÂÌÒÚ‚Ó || x + y ||2 + || x − y ||2 = 2(|| x ||2 + || y ||2 ). ÉËθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÉËθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ, ÍÓÚÓÓÂ, Í‡Í ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï. íӘ̠„Ó‚Ófl, „Ëθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ÔÓÎÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ( H , || x − y ||) ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ (ÍÓÏÔÎÂÍÒÌÓÏ) ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ç ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ 〈 , 〉, Ú‡ÍËÏ ˜ÚÓ ÏÂÚË͇ ÌÓÏ˚ || x − y || ÒÚÓËÚÒfl ÔÓ ÌÓÏ Ò͇ÎflÌÓ„Ó ÔÓËÁ‚‰ÂÌËfl || x ||= 〈 x, x 〉 . ã˛·Ó „Ëθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. èËÏÂÓÏ „Ëθ·ÂÚÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ ÒÎÛÊËÚ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ x = {x n}n ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ˜ËÒÂÎ, Ú‡ÍËı ˜ÚÓ
∞
∑ | xi |2 ÒıÓ‰ËÚÒfl i =1
ÔÓ „Ëθ·ÂÚÓ‚ÓÈ ÏÂÚËÍÂ, Á‡‰‡‚‡ÂÏÓÈ Í‡Í ∞ | xi − yi i =1
∑
| 2
1/ 2
.
Ç Í‡˜ÂÒÚ‚Â ‰Û„Ëı ÔËÏÂÓ‚ „Ëθ·ÂÚÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ ÏÓÊÌÓ ÔË‚ÂÒÚË Î˛·Ó L2 -ÔÓÒÚ‡ÌÒÚ‚Ó Ë Î˛·Ó ÍÓ̘ÌÓÏÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ. Ç ˜‡ÒÚÌÓÒÚË, β·Ó ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl „Ëθ·ÂÚÓ‚˚Ï. èflÏÓ ÔÓËÁ‚‰ÂÌË ‰‚Ûı „Ëθ·ÂÚÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ ̇Á˚‚‡˛Ú ÔÓÒÚ‡ÌÒÚ‚ÓÏ ãËÛ‚ËÎÎfl (ËÎË ‡Ò¯ËÂÌÌ˚Ï „Ëθ·ÂÚÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ). åÂÚË͇ ÌÓÏ˚ êËÒÒ‡ èÓÒÚ‡ÌÒÚ‚Ó êËÒÒ‡ (ËÎË ‚ÂÍÚÓ̇fl ¯ÂÚ͇) ÂÒÚ¸ ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (VRi , p − ), ‚ ÍÓÚÓÓÏ ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÛÒÎÓ‚Ëfl: 1. ëÚÛÍÚÛ‡ ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ë ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌ̇fl ÒÚÛÍÚÛ‡ ÒÓ‚ÏÂÒÚËÏ˚, Ú.Â. ËÁ x p − y ÒΉÛÂÚ, ˜ÚÓ x + z p − y + z, ‡ ËÁ x f 0, a ∈ , a > 0 ÒΉÛÂÚ, ˜ÚÓ ax f 0. 2. ÑÎfl ‰‚Ûı β·˚ı ˝ÎÂÏÂÌÚÓ‚ x, y ∈ VRi ÒÛ˘ÂÒÚ‚ÛÂÚ Ó·˙‰ËÌÂÌË x ∧ y ∈ VRi Ë ÔÂÂÒ˜ÂÌË (ÒÏ. „Î. 10). åÂÚË͇ ÌÓÏ˚ êËÒÒ‡ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ VRi, Á‡‰‡‚‡Âχfl Í‡Í || x − y || Ri , „‰Â || ⋅ || Ri ÂÒÚ¸ ÌÓχ êËÒÒ‡ ̇ V Ri , Ú.Â. ڇ͇fl ÌÓχ, ˜ÚÓ ‰Îfl ‚ÒÂı x, y ∈ VRi ̇‚ÂÌÒÚ‚Ó | x | p − | y |, „‰Â | x | = ( − x ) ∨ ( x ), ÔÓÓʉ‡ÂÚ Ì‡‚ÂÌÒÚ‚Ó || x || Ri ≤ || y || Ri . èÓÒÚ‡ÌÒÚ‚Ó (VRi , || ⋅ || Ri ) ̇Á˚‚‡ÂÚÒfl ÌÓÏËÓ‚‡ÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ êËÒÒ‡. Ç ÒÎÛ˜‡Â ÔÓÎÌÓÚ˚ ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl ·‡Ì‡ıÓ‚ÓÈ Â¯ÂÚÍÓÈ. äÓÏÔ‡ÍÚ Å‡Ì‡ı‡–å‡ÁÛ‡ ê‡ÒÒÚÓflÌË Ň̇ı‡–å‡ÁÛ‡ dBM ÏÂÊ‰Û ‰‚ÛÏfl n-ÏÂÌ˚ÏË ÌÓÏËÓ‚‡ÌÌ˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË (V , || ⋅ ||V ) Ë (W , || ⋅ ||W ) ÓÔ‰ÂÎflÂÚÒfl Í‡Í ln inf || T || ⋅ || T −1 ||, T
85
É·‚‡ 5. åÂÚËÍË Ì‡ ÌÓÏËÓ‚‡ÌÌ˚ı ÒÚÛÍÚÛ‡ı
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ËÁÓÏÓÙËÁÏ‡Ï T : V → W . éÌÓ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â Xn ‚ÒÂı Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË n-ÏÂÌ˚ı ÌÓÏËÓ‚‡ÌÌ˚ı ÔÓÒÚ‡ÌÒÚ‚, „‰Â V ~ W ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌË ËÁÓÏÓÙÌ˚. íÓ„‰‡ Ô‡‡ ( X n , dBM ) fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ̇Á˚‚‡ÂÏ˚Ï ÍÓÏÔ‡ÍÚÓÏ Å‡Ì‡ı‡–å‡ÁÛ‡. î‡ÍÚÓ-ÏÂÚË͇ Ç ÒÎÛ˜‡Â ÌÓÏËÓ‚‡ÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (V , || ⋅ ||V ) Ò ÌÓÏÓÈ || ⋅ ||V Ë Á‡ÏÍÌÛÚ˚Ï ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ W ÔÓÒÚ‡ÌÒÚ‚‡ V ÔÛÒÚ¸ (V / W , || ⋅ ||V / W ) ·Û‰ÂÚ ÌÓÏËÓ‚‡ÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÒÏÂÊÌ˚ı Í·ÒÒÓ‚ x + W = {x + w : w ∈ W}, x ∈ V Ò Ù‡ÍÚÓ-ÌÓÏÓÈ || x + W ||V / VW = infw ∈W || x + w ||V . î‡ÍÚÓ-ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ ̇ V/W, Á‡‰‡Ì̇fl Í‡Í || ( x + W ) − ( y + W ) ||V / W . åÂÚË͇ ÚÂÌÁÓÌÓÈ ÌÓÏ˚ ÑÎfl ÌÓÏËÓ‚‡ÌÌ˚ı ÔÓÒÚ‡ÌÒÚ‚ (V , || ⋅ ||V ) Ë (W , || ⋅ ||W ) ÌÓχ || ⋅ ||⊗ ̇ ÚÂÌÁÓÌÓÏ ÔÓËÁ‚‰ÂÌËË V ⊗ W ̇Á˚‚‡ÂÚÒfl ÚÂÌÁÓÌÓÈ ÌÓÏÓÈ (ËÎË ÍÓÒÒ-ÌÓÏÓÈ), ÂÒÎË || x ⊗ y ||⊗ = || x ||V || y ||W ‰Îfl ‚ÒÂı ‡ÁÎÓÊËÏ˚ı ÚÂÌÁÓÓ‚ x ⊗ y. åÂÚË͇ ÚÂÌÁÓÌÓÈ ÌÓÏ˚ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ V ⊗ W , Á‡‰‡Ì̇fl Í‡Í || z − t ||⊗ . ÑÎfl β·˚ı z ∈ V ⊗ W , z =
∑ x j ⊗ yj, j
π-ÌÓχ) ÓÔ‰ÂÎflÂÚÒfl Í‡Í || z || pr = inf
x j ∈ V , y j ∈ W  ÔÓÂÍÚ˂̇fl ÌÓχ (ËÎË
∑ || x j ||V || y j ||W ,
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ
j
‚ÒÂÏ Ô‰ÒÚ‡‚ÎÂÌËflÏ z ‚ ‚ˉ ÒÛÏÏ˚ ‡ÁÎÓÊËÏ˚ı ‚ÂÍÚÓÓ‚. ùÚÓ Ò‡Ï‡fl ·Óθ¯‡fl ÚÂÌÁÓ̇fl ÌÓχ ̇ V ⊗ W . åÂÚË͇ ‚‡Î˛‡ˆËË åÂÚË͇ ‚‡Î˛‡ˆËË – ˝ÚÓ ÏÂÚË͇ ̇ ÔÓΠ, Á‡‰‡Ì̇fl Í‡Í || x − y ||, „‰Â || ⋅ || – ‚‡Î˛‡ˆËfl ̇ , Ú.Â. ÙÛÌ͈Ëfl || ⋅ ||: → , ڇ͇fl ˜ÚÓ ‰Îfl ‚ÒÂı x, y ∈ ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: 1) || x || ≥ 0 Ò || x || = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0; 2) || xy || = || x || || y ||; 3) || x + y || ≤ || x || || y || ̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇). ÖÒÎË || x + y || ≤ max{|| x || || y ||}, ÚÓ ‚‡Î˛‡ˆËfl || ⋅ || ̇Á˚‚‡ÂÚÒfl ̇ıËωӂÓÈ. Ç ˝ÚÓÏ ÒÎÛ˜‡Â ÏÂÚË͇ ‚‡Î˛‡ˆËË ·Û‰ÂÚ ÛθڇÏÂÚËÍÓÈ. èÓÒÚÂȯËÏ ÔËÏÂÓÏ ‚‡Î˛‡ˆËË fl‚ÎflÂÚÒfl Ú˂ˇθÌÓ ÌÓÏËÓ‚‡ÌË || ⋅ ||tr : || 0 ||tr = 0 Ë || ⋅ ||tr = 1 ‰Îfl x ∈ \ {0}, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ̇ıËωӂ˚Ï. Ç Ï‡ÚÂχÚËÍ ÒÛ˘ÂÒÚ‚Û˛Ú ‡ÁÌ˚ ÓÔ‰ÂÎÂÌËfl ÔÓÌflÚËfl ‚‡Î˛‡ˆËË. í‡Í, ̇ÔËÏÂ, ÙÛÌ͈Ëfl ν : → ∪ {∞} ̇Á˚‚‡ÂÚÒfl ‚‡Î˛‡ˆËÂÈ, ÂÒÎË ν( x ) ≥ 0, ν(0) = ∞, ν( xy) = ν( x ) + ν( y) Ë ν( x + y) ≥ min{ν( x ), ν( y)} ‰Îfl ‚ÒÂı x, y ∈. LJβ‡ˆË˛ || ⋅ || ÏÓÊÌÓ ÔÓÎÛ˜ËÚ¸ ËÁ ÙÛÌ͈ËË ν ÔÓ ÙÓÏÛΠ|| x || = α ν( x ) ‰Îfl ÌÂÍÓÚÓÓ„Ó ÙËÍÒË-
86
ó‡ÒÚ¸ I. å‡ÚÂχÚË͇ ‡ÒÒÚÓflÌËÈ
Ó‚‡ÌÌÓ„Ó 0 < α < 1 (ÒÏ. p-‡‰Ë˜ÂÒ͇fl ÏÂÚË͇, „Î. 12). LJβ‡ˆËfl äÛ¯‡Í‡ | ⋅ |Krs Á‡‰‡ÂÚÒfl Í‡Í ÙÛÌ͈Ëfl | ⋅ |Krs : → , ڇ͇fl ˜ÚÓ | x |Krs ≥ 0, | x |Krs = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0, | x |Krs = | x |Krs | y |Krs Ë | x + y |Krs ≤ C max{| x |Krs , | y |Krs} ‰Îfl ‚ÒÂı x, y ∈ Ë ‰Îfl ÌÂÍÓÚÓÓÈ ÔÓÎÓÊËÚÂθÌÓÈ ÍÓÌÒÚ‡ÌÚ˚ ë, ̇Á˚‚‡ÂÏÓÈ ÍÓÌÒÚ‡ÌÚÓÈ ‚‡Î˛‡ˆËË. ÖÒÎË C ≥ 2, ÚÓ ÔÓÎÛ˜‡ÂÚÒfl Ó·˚˜ÌÓ ÓÔ‰ÂÎÂÌË ‚‡Î˛‡ˆËË || ⋅ ||, ÍÓÚÓÓ ·Û‰ÂÚ Ì‡ıËωӂ˚Ï, ÂÒÎË ë ≤ 1. Ç ˆÂÎÓÏ Î˛·‡fl ‚‡Î˛‡ˆËfl | ⋅ |Krs ˝Í‚Ë‚‡ÎÂÌÚ̇ ÌÂÍÓÚÓÓÈ ‚‡Î˛‡ˆËË || ⋅ ||, Ú.Â. | ⋅ |Krs ÔË ÌÂÍÓÚÓÓÏ p > 0. à ̇ÍÓ̈, ‰Îfl ÛÔÓfl‰Ó˜ÂÌÌÓÈ „ÛÔÔ˚ (G, ⋅, e, ≤), Ò̇·ÊÂÌÌÓÈ ÌÛÎÂÏ, ‚‡Î˛‡ˆËfl äÛη ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÙÛÌ͈Ëfl | ⋅ |: → G, ڇ͇fl ˜ÚÓ | x | = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = 0, | xy | = | x | | y | Ë | x + y | ≤ max{| x |, | y |} ‰Îfl β·˚ı x, y ∈. ùÚÓ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÓÔ‰ÂÎÂÌËfl ̇ıËωӂÓÈ ‚‡Î˛‡ˆËË || ⋅ || (ÒÏ. é·Ó·˘ÂÌ̇fl ÏÂÚË͇, „Î. 3). p
åÂÚË͇ ÒÚÂÔÂÌÌÓ„Ó fl‰‡ èÛÒÚ¸ – ÔÓËÁ‚ÓθÌÓ ‡Î„·‡Ë˜ÂÒÍÓ ÔÓÎÂ Ë ÔÛÒÚ¸ 〈 x −1 〉 – ÔÓΠÒÚÂÔÂÌÌ˚ı fl‰Ó‚ ‚ˉ‡ w = α − m x m + ... + α 0 + α1 x + ..., α i ∈. èË Á‡‰‡ÌÌÓÏ l > 1 ̇ıËωӂ‡ ‚‡Î˛‡ˆËfl || ⋅ || ̇ 〈 x −1 〉 ÓÔ‰ÂÎflÂÚÒfl ͇Í
l m , ÂÒÎË w ≠ 0, || w || = 0, ÂÒÎË w = 0. åÂÚË͇ ÒÚÂÔÂÌÌÓ„Ó fl‰‡ ÂÒÚ¸ ÏÂÚË͇ ‚‡Î˛‡ˆËË || w − v || ̇ 〈 x −1 〉.
ó‡ÒÚ¸ II
ÉÖéåÖíêàü à êÄëëíéüçàü
É·‚‡ 6
ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
ÉÂÓÏÂÚËfl ‚ÓÁÌËÍ· Í‡Í Ó·Î‡ÒÚ¸ Á̇ÌËÈ, Ò‚flÁ‡Ì̇fl Ò ‡Á΢Ì˚ÏË ÒÓÓÚÌÓ¯ÂÌËflÏË ‚ ÔÓÒÚ‡ÌÒÚ‚Â. ùÚÓ ·˚· Ӊ̇ ËÁ ‰‚Ûı ӷ·ÒÚÂÈ, Ô‰¯ÂÒÚ‚Ó‚‡‚¯Ëı ÒÓ‚ÂÏÂÌÌÓÈ Ï‡ÚÂχÚËÍÂ, ‚ÚÓ‡fl Á‡ÌËχ·Ҹ ËÁÛ˜ÂÌËÂÏ ˜ËÒÂÎ. Ç Ì‡ÒÚÓfl˘Â ‚ÂÏfl „ÂÓÏÂÚ˘ÂÒÍË ÍÓ̈ÂÔˆËË ‰ÓÒÚË„ÎË ‚ÂҸχ ‚˚ÒÓÍÓ„Ó ÛÓ‚Ìfl ‡·ÒÚ‡ÍÚÌÓÒÚË Ë ÒÎÓÊÌÓÒÚË Ó·Ó·˘ÂÌËÈ. 6.1. ÉÖéÑÖáàóÖëäÄü ÉÖéåÖíêàü Ç Ï‡ÚÂχÚËÍ ÔÓÌflÚË "„ÂÓ‰ÂÁ˘ÂÒÍËÈ" fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÓÌflÚËfl "Ôflχfl ÎËÌËfl" ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ËÒÍË‚ÎÂÌÌÓÏÛ ÔÓÒÚ‡ÌÒÚ‚Û. чÌÌ˚È ÚÂÏËÌ Á‡ËÏÒÚ‚Ó‚‡Ì ËÁ „ÂÓ‰ÂÁËË, ̇ÛÍË, Á‡ÌËχ˛˘ÂÈÒfl ËÁÏÂÂÌËÂÏ ‡Áχ Ë ÙÓÏ˚ áÂÏÎË. èÛÒÚ¸ (ï, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. åÂÚ˘ÂÒ͇fl ÍË‚‡fl γ ÂÒÚ¸ ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl γ : I → X, „‰Â I – ËÌÚ‚‡Î (Ú.Â. ÌÂÔÛÒÚÓ ҂flÁÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó) ‚ . ÖÒÎË γ fl‚ÎflÂÚÒfl r ‡Á ÌÂÔÂ˚‚ÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓÈ, ÚÓ Ó̇ ̇Á˚‚‡ÂÚÒfl „ÛÎflÌÓÈ ÍË‚ÓÈ Í·ÒÒ‡ Cr; ÂÒÎË r = ∞, ÚÓ γ ̇Á˚‚‡ÂÚÒfl „·‰ÍÓÈ ÍË‚ÓÈ. ÇÓÓ·˘Â „Ó‚Ófl, ÍË‚‡fl ÎËÌËfl ÏÓÊÂÚ ÔÂÂÒÂ͇ڸ Ò‡ÏÛ Ò·fl. äË‚‡fl ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl ÔÓÒÚÓÈ ÍË‚ÓÈ (ËÎË ‰Û„ÓÈ, ÔÛÚÂÏ), ÂÒÎË Ó̇ Ì ÔÂÂÒÂ͇ÂÚ Ò‡ÏÛ Ò·fl, Ú.Â. fl‚ÎflÂÚÒfl ËÌ˙ÂÍÚË‚ÌÓÈ. äË‚‡fl γ: [a, b] → X ̇Á˚‚‡ÂÚÒfl ÊÓ‰‡ÌÓ‚ÓÈ ÍË‚ÓÈ (ËÎË ÔÓÒÚÓÈ Á‡ÏÍÌÛÚÓÈ ÍË‚ÓÈ), ÂÒÎË Ó̇ Ì ÔÂÂÒÂ͇ÂÚ Ò·fl Ë γ(‡) = γ(b). ÑÎË̇ (ÍÓÚÓ‡fl ÏÓÊÂÚ ·˚Ú¸ ‡‚̇ ∞) l(γ) ÍË‚ÓÈ (γ: [a, b] → X ÓÔ‰ÂÎflÂÚÒfl Í‡Í n
sup
∑ d(γ (ti −1 ), γ (ti )),
„‰Â ‚ÂıÌflfl „‡Ì¸ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÍÓ̘Ì˚Ï ‡Á·ËÂÌËflÏ
i =1
a = t0 < t1 < ... < tn = b, n ∈ ÓÚÂÁ͇ [a, b]. äË‚‡fl ÍÓ̘ÌÓÈ ‰ÎËÌ˚ ̇Á˚‚‡ÂÚÒfl ÒÔflÏÎflÂÏÓÈ. ÑÎfl β·ÓÈ Â„ÛÎflÌÓÈ ÍË‚ÓÈ γ: [a, b] → X Á‡‰‡‰ËÏ Ì‡ÚۇθÌ˚È Ô‡‡ÏÂÚ s ÍË‚ÓÈ γ Í‡Í s = s(t ) = l( γ | [ a,t ] ), „‰Â l( γ | [ a,t ] ) ÂÒÚ¸ ‰ÎË̇ ˜‡ÒÚË γ, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ËÌÚ‚‡ÎÛ [a, t]. äË‚‡fl Ò Ú‡ÍÓÈ Ì‡ÚۇθÌÓÈ Ô‡‡ÏÂÚËÁ‡ˆËÂÈ γ = γ(s) ̇Á˚‚‡ÂÚÒfl ÍË‚ÓÈ Â‰ËÌ˘ÌÓÈ ÒÍÓÓÒÚË (ËÎË Ô‡‡ÏÂÚËÁÓ‚‡ÌÌÓÈ ‰ÎËÌÓÈ ‰Û„Ë, ÌÓÏËÓ‚‡ÌÌÓÈ); ÔË ‰‡ÌÌÓÈ Ô‡‡ÏÂÚËÁ‡ˆËË ‰Îfl β·˚ı t1 , t2 ∈ I ÔÓÎÛ˜‡ÂÏ l( γ |[t1 , t 2 ] ) = | t2 − t1 | Ë l( γ ) = | b − a | . ÑÎË̇ β·ÓÈ ÍË‚ÓÈ γ: [a, b] → X ‡‚̇ ÔÓ ÏÂ̸¯ÂÈ Ï ‡ÒÒÚÓflÌ˲ ÏÂÊ‰Û Â ÍÓ̈‚˚ÏË ÚӘ͇ÏË: l( γ ) ≥ d ( γ ( a), γ (b)). äË‚‡fl γ, ‰Îfl ÍÓÚÓÓÈ l( γ ) = d ( γ ( a), γ (b)), ̇Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ (ËÎË Í‡Ú˜‡È¯ËÏ ÔÛÚÂÏ) ÓÚ ı = γ(‡) ‰Ó Û = γ(b) Ë Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í [x, y]. í‡ÍËÏ Ó·‡ÁÓÏ, „ÂÓ‰ÂÁ˘ÂÒÍËÈ ÓÚÂÁÓÍ ÂÒÚ¸ ͇ژ‡È¯ËÈ ÔÛÚ¸ ÏÂÊ‰Û Â„Ó ÍÓ̈‚˚ÏË ÚӘ͇ÏË; ÓÌ fl‚ÎflÂÚÒfl ËÁÓÏÂÚ˘ÂÒÍËÏ ‚ÎÓÊÂÌËÂÏ [a, b] ‚ ï. Ç ˆÂÎÓÏ „ÂÓ‰ÂÁ˘ÂÒÍË ÓÚÂÁÍË ÏÓ„ÛÚ Ë Ì ÒÛ˘ÂÒÚ‚Ó‚‡Ú¸, ÍÓÏ Ú˂ˇθÌÓ„Ó ÒÎÛ˜‡fl, ÍÓ„‰‡ ÓÚÂÁÓÍ ÒÓÒÚÓËÚ ÚÓθÍÓ ËÁ Ó‰ÌÓÈ ÚÓ˜ÍË. ÅÓΠÚÓ„Ó, „ÂÓ‰ÂÁ˘ÂÒÍËÈ ÓÚÂÁÓÍ, ÒÓ‰ËÌfl˛˘ËÈ ‰‚ ÚÓ˜ÍË, Ì ӷflÁ‡ÚÂθÌÓ Â‰ËÌÒÚ‚ÂÌ.
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
89
ÉÂÓ‰ÂÁ˘ÂÒÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÍË‚‡fl, ÍÓÚÓ‡fl ·ÂÒÍÓ̘ÌÓ ‡ÒÔÓÒÚ‡ÌflÂÚÒfl ‚ Ó·Â ÒÚÓÓÌ˚ Ë ÎÓ͇θÌÓ ‚‰ÂÚ Ò·fl Í‡Í ÓÚÂÁÓÍ, Ú.Â. ÎÓ͇θÌÓ ‚Ò˛‰Û fl‚ÎflÂÚÒfl ÏËÌËÏËÁ‡ÚÓÓÏ ‡ÒÒÚÓflÌËfl. íӘ̠„Ó‚Ófl, ÍË‚‡fl γ: → X ‚ ÂÒÚÂÒÚ‚ÂÌÌÓÈ Ô‡‡ÏÂÚËÁ‡ˆËË Ì‡Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍÓÈ, ÂÒÎË ‰Îfl β·Ó„Ó t ∈ ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡Í‡fl ÓÍÂÒÚÌÓÒÚ¸ U, ˜ÚÓ ‰Îfl β·˚ı t1 , t2 ∈ U ËÏÂÂÏ d ( γ (t1 ), γ (t2 )) = | t1 − t2 | . í‡ÍËÏ Ó·‡ÁÓÏ, β·‡fl „ÂÓ‰ÂÁ˘ÂÒ͇fl ÂÒÚ¸ ÎÓ͇θÌÓ ËÁÓÏÂÚ˘ÂÒÍÓ ‚ÎÓÊÂÌË ‚ÒÂ„Ó ‚ ï. ÉÂÓ‰ÂÁ˘ÂÒÍÛ˛ ̇Á˚‚‡˛Ú ÏÂÚ˘ÂÒÍÓÈ ÔflÏÓÈ, ÂÒÎË ‡‚ÂÌÒÚ‚Ó d ( γ (t1 ), γ (t2 )) = | t1 − t2 | ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı t1 , t 2 ∈ . í‡Í‡fl „ÂÓ‰ÂÁ˘ÂÒ͇fl fl‚ÎflÂÚÒfl ËÁÓÏÂÚ˘ÂÒÍËÏ ‚ÎÓÊÂÌËÂÏ ‚ÒÂÈ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔflÏÓÈ ‚ ï . ÉÂÓ‰ÂÁ˘ÂÒ͇fl ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl ÏÂÚ˘ÂÒÍËÏ ·Óθ¯ËÏ ÍÛ„ÓÏ, ÂÒÎË Ó̇ fl‚ÎflÂÚÒfl ËÁÓÏÂÚ˘ÂÒÍËÏ ‚ÎÓÊÂÌËÂÏ ÍÛ„‡ S1 (0, r ) ‚ ï. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â „ÂÓ‰ÂÁ˘ÂÒÍË ÏÓ„ÛÚ Ë Ì ÒÛ˘ÂÒÚ‚Ó‚‡Ú¸. ÉÂÓ‰ÂÁ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó èÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ̇Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ, ÂÒÎË Î˛·˚ ‰‚ ÚÓ˜ÍË ‚ ï ÏÓ„ÛÚ ·˚Ú¸ ÒÓ‰ËÌÂÌ˚ „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ, Ú.Â. ‰Îfl β·˚ı ‰‚Ûı ÚÓ˜ÂÍ x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ ËÁÓÏÂÚËfl ÓÚÂÁ͇ [0, d ( x, y)] ‚ ï. ã˛·Ó ÔÓÎÌÓ ËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó Ë Î˛·Ó ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó fl‚Îfl˛ÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. èÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ̇Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓ „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÂÒÎË Î˛·˚ ‰‚ ‰ÓÒÚ‡ÚÓ˜ÌÓ ·ÎËÁÍË ÚÓ˜ÍË ‚ ï ÏÓ„ÛÚ ·˚Ú¸ ÒÓ‰ËÌÂÌ˚ „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ; ÓÌÓ ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl D-„ÂÓ‰ÂÁ˘ÂÒÍËÏ, ÂÒÎË Î˛·˚ ‰‚ ÚÓ˜ÍË Ì‡ ‡ÒÒÚÓflÌËË < D ÏÓ„ÛÚ ·˚Ú¸ ÒÓ‰ËÌÂÌ˚ „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ. ÉÂÓ‰ÂÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÉÂÓ‰ÂÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌË (ËÎË ‡ÒÒÚÓflÌË ͇ژ‡È¯Â„Ó ÔÛÚË) ÂÒÚ¸ ‰ÎË̇ „ÂÓ‰ÂÁ˘ÂÒÍÓ„Ó ÓÚÂÁ͇ (Ú.Â. ͇ژ‡È¯Â„Ó ÔÛÚË) ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË. àÌÚÂ̇θ̇fl ÏÂÚË͇ èÛÒÚ¸ (ï, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ‚ÒflÍË ‰‚ ÚÓ˜ÍË ÒÓ‰ËÌÂÌ˚ ÒÔflÏÎflÂÏÓÈ ÍË‚ÓÈ. íÓ„‰‡ ËÌÚÂ̇θ̇fl ÏÂÚË͇ (ËÎË ÔÓÓʉÂÌ̇fl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇) D ̇ ï Á‡‰‡ÂÚÒfl Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ ‚ÒÂı ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ‰‚ ‰‡ÌÌ˚ ÚÓ˜ÍË x, y ∈ X. åÂÚË͇ d ̇ ï ̇Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ (ËÎË ÏÂÚËÍÓÈ ‰ÎËÌ˚), ÂÒÎË Ó̇ ÒÓ‚Ô‡‰‡ÂÚ ÒÓ Ò‚ÓÂÈ ËÌÚÂ̇θÌÓÈ ÏÂÚËÍÓÈ D. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰ÎËÌ˚ (ËÎË ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÔÛÚÂÈ, ‚ÌÛÚÂÌÌËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ). ÖÒÎË, ÍÓÏ ÚÓ„Ó, β·‡fl Ô‡‡ ÚÓ˜ÂÍ ı, Û ÏÓÊÂÚ ·˚Ú¸ ÒÓ‰ËÌÂ̇ ÍË‚ÓÈ ‰ÎËÌ˚ d(x, y), ÚÓ ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ d ̇Á˚‚‡ÂÚÒfl ÒÚÓ„Ó ‚ÌÛÚÂÌÌÂÈ, ‡ ÔÓÒÚ‡ÌÒÚ‚Ó ‰ÎËÌ˚ (ï, d) – „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. èÓÎÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰ÎËÌ˚ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ‰Îfl β·˚ı ‰‚Ûı x, y ∈ X Ë Î˛·Ó„Ó ε > 0 ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÂÚ¸fl 1 ÚӘ͇ z ∈ X (ε-Ò‰ËÌ̇fl ÚӘ͇), ‰Îfl ÍÓÚÓÓÈ d ( x, z ), d ( y, z ) ≤ d ( x, y) + ε. 2 ã˛·Ó ÔÓÎÌÓ ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‰ÎËÌ˚ fl‚ÎflÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚Ï „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. G-ÔÓÒÚ‡ÌÒÚ‚Ó G-ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË ÔÓÒÚ‡ÌÒÚ‚ÓÏ „ÂÓ‰ÂÁ˘ÂÒÍËı) ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) Ò „ÂÓÏÂÚËÂÈ, ı‡‡ÍÚÂËÁÛÂÏÓÈ ÚÂÏ, ˜ÚÓ ‡Ò¯ËÂÌËfl „ÂÓ‰ÂÁË-
90
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
˜ÂÒÍËı, ÓÔ‰ÂÎflÂÏ˚ı Í‡Í ÎÓ͇θÌÓ Í‡Ú˜‡È¯Ë ÎËÌËË, fl‚Îfl˛ÚÒfl ‰ËÌÒÚ‚ÂÌÌ˚ÏË. í‡Í‡fl „ÂÓÏÂÚËfl ÂÒÚ¸ Ó·Ó·˘ÂÌË „Ëθ·ÂÚÓ‚ÓÈ „ÂÓÏÂÚËË (ÒÏ. [Buse55]). íӘ̠„Ó‚Ófl, G-ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏË ÛÒÎÓ‚ËflÏË: 1. èÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚Ï (ËÎË ÍÓ̘ÌÓ ÍÓÏÔ‡ÍÚÌ˚Ï), Ú.Â. ‚ÒÂ Â„Ó ÏÂÚ˘ÂÒÍË ¯‡˚ ÍÓÏÔ‡ÍÚÌ˚. 2. éÌÓ fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎ˚Ï ÔÓ åÂÌ„ÂÛ, Ú.Â. ‰Îfl β·˚ı ‡Á΢Ì˚ı x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡Í‡fl ÚÂÚ¸fl ÚӘ͇ z ∈ X , z ≠ x, y, ˜ÚÓ d ( x, z ) + d ( z, y) = d ( x, y). 3. éÌÓ fl‚ÎflÂÚÒfl ÎÓ͇θÌÓ ‡Ò¯ËflÂÏ˚Ï, Ú.Â. ‰Îfl β·Ó„Ó a ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ r > 0 , ˜ÚÓ ‰Îfl β·˚ı ‡Á΢Ì˚ı ÚÓ˜ÂÍ ı, Û ‚ ¯‡Â Ç(a, r) ËÏÂÂÚÒfl ڇ͇fl ÚӘ͇ z, ÓÚ΢‡˛˘‡flÒfl ÓÚ ı Ë Û, ˜ÚÓ d ( x, y) + d ( y, z ) = d ( x, z ). 4. éÌÓ fl‚ÎflÂÚÒfl ‡Ò¯ËflÂÏ˚Ï Â‰ËÌÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ, Ú.Â., ÂÒÎË ‚ Ô. 3 ‚˚¯Â ‰Îfl ‰‚Ûı ÚÓ˜ÂÍ z1 Ë z2 ËÏÂÂÚ ÏÂÒÚÓ ‡‚ÂÌÒÚ‚Ó d ( y, z1 ) = d ( y, z 2 ), ÚÓ z1 = z 2 . ëÛ˘ÂÒÚ‚Ó‚‡ÌË „ÂÓ‰ÂÁ˘ÂÒÍËı ÓÚÂÁÍÓ‚ Ó·ÛÒÎÓ‚ÎË‚‡ÂÚÒfl ÍÓ̘ÌÓÈ ÍÓÏÔ‡ÍÚÌÓÒÚ¸˛ Ë ‚˚ÔÛÍÎÓÒÚ¸˛ åÂ̄‡: β·˚ ‰‚ ÚÓ˜ÍË ÍÓ̘ÌÓ ÍÓÏÔ‡ÍÚÌÓ„Ó ‚˚ÔÛÍÎÓ„Ó ÔÓ åÂÌ„ÂÛ ÏÌÓÊÂÒÚ‚‡ ï ÏÓ„ÛÚ ·˚Ú¸ ÒÓ‰ËÌÂÌ˚ „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ ‚ ï. ëÛ˘ÂÒÚ‚Ó‚‡ÌË „ÂÓ‰ÂÁ˘ÂÒÍËı Ó·ÛÒÎÓ‚ÎÂÌÓ ‡ÍÒËÓÏÓÈ ÎÓ͇θÌÓÈ ÔÓ‰ÓÎʇÂÏÓÒÚË: ÂÒÎË ÍÓ̘ÌÓ ÍÓÏÔ‡ÍÚÌÓ ‚˚ÔÛÍÎÓ ÔÓ åÂÌ„ÂÛ ÏÌÓÊÂÒÚ‚Ó ï fl‚ÎflÂÚÒfl ÎÓ͇θÌÓ ‡Ò¯ËflÂÏ˚Ï, ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ „ÂÓ‰ÂÁ˘ÂÒ͇fl, ÒÓ‰Âʇ˘‡fl ‰‡ÌÌ˚È „ÂÓ‰ÂÁ˘ÂÒÍËÈ ÓÚÂÁÓÍ. ç‡ÍÓ̈, ‰ËÌÒÚ‚ÂÌÌÓÒÚ¸ ÔÓ‰ÓÎÊÂÌËfl Ó·ÂÒÔ˜˂‡ÂÚ ‰ÓÔÛ˘ÂÌË ‰ËÙÙÂÂ̈ˇθÌÓÈ „ÂÓÏÂÚËË, ˜ÚÓ ÎËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ÓÔ‰ÂÎflÂÚ „ÂÓ‰ÂÁ˘ÂÒÍÛ˛ ‰ËÌÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ. ÇÒ ËχÌÓ‚˚ Ë ÙËÌÒÎÂÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ fl‚Îfl˛ÚÒfl G-ÔÓÒÚ‡ÌÒÚ‚‡ÏË. é‰ÌÓÏÂÌÓ G-ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ÏÂÚ˘ÂÒ͇fl Ôflχfl ÎËÌËfl ËÎË ÏÂÚ˘ÂÒÍËÈ ·Óθ¯ÓÈ ÍÛ„. ã˛·Ó ‰‚ÛÏÂÌÓ G-ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÚÓÔÓÎӄ˘ÂÒÍËÏ ÏÌÓ„ÓÓ·‡ÁËÂÏ. ÇÒflÍÓ G-ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ıÓ‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, Ú.Â. ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚˚‰ÂÎÂÌÌ˚ı „ÂÓ‰ÂÁ˘ÂÒÍËı ÓÚÂÁÍÓ‚, Ú‡ÍËı ˜ÚÓ Î˛·˚ ‰‚ ÚÓ˜ÍË ÒÓ‰ËÌfl˛ÚÒfl ‰ËÌÒÚ‚ÂÌÌ˚Ï Ú‡ÍËÏ ÓÚÂÁÍÓÏ (ÒÏ. [BuPh87]). ÑÂÁ‡„Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÑÂÁ‡„Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó – G-ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d), ‚ ÍÓÚÓÓÏ Óθ „ÂÓ‰ÂÁ˘ÂÒÍËı ‚˚ÔÓÎÌfl˛Ú Ó·˚˜Ì˚ ÔflÏ˚Â. ùÚÓ Á̇˜ËÚ, ˜ÚÓ ï ÏÓÊÂÚ ·˚Ú¸ ÚÓÔÓÎӄ˘ÂÒÍË ÓÚÓ·‡ÊÂÌÓ ‚ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Pn Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ Í‡Ê‰‡fl „ÂÓ‰ÂÁ˘ÂÒ͇fl ÔÓÒÚ‡ÌÒÚ‚‡ ï ÓÚÓ·‡Ê‡ÂÚÒfl ‚ ÔflÏÛ˛ ÎËÌ˲ ÔÓÒÚ‡ÌÒÚ‚‡ Pn . ã˛·Ó ï , ÓÚÓ·‡ÊÂÌÌÓ ‚ P n , ÎË·Ó ‰ÓÎÊÌÓ ÔÓÍ˚‚‡Ú¸ ‚Ò Pn (‚ Ú‡ÍÓÏ ÒÎÛ˜‡Â ‚Ò „ÂÓ‰ÂÁ˘ÂÒÍË ï fl‚Îfl˛ÚÒfl ÏÂÚ˘ÂÒÍËÏË ·Óθ¯ËÏË ÍÛ„‡ÏË Ó‰ÌÓÈ ‰ÎËÌ˚), ÎË·Ó ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ÓÚÍ˚ÚÓ ‚˚ÔÛÍÎÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ An . èÓÒÚ‡ÌÒÚ‚Ó (ï, d) „ÂÓ‰ÂÁ˘ÂÒÍËı fl‚ÎflÂÚÒfl ‰ÂÁ‡„Ó‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÛÒÎÓ‚Ëfl: 1. ÉÂÓ‰ÂÁ˘ÂÒ͇fl, ÔÓıÓ‰fl˘‡fl ˜ÂÂÁ ‰‚ ‡Á΢Ì˚ ÚÓ˜ÍË, fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓÈ. 2. ÑÎfl ‡ÁÏÂÌÓÒÚË n = 2 Ó·Â ÚÂÓÂÏ˚ ÑÂÁ‡„‡ (Ôflχfl Ë Ó·‡Ú̇fl) ÒÔ‡‚‰ÎË‚˚, ‡ ‰Îfl ‡ÁÏÂÌÓÒÚË n > 2 β·˚ ÚË ÚÓ˜ÍË ËÁ ï ÎÂÊ‡Ú ‚ Ó‰ÌÓÈ ÔÎÓÒÍÓÒÚË. ëÂ‰Ë ËχÌÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ ‰ËÌÒÚ‚ÂÌÌ˚ÏË ‰ÂÁ‡„Ó‚˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË fl‚Îfl˛ÚÒfl ‚ÍÎˉӂ˚, „ËÔ·Ó΢ÂÒÍËÂ Ë ˝ÎÎËÔÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. èËÏÂÓÏ ÌÂËχÌÓ‚‡ ‰ÂÁ‡„Ó‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ ÒÎÛÊËÚ ÔÓÒÚ‡ÌÒÚ‚Ó åËÌÍÓ‚ÒÍÓ„Ó, ÍÓÚÓÓ ÏÓÊÂÚ Ò˜ËÚ‡Ú¸Òfl ÔÓÚÓÚËÔÓÏ ‚ÒÂı ÌÂËχÌÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚, ‚Íβ˜‡fl ÙËÌÒÎÂÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡.
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
91
G-ÔÓÒÚ‡ÌÒÚ‚Ó ˝ÎÎËÔÚ˘ÂÒÍÓ„Ó ÚËÔ‡ G-ÔÓÒÚ‡ÌÒÚ‚ÓÏ ˝ÎÎËÔÚ˘ÂÒÍÓ„Ó ÚËÔ‡ ̇Á˚‚‡ÂÚÒfl G-ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ˜ÂÂÁ ‰‚ ÚÓ˜ÍË ÔÓıÓ‰ËÚ Â‰ËÌÒÚ‚ÂÌ̇fl „ÂÓ‰ÂÁ˘ÂÒ͇fl, Ë ‚Ò „ÂÓ‰ÂÁ˘ÂÒÍË – ÏÂÚ˘ÂÒÍË ·Óθ¯Ë ÍÛ„Ë Ó‰Ë̇ÍÓ‚ÓÈ ‰ÎËÌ˚. ä‡Ê‰Ó G-ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ËÏÂÂÚÒfl ‰ËÌÒÚ‚ÂÌ̇fl „ÂÓ‰ÂÁ˘ÂÒ͇fl, ÔÓıÓ‰fl˘‡fl ˜ÂÂÁ ͇ʉ˚ ‰‚ ‰‡ÌÌ˚ ÚÓ˜ÍË, fl‚ÎflÂÚÒfl ËÎË G-ÔÓÒÚ‡ÌÒÚ‚ÓÏ ˝ÎÎËÔÚ˘ÂÒÍÓ„Ó ÚËÔ‡, ËÎË ÔflÏ˚Ï G-ÔÓÒÚ‡ÌÒÚ‚ÓÏ. èflÏÓ G-ÔÓÒÚ‡ÌÒÚ‚Ó èflÏ˚Ï G-ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl G-ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ‚ÓÁÏÓÊÌÓ „ÎÓ·‡Î¸ÌÓ ÔÓ‰ÓÎÊÂÌË „ÂÓ‰ÂÁ˘ÂÒÍÓÈ Ú‡Í, ˜ÚÓ·˚ β·ÓÈ Â ÓÚÂÁÓÍ ÓÒÚ‡‚‡ÎÒfl ͇ژ‡È¯ËÏ ÔÛÚÂÏ. ÑÛ„ËÏË ÒÎÓ‚‡ÏË, ‰Îfl ‰‚Ûı β·˚ı x, y ∈ X ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌÌ˚È „ÂÓ‰ÂÁ˘ÂÒÍËÈ ÓÚÂÁÓÍ, ÒÓ‰ËÌfl˛˘ËÈ ı Ë Û, Ë Â‰ËÌÒÚ‚ÂÌ̇fl ÏÂÚ˘ÂÒ͇fl Ôflχfl, ÍÓÚÓÓÈ ı Ë Û ÔË̇‰ÎÂʇÚ. ÇÒfl͇fl „ÂÓ‰ÂÁ˘ÂÒ͇fl ‚ ÔflÏÓÏ G-ÔÓÒÚ‡ÌÒÚ‚Â ÂÒÚ¸ ÏÂÚ˘ÂÒ͇fl Ôflχfl, ÓÔ‰ÂÎÂÌ̇fl ‰ËÌÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ Î˛·˚ÏË ‰‚ÛÏfl  ÚӘ͇ÏË. ã˛·Ó ‰‚ÛÏÂÌÓ ÔflÏÓ G-ÔÓÒÚ‡ÌÒÚ‚Ó „ÓÏÂÓÏÓÙÌÓ ÔÎÓÒÍÓÒÚË. ÇÒ ӉÌÓÒ‚flÁÌ˚ ËχÌÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ ÌÂÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚ (‚Íβ˜‡fl ‚ÍÎË‰Ó‚Ó Ë „ËÔ·Ó΢ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡), „Ëθ·ÂÚÓ‚˚ „ÂÓÏÂÚËË Ë ÔÓÒÚ‡ÌÒÚ‚‡ íÂÈıÏ˛Î· ÍÓÏÔ‡ÍÚÌ˚ı ËχÌÓ‚˚ı ÔÓ‚ÂıÌÓÒÚÂÈ ÚËÔ‡ Ó‰‡ g > 1 (‚ ÒÎÛ˜‡Â Ëı ÏÂÚËÁ‡ˆËË ÏÂÚËÍÓÈ íÂÈıÏ˛Î·) fl‚Îfl˛ÚÒfl ÔflÏ˚ÏË G-ÔÓÒÚ‡ÌÒÚ‚‡ÏË. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó „ËÔ·Ó΢ÂÒÍÓ ÔÓ ÉÓÏÓ‚Û åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ̇Á˚‚‡ÂÚÒfl „ËÔ·Ó΢ÂÒÍËÏ ÔÓ ÉÓÏÓ‚Û, ÂÒÎË ÓÌÓ fl‚ÎflÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ Ë ␦-„ËÔ·Ó΢ÂÒÍËÏ ‰Îfl ÌÂÍÓÚÓÓ„Ó δ ≥ 0. ã˛·Ó ÔÓÎÌÓ ӉÌÓÒ‚flÁÌÓ ËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÒÂ͈ËÓÌÌÓÈ ÍË‚ËÁÌ˚ k ≤ –a 2 ln 3 ÂÒÚ¸ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó „ËÔ·Ó΢ÂÒÍÓ ÔÓ ÉÓÏÓ‚Û Ò δ = . LJÊÌ˚Ï a Í·ÒÒÓÏ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ „ËÔ·Ó΢ÂÒÍÓ„Ó ÔÓ ÉÓÏÓ‚Û fl‚Îfl˛ÚÒfl „ËÔ·Ó΢ÂÒÍË „ÛÔÔ˚, Ú.Â. „ÛÔÔ˚ Ò ÍÓ̘Ì˚Ï ˜ËÒÎÓÏ Ó·‡ÁÛ˛˘Ëı, ÒÎÓ‚‡Ì‡fl ÏÂÚË͇ ÍÓÚÓ˚ı fl‚ÎflÂÚÒfl δ-„ËÔ·Ó΢ÂÒÍÓÈ ‰Îfl ÌÂÍÓÚÓÓ„Ó δ ≥ 0. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ ‰ÂÈÒÚ‚ËÚÂθÌ˚Ï ‰Â‚ÓÏ ‚ ÚÓ˜ÌÓÒÚË ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó „ËÔ·Ó΢ÂÒÍÓ ÔÓ ÉÓÏÓ‚Û, Ò δ = 0. ÉÂÓ‰ÂÁ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ·Û‰ÂÚ δ-„ËÔ·Ó΢ÂÒÍËÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ 4δ-„ËÔ·Ó΢ÂÒÍÓ ÔÓ êËÔÒÛ, Ú.Â. ͇ʉ˚È ËÁ Â„Ó „ÂÓ‰ÂÁ˘ÂÒÍËı ÚÂÛ„ÓθÌËÍÓ‚ (ÒÓ‰ËÌÂÌË ÚÂı „ÂÓ‰ÂÁ˘ÂÒÍËı ÓÚÂÁÍÓ‚ [x, y], [x, z], [y, z]) fl‚ÎflÂÚÒfl 4δ-ÚÓÌÍËÏ (ËÎË 4δ-Ò··˚Ï) ıÛ‰˚Ï: ͇ʉ‡fl ËÁ ÒÚÓÓÌ ÚÂÛ„ÓθÌË͇ ̇ıÓ‰ËÚÒfl ‚ 4δ-ÓÍÂÒÚÌÓÒÚË ‰‚Ûı ‰Û„Ëı ÒÚÓÓÌ (4δ-ÓÍÂÒÚÌÓÒÚ¸ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ A ⊂ X ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó {b ∈ X : infa ∈A d (b, a) < 4δ}). ä‡Ê‰Ó ëÄí(k) ÔÓÒÚ‡ÌÒÚ‚Ó Ò k < 0 fl‚ÎflÂÚÒfl „ËÔ·Ó΢ÂÒÍËÏ ÔÓ ÉÓÏÓ‚Û. ä‡Ê‰Ó ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó n fl‚ÎflÂÚÒfl ëÄí(0) ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ë ·Û‰ÂÚ „ËÔ·Ó΢ÂÒÍËÏ ÔÓ ÉÓÏÓ‚‡ ÚÓθÍÓ ‰Îfl n = 1. ëÄí(k) ÔÓÒÚ‡ÌÒÚ‚Ó èÛÒÚ¸ (ï, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. èÛÒÚ¸ å 2 – Ó‰ÌÓÒ‚flÁÌÓ ‰‚ÛÏÂÌÓ ËχÌÓ‚Ó ÏÌÓ„ÓÓ·‡ÁË ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚ k, Ú.Â. 2-ÒÙ‡ Sk2 Ò k > 0, ‚ÍÎˉӂ‡ ÔÎÓÒÍÓÒÚ¸ 2 Ò k = 0 ËÎË „ËÔ·Ó΢ÂÒÍÓÈ ÔÎÓÒÍÓÒÚ¸ Hk2 Ò k < 0. èÛÒÚ¸ Dk π , ÂÒÎË k > 0, Ë Dk = ∞, ÂÒÎË k ≤ 0. Ó·ÓÁ̇˜‡ÂÚ ‰Ë‡ÏÂÚ å2 , Ú.Â. Dk = k
92
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
íÂÛ„ÓθÌËÍ í ‚ ï ÒÓÒÚÓËÚ ËÁ ÚÂı ÚÓ˜ÂÍ ‚ ï, ÒÓ‰ËÌÂÌÌ˚ı ÔÓÔ‡ÌÓ ÚÂÏfl „ÂÓ‰ÂÁ˘ÂÒÍËÏË ÓÚÂÁ͇ÏË; ÓÚÂÁÍË ÔË ˝ÚÓÏ Ì‡Á˚‚‡˛ÚÒfl ÒÚÓÓ̇ÏË ÚÂÛ„ÓθÌË͇. ÑÎfl ÚÂÛ„ÓθÌË͇ T ⊂ X ÒÓÔÓÒÚ‡‚ËÏ˚Ï c í ÚÂÛ„ÓθÌËÍÓÏ ‚ å2 ·Û‰ÂÚ ÚÂÛ„ÓθÌËÍ T' ⊂ M2 ‚ÏÂÒÚÂ Ò ÓÚÓ·‡ÊÂÌËÂÏ fT, ÍÓÚÓÓ ËÁÓÏÂÚ˘ÂÒÍË ÓÚÓ·‡Ê‡ÂÚ Í‡Ê‰Û˛ ÒÚÓÓÌÛ ÚÂÛ„ÓθÌË͇ í ̇ ÒÚÓÓÌÛ í'. íÂÛ„ÓθÌËÍ í Û‰Ó‚ÎÂÚ‚ÓflÂÚ ëÄí(k) ̇‚ÂÌÒÚ‚Û ÉÓÏÓ‚‡ (ëÄí – Ô‚˚ ·ÛÍ‚˚ Ù‡ÏËÎËÈ ä‡Ú‡Ì (Cartan), ÄÎÂÍ҇̉ӂ, íÓÔÓÌÓ„Ó‚), ÂÒÎË ‰Îfl ͇ʉ˚ı x, y ∈ T ËÏÂÂÚ ÏÂÒÚÓ Ì‡‚ÂÌÒÚ‚Ó d ( x, y) ≤ d M 2 ( fT ( x ), fT ( y)), „‰Â fT – ÓÚÓ·‡ÊÂÌËÂ, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÒÓÔÓÒÚ‡‚ËÏÓÏÛ Ò í ÚÂÛ„ÓθÌËÍÛ ‚ å2 . í‡ÍËÏ Ó·‡ÁÓÏ, „ÂÓ‰ÂÁ˘ÂÒÍËÈ ÚÂÛ„ÓθÌËÍ í fl‚ÎflÂÚÒfl ÒÚÓθ Ê "ÚÓÌÍËÏ", Í‡Í Ë ÒÓÔÓÒÚ‡‚ËÏ˚È ÚÂÛ„ÓθÌËÍ ‚ å2 . åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d) ÂÒÚ¸ ëÄí(k) ÔÓÒÚ‡ÌÒÚ‚Ó, ÂÒÎË ÓÌÓ – Dk -„ÂÓ‰ÂÁ˘ÂÒÍÓ (Ú.Â. β·˚ ‰‚ ÚÓ˜ÍË Ì‡ ‡ÒÒÚÓflÌËË < Dk ÏÓ„ÛÚ ·˚Ú¸ ÒÓ‰ËÌÂÌ˚ „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ) Ë ‚Ò ÚÂÛ„ÓθÌËÍË í Ò ÒÛÏÏÓÈ ÒÚÓÓÌ < 2Dk Û‰Ó‚ÎÂÚ‚Ófl˛Ú ëÄí(k) ̇‚ÂÌÒÚ‚Û. ã˛·Ó ëÄí(k1) ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ëÄí(k2) ÔÓÒÚ‡ÌÒÚ‚Ó, ÂÒÎË k1< k 2 . ã˛·Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ ‰ÂÂ‚Ó fl‚ÎflÂÚÒfl CÄí(–∞) ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ú.Â. fl‚ÎflÂÚÒfl ëÄí(k) ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl ‚ÒÂı k ∈ . èÓÒÚ‡ÌÒÚ‚Ó ÄÎÂÍ҇̉ӂ‡ Ò ÍË‚ËÁÌÓÈ, Ó„‡Ì˘ÂÌÌÓÈ Ò‚ÂıÛ k (ËÎË ÎÓ͇θÌÓ ëÄí(k ) ÔÓÒÚ‡ÌÒÚ‚ÓÏ), ÂÒÚ¸ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d), ‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl ÚӘ͇ p ∈ X ËÏÂÂÚ ÓÍÂÒÚÌÓÒÚ¸ U, Ú‡ÍÛ˛ ˜ÚÓ Î˛·˚ ‰‚ ÚÓ˜ÍË x, y ∈ U ÒÓ‰ËÌfl˛ÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ Ë ëÄí(k) ̇‚ÂÌÒÚ‚Ó ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı x, y, z ∈ U. êËχÌÓ‚Ó ÏÌÓ„ÓÓ·‡ÁË ÂÒÚ¸ ÎÓ͇θÌÓ ëÄí(k) ÔÓÒÚ‡ÌÒÚ‚Ó ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Â„Ó ÒÂ͈ËÓÌ̇fl ÍË‚ËÁ̇ Ì Ô‚ÓÒıÓ‰ËÚ k. èÓÒÚ‡ÌÒÚ‚Ó ÄÎÂÍ҇̉ӂ‡ Ò ÍË‚ËÁÌÓÈ, Ó„‡Ì˘ÂÌÌÓÈ ÒÌËÁÛ k – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ï, d), ‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl ÚӘ͇ p ∈ X ËÏÂÂÚ ÓÍÂÒÚÌÓÒÚ¸ U, Ú‡ÍÛ˛ ˜ÚÓ Î˛·˚ ‰‚ ÚÓ˜ÍË x, y ∈ U ÒÓ‰ËÌfl˛ÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ, Ë Ó·‡ÚÌÓ ëÄí(k) ̇‚ÂÌÒÚ‚Ó d ( x, y) ≥ d M 2 ( fT ( x ), fT ( y)), „‰Â fT ÂÒÚ¸ ÓÚÓ·‡ÊÂÌËÂ, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÒÓÔÓÒÚ‡‚ËÏÓÏÛ ‰Îfl í ÚÂÛ„ÓθÌËÍÛ ‚ å2 , ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı x, y, z ∈ U. Ñ‚‡ Ô˂‰ÂÌÌ˚ı ‚˚¯Â ÓÔ‰ÂÎÂÌËfl ‡Á΢‡˛ÚÒfl ÚÓθÍÓ Á̇ÍÓÏ (≤ ËÎË ≥) ‚˚‡ÊÂÌËfl d ( x, y) ≥ d M 2 ( fT ( x ), fT ( y)). ÖÒÎË k = 0, Û͇Á‡ÌÌ˚ ‚˚¯Â ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡˛ÚÒfl ÌÂÔÓÎÓÊËÚÂθÌÓ ËÒÍË‚ÎÂÌÌ˚ÏË Ë ÌÂÓÚˈ‡ÚÂθÌÓ ËÒÍË‚ÎÂÌÌ˚ÏË ÏÂÚ˘ÂÒÍËÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ; ÓÌË Ú‡ÍÊ ‡Á΢‡˛ÚÒfl Á͇̇ÏË (≤ ËÎË ≥, ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ) ‚ ‚˚‡ÊÂÌËË 2 d 2 ( z, m( x, y)) − ( d 2 ( z, x ) + d 2 ( z, y) +
1 2 d ( x, y)), 2
„‰Â ‚ÌÓ‚¸ x, y, z fl‚Îfl˛ÚÒfl ÚÂÏfl β·˚ÏË ÚӘ͇ÏË ‚ ÓÍÂÒÚÌÓÒÚË U ‰Îfl Í‡Ê‰Ó„Ó p ∈ X Ë m(x, y) ÂÒÚ¸ Ò‰ËÌ̇fl ÚӘ͇ ÏÂÚ˘ÂÒÍÓ„Ó ËÌÚ‚‡Î‡ I(x, y). Ç ëÄí(0) ÔÓÒÚ‡ÌÒڂ β·˚ ‰‚ ÚÓ˜ÍË ÒÓ‰ËÌÂÌ˚ ‰ËÌÒÚ‚ÂÌÌ˚Ï „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÓÚÂÁÍÓÏ Ë ‡ÒÒÚÓflÌË ÂÒÚ¸ ‚˚ÔÛÍ·fl ÙÛÌ͈Ëfl. ã˛·Ó ëÄí(0) ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎ˚Ï ÔÓ ÅÛÁÂχÌÛ Ë ÔÚÓÎÂÏ‚˚Ï (ÒÏ. „Î. 1), ‡ Ó·‡ÚÌÓ Ì‚ÂÌÓ. íÓ Ê ҇ÏÓ ÒÔ‡‚‰ÎË‚Ó Ì‡ ÛÓ‚Ì ÎÓ͇θÌ˚ı Ò‚ÓÈÒÚ‚, ÌÓ ‚ ËχÌÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ‚Ò ÚË ÎÓ͇θÌ˚ı ÛÒÎÓ‚Ëfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ ÌÂÔÓÎÓÊËÚÂθÌÓÒÚË ÒÂ͈ËÓÌÌÓÈ ÍË‚ËÁÌ˚. Ö‚ÍÎˉӂ˚ ÔÓÒÚ‡ÌÒÚ‚‡, „ËÔ·Ó΢ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡,
93
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
‚ÍÎˉӂ˚ ÔÓÒÚÓÂÌËfl Ë ‰Â‚¸fl fl‚Îfl˛ÚÒfl ëÄí(0) ÔÓÒÚ‡ÌÒÚ‚‡ÏË. èÓÎÌ˚ ëÄí(0) ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡˛ÚÒfl Ú‡ÍÊ ‡‰‡Ï‡Ó‚˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË. ɇÌˈ‡ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ëÛ˘ÂÒÚ‚Û˛Ú ‡ÁÌ˚ ÔÓÌflÚËfl „‡Ìˈ˚ ∂ï ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d). çËÊ ÔË‚Ó‰flÚÒfl Î˯¸ ÌÂÍÓÚÓ˚ ̇˷ÓΠӷ˘Â„Ó ı‡‡ÍÚ‡. é·˚˜ÌÓ, ÂÒÎË (ï, d) fl‚ÎflÂÚÒfl ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌ˚Ï, ÚÓ X ∪ ∂X – Â„Ó ÍÓÏÔ‡ÍÚÌÓ ‡Ò¯ËÂÌËÂ. 1. à‰Â‡Î¸Ì‡fl „‡Ìˈ‡. èÛÒÚ¸ (ï, d) – „ÂÓ‰ÂÁ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‡ γ1 Ë γ 2 – ‰‚‡ ÏÂÚ˘ÂÒÍËı ÎÛ˜‡, Ú.Â. „ÂÓ‰ÂÁ˘ÂÒÍËÂ Ò ËÁÓÏÂÚËÂÈ ≥0 ‚ ï. ùÚË ÎÛ˜Ë ·Û‰ÛÚ Ì‡Á˚‚‡Ú¸Òfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË (ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÏÂÚËÍ d) ÍÓ̘ÌÓ, Ú.Â. ÂÒÎË sup d ( γ 1 (t ), γ 2 (t )) < ∞. ɇÌˈ‡ ‚ t ≥0
·ÂÒÍÓ̘ÌÓÒÚË (ËÎË Ë‰Â‡Î¸Ì‡fl „‡Ìˈ‡) ÔÓÒÚ‡ÌÒÚ‚‡ (ï, d) ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ∂ ∞ X ˝Í‚Ë‚‡ÎÂÌÚÌ˚ı Í·ÒÒÓ‚ γ ∞ ‚ÒÂı ÏÂÚ˘ÂÒÍËı ÎÛ˜ÂÈ. ÖÒÎË (ï, d) – ÔÓÎÌÓ ëÄí(0) ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ ÏÂÚË͇ íËÚÒ‡ (ËÎË ‡ÒËÏÔÚÓÚ˘ÂÒÍËÈ Û„ÓÎ ‡ÒıÓʉÂÌËfl) ̇ ∂ ∞ X Á‡‰‡ÂÚÒfl Í‡Í ρ 2 arcsin 2 1 d ( γ 1 (t ), γ 2 (t )). åÌÓÊÂÒÚ‚Ó ∂ ∞ X, Ò̇·ÊÂÌÌÓ t ÏÂÚËÍÓÈ íËÚÒ‡, ̇Á˚‚‡ÂÚÒfl „‡ÌˈÂÈ íËÚÒ‡ ÔÓÒÚ‡ÌÒÚ‚‡ ï. ÖÒÎË ( X , d , x 0 ) – ÔÛÌÍÚËÓ‚‡ÌÌÓ ÔÓÎÌÓ ëÄí(-1) ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ„‰‡ ÏÂÚË͇ ÅÛ‰Ó̇ (Ò ·‡ÁÓ‚ÓÈ ÚÓ˜ÍÓÈ ı0 ) ̇ ∂ ∞ X ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‰Îfl ‚ÒÂı γ 1∞ , γ 2∞ ∈∂ ∞ X , „‰Â ρ = lim
t → +∞
e −( x. y) ‰Îfl β·˚ı x, y ∈∂ ∞ X , „‰Â (ı.Û) Ó·ÓÁ̇˜‡ÂÚ ÔÓËÁ‚‰ÂÌË ÉÓÏÓ‚‡ ( x. y) x 0 . ëÙ‡ ‚ˉËÏÓÒÚË (X, d) ‚ ÚӘ͠x0 ∈ X ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ÏÂÚ˘ÂÒÍËı ÎÛ˜ÂÈ, ËÒıÓ‰fl˘Ëı ËÁ x 0 . 2. ɇÌˈ‡ ÉÓÏÓ‚‡. ÖÒÎË Á‡‰‡ÌÓ ÔÛÌÍÚËÓ‚‡ÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d, x 0 ), ÚÓ Â„Ó „‡Ìˈ‡ ÉÓÏÓ‚‡ (Ó·Ó·˘ÂÌË ŇÍÎË Ë äÓÍÍẨÓÙ‡ ‚ 2005 „. ÒÎÛ˜‡fl ÔÓÒÚ‡ÌÒÚ‚‡, „ËÔ·Ó΢ÂÒÍÓ„Ó ÔÓ ÉÓÏÓ‚Û) ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ∂ G X Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ ÉÓÏÓ‚‡. èÓÒΉӂ‡ÚÂθÌÓÒÚ¸ x = ( xi ) ‚ ï ̇Á˚‚‡ÂÚÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ ÉÓÏÓ‚‡, ÂÒÎË ÔÓËÁ‚‰ÂÌË ÉÓÏÓ‚‡ ( xi . x j ) x 0 → ∞ ÔË i, j → ∞. Ñ‚Â ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÉÓÏÓ‚‡ ı Ë Û Ì‡Á˚‚‡˛ÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓ̘̇fl ˆÂÔ¸ ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ ÉÓÏÓ‚‡ x k , 0 ≤ k ≤ k ′, Ú‡Í ˜ÚÓ x = x 0 , y = x k ′ Ë lim inf xik −1 . x kj = ∞ ‰Îfl 0 ≤ k ≤ k ′. i, j →∞
(
)
Ç ÒÓ·ÒÚ‚ÂÌÌÓÏ „ÂÓ‰ÂÁ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â „ËÔ·Ó΢ÂÒÍÓÏ ÔÓ ÉÓÏÓ‚Û, (X, d) ÒÙ‡ ‚ˉËÏÓÒÚË Ì Á‡‚ËÒËÚ ÓÚ ·‡ÁÓ‚ÓÈ ÚÓ˜ÍË x0 Ë fl‚ÎflÂÚÒfl ÂÒÚÂÒÚ‚ÂÌÌÓ ËÁÓÏÓÙÌÓÈ Ò‚ÓÂÈ „‡Ìˈ ÉÓÏÓ‚‡ ∂ G X , ÍÓÚÓ‡fl ÏÓÊÂÚ ·˚Ú¸ ÓÚÓʉÂÒÚ‚ÎÂ̇ Ò ∂ G X . 3. g-ɇÌˈ‡. é·ÓÁ̇˜ËÏ ˜ÂÂÁ Xd ÏÂÚ˘ÂÒÍÓ ÔÓÔÓÎÌÂÌË (X, d) Ë, ‡ÒÒχÚË‚‡fl ï Í‡Í ÔÓ‰ÏÌÓÊÂÒÚ‚Ó Xd , Ó·ÓÁ̇˜ËÏ ‡ÁÌÓÒÚ¸ Xd \ X Í‡Í ∂Xd . èÛÒÚ¸ ( X , l, x 0 ) – ÔÛÌÍÚËÓ‚‡ÌÌÓ ·ÂÒÍÓ̘ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‰ÎËÌ˚, Ú.Â. Â„Ó ÏÂÚË͇ ÒÓ‚Ô‡‰‡ÂÚ Ò ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ l ÔÓÒÚ‡ÌÒÚ‚‡ (X, d). Ç ÒÎÛ˜‡Â ËÁÏÂËÏÓÈ
94
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ÙÛÌ͈ËË g : ≥ 0 → ≥ 0 , g-„‡Ìˈ‡ ( X , d , x 0 ) (Ó·Ó·˘ÂÌË ŇÍÎË Ë äÓÍÍẨÓÙ‡ ‚ 2005 „. ÒÙ¢ÂÒÍÓÈ „‡Ìˈ˚ Ë „‡Ìˈ˚ îÎÓȉ‡) ÂÒÚ¸ ∂ g X = ∂Xσ \ ∂Xl , „‰Â
∫
σ( x, y) = inf g( z )dl( z ) ‰Îfl ‚ÒÂı x, y ∈ X (Á‰ÂÒ¸ ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÏÂÚËγ
˜ÂÒÍËÏ ÓÚÂÁÍ‡Ï γ = [ x, y]). 4. ɇÌˈ‡ ïÓ˜ÍËÒ‡. Ç ÒÎÛ˜‡Â ÔÛÌÍÚËÓ‚‡ÌÌÓ„Ó ÒÓ·ÒÚ‚ÂÌÌÓ ‚˚ÔÛÍÎÓ„Ó ÅÛÁÂχÌÛ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ( X , d , x 0 ) Â„Ó „‡ÌˈÂÈ ïÓ˜ÍËÒ‡ ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ∂ H ( X , x 0 ) ËÁÓÏÂÚËÈ f : ≥ 0 → X Ò f (0) = x 0 . ɇÌˈ˚ ∂ Hx 0 X Ë ∂ Hx1 X fl‚Îfl˛ÚÒfl „ÓÏÂÓÏÓÙÌ˚ÏË ‰Îfl ‡Á΢Ì˚ı x 0 , x1 ∈ X . Ç ÔÓÒÚ‡ÌÒÚ‚Â, „ËÔ·Ó΢ÂÒÍÓÏ ÔÓ ÉÓÏÓ‚Û, ∂ Hx 0 X „ÓÏÂÓÏÓÙÌÓ „‡Ìˈ ÉÓÏÓ‚‡ ∂ G X . 5. åÂÚ˘ÂÒ͇fl „‡Ìˈ‡. ÑÎfl ÔÛÌÍÚËÓ‚‡ÌÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ( X , d , x 0 ) Ë ÌÂÓ„‡Ì˘ÂÌÌÓ„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ S ÏÌÓÊÂÒÚ‚‡ ≥0 ÎÛ˜ γ : S → X ̇Á˚‚‡ÂÚÒfl Ò··Ó „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÎÛ˜ÓÏ, ÂÒÎË ‰Îfl Í‡Ê‰Ó„Ó x ∈ X Ë Í‡Ê‰Ó„Ó ε > 0 ÒÛ˘ÂÒÚ‚ÛÂÚ ˆÂÎÓ ˜ËÒÎÓ N , Ú‡ÍÓ ˜ÚÓ Ì‡‚ÂÌÒÚ‚‡ | d ( γ (t ), γ (0)) − t |< ε Ë | d ( γ (t ), x ) − d ( γ ( s), x ) − (t − s) | < ε ‚˚ÔÓÎÌfl˛ÚÒfl ‰Îfl ‚ÒÂı s, t ∈ T Ò s, t ≥ N. èÛÒÚ¸
(X, d) – ÍÓÏÏÛÚ‡Ú˂̇fl ÛÌËڇ̇fl C*-‡Î„·ÓÈ Ò ÌÓÏÓÈ || ⋅ ||∞ , ÔÓÓʉ‡ÂÏÓÈ (Ó„‡Ì˘ÂÌÌ˚ÏË, ÌÂÔÂ˚‚Ì˚ÏË) ÙÛÌ͈ËflÏË, ÍÓÚÓ˚ ӷ‡˘‡˛ÚÒfl ‚ ÌÛθ ̇ ï, ÔÓÒÚÓflÌÌ˚ÏË ÙÛÌ͈ËflÏË Ë ÙÛÌ͈ËflÏË ‚ˉ‡ g y ( x ) = d ( x, x 0 ) − d ( x, y) (ÒÏ. ÓÔ‰ÂÎÂÌËfl ‚ ‡Á‰ÂΠ䂇ÌÚÓ‚Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó). åÂÚ˘ÂÒ͇fl „‡Ìˈ‡ êËÙÂÎfl ∂ R X ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ÂÒÚ¸ ‡ÁÌÓÒÚ¸ X d \ X , „‰Â Xd fl‚ÎflÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÍÓÏÔ‡ÍÚÌ˚Ï ‡Ò¯ËÂÌËÂÏ (X, d), Ú.Â. χÍÒËχθÌ˚Ï Ë‰Â‡Î¸Ì˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ÏÌÓÊÂÒÚ‚ÓÏ ˜ËÒÚ˚ı ÒÓÒÚÓflÌËÈ) ‰‡ÌÌÓÈ ë* -‡Î„·˚. êËÙÂθ ‰Ó͇Á‡Î, ˜ÚÓ ‰Îfl ÒÓ·ÒÚ‚ÂÌÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ÒÓ Ò˜ÂÚÌÓÈ ·‡ÁÓÈ „‡Ìˈ‡ ∂R X ‚Íβ˜‡ÂÚ Ô‰ÂÎ˚ lim f ( γ (t )) ‰Îfl Í‡Ê‰Ó„Ó Ò··Ó„Ó „ÂÓ‰ÂÁ˘ÂÒÍÓ„Ó ÎÛ˜‡ γ Ë Í‡Ê‰ÓÈ t →∞
ÙÛÌ͈ËË f ‚˚¯ÂÛ͇Á‡ÌÌÓÈ ë* -‡Î„·˚. èÓÂÍÚË‚ÌÓ ÔÎÓÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ „ÂÓ‰ÂÁ˘ÂÒÍË Á‡‰‡Ì˚, ̇Á˚‚‡ÂÚÒfl ÔÓÂÍÚË‚ÌÓ ÔÎÓÒÍËÏ, ÂÒÎË ÓÌÓ ÎÓ͇θÌÓ ‰ÓÔÛÒ͇ÂÚ „ÂÓ‰ÂÁ˘ÂÒÍÓ (ËÎË ÔÓÂÍÚË‚ÌÓÂ) ÓÚÓ·‡ÊÂÌËÂ, Ú.Â. ÓÚÓ·‡ÊÂÌËÂ, ÒÓı‡Ìfl˛˘Â „ÂÓ‰ÂÁ˘ÂÒÍËÂ, ‚ ÌÂÍÓÚÓÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (ÒÏ. ‚ÍÎˉӂ ‡Ì„ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ‚ „Î. 1; ÒıÓ‰Ì˚ ÚÂÏËÌ˚: ‡ÙÙËÌÌÓ ÔÎÓÒÍÓÂ, ÍÓÌÙÓÏÌÓ ÔÎÓÒÍÓÂ Ë Ú.Ô.). êËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ ÔÓÂÍÚË‚ÌÓ ÔÎÓÒÍËÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ ËÏÂÂÚ ÔÓÒÚÓflÌÌÛ˛ (ÒÂ͈ËÓÌÌÛ˛) ÍË‚ËÁÌÛ. 6.2. èêéÖäíàÇçÄü ÉÖéåÖíêàü èÓÂÍÚ˂̇fl „ÂÓÏÂÚËfl fl‚ÎflÂÚÒfl ˜‡ÒÚ¸˛ Ó·˘ÂÈ „ÂÓÏÂÚËË, ‡ÒÒχÚË‚‡˛˘ÂÈ Ò‚ÓÈÒÚ‚‡ Ë ËÌ‚‡Ë‡ÌÚ˚ „ÂÓÏÂÚ˘ÂÒÍËı ÙË„Û ÔÓ‰ ‚ÓÁ‰ÂÈÒÚ‚ËÂÏ ÓÔ‡ÚÓ‡ ÔÓÂÍÚËÓ‚‡ÌËfl. ÄÙÙËÌ̇fl „ÂÓÏÂÚËfl, „ÂÓÏÂÚËfl ÔÓ‰Ó·Ëfl (ËÎË ÏÂÚ˘ÂÒ͇fl „ÂÓÏÂÚËfl) Ë Â‚ÍÎˉӂ‡ „ÂÓÏÂÚËfl fl‚Îfl˛ÚÒfl ˜‡ÒÚflÏË ÔÓÂÍÚË‚ÌÓÈ „ÂÓÏÂÚËË Ò Ì‡‡ÒÚ‡˛˘ÂÈ ÒÎÓÊÌÓÒÚ¸˛. éÒÌÓ‚Ì˚ÏË ËÌ‚‡Ë‡ÌÚ‡ÏË ÔÓÂÍÚË‚ÌÓÈ, ‡ÙÙËÌÌÓÈ, ÏÂÚ˘ÂÒÍÓÈ Ë Â‚ÍÎˉӂÓÈ „ÂÓÏÂÚËÈ fl‚Îfl˛ÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‡Ì„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌËÂ, Ô‡‡ÎÎÂθÌÓÒÚ¸ (Ë ÓÚÌÓÒËÚÂθÌ˚ ‡ÒÒÚÓflÌËfl), Û„Î˚ (Ë ÓÚÌÓÒËÚÂθÌ˚ ‡ÒÒÚÓflÌËfl), ‡·ÒÓβÚÌ˚ ‡ÒÒÚÓflÌËfl.
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
95
n-åÂÌÓ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Pn ÂÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó Ó‰ÌÓÏÂÌ˚ı ‚ÂÍÚÓÌ˚ı ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ ‰‡ÌÌÓ„Ó (n + 1)-ÏÂÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ V ̇‰ ÔÓÎÂÏ . ŇÁÓ‚Ó ÔÓÒÚÓÂÌË Ô‰ÔÓ·„‡ÂÚ ÙÓÏËÓ‚‡ÌË ÏÌÓÊÂÒÚ‚‡ Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ÌÂÌÛ΂˚ı ‚ÂÍÚÓÓ‚ ‚ ÔÓÒÚ‡ÌÒÚ‚Â V ÔË Òӷβ‰ÂÌËË ÓÚÌÓ¯ÂÌËfl Ò͇ÎflÌÓÈ ÔÓÔÓˆËÓ̇θÌÓÒÚË. чÌ̇fl ˉÂfl ‚ÓÁ‚‡˘‡ÂÚ Ì‡Ò Í Ï‡ÚÂχÚ˘ÂÒÍÓÏÛ ÓÔËÒ‡Ì˲ ÔÂÒÔÂÍÚË‚˚. àÒÔÓθÁÓ‚‡ÌË ·‡ÁËÒ‡ ÔÓÒÚ‡ÌÒÚ‚‡ V ÔÓÁ‚ÓÎflÂÚ ‚‚ÂÒÚË Ó‰ÌÓÓ‰Ì˚ ÍÓÓ‰Ë̇Ú˚ ÚÓ˜ÍË ‚ Pn , ÍÓÚÓ˚ ӷ˚˜ÌÓ Á‡ÔËÒ˚‚‡˛ÚÒfl Í‡Í ( x1 : x 2 : ... : x n : x n +1 ) – ‚ÂÍÚÓ ‰ÎËÌ˚ n + 1, ÓÚ΢Ì˚È ÓÚ (0 : 0 : 0 : ... : 0). Ñ‚‡ ÏÌÓÊÂÒÚ‚‡ Ò ÔÓÔÓˆËÓ̇θÌ˚ÏË ÍÓÓ‰Ë̇ڇÏË Ó·ÓÁ̇˜‡˛Ú Ó‰ÌÛ Ë ÚÛ Ê ÚÓ˜ÍÛ ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. ã˛·‡fl ÚӘ͇ ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÍÓÚÓÛ˛ ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ Í‡Í ( x1 : x 2 : ... : x n : 0), ̇Á˚‚‡ÂÚÒfl ·ÂÒÍÓ̘ÌÓ Û‰‡ÎÂÌÌÓÈ ÚÓ˜ÍÓÈ. ó‡ÒÚ¸ ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Pn , Ì fl‚Îfl˛˘‡flÒfl "·ÂÒÍÓ̘ÌÓ Û‰‡ÎÂÌÌÓÈ", Ú.Â. ÏÌÓÊÂÒÚ‚Ó ÚÓ˜ÂÍ ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÍÓÚÓ˚ ÏÓ„ÛÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂÌ˚ Í‡Í ( x1 : x 2 : ... : x n : 1), ÂÒÚ¸ n-ÏÂÌÓ ‡ÙÙËÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó A n . ëËÏ‚ÓÎÓÏ Pn Ó·ÓÁ̇˜‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‡ÁÏÂÌÓÒÚË n, Ú.Â. ÔÓÒÚ‡ÌÒÚ‚Ó Ó‰ÌÓÏÂÌ˚ı ‚ÂÍÚÓÌ˚ı ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ ÔÓÒÚ‡ÌÒÚ‚‡ n+1. ëËÏ‚ÓÎÓÏ Pn Ó·ÓÁ̇˜‡ÂÚÒfl ÍÓÏÔÎÂÍÒÌÓ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÍÓÏÔÎÂÍÒÌÓÈ ‡ÁÏÂÌÓÒÚË n. èÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Pn ËÏÂÂÚ ÂÒÚÂÒÚ‚ÂÌÌÛ˛ ÒÚÛÍÚÛÛ ÍÓÏÔ‡ÍÚÌÓ„Ó „·‰ÍÓ„Ó n-ÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl. Ö„Ó ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÔÓÒÚ‡ÌÒÚ‚Ó ÔflÏ˚ı, ÔÓıÓ‰fl˘Ëı ˜ÂÂÁ ÌÛ΂ÓÈ ˝ÎÂÏÂÌÚ ÔÓÒÚ‡ÌÒÚ‚‡ n+1 (Ú.Â. Í‡Í ÔÓÒÚ‡ÌÒÚ‚Ó ÎÛ˜ÂÈ). éÌÓ ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ÏÌÓÊÂÒÚ‚Ó n (Í‡Í ‡ÙÙËÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó) ÒÓ‚ÏÂÒÚÌÓ Ò Â„Ó ·ÂÒÍÓ̘ÌÓ Û‰‡ÎÂÌÌ˚ÏË ÚӘ͇ÏË. Ö„Ó ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Ú‡ÍÊÂ Í‡Í ÏÌÓÊÂÒÚ‚Ó ÚÓ˜ÂÍ n-ÏÂÌÓÈ ÒÙÂ˚ ‚ n+1, ÓÚÓʉÂÒÚ‚ÎÂÌÌ˚ı Ò ‰Ë‡ÏÂڇθÌÓ ÔÓÚË‚ÓÔÓÎÓÊÌ˚ÏË ÚӘ͇ÏË. èÓÂÍÚË‚Ì˚ ÚÓ˜ÍË, ÔÓÂÍÚË‚Ì˚ ÔflÏ˚Â, ÔÓÂÍÚË‚Ì˚ ÔÎÓÒÍÓÒÚË,…, ÔÓÂÍÚË‚Ì˚ „ËÔÂÔÎÓÒÍÓÒÚË ÔÓÒÚ‡ÌÒÚ‚‡ Pn fl‚Îfl˛ÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Ó‰ÌÓÏÂÌ˚ÏË, ‰‚ÛÏÂÌ˚ÏË, ÚÂıÏÂÌ˚ÏË,…, n-ÏÂÌ˚ÏË ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË ÔÓÒÚ‡ÌÒÚ‚‡ V. ã˛·˚ ‰‚ ÔÓÂÍÚË‚Ì˚ ÔflÏ˚ ̇ ÔÓÂÍÚË‚ÌÓÈ ÔÎÓÒÍÓÒÚË ËÏÂ˛Ú Ó‰ÌÛ Ë ÚÓθÍÓ Ó‰ÌÛ Ó·˘Û˛ ÚÓ˜ÍÛ. èÓÂÍÚË‚ÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË (ËÎË ÍÓÎÎË̇ˆËfl, ÔÓÂÍÚË‚ÌÓ ÒÓÓÚ‚ÂÚÒÚ‚ËÂ) ÂÒÚ¸ ·ËÂÍÚË‚ÌÓ ÓÚÓ·‡ÊÂÌË ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇ Ò·fl, ÒÓı‡Ìfl˛˘Â ÍÓÎÎË̇ÌÓÒÚ¸ (Ò‚ÓÈÒÚ‚Ó ÚÓ˜ÂÍ ‡ÒÔÓ·„‡Ú¸Òfl ̇ Ó‰ÌÓÈ ÎËÌËË) ‚ Ó·ÓËı ̇ԇ‚ÎÂÌËflı. ã˛·Ó ÔÓÂÍÚË‚ÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË ÂÒÚ¸ ÍÓÏÔÓÁˈËfl ‰‚Ûı ÔÂÒÔÂÍÚË‚Ì˚ı ÔÓÂ͈ËÈ. èÓÂÍÚË‚Ì˚ ÔÂÓ·‡ÁÓ‚‡ÌËfl Ì ӷÂÒÔ˜˂‡˛Ú ÒÓı‡ÌÂÌË ‡ÁÏÂÓ‚ ËÎË Û„ÎÓ‚, Ӊ̇ÍÓ ÒÓı‡Ìfl˛Ú ÚËÔ (Ú.Â. ÚÓ˜ÍË ÓÒÚ‡˛ÚÒfl ÚӘ͇ÏË Ë ÔflÏ˚ – ÔflÏ˚ÏË), Ë̈ˉÂÌÚÌÓÒÚ¸ (Ú.Â. ÔË̇‰ÎÂÊÌÓÒÚ¸ ÚÓ˜ÍË ÔflÏÓÈ) Ë ‡Ì„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌËÂ. á‰ÂÒ¸ ‰Îfl ˜ÂÚ˚Âı ÍÓÎÎË̇Ì˚ı ÚÓ˜ÂÍ x, y, x, t ∈P n ( x − z )( y − t ) x−z Ëı ‡Ì„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌË Á‡‰‡ÂÚÒfl Í‡Í ( x, y, z, t ) = , „‰Â ( y − z )( x − t ) x−t f ( x) − f (z) Ó·ÓÁ̇˜‡ÂÚ ˜‡ÒÚÌÓ ‰Îfl ÌÂÍÓÚÓÓÈ ‡ÙÙËÌÌÓÈ ·ËÂ͈ËË f ÔflÏÓÈ f ( x ) − f (t ) lx , y , ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ ÚÓ˜ÍË ı Ë Û , ‚ . ÖÒÎË ËÏÂÂÚÒfl ˜ÂÚ˚ ÔÓÂÍÚË‚Ì˚ ÔflÏ˚ lx , ly , lz , lt , ÔÓıÓ‰fl˘Ë ˜ÂÂÁ ÚÓ˜ÍË x, y, z, t ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÍÓÚÓ˚ ÔÓıÓ‰flÚ ˜ÂÂÁ ‰‡ÌÌÛ˛ ÚÓ˜ÍÛ, Ëı ‡Ì„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌËÂ, Á‡‰‡ÌÌÓ ‚˚‡ÊÂÌËÂÏ sin(lx , lz )sin(ly , lt ) (lx , ly , lz , lt ) = , ÒÓ‚Ô‡‰‡ÂÚ Ò ( x, y, z, t ). ÄÌ„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌË sin(ly , lz )sin(lx , lt )
96
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
( x − z )( y − t ) . éÌÓ ( y − z )( x − t ) ·Û‰ÂÚ ‰ÂÈÒÚ‚ËÚÂθÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ˜ÂÚ˚ ˜ËÒ· fl‚Îfl˛ÚÒfl ËÎË ÍÓÎÎË̇Ì˚ÏË ËÎË ÍÓˆËÍ΢Ì˚ÏË.
˜ÂÚ˚Âı ÍÓÏÔÎÂÍÒÌ˚ı ˜ËÒÂÎ x, y, z, t Á‡‰‡ÂÚÒfl Í‡Í ( x, y, z, t ) =
èÓÂÍÚ˂̇fl ÏÂÚË͇ ÑÎfl ‰‡ÌÌÓ„Ó ‚˚ÔÛÍÎÓ„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ D ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ P n ÔÓÂÍÚ˂̇fl ÏÂÚË͇ d ÂÒÚ¸ ÏÂÚË͇ ̇ D , ڇ͇fl ˜ÚÓ Í‡Ú˜‡È¯Ë ÔÛÚË ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ˝ÚÓÈ ÏÂÚËÍ fl‚Îfl˛ÚÒfl ˜‡ÒÚflÏË ÔÓÂÍÚË‚Ì˚ı ÔflÏ˚ı ËÎË Ò‡ÏËÏË ÔÓÂÍÚË‚Ì˚ÏË ÔflÏ˚ÏË. è‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÛÒÎÓ‚Ëfl: 1. D Ì fl‚ÎflÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ ÌË͇ÍÓÈ „ËÔÂÔÎÓÒÍÓÒÚË. 2. ÑÎfl β·˚ı ÚÂı ÌÂÍÓÎÎË̇Ì˚ı ÚÓ˜ÂÍ x, y, z ∈ D ̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇ ‚˚ÔÓÎÌflÂÚÒfl ‚ ÒÚÓ„ÓÏ ÒÏ˚ÒÎÂ: d ( x, y) < d ( x, z ) + d ( z, y). 3. ÖÒÎË ı Ë Û – ‡ÁÌ˚ ÚÓ˜ÍË ‚ D, ÚÓ ÔÂÂÒ˜ÂÌË ÔflÏÓÈ lx , y , ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ ı Ë Û, Ò D ÂÒÚ¸ ÎË·Ó ‚Òfl Ôflχfl lx , y , Ó·‡ÁÛ˛˘‡fl ÏÂÚ˘ÂÒÍËÈ ·Óθ¯ÓÈ ÍÛ„, ÎË·Ó ÔÓÎÛ˜ÂÌÓ ËÁ ÔÓÒ‰ÒÚ‚ÓÏ lx , y Û‰‡ÎÂÌËfl ÌÂÍÓÚÓÓ„Ó ÓÚÂÁ͇ (ÍÓÚÓ˚È ÏÓÊÂÚ ·˚Ú¸ ҂‰ÂÌ Í ÚÓ˜ÍÂ) Ë Ó·‡ÁÛÂÚ ÏÂÚ˘ÂÒÍÛ˛ ÔflÏÛ˛. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (D, d) ̇Á˚‚‡ÂÚÒfl ÔÓÂÍÚË‚Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ÒÏ. èÓÂÍÚË‚ÌÓ ÔÎÓÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó). èÓ·ÎÂχ ÓÔ‰ÂÎÂÌËfl ‚ÒÂı ÔÓÂÍÚË‚Ì˚ı ÏÂÚËÍ fl‚ÎflÂÚÒfl ˜ÂÚ‚ÂÚÓÈ ÔÓ·ÎÂÏÓÈ ÉËθ·ÂÚ‡; Ó̇ ¯Â̇ ÚÓθÍÓ ‰Îfl ‡ÁÏÂÌÓÒÚË n = 2. àÏÂÌÌÓ, ÂÒÎË ËÏÂÂÚÒfl „·‰Í‡fl χ ̇ ÔÓÒÚ‡ÌÒÚ‚Â „ËÔÂÔÎÓÒÍÓÒÚÂÈ ‚ Pn , ÓÔ‰ÂÎËÏ ‡ÒÒÚÓflÌË ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ÚӘ͇ÏË x, y ∈ Pn Í‡Í ÔÓÎÓ‚ËÌÛ ÏÂ˚ ‚ÒÂı „ËÔÂÔÎÓÒÍÓÒÚÂÈ, ÍÓÚÓ˚ ÔÂÂÒÂ͇˛Ú ÓÚÂÁÓÍ ÔflÏÓÈ, ÒÓ‰ËÌfl˛˘ËÈ ı Ë Û. èÓÎÛ˜ÂÌ̇fl ÏÂÚË͇ ·Û‰ÂÚ ÔÓÂÍÚË‚ÌÓÈ – ˝ÚÓ ÍÓÌÒÚÛ͈Ëfl ÅÛÁÂχ̇ ÔÓÂÍÚË‚Ì˚ı ÏÂÚËÍ. ÑÎfl n = 2, Í‡Í ‰Ó͇Á‡ÌÓ ÄÏ·‡ˆÛÏflÌÓÏ ([Amba76]), ‚Ò ÔÓÂÍÚË‚Ì˚ ÏÂÚËÍË ÏÓ„ÛÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ˚ ËÁ ÍÓÌÒÚÛ͈ËË ÅÛÁÂχ̇. Ç ÔÓÂÍÚË‚ÌÓÏ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â Ó‰ÌÓ‚ÂÏÂÌÌÓ Ì ÏÓÊÂÚ ·˚Ú¸ ‰‚Ûı ‚ˉӂ ÔflÏ˚ı: ÓÌË ‚Ò ÎË·Ó ÏÂÚ˘ÂÒÍË ÔflÏ˚Â, ÎË·Ó ÏÂÚ˘ÂÒÍË ·Óθ¯Ë ÍÛ„Ë Ó‰Ë̇ÍÓ‚ÓÈ ‰ÎËÌ˚ (ÚÂÓÂχ ɇÏÂÎfl). èÓÒÚ‡ÌÒÚ‚‡ ÔÂ‚Ó„Ó ‚ˉ‡ ̇Á˚‚‡˛ÚÒfl ÓÚÍ˚Ú˚ÏË. éÌË ÒÓ‚Ô‡‰‡˛Ú Ò ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡; „ÂÓÏÂÚËfl ÓÚÍ˚Ú˚ı ÔÓÂÍÚË‚Ì˚ı ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚ ÂÒÚ¸ „Ëθ·ÂÚÓ‚‡ „ÂÓÏÂÚËfl. ÉËÔ·Ó΢ÂÒ͇fl „ÂÓÏÂÚËfl fl‚ÎflÂÚÒfl „Ëθ·ÂÚÓ‚ÓÈ „ÂÓÏÂÚËÂÈ, ‚ ÍÓÚÓÓÈ ÒÛ˘ÂÒÚ‚Û˛Ú ÓÚ‡ÊÂÌËfl ÓÚ ‚ÒÂı ÔflÏ˚ı. àÏÂÌÌÓ, ÏÌÓÊÂÒÚ‚Ó D ËÏÂÂÚ „ËÔ·Ó΢ÂÒÍÛ˛ „ÂÓÏÂÚ˲ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ fl‚ÎflÂÚÒfl ‚ÌÛÚÂÌÌÓÒÚ¸˛ ˝ÎÎËÔÒÓˉ‡. ÉÂÓÏÂÚËfl ÓÚÍ˚Ú˚ı ÔÓÂÍÚË‚Ì˚ı ÔÓÒÚ‡ÌÒÚ‚, ÏÌÓÊÂÒÚ‚‡ ÍÓÚÓ˚ı ÒÓ‚Ô‡‰‡˛Ú ÒÓ ‚ÒÂÏ ‡ÙÙËÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÂÒÚ¸ „ÂÓÏÂÚËfl åËÌÍÓ‚ÒÍÓ„Ó. Ö‚ÍÎˉӂ‡ „ÂÓÏÂÚËfl – ˝ÚÓ „Ëθ·ÂÚÓ‚‡ „ÂÓÏÂÚËfl Ë „ÂÓÏÂÚËfl åËÌÍÓ‚ÒÍÓ„Ó Ó‰ÌÓ‚ÂÏÂÌÌÓ. èÓÒÚ‡ÌÒÚ‚‡ ‚ÚÓÓ„Ó ‚ˉ‡ ̇Á˚‚‡˛ÚÒfl Á‡Í˚Ú˚ÏË; ÓÌË ÒÓ‚Ô‡‰‡˛Ú ÒÓ ‚ÒÂÏ Pn . ùÎÎËÔÚ˘ÂÒ͇fl „ÂÓÏÂÚËfl – „ÂÓÏÂÚËfl ÔÓÂÍÚË‚ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ‚ÚÓÓ„Ó ‚ˉ‡. èÓÂÍÚ˂̇fl ÏÂÚË͇ ÔÓÎÓÒ˚ èÓÂÍÚ˂̇fl ÏÂÚË͇ ÔÓÎÓÒ˚ ([BuKe53]) ÂÒÚ¸ ÔÓÂÍÚ˂̇fl ÏÂÚË͇ ̇ ÔÓÎÓÒ π π St = x ∈ R 2 : − < J2 < , ÓÔ‰ÂÎÂÌ̇fl Í‡Í J J ( x1 − y1 )2 + ( x 2 + y2 )2 + | tg x 2 − tg y2 | .
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
97
ëΉÛÂÚ Ó·‡ÚËÚ¸ ‚ÌËχÌË ̇ ÚÓ, ˜ÚÓ St Ò Ó·˚˜ÌÓÈ Â‚ÍÎˉӂÓÈ ÏÂÚËÍÓÈ ( x1 − y1 )2 + ( x 2 − y2 )2 ÔÓÂÍÚË‚Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì fl‚ÎflÂÚÒfl. èÓÂÍÚ˂̇fl ÏÂÚË͇ ÔÓÎÛÔÎÓÒÍÓÒÚË èÓÂÍÚ˂̇fl ÏÂÚË͇ ÔÓÎÛÔÎÓÒÍÓÒÚË ([BuKe53]) ÂÒÚ¸ ÔÓÂÍÚ˂̇fl ÏÂÚË͇ ̇ 2+ = {x ∈ 2 : x 2 > 0}, Á‡‰‡Ì̇fl ‚˚‡ÊÂÌËÂÏ ( x1 − y1 )2 + ( x 2 − y2 )2 +
1 1 . − x 2 y2
ÉËθ·ÂÚÓ‚‡ ÔÓÂÍÚ˂̇fl ÏÂÚË͇ ÑÎfl ‰‡ÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ç „Ëθ·ÂÚÓ‚ÓÈ ÔÓÂÍÚË‚ÌÓÈ ÏÂÚËÍÓÈ h ·Û‰ÂÚ ÔÓÎ̇fl ÔÓÂÍÚ˂̇fl ÏÂÚË͇ ̇ ç. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ ç ÒÓ‰ÂÊËÚ ÔÓÏËÏÓ ‰‚Ûı ÔÓËÁ‚ÓθÌ˚ı ‡Á΢Ì˚ı ÚÓ˜ÂÍ ı Ë Û Ú‡ÍÊ ÚÓ˜ÍË z Ë t, ‰Îfl ÍÓÚÓ˚ı h( x, z ) + h( z, y) = h( x, y), h( x, y) + h( y, t ) = h( x, t ), Ë fl‚ÎflÂÚÒfl „ÓÏÂÓÏÓÙÌ˚Ï ‚˚ÔÛÍÎÓÏÛ ÏÌÓÊÂÒÚ‚Û ‚ nÏÂÌÓÏ ‡ÙÙËÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â An , ÔË ˝ÚÓÏ „ÂÓ‰ÂÁ˘ÂÒÍË ‚ ç ÓÚÓ·‡Ê‡˛ÚÒfl ‚ ÔflÏ˚ ÔÓÒÚ‡ÌÒÚ‚‡ An . åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (H, h) ̇Á˚‚‡ÂÚÒfl „Ëθ·ÂÚÓ‚˚Ï ÔÓÂÍÚË‚Ì˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ‡ „ÂÓÏÂÚËfl „Ëθ·ÂÚ‡ ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡˛ÚÒfl „Ëθ·ÂÚÓ‚ÓÈ „ÂÓÏÂÚËÂÈ. îÓχθÌÓ, ÔÛÒÚ¸ D – ÌÂÔÛÒÚÓ ‚˚ÔÛÍÎÓ ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó ‚ An Ò „‡ÌˈÂÈ ∂D, Ì ÒÓ‰Âʇ˘ÂÈ ‰‚Ûı ÒÓ·ÒÚ‚ÂÌÌ˚ı ÍÓÏÔ·̇Ì˚ı, ÌÓ ÌÂÍÓÎÎË̇Ì˚ı ÓÚÂÁÍÓ‚ (Ó·˚˜ÌÓ „‡Ìˈ‡ D fl‚ÎflÂÚÒfl ÒÚÓ„Ó ‚˚ÔÛÍÎÓÈ Á‡ÏÍÌÛÚÓÈ ÍË‚ÓÈ, ‡ D –  ‚ÌÛÚÂÌÌÓÒÚ¸˛). èÛÒÚ¸ x, y ∈ D ̇ıÓ‰flÚÒfl ̇ ÔflÏÓÈ, ÔÂÂÒÂ͇˛˘ÂÈ ∂D ‚ ÚӘ͇ı z Ë t, ÔË ˝ÚÓÏ z ‡ÒÔÓÎÓÊÂ̇ ̇ ÒÚÓÓÌÂ Û Ë t – ̇ ÒÚÓÓÌ ı. Ç ˝ÚÓÏ ÒÎÛ˜‡Â „Ëθ·ÂÚÓ‚‡ ÏÂÚË͇ h ̇ D ÓÔ‰ÂÎflÂÚÒfl Í‡Í r ln( x, y, z, t ), 2 „‰Â ( x, y, z, t ) – ‡Ì„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌË x, y, z, t Ë r – ÙËÍÒËÓ‚‡Ì̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (D, d) fl‚ÎflÂÚÒfl G-ÔflÏ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÖÒÎË D – ˝ÎÎËÔÒÓˉ, ÚÓ h – „ËÔ·Ó΢ÂÒ͇fl ÏÂÚË͇, ÓÔ‰ÂÎfl˛˘‡fl „ËÔ·Ó΢ÂÒÍÛ˛ „ÂÓÏÂÚ˲ ̇ D. ç‡ Â‰ËÌ˘ÌÓÏ ‰ËÒÍ ∆ = {z ∈ : | z | < 1} ÏÂÚË͇ h ·Û‰ÂÚ ÒÓ‚Ô‡‰‡Ú¸ Ò ÏÂÚËÍÓÈ ä˝ÎË–äÎÂÈ̇–ÉËθ·ÂÚ‡. ÖÒÎË ∂D ÒÓ‰ÂÊËÚ ÍÓÏÔ·̇Ì˚Â, ÌÓ ÌÂÍÓÎÎË̇Ì˚ ÓÚÂÁÍË, ÚÓ ÏÂÚË͇ ̇ D ÏÓÊÂÚ Á‡‰‡‚‡Ú¸Òfl ‚˚‡ÊÂÌËÂÏ h( x, y) + d ( x, y), „‰Â d fl‚ÎflÂÚÒfl β·ÓÈ ÏÂÚËÍÓÈ åËÌÍÓ‚ÒÍÓ„Ó (Ó·˚˜ÌÓ Â‚ÍÎˉӂÓÈ ÏÂÚËÍÓÈ). åÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó åÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó (ËÎË ‡ÒÒÚÓflÌË åËÌÍÓ‚ÒÍÓ„Ó–ÉÂθ‰Â‡) ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ÍÓ̘ÌÓÏÂÌÓ„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ·‡Ì‡ıÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡. îÓχθÌÓ, ÔÛÒÚ¸ n – n-ÏÂÌÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ä – ·Û‰ÂÚ ÒËÏÏÂÚ˘ÌÓ ‚˚ÔÛÍÎÓ ÚÂÎÓ ‚ n , Ú.Â. ÓÚÍ˚Ú‡fl ÓÍÂÒÚÌÓÒÚ¸ ÌÛÎfl, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl Ó„‡Ì˘ÂÌÌÓÈ, ‚˚ÔÛÍÎÓÈ Ë ÒËÏÏÂÚ˘ÌÓÈ (x ∈ K ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ –x ∈ K). íÓ„‰‡ ÙÛÌ͈ËÓ̇ΠåËÌÍÓ‚ÒÍÓ„Ó || ⋅ || K : n → [0, ∞), Á‡‰‡ÌÌ˚È ÙÓÏÛÎÓÈ x || x || K = inf α > 0 : ∈∂K , α
98
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
fl‚ÎflÂÚÒfl ÌÓÏÓÈ Ì‡ n Ë ÏÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó m ÓÔ‰ÂÎflÂÚÒfl ‚˚‡ÊÂÌËÂÏ || x − y || K . åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ( n , m ) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ åËÌÍÓ‚ÒÍÓ„Ó. Ö„Ó ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í n-ÏÂÌÓ ‡ÙÙËÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó An Ò ÏÂÚËÍÓÈ m, ‚ ÍÓÚÓÓÏ Óθ ‰ËÌ˘ÌÓ„Ó ¯‡‡ ‚˚ÔÓÎÌflÂÚ ‰‡ÌÌÓ ˆÂÌڇθÌÓ ÒËÏÏÂÚ˘ÌÓ ‚˚ÔÛÍÎÓ ÚÂÎÓ. ÉÂÓÏÂÚËfl ÔÓÒÚ‡ÌÒÚ‚‡ åËÌÍÓ‚ÒÍÓ„Ó Ì‡Á˚‚‡ÂÚÒfl „ÂÓÏÂÚËÂÈ åËÌÍÓ‚ÒÍÓ„Ó. ÑÎfl ÒÚÓ„Ó ‚˚ÔÛÍÎÓ„Ó ÒËÏÏÂÚ˘ÌÓ„Ó Ú· ÏÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó fl‚ÎflÂÚÒfl ÔÓÂÍÚË‚ÌÓÈ ÏÂÚËÍÓÈ Ë (n, m) fl‚ÎflÂÚÒfl G-ÔflÏ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÉÂÓÏÂÚËfl åËÌÍÓ‚ÒÍÓ„Ó fl‚ÎflÂÚÒfl ‚ÍÎˉӂÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡  ‰ËÌ˘̇fl ÒÙ‡ – ˝ÎÎËÔÒÓˉ. åÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó m ÔÓÔÓˆËÓ̇θ̇ ‚ÍÎˉӂÓÈ ÏÂÚËÍ d E ̇ ͇ʉÓÈ ÔflÏÓÈ l, Ú.Â. m( x, y) = φ(l )dE ( x, y). í‡ÍËÏ Ó·‡ÁÓÏ, ÏÂÚËÍÛ åËÌÍÓ‚ÒÍÓ„Ó ÏÓÊÌÓ Ò˜ËÚ‡Ú¸ ÏÂÚËÍÓÈ, ÓÔ‰ÂÎflÂÏÓÈ ‚Ó ‚ÒÂÏ ‡ÙÙËÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â A n Ë Ó·Î‡‰‡˛ac ˘ÂÈ ÚÂÏ Ò‚ÓÈÒÚ‚ÓÏ, ˜ÚÓ ‡ÙÙËÌÌÓ ÓÚÌÓ¯ÂÌË β·˚ı ÚÂı ÍÓÎÎË̇Ì˚ı ab m( a, c) ÚÓ˜ÂÍ a, b, c (ÒÏ. ‡Á‰. 6.3) ‡‚ÌÓ ÓÚÌÓ¯ÂÌ˲ Ëı ‡ÒÒÚÓflÌËÈ . m( a, b) ÅÛÁÂχÌÓ‚‡ ÏÂÚË͇ ÅÛÁÂχÌÓ‚‡ ÏÂÚË͇ ([Buse55]) ÂÒÚ¸ ÏÂÚË͇ ̇ ‚¢ÂÒÚ‚ÂÌÌÓÏ n-ÏÂÌÓÏ ÔÓÂÍÚË‚ÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â Pn , Á‡‰‡Ì̇fl ‚˚‡ÊÂÌËÂÏ n +1 n +1 xi y xi y min − i ⋅ − i i =1 || x || || y || i =1 || x || || y ||
∑
∑
‰Îfl β·˚ı x = ( x1 : ... : x n +1 ), y = ( y1 : ... : yn +1 ) ∈ P n , „‰Â || x ||=
n +1
∑ x12 . i =1
î·„Ó‚‡fl ÏÂÚË͇ ÑÎfl ‰‡ÌÌÓ„Ó n-ÏÂÌÓ„Ó ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Pn Ù·„Ó‚ÓÈ ÏÂÚËÍÓÈ d ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ Pn , Á‡‰‡Ì̇fl Ù·„ÓÏ, Ú.Â. ‡·ÒÓβÚÓÏ, ÒÓÒÚÓfl˘ËÏ ËÁ ÒËÒÚÂÏ˚ m-ÔÎÓÒÍÓÒÚÂÈ αm, m = 0,..., n – 1, Ò αi–1 ÔË̇‰ÎÂʇ˘ÂÈ αi ‰Îfl ‚ÒÂı i ∈{1,..., n − 1}. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (P n , d) ÒÓ͇˘ÂÌÌÓ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í Fn Ë Ì‡Á˚‚‡ÂÚÒfl Ù·„Ó‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÖÒÎË ‰Îfl ÔÓÒÚ‡ÌÒÚ‚‡ Fn ‚˚·‡Ú¸ ‡ÙÙËÌÌÛ˛ ÒËÒÚÂÏÛ ÍÓÓ‰ËÌ‡Ú (x i)i Ú‡Í, ˜ÚÓ·˚ ‚ÂÍÚÓ˚ ÔflÏ˚ı, ÔÓıÓ‰fl˘Ëı ˜ÂÂÁ (n – m – 1)-ÔÎÓÒÍÓÒÚ¸ α n − m −1 Á‡‰‡‚‡ÎËÒ¸ ÛÒÎÓ‚ËÂÏ x1 = ... = x m = 0, ÚÓ Ù·„Ó‚‡fl ÏÂÚË͇ d(x, y) ÏÂÊ‰Û ÚӘ͇ÏË x = ( x1 ,..., x n ) Ë y = ( y1 ,..., yn ) Á‡‰‡ÂÚÒfl ÔÓ ÙÓÏÛÎ‡Ï d ( x, y) = | x1 − y1 |, ÂÒÎË x1 ≠ y1 , d ( x, y) = | x 2 − y2 |, ÂÒÎË x1 = y1 , x 2 ≠ y2 ,..., d ( x, y) = | x k − yk |, ÂÒÎË x1 = y1 ,..., x k −1 = yk −1 , x k ≠ yk ,... . èÓÂÍÚË‚ÌÓ ÓÔ‰ÂÎÂÌË ÏÂÚËÍË èÓÂÍÚË‚ÌÓ ÓÔ‰ÂÎÂÌË ÏÂÚËÍË ÂÒÚ¸ ‚‚‰ÂÌË ‚ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ı ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ÏÂÚËÍË Ú‡Í, ˜ÚÓ·˚ ˝ÚË ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ ÒÚ‡ÎË ËÁÓÏÓÙÌ˚ÏË Â‚ÍÎˉӂ˚Ï, „ËÔ·Ó΢ÂÒÍËÏ ËÎË ˝ÎÎËÔÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚‡Ï.
99
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
ÑÎfl ÔÓÎÛ˜ÂÌËfl ‚ÍÎˉӂ‡ ÓÔ‰ÂÎÂÌËfl ÏÂÚËÍË ‚ Pn ÒΉÛÂÚ ‚˚‰ÂÎËÚ¸ ‚ ‰‡ÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (n – 1)-ÏÂÌÛ˛ „ËÔÂÔÎÓÒÍÓÒÚ¸ π, ̇Á˚‚‡ÂÏÛ˛ ·ÂÒÍÓ̘ÌÓ Û‰‡ÎÂÌÌÓÈ „ËÔÂÔÎÓÒÍÓÒÚ¸˛, Ë Á‡‰‡Ú¸ n Í‡Í ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÔÓÎÛ˜ÂÌÌÓ ÔÛÚÂÏ Û‰‡ÎÂÌËfl ËÁ ÌÂ„Ó ‰‡ÌÌÓÈ „ËÔÂÔÎÓÒÍÓÒÚË π. Ç ÚÂÏË̇ı Ó‰ÌÓÓ‰Ì˚ı ÍÓÓ‰ËÌ‡Ú π ‚Íβ˜‡ÂÚ ‚Ò ÚÓ˜ÍË ( x1 : ... : x n : 0), ‡ n – ‚Ò ÚÓ˜ÍË ( x1 : ... : x n : x n ) Ò xn ≠ 0. ëΉӂ‡ÚÂθÌÓ, Â„Ó ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ Í‡Í n = {x ∈ P n : x = ( x1 : ... : x n : 1)}. Ö‚ÍÎˉӂ‡ ÏÂÚË͇ d ̇ n Á‡‰‡ÂÚÒfl Í‡Í 〈 x − y, x − y 〉 , n
„‰Â ‰Îfl β·˚ı x = ( x1 : ... : x n : 1), y = ( y1 : ... : yn : 1) ∈ n ËÏÂÂÏ 〈 x, y 〉 =
∑ xi yi . i =1
ÑÎfl ÔÓÎÛ˜ÂÌËfl „ËÔ·Ó΢ÂÒÍÓ„Ó ÓÔ‰ÂÎÂÌËfl ÏÂÚËÍË Ì‡ Pn ‡ÒÒχÚË‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó D ‚ÌÛÚÂÌÌËı ÚÓ˜ÂÍ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ó‚‡Î¸ÌÓÈ „ËÔÂÔÓ‚ÂıÌÓÒÚË Ω ‚ÚÓÓ„Ó ÔÓfl‰Í‡ ‚ Pn . ÉËÔ·Ó΢ÂÒ͇fl ÏÂÚË͇ dhyp ̇ D ÓÔ‰ÂÎflÂÚÒfl ‚˚‡ÊÂÌËÂÏ r ln( x, y, z, t ) , 2 „‰Â z Ë t fl‚Îfl˛ÚÒfl ÚӘ͇ÏË ÔÂÂÒ˜ÂÌËfl ÔflÏÓÈ lx, y, ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ ÚÓ˜ÍË ı Ë Û, Ò ÔÓ‚ÂıÌÓÒÚ¸˛ Ω, (x, y, z, t) ÂÒÚ¸ ‡Ì„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌË ÚÓ˜ÂÍ x, y, z, t Ë r – ÙËÍÒËÓ‚‡Ì̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡. ÖÒÎË ‰Îfl β·˚ı x = ( x1 : ... : x n +1 ), y = ( y1 : ... : yn +1 ) ∈ P n ÓÔ‰ÂÎÂÌÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË 〈 x, y 〉 = − x1 y1 +
i +1
∑ xi , yi , i =1
ÚÓ „ËÔ·Ó΢ÂÒ͇fl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â D = {x ∈ P : 〈 x, x 〉 < 0} ÏÓÊÂÚ ·˚Ú¸ Á‡ÔË҇̇ Í‡Í n
r arccosh
〈 x, y 〉 〈 x, x 〉, 〈 y, y 〉
,
„‰Â r – ÙËÍÒËÓ‚‡Ì̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡ Ë arccosh Ó·ÓÁ̇˜‡ÂÚ ÌÂÓÚˈ‡ÚÂθÌ˚ ‚Â΢ËÌ˚ Ó·‡ÚÌÓ„Ó „ËÔ·Ó΢ÂÒÍÓ„Ó ÍÓÒËÌÛÒ‡. ÑÎfl ÚÓ„Ó ˜ÚÓ·˚ ÔÓÎÛ˜ËÚ¸ ˝ÎÎËÔÚ˘ÂÒÍÓ ÓÔ‰ÂÎÂÌË ÏÂÚËÍË ‚ P n , ÒΉÛÂÚ ‡ÒÒÏÓÚÂÚ¸ ‰Îfl β·˚ı x = ( x1 : ... : x n +1 ), y = ( y1 : ... : yn +1 ) ∈ P n Ò͇ÎflÌÓ ÔÓËÁn
‚‰ÂÌË 〈 x, y 〉 =
∑ xi yi .
ùÎÎËÔÚ˘ÂÒ͇fl ÏÂÚË͇ d ell ̇ Pn Á‡‰‡ÂÚÒfl ÚÂÔ¸ ‚˚-
i =1
‡ÊÂÌËÂÏ r arccos
〈 x, y 〉 〈 x, x 〉, 〈 y, y 〉
,
„‰Â r – ÙËÍÒËÓ‚‡Ì̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡, ‡ arccosh – Ó·‡ÚÌ˚È ÍÓÒËÌÛÒ, ÓÔ‰ÂÎÂÌÌ˚È Ì‡ ÓÚÂÁÍ [0, π]. ÇÓ ‚ÒÂı ‡ÒÒÏÓÚÂÌÌ˚ı ÒÎÛ˜‡flı ÌÂÍÓÚÓ˚ „ËÔÂÔÓ‚ÂıÌÓÒÚË ‚ÚÓÓ„Ó ÔÓfl‰Í‡ ÓÒÚ‡˛ÚÒfl ËÌ‚‡Ë‡ÌÚÌ˚ÏË ÓÚÌÓÒËÚÂθÌÓ ‰‚ËÊÂÌËÈ, Ú.Â. ÔÓÂÍÚË‚Ì˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ, ÒÓı‡Ìfl˛˘Ëı ‰‡ÌÌÛ˛ ÏÂÚËÍÛ. ùÚË „ËÔÂÔÓ‚ÂıÌÓÒÚË Ì‡Á˚‚‡˛ÚÒfl ‡·ÒÓ-
100
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
βڇÏË. ÑÎfl ÒÎÛ˜‡fl ‚ÍÎË‰Ó‚Ó„Ó ÓÔ‰ÂÎÂÌËfl ÏÂÚËÍË ‡·ÒÓβÚÓÏ fl‚ÎflÂÚÒfl ‚ÓÓ·‡Ê‡Âχfl (n – 2)-ÏÂ̇fl Ó‚‡Î¸Ì‡fl ÔÓ‚ÂıÌÓÒÚ¸ ‚ÚÓÓ„Ó ÔÓfl‰Í‡, ‡ ËÏÂÌÌÓ ‚˚ÓʉÂÌÌ˚È ‡·ÒÓÎ˛Ú x12 + ... + x n2 = 0, x n +1 = 0. ÑÎfl ÒÎÛ˜‡fl „ËÔ·Ó΢ÂÒÍÓ„Ó ÓÔ‰ÂÎÂÌËfl ÏÂÚËÍË ‡·ÒÓÎ˛Ú ‚˚‡Ê‡ÂÚÒfl Í‡Í ‰ÂÈÒÚ‚ËÚÂθ̇fl (n – 1)-ÏÂ̇fl Ó‚‡Î¸Ì‡fl „ËÔÂÔÓ‚ÂıÌÓÒÚ¸ ‚ÚÓÓ„Ó ÔÓfl‰Í‡, ‚ ÔÓÒÚÂȯÂÏ ÒÎÛ˜‡Â ‡·ÒÓÎ˛Ú − x12 + x n2 + ... + x n2+1 = 0. ÑÎfl ÒÎÛ˜‡fl ˝ÎÎËÔÚ˘ÂÒÍÓ„Ó ÓÔ‰ÂÎÂÌËfl ÏÂÚËÍË ‡·ÒÓβÚÓÏ fl‚ÎflÂÚÒfl ‚ÓÓ·‡Ê‡Âχfl (n – 1)-ÏÂ̇fl Ó‚‡Î¸Ì‡fl „ËÔÂÔÓ‚ÂıÌÓÒÚ¸ ‚ÚÓÓ„Ó ÔÓfl‰Í‡, ‡ ËÏÂÌÌÓ ‡·ÒÓÎ˛Ú x12 + ... + x n2+1 = 0. 6.3. ÄîîàççÄü ÉÖéåÖíêàü n-åÂÌÓ ‡ÙÙËÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ ÔÓÎÂÏ ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó An (Ò ˝ÎÂÏÂÌÚ‡ÏË, ̇Á˚‚‡ÂÏ˚ÏË ÚӘ͇ÏË ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡), ÍÓÚÓÓÏÛ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ nÏÂÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó V ̇‰ (̇Á˚‚‡ÂÏÓ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ‡ÒÒÓˆËËÓ‚‡ÌÌ˚Ï Ò An ), Ú‡Í ˜ÚÓ ‰Îfl β·Ó„Ó a ∈ A n , A = a + V = {a + v : v ∈ V}. ÑÛ„ËÏË →
ÒÎÓ‚‡ÏË, ÂÒÎË a = ( a1 ,..., an ), b = (b1 ,..., bn ) ∈ A n , ÚÓ ‚ÂÍÚÓ ab = (b1 − a1 ,..., bn − an ) ÔË̇‰ÎÂÊËÚ V. Ç ‡ÙÙËÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ÏÓÊÌÓ ÒÍ·‰˚‚‡Ú¸ ‚ÂÍÚÓ Ò ÚÓ˜ÍÓÈ, ˜ÚÓ·˚ ÔÓÎÛ˜ËÚ¸ ‰Û„Û˛ ÚÓ˜ÍÛ, Ë ‚˚˜ËÚ‡Ú¸ ÚÓ˜ÍË ‰Îfl ÔÓÎÛ˜ÂÌËfl ‚ÂÍÚÓÓ‚, Ӊ̇ÍÓ ÌÂθÁfl ÒÍ·‰˚‚‡Ú¸ ÚÓ˜ÍË, ÔÓÒÍÓθÍÛ ÓÚÒÛÚÒÚ‚ÛÂÚ ÌÛ΂ÓÈ ˝ÎÂÏÂÌÚ. ÖÒÎË ‰‡Ì˚ →
→
ÚÓ˜ÍË a, b, c, d ∈ An , Ú‡Í ˜ÚÓ c ≠ d, ‡ ‚ÂÍÚÓ˚ ab Ë cd fl‚Îfl˛ÚÒfl ÍÓÎÎË̇Ì˚ÏË, ÚÓ →
→
Ò͇Îfl λ, Á‡‰‡‚‡ÂÏ˚È ÛÒÎÓ‚ËÂÏ ab = λ cd , ̇Á˚‚‡ÂÚÒfl ‡ÙÙËÌÌ˚Ï ÓÚÌÓ¯ÂÌËÂÏ ab Ë ab cd Ë Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í . cd ÄÙÙËÌÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË (ËÎË ‡ÙÙËÌÌÓÒÚ¸) ÂÒÚ¸ ·ËÂÍÚË‚ÌÓ ÓÚÓ·‡ÊÂÌË A n ̇ Ò·fl Ò ÒÓı‡ÌÂÌËÂÏ ÍÓÎÎË̇ÌÓÒÚË (Ú.Â. ‚Ò ̇ıÓ‰fl˘ËÂÒfl ̇ ÔflÏÓÈ ÚÓ˜ÍË ÔÓ‰ÓÎʇ˛Ú ÓÒÚ‡‚‡Ú¸Òfl ̇ ÔflÏÓÈ Ë ÔÓÒΠÔÂÓ·‡ÁÓ‚‡ÌËfl) Ë ÓÚÌÓ¯ÂÌËfl ‡ÒÒÚÓflÌËÈ (̇ÔËÏÂ, Ò‰ËÌ̇fl ÚӘ͇ ÓÚÂÁ͇ ÓÒÚ‡ÂÚÒfl Ò‰ËÌÌÓÈ Ë ÔÓÒΠÔÂÓ·‡ÁÓ‚‡ÌËfl). Ç ˝ÚÓÏ ÒÏ˚ÒΠÚÂÏËÌ ‡ÙÙËÌÌ˚È Û͇Á˚‚‡ÂÚ Ì‡ ÓÒÓ·˚È Í·ÒÒ ÔÓÂÍÚË‚Ì˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ, ÍÓÚÓ˚ Ì ÔÂÂÏ¢‡˛Ú Ó·˙ÂÍÚ˚ ËÁ ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇ ·ÂÒÍÓ̘ÌÓ Û‰‡ÎÂÌÌÛ˛ ÔÎÓÒÍÓÒÚ¸ ËÎË Ì‡Ó·ÓÓÚ. ã˛·Ó ‡ÙÙËÌÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË ÂÒÚ¸ ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ‚‡˘ÂÌËÈ, Ô‡‡ÎÎÂθÌ˚ı ÔÂÂÌÓÒÓ‚, ÔÓ‰Ó·ËÈ Ë Ò‰‚Ë„Ó‚. åÌÓÊÂÒÚ‚Ó ‚ÒÂı ‡ÙÙËÌÌ˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ An Ó·‡ÁÛÂÚ „ÛÔÔÛ Aff(An ), ̇Á˚‚‡ÂÏÛ˛ Ó·˘ÂÈ ‡ÙÙËÌÌÓÈ „ÛÔÔÓÈ ÔÓÒÚ‡ÌÒÚ‚‡ An . ä‡Ê‰˚È ˝ÎÂÏÂÌÚ f ∈ n
Aff(An ) ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂÌ ÙÓÏÛÎÓÈ f ( a) = b, bi =
∑ pij a j + c j , „‰Â (( pij )) – j =1
Ó·‡ÚËχfl χÚˈ‡. èÓ‰„ÛÔÔ‡ Aff(An ), ‚Íβ˜‡˛˘‡fl ‡ÙÙËÌÌ˚ ÔÂÓ·‡ÁÓ‚‡ÌËfl Ò det((pij)) = 1, ̇Á˚‚‡ÂÚÒfl ‡‚ÌÓ‡ÙÙËÌÌÓÈ „ÛÔÔÓÈ An . ꇂÌÓ‡ÙÙËÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ‡ÙÙËÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ‡‚ÌÓ‡ÙÙËÌÌÓÈ „ÛÔÔÓÈ ÔÂÓ·‡ÁÓ‚‡ÌËÈ. îÛ̉‡ÏÂÌڇθÌ˚ ËÌ‚‡Ë‡ÌÚ˚ ‡‚ÌÓ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ – Ó·˙ÂÏ˚ Ô‡‡ÎÎÂÎÂÔËÔ‰ӂ. Ç ‡‚ÌÓ‡ÙÙËÌÌÓÈ ÔÎÓÒÍÓÒÚË Ä 2 β·˚ ‰‚‡ ‚ÂÍÚÓ‡ v1 , v2 ËÏÂ˛Ú ËÌ‚‡Ë‡ÌÚ | v1 × v2 | (ÏÓ‰Ûθ Ëı ‚ÂÍÚÓÌÓ„Ó ÔÓËÁ‚‰ÂÌËfl) – Ó·˙ÂÏ Ô‡‡ÎÎÂÎÓ„‡Ïχ, ÔÓÒÚÓÂÌÌÓ„Ó Ì‡ v1 Ë v 2 . ÖÒÎË ËÏÂÂÚÒfl „·‰Í‡fl ÍË‚‡fl γ = γ(t),  ‡ÙÙËÌÌ˚È Ô‡‡ÏÂÚ (ËÎË ‡‚ÌÓ‡ÙÙËÌ̇fl ‰ÎË̇ ‰Û„Ë) ÂÒÚ¸ ËÌ‚‡Ë‡ÌÚÌ˚È Ô‡‡ÏÂÚ, Á‡‰‡‚‡ÂÏ˚È ÙÓÏÛÎÓÈ
101
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË t
s=
∫
d 2 γ d 3γ × Ì‡Á˚‚‡ÂÚÒfl ‡‚ÌÓ‡ÙÙËÌÌÓÈ ÍË‚ËÁds 2 ds 3
| γ ′ × γ ′′ |1 / 3 dt. àÌ‚‡Ë‡ÌÚ k =
t0
ÌÓÈ ÍË‚ÓÈ γ. èÂÂıÓ‰fl Í Ó·˘ÂÈ ‡ÙÙËÌÌÓÈ „ÛÔÔÂ, ‡ÒÒÏÓÚËÏ Â˘Â ‰‚‡ ËÌ‚‡1 dk . ˇÌÚ‡: ‡ÙÙËÌÌÛ˛ ‰ÎËÌÛ ‰Û„Ë σ = k 1 / 2 ds Ë ‡ÙÙËÌÌÛ˛ ÍË‚ËÁÌÛ k = 3 / 2 ds k n ÑÎfl A , n > 2 ‡ÙÙËÌÌ˚È Ô‡‡ÏÂÚ (ËÎË ‡‚ÌÓ‡ÙÙËÌ̇fl ‰ÎË̇ ‰Û„Ë) ÍË‚ÓÈ
∫
t
γ = γ (t) Á‡‰‡ÂÚÒfl ÙÓÏÛÎÓÈ s =
∫
γ ′, γ ′′,..., γ ( n )
2 / n ( n +1)
dt, „‰Â ËÌ‚‡Ë‡ÌÚ ( v1 ,..., vn )
t0
fl‚ÎflÂÚÒfl (ÓËÂÌÚËÓ‚‡ÌÌ˚Ï) Ó·˙ÂÏÓÏ, ÔÓÓʉÂÌÌ˚Ï ‚ÂÍÚÓ‡ÏË v1 ,..., vn , ‡‚Ì˚Ï ÓÔ‰ÂÎËÚÂβ n × n χÚˈ˚, i-È ÒÚÓηˆ ÍÓÚÓÓÈ ÂÒÚ¸ ‚ÂÍÚÓ vi. ÄÙÙËÌÌÓ ‡ÒÒÚÓflÌË ÑÎfl ‰‡ÌÌÓÈ ‡ÙÙËÌÌÓÈ ÔÎÓÒÍÓÒÚË A2  ÎËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ (a, la ) ÒÓÒÚÓËÚ ËÁ ÚÓ˜ÍË a ∈ A2 Ë ÔflÏÓÈ la ⊂ A 2 , ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ ÚÓ˜ÍÛ ‡. ÄÙÙËÌÌÓ ‡ÒÒÚÓflÌË ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÎËÌÂÈÌ˚ı ˝ÎÂÏÂÌÚÓ‚ ÏÌÓÊÂÒÚ‚‡ A2 , Á‡‰‡ÌÌÓÂ Í‡Í 2 f 1/ 3, „‰Â ‰Îfl ‰‡ÌÌ˚ı ÎËÌÂÈÌ˚ı ˝ÎÂÏÂÌÚÓ‚ (a, l a ) Ë (b, lb ) ‚Â΢Ë̇ f ÂÒÚ¸ ÔÎÓ˘‡‰¸ ÚÂÛ„ÓθÌË͇ abc, ÂÒÎË Ò ÂÒÚ¸ ÚӘ͇ ÔÂÂÒ˜ÂÌËfl ÔflÏ˚ı la Ë lb . ÄÙÙËÌÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û (a, l a ) Ë (b, l b ) ÏÓÊÂÚ ·˚Ú¸ ËÌÚÂÔÂÚËÓ‚‡ÌÓ Í‡Í ‡ÙÙËÌ̇fl ‰ÎË̇ ‰Û„Ë Ô‡‡·ÓÎ˚ ab, Ú‡ÍÓÈ ˜ÚÓ la Ë lb ͇҇˛ÚÒfl Ô‡‡·ÓÎ˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‚ ÚӘ͇ı a Ë b. ÄÙÙËÌÌÓ ÔÒ‚‰Ó‡ÒÒÚÓflÌË èÛÒÚ¸ A2 – ‡‚ÌÓ‡ÙÙËÌ̇fl ÔÎÓÒÍÓÒÚ¸ Ë γ = γ ( s) – ÍË‚‡fl ‚ A2 , Á‡‰‡Ì̇fl Í‡Í ÙÛÌ͈Ëfl ‡ÙÙËÌÌÓ„Ó Ô‡‡ÏÂÚ‡ s. ÄÙÙËÌÌÓ ÔÒ‚‰Ó‡ÒÒÚÓflÌË dpaff ̇ A2 Á‡‰‡ÂÚÒfl ÙÓÏÛÎÓÈ →
dpaff ( a, b) = ab ×
dγ , ds →
Ú.Â. ‡‚ÌÓ ÔÎÓ˘‡‰Ë ÔÓ‚ÂıÌÓÒÚË Ô‡‡ÎÎÂÎÓ„‡Ïχ, ÔÓÒÚÓÂÌÌÓ„Ó Ì‡ ‚ÂÍÚÓ‡ı ab Ë dγ dγ , „‰Â b – ÔÓËÁ‚Óθ̇fl ÚӘ͇ ËÁ A2 , ‡ – ÚӘ͇ ̇ γ Ë – ͇҇ÚÂθÌ˚È ‚ÂÍÚÓ Í ds ds ÍË‚ÓÈ γ ‚ ÚӘ͠‡. ÄÙÙËÌÌÓ ÔÒ‚‰Ó‡ÒÒÚÓflÌË ‰Îfl ‡‚ÌÓ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ A3 ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂÌÓ ÔÓ ˝ÚÓÈ Ê ÒıÂÏÂ Í‡Í → dγ d 2 γ ab, ds , , ds 2 „‰Â γ = γ ( s) – ÍË‚‡fl ‚ A 3 , ÓÔ‰ÂÎÂÌ̇fl Í‡Í ÙÛÌ͈Ëfl ‡ÙÙËÌÌÓ„Ó Ô‡‡ÏÂÚ‡ s, b ∈ A3 , ‡ – ÚӘ͇ ÍË‚ÓÈ γ, ‡ ‚ÂÍÚÓ˚
dγ d2γ Ë ÔÓÎÛ˜ÂÌ˚ ‚ ÚӘ͠‡. ds ds 2
102
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
→ dγ d n −1 γ ÑÎfl An , n > 3 ËÏÂÂÏ dpaff ( a, b) = ab, ,..., n −1 . èË ÔÓËÁ‚ÓθÌÓÈ Ô‡‡ds ds ÏÂÚËÁ‡ˆËË γ = γ (t ) ÔÓÎÛ˜ËÏ dpaff ( a, b) =
→ ab, γ ′,..., γ ( n −1) ( γ ′,..., γ ( n −1) )
1− n / 1+ n
.
ÄÙÙËÌ̇fl ÏÂÚË͇ ÄÙÙËÌ̇fl ÏÂÚË͇ – ÏÂÚË͇ ̇ ̇Á‚ÂÚ˚‚‡ÂÏÓÈ ÔÓ‚ÂıÌÓÒÚË r = r (u1 , u2 ) ‚ ‡‚ÌÓ‡ÙÙËÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â A3 , Á‡‰‡Ì̇fl  ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ (( gij )) : gij =
aij det (( aij ))
1/ 4
,
„‰Â aij = (∂1r, ∂ 2 r, ∂ ij r ), i, j ∈{1, 2}.
6.4. çÖÖÇäãàÑéÇÄ ÉÖéåÖíêàü íÂÏËÌÓÏ Ì‚ÍÎˉӂ‡ „ÂÓÏÂÚËfl ÓÔËÒ˚‚‡˛ÚÒfl Í‡Í „ËÔ·Ó΢ÂÒ͇fl „ÂÓÏÂÚËfl (ËÎË „ÂÓÏÂÚËfl ãÓ·‡˜Â‚ÒÍÓ„Ó, „ÂÓÏÂÚËfl ãÓ·‡˜Â‚ÒÍÓ„Ó–ÅÓθflȖɇÛÒÒ‡), Ú‡Í Ë ˝ÎÎËÔÚ˘ÂÒ͇fl „ÂÓÏÂÚËfl (ËÌÓ„‰‡  ڇÍÊ ̇Á˚‚‡˛Ú ËχÌÓ‚ÓÈ „ÂÓÏÂÚËÂÈ), ÍÓÚÓ˚ ÓÚ΢‡˛ÚÒfl ÓÚ Â‚ÍÎˉӂÓÈ (ËÎË Ô‡‡·Ó΢ÂÒÍÓÈ) „ÂÓÏÂÚËË. éÒÌÓ‚Ì˚Ï ‡Á΢ËÂÏ ÏÂÊ‰Û Â‚ÍÎˉӂÓÈ Ë Ì‚ÍÎˉӂÓÈ „ÂÓÏÂÚËflÏË fl‚ÎflÂÚÒfl ÔËÓ‰‡ Ô‡‡ÎÎÂθÌ˚ı ÔflÏ˚ı. Ç Â‚ÍÎˉӂÓÈ „ÂÓÏÂÚËË, ÂÒÎË Ï˚ ËÏÂÂÏ ÔflÏÛ˛ l Ë ÚÓ˜ÍÛ ‡, ÍÓÚÓ‡fl ÂÈ Ì ÔË̇‰ÎÂÊËÚ, ÚÓ Ï˚ ÏÓÊÂÏ ÔÓ‚ÂÒÚË ˜ÂÂÁ ˝ÚÛ ÚÓ˜ÍÛ ÚÓθÍÓ Ó‰ÌÛ ÔflÏÛ˛, Ô‡‡ÎÎÂθÌÛ˛ l. Ç „ËÔ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË ÒÛ˘ÂÒÚ‚ÛÂÚ ·ÂÒÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó ÔflÏ˚ı, ÔÓıÓ‰fl˘Ëı ˜ÂÂÁ ÚÓ˜ÍÛ ‡ Ë Ô‡‡ÎÎÂθÌ˚ı l. Ç ˝ÎÎËÔÚ˘ÂÒÍÓÈ „ÂÓÏÂÚËË Ô‡‡ÎÎÂθÌ˚ı ÔflÏ˚ı ‚ÓÓ·˘Â Ì ÒÛ˘ÂÒÚ‚ÛÂÚ. ëÙ¢ÂÒ͇fl „ÂÓÏÂÚËfl Ú‡ÍÊ fl‚ÎflÂÚÒfl "Ì‚ÍÎˉӂÓÈ", Ӊ̇ÍÓ ‚ ÌÂÈ Ì ‰ÂÈÒÚ‚ÛÂÚ ‡ÍÒËÓχ, ÛÚ‚Âʉ‡˛˘‡fl, ˜ÚÓ Î˛·˚ ‰‚ ÚÓ˜ÍË Á‡‰‡˛Ú ÚÓθÍÓ Ó‰ÌÛ ÔflÏÛ˛. ëÙ¢ÂÒ͇fl ÏÂÚË͇ n +1 èÛÒÚ¸ S n (0, r ) = x ∈ n +1 : xi2 = r 2 – ÒÙ‡ ‚ n +1 Ò ˆÂÌÚÓÏ 0 Ë ‡‰ËÛÒÓÏ i =1 r > 0. ëÙ¢ÂÒ͇fl ÏÂÚË͇ (ËÎË ÏÂÚË͇ ·Óθ¯Ó„Ó ÍÛ„‡) dsph ÂÒÚ¸ ÏÂÚË͇ ̇ S n (0, r ), ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑
r arccos
n +1
∑ xi yi i =1
r2
,
„‰Â arccos – ‡ÍÍÓÒËÌÛÒ Ì‡ ÓÚÂÁÍ [0, π]. ùÚÓ – ‰ÎË̇ ‰Û„Ë ·Óθ¯Ó„Ó ÍÛ„‡, ÔÓıÓ-
103
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
‰fl˘Â„Ó ˜ÂÂÁ ı Ë Û. àÒÔÓθÁÛfl Òڇ̉‡ÚÌÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË 〈 x, y 〉 =
n +1
∑ xi yi i =1
̇ n +1 , ÒÙ¢ÂÒÍÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í r arccos
〈 x, y 〉 〈 x, x 〉 〈 y, y 〉
.
åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ( S n (0, r ), dsph ) ̇Á˚‚‡ÂÚÒfl n-ÏÂÌ˚Ï ÒÙ¢ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ùÚÓ – ÔÓÒÚ‡ÌÒÚ‚Ó ÍË‚ËÁÌ˚ 1/r2 (r – ‡‰ËÛÒ ÍË‚ËÁÌ˚), ÍÓÚÓÓ fl‚ÎflÂÚÒfl ÏÓ‰Âθ˛ n-ÏÂÌÓÈ ÒÙ¢ÂÒÍÓÈ „ÂÓÏÂÚËË. ÅÓθ¯Ë ÍÛ„Ë ÒÙÂ˚ – Â„Ó „ÂÓ‰ÂÁ˘ÂÒÍËÂ, ‚Ò „ÂÓ‰ÂÁ˘ÂÒÍË fl‚Îfl˛ÚÒfl Á‡ÏÍÌÛÚ˚ÏË Ë ËÏÂ˛Ú Ó‰Ë̇ÍÓ‚Û˛ ‰ÎËÌÛ (ÒÏ., ̇ÔËÏÂ, [Blum70]). ùÎÎËÔÚ˘ÂÒ͇fl ÏÂÚË͇ èÛÒÚ¸ Pn – ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó. ùÎÎËÔÚ˘ÂÒÍÓÈ ÏÂÚËÍÓÈ dell ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ Pn , ÓÔ‰ÂÎÂÌ̇fl Í‡Í r arccos
〈 x, y 〉 〈 x, x 〉 〈 y, y 〉
,
‰Îfl β·˚ı x = ( x1 : ... : x n +1 ), y = ( y1 : ... : yn +1 ) ∈ P n , „‰Â 〈 x, y 〉 =
n +1
∑ xi yi , r – ÙËÍÒËi =1
Ó‚‡Ì̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡ Ë arccos – ‡ÍÍÓÒËÌÛÒ Ì‡ ÓÚÂÁÍ [0, π]. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (P n , dell ) ̇Á˚‚‡ÂÚÒfl n-ÏÂÌ˚Ï ˝ÎÎËÔÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ë Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÏÓ‰Âθ n-ÏÂÌÓÈ ˝ÎÎËÔÚ˘ÂÒÍÓÈ „ÂÓÏÂÚËË. éÌÓ fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÍË‚ËÁÌ˚ 1/r2 (r – ‡‰ËÛÒ ÍË‚ËÁÌ˚). èË r → ∞ ÏÂÚ˘ÂÒÍË ÙÓÏÛÎ˚ ˝ÎÎËÔÚ˘ÂÒÍÓÈ „ÂÓÏÂÚËË Ô‚‡˘‡˛ÚÒfl ‚ ÙÓÏÛÎ˚ ‚ÍÎˉӂÓÈ „ÂÓÏÂÚËË (ËÎË ÒÚ‡ÌÓ‚flÚÒfl Î˯ÂÌÌ˚ÏË ÒÏ˚Ò·). ÖÒÎË Pn ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó En (0, r), ÔÓÎÛ˜ÂÌÌÓ ËÁ ÒÙÂ˚ n +1 S n (0, r ) = x ∈ n +1 : xi2 = r 2 ‚ n +1 Ò ˆÂÌÚÓÏ 0 Ë ‡‰ËÛÒÓÏ r ÔÓÒ‰ÒÚ‚ÓÏ ÓÚÓÊ i =1 ‰ÂÒÚ‚ÎÂÌËfl ‰Ë‡ÏÂڇθÌÓ ÔÓÚË‚ÓÔÓÎÓÊÌ˚ı ÚÓ˜ÂÍ, ÚÓ ˝ÎÎËÔÚ˘ÂÒ͇fl ÏÂÚË͇ ̇ π En (0, r) ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂ̇ Í‡Í dsph ( x, y), ÂÒÎË dsph ( x, y) ≤ r Ë Í‡Í 2 π πr − dsph ( x, y), ÂÒÎË dsph ( x, y) > r, „‰Â dsph – ÒÙ¢ÂÒ͇fl ÏÂÚË͇ ̇ Sn(0, r). í‡ÍËÏ 2 Ó·‡ÁÓÏ, Ì ÒÛ˘ÂÒÚ‚ÛÂÚ ‰‚Ûı ÚÓ˜ÂÍ ÏÌÓÊÂÒÚ‚‡ En (0, r) ̇ ‡ÒÒÚÓflÌËË, Ô‚˚π ¯‡˛˘ÂÏ r. ùÎÎËÔÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó En (0, r)dell) ̇Á˚‚‡ÂÚÒfl ÒÙÂÓÈ èÛ‡Ì2 ͇Â. ÖÒÎË Pn ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó En ÔflÏ˚ı, ÔÓıÓ‰fl˘Ëı ˜ÂÂÁ ÌÛ΂ÓÈ ˝ÎÂÏÂÌÚ ‚ n +1 , ÚÓ ˝ÎÎËÔÚ˘ÂÒ͇fl ÏÂÚË͇ ̇ En ÓÔ‰ÂÎflÂÚÒfl Í‡Í Û„ÓÎ ÏÂÊ‰Û ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË. n-åÂÌÓ ˝ÎÎËÔÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓÒÚÓflÌÌÓÈ ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚. ùÚÓ – ‰ËÌÒÚ‚ÂÌÌÓ ڇÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÍÓÚÓÓ ÚÓÔÓÎӄ˘ÂÒÍË ˝Í‚Ë‚‡ÎÂÌÚÌÓ ÔÓÂÍÚË‚ÌÓÏÛ ÔÓÒÚ‡ÌÒÚ‚Û (ÒÏ., ̇ÔËÏÂ, [Blum70], [Buse55]).
∑
104
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ùÏËÚÓ‚‡ ˝ÎÎËÔÚ˘ÂÒ͇fl ÏÂÚË͇ èÛÒÚ¸ Pn – n-ÏÂÌÓ ÍÓÏÔÎÂÍÒÌÓ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó. ùÏËÚÓ‚‡ ˝ÎÎËÔH Ú˘ÂÒ͇fl ÏÂÚË͇ dell (ÒÏ., ̇ÔËÏÂ, [Buse55]) ÂÒÚ¸ ÏÂÚË͇ ̇ Pn , ÓÔ‰ÂÎÂÌ̇fl Í‡Í 〈 x, y 〉 r arccos 〈 x, x 〉 〈 y, y 〉 ‰Îfl β·˚ı x = ( x1 : ... : x n +1 ), y = ( y1 : ... : yn +1 ) ∈ P n , „‰Â 〈 x, y 〉 =
n +1
∑ xi yi , r – ÙËÍÒËi =1
Ó‚‡Ì̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡ Ë arccos – ‡ÍÍÓÒËÌÛÒ Ì‡ ÓÚÂÁÍ [0, π]. H åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó P n , dell ̇Á˚‚‡ÂÚÒfl n-ÏÂÌ˚Ï ˝ÏËÚÓ‚˚Ï ˝ÎÎËÔ-
(
)
Ú˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ÒÏ. åÂÚË͇ îÛ·ËÌË–òÚÛ‰Ë, „Î. 7). åÂÚË͇ ˝ÎÎËÔÚ˘ÂÒÍÓÈ ÔÎÓÒÍÓÒÚË åÂÚË͇ ˝ÎÎËÔÚ˘ÂÒÍÓÈ ÔÎÓÒÍÓÒÚË ÂÒÚ¸ ˝ÎÎËÔÚ˘ÂÒ͇fl ÏÂÚË͇ ̇ ˝ÎÎËÔÚ˘ÂÒÍÓÈ ÔÎÓÒÍÓÒÚË P2 . ÖÒÎË P2 ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÒÙ‡ èÛ‡Ì͇ (Ú.Â. ÒÙ‡ ‚ 3 Ò ÓÚÓʉÂÒÚ‚ÎÂÌÌ˚ÏË ‰Ë‡ÏÂڇθÌÓ ÔÓÚË‚ÓÔÓÎÓÊÌ˚ÏË ÚӘ͇ÏË) ‰Ë‡ÏÂÚ‡ 1, ͇҇˛˘‡flÒfl ‡Ò¯ËÂÌÌÓÈ ÍÓÏÔÎÂÍÒÌÓÈ ÔÎÓÒÍÓÒÚË = ∪ {∞} ‚ ÚӘ͠z = 0, ÚÓ, ÔË ÒÚÂÂÓ„‡Ù˘ÂÒÍÓÈ ÔÓÂ͈ËË Ò "ë‚ÂÌÓ„Ó ÔÓÎ˛Ò‡" (0,0,1), Ò ÓÚÓʉÂ1 ÒÚ‚ÎÂÌÌ˚ÏË ÚӘ͇ÏË z Ë − fl‚ÎflÂÚÒfl ÏÓ‰Âθ˛ ˝ÎÎËÔÚ˘ÂÒÍÓÈ ÔÎÓÒÍÓÒÚË Ë ÏÂÚz Ë͇ dell ˝ÎÎËÔÚ˘ÂÒÍÓÈ ÔÎÓÒÍÓÒÚË Ì‡ ÌÂÈ ÓÔ‰ÂÎflÂÚÒfl Ò‚ÓËÏ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌ| dz |2 ÚÓÏ ds 2 = . (1+ | z |2 )2 èÒ‚‰Ó˝ÎÎËÔÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË èÒ‚‰Ó˝ÎÎËÔÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË (ËÎË ˝ÎÎËÔÚ˘ÂÒÍÓ ÔÒ‚‰Ó‡ÒÒÚÓflÌËÂ) dpell ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ ‡Ò¯ËÂÌÌÓÈ ÍÓÏÔÎÂÍÒÌÓÈ ÔÎÓÒÍÓÒÚË = ∪ {∞} Ò ÓÚÓʉÂ1 ÒÚ‚ÎÂÌÌ˚ÏË ÚӘ͇ÏË z Ë − , ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í z z−u . 1 + zu àÏÂÌÌÓ, dpell ( z, u) = tg dell ( z, u), „‰Â dpell – ÏÂÚË͇ ˝ÎÎËÔÚ˘ÂÒÍÓÈ ÔÎÓÒÍÓÒÚË. ÉËÔ·Ó΢ÂÒ͇fl ÏÂÚË͇ èÛÒÚ¸ P2 – n-ÏÂÌÓ ‚¢ÂÒÚ‚ÂÌÌÓ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë ÔÛÒÚ¸ ‰Îfl β·˚ı x = ( x1 : ... : x n +1 ), y = ( y1 : ... : yn +1 ) ∈ P n Á‡‰‡ÌÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË 〈x, y〉 = = − x1 y1 +
n +1
∑ xi yi . i=2
ÉËÔ·Ó΢ÂÒ͇fl ÏÂÚË͇ d h y p ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â H n = {x ∈P n : : 〈 x, x 〉 < 0}, ÓÔ‰ÂÎÂÌ̇fl Í‡Í r arccosh
〈 x, y 〉 〈 x, x 〉 〈 y, y 〉
,
105
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
„‰Â r – ÙËÍÒËÓ‚‡Ì̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡ Ë arccosh Ó·ÓÁ̇˜‡ÂÚ ÌÂÓÚˈ‡ÚÂθÌ˚ ‚Â΢ËÌ˚ Ó·‡ÚÌÓ„Ó „ËÔ·Ó΢ÂÒÍÓ„Ó ÍÓÒËÌÛÒ‡. èË Ú‡ÍÓÏ ÔÓÒÚÓÂÌËË ÚÓ˜ÍË ÏÌÓÊÂÒÚ‚‡ H n ÏÓ„ÛÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í Ó‰ÌÓÏÂÌ˚ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ ÔÒ‚‰Ó‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n,1 ‚ÌÛÚË ÍÓÌÛÒ‡ C = {x ∈ n,1 : 〈 x, x 〉 = 0}. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ( H n , dhyp ) ̇Á˚‚‡ÂÚÒfl n-ÏÂÌ˚Ï „ËÔ·Ó΢ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. éÌÓ fl‚ÎflÂÚÒfl ÏÓ‰Âθ˛ n-ÏÂÌÓÈ „ËÔ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË, ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÍË‚ËÁÌ˚ –1/r2 (r – ‡‰ËÛÒ ÍË‚ËÁÌ˚). èË Á‡ÏÂÌ r ̇ ir ‚Ò ÏÂÚ˘ÂÒÍË ÙÓÏÛÎ˚ „ËÔ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË ÔÂÂȉÛÚ ‚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ÙÓÏÛÎ˚ ˝ÎÎËÔÚ˘ÂÒÍÓÈ „ÂÓÏÂÚËË. èË r → ∞ ÙÓÏÛÎ˚ ͇ʉÓÈ ËÁ ÒËÒÚÂÏ ‰‡˛Ú ÙÓÏÛÎ˚ ‚ÍÎˉӂÓÈ „ÂÓÏÂÚËË (ËÎË ÒÚ‡ÌÓ‚flÚÒfl Î˯ÂÌÌ˚ÏË ÒÏ˚Ò·). n ÖÒÎË Hn ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó x ∈ n : xi2 < K , „‰Â ä > 1 – ÔÓ i =1 ËÁ‚Óθ̇fl ÙËÍÒËÓ‚‡Ì̇fl ÍÓÌÒÚ‡ÌÚ‡, ÚÓ „ËÔ·Ó΢ÂÒÍÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í r 1 + 1 − γ ( x, y) , ln 2 1 − 1 − γ ( x, y)
∑
„‰Â γ ( x, y) =
K −
n
∑ i =1
xi2 K −
n
∑ yi2 i =1 2
Ë r – ÔÓÎÓÊËÚÂθÌÓ ˜ËÒÎÓ Ò tg
1 1 = . r K
xi yi K − i =1 ÖÒÎË Hn ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÔÓ‰ÏÌÓ„ÓÓ·‡ÁË (n + 1)-ÏÂÌÓ„Ó ÔÒ‚‰Ó‚ÍÎˉӂ‡ n
∑
ÔÓÒÚ‡ÌÒÚ‚‡ n,1 ÒÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ 〈 x, y 〉 = − x1 y1 +
n +1
∑ xi yi
(ËÏÂÌÌÓ,
i=2
Í‡Í ‚ÂıÌËÈ ÎËÒÚ {x ∈ n,1 : 〈 x, x 〉 = −1, x1 > 0} ‰‚ÛıÔÓÎÓÒÚÌÓ„Ó „ËÔ·ÓÎÓˉ‡ ‚‡˘ÂÌËfl), ÚÓ „ËÔ·Ó΢ÂÒ͇fl ÏÂÚË͇ ̇ Hn ÔÓÓʉ‡ÂÚÒfl ÔÒ‚‰ÓËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ n,1 (ÒÏ. åÂÚË͇ ãÓÂ̈‡, „Î. 26). n-åÂÌÓ „ËÔ·Ó΢ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓÒÚÓflÌÌÓÈ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚. ùÚÓ Â‰ËÌÒÚ‚ÂÌÌÓ ڇÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï Ë ÚÓÔÓÎӄ˘ÂÒÍË ˝Í‚Ë‚‡ÎÂÌÚÌ˚Ï Â‚ÍÎË‰Ó‚Û ÔÓÒÚ‡ÌÒÚ‚Û (ÒÏ., ̇ÔËÏÂ, [Blum70], [Buse55]). ùÏËÚÓ‚‡ „ËÔ·Ó΢ÂÒ͇fl ÏÂÚË͇ èÛÒÚ¸ P n – n-ÏÂÌÓ ÍÓÏÔÎÂÍÒÌÓ ÔÓÂÍÚË‚ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë ÔÛÒÚ¸ ‰Îfl β·˚ı x = ( x1 : ... : x n +1 ), y = ( y1 : ... : yn +1 ) ∈ P n Á‡‰‡ÌÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË 〈 x, y 〉 = − x1 y1 +
n +1
∑ xi yi . i=2
H ùÏËÚÓ‚‡ „ËÔ·Ó΢ÂÒ͇fl ÏÂÚË͇ dhyp (ÒÏ., ̇ÔËÏÂ, [Buse55]) ÂÒÚ¸ ÏÂÚË͇
̇ ÏÌÓÊÂÒÚ‚Â H n = {x ∈ P n : 〈 x, x 〉 < 0}, Á‡‰‡‚‡Âχfl Í‡Í r arccosh
〈 x, y 〉 〈 x, x 〉 〈 y, y 〉
,
106
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
„‰Â r – ÙËÍÒËÓ‚‡Ì̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡ Ë arccosh Ó·ÓÁ̇˜‡ÂÚ ÌÂÓÚˈ‡ÚÂθÌ˚ ‚Â΢ËÌ˚ Ó·‡ÚÌÓ„Ó „ËÔ·Ó΢ÂÒÍÓ„Ó ÍÓÒËÌÛÒ‡. H åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó H n , dhyp ̇Á˚‚‡ÂÚÒfl n-ÏÂÌ˚Ï ˝ÏËÚÓ‚˚Ï
(
)
„ËÔ·Ó΢ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. åÂÚË͇ èÛ‡Ì͇ åÂÚË͇ èÛ‡Ì͇ dP ÂÒÚ¸ „ËÔ·Ó΢ÂÒ͇fl ÏÂÚË͇ ‰Îfl ÏÓ‰ÂÎË ‰ËÒ͇ èÛ‡Ì͇ (ËÎË ÏÓ‰ÂÎË ÍÓÌÙÓÏÌÓ„Ó ‰ËÒ͇) „ËÔ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË. Ç ‰‡ÌÌÓÈ ÏÓ‰ÂÎË Í‡Ê‰‡fl ÚӘ͇ ‰ËÌ˘ÌÓ„Ó ‰ËÒ͇ ∆ = {z ∈ : | z | < 1} ̇Á˚‚‡ÂÚÒfl „ËÔ·Ó΢ÂÒÍÓÈ ÚÓ˜ÍÓÈ, Ò‡Ï ‰ËÒÍ ∆ – „ËÔ·Ó΢ÂÒÍÓÈ ÔÎÓÒÍÓÒÚ¸˛, ‰Û„Ë ÓÍÛÊÌÓÒÚÂÈ (Ë ‰Ë‡ÏÂÚ˚) ‚ ∆, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ÓÚÓ„Ó̇θÌ˚ÏË Í ‡·ÒÓβÚÛ Ω = {z ∈ : | z | < 1}, ̇Á˚‚‡˛ÚÒfl „ËÔ·Ó΢ÂÒÍËÏË ÔflÏ˚ÏË. ä‡Ê‰‡fl ÚӘ͇ ËÁ Ω Ì‡Á˚‚‡ÂÚÒfl ˉ‡θÌÓÈ ÚÓ˜ÍÓÈ. ì„ÎÓ‚˚ ËÁÏÂÂÌËfl ‚ ‰‡ÌÌÓÈ ÏÓ‰ÂÎË Ú‡ÍË ÊÂ, Í‡Í Ë ‚ „ËÔ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË. åÂÚË͇ èÛ‡Ì͇ ̇ ∆ Á‡‰‡ÂÚÒfl  ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 =
dz12 + dz 22 | dz | 2 = (1 − | z |2 )2 1 − z12 − z 22
(
)
2
.
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË z Ë u ‰ËÒ͇ ∆ ÏÓÊÂÚ ·˚Ú¸ Á‡ÔËÒ‡ÌÓ Í‡Í 1 | 1 − zu | + | z − u | |z−u| ln = arctgh . 2 | 1 − zu | − | z − u | | 1 − zu | Ç ÚÂÏË̇ı ‡Ì„‡ÏÓÌ˘ÂÒÍÓ„Ó ÓÚÌÓ¯ÂÌËfl ÓÌÓ ‡‚ÌÓ 1 1 ( z ∗ − z ) (u * − u ) ln( z, u, z * , u* ) = ln * , 2 2 ( z − u ) (u * − z ) „‰Â z * Ë u* fl‚Îfl˛ÚÒfl ÚӘ͇ÏË ÔÂÂÒ˜ÂÌËfl „ËÔ·Ó΢ÂÒÍÓÈ ÔflÏÓÈ ÎËÌËË, ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ z Ë u, Ò Ω, z * ÒÓ ÒÚÓÓÌ˚ u Ë u* – ÒÓ ÒÚÓÓÌ˚ z. Ç ÏÓ‰ÂÎË ÔÓÎÛÔÎÓÒÍÓÒÚË èÛ‡Ì͇ „ËÔ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË „ËÔ·Ó΢ÂÒ͇fl ÔÎÓÒÍÓÒÚ¸ ÂÒÚ¸ ‚ÂıÌflfl ÔÓÎÛÔÎÓÒÍÓÒÚ¸ H 2 = {z ∈ : z 2 > 0}, ‡ „ËÔ·Ó΢ÂÒÍË ÔflÏ˚ – ÔÓÎÛÓÍÛÊÌÓÒÚË Ë ÔÓÎÛÔflÏ˚Â, ÍÓÚÓ˚ ÓÚÓ„Ó̇θÌ˚ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÓÒË. Ä·ÒÓÎ˛Ú (Ú.Â. ÏÌÓÊÂÒÚ‚Ó Ë‰Â‡Î¸Ì˚ı ÚÓ˜ÂÍ) ÂÒÚ¸ ‰ÂÈÒÚ‚ËÚÂθ̇fl ÓÒ¸ ‚ÏÂÒÚÂ Ò ·ÂÒÍÓ̘ÌÓ Û‰‡ÎÂÌÌÓÈ ÚÓ˜ÍÓÈ. ì„ÎÓ‚˚ ËÁÏÂÂÌËfl ‚ ‰‡ÌÌÓÈ ÏÓ‰ÂÎË Ú‡ÍË ÊÂ, Í‡Í Ë ‚ „ËÔ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ÏÂÚËÍË èÛ‡Ì͇ ̇ H 2 Á‡‰‡ÂÚÒfl ÔÓ ÙÓÏÛΠds 2 =
| dz |2 dz12 + dz 22 = . ( z )2 z 22
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË z, u ÏÓÊÂÚ ·˚Ú¸ Á‡ÔËÒ‡ÌÓ Í‡Í 1 |z−u |+|z−u| |z−u| ln = arctgh . 2 |z−u |−|z−u| | z −u | Ç ÚÂÏË̇ı ‡Ì„‡ÏÓÌ˘ÂÒÍÓ„Ó ÓÚÌÓ¯ÂÌËfl ÓÌÓ ‡‚ÌÓ 1 1 ( z ∗ − z ) (u * − u ) ln( z, u, z * , u* ) = ln * , 2 2 ( z − u ) (u * − z )
107
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
„‰Â z * – ˉ‡θ̇fl ÚӘ͇ ÔÓÎÛÔflÏÓÈ, ËÒıÓ‰fl˘ÂÈ ËÁ z Ë ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ u, Ë u* – ˉ‡θ̇fl ÚӘ͇ ÔÓÎÛÔflÏÓÈ, ËÒıÓ‰fl˘ÂÈ ËÁ u Ë ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ z. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â „ËÔ·Ó΢ÂÒ͇fl ÏÂÚË͇ ‚ β·ÓÈ Ó·Î‡ÒÚË D ⊂ , Ëϲ˘ÂÈ ÔÓ Í‡ÈÌÂÈ Ï ÚË „‡Ì˘Ì˚ ÚÓ˜ÍË, Á‡‰‡ÂÚÒfl Í‡Í ÔÓÓ·‡Á ÏÂÚËÍË èÛ‡Ì͇ ̇ ∆ ÔË ÍÓÌÙÓÏÌÓÏ ÓÚÓ·‡ÊÂÌËË f : D → ∆. Ö ÎËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ËÏÂÂÚ ÙÓÏÛ ds 2 =
| f ′( z ) |2 | dz |2 . (1 − | f ( z ) |2 )2
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË z Ë u ËÁ D ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂÌÓ Í‡Í 1 | 1 − f ( z ) f (u ) | + | f ( z ) − f (u ) | . ln 2 | 1 − f ( z ) f (u ) | − | f ( z ) − f (u ) | èÒ‚‰Ó„ËÔ·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌË èÒ‚‰Ó„ËÔ·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌË (ËÎË ‡ÒÒÚÓflÌË ÉÎËÒÓ̇, „ËÔ·Ó΢ÂÒÍÓ ÔÒ‚‰Ó‡ÒÒÚÓflÌËÂ) dp hyp ÂÒÚ¸ ÏÂÚË͇ ̇ ‰ËÌ˘ÌÓÏ ‰ËÒÍ ∆ = {z ∈ : | z | < 1}, Á‡‰‡Ì̇fl Í‡Í z−u . 1 − zu àÏÂÌÌÓ, dphyp ( z, u) = tgh dP ( z, u), „‰Â dP – ÏÂÚË͇ èÛ‡Ì͇ ̇ ∆. åÂÚË͇ ä˝ÎË–äÎÂÈ̇–ÉËθ·ÂÚ‡ åÂÚË͇ ä˝ÎË–äÎÂÈ̇–ÉËθ·ÂÚ‡ dCKH – „ËÔ·Ó΢ÂÒ͇fl ÏÂÚË͇ ‰Îfl ÏÓ‰ÂÎË äÎÂÈ̇ (ËÎË ÏÓ‰ÂÎË ÔÓÂÍÚË‚ÌÓ„Ó ‰ËÒ͇, ÏÓ‰ÂÎË ÅÂθڇÏË–äÎÂÈ̇) „ËÔ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË. Ç ˝ÚÓÈ ÏÓ‰ÂÎË „ËÔ·Ó΢ÂÒ͇fl ÔÎÓÒÍÓÒÚ¸ ‡ÎËÁÛÂÚÒfl Í‡Í Â‰ËÌ˘Ì˚È ‰ËÒÍ ∆ = {z ∈ : | z | < 1} Ë „ËÔ·Ó΢ÂÒÍË ÔflÏ˚ – Í‡Í ıÓ‰˚ ‰ËÒ͇ ∆. ä‡Ê‰‡fl ÚӘ͇ ‡·ÒÓβڇ Ω = {z ∈ : | z | = 1} ̇Á˚‚‡ÂÚÒfl ˉ‡θÌÓÈ ÚÓ˜ÍÓÈ. ì„ÎÓ‚˚ ËÁÏÂÂÌËfl ‚ ‰‡ÌÌÓÈ ÏÓ‰ÂÎË ËÒ͇ÊÂÌ˚. åÂÚË͇ ä˝ÎË–äÎÂÈ̇–ÉËθ·ÂÚ‡ ̇ ∆ Á‡‰‡ÂÚÒfl  ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ (( gij )), i, j = 1, 2 : g11 =
(
) −z )
r 2 1 − z 22
(1 − z
2 1
2 2 2
, g12 =
r 2 z1z 2
(1 − z
2 1
−
)
2 z 22
, g22 =
(
) −z )
r 2 1 − z12
(1 − z
2 1
2 2 2
,
„‰Â r – ÔÓËÁ‚Óθ̇fl ÔÓÎÓÊËÚÂθ̇fl ÍÓÌÒÚ‡ÌÚ‡. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚӘ͇ÏË z Ë u ËÁ ∆ ÏÓÊÂÚ ·˚Ú¸ Á‡ÔËÒ‡ÌÓ Í‡Í 1 − z1u1 − z 2 u2 r arccosh 1 − z 2 − z 2 1 − u2 − u2 1 2 1 2
,
„‰Â arccosh Ó·ÓÁ̇˜‡ÂÚ ÌÂÓÚˈ‡ÚÂθÌ˚ ‚Â΢ËÌ˚ Ó·‡ÚÌÓ„Ó „ËÔ·Ó΢ÂÒÍÓ„Ó ÍÓÒËÌÛÒ‡. åÂÚË͇ ÇÂȯڇÒÒ‡ ÑÎfl ‰‡ÌÌÓ„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó n-ÏÂÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ò͇ÎflÌÓ„Ó ÔÓËÁ‚‰ÂÌËfl ( n , 〈 , 〉), n ≥ 2 ÏÂÚË͇ ÇÂȯڇÒÒ‡ dW ÂÒÚ¸ ÏÂÚË͇ ̇ n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í arccosh
(
)
1 + 〈 x, x 〉 1 + 〈 y, y 〉 − 〈 x, y 〉 ,
108
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
„‰Â arccosh Ó·ÓÁ̇˜‡ÂÚ ÌÂÓÚˈ‡ÚÂθÌ˚ ‚Â΢ËÌ˚ Ó·‡ÚÌÓ„Ó „ËÔ·Ó΢ÂÒÍÓ„Ó ÍÓÒËÌÛÒ‡. á‰ÂÒ¸ x, 1 + 〈 x, x 〉 ∈ n ⊕ fl‚Îfl˛ÚÒfl ÍÓÓ‰Ë̇ڇÏË ÇÂȯڇÒÒ‡ ÚÓ˜ÍË
(
)
x ∈ n Ë ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (n, dW) ÏÓÊÂÚ ·˚Ú¸ ÓÚÓʉÂÒÚ‚ÎÂÌÓ Ò ÏÓ‰Âθ˛ ÇÂȯڇÒÒ‡ „ËÔ·Ó΢ÂÒÍÓÈ „ÂÓÏÂÚËË. 1 − 〈 x, y 〉 åÂÚË͇ ä˝ÎË–äÎÂÈ̇–ÉËθ·ÂÚ‡ dCKH ( x, y) = arccosh ̇ 1 − 〈 x, x 〉 1 − 〈 y, y 〉 ÓÚÍ˚ÚÓÏ ¯‡Â B n = {x ∈ n : 〈 x, x 〉 < 1} ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜Â̇ ËÁ dW ÔÓÒ‰ÒÚ‚ÓÏ ‡‚ÂÌÒÚ‚‡ dCKH ( x, y) = dW (µ( x ), µ( y)), „‰Â µ : n → B n fl‚ÎflÂÚÒfl ÓÚÓ·‡ÊÂÌËÂÏ x ÇÂȯڇÒÒ‡: µ( x ) = . 1 − 〈 x, x 〉 䂇ÁË„ËÔ·Ó΢ÂÒ͇fl ÏÂÚË͇ ÑÎfl ‰‡ÌÌÓÈ Ó·Î‡ÒÚË D ⊂ n , n ≥ 2 Í‚‡ÁË„ËÔ·Ó΢ÂÒ͇fl ÏÂÚË͇ ÂÒÚ¸ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl Í‡Í | dz |
, γ ∈Γ ∫ ρ( z ) inf
γ
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ÏÌÓÊÂÒÚ‚Û Γ ‚ÒÂı ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ı Ë Û ‚ D , ρ( z ) = inf || z − u ||2 – ‡ÒÒÚÓflÌË ÏÂÊ‰Û z Ë „‡ÌˈÂÈ ∂D , || ⋅ ||2 – ‚ÍÎˉӂ‡ u ∈∂D
ÌÓχ ̇ n. ùÚ‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ, „ËÔ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û, ÂÒÎË Ó·Î‡ÒÚ¸ D – ‡‚ÌÓÏÂ̇fl, Ú.Â. ÒÛ˘ÂÒÚ‚Û˛Ú Ú‡ÍË ÍÓÌÒÚ‡ÌÚ˚ ë, ë', ˜ÚÓ Í‡Ê‰‡fl Ô‡‡ ÚÓ˜ÂÍ x, y ∈ D ÏÓÊÂÚ ·˚Ú¸ ÒÓ‰ËÌÂ̇ ÒÔflÏÎflÂÏÓÈ ÍË‚ÓÈ γ ∈ D ‰ÎËÌ˚ l(γ), Ì Ô‚˚¯‡˛˘ÂÈ C | x − y |, Ë Ì‡‚ÂÌÒÚ‚Ó min{l( γ ( x, z )), l( γ ( z, y))} ≤ C ′ρ( z ) ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı z ∈ γ. ÑÎfl n = 2 „ËÔ·Ó΢ÂÒ͇fl ÏÂÚË͇ ̇ D ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡Ì‡ ‚˚‡ÊÂÌËÂÏ 2 | f ′( z ) |
2 | dz |, γ ∈Γ ∫ 1− | f ( z ) |
inf
γ
„‰Â f : D → ∆ ÂÒÚ¸ β·Ó ÍÓÌÙÓÏÌÓ ÓÚÓ·‡ÊÂÌË ӷ·ÒÚË D ̇ ‰ËÌ˘Ì˚È ‰ËÒÍ ∆ = {z ∈ : | z | < 1}. ÑÎfl n ≥ 3 ˝Ú‡ ÏÂÚË͇ ÓÔ‰ÂÎflÂÚÒfl ÚÓθÍÓ ‰Îfl ÔÓÎÛ„ËÔÂÔÎÓÒÍÓÒÚË H n Ë ‰Îfl ÓÚÍ˚ÚÓ„Ó Â‰ËÌ˘ÌÓ„Ó ¯‡‡ Bn Í‡Í ËÌÙËÏÛÏ ÔÓ ‚ÒÂÏ γ ∈ Γ | dz | 2 | dz | ËÌÚ„‡ÎÓ‚ Ë ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. zn 1− || z ||22
∫ γ
∫ γ
ÄÔÓÎÎÓÌÓ‚‡ ÏÂÚË͇ èÛÒÚ¸ D ⊂ n , D ≠ n – ӷ·ÒÚ¸, ڇ͇fl ˜ÚÓ Â ‰ÓÔÓÎÌÂÌË Ì ÒÓ‰ÂÊËÚÒfl ‚ „ËÔÂÔÎÓÒÍÓÒÚË ËÎË ÒÙÂÂ. ÄÔÓÎÎÓÌÓ‚ÓÈ ÏÂÚËÍÓÈ (ËÎË ÏÂÚËÍÓÈ Å‡·ËΡ̇, [Barb35]) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl Ò ÔÓÏÓ˘¸˛ ‡Ì„‡ÏÓÌ˘ÂÒÍÓ„Ó ÓÚÌÓ¯ÂÌËfl ÒÎÂ‰Û˛˘ËÏ
109
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
Ó·‡ÁÓÏ: sup ln
a, b ∈∂D
|| a − x ||2 || b − y ||2 , || a − y ||2 || b − x ||2
„‰Â ∂D – „‡Ìˈ‡ D Ë || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n. чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl „ËÔ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û. èÓÎÛ‡ÔÓÎÎÓÌÓ‚‡ ÏÂÚË͇ ÑÎfl ‰‡ÌÌÓÈ Ó·Î‡ÒÚË D ⊂ n , D ≠ n ÔÓÎÛ‡ÔÓÎÎÓÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl Í‡Í sup ln
a ∈∂D
|| a − y ||2 , || a − x ||2
„‰Â ∂D – „‡Ìˈ‡ D Ë || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n. чÌ̇fl ÏÂÚË͇ ·Û‰ÂÚ „ËÔ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ӷ·ÒÚ¸ D ËÏÂÂÚ ‚ˉ n \ {x}, Ú.Â. ËÏÂÂÚ ‚ÒÂ„Ó Ó‰ÌÛ „‡Ì˘ÌÛ˛ ÚÓ˜ÍÛ. åÂÚË͇ ÉÂËÌ„‡ ÑÎfl ӷ·ÒÚË D ⊂ n , D ≠ n ÏÂÚË͇ ÉÂËÌ„‡ (ËÎË ˜j D -ÏÂÚË͇ ÓÚÌÓ¯ÂÌËfl ‡ÒÒÚÓflÌËÈ) ÂÒÚ¸ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl Í‡Í 1 || x − y ||2 ln 1 + ρ( x ) 2
|| x − y ||2 1 + , ρ( y)
„‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n Ë ρ( x ) = inf || x − u ||2 – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë „‡u ∈∂D
ÌˈÂÈ ∂D ӷ·ÒÚË D. чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl „ËÔ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û. åÂÚË͇ ÇÛÓËÌÂ̇ ÑÎfl ‰‡ÌÌÓÈ Ó·Î‡ÒÚË D ⊂ n , D ≠ n ÏÂÚË͇ ÇÛÓËÌÂ̇ (ËÎË jD-ÏÂÚË͇ ÓÚÌÓ¯ÂÌËfl ‡ÒÒÚÓflÌËÈ) ÂÒÚ¸ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl Í‡Í || x − y ||2 ln 1 + , min{ρ( x ), ρ( y)} „‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n ρ( x ) = inf || x − u ||2 – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë „‡u ∈∂D
ÌˈÂÈ ∂D ӷ·ÒÚË D. чÌ̇fl ÏÂÚË͇ ·Û‰ÂÚ „ËÔ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ӷ·ÒÚ¸ D ËÏÂÂÚ ‚ˉ n \ {x}, , Ú.Â. ËÏÂÂÚ ‚ÒÂ„Ó Ó‰ÌÛ „‡Ì˘ÌÛ˛ ÚÓ˜ÍÛ. åÂÚË͇ î‡̉‡ ÑÎfl ‰‡ÌÌÓÈ Ó·Î‡ÒÚË D ⊂ n , D ≠ n ÏÂÚË͇ î‡̉‡ ÂÒÚ¸ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl Í‡Í inf
γ ∈Γ
|| a − b ||
2 | dz |, ∫ a,sup b ∈∂D || z − a ||2 || z − b ||2 γ
110
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ÏÌÓÊÂÒÚ‚Û Γ ‚ÒÂı ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ı Ë Û ‚ D, ∂D – „‡Ìˈf D Ë || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n. чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl „ËÔ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û, ÂÒÎË D fl‚ÎflÂÚÒfl ‡‚ÌÓÏÂÌÓÈ, Ú.Â. ÒÛ˘ÂÒÚ‚Û˛Ú ÍÓÌÒÚ‡ÌÚ˚ C, C', Ú‡ÍË ˜ÚÓ Í‡Ê‰‡fl Ô‡‡ ÚÓ˜ÂÍ x, y ∈ D ÏÓÊÂÚ ·˚Ú¸ ÒÓ‰ËÌÂ̇ ÒÔflÏÎflÂÏÓÈ ÍË‚ÓÈ γ ∈ D ‰ÎËÌ˚ l(γ), Ì Ô‚ÓÒıÓ‰fl˘ÂÈ C | x − y |, Ë Ì‡‚ÂÌÒÚ‚Ó min{l( γ ( x, z )), l( γ ( z, y))} ≤ C ′ρ( z ) ËÏÂÂÚ ÏÂÒÚÓ ‰Îfl ‚ÒÂı z ∈ γ. åÂÚË͇ ëÂÈÚÂ̇ÌÚ‡ ÑÎfl ‰‡ÌÌÓÈ Ó·Î‡ÒÚË D ⊂ n , D ≠ n ÏÂÚË͇ ëÂÈÚÂ̇ÌÚ‡ (ËÎË ÏÂÚË͇ ‡Ì„‡ÏÓÌ˘ÂÒÍÓ„Ó ÓÚÌÓ¯ÂÌËfl) ÂÒÚ¸ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl Í‡Í || a − x ||2 || b − y ||2 sup ln 1 + , || a − b ||2 || x − y ||2 a, b ∈∂D „‰Â ∂D – „‡Ìˈ‡ D Ë || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n. чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl „ËÔ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û. åÂÚË͇ ÏÓ‰ÛÎ˛Ò‡ èÛÒÚ¸ D ⊂ n , D ≠ n – ÌÂÍÓÚÓ‡fl ӷ·ÒÚ¸ Ò „‡ÌˈÂÈ ∂D, Ëϲ˘‡fl ÔÓÎÓÊËÚÂθÌÛ˛ ÂÏÍÓÒÚ¸. åÂÚË͇ ÏÓ‰ÛÎ˛Ò‡ (ɇÎ, 1960) ÂÒÚ¸ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl Í‡Í inf M ( ∆(Cxy , ∂D, D)), C xy
„‰Â å(Γ) fl‚ÎflÂÚÒfl ÍÓÌÙÓÏÌ˚Ï ÏÓ‰ÛβÒÓÏ ÒÂÏÂÈÒÚ‚‡ ÍË‚˚ı Γ Ë C xy ÂÒÚ¸ ÍÓÌÚËÌÛÛÏ, Ú‡ÍÓÈ ˜ÚÓ ‰Îfl ÌÂÍÓÚÓÓÈ ÍË‚ÓÈ γ : [0, 1] → D Ï˚ ËÏÂÂÏ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: Cxy = γ ([0, 1]), γ (0) = x Ë γ (1) = y (ÒÏ. ùÍÒÚÂχθ̇fl ÏÂÚË͇, „Î. 8). чÌ̇fl ÏÂÚË͇ ·Û‰ÂÚ „ËÔ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û, ÂÒÎË D – ÓÚÍ˚Ú˚È ¯‡ B n = {x ∈ n : 〈 x, x 〉 < 1} ËÎË Ó‰ÌÓÒ‚flÁ̇fl ӷ·ÒÚ¸ ‚ 2 . ÇÚÓ‡fl ÏÂÚË͇ î‡̉‡ èÛÒÚ¸ D ⊂ n , D ≠ n – ӷ·ÒÚ¸, ڇ͇fl ˜ÚÓ | n \ {D} | ≥ 2. ÇÚÓÓÈ ÏÂÚËÍÓÈ î‡̉‡ ·Û‰ÂÚ ÏÂÚË͇ ̇ D, Á‡‰‡‚‡Âχfl Í‡Í CinfC M ( ∆(Cx , Cy , D) x, y
1 / 1− n
,
„‰Â å(Γ) fl‚ÎflÂÚÒfl ÍÓÌÙÓÏÌ˚Ï ÏÓ‰ÛβÒÓÏ ÒÂÏÂÈÒÚ‚‡ ÍË‚˚ı Γ Ë Cz (z = x, y) ÂÒÚ¸ ÍÓÌÚËÌÛÛÏ, Ú‡ÍÓÈ ˜ÚÓ ‰Îfl ÌÂÍÓÚÓÓÈ ÍË‚ÓÈ γ : [0, 1] → D Ï˚ ËÏÂÂÏ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: Cz = ([0, 1])), z ∈| γ z | Ë γ z (t ) → ∂D ÔË t → 1 (ÒÏ. ùÍÒÚÂχθ̇fl ÏÂÚË͇, „Î. 8). чÌ̇fl ÏÂÚË͇ ·Û‰ÂÚ „ËÔ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û, ÂÒÎË D – ÓÚÍ˚Ú˚È ¯‡ n B = {x ∈ n : 〈 x, x 〉 < 1} ËÎË Ó‰ÌÓÒ‚flÁ̇fl ӷ·ÒÚ¸ ‚ 2 .
É·‚‡ 6. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓÏÂÚËË
111
臇·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌË 臇·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌË ÂÒÚ¸ ÏÂÚË͇ ̇ n+1, ‡ÒÒχÚË‚‡ÂÏÓÏ Í‡Í n × , ÓÔ‰ÂÎflÂχfl Í‡Í ( x1 − y1 )2 + ... + ( x n − yn )2 + | t x − t y |1 / m ,
m ∈
‰Îfl β·˚ı n × . èÓÒÚ‡ÌÒÚ‚Ó n × ÏÓÊÂÚ ËÌÚÂÔÂÚËÓ‚‡Ú¸Òfl Í‡Í ÏÌÓ„ÓÏÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl. é·˚˜ÌÓ ËÒÔÓθÁÛÂÚÒfl Á̇˜ÂÌË m = 2. ëÛ˘ÂÒÚ‚Û˛Ú ÌÂÍÓÚÓ˚ ‚‡Ë‡ÌÚ˚ Ô‡‡·Ó΢ÂÒÍÓ„Ó ‡ÒÒÚÓflÌËfl, ̇ÔËÏ ԇ‡·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌË sup{| x1 − y1 |, | x 2 − y2 |1 / 2} ̇ 2 (ÒÏ. Ú‡ÍÊ åÂÚË͇ ÍÓ‚‡ êËÍχ̇, „Î. 19) ËÎË Ô‡‡·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌË ÔÓÎÛÔÓÒÚ‡ÌÒÚ‚‡ ̇ 3+ = {x ∈ 3 : x1 ≥ 0}, Á‡‰‡‚‡ÂÏÓÂ Í‡Í | x1 − y1 | + | x 2 − y2 | + x1 + x 2 + | x 2 − y2
| x3 − y3 |.
É·‚‡ 7
êËχÌÓ‚˚ Ë ˝ÏËÚÓ‚˚ ÏÂÚËÍË
êËχÌÓ‚ÓÈ „ÂÓÏÂÚËÂÈ Ì‡Á˚‚‡ÂÚÒfl ÏÌÓ„ÓÏÂÌÓ ӷӷ˘ÂÌË ‚ÌÛÚÂÌÌÂÈ „ÂÓÏÂÚËË ‰‚ÛÏÂÌ˚ı ÔÓ‚ÂıÌÓÒÚÂÈ Â‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ 2 . é̇ Á‡ÌËχÂÚÒfl ËÁÛ˜ÂÌËÂÏ ‚¢ÂÒÚ‚ÂÌÌ˚ı „·‰ÍËı ÏÌÓ„ÓÓ·‡ÁËÈ, Ò̇·ÊÂÌÌ˚ı ËχÌÓ‚˚ÏË ÏÂÚË͇ÏË, Ú.Â. ÒÂÏÂÈÒÚ‚‡ÏË ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı ÒËÏÏÂÚ˘Ì˚ı ·ËÎËÌÂÈÌ˚ı ÙÓÏ ((gij)) ̇ Ëı ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı, ÍÓÚÓ˚ „·‰ÍÓ ÏÂÌfl˛ÚÒfl ÓÚ ÚÓ˜ÍË Í ÚÓ˜ÍÂ. ÉÂÓÏÂÚËfl Ú‡ÍËı (ËχÌÓ‚˚ı) ÏÌÓ„ÓÓ·‡ÁËÈ ·‡ÁËÛÂÚÒfl ̇ ÎËÌÂÈÌÓÏ ˝ÎÂÏÂÌÚ ds 2 = gij dxi dx j . ë Â„Ó ÔÓÏÓ˘¸˛ ÓÔ‰ÂÎfl˛ÚÒfl, ‚ ˜‡ÒÚÌÓÒÚË, ÎÓ͇θÌ˚Â
∑ ij
ÔÓÌflÚËfl ۄ·, ‰ÎËÌ˚ ÍË‚˚ı Ë Ó·˙Âχ. àÁ ÌËı ÔÓÒ‰ÒÚ‚ÓÏ ËÌÚ„ËÓ‚‡ÌËfl ÏÓ„ÛÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ˚ ‰Û„ËÂ, „ÎÓ·‡Î¸Ì˚ ‚Â΢ËÌ˚. í‡Í, ‚Â΢Ë̇ ÏÓÊÂÚ ·˚Ú¸ ‡ÒÒÏÓÚÂ̇ Í‡Í ‰ÎË̇ ‚ÂÍÚÓ‡ (dx1,..., dx n ); ‰ÎË̇ ‰Û„Ë ÍË‚ÓÈ γ ‚˚‡Ê‡ÂÚÒfl ÚÂÔ¸ ͇Í
gij dxi dx j ; ∫ ∑ i, j
ÚÓ„‰‡ ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ËχÌÓ‚ÓÏ ÏÌÓ„ÓÓ·‡ÁËË
γ
Á‡‰‡ÂÚÒfl Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ‰‚ ‰‡ÌÌ˚ ÚÓ˜ÍË ÏÌÓ„ÓÓ·‡ÁËfl. í‡ÍËÏ Ó·‡ÁÓÏ, ËχÌÓ‚‡ ÏÂÚË͇ Ì fl‚ÎflÂÚÒfl Ó·˚˜ÌÓÈ ÏÂÚËÍÓÈ, ÌÓ ÔÓÓʉ‡ÂÚ Ó·˚˜ÌÛ˛ ÏÂÚËÍÛ, ËÏÂÌÌÓ, ‚ÌÛÚÂÌÌ˛˛ ÏÂÚËÍÛ, ÍÓÚÓÛ˛ ËÌÓ„‰‡ ̇Á˚‚‡˛Ú ËχÌÓ‚˚Ï ‡ÒÒÚÓflÌËÂÏ, ̇ β·ÓÏ Ò‚flÁÌÓÏ ËχÌÓ‚ÓÏ ÏÌÓ„ÓÓ·‡ÁËË; ËχÌÓ‚‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÙÓÏÓÈ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â„Ó ËχÌÓ‚‡ ‡ÒÒÚÓflÌËfl. Ç Í‡˜ÂÒÚ‚Â ÓÒÓ·˚ı ÒÎÛ˜‡Â‚ ËχÌÓ‚ÓÈ „ÂÓÏÂÚËË ‡ÒÒχÚË‚‡˛ÚÒfl ‰‚‡ Òڇ̉‡ÚÌ˚ı ÒÎÛ˜‡fl – ˝ÎÎËÔÚ˘ÂÒ͇fl „ÂÓÏÂÚËfl Ë „ËÔ·Ó΢ÂÒ͇fl „ÂÓÏÂÚËfl Ì‚ÍÎˉӂÓÈ „ÂÓÏÂÚËË, ‡ Ú‡ÍÊ ҇χ ‚ÍÎˉӂ‡ „ÂÓÏÂÚËfl. ÖÒÎË ·ËÎËÌÂÈÌ˚ ÙÓÏ˚ ((gij)) fl‚Îfl˛ÚÒfl Ì‚˚ÓʉÂÌÌ˚ÏË, ÌÓ ÌÂÓÔ‰ÂÎÂÌÌ˚ÏË, ÚÓ Ï˚ ÔÓÎÛ˜‡ÂÏ ÔÒ‚‰ÓËχÌÓ‚Û „ÂÓÏÂÚ˲. ÑÎfl ‡ÁÏÂÌÓÒÚË 4 (Ë Ò˄̇ÚÛ˚ (1, 3)) ڇ͇fl „ÂÓÏÂÚËfl fl‚ÎflÂÚÒfl ÓÒÌÓ‚Ì˚Ï Ó·˙ÂÍÚÓÏ Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË. ÖÒÎË ds = F( x1 ,..., x n , dx1 ,..., dx n ), „‰Â F – ‰ÂÈÒÚ‚ËÚÂθ̇fl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌ̇fl ‚˚ÔÛÍ·fl ÙÛÌ͈Ëfl, ÍÓÚÓÛ˛ ÌÂθÁfl Á‡‰‡Ú¸ Í‡Í Í‚‡‰‡ÚÌ˚È ÍÓÂ̸ ËÁ ÒËÏÏÂÚ˘ÌÓÈ ·ËÎËÌÂÈÌÓÈ ÙÓÏ˚ (Í‡Í ˝ÚÓ ‰Â·ÂÚÒfl ‚ ËχÌÓ‚ÓÈ „ÂÓÏÂÚËË), ÚÓ Ï˚ ÔÓÎÛ˜ËÏ ÙËÌÒÎÂÓ‚Û „ÂÓÏÂÚ˲, Ô‰ÒÚ‡‚Îfl˛˘Û˛ ÒÓ·ÓÈ Ó·Ó·˘ÂÌË ËχÌÓ‚ÓÈ „ÂÓÏÂÚËË. ùÏËÚÓ‚‡ „ÂÓÏÂÚËfl Á‡ÌËχÂÚÒfl ËÁÛ˜ÂÌËÂÏ ÍÓÏÔÎÂÍÒÌ˚ı ÏÌÓ„ÓÓ·‡ÁËÈ, Ò̇·ÊÂÌÌ˚ı ˝ÏËÚÓ‚˚ÏË ÏÂÚË͇ÏË, Ú.Â. ÒÂÏÂÈÒÚ‚‡ÏË ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı ÒËÏÏÂÚ˘Ì˚ı ÒÂÒÍËÎËÌÂÈÌ˚ı ÙÓÏ Ì‡ Ëı ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı, ÍÓÚÓ˚ „·‰ÍÓ ÏÂÌfl˛ÚÒfl ÓÚ ÚÓ˜ÍË Í ÚÓ˜ÍÂ. éÌË fl‚Îfl˛ÚÒfl ÍÓÏÔÎÂÍÒÌ˚Ï ‡Ì‡ÎÓ„ÓÏ ËχÌÓ‚ÓÈ „ÂÓÏÂÚËË. éÒÓ·˚È Í·ÒÒ ˝ÏËÚÓ‚˚ı ÏÂÚËÍ Ó·‡ÁÛ˛Ú ÏÂÚËÍË äÂı·, Ëϲ˘Ë Á‡ÏÍÌÛÚÛ˛ ÙÛ̉‡ÏÂÌڇθÌÛ˛ ÙÓÏÛ w. é·Ó·˘ÂÌË ˝ÏËÚÓ‚˚ı ÏÂÚËÍ ‰‡ÂÚ Ì‡Ï ÍÓÏÔÎÂÍÒÌ˚ ÙËÌÒÎÂÓ‚˚ ÏÂÚËÍË, ÍÓÚÓ˚ ÌÂθÁfl ‚˚‡ÁËÚ¸ ‚ ÚÂÏË̇ı ·ËÎËÌÂÈÌ˚ı ÒËÏÏÂÚ˘Ì˚ı ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı ÒÂÒÍËÎËÌÂÈÌ˚ı ÙÓÏ.
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
113
7.1. êàåÄçéÇõ åÖíêàäà à éÅéÅôÖçàü èÓËÁ‚ÓθÌÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ Ò „‡ÌˈÂÈ Mn ÂÒÚ¸ ı‡ÛÒ‰ÓÙÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl ÚӘ͇ ËÏÂÂÚ ÓÚÍ˚ÚÛ˛ ÓÍÂÒÚÌÓÒÚ¸, „ÓÏÂÓÏÓÙÌÛ˛ ÎË·Ó ÓÚÍ˚ÚÓÏÛ ÔÓ‰ÏÌÓÊÂÒÚ‚Û n , ÎË·Ó ÓÚÍ˚ÚÓÏÛ ÔÓ‰ÏÌÓÊÂÒÚ‚Û Á‡ÏÍÌÛÚÓ„Ó ÔÓÎÛÔÓÒÚ‡ÌÒÚ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ n. åÌÓÊÂÒÚ‚Ó ÚÓ˜ÂÍ, Ëϲ˘Ëı ÓÚÍ˚Ú˚ ÓÍÂÒÚÌÓÒÚË, „ÓÏÂÓÏÓÙÌ˚ n , ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ ‚ÌÛÚÂÌÌËı ÚÓ˜ÂÍ ÏÌÓ„ÓÓ·‡ÁËfl; ÓÌÓ ‚Ò„‰‡ fl‚ÎflÂÚÒfl ÌÂÔÛÒÚ˚Ï. ÑÓÔÓÎÌÂÌË ‚ÌÛÚÂÌÌÂ„Ó ÏÌÓÊÂÒÚ‚‡ ÚÓ˜ÂÍ Ì‡Á˚‚‡ÂÚÒfl „‡ÌˈÂÈ ÏÌÓ„ÓÓ·‡ÁËfl Ë Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ (n – 1)ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ. ÖÒÎË „‡Ìˈ‡ ÏÌÓ„ÓÓ·‡ÁËfl Mn ÔÛÒÚ‡, ÚÓ Ï˚ ÔÓÎÛ˜‡ÂÏ ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË ·ÂÁ „‡Ìˈ˚. åÌÓ„ÓÓ·‡ÁË ·ÂÁ „‡Ìˈ˚ ̇Á˚‚‡ÂÚÒfl Á‡ÏÍÌÛÚ˚Ï, ÂÒÎË ÓÌÓ ÍÓÏÔ‡ÍÚÌÓ, Ë ÓÚÍ˚Ú˚Ï – Ë̇˜Â. éÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó Mn ‚ÏÂÒÚÂ Ò „ÓÏÂÓÏÓÙËÁÏÓÏ ÏÂÊ‰Û ‰‡ÌÌ˚Ï ÓÚÍ˚Ú˚Ï ÏÌÓÊÂÒÚ‚ÓÏ Ë ÌÂÍÓÚÓ˚Ï ÓÚÍ˚Ú˚Ï ÏÌÓÊÂÒÚ‚ÓÏ ËÁ n ̇Á˚‚‡ÂÚÒfl ÍÓÓ‰Ë̇ÚÌÓÈ Í‡ÚÓÈ. ëÂÏÂÈÒÚ‚Ó ÔÓÍ˚‚‡˛˘Ëı ÏÌÓÊÂÒÚ‚Ó Mn Í‡Ú Ì‡Á˚‚‡ÂÚÒfl ‡Ú·ÒÓÏ Ì‡ Mn . ÉÓÏÂÓÏÓÙËÁÏ˚ ‰‚Ûı ÔÂÂÍ˚‚‡˛˘ËıÒfl Í‡Ú ‰‡˛Ú Ì‡Ï ÓÚÓ·‡ÊÂÌË ӉÌÓ„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ n ‚ ÌÂÍÓ ‰Û„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚Ó n. ÖÒÎË ‚Ò ˝ÚË ÓÚÓ·‡ÊÂÌËfl ÌÂÔÂ˚‚ÌÓ ‰ËÙÙÂÂ̈ËÛÂÏ˚, ÚÓ ÏÌÓÊÂÒÚ‚Ó Mn ̇Á˚‚‡ÂÚÒfl ‰ËÙÙÂÂ̈ËÛÂÏ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ. ÖÒÎË ‚Ò ˝ÚË ÓÚÓ·‡ÊÂÌËfl fl‚Îfl˛ÚÒfl k ‡Á ÌÂÔÂ˚‚ÌÓ ‰ËÙÙÂÂ̈ËÛÂÏ˚ÏË, ÚÓ ÏÌÓ„ÓÓ·‡ÁË ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl C k ÏÌÓ„ÓÓ·‡ÁËÂÏ; ÂÒÎË ÓÌË ·ÂÒÍÓ̘ÌÓ ˜ËÒÎÓ ‡Á ‰ËÙÙÂÂ̈ËÛÂÏ˚, ÚÓ ÏÌÓ„ÓÓ·‡ÁË ̇Á˚‚‡ÂÚÒfl „·‰ÍËÏ ÏÌÓ„ÓÓ·‡ÁËÂÏ (ËÎË C∞ ÏÌÓ„ÓÓ·‡ÁËÂÏ). ÄÚÎ‡Ò ÏÌÓ„ÓÓ·‡ÁËfl ̇Á˚‚‡ÂÚÒfl ÓËÂÌÚËÓ‚‡ÌÌ˚Ï, ÂÒÎË ‚Ò ÍÓÓ‰Ë̇ÚÌ˚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ÏÂÊ‰Û Í‡Ú‡ÏË fl‚Îfl˛ÚÒfl ÔÓÎÓÊËÚÂθÌ˚ÏË, Ú.Â. flÍÓ·Ë‡Ì ÍÓÓ‰Ë̇ÚÌ˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ͇ڇÏË ÔÓÎÓÊËÚÂÎÂÌ ‚ β·ÓÈ ÚÓ˜ÍÂ. éËÂÌÚËÛÂÏ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÏÌÓ„ÓÓ·‡ÁËÂ, ÍÓÚÓÓ ‰ÓÔÛÒ͇ÂÚ Ì‡Î˘Ë ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ‡Ú·҇. åÌÓ„ÓÓ·‡ÁËfl ̇ÒÎÂ‰Û˛Ú ÏÌÓ„Ë ÎÓ͇θÌ˚ ҂ÓÈÒÚ‚‡ ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡. Ç ˜‡ÒÚÌÓÒÚË, ÓÌË fl‚Îfl˛ÚÒfl ÎÓ͇θÌÓ ÔÛÚ¸-Ò‚flÁÌ˚ÏË, ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌ˚ÏË Ë ÎÓ͇θÌÓ ÏÂÚËÁÛÂÏ˚ÏË. ã˛·Ó „·‰ÍÓ ËχÌÓ‚Ó ÏÌÓ„ÓÓ·‡ÁË ËÁÓÏÂÚ˘ÂÒÍË ‚ÎÓÊËÏÓ (ç˝¯, 1956) ‚ ÌÂÍÓÚÓÓ ÍÓ̘ÌÓÏÂÌÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. ë ͇ʉÓÈ ÚÓ˜ÍÓÈ Ì‡ ‰ËÙÙÂÂ̈ËÛÂÏÓÏ ÏÌÓ„ÓÓ·‡ÁËË ‡ÒÒÓˆËËÓ‚‡Ì˚ ͇҇ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë ‰‚ÓÈÒÚ‚ÂÌÌÓ ÂÏÛ ÍÓ-͇҇ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó. îÓχθÌÓ, ÔÛÒÚ¸ Mn – ëÎ ÏÌÓ„ÓÓ·‡ÁËÂ, k ≥ 1, Ë – ÌÂÍÓÚÓ‡fl ÚӘ͇ ËÁ Mn . ᇉ‡‰ËÏ Í‡ÚÛ ϕ : U → n , „‰Â U – ÓÚÍ˚ÚÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ Mn , ÒÓ‰Âʇ˘Â ÚÓ˜ÍÛ . è‰ÔÓÎÓÊËÏ, ˜ÚÓ ‰‚ ÍË‚˚ γ 1 : ( −1, 1) → M n Ë γ 2 : ( −1, 1) → M n ÒÓ Á̇˜ÂÌËflÏË γ 1 (0) = γ 2 (0) = p Á‡‰‡Ì˚ Ú‡Í, ˜ÚÓ Ó·Â ‚Â΢ËÌ˚ ϕ ⋅ γ 1 Ë ϕ ⋅ γ 2 fl‚Îfl˛ÚÒfl ‰ËÙÙÂÂ̈ËÛÂÏ˚ÏË ‚ ÚӘ͠0. Ç ˝ÚÓÏ ÒÎÛ˜‡Â γ1 Ë γ2 ̇Á˚‚‡˛ÚÒfl ͇҇ÚÂθÌ˚ÏË ‚ ÚӘ͠0, ÂÒÎË Ó·˚˜Ì˚ ÔÓËÁ‚Ó‰Ì˚ ‰Îfl ϕ ⋅ γ 1 Ë ϕ ⋅ γ 2 ÒÓ‚Ô‡‰‡˛Ú ‚ 0: (ϕ ⋅ γ 1 )′ (0) = (ϕ ⋅ γ 2 )′ (0). ÖÒÎË ÙÛÌ͈ËË ϕ ⋅ γ i : ( −1, 1) → n , i = 1, 2 Á‡‰‡Ì˚ Ò ÔÓÏÓ˘¸˛ n ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ÍÓÓ‰Ë̇ÚÌ˚ı ÙÛÌ͈ËÈ (ϕ ⋅ γ i )1 (t ),..., (ϕ ⋅ γ i ) n (t ), ÚÓ ‚˚¯ÂÛ͇Á‡Ì d (ϕ ⋅ γ i )1 (t ) d (ϕ ⋅ γ i ) n (t ) ÌÓ ÛÒÎÓ‚Ë ·Û‰ÂÚ ÓÁ̇˜‡Ú¸, ˜ÚÓ Ëı flÍӷˇÌ˚ ,..., ÒÓ‚Ô‡dt dt ‰‡˛Ú ‚ 0. ùÚÓ ÓÚÌÓ¯ÂÌË fl‚ÎflÂÚÒfl ÓÚÌÓ¯ÂÌËÂÏ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË, ‡ Í·ÒÒ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË γ'(0) ÍË‚ÓÈ γ ̇Á˚‚‡ÂÚÒfl ͇҇ÚÂθÌ˚Ï ‚ÂÍÚÓÓÏ ÏÌÓ„ÓÓ·‡ÁËfl
114
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
Mn ‚ ÚӘ͠. ä‡Ò‡ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Tp (M n ) ÏÌÓ„ÓÓ·‡ÁËfl M n ‚ ÚӘ͠ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ͇҇ÚÂθÌ˚ı ‚ÂÍÚÓÓ‚ ‚ ÚӘ͠. îÛÌ͈Ëfl ( dϕ ) p : Tp ( M n ) → n , Á‡‰‡‚‡Âχfl ÛÒÎÓ‚ËÂÏ ( dϕ ) p ( γ ′(0)) = (ϕ ⋅ γ )′ (0), fl‚ÎflÂÚÒfl ·ËÂÍÚË‚ÌÓÈ Ë ÏÓÊÂÚ ·˚Ú¸ ËÒÔÓθÁÓ‚‡Ì‡ ‰Îfl ÔÂÂÌÂÒÂÌËfl ÓÔ‡ˆËÈ ÎËÌÂÈÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ËÁ n ̇ T p (M n ). ÇÒ ͇҇ÚÂθÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡ Tp(M n ), p ∈ Mn , "ÒÍÎÂÂÌÌ˚ ‚ÏÂÒÚÂ", Ó·‡ÁÛ˛Ú Í‡Ò‡ÚÂθÌÓ ‡ÒÒÎÓÂÌË T(Mn ) ÏÌÓ„ÓÓ·‡ÁËfl Mn . ã˛·ÓÈ ˝ÎÂÏÂÌÚ ËÁ T(M n ) ÂÒÚ¸ Ô‡‡ (p , v ), „‰Â v ∈Tp ( M n ). ÖÒÎË ‰Îfl ÓÚÍ˚ÚÓÈ ÓÍÂÒÚÌÓÒÚË U ÚÓ˜ÍË ÙÛÌ͈Ëfl ϕ : U → fl‚ÎflÂÚÒfl ÍÓÓ‰Ë̇ÚÌÓÈ Í‡ÚÓÈ, ÚÓ ÔÓÓ·‡Á V ÓÍÂÒÚÌÓÒÚË U ‚ T(Mn ) ‰ÓÔÛÒ͇ÂÚ ÓÚÓ·‡ÊÂÌË ψ : V → n × n , ÓÔ‰ÂÎflÂÏÓÂ Í‡Í ψ ( p, v) = (ϕ( p), dϕ( p)). ùÚÓ ÓÔ‰ÂÎflÂÚ ÒÚÛÍÚÛÛ „·‰ÍÓ„Ó 2n-ÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl ̇ T(M n ). Ä̇Îӄ˘Ì˚Ï Ó·‡ÁÓÏ ÏÓÊÌÓ ÔÓÎÛ˜ËÚ¸ ÍÓ͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌË T * ( M n ) ÏÌÓ„ÓÓ·‡ÁËfl Mn , ËÒÔÓθÁÛfl ‰Îfl ˝ÚÓ„Ó ÍÓ͇҇ÚÂθÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡ Tp* ( M n ), p ∈ M n . ÇÂÍÚÓÌÓ ÔÓΠ̇ ÏÌÓ„ÓÓ·‡ÁËË Mn ÂÒÚ¸ Ò˜ÂÌËÂ Â„Ó Í‡Ò‡ÚÂθÌÓ„Ó ‡ÒÒÎÓÂÌËfl T(Mn ), Ú.Â. „·‰Í‡fl ÙÛÌ͈Ëfl f : M n → T ( M n ), ÍÓÚÓ‡fl ͇ʉÓÈ ÚӘ͠p ∈ Mn ÒÚ‡‚ËÚ ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ‚ÂÍÚÓ v ∈Tp ( M n ). ë‚flÁ¸ (ËÎË ÍÓ‚‡Ë‡ÌÚ̇fl ÔÓËÁ‚Ӊ̇fl) fl‚ÎflÂÚÒfl ÒÔÓÒÓ·ÓÏ ÓÔ‰ÂÎÂÌËfl ÔÓËÁ‚Ó‰ÌÓÈ ‚ÂÍÚÓÌÓ„Ó ÔÓÎfl ̇ ÏÌÓ„ÓÓ·‡ÁËË. îÓχθÌÓ, ÍÓ‚‡Ë‡ÌÚ̇fl ÔÓËÁ‚Ӊ̇fl ∇ ‚ÂÍÚÓ‡ u (ÓÔ‰ÂÎÂÌÌÓ„Ó ‚ ÚӘ͠p ∈ Mn ) ‚ ̇ԇ‚ÎÂÌËË ‚ÂÍÚÓ‡ v (ÓÔ‰ÂÎÂÌÌÓ„Ó ‚ ÚÓÈ Ê ÚӘ͠) ÂÒÚ¸ Ô‡‚ËÎÓ, ÍÓÚÓÓ Á‡‰‡ÂÚ ÚÂÚËÈ ‚ÂÍÚÓ ‚ ÚӘ͠, ̇Á˚‚‡ÂÏ˚È ∇ v u Ë Ó·Î‡‰‡˛˘ËÈ Ò‚ÓÈÒÚ‚‡ÏË ÔÓËÁ‚Ó‰ÌÓÈ. êËχÌÓ‚‡ ÏÂÚË͇ ‰ËÌÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ ÓÔ‰ÂÎflÂÚ ÓÒÓ·Û˛ ÍÓ‚‡Ë‡ÌÚÌÛ˛ ÔÓËÁ‚Ó‰ÌÛ˛, ̇Á˚‚‡ÂÏÛ˛ Ò‚flÁ¸˛ ã‚˖óË‚ËÚ‡. é̇ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ Ò‚flÁ¸ ∇ ·ÂÁ ÍÛ˜ÂÌËfl ͇҇ÚÂθÌÓ„Ó ‡ÒÒÎÓÂÌËfl, ÒÓı‡Ìfl˛˘Û˛ ‰‡ÌÌÛ˛ ËχÌÓ‚Û ÏÂÚËÍÛ. êËχÌÓ‚ ÚÂÌÁÓ ÍË‚ËÁÌ˚ R fl‚ÎflÂÚÒfl Òڇ̉‡ÚÌ˚Ï ÒÔÓÒÓ·ÓÏ ‚˚‡ÊÂÌËfl ÍË‚ËÁÌ˚ ËχÌÓ‚˚ı ÏÌÓ„ÓÓ·‡ÁËÈ. êËχÌÓ‚ ÚÂÌÁÓ ÍË‚ËÁÌ˚ ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡Ì ‚ ÚÂÏË̇ı Ò‚flÁË ã‚˖óË‚ËÚ‡ ∇ ÙÓÏÛÎÓÈ R(u, v)w = ∇ u ∇ v w − ∇ v∇ u w − ∇[u, v]w, „‰Â R(u, v) – ÎËÌÂÈÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË ͇҇ÚÂθÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl ∂ ∂ Mn ; ÎËÌÂÈÌÓ ÔÓ Í‡Ê‰ÓÏÛ ‡„ÛÏÂÌÚÛ. ÖÒÎË Á̇˜ÂÌËfl u = , v= fl‚Îfl˛ÚÒfl ∂xi ∂x j ÔÓÎflÏË ÍÓÓ‰Ë̇ÚÌ˚ı ‚ÂÍÚÓÓ‚, ÚÓ [u , v] = 0 Ë ÙÓÏÛÎÛ ÏÓÊÌÓ ÛÔÓÒÚËÚ¸: R(u, v)w = ∇ u ∇ v w − ∇ v∇ w w, Ú.Â. ÚÂÌÁÓ ÍË‚ËÁÌ˚ ÒÎÛÊËÚ ÏÂÓÈ ‡ÌÚËÍÓÏÏÛÚ‡ÚË‚ÌÓÒÚË ÍÓ‚‡Ë‡ÌÚÌÓÈ ÔÓËÁ‚Ó‰ÌÓÈ. ãËÌÂÈÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË w → R(u, v)w ̇Á˚‚‡˛Ú Ú‡ÍÊ ÔÂÓ·‡ÁÓ‚‡ÌËÂÏ ÍË‚ËÁÌ˚. íÂÌÁÓ ÍË‚ËÁÌ˚ ê˘˜Ë (ËÎË ÍË‚ËÁ̇ ê˘˜Ë) Ric ÔÓÎÛ˜‡ÂÚÒfl Í‡Í ÒΉ ÔÓÎÌÓ„Ó ÚÂÌÁÓ‡ ÍË‚ËÁÌ˚ R. ÑÎfl ÒÎÛ˜‡fl ËχÌÓ‚˚ı ÏÌÓ„ÓÓ·‡ÁËÈ Â„Ó ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í Î‡Ô·ÒË‡Ì ËχÌÓ‚‡ ÏÂÚ˘ÂÒÍÓ„Ó ÚÂÌÁÓ‡. íÂÌÁÓ ÍË‚ËÁÌ˚ ê˘˜Ë fl‚ÎflÂÚÒfl ÎËÌÂÈÌ˚Ï ÓÔ‡ÚÓÓÏ Ì‡ ͇҇ÚÂθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ‚ ‰‡ÌÌÓÈ ÚÓ˜ÍÂ. àÒÔÓθÁÛfl ÓÚÓÌÓÏËÓ‚‡ÌÌ˚È ·‡ÁËÒ (ei)i ‚ ͇҇ÚÂθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â T p (M n ), ÔÓÎÛ˜‡ÂÏ ÙÓÏÛÎÛ Ric(u) =
∑ R(u, ei )ei . i
115
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
êÂÁÛÎ¸Ú‡Ú Ì Á‡‚ËÒËÚ ÓÚ ‚˚·Ó‡ ÓÚÓÌÓÏËÓ‚‡ÌÌÓ„Ó ·‡ÁËÒ‡. 燘Ë̇fl Ò ‡ÁÏÂÌÓÒÚË 4, ÍË‚ËÁ̇ ê˘˜Ë ÛÊ Ì ÓÔËÒ˚‚‡ÂÚ ÚÂÌÁÓ ÍË‚ËÁÌ˚ ÔÓÎÌÓÒÚ¸˛. ë͇Îfl ê˘˜Ë (ËÎË Ò͇Îfl̇fl ÍË‚ËÁ̇) Sc ËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl Mn fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï ÒΉÓÏ ÚÂÌÁÓ‡ ÍË‚ËÁÌ˚; ËÒÔÓθÁÛfl ÓÚÓÌÓÏËÓ‚‡ÌÌ˚È ·‡ÁËÒ (ei)i ‚ ÚӘ͠p ∈ Mn , Ï˚ ÔÓÎÛ˜‡ÂÏ ‡‚ÂÌÒÚ‚Ó Sc =
∑ 〈 R(ei , e j )e j , ei 〉 = ∑ 〈Ric(ei ), ei 〉. i, j
i
ëÂ͈ËÓÌ̇fl ÍË‚ËÁ̇ K(σ) ËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl M n ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÍË‚ËÁ̇ ɇÛÒÒ‡ σ-Ò˜ÂÌËfl ‚ ÚӘ͠p ∈ Mn . Ç ‰‡ÌÌÓÏ ÒÎÛ˜‡Â, ËÏÂfl 2-ÔÎÓÒÍÓÒÚ¸ σ ‚ Í‡Ò‡ÚÂθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â Tp(M n ), σ -Ò˜ÂÌË ÂÒÚ¸ ÎÓ͇θÌÓ ÓÔ‰ÂÎÂÌ̇fl ˜‡ÒÚ¸ ÔÓ‚ÂıÌÓÒÚË, ‰Îfl ÍÓÚÓÓÈ ÔÎÓÒÍÓÒÚ¸ σ fl‚ÎflÂÚÒfl ͇҇ÚÂθÌÓÈ ‚ ÚӘ͠, ÔÓÎÛ˜ÂÌÌÓÈ ËÁ „ÂÓ‰ÂÁ˘ÂÒÍËı, ËÒıÓ‰fl˘Ëı ËÁ ‚ ̇ԇ‚ÎÂÌËflı Ó·‡Á‡ σ ÔË ˝ÍÒÔÓÌÂ̈ˇθÌÓÏ ÓÚÓ·‡ÊÂÌËË. åÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ åÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ (ËÎË ÓÒÌÓ‚Ì˚Ï ÚÂÌÁÓÓÏ, ÙÛ̉‡ÏÂÌڇθÌ˚Ï ÚÂÌÁÓÓÏ) ̇Á˚‚‡ÂÚÒfl ÒËÏÏÂÚ˘Ì˚È ÚÂÌÁÓ ‡Ì„‡ 2, ËÒÔÓθÁÛÂÏ˚È ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ Ë Û„ÎÓ‚ ‚ ‚¢ÂÒÚ‚ÂÌÌÓÏ n-ÏÂÌÓÏ ‰ËÙÙÂÂ̈ËÛÂÏÓÏ ÏÌÓ„ÓÓ·‡ÁËË M n . èÓÒΠ‚˚·Ó‡ ÎÓ͇θÌÓÈ ÒËÒÚÂÏ˚ ÍÓÓ‰ËÌ‡Ú (xi)i ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ ‚ÓÁÌË͇ÂÚ Í‡Í ‰ÂÈÒÚ‚ËÚÂθ̇fl ÒËÏÏÂÚ˘̇fl (n × n) χÚˈ‡ ((gij)). ᇉ‡ÌË ÏÂÚ˘ÂÒÍÓ„Ó ÚÂÌÁÓ‡ ̇ n-ÏÂÌÓÏ ‰ËÙÙÂÂ̈ËÛÂÏÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn ÔÓÓʉ‡ÂÚ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË (Ú.Â. ÒËÏÏÂÚ˘ÌÛ˛ ·ËÎËÌÂÈÌÛ˛, Ӊ̇ÍÓ ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â Ì fl‚Îfl˛˘Û˛Òfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ ÙÓÏÛ) 〈 , 〉 p ̇ ͇҇ÚÂθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â T p (M n ) ‚ β·ÓÈ ÚӘ͠p ∈ Mn , Á‡‰‡‚‡ÂÏÓÂ Í‡Í 〈 x, y 〉 p = g p ( x, y) =
∑ gij ( p) xi y j , i, j
„‰Â gij(p) – Á̇˜ÂÌË ÏÂÚ˘ÂÒÍÓ„Ó ÚÂÌÁÓ‡ ‚ ÚӘ͠p ∈ Mn , x = ( x1 ,..., x n ) Ë y = ( y1 ,..., yn ) ∈ Tp ( M n ). ëÓ‚ÓÍÛÔÌÓÒÚ¸ ‚ÒÂı ˝ÚËı Ò͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ g Ò ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ ((gij)). ÑÎË̇ ds ‚ÂÍÚÓ‡ ( dx1 ,..., dx n ) ‚˚‡Ê‡ÂÚÒfl Í‚‡‰‡Ú˘ÌÓÈ ‰ËÙÙÂÂ̈ˇθÌÓÈ ÙÓÏÓÈ ds 2 =
∑ gij dxi dx j . i, j
ÍÓÚÓ‡fl ̇Á˚‚‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ (ËÎË Ô‚ÓÈ ÙÛ̉‡ÏÂÌڇθÌÓÈ ÙÓÏÓÈ) ÏÂÚËÍË g. ÑÎË̇ ÍË‚ÓÈ γ ‚˚‡Ê‡ÂÚÒfl ÙÓÏÛÎÓÈ
gij dxi dx j . Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ∫ ∑ i, j γ
Ó̇ ÏÓÊÂÚ ·˚Ú¸ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ, ˜ËÒÚÓ ÏÌËÏÓÈ ËÎË ÌÛ΂ÓÈ (ËÁÓÚÓÔ̇fl ÍË‚‡fl). ë˄̇ÚÛÓÈ ÏÂÚ˘ÂÒÍÓ„Ó ÚÂÌÁÓ‡ ̇Á˚‚‡ÂÚÒfl Ô‡‡ (p, q) ÔÓÎÓÊËÚÂθÌ˚ı () Ë ÓÚˈ‡ÚÂθÌ˚ı (q) ÒÓ·ÒÚ‚ÂÌÌ˚ı Á̇˜ÂÌËÈ Ï‡Úˈ˚ ((gij)). ë˄̇ÚÛ‡ ̇Á˚‚‡ÂÚÒfl ÌÂÓÔ‰ÂÎÂÌÌÓÈ, ÂÒÎË Á̇˜ÂÌËfl Ë q fl‚Îfl˛ÚÒfl ÌÂÌÛ΂˚ÏË, Ë ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ, ÂÒÎË q = 0. ëÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ËχÌÓ‚‡ ÏÂÚË͇ – ÏÂÚË͇ g Ò ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ Ò˄̇ÚÛÓÈ (, 0), ‡ ÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ – ÏÂÚË͇ g Ò ÌÂÓÔ‰ÂÎÂÌÌÓÈ Ò˄̇ÚÛÓÈ (p, q).
116
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ç‚˚ÓʉÂÌ̇fl ÏÂÚË͇ ç‚˚ÓʉÂÌÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ g Ò ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ ((gij)), ‰Îfl ÍÓÚÓÓ„Ó ÏÂÚ˘ÂÒÍËÈ ÓÔ‰ÂÎËÚÂθ det(( gij )) ≠ 0. ÇÒ ËχÌÓ‚˚ Ë ÔÒ‚‰ÓËχÌÓ‚˚ ÏÂÚËÍË fl‚Îfl˛ÚÒfl Ì‚˚ÓʉÂÌÌ˚ÏË. Ç˚ÓʉÂÌÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ g Ò ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ ((gij)), ‰Îfl ÍÓÚÓÓ„Ó ÏÂÚ˘ÂÒÍËÈ Ô‰ÂÎËÚÂθ det(( gij )) = 0 (ÒÏ. èÓÎÛËχÌÓ‚‡ ÏÂÚË͇ Ë èÓÎÛÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇). åÌÓ„ÓÓ·‡ÁËÂ Ò ‚˚ÓʉÂÌÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ËÁÓÚÓÔÌ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ. Ñˇ„Ó̇θ̇fl ÏÂÚË͇ Ñˇ„Ó̇θÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ g Ò ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ ((gij)), ‰Îfl ÍÓÚÓÓ„Ó gij = 0 ÔË i ≠ j. Ö‚ÍÎˉӂ‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl ‰Ë‡„Ó̇θÌÓÈ ÏÂÚËÍÓÈ, Ú‡Í Í‡Í Â ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ ËÏÂÂÚ ‚ˉ gij = 1, gij = 0 ‰Îfl i ≠ j. êËχÌÓ‚‡ ÏÂÚË͇ ê‡ÒÒÏÓÚËÏ ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn , ‚ ÍÓÚÓÓÏ Í‡Ê‰Ó ͇҇ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò̇·ÊÂÌÓ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ (Ú.Â. ÒËÏÏÂÚ˘ÌÓÈ ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ ·ËÎËÌÂÈÌÓÈ ÙÓÏÓÈ), „·‰ÍÓ ËÁÏÂÌfl˛˘ËÏÒfl ÓÚ ÚÓ˜ÍË Í ÚÓ˜ÍÂ. êËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ Mn fl‚ÎflÂÚÒfl ÒÂÏÂÈÒÚ‚Ó Ò͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ 〈 , 〉 p ̇ ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı T p (M n ) – ÔÓ Ó‰ÌÓÏÛ ‰Îfl ͇ʉÓÈ ÚÓ˜ÍË p ∈ Mn . ä‡Ê‰Ó Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË 〈 , 〉 p ÔÓÎÌÓÒÚ¸˛ Á‡‰‡ÂÚÒfl Ò͇ÎflÌ˚ÏË ÔÓËÁ‚‰ÂÌËflÏË 〈ei , e j 〉 p = gij ( p) ˝ÎÂÏÂÌÚÓ‚ e1 ,..., en Òڇ̉‡ÚÌÓ„Ó ·‡ÁËÒ‡ ‚ n , Ú.Â. ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÒËÏÏÂÚ˘ÌÓÈ Ë ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ n × n χÚˈÂÈ (( gij )) =
= (( gij ( p))), ̇Á˚‚‡ÂÏÓÈ ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ. àÏÂÌÌÓ, 〈 x, y 〉 p = = ∑ gij ( p) xi y j , i, j
„‰Â x = ( x1 ,..., x n ) Ë y = ( y1 ,..., yn ) ∈ Tp ( M ). É·‰Í‡fl ÙÛÌ͈Ëfl g ÔÓÎÌÓÒÚ¸˛ ÓÔ‰ÂÎflÂÚ ËχÌÓ‚Û ÏÂÚËÍÛ. êËχÌÓ‚‡ ÏÂÚË͇ ̇ Mn Ì fl‚ÎflÂÚÒfl Ó·˚˜ÌÓÈ ÏÂÚËÍÓÈ Ì‡ Mn . é‰Ì‡ÍÓ ‰Îfl Ò‚flÁÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl Mn ͇ʉ‡fl ËχÌÓ‚‡ ÏÂÚË͇ ̇ M n ÔÓÓʉ‡ÂÚ Ó·˚˜ÌÛ˛ ÏÂÚËÍÛ Ì‡ M n (ËÏÂÌÌÓ, ‚ÌÛÚÂÌÌ˛˛ ÏÂÚËÍÛ Ì‡ M n ): ‰Îfl β·˚ı ‰‚Ûı ÚÓ˜ÂÍ p, q ∈ M n ËχÌÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË ÓÔ‰ÂÎÂÌÓ Í‡Í n
1
inf γ
∫ 0
dγ dγ , dt dt
1/ 2
1
dt = inf γ
gij ∫ ∑ i, j 0
dxi dx j dt, dt dt
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÒÔflÏÎflÂÏ˚Ï ÍË‚˚Ï γ : [0, 1] → M n , ÒÓ‰ËÌfl˛˘ËÏ ÚÓ˜ÍË p Ë q. êËχÌÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ (ËÎË ËχÌÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ) ̇Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn , Ò̇·ÊÂÌÌÓ ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ. íÂÓËfl ËχÌÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚ÓÈ „ÂÓÏÂÚËÂÈ. èÓÒÚÂȯËÏ ÔËÏÂÓÏ ËχÌÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ fl‚Îfl˛ÚÒfl ‚ÍÎˉӂ˚ ÔÓÒÚ‡ÌÒÚ‚‡, „ËÔ·Ó΢ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡ Ë ˝ÎÎËÔÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡. êËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl ÔÓÎÌ˚Ï, ÂÒÎË ÓÌÓ fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
117
äÓÌÙÓÏ̇fl ÏÂÚË͇ äÓÌÙÓÏÌÓÈ ÒÚÛÍÚÛÓÈ ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ V ̇Á˚‚‡ÂÚÒfl Í·ÒÒ ÔÓÔ‡ÌÓ „ÓÏÓÚÂÚ˘Ì˚ı ‚ÍÎˉӂ˚ı ÏÂÚËÍ Ì‡ V. ã˛·‡fl ‚ÍÎˉӂ‡ ÏÂÚË͇ d E ̇ V Á‡‰‡ÂÚ ÌÂÍÓÚÓÛ˛ ÍÓÌÙÓÏÌÛ˛ ÒÚÛÍÚÛÛ {λd E : λ > 0}. äÓÌÙÓÏ̇fl ÒÚÛÍÚÛ‡ ÏÌÓ„ÓÓ·‡ÁËfl – ÔÓΠÍÓÌÙÓÏÌ˚ı ÒÚÛÍÚÛ Ì‡ ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı ËÎË, ˜ÚÓ ÚÓ ÊÂ, Í·ÒÒ ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ı ËχÌÓ‚˚ı ÏÂÚËÍ. Ñ‚Â ËχÌÓ‚˚ ÏÂÚËÍË g Ë h ̇ „·‰ÍÓÏ ÏÌÓ„ÓÓ·‡ÁËË M n ̇Á˚‚‡˛ÚÒfl ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ‰Îfl g = f ⋅ h ÌÂÍÓÚÓÓÈ ÔÓÎÓÊËÚÂθÌÓÈ ÙÛÌ͈ËË f ̇ Mn , ̇Á˚‚‡ÂÏÓÈ ÍÓÌÙÓÏÌ˚Ï Ù‡ÍÚÓÓÏ. äÓÌÙÓÏ̇fl ÏÂÚË͇ – ËχÌÓ‚‡ ÏÂÚË͇, Ô‰ÒÚ‡‚Îfl˛˘‡fl ÍÓÌÙÓÏÌÛ˛ ÒÚÛÍÚÛÛ (ÒÏ. äÓÌÙÓÏÌÓ ËÌ‚‡Ë‡ÌÚ̇fl ÏÂÚË͇, „Î. 8). äÓÌÙÓÏÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó äÓÌÙÓÏÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË ËÌ‚ÂÒË‚Ì˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ) ̇Á˚‚‡ÂÚÒfl ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó n, ‡Ò¯ËÂÌÌÓÂ Ò ÔÓÏÓ˘¸˛ ˉ‡θÌÓÈ ÚÓ˜ÍË (ÚÓ˜ÍË ‚ ·ÂÒÍÓ̘ÌÓÒÚË). èÓÒ‰ÒÚ‚ÓÏ ÍÓÌÙÓÏÌ˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ (Ú.Â. ÌÂÔÂ˚‚Ì˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ, ÒÓı‡Ìfl˛˘Ëı ÎÓ͇θÌ˚ ۄÎ˚) ˉ‡θ̇fl ÚӘ͇ ÏÓÊÂÚ ·˚Ú¸ Ô‚‰Â̇ ‚ Ó·˚˜ÌÛ˛. ëΉӂ‡ÚÂθÌÓ, ‚ ÍÓÌÙÓÏÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ÒÙ‡ Ë ÔÎÓÒÍÓÒÚ¸ ̇Á΢ËÏ˚: ÔÎÓÒÍÓÒÚ¸ – ˝ÚÓ ÒÙ‡, ÔÓıÓ‰fl˘‡fl ˜ÂÂÁ ˉ‡θÌÛ˛ ÚÓ˜ÍÛ. äÓÌÙÓÏÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡ ËÒÒÎÂ‰Û˛ÚÒfl ‚ ÍÓÌÙÓÏÌÓÈ „ÂÓÏÂÚËË (ËÎË „  ÓÏÂÚËË, ÒÓı‡Ìfl˛˘ÂÈ Û„Î˚, „ÂÓÏÂÚËË åfi·ËÛÒ‡, ËÌ‚ÂÒË‚ÌÓÈ „ÂÓÏÂÚËË), ÍÓÚÓ‡fl ËÁÛ˜‡ÂÚ Ò‚ÓÈÒÚ‚‡ ÙË„Û, ÓÒÚ‡˛˘ËıÒfl ËÌ‚‡Ë‡ÌÚÌ˚ÏË ÔË ÍÓÌÙÓÏÌ˚ı ÔÂÓ·‡ÁÓ‚‡ÌËflı. ùÚÓ – ÏÌÓÊÂÒÚ‚Ó ÔÂÓ·‡ÁÓ‚‡ÌËÈ, ÓÚÓ·‡Ê‡˛˘Ëı ÒÙÂ˚ ‚ ÒÙÂ˚, Ú.Â. ÔÓÓʉ‡ÂÏ˚ı ‚ÍÎˉӂ˚ÏË ÔÂÓ·‡ÁÓ‚‡ÌËflÏË ÒÓ‚ÏÂÒÚÌÓ Ò ËÌ‚ÂÒËflÏË, ÍÓÚÓr 2 xi , „‰Â r – ‡‰ËÛÒ ˚ ‚ ÍÓÓ‰Ë̇ÚÌÓÈ ÙÓÏ fl‚Îfl˛ÚÒfl ÒÓÔflÊÂÌÌ˚ÏË Ò xi → x 2j
∑ j
ËÌ‚ÂÒËË. àÌ‚ÂÒËfl ‚ ÒÙÂÛ ÒÚ‡ÌÓ‚ËÚÒfl ‡‚ÚÓÏÓÙËÁÏÓÏ Ò ÔÂËÓ‰ÓÏ 2. ã˛·ÓÈ Û„ÓÎ Ô‚ӉËÚÒfl ‚ ‡‚Ì˚È Û„ÓÎ. Ñ‚ÛÏÂÌÓ ÍÓÌÙÓÏÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ËχÌÓ‚ÓÈ ÒÙÂÓÈ, ̇ ÍÓÚÓÓÈ az + b ÍÓÌÙÓÏÌ˚ ÔÂÓ·‡ÁÓ‚‡ÌËfl Á‡‰‡˛ÚÒfl ÔÂÓ·‡ÁÓ‚‡ÌËflÏË åfi·ËÛÒ‡ z → , cz + d ad − bc ≠ 0. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÍÓÌÙÓÏÌÓ ÓÚÓ·‡ÊÂÌË ÏÂÊ‰Û ‰‚ÛÏfl ËχÌÓ‚˚ÏË ÏÌÓ„ÓÓ·‡ÁËflÏË ÂÒÚ¸ Ú‡ÍÓÈ ‰ËÙÙÂÓÏÓÙËÁÏ ÏÂÊ‰Û ÌËÏË, ˜ÚÓ Ó·‡ÚÌ˚È Ó·‡Á ÏÂÚËÍË ÒÚ‡ÌÓ‚ËÚÒfl ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚Ï ÔÓÓ·‡ÁÛ. äÓÌÙÓÏÌÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó – ˝ÚÓ ËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, ‰ÓÔÛÒ͇˛˘Â ÍÓÌÙÓÏÌÓ ÓÚÓ·‡ÊÂÌË ̇ ÌÂÍÓÚÓÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. Ç Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË ÍÓÌÙÓÏÌ˚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ‡ÒÒχÚË‚‡˛ÚÒfl ̇ ÔÓÒÚ‡ÌÒÚ‚Â åËÌÍÓ‚ÒÍÓ„Ó 1 , 3, ‡Ò¯ËÂÌÌÓÏ ‰‚ÛÏfl ˉ‡θÌ˚ÏË ÚӘ͇ÏË. èÓÒÚ‡ÌÒÚ‚Ó ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚ èÓÒÚ‡ÌÒÚ‚ÓÏ ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚ ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó Mn , ‰Îfl ÍÓÚÓÓ„Ó ÒÂ͈ËÓÌ̇fl ÍË‚ËÁ̇ K (σ) fl‚ÎflÂÚÒfl ÔÓÒÚÓflÌÌÓÈ ‚Â΢ËÌÓÈ ‚Ó ‚ÒÂı ‰‚ÛÏÂÌ˚ı ̇ԇ‚ÎÂÌËflı σ. èÓÒÚ‡ÌÒÚ‚ÂÌ̇fl ÙÓχ – Ò‚flÁÌÓ ÔÓÎÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚. èÎÓÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó – ÔÓÒÚ‡ÌÒÚ‚ÂÌ̇fl ÙÓχ ÌÛ΂ÓÈ ÍË‚ËÁÌ˚.
118
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
Ö‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó Ë ÔÎÓÒÍËÈ ÚÓ fl‚Îfl˛ÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ÏË ÙÓχÏË ÌÛ΂ÓÈ ÍË‚ËÁÌ˚ (Ú.Â. ÔÎÓÒÍËÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË), ÒÙ‡ – ÔÓÒÚ‡ÌÒÚ‚ÂÌ̇fl ÙÓχ ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚, ‡ „ËÔ·Ó΢ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó – ÔÓÒÚ‡ÌÒÚ‚ÂÌ̇fl ÙÓχ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚. é·Ó·˘ÂÌÌ˚ ËχÌÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ é·Ó·˘ÂÌÌ˚Ï ËχÌÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ, ‰Îfl ÍË‚ËÁÌ˚ ÍÓÚÓÓ„Ó ÔËÌflÚ˚ ÓÔ‰ÂÎÂÌÌ˚ ӄ‡Ì˘ÂÌËfl. í‡ÍË ÔÓÒÚ‡ÌÒÚ‚‡ ‚Íβ˜‡˛Ú ‚ Ò·fl ÔÓÒÚ‡ÌÒÚ‚‡ Ó„‡Ì˘ÂÌÌÓÈ ÍË‚ËÁÌ˚, ËχÌÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ Ë Ú.Ô. é·Ó·˘ÂÌÌ˚ ËχÌÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ ÓÚ΢‡˛ÚÒfl ÓÚ ËχÌÓ‚˚ı Ì ÚÓθÍÓ ·Óθ¯ÂÈ Ó·Ó·˘ÂÌÌÓÒÚ¸˛, ÌÓ Ë ÚÂÏ, ˜ÚÓ ÓÌË ÓÔ‰ÂÎfl˛ÚÒfl Ë ËÒÒÎÂ‰Û˛ÚÒfl ÚÓθÍÓ Ì‡ ÓÒÌÓ‚Â Ëı ÏÂÚËÍË ·ÂÁ Û˜ÂÚ‡ ÍÓÓ‰Ë̇Ú. èÓÒÚ‡ÌÒÚ‚Ó Ò Ó„‡Ì˘ÂÌÌÓÈ ÍË‚ËÁÌÓÈ (≤ k Ë ≥ k') fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌÌ˚Ï ËχÌÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÍÓÚÓÓ ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ ÛÒÎÓ‚ËÂÏ: ‰Îfl β·ÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË „ÂÓ‰ÂÁ˘ÂÒÍËı ÚÂÛ„ÓθÌËÍÓ‚ Tn, ÒÛʇ˛˘ËıÒfl ‚ ÚÓ˜ÍÛ, ËÏÂ˛Ú ÏÂÒÚÓ Ì‡‚ÂÌÒÚ‚‡ k ≥ lim
δ (Tn ) σ
( ) Tn0
≥ lim
δ (Tn )
( )
σ Tn0
≥ k ′,
„‰Â „ÂÓ‰ÂÁ˘ÂÒÍËÈ ÚÂÛ„ÓθÌËÍ T = xyz fl‚ÎflÂÚÒfl ÚÓÈÍÓÈ „ÂÓ‰ÂÁ˘ÂÒÍËı ÓÚÂÁÍÓ‚ [x, y], [y, z], [z, x] (ÒÚÓÓÌ˚ ÚÂÛ„ÓθÌË͇ í), ÒÓ‰ËÌfl˛˘Ëı ÔÓÔ‡ÌÓ ÚË ‡Á΢Ì˚ ÚÓ˜ÍË x , y, z, ‚Â΢ËÌ˚ δ (T 0 ) = α + β + γ − π ‚˚‡Ê‡ÂÚ Û„ÎÓ‚ÓÈ ‰ÂÙÂÍÚ „ÂÓ‰ÂÁ˘ÂÒÍÓ„Ó ÚÂÛ„ÓθÌË͇ í Ë δ(T 0 ) – ÔÎÓ˘‡‰¸ ‚ÍÎˉӂ‡ ÚÂÛ„ÓθÌË͇ T0 ÒÓ ÒÚÓÓ̇ÏË ÚÓÈ Ê ‰ÎËÌ˚. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÔÓÒÚ‡ÌÒÚ‚Â Ó„‡Ì˘ÂÌÌÓÈ ÍË‚ËÁÌ˚ ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ Ó„‡Ì˘ÂÌÌÓÈ ÍË‚ËÁÌ˚. í‡ÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ô‚‡˘‡ÂÚÒfl ‚ ËχÌÓ‚Ó, ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ‰‚‡ ‰ÓÔÓÎÌËÚÂθÌ˚ı ÛÒÎÓ‚Ëfl: ÎÓ͇θ̇fl ÍÓÏÔ‡ÍÚÌÓÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚‡ (˝ÚËÏ Ó·ÂÒÔ˜˂‡ÂÚÒfl ÎÓ͇θÌÓ ÒÛ˘ÂÒÚ‚Ó‚‡ÌË „ÂÓ‰ÂÁ˘ÂÒÍËı) Ë ÎÓ͇θÌÓ ‡Ò¯ËÂÌË „ÂÓ‰ÂÁ˘ÂÒÍËı. ÖÒÎË ÔË ˝ÚÓÏ k = k', ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ËχÌÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ò ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌÓÈ k (ÒÏ. èÓÒÚ‡ÌÒÚ‚Ó „ÂÓ‰ÂÁ˘ÂÒÍËı, „Î. 6). δ (Tn ) èÓÒÚ‡ÌÒÚ‚Ó ÍË‚ËÁÌ˚ ≤ k ÓÔ‰ÂÎflÂÚÒfl ÛÒÎÓ‚ËÂÏ lim ≤ k. Ç Ú‡ÍÓÏ σ(Tn0 ) ÔÓÒÚ‡ÌÒڂ β·‡fl ÚӘ͇ ËÏÂÂÚ ÌÂÍÓÚÓÛ˛ ÓÍÂÒÚÌÓÒÚ¸, ‚ ÍÓÚÓÓÈ ÒÛÏχ α + β + γ Û„ÎÓ‚ „ÂÓ‰ÂÁ˘ÂÒÍÓ„Ó ÚÂÛ„ÓθÌË͇ í Ì Ô‚˚¯‡ÂÚ ÒÛÏÏÛ α k + β k + γ k Û„ÎÓ‚ ÚÂÛ„ÓθÌË͇ Tk ÒÓ ÒÚÓÓ̇ÏË ÚÓÈ Ê ‰ÎËÌ˚ ‚ ÔÓÒÚ‡ÌÒÚ‚Â ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚ k. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ Ú‡ÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡ÂÚÒfl k-‚Ó„ÌÛÚÓÈ ÏÂÚËÍÓÈ. δ (Tn ) èÓÒÚ‡ÌÒÚ‚Ó ÍË‚ËÁÌ˚ ≥ k ÓÔ‰ÂÎflÂÚÒfl ÛÒÎÓ‚ËÂÏ lim ≤ k. Ç Ú‡ÍÓÏ σ(Tn0 ) ÔÓÒÚ‡ÌÒڂ β·‡fl ÚӘ͇ ËÏÂÂÚ ÌÂÍÓÚÓÛ˛ ÓÍÂÒÚÌÓÒÚ¸, ‚ ÍÓÚÓÓÈ α + β + γ ≥ α k + β k + γ k ‰Îfl ÚÂÛ„ÓθÌËÍÓ‚ í Ë T k. ÇÌÛÚÂÌÌ˛˛ ÏÂÚËÍÛ Ú‡ÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡˛Ú K-‚Ó„ÌÛÚÓÈ ÏÂÚËÍÓÈ. èÓÒÚ‡ÌÒÚ‚Ó ÄÎÂÍ҇̉ӂ‡ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌÌ˚Ï ËχÌÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ò Ó„‡Ì˘ÂÌÌÓÈ ‚ÂıÌÂÈ, ÌËÊÌÂÈ ËÎË ËÌÚ„‡Î¸ÌÓÈ ÍË‚ËÁÌÓÈ.
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
119
èÓÎ̇fl ËχÌÓ‚‡ ÏÂÚË͇ êËχÌÓ‚‡ ÏÂÚË͇ g ̇ ÏÌÓ„ÓÓ·‡ÁËË Mn ̇Á˚‚‡ÂÚÒfl ÔÓÎÌÓÈ, ÂÒÎË M n Ó·‡ÁÛÂÚ ÔÓÎÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓ ÓÚÌÓ¯ÂÌ˲ Í g. ã˛·‡fl ËχÌÓ‚‡ ÏÂÚË͇ ̇ ÍÓÏÔ‡ÍÚÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË fl‚ÎflÂÚÒfl ÔÓÎÌÓÈ. ê˘˜Ë-ÔÎÓÒ͇fl ÏÂÚË͇ ê˘˜Ë-ÔÎÓÒÍÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇, ÚÂÌÁÓ ÍË‚ËÁÌ˚ ÍÓÚÓÓÈ Ó·‡˘‡ÂÚÒfl ‚ ÌÛθ. èÎÓÒÍÓ ÏÌÓ„ÓÓ·‡ÁË ê˘˜Ë Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ËχÌÓ‚Ó ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ê˘˜Ë-ÔÎÓÒÍÓÈ ÏÂÚËÍÓÈ. èÎÓÒÍË ÏÌÓ„ÓÓ·‡ÁËfl ê˘˜Ë fl‚Îfl˛ÚÒfl ‚‡ÍÛÛÏÌ˚Ï Â¯ÂÌËÂÏ Â‚ÍÎˉӂ‡ ı‡‡ÍÚÂËÒÚ˘ÂÒÍÓ„Ó ÔÓÎËÌÓχ Ë ÓÒÓ·˚ÏË ÒÎÛ˜‡flÏË ÏÌÓ„ÓÓ·‡ÁËÈ äÂı·–ùÈ̯ÚÂÈ̇. ä ‚‡ÊÌ˚Ï ÔÎÓÒÍËÏ ÏÌÓ„ÓÓ·‡ÁËflÏ ê˘˜Ë ÓÚÌÓÒflÚÒfl ÏÌÓ„ÓÓ·‡ÁËfl ä‡Î‡·Ë–üÛ Ë „ËÔÂÏÌÓ„ÓÓ·‡ÁËfl äÂı·. åÂÚË͇ éÒÒÂχ̇ åÂÚËÍÓÈ éÒÒÂχ̇ ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇, ‰Îfl ÍÓÚÓÓÈ ËχÌÓ‚ ÚÂÌÁÓ ÍË‚ËÁÌ˚ R fl‚ÎflÂÚÒfl ÓÒÒÂχÌÓ‚˚Ï. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ ÒÓ·ÒÚ‚ÂÌÌ˚ Á̇˜ÂÌËfl ÓÔ‡ÚÓ‡ üÍÓ·Ë ( x ) : y → R( y, x ) x ̇ ‰ËÌ˘ÌÓÈ ÒÙ Sn–1 ÔÓÒÚ‡ÌÒÚ‚‡ n ·Û‰ÛÚ ÔÓÒÚÓflÌÌ˚ÏË, Ú.Â. ÌÂÁ‡‚ËÒËÏ˚ÏË ÓÚ Â‰ËÌ˘Ì˚ı ‚ÂÍÚÓÓ‚ ı. G-ËÌ‚‡Ë‡ÌÚ̇fl ÏÂÚË͇ G-ËÌ‚‡Ë‡ÌÚÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ g ̇ ‰ËÙÙÂÂ̈ËÛÂÏÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , ÍÓÚÓ‡fl Ì ËÁÏÂÌflÂÚÒfl ÔË Î˛·˚ı ÔÂÓ·‡ÁÓ‚‡ÌËflı ‰‡ÌÌÓÈ „ÛÔÔ˚ ãË (G, ⋅ , id ). ÉÛÔÔ‡ (G, ⋅ , id ) ̇Á˚‚‡ÂÚÒfl „ÛÔÔÓÈ ‰‚ËÊÂÌËÈ (ËÎË „ÛÔÔÓÈ ËÁÓÏÂÚËÈ) ËχÌÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ (Mn , g). åÂÚË͇ à‚‡ÌÓ‚‡–èÂÚÓ‚ÓÈ èÛÒÚ¸ R – ËχÌÓ‚˚Ï ÚÂÌÁÓÓÏ ÍË‚ËÁÌ˚ ËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl Mn Ë {x, y} – ÓÚÓ„Ó̇θÌ˚È ·‡ÁËÒ ÓËÂÌÚËÓ‚‡ÌÌÓÈ 2-ÔÎÓÒÍÓÒÚË π ‚ Í‡Ò‡ÚÂθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â T p (M n ). åÂÚËÍÓÈ à‚‡ÌÓ‚‡–èÂÚÓ‚ÓÈ Ì‡Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ ̇ Mn , ‰Îfl ÍÓÚÓÓÈ ÒÓ·ÒÚ‚ÂÌÌ˚ Á̇˜ÂÌËfl ‡ÌÚËÒËÏÏÂÚ˘ÌÓ„Ó ÓÔ‡ÚÓ‡ ÍË‚ËÁÌ˚ ( π) = R( x, y) ([IvSt95]) Á‡‚ËÒflÚ ÚÓθÍÓ ÓÚ ÚÓ˜ÍË ËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl Mn , ÌÓ Ì ÓÚ ÔÎÓÒÍÓÒÚË π. åÂÚË͇ áÓη åÂÚËÍÓÈ áÓη ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ ̇ „·‰ÍÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , „ÂÓ‰ÂÁ˘ÂÒÍË ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl ÔÓÒÚ˚ÏË Á‡ÏÍÌÛÚ˚ÏË ÍË‚˚ÏË ‡‚ÌÓÈ ‰ÎËÌ˚. Ñ‚ÛÏÂ̇fl ÒÙ‡ S2 ‰ÓÔÛÒ͇ÂÚ ÏÌÓÊÂÒÚ‚Ó Ú‡ÍËı ÏÂÚËÍ, ÔÓÏËÏÓ Ó˜Â‚Ë‰Ì˚ı ÏÂÚËÍ ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚. Ç ÚÂÏË̇ı ˆËÎË̉˘ÂÒÍËı ÍÓÓ‰ËÌ‡Ú ( z, θ) ( z ∈[ −1, 1], θ ∈[0, 2 π]) ÎËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ds 2 =
(1 + f ( z ))2 2 dz + (1 − z 2 )dθ 2 1 − z2
Á‡‰‡ÂÚ ÏÂÚËÍÛ áÓη ̇ ÒÙ S2 ‰Îfl β·ÓÈ „·‰ÍÓÈ Ì˜ÂÚÌÓÈ ÙÛÌ͈ËË f : [ −1, 1] → ( −1, 1), ÍÓÚÓ‡fl Ó·‡˘‡ÂÚÒfl ‚ ÌÛθ ‚ ÍÓ̈‚˚ı ÚӘ͇ı ËÌÚ‚‡Î‡.
120
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ñËÍÎÓˉ‡Î¸Ì‡fl ÏÂÚË͇ ñËÍÎÓˉ‡Î¸Ì‡fl ÏÂÚË͇ – ˝ÚÓ ËχÌÓ‚‡ ÏÂÚË͇ 2 + = {x ∈ 2 : x1 ≥ 0}, Á‡‰‡‚‡Âχfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 =
̇
ÔÓÎÛÔÎÓÒÍÓÒÚË
dx12 + dx 22 . 2 x1
é̇ ̇Á˚‚‡ÂÚÒfl ˆËÍÎÓˉ‡Î¸ÌÓÈ, ÔÓÒÍÓθÍÛ Â „ÂÓ‰ÂÁ˘ÂÒÍË fl‚Îfl˛ÚÒfl ˆËÍÎÓ Ë‰‡Î¸Ì˚ÏË ÍË‚˚ÏË. ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ‡ÒÒÚÓflÌË d(x, y) ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË x, y ∈ 2+ ˝Í‚Ë‚‡ÎÂÌÚÌÓ ‡ÒÒÚÓflÌ˲ ρ( x, y) =
| x1 − y1 | + | x 2 − y2 | x1 + x 2 + | x 2 − y2
‚ ÚÓÏ ÒÏ˚ÒÎÂ, ˜ÚÓ d ≤ Cρ Ë ρ ≤ Cd ‰Îfl ÌÂÍÓÂÈ ÔÓÎÓÊËÚÂθÌÓÈ ÍÓÌÒÚ‡ÌÚ˚ ë. åÂÚË͇ Å„‡ åÂÚËÍÓÈ Å„‡ ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ ̇ ÒÙ ń‡ (Ú.Â. ÒʇÚÓÈ ‚ Ó‰ÌÓÏ Ì‡Ô‡‚ÎÂÌËË ÒÙ S3 ), Á‡‰‡‚‡Âχfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = dθ 2 + sin 2 θd φ 2 + cos 2 α( dψ + cos θd φ)2 , „‰Â α – ÍÓÌÒÚ‡ÌÚ‡, ‡ θ, φ, ψ – Û„Î˚ ùÈ·. åÂÚË͇ ä‡ÌÓ-䇇ÚÂÓ‰ÓË ê‡ÒÔ‰ÂÎÂÌË (ËÎË ÔÓÎflËÁ‡ˆËfl) ̇ M n ÂÒÚ¸ ÔÓ‰‡ÒÒÎÓÂÌË ͇҇ÚÂθÌÓ„Ó ‡ÒÒÎÓÂÌËfl T(M n ) ÏÌÓ„ÓÓ·‡ÁËfl Mn . èË Ì‡Î˘ËË ÔÓÎflËÁ‡ˆËË H(M n ) ‚ÂÍÚÓÌÓ ÔÓΠ‚ H(Mn ) ̇Á˚‚‡ÂÚÒfl „ÓËÁÓÌڇθÌ˚Ï. äË‚‡fl γ ̇ M n ̇Á˚‚‡ÂÚÒfl „ÓËÁÓÌڇθ ÌÓÈ (ËÎË ‚˚‰ÂÎÂÌÌÓÈ, ‰ÓÔÛÒÚËÏÓÈ) ÔÓ ÓÚÌÓ¯ÂÌ˲ Í H(Mn ), ÂÒÎË γ ′(t ) ∈ Hγ ( t ) ( M n ) ‰Îfl β·Ó„Ó t. ê‡ÒÔ‰ÂÎÂÌË H(M n ) ̇Á˚‚‡ÂÚÒfl ‡·ÒÓβÚÌÓ ÌÂËÌÚ„ËÛÂÏ˚Ï, ÂÒÎË ÒÍÓ·ÍË ãË [...,[ H ( M n ), H ( M n )]] ÔÓÎflËÁ‡ˆËË H(M n ) ÔÂÂÍ˚‚‡˛Ú ͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌË T(M n ), Ú.Â. ‰Îfl ‚ÒÂı p ∈ Mn β·ÓÈ Í‡Ò‡ÚÂθÌ˚È ‚ÂÍÚÓ v ËÁ T p (M n ) ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂÌ Í‡Í ÎËÌÂÈ̇fl ÍÓÏ·Ë̇ˆËfl ‚ÂÍÚÓÓ‚ ÒÎÂ‰Û˛˘Ëı ‚ˉӂ: u, [u, w], [u, [w, t]], [u, [w, [t, s]]],... ∈ Tp(M n ), „‰Â ‚Ò ‚ÂÍÚÓÌ˚ ÔÓÎfl u, w, t, s,... fl‚Îfl˛ÚÒfl „ÓËÁÓÌڇθÌ˚ÏË. åÂÚËÍÓÈ ä‡ÌӖ䇇ÚÂÓ‰ÓË (ËÎË ë–ë ÏÂÚËÍÓÈ) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓ„ÓÓ·‡ÁËË Mn Ò ‡·ÒÓβÚÌÓ ÌÂËÌÚ„ËÛÂÏ˚Ï „ÓËÁÓÌڇθÌ˚Ï ‡ÒÔ‰ÂÎÂÌËÂÏ H(Mn ), Á‡‰‡‚‡Âχfl ̇·ÓÓÏ gc ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı Ò͇ÎflÌ˚ı ÔÓËÁ ‚‰ÂÌËÈ Ì‡ H (Mn ). ê‡ÒÒÚÓflÌË dc(p, q) ÏÂÊ‰Û Î˛·˚ÏË ÚӘ͇ÏË p, q ∈ M n ÓÔ ‰ÂÎflÂÚÒfl Í‡Í ËÌÙËÏÛÏ gc-‰ÎËÌ „ÓËÁÓÌڇθÌ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ÚÓ˜ÍË p Ë q. èÓ‰ËχÌÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ (ËÎË ÔÓÎflËÁÓ‚‡ÌÌ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ) ̇Á˚ ‚‡ÂÚÒfl ÏÌÓ„ÓÓ·‡ÁË Mn , Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ ä‡ÌӖ䇇ÚÂÓ‰ÓË. éÌÓ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl. ÉÛ·Ó „Ó‚Ófl, ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ ‚ ÔÓ‰ËχÌÓ‚ÓÏ ÏÌÓ„ÓÓ·‡ÁËË ÏÓÊÌÓ ÒΉӂ‡Ú¸ ÚÓθÍÓ ‚‰Óθ ÍË‚˚ı, fl‚Îfl˛˘ËıÒfl ͇҇ÚÂθÌ˚ÏË Í „ÓËÁÓÌڇθÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚‡Ï. èÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ ê‡ÒÒÏÓÚËÏ ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn , ‚ ÍÓÚÓÓÏ Í‡Ê‰Ó ͇҇ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Tp(M n ), p ∈ Mn Ò̇·ÊÂÌÓ „·‰ÍÓ ËÁÏÂ-
121
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
Ìfl˛˘ËÏÒfl ÓÚ ÚÓ˜ÍË Í ÚӘ͠Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ, ÍÓÚÓÓ fl‚ÎflÂÚÒfl Ì‚˚ÓʉÂÌÌ˚Ï, ÌÓ ÌÂÓÔ‰ÂÎÂÌÌ˚Ï. èÒ‚‰ÓËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ M n ̇Á˚‚‡ÂÚÒfl ÒÓ‚ÓÍÛÔÌÓÒÚ¸ Ò͇ÎflÌ˚ı ÔÓËÁ ‚‰ÂÌËÈ 〈 , 〉 p ̇ ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı Tp (M n ), p ∈ Mn , ÔÓ Ó‰ÌÓÏÛ ‰Îfl ͇ʉÓÈ ÚÓ˜ÍË p ∈ Mn . ä‡Ê‰Ó Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË 〈 , 〉 p ÔÓÎÌÓÒÚ¸˛ ÓÔ‰ÂÎÂÌÓ Ò͇ÎflÌ˚ÏË ÔÓËÁ ‚‰ÂÌËflÏË 〈ei , e j 〉 p = gij ( p) ˝ÎÂÏÂÌÚÓ‚ e1 ,..., en Òڇ̉‡ÚÌÓ„Ó ·‡ÁËÒ‡ ‚ n, Ú.Â. ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÒËÏÏÂÚ˘ÌÓÈ ÌÂÓÔ‰ÂÎÂÌÌÓÈ n × n χÚˈÂÈ (( gij )) = (( gij ( p))), ̇Á˚‚‡ÂÏÓÈ ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ (ÒÏ. êËχÌÓ‚‡ ÏÂÚË͇, „‰Â ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ fl‚ÎflÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÒËÏÏÂÚ˘ÌÓÈ ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ n × n χÚˈÂÈ). àÏÂÌÌÓ, 〈 x, y 〉 p = gij ( p) xi y j , „‰Â x = ( x1 ,..., x n ) Ë y = ( y1 ,..., yn ) ∈
∑ i, j
∈Tp ( M ). É·‰Í‡fl ÙÛÌ͈Ëfl g ÔÓÎÌÓÒÚ¸˛ ÓÔ‰ÂÎflÂÚ ÔÒ‚‰ÓËχÌÓ‚Û ÏÂÚËÍÛ. ÑÎË̇ ds ‚ÂÍÚÓ‡ ( dx1 ,..., dx n ) ‚˚‡Ê‡ÂÚÒfl Í‚‡‰‡Ú˘ÂÒÍÓÈ ‰ËÙÙÂÂ̈ˇθÌÓÈ ÙÓÏÓÈ n
ds 2 =
∑ gij dxi dx j . i, j
ÑÎË̇
ÍË‚ÓÈ
γ : [0, 1] → M n
‚˚‡Ê‡ÂÚÒfl
ÙÓÏÛÎÓÈ
gij dxi dx j = ∫ ∑ i, j γ
1
=
gij ∫ ∑ i, j 0
dxi dx j dt. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â Ó̇ ÏÓÊÂÚ ·˚Ú¸ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ, ˜ËÒÚÓ dt dt
ÏÌËÏÓÈ ËÎË ÌÛ΂ÓÈ (ËÁÓÚÓÔ̇fl ÍË‚‡fl). èÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ ̇ M n fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ò ÙËÍÒËÓ‚‡ÌÌÓÈ, ÌÓ ÌÂÓÔ‰ÂÎÂÌÌÓÈ Ò˄̇ÚÛÓÈ (p, q), p + q = n. èÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl Ì‚˚ÓʉÂÌÌÓÈ, Ú.Â.  ÏÂÚ˘ÂÒÍËÈ ÓÔ‰ÂÎËÚÂθ det(( gij )) ≠ 0. èÓ˝ÚÓÏÛ Ó̇ fl‚ÎflÂÚÒfl Ì‚˚ÓʉÂÌÌÓÈ ÌÂÓÔ‰ÂÎÂÌÌÓÈ ÏÂÚËÍÓÈ. èÒ‚‰ÓËχÌÓ‚Ó ÏÌÓ„ÓÓ·‡ÁË (ËÎË ÔÒ‚‰ÓËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó) – ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn , Ò̇·ÊÂÌÌÓ ÔÒ‚‰ÓËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ. íÂÓËfl ÔÒ‚‰ÓËχÌÓ˚ı ÔÓÒÚ‡ÌÒÚ‚ ̇Á˚‚‡ÂÚÒfl ÔÒ‚‰ÓËχÌÓ‚ÓÈ „ÂÓÏÂÚËÂÈ. åÓ‰Âθ˛ ÔÒ‚‰ÓËχÌÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ Ò Ò˄̇ÚÛÓÈ (p, q) fl‚ÎflÂÚÒfl ÔÒ‚‰Ó‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó p, q , p + q = n – ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó n, Ò̇·ÊÂÌÌÓ ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ ((g ij)) Ò Ò˄̇ÚÛÓÈ (p, q), Á‡‰‡ÌÌ˚Ï Í‡Í g11 = ... = g pp = 1, g p +1, p +1 = ... = gnn = −1, gij = 0 ‰Îfl i ≠ j. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl Í‡Í ds 2 = dx12 + ... + dx 2p − dx 2p +1 − ... − dx n2 . ãÓÂ̈‚‡ ÏÂÚË͇ ãÓÂ̈‚‡ ÏÂÚË͇ (ËÎË ÏÂÚË͇ ãÓÂ̈‡) – ÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ Ò Ò˄̇ÚÛÓÈ (1, p). ãÓÂ̈‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ÎÓÂ̈‚ÓÈ ÏÂÚËÍÓÈ. Ç Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË ÔË̈ËÔˇθÌÓ Ô‰ÔÓÎÓÊÂÌËÂ, ˜ÚÓ
122
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ÔÓÒÚ‡ÌÒÚ‚Ó–‚ÂÏfl ÏÓÊÂÚ ÏÓ‰ÂÎËÓ‚‡Ú¸Òfl Í‡Í ÎÓÂÌˆÂ‚Ó ÏÌÓ„ÓÓ·‡ÁËÂ Ò Ò˄̇ÚÛÓÈ (1, 3). èÓÒÚ‡ÌÒÚ‚Ó åËÌÍÓ‚ÒÍÓ„Ó 1,3 Ò ÔÎÓÒÍÓÈ ÏÂÚËÍÓÈ åËÌÍÓ‚ÒÍÓ„Ó fl‚ÎflÂÚÒfl ÏÓ‰Âθ˛ ÎÓÂ̈‚‡ ÏÌÓ„ÓÓ·‡ÁËfl. åÂÚË͇ éÒÒÂχ̇–ãÓÂ̈‡ åÂÚËÍÓÈ éÒÒÂχ̇–ãÓÂ̈‡ ̇Á˚‚‡ÂÚÒfl ÎÓÂ̈‚‡ ÏÂÚË͇, ‰Îfl ÍÓÚÓÓÈ ÚÂÌÁÓ ËχÌÓ‚ÓÈ ÍË‚ËÁÌ˚ R fl‚ÎflÂÚÒfl ÓÒÒÂχÌÓ‚˚Ï. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ ÒÓ·ÒÚ‚ÂÌÌ˚ Á̇˜ÂÌËËfl ÓÔ‡ÚÓ‡ üÍÓ·Ë ( x ) : y → R( y, x ) x Ì Á‡‚ËÒflÚ ÓÚ Â‰ËÌ˘Ì˚ı ‚ÂÍÚÓÓ‚ ı. ãÓÂÌˆÂ‚Ó ÏÌÓ„ÓÓ·‡ÁË ·Û‰ÂÚ ÓÒÒÂχÌÓ‚˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ fl‚ÎflÂÚÒfl ÏÌÓ„ÓÓ·‡ÁËÂÏ ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚. åÂÚË͇ ÅÎfl¯Í åÂÚË͇ ÅÎfl¯Í ̇ Ì‚˚ÓʉÂÌÌÓÈ „ËÔÂÔÓ‚ÂıÌÓÒÚË ÂÒÚ¸ ÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇, ‡ÒÒÓˆËËÓ‚‡Ì̇fl Ò ‡ÙÙËÌÌÓÈ ÌÓχθ˛ ‚ÎÓÊÂÌËfl φ : M n → n +1 , „‰Â Mn fl‚ÎflÂÚÒfl n-ÏÂÌ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ, ‡ n+1 ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ‡ÙÙËÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó. èÓÎÛËχÌÓ‚‡ ÏÂÚË͇ èÓÎÛËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ n-ÏÂÌÓÏ ‰ËÙÙÂÂ̈ËÛÂÏÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn ̇Á˚‚‡ÂÚÒfl ‚˚ÓʉÂÌ̇fl ËχÌÓ‚‡ ÏÂÚË͇, Ú.Â. ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÎÓÊËÚÂθÌÓ ÔÓÎÛÓÔ‰ÂÎÂÌÌ˚ı Ò͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ 〈 x, y 〉 p = gij ( p) xi y j
∑ i, j
̇ ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı T p (M n ), p ∈ M n ; ÏÂÚ˘ÂÒÍËÈ ÓÔ‰ÂÎËÚÂθ det(( gij )) = 0. èÓÎÛËχÌÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ (ËÎË ÔÓÎÛËχÌÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ) ̇Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn , Ò̇·ÊÂÌÌÓ ÔÓÎÛËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ. åÓ‰Âθ˛ ÔÓÎÛËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl fl‚ÎflÂÚÒfl ÔÓÎÛ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó nd , d ≥ 1 (ËÌÓ„‰‡ Ó·ÓÁ̇˜‡ÂÏÓÂ Í‡Í nn − d ), Ú.Â. ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó n, Ò̇·ÊÂÌÌÓ ÔÓÎÛËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ÌÂÍÓÚÓÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌËÂ, Ú‡ÍÓ ˜ÚÓ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Ì‡‰ÎÂʇ˘ËÏ Ó·‡ÁÓÏ ‚˚·‡ÌÌÓÏÛ ·‡ÁËÒÛ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË 〈 x, x 〉 ‚ÂÍÚÓ‡ ̇ Ò·fl ·Û‰ÂÚ ËÏÂÚ¸ ‚ˉ 〈 x, x 〉 =
n−d
∑
xi2 . èË ˝ÚÓÏ d ≥ 1 ˜ËÒÎÓ Ì‡Á˚‚‡ÂÚÒfl ‰ÂÙÂÍÚÓÏ
i =1
(ËÎË ÔÓÎÓÊËÚÂθÌ˚Ï ‰ÂÙˈËÚÓÏ) ÔÓÒÚ‡ÌÒÚ‚‡. åÂÚË͇ ÉÛ¯Ë̇ åÂÚËÍÓÈ ÉÛ¯Ë̇ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛËχÌÓ‚‡ ÏÂÚË͇ ̇ 2, Á‡‰‡‚‡Âχfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = dx12 +
δx 22 . x12
èÓÎÛÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ èÓÎÛÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ n-ÏÂÌÓÏ ‰ËÙÙÂÂ̈ËÛÂÏÓÏ ÏÌÓ„ÓÓ·‡ÁËË M n – ‚˚ÓʉÂÌ̇fl ÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇, Ú.Â. ÒÓ‚ÓÍÛÔÌÓÒÚ¸ gij ( p) xi y j ̇ ‚˚ÓʉÂÌÌ˚ı ÌÂÓÔ‰ÂÎÂÌÌ˚ı Ò͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ x, y p =
∑ i, j
123
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı Tp ( M n ), p ∈ M n ; ÏÂÚ˘ÂÒÍËÈ ÓÔ‰ÂÎËÚÂθ det(gij) = 0. àÏÂÌÌÓ, ÔÓÎÛÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl ‚˚ÓʉÂÌÌÓÈ ÌÂÓÔ‰ÂÎÂÌÌÓÈ ÏÂÚËÍÓÈ. èÓÎÛÔÒ‚‰ÓËχÌÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ (ËÎË ÔÓÎÛÔÒ‚‰ÓËχÌÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ) ̇Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn , Ò̇·ÊÂÌÌÓ ÔÓÎÛÔÒ‚‰ÓËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ. åÓ‰Âθ˛ ÔÓÎÛÔÒ‚‰ÓËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl fl‚ÎflÂÚÒfl ÔÓÎÛÔÒ‚‰Ó‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ln1 ,..., lr , Ú.Â. ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó m1 ,..., m r −1
n, Ò̇·ÊÂÌÌÓ ÔÓÎÛÔÒ‚‰ÓËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ r Ò͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ x, y a = ε ia xia yia , „‰Â a = 1, ..., r, 0 = m0 < ... < mr = n, ia = = m a–1 + 1, ..., ma, ε ia = ±1 Ë –1 ÒÂ‰Ë ˜ËÒÂÎ ε ia ‚ÒÚ˜‡ÂÚÒfl la ‡Á. èÓËÁ‚‰ÂÌËÂ
∑
x, y a ÓÔ‰ÂÎÂÌÓ ‰Îfl ÚÂı ‚ÂÍÚÓÓ‚, ‰Îfl ÍÓÚÓ˚ı ‚Ò ÍÓÓ‰Ë̇Ú˚ xi , i ≤ ma −1 ËÎË i > ma + 1, ‡‚Ì˚ ÌÛβ. è‚˚È Ò͇ÎflÌ˚È Í‚‡‰‡Ú ÔÓËÁ‚ÓθÌÓ„Ó ‚ÂÍÚÓ‡ ı fl‚ÎflÂÚÒfl ‚˚ÓʉÂÌÌÓÈ Í‚‡‰‡Ú˘ÌÓÈ ÙÓÏÓÈ
x, x
1
=−
l1
∑ i =1
xi2 +
n−d
∑
x 2j . óËÒÎÓ
j = l1 +1
l1 ≥ 0 ̇Á˚‚‡ÂÚÒfl Ë̉ÂÍÒÓÏ, ‡ ˜ËÒÎÓ d = n – m1 – ‰ÂÙÂÍÚÓÏ ÔÓÒÚ‡ÌÒÚ‚‡. ÖÒÎË l1 = ... = lr = 0, ÚÓ Ï˚ ÔÓÎÛ˜‡ÂÏ ÔÓÎÛ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. èÓÒÚ‡ÌÒÚ‚‡ nm Ë nk , l Ë Ì‡Á˚‚‡˛ÚÒfl Í‚‡ÁË‚ÍÎˉӂ˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË. èÓÎÛÔÒ‚‰ÓÌ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ln1 ,..., lr
ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂÌÓ Í‡Í
m1 ,..., m r −1
„ËÔÂÒÙ‡ ‚ ÔÓÒÚ‡ÌÒÚ‚Â ln1 ,..., lr
Ò ÓÚÓʉÂÒÚ‚ÎÂÌÌ˚ÏË ‡ÌÚËÔÓ‰‡Î¸Ì˚ÏË ÚÓ˜-
m1 ,..., m r −1
͇ÏË. ÖÒÎË l1 = ... = lr, ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl ÔÓÎÛ˝ÎÎËÔÚ˘ÂÒÍËÏ (ËÎË ÔÓÎÛÌ‚ÍÎˉӂ˚Ï) ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÖÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ , ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÛ„ËÔ·Ó΢ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. îËÌÒÎÂÓ‚‡ ÏÂÚË͇ ê‡ÒÒÏÓÚËÏ ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË MN , ‚ ÍÓÚÓÓÏ Í‡Ê‰Ó ͇҇ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Tp(M n ), p ∈ Mn Ò̇·ÊÂÌÓ ·‡Ì‡ıÓ‚ÓÈ ÌÓÏÓÈ || ⋅ ||, Ú‡ÍÓÈ ˜ÚÓ ·‡Ì‡ıÓ‚‡ ÌÓχ Í‡Í ÙÛÌ͈Ëfl ÔÓÁˈËË, fl‚ÎflÂÚÒfl „·‰ÍÓÈ Ë Ï‡Úˈ‡ (gij), gij = gij ( p, x ) =
1 ∂ 2 || x ||2 , 2 ∂xi ∂x j
fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ ‰Îfl β·Ó„Ó p ∈ Mn Ë Î˛·Ó„Ó x ∈ Tp (M n ). îËÌÒÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ Mn ̇Á˚‚‡ÂÚÒfl ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ·‡Ì‡ıÓ‚˚ı ÌÓÏ || ⋅ || ̇ ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı T p Mn , ÔÓ Ó‰ÌÓÈ ‰Îfl Í‡Ê‰Ó„Ó p ∈ Mn . ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË ËÏÂÂÚ ÙÓÏÛ ds 2 =
∑ gij dxi dx j . i, j
îËÌÒÎÂÓ‚‡ ÏÂÚË͇ ÏÓÊÂÚ Á‡‰‡‚‡Ú¸Òfl Í‡Í ‰ÂÈÒÚ‚ËÚÂθ̇fl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌ̇fl ‚˚ÔÛÍ·fl ÙÛÌ͈Ëfl F(p, x) ÍÓÓ‰ËÌ‡Ú ÚÓ˜ÍË p ∈ Mn Ë ÍÓÏÔÓÌÂÌÚ ‚ÂÍÚÓ‡
124
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
x ∈ T p (M n ), ‰ÂÈÒÚ‚Û˛˘Â„Ó ‚ ÚӘ͠. îÛÌ͈Ëfl F(p, x) fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ Ó‰ÌÓÓ‰ÌÓÈ Ô‚ÓÈ ÒÚÂÔÂÌË ‚ ı: F(p, λx) = λF(p, x) ‰Îfl Í‡Ê‰Ó„Ó λ > 0. á̇˜ÂÌË F(p, x) ËÌÚÂÔÂÚËÛÂÚÒfl Í‡Í ‰ÎË̇ ‚ÂÍÚÓ‡ ı. îËÌÒÎÂÓ‚ ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ 1 ∂ 2 F 2 ( p, x ) n ËÏÂÂÚ ÙÓÏÛ ( gij ) = . ÑÎË̇ ÍË‚ÓÈ γ : [0, 1] → M Á‡‰‡ÂÚÒfl Í‡Í 2 ∂xi dx j 1
dp
∫ F p, dt dt. ÑÎfl ͇ʉÓÈ ÙËÍÒËÓ‚‡ÌÌÓÈ ÚÓ˜ÍË ÙËÌÒÎÂÓ‚ ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ ‚ 0
ÔÂÂÏÂÌÌ˚ı ı fl‚ÎflÂÚÒfl ËχÌÓ‚˚Ï. îËÌÒÎÂÓ‚‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ËχÌÓ‚ÓÈ ÏÂÚËÍË, „‰Â Ó·˘Â ÓÔ‰ÂÎÂÌË ‰ÎËÌ˚ || x || ‚ÂÍÚÓ‡ x ∈ Tp ( M n ) Ì ӷflÁ‡ÚÂθÌÓ Á‡‰‡ÂÚÒfl ‚ ‚ˉ ͂‡‰‡ÚÌÓ„Ó ÍÓÌfl ËÁ ÒËÏÏÂÚ˘ÌÓÈ ·ËÎËÌÂÈÌÓÈ ÙÓÏ˚, Í‡Í ˝ÚÓ ‰Â·ÂÚÒfl ‚ ËχÌÓ‚ÓÏ ÒÎÛ˜‡Â. îËÌÒÎÂÓ‚Ó ÏÌÓ„ÓÓ·‡ÁË (ËÎË ÙËÌÒÎÂÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó) – ˝ÚÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ n-ÏÂÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓ ÏÌÓ„ÓÓ·‡ÁË Mn , Ò̇·ÊÂÌÌÓ ÙËÌÒÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ. íÂÓËfl ÙËÌÒÎÂÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ ̇Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚ÓÈ „ÂÓÏÂÚËÂÈ. ê‡Á΢ˠÏÂÊ‰Û ËχÌÓ‚˚Ï Ë ÙËÌÒÎÂÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚‡ÏË ÒÓÒÚÓËÚ ‚ ÚÓÏ, ˜ÚÓ Ô‚Ó ÎÓ͇θÌÓ ‚‰ÂÚ Ò·fl Í‡Í Â‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, ‡ ‚ÚÓÓ – Í‡Í ÔÓÒÚ‡ÌÒÚ‚Ó åËÌÍÓ‚ÒÍÓ„Ó, ËÎË, ‡Ì‡ÎËÚ˘ÂÒÍË, ‚ ÚÓÏ, ˜ÚÓ ˝ÎÎËÔÒÓË‰Û ‚ ËχÌÓ‚ÓÏ ÒÎÛ˜‡Â ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÔÓËÁ‚Óθ̇fl ‚˚ÔÛÍ·fl ÔÓ‚ÂıÌÓÒÚ¸, ‚ ͇˜ÂÒÚ‚Â ˆÂÌÚ‡ ÍÓÚÓÓÈ ‚ÁflÚÓ Ì‡˜‡ÎÓ ÍÓÓ‰Ë̇Ú. é·Ó·˘ÂÌÌ˚Ï ÙËÌÒÎÂÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚Ó Ò ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ, ̇ ÍÓÚÓÛ˛ ̇Í·‰˚‚‡˛ÚÒfl ÓÔ‰ÂÎÂÌÌ˚ ӄ‡Ì˘ÂÌËfl ‚ ÓÚÌÓ¯ÂÌËË Ôӂ‰ÂÌËfl ͇ژ‡È¯Ëı ÍË‚˚ı, Ú.Â. ÍË‚˚ı, ‰ÎËÌ˚ ÍÓÚÓ˚ı ‡‚Ì˚ ‡ÒÒÚÓflÌ˲ ÏÂÊ‰Û Ëı ÍÓ̘Ì˚ÏË ÚӘ͇ÏË. í‡ÍË ÔÓÒÚ‡ÌÒÚ‚‡ ‚Íβ˜‡˛Ú ‚ Ò·fl ÔÓÒÚ‡ÌÒÚ‚‡ „ÂÓ‰ÂÁ˘ÂÒÍËı, ÙËÌÒÎÂÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ Ë Ú.Ô. é·Ó·˘ÂÌÌ˚ ÙËÌÒÎÂÓ‚˚ ÔÓÒÚ‡ÌÒÚ‚‡ ÓÚ΢‡˛ÚÒfl ÓÚ ÙËÌÒÎÂÓ‚˚ı Ì ÚÓθÍÓ ·Óθ¯ÂÈ ÒÚÂÔÂ̸˛ Ó·Ó·˘ÂÌËfl, ÌÓ Ë ÚÂÏ, ˜ÚÓ ÓÌË ÓÔ‰ÂÎfl˛ÚÒfl Ë ËÒÒÎÂ‰Û˛ÚÒfl Ò ÔÓÏÓ˘¸˛ ÏÂÚËÍË, ·ÂÁ ËÒÔÓθÁÓ‚‡ÌËfl ÍÓÓ‰Ë̇Ú. åÂÚË͇ äÓÔËÌÓÈ åÂÚËÍÓÈ äÓÔËÌÓÈ Ì‡Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ FKr ̇ ‚¢ÂÒÚ‚ÂÌÌÓÏ n-ÏÂÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , Á‡‰‡‚‡Âχfl ͇Í
∑ gij xi x j i, j
∑ bi ( p) xi i
‰Îfl β·˚ı p ∈ Ëx ∈ b(p) = (bi(p)) – ‚ÂÍÚÓÌÓ ÔÓÎÂ. Mn
Tp(M n ),
„‰Â (gij) – fl‚ÎflÂÚÒfl ËχÌÓ‚ ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓÓ Ë
åÂÚË͇ ê‡Ì‰ÂÒ‡ åÂÚË͇ ê‡Ì‰ÂÒ‡ – ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ FRa ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ n-ÏÂÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , Á‡‰‡‚‡Âχfl ͇Í
∑ gij xi x j + ∑ bi ( p) xi i, j
i
‰Îfl β·˚ı p ∈ M n Ë x ∈ T p (M n ), „‰Â (gij) – ËχÌÓ‚ ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓÓ Ë b(p) = = (bi(p)) – ‚ÂÍÚÓÌÓ ÔÓÎÂ.
125
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
åÂÚË͇ äÎÂÈ̇ åÂÚËÍÓÈ äÎÂÈ̇ ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ ̇ ÓÚÍ˚ÚÓÏ Â‰ËÌ˘ÌÓÏ ¯‡Â n B = {x ∈ n: || x ||2 < 1} ‚ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
(
|| y ||22 − || x ||22 || y ||22 −〈 x, y 〉 2 1− || x
)
||22
‰Îfl β·˚ı x ∈ Bn Ë y ∈ T x(Bn ), „‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n Ë 〈 , 〉 – Ó·˚˜ÌÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n. åÂÚË͇ îÛÌ͇ åÂÚËÍÓÈ îÛÌ͇ ̇Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ FRu ̇ ÓÚÍ˚ÚÓÏ Â‰ËÌ˘ÌÓÏ ¯‡Â ‚ n , ÓÔ‰ÂÎÂÌ̇fl ͇Í
(
)
|| y ||22 − || x ||22 || y ||22 −〈 x, y 〉 2 + 〈 x, y 〉 1− || x
||22
‰Îfl β·˚ı x ∈ Bn Ë y ∈ T x(Bn ), „‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n Ë 〈 , 〉 – Ó·˚˜ÌÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n. ùÚÓ – ÔÓÂÍÚ˂̇fl ÏÂÚË͇. åÂÚË͇ òÂ̇ ÑÎfl ‰‡ÌÌÓ„Ó ‚ÂÍÚÓ‡ a ∈ n , || a ||2 < 1 ÏÂÚËÍÓÈ òÂ̇ ̇Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ FSh ̇ ÓÚÍ˚ÚÓÏ Â‰ËÌ˘ÌÓÏ ¯‡Â B n = {x ∈ n: || x ||2 < 1} ‚ n, ÓÔ‰ÂÎÂÌ̇fl ͇Í
(
)
|| y ||22 − || x ||22 || y ||22 −〈 x, y 〉 2 + 〈 x, y 〉 1− || x
||22
+
〈 a, y 〉 1 + 〈 a, x 〉
‰Îfl β·˚ı x ∈ Bn Ë y ∈ T x(Bn ), „‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n Ë 〈 , 〉 – Ó·˚˜ÌÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n. ùÚÓ – ÔÓÂÍÚ˂̇fl ÏÂÚË͇. èË a = 1 Ó̇ Ô‚‡˘‡ÂÚÒfl ‚ ÏÂÚËÍÛ îÛÌ͇. åÂÚË͇ Å‚‡Î¸‰‡ åÂÚËÍÓÈ Å‚‡Î¸‰‡ ̇Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ FBe ̇ ÓÚÍ˚ÚÓÏ Â‰ËÌ˘ÌÓÏ ¯‡Â B n = {x ∈ n: || x ||2 < 1} ‚ n, Á‡‰‡‚‡Âχfl ͇Í
(
)
|| y ||2 − || x ||2 || y ||2 −〈 x, y 〉 2 + 〈 x, y 〉 2 2 2
(1− || x || )
2 2 2
(
|| y ||22 − || x ||22 || y ||22 −〈 x, y 〉 2
)
‰Îfl β·˚ı x ∈ Bn Ë y ∈ T x(Bn ), „‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ n Ë 〈 , 〉 – Ó·˚˜ÌÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n. ùÚÓ – ÔÓÂÍÚ˂̇fl ÏÂÚË͇. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ͇ʉ‡fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ ̇ ÏÌÓ„ÓÓ·‡ÁËË Mn ÔÓÓʉ‡ÂÚ ÔÛθ‚ÂËÁ‡ˆË˛ (Ó·˚˜ÌÓ ӉÌÓÓ‰ÌÓ ‰ËÙÙÂÂ̈ˇθÌÓ ۇ‚ÌÂÌË ‚ÚÓÓ„Ó ÔÓ∂ ∂ fl‰Í‡) yi − 2G i , ÍÓÚÓÓÈ ÓÔ‰ÂÎfl˛ÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÂ. îËÌÒÎÂÓ‚‡ ÏÂÚË͇ ∂xi ∂yi
126
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ Å‚‡Î¸‰‡, ÂÒÎË ÍÓ˝ÙÙˈËÂÌÚ˚ ÔÛθ‚ÂËÁ‡ˆËË Gi = Gi(x, y) 1 fl‚Îfl˛ÚÒfl Í‚‡‰‡Ú˘Ì˚ÏË ÔÓ y ∈ Tx(Bn ) ‚ β·ÓÈ ÚӘ͠x ∈ M n , Ú.Â. G i = Γ jki ( x ) y i y k . 2 ä‡Ê‰‡fl ÏÂÚË͇ Å‚‡Î¸‰‡ ‡ÙÙËÌÌÓ ˝Í‚Ë‚‡ÎÂÌÚ̇ ÌÂÍÓÚÓÓÈ ËχÌÓ‚ÓÈ ÏÂÚËÍÂ. åÂÚË͇ Ñۄ·҇ åÂÚËÍÓÈ Ñۄ·҇ ̇Á˚‚‡ÂÚÒfl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇, ‰Îfl ÍÓÚÓÓÈ ÍÓ˝ÙÙˈËÂÌÚ˚ ÔÛθ‚ÂËÁ‡ˆËË Gi = Gi(x, y) ËÏÂ˛Ú ‚ˉ Gi =
1 i Γ jk ( x ) yi yk + P( x, y) yi . 2
ä‡Ê‰‡fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇, ÍÓÚÓ‡fl ÔÓÂÍÚË‚ÌÓ ˝Í‚Ë‚‡ÎÂÌÚ̇ ÏÂÚËÍ Å‚‡Î¸‰‡, fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ñۄ·҇. ä‡Ê‰‡fl ËÁ‚ÂÒÚ̇fl ÏÂÚË͇ Ñۄ·҇ fl‚ÎflÂÚÒfl (ÎÓ͇θÌÓ) ÔÓÂÍÚË‚ÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌÓÈ ÏÂÚËÍ Å‚‡Î¸‰‡. åÂÚË͇ ŇȇÌÚ‡ èÛÒÚ¸ α – Û„ÓÎ Ò | α | <
π Ë ÔÛÒÚ¸ ‰Îfl β·˚ı x, y ∈ n 2
(
)
2
A = || y ||24 sin 2 2α + || y ||22 cos 2α + || x ||22 || y ||22 −〈 x, y 〉 2 , B = || y ||24 cos 2α + || x ||22 || y ||22 −〈 x, y 〉 2 , C = 〈 x, y 〉 sin 2α,
D = || y ||22 +2 || x ||22 cos 2α + 1.
íÓ„‰‡ (ÔÓÂÍÚË‚ÌÛ˛) ÙËÌÒÎÂÓ‚Û ÏÂÚËÍÛ F Ï˚ ÔÓÎÛ˜ËÏ Í‡Í A + B C2 C + + . D 2D D ç‡ ‰‚ÛÏÂÌÓÈ Â‰ËÌ˘ÌÓÈ ÒÙ S2 Ó̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ Å‡È‡ÌÚ‡. åÂÚË͇ 䇂‡„Û˜Ë åÂÚËÍÓÈ ä‡‚‡„Û˜Ë Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ „·‰ÍÓÏ n-ÏÂÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , Á‡‰‡‚‡Âχfl ˝ÎÂÏÂÌÚÓÏ ‰Û„Ë ds „ÛÎflÌÓÈ ÍË‚ÓÈ x = x (t ), t ∈[t0 , t1 ] Ë ‚˚‡ÊÂÌ̇fl ÙÓÏÛÎÓÈ dx dkx ds = F x, ,..., k dt, dt dt k
„‰Â ÏÂÚ˘ÂÒ͇fl ÙÛÌ͈Ëfl F Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎÓ‚ËflÏ ñÂÏÂÎÓ:
∑ sx (s) F(s)i = F, x =1
d s xi ∂F s ( s − r +1)i F( s )i = 0, x ( s )i = x s , F( s )i = ( s )i Ë r = 2, ..., k. ùÚËÏË ÛÒÎÓ‚ËflÏË k dt ∂ x s=r Ó·ÂÒÔ˜˂‡ÂÚÒfl ÌÂÁ‡‚ËÒËÏÓÒÚ¸ ˝ÎÂÏÂÌÚ‡ ‰Û„Ë ds ÓÚ Ô‡‡ÏÂÚËÁ‡ˆËË ÍË‚ÓÈ .x = x(t) åÌÓ„ÓÓ·‡ÁË 䇂‡„Û˜Ë (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó ä‡‚‡„Û˜Ë) – ˝ÚÓ „·‰ÍÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ ä‡‚‡„Û˜Ë. éÌÓ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÙËÌÒÎÂÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl. k
∑
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
127
ëÛÔÂÏÂÚË͇ Ñ ÇËÚÚ‡ ëÛÔÂÏÂÚËÍÓÈ ÑÂ-ÇËÚÚ‡ (ËÎË ÒÛÔÂÏÂÚËÍÓÈ ìË· – ÑÂ-ÇËÚÚ‡) G = (G ijkl) ̇Á˚‚‡ÂÚÒfl Ó·Ó·˘ÂÌË ËχÌÓ‚ÓÈ (ËÎË ÔÒ‚‰ÓËχÌÓ‚ÓÈ) ÏÂÚËÍË g = g(gij), ËÒÔÓθÁÛÂÏÓÈ ‰Îfl ‚˚˜ËÒÎÂÌËfl ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ÚӘ͇ÏË ‰‡ÌÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl, ̇ ÒÎÛ˜‡È ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ÏÂÚË͇ÏË Ì‡ ˝ÚÓÏ ÏÌÓ„ÓÓ·‡ÁËË. íӘ̠„Ó‚Ófl, ‰Îfl ‰‡ÌÌÓ„Ó Ò‚flÁÌÓ„Ó „·‰ÍÓ„Ó ÚÂıÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl M 3 ‡ÒÒÏÓÚËÏ ÔÓÒÚ‡ÌÒÚ‚Ó (M 3 ) ‚ÒÂı ËχÌÓ‚˚ı (ËÎË ÔÒ‚‰ÓËχÌÓ‚˚ı) ÏÂÚËÍ Ì‡ Mn . à‰ÂÌÚËÙˈËÛfl ÚÓ˜ÍË (M3 ), Ò‚flÁ‡ÌÌÓ ‰ËÙÙÂÓÏÓÙËÁÏÓÏ M 3 , ÏÓÊÌÓ ÔÓÎÛ˜ËÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó Geom(M 3 ) 3-„ÂÓÏÂÚËÈ (Á‡‰‡ÌÌÓÈ ÚÓÔÓÎÓ„ËË), ÚӘ͇ÏË ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl Í·ÒÒ˚ ‰ËÙÙÂÓÏÓÙÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ı ÏÂÚËÍ. èÓÒÚ‡ÌÒÚ‚Ó Geom(M3 ) ̇Á˚‚‡ÂÚÒfl ÒÛÔÂÔÓÒÚ‡ÌÒÚ‚ÓÏ. éÌÓ Ë„‡ÂÚ ‚‡ÊÌÛ˛ Óθ ‚ ÌÂÍÓÚÓ˚ı ÙÓÏÛÎËӂ͇ı Í‚‡ÌÚÓ‚ÓÈ „‡‚ËÚ‡ˆËË. ëÛÔÂÏÂÚËÍÓÈ, Ú.Â. "ÏÂÚËÍÓÈ ÏÂÚËÍ", ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ (M3 ) (ËÎË Ì‡ Geom(M3 )), ËÒÔÓθÁÛÂχfl ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ÏÂÚË͇ÏË Ì‡ M 3 (ËÎË ÏÂÊ‰Û Ëı Í·ÒÒ‡ÏË ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË). ÖÒÎË ËÏÂÂÚÒfl ÏÂÚË͇ g = (gij)) ∈ (M3 ), ÚÓ || δg ||2 =
∫
d 3 xG ijkl ( x )δgij ( x )δgkl ( x ).
M3
„‰Â G ijkl – ‚Â΢Ë̇, Ó·‡Ú̇fl ÒÛÔÂÏÂÚËÍ Ñ‚ËÚÚ‡ Gijkl =
1 ( gik g jl _ gil g jk − λgij gkl ). 2 det( gij )
ÇÂ΢Ë̇ λ Ô‡‡ÏÂÚËÁÛÂÚ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÂÚË͇ÏË (M 3 ) ‚ Ë ÏÓÊÂÚ ÔË2 ÌËχڸ β·˚ ‰ÂÈÒÚ‚ËÚÂθÌ˚ Á̇˜ÂÌËfl, ÍÓÏ λ = , ÔË ÍÓÚÓÓÏ ÒÛÔÂÏÂÚË͇ 3 ÒÚ‡ÌÓ‚ËÚÒfl ÒËÌ„ÛÎflÌÓÈ. ëÛÔÂÏÂÚË͇ ãÛ̉‡–ê‰ÊË ëÛÔÂÏÂÚË͇ ãÛ̉‡–ê‰ÊË (ËÎË ÒËÏÔÎˈˇθ̇fl ÒÛÔÂÏÂÚË͇) fl‚ÎflÂÚÒfl ‡Ì‡ÎÓ„ÓÏ ÒÛÔÂÏÂÚËÍË ÑÂ-ÇËÚÚ‡ Ë ËÒÔÓθÁÛÂÚÒfl ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ÒËÏÔÎˈˇθÌ˚ÏË 3-„ÂÓÏÂÚËflÏË ‚ ÒËÏÔÎˈˇθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ÍÓÌÙË„Û‡ˆËÈ. ÅÓΠÚÓ˜ÌÓ, ÂÒÎË ËÏÂÂÚÒfl Á‡ÏÍÌÛÚÓ ÒËÏÔÎˈˇθÌÓ ÚÂıÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË M3 , ÒÓÒÚÓfl˘Â ËÁ ÌÂÒÍÓθÍËı ÚÂÚ‡˝‰Ó‚ (Ú.Â. ÚÂıÏÂÌ˚ı ÒËÏÔÎÂÍÒÓ‚), ÚÓ ÒËÏÔÎˈˇθ̇fl „ÂÓÏÂÚËfl ̇ M3 Á‡‰‡ÂÚÒfl ÔËÒ‚ÓÂÌËÂÏ Á̇˜ÂÌËÈ Í‚‡‰‡ÚÓ‚ ‰ÎËÌ ÒÚÓÓÌ ˝ÎÂÏÂÌÚ‡ÏË ËÁ M3 Ë ‚˚‚‰ÂÌËÂÏ ‚Ó ‚ÌÛÚÂÌÌÓÒÚË Í‡Ê‰Ó„Ó ÚÂÚ‡˝‰‡ ÔÎÓÒÍÓÈ ËχÌÓ‚ÓÈ „ÂÓÏÂÚËË, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ˝ÚËÏ Á̇˜ÂÌËflÏ. 䂇‰‡Ú˚ ‰ÎËÌ ‰ÓÎÊÌ˚ ·˚Ú¸ ÔÓÎÓÊËÚÂθÌ˚ÏË Ë Û‰Ó‚ÎÂÚ‚ÓflÚ¸ ̇‚ÂÌÒÚ‚‡Ï ÚÂÛ„ÓθÌË͇ Ë Ëı ‡Ì‡ÎÓ„‡Ï ‰Îfl ÚÂÚ‡˝‰Ó‚, Ú.Â. ‚Ò ͂‡‰‡Ú˚ Ï (‰ÎËÌ, ÔÎÓ˘‡‰ÂÈ, Ó·˙ÂÏÓ‚) ‰ÓÎÊÌ˚ ·˚Ú¸ ÌÂÓÚˈ‡ÚÂθÌ˚ÏË (ÒÏ. ̇‚ÂÌÒÚ‚Ó ÚÂÚ‡˝‰‡, „Î. 3). åÌÓÊÂÒÚ‚Ó (M3 ) ‚ÒÂı ÒËÏÔÎˈˇθÌ˚ı „ÂÓÏÂÚËÈ Ì‡ M3 ̇Á˚‚‡ÂÚÒfl ÒËÏÔÎˈˇθÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÍÓÌÙË„Û‡ˆËÈ. ëÛÔÂÏÂÚË͇ ãÛ̉‡–ê‰ÊË (Gmn) ̇ ÏÌÓÊÂÒÚ‚Â (M3 ) ÔÓÓʉ‡ÂÚÒfl ÒÛÔÂÏÂÚËÍÓÈ Ñ‚ËÚÚ‡ ̇ (M 3 ) Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ‰Îfl ËÁÓ·‡ÊÂÌËfl ÚÓ˜ÂÍ ‚ (M3 ) Ú‡ÍËı ÏÂÚËÍ ‚ (M 3 ), ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ÍÛÒÓ˜ÌÓ ÔÎÓÒÍËÏË ‚ ÚÂÚ‡˝‰‡ı. CÛÔÂÏÂÚËÍË ‚ ‰Ó͇Á‡ÚÂθÒÚ‚Â èÂÂθχ̇ è‰ÎÓÊÂÌ̇fl ì. íÂÒÚÓÌÓÏ „ËÔÓÚÂÁ‡ „ÂÓÏÂÚËÁ‡ˆËË Ô‰ÔÓ·„‡ÂÚ, ˜ÚÓ ÔÓÒΠ‰‚Ûı ıÓÓ¯Ó ËÁ‚ÂÒÚÌ˚ı ‰ÂÍÓÏÔÓÁˈËÈ Î˛·Ó ÚÂıÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË ‰ÓÔÛÒ͇ÂÚ
128
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
‚ ͇˜ÂÒÚ‚Â ÓÒÚ‡ÚÓ˜Ì˚ı ÍÓÏÔÓÌÂÌÚ ÚÓθÍÓ Ó‰ÌÛ ËÁ ‚ÓÒ¸ÏË ÚÂÒÚÓÌÓ‚ÒÍËı ÏÓ‰ÂθÌ˚ı „ÂÓÏÂÚËÈ. ÖÒÎË ‰‡Ì̇fl „ËÔÓÚÂÁ‡ ‚Â̇, ÚÓ ÓÚÒ˛‰‡ ÒΉÛÂÚ ÒÔ‡‚‰ÎË‚ÓÒÚ¸ Á̇ÏÂÌËÚÓÈ „ËÔÓÚÂÁ˚ èÛ‡Ì͇ (1904) Ó ÚÓÏ, ˜ÚÓ Î˛·Ó ÚÂıÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, ‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl ÔÓÒÚ‡fl Á‡ÏÍÌÛÚ‡fl ÍË‚‡fl ÏÓÊÂÚ ·˚Ú¸ ÌÂÔÂ˚‚ÌÓ ‰ÂÙÓÏËÓ‚‡Ì‡ ‚ ÚÓ˜ÍÛ, „ÓÏÂÓÏÓÙÌÓ ÚÂıÏÂÌÓÈ ÒÙÂÂ. Ç 2003 „. èÂÂÎ¸Ï‡Ì ‰‡Î ̇·ÓÒÓÍ ‰Ó͇Á‡ÚÂθÒÚ‚‡ „ËÔÓÚÂÁ˚ íÂÒÚÓ̇ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÌÂÍÓÈ ÒÛÔÂÏÂÚËÍË Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â ‚ÒÂı ËχÌÓ‚˚ı ÏÂÚËÍ ‰‡ÌÌÓ„Ó „·‰ÍÓ„Ó ÚÂıÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl. Ç ÔÓÚÓÍ ê˘˜Ë ‡ÒÒÚÓflÌËfl ÛÏÂ̸¯‡˛ÚÒfl ‚ ̇ԇ‚ÎÂÌËË ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚, ÔÓÒÍÓθÍÛ ÏÂÚË͇ Á‡‚ËÒËχ ÓÚ ‚ÂÏÂÌË. åÓ‰ËÙË͇ˆËfl èÂÂθχ̇ Òڇ̉‡ÚÌÓ„Ó ÔÓÚÓ͇ ê˘˜Ë ÔÓÁ‚ÓÎË· ÒËÒÚÂχÚ˘ÂÒÍË Û‰‡ÎflÚ¸ ‚ÓÁÌË͇˛˘Ë ÒËÌ„ÛÎflÌÓÒÚË. 7.2. êàåÄçéÇõ åÖíêàäà Ç íÖéêàà àçîéêåÄñàà èËÏÂÌËÚÂθÌÓ Í ÚÂÓËË ËÌÙÓχˆËË Ó·˚˜ÌÓ ËÒÔÓθÁÛ˛ÚÒfl ÒÔˆˇθÌ˚ ËχÌÓ‚˚ ÏÂÚËÍË, Ô˜Â̸ ÍÓÚÓ˚ı Ô‰ÒÚ‡‚ÎÂÌ ÌËÊÂ. àÌÙÓχˆËÓÌ̇fl ÏÂÚË͇ î˯‡ Ç ÒÚ‡ÚËÒÚËÍÂ, ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ Ë ËÌÙÓχˆËÓÌÌÓÈ „ÂÓÏÂÚËË ËÌÙÓχˆËÓÌÌÓÈ ÏÂÚËÍÓÈ î˯‡ (ËÎË ÏÂÚËÍÓÈ î˯‡, ÏÂÚËÍÓÈ ê‡Ó) ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ ‰Îfl ÒÚ‡ÚËÒÚ˘ÂÒÍÓ„Ó ‰ËÙÙÂÂ̈ˇθÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl (ÒÏ., ̇ÔËÏÂ, [Amar85], [Frie98]). Ç ˝ÚÓÏ ÒÎÛ˜‡Â ˜¸ ˉÂÚ Ó Ôˉ‡ÌËË Ò‚ÓÈÒÚ‚ ‰ËÙÙÂÂ̈ˇθÌÓÈ „ÂÓÏÂÚËË ÒÂÏÂÈÒÚ‚Û Í·ÒÒ˘ÂÒÍËı ÔÎÓÚÌÓÒÚÂÈ ‡ÒÔ‰ÂÎÂÌËfl ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ. îÓχθÌÓ, ÔÛÒÚ¸ pθ = p( x, θ) – ÒÂÏÂÈÒÚ‚Ó ÔÎÓÚÌÓÒÚÂÈ, ÔÂÂÌÛÏÂÓ‚‡ÌÌ˚ı n Ô‡‡ÏÂÚ‡ÏË θ = (θ1 ,..., θ n ), ÍÓÚÓ˚ ӷ‡ÁÛ˛Ú Ô‡‡ÏÂÚ˘ÂÒÍÓ ÏÌÓ„ÓÓ·‡ÁË ê. àÌÙÓχˆËÓÌÌÓÈ ÏÂÚËÍÓÈ î˯‡ g = gθ ̇ ê ̇Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇, Á‡‰‡‚‡Âχfl ËÌÙÓχˆËÓÌÌÓÈ Ï‡ÚˈÂÈ î˯‡ ((I(θ) ij)), „‰Â ∂ ln pθ ∂ ln pθ I (θ)ij = θ = ⋅ = ∂θ j ∂θ i
∫
∂ ln p( x, θ) ∂ ln p( x, θ) p( x, θ)dx. ∂θ i ∂θ j
ùÚÓ – ÒËÏÏÂÚ˘̇fl ·ËÎËÌÂÈ̇fl ÙÓχ, ÍÓÚÓ‡fl ‰‡ÂÚ Ì‡Ï Í·ÒÒ˘ÂÒÍÛ˛ ÏÂÛ (ÏÂÛ ê‡Ó) ‰Îfl ÒÚ‡ÚËÒÚ˘ÂÒÍÓÈ ‡Á΢ËÏÓÒÚË Ô‡‡ÏÂÚÓ‚ ‡ÒÔ‰ÂÎÂÌËfl. èÓ·„‡fl i( x, θ) = − ln p( x, θ), ÔÓÎÛ˜ËÏ ˝Í‚Ë‚‡ÎÂÌÚÌÓ ‚˚‡ÊÂÌË ∂ 2 i( x , θ) I (θ)ij = θ = ∂θ i ∂θ j
∫
∂ 2 i( x , θ) p( x, θ)dx. ∂θ i ∂θ j
ÅÂÁ ËÒÔÓθÁÓ‚‡ÌËfl flÁ˚͇ ÍÓÓ‰Ë̇Ú, ÔÓÎÛ˜ËÏ I (θ)(u, v) = θ [u(ln pθ ) ⋅ v(ln pθ )], „‰Â u Ë v – ‚ÂÍÚÓ˚, ͇҇ÚÂθÌ˚Â Í Ô‡‡ÏÂÚ˘ÂÒÍÓÏÛ ÏÌÓ„ÓÓ·‡Á˲ ê, ‡ d u(ln pθ ) = ln pθ + tu |t = 0 – ÔÓËÁ‚Ӊ̇fl ÓÚ ln pθ ÔÓ Ì‡Ô‡‚ÎÂÌ˲ u. dt åÌÓ„ÓÓ·‡ÁË ‡ÒÔ‰ÂÎÂÌËfl ÔÎÓÚÌÓÒÚÂÈ M fl‚ÎflÂÚÒfl Ó·‡ÁÓÏ Ô‡‡ÏÂÚ˘ÂÒÍÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl ê ÔË ÓÚÓ·‡ÊÂÌËË θ → pθ Ò ÌÂÍÓÚÓ˚ÏË ÛÒÎÓ‚ËflÏË
129
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
„ÛÎflÌÓÒÚË. ÇÂÍÚÓ u, ͇҇ÚÂθÌ˚È Í ‰‡ÌÌÓÏÛ ÏÌÓ„ÓÓ·‡Á˲, ËÏÂÂÚ ‚ˉ d u = ln pθ + tu |t = 0 , Ë ÏÂÚË͇ î˯‡ g = gp ̇ å, ÔÓÎÛ˜ÂÌ̇fl ËÁ ÏÂÚËÍË gθ ̇ ê, dt ÏÓÊÂÚ ·˚Ú¸ Á‡ÔË҇̇ ‚ ‚ˉ u v g p (u, v) = p ⋅ . p p åÂÚË͇ î˯‡ Ë ê‡Ó n
èÛÒÚ¸ n = {p ∈ n :
∑
pi = 1, p > 0} – ÒËÏÔÎÂÍÒ ÒÚÓ„Ó ÔÓÎÓÊËÚÂθÌ˚ı ‚ÂÓ-
i =1
flÚÌÓÒÚÌ˚ı ‚ÂÍÚÓÓ‚. ùÎÂÏÂÌÚ p ∈ n fl‚ÎflÂÚÒfl ÔÎÓÚÌÓÒÚ¸˛ n-ÚӘ˜ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ {1, ..., n } Ò p(i ) = pi. ùÎÂÏÂÌÚ u ͇҇ÚÂθÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Tp ( n ) = n
= {u ∈ n :
∑ ui = 0} ‚ ÚӘ͠p ∈ n ÂÒÚ¸ ÙÛÌ͈ËÂfl ̇ ÏÌÓÊÂÒÚ‚Â Ò {1, ..., n} Ò i =1
u(i) = ui. åÂÚË͇ î˯‡ ê‡Ó gp ̇ n fl‚ÎflÂÚÒfl ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ, ÓÔ‰ÂÎflÂÏÓÈ ‚˚‡ÊÂÌËÂÏ n
g p (u, v) =
∑ i =1
ui vi pi
‰Îfl β·˚ı u, v ∈ Tp ( n ), Ú.Â. fl‚ÎflÂÚÒfl ËÌÙÓχˆËÓÌÌÓÈ ÏÂÚËÍÓÈ î˯‡ ̇ n . åÂÚË͇ î˯‡ – ê‡Ó fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓÈ (Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ÔÓÒÚÓflÌÌÓ„Ó ÏÌÓÊËÚÂÎfl) ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ n , ÒÛʇÂÏÓÈ ÔË ÒÚÓı‡ÒÚ˘ÂÒÍÓÏ ÓÚÓ·‡ÊÂÌËË ([Chen72]). åÂÚË͇ î˯‡ – ê‡Ó ËÁÓÏÂÚ˘‡ (ÒÏ. ÓÚÓ·‡ÊÂÌË p → 2( p1 ,..., pn )) Òڇ̉‡ÚÌÓÈ ÏÂÚËÍ ̇ ÓÚÍ˚ÚÓÏ ÔÓ‰ÏÌÓÊÂÒÚ‚Â ÒÙÂ˚ ‡‰ËÛÒ‡ ‰‚‡ ‚ n . í‡ÍÓ ÓÚÓʉÂÒÚ‚ÎÂÌË n ÔÓÁ‚ÓÎflÂÚ ÔÓÎÛ˜ËÚ¸ ̇ n „ÂÓ‰ÂÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ, ̇Á˚‚‡ÂÏÓ ‡ÒÒÚÓflÌËÂÏ î˯‡ (ËÎË ‡ÒÒÚÓflÌËÂÏ Åı‡ÚÚ‡˜‡¸fl 1), ÔÓÒ‰ÒÚ‚ÓÏ ÙÓÏÛÎ˚ 2 arccos
∑ pi1 / 2 qi1 / 2 . i
åÂÚË͇ î˯‡–ê‡Ó ÏÓÊÂÚ ·˚Ú¸ ‡Ò¯ËÂ̇ ̇ ÏÌÓÊÂÒÚ‚Ó n = {p ∈ n , pi > 0} ‚ÒÂı ÍÓ̘Ì˚ı ÒÚÓ„Ó ÔÓÎÓÊËÚÂθÌ˚ı Ï ̇ ÏÌÓÊÂÒÚ‚Â {1, ..., n}. Ç ˝ÚÓÏ ÒÎÛ˜‡Â „ÂÓ‰ÂÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ̇ n ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í 2
∑( i
pi − qi
2
)
1/ 2
‰Îfl β·˚ı p, q ∈ n (ÒÏ. åÂÚË͇ ïÂÎÎË̉ʇ, „Î. 14). åÓÌÓÚÓÌ̇fl ÏÂÚË͇ èÛÒÚ¸ n ·Û‰ÂÚ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÍÓÏÔÎÂÍÒÌ˚ı n × n χÚˈ, ‡ ⊂ Mn – ÏÌÓ„ÓÓ·‡ÁË ‚ÒÂı ÍÓÏÔÎÂÍÒÌ˚ı ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı n × n χÚˈ. èÛÒÚ¸
130
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
⊂ , = {ρ ∈ : Tr ρ = 1} – ·Û‰ÂÚ ÏÌÓ„ÓÓ·‡ÁË ‚ÒÂı χÚˈ ÔÎÓÚÌÓÒÚË. ä‡Ò‡ÚÂθÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl ‚ ÚӘ͠ρ ∈ fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚Ó Tp () = {x ∈ Mn : x = x *}, Ú.Â. ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ˝ÏËÚÓ‚˚ı n × n χÚˈ. ä‡Ò‡ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Tρ() ‚ ÚӘ͠ρ ∈ ÂÒÚ¸ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó ·ÂÒÒΉӂ˚ı (Ú.Â. Ëϲ˘Ëı ÌÛ΂ÓÈ ÒΉ) χÚˈ ‚ Tρ(). êËχÌÓ‚‡ ÏÂÚË͇ λ ̇ ̇Á˚‚‡ÂÚÒfl ÏÓÌÓÚÓÌÌÓÈ ÏÂÚËÍÓÈ, ÂÒÎË Ì‡‚ÂÌÒÚ‚Ó λ h(ρ) (h(u), h(u)) < λ ρ (u, u) ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl β·˚ı ρ ∈ , β·˚ı u ∈ T ρ() Ë Î˛·˚ı ‚ÔÓÎÌ ÔÓÎÓÊËÚÂθÌ˚ı ÒÓı‡Ìfl˛˘Ëı ÒΉ˚ ÓÚÓ·‡ÊÂÌËÈ h, ̇Á˚‚‡ÂÏ˚ı ÒÚÓı‡ÒÚ˘ÂÒÍËÏË ÓÚÓ·‡ÊÂÌËflÏË. Ç ‰ÂÈÒÚ‚ËÚÂθÌÓÒÚË ([Petz96]), λ fl‚ÎflÂÚÒfl ÏÓÌÓÚÓÌÌÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡  ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ Í‡Í λ ρ (u, v) = Tr uJρ (u, u), „‰Â Jρ – ÓÔ‡ÚÓ ‚ˉ‡ 1 . á‰ÂÒ¸ L ρ Ë Rρ – ΂˚È Ë Ô‡‚˚È ÓÔ‡ÚÓ˚ ÛÏÌÓÊÂÌËfl, ‡ f: f ( Lρ / Rρ ) Rρ (0, ∞ ) → – ÓÔ‡ÚÓ ÏÓÌÓÚÓÌÌÓÈ ÙÛÌ͈ËË, ÍÓÚÓ˚È ÒËÏÏÂÚ˘ÂÌ, Ú.Â. f (t ) = tf (t −1 ), Ë ÌÓÏËÓ‚‡Ì, Ú.Â. f (1) = 1. Jρ ( v) = ρ −1v, ÂÒÎË v Ë ρ ÍÓÏÏÛÚËÛ˛Ú ÏÂÊ‰Û ÒÓ·ÓÈ, Ú.Â. β·‡fl ÏÓÌÓÚÓÌ̇fl ÏÂÚË͇ ‡‚̇ ËÌÙÓχˆËÓÌÌÓÈ ÏÂÚËÍ î˯‡ ̇ ÍÓÏÏÛÚ‡ÚË‚Ì˚ı ÔÓ‰ÏÌÓ„ÓÓ·‡ÁËflı. ëΉӂ‡ÚÂθÌÓ, ÏÓÌÓÚÓÌÌ˚ ÏÂÚËÍË fl‚Îfl˛ÚÒfl Ó·Ó·˘ÂÌËÂÏ ËÌÙÓχˆËÓÌÌÓÈ ÏÂÚËÍË î˯‡ ̇ Í·ÒÒ ÔÎÓÚÌÓÒÚÂÈ ‡ÒÔ‰ÂÎÂÌËfl (Í·ÒÒ˘ÂÒÍËÈ ËÎË ÍÓÏÏÛÚ‡ÚË‚Ì˚È ÒÎÛ˜‡È) ̇ Í·ÒÒ Ï‡Úˈ ÔÎÓÚÌÓÒÚË (Í‚‡ÌÚÓ‚˚È ËÎË ÌÂÍÓÏÏÛÚ‡ÚË‚Ì˚È ÒÎÛ˜‡È), ÔËÏÂÌflÂÏ˚ı ‚ Í‚‡ÌÚÓ‚ÓÈ ÒÚ‡ÚËÒÚËÍÂ Ë ÚÂÓËË ËÌÙÓχˆËË. àÏÂÌÌÓ fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÚÓ˜Ì˚ı ÒÓÒÚÓflÌËÈ n-ÛÓ‚Ì‚ÓÈ Í‚‡ÌÚÓ‚ÓÈ ÒËÒÚÂÏ˚. 1 åÓÌÓÚÓÌÌÛ˛ ÏÂÚËÍÛ λ ρ (u, v Tr u ( v) ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Ë̇˜Â Í‡Í f ( Lρ / Rρ ) Rρ Jρ =
λ ρ (u, v) = Tr uc( Lρ Rρ ) ( v), „‰Â ÙÛÌ͈Ëfl c( x, y) =
1 fl‚ÎflÂÚÒfl ÙÛÌ͈ËÂÈ åÓÓÁÓf ( x / y) y
‚‡–óÂ̈ӂ‡, ÓÚÌÓÒfl˘ÂÈÒfl Í λ. åÂÚË͇ ÅÛÂÒ‡ fl‚ÎflÂÚÒfl ̇ËÏÂ̸¯ÂÈ ÏÓÌÓÚÓÌÌÓÈ ÏÂÚËÍÓÈ, ÔÓÎÛ˜ÂÌÌÓÈ ‰Îfl 1+ i 2 f (t ) = (‰Îfl c( x, y) = ). Ç ˝ÚÓÏ ÒÎÛ˜‡Â Jρ ( v) = g, ρg + gρ = 2 v, ÂÒÚ¸ ÒËÏÏÂÚ2 x+y ˘̇fl ÎÓ„‡ËÙÏ˘ÂÒ͇fl ÔÓËÁ‚Ӊ̇fl. åÂÚË͇ Ô‡‚ÓÈ ÎÓ„‡ËÙÏ˘ÂÒÍÓÈ ÔÓËÁ‚Ó‰ÌÓÈ fl‚ÎflÂÚÒfl ̇˷Óθ¯ÂÈ ÏÓÌÓÚÓÌ2t x+y ÌÓÈ ÏÂÚËÍÓÈ, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÙÛÌ͈ËË f (t ) = (ÙÛÌ͈ËË c( x, y) = ). Ç 1+ t 2 xy 1 ˝ÚÓÏ ÒÎÛ˜‡Â Jρ ( v) = (ρ −1v + vρ −1 ) – Ô‡‚‡fl ÎÓ„‡ËÙÏ˘ÂÒ͇fl ÔÓËÁ‚Ӊ̇fl. 2 x −1 åÂÚË͇ ÅÓ„Óβ·Ó‚‡–äÛ·Ó–åÓË ÔÓÎÛ˜‡ÂÚÒfl ÔË f ( x ) = (ÔË c( x, y) = ln x ∂2 ln x − ln y Tr(ρ + su)ln(ρ + tv) |s, t = 0 . = ). Ö ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í λ ρ (u, v) = ∂s∂t x−y åÂÚËÍË Ç˄̇–ü̇Ò–чÈÒÓ̇ λαρ fl‚Îfl˛ÚÒfl ÏÓÌÓÚÓÌÌ˚ÏË ‰Îfl α ∈ [–3,3]. ÑÎfl α = ±1 ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ ÅÓ„Óβ·Ó‚‡–äÛ·Ó–åÓË; ‰Îfl α = ±3 ÔÓÎÛ˜‡ÂÏ ÏÂÚ-
131
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
ËÍÛ Ô‡‚ÓÈ ÎÓ„‡ËÙÏ˘ÂÒÍÓÈ ÔÓËÁ‚Ó‰ÌÓÈ. ç‡ËÏÂ̸¯ÂÈ ‚ ÒÂÏÂÈÒÚ‚Â fl‚ÎflÂÚÒfl ÏÂÚË͇ Ç˄̇–ü̇Ò–чÈÒÓ̇, ÔÓÎÛ˜ÂÌ̇fl ‰Îfl α = 0. åÂÚË͇ ÅÛÂÒ‡ åÂÚË͇ ÅÛÂÒ‡ (ËÎË ÒÚ‡ÚËÒÚ˘ÂÒ͇fl ÏÂÚË͇) ÂÒÚ¸ ÏÓÌÓÚÓÌ̇fl ÏÂÚË͇ ̇ ÏÌÓ„ÓÓ·‡ÁËË ‚ÒÂı ÍÓÏÔÎÂÍÒÌ˚ı ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı n × n χÚˈ, Á‡‰‡‚‡Âχfl ‚˚‡ÊÂÌËÂÏ λ ρ (u, v) = Tr uJρ ( v), „‰Â Jρ ( v) = g, ρg + gρ = 2 v, ÂÒÚ¸ ÒËÏÏÂÚ˘̇fl ÎÓ„‡ËÙÏ˘ÂÒ͇fl ÔÓËÁ‚Ӊ̇fl. ùÚÓ Ì‡ËÏÂ̸¯‡fl ËÁ ÏÓÌÓÚÓÌÌ˚ı ÏÂÚËÍ. ÑÎfl β·˚ı ρ1 , ρ2 ∈ ‡ÒÒÚÓflÌË ÅÛÂÒ‡, Ú.Â. „ÂÓ‰ÂÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ, ÓÔ‰ÂÎflÂÏÓ ÏÂÚËÍÓÈ ÅÛÂÒ‡, ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂÌÓ Í‡Í
(
2 Tr ρ1 + Tr ρ2 − 2 Tr ρ11 / 2 ρ2 ρ11 / 2
)
1/ 2
.
ç‡ ÔÓ‰ÏÌÓ„ÓÓ·‡ÁËË = {ρ ∈ : Tr ρ = 1} χÚˈ ÔÎÓÚÌÓÒÚË ÓÌÓ ËÏÂÂÚ ÙÓÏÛ
(
2 arccos Tr ρ11 / 2 ρ12/ 2
)
1/ 2
.
åÂÚË͇ Ô‡‚ÓÈ ÎÓ„‡ËÙÏ˘ÂÒÍÓÈ ÔÓËÁ‚Ó‰ÌÓÈ åÂÚË͇ Ô‡‚ÓÈ ÎÓ„‡ËÙÏ˘ÂÒÍÓÈ ÔÓËÁ‚Ó‰ÌÓÈ (ËÎË RLD-ÏÂÚË͇) ÂÒÚ¸ ÏÓÌÓÚÓÌ̇fl ÏÂÚË͇ ̇ ÏÌÓ„ÓÓ·‡ÁËË ‚ÒÂı ÍÓÏÔÎÂÍÒÌ˚ı ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı n × n χÚˈ Á‡‰‡‚‡Âχfl Û‡‚ÌÂÌËÂÏ λ ρ (u, v) = Tr uJρ ( v), 1 −1 (ρ v + vρ −1 ) – Ô‡‚‡fl ÎÓ„‡ËÙÏ˘ÂÒ͇fl ÔÓËÁ‚Ӊ̇fl. ùÚÓ – ̇˷Óθ3 ¯‡fl ÏÓÌÓÚÓÌ̇fl ÏÂÚË͇. „‰Â Jρ ( v) =
åÂÚË͇ ÅÓ„Óβ·Ó‚‡–äÛ·Ó–åÓË åÂÚË͇ ÅÓ„Óβ·Ó‚‡-äÛ·Ó-åÓË (ËÎË Çäå-ÏÂÚË͇) ÂÒÚ¸ ÏÓÌÓÚÓÌ̇fl ÏÂÚË͇ ̇ ÏÌÓ„ÓÓ·‡ÁËË ‚ÒÂı ÍÓÏÔÎÂÍÒÌ˚ı ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı n × n χÚˈ, Á‡‰‡‚‡Âχfl Û‡‚ÌÂÌËÂÏ λαρ (u, v) =
∂2 Tr fα (ρ + su) ln(ρ + tv) |s, t = 0 . ∂t∂s
åÂÚËÍË Ç˄̇–ü̇Ò–чÈÒÓ̇ åÂÚËÍË Ç˄̇–ü̇Ò–чÈÒÓ̇ (ËÎË WYD-ÏÂÚËÍË) Ó·‡ÁÛ˛Ú ÒÂÏÂÈÒÚ‚Ó ÏÂÚËÍ Ì‡ ÏÌÓ„ÓÓ·‡ÁËË ‚ÒÂı ÍÓÏÔÎÂÍÒÌ˚ı ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı χÚˈ, Á‡‰‡‚‡ÂÏ˚ı Û‡‚ÌÂÌËÂÏ λαρ (u, v) = 1− α
∂2 Tr fα (ρ + tu) f− α (ρ + sv) |s, t = 0 . ∂t∂s
2 x 2 , ÂÒÎË α ≠ 1, Ë ln x, ÂÒÎË α = 1. ùÚË ÏÂÚËÍË ·Û‰ÛÚ ÏÓÌÓÚÓÌ1− α Ì˚ÏË ‰Îfl α ∈ [–3,3]. ÑÎfl α = ±1 ÔÓÎÛ˜ËÏ ÏÂÚËÍÛ ÅÓ„Óβ·Ó‚‡–äÛ·Ó–åÓË, ‡ ‰Îfl α = ±3 – ÏÂÚËÍÛ Ô‡‚ÓÈ ÎÓ„‡ËÙÏ˘ÂÒÍÓÈ ÔÓËÁ‚Ó‰ÌÓÈ.
„‰Â fα ( x ) =
132
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
åÂÚË͇ Ç˄̇–ü̇Ò (ËÎË WY-ÏÂÚË͇) λρ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ç˄̇– ü̇Ò–чÈÒÓ̇ λ0ρ , ÔÓÎÛ˜ÂÌÌÓÈ ‰Îfl α = 0. Ö ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í λ ρ (u, v) = 4 Tr u
(
Lρ + Rρ
) (v), 2
Ë Ó̇ fl‚ÎflÂÚÒfl ̇ËÏÂ̸¯ÂÈ ÏÂÚËÍÓÈ ÒÂÏÂÈÒÚ‚‡. ÑÎfl β·˚ı ρ1 , ρ2 ∈ „ÂÓ‰ÂÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ, Á‡‰‡‚‡ÂÏÓ WY-ÏÂÚËÍÓÈ, ·Û‰ÂÚ ËÏÂÚ¸ ‚ˉ
(
)
2 Tr ρ1 + Tr ρ2 − 2 Tr ρ11 / 2 ρ12/ 2 . ç‡ ÔÓ‰ÏÌÓ„ÓÓ·‡ÁËË = {ρ ∈ : Tr ρ = 1} χÚˈ ÔÎÓÚÌÓÒÚË ÓÌÓ ·Û‰ÂÚ ‡‚ÌÓ
(
)
2 arccos Tr ρ11 / 2 ρ12/ 2 . åÂÚË͇ äÓÌ̇ ÉÛ·Ó „Ó‚Ófl, ÏÂÚË͇ äÓÌ̇ – ˝ÚÓ Ó·Ó·˘ÂÌË (ËÁ ÔÓÒÚ‡ÌÒÚ‚‡ ‚ÒÂı ‚ÂÓflÚÌÓÒÚÌ˚ı Ï ÏÌÓÊÂÒÚ‚‡ ï ̇ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓÒÚÓflÌËÈ Î˛·ÓÈ ÛÌËڇθÌÓÈ C-‡Î„·˚) ÏÂÚËÍË ä‡ÌÚÓӂ˘‡, å˝ÎÎÓÛÁ‡–åÓÌʇ–LJÒÒ¯ÚÂÈ̇, Á‡‰‡ÌÌÓÈ Í‡Í ÎËÔ¯ËˆÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ï‡ÏË. èÛÒÚ¸ Mn – „·‰ÍÓ n-ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ. èÛÒÚ¸ A = C ∞ ( M n ) – (ÍÓÏÏÛÌËÚ‡Ú˂̇fl) ‡Î„·‡ „·‰ÍËı ÍÓÏÔÎÂÍÒÌÓÁ̇˜Ì˚ı ÙÛÌ͈ËÈ Ì‡ M n , Ô‰ÒÚ‡‚ÎÂÌÌ˚ı ÓÔ‡ÚÓ‡ÏË ÛÏÌÓÊÂÌËfl ̇ „Ëθ·ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â H = L2 ( M n , S ) Í‚‡‰‡Ú˘ÌÓ ËÌÚ„ËÛÂÏ˚ı ÒÂ͈ËÈ ‡ÒÒÎÓÂÌËfl ÒÔËÌÓÓ‚ ̇ Mn : ( fξ)( p) = f ( p)ξ( p) ‰Îfl ‚ÒÂı f ∈ A Ë ‚ÒÂı ξ ∈ H. èÛÒÚ¸ D – ÓÔ‡ÚÓ Ñˇ͇. èÛÒÚ¸ ÍÓÏÏÛÚ‡ÚÓ [D, f] ‰Îfl f ∈ A ÂÒÚ¸ ÛÏÌÓÊÂÌË äÎËÙÙÓ‰‡ ̇ „‡‰ËÂÌÚ ∇f, Ú‡ÍÓ ˜ÚÓ Â„Ó ÓÔ‡ÚÓ ÌÓÏ˚ || ⋅ || ‚ ç Á‡‰‡ÂÚÒfl Í‡Í [ D, f ] = sup p ∈M n ∇f . åÂÚËÍÓÈ äÓÌ̇ ̇Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ M n , Á‡‰‡‚‡Âχfl ‚˚‡ÊÂÌËÂÏ sup
f ∈Ai ||[ D, f ]||≤1
f ( p) − f (q ).
чÌÌÓ ÓÔ‰ÂÎÂÌË ÏÓÊÂÚ ·˚Ú¸ ÔËÏÂÌÂÌÓ Ú‡ÍÊÂ Í ‰ËÒÍÂÚÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚‡Ï Ë ‰‡Ê ӷӷ˘ÂÌÓ Ì‡ "ÌÂÍÓÏÏÛÚ‡ÚË‚Ì˚ ÔÓÒÚ‡ÌÒÚ‚‡" (ÛÌËڇθÌ˚ C*-‡Î„·˚). Ç ˜‡ÒÚÌÓÒÚË, ‰Îfl ÔÓϘÂÌÌÓ„Ó Ò‚flÁÌÓ„Ó ÎÓ͇θÌÓ ÍÓ̘ÌÓ„Ó „‡Ù‡ G = (V, E) Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ V = {v1, ..., vn, ...} ÏÂÚË͇ äÓÌ̇ Á‡‰‡ÂÚÒfl Í‡Í sup
||[ D, f ]||= || df ||≤1
∑
fv i − fv j
∑
2 ‰Îfl β·˚ı vi , v j ∈ V , „‰Â f = fv i vi : fv i < ∞ fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ ÙÓ Ï‡Î¸Ì˚ı ÒÛÏÏ f, Ó·‡ÁÛ˛˘Ëı „Ëθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, Ë [ D, f ] ÓÔ‰ÂÎflÂÚÒfl
deg( v1 ) ( fv k − fv i ) Í‡Í [ D, f ] = sup k =1
∑
1/ 2
.
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
133
7.3. ùêåàíéÇõ åÖíêàäà à àïï éÅéÅôÖçàü ÇÂÍÚÓÌ˚Ï ‡ÒÒÎÓÂÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ڇ͇fl „ÂÓÏÂÚ˘ÂÒ͇fl ÍÓÌÒÚÛ͈Ëfl, ‚ ÍÓÚÓÓÈ Í‡Ê‰ÓÈ ÚӘ͠ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ å ÒÚ‡‚ËÚÒfl ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ú‡Í, ˜ÚÓ ‚Ò ˝ÚË ‚ÂÍÚÓÌ˚ ÔÓÒÚ‡ÌÒÚ‚‡, "ÒÍÎÂÂÌÌ˚ ‚ÏÂÒÚÂ", Ó·‡ÁÛ˛Ú ‰Û„Ó ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ö. çÂÔÂ˚‚ÌÓ ÓÚÓ·‡ÊÂÌË π: E → M ̇Á˚‚‡ÂÚÒfl ÔÓÂ͈ËÂÈ Ö Ì‡ å. ÑÎfl ͇ʉÓÈ ÚÓ˜ÍË p ∈ M ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó π –1(p) ̇Á˚‚‡ÂÚÒfl ˝ÎÂÏÂÌÚ‡ÌÓÈ ÌËÚ¸˛ ‚ÂÍÚÓÌÓ„Ó ‡ÒÒÎÓÂÌËfl. ÑÂÈÒÚ‚ËÚÂθÌ˚Ï (ÍÓÏÔÎÂÍÒÌ˚Ï) ‚ÂÍÚÓÌ˚Ï ‡ÒÒÎÓÂÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl Ú‡ÍÓ ‚ÂÍÚÓÌÓ ‡ÒÒÎÓÂÌË π: E → M, ˝ÎÂÏÂÌÚ‡Ì˚ ÌËÚË π –1(p), p ∈ M ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌ˚ÏË (ÍÓÏÔÎÂÍÒÌ˚ÏË) ‚ÂÍÚÓÌ˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË. Ç ‰ÂÈÒÚ‚ËÚÂθÌÓÏ ‚ÂÍÚÓÌÓÏ ‡ÒÒÎÓÂÌËË ‰Îfl ͇ʉÓÈ ÚÓ˜ÍË p ∈ M ˝ÎÂÏÂÌڇ̇fl ÌËÚ¸ π –1(p) ÎÓ͇θÌÓ ‚˚„Îfl‰ËÚ Í‡Í ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó n, Ú.Â. ËÏÂÂÚÒfl ÓÚÍ˚Ú‡fl ÓÍÂÒÚÌÓÒÚ¸ U ÚÓ˜ÍË , ̇ÚۇθÌÓ ˜ËÒÎÓ n Ë „ÓÏÂÓÏÓÙËÁÏ ϕ: U × n → π −1 (U ), Ú‡ÍÓÈ ˜ÚÓ ‰Îfl ‚ÒÂı x ∈U , v ∈ n Ï˚ ÔÓÎÛ˜‡ÂÏ π(ϕ( x, v) = v, Ë ÓÚÓ·‡ÊÂÌË v → ϕ( x, v) ‰‡ÂÚ Ì‡Ï ËÁÓÏÓÙËÁÏ ÏÂÊ‰Û n Ë π –1(x). åÌÓÊÂÒÚ‚Ó U ÒÓ‚ÏÂÒÚÌÓ Ò ϕ ̇Á˚‚‡ÂÚÒfl ÎÓ͇θÌÓÈ Ú˂ˇÎËÁ‡ˆËÂÈ ‡ÒÒÎÓÂÌËfl. ÖÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ "„ÎÓ·‡Î¸Ì‡fl Ú˂ˇÎËÁ‡ˆËfl", ÚÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ ‚ÂÍÚÓÌÓ ‡ÒÒÎÓÂÌË ̇Á˚‚‡ÂÚÒfl π : M × n → M Ú˂ˇθÌ˚Ï. Ä̇Îӄ˘Ì˚Ï Ó·‡ÁÓÏ ‚ ÍÓÏÔÎÂÍÒÌÓÏ ‚ÂÍÚÓÌÓÏ ‡ÒÒÎÓÂÌËË ‰Îfl ͇ʉÓÈ ÚÓ˜ÍË p ∈ M ˝ÎÂÏÂÌڇ̇fl ÌËÚ¸ π –1(p) ÎÓ͇θÌÓ ‚˚„Îfl‰ËÚ Í‡Í ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó n. éÒÌÓ‚Ì˚Ï ÔËÏÂÓÏ ÍÓÏÔÎÂÍÒÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ‡ÒÒÎÓÂÌËfl fl‚ÎflÂÚÒfl Ú˂ˇθÌÓ ‡ÒÒÎÓÂÌË π : U × n → U , „‰Â U – ÓÚÍ˚ÚÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ k. LJÊÌ˚ÏË ÓÒÓ·˚ÏË ÒÎÛ˜‡flÏË ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ‡ÒÒÎÓÂÌËfl fl‚Îfl˛ÚÒfl ͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌË T (Mn ) Ë ÍÓ͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌË T* (M n ) ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó n-ÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl Mn = M n . LJÊÌ˚ÏË ÓÒÓ·˚ÏË ÒÎÛ˜‡flÏË ÍÓÏÔÎÂÍÒÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ‡ÒÒÎÓÂÌËfl fl‚Îfl˛ÚÒfl ͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌËÂ Ë ÍÓ͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌË ÍÓÏÔÎÂÍÒÌÓ„Ó n-ÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl. àÏÂÌÌÓ, ÍÓÏÔÎÂÍÒÌÓ n–ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË Mn fl‚ÎflÂÚÒfl ÚÓÔÓÎӄ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl ÚӘ͇ ӷ·‰‡ÂÚ ÓÍÂÒÚÌÓÒÚ¸˛, „ÓÏÂÓÏÓÙÌÓÈ ÓÚÍ˚ÚÓÏÛ ÏÌÓÊÂÒÚ‚Û n-ÏÂÌÓ„Ó ÍÓÏÔÎÂÍÒÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ n, Ë ËÏÂÂÚÒfl Ú‡ÍÓÈ ‡ÚÎ‡Ò Í‡Ú, ‚ ÍÓÚÓÓÏ ÒÏÂ̇ ÍÓÓ‰ËÌ‡Ú ÏÂÊ‰Û Í‡Ú‡ÏË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ‡Ì‡ÎËÚ˘ÂÒÍË. (äÓÏÔÎÂÍÒÌÓÂ) ͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌË T ( Mn ) ÍÓÏÔÎÂÍÒÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl Mn ÂÒÚ¸ ‚ÂÍÚÓÌÓ ‡ÒÒÎÓÂÌË ‚ÒÂı (ÍÓÏÔÎÂÍÒÌ˚ı) ͇҇ÚÂθÌ˚ı ÔÓÒÚ‡ÌÒÚ‚ Mn ‚ ͇ʉÓÈ ÚӘ͠p ∈ Mn . Ö„Ó ÏÓÊÌÓ ÔÓÎÛ˜ËÚ¸ Í‡Í ÍÓÏÔÎÂÍÒËÙË͇ˆË˛ T ( Mn ) ⊗ = T ( M n ) ⊗ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó Í‡Ò‡ÚÂθÌÓ„Ó ‡ÒÒÎÓÂÌËfl, Ë ÓÌÓ ·Û‰ÂÚ Ì‡Á˚‚‡Ú¸Òfl ÍÓÏÔÎÂÍÒËÙˈËÓ‚‡ÌÌ˚Ï Í‡Ò‡ÚÂθÌ˚Ï ‡ÒÒÎÓÂÌËÂÏ Mn . äÓÏÔÎÂÍÒËÙˈËÓ‚‡ÌÌÓ ÍÓ͇҇ÚÂθÌÓ ‡ÒÒÎÓÂÌË Mn ÔÓÎÛ˜‡ÂÚÒfl ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ Í‡Í T * ( M n ) ⊗ . ã˛·Ó ÍÓÏÔÎÂÍÒÌÓ n-ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË Mn = M n ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÓÒÓ·˚È ÒÎÛ˜‡È ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó 2n-ÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl, Ò̇·ÊÂÌÌÓ„Ó ÍÓÏÔÎÂÍÒÌÓÈ ÒÚÛÍÚÛÓÈ Ì‡ ͇ʉÓÏ Í‡Ò‡ÚÂθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â. äÓÏÔÎÂÍÒ̇fl ÒÚÛÍÚÛ‡ ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V fl‚ÎflÂÚÒfl ÒÚÛÍÚÛÓÈ ÍÓÏÔÎÂÍÒÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇ V, ÍÓÚÓ‡fl ÒÓ‚ÏÂÒÚËχ Ò Ô‚Ó̇˜‡Î¸ÌÓÈ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÒÚÛÍÚÛÓÈ. é̇ ÔÓÎÌÓÒÚ¸˛
134
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ÓÔ‰ÂÎflÂÚÒfl ÓÔ‡ÚÓÓÏ ÛÏÌÓÊÂÌËfl ̇ ˜ËÒÎÓ , Óθ ÍÓÚÓÓ„Ó ÏÓÊÂÚ ‚˚ÔÓÎÌflÚ¸ ÔÓËÁ‚ÓθÌÓ ÎËÌÂÈÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË J : V → V , J 2 = −id , „‰Â id ÂÒÚ¸ ÚÓʉÂÒÚ‚ÂÌÌÓ ÓÚÓ·‡ÊÂÌËÂ. ë‚flÁ¸ (ËÎË ÍÓ‚‡Ë‡ÌÚ̇fl ÔÓËÁ‚Ӊ̇fl) fl‚ÎflÂÚÒfl ÒÔÓÒÓ·ÓÏ ÓÔ‰ÂÎÂÌË ÔÓËÁ‚Ó‰ÌÓÈ ‚ÂÍÚÓÌÓ„Ó ÔÓÎfl ‚‰Óθ ‰Û„Ó„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÎfl ‚ ‚ÂÍÚÓÌÓÏ ‡ÒÒÎÓÂÌËË. åÂÚ˘ÂÒÍÓÈ Ò‚flÁ¸˛ ̇Á˚‚‡ÂÚÒfl ÎËÌÂÈ̇fl Ò‚flÁ̸ ‚ ‚ÂÍÚÓÌÓÏ ‡ÒÒÎÓÂÌËË π: E → M, Ò̇·ÊÂÌÌÓÏ ·ËÎËÌÂÈÌÓÈ ÙÓÏÓÈ ‚ ˝ÎÂÏÂÌÚ‡Ì˚ı ÌËÚflı, ‰Îfl ÍÓÚÓÓÈ Ô‡‡ÎÎÂθÌ˚È ÔÂÂÌÓÒ ‚‰Óθ ÔÓËÁ‚ÓθÌÓÈ ÍÛÒÓ˜ÌÓ „·‰ÍÓÈ ÍË‚ÓÈ ‚ å ÒÓı‡ÌflÂÚ ÙÓÏÛ, Ú.Â. Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ‰‚Ûı ‚ÂÍÚÓÓ‚ Ì ËÁÏÂÌflÂÚÒfl ÔË Ô‡‡ÎÎÂθÌÓÏ ÔÂÂÌÓÒÂ. ÑÎfl ÒÎÛ˜‡fl Ì‚˚ÓʉÂÌÌÓÈ ÒËÏÏÂÚ˘ÌÓÈ ·ËÎËÌÂÈÌÓÈ ÙÓÏ˚ ÏÂÚ˘ÂÒ͇fl Ò‚flÁ¸ ̇Á˚‚‡ÂÚÒfl ‚ÍÎˉӂÓÈ Ò‚flÁ¸˛. ÑÎfl ÒÎÛ˜‡fl Ì‚˚ÓʉÂÌÌÓÈ ‡ÌÚËÒËÏÏÂÚ˘ÌÓÈ ·ËÎËÌÂÈÌÓÈ ÙÓÏ˚ ÏÂÚ˘ÂÒ͇fl Ò‚flÁ¸ ̇Á˚‚‡ÂÚÒfl ÒËÏÔÎÂÍÚ˘ÂÒÍÓÈ Ò‚flÁ¸˛. åÂÚË͇ ‡ÒÒÎÓÂÌËfl åÂÚËÍÓÈ ‡ÒÒÎÓÂÌËfl ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ‚ÂÍÚÓÌÓÏ ‡ÒÒÎÓÂÌËË. ùÏËÚÓ‚‡ ÏÂÚË͇ ùÏËÚÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ ÍÓÏÔÎÂÍÒÌÓÏ ‚ÂÍÚÓÌÓÏ ‡ÒÒÎÓÂÌËË π: E → M ̇Á˚‚‡ÂÚÒfl ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ˝ÏËÚÓ‚˚ı Ò͇ÎflÌ˚ı ÔÓËÁ‚‰ÂÌËÈ (Ú.Â. ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚ı ÒËÏÏÂÚ˘Ì˚ı ÒÂÒÍËÎËÌÂÈÌ˚ı ÙÓÏ) ̇ ͇ʉÓÈ ˝ÎÂÏÂÌÚ‡ÌÓÈ ÌËÚË E p = π −1 ( p), p ∈ M , ÍÓÚÓ˚ „·‰ÍÓ ÏÂÌfl˛ÚÒfl Ò ÚÓ˜ÍÓÈ ‚ å. ã˛·Ó ÍÓÏÔÎÂÍÒÌÓ ‚ÂÍÚÓÌÓ ‡ÒÒÎÓÂÌË ËÏÂÂÚ ˝ÏËÚÓ‚Û ÏÂÚËÍÛ. éÒÌÓ‚Ì˚Ï ÔËÏÂÓÏ ‚ÂÍÚÓÌÓ„Ó ‡ÒÒÎÓÂÌËfl fl‚ÎflÂÚÒfl Ú˂ˇθÌÓ ‡ÒÒÎÓÂÌË π : U × n → U , „‰Â U – ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó ‚ k. Ç ˝ÚÓÏ ÒÎÛ˜‡Â ˝ÏËÚÓ‚Ó Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n Ë, ÒΉӂ‡ÚÂθÌÓ, ˝ÏËÚÓ‚‡ ÏÂÚË͇ ̇ ‡ÒÒÎÓÂÌËË π : U × n → U Á‡‰‡ÂÚÒfl ‚˚‡ÊÂÌËÂÏ 〈u, v〉 = u T Hv , „‰Â ç – ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌ̇fl ˝ÏËÚÓ‚‡ χÚˈ‡, Ú.Â. ÍÓÏÔÎÂÍÒ̇fl n × n χÚˈ‡, Óڂ˜‡˛˘‡fl ÛÒÎÓ‚ËflÏ H * = H T = H Ë v T Hv > 0 ‰Îfl ‚ÒÂı v ∈ n \ {0}. n
Ç ÔÓÒÚÂȯÂÏ ÒÎÛ˜‡Â Ï˚ ÔÓÎÛ˜‡ÂÏ 〈u, v〉 =
∑ ui vi . i =1
LJÊÌ˚Ï ÓÒÓ·˚Ï ÒÎÛ˜‡ÂÏ fl‚ÎflÂÚÒfl ˝ÏËÚÓ‚‡ ÏÂÚË͇ h ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , Ú.Â. ̇ ÍÓÏÔÎÂÍÒËÙˈËÓ‚‡ÌÌÓÏ Í‡Ò‡ÚÂθÌÓÏ ‡ÒÒÎÓÂÌËË T ( M n ) ⊗ ÏÌÓ„ÓÓ·‡ÁËfl M n . é̇ fl‚ÎflÂÚÒfl ˝ÏËÚÓ‚˚Ï ‡Ì‡ÎÓ„ÓÏ ËχÌÓ‚ÓÈ ÏÂÚËÍË. Ç ˝ÚÓÏ ÒÎÛ˜‡Â h = g + iw, „‰Â  ‰ÂÈÒÚ‚ËÚÂθ̇fl ˜‡ÒÚ¸ g fl‚ÎflÂÚÒfl ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ, ‡  ÏÌËχfl ˜‡ÒÚ¸ w – Ì‚˚ÓʉÂÌÌÓÈ ‡ÌÚËÒËÏÏÂÚ˘ÌÓÈ ·ËÎËÌÂÈÌÓÈ ÙÓÏÓÈ, ̇Á˚‚‡ÂÏÓÈ ÙÛ̉‡ÏÂÌڇθÌÓÈ ÙÓÏÓÈ. á‰ÂÒ¸ Ï˚ ËÏÂÂÏ Ë g(J(x), J(y)) = g(x, y), w(J(x), J(y)) = w(x, y) Ë w(x, y) = g(x, J(y)), „‰Â ÓÔ‡ÚÓ J fl‚ÎflÂÚÒfl ÓÔ‡ÚÓÓÏ ÍÓÏÔÎÂÍÒÌÓÈ ÒÚÛÍÚÛ˚ ̇ Mn , Í‡Í Ô‡‚ËÎÓ, J(x) = ix. ã˛·‡fl ËÁ ÙÓÏ g, w ÔÓÎÌÓÒÚ¸˛ ÓÔ‰ÂÎflÂÚ h. íÂÏËÌ "˝ÏËÚÓ‚‡ ÏÂÚË͇" ÓÚÌÓÒËÚÒfl Ú‡ÍÊÂ Ë Í ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ËχÌÓ‚ÓÈ ÏÂÚËÍ g, ÍÓÚÓ‡fl Ôˉ‡ÂÚ ÏÌÓ„ÓÓ·‡Á˲ ˝ÏËÚÓ‚Û Mn ÒÚÛÍÚÛÛ. ç‡ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË ˝ÏËÚÓ‚Û ÏÂÚËÍÛ h ÏÓÊÌÓ ‚˚‡ÁËÚ¸ ‚ ÎÓ͇θÌ˚ı ÍÓÓ‰Ë̇ڇı ˜ÂÂÁ ˝ÏËÚÓ‚ ÒËÏÏÂÚ˘Ì˚È ÚÂÌÁÓ ((hij)): h=
∑ hij dzi ⊗ dz j , i, j
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
135
„‰Â ((hij)) fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ ˝ÏËÚÓ‚ÓÈ Ï‡ÚˈÂÈ. íÓ„‰‡ ÒÓÓÚi ‚ÂÚÒÚ‚Û˛˘‡fl ÙÛ̉‡ÏÂÌڇθ̇fl ÙÓχ w ÔËÏÂÚ ‚ˉ w = hij dz i ⊗ dz j . 2 i, j
∑
ùÏËÚÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ (ËÎË ˝ÏËÚÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ) ̇Á˚‚‡ÂÚÒfl ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ˝ÏËÚÓ‚ÓÈ ÏÂÚËÍÓÈ. åÂÚË͇ äÂı· åÂÚËÍÓÈ äÂı· (ËÎË ÍÂıÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ) ̇Á˚‚‡ÂÚÒfl ˝ÏËÚÓ‚‡ ÏÂÚË͇ h = g + iw ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , ÙÛ̉‡ÏÂÌڇθ̇fl ÙÓχ w ÍÓÚÓÓÈ fl‚ÎflÂÚÒfl Á‡ÏÍÌÛÚÓÈ, Ú.Â. Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ dw = 0. ä˝ÎÂÓ‚Ó ÏÌÓ„ÓÓ·‡ÁË fl‚ÎflÂÚÒfl ÍÓÏÔÎÂÍÒÌ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ, Ò̇·ÊÂÌÌ˚Ï Í˝ÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ. ÖÒÎË h ‚˚‡ÊÂ̇ ‚ ÎÓ͇θÌ˚ı ÍÓÓ‰Ë̇ڇı, Ú.Â. h = hij dz i ⊗ dz j , ÚÓ ÒÓÓÚ‚ÂÚ-
∑ i, j
i ÒÚ‚Û˛˘Û˛ ÙÓÏÛ w ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í w = 2
∑ hij dzi ∧ dz j , „‰Â ∧ fl‚ÎflÂÚÒfl ‡Ìi, j
ÚËÒËÏÏÂÚ˘Ì˚Ï V-ÔÓËÁ‚‰ÂÌËÂÏ, Ú.Â. dx ∧ dy = –dy ∧ dx (ÒΉӂ‡ÚÂθÌÓ, dx ∧ dx = = 0). àÏÂÌÌÓ, w fl‚ÎflÂÚÒfl ‰ËÙÙÂÂ̈ˇθÌÓÈ 2-ÙÓÏÓÈ Ì‡ M n , Ú.Â. ÚÂÌÁÓÓÏ ‚ÚÓÓ„Ó ÔÓfl‰Í‡, ‡ÌÚËÒËÏÏÂÚ˘Ì˚Ï ÓÚÌÓÒËÚÂθÌÓ ÔÂÂÒÚ‡ÌÓ‚ÍË Î˛·ÓÈ Ô‡˚ Ë̉ÂÍÒÓ‚: w = fij hij dx i ∧ dx i , „‰Â fij ÂÒÚ¸ ÙÛÌ͈Ëfl ̇ Mn . Ç̯Ìflfl ÔÓËÁ‚Ӊ̇fl dw
∑ i, j
ÙÓÏ˚ w Á‡‰‡ÂÚÒfl Í‡Í dw =
∑∑ i, j
k
∂fij dx k
dx k ∧ dxi ∧ dx k . ÖÒÎË dw = 0, ÚÓ w fl‚ÎflÂÚÒfl
ÒËÏÔÎÂÍÚ˘ÂÒÍÓÈ (Ú.Â. Á‡ÏÍÌÛÚÓÈ Ì‚˚ÓʉÂÌÌÓÈ) ‰ËÙÙÂÂ̈ˇθÌÓÈ 2-ÙÓÏÓÈ. í‡ÍË ‰ËÙÙÂÂ̈ˇθÌ˚ 2-ÙÓÏ˚ ̇Á˚‚‡˛ÚÒfl ÙÓχÏË äÂı·. íÂÏËÌ "ÏÂÚË͇ äÂı·" ÏÓÊÌÓ ÓÚÌÂÒÚË Ú‡ÍÊÂ Ë Í ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ËχÌÓ‚ÓÈ ÏÂÚËÍ g, ÍÓÚÓ‡fl Ôˉ‡ÂÚ ÏÌÓ„ÓÓ·‡Á˲ Mn ÍÂıÎÂÓ‚Û ÒÚÛÍÚÛÛ. íÓ„‰‡ ÏÌÓ„ÓÓ·‡ÁË äÂı· ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ Ë Í˝ÎÂÓ‚ÓÈ ÙÓÏÓÈ Ì‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÏ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË. åÂÚË͇ ïÂÒÒ ÑÎfl „·‰ÍÓÈ ÙÛÌ͈ËË f ̇ ÓÚÍ˚ÚÓÏ ÔÓ‰ÏÌÓÊÂÒÚ‚Â ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÏÂÚË͇ ïÂÒÒ ÓÔ‰ÂÎflÂÚÒfl Í‡Í gij =
∂2 f . ∂xi ∂x j
åÂÚËÍÛ ïÂÒÒ ̇Á˚‚‡˛Ú Ú‡ÍÊ ‡ÙÙËÌÌÓÈ ÏÂÚËÍÓÈ äÂı·, ÔÓÒÍÓθÍÛ ÏÂÚË͇ äÂı· ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË ËÏÂÂÚ ‡Ì‡Îӄ˘ÌÓ ÓÔËÒ‡ÌË ‚ˉ‡ ∂2 f . ∂z i ∂z j åÂÚË͇ ä‡Î‡·Ë–üÓ åÂÚËÍÓÈ ä‡Î‡·Ë–üÓ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ äÂı·, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ê˘˜ËÔÎÓÒÍÓÈ. åÌÓ„ÓÓ·‡ÁË ä‡Î‡·Ë–üÓ (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó ä‡Î‡·Ë–üÓ) – Ó‰ÌÓÒ‚flÁÌÓ ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ ä‡Î‡·Ë–üÓ. Ö„Ó ÏÓÊÌÓ ‡ÒÒχÚ-
136
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
Ë‚‡Ú¸ Í‡Í 2n–ÏÂÌÓ (¯ÂÒÚËÏÂÌ˚È ÒÎÛ˜‡È Ô‰ÒÚ‡‚ÎflÂÚ ÓÒÓ·˚È ËÌÚÂÂÒ) „·‰ÍÓ ÏÌÓ„ÓÓ·‡ÁËÂ Ò „ÛÔÔÓÈ „ÓÎÓÌÓÏËË (Ú.Â. ÏÌÓÊÂÒÚ‚ÓÏ ÎËÌÂÈÌ˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ Í‡Ò‡ÚÂθÌ˚ı ‚ÂÍÚÓÓ‚, ÔÓËÒÚÂ͇˛˘Ëı ËÁ Ô‡‡ÎÎÂθÌÓ„Ó ÔÂÂÌÓÒ‡ ‚‰Óθ Á‡ÏÍÌÛÚ˚ı ÍÓÌÚÛÓ‚) ‚ ÒÔˆˇθÌÓÈ ÛÌËÚ‡ÌÓÈ „ÛÔÔÂ. åÂÚË͇ äÂı·–ùÈ̯ÚÂÈ̇ åÂÚË͇ äÂı·–ùÈ̯ÚÂÈ̇ (ËÎË ÏÂÚË͇ ùÈ̯ÚÂÈ̇) – ÏÂÚË͇ äÂı· ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , Û ÍÓÚÓÓÈ ÚÂÌÁÓ ÍË‚ËÁÌ˚ ê˘˜Ë ÔÓÔÓˆËÓ̇ÎÂÌ ÏÂÚ˘ÂÒÍÓÏÛ ÚÂÌÁÓÛ. ùÚ‡ ÔÓÔÓˆËÓ̇θÌÓÒÚ¸ fl‚ÎflÂÚÒfl ‡Ì‡ÎÓ„ÓÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‚ Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË. åÌÓ„ÓÓ·‡ÁËÂÏ äÂı·–ùÈ̯ÚÂÈ̇ (ËÎË ÏÌÓ„ÓÓ·‡ÁËÂÏ ùÈ̯ÚÂÈ̇) ̇Á˚‚‡ÂÚÒfl ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ äÂı·–ùÈ̯ÚÂÈ̇. Ç ˝ÚÓÏ ÒÎÛ˜‡Â ÚÂÌÁÓ ÍË‚ËÁÌ˚ ê˘˜Ë, ‡ÒÒχÚË‚‡ÂÏ˚È Í‡Í ÓÔ‡ÚÓ Ì‡ ͇҇ÚÂθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â, fl‚ÎflÂÚÒfl ÛÏÌÓÊÂÌËÂÏ Ì‡ ÍÓÌÒÚ‡ÌÚÛ. í‡Í‡fl ÏÂÚË͇ ÒÛ˘ÂÒÚ‚ÛÂÚ Ì‡ β·ÓÈ Ó·Î‡ÒÚË D ⊂ n , ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl Ó„‡Ì˘ÂÌÌÓÈ Ë ÔÒ‚‰Ó‚˚ÔÛÍÎÓÈ. Ö ÏÓÊÌÓ Á‡‰‡Ú¸ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 =
∑ i, j
∂ 2 u( z ) dzi dz j , ∂z i ∂z j
∂2u 2u „‰Â u ÂÒÚ¸ ¯ÂÌË ͇‚ÓÈ Á‡‰‡˜Ë: det = e ̇ D, Ë Ì‡ u = ∞ ̇ ∂D. ∂ ∂ z z i j åÂÚË͇ äÂı·–ùÈ̯ÚÂÈ̇ fl‚ÎflÂÚÒfl ÔÓÎÌÓÈ ÏÂÚËÍÓÈ. ç‡ Â‰ËÌ˘ÌÓÏ ‰ËÒÍ ∆ = {z ∈ : | z |< 1} Ó̇ ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚËÍÓÈ èÛ‡Ì͇Â. åÂÚË͇ ïӉʇ åÂÚË͇ ïӉʇ – ÏÂÚË͇ äÂı·, ÙÛ̉‡ÏÂÌڇθ̇fl ÙÓχ w ÍÓÚÓÓÈ ÓÔ‰ÂÎflÂÚ ËÌÚ„‡Î¸Ì˚È Í·ÒÒ ÍÓ„ÓÏÓÎÓ„ËÈ ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, ËÏÂÂÚ ËÌÚ„‡Î¸Ì˚ ÔÂËÓ‰˚. åÌÓ„ÓÓ·‡ÁË ïӉʇ – ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ ïӉʇ. äÓÏÔ‡ÍÚÌÓ ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁË fl‚ÎflÂÚÒfl ÏÌÓ„ÓÓ·‡ÁËÂÏ ïӉʇ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ ËÁÓÏÓÙÌÓ „·‰ÍÓÏÛ ‡Î„·‡Ë˜ÂÒÍÓÏÛ ÔÓ‰ÏÌÓ„ÓÓ·‡Á˲ ÌÂÍÓÚÓÓ„Ó ÍÓÏÔÎÂÍÒÌÓ„Ó ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. åÂÚË͇ îÛ·ËÌË–òÚÛ‰Ë åÂÚË͇ îÛ·ËÌË–òÚÛ‰Ë – ÏÂÚË͇ äÂı· ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÔÓÂÍÚË‚ÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â Pn , ÓÔ‰ÂÎflÂχfl ˜ÂÂÁ ˝ÏËÚÓ‚Ó Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË 〈 , 〉‚ n+1. é̇ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 =
〈 x, x 〉〈 dx, dx 〉 − 〈 x, dx 〉〈 x , dx 〉 . 〈 x, x 〉 2
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË ( x1 : ... : x n +1 ), ( y1 : ... : yn +1 ) ∈P n , „‰Â x = = (x1, ..., xn+1), y = (y1, ..., yn+1) ∈ Cn\{0}, ‡‚ÌÓ arccos
〈 x, y 〉 〈 x, x 〉〈 y, y 〉
.
åÂÚË͇ îÛ·ËÌË–òÚÛ‰Ë fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ïӉʇ. èÓÒÚ‡ÌÒÚ‚Ó Pn , Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ îÛ·ËÌË–òÚÛ‰Ë, ̇Á˚‚‡ÂÚÒfl ˝ÏËÚÓ‚˚Ï ˝ÎÎËÔÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ÒÏ. ùÏËÚÓ‚‡ ˝ÎÎËÔÚ˘ÂÒ͇fl ÏÂÚË͇).
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
137
åÂÚË͇ Å„χ̇ åÂÚËÍÓÈ Å„χ̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ äÂı· ̇ Ó„‡Ì˘ÂÌÌÓÈ Ó·Î‡ÒÚË D ⊂ n , Á‡‰‡‚‡Âχfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 =
∑ i, j
∂ 2 ln K ( z, z ) dz i dz j , ∂z i ∂z j
„‰Â K(z, u) fl‚ÎflÂÚÒfl ÙÛÌ͈ËÂÈ fl‰‡ Å„χ̇. åÂÚË͇ Å„χ̇ ËÌ‚‡Ë‡ÌÚ̇ ÓÚÌÓÒËÚÂθÌÓ ‡‚ÚÓÏÓÙËÁÏÓ‚ ӷ·ÒÚË D; Ó̇ fl‚ÎflÂÚÒfl ÔÓÎÌÓÈ, ÂÒÎË Ó·Î‡ÒÚ¸ D Ó‰ÌÓӉ̇. ÑÎfl ‰ËÌ˘ÌÓ„Ó ‰ËÒ͇ ∆ = {z ∈ : | z |< 1} ÏÂÚË͇ Å„χ̇ ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚËÍÓÈ èÛ‡Ì͇ (ÒÏ. Ú‡ÍÊ -ÏÂÚË͇ Å„χ̇, „Î. 13). îÛÌ͈Ëfl fl‰‡ Å„χ̇ ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: ‡ÒÒÏÓÚËÏ Ó·Î‡ÒÚ¸ D ⊂ n, ‚ ÍÓÚÓÓÈ ÒÛ˘ÂÒÚ‚Û˛Ú ‡Ì‡ÎËÚ˘ÂÒÍË ÙÛÌ͈ËË f ≠ 0 Í·ÒÒ‡ L 2 (D) ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Î·„ӂÓÈ ÏÂÂ; ÏÌÓÊÂÒÚ‚Ó ˝ÚËı ÙÛÌ͈ËÈ Ó·‡ÁÛÂÚ „Ëθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó L2, a ( D) ⊂ L2 ( D) Ò ÓÚÓ„Ó̇θÌ˚Ï ·‡ÁËÒÓÏ (φi)i; ÙÛÌ͈Ëfl fl‰‡ Å„χ̇ ‚ ӷ·ÒÚË D × D ⊂ 2 n Á‡‰‡ÂÚÒfl Í‡Í K D ( z, u) =
∞
∑
φ i (u).
i =1
ÉËÔÂÍÂıÎÂÓ‚‡ ÏÂÚË͇ ÉËÔÂÍÂıÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ËχÌÓ‚‡ ÏÂÚË͇ g ̇ 4n-ÏÂÌÓÏ ËχÌÓ‚ÓÏ ÏÌÓ„ÓÓ·‡ÁËË, ÒÓ‚ÏÂÒÚËχfl Ò Í‚‡ÚÂÌËÓÌÌÓÈ ÒÚÛÍÚÛÓÈ Ì‡ ͇҇ÚÂθÌÓÏ ‡ÒÒÎÓÂÌËË ÏÌÓ„ÓÓ·‡ÁËfl. àÏÂÌÌÓ, ÏÂÚË͇ g fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ äÂı· ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÚÂÏ ÒÚÛÍÚÛ‡Ï äÂı· (I, wI , g), (J, wJ, g) Ë (K, wK , g), ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ ÍÓÏÔÎÂÍÒÌ˚Ï ÒÚÛÍÚÛ‡Ï, Í‡Í ˝Ì‰ÓÏÓÙËÁÏ‡Ï Í‡Ò‡ÚÂθÌÓ„Ó ‡ÒÒÎÓÂÌËfl, ÍÓÚÓ˚ Óڂ˜‡˛Ú ÛÒÎÓ‚ËflÏ Í‚‡ÚÂÌËÓÌÌÓÈ ‚Á‡ËÏÓÒ‚flÁË I 2 = J 2 = K 2 = IJK = − JIK = −1. ÉËÔÂÍÂıÎÂÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ Ì‡Á˚‚‡ÂÚÒfl ËχÌÓ‚Ó ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ „ËÔÂÍÂıÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ. ùÚÓ – ÓÒÓ·˚È ÒÎÛ˜‡È ÏÌÓ„ÓÓ·‡ÁËfl äÂı·. ÇÒ „ËÔÂÍÂıÎÂÓ‚˚ ÏÌÓ„ÓÓ·‡ÁËfl fl‚Îfl˛ÚÒfl ê˘˜Ë-ÔÎÓÒÍËÏË. äÓÏÔ‡ÍÚÌ˚ ˜ÂÚ˚ÂıÏÂÌ˚ „ËÔÂÍÂıÎÂÓ‚˚ ÏÌÓ„ÓÓ·‡ÁËfl ̇Á˚‚‡˛ÚÒfl K3-ÔÓ‚ÂıÌÓÒÚflÏË Ë ËÁÛ˜‡˛ÚÒfl ‚ ‡Î„·‡Ë˜ÂÒÍÓÈ „ÂÓÏÂÚËË. åÂÚË͇ ä‡Î‡·Ë åÂÚË͇ ä‡Î‡·Ë – „ËÔÂÍÂıÎÂÓ‚‡ ÏÂÚË͇ ̇ ÍÓ͇҇ÚÂθÌÓÏ ‡ÒÒÎÓÂÌËË * T (P n +1 ) ÍÓÏÔÎÂÍÒÌÓ„Ó ÔÓÂÍÚË‚ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ P n +1 . ÑÎfl n = 4k + 4 ˝Ú‡ ÏÂÚË͇ ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡Ì‡ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 =
2 2 dr 2 1 2 1 2 1 2 2 2 2 2 2 −4 2 r ( r ) λ r ( ν ν ) ( r )( σ σ ) ( r ) + 1 − + + + − 1 + + + 1 + 1 2 1α 2α 2 2 1 − r −1 4 1α 2 α
∑ ∑ ,
„‰Â λ, ν1 , ν 2 , σ1α , σ 2 α , Ò α, Ôӷ„‡˛˘ËÏ k Á̇˜ÂÌËÈ, fl‚Îfl˛ÚÒfl ΂ÓËÌ‚‡ 1α 2 α ˇÌÚÌ˚ÏË 1-ÙÓχÏË (Ú.Â. ÎËÌÂÈÌ˚ÏË ‰ÂÈÒÚ‚ËÚÂθÌ˚ÏË ÙÛÌ͈ËflÏË) ̇ ÒÏÂÊÌÓÏ Í·ÒÒ SU(k + 2)/U(k). á‰ÂÒ¸ fl‚ÎflÂÚÒfl ÛÌËÚ‡ÌÓÈ „ÛÔÔÓÈ, ÒÓÒÚÓfl˘ÂÈ ËÁ ÍÓÏÔÎÂÍÒÌ˚ı k × k ÛÌËÚ‡Ì˚ı χÚˈ, ‡ SU(k) – ÒÔˆˇθÌÓÈ ÛÌËÚ‡ÌÓÈ „ÛÔÔÓÈ Ò ÓÔ‰ÂÎËÚÂÎÂÏ 1. ÑÎfl k = 0 ÏÂÚË͇ ä‡Î‡·Ë Ë ÏÂÚË͇ ùۄۘ˖ï˝ÌÒÓ̇ ÒÓ‚Ô‡‰‡˛Ú.
∑∑
138
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
åÂÚË͇ ëÚÂÌÁÂÎfl åÂÚËÍÓÈ ëÚÂÌÁÂÎfl ̇Á˚‚‡ÂÚÒfl „ËÔÂÍÂıÎÂÓ‚‡ ÏÂÚË͇ ̇ ÍÓ͇҇ÚÂθÌÓÏ ‡ÒÒÎÓÂÌËË T*(Sn+1) ÒÙÂ˚ Sn+1. SO(3)-ËÌ‚‡Ë‡ÌÚ̇fl ÏÂÚË͇ SO(3)-ËÌ‚‡Ë‡ÌÚÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl 4-ÏÂ̇fl „ËÔÂÍÂıÎÂÓ‚‡ ÏÂÚË͇ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ, Á‡‰‡ÌÌ˚Ï ‚ ÙÓχÎËÁÏ ÅˇÌÍË-IX Í‡Í ds 2 = f 2 (t )dt 2 + σ 2 (t )σ12 + b 2 (t )σ 22 + c 2 (t )σ 32 , „‰Â ËÌ‚‡Ë‡ÌÚÌ˚ 1-ÙÓÏ˚ σ1, σ2, σ3, ËÁ SO(3) ‚˚‡ÊÂÌ˚ ‚ ÚÂÏË̇ı Û„ÎÓ‚ ù
1 (cos ψdθ + sin θ sin ψdφ), 2 1 1 σ 3 = ( dψ + sonθdφ) Ë ÌÓχÎËÁ‡ˆËfl ‚˚·‡Ì‡ Ú‡Í, ˜ÚÓ σ1 ∧ σ j = ε ijk dσ k . äÓÓ2 2 ‰Ë̇ÚÛ t ‚Ò„‰‡ ÏÓÊÌÓ ‚˚·‡Ú¸ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÔÂÂÔ‡‡ÏÂÚ1 ËÁ‡ˆËË Ú‡Í, ˜ÚÓ f (t ) = abc. 2
È· θ,
ψ,
σ1 =
φ ͇Í
1 (sin ψdθ − sin θ cos ψdφ), 2
σ2 =
åÂÚË͇ ÄÚ¸fl–ïËÚ˜Ë̇ åÂÚË͇ ÄÚ¸fl–ïËÚ˜Ë̇ fl‚ÎflÂÚÒfl ÔÓÎÌÓÈ Â„ÛÎflÌÓÈ SO(3)-ËÌ‚‡Ë‡ÌÚÌÓÈ ÏÂÚËÍÓÈ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ 2
dk 1 2 2 2 2 2 2 ds = a 2 b 2 c 2 2 2 + a ( k )σ1 + b ( k )σ 2 + c ( k )σ 3 , 4 k (1 − k ) K 2
„‰Â a, b, c – ÙÛÌ͈ËË ÓÚ k, ab = –K(k)(E(k) – K(k)), bc = –K(k)(E(k) – (1 – k 2)K(k)), ac = –K(k)(E(k) Ë K(k), E(k) – ÔÓÎÌ˚ ˝ÎÎËÔÚ˘ÂÒÍË ËÌÚ„‡Î˚ ÔÂ‚Ó„Ó Ë ‚ÚÓÓ„Ó 2 K (1 − k 2 ) Ó‰‡ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Ò 0 < k < 1. äÓÓ‰Ë̇ڇ t Á‡‰‡ÂÚÒfl ÔÓ ÙÓÏÛΠt = Ò πK ( k ) ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ‡‰‰ËÚË‚ÌÓÈ ÔÓÒÚÓflÌÌÓÈ. åÂÚË͇ í‡Û·‡-NUT åÂÚËÍÓÈ í‡Û·‡-NUT ̇Á˚‚‡ÂÚÒfl ÔÓÎ̇fl „ÛÎfl̇fl S O(3)-ËÌ‚‡Ë‡ÌÚ̇fl ÏÂÚË͇ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 =
r−m 2 1 r+m 2 dr + (r 2 − m 2 )(σ12 + σ 22 ) + 4 m 2 σ3 , r+m 4 r−m
„‰Â m – ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÈ ÏÓ‰ÛθÌ˚È Ô‡‡ÏÂÚ, ÍÓÓ‰Ë̇ڇ r Ò‚flÁ‡Ì‡ Ò t ÙÓÏÛÎÓÈ 1 r =m+ . 2 mt åÂÚË͇ ùÛ„Û˜Ë Ë ï˝ÌÒÓ̇ åÂÚËÍÓÈ ùۄۘ˖ï˝ÌÒÓ̇ ̇Á˚‚‡ÂÚÒfl ÔÓÎ̇fl „ÛÎfl̇fl SO(3)-ËÌ‚‡Ë‡ÌÚ̇fl ÏÂÚË͇ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 =
2 a 4 2 dr 2 2 2 r + + + σ σ 1 2 1 − r σ 3 , 4 a 1− r
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
139
„‰Â α – ÏÓ‰ÛθÌ˚È Ô‡‡ÏÂÚ, ÍÓÓ‰Ë̇ڇ r Ò‚flÁ‡Ì‡ Ò ÍÓÓ‰Ë̇ÚÓÈ t ÙÓÏÛÎÓÈ r2 = a2 coth(a2 t). åÂÚË͇ ùۄۘ˖ï˝ÌÒÓ̇ ÒÓ‚Ô‡‰‡ÂÚ Ò ˜ÂÚ˚ÂıÏÂÌÓÈ ÏÂÚËÍÓÈ ä‡Î‡·Ë. äÓÏÔÎÂÍÒ̇fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ äÓÏÔÎÂÍÒÌÓÈ ÙËÌÒÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÛÌÂÔÂ˚‚̇fl Ò‚ÂıÛ ÙÛÌ͈Ëfl F : T ( M * ) → + ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË M n Ò ‡Ì‡ÎËÚ˘ÂÒÍËÏ Í‡Ò‡ÚÂθÌ˚Ï ‡ÒÒÎÓÂÌËÂÏ T(M n ), Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ÒÎÂ‰Û˛˘ËÏ ÛÒÎÓ‚ËflÏ: ( ( 1. F2 fl‚ÎflÂÚÒfl „·‰ÍÓÈ Ì‡ M n ,, „‰Â M n – ‰ÓÔÓÎÌÂÌË (‚ T(Mn )) ÌÛÎÂ‚Ó„Ó Ò˜ÂÌËfl. 2. F(p, x) > 0 ‰Îfl ‚ÒÂı Ë p ∈ Mn Ë . x ∈ M pn . 3. F(p, λx) = |λ|F(p, x) ‰Îfl ‚ÒÂı p ∈ Mn , x ∈ Tp(M n ) Ë λ ∈ . îÛÌ͈Ëfl G = F2 ÏÓÊÂÚ ·˚Ú¸ ÎÓ͇θÌÓ ‚˚‡ÊÂ̇ ‚ ÚÂÏË̇ı ÍÓÓ‰ËÌ‡Ú (p1 , ..., pn , x1 , ..., xn); ÙËÌÒÎÂÓ‚ ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ ÍÓÏÔÎÂÍÒÌÓÈ ÙËÌÒÎÂÓ‚ÓÈ 1 ∂ 2 F 2 ∂x ∂ i ÏÂÚËÍË Á‡‰‡ÂÚÒfl χÚˈÂÈ ((Gij )) = , ̇Á˚‚‡ÂÏÓÈ Ï‡ÚˈÂÈ ã‚Ë. 2 ∂xi ∂x j ÖÒÎË Ï‡Úˈ‡ ((Gij)) fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌÓÈ, ÚÓ ÍÓÏÔÎÂÍÒ̇fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇ F ̇Á˚‚‡ÂÚÒfl ÒÚÓ„Ó ÔÒ‚‰Ó‚˚ÔÛÍÎÓÈ. èÓÎÛÏÂÚË͇, ÛÏÂ̸¯‡˛˘‡fl ‡ÒÒÚÓflÌËfl èÛÒÚ¸ d – ÔÓÎÛÏÂÚË͇, Á‡‰‡Ì̇fl ̇ ÌÂÍÓÚÓÓÏ Í·ÒÒ ÍÓÏÔÎÂÍÒÌ˚ı ÏÌÓ„ÓÓ·‡ÁËÈ, ÒÓ‰Âʇ˘ÂÏ Â‰ËÌ˘Ì˚È ‰ËÒÍ ∆ = {z ∈ : | z |< 1}. é̇ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ, ÛÏÂ̸¯‡˛˘ÂÈ ‡ÒÒÚÓflÌËfl ‰Îfl ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ, ÂÒÎË ‰Îfl β·Ó„Ó ‡Ì‡ÎËÚ˘ÂÒÍÓ„Ó ÓÚÓ·‡ÊÂÌËfl f : M1 → M2 , M1 , M2 ∈ ̇‚ÂÌÒÚ‚Ó d(f(p), f(q)) ≤ d(p, q) ÒÔ‡‚‰ÎË‚Ó ‰Îfl ‚ÒÂı p, q ∈ M1 (ÒÏ. åÂÚË͇ äÓ·‡È‡¯Ë, åÂÚË͇ 䇇ÚÂÓ‰ÓË, åÂÚË͇ ÇÛ). åÂÚË͇ äÓ·‡È‡¯Ë èÛÒÚ¸ D – ӷ·ÒÚ¸ ‚ n. èÛÒÚ¸ (∆, D) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ f: ∆ → D, „‰Â ∆ = {z ∈ |z| < 1} – ‰ËÌ˘Ì˚È ‰ËÒÍ. åÂÚË͇ äÓ·‡È‡¯Ë (ËÎË ÏÂÚË͇ äÓ·‡È‡¯Ë – êÓȉÂ̇) FK ÂÒÚ¸ ÍÓÏÔÎÂÍÒ̇fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇, Á‡‰‡Ì̇fl Í‡Í FK ( z, u) = inf{α > 0 : ∃f ∈ ( ∆, D), f (0) = z, αf ′(0) = u} ‰Îfl ‚ÒÂı z ∈ D Ë u ∈ n . é̇ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÏÂÚËÍË èÛ‡Ì͇ ̇ ÏÌÓ„ÓÏÂÌ˚ ӷ·ÒÚË. FK ( z, u) ≥ FC ( z, u), „‰Â FC – ÏÂÚË͇ 䇇ÚÂÓ‰ÓË. ÖÒÎË D u d ( z, u) ‚˚ÔÛÍÎa Ë d ( z, u) = inf λ : z + ∈ D, ÂÒÎË | α |> λ , ÚÓ ≤ FK ( z, u) = FC ( z, u) ≤ α 2 ≤ d ( z, u). ÑÎfl ÍÓÏÔÎÂÍÒÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl Mn ÔÓÎÛÏÂÚË͇ äÓ·‡È‡¯Ë Á‡‰‡ÂÚÒfl Í‡Í FK ( p, u) = inf{α > 0 : ∃f ∈ ( ∆, M n ), f (0) = p, αf ′(0) = u} ‰Îfl ‚ÒÂı p ∈ Mn Ë u ∈ T p (M n ). FK(p, u) fl‚ÎflÂÚÒfl ÔÓÎÛÌÓÏÓÈ Í‡Ò‡ÚÂθÌÓ„Ó ‚ÂÍÚÓ‡ u, ̇Á˚‚‡ÂÏÓÈ ÔÓÎÛÌÓÏÓÈ äÓ·‡È‡¯Ë. FK ·Û‰ÂÚ ÏÂÚËÍÓÈ, ÂÒÎË ÏÌÓ„ÓÓ·‡ÁË Mn ÚÛ„ÓÂ, Ú.Â. (∆, Mn ) fl‚ÎflÂÚÒfl ÌÓχθÌ˚Ï ÒÂÏÂÈÒÚ‚ÓÏ.
140
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
èÓÎÛÏÂÚË͇ äÓ·‡È‡¯Ë fl‚ÎflÂÚÒfl ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÙÓÏÓÈ Ú‡Í Ì‡Á˚‚‡ÂÏÓ„Ó ÔÓÎÛ‡ÒÒÚÓflÌËfl äÓ·‡È‡¯Ë (ËÎË ÔÒ‚‰Ó‡ÒÒÚÓflÌËfl äÓ·‡È‡¯Ë) K M n ̇ Mn , ÍÓÚÓÓ ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ. ÑÎfl Á‡‰‡ÌÌ˚ı p, q ∈ Mn ˆÂÔ¸ ‰ËÒÍÓ‚ α ÓÚ ‰Ó q ÂÒÚ¸ ÒÂÏÂÈÒÚ‚Ó ÚÓ˜ÂÍ p = p 0 , p1 ,..., p k = q ËÁ Mn , Ô‡ ÚÓ˜ÂÍ a1 , b1 ;...; a k , b k ‰ËÌ˘ÌÓ„Ó ‰ËÒ͇ ∆ Ë ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ f1, ..., fk ËÁ ∆ ‚ Mn , Ú‡ÍËı ˜ÚÓ f j ( a j ) = p j −1 Ë f j (b j ) = p j ‰Îfl ‚ÒÂı j . ÑÎË̇ l(a) ˆÂÔË α ‡‚̇ d p ( a1 , b1 ) + ... ... + d p ( a k , b k ), „‰Â dp ÂÒÚ¸ ÏÂÚË͇ èÛ‡Ì͇Â. èÓÎÛ‡ÒÒÚÓflÌË äÓ·‡È‡¯Ë K M n ̇ Mn – ˝ÚÓ ÔÓÎÛÏÂÚË͇ ̇ Mn , Á‡‰‡Ì̇fl Í‡Í K M n ( p, q ) = inf l(α ), α
„‰Â ËÌÙËÏÛÏ ‚ÁflÚ ÔÓ ‚ÒÂÏ ‰ÎËÌ‡Ï l(α) ˆÂÔÂÈ ‰ËÒÍÓ‚ α ÓÚ ‰Ó q. èÓÎÛ‡ÒÒÚÓflÌË äÓ·‡È‡¯Ë fl‚ÎflÂÚÒfl ÛÏÂ̸¯‡˛˘ËÏ ‡ÒÒÚÓflÌËfl ‰Îfl ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ. ùÚÓ Ì‡Ë·Óθ¯‡fl ËÁ ‚ÒÂı ÔÓÎÛÏÂÚËÍ Ì‡ M n , ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ÛÏÂ̸¯‡˛˘ËÏË ‡ÒÒÚÓflÌËfl ‰Îfl ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ ËÁ ∆ ‚ Mn , „‰Â ‡ÒÒÚÓflÌËfl ̇ ∆ ËÁÏÂfl˛ÚÒfl ‚ ÏÂÚËÍ èÛ‡Ì͇Â. K ∆ ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚËÍÓÈ èÛ‡Ì͇Â, a K n ≡ 0. åÌÓ„ÓÓ·‡ÁË ̇Á˚‚‡ÂÚÒfl „ËÔ·Ó΢ÂÒÍËÏ ÔÓ äÓ·‡È‡¯Ë, ÂÒÎË ÔÓÎÛ‡ÒÒÚÓflÌË äÓ·‡È‡¯Ë fl‚ÎflÂÚÒfl ̇ ÌÂÏ ÏÂÚËÍÓÈ. åÌÓ„ÓÓ·‡ÁË ·Û‰ÂÚ „ËÔ·Ó΢ÂÒÍËÏ ÔÓ äÓ·‡È‡¯Ë ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ ·Ë„ÓÎÓÏÓÙÌÓ Ó„‡Ì˘ÂÌÌÓÈ Ó‰ÌÓÓ‰ÌÓÈ Ó·Î‡ÒÚË. åÂÚË͇ äÓ·‡È‡¯Ë–ÅÛÁÂχ̇ èÓÎÛÏÂÚËÍÓÈ äÓ·‡È‡¯Ë–ÅÛÁÂχ̇ ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn ̇Á˚‚‡ÂÚÒfl ‰‚‡Ê‰˚ ‰‚ÓÈÒÚ‚ÂÌÌ˚È Ó·‡Á ÔÓÎÛÏÂÚËÍË äÓ·‡È‡¯Ë ̇ Mn . é̇ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ, ÂÒÎËMn – ÚÛ„Ó ÏÌÓ„ÓÓ·‡ÁËÂ. åÂÚË͇ 䇇ÚÂÓ‰ÓË èÛÒÚ¸ D ·Û‰ÂÚ Ó·Î‡ÒÚ¸ ‚ n, Ë (D, ∆) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ f: D → ∆, „‰Â ∆ = {z ∈ | z |< 1} – ‰ËÌ˘Ì˚È ‰ËÒÍ. åÂÚËÍÓÈ ä‡‡ÚÂÓ‰ÓË Fë ̇Á˚‚‡ÂÚÒfl ÍÓÏÔÎÂÍÒ̇fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇, Á‡‰‡Ì̇fl Í‡Í FC ( z, u) = sup{ f ′( z )u : f ∈ ( D, ∆ )} ‰Îfl β·˚ı z ∈ D Ë u ∈ n. é̇ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÏÂÚËÍË èÛ‡Ì͇ ̇ ÏÌÓ„ÓÏÂÌ˚ ӷ·ÒÚË. FC ( z, u) ≤ FK ( z, u), „‰Â FK – ÏÂÚË͇ äÓ·‡È‡¯Ë. ÖÒÎË D ‚˚ÔÛÍÎa Ë u d ( z, u) d ( z, u) = inf λ : z + ∈ D, ÂÒÎË | α |> λ , ÚÓ ≤ FC ( z, u) = FK ( z, u) ≤ d ( z, u). α 2 ÑÎfl ÍÓÏÔÎÂÍÒÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl M n ÔÓÎÛÏÂÚË͇ 䇇ÚÂÓ‰ÓË FC ÓÔ‰ÂÎflÂÚÒfl ͇Í
{
}
FC ( p, u) = sup f ′( p)u : f ∈ ( M n , ∆ )
‰Îfl ‚ÒÂı p ∈ Mn Ë u ∈ Tp (M n ). FC fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ, ÂÒÎË Mn – ÚÛ„ÓÂ. èÓÎÛ‡ÒÒÚÓflÌË 䇇ÚÂÓ‰ÓË (ËÎË ÔÒ‚‰Ó‡ÒÒÚÓflÌË 䇇ÚÂÓ‰ÓË) C M fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ Ì‡ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË M n , Á‡‰‡ÌÌÓÈ Í‡Í
{
}
CM n ( p, q ) = sup d P ( f ( p), f (q )) : f ∈ ( M n , ∆ ) ,
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
141
„‰Â dP – ÏÂÚË͇ èÛ‡Ì͇Â. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ËÌÚ„‡Î¸Ì‡fl ÔÓÎÛÏÂÚË͇ ‰Îfl ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÙÓÏ˚ ÔÓÎÛÏÂÚËÍË ä‡‡ÚÂÓ‰ÓË fl‚ÎflÂÚÒfl ‚ÌÛÚÂÌÌÂÈ ‰Îfl ÔÓÎÛ‡ÒÒÚÓflÌËfl 䇇ÚÂÓ‰ÓË, ÌÓ Ì ÒÓ‚Ô‡‰‡ÂÚ Ò ÌËÏ. èÓÎÛ‡ÒÒÚÓflÌË 䇇ÚÂÓ‰ÓË fl‚ÎflÂÚÒfl ÛÏÂ̸¯‡˛˘ËÏ ‡ÒÒÚÓflÌËfl ‰Îfl ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ. ùÚÓ Ì‡ËÏÂ̸¯‡fl ÔÓÎÛÏÂÚË͇, ÛÏÂ̸¯‡˛˘‡fl ‡ÒÒÚÓflÌËfl. ë∆ ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚËÍÓÈ èÛ‡Ì͇Â, ‡ CC n ≡ 0. åÂÚË͇ ÄÁÛ͇‚˚ èÛÒÚ¸ D – ӷ·ÒÚ¸ ‚ C n . èÛÒÚ¸ g D ( z, u) = sup{ f (u) : f ∈ K D ( z )}, „‰Â K D(z) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÎÓ„‡ËÙÏ˘ÂÒÍË ÔβËÒÛ·„‡ÏÓÌ˘ÂÒÍËı ÙÛÌ͈ËÈ f: D → [0,1), Ú‡ÍËı ˜ÚÓ ÒÛ˘ÂÒÚ‚Û˛Ú M, r > 0 Ò F(u) ≤ M|| u – z ||2 ‰Îfl ‚ÒÂı u ∈ B( z, r ) ⊂ D : ; Á‰ÂÒ¸
{
}
|| ⋅ || – l2-ÌÓχ ̇ n, a B( z, r ) = x ∈ n : || z − x 2 ||2 < r . åÂÚË͇ ÄÁÛ͇‚˚ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â, ÔÓÎÛÏÂÚË͇) F A ÂÒÚ¸ ÍÓÏÔÎÂÍÒ̇fl ÙËÌÒÎÂÓ‚‡fl ÏÂÚË͇, ÓÔ‰ÂÎflÂχfl Í‡Í FA ( z, u) = lim sup λ→0
1 gD ( z, z + λ ) |λ|
‰Îfl ‚ÒÂı z ∈ D Ë u ∈ n. é̇ "ÎÂÊËÚ ÏÂʉÛ" ÏÂÚËÍÓÈ ä‡‡ÚÂÓ‰ÓË FC Ë ÏÂÚËÍÓÈ äÓ·‡È‡¯Ë FK : FC ( z, u) ≤ FA ( z, u) ≤ FK ( z, u) ‰Îfl ‚ÒÂı z ∈ D Ë u ∈ n. ÖÒÎË Ó·Î‡ÒÚ¸ D ‚˚ÔÛÍ·, ÚÓ ‚Ò ˝ÚË ÏÂÚËÍË ÒÓ‚Ô‡‰‡˛Ú. åÂÚË͇ ÄÁÛ͇‚˚ fl‚ÎflÂÚÒfl ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÙÓÏÓÈ Ú‡Í Ì‡Á˚‚‡ÂÏÓ„Ó ÔÓÎÛ‡ÒÒÚÓflÌËfl ÄÁÛ͇‚˚. åÂÚË͇ ëË·ÓÌË èÛÒÚ¸ D – ӷ·ÒÚ¸ ‚ ën . èÛÒÚ¸ KD(z) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÎÓ„‡ËÙÏ˘ÂÒÍË ÔβËÒÛ·„‡ÏÓÌ˘ÂÒÍËı ÙÛÌ͈ËÈ f : D → [0,1), Ú‡ÍËı ˜ÚÓ ÒÛ˘ÂÒÚ‚Û˛Ú M, r > 0 c f (u) ≤ M || u − z ||2 ‰Îfl ‚ÒÂı u ∈ B( z, r ) ⊂ D; Á‰ÂÒ¸ || ⋅ || 2 – l2 -ÌÓχ ̇ n, a B( z, r ) =
{
}
2 ( z ) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÙÛÌ͈ËÈ Í·ÒÒ‡ C 2 ‚ = x ∈ n : || z − x ||2 < r . èÛÒÚ¸ Cloc
ÌÂÍÓÚÓÓÈ ÓÚÍ˚ÚÓÈ ÓÍÂÒÚÌÓÒÚË ÚÓ˜ÍË z. åÂÚË͇ ëË·ÓÌË (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â, ÔÓÎÛÏÂÚË͇) FS ÂÒÚ¸ ÍÓÏÔÎÂÍÒ̇fl ÙËÌÒÎÂÓ‚‡ ÏÂÚË͇, Á‡‰‡‚‡Âχfl Û‡‚ÌÂÌËÂÏ FS ( z, u) =
sup 2 (z ) f ∈K D (z ) ∩ Cloc
∑ i, j
∂2 f ( z )ui u j ∂z i ∂z j
‰Îfl ‚ÒÂı z ∈ D Ë u ∈ n . é̇ "ÎÂÊËÚ ÏÂʉÛ" ÏÂÚËÍÓÈ ä‡‡ÚÂÓ‰ÓË FC Ë ÏÂÚËÍÓÈ äÓ·‡È‡¯Ë FK : FC ( z, u) ≤ FS ( z, u) ≤ FA ( z, u) ≤ FK ( z, u) ‰Îfl ‚ÒÂı z ∈ D Ë u ∈ n , „‰Â FA ÂÒÚ¸ ÏÂÚË͇ ÄÁÛ͇‚˚. ÖÒÎË Ó·Î‡ÒÚ¸ D ‚˚ÔÛÍ·, ÚÓ ‚Ò ˝ÚË ÏÂÚËÍË ÒÓ‚Ô‡‰‡˛Ú. åÂÚË͇ ëË·ÓÌË fl‚ÎflÂÚÒfl ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÙÓÏÓÈ Ú‡Í Ì‡Á˚‚‡ÂÏÓ„Ó ÔÓÎÛ‡ÒÒÚÓflÌËfl ëË·ÓÌË. åÂÚË͇ ÇÛ åÂÚËÍÓÈ ÇÛ WM n ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÌÂÔÂ˚‚̇fl Ò‚ÂıÛ ˝ÏËÚÓ‚‡ ÏÂÚË͇ ̇ ÍÓÏÔÎÂÍÒÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË Mn , ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ÛÏÂ̸¯‡˛˘ÂÈ ‡ÒÒÚÓflÌËfl ‰Îfl ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÓÚÓ·‡ÊÂÌËÈ. àÏÂÌÌÓ, ‰Îfl ‰‚Ûı n-ÏÂÌ˚ı ÍÓÏÔÎÂÍÒÌ˚ı ÏÌÓ„Ó-
142
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
Ó·‡ÁËÈ M1n Ë M2n Ë WM n ( f ( p), f (q ) ≤ nWM n ( p, q ) ̇‚ÂÌÒÚ‚Ó ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl 2
1
‚ÒÂı p, q ∈ M1n . àÌ‚‡Ë‡ÌÚÌ˚ ÏÂÚËÍË, ‚Íβ˜‡fl ÏÂÚËÍË ä‡‡ÚÂÓ‰ÓË, äÓ·‡È‡¯Ë, Å„χ̇ Ë äÂı·–ùÈ̯ÚÂÈ̇, Ë„‡˛Ú ‚‡ÊÌÛ˛ Óθ ‚ ÚÂÓËË ÍÓÏÔÎÂÍÒÌ˚ı ÙÛÌ͈ËÈ Ë ‚˚ÔÛÍÎÓÈ „ÂÓÏÂÚËË. åÂÚËÍË ä‡‡ÚÂÓ‰ÓË Ë äÓ·‡È‡¯Ë ÔËÏÂÌfl˛ÚÒfl ‚ ÓÒÌÓ‚ÌÓÏ ËÁ-Á‡ Ò‚ÓÈÒÚ‚‡ ÛÏÂ̸¯ÂÌËfl ‡ÒÒÚÓflÌËfl, ÌÓ ÓÌË ÔÓ˜ÚË ÌËÍÓ„‰‡ Ì fl‚Îfl˛ÚÒfl ˝ÏËÚÓ‚˚ÏË ÏÂÚË͇ÏË. ë ‰Û„ÓÈ ÒÚÓÓÌ˚, ÏÂÚË͇ Å„χ̇ Ë ÏÂÚË͇ äÂı·– ùÈ̯ÚÂÈ̇ fl‚Îfl˛ÚÒfl ˝ÏËÚÓ‚˚ÏË (·ÓΠÚÓ„Ó, ÏÂÚË͇ÏË äÂı·), Ӊ̇ÍÓ Ó·˚˜ÌÓ ÓÌË Ì fl‚Îfl˛ÚÒfl ÏÂÚË͇ÏË, ÛÏÂ̸¯‡˛˘ËÏË ‡ÒÒÚÓflÌËfl. åÂÚË͇ íÂÈıÏ˛Î· êËχÌÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛ R ̇Á˚‚‡ÂÚÒfl Ó‰ÌÓÏÂÌÓ ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ. Ñ‚Â ËχÌÓ‚˚ ÔÓ‚ÂıÌÓÒÚË R1 Ë R2 ̇Á˚‚‡˛ÚÒfl ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ·ËÂÍÚ˂̇fl ‡Ì‡ÎËÚ˘ÂÒ͇fl ÙÛÌ͈Ëfl (Ú.Â. ÍÓÌÙÓÏÌ˚È „ÓÏÂÓÏÓÙËÁÏ) ËÁ R 1 ‚ R2 . íÓ˜ÌÂÂ, ‡ÒÒÏÓÚËÏ Á‡ÏÍÌÛÚÛ˛ ËχÌÓ‚Û ÔÓ‚ÂıÌÓÒÚ¸ R0 ‰‡ÌÌÓ„Ó Ó‰‡ g ≥ 2. ÑÎfl Á‡ÏÍÌÛÚÓÈ ËχÌÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚË R Ó‰‡ ÔÓÒÚÓËÏ Ô‡Û (R, f), „‰Â f: R0 → R – „ÓÏÂÓÏÓÙËÁÏ. Ñ‚Â Ô‡˚ (R, f) Ë (R1 , f 1 ) ̇Á˚‚‡˛ÚÒfl ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÍÓÌÙÓÏÌ˚È „ÓÏÂÓÏÓÙËÁÏ h: R → R1 , Ú‡ÍÓÈ ˜ÚÓ ÓÚÓ·‡ÊÂÌË ( f1 ) −1 ⋅ h ⋅ f : R0 → R0 „ÓÏÓÚÓÔÌÓ ÚÓʉÂÒÚ‚ÂÌÌÓÏÛ ÓÚÓ·‡ÊÂÌ˲. Ä·ÒÚ‡ÍÚ̇fl ËχÌÓ‚‡ ÔÓ‚ÂıÌÓÒÚ¸ R* = ( R, f )* – ˝ÚÓ Í·ÒÒ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ‚ÒÂı ËχÌÓ‚˚ı ÔÓ‚ÂıÌÓÒÚÂÈ, ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌ˚ı R. åÌÓÊÂÒÚ‚Ó ‚ÒÂı Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ íÂÈıÏ˛Î· T(R0 ) ÔÓ‚ÂıÌÓÒÚË R0 . ÑÎfl Á‡ÏÍÌÛÚ˚ı ÔÓ‚ÂıÌÓÒÚÂÈ R0 ‰‡ÌÌÓ„Ó Ó‰‡ g ÔÓÒÚ‡ÌÒÚ‚‡ T(R0 ) fl‚Îfl˛ÚÒfl ËÁÓÏÂÚ˘ÂÒÍË ËÁÓÏÓÙÌ˚ÏË, ˜ÚÓ ÔÓÁ‚ÓÎflÂÚ „Ó‚ÓËÚ¸ Ó ÔÓÒÚ‡ÌÒÚ‚Â íÂÈıÏ˛Î· Tg ÔÓÒÚ‡ÌÒÚ‚ Ó‰‡ g. T g ÂÒÚ¸ ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ. ÖÒÎË R 0 ÔÓÎÛ˜ÂÌÓ ËÁ ÍÓÏÔ‡ÍÚÌÓÈ ÔÓ‚ÂıÌÓÒÚË Ó‰‡ g ≥ 2 ÔÓÒ‰ÒÚ‚ÓÏ Û‰‡ÎÂÌËfl n ÚÓ˜ÂÍ, ÚÓ ÍÓÏÔÎÂÍÒ̇fl ‡ÁÏÂÌÓÒÚ¸ T g ‡‚̇ 3g – 3 + n. åÂÚË͇ íÂÈıÏ˛Î· – ˝ÚÓ ÏÂÚË͇ ̇ Tg , ÓÔ‰ÂÎÂÌ̇fl Í‡Í 1 inf ln K (h) 2 h ‰Îfl β·˚ı R1* , R2* ∈ Tg , „‰Â h : R1 → R2 ÂÒÚ¸ Í‚‡ÁËÍÓÌÙÓÏÌ˚È „ÓÏÂÓÏÓÙËÁÏ, „ÓÏÓÚÓÔ˘ÂÒÍËÈ ÚÓʉÂÒÚ‚ÂÌÌÓÏÛ ÓÚÓ·‡ÊÂÌ˲, ‡ K(h) – χÍÒËχθÌ ‡ÒÚflÊÂÌË ‰Îfl h. àÏÂÌÌÓ, ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌÌÓ ˝ÍÒÚÂχθÌÓ ÓÚÓ·‡ÊÂÌËÂ, ̇Á˚‚‡ÂÏÓ ÓÚÓ·‡ÊÂÌËÂÏ íÂÈıÏ˛Î·, ÍÓÚÓÓ ÏËÌËÏËÁËÛÂÚ Ï‡ÍÒËχθÌÓ ‡ÒÚflÊÂÌË 1 ‰Îfl ‚ÒÂı Ú‡ÍËı h, Ë ‡ÒÒÚÓflÌË ÏÂÊ‰Û R1* Ë R2* ‡‚ÌÓ ln K , „‰Â ÍÓÌÒÚ‡ÌÚ‡ ä fl‚Îfl2 ÂÚÒfl ‡ÒÚflÊÂÌËÂÏ ÓÚÓ·‡ÊÂÌËfl íÂÈıÏ˛Î·. Ç ÚÂÏË̇ı ˝ÍÒÚÂχθÌÓÈ ‰ÎËÌ˚ ext R* ( γ ) ‡ÒÒÚÓflÌË ÏÂÊ‰Û R1* Ë R2* ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í ext R* ( γ ) 1 1 ln sup , 2 γ ext R * ( γ ) 2
„‰Â ÒÛÔÂÏÛÏ „‡Ì¸ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÔÓÒÚ˚Ï Á‡ÏÍÌÛÚ˚Ï ÍË‚˚Ï Ì‡ R0 .
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
143
èÓÒÚ‡ÌÒÚ‚Ó íÂÈıÏ˛Î· Tg Ò ÏÂÚËÍÓÈ íÂÈıÏ˛Î· ̇ ÌÂÏ fl‚ÎflÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (·ÓΠÚÓ„Ó, ÔflÏ˚Ï G-ÔÓÒÚ‡ÌÒÚ‚ÓÏ), Ӊ̇ÍÓ ÓÌÓ Ì fl‚ÎflÂÚÒfl ÌË „ËÔ·Ó΢ÂÒÍËÏ ÔÓ ÉÓÏÓ‚Û, ÌË „ÎÓ·‡Î¸ÌÓ ÌÂÓÚˈ‡ÚÂθÌÓ ËÒÍË‚ÎÂÌÌ˚Ï ÔÓ ÅÛÁÂχÌÛ. 䂇ÁËÏÂÚË͇ íÂÒÚÓ̇ ̇ ÔÓÒÚ‡ÌÒÚ‚Â íÂÈıÏ˛Î· Tg Á‡‰‡ÂÚÒfl Í‡Í 1 inf ln || h ||Lip 2 h ‰Îfl β·˚ı R1* , R2* ∈ Tg , „‰Â h : R1 → R2 – Í‚‡ÁËÍÓÌÙÓÏÌ˚È „ÓÏÂÓÏÓÙËÁÏ, „ÓÏÓÚÓÔ˘ÂÒÍËÈ ÚÓʉÂÒÚ‚ÂÌÌÓÏÛ ÓÚÓ·‡ÊÂÌ˲, ‡ || ⋅ ||Lip – ÎËԯˈ‚‡ ÌÓχ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÌ˙ÂÍÚË‚Ì˚ı ÙÛÌ͈ËÈ f : X → Y , Á‡‰‡‚‡Âχfl Í‡Í || f ||Lip = dY ( f ( x ), f ( y)) = sup . d X ( x, y) x , y ∈X , x ≠ y èÓÒÚ‡ÌÒÚ‚Ó ÏÓ‰ÛÎÂÈ Rg ÍÓÌÙÓÏÌ˚ı Í·ÒÒÓ‚ ËχÌÓ‚˚ı ÔÓ‚ÂıÌÓÒÚÂÈ Ó‰‡ g ÔÓÎÛ˜‡ÂÚÒfl ÔÛÚÂÏ Ù‡ÍÚÓËÁ‡ˆËË T g ÌÂÍÓÚÓÓÈ Ò˜ÂÚÌÓÈ „ÛÔÔÓÈ Â„Ó ‡‚ÚÓÏÓÙËÁÏÓ‚, ̇Á˚‚‡ÂÏÓÈ ÏÓ‰ÛÎflÌÓÈ „ÛÔÔÓÈ. èËχÏË ÏÂÚËÍ, Ò‚flÁ‡ÌÌ˚ı Ò ÏÓ‰ÛÎflÏË Ë ÔÓÒÚ‡ÌÒÚ‚‡ÏË íÂÈıÏ˛Î·, ÔÓÏËÏÓ ÏÂÚËÍË íÂÈıÏ˛Î·, fl‚Îfl˛ÚÒfl ÏÂÚË͇ ÇÂÈÎfl-èÂÚÂÒÓ̇, ÏÂÚË͇ ä‚ËÎÂ̇, ÏÂÚË͇ 䇇ÚÂÓ‰ÓË, ÏÂÚË͇ äÓ·‡È‡¯Ë, ÏÂÚË͇ Å„χ̇, ÏÂÚË͇ óÂÌ üÌ åÓ͇, ÏÂÚË͇ å‡ÍÏÛÎÎÂ̇, ‡ÒËÏÔÚÓÚ˘ÂÒ͇fl ÏÂÚË͇ èÛ‡Ì͇Â, ÏÂÚË͇ ê˘˜Ë, ‚ÓÁÏÛ˘ÂÌ̇fl ÏÂÚË͇ ê˘˜Ë, VHS-ÏÂÚË͇. åÂÚË͇ ÇÂÈÎfl–èÂÚÂÒÓ̇ åÂÚËÍÓÈ ÇÂÈÎfl–èÂÚÂÒÓ̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ äÂı· ̇ ÔÓÒÚ‡ÌÒÚ‚Â íÂÈıÏ˛Î· Tg,n ‡·ÒÚ‡ÍÚÌ˚ı ËχÌÓ‚˚ı ÔÓ‚ÂıÌÓÒÚÂÈ Ó‰‡ g Ò n ‡Á˚‚‡ÏË Ë ÓÚˈ‡ÚÂθÌÓÈ ˝ÈÎÂÓ‚ÓÈ ı‡‡ÍÚÂËÒÚËÍÓÈ. åÂÚË͇ LJÈÎfl–èÂÚÂÒÓ̇ fl‚ÎflÂÚÒfl „ËÔ·Ó΢ÂÒÍÓÈ ÔÓ ÉÓÏÓ‚Û ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ (ÅÓÍ Ë î‡·, 2006) ÍÓÏÔÎÂÍÒ̇fl ‡ÁÏÂÌÓÒÚ¸ 3g – 3 + n ÔÓÒÚ‡ÌÒÚ‚‡ Tg,n Ì ·Óθ¯Â, ˜ÂÏ 2. åÂÚË͇ ÉË··ÓÌÒ‡–å‡ÌÚÓ̇ åÂÚË͇ ÉË··ÓÌÒ‡–å‡ÌÚÓ̇ fl‚ÎflÂÚÒfl 4n-ÏÂÌÓÈ „ËÔÂÍÂıÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â ÏÓ‰ÛÎÂÈ n-ÏÓÌÓÔÓÎÂÈ ÔË ‰ÓÔÛ˘ÂÌËË ËÁÓÏÂÚ˘ÂÒÍÓ„Ó ‰ÂÈÒÚ‚Ëfl n-ÏÂÌÓ„Ó ÚÓ‡ í n . é̇ ÏÓÊÂÚ ·˚Ú¸ Ú‡ÍÊ ÓÔË҇̇ Ò ÔÓÏÓ˘¸˛ „ËÔÂÍÂıÎÂÓ‚ÓÈ Ù‡ÍÚÓËÁ‡ˆËË ÔÎÓÒÍÓ„Ó Í‚‡ÚÂÌËÓÌÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. åÂÚË͇ á‡ÏÓÎÓ‰˜ËÍÓ‚‡ åÂÚËÍÓÈ á‡ÏÓÎÓ‰˜ËÍÓ‚‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÔÓÒÚ‡ÌÒÚ‚Â ÏÓ‰ÛÎÂÈ ‰‚ÛÏÂÌ˚ı ÍÓÌÙÓÏÌ˚ı ÚÂÓËÈ ÔÓÎfl. åÂÚËÍË Ì‡ ‰ÂÚÂÏË̇ÌÚÌ˚ı ÔflÏ˚ı èÛÒÚ¸ M n – n-ÏÂÌÓ ÍÓÏÔ‡ÍÚÌÓ „·‰ÍËÏ ÏÌÓ„ÓÓ·‡ÁËÂ, ‡ F – ÔÎÓÒÍÓ ‚ÂÍÚÓÌÓ ‡ÒÒÎÓÂÌË ̇ Mn . èÛÒÚ¸ H • ( M n , F ) = ⊗ in= 0 H i ( M n , F ) – ÍÓ„ÓÏÓÎÓ„Ëfl ‰Â ê‡Ï‡ ÏÌÓ„ÓÓ·‡ÁËfl Mn Ò ÍÓ˝ÙÙˈËÂÌÚ‡ÏË ËÁ F. ÑÎfl n-ÏÂÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ V Â„Ó ‰ÂÚÂÏË̇ÌÚ̇fl Ôflχfl det V ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‚ÂıÌflfl ‚̯Ìflfl ÒÚÂÔÂ̸ V, Ú.Â. det V = ∧ n V . ÑÎfl ÍÓ̘ÌÓÏÂÌÓ„Ó „‡‰ÛËÓ‚‡ÌÌÓ„Ó ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ V = ⊗ in= 0 Vi ‰ÂÚÂÏË̇ÌÚ̇fl Ôflχfl ÔÓÒÚ‡ÌÒÚ‚‡ V Á‡‰‡ÂÚÒfl Í‡Í ÚÂÌÁÓÌÓ i
ÔÓËÁ‚‰ÂÌË det V = ⊗ in= 0 (det Vi )( −1) . ëΉӂ‡ÚÂθÌÓ, ‰ÂÚÂÏË̇ÌÚÌÛ˛ ÔflÏÛ˛
144
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
det H • ( M n , F ) ÍÓ„ÓÏÓÎÓ„ËË H • ( M n , F ) ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í det H • ( M n , F ) = i
= ⊗ in= 0 (det H i ( M n , F ))( −1) . åÂÚËÍÓÈ êÂȉÂÏÂÈÒÚÂa ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ H • ( M n , F ), ÓÔ‰ÂÎflÂχfl Á‡‰‡ÌÌÓÈ „·‰ÍÓÈ Úˇ̄ÛÎflˆËÂÈ ÏÌÓ„ÓÓ·‡ÁËfl Mn Ë Í·ÒÒ˘ÂÒÍËÏ ÍÛ˜ÂÌËÂÏ êÂȉÂÏÂÈÒÚ‡–î‡Ìˆ‡. n
èÛÒÚ¸ g F Ë g T ( M ) – ·Û‰ÛÚ „·‰ÍË ÏÂÚËÍË Ì‡ ‚ÂÍÚÓÌÓÏ ‡ÒÒÎÓÂÌËË F Ë Í‡Ò‡ÚÂθÌÓÏ ‡ÒÒÎÓÂÌËË T(Mn ) ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ùÚË ÏÂÚËÍË ÔÓÓʉ‡˛Ú ͇ÌÓÌ˘Â*
n
ÒÍÛ˛ L2-ÏÂÚËÍÛ h H ( M , F ) ̇ H • ( M n , F ). åÂÚË͇ ê˝fl–ëË̄· ̇ det H • ( M n , F ) ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂ̇ Í‡Í ÔÓËÁ‚‰ÂÌË ÏÂÚËÍË, ÔÓÓʉÂÌÌÓÈ Ì‡ det H • ( M n , F ) •
n
ÏÂÚËÍÓÈ h H ( M , F ) , Ë ‡Ì‡ÎËÚ˘ÂÒÍÓ„Ó ÍÛ˜ÂÌËfl ê˝fl–ëË̄·. åÂÚËÍÛ åËÎÌÓ‡ ̇ det H • ( M n , F ) ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ ‡Ì‡Îӄ˘Ì˚Ï ÒÔÓÒÓ·ÓÏ, ËÒÔÓθÁÛfl ‡Ì‡ÎËÚ˘ÂÒÍÓ ÍÛ˜ÂÌË åËÎÌÓ‡. ÖÒÎË g F ÔÎÓÒ͇fl, ÚÓ Ó·Â Ô˂‰ÂÌÌ˚ ‚˚¯Â ÏÂÚËÍË ÒÓ‚Ô‡‰‡˛Ú Ò ÏÂÚËÍÓÈ êÂȉÂÏÂÈÒÚ‡. èËÏÂÌË‚ ÍÓ˝ÈÎÂÓ‚Û ÒÚÛÍÚÛÛ, ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ ÏÓ‰ËÙˈËÓ‚‡ÌÌÛ˛ ÏÂÚËÍÛ ê˝fl–ëË̄· ̇ det H • ( M n , F ). åÂÚËÍÓÈ èÛ‡Ì͇–êÂȉÂÏÂÈÒÚÂa ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÍÓ„ÓÏÓÎӄ˘ÂÒÍÓÈ ‰ÂÚÂÏË̇ÌÚÌÓÈ ÔflÏÓÈ det H • ( M n , F ) Á‡ÏÍÌÛÚÓ„Ó Ò‚flÁÌÓ„Ó ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó Ì˜ÂÚÌÓÏÂÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl Mn . Ö ÏÓÊÌÓ ÔÓÒÚÓËÚ¸, ÍÓÏ·ËÌËÛfl ‰ÂÙÓχˆË˛ êÂȉÂÏÂÈÒÚ‡ Ò ‰‚ÓÈÒÚ‚ÂÌÌÓÒÚ¸˛ èÛ‡Ì͇Â. íÓ˜ÌÓ Ú‡Í Ê ÏÓÊÌÓ Á‡‰‡Ú¸ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË èÛ‡Ì͇–êÂȉÂÏÂÈÒÚ‡ ̇ det H • ( M n , F ), , ÍÓÚÓÓ ÔÓÎÌÓÒÚ¸˛ ÓÔ‰ÂÎflÂÚ ÏÂÚËÍÛ èÛ‡Ì͇–êÂȉÂÏÂÈÒÚÂa, ÌÓ ÒÓ‰ÂÊËÚ ‰ÓÔÓÎÌËÚÂθÌ˚È ÁÌ‡Í ËÎË Ù‡ÁÓ‚Û˛ ËÌÙÓχˆË˛. åÂÚËÍÓÈ ä‚ËÎÂ̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÔÓÓ·‡Á ÍÓ„ÓÏÓÎӄ˘ÂÒÍÓÈ ‰ÂÚÂÏË̇ÌÚÌÓÈ ÔflÏÓÈ ÍÓÏÔ‡ÍÚÌÓ„Ó ˝ÏËÚÓ‚‡ Ó‰ÌÓÏÂÌÓ„Ó ÍÓÏÔÎÂÍÒÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl. Ö ÏÓÊÌÓ Á‡‰‡Ú¸ Í‡Í ÔÓËÁ‚‰ÂÌË L2-ÏÂÚËÍË Ë ‡Ì‡ÎËÚ˘ÂÒÍÓ„Ó ÍÛ˜ÂÌËfl ê˝fl–ëË̄·. ëÛÔÂÏÂÚË͇ äÂı· ëÛÔÂÏÂÚË͇ äÂı· – Ó·Ó·˘ÂÌË ÏÂÚËÍË äÂı· ̇ ÒÛÔÂÏÌÓ„ÓÓ·‡ÁËÂ. ëÛÔÂÏÌÓ„ÓÓ·‡ÁË ÂÒÚ¸ Ó·Ó·˘ÂÌË ӷ˚˜ÌÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl Ò ËÒÔÓθÁÓ‚‡ÒÌËÂÏ ÙÂÏËÓÌÌ˚ı, ‡ Ú‡ÍÊ ·ÓÁÓÌÌ˚ı ÍÓÓ‰Ë̇Ú. ÅÓÁÓÌÌ˚ ÍÓÓ‰Ë̇Ú˚ – Ó·˚˜Ì˚ ˜ËÒ·, ‚ ÚÓ ‚ÂÏfl Í‡Í ÙÂÏËÓÌÌ˚ ÍÓÓ‰Ë̇Ú˚ fl‚Îfl˛ÚÒfl „‡ÒÒχÌÓ‚˚ÏË ˜ËÒ·ÏË. åÂÚË͇ ïÓÙ‡ ëËÏÔÎÂÍÚ˘ÂÒÍËÏ ÏÌÓ„ÓÓ·‡ÁËÂÏ (Mn , w ), n = 2k ̇Á˚‚‡ÂÚÒfl „·‰ÍÓ ˜ÂÚÌÓÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË M n , Ò̇·ÊÂÌÌÓ ÒËÏÔÎÂÍÚ˘ÂÒÍÓÈ ÙÓÏÓÈ, Ú.Â. Á‡ÏÍÌÛÚÓÈ Ì‚˚ÓʉÂÌÌÓÈ 2-ÙÓÏÓÈ w. ㇄‡ÌÊ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ Ì‡Á˚‚‡ÂÚÒfl k-ÏÂÌÓ „·‰ÍÓ ÔÓ‰ÏÌÓ„ÓÓ·‡ÁË Lk ÒËÏÔÎÂÍÚ˘ÂÒÍÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl (Mn , w), n = 2k, Ú‡ÍÓ ˜ÚÓ ÙÓχ w ÚÓʉÂÒÚ‚ÂÌÌÓ ‡‚̇ ÌÛβ ̇ Lk, Ú.Â. ‰Îfl β·Ó„Ó p ∈ Lk Ë Î˛·˚ı x, y ∈ T p (L k) ËÏÂÂÏ w(x, y) = 0. èÛÒÚ¸ L(Mn , ∆) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ·„‡ÌÊ‚˚ı ÔÓ‰ÏÌÓ„ÓÓ·‡ÁËÈ Á‡ÏÍÌÛÚÓ„Ó ÒËÏÔÎÂÍÚ˘ÂÒÍÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl (M n , w ), ‰ËÙÙÂÓÏÓÙÌÓ„Ó ‰‡ÌÌÓÏÛ Î‡„‡ÌÊÂ‚Û ÔÓ‰ÏÌÓ„ÓÓ·‡Á˲ ∆. É·‰ÍÓ ÒÂÏÂÈÒÚ‚Ó α = {Lt}t, t ∈ [0,1] ·„‡ÌÊ‚˚ı ÔÓ‰ÏÌÓ„Ó·‡ÁËÈ Lt ∈ L( M n , ∆ ) ̇Á˚‚‡ÂÚÒfl ÚÓ˜Ì˚Ï ÔÛÚÂÏ, ÒÓ‰ËÌfl˛˘ËÏ L 0 Ë L 1 , ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ „·‰ÍÓ ÓÚÓ·‡ÊÂÌËÂ Ψ : ∆ × [0, 1] → M n , Ú‡ÍÓ ˜ÚÓ ‰Îfl ͇ʉӄÓ
145
É·‚‡ 7. êËχÌÓ‚˚ Ë ùÏËÚÓ‚˚ ÏÂÚËÍË
t ∈ [0,1] ËÏÂ˛Ú ÏÂÒÚÓ ÒÓÓÚÌÓ¯ÂÌËfl Ψ( ∆ × {t}) = Lt Ë Ψ ∗ w = dHt ∧ dt ‰Îfl ÌÂÍÓÚÓÓÈ „·‰ÍÓÈ ÙÛÌ͈ËË H : ∆ × [0, 1] → . ÑÎË̇ ïÓÙ‡ l(α) ÚÓ˜ÌÓ„Ó ÔÛÚË α Á‡‰‡ÂÚÒfl Í‡Í 1
l(α ) = max H ( p, t ) − min H ( p, t )dt. p ∈∆ p ∈∆ 0
∫
åÂÚË͇ ïÓÙ‡ ̇ ÏÌÓÊÂÒÚ‚Â L( M n , ∆ ) ÓÔ‰ÂÎflÂÚÒfl Í‡Í inf l(α ) α
‰Îfl β·˚ı L0 , L1 ∈ L( M n , ∆ ), „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÚÓ˜Ì˚Ï ÔÛÚflÏ Ì‡ L( M n , ∆ ), ÒÓ‰ËÌfl˛˘ËÏ L0 Ë L1 . åÂÚËÍÛ ïÓÙ‡ ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ ‡Ì‡Îӄ˘Ì˚Ï ÒÔÓÒÓ·ÓÏ Ì‡ „ÛÔÔ Ham(Mn , w ) „‡ÏËθÚÓÌÓ‚˚ı ‰ËÙÙÂÓÏÓÙËÁÏÓ‚ Á‡ÏÍÌÛÚÓ„Ó ÒËÏÔÎÂÍÚ˘ÂÒÍÓ„Ó ÏÌÓ„ÓÓ·‡ÁËfl (Mn , w), ˝ÎÂÏÂÌÚ˚ ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl ‡ÁÓ‚˚ÏË ÓÚÓ·‡ÊÂÌËflÏË „‡ÏËθÚÓÌÓ‚˚ı ÔÓÚÓÍÓ‚ φ tH : ˝ÚÓ inf l(α ), „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ „·‰ÍËÏ α
ÔÛÚflÏ α = {φ tH }, t ∈[0, 1], ÒÓ‰ËÌfl˛˘ËÏ φ Ë ψ. åÂÚË͇ ë‡Ò‡Í¸fl̇ åÂÚË͇ ë‡Ò‡Í¸fl̇ – ÏÂÚË͇ ÔÓÎÓÊËÚÂθÌÓÈ Ò͇ÎflÌÓÈ ÍË‚ËÁÌ˚ ̇ ÍÓÌÚ‡ÍÚÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË, ÂÒÚÂÒÚ‚ÂÌÌÓ ‡‰‡ÔÚËÓ‚‡ÌÌÓÏ Í ÍÓÌÚ‡ÍÚÌÓÈ ÒÚÛÍÚÛÂ. äÓÌÚ‡ÍÚÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ åÂÚËÍÓÈ ë‡Ò‡Í¸fl̇, ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ë‡Ò‡Í¸fl̇ Ë fl‚ÎflÂÚÒfl ̘ÂÚÌÓÏÂÌ˚Ï ‡Ì‡ÎÓ„ÓÏ ÏÌÓ„ÓÓ·‡ÁËÈ äÂı·. åÂÚË͇ ä‡Ú‡Ì‡ îÓχ äËÎÎËÌ„‡ (ËÎË ÙÓχ äËÎÎËÌ„‡–ä‡Ú‡Ì‡) ̇ ÍÓ̘ÌÓÏÂÌÓÈ ‡Î„· ãË Ω Ì‡‰ ÔÓÎÂÏ ÂÒÚ¸ ÒËÏÏÂÚ˘̇fl ·ËÎËÌÂÈ̇fl ÙÓχ B( x, y) = Tr( ad x ⋅ d y ), „‰Â Tr Ó·ÓÁ̇˜‡ÂÚ ÒΉ ÎËÌÂÈÌÓ„Ó ÓÔ‡ÚÓ‡ Ë ad x fl‚ÎflÂÚÒfl Ó·‡ÁÓÏ ı ÔÓ‰ ‰ÂÈÒÚ‚ËÂÏ ÒÓÔflÊÂÌÌÓ„Ó Ô‰ÒÚ‡‚ÎÂÌËfl Ω, Ú.Â. ÎËÌÂÈÌÓ„Ó ÓÔ‡ÚÓ‡ ̇ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â Ω, Á‡‰‡ÌÌÓ„Ó Ô‡‚ËÎÓÏ z → [ x, z ], „‰Â [,] – ÒÍÓ·ÍË ãË. n
èÛÒÚ¸ e1, ..., en – ·‡ÁËÒ ‡Î„·˚ ãË Ω Ë [ei , e j ] =
∑ γ ijk ek , „‰Â γ ijk – ÒÓÓÚ‚ÂÚÒÚ‚Û˛k =1
˘Ë ÒÚÛÍÚÛÌ˚ ÔÓÒÚÓflÌÌ˚Â. íÓ„‰‡ ÙÓχ äËÎÎËÌ„‡ Á‡‰‡ÂÚÒfl ÔÓ ÙÓÏÛΠn
B( xi , x j ) = gij =
∑ γ ilk γ lik .
k , l =1
åÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ ((g i j)) ̇Á˚‚‡ÂÚÒfl, ÓÒÓ·ÂÌÌÓ ‚ ÚÂÓÂÚ˘ÂÒÍÓÈ ÙËÁËÍÂ, ÏÂÚËÍÓÈ ä‡Ú‡Ì‡.
É·‚‡ 8
ê‡ÒÒÚÓflÌËfl ̇ ÔÓ‚ÂıÌÓÒÚflı Ë ÛÁ·ı
8.1. éÅôàÖ åÖíêàäà çÄ èéÇÖêïçéëíüï èÓ‚ÂıÌÓÒÚ¸ – ‰ÂÈÒÚ‚ËÚÂθÌÓ ‰‚ÛÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË M 2 , Ú.Â. ı‡ÛÒ‰ÓÙÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, ͇ʉ‡fl ÚӘ͇ ÍÓÚÓÓ„Ó Ó·Î‡‰‡ÂÚ ÓÍÂÒÚÌÓÒÚ¸˛, „ÓÏÂÓÏÓÙÌÓÈ ËÎË ÔÎÓÒÍÓÒÚË 2 , ËÎË Á‡ÏÍÌÛÚÓÈ ÔÓÎÛÔÎÓÒÍÓÒÚË (ÒÏ. „Î. 7). äÓÏÔ‡ÍÚ̇fl ÓËÂÌÚËÛÂχfl ÔÓ‚ÂıÌÓÒÚ¸ ̇Á˚‚‡ÂÚÒfl Á‡ÏÍÌÛÚÓÈ, ÂÒÎË Ó̇ Ì ËÏÂÂÚ „‡Ìˈ˚, Ë ÔÓ‚ÂıÌÓÒÚ¸˛ Ò Í‡ÂÏ – Ë̇˜Â. ëÛ˘ÂÒÚ‚Û˛Ú Ë ÍÓÏÔ‡ÍÚÌ˚ ÌÂÓËÂÌÚËÛÂÏ˚ ÔÓ‚ÂıÌÓÒÚË (Á‡ÏÍÌÛÚ˚ ËÎË Ò Í‡ÂÏ); ÔÓÒÚÂȯÂÈ Ú‡ÍÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛ fl‚ÎflÂÚÒfl ÎËÒÚ åfi·ËÛÒ‡. çÂÍÓÏÔ‡ÍÚÌ˚ ÔÓ‚ÂıÌÓÒÚË ·ÂÁ „‡Ìˈ˚ ̇Á˚‚‡˛ÚÒfl ÓÚÍ˚Ú˚ÏË. ã˛·‡fl Á‡ÏÍÌÛÚ‡fl Ò‚flÁ̇fl ÔÓ‚ÂıÌÓÒÚ¸ „ÓÏÂÓÏÓÙ̇ ÎË·Ó ÒÙÂÂ Ò g (ˆËÎË̉˘ÂÒÍËÏË) ͇ۘÏË ËÎË ÒÙÂÂ Ò g ÎÂÌÚ‡ÏË åfi·ËÛÒ‡ (Ú.Â. ÎÂÌÚ‡ÏË, ÒÍÛ˜ÂÌÌ˚ÏË ÔÓ‰Ó·ÌÓ ÎËÒÚÛ åfi·ËÛÒ‡). Ç Ó·ÓËı ÒÎÛ˜‡flı ˜ËÒÎÓ g ̇Á˚‚‡ÂÚÒfl Ó‰ÓÏ ÔÓ‚ÂıÌÓÒÚË. èË Ì‡Î˘ËË Û˜ÂÍ ÔÓ‚ÂıÌÓÒÚ¸ ÓËÂÌÚËÛÂχ Ë Ì‡Á˚‚ÂÚÒfl ÚÓÓÏ, ‰‚ÓÈÌ˚Ï ÚÓÓÏ Ë ÚÓÈÌ˚Ï ÚÓÓÏ ‰Îfl g = 1, 2 Ë 3 ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ÑÎfl ÒÎÛ˜‡fl ÎÂÌÚ åfi·ËÛÒ‡ ÔÓ‚ÂıÌÓÒÚ¸ ÌÂÓËÂÌÚËÛÂχ Ë Ì‡Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔÓÂÍÚË‚ÌÓÈ ÔÎÓÒÍÓÒÚ¸˛, ·ÛÚ˚ÎÍÓÈ äÎÂÈ̇ Ë ÔÓ‚ÂıÌÓÒÚ¸˛ ÑË͇ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‰Îfl g = 1, 2 Ë 3. êÓ‰ ÔÓ‚ÂıÌÓÒÚË – ˝ÚÓ Ï‡ÍÒËχθÌÓ ˜ËÒÎÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÔÓÒÚ˚ı Á‡ÏÍÌÛÚ˚ı ÍË‚˚ı, ÍÓÚÓ˚ ÏÓ„ÛÚ ·˚Ú¸ ‚˚ÂÁ‡Ì˚ ËÁ ÔÓ‚ÂıÌÓÒÚË ·ÂÁ ÔÓÚÂË Ò‚flÁÌÓÒÚË (ÚÂÓÂχ ÊÓ‰‡ÌÓ‚ÓÈ ÍË‚ÓÈ ‰Îfl ÔÓ‚ÂıÌÓÒÚÂÈ). ÍÚÂËÒÚË͇ ùÈ·–èÛ‡Ì͇ ÔÓ‚ÂıÌÓÒÚË ‡‚ÌÓ (Ó‰Ë̇ÍÓ‚ÓÏÛ ‰Îfl ‚ÒÂı ÏÌÓ„Ó„‡ÌÌ˚ı ‡ÁÎÓÊÂÌËÈ ‰‡ÌÌÓÈ ÔÓ‚ÂıÌÓÒÚË) ˜ËÒÎÛ χ = v – e + f, „‰Â v, e Ë f – ÍÓ΢ÂÒÚ‚Ó ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‚¯ËÌ, Â·Â Ë „‡ÌÂÈ ‡ÁÎÓÊÂÌËfl. ÖÒÎË ÔÓ‚ÂıÌÓÒÚ¸ ÓËÂÌÚËÛÂχ, ÚÓ ËÏÂÂÚ ÏÂÒÚÓ ‡‚ÂÌÒÚ‚Ó χ = 2 – 2g, ÂÒÎË ÌÂÚ, ÚÓ χ = 2 – g . ä‡Ê‰‡fl ÔÓ‚ÂıÌÓÒÚ¸ Ò Í‡ÂÏ „ÓÏÂÓÏÓÙ̇ ÒÙÂÂ Ò ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ ÍÓ΢ÂÒÚ‚ÓÏ (ÌÂÔÂÂÒÂ͇˛˘ËıÒfl) ‰˚ (Ú.Â. ÚÓ„Ó, ˜ÚÓ ÓÒÚ‡ÂÚÒfl ÔÓÒΠۉ‡ÎÂÌËfl ÓÚÍ˚ÚÓ„Ó ‰ËÒ͇) Ë Û˜ÂÍ ËÎË ÎÂÌÚ åfi·ËÛÒ‡. ÖÒÎË h – ÍÓ΢ÂÒÚ‚Ó ‰˚, ÚÓ ‰Îfl ÓËÂÌÚËÛÂÏÓÈ ÔÓ‚ÂıÌÓÒÚË ‚˚ÔÓÎÌflÂÚÒfl ‡‚ÂÌÒÚ‚Ó χ = 2 – 2g – h, ‡ ‡‚ÂÌÒÚ‚Ó χ = 2 – g – h, ‰Îfl ÌÂÓËÂÌÚËÛÂÏÓÈ. óËÒÎÓÏ Ò‚flÁÌÓÒÚË ÔÓ‚ÂıÌÓÒÚË Ì‡Á˚‚‡ÂÚÒfl ̇˷Óθ¯Â ˜ËÒÎÓ Á‡ÏÍÌÛÚ˚ı Ò˜ÂÌËÈ, ÍÓÚÓ˚ ÏÓÊÌÓ ÔÓ‚ÂÒÚË ÔÓ ÔÓ‚ÂıÌÓÒÚË, Ì ‡Á‰ÂÎflfl  ̇ ‰‚Â Ë ·ÓΠ˜‡ÒÚÂÈ. ùÚÓ ˜ËÒÎÓ ‡‚ÌÓ 3 – χ ‰Îfl Á‡ÏÍÌÛÚ˚ı ÔÓ‚ÂıÌÓÒÚÂÈ Ë 2 – χ – ‰Îfl ÔÓ‚ÂıÌÓÒÚÂÈ Ò Í‡ÂÏ. èÓ‚ÂıÌÓÒÚ¸ Ò ˜ËÒÎÓÏ Ò‚flÁÌÓÒÚË 1, 2 Ë 3 ̇Á˚‚‡ÂÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Ó‰ÌÓÒ‚flÁÌÓÈ, ‰‚ÛÒ‚flÁÌÓÈ Ë ÚÂıÒ‚flÁÌÓÈ. ëÙ‡ fl‚ÎflÂÚÒfl Ó‰ÌÓÒ‚flÁÌÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛, ‡ ÚÓ – ÚÂıÒ‚flÁÌÓÈ. èÓ‚ÂıÌÓÒÚ¸ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÒÓ·ÒÚ‚ÂÌÌÓÈ ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ ËÎË Í‡Í ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÛ˛ ÙË„ÛÛ. èÓ‚ÂıÌÓÒÚ¸ ‚ 3 ̇Á˚‚‡ÂÚÒfl ÔÓÎÌÓÈ, ÂÒÎË ÓÌÓ Ó·‡ÁÛÂÚ ÔÓÎÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Ò‚ÓÂÈ ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÂ. èÓ‚ÂıÌÓÒÚ¸ ̇Á˚‚‡ÂÚÒfl ‰ËÙÙÂÂ̈ËÛÂÏÓÈ, „ÛÎflÌÓÈ ËÎË ‡Ì‡ÎËÚ˘ÂÒÍÓÈ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÂÒÎË ‚ ÓÍÂÒÚÌÓÒÚË Í‡Ê‰ÓÈ Â ÚÓ˜ÍË Ó̇ ÏÓÊÂÚ ·˚Ú¸
É·‚‡ 8. ê‡ÒÒÚÓflÌËfl ̇ ÔÓ‚ÂıÌÓÒÚflı Ë ÛÁ·ı 147
‚˚‡ÊÂ̇ Í‡Í r = r (u, v) = r ( x1 (u, v), x 2 (u, v), r3 (u, v)), „‰Â ‡‰ËÛÒ-‚ÂÍÚÓ r = (u, v) fl‚ÎflÂÚÒfl ‰ËÙÙÂÂ̈ËÛÂÏ˚Ï, „ÛÎflÌ˚Ï (Ú.Â. ‰ÓÒÚ‡ÚÓ˜ÌÓ ˜ËÒÎÓ ‡Á ‰ËÙÙÂÂ̈ËÛÂÏ˚Ï) ËÎË ‰ÂÈÒÚ‚ËÚÂθÌÓ ‡Ì‡ÎËÚ˘ÂÒÍËÏ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÔË ÚÓÏ ˜ÚÓ ‚ÂÍÚÓ-ÙÛÌ͈Ëfl Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ ru × rv ≠ 0. ã˛·‡fl „ÛÎfl̇fl ÔÓ‚ÂıÌÓÒÚ¸ ËÏÂÂÚ ‚ÌÛÚÂÌÌ˛˛ ÏÂÚËÍÛ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ (ËÎË Ô‚ÓÈ ÙÛ̉‡ÏÂÌڇθÌÓÈ ÙÓÏÓÈ) ds 2 = dr 2 = E(u, v)du 2 + 2 F(u, v)dudv + G(u, v)dv 2 , „‰Â E(u, v) = 〈 ru , ru 〉, F(u, v) = 〈 ru , rv 〉, G(u, v) = 〈 rv , rv 〉. ÑÎË̇ ÍË‚ÓÈ, ÓÔ‰ÂÎflÂÏÓÈ Ì‡ ÔÓ‚ÂıÌÓÒÚË ÔÓ ÙÓÏÛÎ‡Ï u = u(t ), v = v(t ), t ∈[0, 1] ‡‚̇ 1
∫
Eu ′ 2 + 2 Fu ′v ′ + Gv ′ 2 dt ,
0
‡ ‡ÒÒÚÓflÌË ÏÂÊ‰Û Î˛·˚ÏË ÚӘ͇ÏË p, q ∈ M2 Á‡‰‡ÂÚÒfl Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ ‚ÒÂı ÍË‚˚ı ̇ M2 , ÒÓ‰ËÌfl˛˘Ëı p Ë q. êËχÌÓ‚‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ Ô‚ÓÈ ÙÛ̉‡ÏÂÌڇθÌÓÈ ÙÓÏ˚ ÔÓ‚ÂıÌÓÒÚË. èËÏÂÌËÚÂθÌÓ Í ÔÓ‚ÂıÌÓÒÚflÏ ‡ÒÒχÚË‚‡˛ÚÒfl ‰‚‡ ‚ˉ‡ ÍË‚ËÁÌ˚: „‡ÛÒÒÓ‚‡ ÍË‚ËÁ̇ Ë Ò‰Ìflfl ÍË‚ËÁ̇. ÑÎfl Ëı ‡Ò˜ÂÚ‡ ‚ Á‡‰‡ÌÌÓÈ ÚӘ͠ÔÓ‚ÂıÌÓÒÚË ‡ÒÒÏÓÚËÏ ÔÂÂÒ˜ÂÌË ÔÓ‚ÂıÌÓÒÚË ÔÎÓÒÍÓÒÚ¸˛, ÒÓ‰Âʇ˘ÂÈ ÙËÍÒËÓ‚‡ÌÌ˚È ÌÓχθÌ˚È ‚ÂÍÚÓ, Ú.Â. ‚ÂÍÚÓ, ÔÂÔẨËÍÛÎflÌ˚È ÔÓ‚ÂıÌÓÒÚË ‚ ‰‡ÌÌÓÈ ÚÓ˜ÍÂ. чÌÌÓ ÔÂÂÒ˜ÂÌË – ÔÎÓÒ͇fl ÍË‚‡fl. äË‚ËÁ̇ k ˝ÚÓÈ ÔÎÓÒÍÓÈ ÍË‚ÓÈ Ì‡Á˚‚‡ÂÚÒfl ÌÓχθÌÓÈ ÍË‚ËÁÌÓÈ ÔÓ‚ÂıÌÓÒÚË ‚ Á‡‰‡ÌÌÓÈ ÚÓ˜ÍÂ. èË ËÁÏÂÌÂÌËË ÔÎÓÒÍÓÒÚË ÌÓχθ̇fl ÍË‚ËÁ̇ k Ú‡ÍÊ ·Û‰ÂÚ ÏÂÌflÚ¸Òfl, Ë Ï˚ ÔÓÎÛ˜ËÏ ‰‚‡ ˝ÍÒÚÂχθÌ˚ı Á̇˜ÂÌËfl – χÍÒËχθÌÛ˛ ÍË‚ËÁÌÛ k1 Ë ÏËÌËχθÌÛ˛ ÍË‚ËÁÌÛ k 2 , ̇Á˚‚‡ÂÏ˚ „·‚Ì˚ÏË ÍË‚ËÁ̇ÏË ÔÓ‚ÂıÌÓÒÚË. äË‚ËÁ̇ Ò˜ËÚ‡ÂÚÒfl ÔÓÎÓÊËÚÂθÌÓÈ, ÂÒÎË ÍË‚‡fl ËÁ„Ë·‡ÂÚÒfl ‚ ÚÓÏ Ê ̇ԇ‚ÎÂÌËË, ˜ÚÓ Ë ‚˚·‡Ì̇fl ÌÓχθ, Ë Ó Úˈ‡ÚÂθÌÓÈ – Ë̇˜Â. ɇÛÒÒÓ‚‡ ÍË‚ËÁ̇ ‡‚̇ K = k 1 k 2 (Ó̇ ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÌÓÒÚ¸˛ Á‡‰‡Ì‡ ‚ ÚÂÏË̇ı Ô‚ÓÈ ÙÛ̉‡ÏÂÌڇθÌÓÈ ÙÓÏ˚). ë‰Ìflfl ÍË‚ËÁ̇ 1 H = ( k1 + k2 ). 2 åËÌËχθÌÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛ ̇Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸ ÒÓ Ò‰ÌÂÈ ÍË‚ËÁÌÓÈ, ‡‚ÌÓÈ ÌÛβ, ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, ÔÓ‚ÂıÌÓÒÚ¸ ÏËÌËχθÌÓÈ ÔÎÓ˘‡‰Ë ÔË Á‡‰‡ÌÌÓÏ Í‡Â. êËχÌÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛ ̇Á˚‚‡ÂÚÒfl Ó‰ÌÓÏÂÌÓ ÍÓÏÔÎÂÍÒÌÓ ÏÌÓ„ÓÓ·‡ÁË ËÎË ‰‚ÛÏÂÌÓ ‰ÂÈÒÚ‚ËÚÂθÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ Ò ÍÓÏÔÎÂÍÒÌÓÈ ÒÚÛÍÚÛÓÈ, Ú.Â. Ú‡ÍÓÂ, ‚ ÍÓÚÓÓÏ ÎÓ͇θÌ˚ ÍÓÓ‰Ë̇Ú˚ ‚ ÓÍÂÒÚÌÓÒÚflı ÚÓ˜ÂÍ ÒÓÓÚÌÓÒflÚÒfl ˜ÂÂÁ ÍÓÏÔÎÂÍÒÌ˚ ‡Ì‡ÎËÚ˘ÂÒÍË ÙÛÌ͈ËË. Ö ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ Í‡Í ‰ÂÙÓÏËÓ‚‡ÌÌ˚È ‚‡Ë‡ÌÚ ÍÓÏÔÎÂÍÒÌÓÈ ÔÎÓÒÍÓÒÚË. ÇÒ ËχÌÓ‚˚ ÔÓ‚ÂıÌÓÒÚË fl‚Îfl˛ÚÒfl ÓËÂÌÚËÛÂÏ˚ÏË. á‡ÏÍÌÛÚ˚ ËχÌÓ‚˚ ÔÓ‚ÂıÌÓÒÚË Ô‰ÒÚ‡‚Îfl˛Ú ÒÓ·ÓÈ „ÂÓÏÂÚ˘ÂÒÍË ÏÓ‰ÂÎË ÍÓÏÔÎÂÍÒÌ˚ı ‡Î„·‡Ë˜ÂÒÍËı ÍË‚˚ı. ä‡Ê‰Ó ҂flÁÌÓ ËχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ÏÓÊÌÓ ÔÂÓ·‡ÁÓ‚‡Ú¸ ‚ ÔÓÎÌÓ ‰‚ÛÏÂÌÓ ËχÌÓ‚Ó ÏÌÓ„ÓÓ·‡ÁËÂ Ò ÔÓÒÚÓflÌÌ˚Ï ‡‰ËÛÒÓÏ ÍË‚ËÁÌ˚, ‡‚Ì˚Ï 0,1 ËÎË 1. êËχÌÓ‚˚ ÔÓ‚ÂıÌÓÒÚË Ò ÍË‚ËÁÌÓÈ –1 ̇Á˚‚‡˛ÚÒfl „ËÔ·Ó΢ÂÒÍËÏË, ͇ÌÓÌ˘ÂÒÍËÏ ÔËÏÂÓÏ Ú‡ÍËı ÔÓ‚ÂıÌÓÒÚÂÈ fl‚ÎflÂÚÒfl ‰ËÌ˘Ì˚È ‰ËÒÍ ∆ = {z ∈ : | z |< 1}. êËχÌÓ‚˚ ÔÓ‚ÂıÌÓÒÚË Ò
148
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ÌÛ΂ÓÈ ÍË‚ËÁÌÓÈ Ì‡Á˚‚‡˛ÚÒfl Ô‡‡·Ó΢ÂÒÍËÏË, ÚËÔÓ‚˚Ï ÔËÏÂÓÏ fl‚ÎflÂÚÒfl ÔÎÓÒÍÓÒÚ¸ . êËχÌÓ‚˚ ÔÓ‚ÂıÌÓÒÚË Ò ‡‰ËÛÒÓÏ ÍË‚ËÁÌ˚ 1 ̇Á˚‚‡˛ÚÒfl ˝ÎÎËÔÚ˘ÂÒÍËÏË. íËÔÓ‚˚Ï ÔËÏÂÓÏ Ú‡ÍÓ‚˚ı fl‚ÎflÂÚÒfl ËχÌÓ‚‡ ÒÙ‡ ∪ {∞}. ê„ÛÎfl̇fl ÏÂÚË͇ ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ÔÓ‚ÂıÌÓÒÚË Ì‡Á˚‚‡ÂÚÒfl „ÛÎflÌÓÈ, ÂÒÎË Â ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ c ÔÓÏÓ˘¸˛ ÎËÌÂÈÌÓ„Ó ˝ÎÂÏÂÌÚ‡ ds 2 = Edu 2 + 2 Fdudv + Gdv 2 , „‰Â ÍÓ˝ÙÙˈËÂÌÚ˚ ÙÓÏ˚ ds2 fl‚Îfl˛ÚÒfl „ÛÎflÌ˚ÏË ÙÛÌ͈ËflÏË. ã˛·‡fl „ÛÎfl̇fl ÔÓ‚ÂıÌÓÒÚ¸, Á‡‰‡Ì̇fl ÙÓÏÛÎÓÈ r = r(u, v), ӷ·‰‡ÂÚ Â„ÛÎflÌÓÈ ÏÂÚËÍÓÈ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds2 , „‰Â E(u, v) = 〈 ru , ru 〉, F(u, v) = 〈 ru , rv 〉, G(u, v) = 〈 rv , rv 〉. Ä̇ÎËÚ˘ÂÒ͇fl ÏÂÚË͇ ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ÔÓ‚ÂıÌÓÒÚË Ì‡Á˚‚‡ÂÚÒfl ‡Ì‡ÎËÚ˘ÂÒÍÓÈ, ÂÒÎË Ó̇ ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂ̇ Ò ÔÓÏÓ˘¸˛ ÎËÌÂÈÌÓ„Ó ˝ÎÂÏÂÌÚ‡ ds 2 = Edu 2 + 2 Fdudv + Gdv 2 . „‰Â ÍÓ˝ÙÙˈËÂÌÚ˚ ÙÓÏ˚ ds2 fl‚Îfl˛ÚÒfl ‡Ì‡ÎËÚ˘ÂÒÍËÏË ÙÛÌ͈ËflÏË. ã˛·‡fl ‡Ì‡ÎËÚ˘ÂÒ͇fl ÔÓ‚ÂıÌÓÒÚ¸, Á‡‰‡Ì̇fl ÙÓÏÛÎÓÈ r = r(u, v), ӷ·‰‡ÂÚ ‡Ì‡ÎËÚ˘ÂÒÍÓÈ ÏÂÚËÍÓÈ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ d s2 , „‰Â E(u, v) = 〈 ru , ru 〉, F(u, v) = = 〈 ru , rv 〉, G(u, v) = 〈 rv , rv 〉. åÂÚË͇ ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚ åÂÚË͇ ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚ – ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ÔÓ‚ÂıÌÓÒÚË ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚. èÓ‚ÂıÌÓÒÚ¸˛ ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚ ̇Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸ ‚ 3, ÍÓÚÓ‡fl ‚ ͇ʉÓÈ ÚӘ͠ӷ·‰‡ÂÚ ÔÓÎÓÊËÚÂθÌÓÈ „‡ÛÒÒÓ‚ÓÈ ÍË‚ËÁÌÓÈ. åÂÚË͇ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚ åÂÚËÍÓÈ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚ ̇Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ÔÓ‚ÂıÌÓÒÚË ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚. èÓ‚ÂıÌÓÒÚ¸ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚ – ÔÓ‚ÂıÌÓÒÚ¸ ‚ 3 , ÍÓÚÓ‡fl ‚ ͇ʉÓÈ ÚӘ͠ӷ·‰‡ÂÚ ÓÚˈ‡ÚÂθÌÓÈ „‡ÛÒÒÓ‚ÓÈ ÍË‚ËÁÌÓÈ. èÓ‚ÂıÌÓÒÚ¸ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚ ÎÓ͇θÌÓ ËÏÂÂÚ Ò‰ÎӂˉÌÛ˛ (‚Ó„ÌÛÚÛ˛) ÒÚÛÍÚÛÛ. ÇÌÛÚÂÌÌflfl „ÂÓÏÂÚËfl ÔÓ‚ÂıÌÓÒÚË ÔÓÒÚÓflÌÌÓÈ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚ (‚ ˜‡ÒÚÌÓÒÚË, ÔÒ‚‰ÓÒÙÂ˚) ÎÓ͇θÌÓ ÒÓ‚Ô‡‰‡ÂÚ Ò „ÂÓÏÂÚËÂÈ ÔÎÓÒÍÓÒÚË ãÓ·‡˜Â‚ÒÍÓ„Ó. Ç 3 Ì ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÓ‚ÂıÌÓÒÚË, ‚ÌÛÚÂÌÌflfl „ÂÓÏÂÚËfl ÍÓÚÓÓÈ ÔÓÎÌÓÒÚ¸˛ ÒÓ‚Ô‡‰‡ÂÚ Ò „ÂÓÏÂÚËÂÈ ÔÎÓÒÍÓÒÚË ãÓ·‡˜Â‚ÒÍÓ„Ó (Ú.Â. ÔÓÎÌÓÈ Â„ÛÎflÌÓÈ ÔÓ‚ÂıÌÓÒÚË Ò ÔÓÒÚÓflÌÌÓÈ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌÓÈ). åÂÚË͇ ÌÂÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚ åÂÚËÍÓÈ ÌÂÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚ ̇Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ Ò‰ÎӂˉÌÓÈ ÔÓ‚ÂıÌÓÒÚË. ë‰Îӂˉ̇fl ÔÓ‚ÂıÌÓÒÚ¸ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÓ‚ÂıÌÓÒÚË ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚: ‰‚‡Ê‰˚ ÌÂÔÂ˚‚ÌÓ ‰ËÙÙÂÂ̈ËÛÂχfl ÔÓ‚ÂıÌÓÒÚ¸ ̇Á˚‚‡ÂÚÒfl Ò‰ÎӂˉÌÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ‚ ͇ʉÓÈ ÚӘ͠ÔÓ‚ÂıÌÓÒÚË Â „‡ÛÒÒÓ‚‡ ÍË‚ËÁ̇ fl‚ÎflÂÚÒfl ÌÂÔÓÎÓÊËÚÂθÌÓÈ. í‡ÍË ÔÓ‚ÂıÌÓÒÚË ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ‡ÌÚËÔÓ‰˚ ‚˚ÔÛÍÎ˚ı ÔÓ‚ÂıÌÓÒÚÂÈ, Ӊ̇ÍÓ ÓÌË Ì ӷ‡ÁÛ˛Ú Ú‡ÍÓ„Ó ÂÒÚÂÒÚ‚ÂÌÌÓ„Ó Í·ÒÒ‡, Í‡Í ‚˚ÔÛÍÎ˚ ÔÓ‚ÂıÌÓÒÚË.
É·‚‡ 8. ê‡ÒÒÚÓflÌËfl ̇ ÔÓ‚ÂıÌÓÒÚflı Ë ÛÁ·ı 149
åÂÚË͇ ÌÂÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚ åÂÚËÍÓÈ ÌÂÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚ ̇Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ‚˚ÔÛÍÎÓÈ ÔÓ‚ÂıÌÓÒÚË. Ç˚ÔÛÍ·fl ÔÓ‚ÂıÌÓÒÚ¸ – ˝ÚÓ Ó·Î‡ÒÚ¸ (Ú.Â. Ò‚flÁÌÓ ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó) ̇ „‡Ìˈ ‚˚ÔÛÍÎÓ„Ó Ú· ‚ 3 (‚ ÌÂÍÓÚÓÓÏ ÒÏ˚ÒΠ˝ÚÓ ‡ÌÚËÔÓ‰ Ò‰ÎӂˉÌÓÈ ÔÓ‚ÂıÌÓÒÚË). ÇÒfl „‡Ìˈ‡ ‚˚ÔÛÍÎÓ„Ó Ú· ̇Á˚‚‡ÂÚÒfl ÔÓÎÌÓÈ ‚˚ÔÛÍÎÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛. ÖÒÎË ÚÂÎÓ ÍÓ̘ÌÓ (Ó„‡Ì˘ÂÌÓ), ÚÓ ÔÓÎ̇fl ‚˚ÔÛÍ·fl ÔÓ‚ÂıÌÓÒÚ¸ ̇Á˚‚‡ÂÚÒfl Á‡ÏÍÌÛÚÓÈ. à̇˜Â Ó̇ ̇Á˚‚‡ÂÚÒfl ·ÂÒÍÓ̘ÌÓÈ (·ÂÒÍÓ̘̇fl ‚˚ÔÛÍ·fl ÔÓ‚ÂıÌÓÒÚ¸ „ÓÏÂÓÏÓÙ̇ ÔÎÓÒÍÓÒÚË ËÎË ˆËÎËÌ‰Û ÍÛ„ÎÓ„Ó Ò˜ÂÌËfl). ã˛·‡fl ‚˚ÔÛÍ·fl ÔÓ‚ÂıÌÓÒÚ¸ M 2 ‚ 3 fl‚ÎflÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸˛ Ó„‡Ì˘ÂÌÌÓÈ ÍË‚ËÁÌ˚. èÓÎ̇fl „‡ÛÒÒÓ‚‡ ÍË‚ËÁ̇ w( A) =
∫ ∫ K ( x )dσ( x )
ÏÌÓÊÂÒÚ‚‡ A ⊂ M 2
A
‚Ò„‰‡ ÌÂÓÚˈ‡ÚÂθ̇ (Á‰ÂÒ¸ σ( ⋅ ) – ÔÎÓ˘‡‰¸, ‡ ä(ı) – „‡ÛÒÒÓ‚‡ ÍË‚ËÁ̇ å 2 ‚ ÚӘ͠ı), Ú.Â. ‚˚ÔÛÍ·fl ÔÓ‚ÂıÌÓÒÚ¸ ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ÔÓ‚ÂıÌÓÒÚ¸ ÌÂÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ‚˚ÔÛÍÎÓÈ ÔÓ‚ÂıÌÓÒÚË Ì‡Á˚‚‡ÂÚÒfl ‚˚ÔÛÍÎÓÈ ÏÂÚËÍÓÈ (Ì ÒΉÛÂÚ ÔÛÚ‡Ú¸ Ò ÏÂÚ˘ÂÒÍÓÈ ‚˚ÔÛÍÎÓÒÚ¸˛, ÒÏ. „Î. 1) ÔËÏÂÌËÚÂθÌÓ Í ÚÂÓËË ÔÓ‚ÂıÌÓÒÚÂÈ, Ú.Â. Ó̇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ ‚˚ÔÛÍÎÓÒÚË: ÒÛÏχ Û„ÎÓ‚ β·Ó„Ó ÚÂÛ„ÓθÌË͇, ÒÚÓÓÌ˚ ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl ͇ژ‡È¯ËÏË ÍË‚˚ÏË, Ì ÏÂ̸¯Â, ˜ÂÏ π. åÂÚË͇ Ò ‡Î¸ÚÂ̇ÚË‚ÌÓÈ ÍË‚ËÁÌÓÈ åÂÚËÍÓÈ Ò ‡Î¸ÚÂ̇ÚË‚ÌÓÈ ÍË‚ËÁÌÓÈ Ì‡Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÔÓ‚ÂıÌÓÒÚË Ò ‡Î¸ÚÂ̇ÚË‚ÌÓÈ (ÔÓÎÓÊËÚÂθÌÓÈ ËÎË ÓÚˈ‡ÚÂθÌÓÈ) „‡ÛÒÒÓ‚ÓÈ ÍË‚ËÁÌÓÈ. èÎÓÒ͇fl ÏÂÚË͇ èÎÓÒ͇fl ÏÂÚË͇ – ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ‡Á‚ÂÚ˚‚‡ÂÏÓÈ ÔÓ‚ÂıÌÓÒÚË, Ú.Â. ÔÓ‚ÂıÌÓÒÚË, ̇ ÍÓÚÓÓÈ „‡ÛÒÒÓ‚‡ ÍË‚ËÁ̇ ‚Ò˛‰Û ‡‚̇ ÌÛβ. åÂÚË͇ Ó„‡Ì˘ÂÌÌÓÈ ÍË‚ËÁÌ˚ åÂÚËÍÓÈ Ó„‡Ì˘ÂÌÌÓÈ ÍË‚ËÁÌ˚ ̇Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ρ ̇ ÔÓ‚ÂıÌÓÒÚË Ó„‡Ì˘ÂÌÌÓÈ ÍË‚ËÁÌ˚. èÓ‚ÂıÌÓÒÚ¸ M 2 Ò ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸˛ Ó„‡Ì˘ÂÌÌÓÈ ÍË‚ËÁÌ˚, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ Ú‡ÍËı ËχÌÓ‚˚ı ÏÂÚËÍ ρn, Á‡‰‡ÌÌ˚ı ̇ M2 , ˜ÚÓ ‰Îfl β·Ó„Ó ÍÓÏÔ‡ÍÚÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ A ⊂ M2 ËÏÂÂÚ ÏÂÒÚÓ ÛÒÎÓ‚Ë ‡‚ÌÓÏÂÌÓÈ ÒıÓ‰ËÏÓÒÚË ρn → ρ, Ë ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ | wn | ( A) fl‚ÎflÂÚÒfl Ó„‡Ì˘ÂÌÌÓÈ, „‰Â | wn | ( A) =
∫ ∫ K ( x )dσ( x ) –
ÚÓڇθ̇fl ‡·ÒÓβÚ̇fl ÍË‚ËÁ̇
A
ÏÂÚËÍË ρn (Á‰ÂÒ¸ ä(ı) – „‡ÛÒÒÓ‚‡ ÍË‚ËÁ̇ ÔÓ‚ÂıÌÓÒÚË M2 ‚ ÚӘ͠ı, a σ(⋅) – ÔÎÓ˘‡‰¸). ⌳-ÏÂÚË͇ ⌳-ÏÂÚËÍÓÈ (ËÎË ÏÂÚËÍÓÈ ÚËÔ‡ Λ) ̇Á˚‚‡ÂÚÒfl ÔÓÎ̇fl ÏÂÚË͇ ̇ ÔÓ‚ÂıÌÓÒÚË Ò ÍË‚ËÁÌÓÈ, Ó„‡Ì˘ÂÌÌÓÈ Ò‚ÂıÛ ÓÚˈ‡ÚÂθÌÓÈ ÍÓÌÒÚ‡ÌÚÓÈ. Λ-ÏÂÚË͇ Ì ËÏÂÂÚ ‚ÎÓÊÂÌËÈ ‚ 3 . ùÚÓ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ Í·ÒÒ˘ÂÒÍÓ„Ó ÂÁÛθڇڇ ÉËθ·ÂÚ‡ (1901): ‚ 3 Ì ÒÛ˘ÂÒÚ‚ÛÂÚ Í‡ÍËı-ÎË·Ó Â„ÛÎflÌ˚ı ÔÓ‚ÂıÌÓÒÚÂÈ ÔÓÒÚÓflÌÌÓÈ ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌ˚ (Ú.Â. ÔÓ‚ÂıÌÓÒÚÂÈ, ‚ÌÛÚÂÌÌflfl „ÂÓÏÂÚËfl ÍÓÚÓ˚ı ÔÓÎÌÓÒÚ¸˛ ÒÓ‚Ô‡‰‡ÂÚ Ò „ÂÓÏÂÚËÂÈ ÔÎÓÒÍÓÒÚË ãÓ·‡˜Â‚ÒÍÓ„Ó).
150
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
(h, ⌬)-ÏÂÚË͇ (h, ⌬)-ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÔÓ‚ÂıÌÓÒÚË Ò Ï‰ÎÂÌÌÓ ËÁÏÂÌfl˛˘ÂÈÒfl ÓÚˈ‡ÚÂθÌÓÈ ÍË‚ËÁÌÓÈ. èÓÎ̇fl (h, ∆)-ÏÂÚË͇ Ì ‰ÓÔÛÒ͇ÂÚ Â„ÛÎflÌ˚ı ËÁÓÏÂÚ˘ÂÒÍËı ‚ÎÓÊÂÌËÈ ‚ ÚÂıÏÂÌÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (ÒÏ. Λ-ÏÂÚË͇). G-‡ÒÒÚÓflÌË ë‚flÁÌÓ ÏÌÓÊÂÒÚ‚Ó G ÚÓ˜ÂÍ Ì‡ ÔÓ‚ÂıÌÓÒÚË M 2 ̇Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏ Â„ËÓÌÓÏ, ÂÒÎË ‰Îfl ͇ʉÓÈ ÚÓ˜ÍË x ∈ G ÒÛ˘ÂÒÚ‚ÛÂÚ ‰ËÒÍ B(x, r) Ò ˆÂÌÚÓÏ ‚ ı, Ú‡ÍÓÈ ˜ÚÓ BG = G ∩ B( x, r ) ËÏÂÂÚ Ó‰ÌÛ ËÁ ÒÎÂ‰Û˛˘Ëı ÙÓÏ: BG = B( x, r ) (x – „ÛÎfl̇fl ‚ÌÛÚÂÌÌflfl ÚӘ͇ G); BG – ÔÓÎÛ‰ËÒÍ B(x, r) (x – „ÛÎfl̇fl „‡Ì˘̇fl ÚӘ͇ G); BG – ÒÂÍÚÓ B(x, r), Ì fl‚Îfl˛˘ËÈÒfl ÔÓÎÛ‰ËÒÍÓÏ (x – Û„ÎÓ‚‡fl ÚӘ͇ G); BG ÒÓÒÚÓËÚ ËÁ ÍÓ̘ÌÓ„Ó ˜ËÒ· ÒÂÍÚÓÓ‚ B(x, r), ÍÓÚÓ˚ Ì ËÏÂ˛Ú ËÌ˚ı Ó·˘Ëı ÚÓ˜ÂÍ, ÍÓÏ ı (x – ÛÁÎÓ‚‡fl ÚӘ͇ G). G-‡ÒÒÚÓflÌË ÏÂÊ‰Û Î˛·˚ÏË ÚӘ͇ÏË ı Ë y ∈ G ÓÔ‰ÂÎflÂÚÒfl Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ ‚ÒÂı ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ı Ë y ∈ G Ë ÔÓÎÌÓÒÚ¸˛ ÔË̇‰ÎÂʇ˘Ëı G. äÓÌÙÓÏÌÓ ËÌ‚‡Ë‡ÌÚ̇fl ÏÂÚË͇ èÛÒÚ¸ R – ËχÌÓ‚‡ ÔÓ‚ÂıÌÓÒÚ¸. ãÓ͇θÌ˚È Ô‡‡ÏÂÚ (ËÎË ÎÓ͇θÌ˚È ÛÌËÙÓÏËÁËÛ˛˘ËÈ Ô‡‡ÏÂÚ, ÎÓ͇θÌ˚È ÛÌËÙÓÏËÁ‡ÚÓ) fl‚ÎflÂÚÒfl ÍÓÏÔÎÂÍÒÌÓÈ ÔÂÂÏÂÌÌÓÈ z, ‡ÒÒχÚË‚‡ÂÏÓÈ Í‡Í ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl z p 0 = φ p 0 ( p) ÚÓ˜ÍË p ∈ R, ÍÓÚÓ‡fl Á‡‰‡Ì‡ ‚Ò˛‰Û ‚ ÌÂÍÓÚÓÓÈ ÓÍÂÒÚÌÓÒÚË (Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÓÍÂÒÚÌÓÒÚË) V(p0 ) ÚÓ˜ÍË p0 ∈ R Ë ÍÓÚÓ‡fl ‡ÎËÁÛÂÚ „ÓÏÂÓÏÓÙÌÓ ÓÚÓ·‡ÊÂÌË (Ô‡‡ÏÂÚ˘ÂÒÍÓ ÓÚÓ·‡ÊÂÌËÂ) V(p0 ) ̇ ‰ËÒÍ (Ô‡‡ÏÂÚ˘ÂÒÍËÈ ‰ËÒÍ) ∆( p0 ) = = {z ∈ : | z |< r ( p0 )}, „‰Â φ p 0 ( p0 ) = 0. èÓ‰ ‰ÂÈÒÚ‚ËÂÏ Ô‡‡ÏÂÚ˘ÂÒÍÓ„Ó ÓÚÓ·‡ÊÂÌËfl β·‡fl ÚӘ˜̇fl ÙÛÌ͈Ëfl g(p), ÓÔ‰ÂÎflÂχfl ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÓÍÂÒÚÌÓÒÚË V(p0 ), ÒÚ‡ÌÓ‚ËÚÒfl ÙÛÌ͈ËÂÈ ÎÓ͇θÌÓ„Ó Ô‡‡ÏÂÚ‡ z : g( p) = g(φ −p10 ( z )) = G( z ). äÓÌÙÓÏÌÓ ËÌ‚‡Ë‡ÌÚÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ‰ËÙÙÂÂ̈ˇΠρ( z ) | dz | ̇ ËχÌÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚË R, ÍÓÚÓ˚È ËÌ‚‡Ë‡ÌÚÂÌ ÓÚÌÓÒËÚÂθÌÓ ‚˚·Ó‡ ÎÓ͇θÌÓ„Ó Ô‡‡ÏÂÚ‡ z. í‡ÍËÏ Ó·‡ÁÓÏ, ͇ʉÓÏÛ ÎÓ͇θÌÓÏÛ Ô‡‡ÏÂÚÛ z ( z : U → ) ÒÚ‡‚ËÚÒfl ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ÙÛÌ͈Ëfl ρz : z (U ) → [0, ∞] Ú‡Í, ˜ÚÓ ‰Îfl β·˚ı ÎÓ͇θÌ˚ı Ô‡‡ÏÂÚÓ‚ z1 Ë z2 ËÏÂÂÏ ρz 2 ( z 2 ( p)) ρz1 ( z1 ( p))
=
dz1 ( p) ‰Îfl β·˚ı p ∈U1 ∩ U1 ∩ U2 . dz 2 ( p )
ä‡Ê‰˚È ÎËÌÂÈÌ˚È ‰ËÙÙÂÂ̈ˇΠλ( z )dz Ë Í‡Ê‰˚È Í‚‡‰‡Ú˘Ì˚È ‰ËÙÙÂÂÌ1/ 2 ˆË‡Î Q( z )dz 2 ÔÓÓʉ‡˛Ú ÍÓÌÙÓÏÌÓ ËÌ‚‡Ë‡ÌÚÌ˚ ÏÂÚËÍË λ( z ) dz Ë Q( z ) dz ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ (ÒÏ. Q-ÏÂÚË͇). Q-ÏÂÚË͇ 1/ 2 Q-ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÍÓÌÙÓÏÌÓ ËÌ‚‡Ë‡ÌÚ̇fl ÏÂÚË͇ ρ( z ) dz = Q( z ) dz ̇ ËχÌÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚË R, Á‡‰‡‚‡Âχfl ˜ÂÂÁ Í‚‡‰‡Ú˘Ì˚È ‰ËÙÙÂÂ̈ˇΠQ(z)dz. 䂇‰‡Ú˘Ì˚È ‰ËÙÙÂÂ̈ˇΠQ(z)dz2 – ÌÂÎËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ Ì‡ ËχÌÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚË R, ÍÓÚÓ˚È ËÌ‚‡Ë‡ÌÚÂÌ ÓÚÌÓÒËÚÂθÌÓ Í ‚˚·Ó‡ ÎÓ͇θÌÓ„Ó Ô‡‡ÏÂÚ‡ z. í‡ÍËÏ Ó·‡ÁÓÏ, ͇ʉÓÏÛ ÎÓ͇θÌÓÏÛ Ô‡‡ÏÂÚÛ z ( z : U → ) ÒÚ‡‚ËÚÒfl ‚
É·‚‡ 8. ê‡ÒÒÚÓflÌËfl ̇ ÔÓ‚ÂıÌÓÒÚflı Ë ÛÁ·ı 151
ÒÓÓÚ‚ÂÚÒÚ‚Ë ÙÛÌ͈Ëfl Qz : (U ) → ڇ͇fl, ˜ÚÓ ‰Îfl β·˚ı ÎÓ͇θÌ˚ı Ô‡‡ÏÂÚÓ‚ z1 Ë z2 ËÏÂÂÏ dz ( p ) = 1 Qz1 ( z1 ( p)) dz 2 ( p)
Qz 2 ( z 2 ( p))
2
‰Îfl β·˚ı p ∈U1 ∩ U2 . ùÍÒÚÂχθ̇fl ÏÂÚË͇ ùÍÒÚÂχθÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÍÓÌÙÓÏÌÓ ËÌ‚‡Ë‡ÌÚ̇fl ÏÂÚË͇ ‚ Á‡‰‡˜Â ÏÓ‰ÛÎ˛Ò‡ ‰Îfl ÒÂÏÂÈÒÚ‚‡ Γ ÎÓ͇θÌÓ ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı ̇ ËχÌÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚË R, ÍÓÚÓ‡fl ‡ÎËÁÛÂÚ ËÌÙËÏÛÏ ‚ ÓÔ‰ÂÎÂÌËË ÏÓ‰ÛÎ˛Ò‡ å(Γ). îÓχθÌÓ, ÔÛÒÚ¸ Γ – ÒÂÏÂÈÒÚ‚Ó ÎÓ͇θÌÓ ÒÔflÏÎflÂÏ˚ı ÍË‚˚ı ̇ ËχÌÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚË R Ë ÔÛÒÚ¸ ê – ÌÂÔÛÒÚÓÈ Í·ÒÒ ÍÓÌÙÓÏÌÓ ËÌ‚‡Ë‡ÌÚÌ˚ı ÏÂÚËÍ ρ( z ) dz ̇ R, Ú‡ÍËı ˜ÚÓ ρ(z) fl‚ÎflÂÚÒfl Í‚‡‰‡Ú˘ÌÓ ËÌÚ„ËÛÂÏÓÈ ‚ z-ÔÎÓÒÍÓÒÚË ‰Îfl Í‡Ê‰Ó„Ó ÎÓ͇θÌÓ„Ó Ô‡‡ÏÂÚ‡ z, ‡ ËÌÚ„‡Î˚ Aρ ( R) =
∫ ∫ ρ (z )dxdy 2
∫
Ë Lρ (Γ ) = inf ρ( z ) dz γ ∈Γ
R
y
Ì fl‚Îfl˛ÚÒfl Ó‰ÌÓ‚ÂÏÂÌÌÓ ‡‚Ì˚ÏË 0 ËÎË ∞ (ÔÓ‰‡ÁÛÏ‚‡ÂÚÒfl, ˜ÚÓ Í‡Ê‰˚È ËÁ ‚˚¯ÂÔ˂‰ÂÌÌ˚ı ËÌÚ„‡ÎÓ‚ – ˝ÚÓ ËÌÚ„‡Î ã·„‡). åÓ‰ÛÎ˛Ò ÒÂÏÂÈÒÚ‚‡ ÍË‚˚ı Γ ÓÔ‰ÂÎflÂÚÒfl Í‡Í M (Γ ) = inf
ρ ∈P
Aρ ( R) ( Lρ (Γ ))2
.
ùÍÒÚÂχθ̇fl ‰ÎË̇ ÒÂÏÂÈÒÚ‚‡ ÍË‚˚ı Γ ‡‚̇ sup ρ ∈P
( Lρ (U ))2 Aρ ( R)
, Ú.Â. fl‚ÎflÂÚÒfl
‚Â΢ËÌÓÈ, Ó·‡ÚÌÓÈ å(Γ). ᇉ‡˜‡ ÏÓ‰ÛÎ˛Ò‡ ‰Îfl Γ ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: ÔÛÒÚ¸ PL – ÔӉͷÒÒ / ÖÒÎË , ÚÓ ÏÓ‰ÛP, Ú‡ÍÓÈ ˜ÚÓ ‰Îfl β·˚ı ρ ∈ ( z ) dz ∈ PL Ë Î˛·ÓÈ γ ∈ Γ ËÏÂÂÏ PL ≠ 0, Î˛Ò å(Γ) ÒÂÏÂÈÒÚ‚‡ Γ ÏÓÊÂÚ ·˚Ú¸ Á‡ÔËÒ‡Ì Í‡Í M (Γ ) = inf Aρ ( R). ä‡Ê‰‡fl ÏÂÚË͇ ρ ∈PL
ËÁ PL ̇Á˚‚‡ÂÚÒfl ‰ÓÔÛÒÚËÏÓÈ ÏÂÚËÍÓÈ ‰Îfl Á‡‰‡˜Ë ÏÓ‰ÛÎ˛Ò‡ ̇ Γ. ÖÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ρ*, ‰Îfl ÍÓÚÓÓÈ M (Γ ) = inf Aρ ( R) = Aρ* ( R), ρ ∈PL
ÏÂÚË͇ ρ* dz ̇Á˚‚‡ÂÚÒfl ˝ÍÒÚÂχθÌÓÈ ÏÂÚËÍÓÈ ‰Îfl Á‡‰‡˜Ë ÏÓ‰ÛÎ˛Ò‡ ̇ Γ. åÂÚË͇ ÔÓ‚ÂıÌÓÒÚË î¯ èÛÒÚ¸ (X, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, å2 – ÍÓÏÔ‡ÍÚÌÓ ‰‚ÛÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, f – ÌÂÔÂ˚‚ÌÓ ÓÚÓ·‡ÊÂÌË f: M 2 → X, ̇Á˚‚‡ÂÏÓ ԇ‡ÏÂÚËÁÓ‚‡ÌÌÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛, ‡ σ: M 2 → M2 – „ÓÏÂÓÏÓÙËÁÏ M2 ̇ Ò·fl. Ñ‚Â Ô‡‡ÏÂÚËÁËÓ‚‡ÌÌ˚ı ÔÓ‚ÂıÌÓÒÚË f1 Ë f2 ̇Á˚‚‡˛ÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË inf max d ( f1 ( p), f2 (σ( p)) = 0, „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‚ÓÁÏÓÊÌ˚Ï „ÓÏÂÓσ ρ ∈M 2
ÏÓÙËÁÏ‡Ï σ . ä·ÒÒ f* Ô‡‡ÏÂÚËÁËÓ‚‡ÌÌ˚ı ÔÓ‚ÂıÌÓÒÚÂÈ, ˝Í‚Ë‚‡ÎÂÌÚÌ˚ı f,
152
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
̇Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸˛ î¯Â. ùÚÓ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÓÌflÚËfl ÔÓ‚ÂıÌÓÒÚË ‚ ‚ÍÎˉӂÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ‰Îfl ÒÎÛ˜‡fl ÔÓËÁ‚ÓθÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d). åÂÚËÍÓÈ ÔÓ‚ÂıÌÓÒÚË î¯ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÔÓ‚ÂıÌÓÒÚÂÈ î¯Â, ÓÔ‰ÂÎflÂχfl Í‡Í inf max d ( f1 ( p), f2 (σ( p))) σ ρ ∈M 2
‰Îfl β·˚ı ÔÓ‚ÂıÌÓÒÚÂÈ î¯ f1* Ë f2* , „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‚ÓÁÏÓÊÌ˚Ï „ÓÏÂÓÏÓÙËÁÏ‡Ï σ (ÒÏ. åÂÚË͇ î¯Â). 8.2. ÇçìíêÖççàÖ åÖíêàäà çÄ èéÇÖêïçéëíüï Ç ‰‡ÌÌÓÏ ‡Á‰ÂΠÔ˜ËÒÎÂÌ˚ ‚ÌÛÚÂÌÌË ÏÂÚËÍË, ÓÔ‰ÂÎflÂÏ˚ Ëı ÎËÌÂÈÌ˚ÏË ˝ÎÂÏÂÌÚ‡ÏË (ÍÓÚÓ˚ ‚ ‰ÂÈÒÚ‚ËÚÂθÌÓÒÚË, fl‚Îfl˛ÚÒfl ‰‚ÛÏÂÌ˚ÏË ËχÌÓ‚˚ÏË ÏÂÚË͇ÏË) ‰Îfl ÌÂÍÓÚÓ˚ı ËÁ·‡ÌÌ˚ı ÔÓ‚ÂıÌÓÒÚÂÈ. åÂÚË͇ Í‚‡‰ËÍË ä‚‡‰ËÍÓÈ (ËÎË Í‚‡‰‡Ú˘ÌÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛, ÔÓ‚ÂıÌÓÒÚ¸˛ ‚ÚÓÓ„Ó ÔÓfl‰Í‡) ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ÚÓ˜ÂÍ ‚ 3, ÍÓÓ‰Ë̇Ú˚ ÍÓÚÓ˚ı ‚ ‰Â͇ÚÓ‚ÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú Û‰Ó‚ÎÂÚ‚Ófl˛Ú ‡Î„·‡Ë˜ÂÒÍÓÏÛ Û‡‚ÌÂÌ˲ ‚ÚÓÓÈ ÒÚÂÔÂÌË. ëÛ˘ÂÒÚ‚ÛÂÚ 17 Í·ÒÒÓ‚ Ú‡ÍËı ÔÓ‚ÂıÌÓÒÚÂÈ, ‚ ÚÓÏ ˜ËÒΠ˝ÎÎËÔÒÓˉ˚, Ó‰ÌÓÔÓÎÓÒÚÌ˚Â Ë ‰‚ÛıÔÓÎÓÒÚÌ˚ „ËÔ·ÓÎÓˉ˚, ˝ÎÎËÔÚ˘ÂÒÍË ԇ‡·ÓÎÓˉ˚, „ËÔ·Ó΢ÂÒÍË ԇ‡·ÓÎÓˉ˚, ˝ÎÎËÔÚ˘ÂÒÍËÂ, „ËÔ·Ó΢ÂÒÍËÂ Ë Ô‡‡·Ó΢ÂÒÍË ˆËÎË̉˚ Ë ÍÓÌ˘ÂÒÍË ÔÓ‚ÂıÌÓÒÚË. ñËÎË̉, ̇ÔËÏÂ, ÏÓÊÂÚ ·˚Ú¸ ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏ Á‡‰‡Ì Ò ÔÓÏÓ˘¸˛ ÒÎÂ‰Û˛˘Ëı Û‡‚ÌÂÌËÈ: x1 (u, v) = a cos v, x 2 (u, v) = a sin v, x3 (u, v) = u. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÌÂÏ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = du 2 + a 2 dv 2 . ùÎÎËÔÚ˘ÂÒÍËÈ ÍÓÌÛÒ (Ú.Â. ÍÓÌÛÒ Ò ˝ÎÎËÔÚ˘ÂÒÍËÏ Ò˜ÂÌËÂÏ) ÓÔ‰ÂÎflÂÚÒfl ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏ ÒÎÂ‰Û˛˘ËÏË Û‡‚ÌÂÌËflÏË: x1 (u, v) = a
h−u h−u cos v, x 2 (u, v) = b sin v, x3 (u, v) = u, h h
„‰Â h – ‚˚ÒÓÚ‡, ‡ – ·Óθ¯‡fl ÔÓÎÛÓÒ¸ Ë b – χ·fl ÔÓÎÛÓÒ¸ ÍÓÌÛÒ‡. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÍÓÌÛÒ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 =
h 2 + a 2 cos 2 v + b 2 sin 2 v 2 ( a 2 − b 2 )(h − u) cos v sin v du + s dudv + 2 h h2 +
(h − u)2 ( a 2 sin 2 v + b 2 cos 2 v) 2 dv . h2
åÂÚË͇ ÒÙÂ˚ ëÙ‡ fl‚ÎflÂÚÒfl Í‚‡‰ËÍÓÈ, ÍÓÓ‰Ë̇Ú˚ ÍÓÚÓÓÈ ‚ ‰Â͇ÚÓ‚ÓÈ ÒËÒÚÂÏ ‚˚‡ÊÂÌ˚ Û‡‚ÌÂÌËÂÏ (x1 – a)2 + (x 2 – b)2 + (x 3 – c)2 = r2 , „‰Â ÚӘ͇ (a, b, c) – ˆÂÌÚ ÒÙÂ˚, ‡ r > 0 –  ‡‰ËÛÒ. ëÙ‡ ‡‰ËÛÒ‡ r Ò ˆÂÌÚÓÏ ‚ ̇˜‡Î ÍÓÓ‰ËÌ‡Ú ÏÓÊÂÚ ·˚Ú¸
É·‚‡ 8. ê‡ÒÒÚÓflÌËfl ̇ ÔÓ‚ÂıÌÓÒÚflı Ë ÛÁ·ı 153
Á‡‰‡Ì‡ ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏ ÒÎÂ‰Û˛˘ËÏË Û‡‚ÌÂÌËflÏË: x1 (θ, φ) = r sin θ cos φ, x 2 (θ, φ) = r sin θ sin φ, x3 (θ, φ) = r cos φ, „‰Â ‡ÁËÏÛڇθÌ˚È Û„ÓÎ φ ∈ [0, 2π] Ë ÔÓÎflÌ˚È Û„ÓÎ θ ∈ [0, π]. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÒÙ (ËÏÂÌÌÓ, ‰‚ÛÏÂ̇fl ÒÙ¢ÂÒ͇fl ÏÂÚË͇) Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = r 2 dθ + r 2 sin 2 θdφ 2 . ëÙ‡ ‡‰ËÛÒa r ËÏÂÂÚ ÔÓÒÚÓflÌÌÛ˛ ÔÓÎÓÊËÚÂθÌÛ˛ „‡ÛÒÒÓ‚Û ÍË‚ËÁÌÛ, ‡‚ÌÛ˛ r. åÂÚË͇ ˝ÎÎËÔÒÓˉ‡ ùÎÎËÔÒÓˉ – Í‚‡‰Ë͇, Á‡‰‡Ì̇fl ‰Â͇ÚÓ‚˚Ï Û‡‚ÌÂÌËÂÏ
x12 x 22 x32 + + = 1, ËÎË a2 b2 c2
ÒÎÂ‰Û˛˘ËÏË Û‡‚ÌÂÌËflÏË ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏÂ: x1 (θ, φ) = a cos φ sin θ, x 2 (θ, φ) = b sin φ sin θ, x3 (θ, φ) = c cos θ, „‰Â ‡ÁËÏÛڇθÌ˚È Û„ÓÎ φ ∈ [0, 2π] Ë ÔÓÎflÌ˚È Û„ÓÎ θ ∈ [0, π] ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ˝ÎÎËÔÒÓˉ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = (b 2 cos 2 φ + a 2 sin 2 φ)sin 2 θdφ 2 + (b 2 − a 2 ) cos φ sin φ cos θ sin θdθdφ + + (( a 2 cos 2 φ + b 2 sin 2 φ) cos 2 θ + c 2 sin 2 θ)dθ 2 . åÂÚË͇ ÒÙÂÓˉ‡ ëÙÂÓˉÓÏ Ì‡Á˚‚‡ÂÚÒfl ˝ÎÎËÔÒÓˉ Ò ‰‚ÛÏfl Ó‰Ë̇ÍÓ‚˚ÏË ÔÓ ‰ÎËÌ ÓÒflÏË. éÌ fl‚ÎflÂÚÒfl Ú‡ÍÊ ÔÓ‚ÂıÌÓÒÚ¸˛ ‚‡˘ÂÌËfl, Á‡‰‡ÌÌÓÈ ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏ ÒÎÂ‰Û˛˘ËÏË Û‡‚ÌÂÌËflÏË: x1 (u, v) = a sin v cos u, x 2 (u, v) = a sin v sin u, x3 (u, v) = c cos v, „‰Â 0 ≤ u ≤ 2π Ë 0 ≤ v < π. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÒÙÂÓˉ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ 1 ds 2 = a 2 sin 2 vdu 2 + a 2 + c 2 + ( a 2 − c 2 ) cos(2 v) dv 2 . 2
(
)
åÂÚË͇ „ËÔ·ÓÎÓˉ‡ ÉËÔ·ÓÎÓˉ – Í‚‡‰Ë͇, ÍÓÚÓ‡fl ÏÓÊÂÚ ·˚Ú¸ Ó‰ÌÓ- ËÎË ‰ÛıÔÓÎÓÒÚÌÓÈ. é‰ÌÓÔÓÎÓÒÚÌ˚Ï „ËÔ·ÓÎÓˉÓÏ Ì‡Á˚‚‡ÂÚÒfl Ó·‡ÁÛÂχfl ‚‡˘ÂÌËÂÏ „ËÔ·ÓÎ˚ ÓÚÌÓÒËÚÂθÌÓ ÔÂÔẨËÍÛÎfl‡, ‰ÂÎfl˘Â„Ó ÔÓÔÓÎ‡Ï ÎËÌ˲ ÏÂÊ‰Û ÙÓÍÛÒ‡ÏË, ‡ ‰‚ÛıÔÓÎÓÒÚÌÓÈ „ËÔ·ÓÎÓˉ – ˝ÚÓ ÔÓ‚ÂıÌÓÒÚ¸, Ó·‡ÁÛÂχfl ‚‡˘ÂÌËÂÏ „ËÔ·ÓÎ˚ ÓÚÌÓÒËÚÂθÌÓ ÎËÌËË, ÒÓ‰ËÌfl˛˘ÂÈ ÙÓÍÛÒ˚. é‰ÌÓÔÓÎÓÒÚÌÓÈ „ËÔ·ÓÎÓˉ, ÓËÂÌÚËx2 x2 x2 Ó‚‡ÌÌ˚È ÔÓ ÓÒË ı3 , Á‡‰‡ÂÚÒfl ‰Â͇ÚÓ‚˚Ï Û‡‚ÌÂÌËÂÏ 12 + 22 − 32 = 1 ËÎË ÒÎÂ‰Û˛a b c ˘ËÏË Û‡‚ÌÂÌËflÏË ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏÂ: x1 (u, v) = a 1 + u 2 cos v, x 2 (u, v) = a 1 + u 2 sin v, x3 (u, v) = cu, „‰Â v ∈ [0, ˝ÎÂÏÂÌÚÓÏ
2π]. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ „ËÔ·ÓÎÓˉ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï a 2u 2 2 2 2 2 ds 2 = c 2 + 2 du + a (u + 1)dv . u + 1
154
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
åÂÚË͇ ÔÓ‚ÂıÌÓÒÚË ‚‡˘ÂÌËfl èÓ‚ÂıÌÓÒÚ¸˛ ‚‡˘ÂÌËfl ̇Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸, Ó·‡ÁÛÂχfl ‚‡˘ÂÌËÂÏ ‰‚ÛÏÂÌÓÈ ÍË‚ÓÈ ÓÚÌÓÒËÚÂθÌÓ ÌÂÍÓÚÓÓÈ ÓÒË. Ö ÏÓÊÌÓ Á‡‰‡Ú¸ ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏÂ Ò ÔÓÏÓ˘¸˛ ÒÎÂ‰Û˛˘Ëı Û‡‚ÌÂÌËÈ: x1 (u, v) = φ( v) cos u, x 2 (u, v) = φ( v)sin u, x3 (u, v) = ψ ( v). ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÌÂÈ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÓÏ ds 2 = φ 2 du 2 + (φ 2 + ψ 2 )dv 2 . åÂÚË͇ ÔÒ‚‰ÓÒÙÂ˚ èÒ‚‰ÓÒÙÂÓÈ Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÓ‚Ë̇ ÔÓ‚ÂıÌÓÒÚË ‚‡˘ÂÌËfl, Ó·‡ÁÛÂÏÓÈ ‚‡˘ÂÌËÂÏ Ú‡ÍÚËÒ˚ ÓÚÌÓÒËÚÂθÌÓ Â ‡ÒËÏÔÚÓÚ˚. é̇ Á‡‰‡ÂÚÒfl ÒÎÂ‰Û˛˘ËÏË Û‡‚ÌÂÌËflÏË ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏÂ: x1 (u, v) = sech u cos v, x 2 (u, v) = sech u sin v, x3 (u, v) = u − tgh u, „‰Â u ≥ 0 Ë 0 ≤ v < 2π. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÌÂÈ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌÏ ˝ÎÂÏÂÌÚÓÏ ds 2 = tgh 2 udu 2 + sich 2 udv 2 . èÒ‚‰ÓÒÙ‡ ËÏÂÂÚ ÔÓÒÚÓflÌÌÛ˛ ÓÚˈ‡ÚÂθÌÛ˛ „‡ÛÒÒÓ‚Û ÍË‚ËÁÌÛ, ‡‚ÌÛ˛ –1, Ë ‚ ˝ÚÓÏ ÒÏ˚ÒΠfl‚ÎflÂÚÒfl ‡Ì‡ÎÓ„ÓÏ ÒÙÂ˚ Ò ÔÓÒÚÓflÌÌÓÈ ÔÓÎÓÊËÚÂθÌÓÈ „‡ÛÒÒÓ‚ÓÈ ÍË‚ËÁÌÓÈ. åÂÚË͇ ÚÓ‡ íÓ fl‚ÎflÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸˛, Ëϲ˘ÂÈ ÚËÔ 1. ÄÁËÏÛڇθÌÓ ÒËÏÏÂÚ˘Ì˚È 2
ÓÚÌÓÒËÚÂθÌÓ ÓÒË x3 ÚÓ Á‡‰‡ÂÚÒfl ‰Â͇ÚÓ‚˚Ï Û‡‚ÌÂÌËÂÏ c − x12 + x 22 + x32 = a 2 ËÎË ÒÎÂ‰Û˛˘ËÏË Û‡‚ÌÂÌËflÏË ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏÂ: x1 (u, v) = (c + a cos v) cos u, x 2 (u, v) = (c + a cos v)sin u, x3 (u, v) = a sin v, „‰Â c > a Ë u, v ∈ [0, 2π]. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÚÓ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = (c + a cos v)2 du + a 2 dv 2 . åÂÚË͇ ‚ËÌÚÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚË ÇËÌÚÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛ (ËÎË ÔÓ‚ÂıÌÓÒÚ¸˛ ‚ËÌÚÓ‚Ó„Ó ‰‚ËÊÂÌËfl) ̇Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸, ÓÔËÒ˚‚‡Âχfl ÔÎÓÒÍÓÈ ÍË‚ÓÈ γ, ÍÓÚÓ‡fl, ‚‡˘‡flÒ¸ Ò ÔÓÒÚÓflÌÌÓÈ ÒÍÓÓÒÚ¸˛ ÓÚÌÓÒËÚÂθÌÓ ÓÒË, Ó‰ÌÓ‚ÂÏÂÌÌÓ ‰‚ËÊÂÚÒfl ‚‰Óθ ÌÂÂ Ò ‡‚ÌÓÏÂÌÓÈ ÒÍÓÓÒÚ¸˛. ÖÒÎË γ ̇ıÓ‰ËÚÒfl ‚ ÔÎÓÒÍÓÒÚË ÓÒË ‚‡˘ÂÌËfl x3 Ë ÓÔ‰ÂÎÂ̇ Û‡‚ÌÂÌËÂÏ x3 = f(u), ÚÓ ÔÓÁˈËÓÌÌ˚È ‚ÂÍÚÓ ‚ËÌÚÓ‚ÓÈ ÔÓ‚ÂıÌÓÒÚË ·Û‰ÂÚ ‡‚ÂÌ r = (u cos v, usonv, f (u) = hv), h = const, Ë ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÌÂÈ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = (1 + f 2 )du 2 + 2 hf ′dudv + (u 2 + h 2 )dv 2 . ÖÒÎË f = const, ÚÓ ÔÓÎÛ˜‡ÂÏ „ÂÎËÍÓˉ; ÂÒÎË h = 0, ÚÓ ÔÓÎÛ˜‡ÂÏ ÔÓ‚ÂıÌÓÒÚ¸ ‚‡˘ÂÌËfl.
É·‚‡ 8. ê‡ÒÒÚÓflÌËfl ̇ ÔÓ‚ÂıÌÓÒÚflı Ë ÛÁ·ı 155
åÂÚË͇ ÔÓ‚ÂıÌÓÒÚË ä‡Ú‡Î‡Ì‡ èÓ‚ÂıÌÓÒÚ¸˛ ä‡Ú‡Î‡Ì‡ ̇Á˚‚‡ÂÚÒfl ÏËÌËχθ̇fl ÔÓ‚ÂıÌÓÒÚ¸, ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏ Á‡‰‡‚‡Âχfl ÒÎÂ‰Û˛˘ËÏË Û‡‚ÌÂÌËflÏË: u v x1 (u, v) = u − sin u cosh v, x 2 (u, v) = 1 − cos u cosh v, x3 (u, v) = 4 sin sinh . 2 2 ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÌÂÈ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ v v ds 2 = 2 cosh 2 (cosh v − cos u)du 2 + 2 cosh 2 (cosh v − cos u)dv 2 . 2 2 åÂÚË͇ Ó·ÂÁ¸flÌ¸Â„Ó Ò‰· é·ÂÁ¸fl̸ËÏ Ò‰ÎÓÏ Ì‡Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸, Á‡‰‡‚‡Âχfl ‰Â͇ÚÓ‚˚Ï Û‡‚ÌÂÌËÂÏ x3 = x1 ( x12 − 3 x 22 ) ËÎË ÒÎÂ‰Û˛˘ËÏË Û‡‚ÌÂÌËflÏË ‚ Ô‡‡ÏÂÚ˘ÂÒÍÓÈ ÙÓÏÂ: x1 (u, v) = u, x 2 (u, v) = v, x3 (u, v) = u 3 − 3uv 2 . èÓ Ú‡ÍÓÈ ÔÓ‚ÂıÌÓÒÚË Ó·ÂÁ¸fl̇ Ïӄ· ·˚ Ô‰‚Ë„‡Ú¸Òfl, ÓÔˇflÒ¸ Ó‰ÌÓ‚ÂÏÂÌÌÓ ÌÓ„‡ÏË Ë ı‚ÓÒÚÓÏ. ÇÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ Ú‡ÍÓÈ ÔÓ‚ÂıÌÓÒÚË Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = (1 + ( su 2 − 3v 2 )2 du 2 − 2(18uv(u 2 − v 2 ))dudv + (1 + 36u 2 v 2 )dv 2 ).
8.3. êÄëëíéüçü çÄ ì áãÄï ìÁÎÓÏ Ì‡Á˚‚‡ÂÚÒfl Á‡ÏÍÌÛÚ‡fl Ò‡ÏÓÌÂÔÂÂÒÂ͇˛˘‡flÒfl ÍË‚‡fl, ‚ÎÓÊËχfl ‚ S3 . í˂ˇθÌ˚Ï ÛÁÎÓÏ (ËÎË ÌÂÁ‡ÛÁÎÂÌÌÓÒÚ¸˛) é ̇Á˚‚‡ÂÚÒfl Á‡ÏÍÌÛÚ˚È ÌÂÁ‡ÛÁÎÂÌÌ˚È ÍÓÌÚÛ. é·Ó·˘ÂÌËÂÏ ÔÓÌflÚËfl ÛÁ· fl‚ÎflÂÚÒfl ÔÓÌflÚË Á‚Â̇. á‚ÂÌÓ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÏÌÓÊÂÒÚ‚Ó ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÛÁÎÓ‚. ä‡Ê‰ÓÏÛ Á‚ÂÌÛ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Â„Ó ÔÓ‚ÂıÌÓÒÚ¸ áÂÈÙÂÚ‡, Ú.Â. ÍÓÏÔ‡ÍÚ̇fl ÓËÂÌÚËÛÂχfl ÔÓ‚ÂıÌÓÒÚ¸ Ò ‰‡ÌÌ˚Ï Á‚ÂÌÓÏ ‚ ͇˜ÂÒÚ‚Â „‡Ìˈ˚. Ñ‚‡ ÛÁ· (Á‚Â̇) ̇Á˚‚‡˛ÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ÏÓÊÌÓ Ô·‚ÌÓ ÔÂÂÈÚË ÓÚ Ó‰ÌÓ„Ó Í ‰Û„ÓÏÛ. îÓχθÌÓ, Á‚ÂÌÓ Á‡‰‡ÂÚÒfl Í‡Í „·‰ÍÓ ӉÌÓÏÂÌÓ ÔÓ‰ÏÌÓ„ÓÓ·‡ÁË 3-ÒÙÂ˚ S3 ; ÛÁÂÎ – ˝ÚÓ Á‚ÂÌÓ, ÒÓÒÚfl˘Â ËÁ Ó‰ÌÓÈ ÍÓÏÔÓÌÂÌÚ˚; Á‚Â̸fl L1 Ë L2 ̇Á˚‚‡˛ÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÒÓı‡Ìfl˛˘ËÈ ÓËÂÌÚ‡ˆË˛ „ÓÏÂÓÏÓÙËÁÏ f: S3 → S3, Ú‡ÍÓÈ ˜ÚÓ f(L 1 ) = L 2 . ÇÒ˛ ËÌÙÓχˆË˛ Ó· ÛÁΠÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸, ËÒÔÓθÁÛfl ‰Ë‡„‡ÏÏ˚ ÛÁ· – Ú‡ÍÓÈ ÔÓÂ͈ËË ÛÁ· ̇ ÔÎÓÒÍÓÒÚ¸, ˜ÚÓ Ì ·ÓΠ˜ÂÏ ‰‚ ÚÓ˜ÍË ÛÁ· ÔÓˆËÛ˛ÚÒfl ‚ Ó‰ÌÛ Ë ÚÛ Ê ÚÓ˜ÍÛ Ì‡ ÔÎÓÒÍÓÒÚË Ë ‚ ͇ʉÓÈ Ú‡ÍÓÈ ÚӘ͠Û͇Á‡ÌÓ, ͇͇fl ËÁ ÎËÌËÈ fl‚ÎflÂÚÒfl ·ÎËʇȯÂÈ Í ÔÎÓÒÍÓÒÚË, Ó·˚˜ÌÓ ÔÓÒ‰ÒÚ‚ÓÏ Û‰‡ÎÂÌËfl ˜‡ÒÚË ÌËÊÌÂÈ ÎËÌËË. Ñ‚Â ‡Á΢Ì˚ ‰Ë‡„‡ÏÏ˚ ÏÓ„ÛÚ Ô‰ÒÚ‡‚ÎflÚ¸ Ó‰ËÌ Ë ÚÓÚ Ê ÛÁÂÎ. á̇˜ËÚÂθ̇fl ˜‡ÒÚ¸ ÚÂÓËË ÛÁÎÓ‚ ÔÓÒ‚fl˘Â̇ ‚˚flÒÌÂÌ˲ ÓÚ‚ÂÚ‡ ̇ ‚ÓÔÓÒ, ÍÓ„‰‡ ‰‚ ‰Ë‡„‡ÏÏ˚ ÓÔËÒ˚‚‡˛Ú Ó‰ËÌ Ë ÚÓÚ Ê ÛÁÂÎ. ê‡ÒÔÛÚ˚‚‡ÌË ÛÁÎÓ‚ fl‚ÎflÂÚÒfl ÓÔ‡ˆËÂÈ, ËÁÏÂÌfl˛˘ÂÈ ÔÓÎÓÊÂÌË ÔÂÂÒÂ͇˛˘ËıÒfl ÎËÌËÈ ÓÚÌÓÒËÚÂθÌÓ ‰Û„ ‰Û„‡ (Ò‚ÂıÛ ËÎË ÒÌËÁÛ) ‚ ‰‚ÓÈÌÓÈ ÚӘ͠‰‡ÌÌÓÈ ‰Ë‡„‡ÏÏ˚. ê‡ÒÔÛÚ˚‚‡˛˘Â ˜ËÒÎÓ ÛÁ· ä fl‚ÎflÂÚÒfl ÏËÌËχθÌ˚Ï ˜ËÒÎÓÏ ˝ÎÂÏÂÌÚ‡Ì˚ı ÓÔ‡ˆËÈ ÔÓ ‡ÒÔÛÚ˚‚‡Ì˲ ÛÁÎÓ‚, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl Ô‚‡˘ÂÌËfl ‰Ë‡„‡ÏÏ˚ ÛÁ· ä ‚ ‰Ë‡„‡ÏÏÛ Ú˂ˇθÌÓ„Ó ÛÁ·, „‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‰Ë‡„‡ÏÏ‡Ï ÛÁ· ä. ÉÛ·Ó „Ó‚Ófl, ‡ÒÔÛÚ˚‚‡˛˘Â ˜ËÒÎÓ ÂÒÚ¸ ̇ËÏÂ̸¯Â ÍÓ΢ÂÒÚ‚Ó ÔÓÚ‡ÒÍË‚‡ÌËÈ ÛÁ· ä ˜ÂÂÁ Ò‡ÏÓ„Ó Ò·fl, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl Â„Ó ‡ÒÔÛÚ˚‚‡ÌËfl.
156
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
#-‡ÒÔÛÚ˚‚‡˛˘‡fl ÓÔ‡ˆËfl ‰Ë‡„‡ÏÏ˚ ÛÁ· ä fl‚ÎflÂÚÒfl ‡Ì‡ÎÓ„ÓÏ ‡ÒÔÛÚ˚‚‡˛˘ÂÈ ÓÔ‡ˆËË ‰Îfl #-˜‡ÒÚË ‰Ë‡„‡ÏÏ˚, ÒÓÒÚÓfl˘ÂÈ ËÁ ‰‚Ûı Ô‡ Ô‡‡ÎÎÂθÌ˚ı ÎËÌËÈ, ËÁ ÍÓÚÓ˚ı Ӊ̇ Ô‡‡ ÔË ÔÂÂÒ˜ÂÌËË ÔÓıÓ‰ËÚ Ì‡‰ ‰Û„ÓÈ. í‡ÍËÏ Ó·‡ÁÓÏ, ‡ÒÔÛÚ˚‚‡˛˘Â ‰ÂÈÒÚ‚Ë ËÁÏÂÌflÂÚ ÔÓÎÓÊÂÌË ÔÂÂÒÂ͇˛˘ËıÒfl ÎËÌËÈ ÔÓ ‚˚ÒÓÚ ‚ ͇ʉÓÈ ËÁ ‚¯ËÌ ÔÓÎÛ˜ÂÌÌÓ„Ó ˜ÂÚ˚ÂıÛ„ÓθÌË͇. ÉÓ‰ËÂ‚Ó ‡ÒÒÚÓflÌË ÉÓ‰ËÂ‚Ó ‡ÒÒÚÓflÌË – ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÛÁÎÓ‚, ÓÔ‰ÂÎflÂχfl ‰Îfl ‰‡ÌÌ˚ı ÛÁÎÓ‚ ä Ë K Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ‡ÒÔÛÚ˚‚‡˛˘Ëı ÓÔ‡ˆËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl Ô‚‡˘ÂÌËfl ‰Ë‡„‡ÏÏ˚ ÛÁ· ä ‚ ‰Ë‡„‡ÏÏÛ ÛÁ· K, „‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‰Ë‡„‡ÏÏ‡Ï ÛÁ· ä, ËÁ ÍÓÚÓ˚ı ÏÓÊÌÓ ÔÂÂÈÚË Í ‰Ë‡„‡ÏÏ‡Ï ÛÁ· K. ê‡ÒÔÛÚ˚‚‡˛˘Â ˜ËÒÎÓ ‰Ë‡„‡ÏÏ˚ ۄ· ä ‡‚ÌÓ „Ó‰ËÂ‚Û ‡ÒÒÚÓflÌ˲ ÏÂÊ‰Û ä Ë Ú˂ˇθÌ˚Ï ÛÁÎÓÏ é. èÛÒÚ¸ rK – ÛÁÎÂÎ, ÔÓÎÛ˜ÂÌÌ˚È ËÁ ä Í‡Í Â„Ó ÁÂ͇θÌÓ ÓÚ‡ÊÂÌËÂ Ë ÔÛÒÚ¸ –ä – ÔÓÚË‚ÓÔÓÎÓÊÌÓ ÓËÂÌÚËÓ‚‡ÌÌ˚È ÛÁÎÂÎ. ê‡ÒÒÚÓflÌËÂÏ ÔÓÎÓÊËÚÂθÌÓÈ ÂÙÎÂÍÒËË Re f+(K) ̇Á˚‚‡ÂÚÒfl „Ó‰ËÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ä Ë rK. ê‡ÒÒÚÓflÌËÂÏ ÓÚˈ‡ÚÂθÌÓÈ ÂÙÎÂÍÒËË Re f– (K) ̇Á˚‚‡ÂÚÒfl „Ó‰ËÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ä Ë –r K. àÌ‚ÂÒË‚Ì˚Ï ‡ÒÒÚÓflÌËÂÏ Inv (K) ̇Á˚‚‡ÂÚÒfl „Ó‰ËÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ä Ë –ä. ÉÓ‰ËÂ‚Ó ‡ÒÒÚÓflÌË – ÒÎÛ˜‡È Î = 1 ëk -‡ÒÒÚÓflÌËfl, ÍÓÚÓÓ ‡‚ÌÓ ÏËÌËχθÌÓÏÛ ˜ËÒÎÛ ë k-ıÓ‰Ó‚, Ì·ıÓ‰ËÏÓÏÛ ‰Îfl Ú‡ÌÒÙÓÏËÓ‚‡ÌËfl ä ‚ K; ËÓ Ë ÉÛÒ‡Ó‚ ‰Ó͇Á‡ÎË, ˜ÚÓ ‰Îfl k > 1˜ËÒÎÓ ÓÔ‡ˆËÈ ·Û‰ÂÚ ÍÓ̘Ì˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó·‡ ÛÁ· ËÏÂ˛Ú Ó‰ÌË Ë Ú Ê ËÌ‚‡Ë‡ÌÚ˚ LJÒË肇 ÔÓfl‰Í‡ ÏÂÌ k. ë1 -ıÓ‰ – ˝ÚÓ Ó‰ÌÓ͇ÚÌÓ ËÁÏÂÌÂÌË ÔÂÂÒ˜ÂÌËfl. ë2 -ıÓ‰ (ËÎË ‰Âθڇ-ıÓ‰) – ˝ÚÓ Ó‰ÌÓ‚ÂÏÂÌÌÓ ËÁÏÂÌÂÌË ÔÂÂÒ˜ÂÌËÈ ‰Îfl ÚÂı ÔÓÒÚ˚ı ‰Û„, ÙÓÏËÛ˛˘Ëı ÚÂÛ„ÓθÌËÍ. ë2 - Ë ë3 -‡ÒÒÚÓflÌËfl ̇Á˚‚‡˛ÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‰Âθڇ ‡ÒÒÚÓflÌËÂÏ Ë ‡ÒÒÚÓflÌËÂÏ Á‡ˆÂÔÎÂÌËfl. #-„Ó‰ËÂ‚Ó ‡ÒÒÚÓflÌË #-„Ӊ˂˚Ï ‡ÒÒÚÓflÌËÂÏ (ÒÏ., ̇ÔËÏÂ, [Mura85]) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÛÁÎÓ‚, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl ÛÁÎÓ‚ ä Ë K Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ #-‡ÒÔÛÚ˚‚‡˛˘Ëı ÓÔ‡ˆËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÂıÓ‰‡ ÓÚ ‰Ë‡„‡ÏÏ˚ ÛÁ· ä Í ‰Ë‡„‡ÏÏ ÛÁ· K, „‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‰Ë‡„‡ÏÏ‡Ï ÛÁ· ä, ÍÓÚÓ˚ ÔÂÓ·‡ÁÛ˛ÚÒfl ‚ ‰Ë‡„‡ÏÏ˚ ÛÁ· K. èÛÒÚ¸ rK – ÛÁÂÎ, ÔÓÎÛ˜ÂÌÌ˚È ËÁ ä Í‡Í Â„Ó ÁÂ͇θÌÓ ÓÚ‡ÊÂÌËÂ Ë ÔÛÒÚ¸ –ä – ÔÓÚË‚ÓÔÓÎÓÊÌÓ ÓËÂÌÚËÓ‚‡ÌÌ˚È ÛÁÎÂÎ. ê‡ÒÒÚÓflÌËÂÏ ÔÓÎÓÊËÚÂθÌÓÈ #-ÂÙÎÂÍÒËË Re f+# ( K ) ̇Á˚‚‡ÂÚÒfl #-„Ó‰ËÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ä Ë r K. ê‡ÒÒÚÓflÌËÂÏ ÓÚˈ‡ÚÂθÌÓÈ #-ÂÙÎÂÍÒËË Re f # (K) ̇Á˚‚‡ÂÚÒfl #-„Ó‰ËÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ä Ë –rK; #-ËÌ‚ÂÒË‚Ì˚Ï ‡ÒÒÚÓflÌËÂÏ Inv(K) fl‚ÎflÂÚÒfl #-„Ó‰ËÂ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ä Ë –ä.
É·‚‡ 9
ê‡ÒÒÚÓflÌËfl ̇ ‚˚ÔÛÍÎ˚ı Ú·ı, ÍÓÌÛÒ‡ı Ë ÒËÏÔÎˈˇθÌ˚ı ÍÓÏÔÎÂÍÒ‡ı
9.1. êÄëëíéüçàÖ çÄ Çõèìäãõï íÖãÄï Ç˚ÔÛÍÎ˚Ï ÚÂÎÓÏ ‚ n-ÏÂÌÓÏ Â‚ÍÎˉӂÓÏ ÔÓÒÚ‡ÌÒÚ‚Â N ̇Á˚‚‡ÂÚÒfl ÍÓÏÔ‡ÍÚÌÓ ‚˚ÔÛÍÎÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ‚ N . éÌÓ Ì‡Á˚‚‡ÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚Ï, ÂÒÎË ËÏÂÂÚ ÌÂÔÛÒÚÛ˛ ‚ÌÛÚÂÌÌÓÒÚ¸. é·ÓÁ̇˜ËÏ ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÒÂı ‚˚ÔÛÍÎ˚ı ÚÂÎ ‚ N ˜ÂÂÁ ä, Ë ÔÛÒÚ¸ Kp ·Û‰ÂÚ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‚ÒÂı ÒÓ·ÒÚ‚ÂÌÌ˚ı ‚˚ÔÛÍÎ˚ı ÚÂÎ. ã˛·Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (K, d) ̇ ä ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‚˚ÔÛÍÎ˚ı ÚÂÎ. åÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡ ‚˚ÔÛÍÎ˚ı ÚÂÎ, ‚ ˜‡ÒÚÌÓÒÚË ÏÂÚËÁ‡ˆËfl ÔÓÒ‰ÒÚ‚ÓÏ ı‡ÛÒ‰ÓÙÓ‚ÓÈ ÏÂÚËÍË ËÎË ÏÂÚËÍË ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË, fl‚Îfl˛ÚÒfl ÓÒÌÓ‚ÓÔÓ·„‡˛˘ËÏË ˝ÎÂÏÂÌÚ‡ÏË ‡Ì‡ÎËÁ‡ ‚ ‚˚ÔÛÍÎÓÈ „ÂÓÏÂÚËË (ÒÏ., ̇ÔËÏÂ, [Grub93]). ÑÎfl C, D ∈ K\{∅} ÒÎÓÊÂÌË åËÌÍÓ‚ÒÍÓ„Ó Ë ÛÏÌÓÊÂÌË åËÌÍÓ‚ÒÍÓ„Ó Ì‡ ÌÂÓÚˈ‡ÚÂθÌ˚È Ò͇Îfl ÓÔ‰ÂÎfl˛ÚÒfl Í‡Í ë + D = {x + y: x ∈ C, y ∈ D} Ë αC = = {αx: xC}, α ≥ 0 ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. Ä·Â΂‡ ÔÓÎÛ„ÛÔÔ‡ (K, +), Ò̇·ÊÂÌ̇fl ÓÔ‡ÚÓ‡ÏË ÛÏÌÓÊÂÌËfl ̇ ÌÂÓÚˈ‡ÚÂθÌ˚È Ò͇Îfl, ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ‚˚ÔÛÍÎ˚È ÍÓÌÛÒ. éÔÓ̇fl ÙÛÌ͈Ëfl hC: Sn–1 → ‰Îfl ë ∈ K Á‡‰‡ÂÚÒfl Í‡Í hC (u) = sup{〈u, x 〉 : x ∈ C} ‰Îfl β·Ó„Ó u ∈ Sn–1, „‰Â Sn–1 – (n – 1)-ÏÂ̇fl ‰ËÌ˘̇fl ÒÙ‡ ‚ n Ë 〈,〉 – Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n . ÑÎfl ÏÌÓÊÂÒÚ‚‡ X ⊂ n Â„Ó ‚˚ÔÛÍ·fl Ó·ÓÎӘ͇, conv(X) ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏËÌËχθÌÓ ‚˚ÔÛÍÎÓ ÏÌÓÊÂÒÚ‚Ó, ÍÓÚÓÓÏÛ ï ÔË̇‰ÎÂÊËÚ. éÚÍÎÓÌÂÌË ÔÎÓ˘‡‰Ë éÚÍÎÓÌÂÌË ÔÎÓ˘‡‰Ë (ËÎË ˝Ú‡ÎÓÌ̇fl ÏÂÚË͇) fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â K p ‚ 2 (Ú.Â. ̇ ÏÌÓÊÂÒÚ‚Â ÔÎÓÒÍËı ‚˚ÔÛÍÎ˚ı ‰ËÒÍÓ‚), ÓÔ‰ÂÎÂÌÌÓÈ Í‡Í A(C∆D), „‰Â A( ⋅ ) – ÔÎÓ˘‡‰¸ Ë ∆ – ÒËÏÏÂÚ˘ÂÒ͇fl ‡ÁÌÓÒÚ¸. ÖÒÎË ë ⊂ D, ÚÓ ‚˚‡ÊÂÌË ÔËÌËχÂÚ ‚ˉ A(D) – A(C). éÚÍÓÌÂÌË ÔÂËÏÂÚ‡ éÚÍÎÓÌÂÌË ÔÂËÏÂÚ‡ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ Lp ‚ 2, Á‡‰‡ÌÌÓÈ Í‡Í 2 p(con v(C ∪ D)) − p(C ) − p( D), „‰Â p( ⋅ ) – ÔÂËÏÂÚ. ÑÎfl ÒÎÛ˜‡fl ë ⊂ D ÓÌÓ ‡‚ÌÓ p(D) – p(C). åÂÚË͇ Ò‰ÌÂÈ ¯ËËÌ˚ åÂÚËÍÓÈ Ò‰ÌÂÈ ¯ËËÌ˚ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ Kp ‚ 2, Á‡‰‡Ì̇fl Í‡Í 2W (conv(C ∪ D)) − W (C ) – W ( D), „‰Â W( ⋅ ) – Ò‰Ìflfl ¯ËË̇: W(C) = p(C)/π, ÂÒÎË – ÔÂËÏÂÚ.
158
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
åÂÚË͇ èÓÏÔÂÈ˛–ï‡ÛÒ‰ÓÙ‡–ÅÎfl¯Í åÂÚËÍÓÈ èÓÏÔÂÈ˛–ï‡ÛÒ‰ÓÙ‡–ÅÎfl¯Í (ËÎË ı‡ÛÒ‰ÓÙÓ‚ÓÈ ÏÂÚËÍÓÈ) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ä, Á‡‰‡Ì̇fl Í‡Í max sup inf || y − y ||2 sup inf || x − y ||2 , y ∈D x ∈C x ∈C y ∈D „‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ 2. ç‡ flÁ˚Í ÓÔÓÌ˚ı ÙÛÌ͈ËÈ, ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÒÎÓÊÂÌËfl åËÌÍÓ‚ÒÍÓ„Ó, Ó̇ ËÏÂÂÚ ‚ˉ sup hC (u) − hD (u) = hC − hD
u ∈S
n −1
∞
{
}
= inf λ ≥ 0 : C ⊂ D + λB n , D ⊂ C + λB n ,
„‰Â B n – ‰ËÌ˘Ì˚È ¯‡ ÔÓÒÚ‡ÌÒÚ‚‡ n . чÌÌÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸, ËÒÔÓθÁÛfl β·Û˛ ÌÓÏÛ Ì‡ n ‚ÏÂÒÚÓ Â‚ÍÎˉӂÓÈ. é·Ó·˘‡fl, ÏÓÊÌÓ Ò͇Á‡Ú¸, ˜ÚÓ Ó̇ Á‡‰‡ÂÚÒfl ‰Îfl ÔÓÒÚ‡ÌÒÚ‚‡ Ó„‡Ì˘ÂÌÌ˚ı Á‡ÏÍÌÛÚ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ ÔÓËÁ‚ÓθÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. åÂÚË͇ èÓÏÔÂÈ˛–ù„„ÎÂÒÚÓ̇ åÂÚËÍÓÈ èÓÏÔÂÈ˛–ù„„ÎÂÒÚÓ̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ä, Á‡‰‡Ì̇fl Í‡Í sup inf x − y x ∈C y ∈D
2
+ sup inf x − y 2 , y ∈D x ∈C
„‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ 2. ç‡ flÁ˚Í ÓÔÓÌ˚ı ÙÛÌ͈ËÈ, ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÒÎÓÊÂÌËfl åËÌÍÓ‚ÒÍÓ„Ó, Ó̇ ËÏÂÂÚ ‚ˉ max 0, sup (hC (u) − hD (u)) + max 0, sup (hD (u) − hC (u)) = u ∈S n−1 u ∈S n−1
{
}
{
}
= inf λ ≥ 0 : C ⊂ D + λB n + inf λ ≥ 0 : D ⊂ C + λB n , „‰Â B n – ‰ËÌ˘Ì˚È ¯‡ ÔÓÒÚ‡ÌÒÚ‚‡ n . чÌÌÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸, ËÒÔÓθÁÛfl β·Û˛ ÌÓÏÛ Ì‡ n ‚ÏÂÒÚÓ Â‚ÍÎˉӂÓÈ. é·Ó·˘‡fl, ÏÓÊÌÓ Ò͇Á‡Ú¸, ˜ÚÓ Ó̇ Á‡‰‡ÂÚÒfl ‰Îfl ÔÓÒÚ‡ÌÒÚ‚‡ Ó„‡Ì˘ÂÌÌ˚ı Á‡ÏÍÌÛÚ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ ÔÓËÁ‚ÓθÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. åÂÚË͇ å‡Íäβ‡–ÇËڇΠÑÎfl 1 ≤ ≤ ∞, ÏÂÚËÍÓÈ å‡Íäβ‡–ÇËڇΠ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ä, ÓÔ‰ÂÎÂÌ̇fl Í‡Í p hC (u) − hD (u) dσ(u) n−1 S
∫
1/ p
= hC − hD p .
åÂÚË͇ îÎÓˇ̇ åÂÚË͇ îÎÓˇ̇ ˝ÚÓ ÏÂÚË͇ ̇ ä, Á‡‰‡Ì̇fl ͇Í
∫
S
n −1
hC (u) − hD (u) dσ(u) = hC − hD 1 .
É·‚‡ 9. ê‡ÒÒÚÓflÌËfl ̇ ‚˚ÔÛÍÎ˚ı Ú·ı, ÍÓÌÛÒ‡ı Ë ÒËÏÔÎˈˇθÌ˚ı ÍÓÏÔÎÂÍÒ‡ı
159
é̇ ÏÓÊÂÚ ·˚Ú¸ ‚˚‡ÊÂ̇ ‚ ÙÓÏ 2S(conv(C ∪ D)) – S(C) – S(D) ‰Îfl n = 2 (ÒÏ. éÚÍÎÓÌÂÌË ÔÂËÏÂÚ‡);  ÏÓÊÌÓ Ú‡ÍÊ ‚˚‡ÁËÚ¸ ‚ ÙÓÏ nkn(2W(conv(C ∪ D)) – W(C) – W(D) ‰Îfl n ≥ 2 (ÒÏ. åÂÚË͇ Ò‰ÌÂÈ ¯ËËÌ˚). á‰ÂÒ¸ S( ⋅ ) – ÔÎÓ˘‡‰¸ ÔÓ‚ÂıÌÓÒÚË, kn – Ó·˙ÂÏ Â‰ËÌ˘ÌÓ„Ó ¯‡‡ B n ‚ n Ë W( ⋅ ) – Ò‰Ìflfl ¯ËË̇: 1 W (C ) = (hC (u) + hC (– u))dσ(u). nkn n−1
∫
S
ê‡ÒÒÚÓflÌË ëÓ·Ó΂‡ ê‡ÒÒÚÓflÌË ëÓ·Ó΂‡ – ÏÂÚË͇ ̇ ä, ÓÔ‰ÂÎÂÌ̇fl Í‡Í hC − hD
w
,
„‰Â || ⋅ ||w – 1-ÌÓχ ëÓ·Ó΂‡ ̇ ÏÌÓÊÂÒÚ‚Â CS n−1 ‚ÒÂı ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ Ì‡ ‰ËÌ˘ÌÓÈ ÒÙ S n–1 ÔÓÒÚ‡ÌÒÚ‚‡ n . 1-ÌÓχ ëÓ·Ó΂‡ Á‡‰‡ÂÚÒfl Í‡Í f ‚‰ÂÌË ̇ CS n−1 , Á‡‰‡ÌÌÓÂ Í‡Í 〈 f , g〉 w =
∫
w
= 〈 f , f 〉1w/ 2 , „‰Â 〈 , 〉w – Ò͇ÎflÌÓ ÔÓËÁ-
( fg + ∇ s ( f , g))dw0 , w0 =
S n −1
1 w, n ⋅ kn
∇ s ( f , g) = 〈grad s f , grad s g〉, 〈 , 〉 – Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË ̇ n Ë grads – „‡‰ËÂÌÚ Ì‡ Sn–1 (ÒÏ. [ArWe92]). åÂÚË͇ òÂÔ‡‰‡ åÂÚËÍÓÈ òÂÔ‡‰‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ä, Á‡‰‡Ì̇fl Í‡Í ln(1 + 2 inf{λ ≥ 0 : C ⊂ D + λ( D − D), D ⊂ C + λ(C − C )}). åÂÚË͇ çËÍÓ‰Ëχ åÂÚË͇ çËÍÓ‰Ëχ (ËÎË ÏÂÚË͇ ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË) fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ä, Á‡‰‡ÌÌÓÈ Í‡Í V(C∆D), „‰Â V( ⋅ ) – Ó·˙ÂÏ (Ú.Â. η„ӂ‡ n-ÏÂ̇fl χ) Ë ∆ – ÒËÏÏÂÚ˘ÂÒ͇fl ‡ÁÌÓÒÚ¸. ÑÎfl n = 2 ÔÓÎÛ˜‡ÂÏ ÓÚÍÎÓÌÂÌË ÔÎÓ˘‡‰Ë. åÂÚË͇ òÚÂÈÌ„‡ÛÒ‡ åÂÚË͇ òÚÂÈÌ„‡ÛÁ‡ (ËÎË Ó‰ÌÓӉ̇fl ÏÂÚË͇ ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË ‡ÒÒÚÓflÌË òÚÂÈÌ„‡ÛÒ‡) fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ Kp, Á‡‰‡ÌÌÓÈ Í‡Í V (C∆D) , V (C ∪ D) d∆ (C, D) , „‰Â d∆ ÂÒÚ¸ ÏÂÚË͇ çËÍÓV (C ∪ D) ‰Ëχ. ùÚ‡ ÏÂÚË͇ Ó„‡Ì˘Â̇; Ó̇ ‡ÙÙËÌÌÓ ËÌ‚‡Ë‡ÌÚ̇, ‚ ÚÓ ‚ÂÏfl Í‡Í ÏÂÚË͇ çËÍÓ‰Ëχ ËÌ‚‡Ë‡ÌÚ̇ ÚÓθÍÓ ÓÚÌÓÒËÚÂθÌÓ ÒÓı‡Ìfl˛˘Ëı Ó·˙ÂÏ ‡ÙÙËÌÌ˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ.
„‰Â V( ⋅ ) – Ó·˙ÂÏ. í‡ÍËÏ Ó·‡ÁÓÏ, Ó̇ ‡‚̇
160
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ê‡ÒÒÚÓflÌË ù„„ÎÂÒÚÓ̇ ê‡ÒÒÚÓflÌËÂÏ ù„„ÎÂÒÚÓ̇ (ËÎË ÒËÏÏÂÚ˘ÂÒÍËÏ ÓÚÍÎÓÌÂÌËÂÏ ÔÎÓ˘‡‰Ë ÔÓ‚ÂıÌÓÒÚË) ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ K p , ÓÔ‰ÂÎflÂÏÓÂ Í‡Í S(C ∪ D) – S(C ∩ D), „‰Â S( ⋅ ) – ÔÎÓ˘‡‰¸ ÔÓ‚ÂıÌÓÒÚË. чÌÌÓ ‡ÒÒÚÓflÌË ÏÂÚËÍÓÈ Ì fl‚ÎflÂÚÒfl. åÂÚË͇ ÄÒÔÎÛ̉‡ åÂÚËÍÓÈ ÄÒÔÎÛ̉‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÔÓÒÚ‡ÌÒÚ‚Â K p /≈ Í·ÒÒÓ‚ ‡ÙÙËÌÌÓÈ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ‚ K p , ÓÔ‰ÂÎflÂχfl Í‡Í ln inf{λ ≥ 1 : ∃T : n → n ‡ÙÙËÌ̇, x ∈ n , C ⊂ T ( D) ⊂ λC + x}, ‰Îfl β·˚ı Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË Ë Ò Ô‰ÒÚ‡‚ËÚÂÎflÏË ë* Ë D * ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. åÂÚË͇ å‡Í·ÂÚ‡ åÂÚË͇ å‡Í·ÂÚ‡ – ÏÂÚË͇ ̇ ÔÓÒÚ‡ÌÒÚ‚Â K p /≈ Í·ÒÒÓ‚ ‡ÙÙËÌÌÓÈ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ‚ Kp , ÓÔ‰ÂÎflÂχfl Í‡Í ln inf{|det T ⋅ P|: ∃T, P: n → n „ÛÎflÌÓ ‡ÙÙËÌÌÓÂ, C ⊂ T(D), D ⊂ P(C)} ‰Îfl β·˚ı Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ë* Ë D* Ò Ô‰ÒÚ‡‚ËÚÂÎflÏË ë Ë D, ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. Ö ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Ú‡Í ÊÂ, Í‡Í ln δ1 (C, D) + ln δ1 ( D, C ), V (T ( D)) ; C ⊂ T ( D) Ë í ÂÒÚ¸ „ÛÎflÌÓ ‡ÙÙËÌÌÓ ÓÚÓ·‡ÊÂÌË „‰Â δ1 (C, D) = inf T V (C ) n ̇ Ò·fl. åÂÚË͇ Ň̇ı‡–å‡ÁÛ‡ åÂÚËÍÓÈ Å‡Ì‡ı‡–å‡ÁÛ‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÔÓÒÚ‡ÌÒÚ‚Â K p /≈ Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ÒÓ·ÒÚ‚ÂÌÌ˚ı ˆÂÌڇθÌÓ-ÒËÏÏÂÚ˘Ì˚ı ‚˚ÔÛÍÎ˚ı ÚÂÎ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÎËÌÂÈÌ˚Ï ÔÂÓ·‡ÁÓ‚‡ÌËflÏ, ÓÔ‰ÂÎflÂχfl Í‡Í ln inf{λ ≥ 1: ∃T: n → n ÎËÌÂÈÌÓÂ, C ⊂ T(D) ⊂ λC)} ‰Îfl β·˚ı Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ë* Ë D* Ë Ò Ô‰ÒÚ‡‚ËÚÂÎflÏË ë Ë D ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ùÚ‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl ÓÒÓ·˚Ï ÒÎÛ˜‡ÂÏ ‡ÒÒÚÓflÌËfl Ň̇ı‡–å‡ÁÛ‡ ÏÂÊ‰Û n-ÏÂÌ˚ÏË ÌÓÏËÓ‚‡ÌÌ˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË. ê‡Á‰ÂÎfl˛˘Â ‡ÒÒÚÓflÌË ê‡Á‰ÂÎfl˛˘Â ‡ÒÒÚÓflÌË ÂÒÚ¸ ÏËÌËχθÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÌÂÔÂÂÒÂ͇˛˘ËÏËÒfl ‚˚ÔÛÍÎ˚ÏË Ú·ÏË C Ë D ‚ n (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â, ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ÌÂÔÂÂÒÂ͇˛˘ËÏËÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË n ): inf x − y 2 : x ∈ C, y ∈ D ; ÔË ˝ÚÓÏ sup x − y 2 : x ∈ C, y ∈ D ̇Á˚‚‡ÂÚÒfl ÔÂÂÍ˚‚‡˛˘ËÏ ‡ÒÒÚÓflÌËÂÏ.
{
}
{
}
ê‡ÒÒÚÓflÌË „ÎÛ·ËÌ˚ ÔÓÌËÍÌÓ‚ÂÌËfl ê‡ÒÒÚÓflÌË „ÎÛ·ËÌ˚ ÔÓÌËÍÌÓ‚ÂÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ‚Á‡ËÏÌÓ ÔÓÌË͇˛˘ËÏË ‚˚ÔÛÍÎ˚ÏË Ú·ÏË C Ë D ‚ n (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â, ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ‚Á‡ËÏÌÓ
É·‚‡ 9. ê‡ÒÒÚÓflÌËfl ̇ ‚˚ÔÛÍÎ˚ı Ú·ı, ÍÓÌÛÒ‡ı Ë ÒËÏÔÎˈˇθÌ˚ı ÍÓÏÔÎÂÍÒ‡ı
161
ÔÓÌË͇˛˘ËÏË ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË ÏÌÓÊÂÒÚ‚‡ n ) ÂÒÚ¸ ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË ÔÂÂÌÓÒ‡ Ó‰ÌÓ„Ó Ú· ÓÚÌÓÒËÚÂθÌÓ ‰Û„Ó„Ó Ú‡Í, ˜ÚÓ·˚ ‚ÌÛÚÂÌÌÓÒÚË C Ë D ÒÚ‡ÎË ÌÂÔÂÂÒÂ͇˛˘ËÏËÒfl: min{|| t ||2 : interior (C + t ) ∩ D = 0/ }. ùÚÓ ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ÂÒÚÂÒÚ‚ÂÌÌ˚Ï Ó·Ó˘ÂÌÌÓÏ Â‚ÍÎˉӂ‡ ‡Á‰ÂÎfl˛˘Â„Ó ‡ÒÒÚÓflÌËfl ‰Îfl ÌÂÔÂÂÒÂ͇˛˘ËıÒfl Ó·˙ÂÍÚÓ‚ ̇ ÒÎÛ˜‡È ÔÂÂÍ˚‚‡˛˘ËıÒfl Ó·˙ÂÍÚÓ‚. чÌÌÓ ‡ÒÒÚÓflÌË ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ Í‡Í inf{d(C, D + x): x ∈ n} ËÎË infsd(C, s(D)), „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÔÓ‰Ó·ËflÏ s: n → n ËÎË…, „‰Â d – Ӊ̇ ËÁ Û͇Á‡ÌÌ˚ı ‚˚¯Â ÏÂÚËÍ. ê‡ÒÒÚÓflÌË ÔÓfl‰Í‡ ÓÒÚ‡ ÑÎfl ‚˚ÔÛÍÎ˚ı ÏÌÓ„Ó„‡ÌÌËÍÓ‚ ‡ÒÒÚÓflÌË ÔÓfl‰Í‡ ÓÒÚ‡ (ÒÏ. ÔÓ‰Ó·Ì [GiOn96]) ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‚Â΢Ë̇ ̇ ÍÓÚÓÛ˛ Ó·˙ÂÍÚ˚ ‰ÓÎÊÌ˚ Û‚Â΢ËÚ¸Òfl ÓÚÌÓÒËÚÂθÌÓ Ëı ̇˜‡Î¸ÌÓ„Ó ‡Áχ ‰Ó ÏÓÏÂÌÚ‡ ÒÓÔËÍÓÒÌÓ‚ÂÌËfl ÔÓ‚ÂıÌÓÒÚflÏË. ê‡ÁÌÓÒÚ¸ åËÌÍÓ‚ÒÍÓ„Ó ê‡ÁÌÓÒÚ¸ åËÌÍÓ‚ÒÍÓ„Ó Ì‡ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÍÓÏÔ‡ÍÚÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚, ‚ ˜‡ÒÚÌÓÒÚË Ì‡ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÒÍÛθÔÚÛÌ˚ı Ó·˙ÂÍÚÓ‚ (ËÎË Ó·˙ÂÍÚÓ‚ ÔÓËÁ‚ÓθÌÓÈ ÙÓÏ˚) ‚ 3 , ÓÔ‰ÂÎflÂÚÒfl Í‡Í A – B = {x – y: x ∈ A, y ∈ B}. ÖÒÎË Ò˜ËÚ‡Ú¸ Ç Ò‚Ó·Ó‰ÌÓ ÔÂÂÏ¢‡˛˘ËÏÒfl Ë Ëϲ˘ËÏ ÔÓÒÚÓflÌÌÛ˛ ÓËÂÌÚ‡ˆË² Ó·˙ÂÍÚÓÏ, ÚÓ ‡ÁÌÓÒÚ¸˛ åËÌÍÓ‚ÒÍÓ„Ó fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚Ó, ÍÓÚÓÓ ÒÓ‰ÂÊËÚ ‚Ò ÔÂÂÌÓÒ˚ Ç, ‚ÎÂÍÛ˘Ë ÔÂÂÒ˜ÂÌËÂ Ò Ä. ÅÎËʇȯ‡fl ÚӘ͇ ÓÚ „‡Ìˈ˚ ‡ÁÌÓÒÚË åËÌÍÓ‚ÒÍÓ„Ó ∂(A – B) ‰Ó ̇˜‡Î‡ ÍÓÓ‰ËÌ‡Ú ‰‡ÂÚ ‡Á‰ÂÎfl˛˘Â ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ä Ë Ç. ÖÒÎË Ó·‡ Ó·˙ÂÍÚ‡ ÔÂÂÒÂ͇˛ÚÒfl, ÚÓ Ì‡˜‡ÎÓ ÍÓÓ‰ËÌ‡Ú ÎÂÊËÚ ‚ÌÛÚË ‡ÁÌÓÒÚË åËÌÍÓ‚ÒÍÓ„Ó Ë ÔÓÎÛ˜ÂÌÌÓ ‡ÒÒÚÓflÌË ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ‡ÒÒÚÓflÌË „ÎÛ·ËÌ˚ ÔÓÌËÍÌÓ‚ÂÌËfl. å‡ÍÒËχθÌÓ ‡ÒÒÚÓflÌË ÏÌÓ„ÓÛ„ÓθÌË͇ å‡ÍÒËχθÌÓ ‡ÒÒÚÓflÌË ÏÌÓ„ÓÛ„ÓθÌË͇ – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ‚˚ÔÛÍÎ˚ÏË ÏÌÓ„ÓÛ„ÓθÌË͇ÏË P = (p1 , ..., pn ) Ë Q = (q1 , ..., qn ), ÓÔ‰ÂÎflÂÏÓÂ Í‡Í max pi − q j , i, j
2
i ∈{1,..., n}, j ∈{1,..., m}.
„‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ. ê‡ÒÒÚÓflÌË ÉÂ̇̉‡ èÛÒÚ¸ P = (p1 , ..., pn ) Ë Q = (q1 , ..., qn ) – ‰‚‡ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ‚˚ÔÛÍÎ˚ı ÏÌÓ„ÓÛ„ÓθÌË͇ Ë l(pi, q j), l(pm, q l), – ‰‚ ÔÂÂÒÂ͇˛˘ËÂÒfl ÍËÚ˘ÂÒÍË ÓÔÓÌ˚ ÎËÌËË ‰Îfl P Ë Q. íÓ„‰‡ ‡ÒÒÚÓflÌË ÉÂ̇̉‡ ÏÂÊ‰Û P Ë Q ÓÔ‰ÂÎËÚÒfl Í‡Í || pi − q j ||2 + || pm − ql ||2 − Σ( pi , pm ) − Σ( g j , gl ), „‰Â ||⋅||2 – ‚ÍÎˉӂ‡ ÌÓχ Ë Σ(pi, pm) – ÒÛÏχ ‰ÎËÌ Â·Â ÎÓχÌÓÈ pi,..., pm. á‰ÂÒ¸ P = (p1 ,..., pn ) – ‚˚ÔÛÍÎ˚È ÏÌÓ„ÓÛ„ÓθÌËÍ Ò ‚¯Ë̇ÏË ‚ Òڇ̉‡ÚÌÓÈ ÙÓÏÂ, Ú.Â. ‚¯ËÌ˚ Û͇Á˚‚‡˛ÚÒfl ‚ ÒËÒÚÂÏ ‰Â͇ÚÓ‚˚ı ÍÓÓ‰ËÌ‡Ú ‚ ̇ԇ‚ÎÂÌËË ÔÓ ˜‡ÒÓ‚ÓÈ ÒÚÂÎÍÂ Ë ÔË ˝ÚÓÏ ÌÂÚ ÚÂı ÔÓÒΉӂ‡ÚÂθÌ˚ı ÍÓÎÎË̇Ì˚ı ‚¯ËÌ. èflχfl l fl‚ÎflÂÚÒfl ÓÔÓÌÓÈ ÔflÏÓÈ ‰Îfl ê, ÂÒÎË ÏÌÓÊÂÒÚ‚Ó ‚ÌÛÚÂÌÌËı ÚÓ˜ÂÍ ê
162
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ÔÓÎÌÓÒÚ¸˛ ÎÂÊËÚ ÔÓ Ó‰ÌÛ ÒÚÓÓÌÛ ÓÚ l. ÖÒÎË ËϲÚÒfl ‰‚‡ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÏÌÓ„ÓÛ„ÓθÌË͇ ê Ë Q, ÚÓ Ôflχfl l(pi, qj) ·Û‰ÂÚ ÍËÚ˘ÂÒÍÓÈ ÓÔÓÌÓÈ ÔflÏÓÈ, ÂÒÎË Ó̇ fl‚ÎflÂÚÒfl ÓÔÓÌÓÈ ÔflÏÓÈ ‰Îfl ê ‚ pi, ÓÔÓÌÓÈ ÔflÏÓÈ ‰Îfl Q ‚ qj, ÔË ˝ÚÓÏ ê Ë Q ÎÂÊ‡Ú ÔÓ ‡ÁÌ˚ ÒÚÓÓÌ˚ ÓÚ l(pi, qj). 9.2. êÄëëíéüçàü çÄ äéçìëÄï Ç˚ÔÛÍÎ˚Ï ÍÓÌÛÒÓÏ ë ‚ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V ̇Á˚‚‡ÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ë ÏÌÓÊÂÒÚ‚‡ V, Ú‡ÍÓ ˜ÚÓ C + C ⊂ C, λC ⊂ C ‰Îfl β·Ó„Ó λ ≥ 0 Ë C ∩ (–C) = {0}. äÓÌÛÒ ë ÔÓÓʉ‡ÂÚ ˜‡ÒÚ˘Ì˚È ÔÓfl‰ÓÍ Ì‡ V ÔÓ Á‡ÍÓÌÛ xp − y ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ y – x ∈ C. èÓfl‰ÓÍ p − ÔÓ‰˜ËÌflÂÚÒfl ‚ÂÍÚÓÌÓÈ ÒÚÛÍÚÛ V, Ú.Â., ÂÒÎË x p −y Ë z p − u, ÚÓ p p p x + z − y + u, Ë ÂÒÎË x − y, ÚÓ λx − λy, λ ∈ , λ ≥ 0. ùÎÂÏÂÌÚ˚ x, y ∈ V ̇Á˚‚‡˛ÚÒfl Ò‡‚ÌËÚÂθÌ˚ÏË, ÚÓ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í x ~ y, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ÔÓÎÓÊËÚÂθÌ˚ ‰ÂÈÒÚ‚ËÚÂθÌ˚ ˜ËÒ· α Ë β, Ú‡ÍË ˜ÚÓ αy p −xp − βy. 뇂ÌËÏÓÒÚ¸ fl‚ÎflÂÚÒfl ÓÚÌÓ¯ÂÌËÂÏ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË:  Í·ÒÒ˚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË (ÔË̇‰ÎÂʇ˘Ë ë ËÎË –ë) ̇Á˚‚‡˛ÚÒfl ˜‡ÒÚflÏË (ËÎË ÍÓÏÔÓÌÂÌÚ‡ÏË, ÒÓÒÚ‡‚Ì˚ÏË ˜‡ÒÚflÏË). ÑÎfl ‚˚ÔÛÍÎÓ„Ó ÍÓÌÛÒ‡ ë ÔÓ‰ÏÌÓÊÂÒÚ‚Ó S = {x ∈ C: T(x) = 1}, „‰Â T: V → ÂÒÚ¸ ÌÂÍÓÚÓ˚È ÔÓÎÓÊËÚÂθÌ˚È ÎËÌÂÈÌ˚È ÙÛÌ͈ËÓ̇Î, ̇Á˚‚‡ÂÚÒfl ÔÓÔ˜Ì˚Ï Ò˜ÂÌËÂÏ ÍÓÌÛÒ‡ ë. Ç˚ÔÛÍÎ˚È ÍÓÌÛÒ ë ̇Á˚‚‡ÂÚÒfl ÔÓ˜ÚË ‡ıËωӂ˚Ï, ÂÒÎË Á‡Ï˚͇ÌËÂ Â„Ó ÒÛÊÂÌËfl ̇ β·Ó ‰‚ÛÏÂÌÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó Ú‡ÍÊ fl‚ÎflÂÚÒfl ÍÓÌÛÒÓÏ. íÓÏÒÓÌÓ‚Ò͇fl ÏÂÚË͇ ˜‡ÒÚÂÈ èÛÒÚ¸ ë – ‚˚ÔÛÍÎ˚È ÍÓÌÛÒ ‚ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V. íÓÏÒÓÌÓ‚Ò͇fl ÏÂÚË͇ ˜‡ÒÚÂÈ Ì‡ ˜‡ÒÚË K ⊂ C\{0} Á‡‰‡ÂÚÒfl Í‡Í ln max{m(x, y), m(y, x)} ‰Îfl β·˚ı x, y ∈ K, „‰Â m(x, y) = inf{λ ∈ : y p − λx}. ÖÒÎË ÍÓÌÛÒ ë ÔÓ˜ÚË ‡ıËωӂ, ÚÓ ˜‡ÒÚ¸ ä, Ò̇·ÊÂÌ̇fl ÚÓÏÒÓÌÓ‚ÒÍÓÈ ÏÂÚËÍÓÈ ˜‡ÒÚÂÈ, fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÖÒÎË ÍÓÌÛÒ ë ÍÓ̘ÌÓÏÂÂÌ, ÚÓ Ï˚ ÔÓÎÛ˜‡ÂÏ ıÓ‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó, Ú.Â. ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ÍÓÚÓÓÏ ËÏÂÂÚÒfl ‚˚‰ÂÎÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó „ÂÓ‰ÂÁ˘ÂÒÍËı, Û‰Ó‚ÎÂÚ‚Ófl˛˘Ëı ÓÔ‰ÂÎÂÌÌ˚Ï ‡ÍÒËÓχÏ. èÓÎÓÊËÚÂθÌ˚È ÍÓÌÛÒ n+ = {( x1 , …, x n ) : xi ≥ 0 ‰Îfl 1 ≤ i < n, Ò̇·ÊÂÌÌ˚È íÓÏÒÓÌÓ‚ÓÒÍÓÈ ÏÂÚËÍÓÈ ˜‡ÒÚÂÈ, ËÁÓÏÂÚ˘ÂÌ ÌÓÏËÓ‚‡ÌÌÓÏÛ ÔÓÒÚ‡ÌÒÚ‚Û, ÍÓÚÓÓ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÔÎÓÒÍÓÂ. ÖÒÎË ‚ÁflÚ¸ Á‡ÏÍÌÛÚ˚È ÍÓÌÛÒ ë ‚ n Ò ÌÂÔÛÒÚÓÈ ‚ÌÛÚÂÌÌÓÒÚ¸˛, ÚÓ ‚ÌÛÚÂÌÌÓÒÚ¸ ÍÓÌÛÒ‡ intC ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í n-ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË Mn . ÖÒÎË ‰Îfl β·Ó„Ó Í‡Ò‡ÚÂθÌÓ„Ó ‚ÂÍÚÓ‡ v ∈ Tp(M n ), p ∈ M n Á‡‰‡Ì‡ ÌÓχ || v ||Tp = inf{α > 0 : n − αp p −vp − αp}, ÚÓ ‰ÎËÌa β·ÓÈ ÍÛÒÓ˜ÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓÈ ÍË‚ÓÈ γ: [0, 1] → M 1
ÏÓÊÂÚ ·˚Ú¸ Á‡ÔËÒ‡ÌÓ Í‡Í l( γ ) =
∫ 0
|| γ ′(t ) ||Tγ ( t ) dt, a ‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë Û ·Û‰ÂÚ
‡‚ÌÓ infγl(γ), „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ Ú‡ÍËÏ ÍË‚˚Ï γ Ò γ(0) = ı Ë γ(1) = Û.
É·‚‡ 9. ê‡ÒÒÚÓflÌËfl ̇ ‚˚ÔÛÍÎ˚ı Ú·ı, ÍÓÌÛÒ‡ı Ë ÒËÏÔÎˈˇθÌ˚ı ÍÓÏÔÎÂÍÒ‡ı
163
ÉËθ·ÂÚÓ‚‡ ÔÓÂÍÚ˂̇fl ÔÓÎÛÏÂÚË͇ ÑÎfl ‚˚ÔÛÍÎÓ„Ó ÍÓÌÛÒ‡ ë ‚ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V „Ëθ·ÂÚÓ‚‡ ÔÓÂÍÚ˂̇fl ÔÓÎÛÏÂÚË͇ ÂÒÚ¸ ÔÓÎÛÏÂÚË͇ ̇ C\{0}, Á‡‰‡‚‡Âχfl Í‡Í ln(m(x, y) ⋅ m(y, x)) ‰Îfl β·˚ı x, y ∈ C\{0}, „‰Â m( x, y) = inf{λ ∈ : y p − λx}. . é̇ ‡‚̇ 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = λy ‰Îfl ÌÂÍÓÚÓ˚ı λ > 0, Ë ÒÚ‡ÌÓ‚ËÚÒfl ÏÂÚËÍÓÈ Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â ÎÛ˜ÂÈ ÍÓÌÛÒ‡. ÖÒÎË ÍÓÌÛÒ ë ÍÓ̘ÌÓÏÂÂÌ, ‡ S fl‚ÎflÂÚÒfl ÔÓÔ˜Ì˚Ï Ò˜ÂÌËÂÏ ë (‚ ˜‡ÒÚÌÓÒÚË, S = {x ∈ C: ||x|| = 1}, „‰Â ||⋅|| – ÌÓχ ̇ V), ÚÓ ‰Îfl β·˚ı ‡Á΢Ì˚ı ÚÓ˜ÂÍ x, y ∈ S ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË ‡‚ÌÓ |ln(x, y, z, t)|, „‰Â z, t – ÚÓ˜ÍË ÔÂÂÒ˜ÂÌËfl ÎËÌËË lx,y Ò „‡ÌˈÂÈ S Ë (x, y, z, t) – ‡Ì„‡ÏÓÌ˘ÂÒÍÓ ÓÚÌÓ¯ÂÌË ÚÓ˜ÂÍ x, y, z, t. ÖÒÎË ÍÓÌÛÒ ë ÔÓ˜ÚË ‡ıËωӂ Ë ÍÓ̘ÌÓÏÂÂÌ, ÚÓ Í‡Ê‰‡fl ˜‡ÒÚ¸ ÍÓÌÛÒ‡ ë fl‚ÎflÂÚÒfl ıÓ‰Ó‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÓÚÌÓÒËÚÂθÌÓ „Ëθ·ÂÚÓ‚ÓÈ ÔÓÂÍÚË‚ÌÓÈ ÏÂÚËÍË. äÓÌÛÒ ãÓÂ̈‡ {(t, x1 , …, x n ) ∈ n +1 : t 2 > x12 + ... + x n2}, Ò̇·ÊÂÌÌ˚È „Ëθ·ÂÚÓ‚ÓÈ ÔÓÂÍÚË‚ÌÓÈ ÏÂÚËÍÓÈ, ËÁÓÏÂÚ˘ÂÌ n-ÏÂÌÓÏÛ „ËÔ·Ó΢ÂÒÍÓÏÛ ÔÓÒÚ‡ÌÒÚ‚Û. èÓÎÓÊËÚÂθÌ˚È ÍÓÌÛÒ n+ = {( x1 , … x n ) : xi ≥ 0 ‰Îfl 1 ≤ i ≤ n, Ò̇·ÊÂÌÌ˚È „Ëθ·ÂÚÓ‚ÓÈ ÔÓÂÍÚË‚ÌÓÈ ÏÂÚËÍÓÈ, ËÁÓÏÂÚ˘ÂÌ ÌÓÏËÓ‚‡ÌÌÓÏÛ ÔÓÒÚ‡ÌÒÚ‚Û, ÍÓÚÓÓ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÔÎÓÒÍÓÂ. ÖÒÎË ‚ÁflÚ¸ Á‡ÏÍÌÛÚ˚È ÍÓÌÛÒ ë ‚ n Ò ÌÂÔÛÒÚÓÈ ‚ÌÛÚÂÌÌÓÒÚ¸˛, ÚÓ ‚ÌÛÚÂÌÌÓÒÚ¸ ÍÓÌÛÒ‡ intC ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í n-ÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁË Mn . ÖÒÎË ‰Îfl β·Ó„Ó Í‡Ò‡ÚÂθÌÓ„Ó ‚ÂÍÚÓ‡ v ∈ T p (M n ) Á‡‰‡Ì‡ ÔÓÎÛÌÓχ || v || Hp = m( p, v) − m( v, p), ÚÓ ‰ÎËÌa β·ÓÈ ÍÛÒÓ˜ÌÓ ‰ËÙÙÂÂ̈ËÛÂÏÓÈ ÍË‚ÓÈ γ : [0, 1] → M n ‡‚̇ 1
l( γ ) =
∫
|| γ ′(t ) ||γH( t ) dt, a ‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë Û ‡‚ÌÓ infγl(γ), „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl
0
ÔÓ ‚ÒÂÏ Ú‡ÍËÏ ÍË‚˚Ï γ Ò γ(0) = ı Ë γ(1) = Û. åÂÚË͇ ÅÛ¯ÂÎfl ÇÓÁ¸ÏÂÏ ‚˚ÔÛÍÎ˚È ÍÓÌÛÒ ë ‚ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â V. åÂÚn | xi | = 1 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ β·ÓÏ Ë͇ ÅÛ¯ÂÎfl ̇ ÏÌÓÊÂÒÚ‚Â S = x ∈ C : i =1 ÔÓÔ˜ÌÓÏ Ò˜ÂÌËË ÍÓÌÛÒ‡ ë) Á‡‰‡ÂÚÒfl ͇Í
∑
1 − m( x, y) ⋅ m( y, x ) 1 + m( x, y) ⋅ m( y, x ) ‰Îfl β·˚ı x, y ∈ S , „‰Â m( x, y) = inf{λ ∈ : y p − λx}. àÏÂÌÌÓ, Ó̇ ‡‚̇ 1 tg h h( x, y) , „‰Â h – „Ëθ·ÂÚÓ‚‡ ÔÓÂÍÚ˂̇fl ÔÓÎÛÏÂÚË͇. 2 k-ÓËÂÌÚËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË ëËÏÔÎˈˇθÌ˚È ÍÓÌÛÒ ë ‚ n ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÔÂÂÒ˜ÂÌË n (ÓÚÍ˚Ú˚ı ËÎË Á‡ÏÍÌÛÚ˚ı) ÔÓÎÛÔÓÒÚ‡ÌÒÚ‚, ͇ʉ‡fl ËÁ ÓÔÓÌ˚ı ÔÎÓÒÍÓÒÚÂÈ ÍÓÚÓ˚ı ÔÓıÓ‰ËÚ ˜ÂÂÁ ̇˜‡ÎÓ ÍÓÓ‰Ë̇Ú. ÑÎfl β·Ó„Ó ÏÌÓÊÂÒÚ‚‡ ï, ÒÓÒÚÓfl˘Â„Ó ËÁ n ÚÓ˜ÂÍ Ì‡ ‰ËÌ˘ÌÓÈ ÒÙÂÂ, ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌÌ˚È ÒËÏÔÎˈˇθÌ˚È ÍÓÌÛÒ ë, ÒÓ‰Âʇ˘ËÈ ‚Ò ˝ÚË ÚÓ˜ÍË. éÒË ÍÓÌÛÒ‡ ë – n ÎÛ˜ÂÈ, „‰Â ͇ʉ˚È ÎÛ˜ ËÒıÓ‰ËÚ ËÁ ̇˜‡Î‡ ÍÓÓ‰ËÌ‡Ú Ë ÒÓ‰ÂÊËÚ Ó‰ÌÛ ËÁ ÚÓ˜ÂÍ ÏÌÓÊÂÒÚ‚‡ ï.
164
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
ÑÎfl ‡Á·ËÂÌËfl {C1,..., Ck} ÔÓÒÚ‡ÌÒÚ‚‡ n ̇ ÏÌÓÊÂÒÚ‚Ó ÒËÏÔÎˈˇθÌ˚ı ÍÓÌÛÒÓ‚ C 1 ,..., Ck k-ÓËÂÌÚËÓ‚‡ÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ n, Á‡‰‡Ì̇fl Í‡Í dk(x – y) ‰Îfl ‚ÒÂı x, y ∈ n, „‰Â ‰Îfl β·Ó„Ó x ∈ Ci Á̇˜ÂÌË dk(x) ÂÒÚ¸ ‰ÎË̇ ̇Ë͇ژ‡È¯Â„Ó ÔÛÚË ÓÚ Ì‡˜‡Î‡ ÍÓÓ‰ËÌ‡Ú ‰Ó ÚÓ˜ÍË ı ÔË ÔÂÂÏ¢ÂÌËË ÚÓθÍÓ ÔÓ Ì‡Ô‡‚ÎÂÌËflÏ, Ô‡‡ÎÎÂθÌ˚Ï ÓÒflÏ ÍÓÌÛÒ‡ ë. åÂÚËÍË ÍÓÌÛÒ‡ äÓÌÛÒÓÏ Con(X, d) ̇‰ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (X, d) ̇Á˚‚‡ÂÚÒfl Ù‡ÍÚÓÔÓËÁ‚‰ÂÌË X × ≥0 , ÔÓÎÛ˜ÂÌÌÓ ÓÚÓʉÂÒÚ‚ÎÂÌËÂÏ ‚ÒÂı ÚÓ˜ÂÍ ÌËÚË X × {0}. íӘ͇, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÏÌÓÊÂÒÚ‚Û X × {0}, ̇Á˚‚‡ÂÚÒfl ‚¯ËÌÓÈ ÍÓÌÛÒ‡. åÂÚË͇ ‚ÍÎˉӂ‡ ÍÓÌÛÒ‡ – ÏÂÚË͇ ̇ Con(X), Á‡‰‡Ì̇fl ‰Îfl β·˚ı (x, y), (y, s) ∈ Con(X, d) Í‡Í t 2 + s 2 − 2ts cos(min{d ( x, y), π}). äÓÌÛÒ Con(X, d) Ò ˝ÚÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ‚ÍÎˉӂ˚Ï ÍÓÌÛÒÓÏ Ì‡‰ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (X, d). ÖÒÎË (X, d) – ÍÓÏÔ‡ÍÚÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‰Ë‡ÏÂÚ‡ <2, ÚÓ ÏÂÚËÍÓÈ ä‡ÍÛÒ‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ Con(X, d), ÓÔ‰ÂÎflÂχfl ‰Îfl β·˚ı (x, y) , (y, s) ∈ Con(X, d) Í‡Í min{s, t}d(x, y) + | t – s |. äÓÌÛÒ Con(X, d) Ò ÏÂÚËÍÓÈ ä‡ÍÛÒ‡ ‰ÓÔÛÒ͇ÂÚ ÒÛ˘ÂÒÚ‚Ó‚‡ÌË ‰ËÌÒÚ‚ÂÌÌÓÈ Ò‰ËÌÌÓÈ ÚÓ˜ÍË ‰Îfl ͇ʉÓÈ Ô‡˚ Â„Ó ÚÓ˜ÂÍ, ÂÒÎË (X, d) ӷ·‰‡ÂÚ Ú‡ÍËÏ Ò‚ÓÈÒÚ‚ÓÏ. ÖÒÎË M n fl‚ÎflÂÚcfl ÏÌÓ„ÓÓ·‡ÁËÂÏ Ò (ÔÒ‚‰Ó)ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ g, ÚÓ ÏÓÊÌÓ 1 ‡ÒÒχÚË‚‡Ú¸ ÏÂÚËÍÛ dr2 + r 2 g (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ÏÂÚËÍÛ dr 2 + r 2 g, k ≠ 0) ̇ k Con(Mn ) = Mn × >0. åÂÚË͇ ‚Á‚ÂÒË ëÙ¢ÂÒÍËÈ ÍÓÌÛÒ (ËÎË ‚Á‚ÂÒ¸) Σ(X) ̇‰ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (X, d) ÂÒÚ¸ Ù‡ÍÚÓ-ÔÓËÁ‚‰ÂÌË X × [0, a], ÔÓÎÛ˜ÂÌÌÓ ÓÚÓʉÂÒÚ‚ÎÂÌËÂÏ ‚ÒÂı ÚÓ˜ÂÍ ÌËÚÂÈ X × {0} Ë X × {a}. ÖÒÎË (X, d) fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰ÎËÌ˚ c ‰Ë‡ÏÂÚÓÏ diam(X) ≤ π Ë a = π, ÚÓ ÏÂÚËÍÓÈ ‚Á‚ÂÒË Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ Σ(X), Á‡‰‡Ì̇fl ‰Îfl β·˚ı (x, y), y, s) ∈ Σ(X) Í‡Í arccos(costcoss + sintsinscosd(x, y)). 9.3. êÄëëíéüçàü çÄ ëàåèãàñàÄãúçõï äéåèãÖäëÄï r-åÂÌ˚È ÒËÏÔÎÂÍÒ (ËÎË „ÂÓÏÂÚ˘ÂÒÍËÈ ÒËÏÔÎÂÍÒ, „ËÔÂÚÂÚ‡˝‰) Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ‚˚ÔÛÍÎÛ˛ Ó·ÓÎÓ˜ÍÛ r + 1 ÚÓ˜ÂÍ ËÁ n, ÍÓÚÓ˚ Ì ÔË̇‰ÎÂÊ‡Ú ÌË͇ÍÓÈ (r – 1)-ÔÎÓÒÍÓÒÚË. ëËÏÔÎÂÍÒ ÔÓÎÛ˜ËÎ Ò‚Ó ̇Á‚‡ÌË ÔÓÚÓÏÛ, ˜ÚÓ Ó·ÓÁ̇˜‡ÂÚ ÔÓÒÚÂȯËÈ ‚ÓÁÏÓÊÌ˚È ‚˚ÔÛÍÎ˚È ÏÌÓ„Ó„‡ÌÌËÍ ‚ β·ÓÏ Á‡‰‡ÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â. r (r + 1) ɇÌˈ‡ r-ÒËÏÔÎÂÍÒ‡ ËÏÂÂÚ r + 1 0-„‡ÌÂÈ (‚¯ËÌ ÏÌÓ„Ó„‡ÌÌË͇), 12
165
É·‚‡ 9. ê‡ÒÒÚÓflÌËfl ̇ ‚˚ÔÛÍÎ˚ı Ú·ı, ÍÓÌÛÒ‡ı Ë ÒËÏÔÎˈˇθÌ˚ı ÍÓÏÔÎÂÍÒ‡ı
r + 1 r „‡ÌÂÈ (· ÏÌÓ„Ó„‡ÌÌË͇) Ë i-„‡ÌÂÈ, „‰Â – ·ËÌÓÏˇθÌ˚È ÍÓ˝Ù i + 1 i ÙˈËÂÌÚ. ÇÏÂÒÚËÏÓÒÚ¸ (Ú.Â. ÏÌÓ„ÓÏÂÌ˚È Ó·˙eÏ) ÒËÏÔÎÂÍÒ‡ ÏÓÊÂÚ ·˚Ú¸ ‚˚˜ËÒÎÂ̇ Ò ÔÓÏÓ˘¸˛ ÓÔ‰ÂÎËÚÂÎfl ä˝ÎË–åÂ̄‡. 臂ËθÌ˚È r-ÏÂÌ˚È ÒËÏÔÎÂÍÒ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í αr. ÉÛ·Ó „Ó‚Ófl, „ÂÓÏÂÚ˘ÂÒÍËÈ ÒËÏÔÎˈˇθÌ˚È ÍÓÏÔÎÂÍÒ – ÔÓÒÚ‡ÌÒÚ‚Ó Ò Úˇ̄ÛÎflˆËÂÈ, Ú.Â. ‡Á·ËÂÌËÂÏ Â„Ó Ì‡ Á‡ÏÍÌÛÚ˚ ÒËÏÔÎÂÍÒ˚ Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ Î˛·˚ ‰‚‡ ÒËÏÔÎÂÍÒ‡ ÎË·Ó ‚ÓÓ·˘Â Ì ÔÂÂÒÂ͇˛ÚÒfl, ÎË·Ó ÔÂÂÒÂ͇˛ÚÒfl ÔÓ Ó·˘ÂÈ „‡ÌË. Ä·ÒÚ‡ÍÚÌ˚È ÒËÏÔÎˈˇθÌ˚È ÍÓÏÔÎÂÍÒ S – ÏÌÓÊÂÒÚ‚Ó Ò ˝ÎÂÏÂÌÚ‡ÏË, ̇Á˚‚‡ÂÏ˚ÏË ‚¯Ë̇ÏË, ‚ ÍÓÚÓ˚ı ‚˚‰ÂÎÂÌÓ ÒÂÏÂÈÒÚ‚Ó ÌÂÔÛÒÚ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚, ̇Á˚‚‡ÂÏ˚ı ÒËÏÔÎÂÍÒ‡ÏË, Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ Í‡Ê‰Ó ÌÂÔÛÒÚÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÒËÏÔÎÂÍÒ‡ s fl‚ÎflÂÚÒfl ÒËÏÔÎÂÍÒÓÏ, ̇Á˚‚‡ÂÏ˚Ï „‡Ì¸˛ s, Ë Í‡Ê‰Ó ӉÌÓ˝ÎÂÏÂÌÚÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó fl‚ÎflÂÚÒfl ÒËÏÔÎÂÍÒÓÏ. ëËÏÔÎÂÍÒ Ì‡Á˚‚‡ÂÚÒfl i-ÏÂÌ˚Ï, ÂÒÎË ÒÓÒÚÓËÚ ËÁ i + 1 ‚¯ËÌ. ê‡ÁÏÂÌÓÒÚ¸˛ S fl‚ÎflÂÚÒfl χÍÒËχθ̇fl ‡ÁÏÂÌÓÒÚ¸ Â„Ó ÒËÏÔÎÂÍÒÓ‚. ÑÎfl Í‡Ê‰Ó„Ó ÒËÏÔÎˈˇθÌÓ„Ó ÍÓÏÔÎÂÍÒ‡ S ÒÛ˘ÂÒÚ‚ÛÂÚ Úˇ̄ÛÎflˆËfl ÏÌÓ„Ó„‡ÌÌË͇, ‰Îfl ÍÓÚÓÓÈ S fl‚ÎflÂÚÒfl ÒËÏÔÎˈˇθÌ˚Ï ÍÓÏÔÎÂÍÒÓÏ. í‡ÍÓÈ „ÂÓÏÂÚ˘ÂÒÍËÈ ÒËÏÔÎˈˇθÌ˚È ÍÓÏÔÎÂÍÒ Ó·ÓÁ̇˜‡ÂÚÒfl GS Ë Ì‡Á˚‚‡ÂÚÒfl „ÂÓÏÂÚ˘ÂÒÍÓÈ Â‡ÎËÁ‡ˆËÂÈ S. ëËÏÔÎˈˇθ̇fl ÏÂÚË͇ èÛÒÚ¸ S – ‡·ÒÚ‡ÍÚÌ˚È ÒËÏÔÎˈˇθÌ˚È ÍÓÏÔÎÂÍÒ Ë GS – „ÂÓÏÂÚ˘ÂÒÍËÈ ÒËÏÔÎˈˇθÌ˚È ÍÓÏÔÎÂÍÒ, fl‚Îfl˛˘ËÈÒfl „ÂÓÏÂÚ˘ÂÒÍÓÈ Â‡ÎËÁ‡ˆËÂÈ S. íÓ˜ÍË GS ÏÓÊÌÓ ÓÚÓʉÂÒÚ‚ËÚ¸ Ò ÙÛÌ͈ËflÏË α: S → [0, 1], ‰Îfl ÍÓÚÓ˚ı ÏÌÓÊÂÒÚ‚Ó {x ∈ S: α(x) ≠ 0} fl‚ÎflÂÚÒfl ÒËÏÔÎÂÍÒÓÏ ‚ S Ë α( x ) = 1. óËÒÎÓ α(x) ̇Á˚‚‡ÂÚÒfl ı-È
∑ x ∈S
·‡ËˆÂÌÚ˘ÂÒÍÓÈ ÍÓÓ‰Ë̇ÚÓÈ α. ëËÏÔÎˈˇθ̇fl ÏÂÚË͇ – ÏÂÚË͇, Á‡‰‡Ì̇fl ̇ GS ͇Í
∑
(α( x ) − β( x ))2 .
x ∈S
åÌÓ„Ó„‡Ì̇fl ÏÂÚË͇ åÌÓ„Ó„‡ÌÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ Ò‚flÁÌÓ„Ó „ÂÓÏÂÚ˘ÂÒÍÓ„Ó ÒËÏÔÎˈˇθÌÓ„Ó ÍÓÏÔÎÂÍÒ‡ ‚ n, ‚ ÍÓÚÓÓÏ ÓÚÓʉÂÒÚ‚ÎÂÌÌ˚ „‡Ìˈ˚ ËÁÓÏÂÚ˘Ì˚ àÏÂÌÌÓ, Ó̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í ËÌÙËÏÛÏ ‰ÎËÌ ‚ÒÂı ÎÓχÌ˚ı ÎËÌËÈ, ÒÓ‰ËÌfl˛˘Ëı ÚÓ˜ÍË ı Ë Û Ú‡Í, ˜ÚÓ Í‡Ê‰Ó ËÁ Á‚Â̸‚ ÔË̇‰ÎÂÊËÚ Ó‰ÌÓÏÛ ËÁ ÒËÏÔÎÂÍÒÓ‚. èËÏÂÓÏ ÏÌÓ„Ó„‡ÌÌÓÈ ÏÂÚËÍË fl‚ÎflÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÔÓ‚ÂıÌÓÒÚË ÏÌÓ„Ó„‡ÌÌË͇ ‚ n . åÌÓ„Ó„‡ÌÌÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ ̇ ÍÓÏÔÎÂÍÒ ÒËÏÔÎÂÍÒÓ‚ ‚ ÔÓÒÚ‡ÌÒÚ‚Â ÔÓÒÚÓflÌÌÓÈ ÍË‚ËÁÌ˚. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÏÌÓ„Ó„‡ÌÌ˚ ÏÂÚËÍË ‡ÒÒχÚË‚‡˛ÚÒfl ‰Îfl ÍÓÏÔÎÂÍÒÓ‚, fl‚Îfl˛˘ËıÒfl ÏÌÓ„ÓÓ·‡ÁËflÏË ËÎË ÏÌÓ„ÓÓ·‡ÁËflÏË Ò Í‡ÂÏ. åÂÚË͇ ÔÓÎË˝‰‡Î¸Ì˚ı ˆÂÔÂÈ m
r-åÂ̇fl ÔÓÎË˝‰‡Î¸Ì‡fl ˆÂÔ¸ Ä ‚ n Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ‚˚‡ÊÂÌËÂÏ
∑ ditir , i =1
„‰Â ‰Îfl β·Ó„Ó i ‚Â΢Ë̇ tir fl‚ÎflÂÚÒfl r-ÏÂÌ˚Ï ÒËÏÔÎÂÍÒÓÏ ‚ n . ɇÌˈÂÈ ˆÂÔË
166
ó‡ÒÚ¸ II. ÉÂÓÏÂÚËfl ‡ÒÒÚÓflÌËfl
fl‚ÎflÂÚÒfl ÎËÌÂÈ̇fl ÍÓÏ·Ë̇ˆËfl „‡Ìˈ ÒËÏÔÎÂÍÒÓ‚ ˆÂÔË. ɇÌˈÂÈ r-ÏÂÌÓÈ ÔÓÎË˝‰‡Î¸ÌÓÈ ˆÂÔË fl‚ÎflÂÚÒfl (r – 1)-ÏÂ̇fl ˆÂÔ¸. åÂÚËÍÓÈ ÔÓÎË˝‰‡Î¸Ì˚ı ˆÂÔÂÈ fl‚ÎflÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ || A – B || ̇ ÏÌÓÊÂÒÚ‚Â Cr( n ) ‚ÒÂı r-ÏÂÌ˚ı ÔÓÎË˝‰‡Î¸Ì˚ı ˆÂÔÂÈ. Ç Í‡˜ÂÒÚ‚Â ÌÓÏ˚ ̇ C r( n ) ÏÓÊÂÚ ·˚Ú¸ ÔËÌflÚ‡. m
1. å‡ÒÒ‡ ÔÓÎË˝‰‡Î¸ÌÓÈ ˆÂÔË, Ú.Â. | A |=
∑
| di | | tir |, „‰Â | t r | – Ó·˙ÂÏ Á‚Â̇ tir .
i =1
2. ÅÂÏÓθ̇fl ÌÓχ ÔÓÎË˝‰‡Î¸ÌÓÈ ˆÂÔË, Ú.Â. | A |b = inf D {| A − ∂D | + | D |}, „‰Â | D | – χÒÒ‡ D , ∂D – „‡Ìˈ‡ D Ë ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ (r + 1)-ÏÂÌ˚Ï ÔÓÎË˝‰‡Î¸Ì˚Ï ˆÂÔflÏ; ÔÓÔÓÎÌÂÌË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (Crb (n ), | ⋅ |b ) ·ÂÏÓθÌÓÈ ÌÓÏÓÈ fl‚ÎflÂÚÒfl ÒÂÔ‡‡·ÂθÌ˚Ï ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ó·ÓÁ̇˜‡ÂÏ˚Ï Í‡Í Crb (n ), Â„Ó ˝ÎÂÏÂÌÚ˚ ËÁ‚ÂÒÚÌ˚ Í‡Í r-ÏÂÌ˚ ·ÂÏÓθÌ˚ ÔÎÓÒÍË ˆÂÔË. 3. ÑËÂÁ̇fl ÌÓχ ÔÓÎË˝‰‡Î¸ÌÓÈ ˆÂÔË, Ú.Â. b | A | = inf
m
∑ i =1
| di | | tir | | vi | r +1
m
+
∑ di Tv tir i =1
i
b
,
„‰Â | A | b – ·ÂÏÓθ̇fl ÌÓχ Ä Ë ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ Ò‰‚Ë„‡Ï v (Á‰ÂÒ¸ Tytr – Á‚ÂÌÓ, ÔÓÎÛ˜ÂÌÌÓ ÔÂÂÏ¢ÂÌËÂÏ tr ̇ ‚ÂÍÚÓ v ‰ÎËÌ˚ | v |); ÔÓÔÓÎÌÂÌË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (Cr (n ),| ⋅ | # ) ‰ËÂÁÌÓÈ ÌÓÏÓÈ fl‚ÎflÂÚÒfl ÒÂÔ‡‡·ÂθÌ˚Ï ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ó·ÓÁ̇˜‡ÂÏ˚Ï Í‡Í Cr# (n ), Â„Ó ˝ÎÂÏÂÌÚ˚ ̇Á˚‚‡˛ÚÒfl r-ÏÂÌ˚ÏË ‰ËÂÁÌ˚ÏË ÔÎÓÒÍËÏË ˆÂÔflÏË. ÅÂÏÓθ̇fl ˆÂÔ¸ ÍÓ̘ÌÓÈ Ï‡ÒÒ˚ fl‚ÎflÂÚÒfl ‰ËÂÁÌÓÈ. ÖÒÎË r = 0, ÚÓ | A |b =| A | # . åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓÎË˝‰‡Î¸Ì˚ı ÍÓˆÂÔÂÈ (Ú.Â. ÎËÌÂÈÌ˚ı ÙÛÌ͈ËÈ ÔÓÎË˝‰‡Î¸Ì˚ı ˆÂÔÂÈ) ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡ÌÓ ‡Ì‡Îӄ˘Ì˚Ï ÒÔÓÒÓ·ÓÏ. Ç Í‡˜ÂÒÚ‚Â ÌÓÏ˚ ÔÓÎË˝‰‡Î¸ÌÓÈ ÍÓˆÂÔË ï ÏÓÊÂÚ ·˚Ú¸ ÔËÌflÚ‡: 1. äÓχÒÒ‡ ÔÓÎË˝‰‡Î¸ÌÓÈ ÍÓˆÂÔË, Ú.Â. | X(A) , „‰Â ï(Ä) – Á̇˜ÂÌË ÍÓˆÂÔË ï ̇ ˆÂÔË Ä. 2. ÅÂÏÓθ̇fl ÍÓÌÓχ ÔÓÎË˝‰‡Î¸ÌÓÈ ÍÓˆÂÔË, Ú.Â. | X |b = sup| A| b =1{X ( A) | . 3. ÑËÂÁ̇fl ÍÓÌÓχ ÔÓÎË˝‰‡Î¸ÌÓÈ ÍÓˆÂÔË, Ú.Â. | X | # = sup| A| # =1 | X ( A) | .
ó‡ÒÚ¸ III
êÄëëíéüçàü Ç äãÄëëàóÖëäéâ åÄíÖåÄíàäÖ
É·‚‡ 10
ê‡ÒÒÚÓflÌËfl ‚ ‡Î„·Â
10.1. åÖíêàäà çÄ ÉêìèèÄï ÉÛÔÔÓÈ (G, ⋅, e) ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó G Ò ·Ë̇ÌÓÈ ÓÔ‡ˆËÂÈ ⋅, ÍÓÚÓ‡fl ̇Á˚‚‡ÂÚÒfl „ÛÔÔÓ‚ÓÈ ÓÔ‡ˆËÂÈ, ÒÓ‚ÏÂÒÚÌÓ Û‰Ó‚ÎÂÚ‚Ófl˛˘Ë ˜ÂÚ˚ÂÏ ÙÛ̉‡ÏÂÌڇθÌ˚Ï Ò‚ÓÈÒÚ‚‡Ï Á‡Ï˚͇ÌËfl (x ⋅ y ∈ G ‰Îfl β·˚ı x, y ∈ G), ‡ÒÒӈˇÚË‚ÌÓÒÚË (x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z ‰Îfl β·˚ı x, y, z ∈ G), ÒÛ˘ÂÒÚ‚Ó‚‡ÌËfl ‰ËÌ˘ÌÓ„Ó ˝ÎÂÏÂÌÚ‡ (x ⋅ e = e ⋅ x = x ‰Îfl β·Ó„Ó x ∈ G ) Ë ÒÛ˘ÂÒÚ‚Ó‚‡ÌËfl Ó·‡ÚÌÓ„Ó ˝ÎÂÏÂÌÚ‡ (‰Îfl β·Ó„Ó x ∈ G ÒÛ˘ÂÒÚ‚ÛÂÚ x–1 ∈ G, Ú‡ÍÓÈ ˜ÚÓ x ⋅ x–1 = x–1 ⋅ x = e). Ç ‡‰‰ËÚË‚ÌÓÈ ÙÓÏ Á‡ÔËÒË „ÛÔÔ‡ (G, +, 0) fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ G Ò Ú‡ÍÓÈ ·Ë̇ÌÓÈ ÓÔ‡ˆËÂÈ +, ˜ÚÓ ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: x + y ∈ G ‰Îfl β·˚ı x, y ∈ G , x + (y + z) = = (x + y) + z ‰Îfl β·˚ı x, y, z ∈ G, x + 0 = 0 + x ‰Îfl β·Ó„Ó x ∈ G, ‰Îfl β·Ó„Ó x ∈ G ÒÛ˘ÂÒÚ‚ÛÂÚ –x ∈ G, Ú‡ÍÓÈ ˜ÚÓ x + (–x) = (–x) + x = 0. ÉÛÔÔ‡ (G, ⋅, e) ̇Á˚‚‡ÂÚÒfl ÍÓ̘ÌÓÈ, ÂÒÎË ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó G. ÉÛÔÔ‡ (G, ⋅, e) ̇Á˚‚‡ÂÚÒfl ‡·Â΂ÓÈ, ÂÒÎË Ó̇ ÍÓÏÏÛÚ‡Ú˂̇, Ú.Â. ‡‚ÂÌÒÚ‚Ó x ⋅ y = y ⋅ x ÒÔ‡‚‰ÎË‚Ó ‰Îfl β·˚ı x, y ∈ G. åÌÓ„Ë ËÁ ‡ÒÒχÚË‚‡ÂÏ˚ı ‚ ‰‡ÌÌÓÏ ‡Á‰ÂΠÏÂÚËÍ fl‚Îfl˛ÚÒfl ÏÂÚËÍÓÈ ÌÓÏ˚ „ÛÔÔ˚ ̇ „ÛÔÔ (G, ⋅, e), Á‡‰‡ÌÌÓÈ Í‡Í || x ⋅ y–1 || –1 (ËÎË, ËÌÓ„‰‡, Í‡Í || y ⋅ x ||), „‰Â || ⋅ || – ÌÓχ „ÛÔÔ˚, Ú.Â. ÙÛÌ͈Ëfl || ⋅ ||: G → , ڇ͇fl ˜ÚÓ ‰Îfl β·˚ı x, y ∈ G ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: 1) || x || ≥ 0, Ò || x || = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = e; 2) || x || = || x–1 ||; 3) || x ⋅ y || ≤ || x || + | y || (̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇). Ç ‡‰‰ËÚË‚ÌÓÈ ÙÓÏ Á‡ÔËÒË ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇ „ÛÔÔ (G, +, 0) ÓÔ‰ÂÎflÂÚÒfl Í‡Í || x + (–y) || = || x – y || ËÎË ËÌÓ„‰‡ Í‡Í || (–y) + x ||. èÓÒÚÂȯËÏ ÔËÏÂÓÏ ÏÂÚËÍË ÌÓÏ˚ „ÛÔÔ˚ fl‚ÎflÂÚÒfl ·ËËÌ‚‡Ë‡ÌÚ̇fl ÛθڇÏÂÚË͇ (ËÌÓ„‰‡  ̇Á˚‚‡˛Ú ı˝ÏÏËÌ„Ó‚ÓÈ ÏÂÚËÍÓÈ) || x ⋅ y–1 ||H, „‰Â || x ||H = 1 ‰Îfl x ≠ e Ë || e ||H = 0. ÅËËÌ‚‡Ë‡ÌÚ̇fl ÏÂÚË͇ åÂÚË͇ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â – ÔÓÎÛÏÂÚË͇) d ̇ „ÛÔÔ (G , ⋅ , e) ̇Á˚‚‡ÂÚÒfl ·ËËÌ‚‡Ë‡ÌÚÌÓÈ, ÂÒÎË ‡‚ÂÌÒÚ‚Ó d(x, y) = d(x ⋅ z, y ⋅ z) = d(z ⋅ x, z ⋅ y) ÒÔ‡‚‰ÎË‚Ó ‰Îfl β·˚ı x, y, z ∈ G (ÒÏ. àÌ‚‡Ë‡ÌÚ̇fl ÏÂÚË͇ ÔÂÂÌÓÒ‡). ã˛·‡fl ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇ ‡·Â΂ÓÈ „ÛÔÔ fl‚ÎflÂÚÒfl ·Ë‚‡Ë‡ÌÚÌÓÈ. åÂÚË͇ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â – ÔÓÎÛÏÂÚË͇) d ̇ „ÛÔÔ (G, ⋅, e) ̇Á˚‚‡ÂÚÒfl Ô‡‚ÓËÌ‚‡Ë‡ÌÚÌÓÈ, ÂÒÎË ‡‚ÂÌÒÚ‚Ó d(x, y) = d (z ⋅ x , z ⋅ y) ÒÔ‡‚‰ÎË‚Ó ‰Îfl β·˚ı x, y, z ∈ G, Ú.Â. ÓÔ‡ˆËfl Ô‡‚Ó„Ó ÛÏÌÓÊÂÌËfl ̇ ˝ÎÂÏÂÌÚ z fl‚ÎflÂÚÒfl ‰‚ËÊÂÌËÂÏ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (G, d). ã˛·‡fl ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚, ÓÔ‰ÂÎflÂχfl Í‡Í || x ⋅ y–1 ||, fl‚ÎflÂÚÒfl Ô‡‚ÓËÌ‚‡Ë‡ÌÚÌÓÈ.
169
É·‚‡ 10. ê‡ÒÒÚÓflÌËfl ‚ ‡Î„·Â
åÂÚË͇ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â – ÔÓÎÛÏÂÚË͇) d ̇ „ÛÔÔ (G, ⋅, e) ̇Á˚‚‡ÂÚÒfl ΂ÓËÌ‚‡Ë‡ÌÚÌÓÈ, ÂÒÎË ‡‚ÂÌÒÚ‚Ó d(x, y) = d (z ⋅ x , z ⋅ y) ÒÔ‡‚‰ÎË‚Ó ‰Îfl β·˚ı x, y, z ∈ G, Ú.Â. ÓÔ‡ˆËfl ÎÂ‚Ó„Ó ÛÏÌÓÊÂÌËfl ̇ ˝ÎÂÏÂÌÚ z fl‚ÎflÂÚÒfl ‰‚ËÊÂÌËÂÏ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (G, d). ã˛·‡fl ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚, ÓÔ‰ÂÎflÂχfl Í‡Í || y ⋅ x–1 ||, fl‚ÎflÂÚÒfl ΂ÓËÌ‚‡Ë‡ÌÚÌÓÈ. ã˛·‡fl Ô‡‚Ó‚‡Ë‡ÌÚ̇fl, ‡‚ÌÓ Í‡Í Ë Î‚ÓËÌ‚‡Ë‡ÌÚ̇fl, ‚ ˜‡ÒÚÌÓÒÚË, β·‡fl ·ËËÌ‚‡Ë‡ÌÚ̇fl ÏÂÚË͇ d ̇ G fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ÌÓÏ˚ „ÛÔÔ˚, ÔÓÒÍÓθÍÛ ÌÓÏÛ „ÛÔÔ˚ ̇ G ÏÓÊÌÓ Á‡‰‡Ú¸ Í‡Í || x || = d(x, 0). èÓÎÓÊËÚÂθÌÓ Ó‰ÌÓӉ̇fl ÏÂÚË͇ åÂÚË͇ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â – ‡ÒÒÚÓflÌËÂ) d ̇ ‡·Â΂ÓÈ „ÛÔÔ (G, +, 0) ̇Á˚‚‡ÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ Ó‰ÌÓÓ‰ÌÓÈ, ÂÒÎË ‡‚ÂÌÒÚ‚Ó d(mx, my) = md(x, y) ÒÔ‡‚‰ÎË‚Ó ‰Îfl ‚ÒÂı x, y ∈ G Ë ‚ÒÂı m ∈ , „‰Â mx – ÒÛÏχ m ˝ÎÂÏÂÌÚÓ‚, ͇ʉ˚È ËÁ ÍÓÚÓ˚ı ‡‚ÂÌ ı. ÑËÒÍÂÚ̇fl ÔÂÂÌÓÒ‡ ÏÂÚË͇ åÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â – ÔÓÎÛÏÂÚË͇ ÔÓÎÛÌÓÏ˚ „ÛÔÔ˚) ̇ „ÛÔÔ (G , ⋅ , e) ̇Á˚‚‡ÂÚÒfl ‰ËÒÍÂÚÌÓÈ ÏÂÚËÍÓÈ ÔÂÂÌÓÒ‡, ÂÒÎË ‡ÒÒÚÓflÌËfl ÔÂÂÌÓÒ‡ (ËÎË ˜ËÒ· ÔÂÂÌÓÒ‡) || x n || n →∞ n
τ G ( x ) = lim
˝ÎÂÏÂÌÚÓ‚ ı ·ÂÁ ÍÛ˜ÂÌËfl (Ú.Â. Ú‡ÍËı, ˜ÚÓ xn ≠ e ‰Îfl β·Ó„Ó n ∈ ) ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ˝ÚÓÈ ÏÂÚËÍ fl‚Îfl˛ÚÒfl ÓÚ‰ÂÎÂÌÌ˚ÏË ÓÚ ÌÛÎfl. ÖÒÎË ˜ËÒ· τ G(x) fl‚Îfl˛ÚÒfl ÌÂÌÛ΂˚ÏË, ÚÓ Ú‡Í‡fl ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇Á˚‚‡ÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌÓÈ ÏÂÚËÍÓÈ ÔÂÂÌÓÒ‡. ëÎÓ‚‡Ì‡fl ÏÂÚË͇ èÛÒÚ¸ (G, ⋅, e) – ÍÓ̘ÌÓ ÔÓÓʉÂÌ̇fl „ÛÔÔ‡ Ò ÏÌÓÊÂÒÚ‚ÓÏ Ä ÔÓÓʉ‡˛˘Ëı ˝ÎÂÏÂÌÚÓ‚. ëÎÓ‚‡Ì‡fl ‰ÎË̇ wWA ( x ) ˝ÎÂÏÂÌÚ‡ x ∈ G\{e} ÓÔ‰ÂÎflÂÚÒfl Í‡Í wWA ( x ) = inf{r : x = a1a1 ...arar , ai ∈ A, ei ∈{±1}}, Ë wWA (e) = 0. ëÎÓ‚‡Ì‡fl ÏÂÚË͇ dWA , ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÏÌÓÊÂÒÚ‚Û Ä, ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇ G, ÓÔ‰ÂÎflÂχfl Í‡Í wWA ( x ⋅ y −1 ), í‡Í Í‡Í ÒÎÓ‚‡Ì‡fl ‰ÎË̇ wWA fl‚ÎflÂÚÒfl ÌÓÏÓÈ „ÛÔÔ˚ ̇ G, ÚÓ dWA Ô‡‚ÓËÌ‚‡Ë‡ÌÚ̇. àÌÓ„‰‡ Ó̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í wWA ( y −1 ⋅ x ), Ë ÚÓ„‰‡ Ó̇ ÒÚ‡ÌÓ‚ËÚÒfl ΂ÓËÌ‚‡Ë‡ÌÚÌÓÈ. àÏÂÌÌÓ, dWA – ˝ÚÓ Ï‡ÍÒËχθ̇fl ÏÂÚË͇ ̇ G, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl Ô‡‚Ó‚‡Ë‡ÌÚÌÓÈ Ë Ó·Î‡‰‡ÂÚ ÚÂÏ Ò‚ÓÈÒÚ‚ÓÏ, ˜ÚÓ ‡ÒÒÚÓflÌË ÓÚ Î˛·Ó„Ó ˝ÎÂÏÂÌÚ‡ ËÁ Ä ËÎË ËÁ Ä–1 ‰Ó ‰ËÌ˘ÌÓ„Ó ˝ÎÂÏÂÌÚ‡  ‡‚ÌÓ Â‰ËÌˈÂ. ÖÒÎË Ä Ë Ç – ‰‚‡ ÍÓ̘Ì˚ı ÏÌÓÊÂÒÚ‚‡ ÔÓÓʉ‡˛˘Ëı ˝ÎÂÏÂÌÚÓ‚ „ÛÔÔ˚ (G, ⋅, e), ÚÓ ÚÓʉÂÒÚ‚ÂÌÌÓ ÓÚÓ·‡ÊÂÌË ÏÂÊ‰Û ÏÂÚ˘ÂÒÍËÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË (G, dWA ) Ë
170
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
(G, dWB ) fl‚ÎflÂÚÒfl Í‚‡ÁËËÁÓÏÂÚËÂÈ, Ú.Â. ÒÎÓ‚‡Ì‡fl ÏÂÚË͇ ‰ËÌÒÚ‚ÂÌa Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó Í‚‡ÁËËÁÓÏÂÚËË. ëÎÓ‚‡Ì‡fl ÏÂÚË͇ – ÏÂÚË͇ ÔÛÚË „‡Ù‡ ä˝ÎË É „ÛÔÔ˚ (G, ⋅, e), ÔÓÒÚÓÂÌÌÓ„Ó ÓÚÌÓÒËÚÂθÌÓ Ä. àÏÂÌÌÓ, É fl‚ÎflÂÚÒfl „‡ÙÓÏ Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ G, ‚ ÍÓÚÓÓÏ ‰‚ ‚¯ËÌ˚ ı Ë y ∈ G ÒÓ‰ËÌÂÌ˚ ·ÓÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ y = aεx, ε = ±1, a ∈ A. ÇÁ‚¯ÂÌ̇fl ÒÎÓ‚‡Ì‡fl ÏÂÚË͇ èÛÒÚ¸ (G, ⋅, e) – ÍÓ̘ÌÓ ÔÓÓʉÂÌ̇fl „ÛÔÔ‡ Ò ÏÌÓÊÂÒÚ‚ÓÏ Ä ÔÓÓʉ‡˛˘Ëı ˝ÎÂÏÂÌÚÓ‚. ÖÒÎË ËÏÂÂÚÒfl Ó„‡Ì˘ÂÌ̇fl ‚ÂÒÓ‚‡fl ÙÛÌ͈Ëfl w: A → (0, ∞ ), ÚÓ A ‚Á‚¯ÂÌ̇fl ÒÎÓ‚‡Ì‡fl ‰ÎË̇ wWW ( x ) ˝ÎÂÏÂÌÚ‡ x ∈ G\{e} ÓÔ‰ÂÎflÂÚÒfl Í‡Í t A wWW ( x ) = inf w( ai ), t ∈ : x = a1e1 ...atet , ai ∈ A, ei ∈{±1} , i =1
∑
A Ë wWW (e) = 0. A , ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl Ä, ÂÒÚ¸ ÏÂÚË͇ ÇÁ‚¯ÂÌ̇fl ÒÎÓ‚‡Ì‡fl ÏÂÚË͇ dWW ÌÓÏ˚ „ÛÔÔ˚ ̇ G, ÓÔ‰ÂÎÂÌ̇fl Í‡Í A ( x ⋅ y −1 ). wWW A èÓÒÍÓθÍÛ ‚Á‚¯ÂÌ̇fl ÒÎÓ‚‡Ì‡fl ‰ÎË̇ wWW fl‚ÎflÂÚÒfl ÌÓÏÓÈ „ÛÔÔ˚ ̇ G, ÚÓ A A dWW ·Û‰ÂÚ Ô‡‚ÓËÌ‚‡Ë‡ÌÚÌÓÈ. àÌÓ„‰‡ Ó̇ Á‡‰‡ÂÚÒfl Í‡Í wWW ( y −1 ⋅ x ) Ë ‚ ˝ÚÓÏ ÒÎÛ˜‡Â Ó̇ fl‚ÎflÂÚÒfl ΂ÓËÌ‚‡Ë‡ÌÚÌÓÈ. A åÂÚË͇ dWW fl‚ÎflÂÚÒfl ÒÛÔÂÏÛÏÓÏ ÔÓÎÛÏÂÚËÍ d ̇ G, ӷ·‰‡˛˘Ëı Ò‚ÓÈÒÚ‚ÓÏ d(e, a) ≤ w(a) ‰Îfl β·Ó„Ó a ∈ A. A åÂÚË͇ dWW fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ÛÔÓ˘ÂÌÌÓ„Ó ÔÛÚË, Ë Í‡Ê‰‡fl Ô‡‚ÓËÌ‚‡Ë‡ÌÚ̇fl ÏÂÚË͇ ÛÔÓ˘ÂÌÌÓ„Ó ÔÛÚË fl‚ÎflÂÚÒfl ‚ÂÒÓ‚ÓÈ ÒÎÓ‚‡ÌÓÈ ÏÂÚËÍÓÈ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó „Û·ÓÈ ËÁÓÏÂÚËË. A åÂÚË͇ dWW fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ÔÛÚË ‚Á‚¯ÂÌÌÓ„Ó „‡Ù‡ ä˝ÎË ÉW „ÛÔÔ˚ (G, ⋅, e), ÔÓÒÚÓÂÌÌÓ„Ó ÓÚÌÓÒËÚÂθÌÓ Ä. àÏÂÌÌÓ, ÉW fl‚ÎflÂÚÒfl ‚Á‚¯ÂÌÌ˚Ï „‡ÙÓÏ Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ G, ‚ ÍÓÚÓÓÏ ‰‚ ‚¯ËÌ˚ ı Ë y ∈ G ÒÓ‰ËÌÂÌ˚ ·ÓÏ Ò ‚ÂÒÓÏ w(a) ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ y = aεx, ε = ±1, a ∈ A.
åÂÚË͇ ËÌÚ‚‡Î¸ÌÓÈ ÌÓÏ˚ åÂÚË͇ ËÌÚ‚‡Î¸ÌÓÈ ÌÓÏ˚ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇ ÍÓ̘ÌÓÈ „ÛÔÔ (G, ⋅, e), ÓÔ‰ÂÎÂÌ̇fl Í‡Í || x ⋅ y–1 || int, „‰Â || ⋅ ||int – ËÌÚ‚‡Î¸Ì‡fl ÌÓχ ̇ G, Ú.Â. ڇ͇fl ÌÓχ „ÛÔÔ˚, ˜ÚÓ Á̇˜ÂÌËfl || ⋅ ||int Ó·‡ÁÛ˛Ú ÏÌÓÊÂÒÚ‚Ó ÔÓÒΉӂ‡ÚÂθÌ˚ı ˆÂÎ˚ı ˜ËÒÂÎ, ̇˜Ë̇fl Ò 0. ä‡Ê‰ÓÈ ËÌÚ‚‡Î¸ÌÓÈ ÌÓÏ || ⋅ ||int ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÛÔÓfl‰Ó˜ÂÌÌÓ ‡Á·ËÂÌË {B0 ,..., Bm} ÏÌÓÊÂÒÚ‚‡ G Ò Bi = {x ∈ G: || x ||int = i} (ÒÏ. ‡ÒÒÚÓflÌË ò‡Ï‡–äÓ¯Â͇, „Î. 16). çÓχ ï˝ÏÏËÌ„‡ Ë ÌÓχ ãË fl‚Îfl˛ÚÒfl ÓÒÓ·˚ÏË ÒÎÛ˜‡flÏË ËÌÚ‚‡Î¸ÌÓÈ ÌÓÏ˚. é·Ó·˘ÂÌ̇fl ÌÓχ ãË – ËÌÚ‚‡Î¸Ì‡fl ÌÓχ, ‰Îfl ÍÓÚÓÓÈ Í‡Ê‰˚È Í·ÒÒ ËÏÂÂÚ ÙÓÏÛ Bi = {a, a –1}.
171
É·‚‡ 10. ê‡ÒÒÚÓflÌËfl ‚ ‡Î„·Â
ë-ÏÂÚË͇ ë-ÏÂÚË͇ d – ÏÂÚË͇ ̇ „ÛÔÔ (G , ⋅ , e), Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ÒÎÂ‰Û˛˘ËÏ ÛÒÎÓ‚ËflÏ: 1) Á̇˜ÂÌËfl d Ó·‡ÁÛ˛Ú ÏÌÓÊÂÒÚ‚Ó ÔÓÒΉӂ‡ÚÂθÌ˚ı ˆÂÎ˚ı ˜ËÒÂÎ, ̇˜Ë̇fl Ò 0; 2) ͇‰Ë̇θÌÓ ˜ËÒÎÓ ÒÙÂ˚ S(x, r) = {y ∈ G: d(x, y) = r} Ì Á‡‚ËÒËÚ ÓÚ ‚˚·Ó‡ x ∈ G. ëÎÓ‚‡Ì‡fl ÏÂÚË͇, ı˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ Ë ÏÂÚË͇ ãË fl‚Îfl˛ÚÒfl ë-ÏÂÚË͇ÏË. ã˛·‡fl ÏÂÚË͇ ËÌÚ‚‡Î¸ÌÓÈ ÌÓÏ˚ ÂÒÚ¸ ë-ÏÂÚË͇. åÂÚË͇ ÌÓÏ˚ ÔÓfl‰Í‡ èÛÒÚ¸ (G, ⋅, e) – ÍÓ̘̇fl ‡·Â΂‡ „ÛÔÔ‡. èÛÒÚ¸ ord(x) – ÔÓfl‰ÓÍ ˝ÎÂÏÂÌÚ‡ x ∈ G, Ú.Â. ̇ËÏÂ̸¯Â ÔÓÎÓÊËÚÂθÌÓ ˆÂÎÓ ˜ËÒÎÓ n, Ú‡ÍÓ ˜ÚÓ xn = e. íÓ„‰‡ ÙÛÌ͈Ëfl || ⋅ ||ord: G → , ÓÔ‰ÂÎÂÌ̇fl Í‡Í || ⋅ ||ord = lnord(x), fl‚ÎflÂÚÒfl ÌÓÏÓÈ „ÛÔÔ˚ ̇ G Ë Ì‡Á˚‚‡ÂÚÒfl ÌÓÏÓÈ ÔÓfl‰Í‡. åÂÚË͇ ÌÓÏ˚ ÔÓfl‰Í‡ – ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇ G, ÓÔ‰ÂÎÂÌ̇fl Í‡Í || x ⋅ y–1 || ord. åÂÚË͇ ÌÓÏ˚ ÏÓÌÓÏÓÙËÁχ èÛÒÚ¸ (G , +, 0) – „ÛÔÔa Ë (H , ⋅, e ) – „ÛÔÔa Ò ÌÓÏÓÈ „ÛÔÔ˚ || ⋅ ||H. èÛÒÚ¸ f: G → H – ÏÓÌÓÏÓÙËÁÏ „ÛÔÔ G Ë H, Ú.Â. ËÌ˙ÂÍÚ˂̇fl ÙÛÌ͈Ëfl, ڇ͇fl ˜ÚÓ f(x + y) = = f(x) ⋅ f(y ) ‰Îfl ‚ÒÂı x, y ∈ G . íÓ„‰‡ ÙÛÌ͈Ëfl || ⋅ ||Gf : G → , Á‡‰‡Ì̇fl Í‡Í || x ||Gf =|| f ( x ) || H , fl‚ÎflÂÚÒfl ÌÓÏÓÈ „ÛÔÔ˚ ̇ G Ë Ì‡Á˚‚‡ÂÚÒfl ÌÓÏÓÈ ÏÓÌÓÏÓÙËÁχ. åÂÚË͇ ÌÓÏ˚ ÏÓÌÓÏÓÙËÁχ – ÏÂÚËÍa ÌÓÏ˚ „ÛÔÔ˚ ̇ G, ÓÔ‰ÂÎflÂχfl Í‡Í || x − y ||Gf . åÂÚË͇ ÌÓÏ˚ ÔÓËÁ‚‰ÂÌËfl èÛÒÚ¸ (G, +, 0) – „ÛÔÔa Ò ÌÓÏÓÈ „ÛÔÔ˚ || ⋅ ||G Ë (H , ⋅, e ) – „ÛÔÔa Ò ÌÓÏÓÈ „ÛÔÔ˚ || ⋅ ||H. èÛÒÚ¸ G × H = {α = (x, y): x ∈ G, y ∈ H} – ‰Â͇ÚÓ‚Ó ÔÓËÁ‚‰ÂÌË G Ë H , Ë ÔÛÒÚ¸ (x, y) ⋅ (x, t) = (x + z, y ⋅ t). íÓ„‰‡ ÙÛÌ͈Ëfl || ⋅ ||G×H: G × H → , ÓÔ‰ÂÎÂÌ̇fl Í‡Í || α ||G × H =|| ( x, y) ||G × H =|| x ||G + || y || H , , ÂÒÚ¸ ÌÓχ „ÛÔÔ˚ ̇ G × H, ̇Á˚‚‡Âχfl ÌÓÏÓÈ ÔÓËÁ‚‰ÂÌËfl. åÂÚË͇ ÌÓÏ˚ ÔÓËÁ‚‰ÂÌËfl ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚, ÓÔ‰ÂÎÂÌ̇fl Í‡Í || α ⋅ β −1 ||G × F . ç‡ ‰Â͇ÚÓ‚ÓÏ ÔÓËÁ‚‰ÂÌËË G × H ‰‚Ûı ÍÓ̘Ì˚ı „ÛÔÔ Ò ËÌÚ‚‡Î¸Ì˚ÏË int ÌÓχÏË || ⋅ ||Gint Ë || ⋅ ||int H ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡Ì‡ ËÌÚ‚‡Î¸Ì‡fl ÌÓχ || ⋅ ||G × H . àÏÂÌÌÓ, || α ||Gint× H =|| ( x, y ||Gint× H =|| x ||G +( m + 1) || y || H , „‰Â m = max a ∈G || a ||Gint . åÂÚË͇ Ù‡ÍÚÓ-ÌÓÏ˚ èÛÒÚ¸ (G, ⋅, e) – „ÛÔÔa Ò ÌÓÏÓÈ „ÛÔÔ˚ || ⋅ ||G Ë (H, ⋅, e) – ÌÓχθ̇fl ÔÓ‰„ÛÔÔ‡ „ÛÔÔ˚ (G, ⋅, e), xN = N x ‰Îfl β·˚ı x ∈ G. èÛÒÚ¸ (G/N, ⋅, eN) – Ù‡ÍÚÓ-„ÛÔÔ‡ „ÛÔÔ˚ G, Ú.Â. G/N = {xN: x ∈ G: Ò xN = {x ⋅ a: a ∈ N} Ë xN ⋅ yN = xyN. íÓ„‰‡ ÙÛÌ͈Ëfl || ⋅ ||G / N : G / N → , Á‡‰‡Ì̇fl Í‡Í || xN ||G / N = min || xa || X , – ÌÓÏa „ÛÔÔ˚ G/N ̇ Ë a ∈N
̇Á˚‚‡Âχfl Ù‡ÍÚÓ-ÌÓÏÓÈ.
172
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
åÂÚË͇ Ù‡ÍÚÓ-ÌÓÏ˚ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇ G/N, ÓÔ‰ÂÎÂÌ̇fl Í‡Í || xN ⋅ ( yN ) −1 ||G / N =|| xy −1 N ||G / N . ÖÒÎË G = Ò ÌÓÏÓÈ, ‡‚ÌÓÈ ‡·ÒÓβÚÌÓÏÛ Á̇˜ÂÌ˲, Ë N = m , m ∈ , ÚÓ Ù‡ÍÚÓ-ÌÓχ ̇ /m = m ÒÓ‚Ô‡‰‡ÂÚ Ò ÌÓÏÓÈ ãË. ÖÒÎË ÏÂÚË͇ d ̇ „ÛÔÔ (G, ⋅, e) Ô‡‚ÓËÌ‚‡Ë‡ÌÚÌa, ÚÓ ‰Îfl β·ÓÈ ÌÓχθÌÓÈ ÔÓ‰„ÛÔÔ˚ (N, ⋅, e) „ÛÔÔ˚ (G , ⋅, e) ÏÂÚË͇ d ÔÓÓʉ‡ÂÚ Ô‡‚ÓËÌ‚‡Ë‡ÌÚÌÛ˛ ÏÂÚËÍÛ (ËÏÂÌÌÓ, ı‡ÛÒ‰ÓÙÓ‚Û ÏÂÚËÍÛ) d* ̇ G/N ÔÓ Á‡ÍÓÌÛ d ∗ ( xN , yN ) = max max min d ( a, b), max min d ( a, b) . a ∈xN b ∈yN b ∈yN a ∈xN ê‡ÒÒÚÓflÌË ÍÓÏÏÛÚËÓ‚‡ÌËfl èÛÒÚ¸ (G, ⋅, e) – ÍÓ̘̇fl ̇·Â΂‡ „ÛÔÔ‡. èÛÒÚ¸ Z(G) = {c ∈ G: x ⋅ c = c ⋅ x ‰Îfl β·Ó„Ó z ∈ G} – ˆÂÌÚ G. ɇ٠ÍÓÏÏÛÚËÓ‚‡ÌËfl „ÛÔÔ˚ G ÓÔ‰ÂÎflÂÚÒfl Í‡Í „‡Ù Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ G, ‚ ÍÓÚÓÓÏ ‡Á΢Ì˚ ˝ÎÂÏÂÌÚ˚ x, y ∈ G ÒÓ‰ËÌÂÌ˚ ·ÓÏ ‚ÒflÍËÈ ‡Á, ÍÓ„‰‡ ÓÌË ÍÓÏÏÛÚËÛ˛Ú, Ú.Â. x ⋅ y = y ⋅ x. é˜Â‚ˉÌÓ, ˜ÚÓ Î˛·˚ ‰‚‡ ‡Á΢Ì˚ı ˝ÎÂÏÂÌÚ‡ x, y ∈ G, ÍÓÚÓ˚ Ì ÍÓÏÏÛÚËÛ˛Ú, ‚ ‰‡ÌÌÓÏ „‡Ù ÒÓ‰ËÌÂÌ˚ ÔÛÚÂÏ x, c, y, „‰Â Ò – β·ÓÈ ˝ÎÂÏÂÌÚ ËÁ Z(G) (̇ÔËÏÂ, Â). èÛÚ¸ x = x1, x2,..., x k = y ‚ „‡Ù ÍÓÏÏÛÚËÓ‚‡ÌËfl ̇Á˚‚‡ÂÚÒfl (x – y)N – ÔÛÚÂÏ, ÂÒÎË xi ∉ Z(G) ‰Îfl β·Ó„Ó i ∈ {1,…, k}. Ç ˝ÚÓÏ ÒÎÛ˜‡Â ˝ÎÂÏÂÌÚ˚ x, y ∈ G \Z(G) ̇Á˚‚‡˛ÚÒfl N-ÒÓ‰ËÌÂÌÌ˚ÏË. ê‡ÒÒÚÓflÌËÂÏ ÍÓÏÏÛÚËÓ‚‡ÌËfl (ÒÏ. [DeHu98]) d ̇Á˚‚‡ÂÚÒfl ‡Ò¯ËÂÌÌÓ ‡ÒÒÚÓflÌË ̇ G, Ú‡ÍÓ ˜ÚÓ ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÛÒÎÓ‚Ëfl: 1) d(x, x) = 0; 2) d(x, x) = 1, ÂÒÎË x ≠ y Ë x ⋅ y = y ⋅ x; 3) d(x, x) fl‚ÎflÂÚÒfl ÏËÌËχθÌÓÈ ‰ÎËÌÓÈ (x – y)N-ÔÛÚË ‰Îfl β·˚ı N-ÒÓ‰ËÌÂÌÌ˚ı ˝ÎÂÏÂÌÚÓ‚ ı Ë y ∈ G\Z(G); 4) d(x, x) = ∞, ÂÒÎË x, y ∈ G\Z(G) Ì ÒÓ‰ËÌÂÌ˚ ÌË͇ÍËÏ N-ÔÛÚÂÏ. åÓ‰ÛÎflÌÓ ‡ÒÒÚÓflÌË èÛÒÚ¸ (m, +, 0), m ≥ 2 – ÍÓ̘̇fl ˆËÍ΢ÂÒ͇fl „ÛÔÔ‡ Ë r ∈ , r ≥ 2. åÓ‰ÛÎflÌ˚È r-‚ÂÒ wr (x) ˝ÎÂÏÂÌÚ‡ x ∈ m = {0, 1,…, m} ÓÔ‰ÂÎflÂÚÒfl Í‡Í w r(x) = min{w r(x), w r(m – x)}, „‰Â wr(x) – ‡ËÙÏÂÚ˘ÂÒÍËÈ r-‚ÂÒ ˆÂÎÓ„Ó ˜ËÒ· ı. á̇˜ÂÌË w r(x) ÏÓÊÌÓ ÔÓÎÛ˜ËÚ¸ Í‡Í ˜ËÒÎÓ ÌÂÌÛ΂˚ı ÍÓ˝ÙÙˈËÂÌÚÓ‚ ‚ Ó·Ó·˘ÂÌÌÓÈ ÌÂÒÏÂÊÌÓÈ ÙÓÏ x = en r n + … + e1r + e0 Ò ei = , | ei |< r, | ei + ei +1 |< r Ë | ei |<| ei +1 |, ÂÒÎË ei ei +1 < 0 (ÒÏ. ÏÂÚË͇ ‡ËÙÏÂÚ˘ÂÒÍÓÈ r-ÌÓÏ˚, „Î. 12). åÓ‰ÛÎflÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ m, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í w r(x – y). åÓ‰ÛÎflÌÓ ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‰Îfl w r(m) = 1, w r(m) = 2 Ë ‰Îfl ÌÂÍÓÚÓ˚ı ÓÒÓ·˚ı ÒÎÛ˜‡Â‚ Ò wr(m) = 3 ËÎË 4. Ç ˜‡ÒÚÌÓÒÚË, ÓÌÓ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‰Îfl m = r n ËÎË m = rn – 1; ÂÒÎË r = 2, ÚÓ ÓÌÓ ·Û‰ÂÚ ÏÂÚËÍÓÈ Ë ‰Îfl m = 2n + 1 (ÒÏ., ̇ÔËÏÂ, [Ernv85]). ç‡Ë·ÓΠÔÓÔÛÎflÌÓÈ ÏÂÚËÍÓÈ Ì‡ m fl‚ÎflÂÚÒfl ÏÂÚË͇ ãË, ÓÔ‰ÂÎflÂχfl Í‡Í || x − y || Lee , „‰Â || x || Lee = min{x, m − x} – ÌÓχ ãË ˝ÎÂÏÂÌÚa x ∈ m. åÂÚË͇ G-ÌÓÏ˚ ê‡ÒÒÏÓÚËÏ ÍÓ̘ÌÓ ÔÓΠFp n ‰Îfl ÔÓÒÚÓ„Ó ˜ËÒ· Ë Ì‡ÚۇθÌÓ„Ó ˜ËÒ· n.
173
É·‚‡ 10. ê‡ÒÒÚÓflÌËfl ‚ ‡Î„·Â
ÑÎfl ‰‡ÌÌÓ„Ó ÍÓÏÔ‡ÍÚÌÓ„Ó ‚˚ÔÛÍÎÓ„Ó ˆÂÌڇθÌÓÒËÏÏÂÚ˘ÌÓ„Ó Ú· G ‚ ÓÔ‰ÂÎËÏ G-ÌÓÏÛ ˝ÎÂÏÂÌÚ‡ x ∈ Fp n Í‡Í || x ||G = inf{µ ≥ 0 : x ∈ p n + µG}.
n
åÂÚË͇ G-ÌÓÏ˚ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇ Fp n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í || x ⋅ y −1 ||G . åÂÚË͇ ÌÓÏ˚ ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÇÓÁ¸ÏÂÏ ÍÓ̘ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d). åÂÚËÍÓÈ ÌÓÏ˚ ÔÂÂÒÚ‡ÌÓ‚ÓÍ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ „ÛÔÔ˚ ̇ „ÛÔÔ (SymX , ⋅, id) ‚ÒÂı ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÏÌÓÊÂÒÚ‚‡ X (id – ÚÓʉÂÒÚ‚ÂÌÌÓ ÓÚÓ·‡ÊÂÌËÂ), ÓÔ‰ÂÎÂÌ̇fl Í‡Í || f ⋅ g −1 ||Sym , „‰Â ÌÓχ „ÛÔÔ˚ || ⋅ ||Sym ̇ Sym X Á‡‰‡ÂÚÒfl Í‡Í || f ||Sym = max d ( x, f ( x )). x ∈X
åÂÚË͇ ‰‚ËÊÂÌËÈ èÛÒÚ¸ (X, d) – ÔÓËÁ‚ÓθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë p ∈ X – ÙËÍÒËÓ‚‡ÌÌ˚È ˝ÎÂÏÂÌÚ ËÁ ï. åÂÚËÍÓÈ ‰‚ËÊÂÌËÈ (ÒÏ. [Buse55]) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ „ÛÔÔ (Ω, ⋅, id) ‚ÒÂı ‰‚ËÊÂÌËÈ ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) (id – ÚÓʉÂÒÚ‚ÂÌÌÓ ÓÚÓ·‡ÊÂÌËÂ), ÓÔ‰ÂÎÂÌ̇fl Í‡Í sup d ( f ( x ), g( x )) ⋅ e − d ( p, x ) x ∈X
‰Îfl β·˚ı f, g ∈ Ω (ÒÏ. ÅÛÁÂχÌÓ‚‡ ÏÂÚË͇ ÏÌÓÊÂÒÚ‚, „Î. 3). ÖÒÎË ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) Ó„‡Ì˘ÂÌÓ, ÚÓ ÔÓ‰Ó·ÌÛ˛ ÏÂÚËÍÛ Ì‡ Ω ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ Í‡Í sup d ( f ( x ), g( x )). x ∈X
ÑÎfl ÔÓÎÛÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ÔÓÎÛÏÂÚËÍÛ ‰‚ËÊÂÌËÈ Ì‡ (Ω, ⋅, id) ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ Í‡Í d(f(p), g(p)). èÓÎÛÏÂÚË͇ Ó·˘ÂÈ ÎËÌÂÈÌÓÈ „ÛÔÔ˚ èÛÒÚ¸ – ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌӠ̉ËÒÍÂÚÌÓ ÚÓÔÓÎӄ˘ÂÒÍÓ ÔÓÎÂ. èÛÒÚ¸
( , ⋅ ) , n ≥ 2 – ÌÓÏËÓ‚‡ÌÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡‰ . èÛÒÚ¸ || ⋅ || – n
n
ÓÔ‡ÚÓ̇fl ÌÓχ, ‡ÒÒÓˆËËÓ‚‡Ì̇fl Ò ÌÓÏËÓ‚‡ÌÌ˚Ï ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ
( , ⋅ ) , Ë ÔÛÒÚ¸ GL(n, ) – Ó·˘‡fl ÎËÌÂÈ̇fl „ÛÔÔ‡ ̇‰ . íÓ„‰‡ ÙÛÌ͈Ëfl | ⋅ | n
op:
n
GL(n, ), ÓÔ‰ÂÎÂÌ̇fl Í‡Í | g |op = sup{| ln || g |||, | ln || g −1 |||}, fl‚ÎflÂÚÒfl ÔÓÎÛÌÓÏÓÈ Ì‡ GL(n, ). èÓÎÛÏÂÚË͇ Ó·˘ÂÈ ÎËÌÂÈÌÓÈ „ÛÔÔ˚ ÂÒÚ¸ ÔÓÎÛÏÂÚË͇ ̇ „ÛÔÔ GL(n , ), Á‡‰‡Ì̇fl Í‡Í | g ⋅ h −1 |op . é̇ fl‚ÎflÂÚÒfl Ô‡‚ÓËÌ‚‡Ë‡ÌÚÌÓÈ ÔÓÎÛÏÂÚËÍÓÈ, ÍÓÚÓ‡fl ‰ËÌÒÚ‚ÂÌ̇ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó „Û·ÓÈ ËÁÓÏÂÚËË, ÔÓÒÍÓθÍÛ Î˛·˚ ‰‚ ÌÓÏ˚ ̇ fl‚Îfl˛ÚÒfl ·ËÎËÔ¯ËˆÂ‚Ó ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË.
174
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
èÓÎÛÏÂÚË͇ Ó·Ó·˘ÂÌÌÓ„Ó ÚÓ‡ èÛÒÚ¸ (T, ⋅, e) – Ó·Ó·˘ÂÌÌ˚È ÚÓ, Ú.Â. ÚÓÔÓÎӄ˘ÂÒ͇fl „ÛÔÔ‡, ÍÓÚÓ‡fl ËÁÓÏÓÙ̇ ÔflÏÓÏÛ ÔÓËÁ‚‰ÂÌ˲ n ÏÛθÚËÔÎË͇ÚË‚Ì˚ı „ÛÔÔ i∗ ÎÓ͇θÌÓ ÍÓχÍÚÌ˚ı ̉ËÒÍÂÚÌ˚ı ÚÓÔÓÎӄ˘ÂÒÍËı ÔÓÎÂÈ i. íÓ„‰‡ ÒÛ˘ÂÒÚ‚ÛÂÚ ÒÓ·ÒÚ‚ÂÌÌ˚È ÌÂÔÂ˚‚Ì˚È „ÓÏÓÏÓÙÏËÁÏ v: T → n , ËÏÂÌÌÓ, v(x 1 ,…, x n ) = (v1 (x n )), „‰Â v1 : i∗ → fl‚Îfl˛ÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚ÏË ÌÂÔÂ˚‚Ì˚ÏË „ÓÏÓÏÓÙËÁχÏË ËÁ i∗ ‚ ‡‰‰ËÚË‚ÌÛ˛ „ÛÔÔÛ , Á‡‰‡ÌÌ˚ÏË Í‡Í ÎÓ„‡ËÙÏ ‚‡Î˛‡ˆËË. ÇÒflÍËÈ ‰Û„ÓÈ ÒÓ·ÒÚ‚ÂÌÌ˚È ÌÂÔÂ˚‚Ì˚È „ÓÏÓÏÓÙËÁÏ v⬘: T → n ËÏÂÂÚ ‚ˉ v⬘ = α ⋅ v Ò α ∈ GL(n, ). ÖÒÎË || ⋅ || fl‚ÎflÂÚÒfl ÌÓÏÓÈ Ì‡ n, ÚÓ ÔÓÎÛ˜‡ÂÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Û˛ ÔÓÎÛÌÓÏÛ || x ||T =|| v( x ) || ̇ T. èÓÎÛÏÂÚË͇ Ó·Ó·˘ÂÌÌÓ„Ó ÚÓ‡ ÂÒÚ¸ ÔÓÎÛÏÂÚË͇ ̇ „ÛÔÔ (T, ⋅, e ), ÓÔ‰ÂÎÂÌ̇fl Í‡Í || xy −1 ||T = || v( xy −1 ) || = || v( x ) − v( y) || . åÂÚË͇ ÉÂÈÁÂ̷„‡ èÛÒÚ¸ (H, ⋅, e) – Ô‚‡fl „ÂÈÁÂ̷„ӂ‡ „ÛÔÔ‡, Ú.Â. „ÛÔÔ‡ ̇ ÏÌÓÊÂÒÚ‚Â H = ⊗ Ò „ÛÔÔÓ‚˚Ï Á‡ÍÓÌÓÏ x ⋅ y = ( z, t ) ⋅ (u, s) = ( z + u, t + s + 2( zu )) Ë Â‰ËÌ˘Ì˚Ï ˝ÎÂÏÂÌÚÓÏ e = (0, 0). èÛÒÚ¸ | ⋅ |Heis – „ÂÈÁÂ̷„ӂ‡ ÌÓχ ̇ ç, ÓÔ‰ÂÎÂÌ̇fl Í‡Í | x |Heis = | ( z, t ) |Heis = (| z |4 +t 2 )1 / 4 . åÂÚË͇ ÉÂÈÁÂ̷„‡ (ËÎË ÏÂÚË͇ ¯‡·ÎÓ̇, ÏÂÚË͇ äӇ̸Ë) dHeis ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ ç, ÓÔ‰ÂÎÂÌ̇fl Í‡Í | x −1 ⋅ y | H . ÑÛ„‡fl ÂÒÚÂÒÚ‚ÂÌ̇fl ÏÂÚË͇ ̇ (H, ⋅, e) – ÏÂÚË͇ ä‡ÌӖ䇇ÚÂÓ‰ÓË (ËÎË ë-ë ÏÂÚË͇, ÍÓÌÚÓθ̇fl ÏÂÚË͇) d C , ÓÔ‰ÂÎflÂχfl Í‡Í ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ „ÓËÁÓÌڇθÌ˚ı ‚ÂÍÚÓÌ˚ı ÔÓÎÂÈ Ì‡ ç. åÂÚËÍË dHeis Ë dC 1 fl‚Îfl˛ÚÒfl ·ËÎËÔ¯ËˆÂ‚Ó ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË; ËÏÂÌÌÓ, dHeis ( x, y) ≤ dC ( x, y) ≤ π ≤ dHeis ( x, y). åÂÚËÍÛ ÉÂÈÁÂ̷„‡ ÏÓÊÌÓ Á‡‰‡Ú¸ ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ Ì‡ β·ÓÈ „ÂÈÁÂ̷„ӂÓÈ „ÛÔÔ (H n , ⋅, e) Ò Hn = n ⊗ . åÂÚË͇ ÏÂÊ‰Û ËÌÚ‚‡Î‡ÏË èÛÒÚ¸ G – ÏÌÓÊÂÒÚ‚Ó ËÌÚ‚‡ÎÓ‚ [a, b] ËÁ . åÌÓÊÂÒÚ‚Ó G Ó·‡ÁÛÂÚ ÔÓÎÛ„ÛÔÔ˚ (G, +) Ë (G , ⋅) ÓÚÌÓÒËÚÂθÌÓ ÒÎÓÊÂÌËfl I + J = {x + y: x ∈ I, y ∈ J} Ë ÛÏÌÓÊÂÌËfl I ⋅ J = {x ⋅ y: x ∈ I, y ∈ J} ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. åÂÚË͇ ÏÂÊ‰Û ËÌÚ‚‡Î‡ÏË – ÏÂÚË͇ ̇ G, Á‡‰‡Ì̇fl Í‡Í max{| I |, | J |} ‰Îfl ‚ÒÂı I, J ∈ G, „‰Â ‰Îfl I = [a, b] ËÏÂÂÏ | I | = | a − b | . èÓÎÛÏÂÚË͇ ÍÓθˆ‡ èÛÒÚ¸ (A, +, ⋅) – Ù‡ÍÚÓˇθÌÓ ÍÓθˆÓ, Ú.Â. ÍÓθˆÓÏ, ‚ ÍÓÚÓÓÏ ‡ÁÎÓÊÂÌË ̇ ÏÌÓÊËÚÂÎË Â‰ËÌÒÚ‚ÂÌÌÓ. èÓÎÛÏÂÚËÍÓÈ ÍÓθˆ‡ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â A\{0}, ÓÔ‰ÂÎflÂχfl Í‡Í l.c.m.( x, y) ln , g.c.d .( x, y) „‰Â l.c.m.(x, y) – ̇ËÏÂ̸¯Â ӷ˘Â ͇ÚÌÓÂ Ë g.c.d.(x, y) – ̇˷Óθ¯ËÈ Ó·˘ËÈ ‰ÂÎËÚÂθ ˝ÎÂÏÂÌÚÓ‚ x, y ∈ A\{0}.
É·‚‡ 10. ê‡ÒÒÚÓflÌËfl ‚ ‡Î„·Â
175
10.2. åÖíêàäà çÄ ÅàçÄêçõï éíçéòÖçàüï ÅË̇ÌÓ ÓÚÌÓ¯ÂÌË R ̇ ÏÌÓÊÂÒÚ‚Â ï fl‚ÎflÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ X × X. éÌÓ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÏÌÓÊÂÒÚ‚Ó ‰Û„ Ó„‡Ù‡ (X, R) Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ ï. ÅË̇ÌÓ ÓÚÌÓ¯ÂÌË R, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ÒËÏÏÂÚ˘Ì˚Ï (ÂÒÎË (x, y) ∈ R, ÚÓ (y, x) ∈ R), ÂÙÎÂÍÒË‚Ì˚Ï (‚Ò x, x) ∈ R Ë Ú‡ÌÁËÚË‚Ì˚Ï (ÂÒÎË (x, y), (y, z) ∈ R, ÚÓ (x, z) ∈ R), ̇Á˚‚‡ÂÚÒfl ÓÚÌÓ¯ÂÌËÂÏ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ËÎË ‡Á·ËÂÌËÂÏ (ï ̇ Í·ÒÒ˚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË). ã˛·‡fl q-‡Ì‡fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ x = (x1,…, x n ), q ≥ 2 (Ú.Â. 0 ≤ xi ≤ q – 1 ‰Îfl 1 ≤ i ≤ n) ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡Á·ËÂÌ˲ {B0 ,…, bq–1} ÏÌÓÊÂÒÚ‚‡ V, = {1,…, n}, „‰Â Bj = {1 ≤ i ≤ n: xi = j} – Í·ÒÒ˚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË. ÅË̇ÌÓ ÓÚÌÓ¯ÂÌË R, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ‡ÌÚËÒËÏÏÂÚ˘Ì˚Ï (ÂÒÎË (x, y), (y, x) ∈ R, ÚÓ x = y), ÂÙÎÂÍÒË‚Ì˚Ï Ë Ú‡ÌÁËÚË‚Ì˚Ï, ̇Á˚‚‡ÂÚÒfl ˜‡ÒÚ˘Ì˚Ï ÔÓfl‰ÍÓÏ, ‡ Ô‡‡ (X, R) ̇Á˚‚‡ÂÚÒfl ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ. ó‡ÒÚ˘Ì˚È ÔÓfl‰ÓÍ R ̇ X Ú‡ÍÊ ӷÓÁ̇˜‡ÂÚÒfl Í‡Í p − Ò xp − y ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ p (x, y) ∈ R. èÓfl‰ÓÍ − ̇Á˚‚‡ÂÚÒfl ÎËÌÂÈÌ˚Ï, ÂÒÎË Î˛·˚ ‰‚‡ ˝ÎÂÏÂÌÚ‡ x, y ∈ X Ò‡‚ÌËÏ˚, Ú.Â. x p − y ËÎË y p − x. ó‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó ( L, p − ) ̇Á˚‚‡ÂÚÒfl ¯ÂÚÍÓÈ, ÂÒÎË Í‡Ê‰˚ ‰‚‡ ˝ÎÂÏÂÌÚ‡ x, y ∈ L ӷ·‰‡˛Ú Ó·˙‰ËÌÂÌËÂÏ x ∨ y Ë ÔÂÂÒ˜ÂÌËÂÏ x ∧ y. ÇÒ ‡Á·ËÂÌËfl ï Ó·‡ÁÛ˛Ú Â¯ÂÚÍÛ ËÁÏÂθ˜ÂÌ˲; Ó̇ fl‚ÎflÂÚÒfl ÔӉ¯ÂÚÍÓÈ Â¯ÂÚÍË (ÔÓ ‚Íβ˜ÂÌ˲) ‚ÒÂı ·Ë̇Ì˚ı ÓÚÌÓ¯ÂÌËÈ. ê‡ÒÒÚÓflÌË äÂÏÂÌË ê‡ÒÒÚÓflÌË äÂÏÂÌË ÏÂÊ‰Û ·Ë̇Ì˚ÏË ÓÚÌÓ¯ÂÌËflÏË R1 Ë R2 ̇ ÏÌÓÊÂÒÚ‚Â ï ÂÒÚ¸ ı˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ | R1∆R2 | . . éÌÓ ‚ 2 ‡Á‡ Ô‚˚¯‡ÂÚ ÏËÌËχθÌÓ ˜ËÒÎÓ ËÌ‚ÂÒËÈ Ô‡ ÒÏÂÊÌ˚ı ˝ÎÂÏÂÌÚÓ‚ ËÁ ï, ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl ÔÓÎÛ˜ÂÌËfl R2 ËÁ R1 . ÖÒÎË R1 , R2 fl‚Îfl˛ÚÒfl ‡Á·ËÂÌËflÏË, ÚÓ ‡ÒÒÚÓflÌË äÂÏÂÌË ÒÓ‚Ô‡‰‡ÂÚ Ò ‡ÒÒÚÓfl| R ∆R | ÌËÂÏ åËÍË̇–óÂÌÓ„Ó Ë 1 − 1 2 fl‚ÎflÂÚÒfl Ë̉ÂÍÒÓÏ ê˝Ì‰‡. n(n − 1) ÖÒÎË ·Ë̇Ì˚ ÓÚÌÓ¯ÂÌËfl R1 , R2 fl‚Îfl˛ÚÒfl ÎËÌÂÈÌ˚ÏË ÔÓfl‰Í‡ÏË (ËÎË ‡ÌÊËÓ‚‡ÌËflÏË, ÔÂÂÒÚ‡Ìӂ͇ÏË) ̇ ÏÌÓÊÂÒÚ‚Â ï, ÚÓ ‡ÒÒÚÓflÌË äÂÏÂÌË ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚËÍÓÈ ËÌ‚ÂÒËË Ì‡ ÔÂÂÒÚ‡Ìӂ͇ı. ê‡ÒÒÚÓflÌË чԇ·–äÂÔÍË ÏÂÊ‰Û ‡Á΢Ì˚ÏË Í‚‡ÁË„ÛÔÔ‡ÏË (X, +) Ë (X, ⋅) ÓÔ‰ÂÎflÂÚÒfl Í‡Í | {( x, y) : x + y ≠ x ⋅ y} | . åÂÚËÍË ÏÂÊ‰Û ‡Á·ËÂÌËflÏË èÛÒÚ¸ ï – ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó Ò ˜ËÒÎÓÏ ˝ÎÂÏÂÌÚÓ‚ n = | X | Ë ÔÛÒÚ¸ Ä, Ç – ÌÂÔÛÒÚ˚ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÏÌÓÊÂÒÚ‚‡ ï. èÛÒÚ¸ P X – ÏÌÓÊÂÒÚ‚Ó ‡Á·ËÂÌËÈ ï Ë P, Q ∈ P X . èÛÒÚ¸ B1 ,…, B q – ·ÎÓÍË ‡Á·ËÂÌËfl ê, Ú.Â. ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËÂÒfl ÏÌÓÊÂÒÚ‚‡, Ú‡ÍË ˜ÚÓ X = B1 ∪ …∪ Bq , q ≥ 2. èÛÒÚ¸ P ∨ Q ÂÒÚ¸ Ó·˙‰ËÌÂÌË ê Ë Q, ‡ P ∨ Q – ÔÂÂÒ˜ÂÌË ê Ë Q ‚ ¯ÂÚÍ ‡Á·ËÂÌËÈ ÏÌÓÊÂÒÚ‚‡ ï. ê‡ÒÒÏÓÚËÏ ÒÎÂ‰Û˛˘Ë ÓÔ‡ˆËË Â‰‡ÍÚËÓ‚‡ÌËfl ̇ ‡Á·ËÂÌËflı: – ÔÓÔÓÎÌÂÌË ÔÂÓ·‡ÁÛÂÚ ‡Á·ËÂÌË ê ÏÌÓÊÂÒÚ‚‡ A\}B} ‚ ‡Á·ËÂÌË ÏÌÓÊÂÒÚ‚‡ Ä ÎË·Ó ‚Íβ˜ÂÌËÂÏ Ó·˙ÂÍÚÓ‚ ËÁ Ç ‚ ÌÂÍÓÚÓ˚È ·ÎÓÍ, ÎË·Ó ‚Íβ˜ÂÌËÂÏ Ò‡ÏÓ„Ó Ç ‚ ͇˜ÂÒÚ‚Â ÌÓ‚Ó„Ó ·ÎÓ͇; – Û‰‡ÎÂÌË ÔÂÓ·‡ÁÛÂÚ ‡Á·ËÂÌË ê ÏÌÓÊÂÒÚ‚‡ Ä ‚ ‡Á·ËÂÌË ÏÌÓÊÂÒÚ‚‡ A\{B} ÔÓÒ‰ÒÚ‚ÓÏ Û‰‡ÎÂÌËfl Ó·˙ÂÍÚÓ‚ ËÁ Ç ËÁ Í‡Ê‰Ó„Ó ÒÓ‰Âʇ˘Â„Ó Ëı ·ÎÓ͇; – ‰ÂÎÂÌË ÔÂÓ·‡ÁÛÂÚ Ó‰ÌÓ ‡Á·ËÂÌËÂ ê ‚ ‰Û„Ó ÔÓÒ‰ÒÚ‚ÓÏ Ó‰ÌÓ‚ÂÏÂÌÌÓ„Ó Û‰‡ÎÂÌËfl Ç ËÁ Bi („‰Â B ⊂ Bi, B ≠ Bi) Ë ‰Ó·‡‚ÎÂÌËfl Ç Í‡Í ÌÓ‚Ó„Ó ·ÎÓ͇;
176
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
– Ó·˙‰ËÌÂÌË ÔÂÓ·‡ÁÛÂÚ Ó‰ÌÓ ‡Á·ËÂÌËÂ ê ‚ ‰Û„Ó ÔÓÒ‰ÒÚ‚ÓÏ Ó‰ÌÓ‚ÂÏÂÌÌÓ„Ó Û‰‡ÎÂÌËfl Ç ËÁ Bi („‰Â B = Bi) Ë ‰Ó·‡‚ÎÂÌËfl Ç ‚ Bj („‰Â j ≠ i); – ÔÂÂÌÓÒ ÔÂÓ·‡ÁÛÂÚ Ó‰ÌÓ ‡Á·ËÂÌËÂ ê ‚ ‰Û„Ó ÔÓÒ‰ÒÚ‚ÓÏ Ó‰ÌÓ‚ÂÏÂÌÌÓ„Ó Û‰‡ÎÂÌËfl Ç ËÁ Bi („‰Â B ⊂ Bi) Ë ‰Ó·‡‚ÎÂÌËfl Ç ‚ Bj („‰Â j ≠ i). éÔ‰ÂÎËÏ (ÒÏ., ̇ÔËÏÂ, [Day81]) ÔËÏÂÌËÚÂθÌÓ Í ‚˚¯ÂÛ͇Á‡ÌÌ˚Ï ÓÔ‡ˆËflÏ ÒÎÂ‰Û˛˘Ë ÏÂÚËÍË Â‰‡ÍÚËÓ‚‡ÌËfl ̇ PX: 1) ÏËÌËχθÌÓ ÍÓ΢ÂÒÚ‚Ó ÔÓÔÓÎÌÂÌËÈ Ë Û‰‡ÎÂÌËÈ Â‰ËÌ˘Ì˚ı Ó·˙ÂÍÚÓ‚, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl ê ‚ Q; 2) ÏËÌËχθÌÓ ÍÓ΢ÂÒÚ‚Ó ‰ÂÎÂÌËÈ, Ó·˙‰ËÌÂÌËÈ Ë ÔÂÂÌÓÒÓ‚ ‰ËÌ˘Ì˚ı Ó·˙ÂÍÚÓ‚, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl ê ‚ Q; 3) ÏËÌËχθÌÓ ÍÓ΢ÂÒÚ‚Ó ‰ÂÎÂÌËÈ, Ó·˙‰ËÌÂÌËÈ Ë ÔÂÂÌÓÒÓ‚, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl ê ‚ Q; 4) ÏËÌËχθÌÓ ÍÓ΢ÂÒÚ‚Ó ‰ÂÎÂÌËÈ Ë Ó·˙‰ËÌÂÌËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl ê ‚ Q; ËÏÂÌÌÓ, ÓÌÓ ‡‚ÌÓ | P | + | Q | −2 | P ∨ Q |; 5) σ( P) + σ(Q) − 2σ( P ∧ Q), , „‰Â σ( P) = | Pi | (| Pi | −1);
∑
Pu ∈P
6) e( P) + σ(Q) − 2e( P ∧ Q), „‰Â e( P) = log 2 n +
∑
Pi ∈P
| Pi | |P | log 2 i . n n
ê‡ÒÒÚÓflÌË êÂ̸ ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ ˝ÎÂÏÂÌÚÓ‚, ÍÓÚÓ˚ ÌÂÓ·ıÓ‰ËÏÓ ÔÂÂÏÂÒÚËÚ¸ ÏÂÊ‰Û ·ÎÓ͇ÏË ‡Á·ËÂÌËfl ê Ò ÚÂÏ, ˜ÚÓ·˚ ÔÂÓ·‡ÁÓ‚‡Ú¸ Â„Ó ‚ Q (ÒÏ. ê‡ÒÒÚÓflÌË ·Ûθ‰ÓÁ‡, „Î. 21 Ë ‚˚¯ÂÛ͇Á‡ÌÌÛ˛ ÏÂÚËÍÛ 2). 10.3. åÖíêàäà êÖòÖíéä ÇÓÁ¸ÏÂÏ ˜‡ÒÚÓÚÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó ( L, p − ). èÂÂÒ˜ÂÌË (ËÎË ËÌÙËÏÛÏ) x ∧ y (ÂÒÎË yj ÒÛ˘ÂÒÚ‚ÛÂÚ) ‰‚Ûı ˝ÎÂÏÂÌÚÓ‚ ı Ë Û fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌ˚Ï ˝ÎÂÏÂÌÚÓÏ, Û‰Ó‚ÎÂÚ‚Ófl˛˘ËÏ ÛÒÎӂ˲ x ∧ y p − x, y Ë z p − x ∧ y, ÂÒÎË z p − x, y. Ä̇Îӄ˘Ì˚Ï Ó·‡ÁÓÏ Ó·˙‰ËÌÂÌË (ËÎË ÒÛÔÂÏÛÏ) x ∨ y (ÂÒÎË ÓÌÓ ÒÛ˘ÂÒÚ‚ÛÂÚ) fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌ˚Ï ˝ÎÂÏÂÌÚÓÏ, Ú‡ÍËÏ ˜ÚÓ x, y p −x∨y Ë x∨yp − z, ÂÒÎË x, y p − z. p ó‡ÒÚÓÚÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÒÚ‚Ó ( L, − ) ̇Á˚‚‡ÂÚÒfl ¯ÂÚÍÓÈ, ÂÒÎË Í‡Ê‰˚ ‰‚‡ ˝ÎÂÏÂÌÚ‡ x, y ∈ L ËÏÂ˛Ú Ó·˙‰ËÌÂÌË x ∨ y Ë ÔÂÂÒ˜ÂÌË x ∧ y. ó‡ÒÚÓÚÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó ( L, p − ) ̇Á˚‚‡ÂÚÒfl ÔÓÎÛ¯ÂÚÍÓÈ ÔÂÂÒ˜ÂÌËfl (ËÎË ÌËÊÌÂÈ ÔÓÎÛ¯ÂÚÍÓÈ), ÂÒÎË Á‡‰‡Ì‡ ÚÓθÍÓ ÓÔ‡ˆËfl ÔÂÂÒ˜ÂÌËfl. ó‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó ( L, p − ) ̇Á˚‚‡ÂÚÒfl ÔÓÎÛ¯ÂÚÍÓÈ Ó·˙‰ËÌÂÌËfl (ËÎË ‚ÂıÌÂÈ ÔÓÎÛ¯ÂÚÍÓÈ), ÂÒÎË Á‡‰‡Ì‡ ÚÓθÍÓ ÓÔ‡ˆËfl Ó·˙‰ËÌÂÌËfl. ê¯ÂÚ͇ = ( L, p − , ∨, ∧) ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÓ‰ÛÎflÌÓÈ Â¯ÂÚÍÓÈ (ËÎË ÔÓÎۉ‰ÂÍË̉ӂÓÈ Â¯ÂÚÍÓÈ), ÂÒÎË ÓÚÌÓ¯ÂÌË ÏÓ‰ÛÎflÌÓÒÚË ıåÛ ÒËÏÏÂÚ˘ÌÓ: ıåÛ ‚ΘÂÚ Ûåı ‰Îfl ‚ÒÂı x, y ∈ L. éÚÌÓ¯ÂÌË ÏÓ‰ÛÎflÌÓÒÚË Á‰ÂÒ¸ ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: ‰‚‡ ˝ÎÂÏÂÌÚ‡ ı Ë Û Ò˜ËÚ‡˛ÚÒfl ÏÓ‰ÛÎflÌÓÈ Ô‡ÓÈ, ˜ÚÓ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í ıåÛ, ÂÒÎË x ∧ ( y ∨ z ) = ( x ∧ y) ∨ z ‰Îfl β·˚ı z p − x. ê¯ÂÚ͇ , ‚ ÍÓÚÓÓÈ Í‡Ê‰‡fl Ô‡‡ ˝ÎÂÏÂÌÚÓ‚ fl‚ÎflÂÚÒfl ÏÓ‰ÛÎflÌÓÈ, ̇Á˚‚‡ÂÚÒfl ÏÓ‰ÛÎflÌÓÈ Â¯ÂÚÍÓÈ (ËÎË ‰Â‰ÂÍË̉ӂÓÈ Â¯ÂÚÍÓÈ). ê¯ÂÚ͇ fl‚ÎflÂÚÒfl ÏÓ‰ÛÎflÌÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ‰ÂÈÒÚ‚ÛÂÚ Á‡ÍÓÌ ÏÓ‰ÛÎflÌÓÒÚË: ÂÒÎË z p − x, ÚÓ x ∧ ( y ∨ z ) = ( x ∧ y) ∨ z ‰Îfl β·Ó„Ó y. ê¯ÂÚ͇ ̇Á˚‚‡ÂÚÒfl ‰ËÒÚË·ÛÚË‚ÌÓÈ, ÂÒÎË x ∧ ( y ∨ z ) = ( x ∧ y) ∨ ( x ∧ z ) ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı x, y, z ∈ L.
177
É·‚‡ 10. ê‡ÒÒÚÓflÌËfl ‚ ‡Î„·Â
ÑÎfl ‰‡ÌÌÓÈ Â¯ÂÚÍË ÙÛÌ͈Ëfl v: L → ≥0, Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ÛÒÎӂ˲ v( x ∨ y) + v( x ∧ y) ≤ v( x ) + v( y) ‰Îfl ‚ÒÂı x, y ∈ L, ̇Á˚‚‡ÂÚÒfl ÒÛ·‚‡Î˛‡ˆËÂÈ Ì‡ . ëÛ·‚‡Î˛‡ˆËfl v ̇Á˚‚‡ÂÚÒfl ËÁÓÚÓÌÌÓÈ, ÂÒÎË v(x) ≤ v(y) ‚ÒflÍËÈ ‡Á, ÍÓ„‰‡ , x p − y, Ë , x ≠ y. ̇Á˚‚‡ÂÚÒfl ÔÓÎÓÊËÚÂθÌÓÈ, ÂÒÎË v(x) < v(y) ‚ÒflÍËÈ ‡Á, ÍÓ„‰‡ x p y − ëÛ·‚‡Î˛‡ˆËfl v ̇Á˚‚‡ÂÚÒfl ‚‡Î˛‡ˆËÂÈ, ÂÒÎË Ó̇ ËÁÓÚÓÌ̇ Ë ‡‚ÂÌÒÚ‚Ó v( x ∨ y) + v( x ∧ y) = v( x ) + v( y) ÒÔ‡‚‰ÎË‚Ó ‰Îfl ‚ÒÂı x, y ∈ L. ñÂÎÓ˜ËÒÎÂÌÌÓ ‚‡Î˛‡ˆËfl ̇Á˚‚‡ÂÚÒfl ‚˚ÒÓÚÓÈ (ËÎË ‰ÎËÌÓÈ) ¯ÂÚÍË . åÂÚË͇ ‚‡Î˛‡ˆËË Â¯ÂÚÍË èÛÒÚ¸ = ( L, p − , ∨, ∧) – ¯ÂÚÍf Ë v – ËÁÓÚÓÌ̇fl ÒÛ·‚‡Î˛‡ˆËfl ̇ . èÓÎÛÏÂÚË͇ ÒÛ·‚‡Î˛‡ˆËË Â¯ÂÚÍË d v ̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í 2v( x ∨ y) − v( x ) − v( y). (é̇ ÏÓÊÂÚ ·˚Ú¸ Ú‡ÍÊ Á‡‰‡Ì‡ ̇ ÌÂÍÓÚÓ˚ı ÔÓÎÛ¯ÂÚ͇ı). ÖÒÎË v fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓÈ ÒÛ·‚‡Î˛‡ˆËÂÈ Ì‡ , ÚÓ ÔÓÎÛ˜ËÏ ÏÂÚËÍÛ, ÍÓÚÓ‡fl ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ ÒÛ·‚‡Î˛‡ˆËË Â¯ÂÚÍË. ÖÒÎË v – ‚‡Î˛‡ˆËfl, ÚÓ d v ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í v( x ∨) − v( x ∧ y) = v( x ) + v( y) − 2 v( x ∧ y); ‚ ˝ÚÓÏ ÒÎÛ˜‡Â d s ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ ‚‡Î˛‡ˆËË ÖÒÎË v fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓÈ ‚‡Î˛‡ˆËÂÈ Ì‡ , ÚÓ ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ, ̇Á˚‚‡ÂÏÛ˛ ÏÂÚËÍÓÈ ‚‡Î˛‡ˆËË Â¯ÂÚÍË. ÖÒÎË = (ÏÌÓÊÂÒÚ‚Ó Ì‡ÚۇθÌ˚ı ˜ËÒÂÎ), x ∨ y = l.c.m.( x, y) (̇ËÏÂ̸¯Â ӷ˘Â ͇ÚÌÓÂ), x ∧ y = g.c.d .( x, y) (̇˷Óθ¯ËÈ Ó·˘ËÈ ‰ÂÎËÚÂθ) Ë ÔÓÎÓÊËÚÂθ̇fl l.c.m.( x, y) . чÌÌÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ Ó·Ó·˘ËÚ¸ ‚‡Î˛‡ˆËfl v(x) = lnx, ÚÓ d v ( x, y) = ln g.c.d .( x, y) ̇ β·Ó هÍÚÓˇθÌÓ ÍÓθˆÓ (Ú.Â. ÍÓθˆÓ Ò Â‰ËÌÒÚ‚ÂÌÌÓÈ Ù‡ÍÚÓËÁ‡ˆËÂÈ), Ò̇·ÊÂÌÌÓ ÔÓÎÓÊËÚÂθÌÓÈ ‚‡Î˛‡ˆËÂÈ v, Ú‡ÍÓÈ ˜ÚÓ v(x) ≥ 0 Ò ‡‚ÂÌÒÚ‚ÓÏ ÚÓθÍÓ ‰Îfl ÏÛθÚËÔÎË͇ÚË‚ÌÓÈ Â‰ËÌˈ˚ ÍÓθˆ‡ Ë v(xy) = v(x) + v(y). åÂÚË͇ ÍÓ̘Ì˚ı ÔÓ‰„ÛÔÔ èÛÒÚ¸ (G, ⋅, e) – „ÛÔÔa Ë = (L, ⊂ , ∩) – ÌËÊÌflfl ÔÓÎÛ¯ÂÚ͇ ‚ÒÂı ÍÓ̘Ì˚ı ÔÓ‰„ÛÔÔ „ÛÔÔ˚ (G, ⋅, e) Ò ÔÂÂÒ˜ÂÌËÂÏ X ∩ Y Ë ‚‡Î˛‡ˆËÂÈ v( X ) = ln | X | . åÂÚË͇ ÍÓ̘Ì˚ı ÔÓ‰„ÛÔÔ ÂÒÚ¸ ÏÂÚË͇ ‚‡Î˛‡ˆËË Ì‡ , ÓÔ‰ÂÎflÂχfl Í‡Í v( X ) + v(Y ) − 2 v( X ∧ Y ) = ln
| X ||Y | . (| X ∩ Y |)2
ë͇Îfl̇fl Ë ‚ÂÍÚÓ̇fl ÏÂÚËÍË èÛÒÚ¸ = (L, ≤ , max, min) – ¯ÂÚ͇ Ò Ó·˙‰ËÌÂÌËÂÏ max{x, y} Ë min{x, y} ÔÂÂÒ˜ÂÌËÂÏ Ì‡ ÏÌÓÊÂÒÚ‚Â L ⊂ [0, ∞), Ëϲ˘ËÏ Á‡‰‡ÌÌÓ ˜ËÒÎÓ ‡ Í‡Í Ì‡Ë·Óθ¯ËÈ ˝ÎÂÏÂÌÚ Ë Á‡ÏÍÌÛÚÓ ÓÚÌÓÒËÚÂθÌÓ ÓÚˈ‡ÌËfl, Ú.Â. ‰Îfl β·Ó„Ó x ∈ L ËÏÂÂÏ x = a − x ∈ L. ë͇Îfl̇fl ÏÂÚË͇ d ̇ L Á‡‰‡ÂÚÒfl ‰Îfl x ≠ y Í‡Í d ( x, y) = max{min{x, y}, min{x , y}}.
178
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
ë͇Îfl̇fl ÏÂÚË͇ d* ̇ L∗ = L ∪ {∗}, ÓÔ‰ÂÎflÂÚÒfl ‰Îfl x ≠ y Í‡Í ÂÒÎË x , y ∈ L, d ( x, y), d ∗ ( x, y) = max{x , x}, ÂÒÎË y = ∗, x ≠ ∗, max{y, y}, ÂÒÎË x = ∗, y ≠ ∗. ÑÎfl ‰‡ÌÌÓÈ ÌÓÏ˚ || ⋅ || ̇ n , n ≥ 2 ‚ÂÍÚÓ̇fl ÏÂÚË͇ ̇ Ln Á‡‰‡ÂÚÒfl Í‡Í || ( d ( x1 , y1 ), …, d ( x n , yn )) || Ë ‚ÂÍÚÓ̇fl ÏÂÚË͇ ̇ (L*)n Á‡‰‡ÂÚÒfl Í‡Í || ( d ∗ ( x1 , y1 ), …, d ∗ ( x n , yn )) || . ÇÂÍÚÓ̇fl ÏÂÚË͇ ̇ Ln2 = {0, 1}n Ò l1 -ÌÓÏÓÈ Ì‡ n ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ 1 m − 2 n , …, , 1 Ò î¯–çËÍÓ‰Ëχ–ÄÓÌÁfl̇. ÇÂÍÚÓ̇fl ÏÂÚË͇ ̇ Lnm = 0, m −1 m −1 l1 -ÌÓÏÓÈ Ì‡ n ̇Á˚‚‡ÂÚÒfl m-Á̇˜ÌÓÈ ÏÂÚËÍÓÈ ë„‡Ó. ÇÂÍÚÓ̇fl ÏÂÚË͇ ̇ [0, 1]n Ò l1 -ÌÓÏÓÈ Ì‡ n ̇Á˚‚‡ÂÚÒfl ̘ÂÚÍÓ ÓÔ‰ÂÎÂÌÌÓÈ ÏÂÚËÍÓÈ ë„‡Ó. ÖÒÎË L ÂÒÚ¸ Lm ËÎË [0, 1] Ë x = (x1 ,…, xn, x n+1,…, xn+r), y = ( y1 , …, yn , ∗, …, ∗), „‰Â * ÒÚÓËÚ Ì‡ r ÏÂÒÚ‡ı, ÚÓ ‚ÂÍÚÓ̇fl ÏÂÚË͇ ÏÂÊ‰Û ı Ë Û fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ë„‡Ó (ÒÏ., ̇ÔËÏÂ, [CSY01]). åÂÚËÍË Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â êËÒÒ‡ èÓÒÚ‡ÌÒÚ‚Ó êËÒÒ‡ (ËÎË ‚ÂÍÚÓ̇fl ¯ÂÚ͇) ÂÒÚ¸ ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (VRi , p − ), ‚ ÍÓÚÓÓÏ ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÛÒÎÓ‚Ëfl: 1) ÒÚÛÍÚÛ‡ ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ë ˜‡ÒÚ˘ÌÓ ÛÔÓfl‰Ó˜ÂÌ̇fl ÒÚÛÍÚÛ‡ ÒÓ‚ÏÂÒÚËÏ˚: ËÁ x p − y ÒΉÛÂÚ, ˜ÚÓ x + z p − y + z, ‡ ËÁ x f 0, λ ∈ , λ > 0 ÒΉÛÂÚ, ˜ÚÓ λx f 0; 2) ‰Îfl β·˚ı ‰‚Ûı ˝ÎÂÏÂÌÚÓ‚ x, y ∈ V Ri ÒÛ˘ÂÒÚ‚ÛÂÚ Ó·˙‰ËÌÂÌË x ∨ y ∈ VRi (‚ ˜‡ÒÚÌÓÒÚË, ÒÛ˘ÂÒÚ‚ÛÂÚ Ó·˙‰ËÌÂÌËÂ Ë ÔÂÂÒ˜ÂÌË β·Ó„Ó ÍÓ̘ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ˝ÎÂÏÂÌÚÓ‚ ̇ VRi ). åÂÚË͇ ÌÓÏ˚ êËÒÒ‡ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ VRi , Á‡‰‡Ì̇fl Í‡Í || x − y ||Ri , „‰Â || ⋅ ||Ri – ÌÓχ êËÒÒ‡, Ú.Â. ÌÓχ ̇ VRi , ڇ͇fl ˜ÚÓ ‰Îfl β·˚ı x, y ∈ V Ri ËÁ ̇‚ÂÌÒÚ‚‡ | x | ≤ | y |, „‰Â | x | = ( − x ) ∨ ( x ) ÒΉÛÂÚ Ì‡‚ÂÌÒÚ‚Ó || x ||Ri ≤ || y ||Ri . èÓÒÚ‡ÌÒÚ‚Ó ((VRi , || ⋅ ||Ri ) ̇Á˚‚‡ÂÚÒfl ÌÓÏËÓ‚‡ÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ êËÒÒ‡. Ç ÒÎÛ˜‡Â ÔÓÎÌÓÚ˚ ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl ·‡Ì‡ıÓ‚ÓÈ Â¯ÂÚÍÓÈ. ÇÒ ÌÓÏ˚ êËÒÒ‡ ̇ ·‡Ì‡ıÓ‚ÓÈ Â¯ÂÚÍ ˝Í‚Ë‚‡ÎÂÌÚÌ˚. ùÎÂÏÂÌÚ e ∈ VRi+ = {x ∈ VRi : x f 0} ̇Á˚‚‡ÂÚÒfl ÒËθÌÓÈ Â‰ËÌˈÂÈ ‰Îfl VRi , ÂÒÎË ‰Îfl Í‡Ê‰Ó„Ó x ∈ VRi ÒÛ˘ÂÒÚ‚ÛÂÚ λ ∈ , Ú‡ÍÓ ˜ÚÓ | x | p − λe . ÖÒÎË ÔÓÒÚ‡ÌÒÚ‚Ó êËÒÒ‡ V Ri ËÏÂÂÚ ÒËθÌÛ˛ ‰ËÌËˆÛ Â, ÚÓ || x || = inf{λ ∈ : | x | p − λe} fl‚ÎflÂÚÒfl ÌÓÏÓÈ êËÒÒ‡ Ë Ì‡ VRi ÔÓÎÛ˜ËÏ ÏÂÚËÍÛ ÌÓÏ˚ êËÒÒ‡ inf{λ ∈ : | x − y | p − λe}.
É·‚‡ 10. ê‡ÒÒÚÓflÌËfl ‚ ‡Î„·Â
179
ë··ÓÈ Â‰ËÌˈÂÈ ‰Îfl VRi fl‚ÎflÂÚÒfl ˝ÎÂÏÂÌÚ Â ËÁ VRi+ , Ú‡ÍÓÈ ˜ÚÓ e∧ | x | = 0 ‚ΘÂÚ x = 0. èÓÒÚ‡ÌÒÚ‚Ó êËÒÒ‡ VRi ̇Á˚‚‡ÂÚÒfl ‡ıËωӂ˚Ï, ÂÒÎË ‰Îfl β·˚ı ‰‚Ûı x, y ∈ VRi+ ÒÛ˘ÂÒÚ‚ÛÂÚ Ì‡ÚۇθÌÓ ˜ËÒÎÓ n, Ú‡ÍÓ ˜ÚÓ nx p − y. ꇂÌÓÏÂ̇fl ÏÂÚË͇ ̇ ‡ıËωӂÓÏ ÔÓÒÚ‡ÌÒÚ‚Â êËÒÒ‡ ÒÓ Ò··ÓÈ Â‰ËÌˈÂÈ Â ÓÔ‰ÂÎflÂÚÒfl Í‡Í inf{λ ∈ : | x − y | ∧e p − λe}. ê‡ÒÒÚÓflÌË „‡ÎÂÂË ‰Îfl Ù·„Ó‚ èÛÒÚ¸ – ¯ÂÚÍa. ñÂÔ¸ ë ‚ ÂÒÚ¸ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ L, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ÎËÌÂÈÌÓ ÛÔÓfl‰Ó˜ÂÌÌ˚Ï, Ú.Â. β·˚ ‰‚‡ ˝ÎÂÏÂÌÚ‡ ËÁ ë Ò‡‚ÌËÏ˚ ÏÂÊ‰Û ÒÓ·ÓÈ. î·„ÓÏ Ì‡Á˚‚‡ÂÚÒfl ˆÂÔ¸ ‚ , ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl χÍÒËχθÌÓÈ ÓÚÌÓÒËÚÂθÌÓ ‚Íβ˜ÂÌ˲. ÖÒÎË fl‚ÎflÂÚÒfl ÔÓÎÛÏÓ‰ÛÎflÌÓÈ Â¯ÂÚÍÓÈ, ÒÓ‰Âʇ˘ÂÈ ÍÓ̘Ì˚È Ù·„, ÚÓ ËÏÂÂÚ Â‰ËÌÒÚ‚ÂÌÌ˚È ÏËÌËχθÌ˚È Ë Â‰ËÌÒÚ‚ÂÌÌ˚È Ï‡ÍÒËχθÌ˚È ˝ÎÂÏÂÌÚ, Ë Î˛·˚ ‰‚‡ Ù·„‡ C, D ‚ ËÏÂ˛Ú Ó‰Ë̇ÍÓ‚Ó ͇‰Ë̇θÌÓ ˜ËÒÎÓ n + 1. íÓ„‰‡ n – ˝ÚÓ ‚˚ÒÓÚ‡ ¯ÂÚÍË . Ñ‚‡ Ù·„‡ ë, D ‚ ̇Á˚‚‡˛ÚÒfl ÒÏÂÊÌ˚ÏË, ÂÒÎË ÓÌË ÒÓ‚Ô‡‰‡˛Ú ËÎË D ÒÓ‰ÂÊËÚ ÚÓθÍÓ Ó‰ËÌ ˝ÎÂÏÂÌÚ ‚Ì ë. ɇÎÂÂÂÈ ÓÚ ë Í D ‰ÎËÌ˚ m ̇Á˚‚‡ÂÚÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ Ù·„Ó‚ C = C 0 , C 1 ,…, Cm = D, ڇ͇fl ˜ÚÓ C i–1 Ë Ci fl‚Îfl˛ÚÒfl ÒÏÂÊÌ˚ÏË ‰Îfl i = 1,…, m. ê‡ÒÒÚÓflÌË „‡ÎÂÂË ‰Îfl Ù·„Ó‚ (ÒÏ. [Abel91]) ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı Ù·„Ó‚ ÔÓÎÛÏÓ‰ÛÎflÌÓÈ Â¯ÂÚÍË ÍÓ̘ÌÓÈ ‚˚ÒÓÚ˚, ÓÔ‰ÂÎflÂÏÓÂ Í‡Í ÏËÌËÏÛÏ ‰ÎËÌ „‡ÎÂÂÈ ËÁ ë Í D. éÌÓ ÏÓÊÂÚ ·˚Ú¸ Á‡ÔËÒ‡ÌÓ Í‡Í | C ∨ D | − | C | = | C ∨ D | − | D |, „‰Â C ∨ D = {c ∨ d : c ∈ C, d ∈ D} fl‚ÎflÂÚÒfl ‚ÂıÌÂÈ ÔÓ‰ÔÓÎÛ¯ÂÚÍÓÈ, ÔÓÓʉÂÌÌÓÈ ë Ë D. ê‡ÒÒÚÓflÌË „‡ÎÂÂË ‰Îfl Ù·„Ó‚ ÏÂÚÓÍ fl‚ÎflÂÚÒfl ÒÔˆˇθÌ˚Ï ÒÎÛ˜‡ÂÏ ÏÂÚËÍË „‡ÎÂÂË (‰Îfl ÒËÒÚÂÏ˚ ͇ÏÂ, ÒÓÒÚÓfl˘ÂÈ ËÁ Ù·„Ó‚).
É·‚‡ 11
êÄëëíéüçàü çÄ ëíêéäÄï à èÖêÖëíÄçéÇäÄï
ÄÎÙ‡‚ËÚ – ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó , | | ≥ 2, ˝ÎÂÏÂÌÚ˚ ÍÓÚÓÓ„Ó Ì‡Á˚‚‡˛ÚÒfl ·ÛÍ‚‡ÏË (ËÎË ÒËÏ‚Ó·ÏË). ëÚÓ͇ (ËÎË ÒÎÓ‚Ó) ÂÒÚ¸ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ·ÛÍ‚ ̇‰ ‰‡ÌÌ˚Ï ÍÓ̘Ì˚Ï ‡ÎÙ‡‚ËÚÓÏ . åÌÓÊÂÒÚ‚Ó ‚ÒÂı ÍÓ̘Ì˚ı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ Ì‡‰ ‡ÎÙ‡‚ËÚÓÏ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í W(). èÓ‰ÒÚÓ͇ (ËÎË Ù‡ÍÚÓ, ˆÂÔӘ͇, ·ÎÓÍ) ÒÚÓÍË x = x 1 ,…, x n – β·‡fl  ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÒÏÂÌÌ˚ı ˝ÎÂÏÂÌÚÓ‚ xixi+1...xk Ò 1 ≤ i ≤ k ≤ n . èÂÙËÍÒÓÏ ÒÚÓÍË x 1 ...xn fl‚ÎflÂÚÒfl β·‡fl  ÔÓ‰ÒÚÓ͇, ̇˜Ë̇˛˘‡flÒfl Ò x1; ÒÛÙÙËÍÒ – β·‡fl  ÔÓ‰ÒÚÓ͇, Á‡Í‡Ì˜Ë‚‡˛˘Ë‡flÒfl ̇ x n . ÖÒÎË ÒÚÓ͇ fl‚ÎflÂÚÒfl ˜‡ÒÚ¸˛ ÚÂÍÒÚ‡, ÚÓ ‡Á‰ÂÎËÚÂθÌ˚ Á̇ÍË (ÔÓ·ÂÎ, ÚӘ͇, Á‡ÔflÚ‡fl Ë Ú.Ô.) ‰Ó·‡‚Îfl˛ÚÒfl Í ‡ÎÙ‡‚ËÚÛ . ÇÂÍÚÓ – β·‡fl ÍÓ̘̇fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ËÁ ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ˜ËÒÂÎ, Ú.Â. ÍÓ̘̇fl ÒÚÓ͇ ̇‰ ·ÂÒÍÓ̘Ì˚Ï ‡ÎÙ‡‚ËÚÓÏ . ÇÂÍÚÓÓÏ ˜‡ÒÚÓÚ (ËÎË ‰ËÒÍÂÚÌ˚Ï ‡ÒÔ‰ÂÎÂÌËÂÏ ‚ÂÓflÚÌÓÒÚÂÈ) fl‚ÎflÂÚÒfl β·‡fl ÒÚÓ͇ x1...xn ÒÓ ‚ÒÂÏË n
xi ≥ 0 Ë
∑
xi = 1. èÂÂÒÚ‡Ìӂ͇ (ËÎË ‡ÌÊËÓ‚‡ÌËÂ) – β·‡fl ÒÚÓ͇ x1...xn,
i =1
‚ ÍÓÚÓÓÈ ‚Ò x i – ‡Á΢Ì˚ ˜ËÒ· ÏÌÓÊÂÒÚ‚‡ {1,…, n}. éÔ‡ˆËÂÈ Â‰‡ÍÚËÓ‚‡ÌËfl ̇Á˚‚‡ÂÚÒfl β·‡fl ÓÔ‡ˆËfl ̇ ÒÚÓ͇ı, Ú.Â. ÒËÏÏÂÚ˘ÌÓ ·Ë̇ÌÓ ÓÚÌÓ¯ÂÌË ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ‡ÒÒχÚË‚‡ÂÏ˚ı ÒÚÓÍ. ÖÒÎË ËÏÂÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ÓÔ‡ˆËÈ Â‰‡ÍÚËÓ‚‡ÌËfl = {O1,…, Om}, ÚÓ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl (ËÎË Â‰ËÌ˘̇fl ˆÂ̇ ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl) ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë Û ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ ÓÔ‡ˆËÈ Â‰‡ÍÚËÓ‚‡ÌËfl ËÁ , ÚÂ·Û˛˘ËıÒfl ‰Îfl ÚÓ„Ó, ˜ÚÓ·˚ ÔÓÎÛ˜ËÚ¸ Û ËÁ ı. ùÚÓ ÏÂÚË͇ ÔÛÚË „‡Ù‡ ÒÓ ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ W(), „‰Â ıÛ fl‚ÎflÂÚÒfl ·ÓÏ, ÂÒÎË Û ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌÓ ËÁ ı ÔÓÒ‰ÒÚ‚ÓÏ Ó‰ÌÓÈ ËÁ ÓÔ‡ˆËÈ ÏÌÓÊÂÒÚ‚‡ . Ç ÌÂÍÓÚÓ˚ı ÔËÎÓÊÂÌËflı ͇ʉÓÏÛ ÚËÔÛ ÓÔ‡ˆËÈ Â‰‡ÍÚËÓ‚‡ÌËfl ÒÚ‡‚ËÚÒfl ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ÙÛÌ͈Ëfl ˆÂÌ˚; ÚÓ„‰‡ ‡ÒÒÚÓflÌËÂÏ Â‰‡ÍÚËÓ‚‡ÌËfl fl‚ÎflÂÚÒfl ÏËÌËχθ̇fl Ó·˘‡fl ˆÂ̇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ı ‚ Û. ÖÒÎË Á‡‰‡ÌÓ ÏÌÓÊÂÒÚ‚Ó ÓÔ‡ˆËÈ Â‰‡ÍÚËÓ‚‡ÌËfl ̇ ÒÚÓ͇ı, ÚÓ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ÓÊÂÂÎËÈ ÏÂÊ‰Û ˆËÍ΢ÂÒÍËÏË ÒÚÓ͇ÏË ı Ë Û ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ ÓÔ‡ˆËÈ Â‰‡ÍÚËÓ‚‡ÌËfl ËÁ , ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÓÎÛ˜ÂÌËfl Û ËÁ ı, ÏËÌËÏËÁËÓ‚‡ÌÌÓ ÔÓ ‚ÒÂÏ ‚‡˘ÂÌËflÏ ı. éÒÌÓ‚Ì˚ÏË ÓÔ‡ˆËflÏË Â‰‡ÍÚËÓ‚‡ÌËfl ̇ ÒÚÓ͇ı fl‚Îfl˛ÚÒfl: – ‚ÒÚ‡‚Û‰ (‚ÒÚ‡‚͇-Û‰‡ÎÂÌËÂ) ÒËÏ‚Ó·; – Á‡ÏÂ̇ ÒËÏ‚Ó·; – Ò‚ÓÔ ÒËÏ‚ÓÎÓ‚, Ú.Â. Ò‰‚Ë„ ÒËÏ‚Ó· ̇ Ó‰ÌÛ ÔÓÁËˆË˛ ‚Ô‡‚Ó ËÎË ‚ÎÂ‚Ó (˜ÚÓ ÔÂÂÒÚ‡‚ÎflÂÚ ÒÏÂÊÌ˚ ÒËÏ‚ÓÎ˚); – ÔÂÂÏ¢ÂÌË ÔÓ‰ÒÚÓÍË, Ú.Â. ÔÂÓ·‡ÁÓ‚‡ÌËÂ, Ò͇ÊÂÏ, ÒÚÓÍË x = x1…xn ‚ ÒÚÓÍÛ x1 … xi −1 x j … x k −1 xi … x j −1 x k … x n ; – ÍÓÔËÓ‚‡ÌË ÔÓ‰ÒÚÓÍË, Ú.Â. ÔÂÓ·‡ÁÓ‚‡ÌËÂ, Ò͇ÊÂÏ, x = x 1 …xn ‚ x1 … xi −1 x j … x k −1 xi … x n ;
É·‚‡ 11. ê‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı Ë ÔÂÂÒÚ‡Ìӂ͇ı
181
– ‡ÌÚËÍÓÔËÓ‚‡ÌË ÔÓ‰ÒÚÓÍË, Ú.Â. Û‰‡ÎÂÌË ÔÓ‰ÒÚÓÍË Ò ÒÓı‡ÌÂÌËÂÏ ‚ ÒÚÓ͠ ÍÓÔËË. çËÊ ÔË‚Ó‰flÚÒfl ÓÒÌÓ‚Ì˚ ‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı. é‰Ì‡ÍÓ ÌÂÍÓÚÓ˚ ‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı Ô‰ÒÚ‡‚ÎÂÌ˚ ‚ „·‚‡ı 15, 21 Ë 23, „‰Â ÓÌË ·ÓΠÛÏÂÒÚÌ˚, Ò Û˜ÂÚÓÏ ÌÂÓ·ıÓ‰ËÏÓ„Ó ÛÓ‚Ìfl Ó·Ó·˘ÂÌËfl ËÎË ÒÔˆˇÎËÁ‡ˆËË. 11.1. êÄëëíéüçàü çÄ ëíêéäÄï éÅôÖÉé ÇàÑÄ åÂÚË͇ ã‚Â̯ÚÂÈ̇ åÂÚË͇ ã‚Â̯ÚÂÈ̇ (ËÎË Ú‡ÒÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË ï˝ÏÏËÌ„‡, ÏÂÚË͇ ï˝ÏÏËÌ„‡ Ò ÔÓÔÛÒ͇ÏË, ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ÒËÏ‚ÓÎÓ‚) fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Â‰‡ÍÚËÓ‚‡ÌËfl ̇ W(), ÍÓÚÓ‡fl ÔÓÎÛ˜Â̇ ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔ‡ˆËË Á‡ÏÂÌ˚ ÒËÏ‚ÓÎÓ‚ ËÎË Ëı ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl. åÂÚË͇ ã‚Â̯ÚÂÈ̇ ÏÂÊ‰Û ÒÚÓ͇ÏË x = x1…xm Ë y = y1 …yn ‡‚̇ min{dH(x * , y*)}, „‰Â x * , y* – ÒÚÓÍË ‰ÎËÌ˚ k, k ≥ max{m, n} ̇‰ ‡ÎÙ‡‚ËÚÓÏ = ∪{∗}, Ú‡ÍË ˜ÚÓ ÔÓÒΠۉ‡ÎÂÌËfl ‚ÒÂı ÌÓ‚˚ı ÒËÏ‚ÓÎÓ‚ ∗ ÒÚÓÍË x * Ë y* Ô‚‡˘‡˛ÚÒfl ‚ ı Ë Û ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. á‰ÂÒ¸ ÔÓÔÛÒÍ ÓÁ̇˜‡ÂÚ ÌÓ‚˚È ÒËÏ‚ÓÎ ∗ Ë x*, y* – Ú‡ÒÓ‚‡ÌËfl ÒÚÓÍ ı Ë Û ÒÓ ÒÚÓ͇ÏË, ‚Íβ˜‡˛˘ËÏË ÚÓθÍÓ ∗. åÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl Ò ÔÂÂÏ¢ÂÌËflÏË åÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl Ò ÔÂÂÏ¢ÂÌËflÏË ÂÒÚ¸ ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ̇ W() ([Corm03]), ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÔÂÂÏ¢ÂÌËfl ÔÓ‰ÒÚÓÍ Ë ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl. åÂÚË͇ ÛÔÎÓÚÌÂÌÌÓ„Ó Â‰‡ÍÚËÓ‚‡ÌËfl åÂÚË͇ ÛÔÎÓÚÌÂÌÌÓ„Ó Â‰‡ÍÚËÓ‚‡ÌËfl ÂÒÚ¸ ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ̇ W() ([Corm03]), ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔ‡ˆËË ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl (‚ÒÚ‡‚Û‰), ÒËÏ‚Ó· ÍÓÔËÓ‚‡ÌËfl ÔÓ‰ÒÚÓÍË ‡ÌÚËÍÓÔËÓ‚‡ÌËfl ÔÓ‰ÒÚÓÍË. åÂÚË͇ ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl åÂÚË͇ ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl ÂÒÚ¸ ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ̇ W(), ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔ‡ˆË˛ ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl. ùÚÓ – ‡Ì‡ÎÓ„ ı˝ÏÏËÌ„Ó‚‡ ‡ÒÒÚÓflÌËfl | X∆Y | ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË ï Ë Y . ÑÎfl ÒÚÓÍ x = x 1 …xm Ë y = y 1 …yn Ó̇ ‡‚̇ m + n – 2LCS(x, y), „‰Â ÔÓ‰Ó·ÌÓÒÚ¸ LCS(x, y), – ‰ÎË̇ Ò‡ÏÓÈ ‰ÎËÌÌÓÈ Ó·˘ÂÈ ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ‰Îfl ı Ë Û. ê‡ÒÒÚÓflÌË هÍÚÓ‡ ̇ W() ÓÔ‰ÂÎflÂÚÒfl Í‡Í m + n – 2LCS(x, y), „‰Â ÔÓ‰Ó·ÌÓÒÚ¸ LCS(x, y) – ‰ÎË̇ Ò‡ÏÓÈ ‰ÎËÌÌÓÈ Ó·˘ÂÈ ÔÓ‰ÒÚÓÍË (Ù‡ÍÚÓ‡) ‰Îfl ı Ë Û. åÂÚË͇ Ò‚ÓÔ‡ åÂÚË͇ Ò‚ÓÔ‡ – ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ̇ W(), ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔ‡ˆË˛ Ò‚ÓÔ‡ ÒËÏ‚ÓÎÓ‚. åÂÚË͇ ÏÛθÚËÏÌÓÊÂÒÚ‚‡ åÂÚËÍÓÈ ÏÛθÚËÏÌÓÊÂÒÚ‚‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ W(), ÓÔ‰ÂÎflÂχfl Í‡Í max{| X – Y |, | Y – X |} ‰Îfl β·˚ı ÒÚÓÍ ı Ë Û, „‰Â ï , Y – ÏÛθÚËÏÌÓÊÂÒÚ‚‡ ÒËÏ‚ÓÎÓ‚ ÒÚÓÍ ı, Û, ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
182
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
åÂÚË͇ χÍËÓ‚ÓÍË åÂÚËÍÓÈ Ï‡ÍËÓ‚ÍË Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ W() ([EhHa88]), ÓÔ‰ÂÎÂÌ̇fl Í‡Í ln 2 ((diff( y, x ) + 1) (diff( y, x ) + 1)) ‰Îfl β·˚ı ÒÚÓÍ x = x1…xm Ë y = y 1 …yn, „‰Â diff(x, y) – ÏËÌËχθÌ˚È ‡ÁÏ | M | ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M ⊂ {1,…, m}, Ú‡ÍÓ„Ó ˜ÚÓ Î˛·‡fl ÔÓ‰ÒÚÓ͇ ı, Ì ÒÓ‰Âʇ˘‡fl x i Ò i ∈ M, fl‚ÎflÂÚÒfl ÔÓ‰ÒÚÓÍÓÈ Û. ÑÛ„ÓÈ ÏÂÚËÍÓÈ, ÓÔ‰ÂÎÂÌÌÓÈ ‚ [EhHa88], fl‚ÎflÂÚÒfl ln2 (diff(x, y) + diff(y, x) + 1). ê‡ÒÒÚÓflÌË ÔÂÓ·‡ÁÓ‚‡ÌËfl ê‡ÒÒÚÓflÌËÂÏ ÔÂÓ·‡ÁÓ‚‡ÌËfl ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl Ò ˆÂÌÓÈ Ì‡ W() (Ç‡Â Ë ‰., 1999), ÔÓÎÛ˜ÂÌÌÓ ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔ‡ˆËË ÍÓÔËÓ‚‡ÌËfl, ‡ÌÚËÍÓÔËÓ‚‡ÌËfl Ë ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl ÔÓ‰ÒÚÓÍ. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë Û fl‚ÎflÂÚÒfl ÏËÌËχθÌÓÈ ˆÂÌÓÈ ÔÂÓ·‡ÁÓ‚‡ÌËfl ı ‚ Û ÔÓÒ‰ÒÚ‚ÓÏ ˝ÚËı ÓÔ‡ˆËÈ, „‰Â ˆÂ̇ ͇ʉÓÈ ÓÔ‡ˆËË – ‰ÎË̇  ÓÔËÒ‡ÌËfl. í‡Í, ̇ÔËÏÂ, ‰Îfl ÓÔËÒ‡ÌËfl ÍÓÔËÓ‚‡ÌËfl ÌÂÓ·ıÓ‰ËÏ ·Ë̇Ì˚È ÍÓ‰, ÚÓ˜ÌÓ ÓÔ‰ÂÎfl˛˘ËÈ ÚËÔ ÓÔ‡ˆËË, ÒÏ¢ÂÌË ÏÂÒÚÓÔÓÎÓÊÂÌËfl ÔÓ‰ÒÚÓÍ ÓÚÌÓÒËÚÂθÌÓ ‰Û„ ‰Û„‡ ‚ ı Ë Û Ë ‰ÎËÌÛ Ò‡ÏÓÈ ÔÓ‰ÒÚÓÍË. äÓ‰ÓÏ ‚ÒÚ‡‚ÍË ‰ÓÎÊÂÌ ÓÔ‰ÂÎflÚ¸ ÚËÔ ÓÔ‡ˆËË, ‰ÎËÌÛ ÔÓ‰ÒÚÓÍË Ë ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÔÓ‰ÒÚÓÍË. ê‡ÒÒÚÓflÌË ÌÓχÎËÓ‚‡ÌÌÓÈ ËÌÙÓχˆËË ê‡ÒÒÚÓflÌË ÌÓχÎËÁÓ‚‡ÌÌÓÈ ËÌÙÓχˆËË d ÂÒÚ¸ ÒËÏÏÂÚ˘̇fl ÙÛÌ͈Ëfl ̇ W({0, 1}) ([LCLM04]), Á‡‰‡Ì̇fl Í‡Í max{K ( x | y ∗ ), K ( y | x ∗ )} max{K ( x ), K ( y)} ‰Îfl ͇ʉ˚ı ‰‚Ûı ·Ë̇Ì˚ı ÒÚÓÍ ı Ë Û. á‰ÂÒ¸ ‰Îfl ·Ë̇Ì˚ı ÒÚÓÍ u Ë v, u* fl‚ÎflÂÚÒfl ͇ژ‡È¯ÂÈ ·Ë̇ÌÓÈ ÔÓ„‡ÏÏÓÈ ‰Îfl ‚˚˜ËÒÎÂÌËfl u ̇ ÔÓ‰ıÓ‰fl˘ÂÈ, Ú.Â. ËÒÔÓθÁÛ˛˘ÂÈ í¸˛ËÌ„-ÔÓÎÌ˚È flÁ˚Í ùÇå, ÒÎÓÊÌÓÒÚ¸ ÔÓ äÓÎÏÓ„ÓÓ‚Û (ËÎË ‡Î„ÓËÚÏ˘ÂÒ͇fl ˝ÌÚÓÔËfl) K(u) ÂÒÚ¸ ‰ÎË̇ u* (ÓÍÓ̘‡ÚÂθÌÓ ÒʇÚ˚È ‚‡Ë‡ÌÚ u ) Ë K (u | v) – ‰ÎË̇ ͇ژ‡È¯ÂÈ ÔÓ„‡ÏÏ˚ ‚˚˜ËÒÎÂÌËfl u, ÂÒÎË v ‰‡ÌÓ Í‡Í ‚ÒÔÓÏÓ„‡ÚÂθÌ˚È ‚‚Ó‰. îÛÌ͈Ëfl d(x, y) fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ÌÂÁ̇˜ËÚÂθÌÓ„Ó ÓÒÚ‡ÚÓ˜ÌÓ„Ó ˜ÎÂ̇: d(x, x) = O((K(x))–1) Ë d(x, z) – d(y, z) = O((max{K(x), K(y), K(z)}) –1) (Ò‡‚ÌËÚ d(x, y) Ò ÏÂÚËÍÓÈ ËÌÙÓχˆËË (ËÎË ÏÂÚËÍÓÈ ˝ÌÚÓÔËË) H ( X | Y ) + H (Y | X ) ÏÂÊ‰Û ÒÚÓı‡ÒÚ˘ÂÒÍËÏË ËÒÚÓ˜ÌË͇ÏË ï Ë Y). çÓχÎËÁÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË ÒʇÚËfl – ˝ÚÓ ‡ÒÒÚÓflÌËÂ Ì W({0, 1})‡ ([LCLM04], [BGLVZ98]), Á‡‰‡ÌÌÓÂ Í‡Í C( xy) − min{C( x ), C( y)} max{C( x ), C( y)} ‰Îfl β·˚ı ·Ë̇Ì˚ı ÒÚÓÍ ı Ë Û, „‰Â C(x), C(y) Ë C(xy) ÓÁ̇˜‡˛Ú ‡ÁÏ ÒʇÚ˚ı (Ò ÔÓÏÓ˘¸˛ ÙËÍÒËÓ‚‡ÌÌÓ„Ó ÍÓÏÔÂÒÒÓ‡ ë, Ú‡ÍÓ„Ó Í‡Í gzip, bzip2 ËÎË PPMZ) ÒÚÓÍ ı, Û Ë Ëı ÒÓ˜ÎÂÌÂÌËfl ıÛ. чÌÌÓ ‡ÒÒÚÓflÌË Ì fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ. ùÚÓ – ‡ÔÔÓÍÒËχˆËfl ‡ÒÒÚÓflÌËfl ÌÓχÎËÁÓ‚‡ÌÌÓÈ ËÌÙÓχˆËË. èÓ‰Ó·ÌÓ ‡ÒÒÚÓflÌË C( xy) 1 − . ÏÓÊÂÚ ·˚Ú¸ Á‡‰‡ÌÓ Í‡Í C( x ) + C( y ) 2
É·‚‡ 11. ê‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı Ë ÔÂÂÒÚ‡Ìӂ͇ı
183
èÓ‰Ó·ÌÓÒÚ¸ ùÌÚÓÌË–ï‡Ïχ èÓ‰Ó·ÌÓÒÚ¸ ùÌÚÓÌË–ï‡Ïχ ÏÂÊ‰Û ·Ë̇ÌÓÈ ÒÚÓÍÓÈ x = x1…xn Ë ÏÌÓÊÂÒÚ‚ÓÏ Y ·Ë̇Ì˚ı ÒÚÓÍ y = y1…yn ÂÒÚ¸ χÍÒËχθÌÓ ˜ËÒÎÓ m, Ú‡ÍÓ ˜ÚÓ ‰Îfl Í‡Ê‰Ó„Ó m-ÔÓ‰ÏÌÓÊÂÒÚ‚‡ M ÏÌÓÊÂÒÚ‚‡ {1,…, n} ÔÓ‰ÒÚÓ͇ ÒÚÓÍË ı, ÒÓ‰Âʇ˘‡fl ÚÓθÍÓ xi Ò i ∈ M, fl‚ÎflÂÚÒfl ÔÓ‰ÒÚÓÍÓÈ ÌÂÍÓÚÓÓÈ ÒÚÓÍË y ∈ Y, ÒÓ‰Âʇ˘ÂÈ ÚÓθÍÓ yi Ò i ∈ M. èÓ‰Ó·ÌÓÒÚ¸ ÑÊ‡Ó ÑÎfl ÒÚÓÍ x = x1…xm Ë y = y1…yn ̇ÁÓ‚ÂÏ ÒËÏ‚ÓÎ x i Ó·˘ËÏ Ò Û, ÂÒÎË xi = yi, „‰Â min( m, n) |i− j|≤ . èÛÒÚ¸ x ′ = x1′ … x m′ – ‚Ò ÒËÏ‚ÓÎ˚ ÒÚÓÍË ı, Ó·˘ËÂ Ò Û (‚ ÚÓÏ Ê 2 ÔÓfl‰ÍÂ, Í‡Í ÓÌË ÒÎÂ‰Û˛Ú ‚ ı), Ë ÔÛÒÚ¸ y ′ = y1′ … yn′ – ‡Ì‡Îӄ˘̇fl ÒÚÓ͇ ‰Îfl Û. èÓ‰Ó·ÌÓÒÚ¸ ÑÊ‡Ó Jaro(x, y) ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1 m ′ n ′ | {1 ≤ i ≤ min{m ′, n ′} : xi′ = yi′} | + + . 3 m n min{m ′, n ′} ùÚ‡ Ë ÔÓÒÎÂ‰Û˛˘Ë ‰‚ ÔÓ‰Ó·ÌÓÒÚË ËÒÔÓθÁÛ˛ÚÒfl Ò‚flÁË ‰ÓÍÛÏÂÌÚ‡ˆËË. èÓ‰Ó·ÌÓÒÚ¸ ÑʇӖìËÌÍ· èÓ‰Ó·ÌÓÒÚ¸ ÑʇÓìËÌÍ· ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl Í‡Í max{4, LCP( x, y)} Jaro( x, y) + (1 − Jaro( x, y)), 10 „‰Â Jaro(x, y) – ÔÓ‰Ó·ÌÓÒÚ¸ ÑÊ‡Ó Ë LCP(x, y) – ‰ÎË̇ Ò‡ÏÓ„Ó ·Óθ¯Ó„Ó Ó·˘Â„Ó ÔÂÙËÍÒ‡ ‰Îfl ı Ë Û. èÓ‰Ó·ÌÓÒÚ¸ q-„‡ÏÏ˚ èÓ‰Ó·ÌÓÒÚ¸ q-„‡ÏÏ˚ ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl Í‡Í q( x, y) + q( y, x ) , 2 „‰Â q(x, y) – ˜ËÒÎÓ ÔÓ‰ÒÚÓÍ ‰ÎËÌ˚ q ‚ ÒÚÓÍ Û, ÍÓÚÓ˚ ڇÍÊ ÔÓfl‚Îfl˛ÚÒfl Í‡Í ÔÓ‰ÒÚÓÍË ‚ ı, ‰ÂÎÂÌÌÓ ̇ ÍÓ΢ÂÒÚ‚Ó ‚ÒÂı ÔÓ‰ÒÚÓÍ ‰ÎËÌ˚ q ‚ Û. ùÚ‡ ÔÓ‰Ó·ÌÓÒÚ¸ fl‚ÎflÂÚÒfl ÔËÏÂÓÏ ÔÓ‰Ó·ÌÓÒÚÂÈ Ì‡ ÓÒÌӂ χÍÂÓ‚, Ú.Â. Ú‡ÍËı, Í ÍÓÚÓ˚Ï ÔËÏÂÌËÏÓ ÓÔ‰ÂÎÂÌË χÍÂÓ‚ (ËÁ·‡ÌÌ˚ı ÔÓ‰ÒÚÓÍ ËÎË ÒÎÓ‚). á‰ÂÒ¸ χÍÂ˚ – ˝ÚÓ q-„‡ÏÏ˚, Ú.Â. ÔÓ‰ÒÚÓÍË ‰ÎËÌ˚ q. èËÏÂÓÏ ‰Û„Ëı ÔÓ‰Ó·ÌÓÒÚÂÈ Ì‡ ÓÒÌӂ χÍÂÓ‚ ̇ ÒÚÓ͇ı, ËÒÔÓθÁÛÂÏ˚ı ‚ Ò‚flÁË ‰ÓÍÛÏÂÌÚ‡ˆËË, fl‚Îfl˛ÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸ Ó·˙‰ËÌÂÌËfl ܇Í͇‰‡ Ë TF-IDF (‚‡Ë‡ÌÚ ÔÓ‰Ó·ÌÓÒÚË ÍÓÒËÌÛÒ‡). íËÔÓ‚ÓÈ ÏÂÚËÍÓÈ, ÓÒÌÓ‚‡ÌÌÓÈ Ì‡ ÒÎÓ‚‡Â ÏÂÊ‰Û ÒÚÓ͇ÏË ı Ë y fl‚ÎflÂÚÒfl | D(x)∆D(y) |, „‰Â D(z) Ó·ÓÁ̇˜‡ÂÚ ÔÓÎÌ˚È ÒÎÓ‚‡¸ ÒÚÓÍË z, Ú.Â. ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı  ÔÓ‰ÒÚÓÍ. åÂÚË͇ ÔÂÙËÍÒ–ï˝ÏÏËÌ„‡ åÂÚË͇ ÔÂÙËÍÒ–ï˝ÏÏËÌ„‡ ÏÂÊ‰Û ÒÚÓ͇ÏË x = x1…xm Ë y = y1…yn ÓÔ‰ÂÎflÂÚÒfl Í‡Í (max{m, n} – min{m, n}) + |{1 ≤ i ≤ min{m, n}: xi ≠ yi}|. ÇÁ‚¯ÂÌÌÓ ê‡ÒÒÚÓflÌË ï˝ÏÏËÌ„‡ ÇÁ‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË ï˝ÏÏËÌ„‡ dwH(x, y) ÏÂÊ‰Û ÒÚÓ͇ÏË x = x1…xm Ë y = = y 1 …yn ÓÔ‰ÂÎflÂÚÒfl Í‡Í m
∑ d( xi , yi ). i =1
184
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
ç˜ÂÚÍÓ ‡ÒÒÚÓflÌË ï˝ÏÏËÌ„‡ ÖÒÎË ( , d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ Ì˜ÂÚÍËÏ ‡ÒÒÚÓflÌËÂÏ ï˝ÏÏËÌ„‡ ÏÂÊ‰Û ÒÚÓ͇ÏË x = x1…xm Ë y = y1…ym ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl Ò ˆÂÌÓÈ Ì‡ W(), ÔÓÎÛ˜ÂÌÌÓ ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔ‡ˆËË ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl, ͇ʉ‡fl Ò ÙËÍÒËÓ‚‡ÌÌÓÈ ˆÂÌÓÈ q > 0, Ë Ò‰‚Ë„Ó‚ ÒËÏ‚ÓÎÓ‚ (Ú.Â. ÔÂÂÏ¢ÂÌË ӉÌÓÒËÏ‚ÓθÌ˚ı ÔÓ‰ÒÚÓÍ), „‰Â ˆÂ̇ Á‡ÏÂÌ˚ i ̇ j ÂÒÚ¸ ÙÛÌ͈Ëfl f(| i – j |). ùÚÓ ‡ÒÒÚÓflÌË – ÏËÌËχθ̇fl Ó·˘‡fl ˆÂ̇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ı ‚ Û Ò ÔÓÏÓ˘¸˛ Û͇Á‡ÌÌ˚ı ÓÔ‡ˆËÈ. ÅÛͯÚÂÈÌ, äÎÂÈÌ Ë ê‡ËÚ‡, ÍÓÚÓ˚ ‚ 2001 „. ‚‚ÂÎË ˝ÚÓ ‡ÒÒÚÓflÌË ‰Îfl ÔÓˆÂÒÒÓ‚ ‚˚·ÓÍË ËÌÙÓχˆËË, ‰Ó͇Á‡ÎË, ˜ÚÓ ÓÌÓ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ, ÂÒÎË f – ÏÓÌÓÚÓÌÌÓ ‚ÓÁ‡ÒÚ‡˛˘‡fl ‚Ó„ÌÛÚ‡fl ÙÛÌ͈Ëfl ̇ ÏÌÓÊÂÒÚ‚Â ˆÂÎ˚ı ˜ËÒÂÎ, ÍÓÚÓ‡fl Ó·‡˘‡ÂÚÒfl ‚ ÌÛθ ÚÓθÍÓ ‚ ÚӘ͠0. ëÎÛ˜‡È f(| i – j |) = C| i – j |, „‰Â C > 0 – ÍÓÌÒÚ‡ÌÚ‡ Ë | i – j | – Ò‰‚Ë„ ‚Ó ‚ÂÏÂÌË, ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡ÒÒÚÓflÌ˲ ÇËÍÚÓ‡–èÛÔÛ‡ ‰Îfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ‚ÒÔÎÂÒÍÓ‚ (ÒÏ. „Î. 23). Ç 2003 „. ê‡ÎÂÒÍÛ Ô‰ÎÓÊËÎ ‰Îfl ‚˚·ÓÍË Ó·‡ÁÓ‚ ¢ ӉÌÓ Ì˜ÂÚÍÓ ‡ÒÒÚÓflÌË ï˝ÏÏËÌ„‡ ̇ m. ê‡ÒÒÚÓflÌË ê‡ÎÂÒÍÛ ÏÂÊ‰Û ‰‚ÛÏfl ÒÚÓ͇ÏË x = x1 …xm Ë y = y1…ym ÂÒÚ¸ ̘ÂÚÍÓ ͇‰Ë̇θÌÓ ˜ËÒÎÓ ‡ÁÌÓÒÚÌÓ„Ó Ì˜ÂÚÍÓ„Ó ÏÌÓÊÂÒÚ‚‡ Dα(x, y) („‰Â α – Ô‡‡ÏÂÚ) Ò ÙÛÌ͈ËÂÈ ÔË̇‰ÎÂÊÌÓÒÚË 2
µ i = 1 − e − α ( x i − yi ) , 1 ≤ i ≤ m. íÓ˜ÌÓ ÍÓ‰Ë̇θÌÓ ˜ËÒÎÓ Ì˜ÂÚÍÓ„Ó ÏÌÓÊÂÒÚ‚‡ D α(x, y), ‡ÔÔÓÍÒËÏËÛ˛˘Â 1 Â„Ó Ì˜ÂÚÍÓ ͇‰Ë̇θÌÓ ˜ËÒÎÓ ‡‚ÌÓ 1 ≤ i ≤ m : µ i > . 2 åÂÚË͇ çˉÎχ̇–ÇÛ̯‡–ëÂÎÎÂÒ‡ ÖÒÎË ( , d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÚÓ ÏÂÚËÍÓÈ çˉÎχ̇–ÇÛ̯‡– ëÂÎÎÂÒ‡ (ËÎË ‡ÒÒÚÓflÌËÂÏ ã‚Â̯ÚÂÈ̇ Ò ˆÂÌÓÈ, ÏÂÚËÍÓÈ Ó·˘Â„Ó ÒÓ‚Ï¢ÂÌËfl) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl Ò ˆÂÌÓÈ Ì‡ W() ([NeWu70]), ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔ‡ˆËË ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl, ͇ʉ‡fl ÔÓÒÚÓflÌÌÓÈ ˆÂÌ˚ q > 0 Ë Á‡ÏÂÌ˚ ÒËÏ‚ÓÎÓ‚, „‰Â d(i, j) fl‚ÎflÂÚÒfl ˆÂÌÓÈ Á‡ÏÂ̇ i ̇ j. чÌ̇fl ÏÂÚË͇ ÂÒÚ¸ ÏËÌËχθ̇fl Ó·˘‡fl ˆÂ̇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ı ‚ Û Ò ÔËÏÂÌÂÌËÂÏ ˝ÚËı ÓÔ‡ˆËÈ. ùÍ‚Ë‚‡ÎÂÌÚÌÓ, Ó̇ ‡‚̇ min{dwH(x * , y*)}, „‰Â x*, y* – ÒÚÓÍË ‰ÎËÌ˚ k, k ≥ max{m, n} ̇‰ ‡ÎÙ‡‚ËÚÓÏ ∗ = ∪{∗}, Ú‡ÍË ˜ÚÓ ÔÓÒΠۉ‡ÎÂÌËfl ‚ÒÂı ÌÓ‚˚ı ÒËÏ‚ÓÎÓ‚ ∗ ÒÚÓÍË x * Ë y* ÒÓ͇˘‡˛ÚÒfl ‰Ó ı Ë Û ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. á‰ÂÒ¸ dwH(x * , y*) ÂÒÚ¸ ‚Á‚¯ÂÌÌÓ ı˝ÏÏËÌ„Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û x* Ë y * Ò ‚ÂÒÓÏ d ( xi∗ , yi∗ ) = q (Ú.Â. ÓÔ‡ˆËÂÈ Â‰‡ÍÚËÓ‚‡ÌËfl fl‚ÎflÂÚÒfl ‚ÒÚ‡‚͇ۉ‡ÎÂÌËÂ), ÂÒÎË Ó‰Ì‡ ËÁ xi∗ , yi∗ fl‚ÎflÂÚÒfl ∗ Ë d ( xi∗ , yi∗ ) = d (i, j ), Ë̇˜Â. ê‡ÒÒÚÓflÌË ÉÓÚÓ–ëÏËÚ‡–ìÓÚÂχ̇ (ËÎË ‡ÒÒÚÓflÌË ÒÚÓÍË Ò ‡ÙÙËÌÌ˚ÏË ÔÓÔÛÒ͇ÏË) fl‚ÎflÂÚÒfl ·ÓΠÒÔˆˇÎËÁËÓ‚‡ÌÌÓÈ ÏÂÚËÍÓÈ Ò ˆÂÌÓÈ (ÒÏ. [Goto82]). é̇ ÓÚ·‡Ò˚‚‡ÂÚ ÌÂÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ˜‡ÒÚË ‚ ̇˜‡ÎÂ Ë ÍÓ̈ ÒÚÓÍ ı Ë Û Ë ‚‚Ó‰ËÚ ‰‚ ˆÂÌ˚ ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl Ó‰ÌÛ ‰Îfl ËÌˈËËÓ‚‡ÌËfl ‡ÙÙËÌÌÓ„Ó ÔÓÔÛÒ͇ (ÌÂÔÂ˚‚Ì˚È ·ÎÓÍ ÓÔ‡ˆËÈ ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl) Ë ‰Û„Û˛ (ÏÂ̸¯Û˛) ‰Îfl ‡Ò¯ËÂÌËfl ÔÓÔÛÒ͇.
185
É·‚‡ 11. ê‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı Ë ÔÂÂÒÚ‡Ìӂ͇ı
åÂÚË͇ å‡ÚË̇ åÂÚË͇ å‡ÚË̇ da ÏÂÊ‰Û ÒÚÓ͇ÏË x = x1…xm Ë y = y1 …yn ÓÔ‰ÂÎflÂÚÒfl Í‡Í | 2 −m − 2 −n | +
max{m, n}
∑ t =1
at sup | k ( z, x ) − k ( z, y) |, | |t z
„‰Â z – β·‡fl ÒÚÓ͇ ‰ÎËÌ˚ t, k(z, x) – fl‰Ó å‡ÚË̇ ([MaSt99]) χÍÓ‚ÒÍÓÈ ˆÂÔË M = {Mt }t∞= 0 , Ë ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ a ∈{a = {ai}t∞= 0 : at > 0,
∞
∑ at < ∞ – Ô‡‡ÏÂÚ‡. t =1
åÂÚË͇ Å˝‡ åÂÚËÍÓÈ Å˝‡ ̇Á˚‚‡ÂÚÒfl ÛθڇÏÂÚË͇ ÏÂÊ‰Û ÍÓ̘Ì˚ÏË ËÎË ·ÂÒÍÓ̘Ì˚ÏË ÒÚÓ͇ÏË x = x 1 …xm... Ë y = y1…yn..., ÓÔ‰ÂÎflÂχfl ‰Îfl x ≠ y Í‡Í 1 , 1 + LGCP( x, y) „‰Â LCP(x, y) – ‰ÎË̇ Ò‡ÏÓ„Ó ‰ÎËÌÌÓ„Ó Ó·˘Â„Ó ÔÂÙËÍÒ‡ ÒÚÓÍ ı Ë Û. é·Ó·˘ÂÌ̇fl ÏÂÚË͇ ä‡ÌÚÓ‡ é·Ó·˘ÂÌÌÓÈ ÏÂÚËÍÓÈ ä‡ÌÚÓ‡ ̇Á˚‚‡ÂÚÒfl ÛθڇÏÂÚË͇ ÏÂÊ‰Û ·ÂÒÍÓ̘Ì˚ÏË ÒÚÓ͇ÏË x = x1…xm... Ë y = y1…yn..., ÓÔ‰ÂÎflÂχfl ‰Îfl x ≠ y Í‡Í aLCP(x,y) , „‰Â ‡ – ÙËÍÒËÓ‚‡ÌÌÓ ˜ËÒÎÓ ËÁ ËÌÚ‚‡Î‡ (0,1), ‡ LCP(x, y) – ‰ÎË̇ Ò‡ÏÓ„Ó ‰ÎËÌÌÓ„Ó ÔÂÙËÍÒ‡ ÒÚÓÍ ı Ë Û. 1 чÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï. ÑÎfl ÒÎÛ˜‡fl a = 2 1 ÏÂÚË͇ LCP( x , y ) ‡ÒÒχÚË‚‡Î‡Ò¸ ̇ Í·ÒÒ˘ÂÒÍÓÏ Ù‡ÍڇΠ(ÒÏ. „Î. 1) ‰Îfl [0,1] – 2 ÏÌÓÊÂÒÚ‚Â ä‡ÌÚÓ‡ (ÒÏ. åÂÚË͇ ä‡ÌÚÓ‡, „Î. 18). åÂÚË͇ ÑÛÌ͇̇ ê‡ÒÒÏÓÚËÏ ÏÌÓÊÂÒÚ‚Ó ï ‚ÒÂı ÒÚÓ„Ó ‚ÓÁ‡ÒÚ‡˛˘Ëı ·ÂÒÍÓ̘Ì˚ı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ x = {xn}n ÔÓÎÓÊËÚÂθÌ˚ı ˆÂÎ˚ı ˜ËÒÂÎ. éÔ‰ÂÎËÏ N(n, x) Í‡Í ˜ËÒÎÓ ˝ÎÂÏÂÌÚÓ‚ ‚ x = {x n }n , ÍÓÚÓ˚ ÏÂ̸¯Â n , Ë δ(x) Í‡Í ÔÎÓÚÌÓÒÚ¸ ı, Ú.Â. N (n, x ) δ( x ) = lim . èÛÒÚ¸ Y – ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ï, ÒÓÒÚÓfl˘Â ËÁ ‚ÒÂı ÔÓÒΉӂ‡n →∞ n ÚÂθÌÓÒÚÂÈ x = {xn }n , ‰Îfl ÍÓÚÓ˚ı δ(x) < ∞. åÂÚËÍÓÈ ÑÛÌ͇̇ fl‚ÎflÂÚÒfl ÏÂÚË͇ ̇ Y, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl x ≠ y Í‡Í 1 + | δ( x ) − δ( y) |, 1 + LCP( x, y) „‰Â LCP(x, y) – ‰ÎË̇ Ò‡ÏÓ„Ó ‰ÎËÌÌÓ„Ó Ó·˘Â„Ó ÔÂÙËÍÒ‡ ÒÚÓÍ ı Ë Û. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÑÛÌ͇̇.
186
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
11.2. êÄëëíéüçàü çÄ èÖêÖëíÄçéÇäÄï èÂÂÒÚ‡ÌÓ‚ÍÓÈ (ËÎË ‡ÌÊËÓ‚‡ÌËÂÏ) ̇Á˚‚‡ÂÚÒfl β·‡fl ÒÚÓ͇ x1…xn, „‰Â xi – ‡Á΢Ì˚ ˜ËÒ· ÏÌÓÊÂÒÚ‚‡ {1…, n}; ÔÂÂÒÚ‡Ìӂ͇ ÒÓ Á̇ÍÓÏ – β·‡fl ÒÚÓ͇ x1…xn, „‰Â | xi | – ‡Á΢Ì˚ ˜ËÒ· ËÁ ÏÌÓÊÂÒÚ‚‡ {1…, n}. é·ÓÁ̇˜ËÏ ˜ÂÂÁ (Symn , ⋅, id) „ÛÔÔÛ ‚ÒÂı ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÏÌÓÊÂÒÚ‚‡ {1…, n}, „‰Â id – ÚÓʉÂÒÚ‚ÂÌÌÓ ÓÚÓ·‡ÊÂÌËÂ. ëÛÊÂÌË ̇ ÏÌÓÊÂÒÚ‚Ó Sym n (‚ÒÂı n-ÔÂÂÒÚ‡ÌÓ‚Ó˜Ì˚ı ‚ÂÍÚÓÓ‚) β·ÓÈ ÏÂÚËÍË Ì‡ n fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ Symn ; ÓÒÌÓ‚Ì˚Ï ÔËÏÂÓÏ ÒÎÛÊËÚ 1/ p
n lp -ÏÂÚË͇ | xi − yi | p , p ≥ 1. i =1 éÒÌÓ‚Ì˚ÏË ÓÔ‡ˆËflÏË Â‰‡ÍÚËÓ‚‡ÌËfl ̇ ÔÂÂÒÚ‡Ìӂ͇ı fl‚Îfl˛ÚÒfl: • í‡ÌÒÔÓÁˈËfl ·ÎÓ͇, Ú.Â. ÔÂÂÏ¢ÂÌË ÔÓ‰ÒÚÓÍË. • èÂÂÏ¢ÂÌË ÒËÏ‚Ó·, Ú.Â. Ú‡ÌÒÔÓÁˈËfl ·ÎÓ͇, ÒÓÒÚÓfl˘Â„Ó ËÁ Ó‰ÌÓ„Ó ÒËÏ‚Ó·. • ë‚ÓÔ ÒËÏ‚ÓÎÓ‚, Ú.Â. ÔÂÂÒÚ‡Ìӂ͇ ÏÂÒÚ‡ÏË ‰‚Ûı ÒÓÒ‰ÌËı ÒËÏ‚ÓÎÓ‚. • é·ÏÂÌ ÒËÏ‚ÓÎÓ‚, Ú. ÔÂÂÒÚ‡Ìӂ͇ ÏÂÒÚ‡ÏË Î˛·˚ı ‰‚Ûı ÒËÏ‚ÓÎÓ‚ (‚ ÚÂÓËË „ÛÔÔ ˝ÚÓ Ì‡Á˚‚‡ÂÚÒfl Ú‡ÌÒÔÓÁˈËÂÈ). • é‰ÌÓÛÓ‚Ì‚˚È Ó·ÏÂÌ ÒËÏ‚ÓÎÓ‚, Ú.Â. Ó·ÏÂÌ ÒËÏ‚ÓÎÓ‚ xi Ë xj, i < j, Ú‡ÍËı ˜ÚÓ ‰Îfl β·Ó„Ó k Ò i < k < j ‚˚ÔÓÎÌflÂÚÒfl ÎË·Ó min{xi, xj} > xk, ÎË·Ó xk > max{xi, xj}. • ê‚ÂÒËfl ·ÎÓ͇, Ú.Â. ÔÂÓ·‡ÁÓ‚‡ÌËÂ, Ò͇ÊÂÏ, ÔÂÂÒÚ‡ÌÓ‚ÍË x = x1…xn ‚ ÔÂÂÒÚ‡ÌÓ‚ÍÛ x1 … xi −1 X j X j−1 … Xi +1 X i x j +1 … x n (Ú‡Í, Ò‚ÓÔ – ˝ÚÓ Â‚ÂÒËfl ·ÎÓ͇, ÒÓÒÚÓfl˘Â„Ó ÚÓθÍÓ ËÁ ‰‚Ûı ÒËÏ‚ÓÎÓ‚). • ê‚ÂÒËfl ÒÓ Á̇ÍÓÏ, Ú.Â. ‚ÂÒËfl ‚ ÔÂÂÒÚ‡ÌÓ‚ÍÂ, ÒÓ Á̇ÍÓÏ, Ò ÔÓÒÎÂ‰Û˛˘ËÏ ÛÏÌÓÊÂÌËÂÏ Ì‡ –1 ‚ÒÂı ÒËÏ‚ÓÎÓ‚ ‚ÂÒËÓ‚‡ÌÌÓ„Ó ·ÎÓ͇. çËÊ Ô˜ËÒÎÂÌ˚ ̇˷ÓΠÛÔÓÚ·ÎflÂÏ˚ ÏÂÚËÍË Â‰‡ÍÚËÓ‚‡ÌËfl Ë ‰Û„Ë ÏÂÚËÍË Ì‡ ÏÌÓÊÂÒÚ‚Â Sym n .
∑
ï˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ ̇ ÔÂÂÒÚ‡Ìӂ͇ı ï˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ ̇ ÔÂÂÒÚ‡Ìӂ͇ı dH ÂÒÚ¸ ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ̇ Symn , ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔ‡ˆËË Á‡ÏÂÌ˚ ÒËÏ‚ÓÎÓ‚. ùÚÓ – ·ËËÌ‚‡Ë‡ÌÚ̇fl ÏÂÚË͇. èË ˝ÚÓÏ n–dH(x, y) – ˜ËÒÎÓ ÙËÍÒËÓ‚‡ÌÌ˚ı ÚÓ˜ÂÍ ÔÂÂÒÚ‡ÌÓ‚ÍË xy–1. -‡ÒÒÚÓflÌË ëÔËχ̇ -‡ÒÒÚÓflÌË ëÔËχ̇ – ˝ÚÓ Â‚ÍÎˉӂ‡ ÏÂÚË͇ ̇ Sym n : n
∑
( xi − yi )2
i =1
(ÒÏ. äÓÂÎflˆËfl -‡Ì„‡ ëÔËχ̇, „Î. 17) ê‡ÒÒÚÓflÌË χүڇ·ÌÓÈ ÎËÌÂÈÍË ëÔËχ̇ ê‡ÒÒÚÓflÌË χүڇ·ÌÓÈ ÎËÌÂÈÍË ëÔËχ̇ – ˝ÚÓ l1 -ÏÂÚË͇ ̇ Sym n : n
∑
| xi − yi |
i =1
(ÒÏ. èÓ‰Ó·ÌÓÒÚ¸ χүڇ·ÌÓÈ ÎËÌÂÈÍË ëÔËχ̇, „Î. 17). é·‡ ‡ÒÒÚÓflÌËfl ëÔËχ̇ ·ËËÌ‚‡Ë‡ÌÚÌ˚.
É·‚‡ 11. ê‡ÒÒÚÓflÌËfl ̇ ÒÚÓ͇ı Ë ÔÂÂÒÚ‡Ìӂ͇ı
187
-‡ÒÒÚÓflÌË äẨ‡Î· -‡ÒÒÚÓflÌË äẨ‡Î· (ËÎË ÏÂÚË͇ ËÌ‚ÂÒËË, ÏÂÚË͇ Ò‚ÓÔ‡ ÔÂÂÒÚ‡ÌÓ‚ÓÍ) I fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Â‰‡ÍÚËÓ‚‡ÌËfl ̇ Symn , ÔÓÎÛ˜ÂÌÌÓÈ ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ Ò‚ÓÔ˚ ÒËÏ‚ÓÎÓ‚. Ç ÚÂÏË̇ı ÚÂÓËË „ÛÔÔ, I(x, y) – ˜ËÒÎÓ ÒÏÂÊÌ˚ı Ú‡ÌÒÔÓÁˈËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÓÎÛ˜ÂÌËfl ı ËÁ Û. äÓÏ ÚÓ„Ó, I(x, y) ÂÒÚ¸ ˜ËÒÎÓ ÓÚÌÓÒËÚÂθÌ˚ı ËÌ‚ÂÒËÈ ı Ë Û, Ú.Â. Ô‡ (i, j), 1 ≤ i < j ≤ n Ò ( xi − x j ) ( yi − y j ) < 0 (ÒÏ. äÓÂÎflˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸ ‡Ì„‡ äẨ‡Î·, „Î. 17). Ç [BCFS97] Ú‡ÍÊ Ô˂‰ÂÌ˚ ÒÎÂ‰Û˛˘Ë ÏÂÚËÍË, Ò‚flÁ‡ÌÌ˚Â Ò ÏÂÚËÍÓÈ I(x, y): 1) min ( I ( x, z ) + I ( z −1 , y −1 )); z ∈Sym n
2) max I ( zx, zy); z ∈Sym n
3) min I ( zx, zy) = T ( x, y), „‰Â í – ÏÂÚË͇ ä˝ÎË; z ∈Sym n
4) åÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl, ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ Ó‰ÌÓÛÓ‚Ì‚˚È Ó·ÏÂÌ ÒËÏ‚ÓÎÓ‚. èÓÎÛÏÂÚË͇ чÌËÂÎÒ‡–ÉËθ·Ó èÓÎÛÏÂÚË͇ чÌËÂθ҇–ÉËθ·Ó ÂÒÚ¸ ÔÓÎÛÏÂÚË͇ ̇ Sym n , ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x, y ∈ Sym n Í‡Í ˜ËÒÎÓ ÚÓÂÍ (i, j, k), 1 ≤ i < j < k ≤ n , Ú‡ÍËı ˜ÚÓ (xi, xj, xk) Ì fl‚ÎflÂÚÒfl ˆËÍ΢ÂÒÍËÏ Ò‰‚Ë„ÓÏ (y i, y j, y k); Ó̇ ‡‚̇ ÌÛβ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ı – ˆËÍ΢ÂÒÍËÈ Ò‰‚Ë„ Û (ÒÏ. [Monj98]). åÂÚË͇ ä˝ÎË åÂÚË͇ ä˝ÎË í ÂÒÚ¸ ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ̇ Symn , ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ Ó·ÏÂÌ ÒËÏ‚ÓÎÓ‚. Ç ÚÂÏË̇ı ÚÂÓËË „ÛÔÔ, T (x, y) ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ Ú‡ÌÒÔÓÁˈËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÚÓ„Ó, ˜ÚÓ·˚ ÔÓÎÛ˜ËÚ¸ ı ËÁ Û. èË ˝ÚÓÏ n–T(x, y) – ˜ËÒÎÓ ˆËÍÎÓ‚ ‚ ÔÂÂÒÚ‡ÌÓ‚Í xy–1. åÂÚË͇ í fl‚ÎflÂÚÒfl ·ËËÌ‚‡Ë‡ÌÚÌÓÈ. åÂÚË͇ ì·χ åÂÚË͇ ì·χ (ËÎË ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ÔÂÂÒÚ‡ÌÓ‚ÓÍ) U – ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ̇ Symn , ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔ‡ˆËË ÔÂÂÏ¢ÂÌËfl ÒËÏ‚ÓÎÓ‚. ùÍ‚Ë‚‡ÎÂÌÚÌÓ, Ó̇ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Â‰‡ÍÚËÓ‚‡ÌËfl, ÔÓÎÛ˜ÂÌÌÓÈ ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔ‡ˆËË ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl. èË ˝ÚÓÏ n–U(x, y) = LCS(x, y) = = LIS(xy–1), „‰Â LCS(x, y) – ‰ÎË̇ Ò‡ÏÓÈ ‰ÎËÌÌÓÈ Ó·˘ÂÈ ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚË (Ì ӷflÁ‡ÚÂθÌÓ ÔÓ‰ÒÚÓÍË) ı Ë Û, ÚÓ„‰‡ Í‡Í LIS(z) – ‰ÎË̇ Ò‡ÏÓÈ ‰ÎËÌÌÓÈ ‚ÓÁ‡ÒÚ‡˛˘ÂÈ ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÔÂÂÒÚ‡ÌÓ‚ÍË z ∈ Symn . ùÚ‡ ÏÂÚË͇ Ë ‚Ò ¯ÂÒÚ¸ Ô‰˚‰Û˘Ëı ÏÂÚËÍ fl‚Îfl˛ÚÒfl Ô‡‚ÓËÌ‚‡Ë‡ÌÚÌ˚ÏË. åÂÚË͇ ‚ÂÒËË åÂÚË͇ ‚ÂÒËË – ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ̇ Symn , ÔÓÎÛ˜ÂÌ̇fl ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔ‡ˆËË Â‚ÂÒËË ·ÎÓÍÓ‚. åÂÚË͇ ‚ÂÒËË ÒÓ Á̇ÍÓÏ åÂÚË͇ ‚ÂÒËË ÒÓ Á̇ÍÓÏ (ÔÓ ë‡ÌÍÓÙÙÛ, 1989) fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Â‰‡ÍÚËÓ‚‡ÌËfl ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı 2nn ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÒÓ Á̇ÍÓÏ ÏÌÓÊÂÒÚ‚‡ {1,…, n}, ÔÓÎÛ˜ÂÌÌÓÈ ‰Îfl , ‚Íβ˜‡˛˘Â„Ó ÚÓθÍÓ ÓÔ‡ˆËË Â‚ÂÒËË ÒÓ Á̇ÍÓÏ. ùÚ‡ ÏÂÚË͇ ÔËÏÂÌflÂÚÒfl ‚ ·ËÓÎÓ„ËË, „‰Â ÔÂÂÒÚ‡ÌÓ‚ÍË ÒÓ Á̇ÍÓÏ Ô‰ÒÚ‡‚Îfl˛Ú
188
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
Ó‰ÌÓıÓÏÓÒÓÏÌ˚È „ÂÌÓÏ, ‡ÒÒχÚË‚‡ÂÏ˚È Í‡Í ÔÂÂÒÚ‡ÌÓ‚ÍÛ „ÂÌÓ‚ (‚‰Óθ ıÓÏÓÒÓÏ), ͇ʉ‡fl ËÁ ÍÓÚÓ˚ı ËÏÂÂÚ Ì‡Ô‡‚ÎÂÌË (Ú.Â. ÁÌ‡Í "+" ËÎË "–"). åÂÚË͇ ˆÂÔÓ˜ÍË åÂÚË͇ ˆÂÔÓ˜ÍË (ËÎË ÏÂÚË͇ Ô„ÛÔÔËÓ‚ÍË) ÂÒÚ¸ ÏÂÚË͇ ̇ Sym n ([Page65]), ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x, y ∈ Symn Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÏËÌÛÒ 1 ˆÂÔÓ˜ÂÍ (ÔÓ‰ÒÚÓÍ) y1′ , …, yt′ ÒÚÓÍË Û, Ú‡ÍËı ˜ÚÓ ı ÏÓÊÂÚ ·˚Ú¸ ÒÚÓ͇ ËÁ ÌËı, Ú.Â. x = y1′ , …, yt′. ãÂÍÒËÍÓ„‡Ù˘ÂÒ͇fl ÏÂÚË͇ ãÂÍÒËÍÓ„‡Ù˘ÂÒ͇fl ÏÂÚË͇ – ˝ÚÓ ÏÂÚË͇ ̇ Symn , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | N(x) – N(y) |, „‰Â N(x) – ÔÓfl‰ÍÓ‚Ó ˜ËÒÎÓ ÔÓÁˈËË (ËÁ 1,…, n!), Á‡ÌËχÂÏÓÈ ÔÂÂÒÚ‡ÌÓ‚ÍÓÈ ı ‚ ÎÂÍÒËÍÓ„‡Ù˘ÂÒÍÓÏ ÛÔÓfl‰Ó˜ÂÌËË ÏÌÓÊÂÒÚ‚‡ Symn. Ç ÎÂÍÒËÍÓ„‡Ù˘ÂÒÍÓÏ ÛÔÓfl‰Ó˜ÂÌËË ÏÌÓÊÂÒÚ‚‡ Symn Ï˚ ËÏÂÂÏ x = x1 … xn p p y = y1 … yn , ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ Ë̉ÂÍÒ 1 ≤ i ≤ n, Ú‡ÍÓÈ ˜ÚÓ x1 = x1,…, xi– 1 = yi–1, ÌÓ x i < yi. åÂÚË͇ ÔÂÂÒÚ‡ÌÓ‚ÓÍ î¯ åÂÚË͇ ÔÂÂÒÚ‡ÌÓ‚ÓÍ î¯ ÂÒÚ¸ ÏÂÚË͇ ÔÓËÁ‚‰ÂÌËfl ̇ ÏÌÓÊÂÒÚ‚Â Sym∞ ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÔÓÎÓÊËÚÂθÌ˚ı ˆÂÎ˚ı ˜ËÒÂÎ, ÓÔ‰ÂÎflÂχfl Í‡Í ∞
∑ i =1
1 | xi − yi | . 2 i 1+ | xi − yi |
É·‚‡ 12
ê‡ÒÒÚÓflÌËfl ̇ ˜ËÒ·ı, ÏÌÓ„Ó˜ÎÂ̇ı Ë Ï‡Úˈ‡ı
12.1. êÄëëíéüçàü çÄ óàëãÄï Ç ˝ÚÓÈ „·‚ ‡ÒÒχÚË‚‡˛ÚÒfl ÌÂÍÓÚÓ˚ ̇˷ÓΠ‚‡ÊÌ˚ ÏÂÚËÍË Ì‡ Í·ÒÒ˘ÂÒÍËı ˜ËÒÎÓ‚˚ı ÒËÒÚÂχı: ÔÓÎÛÍÓθˆÂ ̇ÚۇθÌ˚ı ˜ËÒÂÎ, ÍÓθˆÂ ˆÂÎ˚ı ˜ËÒÂÎ, ‡ Ú‡ÍÊ ÔÓÎflı , Ë ‡ˆËÓ̇θÌ˚ı, ‰ÂÈÒÚ‚ËÚÂθÌ˚ı Ë ÍÓÏÔÎÂÍÒÌ˚ı ˜ËÒÂÎ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ê‡ÒÒχÚË‚‡ÂÚÒfl Ú‡ÍÊ ‡Î„·‡ Í‚‡ÚÂÌËÓÌÓ‚. åÂÚËÍË Ì‡ ̇ÚۇθÌ˚ı ˜ËÒ·ı ëÛ˘ÂÒÚ‚ÛÂÚ ÌÂÒÍÓθÍÓ ıÓÓ¯Ó ËÁ‚ÂÒÚÌ˚ı ÏÂÚËÍ Ì‡ ÏÌÓÊÂÒڂ ̇ÚۇθÌ˚ı ˜ËÒÂÎ: 1. | n–m |; ÒÛÊÂÌË ̇ÚۇθÌÓÈ ÏÂÚËÍË (ËÁ ) ̇ . 2. p–α , „‰Â α – ̇˷Óθ¯‡fl ÒÚÂÔÂ̸ ‰‡ÌÌÓ„Ó ÔÓÒÚÓ„Ó ˜ËÒ· , ‰ÂÎfl˘‡fl m–n ‰Îfl m ≠ n (Ë ‡‚̇fl 0 ‰Îfl m = n); ÒÛÊÂÌË -‡‰Ë˜ÂÒÍÓÈ ÏÂÚËÍË (ËÁ ) ̇ . l.c.m.( m, n) 3. ln ; ÔËÏ ÏÂÚËÍË ‚‡Î˛‡ˆËË Â¯ÂÚÍË. g.c.d .( m, n) 4. w r(n – m), „‰Â wr(n) – ‡ËÙÏÂÚ˘ÂÒÍËÈ r-‚ÂÒ ˜ËÒ· n; ÒÛÊÂÌË ÏÂÚËÍË ‡ËÙÏÂÚ˘ÂÒÍÓÈ r-ÌÓÏ˚ (ËÁ ) ̇ . |n−m| 5. (ÒÏ. å-ÓÚÌÓÒËÚÂθ̇fl ÏÂÚË͇, „Î. 19) mn 1 ‰Îfl m ≠ n (Ë ‡‚̇fl 0 ‰Îfl m = n); ÏÂÚË͇ ëÂÔËÌÒÍÓ„Ó. 6. 1 + m+n ÅÓθ¯ËÌÒÚ‚Ó ˝ÚËı ÏÂÚËÍ Ì‡ ÏÓ„ÛÚ ·˚Ú¸ ‡ÒÔÓÒÚ‡ÌÂÌ˚ ̇ . ÅÓΠÚÓ„Ó, β·Û˛ ËÁ ‚˚¯ÂÔ˜ËÒÎÂÌÌ˚ı ÏÂÚËÍ ÏÓÊÌÓ ËÒÔÓθÁÓ‚‡Ú¸ ‰Îfl ÒÎÛ˜‡fl ÔÓËÁ‚ÓθÌÓ„Ó Ò˜ÂÚÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ï. ç‡ÔËÏÂ, ÏÂÚËÍÛ ëÂÔËÌÒÍÓ„Ó ÓÔ‰ÂÎfl˛Ú 1 Ó·˚˜ÌÓ Ì‡ ÔÓËÁ‚ÓθÌÓÏ Ò˜ÂÚÌÓÏ ÏÌÓÊÂÒÚ‚Â X = {xn: n ∈ } Í‡Í 1 + ‰Îfl ‚ÒÂı m+n x, xn ∈ X Ò m ≠ n (Ë Í‡Í 0, Ë̇˜Â). åÂÚË͇ ‡ËÙÏÂÚ˘ÂÒÍÓÈ r-ÌÓÏ˚ èÛÒÚ¸ r ∈ , r ≥ 2. èÂÓ·‡ÁÓ‚‡ÌÌÓÈ r-‡ÌÓÈ ÙÓÏÓÈ ˆÂÎÓ„Ó ˜ËÒ· ı ̇Á˚‚‡ÂÚÒfl Ô‰ÒÚ‡‚ÎÂÌË x = en r n + ⋅⋅⋅ + e1r + e0 , „‰Â e i ∈ Ë | ei | < r ‰Îfl ‚ÒÂı i = 0,…, n. r-Ä̇fl ÙÓχ ̇Á˚‚‡ÂÚÒfl ÏËÌËχθÌÓÈ, ÂÒÎË ˜ËÒÎÓ Â ÌÂÌÛ΂˚ı ÍÓ˝ÙÙˈËÂÌÚÓ‚ ÏËÌËχθÌÓ. åËÌËχθ̇fl ÙÓχ Ì fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓÈ ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â. é‰Ì‡ÍÓ ÂÒÎË ÍÓ˝ÙÙˈËÂÌÚ˚ ei, 0 ≤ i ≤ n – 1, Û‰Ó‚ÎÂÚ‚Ófl˛Ú ÛÒÎÓ‚ËflÏ | ei + ei +1 | < r Ë | ei + ei +1 | <| ei +1 |, ÂÒÎË eiei+1 < 0, ÚÓ ‚˚¯ÂÛ͇Á‡Ì̇fl ÙÓχ fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓÈ Ë ÏËÌËχθÌÓÈ; Ó̇ ̇Á˚‚‡ÂÚÒfl Ó·Ó·˘ÂÌÌÓÈ ÌÂÒÏÂÊÌÓÈ ÙÓÏÓÈ. ÄËÙÏÂÚ˘ÂÒÍËÈ r-‚ÂÒ wr(x) ˆÂÎÓ„Ó ˜ËÒ· ı ÂÒÚ¸
190
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
ÍÓ΢ÂÒÚ‚Ó ÌÂÌÛ΂˚ı ÍÓ˝ÙÙˈËÂÌÚÓ‚ ‚ ÏËÌËχθÌÓÈ r-ÙÓÏ ˜ËÒ· ı, ‚ ˜‡ÒÚÌÓÒÚË ‚ Ó·Ó·˘ÂÌÌÓÈ ÌÂÒÏÂÊÌÓÈ ÙÓÏÂ. åÂÚË͇ ‡ËÙÏÂÚ˘ÂÒ͇fl r-ÌÓÏ˚ (ÒÏ., ̇ÔËÏÂ, [Ernv85]) ÂÒÚ¸ ÏÂÚË͇ ̇ , ÓÔ‰ÂÎÂÌ̇fl Í‡Í w r(x – y). -ĉ˘ÂÒ͇fl ÏÂÚË͇ èÛÒÚ¸ – ÔÓÒÚÓ ˜ËÒÎÓ. ã˛·Ó ÌÂÌÛ΂Ӡ‡ˆËÓ̇θÌÓ ˜ËÒÎÓ ı ÏÓÊÂÚ ·˚Ú¸ c Ô‰ÒÚ‡‚ÎÂÌÓ Í‡Í x = p α , „‰Â Ò Ë d – ˆÂÎ˚ ˜ËÒ·, ‚Á‡ËÏÌÓ-ÔÓÒÚ˚Â Ò , Ë α – d ˆÂÎÓ ˜ËÒÎÓ, ÓÔ‰ÂÎÂÌÌÓ ‰ËÌÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ. -ĉ˘ÂÒ͇fl ÌÓχ ˜ËÒ· ı ÓÔ‰ÂÎflÂÚÒfl Í‡Í | x | p = p −α . äÓÏ ÚÓ„Ó, Ï˚ Ò˜ËÚ‡ÂÏ, ˜ÚÓ | 0 | p = 0. -ĉ˘ÂÒÍÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ ̇ ÏÌÓÊÂÒÚ‚Â ‡ˆËÓ̇θÌ˚ı ˜ËÒÂÎ, ÓÔ‰ÂÎÂÌ̇fl Í‡Í | x − y |p . чÌ̇fl ÏÂÚË͇ ÎÂÊËÚ ‚ ÓÒÌÓ‚Â ÔÓÒÚÓÂÌËfl ‡Î„·˚ -‡‰Ë˜ÂÒÍËı ˜ËÒÂÎ. àÏÂÌÌÓ, ÔÓÔÓÎÌÂÌË äÓ¯Ë ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ( , | x − y | p ) ‰‡ÂÚ ÔÓΠp -‡‰Ë˜ÂÒÍËı ˜ËÒÂÎ, ÚÓ˜ÌÓ Ú‡Í ÊÂ Í‡Í ÔÓÔÓÎÌÂÌË äÓ¯Ë ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ( , | x − y |) Ò Ì‡ÚۇθÌÓÈ ÏÂÚËÍÓÈ | x − y | ‰‡ÂÚ ÔÓΠ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ˜ËÒÂÎ. ç‡Úۇθ̇fl ÏÂÚË͇ ç‡ÚۇθÌÓÈ ÏÂÚËÍÓÈ (ËÎË ÏÂÚËÍÓÈ ‡·ÒÓβÚÌÓ„Ó Á̇˜ÂÌËfl) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ , ÓÔ‰ÂÎÂÌ̇fl Í‡Í y − x, ÂÒÎË x − y < 0, |x−y|= x − y, ÂÒÎË x − y ≥ 0. ç‡ ‚Ò lp-ÏÂÚËÍË ÒÓ‚Ô‡‰‡˛Ú Ò ÌÂÈ. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (, | x − y |) ̇Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔflÏÓÈ (ËÎË Â‚ÍÎˉӂÓÈ ÔflÏÓÈ). ëÛ˘ÂÒÚ‚ÛÂÚ ÏÌÓ„Ó ‰Û„Ëı ÔÓÎÂÁÌ˚ı ÏÂÚËÍ Ì‡ . Ç ˜‡ÒÚÌÓÒÚË, ‰Îfl ‰‡ÌÌÓ„Ó 0 < α < 1 Ó·Ó·˘ÂÌ̇fl ÏÂÚË͇ ‡·ÒÓβÚÌÓ„Ó Á̇˜ÂÌËfl ̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í | x − y |α . åÂÚË͇ ÌÛÎÂ‚Ó„Ó ÓÚÍÎÓÌÂÌËfl åÂÚËÍÓÈ ÌÛÎÂ‚Ó„Ó ÓÚÍÎÓÌÂÌËfl ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ , ÓÔ‰ÂÎÂÌ̇fl Í‡Í 1+ | x − y |, ÂÒÎË Ó‰ÌÓ Ë ÚÓθÍÓ Ó‰ÌÓ ËÁ ˜ËÒÂÎ ı Ë Û fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌ˚Ï, Ë Í‡Í |x−y| Ë̇˜Â, „‰Â | x − y | – ̇Úۇθ̇fl ÏÂÚË͇ (ÒÏ., ̇ÔËÏÂ, [Gile87]). 䂇ÁËÔÓÎÛÏÂÚË͇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔÓÎÛÔflÏÓÈ ä‚‡ÁËÔÓÎÛÏÂÚË͇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔÓÎÛÔflÏÓÈ Á‡‰‡ÂÚÒfl ̇ ÔÓÎÛÔflÏÓÈ >0 Í‡Í max 0, ln
y . x
É·‚‡ 12. ê‡ÒÒÚÓflÌËfl ̇ ˜ËÒ·ı, ÏÌÓ„Ó˜ÎÂ̇ı Ë Ï‡Úˈ‡ı
191
ê‡Ò¯ËÂÌ̇fl ÏÂÚË͇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔflÏÓÈ ê‡Ò¯ËÂÌÌÓÈ ÏÂÚËÍÓÈ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔflÏÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ∪ {+∞} ∪ {–∞}. éÒÌÓ‚Ì˚Ï ÔËÏÂÓÏ (ÒÏ., ‚ ˜‡ÒÚÌÓÒÚË, [Cops68]) Ú‡ÍÓÈ ÏÂÚËÍË fl‚ÎflÂÚÒfl | f ( x ) − f ( y) |, x ‰Îfl x ∈ , f(+∞) = 1 Ë f(–∞) = –1. ÑÛ„‡fl ˜‡ÒÚÓ ËÒÔÓθÁÛÂχfl ÏÂÚ1+ | x | Ë͇ ̇ ∪ {+∞} ∪ {–∞} Á‡‰‡ÂÚÒfl Í‡Í | arctgx – arctgy |, „‰Â f ( x ) =
„‰Â −
1 1 1 π < arctg x < π ‰Îfl –∞ < x < ∞ Ë arctg( ±∞) = ± π. 2 2 2
åÂÚË͇ ÍÓÏÔÎÂÍÒÌÓ„Ó ÏÓ‰ÛÎfl åÂÚËÍÓÈ ÍÓÏÔÎÂÍÒÌÓ„Ó ÏÓ‰ÛÎfl fl‚ÎflÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ÍÓÏÔÎÂÍÒÌ˚ı ˜ËÒÂÎ, ÓÔ‰ÂÎflÂχfl Í‡Í | z – u |, „‰Â ‰Îfl β·Ó„Ó z ∈ ‰ÂÈÒÚ‚ËÚÂθÌÓ ˜ËÒÎÓ | z |=| z1 + z 2 i | = z12 + z 22 fl‚ÎflÂÚÒfl Â„Ó ÍÓÏÔÎÂÍÒÌ˚Ï ÏÓ‰ÛÎÂÏ. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (, | z − u |) ̇Á˚‚‡ÂÚÒfl ÍÓÏÔÎÂÍÒÌÓÈ ÔÎÓÒÍÓÒÚ¸˛ (ËÎË ÔÎÓÒÍÓÒÚ¸˛ Ä„‡Ì‡). Ç Í‡˜ÂÒÚ‚Â ÔËχ ‰Û„Ëı ÔÓÎÂÁÌ˚ı ÏÂÚËÍ Ì‡ ÏÓÊÌÓ ÔË‚ÂÒÚË ÏÂÚËÍÛ ÅËÚ‡ÌÒÍÓÈ ÊÂÎÂÁÌÓÈ ‰ÓÓ„Ë, ÓÔ‰ÂÎflÂÏÛ˛ Í‡Í | z |+| u | ‰Îfl z ≠ u (Ë ‡‚ÌÛ˛ 0, Ë̇˜Â); -ÓÚÌÓÒËÚÂθÌÛ˛ ÏÂÚËÍÛ, 1 ≤ p ≤ ∞ (ÒÏ. (p, q)ÓÚÌÓÒËÚÂθ̇fl ÏÂÚË͇, „Î. 19), ÓÔ‰ÂÎflÂÏÛ˛ Í‡Í |z−u| (| z | + | u | p )1 / p p
‰Îfl | z | + | u | ≠ 0 (Ë ‡‚ÌÛ˛ 0, Ë̇˜Â); ‰Îfl p = 0 ÔÓÎÛ˜‡ÂÏ ÓÚÌÓÒËÚÂθÌÛ˛ ÏÂÚËÍÛ, Á‡‰‡‚‡ÂÏÛ˛ ‰Îfl | z | + | u | ≠ 0 Í‡Í |z−u| . max{| z |, | u |} ïÓ‰‡Î¸Ì‡fl ÏÂÚË͇ ïÓ‰‡Î¸Ì‡fl ÏÂÚË͇ d χ ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â = ∪ {∞}, ÓÔ‰ÂÎÂÌ̇fl Í‡Í dχ ( z, u) =
2|z−u| 1+ | z |2 1+ | u |2
‰Îfl ‚ÒÂı z, u ∈ Ë Í‡Í dχ ( z, ∞) =
2 1+ | z |2
‰Îfl ‚ÒÂı z ∈ (ÒÏ. å-ÓÚÌÓÒËÚÂθ̇fl ÏÂÚË͇, „Î. 19). åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó
192
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
( , dχ ) ̇Á˚‚‡ÂÚÒfl ‡Ò¯ËÂÌÌÓÈ ÍÓÏÔÎÂÍÒÌÓÈ ÔÎÓÒÍÓÒÚ¸˛. é̇ „ÓÏÂÓÏÓÙ̇ Ë ÍÓÌÙÓÏÌÓ ˝Í‚Ë‚‡ÎÂÌÚ̇ ËχÌÓ‚ÓÈ ÒÙÂÂ. àÏÂÌÌÓ, ËχÌÓ‚‡ ÒÙ‡ – ˝ÚÓ ÒÙ‡ ‚ ‚ÍÎˉӂÓÏ ÔÓÒÚ‡ÌÒÚ‚Â 3 , ‡ÒÒχÚË‚‡Âχfl Í‡Í ÏÂÚ˘ÂÒÍÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó 3 , ̇ ÍÓÚÓÛ˛ ‚ ÒÚÂÂÓ„‡Ù˘ÂÒÍÓÈ ÔÓÂ͈ËË ‚Á‡ËÏÌÓ-Ó‰ÌÓÁ̇˜ÌÓ ÓÚÓ·‡Ê‡ÂÚÒfl ‡Ò¯ËÂÌ̇fl ÍÓÏÔÎÂÍÒ̇fl ÔÎÓÒÍÓÒÚ¸. Ö‰ËÌ˘ÌÛ˛ ÒÙÂÛ S 2 = {( x1 , x 2 , x3 ) ∈ 3 : x12 + x 22 + x32 = 1} ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ËχÌÓ‚Û ÒÙÂÛ, ‡ ÔÎÓÒÍÓÒÚ¸ ÏÓÊÌÓ ÓÚÓʉÂÒÚ‚ËÚ¸ Ò ÔÎÓÒÍÓÒÚ¸˛ x3 = 0 Ú‡Í, ˜ÚÓ Â ‰ÂÈÒÚ‚ËÚÂθ̇fl ÓÒ¸ ÒÓ‚Ô‡‰‡ÂÚ Ò x1-ÓÒ¸˛, ‡ ÏÌËχfl ÓÒ¸ – Ò x2-ÓÒ¸˛. èË ÒÚÂÂÓ„‡Ù˘ÂÒÍÓÈ ÔÓÂ͈ËË Í‡Ê‰‡fl ÚӘ͇ z ∈ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÚӘ͠(x 1 , x2, x3) ∈ S 2 , ÍÓÚÓ‡fl ÔÓÎÛ˜Â̇ Í‡Í ÚӘ͇ ÔÂÂÒ˜ÂÌËfl ÎÛ˜‡, Ôӂ‰ÂÌÌÓ„Ó ËÁ "Ò‚ÂÌÓ„Ó ÔÓÎ˛Ò‡" (0, 0, 1) ÒÙÂ˚ ‚ ÚÓ˜ÍÛ z ÒÙÂ˚ S2 ; "Ò‚ÂÌ˚È ÔÓβÒ" ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ·ÂÒÍÓ̘ÌÓ Û‰‡ÎÂÌÌÓÈ ÚÓ˜ÍÂ. ïÓ‰‡Î¸ÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË p, q ∈ S2 ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ëı ÔÓÓ·‡Á‡ÏË z, u ∈. ïÓ‰‡Î¸Ì‡fl ÏÂÚË͇ ÏÓÊÂÚ ·˚Ú¸ ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ ÓÔ‰ÂÎÂ̇ ̇ n = n ∪ {∞}. àÏÂÌÌÓ ‰Îfl β·˚ı dχ ( x, y) =
2 || x − y ||2 1 + || x ||22 1 + || y ||22
Ë ‰Îfl β·Ó„Ó x ∈ n dχ ( x, ∞) =
2 1 + || x ||22
,
„‰Â || ⋅ ||2 – Ó·˚˜Ì‡fl ‚ÍÎˉӂ‡ ÌÓχ ̇ n. åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (n, dχ) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ åfi·ËÛÒ‡. ùÚÓ ÔÚÓÎÂÏÂÂ‚Ó ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ÒÏ. èÚÓÎÂÏ‚‡ ÏÂÚË͇, „Î.1). ÖÒÎË Á‡‰‡Ì˚ α > 0, β ≥ 0, p ≥ 1, ÚÓ Ó·Ó·˘ÂÌÌÓÈ ıÓ‰‡Î¸ÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ ( n , || ⋅ ||2 ) Ë ‰‡Ê ̇ β·ÓÏ ÔÚÓÎÂÏ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (V , || ⋅ ||)), ÓÔ‰ÂÎÂÌ̇fl Í‡Í |z−u| . (α + β | z | ) ⋅ (α + β | u | p )1 / p p 1/ p
é̇ ΄ÍÓ Ó·Ó·˘‡ÂÚÒfl Ë Ì‡ ÒÎÛ˜‡È ( n ). 䂇ÚÂÌËÓÌ̇fl ÏÂÚË͇ 䂇ÚÂÌËÓÌ˚ – ˝ÎÂÏÂÌÚ˚ ÌÂÍÓÏÏÛÚ‡ÚË‚ÌÓÈ ‡Î„·˚ Ò ‰ÂÎÂÌËÂÏ Ì‡‰ ÔÓÎÂÏ , „ÂÓÏÂÚ˘ÂÒÍË Â‡ÎËÁÛÂÏ˚ ‚ ˜ÂÚ˚ÂıÏÂÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ([Hami66]). 䂇ÚÂÌËÓÌ ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ ‚ ÙÓÏ q = q1 + q2 i + q3 j + q4 k , qi ∈ , „‰Â Í‚‡ÚÂÌËÓÌ˚ i, j Ë k ̇Á˚‚‡˛ÚÒfl ÓÒÌÓ‚Ì˚ÏË Â‰ËÌˈ‡ÏË Ë Û‰Ó‚ÎÂÚ‚Ófl˛Ú ÒÎÂ‰Û˛˘ËÏ ÒÓÓÚÌÓ¯ÂÌËflÏ, ËÁ‚ÂÒÚÌ˚Ï Í‡Í Ô‡‚Ë· ɇÏËθÚÓ̇: i2 = j2 = k2 = –1 Ë ij = –ji = k. çÓχ || q || Í‚‡ÚÂÌËÓ̇ q = q1 + q2 i + q3j + q3k ∈ ÓÔ‰ÂÎflÂÚÒfl Í‡Í || q ||= qq = q12 + q22 + q32 + q42 ,
q = q1 − q2 i − q3 j − q4 k.
䂇ÚÂÌËÓÌ̇fl ÏÂÚË͇ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı Í‚‡ÚÂÌËÓÌÓ‚, ÓÔ‰ÂÎflÂÏÓÈ Í‡Í || x − y || .
193
É·‚‡ 12. ê‡ÒÒÚÓflÌËfl ̇ ˜ËÒ·ı, ÏÌÓ„Ó˜ÎÂ̇ı Ë Ï‡Úˈ‡ı
12.2. êÄëëíéüçàü çÄ åçéÉéóãÖçÄï åÌÓ„Ó˜ÎÂÌ – ‚˚‡ÊÂÌËÂ, fl‚Îfl˛˘ÂÂÒfl ÒÛÏÏÓÈ ÒÚÂÔÂÌÂÈ Ó‰ÌÓÈ ËÎË ÌÂÒÍÓθÍËı ÔÂÂÏÂÌÌ˚ı, ÛÏÌÓÊÂÌÌ˚ı ̇ ÍÓ˝ÙÙˈËÂÌÚ˚. åÌÓ„Ó˜ÎÂÌ ÓÚ Ó‰ÌÓÈ ÔÂÂÏÂÌÌÓÈ Ò ‰ÂÈÒÚ‚ËÚÂθÌ˚ÏË (ÍÓÏÔÎÂÍÒÌ˚ÏË) ÍÓ˝ÙÙˈËÂÌÚ‡ÏË Á‡‰‡ÂÚÒfl Í‡Í P = P( z ) = n
=
∑ ak z k ,
ak ∈ ( ak ∈ ). åÌÓÊÂÒÚ‚Ó ‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı)
k =0
ÏÌÓ„Ó˜ÎÂÌÓ‚ Ó·‡ÁÛ˛Ú ÍÓθˆÓ (, +, ⋅, 0). éÌÓ fl‚ÎflÂÚÒfl Ú‡ÍÊ ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡‰ (̇‰ ). åÂÚË͇ ÌÓÏ˚ ÏÌÓ„Ó˜ÎÂ̇ åÂÚË͇ ÌÓÏ˚ ÏÌÓ„Ó˜ÎÂ̇ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ÏÌÓ„Ó˜ÎÂÌÓ‚, ÓÔ‰ÂÎÂÌ̇fl Í‡Í || P – Q ||, „‰Â || ⋅ || – ÌÓχ ÏÌÓ„Ó˜ÎÂ̇, Ú.Â. ڇ͇fl ÙÛÌ͈Ëfl || ⋅ ||: → , ˜ÚÓ ‰Îfl ‚ÒÂı P, Q ∈ Ë Î˛·Ó„Ó Ò͇Îfl‡ k ËÏÂÂÏ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: 1) || P || ≥ 0 Ò || P || = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ P = 0; 2) || kP || = | k | || P ||; 3) || P + Q || ≤ || P || + || Q || (̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇). ÑÎfl ÏÌÓÊÂÒÚ‚‡ Ó·˚˜ÌÓ ËÒÔÓθÁÛ˛ÚÒfl ÌÂÒÍÓθÍÓ Í·ÒÒÓ‚ ÌÓÏ. lp -ÌÓχ n
∑ ak z k ÓÔ‰ÂÎflÂÚÒfl ͇Í
(1 ≤ p ≤ ∞) ÏÌÓ„Ó˜ÎÂ̇ P( z ) =
k =0
n || P || p = | ak | p k =0
∑
n
‰‡‚‡fl ÓÒÓ·˚ ÒÎÛ˜‡Ë || P ||1 =
∑
1/ p
, n
| ak |, || P ||2 =
k =0
∑
| ak | 2
Ë || P ||∞ = max | ak | .
k =0
0≤k ≤n
á̇˜ÂÌË || P ||∞ ̇Á˚‚‡ÂÚÒfl ‚˚ÒÓÚÓÈ ÏÌÓ„Ó˜ÎÂ̇. Lp -ÌÓχ (1 ≤ p ≤ ∞) ÏÌÓ„Ó˜ÎÂ̇ n
P( z ) =
∑ ak z k ÓÔ‰ÂÎflÂÚÒfl ͇Í
k =0
P
Lp
2π
‰‡‚‡fl ÓÒÓ·˚ ÒÎÛ˜‡Ë
L
L1
=
∫ 0
2π dθ | P(e iθ ) | p = 2 π 0
1/ p
∫
dθ | P(e ) | , P 2π
, 2π
iθ
L2
=
∫ 0
| P(e iθ ) |
dθ Ë 2π
P
L∞
=
= sup | P( z ) | . |z | = 1
åÂÚË͇ ÅÓÏ·¸ÂË åÂÚË͇ ÅÓÏ·¸ÂË (ËÎË ÒÍӷӘ̇fl ÏÂÚË͇ ÏÌÓ„Ó˜ÎÂ̇) ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ÏÌÓ„Ó˜ÎÂ̇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ÏÌÓ„Ó˜ÎÂÌÓ‚,
194
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
ÓÔ‰ÂÎÂÌ̇fl Í‡Í [P – Q]p , n
„‰Â [⋅]p , 0 ≤ p ≤ ∞, ÂÒÚ¸ -ÌÓχ ÅÓÏ·¸ÂË. ÑÎfl ÏÌÓ„Ó˜ÎÂ̇ P( z ) =
∑ ak z k Ó̇ Á‡‰‡-
k =0
ÂÚÒfl Í‡Í n n 1− p [ P] p = | ak | p k = 0 k
∑
1/ p
,
n „‰Â – ·ËÌÓÏˇθÌ˚È ÍÓ˝ÙÙˈËÂÌÚ. k 12.3. êÄëëíéüçàü çÄ åÄíêàñÄï m × n χÚˈ‡ A = ((aij)) ̇‰ ÔÓÎÂÏ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ Ú‡·ÎˈÛ, ÒÓÒÚÓfl˘Û˛ ËÁ m ÒÚÓÍ Ë n ÒÚÓηˆÓ‚ Ò ˝ÎÂÏÂÌÚ‡ÏË aij ËÁ ÔÓÎfl . åÌÓÊÂÒÚ‚Ó ‚ÒÂı m × n χÚˈ Ò ‰ÂÈÒÚ‚ËÚÂθÌ˚ÏË (ÍÓÏÔÎÂÍÒÌ˚ÏË) ˝ÎÂÏÂÌÚ‡ÏË Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í Mm,n. éÌÓ Ó·‡ÁÛÂÚ „ÛÔÔÛ (M m,n, +, 0m,n), „‰Â ((aij)) + ((bij)) = ((aij + bij)), ‡ χÚˈ‡ 0m,n ≡ 0, Ú.Â. ‚Ҡ ˝ÎÂÏÂÌÚ˚ ‡‚Ì˚ 0. éÌÓ fl‚ÎflÂÚÒfl Ú‡ÍÊ mn-ÏÂÌ˚Ï ‚ÂÍÚÓÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡‰ (̇‰ ). í‡ÌÒÔÓÌËÓ‚‡ÌÌÓÈ Ï‡ÚˈÂÈ ‰Îfl χÚˈ˚ A = ((aij)) ∈ Mm,n ̇Á˚‚‡ÂÚÒfl χÚˈ‡ AT = ((aij)) ∈ M n , m . ëÓÔflÊÂÌÌÓÈ Ú‡ÌÒÔÓÌËÓ‚‡ÌÌÓÈ Ï‡ÚˈÂÈ (ËÎË ÔËÒÓ‰ËÌÂÌÌÓÈ Ï‡ÚˈÂÈ) ‰Îfl χÚˈ˚ A = ((a i j)) ∈ M m,n ̇Á˚‚‡ÂÚÒfl χÚˈ‡ A∗ = (( aij )) ∈ Mn, m . å‡Úˈ‡ ̇Á˚‚‡ÂÚÒfl Í‚‡‰‡ÚÌÓÈ Ï‡ÚˈÂÈ, ÂÒÎË m = n. åÌÓÊÂÒÚ‚Ó ‚ÒÂı Í‚‡‰‡ÚÌ˚ı n × n χÚˈ Ò ‰ÂÈÒÚ‚ËÚÂθÌ˚ÏË (ÍÓÏÔÎÂÍÒÌ˚ÏË) ˝ÎÂÏÂÌÚ‡ÏË Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í M n . éÌÓ Ó·‡ÁÛÂÚ ÍÓθˆÓ (Mn , +, 0), „‰Â + Ë 0n ÓÔ‰ÂÎfl˛ÚÒfl Í‡Í Û͇Á‡ÌÓ ‚˚¯Â, n ‡ (( aij )) ⋅ ((bij )) = aik bkj . éÌÓ fl‚ÎflÂÚÒfl Ú‡ÍÊ n2 -ÏÂÌ˚Ï ‚ÂÍÚÓÌ˚Ï ÔÓ k =1 ÒÚ‡ÌÒÚ‚ÓÏ Ì‡‰ (̇‰ ). å‡Úˈ‡ A = ((aij)) ∈ M n ̇Á˚‚‡ÂÚÒfl ÒËÏÏÂÚ˘ÌÓÈ, ÂÒÎË aij = a j i ‰Îfl ‚ÒÂı i, j ∈ {1,…, n}, Ú.Â., ÂÒÎË A = A T. ëÔˆˇθÌ˚Ï ÒÎÛ˜‡ÂÏ ÚËÔ˚ Í‚‡‰‡ÚÌ˚ı n × n χÚˈ fl‚ÎflÂÚÒfl ‰ËÌ˘̇fl χÚˈ‡ 1n = ((c ij)) Ò cii = 1 Ë cij = 0, i ≠ j. ìÌËڇ̇fl χÚˈ‡ U = ((u ij)) ÂÒÚ¸ Í‚‡‰‡Ú̇fl χÚˈ‡, ÓÔ‰ÂÎÂÌ̇fl Í‡Í U –1 = U*, „‰Â U –1 – Ó·‡Ú̇fl χÚˈ‡ ‰Îfl U, Ú.Â. U ⋅ U –1 = 1n . éÚÓ„Ó̇θÌÓÈ Ï‡ÚˈÂÈ Ì‡Á˚‚‡ÂÚÒfl χÚˈ‡ A ∈ Mm,n, ڇ͇fl ˜ÚÓ A* A = 1 n . ÖÒÎË ‰Îfl χÚˈ˚ A ∈ Mn ÒÛ˘ÂÒÚ‚ÛÂÚ ‚ÂÍÚÓ ı, Ú‡ÍÓÈ ˜ÚÓ Ax = λx ‰Îfl ÌÂÍÓÚÓÓ„Ó Ò͇Îfl‡ λ, ÚÓ λ ̇Á˚‚‡ÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚Ï Á̇˜ÂÌËÂÏ Ï‡Úˈ˚ Ä, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ ÒÓ·ÒÚ‚ÂÌÌÓÏÛ ‚ÂÍÚÓÛ ı. ÑÎfl ÍÓÏÔÎÂÍÒÌÓÈ Ï‡Úˈ˚ A ∈ Mm,n,  ÒËÌ„ÛÎflÌ˚ Á̇˜ÂÌËfl s i(A) ÓÔ‰ÂÎfl˛ÚÒfl Í‡Í Í‚‡‰‡ÚÌ˚ ÍÓÌË ÒÓ·ÒÚ‚ÂÌÌ˚ı Á̇˜ÂÌËÈ Ï‡Úˈ˚ A* A, „‰Â A* – ÒÓÔflÊÂÌ̇fl Ú‡ÌÒÔÓÌËÓ‚‡Ì̇fl χÚˈ‡ ‰Îfl Ä. éÌË fl‚Îfl˛ÚÒfl ÌÂÓÚˈ‡ÚÂθÌ˚ÏË ‰ÂÈÒÚ‚ËÚÂθÌ˚ÏË ˜ËÒ·ÏË, Ô˘ÂÏ s 1 (A) ≥ s2 (A) ≥ … .
∑
åÂÚË͇ ÌÓÏ˚ χÚˈ˚ åÂÚËÍÓÈ ÌÓÏ˚ χÚˈ˚ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ ̇ ÏÌÓÊÂÒÚ‚Â Mm,n ‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) m × n χÚˈ, ÓÔ‰ÂÎÂÌ̇fl Í‡Í || A – B ||,
É·‚‡ 12. ê‡ÒÒÚÓflÌËfl ̇ ˜ËÒ·ı, ÏÌÓ„Ó˜ÎÂ̇ı Ë Ï‡Úˈ‡ı
195
„‰Â || ⋅ || – ÌÓχ χÚˈ˚, Ú.Â. ڇ͇fl ÙÛÌ͈Ëfl || ⋅ ||: M m , n → , ˜ÚÓ ‰Îfl ‚ÒÂı A, B ∈ Mm,n Ë ‰Îfl β·Ó„Ó Ò͇Îfl‡ k ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: 1) || A || ≥ 0 Ò || A || = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ A = 0m,n; 2) || kA || k | || A ||; 3) || A + B || ≤ || A || + || B || (̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇). ÇÒ ÏÂÚËÍË ÌÓÏ˚ χÚˈ˚ ̇ M m,n ˝Í‚Ë‚‡ÎÂÌÚÌ˚. çÓχ χÚˈ˚ || ⋅ || ̇ ÏÌÓÊÂÒÚ‚Â M n ‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) Í‚‡‰‡ÚÌ˚ı n × n χÚˈ ̇Á˚‚‡ÂÚÒfl ÒÛ·ÏÛθÚËÔÎË͇ÚË‚ÌÓÈ, ÂÒÎË Ó̇ ÒÓ‚ÏÂÒÚËχ Ò ÛÏÌÓÊÂÌËÂÏ Ï‡Úˈ, Ú.Â. || AB || ≤ || A || ⋅ || B || ‰Îfl ‚ÒÂı A, B ∈ Mn . åÌÓÊÂÒÚ‚Ó Mn Ò ÒÛ·ÏÛθÚËÔÎË͇ÚË‚ÌÓÈ ÌÓÏÓÈ fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚ÓÈ ‡Î„·ÓÈ. èÓÒÚÂȯËÏ ÔËÏÂÓÏ ÏÂÚËÍË ÌÓÏ˚ χÚˈ˚ fl‚ÎflÂÚÒfl ı˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ ̇ Mm,n (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ ÏÌÓÊÂÒÚ‚Â Mm,n() ‚ÒÂı χÚˈ m × n Ò ˝ÎÂÏÂÌÚ‡ÏË ËÁ ÔÓÎfl ), ÓÔ‰ÂÎÂÌ̇fl Í‡Í || A – B ||H, „‰Â || A || H – ÌÓχ ï˝ÏÏËÌ„‡ χÚˈ˚ A ∈ Mm,n, Ú.Â. ˜ËÒÎÓ ÌÂÌÛ΂˚ı ˝ÎÂÏÂÌÚÓ‚ χÚˈ˚ Ä. åÂÚË͇ ÂÒÚÂÒÚ‚ÂÌÌÓÈ ÌÓÏ˚ åÂÚË͇ ÂÒÚÂÒÚ‚ÂÌÌÓÈ ÌÓÏ˚ (ËÎË Ë̉ۈËÓ‚‡Ì̇fl ÏÂÚË͇ ÌÓÏ˚, ÔÓ‰˜ËÌÂÌ̇fl ÏÂÚË͇ ÌÓÏ˚) ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ ̇ ÏÌÓÊÂÒÚ‚Â Mn ‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) Í‚‡‰‡ÚÌ˚ı n × n χÚˈ, ÓÔ‰ÂÎÂÌ̇fl Í‡Í || A – B ||nat, „‰Â || ⋅ ||nat – ÂÒÚÂÒÚ‚ÂÌ̇fl ÌÓχ ̇ M n . ÖÒÚÂÒÚ‚ÂÌ̇fl ÌÓχ || ⋅ ||nat ̇ Mn , ÔÓÓʉÂÌ̇fl ÌÓÏÓÈ ‚ÂÍÚÓ‡ || x ||^ x ∈ n (x ∈ n), ÂÒÚ¸ ÒÛ·ÏÛθÚËÔÎË͇Ú˂̇fl ÌÓχ χÚˈ˚, ÓÔ‰ÂÎÂÌ̇fl Í‡Í || Ax || = sup || Ax ||= sup || Ax || . || x || ≠ 0 || x || || x || =1 || x || ≤1
|| A |nat = sup
ç‡ÚۇθÌÛ˛ ÏÂÚËÍÛ ÌÓÏ˚ ÏÓÊÌÓ Á‡‰‡Ú¸ ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ Ì‡ ÏÌÓÊÂÒÚ‚Â M m,n ‚ÒÂı m × n ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) χÚˈ: ÂÒÎË Á‡‰‡Ì˚ ÌÓÏ˚ ‚ÂÍÚÓ‡ ⋅ m ̇ m Ë ⋅ n ̇ n , ÂÒÚÂÒÚ‚ÂÌ̇fl ÌÓχ || A ||nat χÚˈ˚ A ∈ Mm,n, ÔÓÓʉÂÌ̇fl ÌÓχÏË ⋅ Í‡Í || A ||nat = sup
x n =1
Ax
m
m
⋅
Ë
n
, ÂÒÚ¸ ÌÓχ χÚˈ˚, ÓÔ‰ÂÎÂÌ̇fl
.
åÂÚË͇ -ÌÓÏ˚ χÚˈ˚ åÂÚË͇ -ÌÓÏ˚ χÚˈ˚ ̇Á˚‚‡ÂÚÒfl ̇Úۇθ̇fl ÏÂÚË͇ ÌÓÏ˚ ̇ Mn , ÓÔ‰ÂÎÂÌ̇fl Í‡Í p || A − B ||nat , p „‰Â || ⋅ ||nat – -ÌÓχ χÚˈ˚, Ú.Â. ÂÒÚÂÒÚ‚ÂÌ̇fl ÌÓχ, ÔÓÓʉÂÌ̇fl lp -ÌÓÏÓÈ ‚ÂÍÚÓ‡, 1 ≤ p ≤ ∞: p || A ||nat = max || Ax || p , || x || p =1
„‰Â n || x || p = | xi | p i =1
∑
1/ p
.
196
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
å‡ÍÒËχθÌÓÈ ‡·ÒÓβÚÌÓÈ ÏÂÚËÍÓÈ ÒÚÓηˆÓ‚ (ÚÓ˜ÌÂÂ, χÍÒËχθÌÓÈ ÏÂÚËÍÓÈ ÌÓÏ˚ ‡·ÒÓβÚÌ˚ı ÒÛÏÏ ÔÓ ÒÚÓηˆ‡Ï) fl‚ÎflÂÚÒfl ÏÂÚË͇ 1-ÌÓÏ˚ χÚˈ˚ || A − B ||1nat ̇ M n . 1-çÓχ χÚˈ˚ || ⋅ ||1nat , , ÔÓÓʉÂÌ̇fl l1 -ÌÓÏÓÈ ‚ÂÍÚÓ‡, ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ χÍÒËχθÌÓÈ ÌÓÏÓÈ ‡·ÒÓβÚÌ˚ı ÒÛÏÏ ÔÓ ÒÚÓηˆ‡Ï. ÑÎfl χÚˈ˚ A = ((aij)) ∈ Mn  ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í n
|| A ||1nat = max
1≤ j ≤ n
∑
| aij | .
i =1
å‡ÍÒËχθÌÓÈ ‡·ÒÓβÚÌÓÈ ÏÂÚËÍÓÈ ÒÚÓÍ (ÚÓ˜ÌÂÂ, χÍÒËχθÌÓÈ ÏÂÚËÍÓÈ ÌÓÏ˚ ‡·ÒÓβÚÌ˚ı ÒÛÏÏ ÔÓ ÒÚÓ͇Ï) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ -ÌÓÏ˚ χÚˈ˚ || A − B ||∞nat ̇ M n . ∞-çÓχ χÚˈ˚ || ⋅ ||∞nat , ÔÓÓʉÂÌ̇fl l ∞-ÌÓÏÓÈ ‚ÂÍÚÓ‡, ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ χÍÒËχθÌÓÈ ÌÓÏÓÈ ‡·ÒÓβÚÌ˚ı ÒÛÏÏ ÔÓ ÒÚÓ͇Ï. ÑÎfl χÚˈ˚ A = ((aij)) ∈ Mn  ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í || A ||∞nat = max
1≤ j ≤ n
n
∑
| aij | .
j =1
åÂÚË͇ ÒÔÂÍڇθÌÓÈ ÌÓÏ˚ – ˝ÚÓ ÏÂÚË͇ 2-ÌÓÏ˚ χÚˈ˚ || A − B ||2nat ̇ M n . ÑÎfl χÚˈ˚ A = ((aij)) ∈ Mn  ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í || A ||sp = (χÍÒËχθÌÓ ÒÓ·ÒÚ‚ÂÌÌÓ Á̇˜ÂÌË A* A)1/2, „‰Â χÚˈ‡ A∗ = (( aij ) ∈ Mn fl‚ÎflÂÚÒfl ÒÓÔflÊÂÌÌÓÈ Ú‡ÌÒÔÓÌËÓ‚‡ÌÌÓÈ Ï‡ÚˈÂÈ Ï‡Úˈ˚ Ä (ÒÏ. åÂÚË͇ ÌÓÏ˚ äË î‡Ì‡, „Î. 14). åÂÚË͇ ÌÓÏ˚ îÓ·ÂÌËÛÒ‡ åÂÚË͇ ÌÓÏ˚ îÓ·ÂÌËÛÒ‡ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ χÚˈ˚ ̇ Mm,n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í || A – B ||Fr, „‰Â || ⋅ ||Fr – ÌÓχ îÓ·ÂÌËÛÒ‡. ÑÎfl χÚˈ˚ A = ((aij)) ∈ Mm,n Ó̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í m
n
∑∑
|| A ||Fr =
i =1
| aij |2 .
j =1
é̇ ‡‚̇ Ú‡ÍÊ ͂‡‰‡ÚÌÓÏÛ ÍÓÌ˛ ËÁ ÒΉ‡ χÚˈ˚ A* A, „‰Â χÚˈ‡ A = (( a ji )) fl‚ÎflÂÚÒfl ÒÓÔflÊÂÌÌÓÈ Ú‡ÌÒÔÓÌËÓ‚‡ÌÌÓÈ Ï‡ÚˈÂÈ ‰Îfl χÚˈ˚ Ä ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, Í‚‡‰‡ÚÌÓÏÛ ÍÓÌ˛ ËÁ ÒÛÏÏ˚ ÒÓ·ÒÚ‚ÂÌÌ˚ı Á̇˜ÂÌËÈ λ i χÚ∗
ˈ˚ A* A: || A ||Fr = Tr ( A∗ A) =
min{m, n}
∑
λ i (ÒÏ. åÂÚË͇ ÌÓÏ˚ ò‡ÚÂ̇, „Î. 13). ùÚ‡
i =1
ÌÓχ ÔÓÓʉÂ̇ Ò͇ÎflÌ˚Ï ÔÓËÁ‚‰ÂÌËÂÏ Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â Mm,n, ÌÓ Ì fl‚ÎflÂÚÒfl ÒÛ·ÏÛθÚËÔÎË͇ÚË‚ÌÓÈ ‰Îfl m = n. åÂÚË͇ (c, p)-ÌÓÏ˚ èÛÒÚ¸ k ∈ , k ≤ min{m, n}, c ∈ k, c 1 ≥ c 2 ≥ ⋅⋅⋅ ≥ ck > 0 Ë 1 ≤ p < ∞. åÂÚË͇ (c, p)ÌÓÏ˚ – ˝ÚÓ ÏÂÚË͇ ÌÓÏ˚ χÚˈ˚ ̇ M m,n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í || A − B ||(kc, p ) ,
197
É·‚‡ 12. ê‡ÒÒÚÓflÌËfl ̇ ˜ËÒ·ı, ÏÌÓ„Ó˜ÎÂ̇ı Ë Ï‡Úˈ‡ı
„‰Â || ⋅ ||(kc, p ) (c, p)-ÌÓχ ̇ M m,n. ÑÎfl χÚˈ˚ A ∈ Mm,n Ó̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í ||
A ||(kc, p ) =
k ci sip ( A) i =1
∑
1/ p
,
„‰Â s1 (A) ≥ s2 (A) ≥ ⋅⋅⋅ ≥ sk(A) – Ô‚˚ k ÒËÌ„ÛÎflÌ˚ı Á̇˜ÂÌËÈ Ï‡Úˈ˚ Ä. ÖÒÎË p = 1, ÚÓ Ï˚ ÔÓÎÛ˜‡ÂÏ Ò-ÌÓÏÛ. ÖÒÎË, ·ÓΠÚÓ„Ó, c1 = ⋅⋅⋅ = c k = 1, ÚÓ ËÏÂÂÏ k-ÌÓÏÛ äË î‡Ì‡. åÂÚË͇ ÌÓÏ˚ äË î‡Ì‡ ÑÎfl k ∈ , k ≤ min{m, n} ÏÂÚËÍÓÈ ÌÓÏ˚ äË î‡Ì‡ fl‚ÎflÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ χÚˈ˚ ̇ Mm,n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í k || A − B ||KF , k „‰Â || ⋅ ||KF – k-ÌÓχ äË î‡Ì‡ ̇ M m,n. ÑÎfl χÚˈ˚ A ∈ M m,n Ó̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÒÛÏχ  Ԃ˚ı k ÒËÌ„ÛÎflÌ˚ı Á̇˜ÂÌËÈ: k
k = || A ||KF
∑ si ( A). i =1
ÑÎfl k = 1 Ï˚ ÔÓÎÛ˜‡ÂÏ ÒÔÂÍڇθÌÛ˛ ÌÓÏÛ. ÑÎfl k = min{m, n} ËÏÂÂÏ ÒÎÂ‰Ó‚Û˛ ÌÓÏÛ. åÂÚË͇ ÌÓÏ˚ ò‡ÚÂ̇ ÖÒÎË ‰‡ÌÓ 1 ≤ p < ∞, ÚÓ ÏÂÚË͇ ÌÓÏ˚ ò‡ÚÂ̇ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ χÚˈ˚ ̇ Mm,n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í p || A − B ||Sch , p „‰Â || ⋅ ||Sch – -ÌÓχ ò‡ÚÂ̇ ̇ Mm,n. ÑÎfl χÚˈ˚ A ∈ M m,n Ó̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÍÓÂ̸ -È ÒÚÂÔÂÌË ËÁ ÒÛÏÏ˚ -ı ÒÚÂÔÂÌÂÈ ‚ÒÂı  ÒËÌ„ÛÎflÌ˚ı Á̇˜ÂÌËÈ:
||
p A ||Sch =
min{m, n} p si ( A) i =1
∑
1/ p
.
ÑÎfl p = 2 Ï˚ ÔÓÎÛ˜‡ÂÏ ÌÓÏÛ îÓ·ÂÌËÛÒ‡, ‡ ‰Îfl p = 1 – ÒÎÂ‰Ó‚Û˛ ÌÓÏÛ. åÂÚË͇ ÒΉӂÓÈ ÌÓÏ˚ åÂÚËÍÓÈ ÒΉӂÓÈ ÌÓÏ˚ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ χÚˈ˚ ̇ Mm,n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ÒÛÏχ ‚ÒÂı  ÒËÌ„ÛÎflÌ˚ı Á̇˜ÂÌËÈ: || A – B ||tr, „‰Â || ⋅ ||tr – ÒΉӂ‡fl ÌÓχ ̇ M m,n. ÑÎfl χÚˈ˚ A ∈ M m,n Ó̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÒÛÏχ ‚ÒÂı  ÒËÌ„ÛÎflÌ˚ı Á̇˜ÂÌËÈ: min{m, n}
|| A ||tr =
∑ i =1
si ( A).
198
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
åÂÚË͇ êÓÁÂÌ·Î˛Ï‡–ñÙ‡Òχ̇ èÛÒÚ¸ M m,n( q ) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı m × n χÚˈ Ò ˝ÎÂÏÂÌÚ‡ÏË ËÁ ÍÓ̘ÌÓ„Ó ÔÓÎfl q . çÓχ êÓÁÂÌ·Î˛Ï‡–ñÙ‡Òχ̇ || ⋅ ||RT ̇ Mm,n( q ) ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: ÂÒÎË m = 1 Ë a = (ξ1 , ξ2 ,…, ξn ) ∈ M 1,n( q ), ÚÓ || 01,n || RT = 0 Ë || a || RT = max{i|ξi ≠ 0} ‰Îfl a ≠ 01,n; ÂÒÎË A = (a 1 ,…, a m)T ∈ M m,n( q ), a j ∈ M1,n( q ), 1 ≤ j ≤ m , ÚÓ m
|| A ||RT =
∑
|| a j ||RT .
j =1
åÂÚËÍÓÈ êÓÁÂÌ·Î˛Ï‡–ñÙ‡Òχ̇ ([RoTs96]) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ χÚˈ˚ (̇ Ò‡ÏÓÏ ‰ÂΠÛθڇÏÂÚË͇) ̇ Mm,n( q ), ÓÔ‰ÂÎÂÌ̇fl Í‡Í || A – B ||RT. ì„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË ê‡ÒÒÏÓÚËÏ „‡ÒÒχÌÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó G(m, n) ‚ÒÂı n-ÏÂÌ˚ı ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ ‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ m; ÓÌÓ fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ËχÌÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ ‡ÁÏÂÌÓÒÚË n(m–n). ÖÒÎË ËϲÚÒfl ‰‚‡ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ A, B ∈ G ( m, n), ÚÓ „·‚Ì˚ ۄÎ˚ π ≥ θ1 ≥ ⋅⋅⋅ ≥ θ n ≥ 0 ÏÂÊ‰Û ÌËÏË ÓÔ‰ÂÎfl˛ÚÒfl (‰Îfl k = 1,…, n) Ë̉ÛÍÚË‚ÌÓ Í‡Í 2 cos θ k = max max x T y = ( x k )T y k , x ∈A y ∈B
ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl || x ||2 =|| y ||2 = 1, x T x i = 0, y T y i = 0 ‰Îfl 1 ≤ i ≤ k – 1, „‰Â || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ. É·‚Ì˚ ۄÎ˚ ÏÓ„ÛÚ Á‡‰‡‚‡Ú¸Òfl Ú‡ÍÊ ˜ÂÂÁ ÓÚÓÌÓÏËÓ‚‡ÌÌ˚ χÚˈ˚ Q A Ë Q B, ̇ ÍÓÚÓ˚ ̇ÚflÌÛÚ˚ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ Ä Ë Ç ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ: ËÏÂÌÌÓ n ÛÔÓfl‰Ó˜ÂÌÌ˚ı ÒËÌ„ÛÎflÌ˚ı Á̇˜ÂÌËÈ Ï‡Úˈ˚ QAQB ∈ Mn ÏÓ„ÛÚ ·˚Ú¸ Á‡‰‡Ì˚ Í‡Í cosθ1,…, cosθn. ÉÂÓ‰ÂÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË Ä Ë Ç ÓÔ‰ÂÎflÂÚÒfl (ÔÓ ÇÓÌ„Û, 1967) Í‡Í n
2
∑ θi2 . i =1
ê‡ÒÒÚÓflÌË å‡ÚË̇ ÏÂÊ‰Û ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË Ä Ë Ç Á‡‰‡ÂÚÒfl Í‡Í n
ln
∏ i =1
1 . cos 2 θ i
ÖÒÎË ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ Ô‰ÒÚ‡‚Îfl˛Ú ‡‚ÚÓ„ÂÒÒË‚Ì˚ ÏÓ‰ÂÎË, ÚÓ ‡ÒÒÚÓflÌË å‡ÚË̇ ÏÓÊÂÚ ‚˚‡Ê‡Ú¸Òfl ÔÓÒ‰ÒÚ‚ÓÏ ÍÂÔÒÚ‡ ‡‚ÚÓÍÓÂÎflˆËÓÌÌÓÈ ÙÛÌ͈ËË ˝ÚËı ÏÓ‰ÂÎÂÈ (ÒÏ. äÂÔÒڇθÌÓ ‡ÒÒÚÓflÌË å‡ÚË̇, „Î. 21). ê‡ÒÒÚÓflÌË ÄÁËÏÓ‚‡ ÏÂÊ‰Û ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË Ä Ë Ç Á‡‰‡ÂÚÒfl Í‡Í θ1 . éÌÓ ÏÓÊÂÚ ·˚Ú¸ ‚˚‡ÊÂÌÓ Ú‡ÍÊ ˜ÂÂÁ ÙËÌÒÎÂÓ‚Û ÏÂÚËÍÛ Ì‡ ÏÌÓ„ÓÓ·‡ÁËË G(m, n). ê‡ÒÒÚÓflÌË ÔÓÔÛÒ͇ ÏÂÊ‰Û ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË Ä Ë Ç ÓÔ‰ÂÎflÂÚÒfl Í‡Í sinθ1.
É·‚‡ 12. ê‡ÒÒÚÓflÌËfl ̇ ˜ËÒ·ı, ÏÌÓ„Ó˜ÎÂ̇ı Ë Ï‡Úˈ‡ı
199
éÌÓ ÏÓÊÂÚ ‚˚‡Ê‡Ú¸Òfl Ú‡ÍÊ ‚ ÚÂÏË̇ı ÓÚÓ„Ó̇θÌ˚ı ÓÔ‡ÚÓÓ‚ ÔÓÂÍÚËÓ‚‡ÌËfl Í‡Í l2-ÌÓχ ‡ÁÌÓÒÚË ÓÔ‡ÚÓÓ‚ ÔÓÂÍÚËÓ‚‡ÌËfl ̇ Ä Ë Ç ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. åÌÓ„Ë ‚‡Ë‡ˆËË ˝ÚÓ„Ó ‡ÒÒÚÓflÌËfl ÔËÏÂÌfl˛ÚÒfl ‚ ÚÂÓËË ÛÔ‡‚ÎÂÌËfl (ÒÏ. åÂÚË͇ ÔÓÔÛÒ͇, „Î. 18). ê‡ÒÒÚÓflÌË îÓ·ÂÌËÛÒ‡ ÏÂÊ‰Û ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË Ä Ë Ç ÓÔ‰ÂÎflÂÚÒfl Í‡Í n
2
∑
sin 2 θ i .
i =1
éÌÓ ÏÓÊÂÚ ·˚Ú¸ ‚˚‡ÊÂÌÓ Ú‡ÍÊ ‚ ÚÂÏË̇ı ÓÚÓ„Ó̇θÌ˚ı ÓÔ‡ÚÓÓ‚ ÔÓÂÍÚËÓ‚‡ÌËfl Í‡Í ÌÓχ îÓ·ÂÌËÛÒ‡ ‡ÁÌÓÒÚË ÓÔ‡ÚÓÓ‚ ÔÓÂÍÚËÓ‚‡ÌËfl ̇ Ä Ë Ç n
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. Ä̇Îӄ˘ÌÓ ‡ÒÒÚÓflÌËÂ
∑
sin 2 θ i ̇Á˚‚‡ÂÚÒfl ıÓ‰‡Î¸Ì˚Ï
i =1
‡ÒÒÚÓflÌËÂÏ. èÓÎÛÏÂÚËÍË Ì‡ ÒıÓ‰ÒÚ‚‡ı ëÎÂ‰Û˛˘Ë ‰‚ ÔÓÎÛÏÂÚËÍË ÓÔ‰ÂÎfl˛ÚÒfl ‰Îfl β·˚ı ‰‚Ûı ÒıÓ‰ÒÚ‚ d 1 Ë d2 ̇ ‰‡ÌÌÓÏ ÍÓ̘ÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ï (·ÓΠÚÓ„Ó, ‰Îfl β·˚ı ‰‚Ûı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı ÒËÏÏÂÚ˘Ì˚ı χÚˈ). èÓÎÛÏÂÚË͇ ãÂχ̇ (ÒÏ. ‡ÒÒÚÓflÌË äẨ‡Î· ̇ ÔÂÂÒÚ‡Ìӂ͇ı, „Î. 11) ÓÔ‰ÂÎflÂÚÒfl Í‡Í | {({x, y},{u, v}) : ( d1 ( x, y) − d1 (u, v)) ( d2 ( x, y) − d2 (u, v)) < 0} | , 2 | X | + 1 2 „‰Â ({x, y}, {u, v}) – β·‡fl Ô‡‡ ÌÂÛÔÓfl‰Ó˜ÂÌÌ˚ı Ô‡ {x, y}, {u, v} ˝ÎÂÏÂÌÚÓ‚ x, y, u, v ËÁ ï. èÓÎÛÏÂÚË͇ ä‡ÛÙχ̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í | {({x, y},{u, v}) : ( d1 ( x, y) − d1 (u, v)) )d2 ( x, y) − d2 (u, v)) < 0} | . | {({x, y},{u, v}) : ( d1 ( x, y) − d1 (u, v)) ( d2 ( x, y) − d2 (u, v)) ≠ 0} |
É·‚‡ 13
ê‡ÒÒÚÓflÌËfl ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁÂ
îÛÌ͈ËÓ̇θÌ˚È ‡Ì‡ÎËÁ fl‚ÎflÂÚÒfl ӷ·ÒÚ¸˛ χÚÂχÚËÍË, ÍÓÚÓ‡fl Á‡ÌËχÂÚÒfl ËÁÛ˜ÂÌËÂÏ ÙÛÌ͈ËÓ̇θÌ˚ı ÔÓÒÚ‡ÌÒÚ‚. í‡ÍÓ ËÒÔÓθÁÓ‚‡ÌË ÒÎÓ‚‡ ÙÛÌ͈ËÓ̇θÌ˚È ÔÓËÒıÓ‰ËÚ ÓÚ ‚‡Ë‡ˆËÓÌÌÓ„Ó ËÒ˜ËÒÎÂÌËfl, „‰Â ‡ÒÒχÚË‚‡˛ÚÒfl ÙÛÌ͈ËË, ‡„ÛÏÂÌÚÓÏ ÍÓÚÓ˚ı fl‚ÎflÂÚÒfl ÙÛÌ͈Ëfl. ç‡ ÒÓ‚ÂÏÂÌÌÓÏ ˝Ú‡Ô Ô‰ÏÂÚÓÏ ÙÛÌ͈ËÓ̇θÌÓ„Ó ‡Ì‡ÎËÁ‡ Ò˜ËÚ‡ÂÚÒfl ËÁÛ˜ÂÌË ÔÓÎÌ˚ı ÌÓÏËÓ‚‡ÌÌ˚ı ‚ÂÍÚÓÌ˚ı ÔÓÒÚ‡ÌÒÚ‚, Ú.Â. ·‡Ì‡ıÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚. ÑÎfl β·Ó„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ˜ËÒ· ÔËÏÂÓÏ ·‡Ì‡ıÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ fl‚ÎflÂÚÒfl Lp -ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÒÂı ËÁÏÂËÏ˚ı ÔÓ ãÂ·Â„Û ÙÛÌ͈ËÈ, -fl ÒÚÂÔÂ̸ ‡·ÒÓβÚÌÓ„Ó Á̇˜ÂÌËfl ÍÓÚÓ˚ı ËÏÂÂÚ ÍÓ̘Ì˚È ËÌÚ„‡Î. ÉËθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ‚ ÍÓÚÓÓÏ ÌÓχ ÔÓÎÛ˜Â̇ ËÁ Ò͇ÎflÌÓ„Ó ÔÓËÁ‚‰ÂÌËfl. èÓÏËÏÓ ˝ÚÓ„Ó, ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁ ËÒÒÎÂ‰Û˛ÚÒfl ÌÂÔÂ˚‚Ì˚ ÎËÌÂÈÌ˚ ÓÔ‡ÚÓ˚, ÓÔ‰ÂÎflÂÏ˚ ̇ ·‡Ì‡ıÓ‚˚ı Ë „Ëθ·ÂÚÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı. 13.1. åÖíêàäà çÄ îìçäñàéçÄãúçõï èêéëíêÄçëíÇÄï èÛÒÚ¸ I ⊂ – ÓÚÍ˚Ú˚È ËÌÚ‚‡Î (Ú.Â. ÌÂÔÛÒÚÓ ҂flÁÌÓ ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó) ‚ . ÑÂÈÒÚ‚ËÚÂθ̇fl ÙÛÌ͈Ëfl f : I → ̇Á˚‚‡ÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌÓ ‡Ì‡ÎËÚ˘ÂÒÍÓÈ Ì‡ I, ÂÒÎË Ó̇ ‡ÁÎÓÊËχ ‚ fl‰ íÂÈÎÓ‡ ‚ ÓÚÍ˚ÚÓÈ ÓÍÂÒÚÌÓÒÚË U x 0 ͇ʉÓÈ ∞
f (n) ( x0 ) ( x − x 0 ) n ‰Îfl β·Ó„Ó x ∈ U x 0 . èÛÒÚ¸ D ⊂ – n ! n=0 ӷ·ÒÚ¸ (Ú.Â. ‚˚ÔÛÍÎÓ ÓÚÍ˚ÚÓ ÏÌÓÊÂÒÚ‚Ó) ‚ . äÓÏÔÎÂÍÒ̇fl ÙÛÌ͈Ëfl f : I → ̇Á˚‚‡ÂÚÒfl ÍÓÏÔÎÂÍÒÌÓ ‡Ì‡ÎËÚ˘ÂÒÍÓÈ (ËÎË ÔÓÒÚÓ ‡Ì‡ÎËÚ˘ÂÒÍÓÈ) ̇ D, ÂÒÎË Ó̇ ‡ÁÎÓÊËχ ‚ fl‰ íÂÈÎÓ‡ ‚ ÓÚÍ˚ÚÓÈ ÓÍÂÒÚÌÓÒÚË Í‡Ê‰ÓÈ ÚÓ˜ÍË z0 ∈ D. äÓÏÔÎÂÍÒ̇fl ÙÛÌ͈Ëfl f fl‚ÎflÂÚÒfl ‡Ì‡ÎËÚ˘ÂÒÍÓÈ Ì‡ D ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ „ÓÎÓÏÓÙ̇ ̇ D, Ú.Â. ӷ·‰‡ÂÚ ÍÓÏÔÎÂÍÒÌÓÈ ÔÓËÁ‚Ó‰ÌÓÈ f (z ) − f (z0 ) f ′( z 0 ) = lim ‚ ͇ʉÓÈ ÚӘ͠z0 ∈ D. z →z0 z − z0 ÚÓ˜ÍË x0 ∈ I : f(x ) =
∑
àÌÚ„‡Î¸Ì‡fl ÏÂÚË͇ àÌÚ„‡Î¸ÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl L1 -ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â C [a, b] ‚ÒÂı ÌÂÔÂ˚‚Ì˚ı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ÙÛÌ͈ËÈ Ì‡ ‰‡ÌÌÓÏ ÓÚÂÁÍ [a, b], ÓÔ‰ÂÎÂÌ̇fl Í‡Í b
∫
| f ( x ) − g( x ) | dx.
a
ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓ͇˘ÂÌÌÓ Á‡ÔËÒ˚‚‡ÂÚÒfl Í‡Í 1 C[ a, b ] Ë fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
201
É·‚‡ 13. ê‡ÒÒÚÓflÌËfl ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁÂ
Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ‰Îfl β·Ó„Ó ÍÓÏÔ‡ÍÚÌÓ„Ó (ËÎË Ò˜ÂÚÌÓ ÍÓÏÔ‡ÍÚÌÓ„Ó) ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ï ËÌÚ„‡Î¸ÌÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ Á‡‰‡Ú¸ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ f : X → () ͇Í
∫
| f ( x ) − g( x ) | dx.
X
ꇂÌÓÏÂ̇fl ÏÂÚË͇ ꇂÌÓÏÂ̇fl ÏÂÚË͇ (ËÎË sup-ÏÂÚË͇) ÂÒÚ¸ L-ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â C [a, b] ‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı (ÍÓÏÔÎÂÍÒÌ˚ı) ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ Ì‡ ‰‡ÌÌÓÏ ÓÚÂÁÍ [a, b], ÓÔ‰ÂÎÂÌ̇fl Í‡Í sup | f ( x ) − g( x ) | . x ∈[ a, b ]
ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÓ͇˘ÂÌÌÓ Á‡ÔËÒ˚‚‡ÂÚÒfl Í‡Í Ë fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ.
C[∞a, b ]
é·Ó·˘ÂÌËÂÏ C[∞a, b ] fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚Ó ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ C(X), Ú.Â. ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÌÂÔÂ˚‚Ì˚ı (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â, Ó„‡Ì˘ÂÌÌ˚ı) ÙÛÌ͈ËÈ f : X → ÚÓÔÓÎӄ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ï Ò L ∞-ÏÂÚËÍÓÈ sup | f ( x ) − g( x ) | . x ∈X
ÑÎfl ÒÎÛ˜‡fl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ C(X, Y) ÌÂÔÂ˚‚Ì˚ı (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â Ó„‡Ì˘ÂÌÌ˚ı) ÙÛÌ͈ËÈ f : X → Y ËÁ Ó‰ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÍÓÏÔ‡ÍÚ‡ (X, d X) ‚ ‰Û„ÓÈ (X, d Y) sup-ÏÂÚË͇ ÏÂÊ‰Û ‰‚ÛÏfl ÙÛÌ͈ËflÏË f, g ∈ C(X, Y) ÓÔ‰ÂÎflÂÚÒfl Í‡Í sup dY ( f ( x ), g( x )). åÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó C[∞a, b ] Ë ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó x ∈X
C[1a, b ] fl‚Îfl˛ÚÒfl ‚‡ÊÌÂȯËÏË ÒÎÛ˜‡flÏË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ C[pa, b ] , 1 ≤ p ≤ ∞ b ̇ ÏÌÓÊÂÒÚ‚Â C[a, b] Ò L p -ÏÂÚËÍÓÈ | f ( x ) − g( x ) | p dx a fl‚ÎflÂÚÒfl ÔËÏÂÓÏ L p -ÔÓÒÚ‡ÌÒÚ‚‡.
∫
1/ p
. èÓÒÚ‡ÌÒÚ‚Ó C[pa, b ]
ê‡ÒÒÚÓflÌË ÒÓ·‡ÍÓ‚Ó‰‡ ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ‡ÒÒÚÓflÌËÂÏ ÒÓ·‡ÍÓ‚Ó‰‡ ̇Á˚‡‚ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÙÛÌ͈ËÈ f : [0, 1] → X, ÓÔ‰ÂÎÂÌ̇fl Í‡Í inf sup d ( f (t ), g(σ(t )), σ t ∈[ 0,1]
„‰Â σ: [0, 1] → [0, 1] ÂÒÚ¸ ÌÂÔÂ˚‚̇fl ÏÓÌÓÚÓÌÌÓ ‚ÓÁ‡ÒÚ‡˛˘‡fl ÙÛÌ͈Ëfl, ڇ͇fl ˜ÚÓ σ(0) = 0, σ(1) = 1. чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl ˜‡ÒÚÌ˚Ï ÒÎÛ˜‡ÂÏ ÏÂÚËÍË î¯Â. èËÏÂÌflÂÚÒfl ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ÍË‚˚ÏË. åÂÚË͇ ÅÓ‡ èÛÒÚ¸ – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÏÂÚËÍÓÈ ρ. çÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl f : → ̇Á˚‚‡ÂÚÒfl ÔÓ˜ÚË ÔÂËӉ˘ÂÒÍÓÈ, ÂÒÎË ‰Îfl Í‡Ê‰Ó„Ó ε > 0 ÒÛ˘ÂÒÚ‚ÛÂÚ l = l(ε) > 0, Ú‡ÍÓ ˜ÚÓ Í‡Ê‰˚È ËÌÚ‚‡Î [t0, t0 + l(ε)] ÒÓ‰ÂÊËÚ ÔÓ ÏÂ̸¯ÂÈ Ï ӉÌÓ ˜ËÒÎÓ τ, ‰Îfl ÍÓÚÓÓ„Ó ρ(f(t), f(t + τ)) < ε, –∞ < t < +∞. åÂÚËÍÓÈ ÅÓ‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ || f – g || ̇ ÏÌÓÊÂÒÚ‚Â Äê ‚ÒÂı ÔÓ˜ÚË ÔÂËӉ˘ÂÒÍËı ÙÛÌ͈ËÈ, Á‡‰‡Ì̇fl ÌÓÏÓÈ || f || = sup | f (t ) | . −∞< t < +∞
202
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
íÂÏ Ò‡Ï˚Ï ÔÓÒÚ‡ÌÒÚ‚Ó Äê Ô‚‡˘‡ÂÚÒfl ‚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. çÂÍÓÚÓ˚ ӷӷ˘ÂÌËfl ÔÓ˜ÚË ÔÂËӉ˘ÂÒÍËı ÙÛÌ͈ËÈ ·˚ÎË ÔÓÎÛ˜ÂÌ˚ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ‰Û„Ëı ÌÓÏ; ÒÏ. ê‡ÒÒÚÓflÌË ëÚÂÔ‡ÌÓ‚‡, ê‡ÒÒÚÓflÌË ǽÈÎfl, ê‡ÒÒÚÓflÌË ÅÂÒËÍӂ˘‡ Ë åÂÚËÍÛ ÅÓı̇. ê‡ÒÒÚÓflÌË ëÚÂÔ‡ÌÓ‚‡ ê‡ÒÒÚÓflÌË ëÚÂÔ‡ÌÓ‚‡ – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÁÏÂËÏ˚ı ÙÛÌ͈ËÈ f : → Ò ÒÛÏÏËÛÂÏÓÈ -È ÒÚÂÔÂ̸˛ ̇ ͇ʉÓÏ Ó„‡Ì˘ÂÌÌÓÏ ËÌÚ„‡ÎÂ, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í 1 x +l sup | f ( x ) − g( x ) | p dx x ∈ l x
1/ p
∫
.
ê‡ÒÒÚÓflÌË ÇÂÈÎfl – ‡ÒÒÚÓflÌË ̇ ÚÓÏ Ê ÏÌÓÊÂÒÚ‚Â, Á‡‰‡ÌÌÓÂ Í‡Í 1 x +l lim sup | f ( x ) − g( x ) | p dx l →∞ x ∈ l x
1/ p
∫
.
ùÚËÏ ‡ÒÒÚÓflÌËflÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú Ó·Ó·˘ÂÌÌ˚ ÔÓ˜ÚË ÔÂËӉ˘ÂÒÍË ÙÛÌ͈ËË ëÚÂÔ‡ÌÓ‚‡ Ë Ç˝ÈÎfl. ê‡ÒÒÚÓflÌË ÅÂÒËÍӂ˘‡ ê‡ÒÒÚÓflÌËÂÏ ÅÂÒËÍӂ˘‡ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÁÏÂËÏ˚ı ÙÛÌ͈ËÈ f : → Ò ÒÛÏÏËÛÂÏÓÈ -È ÒÚÂÔÂ̸˛ ̇ ͇ʉÓÏ Ó„‡Ì˘ÂÌÌÓÏ ËÌÚ„‡ÎÂ, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í 1 lim T →∞ 2T
T
∫
−T
| f ( x ) − g( x ) | dx p
1/ p
.
ùÚËÏ ‡ÒÒÚÓflÌËflÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú Ó·Ó·˘ÂÌÌ˚ ÔÓ˜ÚË ÔÂËӉ˘ÂÒÍË ÙÛÌ͈ËË ÅÂÒËÍӂ˘‡. • åÂÚË͇ ÅÓı̇ ÑÎfl ÔÓÒÚ‡ÌÒÚ‚‡ Ò ÏÂÓÈ (Ω, , µ) ·‡Ì‡ıÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ (V, || ⋅ ||V) Ë 1 ≤ p ≤ ∞ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÅÓı̇ (ËÎË ÔÓÒÚ‡ÌÒÚ‚ÓÏ ã·„‡–ÅÓı̇) ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ËÁÏÂËÏ˚ı ÙÛÌ͈ËÈ f : Ω → V, Ú‡ÍËı ˜ÚÓ || f || L p ( Ω, V ) < ∞. á‰ÂÒ¸ ÌÓχ ÅÓı̇ | f || L p ( Ω, V ) ÓÔ‰ÂÎflÂÚÒfl Í‡Í || f (ω ) ||Vp dµ(ω ) Ω Í‡Í essω ∈Ω || f (ω ) ||V . ‰Îfl p = ∞.
∫
1/ p
‰Îfl 1 ≤ p < ∞ Ë
-ÏÂÚË͇ Å„χ̇ èË ‰‡ÌÌÓÏ 1 ≤ p ≤ ∞ ÔÛÒÚ¸ L p (∆ ) – Lp-ÔÓÒÚ‡ÌÒÚ‚Ó Î·„ӂ˚ı ËÁÏÂËÏ˚ı ÙÛÌ͈ËÈ f ̇ ‰ËÌ˘ÌÓÏ ‰ËÒÍ ∆ = {z ∈ :| z |< 1} c || f || p = | f ( z ) | p µ( dz ) ∆
∫
1/ p
< ∞.
èÓÒÚ‡ÌÒÚ‚ÓÏ Å„χ̇ Lap ( ∆ ) ̇Á˚‚‡ÂÚÒfl ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó ÔÓÒÚ‡ÌÒÚ‚‡ L p (∆), ÒÓÒÚÓfl˘Â ËÁ ‡Ì‡ÎËÚ˘ÂÒÍËı ÙÛÌ͈ËÈ, Ë -ÏÂÚËÍÓÈ Å„χ̇ ̇Á˚‚‡ÂÚÒfl
203
É·‚‡ 13. ê‡ÒÒÚÓflÌËfl ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁÂ
Lp -ÏÂÚË͇ Lap ( ∆ ) (ÒÏ. åÂÚË͇ Å„χ̇, „Î. 7). ã˛·Ó ÔÓÒÚ‡ÌÒÚ‚Ó Å„χ̇ fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. åÂÚË͇ ÅÎÓı‡ èÓÒÚ‡ÌÒÚ‚Ó ÅÎÓı‡ Ç Ì‡ ‰ËÌ˘ÌÓÏ ‰ËÒÍ ∆ = {z ∈ : | z | < 1} ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ‡Ì‡ÎËÚ˘ÂÒÍËı ÙÛÌ͈ËÈ f ̇ ∆, Ú‡ÍËı ˜ÚÓ || f ||B = sup(1− | z |2 ) | f ′( z ) | < ∞. z ∈∆
èË ËÒÔÓθÁÓ‚‡ÌËË ÔÓÎÌÓÈ ÔÓÎÛÌÓÏ˚ || ⋅ ||B ÌÓχ ̇ Ç Á‡‰‡ÂÚÒfl Í‡Í || f || = | f (0) | + || f ||B . åÂÚËÍÓÈ ÅÎÓı‡ ̇Á˚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ || f – g || ̇ Ç; Ó̇ Ô‚‡˘‡ÂÚ Ç ‚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. åÂÚË͇ ÅÂÒÓ‚‡ ÖÒÎË 1 < p < ∞ , ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÅÂÒÓ‚‡ B p ̇ ‰ËÌ˘ÌÓÏ ‰ËÒÍ ∆ ] {z ∈ ∈ : | z | < 1} ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ‡Ì‡ÎËÚ˘ÂÒÍËı ÙÛÌ͈ËÈ f ‚ ∆ , Ú‡ÍËı ˜ÚÓ 1/ p
µ( dz ) || f || B p = (1− | z |2 ) p | f ′( z ) | p dλ( z ) , „‰Â dλ( z ) = – ËÌ‚‡Ë‡ÌÚ̇fl χ ( 1 − | z |2 ) 2 ∆ åfi·ËÛÒ‡ ̇ ∆. èË ËÒÔÓθÁÓ‚‡ÌËË ÔÓÎÌÓÈ ÔÓÎÛÌÓÏ˚ || ⋅ || B p ÌÓχ Bp ̇ Á‡‰‡ÂÚÒfl
∫
Í‡Í || f || = | f (0)+ || f || B p . åÂÚË͇ ÅÂÒÓ‚‡ – ÏÂÚË͇ ÌÓÏ˚ || f – g || ̇ Bp . é̇ Ô‚‡˘‡ÂÚ Bp ‚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. åÌÓÊÂÒÚ‚Ó B2 fl‚ÎflÂÚÒfl Í·ÒÒ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÑËËıΠ‡Ì‡ÎËÚ˘ÂÒÍËı ̇ ÙÛÌ͈ËÈ ∆ Ò Í‚‡‰‡Ú˘ÌÓ ËÌÚ„ËÛÂÏÓÈ ÔÓËÁ‚Ó‰ÌÓÈ, Ò̇·ÊÂÌÌsÏ ÏÂÚËÍÓÈ ÑËËıÎÂ. èÓÒÚ‡ÌÒÚ‚Ó ÅÎÓı‡ Ç ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í B∞. åÂÚË͇ ï‡‰Ë ÖÒÎË 1 ≤ p < ∞ , ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó ï‡‰Ë Hp(∆) ÂÒÚ¸ Í·ÒÒ ÙÛÌ͈ËÈ, ‡Ì‡ÎËÚ˘ÂÒÍËı ̇ ‰ËÌ˘ÌÓÏ ‰ËÒÍ ∆ = {z ∈ : | z | < 1} Ë Û‰Ó‚ÎÂÚ‚Ófl˛˘Ëı ÒÎÂ‰Û˛˘ËÏ ÛÒÎÓ‚ËflÏ ÓÒÚ‡ ‰Îfl ÌÓÏ˚ ï‡‰Ë || ⋅ || H p : 1 2π || f || H p ( ∆ ) = sup | f (re iθ ) | p dθ 0 < r <1 2π 0
∫
1/ p
< ∞.
åÂÚË͇ ï‡‰Ë – ÏÂÚË͇ ÌÓÏ˚ || f − g || H p ( ∆ ) ̇ Hp(∆). é̇ Ô‚‡˘‡ÂÚ Hp(∆) ‚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. Ç ÍÓÏÔÎÂÍÒÌÓÏ ‡Ì‡ÎËÁ ÔÓÒÚ‡ÌÒÚ‚‡ ï‡‰Ë fl‚Îfl˛ÚÒfl ‡Ì‡ÎÓ„‡ÏË L p -ÔÓÒÚ‡ÌÒÚ‚ ÙÛÌ͈ËÓ̇θÌÓ„Ó ‡Ì‡ÎËÁ‡. í‡ÍË ÔÓÒÚ‡ÌÒÚ‚‡ ËÒÔÓθÁÛ˛ÚÒfl Í‡Í ‚ Ò‡ÏÓÏ Ï‡ÚÂχÚ˘ÂÒÍÓÏ ‡Ì‡ÎËÁÂ, Ú‡Í Ë ‚ ÚÂÓËË ‡ÒÒÂflÌËfl Ë ÚÂÓËË ÛÔ‡‚ÎÂÌËfl (ÒÏ. „Î. 18). åÂÚË͇ ˜‡ÒÚË åÂÚËÍÓÈ ˜‡ÒÚË Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ӷ·ÒÚË D ‚ 2, Á‡‰‡Ì̇fl Í‡Í f ( x) sup ln + f ( y) f ∈H
204
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
‰Îfl β·˚ı x, y ∈ 2 , „‰Â H + – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÔÓÎÓÊËÚÂθÌ˚ı „‡ÏÓÌ˘ÂÒÍËı ÙÛÌ͈ËÈ Ì‡ ӷ·ÒÚË D. Ñ‚‡Ê‰˚ ‰ËÙÙÂÂ̈ËÛÂχfl ‰ÂÈÒÚ‚ËÚÂθ̇fl ÙÛÌ͈Ëfl f : D → ̇Á˚‚‡ÂÚÒfl ∂2 f ∂2 f „‡ÏÓÌ˘ÂÒÍÓÈ Ì‡ D, ÂÒÎË Â ·Ô·ÒË‡Ì ∆f = 2 + 2 Ó·‡˘‡ÂÚÒfl ‚ ÌÛθ ̇ D. ∂x1 ∂x 2 åÂÚË͇ é΢‡ èÛÒÚ¸ M(u) – ˜ÂÚ̇fl ‚˚ÔÛÍ·fl ÙÛÌ͈Ëfl ‰ÂÈÒÚ‚ËÚÂθÌÓÈ ÔÂÂÏÂÌÌÓÈ, ÍÓÚÓ‡fl ‚ÓÁ‡ÒÚ‡ÂÚ ‰Îfl ÔÓÎÓÊËÚÂθÌÓ„Ó u Ë lim u −1 M (u) = lim u( M (u)) −1 = 0. Ç ˝ÚÓÏ ÒÎÛ˜‡Â u→ 0
u →∞
ÙÛÌ͈Ëfl p(v) = M'(v) Ì ۷˚‚‡ÂÚ Ì‡ [0, ∞), p(0) = lim p( v) = 0 Ë p(v) > 0 ÔË v > 0. v→ 0
|u |
ÖÒÎË Á‡‰‡Ú¸ M (u) =
∫
|u |
p( v)dv Ë N (u) =
0
∫
p −1 ( v)dv, ÚÓ ÔÓÎÛ˜‡ÂÏ Ô‡Û (M (u), N(u))
0
‰ÓÔÓÎÌËÚÂθÌ˚ı ÙÛÌ͈ËÈ. èÛÒÚ¸ (M(u), N(u)) ·Û‰ÂÚ Ô‡‡ ‰ÓÔÓÎÌËÚÂθÌ˚ı ÒÓÔflÊÂÌÌ˚ı ÙÛÌ͈ËÈ Ë ÔÛÒÚ¸ G – Ó„‡Ì˘ÂÌÌÓ Á‡ÏÍÌÛÚÓ ÏÌÓÊÂÒÚ‚Ó ‚ Ú. èÓÒÚ‡ÌÒÚ‚Ó é΢‡ L∗M (G) ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ËÁÏÂËÏ˚ı ÔÓ ãÂ·Â„Û ÙÛÌ͈ËÈ f ̇ G, Û‰Ó‚ÎÂÚ‚Ófl˛˘Ëı ÒÎÂ‰Û˛˘ÂÏÛ ÛÒÎӂ˲ ‚ÓÁ‡ÒÚ‡ÌËfl ‰Îfl ÌÓÏ˚ é΢‡ || f || M: || f || M = sup f (t )g(t )dt : N ( g(t ))dt ≤ 1 < ∞. G G
∫
∫
åÂÚË͇ é΢‡ – ÏÂÚË͇ ÌÓÏ˚ || f – g || M ̇ L∗M (G). é̇ Ô‚‡˘‡ÂÚ L∗M (G). ‚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ([Orli32]). ÖÒÎË M(u) = up , 1 < p < ∞, ÚÓ L∗M (G). ÒÓ‚Ô‡‰‡ÂÚ Ò ÔÓÒÚ‡ÌÒÚ‚ÓÏ Lp(G) Ë Lp-ÌÓχ || f ||p ÒÓ‚Ô‡‰‡ÂÚ Ò || f ||M Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó Ò͇ÎflÌÓ„Ó ÏÌÓÊËÚÂÎfl. çÓχ é΢‡ ˝Í‚Ë‚‡ÎÂÌÚ̇ ÌÓÏ ã˛ÍÒÂÏ·Û„‡ || f ||M ≤ || f ||M ≤ 2|| f ||(M) . åÂÚË͇ é΢‡–ãÓÂ̈‡ èÛÒÚ¸ w : (0, ∞) →(0, ∞) – Ì‚ÓÁ‡ÒÚ‡˛˘‡fl ÙÛÌ͈Ëfl. èÛÒÚ¸ M : [0, ∞) → [0, ∞) – ÌÂÛ·˚‚‡˛˘‡fl Ë ‚˚ÔÛÍ·fl ÙÛÌ͈Ëfl Ò M(0) = 0 Ë ÔÛÒÚ¸ G – Ó„‡Ì˘ÂÌÌÓ Á‡ÏÍÌÛÚÓ ÏÌÓÊÂÒÚ‚Ó ‚ n. èÓÒÚ‡ÌÒÚ‚ÓÏ é΢‡–ãÓÂ̈‡ L w, M(G) ̇Á˚‚‡ÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ËÁÏÂËÏ˚ı ÔÓ ãÂ·Â„Û ÙÛÌ͈ËÈ f ̇ G, Û‰Ó‚ÎÂÚ‚Ófl˛˘Ëı ÒÎÂ‰Û˛˘ÂÏÛ ÛÒÎӂ˲ ‚ÓÁ‡ÒÚ‡ÌËfl ‰Îfl ÌÓÏ˚ é΢‡–ãÓÂ̈‡ || f || w, M: ∞ f * ( x) 1 || f ||w, M = inf λ > 0 : w( x ) M dx ≤ < ∞, λ 0
∫
„‰Â f * ( x ) = sup{t : µ(| f | ≥ t ) ≥ x} – Ì‚ÓÁ‡ÒÚ‡˛˘‡fl ÔÂÂÒÚ‡Ìӂ͇ f. åÂÚË͇ é΢‡–ãÓÂ̈‡ – ÏÂÚË͇ ÌÓÏ˚ ̇ || f – g ||w, M ̇ L w, M(G). é̇ Ô‚‡˘‡ÂÚ Lw, M(G) ‚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. èÓÒÚ‡ÌÒÚ‚Ó é΢‡–ãÓÂ̈‡ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÓÒÚ‡ÌÒÚ‚‡ é΢‡ * LM (G) (ÒÏ. åÂÚË͇ é΢‡) Ë ÔÓÒÚ‡ÌÒÚ‚‡ ãÓÂ̈‡ L w, M(G), 1 ≤ q < ∞ ‚ÒÂı ËÁÏÂËÏ˚ı ÔÓ ãÂ·Â„Û ÙÛÌ͈ËÈ f ̇ G, Û‰Ó‚ÎÂÚ‚Ófl˛˘Ëı ÒÎÂ‰Û˛˘ÂÏÛ ÛÒÎӂ˲
205
É·‚‡ 13. ê‡ÒÒÚÓflÌËfl ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁÂ
‚ÓÁ‡ÒÚ‡ÌËfl ‰Îfl ÌÓÏ˚ ãÓÂ̈‡ || f ||w, q: ∞ || f ||w, q = w( x )( f * ( x )) q 0
1/ q
∫
< ∞.
åÂÚË͇ ÉÂθ‰Â‡ èÛÒÚ¸ Lα(G) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ f, Á‡‰‡ÌÌ˚ı ̇ ÔÓ‰ÏÌÓÊÂÒÚ‚Â G ÏÌÓÊÂÒÚ‚‡ n Ë Û‰Ó‚ÎÂÚ‚Ófl˛˘Ëı ÛÒÎӂ˲ ÉÂθ‰Â‡ ̇ G. îÛÌ͈Ëfl f Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ ÉÂθ‰Â‡ ‚ ÚӘ͠y ∈ G Ò Ë̉ÂÍÒÓÏ (ËÎË ÔÓfl‰ÍÓÏ) α (0 < α ≤ 1) Ë Ò ÍÓ˝ÙÙˈËÂÌÚÓÏ A(y), ÂÒÎË | f(x) – f(y) | ≤ A(y) | x – y |α ‰Îfl ‚ÒÂı x ∈ G, ‰ÓÒÚ‡ÚÓ˜ÌÓ ·ÎËÁÍËı Í Û. ÖÒÎË A = sup( A( y)) < ∞, ÚÓ ÛÒÎÓ‚Ë ÉÂθ‰Â‡ y ∈G
̇Á˚‚‡ÂÚÒfl ‡‚ÌÓÏÂÌ˚Ï Ì‡ G Ë Ä Ì‡Á˚‚‡ÂÚÒfl ÍÓ˝ÙÙˈËÂÌÚÓÏ ÉÂθ‰Â‡ ‰Îfl G. | f ( x ) − f ( y) | ÇÂ΢Ë̇ | f |α = sup , 0 ≤ α ≤ 1 ̇Á˚‚‡ÂÚÒfl α-ÔÓÎÛÌÓÏÓÈ ÉÂθ‰Â‡ | x − y |α x , y ∈G ‰Îfl f Ë ÌÓχ ÉÂθ‰Â‡ ‰Îfl f ÓÔ‰ÂÎflÂÚÒfl Í‡Í || f || Lα ( G ) = sup | f ( x )+ | f |α . x ∈G
åÂÚË͇ ÉÂθ‰Â‡ – ÏÂÚË͇ ÌÓÏ˚ || f − g || Lα ( G ) ̇ L α(G). é̇ Ô‚‡˘‡ÂÚ
L α(G) ‚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. åÂÚË͇ ëÓ·Ó΂‡ èÓÒÚ‡ÌÒÚ‚Ó ëÓ·Ó΂‡ W k, p ÂÒÚ¸ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó L p -ÔÓÒÚ‡ÌÒÚ‚‡, Ú‡ÍË ˜ÚÓ f Ë Â ÔÓËÁ‚Ó‰Ì˚ ‰Ó ÔÓfl‰Í‡ k ӷ·‰‡˛Ú ÍÓ̘ÌÓÈ Lp -ÌÓÏÓÈ. îÓχθÌÓ, ËÏÂfl ÔÓ‰ÏÌÓÊÂÒÚ‚Ó G ÏÌÓÊÂÒÚ‚‡ n, ÓÔ‰ÂÎËÏ W k , p = W k , p (G) = { f ∈ L p (G) : f (i ) ∈ L p (G), 1 ≤ i ≤ k}, „‰Â f (i ) = ∂ αx11 …∂ αx nn , α1 + … + α n = i, Ë ÔÓËÁ‚Ó‰Ì˚ ·ÂÛÚÒfl ‚ Ò··ÓÏ ÒÏ˚ÒÎÂ. çÓχ ëÓ·Ó΂‡ ̇ Wk, p ÓÔ‰ÂÎflÂÚÒfl Í‡Í k
|| f ||k , p =
∑
|| f (i ) || p .
i=0
èË ˝ÚÓÏ ‰ÓÒÚ‡ÚÓ˜ÌÓ ËÒÔÓθÁÓ‚‡Ú¸ ÚÓθÍÓ Ô‚ÓÂ Ë ÔÓÒΉÌ ˜ËÒ· ÔÓÒΉӂ‡ÚÂθÌÓÒÚË, Ú.Â. ÌÓχ, ÓÔ‰ÂÎÂÌ̇fl Í‡Í || f ||k , p = || f || p + || f ( k ) || p , ˝Í‚Ë‚‡ÎÂÌÚ̇ ‚˚¯ÂÔ˂‰ÂÌÌÓÈ ÌÓÏÂ. ÑÎfl p = ∞ ÌÓχ ëÓ·Ó΂‡ ‡‚̇ ÒÛ˘ÂÒÚ‚ÂÌÌÓÏÛ ÒÛÔÂÏÛÏÛ ‰Îfl | f | : || f ||k , ∞ = ess sup | f ( x ) |, Ú.Â. fl‚ÎflÂÚÒfl ËÌÙËÏÛÏÓÏ ‚ÒÂı ˜ËÒÂÎ x ∈G
a ∈ , ‰Îfl ÍÓÚÓ˚ı ̇‚ÂÌÒÚ‚Ó | f(x) | > a ‚˚ÔÓÎÌflÂÚÒfl ̇ ÏÌÓÊÂÒÚ‚Â ÏÂ˚ ÌÛθ. åÂÚË͇ ëÓ·Ó΂‡ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ || f – g ||k, p ̇ Wk, p; Ó̇ Ô‚‡˘‡ÂÚ Wk, p ‚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. èÓÒÚ‡ÌÒÚ‚Ó ëÓ·Ó΂‡ Wk, 2 Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í Hk. éÌÓ fl‚ÎflÂÚÒfl „Ëθ·Âk
ÚÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl Ò͇ÎflÌÓ„Ó ÔÓËÁ‚‰ÂÌËfl 〈 f , g〉 k =
∑ i =1
k
=
∑∫ i =1
G
f (i ) g (i ) µ( dω ).
〈 f (i ) , g (i ) 〉 L2 =
206
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
èÓÒÚ‡ÌÒÚ‚‡ ëÓ·Ó΂‡ – ÒÓ‚ÂÏÂÌÌ˚ ‡Ì‡ÎÓ„Ë ÔÓÒÚ‡ÌÒÚ‚‡ C 1 (ÙÛÌ͈ËÈ Ò ÌÂÔÂ˚‚Ì˚ÏË ÔÓËÁ‚Ó‰Ì˚ÏË) ‰Îfl ¯ÂÌËfl ‰ËÙÙÂÂ̈ˇθÌ˚ı Û‡‚ÌÂÌËÈ ‚ ˜‡ÒÚÌ˚ı ÔÓËÁ‚Ó‰Ì˚ı. • åÂÚËÍË ÔÓÒÚ‡ÌÒÚ‚‡ ÔÂÂÏÂÌÌÓÈ ˝ÍÒÔÓÌÂÌÚ˚ èÛÒÚ¸ G – ÌÂÔÛÒÚÓ ÓÚÍ˚ÚÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ n Ë ÔÛÒÚ¸ p : G → → [1, ∞) – ËÁÏÂËχfl Ó„‡Ì˘ÂÌ̇fl ÙÛÌ͈Ëfl, ̇Á˚‚‡Âχfl ÔÂÂÏÂÌÌÓÈ ˝ÍÒÔÓÌÂÌÚÓÈ. èÓÒÚ‡ÌÒÚ‚Ó ã·„‡ ÔÂÂÏÂÌÌÓÈ ˝ÍÒÔÓÌÂÌÚ˚ Lp( ⋅ )(G) ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ËÁÏÂËÏ˚ı ÙÛÌ͈ËÈ f : G → , ‰Îfl ÍÓÚÓ˚ı ÏÓ‰ÛÎfl ρ p(⋅) ( f ) =
∫
| f ( x ) | p( x ) dx
G
ÍÓ̘ÂÌ. çÓχ ã˛ÍÒÂÏ·Û„‡ ̇ ˝ÚÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ÓÔ‰ÂÎflÂÚÒfl Í‡Í || f || p(⋅) = inf{λ > 0 : ρ p(⋅) ( f / λ ) ≤ 1}. åÂÚË͇ η„ӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ ÔÂÂÏÂÌÌÓÈ ˝ÍÒÔÓÌÂÌÚ˚ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ || f – g ||p( ⋅ ) ̇ L p( ⋅ )(G). èÓÒÚ‡ÌÒÚ‚Ó ëÓ·Ó΂‡ ÔÂÂÏÂÌÌÓÈ ˝ÍÒÔÓÌÂÌÚ˚ W 1, p( ⋅ )(G) ÂÒÚ¸ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó Lp( ⋅ )(G), ÒÓÒÚÓfl˘Â ËÁ ÙÛÌ͈ËÈ f, ‡ÒÔ‰ÂÎËÚÂθÌ˚È „‡‰ËÂÌÚ ÍÓÚÓ˚ı ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÓ˜ÚË ‚Ò˛‰Û Ë Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ | ∇f | ∈ Lp( ⋅ )(G). çÓχ || f ||1, p(⋅) = || f || p(⋅) + || ∇f || p(⋅) Ô‚‡˘‡ÂÚ W1, p( ⋅ )(G) ‚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. åÂÚË͇ ÔÓÒÚ‡ÌÒÚ‚‡ ëÓ·Ó΂‡ ÔÂÂÏÂÌÌÓÈ ˝ÍÒÔÓÌÂÌÚ˚ ÂÒÚ¸ ÏÂÚËÍÓÈ ÌÓÏ˚ || f – p ||1, p( ⋅ ) ̇ W 1, p( ⋅ ). åÂÚË͇ ò‚‡ˆ‡ èÓÒÚ‡ÌÒÚ‚Ó ò‚‡ˆ‡ (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó ·˚ÒÚÓ Û·˚‚‡˛˘Ëı ÙÛÌ͈ËÈ) S(n) ÂÒÚ¸ Í·ÒÒ ÙÛÌ͈ËÈ ò‚‡ˆ‡, Ú.Â. ·ÂÒÍÓ̘ÌÓ ‰ËÙÙÂÂ̈ËÛÂÏ˚ı ÙÛÌ͈ËÈ f : n → , ÍÓÚÓ˚ ۷˚‚‡˛Ú ̇ ·ÂÒÍÓ̘ÌÓÒÚË, Ú‡Í ÊÂ Í‡Í ‚Ò Ëı ÔÓËÁ‚Ó‰Ì˚Â, ·˚ÒÚÂÂ, ˜ÂÏ Î˛·‡fl Ó·‡Ú̇fl ÒÚÂÔÂ̸ ı. íÓ˜ÌÂÂ, f fl‚ÎflÂÚÒfl ÙÛÌ͈ËÂÈ ò‚‡ˆ‡, ÂÒÎË ËÏÂÂÚ ÏÂÒÚÓ ÒÎÂ‰Û˛˘Â ÛÒÎÓ‚Ë ‚ÓÁ‡ÒÚ‡ÌËfl: || f ||α,β = sup x1β1 … x nβ n x ∈ n
∂ α1 +…+ α n f ( x1 , …, x n ) ∂x1α1 …∂x nα n
<∞
‰Îfl β·˚ı ÌÂÓÚˈ‡ÚÂθÌ˚ı ˆÂÎÓ˜ËÒÎÂÌÌ˚ı ‚ÂÍÚÓÓ‚ α Ë β. ëÂÏÂÈÒÚ‚Ó ÔÓÎÛÌÓÏ || ⋅ ||αβ ÓÔ‰ÂÎflÂÚ ÎÓ͇θÌÓ ‚˚ÔÛÍÎÛ˛ ÚÓÔÓÎӄ˲ ÔÓÒÚ‡ÌÒÚ‚‡ S( n ), ÍÓÚÓÓ fl‚ÎflÂÚÒfl ÏÂÚËÁÛÂÏ˚Ï Ë ÔÓÎÌ˚Ï. åÂÚË͇ ò‚‡ˆ‡ – ÏÂÚË͇ ̇ S(n), ÍÓÚÓ‡fl ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜Â̇ Ò ÔÓÏÓ˘¸˛ ‰‡ÌÌÓÈ ÚÓÔÓÎÓ„ËË (ÒÏ. C˜ÂÚÌÓ ÌÓÏËÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó, „Î. 2). ëÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ì‡ S( n ) fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚Ó î¯ ‚ ÒÏ˚ÒΠÙÛÌ͈ËÓ̇θÌÓ„Ó ‡Ì‡ÎËÁ‡, Ú.Â. ÎÓ͇θÌÓ ‚˚ÔÛÍÎÓ F-ÔÓÒÚ‡ÌÒÚ‚Ó. 䂇ÁˇÒÒÚÓflÌË Å„χ̇ èÛÒÚ¸ G ⊂ n – Á‡ÏÍÌÛÚÓ ÏÌÓÊÂÒÚ‚Ó Ò ÌÂÔÛÒÚÓÈ ‚ÌÛÚÂÌÌÓÒÚ¸˛ G0 Ë ÔÛÒÚ¸ f – ÙÛÌ͈Ëfl Å„χ̇ Ò ÁÓÌÓÈ G. 䂇ÁˇÒÒÚÓflÌË Å„χ̇ Df : G × G0 → ≥0 ÓÔ‰ÂÎflÂÚÒfl Í‡Í D f ( x, y) = f ( x ) − f ( y) − 〈∇f ( y), x − y 〉,
É·‚‡ 13. ê‡ÒÒÚÓflÌËfl ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁÂ
207
∂f ∂f „‰Â ∇f = , …, . D f(x, y) = 0 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ x = y, Df(x, y) + ∂ x ∂ xn 1 + Df(y, z) – D f(x, z) = 〈∇f(z) – ∇f(y), x – y〉 ÌÓ ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â Df Ì ۉӂÎÂÚ‚ÓflÂÚ Ì‡‚ÂÌÒÚ‚Û ÚÂÛ„ÓθÌË͇ Ë Ì fl‚ÎflÂÚÒfl ÒËÏÏÂÚ˘Ì˚Ï. ÑÂÈÒÚ‚ËÚÂθ̇fl ÙÛÌ͈Ëfl f, ˝ÙÙÂÍÚ˂̇fl ӷ·ÒÚ¸ ÍÓÚÓÓÈ ÒÓ‰ÂÊËÚ G, ̇Á˚‚‡ÂÚÒfl ÙÛÌ͈ËÂÈ Å„χ̇ Ò ÁÓÌÓÈ G, ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÛÒÎÓ‚Ëfl: 1) f ÌÂÔÂ˚‚ÌÓ ‰ËÙÙÂÂ̈ËÛÂχ ̇ G; 2) f ÒÚÓ„Ó ‚˚ÔÛÍ· Ë ÌÂÔÂ˚‚̇ ̇ G; 3) ‰Îfl ‚ÒÂı δ ∈ ÌÂÔÓÎÌ˚ ÏÌÓÊÂÒÚ‚‡ ˜‡ÒÚ˘ÌÓ ÛÓ‚Ìfl É(x, δ) = {y ∈ ∈ G0 : Df(x, y) ≤ δ} fl‚Îfl˛ÚÒfl Ó„‡Ì˘ÂÌÌ˚ÏË ‰Îfl ‚ÒÂı x ∈ G; 4) ÂÒÎË {yn}n ⊂ G0 ÒıÓ‰ËÚÒfl Í y * , ÚÓ Df(y * , yn) ÒıÓ‰ËÚÒfl Í 0; 5) ÂÒÎË {x n}n G Ë {yn}n G 0 – Ú‡ÍË ÔÓÒΉӂ‡ÚÂθÌÓÒÚË, ˜ÚÓ {y n }n Ó„‡Ì˘Â̇, lim = y ∗ Ë lim D f ( x n , yn ) = 0, ÚÓ lim x n = y ∗ .
n → yn
n →∞
n →∞
ÖÒÎË G = n, ÚÓ ‰ÓÒÚ‡ÚÓ˜ÌÓ ÛÒÎÓ‚Ë ‰Îfl ÒÚÓ„Ó ‚˚ÔÛÍÎÓÈ ÙÛÌ͈ËË ·˚Ú¸ f ( x) ÙÛÌ͈ËÂÈ Å„χ̇ ÔËÌËχÂÚ ‚ˉ: lim = ∞. || x || →∞ || x ||
13.2. åÖíêàäà çÄ ãàçÖâçõï éèÖêÄíéêÄï ãËÌÂÈÌ˚Ï ÓÔ‡ÚÓÓÏ Ì‡Á˚‚‡ÂÚÒfl ÙÛÌ͈Ëfl T : V → W ÏÂÊ‰Û ‰‚ÛÏfl ‚ÂÍÚÓÌ˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË V, W ̇‰ ÔÓÎÂÏ , ÍÓÚÓ‡fl ÒÓ‚ÏÂÒÚËχ Ò Ëı ÎËÌÂÈÌ˚ÏË ÒÚÛÍÚÛ‡ÏË, Ú.Â. ‰Îfl β·˚ı x, y ∈ V Ë Î˛·Ó„Ó Ò͇Îfl‡ k ∈ ËÏÂÂÚ ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ҂ÓÈÒÚ‚‡: T(x + y) = T(x) + T(y) Ë T(kx) = kT(x). åÂÚË͇ ÓÔ‡ÚÓÌÓÈ ÌÓÏ˚ ê‡ÒÒÏÓÚËÏ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÎËÌÂÈÌ˚ı ÓÔ‡ÚÓÓ‚ ËÁ ÌÓÏËÓ‚‡ÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (V, || ⋅ ||V) ̇ ÌÓÏËÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó (W, || ⋅ ||W). éÔ‡ÚÓ̇fl ÌÓχ || T || ÎËÌÂÈÌÓ„Ó ÓÔ‡ÚÓ‡ T : V → W ÓÔ‰ÂÎflÂÚÒfl Í‡Í Ì‡Ë·Óθ¯Â Á̇˜ÂÌËÂ, ̇ ÍÓÚÓÓÂ í ‡ÒÚfl„Ë‚‡ÂÚ ˝ÎÂÏÂÌÚ˚ ËÁ V, Ú.Â. || T ( v) ||W = sup || T ( v) ||W = sup || T ( v) ||W . || v|| V ≠ 0 || v ||V || v|| V =1 || v|| V ≤ 0
|| T || = sup
ãËÌÂÈÌ˚È ÓÔ‡ÚÓ T : V → W ËÁ ÌÓÏËÓ‚‡ÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ V ‚ ÌÓÏËÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó W ̇Á˚‚‡ÂÚÒfl Ó„‡Ì˘ÂÌÌ˚Ï, ÂÒÎË ÓÔ‡ÚÓ̇fl ÌÓχ ÍÓ̘̇. ÑÎfl ÌÓÏËÓ‚‡ÌÌ˚ı ÔÓÒÚ‡ÌÒÚ‚ ÎËÌÂÈÌ˚È ÓÔ‡ÚÓ fl‚ÎflÂÚÒfl Ó„‡Ì˘ÂÌÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌ ÌÂÔÂ˚‚ÂÌ. åÂÚËÍÓÈ ÓÔ‡ÚÓÌÓÈ ÌÓÏ˚ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ ̇ ÏÌÓÊÂÒÚ‚Â B(V, W) ‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı ÎËÌÂÈÌ˚ı ÓÔ‡ÚÓÓ‚ ËÁ V ‚ W, ÍÓÚÓ‡fl ÓÔ‰ÂÎflÂÚÒfl Í‡Í || T – P ||. èÓÒÚ‡ÌÒÚ‚Ó (B(V, W)) || ⋅ ||) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ó„‡Ì˘ÂÌÌ˚ı ÎËÌÂÈÌ˚ı ÓÔ‡ÚÓÓ‚. чÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï, ÂÒÎË Ú‡ÍÓ‚˚Ï fl‚ÎflÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚Ó W. ÖÒÎË ÔÓÒÚ‡ÌÒÚ‚Ó V = W ÔÓÎÌÓÂ, ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó B(V, V) ÂÒÚ¸ ·‡Ì‡ıÓ‚‡ ‡Î„·‡, ÔÓÒÍÓθÍÛ ÓÔ‡ÚÓ̇fl ÌÓχ fl‚ÎflÂÚÒfl ÒÛ·ÏÛθÚËÔÎË͇ÚË‚ÌÓÈ ÌÓÏÓÈ.
208
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
ãËÌÂÈÌ˚È ÓÔ‡ÚÓ T : V → W ËÁ ·‡Ì‡ıÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ V ‚ ‰Û„Ó ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó W ̇Á˚‚‡ÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï, ÂÒÎË ÓÚÓ·‡ÊÂÌË β·Ó„Ó Ó„‡Ì˘ÂÌÌÓ„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÏÌÓÊÂÒÚ‚‡ V – ÓÚÌÓÒËÚÂθÌÓ ÍÓÏÔ‡ÍÚÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ W. ã˛·ÓÈ ÍÓÏÔ‡ÍÚÌ˚È ÓÔ‡ÚÓ fl‚ÎflÂÚÒfl Ó„‡Ì˘ÂÌÌ˚Ï (Ë, ÒΉӂ‡ÚÂθÌÓ, ÌÂÔÂ˚‚Ì˚Ï). èÓÒÚ‡ÌÒÚ‚Ó (K(V, W), || ⋅ ||) ̇ ÏÌÓÊÂÒÚ‚Â K(V, W) ‚ÒÂı ÍÓÏÔ‡ÍÚÌ˚ı ÓÔ‡ÚÓÓ‚ ËÁ V ‚ W Ò ÓÔ‡ÚÓÌÓÈ ÌÓÏÓÈ || ⋅ || ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÍÓÏÔ‡ÍÚÌ˚ı ÓÔ‡ÚÓÓ‚. åÂÚË͇ fl‰ÂÌÓÈ ÌÓÏ˚ èÛÒÚ¸ B(V, W) – ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı ÎËÌÂÈÌ˚ı ÓÔ‡ÚÓÓ‚, ÓÚÓ·‡Ê‡˛˘Ëı ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (V, || ⋅ ||V ) ‚ ‰Û„Ó ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (W, || ⋅ ||W). é·ÓÁ̇˜ËÏ ·‡Ì‡ıÓ‚Ó ‰‚ÓÈÒÚ‚ÂÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‰Îfl V Í‡Í V' Ë Á̇˜ÂÌË ÙÛÌ͈ËÓ̇· x' ∈ V' ‚ ÚӘ͠x ∈ V Í‡Í 〈x, x'〉. ãËÌÂÈÌ˚È ÓÔ‡ÚÓ T ∈ ∈ B(V, W) ̇Á˚‚‡ÂÚÒfl fl‰ÂÌ˚Ï ÓÔ‡ÚÓÓÏ, ÂÒÎË Â„Ó ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ ‚ ‚ˉ x a T ( x) =
∞
∑
〈 x, xi′〉 yi , „‰Â {xi′}i Ë {yi}i fl‚Îfl˛ÚÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ‚ V' Ë W
i =1
∞
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, Ú‡ÍËÏË ˜ÚÓ
∑ i =1
|| xi′ ||V ′ || yi ||W < ∞. чÌÌÓ Ô‰ÒÚ‡‚ÎÂÌË ̇Á˚-
‚‡ÂÚÒfl fl‰ÂÌ˚Ï Ë ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í Ô‰ÒÚ‡‚ÎÂÌËÂ í ‚ ‚ˉ ÒÛÏÏ˚ ÓÔ‡ÚÓÓ‚ ‡Ì„‡ 1 (Ú.Â. Ò Ó‰ÌÓÏÂÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ Á̇˜ÂÌËÈ). ü‰Â̇fl ÌÓχ ÓÔ‡ÚÓ‡ í ÓÔ‰ÂÎflÂÚÒfl Í‡Í || T || ÔËÒ = inf
∞
∑ i =1
|| xi′ ||V ′ || yi ||W ,
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‚ÓÁÏÓÊÌ˚Ï fl‰ÂÌ˚Ï Ô‰ÒÚ‡‚ÎÂÌËflÏ í. åÂÚË͇ fl‰ÂÌÓÈ ÌÓÏ˚ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ || T – P || ÔËÒ Ì‡ ÏÌÓÊÂÒÚ‚Â N(V, W) ‚ÒÂı fl‰ÂÌ˚ı ÓÔ‡ÚÓÓ‚, ÓÚÓ·‡Ê‡˛˘Ëı V ‚ W. èÓÒÚ‡ÌÒÚ‚Ó (N(V, W), || ⋅ ||ÔËÒ) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ fl‰ÂÌ˚ı ÓÔ‡ÚÓÓ‚ Ë fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ü‰ÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÎÓ͇θÌÓ ‚˚ÔÛÍÎÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‰Îfl ÍÓÚÓÓ„Ó ‚Ò ÌÂÔÂ˚‚Ì˚ ÎËÌÂÈÌ˚ ÙÛÌ͈ËË Ì‡ ÔÓËÁ‚ÓθÌÓÏ ·‡Ì‡ıÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â – fl‰ÂÌ˚ ÓÔ‡ÚÓ˚. ü‰ÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÚÓËÚÒfl Í‡Í ÔÓÂÍÚË‚Ì˚È Ô‰ÂÎ „Ëθ·ÂÚÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ H α Ò Ú‡ÍËÏ Ò‚ÓÈÒÚ‚ÓÏ, ˜ÚÓ ‰Îfl Í‡Ê‰Ó„Ó α ∈ I ÏÓÊÌÓ Ì‡ÈÚË β ∈ I, Ú‡ÍÓ ˜ÚÓ H β ⊂ H α Ë ÓÔ‡ÚÓ ‚ÎÓÊÂÌËfl Hβ x → x ∈ H α fl‚ÎflÂÚÒfl ÓÔ‡ÚÓÓÏ ÉËθ·ÂÚ‡-òÏˉڇ. çÓÏËÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl fl‰ÂÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌÓ ÍÓ̘ÌÓÏÂÌÓ. åÂÚË͇ ÍÓ̘ÌÓÈ fl‰ÂÌÓÈ ÌÓÏ˚ èÛÒÚ¸ F(V, W) – ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÒÂı ÎËÌÂÈÌ˚ı ÓÔ‡ÚÓÓ‚ ÍÓ̘ÌÓ„Ó ‡Ì„‡ (Ú.Â. Ò ÍÓ̘ÌÓÏÂÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ Á̇˜ÂÌËÈ), ÓÚÓ·‡Ê‡˛˘Ëı ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (V, || ⋅ ||V) ‚ ‰Û„Ó ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó (W, || ⋅ ||W). ãËÌÂÈÌ˚È ÓÔ‡ÚÓ n
T ∈ F(V, W) ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ ‚ ‚ˉ x a T ( x ) =
∑
〈 x, xi′〉 yi , „‰Â {xi′}i Ë {yi}i
i =1
fl‚Îfl˛ÚÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ËÁ V' (·‡Ì‡ıÓ‚‡ ‰‚ÓÈÒÚ‚ÂÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ‰Îfl V) Ë W ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ‡ 〈x, x'〉 – Á̇˜ÂÌËÂÏ ÙÛÌ͈ËÓ̇· x' ∈ V' ̇ ‚ÂÍÚÓ x ∈ V.
209
É·‚‡ 13. ê‡ÒÒÚÓflÌËfl ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁÂ
äÓ̘̇fl fl‰Â̇fl ÌÓχ í ÓÔ‰ÂÎflÂÚÒfl Í‡Í n
|| T || f
ÔËÒ = inf
∑ i =1
|| xi′ ||V ′ || yi ||W ,
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‚ÓÁÏÓÊÌ˚Ï ÍÓ̘Ì˚Ï Ô‰ÒÚ‡‚ÎÂÌËflÏ í . åÂÚË͇ ÍÓ̘ÌÓÈ fl‰ÂÌÓÈ ÌÓÏ˚ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ || T – P ||f ÔËÒ Ì‡ ÏÌÓÊÂÒÚ‚Â F( V, W). èÓÒÚ‡ÌÒÚ‚Ó F(V, W), || ⋅ ||f ÔËÒ) ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ fl‰ÂÌ˚ı ÓÔ‡ÚÓÓ‚ ÍÓ̘ÌÓ„Ó ‡Ì„‡. éÌÓ fl‚ÎflÂÚÒfl ÔÎÓÚÌ˚Ï ÎËÌÂÈÌ˚Ï ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚‡ fl‰ÂÌ˚ı ÓÔ‡ÚÓÓ‚ N( V, W).
(
åÂÚË͇ ÌÓÏ˚ ÉËθ·ÂÚ‡–òÏˉڇ ê‡ÒÒÏÓÚËÏ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÎËÌÂÈÌ˚ı ÓÔ‡ÚÓÓ‚ ËÁ „Ëθ·ÂÚÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ H1 ,|| ⋅ || H1 ‚ „Ëθ·ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó H2 ,|| ⋅ || H 2 . çÓχ ÉËθ·ÂÚ‡–òÏˉڇ
)
(
)
|| T ||HS ÎËÌÂÈÌÓ„Ó ÓÔ‡ÚÓ‡ T : H1 →H2 Á‡‰‡ÂÚÒfl Í‡Í || T ||HS = || T (eα ) ||2H 2 α ∈I
∑
1/ 2
,
„‰Â (e α ) α ∈ I – ÓÚÓ„ÓÌÓÏËÓ‚‡ÌÌ˚È ·‡ÁËÒ ‚ ç1 . ãËÌÂÈÌ˚È ÓÔ‡ÚÓ T : H 1 → H2 ̇Á˚‚‡ÂÚÒfl ÓÔ‡ÚÓÓÏ ÉËθ·ÂÚ‡–òÏˉڇ, ÂÒÎË || T ||2HS < ∞. åÂÚË͇ ÌÓÏ˚ ÉËθ·ÂÚ‡–òÏˉڇ ÂÒÚ¸ ÏÂÚË͇ ÌÓÏ˚ || T – P ||HS ̇ ÏÌÓÊÂÒÚ‚Â S(H1, H2) ‚ÒÂı ÓÔ‡ÚÓÓ‚ ÉËθ·ÂÚ‡–òÏˉڇ ËÁ H1 ‚ H2. ÑÎfl H1 = H2 = H ‡Î„·‡ S(H, H) = S(H) Ò ÌÓÏÓÈ ÉËθ·ÂÚ‡–òÏˉڇ fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚ÓÈ ‡Î„·ÓÈ. é̇ ÒÓ‰ÂÊËÚ Í‡Í ÔÎÓÚÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÓÔ‡ÚÓ˚ ÍÓ̘ÌÓ„Ó ‡Ì„‡ Ë ÔË̇‰ÎÂÊËÚ ÔÓÒÚ‡ÌÒÚ‚Û K(H) ÍÓÏÔ‡ÍÚÌ˚ı ÓÔ‡ÚÓÓ‚. ë͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË 〈, 〉HS ̇ S(H ) ÓÔ‰ÂÎflÂÚÒfl Í‡Í Ë 〈T, P〉 HS = /2 = 〈T (eα ), P(eα )〉 Ë || T ||HS = 〈T , T 〉1HS . ëΉӂ‡ÚÂθÌÓ, S(H) fl‚ÎflÂÚÒfl „Ëθ·ÂÚÓ-
∑ α ∈l
‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ÌÂÁ‡‚ËÒËÏÓ ÓÚ ‚˚·Ó‡ ·‡ÁËÒ‡ (eα)α ∈ l). åÂÚË͇ ÌÓÏ˚ ÓÔ‡ÚÓÓ‚ ÒÓ ÒΉÓÏ ÑÎfl „Ëθ·ÂÚÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ ç ÌÓχ ÓÔ‡ÚÓÓ‚ ÒÓ ÒΉÓÏ ‰Îfl ÎËÌÂÈÌÓ„Ó ÓÔ‡ÚÓ‡ T : H → H Á‡‰‡ÂÚÒfl Í‡Í || T ||tc =
∑
〈| T | (eα ), eα 〉,
α ∈I
„‰Â | T | – ‡·ÒÓβÚÌÓ Á̇˜ÂÌËÂ í ‚ ·‡Ì‡ıÓ‚ÓÈ ‡Î„· B(X) ‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı ÓÔ‡ÚÓÓ‚ ËÁ ç ‚ Ò·fl, ‡ (eα)α ∈ l – ÓÚÓ„ÓÌÓÏËÓ‚‡ÌÌ˚È ·‡ÁËÒ ‚ ç. éÔ‡ÚÓ T : H → H ̇Á˚‚‡ÂÚÒfl ÓÔ‡ÚÓÓ‚ ÒÓ ÒΉÓÏ, ÂÒÎË || T ||tc < ∞. ã˛·ÓÈ Ú‡ÍÓÈ ÓÔ‡ÚÓ fl‚ÎflÂÚÒfl ÔÓËÁ‚‰ÂÌËÂÏ ‰‚Ûı ÓÔ‡ÚÓÓ‚ ÉËθ·ÂÚ‡–òÏˉڇ. åÂÚË͇ ÌÓÏ˚ ÓÔ‡ÚÓÓ‚ ÒÓ ÒΉÓÏ – ÏÂÚË͇ ÌÓÏ˚ || T – P ||tc ̇ ÏÌÓÊÂÒÚ‚Â L(H) ‚ÒÂı ÓÔ‡ÚÓÓ‚ ÒÓ ÒΉÓÏ ËÁ ç ‚ Ò·fl. åÌÓÊÂÒÚ‚Ó L(H) Ò ÌÓÏÓÈ || ⋅ ||tc Ó·‡ÁÛÂÚ ·‡Ì‡ıÓ‚Û ‡Î„·Û, ÍÓÚÓ‡fl ÒÓ‰ÂÊËÚÒfl ‚ ‡Î„· K(H) (‚ÒÂı ÍÓÏÔ‡ÍÚÌ˚ı ÓÔ‡ÚÓÓ‚ ËÁ ç ‚ Ò·fl), Ë ÒÓ‰ÂÊËÚ ‡Î„Â·Û S(H) (‚ÒÂı ÓÔ‡ÚÓÓ‚ ÉËθ·ÂÚ‡– òÏˉڇ ËÁ ç ‚ Ò·fl). åÂÚË͇ ÌÓÏ˚ -Í·ÒÒ‡ ò‡ÚÂ̇ ÇÓÁ¸ÏÂÏ 1 ≤ p < ∞. ÑÎfl ÒÂÔ‡‡·ÂθÌÓ„Ó „Ëθ·ÂÚÓ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ ç ÌÓχ
210
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
-Í·ÒÒ‡ ò‡ÚÂ̇ ÍÓÏÔ‡ÍÚÌÓ„Ó ÎËÌÂÈÌÓ„Ó ÓÔ‡ÚÓ‡ T : H → H ÓÔ‰ÂÎflÂÚÒfl Í‡Í || T
p ||Sch =
∑ n
| sn |
1/ p
p
,
„‰Â {sn}n – ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÒËÌ„ÛÎflÌ˚ı Á̇˜ÂÌËÈ ÓÔ‡ÚÓ‡ í. äÓÏÔ‡ÍÚÌ˚È p ÓÔ‡ÚÓ T : H → H ̇Á˚‚‡ÂÚÒfl ÓÔ‡ÚÓÓÏ -Í·ÒÒ‡ ò‡ÚÂ̇, ÂÒÎË || T ||Sch < ∞.
p åÂÚËÍÓÈ ÌÓÏ˚ -Í·ÒÒ‡ ò‡ÚÚ Â̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÌÓÏ˚ || T − P ||Sch ̇ ÏÌÓÊÂÒÚ‚Â Sp (H) ‚ÒÂı ÓÔ‡ÚÓÓ‚ -Í·ÒÒ‡ ò‡ÚÂ̇ ËÁ ç ̇ Ò·fl. åÌÓÊÂÒÚ‚Ó Sp(H) Ò p ÌÓÏÓÈ || ⋅ ||Sch Ó·‡ÁÛÂÚ ·‡Ì‡ıÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. S1 (H) fl‚ÎflÂÚÒfl Í·ÒÒÓÏ ÓÔ‡ÚÓÓ‚ ÒÓ ÒΉÓÏ ‰Îfl ç Ë S 2(H) fl‚ÎflÂÚÒfl Í·ÒÒÓÏ ÓÔ‡ÚÓÓ‚ ÉËθ·ÂÚ‡–òÏˉڇ ‰Îfl ç (ÒÏ. Ú‡ÍÊ åÂÚË͇ ÌÓÏ˚ ò‡ÚÂ̇, „Î. 12).
çÂÔÂ˚‚ÌÓ ‰‚ÓÈÒÚ‚ÂÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó èÛÒÚ¸ (V, || ⋅ ||) – ÌÓÏËÓ‚‡ÌÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó. èÛÒÚ¸ V' – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÌÂÔÂ˚‚Ì˚ı ÎËÌÂÈÌ˚ı ÙÛÌ͈ËÓ̇ÎÓ‚ í ËÁ V ‚ ÓÒÌÓ‚ÌÓ ÔÓΠ( ËÎË ) Ë ÔÛÒÚ¸ || ⋅ ||' – ÓÔ‡ÚÓ̇fl ÌÓχ ̇ V', ÓÔ‰ÂÎÂÌ̇fl Í‡Í || T ||′= sup | T ( x ) | . || x ||≤1
èÓÒÚ‡ÌÒÚ‚Ó (V', || ⋅ ||') fl‚ÎflÂÚÒfl ·‡Ì‡ıÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ, ÍÓÚÓÓ ̇Á˚‚‡ÂÚÒfl ÌÂÔÂ˚‚Ì˚Ï ‰‚ÓÈÒÚ‚ÂÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ (ËÎË ·‡Ì‡ıÓ‚˚Ï ‰‚ÓÈÒÚ‚ÂÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ) ÔÓÒÚ‡ÌÒÚ‚‡ (V, || ⋅ ||). í‡Í, ÌÂÔÂ˚‚Ì˚Ï ‰‚ÓÈÒÚ‚ÂÌÌ˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‰Îfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ l pn (l p∞ ) fl‚ÎflÂÚÒfl lqn (lq∞ ) ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. é·‡ ÌÂÔÂ˚‚Ì˚ı ‰‚ÓÈÒÚ‚ÂÌÌ˚ı ÔÓÒÚ‡ÌÒÚ‚‡ ‰Îfl ·‡Ì‡ıÓ‚˚ı ÔÓÒÚ‡ÌÒÚ‚ ë (ÒÓÒÚÓfl˘Â„Ó ËÁ ‚ÒÂı ÒıÓ‰fl˘ËıÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ Ò l-ÏÂÚËÍÓÈ) Ë C 0 (ÒÓÒÚÓfl˘Â„Ó ËÁ ‚ÒÂı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ (Ò l-ÏÂÚËÍÓÈ), ÒıÓ‰fl˘ËıÒfl Í ÌÛβ) ÂÒÚÂÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ ÓÚÓʉÂÒÚ‚Îfl˛ÚÒfl Ò l1∞ . èÓÒÚÓflÌ̇fl ‡ÒÒÚÓflÌËfl ÓÔ‡ÚÓÓÌÓÈ ‡Î„·˚ èÛÒÚ¸ – ÓÔ‡ÚÓ̇fl ‡Î„·‡ ÒÓ‰Âʇ˘‡flÒfl ‚ B(H) – ÏÌÓÊÂÒÚ‚e ‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı ÓÔ‡ÚÓÓ‚ ̇ „Ëθ·ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ç. ÑÎfl β·Ó„Ó ÓÔ‡ÚÓ‡ T ∈ ∈ B(H) ÔÛÒÚ¸ β(T, A) = sup{|| P⊥ TP||; P – ÔÓÂ͈Ëfl Ë P ⊥ P = (0)}. èÛÒÚ¸ dist(T, ) ÂÒÚ¸ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÓÔ‡ÚÓÓÏ í Ë ‡Î„·ÓÈ , Ú.Â. ̇ËÏÂ̸¯‡fl ÌÓχ ÓÔ‡ÚÓ‡ T – A, „‰Â Ä Ôӷ„‡ÂÚ . ç‡ËÏÂ̸¯‡fl ÔÓÎÓÊËÚÂθ̇fl ÔÓÒÚÓflÌ̇fl ë (ÂÒÎË Ó̇ ÒÛ˘ÂÒÚ‚ÛÂÚ) ڇ͇fl ˜ÚÓ ‰Îfl β·Ó„Ó ÓÔ‡ÚÓ‡ T ∈ B(H) ‚˚ÔÓÎÌflÂÚÒfl ̇‚ÂÌÒÚ‚Ó dist(T, ) ≤ C(T, ), ̇Á˚‚‡ÂÚÒfl ÔÓÒÚÓflÌÌÓÈ ‡ÒÒÚÓflÌËfl ‰Îfl ‡Î„·˚ .
É·‚‡ 14
ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ
èÓÒÚ‡ÌÒÚ‚ÓÏ ‚ÂÓflÚÌÓÒÚÂÈ Ì‡Á˚‚‡ÂÚÒfl ËÁÏÂËÏÓ ÔÓÒÚ‡ÌÒÚ‚Ó (Ω, , P), „‰Â ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ËÁÏÂËÏ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ Ω, ‡ P – χ ̇ Ò P(Ω) = 1. åÌÓÊÂÒÚ‚Ó Ω Ì‡Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‚˚·ÓÓÍ. ùÎÂÏÂÌÚ a ∈ ̇Á˚‚‡ÂÚÒfl ÒÓ·˚ÚËÂÏ, ‚ ˜‡ÒÚÌÓÒÚË, ˝ÎÂÏÂÌÚ‡ÌÓ ÒÓ·˚ÚË – ˝ÚÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ Ω , ÒÓ‰Âʇ˘Â ÚÓθÍÓ Ó‰ËÌ ˝ÎÂÏÂÌÚ; P(a) ̇Á˚‚‡ÂÚÒfl ‚ÂÓflÚÌÓÒÚ¸˛ ÒÓ·˚ÚËfl ‡. å‡ ê ̇ ̇Á˚‚‡ÂÚÒfl ‚ÂÓflÚÌÓÒÚÌÓÈ ÏÂÓÈ, ËÎË Á‡ÍÓÌÓÏ ‡ÒÔ‰ÂÎÂÌËfl (‚ÂÓflÚÌÓÒÚÂÈ), ËÎË ÔÓÒÚÓ ‡ÒÔ‰ÂÎÂÌËÂÏ (‚ÂÓflÚÌÓÒÚÂÈ). ëÎÛ˜‡È̇fl ‚Â΢Ë̇ ï ÂÒÚ¸ ËÁÏÂËχfl ÙÛÌ͈Ëfl ËÁ ÔÓÒÚ‡ÌÒÚ‚‡ ‚ÂÓflÚÌÓÒÚÂÈ (Ω, , P ) ‚ ËÁÏÂËÏÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ̇Á˚‚‡ÂÏÓ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÒÓÒÚÓflÌËÈ ‚ÓÁÏÓÊÌ˚ı Á̇˜ÂÌËÈ ÔÂÂÏÂÌÌÓÈ; Ó·˚˜ÌÓ ·ÂÛÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌ˚ ˜ËÒ· Ò ·ÓÂ΂ÓÈ α-‡Î„·ÓÈ, Ú‡Í ˜ÚÓ X : Ω → . åÌÓÊÂÒÚ‚Ó Á̇˜ÂÌËÈ χ ÒÎÛ˜‡ÈÌÓÈ ‚Â΢ËÌ˚ ï ̇Á˚‚‡ÂÚÒfl ÌÂÒÛ˘ËÏ ÏÌÓÊÂÒÚ‚ÓÏ ‡ÒÔ‰ÂÎÂÌËfl ê; ˝ÎÂÏÂÌÚ x ∈ χ ̇Á˚‚‡ÂÚÒfl ÒÓÒÚÓflÌËÂÏ. á‡ÍÓÌ ‡ÒÔ‰ÂÎÂÌËfl ÏÓÊÌÓ Â‰ËÌÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ ÓÔËÒ‡Ú¸ ˜ÂÂÁ ÍÛÏÛÎflÚË‚ÌÛ˛ ÙÛÌÍˆË˛ ‡ÒÔ‰ÂÎÂÌËfl (CDF, ÙÛÌÍˆË˛ ‡ÒÔ‰ÂÎÂÌËfl, ÍÛÏÛÎflÚË‚ÌÛ˛ ÙÛÌÍˆË˛ ÔÎÓÚÌÓÒÚË) F(x), ÍÓÚÓ‡fl ÔÓ͇Á˚‚‡ÂÚ ‚ÂÓflÚÌÓÒÚ¸ ÚÓ„Ó, ˜ÚÓ ÒÎÛ˜‡È̇fl ‚Â΢Ë̇ ï ÔËÌËχÂÚ Á̇˜ÂÌË Ì ·Óθ¯Â, ˜ÂÏ ı: F (x) = P (X ≤ x) = P (ω ∈ ∈ Ω: X(ω) < x). í‡ÍËÏ Ó·‡ÁÓÏ, β·‡fl ÒÎÛ˜‡È̇fl ‚Â΢Ë̇ ï ÔÓÓʉ‡ÂÚ Ú‡ÍÓ ‡ÒÔ‰ÂÎÂÌË ‚ÂÓflÚÌÓÒÚÂÈ, ÍÓÚÓ˚Ï ËÌÚ‚‡ÎÛ [a, b] ÒÚ‡‚ËÚÒfl ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ‚ÂÓflÚÌÓÒÚ¸ P(a ≤ X ≤ b) = P(ω ∈ Ω: a ≤ X(ω) ≤ b), Ú.Â. ‚ÂÓflÚÌÓÒÚ¸, ˜ÚÓ ‚Â΢Ë̇ ï ·Û‰ÂÚ ËÏÂÚ¸ Á̇˜ÂÌË ‚ ËÌÚ‚‡Î [a, b]. ê‡ÒÔ‰ÂÎÂÌË ̇Á˚‚‡ÂÚÒfl ‰ËÒÍÂÚÌ˚Ï, ÂÒÎË F(x) ÒÓÒÚÓËÚ ËÁ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÍÓ̘Ì˚ı Ò͇˜ÍÓ‚ ÔË xi; ‡ÒÔ‰ÂÎÂÌË ̇Á˚‚‡ÂÚÒfl ÌÂÔÂ˚‚Ì˚Ï, ÂÒÎË F(x) ÌÂÔÂ˚‚̇. å˚ ‡ÒÒχÚË‚‡ÂÏ (Í‡Í ‚ ·Óθ¯ËÌÒÚ‚Â ÔËÎÓÊÂÌËÈ) ÚÓθÍÓ ‰ËÒÍÂÚÌ˚ ËÎË ‡·ÒÓβÚÌÓ ÌÂÔÂ˚‚Ì˚ ‡ÒÔ‰ÂÎÂÌËfl, Ú.Â. ÙÛÌ͈Ëfl ‡ÒÔ‰ÂÎÂÌËfl F : → fl‚ÎflÂÚÒfl ‡·ÒÓβÚÌÓ ÌÂÔÂ˚‚ÌÓÈ. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ ‰Îfl Í‡Ê‰Ó„Ó ˜ËÒ· ε > 0 ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ ˜ËÒÎÓ δ > 0, ˜ÚÓ ‰Îfl β·ÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ËÌÚ‚‡ÎÓ‚ [xk, yk ], 1 ≤ k ≤ n ̇‚ÂÌÒÚ‚Ó ( yk − x k ) < δ
∑
‚ΘÂÚ Ì‡‚ÂÌÒÚ‚Ó
∑
1≤ k ≤ n
| F( yk ) − F( x k ) | < ε.
1≤ k ≤ n
á‡ÍÓÌ ‡ÒÔ‰ÂÎÂÌËfl ÏÓÊÂÚ ·˚Ú¸ Ú‡ÍÊ ‰ËÌÒÚ‚ÂÌÌ˚Ï Ó·‡ÁÓÏ ÓÔ‰ÂÎÂÌ ˜ÂÂÁ ÔÎÓÚÌÓÒÚ¸ ‡ÒÔ‰ÂÎÂÌËfl ‚ÂÓflÚÌÓÒÚÂÈ (PDF, ÙÛÌÍˆË˛ ÔÎÓÚÌÓÒÚË, ÙÛÌÍˆË˛ ‚ÂÓflÚÌÓÒÚË) (ı) ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÒÎÛ˜‡ÈÌÓÈ ‚Â΢ËÌ˚. ÑÎfl ‡·ÒÓβÚÌÓ ÌÂÔÂ˚‚ÌÓ„Ó ‡ÒÔ‰ÂÎÂÌËfl ÙÛÌ͈Ëfl ‡ÒÔ‰ÂÎÂÌËfl fl‚ÎflÂÚÒfl ÔÓ˜ÚË ‚Ò˛‰Û ‰ËÙÙÂÂ̈ËÛÂÏÓÈ Ë ÙÛÌ͈Ëfl ÔÎÓÚÌÓÒÚË ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÔÓËÁ‚Ӊ̇fl
212
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍ x
p(x) = F'(x) ÙÛÌ͈ËË ‡ÒÔ‰ÂÎÂÌËfl; ÒΉӂ‡ÚÂθÌÓ, F( x ) = P( X ≤ x ) =
∫
p(t )dt Ë
−∞ b
∫
p(t )dt = P( a ≤ X ≤ b). ÑÎfl ÒÎÛ˜‡fl ‰ËÒÍÂÚÌÓ„Ó ‡ÒÔ‰ÂÎÂÌËfl ÙÛÌ͈Ëfl ÔÎÓÚÌÓÒÚË
a
(ÔÎÓÚÌÓÒÚË ÒÎÛ˜‡ÈÌÓÈ ‚Â΢ËÌ˚ ï) ÓÔ‰ÂÎflÂÚÒfl Í‡Í Â Á̇˜ÂÌËfl p( xi ) = P( X = x ), Ú‡Í ˜ÚÓ F( x ) =
∑
p( xi ). Ç ÔÓÚË‚ÓÔÓÎÓÊÌÓÒÚ¸ ˝ÚÓÏÛ Í‡Ê‰Ó ˝ÎÂÏÂÌÚ‡ÌÓÂ
xi ≤ x
ÒÓ·˚ÚË ËÏÂÂÚ ‚ ÌÂÔÂ˚‚ÌÓÏ ÒÎÛ˜‡Â ‚ÂÓflÚÌÓÒÚ¸ ÌÓθ. ëÎÛ˜‡È̇fl ‚Â΢Ë̇ ï ÔËÏÂÌflÂÚÒfl ‰Îfl "ÔÂÂÌÓÒ‡" ÏÂ˚ ê ̇ Ω Ì‡ ÏÂÛ dF ̇ . ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÂÓflÚÌÓÒÚÂÈ fl‚ÎflÂÚÒfl ÚÂıÌ˘ÂÒÍËÏ ËÌÒÚÛÏÂÌÚÓÏ, ÔËÏÂÌÂÌË ÍÓÚÓÓ„Ó Ó·ÂÒÔ˜˂‡ÂÚ ÒÛ˘ÂÒÚ‚Ó‚‡ÌË ÒÎÛ˜‡ÈÌ˚ı ‚Â΢ËÌ, ‡ ËÌÓ„‰‡ ËÒÔÓθÁÛÂÚÒfl Ë ‰Îfl Ëı ÔÓÒÚÓÂÌËfl. Ç ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ ÏÂÚËÍË ÏÂÊ‰Û ‡ÒÔ‰ÂÎÂÌËflÏË Ì‡Á˚‚‡˛ÚÒfl ÔÓÒÚ˚ÏË ÏÂÚË͇ÏË, ‡ ÏÂÚËÍË ÏÂÊ‰Û ÒÎÛ˜‡ÈÌ˚ÏË ‚Â΢Ë̇ÏË Ì‡Á˚‚‡˛ÚÒfl ÒÎÓÊÌ˚ÏË ÏÂÚË͇ÏË [Rach91]. ÑÎfl ÔÓÒÚÓÚ˚ Ï˚ ·Û‰ÂÏ Ó·˚˜ÌÓ ‡ÒÒχÚË‚‡Ú¸ ‰ËÒÍÂÚÌ˚È ‚‡Ë‡ÌÚ ÏÂÚËÍ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ, Ӊ̇ÍÓ ·Óθ¯ËÌÒÚ‚Ó ËÁ ÌËı ÓÔ‰ÂÎfl˛ÚÒfl ̇ β·ÓÏ ËÁÏÂËÏÓÏ ÔÓÒÚ‡ÌÒÚ‚Â. ÑÎfl ‚ÂÓflÚÌÓÒÚÌÓÈ ÏÂÚËÍË d ÛÒÎÓ‚Ë P(X = Y) = 1 ‚˚ÔÓÎÌflÂÚÒfl ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d(X, Y) = 0. ÇÓ ÏÌÓ„Ëı ÒÎÛ˜‡flı ̇ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓflÌËÈ χ Á‡‰‡ÂÚÒfl ÌÂÍÓÚÓÓ ·‡ÁÓ‚Ó ‡ÒÒÚÓflÌËÂ Ë ‡ÒÒχÚË‚‡ÂÏÓ ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl Â„Ó ÎËÙÚËÌ„ÓÏ Ì‡ ÔÓÒÚ‡ÌÒÚ‚Ó ‡ÒÔ‰ÂÎÂÌËÈ. Ç ÒÚ‡ÚËÒÚËÍ ÏÌÓ„Ë ËÁ Û͇Á‡ÌÌ˚ı ÌËÊ ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ‡ÒÔ‰ÂÎÂÌËflÏË P1 Ë P2 ÔËÏÂÌfl˛ÚÒfl Í‡Í ÏÂ˚ ÒÚÂÔÂÌË Òӄ·ÒËfl ÏÂÊ‰Û ÓˆÂÌË‚‡ÂÏ˚Ï (P2 ) Ë ÚÂÓÂÚ˘ÂÒÍËÏ (P1 ) ‡ÒÔ‰ÂÎÂÌËflÏË. чΠÔÓ ÚÂÍÒÚÛ ÒËÏ‚ÓÎÓÏ [X] Ó·ÓÁ̇˜‡ÂÚÒfl χÚÂχÚ˘ÂÒÍÓ ÓÊˉ‡ÌË (ËÎË Ò‰Ì Á̇˜ÂÌËÂ) ÒÎÛ˜‡ÈÌÓÈ ‚Â΢ËÌ˚ ï: ‚ ‰ËÒÍÂÚÌÓÏ ÒÎÛ˜‡Â [X] = xp( x ),
∑ x
a ‰Îfl ÌÂÔÂ˚‚ÌÓ„Ó ÒÎÛ˜‡fl [ X ] =
∫
xp( x )dx. ÑËÒÔÂÒËÂÈ ï ̇Á˚‚‡ÂÚÒfl ‚Â΢Ë̇
[X – [X]) 2 ]. àÒÔÓθÁÛ˛ÚÒfl Ú‡ÍÊ ӷÓÁ̇˜ÂÌËfl p X = p(x) = P(X = x), FX = F(x) = = P(X ≤ x), p(x, y) = P(X = x, Y = y).
14.1. êÄëëíéüçàü çÄ ëãìóÄâçõï ÇÖãàóàçÄï ÇÒ ‡ÒÒÚÓflÌËfl ‚ ‰‡ÌÌÓÏ ‡Á‰ÂΠÓÔ‰ÂÎfl˛ÚÒfl ̇ ÏÌÓÊÂÒÚ‚Â Z ‚ÒÂı ÒÎÛ˜‡ÈÌ˚ı ‚Â΢ËÌ Ò Ó‰ÌËÏ Ë ÚÂÏ Ê ÌÂÒÛ˘ËÏ ÏÌÓÊÂÒÚ‚ÓÏ χ; Á‰ÂÒ¸ X, Y ∈ Z. Lp -ÏÂÚË͇ ÏÂÊ‰Û ‚Â΢Ë̇ÏË Lp -ÏÂÚË͇ ÏÂÊ‰Û ‚Â΢Ë̇ÏË ÂÒÚ¸ ÏÂÚË͇ ̇ Z c χ ⊂ Ë [| Z | p ] < ∞ ‰Îfl ‚ÒÂı Z ∈ , ÓÔ‰ÂÎÂÌ̇fl Í‡Í ( [| X − Y | ]) p
1/ p
= | x − y | p p( x, y) ( x , y ) ∈χ × χ
∑
1/ p
.
É·‚‡ 14. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ 213
ÑÎfl p = 1, 2 Ë ∞ Ó̇ ̇Á˚‚‡ÂÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ËÌÊÂÌÂÌÓÈ ÏÂÚËÍÓÈ, Ò‰ÌÂÍ‚‡‰‡Ú˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ë ‡ÒÒÚÓflÌËÂÏ ÒÛ˘ÂÒÚ‚ÂÌÌÓ„Ó ÒÛÔÂÏÛχ ÏÂÊ‰Û ÔÂÂÏÂÌÌ˚ÏË. à̉Ë͇ÚÓ̇fl ÏÂÚË͇ à̉Ë͇ÚÓ̇fl ÏÂÚË͇ – ÏÂÚË͇ ̇ Z, ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑
[1X ≠ Y ] =
1x ≠ y p( x, y) =
( x , y ) ∈χ × χ
∑
p( x, y).
( x , y ) ∈χ × χ, x ≠ y
(ÒÏ. ï˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇, „Î. 1). ä ÏÂÚË͇ äË î‡Ì‡ ä ÏÂÚË͇ äË î‡Ì‡ ÂÒÚ¸ ÏÂÚË͇ ä ̇ Z, ÓÔ‰ÂÎÂÌ̇fl Í‡Í inf{ε > 0 : P(| X − Y |> ε ) < ε}. ùÚÓ fl‚ÎflÂÚÒfl ÒÎÛ˜‡ÂÏ d(x, y) = | X – Y | ‚ÂÓflÚÌÓÒÚÌÓ„Ó ‡ÒÒÚÓflÌËfl. K * ÏÂÚË͇ äË î‡Ì‡ K * ÏÂÚË͇ äË î‡Ì‡ ÂÒÚ¸ ÏÂÚË͇ K * ̇ Z, ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X −Y | |x−y| =
p( x, y). 1+ | X − Y | ( x , y ) ∈χ × χ 1+ | x − y |
∑
ÇÂÓflÚÌÓÒÚÌÓ ‡ÒÒÚÓflÌË ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (χ , d) ‚ÂÓflÚÌÓÒÚÌÓ ‡ÒÒÚÓflÌË ̇ Z ÓÔ‰ÂÎflÂÚÒfl Í‡Í inf{ε : P( d ( X , Y ) > ε ) < ε}.
14.2. êÄëëíéüçàü çÄ áÄäéçÄï êÄëèêÖÑÖãÖçàü ÇÒ ‡ÒÒÚÓflÌËfl ‚ ‰‡ÌÌÓÏ ‡Á‰ÂΠÓÔ‰ÂÎfl˛ÚÒfl ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı Á‡ÍÓÌÓ‚ ‡ÒÔ‰ÂÎÂÌËfl Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ÒÎÛ˜‡ÈÌ˚ ‚Â΢ËÌ˚ ËÏÂ˛Ú Ó‰Ë̇ÍÓ‚Ó ÏÌÓÊÂÒÚ‚Ó Á̇˜ÂÌËÈ χ; Á‰ÂÒ¸ P1 , P2 ∈ . Lp -ÏÂÚË͇ ÏÂÊ‰Û ÔÎÓÚÌÓÒÚflÏË Lp -ÏÂÚË͇ ÏÂÊ‰Û ÔÎÓÚÌÓÒÚflÏË ÂÒÚ¸ ÏÂÚË͇ ̇ (‰Îfl Ò˜ÂÚÌÓ„Ó χ), ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·Ó„ p > 0 ͇Í
∑ x
| p1 ( x ) − p2 ( x ) | p ) min(1,1 / p ) .
ÑÎfl p = 1  ÔÓÎÓ‚Ë̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ ÔÓÎÌÓÈ ‚‡Ë‡ˆËË (ËÎË ËÁÏÂÌflÂÏ˚Ï ‡ÒÒÚÓflÌËÂÏ, ‡ÒÒÚÓflÌËÂÏ ÒΉ‡). íӘ˜̇fl ÏÂÚË͇ sup | p1 ( x ) − p2 ( x ) | ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ p = ∞.
x
214
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
èÓÎÛÏÂÚË͇ å‡ı‡Î‡ÌÓ·ËÒ‡ èÓÎÛÏÂÚË͇ å‡ı‡Î‡ÌÓ·ËÒ‡ (ËÎË Í‚‡‰‡Ú˘ÌÓ ‡ÒÒÚÓflÌËÂ, Í‚‡‰‡Ú˘̇fl ÏÂÚË͇) ÂÒÚ¸ ÔÓÎÛÏÂÚË͇fl ̇ (‰Îfl χ ⊂ n), ÓÔ‰ÂÎflÂχfl Í‡Í ( P1 [ X ] − P2 [ X ])T A −1 ( P1 [ X ] − P2 [ X ]) ‰Îfl ‰‡ÌÌÓÈ ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎeÌÌÓÈ Ï‡Úˈ˚ Ä. àÌÊÂÌÂ̇fl ÔÓÎÛÏÂÚË͇ àÌÊÂÌÂÌÓÈ ÔÓÎÛÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ (‰Îfl χ ⊂ ), ÓÔ‰ÂÎÂÌ̇fl Í‡Í | P1 [ X ] − P2 [ X ] | =
∑
x ( p1 ( x ) − p2 ( x )) .
x
åÂÚË͇ Ó„‡Ì˘ÂÌËfl ÔÓÚÂË ÔÓfl‰Í‡ m åÂÚË͇ Ó„‡Ì˘ÂÌËfl ÔÓÚÂË ÔÓfl‰Í‡ m ÂÒÚ¸ ÏÂÚËÍÓÈ Ì‡ (‰Îfl χ ⊂ ), ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑ t ∈
sup
x ≥t
( x − t )m ( p1 ( x ) − p2 ( x )). m!
åÂÚË͇ äÓÎÏÓ„ÓÓ‚‡–ëÏËÌÓ‚‡ åÂÚËÍÓÈ äÓÎÏÓ„ÓÓ‚‡–ëÏËÌÓ‚‡ (ËÎË ÏÂÚËÍÓÈ äÓÎÏÓ„ÓÓ‚‡, ‡‚ÌÓÏÂÌÓÈ ÏÂÚËÍÓÈ) fl‚ÎflÂÚÒfl ÏÂÚË͇ ̇ (‰Îfl χ ⊂ ), ÓÔ‰ÂÎÂÌ̇fl Í‡Í sup | P1 ( X ≤ x ) − P2 ( X ≤ x ) | . t ∈
ê‡ÒÒÚÓflÌË äÛËÔ‡ ̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í sup( P1 ( X ≤ x ) − P2 ( X ≤ x )) + sup( P2 ( X ≤ x ) − P1 ( X ≤ x )) x ∈
x ∈
(ÒÏ. åÂÚË͇ èÓÏÔÂÈ˛–ù„„ÎÂÒÚÓ̇, „Î. 9). ê‡ÒÒÚÓflÌË Ä̉ÂÒÓ̇–чÎËÌ„‡ ̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í | P1 ( X ≤ x ) − P2 ( X ≤ x ) . x ∈ ln P1 ( X ≤ x )(1 − P1 ( X ≤ x ))
sup
ê‡ÒÒÚÓflÌË äÌÍӂ˘‡–чıÏ˚ ÓÔ‰ÂÎflÂÚÒfl Í‡Í sup( P1 ( X ≤ x ) − P2 ( X ≤ x )) ln x ∈
+ sup( P2 ( X ≤ x ) − P1 ( X ≤ x )) ln x ∈
1 + P1 ( X ≤ x )(1 − P1 ( X ≤ x )) 1 . P1 ( X ≤ x )(1 − P1 ( X ≤ x ))
íË ‚˚¯ÂÔ˂‰ÂÌÌ˚ı ‡ÒÒÚÓflÌËfl ËÒÔÓθÁÛ˛ÚÒfl ‚ ÒÚ‡ÚËÒÚËÍ ‚ ͇˜ÂÒÚ‚Â ÒÚÂÔÂÌË Òӄ·ÒËfl, ÓÒÓ·ÂÌÌÓ ‰Îfl ‡Ò˜ÂÚ‡ ËÒÍÓ‚ÓÈ ÒÚÓËÏÓÒÚË ‚ ÙË̇ÌÒÓ‚ÓÈ ÒÙÂÂ.
É·‚‡ 14. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ 215
ê‡ÒÒÚÓflÌË ä‡Ï‡–ÙÓÌ åËÁÂÒ‡ ê‡ÒÒÚÓflÌË ä‡Ï‡–ÙÓÌ åËÁÂÒ‡ ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ (‰Îfl χ ⊂ ), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í +∞
∫
( P1 ( X ≤ x ) − P2 ( X ≤ x ))2 dx.
−∞
éÌÓ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ Í‚‡‰‡Ú L 2 -ÏÂÚËÍË ÏÂÊ‰Û ÍÛÏÛÎflÚË‚Ì˚ÏË ÙÛÌ͈ËflÏË ÔÎÓÚÌÓÒÚË. åÂÚË͇ ãÂ‚Ë åÂÚË͇ ãÂ‚Ë – ÏÂÚË͇ ̇ (ÚÓθÍÓ ‰Îfl χ ⊂ ), ÓÔ‰ÂÎÂÌ̇fl Í‡Í inf{ε < 0 : P1 ( X ≤ x − ε ) − ε ≤ P2 ( X ≤ x ) ≤ P1 ( X ≤ x + ε ) + ε ‰Îfl β·Ó„Ó x ∈ } é̇ fl‚ÎflÂÚÒfl ÒÔˆˇθÌ˚Ï ÒÎÛ˜‡ÂÏ ÏÂÚËÍË èÓıÓÓ‚‡ ‰Îfl (χ, d) = (, | x – y |). åÂÚË͇ èÓıÓÓ‚‡ ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (χ, d) ÏÂÚË͇ èÓıÓÓ‚‡ ̇ ÓÔ‰ÂÎflÂÚ0 Òfl Í‡Í inf{ε > 0 : P1 ( X ∈ B) ≤ P2 ( X ∈ B ε ) + ε Ë P2 ( X ∈ B) ≤ P1 ( X ∈ B ε ) + ε}, „‰Â Ç – β·Ó ·ÓÂ΂ÒÍÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ χ, ‡ B ε = {x : d ( x, y) < ε, y ∈ B}. ùÚÓ Ì‡ËÏÂ̸¯Â (ÔÓ ‚ÒÂÏ ÒÓ‚ÏÂÒÚÌ˚Ï ‡ÒÔ‰ÂÎÂÌËflÏ Ô‡ (X, Y) ÒÎÛ˜‡ÈÌ˚ı ‚Â΢ËÌ ï, Y, Ú‡ÍËı ˜ÚÓ Ëı χ„Ë̇θÌ˚ÂÏË ‡ÒÔ‰ÂÎÂÌËflÏË fl‚Îfl˛ÚÒfl P1 Ë P 2 ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ) ‚ÂÓflÚÌÓÒÚÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÒÎÛ˜‡ÈÌ˚ÏË ‚Â΢Ë̇ÏË ï Ë Y. åÂÚË͇ ч‰ÎË ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (χ, d) ÏÂÚË͇ ч‰ÎË Ì‡ ÓÔ‰ÂÎflÂÚÒfl Í‡Í sup | P1 [ f ( X )] − P2 [ f ( X )] | = sup f ∈F
∑
f ∈F x ∈χ
f ( x )( p1 ( x ) − p2 ( x )) .
„‰Â F = { f : χ → , || f ||∞ + Lip d ( f ) ≤ 1} Ë Lip d ( f ) =
| f ( x ) − f ( y) | . d ( x, y) x≠y
sup
x , y ∈χ,
åÂÚË͇ òÛθ„Ë ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (χ, d) ÏÂÚË͇ òÛθ„Ë Ì‡ ÓÔ‰ÂÎflÂÚÒfl Í‡Í sup | f ( x ) | p p1 ( x ))1 / p − | f ( x ) | p p2 ( x ))1 / p , f ∈F x ∈χ x ∈χ
∑
„‰Â F = { f : χ → , Lip d ( f ) ≤ 1} Ë Lip d ( f ) =
∑
| f ( x ) − f ( y) | . d ( x, y) x≠y
sup
x , y ∈χ,
216
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
èÓÎÛÏÂÚË͇ áÓÎÓڇ‚‡ èÓÎÛÏÂÚËÍÓÈ áÓÎÓڇ‚‡ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ , ÓÔ‰ÂÎÂÌ̇fl Í‡Í sup f ∈F
∑
f ( x )( p1 ( x ) − p2 ( x )) ,
x ∈χ
„‰Â F – β·Ó ÏÌÓÊÂÒÚ‚Ó ÙÛÌ͈ËÈ (‰Îfl ÌÂÔÂ˚‚ÌÓ„Ó ÒÎÛ˜‡fl F – β·Ó ÏÌÓÊÂÒÚ‚Ó Ú‡ÍËı Ó„‡Ì˘ÂÌÌ˚ı ÌÂÔÂ˚‚Ì˚ı ÙÛÌ͈ËÈ); ÒÏ. åÂÚË͇ òÛθ„Ë, åÂÚË͇ ч‰ÎË. åÂÚË͇ Ò‚ÂÚÍË èÛÒÚ¸ G – ÒÂÔ‡‡·Âθ̇fl ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚ̇fl ‡·Â΂‡ „ÛÔÔ‡ Ë ÔÛÒÚ¸ ë(G) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ‰ÂÈÒÚ‚ËÚÂθÌ˚ı Ó„‡Ì˘ÂÌÌ˚ı ÌÂÔÂ˚‚Ì˚È ÙÛÌ͈ËÈ Ì‡ G, ÍÓÚÓ˚ ӷ‡˘‡˛ÚÒfl ‚ ÌÛθ ‚ ·ÂÒÍÓ̘ÌÓÒÚË. á‡ÙËÍÒËÛÂÏ ÙÛÌÍˆË˛ g ∈ C(G), Ú‡ÍÛ˛ ˜ÚÓ | g | fl‚ÎflÂÚÒfl ËÌÚ„ËÛÂÏÓÈ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Ï ‡ ̇ G Ë {β ∈ G * : gˆ (β) = 0} ËÏÂÂÚ ÔÛÒÚÛ˛ ‚ÌÛÚÂÌÌÓÒÚ¸: Á‰ÂÒ¸ G* – ‰Û‡Î¸Ì‡fl „ÛÔÔ‡ ‰Îfl G Ë gˆ – ÔÂÓ·‡ÁÓ‚‡ÌË î۸ ‰Îfl g. åÂÚË͇ Ò‚ÂÚÍË û͢‡ (ËÎË ÏÂÚË͇ ҄·ÊË‚‡ÌËfl) ÓÔ‰ÂÎflÂÚÒfl ‰Îfl β·˚ı ‰‚Ûı ÍÓ̘Ì˚ı ÏÂ Å˝‡ ÒÓ Á̇ÍÓÏ P1 Ë P2 ̇ G Í‡Í sup x ∈G
∫
g( xy −1 )( dP1 − dP2 )( y) | .
y ∈G
чÌÌÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ Ú‡ÍÊ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ‡ÁÌÓÒÚ¸ Tp1 ( g) − Tp2 ( g) ÓÔ‡ÚÓÓ‚ Ò‚ÂÚÍË Ì‡ C(G), „‰Â ‰Îfl β·ÓÈ f ∈ C(G) ÓÔ‡ÚÓ Tpf(x) ÓÔ‰ÂÎflÂÚÒfl ͇Í
∫
f ( xy −1 )dP( y).
y ∈G
åÂÚË͇ ÌÂÒıÓ‰ÒÚ‚‡ ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (χ, d) ÏÂÚË͇ ÌÂÒıÓ‰ÒÚ‚‡ ̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í sup{| P1 ( X ∈ B) − P2 ( X ∈ B) |: B – β·ÓÈ Á‡ÏÍÌÛÚ˚È ¯‡}. èÓÎÛÏÂÚË͇ ‰‚ÓÈÌÓ„Ó ÌÂÒıÓ‰ÒÚ‚‡ èÓÎÛÏÂÚË͇ ‰‚ÓÈÌÓ„Ó ÌÂÒıÓ‰ÒÚ‚‡ ÂÒÚ¸ ÔÓÎÛÏÂÚË͇ ÏÂÊ‰Û ‡ÒÔ‰ÂÎÂÌËflÏË P 1 Ë P2 , Á‡‰‡ÌÌ˚ÏË Ì‡‰ ‡ÁÌ˚ÏË ÒÂÏÂÈÒÚ‚‡ÏË 1 Ë 2 ËÁÏÂËÏ˚ı ÏÌÓÊÂÒÚ‚, ÓÔ‰ÂÎflÂχfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: D( P1 , P2 ) + D( P2 , P1 ), „‰Â D( P1 , P2 ) = sup{inf{P2 (C ) : B C ∈ 2 } − P1 ( B) : B ∈ 1 } – ‡ÒıÓʉÂÌËÂ. ê‡ÒÒÚÓflÌË ã ä‡Ï‡ ê‡ÒÒÚÓflÌË ã ä‡Ï‡ ÂÒÚ¸ ÔÓÎÛÏÂÚË͇ ÏÂÊ‰Û ‡ÒÔ‰ÂÎÂÌËflÏË ‚ÂÓflÚÌÓÒÚÂÈ P1 Ë P 2 (Á‡‰‡ÌÌ˚ı ̇ ‡Á΢Ì˚ı ÔÓÒÚ‡ÌÒÚ‚‡ı χ 1 Ë χ2), ÓÔ‰ÂÎÂÌ̇fl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: max{δ( P1 , P2 ), δ( P2 , P1 )},
É·‚‡ 14. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ 217
„‰Â
δ( P1 , P2 ) = inf B
BP1 ( X2 = x 2 ) =
∑
∑
| BP1 ( X2 = x 2 ) − BP2 ( X2 = x 2 ) | – Ì‚flÁ͇ ã ä‡Ï‡. á‰ÂÒ¸
x 2 ∈χ 2
p1 ( x1 )b( x 2 | x1 ), „‰Â Ç – ‡ÒÔ‰ÂÎÂÌË ‚ÂÓflÚÌÓÒÚÂÈ Ì‡‰ χ1 × χ2 Ë
x1 ∈χ1
b( x 2 | x1 ) =
B( X1 = x1 , X2 = x 2 ) = B( X1 = x1 )
B( X1 = x1 , X2 = x 2 ) . B( X1 = x 2 , X2 = x )
∑
x ∈χ 2
ëΉӂ‡ÚÂθÌÓ, BP2 ( X2 = x 2 ) fl‚ÎflÂÚÒfl ‡ÒÔ‰ÂÎÂÌËÂÏ ‚ÂÓflÚÌÓÒÚÂÈ Ì‡‰ χ2, ÔÓÒÍÓθÍÛ
∑ b( x2 | x1 ) = 1. ê‡ÒÒÚÓflÌË ã ä‡Ï‡ Ì fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÚÂÓËË
x 2 ∈χ 2
‚ÂÓflÚÌÓÒÚÂÈ, ÔÓÒÍÓθÍÛ P1 Ë P2 Á‡‰‡Ì˚ ̇‰ ‡ÁÌ˚ÏË ÔÓÒÚ‡ÌÒÚ‚‡ÏË; ˝ÚÓ ÂÒÚ¸ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÒÚ‡ÚËÒÚ˘ÂÒÍËÏË ˝ÍÒÔÂËÏÂÌÚ‡ÏË (ÏÓ‰ÂÎflÏË). åÂÚË͇ ëÍÓÓıÓ‰‡–ÅËÎËÌ„ÒÎË åÂÚË͇ ëÍÓÓıÓ‰‡–ÅËÎËÌ„ÒÎË – ÏÂÚË͇ ̇ , ÓÔ‰ÂÎÂÌ̇fl Í‡Í f ( y) − f ( x ) inf max sup | P1 ( X ≤ x ) − P2 ( X ≤ f ( x )) | sup | f ( x ) − x |,sup ln , f y−x x x≠y x „‰Â f: → – ÒÚÓ„Ó ‚ÓÁ‡ÒÚ‡˛˘‡fl ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl. åÂÚË͇ ëÍÓÓıÓ‰‡ åÂÚËÍÓÈ ëÍÓÓıÓ‰‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ , ÓÔ‰ÂÎÂÌ̇fl Í‡Í inf ε > 0 : max sup | P1 ( X < x ) − P2 ( X ≤ f ( x )) |,sup | f ( x ) − x | < ε , x x „‰Â f: → – ÒÚÓ„Ó ‚ÓÁ‡ÒÚ‡˛˘‡fl ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl. ê‡ÒÒÚÓflÌË ÅËÌ·‡Ûχ–é΢‡ ê‡ÒÒÚÓflÌË ÅËÌ·‡Ûχ–é΢‡ – ‡ÒÒÚÓflÌË ̇ , ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í sup f (| P1 ( X ≤ x ) − P2 ( X ≤ x ) |), x ∈
„‰Â f: ≥0 → ≥0 – β·‡fl ÌÂÛ·˚‚‡˛˘‡fl ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl Ò f(0) = 0 Ë f(2t) ≤ Kf(t) ‰Îfl β·Ó„Ó t > 0 Ë ÌÂÍÓÚÓÓ„Ó Á‡‰‡ÌÌÓ„Ó K. éÌÓ fl‚ÎflÂÚÒfl ÔÓ˜ÚË ÏÂÚËÍÓÈ, ÔÓÒÍÓθÍÛ Òӷ≇ÂÚÒfl ÛÒÎÓ‚Ë d ( P1 , P2 ) ≤ K ( d ( P2 , P3 ) + d ( P3 , P2 )). ê‡ÒÒÚÓflÌË ÅËÌ·‡Ûχ–é΢‡ ÔËÏÂÌflÂÚÒfl Ú‡ÍÊ ‚ ÙÛÌ͈ËÓ̇θÌÓÏ ‡Ì‡ÎËÁ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ËÌÚ„ËÛÂÏ˚ı ÙÛÌ͈ËÈ Ì‡ ÓÚÂÁÍ [0, 1], „‰Â ÓÌÓ ÓÔ‰ÂÎflÂÚÒfl 1
͇Í
∫
H (| f ( x ) − g( x ) |)dx, „‰Â ç – ÌÂÛ·˚‚‡˛˘‡fl ÌÂÔÂ˚‚̇fl ÙÛÌ͈Ëfl ËÁ [0, ∞) ‚
0
[0, ∞), ÍÓÚÓ‡fl Ó·‡˘‡ÂÚÒfl ‚ ÌÛθ ‚ ÌÛÎÂ Ë Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÛÒÎӂ˲ é΢‡: sup t >0
H (2t ) < ∞. H (t )
218
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
ê‡ÒÒÚÓflÌË äÛ„ÎÓ‚‡ ê‡ÒÒÚÓflÌË äÛ„ÎÓ‚‡ – ‡ÒÒÚÓflÌË ̇ , ÓÔ‰ÂÎÂÌÌÓ ͇Í
∫
f ( P1 ( X ≤ x ) − P2 ( X ≤ x )dx,
„‰Â f: ≥ 0 → ≥0 – ÒÚÓ„Ó ‚ÓÁ‡ÒÚ‡˛˘‡fl ˜eÚ̇fl ÙÛÌ͈Ëfl Ò f(0) = 0 Ë f ( s + t ) ≤ ≤ K ( f ( s) + f (t )) ‰Îfl β·˚ı s, t ≥ 0 Ë ÌÂÍÓÚÓÓ„Ó Á‡‰‡ÌÌÓ„Ó K ≥ 1. éÌÓ fl‚ÎflÂÚÒfl ÔÓ˜ÚË ÏÂÚËÍÓÈ, ÔÓÒÍÓθÍÛ Òӷ≇ÂÚÒfl ÛÒÎÓ‚Ë d ( P1 , P2 ) ≤ K ( d ( P1 , P3 ) + d ( P3 , P2 )). ê‡ÒÒÚÓflÌË ÅÛ·Ë–ê‡Ó ê‡ÒÒÏÓÚËÏ ÌÂÔÂ˚‚ÌÛ˛ ‚˚ÔÛÍÎÛ˛ ÙÛÌÍˆË˛ φ(t ) : (0, ∞) → Ë ÔÓÎÓÊËÏ φ(0) = lim φ(t ) ∈ ( −∞, ∞]. Ç˚ÔÛÍÎÓÒÚ¸ φ ‚ΘÂÚ ÌÂÓÚˈ‡ÚÂθÌÓÒÚ¸ ÙÛÌ͈ËË t→0
δ φ : [0, 1]2 → ( −∞, ∞], ÓÔ‰ÂÎÂÌÌÓÈ Í‡Í δ φ ( x, y) =
φ( x ) + φ( y) x + y ÂÒÎË (x, y) ≠ − φ 2 2
≠ (0, 0) Ë δφ (0, 0) = 0. ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ‡ÒÒÚÓflÌË ÅÛ·Ë–ê‡Ó ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑ δ φ ( p1 ( x ), p2 ( x )). x
ê‡ÒÒÚÓflÌË Å„χ̇ ê‡ÒÒÏÓÚËÏ ‰ËÙÙÂÂ̈ËÛÂÏÛ˛ ‚˚ÔÛÍÎÛ˛ ÙÛÌÍˆË˛ φ(t): (0, ∞) → Ë ÔÓÎÓÊËÏ φ(0) = lim φ(t ) ∈ ( −∞, ∞]. Ç˚ÔÛÍÎÓÒÚ¸ φ ‚ΘÂÚ ÌÂÓÚˈ‡ÚÂθÌÓÒÚ¸ ÙÛÌ͈ËË t→0
δ φ : [0, 1]2 → ( −∞, ∞], ÓÔ‰ÂÎÂÌÌÓÈ Í‡Í ÌÂÔÂ˚‚ÌÓ ÔÓ‰ÓÎÊÂÌË ÙÛÌ͈ËË δ φ (u, v) = φ(u) − φ( v) − φ ′( v)(u − v), 0 < u, v ≤ 1 ̇ [0, 1]2 . ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ‡ÒÒÚÓflÌË Å„χ̇ ̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í m
∑ δ φ ( pi , qi ) 1
(ÒÏ. 䂇ÁˇÒÒÚÓflÌË Å„χ̇). f-‡ÒıÓʉÂÌË óËÁ‡‡ f-‡ÒıÓʉÂÌË óËÁ‡‡ ÂÒÚ¸ ÙÛÌ͈Ëfl ̇ ÏÌÓÊÂÒÚ‚Â ×, ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑ x
p ( x) p2 ( x ) f 1 , p2 ( x )
„‰Â f: ≥0 → – ‚˚ÔÛÍ·fl ÙÛÌ͈Ëfl. ëÎÛ˜‡Ë f(t ) = t ln t Ë f(t) = (t – 1)2 /2 ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú ‡ÒÒÚÓflÌ˲ äÛÎη‡Í‡– ãÂȷ· Ë 2 -‡ÒÒÚÓflÌ˲, Û͇Á‡ÌÌ˚ı ÌËÊÂ. ëÎÛ˜‡È f(t) = | t – 1 | ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ L1 -ÏÂÚËÍ ÏÂÊ‰Û ÔÎÓÚÌÓÒÚflÏË, ‡ ÒÎÛ˜‡È f (t ) = 4 1 − t (Ú‡Í ÊÂ Í‡Í Ë ÒÎÛ˜‡È
(
)
f (t ) = 2(t + 1) − 4 t ) ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Í‚‡‰‡ÚÛ ÏÂÚËÍË ïÂÎÎË̉ʇ.
É·‚‡ 14. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ 219
èÓÎÛÏÂÚËÍË ÏÓ„ÛÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ˚ Ú‡Í ÊÂ, Í‡Í Í‚‡‰‡ÚÌ˚È ÍÓÂ̸ f-‡ÒıÓʉÂÌËfl óËÁ‡‡ ‚ ÒÎÛ˜‡flı f (t ) = (t − 1)2 /(t + 1) (ÔÓÎÛÏÂÚË͇ LJʉ˚–äÛÒ‡), f (t ) = = | t a − 1 |1 / a Ò 0 < a ≤ 1 (ÔÓÎÛÏÂÚË͇ å‡ÚÛ¯ËÚ˚) Ë f (t ) =
(t a + 1)1 / a − 2 (1− a ) / a (t + 1) 1 −1/ a
(ÔÓÎÛÏÂÚË͇ éÒÚÂÂÈı‡). èÓ‰Ó·ÌÓÒÚ¸ ‰ÓÒÚÓ‚ÂÌÓÒÚË èÓ‰Ó·ÌÓÒÚ¸ ‰ÓÒÚÓ‚ÂÌÓÒÚË (ËÎË ÍÓ˝ÙÙˈËÂÌÚ Åı‡ÚÚ‡˜‡¸fl, ‡ÙÙËÌÌÓÒÚ¸ ïÂÎÎË̉ʇ) ̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í ρ( P1 , P2 ) =
∑
p1 ( x ) p2 ( x ).
x
åÂÚË͇ ïÂÎÎË̉ʇ Ç ÚÂÏË̇ı ÔÓ‰Ó·ÌÓÒÚË ‰ÓÒÚÓ‚ÂÌÓÒÚË, ÏÂÚË͇ ïÂÎÎË̉ʇ (ËÎË ÏÂÚË͇ ïÂÎÎË̉ʇ–ä‡ÍÛÚ‡ÌË) ̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í 2
∑( x
)
2
p1 ( x ) − p2 ( x )
1/ 2
= 2(1 − ρ( P1 , P2 ))1 / 2 .
ùÚÓ – L2 -ÏÂÚË͇ ÏÂÊ‰Û Í‚‡‰‡ÚÌ˚ÏË ÍÓÌflÏË ÙÛÌ͈ËÈ ÔÎÓÚÌÓÒÚË. èÓ‰Ó·ÌÓÒÚ¸ Ò‰ÌÂ„Ó „‡ÏÓÌ˘ÂÒÍÓ„Ó èÓ‰Ó·ÌÓÒÚ¸ Ò‰ÌÂ„Ó „‡ÏÓÌ˘ÂÒÍÓ„Ó ÂÒÚ¸ ÔÓ‰Ó·ÌÓÒÚ¸ ̇ , ÓÔ‰ÂÎÂÌ̇fl Í‡Í 2
∑ p1 (1x ) + p2 2 ( x ) . p ( x) p ( x)
x
ê‡ÒÒÚÓflÌË 1 Åı‡ÚÚ‡˜‡¸fl Ç ÚÂÏË̇ı ÔÓ‰Ó·ÌÓÒÚË ‰ÓÒÚÓ‚ÂÌÓÒÚË, ‡ÒÒÚÓflÌË 1 Åı‡ÚÚ‡˜‡¸fl ̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í (arccos ρ(P1 , P2 )) 2 . 쉂ÓÂÌË ڇÍÓ„Ó ‡ÒÒÚÓflÌËfl ÔËÏÂÌflÂÚÒfl Ú‡ÍÊ ‚ ÒÚ‡ÚËÒÚËÍÂ Ë Ï‡¯ËÌÌÓÏ Ó·Û˜ÂÌËË, „‰Â ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ î˯‡. ê‡ÒÒÚÓflÌË 2 Åı‡ÚÚ‡˜‡¸fl Ç ÚÂÏË̇ı ÔÓ‰Ó·ÌÓÒÚË ‰ÓÒÚÓ‚ÂÌÓÒÚË, ‡ÒÒÚÓflÌË 2 Åı‡ÚÚ‡˜‡¸fl ̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í –ln ρ(P1 , P2 ). 2 -‡ÒÒÚÓflÌË 2 -‡ÒÒÚÓflÌË (ËÎË 2 -‡ÒÒÚÓflÌË çÂÈχ̇) ÂÒÚ¸ Í‚‡ÁˇÒÒÚÓflÌË ̇ , ÓÔ‰ÂÎÂÌÌÓ ͇Í
∑ x
( p1 ( x ) − p2 ( x ))2 . p2 ( x )
220
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
2 -‡ÒÒÚÓflÌË èËÒÓ̇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑ x
( p1 ( x ) − p2 ( x ))2 . p1 ( x )
ÇÂÓflÚÌÓÒÚ̇fl ÒËÏÏÂÚ˘ÂÒ͇fl 2 -χ ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ , ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í 2
∑ x
( p1 ( x ) − p2 ( x ))2 . p1 ( x ) − p2 ( x )
ê‡ÒÒÚÓflÌË ‡Á‰ÂÎÂÌËfl ê‡ÒÒÚÓflÌËÂÏ ‡Á‰ÂÎÂÌËfl ̇Á˚‚‡ÂÚÒfl Í‚‡ÁˇÒÒÚÓflÌË ̇ (‰Îfl β·Ó„Ó Ò˜ÂÚÌÓ„Ó χ), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í p ( x) max1 − 1 . x p2 ( x ) (ç ÔÛÚ‡Ú¸ Ò ‡ÒÒÚÓflÌËÂÏ ‡Á‰ÂÎÂÌËfl ÏÂÊ‰Û ‚˚ÔÛÍÎ˚ÏË Ú·ÏË.) ê‡ÒÒÚÓflÌË äÛÎη‡Í‡–ãeȷ· ê‡ÒÒÚÓflÌË äÛÎη‡Í‡–ãÂȷ· (ËÎË ÓÚÌÓÒËÚÂθ̇fl ˝ÌÚÓÔËfl, ÓÚÍÎÓÌÂÌË ËÌÙÓχˆËË, KL-‡ÒÒÚÓflÌËÂ) ÂÒÚ¸ Í‚‡ÁˇÒÒÚÓflÌË ̇ , ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í KL( P1 , P2 ) = P1 [ln L] =
∑
p1 ( x ) ln
x
„‰Â L =
p1 ( x ) , p2 ( x )
p1 ( x ) – ÓÚÌÓ¯ÂÌË ԇ‚‰ÓÔÓ‰Ó·Ëfl. ëΉӂ‡ÚÂθÌÓ, p2 ( x )
KL( P1 , P2 ) = −
∑ x
( p1 ( x ) ln p2 ( x )) +
∑
( p1 ( x ) ln p1 ( x )) = H ( P1 , P2 ) − H ( P1 ),
x
„‰Â H ( P1 ) – ˝ÌÚÓÔËfl P1 , ‡ H ( P1 , P2 ) – ÔÂÂÍeÒÚ̇fl ˝ÌÚÓÔËfl P1 Ë P2 . ÖÒÎË P2 fl‚ÎflÂÚÒfl ÔÓËÁ‚‰ÂÌËÂÏ Ï‡„Ë̇ÎÓ‚ P1 , ÚÓ KL-‡ÒÒÚÓflÌË KL(P1 , P2 ) ̇Á˚‚‡ÂÚÒfl p ( x, y) ÍÓ΢ÂÒÚ‚ÓÏ ËÌÙÓχˆËË ò˝ÌÌÓ̇ Ë ‡‚ÌÓ p1 ( x, y) ln 1 (ÒÏ. ‡Òp1 ( x ) p1 ( y) ( x , y ) ∈χ × χ
∑
ÒÚÓflÌË ò˝ÌÌÓ̇). äÓÒÓ ‡ÒıÓʉÂÌË äÓÒÓ ‡ÒıÓʉÂÌË – Í‚‡ÁˇÒÒÚÓflÌË ̇ , ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í KL( P1 , aP2 + (1 − a) P1 ), „‰Â a ∈ [0, 1] – ÍÓÌÒÚ‡ÌÚ‡ Ë KL – ‡ÒÒÚÓflÌË äÛÎη‡Í‡–ãÂȷ·. í‡ÍËÏ Ó·‡ÁÓÏ, 1 ÒÎÛ˜‡È a = 1 ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ KL(P 1 , P2 ). äÓÒÓ ‡ÒıÓʉÂÌËÂ Ò a = ̇Á˚‚‡ÂÚÒfl 2 K-‡ÒıÓʉÂÌËÂÏ.
É·‚‡ 14. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ 221
ê‡ÒıÓʉÂÌË ÑÊÂÙÙË ê‡ÒıÓʉÂÌËÂÏ ÑÊÂÙÙË (ËÎË J-‡ÒıÓʉÂÌËÂÏ) ̇Á˚‚‡ÂÚÒfl ÒËÏÏÂÚ˘̇fl ‚ÂÒËfl ‡ÒÒÚÓflÌËfl äÛÎη‡Í‡–ãÂȷ·, ÓÔ‰ÂÎÂÌ̇fl Í‡Í KL( P1 , P2 ) + KL( P2 , P1 ) =
∑ x
p1 ( x ) p ( x) + p2 ( x ) ln 2 . p1 ( x ) ln p ( x ) p1 ( x ) 2
ÑÎfl P1 → P2 ‡ÒıÓʉÂÌË ÑÊÂÙÙË ‚‰ÂÚ Ò·fl ‡Ì‡Îӄ˘ÌÓ 2 -‡ÒÒÚÓflÌ˲. ê‡ÒıÓʉÂÌË ÑÊÂÌÒÂ̇–ò˝ÌÌÓ̇ ê‡ÒıÓʉÂÌË ÑÊÂÌÒÂ̇–ò˝ÌÌÓ̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í aKL( P1 , P3 ) + (1 − a) KL( P2 , P3 ), „‰Â P3 = aP1 + (1 − a) P2 Ë a ∈ [0, 1] – ÍÓÌÒÚ‡ÌÚ‡ (ÒÏ. èÓ‰Ó·ÌÓÒÚ¸ flÒÌÓÒÚË). ç‡ flÁ˚Í ˝ÌÚÓÔËË H ( P) =
∑
p( x ) ln p( x ) ‡ÒıÓʉÂÌË ÑÊÂÌÒÂ̇–ò˝ÌÌÓ̇
x
‡‚ÌÓ H ( aP1 + (1 − a) P2 ) − aH ( P1 ) − (1 − a) H ( P2 ). ê‡ÒÒÚÓflÌË íÓÔÒ ÂÒÚ¸ ÒËÏÏÂÚ˘̇fl ‚ÂÒËfl ‡ÒÒÚÓflÌËfl äÛÎη‡Í‡–ãÂȷ· ̇ . éÌÓ ÓÔ‰ÂÎflÂÚÒfl Í‡Í KL( P1 , P3 ) + KL( P2 , P3 ) =
∑ x
p1 ( x ) p ( x) + p2 ( x ) ln 2 , p1 ( x ) ln p3 ( x ) p3 ( x )
1 ( P1 + P2 ). ê‡ÒÒÚÓflÌË íÓÔÒ ÂÒÚ¸ Û‰‚ÓÂÌÌÓ ‡ÒıÓʉÂÌË ÑÊÂÌÒÂ̇– 2 1 ò˝ÌÌÓ̇ Ò a = . çÂÍÓÚÓ˚ ‡‚ÚÓ˚ ËÒÔÓθÁÛ˛Ú ÚÂÏËÌ "‡ÒıÓʉÂÌË ÑÊÂÌÒÂ̇– 2 ò˝ÌÌÓ̇" ÚÓθÍÓ ‰Îfl ‰‡ÌÌÓÈ ‚Â΢ËÌ˚ ‡. ê‡ÒÒÚÓflÌË ÚÓÊ ÏÂÚËÍÓÈ Ì fl‚ÎflÂÚÒfl, ÌÓ Â„Ó Í‚‡‰‡ÚÌ˚È ÍÓÂ̸ – ÏÂÚË͇. „‰Â P3 =
ê‡ÒÒÚÓflÌË Ò‰ÌÂ„Ó ÒÓÔÓÚË‚ÎÂÌËfl ê‡ÒÒÚÓflÌË Ò‰ÌÂ„Ó ÒÓÔÓÚË‚ÎÂÌËfl ÔÓ ÑÊÂÌÒÂÌÛ–òËχÌÓ‚Ë˜Û ÂÒÚ¸ ÒËÏÏÂÚ˘̇fl ‚ÂÒËfl ‡ÒÒÚÓflÌËfl äÛÎη‡Í‡–ãÂȷ· ̇ . éÌÓ ÓÔ‰ÂÎflÂÚÒfl Í‡Í „‡ÏÓÌ˘ÂÒ͇fl ÒÛÏχ 1 1 + KL( P1 , P2 ) KL( P2 , P1 )
−1
(ÒÏ. åÂÚË͇ ÒÓÔÓÚË‚ÎÂÌËfl ‰Îfl „‡ÙÓ‚, „Î. 15). ê‡ÒÒÚÓflÌË ÄÎË–ëË΂Âfl ê‡ÒÒÚÓflÌË ÄÎË–ëË΂Âfl ÂÒÚ¸ Í‚‡ÁˇÒÒÚÓflÌË ̇ , Á‡‰‡ÌÌÓ ÙÛÌ͈ËÓ̇ÎÓÏ f ( P1 [ g( L)]), p1 ( x ) – ÓÚÌÓ¯ÂÌË ԇ‚‰ÓÔÓ‰Ó·Ëfl, f – ÌÂÛ·˚‚‡˛˘‡fl ÙÛÌ͈Ëfl, ‡ g – ÌÂÔÂp2 ( x ) ˚‚̇fl ‚˚ÔÛÍ·fl ÙÛÌ͈Ëfl (ÒÏ. f-‡ÒıÓʉÂÌË óËÁ‡‡). ëÎÛ˜‡È f(x) = x, g(x ) = x ln x ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡ÒÒÚÓflÌ˲ äÛÎη‡Í‡–ãÂȷ·; ÒÎÛ˜‡È f(x) = –ln x, g(x) = x' – ‡ÒÒÚÓflÌ˲ óÂÌÓ‚‡.
„‰Â L =
222
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
ê‡ÒÒÚÓflÌË óÂÌÓ‚‡ ê‡ÒÒÚÓflÌËÂÏ óÂÌÓ‚‡ (ËÎË ÔÂÂÍeÒÚÌÓÈ ˝ÌÚÓÔËÂÈ êÂ̸Ë) ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ , ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í max Dt ( P1 , P2 ),
t ∈[ 0,1]
„‰Â Dt ( P1 , P2 ) = − ln
∑
( p1 ( x ))t ( p2 ( x ))1− t , ˜ÚÓ ÔÓÔÓˆËÓ̇θÌÓ ‡ÒÒÚÓflÌ˲ êÂ̸Ë.
x
1 ëÎÛ˜‡È t = ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡ÒÒÚÓflÌ˲ 2 Åı‡ÚÚ‡˜‡¸fl. 2 ê‡ÒÒÚÓflÌË êÂÌ¸Ë ê‡ÒÒÚÓflÌË êÂÌ¸Ë (ËÎË ˝ÌÚÓÔËfl êÂÌ¸Ë ÔÓfl‰Í‡ t) ÂÒÚ¸ Í‚‡ÁˇÒÒÚÓflÌË ̇ , ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í 1 ln t −1
∑ x
t
p ( x) p2 ( x ) 1 , p2 ( x )
„‰Â t ≥ 0, t ≠ 1. è‰ÂÎÓÏ ‡ÒÒÚÓflÌËfl êÂÌ¸Ë ‰Îfl t → 1 fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌË äÛÎη‡Í‡–ãÂȷ·. 1 ÑÎfl t = ÔÓÎÓ‚Ë̇ ‡ÒÒÚÓflÌËfl êÂÌ¸Ë ÂÒÚ¸ ‡ÒÒÚÓflÌË 2 Åı‡ÚÚ‡˜‡¸fl (ÒÏ. f-‡ÒıÓÊ2 ‰ÂÌË óËÁ‡‡ Ë ‡ÒÒÚÓflÌË óÂÌÓ‚‡). èÓ‰Ó·ÌÓÒÚ¸ flÒÌÓÒÚË èÓ‰Ó·ÌÓÒÚ¸ flÒÌÓÒÚË – ˝ÚÓ ÔÓ‰Ó·ÌÓÒÚ¸ ̇ , ÓÔ‰ÂÎÂÌ̇fl Í‡Í ( KL( P1 , P3 ) + KL( P2 , P3 )) − ( KL( P1 , P2 ) + KL( P2 , P1 )) = =
∑ x
p2 ( x ) p ( x) + p2 ( x ) ln 1 , p1 ( x ) ln p3 ( x ) p3 ( x )
„‰Â KL – ‡ÒÒÚÓflÌË äÛÎη‡Í‡–ãÂȷ· Ë P 3 – Á‡‰‡ÌÌ˚È ÒÒ˚ÎÓ˜Ì˚È Á‡ÍÓÌ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ. ÇÔ‚˚ ÓÔ‰ÂÎÂ̇ ‚ Úۉ [CCL01], „‰Â P 3 ÓÁ̇˜‡ÎÓ ‡ÒÔ‰ÂÎÂÌË ‚ÂÓflÚÌÓÒÚÂÈ Ó·˘Â„Ó ‡Ì„ÎËÈÒÍÓ„Ó flÁ˚͇. ê‡ÒÒÚÓflÌË ò˝ÌÌÓ̇ ÑÎfl ÔÓÒÚ‡ÌÒÚ‚‡ Ò ÏÂÓÈ (Ω, , P) „‰Â ÏÌÓÊÂÒÚ‚Ó Ω ÍÓ̘ÌÓ Ë ê fl‚ÎflÂÚÒfl ‚ÂÓflÚÌÓÒÚÌÓÈ ÏÂÓÈ, ˝ÌÚÓÔËfl ÙÛÌ͈ËË f : Ω → X, „‰Â ï – ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó, ÓÔ‰ÂÎflÂÚÒfl Í‡Í H( f ) =
∑
P( f = x ) ln( P( f = x ));
x ∈X
ÒΉӂ‡ÚÂθÌÓ, f ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ‡Á·ËÂÌË ÔÓÒÚ‡ÌÒÚ‚‡ Ò ÏÂÓÈ. ÑÎfl β·˚ı ‰‚Ûı Ú‡ÍËı ‡Á·ËÂÌËÈ f : Ω → X Ë g : Ω → Y Ó·ÓÁ̇˜ËÏ ˝ÌÚÓÔ˲ ‡Á·ËÂÌËfl (f, g): Ω → X × Y (Ó·˘Û˛ ˝ÌÚÓÔ˲) Í‡Í H(f, g) Ë ÛÒÎÓ‚ÌÛ˛ ˝ÌÚÓÔ˲ Í‡Í H(f | g). íÓ„‰‡ ‡ÒÒÚÓflÌË ò˝ÌÌÓ̇ ÏÂÊ‰Û f Ë g ÓÔ‰ÂÎflÂÚÒfl Í‡Í 2H ( f , g) − H ( f ) − H ( g) = H ( f | g) + H ( g | f ).
É·‚‡ 14. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ‚ÂÓflÚÌÓÒÚÂÈ 223
чÌÌÓ ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ. äÓ΢ÂÒÚ‚Ó ËÌÙÓχˆËË ò˝ÌÌÓ̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í H ( f , g) − H ( f ) − H ( g) =
∑
p( f = x, g = y) ln
( x, y)
p( f = x, g = y) . p( f = x ) p( g = y)
ÖÒÎË ê – Á‡ÍÓÌ ‡‚ÌÓÏÂÌÓ„Ó ‡ÒÔ‰ÂÎÂÌËfl ‚ÂÓflÚÌÓÒÚÂÈ, ÚÓ, Í‡Í ‰Ó͇Á‡Î ÉÓÔÔ‡, ‡ÒÒÚÓflÌË ò˝ÌÌÓ̇ ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌÓ Í‡Í Ô‰ÂθÌ˚È ÒÎÛ˜‡È ÏÂÚËÍË ÍÓ̘Ì˚ı ÔÓ‰„ÛÔÔ. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÏÂÚË͇ ËÌÙÓχˆËË (ËÎË ÏÂÚË͇ ˝ÌÚÓÔËË) ÏÂÊ‰Û ‰‚ÛÏfl ÒÎÛ˜‡ÈÌ˚ÏË ‚Â΢Ë̇ÏË (ËÒÚÓ˜ÌË͇ÏË ËÌÙÓχˆËË) ï Ë Y ÓÔ‰ÂÎflÂÚÒfl Í‡Í H(X | Y) + H(Y | X), „‰Â ÛÒÎӂ̇fl ˝ÌÚÓÔËfl H(X | Y ) ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑∑
p( x, y) ln p( x | y) Ë
x ∈X y ∈Y
p( x, y) = P( X = x | Y = y) fl‚ÎflÂÚÒfl ÛÒÎÓ‚ÌÓÈ ‚ÂÓflÚÌÓÒÚ¸˛. çÓχÎËÁËÓ‚‡Ì̇fl ÏÂÚË͇ ËÌÙÓχˆËË ÓÔ‰ÂÎflÂÚÒfl Í‡Í H ( X | Y ) − H (Y | X ) . H ( X, Y ) é̇ ‡‚̇ 1, ÂÒÎË X Ë Y ÌÂÁ‡‚ËÒËÏ˚ (ÒÏ. ‰Û„Ó ÔÓÌflÚË çÓχÎËÁËÓ‚‡ÌÌÓ„Ó ‡ÒÒÚÓflÌËfl ËÌÙÓχˆËË, „Î. 11). åÂÚË͇ ä‡ÌÚÓӂ˘‡–å˝ÎÎÓÛÁ‡–åÓÌʇ–LJÒÒ¯ÚÂÈ̇ ÑÎfl ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (χ, d) ÏÂÚË͇ ä‡ÌÚÓӂ˘‡–å˝ÎÎÓÛÁ‡–åÓÌʇ– LJÒÒ¯ÚÂÈ̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í inf S[d(X, Y)], „‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‡ÒÔ‰ÂÎÂÌËflÏ S Ô‡ (X, Y) ÒÎÛ˜‡ÈÌ˚ı ‚Â΢ËÌ X Ë Y, Ú‡ÍËı ˜ÚÓ Ï‡„Ë̇θÌ˚ÏË ‡ÒÔ‰ÂÎÂÌËflÏË X Ë Y fl‚Îfl˛ÚÒfl P1 Ë P2. ÑÎfl β·Ó„Ó ÒÂÔ‡‡·ÂθÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (χ, d) ˝ÚÓ ˝Í‚Ë‚‡ÎÂÌÚÌÓ ÎËÔ¯ËˆÂ‚Û ‡ÒÒÚÓflÌ˲ ÏÂÊ‰Û Ï‡ÏË sup f
∫
fd ( P1 − P2 ), „‰Â ÒÛÔÂÏÛÏ ·ÂÂÚÒfl ÔÓ
‚ÒÂÏ ÙÛÌ͈ËflÏ f Ò | f ( x ) − f ( y) | ≤ d ( x, y) ‰Îfl β·˚ı x, y ∈ χ. Ç ·ÓΠӷ˘ÂÏ ÒÏ˚ÒΠLp -‡ÒÒÚÓflÌË LJÒÒ¯ÚÂÈ̇ ‰Îfl χ = n ÓÔ‰ÂÎflÂÚÒfl Í‡Í (inf S [d p ( X , Y )])1 / p , Ë ‰Îfl p = 1 ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl Ú‡ÍÊ ρ -‡ÒÒÚÓflÌËÂÏ. ÑÎfl (χ, d) = (, | x – y |) ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl Lp-ÏÂÚËÍÓÈ ÏÂÊ‰Û ÙÛÌ͈ËflÏË ‡ÒÔ‰ÂÎÂÌËfl (CDF) Ë Â„Ó ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ (inf [| X − Y | ]) p
1/ p
= | F1 ( x ) − F2 ( x ) | p dx
∫
1/ p
1 = | F1−1 ( x ) − F2−1 ( x ) | p dx 0
1/ p
∫
Ò Fi −1 ( x ) = sup( Pi ( X ≤ x ) < u). u
ëÎÛ˜‡È p = 1 ˝ÚÓÈ ÏÂÚËÍË Ì‡Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ åÓÌʇ–ä‡ÌÚÓӂ˘‡ (ËÎË, ‚ ÚÂÓËË Ù‡ÍÚ‡ÎÓ‚ ÏÂÚËÍÓÈ ï‡Ú˜ËÌÒÓ̇), ÏÂÚËÍÓÈ Ç‡ÒÒ¯ÚÂÈ̇ (ËÎË ÏÂÚËÍÓÈ îÓÚ–åÛ¸Â)
224
ó‡ÒÚ¸ III. ê‡ÒÒÚÓflÌËfl ‚ Í·ÒÒ˘ÂÒÍÓÈ Ï‡ÚÂχÚËÍÂ
d -ÏÂÚË͇ é̯ÚÂÈ̇ d -ÏÂÚË͇ é̯ÚÂÈ̇ ÂÒÚ¸ ÏÂÚË͇ ̇ (‰Îfl χ = n), ÓÔ‰ÂÎÂÌ̇fl Í‡Í 1 inf n
n 1x i ≠ yi dS, i =1
∫ ∑
x, y
„‰Â ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÒÓ‚ÏÂÒÚÌ˚Ï ‡ÒÔ‰ÂÎÂÌËflÏ S Ô‡ (X, Y) ÒÎÛ˜‡ÈÌ˚ı ‚Â΢ËÌ X Ë Y, Ú‡ÍËı ˜ÚÓ Ï‡„Ë̇θÌ˚ÏË ‡ÒÔ‰ÂÎÂÌËflÏË X Ë Y fl‚Îfl˛ÚÒfl P1 Ë P2 . чÌ̇fl ÏÂÚË͇ ËÒÔÓθÁÛÂÚÒfl ‚ ÚÂÓËË ÒÚ‡ˆËÓ̇Ì˚ı ÒÎÛ˜‡ÈÌ˚ı ÔÓˆÂÒÒÓ‚, ÚÂÓËË ‰Ë̇Ï˘ÂÒÍËı ÒËÒÚÂÏ Ë ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl.
ó‡ÒÚ¸ IV
êÄëëíéüçàü Ç èêàäãÄÑçéâ åÄíÖåÄíàäÖ
É·‚‡ 15
ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
ɇÙÓÏ Ì‡Á˚‚‡ÂÚÒfl Ô‡‡ G = (V, E), „‰Â V – ÏÌÓÊÂÒÚ‚Ó, ̇Á˚‚‡ÂÏÓ ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ „‡Ù‡ G, Ë Ö – ÏÌÓÊÂÒÚ‚Ó ÌÂÛÔÓfl‰Ó˜ÂÌÌ˚ı Ô‡ ‚¯ËÌ, ÍÓÚÓ˚ ̇Á˚‚‡˛ÚÒfl ·‡ÏË „‡Ù‡ G . éËÂÌÚËÓ‚‡ÌÌ˚È „‡Ù (ËÎË Ó„‡Ù) ÂÒÚ¸ Ô‡‡ D = (V, E), „‰Â V – ÏÌÓÊÂÒÚ‚Ó, ̇Á˚‚‡ÂÏÓ ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ Ó„‡Ù‡ D, Ë Ö – ÏÌÓÊÂÒÚ‚Ó ÛÔÓfl‰Ó˜ÂÌÌ˚ı Ô‡ ‚¯ËÌ, ÍÓÚÓ˚ ̇Á˚‚‡˛ÚÒfl ‰Û„‡ÏË Ó„‡Ù‡ D. ɇÙ, Û ÍÓÚÓÓ„Ó Î˛·˚ ‰‚ ‚¯ËÌ˚ ÒÓ‰ËÌÂÌ˚ Ì ·ÓΠ˜ÂÏ Ó‰ÌËÏ Â·ÓÏ, ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ˚Ï „‡ÙÓÏ. ÖÒÎË ‰ÓÔÛÒ͇ÂÚÒfl ÒÓ‰ËÌÂÌË ‚¯ËÌ Í‡ÚÌ˚ÏË (Ô‡‡ÎÎÂθÌ˚ÏË) ·‡ÏË, ÚÓ Ú‡ÍÓÈ „‡Ù ̇Á˚‚‡ÂÚÒfl ÏÛθÚË„‡ÙÓÏ. ɇ٠̇Á˚‚‡ÂÚÒfl ÍÓ̘Ì˚Ï (·ÂÒÍÓ̘Ì˚Ï), ÂÒÎË ÏÌÓÊÂÒÚ‚Ó V Â„Ó ‚¯ËÌ ÍÓ̘ÌÓ (ËÎË ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ·ÂÒÍÓ̘ÌÓ). èÓfl‰ÍÓÏ ÍÓ̘ÌÓ„Ó „‡Ù‡ ̇Á˚‚‡ÂÚÒfl ÍÓ΢ÂÒÚ‚Ó Â„Ó ‚¯ËÌ; ‡ÁÏÂÓÏ ÍÓ̘ÌÓ„Ó „‡Ù‡ ̇Á˚‚‡ÂÚÒfl ˜ËÒÎÓ Â„Ó Â·Â. ɇ٠ËÎË ÓËÂÌÚËÓ‚‡ÌÌ˚È „‡Ù ÒÓ‚ÏÂÒÚÌÓ Ò ÙÛÌ͈ËÂÈ, ÔËÔËÒ˚‚‡˛˘ÂÈ ÔÓÎÓÊËÚÂθÌ˚È ‚ÂÒ Í‡Ê‰ÓÏÛ Â·Û, ̇Á˚‚‡ÂÚÒfl ‚Á‚¯ÂÌÌ˚Ï „‡ÙÓÏ ËÎË ÒÂÚ¸˛. ëÂÚ¸ Ú‡ÍÊ ̇Á˚‚‡˛Ú ͇͇ÒÓÏ ‚ ÚÓÏ ÒÎÛ˜‡Â ÍÓ„‰‡ ‚ÂÒ‡ ËÌÚÂÔÂÚËÛ˛ÚÒfl Í‡Í ‰ÎËÌ˚ · ‚ÓÁÏÓÊÌÓ„Ó ‚ÎÓÊÂÌËfl ‚ ÌÂÍÓÚÓÓ ‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó. Ç ÚÂÏË̇ı ÚÂÓËË ÔÓ˜ÌÓÒÚË Â·‡ ͇͇҇ ̇Á˚‚‡˛ÚÒfl ÔÛÚ¸flÏË (Ó·˚˜ÌÓ Ó‰Ë̇ÍÓ‚ÓÈ ‰ÎËÌ˚); ÚÂÌÒ„ËÚË – ˝ÚÓ Í‡Í‡Ò̇fl ÒÚÛÍÚÛ‡, ‚ ÍÓÚÓÓÈ ÔÛÚ¸fl fl‚Îfl˛ÚÒfl ÎË·Ó ˝ÎÂÏÂÌÚÓÏ Ì‡ÚflÊÂÌËfl – ÚÓÒ‡ÏË (Ú.Â. Ì ÏÓ„ÛÚ ÓÚ‰‡ÎËÚ¸Òfl ‰Û„ ÓÚ ‰Û„‡), ÎË·Ó ˝ÎÂÏÂÌÚÓÏ ÒʇÚËfl – ‡ÒÔÓ͇ÏË (Ú.Â. Ì ÏÓ„ÛÚ Ò·ÎËÁËÚ¸Òfl). èÓ‰„‡ÙÓÏ „‡Ù‡ G ̇Á˚‚‡ÂÚÒfl „‡Ù G', ‚¯ËÌ˚ Ë Â·‡ ÍÓÚÓÓ„Ó Ó·‡ÁÛ˛Ú ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ‚¯ËÌ Ë Â·Â „‡Ù‡ G. ÖÒÎË G' fl‚ÎflÂÚÒfl ÔÓ‰„‡ÙÓÏ G, ÚÓ „‡Ù G ̇Á˚‚‡ÂÚÒfl ÒÛÔ„‡ÙÓÏ „‡Ù‡ G ' . à̉ۈËÓ‚‡ÌÌ˚È ÔÓ‰„‡Ù – ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ‚¯ËÌ „‡Ù‡ G ‚ÏÂÒÚ ÒÓ ‚ÒÂÏË Â·‡ÏË, Ó·Â ÍÓ̘Ì˚ ÚÓ˜ÍË ÍÓÚÓ˚ı ÔË̇‰ÎÂÊ‡Ú ‰‡ÌÌÓÏÛ ÔÓ‰ÏÌÓÊÂÒÚ‚Û. ɇ٠G = (V, E) ̇Á˚‚‡ÂÚÒfl Ò‚flÁÌ˚Ï, ÂÒÎË ‰Îfl β·˚ı ‚¯ËÌ u, v ∈ V ÒÛ˘ÂÒÚ‚ÛÂÚ (u – v) ÔÛÚ¸, Ú.Â. ڇ͇fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ · uw1 = w0 w 1 , w1 w 2 ,…, wn–1w n = = w n–1 v ËÁ Ö, ˜ÚÓ wi ≠ wj ‰Îfl i ≠ j, i, j ∈ {0, 1,…, n}. 鄇٠D = (V, E) ̇Á˚‚‡ÂÚÒfl ÒËθÌÓ Ò‚flÁÌ˚Ï, ÂÒÎË ‰Îfl β·˚ı ‚¯ËÌ u, v ∈ V ÒÛ˘ÂÒÚ‚Û˛Ú Í‡Í ÓËÂÌÚËÓ‚‡ÌÌ˚È (u – v) ÔÛÚ¸, Ú‡Í Ë ÓËÂÌÚËÓ‚‡ÌÌ˚È (v – u) ÔÛÚ¸. ã˛·ÓÈ Ï‡ÍÒËχθÌ˚È Ò‚flÁÌ˚È ÔÓ‰„‡Ù „‡Ù‡ G ̇Á˚‚‡ÂÚÒfl Â„Ó Ò‚flÁÌÓÈ ÍÓÏÔÓÌÂÌÚÓÈ. ëÓ‰ËÌÂÌÌ˚ ·ÓÏ ‚¯ËÌ˚ ̇Á˚‚‡˛ÚÒfl ÒÏÂÊÌ˚ÏË. ëÚÂÔÂ̸ deg(v) ‚¯ËÌ˚ v ∈ V „‡Ù‡ G = (V, E) ‡‚̇ ˜ËÒÎÛ Â„Ó ‚¯ËÌ, ÒÏÂÊÌ˚ı Ò v. èÓÎÌ˚Ï „‡ÙÓÏ Ì‡Á˚‚‡ÂÚÒfl „‡Ù, ͇ʉ‡fl Ô‡‡ ‚¯ËÌ ÍÓÚÓÓ„Ó ÒÓ‰ËÌÂ̇ ·ÓÏ. Ñ‚Û‰ÓθÌ˚È „‡Ù – „‡Ù, ‚ ÍÓÚÓÓÏ ÏÌÓÊÂÒÚ‚Ó ‚¯ËÌ V ‡Á·Ë‚‡ÂÚÒfl ̇ ‰‚‡ Ú‡ÍËı ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚‡, ˜ÚÓ ‚ Ó‰ÌÓÏ Ë ÚÓÏ Ê ÔÓ‰ÏÌÓÊÂÒÚ‚Â ÌÂÚ ÌË Ó‰ÌÓÈ Ô‡˚ ÒÏÂÊÌ˚ı ‚¯ËÌ. èÛÚ¸ – ˝ÚÓ ÔÓÒÚÓÈ Ò‚flÁÌ˚È „‡Ù, ‚ ÍÓÚÓÓÏ ‰‚ ‚¯ËÌ˚ ËÏÂ˛Ú ÒÚÂÔÂ̸ 1, ‡ ‰Û„Ë ‚¯ËÌ˚, ÂÒÎË ÓÌË ÒÛ˘ÂÒÚ‚Û˛Ú, ËÏÂ˛Ú ÒÚÂÔÂ̸ 2; ‰ÎËÌÓÈ ÔÛÚË fl‚ÎflÂÚÒfl ˜ËÒÎÓ Â„Ó Â·Â. ñËÍÎÓÏ fl‚ÎflÂÚÒfl Á‡ÏÍÌÛÚ˚È ÔÛÚ¸, Ú.Â. ÔÓÒÚÓÈ Ò‚flÁÌ˚È „‡Ù, ͇ʉ‡fl ‚¯Ë̇ ÍÓÚÓÓ„Ó ËÏÂÂÚ ÒÚÂÔÂ̸ 2. ÑÂÂ‚Ó – ˝ÚÓ ÔÓÒÚÓÈ Ò‚flÁÌ˚È „‡Ù, Ì Ëϲ˘ËÈ ˆËÍÎÓ‚.
227
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
Ñ‚‡ „‡Ù‡, ÒÓ‰Âʇ˘Ë ӉË̇ÍÓ‚Ó ˜ËÒÎÓ Ó‰Ë̇ÍÓ‚Ó ÒÓ‰ËÌÂÌÌ˚ı ‚¯ËÌ, ̇Á˚‚‡˛ÚÒfl ËÁÓÏÓÙÌ˚ÏË. îÓχθÌÓ, ‰‚‡ „‡Ù‡ G = (V(G), E(G )) Ë H = (V(H), E(H)) ̇Á˚‚‡˛ÚÒfl ËÁÓÏÓÙÌ˚ÏË, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ·ËÂ͈Ëfl f : V(G) → V(H), ڇ͇fl ˜ÚÓ ‰Îfl β·˚ı u, v ∈V(G) Â·Ó uv ∈ E(G) ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Â·Ó f(u)f(v) ∈ E(H). å˚ ·Û‰ÂÏ ‡ÒÒÏÓÚË‚‡Ú¸ ÚÓθÍÓ ÔÓÒÚ˚ ÍÓ̘Ì˚ „‡Ù˚ Ë Ó„‡Ù˚, ÚӘ̠Í·ÒÒ˚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË Ú‡ÍËı ËÁÓÏÓÙÌ˚ı „‡ÙÓ‚. 15.1. êÄëëíéüçàü çÄ ÇÖêòàçÄï ÉêÄîÄ åÂÚË͇ ÔÛÚË åÂÚËÍÓÈ ÔÛÚË (ËÎË ÏÂÚËÍÓÈ „‡Ù‡, ÏÂÚËÍÓÈ Í‡Ú˜‡È¯Â„Ó ÔÛÚË) dpath ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚¯ËÌ „‡Ù‡ G = (V, E), ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı u, v ∈ V Í‡Í ‰ÎË̇ ͇ژ‡È¯Â„Ó (u – v) ÔÛÚË ‚ G. ä‡Ú˜‡È¯ËÈ (u – v) ÔÛÚ¸ ̇Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍÓÈ ÎËÌËÂÈ. ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡Á˚‚‡ÂÚÒfl „‡Ù˘ÂÒÍËÏ ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ, Ò‚flÁ‡ÌÌ˚Ï Ò „‡ÙÓÏ G. åÂÚË͇ ÔÛÚË „‡Ù‡ ä˝ÎË É ÍÓ̘ÌÓ ÔÓÓʉÂÌÌÓÈ „ÛÔÔ˚ (G, ⋅ , e) ̇Á˚‚‡ÂÚÒfl ÒÎÓ‚‡ÌÓÈ ÏÂÚËÍÓÈ. åÂÚË͇ ÔÛÚË „‡Ù‡ G = (V, E), Ú‡ÍÓ„Ó ˜ÚÓ V ÏÓÊÂÚ ·˚Ú¸ ˆËÍ΢ÂÒÍË ÛÔÓfl‰Ó˜ÂÌÌÓ ‚ „‡ÏËθÚÓÌÓ‚ÓÏ ˆËÍÎÂ, ̇Á˚‚‡ÂÚÒfl „‡ÏËθÚÓÌÓ‚ÓÈ ÏÂÚËÍÓÈ. åÂÚË͇ „ËÔÂÍÛ·‡ – ÏÂÚË͇ ÔÛÚË „‡Ù‡ „ËÔÂÍÛ·‡ ç(m , 2) Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ V = {0, 1}m , ·‡ ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl Ô‡‡ÏË ‚ÂÍÚÓÓ‚ x, y ∈ ∈ {0, 1}m, Ú‡ÍËÏË ˜ÚÓ | {i ∈ {1,…, n}: x i ≠ yi} | = 1; Ó̇ ‡‚̇ | {i ∈ {1,…, n}: xi ≠ 1}∆{i ∈ {1,…, n}: y i = 1 |. ɇÙ˘ÂÒÍÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â „‡ÙÛ „ËÔÂÍÛ·‡, ̇Á˚‚‡ÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ „ËÔÂÍÛ·‡. éÌÓ ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ({0, 1}m , dl1 ). ÇÁ‚¯ÂÌ̇fl ÏÂÚË͇ ÔÛÚË ÇÁ‚¯ÂÌ̇fl ÏÂÚË͇ ÔÛÚË dwpath ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚¯ËÌ V Ò‚flÁÌÓ„Ó ‚Á‚¯ÂÌÌÓ„Ó „‡Ù‡ G = (V, E) Ò ÔÓÎÓÊËÚÂθÌ˚ÏË ‚ÂÒ‡ÏË e·Â (w(e)) e ∈ E, ÓÔ‰ÂÎÂÌ̇fl Í‡Í min P
∑ w(e),
e ∈P
„‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ (u – v) ÔÛÚflÏ ê ‚ G. ê‡ÒÒÚÓflÌË ӷıÓ‰‡ ê‡ÒÒÚÓflÌË ӷıÓ‰‡ – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ‚¯ËÌ V Ò‚flÁÌÓ„Ó „‡Ù‡ G = = (V, E), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ‰ÎË̇ Ò‡ÏÓ„Ó ‰ÎËÌÌÓ„Ó Ë̉ۈËÓ‚‡ÌÌÓ„Ó ÔÛÚË (Ú.Â. ÔÛÚË, ÍÓÚÓ˚È fl‚ÎflÂÚÒfl Ë̉ۈËÓ‚‡ÌÌ˚Ï ÔÓ‰„‡ÙÓÏ „‡Ù‡ G) ËÁ ‚¯ËÌ˚ u ‚ ‚¯ËÌÛ v ∈ V. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÓÌÓ Ì fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ. ɇ٠̇Á˚‚‡ÂÚÒfl „‡ÙÓÏ Ó·ıÓ‰‡, ÂÒÎË Â„Ó ‡ÒÒÚÓflÌË ӷıÓ‰‡ ÒÓ‚Ô‡‰‡ÂÚ Ò ÏÂÚËÍÓÈ ÔÛÚË (ÒÏ., ̇ÔËÏÂ, [CJT93]). 䂇ÁËÏÂÚË͇ ÔÛÚË ‚ Ó„‡Ù‡ı 䂇ÁËÏÂÚË͇ ÔÛÚË ‚ Ó„‡Ù‡ı ddpath ÂÒÚ¸ Í‚‡ÁËÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚¯ËÌ V ÒËθÌÓ Ò‚flÁÌÓ„Ó ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó „‡Ù‡ D = (V, E), ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı u, v ∈ V Í‡Í ‰ÎË̇ ͇ژ‡È¯Â„Ó ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó (u – v) ÔÛÚË ‚ „‡Ù D. ïÓÓ¯ËÈ Ú‡ÍÒËÒÚ ÔË ÂÁ‰Â ÔÓ „ÓÓ‰ÒÍËÏ ÛÎˈ‡Ï Ò Ó‰ÌÓÒÚÓÓÌÌËÏ ‰‚ËÊÂÌËÂÏ ‰ÓÎÊÂÌ ÔÓθÁÓ‚‡Ú¸Òfl ‰‡ÌÌÓÈ Í‚‡ÁËÏÂÚËÍÓÈ.
228
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
ñËÍ΢ÂÒ͇fl ÏÂÚË͇ ‚ Ó„‡Ù‡ı ñËÍ΢ÂÒÍÓÈ ÏÂÚËÍÓÈ ‚ Ó„‡Ù‡ı ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚¯ËÌ V ÒËθÌÓ Ò‚flÁÌÓ„Ó ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó „‡Ù‡ D = (V, E), ÓÔ‰ÂÎÂÌ̇fl Í‡Í ddpath (u, v) + ddpath (v, u), „‰Â ddpath – Í‚‡ÁËÏÂÚË͇ ÔÛÚË ‚ Ó„‡Ù‡ı. -ÏÂÚË͇ ÑÎfl Í·ÒÒ‡ ϒ Ò‚flÁÌ˚ı „‡ÙÓ‚ ÏÂÚË͇ d ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ̇Á˚‚‡ÂÚÒfl -ÏÂÚËÍÓÈ, ÂÒÎË (X, d) ËÁÓÏÂÚ˘ÌÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Û ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (V, dwpath), „‰Â „‡Ù G = (V, E) ∈ ϒ Ë dwpath – ‚Á‚¯ÂÌ̇fl ÏÂÚË͇ ÔÛÚË Ì‡ ÏÌÓÊÂÒÚ‚Â ‚¯ËÌ V „‡Ù‡ G Ò ÔÓÎÓÊËÚÂθÌÓÈ ÙÛÌ͈ËÂÈ Â·ÂÌ˚ı ‚ÂÒÓ‚ w (ÒÏ. ‰Â‚ӂˉ̇fl ÏÂÚË͇). Ñ‚ӂˉ̇fl ÏÂÚË͇ Ñ‚ӂˉ̇fl ÏÂÚË͇ (ËÎË ‚Á‚¯ÂÌ̇fl ÏÂÚË͇ ‰Â‚‡) d ̇ ÏÌÓÊÂÒÚ‚Â ï ÂÒÚ¸ -ÏÂÚË͇ ‰Îfl Í·ÒÒ‡ ϒ ‚ÒÂı ‰Â‚¸Â‚, Ú.Â. ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) ËÁÓÏÂÚ˘ÌÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Û ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (V, dwpath), „‰Â T = (V, E) ÂÒÚ¸ ‰ÂÂ‚Ó Ë dwpath – ‚Á‚¯ÂÌ̇fl ÏÂÚË͇ ÔÛÚË Ì‡ ÏÌÓÊÂÒÚ‚Â ‚¯ËÌ V ‰Â‚‡ í Ò ÔÓÎÓÊËÚÂθÌÓÈ ÙÛÌ͈ËÂÈ Â·ÂÌ˚ı ‚ÂÒÓ‚ w. åÂÚË͇ fl‚ÎflÂÚÒfl ‰Â‚ӂˉÌÓÈ ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ Ì‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ. åÂÚË͇ d ̇ ÏÌÓÊÂÒÚ‚Â ï ̇Á˚‚‡ÂÚÒfl ÓÒ··ÎÂÌÌÓÈ ‰Â‚ÓÔÓ‰Ó·ÌÓÈ ÏÂÚËÍÓÈ, ÂÒÎË ÏÌÓÊÂÒÚ‚Ó ï ÏÓÊÂÚ ·˚Ú¸ ‚ÎÓÊÂÌÓ ‚ ÌÂÍÓÚÓÓ (Ì ӷflÁ‡ÚÂθÌÓ ÔÓÎÓÊËÚÂθÌÓ) ·ÂÌÓ-‚Á‚¯ÂÌÌÓ ‰Â‚Ó, Ú‡ÍÓ ˜ÚÓ ‰Îfl β·˚ı x, y ∈ X ÏÂÚË͇ d(x, y) ‡‚̇ ÒÛÏÏ ‚ÂÒÓ‚ ‚ÒÂı · ‚‰Óθ (‰ËÌÒÚ‚ÂÌÌÓ„Ó) ÔÛÚË ÏÂÊ‰Û ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ‚¯Ë̇ÏË ı Ë Û ‰Â‚‡. åÂÚË͇ fl‚ÎflÂÚÒfl ÓÒ··ÎÂÌÌÓÈ ‰Â‚ӂˉÌÓÈ ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÓÒ··ÎÂÌÌÓÏÛ Ì‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ. åÂÚË͇ ÒÓÔÓÚË‚ÎÂÌËfl ÑÎfl ÒÎÛ˜‡fl Ò‚flÁÌÓ„Ó „‡Ù‡ G = (V, E) Ò ÔÓÎÓÊËÚÂθÌÓÈ ÙÛÌ͈ËÂÈ Â·ÂÌ˚ı ‚ÂÒÓ‚ w = (w(e))e ∈ E ‡ÒÒÏÓÚËÏ ‚ÂÒ‡ e·Â Í‡Í ÒÓÔÓÚË‚ÎÂÌËfl. ÇÓÁ¸ÏÂÏ Î˛·˚ ‰‚ ‡Á΢Ì˚ ‚¯ËÌ˚ Ë Ë v Ô‰ÔÓÎÓÊËÏ, ˜ÚÓ Í ÌËÏ ÔÓ‰ÒÓ‰ËÌÂ̇ ·‡Ú‡Âfl Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ Â‰ËÌˈ‡ ÚÓ͇ Ú˜ÂÚ ËÁ v ‚ u. çÂÓ·ıÓ‰Ëχfl ‰Îfl ˝ÚÓ„Ó ‡ÁÌÓÒÚ¸ (ÔÓÚÂ̈ˇÎÓ‚) ̇ÔflÊÂÌËfl ÓÔ‰ÂÎflÂÚÒfl ÔÓ Á‡ÍÓÌÛ éχ Í‡Í ˝ÙÙÂÍÚË‚ÌÓ ÒÓÔÓÚË‚ÎÂÌË ÏÂÊ‰Û u Ë v ‚ ˝ÎÂÍÚ˘ÂÒÍÓÈ ˆÂÔË; ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ ÒÓÔÓÚË‚ÎÂÌËfl Ω(u, v) ÏÂÊ‰Û ÌËÏË ([KlRa93]) (ÒÏ. ê‡ÒÒÚÓflÌË Ò‰ÌÂ„Ó ÒÓÔÓÚË‚ÎÂÌËfl, „Î. 14). óËÒÎÓ 1 ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ ÔÓ‰Ó·ÌÓ ˝ÎÂÍÚ˘ÂÒÍÓÈ ÔÓ‚Ó‰ËÏÓÒÚË Í‡Í ÏÂÛ Ω(u, v) 1 , ÒÓ‰ËÌflÂÏÓÒÚË ÏÂÊ‰Û u Ë v. àÏÂÌÌÓ, ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë Ω(u, v) ≤ min P w (e) e ∈P „‰Â ê – β·ÓÈ (u – v) ÔÛÚ¸, Ò ‡‚ÂÌÒÚ‚ÓÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ú‡ÍÓÈ ÔÛÚ¸ ê fl‚ÎflÂÚÒfl ‰ËÌÒÚ‚ÂÌÌ˚Ï; ÒΉӂ‡ÚÂθÌÓ, ÂÒÎË w(e) = 1 ‰Îfl ‚ÒÂı ·Â, ‡‚ÂÌÒÚ‚Ó ÓÁ̇˜‡ÂÚ, ˜ÚÓ G fl‚ÎflÂÚÒfl ‰Â‚ÓÏ. åÂÚË͇ ÒÓÔÓÚË‚ÎÂÌËfl ÔËÏÂÌflÂÚÒfl (‚ ÙËÁËÍÂ, ıËÏËË Ë ÒÂÚflı) ‚ ÒÎÛ˜‡flı, ÍÓ„‰‡ ÌÂÓ·ıÓ‰ËÏÓ Û˜ËÚ˚‚‡Ú¸ ˜ËÒÎÓ ÔÛÚÂÈ ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ‚¯Ë̇ÏË. ÖÒÎË w(e) = 1 ‰Îfl ‚ÒÂı ·Â, ÚÓ Ω(u, v) = ( guu + gvv ) − ( gvv + guu ),
∑
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
229
„‰Â ((gij)) – Ó·Ó·˘fiÌ̇fl Ó·‡Ú̇fl χÚˈ‡ ‰Îfl χÚˈ˚ ã‡Ô·҇ (lij)) „‡Ù‡ G: Á‰ÂÒ¸ lii ÂÒÚ¸ ÒÚÂÔÂ̸ ‚¯ËÌ˚ i, ‡ ‰Îfl i ≠ j ‚Â΢Ë̇ lij = 1, ÂÒÎË ‚¯ËÌ˚ i Ë j ÒÏÂÊÌ˚Â, Ë lij = 0, Ë̇˜Â. ÇÂÓflÚÌÓÒÚ̇fl ËÌÚÂÔÂÚ‡ˆËfl Ú‡ÍÓ‚‡: Ω(u, v) = = (deg(u) Pr(u − v)) −1 , „‰Â deg(u) – ÒÚÂÔÂ̸ ‚¯ËÌ˚ u Ë Pr(u – v) – ‚ÂÓflÚÌÓÒÚ¸ ÔË ÒÎÛ˜‡ÈÌÓ„ ·ÎÛʉ‡ÌËË, ̇˜Ë̇˛˘ÂÏÒfl Ò u, ÔÓÒÂÚËÚ¸ v Ô‰ ‚ÓÁ‡˘ÂÌËÂÏ ‚ u. ìÒ˜ÂÌ̇fl ÏÂÚË͇ ìÒ˜ÂÌÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚¯ËÌ „‡Ù‡, ‡‚̇fl 1 ‰Îfl β·˚ı ‰‚Ûı ÒÏÂÊÌ˚ı ‚¯ËÌ Ë ‡‚̇fl 2 ‰Îfl β·˚ı ‡Á΢Ì˚ı ÌÂÒÏÂÊÌ˚ı ‚¯ËÌ. é̇ fl‚ÎflÂÚÒfl 2-ÛÒ˜ÂÌÌÓÈ ÏÂÚËÍÓÈ ‰Îfl ÏÂÚËÍË ÔÛÚË „‡Ù‡. é̇ fl‚ÎflÂÚÒfl (1,2)-Ç-ÏÂÚËÍÓÈ, ÂÒÎË ÒÚÂÔÂ̸ β·ÓÈ ‚¯ËÌ˚ Ì ·Óθ¯Â ˜ÂÏ Ç. åÌÓ„Ó͇ÚÌÓ ‚˚‚ÂÂÌÌÓ ‡ÒÒÚÓflÌË åÌÓ„Ó͇ÚÌÓ ‚˚‚ÂÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ‚¯ËÌ V m-Ò‚flÁÌÓ„Ó ‚Á‚¯ÂÌÌÓ„Ó „‡Ù‡G = (V, E) , ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı u, v ∈ ∈ V Í‡Í ÏËÌËχθ̇fl ‚Á‚¯ÂÌ̇fl ÒÛÏχ ‰ÎËÌ m ÌÂÔÂÂÒÂ͇˛˘ËıÒfl (u – v) ÔÛÚÂÈ. éÌÓ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÔÓÌflÚËfl ‡ÒÒÚÓflÌËfl ̇ ÒÎÛ˜‡È, ÍÓ„‰‡ Ú·ÛÂÚÒfl ̇ÈÚË ÌÂÒÍÓθÍÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÔÛÚÂÈ ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË, ̇ÔËÏÂ, ‚ ÒËÒÚÂχı Ò‚flÁË, „‰Â m – 1 ËÁ (u – v) ÔÛÚÂÈ ËÒÔÓθÁÛ˛ÚÒfl ‰Îfl ÍÓ‰ËÓ‚‡ÌËfl ÒÓÓ·˘ÂÌËfl, Ô‰‡‚‡ÂÏÓ„Ó ÔÓ ÓÒÚ‡‚¯ÂÏÛÒfl (u – v) ÔÛÚË (ÒÏ. [McCa97]). ɇ٠G ̇Á˚‚‡ÂÚÒfl m-Ò‚flÁÌ˚Ï, ÂÒÎË Ì ÒÛ˘ÂÒÚ‚ÛÂÚ ÏÌÓÊÂÒÚ‚‡ ËÁ m – 1 ·‡, Û‰‡ÎÂÌË ÍÓÚÓ˚ı Ô‚‡ÚËÚ „‡Ù ‚ ÌÂÒ‚flÁÌ˚È. ë‚flÁÌ˚È „‡Ù fl‚ÎflÂÚÒfl 1-Ò‚flÁÌ˚Ï. ê‡ÁÂÁ – ˝ÚÓ ‡Á·ËÂÌË ÏÌÓÊÂÒÚ‚‡ ̇ ‰‚ ˜‡ÒÚË. ÖÒÎË Á‡‰‡ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó S ÏÌÓÊÂÒÚ‚‡ Vn = {1,…, n}, ÚÓ Á‡‰‡ÌÓ ‡Á·ËÂÌË {S, Vn\S} ÏÌÓÊÂÒÚ‚‡ Vn . èÓÎÛÏÂÚË͇ ‡ÁÂÁ‡ ̇ Vn , ÓÔ‰ÂÎflÂχfl Ú‡ÍËÏ ‡Á·ËÂÌËÂÏ, ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ÒÔˆˇθ̇fl ÔÓÎÛÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚¯ËÌ ÔÓÎÌÓ„Ó ‰‚Û‰ÓθÌÓ„Ó „‡Ù‡ K S, Vn \ S , „‰Â ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‚¯Ë̇ÏË ‡‚ÌÓ 1, ÂÒÎË ÓÌË ÔË̇‰ÎÂÊ‡Ú ‡ÁÌ˚Ï ˜‡ÒÚflÏ ‰‡ÌÌÓ„Ó „‡Ù‡, Ë ‡‚ÌÓ 0, Ë̇˜Â. èÓÎÛÏÂÚË͇ ‡ÁÂÁ‡ ÖÒÎË Á‡‰‡ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó S ÏÌÓÊÂÒÚ‚‡ Vn = {1,…, n}, ÚÓ ÔÓÎÛÏÂÚË͇ ‡ÁÂÁ‡ (ËÎË ÔÓÎÛÏÂÚË͇ ‡Á‰‚ÓÂÌËfl) δS fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍa ̇ Vn , ÓÔ‰ÂÎÂÌ̇fl Í‡Í 1, ÂÒÎË i ≠ j, | S {i, j} |= 1, δ S (i, j ) = 0, Ë̇˜Â. é·˚˜ÌÓ Ó̇ ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ‚ÂÍÚÓ ‚ | En | , E(n) = {{i, j} : 1 ≤ i < j ≤ n}. äÛ„Ó‚ÓÈ ‡ÁÂÁ V n Á‡‰‡ÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ S[k+1, l] = {k + 1,…, l} (mod n) ⊂ Vn : ÂÒÎË ‡ÒÒχÚË‚‡Ú¸ ÚÓ˜ÍË Í‡Í ÛÔÓfl‰Ó˜ÂÌÌ˚ ‚‰Óθ ÓÍÛÊÌÓÒÚË ‚ ÚÓÏ Ê ÍÛ„Ó‚ÓÏ ÔÓfl‰ÍÂ, ÚÓ S[k+1, l] ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ÔÓÒΉӂ‡ÚÂθÌ˚ı ‚¯ËÌ ÓÚ k + 1 ‰Ó l. ÑÎfl ÍÛ„Ó‚Ó„Ó ‡ÁÂÁ‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÔÓÎÛÏÂÚË͇ ‡ÁÂÁ‡ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ ÍÛ„Ó‚Ó„Ó ‡ÁÂÁ‡. èÓÎÛÏÂÚËÍÓÈ ˜ÂÚÌÓ„Ó ‡ÁÂÁ‡ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ δS ̇ Vn Ò ˜ÂÚÌ˚Ï | S |. èÓÎÛÏÂÚËÍÓÈ Ì˜ÂÚÌÓ„Ó ‡ÁÂÁ‡ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ δS ̇ V n Ò Ì˜ÂÚÌ˚Ï | S |. èÓÎÛÏÂÚË͇ k-‡‚ÌÓÏÂÌÓ„Ó ‡ÁÂÁ‡ ÂÒÚ¸ δS ̇ Vn Ò | S | ∈ { k, n – k} . n n èÓÎÛÏÂÚË͇ ‡‚ÌÓ„Ó ‡ÁÂÁ‡ ÂÒÚ¸ ÔÓÎÛÏÂÚË͇ δS ̇ Vn Ò | S | ∈ , . 2 2
230
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
n n èÓÎÛÏÂÚË͇ ̇‚ÌÓ„Ó ‡ÁÂÁ‡ – ÔÓÎÛÏÂÚË͇ δS ̇ Vn Ò | S | ∉ , (ÒÏ., 2 2 ̇ÔËÏÂ, [DeLa97]). ê‡ÁÎÓÊËχfl ÔÓÎÛÏÂÚË͇ ê‡ÁÎÓÊËχfl ÔÓÎÛÏÂÚËÍÓÈ – ÔÓÎÛÏÂÚË͇ ̇ V n = {1,…, n}, ÍÓÚÓÛ˛ ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ Í‡Í ÌÂÓÚˈ‡ÚÂθÌÛ˛ ÎËÌÂÈÌÛ˛ ÍÓÏ·Ë̇ˆË˛ ÔÓÎÛÏÂÚËÍ ‡ÁÂÁ‡. åÌÓÊÂÒÚ‚ÓÏ ‚ÒÂı ‡ÁÎÓÊËÏ˚ı ÔÓÎÛÏÂÚËÍ Ì‡ Vn Ó·‡ÁÛÂÚ ‚˚ÔÛÍÎ˚È ÍÓÌÛÒ, ÍÓÚÓ˚È Ì‡Á˚‚‡ÂÚÒfl ‡ÁÂÁÌ˚Ï ÍÓÌÛÒÓÏ CUTn . èÓÎÛÏÂÚË͇ ̇ Vn ·Û‰ÂÚ ‡ÁÎÓÊËÏÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ fl‚ÎflÂÚÒfl ÍÓ̘ÌÓÈ l1 -ÔÓÎÛÏÂÚËÍÓÈ. äÛ„Ó‚ÓÈ ‡ÁÎÓÊËÏÓÈ ÔÓÎÛÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ Vn = {1,…, n}, ÍÓÚÓÛ˛ ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ Í‡Í ÌÂÓÚˈ‡ÚÂθÌÛ˛ ÎËÌÂÈÌÛ˛ ÍÓÏ·Ë̇ˆË˛ ÔÓÎÛÏÂÚËÍ ÍÛ„Ó‚Ó„Ó ‡ÁÂÁ‡. èÓÎÛÏÂÚË͇ ̇ Vn ·Û‰ÂÚ ÍÛ„Ó‚ÓÈ ‡ÁÎÓÊËÏÓÈ ÔÓÎÛÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ ä‡ÎχÌÒÓ̇ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÚÓÏÛ Ê ÔÓfl‰ÍÛ (ÒÏ. [ChFi98]). äÓ̘̇fl lp -ÔÓÎÛÏÂÚË͇ ÑÎfl ÍÓ̘ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ï ÍÓ̘̇fl lp-ÔÓÎÛÏÂÚËÍ Ì‡Á˚‚‡ÂÚÒflÒ ÔÓÎÛÏÂÚË͇ d ̇ ï, ڇ͇fl ˜ÚÓ (X, d) ÂÒÚ¸ ÔÓÎÛÏÂÚ˘ÂÒÍÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó l pm -ÔÓÒÚ‡ÌÒÚ‚‡ ( m , dl p ) ‰Îfl ÌÂÍÓÚÓÓ„Ó m ∈ . ÖÒÎË X = {0, 1}n , ÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) ̇Á˚‚‡ÂÚÒfl l pm -ÍÛ·ÓÏ. l1m -ÍÛ· ̇Á˚‚‡ÂÚÒfl ı˝ÏÏËÌ„Ó‚˚Ï ÍÛ·ÓÏ. èÓÎÛÏÂÚË͇ ä‡ÎχÌÒÓ̇ èÓÎÛÏÂÚËÍÓÈ ä‡ÎχÌÒÓ̇ ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ d ̇ Vn = {1,…, n}, Û‰Ó‚ÎÂÚ‚Ófl˛˘‡fl ÛÒÎӂ˲ max{d (i, j ) + d (r, s), d (i, s) + d ( j, r )} ≤ d (i, r ) + d ( j, s) ‰Îfl ‚ÒÂı 1 ≤ i ≤ j ≤ r ≤ s ≤ n. Ç ‰‡ÌÌÓÏ ÓÔ‰ÂÎÂÌËË ‚‡ÊÂÌ ÔÓfl‰ÓÍ ˝ÎÂÏÂÌÚÓ‚; ËÏÂÌÌÓ, d fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ ä‡ÎχÌÒÓ̇ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÔÓfl‰ÍÛ 1,…, n. ùÍ‚Ë‚‡ÎÂÌÚÌÓ, ÂÒÎË ‡ÒÒχÚË‚‡Ú¸ ÚÓ˜ÍË {1,…, n} Í‡Í ‡ÒÔÓÎÓÊÂÌÌ˚ ‚‰Óθ ˆËÍ· C n ‚ ÚÓÏ Ê ÍÛ„Ó‚ÓÏ ÔÓfl‰ÍÂ, ÚÓ ‡ÒÒÚÓflÌË d ̇ Vn fl‚ÎflÂÚÒfl ÔÓÎÛÏÂÚËÍÓÈ ä‡ÎχÌÒÓ̇, ÂÒÎË Ì‡‚ÂÌÒÚ‚Ó d (i, r ) + d ( j, s) ≤ d (i, j ) + d (r, s) ‚˚ÔÓÎÌflÂÚÒfl ‰Îfl ‚ÒÂı i, j, r, s ∈ V n , Ú‡ÍËı ˜ÚÓ ÓÚÂÁÍË [i, j] Ë [r, s] fl‚Îfl˛ÚÒfl ÔÂÂÒÂ͇˛˘ËÏËÒfl ıÓ‰‡ÏË C n . Ñ‚ӂˉ̇fl ÏÂÚË͇ ÂÒÚ¸ ÏÂÚË͇ ä‡ÎχÌÒÓ̇ ‰Îfl ÌÂÍÓÚÓÓÈ ÛÔÓfl‰Ó˜ÂÌÌÓÒÚË ‚¯ËÌ ‰Â‚‡. Ö‚ÍÎˉӂ‡ ÏÂÚË͇, Ó„‡Ì˘ÂÌ̇fl ̇ ÏÌÓÊÂÒÚ‚Ó ÚÓ˜ÂÍ, Ó·‡ÁÛ˛˘Ëı ‚˚ÔÛÍÎ˚È ÏÌÓ„ÓÛ„ÓθÌËÍ Ì‡ ÔÎÓÒÍÓÒÚË, fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ä‡ÎχÌÒÓ̇. èÓÎÛÏÂÚË͇ ÏÛθÚˇÁÂÁ‡ èÛÒÚ¸ {S1 ,…, Sq }, q ≥ 2 – ‡Á·ËÂÌË ÏÌÓÊÂÒÚ‚‡ Vn = {1,…, n}, Ú.Â. ÒÓ‚ÓÍÛÔÌÓÒÚ¸ S1 ,…, S q ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ Vn , Ú‡ÍËı ˜ÚÓ S1 … Sq = Vn .
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
231
èÓÎÛÏÂÚË͇ ÏÛθÚˇÁÂÁ‡ δ S1 ,…, Sq – ˝ÚÓ ÔÓÎÛÏÂÚË͇ ̇ Vn , ÓÔ‰ÂÎÂÌ̇fl Í‡Í 0, ÂÒÎË i, j ∈ Sh ‰Îfl ÌÂÍÓÚÓÓ„Ó h, 1 ≤ h ≤ q, δ S1 ,…, Sq (i, j ) = 1, Ë̇˜Â. 䂇ÁËÔÓÎÛÏÂÚË͇ ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ‡ÁÂÁ‡ ÑÎfl ÔÓ‰ÏÌÓÊÂÒÚ‚‡ S ÏÌÓÊÂÒÚ‚‡ Vn = {1,…, n} Í‚‡ÁËÔÓÎÛÏÂÚËÍÓÈ ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ‡ÁÂÁ‡ δ ′S ̇Á˚‚‡ÂÚÒfl Í‚‡ÁËÔÓÎÛÏÂÚË͇ ̇ Vn , ÓÔ‰ÂÎÂÌ̇fl Í‡Í 1, ÂÒÎË i ∈ S, j ∉ S, δ ′S (i, j ) = 0, Ë̇˜Â. é·˚˜ÌÓ Ó̇ ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ‚ÂÍÚÓ ‚ | I n | , I (n) = {{i, j} : 1 ≤ i ≠ j ≤ n}. èÓÎÛÏÂÚË͇ ‡ÁÂÁ‡ δS ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂ̇ Í‡Í δ ′S + δ V′ n \ S . 䂇ÁËÔÓÎÛÏÂÚË͇ ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ÏÛθÚˇÁÂÁ‡ ÑÎfl ‡Á·ËÂÌËfl {S1 ,…, Sq }, q ≥ 2 ÏÌÓÊÂÒÚ‚‡ Vn Í‚‡ÁËÔÓÎÛÏÂÚËÍÓÈ ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ÏÛθÚˇÁÂÁ‡ δ S1 ,…, Sq ̇Á˚‚‡ÂÚÒfl Í‚‡ÁËÔÓÎÛÏÂÚË͇ ̇ Vn , ÓÔ‰ÂÎÂÌ̇fl Í‡Í 1, ÂÒÎË i ∈ Sh , j ∈ Sm , h < m, δ ′S1 ,…, Sq (i, j ) = 0, Ë̇˜Â. 15.2. ÉêÄîõ, éèêÖÑÖãüÖåõÖ ë èéåéôúû êÄëëíéüçàâ k-cÚÂÔÂ̸ „‡Ù‡ k-cÚÂÔÂ̸ „‡Ù‡ G = (V, E) ÂÒÚ¸ ÒÛÔ„‡Ù Gk = (V, E') „‡Ù‡ G Ò Â·‡ÏË ÏÂÊ‰Û ‚ÒÂÏË Ô‡‡ÏË ‚¯ËÌ, ÏÂÚË͇ ÔÛÚË ‰Îfl ÍÓÚÓ˚ı Ì ·Óθ¯Â ˜ÂÏ k . àÁÓÏÂÚ˘ÂÒÍËÈ ÔÓ‰„‡Ù èÓ‰„‡Ù ç „‡Ù‡ G = (V, E) ̇Á˚‚‡ÂÚÒfl ËÁÓÏÂÚ˘ÂÒÍËÏ ÔÓ‰„‡ÙÓÏ, ÂÒÎË ÏÂÚË͇ ÔÛÚË ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ‚¯Ë̇ÏË ÔÓ‰„‡Ù‡ ç ‡‚̇ Ëı ÏÂÚËÍ ÔÛÚË ‚ „‡Ù G. êÂÚ‡ÍÚ ÔÓ‰„‡Ù‡ èÓ‰„‡Ù ç „‡Ù‡ G = (V, E) ̇Á˚‚‡ÂÚÒfl ÂÚ‡ÍÚ-ÔÓ‰„‡ÙÓÏ, ÂÒÎË ÓÌ ÔÓÓʉÂÌ Ë‰ÂÏÔÓÚÂÌÚÌ˚Ï ÒÊËχ˛˘ËÏ ÓÚÓ·‡ÊÂÌËÂÏ G ‚ Ò·fl, Ú.Â. f2 = f : V → V Ò dpath(f(u), f(v)) ≤ dpath(u, v) ‰Îfl ‚ÒÂı . ã˛·ÓÈ ÂÚ‡ÍÚ – ÔÓ‰„‡Ù fl‚ÎflÂÚÒfl ËÁÓÏÂÚ˘ÂÒÍËÏ ÔÓ‰„‡ÙÓÏ. ÉÂÓ‰ÂÚ˘ÂÒÍËÈ „‡Ù ë‚flÁÌ˚È „‡Ù ̇Á˚‚‡ÂÚÒfl „ÂÓ‰ÂÚ˘ÂÒÍËÏ, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÓθÍÓ Ó‰ËÌ Í‡Ú˜‡È¯ËÈ ÔÛÚ¸ ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl Â„Ó ‚¯Ë̇ÏË. ã˛·Ó ‰ÂÂ‚Ó fl‚ÎflÂÚÒfl „ÂÓ‰ÂÚ˘ÂÒÍËÏ „‡ÙÓÏ.
232
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
ê‡ÒÒÚÓflÌÌÓ-„ÛÎflÌ˚È „‡Ù ë‚flÁÌ˚È „‡Ù G = (V, E) ‰Ë‡ÏÂÚ‡ í ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌÌÓ-„ÛÎflÌ˚Ï, ÂÒÎË ‰Îfl β·˚ı Â„Ó ‚¯ËÌ u, v Ë Î˛·˚ı ˆÂÎ˚ı ˜ËÒÂÎ 0 ≤ i, j ≤ T ÍÓ΢ÂÒÚ‚Ó ‚¯ËÌ w, Ú‡ÍËı ˜ÚÓ dpath(u, w) = i Ë dpath(v, w) = j, Á‡‚ËÒËÚ ÚÓθÍÓ ÓÚ i, j Ë k = dpath(u, v), ÌÓ Ì ÓÚ ‚˚·‡ÌÌ˚ı ‚¯ËÌ u Ë v. ëÔˆˇθÌ˚Ï ÒÎÛ˜‡ÂÏ fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ-Ú‡ÌÁËÚË‚Ì˚È „‡Ù, Ú.Â. Ú‡ÍÓÈ „‡Ù, ˜ÚÓ Â„Ó „ÛÔÔ‡ ‡‚ÚÓÏÓÙËÁÏÓ‚ Ú‡ÌÁËÚ˂̇ ‰Îfl β·Ó„Ó 0 ≤ i < T ̇ Ô‡‡ı ‚¯ËÌ (u, v) Ò dpath(u, v) = i. ã˛·ÓÈ ‡ÒÒÚÓflÌÌÓ-„ÛÎflÌ˚È „‡Ù fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ-Û‡‚Ìӂ¯ÂÌÌ˚Ï „‡ÙÓÏ, Ú.Â. | {x ∈ V: d(x, u) ≤ d(x, v)} | = | {x ∈ V: d(x, v) ≤ d(x, u)} | ‰Îfl β·˚ı Â„Ó Â·Â uv, Ë ‡ÒÒÚÓflÌÌÓ-ÒÚÂÔÂÌÌÓ-„ÛÎflÌ˚Ï „‡ÙÓÏ, Ú.Â. | {x ∈ V: d(x, u) = i} | Á‡‚ËÒËÚ ÚÓθÍÓ ÓÚ i, ÌÓ Ì ÓÚ u ∈ V. ê‡ÒÒÚÓflÌÌÓ-„ÛÎflÌ˚È „‡Ù Ë̇˜Â ̇Á˚‚‡ÂÚÒfl ê-ÔÓÎËÌÓÏˇθÌÓÈ ‡ÒÒӈˇÚË‚ÌÓÈ ÒıÂÏÓÈ. äÓ̘ÌÓ ÔÓÎËÌÓÏˇθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó – ‡ÒÒӈˇÚ˂̇fl ÒıÂχ, ÍÓÚÓ‡fl ê- Ë Q-ÔÓÎËÌÓÏˇθ̇. íÂÏËÌ ·ÂÒÍÓ̘ÌÓ ÔÓÎËÌÓÏˇθÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ËÒÔÓθÁÛÂÚÒfl ‰Îfl ÍÓÏÔ‡ÍÚÌÓ„Ó Ò‚flÁÌÓ„Ó ‰‚ÛıÚӘ˜ÌÓ„Ó Ó‰ÌÓÓ‰ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. LJ̄ Í·ÒÒËÙˈËÓ‚‡Î Ëı Í‡Í Â‚ÍÎˉӂ˚ ‰ËÌ˘Ì˚ ÒÙÂ˚, ‰ÂÈÒÚ‚ËÚÂθÌ˚Â, ÍÓÏÔÎÂÍÒÌ˚Â Ë Í‚‡ÚÂÌËÓÌÌ˚ ÔÓÂÍÚË‚Ì˚ ÔÓÒÚ‡ÌÒÚ‚‡ ËÎË ÔÓÂÍÚË‚Ì˚ ÔÎÓÒÍÓÒÚË ä˝ÎË. ê‡ÒÒÚÓflÌÌÓ-ÔÓÎËÌÓÏˇθÌ˚È „‡Ù ÇÓÁ¸ÏÂÏ Ò‚flÁÌ˚È „‡Ù G = (V, E) ‰Ë‡ÏÂÚ‡ í, ‰Îfl β·Ó„Ó 2 ≤ i ≤ T Ó·ÓÁ̇˜ËÏ ˜ÂÂÁ Gi „‡Ù Ò ÚÂÏ Ê ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ, ˜ÚÓ Ë G, Ë Â·‡ÏË uv, Ú‡ÍËÏË ˜ÚÓ dpath(u, v) = i. ɇ٠G ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌÌÓ-ÔÓÎËÌÓÏˇθÌ˚Ï, ÂÒÎË Ï‡Úˈ‡ ÒÏÂÊÌÓÒÚË Î˛·Ó„Ó „‡Ù‡ G i, 2 ≤ i ≤ T, fl‚ÎflÂÚÒfl ÔÓÎËÌÓÏÓÏ ‚ ÚÂÏË̇ı χÚˈ˚ ÒÏÂÊÌÓÒÚË G. ã˛·ÓÈ ‡ÒÒÚÓflÌÌÓ-„ÛÎflÌ˚È „‡Ù fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ-ÔÓÎËÌÓÏˇθÌ˚Ï. ê‡ÒÒÚÓflÌÌÓ-̇ÒΉÒÚ‚ÂÌÌ˚È „‡Ù ë‚flÁÌ˚È „‡Ù ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌÌÓ-̇ÒΉÒÚ‚ÂÌÌ˚Ï, ÂÒÎË Í‡Ê‰˚È ËÁ Â„Ó Ò‚flÁÌ˚ı Ë̉ۈËÓ‚‡ÌÌ˚ı ÔÓ‰„‡ÙÓ‚ ËÁÓÏÂÚ˘ÂÌ. ɇ٠fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ̇ÒΉÒÚ‚ÂÌÌ˚Ï, ÂÒÎË ËÁÓÏÂÚ˘ÂÌ Í‡Ê‰˚È ËÁ Â„Ó Ë̉ۈËÓ‚‡ÌÌ˚ı ÔÛÚÂÈ. ã˛·ÓÈ ÍÓ„‡Ù, Ú.Â. „‡Ù, ÍÓÚÓ˚È Ì ÒÓ‰ÂÊËÚ Ë̉ۈËÓ‚‡ÌÌ˚ı ÔÛÚÂÈ Ì‡ ˜ÂÚ˚Âı ‚¯ËÌ,‡ı fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ-̇ÒΉÒÚ‚ÂÌÌ˚Ï. ɇ٠fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ̇ÒΉÒÚ‚ÂÌÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Â„Ó ÏÂÚË͇ ÔÛÚË Û‰Ó‚ÎÂÚ‚ÓflÂÚ ÓÒ··ÎÂÌÌÓÏÛ Ì‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ. ɇ٠fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ-̇ÒΉÒÚ‚ÂÌÌ˚Ï, ‰‚Û‰ÓθÌ˚Ï ‡ÒÒÚÓflÌÌÓ-̇ÒΉÒÚ‚ÂÌÌ˚Ï, ·ÎÓÍÓ‚˚Ï „‡ÙÓÏ ËÎË ‰Â‚ÓÏ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Â„Ó ÏÂÚË͇ ÔÛÚË ÂÒÚ¸ ÓÒ··ÎÂÌ̇fl ‰Â‚ӂˉ̇fl ÏÂÚË͇ ‰Îfl ·ÂÌ˚ı ‚ÂÒÓ‚, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl, ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÌÂÌÛ΂˚ÏË ÔÓÎÛˆÂÎ˚ÏË, ÌÂÌÛ΂˚ÏË ˆÂÎ˚ÏË, ÔÓÎÓÊËÚÂθÌ˚ÏË ÔÓÎÛˆÂÎ˚ÏË ËÎË ÔÓÎÓÊËÚÂθÌ˚ÏË ˆÂÎ˚ÏË ˜ËÒ·ÏË. ɇ٠fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌÌÓ-̇ÒΉÒÚ‚ÂÌÌ˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ͇ʉ˚È Â„Ó Ë̉ۈËÓ‚‡ÌÌ˚È ÔÓ‰„‡Ù – 1-ÓÒÚÓ‚. ÅÎÓÍÓ‚˚È „‡Ù ɇ٠̇Á˚‚‡ÂÚÒfl · Î Ó Í Ó ‚ ˚ Ï, ÂÒÎË Í‡Ê‰˚È Â„Ó ·ÎÓÍ, Ú.Â. χÍÒËχθÌ˚È 2-Ò‚flÁÌ˚È Ë̉ۈËÓ‚‡ÌÌ˚È ÔÓ‰„‡Ù, fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï „‡ÙÓÏ. ã˛·Ó ‰ÂÂ‚Ó – ·ÎÓÍÓ‚˚È „‡Ù. ɇ٠fl‚ÎflÂÚÒfl ·ÎÓÍÓ‚˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Â„Ó ÏÂÚË͇ ÔÛÚË fl‚ÎflÂÚÒfl ‰Â‚ӂˉÌÓÈ ÏÂÚËÍÓÈ ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, Û‰Ó‚ÎÂÚ‚ÓflÂÚ Ì‡‚ÂÌÒÚ‚Û ˜ÂÚ˚Âı ÚÓ˜ÂÍ.
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
233
èÚÓÎÂÏ‚ „‡Ù ɇ٠̇Á˚‚‡ÂÚÒfl ÔÚÓÎÂÏ‚˚Ï, ÂÒÎË Â„Ó ÏÂÚË͇ ÔÛÚË Û‰Ó‚ÎÂÚ‚ÓflÂÚ Ì‡‚ÂÌÒÚ‚Û èÚÓÎÂÏÂfl d ( x, y)d (u, z ) ≤ d ( x, u)d ( y, z ) + d ( x, z )d ( y, u). ɇ٠fl‚ÎflÂÚÒfl ÔÚÓÎÂÏ‚˚Ï ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌ ‡ÒÒÚÓflÌÌÓ̇ÒΉÒÚ‚ÂÌÌ˚È Ë ıÓ‰‡Î¸Ì˚È, Ú.Â. ͇ʉ˚È ˆËÍÎ ‰ÎËÌ˚ ·ÓΠ3 ËÏÂÂÚ ıÓ‰Û. Ç ˜‡ÒÚÌÓÒÚË, β·ÓÈ ·ÎÓÍÓ‚˚È „‡Ù fl‚ÎflÂÚÒfl ÔÚÓÎÂÏ‚˚Ï. ɇ٠D-‡ÒÒÚÓflÌËfl ÑÎfl ÏÌÓÊÂÒÚ‚‡ D ÔÓÎÓÊËÚÂθÌ˚ı ˜ËÒÂÎ, ÒÓ‰Âʇ˘Â„Ó 1, Ë ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) „‡ÙÓÏ D-‡ÒÒÚÓflÌËfl D(X, d) ̇Á˚‚‡ÂÚÒfl „‡Ù Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ ï Ë ÏÌÓÊÂÒÚ‚ÓÏ Â·Â {uv : d(u, v) ∈ D} (ÒÏ. D-ıÓχÚ˘ÂÒÍÓ ˜ËÒÎÓ, „Î. 1). ɇ٠D-‡ÒÒÚÓflÌËfl ̇Á˚‚‡ÂÚÒfl „‡ÙÓÏ Â‰ËÌ˘ÌÓ„Ó ‡ÒÒÚÓflÌËfl, ÂÒÎË D = {1}, „‡ÙÓÏ ε -‰ËÌ˘ÌÓ„Ó ‡ÒÒÚÓflÌËfl, ÂÒÎË D = [1 – ε , 1 + ε], „‡ÙÓÏ Â‰ËÌ˘ÌÓÈ ÓÍÂÒÚÌÓÒÚË, ÂÒÎË D = (0, 1], „‡ÙÓÏ ˆÂÎÓ˜ËÒÎÂÌÌÓ„Ó ‡ÒÒÚÓflÌËfl, ÂÒÎË D = +, „‡ÙÓÏ ‡ˆËÓ̇θÌÓ„Ó ‡ÒÒÚÓflÌËfl, ÂÒÎË D = +, „‡ÙÓÏ ÔÓÒÚÓ„Ó ‡ÒÒÚÓflÌËfl, ÂÒÎË D fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ ÔÓÒÚ˚ı ˜ËÒÂÎ (Ò 1). é·˚˜ÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (X, d) fl‚ÎflÂÚÒfl ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ Â‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n. ÅÓΠÚÓ„Ó, ͇ʉ˚È ÍÓ̘Ì˚È „‡Ù G = (V, E) ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂÌ Í‡Í „‡Ù D-‡ÒÒÚÓflÌËfl ‚ ÌÂÍÓÚÓÓÏ n. åËÌËχθ̇fl ‡ÁÏÂÌÓÒÚ¸ Ú‡ÍÓ„Ó Â‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡ÂÚÒfl D-‡ÁÏÂÌÓÒÚ¸˛ „‡Ù‡ G. t-çÂÔË‚Ó‰ËÏÓ ÏÌÓÊÂÒÚ‚Ó åÌÓÊÂÒÚ‚Ó S ⊂ V ‚¯ËÌ ‚ Ò‚flÁÌÓÏ „‡Ù G = (V, E) ̇Á˚‚‡ÂÚÒfl t-ÌÂÔË‚Ó‰ËÏ˚Ï (ÔÓ ï‡ÚÚËÌ„Û Ë ïÂÌÌËÌ„Û, 1994), ÂÒÎË ‰Îfl β·Ó„Ó u ∈ S ÒÛ˘ÂÒÚ‚ÛÂÚ ‚¯Ë̇ v ∈ V, ڇ͇fl ˜ÚÓ ‰Îfl ÏÂÚËÍË ÔÛÚË ‚˚ÔÓÎÌflÂÚÒfl ̇‚ÂÌÒÚ‚Ó d ( v, x ) ≤ t < d ( v, V \ S ). óËÒÎÓ t-ÌÂÔË‚Ó‰ËÏÓ ir t „‡Ù‡ G ÂÒÚ¸ ̇ËÏÂ̸¯Â ͇‰Ë̇θÌÓ ˜ËÒÎÓ | S |, Ú‡ÍÓ ˜ÚÓ S fl‚ÎflÂÚÒfl, ‡ S ∪ {v} Ì fl‚ÎflÂÚÒfl t-ÌÂÔË‚Ó‰ËÏ˚Ï ‰Îfl Í‡Ê‰Ó„Ó v ∈ V\S. óËÒÎÓ t-‰ÓÏËÌËÓ‚‡ÌËfl γt Ë ˜ËÒÎÓ t-ÌÂÁ‡‚ËÒËÏÓÒÚË α t „‡Ù‡ G ÂÒÚ¸ ÒÓÓÚ‚ÂÚÒÚ1 ‚ÂÌÌÓ Í‡‰Ë̇θÌÓ ˜ËÒÎÓ Ì‡ËÏÂ̸¯Â„Ó t-ÔÓÍ˚ÚËfl Ë Ì‡Ë·Óθ¯ÂÈ -ÛÔ‡ÍÓ‚ÍË 2 ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (V, d) (ÒÏ. P‡‰ËÛÒ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, „Î. 1). t èÛÒÚ¸ γ it – ̇ËÏÂ̸¯Â | S |, Ú‡ÍÓ ˜ÚÓ S fl‚ÎflÂÚÒfl, ‡ S ∪ {v} Ì fl‚ÎflÂÚÒfl -ÛÔ‡ÍÓ‚2 t ÍÓÈ ‰Îfl Í‡Ê‰Ó„Ó v ∈ V\S; ÒΉӂ‡ÚÂθÌÓ, ڇ͇fl ̇үËflÂχfl -ÛÔ‡ÍÓ‚2 γ +1 ≤ irt ≤ ͇ fl‚ÎflÂÚÒfl Ú‡ÍÊ t-ÔÓÍ˚ÚËÂÏ. èË ˝ÚÓÏ ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë t 2 ≤ γ t ≤ γ it ≤ α t . t-éÒÚÓ‚ éÒÚÓ‚ÌÓÈ ÔÓ‰„‡Ù H = (V , E( H )) Ò‚flÁÌÓ„Ó „‡Ù‡ G = (V, E) ̇Á˚‚‡ÂÚÒfl t-ÓÒÚÓ‚ÓÏ H G „‡Ù‡ G, ÂÒÎË ‰Îfl β·˚ı u, v ∈ V ÒÔ‡‚‰ÎË‚Ó Ì‡‚ÂÌÒÚ‚Ó d path (u, v) / d path (u, v) ≤ t. . ÇÂ΢Ë̇ t ̇Á˚‚‡ÂÚÒfl ÍÓ˝ÙÙˈËÂÌÚÓÏ ‡ÒÚflÊÂÌËfl ÔÓ‰„‡Ù‡ ç.
234
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
éÒÚÓ‚ÌÓ ‰ÂÂ‚Ó Ò‚flÁÌÓ„Ó „‡Ù‡ G = (V, E) ÂÒÚ¸ ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ ËÁ | V | – 1 e·Â, ÍÓÚÓ˚ ӷ‡ÁÛ˛Ú ‰ÂÂ‚Ó Ì‡ ÏÌÓÊÂÒÚ‚Â ‚¯ËÌ V. ê‡ÒÒÚÓflÌË òÚÂÈ̇ ê‡ÒÒÚÓflÌË òÚÂÈ̇ ÏÌÓÊÂÒÚ‚‡ S ⊂ V ‚¯ËÌ Ò‚flÁÌÓ„Ó „‡Ù‡ G = (V, E) ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ Â·Â Ò‚flÁÌÓ„Ó ÔÓ‰„‡Ù‡ „‡Ù‡ G, ÒÓ‰Âʇ˘Â„Ó S. í‡ÍÓÈ ÔÓ‰„‡Ù fl‚ÎflÂÚÒfl ‰Â‚ÓÏ Ë Ì‡Á˚‚‡ÂÚÒfl ‰Â‚ÓÏ òÚÂÈ̇ ‰Îfl S. ëıÂχ Ë̉ÂÍÒËÓ‚‡ÌËfl ‡ÒÒÚÓflÌËÈ ÉÓ‚ÓflÚ, ˜ÚÓ ÒÂÏÂÈÒÚ‚Ó „‡ÙÓ‚ Ä (èÂ΄, 2000) ËÏÂÂÚ l(n) ÒıÂÏÛ Ë̉ÂÍÒËÓ‚‡ÌËfl ‡ÒÒÚÓflÌËÈ, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ ÙÛÌ͈Ëfl L, ÍÓÚÓ‡fl Ë̉ÂÍÒËÛÂÚ ‚¯ËÌ˚ Í‡Ê‰Ó„Ó n-‚¯ËÌÌÓ„Ó „‡Ù‡ ‚ Ä ‡Á΢Ì˚ÏË Ë̉ÂÍÒ‡ÏË ‚Â΢ËÌÓÈ ‰Ó ·ËÚ, Ë ÒÛ˘ÂÒÚ‚ÛÂÚ ‡Î„ÓËÚÏ, ̇Á˚‚‡ÂÏ˚È ‰ÂÍÓ‰ÂÓÏ ‡ÒÒÚÓflÌËÈ, ÍÓÚÓ˚È Ì‡ıÓ‰ËÚ ‡ÒÒÚÓflÌË ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ‚¯Ë̇ÏË u, v ‚ „‡Ù ËÁ Ä ‚ ÔÓÎËÌÓÏˇθÌÓ (ÔÓ ‰ÎËÌÂ Â„Ó Ë̉ÂÍÒÓ‚ L(u), L(v)) ‚ÂÏfl. 15.3. êÄëëíéüçàü çÄ ÉêÄîÄï èÓ‰„‡Ù-ÒÛÔ„‡Ù ‡ÒÒÚÓflÌËfl é·˘ËÈ ÔÓ‰„‡Ù „‡ÙÓ‚ G Ë H – „‡Ù, ÍÓÚÓ˚È ËÁÓÏÓÙÂÌ Ë̉ۈËÓ‚‡ÌÌ˚Ï ÔÓ‰„‡Ù‡Ï Ó·ÓËı „‡ÙÓ‚ G Ë H . é·˘ËÈ ÒÛÔ„‡Ù „‡ÙÓ‚ G Ë H – „‡Ù, ÒÓ‰Âʇ˘ËÈ Ë̉ۈËÓ‚‡ÌÌ˚ ÔÓ‰„‡Ù˚, ËÁÓÏÓÙÌ˚ „‡Ù‡Ï G Ë H. ê‡ÒÒÚÓflÌË áÂÎËÌÍË dZ ̇ ÏÌÓÊÂÒÚ‚Â G ‚ÒÂı „‡ÙÓ‚ (·ÓΠÚÓ˜ÌÓ, ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ËÁÓÏÓÙÌ˚ı „‡ÙÓ‚) ÓÔ‰ÂÎflÂÚÒfl Í‡Í max{n(G1 ), n(G2 )} − n(G1 , G2 ) ‰Îfl β·˚ı G1 , G2 ∈G, „‰Â n(G 1 , – ˜ËÒÎÓ ‚¯ËÌ ‚ Gi, i = 1, 2 Ë n(G1, G2) – χÍÒËχθÌÓ ˜ËÒÎÓ ‚¯ËÌ Ó·˘Â„Ó ÔÓ‰„‡Ù‡ „‡ÙÓ‚ G1 Ë G2 ). ÑÎfl ÔÓËÁ‚ÓθÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ å „‡ÙÓ‚ ‡ÒÒÚÓflÌË ӷ˘Â„Ó ÔÓ‰„‡Ù‡ dM ̇ å ÓÔ‰ÂÎflÂÚÒfl Í‡Í max{n(G1 )n(G2 )} − n(G1 , G2 ), * ̇ å ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‡ ‡ÒÒÚÓflÌË ӷ˘Â„Ó ÒÛÔ„‡Ù‡ d M
N (G1 , G2 ) − min{n(G1 ), n(G2 )} ‰Îfl β·˚ı G 1 , G2 ∈ M , „‰Â n(Gi) – ˜ËÒÎÓ ‚¯ËÌ ‚ Gi, i = 1, 2 Ë n(G1, G2) – χÍÒËχθÌÓ ˜ËÒÎÓ ‚¯ËÌ Ó·˘Â„Ó ÔÓ‰„‡Ù‡ „‡ÙÓ‚ G ∈ M Ë G1 Ë G2 Ë N(G1, G2) – ÏËÌËχθÌÓ ˜ËÒÎÓ ‚¯ËÌ Ó·˘Â„Ó ÒÛÔ„‡Ù‡ „‡ÙÓ‚ H ∈ M Ë G 1 Ë G2. dM fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ å, ÂÒÎË ‚˚ÔÓÎÌflÂÚÒfl ÒÎÂ‰Û˛˘Â ÛÒÎÓ‚Ë (1): ÂÒÎË H ∈ ∈ M – Ó·˘ËÈ ÒÛÔ„‡Ù „‡ÙÓ‚ G1, G2 ∈ M, ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ Ó·˘ËÈ ÔÓ‰„‡Ù G ∈ M * „‡ÙÓ‚ G 1 Ë G2 Ò n(G) ≥ n(G1 ) + n(G2 ) − n( H ). d M fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ å, ÂÒÎË ‚˚ÔÓÎÌflÂÚÒfl ÒÎÂ‰Û˛˘Â ÛÒÎÓ‚Ë (2): ÂÒÎË G ∈ M – Ó·˘ËÈ ÔÓ‰„‡Ù „‡ÙÓ‚ G1 , G2 ∈ ∈ M , ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ Ó·˘ËÈ ÒÛÔ„‡Ù H ∈ M „‡ÙÓ‚ G 1 Ë G2 Ò n( H ) ≥ * ≥ n(G1 ) + n(G2 ) − n(G). å˚ ËÏÂÂÏ d M ≤ d M , ÂÒÎË ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë (1) Ë * , ÂÒÎË ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë (2). dM ≥ dM
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
235
ê‡ÒÒÚÓflÌË dM fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â G ‚ÒÂı „‡ÙÓ‚, ÏÌÓÊÂÒÚ‚Â ‚ÒÂı „‡ÙÓ‚ ·ÂÁ ˆËÍÎÓ‚, ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ‰‚Û‰ÓθÌ˚ı „‡ÙÓ‚ Ë ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ‰Â‚¸Â‚. * ê‡ÒÒÚÓflÌË d M fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â G ‚ÒÂı „‡ÙÓ‚, ÏÌÓÊÂÒÚ‚Â ‚ÒÂı Ò‚flÁÌ˚ı „‡ÙÓ‚, ÏÌÓÊÂÒÚ‚Â ‚ÒÂı Ò‚flÁÌ˚ı ‰‚Û‰ÓθÌ˚ı „‡ÙÓ‚ Ë ÏÌÓÊÂÒÚ‚Â ‚ÒÂı * ‰Â‚¸Â‚. ê‡ÒÒÚÓflÌË áÂÎËÌÍË dZ ÒÓ‚Ô‡‰‡ÂÚ Ò dM Ë d M ̇ ÏÌÓÊÂÒÚ‚Â G ‚ÒÂı „‡ÙÓ‚. * ç‡ ÏÌÓÊÂÒÚ‚Â í ‚ÒÂı ‰Â‚¸Â‚ ‡ÒÒÚÓflÌËfl dM Ë d M ˉÂÌÚ˘Ì˚, ÌÓ ÓÚ΢‡˛ÚÒfl ÓÚ ‡ÒÒÚÓflÌËfl áÂÎËÌÍË. ê‡ÒÒÚÓflÌË áÂÎËÌÍË dZ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â G(n) ‚ÒÂı „‡ÙÓ‚ Ò n ‚¯Ë̇ÏË Ë ‡‚ÌÓ n – k ËÎË K – n ‰Îfl ‚ÒÂı G1, G2 ∈ G(n), „‰Â k – χÍÒËχθÌÓ ˜ËÒÎÓ ‚¯ËÌ Ó·˘Â„Ó ÔÓ‰„‡Ù‡ „‡ÙÓ‚ G1 Ë G2, ‡ ä – ÏËÌËχθÌÓ ˜ËÒÎÓ ‚¯ËÌ Ó·˘Â„Ó ÒÛÔ„‡Ù‡ „‡ÙÓ‚ G1 Ë G2. ç‡ ÏÌÓÊÂÒÚ‚Â T(n) ‚ÒÂı ‰Â‚¸Â‚ Ò n ‚¯Ë̇ÏË ‡ÒÒÚÓflÌË dZ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ‰Â‚‡ áÂÎËÌÍË (ÒÏ., ̇ÔËÏÂ, [Zeli75]).
ê·ÂÌÓ ‡ÒÒÚÓflÌË ê·ÂÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â G ‚ÒÂı „‡ÙÓ‚, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í | E1 | + | E2 | −2 | E12 | + || V1 | − | V2 || ‰Îfl β·˚ı „‡ÙÓ‚ G1 = (V1 , E1 ) Ë G2 = (V2 , E2 ), , „‰Â G12 = (V12 , E12 ) – Ó·˘ËÈ ÔÓ‰„‡Ù „‡ÙÓ‚ G1 Ë G 2 Ò Ï‡ÍÒËχθÌ˚Ï ˜ËÒÎÓÏ e·Â. чÌÌÓ ‡ÒÒÚÓflÌË ¯ËÓÍÓ ÔËÏÂÌflÂÚÒfl ‚ ӷ·ÒÚË Ó„‡Ì˘ÂÒÍÓÈ Ë Ï‰ˈËÌÒÍÓÈ ıËÏËË. ê‡ÒÒÚÓflÌË ÒÚfl„Ë‚‡ÌËfl ê‡ÒÒÚÓflÌË ÒÚfl„Ë‚‡ÌËfl – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â G(n ) ‚ÒÂı „‡ÙÓ‚ Ò n ‚¯Ë̇ÏË, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í n–k ‰Îfl β·˚ı G1, G 2 ∈ G(n), „‰Â k – χÍÒËχθÌÓ ˜ËÒÎÓ ‚¯ËÌ „‡Ù‡, ËÁÓÏÓÙÌÓ„Ó Ó‰ÌÓ‚ÂÏÂÌÌÓ „‡ÙÛ, ÔÓÎÛ˜ÂÌÌÓÏÛ ËÁ Í‡Ê‰Ó„Ó „‡Ù‡ G1, G2 ÍÓ̘Ì˚Ï ˜ËÒÎÓÏ ÓÔ‡ˆËÈ ÒÚfl„Ë‚‡ÌËfl ·Â. éÒÛ˘ÂÒÚ‚ËÚ¸ ÒÚfl„Ë‚‡ÌË ·‡ u v ∈ E , ÔË̇‰ÎÂʇ˘Â„Ó „‡ÙÛ G = (V, E), ÓÁ̇˜‡ÂÚ Á‡ÏÂÌËÚ¸ ‚¯ËÌ˚ u Ë v Ó‰ÌÓÈ Ú‡ÍÓÈ ‚¯ËÌÓÈ, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ÒÏÂÊÌÓÈ ‰Îfl ‚ÒÂı ‚¯ËÌ V \{u, v}, ÒÏÂÊÌ˚ı Ò u ËÎË v. ê‡ÒÒÚÓflÌË ÔÂÂÏ¢ÂÌËfl ·‡ ê‡ÒÒÚÓflÌË ÔÂÂÏ¢ÂÌËfl ·‡ ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â G(n, m) ‚ÒÂı „‡ÙÓ‚ Ò n ‚¯Ë̇ÏË Ë m ·‡ÏË, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı G 1 , G2 ∈ G(n, m) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÔÂÂÏ¢ÂÌËÈ Â·‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl „‡Ù‡ G1 ‚ „‡Ù G2. éÌÓ ‡‚ÌÓ m – k, „‰Â k – χÍÒËχθÌÓ ˜ËÒÎÓ Â·Â Ó·˘Â„Ó ÔÓ‰„‡Ù‡ „‡ÙÓ‚ G1 Ë G 2 . èÂÂÏ¢ÂÌË ·‡ – Ó‰ËÌ ËÁ ÚËÔÓ‚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·Â, ÍÓÚÓ˚È Á‡‰‡ÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: „‡Ù ç ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ ËÁ „‡Ù‡ G ÔÂÂÏ¢ÂÌËÂÏ Â·‡, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú (Ì ӷflÁ‡ÚÂθÌÓ ‡Á΢Ì˚Â) ‚¯ËÌ˚ u, v, w Ë x ‚ „‡Ù G, Ú‡ÍË ˜ÚÓ uv ∈ E(G), wx ≠ E(G) Ë H = G – uv + wx. ê‡ÒÒÚÓflÌË Ò͇˜Í‡ ·‡ ê‡ÒÒÚÓflÌË Ò͇˜Í‡ ·‡ – ‡Ò¯ËÂÌ̇fl ÏÂÚË͇ (ÍÓÚÓ‡fl ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ÏÓÊÂÚ ÔËÌËχڸ Á̇˜ÂÌË ∞) ̇ ÏÌÓÊÂÒÚ‚Â G(n, m) ‚ÒÂı „‡ÙÓ‚ Ò n ‚¯Ë̇ÏË Ë m
236
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
·‡ÏË, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı G1, G2 ∈ G(n, m) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ Ò͇˜ÍÓ‚ ·‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl „‡Ù‡ G1 ‚ „‡Ù G 2 . ë͇˜ÓÍ Â·‡ – Ó‰ËÌ ËÁ ÚËÔÓ‚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·Â, ÍÓÚÓ˚È Á‡‰‡ÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: „‡Ù ç ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ ËÁ „‡Ù‡ G Ò ÔÓÏÓ˘¸˛ Ò͇˜Í‡ ·‡, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ˜ÂÚ˚ ‡Á΢Ì˚ ‚¯ËÌ˚ u, v, w Ë x ‚ „‡Ù G, Ú‡ÍË ˜ÚÓ uv ∈ (G), wx ∉ E(G) Ë H = G – uv + wx. ê‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl ·‡ ê‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl ·‡ ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â G(n, m) ‚ÒÂı „‡ÙÓ‚ Ò n ‚¯Ë̇ÏË Ë m ·‡ÏË, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı G1, G 2 ∈ G(n, m) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ‚‡˘ÂÌËÈ Â·‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl „‡Ù‡ G1 ‚ „‡Ù G 2 . LJ˘ÂÌË ·‡ – Ó‰ËÌ ËÁ ÚËÔÓ‚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·Â, ÍÓÚÓ˚È Á‡‰‡ÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: „‡Ù ç ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ ËÁ „‡Ù‡ G Ò ÔÓÏÓ˘¸˛ ‚‡˘ÂÌËfl ·‡, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ‡Á΢Ì˚ ‚¯ËÌ˚ u, v Ë w ‚ „‡Ù G, Ú‡ÍË ˜ÚÓ uv ∈ E(G), wx ∉ E(G) Ë H = G – uv + uw. ê‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl ‰Â‚‡ ê‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl ‰Â‚‡ – ˝ÚÓ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â T(n) ‚ÒÂı ‰Â‚¸Â‚ Ò n ‚¯Ë̇ÏË, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl ‚ÒÂı T1 , T2 ∈ T(n) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ‚‡˘ÂÌËÈ Â·Â ‰Â‚‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl T 1 ‚ T 2 . ÑÎfl ÏÌÓÊÂÒÚ‚‡ T(n) ‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl ‰Â‚‡ Ë ‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl ·‡ ÏÓ„ÛÚ ‡Á΢‡Ú¸Òfl. LJ˘ÂÌË ·‡ ‰Â‚‡ – ˝ÚÓ ‚‡˘ÂÌË ·‡, ÓÒÛ˘ÂÒÚ‚ÎflÂÏÓ ̇ ‰ÂÂ‚Â Ë ‰‡˛˘Â ‚ ÂÁÛθڇÚ ‰Â‚Ó. ê‡ÒÒÚÓflÌË ÒÏ¢ÂÌËfl ·‡ ê‡ÒÒÚÓflÌË ÒÏ¢ÂÌËfl ·‡ (ËÎË ‡ÒÒÚÓflÌË ÒÍÓθÊÂÌËfl ·‡) ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â Gc(n, m) ‚ÒÂı Ò‚flÁÌ˚ı „‡ÙÓ‚ Ò n ‚¯Ë̇ÏË Ë m e·‡ÏË, Á‡‰‡‚‡Âχfl ‰Îfl β·˚ı G 1 , G2 ∈ GÒ(n, m) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÒÏ¢ÂÌËÈ Â·‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl „‡Ù‡ G 1 ‚ „‡Ù G 2 . ëÏ¢ÂÌË ·‡ – Ó‰ËÌ ËÁ ÚËÔÓ‚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·Â, ÍÓÚÓ˚È Á‡‰‡ÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: „‡Ù ç ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ ËÁ „‡Ù‡ G Ò ÔÓÏÓ˘¸˛ ÒÏ¢ÂÌËfl ·‡, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ‡Á΢Ì˚ ‚¯ËÌ˚ u, v Ë w ‚ „‡Ù G, Ú‡ÍË ˜ÚÓ uv, uv ∈ E(G), wx ∉ E(G) Ë H = G – uv + uw. ëÏ¢ÂÌË ·‡ – ˝ÚÓ ÓÒÓ·˚È ÚËÔ ‚‡˘ÂÌËfl ·‡ ‰Îfl ÒÎÛ˜‡fl, ÍÓ„‰‡ ‚¯ËÌ˚ v, w fl‚Îfl˛ÚÒfl ÒÏÂÊÌ˚ÏË ‚ G. ê‡ÒÒÚÓflÌË ÒÏ¢ÂÌËfl ·‡ ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌÓ ÏÂÊ‰Û Î˛·˚ÏË „‡Ù‡ÏË G Ë H Ò ÍÓÏÔÓÌÂÌÚ‡ÏË Gi(1 ≤ i ≤ k) Ë Hi(1 ≤ i ≤ k), ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÂÒÎË Gi Ë Hi ËÏÂ˛Ú Ó‰Ë̇ÍÓ‚˚ ÔÓfl‰ÓÍ Ë ‡ÁÏÂ. ê‡ÒÒÚÓflÌË F-‚‡˘ÂÌËfl ê‡ÒÒÚÓflÌËÂÏ F-‚‡˘ÂÌËfl ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â GF(n, m) ‚ÒÂı „‡ÙÓ‚ Ò n ‚¯Ë̇ÏË Ë m ·‡ÏË, ÒÓ‰Âʇ˘Ëı ÔÓ‰„‡Ù, ËÁÓÏÓÙÌ˚È ‰‡ÌÌÓÏÛ „‡ÙÛ F ÔÓfl‰Í‡ Ì ÏÂÌ 2, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl ‚ÒÂı G1, G2 ∈ G F(n, m) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ F-‚‡˘ÂÌËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl „‡Ù‡ G1 ‚ „‡Ù G 2 . F-‚‡˘ÂÌË – Ó‰ËÌ ËÁ ÚËÔÓ‚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ·Â, ÍÓÚÓ˚È Á‡‰‡ÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: ÔÛÒÚ¸ F' ÂÒÚ¸ ÔÓ‰„‡Ù „‡Ù‡ G, ËÁÓÏÓÙÌ˚È „‡ÙÛ F, Ë ÔÛÒÚ¸ u, v, w – ÚË ‡Á΢Ì˚ ‚¯ËÌ˚ „‡Ù‡ G, Ú‡ÍË ˜ÚÓ u ∉ V(F'), v , w ∈ V(F'), uv ∈ ∈ E (G ) Ë u w ∉ E(G); „‡Ù ç ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ ËÁ „‡Ù‡ G Ò ÔÓÏÓ˘¸˛ F-‚‡˘ÂÌËfl ·‡ uv ‚ ÔÓÎÓÊÂÌË uw, ÂÒÎË H = G – uv + uw..
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
237
ê‡ÒÒÚÓflÌË ·Ë̇ÌÓ„Ó ÓÚÌÓ¯ÂÌËfl èÛÒÚ¸ R – ÌÂÂÙÎÂÍÒË‚ÌÓ ·Ë̇ÌÓ ÓÚÌÓ¯ÂÌË ÏÂÊ‰Û „‡Ù‡ÏË, Ú.Â. R ⊂ G × G Ë ÒÛ˘ÂÒÚ‚ÛÂÚ „‡Ù G ∈ G, Ú‡ÍÓÈ ˜ÚÓ (G, G) ∉ R. ê‡ÒÒÚÓflÌË ·Ë̇ÌÓ„Ó ÓÚÌÓ¯ÂÌËfl – ‡Ò¯ËÂÌ̇fl ÏÂÚË͇ (ÍÓÚÓ‡fl ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ÏÓÊÂÚ ÔËÌËχڸ Á̇˜ÂÌË ∞) ̇ ÏÌÓÊÂÒÚ‚Â G ‚ÒÂı „‡ÙÓ‚, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı „‡ÙÓ‚ G 1 Ë G2 Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ R-ÔÂÓ·‡ÁÓ‚‡ÌËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl Ú‡ÌÒÙÓχˆËË „‡Ù‡ G1 ‚ „‡Ù G2. å˚ „Ó‚ÓËÏ, ˜ÚÓ „‡Ù ç ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ ËÁ „‡Ù‡ G ÔÛÚÂÏ R-ÔÂÓ·‡ÁÓ‚‡ÌËfl, ÂÒÎË (H, G) ∈ R. èËÏÂÓÏ Ú‡ÍÓ„Ó ‡ÒÒÚÓflÌËfl fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚÂÛ„ÓθÌ˚ÏË ‚ÎÓÊÂÌËflÏË ÔÓÎÌÓ„Ó „‡Ù‡ (Ú.Â. Â„Ó ÍÎÂÚÓ˜Ì˚ÏË ‚ÎÓÊÂÌËflÏË ‚ ÔÓ‚ÂıÌÓÒÚ¸, Ëϲ˘Û˛ ÚÓθÍÓ 3-„Ó̇θÌ˚ „‡ÌË), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ t, Ú‡ÍÓ ˜ÚÓ ‚ÎÓÊÂÌËfl ËÁÓÏÂÚ˘Ì˚ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó Á‡Ï¢ÂÌËfl t „‡ÌÂÈ. åÂÚËÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl ·ÂÁ ÔÂÂÒ˜ÂÌËÈ ÑÎfl ÔÓ‰ÏÌÓÊÂÒÚ‚‡ S ËÁ 2 ÓÒÚÓ‚ÌÓ ‰ÂÂ‚Ó ·ÂÁ ÔÂÂÒ˜ÂÌËÈ ÏÌÓÊÂÒÚ‚‡ S ÂÒÚ¸ ‰Â‚Ó, ‚¯ËÌ˚ ÍÓÚÓÓ„Ó – ÚÓ˜ÍË ÏÌÓÊÂÒÚ‚‡ S , ‡ ·‡ – ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËÂÒfl ÓÚÂÁÍË ÔflÏ˚ı. åÂÚË͇ ÔÂÂÏ¢ÂÌËfl ·‡ ·ÂÁ ÔÂÂÒ˜ÂÌËÈ ([AAH00]) ̇ ÏÌÓÊÂÒÚ‚Â TS ‚ÒÂı ÓÒÚÓ‚Ì˚ı ‰Â‚¸Â‚ ·ÂÁ ÔÂÂÒ˜ÂÌËÈ ÏÌÓÊÂÒÚ‚‡ S ÓÔ‰ÂÎflÂÚÒfl ‰Îfl β·˚ı T1, T2 ∈ ∈ TS Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÔÂÂÏ¢ÂÌËÈ Â·‡ ·ÂÁ ÔÂÂÒ˜ÂÌËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl T 1 ‚ T2. èÂÂÏ¢ÂÌË ·‡ ÔÂÂÒ˜ÂÌËÈ – ÔÂÓ·‡ÁÓ‚‡ÌË ·Â, ÒÛÚ¸ ÍÓÚÓÓ„Ó Á‡Íβ˜‡ÂÚÒfl ‚ ‰Ó·‡‚ÎÂÌËË ÌÂÍÓÚÓÓ„Ó Â·‡  ‚ T ∈ T S Ë ÛÌ˘ÚÓÊÂÌËË ÌÂÍÓÚÓÓ„Ó Â·‡ f ËÁ ÔÓÎÛ˜ÂÌÌÓ„Ó ˆËÍ·, Ú‡Í ˜ÚÓ·˚ e Ë f Ì ÔÂÂÒÂ͇ÎËÒ¸. åÂÚË͇ ÒÍÓθÊÂÌËfl ·‡ ·ÂÁ ÔÂÂÒ˜ÂÌËÈ ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â T S ‚ÒÂı ÓÒÚÓ‚Ì˚ı ‰Â‚¸Â‚ ·ÂÁ ÔÂÂÒ˜ÂÌËÈ ÏÌÓÊÂÒÚ‚‡ S, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı T1, T 2 ∈ ∈ T S Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÒÍÓθÊÂÌËÈ Â·Â ·ÂÁ ÔÂÂÒ˜ÂÌËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl T1 ‚ T 2 . ëÍÓθÊÂÌË ·‡ ·ÂÁ ÔÂÂÒ˜ÂÌËÈ ÂÒÚ¸ Ó‰ÌÓ ËÁ ÔÂÓ·‡ÁÓ‚‡ÌËÈ Â·Â, ‚ ıӉ ÍÓÚÓÓ„Ó ·ÂÂÚÒfl ÌÂÍÓÚÓÓÂ Â·Ó Â ‚ T ∈ TS Ë Ó‰Ì‡ ËÁ Â„Ó ÍÓ̈‚˚ı ÚÓ˜ÂÍ ÔÂÂÏ¢‡ÂÚÒfl ‚‰Óθ ÌÂÍÓÚÓÓ„Ó ÒÏÂÊÌÓ„Ó Ò Â Â·‡ ‚ T Ú‡Í, ˜ÚÓ·˚ Ì ‚ÓÁÌËÍÎÓ ÔÂÂÒ˜ÂÌËfl Â·Â Ë "Á‡ÏÂÚ‡ÌËfl" ÚÓ˜ÂÍ ËÁ S (˝ÚÓ ‰‡ÂÚ Ì‡Ï ‚ÏÂÒÚÓ Â ÌÓ‚ÓÂ Â·Ó f). ëÍÓθÊÂÌË ·‡ fl‚ÎflÂÚÒfl ÓÒÓ·˚Ï ÒÎÛ˜‡ÂÏ ÔÂÂÏ¢ÂÌËfl ·‡ ·ÂÁ ÔÂÂÒ˜ÂÌËÈ: ÌÓ‚Ó ‰ÂÂ‚Ó Ó·‡ÁÛÂÚÒfl ‚ ÂÁÛθڇÚ Á‡Ï˚͇ÌËfl Ò ÔÓÏÓ˘¸˛ f ˆËÍ· ë ‰ÎËÌ˚ 3 ‚ í Ë Û‰‡ÎÂÌËfl  ËÁ ë Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ f Ì ÔÓÔ‡‰‡ÎÓ ‚ÌÛÚ¸ ÚÂÛ„ÓθÌË͇ ë. ê‡ÒÒÚÓflÌËfl χ¯ÛÚÓ‚ ÍÓÏÏË‚Óflʇ èÓ·ÎÂχ ÍÓÏÏË‚Óflʇ ËÁ‚ÂÒÚ̇ Í‡Í Á‡‰‡˜‡ ̇ıÓʉÂÌËfl ͇ژ‡È¯Â„Ó Ï‡¯ÛÚ‡ ‰Îfl ÔÓÒ¢ÂÌËfl ÌÂÍÓÚÓÓ„Ó ÏÌÓÊÂÒÚ‚‡ „ÓÓ‰Ó‚. å˚ ‡ÒÒÏÓÚËÏ ÔÓ·ÎÂÏÛ ÍÓÏÏË‚Óflʇ ÚÓθÍÓ ‰Îfl ÌÂÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ÒÎÛ˜‡fl. ÑÎfl ¯ÂÌËfl ÔÓ·ÎÂÏ˚ ÍÓÏÏË‚Óflʇ ÔËÏÂÌËÚÂθÌÓ Í N „ÓÓ‰‡Ï ‡ÒÒÏÓÚËÏ ÔÓÒÚ‡ÌÒÚ‚Ó N ( N − 1)! χ¯ÛÚÓ‚ Í‡Í ÏÌÓÊÂÒÚ‚Ó, ÒÓÒÚÓfl˘Â ËÁ ˆËÍ΢ÂÒÍËı ÔÂÂÒÚ‡ÌÓ‚ÓÍ 2 „ÓÓ‰Ó‚ 1, 2,…, N. åÂÚË͇ D ̇ N ÓÔ‰ÂÎflÂÚÒfl ‚ ÚÂÏË̇ı ‡Á΢Ëfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: ÂÒÎË Ï‡¯ÛÚ˚ T, T' ∈ N ‡Á΢‡˛ÚÒfl ‚ m ·‡ı, ÚÓ D(T, T') = m. k-OPT ÔÂÓ·‡ÁÓ‚‡ÌË χ¯ÛÚ‡ í ÔÓÎÛ˜‡˛Ú ÔÓÒ‰ÒÚ‚ÓÏ Û‰‡ÎÂÌËfl k · ËÁ í Ë ÔÓÒÚÓÂÌËfl ‰Û„Ëı ·Â. 凯ÛÚ T', ÔÓÎÛ˜‡ÂÏ˚È ËÁ í Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ k-OPT ÔÂÓ·‡ÁÓ‚‡ÌËfl, ̇Á˚‚‡ÂÚÒfl k-OPTÓÏ ‰Îfl í . ê‡ÒÒÚÓflÌË d ̇ ÏÌÓÊÂÒÚ‚Â N ÓÔ‰ÂÎflÂÚÒfl ‚ ÚÂÏË̇ı 2-OPT ÔÂÓ·‡ÁÓ‚‡ÌËÈ: d(T, T') ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ i,
238
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
‰Îfl ÍÓÚÓÓ„Ó ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ËÁ i 2-OPT ÔÂÓ·‡ÁÓ‚‡ÌËÈ, Ô‚Ӊfl˘‡fl í ‚ T'. ÑÎfl β·˚ı T, T' ∈ N ËÏÂÂÚ ÏÂÒÚÓ Ì‡‚ÂÌÒÚ‚Ó d(T, T') ≤ D(T, T') (ÒÏ., ̇ÔËÏÂ, [MaMo95]). ê‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÔÓ‰„‡Ù‡ÏË ëڇ̉‡ÚÌÓ ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÔÓ‰„‡ÙÓ‚ Ò‚flÁÌÓ„Ó „‡Ù‡ G = (V, E) ÓÔ‰ÂÎflÂÚÒfl Í‡Í min{d path (u, v) : u ∈ V ( F ), v ∈ V ( H )} ‰Îfl β·˚ı ÔÓ‰„‡ÙÓ‚ F, H „‡Ù‡ G. ÑÎfl β·˚ı ÔÓ‰„‡ÙÓ‚ F, H ÒËθÌÓ Ò‚flÁÌÓ„Ó Ó„‡Ù‡ D = (V, E) Òڇ̉‡ÚÌÓ ͂‡ÁˇÒÒÚÓflÌË ÓÔ‰ÂÎflÂÚÒfl Í‡Í min{ddpath (u, v) : u ∈V ( F ), v ∈V ( H )}. ê‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl ·‡ ̇ ÏÌÓÊÂÒÚ‚Â Sk(G) ‚ÒÂı ·ÂÌÓ-Ë̉ۈËÓ‚‡ÌÌ˚ı ÔÓ‰„‡ÙÓ‚ Ò k ·‡ÏË ‚ Ò‚flÁÌÓÏ „‡Ù G ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ‚‡˘ÂÌËÈ Â·‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl F ∈ Sk(G) ‚ H ∈ Sk(G). ÉÓ‚ÓflÚ, ˜ÚÓ H ÔÓÎÛ˜‡ÂÚÒfl ËÁ F ‚‡˘ÂÌËÂÏ Â·‡, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ‡Á΢Ì˚ ‚¯ËÌ˚ u, v Ë w ‚ G, Ú‡ÍË ˜ÚÓ uv ∈ E(F), uw ∈ E(G) Ë H = F – uv + uw. ê‡ÒÒÚÓflÌË ÒÏ¢ÂÌËfl ·‡ ̇ ÏÌÓÊÂÒÚ‚Â S k(G) ‚ÒÂı ·ÂÌÓ-Ë̉ۈËÓ‚‡ÌÌ˚ı ÔÓ‰„‡ÙÓ‚ Ò k ·‡ÏË ‚ Ò‚flÁÌÓÏ „‡Ù G ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÒÏ¢ÂÌËÈ Â·‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl F ∈ Sk(G) ‚ H ∈ Sk(G). ÉÓ‚ÓflÚ, ˜ÚÓ ç ÔÓÎÛ˜‡ÂÚÒfl ËÁ F ÒÏ¢ÂÌËÂÏ Â·‡, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ‡Á΢Ì˚ ‚¯ËÌ˚ u, v Ë w ‚ G, Ú‡ÍË ˜ÚÓ uv ∈ E(F), uw ∈ E(G)\E(F) Ë H = F – uv + uw. ê‡ÒÒÚÓflÌË ÔÂÂÏ¢ÂÌËfl ·‡ ̇ ÏÌÓÊÂÒÚ‚Â Sk(G) ‚ÒÂı ·ÂÌÓ-Ë̉ۈËÓ‚‡ÌÌ˚ı ÔÓ‰„‡ÙÓ‚ Ò k ·‡ÏË ‚ „‡Ù G (Ì ӷflÁ‡ÚÂθÌÓ Ò‚flÁÌÓÏ) ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÔÂÂÏ¢ÂÌËÈ Â·‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl F ∈ ∈ S k(G) ‚ H ∈ S k(G). ÉÓ‚ÓflÚ, ˜ÚÓ ç ÔÓÎÛ˜‡ÂÚÒfl ËÁ F ÔÂÂÏ¢ÂÌËflÏ Â·‡, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú (Ì ӷflÁ‡ÚÂθÌÓ ‡Á΢Ì˚Â) ‚¯ËÌ˚ u, v, w Ë x ‚ G, Ú‡ÍË ˜ÚÓ uv ∈ E(F), wx ∈ E(G)\E(F) Ë H = F – uv + w x. ê‡ÒÒÚÓflÌË ÔÂÂÏ¢ÂÌËfl ·‡ – ÏÂÚË͇ ̇ S k(G). ÖÒÎË F Ë H ËÏÂ˛Ú s Ó·˘Ëı e·Â, ÚÓ ÓÌÓ ‡‚ÌÓ k – s. ê‡ÒÒÚÓflÌË Ò͇˜Í‡ ·‡ (ÍÓÚÓÓ ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ÏÓÊÂÚ ÔËÌËχڸ Á̇˜ÂÌË ∞) ̇ ÏÌÓÊÂÒÚ‚Â S k(G) ‚ÒÂı ·ÂÌÓ-Ë̉ۈËÓ‚‡ÌÌ˚ı ÔÓ‰„‡ÙÓ‚ Ò k e·‡ÏË „‡Ù‡ G (Ì ӷflÁ‡ÚÂθÌÓ Ò‚flÁÌÓ„Ó) ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ Ò͇˜ÍÓ‚ ·‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl F ∈ S k(G) ‚ H ∈ S k(G). ÉÓ‚ÓflÚ, ˜ÚÓ H ÔÓÎÛ˜‡ÂÚÒfl ËÁ F Ò͇˜ÍÓÏ Â·‡, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú Ú‡ÍË ˜ÂÚ˚ ‡Á΢Ì˚ ‚¯ËÌ˚ u, v, w Ë x ‚ G, ˜ÚÓ uv ∈ E(F), wx ∈ E(G)\E(F) Ë H = F – uv + wx. 15.4. êÄëëíéüçàü çÄ ÑÖêÖÇúüï èÛÒÚ¸ í – ÍÓÌ‚Ó ‰Â‚Ó, Ú.Â. ‰Â‚Ó, Û ÍÓÚÓÓ„Ó Ó‰Ì‡ ËÁ Â„Ó ‚¯ËÌ ‚˚·‡Ì‡ ‚ ͇˜ÂÒÚ‚Â ÍÓÌfl. ÉÎÛ·Ë̇ ‚¯ËÌ˚ v, depth(v) – ˝ÚÓ ˜ËÒÎÓ e·Â ̇ ÔÛÚË ÓÚ v Í ÍÓÌ˛. ǯË̇ v ̇Á˚‚‡ÂÚÒfl Ó‰ËÚÂθÒÍÓÈ ‰Îfl ‚¯ËÌ˚ u, v = par(u), ÂÒÎË ÓÌË ÒÏÂÊÌ˚Â Ë ËÏÂÂÚ ÏÂÒÚÓ ‡‚ÂÌÒÚ‚Ó depth(u) = depth(v) + 1; ‚ ˝ÚÓÏ ÒÎÛ˜‡Â u ̇Á˚‚‡ÂÚÒfl ‰Ó˜ÂÌÂÈ ‰Îfl v. Ñ‚Â ‚¯ËÌ˚ ̇Á˚‚‡˛ÚÒfl ÒÂÒÚ‡ÏË, ÂÒÎË ËÏÂ˛Ú Ó‰ÌÓ„Ó Ë ÚÓ„Ó Ê ӉËÚÂÎfl. ëÚÂÔÂ̸ ‚˚ıÓ‰‡ ‚¯ËÌ˚ – ˝ÚÓ ÍÓ΢ÂÒÚ‚Ó Â ‰Ó˜ÂÌËı ‚¯ËÌ. T(v) ÂÒÚ¸ ÔÓ‰‰ÂÂ‚Ó ‰Â‚‡ í Ò ÍÓÌÂÏ ‚ ‚¯ËÌ v ∈ V(T). ÖÒÎË w ∈ V(T(v)), ÚÓ v fl‚ÎflÂÚÒfl Ô‰ÍÓÏ ‰Îfl w, ‡ w – ÔÓÚÓÏÍÓÏ ‰Îfl v; nca(u, v) – ·ÎËʇȯËÈ Ó·˘ËÈ Ô‰ÓÍ ‰Îfl ‚¯ËÌ u Ë v. ÑÂÂ‚Ó Ì‡Á˚‚‡ÂÚÒfl ÔÓϘÂÌÌ˚Ï ‰Â‚ÓÏ, ÂÒÎË Í‡Ê‰‡fl ËÁ
239
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
Â„Ó ‚¯ËÌ Ó·ÓÁ̇˜Â̇ ÒËÏ‚ÓÎÓÏ Á‡‰‡ÌÌÓ„Ó ÍÓ̘ÌÓ„Ó ‡ÎÙ‡‚ËÚ‡ . ÑÂÂ‚Ó í ̇Á˚‚‡ÂÚÒfl ÛÔÓfl‰Ó˜ÂÌÌ˚Ï ‰Â‚ÓÏ, ÂÒÎË Á‡‰‡Ì ÔÓfl‰ÓÍ (Ò΂‡ ̇ԇ‚Ó) ̇ ‚¯Ë̇ı-ÒÂÒÚ‡ı. ç‡ ÏÌÓÊÂÒÚ‚Â rlo ‚ÒÂı ÍÓÌ‚˚ı ÔÓϘÂÌÌ˚ı ÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚ ‰ÓÔÛÒ͇˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÓÔ‡ˆËË Â‰‡ÍÚËÓ‚‡ÌËfl: èÂÂË̉ÂÍÒ‡ˆËfl – ËÁÏÂÌÂÌË ÏÂÚÍË ‚¯ËÌ˚ v. 쉇ÎÂÌË – Û‰‡ÎÂÌË ÌÂÍÓÌ‚ÓÈ ‚¯ËÌ˚ v Ò Ó‰ËÚÂÎÂÏ v', Ú‡Í ˜ÚÓ ‰Ó˜ÂÌË ˝ÎÂÏÂÌÚ˚ v ÒÚ‡ÌÓ‚flÚÒfl ‰Ó˜ÂÌËÏË ˝ÎÂÏÂÌÚ‡ÏË v'; ˝ÚË ‰Ó˜ÂÌË ˝ÎÂÏÂÌÚ˚ ‚ÒÚ‡‚Îfl˛ÚÒfl ‚ÏÂÒÚÓ v Í‡Í ÛÔÓfl‰Ó˜ÂÌ̇fl Ò΂‡ ̇ԇ‚Ó ÔÓ‰ÔÓÒΉӂÚÂθÌÓÒÚ¸ ‰Ó˜ÂÌËı ˝ÎÂÏÂÌÚÓ‚ v'. ÇÒÚ‡‚͇ – ‰ÓÔÓÎÌÂÌËÂ Í Û‰‡ÎÂÌ˲; ‚ÒÚ‡‚͇ ‚¯ËÌ˚ v ‚ ͇˜ÂÒÚ‚Â ‰Ó˜ÂÌÂ„Ó ˝ÎÂÏÂÌÚ‡ v', ˜ÚÓ ‰Â·ÂÚ v Ó‰ËÚÂÎÂÏ ÔÓÒÎÂ‰Û˛˘ÂÈ ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ‰Ó˜ÂÌËı ˝ÎÂÏÂÌÚÓ‚ v'. ÑÎfl ÌÂÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚ ÓÔ‡ˆËË Â‰‡ÍÚËÓ‚‡ÌËfl ÓÔ‰ÂÎfl˛ÚÒfl ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ, ÌÓ ÓÔ‡ˆËË ‚ÒÚ‡‚ÍË Ë Û‰‡ÎÂÌËfl ‰ÂÈÒÚ‚Û˛Ú Ì‡ ÔÓ‰ÏÌÓÊÂÒÚ‚Â, ‡ Ì ̇ ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚË. è‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ÙÛÌ͈Ëfl ˆÂÌ˚, ÓÔ‰ÂÎflÂχfl ‰Îfl ͇ʉÓÈ ÓÔ‡ˆËË Â‰‡ÍÚËÓ‚‡ÌËfl, ‡ ˆÂ̇ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÓÔ‡ˆËÈ Â‰‡ÍÚËÓ‚‡ÌËfl ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÒÛÏχ ˆÂÌ ˝ÚËı ÓÔ‡ˆËÈ. ìÔÓfl‰Ó˜ÂÌÌÓ ÓÚÓ·‡ÊÂÌË ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl – ÒÔˆˇθ̇fl ËÌÚÂÔÂÚ‡ˆËfl ÓÔ‡ˆËÈ Â‰‡ÍÚËÓ‚‡ÌËfl. îÓχθÌÓ, ̇ÁÓ‚ÂÏ ÚÓÈÍÛ (M, T1, T2) Í‡Í ÛÔÓfl‰Ó˜ÂÌÌ˚Ï ÓÚÓ·‡ÊÂÌËÂÏ ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl ‰Â‚‡ í1 ‚ ‰ÂÂ‚Ó í2, T 1 , T 2 ∈ rlo, ÂÒÎË M ⊂ V(T 1 ) × V(T 2 ) Ë, ‰Îfl β·˚ı (v1, w 1 ), (v2 , w 2 ) ∈ M ‚˚ÔÓÎÌflÂÚÒfl ÒÎÂ‰Û˛˘Â ÛÒÎÓ‚ËÂ: v1 = v2 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ w 1 = w 2 (ÛÒÎÓ‚Ë ‚Á‡ËÏÌÓÈ Ó‰ÌÓÁ̇˜ÌÓÒÚË), v1 fl‚ÎflÂÚÒfl Ô‰ÍÓÏ ‰Îfl v2 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ w1 fl‚ÎflÂÚÒfl Ô‰ÍÓÏ w2 (ÛÒÎÓ‚Ë Ô‰ÍÓ‚), v 1 ̇ıÓ‰ËÚÒfl Ò΂‡ ÓÚ v2 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ w 1 ̇ıÓ‰ËÚÒfl Ò΂‡ ÓÚ w2 (ÛÒÎÓ‚Ë ÒÂÒÚÂ). ÉÓ‚ÓflÚ, ˜ÚÓ ‚¯Ë̇ v ‚ T 1 Ë T2 ÚÓÌÛÚ‡ ÎËÌËÂÈ ‚ å , ÂÒÎË v ÔÓfl‚ÎflÂÚÒfl ‚ ÌÂÍÓÚÓÓÈ Ô‡Â ËÁ å. èÛÒÚ¸ N1 Ë N2 – ÏÌÓÊÂÒÚ‚‡ ‚¯ËÌ ‰Â‚¸Â‚ T 1 Ë T2 ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÍÓÚÓ˚ Ì ÚÓÌÛÚ˚ ÎËÌËflÏË ‚ å. ñÂ̇ å Á‡‰‡ÂÚÒfl Í‡Í γ (M) = γ ( v → w) + γ (v → λ) + γ (λ → w ), „‰Â γ ( a → b) = γ ( a, b) – ˆÂ̇ ÓÔÂ-
∑
( v , w ) ∈M
∑
v ∈N1
∑
w ∈N 2
‡ˆËË Â‰‡ÍÚËÓ‚‡ÌËfl a → b, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ÔÂÂË̉ÂÍÒ‡ˆËÂÈ, ÂÒÎË a, b ∈ , Û‰‡ÎÂÌËÂÏ, ÂÒÎË b = λ, Ë ‚ÒÚ‡‚ÍÓÈ, ÂÒÎË a = λ. á‰ÂÒ¸ ÒËÏ‚ÓÎ λ ∉ ‚˚ÒÚÛÔ‡ÂÚ Í‡Í ÒÔˆˇθÌ˚È ÒËÏ‚ÓÎ Ôӷ·, Ë γ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ÏÌÓÊÂÒÚ‚Â ∪ λ (ËÒÍβ˜‡fl Á̇˜ÂÌË γ(λ, λ)). ê‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl ‰Â‚‡ ê‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl ‰Â‚‡ ([Tai79]) ̇ ÏÌÓÊÂÒÚ‚Â rlo ‚ÒÂı ÍÓÌ‚˚ı ÔÓϘÂÌÌ˚ı ÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚ ÓÔ‰ÂÎflÂÚÒfl ‰Îfl β·˚ı T1, T 2 ∈ rlo Í‡Í ÏËÌËχθ̇fl ˆÂ̇ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÓÔ‡ˆËÈ Â‰‡ÍÚËÓ‚‡ÌËfl (ÔÂÂË̉ÂÍÒ‡ˆËÈ, ‚ÒÚ‡‚ÓÍ Ë Û‰‡ÎÂÌËÈ), Ô‚Ӊfl˘ÂÈ T 1 ‚ T2. Ç ÚÂÏË̇ı ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÓÚÓ·‡ÊÂÌËfl ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl ˝ÚÓ ‡ÒÒÚÓflÌË ‡‚ÌÓ min ( M , T1 , T2 ) γ ( M ), „‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÛÔÓfl‰Ó˜ÂÌÌ˚Ï ÓÚÓ·‡ÊÂÌËflÏ ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl (M, T1 , T 2 ). ê‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl ‰Â‚‡ ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ Ì‡ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ÍÓÌ‚˚ı ÌÂÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚.
240
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
ê‡ÒÒÚÓflÌË ëÂÎÍÓÛ ê‡ÒÒÚÓflÌË ëÂÎÍÓÛ (ËÎË ‡ÒÒÚÓflÌË ÌËÒıÓ‰fl˘Â„Ó Â‰‡ÍÚËÓ‚‡ÌËfl, ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl 1-ÒÚÂÔÂÌË) ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â rlo ‚ÒÂı ÍÓÌ‚˚ı ÔÓϘÂÌÌ˚ı ÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı T1, T2 ∈ rlo Í‡Í ÏËÌËχθ̇fl ˆÂ̇ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÓÔ‡ˆËÈ Â‰‡ÍÚËÓ‚‡ÌËfl (ÔÂÂË̉ÂÍÒ‡ˆËÈ, ‚ÒÚ‡‚ÓÍ Ë Û‰‡ÎÂÌËÈ), Ô‚Ӊfl˘ÂÈ T 1 ‚ T2, ÂÒÎË ‚ÒÚ‡‚ÍË Ë Û‰‡ÎÂÌËfl ‡ÒÔÓÒÚ‡Ìfl˛ÚÒfl ÚÓθÍÓ Ì‡ ÎËÒÚ¸fl ‰Â‚¸Â‚ ([Selk77]). äÓÂ̸ ‰Â‚‡ T1 ‰ÓÎÊÂÌ ÓÚÓ·‡Ê‡Ú¸Òfl ‚ ÍÓÂ̸ ‰Â‚‡ T 2 Ë, ÂÒÎË ‚¯Ë̇ v ÔÓ‰ÎÂÊËÚ Û‰‡ÎÂÌ˲ (‚ÒÚ‡‚ÍÂ), ÚÓ ÔÓ‰‰ÂÂ‚Ó Ò ÍÓÌÂÏ ‚ v, ÂÒÎË Ú‡ÍÓ‚Ó ËÏÂÂÚÒfl, ÔÓ‰ÎÂÊËÚ Û‰‡ÎÂÌ˲ (‚ÒÚ‡‚ÍÂ). Ç ÚÂÏË̇ı ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÓÚÓ·‡ÊÂÌËfl ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl ‡ÒÒÚÓflÌË ëÂÎÍÓÛ ‡‚ÌÓ min ( M , T1 , T2 ) γ ( M ), „‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÓÚÓ·‡ÊÂÌËflÏ ‡ÒÒÚÓflÌËfl ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó Â‰‡ÍÚËÓ‚‡ÌËfl (M, T1, T2 ), Û‰Ó‚ÎÂÚ‚Ófl˛˘ËÏ ÒÎÂ‰Û˛˘ÂÏÛ ÛÒÎӂ˲: ÂÒÎË (v, w) ∈ M , „‰Â ÌË v, ÌË w Ì fl‚Îfl˛ÚÒfl ÍÓÌflÏË, ÚÓ (par(v), par(w)) ∈ M. ê‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl Ò Ó„‡Ì˘ÂÌËÂÏ ê‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl Ò Ó„‡Ì˘ÂÌËÂÏ (ËÎË ‡ÒÒÚÓflÌË „·ÏÂÌÚËÓ‚‡ÌÌÓ„Ó Â‰‡ÍÚËÓ‚‡ÌËfl) ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â rlo ‚ÒÂı ÍÓÌ‚˚ı ÔÓϘÂÌÌ˚ı ÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı T1, T2 ∈ rlo Í‡Í ÏËÌËχθ̇fl ˆÂ̇ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÓÔ‡ˆËÈ Â‰‡ÍÚËÓ‚‡ÌËfl (ÔÂÂË̉ÂÍÒ‡ˆËÈ, ‚ÒÚ‡‚ÓÍ Ë Û‰‡ÎÂÌËÈ), Ô‚Ӊfl˘ÂÈ T 1 ‚ T 2 , Ò ÚÂÏ Ó„‡Ì˘ÂÌËÂÏ, ˜ÚÓ ÌÂÔÂÂÒÂ͇˛˘ËÂÒfl ÔÓ‰‰Â‚¸fl ‰ÓÎÊÌ˚ ÓÚÓ·‡Ê‡Ú¸Òfl ̇ ÌÂÔÂÂÒÂ͇˛˘ËÂÒfl ÔÓ‰‰Â‚¸fl. Ç ÚÂÏË̇ı ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÓÚÓ·‡ÊÂÌËfl ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl ‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl Ò Ó„‡Ì˘ÂÌËÂÏ ‡‚ÌÓ min ( M , T1 , T2 ) γ ( M ), „‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÛÔÓfl‰Ó˜ÂÌÌ˚Ï ÓÚÓ·‡ÊÂÌËflÏ ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl (M, T1 , T 2 ), Û‰Ó‚ÎÂÚ‚Ófl˛˘ËÏ ÒÎÂ‰Û˛˘ÂÏÛ ÛÒÎӂ˲: ‰Îfl ‚ÒÂı (v1 , w 1 ), (v2, w 2 ), (v3, w 3 ) ∈ M, nca(v1 , v2 ) fl‚ÎflÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚Ï Ô‰ÍÓÏ v3 ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ nca(w 1 , w2 ) fl‚ÎflÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚Ï Ô‰ÍÓÏ w 3 . ùÚÓ ‡ÒÒÚÓflÌË ˝Í‚Ë‚‡ÎÂÌÚÌÓ ‡ÒÒÚÓflÌ˲ ‰‡ÍÚËÓ‚‡ÌËfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÒÚÛÍÚÛÂ, ÓÔ‰ÂÎÂÌÌÓÏÛ Í‡Í min ( M , T1 , T2 ) γ ( M ), „‰Â ÏËÌËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÛÔÓfl‰Ó˜ÂÌÌ˚Ï ÓÚÓ·‡ÊÂÌËflÏ ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl (M, T1 , T 2 ), Û‰Ó‚ÎÂÚ‚Ófl˛˘ËÏ ÒÎÂ‰Û˛˘ÂÏÛ ÛÒÎӂ˲: ‰Îfl ‚ÒÂı (v1 , w1), (v2 , w2), (v3 , w3) ∈ M, Ú‡ÍËı ˜ÚÓ ÌË Ó‰Ì‡ ËÁ v1 , v2 Ë v3 Ì fl‚ÎflÂÚÒfl Ô‰ÍÓÏ ‰Îfl ‰Û„Ëı, nca(v1, v2 ) = nca(v1 , v3 ) ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ nca(w1, w 2 ) = nca(w 1 , w 3 ) ê‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl ‰ËÌ˘ÌÓÈ ˆÂÌ˚ ê‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl ‰ËÌ˘ÌÓÈ ˆÂÌ˚ – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â rlo ‚ÒÂı ÍÓÌ‚˚ı ÔÓϘÂÌÌ˚ı ÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı T 1 , T 2 ∈ rlo Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÓÔ‡ˆËÈ Â‰‡ÍÚËÓ‚‡ÌËfl (ÔÂÂË̉ÂÍÒ‡ˆËÂÈ, ‚ÒÚ‡‚ÓÍ Ë Û‰‡ÎÂÌËÈ), Ô‚Ӊfl˘Ëı T 1 ‚ T2. ê‡ÒÒÚÓflÌË ‚˚‡‚ÌË‚‡ÌËfl ê‡ÒÒÚÓflÌË ‚˚‡‚ÌË‚‡ÌËfl ([JWZ94]) ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â rlo ‚ÒÂı ÍÓÌ‚˚ı ÔÓϘÂÌÌ˚ı ÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı T 1 , T2 ∈ rlo Í‡Í ÏËÌËχθ̇fl ˆÂ̇ ‚˚‡‚ÌË‚‡ÌËfl T1 Ë T 2 . éÌÓ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡ÒÒÚÓflÌ˲ „·ÏÂÌÚËÓ‚‡ÌÌÓ„Ó Â‰‡ÍÚËÓ‚‡ÌËfl, „‰Â ‚Ò ‚ÒÚ‡‚ÍË ‰ÓÎÊÌ˚ Ô‰¯ÂÒÚ‚Ó‚‡Ú¸ Û‰‡ÎÂÌËflÏ. ùÚÓ ÓÁ̇˜‡ÂÚ, ˜ÚÓ Ï˚ ‚ÒÚ‡‚ÎflÂÏ ÔÓ·ÂÎ˚, Ú.Â. ‚¯ËÌ˚, Ó·ÓÁ̇˜ÂÌÌ˚ ÒËÏ‚ÓÎÓÏ Ôӷ· λ, ‚ ‰Â‚¸fl T 1 Ë T 2 Ú‡Í, ˜ÚÓ·˚ ÓÌË ÒÚ‡ÎË ËÁÓÏÓÙÌ˚ ÔË Ë„ÌÓËÓ-
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
241
‚‡ÌËË Ë̉ÂÍÒÓ‚; ÔÓÎÛ˜ÂÌÌ˚ ‚ ÂÁÛθڇÚ ‰Â‚¸fl ̇Í·‰˚‚‡˛ÚÒfl ‰Û„ ̇ ‰Û„‡ Ë ‰‡˛Ú ‚˚‡‚ÌË‚‡ÌË T A , – ‰Â‚Ó, ‚ ÍÓÚÓÓÏ Í‡Ê‰‡fl ‚¯Ë̇ ÔÓÎÛ˜Â̇ Ô‡ÓÈ Ë̉ÂÍÒÓ‚. ñÂ̇ TA – ÒÛÏχ ˆÂÌ ‚ÒÂı Ô‡ ÔÓÚË‚ÓÔÓÎÓÊÂÌÌ˚ı Ë̉ÂÍÒÓ‚ ‚ TA. ê‡ÒÒÚÓflÌË ‡Á·ËÂÌËÈ-ÒÓ‚Ï¢ÂÌËÈ ê‡ÒÒÚÓflÌË ‡Á·ËÂÌËÈ-ÒÓ‚Ï¢ÂÌËÈ ([ChLu85]) ÂÒÚ¸ ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â rlo ‚ÒÂı ÍÓÌ‚˚ı ÔÓϘÂÌÌ˚ı ÛÔÓfl‰Ó˜ÂÌÌ˚ı ‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı T1 , T 2 ∈ rlo Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ‡Á·ËÂÌËÈ Ë ÒÓ‚Ï¢ÂÌËÈ ‚¯ËÌ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl T 1 ‚ T2. ê‡ÒÒÚÓflÌË 2-ÒÚÂÔÂÌË ê‡ÒÒÚÓflÌË 2-ÒÚÂÔÂÌË ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â l ‚ÒÂı ÔÓϘÂÌÌ˚ı ‰Â‚¸Â‚ (ÔÓϘÂÌÌ˚ı Ò‚Ó·Ó‰Ì˚ı ‰Â‚¸Â‚), ÓÔ‰ÂÎÂÌ̇fl Í‡Í ÏËÌËχθÌÓ ‚Á‚¯ÂÌÌÓ ˜ËÒÎÓ ÓÔ‡ˆËÈ Â‰‡ÍÚËÓ‚‡ÌËfl (ÔÂÂË̉ÂÍÒ‡ˆËÂÈ, ‚ÒÚ‡‚ÓÍ Ë Û‰‡ÎÂÌËÈ), Ô‚Ӊfl˘Ëı T1 ‚ T2, ÂÒÎË Î˛·‡fl ‚ÒÚ‡‚ÎflÂχfl (Û‰‡ÎflÂχfl) ‚¯Ë̇ ËÏÂÂÚ Ì ·ÓΠ‰‚Ûı ÒÓÒ‰ÌËı ‚¯ËÌ. í‡Í‡fl ÏÂÚË͇ fl‚ÎflÂÚÒfl ÂÒÚÂÒÚ‚ÂÌÌ˚Ï ‡Ò¯ËÂÌËÂÏ ‡ÒÒÚÓflÌËfl ‰‡ÍÚËÓ‚‡ÌËfl ‰Â‚‡ Ë ‡ÒÒÚÓflÌËfl ëÂÎÍÓÛ. îËÎÓ„ÂÌÂÚ˘ÂÒÍÓ ï-‰ÂÂ‚Ó – ÌÂÛÔÓfl‰Ó˜ÂÌÌÓ ‰ÂÂ‚Ó ·ÂÁ ÍÓÌfl Ò ÏÌÓÊÂÒÚ‚ÓÏ ÔÓϘÂÌÌ˚ı ÎËÒڸ‚ ï, Ì Ëϲ˘Â ‚¯ËÌ ÔÓfl‰Í‡ 2. ÖÒÎË Í‡Ê‰‡fl ‚ÌÛÚÂÌÌflfl ‚¯Ë̇ ËÏÂÂÚ ÔÓfl‰ÓÍ 3, ÚÓ ‰ÂÂ‚Ó Ì‡Á˚‚‡ÂÚÒfl ·Ë̇Ì˚Ï (ËÎË ‚ÔÓÎÌ ‡Á¯ÂÌÌ˚Ï). ê‡ÁÂÁ Ä|Ç ÏÌÓÊÂÒÚ‚‡ ï ÂÒÚ¸ ‡Á·ËÂÌË ÏÌÓÊÂÒÚ‚‡ ï ̇ ‰‚‡ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç (ÒÏ. èÓÎÛÏÂÚË͇ ‡ÁÂÁ‡). 쉇ÎÂÌË ·‡  ËÁ ÙËÎÓ„ÂÌÂÚ˘ÂÒÍÓ„Ó ï-‰Â‚‡ ‚ΘÂÚ ‡ÁÂÁ ÏÌÓÊÂÒÚ‚‡ ÎËÒڸ‚ ï, ̇Á˚‚‡ÂÏ˚È ‡ÁÂÁÓÏ, ‡ÒÒÓˆËËÓ‚‡ÌÌ˚Ï Ò Â. åÂÚË͇ êÓ·ËÌÁÓ̇–îÓÛΉ҇ åÂÚË͇ êÓ·ËÌÁÓ̇-îÓÛΉ҇ (ËÎË ÏÂÚË͇ ·ÎËÊ‡È¯Â„Ó ‡Á·ËÂÌËfl, ‡ÒÒÚÓflÌË ‡ÁÂÁ‡) ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â (X) ‚ÒÂı ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı X-‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌ̇fl Í‡Í 1 1 1 Σ(T1 )∆Σ(T2 ) = Σ(T1 ) − Σ(T2 ) + Σ(T2 ) − Σ(T1 ) . 2 2 2 ‰Îfl ‚ÒÂı T1, T2 ∈ (X), „‰Â Σ(T) – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ‚ÒÂı ‡ÁÂÁÓ‚ ï, ‡ÒÒÓˆËËÓ‚‡ÌÌ˚ı Ò Â·‡ÏË í. ÇÁ‚¯ÂÌ̇fl ÏÂÚË͇ êÓ·ËÌÁÓ̇–îÓÛΉ҇ ÇÁ‚¯ÂÌ̇fl ÏÂÚË͇ êÓ·ËÌÁÓ̇–îÓÛΉ҇ – ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â (X) ‚ÒÂı ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı X-‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌ̇fl ͇Í
∑
w1 ( A | B) − w2 ( A | B)
A| B ∈Σ ( T1 ) ∪ Σ ( T2 )
‰Îfl ‚ÒÂı T1, T2 ∈ (X), „‰Â wi = ( w(e))e ∈E ( Ti ) – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÎÓÊËÚÂθÌ˚ı ·ÂÌ˚ı ‚ÂÒÓ‚ ï-‰Â‚‡ Ti, Σ(Ti) – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ‚ÒÂı ‡ÁÂÁÓ‚ ï, ‡ÒÒÓˆËËÓ‚‡ÌÌ˚ı Ò Â·‡ÏË T i, Ë wi(A|B) – ‚ÂÒ Â·‡, ‡ÒÒÓˆËËÓ‚‡ÌÌÓ„Ó Ò ‡ÁÂÁÓÏ Ä|Ç ÏÌÓÊÂÒÚ‚‡ ïi, i = 1, 2. åÂÚË͇ Ó·ÏÂ̇ ·ÎËʇȯËÏË ÒÓÒ‰flÏË åÂÚË͇ Ó·ÏÂ̇ ·ÎËʇȯËÏË ÒÓÒ‰flÏË (ËÎË ÏÂÚË͇ ÍÓÒÒӂ‡) ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â (X) ‚ÒÂı ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı X-‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl ‚ÒÂı T 1 , T 2 ∈ (X) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ Ó·ÏÂÌÓ‚ ·ÎËʇȯËÏË ÒÓÒ‰flÏË, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl T 1 ‚ T2.
242
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
é·ÏÂÌ ·ÎËʇȯËÏË ÒÓÒ‰flÏË – Á‡ÏÂ̇ ‰‚Ûı ÔÓ‰‰Â‚¸Â‚ ‚ ‰Â‚Â, ÒÏÂÊÌ˚ı Ò Ó‰ÌËÏ Ë ÚÂÏ Ê ‚ÌÛÚÂÌÌËÏ Â·ÓÏ; ÔË ˝ÚÓÏ ÓÒڇθ̇fl ˜‡ÒÚ¸ ‰Â‚‡ ÓÒÚ‡ÂÚÒfl ·ÂÁ ËÁÏÂÌÂÌËÈ. ê‡ÒÒÚÓflÌË ÛÔÓ˘ÂÌËfl Ë ÔÂÂÒ‡‰ÍË ÔÓ‰‰Â‚‡ ê‡ÒÒÚÓflÌË ÛÔÓ˘ÂÌËfl Ë ÔÂÂÒ‡‰ÍË ÔÓ‰‰Â‚‡ ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â (X) ‚ÒÂı ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı X-‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl ‚ÒÂı T1, T2 ∈ (X) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÛÔÓ˘ÂÌËÈ Ë ÔÂÂÒ‡‰ÍË ÔÓ‰‰Â‚‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl T1 ‚ T2. èÂÓ·‡ÁÓ‚‡ÌË ÛÔÓ˘ÂÌËfl Ë ÔÂÂÒ‡‰ÍË ÔÓ‰‰Â‚‡ ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ‚ ÚË ˝Ú‡Ô‡: Ò̇˜‡Î‡ ‚˚·Ë‡ÂÚÒfl Ë Û‰‡ÎflÂÚÒfl Â·Ó uv ‰Â‚‡, ÚÂÏ Ò‡Ï˚Ï ‰ÂÂ‚Ó ‡Á‰ÂÎflÂÚÒfl ̇ ‰‚‡ ÔÓ‰‰Â‚‡ T u (ÒÓ‰Âʇ˘Â u) Ë Tv (ÒÓ‰Âʇ˘Â v); Á‡ÚÂÏ ‚˚·Ë‡ÂÚÒfl Ë ÔÓ‰‡Á‰ÂÎflÂÚÒfl Â·Ó ÔÓ‰‰Â‚‡ Tv, ˜ÚÓ ‰‡ÂÚ Ì‡Ï ÌÓ‚Û˛ ‚¯ËÌÛ w; ̇ÍÓ̈, ‚¯ËÌ˚ u Ë w ÒÓ‰ËÌfl˛ÚÒfl ·ÓÏ, ‡ ‚Ò ‚¯ËÌ˚ ÒÚÂÔÂÌË ‰‚‡ Û‰‡Îfl˛ÚÒfl. åÂÚË͇ ‡ÒÒ˜ÂÌËfl-‚ÓÒÒÚ‡ÌÓ‚ÎÂÌËfl ‰Â‚‡ åÂÚË͇ ‡ÒÒ˜ÂÌËfl-‚ÓÒÒÚ‡ÌÓ‚ÎÂÌËfl ‰Â‚‡ – ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â (X) ‚ÒÂı ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı X-‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl ‚ÒÂı T 1 , T 2 ∈ (X) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÔÂÓ·‡ÁÓ‚‡ÌËÈ ‡ÒÒ˜ÂÌËfl – ‚ÓÒÒÚ‡ÌÓ‚ÎÂÌËfl ‰Â‚‡, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl Ó·‡˘ÂÌËfl T 1 ‚ T2. èÂÓ·‡ÁÓ‚‡ÌË ‡ÒÒ˜ÂÌËfl – ‚ÓÒÒÚ‡ÌÓ‚ÎÂÌËfl ‰Â‚‡ ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ‚ ÚË ˝Ú‡Ô‡: Ò̇˜‡Î‡ ‚˚·Ë‡ÂÚÒfl Ë Û‰‡ÎflÂÚÒfl Â·Ó uv ‰Â‚‡, ÚÂÏ Ò‡Ï˚Ï ‰ÂÂ‚Ó ‡Á‰ÂÎflÂÚÒfl ̇ ‰‚‡ ÔÓ‰‰Â‚‡ T u (ÒÓ‰Âʇ˘Â u) Ë T v (ÒÓ‰Âʇ˘Â v); Á‡ÚÂÏ ‚˚·Ë‡˛ÚÒfl Ë ÔÓ‰‡Á‰ÂÎfl˛ÚÒfl Â·Ó ÔÓ‰‰Â‚‡ T v, ˜ÚÓ ‰‡ÂÚ Ì‡Ï ÌÓ‚Û˛ ‚¯ËÌÛ w, Ë Â·Ó ÔÓ‰‰Â‚‡ Tu, ˜ÚÓ ‰‡ÂÚ Ì‡Ï ÌÓ‚Û˛ ‚¯ËÌÛ z; ̇ÍÓ̈, ‚¯ËÌ˚ w Ë z ÒÓ‰ËÌfl˛ÚÒfl ·ÓÏ, ‡ ‚Ò ‚¯ËÌ˚ ÒÚÂÔÂÌË ‰‚‡ Û‰‡Îfl˛ÚÒfl. ê‡ÒÒÚÓflÌË ͂‡ÚÂÚ‡ ê‡ÒÒÚÓflÌË ͂‡ÚÂÚ‡ ([EMM85]) – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â b (X) ‚ÒÂı ·Ë̇Ì˚ı ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı X-‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl ‚ÒÂı T1, T 2 ∈ b (X) Í‡Í ˜ËÒÎÓ ÌÂÒÓ‚Ô‡‰‡˛˘Ëı Í‚‡ÚÂÚÓ‚ (ËÁ Ó·˘Â„Ó ˜ËÒ· ( n4 ) ‚ÓÁÏÓÊÌ˚ı Í‚‡ÚÂÚÓ‚) ‰Îfl T 1 Ë T2 . чÌÌÓ ‡ÒÒÚÓflÌË ÓÒÌÓ‚‡ÌÓ Ì‡ ÚÓÏ Ù‡ÍÚÂ, ˜ÚÓ ‰Îfl ˜ÂÚ˚Âı ÎËÒڸ‚ {1, 2, 3, 4} ‰Â‚‡ ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÓθÍÓ ÚË ‡Á΢Ì˚ı ÒÔÓÒÓ·‡ Ëı Ó·˙‰ËÌÂÌËfl ̇ ·Ë̇ÌÓÏ ÔÓ‰‰Â‚Â: (12|34), (13|24) ËÎË (14|23): ÒËÏ‚ÓÎÓÏ (12|34) Ó·ÓÁ̇˜‡ÂÚÒfl ·Ë̇ÌÓ ‰ÂÂ‚Ó Ò ÏÌÓÊÂÒÚ‚ÓÏ ÎËÒڸ‚ {1, 2, 3, 4}, ËÁ ÍÓÚÓÓ„Ó ÔÓÒΠۉ‡ÎÂÌËfl ‚ÌÛÚÂÌÌÂ„Ó Â·‡ ÔÓÎÛ˜‡˛ÚÒfl ‰Â‚¸fl Ò ÏÌÓÊÂÒÚ‚‡ÏË ÎËÒڸ‚ {1, 2} Ë {3, 4}. ê‡ÒÒÚÓflÌË ÚËÔÎÂÚ‡ ê‡ÒÒÚÓflÌËÂÏ ÚËÔÎÂÚ‡ ([CPQ96]) ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â b(X) ‚ÒÂı ·Ë̇Ì˚ı ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı X-‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl ‚ÒÂı T1, T2 ∈ b(X) Í‡Í ˜ËÒÎÓ ÚÓÂÍ (ËÁ Ó·˘Â„Ó ˜ËÒ· ( 3n ) ‚ÓÁÏÓÊÌ˚ı ÚÓÂÍ), ÍÓÚÓ˚ ‡Á΢‡˛ÚÒfl (̇ÔËÏÂ, ÔÓ ‡ÒÔÓÎÓÊÂÌ˲ ÎËÒÚ‡) ‰Îfl T 1 Ë T2 . ê‡ÒÒÚÓflÌË Òӂ¯ÂÌÌÓ„Ó Ô‡ÓÒÓ˜ÂÚ‡ÌËfl ê‡ÒÒÚÓflÌË Òӂ¯ÂÌÌÓ„Ó Ô‡ÓÒÓ˜ÂÚ‡ÌËfl – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â b (X) ‚ÒÂı ÍÓÌ‚˚ı ·Ë̇Ì˚ı ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı X-‰Â‚¸Â‚ Ò ÏÌÓÊÂÒÚ‚ÓÏ ï n ÔÓϘÂÌÌ˚ı ÎËÒڸ‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı T1 , T 2 ∈ b(X) Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÔÂÂÒÚ‡ÌÓ‚ÓÍ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÚÓ„Ó, ˜ÚÓ·˚ Ô‚ÂÒÚË Òӂ¯ÂÌÌÓ ԇÓÒÓ˜ÂÚ‡ÌË ‰Â‚‡ T 1 ‚ Òӂ¯ÂÌÌÓ ԇÓÒÓ˜ÂÚ‡ÌË ‰Â‚‡ T 2 .
É·‚‡ 15. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË „‡ÙÓ‚
243
ÑÎfl ÏÌÓÊÂÒÚ‚‡ A = {1,..., 2k}, ÒÓÒÚÓfl˘Â„Ó ËÁ 2k ÚÓ˜ÂÍ, Òӂ¯ÂÌÌ˚Ï Ô‡ÓÒÓ˜ÂÚ‡ÌËÂÏ A ̇Á˚‚‡ÂÚÒfl ‡Á·ËÂÌË A ̇ k Ô‡. äÓÌ‚Ó ·Ë̇ÌÓ ÙËÎÓ„ÂÌÂÚ˘ÂÒÍÓ ‰ÂÂ‚Ó Ò n ÔÓϘÂÌÌ˚ÏË ÎËÒÚ¸flÏË ËÏÂÂÚ ÍÓÂ̸ Ë n – 2 ‚ÌÛÚÂÌÌË ‚¯ËÌ˚, ÓÚ΢‡˛˘ËıÒfl ÓÚ ÍÓÌfl. Ö„Ó ÏÓÊÌÓ ÓÚÓʉÂÒÚ‚ËÚ¸ Ò Òӂ¯ÂÌÌ˚Ï Ô‡ÓÒÓ˜ÂÚ‡ÌËÂÏ Ì‡ 2n – 2 ÓÚ΢‡˛˘ËıÒfl ÓÚ ÍÓÌfl ‚¯ËÌ Ò ÔÓÏÓ˘¸˛ ÒÎÂ‰Û˛˘Â„Ó ÔÓÒÚÓÂÌËfl: Ó·ÓÁ̇˜ËÏ ‚ÌÛÚÂÌÌË ‚¯ËÌ˚ ˜ËÒ·ÏË n + 1,..., 2n – 2, ÔÓÒÚ‡‚Ë‚ ̇ËÏÂ̸¯ËÈ Ëϲ˘ËÈÒfl Ë̉ÂÍÒ ‚ ͇˜ÂÒÚ‚Â Ó‰ËÚÂθÒÍÓÈ ‚¯ËÌ˚ Ô‡˚ ÔÓϘÂÌÌ˚ı ‰Ó˜ÂÌËı ˝ÎÂÏÂÌÚÓ‚, ËÁ ÍÓÚÓ˚ı Ó‰ËÌ ËÏÂÂÚ Ì‡ËÏÂ̸¯ËÈ Ë̉ÂÍÒ ÒÂ‰Ë ÔÓϘÂÌÌ˚ı ‰Ó˜ÂÌËı ˝ÎÂÏÂÌÚÓ‚; ÚÂÔ¸ Ô‡ÓÒÓ˜ÂÚ‡ÌË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ÔÓÒ‰ÒÚ‚ÓÏ ÓÚÒÎÓÂÌËfl ÔÓ ‰‚Ó ‰Ó˜ÂÌËı ˝ÎÂÏÂÌÚÓ‚ ËÎË Ô‡ ‚¯ËÌ-ÒÂÒÚÂ. åÂÚËÍË ‡ÚË·ÛÚË‚ÌÓ„Ó ‰Â‚‡ ÄÚË·ÛÚË‚Ì˚Ï ‰Â‚ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÚÓÈ͇ (V, E, α), „‰Â T = (V, E) – ËÒıÓ‰ÌÓ ‰ÂÂ‚Ó Ë α – ÙÛÌ͈Ëfl, ÍÓÚÓ‡fl ÒÚ‡‚ËÚ ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ͇ʉÓÈ ‚¯ËÌ v ∈ V ‚ÂÍÚÓ ‡ÚË·ÛÚÓ‚ α(v). ÑÎfl ‰‚Ûı ‡ÚË·ÛÚË‚Ì˚ı ‰Â‚¸Â‚ (V1 , E1 , α) Ë (V2 , E2 , β) ‡ÒÒÏÓÚËÏ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ËÁÓÏÓÙËÁÏÓ‚ ÔÓ‰‰Â‚¸Â‚ ÏÂÊ‰Û ÌËÏË, Ú.Â. ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ËÁÓÏÓÙËÁÏÓ‚ f : H1 → H2, H 1 ⊂ V1 , H 2 ⊂ V2 ÏÂÊ‰Û Ëı Ë̉ۈËÓ‚‡ÌÌ˚ÏË ÔÓ‰‰Â‚¸flÏË. ÖÒÎË Ì‡ ÏÌÓÊÂÒÚ‚Â ‡ÚË·ÛÚÓ‚ ËÏÂÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸ s, ÚÓ ÔÓ‰Ó·ÌÓÒÚ¸ ÏÂÊ‰Û ËÁÓÏÓÙÌ˚ÏË Ë̉ۈËÓ‚‡ÌÌ˚ÏË ÔÓ‰ ‰Â‚¸flÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í Ws ( f ) = s(α( v), β( f ( v))). àÁÓÏÓÙËÁÏ φ Ò Ï‡ÍÒËχθÌÓÈ ÔÓ‰Ó·ÌÓÒÚ¸˛ Ws(φ) =
∑
v ∈H1
= W(φ) ̇Á˚‚‡ÂÚÒfl ËÁÓÏÓÙËÁÏÓÏ ‰Â‚‡ Ò Ï‡ÍÒËχθÌÓÈ ÔÓ‰Ó·ÌÓÒÚ¸˛. ç‡ ÏÌÓÊÂÒÚ‚Â Tatt ‚ÒÂı ‡ÚË·ÛÚË‚Ì˚ı ‰Â‚¸Â‚ ËÒÔÓθÁÛ˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÔÓÎÛÏÂÚËÍË: 1. max{| V1 |,| V2 |} − W (φ); 2. | V1 | + | V2 | −2W (φ); W ( φ) 3. 1 − ; max{| V1 |,| V2 |} W ( φ) . 4. 1 − | V1 | + | V2 | −W (φ) éÌË ÒÚ‡ÌÓ‚flÚÒfl ÏÂÚË͇ÏË Ì‡ ÏÌÓÊÂÒÚ‚Â Í·ÒÒÓ‚ ˝Í‚Ë‚‡ÎÂÌÚÌÓÒÚË ‡ÚË·ÛÚË‚Ì˚ı ‰Â‚¸Â‚: ‰‚‡ ‡ÚË·ÛÚË‚Ì˚ı ‰Â‚‡ (V1 , E1 , α ) Ë (V2 , E2 , β) ̇Á˚‚‡˛ÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÌ˚ÏË, ÂÒÎË ÓÌË ‡ÚË·ÛÚË‚ÌÓ-ËÁÓÏÓÙÌ˚, Ú.Â. ÒÛ˘ÂÒÚ‚ÛÂÚ ËÁÓÏÓÙËÁÏ g: V1 → V2 ÏÂÊ‰Û ‰Â‚¸flÏË T1 Ë T 2 , Ú‡ÍÓÈ ˜ÚÓ ‰Îfl β·ÓÈ ‚¯ËÌ˚ v ∈ V1 ËÏÂÂÚÒfl α(v) = β(g(v)). íÓ„‰‡ |V1 | = |V2 | = W(g). ê‡ÒÒÚÓflÌË ÔÓ‰‰Â‚‡ ̇˷Óθ¯Â„Ó ÒıÓ‰ÒÚ‚‡ ê‡ÒÒÚÓflÌË ÔÓ‰‰Â‚‡ ̇˷Óθ¯Â„Ó ÒıÓ‰ÒÚ‚‡ – ‡ÒÒÚÓflÌË ̇ ÏÌÓÊÂÒÚ‚Â í ‚ÒÂı ‰Â‚¸Â‚, ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı T1, T 2 ∈ T Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÎËÒڸ‚, ÍÓÚÓ˚ ÌÛÊÌÓ Û‰‡ÎËÚ¸ ‰Îfl ÔÓÎÛ˜ÂÌËfl ÔÓ‰‰Â‚‡ ̇˷Óθ¯Â„Ó ÒıÓ‰ÒÚ‚‡. èÓ‰‰ÂÂ‚Ó ÒıÓ‰ÒÚ‚‡ (ËÎË Ó·˘Â ÛÔÓ˘ÂÌÌÓ ‰Â‚Ó) ‰‚Ûı ‰Â‚¸Â‚ ÂÒÚ¸ ‰Â‚Ó, ÍÓÚÓÓ ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌÓ ËÁ Ó·ÂËı ‰Â‚¸Â‚ ÔÓÒ‰ÒÚ‚ÓÏ Û‰‡ÎÂÌËfl ÎËÒڸ‚ Ò Ó‰Ë̇ÍÓ‚˚Ï Ë̉ÂÍÒÓÏ.
É·‚‡ 16
ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl
íÂÓËfl ÍÓ‰ËÓ‚‡ÌËfl Óı‚‡Ú˚‚‡ÂÚ ‚ÓÔÓÒ˚ ‡Á‡·ÓÚÍË Ë Ò‚ÓÈÒÚ‚ Í Ó ‰ Ó ‚ Ò ËÒÔ‡‚ÎÂÌËÂÏ Ó¯Ë·ÓÍ ‰Îfl Ó·ÂÒÔ˜ÂÌËfl ̇‰ÂÊÌÓÈ Ô‰‡˜Ë ËÌÙÓχˆËË ÔÓ Í‡Ì‡Î‡Ï Ò ‚˚ÒÓÍËÏ ÛÓ‚ÌÂÏ ¯ÛÏÓ‚ ‚ ÒËÒÚÂχı Ò‚flÁË Ë ÛÒÚÓÈÒÚ‚‡ı ı‡ÌÂÌËfl ‰‡ÌÌ˚ı. ñÂθ˛ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl fl‚ÎflÂÚÒfl ÔÓËÒÍ ÍÓ‰Ó‚, Ó·ÂÒÔ˜˂‡˛˘Ëı ·˚ÒÚÛ˛ Ô‰‡˜Û Ë ‰ÂÒÍÓ‰ËÓ‚‡ÌË ËÌÙÓχˆËË, ÒÓ‰Âʇ˘Ëı ÏÌÓ„Ó Á̇˜ËÏ˚ı ÍÓ‰Ó‚˚ı ÒÎÓ‚ Ë ÒÔÓÒÓ·Ì˚ı ËÒÔ‡‚ÎflÚ¸ ËÎË, ÔÓ Í‡ÈÌÂÈ ÏÂÂ, ӷ̇ÛÊË‚‡Ú¸ ÏÌÓ„Ó Ó¯Ë·ÓÍ. ùÚË ˆÂÎË fl‚Îfl˛ÚÒfl ‚Á‡ËÏÌÓ ËÒÍβ˜‡˛˘ËÏË; Ú‡ÍËÏ Ó·‡ÁÓÏ, ͇ʉÓ ËÁ ÔËÎÓÊÂÌËÈ ËÏÂÂÚ Ò‚ÓÈ ÒÓ·ÒÚ‚ÂÌÌ˚È ıÓÓ¯ËÈ ÍÓ‰. Ç Ó·Î‡ÒÚË ÍÓÏÏÛÌË͇ˆËÈ ÍÓ‰ÓÏ Ì‡Á˚‚‡ÂÚÒfl Ô‡‚ËÎÓ ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl ÒÓÓ·˘ÂÌËÈ (̇ÔËÏÂ, ÔËÒÂÏ, ÒÎÓ‚ ËÎË Ù‡Á) ‚ ‰Û„Û˛ ÙÓÏÛ ËÎË Ô‰ÒÚ‡‚ÎÂÌËÂ, Ì ӷflÁ‡ÚÂθÌÓ ÚÓ„Ó Ê ÚËÔ‡. äÓ‰ËÓ‚‡ÌË – ÔÓˆÂÒÒ, ÔÓÒ‰ÒÚ‚ÓÏ ÍÓÚÓÓ„Ó ËÒÚÓ˜ÌËÍ (Ó·˙ÂÍÚ) ÓÒÛ˘ÂÒÚ‚ÎflÂÚ ÔÂÓ·‡ÁÓ‚‡ÌË ËÌÙÓχˆËË ‚ ‰‡ÌÌ˚Â, Ô‰‡‚‡ÂÏ˚ Á‡ÚÂÏ ÔÓÎÛ˜‡ÚÂβ (̇·Î˛‰‡ÚÂβ), ̇ÔËÏÂ, ÒËÒÚÂÏ ӷ‡·ÓÚÍË ‰‡ÌÌ˚ı. ÑÂÍÓ‰ËÓ‚‡ÌË fl‚ÎflÂÚÒfl Ó·‡ÚÌ˚Ï ÔÓˆÂÒÒÓÏ ÔÂÓ·‡ÁÓ‚‡ÌËfl ‰‡ÌÌ˚ı, ÔÓÒÚÛÔË‚¯Ëı ÓÚ ËÒÚÓ˜ÌË͇, ‚ ÔÓÌflÚÌ˚È ‰Îfl ÔÓÎÛ˜‡ÚÂÎfl ‚ˉ. äÓ‰ Ò ËÒÔ‡‚ÎÂÌËÂÏ Ó¯Ë·ÓÍ – Ú‡ÍÓÈ ÍÓ‰, ‚ ÍÓÚÓÓÏ Í‡Ê‰˚È Ô‰‡‚‡ÂÏ˚È ˝ÎÂÏÂÌÚ ‰‡ÌÌ˚ı ÔÓ‰˜ËÌflÂÚÒfl ÒÔˆˇθÌ˚Ï Ô‡‚ËÎ‡Ï ÔÓÒÚÓÂÌËfl, Ò ÚÂÏ ˜ÚÓ·˚ ÓÚÍÎÓÌÂÌËfl ÓÚ ‰‡ÌÌÓ„Ó ÔÓÒÚÓÂÌËfl ‚ ÔÓÎÛ˜ÂÌÌÓÏ Ò˄̇ΠÏÓ„ÎË ‡‚ÚÓχÚ˘ÂÒÍË ‚˚fl‚ÎflÚ¸Òfl Ë ÍÓÂÍÚËÓ‚‡Ú¸Òfl. í‡Í‡fl ÚÂıÌÓÎÓ„Ëfl ËÒÔÓθÁÛÂÚÒfl ‚ ÍÓÏÔ¸˛ÚÂÌ˚ı ̇ÍÓÔËÚÂθÌ˚ı ÛÒÚÓÈÒÚ‚‡ı, ̇ÔËÏ ‚ ‰Ë̇Ï˘ÂÒÍÓÈ Ô‡ÏflÚË RAM Ë ‚ ÒËÒÚÂχı Ô‰‡˜Ë ‰‡ÌÌ˚ı. ᇉ‡˜‡ ‚˚fl‚ÎÂÌËfl ӯ˷ÓÍ Â¯‡ÂÚÒfl „Ó‡Á‰Ó ΄˜Â, ˜ÂÏ Á‡‰‡˜‡ ËÒÔ‡‚ÎÂÌËfl ӯ˷ÓÍ, Ë ‰Îfl ӷ̇ÛÊÂÌËfl ӯ˷ÓÍ ‚ ÌÓχ ͉ËÚÌ˚ı Í‡Ú ‰ÓÔÓÎÌËÚÂθÌÓ ‚‚Ó‰flÚÒfl Ӊ̇ ËÎË ·ÓΠ"ÍÓÌÚÓθÌ˚ı" ˆËÙ. ëÛ˘ÂÒÚ‚Û˛Ú ‰‚‡ ÓÒÌÓ‚Ì˚ı Í·ÒÒ‡ ÍÓ‰Ó‚ Ò ËÒÔ‡‚ÎÂÌËÂÏ Ó¯Ë·ÓÍ: ·ÎÓÍÓ‚˚ ÍÓ‰˚ Ë Ò‚ÂÚÓ˜Ì˚ ÍÓ‰˚. ÅÎÓÍÓ‚˚È ÍÓ‰ (ËÎË ‡‚ÌÓÏÂÌ˚È ÍÓ‰) ‰ÎËÌ˚ n ̇‰ ‡ÎÙ‡‚ËÚÓÏ , Ó·˚˜ÌÓ Ì‡‰ ÍÓ̘Ì˚Ï ÔÓÎÂÏ q = {0,..., q – 1}, fl‚ÎflÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ C ⊂ n; ͇ʉ˚È ‚ÂÍÚÓ x ∈ C ̇Á˚‚‡ÂÚÒfl ÍÓ‰Ó‚˚Ï ÒÎÓ‚ÓÏ, M = | C | ̇Á˚‚‡ÂÚÒfl ‡ÁÏÂÓÏ ÍÓ‰‡; ‰Îfl ‰‡ÌÌÓÈ ÏÂÚËÍË d ̇ qn (Ó·˚˜ÌÓ ı˝ÏÏËÌ„Ó‚ÓÈ ÏÂÚËÍË d H) Á̇˜ÂÌË d* = d* (C) = = minx,y ∈ C, x ≠ yd(x, y) ̇Á˚‚‡ÂÚÒfl ÏËÌËχθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ ÍÓ‰‡ ë. ÇÂÒ w(x) ÍÓ‰Ó‚Ó„Ó ÒÎÓ‚‡ x ∈ C ÓÔ‰ÂÎflÂÚÒfl Í‡Í w(x) = d(x, 0). (n, M, d* )-ÍÓ‰ ÂÒÚ¸ q-Á̇˜Ì˚È ·ÎÓÍÓ‚˚È ÍÓ‰ ‰ÎËÌ˚ n, ‡Áχ å Ë Ò ÏËÌËχθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ d*. ÅË̇Ì˚Ï ÍÓ‰ÓÏ Ì‡Á˚‚‡ÂÚÒfl ÍÓ‰ ̇‰ 2. äÓ„‰‡ ÍÓ‰Ó‚˚ ÒÎÓ‚‡ ‚˚·Ë‡˛ÚÒfl Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË ·˚ÎÓ Ï‡ÍÒËχθÌ˚Ï, ÍÓ‰ ̇Á˚‚‡ÂÚÒfl ÍÓ‰ÓÏ Ò ËÒÔ‡‚ÎÂÌËÂÏ Ó¯Ë·ÓÍ, ÔÓÒÍÓθÍÛ ÌÂÁ̇˜ËÚÂθÌÓ ËÒ͇ÊÂÌÌ˚ ‚ÂÍÚÓ˚ ÏÓ„ÛÚ ·˚Ú¸ ‚ÓÒÒÚ‡ÌÓ‚ÎÂÌ˚ ÔÛÚÂÏ ‚˚·Ó‡ ·ÎËÊ‡È¯Â„Ó ÍÓ‰Ó‚Ó„Ó ÒÎÓ‚‡. äÓ‰ ë fl‚ÎflÂÚÒfl ÍÓ‰ÓÏ Ò ËÒÔ‡‚ÎÂÌËÂÏ t ӯ˷ÓÍ (Ë ÍÓ‰ÓÏ Ò Ó·Ì‡ÛÊÂÌËÂÏ 2t ӯ˷ÓÍ), ÂÒÎË d* (C) ≥ 2t + 1. Ç ˝ÚÓÏ ÒÎÛ˜‡Â ͇ʉ‡fl ÓÍÂÒÚÌÓÒÚ¸ Ut(x) = {y ∈ C: d(x, y) ≤ t} ÚÓ˜ÍË x ∈ C Ì ÔÂÂÒÂ͇ÂÚÒfl Ò Ut(y) ‰Îfl β·ÓÈ ÚÓ˜ÍË y ∈ C, y ≠ x. ëӂ¯ÂÌÌ˚È ÍÓ‰ – ˝ÚÓ q-Á̇˜Ì˚È (n, M, 2t + 1)-ÍÓ‰,
É·‚‡ 16. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl
245
‰Îfl ÍÓÚÓÓ„Ó å ÒÙ U t(x) Ò ‡‰ËÛÒÓÏ t Ë ˆÂÌÚ‡ÏË ‚ ÍÓ‰Ó‚˚ı ÒÎÓ‚‡ı Á‡ÔÓÎÌfl˛Ú ÔÓÎÌÓÒÚ¸˛ ‚Ò ÔÓÒÚ‡ÌÒÚ‚Ó Fqn ·ÂÁ ÔÂÂÒ˜ÂÌËÈ. ÅÎÓÍÓ‚˚È ÍÓ‰ C ⊂ Fqn ̇Á˚‚‡ÂÚÒfl ÎËÌÂÈÌ˚Ï, ÂÒÎË ë fl‚ÎflÂÚÒfl ‚ÂÍÚÓÌ˚Ï ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚‡ Fqn . [n, k]-ÍÓ‰ ÂÒÚ¸ k-ÏÂÌ˚È ÎËÌÂÈÌ˚È ÍÓ‰ C ⊂ Fqn (Ò ÏËÌËχθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ d* ); ÓÌ ËÏÂÂÚ ‡ÁÏ qk, Ú.Â. fl‚ÎflÂÚÒfl (n, qk, d* )-ÍÓ‰ÓÏ. qr − 1 qr − 1 , äÓ‰ÓÏ ï˝ÏÏËÌ„‡ ̇Á˚‚‡ÂÚÒfl ÎËÌÂÈÌ˚È Òӂ¯ÂÌÌ˚È − r, 3 -ÍÓ‰ Ò 1 1 q − q − ËÒÔ‡‚ÎÂÌËÂÏ Ó‰ÌÓÈ Ó¯Ë·ÍË. k × n å‡Úˈ‡ G ÒÓ ÒÚÓ͇ÏË, fl‚Îfl˛˘ËÏËÒfl ·‡ÁËÒÌ˚ÏË ‚ÂÍÚÓ‡ÏË ‰Îfl ÎËÌÂÈÌÓ„Ó [n, k]-ÍÓ‰‡ ë, ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘ÂÈ Ï‡ÚˈÂÈ ÍÓ‰‡ C . Ç Òڇ̉‡ÚÌÓÏ ‚ˉ Â ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í (1k|A), „‰Â 1k ÂÒÚ¸ k × k ‰ËÌ˘̇fl χÚˈ‡. ä‡Ê‰Ó ÒÓÓ·˘ÂÌË (ËÎË ËÌÙÓχˆËÓÌÌ˚È ÒËÏ‚ÓÎ, ÒËÏ‚ÓÎ ËÒÚÓ˜ÌË͇) u = (u1 ,..., uk ) ∈ Fqn ÏÓÊÂÚ ·˚Ú¸ Á‡ÍÓ‰ËÓ‚‡Ì ÔÛÚÂÏ ÛÏÌÓÊÂÌËfl Â„Ó (ÒÔ‡‚‡) ̇ ÔÓÓʉ‡˛˘Û˛ χÚˈÛ: uG ∈ C. å‡Úˈ‡ H = (–AT|1n–k) ̇Á˚‚‡ÂÚÒfl χÚˈÂÈ ÔÓ‚ÂÍË Ì‡ ÔÓ˜ÌÓÒÚ¸ ÍÓ‰‡ ë. óËÒÎÓ r = n – k ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÍÓ΢ÂÒÚ‚Û ˆËÙ ÔÓ‚ÂÍË Ì‡ ˜ÂÚÌÓÒÚ¸ ‚ ÍÓ‰Â Ë Ì‡Á˚‚‡ÂÚÒfl ËÁ·˚ÚÓ˜ÌÓÒÚ¸˛ ÍÓ‰‡ ë. àÌÙÓχˆËÓÌ̇fl ÒÍÓÓÒÚ¸ (ËÎË ÍÓ‰Ó‚‡fl log 2 M k ÒÍÓÓÒÚ¸) ÍÓ‰‡ ë – ˝ÚÓ ˜ËÒÎÓ R = . ÑÎfl q-Á̇˜ÌÓ„Ó [n, k]-ÍÓ‰‡ R = log 2 q; n n k ‰Îfl ·Ë̇ÌÓ„Ó [n, k]-ÍÓ‰‡ R = . n ë‚ÂÚÓ˜Ì˚È ÍÓ‰ – Ú‡ÍÓÈ ÚËÔ ÍÓ‰‡ Ò ËÒÔ‡‚ÎÂÌËÂÏ Ó¯Ë·ÓÍ, ‚ ÍÓÚÓÓÏ ÔÓ‰ÎÂʇ˘ËÈ ÍÓ‰ËÓ‚‡Ì˲ k-·ËÚÓ‚ ËÌÙÓχˆËÓÌÌ˚È ÒËÏ‚ÓÎ ÔÂÓ·‡ÁÛÂÚÒfl ‚ n-·ËÚÓ‚Ó k ÍÓ‰Ó‚Ó ÒÎÓ‚Ó, „‰Â R = – ÍÓ‰Ó‚‡fl ÒÍÓÓÒÚ¸ (n ≥ k), ‡ ÔÂÓ·‡ÁÓ‚‡ÌË fl‚ÎflÂÚÒfl n ÙÛÌ͈ËÂÈ ÔÓÒΉÌËı m ËÌÙÓχˆËÓÌÌ˚ı ÒËÏ‚ÓÎÓ‚, „‰Â m – ‰ÎË̇ ÍÓ‰Ó‚Ó„Ó Ó„‡Ì˘ÂÌËfl. ë‚ÂÚÓ˜Ì˚ ÍÓ‰˚ ˜‡ÒÚÓ ËÒÔÓθÁÛ˛ÚÒfl ‰Îfl ÔÓ‚˚¯ÂÌËfl ͇˜ÂÒÚ‚‡ ‡‰ËÓ Ë ÒÔÛÚÌËÍÓ‚˚ı ÎËÌËÈ Ò‚flÁË. äÓ‰ ÔÂÂÏÂÌÌÓÈ ‰ÎËÌ˚ – ÍÓ‰ Ò ÍÓ‰Ó‚˚ÏË ÒÎÓ‚‡ÏË ‡Á΢ÌÓÈ ‰ÎËÌ˚. Ç ÓÚ΢ˠÓÚ ÍÓ‰Ó‚ Ò ‡‚ÚÓχÚ˘ÂÒÍËÏ ËÒÔ‡‚ÎÂÌËÂÏ Ó¯Ë·ÓÍ, ÍÓÚÓ˚ Ô‰̇Á̇˜ÂÌ˚ ÚÓθÍÓ ‰Îfl ÔÓ‚˚¯ÂÌËfl ̇‰ÂÊÌÓÒÚË Ô‰‡˜Ë ‰‡ÌÌ˚ı, ÍËÔÚÓ„‡Ù˘ÂÒÍË ÍÓ‰˚ Ô‰̇Á̇˜ÂÌ˚ ‰Îfl ÔÓ‚˚¯ÂÌËfl Á‡˘Ë˘ÂÌÌÓÒÚË ÎËÌËÈ Ò‚flÁË. Ç ÍËÔÚÓ„‡ÙËË ÓÚÔ‡‚ËÚÂθ ËÒÔÓθÁÛÂÚ Íβ˜ ‰Îfl ¯ËÙÓ‚‡ÌËfl ÒÓÓ·˘ÂÌËfl ‰Ó Â„Ó Ô‰‡˜Ë ÔÓ ÌÂÁ‡˘Ë˘ÂÌÌ˚Ï Í‡Ì‡Î‡Ï Ò‚flÁË, ‡ ‡‚ÚÓËÁÓ‚‡ÌÌ˚È ÔÓÎÛ˜‡ÚÂθ ̇ ‰Û„ÓÏ ÍÓ̈ ËÒÔÓθÁÛÂÚ Íβ˜ ‰Îfl ‡Ò¯ËÙÓ‚ÍË ÔÓÎÛ˜ÂÌÌÓ„Ó ÒÓÓ·˘ÂÌËfl. ó‡˘Â ‚ÒÂ„Ó ‡Î„ÓËÚÏ˚ ÒʇÚËfl Ë ÍÓ‰˚ Ò ËÒÔ‡‚ÎÂÌËÂÏ Ó¯Ë·ÓÍ ËÒÔÓθÁÛ˛ÚÒfl ÒÓ‚ÏÂÒÚÌÓ Ò ÍËÔÚÓ„‡Ù˘ÂÒÍËÏË ÍÓ‰‡ÏË, ˜ÚÓ Ó·ÂÒÔ˜˂‡ÂÚ Ó‰ÌÓ‚ÂÏÂÌÌÓ ˝ÙÙÂÍÚË‚ÌÛ˛ Ë Ì‡‰ÂÊÌÛ˛ Ò‚flÁ¸ ·ÂÁ ӯ˷ÓÍ Ô‰‡˜Ë ‰‡ÌÌ˚ı Ë Á‡˘ËÚÛ ‰‡ÌÌ˚ı ÓÚ ÌÂÒ‡Ì͈ËÓÌËÓ‚‡ÌÌÓ„Ó ‰ÓÒÚÛÔ‡. ᇯËÙÓ‚‡ÌÌ˚ ÒÓÓ·˘ÂÌËfl, ÍÓÚÓ˚Â, ·ÓΠÚÓ„Ó, ÏÓ„ÛÚ ·˚Ú¸ ÒÍ˚Ú˚ ‚ ÚÂÍÒÚÂ, ËÁÓ·‡ÊÂÌËË Ë Ú.Ô., ̇Á˚‚‡˛ÚÒfl ÒÚ„‡ÌÓ„‡Ù˘ÂÒÍËÏË ÒÓÓ·˘ÂÌËflÏË. 16.1. åàçàåÄãúçéÖ êÄëëíéüçàÖ à ÖÉé ÄçÄãéÉà åËÌËχθÌÓ ‡ÒÒÚÓflÌË ÑÎfl ÍÓ‰‡ ë ⊂ V, „‰Â V – n-ÏÂÌÓ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ d, ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË d* = d* (C) ÍÓ‰‡ ë ÓÔ‰ÂÎflÂÚÒfl Í‡Í min d ( x, y). x , y ∈C , x ≠ y
246
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
åÂÚË͇ d Á‡‚ËÒËÚ ÓÚ ÔËÓ‰˚ ÔÓ‰ÎÂʇ˘Ëı ËÒÔ‡‚ÎÂÌ˲ ӯ˷ÓÍ ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò Ô‰̇Á̇˜ÂÌËÂÏ ÍÓ‰‡. ÑÎfl Ó·ÂÒÔ˜ÂÌËfl Ú·ÛÂÏ˚ı ı‡‡ÍÚÂËÒÚËÍ ÔÓ ÍÓÂÍÚËÓ‚Í ÌÂÓ·ıÓ‰ËÏÓ ÔËÏÂÌflÚ¸ ÍÓ‰˚ Ò Ï‡ÍÒËχθÌ˚Ï ÍÓ΢ÂÒÚ‚ÓÏ ÍÓ‰Ó‚˚ı ÒÎÓ‚. ç‡Ë·ÓΠ¯ËÓÍÓ ËÒÒΉӂ‡ÌÌ˚ÏË ‚ ˝ÚÓÏ Ô·Ì ÍÓ‰‡ÏË fl‚Îfl˛ÚÒfl q-Á̇˜Ì˚ ·ÎÓÍÓ‚˚ ÍÓ‰˚ ‚ ı˝ÏÏËÌ„Ó‚ÓÈ ÏÂÚËÍ d H ( x, y) =| {i : xi ≠ yi , i = 1,..., n} | . ÑÎfl ÎËÌÂÈÌ˚ı ÍÓ‰Ó‚ ë ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË d* (C) = w (C), „‰Â w (C) = = min{w(x): x ∈ C}, ̇Á˚‚‡ÂÚÒfl ÏËÌËχθÌ˚Ï ‚ÂÒÓÏ ÍÓ‰‡ C. èÓÒÍÓθÍÛ Ï‡Úˈ‡ H χÚˈ‡ ÔÓ‚ÂÂ̇ ˜ÂÒÚÌÓÒÚ¸ [n, k]-ÍÓ‰‡ ë ËÏÂÂÚ rank(H ) ≤ n – k ÌÂÁ‡‚ËÒËÏ˚ı ÒÚÓηˆÓ‚, ÚÓ d* (C) ≤ n – k + 1 (‚ÂıÌflfl „‡Ìˈ‡ ëËÌ„ÎÚÓ̇). Ñ‚ÓÈÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌË тÓÈÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌË d⊥ ÎËÌÂÈÌÓ„Ó [n, k]-ÍÓ‰‡ C ⊂ qn fl‚ÎflÂÚÒfl ÏËÌËχθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ ‰‚ÓÈÒÚ‚ÂÌÌÓ„Ó ÍÓ‰‡ C⊥ ‰Îfl ë. Ñ‚ÓÈÒÚ‚ÂÌÌ˚È ÍÓ‰ C⊥ ‰Îfl ÍÓ‰‡ ë ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ‚ÂÍÚÓÓ‚ n q , ÓÚÓ„Ó̇θÌ˚ı ͇ʉÓÏÛ ÍÓ‰Ó‚ÓÏÛ ÒÎÓ‚Û ËÁ ë: C ⊥ = {v ∈qn : 〈 v, u 〉 = 0 ‰Îfl β·Ó„Ó u ∈ C}. äÓ‰ C ⊥ fl‚ÎflÂÚÒfl ÎËÌÂÈÌ˚Ï [n, n – k]-ÍÓ‰ÓÏ. (n – k) × n ÔÓÓʉ‡˛˘‡fl χÚˈ‡ ‰Îfl C ⊥ fl‚ÎflÂÚÒfl χÚˈÂÈ ÔÓ‚ÂÍË Ì‡ ˜ÂÚÌÓÒÚ¸ ‰Îfl ë. ê‡ÒÒÚÓflÌË ‚ar-ÔÓËÁ‚‰ÂÌËfl ÑÎfl ÎËÌÂÈÌ˚ı ÍÓ‰Ó‚ ë1 Ë ë2 , Ëϲ˘Ëı ‰ÎËÌÛ n Ò C 2 ⊂ C1 , Ëı bar-ÔÓËÁ‚‰ÂÌË C 1 |C 2 ÂÒÚ¸ ÎËÌÂÈÌ˚È ÍÓ‰ ‰ÎËÌ˚ 2n, ÓÔ‰ÂÎÂÌÌ˚È Í‡Í C1 | C2 = {x | x + y : x ∈ C1 , y ∈ C2}. ê‡ÒÒÚÓflÌË bar-ÔÓËÁ‚‰ÂÌËfl – ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË d * (C 1 |C 2 ) bar-ÔÓËÁ‚‰ÂÌËfl C1 | C2 . ê‡ÒÒÚÓflÌË ‰ËÁ‡È̇ ãËÌÂÈÌ˚È ÍÓ‰ ̇Á˚‚‡ÂÚÒfl ˆËÍ΢ÂÒÍËÏ ÍÓ‰ÓÏ, ÂÒÎË ‚Ò ˆËÍ΢ÂÒÍË ҉‚Ë„Ë ÍÓ‰Ó‚Ó„Ó ÒÎÓ‚‡ Ú‡ÍÊ ÔË̇‰ÎÂÊ‡Ú ë, Ú.Â. ÂÒÎË ‰Îfl β·Ó„Ó (a0 ,...., an–1 ) ∈ C ‚ÂÍÚÓ (an– 1 , a0 ,..., an– 2 ) ∈ C . ì‰Ó·ÌÓ ÓÚÓʉÂÒÚ‚ÎflÚ¸ ÍÓ‰Ó‚Ó ÒÎÓ‚Ó (a 0 ,..., an– 1 ) Ò ÏÌÓ„Ó˜ÎÂÌÓÏ c( x ) = a0 + a1 x + ... + an −1 x n −1 , ÚÓ„‰‡ ͇ʉ˚È ˆËÍ΢ÂÒÍËÈ [n, k]-ÍÓ‰ ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂÌ Í‡Í „·‚Ì˚È Ë‰Â‡Î 〈 g( x )〉 = {r ( x )g( x ) : r ( x ) ∈ Rn} ÍÓθˆ‡ Rn = q ( x ) /( x n − 1), ÔÓÓʉÂÌÌ˚È ÏÌÓ„Ó˜ÎÂÌÓÏ g( x ) = g0 + g1 x + ... + x n − k , ̇Á˚‚‡ÂÏ˚Ï ÔÓÓʉ‡˛˘ËÏ ÏÌÓ„Ó˜ÎÂÌÓÏ ÍÓ‰‡ ë. ÑÎfl ˝ÎÂÏÂÌÚ‡ α ÔÓfl‰Í‡ n ‚ ÍÓ̘ÌÓÏ ÔÓΠq s [n, k]-ÍÓ‰ ÅÓÁ–óÓ‰ıÛË– ïÓÍ‚ÂÌ„Âχ, Ëϲ˘ËÈ ‡ÒÒÚÓflÌË ‰ËÁ‡È̇ d, fl‚ÎflÂÚÒfl ˆËÍ΢ÂÒÍËÏ ÍÓ‰ÓÏ ‰ÎËÌ˚ n, ÔÓÓʉÂÌÌ˚Ï ÏÌÓ„Ó˜ÎÂÌÓÏ g(x) ‚ q ( x ) ÒÚÂÔÂÌË n – k, Ëϲ˘ËÏ ÍÓÌË α , α2,..., αd–1. åËÌËχθÌÓ ‡ÒÒÚÓflÌË d* ÍÓ‰‡ ÅÓÁ–óÓ‰ıÛË–ïÓÍ‚ÂÌ„Âχ Ò Ì˜ÂÚÌ˚Ï ‡ÒÒÚÓflÌËÂÏ ‰ËÁ‡È̇ d ·Óθ¯Â ËÎË ‡‚ÌÓ d. äÓ‰ êˉ‡–ëÓÎÓÏÓ̇ – ˝ÚÓ ÍÓ‰ ÅÓÁ–óÓ‰ıÛË–ïÓÍ‚ÂÌ„Âχ Ò s = 1. èÓÓʉ‡˛˘ËÏ ÏÌÓ„Ó˜ÎÂÌÓÏ ÍÓ‰‡ êˉ‡–ëÓÎÓÏÓ̇ Ò ‡ÒÒÚÓflÌËÂÏ ‰ËÁ‡È̇ d fl‚ÎflÂÚÒfl ÏÌÓ„Ó˜ÎÂÌ g( x ) = ( x − α )...( x − α d −1 ) ÒÚÂÔÂÌË n – k = d – 1, Ú.Â. ‰Îfl ÍÓ‰‡ êˉ‡– ëÓÎÓÏÓ̇ ‡ÒÒÚÓflÌË ‰ËÁ‡È̇ d = n – k + 1 Ë ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË d* ≥ d . èÓÒÍÓθÍÛ ‰Îfl ÎËÌÂÈÌÓ„Ó [n, k]-ÍÓ‰‡ ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË d * ≤ n – k + 1 (‚ÂıÌflfl „‡Ìˈ‡ ëËÌ„ÎÚÓ̇), ÍÓ‰ êˉ‡–ëÓÎÓÏÓ̇ ӷ·‰‡ÂÚ ÏËÌËχθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ d* = n – k + 1 Ë ‰ÓÒÚË„‡ÂÚ ‚ÂıÌÂÈ „‡Ìˈ˚ ëËÌ„ÎÚÓ̇. Ç ÔÓË„˚‚‡ÚÂÎflı ÍÓÏÔ‡ÍÚ-‰ËÒÍÓ‚ ÔÂËÏÛ˘ÂÒÚ‚ÂÌÌÓ ËÒÔÓθÁÛÂÚÒfl ÒËÒÚÂχ ‰‚ÓÈÌÓÈ ÍÓÂ͈ËË Ó¯Ë·ÓÍ (255, 251,5) ÍÓ‰‡ êˉ‡–ëÓÎÓÏÓ̇ ̇‰ ÔÓÎÂÏ 256 .
É·‚‡ 16. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl
247
ê‡Ò˜ÂÚÌÓ ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË ÉÓÔÔ˚ ê‡Ò˜ÂÚÌÓ ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË ÉÓÔÔ˚ ([Gopp71]) – ÌËÊÌflfl „‡Ìˈ‡ d* (m) ‰Îfl ÏËÌËχθÌÓ„Ó ‡ÒÒÚÓflÌËfl Ó‰ÌÓÚӘ˜Ì˚ı „ÂÓÏÂÚ˘ÂÒÍËı ÍÓ‰Ó‚ ÉÓÔÔ˚ (ËÎË ÍÓ‰Ó‚ ‡Î„·‡Ë˜ÂÒÍÓÈ „ÂÓÏÂÚËË) G(m ). ÑÎfl ÍÓ‰‡ G(m), ‡ÒÒÓˆËËÓ‚‡ÌÌÓ„Ó Ò ‰ÂÎËÚÂÎflÏË D Ë mP, m ∈ „·‰ÍÓÈ ÔÓÂÍÚË‚ÌÓÈ ‡·ÒÓβÚÌÓ ÌÂÔË‚Ó‰ËÏÓÈ ‡Î„·‡Ë˜ÂÒÍÓÈ ÍË‚ÓÈ Ó‰‡ g > 0 ̇‰ ÍÓ̘Ì˚Ï ÔÓÎÂÏ q , Ï˚ ËÏÂÂÏ ‡‚ÂÌÒÚ‚Ó d* (m) = m + 2 – 2g, ÂÒÎË 2g – 2 < m < n. ÑÎfl ÍÓ‰‡ ÉÓÔÔ˚ ë(m) ÒÚÛÍÚÛ‡ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÔÓÔÛÒÍÓ‚ ‚ ê ÏÓÊÂÚ ÔÓÁ‚ÓÎËÚ¸ ÔÓÎÛ˜ËÚ¸ ·ÓΠÚÓ˜ÌÛ˛ ÌËÊÌ˛˛ „‡ÌËˆÛ ÏËÌËχθÌÓ„Ó ‡ÒÒÚÓflÌËfl (ÒÏ. ‡ÒÒÚÓflÌË îÂÌ„‡-ê‡Ó). ê‡ÒÒÚÓflÌË îÂÌ„‡–ê‡Ó ê‡ÒÒÚÓflÌË îÂÌ„‡-ê‡Ó δ FR (m) – ÌËÊÌflfl „‡Ìˈ‡ ‰Îfl ÏËÌËχθÌÓ„Ó ‡ÒÒÚÓflÌËfl Ó‰ÌÓÚӘ˜Ì˚ı „ÂÓÏÂÚ˘ÂÒÍËı ÍÓ‰Ó‚ ÉÓÔÔ˚ G(m), ÍÓÚÓÓ ÎÛ˜¯Â ‡Ò˜ÂÚÌÓ„Ó ÏËÌËχθÌÓ„Ó ‡ÒÒÚÓflÌËfl ÉÓÔÔ˚. àÒÔÓθÁÛÂÏ˚È ÏÂÚÓ‰ ÍÓ‰ËÓ‚‡ÌËfl îÂÌ„‡–ê‡Ó ‰Îfl ÍÓ‰‡ ë(m) ‰ÂÍÓ‰ËÛÂÚ Ó¯Ë·ÍË ‰Ó ÔÓÎÓ‚ËÌ˚ ‡ÒÒÚÓflÌËfl îÂÌ„‡–ê‡Ó δFR(m) Ë Û‚Â΢˂‡ÂÚ ‚ÓÁÏÓÊÌÓÒÚË ÔÓ ËÒÔ‡‚ÎÂÌ˲ ӯ˷ÓÍ ‰Îfl Ó‰ÌÓÚӘ˜Ì˚ı „ÂÓÏÂÚ˘ÂÒÍËı ÍÓ‰Ó‚ ÉÓÔÔ˚. îÓχθÌÓ ‡ÒÒÚÓflÌË îÂÌ„‡–ê‡Ó ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ. èÛÒÚ¸ S ·Û‰ÂÚ ˜ËÒÎÓ‚‡fl ÔÓÎÛ„ÛÔÔ‡, Ú.Â. ÔÓ‰ÔÓÎÛ„ÛÔÔ‡ S ÔÓÎÛ„ÛÔÔ˚ ∪ {0}, ڇ͇fl ˜ÚÓ Ó‰ g =| ∪ {0} \ S | ÔÓÎÛ„ÛÔÔ˚ S fl‚ÎflÂÚÒfl ÍÓ̘Ì˚Ï, Ë 0 ∈ S. ê‡ÒÒÚÓflÌË îÂÌ„‡– ê‡Ó ̇ S ÂÒÚ¸ ÙÛÌ͈Ëfl δ FR : S → ∪ {0}, ڇ͇fl ˜ÚÓ δ FR ( m) = min{ν(r ) : r ≥ m, r ∈ S}, „‰Â ν(r ) =| {( a, b) ∈ S 2 : a + b = r} | . é·Ó·˘ÂÌÌÓ r- ‡ÒÒÚÓflÌË îÂÌ„‡–ê‡Ó ̇ S ÓÔ‰ÂÎflÂÚÒfl Í‡Í δ rFR ( m) = min{ν[ m1 ,..., mr ] : m ≤ m1 < ... < mr , mi ∈ S}, „‰Â ν[ m1 ,..., mr ] = = | {a ∈ S : mi − a ∈ S ‰Îfl ÌÂÍÓÚÓÓ„Ó i = 1,..., r}|. íÓ„‰‡ ËÏÂÂÏ δ FR ( m) = δ1FR ( m) (ÒÏ., ̇ÔËÏÂ, [FaMu03]). ë‚Ó·Ó‰ÌÓ ‡ÒÒÚÓflÌË ë‚Ó·Ó‰ÌÓ ‡ÒÒÚÓflÌË – ÏËÌËχθÌ˚È ÌÂÌÛ΂ÓÈ ‚ÂÒ ï˝ÏÏËÌ„‡ β·Ó„Ó ÍÓ‰Ó‚Ó„Ó ÒÎÓ‚‡ ‚ Ò‚ÂÚÓ˜ÌÓÏ ÍӉ ËÎË ÍӉ ÔÂÂÏÂÌÌÓÈ ‰ÎËÌ˚. îÓχθÌÓ, k- ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË dk∗ Ò‚ÂÚÓ˜ÌÓ„Ó ÍÓ‰‡ ËÎË ÍÓ‰‡ ÔÂÂÏÂÌÌÓÈ ‰ÎËÌ˚ ÂÒÚ¸ ̇ËÏÂ̸¯Â ı˝ÏÏËÌ„Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ì‡˜‡Î¸Ì˚ÏË ÓÚÂÁ͇ÏË ‰ÎËÌ˚ k β·˚ı ‰‚Ûı ÍÓ‰Ó‚˚ı ÒÎÓ‚, ÍÓÚÓ˚ ‡Á΢‡˛ÚÒfl ̇ ‰‡ÌÌ˚ı ̇˜‡Î¸Ì˚ı ÓÚÂÁ͇ı. èÓÒΉӂ‡ÚÂθÌÓÒÚ¸ d1∗ , d2∗ , d3∗ ,...( d1∗ ≤ d2∗ ≤ d3∗ ≤ ...) ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌÌ˚Ï ÔÓÙËÎÂÏ ÍÓ‰‡. ë‚Ó·Ó‰ÌÓ ‡ÒÒÚÓflÌË ҂ÂÚÓ˜ÌÓ„Ó ÍÓ‰‡ ËÎË ÍÓ‰‡ ÔÂÂÏÂÌÌÓÈ ‰ÎËÌ˚ ‡‚ÌÓ max dl∗ lim dl∗ = d∞∗ . l
l →∞
ùÙÙÂÍÚË‚ÌÓ ҂ӷӉÌÓ ‡ÒÒÚÓflÌË íÛ·Ó-ÍÓ‰ÓÏ Ì‡Á˚‚‡ÂÚÒfl ‰ÎËÌÌ˚È ·ÎÓÍÓ‚˚È ÍÓ‰, ‚ ÍÓÚÓÓÏ ËÏÂÂÚÒfl L ‚ıÓ‰fl˘Ëı ·ËÚÓ‚ Ë Í‡Ê‰˚È ËÁ ˝ÚËı ·ËÚÓ‚ ÍÓ‰ËÛÂÚÒfl q ‡Á. èË j-Ï ÍÓ‰ËÓ‚‡ÌËË L ·ËÚÓ‚ ÔÓÔÛÒ͇˛ÚÒfl ˜ÂÂÁ ·ÎÓÍ ÔÂÂÒÚ‡ÌÓ‚ÓÍ Pj, ‡ Á‡ÚÂÏ ÍÓ‰ËÛ˛ÚÒfl ·ÎÓÍÓ‚˚Ï [Nj, L] ÍÓ‰ÂÓÏ (ÍÓ‰ÂÓÏ ÍÓ‰Ó‚˚ı Ù‡„ÏÂÌÚÓ‚), ÍÓÚÓ˚È ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í L × Nj χÚˈ‡. íÓ„‰‡ ËÒÍÓÏ˚Ï ÚÛ·Ó-ÍÓ‰ÓÏ fl‚ÎflÂÚÒfl ÎËÌÂÈÌ˚È [N1 + ... +Nq, L]-ÍÓ‰ (ÒÏ., ̇ÔËÏÂ, [BGT93]). i-‚Á‚¯ÂÌÌÓ ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË ‚ıÓ‰‡ di(C) ÚÛ·Ó-ÍÓ‰‡ ë ÂÒÚ¸ ÏËÌËχθÌ˚È ‚ÂÒ ‰Îfl ÍÓ‰Ó‚˚ı ÒÎÓ‚, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ‚ıÓ‰fl˘ËÏ ÒÎÓ‚‡Ï ‚ÂÒ‡ i. ùÙÙÂÍÚË‚Ì˚Ï Ò‚Ó·Ó‰Ì˚Ï ‡ÒÒÚÓflÌËÂÏ ÍÓ‰‡ ë ÔÓ͇Á˚‚‡ÂÚÒfl Â„Ó 2-‚Á‚¯ÂÌÌÓ ÏËÌËχθ-
248
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
ÌÓ ‡ÒÒÚÓflÌË ‚ıÓ‰‡ d2 (C), Ú.Â. ÏËÌËχθÌ˚È ‚ÂÒ ‰Îfl ÍÓ‰Ó‚˚ı ÒÎÓ‚, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ‚ıÓ‰fl˘ËÏ ÒÎÓ‚‡Ï ‚ÂÒ‡ 2. ê‡ÒÔ‰ÂÎÂÌË ‡ÒÒÚÓflÌËÈ ÑÎfl ÍÓ‰‡ ë ̇‰ ÍÓ̘Ì˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ (X, d) Ò ‰Ë‡ÏÂÚÓÏ diam(X, d) = D ‡ÒÔ‰ÂÎÂÌË ‡ÒÒÚÓflÌËÈ ‰Îfl ë ÂÒÚ¸ (D + 1)-‚ÂÍÚÓ (A0 ,..., AD), „‰Â 1 Ai = | {(c, c ′) ∈ C 2 : d (c, c ′) = i} | . í‡ÍËÏ Ó·‡ÁÓÏ, Ï˚ ‡ÒÒχÚË‚‡ÂÏ ‚Â΢ËÌ˚ |C| Ai(c) – ˜ËÒÎÓ ÍÓ‰Ó‚˚ı ÒÎÓ‚ ̇ ‡ÒÒÚÓflÌËË i ÓÚ ÍÓ‰Ó‚Ó„Ó ÒÎÓ‚‡ Ò, Ë ·ÂÂÏ Ai Í‡Í Ò‰Ì ÓÚ Ai(c) ÔÓ ‚ÒÂÏ c ∈ C. A0 = 1 Ë, ÂÒÎË d* = d* (C) fl‚ÎflÂÚÒfl ÏËÌËχθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ ‰Îfl ë, ÚÓ A1 = ... Ad ∗ −1 = 0. ê‡ÒÔ‰ÂÎÂÌË ‡ÒÒÚÓflÌËÈ ‰Îfl ÍÓ‰‡ Ò Á‡‰‡ÌÌ˚ÏË Ô‡‡ÏÂÚ‡ÏË ‚‡ÊÌÓ, ‚ ˜‡ÒÚÌÓÒÚË, ‰Îfl ÓˆÂÌÍË ‚ÂÓflÚÌÓÒÚË Ó¯Ë·ÍË ‰ÂÍÓ‰ËÓ‚‡ÌËfl ÔË ÔËÏÂÌÂÌËË ‡Á΢Ì˚ı ‡Î„ÓËÚÏÓ‚ ‰ÂÍÓ‰ËÓ‚‡ÌËfl. äÓÏ ÚÓ„Ó, ˝ÚÓ ÏÓÊÂÚ ÔÓÏÓ˜¸ ÔË ÓÔ‰ÂÎÂÌËË Ò‚ÓÈÒÚ‚ ÍÓ‰Ó‚˚ı ÒÚÛÍÚÛ Ë ‰Ó͇Á‡ÚÂθÒÚ‚Â Ì‚ÓÁÏÓÊÌÓÒÚË ÒÛ˘ÂÚ‚Ó‚‡ÌËfl ÓÔ‰ÂÎÂÌÌ˚ı ÍÓ‰Ó‚. ê‡ÒÒÚÓflÌË ӉÌÓÁ̇˜ÌÓÒÚË ê‡ÒÒÚÓflÌËÂÏ Ó‰ÌÓÁ̇˜ÌÓÒÚË ÍËÔÚÓÒËÒÚÂÏ˚ (òÂÌÌÓÌ, 1949) ̇Á˚‚‡ÂÚÒfl ÏËÌËχθ̇fl ‰ÎË̇ ¯ËÙÓÚÂÍÒÚ‡, ÌÂÓ·ıÓ‰Ëχfl ‰Îfl Û‚ÂÂÌÌÓÒÚË ‚ ÚÓÏ, ˜ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÓθÍÓ Â‰ËÌÒÚ‚ÂÌÌ˚È ÒÏ˚ÒÎÓ‚ÓÈ ‚‡Ë‡ÌÚ Â„Ó ‡Ò¯ËÙÓ‚ÍË. ÑÎfl Í·ÒÒ˘ÂÒÍËı ÍËÔÚÓ„‡Ù˘ÂÒÍËı ÒËÒÚÂÏ Ò ÙËÍÒËÓ‚‡ÌÌ˚Ï Íβ˜Â‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ ‡ÒÒÚÓflÌË ӉÌÓÁ̇˜ÌÓÒÚË ‡ÔÔÓÍÒËÏËÛÂÚÒfl ÔÓ ÙÓÏÛΠç(K)/D , „‰Â H(K) – ˝ÌÚÓÔËfl Íβ˜Â‚Ó„Ó ÔÓÒÚ‡ÌÒÚ‚‡ („Û·Ó „Ó‚Ófl, log2 N, „‰Â N – ÍÓ΢ÂÒÚ‚Ó Íβ˜ÂÈ), ‡ D ËÁÏÂflÂÚ ËÁ·˚ÚÓ˜ÌÓÒÚ¸ ÂÁ‚ËÓ‚‡ÌËfl ËÒıÓ‰ÌÓ„Ó flÁ˚͇ ÓÚÍ˚ÚÓ„Ó ÚÂÍÒÚ‡ ‚ ·ËÚ‡ı ̇ ·ÛÍ‚Û. äËÔÚÓÒËÒÚÂχ Ó·ÂÒÔ˜˂‡ÂÚ Ë‰Â‡Î¸ÌÛ˛ ÒÂÍÂÚÌÓÒÚ¸, ÂÒÎË Â ‡ÒÒÚÓflÌË ӉÌÓÁ̇˜ÌÓÒÚË ·ÂÒÍÓ̘ÌÓ. ç‡ÔËÏÂ, Ó‰ÌÓ‡ÁÓ‚˚ ·ÎÓÍÌÓÚ˚ Ó·ÂÒÔ˜˂‡˛Ú ˉ‡θÌÛ˛ ÒÂÍÂÚÌÓÒÚ¸; ËÏÂÌÌÓ Ú‡ÍË ÍÓ‰˚ ËÒÔÓθÁÛ˛ÚÒfl ‰Îfl Ò‚flÁË ÔÓ "͇ÒÌÓÏÛ ÚÂÎÂÙÓÌÛ" ÏÂÊ‰Û äÂÏÎÂÏ Ë ÅÂÎ˚Ï ‰ÓÏÓÏ. 16.2. éëçéÇçõÖ êÄëëíéüçàü çÄ äéÑÄï ê‡ÒÒÚÓflÌË ‡ËÙÏÂÚ˘ÂÒÍÓ„Ó ÍÓ‰‡ ÄËÙÏÂÚ˘ÂÒÍËÏ ÍÓ‰ÓÏ (ËÎË ÍÓ‰ÓÏ Ò ËÒÔ‡‚ÎÂÌËÂÏ ‡ËÙÏÂÚ˘ÂÒÍËı ӯ˷ÓÍ) ̇Á˚‚‡ÂÚÒfl ÍÓ̘ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ë ÏÌÓÊÂÒÚ‚‡ ˆÂÎ˚ı (Ó·˚˜ÌÓ ÌÂÓÚˈ‡ÚÂθÌ˚ı) ˜ËÒÂÎ. éÌ Ô‰̇Á̇˜‡ÂÚÒfl ‰Îfl ÍÓÌÚÓÎfl ÙÛÌ͈ËÓÌËÓ‚‡ÌËfl ·ÎÓ͇ ÒÛÏÏËÓ‚‡ÌËfl (ÏÓ‰ÛÎfl ÒÎÓÊÂÌËfl). äÓ„‰‡ ÒÎÓÊÂÌË ˜ËÒÂÎ ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ‚ ‰‚Ó˘ÌÓÈ ÒËÒÚÂÏ ҘËÒÎÂÌËfl, ÚÓ Â‰ËÌÒÚ‚ÂÌÌ˚È Ò·ÓÈ ‚ ‡·ÓÚ ·ÎÓ͇ ÒÛÏÏËÓ‚‡ÌËfl ‚‰ÂÚ Í ËÁÏÂÌÂÌ˲ ÂÁÛθڇڇ ̇ ÌÂÍÓÚÓÛ˛ ÒÚÂÔÂ̸ ‰‚ÓÈÍË, Ú.Â., Í Ó‰ÌÓÈ ‡ËÙÏÂÚ˘ÂÒÍÓÈ Ó¯Ë·ÍÂ. îÓχθÌÓ Ó‰Ì‡ ‡ËÙÏÂÚ˘ÂÒ͇fl ӯ˷͇ ̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÔÂÓ·‡ÁÓ‚‡ÌË ˜ËÒ· n ∈ ‚ ˜ËÒÎÓ n = n ± 2i, i = 1, 2,... . ê‡ÒÒÚÓflÌË ‡ËÙÏÂÚ˘ÂÒÍÓ„Ó ÍÓ‰‡ ÂÒÚ¸ ÏÂÚË͇ ̇ , ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı n1 , n2 ∈ Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ‡ËÙÏÂÚ˘ÂÒÍËı ӯ˷ÓÍ, Ô‚Ӊfl˘Ëı n1 ‚ n 2 . Ö„Ó ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í w 2 (n1 – n 2 ), „‰Â w 2 (n) ÂÒÚ¸ ‡ËÙÏÂÚ˘ÂÒÍËÈ 2-‚ÂÒ n, Ú.Â. ̇ËÏÂ̸¯Ó ‚ÓÁÏÓÊÌÓ ˜ËÒÎÓ ÌÂÌÛ΂˚ı ÍÓ˝ÙÙˈËÂÌÚÓ‚ ‚ Ô‰ÒÚ‡‚ÎÂÌËË k
n=
∑ ei 2i , i=0
„‰Â e i 0, ±1 Ë k – ÌÂÍÓÚÓÓ ÌÂÓÚˈ‡ÚÂθÌÓ ˜ËÒÎÓ. àÏÂÌÌÓ, ‰Îfl
Í‡Ê‰Ó„Ó n ËÏÂÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓ ڇÍÓ Ô‰ÒÚ‡‚ÎÂÌËÂ Ò e k ≠ 0, e iei+1 = 0 ‰Îfl ‚ÒÂı
É·‚‡ 16. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl
249
i = 0,..., k – 1, ÍÓÚÓÓ ӷ·‰‡ÂÚ Ì‡ËÏÂ̸¯ËÏ ˜ËÒÎÓÏ ÌÂÌÛ΂˚ı ÍÓ˝ÙÙˈËÂÌÚÓ‚ (ÒÏ. ÄËÙÏÂÚ˘ÂÒ͇fl ÏÂÚË͇ r-ÌÓÏ˚, „Î. 12). ê‡ÒÒÚÓflÌË ò‡Ï˚–äÓ¯Ë͇ èÛÒÚ¸ q ≥ 2 Ë m ≥ 2. ê‡Á·ËÂÌË {B0 , B1 ,..., Bq–1} ÏÌÓÊÂÒÚ‚‡ m ̇Á˚‚‡ÂÚÒfl ‡Á·ËÂÌËÂÏ ò‡Ï˚–äÓ¯Ë͇, ÂÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÒÎÂ‰Û˛˘Ë ÛÒÎÓ‚Ëfl: 1) B0 = {0}; 2) ‰Îfl β·Ó„Ó i ∈ m, i ∈ Bs ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ m – i ∈ Bs, s = 1, 2,..., q – 1; 3) ÂÒÎË i∈ Bs, j ∈ Bt Ë s > t, ÚÓ min{i, m – i} > {j, m – j}; 4) ÂÒÎË s > t, s, t = 0, 1,..., q – 1, ÚÓ | Bs | ≥ | Bt |, ÍÓÏ s = q – 1, ÍÓ„‰‡ 1 | Bq −1 | ≥ | Bq − 2 | . 2 ÑÎfl ‡Á·ËÂÌËfl ò‡Ï˚–äÓ¯Ë͇ ÏÌÓÊÂÒÚ‚‡ m ‚ÂÒ ò‡Ï˚–äÓ¯Ë͇ w SK(x) β·Ó„Ó ˝ÎÂÏÂÌÚ‡ x ∈ m ÓÔ‰ÂÎflÂÚÒfl Í‡Í wSK(x) = i, ÂÒÎË x ∈ Bi, i ∈ {0, 1,..., q – 1}. ê‡ÒÒÚÓflÌË ò‡Ï˚–äÓ¯Ë͇ (ÒÏ., ̇ÔËÏÂ, [ShKa97]) ÂÒÚ¸ ÏÂÚË͇ ̇ m, ÓÔ‰ÂÎÂÌ̇fl Í‡Í w SK(x – y). ê‡ÒÒÚÓflÌË ò‡Ï˚–äÓ¯Ë͇ ̇ nm ÓÔ‰ÂÎflÂÚÒfl Í‡Í w SK(x – y), „‰Â ‰Îfl n
n x = ( x1 ,..., x n ) ∈ nm Ï˚ ËÏÂÂÏ wSK ( x) =
∑ wSK ( xi ). i =1
ï˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ Ë ÏÂÚË͇ ãË ‚ÓÁÌË͇˛Ú Í‡Í ‰‚‡ ˜‡ÒÚÌ˚ı ÒÎÛ˜‡fl ‡Á·ËÂÌËÈ ‚˚¯Â̇Á‚‡ÌÌÓ„Ó ÚËÔ‡: PH = {B0 , B1 }, „‰Â B1 = {1, 2,...., q – 1} Ë PL = {B0 , B1 ,..., q Bq/2}, „‰Â Bi = {i, m − i}, i = 1,..., . 2 ê‡ÒÒÚÓflÌË ‡·ÒÓβÚÌÓ„Ó ÒÛÏÏËÓ‚‡ÌËfl ê‡ÒÒÚÓflÌË ‡·ÒÓβÚÌÓ„Ó ÒÛÏÏËÓ‚‡ÌËfl (ËÎË ‡ÒÒÚÓflÌË ãË) – ÏÂÚË͇ ãË Ì‡ ÏÌÓÊÂÒÚ‚Â nm , ÓÔ‰ÂÎÂÌ̇fl Í‡Í w Lee(x – y), n
„‰Â wSK ( x ) =
∑ min{xi , m − xi} fl‚ÎflÂÚÒfl ‚ÂÒÓÏ ãË ˝ÎÂÏÂÌÚ‡ x = ( x1,..., xn ) ∈ nm . i =1
ÖÒÎË ÏÌÓÊÂÒÚ‚Ó nm Ò̇·ÊÂÌÓ ‡ÒÒÚÓflÌËÂÏ ‡·ÒÓβÚÌÓ„Ó ÒÛÏÏËÓ‚‡ÌËfl, ÚÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ë ÏÌÓÊÂÒÚ‚‡ nm ̇Á˚‚‡ÂÚÒfl ÍÓ‰ÓÏ ‡ÒÒÚÓflÌËfl ãË. äÓ‰˚ ‡ÒÒÚÓflÌËfl ãË ÔËÏÂÌfl˛ÚÒfl ‚ ͇̇·ı Ò‚flÁË Ò Ù‡ÁÓ‚ÓÈ ÏÓ‰ÛÎflˆËÂÈ Ë Ò ÏÌÓ„ÓÛÓ‚Ì‚ÓÈ Í‚‡ÌÚÓ‚‡ÌÌÓÈ ËÏÔÛθÒÌÓÈ ÏÓ‰ÛÎflˆËÂÈ, ‡ Ú‡ÍÊ ‚ ÚÓÓˉ‡Î¸Ì˚ı ÒÂÚflı Ò‚flÁË. LJÊÌÂȯËÏË ÍÓ‰‡ÏË ‡ÒÒÚÓflÌËfl ãË fl‚Îfl˛ÚÒfl Ì„‡ˆËÍ΢ÂÒÍË ÍÓ‰˚. ê‡ÒÒÚÓflÌË å‡ÌıÂÈχ èÛÒÚ¸ [i] = {a + bi: a, b ∈ } – ÏÌÓÊÂÒÚ‚Ó ˆÂÎ˚ı „‡ÛÒÒÓ‚˚ı ˜ËÒÂÎ. èÛÒÚ¸ π = a + bi(a > b > 0) – „‡ÛÒÒÓ‚Ó ÔÓÒÚÓ ˜ËÒÎÓ. ùÚÓ Á̇˜ËÚ, ˜ÚÓ (a + bi)(a – bi) = = a2 + b 2 = p, „‰Â p 1(mod 4) ÂÒÚ¸ ÔÓÒÚÓ ˜ËÒÎÓ, ËÎË ˜ÚÓ π = p + 0 ⋅ i = p, „‰Â p 3(mod 4) ÂÒÚ¸ ÔÓÒÚÓ ˜ËÒÎÓ. ê‡ÒÒÚÓflÌË å‡ÌıÂÈχ – ˝ÚÓ ‡ÒÒÚÓflÌË ̇ [i], ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı ‰‚Ûı ˆÂÎ˚ı „‡ÛÒÒÓ‚˚ı ˜ËÒÂÎ ı Ë Û Í‡Í ÒÛÏχ ‡·ÒÓβÚÌ˚ı Á̇˜ÂÌËÈ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ÏÌËÏÓÈ ˜‡ÒÚÂÈ ‡ÁÌÓÒÚË x – y(mod π). è˂‰ÂÌË ÔÓ ÏÓ‰Ûβ Ô‰ ÒÛÏÏËÓ‚‡ÌËÂÏ
250
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
‡·ÒÓβÚÌ˚ı Á̇˜ÂÌËÈ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ÏÌËÏÓÈ ˜‡ÒÚÂÈ – ‡ÁÌˈ‡ ÏÂÊ‰Û ÏÂÚËÍÓÈ å‡Ìı˝ÚÚÂ̇ Ë ‡ÒÒÚÓflÌËÂÏ å‡ÌıÂÈχ. ùÎÂÏÂÌÚ˚ ÍÓ̘ÌÓ„Ó ÔÓÎfl p = {0, 1,..., p – 1} ‰Îfl p 2(mod 4), p = a2 + b2 Ë ˝ÎÂÏÂÌÚ˚ ÍÓ̘ÌÓ„Ó ÔÓÎfl p 2 ‰Îfl p 3(mod 4), p = a ÏÓ„ÛÚ ÓÚÓ·‡Ê‡Ú¸Òfl ̇ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ˆÂÎ˚ı „‡ÛÒÒÓ‚˚ı ˜ËÒÂÎ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÙÛÌ͈ËË k ( a − bi ) µ( k ) = k − ( a + bi ), k = 0,..., p − 1, „‰Â [.] Ó·ÓÁ̇˜‡ÂÚ ÓÍÛ„ÎÂÌË ‰Ó ·ÎËp Ê‡È¯Â„Ó ˆÂÎÓ„Ó „‡ÛÒÒÓ‚Ó„Ó ˜ËÒ·. åÌÓÊÂÒÚ‚Ó ‚˚·‡ÌÌ˚ı ˆÂÎ˚ı „‡ÛÒÒÓ‚˚ı ˜ËÒÂÎ Ò ÏËÌËχθÌ˚ÏË ÌÓχÏË É‡ÎÛ‡ ̇Á˚‚‡ÂÚÒfl ÒÓÁ‚ÂÁ‰ËÂÏ. í‡ÍÓ Ô‰ÒÚ‡‚ÎÂÌË ‰‡ÂÚ ÌÓ‚˚È ÒÔÓÒÓ· ÔÓÒÚÓÂÌËfl ÍÓ‰Ó‚ ‰Îfl ‰‚ÛÏÂÌ˚ı Ò˄̇ÎÓ‚. ê‡ÒÒÚÓflÌË å‡ÌıÂÈχ ·˚ÎÓ ‚‚‰ÂÌÓ ‰Îfl ÚÓ„Ó, ˜ÚÓ·˚ Ó·ÂÒÔ˜ËÚ¸ ÔËÏÂÌÂÌËÂ Í éÄå-ÔÓ‰Ó·Ì˚Ï ÒË„Ì‡Î‡Ï ÏÂÚÓ‰Ó‚ ‡Î„·‡Ë˜ÂÒÍÓ„Ó ‰ÂÍÓ‰ËÓ‚‡ÌËfl. ÑÎfl ÍÓ‰Ó‚ ̇‰ ÒÓÁ‚ÂÁ‰ËflÏË „ÂÍÒ‡„Ó̇θÌ˚ı Ò˄̇ÎÓ‚ ÏÓÊÂÚ ·˚Ú¸ ÔËÏÂÌÂ̇ ‡Ì‡Îӄ˘̇fl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ˆÂÎ˚ı ˜ËÒÂÎ ùÈ̯ÚÂÈ̇–üÍÓ·Ë. é̇ fl‚ÎflÂÚÒfl Û‰Ó·ÌÓÈ ‰Îfl ·ÎÓÍÓ‚˚ı ÍÓ‰Ó‚ ̇‰ ÚÓÓÏ (ÒÏ., ̇ÔËÏÂ, [Hube93], [Hube94]). ê‡ÒÒÚÓflÌË ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ èÛÒÚ¸ (Vn , p − ) – ÛÔÓfl‰Ó˜ÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó Ì‡ Vn = {1,..., n}. èÓ‰ÏÌÓÊÂÒÚ‚Ó I ÏÌÓÊÂÒÚ‚‡ Vn ̇Á˚‚‡ÂÚÒfl ˉ‡ÎÓÏ, ÂÒÎË x ∈ I Ë ËÁ ÛÒÎÓ‚Ëfl y p − x ÒΉÛÂÚ, ˜ÚÓ y ∈ I. ÖÒÎË J ⊂ Vn , ÚÓ (J) – ̇ËÏÂ̸¯ËÈ Ë‰Â‡Î ÏÌÓÊÂÒÚ‚‡ Vn , ÒÓ‰Âʇ˘ËÈ J. ê‡ÒÒÏÓÚËÏ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó qn ̇‰ ÍÓ̘Ì˚Ï ÔÓÎÂÏ q. ê-‚ÂÒ ˝ÎÂÏÂÌÚ‡ x = ( x1 ,..., x n ) ∈qn ÓÔ‰ÂÎflÂÚÒfl Í‡Í Í‡‰Ë̇θÌÓ ˜ËÒÎÓ Ì‡ËÏÂ̸¯Â„Ó Ë‰Â‡Î‡ ÏÌÓÊÂÒÚ‚‡ Vn , ÒÓ‰Âʇ˘Â„Ó ÌÂÒÛ˘Â ÏÌÓÊÂÒÚ‚Ó ı: wp(x) = |〈supp(x)〉|, „‰Â supp(x) = = {i: xi ≠ 0}. ê‡ÒÒÚÓflÌË ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ (ÒÏ. [BGL95]) ÂÒÚ¸ ÏÂÚË͇ ̇ qn , ÓÔ‰ÂÎÂÌ̇fl Í‡Í w P(x – y). ÖÒÎË qn Ò̇·ÊÂÌÓ ‡ÒÒÚÓflÌËÂÏ ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡, ÚÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ë ÏÌÓÊÂÒÚ‚‡ qn ̇Á˚‚‡ÂÚÒfl ÍÓ‰ÓÏ ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡. ÖÒÎË V n Ó·‡ÁÛÂÚ ˆÂÔ¸ 1 ≤ 2 ≤ ... ≤ n, ÚÓ ÎËÌÂÈÌ˚È ÍÓ‰ ë ‡ÁÏÂÌÓÒÚË k, ÒÓÒÚÓfl˘ËÈ ËÁ ‚ÒÂı ‚ÂÍÚÓÓ‚ (0,..., 0, an − k +1 ,..., an ) ∈qn , fl‚ÎflÂÚÒfl Òӂ¯ÂÌÌ˚Ï ÍÓ‰ÓÏ ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ Ò ÏËÌËχθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ (ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡) d P∗ (C ) = n − k + 1. ÖÒÎË Vn Ó·‡ÁÛÂÚ ‡ÌÚˈÂÔ¸, ÚÓ ‡ÒÒÚÓflÌË ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ÒÓ‚Ô‡‰‡ÂÚ Ò ıÂÏÏËÌ„Ó‚ÓÈ ÏÂÚËÍÓÈ. ê‡ÒÒÚÓflÌË ‡Ì„‡ èÛÒÚ¸ q – ÍÓ̘ÌÓ ÔÓÎÂ, = q – ‡Ò¯ËÂÌË ÒÚÂÔÂÌË m ÔÓÎfl q Ë = n – ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‡ÁÏÂÌÓÒÚË n ̇‰ . ÑÎfl β·Ó„Ó a = (a1 ,..., an ) ∈ Â„Ó ‡Ì„, rank(a), ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‡ÁÏÂÌÓÒÚ¸ ‚ÂÍÚÓÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ̇‰ q , ÔÓÓʉ‡ÂÏÓ„Ó ÏÌÓÊÂÒÚ‚ÓÏ {a1 ,..., an }. ê‡ÒÒÚÓflÌË ‡Ì„‡ ÂÒÚ¸ ÏÂÚË͇ ̇ , ÓÔ‰ÂÎÂÌ̇fl Í‡Í rank(a – b). èÓÒÍÓθÍÛ ‡ÒÒÚÓflÌË ‡Ì„‡ ÏÂÊ‰Û ‰‚ÛÏfl ÍÓ‰Ó‚˚ÏË ÒÎÓ‚‡ÏË Ì ·Óθ¯Â, ˜ÂÏ ı˝ÏÏËÌ„Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË, ‰Îfl β·Ó„Ó ÍÓ‰‡ ë ⊂ Â„Ó ÏËÌËχθÌÓ ‡Ò-
É·‚‡ 16. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl
251
∗ ∗ ÒÚÓflÌË (‡Ì„‡) d RK (C ) ≤ min{m, n − log q m | C | +1}. äÓ‰ ë Ò d RK (C ) = n − log q m | C | +1, ∗ n < m, ̇Á˚‚‡ÂÚÒfl ÍÓ‰ÓÏ É‡·Ë‰ÛÎË̇ (ÒÏ. [Gabi85]). äÓ‰ ë Ò d RK (C ) = m, m ≤ n, ̇Á˚‚‡ÂÚÒfl ÍÓ‰ÓÏ ‡ÒÒÚÓflÌËfl ÔÓÎÌÓ„Ó ‡Ì„‡. í‡ÍÓÈ ÍÓ‰ ËÏÂÂÚ Ì ·ÓΠq n ˝ÎÂÏÂÌÚÓ‚. å‡ÍÒËχθÌ˚Ï ÍÓ‰ÓÏ ‡ÒÒÚÓflÌËfl ÔÓÎÌÓ„Ó ‡Ì„‡ ÔÓ͇Á˚‚‡ÂÚÒfl ÍÓ‰ ‡ÒÒÚÓflÌËfl ÔÓÎÌÓ„Ó ‡Ì„‡ Ò qn ˝ÎÂÏÂÌÚ‡ÏË; ÓÌ ÒÛ˘ÂÒÚ‚ÛÂÚ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ m ‰ÂÎËÚ n.
åÂÚËÍË É‡·Ë‰ÛÎË̇–ëËÏÓÌËÒ‡ ê‡ÒÒÏÓÚËÏ ‚ÂÍÚÓÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó qn (̇‰ ÍÓ̘Ì˚Ï ÔÓÎÂÏ q) Ë ÍÓ̘ÌÓ ÒÂÏÂÈÒÚ‚Ó F = {Fi: i ∈ I} Â„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚, Ú‡ÍËı ˜ÚÓ
U Fi = qn . ç ӄ‡Ì˘˂‡fl i ∈I
Ó·˘ÌÓÒÚË, ÏÓÊÌÓ Ò˜ËÚ‡Ú¸, ˜ÚÓ F – ‡ÌÚˈÂÔ¸ ÎËÌÂÈÌ˚ı ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ qn . F-‚ÂÒ wF ‚ÂÍÚÓ‡ x = ( x1 ,..., x n ) ∈qn ÓÔ‰ÂÎflÂÚÒfl Í‡Í Í‡‰Ë̇θÌÓ ˜ËÒÎÓ Ì‡ËÏÂ̸¯Â„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ J ËÁ I, Ú‡ÍÓ„Ó ˜ÚÓ x ∈
U Fqn . i ∈I
åÂÚË͇ ɇ·Ë‰ÛÎË̇–ëËÏÓÌËÒ‡ (ËÎË F-‡ÒÒÚÓflÌËÂ, ÒÏ. [GaSi98]) ÂÒÚ¸ ÏÂÚË͇ ̇ qn , ÓÔ‰ÂÎÂÌ̇fl Í‡Í w F(x – y). ï˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÒÎÛ˜‡˛, ÍÓ„‰‡ Fi, i ∈ I Ó·‡ÁÛ˛Ú Òڇ̉‡ÚÌ˚È ·‡ÁËÒ. åÂÚË͇ LJ̉ÂÏÓ̉‡ – ˝ÚÓ F-‡ÒÒÚÓflÌËÂ Ò Fi, i ∈ I, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ÒÚÓηˆ‡ÏË Ó·Ó·˘ÂÌÌÓÈ Ï‡Úˈ˚ LJ̉ÂÏÓ̉‡. åÂÚË͇ÏË É‡·Ë‰ÛÎË̇–ëËÏÓÌËÒ‡ fl‚Îfl˛ÚÒfl Ú‡ÍÊÂ: ‡ÒÒÚÓflÌË ‡Ì„‡, ‡ÒÒÚÓflÌË b-Ô‡ÍÂÚ‡, ÍÓÏ·Ë̇ÚÓÌ˚ ÏÂÚËÍË É‡·Ë‰ÛÎË̇ (ÒÏ. ê‡ÒÒÚÓflÌË ÛÔÓfl‰Ó˜ÂÌÌÓ„Ó ÒÓÏÌÓÊÂÒÚ‚‡). ê‡ÒÒÚÓflÌË êÓÁÂÌ·Î˛Ï‡–ñÙ‡Òχ̇ èÛÒÚ¸ Mm,n(Fq ) – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı m × n χÚˈ Ò ˝ÎÂÏÂÌÚ‡ÏË ËÁ ÍÓ̘ÌÓ„Ó ÔÓÎfl Fq (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ËÁ β·Ó„Ó ÍÓ̘ÌÓ„Ó ‡ÎÙ‡‚ËÚ‡ = {a1 ,..., aq }). çÓχ êÓÁÂÌ·Î˛Ï‡–ñÙ‡Òχ̇ || ⋅ ||RT ̇ Mm,n(Fq ) ÓÔ‰ÂÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏ Ó·‡ÁÓÏ: ÂÒÎË m = 1 Ë a = (ξ1 , ξ 2 ,..., ξn ) ∈ M 1,n, ÚÓ || 01,n ||RT = 0 Ë || a ||RT = max{i | ξi ≠ 0} ‰Îfl a ≠ 0 1,n; ÂÒÎË m
A = ( a1 ,..., am )T ∈ Mm, n ( Fq ), a j ∈ M1, n ( Fq ), 1 ≤ j ≤ m, ÚÓ || A || RT =
∑ || a j || RT . j =1
ê‡ÒÒÚÓflÌË êÓÁÂÌ·Î˛Ï‡–ñÙ‡Òχ̇ ([RoTs96]) ÂÒÚ¸ ÏÂÚË͇ (·ÓΠÚÓ„Ó, ÛθڇÏÂÚË͇) ̇ Mm,n(Fq ), ÓÔ‰ÂÎÂÌ̇fl Í‡Í || A − B || RT . ÑÎfl Í‡Ê‰Ó„Ó Ï‡Ú˘ÌÓ„Ó ÍÓ‰‡ C ⊂ Mm, n ( Fq ) Ò q k ˝ÎÂÏÂÌÚ‡ÏË ÏËÌËχθÌÓ ∗ ‡ÒÒÚÓflÌË (êÓÁÂÌ·Î˛Ï‡–ñÙ‡Òχ̇) d RT (C ) ≤ mn − k + 1. äÓ‰˚, ̇ ÍÓÚÓ˚ı ‰ÓÒÚË„‡ÂÚÒfl ‡‚ÂÌÒÚ‚Ó, ̇Á˚‚‡˛ÚÒfl ‡Á‰ÂÎËÚÂθÌ˚ÏË ÍÓ‰‡ÏË Ò Ï‡ÍÒËχθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ. ç‡Ë·ÓΠ˜‡ÒÚÓ ËÒÔÓθÁÛÂÏ˚Ï ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÍÓ‰Ó‚˚ÏË ÒÎÓ‚‡ÏË Ï‡Ú˘ÌÓ„Ó ÍÓ‰‡ C ⊂ Mm, n ( Fq ) fl‚ÎflÂÚÒfl ı˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ ̇ M m,n(Fq ), ÓÔ‰ÂÎÂÌ̇fl Í‡Í || A − B || H , „‰Â || A || H – ‚ÂÒ ï˝ÏÏËÌ„‡ χÚˈ˚ A ∈ Mm,n(Fq ), Ú.Â. ˜ËÒÎÓ ÌÂÌÛ΂˚ı ˝ÎÂÏÂÌÚÓ‚ χÚˈ˚ Ä.
252
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
ê‡ÒÒÚÓflÌË ‚Á‡ËÏÓÓ·ÏÂ̇ ê‡ÒÒÚÓflÌË ‚Á‡ËÏÓÓ·ÏÂ̇ (ËÎË ‡ÒÒÚÓflÌË ҂ÓÔ‡) ÂÒÚ¸ ÏÂÚË͇ ̇ ÍӉ ë ⊂ n ̇‰ ‡ÎÙ‡‚ËÚÓÏ , ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x, y ∈ C Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ Ò‚ÓÔÓ‚ (Ú‡ÌÒÔÓÁˈËÈ), Ú.Â. ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÒÏÂÊÌ˚ı Ô‡ ÒËÏ‚ÓÎÓ‚, ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl ı ‚ Û. ê‡ÒÒÚÓflÌË ÄëåÖ ê‡ÒÒÚÓflÌË ÄëåÖ – ˝ÚÓ ÏÂÚË͇ ̇ ÍӉ ë ⊂ n ̇‰ ‡ÎÙ‡‚ËÚÓÏ , ÓÔ‰ÂÎÂÌ̇fl Í‡Í min{d H ( x, y), d I ( x, y)}, „‰Â dH – ı˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇, ‡ dI – ‡ÒÒÚÓflÌË ÔÂÂÒÚ‡ÌÓ‚ÓÍ. ê‡ÒÒÚÓflÌË ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌË èÛÒÚ¸ W – ÏÌÓÊÂÒÚ‚ÓÏ ‚ÒÂı ÒÎÓ‚ ̇‰ ‡ÎÙ‡‚ËÚÓÏ . 쉇ÎÂÌË ·ÛÍ‚˚ ‚ ÒÎÓ‚Â β = b1 ...bn ‰ÎËÌ˚ n ÂÒÚ¸ ÔÂÓ·‡ÁÓ‚‡ÌËÂ β ‚ ÒÎÓ‚Ó β ′ = b1 ...bi −1bi +1 ...bn ‰ÎËÌ˚ n – 1. ÇÒÚ‡‚͇ ·ÛÍ‚˚ ‚ ÒÎÓ‚Ó β = b1 ...bn ‰ÎËÌ˚ n ÂÒÚ¸ ÔÂÓ·‡ÁÓ‚‡ÌËÂ β ‚ ÒÎÓ‚Ó β ′′ = b1 ...bi bbi +1 ...bn ‰ÎËÌ˚ n + 1. ê‡ÒÒÚÓflÌË ‚ÒÚ‡‚ÍË-Û‰‡ÎÂÌËfl (ËÎË ‡ÒÒÚÓflÌË ÍÓ‰Ó‚ Ò ËÒÔ‡‚ÎÂÌËÂÏ Û‰‡ÎÂÌËÈ Ë ‚ÒÚ‡‚ÓÍ) ÂÒÚ¸ ÏÂÚË͇ ̇ W, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı α, β ∈ W Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ Û‰‡ÎÂÌËÈ Ë ‚ÒÚ‡‚ÓÍ ·ÛÍ‚, ÔÂÓ·‡ÁÛ˛˘Ëı α ‚ β. äÓ‰ ë Ò ËÒÔ‡‚ÎÂÌËÂÏ Û‰‡ÎÂÌËÈ Ë ‚ÒÚ‡‚ÓÍ – ÔÓËÁ‚ÓθÌÓ ÍÓ̘ÌÓ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ W. èËÏÂÓÏ Ú‡ÍÓ„Ó ÍÓ‰‡ fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚Ó ÒÎÓ‚ n
β = b1 ...bn ‰ÎËÌ˚ n ̇‰ ‡ÎÙ‡‚ËÚÓÏ = {0, 1}, ‰Îfl ÍÓÚÓÓ„Ó
∑ ibi ≡ 0(mod n + 1). i =1
∑
1 äÓ΢ÂÒÚ‚Ó ÒÎÓ‚ ‚ ˝ÚÓÏ ÍӉ ‡‚ÌÓ φ( k )2 ( n +1) / k , „‰Â ÒÛÏχ ·ÂÂÚÒfl ÔÓ 2(n + 1) k ‚ÒÂÏ Ì˜ÂÚÌ˚Ï ‰ÂÎËÚÂÎflÏ k ˜ËÒ· n + 1, ‡ φ – ÙÛÌ͈Ëfl ùÈ·. àÌÚ‚‡Î¸ÌÓ ‡ÒÒÚÓflÌË àÌÚ‚‡Î¸ÌÓ ‡ÒÒÚÓflÌË (ÒÏ., ̇ÔËÏÂ, [Bata95]) – ÏÂÚË͇ ̇ ÍÓ̘ÌÓÈ „ÛÔÔ (G, +, 0), ÓÔ‰ÂÎÂÌ̇fl Í‡Í w int(x – y), „‰Â wint(x) – ËÌÚ‚‡Î¸Ì˚È ‚ÂÒ Ì‡ G, Ú.Â. ÌÓχ „ÛÔÔ˚, Á̇˜ÂÌËfl ÍÓÚÓÓÈ fl‚Îfl˛ÚÒfl ÔÓÒΉӂ‡ÚÂθÌ˚ÏË ÌÂÓÚˈ‡ÚÂθÌ˚ÏË ˆÂÎ˚ÏË ˜ËÒ·ÏË 0,..., m. ùÚÓ ‡ÒÒÚÓflÌË ËÒÔÓθÁÛÂÚÒfl ‚ „ÛÔÔÓ‚˚ı ÍÓ‰‡ı C ⊂ G. åÂÚË͇ î‡ÌÓ åÂÚËÍÓÈ î‡ÌÓ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ‰ÂÍÓ‰ËÓ‚‡ÌËfl, Ô‰̇Á̇˜ÂÌ̇fl ‰Îfl ÓÔ‰ÂÎÂÌËfl ̇ËÎÛ˜¯ÂÈ ‚ÓÁÏÓÊÌÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÔËÏÂÌËÚÂθÌÓ Í ‡Î„ÓËÚÏÛ î‡ÌÓ ÔÓÒΉӂ‡ÚÂθÌÓ„Ó ‰ÂÍÓ‰ËÓ‚‡ÌËfl Ò‚ÂÚÓ˜Ì˚ı ÍÓ‰Ó‚. ë‚ÂÚÓ˜Ì˚È ÍÓ‰ – ÍÓ‰ Ò ËÒÔ‡‚ÎÂÌËÂÏ Ó¯Ë·ÓÍ, ‚ ÍÓÚÓÓÏ Í‡Ê‰˚È k-·ËÚ ÔÓ‰ÎÂʇ˘Â„Ó ÍÓ‰ËÓ‚‡Ì˲ ËÌÙÓχˆËÓÌÌÓ„Ó ÒËÏ‚Ó· ÔÂÓ·‡ÁÛÂÚÒfl ‚ n-·ËÚÓ‚ ÍÓ‰Ó‚Ó k ÒÎÓ‚Ó, „‰Â R = ÂÒÚ¸ ÍÓ‰Ó‚‡fl ÒÍÓÓÒÚ¸ (n ≥ k), ‡ ÔÂÓ·‡ÁÓ‚‡ÌË – ÙÛÌ͈Ëfl ÔÓÒΉn ÌËı m ËÌÙÓχˆËÓÌÌ˚ı ÒËÏ‚ÓÎÓ‚. ãËÌÂÈÌ˚È, Ì Á‡‚ËÒfl˘ËÈ ÓÚ ‚ÂÏÂÌË ‰ÂÍӉ (ÙËÍÒËÓ‚‡ÌÌ˚È Ò‚ÂÚÓ˜Ì˚È ‰ÂÍÓ‰Â) ÓÚÓ·‡Ê‡ÂÚ ËÌÙÓχˆËÓÌÌ˚È ÒËÏ‚ÓÎ
É·‚‡ 16. ê‡ÒÒÚÓflÌËfl ‚ ÚÂÓËË ÍÓ‰ËÓ‚‡ÌËfl
253
ui ∈{u1 ,..., u N }, ui = (ui1 ,..., uik ), uij ∈2 ÍÓ‰Ó‚Ó ÒÎÓ‚Ó xi ∈{x1 ,..., x N }, xi = ( xi1 ,..., xin ), xij ∈2 Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ Ì‡ ‚˚ıӉ ÔÓÎÛ˜‡ÂÚÒfl ÍÓ‰ {x 1 ,..., xN} ËÁ N ÍÓ‰Ó‚˚ı ÒÎÓ‚ Ò ‚ÂÓflÚÌÓÒÚflÏË {p( x1 ),..., p( x N )}. èÓÒΉӂ‡ÚÂθÌÓÒÚ¸ l ÍÓ‰Ó‚˚ı ÒÎÓ‚ ÙÓÏËÛÂÚ ÔÓÚÓÍ (ËÎË ÔÛÚ¸) x = x[1, l ] = {x1 ,..., xl }, ÍÓÚÓ˚È Ô‰‡ÂÚÒfl ÔÓ ‰ËÒÍÂÚÌ˚Ï Í‡Ì‡Î‡Ï ·ÂÁ Ô‡ÏflÚË Ë ÔÓÒÚÛÔ‡ÂÚ Ì‡ ÔËÂÏÌËÍ ‚ ‚ˉ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË y = y[1,l]. Ç Á‡‰‡˜Û ‰ÂÍӉ‡, Ô‰̇Á̇˜ÂÌÌÓ„Ó ‰Îfl ÏËÌËÏËÁ‡ˆËË ‚ÂÓflÚÌÓÒÚË Ó¯Ë·ÓÍ ‚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË, ‚ıÓ‰ËÚ ÔÓËÒÍ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË, ÍÓÚÓ‡fl χÍÒËχθÌÓ Û‚Â΢˂‡ÂÚ Ó·˘Û˛ ‚ÂÓflÚÌÓÒÚ¸ ‚ıÓ‰fl˘ÂÈ Ë ËÒıÓ‰fl˘ÂÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ p(x, y) = p (y | x) ⋅ p(x). é·˚˜ÌÓ ‰ÓÒÚ‡ÚÓ˜ÌÓ Ì‡ÈÚË Ôӈ‰ÛÛ Ï‡ÍÒËÏËÁ‡ˆËË p(y | x), Ë ‰ÂÍÓ‰Â, ‚Ò„‰‡ ‚˚·Ë‡˛˘ËÈ ‚ ͇˜ÂÒÚ‚Â Ò‚ÓÂÈ ÓˆÂÌÍË Ó‰ÌÛ ËÁ ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ, χÍÒËÏËÁËÛ˛˘Ëı ˝ÚÛ ‚Â΢ËÌÛ (ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, ÏÂÚË͇ î‡ÌÓ), ̇Á˚‚‡ÂÚÒfl ‰ÂÍÓ‰ÂÓÏ Ï‡ÍÒËχθÌÓ„Ó Ô‡‚‰ÓÔÓ‰Ó·Ëfl. ÉÛ·Ó „Ó‚Ófl, ͇ʉ˚È ÍÓ‰ ÏÓÊÌÓ Ò˜ËÚ‡Ú¸ ‰Â‚ÓÏ, Û ÍÓÚÓÓ„Ó Í‡Ê‰‡fl ‚ÂÚ‚¸ fl‚ÎflÂÚÒfl ÓÚ‰ÂθÌ˚Ï ÍÓ‰Ó‚˚Ï ÒÎÓ‚ÓÏ. ÑÂÍӉ ̇˜Ë̇ÂÚ ‡·ÓÚÛ Ò Ô‚ÓÈ ‚¯ËÌ˚ ‰Â‚‡ Ë ‡ÒÒ˜ËÚ˚‚‡ÂÚ ÏÂÚËÍÛ ‚ÂÚ‚Ë ‰Îfl ͇ʉÓÈ ËÁ ‚ÓÁÏÓÊÌ˚ı ‚ÂÚ‚ÂÈ, ÓÔ‰ÂÎflfl Í‡Í Ì‡ËÎÛ˜¯Û˛ ÚÛ, ‚ÂÚ‚¸ ÍÓÚÓ‡fl ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÍÓ‰Ó‚ÓÏÛ ÒÎÓ‚Û xj, ӷ·‰‡˛˘ÂÏÛ Ì‡Ë·Óθ¯ÂÈ ÏÂÚËÍÓÈ ‚ÂÚ‚Ë µF(xj). ùÚ‡ ‚ÂÚ‚¸ ‰Ó·‡‚ÎflÂÚÒfl Í ÔÛÚË, Ë ‡Î„ÓËÚÏ ÔÓ‰ÓÎʇÂÚÒfl Ò ÌÓ‚ÓÈ ‚¯ËÌ˚, Ô‰ÒÚ‡‚Îfl˛˘ÂÈ ÒÛÏÏÛ Ô‰˚‰Û˘ÂÈ ‚¯ËÌ˚ Ë ÍÓ΢ÂÒÚ‚‡ ·ËÚÓ‚ ‚ ÚÂÍÛ˘ÂÏ Ì‡ËÎÛ˜¯ÂÏ ÍÓ‰Ó‚ÓÏ ÒÎÓ‚Â. èÓÒ‰ÒÚ‚ÓÏ ÔÓˆÂÒÒ‡ ËÚ‡ˆËË ‰Ó ÍÓ̘ÌÓÈ ‚¯ËÌ˚ ‰Â‚‡ ‡Î„ÓËÚÏ ÔÓÍ·‰˚‚‡ÂÚ Ì‡Ë·ÓΠ‚ÂÓflÚÌ˚È ÔÛÚ¸. Ç ˝ÚÓÏ ÔÓÒÚÓÂÌËË ·ËÚÓ‚‡fl ÏÂÚË͇ î‡ÌÓ ÓÔ‰ÂÎflÂÚÒfl Í‡Í log 2
p( yi | xi ) − R, p( yi )
ÏÂÚË͇ ‚ÂÚ‚Ë î‡ÌÓ ÓÔ‰ÂÎflÂÚÒfl Í‡Í n
µF (x j ) =
p( yi | x ji )
∑ log2
p( yi )
i =1
− R ,
‡ ÏÂÚË͇ ÔÛÚË î‡ÌÓ – Í‡Í l
µ F ( x[1, l ] ) =
∑ µ F ( x j ), j =1
„‰Â p( yi | x ji ) – ‚ÂÓflÚÌÓÒÚË ÔÂÂıÓ‰‡ ͇̇ÎÓ‚, p( yi ) =
∑ p( xm )p( yi | xm ) – ‡ÒÔÂxm
‰ÂÎÂÌË ‚ÂÓflÚÌÓÒÚÂÈ ‚˚ıÓ‰Ì˚ı ‰‡ÌÌ˚ı ÔË Á‡‰‡ÌÌ˚ı ‚ıÓ‰Ì˚ı ‰‡ÌÌ˚ı (ÛÒ‰k ÌÂÌÌÓ ÔÓ ‚ÒÂÏ ‚ıÓ‰Ì˚Ï ÒËÏ‚Ó·Ï) Ë R = – ÍÓ‰Ó‚‡fl ÒÍÓÓÒÚ¸. n 1 ÑÎfl ‰ÂÍӉ‡ Ò "ÊÂÒÚÍËÏ" ¯ÂÌËÂÏ p( yi = 0 | x j = 0) = p, 0 < p < ÏÂÚËÍÛ 2 î‡ÌÓ ‰Îfl ÔÛÚË x[1, l ] ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í µ F ( x[1, l ] ) = −αd H ( y[1, l ] , x[1, l ] ) + β ⋅ l ⋅ n, „‰Â α = − log 2
p > 0, β = 1 − R + log 2 (1 − p) Ë dH – ı˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇. 1− p
254
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
é·Ó·˘ÂÌ̇fl ÏÂÚË͇ î‡ÌÓ ‰Îfl ÔÓÒΉӂ‡ÚÂθÌÓ„Ó ‰ÂÍÓ‰ËÓ‚‡ÌËfl ÓÔ‰ÂÎflÂÚÒfl Í‡Í p( yi | x j ) w log 2 1− w − wR , p( y j ) j =1 ln
µ wF ( x[1, l ] ) =
∑
0 ≤ w ≤ 1. äÓ„‰‡ w = 1/2, Ó·Ó·˘ÂÌ̇fl ÏÂÚË͇ î‡ÌÓ Ò‚Ó‰ËÚÒfl Í ÏÂÚËÍ î‡ÌÓ Ò ÏÛθÚËÔÎË͇ÚË‚ÌÓÈ ÍÓÌÒÚ‡ÌÚÓÈ 1/2. åÂÚ˘ÂÒ͇fl ÂÍÛÒËfl åÄê ‰ÂÍÓ‰ËÓ‚‡ÌËfl å‡ÍÒËχθ̇fl ‡ÔÓÒÚÂËÓ̇fl ÓˆÂÌ͇ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ËÎË åÄê ‰ÂÍÓ‰ËÓ‚‡ÌË ‰Îfl ÍÓ‰Ó‚ ÔÂÂÏÂÌÌÓÈ ‰ÎËÌ˚, ËÒÔÓθÁÛ˛˘‡fl ‡Î„ÓËÚÏ ÇËÚ·Ë, ÓÒÌÓ‚‡Ì‡ ̇ ÏÂÚ˘ÂÒÍÓÈ ÂÍÛÒËË Λ(km )
=
Λ(km−)1
+
l k( m )
∑
n =1
x k( m, n) log 2
p( yk , n | x k( m, n) = +1 p( yk , n | x k( m, n) = −1
+ 2 log 2 p(uk( m ) ),
„‰Â Λ(km ) – ÏÂÚË͇ ‚ÂÚ‚Ë ‰Îfl ‚ÂÚ‚Ë m ‚ ÔÂËÓ‰ ‚ÂÏÂÌË (ÛÓ‚Â̸) k; xk,n – n-È ·ËÚ ÍÓ‰Ó‚Ó„Ó ÒÎÓ‚‡ Ò lk( m ) ·ËÚ‡ÏË, ÔÓϘÂÌÌ˚ı ̇ ͇ʉÓÈ ‚ÂÚ‚Ë; Ûk,n – ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÈ ÔËÌflÚ˚È "Ïfl„ÍËÈ" ·ËÚ; ukm – ËÒıÓ‰Ì˚ ÒËÏ‚ÓÎ˚ ‚ÂÚ‚Ë m ‚ ÔÂËÓ‰ k, Ë ÔË Ô‰ÔÓÎÓÊÂÌËË ÒÚ‡ÚËÒÚ˘ÂÒÍÓÈ ÌÂÁ‡‚ËÒËÏÓÒÚË ËÒıÓ‰Ì˚ı ÒËÏ‚ÓÎÓ‚ ‚ÂÓflÚÌÓÒÚ¸ p(uk( m ) ) ˝Í‚Ë‚‡ÎÂÌÚ̇ ‚ÂÓflÚÌÓÒÚË ËÒıÓ‰ÌÓ„Ó ÒËÏ‚Ó·, ÔÓϘÂÌÌÓ„Ó Ì‡ ‚ÂÚ‚Ë m, ÍÓÚÓ‡fl ËÁ‚ÂÒÚ̇ ËÎË ‡ÒÒ˜ËÚ˚‚‡ÂÚÒfl. åÂÚ˘ÂÒÍËÈ ËÌÍÂÏÂÌÚ ‡ÒÒ˜ËÚ˚‚‡ÂÚÒfl ‰Îfl ͇ʉÓÈ ‚ÂÚ‚Ë, Ë Ì‡Ë·Óθ¯Â Á̇˜ÂÌËÂ, ÔË ËÒÔÓθÁÓ‚‡ÌËË ÎÓ„‡ËÙÏ˘ÂÒÍÓ„Ó Á̇˜ÂÌËfl Ô‡‚‰ÓÔÓ‰Ó·Ëfl Í‡Ê‰Ó„Ó ÒÓÒÚÓflÌËflËÒÔÓθÁÛÂÚÒfl ‰Îfl ‰‡Î¸ÌÂȯÂÈ ÂÍÛÒËË. ÑÂÍӉ Ò̇˜‡Î‡ ‚˚˜ËÒÎflÂÚ ÏÂÚËÍÛ Ì‡ ‚ÒÂı ‚ÂÚ‚flı, Ë Á‡ÚÂÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ Ò Ì‡Ë·Óθ¯ÂÈ ÏÂÚËÍÓÈ ‚ÂÚ‚Ë ‚˚·Ë‡ÂÚÒfl ̇˜Ë̇fl Ò Á‡Íβ˜ËÚÂθÌÓ„Ó ÒÓÒÚÓflÌËfl.
É·‚‡ 17
êÄëëíéüçàü à èéÑéÅçéëíà Ç ÄçÄãàáÖ ÑÄççõï
åÌÓÊÂÒÚ‚Ó ‰‡ÌÌ˚ı – ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó, ÒÓÒÚÓfl˘Â ËÁ m ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ ( x1j ,..., x nj ), j ∈{1,..., m} ‰ÎËÌ˚ n. á̇˜ÂÌËfl xi1 ,..., xim Ô‰ÒÚ‡‚Îfl˛Ú ‡ÚË·ÛÚ S i. éÌ ÏÓÊÂÚ ·˚Ú¸ ˜ËÒÎÓ‚˚Ï, ‚ ÚÓÏ ˜ËÒΠÌÂÔÂ˚‚Ì˚Ï (‰ÂÈÒÚ‚ËÚÂθÌ˚ ˜ËÒ·) Ë ‰‚Ó˘Ì˚Ï (‰‡/ÌÂÚ ‚˚‡Ê‡ÂÚÒfl Í‡Í 1/0), Ó‰Ë̇θÌ˚Ï (˜ËÒ·ÏË Û͇Á˚‚‡ÂÚÒfl ÚÓθÍÓ ‡Ì„) ËÎË ÌÓÏË̇θÌ˚Ï (ÌÂÛÔÓfl‰Ó˜ÂÌÌ˚Ï). ä·ÒÚÂÌ˚È ‡Ì‡ÎËÁ (ËÎË Í·ÒÒËÙË͇ˆËfl, Ú‡ÍÒÓÌÓÏËfl, ‡ÒÔÓÁ̇‚‡ÌË ӷ‡ÁÓ‚) Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ‡Á·ËÂÌË ‰‡ÌÌ˚ı Ä Ì‡ ÓÚÌÓÒËÚÂθÌÓ Ï‡ÎÓ ˜ËÒÎÓ Í·ÒÚÂÓ‚, Ú.Â. Ú‡ÍËı ÏÌÓÊÂÒÚ‚ Ó·˙ÂÍÚÓ‚, ˜ÚÓ (ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ‚˚·‡ÌÌÓÈ Ï ‡ÒÒÚÓflÌËfl) Ó·˙ÂÍÚ˚, ̇ÒÍÓθÍÓ ˝ÚÓ ‚ÓÁÏÓÊÌÓ, "·ÎËÁÍË", ÂÒÎË ÔË̇‰ÎÂÊ‡Ú Ó‰ÌÓÏÛ Ë ÚÓÏÛ Ê Í·ÒÚÂÛ, Ë "‰‡ÎÂÍË", ÂÒÎË ÔË̇‰ÎÂÊ‡Ú ‡ÁÌ˚Ï Í·ÒÚ‡Ï, Ë ‰‡Î¸ÌÂȯ ÔÓ‰‡Á‰ÂÎÂÌË ̇ Í·ÒÚÂ˚ ÓÒ··ËÚ ‚˚¯ÂÛ͇Á‡ÌÌ˚ ÛÒÎÓ‚Ëfl. ê‡ÒÒÏÓÚËÏ ÚË ÚËÔ˘Ì˚ı ÒÎÛ˜‡fl. Ç ÔËÎÓÊÂÌËflı, Ò‚flÁ‡ÌÌ˚ı Ò ‚˚·ÓÍÓÈ ËÌÙÓχˆËË, ÛÁÎ˚ Ó‰ÌӇ̄ӂÓÈ ·‡Á˚ ‰‡ÌÌ˚ı ˝ÍÒÔÓÚËÛ˛Ú ËÌÙÓχˆË˛ (ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÚÂÍÒÚÓ‚˚ı ‰ÓÍÛÏÂÌÚÓ‚); ͇ʉ˚È ‰ÓÍÛÏÂÌÚ ı‡‡ÍÚÂËÁÛÂÚÒfl ‚ÂÍÚÓÓÏ ËÁ n. Ç Á‡ÔÓÒ ÔÓθÁÓ‚‡ÚÂÎfl ÒÓ‰ÂÊËÚÒfl ‚ÂÍÚÓ x ∈ n, Ë ÔÓθÁÓ‚‡ÚÂβ ÌÂÓ·ıÓ‰ËÏ˚ ‚Ò ‰ÓÍÛÏÂÌÚ˚ ·‡Á˚ ‰‡ÌÌ˚ı, Ëϲ˘Ë ÓÚÌÓ¯ÂÌËÂ Í ˝ÚÓÏÛ Á‡ÔÓÒÛ, Ú.Â. ÔË̇‰ÎÂʇ˘Ë ¯‡Û ‚ n Ò ˆÂÌÚÓÏ ‚ ı, ÙËÍÒËÓ‚‡ÌÌÓ„Ó ‡‰ËÛÒ‡ Ë ÔÓ‰ıÓ‰fl˘ÂÈ ÙÛÌ͈ËÂÈ ‡ÒÒÚÓflÌËfl. Ç „ÛÔÔËÓ‚Í Á‡ÔËÒÂÈ, ͇ʉ˚È ‰ÓÍÛÏÂÌÚ (Á‡ÔËÒ¸ ‚ ·‡Á ‰‡ÌÌ˚ı) Ô‰ÒÚ‡‚ÎÂÌ ‚ÂÍÚÓÓÏ ˜‡ÒÚÓÚÌÓÒÚË ÚÂÏË̇ x ∈ n , Ë Ú·ÛÂÚÒfl ÓÔ‰ÂÎËÚ¸ ÒÂχÌÚ˘ÂÒÍÛ˛ Á̇˜ËÏÓÒÚ¸ ÒËÌÚ‡ÍÒ˘ÂÒÍË ‡ÁÌ˚ı Á‡ÔËÒÂÈ. Ç ˝ÍÓÎÓ„ËË, ÂÒÎË ‚ÂÍÚÓ‡ ı, Û Ó·ÓÁ̇˜‡˛Ú ‡ÒÔ‰ÂÎÂÌËfl ˜ËÒÎÂÌÌÓÒÚË ‚ˉӂ, ÔÓÎÛ˜ÂÌÌ˚ ‰‚ÛÏfl ÏÂÚÓ‰‡ÏË, ‚˚·ÓÍË ‰‡ÌÌ˚ı (Ú.Â. x j, yj – ˜ËÒ· Ë̉˂ˉӂ ‚ˉ‡ j, ÔÓÎÛ˜ÂÌÌ˚ ‚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ‚˚·ÓÍÂ), ÚÓ Ú·ÛÂÚÒfl ÓÔ‰ÂÎËÚ¸ ÏÂÛ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ı Ë Û ‰Îfl Ò‡‚ÌÂÌËfl ‰‚Ûı ÏÂÚÓ‰Ó‚. ᇘ‡ÒÚÛ˛ ‰‡ÌÌ˚ ӄ‡ÌËÁÛ˛ÚÒfl Ò̇˜‡Î‡ ‚ ‚ˉ ÏÂÚ˘ÂÒÍÓ„Ó ‰Â‚‡, Ú.Â. ‚ ‚ˉ ‰Â‚‡, Ë̉ÂÍÒËÓ‚‡ÌÌÓ„Ó ˝ÎÂÏÂÌÚ‡ÏË ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡. èÓÒΠ‚˚·Ó‡ ‡ÒÒÚÓflÌËfl d ÏÂÊ‰Û Ó·˙ÂÍÚ‡ÏË ÏÂÚË͇ ÎËÌÍˉʇ, Ú.Â. ‡ÒÒÚÓflÌË ÏÂÊ‰Û Í·ÒÚ‡ÏË A = {a 1 ,..., am} Ë B = {b1 ,..., bn }, Ó·˚˜ÌÓ ÓÔ‰ÂÎflÂÚÒfl Í‡Í Ó‰ÌÓ ËÁ ÒÎÂ‰Û˛˘Ëı: – ÛÒ‰ÌÂÌ̇fl ÎËÌÍˉÊ: ҉̠Á̇˜ÂÌË ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ‚ÒÂÏË ˜ÎÂ̇ÏË d ( ai , b j )
∑∑
˝ÚËı Í·ÒÚÂÓ‚, Ú.Â.
i
j
; mn – Ó‰Ë̇Ì˚È ÎËÌÍˉÊ: ‡ÒÒÚÓflÌË ÏÂÊ‰Û ·ÎËʇȯËÏË ˜ÎÂ̇ÏË ˝ÚËı Í·ÒÚÂÓ‚, Ú.Â. min d ( ai , b j ); ij
– ÔÓÎÌ˚È ÎËÌÍˉÊ: ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ò‡Ï˚ÏË Û‰‡ÎÂÌÌ˚ÏË ‰Û„ ÓÚ ‰Û„‡ ˜ÎÂ̇ÏË ˝ÚËı Í·ÒÚÂÓ‚, Ú.Â. min d ( ai , b j ); ij
256
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
– ÎËÌÍË‰Ê ˆÂÌÚÓˉӂ: ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆÂÌÚÓˉ‡ÏË (ˆÂÌÚ‡ÏË ÚflÊÂÒÚË) ai bi i i ˜ ˝ÚËı Í·ÒÚÂÓ‚, Ú.Â. || a˜ − b ||2 , „‰Â a = Ë b= ; m n min || a˜ − b˜ ||2 . – ÎËÌÍË‰Ê ‚‡‰‡: ‡ÒÒÚÓflÌË m+n åÌÓ„ÓÏÂÌÓ ¯Í‡ÎËÓ‚‡ÌË – ÚÂıÌË͇, ÔËÏÂÌflÂχfl ‚ ӷ·ÒÚË Ôӂ‰Â̘ÂÒÍËı Ë ÒӈˇθÌ˚ı ̇ÛÍ ‰Îfl ËÒÒΉӂ‡ÌËfl Ó·˙ÂÍÚÓ‚ ËÎË Î˛‰ÂÈ. ÇÏÂÒÚÂ Ò Í·ÒÚÂÌ˚Ï ‡Ì‡ÎËÁÓÏ Ó̇ ·‡ÁËÛÂÚÒfl ̇ ËÒÔÓθÁÓ‚‡ÌËË ‡ÒÒÚÓflÌËÈ. é‰Ì‡ÍÓ ÔË ÏÌÓ„ÓÏÂÌÓÏ ¯Í‡ÎËÓ‚‡ÌËË, ‚ ÓÚ΢ˠÓÚ Í·ÒÚÂÌÓ„Ó ‡Ì‡ÎËÁ‡, ÔÓˆÂÒÒ Ì‡˜Ë̇ÂÚÒfl Ò ÌÂÍÓÚÓÓÈ m × m χÚˈ˚ D ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û Ó·˙ÂÍÚ‡ÏË Ë Á‡ÚÂÏ (ËÚ‡ˆËÓÌÌÓ) ˢÂÚÒfl ÂÔÂÁÂÌÚ‡ˆËfl Ó·˙ÂÍÚÓ‚ ‚ n Ò Ï‡Î˚Ï n, ڇ͇fl ˜ÚÓ Ëı χÚˈ‡ ‚ÍÎˉӂ˚ı ‡ÒÒÚÓflÌËÈ ËÏÂÂÚ ÏËÌËχθÌÓ ͂‡‰‡Ú˘ÌÓ ÓÚÍÎÓÌÂÌË ÓÚ ËÒıÓ‰ÌÓÈ Ï‡Úˈ˚ D. Ç ÔÓˆÂÒÒ ‡Ì‡ÎËÁ‡ ‰‡ÌÌ˚ı ÔËÏÂÌfl˛ÚÒfl ÏÌÓ„Ë ÔÓ‰Ó·ÌÓÒÚË; Ëı ‚˚·Ó Á‡‚ËÒËÚ ÓÚ ı‡‡ÍÚ‡ ‰‡ÌÌ˚ı Ë ÔÓ͇ ÚÓ˜ÌÓÈ Ì‡ÛÍÓÈ Ì fl‚ÎflÂÚÒfl. çËÊ ÔË‚Ó‰flÚÒfl ÓÒÌÓ‚Ì˚ ËÁ ˝ÚËı ÔÓ‰Ó·ÌÓÒÚÂÈ Ë ‡ÒÒÚÓflÌËÈ. ÑÎfl ‰‚Ûı Ó·˙ÂÍÚÓ‚, Ô‰ÒÚ‡‚ÎÂÌÌ˚ı ÌÂÌÛ΂˚ÏË ‚ÂÍÚÓ‡ÏË x = (x 1 ,..., x n ) Ë y = (y 1 ,..., yn) ËÁ n, ‚ ‰‡ÌÌÓÈ „·‚ ËÒÔÓθÁÛ˛ÚÒfl ÒÎÂ‰Û˛˘Ë ӷÓÁ̇˜ÂÌËfl:
∑
∑
∑
n
xi ÓÁ̇˜‡ÂÚ
∑ xi . i =1
1 F – ı‡‡ÍÚÂËÒÚ˘ÂÒ͇fl ÙÛÌ͈Ëfl ÒÓ·˚ÚËfl F: 1 F = 1, ÂÒÎË F ËÏÂÂÚ ÏÂÒÚÓ Ë 1F = 0, ÂÒÎË ÌÂÚ. || x ||2 = ∑ xi2 – Ó·˚˜Ì‡fl ‚ÍÎˉӂ‡ ÌÓχ ̇ n. ∑ xi 1 , Ú.Â. ҉̠Á̇˜ÂÌË ÍÓÏÔÓÌÂÌÚ‡ ı, Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í x. í‡Í, x = , ÂÒÎË n n x fl‚ÎflÂÚÒfl ‚ÂÍÚÓÓÏ ˜‡ÒÚÓÚÌÓÒÚË (‰ËÒÍÂÚÌ˚Ï ‡ÒÔ‰ÂÎÂÌËÂÏ ‚ÂÓflÚÌÓÒÚÂÈ), n +1 Ú.Â. ‚Ò x i ≥ 0, ∑xi = 1; Ë x = , ÂÒÎË ı fl‚ÎflÂÚÒfl ‡ÌÊËÓ‚‡ÌËÂÏ (ÔÂÂÒÚ‡ÌÓ‚ÍÓÈ), 2 Ú.Â. ‚Ò x i – ‡ÁÌ˚ ˜ËÒ· ÏÌÓÊÂÒÚ‚‡ {1,..., n}. ÑÎfl ·Ë̇ÌÓ„Ó ÒÎÛ˜‡fl x ∈ {0, 1}n (Ú.Â. ÍÓ„‰‡ ı fl‚ÎflÂÚÒfl ·Ë̇ÌÓÈ n-ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛) ÔÛÒÚ¸ X = {1 ≤ i ≤ n : xi = 1} Ë X = {1 ≤ i ≤ n : xi = 0}. èÛÒÚ¸ | X ∩ Y |, | X ∪ Y |, | X \ Y | Ë | X∆Y | Ó·ÓÁ̇˜‡˛Ú ͇‰Ë̇θÌÓ ˜ËÒÎÓ ÔÂÂÒ˜ÂÌËfl, Ó·˙‰ËÌÂÌËfl, ‡ÁÌÓÒÚË Ë ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË ( X \ Y ) ∪ (Y \ X ) ÏÌÓÊÂÒÚ‚ X Ë Y ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ.
17.1. èéÑêéÅçéëíà à êÄëëíéüçàü Ñãü óàëãéÇõï ÑÄççõï èÓ‰Ó·ÌÓÒÚ¸ êÛʘÍË èÓ‰Ó·ÌÓÒÚ¸ êÛʘÍË – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ∑ min{xi , yi} ∑ max{xi , yi}
257
É·‚‡ 17. ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı
ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ‡ÒÒÚÓflÌË 1−
∑ min{xi , yi} ∑ | xi − yi | = ∑ max{xi , yi} ∑ max{xi , yi}
n ÒÓ‚Ô‡‰‡ÂÚ Ì‡ ≥0 Ò ÏÂÚËÍÓÈ Ì˜ÂÚÍÓ„Ó ÔÓÎËÌÛÍÎÂÓÚˉ‡ (ÒÏ. „Î. 25).
èÓ‰Ó·ÌÓÒÚ¸ êÓ·ÂÚÒ‡ èÓ‰Ó·ÌÓÒÚ¸ êÓ·ÂÚÒ‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í min{xi , yi} max{xi , yi} . ∑( xi + yi )
∑( xi + yi )
èÓ‰Ó·ÌÓÒÚ¸ ùÎÎÂ̷„‡ èÓ‰Ó·ÌÓÒÚ¸ ùÎÎÂ̷„‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ∑( xi + yi )1x i x i ≠ 0 ∑( xi + yi )(1 + 1x i yi = 0 )
.
ÅË̇Ì˚ ÒÎÛ˜‡Ë ÔÓ‰Ó·ÌÓÒÚÂÈ ùÎÎÂ̷„‡ Ë êÛʘÍË ÒÓ‚Ô‡‰‡˛Ú; ڇ͇fl ÔÓ‰Ó·ÌÓÒÚ¸ ̇Á˚‚‡ÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛ í‡ÌËÏÓÚÓ (ËÎË Ê‡Í͇‰Ó‚ÓÈ ÔÓ‰Ó·ÌÓÒÚ¸˛ Ó·˘ÌÓÒÚË): | X ∩Y | | X ∪Y | ê‡ÒÒÚÓflÌË í‡ÌËÏÓÚÓ (ËÎË ‡ÒÒÚÓflÌË ·ËÓÚÓÔ‡) – ‡ÒÒÚÓflÌË ̇ {0, 1}n, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í 1−
| X ∩ Y | | X∆Y | = . | X ∪Y | | X ∪Y |
èÓ‰Ó·ÌÓÒÚ¸ ÉÎËÒÓ̇ èÓ‰Ó·ÌÓÒÚ¸ ÉÎËÒÓ̇ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í ∑( xi + yi )1x i x i ≠ 0 ∑( xi + yi )
.
ÅË̇Ì˚ ÒÎÛ˜‡Ë ÔÓ‰Ó·ÌÓÒÚÂÈ ÉÎËcÓ̇, åÓÚ˚ÍË Ë Å˝fl-äÛÚËÒ‡ ÒÓ‚Ô‡‰‡˛Ú; ڇ͇fl ÔÓ‰Ó·ÌÓÒÚ¸ ̇Á˚‚‡ÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛ чÈÒ‡ (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸˛ ëÓÂÌÒÂ̇, ÔÓ‰Ó·ÌÓÒÚ¸˛ ôÂ͇ÌÓ‚ÒÍÓ„Ó): 2| X ∩Y | 2| X ∩Y | . = | X ∪Y | + | X ∩Y | | X | + |Y | ê‡ÒÒÚÓflÌË ôÂ͇ÌÓ‚ÒÍӄӖчÈÒ‡ (ËÎË ÌÂÏÂÚ˘ÂÒÍËÈ ÍÓ˝ÙÙˈËÂÌÚ Å˝fl– äÛÚËÒ‡, ÌÓχÎËÁÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË) ÂÒÚ¸ ÔÓ˜ÚË ÏÂÚË͇ ̇ {0, 1}n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í 1−
2| X ∩Y | | X∆Y | = . | X |+|Y | | X |+|Y |
258
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
ê‡ÒÒÚÓflÌË ÔÂÂÒ˜ÂÌËfl ê‡ÒÒÚÓflÌË ÔÂÂÒ˜ÂÌËfl – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í 1−
∑ min{xi , yi} . min{∑ xi , ∑ yi}
èÓ‰Ó·ÌÓÒÚ¸ åÓÚ˚ÍË èÓ‰Ó·ÌÓÒÚ¸ åÓÚ˚ÍË – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ∑ min{xi , yi} ∑ min{xi , yi} =n . ∑( xi + yi} x+y èÓ‰Ó·ÌÓÒÚ¸ Å˝fl–äÛÚËÒ‡ èÓ‰Ó·ÌÓÒÚ¸ Å˝fl-äÛÚËÒ‡ – ˝ÚÓ ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í 2 ∑ min{xi , y j }. n( x + y ) é̇ ̇Á˚‚‡ÂÚÒfl % ÔÓ‰Ó·ÌÓÒÚ¸˛ êÂÌÍÓÌÂ̇ (ËÎË ÔÓˆÂÌÚÌÓÈ ÔÓ‰Ó·ÌÓÒÚ¸˛), ÂÒÎË ı, Û fl‚Îfl˛ÚÒfl ‚ÂÍÚÓ‡ÏË ˜‡ÒÚÓÚÌÓÒÚË. ê‡ÒÒÚÓflÌËÂ Å˝fl–äÛÚËÒ‡ ê‡ÒÒÚÓflÌËÂ Å˝fl-äÛÚËÒ‡ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ∑ | xi − yi | . ∑( xi + yi ) ê‡ÒÒÚÓflÌË ä‡Ì·Â˚ ê‡ÒÒÚÓflÌË ä‡Ì·Â˚ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ∑
| xi − yi | . | xi | + | yi |
èÓ‰Ó·ÌÓÒÚ¸ 1 äÛθ˜ËÌÒÍÓ„Ó èÓ‰Ó·ÌÓÒÚ¸ 1 äÛθ˜ËÌÒÍÓ„Ó – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ∑ min{xi , yi} . ∑ | xi − yi | ëÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ ‡ÒÒÚÓflÌËÂÏ fl‚ÎflÂÚÒfl ∑ | xi − yi | . ∑ min{xi , yi} èÓ‰Ó·ÌÓÒÚ¸ 2 äÛθ˜ËÌÒÍÓ„Ó èÓ‰Ó·ÌÓÒÚ¸ 2 äÛθ˜ËÌÒÍÓ„Ó – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í n 1 1 + ∑ min{xi , yi}. 2 x y ÑÎfl ·Ë̇ÌÓ„Ó ÒÎÛ˜‡fl Ó̇ ÔËÌËχÂÚ ‚ˉ | x ∩ Y | ⋅(| X | + | Y |) . 2 | X |⋅|Y |
259
É·‚‡ 17. ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı
èÓ‰Ó·ÌÓÒÚ¸ ŇÓÌË-ì·‡ÌË–ÅÛc‡ èÓ‰Ó·ÌÓÒÚ¸ ŇÓÌË-ì·‡ÌË-ÅÛc‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ∑ min{xi , yi} + ∑ min{xi , yi} ∑(max1≤ j ≤ n x j − max{xi , yi}) ∑ max{xi , yi} + ∑ min{xi , yi} ∑(max1≤ j ≤ n x j − max{xi , yi})
.
ÑÎfl ·Ë̇ÌÓ„Ó ÒÎÛ˜‡fl Ó̇ ÔËÌËχÂÚ ‚ˉ | X ∩Y | + | X ∩Y |⋅| X ∪Y | | X ∪Y | + | X ∩Y |⋅| X ∪Y |
.
17.2. ÄçÄãéÉà ÖÇäãàÑéÇÄ êÄëëíéüçàü ëÚÂÔÂÌÌÓ (p, r) – ‡ÒÒÚÓflÌË ëÚÂÔÂÌÌ˚Ï (p, r)-‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ( ∑ wi ( xi − yi ) p )1 / p ÑÎfl p = r ≥ 1 ÓÌÓ fl‚ÎflÂÚÒfl lp -ÏÂÚËÍÓÈ, ‚Íβ˜‡fl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Â‚ÍÎË‰Ó‚Û ÏÂÚËÍÛ, ÏÂÚËÍÛ å‡Ìı˝ÚÚÂ̇ Ë ˜Â·˚¯Â‚ÒÍÛ˛ ÏÂÚËÍÛ ‰Îfl n = 2,1 Ë ∞ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ëÎÛ˜‡È 0 < p = r < 1 ̇Á˚‚‡ÂÚÒfl ‰Ó·Ì˚Ï lp-‡ÒÒÚÓflÌËÂÏ (Ì ÏÂÚË͇); ÓÌÓ ËÒÔÓθÁÛÂÚÒfl ‰Îfl ÒÎÛ˜‡Â‚, ÍÓ„‰‡ ÍÓ΢ÂÒÚ‚Ó Ì‡·Î˛‰ÂÌËÈ ÌÂÁ̇˜ËÚÂθÌÓ, ‡ ˜ËÒÎÓ n ÔÂÂÏÂÌÌ˚ı ‚ÂÎËÍÓ. ÇÁ‚¯ÂÌÌ˚ ‚ÂÒËË ( ∑ wi ( xi − yi ) p )1 / p (Ò ÌÂÓÚˈ‡ÚÂθÌ˚ÏË ‚ÂÒ‡ÏË w i) Ú‡ÍÊ ËÒÔÓθÁÛ˛ÚÒfl ‚ ÔËÎÓÊÂÌËflı ‰Îfl p = 2,1. ê‡ÒÒÚÓflÌË ‡Áχ èÂÌÓÛÁ‡ ê‡ÒÒÚÓflÌË ‡Áχ èÂÌÓÛÁ‡ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í n ∑ | xi − yi | . éÌÓ ÔÓÔÓˆËÓ̇θÌÓ ÏÂÚËÍ å‡Ìı˝ÚÚÂ̇. ë‰Ìflfl ‡ÁÌÓÒÚ¸ ôÂ͇ÌÓ‚ÒÍÓ„Ó ∑ | xi − yi | . ÓÔ‰ÂÎflÂÚÒfl Í‡Í n ê‡ÒÒÚÓflÌË ÙÓÏ˚ èÂÌÓÛÁ‡ ê‡ÒÒÚÓflÌË ÙÓÏ˚ èÂÌÓÛÁ‡ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ∑(( xi − x ) − ( yi − y ))2 . ëÛÏχ Í‚‡‰‡ÚÓ‚ ‚˚¯ÂÔ˂‰ÂÌÌ˚ı ‡ÒÒÚÓflÌËÈ èÂÌÓÛÁ‡ ‡‚̇ Í‚‡‰‡ÚÛ Â‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl. ãÓÂ̈‚ÒÍÓ ‡ÒÒÚÓflÌË ãÓÂ̈‚ÒÍÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ n , ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ∑ ln(1+ | xi − yi |). Ö‚ÍÎË‰Ó‚Ó ‰‚Ó˘ÌÓ ‡ÒÒÚÓflÌË ւÍÎË‰Ó‚Ó ‰‚Ó˘ÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ∑(1x i > 0 − 1yi > 0 )2 .
260
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
Ö‚ÍÎË‰Ó‚Ó Ò‰Ì ˆÂÌÁÛËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË ւÍÎË‰Ó‚Ó Ò‰Ì ˆÂÌÁÛËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ∑( xi − yi )2 . ∑ 1x 2 + y 2 ≠ 0 i
i
çÓÏËÓ‚‡ÌÌÓ lp -‡ÒÒÚÓflÌË çÓÏËÓ‚‡ÌÌÓ lp -‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í || x − y || p || x || p + || y || p
.
Ö‰ËÌÒÚ‚ÂÌÌ˚Ï ˆÂÎ˚Ï ˜ËÒÎÓÏ , ‰Îfl ÍÓÚÓÓ„Ó ÌÓÏËÓ‚‡ÌÌÓ lp -‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ, ÂÒÚ¸ p = 2. ÅÓΠÚÓ„Ó, Í‡Í ÔÓ͇Á‡ÌÓ ‚ [Yian91], ‰Îfl β·˚ı || x − y ||2 a, b > 0 ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ. a + b(|| x ||2 + || y ||2 ) ê‡ÒÒÚÓflÌË ä·͇ ê‡ÒÒÚÓflÌË ä·͇ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í 1 x − y 2 i i ∑ | | | n x y + i i |
1/ 2
.
ê‡ÒÒÚÓflÌË åË· ê‡ÒÒÚÓflÌË åË· (ËÎË Ë̉ÂÍÒ åË·) – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
∑
( xi − yi − xi +1 + yi +1 )2 .
1≤ i ≤ n − 1
ê‡ÒÒÚÓflÌË ïÂÎÎË̉ʇ ê‡ÒÒÚÓflÌË ïÂÎÎË̉ʇ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í x 2 ∑ i − x
yi y
2
(ÒÏ. åÂÚË͇ ïÂÎÎË̉ʇ, „Î. 14). à̉ÂÍÒ ‡ÒÒӈˇˆËË ì‡ÈÚÚÂ͇ ÓÔ‰ÂÎflÂÚÒfl ͇Í
1 xi yi ∑ − . 2 x y
ëËÏÏÂÚ˘̇fl 2 -χ ëËÏÏÂÚ˘̇fl 2 -χ – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓ ͇Í
∑
2
x + y xi yi − = n( xi + yi ) x y
x+y
∑ n( x ⋅ y )2 ⋅
( xi y − yi x )2 . xi + yi
ëËÏÏÂÚ˘ÂÒÍÓ 2 -‡ÒÒÚÓflÌË ëËÏÏÂÚ˘ÂÒÍÓ 2 -‡ÒÒÚÓflÌË (ËÎË ıË-‡ÒÒÚÓflÌËÂ) ÂÒÚ¸ ‡ÒÒÚÓflÌË ÔÓ n ,
É·‚‡ 17. ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı
261
ÓÔ‰ÂÎÂÌÌÓ ͇Í
∑
2
x + y xi yi − = n( xi + yi ) x y
∑
x + y ( xi y − yi x )2 . ⋅ xi + yi n( x ⋅ y )2
ê‡ÒÒÚÓflÌË å‡ı‡Î‡ÌÓ·ËÒ‡ ê‡ÒÒÚÓflÌË å‡ı‡Î‡ÌÓ·ËÒ‡ (ËÎË ÒÚ‡ÚËÒÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ) – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í (det A)1 / n ( x − y) A −1 ( x − y)T . „‰Â Ä – ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌ̇fl χÚˈ‡ (Ó·˚˜ÌÓ ˝ÚÓ Ï‡Úˈ‡ ÍÓ‚‡Ë‡ÌÚÌÓÒÚË Ï‡Úˈ‡ ÍÓ̘ÌÓ„Ó ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ËÁ n, ÒÓÒÚÓfl˘Â„Ó ËÁ ‚ÂÍÚÓÓ‚ ̇·Î˛‰ÂÌËfl) (ÒÏ. èÓÎÛÏÂÚË͇ å‡ı‡Î‡ÌÓ·ËÒ‡, „Î. 14). 17.3. èéÑéÅçéëíà à êÄëëíéüçàü Ñãü ÅàçÄêçõï ÑÄççõï é·˚˜ÌÓ Ú‡ÍË ÔÓ‰Ó·ÌÓÒÚË s ËÏÂ˛Ú ÏÌÓÊÂÒÚ‚Ó Á̇˜ÂÌËÈ ÓÚ 0 ‰Ó 1 ËÎË ÓÚ –1 ‰Ó 1, 1− s ‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ‡ÒÒÚÓflÌËfl Ó·˚˜ÌÓ ‡‚Ì˚ 1 – s ËÎË . 2 èÓ‰Ó·ÌÓÒÚ¸ Äχ̇ èÓ‰Ó·ÌÓÒÚ¸ Äχ̇ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í 2 | X∆Y | n − 2 | X∆Y | −1 = . n n èÓ‰Ó·ÌÓÒÚ¸ ê˝Ì‰‡ èÓ‰Ó·ÌÓÒÚ¸ ê˝Ì‰‡ (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸ ëÓ͇·–å˘Â̇, ÔÓÒÚÓ ÒÓÓÚ‚ÂÚÒÚ‚ËÂ) – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X∆Y | . n | X∆Y | ̇Á˚‚‡ÂÚÒfl ‚‡Ë‡ÌÚÌÓÒÚ¸˛ (fl‚ÎflÂÚÒfl ·Ë̇n | X∆Y | Ì˚Ï ÒÎÛ˜‡ÂÏ Ò‰ÌÂÈ ‡ÁÌÓÒÚË ÏÂÊ‰Û ÔËÁ͇̇ÏË ôÂ͇ÌÓ‚ÒÍÓ„Ó) Ë 1 − n ̇Á˚‚‡ÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛ ÉÓ‚‡‡. ëÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÏÂÚË͇
èÓ‰Ó·ÌÓÒÚ¸ 1 ëÓ͇·–ëÌËÒ‡ èÓ‰Ó·ÌÓÒÚ¸ 1 ëÓ͇·–ëÌËÒ‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í 2 | X∆Y | . n + | X∆Y | èÓ‰Ó·ÌÓÒÚ¸ 2 ëÓ͇·–ëÌËc‡ èÓ‰Ó·ÌÓÒÚ¸ 2 ëÓ͇·–ëÌËc‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X ∩Y | . | X ∪ Y | + | X∆Y |
262
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
èÓ‰Ó·ÌÓÒÚ¸ 3 ëÓ͇·–ëÌËc‡ èÓ‰Ó·ÌÓÒÚ¸ 3 ëÓ͇·–ëÌËÒ‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X∆Y | . | X∆Y | èÓ‰Ó·ÌÓÒÚ¸ ê‡ÒÒ·–ê‡Ó èÓ‰Ó·ÌÓÒÚ¸ ê‡ÒÒ·–ê‡Ó – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X ∩Y | . n èÓ‰Ó·ÌÓÒÚ¸ ëËÏÔÒÓ̇ èÓ‰Ó·ÌÓÒÚ¸ ëËÏÔÒÓ̇ (ÔÓ‰Ó·ÌÓÒÚ¸ ÔÂÂÍ˚ÚËfl) – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1}n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X ∩Y | . min{| X |,| Y |} èÓ‰Ó·ÌÓÒÚ¸ ŇÛ̇–Å·ÌÍ èÓ‰Ó·ÌÓÒÚ¸ ŇÛ̇–Å·ÌÍ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X ∩Y | . max{| X |,| Y |} èÓ‰Ó·ÌÓÒÚ¸ êӉʇ–í‡ÌËÏÓÚÓ èÓ‰Ó·ÌÓÒÚ¸ êӉʇ–í‡ÌËÏÓÚÓ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X∆Y | . n + | X∆Y | èÓ‰Ó·ÌÓÒÚ¸ î˝ÈÒ‡ èÓ‰Ó·ÌÓÒÚ¸ îÂÈÚ‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X ∩ Y | + | X∆Y | . 2n èÓ‰Ó·ÌÓÒÚ¸ í‚ÂÒÍÓ„Ó èÓ‰Ó·ÌÓÒÚ¸ í‚ÂÒÍÓ„Ó – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X ∩Y | . a | X∆Y | + b | X ∩ Y | é̇ ÒÚ‡ÌÓ‚ËÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛ í‡ÌËÏÓÚÓ, ÔÓ‰Ó·ÌÓÒÚ¸˛ чÈÒ‡ Ë (‰Îfl ·Ë̇ÌÓ„Ó 1 ÒÎÛ˜‡fl) ÔÓ‰Ó·ÌÓÒÚ¸˛ 1 äÛθ˜ËÌÒÍÓ„Ó ‰Îfl ( a, b) = (1, 1), , 1 Ë (1, 0) ÒÓÓÚ‚ÂÚ2 ÒÚ‚ÂÌÌÓ. èÓ‰Ó·ÌÓÒÚ¸ Éӂ‡–ãÂʇ̉‡ èÓ‰Ó·ÌÓÒÚ¸ ÉÓÛ˝‡–ãÂʇ̉‡ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X∆Y | | X∆Y | = . a | X∆Y | + | X∆Y | n + ( a − 1) | X∆Y |
263
É·‚‡ 17. ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı
èÓ‰Ó·ÌÓÒÚ¸ Ä̉·„‡ èÓ‰Ó·ÌÓÒÚ¸ Ä̉·„‡ (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸ 4 ëÓ͇·–ëÌËc‡) – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X ∩Y | 1 1 | X ∪Y | 1 1 . + + + | X | | Y | | X | | Y | 4 4 Q ÔÓ‰Ó·ÌÓÒÚ¸ ûΠQ ÔÓ‰Ó·ÌÓÒÚ¸ ûΠ– ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X ∩ Y | ⋅| X ∪ Y |− | X \ Y | ⋅ | Y \ X | . | X ∩Y |⋅| X ∪Y | + | X \ Y |⋅|Y \ X | Y ÔÓ‰Ó·ÌÓÒÚ¸ ‚Á‡ËÏÓÒ‚flÁ‡ÌÌÓÒÚË ûΠY ÔÓ‰Ó·ÌÓÒÚ¸ ‚Á‡ËÏÓÒ‚flÁ‡ÌÌÓÒÚË ûΠ– ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1}n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X ∩ Y | ⋅| X ∪ Y | − | X \ Y | ⋅ | Y \ X | | X ∩Y |⋅| X ∪Y | + | X \ Y |⋅|Y \ X |
.
èÓ‰Ó·ÌÓÒÚ¸ ‰ËÒÔÂÒËË èÓ‰Ó·ÌÓÒÚ¸ ‰ËÒÔÂÒËË – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1} n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X ∩ Y | ⋅| X ∪ Y |− | X \ Y | ⋅ | Y \ X | . n2 ÔÓ‰Ó·ÌÓÒÚ¸ èËÒÓ̇ ÔÓ‰Ó·ÌÓÒÚ¸ èËÒÓ̇ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1}n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X ∩ Y | ⋅| X ∪ Y |− | X \ Y | ⋅ | Y \ X | | X |⋅| X |⋅|Y |⋅|Y |
.
èÓ‰Ó·ÌÓÒÚ¸ 2 Éӂ‡ èÓ‰Ó·ÌÓÒÚ¸ 2 Éӂ‡ (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸ 5 ëÓ͇·–ëÌËÒ‡) – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ {0, 1)n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í | X ∩Y |⋅| X ∪Y | | X |⋅| X |⋅|Y |⋅|Y |
.
ê‡ÁÌÓÒÚ¸ Ó·‡ÁÓ‚ ê‡ÁÌÓÒÚ¸ Ó·‡ÁÓ‚ – ‡ÒÒÚÓflÌË ̇ {0, 1}n , ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í 4 | X \ Y |⋅|Y / X | . n2 Q0-‡ÁÌÓÒÚ¸ Q0-‡ÁÌÓÒÚ¸ – ‡ÒÒÚÓflÌË ̇ {0, 1} n , ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í | X \ Y |⋅|Y / X | . | X ∩Y |⋅| X ∪Y |
264
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
17.4. äéêêÖãüñàéççõÖ èéÑêéÅçéëíà à êÄëëíéüçàü äÓ‚‡Ë‡ˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸ äÓ‚‡Ë‡ˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í ∑( xi − x )( yi − y ) ∑ xi yi = − x ⋅ y. n n äÓÂÎflˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸ äÓÂÎflˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸ (ËÎË ÍÓÂÎflˆËfl èËÒÓ̇, ËÎË ÎËÌÂÈÌ˚È ÍÓ˝ÙÙˈËÂÌÚ ÍÓÂÎflˆËË ÔÓ Òϯ‡ÌÌ˚Ï ÏÓÏÂÌÚ‡Ï èËÒÓ̇) s – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ∑( xi − x )( yi − y ) ( ∑( x j − x )2 )( ∑( y j − y )2 )
.
çÂÒıÓ‰ÒÚ‚‡ 1 – s Ë 1 – s2 ̇Á˚‚‡˛ÚÒfl ÍÓÂÎflˆËÓÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ èËÒÓ̇ Ë Í‚‡‰‡ÚÓÏ ‡ÒÒÚÓflÌËfl èËÒÓ̇ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ÅÓΠÚÓ„Ó, 2(1 − s) =
∑
xi − x − ∑( x − x ) 2 j
∑( y j − y )2 yi − y
fl‚ÎflÂÚÒfl ÌÓχÎËÁ‡ˆËÂÈ Â‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl (ÒÏ. ÓÚ΢‡˛˘ÂÂÒfl ÌÓÏËÓ‚‡ÌÌÓ l2 -‡ÒÒÚÓflÌË ‚ ‰‡ÌÌÓÈ „·‚Â). 〈 x, y 〉 ÑÎfl ÒÎÛ˜‡fl x = y = 0 ÍÓÂÎflˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸ ÔËÌËχÂÚ ‚ˉ . || x ||2 || y ||2 èÓ‰Ó·ÌÓÒÚ¸ ÍÓÒËÌÛÒ‡ èÓ‰Ó·ÌÓÒÚ¸ ÍÓÒËÌÛÒ‡ (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸ é˜ËÌË, Û„ÎÓ‚‡fl ÔÓ‰Ó·ÌÓÒÚ¸, ÌÓÏËÓ‚‡ÌÌÓ Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌËÂ) ÂÒÚ¸ ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í 〈 x, y 〉 = cos φ, || x ||2 ⋅ || y ||2 „‰Â φ – Û„ÓÎ ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË ı Ë Û. ÑÎfl ·Ë̇ÌÓ„Ó ÒÎÛ˜‡fl Ó̇ ÔËÌËχÂÚ ‚ˉ | X ∩Y | | X |⋅|Y | Ë Ì‡Á˚‚‡ÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛ é˜Ë‡Ë-éÚÒÛÍË. Ç „ÛÔÔËÓ‚Í Á‡ÔËÒÂÈ ÔÓ‰Ó·ÌÓÒÚ¸ ÍÓÒËÌÛÒ‡ ̇Á˚‚‡ÂÚÒfl TF-IDF (ÒÓ͇˘ÂÌÌÓ ÓÚ ‡Ì„ÎËÈÒÍËı ÚÂÏËÌÓ‚ ó‡ÒÚÓÚ‡ – é·‡Ú̇fl ó‡ÒÚÓÚ‡ ÑÓÍÛÏÂÌÚ‡). ê‡ÒÒÚÓflÌË ÍÓÒËÌÛÒ‡ ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1 – cos φ. ì„ÎÓ‚‡fl ÔÓÎÛÏÂÚË͇ ì„ÎÓ‚‡fl ÔÓÎÛÏÂÚË͇ ̇ n – Û„ÓÎ (ËÁÏÂÂÌÌ˚È ‚ ‡‰Ë‡Ì‡ı) ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË ı Ë Û: arccos
〈 x, y 〉 . || x ||2 ⋅ || y ||2
265
É·‚‡ 17. ê‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË ‚ ‡Ì‡ÎËÁ ‰‡ÌÌ˚ı
ê‡ÒÒÚÓflÌË éÎÓ˜Ë ê‡ÒÒÚÓflÌË éÎÓ˜Ë (ËÎË ıÓ‰Ó‚Ó ‡ÒÒÚÓflÌËÂ) – ‡ÒÒÚÓflÌË ̇ n , ÓÔ‰ÂÎflÂÏÓÂ Í‡Í 〈 x, y 〉 21 − . || || || || x ⋅ y 2 2 éÚÌÓ¯ÂÌË ÔÓ‰Ó·ÌÓÒÚË éÚÌÓ¯ÂÌË ÔÓ‰Ó·ÌÓÒÚË (ËÎË ÔÓ‰Ó·ÌÓÒÚ¸˛ äÓıÓÌÂ̇) – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í 〈 x, y 〉 . 〈 x, y 〉+ || x − y ||22 ÑÎfl ·Ë̇ÌÓ„Ó ÒÎÛ˜‡fl Ó̇ ÒÓ‚Ô‡‰‡ÂÚ Ò ÔÓ‰Ó·ÌÓÒÚ¸˛ í‡ÌËÏÓÚÓ. èÓ‰Ó·ÌÓÒÚ¸ åÓËÒËÚ˚–ïÓ̇ èÓ‰Ó·ÌÓÒÚ¸ åÓËÒËÚ˚–ïÓ̇ – ÔÓ‰Ó·ÌÓÒÚ¸ ̇ n, ÓÔ‰ÂÎÂÌ̇fl Í‡Í || x
||22
2〈 x, y 〉 . y x ⋅ + || y ||22 ⋅ x y
ê‡Ì„Ó‚‡fl ÍÓÂÎflˆËfl ëÔËχ̇ Ç ÒÎÛ˜‡Â, ÍÓ„‰‡ ‚ÂÍÚÓ˚ x, y ∈ n fl‚Îfl˛ÚÒfl ‡ÌÊËÓ‚‡ÌËflÏË (ËÎË ÔÂÂÒÚ‡Ìӂ͇ÏË), Ú.Â. ÍÓÏÔÓÌÂÌÚ˚ Í‡Ê‰Ó„Ó ËÁ ÌËı – ‡Á΢Ì˚ ˜ËÒ· ÏÌÓÊÂÒÚ‚‡ {1,..., n}, Ï˚ n +1 ËÏÂÂÏ x = y = . ÑÎfl Ú‡ÍËı Ó‰Ë̇θÌ˚ı ‰‡ÌÌ˚ı ÍÓÂÎflˆËÓÌ̇fl ÔÓ‰Ó·ÌÓÒÚ¸ 2 ÔËÌËχÂÚ ‚ˉ 1−
6 ∑( xi − yi )2 . n(n 2 − 1)
ùÚÓ – ρ ‡Ì„Ó‚‡fl ÍÓÂÎflˆËfl ëÔËχ̇. é̇ ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ ρ-ÏÂÚËÍÓÈ ëÔËχ̇, ÌÓ Ì fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ. ρ ‡ÒÒÚÓflÌË ëÔËÏÂ̇ – ‚ÍÎˉӂ‡ ÏÂÚË͇ ̇ ÔÂÂÒÚ‡Ìӂ͇ı. å‡Ò¯Ú‡·Ì‡fl ÎËÌÂÈ͇ ëÔËχ̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1−
3 ∑ | xi − yi | . n2 − 1
ùÚÓ l1 -‚ÂÒËfl ‡Ì„Ó‚ÓÈ ÍÓÂÎflˆËË ëÔËχ̇. ê‡ÒÒÚÓflÌË χүڇ·ÌÓÈ ÎËÌÂÈÍË ëÔËχ̇ fl‚ÎflÂÚÒfl l1 -ÏÂÚËÍÓÈ Ì‡ ÔÂÂÒÚ‡Ìӂ͇ı. ÑÛ„ÓÈ ÍÓÂÎflˆËÓÌÌÓÈ ÔÓ‰Ó·ÌÓÒÚ¸˛ ‰Îfl ÔÂÂÒÚ‡ÌÓ‚ÓÍ fl‚ÎflÂÚÒfl τ ‡Ì„Ó‚‡fl ÍÓÂÎflˆËfl äẨ‡Î·, ̇Á˚‚‡Âχfl Ú‡ÍÊ τ ÏÂÚËÍÓÈ äẨ‡Î· (‡ÒÒÚÓflÌËÂÏ Ì fl‚ÎflÂÚÒfl), ÍÓÚÓ‡fl ÓÔ‰ÂÎflÂÚÒfl Í‡Í 2 ∑1≤ j < j ≤ n sign( xi − x j )sign( yi − y j ) n(n − 1)
.
τ ‡ÒÒÚÓflÌË äẨ‡Î· ̇ ÔÂÂÒÚ‡Ìӂ͇ı ÓÔ‰ÂÎflÂÚÒfl Í‡Í | {(i, j ) : 1 ≤ i < j ≤ n, ( xi − x j )( yi − y j ) < 0} | .
266
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
ê‡ÒÒÚÓflÌË äÛ͇ ê‡ÒÒÚÓflÌËÂÏ äÛ͇ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ n , ‰‡˛˘Â ÒÚ‡ÚËÒÚ˘ÂÒÍÛ˛ ÓˆÂÌÍÛ ÚÓ„Ó, ̇ÒÍÓθÍÓ ÒËθÌÓ ÌÂÍÓ i- ̇·Î˛‰ÂÌË ÏÓÊÂÚ ÔÓ‚ÎËflÚ¸ ̇ ÓˆÂÌÍË Â„ÂÒÒËË. éÌÓ fl‚ÎflÂÚÒfl ÌÓÏËÓ‚‡ÌÌ˚Ï Í‚‡‰‡ÚÓÏ Â‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‡Ò˜ÂÚÌ˚ÏË Ô‡‡ÏÂÚ‡ÏË Â„ÂÒÒËÓÌÌ˚ı ÏÓ‰ÂÎÂÈ, ÔÓÒÚÓÂÌÌ˚ı ̇ ÓÒÌÓ‚Â ‚ÒÂı ‰‡ÌÌ˚ı Ë ‰‡ÌÌ˚ı ·ÂÁ Û˜ÂÚ‡ i-„Ó Ì‡·Î˛‰ÂÌËfl. éÒÌÓ‚Ì˚ÏË ‡ÒÒÚÓflÌËflÏË Ú‡ÍÓ„Ó Ó‰‡, ÔËÏÂÌflÂÏ˚ÏË ‚ „ÂÒÒË‚ÌÓÏ ‡Ì‡ÎËÁ ‰Îfl ‚˚fl‚ÎÂÌËfl ̇˷ÓΠ‚ÎËflÚÂθÌ˚ı ̇·Î˛‰ÂÌËÈ, fl‚Îfl˛ÚÒfl DFITS ‡ÒÒÚÓflÌËÂ, ‡ÒÒÚÓflÌËÂ Ç˝Î¯‡ Ë ‡ÒÒÚÓflÌË Ë. 凯ËÌÌÓ ӷۘÂÌË ̇ ·‡Á ‡ÒÒÚÓflÌËÈ ÑÎfl ÏÌÓ„Ëı Ô‡ÍÚ˘ÂÒÍËı ÔËÎÓÊÂÌËÈ (ÌÂÈÓÌÌ˚ı ÒÂÚÂÈ, ËÌÙÓχˆËÓÌÌ˚ı ÒÂÚÂÈ Ë Ú.Ô.), ı‡‡ÍÚÂÌ˚ÏË ÔËÁ͇̇ÏË ÍÓÚÓ˚ı fl‚Îfl˛ÚÒfl ÌÂÔÓÎÌÓÚ‡ ‰‡ÌÌ˚ı, ‡ Ú‡ÍÊ ÌÂÔÂ˚‚ÌÓÒÚ¸ Ë ÌÓÏË̇θÌÓÒÚ¸ ‡ÚË·ÛÚÓ‚ ‡ÒÒχÚË‚‡˛ÚÒfl ÒÎÂ‰Û˛˘Ë Á‡‰‡˜Ë. ÑÎfl Ú × (n + 1) χÚˈ˚ ((xij)),  ÒÚÓ͇ (xi0, xi1,..., xin) Ó·ÓÁ̇˜‡ÂÚ ‚ıÓ‰ÌÓÈ ‚ÂÍÚÓ xi = (x i1,..., x in) Ò ‚˚ıÓ‰ÌÓÈ ÏÂÚÍÓÈ xi0; ÏÌÓÊÂÒÚ‚Ó ËÁ m ‚ıÓ‰Ì˚ı ‚ÂÍÚÓÓ‚ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÚÂÌËÓ‚Ó˜ÌÓ ÏÌÓÊÂÒÚ‚Ó. ÑÎfl β·Ó„Ó ÌÓ‚Ó„Ó ‚ıÓ‰ÌÓ„Ó ‚ÂÍÚÓ‡ y = (y1,..., yn) ˢÂÚÒfl ·ÎËʇȯËÈ (‚ ÚÂÏË̇ı ‚˚·‡ÌÌÓ„Ó ‡ÒÒÚÓflÌËfl) ‚ıÓ‰ÌÓÈ ‚ÂÍÚÓ ıi, ÌÂÓ·ıÓ‰ËÏ˚È ‰Îfl Í·ÒÒËÙË͇ˆËË Û, Ú.Â. ‰Îfl ÔÓ„ÌÓÁËÓ‚‡ÌËfl Â„Ó ‚˚ıÓ‰ÌÓÈ ÏÂÚÍË Í‡Í x i0. ê‡ÒÒÚÓflÌË ([WiMa97]) d(x i, y) ÓÔ‰ÂÎflÂÚÒfl Í‡Í n
∑ d 2j ( xij , y j ) j =1
Ò dj(x ij, yj) = 1, ÂÒÎË xij ËÎË y j ÌÂËÁ‚ÂÒÚÌ˚. ÖÒÎË ‡ÚË·ÛÚ j (Ú.Â. ‰Ë‡Ô‡ÁÓÌ Á̇˜ÂÌËÈ x ij ‰Îfl 1 ≤ i ≤ m) fl‚ÎflÂÚÒfl ÌÓÏË̇θÌ˚Ï, ÚÓ dj(x ij, y j) ÓÔ‰ÂÎflÂÚÒfl, ̇ÔËÏÂ, Í‡Í 1x ij ≠ y ËÎË Í‡Í
∑ o
| {1 ≤ t ≤ m : xt 0 = a, xij = xij } | | {1 ≤ t ≤ m : xtj = xij } |
−
| {1 ≤ t ≤ m : xt 0 = a, xtj = yi} |
q
| {1 ≤ t ≤ m : xtj = y j } |
‰Îfl q = 1 ËÎË 2; ÒÛÏχ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ Í·ÒÒ‡Ï ‚˚ıÓ‰Ì˚ı ÏÂÚÓÍ, Ú.Â. Á̇˜ÂÌËÈ ‡ ËÁ {xt0 : 1 ≤ t ≤ m}. ÑÎfl ÌÂÔÂ˚‚Ì˚ı ‡ÚË·ÛÚÓ‚ j ˜ËÒÎÓ d j ·ÂÂÚÒfl Í‡Í ‚Â΢Ë̇ 1 Òڇ̉‡ÚÌÓ„Ó ÓÚÍÎÓÌÂÌËfl Á̇˜ÂÌËÈ | xij − y j |, ‰ÂÎÂÌ̇fl ̇ maxt xtj – min t xtj ËÎË Ì‡ 4 xij, 1 ≤ t ≤ m.
É·‚‡ 18
ê‡ÒÒÚÓflÌËfl ‚ χÚÂχÚ˘ÂÒÍÓÈ ËÌÊÂÌÂËË
Ç ˝ÚÓÈ „·‚ ҄ÛÔÔËÓ‚‡Ì˚ ÓÒÌÓ‚Ì˚ ‡ÒÒÚÓflÌËfl, ÔËÏÂÌflÂÏ˚ ÔË ÔÓ„‡ÏÏËÓ‚‡ÌËË ‰‚ËÊÂÌËfl Ó·ÓÚÓ‚, ÍÎÂÚÓ˜Ì˚ı ‡‚ÚÓχÚÓ‚, ÒËÒÚÂÏ Ò Ó·‡ÚÌÓÈ Ò‚flÁ¸˛ Ë ÏÌÓ„ÓˆÂ΂ÓÈ ÓÔÚËÏËÁ‡ˆËË. 18.1. êÄëëíéüçàü Ç éêÉÄçàáÄñàà ÑÇàÜÖçàü êéÅéíéÇ åÂÚÓ‰˚ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ ‡‚ÚÓχÚ˘ÂÒÍËı ÏÂı‡ÌËÁÏÓ‚ ÔËÏÂÌfl˛ÚÒfl ‚ ӷ·ÒÚË Ó·ÓÚÓÚÂıÌËÍË, ÒËÒÚÂχı ‚ËÚۇθÌÓÈ Â‡Î¸ÌÓÒÚË Ë ‡‚ÚÓχÚËÁËÓ‚‡ÌÌÓ„Ó ÔÓÂÍÚËÓ‚‡ÌËfl. åÂÚË͇ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ – ˝ÚÓ ÏÂÚË͇, ËÒÔÓθÁÛÂχfl ‚ ÏÂÚÓ‰ËÍ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ ‡‚ÚÓχÚ˘ÂÒÍËı ÏÂı‡ÌËÁÏÓ‚. êÓ·ÓÚÓÏ Ì‡Á˚‚‡ÂÚÒfl ÍÓ̘̇fl ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÊfiÒÚÍËı Á‚Â̸‚, Ó„‡ÌËÁÓ‚‡ÌÌ˚ı ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò ÍËÌÂχÚ˘ÂÒÍÓÈ Ë‡ıËÂÈ. ÖÒÎË Ó·ÓÚ ËÏÂÂÚ n ÒÚÂÔÂÌÂÈ Ò‚Ó·Ó‰˚, ˝ÚÓ ÔË‚Ó‰ËÚ Ì‡Ò Í n-ÏÂÌÓÏÛ ÏÌÓ„ÓÓ·‡Á˲ ë, ̇Á˚‚‡ÂÏÓÏÛ ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÍÓÌÙË„Û‡ˆËÈ (ËÎË C-ÔÓÒÚ‡ÌÒÚ‚ÓÏ) Ó·ÓÚ‡. ꇷӘ ÔÓÒÚ‡ÌÒÚ‚Ó W Ó·ÓÚ‡ – ˝ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó, ‚ ԉ·ı ÍÓÚÓÓ„Ó Ó·ÓÚ ÔÂÂÏ¢‡ÂÚÒfl. é·˚˜ÌÓ ÓÌÓ ÏÓ‰ÂÎËÛÂÚÒfl Í‡Í Â‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó 3 . é·Î‡ÒÚ¸ ÔÂÔflÚÒÚ‚ËÈ ëÇ – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÍÓÌÙË„Û‡ˆËÈ q ∈ C , ÍÓÚÓ˚ ÎË·Ó ‚˚ÌÛʉ‡˛Ú Ó·ÓÚ‡ ÒÚ‡ÎÍË‚‡Ú¸Òfl Ò ÔÂÔflÚÒÚ‚ËflÏË Ç, ÎË·Ó Á‡ÒÚ‡‚Îfl˛Ú ‡ÁÌ˚ Á‚Â̸fl Ó·ÓÚ‡ ÒÚ‡ÎÍË‚‡Ú¸Òfl ÏÂÊ‰Û ÒÓ·ÓÈ. á‡Ï˚͇ÌË Cl(Cfree) ÏÌÓÊÂÒÚ‚‡ Cfree = C\{CB} ̇Á˚‚‡ÂÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÍÓÌÙË„Û‡ˆËÈ ·ÂÁ ÒÚÓÎÍÌÓ‚ÂÌËÈ. ᇉ‡˜‡ ‡Î„ÓËÚχ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ ÒÓÒÚÓËÚ ‚ ÔÓËÒÍ ҂ӷӉÌÓ„Ó ÓÚ ÒÚÓÎÍÌÓ‚ÂÌËÈ ÔÛÚË ÓÚ Ô‚Ó̇˜‡Î¸ÌÓÈ ÍÓÌÙË„Û‡ˆËË Í ÍÓ̘ÌÓÈ. åÂÚËÍÓÈ ÍÓÌÙË„Û‡ˆËË Ì‡Á˚‚‡ÂÚÒfl β·‡fl ÏÂÚË͇ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â ÍÓÌåÙË„Û‡ˆËÈ ë Ó·ÓÚ‡. é·˚˜ÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÍÓÌÙË„Û‡ˆËÈ ë Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÛÔÓfl‰Ó˜ÂÌÌÛ˛ ¯ÂÒÚÂÍÛ ˜ËÒÂÎ (x, y, z, α, β, γ), „‰Â Ô‚˚ ÚË ˜ËÒ· – ÍÓÓ‰Ë̇Ú˚ ÔÓÎÓÊÂÌËfl Ë ÔÓÒΉÌË ÚË – ÓËÂÌÚ‡ˆËfl. äÓÓ‰Ë̇Ú˚ ÓËÂÌÚ‡ˆËË ‚˚‡ÊÂÌ˚ ۄ·ÏË ‚ ‡‰Ë‡Ì‡ı. àÌÚÛËÚË‚ÌÓ, ıÓÓ¯‡fl χ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ÍÓÌÙË„Û‡ˆËflÏË – ˝ÚÓ Ï‡ ‡·Ó˜Â„Ó ÔÓÒÚ‡ÌÒÚ‚‡, Á‡ÏÂÚ‡ÂÏÓ„Ó Ó·ÓÚÓÏ ‚ ıӉ ÔÂÂÏ¢ÂÌËfl ÏÂÊ‰Û ÌËÏË (Á‡ÏÂÚ‡ÂÏ˚È Ó·˙ÂÏ). é‰Ì‡ÍÓ ‡Ò˜ÂÚ Ú‡ÍÓÈ ÏÂÚËÍË fl‚ÎflÂÚÒfl ˜ÂÁÏÂÌÓ ‰ÓÓ„ÓÒÚÓfl˘ËÏ ‰ÂÎÓÏ. èӢ ‚ÒÂ„Ó ‡ÒÒχÚË‚‡Ú¸ ë-ÔÓÒÚ‡ÌÒÚ‚Ó Í‡Í Â‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó Ë ËÒÔÓθÁÓ‚‡Ú¸ ‚ÍÎˉӂ˚ ‡ÒÒÚÓflÌËfl ËÎË Ëı Ó·Ó·˘ÂÌËfl. ÑÎfl Ú‡ÍËı ÏÂÚËÍ ÍÓÌÙË„Û‡ˆËË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ÌÓχÎËÁ‡ˆËfl ÍÓÓ‰ËÌ‡Ú ÓËÂÌÚ‡ˆËË Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ ÓÌË ·˚ÎË Ó‰Ë̇ÍÓ‚˚ÏË ÔÓ ‚Â΢ËÌÂ Ò ÍÓÓ‰Ë̇ڇÏË ÔÓÎÓÊÂÌËfl. ÉÛ·Ó „Ó‚Ófl, ÍÓÓ‰Ë̇Ú˚ ÓËÂÌÚ‡ˆËË ÛÏÌÓʇ˛ÚÒfl ̇ χÍÒËÏÛÏ Á̇˜ÂÌËÈ x, y ËÎË z ‡Áχ Ó„‡Ì˘˂‡˛˘Â„Ó ·ÎÓ͇ ‡·Ó˜Â„Ó ÔÓÒÚ‡ÌÒÚ‚‡. èËÏÂ˚ Ú‡ÍËı ÏÂÚËÍ ÍÓÌÙË„Û‡ˆËË ÔË‚Ó‰flÚÒfl ÌËÊÂ.
268
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÔÓÒÚ‡ÌÒÚ‚Ó ÍÓÌÙË„Û‡ˆËÈ ‰Îfl ÚÂıÏÂÌÓ„Ó ÊÂÒÚÍÓ„Ó Ú· ÏÓÊÌÓ ÓÚÓʉÂÒÚ‚ËÚ¸ Ò „ÛÔÔÓÈ ãË ISO(3):C 3 × P3 . é·˘‡fl ÙÓχ χÚˈ˚ ‚ ISO(3) Á‡‰‡ÂÚÒfl Í‡Í R X , 0 1 „‰Â ∈ SO(3) P3 Ë X ∈ 3. ÖÒÎË Xq Ë R q fl‚Îfl˛ÚÒfl ÍÓÏÔÓÌÂÌÚ‡ÏË ÔÂÂÌÓÒ‡ Ë ‚‡˘ÂÌËfl ÍÓÌÙË„Û‡ˆËË q = (Xq , Rq ) ∈ ISO(3), ÚÓ ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË ÏÂÊ‰Û ÍÓÌÙË„Û‡ˆËflÏË q Ë r Á‡‰‡ÂÚÒfl Í‡Í wtr || Xq − Xr || + wrot f ( Rq , Rr ), „‰Â ‡ÒÒÚÓflÌË ÔÂÂÌÓÒ‡ || Xq − Xr || ÔÓÎÛ˜‡ÂÚÒfl ‚ ÂÁÛθڇÚ ËÒÔÓθÁÓ‚‡ÌËfl ÌÂÍÓÚÓÓÈ ÌÓÏ˚ || ⋅ || ̇ 3, ‡ ‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl f(Rq , Rr) fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓÈ Ò͇ÎflÌÓÈ ÙÛÌ͈ËÂÈ, Á‡‰‡˛˘ÂÈ Ì‡Ï ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‚‡˘ÂÌËflÏË Rq , Rr ∈ SO(3). ê‡ÒÒÚÓflÌË ‚‡˘ÂÌËfl χүڇ·ËÛÂÚÒfl ÓÚÌÓÒËÚÂθÌÓ ‡ÒÒÚÓflÌËfl ÔÂÂÌÓÒ‡ Ò ÔÓÏÓ˘¸˛ ‚ÂÒÓ‚ w tr Ë wrot. åÂÚË͇ ‡·Ó˜Â„Ó ÔÓÒÚ‡ÌÒÚ‚‡ – β·‡fl ÏÂÚË͇ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ ‚ ‡·Ó˜ÂÏ ÔÓÒÚ‡ÌÒÚ‚Â 3. àÏÂÂÚÒfl Ú‡ÍÊ ÏÌÓ„Ó ‰Û„Ëı ÚËÔÓ‚ ÏÂÚËÍ, ËÒÔÓθÁÛÂÏ˚ı ‚ ÔÓˆÂÒÒ ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËÈ, ‚ ˜‡ÒÚÌÓÒÚË, ËχÌÓ‚˚ ÏÂÚËÍË, ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇, ‡ÒÒÚÓflÌË ÓÒÚ‡ Ë Ú.Ô. ÇÁ‚¯ÂÌÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ÇÁ‚¯ÂÌÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË – ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË Ì‡ 6, ÓÔ‰ÂÎÂÌ̇fl Í‡Í 6 3 2 | | ( wi | xi − yi |)2 x − y + i i i =1 i=4
∑
∑
1/ 2
‰Îfl β·˚ı x, y ∈ 6, „‰Â x = (x1,..., x6), x1, x2 , x3 – ÍÓÓ‰Ë̇Ú˚ ÔÓÎÓÊÂÌËfl, x4 , x5 , x6 – ÍÓÓ‰Ë̇Ú˚ ÓËÂÌÚ‡ˆËË Ë wi – ÌÓχÎËÁËÛ˛˘ËÈ ÏÌÓÊËÚÂθ. ÇÁ‚¯ÂÌÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ‚ 6 ‰Â·ÂÚ Ó‰Ë̇ÍÓ‚ÓÈ Á̇˜ËÏÓÒÚ¸ Ë ÔÓÎÓÊÂÌËfl, Ë ÓËÂÌÚ‡ˆËË. å‡Ò¯Ú‡·ËÓ‚‡ÌÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË å‡Ò¯Ú‡·ËÓ‚‡ÌÌ˚Ï Â‚ÍÎˉӂ˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË Ì‡ 6 , ÓÔ‰ÂÎÂÌ̇fl Í‡Í 6 3 2 2 s | xi − yi | +(1 − s) ( wi | xi − yi |) i =1 i=4
∑
∑
1/ 2
‰Îfl β·˚ı x, y ∈ 6. å‡Ò¯Ú‡·ËÓ‚‡ÌÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ËÁÏÂÌflÂÚ ÓÚÌÓÒËÚÂθÌÛ˛ Á̇˜ËÏÓÒÚ¸ ˝ÎÂÏÂÌÚÓ‚ ÔÓÎÓÊÂÌËfl Ë ÓËÂÌÚ‡ˆËË ÔÓÒ‰ÒÚ‚ÓÏ Ï‡Ò¯Ú‡·ÌÓ„Ó Ô‡‡ÏÂÚ‡ s. ÇÁ‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË åËÌÍÓ‚ÒÍÓ„Ó ÇÁ‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË åËÌÍÓ‚ÒÍÓ„Ó – ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË Ì‡ 6, ÓÔ‰ÂÎÂÌ̇fl Í‡Í 6 3 p x − y + | | ( wi | xi − yi |) p i i i =1 i=4
∑
∑
1/ p
269
É·‚‡ 18. ê‡ÒÒÚÓflÌËfl ‚ χÚÂχÚ˘ÂÒÍÓÈ ËÌÊÂÌÂËË
‰Îfl β·˚ı x, y ∈ 6. é̇ ËÒÔÓθÁÛÂÚ Ô‡‡ÏÂÚ p ≥ 1 Ë Í‡Í Ë ‚ ‚ÍÎˉӂÓÏ ÒÎÛ˜‡Â, ËÏÂÂÚ Ó‰Ë̇ÍÓ‚Û˛ Á̇˜ËÏÓÒÚ¸ ÔÓÎÓÊÂÌËfl Ë ÓËÂÌÚ‡ˆËË. åÓ‰ËÙˈËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË åËÌÍÓ‚ÒÍÓ„Ó åÓ‰ËÙˈËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË åËÌÍÓ‚ÒÍÓ„Ó – ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË Ì‡ 6 , ÓÔ‰ÂÎÂÌ̇fl Í‡Í 6 3 p1 p2 | xi − yi | + ( wi | xi − yi |) i =1 i=4
∑
∑
1 / p3
‰Îfl ‚ÒÂı x, y ∈ 6. ê‡Á΢Ëfl ÏÂÊ‰Û ÔÓÎÓÊÂÌËÂÏ Ë ÓËÂÌÚ‡ˆËÂÈ ÓÔ‰ÂÎfl˛ÚÒfl Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ Ô‡‡ÏÂÚÓ‚ p1 ≥ 1 (‰Îfl ÔÓÎÓÊÂÌËfl) Ë p2 ≥ 1 (‰Îfl ÓËÂÌÚ‡ˆËË). ÇÁ‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË å‡Ìı˝ÚÚÂ̇ ÇÁ‚¯ÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ å‡Ìı˝ÚÚÂ̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË Ì‡ 6, ÓÔ‰ÂÎÂÌ̇fl Í‡Í 3
6
i =1
i=4
∑ | xi − yi | +∑ wi | xi − yi | ‰Îfl β·˚ı x, y ∈ 6 . é̇ ÒÓ‚Ô‡‰‡ÂÚ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ÌÓχÎËÁÛ˛˘Â„Ó ÏÌÓÊËÚÂÎfl Ò Ó·˚˜ÌÓÈ l1 -ÏÂÚËÍÓÈ Ì‡ 6 . åÂÚË͇ ÔÂÂÏ¢ÂÌËfl Ó·ÓÚ‡ åÂÚË͇ ÔÂÂÏ¢ÂÌËfl Ó·ÓÚ‡ – ÏÂÚË͇ ÍÓÌÙË„Û‡ˆËË Ì‡ ÔÓÒÚ‡ÌÒÚ‚Â ÍÓÌÙË„Û‡ˆËË ë Ó·ÓÚ‡, ÓÔ‰ÂÎÂÌ̇fl Í‡Í max || a(q ) − a( p) || a ∈A
‰Îfl β·˚ı ÍÓÌÙË„Û‡ˆËÈ q, r ∈ C, „‰Â a(q) – ÔÓÎÓÊÂÌË ÚÓ˜ÍË ‡ ‚ ‡·Ó˜ÂÏ ÔÓÒÚ‡ÌÒÚ‚Â 3, ÍÓ„‰‡ Ó·ÓÚ Ì‡ıÓ‰ËÚÒfl ‚ ÍÓÌÙË„Û‡ˆËË q, Ë || ⋅ || – Ӊ̇ ËÁ ÌÓÏ Ì‡ 3, Ó·˚˜ÌÓ Â‚ÍÎˉӂ‡ ÌÓχ. àÌÚÛËÚË‚ÌÓ, ÏÂÚË͇ ‚˚˜ËÒÎflÂÚ Ï‡ÍÒËχθÌÓ ËÁ ÚÂı ‡ÒÒÚÓflÌËÈ ‚ ‡·Ó˜ÂÏ ÔÓÒÚ‡ÌÒÚ‚Â, ÍÓÚÓ˚ ÔÓıÓ‰ËÚ Í‡Ê‰‡fl ˜‡ÒÚ¸ Ó·ÓÚ‡ ÔË Â„Ó ÔÂÂıӉ ÓÚ Ó‰ÌÓÈ ÍÓÌÙË„Û‡ˆËË Í ‰Û„ÓÈ (ÒÏ. ÏÂÚË͇ Ó„‡Ì˘ÂÌÌÓ„Ó ·ÎÓ͇). åÂÚË͇ Û„ÎÓ‚ ùÈ· åÂÚË͇ Û„ÎÓ‚ ùÈ· – ÏÂÚË͇ ‚‡˘ÂÌËfl ̇ „ÛÔÔ SO(3) (‰Îfl ÒÎÛ˜‡fl ËÒÔÓθÁÓ‚‡ÌËfl ˝ÈÎÂÓ‚˚ı Û„ÎÓ‚ ‰Îfl ‚‡˘ÂÌËfl), ÓÔ‰ÂÎÂÌ̇fl Í‡Í wrot ∆(θ1 , θ 2 )2 + ∆(φ1 , φ 2 )2 + ∆( η1 , η2 )2 ‰Îfl ‚ÒÂı R1 , R2 ∈ SO(3), Á‡‰‡ÌÌ˚ı ۄ·ÏË ùÈ· (θ1, φ1, η1 ) Ë (θ2, φ2, η2 ) ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, „‰Â ∆(θ1 , θ 2 ) = min{| θ1 − θ 2 |, 2 π − | θ1 − θ 2 |}, θ i ∈[0, 2 π] – ÏÂÚË͇ ÏÂÊ‰Û Û„Î‡ÏË Ë wrot –ÍÓ˝ÙÙˈËÂÌÚ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl. åÂÚË͇ ‰ËÌ˘Ì˚ı Í‚‡ÚÂÌËÓÌÓ‚ åÂÚËÍÓÈ Â‰ËÌ˘Ì˚ı Í‚‡ÚÂÌËÓÌÓ‚ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ‚‡˘ÂÌËfl ̇ Ô‰ÒÚ‡‚ÎÂÌËË Ò ÔÓÏÓ˘¸˛ ‰ËÌ˘Ì˚ı Í‚‡ÚÂÌËÓÌÓ‚ ‰Îfl SO(3), Ú.Â. Ô‰ÒÚ‡‚ÎÂÌËË SO(3) Í‡Í ÏÌÓÊÂÒÚ‚‡ ÚÓ˜ÂÍ (‰ËÌ˘Ì˚ı Í‚‡ÚÂÌËÓÌÓ‚) ̇ ‰ËÌ˘ÌÓÈ ÒÙ S3 ‚ 4 Ò ÓÚÓʉÂÒÚ‚ÎÂÌÌ˚ÏË ‡ÌÚËÔÓ‰‡Î¸Ì˚ÏË ÚӘ͇ÏË (q ~ –q). чÌÌÓ Ô‰ÒÚ‡‚ÎÂÌË SO(3)
270
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
Ô‰ÔÓ·„‡ÂÚ Ì‡Î˘Ë ÏÌÓ„Ëı ‚ÓÁÏÓÊÌ˚ı ÏÂÚËÍ Ì‡ ÌÂÏ, ̇ÔËÏ ڇÍËı, ͇Í: 1) || ln(q −1r ) ||, 4
2) wrot (1− || λ ||), λ =
∑ qi ri , i =1
3) min{|| q − r ||, || q + r ||}, 4
4) arccos λ, λ =
∑ qi ri , i =1
4
„‰Â q = q1 + q2 i + q3 j + q4 k ,
∑ qi = 1,
|| ⋅ || – ÌÓχ ̇ 4 Ë wrot – ÍÓ˝ÙÙˈËÂÌÚ
i =1
χүڇ·ËÓ‚‡ÌËfl. åÂÚË͇ ˆÂÌÚ‡ χÒÒ˚ åÂÚË͇ ˆÂÌÚ‡ χÒÒ˚ – ÏÂÚË͇ ‡·Ó˜Â„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÓÔ‰ÂÎÂÌ̇fl Í‡Í Â‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆÂÌÚÓÏ Ï‡ÒÒ˚ Ó·ÓÚ‡ ‚ ‰‚Ûı ÍÓÌÙË„Û‡ˆËflı. ñÂÌÚ Ï‡ÒÒ˚ ‡ÔÔÓÍÒËÏËÛÂÚÒfl ÔÛÚÂÏ ÛÒ‰ÌÂÌËfl ‚ÒÂı ‚¯ËÌ Ó·˙ÂÍÚ‡. åÂÚË͇ Ó„‡Ì˘ÂÌÌÓ„Ó ·ÎÓ͇ åÂÚËÍÓÈ Ó„‡Ì˘ÂÌÌÓ„Ó ·ÎÓ͇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ‡·Ó˜Â„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÓÔ‰ÂÎÂÌ̇fl Í‡Í Ï‡ÍÒËχθÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û Î˛·ÓÈ ‚¯ËÌÓÈ Ó„‡Ì˘˂‡˛˘Â„Ó ·ÎÓ͇ Ó·ÓÚ‡ ‚ Ó‰ÌÓÈ ÍÓÌÙË„Û‡ˆËË Ë ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÈ ‚¯ËÌÓÈ ‚ ‰Û„ÓÈ ÍÓÌÙË„Û‡ˆËË. ê‡ÒÒÚÓflÌË ÔÓÁ˚ ê‡ÒÒÚÓflÌË ÔÓÁ˚ Ó·ÂÒÔ˜˂‡ÂÚ ÏÂÛ ÌÂÒıÓ‰ÒÚ‚‡ ÏÂÊ‰Û ‰ÂÈÒÚ‚ËflÏË ËÒÔÓÎÌËÚÂθÌ˚ı ÛÒÚÓÈÒÚ‚ (‚Íβ˜‡fl Ó·ÓÚÓ‚ Ë Î˛‰ÂÈ) ‚ ÔÓˆÂÒÒ ӷۘÂÌËfl Ó·ÓÚÓ‚ ÔÓÒ‰ÒÚ‚ÓÏ ËÏËÚ‡ˆËË. Ç ˝ÚÓÏ ÍÓÌÚÂÍÒÚ ËÒÔÓÎÌËÚÂθÌ˚ ÛÒÚÓÈÒÚ‚‡ ‡ÒÒχÚË‚‡˛ÚÒfl Í‡Í ÍËÌÂχÚ˘ÂÒÍË ˆÂÔË Ë Ô‰ÒÚ‡‚ÎÂÌ˚ ‚ ÙÓÏ ÍËÌÂχÚ˘ÂÒÍÓ„Ó ‰Â‚‡, Ú‡ÍÓ„Ó ˜ÚÓ Í‡Ê‰Ó Á‚ÂÌÓ ‚ ÍËÌÂχÚ˘ÂÒÍÓÈ ˆÂÔË Ô‰ÒÚ‡‚ÎÂÌÓ Â‰ËÌÒÚ‚ÂÌÌ˚Ï Â·ÓÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â„Ó ‰Â‚‡. äÓÌÙË„Û‡ˆËfl ˆÂÔË Ô‰ÒÚ‡‚ÎÂ̇ ÔÓÁÓÈ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ„Ó ‰Â‚‡, ÔÓÎÛ˜ÂÌÌÓÈ ÔÓÒ‰ÒÚ‚ÓÏ ‡ÁÏ¢ÂÌËfl Ô‡˚ (ni, li) ̇ ͇ʉÓÏ Â·Â e i. á‰ÂÒ¸ ni fl‚ÎflÂÚÒfl ‰ËÌ˘Ì˚Ï ‚ÂÍÚÓÓÏ ÌÓχÎË, Ô‰ÒÚ‡‚Îfl˛˘ËÏ ÓËÂÌÚ‡ˆË˛ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â„Ó Á‚Â̇ ˆÂÔË, ‡ li ÂÒÚ¸ ‰ÎË̇ Á‚Â̇. ä·ÒÒ ÔÓÁ ÒÓÒÚÓËÚ ËÁ ‚ÒÂı ÔÓÁ ‰‡ÌÌÓ„Ó ÍËÌÂχÚ˘ÂÒÍÓ„Ó ‰Â‚‡. ê‡ÒÒÚÓflÌË ÔÓÁ˚ – ‡ÒÒÚÓflÌË ̇ ‰‡ÌÌÓÏ Í·ÒÒ ÔÓÁ, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ÒÛÏÏÓÈ Ï ÌÂÒıÓ‰ÒÚ‚‡ ‰Îfl ͇ʉÓÈ Ô‡˚ ÒÓÔÓÒÚ‡‚ËÏ˚ı ÓÚÂÁÍÓ‚ ‚ ‰‡ÌÌ˚ı ‰‚Ûı ÔÓÁ‡ı. åÂÚËÍË ÏËÎÎË·ÓÚÓ‚ åËÎÎË·ÓÚ˚ – „ÛÔÔ‡ ‡ÁÌÓÓ‰Ì˚ı Ó„‡Ì˘ÂÌÌ˚ı ÔÓ ÂÒÛÒ‡Ï Ó·ÓÚÓ‚ χÎÓ„Ó ‡Áχ. ÉÛÔÔ‡ Ó·ÓÚÓ‚ ÏÓÊÂÚ ÍÓÎÎÂÍÚË‚ÌÓ Ó·ÏÂÌË‚‡Ú¸Òfl ËÌÙÓχˆËÂÈ. éÌË ‚ ÒÓÒÚÓflÌËË Ó·˙‰ËÌflÚ¸ ËÌÙÓχˆË˛ Ó ‡ÒÒÚÓflÌËflı, ÔÓÎÛ˜‡ÂÏÛ˛ ÓÚ ‡ÁÌ˚ı Ô·ÚÙÓÏ, Ë ÒÚÓËÚ¸ ͇ÚÛ „ÎÓ·‡Î¸ÌÓ„Ó ‡ÁÏ¢ÂÌËfl, Ô‰ÒÚ‡‚Îfl˛˘Û˛ ÒÓ·ÓÈ Â‰ËÌÓ ÍÓÎÎÂÍÚË‚ÌÓ ‚ˉÂÌË ÓÍÛʇ˛˘ÂÈ Ò‰˚. èË ÔÓ„‡ÏÏËÓ‚‡ÌËË ÔÂÂÏ¢ÂÌËfl ÏËÎÎË·ÓÚÓ‚ Ò ˆÂθ˛ ÔÓÒÚÓÂÌËfl ÏÂÚËÍË ÔÓ„‡ÏÏËÓ‚‡ÌËfl ÔÂÂÏ¢ÂÌËfl ÏÓÊÌÓ Ì‡Á̇˜ËÚ¸ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÒÎÛ˜‡ÈÌ˚ı ÚÓ˜ÂÍ ‚ÓÍÛ„ Ó·ÓÚ‡ Ë Ô‰ÒÚ‡‚ËÚ¸ Í‡Ê‰Û˛ ÚÓ˜ÍÛ Í‡Í ÏÂÒÚÓ ‰Îfl Ô‰ÒÚÓfl˘Â„Ó ÔÂÂÏ¢ÂÌËfl. èÓÒΠ˝ÚÓ„Ó ‚˚·Ë‡ÂÚÒfl ÚӘ͇ Ò Ì‡Ë·ÓΠ‚˚ÒÓÍÓÈ ÙÛÌ͈ËÂÈ ÔÓÎÂÁÌÓÒÚË Ë Ó·ÓÚ Ì‡Ô‡‚ÎflÂÚÒfl ËÏÂÌÌÓ ‚
É·‚‡ 18. ê‡ÒÒÚÓflÌËfl ‚ χÚÂχÚ˘ÂÒÍÓÈ ËÌÊÂÌÂËË
271
˝ÚÛ ÚÓ˜ÍÛ. í‡Í, ÏÂÚË͇ Ò‚Ó·Ó‰ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÓÔ‰ÂÎflÂχfl ÍÓÌÚÛÓÏ Ò‚Ó·Ó‰ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡, ÔÓÁ‚ÓÎflÂÚ ‚˚·Ë‡Ú¸ ÚÓθÍÓ Ú ÚÓ˜ÍË, ÍÓÚÓ˚ Ì Ô‰ÔÓ·„‡˛Ú ÔÂÓ‰ÓÎÂÌËfl Ó·ÓÚÓÏ Í‡ÍËı-ÎË·Ó ÔÂÔflÚÒÚ‚ËÈ; ÏÂÚËÍÓÈ ËÒÍβ˜ÂÌËfl ÒÚÓÎÍÌÓ‚ÂÌËÈ Óڂ„‡˛ÚÒfl ÔÂÂÏ¢ÂÌËfl, χ¯ÛÚ ÍÓÚÓ˚ı ÔÓıÓ‰ËÚ ÒÎ˯ÍÓÏ ·ÎËÁÍÓ ÓÚ ÔÂÔflÚÒÚ‚ËÈ; ÏÂÚËÍÓÈ ÓÒ‚‡Ë‚‡ÂÏÓÈ Ó·Î‡ÒÚË ÔÓÓ˘fl˛ÚÒfl ÔÂÂÏ¢ÂÌËfl Ó·ÓÚ‡ ÔÓ Ï‡¯ÛÚ‡Ï, ‚˚‚Ó‰fl˘ËÏ Â„Ó Ì‡ ÓÚÍ˚ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó; ÏÂÚËÍÓÈ ÍÓÌÙË„Û‡ˆËË ÔÓÓ˘fl˛ÚÒfl ÔÂÂÏ¢ÂÌËfl, ÔÓÁ‚ÓÎfl˛˘Ë ÒÓı‡ÌËÚ¸ ÍÓÌÙË„Û‡ˆË˛; ÏÂÚË͇ ÎÓ͇ÎËÁ‡ˆËË, ÓÒÌÓ‚‡Ì̇fl ̇ ۄΠ‡ÒıÓʉÂÌËfl ÏÂÊ‰Û Ó‰ÌÓÈ ËÎË ÌÂÒÍÓθÍËÏË Ô‡‡ÏË ÎÓ͇ÎËÁ‡ˆËË, ÔÓÓ˘flÂÚ Ú ÔÂÂÏ¢ÂÌËfl, ÍÓÚÓ˚ χÍÒËÏËÁËÛ˛Ú ÎÓ͇ÎËÁ‡ˆË˛ ([GKC04], ÒÏ. ê‡ÒÒÚÓflÌË ËÒÍβ˜ÂÌËfl ÒÚÓÎÍÌÓ‚ÂÌËÈ, ê‡ÒÒÚÓflÌË ÌÓÒËθ˘ËÍÓ‚ ÔˇÌËÌÓ, „Î. 19). 18.2. êÄëëíéüçàü Ñãü äãÖíéóçõï ÄÇíéåÄíéÇ èÛÒÚ¸ S, 2 ≤ | S | < ∞ ÂÒÚ¸ ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó (‡ÎÙ‡‚ËÚ) Ë ÔÛÒÚ¸ S ∞ – ÏÌÓÊÂÒÚ‚Ó ·ÂÒÍÓ̘Ì˚ı ‚ Ó·Â ÒÚÓÓÌ˚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ {xi}i∞= – ∞ (ÍÓÌÙË„Û‡ˆËÈ) ˝ÎÂÏÂÌÚÓ‚ (·ÛÍ‚) ÏÌÓÊÂÒÚ‚‡ S. (é‰ÌÓÏÂÌ˚È) ÍÎÂÚÓ˜Ì˚È ‡‚ÚÓÏ‡Ú – ÌÂÔÂ˚‚ÌÓ ÓÚÓ·‡ÊÂÌË f : S∞ → S∞, ÍÓÚÓÓ ÍÓÏÏÛÚËÛÂÚ Ò ÓÚÓ·‡ÊÂÌËÂÏ ÔÂÂÌÓÒ‡ g : S∞ → S∞, ÓÔ‰ÂÎÂÌÌ˚Ï Í‡Í g( xi ) = xi +1 . èÓÒΠÓÔ‰ÂÎÂÌËfl ÏÂÚËÍË Ì‡ S∞ ÔÓÎÛ˜ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‚ÏÂÒÚÂ Ò ÓÚÓ·‡ÊÂÌËÂÏ f Ó·‡ÁÛ˛Ú ‰ËÒÍÂÚÌÛ˛ ‰Ë̇Ï˘ÂÒÍÛ˛ ÒËÒÚÂÏÛ. äÎÂÚÓ˜Ì˚ ‡‚ÚÓχÚ˚ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ·ÂÒÍÓ̘Ì˚ ‚ Ó·Â ÒÚÓÓÌ˚ Ú‡·Îˈ˚ ‚ÏÂÒÚÓ ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ) ÔËÏÂÌfl˛ÚÒfl ‚ ÒËÏ‚Ó΢ÂÒÍÓÈ ‰Ë̇ÏËÍÂ, ËÌÙÓχÚËÍÂ Ë (Í‡Í ÏÓ‰ÂÎË) ‚ ÙËÁËÍÂ Ë ·ËÓÎÓ„ËË. éÒÌÓ‚Ì˚ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÍÓÌÙË„Û‡ˆËflÏË {xi} Ë {yi} ËÁ S∞ (ÒÏ. [BFK99]) Ô˂‰ÂÌ˚ ÌËÊÂ. åÂÚË͇ ä‡ÌÚÓ‡ åÂÚËÍÓÈ ä‡ÌÚÓ‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ S∞, ÓÔ‰ÂÎÂÌ̇fl Í‡Í 2 − min{i ≥ 0:| x i − yi | + | x − i − y − i |≠ 0}. 1 Ó·Ó·˘ÂÌÌÓÈ ÏÂÚËÍË ä‡ÌÚÓ‡ („Î. 11). ëÓÓÚ‚ÂÚ2 ÒÚ‚Û˛˘Â ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï.
é̇ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÒÎÛ˜‡˛ a =
èÓÎÛÏÂÚË͇ ÅÂÒËÍӂ˘‡ èÓÎÛÏÂÚËÍÓÈ ÅÂÒËÍӂ˘‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ S∞, ÓÔ‰ÂÎÂÌ̇fl Í‡Í lim l →∞
| −l ≤ i ≤ l : xi ≠ yi | . 2l + 1
ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Â ÔÓÎÛÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó fl‚ÎflÂÚÒfl ÔÓÎÌ˚Ï (ÒÏ. ê‡ÒÒÚÓflÌË ÅÂÒËÍӂ˘‡ ̇ ËÁÏÂËÏ˚ı ÙÛÌ͈Ëflı, „Î. 13). èÓÎÛÏÂÚË͇ ÇÂÈÎfl èÓÎÛÏÂÚË͇ ÇÂÈÎfl ̇Á˚‚‡ÂÚÒfl ÔÓÎÛÏÂÚË͇ ̇ S∞, ÓÔ‰ÂÎÂÌ̇fl Í‡Í lim l →∞ max k ∈
| k + 1 ≤ i ≤ l : xi ≠ yi | . l
ùÚ‡ Ë Ô˂‰ÂÌÌ˚ ‚˚¯Â ÏÂÚËÍË fl‚Îfl˛ÚÒfl Ë Ì ‚ ‡ Ë ‡ Ì Ú Ì ˚ Ï Ë Ó Ú Ì Ó Ò Ë Ú Â Î ¸ Ì Ó Ô Â ÂÌÓÒ‡, Ӊ̇ÍÓ ÓÌË Ì fl‚Îfl˛ÚÒfl ÒÂÔ‡‡·ÂθÌ˚ÏË ËÎË ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌ˚ÏË (ÒÏ. ê‡ÒÒÚÓflÌË ÇÂÈÎfl, „Î. 13).
272
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
18.3. êÄëëíéüçàü Ç íÖéêàà äéçíêéãü Ç ÚÂÓËË ÍÓÌÚÓÎfl ‡ÒÒχÚË‚‡ÂÚÒfl ˆÂÔ¸ Ó·‡ÚÌÓÈ Ò‚flÁË ÏÂÊ‰Û ÛÒÚ‡ÌÓ‚ÍÓÈ ê (ÙÛÌ͈Ëfl, Ô‰ÒÚ‡‚Îfl˛˘‡fl ÔÓ‰ÎÂʇ˘ËÈ ÍÓÌÚÓβ Ó·˙ÂÍÚ Ë ÛÔ‡‚Îfl˛˘ËÏ ÛÒÚÓÈÒÚ‚ÓÏ ë (ÙÛÌ͈Ëfl, ÍÓÚÓÛ˛ Ô‰ÒÚÓËÚ ÔÓÒÚÓËÚ¸). êÂÁÛÎ¸Ú‡Ú y, ËÁÏÂÂÌÌ˚È ÒÂÌÒÓÌ˚Ï ‰‡Ú˜ËÍÓÏ, Ò‡‚ÌË‚‡ÂÚÒfl Ò ˝Ú‡ÎÓÌÌ˚Ï Á̇˜ÂÌËÂÏ r. á‡ÚÂÏ ÛÔ‡‚Îfl˛˘Â ÛÒÚÓÈÒÚ‚Ó ËÒÔÓθÁÛÂÚ ‚˚˜ËÒÎÂÌÌÛ˛ ӯ˷ÍÛ e = r – y ‰Îfl ‚‚Ó‰‡ ‰‡ÌÌ˚ı u = Ce. èË Ì‡ÎË˜Ë ÌÛ΂˚ı ̇˜‡Î¸Ì˚ı ÛÒÎÓ‚ËÈ Ò˄̇Î˚ ‚‚Ó‰‡ Ë ‚˚‚Ó‰‡ ̇ ÛÒÚ‡ÌÓ‚ÍÛ ÒÓÓÚÌÓÒflÚÒfl Í‡Í y = Pu, „‰Â r, y, v Ë P, C fl‚Îfl˛ÚÒfl ÙÛÌ͈ËflÏË ˜‡ÒÚÓÚÌÓÈ PC ÔÂÂÏÂÌÌÓÈ s. í‡ÍËÏ Ó·‡ÁÓÏ, y = r Ë y ≈ r (Ú.Â. ‚˚‚Ó‰ ÍÓÌÚÓÎËÛÂÚÒfl 1 + PC ÔÓÒÚÓ ÛÒÚ‡ÌÓ‚ÍÓÈ ˝Ú‡ÎÓÌÌÓ„Ó Á̇˜ÂÌËfl), ÂÒÎË êë ·Óθ¯Â β·Ó„Ó Á̇˜ÂÌËfl s. ÖÒÎË ÒËÒÚÂχ ÏÓ‰ÂÎËÛÂÚÒfl Í‡Í ÒËÒÚÂχ ÎËÌÂÈÌ˚ı ‰ËÙÙÂÂ̈ˇθÌ˚ı Û‡‚ÌÂÌËÈ, PC ÚÓ Ô‰‡ÚӘ̇fl ÙÛÌ͈Ëfl fl‚ÎflÂÚÒfl ‡ˆËÓ̇θÌÓÈ ÙÛÌ͈ËÂÈ. ìÒÚ‡Ìӂ͇ ê 1 + PC fl‚ÎflÂÚÒfl ÒÚ‡·ËθÌÓÈ, ÂÒÎË Ì ËÏÂÂÚ ÔÓβÒÓ‚ ‚ Á‡ÏÍÌÛÚÓÈ Ô‡‚ÓÈ ÔÓÎÛÔÎÓÒÍÓÒÚË ë+ = {s ∈ : s ≥ 0}. ᇉ‡˜‡ ÛÒÚÓȘ˂ÓÈ ÒÚ‡·ËÎËÁ‡ˆËË ÒÓÒÚÓËÚ ‚ ̇ıÓʉÂÌËË ‰Îfl Á‡‰‡ÌÌÓÈ ÌÓÏË̇θÌÓÈ ÛÒÚ‡ÌÓ‚ÍË (ÏÓ‰ÂÎË) P0 Ë ÌÂÍÓÂÈ ÏÂÚËÍË d ̇ ÛÒÚ‡Ìӂ͇ı Ú‡ÍÓ„Ó ˆÂÌÚËÓ‚‡ÌÌÓ„Ó ‚ P0 ÓÚÍ˚ÚÓ„Ó ¯‡‡ Ò Ï‡ÍÒËχθÌ˚Ï ‡‰ËÛÒÓÏ, ˜ÚÓ·˚ ÌÂÍÓÚÓ˚ ÛÔ‡‚Îfl˛˘Ë ÛÒÚÓÈÒÚ‚‡ (‡ˆËÓ̇θÌ˚ ÙÛÌ͈ËË) ë ÏÓ„ÎË ÒÚ‡·ËÎËÁËÓ‚‡Ú¸ ͇ʉ˚È ˝ÎÂÏÂÌÚ ‰‡ÌÌÓ„Ó ¯‡‡. ɇ٠G(P) ÛÒÚ‡ÌÓ‚ÍË ê ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı Ô‡ ‚ıÓ‰-‚˚ıÓ‰ (u, y = P u). ä‡Í u Ú‡Í Ë y ÔË̇‰ÎÂÊ‡Ú ÔÓÒÚ‡ÌÒÚ‚Û ï‡‰Ë H2( +) Ô‡‚ÓÈ ÔÓÎÛÔÎÓÒÍÓÒÚË; „‡Ù fl‚ÎflÂÚÒfl Á‡ÏÍÌÛÚ˚Ï ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ H 2 ( +) + H 2 ( +). àÏÂÌÌÓ, G(P) = f(P)H2( 2 ) ‰Îfl ÌÂÍÓÚÓÓÈ ÙÛÌ͈ËË f(P), ̇Á˚‚‡ÂÏÓÈ ÒËÏ‚ÓÎÓÏ „‡Ù‡, ‡ G(P) fl‚ÎflÂÚÒfl Á‡ÏÍÌÛÚ˚Ï ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚ÓÏ H 2 ( 2 ). ÇÒ Ô˂‰ÂÌÌ˚ ÌËÊ ÏÂÚËÍË fl‚Îfl˛ÚÒfl ÔÓÔÛÒÍÓÔÓ‰Ó·Ì˚ÏË ÏÂÚË͇ÏË; ÓÌË ÚÓÔÓÎӄ˘ÂÒÍË ˝Í‚Ë‚‡ÎÂÌÚÌ˚, Ë ÒÚ‡·ËÎËÁ‡ˆËfl fl‚ÎflÂÚÒfl ÛÒÚÓȘ˂˚Ï Ò‚ÓÈÒÚ‚ÓÏ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Í‡Ê‰ÓÈ ËÁ ÌËı. åÂÚË͇ ÔÓÔÛÒ͇ åÂÚË͇ ÔÓÔÛÒ͇ ÏÂÊ‰Û ÛÒÚ‡Ìӂ͇ÏË P1 Ë P 2 (‚‚‰Â̇ ‚ ÚÂÓ˲ ÍÓÌÚÓÎfl á‡ÏÂÒÓÏ Ë ùθ-á‡Í͇Ë) ÓÔ‰ÂÎflÂÚÒfl Í‡Í gap( P1 , P2 ) =|| Π( P1 ) − Π( P2 ) ||2 , „‰Â è(P o ), i = 1, 2 fl‚ÎflÂÚÒfl ÓÚÓ„Ó̇θÌÓÈ ÔÓÂ͈ËÂÈ „‡Ù‡ G(Pi) ÛÒÚ‡ÌÓ‚ÍË Pi, ‡ÒÒχÚË‚‡ÂÏÓ„Ó Í‡Í Á‡ÏÍÌÛÚÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó H 2 ( 2 ). àÏÂÂÏ gap( P1 , P2 ) = max{δ1 ( P1 , P2 ), δ1 ( P2 , P1 )}, „‰Â δ1 ( P1 , P2 ) = infQ ∈H∞ || f ( P1 ) − f ( P2 )Q || H∞ Ë f(P) – ÒËÏ‚ÓÎ „‡Ù‡. ÖÒÎË Ä fl‚ÎflÂÚÒfl m × n χÚˈÂÈ Ò m < n, ÚÓ Â n ÒÚÓηˆÓ‚ ÔÓÓʉ‡˛Ú n-ÏÂÌÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó, ‡ χÚˈ‡ Ç ÓÚÓ„Ó̇θÌÓÈ ÔÓÂ͈ËË Ì‡ ÔÓÒÚ‡ÌÒÚ‚Ó ÒÚÓηˆÓ‚ χÚˈ˚ Ä ËÏÂÂÚ ‚ˉ A( AT A) − 1AT . ÖÒÎË ·‡ÁËÒ ÓÚÓÌÓÏËÓ‚‡Ì, ÚÓ B = AAT. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÏÂÚË͇ ÔÓÔÛÒ͇ ÏÂÊ‰Û ‰‚ÛÏfl ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË Ó‰ÌÓÈ Ë ÚÓÈ Ê ‡ÁÏÂÌÓÒÚË – l2 -ÌÓχ ‡ÁÌÓÒÚË Ëı ÓÚÓ„Ó̇θÌ˚ı ÔÓÂ͈ËÈ (ÒÏ. ê‡ÒÒÚÓflÌË îÓ·ÂÌËÛÒ‡, „Î. 12).
É·‚‡ 18. ê‡ÒÒÚÓflÌËfl ‚ χÚÂχÚ˘ÂÒÍÓÈ ËÌÊÂÌÂËË
273
åÂÚË͇ Çˉ¸flÒ‡„‡‡ åÂÚË͇ Çˉ¸flÒ‡„‡‡ (ËÎË ÏÂÚË͇ „‡Ù‡) ÏÂÊ‰Û ÛÒÚ‡Ìӂ͇ÏË P1 Ë P2 ÓÔ‰ÂÎflÂÚÒfl Í‡Í max{δ 2 ( P1 , P2 ), δ 2 ( P2 , P1 )}, „‰Â δ 2 ( P1 , P2 ) = inf||Q||≤1 || f ( P1 ) − f ( P2 )Q || H∞ . èӂ‰Â̘ÂÒÍÓ ‡ÒÒÚÓflÌË – ÔÓÔÛÒÍ ÏÂÊ‰Û ‡Ò¯ËÂÌÌ˚ÏË „‡Ù‡ÏË ÛÒÚ‡ÌÓ‚ÓÍ P1 Ë P2 ; ÌÓ‚˚È ˝ÎÂÏÂÌÚ ‰Ó·‡‚ÎÂÌ Í „‡ÙÛ G(P) ‰Îfl Û˜ÂÚ‡ ‚ÒÂı ‚ÓÁÏÓÊÌ˚ı ËÒıÓ‰Ì˚ı ÛÒÎÓ‚ËÈ (‚ÏÂÒÚÓ Ó·˚˜ÌÓÈ ÒËÚÛ‡ˆËË, ÍÓ„‰‡ ËÒıÓ‰Ì˚ ÛÒÎÓ‚Ëfl ÌÛ΂˚Â). åÂÚË͇ ÇËÌÌËÍÓÏ·Â åÂÚË͇ ÇËÌÌËÍÓÏ·Â (ÏÂÚË͇ ν-ÔÓÔÛÒ͇) ÏÂÊ‰Û ÛÒÚ‡Ìӂ͇ÏË P1 Ë P2 ÓÔ‰ÂÎflÂÚÒfl Í‡Í δ ν ( P1 , P2 ) = || (1 + P2 P2∗ ) −1 / 2 ( P2 − P1 )(1 + P1∗ P1 ) −1 / 2 ||∞ ÂÒÎË wno( f ∗ ( P2 ) f ( P1 )) = 0 Ë ‡‚̇ 1, Ë̇˜Â. á‰ÂÒ¸ f(P) fl‚ÎflÂÚÒfl ÙÛÌ͈ËÂÈ ÒËÏ‚Ó· „‡Ù‡ ÛÒÚ‡ÌÓ‚ÍË ê. Ç [Youn98] ‰‡Ì˚ ÓÔ‰ÂÎÂÌËfl ˜ËÒ· ÍÛ˜ÂÌËfl wno(f) ‰Îfl ‡ˆËÓ̇θÌÓÈ ÙÛÌ͈ËË f, ‡ Ú‡ÍÊ ıÓӯ ‚‚‰ÂÌË ‚ ÚÂÓ˲ ÒÚ‡·ËÎËÁ‡ˆËË Ò Ó·‡ÚÌÓÈ Ò‚flÁ¸˛. 18.4. åéÖÄ êÄëëíéüçàü åÌÓ„Ë ҂flÁ‡ÌÌ˚Â Ò ÓÔÚËÏËÁ‡ˆËÂÈ Á‡‰‡˜Ë ÔÂÒÎÂ‰Û˛Ú ÌÂÒÍÓθÍÓ ˆÂÎÂÈ Ó‰ÌÓ‚ÂÏÂÌÌÓ, Ӊ̇ÍÓ ‰Îfl ÔÓÒÚÓÚ˚ ÚÓθÍÓ Ó‰Ì‡ ËÁ ÌËı ÓÔÚËÏËÁËÛÂÚÒfl, ‡ ÓÒڇθÌ˚ ‚˚ÒÚÛÔ‡˛Ú ‚ ͇˜ÂÒÚ‚Â Ó„‡Ì˘ÂÌËÈ. èË ÏÌÓ„ÓˆÂ΂ÓÈ ÓÔÚËÏËÁ‡ˆËË ‡ÒÒχÚË‚‡ÂÚÒfl (ÔÓÏËÏÓ ÌÂÍÓÚÓ˚ı Ó„‡Ì˘ÂÌËÈ ‚ ‚ˉ Ì‡‚ÂÌÒÚ‚) ˆÂ΂‡fl ‚ÂÍÚÓ-ÙÛÌ͈Ëfl f : X ⊂ n → k ËÁ ÔÓÒÚ‡ÌÒÚ‚‡ ÔÓËÒ͇ (ËÎË „ÂÌÓÚËÔ‡, ÔÂÂÏÂÌÌ˚ı ¯ÂÌËfl) ï ‚ ÔÓÒÚ‡ÌÒÚ‚Ó ˆÂÎÂÈ (ËÎË ÙÂÌÓÚËÔ‡, ‚ÂÍÚÓÓ‚ ¯ÂÌËÈ) f(X) = = {f(x): x ∈ X} ⊂ k. íӘ͇ x * ∈ X fl‚ÎflÂÚÒfl ÓÔÚËχθÌÓÈ ÔÓ è‡ÂÚÓ, ÂÒÎË ‰Îfl ͇ʉÓÈ ‰Û„ÓÈ ÚÓ˜ÍË x ∈ X ‚ÂÍÚÓ Â¯ÂÌËÈ f(x) Ì χÊÓËÛÂÚ ÔÓ è‡ÂÚÓ ‚ÂÍÚÓ f(x * ), Ú. f(x ) ≤ f(x * ). éÔÚËχθÌ˚È ÔÓ è‡ÂÚÓ ÙÓÌÚ – ˝ÚÓ ÏÌÓÊÂÒÚ‚Ó PF ∗ = { f ( x ) : x ∈ X ∗}, „‰Â X* fl‚ÎflÂÚÒfl ÏÌÓÊÂÒÚ‚ÓÏ ‚ÒÂı ÓÔÚËχθÌ˚ı ÔÓ è‡ÂÚÓ ÚÓ˜ÂÍ. åÌÓ„ÓˆÂ΂˚ ˝‚ÓβˆËÓÌÌ˚ ‡Î„ÓËÚÏ˚ (ÒÓ͇˘ÂÌÌÓ MOEA ÓÚ ‡Ì„ÎËÈÒÍÓ„Ó Multi-objective evolutionary algorithms) ÔÓÓʉ‡˛Ú ̇ ͇ʉÓÏ ˝Ú‡Ô ÏÌÓÊÂÒÚ‚Ó ‡ÔÔÓÍÒËχˆËË (̇ȉÂÌÌ˚È ÔÓ è‡ÂÚÓ ÙÓÌÚ PF known ÔË·ÎËʇÂÚ Í Ê·ÂÏ˚È è‡ÂÚÓ ÙÓÌÚ PF * ) ‚ ÔÓÒÚ‡ÌÒÚ‚Â ˆÂÎÂÈ, „‰Â ÌË Ó‰ËÌ ˝ÎÂÏÂÌÚ ‰ÓÏËÌËÛÂÚ ÔÓ è‡ÂÚÓ Ì‡‰ ‰Û„ËÏ. èËÏÂ˚ ÏÂÚËÍ åéÖÄ, Ú.Â. Ï ӈÂÌÍË, ̇ÒÍÓθÍÓ PFknown ·ÎËÁÓÍ Í PF * , Ô‰ÒÚ‡‚ÎÂÌ˚ ÌËÊÂ. ê‡ÒÒÚÓflÌË ÔÓÍÓÎÂÌËÈ ê‡ÒÒÚÓflÌË ÔÓÍÓÎÂÌËÈ ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1/ 2
m 2 d j j =1 , m „‰Â m = | PFknown | Ë dj ÂÒÚ¸ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË (‚ ÔÓÒÚ‡ÌÒÚ‚Â ˆÂÎÂÈ) ÏÂÊ‰Û (Ú.Â. j-Ï ˜ÎÂÌÓÏ ÙÓÌÚ‡ PFknown) Ë ·ÎËʇȯËÏ ˜ÎÂÌÓÏ PF*.
∑
274
ó‡ÒÚ¸ IV. ê‡ÒÒÚÓflÌËfl ‚ ÔËÍ·‰ÌÓÈ Ï‡ÚÂχÚËÍÂ
íÂÏËÌ ‡ÒÒÚÓflÌË ÔÓÍÓÎÂÌËÈ (ËÎË ÒÍÓÓÒÚ¸ Ó·ÓÓÚ‡) ËÒÔÓθÁÛÂÚÒfl Ú‡ÍÊ ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ÏËÌËχθÌÓ„Ó ˜ËÒ· ‚ÂÚ‚ÂÈ ÏÂÊ‰Û ‰‚ÛÏfl ÔÓÎÓÊÂÌËflÏË ‚ β·ÓÈ ÒËÒÚÂÏ ‡ÌÊËÓ‚‡ÌÌÓ„Ó Û·˚‚‡ÌËfl, Ô‰ÒÚ‡‚ÎÂÌÌÓ„Ó ‚ ‚ˉ Ë‡ı˘ÂÒÍÓ„Ó ‰Â‚‡. èËχÏË fl‚Îfl˛ÚÒfl: ÙËÎÓ„ÂÌÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ̇ ÙËÎÓ„ÂÌÂÚ˘ÂÒÍÓÏ ‰Â‚Â, ÍÓ΢ÂÒÚ‚Ó ÔÓÍÓÎÂÌËÈ, ÓÚ‰ÂÎfl˛˘Ëı ÙÓÚÓÍÓÔ˲ ÓÚ ÓË„Ë̇θÌÓ„Ó ÓÚÚËÒ͇, ÍÓ΢ÂÒÚ‚Ó ÔÓÍÓÎÂÌËÈ, ÓÚ‰ÂÎfl˛˘Ëı ÔÓÒÂÚËÚÂÎÂÈ ÏÂÏÓˇ· ÓÚ Ô‡ÏflÚÌ˚ı ÒÓ·˚ÚËÈ, ÍÓÚÓ˚Ï ÓÌ ÔÓÒ‚fl˘ÂÌ. ê‡ÒÔÓÎÓÊÂÌËÂ Ò ÔÓÏÂÊÛÚ͇ÏË ê‡ÒÔÓÎÓÊÂÌËÂ Ò ÔÓÏÂÊÛÚ͇ÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
(d − d j ) j =1 m −1 m
∑
1/ 2
2
,
„‰Â m = | PFknown | Ë dj ÂÒÚ¸ l1 -‡ÒÒÚÓflÌË (‚ ÔÓÒÚ‡ÌÒÚ‚Â ˆÂÎÂÈ) ÏÂÊ‰Û fi(x) (Ú.Â. j-Ï ˜ÎÂÌÓÏ ÙÓÌÚ‡ PF known) Ë ‰Û„ËÏ ·ÎËʇȯËÏ ˜ÎÂÌÓÏ PF known , ‚ ÚÓ ‚ÂÏfl Í‡Í d fl‚ÎflÂÚÒfl Ò‰ÌËÏ Á̇˜ÂÌËÂÏ ‚ÒÂı dj. ëÛÏχÌӠ̉ÓÏËÌËÓ‚‡ÌÌÓ ÓÚÌÓ¯ÂÌË ‚ÂÍÚÓÓ‚ ëÛÏχÌӠ̉ÓÏËÌËÓ‚‡ÌÌÓ ÓÚÌÓ¯ÂÌË ‚ÂÍÚÓÓ‚ ÓÔ‰ÂÎflÂÚÒfl ͇Í
| PFknown | . | PF ∗ |
ó‡ÒÚ¸ V
êÄëëíéüçàü Ç äéåèúûíÖêçéâ ëîÖêÖ
É·‚‡ 19
ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
19.1. åÖíêàäà çÄ ÑÖâëíÇàíÖãúçéâ èãéëäéëíà ç‡ ÔÎÓÒÍÓÒÚË 2 ÏÓÊÌÓ ËÒÔÓθÁÓ‚‡Ú¸ ÏÌÓ„Ó ‡ÁÌ˚ı ÏÂÚËÍ. Ç ˜‡ÒÚÌÓÒÚË, β·‡fl lp -ÏÂÚË͇ (Ú‡Í ÊÂ, Í‡Í Ë Î˛·‡fl ÏÂÚË͇ ÌÓÏ˚ ‰Îfl ‰‡ÌÌÓÈ ÌÓÏ˚ || ⋅ || ̇ 2 ) ÏÓÊÂÚ ·˚Ú¸ ËÒÔÓθÁÓ‚‡Ì‡ ̇ ÔÎÓÒÍÓÒÚË, ÔË ˝ÚÓÏ Ì‡Ë·ÓΠÂÒÚÂÒÚ‚ÂÌÌÓÈ fl‚ÎflÂÚÒfl l2 -ÏÂÚË͇, Ú.Â. ‚ÍÎˉӂ‡ ÏÂÚË͇ d E ( x, y) = ( x1 − y1 )2 + ( x 2 − y2 )2 , ÍÓÚÓ‡fl ‰‡ÂÚ Ì‡Ï ‰ÎËÌÛ ÓÚÂÁ͇ [x, y] ÔflÏÓÈ Ë fl‚ÎflÂÚÒfl ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ ÔÎÓÒÍÓÒÚË. é‰Ì‡ÍÓ ËϲÚÒfl Ë ‰Û„ËÂ, ̉ÍÓ "˝ÍÁÓÚ˘ÂÒÍËÂ" ÏÂÚËÍË Ì‡ 2. åÌÓ„Ë ËÁ ÌËı ÔËÏÂÌfl˛ÚÒfl ‰Îfl ÔÓÒÚÓÂÌËfl Ó·Ó·˘ÂÌÌ˚ı ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó Ì‡ 2 (ÒÏ., ̇ÔËÏÂ, ÏÓÒÍÓ‚ÒÍÛ˛ ÏÂÚËÍÛ, ÏÂÚËÍÛ ÒÂÚË, Ô‡‚ËθÌÛ˛ ÏÂÚËÍÛ). çÂÍÓÚÓ˚ ËÁ ÌËı ÔËÏÂÌfl˛ÚÒfl ‚ ˆËÙÓ‚ÓÈ „ÂÓÏÂÚËË. ᇉ‡˜Ë ̇ ‡ÒÒÚÓflÌËfl ˝‰Â¯Â‚ÒÍÓ„Ó ÚËÔ‡ (Á‡‰‡‚‡ÂÏ˚ ӷ˚˜ÌÓ ‰Îfl ‚ÍÎˉӂÓÈ ÏÂÚËÍË Ì‡ 2) Ô‰ÒÚ‡‚Îfl˛Ú ËÌÚÂÂÒ ‰Îfl ÒÎÛ˜‡fl n Ë ‰Îfl ‰Û„Ëı ÏÂÚËÍ Ì‡ 2. èËÏÂÌ˚Ï ÒÓ‰ÂʇÌËÂÏ Ú‡ÍËı Á‡‰‡˜ fl‚ÎflÂÚÒfl: – ̇ıÓʉÂÌË ̇ËÏÂ̸¯Â„Ó ˜ËÒ· ‡Á΢Ì˚ı ‡ÒÒÚÓflÌËÈ (ËÎË Ì‡Ë·Óθ¯Â„Ó ˜ËÒ· ÔÓfl‚ÎÂÌËÈ Á‡‰‡ÌÌÓ„Ó ‡ÒÒÚÓflÌËfl) ‚ n-ÔÓ‰ÏÌÓÊÂÒÚ‚Â ÏÌÓÊÂÒÚ‚‡ 2; ̇˷Óθ¯ËÈ ‡ÁÏ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÏÌÓÊÂÒÚ‚‡ 2 , ÓÔ‰ÂÎfl˛˘Â„Ó Ì ·ÓΠm ‡ÒÒÚÓflÌËÈ; – ÓÔ‰ÂÎÂÌË ÏËÌËχθÌÓ„Ó ‰Ë‡ÏÂÚ‡ n-ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÏÌÓÊÂÒÚ‚‡ 2 ÚÓθÍÓ Ò ˆÂÎÓ˜ËÒÎÂÌÌ˚ÏË ‡ÒÒÚÓflÌËflÏË (ËÎË, Ò͇ÊÂÏ, ·ÂÁ Ô‡˚ (d 1 , d2 ) ‡ÒÒÚÓflÌËÈ Ò 0 < | d1 – d2 | < 1); – ÒÛ˘ÂÒÚ‚Ó‚‡ÌË n-ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÏÌÓÊÂÒÚ‚‡ 2, ‚ ÍÓÚÓÓÏ ‡ÒÒÚÓflÌË i (‰Îfl Í‡Ê‰Ó„Ó 1 ≤ i ≤ n) ‚ÒÚ˜‡ÂÚÒfl ÚÓ˜ÌÓ i ‡Á (ÔËÏÂ˚ ËÁ‚ÂÒÚÌ˚ ‰Îfl n ≤ 8); – ÓÔ‰ÂÎÂÌˠ̉ÓÔÛÒÚËÏ˚ı ‡ÒÒÚÓflÌËÈ ‡Á·ËÂÌËfl ÏÌÓÊÂÒÚ‚‡ 2, Ú.Â. ‡ÒÒÚÓflÌËÈ, ÍÓÚÓ˚ ÓÚÒÛÚÒÚ‚Û˛Ú ‚ ͇ʉÓÈ ËÁ ˜‡ÒÚÂÈ. åÂÚË͇ „ÓÓ‰ÒÍÓ„Ó Í‚‡Ú‡Î‡ åÂÚËÍÓÈ „ÓÓ‰ÒÍÓ„Ó Í‚‡Ú‡Î‡ ̇Á˚‚‡ÂÚÒfl l1-ÏÂÚË͇ ̇ 2 , ÓÔ‰ÂÎÂÌ̇fl Í‡Í || x − y ||1 = | x1 − y1 | + | x 2 − y2 | . чÌÌÛ˛ ÏÂÚËÍÛ Ì‡Á˚‚‡˛Ú ÔÓ-‡ÁÌÓÏÛ, ̇ÔËÏÂ, ÏÂÚËÍÓÈ Ú‡ÍÒË, ÏÂÚËÍÓÈ å‡Ìı˝ÚÚÂ̇, ÔflÏÓÛ„ÓθÌÓÈ ÏÂÚËÍÓÈ, ÏÂÚËÍÓÈ ÔflÏÓ„Ó Û„Î‡; ̇ 2  ̇Á˚‚‡˛Ú ÏÂÚËÍÓÈ „ˉ˚ Ë 4-ÏÂÚËÍÓÈ. åÂÚË͇ ó·˚¯Â‚‡ åÂÚËÍÓÈ ó·˚¯Â‚‡ ̇Á˚‚‡ÂÚÒfl l-ÏÂÚË͇ ̇ 2 , ÓÔ‰ÂÎÂÌ̇fl Í‡Í || x − y ||∞ − max{| x1 − y1 |, | x 2 − y2 |}. ùÚÛ ÏÂÚËÍÛ Ì‡Á˚‚‡˛Ú Ú‡ÍÊ ‡‚ÌÓÏÂÌÓÈ ÏÂÚËÍÓÈ, sup-ÏÂÚËÍÓÈ Ë ·ÓÍÒÏÂÚËÍÓÈ; ̇ 6 Ó̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ Â¯ÂÚÍË, ÏÂÚËÍÓÈ ˘‡ıχÚÌÓÈ ‰ÓÒÍË, ÏÂÚËÍÓÈ ıÓ‰‡ ÍÓÓÎfl Ë 8-ÏÂÚËÍÓÈ.
É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
277
(p, q)-ÓÚÌÓÒËÚÂθ̇fl ÏÂÚË͇ 2 − q èÛÒÚ¸ 0 < q ≤ 1, p ≥ max 1 − q, Ë ÔÛÒÚ¸ || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ 2 (‚ Ó·3 ˘ÂÏ ÒÎÛ˜‡Â ̇ n ). (p, q)-ÓÚÌÓÒËÚÂθ̇fl ÏÂÚË͇ ÂÒÚ¸ ÏÂÚË͇ ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n Ë ‰‡Ê ̇ β·ÓÏ ÔÚÓÎÂÏ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (V ,|| ⋅ ||)), ÓÔ‰ÂÎÂÌ̇fl Í‡Í || x − y ||2 q/ p 1 (|| x || p + || y || p ) 2 2 2 ‰Îfl ı ËÎË y ≠ 0 (Ë ‡‚̇fl 0, Ë̇˜Â). Ç ÒÎÛ˜‡Â p = ∞ Ó̇ ÔËÌËχÂÚ ‚ˉ || x − y ||2 . (max || x ||2 ,|| y ||2}) q ÑÎfl q = 1 Ë Î˛·Ó„Ó 1 ≤ p < ∞ Ï˚ ÔÓÎÛ˜‡ÂÏ -ÓÚÌÓÒËÚÂθÌÛ˛ ÏÂÚËÍÛ (ËÎË ÏÂÚËÍÛ ä·ÏÍË̇–å¡); ‰Îfl q = 1 Ë 1 ≤ p < ∞ ÔÓÎÛ˜‡ÂÏ ÓÚÌÓÒËÚÂθÌÛ˛ ÏÂÚËÍÛ. (1,1)-ÏÂÚË͇ ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ ò‡Ú¯ÌÂȉÂ. å-ÓÚÌÓÒËÚÂθ̇fl ÏÂÚË͇ èÛÒÚ¸ f : [0, ∞) → (0, ∞) – ‚˚ÔÛÍ·fl ‚ÓÁ‡ÒÚ‡˛˘‡fl ÙÛÌ͈Ëfl, ڇ͇fl ˜ÚÓ
f ( x) x
Û·˚‚‡ÂÚ ‰Îfl x > 0. èÛÒÚ¸ || ⋅ ||2 – ‚ÍÎˉӂ‡ ÌÓχ ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n). å-ÓÚÌÓÒËÚÂθ̇fl ÏÂÚË͇ ÂÒÚ¸ ÏÂÚË͇ ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n Ë ‰‡Ê ̇ β·ÓÏ ÔÚÓÎÂÏ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (V ,|| ⋅ ||)), ÓÔ‰ÂÎÂÌ̇fl Í‡Í || x − y ||2 . f (|| x ||2 ) ⋅ f (|| y ||2 ) Ç ˜‡ÒÚÌÓÒÚË, ‡ÒÒÚÓflÌË || x − y ||2 p
1+ || x ||2p p 1+ || y ||2p
fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ 2 (̇ n) ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ p ≥ 1. Ä̇Îӄ˘̇fl ÏÂÚË͇ ̇ 2 \ {0} (̇ n \ {0}) ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂ̇ Í‡Í || x − y ||2 . || x ||2 ⋅ || y ||2 åÓÒÍÓ‚Ò͇fl ÏÂÚË͇ åÓÒÍÓ‚Ò͇fl ÏÂÚË͇ (ËÎË ÏÂÚË͇ ä‡ÎÒÛ˝) ÂÒÚ¸ ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ÏËÌËχθ̇fl ‚ÍÎˉӂ‡ ‰ÎË̇ ‚ÒÂı ‰ÓÔÛÒÚËÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ı Ë y ∈ 2, „‰Â ÍË‚‡fl ̇Á˚‚‡ÂÚÒfl ‰ÓÔÛÒÚËÏÓÈ, ÂÒÎË ÒÓÒÚÓËÚ ÚÓθÍÓ ËÁ ÓÚÂÁÍÓ‚ ÔflÏ˚ı, ÔÓıÓ‰fl˘Ëı ˜ÂÂÁ ̇˜‡ÎÓ ÍÓÓ‰Ë̇Ú, Ë ÓÚÂÁÍÓ‚ ÓÍÛÊÌÓÒÚÂÈ Ò ˆÂÌÚ‡ÏË ‚ ̇˜‡Î ÍÓÓ‰ËÌ‡Ú (ÒÏ., ̇ÔËÏÂ, [Klei88]). ÖÒÎË ÔÓÎflÌ˚ ÍÓÓ‰Ë̇Ú˚ ‰Îfl ÚÓ˜ÂÍ x, y ∈ 2 ‡‚Ì˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ (rx, θx) Ë (ry, θ y), ÚÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‡ÌÌ˚ÏË ÚӘ͇ÏË ‡‚ÌÓ min{rx , ry}∆(θ x − θ y )+ | rx − ry |, ÂÒÎË 0 ≤ ∆(θ x , θ y ) < 2, Ë ‡‚ÌÓ rx + ry ,, ÂÒÎË 2 ≤ ∆(θ x , θ y ) < π, „‰Â ∆(θ x , θ y ) = = min{| θ x − θ y |, 2 π − | θ x − θ y |}, θ x , θ y ∈[0, 2 π) ÂÒÚ¸ ÏÂÚË͇ ÏÂÊ‰Û Û„Î‡ÏË.
278
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
åÂÚË͇ ه̈ÛÁÒÍÓ„Ó ÏÂÚÓ ÑÎfl ÌÓÏ˚ || ⋅ || ̇ 2 ÏÂÚËÍÓÈ Ù‡ÌˆÛÁÒÍÓ„Ó ÏÂÚÓ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl Í‡Í || x − y ||, ÂÒÎË x = cy ‰Îfl ÌÂÍÓÚÓÓ„Ó c ∈ , Ë Í‡Í || x || + || y ||, Ë̇˜Â. ÑÎfl ‚ÍÎˉӂÓÈ ÌÓÏ˚ || ⋅ ||2 Ó̇ ̇Á˚‚‡ÂÚÒfl Ô‡ËÊÒÍÓÈ ÏÂÚËÍÓÈ, ÏÂÚËÍÓÈ Âʇ, ‡‰Ë‡Î¸ÌÓÈ ÏÂÚËÍÓÈ ËÎË ÛÒËÎÂÌÌÓÈ ÏÂÚËÍÓÈ SNCF. Ç ˝ÚÓÏ ÒÎÛ˜‡Â Ó̇ ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂ̇ Í‡Í ÏËÌËχθ̇fl ‚ÍÎˉӂ‡ ‰ÎË̇ ‚ÒÂı ‰ÓÔÛÒÚËÏ˚ı ÍË‚˚ı ÏÂÊ‰Û ‰‚ÛÏfl ‰‡ÌÌ˚ÏË ÚӘ͇ÏË ı Ë Û, „‰Â ÍË‚‡fl ̇Á˚‚‡ÂÚÒfl ‰ÓÔÛÒÚËÏÓÈ, ÂÒÎË ÒÓÒÚÓËÚ ÚÓθÍÓ ËÁ ÓÚÂÁÍÓ‚ ÔflÏ˚ı, ÔÓıÓ‰fl˘Ëı ˜ÂÂÁ ̇˜‡ÎÓ ÍÓÓ‰Ë̇Ú. Ç ÚÂÏË̇ı „‡ÙÓ‚ ˝Ú‡ ÏÂÚË͇ ÔÓıÓʇ ̇ ÏÂÚËÍÛ ÔÛÚË ‰Â‚‡, ÒÓÒÚÓfl˘Â„Ó ËÁ ÚÓ˜ÍË, ÓÚÍÛ‰‡ ËÒıÓ‰flÚ ÌÂÒÍÓθÍÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÔÛÚÂÈ. è‡ËÊÒ͇fl ÏÂÚË͇ – ˝ÚÓ ÔËÏ -‰Â‚‡ í, ÍÓÚÓÓ fl‚ÎflÂÚÒfl ÒËÏÔÎˈˇθÌ˚Ï, Ú.Â. ÏÌÓÊÂÒÚ‚Ó ÚÓ˜ÂÍ ı, ‰Îfl ÍÓÚÓ˚ı ÏÌÓÊÂÒÚ‚Ó T – {x} ÒÓÒÚÓËÚ ËÁ Ó‰ÌÓÈ ÍÓÏÔÓÌÂÌÚ˚, fl‚ÎflÂÚÒfl ‰ËÒÍÂÚÌ˚Ï Ë Á‡ÏÍÌÛÚ˚Ï. åÂÚË͇ ÎËÙÚ‡ åÂÚËÍÓÈ ÎËÙÚ‡ (ËÎË ÏÂÚËÍÓÈ Ò·Ó˘Ë͇ χÎËÌ˚, ÏÂÚ˘ÂÒÍÓÈ "ÂÍÓÈ") ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl Í‡Í | x1 − y1 |, ÂÒÎË x 2 = y2, Ë Í‡Í | x1 | + | x 2 − y2 | + | y1 |, ÂÒÎË x 2 ≠ y 2 (ÒÏ., ̇ÔËÏÂ, [Brya85]). é̇ ÏÓÊÂÚ ÓÔ‰ÂÎflÚ¸Òfl Í‡Í ÏËÌËχθ̇fl ‚ÍÎˉӂ‡ ‰ÎË̇ ‚ÒÂı ‰ÓÔÛÒÚËÏ˚ı ÍË‚˚ı, ÒÓ‰ËÌfl˛˘Ëı ‰‚ ‰‡ÌÌ˚ ÚÓ˜ÍË ı Ë Û, „‰Â ÍË‚‡fl ̇Á˚‚‡ÂÚÒfl ‰ÓÔÛÒÚËÏÓÈ, ÂÒÎË ÒÓÒÚÓËÚ ÚÓθÍÓ ËÁ ÓÚÂÁÍÓ‚ ÔflÏ˚ı, Ô‡‡ÎÎÂθÌ˚ı ÓÒË x1, Ë ÓÚÂÁÍÓ‚ ÓÒË x2. åÂÚË͇ ÎËÙÚ‡ fl‚ÎflÂÚÒfl ÔËÏÂÓÏ ÌÂÒËÏÔÎˈˇθÌÓ„Ó (ÒÏ. åÂÚË͇ ه̈ÛÁÒÍÓ„Ó ÏÂÚÓ) -‰Â‚‡. åÂÚË͇ ·ËÚ‡ÌÒÍÓÈ ÊÂÎÂÁÌÓÈ ‰ÓÓ„Ë ÑÎfl ÌÓÏ˚ || ⋅ || ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n) ÏÂÚËÍÓÈ ·ËÚ‡ÌÒÍÓÈ ÊÂÎÂÁÌÓÈ ‰ÓÓ„Ë Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n), ÓÔ‰ÂÎÂÌ̇fl Í‡Í || x || + || y || ‰Îfl x ≠ y (Ë ‡‚̇fl 0, Ë̇˜Â). Ö ̇Á˚‚‡˛Ú Ú‡ÍÊ ÏÂÚËÍÓÈ ÔÓ˜Ú˚, ÏÂÚËÍÓÈ „ÛÒÂÌˈ˚ Ë ÏÂÚËÍÓÈ ˜ÂÎÌÓ͇. åÂÚË͇ ˆ‚ÂÚÓ˜ÌÓ„Ó Ï‡„‡ÁË̇ èÛÒÚ¸ d – ÏÂÚËÍ Ì‡ 2 Ë f – ÙËÍÒËÓ‚‡Ì̇fl ÚӘ͇ (ˆ‚ÂÚÓ˜Ì˚È Ï‡„‡ÁËÌ) ̇ ÔÎÓÒÍÓÒÚË. åÂÚËÍÓÈ ˆ‚ÂÚÓ˜ÌÓ„Ó Ï‡„‡ÁË̇ (ËÌÓ„‰‡  ̇Á˚‚‡˛Ú ÏÂÚËÍÓÈ SNCF) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ β·ÓÏ ÏÂÚ˘ÂÒÍÓÏ ÔÓÒÚ‡ÌÒÚ‚Â), ÓÔ‰ÂÎÂÌ̇fl Í‡Í d(x, f) + d(f, y)
É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
279
‰Îfl x ≠ y (Ë ‡‚̇fl 0, Ë̇˜Â). í‡Í, ˜ÂÎÓ‚ÂÍ, ÊË‚Û˘ËÈ ‚ ÚӘ͠ı, ÍÓÚÓ˚È ıÓ˜ÂÚ ÔÓÒÂÚËÚ¸ ÍÓ„Ó-ÚÓ, ÊË‚Û˘Â„Ó ‚ ÚӘ͠y, Ò̇˜‡Î‡ Á‡ıÓ‰ËÚ ‚ f, ˜ÚÓ·˚ ÍÛÔËÚ¸ ˆ‚ÂÚ˚. Ç ÒÎÛ˜‡Â ÂÒÎË d ( x, f ) = || x − y ||, ‡ ÚӘ͇ f fl‚ÎflÂÚÒfl ̇˜‡ÎÓÏ ÍÓÓ‰Ë̇Ú, Ï˚ ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ ·ËÚ‡ÌÒÍÓÈ ÊÂÎÂÁÌÓÈ ‰ÓÓ„Ë. ÖÒÎË ËÏÂÂÚÒfl k > 1 ˆ‚ÂÚÓ˜Ì˚ı χ„‡ÁËÌÓ‚ f1 ,…, fk, ÚÓ ˜ÂÎÓ‚ÂÍ ÍÛÔËÚ ˆ‚ÂÚ˚ ‚ ·ÎËʇȯÂÏ Ï‡„‡ÁËÌÂ Ò ÏËÌËχθÌ˚Ï ÓÚÍÎÓÌÂÌËÂÏ ÓÚ Ò‚ÓÂ„Ó Ï‡¯ÛÚ‡, Ú.Â. ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‡Á΢Ì˚ÏË ÚӘ͇ÏË x, y ‡‚ÌÓ min l ≤ i ≤ k ( d ( x, fi ) + d ( fi , y)). åÂÚË͇ ˝Í‡Ì‡ ‡‰‡‡ ÑÎfl ÌÓÏ˚ || ⋅ || ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n ) ÏÂÚËÍÓÈ ˝Í‡Ì‡ ‡‰‡‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n), ÓÔ‰ÂÎÂÌ̇fl Í‡Í min{1,|| x − y ||}. åÂÚË͇ ÍÓ‚‡ êËÍχ̇ ÑÎfl ˜ËÒ· α ∈ (0, 1) ÏÂÚËÍÓÈ ÍÓ‚‡ êËÍχ̇ fl‚ÎflÂÚÒfl ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl Í‡Í x1 − y1 + x 2 − y2
α
.
ùÚÓ fl‚ÎflÂÚÒfl ÒÎÛ˜‡ÂÏ n = 2 Ô‡‡·Ó΢ÂÒÍÓ„Ó ‡ÒÒÚÓflÌËfl („Î. 6; ÒÏ. Ú‡Ï Ê ‰Û„Ë ÏÂÚËÍË Ì‡ n, n ≥ 2). åÂÚË͇ ÅÛ‡„Ó–à‚‡ÌÓ‚‡ å Â Ú Ë Í Ó È Å Û ‡ „ Ó – à ‚ ‡ Ì Ó ‚ ‡ ([BuIv01]) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2 , ÓÔ‰ÂÎÂÌ̇fl Í‡Í || x ||2 − || y ||2 + min{|| x ||2 ⋅ ||| y ||2 } ⋅ ∠( x, y), „‰Â ∠(x, y) – Û„ÓÎ ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË ı Ë Û Ë || ⋅ || – ‚ÍÎˉӂ‡ ÌÓχ ̇ 2 . ëÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ 2 ‡‚̇ || x ||2 − || y ||2 , ÂÒÎË ∠(x, y) = 0, Ë ‡‚̇ || x ||2 − || y ||2 , Ë̇˜Â. åÂÚË͇ 2n-Û„ÓθÌË͇ ÑÎfl ˆÂÌڇθÌÓ ÒËÏÏÂÚ˘ÌÓ„Ó Ô‡‚ËθÌÓ„Ó 2n-Û„ÓθÌË͇ K ̇ ÔÎÓÒÍÓÒÚË ÏÂÚËÍÓÈ 2n-Û„ÓθÌË͇ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2 , ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x,y ∈ 2 Í‡Í Ì‡Ë͇ژ‡È¯‡fl ‚ÍÎˉӂ‡ ‰ÎË̇ ÎÓχÌÓÈ ÎËÌËË ÓÚ ı Í Û, ͇ʉÓ ËÁ Á‚Â̸ ÍÓÚÓÓÈ Ô‡‡ÎÎÂθ̇ ÌÂÍÓÚÓÓÏÛ ËÁ · ÏÌÓ„ÓÛ„ÓθÌË͇ ä. ÖÒÎË ä ÂÒÚ¸ ÔflÏÓÛ„ÓθÌËÍ Ò ‚¯Ë̇ÏË {(±1, ±1)}, ÚÓ Ï˚ ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ å‡Ìı˝ÚÚÂ̇. åÂÚËÍÛ å‡Ìı˝ÚÚÂ̇ Ú‡ÍÊ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÂÚËÍÛ åËÌÍÓ‚ÒÍÓ„Ó Ò Â‰ËÌ˘Ì˚Ï ¯‡ÓÏ ‚ ‚ˉ ·ËÎΡÌÚ‡, Ú.Â. Í‚‡‰‡Ú‡ Ò ‚¯Ë̇ÏË {(1,0(0,1), (–1,0),(0,–1)}. åÂÚË͇ ˆÂÌڇθÌÓ„Ó Ô‡Í‡ åÂÚËÍÓÈ ˆÂÌڇθÌÓ„Ó Ô‡Í‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ‰ÎË̇ ̇Ë͇ژ‡È¯Â„Ó l1 -ÔÛÚË (ÔÛÚË å‡Ìı˝ÚÚÂ̇) ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË, x, y ∈ 2 ÔË Ì‡Î˘ËË ‰‡ÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ÁÓÌ, ˜ÂÂÁ ÍÓÚÓ˚ ÔÓıÓ‰flÚ Í‡Ú˜‡È¯Ë ‚ÍÎˉӂ˚ ÔÛÚË (̇ÔËÏÂ, ñÂÌڇθÌ˚È Ô‡Í ‚ å‡Ìı˝ÚÚÂÌÂ). ê‡ÒÒÚÓflÌË ËÒÍβ˜ÂÌËfl ÒÚÓÎÍÌÓ‚ÂÌËÈ èÛÒÚ¸ = {O1 ,…,Om} – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÏÌÓ„ÓÛ„ÓθÌËÍÓ‚ ̇ ‚ÍÎˉӂÓÈ ÔÎÓÒÍÓÒÚË, Ô‰ÒÚ‡‚Îfl˛˘Â ÒÓ·ÓÈ ÏÌÓÊÂÒÚ‚Ó ÔÂÔflÚÒÚ‚ËÈ, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl Ó‰ÌÓ‚ÂÏÂÌÌÓ ÌÂÔÓÁ‡˜Ì˚ÏË Ë ÌÂÔÓıÓ‰ËÏ˚ÏË.
280
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ê‡ÒÒÚÓflÌËÂÏ ËÒÍβ˜ÂÌËfl ÒÚÓÎÍÌÓ‚ÂÌËÈ (ËÎË ‡ÒÒÚÓflÌËÂÏ ÌÓÒËθ˘ËÍÓ‚ ÔˇÌËÌÓ, ÏÂÚËÍÓÈ Í‡Ú˜‡È¯Â„Ó ÔÛÚË Ò ÔÂÔflÚÒÚ‚ËflÏË) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â 2\{}, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x, y ∈ 2\{} Í‡Í ‰ÎË̇ ͇ژ‡È¯Â„Ó ËÁ ‚ÒÂı ‚ÓÁÏÓÊÌ˚ı ÌÂÔÂ˚‚Ì˚ı ÔÛÚÂÈ, ÒÓ‰ËÌfl˛˘Ëı ı Ë Û Ë Ì ÔÂÂÒÂ͇˛˘Ëı ÔÂÔflÚÒÚ‚Ëfl Oi\∂Oi (ÔÛÚ¸ ÏÓÊÂÚ ÔÓıÓ‰ËÚ¸ ˜ÂÂÁ ÚÓ˜ÍË Ì‡ „‡Ìˈ ∂Oi ÔÂÔflÚÒÚ‚Ëfl ∂Oi), i = 1,…,m. èflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌËÂ Ò ·‡¸Â‡ÏË èÛÒÚ¸ = {O1,…,Om} – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÓÚÍ˚Ú˚ı ÏÌÓ„ÓÛ„ÓθÌ˚ı ·‡¸ÂÓ‚ ̇ 2. èflÏÓÛ„ÓθÌ˚È ÔÛÚ¸ (ËÎË ÔÛÚ¸ å‡Ìı˝ÚÚÂ̇) Px y ÓÚ x Í y ÂÒÚ¸ ÒÓ‚ÓÍÛÔÌÓÒÚ¸ „ÓËÁÓÌڇθÌ˚ı Ë ‚ÂÚË͇θÌ˚ı ÓÚÂÁÍÓ‚ ̇ ÔÎÓÒÍÓÒÚË, ÒÓ‰ËÌfl˛˘Ëı ı Ë Û. èÛÚ¸ Pxy ̇Á˚‚‡ÂÚÒfl ÓÒÛ˘ÒÚ‚ÎflÂÏ˚Ï ÂÒÎË m Pxy ∩ Bi = 0/ . i =1 èflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌËÂ Ò ·‡¸Â‡ÏË (ËÎË ÔflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌË ÔË Ì‡Î˘ËË ·‡¸ÂÓ‚) ÂÒÚ¸ ÏÂÚË͇ ̇ 2\{}, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x, y ∈ 2\{} Í‡Í ‰ÎË̇ ͇ژ‡È¯Â„Ó ÓÒÛ˘ÂÒÚ‚ËÏÓ„Ó ÔflÏÓÛ„ÓθÌÓ„Ó ÔÛÚË ÓÚ ı Í Û. èflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌËÂ Ò ·‡¸Â‡ÏË fl‚ÎflÂÚÒfl ÒÛÊÂÌËÂÏ ÏÂÚËÍË å‡Ìı˝ÚÚÂ̇ Ë Ó·˚˜ÌÓ ‡ÒÒχÚË‚‡ÂÚÒfl ̇ ÏÌÓÊÂÒÚ‚Â {q1 , …, qr } ⊂ 2 ËÁ n ÚÓ˜ÂÍ "ÓÚÔ‡‚ËÚÂθÔÓÎÛ˜‡ÚÂθ": Á‡‰‡˜‡ ̇ıÓʉÂÌËfl ÔÛÚÂÈ Ú‡ÍÓ„Ó ÚËÔ‡ ‚ÓÁÌË͇ÂÚ, ̇ÔËÏÂ, ÔË Ó„‡ÌËÁ‡ˆËË Ú‡ÌÒÔÓÚÌ˚ı Ô‚ÓÁÓÍ ‚ „ÓÓ‰ÒÍËı ÛÒÎÓ‚Ëflı, ‡ Ú‡ÍÊ ÔË Ô·ÌËÓ‚Í Á‡‚Ó‰Ó‚ Ë ÒÓÓÛÊÂÌËÈ (ÒÏ., ̇ÔËÏÂ, [LaLi81]).
U
ê‡ÒÒÚÓflÌË ҂flÁË èÛÒÚ¸ P ⊂ 2 – ÏÌÓ„ÓÛ„Óθ̇fl ӷ·ÒÚ¸ (̇ n ‚¯Ë̇ı Ò h ‰˚‡ÏË), Ú.Â. Á‡ÏÍÌÛÚ‡fl ÏÌÓ„ÓÒ‚flÁ̇fl ӷ·ÒÚ¸, „‡Ìˈ‡ ÍÓÚÓÓÈ – Ó·˙‰ËÌÂÌË n ÎËÌÂÈÌ˚ı ÓÚÂÁÍÓ‚, Ó·‡ÁÛ˛˘Ëı n + 1 Á‡ÏÍÌÛÚ˚ı ÏÌÓ„ÓÛ„ÓθÌ˚ı ˆËÍÎÓ‚. ê‡ÒÒÚÓflÌËÂÏ Ò‚flÁË Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ê, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x, y ∈ P Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ Â·Â ÏÌÓ„ÓÛ„ÓθÌÓ„Ó ÔÛÚË ÓÚ ı Í Û ‚ ԉ·ı ÏÌÓ„ÓÛ„ÓθÌÓÈ Ó·Î‡ÒÚË ê. ÖÒÎË ‡Á¯ÂÌ˚ ÚÓθÍÓ ÔflÏÓÛ„ÓθÌ˚ ÔÛÚË, Ï˚ ÔÓÎÛ˜‡ÂÏ ÔflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌË ҂flÁË. ÖÒÎË ÔÛÚË ë-ÓËÂÌÚËÓ‚‡Ì˚ (Ú.Â. ͇ʉÓÂ Â·Ó Ô‡‡ÎÎÂθÌÓ Ó‰ÌÓÏÛ ËÁ · ÏÌÓÊÂÒÚ‚‡ ë Ò Á‡‰‡ÌÌÓÈ ÓËÂÌÚ‡ˆËÂÈ), ÚÓ Ï˚ ËÏÂÂÏ ë-ÓËÂÌÚËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌË ҂flÁË. ê‡ÒÒÚÓflÌËfl Ô·ÌËÓ‚ÍË ÒÓÓÛÊÂÌËÈ è·ÌËӂ͇ – ˝ÚÓ ‡Á·ËÂÌË ÔflÏÓÛ„ÓθÌÓÈ ÔÎÓÒÍÓÈ Ó·Î‡ÒÚË Ì‡ ÔflÏÓÛ„ÓθÌËÍË ÏÂ̸¯Â„Ó ‡Áχ, ̇Á˚‚‡ÂÏ˚ ÓÚ‰ÂÎÂÌËflÏË, ÎËÌËflÏË, ÔÓıÓ‰fl˘ËÏË Ô‡‡ÎÎÂθÌÓ ÒÚÓÓÌ‡Ï ËÒıÓ‰ÌÓ„Ó ÔflÏÓÛ„ÓθÌË͇. ÇÒ ‚ÌÛÚÂÌÌË ‚¯ËÌ˚ ‰ÓÎÊÌ˚ ·˚Ú¸ ÚÂı‚‡ÎÂÌÚÌ˚ÏË, ‡ ÌÂÍÓÚÓ˚ ËÁ ÌËı, ÔÓ Í‡ÈÌÂÈ Ï Ӊ̇ ̇ „‡ÌËˆÂ Í‡Ê‰Ó„Ó ÓÚ‰ÂÎÂÌËfl, fl‚Îfl˛ÚÒfl ‰‚ÂflÏË, Ú.Â. ÏÂÒÚ‡ÏË ‚ıÓ‰‡-‚˚ıÓ‰‡. èÓ·ÎÂχ Á‡Íβ˜‡ÂÚÒfl ‚ ÒÓÁ‰‡ÌËË ÔÓ‰ıÓ‰fl˘Â„Ó Ô‰ÒÚ‡‚ÎÂÌËfl Ó ‡ÒÒÚÓflÌËË d(x, y) ÏÂÊ‰Û ÓÚ‰ÂÎÂÌËflÏË ı Ë Û, ÍÓÚÓÓ ÏËÌËÏËÁËÓ‚‡ÎÓ ·˚ ÙÛÌÍˆË˛ ˆÂÌ˚ F( x, y)d ( x, y), „‰Â
∑ x, y
F(x, y) – ÌÂÍËÈ Ï‡Ú¡θÌ˚È ÔÓÚÓÍ ÏÂÊ‰Û ı Ë Û. éÒÌÓ‚Ì˚ÏË ËÒÔÓθÁÛÂÏ˚ÏË ‰Îfl ˝ÚÓ„Ó ‡ÒÒÚÓflÌËflÏË fl‚Îfl˛ÚÒfl: – ‡ÒÒÚÓflÌË ˆÂÌÚÓˉ‡, Ú.Â. ͇ژ‡È¯Â ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ËÎË ‡ÒÒÚÓflÌË å‡Ìı˝ÚÚÂ̇ ÏÂÊ‰Û ˆÂÌÚÓˉ‡ÏË (ÔÂÂÒ˜ÂÌËfl ‰Ë‡„Ó̇ÎÂÈ) ı Ë Û; – ‡ÒÒÚÓflÌË ÔÂËÏÂÚ‡, Ú.Â. ͇ژ‡È¯Â ÔflÏÓÛ„ÓθÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÂflÏË ı Ë Û, ÔÓıÓ‰fl˘Â ÚÓθÍÓ ‚‰Óθ ÒÚÂÌ, Ú.Â. ÔÂËÏÂÚÓ‚ ÓÚ‰ÂÎÂÌËÈ.
281
É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
åÂÚË͇ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË åÂÚË͇ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË (ËÎË ÏÂÚË͇ ÒÂÚË) – ÏÂÚË͇ ̇ 2 (ËÎË Ì‡ ÔÓ‰ÏÌÓÊÂÒÚ‚Â 2) ÔË Ì‡Î˘ËË ‰‡ÌÌÓÈ ÒÂÚË, Ú.Â. ÔÎÓÒÍÓ„Ó ‚Á‚¯ÂÌÌÓ„Ó „‡Ù‡ G(V, E). ÑÎfl β·˚ı x, y ∈ 2 ˝ÚÓ fl‚ÎflÂÚÒfl ‚ÂÏÂÌÂÏ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË ÏÂÊ‰Û ı Ë Û ‚ ÔË Ì‡Î˘ËË ÒÂÚË G, Ú.Â. ÔÛÚË, χÍÒËχθÌÓ ÒÓ͇˘‡˛˘Â„Ó ‚ÂÏfl ÔÂÂÏ¢ÂÌËfl ÏÂÊ‰Û ı Ë Û. èÓÒΠÔÓÎÛ˜ÂÌËfl ‰ÓÒÚÛÔ‡ ‚ ÒÂÚ¸ G ‰‡Î ÏÓÊÌÓ ÔÂÂÏ¢‡Ú¸Òfl Ò ÌÂÍÓÚÓÓÈ ÒÍÓÓÒÚ¸˛ v > 1 ‚‰Óθ  ·Â. Ñ‚ËÊÂÌË ‚Ì ÒÂÚË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Â‰ËÌ˘ÌÓÈ ÒÍÓÓÒÚ¸˛ ÓÚÌÓÒËÚÂθÌÓ Á‡‰‡ÌÌÓÈ ÏÂÚËÍË d ̇ ÔÎÓÒÍÓÒÚË (̇ÔËÏÂ, ‚ÍÎˉӂÓÈ ÏÂÚËÍË ËÎË ÏÂÚËÍË å‡Ìı˝ÚÚÂ̇). åÂÚË͇ ‚ÓÁ‰Û¯Ì˚ı Ô‚ÓÁÓÍ ÂÒÚ¸ ÏÂÚËÍÓÈ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË Ì‡ 2 ÔË Ì‡Î˘ËË ÒÂÚË ‡˝ÓÔÓÚÓ‚, Ú.Â. ÔÎÓÒÍÓ„Ó „‡Ù‡ G(V, E) ̇ n ‚¯Ë̇ı (‡˝ÓÔÓÚ‡ı) Ò ÔÓÎÓÊËÚÂθÌ˚ÏË ‚ÂÒ‡ÏË Â·Â (w e)e∈E (‚ÂÏfl ÔÓÎÂÚ‡). ÇÓÈÚË Ë ‚˚ÈÚË ËÁ „‡Ù‡ ÏÓÊÌÓ ÚÓθÍÓ ˜ÂÂÁ ‡˝ÓÔÓÚ˚. Ñ‚ËÊÂÌË ‚Ì ÒÂÚË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Â‰ËÌ˘ÌÓÈ ÒÍÓÓÒÚ¸˛ ÓÚÌÓÒËÚÂθÌÓ Â‚ÍÎˉӂÓÈ ÏÂÚËÍË. è‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ ‰‚ËÊÂÌË ̇ ‡‚ÚÓÏÓ·ËΠÔÓ ‚ÂÏÂÌË ‡‚ÌÓ ÏÂÚËÍ ‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl dE, ÚÓ„‰‡ Í‡Í ÔÓÎÂÚ ‚‰Óθ ·‡ e = uv „‡Ù‡ G Á‡ÈÏÂÚ ‚ÂÏfl we < d E (u, v). Ç ÔÓÒÚÂȯÂÏ ÒÎÛ˜‡Â, ÍÓ„‰‡ ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ô‚ÓÁ͇ ÔÓ ‚ÓÁ‰ÛıÛ ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË a, b ∈ 2, ‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë Û ‡‚ÌÓ min{d E ( x, y), d E ( x, a) + w + d E (b, y), d E ( x, b) + w + d E ( a, y)}, „‰Â w < d2 (a, b) ÂÒÚ¸ ÔÓ‰ÓÎÊËÚÂθÌÓÒÚ¸ ÔÓÎÂÚ‡ ÏÂÊ‰Û a Ë b. åÂÚË͇ „ÓÓ‰‡ – ÏÂÚË͇ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË Ì‡ 2 ÔË Ì‡Î˘ËË ÒÂÚË Ó·˘ÂÒÚ‚ÂÌÌÓ„Ó Ú‡ÌÒÔÓÚ‡, Ú.Â. ÔÎÓÒÍÓ„Ó „‡Ù‡ G Ò „ÓËÁÓÌڇθÌ˚ÏË ËÎË ‚ÂÚË͇θÌ˚ÏË Â·‡ÏË. G ÏÓÊÂÚ ÒÓÒÚÓflÚ¸ ËÁ ÏÌÓ„Ëı Ò‚flÁÌ˚ı ÍÓÏÔÓÌÂÌÚ Ë ÒÓ‰Âʇڸ ˆËÍÎ˚. ä‡Ê‰˚È ÏÓÊÂÚ ÔÓÔ‡ÒÚ¸ ‚ G ‚ β·ÓÈ ÚÓ˜ÍÂ, ·Û‰¸ ÚÓ ‚¯Ë̇ ËÎË Â·Ó (‚ÓÁÏÓÊÌÓ Ì‡Á̇˜ËÚ¸ Ú‡ÍÊÂ Ë ÒÚÓ„Ó ÙËÍÒËÓ‚‡ÌÌ˚ ÚÓ˜ÍË ‚ıÓ‰‡). ÇÌÛÚË G ‰‚ËÊÂÌË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Á‡‰‡ÌÌÓÈ ÒÍÓÓÒÚ¸˛ v > 1 ‚ Ó‰ÌÓÏ ËÁ ‰ÓÒÚÛÔÌ˚ı ̇ԇ‚ÎÂÌËÈ. Ñ‚ËÊÂÌË ‚Ì ÒÂÚË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Â‰ËÌ˘ÌÓÈ ÒÍÓÓÒÚ¸˛ ÓÚÌÓÒËÚÂθÌÓ ÏÂÚËÍË å‡Ìı˝ÚÚÂ̇ (‚ ̇¯ÂÏ ÒÎÛ˜‡Â ÔÓ‰‡ÁÛÏ‚‡ÂÚÒfl ÍÛÔÌ˚È ÒÓ‚ÂÏÂÌÌ˚È „ÓÓ‰ Ò ÔflÏÓÛ„ÓθÌÓÈ Ô·ÌËÓ‚ÍÓÈ ÛÎˈ ÔÓ Ì‡Ô‡‚ÎÂÌËflÏ Ò‚–˛„ Ë ‚ÓÒÚÓÍ–Á‡Ô‡‰). åÂÚË͇ ÏÂÚÓ – ÏÂÚË͇ ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË Ì‡ 2, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ‚‡Ë‡ÌÚÓÏ ÏÂÚËÍË „ÓÓ‰‡: ÏÂÚÓ (‚ ‚ˉ ÎËÌËË Ì‡ ÔÎÓÒÍÓÒÚË) ËÒÔÓθÁÛÂÚÒfl ‰Îfl ÒÓ͇˘ÂÌËfl ıÓ‰¸·˚ Ô¯ÍÓÏ ‚ ԉ·ı „ÓÓ‰ÒÍÓÈ ÒÂÚÍË ÍÓÓ‰Ë̇Ú. èÂËӉ˘ÂÒ͇fl ÏÂÚË͇ åÂÚË͇ d ̇ 2 ̇Á˚‚‡ÂÚÒfl ÔÂËӉ˘ÂÒÍÓÈ, ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú ‰‚‡ ÎËÌÂÈÌÓ ÌÂÁ‡‚ËÒËÏ˚ı ‚ÂÍÚÓ‡ v Ë u, Ú‡ÍË ˜ÚÓ ÔÂÂÌÓÒ ÔÓ Î˛·ÓÏÛ ‚ÂÍÚÓÛ w = mv + nu,m,n ∈ ÒÓı‡ÌflÂÚ ‡ÒÒÚÓflÌËfl, Ú.Â. d ( x, y) = d ( x + w, y + w ) ‰Îfl β·˚ı x, y ∈ 2 (ÒÏ. àÌ‚‡Ë‡ÌÚ̇fl ÏÂÚË͇ ÔÂÂÌÓÒ‡, „Î. 5) 臂Ëθ̇fl ÏÂÚË͇ åÂÚË͇ d ̇ 2 ̇Á˚‚‡ÂÚÒfl Ô‡‚ËθÌÓÈ, ÂÒÎË Ó·Î‡‰‡ÂÚ ÒÎÂ‰Û˛˘ËÏË Ò‚ÓÈÒÚ‚‡ÏË: 1) d ÔÓÓʉ‡ÂÚ Â‚ÍÎË‰Ó‚Û ÚÓÔÓÎӄ˲; 2) d-ÓÍÛÊÌÓÒÚË Ó„‡Ì˘ÂÌ˚ ÓÚÌÓÒËÚÂθÌÓ Â‚ÍÎˉӂÓÈ ÏÂÚËÍË; 3) ÂÒÎË x, y ∈ 2 Ë x ≠ y, ÚÓ ÒÛ˘ÂÒÚ‚ÛÂÚ ÚӘ͇ z, z ≠ x, z ≠ y, ڇ͇fl ˜ÚÓ ‚˚ÔÓÎÌflÂÚÒfl ‡‚ÂÌÒÚ‚Ó d ( x, y) = d ( x, z ) + d ( z, y); 4) ÂÒÎË x, y ∈ 2, x p y („‰Â p ÙËÍÒËÓ‚‡ÌÌ˚È ÔÓfl‰ÓÍ Ì‡ 2, ̇ÔËÏÂ, ÎÂÍÒËÍÓ„‡Ù˘ÂÒÍËÈ ÔÓfl‰ÓÍ), C( x, y) = {z ∈ 2 : d ( x, z ) ≤ d ( y, z )},
D( x, y) = {z ∈ 2 : d ( x,
282
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
z ) < d ( y, z )} Ë D( x, y) – Á‡Ï˚͇ÌË D(x,y), ÚÓ J ( x, y) = C( x, y) ∩ D( x, y) ÂÒÚ¸ ÍË‚‡fl, „ÓÏÂÓÏÓÙ̇fl (0,1). èÂÂÒ˜ÂÌË ‰‚Ûı Ú‡ÍËı ÍË‚˚ı ÒÓÒÚÓËÚ ËÁ ÍÓ̘ÌÓ„Ó ˜ËÒ· ÏÌÓ„Ëı Ò‚flÁÌ˚ı ÍÓÏÔÓÌÂÌÚ. ä‡Ê‰‡fl ÏÂÚË͇ ÌÓÏ˚ ËÏÂÂÚ Ò‚ÓÈÒÚ‚‡ 1., 2. Ë 3. ë‚ÓÈÒÚ‚Ó 2. ÓÁ̇˜‡ÂÚ, ˜ÚÓ ÏÂÚË͇ d fl‚ÎflÂÚÒfl ÌÂÔÂ˚‚ÌÓÈ ‚ ·ÂÒÍÓ̘ÌÓÒÚË ÓÚÌÓÒËÚÂθÌÓ Â‚ÍÎˉӂÓÈ ÏÂÚËÍË. ë‚ÓÈÒÚ‚ÓÏ 4. Ó·ÂÒÔ˜˂‡ÂÚÒfl, ˜ÚÓ „‡Ìˈ˚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó fl‚Îfl˛ÚÒfl ÍË‚˚ÏË Ë ˜ÚÓ Ì ÒÎ˯ÍÓÏ ÏÌÓ„Ó ÔÂÂÒ˜ÂÌËÈ ÒÛ˘ÂÒÚ‚Ó‚ÛÂÚ ‚ ÓÍÂÒÚÌÓÒÚË ÚÓ˜ÍË ËÎË ‚ ·ÂÒÍÓ̘ÌÓÒÚË. 臂Ëθ̇fl ÏÂÚË͇ d ËÏÂÂÚ Ô‡‚ËθÌÛ˛ ‰Ë‡„‡ÏÏÛ ÇÓÓÌÓ„Ó: ‚ ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó V ( P, d , 2 ) („‰Â P = {p1 , …, pk }, k ≥ 2 – ÏÌÓÊÂÒÚ‚Ó „Â̇ÚÓÓ‚) ͇ʉ‡fl ӷ·ÒÚ¸ ÇÓÓÌÓ„Ó V(pi) fl‚ÎflÂÚÒfl ÔÛÚ¸-Ò‚flÁÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ Ò ÌÂÔÛÒÚÓÈ ‚ÌÛÚÂÌÌÓÒÚ¸˛, ‡ ÒËÒÚÂχ {V ( pi ), …, V ( pk )} Ó·‡ÁÛÂÚ ‡Á·ËÂÌË ÔÎÓÒÍÓÒÚË. 䂇ÁˇÒÒÚÓflÌËfl ÍÓÌÚ‡ÍÚ‡ 䂇ÁˇÒÒÚÓflÌËfl ÍÓÌÚ‡ÍÚ‡ Ô‰ÒÚ‡‚Îfl˛Ú ÒÓ·ÓÈ ÒÎÂ‰Û˛˘Ë ‚‡Ë‡ÌÚ˚ ‚˚ÔÛÍÎÓÈ ÙÛÌ͈ËË ‡ÒÒÚÓflÌËfl (ÒÏ. „Î. 1), ÓÔ‰ÂÎÂÌÌÓÈ Ì‡ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ̇ n). ÑÎfl ÏÌÓÊÂÒÚ‚‡ B ⊂ 2 Í‚‡ÁˇÒÒÚÓflÌË ÔÂ‚Ó„Ó ÍÓÌÚ‡ÍÚ‡ dB ÓÔ‰ÂÎflÂÚÒfl Í‡Í inf{α > 0 : y − x ∈ α B} (ÒÏ. ê‡ÒÒÚÓflÌËfl ÒÂÚË ÒÂÌÒÓÌ˚ı ‰‡Ú˜ËÍÓ‚, „Î. 28). ÅÓΠÚÓ„Ó, ‰Îfl ÚÓ˜ÍË b ∈ B Ë ÏÌÓÊÂÒÚ‚‡ A ⊂ 2 Í‚‡ÁˇÒÒÚÓflÌËÂÏ ÎËÌÂÈÌÓ„Ó ÍÓÌÚ‡ÍÚ‡ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í db ( x, A) = inf{α ≥ 0 : αb + x ∈ A}. 䂇ÁˇÒÒÚÓflÌË ÔÂÂı‚‡Ú‡ ‰Îfl ÍÓ̘ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ Ç ÓÔ‰ÂÎflÂÚÒfl Í‡Í db ( x , y )
∑
b ∈B
| B|
.
чθÌÓÒÚ¸ ‡ÒÔÓÁ̇‚‡ÌËfl ‡‰‡‡ чθÌÓÒÚ¸ ‡ÒÔÓÁ̇‚‡ÌËfl ‡‰‡‡ – ‡ÒÒÚÓflÌË ̇ 2, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í | ρ x − ρ y + θ xy |, ÂÒÎË x, y ∈ 2 \ {0}, Ë Í‡Í | ρ x − ρ y |, ÂÒÎË x = 0 ËÎË y = 0, „‰Â ‰Îfl ͇ʉÓÈ "ÎÓ͇ˆËË" x ∈ 2 ρ x – ‡‰Ë‡Î¸ÌÓ ‡ÒÒÚÓflÌË ı ÓÚ Ì‡˜‡Î‡ ÍÓÓ‰Ë̇Ú, Ë ‰Îfl β·˚ı x, y ∈ 2 \{0} θ xy – Û„ÓÎ ÏÂÊ‰Û ÌËÏË (‚ ‡‰Ë‡Ì‡ı)˛ èÓÎÛÏÂÚË͇ ùÂÌÙfiıÚ‡–ï‡ÛÒ· èÛÒÚ¸ S – ·Û‰ÂÚ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó 2, Ú‡Í ˜ÚÓ x1 ≥ x 2 − 1 ≥ 0 ‰Îfl β·Ó„Ó x ∈ S. èÓÎÛÏÂÚË͇ ùÂÌÙfiıÚ‡–ï‡ÛÒ· ([EhHa88]) ̇ S ÓÔ‰ÂÎflÂÚÒfl Í‡Í x y log 2 1 + 1 1 . x 2 + 1 y2
É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
283
íÓÓˉ‡Î¸Ì‡fl ÏÂÚË͇ íÓÓˉ‡Î¸Ì‡fl ÏÂÚË͇ – ÏÂÚË͇ ̇ ÚÂΠT = [0, 1) × [0, 1) = {x ∈ 2 : 0 ≤ x1 , x 2 < 1}, ÓÔ‰ÂÎÂÌ̇fl Í‡Í t12 + t22 ‰Îfl β·˚ı x, y ∈ 2, „‰Â ti = min{| xi − yi |, | xi − yi + 1 |} ‰Îfl i = 1,2 (ÒÏ. åÂÚË͇ ÚÓ‡). åÂÚË͇ ÓÍÛÊÌÓÒÚË åÂÚË͇ ÓÍÛÊÌÓÒÚË – ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ‰ËÌ˘ÌÓÈ ÓÍÛÊÌÓÒÚË S1 Íۄ ̇ ÔÎÓÒÍÓÒÚË. èÓÒÍÓθÍÛ S1 = {( x, y) : x 2 + y 2 = 1} = {e iθ : 0 ≤ θ < 2 π}, ˝Ú‡ ÏÂÚË͇ ‰ÎËÌÓÈ Í‡Ú˜‡È¯ÂÈ ËÁ ‰‚Ûı ‰Û„, ÒÓ‰ËÌfl˛˘Ëı ÚÓ˜ÍË e iθ , e iϑ ∈ S1 , Ë ÏÓÊÂÚ ·˚Ú¸ Á‡ÔË҇̇ Í‡Í ÂÒÎË 0 ≤ | θ − ϑ | ≤ π, | θ − ϑ |, min{| θ − ϑ}, 2 π − | θ − ϑ |} = 2 π − | ϑ − θ |, ÂÒÎË | ϑ − θ | > π (ÒÏ. åÂÚË͇ ÏÂÊ‰Û Û„Î‡ÏË). ì„ÎÓ‚Ó ‡ÒÒÚÓflÌË ì„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÔÓ ÓÍÛÊÌÓÒÚË ÍÛ„‡ fl‚ÎflÂÚÒfl ˜ËÒÎÓÏ ‡‰Ë‡Ì, ÔÓȉÂÌÌ˚ı ÔÛÚÂÏ, Ú.Â. l θ= , r „‰Â l – ‰ÎË̇ ÔÛÚË Ë r – ‡‰ËÛÒ ÓÍÛÊÌÓÒÚË. åÂÚË͇ ÏÂÊ‰Û Û„Î‡ÏË åÂÚËÍÓÈ ÏÂÊ‰Û Û„Î‡ÏË Λ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı Û„ÎÓ‚ ÔÎÓÒÍÓÒÚË, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ÂÒÎË 0 ≤ | ϑ − θ | ≤ π, | ϑ − θ |, min{| θ − ϑ}, 2 π − | θ − ϑ |} = 2 π − | ϑ − θ |, ÂÒÎË | ϑ − θ | > π ‰Îfl β·˚ı θ, ϑ ∈ [0, 2π) (ÒÏ. åÂÚË͇ ÍÛ„‡). åÂÚË͇ ÏÂÊ‰Û Ì‡Ô‡‚ÎÂÌËflÏË ç‡ ÔÎÓÒÍÓÒÚË 2 ̇ԇ‚ÎÂÌË lˆ ÂÒÚ¸ Í·ÒÒ ‚ÒÂı ÔflÏ˚ı, Ô‡‡ÎÎÂθÌ˚ı ‰‡ÌÌÓÈ ÔflÏÓÈ l ⊂ 2 . åÂÚËÍÓÈ ÏÂÊ‰Û Ì‡Ô‡‚ÎÂÌËflÏË Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı ̇ԇ‚ÎÂÌËÈ ÔÎÓÒÍÓÒÚË, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı ̇ԇ‚ÎÂÌËÈ lˆ, mˆ ∈ Í‡Í Û„ÓÎ ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl Ëı Ô‰ÒÚ‡‚ËÚÂÎflÏË. 䂇ÁËÏÂÚË͇ ÍÓθˆÂ‚ÓÈ ÊÂÎÂÁÌÓÈ ‰ÓÓ„Ë ä‚‡ÁËÏÂÚËÍÓÈ ÍÓθˆÂ‚ÓÈ ÊÂÎÂÁÌÓÈ ‰ÓÓ„Ë Ì‡Á˚‚‡ÂÚÒfl Í‚‡ÁËÏÂÚË͇ ̇ ‰ËÌ˘ÌÓÈ ÓÍÛÊÌÓÒÚË S1 ⊂ 2, ÓÔ‰ÂÎÂÌ̇fl ‰Îfl β·˚ı x,y ∈ S1 Í‡Í ‰ÎË̇ ‰Û„Ë ÓÍÛÊÌÓÒÚË ÔÓÚË‚ ˜‡ÒÓ‚ÓÈ ÒÚÂÎÍË ÓÚ ı Í Û. àÌ‚ÂÒË‚ÌÓ ‡ÒÒÚÓflÌË àÌ‚ÂÒË‚ÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÌÂÔÂÂÒÂ͇˛˘ËÏËÒfl ÍÛ„‡ÏË Ì‡ ÔÎÓÒÍÓÒÚË ÓÔ‰ÂÎflÂÚÒfl Í‡Í Ì‡ÚۇθÌ˚È ÎÓ„‡ËÙÏ ˜‡ÒÚÌÓ„Ó ‡‰ËÛÒÓ‚ (·Óθ¯Â„Ó Ë ÏÂ̸-
284
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
¯Â„Ó) ‰‚Ûı ÍÓ̈ÂÌÚ˘ÂÒÍËı ÍÛ„Ó‚, ‚ ÍÓÚÓ˚ ‰‡ÌÌ˚ ÍÛ„Ë ÏÓ„ÛÚ ·˚Ú¸ ËÌ‚ÂÒËÓ‚‡Ì˚. èÛÒÚ¸ Ò – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆÂÌÚ‡ÏË ‰‚Ûı ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÍÛ„Ó‚ Ò ‡‰ËÛÒ‡ÏË ‡ Ë ‚, b < a. íÓ„‰‡ Ëı ËÌ‚ÂÒË‚ÌÓ ‡ÒÒÚÓflÌË Á‡‰‡ÂÚÒfl Í‡Í cosh −1
a2 + b2 − c2 . 2 ab
éÔËÒ‡Ì̇fl ÓÍÛÊÌÓÒÚ¸ Ë ‚ÔËÒ‡Ì̇fl ÓÍÛÊÌÓÒÚ¸ ÚÂÛ„ÓθÌË͇ Ò ‡‰ËÛÒÓÏ ÓÔËÒ‡ÌÌÓÈ ÓÍÛÊÌÓÒÚË R Ë ‡‰ËÛÒÓÏ ‚ÔËÒ‡ÌÌÓÈ ÓÍÛÊÌÓÒÚË Ì‡ıÓ‰flÚÒfl ̇ ËÌ‚ÂÒË‚ÌÓÏ 1 r ‡ÒÒÚÓflÌËË 2 sinh −1 . 2 R àÏÂfl ÚË ÌÂÍÓÎÎË̇Ì˚ı ÚÓ˜ÍË, ÔÓÒÚÓËÏ ÚË ÔÓÔ‡ÌÓ Í‡Ò‡˛˘ËÂÒfl ÓÍÛÊÌÓÒÚË Ò ˆÂÌÚ‡ÏË ‚ Û͇Á‡ÌÌ˚ı ÚӘ͇ı. Ç ˝ÚÓÏ ÒÎÛ˜‡Â ÒÛ˘ÂÒÚ‚Û˛Ú ÚÓ˜ÌÓ ‰‚ ÌÂÔÂÂÒÂ͇˛˘ËÂÒfl ÓÍÛÊÌÓÒÚË, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ͇҇ÚÂθÌ˚ÏË ‰Îfl ‚ÒÂı ÚÂı ÓÍÛÊÌÓÒÚÂÈ. éÌË Ì‡Á˚‚‡˛ÚÒfl ‚ÌÛÚÂÌÌËÏ Ë Ì‡ÛÊÌ˚Ï ÍÛ„‡ÏË ëÓ‰‰Ë. àÌ‚ÂÒË‚ÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÍÛ„‡ÏË ëÓ‰‰Ë ‡‚ÌÓ 2cosh –12. 19.2. åÖíêàäà çÄ ñàîêéÇéâ èãéëäéëíà çËÊ Ô˜ËÒÎfl˛ÚÒfl ÏÂÚËÍË, ÍÓÚÓ˚ ÔËÏÂÌfl˛ÚÒfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÏ ÁÂÌËË (ËÎË ‡ÒÔÓÁ̇‚‡ÌËË Ó·‡ÁÓ‚, ÒËÒÚÂχı ÚÂıÌ˘ÂÒÍÓ„Ó ÁÂÌËfl Ó·ÓÚ‡, ˆËÙÓ‚ÓÈ „ÂÓÏÂÚËË). 凯ËÌÌÓ ËÁÓ·‡ÊÂÌË (ËÎË ÍÓÏÔ¸˛ÚÂÌÓ ËÁÓ·‡ÊÂÌËÂ) – ÔÓ‰ÏÌÓÊÂÒÚ‚Ó n , ̇Á˚‚‡ÂÏÓ„Ó ˆËÙÓ‚˚Ï nD ÔÓÒÚ‡ÌÒÚ‚ÓÏ. é·˚˜ÌÓ ËÁÓ·‡ÊÂÌËfl Ô‰ÒÚ‡‚Îfl˛ÚÒfl ̇ ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚË (ËÎË ÔÎÓÒÍÓÒÚË Ó·‡ÁÓ‚) 2 ËÎË ‚ ˆËÙÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (ËÎË ÔÓÒÚ‡ÌÒÚ‚Â Ó·‡ÁÓ‚) 3. íÓ˜ÍË n ̇Á˚‚‡˛ÚÒfl ÔËÍÒÂÎflÏË. ñËÙÓ‚Ó nD m-Í‚‡ÌÚÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÂÒÚ¸ ¯Í‡ÎËÓ‚‡ÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó 1 n . m ñËÙÓ‚‡fl ÏÂÚË͇ (ÒÏ., ̇ÔËÏÂ, [RoPf68]) – β·‡fl ÏÂÚË͇ ̇ ˆËÙÓ‚ÓÏ nD ÔÓÒÚ‡ÌÒÚ‚Â. é·˚˜ÌÓ Ó̇ ˆÂÎÓ˜ËÒÎÂÌ̇. éÒÌÓ‚Ì˚ÏË ËÒÔÓθÁÛÂÏ˚ÏË ÏÂÚË͇ÏË Ì‡ n fl‚Îfl˛ÚÒfl l1 - Ë l∞-ÏÂÚËÍË, ‡ Ú‡ÍÊ l2 -ÏÂÚË͇, ÓÍÛ„ÎÂÌÌ˚ ‰Ó ·ÎËÊ‡È¯Â„Ó ÒÔ‡‚‡ (ËÎË Ò΂‡) ˆÂÎÓ„Ó. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â, ÂÒÎË Á‡‰‡Ú¸ Ô˜Â̸ ÒÓÒ‰ÌÂÈ ÔËÍÒÂÎfl, ÚÓ ÏÂÚËÍÛ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í Ô˜Â̸ ÔÓ¯‡„Ó‚˚ı ‰‚ËÊÂÌËÈ Ì‡ 2 . ëÓÔÓÒÚ‡‚ËÏ ÔÓÒÚÓ ‡ÒÒÚÓflÌËÂ, Ú.Â. ÔÓÎÓÊËÚÂθÌ˚È ‚ÂÒ, ͇ʉÓÏÛ ÚËÔÛ Ú‡ÍËı ‰‚ËÊÂÌËÈ. íÂÔ¸ ÏÌÓ„Ë ˆËÙÓ‚˚ ÏÂÚËÍË ÏÓÊÌÓ ÔÓÎÛ˜ËÚ¸ Í‡Í ÏËÌËÏÛÏ (ÔÓ ‚ÒÂÏ ‚ÓÁÏÓÊÌ˚Ï ÔÛÚflÏ, Ú.Â. ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏ ‰ÓÔÛÒÚËÏ˚ı ‰‚ËÊÂÌËÈ) ÒÛÏÏ˚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ÔÓÒÚ˚ı ‡ÒÒÚÓflÌËÈ. ç‡ Ô‡ÍÚËÍ ‚ÏÂÒÚÓ ÔÓÎÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ n ‡ÒÒχÚË‚‡ÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ( m ) n = {0, 1, …, m − 1}n . ( m )2 Ë ( m )3 ̇Á˚‚‡˛ÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ m-„ËÎÂÏ Ë mÒÚÂηÊÓÏ ÒÚÛÍÚÛÓÈ. ç‡Ë·ÓΠ˜‡ÒÚÓ ËÒÔÓθÁÛÂÏ˚ÏË ÏÂÚË͇ÏË Ì‡ ( m ) n fl‚Îfl˛ÚÒfl ı˝ÏÏËÌ„Ó‚‡ ÏÂÚË͇ Ë ÏÂÚË͇ ãË. åÂÚË͇ „ˉ˚ åÂÚËÍÓÈ „ˉ˚ ̇Á˚‚‡ÂÚÒfl l1 -ÏÂÚË͇ ̇ n . l1 -ÏÂÚËÍÛ Ì‡ n ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÂÚËÍÛ ÔÛÚË ·ÂÒÍÓ̘ÌÓ„Ó „‡Ù‡: ‰‚ ÚÓ˜ÍË n fl‚Îfl˛ÚÒfl ÒÏÂÊÌ˚ÏË, ÂÒÎË Ëı l1 -‡ÒÒÚÓflÌË ‡‚ÌÓ Â‰ËÌˈÂ. ÑÎfl 2 ‰‡ÌÌ˚È „‡Ù fl‚ÎflÂÚÒfl Ó·˚˜ÌÓÈ
É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
285
„ˉÓÈ (ÒÂÚÍÓÈ ÍÓÓ‰Ë̇Ú). èÓÒÍÓθÍÛ Í‡Ê‰‡fl ÚӘ͇ ËÏÂÂÚ ÚÓ˜ÌÓ ˜ÂÚ˚ ·ÎËʇȯËı ÒÓÒ‰‡ ‚ 2 ‰Îfl l1 -ÏÂÚËÍË, ÚÓ Â ̇Á˚‚‡˛Ú Ú‡ÍÊ 4-ÏÂÚËÍÓÈ . ÑÎfl n = 2 ‰‡Ì̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl ÒÛÊÂÌËÂÏ Ì‡ 2 ÏÂÚËÍË „ÓÓ‰ÒÍÓ„Ó Í‚‡Ú‡Î‡, ÍÓÚÓÛ˛ ̇Á˚‚‡˛Ú Ú‡ÍÊ ÏÂÚËÍÓÈ Ú‡ÍÒË, ÔflÏÓÛ„ÓθÌÓÈ ÏÂÚËÍÓÈ ËÎË ÏÂÚËÍÓÈ å‡Ìı˝ÚÚÂ̇. åÂÚË͇ ¯ÂÚÍË åÂÚËÍÓÈ Â¯ÂÚÍË Ì‡Á˚‚‡ÂÚÒfl l∞-ÏÂÚË͇ ̇ n . l ∞-ÏÂÚËÍÛ Ì‡ n ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÂÚËÍÛ ÔÛÚË ·ÂÒÍÓ̘ÌÓ„Ó „‡Ù‡: ‰‚ ÚÓ˜ÍË n fl‚Îfl˛ÚÒfl ÒÏÂÊÌ˚ÏË, ÂÒÎË Ëı l∞-‡ÒÒÚÓflÌË ‡‚ÌÓ Â‰ËÌˈÂ. ÑÎfl 2 ÒÏÂÊÌÓÒÚ¸ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ıÓ‰Û ÍÓÓÎfl, ‚ ÚÂÏË̇ı ¯‡ıχÚ, Ë Ú‡ÍÓÈ „‡Ù ̇Á˚‚‡ÂÚÒfl l∞-„ˉÓÈ, ‡ ҇χ ÏÂÚË͇ ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ ÏÂÚËÍÓÈ ¯‡ıχÚÌÓÈ ‰ÓÒÍË, ÏÂÚËÍÓÈ ıÓ‰‡ ÍÓÓÎfl ËÎË ÏÂÚËÍÓÈ ÍÓÓÎfl. í‡Í Í‡Í Í‡Ê‰‡fl ÚӘ͇ ËÏÂÂÚ ÚÓ˜ÌÓ ‚ÓÒÂϸ ·ÎËʇȯËı ÒÓÒ‰ÂÈ ‚ 2 ‰Îfl l∞ÏÂÚËÍË, Ó̇ ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ 8-ÏÂÚËÍÓÈ. чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl ÒÛÊÂÌËÂÏ Ì‡ n ÏÂÚËÍË ó·˚¯Â‚‡, ÍÓÚÓÛ˛ Ú‡ÍÊ ̇Á˚‚‡˛Ú sup ÏÂÚËÍÓÈ ËÎË ‡‚ÌÓÏÂÌÓÈ ÏÂÚËÍÓÈ. òÂÒÚËÛ„Óθ̇fl ÏÂÚË͇ òÂÒÚËÛ„ÓθÌÓÈ ÏÂÚËÍÓÈ Ì‡Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2 Ò Â‰ËÌ˘ÌÓÈ ÒÙÂÓÈ S1 (x) (Ò ˆÂÌÚÓÏ ‚ ÚӘ͠x ∈ 2 ), ÓÔ‰ÂÎÂÌÌÓÈ Í‡Í S1 ( x ) = Sl11 ( x ) ∪ {( x1 − 1, x 2 − 1), ( x1 − 1, x 2 + 1)} ‰Îfl ı ˜ÂÚÌÓ„Ó (Ú.Â. Ò ˜ÂÚÌ˚Ï x 2 ) Ë Í‡Í S1 ( x ) = Sl11 ( x ) ∪ {( x1 + 1, x 2 − 1), ( x1 + 1, x 2 + 1)} ‰Îfl ı ̘ÂÚÌÓ„Ó (Ú.Â. Ò Ì˜ÂÚÌ˚Ï x 2 ). èÓÒÍÓθÍÛ Î˛·‡fl ‰ËÌ˘̇fl ÒÙ‡ S1 (x) ÒÓ‰ÂÊËÚ ÚÓ˜ÌÓ ¯ÂÒÚ¸ ˆÂÎÓ˜ËÒÎÂÌÌ˚ı ÚÓ˜ÂÍ, ¯ÂÒÚËÛ„Óθ̇fl ÏÂÚË͇ ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ 6-ÏÂÚËÍÓÈ ([LuRo76]). ÑÎfl β·˚ı x, y ∈ 2 Ó̇ ÏÓÊÂÚ ·˚Ú¸ Á‡ÔË҇̇ Í‡Í x + 1 y2 + 1 1 − − u1 , max | u2 |, (| u2 | +u2 ) + 2 2 2 2 x + 1 y2 + 1 1 (| u2 | −u2 ) − 2 + + u1 . 2 2 2 „‰Â u1 = x1–y1 Ë u2 = x2–y2. òÂÒÚËÛ„Óθ̇fl ÏÂÚË͇ ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂ̇ Í‡Í ÏÂÚË͇ ÔÛÚË Ì‡ ¯ÂÒÚËÛ„ÓθÌÓÈ „ˉ ÔÎÓÒÍÓÒÚË. Ç ¯ÂÒÚËÛ„ÓθÌ˚ı ÍÓÓ‰Ë̇ڇı (h1 , h2 ) („‰Â h1 - Ë h2 ÓÒË Ô‡‡ÎÎÂθÌ˚ ·‡Ï „ˉ˚) ¯ÂÒÚËÛ„ÓθÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚӘ͇ÏË (h1 , h2) Ë (i1 , i2 ) ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í | h1 − i1 | + | h2 − i2 |, ÂÒÎË (h1 − i1 )(h2 − i2 ) ≥ 0, Ë Í‡Í max{| h1 − i1 |, | h2 − i2 |}, ÂÒÎË (h1 − i1 ) (h2 − i2 ) ≤ 0. á‰ÂÒ¸ ¯ÂÒÚËÛ„ÓθÌ˚ ÍÓÓ‰Ë̇Ú˚ (h1 , h2 ) ÚÓ˜ÍË ı ÒÓÓÚÌÓÒflÚÒfl Ò Ëı ÔflÏÓÛ„ÓθÌ˚ÏË ‰Â͇ÚÓ‚˚ÏË ÍÓÓ‰Ë̇ڇÏË x x + 1 (x 1 , x 2 ) Í‡Í h1 = x1 − 2 , h2 = x2 ‰Îfl ı ˜ÂÚÌÓ„Ó Ë Í‡Í h1 − = x1 − 2 , h2 = x2 ‰Îfl ı 2 2 ̘ÂÚÌÓ„Ó. òÂÒÚËÛ„Óθ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl ÎÛ˜¯ÂÈ, ˜ÂÏ l1 -ÏÂÚË͇ ËÎË l∞-ÏÂÚË͇, ‡ÔÔÓÍÒËχˆËÂÈ Â‚ÍÎˉӂÓÈ ÏÂÚËÍË. åÂÚË͇ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÒÓÒ‰ÒÚ‚‡ ç‡ ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚË 2 ‡ÒÒÏÓÚËÏ ‰‚‡ ÚËÔ‡ ‰‚ËÊÂÌËÈ: ‰‚ËÊÂÌË „ÓÓ‰ÒÍÓ„Ó Í‚‡Ú‡Î‡, „‰Â ‡Á¯ÂÌ˚ ÚÓθÍÓ „ÓËÁÓÌڇθÌ˚ ËÎË ‚ÂÚË͇θÌ˚ ̇ԇ‚ÎÂÌËfl,
286
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
Ë ‰‚ËÊÂÌË ¯‡ıχÚÌÓÈ ‰ÓÒÍË, „‰Â ‡Á¯‡˛ÚÒfl Ú‡ÍÊ ÔÂÂÏ¢ÂÌËfl ÔÓ ‰Ë‡„Ó̇ÎË. àÒÔÓθÁÓ‚‡ÌË ‰‚Ûı ˝ÚËı ÚËÔÓ‚ ‰‚ËÊÂÌËÈ ÓÔ‰ÂÎflÂÚÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ ÒÓÒ‰ÒÚ‚‡ B = {b(1), b(2), …, b(l )}, „‰Â b(i ) ∈{1, 2} fl‚ÎflÂÚÒfl ÒÔˆˇθÌ˚Ï ÚËÔÓÏ ÒÓÒ‰ÒÚ‚‡: b(i) = 1 Ó·ÓÁ̇˜‡ÂÚ ËÁÏÂÌÂÌË ӷ˙ÂÍÚ‡ ‚ Ó‰ÌÓÈ ÍÓÓ‰Ë̇Ú (ÒÓÒ‰ÒÚ‚Ó „ÓÓ‰ÒÍÓ„Ó Í‚‡Ú‡Î‡), ‡ b(i) = 2 Ó·ÓÁ̇˜‡ÂÚ ËÁÏÂÌÂÌË ӷ˙ÂÍÚ‡ Ú‡ÍÊ ‚ ‰‚Ûı ÍÓÓ‰Ë̇ڇı (ÒÓÒ‰ÒÚ‚Ó ¯‡ıχÚÌÓÈ ‰ÓÒÍË). èÓÒΉӂ‡ÚÂθÌÓÒÚ¸ Ç ÓÔ‰ÂÎflÂÚ ÚËÔ ‰‚ËÊÂÌËfl, ÍÓÚÓÓ ·Û‰ÂÚ ÔËÏÂÌflÚ¸Òfl ̇ ͇ʉÓÏ ˝Ú‡Ô (ÒÏ. [Das90]). åÂÚË͇ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÒÓÒ‰ÒÚ‚‡ – ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ‰ÎË̇ ͇ژ‡È¯Â„Ó ÔÛÚË ÏÂÊ‰Û ı Ë y ∈ 2 , Á‡‰‡‚‡ÂÏÓ„Ó ÍÓÌÍÂÚÌÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ ÒÓÒ‰ÒÚ‚‡ Ç. Ö ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í max{d 1B (u), d B2 (u)}, | u1 | + | u2 | + g( j ) , f (l ) j =1 l
„‰Â u1 = x1 − y1 , u2 = x 2 − y2 , d 1B (u) = max{| u1 |,| u2 |}, d B2 (u) =
∑
i
f (0) = 0,
f (i )
∑ b( j ),
1 ≤ i ≤ l, g( j ) = f (l ) − f ( j − 1) − 1, 1 ≤ j ≤ l.
j =1
ÑÎfl B = {1} ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ „ÓÓ‰ÒÍÓ„Ó Í‚‡Ú‡Î‡, ‰Îfl B = {2} ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ ¯‡ıχÚÌÓÈ ‰ÓÒÍË. ëÎÛ˜‡È B = {1, 2}, Ú.Â. ‡Î¸ÚÂ̇ÚË‚ÌÓ ËÒÔÓθÁÓ‚‡ÌË ˝ÚËı Ô‰‚ËÊÂÌËÈ, ‰‡ÂÚ ‚ÓÒ¸ÏËÛ„ÓθÌÛ˛ ÏÂÚËÍÛ (ÒÏ. [RoPf68]). 臂ËθÌ˚È ‚˚·Ó Ç-ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÏÓÊÂÚ ÔÓ‰‚ÂÒÚË ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Û˛ ÏÂÚËÍÛ ‚ÂҸχ ·ÎËÁÍÓ Í Â‚ÍÎˉӂÓÈ ÏÂÚËÍÂ. é̇ ‚Ò„‰‡ ·Óθ¯Â, ˜ÂÏ ‡ÒÒÚÓflÌË ¯‡ıχÚÌÓÈ ‰ÓÒÍË, ÌÓ ÏÂ̸¯Â, ˜ÂÏ ‡ÒÒÚÓflÌË „ÓÓ‰ÒÍÓ„Ó Í‚‡Ú‡Î‡. åÂÚË͇ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË nD-ÒÓÒ‰ÒÚ‚‡ åÂÚËÍÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË nD-ÒÓÒ‰ÒÚ‚‡ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ n , ÓÔ‰ÂÎÂÌ̇fl Í‡Í ‰ÎË̇ ͇ژ‡È¯Â„Ó ÔÛÚË ÏÂÊ‰Û x Ë y ∈ n , Á‡‰‡‚‡ÂÏÓ„Ó ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ nD-ÒÓÒ‰ÒÚ‚‡ Ç (ÒÏ. [Faze99]). îÓχθÌÓ ‰‚ ÚÓ˜ÍË x, y ∈ n ̇Á˚‚‡˛ÚÒfl m-ÒÓÒ‰flÏË, 0 ≤ m ≤ n, ÂÒÎË n
0 ≤ | xi − y1 |≤ 1, 1 ≤ i ≤ n, Ë
∑ | xi − yi | ≤ m. äÓ̘̇fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸
B = {b(1),
i =1
…, b(l )}, b(i ) ∈{1, 2, …, n} ̇Á˚‚‡ÂÚÒfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ nD-ÒÓÒ‰ÒÚ‚‡ Ò ÔÂËÓn ‰ÓÏ l. ÑÎfl β·˚ı x, y ∈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÚÓ˜ÂÍ x = x0 , x 1 ,…, xk = y, „‰Â xi Ë xi+1, fl‚Îfl˛ÚÒfl r-ÒÓÒ‰flÏË, r = b((i mod l)+1), ̇Á˚‚‡ÂÚÒfl ÔÛÚÂÏ ‰ÎËÌ˚ R ÓÚ ı 0 ≤ i ≤ k −1 Í Û, Á‡‰‡ÌÌ˚Ï Ò ÔÓÏÓ˘¸˛ Ç. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë Û ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í l
max di (u) ⊂ di (u) =
1≤ i ≤ n
∑ j =1
ai + gi ( j ) , fi (l )
„‰Â u = (| u1 |,| u2 |, …,| un |) fl‚ÎflÂÚÒfl Ì‚ÓÁ‡ÒÚ‡˛˘ÂÈ ÛÔÓfl‰Ó˜ÂÌÌÓÒÚ¸˛ | um |, um = = x m − ym , m = 1, …, n, Ú.Â. | ui | ≤ | u j |, ÂÒÎË i < j; ai =
n − i +1
∑ uj ;
bi ( j ) = b( j ), ÂÒÎË b( j ) <
j =1
j
< n − i + 2, Ë ‡‚ÌÓ n − i + 1, , Ë̇˜Â; fi ( j ) = j = 0; gi ( j ) = f1 (l ) − fi ( j − 1) − 1, 1 ≤ j ≤ l.
∑ bi (k ), ÂÒÎË 1 ≤ j ≤ l, Ë ‡‚ÌÓ 0, ÂÒÎË k =1
É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
287
→→ → →
→
→ → → →
→ → → →
→
→
→
→
→
→ →
åÌÓÊÂÒÚ‚Ó ÏÂÚËÍ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË 3D-ÒÓÒ‰ÒÚ‚‡ Ó·‡ÁÛÂÚ ÔÓÎÌÛ˛ ‰ËÒÚË·ÛÚË‚ÌÛ˛ ¯ÂÚÍÛ ÓÚÌÓÒËÚÂθÌÓ ÂÒÚÂÒÚ‚ÂÌÌÓ„Ó Ò‡‚ÌÂÌËfl. чÌ̇fl ÒÚÛÍÚÛ‡ Ë„‡ÂÚ ‚‡ÊÌÛ˛ Óθ ‚ ‡ÔÔÓÍÒËÏËÓ‚‡ÌËË Â‚ÍÎˉӂÓÈ ÏÂÚËÍË ˆËÙÓ‚˚ÏË ÏÂÚË͇ÏË. åÂÚË͇, ÔÓÓʉÂÌ̇fl ÔÛÚÂÏ ê‡ÒÒÏÓÚËÏ l∞-„ˉÛ, Ú.Â. „‡Ù Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ 2 , ‚ ÍÓÚÓÓÏ ‰‚ ‚¯ËÌ˚ fl‚Îfl˛ÚÒfl ÒÓÒ‰ÌËÏË, ÂÒÎË Ëı l∞-‡ÒÒÚÓflÌË ‡‚ÌÓ Â‰ËÌˈÂ. èÛÒÚ¸ – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÛÚÂÈ ‚ l∞-„ˉÂ, ڇ͇fl ˜ÚÓ ‰Îfl β·˚ı x, y ∈ 2 ÒÛ˘ÂÒÚ‚ÛÂÚ ÔÓ Í‡ÈÌÂÈ Ï ӉËÌ ÔÛÚ¸ ËÁ ÏÂÊ‰Û ı Ë Û, Ë ÂÒÎË ÒÓ‰ÂÊËÚ ÔÛÚ¸ Q, ÚÓ Ó̇ Ú‡ÍÊ ÒÓ‰ÂÊËÚ Í‡Ê‰˚È ÔÛÚ¸, ÒÓ‰Âʇ˘ËÈÒfl ‚ Q. èÛÒÚ¸ d ( x, y) – ‰ÎË̇ ͇ژ‡È¯Â„Ó ÔÛÚË ËÁ ÏÂÊ‰Û ı Ë y ∈ 2. ÖÒÎË d fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ 2 , ÚÓ Ó̇ ̇Á˚‚‡ÂÚÒfl ÏÂÚËÍÓÈ, ÔÓÓʉÂÌÌÓÈ ÔÛÚÂÏ (ÒÏ., ̇ÔËÏÂ, [Melt91]). G2A = { , }, G2B = { , }, èÛÒÚ¸ G – Ó‰ÌÓ ËÁ ÏÌÓÊÂÒÚ‚ G1 = { , →}, G2C = { , }, G2D = {→ , }, G3A = {→ , , }, G3B = {→ , , }, G4A = {→ , , }, G4B = { , , }, G5 = {→ , , , }. èÛÒÚ¸ (G) – ÏÌÓÊÂÒÚ‚Ó ÔÛÚÂÈ, ÔÓÎÛ˜ÂÌÌ˚ı ÔÓÒ‰ÒÚ‚ÓÏ ÒÓ˜ÎÂÌÂÌËfl ÔÛÚÂÈ ‚ G Ë ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ÔÛÚÂÈ ‚ ÔÓÚË‚ÓÔÓÎÓÊÌ˚ı ̇ԇ‚ÎÂÌËflı. ã˛·‡fl ÏÂÚË͇, ÔÓÓʉÂÌ̇fl ÔÛÚÂÏ, ÒÓ‚Ô‡‰‡ÂÚ Ò Ó‰ÌÓÈ ËÁ ÏÂÚËÍ d(G). ÅÓΠÚÓ„Ó, ËÏÂ˛Ú ÏÂÒÚÓ ÒÎÂ‰Û˛˘Ë ÙÓÏÛÎ˚: 1. d ( G1 ) ( x, y) =| u1 | + | u2 |; 2. d ( G2 A ) ( x, y) = {| 2u1 − u2 |,| u2 |}; 3. d ( G
2B )
( x, y) = max{| 2u1 − u2 |,| u2 |};
4. d ( G2 C ) ( x, y) = max{| 2u2 − u1 |,| u1 |}; 5. d ( G
2D )
( x, y) = max{| 2u2 − u1 |,| u1 |};
6. d ( G3 A ) ( x, y) = max{| u1 |,| u2 |,| u1 − u2 |}; 7. d ( G3 B ) ( x, y) = max{| u1 |,| u2 |,| u1 + u2 |}; 8. d ( G
4A )
9. d ( G
4B )
{ ( x, y) = max{2 (| u
} | − | u |) / 2 , 0}+ | u |;
( x, y) = max 2 (| u1 | − | u2 |) / 2 , 0 + | u2 |; 2
1
1
10. d ( G ) ( x, y) = max{| u1 |,| u2 |}; 5
„‰Â u1 = x1 − y1 , u2 = x 2 − y2 , ‡ ⋅ fl‚ÎflÂÚÒfl ÔÓÚÓÎÓ˜ÌÓÈ ÙÛÌ͈ËÂÈ: ‰Îfl β·Ó„Ó ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ı ˜ËÒÎÓ fl‚ÎflÂÚÒfl x ̇ËÏÂ̸¯ËÏ ˆÂÎ˚Ï ˜ËÒÎÓÏ, ÍÓÚÓÓ ·Óθ¯Â ËÎË ‡‚ÌÓ ı. èÓÎÛ˜ÂÌÌ˚ ËÁ G-ÏÌÓÊÂÒÚ‚ ÏÂÚ˘ÂÒÍË ÔÓÒÚ‡ÌÒÚ‚‡, Ëϲ˘Ë ӉË̇ÍÓ‚˚ ˆËÙÓ‚˚ Ë̉ÂÍÒ˚, fl‚Îfl˛ÚÒfl ËÁÓÏÂÚ˘Ì˚ÏË. d ( G ) ÂÒÚ¸ ÏÂÚË͇ „ÓÓ‰ÒÍÓ„Ó 1 Í‚‡Ú‡Î‡, ‡ d ( G ) – ÏÂÚË͇ ¯‡ıχÚÌÓÈ ‰ÓÒÍË. 5
åÂÚË͇ ÍÓÌfl åÂÚËÍÓÈ ÍÓÌfl ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ıÓ‰Ó‚, ÍÓÚÓ˚ ÔÓ̇‰Ó·ËÚÒfl ҉·ڸ ¯‡ıχÚÌÓÏÛ ÍÓÌ˛ ‰Îfl ÔÂÂÏ¢ÂÌËfl ËÁ ı ‚ 2 . 1 Ö ‰ËÌ˘̇fl ÒÙ‡ Sknight Ò ˆÂÌÚÓÏ ‚ ̇˜‡Î ÍÓÓ‰ËÌ‡Ú ÒÓ‰ÂÊËÚ Ó‚ÌÓ 8 ˆÂÎÓ-
288
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
1 ˜ËÒÎÂÌÌ˚ı ÚÓ˜ÂÍ {(±2, ±1), (±1, ±2)} Ë ÏÓÊÂÚ ·˚Ú¸ Á‡ÔË҇̇ Í‡Í Sknight = Sl31 ∩ Sl2∞ ,
„‰Â Sl31 ÂÒÚ¸ l1 -ÒÙ‡ ‡‰ËÛÒ‡ 3 Ë Sl2∞ ÂÒÚ¸ l∞-ÒÙ‡ ‡‰ËÛÒ‡ 2 Ë ˆÂÌÚÓÏ ‚ ̇˜‡Î ÍÓÓ‰ËÌ‡Ú ([DaCh88]). ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë Û ‡‚ÌÓ 3, ÂÒÎË (M, m) = (1, 0), ‡‚ÌÓ 4, ÂÒÎË (M, m) = (2, 2), Ë M M + m M M + m ‡‚ÌÓ max , (mod 2), Ë̇˜Â, „‰Â M = + ( M + m) − max , 2 3 2 3 = max{| u1 |,| u2 |}, m = min{| u1 |,| u2 |}, u1 = x1 − y1 , u2 = x 2 − y2 . åÂÚË͇ ÒÛÔÂ-ÍÓÌfl èÛÒÚ¸ p, q ∈ , Ô˘ÂÏ p + q ˜ÂÚÌÓ Ë (p, q) = 1. (p, q)-ÒÛÔÂ-ÍÓ̸ (ËÎË (p, q)-Ô˚„ÛÌ) ÂÒÚ¸ ÙË„Û‡ Ó·Ó·˘ÂÌÌ˚ı ¯‡ıχÚ, ıÓ‰ ÍÓÚÓÓÈ ÒÓÒÚÓËÚ ËÁ Ô˚Ê͇ ̇ ÍÎÂÚÓÍ ‚ Ó‰ÌÓÏ Ì‡Ô‡‚ÎÂÌËË Ë ÔÓÒÎÂ‰Û˛˘Â„Ó ÓÚÓ„Ó̇θÌÓ„Ó Ô˚Ê͇ ̇ q ÍÎÂÚÓÍ ‚ Á‡‰‡ÌÌÛ˛ ÍÓ̘ÌÛ˛ ÍÎÂÚÍÛ. íÂÏËÌ˚ Ó·Ó·˘ÂÌÌ˚ı ¯‡ıÏ‡Ú ÒÛ˘ÂÒÚ‚Û˛Ú ‰Îfl (p, 1)-Ô˚„Û̇ Ò p = 0,1,2,3,4 (‚ËÁ˸, ÙÂÁ¸, Ó·˚˜Ì˚È ÍÓ̸, ‚·β‰, ÊˇÙ) Ë ‰Îfl (p, 2)-Ô˚„Û̇ Ò p = 0,1,2,3 (‰‡··‡·‡, Ó·˚˜Ì˚È ÍÓ̸, ‡ÎÙËÎ, Á·‡). åÂÚË͇ (p, q)-ÒÛÔÂ-ÍÓÌfl (ËÎË ÏÂÚË͇ (p, q)-Ô˚„Û̇) – ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ıÓ‰Ó‚, ÍÓÚÓÓ ÔÓ̇‰Ó·ËÚÒfl (p, q)-ÒÛÔÂ-ÍÓÌ˛ ‰Îfl ÔÂÂÏ¢ÂÌËfl ËÁ ı ‚ y ∈ 2. í‡ÍËÏ Ó·‡ÁÓÏ,  ‰ËÌ˘̇fl ÒÙ‡ S1p, q Ò ˆÂÌÚÓÏ ‚ ̇˜‡Î ÍÓÓ‰ËÌ‡Ú ÒÓ‰ÂÊËÚ Ó‚ÌÓ 8 ˆÂÎÓ˜ËÒÎÂÌÌ˚ı ÚÓ˜ÂÍ {(±p, ±q), (±q, ±p)} ([DaMu90].) åÂÚË͇ ÍÓÌfl – ÏÂÚË͇ (1,2)-ÒÛÔÂ-ÍÓÌfl. åÂÚËÍÛ „ÓÓ‰ÒÍÓ„Ó Í‚‡Ú‡Î‡ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÂÚËÍÛ ‚ËÁËfl, Ú.Â. ÏÂÚËÍÛ (0,1)-ÒÛÔÂ-ÍÓÌfl. åÂÚË͇ ·‰¸Ë åÂÚËÍÓÈ Î‡‰¸Ë ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ 2, ÓÔ‰ÂÎÂÌ̇fl Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ıÓ‰Ó‚, ÍÓÚÓ˚ ÔÓ̇‰Ó·ËÚÒfl ҉·ڸ ¯‡ıχÚÌÓÈ Î‡‰¸Â ‰Îfl ÔÂÂÏ¢ÂÌËfl ËÁ x ‚ y ∈ 2. чÌ̇fl ÏÂÚË͇ ËÏÂÂÚ ÚÓθÍÓ Á̇˜ÂÌËfl {0,1,2} Ë ÒÓ‚Ô‡‰ÂÚ Ò ı˝ÏÏËÌ„Ó‚ÓÈ ÏÂÚËÍÓÈ Ì‡ 2 . åÂÚË͇ ÒÍÛ„ÎÂÌËfl ÇÓÁ¸ÏÂÏ ‰‚‡ ÔÓÎÓÊËÚÂθÌ˚ı ˜ËÒ· α, β Ò α ≤ β < 2 Ë ‡ÒÒÏÓÚËÏ (α,β)-‚Á‚¯ÂÌÌÛ˛ l∞-„Ë‰Û ÍÓÓ‰Ë̇Ú, Ú.Â. ·ÂÒÍÓ̘Ì˚È „‡Ù Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ 2, ‰‚ ‚¯ËÌ˚ ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl ÒÏÂÊÌ˚ÏË, ÂÒÎË Ëı l∞-‡ÒÒÚÓflÌË ‡‚ÌÓ Â‰ËÌˈÂ, Ô˘ÂÏ „ÓËÁÓÌڇθÌ˚Â/‚ÂÚË͇θÌ˚Â Ë ‰Ë‡„Ó̇θÌ˚ ·‡ ËÏÂ˛Ú ‚ÂÒ‡ α Ë β ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. åÂÚËÍÓÈ ÒÍÛ„ÎÂÌËfl (ËÎË ÏÂÚËÍÓÈ (α, β)-ÒÍÛ„ÎÂÌËfl, ÒÏ. [Borg86]) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ‚Á‚¯ÂÌÌÓ„Ó ÔÛÚË ‚ ‚˚¯ÂÛ͇Á‡ÌÌÓÏ „‡ÙÂ. ÑÎfl β·˚ı x, y ∈ 2 Ó̇ ÏÓÊÂÚ ·˚Ú¸ Á‡ÔË҇̇ Í‡Í βm + α( M − m), „‰Â M = max{| u1 |,| u2 |}, m = min{| u1 |,| u2 |}, u1 = x1 − y1 , u2 = x 2 − y2 . ÖÒÎË ‚ÂÒ‡ α Ë β ‡‚Ì˚ ‚ÍÎˉӂ˚Ï ‰ÎËÌ‡Ï 1, 2 „ÓËÁÓÌڇθÌ˚ı/‚ÂÚË͇θÌ˚ı Ë ‰Ë‡„Ó̇θÌ˚ı · ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÚÓ ÔÓÎÛ˜‡ÂÏ Â‚ÍÎË‰Ó‚Û ‰ÎËÌÛ Í‡Ú˜‡È¯Â„Ó ÔÛÚË ¯‡ıχÚÌÓÈ ‰ÓÒÍË ÏÂÊ‰Û ı Ë Û. ÖÒÎË α = β = 1, ÚÓ ËÏÂÂÏ ÏÂÚËÍÛ ¯‡ıχÚÌÓÈ ‰ÓÒÍË. åÂÚË͇ (3, 4)-ÒÍÛ„ÎÂÌËfl ̇˷ÓΠ˜‡ÒÚÓ ËÒÔÓθÁÛÂÚÒfl ‰Îfl ‡·ÓÚ˚ Ò ˆËÙÓ‚˚ÏË Ó·‡Á‡ÏË; Ó̇ ̇Á˚‚‡ÂÚÒfl ÔÓÒÚÓ (3, 4)-ÏÂÚËÍÓÈ.
É·‚‡ 19. ê‡ÒÒÚÓflÌËfl ̇ ‰ÂÈÒÚ‚ËÚÂθÌÓÈ Ë ˆËÙÓ‚ÓÈ ÔÎÓÒÍÓÒÚflı
289
åÂÚË͇ 3D-ÒÍÛ„ÎÂÌËfl – ÏÂÚË͇ ‚Á‚¯ÂÌÌÓ„Ó ÔÛÚË „‡Ù‡ Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ 3 ‚ÓÍÒÂÎÂÈ, ‰‚‡ ËÁ ÍÓÚÓ˚ı fl‚Îfl˛ÚÒfl ÒÏÂÊÌ˚ÏË, ÂÒÎË Ëı l∞-‡ÒÒÚÓflÌË ‡‚ÌÓ Â‰ËÌˈÂ, Ô˘ÂÏ ‚ÂÒ‡ α, β Ë γ Ò‚flÁ‡Ì˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Ò ‡ÒÒÚÓflÌËflÏË ÓÚ 6 „‡Ì‚˚ı ÒÓÒ‰ÂÈ, 12 ·ÂÌ˚ı ÒÓÒ‰ÂÈ Ë 8 Û„ÎÓ‚˚ı ÒÓÒ‰ÂÈ. åÂÚË͇ ‚Á‚¯ÂÌÌÓ„Ó ‡ÁÂÁ‡ ê‡ÒÒÏÓÚËÏ ‚Á‚¯ÂÌÌÛ˛ l∞-„ˉÛ, Ú.Â. „‡Ù Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ 2, ‰‚ ËÁ ÍÓÚÓ˚ı fl‚Îfl˛ÚÒfl ÒÏÂÊÌ˚ÏË, ÂÒÎË Ëı l∞-‡ÒÒÚÓflÌË ‡‚ÌÓ Â‰ËÌˈÂ, Ë Í‡Ê‰ÓÂ Â·Ó ËÏÂÂÚ Á‡‰‡ÌÌ˚È ÔÓÎÓÊËÚÂθÌ˚È ‚ÂÒ (ËÎË ˆÂÌÛ). é·˚˜Ì‡fl ÏÂÚË͇ ‚Á‚¯ÂÌÌÓ„Ó ÔÛÚË ÏÂÊ‰Û ‰‚ÛÏfl ÔËÍÒÂÎflÏË fl‚ÎflÂÚÒfl ÏËÌËχθÌÓÈ ˆÂÌÓÈ ÒÓ‰ËÌfl˛˘Â„Ó Ëı ÔÛÚË. åÂÚËÍÓÈ ‚Á‚¯ÂÌÌÓ„Ó ‡ÁÂÁ‡ ÏÂÊ‰Û ‰‚ÛÏfl ÔËÍÒÂÎflÏË Ì‡Á˚‚‡ÂÚÒfl ÏËÌËχθ̇fl ˆÂ̇ (ÓÔ‰ÂÎÂÌ̇fl ÒÂȘ‡Ò Í‡Í ÒÛÏχ ˆÂÌ ÔÂÂÒÂ͇ÂÏ˚ı ·Â) ‡ÁÂÁ‡, Ú.Â. ÍË‚ÓÈ ‚ ÔÎÓÒÍÓÒÚË, ÒÓ‰ËÌfl˛˘ÂÈ Ëı Ë Ó·ıÓ‰fl˘ÂÈ ÔËÍÒÂÎË. åÂÚË͇ ˆËÙÓ‚Ó„Ó Ó·˙Âχ åÂÚËÍÓÈ ˆËÙÓ‚Ó„Ó Ó·˙Âχ ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ä ‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ (ËÁÓ·‡ÊÂÌËÈ ËÎË Ó·‡ÁÓ‚) ÏÌÓÊÂÒÚ‚‡ 2 (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â n ), ÓÔ‰ÂÎÂÌ̇fl Í‡Í vol( A∆B), „‰Â vol(A) = |A|, Ú.Â. ˜ËÒÎÓ ÒÓ‰Âʇ˘ËıÒfl ‚ Ä ÔËÍÒÂÎÂÈ, Ë A∆B – ÒËÏÏÂÚ˘ÂÒ͇fl ‡ÁÌÓÒÚ¸ ÏÂÊ‰Û ÏÌÓÊÂÒÚ‚‡ÏË Ä Ë Ç. чÌ̇fl ÏÂÚË͇ – ˆËÙÓ‚ÓÈ ‡Ì‡ÎÓ„ ÏÂÚËÍË çËÍÓ‰Ëχ. òÂÒÚËÛ„Óθ̇fl ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇ òÂÒÚËÛ„Óθ̇fl ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇ ÂÒÚ¸ ÏÂÚË͇ ̇ ÏÌÓÊÂÒÚ‚Â ‚ÒÂı Ó„‡Ì˘ÂÌÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ (ËÁÓ·‡ÊÂÌËÈ ËÎË Ó·‡ÁÓ‚) ¯ÂÒÚËÛ„ÓθÌÓÈ „ˉ˚ ̇ ÔÎÓÒÍÓÒÚË, ÓÔ‰ÂÎÂÌ̇fl Í‡Í inf{p, q : A ⊂ B + qH , D ⊂ A + pH} ‰Îfl β·˚ı ËÁÓ·‡ÊÂÌËÈ Ä Ë Ç, „‰Â ç – Ô‡‚ËθÌ˚È ¯ÂÒÚËÛ„ÓθÌËÍ ‡Áχ (Ú.Â. Ò p + 1 ÔËÍÒÂÎÂÏ Ì‡ ͇ʉÓÏ Â·Â) Ò ˆÂÌÚÓÏ ‚ ̇˜‡Î ÍÓÓ‰Ë̇Ú, ÒÓ‰Âʇ˘ËÈ Ò‚Ó˛ ‚ÌÛÚÂÌÌÓÒÚ¸, Ë + fl‚ÎflÂÚÒfl ÒÎÓÊÂÌËÂÏ åËÌÍÓ‚ÒÍÓ„Ó: A + B = {y + y : x ∈ A, y ∈ B} (ÒÏ. åÂÚË͇ èÓÏÔÂÈ˛–ï‡ÛÒ‰ÓÙ‡–ÅÎfl¯ÍÂ, „Î. 9). ÖÒÎË Ä fl‚ÎflÂÚÒfl ÔËÍÒÂÎÂÏ ı, ÚÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ı Ë Ç ‡‚ÌÓ sup y ∈B d6 ( x, y), „‰Â d6 – ¯ÂÒÚËÛ„Óθ̇fl ÏÂÚË͇, Ú.Â. ÏÂÚË͇ ÔÛÚË Ì‡ ¯ÂÒÚËÛ„ÓθÌÓÈ „ˉÂ.
É·‚‡ 20
êÄëëíéüçàü ÑàÄÉêÄåå ÇéêéçéÉé
ÑÎfl ÍÓ̘ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ Ä Ó·˙ÂÍÚÓ‚ Ai ‚ ÔÓÒÚ‡ÌÒÚ‚Â S ÔÓÒÚÓÂÌË ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ Ä ÓÁ̇˜‡ÂÚ ‡Á·ËÂÌË ÔÓÒÚ‡ÌÒÚ‚‡ S ̇ ӷ·ÒÚË ÇÓÓÌÓ„Ó V(A i) Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ V(Ai) ÒÓ‰ÂʇÎË ‚Ò ÚÓ˜ÍË S, ÍÓÚÓ˚ ‡ÒÔÓÎÓÊÂÌ˚ "·ÎËÊÂ" Í Ai, ˜ÂÏ Í Î˛·ÓÏÛ ‰Û„ÓÏÛ Ó·˙ÂÍÚÛ Aj ËÁ Ä. ÑÎfl ÔÓÓʉ‡˛˘Â„Ó ÏÌÓÊÂÒÚ‚‡ P = {p1 , …, pk }, k ≥ 2, ‡Á΢Ì˚ı ÚÓ˜ÂÍ (ÔÓÓʉ‡˛˘Ëı ˝ÎÂÏÂÌÚÓ‚), ËÎË „Â̇ÚÓÓ‚ ËÁ n, n ≥ 2, Òڇ̉‡ÚÌ˚È ÏÌÓ„ÓÛ„ÓθÌËÍ ÇÓÓÌÓ„Ó V(pi), Ò‚flÁ‡ÌÌ˚È Ò ÔÓÓʉ‡˛˘ËÏ ˝ÎÂÏÂÌÚÓÏ pi, ÓÔ‰ÂÎflÂÚÒfl Í‡Í V ( pi ) = {x ∈ n : d E ( x, pi ) ≤ d E ( x, p j ) ‰Îfl β·Ó„Ó j ≠ i}, „‰Â dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ̇ n. åÌÓÊÂÒÚ‚Ó V ( P, d E , n ) = {V ( p1 ), …, V ( pk )} ̇Á˚‚‡ÂÚÒfl n-ÏÂÌÓÈ Òڇ̉‡ÚÌÓÈ ‰Ë‡„‡ÏÏÓÈ ÇÓÓÌÓ„Ó, ÔÓÓʉ‡ÂÏÓÈ ê . ɇÌˈ˚ (n-ÏÂÌ˚ı) ÏÌÓ„ÓÛ„ÓθÌËÍÓ‚ ÇÓÓÌÓ„Ó Ì‡Á˚‚‡˛ÚÒfl ((n–1)-ÏÂÌ˚ÏË) „‡ÌflÏË ÇÓÓÌÓ„Ó, „‡Ìˈ˚ „‡ÌÂÈ ÇÓÓÌÓ„Ó Ì‡Á˚‚‡˛ÚÒfl (n–2)-ÏÂÌ˚ÏË „‡ÌflÏË ÇÓÓÌÓ„Ó, …, „‡Ìˈ˚ ‰‚ÛÏÂÌ˚ı „‡ÌÂÈ ÇÓÓÌÓ„Ó Ì‡Á˚‚‡˛ÚÒfl ·‡ÏË ÇÓÓÌÓ„Ó, „‡Ìˈ˚ · – ‚¯Ë̇ÏË ÇÓÓÌÓ„Ó. é·Ó·˘ÂÌË Òڇ̉‡ÚÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó ‚ÓÁÏÓÊÌÓ ‚ ÒÎÂ‰Û˛˘Ëı ÚÂı ̇ԇ‚ÎÂÌËflı: 1. é·Ó·˘ÂÌË ‚ ÒÏ˚ÒΠÔÓÓʉ‡˛˘Â„Ó ÏÌÓÊÂÒÚ‚‡ A = {A1 , …, Ak }, ÍÓÚÓÓ ÏÓÊÂÚ ·˚Ú¸ ÏÌÓÊÂÒÚ‚ÓÏ ÔflÏ˚ı, ÏÌÓÊÂÒÚ‚ÓÏ Ó·Î‡ÒÚÂÈ Ë Ú.Ô. 2. é·Ó·˘ÂÌË ‚ ÒÏ˚ÒΠÔÓÒÚ‡ÌÒÚ‚‡ S, ÍÓÚÓÓ ÏÓÊÂÚ ·˚Ú¸ ÒÙÂÓÈ (ÒÙ¢ÂÒ͇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó), ˆËÎË̉ÓÏ (ˆËÎË̉˘ÂÒ͇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó), ÍÓÌÛÒÓÏ (ÍÓÌ˘ÂÒ͇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó), ÔÓ‚ÂıÌÓÒÚ¸˛ ÏÌÓ„Ó„‡ÌÌË͇ (‰Ë‡„‡Ïχ ÏÌÓ„Ó„‡ÌÌË͇ ÇÓÓÌÓ„Ó) Ë Ú.Ô. 3. é·Ó·˘ÂÌË ‚ ÒÏ˚ÒΠÙÛÌ͈ËË d, „‰Â d(x, A) fl‚ÎflÂÚÒfl ÏÂÓÈ "‡ÒÒÚÓflÌËfl" ÓÚ ÚÓ˜ÍË x ∈ S ‰Ó ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ Ai ∈ A. í‡Í‡fl ÙÛÌ͈Ëfl Ó·Ó·˘ÂÌÌÓ„Ó ‡ÒÒÚÓflÌËfl d ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘ËÏ ‡ÒÒÚÓflÌËÂÏ ÇÓÓÌÓ„Ó (ËÎË ‡ÒÒÚÓflÌËÂÏ ÇÓÓÌÓ„Ó, V-‡ÒÒÚÓflÌËÂÏ) Ë ÔÓÁ‚ÓÎflÂÚ ÔÓÎÛ˜ËÚ¸ ÏÌÓ„Ó ‰Û„Ëı ÙÛÌ͈ËÈ, ÍÓÏ ӷ˚˜ÌÓÈ ÏÂÚËÍË Ì‡ S. ÖÒÎË F fl‚ÎflÂÚÒfl ÒÚÓ„Ó ‚ÓÁ‡ÒÚ‡˛˘ÂÈ ÙÛÌ͈ËÂÈ V-‡ÒÒÚÓflÌËfl d, Ú.Â. F( d ( x, Ai )) ≤ F( d ( x, A j )) ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ d ( x, Ai ) ≤ d ( x, A j ), ÚÓ Ó·Ó·˘ÂÌÌ˚ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( A, F( d ), S ) Ë V ( A, d , S ) ÒÓ‚Ô‡‰‡˛Ú Ë „Ó‚ÓflÚ, ˜ÚÓ V-‡ÒÒÚÓflÌË F(d) fl‚ÎflÂÚÒfl Ú‡ÌÒÙÓÏËÛÂÏ˚Ï ‚ V-‡ÒÒÚÓflÌË d, Ë ˜ÚÓ Ó·Ó·˘ÂÌ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó V ( A, F( d ), S ) fl‚ÎflÂÚÒfl Ú˂ˇθÌ˚Ï Ó·Ó·˘ÂÌËÂÏ Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( A, d , S ). Ç ÔËÎÓÊÂÌËflı ‰Îfl Ú˂ˇθÌÓ„Ó Ó·Ó·˘ÂÌËfl Òڇ̉‡ÚÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, d , n ) ˜‡ÒÚÓ ÔÓθÁÛ˛ÚÒfl ˝ÍÒÔÓÌÂ̈ˇθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ, ÎÓ„‡ËÙÏ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ë ÒÚÂÔÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ. ëÛ˘ÂÒÚ‚Û˛Ú Ó·Ó·˘ÂÌÌ˚ ‰Ë‡„‡ÏÏ˚
É·‚‡ 20. ê‡ÒÒÚÓflÌËfl ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó
291
ÇÓÓÌÓ„Ó V ( P, d , n ), ÓÔ‰ÂÎÂÌÌ˚Â Ò ÔÓÏÓ˘¸˛ V-‡ÒÒÚÓflÌËÈ, ÍÓÚÓ˚ Ì fl‚Îfl˛ÚÒfl Ú‡ÌÒÙÓÏËÛÂÏ˚ÏË Í Â‚ÍÎË‰Ó‚Û ‡ÒÒÚÓflÌ˲ dE: ÏÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó, ‡‰‰ËÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ë Ú.Ô. ÑÓÔÓÎÌËÚÂθÌ˚ ҂‰ÂÌËfl ÔÓ ˝ÚÓÈ ÚÂχÚËÍ ÏÓÊÌÓ Ì‡ÈÚË ‚ [OBS92], [Klei89]. 20.1. äãÄëëàóÖëäàÖ êÄëëíéüçàü ÇéêéçéÉé ùÍÒÔÓÌÂ̈ˇθÌÓ ‡ÒÒÚÓflÌË ùÍÒÔÓÌÂ̈ˇθÌÓ ‡ÒÒÚÓflÌË – ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Dexp ( x, pi ) = e d E ( x , pi ) ‰Îfl Ú˂ˇθÌÓ„Ó Ó·Ó·˘ÂÌËfl V ( P, Dexp , n ) Òڇ̉‡ÚÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, d E , n ), „‰Â dE – ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. ãÓ„‡ËÙÏ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ãÓ„‡ËÙÏ˘ÂÒÍÓ ‡ÒÒÚÓflÌË – ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Dln ( x, pi ) = ln d E ( x, pi ) ‰Îfl Ú˂ˇθÌÓ„Ó Ó·Ó·˘ÂÌËfl V ( P, Dln , n ) Òڇ̉‡ÚÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, d E , n ), „‰Â dE – ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. ëÚÂÔÂÌÌÓ ‡ÒÒÚÓflÌË ëÚÂÔÂÌÌÓ ‡ÒÒÚÓflÌË – ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Dα ( x, pi ) = d E ( x, pi )α , α > 0, ‰Îfl Ú˂ˇθÌÓ„Ó Ó·Ó·˘ÂÌËfl V ( P, Dα , n ) Òڇ̉‡ÚÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, d E , n ), „‰Â dE – ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. åÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË åÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË dMW – ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, d MW , n ) (ÏÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í d MW ( x, pi ) =
1 d E ( x, pi ) wi
‰Îfl β·ÓÈ ÚÓ˜ÍË x ∈ n Ë Î˛·Ó„Ó ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi ∈ P = {pi , …, pk }, k ≥ 2, „‰Â wi ∈ w = {wi , …, wk } – Á‡‰‡ÌÌ˚È ÔÓÎÓÊËÚÂθÌ˚È ÏÛθÚËÔÎË͇ÚË‚Ì˚È ‚ÂÒ ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi Ë dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. ÑÎfl 2 ÏÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó Ì‡Á˚‚‡ÂÚÒfl ÍÛ„Ó‚ÓÈ ÛÔ‡ÍÓ‚ÒÍÓÈ ÑËËıÎÂ. ê·ÓÏ ˝ÚÓÈ ‰Ë‡„‡ÏÏ˚ fl‚ÎflÂÚÒfl ‰Û„‡ ÓÍÛÊÌÓÒÚË ËÎË Ôflχfl. Ç ÔÎÓÒÍÓÒÚË 2 ÒÛ˘ÂÒÚ‚ÛÂÚ Ó·Ó·˘ÂÌË ÏÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó, ÍËÒÚ‡Î΢ÂÒ͇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó, Ò ÚÂÏ Ê ÓÔ‰ÂÎÂÌËÂÏ ‡ÒÒÚÓflÌËfl („‰Â w i – ÒÍÓÓÒÚ¸ ÓÒÚ‡ ÍËÒڇη p i), ÌÓ ÓÚ΢‡˛˘ËÏÒfl ‡Á·ËÂ-
292
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ÌËÂÏ ÔÎÓÒÍÓÒÚË, ÔÓÒÍÓθÍÛ ÍËÒÚ‡ÎÎ˚ ÏÓ„ÛÚ ‡ÒÚË ÚÓθÍÓ Ì‡ Ò‚Ó·Ó‰ÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â. ĉ‰ËÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË ĉ‰ËÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË dMW ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, d AW , n ) (‡‰‰ËÚË‚ÌÓ ‚Á‚¯ÂÌ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í d AW ( x, pi ) = d E ( x, pi ) − wi ‰Îfl β·ÓÈ ÚÓ˜ÍË x ∈ n Ë Î˛·Ó„Ó ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi ∈ P = {pi , …, pk }, , k ≥ 2, „‰Â wi ∈ w = {wi , …, wk } – Á‡‰‡ÌÌ˚È ‡‰‰ËÚË‚Ì˚È ‚ÂÒ ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi, Ë dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. ÑÎfl 2 ‡‰‰ËÚË‚ÌÓ ‚Á‚¯ÂÌ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó Ì‡Á˚‚‡ÂÚÒfl „ËÔ·Ó΢ÂÒÍÓÈ ÛÔ‡ÍÓ‚ÍÓÈ ÑËËıÎÂ. ê·ÓÏ ˝ÚÓÈ ‰Ë‡„‡ÏÏ˚ fl‚ÎflÂÚÒfl ‰Û„‡ „ËÔ·ÓÎ˚ ËÎË ÓÚÂÁÓÍ ÔflÏÓÈ. ĉ‰ËÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ÒÚÂÔÂÌÌÓ ‡ÒÒÚÓflÌË ĉ‰ËÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ÒÚÂÔÂÌÌÓ ‡ÒÒÚÓflÌË dPW – ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, d PW , n ) (‡‰‰ËÚË‚ÌÓ ‚Á‚¯ÂÌ̇fl ÒÚÂÔÂÌ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í d PW ( x, pi ) = d E2 ( x, pi ) − wi ‰Îfl β·ÓÈ ÚÓ˜ÍË x ∈ n Ë Î˛·Ó„Ó ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi ∈ P = {pi , …, pk }, k ≥ 2, „‰Â wi ∈ w = {wi , …, wk } – Á‡‰‡ÌÌ˚È ‡‰‰ËÚË‚Ì˚È ‚ÂÒ ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡, pi, Ë dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. ùÚ‡ ‰Ë‡„‡Ïχ ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ‰Ë‡„‡Ïχ ÍÛ„Ó‚ ÇÓÓÌÓ„Ó ËÎË ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó Ò „ÂÓÏÂÚËÂÈ ã‡„Â‡. 1 2 åÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ÒÚÂÔÂÌÌÓ ‡ÒÒÚÓflÌË d MPW ( x, pi ) = d E ( x, pi ), wi wi > 0, Ú‡ÌÒÙÓÏËÛÂÚÒfl ‚ ÏÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌËÂ Ë ‰‡ÂÚ Ú˂ˇθÌÓ ‡Ò¯ËÂÌË ÏÛθÚËÔÎË͇ÚË‚ÌÓ ‚Á‚¯ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó. äÓÏ·ËÌËÓ‚‡ÌÓ ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË äÓÏ·ËÌËÓ‚‡ÌÌÓ ‚Á‚¯ÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ dCW ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, dCW , n ) (ÍÓÏ·ËÌËÓ‚‡ÌÌÓ ‚Á‚¯ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í dCW ( x, pi ) =
1 d E ( x, pi ) − vi wi
‰Îfl β·ÓÈ ÚÓ˜ÍË x ∈ n Ë Î˛·Ó„Ó ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi ∈ P = {pi , …, pk }, k ≥ 2, „‰Â wi ∈ w = {wi , …, wk } – Á‡‰‡ÌÌ˚È ÔÓÎÓÊËÚÂθÌ˚È ÏÛθÚËÔÎË͇ÚË‚Ì˚È ‚ÂÒ ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi, vi ∈ v = {vi , …, vk } – Á‡‰‡ÌÌ˚È ‡‰‰ËÚË‚Ì˚È ‚ÂÒ ÔÓÓʉ‡˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi, Ë dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. ê·ÓÏ ‰‚ÛÏÂÌÓÈ ÍÓÏ·ËÌËÓ‚‡ÌÌÓ ‚Á‚¯ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó fl‚ÎflÂÚÒfl ˜‡ÒÚ¸ ÍË‚ÓÈ ˜ÂÚ‚ÂÚÓ„Ó ÔÓfl‰Í‡, „ËÔ·Ó΢ÂÒ͇fl ‰Û„‡, ‰Û„‡ ÓÍÛÊÌÓÒÚË ËÎË Ôflχfl.
É·‚‡ 20. ê‡ÒÒÚÓflÌËfl ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó
293
20.2. êÄëëíéüçàü ÇéêéçéÉé çÄ èãéëäéëíà ê‡ÒÒÚÓflÌË ͇ژ‡È¯Â„Ó ÔÛÚË Ò ÔÂÔflÚÒÚ‚ËflÏË èÛÒÚ¸ = {O1 ,…,Om} – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÏÌÓ„ÓÛ„ÓθÌËÍÓ‚ ̇ ‚ÍÎˉӂÓÈ ÔÎÓÒÍÓÒÚË, Ô‰ÒÚ‡‚Îfl˛˘‡fl ÒÓ·ÓÈ ÏÌÓÊÂÒÚ‚Ó ÔÂÔflÚÒÚ‚ËÈ, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ÌÂÔÓÁ‡˜Ì˚ÏË Ë ÌÂÔÂÓ‰ÓÎËÏ˚ÏË. ê‡ÒÒÚÓflÌËÂÏ Í‡Ú˜‡È¯Â„Ó ÔÛÚË Ò ÔÂÔflÚÒÚ‚ËflÏË d sp ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, dsp , 2 \ {}) (‰Ë‡„‡ÏÏ˚ ͇ژ‡È¯Â„Ó ÔÛÚË ÇÓÓÌÓ„Ó Ò ÔÂÔflÚÒÚ‚ËflÏË), ÓÔ‰ÂÎÂÌÌÓ ‰Îfl β·˚ı x, y ∈ 2\{} Í‡Í ‰ÎË̇ ͇ژ‡È¯Â„Ó ËÁ ‚ÒÂı ‚ÓÁÏÓÊÌ˚ı ÌÂÔÂ˚‚Ì˚ı ÔÛÚÂÈ, ÒÓ‰ËÌfl˛˘Ëı ı Ë Û Ë ÔË ˝ÚÓÏ Ó·ıÓ‰fl˘Ëı ÔÂÔflÚÒÚ‚Ëfl Oi\∂Oi (ÔÛÚ¸ ÏÓÊÂÚ ÔÓıÓ‰ËÚ¸ ˜ÂÂÁ ÚÓ˜ÍË Ì‡ „‡Ìˈ Oi ÔÂÔflÚÒÚ‚Ëfl Oi), i = 1,…,m. ä‡Ú˜‡È¯ËÈ ÔÛÚ¸ ÒÚÓËÚÒfl Ò ÔÓÏÓ˘¸˛ ÏÌÓ„ÓÛ„ÓθÌË͇ ‚ˉËÏÓÒÚË Ë „‡Ù‡ ‚ˉËÏÓÒÚË ‰Ë‡„‡ÏÏ˚ V ( P, dsp , 2 \ {}). ê‡ÒÒÚÓflÌË ‚ˉËÏÓ„Ó Í‡Ú˜‡È¯Â„Ó ÔÛÚË èÛÒÚ¸ = {O1 ,…,Om} – ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÓÚÂÁÍÓ‚ Ol = = [al, bl] ̇ ‚ÍÎˉӂÓÈ ÔÎÓÒÍÓÒÚË, P = {p1 ,…,pk}, k ≥ 2 – ÏÌÓÊÂÒÚ‚Ó ÔÓÓʉ‡˛˘Ëı ˝ÎÂÏÂÌÚÓ‚, VIS( pi ) = {x ∈ 2 : [ x, pi ] ∩ ]al , bl [ = 0/ ‰Îfl ‚ÒÂı l = 1,…,m} – ÏÌÓ„ÓÛ„ÓθÌËÍ ‚ˉËÏÓÒÚË Ó·‡ÁÛ˛˘Â„Ó ˝ÎÂÏÂÌÚ‡ pi, ‡ dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. ê‡ÒÒÚÓflÌËÂÏ ‚ˉËÏÓ„Ó Í‡Ú˜‡È¯Â„Ó ÔÛÚË dvsp ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, dvsp , 2 \ {}) (‰Ë‡„‡Ïχ ‚ˉËÏÓ„Ó Í‡Ú˜‡È¯Â„Ó ÔÛÚË ÇÓÓÌÓ„Ó Ò ÔÂÔflÚÒÚ‚ËflÏË), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í d E ( x, pi ), ÂÒÎË x ∈ VIS( pi ), dvsp ( x, pi ) = ∞, Ë̇˜Â. ê‡ÒÒÚÓflÌË ÒÂÚË ëÂÚ¸ ̇ 2 ÂÒÚ¸ Ò‚flÁÌ˚È ÔÎÓÒÍËÈ „ÂÓÏÂÚ˘ÂÒÍËÈ „‡Ù G = (V, E) Ò ÏÌÓÊÂÒÚ‚ÓÏ V ‚¯ËÌ Ë ÏÌÓÊÂÒÚ‚ÓÏ E ·Â. èÛÒÚ¸ ÔÓÓʉ‡˛˘Â ÏÌÓÊÂÒÚ‚Ó P = ( pi , …, pk ) fl‚ÎflÂÚÒfl ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ ÏÌÓÊÂÒÚ‚‡ V = ( p1 , …, pl ) ‚¯ËÌ „‡Ù‡ G Ë ÏÌÓÊÂÒÚ‚Ó L Á‡‰‡ÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÚÓ˜ÂÍ Â·Â „‡Ù‡ G. ê‡ÒÒÚÓflÌË ÒÂÚË dnetv ̇ ÏÌÓÊÂÒÚ‚Â V ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó ÛÁÎÓ‚ ÒÂÚË V ( P, dnetv , V ), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í Í‡Ú˜‡È¯ËÈ ÔÛÚ¸ ‚‰Óθ · „‡Ù‡ G ÓÚ pi ∈ V ‰Ó pj ∈ V. éÌÓ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‚Á‚¯ÂÌÌÓ„Ó ÔÛÚË „‡Ù‡ G, „‰Â w e – ‚ÍÎˉӂ‡ ‰ÎË̇ ·‡ e ∈ E. ê‡ÒÒÚÓflÌË ÒÂÚË dnetv ̇ ÏÌÓÊÂÒÚ‚Â L ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó Â·Â ÒÂÚË V ( P, dnetl , L), , ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í Í‡Ú˜‡È¯ËÈ ÔÛÚ¸ ‚‰Óθ · ÓÚ x ∈ L ‰Ó y ∈ L. ê‡ÒÒÚÓflÌË ‰ÓÒÚÛÔ‡ Í ÒÂÚË daccnet ̇ 2 ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó Ó·Î‡ÒÚË ÒÂÚË V ( P, daccnet , 2 ), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í daccnet ( x, y) = dnetl (l( x ), l( y)) + dacc ( x ) + dacc ( y),
294
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
„‰Â dacc ( x ) = min l ∈L d ( x, l ) = d E ( x, l( x )) – ‡ÒÒÚÓflÌË ‰ÓÒÚÛÔ‡ ÚÓ˜ÍË ı. àÏÂÌÌÓ, dacc(x) ÂÒÚ¸ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ÓÚ ı ‰Ó ÚÓ˜ÍË ‰ÓÒÚÛÔ‡ l(x) ∈ L ‰Îfl ı, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ·ÎËʇȯÂÈ Í ı ÚÓ˜ÍÓÈ Ì‡ ·‡ı „‡Ù‡ G. ê‡ÒÒÚÓflÌË ‚ÓÁ‰Û¯Ì˚ı Ô‚ÓÁÓÍ ëÂÚ¸ ‡˝ÓÔÓÚÓ‚ – ÔÓËÁ‚ÓθÌ˚È ÔÎÓÒÍËÈ „‡Ù G ̇ n ‚¯Ë̇ı (‡˝ÓÔÓÚ‡ı) Ò ÔÓÎÓÊËÚÂθÌ˚ÏË ‚ÂÒ‡ÏË Â·Â (‚ÂÏfl ÔÓÎÂÚ‡). ÇıÓ‰ Ë ‚˚ıÓ‰ ËÁ „‡Ù‡ ‰ÓÔÛÒ͇˛ÚÒfl ÚÓθÍÓ ˜ÂÂÁ ‡˝ÓÔÓÚ˚. èÂÂÏ¢ÂÌË ÔÓ ÒÂÚË ‚ÌÛÚË „‡Ù‡ G ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Á‡‰‡ÌÌÓÈ ÒÍÓÓÒÚ¸˛ v > 1. Ñ‚ËÊÂÌË ‚Ì ÒÂÚË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Â‰ËÌ˘ÌÓÈ ÒÍÓÓÒÚ¸˛ ÓÚÌÓÒËÚÂθÌÓ Ó·˚˜ÌÓÈ Â‚ÍÎˉӂÓÈ ÏÂÚËÍË. ê‡ÒÒÚÓflÌË ‚ÓÁ‰Û¯Ì˚ı Ô‚ÓÁÓÍ dal ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Ë‡„‡ÏÏ˚ ‚ÓÁ‰Û¯Ì˚ı Ô‚ÓÁÓÍ ÇÓÓÌÓ„Ó V ( P, dal , 2 ), , ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ‚ÂÏfl, ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË ÏÂÊ‰Û ı Ë Û ÔË Ì‡Î˘ËË ÒÂÚË ‡˝ÓÔÓÚÓ‚ G, Ú.Â. ÔÛÚË, ÏËÌËÁËÛ˛˘Â„Ó ÔÓ‰ÓÎÊËÚÂθÌÓÒÚ¸ ÔÛÚ¯ÂÒÚ‚Ëfl ÏÂÊ‰Û ı Ë Û. ê‡ÒÒÚÓflÌË „ÓÓ‰‡ ëÂÚ¸ „ÓÓ‰ÒÍÓ„Ó Ó·˘ÂÒÚ‚ÂÌÌÓ„Ó Ú‡ÌÒÔÓÚ‡, ̇ÔËÏ ÏÂÚÓ ËÎË ‡‚ÚÓ·ÛÒÌ˚ Ô‚ÓÁÍË, Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÔÎÓÒÍËÈ „‡Ù G Ò „ÓËÁÓÌڇθÌ˚ÏË ËÎË ‚ÂÚË͇θÌ˚ÏË Â·‡ÏË. G ÏÓÊÂÚ ÒÓÒÚÓflÚ¸ ËÁ ÏÌÓ„Ëı Ò‚flÁÌ˚ı ÍÓÏÔÓÌÂÌÚ Ë ÒÓ‰Âʇڸ ˆËÍÎ˚. ä‡Ê‰˚È ÏÓÊÂÚ ‚ÓÈÚË ‚ G ‚ β·ÓÈ ÚÓ˜ÍÂ, ·Û‰¸ ÚÓ ‚¯Ë̇ ËÎË Â·Ó (‚ÓÁÏÓÊÌÓ Ì‡Á̇˜ËÚ¸ Ú‡ÍÊÂ Ë ÒÚÓ„Ó ÙËÍÒËÓ‚‡ÌÌ˚ ÚÓ˜ÍË ‚ıÓ‰‡). ÇÌÛÚË G ‰‚ËÊÂÌË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Á‡‰‡ÌÌÓÈ ÒÍÓÓÒÚ¸˛ v > 1 ‚ Ó‰ÌÓÏ ËÁ ‰ÓÒÚÛÔÌ˚ı ̇ԇ‚ÎÂÌËÈ. Ñ‚ËÊÂÌË ‚Ì ÒÂÚË ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Ò Â‰ËÌ˘ÌÓÈ ÒÍÓÓÒÚ¸˛ ÓÚÌÓÒËÚÂθÌÓ ÏÂÚËÍË å‡Ìı˝ÚÚÂ̇ (‚ ̇¯ÂÏ ÒÎÛ˜‡Â ÔÓ‰‡ÁÛÏ‚‡ÂÚÒfl ÍÛÔÌ˚È ÒÓ‚ÂÏÂÌÌ˚È „ÓÓ‰ Ò ÔflÏÓÛ„ÓθÌÓÈ Ô·ÌËÓ‚ÍÓÈ ÛÎˈ ÔÓ Ì‡Ô‡‚ÎÂÌËflÏ Ò‚–˛„ Ë ‚ÓÒÚÓÍ–Á‡Ô‡‰). ê‡ÒÒÚÓflÌËÂÏ „ÓÓ‰‡ d city ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Ë‡„‡ÏÏ˚ „ÓÓ‰‡ ÇÓÓÌÓ„Ó V ( P, dcity , 2 ), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ‚ÂÏfl, ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl ·˚ÒÚÂÈ¯Â„Ó ÔÛÚË ÏÂÊ‰Û ı Ë Û ‚ ÛÒÎÓ‚Ëflı ÒÂÚË G, Ú.Â. ÔÛÚË. ÏËÌËÎËÁËÛ˛˘Â„Ó ÔÓ‰ÓÎÊËÚÂθÌÓÒÚ¸ ÔÛÚ¯ÂÒÚ‚Ëfl ÏÂÊ‰Û ı Ë Û. åÌÓÊÂÒÚ‚Ó P = ( p1 , …, pk ), k ≥ 2 ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÏÌÓÊÂÒÚ‚Ó ÌÂÍËı „ÓÓ‰ÒÍËı Û˜ÂʉÂÌËÈ (̇ÔËÏÂ, ÔÓ˜ÚÓ‚˚ı ÓÚ‰ÂÎÂÌËÈ ËÎË ·ÓθÌˈ): ‰Îfl ÏÌÓ„Ëı β‰ÂÈ Û˜ÂʉÂÌËfl Ó‰ÌÓ„Ó Ë ÚÓ„Ó Ê Ô‰̇Á̇˜ÂÌËfl Ó‰Ë̇ÍÓ‚˚ Ë Ô‰ÔÓ˜ÚËÚÂθÌ˚Ï fl‚ÎflÂÚÒfl ÚÓ, ‰Ó ÍÓÚÓÓ„Ó ·˚ÒÚ ‰Ó·‡Ú¸Òfl. ê‡ÒÒÚÓflÌË ̇ ÂÍ ê‡ÒÒÚÓflÌËÂÏ Ì‡ ÂÍ d riv ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, d riv , 2 ) (‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó Ì‡ ÂÍÂ), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í d riv ( x, y) =
−α( x1 − y1 ) + ( x1 − y1 )2 + (1 − α 2 )( x 2 − y2 )2 v(1 − α 2 )
,
„‰Â v – ÒÍÓÓÒÚ¸ ÎÓ‰ÍË ‚ ÌÂÔÓ‰‚ËÊÌÓÈ ‚Ó‰Â, w > 0 – ÒÍÓÓÒÚ¸ ÔÓÒÚÓflÌÌÓ„Ó ÔÓÚÓ͇ ‚ w ÔÓÎÓÊËÚÂθÌÓÏ Ì‡Ô‡‚ÎÂÌËË x1-ÓÒË Ë α = (0 < α < 1) – ÓÚÌÓÒËÚÂθ̇fl ÒÍÓÓÒÚ¸ v ÔÓÚÓ͇.
É·‚‡ 20. ê‡ÒÒÚÓflÌËfl ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó
295
ê‡ÒÒÚÓflÌË ԇÛÒÌÓÈ ÎÓ‰ÍË èÛÒÚ¸ Ω ⊂ 2 – ӷ·ÒÚ¸ ̇ ÔÎÓÒÍÓÒÚË (‚Ӊ̇fl ÔÓ‚ÂıÌÓÒÚ¸), ÔÛÒÚ¸ f : Ω → 2 – ÌÂÔÂ˚‚ÌÓ ‚ÂÍÚÓÌÓ ÔÓΠ̇ Ω, Ô‰ÒÚ‡‚Îfl˛˘Â ÒÍÓÓÒÚ¸ ÔÓÚÓ͇ ‚Ó‰˚ (ÔÓÎÂÔÓÚÓ͇); ÔÛÒÚ¸ P = ( p1 , …, pk ) ⊂ Ω, k ≥ 2 – ÏÌÓÊÂÒÚ‚Ó k ÚÓ˜ÂÍ ‚ Ω („‡‚‡ÌË). ê‡ÒÒÚÓflÌËÂÏ Ô‡ÛÒÌË͇ ([NiSu03]) d bs ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V(P, dbs, Ω) (‰Ë‡„‡Ïχ Ô‡ÛÒÌË͇ ÇÓÓÌÓ„Ó), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í dbs ( x, y) = inf δ( γ , x, y) γ
1
‰Îfl ‚ÒÂı x, y ∈ Ω, „‰Â δ( γ , x, y) =
∫ 0
γ ′( s ) F + f ( γ ( s)) γ ′( s )
−1
ds – ‚ÂÏfl, ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl
ÚÓ„Ó, ˜ÚÓ·˚ Ô‡ÛÒÌËÍ Ò Ï‡ÍÒËχθÌÓÈ ÒÍÓÓÒÚ¸˛ F ̇ ÌÂÔÓ‰‚ËÊÌÓÈ ‚Ӊ ÔÂÂÏÂÒÚËÎÒfl ËÁ ı ‚ Û ‚‰Óθ ÍË‚ÓÈ γ : {0, 1} → Ω, γ (0) = x, γ (1) = y, ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‚ÓÁÏÓÊÌ˚Ï ÍË‚˚Ï γ. ê‡ÒÒÚÓflÌË ÔÓ‰ÒχÚË‚‡˛˘Â„Ó èÛÒÚ¸ S = {( x1 , x 2 ) ∈ 2 : x1 > 0} – ÔÓÎÛÔÎÓÒÍÓÒÚ¸ ‚ 2, ÔÛÒÚ¸ P = ( p1 , …, pk ), k ≥ 2, – ÏÌÓÊÂÒÚ‚ÓÏ ÚÓ˜ÂÍ, ÒÓ‰Âʇ˘ËıÒfl ‚ ÔÓÎÛÔÎÓÒÍÓÒÚË {( x1 , x 2 ) ∈ 2 : x1 < 0}, Ë ÔÛÒÚ¸ ÓÍÌÓ ÓÔ‰ÂÎflÂÚÒfl Í‡Í ËÌÚ‚‡Î ]a, b[ Ò a = (0,1) Ë b = (0, –1). ê‡ÒÒÚÓflÌË ÔÓ‰ÒχÚË‚‡˛˘Â„Ó dpee ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, d pee , S ) (‰Ë‡„‡Ïχ ÔÓ‰ÒχÚË‚‡˛˘Â„Ó ÇÓÓÌÓ„Ó), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í d ( x, pi ) ÂÒÎË [ x, p] ∩ ]a, b[ ≠ 0/ , d pee ( x, pi ) = E ∞, Ë̇˜Â, „‰Â dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. ê‡ÒÒÚÓflÌË ÒÌ„ÓıÓ‰‡ èÛÒÚ¸ Ω ⊂ 2 – ӷ·ÒÚ¸ ̇ x1x2-ÔÎÓÒÍÓÒÚË ÔÓÒÚ‡ÌÒÚ‚‡ 3 (‰‚ÛÏÂÌÓ ÓÚÓ·‡ÊÂÌËÂ) Ë Ω* = {(q, h(q )) : q = ( x1 (q ), x 2 (q )) ∈ Ω, h(q ) ∈ } – ÚÂıÏÂ̇fl ÔÓ‚ÂıÌÓÒÚ¸ ÁÂÏÎË, ÔÓÒÚ‡‚ÎÂÌ̇fl ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ËÁÓ·‡ÊÂÌ˲ Ω. èÛÒÚ¸ P = {p1 , …, pk } ⊂ Ω, k ≥ 2 – ÏÌÓÊÂÒÚ‚Ó k ÚÓ˜ÂÍ ‚ Ω (ÒÚÓflÌÍË ÒÌ„ÓıÓ‰Ó‚). ê‡ÒÒÚÓflÌËÂÏ ÒÌ„ÓıÓ‰‡ d sm ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, dsm , Ω) (‰Ë‡„‡ÏÏ˚ ÒÌ„ÓıÓ‰‡ ÇÓÓÌÓ„Ó), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í dsm (q, r ) = inf γ
∫ γ
1 ds dh( γ ( s)) F 1− α ds
‰Îfl β·˚ı q,r ∈ Ω Ë ÔÓÁ‚ÓÎfl˛˘Â ‡ÒÒ˜ËÚ‡Ú¸ ÏËÌËχθÌÓ ÌÂÓ·ıÓ‰ËÏÓ ‚ÂÏfl ‰Îfl ÔÂÂÏ¢ÂÌËfl ÒÌ„ÓıÓ‰‡ ÒÓ ÒÍÓÓÒÚ¸˛ F ̇ Ó‚ÌÓÈ ÔÓ‚ÂıÌÓÒÚË ËÁ (q,h(q)) ‚ (r,h(r)) ÔÓ Ï‡¯ÛÚÛ γ * : γ * ( s) = ( γ ( s), h( γ ( s))), ‡ÒÒÓˆËËÓ‚‡ÌÌÓÏÛ Ò ÔÛÚÂÏ ÔÓ Ó·Î‡ÒÚË
296
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
γ : [0, 1] → Ω, γ (0) = q, γ (1) = r (ËÌÙËÏÛÏ ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ‚ÓÁÏÓÊÌ˚Ï ÔÛÚflÏ γ, ‡ α fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓÈ ÍÓÌÒÚ‡ÌÚÓÈ). ëÌ„ÓıÓ‰ ‰‚ËÊÂÚÒfl ‚‚Âı, ‚ „ÓÛ, ωÎÂÌÌÂÂ, ˜ÂÏ ‚ÌËÁ, ÔÓ‰ „ÓÛ. ÑÎfl ÎÂÒÌÓ„Ó ÔÓʇ‡ ı‡‡ÍÚÂÌÓ Ó·‡ÚÌÓÂ: ÙÓÌÚ Ó„Ìfl ÔÂÂÏ¢‡ÂÚÒfl ·˚ÒÚ ‚‚Âı Ë Ï‰ÎÂÌÌ ‚ÌËÁ. чÌÌÛ˛ ÒËÚÛ‡ˆË˛ ÏÓÊÌÓ ÒÏÓ‰ÂÎËÓ‚‡Ú¸ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÓÚˈ‡ÚÂθÌÓ„Ó Á̇˜ÂÌËfl α. èÓÎÛ˜ÂÌÌÓ ‡ÒÒÚÓflÌË ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÎÂÒÌÓ„Ó ÔÓʇ‡ Ë ÔÓÎÛ˜ÂÌ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó Ì‡Á˚‚‡ÂÚÒfl ‰Ë‡„‡ÏÏÓÈ ÎÂÒÌÓ„Ó ÔÓʇ‡ ÇÓÓÌÓ„Ó. ê‡ÒÒÚÓflÌË ÒÍÓθÊÂÌËfl èÛÒÚ¸ í – ̇ÍÎÓÌ̇fl ÔÎÓÒÍÓÒÚ¸ ‚ 3, ÔÓÎÛ˜ÂÌ̇fl ÔÓÒ‰ÒÚ‚ÓÏ ‚‡˘ÂÌËfl x 1 x2π ÔÎÓÒÍÓÒÚË ‚ÓÍÛ„ x 1 -ÓÒË Ì‡ Û„ÓÎ α, 0 < α < , Ò ÍÓÓ‰Ë̇ÚÌÓÈ ÒËÒÚÂÏÓÈ, ÍÓÚÓ‡fl 2 ÔÓÎÛ˜Â̇ ÔÓÒ‰ÒÚ‚ÓÏ ‡Ì‡Îӄ˘ÌÓ„Ó ‚‡˘ÂÌËfl ÍÓÓ‰Ë̇ÚÌÓÈ ÒËÒÚÂÏ˚ x 1 x2-ÔÎÓÒÍÓÒÚË. ÑÎfl ÚÓ˜ÍË q ∈ T , q = ( x1 (q ), x 2 (q )) ÓÔ‰ÂÎËÏ ‚˚ÒÓÚÛ h(q) Í‡Í Â x 3 -ÍÓÓ‰Ë̇ÚÛ ‚ 3. í‡ÍËÏ Ó·‡ÁÓÏ, h(q ) = x 2 (q ) ⋅ sin α. èÛÒÚ¸ P = {p1 , …, pk } ⊂ T , k ≥ 2. ê‡ÒÒÚÓflÌËÂÏ ÒÍÓθÊÂÌËfl ([AACL98]) dskew ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, dskew , T ) (‰Ë‡„‡Ïχ ÒÍÓθÊÂÌËfl ÇÓÓÌÓ„Ó), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í dskew (q, r ) = d E (q, r ) + (h(r ) − h(q )) = d E (q, r ) + sin α( x 2 (r ) − x 2 (q )), ËÎË, ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â, dskew (q, r ) = d E (q, r ) + k ( x 2 (r ) − x 2 (q )) ‰Îfl ‚ÒÂı q,r ∈ T, „‰Â dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ, ‡ k ≥ 0 – ÍÓÌÒÚ‡ÌÚ‡. 20.3. ÑêìÉàÖ êÄëëíéüçàü ÇéêéçéÉé ê‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Îfl ÓÚÂÁÍÓ‚ ê‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Îfl (ÏÌÓÊÂÒÚ‚‡) ÓÚÂÁÍÓ‚ dsl ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( A, dls , 2 ) (ÎËÌÂÈ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó, ÔÓÓʉÂÌ̇fl ÓÚÂÁ͇ÏË), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í dsl ( x, Ai ) = inf d E ( x, y), y ∈Ai
„‰Â ÏÌÓÊÂÒÚ‚Ó ÔÓÓʉ‡˛˘Ëı ˝ÎÂÏÂÌÚÓ‚ A = {A1 , …, Ak }, k ≥ 2 ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÓÚÂÁÍÓ‚ Ai = [ai bi ] Ë d E ÂÒÚ¸ Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. àÏÂÌÌÓ, d E ( x, ai ), ÂÒÎË dls ( x, Ai ) = d E ( x, bi ), ÂÒÎË T d ( x − a , ( x − ai ) (bi − ai ) (b − a )), ÂÒÎË i i i 2 E d E ( ai , bi )
x ∈ Rai , x ∈ Rbi , x ∈ 2 \ {Rai ∪ Rbi },
„‰Â ai = {x ∈ 2 : (bi − ai )T ( x − ai ) < 0}, Rbi = {x ∈ 2 : ( ai − bi )T ( x − bi ) < 0}.
É·‚‡ 20. ê‡ÒÒÚÓflÌËfl ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó
297
ê‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Îfl ‰Û„ ê‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Îfl (ÏÌÓÊÂÒÚ‚‡ ÍÛ„Ó‚˚ı) ‰Û„ dca ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( A, dca , 2 ) (ÎËÌÂÈ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó, ÔÓÓʉÂÌ̇fl ‰Û„‡ÏË ÓÍÛÊÌÓÒÚÂÈ), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í dca ( x, Ai ) = inf d E ( x, y), y ∈Ai
„‰Â ÔÓÓʉ‡˛˘Â ÏÌÓÊÂÒÚ‚Ó A = {Ai , …, Ak }, k ≥ 2 ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ‰Û„ ÓÍÛÊÌÓÒÚÂÈ Ai (ÏÂ̸¯Ëı ËÎË ‡‚Ì˚ı ÔÓÎÛÓÍÛÊÌÓÒÚflÏ) Ò ‡‰ËÛÒÓÏ ri Ë ˆÂÌÚÓÏ ‚ xci , ‡ dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. àÏÂÌÌÓ Ù‡ÍÚ˘ÂÒÍË, dca ( x, Ai ) = min{d E ( x, ai ), d E ( x, bi ),| d E ( x, xci ) − ri |}, „‰Â ai Ë bi – ÍÓ̈‚˚ ÚÓ˜ÍË ‰Û„Ë A i . ê‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Îfl ÓÍÛÊÌÓÒÚÂÈ ê‡ÒÒÚÓflÌËÂÏ ÇÓÓÌÓ„Ó ‰Îfl (ÏÌÓÊÂÒÚ‚‡) ÓÍÛÊÌÓÒÚÂÈ dcl ̇Á˚‚‡ÂÚÒfl ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ӷӷ˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( A, dcl , 2 ) (ÎËÌÂÈ̇fl ‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó, ÔÓÓʉÂÌ̇fl ÓÍÛÊÌÓÒÚflÏË), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í dcl ( x, Ai ) = inf d E ( x, y), y ∈Ai
„‰Â ÔÓÓʉ‡˛˘Â ÏÌÓÊÂÒÚ‚Ó A = {A1 , …, Ak }, k ≥ 2 ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl ÓÍÛÊÌÓÒÚÂÈ A i Ò ‡‰ËÛÒÓÏ ri Ë ˆÂÌÚÓÏ ‚ xci , ‡ dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. àÏÂÌÌÓ, Ù‡ÍÚ˘ÂÒÍË dca ( x, Ai ) = | d E ( x, xci ) − ri | . ÑÎfl ÎËÌÂÈÌ˚ı ‰Ë‡„‡ÏÏ ÇÓÓÌÓ„Ó, ÔÓÓʉÂÌÌ˚ı ÓÍÛÊÌÓÒÚflÏË, ÒÛ˘ÂÒÚ‚ÛÂÚ ÏÌÓ„Ó ‡Á΢Ì˚ı ÔÓÓʉ‡˛˘Ëı ‡ÒÒÚÓflÌËÈ. ç‡ÔËÏÂ, dcl* ( x, Ai ) = d E ( x, xci ) − ri ËÎË dcl* ( x, Ai ) = d E2 ( x, xci ) − ri2 (‰Ë‡„‡Ïχ ÇÓÓÌÓ„Ó ÔÓ ã‡„ÂÛ). ê‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Îfl ӷ·ÒÚÂÈ ê‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ‰Îfl ӷ·ÒÚÂÈ dar ÂÒÚ¸ ÔÓÓʉ‡˛˘Â ‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó Ó·Ó·˘ÂÌÌÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( A, dar , 2 ) (‰Ë‡„‡Ïχ ӷ·ÒÚÂÈ ÇÓÓÌÓ„Ó), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í dar ( x, Ai ) = inf d E ( x, y), y ∈Ai
„‰Â A = {A1 , …, Ak ), k ≥ 2 ÂÒÚ¸ ÒÓ‚ÓÍÛÔÌÓÒÚ¸ ÔÓÔ‡ÌÓ ÌÂÔÂÂÒÂ͇˛˘ËıÒfl Ò‚flÁÌ˚ı Á‡ÏÍÌÛÚ˚ı ÏÌÓÊÂÒÚ‚ (ӷ·ÒÚÂÈ), Ë dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. ëΉÛÂÚ Ó·‡ÚËÚ¸ ‚ÌËχÌË ̇ ÚÓ, ˜ÚÓ ‰Îfl β·Ó„Ó Ó·Ó·˘ÂÌÌÓ„Ó ÔÓÓʉ‡˛˘Â„Ó ÏÌÓÊÂÒÚ‚‡ A = {A1 , …, Ak ), k ≥ 2 ÏÓÊÌÓ ËÒÔÓθÁÓ‚‡Ú¸ ‚ ͇˜ÂÒÚ‚Â ÔÓÓʉ‡˛˘Â„Ó ‡ÒÒÚÓflÌËfl ÇÓÓÌÓ„Ó ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË ÓÚ ÚÓ˜ÍË ı ‰Ó ÏÌÓÊÂÒÚ‚‡ Ai : : dHaus ( x, Ai ) = sup d E ( x, y), „‰Â dE – Ó·˚˜ÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ. y ∈Ai
298
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ñËÎË̉˘ÂÒÍÓ ‡ÒÒÚÓflÌË ñËÎË̉˘ÂÒÍÓ ‡ÒÒÚÓflÌË dcyl ÂÒÚ¸ ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÔÓ‚ÂıÌÓÒÚË ˆËÎË̉‡ S, ÍÓÚÓ‡fl ËÒÔÓθÁÛÂÚÒfl ‚ ͇˜ÂÒÚ‚Â ÔÓÓʉ‡˛˘Â„Ó ‡ÒÒÚÓflÌËfl ÇÓÓÌÓ„Ó ‰Îfl ˆËÎË̉˘ÂÒÍÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( A, dcyl , S ) ÖÒÎË ÓÒ¸ ˆËÎË̉‡ ‰ËÌ˘ÌÓ„Ó ‡‰ËÛÒ‡ ‡ÁÏ¢Â̇ ̇ ı3 -ÓÒË ‚ 3 , ÚÓ ˆËÎË̉˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û Î˛·˚ÏË ÚӘ͇ÏË x,y ∈ S Ò ˆËÎË̉˘ÂÒÍËÏË ÍÓÓ‰Ë̇ڇÏË (1, θx, zx) Ë (1, θy, zy) Á‡‰‡ÂÚÒfl Í‡Í (θ − θ )2 + ( z − z )2 , ÂÒÎË θ − θ ≤ π, x y x y y x dcyl ( x, y) = (θ x + 2 π − θ y )2 + ( z x − z y )2 , ÂÒÎË θ y − θ x > π. äÓÌ˘ÂÒÍÓ ‡ÒÒÚÓflÌË äÓÌ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ d con ̇Á˚‚‡ÂÚÒfl ‚ÌÛÚÂÌÌflfl ÏÂÚË͇ ̇ ÔÓ‚ÂıÌÓÒÚË ÍÓÌÛÒ‡ S, ÍÓÚÓ‡fl ËÒÔÓθÁÛÂÚÒfl ‚ ͇˜ÂÒÚ‚Â ÔÓÓʉ‡˛˘Â„Ó ‡ÒÒÚÓflÌËfl ‰Îfl ÍÓÌ˘ÂÒÍÓÈ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó V ( P, dcon , S ). ÖÒÎË ÓÒ¸ ÍÓÌÛÒ‡ S ‡ÁÏ¢Â̇ ̇ x 3 -ÓÒË ‚ 3 Ë ‡‰ËÛÒ ÓÍÛÊÌÓÒÚË Ó˜Â˜Ë‚‡ÂÏÓÈ ÔÂÂÒ˜ÂÌËÂÏ ÍÓÌÛÒ‡ S Ò x1x2-ÔÎÓÒÍÓÒÚ¸˛ ‡‚ÂÌ Â‰ËÌˈÂ, ÚÓ ‡ÒÒÚÓflÌË ÍÓÌÛÒ‡ ÏÂÊ‰Û Î˛·˚ÏË ÚӘ͇ÏË x, y ∈ S Á‡‰‡ÂÚÒfl Í‡Í rx2 + ry2 − 2 rx ry cos(θ ′y − θ ′x ), ÂÒÎË θ ′y ≤ θ ′x + π sin(α / 2), dcon ( x, y) = rx2 + ry2 − 2 rx ry cos(θ ′x + 2 π sin(α / 2) − θ ′y ), ÂÒÎË θ ′y > θ ′x + π sin(α / 2), „‰Â (x1, x 2 , x 3 ) – ÔflÏÓÛ„ÓθÌ˚ ‰Â͇ÚÓ‚˚ ÍÓÓ‰Ë̇Ú˚ ÚÓ˜ÍË ı ̇ S, α – Û„ÓÎ ÔË ‚¯ËÌ ÍÓÌÛÒ‡, θx – Û„ÓÎ ÔÓÚË‚ ˜‡ÒÓ‚ÓÈ ÒÚÂÎÍË ÓÚ x 1 -ÓÒË ‰Ó ÎÛ˜‡ ËÁ ËÒıÓ‰ÌÓÈ ÚÓ˜ÍË ‰Ó ÚÓ˜ÍË ( x1 , x 2 , 0), θ ′x = θ x sin(α / 2), rx = x12 + x 22 + ( x3 − coth(α / 2))2 – ‡ÒÒÚÓflÌË ÔÓ ÔflÏÓÈ ÓÚ ‚¯ËÌ˚ ÍÓÌÛÒ‡ ‰Ó ÚÓ˜ÍË (x 1 , x2, x3). ê‡ÒÒÚÓflÌË ÇÓÓÌÓ„Ó ÔÓfl‰Í‡ m ê‡ÒÒÏÓÚËÏ ÍÓ̘ÌÓ ÏÌÓÊÂÒÚ‚Ó Ä Ó·˙ÂÍÚÓ‚ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (S, d) Ë ˆÂÎÓ ˜ËÒÎÓ m ≥ 1. ê‡ÒÒÏÓÚËÏ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı m-ÔÓ‰ÏÌÓÊÂÒÚ‚ Mi ËÁ Ä (Ú.Â. Mi ⊂ A Ë | Mi | = m). Ñˇ„‡Ïχ ÇÓÓÌÓ„Ó ÔÓfl‰Í‡ m ÏÌÓÊÂÒÚ‚‡ Ä ÂÒÚ¸ ‡Á·ËÂÌË S ̇ ӷ·ÒÚË ÇÓÓÌÓ„Ó V(Mi) m-ÔÓ‰ÏÌÓÊÂÒÚ‚ ÏÌÓÊÂÒÚ‚‡ Ä Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ V(M i) ÒÓ‰Âʇ· ‚Ò ÚÓ˜ÍË s ∈ S, ÍÓÚÓ˚ "·ÎËÊÂ" Í Mi, ˜ÂÏ Í Î˛·ÓÏÛ ‰Û„ÓÏÛ m ÏÌÓÊÂÒÚ‚Û M i : d(s, x) < d(s, y) ‰Îfl β·˚ı x ∈ Mii Ë y ∈ S\Mi. ùÚ‡ ‰Ë‡„‡Ïχ Û͇Á˚‚‡ÂÚ Ô‚ӄÓ, ‚ÚÓÓ„Ó, …, m-„Ó ·ÎËÊ‡È¯Â„Ó ÒÓÒ‰‡ ÓÍÂÒÚÌÓÒÚË ÚÓ˜ÍË ËÁ S. í‡ÍË ‰Ë‡„‡ÏÏ˚ ÏÓ„ÛÚ ·˚Ú¸ ÓÔ‰ÂÎÂÌ˚ ‚ ÚÂÏË̇ı ÌÂÍÓÚÓÓÈ "ÙÛÌ͈ËË ‡ÒÒÚÓflÌËfl" D(s, Mi), ‚ ˜‡ÒÚÌÓÒÚË, ÌÂÍÓÚÓÓ m-ıÂÏËÏÂÚËÍË Ì‡ S. ÑÎfl Mi = {ai , bi} ‡ÒÒχÚË‚‡ÎËÒ¸ ÙÛÌ͈ËË | d ( s, ai ) − d ( s, bi ) |, d ( s, ai ) + d ( s, bi ), d ( s, ai ) ⋅ d ( s, bi ), ‡ Ú‡ÍÊ 2-ÏÂÚËÍË d ( s, ai ) + d ( s, bi ) + d ( ai , bi ) Ë ÔÎÓ˘‡‰¸ ÚÂÛ„ÓθÌË͇ (s, ai, bi).
É·‚‡ 21
ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
21.1. êÄëëíéüçàü Ç ÄçÄãàáÖ éÅêÄáéÇ é·‡·ÓÚ͇ Ó·‡ÁÓ‚ (ËÁÓ·‡ÊÂÌËÈ) ËÏÂÂÚ ‰ÂÎÓ Ò Ú‡ÍËÏË Í‡Í ÙÓÚÓ„‡ÙËË, ‚ˉÂÓ‰‡ÌÌ˚ ËÎË ÚÓÏÓ„‡Ù˘ÂÒÍË ËÁÓ·‡ÊÂÌËfl. Ç ˜‡ÒÚÌÓÒÚË, ÍÓÏÔ¸˛ÚÂ̇fl „‡ÙË͇ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÔÓˆÂÒÒ ÒËÌÚÂÁËÓ‚‡ÌËfl Ó·‡ÁÓ‚ ËÁ ‡·ÒÚ‡ÍÚÌ˚ı ÏÓ‰ÂÎÂÈ, ÚÓ„‰‡ Í‡Í Ï‡¯ËÌÌÓ ‡ÒÔÓÁ̇‚‡ÌË ӷ‡ÁÓ‚ – ˝ÚÓ ËÁ‚ΘÂÌË ÌÂÍÓÈ ‡·ÒÚ‡ÍÚÌÓÈ ËÌÙÓχˆËË: Ò͇ÊÂÏ, 3D (Ú.Â. ÚÂıÏÂÌÓ„Ó) ÓÔËÒ‡ÌËfl ÚÓÈ ËÎË ËÌÓÈ ÒˆÂÌ˚, ËÒÔÓθÁÛfl  ‚ˉÂÓÒ˙ÂÏÍÛ. 燘Ë̇fl „‰Â-ÚÓ Ò 2000 „. ‡Ì‡ÎÓ„Ó‚‡fl Ó·‡·ÓÚ͇ ËÁÓ·‡ÊÂÌËÈ (ÓÔÚ˘ÂÒÍËÏË ÛÒÚÓÈÒÚ‚‡ÏË) ÛÒÚÛÔ‡ÂÚ ÏÂÒÚÓ ˆËÙÓ‚ÓÈ Ó·‡·ÓÚÍ Ë, ‚ ˜‡ÒÚÌÓÒÚË, ˆËÙÓ‚ÓÏÛ Â‰‡ÍÚËÓ‚‡Ì˲ (̇ÔËÏÂ, Ó·‡·ÓÚÍ ËÁÓ·‡ÊÂÌËÈ, ÔÓÎÛ˜ÂÌÌ˚ı Ò ÔÓÏÓ˘¸˛ Ó·˚˜Ì˚ı ˆËÙÓ‚˚ı ÙÓÚÓ‡ÔÔ‡‡ÚÓ‚). äÓÏÔ¸˛ÚÂ̇fl „‡ÙË͇ (Ë ÏÓÁ„ ˜ÂÎÓ‚Â͇) ËÏÂÂÚ ‰ÂÎÓ Ò Ó·‡Á‡ÏË ‚ÂÍÚÓÌÓÈ „‡ÙËÍË, Ú.Â. Ú‡ÍËÏË, ÍÓÚÓ˚ Ô‰ÒÚ‡‚ÎÂÌ˚ „ÂÓÏÂÚ˘ÂÒÍË ÍË‚˚ÏË, ÏÌÓ„ÓÛ„ÓθÌË͇ÏË Ë Ú.Ô. àÁÓ·‡ÊÂÌË ‡ÒÚÓ‚ÓÈ „‡ÙËÍË (ËÎË ˆËÙÓ‚Ó ËÁÓ·‡ÊÂÌËÂ, ÔÓ·ËÚÓ‚Ó ÓÚÓ·‡ÊÂÌËÂ) ‚ 2D ÂÒÚ¸ Ô‰ÒÚ‡‚ÎÂÌË 2D ËÁÓ·‡ÊÂÌËfl Í‡Í ÍÓ̘ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ‰ËÒÍÂÚÌ˚ı ‚Â΢ËÌ, ̇Á˚‚‡ÂÏ˚ı ÔËÍÒÂÎflÏË (ÒÓ͇˘ÂÌÌÓ ÓÚ ‡Ì„ÎËÈÒÍÓ„Ó "picture element"), ‡ÁÏ¢ÂÌÌ˚ı ̇ Í‚‡‰‡ÚÌÓÈ „ËÁ 2 ËÎË ¯ÂÒÚËÛ„ÓθÌÓÈ „ËÁÂ. ä‡Í Ô‡‚ËÎÓ, ‡ÒÚ – ˝ÚÓ Í‚‡‰‡Ú̇fl 2k × 2k „ËÁ‡ Ò k = 8,9 ËÎË 10. ÇˉÂÓËÁÓ·‡ÊÂÌËfl Ë ÚÓÏÓ„‡Ù˘ÂÒÍË (Ú.Â. ÔÓÎÛ˜ÂÌÌ˚Â Í‡Í ÒÂËfl ÔÓÔ˜Ì˚ı Ò˜ÂÌËÈ ÓÚ‰ÂθÌ˚ÏË ˜‡ÒÚflÏË) ËÁÓ·‡ÊÂÌËfl fl‚Îfl˛ÚÒfl 3D ËÁÓ·‡ÊÂÌËflÏË (2D ÔÎ˛Ò ‚ÂÏfl); Ëı ‰ËÒÍÂÚÌ˚ ‚Â΢ËÌ˚ ̇Á˚‚‡˛ÚÒfl ‚ÓÍÒÂÎflÏË (˝ÎÂÏÂÌÚ‡ÏË Ó·˙Âχ). ÑËÒÍÂÚÌÓ ‰‚Ó˘ÌÓ ËÁÓ·‡ÊÂÌË ËÒÔÓθÁÛÂÚ ÚÓθÍÓ ‰‚‡ Á̇˜ÂÌËfl: 0 Ë 1; 1 ËÌÚÂÔÂÚËÛÂÚÒfl Í‡Í Îӄ˘ÂÒ͇fl "ËÒÚË̇" Ë ÓÚÓ·‡Ê‡ÂÚÒfl ˜ÂÌ˚Ï ˆ‚ÂÚÓÏ; Ú‡ÍËÏ Ó·‡ÁÓÏ, Ò‡ÏÓ ËÁÓ·‡ÊÂÌË ÓÚÓʉÂÒÚ‚ÎflÂÚÒfl Ò ÏÌÓÊÂÒÚ‚ÓÏ ˜ÂÌ˚ı ÔËÍÒÂÎÂÈ. ùÎÂÏÂÌÚ˚ ·Ë̇ÌÓ„Ó 2D ËÁÓ·‡ÊÂÌËfl ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÍÓÏÔÎÂÍÒÌ˚ ˜ËÒ· x = iy, „‰Â (x, y) – ÍÓÓ‰Ë̇ڇ ÚÓ˜ÍË Ì‡ ‰ÂÈÒÚ‚ËÚÂÎÌÓÈ ÔÎÓÒÍÓÒÚË 2 . çÂÔÂ˚‚ÌÓ ·Ë̇ÌÓ ËÁÓ·‡ÊÂÌË fl‚ÎflÂÚÒfl (Ó·˚˜ÌÓ ÍÓÏÔ‡ÍÚÌ˚Ï) ÔÓ‰ÏÌÓÊÂÒÚ‚ÓÏ ÎÓ͇θÌÓ ÍÓÏÔ‡ÍÚÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (Ó·˚˜ÌÓ Â‚ÍÎˉӂ‡ ÔÓÒÚ‡ÌÒÚ‚‡ n Ò n = 2,3). èÓÎÛÚÓÌÓ‚˚ ËÁÓ·‡ÊÂÌËfl ÏÓ„ÛÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ÚӘ˜ÌÓ-‚Á‚¯ÂÌÌ˚ ·Ë̇Ì˚ ËÁÓ·‡ÊÂÌËfl. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ̘ÂÚÍÓ ÏÌÓÊÂÒÚ‚Ó fl‚ÎflÂÚÒfl ÚӘ˜ÌÓ‚Á‚¯ÂÌÌ˚Ï ÏÌÓÊÂÒÚ‚ÓÏ Ò ‚ÂÒ‡ÏË (Á̇˜ÂÌËflÏË ÔË̇‰ÎÂÊÌÓÒÚË) (ÒÏ. [Bloc99] ‰Îfl Ó·ÁÓ‡ ̘ÂÚÍËı ‡ÒÒÚÓflÌËÈ). ÑÎfl ÔÓÎÛÚÓÌÓ‚˚ı ËÁÓ·‡ÊÂÌËÈ xyi-Ô‰ÒÚ‡‚ÎÂÌË ÔËÏÂÌflÂÚÒfl ‚ ÒÎÛ˜‡Â, ÍÓ„‰‡ ÔÎÓÒÍÓÒÌ˚ ÍÓÓ‰Ë̇Ú˚ (x, y) Ó·ÓÁ̇˜‡˛Ú ÙÓÏÛ, ‚ ÚÓ ‚ÂÏfl Í‡Í ‚ÂÒ i (ÒÓ͇˘ÂÌÌÓ ÓÚ ËÌÚÂÌÒË‚ÌÓÒÚË, Ú.Â. flÍÓÒÚË) – ÚÂÍÒÚÛÛ (‡ÒÔ‰ÂÎÂÌË ËÌÚÂÌÒË‚ÌÓÒÚË). àÌÓ„‰‡ ËÒÔÓθÁÛÂÚÒfl Ú‡ÍÊ χÚˈ‡ ((ixy)) ÔÓÎÛÚÓÌÓ‚. ÉËÒÚÓ„‡Ïχ flÍÓÒÚË ÔÓÎÛÚÓÌÓ‚Ó„Ó ËÁÓ·‡ÊÂÌËfl ÔÓ͇Á˚‚‡ÂÚ ˜‡ÒÚÓÚÛ Í‡Ê‰Ó„Ó Ëϲ˘Â„ÓÒfl ‚ ‰‡ÌÌÓÏ ËÁÓ·‡ÊÂÌËË Á̇˜ÂÌËfl flÍÓÒÚË. ÖÒÎË ËÁÓ·‡ÊÂÌË ËÏÂÂÚ m
300
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ÛÓ‚ÌÂÈ flÍÓÒÚË (ÒÚÓηËÍÓ‚ „ËÒÚÓ„‡ÏÏ˚ ÔÓÎÛÚÓÌÓ‚), ÚÓ ÒÛ˘ÂÒÚ‚Û˛Ú 2m ‡Á΢Ì˚ı ‚ÓÁÏÓÊÌ˚ı ËÌÚÂÌÒË‚ÌÓÒÚÂÈ. é·˚˜ÌÓ m = 8 Ë ˜ËÒ· 0,1,…,255 Ô‰ÒÚ‡‚Îfl˛Ú ‰Ë‡Ô‡ÁÓÌ ËÌÚÂÌÒË‚ÌÓÒÚË ÓÚ ·ÂÎÓ„Ó ‰Ó ˜ÂÌÓ„Ó; ‰Û„Ë ÚËÔ˘Ì˚ Á̇˜ÂÌËfl m = 10, 12, 14, 16. É·Á ˜ÂÎÓ‚Â͇ ‡Á΢‡ÂÚ ÔÓfl‰Í‡ 350 Ú˚Ò. ‡Á΢Ì˚ı ˆ‚ÂÚÓ‚, ÌÓ ÚÓθÍÓ 30 ‡Á΢Ì˚ı ÔÓÎÛÚÓÌÓ‚; Ú‡ÍËÏ Ó·‡ÁÓÏ, ˆ‚ÂÚ Ó·Î‡‰‡ÂÚ „Ó‡Á‰Ó ·ÓΠ‚˚ÒÓÍÓÈ ‡Á¯‡˛˘ÂÈ ÒÔÓÒÓ·ÌÓÒÚ¸˛. ÑÎfl ˆ‚ÂÚÌ˚ı ËÁÓ·‡ÊÂÌËÈ Ì‡Ë·ÓΠËÁ‚ÂÒÚÌ˚Ï fl‚ÎflÂÚÒfl (RGB)-Ô‰ÒÚ‡‚ÎÂÌËÂ, „‰Â ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ ÍÓÓ‰Ë̇Ú˚ R, G, B Ó·ÓÁ̇˜‡˛Ú ÛÓ‚ÌË Í‡ÒÌÓÈ, ÁÂÎÂÌÓÈ Ë ÒËÌÂÈ ˆ‚ÂÚÓ‚˚ı ÒÓÒÚ‡‚Îfl˛˘Ëı; 3D „ËÒÚÓ„‡Ïχ ÔÓ͇Á˚‚‡ÂÚ flÍÓÒÚ¸ ‚ ͇ʉÓÈ ÚÓ˜ÍÂ. ëÂ‰Ë ÏÌÓ„Ëı ‰Û„Ëı 3D ÏÓ‰ÂÎÂÈ (ÔÓÒÚ‡ÌÒÚ‚) ˆ‚ÂÚÓ‚ ‡Á΢‡˛Ú: (CMY) ÍÛ· (ˆ‚ÂÚ‡ „ÓÎÛ·ÓÈ, χÎËÌÓ‚˚È, ÊÂÎÚ˚È), (HSL) ÍÓÌÛÒ (ÚËÔ ÍÓÎÓËÚ‡ ç, Á‡‰‡ÌÌ˚È Í‡Í Û„ÓÎ, ̇Ò˚˘ÂÌÌÓÒÚ¸ S, Á‡‰‡Ì̇fl ‚ %, ÓÒ‚Â˘ÂÌÌÓÒÚ¸ L, Á‡‰‡Ì̇fl ‚ %) Ë (YUV), (YIQ), ËÒÔÓθÁÛÂÏ˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‚ ÚÂ΂ËÁËÓÌÌ˚ı ÒËÒÚÂχı PAL Ë NTSC. ëӄ·ÒÌÓ ÛÚ‚ÂʉÂÌÌÓÈ åÂʉÛ̇ӉÌÓÈ ÍÓÏËÒÒËÂÈ ÔÓ ÓÒ‚Â˘ÂÌÌÓÒÚË (åäé) ÏÂÚÓ‰ËÍ ÔÂÂÒ˜ÂÚ (RGB) ‚ ÏÂÛ flÍÓÒÚË (ÓÒ‚Â˘ÂÌÌÓÒÚË) ÔÓÎÛÚÓ̇ ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl Í‡Í 0,299R + 0, 587G + 0,114B. ñ‚ÂÚÓ‚‡fl „ËÒÚÓ„‡Ïχ fl‚ÎflÂÚÒfl ‚ÂÍÚÓÓÏ ÔËÁ̇ÍÓ‚ ‰ÎËÌ˚ n (Ó·˚˜ÌÓ n = 64 ËÎË 256) Ò ÍÓÏÔÓÌÂÌÚ‡ÏË, Ô‰ÒÚ‡‚Îfl˛˘ËÏË ÎË·Ó Ó·˘Â ÍÓ΢ÂÒÚ‚Ó ÔËÍÒÂÎÂÈ, ÎË·Ó ÔÓˆÂÌÚ ÔËÍÒÂÎÂÈ ‰‡ÌÌÓ„Ó ˆ‚ÂÚ‡ ‚ ËÁÓ·‡ÊÂÌËË. àÁÓ·‡ÊÂÌËfl ˜‡˘Â ‚ÒÂ„Ó Ô‰ÒÚ‡‚ÎÂÌ˚ ‚ÂÍÚÓ‡ÏË ÔËÁ̇ÍÓ‚, ‚Íβ˜‡fl ˆ‚ÂÚÓ‚˚ „ËÒÚÓ„‡ÏÏ˚, ˆ‚ÂÚÓ‚Û˛ ̇Ò˚˘ÂÌÌÓÒÚ¸ ÚÂÍÒÚÛ˚, ‰ÂÒÍËÔÚÓ˚ ÙÓÏ˚ Ë Ú.Ô. èËχÏË ÔÓÒÚ‡ÌÒÚ‚ ÔËÁ̇ÍÓ‚ fl‚Îfl˛ÚÒfl: ËÒıӉ̇fl ËÌÚÂÌÒË‚ÌÓÒÚ¸ (Á̇˜ÂÌËfl ÔËÍÒÂÎÂÈ), ͇fl („‡Ìˈ˚, ÍÓÌÚÛ˚, ÔÓ‚ÂıÌÓÒÚË), ÓÚ΢ËÚÂθÌ˚ ı‡‡ÍÚÂËÒÚËÍË (Û„ÎÓ‚˚ ÚÓ˜ÍË, ÔÂÂÒ˜ÂÌËfl ÎËÌËÈ, ÚÓ˜ÍË ‚˚ÒÓÍÓÈÍË‚ËÁÌ˚) Ë ÒÚ‡ÚËÒÚ˘ÂÒÍË ÔËÁ̇ÍË (ÏÓÏÂÌÚÌ˚ ËÌ‚‡Ë‡ÌÚ˚, ˆÂÌÚÓˉ˚). ä ÚËÔÓ‚˚Ï ‚ˉÂÓÔËÁÌ‡Í‡Ï ÓÚÌÓÒflÚÒfl ÔÂÂÍ˚ÚË ͇‰Ó‚, ÔÂÂÏ¢ÂÌËfl. ÇÓÒÒÚ‡ÌÓ‚ÎÂÌË ËÁÓ·‡ÊÂÌËfl (ÔÓËÒÍ ÔÓ‰Ó·ÌÓÒÚÂÈ) ÒÓÒÚÓËÚ (Ú‡Í ÊÂ Í‡Í Ë ‰Îfl ‰Û„Ëı ‰‡ÌÌ˚ı, Ú‡ÍËı Í‡Í ‡Û‰ËÓÁ‡ÔËÒË, ÔÓÒΉӂ‡ÚÂθÌÓÒÚË Ñçä, ÚÂÍÒÚÓ‚˚ ‰ÓÍÛÏÂÌÚ˚, ‚ÂÏÂÌÌ˚ fl‰˚ Ë Ú.Ô.) ‚ ÔÓËÒÍ ËÁÓ·‡ÊÂÌËÈ, ÔËÁ̇ÍË ÍÓÚÓ˚ı ÎË·Ó ·ÎËÁÍË ÏÂÊ‰Û ÒÓ·ÓÈ, ÎË·Ó ·ÎËÁÍË Í ÍÓÌÍÂÚÌÓÏÛ Á‡ÔÓÒÛ, ÎË·Ó Ì‡ıÓ‰flÚÒfl ‚ Á‡‰‡ÌÌÓÏ ‰Ë‡Ô‡ÁÓÌÂ. àÏÂÂÚÒfl ‰‚‡ ÏÂÚÓ‰‡ ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓ„Ó Ò‡‚ÌÂÌËfl ËÁÓ·‡ÊÂÌËÈ: ÔÓ ËÌÚÂÌÒË‚ÌÓÒÚË (ˆ‚ÂÚ‡ Ë ÚÂÍÒÚÛ˚ „ËÒÚÓ„‡ÏÏ˚) Ë ÔÓ „ÂÓÏÂÚËË (ÓÔËÒ‡ÌË ÙÓÏ˚ Ò ÔÓÏÓ˘¸˛ Ò‰ËÌÌÓÈ ÓÒË, ÒÍÎÂÎÂÚ‡ Ë Ú.Ô.). ç˜ÂÚÍËÈ ÚÂÏËÌ ÙÓχ ÔËÏÂÌflÂÚÒfl ‰Îfl ÓÔËÒ‡ÌËfl ‚̯ÌÂ„Ó Ó·ÎË͇ (ÒËÎÛ˝Ú‡) Ó·˙ÂÍÚ‡, Â„Ó ÎÓ͇θÌÓÈ „ÂÓÏÂÚËË ËÎË Ó·˘Â„Ó „ÂÓÏÂÚ˘ÂÒÍÓ„Ó ËÒÛÌ͇ („ÂÓÏÂÚ˘ÂÒÍËı ÓÒÓ·ÂÌÌÓÒÚÂÈ, ÚÓ˜ÂÍ, ÍË‚˚ı Ë Ú.Ô.) ËÎË ‰Îfl Ú‡ÍÓ„Ó ËÒÛÌ͇ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó ÌÂÍÚÓÓÈ „ÛÔÔ˚ ÔÂÓ·‡ÁÓ‚‡ÌËÈ ÔÓ‰Ó·Ëfl (ÔÂÂÌÓÒÓ‚, ‚‡˘ÂÌËÈ Ë Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl). ç˜ÂÚÍËÈ ÚÂÏËÌ ÚÂÍÒÚÛ‡ ÓÁ̇˜‡ÂÚ ‚ÒÂ, ˜ÚÓ ÓÒÚ‡ÂÚÒfl ÔÓÒΠӷ‡·ÓÚÍË ‰‡ÌÌ˚ı Ó ˆ‚ÂÚÂ Ë ÙÓÏÂ. èÓ‰Ó·ÌÓÒÚ¸ ÏÂÊ‰Û ‚ÂÍÚÓÌ˚ÏË Ô‰ÒÚ‡‚ÎÂÌËflÏË ËÁÓ·‡ÊÂÌËÈ ËÁÏÂflÂÚÒfl Ò ÔÓÏÓ˘¸˛ Ó·˚˜Ì˚ı, ‡ÒÒÚÓflÌËÈ: lp -ÏÂÚËÍ, ÏÂÚËÍ ‚Á‚¯ÂÌÌÓ„Ó Â‰‡ÍÚËÓ‚‡ÌËfl, ‡ÒÒÚÓflÌËfl í‡ÌËÏÓÚÓ, ‡ÒÒÚÓflÌËfl ÍÓÒËÌÛÒ‡, ‡ÒÒÚÓflÌËfl å‡ı‡ÎÓÌÓ·ËÒ‡ Ë Â„Ó Ó·Ó·˘ÂÌËÈ, ‡ÒÒÚÓflÌËfl ·Ûθ‰ÓÁ‡. àÁ ‚ÂÓflÚÌÓÒÚÌ˚ı ‡ÒÒÚÓflÌËÈ Ì‡Ë·ÓΠ˜‡ÒÚÓ ËÒÔÓθÁÛ˛ÚÒfl: ‡ÒÒÚÓflÌË Åı‡ÚÚ‡˜‡¸fl 2, ‡ÒÒÚÓflÌË ïÂÎÎË̉ʇ, ‡ÒÒÚÓflÌË äÛÎη‡Í‡–ãÂȷ·, ‡ÒÒÚÓflÌË ÑÊÂÙÙË Ë (ÓÒÓ·ÂÌÌÓ ‰Îfl „ËÒÚÓ„‡ÏÏ) 2 -‡ÒÒÚÓflÌËÂ, ‡ÒÒÚÓflÌË äÓÎÏÓ„ÓÓ‚‡–ëÏËÌÓ‚‡, ‡ÒÒÚÓflÌË äÛËÔ‡. éÒÌÓ‚Ì˚ÏË ‡ÒÒÚÓflÌËflÏË, ÔËÏÂÌflÂÏ˚ÏË ‰Îfl ÍÓÏÔ‡ÍÚÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ X Ë Y ÏÌÓÊÂÒÚ‚‡ n (Ó·˚˜ÌÓ n = 2,3) ËÎË Ëı ‰ËÒÍÂÚÌ˚ı ‚‡Ë‡ÌÚÓ‚, fl‚Îfl˛ÚÒfl: ÏÂÚË͇ ÄÒÔÎÛ̉‡, ÏÂÚË͇ òÂÔ‡‰‡, ÔÓÎÛÏÂÚË͇ ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË Vol(X∆Y) (ÒÏ. åÂÚË͇ çËÍÓ‰Ëχ, ÓÚÍÎÓÌÂÌË ÔÎÓ˘‡‰Ë, åÂÚË͇ ˆËÙÓ‚Ó„Ó Ó·˙Âχ Ë Ëı ÌÓχÎËÁ‡ˆËË, ‡ Ú‡ÍÊ ‚‡Ë‡ÌÚ˚ ı‡ÛÒ‰ÓÙÓ‚‡ ‡ÒÒÚÓflÌËfl (ÒÏ. ÌËÊ ÔÓ ÚÂÍÒÚÛ).
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
301
ÑÎfl ˆÂÎÂÈ Ó·‡·ÓÚÍË ËÁÓ·‡ÊÂÌËÈ Ô˜ËÒÎÂÌÌ˚ ÌËÊ ‡ÒÒÚÓflÌËfl fl‚Îfl˛ÚÒfl ‡ÒÒÚÓflÌËflÏË ÏÂÊ‰Û "ËÒÚËÌÌ˚Ï" Ë ÔË·ÎËÊÂÌÌ˚Ï ˆËÙÓ‚˚ÏË ËÁÓ·‡ÊÂÌËflÏË Ò ÚÂÏ, ˜ÚÓ·˚ ÓˆÂÌËÚ¸ ͇˜ÂÒÚ‚Ó ‡Î„ÓËÚÏÓ‚. ÑÎfl ˆÂÎÂÈ ‚ÓÒÒÚ‡ÌÓ‚ÎÂÌËfl ËÁÓ·‡ÊÂÌËÈ ‡ÒÒÚÓflÌËfl ËÁÏÂfl˛ÚÒfl ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË ÔËÁ̇ÍÓ‚ Á‡ÔÓÒ‡ Ë ÒÒ˚ÎÓÍ. ñ‚ÂÚÓ‚˚ ‡ÒÒÚÓflÌËfl ñ‚ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó – ˝ÚÓ 3-Ô‡‡ÏÂÚ˘ÂÒÍÓ ÓÔËÒ‡ÌË ˆ‚ÂÚÌÓÒÚË. çÂÓ·ıÓ‰ËÏÓÒÚ¸ ËÏÂÌÌÓ ÚÂı Ô‡‡ÏÂÚÓ‚ Ó·ÛÒÎÓ‚ÎÂ̇ ÒÛ˘ÂÒÚ‚Ó‚‡ÌËÂÏ ‚ ˜ÂÎӂ˜ÂÒÍÓÏ „·ÁÛ ÚÂı ‚ˉӂ ˆÂÔÚÓÓ‚, ‚ÓÒÔËÌËχ˛˘Ëı ÍÓÓÚÍÓ‚ÓÎÌÓ‚˚Â, ҉̂ÓÎÌÓ‚˚Â Ë ‰ÎËÌÌÓ‚ÓÎÌÓ‚˚ ËÁÎÛ˜ÂÌËfl, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ÒËÌÂÏÛ, ÁÂÎÂÌÓÏÛ Ë Í‡ÒÌÓÏÛ ˆ‚ÂÚÛ. åÂʉÛ̇Ӊ̇fl ÍÓÏËÒÒËfl ÔÓ ÓÒ‚Â˘ÂÌÌÓÒÚË ÓÔ‰ÂÎË· ‚ 1931 „. Ô‡‡ÏÂÚ˚ ˆ‚ÂÚÓ‚Ó„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (XYZ) ̇ ÓÒÌÓ‚Â (RGB)-ÏÓ‰ÂÎË Ë ËÁÏÂÂÌËÈ ˜ÂÎӂ˜ÂÒÍÓ„Ó ÁÂÌËfl. ëӄ·ÒÌÓ Òڇ̉‡ÚÛ ÍÓÏËÒÒËË ‚ ˆ‚ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (XYZ) ‚Â΢ËÌ˚ X, Y Ë Z ÔË·ÎËÁËÚÂθÌÓ ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú Í‡ÒÌÓÏÛ, ÁÂÎÂÌÓÏÛ Ë ÒËÌÂÏÛ ˆ‚ÂÚ‡Ï. É·‚Ì˚Ï Ô‰ÔÓÎÓÊÂÌËÂÏ ÍÓÎÓËÏÂÚ˘ÂÒÍÓ„Ó ‡Ì‡ÎËÁ‡, ˝ÍÒÔÂËÏÂÌڇθÌÓ Ó·ÓÒÌÓ‚‡ÌÌ˚Ï à̉ÓÛ (1991), fl‚ÎflÂÚÒfl ÚÓ, ˜ÚÓ ‚ÓÒÔËÌËχÂÏÓ ˆ‚ÂÚÓ‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ‰ÓÔÛÒ͇ÂÚ ÒÛ˘ÂÒÚ‚Ó‚‡ÌË ÏÂÚËÍË, ËÒÚËÌÌÓ„Ó ˆ‚ÂÚÓ‚Ó„Ó ‡ÒÒÚÓflÌËfl. è‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ ‰‡Ì̇fl ÏÂÚË͇ ·Û‰ÂÚ ÎÓ͇θÌÓ Â‚ÍÎˉӂÓÈ, Ú.Â. ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ. ÑÛ„ËÏ ‰ÓÔÛ˘ÂÌËÂÏ fl‚ÎflÂÚÒfl ÒÛ˘ÂÒÚ‚Ó‚‡ÌË ÌÂÔÂ˚‚ÌÓ„Ó ÓÚÓ·‡ÊÂÌËfl ËÁ ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ò‚ÂÚÓ‚˚ı ÒÚËÏÛÓ‚ ‚ ˝ÚÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ÒÏ. „ËÔÓÚÂÁÛ ‚ÂÓflÚÌÓÒÚË ‡ÒÒÚÓflÌËfl ‚ „Î. 23 Ó ÚÓÏ, ˜ÚÓ ‚ÂÓflÚÌÓÒÚ¸ ÚÓ„Ó, ˜ÚÓ ÒÛ·˙ÂÍÚ ÓÚ΢ËÚ Ó‰ËÌ ÒÚËÏÛÎ ÓÚ ‰Û„Ó„Ó, fl‚ÎflÂÚÒfl ÌÂÔÂ˚‚ÌÓ ‚ÓÁ‡ÒÚ‡˛˘ÂÈ ÙÛÌ͈ËÂÈ ÌÂÍÓÚÓÓÈ ÒÛ·˙ÂÍÚË‚ÌÓÈ Í‚‡ÁËÏÂÚËÍË ÏÂÊ‰Û ˝ÚËÏË ÒÚËÏÛ·ÏË). í‡ÍÓÈ ‡‚ÌÓÍÓÌÚ‡ÒÚÌÓÈ ˆ‚ÂÚÓ‚ÓÈ ¯Í‡Î˚, „‰Â ‡‚Ì˚ ‡ÒÒÚÓflÌËfl ‚ ˆ‚ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú ‡‚Ì˚Ï ‡ÒÒÚÓflÌËflÏ ‚ ˆ‚ÂÚ‡ı, ÔÓ͇ ¢ Ì ÔÓÎÛ˜ÂÌÓ Ë ÒÛ˘ÂÒÚ‚Û˛˘Ë ˆ‚ÂÚÓ‚˚ ‡ÒÒÚÓflÌËfl fl‚Îfl˛ÚÒfl ‡Á΢Ì˚ÏË Â ‡ÔÔÓÍÒËχˆËflÏË. è‚˚Ï ¯‡„ÓÏ ‚ ˝ÚÓÏ Ì‡Ô‡‚ÎÂÌËË fl‚Îfl˛ÚÒfl ˝ÎÎËÔÒ˚ å‡Íĉ‡Ï‡, Ú. ӷ·ÒÚË (x, y) ̇ ‰Ë‡„‡ÏÏ ıÓχÚ˘ÌÓÒÚË, ‚Ò ÒÓ‰Âʇ˘ËÂÒfl ˆ‚ÂÚ‡ ÍÓÚÓÓÈ ‚˚„Îfl‰flÚ Ì‡Á΢ËÏ˚ÏË ‰Îfl ÌÓχθÌÓ„Ó ˜ÂÎӂ˜ÂÒÍÓ„Ó „·Á‡. ùÚË 25 ˝ÎÎËÔÒÓ‚ ÓÔ‰ÂÎfl˛Ú X Y Ë y= fl‚Îfl˛ÚÒfl ÏÂÚËÍÛ ‚ ˆ‚ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â. á‰ÂÒ¸ x = X +Y + Z X +Y + Z ÔÓÂÍÚË‚Ì˚ÏË ÍÓÓ‰Ë̇ڇÏË, Ë ˆ‚ÂÚ‡ ‰Ë‡„‡ÏÏ˚ ıÓχÚ˘ÌÓÒÚË Á‡ÌËχ˛Ú ÌÂÍÛ˛ ӷ·ÒÚ¸ ‚¢ÂÒÚ‚ÂÌÌÓÈ ÔÓÂÍÚË‚ÌÓÈ ÔÎÓÒÍÓÒÚË. èÓÒÚ‡ÌÒÚ‚Ó CIE (L * a* b* )fl‚ÎflÂÚÒfl ‡‰‡ÔÚ‡ˆËÂÈ ˆ‚ÂÚÓ‚Ó„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ÍÓÏËÒÒËË åäé (ÓÚ 1931 „.); ÓÌÓ Ó·ÂÒÔ˜˂‡ÂÚ ˜‡ÒÚ˘ÌÛ˛ ÎË̇ËÁ‡ˆË˛ ÏÂÚËÍË, Á‡ÎÓÊÂÌÌÓÈ ‚ ˝ÎÎËÔÒ‡ı å‡Íĉ‡Ï‡. 臇ÏÂÚ˚ L * , a* , b* ̇˷ÓΠÔÓÎÌÓÈ ÏÓ‰ÂÎË – ÔÓËÁ‚Ó‰Ì˚ ÓÚ L, a, b, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ı‡‡ÍÚÂËÒÚËÍÓÈ flÍÓÒÚË L ˆ‚ÂÚ‡ ÓÚ ˜ÂÌÓ„Ó L = 0 ‰Ó ·ÂÎÓ„Ó L = 100, ÔË ˝ÚÓÏ ‡ ̇ıÓ‰ËÚÒfl ÏÂÊ‰Û ÁÂÎÂÌ˚Ï a < 0 Ë Í‡ÒÌ˚Ï a > 0, b – ÏÂÊ‰Û ÁÂÎÂÌ˚Ï a < 0 Ë ÊÂÎÚ˚Ï b > 0. ë‰Ì ˆ‚ÂÚÓ‚Ó ‡ÒÒÚÓflÌË ÑÎfl ‰‡ÌÌÓ„Ó 3D ˆ‚ÂÚÓ‚Ó„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ë Ô˜Ìfl n ˆ‚ÂÚÓ‚ ÔÛÒÚ¸ (Òi1, Òi2, Òi3) – Ô‰ÒÚ‡‚ÎÂÌË i-„Ó ˆ‚ÂÚ‡ ËÁ Ô˜Ìfl ‚ ‰‡ÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â. ÑÎfl ˆ‚ÂÚÓ‚ÓÈ „ËÒÚÓ„‡ÏÏ˚ x = (x1,…,xn)  ҉ÌËÏ ˆ‚ÂÚÓÏ fl‚ÎflÂÚÒfl ‚ÂÍÚÓ ( x(1) , x( 2 ) , x(3) ), „‰Â n
x( j ) =
∑ xi cij (̇ÔËÏÂ, Ò‰ÌË Á̇˜ÂÌËfl ͇ÒÌÓ„Ó, ÒËÌÂ„Ó Ë ÁÂÎÂÌÓ„Ó ‚ (RGB)). i =1
ë‰Ì ˆ‚ÂÚÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ˆ‚ÂÚÓ‚˚ÏË „ËÒÚÓ„‡ÏχÏË ([HSEFN95]) fl‚ÎflÂÚÒfl ‚ÍÎˉӂ˚Ï ‡ÒÒÚÓflÌËÂÏ Ëı Ò‰ÌËı ˆ‚ÂÚÓ‚.
302
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ê‡ÒÒÚÓflÌËfl ˆ‚ÂÚÓ‚˚ı ÍÓÏÔÓÌÂÌÚÓ‚ èÛÒÚ¸ ‰‡ÌÓ ËÁÓ·‡ÊÂÌË (Í‡Í ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ÏÌÓÊÂÒÚ‚‡ 2); ÔÛÒÚ¸ pi Ó·ÓÁ̇˜‡ÂÚ (‚ ÔÓˆÂÌÚ‡ı) ӷ·ÒÚ¸ ‰‡ÌÌÓ„Ó ËÁÓ·‡ÊÂÌËfl ˆ‚ÂÚf c i. ñ‚ÂÚÓ‚ÓÈ ÒÓÒÚ‡‚Îfl˛˘ÂÈ ËÁÓ·‡ÊÂÌËfl fl‚ÎflÂÚÒfl Ô‡‡ (ci, pi). ê‡ÒÒÚÓflÌË 凖ÑÂÌ„‡–å‡ÌÊÛ̇ڇ ÏÂÊ‰Û ˆ‚ÂÚÓ‚˚ÏË ÒÓÒÚ‡‚Îfl˛˘ËÏË (c i, pi) Ë (c jpj) ÓÔ‰ÂÎflÂÚÒfl Í‡Í | pi − p j | ⋅d (ci , c j ), „‰Â d (ci , c j ) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆ‚ÂÚ‡ÏË c i Ë c j ‚ ‰‡ÌÌÓÏ ˆ‚ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â. åÓÈÒËÎӂ˘ Ë ‰. ‚‚ÂÎË ÏÓ‰ËÙË͇ˆË˛ ‰‡ÌÌÓ„Ó ‡ÒÒÚÓflÌËfl, ÔÓ‰Ó·ÌÛ˛ ‡ÒÒÚÓflÌ˲ ·Ûθ‰ÓÁ‡. 䂇ÁˇÒÒÚÓflÌË ÔÂÂÒ˜ÂÌËÈ „ËÒÚÓ„‡ÏÏ ÇÓÁ¸ÏÂÏ ‰‚ ˆ‚ÂÚÓ‚˚ „ËÒÚÓ„‡ÏÏ˚ x = ( x1 , …, x n ) Ë y = ( y1 , …, yn ) (Ò xi, yi, Ô‰ÒÚ‡‚Îfl˛˘ËÏË ÍÓ΢ÂÒÚ‚Ó ÔËÍÒÂÎÂÈ ‚ ÒÚÓηËÍ i). 䂇ÁˇÒÒÚÓflÌË ÔÂÂÒ˜ÂÌËÈ „ËÒÚÓ„‡ÏÏ ë‚ÂÈ̇–Ň片 ÏÂÊ‰Û ÌËÏË (ÒÏ. ê‡ÒÒÚÓflÌË ÔÂÂÒ˜ÂÌËÈ, „Î. 17) ÓÔ‰ÂÎflÂÚÒfl Í‡Í n
1−
∑ min( xi , yi ) i =1
n
∑ xi
.
i =1
ÑÎfl ÌÓχÎËÁËÓ‚‡ÌÌ˚ı „ËÒÚÓ„‡ÏÏ (Ó·˘‡fl ÒÛÏχ ‡‚̇ 1) ‚˚¯ÂÔ˂‰ÂÌÌÓ n
Í‚‡ÁˇÒÒÚÓflÌË ÒÚ‡ÌÓ‚ËÚÒfl Ó·˚˜ÌÓÈ l1 -ÏÂÚËÍÓÈ
∑ | xi − yi |. çÓχÎËÁËÓ‚‡Ì̇fl i =1
‚Á‡ËÏ̇fl ÍÓÂÎflˆËfl êÓÁÂÌÙÂ艇–ä‡Í‡ ÏÂÊ‰Û ı Ë Û fl‚ÎflÂÚÒfl ÔÓ‰Ó·ÌÓÒÚ¸˛, ÓÔÂn
∑ xi , yi ‰ÂÎÂÌÌÓÈ Í‡Í
i =1 n
∑
. xi2
i =1
䂇‰‡Ú˘ÌÓ ‡ÒÒÚÓflÌË „ËÒÚÓ„‡ÏÏ˚ ÑÎfl ‰‚Ûı „ËÒÚÓ„‡ÏÏ x = ( x1 , …, x n ) Ë y = ( y1 , …, yn ) (Ó·˚˜ÌÓ n = 256 ËÎË n = 64), Ô‰ÒÚ‡‚Îfl˛˘Ëı ˆ‚ÂÚÌÓÒÚ¸ (‚ ÔÓˆÂÌÚ‡ı) ‰‚Ûı ËÁÓ·‡ÊÂÌËÈ, Ëı Í‚‡‰‡Ú˘ÌÓ ‡ÒÒÚÓflÌË „ËÒÚÓ„‡ÏÏ˚ (ËÒÔÓθÁÛÂÏÓ ‚ ÒËÒÚÂÏ IBM Á‡ÔÓÒ‡ ÔÓ ÒÓ‰ÂʇÌ˲ ËÁÓ·‡ÊÂÌËfl) fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ å‡ı‡ÎÓÌÓ·ËÒ‡, ÓÔ‰ÂÎÂÌÌ˚Ï Í‡Í ( x − y)T A( x − y), „‰Â A = (( aij )) – ÒËÏÏÂÚ˘̇fl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌ̇fl χÚˈ‡, Ë ‚ÂÒ a ij – ÌÂÍÓ ÔÓ‰Ú‚ÂʉÂÌÌÓ ÌÂÔÓÒ‰ÒÚ‚ÂÌÌ˚Ï ‚ÓÒÔËflÚËÂÏ ÒıÓ‰ÒÚ‚Ó ÏÂÊ‰Û ˆ‚ÂÚ‡ÏË i Ë dij j. ç‡ÔËÏ (ÒÏ. [HSEFN95]), aij = 1 − , „‰Â dij fl‚ÎflÂÚÒfl ‚ÍÎˉӂ˚Ï ‡Òmax d pq 1≤ p , q ≤ n
ÒÚÓflÌËÂÏ ÏÂÊ‰Û 3-‚ÂÍÚÓ‡ÏË, Ô‰ÒÚ‡‚Îfl˛˘ËÏË i Ë j ‚ ÌÂÍÓÚÓÓÏ ˆ‚ÂÚÓ‚ÓÏ ÔÓÒÚ-
303
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
1 (( v j − v j )2 + ( si cosh i − 5 − s j cosh j )2 + ( si sinh i − s j sinh j )2 )1 / 2 , „‰Â (hi , si , vi ) Ë (h j , s j , v j ) – Ô‰ÒÚ‡‚ÎÂÌËfl ˆ‚ÂÚÓ‚ i Ë j ‚ ˆ‚ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â (HSV). ê‡ÒÒÚÓflÌË ÔÓÎÛÚÓÌÓ‚Ó„Ó ËÁÓ·‡ÊÂÌËfl èÛÒÚ¸ f(x) Ë g(x) – Á̇˜ÂÌËfl flÍÓÒÚË ‰‚Ûı ˆËÙÓ‚˚ı ÔÓÎÛÚÓÌÓ‚˚ı ËÁÓ·‡ÊÂÌËÈ f Ë g ‰Îfl ÔËÍÒÂÎfl x ∈ X, „‰Â ï fl‚ÎflÂÚÒfl ‡ÒÚÓÏ ÔËÍÒÂÎÂÈ. ã˛·Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÌÓ ‚Á‚¯ÂÌÌ˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË (X, f) Ë (X, g) (̇ÔËÏÂ, ‡ÒÒÚÓflÌË ·Ûθ‰ÓÁ‡) ÏÓÊÂÚ ·˚Ú¸ ÔËÏÂÌÂÌÓ ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û f Ë g. é‰Ì‡ÍÓ ÓÒÌÓ‚Ì˚ÏË ËÒÔÓθÁÛÂÏ˚ÏË ‡ÒÒÚÓflÌËflÏË (ÓÌË Ì‡Á˚‚‡˛ÚÒfl Ú‡ÍÊ ӯ˷͇ÏË) ÏÂÊ‰Û ËÁÓ·‡ÊÂÌËflÏË f Ë g fl‚Îfl˛ÚÒfl: ‡ÌÒÚ‚Â. ÑÛ„Ó ÓÔ‰ÂÎÂÌË Á‡‰‡ÂÚÒfl Í‡Í aij = 1 −
1/ 2
1 1) Ò‰ÌÂÍ‚‡‰‡Ú˘ÂÒ͇fl ӯ˷͇ RMS( f , g) = ( f ( x ) − g( x ))2 (Í‡Í ‚‡ | X | x ∈X ˇÌÚ ‰ÓÔÛÒ͇ÂÚÒfl ËÒÔÓθÁÓ‚‡ÌË l1 -ÌÓÏ˚ | f ( x ) − g( x ) | ‚ÏÂÒÚÓ l2-ÌÓÏ˚);
∑
∑
g( x ) 2 x ∈X 2) ÓÚÌÓ¯ÂÌË Ò˄̇Î-¯ÛÏ SNR( f , g) = 2 ( f ( x ) − g ( x )) x ∈X
∑
1/ 2
;
3) ÍÓ˝ÙÙˈËÂÌÚ Ó¯Ë·ÓÍ ÌÂÔ‡‚ËθÌÓÈ Í·ÒÒËÙË͇ˆËË ÔËÍÒÂÎÂÈ
1 {x ∈ X : |X|
: f ( x ) ≠ g( x )} (ÌÓχÎËÁËÓ‚‡ÌÌÓ ı˝ÏÏËÌ„Ó‚Ó ‡ÒÒÚÓflÌËÂ); 1/ 2
1 4) Ò‰ÌÂÍ‚‡‰‡Ú˘ÂÒ͇fl ˜‡ÒÚÓÚ̇fl ӯ˷͇ ( F(u) − G(u))2 , „‰Â F Ë 2 | U | u ∈U G – ‰ËÒÍÂÚÌ˚ ÔÂÓ·‡ÁÓ‚‡ÌËfl î۸ ‰Îfl f Ë g ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Ë U – ˜‡ÒÚÓÚ̇fl ӷ·ÒÚ¸;
∑
1/ 2
1 (1+ | ηu |2 )δ ( F(u) − G(u))2 , 5) ӯ˷͇ ÔÓfl‰Í‡ δ ‚ ÌÓÏ ëÓ·Ó΂‡ 2 | U | u ∈U 1 „‰Â 0 < δ < 1 ÙËÍÒËÓ‚‡ÌÓ (Ó·˚˜ÌÓ ) Ë η u ÂÒÚ¸ ˜‡ÒÚÓÚÌ˚È ‚ÂÍÚÓ, ‡ÒÒÓˆËË2 Ó‚‡ÌÌ˚È Ò ÔÓÁˈËÂÈ u ‚ ˜‡ÒÚÓÚÌÓÈ Ó·Î‡ÒÚË U. Lp -ÏÂÚË͇ ÒʇÚËfl ËÁÓ·‡ÊÂÌËfl ÇÓÁ¸ÏÂÏ ˜ËÒÎÓ r, 0 ≤ r < 1. Lp -ÏÂÚË͇ ÒʇÚËfl ËÁÓ·‡ÊÂÌËfl fl‚ÎflÂÚÒfl Ó·˚˜ÌÓÈ
∑
2
n L p -ÏÂÚËÍÓÈ Ì‡ ≥0 (ÏÌÓÊÂÒÚ‚Â ÔÓÎÛÚÓÌÓ‚˚ı ËÁÓ·‡ÊÂÌËÈ, ‡ÒÒχÚË‚‡ÂÏ˚ı Í‡Í p
p − 1 2 p −1 n × n χÚˈ˚), „‰Â – ¯ÂÌË ۇ‚ÌÂÌËfl r = ⋅e . í‡Í, p = 1,2 ËÎË ∞ ‰Îfl 2p −1 e 1 ≈ 0, 82. á‰ÂÒ¸ r ÓˆÂÌË‚‡ÂÚ ËÌÙÓχÚË‚ÌÛ˛ (Ú.Â. r = 0, r = e 2 / 3 ≈ 0, 65 ËÎË r ≥ 2 3 ̇ÔÓÎÌÂÌÌÛ˛ ÌÂÌÛ΂˚ÏË Á̇˜ÂÌËflÏË) ˜‡ÒÚ¸ ËÁÓ·‡ÊÂÌËfl. ëӄ·ÒÌÓ [KKN02], ˝Ú‡ ÏÂÚË͇ fl‚ÎflÂÚÒfl ̇ËÎÛ˜¯ÂÈ ÔÓ Í‡˜ÂÒÚ‚Û ÏÂÚËÍÓÈ ‰Îfl ‚˚·Ó‡ ÒıÂÏ˚ ÒʇÚËfl Ò ÔÓÚÂflÏË.
304
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ê‡ÒÒÚÓflÌËfl ÒÍÛ„ÎÂÌËfl ê‡ÒÒÚÓflÌËflÏË ÒÍÛ„ÎÂÌËfl ̇Á˚‚‡˛ÚÒfl ‡ÒÒÚÓflÌËfl, ‡ÔÔÓÍÒËÏËÛ˛˘Ë ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ Í‡Í ‚Á‚¯ÂÌÌÓ ‡ÒÒÚÓflÌË ÔÛÚË ‚ „‡Ù G = ( 2 , E), „‰Â ‰‚‡ ÔËÍÒÂÎfl Ò˜ËÚ‡˛ÚÒfl ÒÓÒ‰ÌËÏË, ÂÒÎË Ó‰ËÌ ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜ÂÌ ËÁ ‰Û„Ó„Ó Ó‰ÌÓ¯‡„Ó‚˚Ï ıÓ‰ÓÏ ÔÓ 2 . èË ˝ÚÓÏ ‰‡˛ÚÒfl Ô˜Â̸ ‡Á¯ÂÌÌ˚ı ıÓ‰Ó‚ Ë ÔÓÒÚÓ ‡ÒÒÚÓflÌËÂ, Ú.Â. ÔÓÎÓÊËÚÂθÌ˚È ‚ÂÒ (ÒÏ. „Î. 19) ÔÓÒÚ‡‚ÎÂÌ ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ͇ʉÓÏÛ ÚËÔÛ Ú‡ÍÓ„Ó ıÓ‰‡. åÂÚË͇ (␣, )-ÒÍÛ„ÎÂÌËfl ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‰‚ÛÏ ‡Á¯ÂÌÌ˚Ï ıÓ‰‡Ï – Ò l1 -‡ÒÒÚÓflÌËÂÏ Ë l∞-‡ÒÒÚÓflÌËÂÏ 1 (ÚÓθÍÓ ‰Ë‡„Ó̇θÌ˚ ÔÂÂÏ¢ÂÌËfl) – ‚Á‚¯ÂÌÌ˚ı ˜ËÒ·ÏË α Ë β ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. éÒÌÓ‚Ì˚ÏË ÒÎÛ˜‡flÏË ÔËÏÂÌÂÌËfl fl‚Îfl˛ÚÒfl (α, β) = = (1, 0) (ÏÂÚË͇ „ÓÓ‰ÒÍÓ„Ó Í‚‡Ú‡Î‡ ËÎË 4-ÏÂÚË͇), (ÏÂÚË͇ ¯‡ıχÚÌÓÈ ‰ÓÒÍË, ËÎË 8-ÏÂÚË͇), (1, 2 ) (ÏÂÚË͇ åÓÌڇ̇Ë), ((3,4)-ÏÂÚË͇), (ÏÂÚË͇ ïËΉ˘‡– êÛÚӂˈ‡), (5, 7) (ÏÂÚË͇ Ç‚‡). åÂÚË͇ ÅÓ„ÂÙÓÒ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÚÂÏ ‡Á¯ÂÌÌ˚Ï ıÓ‰‡Ï – Ò l1 -‡ÒÒÚÓflÌËÂÏ 1, Ò l∞-‡ÒÒÚÓflÌËÂÏ 1 (ÚÓθÍÓ ‰Ë‡„Ó̇θÌ˚ ÔÂÂÏ¢ÂÌËfl) Ë ıÓ‰ÓÏ ÍÓÌfl – Ò ‚ÂÒ‡ÏË 5,7 Ë 11 ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. åÂÚË͇ 3D-ÒÍÛ„ÎÂÌËfl (ËÎË ÏÂÚË͇ (α, β, γ)-ÒÍÛ„ÎÂÌËfl) fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‚Á‚¯ÂÌÌÓ„Ó ÔÛÚË ·ÂÒÍÓ̘ÌÓ„Ó „‡Ù‡ Ò ÏÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ 3 , ‚ ÍÓÚÓÓÏ ‰‚ ‚¯ËÌ˚ fl‚Îfl˛ÚÒfl ÒÓÒ‰ÌËÏË, ÂÒÎË Ëı l∞-‡ÒÒÚÓflÌË ‡‚ÌÓ Â‰ËÌˈÂ, ‡ ‚ÂÒ‡ α, β Ë γ Ò‚flÁ‡Ì˚ Ò 6 ÒÓÒ‰ÌËÏË „‡ÌflÏË, 12 ÒÓÒ‰ÌËÏË Â·‡ÏË Ë 8 ÒÓÒ‰ÌËÏË ‚¯Ë̇ÏË ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ÖÒÎË α = β = γ = 1, ÚÓ Ï˚ ËÏÂÂÏ l∞-ÏÂÚËÍÛ. åÂÚËÍË (3, 4, 5)- Ë (1, 2, 3)-ÒÍÛ„ÎÂÌËfl fl‚Îfl˛ÚÒfl ̇˷ÓΠ˜‡ÒÚÓ ÔËÏÂÌflÂÏ˚ÏË ‰Îfl ‡·ÓÚ˚ Ò 3D ËÁÓ·‡ÊÂÌËflÏË. åÂÚË͇ ó‡Û‰ıÛË–åÛÚË–ó‡Û‰ıÛË ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË x = (x1, …, xm) Ë y = ( y1 , …, ym ) ÓÔ‰ÂÎflÂÚÒfl Í‡Í xi ( x , y ) − yi ( x , y ) +
∑
1 | xi − yi |, n 1 + 1≤ i ≤ n, i ≠ i ( x , y ) 2
„‰Â χÍÒËχθÌÓ Á̇˜ÂÌË x i–yi ÔÓÎÛ˜‡ÂÚÒfl ‰Îfl i = i(x,y). ÑÎfl n = 2 ˝ÚÓ ÏÂÚË͇ 1, 3 - ÒÍÛ„ÎÂÌËfl. 2 ê‡ÒÒÚÓflÌË ·Ûθ‰ÓÁ‡ ê‡ÒÒÚÓflÌË ·Ûθ‰ÓÁ‡ fl‚ÎflÂÚÒfl ‰ËÒÍÂÚÌÓÈ ÙÓÏÓÈ ‡ÒÒÚÓflÌËfl åÓÌʇ–ä‡ÌÚÓӂ˘‡. ÉÛ·Ó „Ó‚Ófl, ˝ÚÓ ÏËÌËχθÌ˚È Ó·˙ÂÏ ‡·ÓÚ˚, ÍÓÚÓ‡fl ÌÂÓ·ıÓ‰Ëχ ‰Îfl ÔÂÂÏ¢ÂÌËfl „ÛÌÚ‡ ËÎË Ï‡ÒÒ˚ Ò Ó‰ÌÓ„Ó ÏÂÒÚ‡ (ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ Ó·‡ÁÓÏ ‡ÁÏ¢ÂÌÌÓ„Ó ‚ ÔÓÒÚ‡ÌÒÚ‚Â) ̇ ‰Û„Ó (ÒÓ‚ÓÍÛÔÌÓÒÚ¸ flÏ). ÑÎfl β·˚ı ‰‚Ûı ÍÓ̘Ì˚ı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ x = ( x1 , …, x m ) Ë y = ( y1 , …, ym ) ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) ‡ÒÒÏÓÚËÏ Ò˄̇ÚÛ˚, Ú.Â. ÚӘ˜ÌÓ ‚Á‚¯ÂÌÌ˚ ÏÌÓÊÂÒÚ‚‡ P1 = ( p1 ( x1 ), …, p1 ( x m )) Ë P2 = ( p2 ( x1 ), …, p2 ( x n )). ç‡ÔËÏ (ÒÏ. [RTG00]), Ò˄̇ÚÛ˚ ÏÓ„ÛÚ Ô‰ÒÚ‡‚ÎflÚ¸ Í·ÒÚÂ˚ ˆ‚ÂÚÓ‚ ËÎË ÚÂÍÒÚÛÌÓ„Ó ÒÓ‰ÂʇÌËfl ËÁÓ·‡ÊÂÌËÈ: ˝ÎÂÏÂÌÚ˚ ï fl‚Îfl˛ÚÒfl ˆÂÌÚÓˉ‡ÏË Í·ÒÚÂÓ‚, ‡ p1 ( x1 ), p2 ( y j ) – ‡ÁχÏË ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı Í·ÒÚÂÓ‚. àÒıÓ‰ÌÓ ‡ÒÒÚÓflÌË d fl‚ÎflÂÚÒfl ÌÂÍÓÚÓ˚Ï ˆ‚ÂÚÓ‚˚ı ‡ÒÒÚÓflÌËÂÏ, Ò͇ÊÂÏ, ‚ÍÎˉӂ˚Ï ‡ÒÒÚÓflÌËÂÏ ‚ 3D CIE (L * a* b* ) ˆ‚ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â.
305
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
èÛÒÚ¸ W1 =
∑ p1 ( xi )
Ë W2 =
i
∑ p2 ( y j )
fl‚Îfl˛ÚÒfl ÒÛÏχÌ˚ÏË ‚ÂÒ‡ÏË P1 Ë P2
i
ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. íÓ„‰‡ ‡ÒÒÚÓflÌË ·Ûθ‰ÓÁ‡ (ËÎË ‡ÒÒÚÓflÌË ڇÌÒÔÓÚËÓ‚ÍË) ÏÂÊ‰Û Ò˄̇ÚÛ‡ÏË P1 Ë P2 ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÙÛÌ͈Ëfl
∑ fij*d( xi , y j ) i, j
∑ fij*
,
i, j
„‰Â m × n χÚˈ‡ S * = (( fij* )) fl‚ÎflÂÚÒfl ÓÔÚËχθÌ˚Ï, Ú.Â. ÏËÌËÏËÁËÛ˛˘ËÏ
∑ fij d( xi , y j ), ÔÓÚÓÍÓÏ. èÓÚÓÍ (‚ÂÒ‡ „ÛÌÚ‡) – ˝ÚÓ m × n χÚˈ‡
S = (( fij )), Û‰Ó‚-
i, j
ÎÂÚ‚Ófl˛˘‡fl ÒÎÂ‰Û˛˘ËÏ Ó„‡Ì˘ÂÌËflÏ: 1) ‚Ò fij ≥ 0; 2)
∑ fij = min{W1, W2}; ij
3)
∑ fij ≤ p2 ( y j ) Ë ∑ fij ≤ p1 ( xi ). i
i
àÚ‡Í, ‰‡ÌÌÓ ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ÛÒ‰ÌÂÌËÂÏ ËÒıÓ‰ÌÓ„Ó ‡ÒÒÚÓflÌËfl d, ̇ ÍÓÚÓÓ „ÛÁ˚ ÔÂÂÏ¢‡˛ÚÒfl ÓÔÚËχθÌ˚Ï ÔÓÚÓÍÓÏ. Ç ÒÎÛ˜‡Â W1 = W2 = 1 ‚˚¯ÂÔ˂‰ÂÌÌ˚ ‰‚‡ ̇‚ÂÌÒÚ‚‡ 3) ÒÚ‡ÌÓ‚flÚÒfl ‡‚ÂÌÒÚ‚‡ÏË. çÓχÎËÁ‡ˆËfl Ò˄̇ÚÛ ‰Ó W1 = W2 = 1 (˜ÚÓ Ì ËÁÏÂÌflÂÚ ‡ÒÒÚÓflÌËfl) ÔÓÁ‚ÓÎflÂÚ ‡ÒÒχÚË‚‡Ú¸ P1 Ë P2 Í‡Í ‡ÒÔ‰ÂÎÂÌËfl ‚ÂÓflÚÌÓÒÚÂÈ ÒÎÛ˜‡ÈÌ˚ı ‚Â΢ËÌ, Ò͇ÊÂÏ, X Ë Y. íÓ„‰‡ fij d ( xi , y j ) fl‚ÎflÂÚÒfl ÔÓÒÚÓ S [d ( X , Y )], Ú.Â. ‡ÒÒÚÓflÌËÂ
∑ i, j
·Ûθ‰ÓÁ‡ ÒÓ‚Ô‡‰‡ÂÚ ‚ ˝ÚÓÏ ÒÎÛ˜‡Â Ò ÏÂÚËÍÓÈ ä‡ÌÚÓӂ˘‡–å˝ÎÎÓÛÁ‡–åÓÌʇ– LJÒÒÂχ̇. Ä ‰Îfl ÒÎÛ˜‡fl, Ò͇ÊÂÏ, W1 < W2 ÓÌÓ ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â Ì fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ. é‰Ì‡ÍÓ Á‡ÏÂ̇ ‚ ‚˚¯ÂÔ˂‰ÂÌÌÓÏ ÓÔ‰ÂÎÂÌËË Ì‡‚ÂÌÒÚ‚‡ 3) ‡‚ÂÌÒÚ‚‡ÏË p ( x )W 3⬘) fij = p2 ( y j ) Ë fij = 1 1 1 W2 i i
∑
∑
‰‡ÂÚ ÔÓÎÛÏÂÚËÍÛ ÔÓÔÓˆËÓ̇θÌÓ„Ó ÔÂÂÌÓÒ‡ ܡÌÌÓÔÓÎÓÒ‡–ÇÂθÚ͇ÏÔ‡. ê‡ÒÒÚÓflÌË ԇ‡ÏÂÚËÁÓ‚‡ÌÌ˚ı ÍË‚˚ı îÓχ ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂ̇ Ô‡‡ÏÂÚËÁÓ‚‡ÌÌ˚ÏË ÍË‚˚ÏË Ì‡ ÔÎÓÒÍÓÒÚË. é·˚˜ÌÓ Ú‡Í‡fl ÍË‚‡fl fl‚ÎflÂÚÒfl ÔÓÒÚÓÈ, Ú.Â. Ì ËÏÂÂÚ Ò‡ÏÓÔÂÂÒ˜ÂÌËÈ. èÛÒÚ¸ X = X ( x (t )) Ë Y = Y ( y(t )) – ‰‚ ԇ‡ÏÂÚËÁÓ‚‡ÌÌ˚ ÍË‚˚Â, Û ÍÓÚÓ˚ı (ÌÂÔÂ˚‚Ì˚Â) ÙÛÌ͈ËË Ô‡‡ÏÂÚËÁ‡ˆËË x(t) Ë y(t) ̇ [0, 1] Û‰Ó‚ÎÂÚ‚Ófl˛Ú ÛÒÎÓ‚ËflÏ x(0) = = y(0) = 0 Ë x (1) = y(1) = 1. ç‡Ë·ÓΠËÒÔÓθÁÛÂÏ˚Ï ‡ÒÒÚÓflÌËÂÏ Ô‡‡ÏÂÚËÁÓ‚‡ÌÌ˚ı ÍË‚˚ı fl‚ÎflÂÚÒfl ÏËÌËÏÛÏ (ÍÓÚÓ˚È ·ÂÂÚÒfl ÔÓ ‚ÒÂÏ ÏÓÌÓÚÓÌÌÓ ‚ÓÁ‡ÒÚ‡˛˘ËÏ Ô‡‡ÏÂÚËÁ‡ˆËflÏ x(t) Ë y(t)) χÍÒËχθÌÓ„Ó Â‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl d E ( X ( x (t )), Y ( y(t ))). ùÚÓ – ÒÔˆˇθÌ˚È Â‚ÍÎˉӂ ÒÎÛ˜‡È ‡ÒÒÚÓflÌËfl ÒÓ·‡ÍÓ‚Ó‰‡, ÍÓÚÓÓÂ, ‚ Ò‚Ó˛ Ә‰¸, fl‚ÎflÂÚÒfl
306
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ÏÂÚËÍÓÈ î¯ ‰Îfl ÒÎÛ˜‡fl ÍË‚˚ı. LJˇÌÚ‡ÏË ˝ÚÓ„Ó ‡ÒÒÚÓflÌËfl fl‚Îfl˛ÚÒfl ÓÚ·‡Ò˚‚‡ÌË ÛÒÎÓ‚Ëfl ÏÓÌÓÚÓÌÌÓÒÚË Ô‡‡ÏÂÚËÁ‡ˆËË ËÎË Ì‡ıÓʉÂÌË ˜‡ÒÚË ÍË‚ÓÈ, ÓÚ ÍÓÚÓÓÈ ‰Û„‡fl  ˜‡ÒÚ¸ ÓÚÒÚÓËÚ Ì‡ ÏËÌËχθÌÓÏ Ú‡ÍÓÏ ‡ÒÒÚÓflÌËË ([VeHa01]). ê‡ÒÒÚÓflÌËfl ÌÂÎËÌÂÈÌÓ„Ó „Ë·ÍÓ„Ó Òӄ·ÒÓ‚‡ÌËfl ê‡ÒÒÏÓÚËÏ ‰ËÒÍÂÚÌÓ Ô‰ÒÚ‡‚ÎÂÌË ÍË‚˚ı. èÛÒÚ¸ r ≥ 1 – ÍÓÌÒÚ‡ÌÚ‡ Ë A = = {a1 , …, am}, B = {b1 , …, bn} – ÍÓ̘Ì˚ ÛÔÓfl‰Ó˜ÂÌÌ˚ ÏÌÓÊÂÒÚ‚‡ ÔÓÒΉӂ‡ÚÂθÌ˚ı ÚÓ˜ÂÍ Ì‡ ‰‚Ûı Á‡ÏÍÌÛÚ˚ı ÍË‚˚ı. ÑÎfl β·Ó„Ó ÒÓı‡Ìfl˛˘Â„Ó ÔÓfl‰ÓÍ ÒÓÓÚ‚ÂÚÒÚ‚Ëfl f ÏÂÊ‰Û ‚ÒÂÏË ÚӘ͇ÏË Ä Ë ‚ÒÂÏË ÚӘ͇ÏË Ç Û˜‡ÒÚÓÍ s(ai, bj) ‰Îfl ( ai , f ( ai ) = = b j ) ‡‚ÂÌ r, ÂÒÎË f(ai–1) = bj ËÎË f(ai) = bj–1, Ë ‡‚ÂÌ 0, Ë̇˜Â. éÒ··ÎÂÌÌÓ ‡ÒÒÚÓflÌË ÌÂÎËÌÂÈÌÓ„Ó „Ë·ÍÓ„Ó Òӄ·ÒÓ‚‡ÌËfl fl‚ÎflÂÚÒfl ÏËÌËÏÛÏÓÏ ÔÓ ‚ÒÂÏ Ú‡ÍËÏ f ‚Â΢ËÌ˚ ( s( ai , b j ) + d ( ai , b j )), „‰Â d(ai, bj) – ‡ÁÌÓÒÚ¸ ÏÂÊ‰Û Í‡Ò‡ÚÂθÌ˚ÏË Û„Î‡ÏË ai Ë bj. éÌÓ fl‚ÎflÂÚÒfl ÔÓ˜ÚË ÏÂÚËÍÓÈ ‰Îfl ÌÂÍÓÚÓÓ„Ó r. ÑÎfl r = 1 ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÌÂÎËÌÂÈÌÓ„Ó „Ë·ÍÓ„Ó Òӄ·ÒÓ‚‡ÌËfl.
∑
ê‡ÒÒÚÓflÌË ÙÛÌ͈ËË ‚‡˘ÂÌËfl ÑÎfl ÔÎÓÒÍÓ„Ó ÏÌÓ„ÓÛ„ÓθÌË͇ ê Â„Ó ÙÛÌ͈ËÂÈ ‚‡˘ÂÌËfl Tp(s) ̇Á˚‚‡ÂÚÒfl Û„ÓÎ (ÔÓÚË‚ ˜‡ÒÓ‚ÓÈ ÒÚÂÎÍË) ÏÂÊ‰Û Í‡Ò‡ÚÂθÌÓÈ Ë x-ÓÒ¸˛ Í‡Í ÙÛÌ͈Ëfl ‰ÎËÌ˚ ‰Û„Ë s. ùÚ‡ ÙÛÌ͈Ëfl ‚ÓÁ‡ÒÚ‡ÂÚ ÔË Í‡Ê‰ÓÏ ÔÓ‚ÓÓÚ ̇ÎÂ‚Ó Ë Û·˚‚‡ÂÚ ÔË ÔÓ‚ÓÓÚ ̇ԇ‚Ó. ÑÎfl ‰‚Ûı ÏÌÓ„ÓÛ„ÓθÌËÍÓ‚ Ò ‡‚Ì˚ÏË ÔÂËÏÂÚ‡ÏË Ëı ‡ÒÒÚÓflÌËÂÏ ÙÛÌ͈ËË ‚‡˘ÂÌËfl fl‚ÎflÂÚÒfl L p -ÏÂÚË͇ ÏÂÊ‰Û Ëı ÙÛÌ͈ËflÏË ‚‡˘ÂÌËfl. ê‡ÒÒÚÓflÌË ÙÛÌ͈ËË ‡Áχ ÑÎfl ÔÎÓÒÍÓ„Ó „‡Ù‡ G = (V , E ) Ë ËÁÏÂfl˛˘ÂÈ ÙÛÌ͈ËË f ̇ Â„Ó ÏÌÓÊÂÒÚ‚Â ‚¯ËÌ V (̇ÔËÏÂ, ‡ÒÒÚÓflÌËË ÓÚ v ∈V ‰Ó ˆÂÌÚ‡ χÒÒ˚ V) ÙÛÌ͈Ëfl ‡Áχ SG ( x, y) ÓÔ‰ÂÎflÂÚÒfl ̇ ÚӘ͇ı ( x, y) ∈ 2 Í‡Í ˜ËÒÎÓ Ò‚flÁÌ˚ı ÍÓÏÔÓÌÂÌÚ ÒÛÊÂÌËfl G ̇ ‚¯ËÌ˚ {v ∈ V : f ( vl ) ≤ y}, ÒÓ‰Âʇ˘Ëı ÚÓ˜ÍÛ v⬘ Ò f ( v ′) ≤ x. ÑÎfl ‰‚Ûı ÔÎÓÒÍËı „‡ÙÓ‚ Ò ÏÌÓÊÂÒÚ‚‡ÏË ‚¯ËÌ, ÔË̇‰ÎÂʇ˘ËÏË ‡ÒÚÛ R ⊂ 2 , Ëı ‡ÒÒÚÓflÌËÂÏ ÙÛÌ͈ËË ‡Áχ ì‡Á‡–ÇÂË fl‚ÎflÂÚÒfl ÌÓχÎËÁÓ‚‡ÌÌÓ l1 -‡ÒÒÚÓflÌË ÏÂÊ‰Û Ëı ÙÛÌ͈ËflÏË ‡ÒÒÚÓflÌËfl ̇‰ ‡ÒÚ‡ÏË ÔËÍÒÂÎÂÈ. ê‡ÒÒÚÓflÌË ÓÚ‡ÊÂÌËfl ÑÎfl ÍÓ̘ÌÓ„Ó Ó·˙‰ËÌÂÌËfl Ä ÔÎÓÒÍËı ÍË‚˚ı Ë Í‡Ê‰ÓÈ ÚÓ˜ÍË x ∈ 2 ÔÛÒÚ¸ VAx Ó·ÓÁ̇˜‡ÂÚ Ó·˙‰ËÌÂÌË ËÌÚ‚‡ÎÓ‚ ] x, a [ a ∈ A, ÍÓÚÓ˚ ‚ˉÌ˚ ËÁ ı, Ú.Â.
] x, a [ ∩ A = 0/ . èÛÒÚ¸
p Ax – ÔÎÓ˘‡‰¸ ÏÌÓÊÂÒÚ‚‡ {x + v ∈ VAx : x − v ∈ VAx }. ê‡ÒÒÚÓflÌËÂÏ ÓÚ‡ÊÂÌËfl ‰Ó̇–ÇÂθ͇ÏÔ‡ ÏÂÊ‰Û ÍÓ̘Ì˚ÏË Ó·˙‰ËÌÂÌËflÏË Ä Ë Ç ÍË‚˚ı ÔÎÓÒÍËı fl‚ÎflÂÚÒfl ÌÓχÎËÁÓ‚‡ÌÌÓ l1 -‡ÒÒÚÓflÌË ÏÂÊ‰Û ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ÙÛÌ͈ËflÏË p Ax Ë pBx , ÓÔ‰ÂÎÂÌÌÓ ͇Í
∫ pA − pB dx x
x
2
∫ max pA ⋅ pB dx x
2
x
.
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
307
ê‡ÒÒÚÓflÌÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË ÇÓÁ¸ÏÂÏ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó ( X = 2 , d ) Ë ‰‚Ó˘ÌÓ ˆËÙÓ‚Ó ËÁÓ·‡ÊÂÌË M ⊂ X. ê‡ÒÒÚÓflÌÌ˚Ï ÔÂÓ·‡ÁÓ‚‡ÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÙÛÌ͈Ëfl f M : X → ≥ 0 , „‰Â f M ( x ) = infu ∈M d ( x, u) fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ d(x, M). ëΉӂ‡ÚÂθÌÓ, ‡ÒÒÚÓflÌÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÔÓÎÛÚÓÌÓ‚Ó ˆËÙÓ‚Ó ËÁÓ·‡ÊÂÌËÂ, ‚ ÍÓÚÓÓÏ Í‡Ê‰ÓÏÛ ÔËÍÒÂβ ÔËÒ‚‡Ë‚‡ÂÚÒfl ÏÂÚ͇ (ÛÓ‚Â̸ ÔÓÎÛÚÓ̇), ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ‡ÒÒÚÓflÌ˲ ‰Ó ·ÎËÊ‡È¯Â„Ó ÔËÍÒÂÎfl ÙÓ̇. ê‡ÒÒÚÓflÌÌ˚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ‚ ÔÓˆÂÒÒ‡ı Ó·‡·ÓÚÍË ËÁÓ·‡ÊÂÌËÈ Ú‡ÍÊ ̇Á˚‚‡˛ÚÒfl ‡ÒÒÚÓflÌÌ˚ÏË ÔÓÎflÏË Ë, „·‚Ì˚Ï Ó·‡ÁÓÏ, ‡ÒÒÚÓflÌÌ˚ÏË Í‡Ú‡ÏË; Ӊ̇ÍÓ ÔÓÒΉÌËÈ ÚÂÏËÌ Ï˚ ÂÁ‚ËÛÂÏ ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ˝ÚÓ„Ó ÔÓÌflÚËfl ÔËÏÂÌËÚÂθÌÓ Í Î˛·ÓÏÛ ÏÂÚ˘ÂÒÍÓÏÛ ÔÓÒÚ‡ÌÒÚ‚Û. ê‡ÒÒÚÓflÌÌÓ ÔÂÓ·‡ÁÓ‚‡ÌË ÙÓÏ˚ – ‡ÒÒÚÓflÌÌÓ ÔÂÓ·‡ÁÓ‚‡ÌËÂ, ‚ ÍÓÚÓÓÏ å – „‡Ìˈ‡ ËÁÓ·‡ÊÂÌËfl. ÑÎfl X = 2 „‡Ù {( x, f ( x )) : x ∈ X} ‰Îfl d(x, M) ̇Á˚‚‡ÂÚÒfl ÔÓ‚ÂıÌÓÒÚ¸˛ ÇÓÓÌÓ„Ó ‰Îfl å. ë‰ËÌ̇fl ÓÒ¸ Ë ÒÍÂÎÂÚ̇fl èÛÒÚ¸ (X, d) – ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ë å – ÔÓ‰ÏÌÓÊÂÒÚ‚Ó ï. ë‰ËÌ̇fl ÓÒ¸ ï – ÏÌÓÊÂÒÚ‚Ó MA( X ) = {x ∈ X :| {m ∈ M : d ( x, m) = d ( x, M )} | ≥ 2}, Ú.Â. ‚Ò ÚÓ˜ÍË ï, Ëϲ˘Ë ‚ å Ì ÏÂÌ ‰‚Ûı ˝ÎÂÏÂÌÚÓ‚ ̇ËÎÛ˜¯Â„Ó ÔË·ÎËÊÂÌËfl. MA(X) ÒÓÒÚÓËÚ ËÁ ‚ÒÂı ÚÓ˜ÂÍ „‡Ìˈ ӷ·ÒÚÂÈ ÇÓÓÌÓ„Ó ‰Îfl ÚÓ˜ÂÍ ËÁ å. ëÍÂÎÂÚ Skel(X) ÏÌÓÊÂÒÚ‚‡ ï ÂÒÚ¸ ÏÌÓÊÂÒÚ‚Ó ˆÂÌÚÓ‚ ‚ÒÂı ¯‡Ó‚ (ÓÚÌÓÒËÚÂÎÌÓ ‡ÒÒÚÓflÌËfl d), ÍÓÚÓ˚ ‚ÔËÒ‡Ì˚ ‚ ï Ë fl‚Îfl˛ÚÒfl χÍÒËχθÌ˚ÏË, Ú.Â. Ì ÔË̇‰ÎÂÊ‡Ú ÌË͇ÍÓÏÛ ‰Û„ÓÏÛ Ú‡ÍÓÏÛ ¯‡Û. ÉÂÓÏÂÚ˘ÂÒÍÓ ÏÂÒÚÓ ‡ÁÂÁÓ‚ ÏÌÓÊÂÒÚ‚‡ ï – ˝ÚÓ Á‡Ï˚͇ÌË MA( X ) Ò‰ËÌÌÓÈ ÓÒË. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â MA( X ) ⊂ Skel( X ) ⊂ MA( X ). èÂÓ·‡ÁÓ‚‡ÌËfl Ò‰ËÌÌÓÈ ÓÒË, ÒÍÂÎÂÚ‡ Ë „ÂÓÏÂÚ˘ÂÒÍÓ„Ó ÏÂÒÚ‡ ‡ÁÂÁÓ‚ – ˝ÚÓ ÚӘ˜ÚÌÓ-‚Á‚¯ÂÌÌ˚ ÏÌÓÊÂÒÚ‚‡ÏË MA(X), Skel(X) Ë MA( X ) (ÒÛÊÂÌË ‡ÒÒÚÓflÌÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl ̇ ˝ÚË ÏÌÓÊÂÒÚ‚‡) Ò d(x, M), ‡ÒÒχÚË‚‡ÂÏ˚Ï Í‡Í ‚ÂÒ ÚÓ˜ÍË x ∈ X. é·˚˜ÌÓ X ⊂ n Ë M – „‡Ìˈ‡ ï. Ç ÒÎÛ˜‡Â ÍÓ„‰‡ å fl‚ÎflÂÚÒfl ÌÂÔÂ˚‚ÌÓÈ „‡ÌˈÂÈ, Ò‰ËÌ̇fl ÓÒ¸ ÏÓÊÂÚ Ò˜ËÚ‡Ú¸Òfl Ô‰ÂÎÓÏ ‰Ë‡„‡ÏÏ˚ ÇÓÓÌÓ„Ó ÔÓ Ï ÚÓ„Ó Í‡Í ˜ËÒÎÓ ÔÓÓʉ‡˛˘Ëı ÚÓ˜ÂÍ ÒÚ‡ÌÓ‚ËÚÒfl ·ÂÒÍÓ̘Ì˚Ï. ÑÎfl 2D ·Ë̇Ì˚ı ËÁÓ·‡ÊÂÌËÈ ï ÒÍÂÎÂÚ fl‚ÎflÂÚÒfl ÍË‚ÓÈ ÚÓ΢ËÌÓÈ ‚ Ó‰ËÌ ÔËÍÒÂθ ‚ ˆËÙÓ‚ÓÏ ÒÎÛ˜‡Â. ùÍÁÓÒÍÂÎÂÚ ÏÌÓÂÊÒÚ‚‡ ï – ÒÍÂÎÂÚ ‰ÓÔÓÎÌÂÌËfl ÏÌÓÊÂÒÚ‚‡ ï, Ú.Â. ÙÓ̇ ËÁÓ·‡ÊÂÌËfl, ‰Îfl ÍÓÚÓÓ„Ó ï fl‚ÎflÂÚÒfl Ô‰ÌËÏ Ô·ÌÓÏ. èÓÍÛÒÚÓ‚Ó ‡ÒÒÚÓflÌË é˜ÂÚ‡ÌË ÙÓÏ˚ (ÍÓÌÙË„Û‡ˆËfl ÚÓ˜ÂÍ ‚ 2), ÍÓÚÓÓ ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ‚˚‡ÊÂÌË ËÌ‚‡Ë‡ÌÚÌ˚ı Ò‚ÓÈÒÚ‚ ÙÓÏ˚ ÓÚÌÓÒËÚÂθÌÓ ÔÂÂÌÓÒ‡, ‚‡˘ÂÌËfl Ë Ï‡Ò¯Ú‡·‡, ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ Í‡Í ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÓËÂÌÚËÓ‚, Ú.Â. ÒÔˆËÙ˘ÂÒÍËı ÚÓ˜ÂÍ Ì‡ ÙÓÏÂ, ‚˚·‡ÌÌ˚ı ÔÓ ÓÔ‰ÂÎÂÌÌÓÏÛ Ô‡‚ËÎÛ. ä‡Ê‰˚È ÓËÂÌÚË ‡ ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ˝ÎÂÏÂÌÚ ( a ′, a ′′) ∈ 2 ËÎË ˝ÎÂÏÂÌÚ a ′ + a ′′i ∈ . ê‡ÒÒÏÓÚËÏ ‰‚ ÙÓÏ˚ ı Ë Û, Ô‰ÒÚ‡‚ÎÂÌÌ˚ Ëı ÓËÂÌÚËÌ˚ÏË ‚ÂÍÚÓ‡ÏË (x1,…,xn) Ë (y1,…,yn) ËÁ n . è‰ÔÓÎÓÊËÏ, ˜ÚÓ ı Ë Û ÍÓÂÍÚËÛ˛ÚÒfl ‰Îfl ÔÂÂÌÓÒ‡ ÛÒÎÓ‚ËÂÏ xt = yt = 0. íÓ„‰‡ Ëı ÔÓÍÛÒÚÓ‚Ó ‡ÒÒÚÓflÌË ÓÔ‰ÂÎflÂÚ-
∑ t
∑ t
Òfl Í‡Í n
∑ t =1
| xt − yt |2 ,
308
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
„‰Â ‰‚ ÙÓÏ˚ fl‚Îfl˛ÚÒfl, ÓÔÚËχθÌÓ (ÔÓ ÍËÚÂ˲ ̇ËÏÂ̸¯Ëı Í‚‡‰‡ÚÓ‚) ‡ÒÔÓÎÓÊÂÌÌ˚ÏË ÔÓ Ó‰ÌÓÈ ÎËÌËË ‰Îfl ÍÓÂÍÚËÓ‚ÍË Ï‡Ò¯Ú‡·‡ Ë Ëı ‡ÒÒÚÓflÌË ӘÂÚ‡ÌËfl äẨ‡Î· ÓÔ‰ÂÎflÂÚÒfl ͇Í
arccos
∑ xt yt ∑ yt xt t
t
∑ t
xt xt
∑ t
yt yt
,
„‰Â α = a ′ − a ′′i fl‚ÎflÂÚÒfl ÍÓÏÔÎÂÍÒÌÓ ÒÓÔflÊÂÌÌ˚Ï ˜ËÒ· α = a ′ − a ′′i. ä‡Ò‡ÚÂθÌÓ ‡ÒÒÚÓflÌË ÑÎfl β·Ó„Ó x ∈ n Ë ÒÂÏÂÈÒÚ‚‡ ÔÂÓ·‡ÁÓ‚‡ÌËÈ t(x, α), „‰Â α ∈ k – ‚ÂÍÚÓ k Ô‡‡ÏÂÚÓ‚ (̇ÔËÏÂ, ÍÓ˝ÙÙˈËÂÌÚ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl Ë Û„ÓÎ ‚‡˘ÂÌËfl), ÏÌÓÊÂÒÚ‚Ó M x = {t ( x, σ ) : α ∈ k } ⊂ n fl‚ÎflÂÚÒfl ÏÌÓ„ÓÓ·‡ÁËÂÏ ‡ÁÏÂÌÓÒÚË Ì ·Óθ¯Â ˜ÂÏ k. ùÚÓ ÍË‚‡fl, ÂÒÎË k = 1. åËÌËχθÌÓ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÌÓ„ÓÓ·‡ÁËflÏË Mx Ë My fl‚ÎflÂÚÒfl ÔÓÎÂÁÌ˚Ï ‡ÒÒÚÓflÌËÂÏ, ÔÓÒÍÓθÍÛ ÓÌÓ ËÌ‚‡Ë‡ÌÚÌÓ ÓÚÌÓÒËÚÂθÌÓ ÔÂÓ·‡ÁÓ‚‡ÌËÈ t(x, α). é‰Ì‡ÍÓ ‡ÒÒ˜ËÚ‡Ú¸ Ú‡ÍÓ ‡ÒÒÚÓflÌË ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â Ó˜Â̸ ÚÛ‰ÌÓ; ÔÓ˝ÚÓÏÛ M x ‡ÔÔÓÍÒËÏËÛ˛Ú Í‡Í Â„Ó Í‡Ò‡ÚÂθÌÓ ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚Ó ‚ k
ÚӘ͠ı: {x +
∑ α k x i : α ∈ k } ⊂ n , „‰Â ÔÓÓʉ‡˛˘ËÂ Â„Ó Í‡Ò‡ÚÂθÌ˚ ‚ÂÍÚÓ˚ i =1
xi, 1 ≤ i ≤ k, fl‚Îfl˛ÚÒfl ˜‡ÒÚÌ˚ÏË ÔÓËÁ‚Ó‰Ì˚ÏË t(x, α) ÓÚÌÓÒËÚÂθÌÓ α. é‰ÌÓÒÚÓÓÌÌ (ËÎË ÓËÂÌÚËÓ‚‡ÌÌÓÂ) ͇҇ÚÂθÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˝ÎÂÏÂÌÚ‡ÏË ı Ë Û ËÁ n ÂÒÚ¸ Í‚‡ÁˇÒÒÚÓflÌË d, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í 2
k
min x + α
∑ αk x
i
−y .
i =1
ä‡Ò‡ÚÂθÌÓ ‡ÒÒÚÓflÌË ëËχ‡–ã ä‡Ì‡–ÑÂÌ͇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í min{d ( x, y), d ( y, x )}. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ͇҇ÚÂθÌÓ ÏÌÓÊÂÒÚ‚Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ï ‚ ÚӘ͠ı ÓÔ‰ÂÎflÂÚÒfl (ÔÓ ÉÓÏÓ‚Û) Í‡Í Î˛·‡fl Ô‰Âθ̇fl ÚӘ͇ ÒÂÏÂÈÒÚ‚‡ Â„Ó ‡ÒÚflÊÂÌËÈ Ò ÍÓ˝ÙÙˈËÂÌÚÓÏ ‡ÒÚflÊÂÌËfl, ÒÚÂÏfl˘ËÏÒfl Í ·ÂÒÍÓ̘ÌÓÒÚË, ÍÓÚÓ‡fl ·ÂÂÚÒfl ‚ ÚӘ˜ÌÓÈ ÚÓÔÓÎÓ„ËË ÉÓÏÓ‚‡–ï‡ÛÒ‰ÓÙ‡ (ÒÏ. åÂÚË͇ ÉÓÏÓ‚‡–ï‡ÛÒ‰ÓÙ‡, „Î. 1). ê‡ÒÒÚÓflÌË ÔËÍÒÂÎfl ÇÓÁ¸ÏÂÏ ‰‚‡ ˆËÙÓ‚˚ı Ó·‡Á‡, ‡ÒÒχÚË‚‡ÂÏ˚ı Í‡Í ·Ë̇Ì˚ m × n χÚˈ˚ x = ((xij)) Ë y = ((yij)), „‰Â ÔËÍÒÂθ x ij fl‚ÎflÂÚÒfl ˜ÂÌ˚Ï ËÎË ·ÂÎ˚Ï, ÂÒÎË ÓÌ ‡‚ÂÌ 1 ËÎË 0 ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ÑÎfl Í‡Ê‰Ó„Ó ÔËÍÒÂÎfl xij Ó͇ÈÏÎÂÌÌÓ ‡ÒÒÚÓflÌÌÓ ÓÚÓ·‡ÊÂÌË ‰Ó ·ÎËÊ‡È¯Â„Ó ÔËÍÒÂÎfl ÔÓÚË‚ÓÔÓÎÓÊÌÓ„Ó ˆ‚ÂÚ‡ DBW(x ij) ÂÒÚ¸ ˜ËÒÎÓ Ó͇ÈÏÎÂÌËÈ („‰Â ͇ʉÓ Ó͇ÈÏÎÂÌË ÒÓÒÚÓËÚ ËÁ ÔËÍÒÂÎÂÈ, ‡‚ÌÓÛ‰‡ÎÂÌÌ˚ı (i, j)), ÔÓÚflÌÛ‚¯ËıÒfl ÓÚ (i, j) ‰Ó ‚ÒÚÂ˜Ë Ò Ô‚˚Ï Ó͇ÈÏÎÂÌËÂÏ, ÒÓ‰Âʇ˘ËÏ ÔËÍÒÂθ ÔÓÚË‚ÓÔÓÎÓÊÌÓ„Ó ˆ‚ÂÚ‡. ê‡ÒÒÚÓflÌË ÔËÍÒÂÎÂÈ (‚‚‰ÂÌÌÓ ì‡ÈÚÓÏ Ë ‰., 1994) Á‡‰‡ÂÚÒfl ͇Í
∑ ∑
1≤ i ≤ m 1≤ i ≤ n
(
)
| xij − yij | DBW ( xij ) + DBW ( yij ) .
309
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
䂇ÁˇÒÒÚÓflÌË ÍÓ˝ÙÙˈËÂÌÚ‡ ͇˜ÂÒÚ‚‡ ÇÓÁ¸ÏÂÏ ‰‚‡ ·Ë̇Ì˚ı ËÁÓ·‡ÊÂÌËfl, ‡ÒÒχÚË‚‡ÂÏ˚ı Í‡Í ÌÂÔÛÒÚ˚ ÍÓ̘Ì˚ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç ÍÓ̘ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d). ÑÎfl ÌËı Í‚‡ÁˇÒÒÚÓflÌË ÍÓ˝ÙÙˈËÂÌÚ‡ ͇˜ÂÒÚ‚‡ è‡ÚÚ‡ ÓÔ‰ÂÎflÂÚÒfl Í‡Í −1
1 max{| A |,| B |} 2 , 1 + αd ( x, A) x ∈B
∑
„‰Â α – ÍÓÌÒÚ‡ÌÚ‡ χүڇ·ËÓ‚‡ÌËfl (Ó·˚˜ÌÓ
1 ) Ë d ( x, A) = min d ( x, y) – ‡ÒÒÚÓflÌË y ∈A 9
ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ. èËχÏË ÔÓ‰Ó·Ì˚ı Í‚‡ÁˇÒÒÚÓflÌËÈ fl‚Îfl˛ÚÒfl ‡ÒÒÚÓflÌË Ò‰ÌÂÈ Ôӄ¯1 ÌÓÒÚË èÂÎË-å‡Î‡ı‡ d ( x, A) Ë ‡ÒÒÚÓflÌË Ò‰ÌÂÍ‚‡‰‡Ú˘ÂÒÍÓÈ Ôӄ¯| B | x ∈B 1 ÌÓÒÚË d ( x , A) 2 . | B | x ∈B
∑
∑
ë‰Ì ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË -„Ó ÔÓfl‰Í‡ ÇÓÁ¸ÏÂÏ ‰‚‡ ·Ë̇Ì˚ı ËÁÓ·‡ÊÂÌËfl, ‡ÒÒχÚË‚‡ÂÏ˚ı Í‡Í ÌÂÔÛÒÚ˚ ÍÓ̘Ì˚ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç ÍÓ̘ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (Ò͇ÊÂÏ, ‡ÒÚ‡ ÔËÍÒÂÎÂÈ) (X, d). àı ҉̠ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË -„Ó ÔÓfl‰Í‡ ÂÒÚ¸ ([Badd92]) ÌÓχÎËÁÓ‚‡ÌÌÓ Lp -‡ÒÒÚÓflÌË ï‡ÛÒ‰ÓÙ‡, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í 1
1 p p − | d ( x, A) d ( x, B) | , | X | x ∈X
∑
„‰Â d ( x, A) = min d ( x, y) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ. é·˚˜Ì‡fl ı‡ÛÒy ∈A
‰ÓÙÓ‚‡ ÏÂÚË͇ ÔÓÔÓˆËÓ̇θ̇ Ò‰ÌÂÏÛ ı‡ÛÒ‰ÓÙÓ‚Û ‡ÒÒÚÓflÌ˲ ∞-„Ó ÔÓfl‰Í‡. Σ-ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË ÇÂÌ͇ڇÒÛ·‡ÏËÌˇ̇ d d Haus ( A, B) + d d Haus ( B, A) ‡‚ÌÓ
∑
| d ( x, A) − d ( x, B) |, Ú.Â. fl‚ÎflÂÚÒfl ‚‡Ë‡ÌÚÓÏ L 1 -‡ÒÒÚÓflÌËfl ï‡ÛÒ‰ÓÙ‡.
x ∈A ∪ B
ÑÛ„ËÏ ‚‡Ë‡ÌÚÓÏ Ò‰ÌÂ„Ó ı‡ÛÒ‰ÓÙÓ‚‡ ‡ÒÒÚÓflÌËfl 1-„Ó ÔÓfl‰Í‡ fl‚ÎflÂÚÒfl Ò‰Ìflfl „ÂÓÏÂÚ˘ÂÒ͇fl Ôӄ¯ÌÓÒÚ¸ ãË̉ÒÚfiχ-íÛ͇ ÏÂÊ‰Û ‰‚ÛÏfl ËÁÓ·‡ÊÂÌËflÏË, ‡ÒÒχÚË‚‡ÂÏ˚ÏË Í‡Í ÔÓ‚ÂıÌÓÒÚË Ä Ë Ç. é̇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1 Area( A) + Area( B)
∫
d ( x, B)dS +
x ∈A
d ( x, A)dS , x ∈B
∫
„‰Â Area( A) – ÔÎÓ˘‡‰¸ ÔÓ‚ÂıÌÓÒÚË Ä. ÖÒÎË ‡ÒÒχÚË‚‡Ú¸ ËÁÓ·‡ÊÂÌËfl Í‡Í ÍÓ̘Ì˚ ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç, ÚÓ Ëı Ò‰Ìflfl „ÂÓÏÂÚ˘ÂÒ͇fl Ôӄ¯ÌÓÒÚ¸ ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1 d ( x, B) + d ( x, A) . | A | + | B | x ∈A x ∈B
∑
∑
310
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
åÓ‰ËÙˈËÓ‚‡ÌÌÓ ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË ÇÓÁ¸ÏÂÏ ‰‚‡ ·Ë̇Ì˚ı ËÁÓ·‡ÊÂÌËfl, ‡ÒÒχÚË‚‡ÂÏ˚ı Í‡Í ÌÂÔÛÒÚ˚ ÍÓ̘Ì˚ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä Ë Ç ÍÓ̘ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d). àı ÏÓ‰ËÙˈËÓ‚‡ÌÌÓ ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË ÔÓ Ñ˛·˛ÒÒÓÌÛ–ÑÊÂÈÌÛ ÓÔ‰ÂÎflÂÚÒfl Í‡Í Ï‡ÍÒËÏÛÏ ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ÚÓ˜ÍÓÈ Ë ÏÌÓÊÂÒÚ‚ÓÏ, ÛÒ‰ÌÂÌÌ˚ı ÔÓ Ä Ë Ç: 1 1 max d ( x, B), d ( x, A). | B | x ∈B | A | x ∈A
∑
∑
ó‡ÒÚ˘ÌÓ ı‡ÛÒ‰ÓÙÓ‚Ó Í‚‡ÁˇÒÒÚÓflÌË ÇÓÁ¸ÏÂÏ ‰‚‡ ·Ë̇Ì˚ı ËÁÓ·‡ÊÂÌËfl, ‡ÒÒχÚË‚‡ÂÏ˚ı Í‡Í ÌÂÔÛÒÚ˚ ÍÓ̘Ì˚ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä, Ç ÍÓ̘ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d), Ë ˆÂÎ˚ ˜ËÒ· k, l, Ú‡ÍË ˜ÚÓ 1 ≤ k ≤ | A |, 1 ≤ l ≤ | B | . àı ˜‡ÒÚ˘ÌÓ (k, l)-ı‡ÛÒ‰ÓÙÓ‚Ó Í‚‡ÁˇÒÒÚÓflÌË ÔÓ ï‡ÚÚÂÌÎÓÍÂÛ–êÛÍÎˉÊÛ ÓÔ‰ÂÎflÂÚÒfl ͇Í
{
}
max kkth∈A d ( x, B), lxth∈B d ( x, A) , „‰Â kkth∈A d ( x, B) ÓÁ̇˜‡ÂÚ k- (‚ÏÂÒÚÓ, ̇˷Óθ¯Ó„Ó A-„Ó, ‡ÒÔÓÎÓÊÂÌÌÓ„Ó Ô‚˚Ï) ÒÂ‰Ë | A | ‡ÒÒÚÓflÌËÈ d(x, B), ‡ÒÔÓÎÓÊÂÌÌ˚ı ‚ ‚ÓÁ‡ÒÚ‡˛˘ÂÏ ÔÓfl‰ÍÂ. ëÎÛ˜‡È | A | B k = , l = ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ò‰ÌÂÏÛ ÏÓ‰ËÙˈËÓ‚‡ÌÌÓÏÛ ı‡ÛÒ‰ÓÙÓ‚Û Í‚‡ 2 2 ÁˇÒÒÚÓflÌ˲. ê‡ÒÒÚÓflÌË ·ÛÚ˚ÎÓ˜ÌÓ„Ó „ÓÎ˚¯Í‡ ÇÓÁ¸ÏÂÏ ‰‚‡ ·Ë̇Ì˚ı ËÁÓ·‡ÊÂÌËfl, ‡ÒÒχÚË‚‡ÂÏ˚ı Í‡Í ÌÂÔÛÒÚ˚ ÍÓ̘Ì˚ ÔÓ‰ÏÌÓÊÂÒÚ‚‡ Ä, Ç Ò | A | = | B | = m ÍÓ̘ÌÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d). àı ‡ÒÒÚÓflÌË ·ÛÚ˚ÎÓ˜ÌÓ„Ó „ÓÎ˚¯Í‡ ÓÔ‰ÂÎflÂÚÒfl Í‡Í min max d ( x, f ( x )), f
x ∈A
„‰Â f – β·Ó ·ËÂÍÚË‚ÌÓ ÓÚÓ·‡ÊÂÌË ÏÂÊ‰Û Ä Ë Ç. LJˇÌÚ‡ÏË ‚˚¯ÂÔ˂‰ÂÌÌÓ„Ó ‡ÒÒÚÓflÌËfl fl‚Îfl˛ÚÒfl: 1) ÒÓÓÚ‚ÂÚÒÚ‚Ë ÏËÌËχθÌÓ„Ó ‚ÂÒ‡: min d ( x, f ( x ));
{
f
∑
x ∈A
}
2) ‡‚ÌÓÏÂÌÓ ÒÓÓÚ‚ÂÚÒÚ‚ËÂ: max d ( x, f ( x )) − min d ( x, f ( x )) ; x ∈A
x ∈A
3) ÒÓÓÚ‚ÂÚÒÚ‚Ë ̇ËÏÂ̸¯Â„Ó ÓÚÍÎÓÌÂÌËfl: 1 min max d ( x, f ( x )) − d ( x, f ( x )). f x ∈A | A | x ∈A ÑÎfl ˆÂÎÓ„Ó ˜ËÒ· t, 1 ≤ t ≤ | A |, ‡ÒÒÚÓflÌË t-·ÛÚ˚ÎÓ˜ÌÓ„Ó „ÓÎ˚¯Í‡ ÏÂÊ‰Û Ä Ë Ç ([InVe00]) ‡‚ÌÓ ‚˚¯ÂÛÔÓÏflÌÛÚÓÏÛ ÏËÌËÏÛÏÛ, ÂÒÎË f – β·Ó ÓÚÓ·‡ÊÂÌË ËÁ Ä ‚ Ç, Ú‡ÍÓ ˜ÚÓ | {x ∈ A : f ( x ) = e} | ≤ t. ëÎÛ˜‡Ë t = 1 Ë t = | A | ‡Ì‡Îӄ˘Ì˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌ˲ ·ÛÚ˚ÎÓ˜ÌÓ„Ó „ÓÎ˚¯Í‡ Ë ÓËÂÌÚËÓ‚‡ÌÌÓÏÛ ı‡ÛÒ‰ÓÙÓ‚Û ‡ÒÒÚÓflÌ˲ dd Haus ( A, B) = max min d ( x, y).
∑
x ∈A y ∈B
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
311
ï‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌËÂ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó G ÑÎfl „ÛÔÔ˚ (G, ⋅, id), ‰ÂÈÒÚ‚Û˛˘ÂÈ Ì‡ ‚ÍÎˉӂÓÏ ÔÓÒÚ‡ÌÒÚ‚Â n , ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌËÂ Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó G ÏÂÊ‰Û ‰‚ÛÏfl ÍÓÏÔ‡ÍÚÌ˚ÏË ÔÓ‰ÏÌÓÊÂÒÚ‚‡ÏË Ä Ë Ç (ËÒÔÓθÁÛÂÏÓ ÔË Ó·‡·ÓÚÍ ËÁÓ·‡ÊÂÌËÈ) ÂÒÚ¸ Ó·Ó·˘ÂÌÌÓ G-ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË, Ú.Â. ÏËÌËÏÛÏ dHaus ( A, g( B)) ÔÓ ‚ÒÂÏ g ∈ G. é·˚˜ÌÓ G – ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ËÁÓÏÂÚËÈ ËÎË ‚ÒÂı ÔÂÂÌÓÒÓ‚ ÔÓÒÚ‡ÌÒÚ‚‡ n. ÉËÔ·Ó΢ÂÒÍÓ ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË ÑÎfl β·Ó„Ó ÍÓÏÔ‡ÍÚÌÓ„Ó Ó‰ÏÌÓÊÂÒÚ‚‡ Ä ÏÌÓÊÂÒÚ‚‡ n Ó·ÓÁ̇˜ËÏ ˜ÂÂÁ åAT(A) Â„Ó ÔÂÓ·‡ÁÓ‚‡ÌË Ò‰ËÌÌÓÈ ÓÒË ÔÓ ÅβÏÛ, Ú.Â. ÔÓ‰ÏÌÓÊÂÒÚ‚Ó X = = n × ≥ 0 , ‚Ò ˝ÎÂÏÂÌÚ˚ ÍÓÚÓÓ„Ó fl‚Îfl˛ÚÒfl Ô‡‡ÏË x = ( x ′, rx ) ˆÂÌÚÓ‚ x⬘ Ë ‡‰ËÛÒÓ‚ rx χÍÒËχθÌ˚ı ‚ÔËÒ‡ÌÌ˚ı ‚ A ¯‡Ó‚ ÔËÏÂÌËÚÂθÌÓ Í Â‚ÍÎˉӂÓÏÛ ‡ÒÒÚÓflÌ˲ dE ‚ n (ÒÏ. C‰ËÌ̇fl ÓÒ¸ Ë ÒÍÂÎÂÚ). ÉËÔ·Ó΢ÂÒÍÓ ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË ([ChSe00]) – ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇ ̇ ÌÂÔÛÒÚ˚ı ÍÓÏÔ‡ÍÚÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚‡ı åAT(A) ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d), „‰Â „ËÔ·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌË d ̇ ï ÓÔ‰ÂÎflÂÚÒfl ‰Îfl Â„Ó ˝ÎÂÏÂÌÚÓ‚ x = ( x ′, rx ) Ë y = ( y ′, ry ) Í‡Í max{0, d E ( x ′, y ′) − (ry − rx )}. çÂÎËÌÂÈ̇fl ı‡ÛÒ‰ÓÙÓ‚‡ ÏÂÚË͇ ÑÎfl ‰‚Ûı ÍÓÏÔ‡ÍÚÌ˚ı ÔÓ‰ÏÌÓÊÂÒÚ‚ Ä Ë Ç ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) Ëı ÌÂÎËÌÂÈÌÓÈ ı‡ÛÒ‰ÓÙÓ‚ÓÈ ÏÂÚËÍÓÈ (ËÎË ‚ÓÎÌÓ‚˚Ï ‡ÒÒÚÓflÌËÂÏ á‡Úχ˖ êÂ͘ÍË–êÓÒ͇) ̇Á˚‚‡ÂÚÒfl ı‡ÛÒ‰ÓÙÓ‚Ó ‡ÒÒÚÓflÌË dHaus ( A ∩ B, ( A ∪ B)* ), „‰Â ( A ∪ B)* ÂÒÚ¸ ÔÓ‰ÏÌÓÊÂÒÚ‚Ó A ∩ B, Ó·‡ÁÛ˛˘Â Á‡ÏÍÌÛÚÛ˛ ÌÂÔÂ˚‚ÌÛ˛ ӷ·ÒÚ¸ Ò A ∩ B Ë ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÚӘ͇ÏË ÏÓ„ÛÚ ËÁÏÂflÚ¸Òfl ÚÓθÍÓ ‚‰Óθ ÔÛÚÂÈ, ÔÓÎÌÓÒÚ¸˛ ÔË̇‰ÎÂʇ˘Ëı A ∪ B. åÂÚËÍË Í‡˜ÂÒÚ‚‡ ‚ˉÂÓËÁÓ·‡ÊÂÌËfl чÌÌ˚ ÏÂÚËÍË fl‚Îfl˛ÚÒfl ‡ÒÒÚÓflÌËflÏË ÏÂÊ‰Û ‚ıÓ‰ÌÓÈ Ë ÔÓÚÓÚËÔÌÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ˆ‚ÂÚÌ˚ı ‚ˉÂÓ͇‰Ó‚, ÍÓÚÓ˚ ӷ˚˜ÌÓ Ô‰̇Á̇˜ÂÌ˚ ‰Îfl ÓÔÚËÏËÁ‡ˆËË ‡Î„ÓËÚÏÓ‚ ÍÓ‰ËÓ‚‡ÌËfl, ÒʇÚËfl Ë ‰ÂÍÓ‰ËÓ‚‡ÌËfl. ä‡Ê‰‡fl ËÁ ÌËı ÓÒÌÓ‚‡Ì‡ ̇ ÌÂÍÓÈ ÏÓ‰ÂÎË ‚ÓÒÔËflÚËfl ‚ ÒËÒÚÂÏ ˜ÂÎӂ˜ÂÒÍÓ„Ó ÁÂÌËfl, ÔÓÒÚÂȯËÏË ËÁ ÍÓÚÓ˚ı fl‚Îfl˛ÚÒfl RMSE (Ò‰ÌÂÍ‚‡‰‡Ú˘ÂÒ͇fl ӯ˷͇) Ë PSNR (ÔËÍÓ‚Ó ÒÓÓÚÌÓ¯ÂÌË Ò˄̇Î-¯ÛÏ) ÏÂ˚ Ôӄ¯ÌÓÒÚÂÈ. ëÂ‰Ë ÔÓ˜Ëı ÏÓÊÌÓ Ì‡Á‚‡Ú¸ ÔÓÓ„Ó‚˚ ÏÂÚËÍË, Ò ÔÓÏÓ˘¸˛ ÍÓÚÓ˚ı ÓˆÂÌË‚‡ÂÚÒfl ‚ÂÓflÚÌÓÒÚ¸ ‚˚‰ÂÎÂÌËfl ‚ˉÂÓ ‡ÚÂÙ‡ÍÚÓ‚ (Ú.Â. ‚ËÁۇθÌ˚ı ËÒ͇ÊÂÌËÈ ËÁÓ·‡ÊÂÌËfl, ̇Í·‰˚‚‡˛˘ËıÒfl ̇ ‚ˉÂÓÒ˄̇Π‚ ÔÓˆÂÒÒ ˆËÙÓ‚Ó„Ó ÍÓ‰ËÓ‚‡ÌËfl). Ç Í‡˜ÂÒÚ‚Â ÔËÏÂÓ‚ ÏÓÊÌÓ ÔË‚ÂÒÚË ÏÂÚËÍÛ JND (‰‚‡ ÛÎÓ‚ËÏ˚ ‡Á΢Ëfl) ë‡ÌÓÙÙ‡, PDM ÏÂÚËÍÛ (ÏÂÚË͇ ËÒ͇ÊÂÌËfl ‚ÓÒÔËflÚËfl ÇËÌÍ·) Ë ÏÂÚËÍÛ DVQ (͇˜ÂÒÚ‚Ó ˆËÙÓ‚Ó„Ó ËÁÓ·‡ÊÂÌËfl). DVQ – lp -ÏÂÚË͇ ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË ÔËÁ̇ÍÓ‚, Ô‰ÒÚ‡‚Îfl˛˘Ëı ‰‚ ‚ˉÂÓÔÓÒΉӂ‡ÚÂθÌÓÒÚË. çÂÍÓÚÓ˚ ÏÂÚËÍË ËÒÔÓθÁÛ˛ÚÒfl ‰Îfl ËÁÏÂÂÌËfl ÒÔˆˇθÌ˚ı ‡ÚÂÙ‡ÍÚÓ‚ ‚ˉÂÓÒ˄̇·: ÔÓfl‚ÎÂÌËfl ·ÎÓÍÓ‚˚ı ÒÚÛÍÚÛ, ‡ÁÏ˚ÚÓÒÚË ËÁÓ·‡ÊÂÌËÈ, Ò˄̇ÎÓ‚ ÔÓÏÂı (ÌÂÓÔ‰ÂÎÂÌÌÓÒÚ¸ ÓËÂÌÚ‡ˆËË ÍÓÏÍË), ËÒ͇ÊÂÌË ÚÂÍÒÚÛ˚ Ë Ú.Ô. ê‡ÒÒÚÓflÌËfl ‚ÂÏÂÌÌ˚Á fl‰Ó‚ ‚ˉÂÓ ê‡ÒÒÚÓflÌËfl ‚ÂÏÂÌÌ˚ı fl‰Ó‚ ‚ˉÂÓ – Ó·˙ÂÍÚË‚Ì˚ ҂ÓÈÒÚ‚‡ı, ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ‚ÂÏÂÌÌ˚ ÏÂÚËÍË Í‡˜ÂÒÚ‚‡ ‚ˉÂÓ, ·‡ÁËÛ˛˘ËÂÒfl ̇ ‚ÂÈ‚ÎÂÚ‡ı. Ç ıӉ ӷ‡·ÓÚÍË ‚ˉÂÓÔÓÚÓÍ ı ÔÂÓ·‡ÁÛÂÚÒfl ‚Ó ‚ÂÏÂÌÌÓÈ fl‰ x(t) ‚ ‚ˉ ÍË‚ÓÈ Ì‡ ÍÓÓ‰Ë-
312
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
̇ÚÌÓÈ ÔÎÓÒÍÓÒÚË, ÍÓÚÓ˚È Á‡ÚÂÏ (ÍÛÒÓ˜ÌÓ-ÎËÌÂÈÌÓ) ‡ÔÔÓÍÒËÏËÛÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó ÔÓÒΉӂ‡ÚÂθÌ˚ı ÓÚÂÁÍÓ‚, ÍÓÚÓ˚ ÏÓÊÌÓ Á‡‰‡Ú¸ Ò ÔÓÏÓ˘¸˛ n + 1 ÍÓ̘ÌÓÈ ÚÓ˜ÍË ( xi , xi′), 0 ≤ i ≤ n ̇ ÍÓÓ‰Ë̇ÚÌÓÈ ÔÎÓÒÍÓÒÚË. Ç ‡·ÓÚ [WoPi99] Ô‰ÒÚ‡‚ÎÂÌ˚ ÒÎÂ‰Û˛˘Ë (ÒÏ. ê‡ÒÒÚÓflÌË åË·) ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‚ˉÂÓÔÓÚÓ͇ÏË ı Ë Û: 1) Ó˜ÂÚ‡ÌË ( x, y) =
n −1
∑
( xi′+1 − xi′) − ( yi′+1 − yi′) ;
i=0
2) ÒÏ¢ÂÌË ( x, y) =
n −1
∑ i=0
xi′+1 + xi′ yi′+1 + yi′ − . 2 2
21.2. êÄëëíéüçàü Ç ÄçÄãàáÖ áÇìäéÇ é·‡·ÓÚ͇ Á‚ÛÍÓ‚˚ı (˜¸, ÏÛÁ˚͇ Ë Ú.Ô.) Ò˄̇ÎÓ‚ fl‚ÎflÂÚÒfl Ó·‡·ÓÚÍÓÈ ‡Ì‡ÎÓ„Ó‚˚ı (ÌÂÔÂ˚‚Ì˚ı) ËÎË, „·‚Ì˚Ï Ó·‡ÁÓÏ, ˆËÙÓ‚˚ı (‰ËÒÍÂÚÌ˚ı) Ô‰ÒÚ‡‚ÎÂÌËÈ ÍÓη‡ÌËÈ ‰‡‚ÎÂÌËfl ‚ÓÁ‰Ûı‡ ÓÚ Á‚ÛÍÓ‚˚ı ‚ÓÁ‰ÂÈÒÚ‚ËÈ. á‚ÛÍÓ‚‡fl ÒÔÂÍÚÓ„‡Ïχ (ËÎË ÒÓÌÓ„‡Ïχ) fl‚ÎflÂÚÒfl ‚ËÁۇθÌ˚Ï ÚÂıÏÂÌ˚Ï Ô‰ÒÚ‡‚ÎÂÌËÂÏ ‡ÍÛÒÚ˘ÂÒÍÓ„Ó Ò˄̇·. éÌÓ ÙÓÏËÛÂÚÒfl ÎË·Ó ‚ ÂÁÛθڇÚ ÔÓıÓʉÂÌËfl ˜ÂÂÁ ÒÂ˲ ÔÓÎÓÒÓ‚˚ı ÙËθÚÓ‚ (‡Ì‡ÎÓ„Ó‚‡fl Ó·‡·ÓÚ͇), ÎË·Ó ÔÓÒ‰ÒÚ‚ÓÏ ÔËÏÂÌÂÌËfl ·˚ÒÚÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl îÛ¸Â Í ˝ÎÂÍÚÓÌÌÓÏÛ ‡Ì‡ÎÓ„Û ‡ÍÛÒÚ˘ÂÒÍÓÈ ‚ÓÎÌ˚. íË ÓÒË Ô‰ÒÚ‡‚Îfl˛Ú ‚ÂÏfl, ˜‡ÒÚÓÚÛ Ë ËÌÚÂÌÒË‚ÌÓÒÚ¸ (‡ÍÛÒÚ˘ÂÒÍÛ˛ ˝Ì„˲). ᇘ‡ÒÚÛ˛ ˝Ú‡ ÚÂıÏÂ̇fl ÍË‚‡fl ÒÓ͇˘‡ÂÚÒfl ‰Ó ‰‚Ûı ı‡‡ÍÚÂËÒÚËÍ ÔÓÒ‰ÒÚ‚ÓÏ Ô‰ÒÚ‡‚ÎÂÌËfl ËÌÚÂÌÒË‚ÌÓÒÚË ·ÓΠÊËÌ˚ÏË ÎËÌËflÏË ËÎË ·ÓΠÔÓ‰˜ÂÍÌÛÚ˚Ï ÒÂ˚Ï ËÎË ‚‚‰ÂÌËÂÏ ˆ‚ÂÚÓ‚˚ı Á̇˜ÂÌËÈ. á‚ÛÍ Ì‡Á˚‚‡ÂÚÒfl ÚÓÌÓÏ, ÂÒÎË ÓÌ ÔÂËӉ˘ÂÒÍËÈ (҇χfl ÌËÁ͇fl ˜‡ÒÚÓÚ‡ ÓÒÌÓ‚ÌÓÈ „‡ÏÓÌËÍË ÔÎ˛Ò ÂÈ Í‡ÚÌ˚Â, „‡ÏÓÌËÍË ËÎË Ó·ÂÚÓÌ˚), Ë ¯ÛÏÓÏ, Ë̇˜Â. ó‡ÒÚÓÚ‡ ËÁÏÂflÂÚÒfl ‚ ˆËÍ·ı ‚ ÒÂÍÛÌ‰Û (ÍÓ΢ÂÒÚ‚Ó ÔÓÎÌ˚ı ˆËÍÎÓ‚ ‚ ÒÂÍÛ̉Û) ËÎË ‚ „ˆ‡ı. ÑˇԇÁÓÌ ÒÎ˚¯ËÏ˚ı ˜ÂÎӂ˜ÂÒÍËÏ ÛıÓÏ Á‚ÛÍÓ‚˚ı ˜‡ÒÚÓÚ Ó·˚˜ÌÓ ÎÂÊËÚ ‚ ԉ·ı 20 Ɉ–20 ÍɈ. åÓ˘ÌÓÒÚ¸ Ò˄̇· P(f) – ˝Ì„Ëfl ̇ ‰ËÌËˆÛ ‚ÂÏÂÌË; Ó̇ ÔÓÔÓˆËÓ̇θ̇ Í‚‡‰‡ÚÛ ‡ÏÔÎËÚÛ‰˚ Ò˄̇· A(f). ш˷ÂÎ (‰Å) – ‰ËÌˈ‡ ËÁÏÂÂÌËfl, ÔÓ͇Á˚‚‡˛˘‡fl ÓÚÌÓ¯ÂÌË ‚Â΢ËÌ ‰‚Ûı Ò˄̇ÎÓ‚. é‰Ì‡ ‰ÂÒflÚ‡fl ˜‡ÒÚ¸ 1 ‰Å ̇Á˚‚‡ÂÚÒfl ·ÂÎÓÏ (Ô‚˘̇fl ÛÒڇ‚¯‡fl ‰ËÌˈ‡). ÄÏÔÎËÚÛ‰‡ Á‚ÛÍÓ‚Ó„Ó Ò˄̇· ‚ ‰Å ‡‚̇ A( f ) P( f ) = 10 log10 20 log10 , „‰Â f⬘ – ÓÔÓÌ˚È Ò˄̇Î, ‚˚·‡ÌÌ˚È Ó·ÓÁ̇˜‡Ú¸ 0 ‰Å A( f ′) P( f ′ ) (Ó·˚˜ÌÓ ˝ÚÓ Ô‰ÂÎ ‚ÓÒÔËflÚËfl ˜ÂÎӂ˜ÂÒÍÓ„Ó ÒÎÛı‡). èÓÓ„ÓÏ ·ÓÎÂ‚Ó„Ó Ó˘Û˘ÂÌËfl fl‚ÎflÂÚÒfl ÒË· Á‚Û͇ ‚ 120–140 ‰Å. Ç˚ÒÓÚ‡ ÚÓ̇ Ë „ÓÏÍÓÒÚ¸ fl‚Îfl˛ÚÒfl ÒÛ·˙ÂÍÚË‚Ì˚ÏË Ô‡‡ÏÂÚ‡ÏË ‚ÓÒÔËflÚËfl ˜‡ÒÚÓÚ˚ Ë ‡ÏÔÎËÚÛ‰˚ Ò˄̇·. åÂÎ-¯Í‡Î‡ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÔˆÂÔˆËÓÌÌÛ˛ ¯Í‡ÎÛ ˜‡ÒÚÓÚ ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò ‚ÓÒÔËÌËχÂÏÓÈ Ì‡ ÒÎÛı ‚˚ÒÓÚÓÈ ÚÓ̇ Ë ÓÒÌÓ‚˚‚‡ÂÚÒfl ̇ ‚ÌÂÒËÒÚÂÏÌÓÈ Â‰ËÌˈ ‚˚ÒÓÚ˚ Á‚Û͇ ÏÂÎ Í‡Í Â‰ËÌˈ ‚ÓÒÔËflÚËfl ˜‡ÒÚÓÚ˚ (‚˚ÒÓÚ˚ ÚÓ̇). é̇ ÒÓÓÚÌÓf ÒËÚÒfl ÒÓ ¯Í‡ÎÓÈ ‡ÍÛÒÚ˘ÂÒÍËı ˜‡ÒÚÓÚ f (‚ Ɉ) Í‡Í Mel( f ) = 1127 ln1 + ËÎË 700 f , Ú‡ÍËÏ Ó·‡ÁÓÏ, 1000 Ɉ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÔÓÒÚÓ Í‡Í Mel( f ) = 1000 log 21 + 700 1000 ÏÂÎ.
313
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
ò͇· Ň͇ (̇Á‚‡Ì̇fl Ú‡Í ‚ ˜ÂÒÚ¸ Ň̈́‡ÛÁÂ̇) fl‚ÎflÂÚÒfl ÔÒËıÓ‡ÍÛÒÚ˘ÂÒÍÓÈ ¯Í‡ÎÓÈ ‚ÓÒÔËflÚËfl ËÌÚÂÌÒË‚ÌÓÒÚË („ÓÏÍÓÒÚË) Á‚Û͇:  ‰Ë‡Ô‡ÁÓÌ ÒÓÒÚ‡‚ÎflÂÚ ÓÚ 1 ‰Ó 24, Óı‚‡Ú˚‚‡fl Ô‚˚ 24 ÍËÚ˘ÂÒÍË ÔÓÎÓÒ˚ ÒÎ˚¯ËÏ˚ı ˜‡ÒÚÓÚ (0, 100, 200, …, 1270, 1480, 1720, …, 950, 12000, 15500Ɉ). ùÚË ÔÓÎÓÒ˚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚Ï Ó·Î‡ÒÚflÏ ·‡ÁËÎflÌÓÈ ÏÂÏ·‡Ì˚ (‚ÌÛÚÂÌÌÂ„Ó Ûı‡), „‰Â ÍÓη‡ÌËfl, ‚˚Á˚‚‡ÂÏ˚ Á‚Û͇ÏË ÓÔ‰ÂÎÂÌÌ˚ı ˜‡ÒÚÓÚ, ‡ÍÚË‚ËÁËÛ˛Ú ‚ÓÎÓÒÍÓ‚˚ ÒÂÌÒÓÌ˚ ÍÎÂÚÍË Ë ÌÂÈÓÌ˚. ò͇· Ň͇ ÒÓÓÚÌÓÒËÚÒfl ÒÓ ¯Í‡ÎÓÈ ‡ÍÛÒÚ˘ÂÒÍËı ˜‡ÒÚÓÚ f (‚ ÍɈ) 2
f Í‡Í Bark( f ) = 13 arctg(0, 76 f ) + 3, 5 arctg . 0, 75 éÒÌÓ‚Ì˚Ï ÒÔÓÒÓ·ÓÏ ÛÔ‡‚ÎÂÌËfl ˜ÂÎÓ‚ÂÍÓÏ Ò‚ÓËÏ „ÓÎÓÒÓÏ (˜¸, ÔÂÌËÂ, ÒÏÂı) fl‚ÎflÂÚÒfl „ÛÎËÓ‚‡ÌË ÙÓÏ˚ Â˜Â‚Ó„Ó Ú‡ÍÚ‡ („ÓÎÓ Ë ÓÚ). чÌÌÛ˛ ÙÓÏÛ, Ú.Â. ÔÓÙËθ ÔÓÔ˜ÌÓ„Ó Ò˜ÂÌËfl ÚÛ·ÍË ÓÚ ÒÍ·‰ÍË ‚ „ÓÎÓÒÓ‚ÓÈ ˘ÂÎË (ÔÓÒÚ‡ÌÒÚ‚‡ ÏÂÊ‰Û „ÓÎÓÒÓ‚˚ÏË Ò‚flÁ͇ÏË) ‰Ó ‡ÔÂÚÛ˚ („Û·˚), ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ Í‡Í ÙÛÌÍˆË˛ ÔÎÓ˘‡‰Ë ÔÓÔ˜ÌÓ„Ó Ò˜ÂÌËfl Area(x), „‰Â ı – ‡ÒÒÚÓflÌË ‰Ó „ÓÎÓÒÓ‚ÓÈ ˘ÂÎË. ꘂÓÈ Ú‡ÍÚ ‚˚ÒÚÛÔ‡ÂÚ Ò‚ÓÂ„Ó Ó‰‡ ÂÁÓ̇ÚÓÓÏ ÔË ÔÓËÁÌÂÒÂÌËË „·ÒÌ˚ı Á‚ÛÍÓ‚, Ú‡Í Í‡Í Ì‡ıÓ‰ËÚÒfl ‚ ÓÚÌÓÒËÚÂθÌÓ ÓÚÍ˚ÚÓÏ ÒÓÒÚÓflÌËË. ùÚË ÂÁÓ̇ÌÒÌ˚ ÍÓη‡ÌËfl ÛÒËÎË‚‡˛Ú ËÒıÓ‰Ì˚È Á‚ÛÍ (ÓÚ ‚˚ıÓ‰fl˘Â„Ó ËÁ ΄ÍËı ÔÓÚÓ͇ ‚ÓÁ‰Ûı‡) ̇ ÓÒÓ·˚ı ÂÁÓ̇ÌÒÌ˚ı ˜‡ÒÚÓÚ‡ı (ÙÓχÌÚ‡ı) Â˜Â‚Ó„Ó Ú‡ÍÚ‡ Ò ÔËÍÓ‚˚ÏË ‚˚·ÓÒ‡ÏË ‚ ‰Ë‡Ô‡ÁÓÌ Á‚ÛÍÓ‚˚ı ˜‡ÒÚÓÚ. ä‡Ê‰˚È „·ÒÌ˚È Á‚ÛÍ ËÏÂÂÚ ‰‚ ı‡‡ÍÚÂÌ˚ ÙÓχÌÚ˚ ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ ‚ÂÚË͇θÌÓ„Ó Ë „ÓËÁÓÌڇθÌÓ„Ó ÔÓÎÓÊÂÌËfl flÁ˚͇. îÛÌ͈Ëfl ËÒıÓ‰ÌÓ„Ó Á‚Û͇ ÏÓ‰ÛÎËÛÂÚÒfl ÙÛÌ͈ËÂÈ ‡ÏÔÎËÚÛ‰ÌÓ˜‡ÒÚÓÚÌÓÈ ı‡‡ÍÚÂËÒÚËÍË ‰Îfl Á‡‰‡ÌÌÓÈ ÙÛÌ͈ËË, ÔÎÓ˘‡‰Ë. ÖÒÎË Ï˚ ‡ÔÔÓÍÒËÏËÛÂÏ Â˜Â‚ÓÈ Ú‡ÍÚ Í‡Í ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÒÓ‰ËÌÂÌÌ˚ı ÚÛ·ÓÍ Ò ÔÓÒÚÓflÌÌÓÈ ÔÎÓ˘‡‰¸˛ Ò˜ÂÌËfl, ÚÓ ÍÓ˝ÙÙˈËÂÌÚ˚ ÓÚÌÓ¯ÂÌËfl ÔÎÓ˘‡‰ÂÈ ‡‚Ì˚ ˜‡ÒÚÌ˚Ï Area( xi +1 ) ‰Îfl ÔÓÒΉӂ‡ÚÂθÌ˚ı ÚÛ·ÓÍ; ‡Ò˜ÂÚ Ú‡ÍËı ÍÓ˝ÙÙˈËÂÌÚÓ‚ ÏÓÊÌÓ ÓÒÛArea( xi ) ˘ÂÒÚ‚ËÚ¸ ÔÓ ÏÂÚÓ‰Û ÍÓ‰ËÓ‚‡ÌËfl Ò ÎËÌÂÈÌ˚Ï Ô‰Ò͇Á‡ÌËÂÏ (ÒÏ. ÌËÊÂ). ëÔÂÍÚ Á‚Û͇ – ‡ÒÔ‰ÂÎÂÌË ËÌÚÂÌÒË‚ÌÓÒÚË (‰Å) (‡ ËÌÓ„‰‡ Ë Ù‡Á ‚ ˜‡ÒÚÓÚ‡ı (ÍɈ)) ÍÓÏÔÓÌÂÌÚÓ‚ ‚ÓÎÌ˚. é„Ë·‡˛˘‡fl ÒÔÂÍÚ‡ – „·‰Í‡fl ÍË‚‡fl, ÒÓ‰ËÌfl˛˘‡fl ÔËÍË ÒÔÂÍÚ‡. éˆÂÌ͇ Ó„Ë·‡˛˘Ëı ÒÔÂÍÚ‡ ÔÓËÁ‚Ó‰ËÚÒfl ̇ ÓÒÌÓ‚Â ÍÓ‰ËÓ‚‡ÌËfl Ò ÎËÌÂÈÌ˚Ï Ô‰Ò͇Á‡ÌËÂÏ (LPC) ËÎË ·˚ÒÚÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl î۸ (FFT) Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ÍÂÔÒÚ‡, Ú.Â. ÎÓ„‡ËÙχ ‡ÏÔÎËÚÛ‰ÌÓ„Ó ÒÔÂÍÚ‡ Á‚Û͇. èÂÓ·‡ÁÓ‚‡ÌË î۸ (FT) ÓÚÓ·‡Ê‡ÂÚ ÙÛÌ͈ËË ‚ÂÏÂÌÌÓ„Ó ËÌÚ‚‡Î‡ ̇ Ô‰ÒÚ‡‚ÎÂÌËfl ˜‡ÒÚÓÚÌ˚ı ËÌÚ‚‡ÎÓ‚. äÂÔÒÚ Ò˄̇· f(t) Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ FT (ln( FT ( f (t ) + 2πmi ))), „‰Â m – ˆÂÎÓ ˜ËÒÎÓ, ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl ‡Á‚ÂÚ˚‚‡ÌËfl ۄ· ËÎË ÏÌËÏÓÈ ˜‡ÒÚË ÍÓÏÔÎÂÍÒÌÓÈ ÎÓ„‡ËÙÏ˘ÂÒÍÓÈ ÙÛÌ͈ËË. äÓÏÔÎÂÍÒÌ˚È Ë ‰ÂÈÒÚ‚ËÚÂθÌ˚È ÍÂÔÒÚ ËÒÔÓθÁÛ˛Ú, ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÍÓÏÔÎÂÍÒÌÛ˛ Ë ‰ÂÈÒÚ‚ËÚÂθÌÛ˛ ÎÓ„‡ËÙÏ˘ÂÒÍÛ˛ ÙÛÌÍˆË˛. ÑÂÈÒÚ‚ËÚÂθÌ˚È ÍÂÔÒÚ ËÒÔÓθÁÛÂÚ ÚÓθÍÓ ‚Â΢ËÌÛ ËÒıÓ‰ÌÓ„Ó Ò˄̇· f(t), ‚ ÚÓ ‚ÂÏfl Í‡Í ÍÓÏÔÎÂÍÒÌ˚È ÍÂÔÒÚ – Ú‡ÍÊ هÁÓ‚˚ ԇ‡ÏÂÚ˚ f(t). Ä΄ÓËÚÏ ·˚ÒÚÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl î۸ (FFT) ÓÒÌÓ‚˚‚‡ÂÚÒfl ̇ ÎËÌÂÈÌÓÏ ÒÔÂÍڇθÌÓÏ ‡Ì‡ÎËÁÂ. ë ÔÓÏÓ˘¸˛ FFT ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ÔÂÓ·‡ÁÓ‚‡ÌË î۸ ̇ Ò˄̇ÎÂ Ë ‰Â·ÂÚÒfl ‚˚·Ó͇ ÂÁÛθڇÚÓ‚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ÔÓ ËÒÍÓÏ˚Ï ˜‡ÒÚÓÚ‡Ï Ó·˚˜ÌÓ ÔÓ ¯Í‡Î ÏÂÎ. ê‡ÒÒÚÓflÌËfl ÓÒÌÓ‚‡ÌÌ˚ ̇ Ô‡‡ÏÂÚ‡ı, ÔËÏÂÌflÂÏ˚ı ‰Îfl ‡ÒÔÓÁ̇‚‡ÌËfl Ë Ó·‡·ÓÚÍË Â˜Â‚˚ı ‰‡ÌÌ˚ı, Ó·˚˜ÌÓ ÔÓÎÛ˜‡˛ÚÒfl ‡Î„ÓËÚÏÓÏ LPC (ÔÓˆÂÒÒ‡ ÍÓ‰ËÓ‚‡ÌËfl Ò ÎËÌÂÈÌ˚Ï Ô‰Ò͇Á‡ÌËÂÏ), ÍÓÚÓ˚È ÏÓ‰ÂÎËÛÂÚ Â˜Â‚ÓÈ ÒÔÂÍÚ Í‡Í ÎËÌÂÈÌÛ˛ ÍÓÏ·Ë̇ˆË˛ Ô‰˚‰Û˘Ëı ‚˚·ÓÓÍ (ÔÓ‰Ó·ÌÓ ‡‚ÚÓ„ÂÒÒËÓÌÌÓÏÛ ÔÓˆÂÒÒÛ).
314
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ÉÛ·Ó „Ó‚Ófl, ‡Î„ÓËÚÏ LPC Ó·‡·‡Ú˚‚‡ÂÚ Í‡Ê‰Ó ÒÎÓ‚Ó Â˜Â‚Ó„Ó Ò˄̇·, ÓÒÛ˘ÂÒÚ‚Îflfl ÔÓÒΉӂ‡ÚÂθÌÓ ¯ÂÒÚ¸ ÓÔ‡ˆËÈ: ÙËθÚÓ‚‡ÌËÂ, ÌÓχÎËÁ‡ˆËË ˝Ì„ËË, ‡Á·ËÂÌË ̇ ͇‰˚, ͇‰ËÓ‚‡ÌË (‰Îfl ÏËÌËÏËÁ‡ˆËË ÌÂÓ‰ÌÓÓ‰ÌÓÒÚÂÈ Ì‡ „‡Ìˈ‡ı ͇‰Ó‚), ÔÓÎÛ˜ÂÌË ԇ‡ÏÂÚÓ‚ LPC Ò ÎËÌÂÈÌ˚Ï ÏÂÚÓ‰ÓÏ ‡‚ÚÓÍÓÂÎflˆËË Ë ÔÂÓ·‡ÁÓ‚‡ÌËÂ Í ÍÂÔÒڇθÌ˚Ï ÍÓ˝ÙÙˈËÂÌÚÓÏ, ÔÓÎÛ˜ÂÌÌ˚Ï ‡Î„ÓËÚÏÓÏ LPC. LPC Ô‰ÔÓ·„‡ÂÚ, ˜ÚÓ Â˜Â‚ÓÈ Ò˄̇ΠÙÓÏËÛÂÚÒfl ËÁ ÔÂ˚‚ËÒÚÓ„Ó Á‚Û͇ (ÁÛÏχ), ËÁ‰‡‚‡ÂÏÓ„Ó „ÓÎÓÒÓ‚ÓÈ ˘Âθ˛, Ò ˝ÔËÁӉ˘ÂÒÍËÏ ‰Ó·‡‚ÎÂÌËÂÏ ¯ËÔfl˘Ëı, Ò‚ËÒÚfl˘Ëı Ë ‚Á˚‚Ì˚ı Á‚ÛÍÓ‚, ÔË ˝ÚÓÏ ÙÓχÌÚ˚ Û‰‡Îfl˛ÚÒfl ‚ ÂÁÛθڇÚ ÙËθÚÓ‚‡ÌËfl. ÅÓθ¯ËÌÒÚ‚Ó Ï ËÒ͇ÊÂÌËÈ ÏÂÊ‰Û ÒÓÌÓ„‡ÏχÏË fl‚Îfl˛ÚÒfl ‡ÁÌӂˉÌÓÒÚflÏË Í‚‡‰‡Ú‡ ‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl (‚ ÚÓÏ ˜ËÒΠÍÓ‚‡Ë‡ˆËÓÌÌÓ-‚Á‚¯ÂÌÌÓ„Ó, Ú.Â. ‡ÒÒÚÓflÌËfl å‡ı‡ÎÓÌÓ·ËÒ‡) Ë ‚ÂÓflÚÌÓÒÚÌ˚ı ‡ÒÒÚÓflÌËÈ, ÔË̇‰ÎÂʇ˘Ëı ÒÎÂ‰Û˛˘ËÏ Ó·˘ËÏ ÚËÔ‡Ï: ÏÂÚËÍ ӷӷ˘ÂÌÌÓÈ ÔÓÎÌÓÈ ‚‡Ë‡ˆËË, f-‡ÒıÓʉÂÌ˲ óËÁ‡‡ Ë ‡ÒÒÚÓflÌ˲ óÂÌÓ‚‡. è˂‰ÂÌÌ˚ ÌËÊ ‡ÒÒÚÓflÌËfl ‰Îfl Ó·‡·ÓÚÍË Á‚ÛÍÓ‚ ÂÒÚ¸ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË ı Ë Û, Ô‰ÒÚ‡‚Îfl˛˘ËÏË ‰‚‡ Ò˄̇· Ò‡‚ÌË‚‡ÂÏ˚ı. ÑÎfl ˆÂÎÂÈ ‡ÒÔÓÁ̇‚‡ÌËfl ÓÌË fl‚Îfl˛ÚÒfl ˝Ú‡ÎÓÌÌ˚Ï Ë ‚ıÓ‰Ì˚Ï Ò˄̇·ÏË, ‡ ‰Îfl ¯ÛÏÓÔÓ‰‡‚ÎÂÌËfl – ËÒıÓ‰Ì˚Ï (ÓÔÓÌ˚Ï) Ë ËÒ͇ÊÂÌÌ˚Ï Ò˄̇·ÏË (ÒÏ., ̇ÔËÏÂ, [OASM03]). ᇘ‡ÒÚÛ˛ ‡ÒÒÚÓflÌËfl ‡ÒÒ˜ËÚ˚‚‡˛ÚÒfl ‰Îfl Ì·Óθ¯Ëı ÓÚÂÁÍÓ‚ ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË, Ô‰ÒÚ‡‚Îfl˛˘ËÏË Í‡ÚÍÓ‚ÂÏÂÌÌ˚ ÒÔÂÍÚ˚, ‡ Á‡ÚÂÏ ÓÒ‰Ìfl˛ÚÒfl. ë„ÏÂÌÚËÓ‚‡ÌÌÓ ÒÓÓÚÌÓ¯ÂÌË Ò˄̇Î/¯ÛÏ ë„ÏÂÌÚËÓ‚‡ÌÌÓ ÓÚÌÓ¯ÂÌË Ò˄̇Î/¯ÛÏ SNRseg(x, y) ÏÂÊ‰Û Ò˄̇·ÏË x = (x i) Ë y = (yi) ÓÔ‰ÂÎflÂÚÒfl Í‡Í M −1
∑
10 m m=0
nm + n xi2 log 10 2 , ( xi − yi ) i − nm +1
∑
„‰Â n – ÍÓ΢ÂÒÚ‚Ó Í‡‰Ó‚ Ë å – ÍÓ΢ÂÒÚ‚Ó Ò„ÏÂÌÚÓ‚. é·˚˜ÌÓ ÓÚÌÓ¯ÂÌË Ò˄̇Î/¯ÛÏ SNR(x, y) ÏÂÊ‰Û ı Ë Û Á‡‰‡ÂÚÒfl Í‡Í n
∑ xi2 10 log10
i =1
.
n
∑ ( xi − yi )
2
i −1
ÑÛ„ÓÈ ÏÂÓÈ ‰Îfl Ò‡‚ÌÂÌËfl ‰‚Ûı ÙÓÏ ÍÓη‡ÌËÈ Ò˄̇· ı Ë Û ‚Ó ‚ÂÏÂÌÌÓÈ Ó·Î‡ÒÚË fl‚ÎflÂÚÒfl Ëı ‡ÒÒÚÓflÌË óÂ͇ÌÓ‚ÒÍӄӖчÈÒ‡, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í 1 n
n
∑ i −1
2 min{xi − yi} 1 − . xi + yi
ëÔÂÍڇθÌÓ ËÒ͇ÊÂÌË ËÌÚÂÌÒË‚ÌÓÒÚ¸ Ù‡Á‡ ëÔÂÍڇθÌ ËÒ͇ÊÂÌË ËÌÚÂÌÒ‚ÌÓÒÚ¸ Ù‡Á‡ ÏÂÊ‰Û Ò˄̇·ÏË x = (w ) Ë y = (w) ÓÔ‰ÂÎflÂÚÒfl Í‡Í n n 1 λ (| x ( w ) | − | y( w ) |)2 + (1 − λ ) (∠ x ( w ) − ∠ y( w ))2 , n i =1 i =1
∑
∑
315
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
„‰Â | x ( w ) |, | y( w ) | – ÒÔÂÍÚ˚ ËÌÚÂÌÒË‚ÌÓÒÚ¸ ∠ x ( w ), Ë ∠ y( w ) – Ù‡ÁÓ‚˚ ÒÔÂÍÚ˚ ı Ë Û ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÔË ˝ÚÓÏ Ô‡‡ÏÂÚ λ, 0 ≤ λ ≤ 1, ‚˚·‡Ì Ò ˆÂθ˛ Ôˉ‡ÌËfl ÒÓ‡ÁÏÂÌ˚ı ‚ÂÒÓ‚ Í ÒÓÒÚ‡‚Îfl˛˘ËÏ ËÌÚÂÌÒË‚ÌÓÒÚË Ë Ù‡Á˚. ëÎÛ˜‡È λ = 0 ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡ÒÒÚÓflÌ˲ ÒÔÂÍڇθÌÓÈ Ù‡Á˚. a Â„Ó ÑÎfl Ò˄̇· f (t ) = a e − bt U (t ), a, b > 0 Ò ÔÂÓ·‡ÁÓ‚‡ÌËÂÏ î۸ x ( w ) = b + iw a ÒÔÂÍÚ ËÌÚÂÌÒË‚ÌÓÒÚË (ËÎË ‡ÏÔÎËÚÛ‰˚) ‡‚ÂÌ | x | = , Ë Â„Ó Ù‡ÁÓ‚˚È 2 b + w2 w ÒÔÂÍÚ (‚ ‡‰Ë‡Ì‡ı) ‡‚ÂÌ α( x ) = tg −1 , Ú.Â. x ( w ) = | x | e iα = | x | (cos α + i sin α ). b ë‰ÌÂÍ‚‡‰‡Ú˘ÂÒÍÓ ÎÓ„‡ËÙÏ˘ÂÒÍÓ ÒÔÂÍڇθÌÓ ‡ÒÒÚÓflÌË ë‰ÌÂÍ‚‡‰‡Ú˘ÂÒÍÓ ÎÓ„‡ËÙÏ˘ÂÒÍÓ ÒÔÂÍڇθÌÓ ‡ÒÒÚÓflÌË (ËÎË Ò‰ÌÂÍ‚‡‰‡Ú˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ) L S D(x, y) ÏÂÊ‰Û ‰ËÒÍÂÚÌ˚ÏË ÒÔÂÍÚ‡ÏË x = (x i) Ë y = (y i) Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÒÎÂ‰Û˛˘Â ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ: 1 n
n
∑ (lnxi − ln yi )2 . i =1
䂇‰‡Ú ˝ÚÓ„Ó ‡ÒÒÚÓflÌËfl, ËÒÔÓθÁÛfl Ô‰ÒÚ‡‚ÎÂÌË ÍÂÔÒÚ‡ ln x ( w ) = =
∞
∑ c j e −ijw („‰Â x(w) – ÒÔÂÍÚ ÏÓ˘ÌÓÒÚË, Ú.Â. ÔÂÓ·‡ÁÓ‚‡ÌË î۸ ͂‡‰‡Ú‡ ËÌ-
j = −∞
ÚÂÌÒË‚ÌÓÒÚË), ÒÚ‡ÌÓ‚ËÚÒfl ‚ ÍÓÏÔÎÂÍÒÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ÍÂÔÒÚ‡, ‡ÒÒÚÓflÌËÂÏ ÍÂÔÒÚ‡. ê‡ÒÒÚÓflÌË ÎÓ„‡ËÙχ ÓÚÌÓ¯ÂÌËfl ÔÎÓ˘‡‰ÂÈ LAR(x, y) ÏÂÊ‰Û ı Ë Û ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1 n
n
∑ 10(log10 Area( xi ) − log10 Area( yi ))2 , i =1
„‰Â Area(zi) – ÔÎÓ˘‡‰¸ Ò˜ÂÌËfl Ò„ÏÂÌÚ‡ ÚÛ·ÍË Â˜Â‚Ó„Ó Ú‡ÍÚ‡, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â„Ó z i. ëÔÂÍڇθÌÓ ‡ÒÒÚÓflÌË Ň͇ ëÔÂÍڇθÌÓ ‡ÒÒÚÓflÌË Ň͇ – ÔˆÂÔˆËÓÌÌÓ ‡ÒÒÚÓflÌËÂ, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í n
BSD( x, y) =
∑
( xi − yi )2 ,
i =1
Ú.Â. Í‚‡‰‡Ú ‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÒÔÂÍÚ‡ÏË Å‡Í‡ (xi) Ë (y i) ÒÔÂÍÚÓ‚ ı Ë Û, „‰Â i-È ÍÓÏÔÓÌÂÌÚ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ i-È ÍËÚ˘ÂÒÍÓÈ ÔÓÎÓÒ ÒÎÛı‡ ÔÓ ¯Í‡Î Ň͇. ëÛ˘ÂÒÚ‚ÛÂÚ ÏÓ‰ËÙË͇ˆËfl ÒÔÂÍڇθÌÓ„Ó ‡ÒÒÚÓflÌËfl Ň͇, ÍÓÚÓ‡fl ËÒÍβ˜‡ÂÚ ÍËÚ˘ÂÒÍË ÔÓÎÓÒ˚ i, ̇ ÍÓÚÓ˚ı ËÒ͇ÊÂÌËfl „ÓÏÍÓÒÚË | x i–yi | ÏÂ̸¯Â, ˜ÂÏ ÔÓÓ„ χÒÍËÓ‚ÍË ¯Ûχ. 䂇ÁˇÒÒÚÓflÌË àÚ‡ÍÛ˚–ë‡ËÚÓ ä‚‡ÁˇÒÒÚÓflÌË àÚ‡ÍÛ˚–ë‡ËÚÓ (ËÎË ‡ÒÒÚÓflÌË ̇˷Óθ¯Â„Ó Ô‡‚‰ÓÔÓ‰Ó·Ëfl) IS(x, y) ÏÂÊ‰Û Ó„Ë·‡˛˘ËÏË ÒÔÂÍÚ‡ x = x(w) Ë y = y(w) (ÔÓÎÛ˜ÂÌÌ˚ÏË ‡Î„Ó-
316
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ËÚÏÓÏ LPC) ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1 2π
π
x ( w ) y( w ) + − 1 dw. ln y( w ) x ( w )
∫
−π
ê‡ÒÒÚÓflÌË „ËÔ·Ó΢ÂÒÍÓ„Ó ÍÓÒËÌÛÒ‡ ÓÔ‰ÂÎflÂÚÒfl Í‡Í IS( x, y) + IS( y, x ), Ú.Â. ‡‚ÌÓ 1 2π
π
∫
−π
x ( w ) y( w ) 1 + − 2 dw = 2π y( w ) x ( w )
π
∫
−π
x(w) − 1 dw. 2 cosh ln y( w )
et + e −t – „ËÔ·Ó΢ÂÒÍËÈ ÍÓÒËÌÛÒ. 2
„‰Â cosh(t ) =
䂇ÁˇÒÒÚÓflÌË ÎÓ„‡ËÙχ ÓÚÌÓ¯ÂÌËfl Ô‡‚‰ÓÔÓ‰Ó·Ëfl 䂇ÁˇÒÒÚÓflÌË ÍÓ˝ÙÙˈËÂÌÚ‡ ÎÓ„‡ËÙχ ÓÚÌÓ¯ÂÌËfl Ô‡‚‰ÓÔÓ‰Ó·Ëfl (ËÎË ‡ÒÒÚÓflÌË äÛÎη‡Í‡–ãÂȷ·) KL(x, y) ÏÂÊ‰Û Ó„Ë·‡˛˘ËÏË ÒÔÂÍÚ‡ x = x(w) Ë y = y(w) (ÔÓÎÛ˜ÂÌÌ˚ÏË ‡Î„ÓËÚÏÓÏ LPC) ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1 2π
π
∫
−π
x ( w ) ln
x(w) dw. y( w )
èËÏÂÌflÂÚÒfl Ú‡ÍÊÂ Ë ‡ÒıÓʉÂÌË ÑÊÂÙË KL( x, y) + KL( y, x ). ê‡ÒÒÚÓflÌË ‚Á‚¯ÂÌÌÓ„Ó ÓÚÌÓ¯ÂÌËfl Ô‡‚‰ÓÔÓ‰Ó·Ëfl ÏÂÊ‰Û Ó„Ë·‡˛˘ËÏË ÒÔÂÍÚ‡ x = x(w) Ë y = y(w) ÓÔ‰ÂÎflÂÚÒfl ͇Í
1 2π
π
∫
−π
x ( w )) y( w ) y( w )) x ( w ) ln y( w ) + x ( w ) − 1 x ( w ) ln x ( w ) + y( w ) − 1 y( w ) dw, + px py
„‰Â P(x) Ë P(y) Ó·ÓÁ̇˜‡˛Ú ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÏÓ˘ÌÓÒÚ¸ ÒÔÂÍÚÓ‚ x(w) Ë y(w). äÂÔÒڇθÌÓ ‡ÒÒÚÓflÌË äÂÔÒڇθÌÓ ‡ÒÒÚÓflÌË (ËÎË Í‚‡‰‡Ú ‚ÍÎˉӂÓÈ ÍÂÔÒڇθÌÓÈ ÏÂÚËÍË) CEP(x, y) ÏÂÊ‰Û Ó„Ë·‡˛˘ËÏË ÒÔÂÍÚ‡ x = x(w) Ë y = y(w) (ÔÓÎÛ˜ÂÌÌ˚ÏË ‡Î„ÓËÚÏÓÏ LPC) ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1 2π
π
∫
−π
1 „‰Â c j ( z ) = 2π
2
x(w) 1 ln dw = 2π y( 2 )
π
∫
−π
(ln x(w) − ln y(w))2 dw =
∞
∑
(c j ( x ) − c j ( y)),
j = −∞
π
∫
e iwj ln | z ( w ) | dw ÂÒÚ¸ j-È ÍÂÔÒڇθÌ˚È (‰ÂÈÒÚ‚ËÚÂθÌ˚È) ÍÓ˝ÙÙË-
−π
ˆËÂÌÚ z, ÔÓÎÛ˜ÂÌÌ˚È Ò ÔÓÏÓ˘¸˛ ÔÂÓ·‡ÁÓ‚‡ÌËfl î۸ ËÎË LPC).
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
317
ê‡ÒÒÚÓflÌË ˜‡ÒÚÓÚ‡-‚Á‚¯ÂÌÌÓ„Ó ÍÂÔÒÚ‡ ê‡ÒÒÚÓflÌË ˜‡ÚÓÒÚ‡-‚Á‚¯ÂÌÌÓ„Ó ÍÂÔÒÚ‡ (ËÎË ‡ÒÒÚÓflÌË ‚Á‚¯ÂÌÌÓ„Ó Ì‡ÍÎÓ̇) ÏÂÊ‰Û ı Ë Û ÓÔ‰ÂÎflÂÚÒfl Í‡Í ∞
∑ i 2 (ci ( x ) − ci ( y))2 .
i = −∞
"ó‡ÚÓÒÚ‡" (Quefrency) Ë "ÍÂÔÒÚ" fl‚Îfl˛ÚÒfl ‡Ì‡„‡ÏχÏË ÚÂÏËÌÓ‚ "˜‡ÒÚÓÚ‡" Ë "ÒÔÂÍÚ" ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ê‡ÒÒÚÓflÌË ÍÂÔÒÚ‡ å‡ÚË̇ ÏÂÊ‰Û AR (‡‚ÚÓ„ÂÒÒËÓÌÌ˚ÏË) ÏÓ‰ÂÎflÏË ÓÔ‰ÂÎflÂÚÒfl ÔËÏÂÌËÚÂθÌÓ Í Ëı ÍÂÔÒÚ‡Ï Í‡Í ∞
∑ i(ci ( x ) − ci ( y))2 i=0
(ÒÏ. Ó·˘Â ê‡ÒÒÚÓflÌË å‡ÚË̇ („Î. 12) ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í Û„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓ‰ÔÓÒÚ‡ÌÒÚ‚‡ÏË, Ë åÂÚË͇ å‡ÚË̇ („Î. 11) ÏÂÊ‰Û ÒÚÓ͇ÏË, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl Â„Ó l∞-‡Ì‡ÎÓ„ÓÏ). åÂÚË͇ ̇ÍÎÓ̇ äνÚÚ‡ ÏÂÊ‰Û ‰ËÒÍÂÚÌ˚ÏË ÒÔÂÍÚ‡ÏË x = (xi) Ë y = (y i) Ò n ͇̇θÌ˚ÏË ÙËθڇÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í n
∑ (( xi +1 − xi ) − ( yi +1 − yi ))2 . i =1
îÓÌÓ‚˚ ‡ÒÒÚÓflÌËfl îÓÌ – ˝ÚÓ Á‚ÛÍÓ‚ÓÈ Ò„ÏÂÌÚ, ÍÓÚÓ˚È Ó·Î‡‰‡ÂÚ Ò‚ÓËÏË ÓÒÓ·˚ÏË ‡ÍÛÒÚ˘ÂÒÍËÏË Ò‚ÓÈÒÚ‚‡ÏË Ë fl‚ÎflÂÚÒfl ·‡ÁÓ‚ÓÈ Á‚ÛÍÓ‚ÓÈ Â‰ËÌˈÂÈ (ÒÏ. ÙÓÌÂχ, Ú.Â. ÒÂÏÂÈÒÚ‚Ó ÙÓÌÓ‚, ÍÓÚÓ˚ ӷ˚˜ÌÓ ‚ÓÒÔËÌËχ˛ÚÒfl ̇ ÒÎÛı Í‡Í Ó‰ËÌ Á‚ÛÍ; ÍÓ΢ÂÒÚ‚Ó ÙÓÌÂÏ ‚ÂҸχ Ó·¯ËÌÓ Ò Û˜ÂÚÓÏ Ëϲ˘ËıÒfl ̇ ÁÂÏΠ6000 ‡Á΢Ì˚ı flÁ˚ÍÓ‚, ÓÚ 11 ‚ flÁ˚Í ÓÚÓÍ‡Ò ‰Ó 112 ‚ !Xoå/o≈ (flÁ˚ÍË, ̇ ÍÓÚÓ˚ı „Ó‚ÓflÚ ÓÍÓÎÓ 4000 ˜ÂÎÓ‚ÂÍ, ÔÓÊË‚‡˛˘Ëı ‚ è‡ÔÛ‡-çÓ‚ÓÈ É‚ËÌÂÂ, Ë ‚ ÅÓÚÒ‚‡Ì ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ). Ñ‚ÛÏfl ÓÒÌÓ‚Ì˚ÏË Í·ÒÒ‡ÏË ÙÓÌÓ‚˚ı ‡ÒÒÚÓflÌËÈ (‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ÙÓ̇ÏË ı Ë Û) fl‚Îfl˛ÚÒfl: 1) ‡ÒÒÚÓflÌËfl ̇ ÓÒÌÓ‚Â ÒÔÂÍÚÓ„‡ÏÏ, ÍÓÚÓ˚ fl‚Îfl˛ÚÒfl ÏÂÓÈ ÙËÁËÍÓ‡ÍÛÒÚ˘ÂÒÍËı ‡ÒıÓʉÂÌËÈ ÏÂÊ‰Û Á‚ÛÍÓ‚˚ÏË ÒÔÂÍÚÓ„‡ÏχÏË ı Ë Û; 2) ÙÓÌÓ‚˚ ‡ÒÒÚÓflÌËfl, ÓÒÌÓ‚‡ÌÌ˚ ̇ ÔËÁ͇̇ı, ÍÓÚÓ˚ ӷ˚˜ÌÓ fl‚Îfl˛ÚÒfl ‡ÒÒÚÓflÌËÂÏ å‡Ìı˝ÚÚÂ̇ | xi − yi | ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË (xi) Ë (y i), Ô‰ÒÚ‡‚Îfl˛˘ËÏË
∑ i
ÙÓÌ˚ ı Ë Û ÓÚÌÓÒËÚÂθÌÓ Á‡‰‡ÌÌÓ„Ó Ì‡·Ó‡ ÙÓÌÂÚ˘ÂÒÍËı ÔËÁ̇ÍÓ‚ (͇Í, ̇ÔËÏÂ, ÌÓÒÓ‚ÓÈ ı‡‡ÍÚ Á‚Û͇, ÒÚËÍÚÛ‡, ԇ·ڇÎËÁ‡ˆËfl, ÓÍÛ„ÎÂÌËÂ). îÓÌÂÚ˘ÂÒÍÓ ÒÎÓ‚‡ÌÓ ‡ÒÒÚÓflÌË îÓÌÂÚ˘ÂÒÍÓ ÒÎÓ‚‡ÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÒÎÓ‚‡ÏË ı Ë Û – ‚Á‚¯ÂÌ̇fl ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl, Ú.Â. ÏËÌËχθ̇fl ˆÂ̇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ı ‚ Û ÔÓÒ‰ÒÚ‚ÓÏ Á‡ÏÂÌ˚, Û‰‡ÎÂÌËfl Ë ‚ÒÚ‡‚ÍË ÙÓÌÓ‚). ëÎÓ‚Ó ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÒÚÓ͇ ÙÓÌÓ‚. ÑÎfl ‰‡ÌÌÓ„Ó ÙÓÌÓ‚Ó„Ó ‡ÒÒÚÓflÌËfl r(u, v) ‚ ÏÂʉÛ̇ӉÌÓÏ ÙÓÌÂÚ˘ÂÒÍÓÏ ‡ÎÙ‡‚ËÚÂ Ò ‰Ó·‡‚ÎÂÌËÂÏ ÙÓ̇ 0 (Ú˯Ë̇) ˆÂ̇ Á‡ÏÂÌ˚ ÙÓ̇ u ̇ v ‡‚̇ r(u, v), ÚÓ„‰‡ Í‡Í r(u, 0) – ˆÂ̇ ‚ÒÚ‡‚ÍË ËÎË Û‰‡ÎÂÌËfl u (ÒÏ. ‡ÒÒÚÓflÌËfl ‰Îfl ÔÓÚÂËÌÓ‚˚ı ‰‡ÌÌ˚ı ̇ ÓÒÌÓ‚Â ‡ÒÒÚÓflÌËfl ÑÂÈıÓÙ‡ („Î. 23) ̇ ÏÌÓÊÂÒÚ‚Â ËÁ 20 ‡ÏËÌÓÍËÒÎÓÚ).
318
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
ãËÌ„‚ËÒÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ Ç ‚˚˜ËÒÎËÚÂθÌÓÈ ÎËÌ„‚ËÒÚËÍ ÎËÌ„‚ËÒÚ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ (ËÎË ‡ÒÒÚÓflÌËÂÏ ‰Ë‡ÎÂÍÚÓÎÓ„ËË) ÏÂÊ‰Û ‰Ë‡ÎÂÍÚ‡ÏË ï Ë Y fl‚ÎflÂÚÒfl ҉̠‰Îfl ‰‡ÌÌÓÈ ‚˚·ÓÍË S ÔÓÌflÚËÈ ÙÓÌÂÚ˘ÂÒÍÓ ÒÎÓ‚‡ÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ó‰ÒÚ‚ÂÌÌ˚ÏË (Ú.Â. Ëϲ˘ËÏË Ó‰Ë̇ÍÓ‚Ó Á̇˜ÂÌËÂ) ÒÎÓ‚‡ÏË sX Ë sY, Ô‰ÒÚ‡‚Îfl˛˘ËÏË Ó‰ÌÓ Ë ÚÓ Ê ÔÓÌflÚË s ∈ X ‚ X Ë Y ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ê‡ÒÒÚÓflÌË ëÚÓۂ‡ (ÒÏ. http://sakla.net/concordances/index.html) ÏÂÊ‰Û Ù‡Á‡ÏË Ò Ó‰Ë̇ÍÓ‚˚ÏË Íβ˜Â‚˚ÏË ÒÎÓ‚‡ÏË fl‚ÎflÂÚÒfl ÒÛÏÏÓÈ ai xi , „‰Â 0 < ai < 1 Ë
∑
−n≤i ≤ +n
xi – ÓÚÌÓÒËÚÂθÌÓ ˜ËÒÎÓ ÌÂÒÓ‚Ô‡‰‡˛˘Ëı ÒÎÓ‚ ÏÂÊ‰Û Ù‡Á‡ÏË ‚ ‰‚ËÊÛ˘ÂÏÒfl ÓÍÌÂ. î‡Á˚ Ò̇˜‡Î‡ ‚˚‡‚ÌË‚‡˛ÚÒfl ÔÓ Ó·˘ÂÏÛ Íβ˜Â‚ÓÏÛ ÒÎÓ‚Û Ì‡ ÓÒÌÓ‚Â Ò‡‚ÌÂÌËfl Â„Ó ÍÓÌÚÂÍÒÚÌÓ„Ó ËÒÔÓθÁÓ‚‡ÌËfl; ÍÓÏ ÚÓ„Ó, ̇˷ÓΠ‰ÍÓ ÛÔÓÚ·ÎflÂÏ˚ ÒÎÓ‚‡ Á‡ÏÂÌfl˛ÚÒfl Ó·˘ËÏ ÔÒ‚‰ÓÁ̇ÍÓÏ. ê‡ÒÒÚÓflÌË ÚÓ̇ íÓÌ – ÒÛ·˙ÂÍÚË‚Ì˚È ÍÓÂÎflÚ ÙÛ̉‡ÏÂÌڇθÌÓÈ ˜‡ÒÚÓÚ˚ (ÒÏ. ‚˚¯Â ¯Í‡ÎÛ Å‡Í‡) „ÓÏÍÓÒÚË (‚ÓÒÔËÌËχÂÏÓÈ ËÌÚÂÌÒË‚ÌÓÒÚË) Ë ÏÂÎ-¯Í‡Î˚ (‚ÓÒÔËÌËχÂÏÓÈ ‚˚ÒÓÚ˚ ÚÓ̇). åÛÁ˚͇θ̇fl ¯Í‡Î‡ Ó·˚˜ÌÓ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÎËÌÂÈÌÓ ÛÔÓfl‰Ó˜ÂÌÌÛ˛ ÒÓ‚ÓÍÛÔÌÓÒÚ¸ Á‚ÛÍÓ‚ (ÌÓÚ). ê‡ÒÒÚÓflÌË ÚÓ̇ (ËÎË ËÌÚ‚‡Î, ÏÛÁ˚͇θÌÓ ‡ÒÒÚÓflÌËÂ) – ‡ÁÏ ۘ‡ÒÚ͇ ÎËÌÂÈÌÓ-‚ÓÒÔËÌËχÂÏÓ„Ó ÌÂÔÂ˚‚ÌÓ„Ó ÚÓ̇, Ó„‡Ì˘ÂÌÌÓ„Ó ‰‚ÛÏfl ÚÓ̇ÏË, Í‡Í ÔÓ͇Á‡ÌÓ Ì‡ ‰‡ÌÌÓÈ ¯Í‡ÎÂ. ê‡ÒÒÚÓflÌË ÚÓ̇ ÏÂÊ‰Û ‰‚ÛÏfl ÔÓÒΉӂ‡ÚÂθÌ˚ÏË ÌÓÚ‡ÏË Ì‡ ¯Í‡Î ̇Á˚‚‡ÂÚÒfl ÒÚÛÔÂ̸˛ Á‚ÛÍÓfl‰‡. ë„ӉÌfl ‚ Á‡Ô‡‰ÌÓÈ ÏÛÁ˚Í ˜‡˘Â ‚ÒÂ„Ó ÔËÏÂÌflÂÚÒfl ıÓχÚ˘ÂÒ͇fl ¯Í‡Î‡ (ÓÍÚ‡‚‡ ËÁ 12 ÌÓÚ) Ò ‡‚ÌÓÏÂÌÓÈ ÚÂÏÔ‡ˆËÂÈ, Ú.Â. ‡Á‰ÂÎÂÌ̇fl ̇ 12 Ó‰Ë̇ÍÓ‚˚ı ÒÚÛÔÂÌÂÈ Ò ÒÓÓÚÌÓ¯ÂÌËÂÏ ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ÒÓÒ‰ÌËÏË ˜‡ÒÚÓÚ‡ÏË, ‡‚Ì˚Ï 12 2 . ëÚÛÔÂ̸˛ Á‚ÛÍÓfl‰‡ ‚ ˝ÚÓÏ ÒÎÛ˜‡Â fl‚ÎflÂÚÒfl ÔÓÎÛÚÓÌ, Ú.Â. ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÒÓÒ‰ÌËÏË Í·‚˯‡ÏË (˜ÂÌÓÈ Ë ·ÂÎÓÈ) ÔˇÌËÌÓ. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌÓÚ‡ÏË, f1 Ëϲ˘ËÏË ˜‡ÒÚÓÚ˚ f1 Ë f2 , ÒÓÒÚ‡‚ÎflÂÚ 12 log 2 ÔÓÎÛÚÓÌÓ‚. f 2 óËÒÎÓ MIDI (ˆËÙÓ‚ÓÈ ËÌÚÂÙÂÈÒ ‰Îfl ÏÛÁ˚͇θÌ˚ı ËÌÒÚÛÏÂÌÚÓ‚) ‰Îfl ÙÛÌf ‰‡ÏÂÌڇθÌÓÈ ˜‡ÒÚÓÚ˚ f ÓÔ‰ÂÎflÂÚÒfl Í‡Í p( f ) = 69 + 12 log 2 . ê‡ÒÒÚÓflÌË 440 ÏÂÊ‰Û ÌÓÚ‡ÏË, ‚˚‡ÊÂÌÌÓ ‚ ˜ËÒ·ı MIDI, ÒÚ‡ÌÓ‚ËÚÒfl ̇ÚۇθÌÓÈ ÏÂÚËÍÓÈ |m(f1) – m(f2)| ̇ . ùÚÓ Û‰Ó·ÌÓ ‡ÒÒÚÓflÌË ÚÓ̇, ÔÓÒÍÓθÍÛ ÓÌÓ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÙËÁ˘ÂÒÍÓÏÛ ‡ÒÒÚÓflÌ˲ ̇ Í·‚˯Ì˚ı ËÌÒÚÛÏÂÌÚ‡ı Ë ÔÒËıÓÎӄ˘ÂÒÍÓÏÛ ‡ÒÒÚÓflÌ˲, Í‡Í ˝ÚÓ ËÁÏÂÂÌÓ ˝ÍÒÔÂËÏÂÌڇθÌÓ Ë ÔÓÌËχÂÚÒfl ÏÛÁ˚͇ÌÚ‡ÏË. ê‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ËÚχÏË ÇÂÏÂÌ̇fl ¯Í‡Î‡ ËÚχ (ÏÛÁ˚͇θ̇fl ÒÚÛÍÚÛ‡), ÔÓÏËÏÓ Òڇ̉‡ÚÌÓÈ ÌÓÚÌÓÈ Á‡ÔËÒË, Ô‰ÒÚ‡‚ÎflÂÚÒfl ÒÎÂ‰Û˛˘ËÏË ÒÔÓÒÓ·‡ÏË, ÔËÏÂÌflÂÏ˚ÏË ‚ ‚˚˜ËÒÎËÚÂθÌÓÏ ‡Ì‡ÎËÁ ÏÛÁ˚ÍË. 1. ä‡Í ·Ë̇Ì˚È ‚ÂÍÚÓ x = (x1, ..., xm), ÒÓÒÚÓfl˘ËÈ ËÁ m ‚ÂÏÂÌÌ˚ı ËÌÚ‚‡ÎÓ‚ (Ó‰Ë̇ÍÓ‚˚ı ̇ ‚ÂÏÂÌÌÓÈ ¯Í‡ÎÂ), „‰Â x i = 1 Ó·ÓÁ̇˜‡ÂÚ ÔÓ‰ÓÎÊËÚÂθÌÓÒÚ¸ Á‚Û˜‡ÌËfl ÌÓÚ˚, ‡ xi = 0 – Ô‡ÛÁÛ. í‡Í, ̇ÔËÏÂ, ÔflÚ¸ 12/8 ÏÂÚ˘ÂÒÍËı ‚ÂÏÂÌÌ˚ı ¯Í‡Î ÏÛÁ˚ÍË Ù·ÏÂÌÍÓ Ô‰ÒÚ‡‚ÎÂÌ˚ Í‡Í ÔflÚ¸ ·Ë̇Ì˚ı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ ‰ÎËÌ˚ 12. 2. ä‡Í ‚ÂÍÚÓ ÚÓ̇ q = (q1, ..., qn ) ‡·ÒÓβÚÌÓÈ ‚˚ÒÓÚ˚ ÚÓ̇ qi Ë ‚ÂÍÚÓ ‡ÁÌÓÒÚË ÚÓ̇ p = (p 1 , ..., p n+ 1 ), „‰Â pi = q i+ 1 – qi Ô‰ÒÚ‡‚ÎflÂÚ ÍÓ΢ÂÒÚ‚Ó ÔÓÎÛÚÓÌÓ‚ (ÔÓÎÓÊËÚÂθÌ˚ı ËÎË ÓÚˈ‡ÚÂθÌ˚ı) ÓÚ qi ‰Ó qi+1.
É·‚‡ 21. ê‡ÒÒÚÓflÌËfl ‚ ‡Ì‡ÎËÁ ӷ‡ÁÓ‚ Ë Á‚ÛÍÓ‚
319
3. ä‡Í ËÌÚ‚‡Î¸Ì˚È ‚ÂÍÚÓ ÏÂÊ‰Û ‚ÒÚÛÔÎÂÌËflÏË t = (t1, ..., tn ), ÒÓÒÚÓfl˘ËÈ ËÁ n ËÌÚ‚‡ÎÓ‚ ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌ˚ÏË ‚ÒÚÛÔÎÂÌËflÏË. 4. ä‡Í ıÓÌÓÚÓÏ˘ÂÒÍÓ Ô‰ÒÚ‡‚ÎÂÌËÂ, ÍÓÚÓÓ ‚ ‚ˉ „ËÒÚÓ„‡ÏÏ˚ ÓÚÓ·‡Ê‡ÂÚ t Í‡Í ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ Í‚‡‰‡ÚÓ‚ ÒÓ ÒÚÓÓ̇ÏË t1, ..., tn; Ú‡ÍÓ ÓÚÓ·‡ÊÂÌË ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÍÛÒÓ˜ÌÓ-ÎËÌÂÈÌÛ˛ ÙÛÌÍˆË˛. t 5. ä‡Í ‚ÂÍÚÓ ‡Á΢Ëfl ËÚÏÓ‚ r = (r1 , ..., rn–1), „‰Â ri = i +1 . ti èËχÏË Ó·˘Ëı ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ËÚχÏË fl‚ÎflÂÚÒfl ı˝ÏÏËÌ„Ó‚Ó ‡ÒÒÚÓflÌËÂ, ÏÂÚË͇ Ò‚ÓÔ‡ (ÒÏ. „Î. 11), ‡ÒÒÚÓflÌË ·Ûθ‰ÓÁ‡ ÏÂÊ‰Û Ëı Á‡‰‡ÌÌ˚ÏË ‚ÂÍÚÓÌ˚ÏË Ô‰ÒÚ‡‚ÎÂÌËflÏË. Ö‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ËÌÚ‚‡Î¸Ì˚ı ‚ÂÍÚÓÓ‚ ÂÒÚ¸ ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ‰Îfl ‰‚Ûı ËÌÚ‚‡Î¸Ì˚ı ‚ÂÍÚÓÓ‚ ÏÂÊ‰Û ‚ÒÚÛÔÎÂÌËflÏË. ïÓÌÓÚÓÌÌÓ ‡ÒÒÚÓflÌË ÉÛÒÚ‡ÙÒÓ̇ fl‚ÎflÂÚÒfl ‡ÁÌӂˉÌÓÒÚ¸˛ l1 -‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ˝ÚËÏË ‚ÂÍÚÓ‡ÏË Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ıÓÌÓÚÓÌÌÓ„Ó Ô‰ÒÚ‡‚ÎÂÌËfl. ê‡ÒÒÚÓflÌË ÓÚÌÓ¯ÂÌËfl ËÌÚ‚‡ÎÓ‚ äÓÈ·–òÏÛ΂˘‡ ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1− n +
n −1
∑ i =1
max{ri , ri′} . min{ri , ri′}
„‰Â r Ë r ⬘ – ‚ÂÍÚÓ˚ ‡ÁÌÓÒÚË ËÚÏÓ‚ ‰‚Ûı ËÚÏÓ‚ (ÒÏ. Ó·‡Ú̇fl èÓ‰Ó·ÌÓÒÚ¸ êÛÊ˘ÍË, „Î. 17). ÄÍÛÒÚ˘ÂÒÍË ‡ÒÒÚÓflÌËfl ÑÎË̇ ‚ÓÎÌ˚ – ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ Á‚ÛÍÓ‚‡fl ‚ÓÎ̇ ÔÓıÓ‰ËÚ ‰Ó Á‡‚¯ÂÌËfl ÔÓÎÌÓ„Ó ˆËÍ·. ùÚÓ ‡ÒÒÚÓflÌË ËÁÏÂflÂÚÒfl ÔÓ ÔÂÔẨËÍÛÎflÛ Í ÙÓÌÚÛ ‚ÓÎÌ˚ ‚ ̇ԇ‚ÎÂÌËË Â ‡ÒÔÓÒÚ‡ÌÂÌËfl ÏÂÊ‰Û ÔËÍÓÏ ÒËÌÛÒÓˉ‡Î¸ÌÓÈ ‚ÓÎÌ˚ Ë ÒÎÂ‰Û˛˘ËÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ ÔËÍÓÏ. ÑÎËÌÛ ‚ÓÎÌ˚ β·ÓÈ ˜‡ÒÚÓÚ˚ ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ ÔÛÚÂÏ ‰ÂÎÂÌËfl ÒÍÓÓÒÚË Á‚Û͇ (331,4 Ï/Ò Ì‡ ÛÓ‚Ì ÏÓfl) ‚ Ò‰ ̇ ÙÛ̉‡ÏÂÌڇθÌÛ˛ ˜‡ÒÚÓÚÛ. èÓΠ‚ ‰‡Î¸ÌÂÈ ÁÓÌ – ˜‡ÒÚ¸ ÔÓÎfl ‡ÍÛÒÚ˘ÂÒÍÓÈ ‚ÓÎÌ˚, ‚ ÍÓÚÓÓÈ Á‚ÛÍÓ‚˚ ‚ÓÎÌ˚ ÏÓ„ÛÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ÔÎÓÒÍËÂ Ë Á‚ÛÍÓ‚Ó ‰‡‚ÎÂÌË ÛÏÂ̸¯‡ÂÚÒfl Ó·‡ÚÌÓ ÔÓÔÓˆËÓ̇θÌÓ ‡ÒÒÚÓflÌ˲ ÓÚ ËÒÚÓ˜ÌË͇ Á‚Û͇. éÌÓ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÛÏÂ̸¯ÂÌ˲ ÒËÎ˚ Á‚Û͇ ÔËÏÂÌÓ Ì‡ 6 ‰Å ̇ ͇ʉÓ ۉ‚ÓÂÌË ‡ÒÒÚÓflÌËfl. èÓΠ‚ ·ÎËÊÌÂÈ ÁÓÌ – ˜‡ÒÚ¸ ÔÓÎfl ‡ÍÛÒÚ˘ÂÒÍÓÈ ‚ÓÎÌ˚ (Ó·˚˜ÌÓ Ì‡ Û‰‡ÎÂÌËË ‰‚Ûı ‰ÎËÌ ‚ÓÎÌ ÓÚ ËÒÚÓ˜ÌË͇), „‰Â ÓÚÒÛÚÒÚ‚ÛÂÚ ÔÓÒÚÓ ÓÚÌÓ¯ÂÌË ÏÂÊ‰Û ÛÓ‚ÌÂÏ Á‚Û͇ Ë ‡ÒÒÚÓflÌËÂÏ. ÅÎËÁÓÒÚÌ˚È ˝ÙÙÂÍÚ – ‡ÌÓχÎËfl ÌËÁÍËı ˜‡ÒÚÓÚ, ı‡‡ÍÚÂËÁÛ˛˘‡flÒfl Ëı ÛÒËÎÂÌËÂÏ ÔË ÔÓ‰ÌÂÒÂÌËË Ì‡Ô‡‚ÎÂÌÌÓ„Ó ÏËÍÓÙÓ̇ ÒÎ˯ÍÓÏ ·ÎËÁÍÓ Í ËÒÚÓ˜ÌËÍÛ Á‚Û͇. äËÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ÓÚ ËÒÚÓ˜ÌË͇ Á‚Û͇, ̇ ÍÓÚÓÓÏ ÔflÏÓÈ Á‚ÛÍ (ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓ ÓÚ ËÒÚÓ˜ÌË͇) Ë Â‚Â·ÂËÛ˛˘ËÈ Á‚ÛÍ (ÔflÏÓÈ Á‚ÛÍ, ÓÚ‡ÊÂÌÌ˚È ÓÚ ÒÚÂÌ, ÔÓÚÓÎ͇, ÔÓ· Ë ‰.) Ó‰Ë̇ÍÓ‚˚ ÔÓ ÛÓ‚Ì˛ ËÌÚÂÌÒË‚ÌÓÒÚË. ê‡ÒÒÚÓflÌˠ̘ۂÒÚ‚ËÚÂθÌÓÒÚË – ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË ˜Û‚ÒÚ‚ËÚÂθÌÓÒÚË ÛθڇÁ‚ÛÍÓ‚Ó„Ó ‰‡Ú˜Ë͇ ·ÎËÁÓÒÚË. ÄÍÛÒÚ˘ÂÒ͇fl ÏÂÚË͇ – ÚÂÏËÌ, ËÒÔÓθÁÛÂÏ˚È ËÌÓ„‰‡ ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ÌÂÍÓÚÓ˚ı ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û „·ÒÌ˚ÏË Á‚Û͇ÏË; ̇ÔËÏÂ, ‚ÍÎˉӂ‡ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË ÙÓχÌÚÌ˚ı ˜‡ÒÚÓÚ ÔÓËÁÌÂÒÂÌÌÓ„Ó Ë Á‡‰‡ÌÌÓ„Ó „·ÒÌÓ„Ó Á‚Û͇ (Ì Òϯ˂‡Ú¸ Ò ÔÓÌflÚËÂÏ ‡ÍÛÒÚ˘ÂÒÍËı ÏÂÚËÍ ‚ Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË Ë Í‚‡ÌÚÓ‚ÓÈ „‡‚ËÚ‡ˆËË, „Î. 24).
É·‚‡ 22
ê‡ÒÒÚÓflÌËfl ‚ àÌÚÂÌÂÚÂ Ë Ó‰ÒÚ‚ÂÌÌ˚ı ÒÂÚflı
22.1. ëÖíà, çÖ áÄÇàëàåõÖ éí òäÄã ëÂÚ¸ – ˝ÚÓ „‡Ù, ÓËÂÌÚËÓ‚‡ÌÌ˚È ËÎË ÌÂÓËÂÌÚËÓ‚‡ÌÌ˚È, Ò ÔÓÎÓÊËÚÂθÌ˚Ï ˜ËÒÎÓÏ (‚ÂÒÓÏ), ÔÓÒÚ‡‚ÎÂÌÌ˚Ï ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ͇ʉÓÈ ËÁ Â„Ó ‰Û„ ËÎË Â·Â. ê‡θÌ˚ ÒÎÓÊÌ˚ ÒÂÚË Ó·˚˜ÌÓ Ó·Î‡‰‡˛Ú Ó„ÓÏÌ˚Ï ÍÓ΢ÂÒÚ‚ÓÏ ‚¯ËÌ N Ë fl‚Îfl˛ÚÒfl ‡ÁÂÊÂÌÌ˚ÏË, Ú.Â. Ò ÓÚÌÓÒËÚÂθÌÓ Ï‡Î˚Ï ÍÓ΢ÂÒÚ‚ÓÏ Â·Â. àÌÚ‡ÍÚË‚Ì˚ ÒÂÚË (àÌÚÂÌÂÚ, Web, ÒӈˇθÌ˚ ÒÂÚË Ë Ú.Ô.) ËÏÂ˛Ú ÚẨÂÌˆË˛ ·˚Ú¸ ÒÂÚflÏË "ÚÂÒÌÓ„Ó Ïˇ" [Watt99], Ú.Â. ̇ıÓ‰flÚÒfl ÏÂÊ‰Û Ó·˚˜Ì˚ÏË „ÂÓÏÂÚ˘ÂÒÍËÏË Â¯ÂÚ͇ÏË Ë ÒÎÛ˜‡ÈÌ˚ÏË „‡Ù‡ÏË ‚ ÒÎÂ‰Û˛˘ÂÏ ÒÏ˚ÒÎÂ: ӷ·‰‡˛Ú ·Óθ¯ËÏ ÍÓ˝ÙÙˈËÂÌÚÓÏ Í·ÒÚÂËÁ‡ˆËË (Ú.Â. ‚ÂÓflÚÌÓÒÚ¸˛ ÚÓ„Ó, ˜ÚÓ ‰‚‡ ‡Á΢Ì˚ı ÒÓÒ‰‡ ‰‡ÌÌÓÈ ‚¯ËÌ˚ fl‚Îfl˛ÚÒfl ÒÓÒ‰ÌËÏË) Í‡Í Â¯ÂÚÍË, ÚÓ„‰‡ Í‡Í Ò‰Ì ‡ÒÒÚÓflÌË ÔÛÚË ÏÂÊ‰Û ‰‚ÛÏfl ‚¯Ë̇ÏË ·Û‰ÂÚ Ï‡Î˚Ï, ÓÍÓÎÓ ln N, Í‡Í ‚ ÒÎÛ˜‡ÈÌÓÏ „‡ÙÂ. éÒÌÓ‚Ì˚Ï ˜‡ÒÚÌ˚Ï ÒÎÛ˜‡ÂÏ ÒÂÚË ÚÂÒÌÓ„Ó Ïˇ fl‚ÎflÂÚÒfl ÒÂÚ¸, ÌÂÁ‡‚ËÒËχfl ÓÚ ¯Í‡Î˚ [Bara01], ‚ ÍÓÚÓÓÈ ‡ÒÔ‰ÂÎÂÌË ‚ÂÓflÚÌÓÒÚÂÈ, Ò͇ÊÂÏ, ‰Îfl ‚¯ËÌ˚ ËÏÂÚ¸ ÒÚÂÔÂ̸ k ‡‚ÌÓ k–γ ‰Îfl ÌÂÍÓÂÈ ÔÓÎÓÊËÚÂθÌÓÈ ÍÓÌÒÚ‡ÌÚ˚ γ, ÍÓÚÓ‡fl Ó·˚˜ÌÓ ÔË̇‰ÎÂÊËÚ ÓÚÂÁÍÛ [2, 3]. ùÚ‡ ÒÚÂÔÂÌ̇fl Á‡‚ËÒËÏÓÒÚ¸ ‚ΘÂÚ Á‡ ÒÓ·ÓÈ ÚÓ, ˜ÚÓ Ó˜Â̸ ÌÂÏÌÓ„Ë ‚¯ËÌ˚, ̇Á˚‚‡ÂÏ˚ ı‡·‡ÏË (ÍÓÌÌÂÍÚÓ‡ÏË, ÒÛÔÂ-‡ÒÔ‰ÂÎËÚÂÎflÏË), fl‚Îfl˛ÚÒfl ·ÓΠ҂flÁ‡ÌÌ˚ÏË, ˜ÂÏ ‰Û„Ë ‚¯ËÌ˚. ê‡ÒÔ‰ÂÎÂÌËfl ÒÓ ÒÚÂÔÂÌÌÓÈ Á‡‚ËÒËÏÓÒÚ¸˛ (ËÎË Á‡‚ËÒËÏÓÒÚ¸˛ ·Óθ¯ÓÈ ‰‡Î¸ÌÓÒÚË, ÚflÊÂÎ˚Ï "ı‚ÓÒÚÓÏ") ‚ ÔÓÒÚ‡ÌÒÚ‚Â ËÎË ‚ÂÏÂÌË Ì‡·Î˛‰‡ÎËÒ¸ Û ÏÌÓ„Ëı fl‚ÎÂÌËÈ ÔËÓ‰˚ (Í‡Í ÙËÁ˘ÂÒÍËı, Ú‡Í Ë ÒӈˇθÌ˚ı). ê‡ÒÒÚÓflÌË ÒÓ‡‚ÚÓÒÚ‚‡ ê‡ÒÒÚÓflÌË ÒÓ‡‚ÚÓÒÚ‚‡ – ˝ÚÓ ÏÂÚË͇ ÔÛÚË (http://www.ams.org/msnmain/cgd/) „‡Ù‡ ÍÓÎÎÂÍÚË‚ÌÓ„Ó ÒÓ‡‚ÚÓÒÚ‚‡, Ëϲ˘Â„Ó ÔÓfl‰Í‡ 0,4 ÏÎÌ ‚¯ËÌ (‡‚ÚÓÓ‚, ÒÓ‰Âʇ˘ËıÒfl ‚ ·‡Á ‰‡ÌÌ˚ı Mathematical Reviews), „‰Â ıÛ fl‚ÎflÂÚÒfl ·ÓÏ, ÂÒÎË ‡‚ÚÓ˚ ı Ë Û – ÒÓ‡‚ÚÓ˚ ÔÛ·ÎË͇ˆËË ËÁ Ó·˘Â„Ó ÍÓ΢ÂÒÚ‚‡ 2 ÏÎÌ, Á‡ÌÂÒÂÌÌ˚ı ‚ ˝ÚÛ ·‡ÁÛ ‰‡ÌÌ˚ı. ǯË̇ ̇˷Óθ¯ÂÈ ÒÚÂÔÂÌË, 1486 ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ï‡ÚÂχÚËÍÛ èÓβ ù‰Â¯Û; Ë̉ÂÍÒ ù‰Â¯‡ ÚÓ„Ó ËÎË ËÌÓ„Ó Ï‡ÚÂχÚË͇ – ˝ÚÓ Â„Ó ‡ÒÒÚÓflÌË ÒÓ‡‚ÚÓÒÚ‚‡ ‰Ó èÓÎfl ù‰Â¯‡. åÂÚË͇ ÒÓ‡‚ÚÓÒÚ‚‡ ҇ (http://www.okland.edu/enp/barr.pdf) fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÒÓÔÓÚË‚ÎÂÌËfl (ËÁ „Î. 15) ‚ ÒÎÂ‰Û˛˘ÂÏ ‡Ò¯ËÂÌËË „‡Ù‡ ÒÓÚÛ‰Ì˘ÂÒÚ‚‡. ë̇˜‡Î‡ ÒÚ‡‚ËÚÒfl ÒÓÔÓÚË‚ÎÂÌË 1 éÏ ÏÂÊ‰Û Î˛·˚ÏË ‰‚ÛÏfl ‡‚ÚÓ‡ÏË ‰Îfl ͇ʉÓÈ ÔÛ·ÎË͇ˆËË ‰‚Ûı ÒÓ‡‚ÚÓÓ‚. á‡ÚÂÏ ‰Îfl ͇ʉÓÈ ÒÓ‚ÏÂÒÚÌÓÈ ÔÛ·ÎË͇ˆËË n n ‡‚ÚÓÓ‚, n > 2, ‰Ó·‡‚ÎflÂÚÒfl ÌÓ‚‡fl ‚¯Ë̇ Ë ÒÓ‰ËÌflÂÚÒfl ˜ÂÂÁ -ÓÏÌÓ ÒÓÔÓ4 ÚË‚ÎÂÌËÂ Ò Í‡Ê‰˚Ï ËÁ ÒÓ‡‚ÚÓÓ‚.
É·‚‡ 22. ê‡ÒÒÚÓflÌËfl ‚ àÌÚÂÌÂÚÂ Ë Ó‰ÒÚ‚ÂÌÌ˚ı ÒÂÚflı
321
ê‡ÒÒÚÓflÌË ÒÓ-Á‚ÂÁ‰ÌÓÒÚ¸ ê‡ÒÒÚÓflÌË ÒÓ-Á‚ÂÁ‰ÌÓÒÚË – ˝ÚÓ ÏÂÚË͇ ÔÛÚË „ÓÎÎË‚Û‰ÒÍÓ„Ó „‡Ù‡, ÍÓÚÓ˚È ËÏÂÂÚ 250 Ú˚Ò. ‚¯ËÌ (‡ÍÚÂÓ‚ ÔÓ ÔÂÂ˜Ì˛ ·‡Á˚ ‰‡ÌÌ˚ı ÙËθÏÓ‚ ‚ àÌÚÂÌÂÚÂ), „‰Â ıÛ fl‚ÎflÂÚÒfl ·ÓÏ, ÂÒÎË ‡ÍÚÂ˚ ı Ë Û ÒÌËχÎËÒ¸ ‚ÏÂÒÚ ‚ Ó‰ÌÓÏ ıÛ‰ÓÊÂÒÚ‚ÂÌÌÓÏ ÍËÌÓÙËθÏÂ. ǯË̇ÏË Ì‡Ë·Óθ¯Â„Ó ÔÓfl‰Í‡ fl‚Îfl˛ÚÒfl äËÒÚÓÙ ãË Ë ä‚ËÌ Å˝ÍÓÌ; ̇ÔËÏÂ, ‚ Ë„Â "ùÙÙÂÍÚ ä‚Ë̇ Å˝ÍÓ̇" (Six degrees of Kevin Bacon) ËÒÔÓθÁÛÂÚÒfl Ë̉ÂÍÒ Å˝ÍÓ̇, Ú.Â. ‡ÒÒÚÓflÌË ÒÓ-Á‚ÂÁ‰ÌÓÒÚË ‰Ó ˝ÚÓ„Ó ‡ÍÚ‡. Ç Í‡˜ÂÒÚ‚Â ‡Ì‡Îӄ˘Ì˚ı ÔÓÔÛÎflÌ˚ı ÔËÏÂÓ‚ Ú‡ÍËı ÒӈˇθÌ˚ı Ì Á‡‚ËÒËÏ˚ı ÓÚ ¯Í‡Î ÒÂÚÂÈ ÏÓÊÌÓ ÔË‚ÂÒÚË „‡Ù˚ ÏÛÁ˚͇ÌÚÓ‚ (ÍÓÚÓ˚ ˄‡ÎË ‚ ÒÓÒÚ‡‚ ӉÌÓ„Ó ‡Ì҇ϷÎfl), ·ÂÈÒ·ÓÎËÒÚÓ‚ (Ë„‡‚¯Ëı ‚ Ó‰ÌÓÈ ÍÓχ̉Â), ̇ۘÌ˚ı ÔÛ·ÎË͇ˆËÈ (ÍÓÚÓ˚ ˆËÚËÛ˛Ú ‰Û„ ‰Û„‡), ¯‡ıχÚËÒÚÓ‚ (Ë„‡‚¯Ëı ‰Û„ Ò ‰Û„ÓÏ), „‡Ù˚ Ó·ÏÂ̇ ÔËҸχÏË, Á̇ÍÓÏÒÚ‚ ÏÂÊ‰Û ÒÚÛ‰ÂÌÚ‡ÏË ‚ ÍÓÎΉÊÂ, ˜ÎÂÌÒÚ‚‡ ‚ ÒÓ‚ÂÚ ‰ËÂÍÚÓÓ‚ ÍÓÏϘÂÒÍÓÈ Ó„‡ÌËÁ‡ˆËË, ÒÂÍÒۇθÌ˚ı ÓÚÌÓ¯ÂÌËÈ ÏÂÊ‰Û ˜ÎÂ̇ÏË ‰‡ÌÌÓÈ „ÛÔÔ˚. åÂÚË͇ ÔÛÚË ÔÓÒΉÌÂÈ ÒÂÚË Ì‡Á˚‚‡ÂÚÒfl Ò Â Í Ò Û ‡ Î ¸ Ì ˚ Ï ‡ÒÒÚÓflÌËÂÏ. ÑÛ„ËÏË ËÒÒΉÛÂÏ˚ÏË ÒÂÚflÏË, Ì Á‡‚ËÒËÏ˚ÏË ÓÚ ¯Í‡Î, fl‚Îfl˛ÚÒfl ÒÂÚË ‡‚ˇÒÓÓ·˘ÂÌËÈ, ÒÂÚË ÒÓ˜ÂÚ‡ÌËÈ ÒÎÓ‚ ‚ flÁ˚ÍÂ, ÒÂÚ¸ ˝Ì„ÂÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ˚ á‡Ô‡‰‡ ëòÄ, ÒÂÚË ‰‡Ú˜ËÍÓ‚, ÒÂÚ¸ ÌÂÈÓÌÓ‚ ˜Â‚fl, ÒÂÚË „ÂÌÌÓÈ ÍÓ˝ÍÒÔÂÒÒËË, ÒÂÚË Â‡ÍˆËÈ ÏÂÊ‰Û ÔÓÚÂË̇ÏË Ë ÏÂÚ‡·Ó΢ÂÒÍË ÒÂÚË (ÏÂÊ‰Û ‰‚ÛÏfl ‚¢ÂÒÚ‚‡ÏË ÒÚ‡‚ËÚÒfl ·Ó, ÂÒÎË ÏÂÊ‰Û ÌËÏË ÔÓËÒıÓ‰ËÚ Â‡ÍˆËfl ÔÓÒ‰ÒÚ‚ÓÏ ˝ÌÁËÏÓ‚). éÔÂÂʇ˛˘Â ͂‡ÁˇÒÒÚÓflÌËÂ Ç ÓËÂÌÚËÓ‚‡ÌÌÓÈ ÒÂÚË, ‚ ÍÓÚÓÓÈ Â·ÂÌ˚ ‚ÂÒ‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú ÌÂÍÓÚÓÓÈ ÚӘ͠‚Ó ‚ÂÏÂÌË, ÓÔÂÂʇ˛˘ËÏ Í‚‡ÁˇÒÒÚÓflÌËÂÏ (Á‡Ô‡Á‰˚‚‡˛˘ËÏ Í‚‡ÁˇÒÒÚÓflÌËÂÏ) ̇Á˚‚‡ÂÚÒfl ‰ÎË̇ ͇ژ‡È¯Â„Ó ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ÔÛÚË, ÌÓ ÚÓθÍÓ ÒÂ‰Ë Ú‡ÍËı, ̇ ÍÓÚÓ˚ı ·ÂÌ˚ ‚ÂÒ‡ ÔÓÒΉӂ‡ÚÂθÌÓ Û‚Â΢˂‡˛ÚÒfl (ÛÏÂ̸¯‡˛ÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ). éÔÂÂʇ˛˘Â ͂‡ÁˇÒÒÚÓflÌË ÔËÏÂÌflÂÚÒfl ÔË ÔÓÒÚÓÂÌËË ˝ÔˉÂÏËÓÎӄ˘ÂÒÍËı ÒÂÚÂÈ (‡ÒÔÓÒÚ‡ÌÂÌË ·ÓÎÂÁÌË ÍÓÌÚ‡ÍÚÌ˚Ï ÒÔÓÒÓ·ÓÏ ËÎË, Ò͇ÊÂÏ, ‡ÒÔÓÒÚ‡ÌÂÌË ÂÂÒË ‚ ÂÎË„ËÓÁÌÓÏ ‰‚ËÊÂÌËË), ÚÓ„‰‡ Í‡Í Ó·‡ÚÌÓ ͂‡ÁˇÒÒÚÓflÌË ҂ÓÈÒÚ‚ÂÌÌÓ Ù‡ÈÎÓÓ·ÏÂÌÌ˚Ï ÒÂÚflÏ ê2ê (peer-to-peer). ñÂÌڇθÌÓÒÚ¸ ÔÓÏÂÊÛÚÓ˜ÌÓÒÚË ÑÎfl „ÂÓ‰ÂÁ˘ÂÒÍÓ„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (X, d) (‚ ˜‡ÒÚÌÓÒÚË, ‰Îfl ÏÂÚËÍË ÔÛÚË „‡Ù‡) ˆÂÌڇθÌÓÒÚ¸ ÔÓÏÂÊÛÚÓ˜ÌÓÒÚË ÚÓ˜ÍË x ∈ X ÓÔ‰ÂÎÂ̇ Í‡Í g( x ) =
∑
y,z ∈X
˜ËÒÎ Ó Ì‡Ë͇ژ‡È¯Ëı ( y − z ) ÔÛÚÂÈ ˜ÂÂÁ x ˜ËÒÎ Ó Ì‡Ë͇ژ‡È¯Ëı ( y − z ) ÔÛÚÂÈ
Ë ÙÛÌ͈Ëfl ‡ÒÒÚÓflÌËfl-χÒÒ˚ ÂÒÚ¸ ÙÛÌ͈Ëfl M: ≥0 → , ÓÔ‰ÂÎÂÌ̇fl Í‡Í M ( a) =
| {y ∈ X : d ( x, y) + d ( y, z ) = a ‰Îfl ÌÂÍÓÚÓ˚ı x, y ∈ X} | . | {( x, z ) ∈ X × X : d ( x, z ) = a} |
ä‡Í Ô‰ÔÓ·„‡ÂÚÒfl ‚ [GOJKK02] ÏÌÓ„Ë ÌÂÁ‡‚ËÒËÏ˚ ÓÚ ¯Í‡Î ÒÂÚË Û‰Ó‚ÎÂÚ‚Ófl˛Ú ÒÚÂÔÂÌÌÓÏÛ Á‡ÍÓÌÛ g–γ (‰Îfl ‚ÂÓflÚÌÓÒÚË, ˜ÚÓ ‚¯Ë̇ ËÏÂÂÚ ˆÂÌڇθÌÓÒÚ¸ ÔÓÏÂÊÛÚÓ˜ÌÓÒÚË g), „‰Â γ ‡‚ÌÓ 2 ËÎË ≈2,2 Ò ÙÛÌ͈ËÂÈ ‡ÒÒÚÓflÌËfl-χÒÒ˚ M(a), ÍÓÚÓ‡fl ÎËÌÂÈ̇ ËÎË ÌÂÎËÌÂÈ̇ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. Ç ÒÎÛ˜‡Â ÎËÌÂÈÌÓÒÚË, ̇ÔËÏÂ, M ( a) ≈ 4, 5 ‰Îfl ÏÂÚËÍË AS àÌÚÂÌÂÚ‡ Ë ≈1 ‰Îfl Í‚‡ÁËÏÂÚËÍË Web „ËÔÂÒÒ˚ÎÓÍ . a ê‡ÒÒÚÓflÌË ‰ÂÈÙ‡ ê‡ÒÒÚÓflÌË ‰ÂÈÙ‡ – ‡·ÒÓβÚÌÓ Á̇˜ÂÌË ‡ÁÌÓÒÚË ÏÂÊ‰Û Ì‡·Î˛‰‡ÂÏ˚ÏË Ë Ù‡ÍÚ˘ÂÒÍËÏË ÍÓÓ‰Ë̇ڇÏË ÛÁ· ‚ NVE (‚ËÚۇθÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â ÒÂÚË).
322
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
Ç ÏÓ‰ÂÎflı Ú‡ÍÓ„Ó ·Óθ¯Ó„Ó ‚ËÚۇθÌÓ„Ó Ó‰ÌÓ‡Ì„Ó‚Ó„Ó (peer-to-peer) ÔÓÒÚ‡ÌÒÚ‚‡ ÒÂÚË (̇ÔËÏÂ, ‚ ÒÂÚ‚˚ı Ë„‡ı Ò ·Óθ¯ËÏ ÍÓ΢ÂÒÚ‚ÓÏ Û˜‡ÒÚÌËÍÓ‚) ÔÓθÁÓ‚‡ÚÂÎË Ô‰ÒÚ‡‚ÎÂÌ˚ Í‡Í ÍÓÓ‰Ë̇ÚÌ˚ ÚÓ˜ÍË Ì‡ ÔÎÓÒÍÓÒÚË (ÛÁÎ˚), ÍÓÚÓ˚ ÏÓ„ÛÚ ÔÂÂÏ¢‡Ú¸Òfl ‰ËÒÍÂÚÌÓ ÔÓ ‚ÂÏÂÌË Ë Í‡Ê‰‡fl ËÁ ÍÓÚÓ˚ı ӷ·‰‡ÂÚ ÁÓÌÓÈ ‚ˉËÏÓÒÚË, ̇Á˚‚‡ÂÏÓÈ Ó·Î‡ÒÚ¸˛ ËÌÚÂÂÒ‡. Ç NVE ÒÓÁ‰‡ÂÚÒfl ÒËÌÚÂÚ˘ÂÒÍËÈ 3D ÏË, ‚ ÍÓÚÓÓÏ Í‡Ê‰ÓÏÛ ÔÓθÁÓ‚‡ÚÂβ ÔËÒ‚‡Ë‚‡ÂÚÒfl ‡‚‡Ú‡‡ (‚ˉÂÓÓ·‡Á ‡·ÓÌÂÌÚ‡) ‰Îfl ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl Ò ‰Û„ËÏË ÔÓθÁÓ‚‡ÚÂÎflÏË ËÎË ÍÓÏÔ¸˛ÚÂÓÏ. íÂÏËÌ ‡ÒÒÚÓflÌË ‰ÂÈÙ‡ ËÒÔÓθÁÛÂÚÒfl Ú‡ÍÊ ÔËÏÂÌËÚÂθÌÓ Í ÔÓÚÓÍÛ, ÔÓıÓ‰fl˘ÂÏÛ ÒÍ‚ÓÁ¸ χÚÂˇΠ‚ ÔÓˆÂÒÒ ÔÓËÁ‚Ó‰ÒÚ‚‡ ‡‚ÚÓÔÓÍ˚¯ÂÍ. ëÂχÌÚ˘ÂÒ͇fl ·ÎËÁÓÒÚ¸ ÑÎfl ÒÎÓ‚ ‚ ‰ÓÍÛÏÂÌÚ ËϲÚÒfl ÒËÌÚ‡ÍÒ˘ÂÒÍË ÓÚÌÓ¯ÂÌËfl ·ÎËÊÌÂ„Ó ‰ÂÈÒÚ‚Ëfl Ë ÒÂχÌÚ˘ÂÒÍË ÍÓÂÎflˆËË ‰‡Î¸ÌÂ„Ó ‰ÂÈÒÚ‚Ëfl. éÒÌÓ‚Ì˚ÏË ÒÂÚflÏË ‰Îfl ‡·ÓÚ˚ Ò ‰ÓÍÛÏÂÌÚ‡ÏË fl‚Îfl˛ÚÒfl Web Ë ·Ë·ÎËÓ„‡Ù˘ÂÒÍË ·‡Á˚ ‰‡ÌÌ˚ı (ˆËÙÓ‚˚ ·Ë·ÎËÓÚÂÍË, Web ·‡Á˚ ̇ۘÌ˚ı ‰‡ÌÌ˚ı Ë Ú.Ô.); ‰ÓÍÛÏÂÌÚ˚ ‚ ÌËı ‚Á‡ËÏÓÒ‚flÁ‡Ì˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ˜ÂÂÁ „ËÔÂÒÒ˚ÎÍË, ˆËÚËÓ‚‡ÌË ËÎË ÒÓ‡‚ÚÓÒÚ‚Ó. äÓÏ ÚÓ„Ó, ÌÂÍÓÚÓ˚ ÒÂχÌÚ˘ÂÒÍË ‰ÂÒÍËÔÚÓ˚ (Íβ˜Â‚˚ ÒÎÓ‚‡) ÏÓ„ÛÚ Ôˉ‡‚‡Ú¸Òfl Í ‰ÓÍÛÏÂÌÚ‡Ï ‰Îfl Ëı Ë̉ÂÍÒ‡ˆËË (Í·ÒÒËÙË͇ˆËË): ÔÓ ‚˚·‡ÌÌÓÈ ‡‚ÚÓÓÏ ÚÂÏËÌÓÎÓ„ËË, ÚËÚÛθÌ˚Ï Ì‡‰ÔËÒflÏ, Á‡„ÓÎÓ‚Í‡Ï ÊÛ̇ÎÓ‚ Ë Ú.Ô. ëÂχÌÚ˘ÂÒ͇fl ·ÎËÁÓÒÚ¸ ÏÂÊ‰Û ‰‚ÛÏfl Íβ˜Â‚˚ÏË ÒÎÓ‚‡ÏË ı Ë Û ÂÒÚ¸ Ëı | X ∩Y | ÔÓ‰Ó·ÌÓÒÚ¸ í‡ÌËÏÓÚÓ , „‰Â X Ë Y – ÏÌÓÊÂÒÚ‚‡ ‰ÓÍÛÏÂÌÚÓ‚ Ò ÔËÒ‚ÓÂÌÌ˚ÏË | X ∪Y | Ë̉ÂÍÒ‡ÏË ı Ë Û ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. àı ‡ÒÒÚÓflÌË Íβ˜Â‚Ó„Ó ÒÎÓ‚‡ ÓÔ‰ÂÎflÂÚÒfl Í‡Í | X∆Y | Ë Ì fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ. | X ∩Y | 22.2. ëÖåÄçíàóÖëäàÖ êÄëëíéüçàü Ç ëÖíÖÇõï ëíêìäíìêÄï ëÂ‰Ë ÓÒÌÓ‚Ì˚ı ÎÂÍÒËÍÓ„‡Ù˘ÂÒÍËı ÒÂÚÂÈ (Ú‡ÍËı, ̇ÔËÏÂ, Í‡Í WordNet, ÔÓËÒÍÓ‚‡fl ÒËÒÚÂχ Medical Search Headings, íÂÁ‡ÛÛÒ êÓÊÚ‡, ëÎÓ‚‡¸ ÒÓ‚ÂÏÂÌÌÓ„Ó ‡Ì„ÎËÈÒÍÓ„Ó flÁ˚͇ ãÓ̄χ̇) ÒÂÚ¸ WordNet fl‚ÎflÂÚÒfl ̇˷ÓΠÔÓÔÛÎflÌ˚Ï ÎÂÍÒ˘ÂÒÍËÏ ÂÒÛÒÓÏ, ËÒÔÓθÁÛÂÏ˚Ï ‚ ÔÓˆÂÒÒ‡ı Ó·‡·ÓÚÍË ÂÒÚÂÒÚ‚ÂÌÌÓ„Ó flÁ˚͇ Ë ÍÓÏÔ¸˛ÚÂÌÓÈ ÎËÌ„‚ËÒÚËÍÂ. ëÂÚ¸ WordNet (ÒÏ. http://wordnet.princeton.edu) – ËÌÚ‡ÍÚ˂̇fl ÒÎÓ‚‡Ì‡fl ·‡Á‡ ‰‡ÌÌ˚ı, ‚ ÍÓÚÓÓÈ ÒÛ˘ÂÒÚ‚ËÚÂθÌ˚Â, „·„ÓÎ˚, ÔË·„‡ÚÂθÌ˚Â Ë Ì‡Â˜Ëfl ‡Ì„ÎËÈÒÍÓ„Ó flÁ˚͇ Ó„‡ÌËÁÓ‚‡Ì˚ ‚ ÒËÌÓÌËÏ˘ÂÒÍË ÏÌÓÊÂÒÚ‚‡, ͇ʉÓ ËÁ ÍÓÚÓ˚ı Ô‰ÒÚ‡‚ÎflÂÚ Ó‰ÌÓ ·‡ÁÓ‚Ó ÎÂÍÒ˘ÂÒÍÓ ÔÓÌflÚËÂ. Ñ‚‡ Ú‡ÍËı ÏÌÓÊÂÒÚ‚‡ ÏÓ„ÛÚ ·˚Ú¸ Ò‚flÁ‡Ì˚ ÒÂχÌÚ˘ÂÒÍË Ó‰ÌÓÈ ËÁ ÒÎÂ‰Û˛˘Ëı Ò‚flÁÓÍ: Ò‚flÁ͇ ÒÌËÁÛ ‚‚Âı ı („ËÔÓÌËÏ) Öëíú Û („ËÔÂÓÌËÏ), Ò‚flÁ͇ Ò‚ÂıÛ ‚ÌËÁ ı (ÏÂÓÌËÏ) ëéÑÖêÜàí Û (ıÓÎÓÌËÏ), „ÓËÁÓÌڇθ̇fl Ò‚flÁ͇, ‚˚‡Ê‡˛˘‡fl ·Óθ¯Û˛ ˜‡ÒÚ¸ ÒÓ‚ÏÂÒÚÌÓ„Ó ÛÔÓÚ·ÎÂÌËfl x Ë y (‡ÌÚÓÌËÏËfl), Ë Ú.‰. Ò‚flÁÍË Öëíú (IS-A) Ë̉ۈËÛ˛Ú ˜‡ÒÚ˘Ì˚È ÔÓfl‰ÓÍ, ̇Á˚‚‡ÂÏ˚È IS-A Ú‡ÍÒÓÌÓÏËÂÈ. ÇÂÒËfl 2.0 WordNet ÒÓ‰ÂÊËÚ 80 000 ÔÓÌflÚËÈ ÒÛ˘ÂÒÚ‚ËÚÂθÌÓ„Ó Ë 13 500 ÔÓÌflÚËÈ „·„Ó·, Ó„‡ÌËÁÓ‚‡ÌÌ˚ı ‚ 9 Ë 554 ÓÚ‰ÂθÌ˚ı IS-A ˇı˘ÂÒÍËı ÒÚÛÍÚÛ˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. Ç ÔÓÎÛ˜ÂÌÌÓÏ ÓËÂÌÚËÓ‚‡ÌÌÓÏ ‡ˆËÍ΢ÌÓÏ „‡Ù ÔÓÌflÚËÈ ‰Îfl β·˚ı ‰‚Ûı ÒËÌÓÌËÏ˘ÂÒÍËı ÏÌÓÊÂÒÚ‚ (ËÎË ÔÓÌflÚËÈ) ı Ë Û ÔÛÒÚ¸ l(x, y) – ‰ÎË̇ ͇ژ‡È¯Â„Ó ÔÛÚË ÏÂÊ‰Û ÌËÏË Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÚÓθÍÓ Ò‚flÁÓÍ IS-A Ë ÔÛÒÚ¸ LPS(x, y) – Ëı ̇ËÏÂ̸¯ËÈ Ó·˘ËÈ Ô‰¯ÂÒÚ‚Û˛˘ËÈ ˝ÎÂÏÂÌÚ (Ô‰ÓÍ) ‚ IS-A Ú‡ÍÒÓÌÓÏËË. èÛÒÚ¸ d(x) – „ÎÛ·Ë̇ ı (Ú.Â. Â„Ó ‡ÒÒÚÓflÌË ÓÚ ÍÓÌfl ‚ IS-A Ú‡ÍÒÓÌÓÏËË) Ë ÔÛÒÚ¸ D = maxxd(x). çËÊ ÔË‚Ó‰ËÚÒfl Ô˜Â̸ ÓÒÌÓ‚Ì˚ı ÒÂχÌÚ˘ÂÒÍËı ÔÓ‰Ó·ÌÓÒÚÂÈ Ë ‡ÒÒÚÓflÌËÈ.
323
É·‚‡ 22. ê‡ÒÒÚÓflÌËfl ‚ àÌÚÂÌÂÚÂ Ë Ó‰ÒÚ‚ÂÌÌ˚ı ÒÂÚflı
èÓ‰Ó·ÌÓÒÚ¸ ÔÛÚË èÓ‰Ó·ÌÓÒÚ¸ ÔÛÚË ÏÂÊ‰Û ÒËÌÓÌËÏ˘Ì˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl Í‡Í path(x, y) = (l(x, y)) –1. èÓ‰Ó·ÌÓÒÚ¸ ãËÍÓ͇–óÓ‰ÓÓÛ èÓ‰Ó·ÌÓÒÚ¸ ãËÍÓ͇–óÓ‰ÓÓÛ ÏÂÊ‰Û ÒËÌÓÌËÏ˘Ì˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl Í‡Í lch( x, y) = − ln
l ( x, y) , 2D
Ë ‡ÒÒÚÓflÌË ÔÓÌflÚËÈ ÏÂÊ‰Û ÌËÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
l ( x, y) . D
èÓ‰Ó·ÌÓÒÚ¸ ÇÛ–è‡Îχ èÓ‰Ó·ÌÓÒÚ¸ ÇÛ–è‡Îχ ÏÂÊ‰Û ÒËÌÓÌËÏ˘Ì˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl Í‡Í wup( x, y) =
2 d ( LPS( x, y)) . d ( x ) + d ( y)
èÓ‰Ó·ÌÓÒÚ¸ êÂÁÌË͇ èÓ‰Ó·ÌÓÒÚ¸ êÂÁÌË͇ ÏÂÊ‰Û ÒËÌÓÌËÏ˘Ì˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl Í‡Í res(x, y) = –ln p(LPS(x, y)), „‰Â p(z) – ‚ÂÓflÚÌÓÒÚ¸ ‚ÒÚÂÚËÚ¸ ÔÓÌflÚË z ‚ ·Óθ¯ÓÏ Ó·˙ÂÏÂ, ‡ –ln p(z) – ËÌÙÓχˆËÓÌÌÓ ÒÓ‰ÂʇÌË z. èÓ‰Ó·ÌÓÒÚ¸ ãË̇ èÓ‰Ó·ÌÓÒÚ¸ ãË̇ ÏÂÊ‰Û ÒËÌÓÌËÏ˘Ì˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl Í‡Í lin( x, y) =
2 ln p( LPS( x, y)) . ln p( x ) + ln p( y)
ê‡ÒÒÚÓflÌË ñÁflÌfl–äÓ̇ڇ ê‡ÒÒÚÓflÌË ñÁflÌfl–äÓ̇ڇ ÏÂÊ‰Û ÒËÌÓÌËÏ˘Ì˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl Í‡Í jcn(x, y) = 2ln p(LPS(x, y)) – (ln p(x) + ln p(y)). èÓ‰Ó·ÌÓÒÚË ãÂÒ͇ ÉÎÓÒÒ‡ËÂÏ ÒËÌÓÌËÏ˘ÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ z fl‚ÎflÂÚÒfl ˝ÎÂÏÂÌÚ ˝ÚÓ„Ó ÏÌÓÊÂÒÚ‚‡, ÍÓÚÓ˚È ÓÔ‰ÂÎflÂÚ ËÎË ÔÓflÒÌflÂÚ ÓÒÌÓ‚ÌÓ ÔÓÌflÚËÂ. èÓ‰Ó·ÌÓÒÚË ãÂÒ͇ – Ú‡ÍË ÔÓ‰Ó·ÌÓÒÚË, ÍÓÚÓ˚ ÓÔ‰ÂÎfl˛ÚÒfl Í‡Í ÙÛÌ͈Ëfl ̇ÎÓÊÂÌËfl „ÎÓÒ҇˂ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ÔÓÌflÚËÈ; Ú‡Í, ̇ÔËÏÂ, ̇ÎÓÊÂÌËÂÏ „ÎÓÒ҇˂ ̇Á˚‚‡ÂÚÒfl ‚Â΢Ë̇ 2t ( x, y) , t ( x ) + t ( y) „‰Â t(z) – ÍÓ΢ÂÒÚ‚Ó ÒÎÓ‚ ÒËÌÓÌËÏ˘ÂÒÍÓ„Ó ÏÌÓÊÂÒÚ‚‡ z, ‡ t(x , y) – ÍÓ΢ÂÒÚ‚Ó Ó·˘Ëı ÒÎÓ‚ ‚ ı Ë Û.
324
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
èÓ‰Ó·ÌÓÒÚ¸ ïÂÒÚ‡–ëÂÌÚ–é̉ʇ èÓ‰Ó·ÌÓÒÚ¸ ïÂÒÚ‡–ëÂÌÚ–é̉ʇ ÏÂÊ‰Û ÒËÌÓÌËÏ˘Ì˚ÏË ÏÌÓÊÂÒÚ‚‡ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl Í‡Í hso(x, y) = C – L(x, y) – ck, „‰Â L(x, y) – ‰ÎË̇ ͇ژ‡È¯Â„Ó ÔÛÚË ÏÂÊ‰Û ı Ë Û ÔË ËÒÔÓθÁÓ‚‡ÌËË ‚ÒÂı Ò‚flÁÓÍ, k – ÍÓ΢ÂÒÚ‚Ó ËÁÏÂÌÂÌËÈ Ì‡Ô‡‚ÎÂÌËfl ˝ÚÓ„Ó ÔÛÚË Ë C, c – ÍÓÌÒÚ‡ÌÚ˚. L( x , y ) . ê‡ÒÒÚÓflÌË ïÂÒÚ‡–ëÂÌÚ–é̉ʇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í k 22.3. êÄëëíéüçàü Ç àçíÖêçÖíÖ à WEB ê‡ÒÒÏÓÚËÏ ÔÓ‰Ó·ÌÓ „‡Ù˚ ‚·-ÒÂÚË Ë Web àÌÚÂÌÂÚ‡, ÍÓÚÓ˚ ӷ·‰‡˛Ú Ò‚ÓÈÒÚ‚ÓÏ "ÚÂÒÌÓ„Ó Ïˇ" Ë ÌÂÁ‡‚ËÒËÏÓÒÚË ÓÚ ¯Í‡Î. àÌÚÂÌÂÚ – Ó·˘Â‰ÓÒÚÛÔ̇fl „ÎÓ·‡Î¸Ì‡fl ÍÓÏÔ¸˛ÚÂ̇fl ÒÂÚ¸, ÍÓÚÓ‡fl ÒÙÓÏËÓ‚‡Î‡Ò¸ ̇ ·‡Á ÄÔ‡ÌÂÚ (ÒÂÚË ÍÓÏÏÛÚ‡ˆËË Ô‡ÍÂÚÓ‚, ÒÓÁ‰‡ÌÌÓÈ ‚ 1969 „. ‰Îfl ÌÛʉ åËÌËÒÚÂÒÚ‚‡ Ó·ÓÓÌ˚ ëòÄ), NSFNet, Usenet, Bitnet Ë fl‰‡ ‰Û„Ëı ÒÂÚÂÈ. Ç 1995 „. 燈ËÓ̇θÌ˚È Ì‡Û˜Ì˚È ÙÓ̉ ëòÄ ÓÚ͇Á‡ÎÒfl ÓÚ Ó·Î‡‰‡ÌËfl ÒÂÚ¸˛ àÌÚÂÌÂÚ. Ö ÛÁ·ÏË fl‚Îfl˛ÚÒfl χ¯ÛÚËÁ‡ÚÓ˚, Ú.Â. ÛÒÚÓÈÒÚ‚‡, ÍÓÚÓ˚ ÔÂÂÒ˚·˛Ú Ô‡ÍÂÚ˚ ‰‡ÌÌ˚ı ÔÓ ÒÂÚ‚˚Ï Í‡Ì‡Î‡Ï ÓÚ Ó‰ÌÓ„Ó ÍÓÏÔ¸˛Ú‡ Í ‰Û„ÓÏÛ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÔÓÚÓÍÓÎÓ‚ IP (àÌÚÂÌÂÚ-ÔÓÚÓÍÓÎ ÏÂÊÒÂÚÂ‚Ó„Ó ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl), íëê Ë UDP (ÔÓÚÓÍÓÎ˚ Ô‰‡˜Ë ‰‡ÌÌ˚ı) Ë ÔÓÒÚÓÂÌÌ˚ı ̇‰ ÌËÏË ÔÓÚÓÍÓÎÓ‚ çííê, Telnet, FTP Ë ÏÌÓ„Ëı ‰Û„Ëı ÔÓÚÓÍÓÎÓ‚ (Ú.Â. ÚÂıÌ˘ÂÒÍËı ÒÔˆËÙË͇ˆËÈ Ô‰‡˜Ë ‰‡ÌÌ˚ı). 凯ÛÚËÁ‡ÚÓ˚ ‡ÁÏ¢‡˛ÚÒfl ‚ ÏÂÒÚ‡ı ÏÂÊÒÂÚ‚˚ı ¯Î˛ÁÓ‚, Ú.Â. ‚ Ú‡ÍËı ÏÂÒÚ‡ı, „‰Â ÒÓ‰ËÌfl˛ÚÒfl Ì ÏÂÌ ‰‚Ûı ÒÂÚÂÈ. ë‚flÁË, ÒÓ‰ËÌfl˛˘Ë ÛÁÎ˚ – ‡Á΢Ì˚ ÙËÁ˘ÂÒÍË ÒÓ‰ËÌËÚÂÎË, Ú‡ÍËÂ Í‡Í ÚÂÎÂÙÓÌÌ˚ ÔÓ‚Ó‰‡, ÓÔÚÓ‚ÓÎÓÍÓÌÌ˚ ͇·ÂÎË Ë ÒÔÛÚÌËÍÓ‚˚ ͇̇Î˚. Ç àÌÚÂÌÂÚ ËÒÔÓθÁÛÂÚÒfl Ô‡ÍÂÚ̇fl ÍÓÏÏÛÚ‡ˆËfl, Ú.Â. ‰‡ÌÌ˚ (Ù‡„ÏÂÌÚËÓ‚‡ÌÌ˚Â, ÂÒÎË Ú·ÛÂÚÒfl) ÔÂÂÒ˚·˛ÚÒfl Ì ÔÓ Ô‰‚‡ËÚÂθÌÓ ÛÒÚ‡ÌÓ‚ÎÂÌÌÓÏÛ ÔÛÚË, ‡ Ò Û˜ÂÚÓÏ ÓÔÚËχθÌÓ„Ó ËÒÔÓθÁÓ‚‡ÌËfl Ëϲ˘ÂÈÒfl ÔÓÎÓÒ˚ ˜‡ÒÚÓÚ (ÒÓ ÒÍÓÓÒÚ¸˛ Ô‰‡˜Ë ËÌÙÓχˆËË ‚ ÏÎÌ ·ËÚ/Ò) Ë ÏËÌËÏËÁ‡ˆËË ‚ÂÏÂÌË Á‡Ô‡Á‰˚‚‡ÌËfl (‚ÂÏÂÌË ‚ ÏËÎÎËÒÂÍÛ̉‡ı, ÌÂÓ·ıÓ‰ËÏÓ„Ó ‰Îfl ÔÓÎÛ˜ÂÌËfl Á‡ÔÓÒ‡). ä‡Ê‰ÓÏÛ ÔÓ‰Íβ˜ÂÌÌÓÏÛ Í àÌÚÂÌÂÚÛ ÍÓÏÔ¸˛ÚÂÛ Ó·˚˜ÌÓ ÔËÒ‚‡Ë‚‡ÂÚÒfl Ë̉˂ˉۇθÌ˚È "‡‰ÂÒ", ̇Á˚‚‡ÂÏ˚È IP ‡‰ÂÒÓÏ. äÓ΢ÂÒÚ‚Ó ‚ÓÁÏÓÊÌ˚ı IP ‡‰ÂÒÓ‚ Ó„‡Ì˘ÂÌÓ ‚Â΢ËÌÓÈ 2 3 2 ≈ 4,3 ÏΉ. ç‡Ë·ÓΠÔÓÔÛÎflÌ˚ÏË ÔËÎÓÊÂÌËflÏË, ÔÓ‰‰ÂÊË‚‡ÂÏ˚ÏË àÌÚÂÌÂÚÓÏ, fl‚Îfl˛ÚÒfl ˝ÎÂÍÚÓÌ̇fl ÔÓ˜Ú‡, Ô‰‡˜‡ Ù‡ÈÎÓ‚, Web Ë ÌÂÍÓÚÓ˚ ÏÛθÚËωˇ. åÌÓÊÂÒÚ‚ÓÏ ‚¯ËÌ „‡Ù‡ IP ‡‰ÂÒÓ‚ àÌÚÂÌÂÚ‡ fl‚Îfl˛ÚÒfl IP ‡‰ÂÒ‡ ‚ÒÂı ÔÓ‰Íβ˜ÂÌÌ˚ı Í àÌÚÂÌÂÚÛ ÍÓÏÔ¸˛ÚÂÓ‚; ‰‚ ‚¯ËÌ˚ fl‚Îfl˛ÚÒfl ÒÏÂÊÌ˚ÏË, ÂÒÎË ÓÌË ÔÓ‰Íβ˜ÂÌ˚ ̇ÔflÏÛ˛ ˜ÂÂÁ χ¯ÛÚËÁ‡ÚÓ, Ú.Â. ‰ÂÈÚ‡„‡Ïχ Ô‰‡˜Ë ÔÓıÓ‰ËÚ ÚÓθÍÓ ˜ÂÂÁ Ó‰ËÌ Ô˚ÊÓÍ (ÒÂÚ‚ÓÈ Ò„ÏÂÌÚ). ëÂÚ¸ àÌÚÂÌÂÚ ÏÓÊÂÚ ·˚Ú¸ ‡Á·ËÚ‡ ̇ ‡‰ÏËÌËÒÚ‡ÚË‚ÌÓ ‡‚ÚÓÌÓÏÌ˚ ÒËÒÚÂÏ˚ (AS) ËÎË ‰ÓÏÂÌ˚. Ç Í‡Ê‰ÓÈ AS ‚ÌÛÚˉÓÏÂÌ̇fl χ¯ÛÚËÁ‡ˆËfl ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ÔÓ ÔÓÚÓÍÓÎÛ IGP (‚ÌÛÚÂÌÌËÈ ÔÓÚÓÍÓΠχ¯ÛÚËÁ‡ˆËË), ÚÓ„‰‡ Í‡Í ÏÂʉÓÏÂÌ̇fl χ¯ÛÚËÁ‡ˆËfl Ó·ÂÒÔ˜˂‡ÂÚÒfl ÔÓ ÔÓÚÓÍÓÎÛ BGP (ÔÓ„‡Ì˘Ì˚È ÔÓÚÓÍÓΠχ¯ÛÚËÁ‡ˆËË), ÍÓÚÓ˚È ÔËÒ‚‡Ë‚‡ÂÚ ASN (16-·ËÚÓ‚˚È) ÌÓÏÂ) ͇ʉÓÈ AS. AS „‡Ù àÌÚÂÌÂÚ‡ ËÏÂÂÚ ‚ ͇˜ÂÒÚ‚Â ‚¯ËÌ AS (ÔË·ÎËÁËÚÂθÌÓ 25 Ú˚Ò. ‚ 2007 „.), ‡ Â„Ó Â·‡ Ô‰ÒÚ‡‚Îfl˛Ú ̇΢ˠӉÌӇ̄ӂ˚ı BGP Ò‚flÁË ÏÂÊ‰Û ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË AS.
É·‚‡ 22. ê‡ÒÒÚÓflÌËfl ‚ àÌÚÂÌÂÚÂ Ë Ó‰ÒÚ‚ÂÌÌ˚ı ÒÂÚflı
325
Web ("ÇÒÂÏË̇fl Ô‡ÛÚË̇", WWW ËÎË ‚·-ÒÂÚ¸) fl‚ÎflÂÚÒfl ÍÛÔÌÓÈ ˜‡ÒÚ¸˛ ÒÓ‰ÂʇÌËfl àÌÚÂÌÂÚ‡, ÒÓÒÚÓfl˘ÂÈ ËÁ ‚Á‡ËÏÓÒ‚flÁ‡ÌÌ˚ı ‰ÓÍÛÏÂÌÚÓ‚ (ÂÒÛÒÓ‚). é̇ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÔÓÚÓÍÓÎÛ çííê (ÔÓÚÓÍÓÎ Ô‰‡˜Ë „ËÔÂÚÂÍÒÚ‡) ÏÂÊ‰Û ·‡ÛÁÂÓÏ Ë Ò‚ÂÓÏ, ÔÓÚÓÍÓÎÛ HTML (flÁ˚Í „ËÔÂÚÂÍÒÚÓ‚ÓÈ Ï‡ÍËÓ‚ÍË) ÍÓ‰ËÓ‚‡ÌËfl ËÌÙÓχˆËË ‰Îfl ‰ËÒÔÎÂfl Ë URL (ÛÌËÙˈËÓ‚‡ÌÌ˚ Û͇Á‡ÚÂÎË ÂÒÛÒÓ‚), ‰‡˛˘ËÏ Â‰ËÌÒÚ‚ÂÌÌ˚È "‡‰ÂÒ" Web ÒÚ‡Ìˈ. Web ̇˜‡Î‡ Ò‚Ó ÒÛ˘ÂÒÚ‚Ó‚‡ÌË ‚ Ö‚ÓÔÂÈÒÍÓÏ ˆÂÌÚ ÔÓ fl‰ÂÌ˚Ï ËÒÒΉӂ‡ÌËflÏ ‚ 1989 „. Ë ·˚· Ô‰‡Ì‡ ‚ Ó·˘ÂÒÚ‚ÂÌÌÓ ÔÓθÁÓ‚‡ÌË ‚ 1993 „. Web Ó„‡Ù – ‚ËÚۇθ̇fl ÒÂÚ¸, ÛÁÎ˚ ÍÓÚÓÓÈ fl‚Îfl˛ÚÒfl ‰ÓÍÛÏÂÌÚ‡ÏË (Ú.Â. ÒÚ‡Ú˘Ì˚ÏË HTML ÒÚ‡Ìˈ‡ÏË ËÎË Ëı URL), ÍÓÚÓ˚ ÒÓ‰ËÌÂÌ˚ ‚ıÓ‰fl˘ËÏË ËÎË ËÒıÓ‰fl˘ËÏË HTML „ËÔÂÒÒ˚Î͇ÏË. äÓ΢ÂÒÚ‚Ó ÛÁÎÓ‚ Web Ó„‡Ù‡ ÒÓÒÚ‡‚ÎflÎÓ, ÔÓ ‡ÁÌ˚Ï ÓˆÂÌ͇Ï, ÏÂÊ‰Û 15 Ë 30 ÏΉ ‚ 2007 „. ÅÓΠÚÓ„Ó, fl‰ÓÏ Ì‡ıÓ‰ËÚÒfl Ú‡Í Ì‡Á˚‚‡Âχfl „ÎÛ·Ó͇fl ËÎË Ì‚ˉËχfl Web, Ú.Â. ‰ÓÒÚÛÔÌ˚ ‰Îfl ÔÓËÒ͇ ·‡Á˚ ‰‡ÌÌ˚ı (~300 Ú˚Ò.) Ò ÍÓ΢ÂÒÚ‚ÓÏ ÒÚ‡Ìˈ (‰‡Ê ·ÂÁ Û˜ÂÚ‡ ÒÓ‰ÂʇÌËfl), Ô‰ÔÓÎÓÊËÚÂθÌÓ ‚ 500 ‡Á Ô‚˚¯‡˛˘ËÏ ÍÓ΢ÂÒÚ‚Ó ÒÚ‡Ú˘ÂÒÍËı Web ÒÚ‡Ìˈ. ùÚË ÒÚ‡Ìˈ˚ Ì Ë̉ÂÍÒËÓ‚‡Ì˚ Ò‚‡ÏË ÔÓËÒ͇, Ëı URL ‰Ë̇Ï˘Ì˚Â, Ë ÔÓ˝ÚÓÏÛ ÓÌË ÏÓ„ÛÚ ·˚Ú¸ ‚˚Á‚‡Ì˚ ÚÓθÍÓ ÔflÏ˚Ï Á‡ÔÓÒÓÏ ‚ ‡θÌÓÏ Ï‡Ò¯Ú‡·Â ‚ÂÏÂÌË. 30 ˲Ìfl 2007 „. 1 143 109 925 ÔÓθÁÓ‚‡ÚÂÎÂÈ (17,8% ÏËÓ‚ÓÈ ÔÓÔÛÎflˆËË, ‚Íβ˜‡fl 69,5% ‚ ë‚ÂÌÓÈ ÄÏÂËÍÂ Ë 39,8% ‚ Ö‚ÓÔÂ) ‚ÓÒÔÓθÁÓ‚‡ÎËÒ¸ àÌÚÂÌÂÚÓÏ. ëÛ˘ÂÒÚ‚ÛÂÚ ÌÂÒÍÓθÍÓ ÒÓÚÂÌ Ú˚Òfl˜ ÍË·Â-ÒÓÓ·˘ÂÒÚ‚, Ú.Â. Í·ÒÚÂÓ‚ ‚¯ËÌ Web Ó„‡Ù‡, „‰Â ÔÎÓÚÌÓÒÚ¸ Ò‚flÁÂÈ ÏÂÊ‰Û ˜ÎÂ̇ÏË ÒÓÓ·˘ÂÒÚ‚‡ „Ó‡Á‰Ó ‚˚¯Â ‡Ì‡Îӄ˘ÌÓ„Ó ÔÓ͇Á‡ÚÂÎfl ‰Îfl Ò‚flÁÂÈ ˜ÎÂÌÓ‚ ÒÓÓ·˘ÂÒÚ‚‡ Ò ÓÒڇθÌ˚Ï ÏËÓÏ. äË·Â-ÒÓÓ·˘ÂÒÚ‚‡ („ÛÔÔ˚ ÍÎËÂÌÚÓ‚, Û˜‡ÒÚÌËÍË ÒӈˇθÌÓÈ ÒÂÚË, ÔÓÌflÚËfl ‚ ÚÂıÌ˘ÂÒÍÓÈ ÒÚ‡Ú¸Â Ë Ú.Ô.) Ó·˚˜ÌÓ ÍÓ̈ÂÌÚËÛ˛ÚÒfl ‚ÓÍÛ„ ÓÔ‰ÂÎÂÌÌÓÈ ÚÂχÚËÍË Ë ÒÓ‰ÂÊ‡Ú ‰‚Û‰ÓθÌ˚È ÔÓ‰„‡Ù ı‡·Ó‚-‡‚ÚÓËÚÂÚÌ˚ı ËÒÚÓ˜ÌËÍÓ‚, ‚ ÍÓÚÓÓÏ ‚Ò ı‡·˚ (ÏÂÌ˛ Ë Ô˜ÌË ÂÒÛÒÓ‚) Û͇Á˚‚‡˛Ú ̇ ‚Ò ‡‚ÚÓËÚÂÚÌ˚ ËÒÚÓ˜ÌËÍË (ÔÓÎÂÁÌ˚ ÒÚ‡Ìˈ˚ ÔÓ ‰‡ÌÌÓÈ ÚÂχÚËÍÂ). èËχÏË ÌÓ‚˚ı ωˇ, ÒÓÁ‰‡ÌÌ˚ı Web, fl‚Îfl˛ÚÒfl: ·ÎÓ„Ë (ÓÔÛ·ÎËÍÓ‚‡ÌÌ˚ ‚ ÒÂÚË ‰Ì‚ÌËÍË), ÇËÍËÔ‰Ëfl (ÓÚÍ˚Ú‡fl ˝ÌˆËÍÎÓÔ‰Ëfl) Ë ÔÓÂÍÚËÛÂχfl ÍÓÌÒÓˆËÛÏÓÏ Web Ò‚flÁ¸ Ò ÏÂÚ‡‰‡ÌÌ˚ÏË. Ç Ò‰ÌÂÏ ‚¯ËÌ˚ Web Ó„‡Ù‡ ËÏÂ˛Ú ‡ÁÏ 10 ä·ËÚ, ÒÚÂÔÂ̸ ‚˚ıÓ‰‡ 7,2 Ë ‚ÂÓflÚÌÓÒÚ¸ k–2 ÚÓ„Ó, ˜ÚÓ ÒÚÂÔÂ̸ ‚˚ıÓ‰‡ ËÎË ÒÚÂÔÂ̸ ‚ıÓ‰‡ ‡‚̇ k. èӂ‰ÂÌÌÓ ËÒÒΉӂ‡ÌË [BKMR00] ·ÓΠ200 ÏÎÌ Web Ò‡Ìˈ ÔÓÁ‚ÓÎËÎÓ ÔË·ÎËÁËÚÂθÌÓ ‚˚‰ÂÎËÚ¸ ̇˷Óθ¯Û˛ Ò‚flÁÌÛ˛ ÍÓÏÔÓÌÂÌÚÛ – "fl‰Ó" ËÁ 56 ÏÎÌ ÒÚ‡Ìˈ Ë Â˘Â 44 ÏÎÌ Ò‚flÁ‡ÌÌ˚ı C fl‰ÓÏ ÒÚ‡Ìˈ (Ìӂ˘ÍÓ‚?). ÑÎfl ÒÎÛ˜‡ÈÌÓ ‚˚·‡ÌÌ˚ı ÛÁÎÓ‚ ı Ë Û ‚ÂÓflÚÌÓÒÚ¸ ÒÛ˘ÂÒÚ‚Ó‚‡ÌËfl ÓËÂÌÚËÓ‚‡ÌÌÓÈ ˆÂÔË ÓÚ ı Í Û ·˚· ‡‚̇ 0,25 Ë Ò‰Ìflfl ‰ÎË̇ Ú‡ÍÓÈ Í‡Ú˜‡È¯ÂÈ ˆÂÔË (ÂÒÎË Ú‡ÍÓ‚‡fl ÒÛ˘ÂÒÚ‚ÛÂÚ) ·˚· ‡‚̇ 16, ÚÓ„‰‡ Í‡Í Ï‡ÍÒËχθ̇fl ‰ÎË̇ ͇ژ‡È¯ÂÈ ˆÂÔË ‡‚Ìfl·Ҹ 28 ‚ fl‰Â Ë ·ÓΠ500 ‚Ó ‚ÒÂÏ „‡ÙÂ. è˂‰ÂÌÌ˚ ÌËÊ ‡ÒÒÚÓflÌËfl fl‚Îfl˛ÚÒfl ÔËχÏË Ï‡¯ÛÚÌ˚ı ÏÂÚËÍ ÏÂÊ‰Û ı‚ÓÒÚ‡ÏË, Ú.Â. ‚Â΢Ë̇ÏË, ËÒÔÓθÁÛ˛˘ËÏËÒfl ‚ ‡Î„ÓËÚχı χ¯ÛÚËÁ‡ˆËË ‚ àÌÚÂÌÂÚ ‰Îfl Ò‡‚ÌÂÌËfl ‚ÓÁÏÓÊÌ˚ı χ¯ÛÚÓ‚. èËχÏË ‰Û„Ëı Ú‡ÍËı Ï fl‚Îfl˛ÚÒfl Á‡‰ÂÈÒÚ‚Ó‚‡ÌË ÔÓÎÓÒ˚ ˜‡ÒÚÓÚ, ÒÚÓËÏÓÒÚ¸ Ò‚flÁË, ̇‰ÂÊÌÓÒÚ¸ (‚ÂÓflÚÌÓÒÚ¸ ÔÓÚÂË Ô‡ÍÂÚÌ˚ı ‰‡ÌÌ˚ı). ìÔÓÏË̇˛ÚÒfl Ú‡ÍÊ ÓÒÌÓ‚Ì˚ ÏÂÚËÍË Í‡˜ÂÒÚ‚‡, Ò‚flÁ‡ÌÌ˚Â Ò ÍÓÏÔ¸˛Ú‡ÏË. IP ÏÂÚË͇ àÌÚÂÌÂÚ‡ IP ÏÂÚË͇ àÌÚÂÌÂÚ‡ (ËÎË Ò˜ÂÚ Ô˚ÊÍÓ‚, ÏÂÚË͇ ÔÓÚÓÍÓ· RIP, ‰ÎË̇ IP ÔÛÚË) – ˝ÚÓ ÏÂÚË͇ ÔÛÚË ‚ IP „‡Ù àÌÚÂÌÂÚ‡, Ú.Â. ÏËÌËχθÌÓ ˜ËÒÎÓ Ô˚ÊÍÓ‚
326
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
(ËÎË, ˝Í‚Ë‚‡ÎÂÌÚÌÓ, χ¯ÛÚËÁ‡ÚÓÓ‚, Ô‰ÒÚ‡‚ÎÂÌÌ˚ı Ëı IP ‡‰ÂÒ‡ÏË), ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl Ô‰‡˜Ë Ô‡ÍÂÚ‡ ‰‡ÌÌ˚ı. èÓÚÓÍÓÎÓÏ RIP Ô‰ÔËÒ˚‚‡ÂÚÒfl χÍÒËχθÌÓ ‡ÒÒÚÓflÌË ‚ ÒÂÚË – 15, Ë Ì‰ÓÒÚËÊËÏÓÒÚ¸ Ó·ÓÁ̇˜‡ÂÚÒfl Í‡Í ÔÛÚ¸ ‰ÎËÌ˚ 16. AS ÏÂÚË͇ àÌÚÂÌÂÚ‡ AS ÏÂÚË͇ àÌÚÂÌÂÚ‡ (ËÎË BGP-ÏÂÚË͇) – ˝ÚÓ ÏÂÚË͇ ÔÛÚË ‚ AS „‡Ù àÌÚÂÌÂÚ‡, Ú.Â. ÏËÌËχθÌÓ ˜ËÒÎÓ ISP ÌÂÁ‡‚ËÒËÏ˚ı (ÔÓÒÚ‡‚˘ËÍÓ‚ ÛÒÎÛ„ ‚ ÒÂÚË àÌÚÂÌÂÚ), Ô‰ÒÚ‡‚ÎÂÌÌ˚ı Ò‚ÓËÏË AS, ÌÂÓ·ıÓ‰ËÏ˚ÏË ‰Îfl ÔÂÂÒ˚ÎÍË Ô‡ÍÂÚ‡ ‰‡ÌÌ˚ı. ÉÂÓ„‡Ù˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÉÂÓ„‡Ù˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÔÓ ‰Û„ ·Óθ¯Ó„Ó ÍÛ„‡ ̇ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË ÓÚ ÍÎËÂÌÚ‡ ı (ÔÓÎÛ˜‡ÚÂθ) ‰Ó Ò‚‡ Û (ËÒÚÓ˜ÌËÍ). é‰Ì‡ÍÓ ‚ ÒËÎÛ ˝ÍÓÌÓÏ˘ÂÒÍËı ÒÓÓ·‡ÊÂÌËÈ Ô‰‡˜‡ ‰‡ÌÌ˚ı Ì ‚Ò„‰‡ ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ÔÓ Ú‡ÍÓÈ „ÂÓ‰ÂÁ˘ÂÒÍÓÈ ÎËÌËË; ̇ÔËÏÂ, ·Óθ¯‡fl ˜‡ÒÚ¸ ‰‡ÌÌ˚ı ËÁ üÔÓÌËË ‚ Ö‚ÓÔÛ ÔÓÒÚÛÔ‡ÂÚ ˜ÂÂÁ ëòÄ. ê‡ÒÒÚÓflÌË RTT ê‡ÒÒÚÓflÌË RTT fl‚ÎflÂÚÒfl ‚ÂÏÂÌÂÏ ÔÓÎÌÓÈ Ô‰‡˜Ë ÏÂÊ‰Û ı Ë Û ‚ ÏËÎÎËÒÂÍÛ̉‡ı, ËÁÏÂÂÌÌ˚Ï Á‡ Ô‰˚‰Û˘ËÈ ‰Â̸; (ÒÏ. [HFPMC02] Ó ‡ÁÌӂˉÌÓÒÚflı ‰‡ÌÌÓ„Ó ‡ÒÒÚÓflÌËfl Ë Ò‚flÁË Ò ‚˚¯ÂÔ˂‰ÂÌÌ˚ÏË ÚÂÏfl ÏÂÚË͇ÏË). ê‡ÒÒÚÓflÌË ‡‰ÏËÌËÒÚ‡ÚË‚Ì˚ı ‡ÒıÓ‰Ó‚ ê‡ÒÒÚÓflÌËÂÏ ‡‰ÏËÌËÒÚ‡ÚË‚Ì˚ı ‡ÒıÓ‰Ó‚ ̇Á˚‚‡ÂÚÒfl ÌÓÏË̇θÌÓ ˜ËÒÎÓ (ÓˆÂÌË‚‡˛˘Â ̇‰ÂÊÌÓÒÚ¸ ËÌÙÓχˆËË Ó Ï‡¯ÛÚÂ), ÔËÒ‚‡Ë‚‡ÂÏÓ ÒÂÚ¸˛ χ¯ÛÚÛ ÏÂÊ‰Û ı Ë Û. ç‡ÔËÏÂ, ÍÓÏÔ‡ÌËfl Cisco ÔËÒ‚‡Ë‚‡ÂÚ Á̇˜ÂÌËfl 0, 1, …, 200, 225 ‰Îfl ÔÓ‰Íβ˜ÂÌÌÓ„Ó ËÌÚÂÙÂÈÒ‡, ÒÚ‡Ú˘ÂÒÍÓ„Ó Ï‡¯ÛÚ‡, …, ‚ÌÛÚÂÌÌÂ„Ó ÔÓÚÓÍÓ· BGP, çÂËÁ‚ÂÒÚÌÓ„Ó ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. åÂÚËÍË DRP Ç ÒÚÛÍÚÛ ÒËÒÚÂÏÌÓ„Ó ‡‰ÏËÌËÒÚËÓ‚‡ÌËfl (DD) ÍÓÏÔ‡ÌËË Cisco ËÒÔÓθÁÛÂÚÒfl (Ò ÔËÓËÚÂÚ‡ÏË Ë ‚ÂÒ‡ÏË) ‡ÒÒÚÓflÌË ‡‰ÏËÌËÒÚ‡ÚË‚Ì˚ı ‡ÒıÓ‰Ó‚, ÏÂÚË͇ ÒÎÛ˜‡ÈÌÓÒÚË (‚˚·Ó ÒÎÛ˜‡ÈÌÓ„Ó ÌÓχ ‰Îfl Í‡Ê‰Ó„Ó IP ‡‰ÂÒ‡) Ë ÏÂÚËÍË DRP (ÔÓÚÓÍÓÎ ÔflÏÓ„Ó ÓÚÍÎË͇). åÂÚËÍË DRP Á‡Ô‡¯Ë‚‡˛Ú Û ‚ÒÂı χ¯ÛÚËÁ‡ÚÓÓ‚ Ò ÔÓÚÓÍÓÎÓÏ DRP Ó‰ÌÓ ËÁ ÒÎÂ‰Û˛˘Ëı ‡ÒÒÚÓflÌËÈ: 1) ‚ÌÂ¯Ì˛˛ ÏÂÚËÍÛ DRP, Ú.Â. ÍÓ΢ÂÒÚ‚Ó Ô˚ÊÍÓ‚ (ıÓÔÓ‚) ÔÓ ÔÓÚÓÍÓÎÛ BGP (ÔÓ„‡Ì˘Ì˚È ÔÓÚÓÍÓΠχ¯ÛÚËÁ‡ˆËË) ÏÂÊ‰Û Á‡Ô‡¯Ë‚‡˛˘ËÏ ÛÒÎÛ„Û ÔÓθÁÓ‚‡ÚÂÎÂÏ Ë ‡„ÂÌÚÓÏ Ò‚‡ DRP; 2) ‚ÌÛÚÂÌÌ˛˛ ÏÂÚËÍÛ DRP, Ú.Â. ÍÓ΢ÂÒÚ‚Ó Ô˚ÊÍÓ‚ ÔÓ ÔÓÚÓÍÓÎÛ IGP (‚ÌÛÚÂÌÌËÈ ÔÓÚÓÍÓΠχ¯ÛÚËÁ‡ˆËË) ÏÂÊ‰Û ‡„ÂÌÚÓÏ Ò‚‡ DRP Ë ·ÎËʇȯËÏ ÔÓ„‡Ì˘Ì˚Ï Ï‡¯ÛÚËÁ‡ÚÓÓÏ Ì‡ · ‡‚ÚÓÌÓÏÌÓÈ ÒËÒÚÂÏ˚; 3) ÏÂÚËÍÛ Ò‚‡ DRP, Ú.Â. ÍÓ΢ÂÒÚ‚Ó Ô˚ÊÍÓ‚ ÔÓ ÔÓÚÓÍÓÎÛ IGP ÏÂÊ‰Û ‡„ÂÌÚÓÏ Ò‚‡ DRP Ë ‡ÒÒÓˆËËÓ‚‡ÌÌ˚Ï Ò‚ÂÓÏ. åÂÚËÍË ÚÓÏÓ„‡ÙËË ÒÂÚË ê‡ÒÒÏÓÚËÏ ÒÂÚ¸ Ò ÙËÍÒËÓ‚‡ÌÌ˚Ï ÔÓÚÓÍÓÎÓÏ Ï‡¯ÛÚËÁ‡ˆËË, Ú.Â. ÒËθÌÓ Ò‚flÁÌ˚È Ó„‡Ù D = (V, E) Ò Â‰ËÌÒÚ‚ÂÌÌ˚Ï ÓËÂÌÚËÓ‚‡ÌÌ˚Ï ÔÛÚÂÏ T(u , v), ‚˚·‡ÌÌ˚Ï ‰Îfl β·ÓÈ Ô‡˚ (u, v) ‚¯ËÌ. èÓÚÓÍÓΠχ¯ÛÚËÁ‡ˆËË ÓÔËÒ˚‚‡ÂÚÒfl ·Ë̇ÌÓÈ Ï‡ÚˈÂÈ Ï‡¯ÛÚËÁ‡ˆËË A = ((a i j)), „‰Â aij = 1, ÂÒÎË ‰Û„‡ e ∈ E Ò Ë̉ÂÍÒÓÏ i ÔË̇‰ÎÂÊËÚ ÓËÂÌÚËÓ‚‡ÌÌÓÏÛ ÔÛÚË T(u, v) Ò Ë̉ÂÍÒÓÏ j. ï˝ÏÏËÌ„Ó‚Ó
É·‚‡ 22. ê‡ÒÒÚÓflÌËfl ‚ àÌÚÂÌÂÚÂ Ë Ó‰ÒÚ‚ÂÌÌ˚ı ÒÂÚflı
327
‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÒÚÓ͇ÏË (ÒÚÓηˆ‡ÏË) χÚˈ˚ A ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ‰Û„‡ÏË (ÓËÂÌÚËÓ‚‡ÌÌ˚ÏË ÔÛÚflÏË) ÒÂÚË. ÇÓÁ¸ÏÂÏ ‰‚ ÒÂÚË Ò Ó‰Ë̇ÍÓ‚˚ÏË Ó„‡Ù‡ÏË, ÌÓ ‡Á΢Ì˚ÏË ÔÓÚÓÍÓ·ÏË Ï‡¯ÛÚËÁ‡ˆËË Ò Ï‡Úˈ‡ÏË Ï‡¯ÛÚËÁ‡ˆËË A Ë A⬘ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. íÓ„‰‡ ÔÓÎÛÏÂÚË͇ ÔÓÚÓÍÓ· χ¯ÛÚËÁ‡ˆËË [Var04] ÂÒÚ¸ ̇ËÏÂ̸¯Â ı˝ÏÏËÌ„Ó‚ ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ï‡ÚˈÂÈ A Ë Ï‡ÚˈÂÈ B, ÔÓÎÛ˜ÂÌÌÓÈ ËÁ ÔÛÚÂÏ A⬘ ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÒÚÓÍ Ë ÒÚÓηˆÓ‚ (ӷ χÚˈ˚ ‡ÒÒχÚË‚‡˛ÚÒfl Í‡Í ÒÚÓÍË). 䂇ÁËÏÂÚË͇ Web „ËÔÂÒÒ˚ÎÍË ä‚‡ÁËÏÂÚËÍÓÈ Web „ËÔÂÒÒ˚ÎÍË (ËÎË Ò˜ÂÚ˜ËÍÓÏ ÍÎËÍÓ‚) ̇Á˚‚‡ÂÚÒfl ‰ÎË̇ ͇ژ‡È¯Â„Ó ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ÔÛÚË (ÂÒÎË Ú‡ÍÓ‚Ó ÒÛ˘ÂÒÚ‚ÛÂÚ) ÏÂÊ‰Û ‰‚ÛÏfl Web ÒÚ‡Ìˈ‡ÏË (‚¯Ë̇ÏË Web Ó„‡Ù‡), Ú.Â. ÏËÌËχθÌÓ ÌÂÓ·ıÓ‰ËÏÓ ˜ËÒÎÓ ÍÎËÍÓ‚ Ï˚¯ÍË ‚ ‰‡ÌÌÓÏ „‡ÙÂ. Web Í‚‡ÁˇÒÒÚÓflÌË Ò‰ÌÂ„Ó ˜ËÒ· ÍÎËÍÓ‚ Web Í‚‡ÁˇÒÒÚÓflÌË Ò‰ÌÂ„Ó ˜ËÒ· ÍÎËÍÓ‚ ÏÂÊ‰Û ‰‚ÛÏfl Web ÒÚ‡Ìˈ‡ÏË ı Ë Û m z+ ‚ Web Ó„‡Ù [YOI03] ÂÒÚ¸ ÏËÌËÏÛÏ ln p i ÔÓ ‚ÒÂÏ ÓËÂÌÚËÓ‚‡ÌÌ˚Ï ÔÛÚflÏ α i =1
∑
x = z0 , z 1 , ..., zm = y , ÒÓ‰ËÌfl˛˘ËÏ x Ë y, „‰Â z i+ – ÒÚÂÔÂ̸ ‚˚ıÓ‰‡ ÒÚ‡Ìˈ˚ zi. 臇ÏÂÚ α ‡‚ÂÌ 1 ËÎË 0,85, ÚÓ„‰‡ Í‡Í p (Ò‰Ìflfl ÒÚÂÔÂ̸ ‚˚ıÓ‰‡) ‡‚̇ 7 ËÎË 6. Webï Í‚‡ÁˇÒÒÚÓflÌË ÑӉʇ–òËӉ Webï Í‚‡ÁˇÒÒÚÓflÌË ÑӉʇ–òËӉ ÏÂÊ‰Û ‰‚ÛÏfl Web ÒÚ‡Ìˈ‡ÏË ı Ë Û ‚ Web 1 Ó„‡Ù ÂÒÚ¸ ˜ËÒÎÓ , „‰Â h(x, y) – ˜ËÒÎÓ Í‡Ú˜‡È¯Ëı ÓËÂÌÚËÓ‚‡ÌÌ˚ı ÔÛÚÂÈ, h( x , y ) ÒÓ‰ËÌfl˛˘Ëı ı Ë Û. åÂÚËÍË Web ÔÓ‰Ó·ÌÓÒÚË åÂÚËÍË Web ÔÓ‰Ó·ÌÓÒÚË Ó·‡ÁÛ˛Ú ÒÂÏÂÈÒÚ‚Ó Ë̉Ë͇ÚÓÓ‚, ÔËÏÂÌflÂÏ˚ı ‰Îfl ËÁÏÂÂÌËfl ÒÚÂÔÂÌË ‚Á‡ËÏÓÒ‚flÁË (ÒÓ‰ÂʇÌËfl, ‚ Ò‚flÁflı ÒÒ˚ÎÓÍ ËÎË/Ë ËÒÔÓθÁÓ‚‡ÌËË) ÏÂÊ‰Û ‰‚ÛÏfl Web ÒÚ‡Ìˈ‡ÏË ı Ë Û. ç‡ÔËÏÂ, ÚÂχÚ˘ÂÒÍÓ ÒıÓ‰ÒÚ‚Ó ˜‡ÒÚ˘ÌÓ ÒÓ‚Ô‡‰‡˛˘Ëı ÚÂÏËÌÓ‚, ÒÓ‚ÏÂÒÚÌ˚ ÒÒ˚ÎÍË (ÍÓ΢ÂÒÚ‚Ó ÒÚ‡Ìˈ, „‰Â Ó·Â ‰‡˛ÚÒfl Í‡Í „ËÔÂÒÒ˚ÎÍË), ÒÔ‡ÂÌÌÓÒÚ¸ ·Ë·ÎËÓ„‡Ù˘ÂÍËı ‰‡ÌÌ˚ı (ÍÓ΢ÂÒÚ‚Ó Ó·˘Ëı „ËÔÂÒÒ˚ÎÓÍ) Ë ˜‡ÒÚÓÚÌÓÒÚ¸ ÒÓ‚ÏÂÒÚÌÓ„Ó ÔÓfl‚ÎÂÌËfl min{P(x | y), P (y | x)}, „‰Â P(x | y) ÂÒÚ¸ ‚ÂÓflÚÌÓÒÚ¸ ÚÓ„Ó, ˜ÚÓ ÔÓÒÂÚË‚¯ËÈ ÒÚ‡ÌËˆÛ Û ÔÓÒÂÚËÚ Ú‡ÍÊ ÒÚ‡ÌËˆÛ ı. Ç ˜‡ÒÚÌÓÒÚË, ÏÂÚËÍË ÔÓËÒÍÓ‚Ó-ˆÂÌÚ˘ÂÒÍÓ„Ó ËÁÏÂÌÂÌËfl – ÏÂÚËÍË, ËÒÔÓθÁÛÂÏ˚ ÔÓËÒÍÓ‚˚ÏË Ò‚‡ÏË ‚ Web ÒÂÚË ‰Îfl ËÁÏÂÂÌËfl ÒÚÂÔÂÌË ‡Á΢Ëfl ÏÂÊ‰Û ‰‚ÛÏfl ‚ÂÒËflÏË ı Ë Û Web ÒÚ‡Ìˈ˚. ÖÒÎË X Ë Y fl‚Îfl˛ÚÒfl ÏÌÓÊÂÒÚ‚‡ÏË ‚ÒÂı ÒÎÓ‚ (ËÒÍβ˜‡fl χÍËÓ‚ÍÛ HTML) ‚ ı Ë Û ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÚÓ ÒÎÓ‚‡ÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÒÚ‡Ìˈ‡ÏË ÂÒÚ¸ ‡ÒÒÚÓflÌË чÈÒ‡, Ú.Â. ‡‚ÌÓ | X∆Y | 2| X ∪Y | = 1− . | X |+|Y | | X |+|Y | ÖÒÎË vx Ë vy fl‚Îfl˛ÚÒfl ‚Á‚¯ÂÌÌ˚ÏË TF-IDF (˜‡ÒÚÓÚÌÓÒÚ¸ – Ó·‡Ú̇fl ˜‡ÒÚÓÚÌÓÒÚ¸ ‰ÓÍÛÏÂÌÚ‡) ‚ÂÍÚÓÌ˚ÏË Ô‰ÒÚ‡‚ÎÂÌËflÏË ı Ë Û, ÚÓ Ëı ‡ÒÒÚÓflÌË ÍÓÒËÌÛÒ‡ ÏÂÊ‰Û ÒÚ‡Ìˈ‡ÏË ‰‡ÂÚÒfl Í‡Í 〈 vx , vy 〉 1− . || v x ||2 ⋅ || v y ||2
328
ó‡ÒÚ¸ V. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÏÔ¸˛ÚÂÌÓÈ ÒÙÂÂ
åÂÚË͇ ÔÓÚÂflÌÌÓÒÚË èÓθÁÓ‚‡ÚÂÎË, "ÔÛÚ¯ÂÒÚ‚Û˛˘ËÂ" ÔÓ „ËÔÂÚÂÍÒÚÓ‚˚Ï ÒËÒÚÂχÏ, ̉ÍÓ ËÒÔ˚Ú˚‚‡˛Ú ‰ÂÁÓËÂÌÚ‡ˆË˛ (ÚẨÂÌˆË˛ Í ÔÓÚ ˜Û‚ÒÚ‚‡ ÏÂÒÚÓÔÓÎÓÊÂÌËfl Ë Ì‡Ô‡‚ÎÂÌËfl ‚ ÌÂÎËÌÂÈÌÓÏ ‰ÓÍÛÏÂÌÚÂ) Ë ÍÓ„ÌËÚË‚ÌÛ˛ Ô„ÛÁÍÛ (ÚÂ·Û˛ÚÒfl ‰ÓÔÓÎÌËÚÂθÌ˚ ÛÒËÎËfl Ë ÍÓ̈ÂÌÚ‡ˆËfl ‚ÌËχÌËfl ‰Îfl Ó‰ÌÓ‚ÂÏÂÌÌÓÈ ‡·ÓÚ˚ ÔÓ ÌÂÒÍÓθÍËÏ Á‡‰‡˜‡Ï / ̇ԇ‚ÎÂÌËflÏ). èÓθÁÓ‚‡ÚÂθ ÚÂflÂÚ Ó·˘Â Ô‰ÒÚ‡‚ÎÂÌËÂ Ó ÒÚÛÍÚÛ ‰ÓÍÛÏÂÌÚ‡ Ë Ò‚ÓÂÏ ‡·Ó˜ÂÏ ÔÓÒÚ‡ÌÒÚ‚Â. åÂÚË͇ ÔÓÚÂflÌÌÓÒÚË ëÏËÚ‡ ËÁÏÂflÂÚ ˝ÚÓ Í‡Í 2
2
n − 1 + r − 1 , s n „‰Â s – Ó·˘Â ˜ËÒÎÓ ÛÁÎÓ‚, ÔÓÒ¢ÂÌÌ˚ı ‚ ıӉ ÔÓËÒ͇, n – ÍÓ΢ÂÒÚ‚Ó ‡Á΢Ì˚ı ÛÁÎÓ‚ ÒÂ‰Ë ÌËı Ë r – ÍÓ΢ÂÒÚ‚Ó ÛÁÎÓ‚, ÍÓÚÓ˚ ÌÂÓ·ıÓ‰ËÏÓ ÔÓÒÂÚËÚ¸ ‰Îfl ‚˚ÔÓÎÌÂÌËfl Á‡‰‡˜Ë. åÂÚËÍË ‰Ó‚ÂËfl Ç ÍÓÏÔ¸˛ÚÂÌÓÈ ·ÂÁÓÔ‡ÒÌÓÒÚË ÏÂÚË͇ ‰Ó‚ÂËfl – χ ‰Îfl ÓˆÂÌÍË ÒÂÚËÙË͇ÚÓ‚ ÏÌÓÊÂÒÚ‚‡ Ó‰ÌӇ̄ӂ˚ı ÛÁÎÓ‚ ÒÂÚË, ‡ ‚ ÒÓˆËÓÎÓ„ËË – χ ÓÔ‰ÂÎÂÌËfl ÒÚÂÔÂÌË ‰Ó‚ÂËfl ˜ÎÂÌÓ‚ „ÛÔÔ˚ Í Ó‰ÌÓÏÛ ËÁ ÌËı. í‡Í, ̇ÔËÏÂ, ÏÂÚË͇ ‰ÓÒÚÛÔ‡ ‚ ÒËÒÚÂÏ UNIX Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÍÓÏ·Ë̇ˆË˛ ÚÓθÍÓ ÚÂı ‚ˉӂ ‰ÓÒÚÛÔ‡ Í ÂÒÛÒÛ: ˜ÚÂÌËÂ, Á‡ÔËÒ¸ Ë ‚˚ÔÓÎÌÂÌËÂ. ÅÓΠ‰Âڇθ̇fl ÏÂÚË͇ ‰Ó‚ÂËfl Advogato (ËÒÔÓθÁÛÂχfl ‰Îfl ‡ÌÊËÓ‚‡ÌËfl ‚ Ò‰ ‡Á‡·ÓÚ˜ËÍÓ‚ ÔÓ„‡ÏÏÌÓ„Ó Ó·ÂÒÔ˜ÂÌËfl Ò ÓÚÍ˚Ú˚ÏË ËÒıÓ‰Ì˚ÏË ÍÓ‰‡ÏË) ÓÒÌÓ‚˚‚‡ÂÚÒfl ̇ ÒËΠ‰Ó‚ÂËfl, Ó·ÂÒÔ˜˂‡ÂÏÓÈ ÚÂÏ, ˜ÚÓ Ó‰ÌÓ ÎËˆÓ ‚˚‰‡ÂÚ ÒÂÚËÙËÍ‡Ú Ó ‰Û„ÓÏ. ÑÛ„ËÏË ÔËχÏË ÒÎÛÊ‡Ú ÏÂÚËÍË ‰Ó‚ÂËfl Technorati, TrustFlow, Richardson Ë ‰., Mui Ë ‰., eBay. åÂÚËÍË ÔÓ„‡ÏÏÌÓ„Ó Ó·ÂÒÔ˜ÂÌËfl åÂÚË͇ ÔÓ„‡ÏÏÌÓ„Ó Ó·ÂÒÔ˜ÂÌËfl – χ ͇˜ÂÒÚ‚‡ ÔÓ„‡ÏÏÌÓ„Ó Ó·ÂÒÔ˜ÂÌËfl, ı‡‡ÍÚÂËÁÛ˛˘‡fl ÛÓ‚Â̸ ÒÎÓÊÌÓÒÚË, ÔÓÌflÚÌÓÒÚË, ÔÓ‚ÂflÂÏÓÒÚË Ë ‰ÓÒÚÛÔÌÓÒÚË ÍÓ‰‡. åÂÚË͇ ‡ıËÚÂÍÚÛ˚ – χ ÓˆÂÌÍË Í‡˜ÂÒÚ‚‡ ‡ıËÚÂÍÚÛ˚ ÔÓ„‡ÏÏÌÓ„Ó Ó·ÂÒÔ˜ÂÌËfl (‡Á‡·ÓÚÍË ÒÎÓÊÌ˚ı ÒËÒÚÂÏ ÔÓ„‡ÏÏÌÓ„Ó Ó·ÂÒÔ˜ÂÌËfl), ÍÓÚÓ‡fl Û͇Á˚‚‡ÂÚ Ì‡ Ò‚flÁÌÓÒÚ¸ (ÒÚ˚ÍÛÂÏÓÒÚ¸ ÒÓÒÚ‡‚Ì˚ı Ó·˙ÂÍÚÓ‚), ÒˆÂÔÎÂÌË (‚ÌÛÚÂÌÌ ‚Á‡ËÏÓ‰ÂÈÒÚ‚ËÂ), ‡·ÒÚ‡ÍÚÌÓÒÚ¸, ÌÂÒÚ‡·ËθÌÓÒÚ¸ Ë Ú.Ô. åÂÚËÍË ÎÓ͇θÌÓÒÚË åÂÚËÍÓÈ ÎÓ͇θÌÓÒÚË Ì‡Á˚‚‡ÂÚÒfl ÙËÁ˘ÂÒ͇fl ÏÂÚË͇, ËÁÏÂfl˛˘‡fl ‚ „ÎÓ·‡Î¸ÌÓÏ Ï‡Ò¯Ú‡·Â ÏÂÒÚÓÔÓÎÓÊÂÌË ÔÓ„‡ÏÏÌ˚ı ÍÓÏÔÓÌÂÌÚÓ‚, Ëı ‚˚ÁÓ‚˚ Ë „ÎÛ·ËÌÛ ‚ÎÓÊÂÌÌ˚ı ‚˚ÁÓ‚Ó‚ ͇Í
∑ fij dij i, j
∑ fij
,
i, j
„‰Â dij – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‚˚Á˚‚‡˛˘ËÏË ÍÓÏÔÓÌÂÌÚ‡ÏË i Ë j, fij – ˜‡ÒÚÓÚ‡ ‚˚ÁÓ‚Ó‚ ÓÚ i ‰Ó j. ÖÒÎË ÍÓÏÔÓÌÂÌÚ˚ ÔÓ„‡ÏÏ˚ ÔËÏÂÌÓ Ó‰Ë̇ÍÓ‚˚ ÔÓ ‡ÁχÏ, ÚÓ ·ÂÂÚÒfl dij = | i – j |. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â, Í‡Í Ô‰ÎÓÊËÎË óÁ‡Ì Ë ÉÓ·, ̇‰Ó ‡Á΢‡Ú¸ ÓÔÂÂʇ˛˘Ë ‚˚ÁÓ‚˚ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Á‡Ô‡¯Ë‚‡ÂÏÓÈ ÍÓÏÔÓÌÂÌÚÛ Ë Á‡Ô‡Á‰˚‚‡˛˘Ë (‰Û„ËÂ) ‚˚ÁÓ‚˚. èÛÒÚ¸ dij = di′ + dij′ , „‰Â di′ – ÍÓ΢ÂÒÚ‚Ó ÎËÌËÈ
329
É·‚‡ 22. ê‡ÒÒÚÓflÌËfl ‚ àÌÚÂÌÂÚÂ Ë Ó‰ÒÚ‚ÂÌÌ˚ı ÒÂÚflı
ÍÓ‰‡ ÏÂÊ‰Û ‚˚ÁÓ‚ÓÏ Ë ÓÍÓ̘‡ÌËÂÏ i, ÂÒÎË ‚˚ÁÓ‚ ÓÔÂÂʇ˛˘ËÈ, Ë ÏÂÊ‰Û Ì‡˜‡ÎÓÏ i j −1
Ë ‚˚ÁÓ‚ÓÏ, Ë̇˜Â, ÔË ˝ÚÓÏ dij′′ =
∑
Lk , ÂÒÎË ‚˚ÁÓ‚ ÓÔÂʇ˛˘ËÈ, Ë dij′′ =
k = i +1
i −1
∑
Lk ,
k = i +1
Ë̇˜Â. á‰ÂÒ¸ Lk – ÍÓ΢ÂÒÚ‚Ó ÎËÌËÈ ÍÓÏÔÓÌÂÌÚ˚ k. ÑËÒڇ̈ËÓÌÌÓ ‰ÂÈÒÚ‚Ë (‚ ‚˚˜ËÒÎËÚÂθÌ˚ı ÔÓˆÂÒÒ‡ı) Ç ‚˚˜ËÒÎËÚÂθÌ˚ı ÔÓˆÂÒÒ‡ı ‰ËÒڇ̈ËÓÌÌÓ ‰ÂÈÒÚ‚Ë fl‚ÎflÂÚÒfl Í·ÒÒÓÏ ÔÓ·ÎÂÏ ÔÓ„‡ÏÏËÓ‚‡ÌËfl, ‚ ÍÓÚÓÓÏ ÒÓÒÚÓflÌË ӉÌÓÈ ˜‡ÒÚË ÔÓ„‡ÏÏÌÓÈ ÒÚÛÍÚÛ˚ ‰‡ÌÌ˚ı ‚‡¸ËÛÂÚÒfl ËÁ-Á‡ ÚÛ‰ÌÓ‡ÒÔÓÁ̇‚‡ÂÏ˚ı ÓÔ‡ˆËÈ ‚ ‰Û„ÓÈ ˜‡ÒÚË ÔÓ„‡ÏÏ˚ (ÒÏ. Á‡ÍÓÌ ÑÂÏÂÚ‡, „Î. 28).
ó‡ÒÚ¸ VI
êÄëëíéüçàü Ç ÖëíÖëíÇÖççõï çÄìäÄï
É·‚‡ 23
ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË ËÒÔÓθÁÛ˛ÚÒfl „·‚Ì˚Ï Ó·‡ÁÓÏ ‰Îfl ˆÂÎÂÈ ÙÛ̉‡ÏÂÌڇθÌÓÈ Í·ÒÒËÙË͇ˆËË, ̇ÔËÏÂ, ‰Îfl ÂÍÓÌÒÚÛ͈ËË ˝‚ÓβˆËÓÌÌÓ„Ó ‡Á‚ËÚËfl Ó„‡ÌËÁÏÓ‚, ‚ ‚ˉ ÙËÎÓ„ÂÌÂÚ˘ÂÒÍËı ‰Â‚¸Â‚. èË Í·ÒÒ˘ÂÒÍÓÏ ÔÓ‰ıӉ ˝ÚË ‡ÒÒÚÓflÌËfl ·‡ÁËÓ‚‡ÎËÒ¸ ̇ Ò‡‚ÌËÚÂθÌÓÈ ÏÓÙÓÎÓ„ËË Ë ÙËÁËÓÎÓ„ËË. èÓ„ÂÒÒ ÒÓ‚ÂÏÂÌÌÓÈ ÏÓÎÂÍÛÎflÌÓÈ ·ËÓÎÓ„ËË ÔÓÁ‚ÓÎËÎ ËÒÔÓθÁÓ‚‡Ú¸ ÌÛÍ·ÚˉÌ˚ Ë/ËÎË ‡ÏËÌÓÍËÒÎÓÚÌ˚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ‰Îfl ÓˆÂÌÍË ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û „Â̇ÏË, ·ÂÎ͇ÏË, „ÂÌÓχÏË, Ó„‡ÌËÁχÏË, ‚ˉ‡ÏË Ë Ú.‰. Ñçä Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÌÛÍÎÂÓÚˉӂ (ËÎË ÍËÒÎÓÚ fl‰‡) A, T, G Ë ë Ë ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ÒÎÓ‚Ó Ì‡‰ ‡ÎÙ‡‚ËÚÓÏ ËÁ ˜ÂÚ˚Âı ·ÛÍ‚. çÛÍÎÂÓÚˉ˚ A, G (ÒÓ͇˘ÂÌÌÓ ÓÚ ÒÎÓ‚ ‡‰ÂÌËÌ Ë „Û‡ÌËÌ) ̇Á˚‚‡˛ÚÒfl ÔÛË̇ÏË, ÚÓ„‰‡ Í‡Í T, G (ÒÓ͇˘ÂÌÌÓ ÓÚ ÚËÏËÌ Ë ˆËÚÓÁËÌ) ̇Á˚‚‡˛ÚÒfl ÔˇÏˉË̇ÏË (‚ êçä ˝ÚÓ Û‡ˆËÎ U ‚ÏÂÒÚÓ í). Ñ‚Â ÌËÚË Ñçä Û‰ÂÊË‚‡˛ÚÒfl ‚ÏÂÒÚ (‚ ‚ˉ ‰‚ÓÈÌÓÈ ÒÔˇÎË) Ò··˚ÏË ‚Ó‰ÓÓ‰Ì˚ÏË Ò‚flÁflÏË ÏÂÊ‰Û ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ÌÛÍÎÂÓÚˉ‡ÏË (ÌÂÔÂÏÂÌÌÓ ÔÛËÌÓÏ Ë ÔËËÏˉËÌÓÏ) ‚ ÒÚÛÍÚÛ ÌËÚÂÈ. ùÚË Ô‡˚ ̇Á˚‚‡˛ÚÒfl Ô‡‡ÏË ÓÒÌÓ‚‡ÌËÈ. í‡ÌÁˈËfl – Á‡Ï¢ÂÌË ԇ˚ ÓÒÌÓ‚‡ÌËÈ Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ Ó‰Ì‡ Ô‡‡ ÔÛËÌ/ÔËfÏˉËÌ Á‡ÏÂÌflÂÚÒfl ̇ ‰Û„Û˛; ̇ÔËÏÂ, GC Á‡ÏÂÌflÂÚÒfl ̇ Äí. í‡ÌÒ‚ÂÒËfl – Á‡Ï¢ÂÌË ԇ˚ ÓÒÌÓ‚‡ÌËÈ Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ Ó‰Ì‡ Ô‡‡ ÔÛËÌ/ÔˇÏˉËÌ Á‡ÏÂÌflÂÚÒfl Ô‡ÓÈ ÔˇÏˉËÌ/ÔËËÌ ËÎË Ì‡Ó·ÓÓÚ; ̇ÔËÏÂ, GC Á‡ÏÂÌflÂÚÒfl ̇ íÄ. åÓÎÂÍÛÎ˚ Ñçä ‚ÒÚ˜‡˛ÚÒfl (‚ fl‰Â ÍÎÂÚÓÍ ˝Û͇ËÓÚ‡) ‚ ‚ˉ ‰ÎËÌÌ˚ı ÌËÚÂÈ, ÍÓÚÓ˚ ̇Á˚‚‡˛ÚÒfl ıÓÏÓÒÓχÏË. ÅÓθ¯ËÌÒÚ‚Ó ÍÎÂÚÓÍ ˜ÂÎӂ˜ÂÒÍÓ„Ó Ó„‡ÌËÁχ ÒÓ‰ÂÊ‡Ú 23 Ô‡˚ ıÓÏÓÒÓÏ, ÔÓ Ó‰ÌÓÏÛ Ì‡·ÓÛ ËÁ 23 ıÓÏÓÒÓÏ ÓÚ Í‡Ê‰Ó„Ó Ó‰ËÚÂÎfl; „‡ÏÂÚ‡ ˜ÂÎÓ‚Â͇ (ÏÛÊÒ͇fl ÔÓÎÓ‚‡fl ÍÎÂÚ͇ ËÎË flȈÓ) ÂÒÚ¸ „‡ÔÎÓˉ, Ú.Â. ÒÓ‰ÂÊËÚ ÚÓθÍÓ Ó‰ËÌ Ì‡·Ó ËÁ 23 ıÓÏÓÒÓÏ. ì (ÌÓχθÌ˚ı) ÏÛʘËÌ˚ Ë ÊÂÌ˘ËÌ˚ ‡Á΢‡ÂÚÒfl ÚÓθÍÓ 23-fl Ô‡‡ ıÓÏÓÒÓÏ: XY Û ÏÛʘËÌ Ë ïï Û ÊÂÌ˘ËÌ. ÉÂÌ – ÓÚÂÁÓÍ Ñçä, ÍÓÚÓ˚È ÍÓ‰ËÛÂÚ (ÔÓÒ‰ÒÚ‚ÓÏ Ú‡ÌÒÍËÔˆËË Ì‡ êçä Ë ÔÓÒÎÂ‰Û˛˘Â„Ó ÔÂÂÌÓÒ‡) ·ÂÎÓÍ ËÎË ÏÓÎÂÍÛÎÛ êçä. åÂÒÚÓÔÓÎÓÊÂÌË „Â̇ ̇ Â„Ó ÒÔˆˇθÌÓÈ ıÓÏÓÒÓÏ ̇Á˚‚‡ÂÚÒfl ÎÓÍÛÒÓÏ. ê‡Á΢Ì˚ ‡ÁÌӂˉÌÓÒÚË (ÒÓÒÚÓflÌËfl) „Â̇ ̇Á˚‚‡˛ÚÒfl ‡ÎÎÂÎflÏË. ÉÂÌ˚ Á‡ÌËχ˛Ú Ì ·ÓΠ2% ˜ÂÎӂ˜ÂÒÍÓÈ Ñçä; ÙÛÌ͈ËÓ̇θÌÓÒÚ¸, ÂÒÎË Ú‡ÍÓ‚‡fl ËÏÂÂÚÒfl, ÓÒڇθÌÓÈ ˜‡ÒÚË ÌÂËÁ‚ÂÒÚ̇. ÅÂÎÓÍ – ·Óθ¯‡fl ÏÓÎÂÍÛ·, fl‚Îfl˛˘‡flÒfl ˆÂÔÓ˜ÍÓÈ ‡ÏËÌÓÍËÒÎÓÚ; ÒÂ‰Ë ÌËı ÔËÒÛÚÒÚ‚Û˛Ú „ÓÏÓÌ˚, ͇ڇÎËÁ‡ÚÓ˚ (˝ÌÁËÏ˚), ‡ÌÚËÚ· Ë Ú.‰. ÇÒÂ„Ó ËÏÂÂÚÒfl 20 ‡ÏËÌÓÍËÒÎÓÚ; ÚÂıÏÂ̇fl ÍÓÌÙË„Û‡ˆËfl ·ÂÎ͇ ÓÔ‰ÂÎflÂÚÒfl (ÎËÌÂÈÌÓÈ) ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ ‡ÏËÌÓÍËÒÎÓÚ, Ú.Â. ÒÎÓ‚ÓÏ ‡ÎÙ‡‚ËÚ‡ ËÁ 20 ·ÛÍ‚. ÉÂÌÂÚ˘ÂÒÍËÈ ÍÓ‰ ÂÒÚ¸ ÛÌË‚Â҇θÌÓ ‰Îfl (ÔÓ˜ÚË) ‚ÒÂı Ó„‡ÌËÁÏÓ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ÏÂÊ‰Û ÌÂÍÓÚÓ˚ÏË ÍÓ‰Ó̇ÏË (Ú.Â. ÛÔÓfl‰Ó˜ÂÌÌ˚ÏË ÚÓÈ͇ÏË ÌÛÍÎÂÓÚˉӂ) Ë 20 ‡ÏËÌÓÍËÒÎÓÚ‡ÏË. éÌ ‚˚‡Ê‡ÂÚ „ÂÌÓÚËÔ (ËÌÙÓχˆË˛, ÒÓ‰Âʇ˘Û˛Òfl ‚ „Â̇ı, Ú.Â. ‚ Ñçä) Í‡Í ÙÂÌÓÚËÔ (·ÂÎÍË). íË ÚÂÏËÌËÛ˛˘Ëı ÍÓ‰Ó̇ (UAA, UAG Ë UGA) ÓÁ̇˜‡˛Ú ÓÍÓ̘‡ÌË ·ÂÎ͇; β·˚ ‰‚‡ ËÁ ÓÒڇθÌ˚ı 61 ÍÓ‰Ó̇ ̇Á˚‚‡˛ÚÒfl ÒËÌÓÌËÏ˘Ì˚ÏË, ÂÒÎË ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú Ó‰ÌËÏ Ë ÚÂÏ Ê ‡ÏËÌÓÍËÒÎÓÚ‡Ï.
333
É·‚‡ 23. ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
Ç „ÂÌÓÏ Á‡ÎÓÊÂ̇ ‚Òfl „ÂÌÂÚ˘ÂÒ͇fl ÒÚÛÍÚÛ‡ ‚ˉ‡ ËÎË ÊË‚Ó„Ó Ó„‡ÌËÁχ. ç‡ÔËÏÂ, „ÂÌÓÏ ˜ÂÎÓ‚Â͇ Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ Ì‡·Ó ËÁ 23 ıÓÏÓÒÓÏ, ‚Íβ˜‡˛˘Ëı ÓÍÓÎÓ 3 ÏΉ Ô‡ ÓÒÌÓ‚‡ÌËÈ Ñçä Ë Ó„‡ÌËÁÓ‚‡ÌÌ˚ı ‚ 20–25 Ú˚Ò. „ÂÌÓ‚. åÓ‰Âθ ˝‚ÓβˆËË, ÓÔˇ˛˘‡flÒfl ̇ ·ÂÒÍÓ̘Ì˚ ‡ÎÎÂÎË (IAM) Ô‰ÔÓ·„‡ÂÚ, ˜ÚÓ ‡ÎÎÂθ ÏÓÊÂÚ ËÁÏÂÌflÚ¸Òfl ËÁ β·Ó„Ó ÍÓÌÍÂÚÌÓ„Ó ÒÓÒÚÓflÌËfl ‚ β·Ó ‰Û„Ó ÒÓÒÚÓflÌËÂ. ùÚÓ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ô‚˘ÌÓÈ ÓÎË „ÂÌÂÚ˘ÂÒÍÓ„Ó ‰ÂÈÙ‡ (Ú.Â. ÒÎÛ˜‡ÈÌ˚ı ‚‡Ë‡ˆËÈ ˜‡ÒÚÓÚ˚ „ÂÌÓ‚ ÓÚ ÔÓÍÓÎÂÌËfl Í ÔÓÍÓÎÂÌ˲), ÓÒÓ·ÂÌÌÓ ı‡‡ÍÚÂÌÓ„Ó ‰Îfl Ì·Óθ¯Ëı ÔÓÔÛÎflˆËÈ ‚ ıӉ ÂÒÚÂÒÚ‚ÂÌÌÓ„Ó ÓÚ·Ó‡ (ÔÓ˝Ú‡ÔÌ˚ı ÏÛÚ‡ˆËÈ). åÓ‰Âθ IAM ۉӷ̇ ‰Îfl ÔÓÎÛ˜ÂÌËfl ‰‡ÌÌ˚ı ÔÓ ‡ÎÎÓÁËÏ‡Ï (‡ÎÎÓÁËÏ – ÙÓχ ·ÂÎ͇, ÍÓÚÓ˚È ÍÓ‰ËÓ‚‡Ì Ó‰ÌËÏ ‡ÎÎÂÎÂÏ ‚ ÍÓÌÍÂÚÌÓÏ ÎÓÍÛÒ „Â̇). åÓ‰Âθ ˝‚ÓβˆËË, ÓÒÌÓ‚‡Ì̇fl ̇ ÔÓ˝Ú‡ÔÌ˚ı ÏÛÚ‡ˆËflı (SMM) ·ÓΠۉӷ̇ ‰Îfl ‡·ÓÚ˚ Ò ‰‡ÌÌ˚ÏË ÏËÍÓÒ‡ÚÂÎÎËÚÓ‚ (̇˷ÓΠÔÓÔÛÎflÌ˚ÏË ‚ ÔÓÒΉÌ ‚ÂÏfl). åËÍÓÒ‡ÚÂÎÎËÚ˚ – ÒËθÌÓ ‡Á΢‡˛˘ËÂÒfl ÔÓ‚ÚÓfl˛˘ËÂÒfl ÍÓÓÚÍË ÔÓÒΉӂ‡ÚÂθÌÓÒÚË Ñçä. ó‡ÒÚÓÚ‡ Ëı ÏÛÚ‡ˆËÈ ‡‚̇ 1 ̇ 1000–10 000 ÂÔÎË͇ˆËÈ, ‡ ‰Îfl ‡ÎÎÓÁËÏÓ‚ ˝ÚÓÚ ÔÓ͇Á‡ÚÂθ ÒÓÒÚ‡‚ÎflÂÚ 1/1 000 000. é͇Á˚‚‡ÂÚÒfl, ˜ÚÓ ÏËÍÓÒ‡ÚÂÎÎËÚ˚ Ò‡ÏË ÔÓ Ò· ÒÓ‰ÂÊ‡Ú ‰ÓÒÚ‡ÚÓ˜ÌÓ ËÌÙÓχˆËË ‰Îfl ÔÓÒÚÓÂÌËfl „Â̇Îӄ˘ÂÒÍÓ„Ó ‰Â‚‡ Ó„‡ÌËÁχ. чÌÌ˚ ÏËÍÓÒ‡ÚÂÎÎËÚÓ‚ (̇ÔËÏÂ, ÔÓ ÓÚÔ˜‡ÚÍ‡Ï Ñçä) ÒÓÒÚÓflÚ ËÁ fl‰‡ ÔÓ‚ÚÓfl˛˘ËıÒfl ÏËÍÓÒ‡ÚÂÎÎËÚÓ‚ ‰Îfl Í‡Ê‰Ó„Ó ‡ÎÎÂÎfl. ÑÛ„ËÏ ‡ÒÔÓÒÚ‡ÌÂÌÌ˚Ï ÏÓÎÂÍÛÎflÌ˚Ï Ï‡ÍÂÓÏ fl‚ÎflÂÚÒfl χ·fl ÒÛ·˙‰ËÌˈ‡ Ë·ÓÒÓÏÌÓÈ êçä (SSU êçä), ÔÓÒÍÓθÍÛ „ÂÌ˚ êçä Ë„‡˛Ú ÒÛ˘ÂÒÚ‚ÂÌÌÛ˛ Óθ ‰Îfl ‚˚ÊË‚‡ÌËfl β·Ó„Ó Ó„‡ÌËÁχ Ë Ëı ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÔÓ˜ÚË Ì ËÁÏÂÌfl˛ÚÒfl. ù‚ÓβˆËÓÌÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÔÓÔÛÎflˆËflÏË (ËÎË Ú‡ÍÒÓ̇ÏË) fl‚ÎflÂÚÒfl ÏÂÓÈ „ÂÌÂÚ˘ÂÒÍÓ„Ó ‡ÁÌÓÓ·‡ÁËfl ̇ ÓÒÌÓ‚Â ÓˆÂÌÍË ‚ÂÏÂÌË ‡ÒıÓʉÂÌËfl, Ú.Â. ‚ÂÏÂÌË, Ôӯ‰¯Â„Ó Ò ÚÂı ÔÓ, ÍÓ„‰‡ ‰‡ÌÌ˚ ÔÓÔÛÎflˆËË ÒÛ˘ÂÒÚ‚Ó‚‡ÎË Í‡Í Ó‰ÌÓ ˆÂÎÓÂ. îËÎÓ„ÂÌÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË (ËÎË „Â̇Îӄ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ) ÏÂÊ‰Û ‰‚ÛÏfl Ú‡ÍÒÓ̇ÏË – ‰ÎË̇ ‚ÂÚ‚Ë, Ú.Â. ÏËÌËχθÌÓ ˜ËÒÎÓ Â·Â, ‡Á‰ÂÎfl˛˘Ëı Ëı ̇ ÙËÎÓ„ÂÌÂÚ˘ÂÒÍÓÏ ‰Â‚Â. àÏÏÛÌÓÎӄ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÔÓÔÛÎflˆËflÏË – χ ˝ÙÙÂÍÚË‚ÌÓÒÚË Â‡ÍˆËÈ ‡ÌÚË„ÂÌ – ‡ÌÚËÚÂÎÓ, ÔÓ͇Á˚‚‡˛˘‡fl ˝‚ÓβˆËÓÌÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË. 23.1. ÉÖçÖíàóÖëäàÖ êÄëëíéüçàü Ñãü ÑÄççõï é óÄëíéíÖ ÉÖçéÇ Ç ˝ÚÓÏ ‡Á‰ÂΠ„ÂÌÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ËÒÔÓθÁÛÂÚÒfl Í‡Í ÒÔÓÒÓ· ËÁÏÂÂÌËfl ÒÚÂÔÂÌË ˝‚ÓβˆËÓÌÌÓ„Ó ‡Á΢Ëfl ÔÛÚÂÏ ÔÓ‰Ò˜ÂÚ‡ ÍÓ΢ÂÒÚ‚‡ ‡ÎÎÂθÌ˚ı Á‡Ï¢ÂÌËÈ ÔÓ ÎÓÍÛÒ‡Ï. n
èÓÔÛÎflˆËfl Ô‰ÒÚ‡‚ÎÂ̇ ‚ÂÍÚÓÓÏ ‰‚ÓÈÌÓÈ Ë̉ÂÍÒ‡ˆËË x = (xij) Ò
∑ mj j =1
ÍÓÏÔÓÌÂÌÚ‡ÏË, „‰Â xij – ˜‡ÒÚÓÚ‡ i-„Ó ‡ÎÎÂÎfl (Ë̉ÂÍÒ ÒÓÒÚÓflÌËfl „Â̇) ÔË j-Ï ÎÓÍÛÒ „Â̇ (ÔÓÎÓÊÂÌËfl „Â̇ ̇ ıÓÏÓÒÓÏÂ), mj – ÍÓ΢ÂÒÚ‚Ó ‡ÎÎÂÎÂÈ j-„Ó ÎÓÍÛÒ‡, ‡ n – ÍÓ΢ÂÒÚ‚Ó ‡ÒÒχÚË‚‡ÂÏ˚ı ÎÓÍÛÒÓ‚. é·ÓÁ̇˜ËÏ ˜ÂÂÁ ∑ ÒÛÏÏÛ ÔÓ ‚ÒÂÏ i Ë j. èÓÒÍÓθÍÛ xij ÂÒÚ¸ ˜‡ÒÚÓÚ‡, ÚÓ mj
‚˚ÔÓÎÌfl˛ÚÒfl ÛÒÎÓ‚Ëfl x ≥ 0 Ë
∑ i =1
xij = 1.
334
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ê‡ÒÒÚÓflÌË ӷ˘Ëı ‡ÎÎÂÎÂÈ ëÚÂÙÂÌÒ‡ Ë ‰. ê‡ÒÒÚÓflÌË ӷ˘Ëı ‡ÎÎÂÎÂÈ ëÚÂÙÂÌÒ‡ Ë ‰. ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1−
SA( x, y) , SA( x ) + SA( y)
„‰Â ‰Îfl ‰‚Ûı ÓÚ‰ÂθÌ˚ı Ë̉˂ˉӂ a Ë b SA(a, b) Ó·ÓÁ̇˜‡ÂÚ ˜ËÒÎÓ Ó·˘Ëı ‡ÎÎÂÎÂÈ, ÒÛÏÏËÓ‚‡ÌÌ˚ ÔÓ ‚ÒÂÏ n ÎÓÍÛÒ‡Ï Ë ÔÓ‰ÂÎÂÌÌÓ ̇ 2n, ÚÓ„‰‡ Í‡Í SA( x ), SA( y) Ë SA( x, y) ÂÒÚ¸ SA(a, b), ÛÒ‰ÌÂÌÌÓ ÔÓ ‚ÒÂÏ Ô‡‡Ï (a , b) Ò Ë̉˂ˉ‡ÏË ‡ Ë b ‚ ÔÓÔÛÎflˆËflı, Ô‰ÒÚ‡‚ÎÂÌÌ˚ı Í‡Í ı Ë Û Ë ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÏÂÊ‰Û ÌËÏË. ê‡ÒÒÚÓflÌË Dps ê‡ÒÒÚÓflÌË Dps ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í − ln
∑ min{xij , yij} . n ∑ mj j −1
ê‡ÒÒÚÓflÌË è‚ÓÒÚË–é͇Ì˚–ÄÎÓÌÒÓ ê‡ÒÒÚÓflÌË è‚ÓÒÚË–é͇Ì˚–ÄÎÓÌÒÓ ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl (ÒÏ. L 1 -ÏÂÚË͇, „Î. 1) ͇Í
∑ | xij − yij | . 2n
ê‡ÒÒÚÓflÌË êӉʇ ê‡ÒÒÚÓflÌË êӉʇ – ÏÂÚË͇ ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË, ÓÔ‰ÂÎÂÌ̇fl Í‡Í 1 2n
mj
n
∑ ∑ j =1
( xij − yij )2 .
i =1
ê‡ÒÒÚÓflÌË ıÓ‰˚ 䇂‡Î¸Ë–ëÙÓÁ‡–ù‰‚‡‰Ò‡ ê‡ÒÒÚÓflÌË ıÓ‰˚ 䇂‡Î¸Ë–ëÙÓÁ‡–ù‰‚‡‰Ò‡ ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í 2 2 π
mj
n
∑
1−
j =1
∑
xij yij .
i =1
ùÚÓ ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ (ÒÏ. ‡ÒÒÚÓflÌË ïÂÎÎË̉ʇ, „Î. 17). ê‡ÒÒÚÓflÌË ‰Û„Ë ä‡‚‡Î¸Ë–ëÙÓÁ‡ ê‡ÒÒÚÓflÌË ‰Û„Ë ä‡‚‡Î¸Ë–ëÙÓÁ‡ ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
(∑
2 arccos π (ÒÏ. ‡ÒÒÚÓflÌË î˯‡, „Î. 14).
xij yij
)
335
É·‚‡ 23. ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
ê‡ÒÒÚÓflÌË çÂfl–퇉ÊËÏ˚–í‡ÚÂÌÓ ê‡ÒÒÚÓflÌË çÂfl–퇉ÊËÏ˚–í‡ÚÂÌÓ ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑
1 xij yij . n åËÌËχθÌÓ „ÂÌÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË çÂfl åËÌËχθÌÓ „ÂÌÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË çÂfl ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1 ( xij − yij )2 . 2n ëڇ̉‡ÚÌÓ „ÂÌÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË çÂfl ëڇ̉‡ÚÌÓ „ÂÌÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË çÂfl ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í –ln I, „‰Â I – ÌÓχÎËÁÓ‚‡Ì̇fl ˉÂÌÚËÙË͇ˆËfl „Â̇ ÔÓ ç², ÓÔ‰ÂÎÂÌ̇fl Í‡Í 〈 x, y 〉 (ÒÏ. ‡ÒÒÚÓflÌËfl Åı‡ÚÚ‡˜‡¸fl („Î. 14) Ë Û„ÎÓ‚‡fl ÔÓÎÛÏÂÚË͇ („Î. 17). || x ||2 ⋅ || y ||2 1−
∑
2 ‡ÒÒÚÓflÌË ë‡Ì„‚Ë 2 ‡ÒÒÚÓflÌË ë‡Ì„‚Ë ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í 2 n
∑
( xij − yij )2 xij + xij
.
ê‡ÒÒÚÓflÌË F-ÒÚ‡ÚËÒÚËÍË ê‡ÒÒÚÓflÌË F-ÒÚ‡ÚËÒÚËÍË ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑ ( xij − yij )2 . 2(n − ∑ xij yij ) ê‡ÒÒÚÓflÌˠ̘ÂÚÍÓ„Ó ÏÌÓÊÂÒÚ‚‡ ê‡ÒÒÚÓflÌˠ̘ÂÚÍÓ„Ó ÏÌÓÊÂÒÚ‚‡ Ñ˛·Û‡–èÂȉ‡ ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1x ij ≠ yij . n
∑ ∑ mj j =1
ê‡ÒÒÚÓflÌË ӉÒÚ‚‡ ê‡ÒÒÚÓflÌË ӉÒÚ‚‡ ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í –ln 〈x, y〉, „‰Â Ò͇ÎflÌÓ ÔÓËÁ‚‰ÂÌË 〈x, y〉 ̇Á˚‚‡ÂÚÒfl ÍÓ˝ÙÙˈËÂÌÚÓÏ Ó‰ÒÚ‚‡. ê‡ÒÒÚÓflÌË êÂÈÌÓθ‰Ò‡–ÇÂȇ–äÓÍÂı˝Ï‡ ê‡ÒÒÚÓflÌË êÂÈÌÓθ‰Ò‡–ÇÂȇ–äÓÍÂı˝Ï‡ (ËÎË ‡ÒÒÚÓflÌË ӉÓÒÎÓ‚ÌÓÈ) ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í –ln(1 – θ),
336
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
„‰Â ÍÓ˝ÙÙˈËÂÌÚ Ó‰ÓÒÎÓ‚ÌÓÈ θ ‰‚Ûı Ë̉˂ˉӂ (ËÎË ‰‚Ûı ÔÓÔÛÎflˆËÈ) fl‚ÎflÂÚÒfl ‚ÂÓflÚÌÓÒÚ¸˛ ÚÓ„Ó, ˜ÚÓ ÒÎÛ˜‡ÈÌÓ ‚˚·‡ÌÌ˚È ‡ÎÎÂθ Ó‰ÌÓ„Ó Ë̉˂ˉ‡ (ËÎË „ÂÌÂÚ˘ÂÒÍÓ„Ó ÙÓ̉‡ Ó‰ÌÓÈ ÔÓÔÛÎflˆËË) ·Û‰ÂÚ Ë‰ÂÌÚ˘ÂÌ ÔÓ Ì‡ÒΉӂ‡Ì˲ (Ú.Â. ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë „ÂÌ˚ fl‚Îfl˛ÚÒfl ÙËÁ˘ÂÒÍËÏË ÍÓÔËflÏË Ó‰ÌÓ„Ó Ë ÚÓ„Ó Ê ‡ÌˆÂÒڇθÌÓ„Ó „Â̇) ÒÎÛ˜‡ÈÌÓ ‚˚·‡ÌÌÓÏÛ ‡ÎÎÂβ ‰Û„Ó„Ó. Ñ‚‡ „Â̇ ÏÓ„ÛÚ ·˚Ú¸ ˉÂÌÚ˘Ì˚ÏË ÔÓ ÒÓÒÚÓflÌ˲ (Ú.Â. ‡ÎÎÂÎflÏË Ò Ó‰Ë̇ÍÓ‚˚Ï Ë̉ÂÍÒÓÏ), ÌÓ Ì ˉÂÌÚ˘Ì˚ÏË ÔÓ Ì‡ÒΉӂ‡Ì˲. äÓ˝ÙÙˈËÂÌÚ Ó‰ÓÒÎÓ‚ÌÓÈ θ ‰‚Ûı Ë̉˂ˉӂ fl‚ÎflÂÚÒfl ÍÓ˝ÙÙˈËÂÌÚÓÏ Ë̷ˉËÌ„‡ (Ó‰ÒÚ‚ÂÌÌÓ„Ó Òԇ˂‡ÌËfl) Ëı ÔÓÒÎÂ‰Û˛˘Ëı ÔÓÍÓÎÂÌËÈ. ê‡ÒÒÚÓflÌË ÉÓθ‰¯ÚÂÈ̇ Ë ‰. ê‡ÒÒÚÓflÌË ÉÓθ‰¯ÚÂÈ̇ Ë ‰. ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1 n
∑ (ixij − iyij )2 .
ê‡ÒÒÚÓflÌË Ò‰ÌÂ„Ó Í‚‡‰‡Ú‡ ê‡ÒÒÚÓflÌË Ò‰ÌÂ„Ó Í‚‡‰‡Ú‡ ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í n 1 (i − j )2 xik y jk . n k = 1 1≤ i < j ≤ m j
∑
∑
èÓ¯‡„Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ò‡È‚‡–ÅÛ‚ËÌÍÎfl èÓ¯‡„Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó ò‡È‚‡–ÅÛ‚ËÌÍÎfl ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í n
∑ ∑
1 n k =1
| i − j | (2 xik y jk − xik x jk − yik y jk ).
1≤ i , j ≤ m k
23.2. êÄëëíéüçàü Ñãü ÑÄççõï é Ñçä ê‡ÒÒÚÓflÌËfl ÏÂÊ‰Û Ñçä ËÎË ·ÂÎÍÓ‚˚ÏË ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË Ó·˚˜ÌÓ ËÁÏÂfl˛ÚÒfl ‚ ‚ˉ Á‡Ï¢ÂÌËÈ, Ú.Â. ÏÛÚ‡ˆËÈ ÏÂÊ‰Û ÌËÏË. Ñçä-ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ x = (x1, ..., xn) ̇‰ ‡ÎÙ‡‚ËÚÓÏ ËÁ ˜ÂÚ˚Âı ·ÛÍ‚ – n
ÌÛÍÎÂÓÚˉӂ Ä, í, ë, G; ∑ Ó·ÓÁ̇˜‡ÂÚ
∑. i =1
óËÒÎÓ ‡Á΢ËÈ óËÒÎÓ ‡Á΢ËÈ Ñçä – ÔÓÒÚÓ ÏÂÚË͇ ï˝ÏÏËÌ„‡ ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË Ñçä:
∑ 1x ≠ y . i
i
-ê‡ÒÒÚÓflÌË -ê‡ÒÒÚÓflÌË dp ÏÂÊ‰Û Ñçä-ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑ 1x ≠ y i
n
i
.
337
É·‚‡ 23. ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
çÛÍÎÂÓÚˉÌÓ ‡ÒÒÚÓflÌË ÑÊÛÍÂÒ‡–ä‡ÌÚÓ‡ çÛÍÎÂÓÚˉÌÓ ‡ÒÒÚÓflÌË ÑÊÛÍÂÒ‡–ä‡ÌÚÓ‡ ÏÂÊ‰Û Ñçä-ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í −
3 4 ln 1 − d p ( x, y) , 4 3
„‰Â dp – -‡ÒÒÚÓflÌËÂ. ÖÒÎË ÒÍÓÓÒÚ¸ Á‡Ï¢ÂÌËfl ËÁÏÂÌflÂÚÒfl ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò „‡Ïχ-‡ÒÔ‰ÂÎÂÌËÂÏ Ë ‡ fl‚ÎflÂÚÒfl Ô‡‡ÏÂÚÓÏ, ÓÔËÒ˚‚‡˛˘ËÏ ÙÓÏÛ ‡ÒÔ‰ÂÎÂÌËfl, ÚÓ „‡Ïχ-‡ÒÒÚÓflÌË ‰Îfl ÏÓ‰ÂÎË ÑÊÛÍÂÒ‡–ä‡ÌÚÓ‡ ÓÔ‰ÂÎflÂÚÒfl Í‡Í −1 / a 3a 4 − ( , ) 1 d x y − 1 . p 4 3
ê‡ÒÒÚÓflÌË 퇉ÊËÏ˚–çÂfl ê‡ÒÒÚÓflÌË 퇉ÊËÏ˚–çÂfl ÏÂÊ‰Û Ñçä-ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í d p ( x, y) − b ln1 − , b „‰Â 1 b = 1 − 2
2
1x i = y i = j 1 + n c j = A, T , C , G
∑
∑
2 1x i ≠ y i n
Ë
∑
1 c= 2 i, k ∈{A, T , G, C} j ≠ k
(∑ 1
(∑ 1
( x i , yi ) − ( j , k )
x i = yi = j
)(∑ 1
)
2
x i = yi = k
)
.
1 1 | {1 ≤ i ≤ n : {xi , yi} = {A, G} ËÎË {T, C}}|, Ë Q = | {1 ≤ i ≤ n : n n {xi , yi} = {A, T} ËÎË {G, C}}|, Ú.Â. P Ë Q fl‚Îfl˛ÚÒfl ˜‡ÒÚÓÚ‡ÏË ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Ú‡ÌÁˈËË Ë Ú‡ÌÒ‚ÂÒËË ÓÒÌÓ‚‡ÌËÈ ÏÂÊ‰Û ı Ë Û. èË‚Ó‰ËÏ˚ ÌËÊ ˜ÂÚ˚ ‡ÒÒÚÓflÌËfl ‰‡˛ÚÒfl ‚ ÚÂÏË̇ı ‚Â΢ËÌ P Ë Q. èÛÒÚ¸
P=
ɇÏχ-‡ÒÒÚÓflÌË ÑÊË̇–çÂfl ɇÏχ-‡ÒÒÚÓflÌË ÑÊË̇-çÂfl ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË Ñçä ÓÔ‰ÂÎflÂÚÒfl Í‡Í a 1 3 1 − 2 P − Q)1 / a + (1 − 2Q) −1 / a − , 2 2 2 „‰Â ÒÍÓÓÒÚ¸ Á‡Ï¢ÂÌËfl ‚‡¸ËÛÂÚÒfl ‚ÏÂÒÚÂ Ò „‡Ïχ-‡ÒÔ‰ÂÎÂÌËÂÏ Ë ‡ fl‚ÎflÂÚÒfl Ô‡‡ÏÂÚÓÏ, ÓÔËÒ˚‚‡˛˘ËÏ ÙÓÏÛ ‡ÒÔ‰ÂÎÂÌËfl. 2-Ô‡‡ÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË äËÏÛ˚ 2-Ô‡‡ÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË äËÏÛ˚ ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË Ñçä ÓÔ‰ÂÎflÂÚÒfl Í‡Í −
1 1 ln(1 − 2 P − Q) − ln 1 − 2Q . 2 2
338
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
3-Ô‡‡ÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË í‡ÏÛ˚ 3-Ô‡‡ÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË í‡ÏÛ˚ ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË Ñçä ÓÔ‰ÂÎflÂÚÒfl Í‡Í P 1 − b ln1 − − Q − (1 − b) ln(1 − 2Q), b 2 „‰Â
fx =
1 | {1 ≤ i ≤ n : xi = G ËÎË C} |, n
fy =
+ fy − 2 fx fy .
1 | {1 ≤ i ≤ n : yi = G ËÎË C} | Ë n
b = fx +
1 1 (ÒΉӂ‡ÚÂθÌÓ, ‰Îfl b = ) ˝ÚÓ fl‚ÎflÂÚÒfl 2-Ô‡‡ÏÂÚ˘Â2 2 ÒÍËÏ ‡ÒÒÚÓflÌËÂÏ äËÏÛ˚. Ç ÒÎÛ˜‡Â f x = f y =
ê‡ÒÒÚÓflÌË í‡ÏÛ˚–çÂfl ê‡ÒÒÚÓflÌË í‡ÏÛ˚–çÂfl ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË Ñçä ÓÔ‰ÂÎflÂÚÒfl Í‡Í −
2f f 2 f A fG fR 1 fY 1 ln1 − PAG − PRY − T C ln1 − PTC − PRY − fR 2 f A fG 2 fR fY 2 fT fC 2 fY f f f f f f 1 PRY , −2 f R fY − A G Y − T C R ln1 − fR fY 2 f R fY
„‰Â f j =
1 2n
∑ (1x = j + 1y = j ) i
i
‰Îfl j = A, G, T, C Ë f R = fA + fG, f T + f C , ÚÓ„‰‡ ͇Í
1 | {1 ≤ i ≤ n :| {xi , yi} ∩ {A, G} =| {xi , yi} ∩ {T , C} |= 1} | (ÓÚÌÓÒËÚÂθÌÓ ˜ËÒÎÓ ‡ÁÎËn 1 ˜ËÈ ‚ Ú‡ÌÒ‚ÂÒËflı). PAG = | {1 ≤ i ≤ n :| {xi , yi} = {A, G}} | (ÓÚÌÓÒËÚÂθÌÓ ˜ËÒÎÓ n 1 ڇ̇ÁˈËÈ ‚ ÔÛË̇ı) Ë PTC = | {1 ≤ i ≤ n :| {xi , yi} = {T , C}} | (ÓÚÌÓÒËÚÂθÌÓ ˜ËÒÎÓ n Ú‡ÌÁˈËÈ ‚ ÔˇÏˉË̇ı). PRY =
åÂÚË͇ „˷ˉËÁ‡ˆËË É‡ÒÓ̇ Ë ‰. H-χ ÏÂÊ‰Û ‰‚ÛÏfl n-ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË Ñçä ı Ë Û ÓÔ‰ÂÎflÂÚÒfl Í‡Í H ( x, y) = min
−n≤ k ≤ n
∑ 1x ≠ y i
∗ i=k
,
„‰Â Ë̉ÂÍÒ˚ i + k ‚ÁflÚ˚ ÔÓ ÏÓ‰Ûβ n , ‡ y* – ‚ÂÒËfl Û Ò ÔÓÒÎÂ‰Û˛˘ÂÈ ÍÓÏÔÎÂÏÂÌÚ‡ˆËÂÈ Ç‡ÚÒÓ̇–äË͇, Ú.Â. Ó·ÏÂÌÓÏ ÏÂÒÚ‡ÏË ‚ÒÂı A, T, G, C Ë T, A, C, G ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. Ñçä-ÍÛ· – β·Ó χÍÒËχθÌÓ ÏÌÓÊÂÒÚ‚Ó n-ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ Ñçä, ‚ ÍÓÚÓÓÏ ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë H(x , y) = 0 ‰Îfl β·˚ı ‰‚Ûı ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ. åÂÚË͇ „˷ˉËÁ‡ˆËË É‡ÒÓ̇ Ë ‰. ÏÂÊ‰Û Ñçä-ÍÛ·‡ÏË A Ë B ÓÔ‰ÂÎflÂÚÒfl Í‡Í min H ( x, y).
x ∈A, y ∈B
339
É·‚‡ 23. ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
23.3. êÄëëíéüçàü Ñãü ÑÄççõï é ÅÖãäÄï ÅÂÎÍÓ‚‡fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ (ËÎË Ô‚˘̇fl ·ÂÎÍÓ‚‡fl ÒÚÛÍÚÛ‡) ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ x = (x 1 , ..., xn) ̇‰ 20-·ÛÍ‚ÂÌÌ˚Ï ‡ÎÙ‡‚ËÚÓÏ ËÁ n
20 ‚ˉӂ ‡ÏËÌÓÍËÒÎÓÚ; ∑ Ó·ÓÁ̇˜‡ÂÚ
∑. i =1
ëÛ˘ÂÒÚ‚ÛÂÚ ÌÂÒÍÓθÍÓ ÔÓÌflÚËÈ ÔÓ‰Ó·ÌÓÒÚË/‡ÒÒÚÓflÌËfl ̇ ÏÌÓÊÂÒÚ‚Â 20 ‚ˉӂ ‡ÏËÌÓÍËÒÎÓÚ, ÍÓÚÓ˚ ÓÒÌÓ‚˚‚‡˛ÚÒfl, ̇ÔËÏÂ, ̇ ı‡‡ÍÚÂËÒÚË͇ı „ˉÓÙËθÌÓÒÚË, ÔÓÎflÌÓÒÚË, Á‡fl‰Â, ÙÓÏÂ Ë Ú.Ô. ç‡Ë·ÓΠ‚‡ÊÌÓÈ fl‚ÎflÂÚÒfl 20 × 20 χÚˈ‡ êÄå250 ÑÂÈıÓÙÙ, ÍÓÚÓ‡fl ‚˚‡Ê‡ÂÚ ÓÚÌÓÒËÚÂθÌÛ˛ ÏÛÚ‡·ÂθÌÓÒÚ¸ 20 ‚ˉӂ ‡ÏËÌÓÍËÒÎÓÚ. ê‡ÒÒÚÓflÌË êÄå ê‡ÒÒÚÓflÌË êÄå (ËÎË ‡ÒÒÚÓflÌË ÑÂÈıÓÙÙ–ùÍ͇, ‚Â΢Ë̇ êÄå) ÏÂÊ‰Û ·ÂÎÍÓ‚˚ÏË ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÏËÌËχθÌÓ ˜ËÒÎÓ ÔËÌflÚ˚ı (Ú.Â. ÛÒÚ‡‚¯ËıÒfl) ÚӘ˜Ì˚ı ÏÛÚ‡ˆËÈ Ì‡ 100 ‚ˉӂ ‡ÏËÌÓÍËÒÎÓÚ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl Ó‰ÌÓ„Ó ·ÂÎ͇ ‚ ‰Û„ÓÈ. 1 êÄå – ‰ËÌˈ‡ ˝‚ÓβˆËË; Ó̇ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ó‰ÌÓÈ ÚӘ˜ÌÓÈ ÏÛÚ‡ˆËË Ì‡ 100 ‡ÏËÌÓÍËÒÎÓÚ. êÄå Á̇˜ÂÌËfl 80, 100, 200, 250 ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú ‡ÒÒÚÓflÌ˲ (‚ ÔÓˆÂÌÚ‡ı) 50, 60, 75, 92 ÏÂÊ‰Û ·ÂÎ͇ÏË. óËÒÎÓ ·ÂÎÍÓ‚˚ı ‡Á΢ËÈ óËÒÎÓ ·ÂÎÍÓ‚˚ı ‡Á΢ËÈ – ÔÓÒÚÓ ÏÂÚË͇ ï˝ÏÏËÌ„‡ ÏÂÊ‰Û ·ÂÎÍÓ‚˚ÏË ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË:
∑ 1x ≠ y . i
i
ÄÏËÌÓ -‡ÒÒÚÓflÌË ÄÏËÌÓ -‡ÒÒÚÓflÌË (ËÎË ÌÂÒÍÓÂÍÚËÓ‚‡ÌÌÓ ‡ÒÒÚÓflÌËÂ) dp ÏÂÊ‰Û ·ÂÎÍÓ‚˚ÏË ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑ 1x ≠ y i
n
i
.
ÄÏËÌÓ ‡ÒÒÚÓflÌË ÍÓÂ͈ËË èÛ‡ÒÒÓ̇ ÄÏËÌÓ ‡ÒÒÚÓflÌË ÍÓÂ͈ËË èÛ‡ÒÒÓ̇ ÏÂÊ‰Û ·ÂÎÍÓ‚˚ÏË ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl Ò ÔÓÏÓ˘¸˛ ‡ÏËÌÓ -‡ÒÒÚÓflÌËfl dp Í‡Í –ln(1 – dp (x, y)). ÄÏËÌÓ ␥-‡ÒÒÚÓflÌË ÄÏËÌÓ ␥-‡ÒÒÚÓflÌË (ËÎË ÍÓÂ͈Ëfl γ-‡ÒÒÚÓflÌËfl èÛ‡ÒÒÓ̇) ÏÂÊ‰Û ·ÂÎÍÓ‚˚ÏË ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl Ò ÔÓÏÓ˘¸˛ ‡ÏËÌÓ -‡ÒÒÚÓflÌËfl dp Í‡Í a((1 − d p ( x, y)) −1 / a − 1), „‰Â ÒÍÓÓÒÚ¸ Á‡Ï¢ÂÌËfl ‚‡¸ËÛÂÚÒfl Ò i = 1, ..., n ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò γ-‡ÒÔ‰ÂÎÂÌËÂÏ Ë a fl‚ÎflÂÚÒfl Ô‡‡ÏÂÚÓÏ, ÓÔËÒ˚‚‡˛˘Ëı ÙÓÏÛ ‡ÒÔ‰ÂÎÂÌËfl. ÑÎfl a = 2,25 Ë a = 0,65 ÔÓÎÛ˜‡ÂÏ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌËfl ÑÂÈıÓÙÙ Ë É˯Ë̇. Ç ÌÂÍÓÚÓ˚ı ÔËÎÓÊÂÌËflı ˝ÚÓ ‡ÒÒÚÓflÌËÂ Ò a = 2,25 ̇Á˚‚‡ÂÚÒfl ÔÓÒÚÓ ‡ÒÒÚÓflÌËÂÏ ÑÂÈıÓÙÙ.
340
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ÅÂÎÍÓ‚Ó ‡ÒÒÚÓflÌË ÑÊÛÍÂÒ‡–ä‡ÌÚÓ‡ ÅÂÎÍÓ‚Ó ‡ÒÒÚÓflÌË ÑÊÛÍÂÒ‡–ä‡ÌÚÓ‡ ÏÂÊ‰Û ·ÂÎÍÓ‚˚ÏË ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl Ò ÔÓÏÓ˘¸˛ ‡ÏËÌÓ -‡ÒÒÚÓflÌËfl dp Í‡Í −
19 20 ln 1 − d p ( x, y) . 20 19
ÅÂÎÍÓ‚Ó ‡ÒÒÚÓflÌË äËÏÛ˚ ÅÂÎÍÓ‚Ó ‡ÒÒÚÓflÌË äËÏÛ˚ ÏÂÊ‰Û ·ÂÎÍÓ‚˚ÏË ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl Ò ÔÓÏÓ˘¸˛ ‡ÏËÌÓ -‡ÒÒÚÓflÌËfl dp Í‡Í d p2 ( x, y) − ln1 − d p ( x, y) − . 5 ê‡ÒÒÚÓflÌË É˯Ë̇ ê‡ÒÒÚÓflÌË É˯Ë̇ d ÏÂÊ‰Û ·ÂÎÍÓ‚˚ÏË ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ÓÔ‰ÂÎflÂÚÒfl Ò ÔÓÏÓ˘¸˛ ‡ÏËÌÓ -‡ÒÒÚÓflÌËfl dp ÔÓ ÙÓÏÛΠln(1 + 2 d ( x, y)) = 1 − d p ( x, y). 2 d ( x, y) ê‡ÒÒÚÓflÌË k-χ ù‰„‡‡ ê‡ÒÒÚÓflÌË k-χ ù‰„‡‡ ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË x = (x1, ..., x m) Ë y = (y 1 , ..., yn) ̇‰ ÒʇÚ˚Ï ‡ÏËÌÓÍËÒÎÓÚÌ˚Ï ‡ÎÙ‡‚ËÚÓÏ ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑
min{x ( a), y( a)} 1 ln + a , 10 min{m, n} − k + 1 „‰Â a – β·ÓÈ k-Ï (ÒÎÓ‚Ó ‰ÎËÌ˚ k ̇‰ ‚˚¯ÂÛ͇Á‡ÌÌ˚Ï ‡ÎÙ‡‚ËÚÓÏ), ÔË ˝ÚÓÏ ı(‡) Ë Û(‡) fl‚Îfl˛ÚÒfl ÍÓ΢ÂÒÚ‚ÓÏ ÔÓfl‚ÎÂÌËÈ ‡ ‚ ı Ë Û ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‚ ‚ˉ ·ÎÓÍÓ‚ (ÌÂÔÂ˚‚Ì˚ı ÔÓ‰ÔÓÒΉӂ‡ÚÂθÌÓÒÚÂÈ) (ÒÏ. q-„‡Ï ÔÓ‰Ó·ÌÓÒÚ¸, „Î. 11). 23.4. ÑêìÉàÖ ÅàéãéÉàóÖëäàÖ êÄëëíéüçàü ê‡ÒÒÚÓflÌË ÒÚÛÍÚÛ˚ êçä èÓÒΉӂ‡ÚÂθÌÓÒÚ¸ êçä – ÌËÚ¸ ÌÛÍÎÂÓÚˉӂ (ÓÒÌÓ‚‡ÌËÈ), Ú.Â. ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ̇‰ ‡ÎÙ‡‚ËÚÓÏ {A, C, G, U}. ÇÌÛÚË ÍÎÂÚÍË Ú‡Í‡fl ÌËÚ¸ Ò‚Ó‡˜Ë‚‡ÂÚÒfl ‚ 3D ÔÓÒÚ‡ÌÒÚ‚Â ËÁ-Á‡ ÍÓÌ˙˛„‡ˆËË ÌÛÍÎÂÓÚˉÌ˚ı ÓÒÌÓ‚‡ÌËÈ (Ó·˚˜ÌÓ ˝ÚÓ Ò‚flÁË ÚËÔ‡ A–U, G–C Ë G–U). ÇÚÓ˘̇fl ÒÚÛÍÚÛ‡ êçä fl‚ÎflÂÚÒfl, „Û·Ó „Ó‚Ófl, ÏÌÓÊÂÒÚ‚ÓÏ ÒÔˇÎÂÈ (ËÎË Ô˜ÌÂÏ ÒÔ‡ÂÌÌ˚ı ÓÒÌÓ‚‡ÌËÈ), ËÁ ÍÓÚÓ˚ı ÒÓÒÚÓËÚ êçä. ùÚÛ ÒÚÛÍÚÛÛ ÏÓÊÌÓ Ô‰ÒÚ‡‚ËÚ¸ ‚ ‚ˉ ÔÎÓÒÍÓ„Ó „‡Ù‡ Ë ‰‡Ê ÍÓÌÂ‚Ó„Ó ‰Â‚‡. íÂÚ˘̇fl ÒÚÛÍÚÛ‡ – ˝ÚÓ „ÂÓÏÂÚ˘ÂÒ͇fl ÙÓχ êçä ‚ ÔÓÒÚ‡ÌÒÚ‚Â. ê‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ‰‚ÛÏfl êçä-ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ëı ‚ÚÓ˘Ì˚ÏË ÒÚÛÍÚÛ‡ÏË. èËχÏË Ú‡ÍËı ‡ÒÒÚÓflÌËÈ êçä ÒÎÛʇÚ: ‡ÒÒÚÓflÌË ‰‡ÍÚËÓ‚‡ÌËfl ‰Â‚‡ (Ë ‰Û„Ë ‡ÒÒÚÓflÌËfl ̇ ÍÓÌ‚˚ı ‰Â‚¸flı, ÒÏ. „Î. 15) Ë ‡ÒÒÚÓflÌË ԇ˚ ÓÒÌÓ‚‡ÌËÈ, Ú.Â. ÏÂÚË͇ ÒËÏÏÂÚ˘ÂÒÍÓÈ ‡ÁÌÓÒÚË ÏÂÊ‰Û ‚ÚÓ˘Ì˚ÏË ÒÚÛÍÚÛ‡ÏË, ‡ÒÒχÚË‚‡ÂÏ˚ÏË Í‡Í ÏÌÓÊÂÒÚ‚‡ ÒÔ‡ÂÌÌ˚ı ÓÒÌÓ‚‡ÌËÈ.
341
É·‚‡ 23. ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
èË ÍÓÏÔ¸˛ÚÂÌÓÏ (in silico) ÏÓ‰ÂÎËÓ‚‡ÌËË ˝‚ÓβˆËË êçä ÔËÒÔÓÒÓ·ÎÂÌÌÓÒÚ¸ êçä-ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ı ÂÒÚ¸ ÏÂÚ˘ÂÒÍÓ ÔÂÓ·‡ÁÓ‚‡ÌË f(d(x, x T)), „‰Â f: ≥0 → ≥0 ÂÒÚ¸ ÙÛÌ͈Ëfl χүڇ·‡ Ë d(x, xT) – ÒÚÛÍÚÛÌÓ ‡ÒÒÚÓflÌË êçä ÏÂÊ‰Û ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ ı Ë ÙËÍÒËÓ‚‡ÌÌÓÈ ÍÓÌÚÓθÌÓÈ êçä-ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ x T. åÂÚË͇ ̘ÂÚÍÓ ÓÔ‰ÂÎÂÌÌÓ„Ó ÔÓÎËÌÛÍÎÂÓÚˉ‡ åÂÚËÍÓÈ Ì˜ÂÚÍÓ ÓÔ‰ÂÎÂÌÌÓ„Ó ÔÓÎËÌÛÍÎÂÓÚˉ‡ (ËÎË N T V - Ï Â Ú Ë Í Ó È) ̇Á˚‚‡ÂÚÒfl ÏÂÚË͇, Ô‰ÎÓÊÂÌ̇fl ç¸ÂÚÓ, íÓÂÒÓÏ Ë Ç‡Î¸ÍÂÁ í‡Ò‡Ì‰Â (2003) ̇ 12-ÏÂÌÓÏ Â‰ËÌ˘ÌÓÏ ÍÛ·Â I12. óÂÚ˚ ÌÛÍÎÂÓÚˉ‡ U, C, A Ë G ‡ÎÙ‡‚ËÚ‡ êçä ·˚ÎË ÍÓ‰ËÓ‚‡Ì˚ Í‡Í (1,0,0,0), (0,1,0,0), (0,0,1,0) Ë (0,0,0,1) ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ÇÒ 64 ‚ÓÁÏÓÊÌ˚ ÍÓ‰ÓÌÌ˚ ÚÓÈÍË „ÂÌÂÚ˘ÂÒÍÓ„Ó ÍÓ‰‡ ÏÓÊÌÓ Ò˜ËÚ‡Ú¸ ‚¯Ë̇ÏË ÍÛ·‡ I 12. ëΉӂ‡ÚÂθÌÓ, β·Û˛ ÚÓ˜ÍÛ (x1, ..., x 12 ) ∈ I 12 ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í Ì˜ÂÚÍÓ ÓÔ‰ÂÎÂÌÌ˚È ÍÓ‰ÓÌ, ͇ʉ‡fl ÍÓÏÔÓÌÂÌÚ‡ x i ÍÓÚÓÓ„Ó ‚˚‡Ê‡ÂÚ ÒÚÂÔÂ̸ ÔË̇‰ÎÂÊÌÓÒÚË ˝ÎÂÏÂÌÚ‡ i, 1 ≤ i ≤ 12, ̘ÂÚÍÓ ÓÔ‰ÂÎÂÌÌÓÏÛ ÏÌÓÊÂÒÚ‚Û ı. ǯËÌ˚ ÍÛ·‡ ̇Á˚‚‡˛ÚÒfl ˜ÂÚÍËÏË ÏÌÓÊÂÒÚ‚‡ÏË. NTV-ÏÂÚË͇ ÏÂÊ‰Û ‡Á΢Ì˚ÏË ÚӘ͇ÏË x, y ∈ I12 ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑ | xi − yi | . ∑ max{xi , yi}
1≤ i ≤12 1≤ i ≤12
∑
ÑÂÒÒ Ë ãÓÍÓÚ ‰Ó͇Á‡ÎË, ˜ÚÓ
| xi − yi |
1≤ i ≤ n
∑
max{| xi |,| yi |}
fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Ì‡ ‚ÒÂÏ n.
1≤ i ≤ n
ç‡
n ≥0
‰‡Ì̇fl ÏÂÚË͇ ‡‚̇ 1 – s(x, y ), „‰Â s( x, y) =
∑ ∑
min{xi , yi}
1≤ i ≤ n
max{xi , yi}
fl‚ÎflÂÚÒfl
1≤ i ≤ n
ÔÓ‰Ó·ÌÓÒÚ¸˛ êÛÊ˘ÍË (ÒÏ. „Î. 17). ê‡ÒÒÚÓflÌËfl ÔÂÂÒÚÓÈÍË „ÂÌÓχ ÉÂÌÓÏ˚ Ó‰ÒÚ‚ÂÌÌ˚ı Ó‰ÌÓıÓÏÓÒÓÏÌ˚ı ‚ˉӂ ËÎË Ó‰ÌÓıÓÏÓÒÓÏÌ˚ı Ó„‡ÌÂÎÎ (Ú‡ÍËı Í‡Í ÏÂÎÍË ‚ËÛÒ˚ Ë ÏËÚÓıÓ̉ËË) Ô‰ÒÚ‡‚ÎÂÌ˚ ÔÓfl‰ÍÓÏ „ÂÌÓ‚ ‚‰Óθ ıÓÏÓÒÓÏ, Ú.Â. Í‡Í ÔÂÂÒÚ‡ÌÓ‚ÍË (ËÎË ‡ÌÊËÓ‚‡ÌËfl) ‰‡ÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ n „ÓÏÓÎӄ˘Ì˚ı „ÂÌÓ‚. ÖÒÎË ÔËÌflÚ¸ ‚Ó ‚ÌËχÌË ÓËÂÌÚËÓ‚‡ÌÌÓÒÚ¸ „ÂÌÓ‚, ÚÓ ıÓÏÓÒÓÏÛ ÏÓÊÌÓ ÓÔËÒ‡Ú¸ Í‡Í ÔÂÂÒÚ‡ÌÓ‚ÍÛ ÒÓ Á̇ÍÓÏ, Ú.Â. Í‡Í ‚ÂÍÚÓ x = (x1, ..., x n ), „‰Â | x i | – ‡Á΢Ì˚ ˜ËÒ· 1, …, n Ë Î˛·ÓÈ ˝ÎÂÏÂÌÚ x i ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÓÊËÚÂθÌ˚Ï ËÎË ÓÚˈ‡ÚÂθÌ˚Ï. äÓθˆÂ‚˚ „ÂÌÓÏ˚ Ô‰ÒÚ‡‚ÎÂÌ˚ ÍÓθˆÂ‚˚ÏË (ÒÓ Á̇ÍÓÏ) ÔÂÂÒÚ‡Ìӂ͇ÏË x = (x1, ..., xn), „‰Â xn+1 = x1 Ë Ú.‰. ÑÎfl ÏÌÓÊÂÒÚ‚‡ ‡ÒÒχÚË‚‡ÂÏ˚ı ‰‚ËÊÂÌËÈ ÏÛÚ‡ˆËË ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Â „ÂÌÓÏÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl Ú‡ÍËÏË „ÂÌÓχÏË ÂÒÚ¸ ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl (ÒÏ. „Î. 11), „‰Â ÓÔ‡ˆËflÏË Â‰‡ÍÚËÓ‚‡ÌËfl ‚˚ÒÚÛÔ‡˛Ú ˝ÚË ‰‚ËÊÂÌËfl ÏÛÚ‡ˆËË, Ú.Â. ÏËÌËχθÌÓ ÍÓ΢ÂÒÚ‚Ó ‰‚ËÊÂÌËÈ (ıÓ‰Ó‚) ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl Ó‰ÌÓÈ ÔÂÂÒÚ‡ÌÓ‚ÍË (ÒÓ Á̇ÍÓÏ) ‚ ‰Û„Û˛. Ç ‰ÓÔÓÎÌÂÌË (‡ Ó·˚˜ÌÓ Ë ‚ÏÂÒÚÓ) ÒÓ·˚ÚËÈ ÎÓ͇θÌÓÈ ÏÛÚ‡ˆËË, Ú‡ÍËı Í‡Í ‚ÒÚ‡‚͇/Û‰‡ÎÂÌË ·ÛÍ‚ ËÎË Á‡Ï¢ÂÌËfl ÒËÏ‚ÓÎÓ‚ ‚ Ñçä-ÔÓÒΉӂ‡ÚÂθÌÓÒÚË, ‡ÒÒχÚË‚‡˛ÚÒfl ·Óθ¯Ë (Ú.Â. Á‡Ú‡„Ë‚‡˛˘Ë Á̇˜ËÚÂθÌÛ˛ ˜‡ÒÚ¸ ıÓÏÓÒÓÏ˚)
342
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ÏÛÚ‡ˆËË Ë ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ÏÂÚËÍË „ÂÌÓÏÌÓ„Ó Â‰‡ÍÚËÓ‚‡ÌËfl ̇Á˚‚‡˛ÚÒfl ‡ÒÒÚÓflÌËflÏË ÔÂÂÒÚÓÈÍË „ÂÌÓÏÓ‚. àÁ-Á‡ ‰ÍÓÒÚË Ú‡ÍËı ÔÂÂÒÚÓ˜Ì˚ı ÏÛÚ‡ˆËÈ ˝ÚË ‡ÒÒÚÓflÌËfl ÚӘ̠ӈÂÌË‚‡˛ÚÒfl ËÒÚËÌÌ˚ ‡ÒÒÚÓflÌËfl „ÂÌÓÏÌÓÈ ˝‚ÓβˆËË. éÒÌӂ̇fl ÂÓ„‡ÌËÁ‡ˆËfl „ÂÌÓÏÓ‚ (ıÓÏÓÒÓÏ) ÓÒÛ˘ÂÒÚ‚ÎflÂÚÒfl ÔÓÒ‰ÒÚ‚ÓÏ ËÌ‚ÂÒËÈ (Ó·‡˘ÂÌËÈ ·ÎÓÍÓ‚), Ú‡ÌÒÔÓÁˈËÈ (Ó·ÏÂ̇ ÏÂÒÚ‡ÏË ‰‚Ûı ÒÓÒ‰ÌËı ·ÎÓÍÓ‚) ‚ ÔÂÂÒÚ‡ÌÓ‚ÍÂ, ‡ Ú‡ÍÊ ËÌ‚ÂÚËÓ‚‡ÌÌÓÈ Ú‡ÌÒÔÓÁˈËË (ËÌ‚ÂÒËË ‚ ÒÓ˜ÂÚ‡ÌËË Ò Ú‡ÌÒÔÓÁˈËÂÈ) Ë Â‚ÂÒËÈ ÒÓ Á̇ÍÓÏ, ÌÓ ÚÓθÍÓ ‰Îfl ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÒÓ Á̇ÍÓÏ (‚ÂÒËfl ÒÓ Á̇ÍÓÏ ‚ ÒÓ˜ÂÚ‡ÌËË Ò ËÌ‚ÂÒËÂÈ). éÒÌÓ‚Ì˚ÏË ‡ÒÒÚÓflÌËflÏË ÔÂÂÒÚÓÈÍË „ÂÌÓÏÓ‚ ÏÂÊ‰Û ‰‚ÛÏfl Ó‰ÌÓıÓÏÓÒÓÏÌ˚ÏË „ÂÌÓχÏË fl‚Îfl˛ÚÒfl: – ÏÂÚË͇ ‚ÂÒËË Ë ÏÂÚË͇ ‚ÂÒËË ÒÓ Á̇ÍÓÏ (ÒÏ. „Î. 11); – ‡ÒÒÚÓflÌË ڇÌÒÔÓÁˈËË: ÏËÌËχθÌÓ ˜ËÒÎÓ Ú‡ÌÒÔÓÁˈËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl (Ô‰ÒÚ‡‚Îfl˛˘ÂÈ ÔÂÂÒÚ‡ÌÓ‚ÍË) Ó‰ÌÓ„Ó ËÁ ÌËı ‚ ‰Û„ÓÈ; – ITT-‡ÒÒÚÓflÌËÂ: ÏËÌËχθÌÓ ÍÓ΢ÂÒÚ‚Ó ËÌ‚ÂÒËÈ, Ú‡ÌÒÔÓÁˈËÈ Ë ËÌ‚ÂÚËÓ‚‡ÌÌ˚ı Ú‡ÌÒÔÓÁˈËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl Ó‰ÌÓ„Ó ËÁ ÌËı ‚ ‰Û„ÓÈ. ÑÎfl ‰‚Ûı ÍÓθˆÂ‚˚ı ÔÂÂÒÚ‡ÌÓ‚ÓÍ ÒÓ Á̇ÍÓÏ x = (x1, ..., x n ) Ë y = (y 1 , ..., y n ) (ÒΉӂ‡ÚÂθÌÓ, x n+1 = x1 Ë Ú.‰.) ÚӘ˜Ì˚È ‡Á˚‚ – Ú‡ÍÓ ˜ËÒÎÓ i, 1 ≤ i ≤ n, ˜ÚÓ y n+1 ≠ xj(i)+1, „‰Â ˜ËÒÎÓ j(i), 1 ≤ j(i) ≤ n, ÓÔ‰ÂÎflÂÚÒfl ËÁ ‡‚ÂÌÒÚ‚‡ y i = xj(i) . ê‡ÒÒÚÓflÌË ÚӘ˜ÌÓ„Ó ‡Á˚‚‡ (ìÓÚÂÒÓÌ–à‚ÂÌÒ–ïÓÎΖåÓ„‡Ì, 1982) ÏÂÊ‰Û „ÂÌÓχÏË, Ô‰ÒÚ‡‚ÎÂÌÌ˚ÏË Í‡Í ı Ë Û , ‡‚ÌÓ ˜ËÒÎÛ ÚӘ˜Ì˚ı ‡Á˚‚Ó‚. ùÚÓ ‡ÒÒÚÓflÌËÂ Ë ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl ÔÂÂÒÚ‡ÌÓ‚ÓÍ (ÏÂÚË͇ ì·χ, „Î. 11: ÏËÌËχθÌÓ ÌÂÓ·ıÓ‰ËÏÓ ÍÓ΢ÂÒÚ‚Ó ÔÂÂÏ¢ÂÌËÈ ·ÛÍ‚, Ú.Â. Ó‰ÌÓ·ÛÍ‚ÂÌÌ˚ı Ú‡ÌÒÔÓÁˈËÈ) ÔËÏÂÌfl˛ÚÒfl ‰Îfl ‡ÔÔÓÍÒËχˆËË ‡ÒÒÚÓflÌËÈ ÔÂÂÒÚÓÈÍË „ÂÌÓÏÓ‚. ëËÌÚÂÌ˘ÌÓ ‡ÒÒÚÓflÌË ùÚÓ „ÂÌÓÏÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÌÓ„ÓıÓÏÓÒÓÏÌ˚ÏË „ÂÌÓχÏË, ÍÓÚÓ˚ ‡ÒÒχÚË‚‡˛ÚÒfl Í‡Í ÌÂÛÔÓfl‰Ó˜ÂÌÌ˚ ̇·Ó˚ ÒËÌÚÂÌ˘Ì˚ı „ÛÔÔ „ÂÌÓ‚, ‚ ÍÓÚÓ˚ı ‰‚‡ „Â̇ ÒËÌÚÂÌ˘Ì˚, ÂÒÎË ÔËÒÛÚÒÚ‚Û˛Ú ‚ Ó‰ÌÓÈ Ë ÚÓÈ Ê ıÓÏÓÒÓÏÂ. ëËÌÚÂÌ˘ÌÓ ‡ÒÒÚÓflÌË (îÂÂÚÚ˖燉¸˛–ë‡ÌÍÓÙÙ, 1996) ÏÂÊ‰Û ‰‚ÛÏfl Ú‡ÍËÏË „ÂÌÓχÏË fl‚ÎflÂÚÒfl ÏËÌËχθÌ˚Ï ˜ËÒÎÓÏ ÏÛÚ‡ˆËÓÌÌ˚ı ıÓ‰Ó‚ – Ú‡ÌÒÎÓ͇ˆËÈ (Ó·ÏÂÌ „Â̇ÏË ÏÂÊ‰Û ‰‚ÛÏfl ıÓÏÓÒÓχÏË), Ó·˙‰ËÌÂÌËÈ (ÒÎËflÌËfl ‰‚Ûı ıÓÏÓÒÓÏ ‚ Ó‰ÌÛ) Ë Ù‡„ÏÂÌÚ‡ˆËÈ (‡Ò˘ÂÔÎÂÌË ӉÌÓÈ ıÓÏÓÒÓÏ˚ ̇ ‰‚Â) – ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl Ó‰ÌÓ„Ó „ÂÌÓχ ‚ ‰Û„ÓÈ. ÇÒ (‚ıÓ‰fl˘ËÂ Ë ‚˚ıÓ‰fl˘ËÂ) ıÓÏÓÒÓÏ˚ ˝ÚËı ÏÛÚ‡ˆËÈ ‰ÓÎÊÌ˚ ·˚Ú¸ ÌÂÔÛÒÚ˚ÏË Ë Ì ‰ÛÔÎˈËÓ‚‡ÌÌ˚ÏË. Ç˚¯ÂÔ˂‰ÂÌÌ˚ ÚË ÏÛÚ‡ˆËÓÌÌ˚ı ıÓ‰‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú ÏÂÊıÓÏÓÒÓÏÌ˚Ï ÔÂÂÒÚÓÈÍ‡Ï „ÂÌÓχ, ÍÓÚÓ˚ ‚ÒÚ˜‡˛ÚÒfl „Ó‡Á‰Ó ÂÊÂ, ˜ÂÏ ‚ÌÛÚËıÓÏÓÒÓÏÌ˚Â; ÒΉӂ‡ÚÂθÌÓ, ÓÌË ‰‡˛Ú Ì‡Ï ·ÓΠ„ÎÛ·ÓÍÛ˛ ËÌÙÓχˆË˛ Ó· ËÒÚÓËË ˝‚ÓβˆËÓÌÌÓ„Ó ‡Á‚ËÚËfl. ê‡ÒÒÚÓflÌË „ÂÌÓχ ê‡ÒÒÚÓflÌË „ÂÌÓχ ÏÂÊ‰Û ‰‚ÛÏfl ÎÓÍÛÒ‡ÏË Ì‡ ıÓÏÓÒÓÏ fl‚ÎflÂÚÒfl ˜ËÒÎÓÏ Ô‡ ÓÒÌÓ‚‡ÌËÈ, ‡Á‰ÂÎfl˛˘Ëı Ëı ̇ ıÓÏÓÒÓÏÂ. ê‡ÒÒÚÓflÌË ̇ „ÂÌÂÚ˘ÂÒÍÓÈ Í‡Ú ê‡ÒÒÚÓflÌË ̇ „ÂÌÂÚ˘ÂÒÍÓÈ Í‡Ú ÏÂÊ‰Û ‰‚ÛÏfl ÎÓÍÛÒ‡ÏË Ì‡ „ÂÌÂÚ˘ÂÒÍÓÈ Í‡Ú – ˜‡ÒÚÓÚ‡ ÂÍÓÏ·Ë̇ˆËÈ, ‚˚‡ÊÂÌ̇fl ‚ ÔÓˆÂÌÚ‡ı; ÓÌÓ ËÁÏÂflÂÚÒfl ‚ Ò‡ÌÚËÏÓ„‡Ì‡ı Òå (ËÎË Â‰ËÌˈ‡ı „ÂÌÂÚ˘ÂÒÍÓÈ Í‡Ú˚), „‰Â 1 Òå ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ëı ÒÚ‡ÚËÒÚ˘ÂÒÍË ÓÚÍÓÂÍÚËÓ‚‡ÌÌÓÈ ˜‡ÒÚÓÚ ÂÍÓÏ·Ë̇ˆËË 1%. é·˚˜ÌÓ ‡ÒÒÚÓflÌË ̇ „ÂÌÂÚ˘ÂÒÍÓÈ Í‡Ú ‚ 1 Òå (ÔÓ „ÂÌÂÚ˘ÂÒÍÓÈ ¯Í‡ÎÂ) ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡ÒÒÚÓflÌ˲ „ÂÌÓχ (ÔÓ ÙËÁ˘ÂÒÍÓÈ ¯Í‡ÎÂ) ÔÓfl‰Í‡ Ó‰ÌÓÈ Ï„‡·‡Á˚ (ÏËÎÎËÓÌ Ô‡Ì˚ı ÓÒÌÓ‚‡ÌËÈ).
É·‚‡ 23. ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
343
åÂÚ‡·Ó΢ÂÒÍÓ ‡ÒÒÚÓflÌË åÂÚ‡·Ó΢ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ (ËÎË ‡ÒÒÚÓflÌËÂÏ ÔÂÂıÓ‰‡) ÏÂÊ‰Û ˝ÌÁËχÏË Ì‡Á˚‚‡ÂÚÒfl ÏËÌËχθÌÓ ˜ËÒÎÓ ÏÂÚ‡·Ó΢ÂÒÍËı ÒÚ‡‰ËÈ, ‡Á‰ÂÎfl˛˘Ëı ‰‚‡ ˝ÌÁËχ ‚ ÏÂÚ‡·Ó΢ÂÒÍËı ÔÂÂıÓ‰‡ı. ê‡ÒÒÚÓflÌË ÉẨÓ̇ Ë ‰. ê‡ÒÒÚÓflÌË ÉẨÓ̇ Ë ‰. ÏÂÊ‰Û ‰‚ÛÏfl ‚Á‡ËÏÓ‰ÂÈÒÚ‚Û˛˘ËÏË ÓÒÌÓ‚‡ÌËflÏË, Ô‰ÒÚ‡‚ÎÂÌÌ˚ÏË 4 × 4 χÚˈ‡ÏË Ó‰ÌÓÓ‰ÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl X Ë Y , ÓÔ‰ÂÎflÂÚÒfl Í‡Í S( XY −1 ) + S( X −1Y ) , 2 „‰Â S( M ) = l 2 + (θ / α )2 , l – ‰ÎË̇ Ú‡ÌÒÎflˆËË, θ – Û„ÓÎ ‚‡˘ÂÌËfl Ë α – ÍÓ˝ÙÙˈËÂÌÚ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl ÏÂÊ‰Û Ú‡ÌÒÎflˆËÂÈ Ë ‚‡˘ÂÌËÂÏ. ê‡ÒÒÚÓflÌË ·ËÓÚÓÔ‡ ÅËÓÚÓÔ˚ Á‰ÂÒ¸ Ô‰ÒÚ‡‚ÎÂÌ˚ Í‡Í ·Ë̇Ì˚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË x = (x1, ..., xn), „‰Â xi = 1 ÓÁ̇˜‡ÂÚ ÔËÒÛÚÒÚ‚Ë ‚ˉ‡ i. ê‡ÒÒÚÓflÌË ·ËÓÚÓÔ‡ (ËÎË ‡ÒÒÚÓflÌË í‡ÌËÏÓÚÓ) ÏÂÊ‰Û ·ËÓÚÓÔ‡ÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl Í‡Í | {1 ≤ i ≤ n : xi ≠ yi} | . | {1 ≤ i ≤ n : xi + yi > 0} | ê‡ÒÒÚÓflÌË ÇËÍÚÓ‡–èÛÔÛ‡ èÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ‚ÒÔÎÂÒÍÓ‚ x Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ‚ÂÏÂÌÌÛ˛ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ (x1, ..., x n ) n ÒÓ·˚ÚËÈ (̇ÔËÏÂ, ÌÂÈÓÌÌ˚ı ‚ÒÔÎÂÒÍÓ‚ ËÎË ·ËÂÌËÈ Ò‰ˆ‡). ÇÂÏÂÌ̇fl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÓڇʇÂÚ ÎË·Ó ‡·ÒÓβÚÌ˚ ‚ÂÏÂÌÌ˚ ‰‡ÌÌ˚ ‚ÒÔÎÂÒÍÓ‚ ÎË·Ó ‚ÂÏÂÌÌ˚ ËÌÚ‚‡Î˚ ÏÂÊ‰Û ÌËÏË. åÓÁ„ ˜ÂÎÓ‚Â͇ ËÏÂÂÚ ÓÍÓÎÓ 100 ÏΉ ÌÂÈÓÌÓ‚ (Ì‚Ì˚ı ÍÎÂÚÓÍ). çÂÈÓÌ Â‡„ËÛÂÚ Ì‡ ‚ÓÁ‰ÂÈÒÚ‚Ë ÚÂÏ, ˜ÚÓ „ÂÌÂËÛÂÚ ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ‚ÒÔÎÂÒÍÓ‚, fl‚Îfl˛˘Û˛Òfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸˛ ÍÓÓÚÍËı ˝ÎÂÍÚ˘ÂÒÍËı ËÏÔÛθÒÓ‚. ê‡ÒÒÚÓflÌË ÇËÍÚÓ‡–èÛÔÛ‡ ÏÂÊ‰Û ‰‚ÛÏfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚflÏË ‚ÒÔÎÂÒÍÓ‚ ı Ë Û – ÏÂÚË͇ ‰‡ÍÚËÓ‚‡ÌËfl Ò ˆÂÌÓÈ (Ú.Â. ÏËÌËχθ̇fl ˆÂ̇ ÔÂÓ·‡ÁÓ‚‡ÌËfl ı ‚ Û), Ò ÔËÏÂÌÂÌËÂÏ ÒÎÂ‰Û˛˘Ëı ÓÔ‡ˆËÈ (Ë ÒÓÔÛÚÒÚ‚Û˛˘Ëı ËÏ ˆÂÌ): ‚ÒÚ‡‚ËÚ¸ ‚ÒÔÎÂÒÍ (ˆÂ̇ 1), Û‰‡ÎËÚ¸ ‚ÒÔÎÂÒÍ (ˆÂ̇ 1), ÒÏÂÒÚËÚ¸ ‚ÒÔÎÂÒÍ Ì‡ ‚Â΢ËÌÛ ‚ÂÏÂÌË t (ˆÂ̇ qt, „‰Â q > 0 – Ô‡‡ÏÂÚ). ÇËÍÚÓ Ë èÛÔÛ‡ Ô‰ÎÓÊËÎË ˝ÚÓ ‡ÒÒÚÓflÌË ‚ 1996 „.; ̘ÂÚÍÓ ı˝ÏÏËÌ„Ó‚Ó ‡ÒÒÚÓflÌË (ÒÏ. „Î. 11), ‚‚‰ÂÌÌÓ ‚ 2001 „., ËÒÔÓθÁÛÂÚ ˆÂÌÓ‚Û˛ ÙÛÌÍˆË˛ ÔÂÂÏ¢ÂÌËÈ, ÒÓı‡Ìfl˛˘Û˛ ̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇. ÑÎfl Ò‡‚ÌÂÌËfl ‡͈ËË ÔÓÔÛÎflˆËË ÌÂÈÓÌÓ‚ ̇ ‰‚‡ ‡Á΢Ì˚ı ÒÚËÏÛ· ÔËÏÂÌflÂÚÒfl ‡ÒÒÚÓflÌË óÂÌÓ‚‡ ÏÂÊ‰Û ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ‡ÒÔ‰ÂÎÂÌËflÏË ‚ÒÔÎÂÒÍÓ‚. ê‡ÒÒÚÓflÌË ‚ÓÒÔËflÚËfl éÎË‚˚ Ë ‰. èÛÒÚ¸ {s1 , ..., sn} – ÏÌÓÊÂÒÚ‚Ó ÒÚËÏÛÎÓ‚ Ë ÔÛÒÚ¸ qij – ÛÒÎӂ̇fl ‚ÂÓflÚÌÓÒÚ¸ ÚÓ„Ó, ˜ÚÓ Ó·˙ÂÍÚ ‚ÓÒÔËÏÂÚ ÒÚËÏÛÎ sj, ÍÓ„‰‡ ·Û‰ÂÚ ÔÓ‰ÂÏÓÌÒÚËÓ‚‡Ì ÒÚËÏÛÎ si; n
ÒΉӂ‡ÚÂθÌÓ, qij ≥ 0 Ë
∑ qij = 1. èÛÒÚ¸ qi – ‚ÂÓflÚÌÓÒÚ¸ ÔÓfl‚ÎÂÌËfl ÒÚËÏÛ· si. j =1
344
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ê‡ÒÒÚÓflÌË ‚ÓÒÔËflÚËfl éÎË‚˚ Ë ‰. [OSLM04] ÏÂÊ‰Û ÒÚËÏÛ·ÏË si Ë s j ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1 qi + q j
n
∑
k =1
qik q jk . − qi qj
ÉËÔÓÚÂÁ‡ ‚ÂÓflÚÌÓÒÚË ‡ÒÒÚÓflÌËfl Ç ÔÒËıÓÙËÁËÍ „ËÔÓÚÂÁ‡ ‚ÂÓflÚÌÓÒÚÌË ‡ÒÒÚÓflÌËfl Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ „ËÔÓÚÂÁÛ Ó ÚÓÏ, ˜ÚÓ ‚ÂÓflÚÌÓÒÚ¸ ‡Á΢ÂÌËfl ‰‚Ûı ÒÚËÏÛÎÓ‚ ÂÒÚ¸ (ÌÂÔÂ˚‚ÌÓ ‚ÓÁ‡ÒÚ‡˛˘‡fl) ÙÛÌ͈Ëfl ÌÂÍÓÚÓÓÈ ÒÛ·˙ÂÍÚË‚ÌÓÈ Í‚‡ÁËÏÂÚËÍË ÏÂÊ‰Û ˝ÚËÏË ÒÚËÏÛ·ÏË [Dzha01]. ëӄ·ÒÌÓ ˝ÚÓÈ „ËÔÓÚÂÁ ڇ͇fl ÒÛ·˙ÂÍÚ˂̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl ÙËÌÒÎÂÓ‚ÓÈ ÏÂÚËÍÓÈ ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ Ó̇ ÒÓ‚Ô‡‰‡ÂÚ ‚ χÎÓÏ Ò ‚ÌÛÚÂÌÌÂÈ ÏÂÚËÍÓÈ (Ú.Â. ËÌÙËÏÛÏÓÏ ‰ÎËÌ ‚ÒÂı ÔÛÚÂÈ, ÒÓ‰ËÌfl˛˘Ëı ‰‚‡ ÒÚËÏÛ·). ëÛÔÛÊÂÒÍÓ ‡ÒÒÚÓflÌË ëÛÔÛÊÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÏÂÒÚ‡ÏË ÓʉÂÌËfl ÒÛÔÛ„Ó‚ (ËÎË Ëı ÁË„ÓÚ). àÁÓÎflˆËfl ‡ÒÒÚÓflÌËÂÏ àÁÓÎflˆËfl ‡ÒÒÚÓflÌËÂÏ ÂÒÚ¸ ·ËÓÎӄ˘ÂÒ͇fl ÏÓ‰Âθ, Ô‰Ò͇Á˚‚‡˛˘‡fl, ˜ÚÓ „ÂÌÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓÔÛÎflˆËflÏË Û‚Â΢˂‡ÂÚÒfl ˝ÍÒÔÓÌÂ̈ˇθÌÓ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í „ÂÓ„‡Ù˘ÂÒÍÓÏÛ ‡ÒÒÚÓflÌ˲. í‡ÍËÏ Ó·‡ÁÓÏ, ÔÓfl‚ÎÂÌË „ËÓ̇θÌ˚ı ‡Á΢ËÈ (‡Ò) Ë ÌÓ‚˚ı ‚ˉӂ Ó·˙flÒÌflÂÚÒfl Ó„‡Ì˘ÂÌÌ˚Ï ÔÓÚÓÍÓÏ „ÂÌÓ‚ Ë ‡‰‡ÔÚË‚Ì˚Ï ‚‡¸ËÓ‚‡ÌËÂÏ. ÇÓÔÓÒ ËÁÓÎflˆËË ‡ÒÒÚÓflÌËÂÏ ËÒÒΉӂ‡ÎÒfl, ‚ ˜‡ÒÚÌÓÒÚË, ̇ ÒÚÛÍÚÛ ÒÛ˘ÂÒÚ‚Û˛˘Ëı Ù‡ÏËÎËÈ (ÒÏ. ‡ÒÒÚÓflÌË ã‡Ò͇). ÑËÒڇ̈ËÓÌ̇fl ÏÓ‰Âθ å‡ÎÂÍÓÚ‡ ÑËÒڇ̈ËÓÌÌÓÈ ÏÓ‰Âθ˛ å‡ÎÂÍÓÚ‡ ̇Á˚‚‡ÂÚÒfl ÏË„‡ˆËÓÌ̇fl ÏÓ‰Âθ ËÁÓÎflˆËË ‡ÒÒÚÓflÌËÂÏ, ‚˚‡Ê‡Âχfl ÒÎÂ‰Û˛˘ËÏ Û‡‚ÌÂÌËÂÏ å‡ÎÂÍÓÚ‡ Á‡‚ËÒËÏÓÒÚË ‡ÎÎÂÎÂÈ ‚ ‰‚Ûı ÎÓÍÛÒ‡ı (‡ÎÎÂθÌÓÈ ‡ÒÒӈˇˆËË ËÎË Ì‡Û¯ÂÌÌÓ„Ó ·‡Î‡ÌÒ‡ Ò‚flÁÂÈ) ρd: ρd = (1 − L) M e εd + L. „‰Â d – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÎÓÍÛÒ‡ÏË (ÎË·Ó ‡ÒÒÚÓflÌË „ÂÌÓχ ‚ Ô‡‡ı ÓÒÌÓ‚‡ÌËÈ, ÎË·Ó ‡ÒÒÚÓflÌË ̇ „ÂÌÂÚ˘ÂÒÍÓÈ Í‡Ú ‚ Ò‡ÌÚËÏÓ„‡Ìˉ‡ı), ε – ÍÓÌÒÚ‡ÌÚ‡ ‰Îfl ‰‡ÌÌÓ„Ó Â„ËÓ̇, L = lim ρd Ë M ≤ 1 – Ô‡‡ÏÂÚ, ı‡‡ÍÚÂËÁÛ˛˘ËÈ d →0
˜‡ÒÚÓÚÛ ÏÛÚ‡ˆËÈ. ê‡ÒÒÚÓflÌË ã‡Ò͇ ê‡ÒÒÚÓflÌËÂÏ ã‡Ò͇ (êӉ˄ÂҖ㇇θ‰Â Ë ‰., 1989) ÏÂÊ‰Û ‰‚ÛÏfl ˜ÂÎӂ˜ÂÒÍËÏË ÔÓÔÛÎflˆËflÏË ı Ë Û, ı‡‡ÍÚÂËÁÛ˛˘ËÏËÒfl ‚ÂÍÚÓ‡ÏË ˜‡ÒÚÓÚ˚ Ù‡ÏËÎËÈ (x i) 1 Ë (y i), fl‚ÎflÂÚÒfl ˜ËÒÎÓ –ln 2Rx,y, „‰Â Rx , y = xi yi ÂÒÚ¸ ÍÓ˝ÙÙˈËÂÌÚ ËÁÓÌËÏËË 2 i ã‡Ò͇. î‡ÏËθ̇fl ÒÚÛÍÚÛ‡ Ò‚flÁ‡Ì‡ Ò Ë̷ˉËÌ„ÓÏ Ë (‚ ÓÔ‰ÂÎflÂÏ˚ı ÔÓ ÏÛÊÒÍÓÈ ÎËÌËË Ó·˘ÂÒÚ‚‡ı) ÒÓ ÒÎÛ˜‡ÈÌ˚Ï „ÂÌÂÚ˘ÂÒÍËÏ ‰ÂÈÙÓÏ, ÏÛÚ‡ˆËflÏË Ë ÏË„‡ˆËflÏË. î‡ÏËÎËË ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ‡ÎÎÂÎË Ó‰ÌÓ„Ó ÎÓÍÛÒ‡, Ë Ëı ‡ÒÔ‰ÂÎÂÌË ÏÓÊÂÚ ·˚Ú¸ ÔӇ̇ÎËÁËÓ‚‡ÌÓ ÔÓ ÚÂÓËË ÌÂÈڇθÌ˚ı ÏÛÚ‡ˆËÈ; ËÁÓÌËÏËfl Û͇Á˚‚‡ÂÚ Ì‡ ‚ÓÁÏÓÊÌÓÒÚ¸ Ó·˘Â„Ó ÔÓËÒıÓʉÂÌËfl.
∑
345
É·‚‡ 23. ê‡ÒÒÚÓflÌËfl ‚ ·ËÓÎÓ„ËË
åÓ‰Âθ Ù‡ÏËθÌÓ„Ó ‡ÒÒÚÓflÌËfl åÓ‰Âθ Ù‡ÏËθÌÓ„Ó ‡ÒÒÚÓflÌËfl ·˚· ÔËÏÂÌÂ̇ ‚ [COR05] ‰Îfl ÓˆÂÌÍË Ô‰‡‚‡ÂÏÓÒÚË Ô‰ÔÓ˜ÚÂÌËfl ÓÚ Ó‰ËÚÂÎÂÈ Í ‰ÂÚflÏ Ì‡ ÓÒÌÓ‚Â ‰‡ÌÌ˚ı ÔÓ 47 ÔÓ‚Ë̈ËflÏ Ï‡ÚÂËÍÓ‚ÓÈ àÒÔ‡ÌËË ÔÛÚÂÏ Ò‡‚ÌÂÌËfl 47 × 47 χÚˈ ‡ÒÒÚÓflÌËÈ Ù‡ÏËθÌÓ„Ó ‡ÒÒÚÓflÌËfl Ò Ï‡Úˈ‡ÏË ÔÓÚ·ËÚÂθÒÍÓ„Ó Ë ÍÛθÚÛÌÓ„Ó ‡ÒÒÚÓflÌËÈ. ùÚË ‡ÒÒÚÓflÌËfl ÓÔ‰ÂÎflÎËÒ¸ Í‡Í l1 -‡ÒÒÚÓflÌËfl | xi − yi | ÏÂÊ‰Û ‚ÂÍÚÓ‡ÏË
∑ i
˜‡ÒÚÓÚ˚ (x i), (y i) ÔÓ‚Ë̈ËÈ x Ë y, „‰Â zi ‰Îfl ÔÓ‚Ë̈ËË z fl‚ÎflÎÓÒ¸ ÎË·Ó ˜‡ÒÚÓÚÓÈ i-È Ù‡ÏËÎËË (Ù‡ÏËθÌÓ ‡ÒÒÚÓflÌËÂ), ÎË·Ó ‰ÓÎÂÈ ‚ ·˛‰ÊÂÚ i-„Ó ÔÓ‰ÛÍÚ‡ (ÔÓÚ·ËÚÂθÒÍÓ ‡ÒÒÚÓflÌËÂ) ÎË·Ó (‰Îfl ÍÛθÚÛÌÓ„Ó ‡ÒÒÚÓflÌËfl) ÂÈÚËÌ„ÓÏ ÒÂ‰Ë Ì‡ÒÂÎÂÌËfl i-„Ó ÍÛθÚÛÌÓ„Ó Ù‡ÍÚÓ‡ (ÍÓ˝ÙÙˈËÂÌÚ Ò‚‡‰Â·, ˜ËÚ‡ÚÂθÒ͇fl ‡Û‰ËÚÓËfl Ë Ú.Ô.). àÒÒΉӂ‡ÎËÒ¸ Ú‡ÍÊÂ Ë ‰Û„Ë ‡ÒÒÚÓflÌËfl (χÚˈ˚ ‡ÒÒÚÓflÌËÈ), ‚ ÚÓÏ ˜ËÒÎÂ: – „ÂÓ„‡Ù˘ÂÒÍÓ ‡ÒÒÚÓflÌË (‚ ÍËÎÓÏÂÚ‡ı ÏÂÊ‰Û ÒÚÓÎˈ‡ÏË ‰‚Ûı ÔÓ‚Ë̈ËÈ); – ‡ÒÒÚÓflÌË ‰ÓıÓ‰Ó‚ | m (x ) – m(y) |, „‰Â m(z) – Ò‰ÌËÈ ‰ÓıÓ‰ ̇ÒÂÎÂÌËfl ‚ ÔÓ‚Ë̈ËË z; – ÍÎËχÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË | xi − yi |, „‰Â zi – Ò‰Ìflfl ÚÂÏÔ‡ÚÛ‡ ‚
∑
1≤ i ≤12
ÔÓ‚Ë̈ËË z ‚ i-Ï ÏÂÒflˆÂ; – ÏË„‡ˆËÓÌÌÓ ‡ÒÒÚÓflÌËÂ
∑
| xi − yi |, „‰Â z i – ÔÓˆÂÌÚ Î˛‰ÂÈ (ÔÓÊË‚‡˛-
1≤ i ≤12
˘Ëı ‚ ÔÓ‚Ë̈ËË z), Ӊ˂¯ËıÒfl ‚ ÔÓ‚Ë̈ËË i. ëÚÓ„‡fl ‚ÂÚË͇θ̇fl Ô‰‡˜‡ Ô‰ÔÓ˜ÚÂÌËÈ, Ú.Â. ‚Á‡ËÏÓÒ‚flÁ¸ ÏÂÊ‰Û Ù‡ÏËÎËflÏË Ë ÔÓÚ·ËÚÂθÒÍËÏË ‡ÒÒÚÓflÌËflÏË, ·˚· ‚˚fl‚ÎÂ̇ ÚÓθÍÓ ‚ ÓÚÌÓ¯ÂÌËË ÔÓ‰ÛÍÚÓ‚ ÔËÚ‡ÌËfl. ÑËÒڇ̈ËÓÌ̇fl ÏÓ‰Âθ ‡Î¸ÚÛËÁχ Ç ˝‚ÓβˆËÓÌÌÓÈ ˝ÍÓÎÓ„ËË ‡Î¸ÚÛËÁÏ ÚÓÎÍÛÂÚÒfl Í‡Í ÒÂÏÂÈÌ˚È ÓÚ·Ó ËÎË „ÛÔÔÓ‚ÓÈ ÓÚ·Ó Ë Ò˜ËÚ‡ÂÚÒfl ÓÒÌÓ‚ÌÓÈ ‰‚ËÊÛ˘ÂÈ ÒËÎÓÈ ÔÂÂıÓ‰‡ ÓÚ Ó‰ÌÓÍÎÂÚÓ˜Ì˚ı Ó„‡ÌËÁÏÓ‚ Í ÏÌÓ„ÓÍÎÂÚÓ˜Ì˚Ï. ÑËÒڇ̈ËÓÌ̇fl ÏÓ‰Âθ ‡Î¸ÚÛËÁχ [Koel00] Ô‰ÔÓ·„‡ÂÚ, ˜ÚÓ ‡Î¸ÚÛËÒÚ˚ ‡ÒÔÓÒÚ‡Ìfl˛ÚÒfl ÎÓ͇θÌÓ, Ú.Â. Ò Ì·Óθ¯ËÏË ‡ÒÒÚÓflÌËflÏË ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl Ë ‡ÒÒÚÓflÌËflÏË ‰ËÒÔÂÒËË ÔÓÚÓÏÒÚ‚‡, ÚÓ„‰‡ Í‡Í ‰Îfl ˝‚ÓβˆËÓÌÌÓÈ Â‡ÍˆËË ˝„ÓËÒÚÓ‚ Ò‚ÓÈÒÚ‚ÂÌÌÓ ÒÚÂÏÎÂÌË ۂÂ΢ËÚ¸ ˝ÚË ‡ÒÒÚÓflÌËfl. èÓÏÂÊÛÚÓ˜Ì˚ ÚËÔ˚ Ôӂ‰ÂÌËfl fl‚Îfl˛ÚÒfl ÌÂÛÒÚÓȘ˂˚ÏË, Ë ˝‚ÓβˆËfl ‚‰ÂÚ Í ÒÚ‡·ËθÌÓÈ ·ËÏÓ‰‡Î¸ÌÓÈ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÈ ÏÓ‰ÂÎË. ÑËÒڇ̈ËÓÌ̇fl ÏÓ‰Âθ ·Â„‡ ÑËÒڇ̈ËÓÌÌÓÈ ÏÓ‰Âθ˛ ·Â„‡ ̇Á˚‚‡ÂÚÒfl ÏÓ‰Âθ ‡ÌÚÓÔÓ„ÂÌÂÁ‡, Ô‰ÎÓÊÂÌ̇fl ‚ [BrLi04]. ÅËÔ‰‡ÎËÁÏ (ıÓʉÂÌË ̇ ‰‚Ûı ÌÓ„‡ı) fl‚ÎflÂÚÒfl Íβ˜Â‚ÓÈ Ôӂ‰Â̘ÂÒÍÓÈ ‡‰‡ÔÚ‡ˆËÂÈ „ÓÏËÌˉӂ, ÔÓfl‚Ë‚¯ÂÈÒfl 4,5–6 ÏÎÌ ÎÂÚ Ì‡Á‡‰. é‰Ì‡ÍÓ ‡‚ÒÚ‡ÎÓÔËÚÂÍË ‚Ò ¢ ÓÒÚ‡‚‡ÎËÒ¸ ÊË‚ÓÚÌ˚ÏË. êÓ‰ Homo, ÔÓfl‚Ë‚¯ËÈÒfl ÓÍÓÎÓ 2 ÏÎÌ ÎÂÚ Ì‡Á‡‰, ÛÊ ÛÏÂÎ ËÁ„ÓÚ‡‚ÎË‚‡Ú¸ ÔËÏËÚË‚Ì˚ ÓÛ‰Ëfl. åÓ‰Âθ ŇϷΖãË·Âχ̇ Ó·˙flÒÌflÂÚ ˝ÚÓÚ ÔÂÂıÓ‰ Ò fl‰ÓÏ ‡‰‡ÔÚ‡ˆËÈ, ı‡‡ÍÚÂÌ˚ı ‰Îfl ·Â„‡ ̇ ·Óθ¯Ë ‡ÒÒÚÓflÌËfl ÔÓ Ò‡‚‡ÌÌÂ. éÌË ÔÓ͇Á˚‚‡˛Ú, Í‡Í ÔËÓ·ÂÚÂÌ̇fl ÒÔÓÒÓ·ÌÓÒÚ¸ Homo Í ‰ÎËÚÂθÌÓÏÛ ·Â„Û Ô‰ÓÔ‰ÂÎË· ÙÓÏÛ ˜ÂÎӂ˜ÂÒÍÓ„Ó Ú·, Ó·ÂÒÔ˜˂ Ò·‡Î‡ÌÒËÓ‚‡ÌÌÓ ÔÓÎÓÊÂÌË „ÓÎÓ‚˚, ÌËÁÍËÂ Ë ¯ËÓÍË ÔΘË, ÛÁÍÛ˛ „Û‰ÌÛ˛ ÍÎÂÚÍÛ, ÍÓÓÚÍË Ô‰ÔΘ¸fl, ‰ÎËÌÌ˚ ·Â‰‡ Ë Ú.‰.
É·‚‡ 24
ê‡ÒÒÚÓflÌËfl ‚ ÙËÁËÍÂ Ë ıËÏËË
24.1. êÄëëíéüçàü Ç îàáàäÖ îËÁË͇ ËÁÛ˜‡ÂÚ Ôӂ‰ÂÌËÂ Ë Ò‚ÓÈÒÚ‚‡ χÚÂËË ‚ Ò‡ÏÓÏ ¯ËÓÍÓÏ ‰Ë‡Ô‡ÁÓÌÂ, ÓÚ ÒÛ·ÏËÍÓÒÍÓÔ˘ÂÒÍËı ˜‡ÒÚˈ, ËÁ ÍÓÚÓ˚ı ÔÓÒÚÓÂ̇ ‚Òfl Ó·˚˜Ì‡fl χÚÂËfl (ÙËÁË͇ ˝ÎÂÏÂÌÚ‡Ì˚ı ˜‡ÒÚˈ), ‰Ó Ôӂ‰ÂÌËfl χÚ¡θÌÓÈ ‚ÒÂÎÂÌÌÓÈ ‚ ˆÂÎÓÏ (ÍÓÒÏÓÎÓ„Ëfl). îËÁ˘ÂÒÍËÏË ÒË·ÏË, ‰ÂÈÒÚ‚Ë ÍÓÚÓ˚ı ÔÓfl‚ÎflÂÚÒfl ̇ ‡ÒÒÚÓflÌËË (Ú.Â. ÓÚÚ‡ÎÍË‚‡ÌË ËÎË ÔËÚfl„Ë‚‡ÌË ·ÂÁ ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓ„Ó "ÙËÁ˘ÂÒÍÓ„Ó ÍÓÌÚ‡ÍÚ‡"), fl‚Îfl˛ÚÒfl ÒËÎ˚ fl‰ÂÌÓ„Ó Ë ÏÓÎÂÍÛÎflÌÓ„Ó ÔËÚflÊÂÌËfl, ‡ Á‡ ‡ÚÓÏÌ˚Ï ÛÓ‚ÌÂÏ – ÒË· Úfl„ÓÚÂÌËfl (‰ÓÔÓÎÌflÂχfl, ‚ÓÁÏÓÊÌÓ, ÒËÎÓÈ ‡ÌÚË„‡‚ËÚ‡ˆËË), ÒÚ‡Ú˘ÂÒÍÓ ˝ÎÂÍÚ˘ÂÒÚ‚Ó Ë Ï‡„ÌÂÚËÁÏ. èÓÒΉÌË ‰‚ ÒËÎ˚ ÏÓ„ÛÚ Ó‰ÌÓ‚ÂÏÂÌÌÓ ÓÚÚ‡ÎÍË‚‡Ú¸ Ë ÔËÚfl„Ë‚‡Ú¸. Ç ‰‡ÌÌÓÈ „·‚ ˜¸ ˉÂÚ Ó Ò‡‚ÌËÚÂθÌÓ Ï‡Î˚ı ‡ÒÒÚÓflÌËflı, ‡ ‡ÒÒÚÓflÌËfl ·Óθ¯ÓÈ ÔÓÚflÊÂÌÌÓÒÚË (‚ ‡ÒÚÓÌÓÏËË Ë ÍÓÒÏÓÎÓ„ËË) ·Û‰ÛÚ ‡ÒÒχÚË‚‡Ú¸Òfl ‚ „·‚‡ı 25 Ë 26. ÇÓÓ·˘Â „Ó‚Ófl, ‡ÒÒÚÓflÌËfl, Ëϲ˘Ë ÙËÁ˘ÂÒÍËÈ ÒÏ˚ÒÎ, ÎÂÊ‡Ú ‚ ԉ·ı ÓÚ 1,6 × 10–35 Ï (‰ÎË̇ è·Ì͇) ‰Ó 7,4 × 1026 Ï (Ô‰ÔÓ·„‡ÂÏ˚ ‡ÁÏÂ˚ ̇·Î˛‰‡ÂÏÓÈ ‚ÒÂÎÂÌÌÓÈ). Ç Ì‡ÒÚÓfl˘Â ‚ÂÏfl ÚÂÓËfl ÓÚÌÓÒËÚÂθÌÓÒÚË, Í‚‡ÌÚÓ‚‡fl ÚÂÓËfl Ë Á‡ÍÓÌ˚ 縲ÚÓ̇ ÔÓÁ‚ÓÎfl˛Ú ÓÔËÒ˚‚‡Ú¸ Ë Ô‰Ò͇Á˚‚‡Ú¸ Ôӂ‰ÂÌË ÙËÁ˘ÂÒÍËı ÒËÒÚÂÏ, ËÁÏÂflÂÏ˚ı ‚ ԉ·ı 10–15–1025 Ï. ÉË„‡ÌÚÒÍË ÛÒÍÓËÚÂÎË ÔÓÁ‚ÓÎfl˛Ú „ËÒÚËÓ‚‡Ú¸ ˜‡ÒÚˈ˚ ‡ÁÏÂÓÏ 10–18 Ï. åÂı‡Ì˘ÂÒÍÓ ‡ÒÒÚÓflÌË åÂı‡Ì˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ÔÓÎÓÊÂÌË ˜‡ÒÚˈ˚ Í‡Í ÙÛÌ͈Ëfl ‚ÂÏÂÌË t. ÑÎfl ˜‡ÒÚˈ˚ Ò Ì‡˜‡Î¸ÌÓÈ ÍÓÓ‰Ë̇ÚÓÈ x 0 , ̇˜‡Î¸ÌÓÈ ÒÍÓÓÒÚ¸˛ v0 , Ë ÔÓÒÚÓflÌÌ˚Ï ÛÒÍÓÂÌËÂÏ a ÓÌÓ Á‡‰‡ÂÚÒfl Í‡Í x ( t ) = x 0 + v0 t +
1 2 at . 2
ê‡ÒÒÚÓflÌË ‚ ÂÁÛθڇÚ ԇ‰ÂÌËfl Ò ‡‚ÌÓÏÂÌ˚Ï ÛÒÍÓÂÌËÂÏ ‡ ‰Îfl ‰ÓÒÚËÊÂÌËfl v2 ÒÍÓÓÒÚË v ÓÔ‰ÂÎflÂÚÒfl Í‡Í x = . 2a ë‚Ó·Ó‰ÌÓ Ô‡‰‡˛˘Â ÚÂÎÓ – ÚÂÎÓ, ̇ ÍÓÚÓÓ ‚ Ô‡‰ÂÌËË ‚ÓÁ‰ÂÈÒÚ‚ÛÂÚ ÚÓθÍÓ 1 ÒË· Úfl„ÓÚÂÌËfl g. ê‡ÒÒÚÓflÌË ԇ‰ÂÌËfl Ú· Á‡ ‚ÂÏfl t ‡‚ÌÓ gt 2 ; ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl 2 ‡ÒÒÚÓflÌËÂÏ Ò‚Ó·Ó‰ÌÓ„Ó Ô‡‰ÂÌËfl. éÒÚ‡ÌÓ‚Ó˜ÌÓ ‡ÒÒÚÓflÌË éÒÚ‡ÌÓ‚Ó˜ÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓ ӷ˙ÂÍÚ ÔÂÂÏ¢‡ÂÚÒfl ‚ ÒÂ‰Â Ò ÒÓÔÓÚË‚ÎÂÌËÂÏ ÓÚ ËÒıÓ‰ÌÓÈ ÚÓ˜ÍË ‰Ó ÓÒÚ‡ÌÓ‚ÍË. ÑÎfl Ó·˙ÂÍÚ‡ Ò Ï‡ÒÒÓÈ m , ‰‚ËÊÛ˘Â„ÓÒfl ‚ ÒÂ‰Â Ò ÒÓÔÓÚË‚ÎÂÌËÂÏ („‰Â ÒË· ÚÓÏÓÊÂÌËfl ̇ ‰ËÌËˆÛ Ï‡ÒÒ˚ ÔÓÔÓˆËÓ̇θ̇ ÒÍÓÓÒÚË Ò ÍÓÌÒÚ‡ÌÚÓÈ ÔÓÔÓˆËÓ̇θÌÓÒÚË β, Ë Í‡ÍËı-ÎË·Ó ‰Û„Ëı ‚ÓÁ‰ÂÈÒÚ‚ËÈ Ì‡ ‰‡ÌÌ˚È Ó·˙ÂÍÚ ÌÂÚ),
347
É·‚‡ 24. ê‡ÒÒÚÓflÌËfl ‚ ÙËÁËÍÂ Ë ıËÏËË
ÔÓÎÓÊÂÌË x(t) Ú· Ò Ì‡˜‡Î¸ÌÓÈ ÍÓÓ‰Ë̇ÚÓÈ x 0 Ë Ì‡˜‡Î¸ÌÓÈ ÒÍÓÓÒÚ¸˛ v0 Á‡‰‡ÂÚÒfl v Í‡Í x (t ) = x 0 + 0 (1 − e −βt ). ëÍÓÓÒÚ¸ Ú· v(t ) = x ′(t ) = v0 e −βt ÛÏÂ̸¯‡ÂÚÒfl β ÔÓÒÚÂÔÂÌÌÓ ‰Ó ÌÛÎfl Ë ÚÂÎÓ ‰ÓÒÚË„‡ÂÚ Ï‡ÍÒËχθÌÓ„Ó ÓÒÚ‡ÌÓ‚Ó˜ÌÓ„Ó ‡ÒÒÚÓflÌËfl x terminal = lim x (t ) = x 0 + t →∞
v0 . β
ÑÎfl Ò̇fl‰‡, ‚˚ÎÂÚ‚¯Â„Ó ËÁ ̇˜‡Î¸ÌÓÈ ÚÓ˜ÍË (x 0 , y0) Ò Ì‡˜‡Î¸ÌÓÈ ÒÍÓvx ÓÒÚ¸˛ ( v x 0 , v y0 ), ÔÓÎÓÊÂÌË (x(t), y(t)) Á‡‰‡ÂÚÒfl Í‡Í x (t ) = x 0 + 0 (1 − e βt ), β β−g v y0 g v y0 −βt y ( t ) = y0 + − 2 + 2 e . ÉÓËÁÓÌڇθÌÓ ÔÂÂÏ¢ÂÌË ÔÂ͇˘‡ÂÚÒfl β β β ÔÓÒΠ‰ÓÒÚËÊÂÌËfl ÚÂÎÓÏ Ï‡ÍÒËχθÌÓ„Ó ÓÒÚ‡ÌÓ‚Ó˜ÌÓ„Ó ‡ÒÒÚÓflÌËfl vx x terminal = x 0 + 0 . β
ŇÎÎËÒÚ˘ÂÒÍË ‡ÒÒÚÓflÌËfl ŇÎÎËÒÚË͇ Á‡ÌËχÂÚÒfl ËÁÛ˜ÂÌËÂÏ ‰‚ËÊÂÌËfl Ò̇fl‰Ó‚, Ú.Â. ÚÂÎ, ÍÓÚÓ˚ Ô˂‰ÂÌ˚ ‚ ‰‚ËÊÂÌË (ËÎË ·Ó¯ÂÌ˚) Ò ÌÂÍÓÂÈ Ì‡˜‡Î¸ÌÓÈ ÒÍÓÓÒÚ¸˛, Ë ÍÓÚÓ˚ Á‡ÚÂÏ ËÒÔ˚Ú˚‚‡˛Ú ‚ÓÁ‰ÂÈÒÚ‚Ë ÒËÎ Úfl„ÓÚÂÌËfl Ë ÚÓÏÓÊÂÌËfl. ÉÓËÁÓÌڇθÌÓ ‡ÒÒÚÓflÌË ÔÓÎÂÚ‡ ̇Á˚‚‡ÂÚÒfl ‰‡Î¸ÌÓÒÚ¸˛, χÍÒËχθ̇fl ‚˚ÒÓÚ‡ ÔÓÎÂÚ‡ – ‚˚ÒÓÚÓÈ, ‡ ÔÓȉÂÌÌ˚È ÔÛÚ¸ – Ú‡ÂÍÚÓËÂÈ. ÑÎfl Ò̇fl‰‡, ÔÛ˘ÂÌÌÓ„Ó ÒÓ ÒÍÓÓÒÚ¸˛ v0 ÔÓ‰ Û„ÎÓÏ θ, ‰‡Î¸ÌÓÒÚ¸ ÓÔ‰ÂÎflÂÚÒfl Í‡Í x(t) = v0t cos θ, „‰Â t – ‚ÂÏfl ‰‚ËÊÂÌËfl. èÓÎ̇fl ‰‡Î¸ÌÓÒÚ¸ ̇ ÔÎÓÒÍÓÒÚË ÔË ÛÒÎÓ‚ËË Ô‡‰ÂÌËfl Ò̇fl‰‡ ̇ ‚˚ÒÓÚÂ, Ó‰Ë̇ÍÓ‚ÓÈ Ò ‚˚ÒÓÚÓÈ ÏÂÒÚ‡ ‚˚ÒÚ·, ÒÓÒÚ‡‚ÎflÂÚ x max =
v02 sin 2θ , g
ÍÓÚÓ‡fl ·Û‰ÂÚ Ï‡ÍÒËχθÌÓÈ ÔË θ = π/4. ÖÒÎË ‚˚ÒÓÚ‡ ÚÓ˜ÍË Ô‡‰ÂÌËfl ̇ ∆h ‚˚¯Â ÚÓ˜ÍË Á‡ÔÛÒ͇, ÚÓ x max =
v02 sin 2θ 2 ∆hg 1 + 1 − 2 2 2g v0 sin θ
Ç˚ÒÓÚ‡ Á‡‰‡ÂÚÒfl Í‡Í v0 sin 2 θ 2g Ë ·Û‰ÂÚ Ï‡ÍÒËχθÌÓÈ, ÂÒÎË θ = π/2. ÑÎË̇ ‰Û„Ë Ú‡ÂÍÚÓËË ÓÔ‰ÂÎflÂÚÒfl Í‡Í v02 (sin θ + cos 2 θgd −1 (θ)), g
1/ 2
.
348
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı x
„‰Â gd ( x ) =
∫ 0
dt – ÙÛÌ͈Ëfl ÉÛ‰Âχ̇. ÑÎË̇ ‰Û„Ë ·Û‰ÂÚ Ï‡ÍÒËχθÌÓÈ, ÂÒÎË cosh t
θ dt gd −1 (θ)sin θ = sin θ = 1 Ë ÔË·ÎËÊÂÌÌÓ ¯ÂÌË ËÏÂÂÚ ‚ˉ θ ≈ 0,9855. cos t 0
∫
ê‡ÒÒÚÓflÌË ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl ê‡ÒÒÚÓflÌË ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl ÏÂÊ‰Û ‰‚ÛÏfl ˜‡ÒÚˈ‡ÏË – ̇˷Óθ¯Â ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË ‚ ıӉ ҷÎËÊÂÌËfl, ÍÓ„‰‡ ÒÚ‡ÌÓ‚ËÚÒfl Ә‚ˉÌÓ, ˜ÚÓ ÓÌË ÔÓ‰ÓÎÊ‡Ú ‰‚ËÊÂÌË ‚ ÚÓÏ Ê ̇ԇ‚ÎÂÌËË Ë Ò ÚÓÈ Ê ÒÍÓÓÒÚ¸˛. ÉËÓ‡‰ËÛÒ ÉËÓ‡‰ËÛÒ (ËÎË ‡‰ËÛÒ ˆËÍÎÓÚÓÌÌ˚ı ÍÓη‡ÌËÈ, ‡‰ËÛÒ ã‡ÏÓ‡) – ‡‰ËÛÒ ÍÛ„Ó‚ÓÈ Ó·ËÚ˚ Á‡flÊÂÌÌÓÈ ˜‡ÒÚˈ˚ (̇ÔËÏÂ, ËÒÔÛÒ͇ÂÏ˚ı ëÓÎ̈ÂÏ ·˚ÒÚ˚ı ˝ÎÂÍÚÓÌÓ‚), ÍÓÚÓ‡fl ‚‡˘‡ÂÚÒfl ‚ÓÍÛ„ Ò‚ÓÂ„Ó ÒÍÓθÁfl˘Â„Ó ˆÂÌÚ‡. á‡ÍÓÌ˚ Ó·‡ÚÌÓÈ ÔÓÔÓˆËÓ̇θÌÓÒÚË Í‚‡‰‡Ú‡ ‡ÒÒÚÓflÌËfl ê‡ÒÒÚÓflÌÌ˚È Á‡ÍÓÌ Ó·‡ÚÌ˚ı Í‚‰‡‡ÚÓ‚ – β·ÓÈ Á‡ÍÓÌ, ÛÚ‚Âʉ‡˛˘ËÈ, ˜ÚÓ ÌÂ͇fl ÙËÁ˘ÂÒ͇fl ‚Â΢Ë̇ Ó·‡ÚÌÓ ÔÓÔÓˆËÓ̇θ̇ Í‚‡‰‡ÚÛ ‡ÒÒÚÓflÌËfl ÓÚ ËÒÚÓ˜ÌË͇ ˝ÚÓÈ ‚Â΢ËÌ˚. á‡ÍÓÌ ‚ÒÂÏËÌÓ„Ó Úfl„ÓÚÂÌËfl (縲ÚÓ̇–ÅÛÎΡθ‰ÛÒ‡): „‡‚ËÚ‡ˆËÓÌÌÓ ÔËÚflÊÂÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ˜Ì˚ÏË Ó·˙ÂÍÚ‡ÏË Ò Ï‡ÒÒ‡ÏË m 1 , m2 ̇ ‡ÒÒÚÓflÌËË d ÓÔ‰ÂÎflÂÚÒfl Í‡Í mm G 12 2 , d „‰Â G – ÛÌË‚Â҇θ̇fl „‡‚ËÚ‡ˆËÓÌ̇fl ÔÓÒÚÓflÌ̇fl 縲ÚÓ̇. ëÛ˘ÂÒÚ‚Ó‚‡ÌË ‰ÓÔÓÎÌËÚÂθÌ˚ı ËÁÏÂÂÌËÈ ÔÓÒÚ‡ÌÒÚ‚, Ô‰·„‡ÂÏÓ å-ÚÂÓËÂÈ, ·Û‰ÂÚ ˝ÍÒÔÂËÏÂÌڇθÌÓ ÔÓ‚ÂÂÌÓ ‚ 2007 „. ̇ ÓÚÍ˚‚‡˛˘ÂÏÒfl ‚ ñÖêç ·ÎËÁ ÜÂÌ‚˚ ÅÓθ¯ÓÏ ‡‰ÓÌÌÓÏ ÍÓηȉ (LHC). Ç ÓÒÌÓ‚Â ˝ÍÒÔÂËÏÂÌÚ‡ ÎÂÊËÚ Ó·‡Ú̇fl ÔÓÔÓˆËÓ̇θÌÓÒÚ¸ „‡‚ËÚ‡ˆËÓÌÌÓ„Ó ÔËÚflÊÂÌËfl ‚ n-ÏÂÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â Ë (n – 1)-È ÒÚÂÔÂÌË ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û Ó·˙ÂÍÚ‡ÏË; ÂÒÎË ‚Ó ‚ÒÂÎÂÌÌÓÈ ÒÛ˘ÂÒÚ‚ÛÂÚ ˜ÂÚ‚ÂÚÓ ËÁÏÂÂÌËÂ, ÍÓηȉ‡ LHC ÔÓ͇ÊÂÚ Ó·‡ÚÌÛ˛ ÔÓÔÓˆËÓ̇θÌÓÒÚ¸ ÍÛ·Û Ï‡ÎÓ„Ó ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ˜‡ÒÚˈ‡ÏË. á‡ÍÓÌ äÛÎÓ̇: ÒË· ÔËÚflÊÂÌËfl ËÎË ÓÚÚ‡ÎÍË‚‡ÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ˜Ì˚ÏË Ó·˙ÂÍÚ‡ÏË Ò Á‡fl‰‡ÏË e 1 , e2 ̇ ‡ÒÒÚÓflÌËË d ÓÔ‰ÂÎflÂÚÒfl Í‡Í k
e1e2 , d2
„‰Â k – ÔÓÒÚÓflÌ̇fl äÛÎÓ̇, Á‡‚ËÒfl˘‡fl ÓÚ Ò‰˚, ‚ ÍÓÚÓÛ˛ ÔÓ„ÛÊÂÌ˚ Á‡flÊÂÌÌ˚ ӷ˙ÂÍÚ˚. ɇ‚ËÚ‡ˆËÓÌÌ˚Â Ë ˝ÎÂÍÚÓÒÚ‡Ú˘ÂÒÍË ÒËÎ˚ ‰‚Ûı ÚÂÎ, ӷ·‰‡˛˘Ëı χÒÒ‡ÏË è·Ì͇ m P ≈ 2,176 × 10–8 Í„ Ë Â‰ËÌ˘Ì˚Ï ˝ÎÂÍÚ˘ÂÒÍËÏ Á‡fl‰ÓÏ, Ó‰Ë̇ÍÓ‚˚ ÔÓ ‚Â΢ËÌÂ. àÌÚÂÌÒË‚ÌÓÒÚ¸ (ÏÓ˘ÌÓÒÚ¸ ̇ ‰ËÌËˆÛ ÔÎÓ˘‡‰Ë ‚ ̇ԇ‚ÎÂÌËË ‡ÒÔÓÒÚ‡ÌÂÌËfl) ÙÓÌÚ‡ ÒÙ¢ÂÒÍÓÈ ‚ÓÎÌ˚ (Ò‚ÂÚ‡, Á‚Û͇ Ë Ú.Ô.), ËÒıÓ‰fl˘ÂÈ ËÁ ÚӘ˜ÌÓ„Ó ËÒÚÓ˜ÌË͇, Û·˚‚‡ÂÚ (ÂÒÎË Ì ÔËÌËχڸ ‚Ó ‚ÌËχÌË ÔÓÚÂË ÓÚ ÔÓ„ÎÓ˘ÂÌËfl Ë ‡ÒÒÂflÌËfl) Ó·‡ÚÌÓ ÔÓÔÓˆËÓ̇θÌÓ Í‚‡‰‡ÚÛ d2 ‡ÒÒÚÓflÌËfl d ‰Ó ˝ÚÓ„Ó ËÒÚÓ˜ÌË͇. 1 é‰Ì‡ÍÓ ‰Îfl ‡‰ËÓ‚ÓÎÌ ˝ÚÓ ÛÏÂ̸¯ÂÌË ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ . d
É·‚‡ 24. ê‡ÒÒÚÓflÌËfl ‚ ÙËÁËÍÂ Ë ıËÏËË
349
чθÌÓÒÚ¸ ‰ÂÈÒÚ‚Ëfl ÙÛ̉‡ÏÂÌڇθÌ˚ı ÒËÎ îÛ̉‡ÏÂÌڇθÌ˚ÏË ÒË·ÏË (ËÎË ‚Á‡ËÏÓ‰ÂÈÒÚ‚ËflÏË) fl‚Îfl˛ÚÒfl ÒË· Úfl„ÓÚÂÌËfl, ˝ÎÂÍÚÓχ„ÌËÚ̇fl ÒË·, Ò··˚Â Ë ÒËθÌ˚ fl‰ÂÌ˚ ÒËÎ˚. чθÌÓÒÚ¸ ‰ÂÈÒÚ‚Ëfl ÒËÎ˚ Ò˜ËÚ‡ÂÚÒfl ÍÓÓÚÍÓÈ, ÂÒÎË Ó̇ Ò··ÂÂÚ (ÔË·ÎËʇÂÚÒfl Í 0) ˝ÍÒÔÓÌÂ̈ˇθÌÓ, ÔÓ Ï ۂÂ΢ÂÌËfl d. ä‡Í ˝ÎÂÍÚÓχ„ÌËÚ̇fl, Ú‡Í Ë „‡‚ËÚ‡ˆËÓÌ̇fl ÒËÎ˚ fl‚Îfl˛ÚÒfl ÒË·ÏË ·ÂÒÍÓ̘ÌÓÈ ‰‡Î¸ÌÓÒÚË ‰ÂÈÒÚ‚Ëfl, ÔÓ‰˜ËÌfl˛˘ËÏËÒfl Á‡ÍÓÌ‡Ï Ó·‡ÚÌÓÈ ÔÓÔÓˆËÓ̇θÌÓÒÚË Í‚‡‰‡Ú‡ ‡ÒÒÚÓflÌËfl. óÂÏ ÏÂ̸¯Â ‡ÒÒÚÓflÌËÂ, ÚÂÏ ·Óθ¯Â ˝Ì„Ëfl. ä‡Í Ò··‡fl, Ú‡Í Ë ÒËθ̇fl fl‰ÂÌ˚ ÒËÎ˚ ‰ÂÈÒÚ‚Û˛Ú Ì‡ Ó˜Â̸ ·ÎËÁÍËı ‡ÒÒÚÓflÌËflı (ÓÍÓÎÓ 10–18 Ë 10–15 Ï), Ó„‡Ì˘ÂÌÌ˚ı ÔË̈ËÔÓÏ ÌÂÓÔ‰ÂÎÂÌÌÓÒÚË. ç‡ ÒÛ·‡ÚÓÏÌ˚ı ‡ÒÒÚÓflÌËflı ‚ ÚÂÓËË Í‚‡ÌÚÓ‚Ó„Ó ÔÓÎfl ÒËθÌ˚Â Ë Ò··˚ ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl ÓÔËÒ˚‚‡˛ÚÒfl Ó‰ÌÓÈ Ë ÚÓÈ Ê ÒÓ‚ÓÍÛÔÌÓÒÚ¸˛ ÙÓÏÛÎ, ÌÓ Ò ‡ÁÌ˚ÏË ÍÓÌÒÚ‡ÌÚ‡ÏË; ÔË Ó˜Â̸ ·Óθ¯Ëı ˝Ì„Ëflı ÓÌË ÔÓ˜ÚË ÒÓ‚Ô‡‰‡˛Ú. чθÌËÈ ÔÓfl‰ÓÍ îËÁ˘ÂÒ͇fl ÒËÒÚÂχ ӷ·‰‡ÂÚ Ò‚ÓÈÒÚ‚ÓÏ ‰‡Î¸ÌÂ„Ó ÔÓfl‰Í‡, ÂÒÎË Û‰‡ÎÂÌÌ˚ ‰Û„ ÓÚ ‰Û„‡ ˜‡ÒÚË Ó‰ÌÓ„Ó Ë ÚÓ„Ó Ê ӷ‡Áˆ‡ ‰ÂÏÓÌÒÚËÛ˛Ú ÍÓÂÎËÓ‚‡ÌÌÓ Ôӂ‰ÂÌËÂ. ç‡ÔËÏÂ, ‚ ÍËÒڇηı Ë ÌÂÍÓÚÓ˚ı ÊˉÍÓÒÚflı ÔÓÎÓÊÂÌË ӉÌÓ„Ó Ë ÒÓÒ‰ÌËı Ò ÌËÏ ‡ÚÓÏÓ‚ ÓÔ‰ÂÎflÂÚ ÔÓÎÓÊÂÌË ‚ÒÂı ‰Û„Ëı ‡ÚÓÏÓ‚. èËχÏË ‰‡Î¸ÌÓ„Ó ÔÓfl‰Í‡ fl‚Îfl˛ÚÒfl Ò‚ÂıÚÂÍÛ˜ÂÒÚ¸ Ë Ì‡Ï‡„Ì˘ÂÌÌÓÒÚ¸ ‚ ڂ‰˚ı Ú·ı, ‚ÓÎÌ˚ ÔÎÓÚÌÓÒÚË Á‡fl‰‡, Ò‚ÂıÔÓ‚Ó‰ËÏÓÒÚ¸. ÅÎËÊÌËÈ ÔÓfl‰ÓÍ – ˝ÚÓ Ô‚˚È ËÎË ‚ÚÓÓÈ ·ÎËʇȯË ÒÓÒÂ‰Ë ‰‡ÌÌÓ„Ó ‡ÚÓχ. íӘ̠„Ó‚Ófl, ÒËÒÚÂχ ӷ·‰‡ÂÚ Ò‚ÓÈÒÚ‚ÓÏ ‰‡Î¸ÌÂ„Ó ÔÓfl‰Í‡, Í‚‡Áˉ‡Î¸ÌÂ„Ó ÔÓfl‰Í‡ ËÎË fl‚ÎflÂÚÒfl ‡ÁÛÔÓfl‰Ó˜ÂÌÌÓÈ, ÂÒÎË ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÙÛÌ͈Ëfl ÍÓÂÎflˆËË Û·˚‚‡ÂÚ Ì‡ ·Óθ¯Ëı ‡ÒÒÚÓflÌËflı, ‰Ó ÍÓÌÒÚ‡ÌÚ˚, ‰Ó ÌÛÎfl ÔÓÎËÌÓÏˇθÌÓ ËÎË ‰Ó ÌÛÎfl ˝ÍÒÔÓÌÂ̈ˇθÌÓ (ÒÏ. ᇂËÒËÏÓÒÚ¸ ÓÚ ·Óθ¯ÓÈ ‰‡Î¸ÌÓÒÚË, „Î. 28). ÑËÒڇ̈ËÓÌÌÓ ‰ÂÈÒÚ‚Ë (‚ ÙËÁËÍÂ) ÑËÒڇ̈ËÓÌÌÓ ‰ÂÈÒÚ‚Ë – ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ë ÏÂÊ‰Û ‰‚ÛÏfl Ó·˙ÂÍÚ‡ÏË ‚ ÔÓÒÚ‡ÌÒÚ‚Â ·ÂÁ Û˜‡ÒÚËfl ËÁ‚ÂÒÚÌÓ„Ó ÔÓÒ‰ÌË͇. ùÈ̯ÚÂÈÌ ËÒÔÓθÁÓ‚‡Î ÚÂÏËÌ ‰ËÒڇ̈ËÓÌÌÓ "ÔËÁ‡˜ÌÓ ‰ÂÈÒÚ‚ËÂ" ‰Îfl Í‚‡ÌÚÓ‚Ó„Ó ÏÂı‡Ì˘ÂÒÍÓ„Ó ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl (͇Í, ̇ÔËÏÂ, Á‡ˆÂÔÎÂÌËfl Ë Í‚‡ÌÚÛÏÌÓÈ ÌÂÎÓ͇θÌÓÒÚË), ÍÓÚÓÓ fl‚ÎflÂÚÒfl Ï„ÌÓ‚ÂÌÌ˚Ï, ÌÂÁ‡‚ËÒËÏÓ ÓÚ ‡ÒÒÚÓflÌËfl (ÒÏ. èË̈ËÔ ÎÓ͇θÌÓÒÚË, „Î. 28). Ç 2004 „. áÂÎÎËÌ„Â Ë ‰. ÔÓ‚ÂÎË ˝ÍÒÔÂËÏÂÌÚ ÔÓ ÚÂÎÂÔÓÚ‡ˆËË (̇ ‡ÒÒÚÓflÌË 600 Ï) ÌÂÍÓÚÓÓÈ Í‚‡ÌÚÓ‚ÓÈ ËÌÙÓχˆËË – Ò‚ÓÈÒÚ‚‡ ÔÓÎflËÁ‡ˆËË ÙÓÚÓ̇ – Â„Ó Ô‡ÌÓÏÛ Ó·˙ÂÍÚÛ ‚Ó ‚Á‡ËÏÓ‰ÂÈÒÚ‚Û˛˘ÂÈ Ô‡Â ÙÓÚÓÌÓ‚. èË ˝ÚÓÏ, Ӊ̇ÍÓ, ÒËθÌÓÈ ÌÂÎÓ͇θÌÓÒÚË, Ú.Â. ËÁÏÂËÏÓ„Ó ‰ËÒڇ̈ËÓÌÌÓ„Ó ‰ÂÈÒÚ‚Ëfl (Ò‚ÂıÒ‚ÂÚÓ‚Ó„Ó ‡ÒÔÓÒÚ‡ÌÂÌËfl ‡θÌÓÈ ÙËÁ˘ÂÒÍÓÈ ËÌÙÓχˆËË) Ì ̇·Î˛‰‡ÎÓÒ¸, ‰‡, ÒÓ·ÒÚ‚ÂÌÌÓ, Ë Ì ÓÊˉ‡ÎÓÒ¸. ëÔÓÌÓ ҇ÏÓ ÔÓ Ò· (‚ ÒËÎÛ ÚÓ„Ó ˜ÚÓ ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡ ÂÒÚ¸ χÍÒËÏÛÏ) ÌÂÍ‚‡ÌÚÓ‚Ó ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ë ̇ ·Óθ¯ÓÈ ‰‡Î¸ÌÓÒÚË ÔËÓ·ÂÚ‡ÂÚ ÒÚ‡ÚÛÒ Ï‡„Ë̇θÌÓ„Ó ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÔÓ·ÎÂÏ "‰ËÒڇ̈ËÓÌÌÓ„Ó ÏÂÌڇθÌÓ„Ó ‰ÂÈÒÚ‚Ëfl" (ÚÂÎÂÔ‡ÚËfl, Ô‰‚ˉÂÌËÂ, ÔÒËıÓÍËÌÂÁ Ë Ú.Ô.). é‰Ì‡ÍÓ, ÂÒÎË ËÌÚÛËÚË‚ÌÓ Ô‰˜Û‚ÒÚ‚Ë èÂÌÓÛÁ‡, ˜ÚÓ ÏÓÁ„ ˜ÂÎÓ‚Â͇ ËÒÔÓθÁÛÂÚ Í‚‡ÌÚÛÏÌ˚ ÏÂı‡Ì˘ÂÒÍË ÔÓˆÂÒÒ˚, ‚ÂÌÓ, ÚÓ Ú‡Í‡fl "ÌÂÎÓ͇θ̇fl ÚÂÎÂÔ‡Ú˘ÂÒ͇fl" Ô‰‡˜‡ Ô‰ÒÚ‡‚ÎflÂÚÒfl ‚ÓÁÏÓÊÌÓÈ. íÂÏËÌ ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ë ̇ χÎÓÈ ‰‡Î¸ÌÓÒÚË Ú‡ÍÊ ËÒÔÓθÁÛÂÚÒfl ‰Îfl Ó·ÓÁ̇˜ÂÌËfl Ô‰‡˜Ë ‰ËÒڇ̈ËÓÌÌÓ„Ó ‰ÂÈÒÚ‚Ëfl ͇ÍÓÈ-ÎË·Ó Ï‡Ú¡θÌÓÈ Ò‰ÓÈ ËÁ Ó‰ÌÓÈ ÚÓ˜ÍË ‚ ‰Û„Û˛ Ò ÓÔ‰ÂÎÂÌÌÓÈ ÒÍÓÓÒÚ¸˛, Á‡‚ËÒfl˘ÂÈ ÓÚ Ò‚ÓÈÒÚ‚ Ò‰˚. äÓÏ ÚÓ„Ó, ‚ ӷ·ÒÚË ı‡ÌÂÌËfl ËÌÙÓχˆËË ÚÂÏËÌÓÏ ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ë ‚ ·ÎËÊÌÂÏ ÔÓΠӷÓÁ̇˜‡ÂÚÒfl ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ë ̇ Ó˜Â̸ χÎ˚ı ‡ÒÒÚÓflÌËflı Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÚÂıÌÓÎÓ„ËË Ò͇ÌËÛ˛˘ÂÈ „ÓÎÓ‚ÍË.
350
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ê‡ÒÒÚÓflÌË Ô˚Ê͇ è˚ÊÓÍ – ‰Ë̇Ï˘ÂÒÍÓ ‚ÓÁ‰ÂÈÒÚ‚Ë ̇ ·Óθ¯ÓÈ, ÔÓ ‡ÚÓÏÌÓÈ ¯Í‡ÎÂ, ‰‡Î¸ÌÓÒÚË, „ÛÎËÛ˛˘Â ‰ËÙÙÛÁ˲ Ë ˝ÎÂÍÚÓÔÓ‚Ó‰ÌÓÒÚ¸. í‡Í, ̇ÔËÏÂ, ÓÍËÒÎÂÌË Ñçä (ÔÓÚÂfl Ó‰ÌÓ„Ó ˝ÎÂÍÚÓ̇) ÔÓÓʉ‡ÂÚ ‡‰Ë͇θÌ˚È Í‡ÚËÓÌ, ÍÓÚÓ˚È ÏÓÊÂÚ ÏË„ËÓ‚‡Ú¸ ̇ ·Óθ¯Ó ‡ÒÒÚÓflÌË (·ÓΠ20 ÌÏ), ÍÓÚÓÓ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂÏ Ô˚Ê͇ ÏÂÊ‰Û Ò‡ÈÚ‡ÏË ("Ô˚„‡Ú¸" ÓÚ Ó‰ÌÓÈ ÍÓÏ·Ë̇ˆËË Í ‰Û„ÓÈ), ÔÂʉ ˜ÂÏ ÓÌ ·Û‰ÂÚ ÔÓÈÏ‡Ì Â‡ÍˆËÂÈ Ò ‚Ó‰ÓÈ. ÉÎÛ·Ë̇ ÔÓÌËÍÌÓ‚ÂÌËfl ÉÎÛ·ËÌÓÈ ÔÓÌËÍÌÓ‚ÂÌËfl ‚¢ÂÒÚ‚‡ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓ ÔÓÌË͇ÂÚ ÒÎÛ˜‡È̇fl ˝ÎÂÍÚÓχ„ÌËÚ̇fl ‡‰Ë‡ˆËfl. ÉÎÛ·Ë̇ ÒÍËÌ-ÒÎÓfl Á‡ÔËÒ˚‚‡ÂÚÒfl Í‡Í c , 2πσµω „‰Â c – ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡, σ – Û‰Âθ̇fl ˝ÎÂÍÚÓÔÓ‚Ó‰ÌÓÒÚ¸, µ – ÔÓÌˈ‡ÂÏÓÒÚ¸ Ë ω – Û„ÎÓ‚‡fl ˜‡ÒÚÓÚ‡. ÑÎË̇ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÈ ÍÓ„ÂÂÌÚÌÓÒÚË ÑÎË̇ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÈ ÍÓ„ÂÂÌÚÌÓÒÚË – ‡ÒÒÚÓflÌË ‡ÒÔÓÒÚ‡ÌÂÌËfl ÓÚ ÍÓ„ÂÂÌÚÌÓ„Ó ËÒÚÓ˜ÌË͇ ‰Ó ̇˷ÓΠۉ‡ÎÂÌÌÓÈ ÚÓ˜ÍË, „‰Â ˝ÎÂÍÚÓχ„ÌËÚ̇fl ‚ÓÎ̇ ¢ ÒÓı‡ÌflÂÚ ÒÔˆËÙ˘ÂÒÍÛ˛ ÒÚÂÔÂ̸ ÍÓ„ÂÂÌÚÌÓÒÚË. чÌÌÓ ÔÓÌflÚË ËÒÔÓθÁÛÂÚÒfl ‚ ÚÂıÌËÍ ‰‡Î¸ÌÂÈ Ò‚flÁË (Ó·˚˜ÌÓ ‚ ÒËÒÚÂχı ÓÔÚ˘ÂÒÍÓÈ Ò‚flÁË) Ë ÒËÌıÓÚÓÌÌ˚ı ÛÒÚÓÈÒÚ‚‡ı Ò ÂÌÚ„ÂÌÓ‚ÒÍÓÈ ÓÔÚËÍÓÈ (ÒÓ‚ÂÏÂÌÌ˚ ÒËÌıÓÚÓÌÌ˚ ËÒÚÓ˜ÌËÍË Ó·ÂÒÔ˜˂‡˛Ú ‚ÂҸχ ‚˚ÒÓÍÛ˛ ÍÓ„ÂÂÌÚÌÓÒÚ¸ ÂÌÚ„ÂÌÓ‚ÒÍËı ÎÛ˜ÂÈ). ÑÎË̇ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÈ ÍÓ„ÂÂÌÚÌÓÒÚË ÒÓÒÚ‡‚ÎflÂÚ ÓÍÓÎÓ 20 ÒÏ, 100 Ï Ë 100 ÍÏ ‰Îfl „ÂÎËÈ-ÌÂÓÌÓ‚˚ı, ÔÓÎÛÔÓ‚Ó‰ÌËÍÓ‚˚ı Ë ‚ÓÎÓÍÓÌÌ˚ı ·ÁÂÓ‚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ (ÒÏ. ‰ÎË̇ ‚ÂÏÂÌÌÓÈ ÍÓ„ÂÂÌÚÌÓÒÚË, ÍÓÚÓ‡fl ÓÔËÒ˚‚‡ÂÚ ÒÓÓÚÌÓ¯ÂÌË ÏÂÊ‰Û Ò˄̇·ÏË, ̇·Î˛‰‡ÂÏ˚ÏË ‚ ‡ÁÌ˚ ÏÓÏÂÌÚ˚ ‚ÂÏÂÌË). ÑÎË̇ ÒÏ˚͇ÌËfl ÑÎfl Ò‚ÂıÚÂÍÛ˜ÂÈ ÊˉÍÓÒÚË ‰ÎËÌÓÈ ÒÏ˚͇ÌËfl fl‚ÎflÂÚÒfl ‰ÎË̇, ̇ ÔÓÚflÊÂÌËË ÍÓÚÓÓÈ ‚ÓÎÌÓ‚‡fl ÙÛÌ͈Ëfl ÏÓÊÂÚ ËÁÏÂÌflÚ¸Òfl, ÔÓ‰ÓÎʇfl Ô‰ÂθÌÓ ÛÏÂ̸¯‡Ú¸ ˝Ì„˲. ÑÎfl ÍÓ̉ÂÌÒ‡ÚÓ‚ ÅÓÁ–ùÈ̯ÚÂÈ̇ ‰ÎË̇ ÒÏ˚͇ÌËfl – ÔÓ„‡Ì˘̇fl ӷ·ÒÚ¸ Ò ¯ËËÌÓÈ, ̇ ÔÓÚflÊÂÌËË ÍÓÚÓÓÈ ÔÎÓÚÌÓÒÚ¸ ‚ÂÓflÚÌÓÒÚË ÍÓ̉ÂÌÒ‡Ú‡ Ò‚Ó‰ËÚÒfl Í ÌÛβ. éÔÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ Ç ÓÔÚ˘ÂÒÍËı Ë ÚÂÎÂÍÓÏÏÛÌË͇ˆËÓÌÌ˚ı ÒËÒÚÂχı Ò‚flÁË ÓÔÚ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ (ËÎË ÓÔÚ˘ÂÒÍÓÈ ‰ÎËÌÓÈ ÔÛÚË) ̇Á˚‚‡ÂÚÒfl ÔÓȉÂÌÌÓ ҂ÂÚÓÏ ‡ÒÒÚÓflÌËÂ: ÔÓËÁ‚‰ÂÌË ÙËÁ˘ÂÒÍÓÈ ‰ÎËÌ˚ ÔÛÚË ‚ Ò‰ ̇ ÔÓ͇Á‡ÚÂθ ÔÂÎÓÏÎÂÌËfl ˝ÚÓÈ Ò‰˚. èÓ ÔË̈ËÔÛ îÂχ Ò‚ÂÚ ‚Ò„‰‡ ‡ÒÔÓÒÚ‡ÌflÂÚÒfl ÔÓ Ì‡Ë͇ژ‡È¯ÂÏÛ ÓÔÚ˘ÂÒÍÓÏÛ ÔÛÚË. ÑÎfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÌÂÔÂ˚‚Ì˚ı ÒÎÓ‚ Ò ÔÓ͇Á‡ÚÂÎÂÏ ÔÂÎÓÏÎÂÌËfl n(s) Í‡Í ÙÛÌ͈ËË ‡ÒÒÚÓflÌËfl s ÓÔÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË Á‡ÔËÒ˚‚‡ÂÚÒfl ͇Í
∫ n(s) ds. C
351
É·‚‡ 24. ê‡ÒÒÚÓflÌËfl ‚ ÙËÁËÍÂ Ë ıËÏËË
ÑÎfl ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ‰ËÒÍÂÚÌ˚ı ÒÎÓ‚ Ò ÔÓ͇Á‡ÚÂÎflÏË ÔÂÎÓÏÎÂÌËfl ni Ë ÚÓ΢ËÌ˚ si ÓÔÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ‡‚ÌÓ N
δ
∑ ni si = k0 , i =1
„‰Â δ – Ò‰‚Ë„ ÔÓ Ù‡ÁÂ Ë k 0 – ‰ÎË̇ ‚ÓÎÌ˚ ‚ ‚‡ÍÛÛÏÂ. ÄÍÛÒÚ˘ÂÒ͇fl ÏÂÚË͇ Ç ‡ÍÛÒÚËÍ ‡ÍÛÒÚ˘ÂÒ͇fl (ËÎË Á‚ÛÍÓ‚‡fl) ÏÂÚË͇ ı‡‡ÍÚÂËÁÛÂÚ Ò‚ÓÈÒÚ‚‡ ‡ÒÔÓÒÚ‡ÌÂÌËfl Á‚Û͇ ‚ ÍÓÌÍÂÚÌ˚ı Ò‰‡ı: ‚ÓÁ‰ÛıÂ, ‚Ó‰Â Ë Ú.Ô. Ç Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË Ë Í‚‡ÌÚÓ‚ÓÈ „‡‚ËÚ‡ˆËË Ó̇ ı‡‡ÍÚÂËÁÛÂÚ Ò‚ÓÈÒÚ‚‡ ‡ÒÔÓÒÚ‡ÌÂÌËfl Ò˄̇· ‚ ‰‡ÌÌÓÈ ‡Ì‡ÎÓ„Ó‚ÓÈ ÏÓ‰ÂÎË (ÓÚÌÓÒËÚÂθÌÓ ÙËÁËÍË ÒʇÚÓÈ Ï‡ÚÂËË), „‰Â, ̇ÔËÏÂ, ‡ÒÔÓÒÚ‡ÌÂÌË Ò͇ÎflÌÓ„Ó ÔÓÎfl ‚ ËÒÍË‚ÎÂÌÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â-‚ÂÏÂÌË ÏÓ‰ÂÎËÛÂÚÒfl (ÒÏ. ‰Îfl ÔËχ ËÒÒΉӂ‡ÌËfl [BLV05] ‡ÒÔÓÒÚ‡ÌÂÌËÂÏ Á‚Û͇ ‚ ‰‚ËÊÛ˘ÂÈÒfl ÊˉÍÓÒÚË ËÎË Á‡Ï‰ÎÂÌËÂÏ Ò‚ÂÚ‡ ‚ ‰‚ËÊÛ˘ÂÈÒfl ‰Ë˝ÎÂÍÚ˘ÂÒÍÓÈ ÊˉÍÓÒÚË ËÎË ‚ Ò‚ÂıÚÂÍÛ˜ÂÈ ÊˉÍÓÒÚË (Í‚‡Á˘‡ÒÚˈ˚ ‚ Í‚‡ÌÚÓ‚ÓÈ ÊˉÍÓÒÚË) Ë Ú.Ô. èÓıÓʉÂÌË Ò˄̇· ˜ÂÂÁ ‡ÍÛÒÚ˘ÂÒÍÛ˛ ÏÂÚËÍÛ ËÁÏÂÌflÂÚ Ò‡ÏÛ ÏÂÚËÍÛ; ̇ÔËÏÂ, ‡ÒÔÓÒÚ‡ÌÂÌË Á‚Û͇ ‚ ‚ÓÁ‰Û¯ÌÓÈ Ò‰ ‚˚Á˚‚‡ÂÚ ÔÂÂÏ¢ÂÌË ‚ÓÁ‰Ûı‡ Ë ÔË‚Ó‰ËÚ Í ÎÓ͇θÌÓÏÛ ËÁÏÂÌÂÌ˲ ÒÍÓÓÒÚË Á‚Û͇. í‡Í‡fl ˝ÙÙÂÍÚ˂̇fl (Ú.Â. ˉÂÌÚËÙˈËÛÂχfl ÔÓ Â ˝ÙÙÂÍÚÛ) ÏÂÚË͇ ãÓÂ̈‡ (ÒÏ. „Î. 7) „ÛÎËÛÂÚ ‚ÏÂÒÚÓ ÙÓÌÓ‚ÓÈ ÏÂÚËÍË ‡ÒÔÓÒÚ‡ÌÂÌË ÍÓη‡ÌËÈ: ‚ӂΘÂÌÌ˚ ‚ ÔÂÚÛ·‡ˆËË ˜‡ÒÚˈ˚ ÔÂÂÏ¢‡˛ÚÒfl ÔÓ „ÂÓ‰ÂÁ˘ÂÒÍËÏ ˝ÚÓÈ ÏÂÚËÍË. àÏÂÌÌÓ, ÂÒÎË ÊˉÍÓÒÚ¸ fl‚ÎflÂÚÒfl ·‡ÓÚÓÔÌÓÈ Ë Ì‚flÁÍÓÈ, ‡ ÔÓÚÓÍ ·ÂÁ‚Ëı‚˚Ï, ÚÓ ‡ÒÔÓÒÚ‡ÌÂÌË Á‚Û͇ ÓÔËÒ˚‚‡ÂÚÒfl ‡ÍÛÒÚ˘ÂÒÍÓÈ ÏÂÚËÍÓÈ, ÍÓÚÓ‡fl Á‡‚ËÒËÚ ÓÚ ÔÎÓÚÌÓÒÚË ρ ÔÓÚÓ͇, ‚ÂÍÚÓ‡ ÒÍÓÓÒÚË v ÔÓÚÓ͇ Ë ÎÓ͇θÌÓÈ ÒÍÓÓÒÚË s Á‚Û͇ ‚ ÊˉÍÓÒÚË. é̇ ÏÓÊÂÚ ·˚Ú¸ ‚˚‡ÊÂ̇ Í‡Í ‡ÍÛÒÚ˘ÂÒÍËÈ ÚÂÌÁÓ −( s 2 − v 2 ) M ρ g = g(t, x ) = L s M −v
−vT L , 13
„‰Â 13 – ‰ËÌ˘̇fl 3 × 3 χÚˈ‡ Ë v = || v ||. ÄÍÛÒÚ˘ÂÒÍËÈ ÎËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Í‡Í ds 2 =
ρ ρ ( −( s 2 − v 2 ) dt 2 − 2 v dx dt + ( dx )2 ) = ( − s 2 dt 2 + ( dx − v dt )2 ). s s
ë˄̇ÚÛ‡ ˝ÚÓÈ ÏÂÚËÍË ‡‚̇ (3, 1), Ú.Â. Ó̇ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ãÓÂ̈‡. ÖÒÎË ÒÍÓÓÒÚ¸ ÊˉÍÓÒÚË ÒÚ‡ÌÓ‚ËÚÒfl Ò‚ÂıÁ‚ÛÍÓ‚ÓÈ, ÚÓ Á‚ÛÍÓ‚˚ ‚ÓÎÌ˚ ÛÊ Ì ÏÓ„ÛÚ ‚ÓÁ‚‡ÚËÚ¸Òfl ̇Á‡‰, Ú.Â. ÒÛ˘ÂÒÚ‚ÛÂÚ ÌÂ͇fl ÌÂχfl ‰˚‡, ‡ÍÛÒÚ˘ÂÒÍËÈ ‡Ì‡ÎÓ„ ˜ÂÌÓÈ ‰˚˚. éÔÚ˘ÂÒÍË ÏÂÚËÍË Ú‡ÍÊ ËÒÔÓθÁÛ˛ÚÒfl ‚ ‡Ì‡ÎÓ„Ó‚ÓÏ Ô‰ÒÚ‡‚ÎÂÌËË „‡‚ËÚ‡ˆËË Ë ÚÂıÌË͇ı ˝ÙÙÂÍÚË‚Ì˚ı ÏÂÚËÍ; ÓÌË ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú Ô‰ÒÚ‡‚ÎÂÌ˲ „‡‚ËÚ‡ˆËÓÌÌÓ„Ó ÔÓÎfl Í‡Í ˝Í‚Ë‚‡ÎÂÌÚÌÓÈ ÓÔÚ˘ÂÒÍÓÈ Ò‰˚, „‰Â χ„ÌËÚ̇fl ÔÓÌˈ‡ÂÏÓÒÚ¸ ‡‚̇ ˝ÎÂÍÚ˘ÂÒÍÓÈ. åÂÚ˘ÂÒ͇fl ÚÂÓËfl „‡‚ËÚ‡ˆËË åÂÚ˘ÂÒ͇fl ÚÂÓËfl „‡‚ËÚ‡ˆËË Ô‰ÔÓ·„‡ÂÚ ÒÛ˘ÂÒÚ‚Ó‚‡ÌË ÒËÏÏÂÚ˘ÌÓÈ ÏÂÚËÍË (‡ÒÒχÚË‚‡ÂÏÓÈ Í‡Í Ò‚ÓÈÒÚ‚Ó Ò‡ÏÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡), ÍÓÚÓÓÈ ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú Ï‡ÚÂËfl Ë Ì„‡‚ËÚ‡ˆËÓÌÌ˚ ÔÓÎfl. ùÚË ÚÂÓËË ‡Á΢‡˛ÚÒfl ÔÓ ÚËÔÛ
352
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
‰ÓÔÓÎÌËÚÂθÌ˚ı „‡‚ËÚ‡ˆËÓÌÌ˚ı ÔÓÎÂÈ, Ò͇ÊÂÏ, ‚ Á‡‚ËÒËÏÓÒÚË ËÎË ÌÂÁ‡‚ËÒËÏÓÒÚË ÓÚ ÏÂÒÚÓÔÓÎÓÊÂÌËfl Ë/ËÎË ÒÍÓÓÒÚË ÎÓ͇θÌ˚ı ÒËÒÚÂÏ. é‰ÌÓÈ ËÁ Ú‡ÍËı Ë fl‚ÎflÂÚÒfl Ó·˘‡fl ÚÂÓËfl ÓÚÌÓÒËÚÂθÌÓÒÚË; Ó̇ ‡ÒÒχÚË‚‡ÂÚ ÚÓθÍÓ Ó‰ÌÓ „‡‚ËÚ‡ˆËÓÌÌÓ ÔÓÎÂ, Ò‡ÏÛ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ-‚ÂÏÂÌÌÛ˛ ÏÂÚËÍÛ, Ë ÔÓ‰˜ËÌflÂÚÒfl ˝È̯ÚÂÈÌÓ‚ÒÍÓÏÛ ‰ËÙÙÂÂ̈ˇθÌÓÏÛ Û‡‚ÌÂÌ˲ Ò ˜‡ÒÚÌ˚ÏË ÔÓËÁ‚Ó‰Ì˚ÏË. ùÏÔˢÂÒÍËÏ ÔÛÚÂÏ ·˚ÎÓ ÓÔ‰ÂÎÂÌÓ, ˜ÚÓ, ÔÓÏËÏÓ ÍÓÌÙÓÏÌÓ ÔÎÓÒÍÓÈ Ò͇ÎflÌÓÈ ÚÂÓËË çÓ‰ÒÚÂχ (1913), β·‡fl ‰Û„‡fl ÏÂÚ˘ÂÒ͇fl ÚÂÓËfl „‡‚ËÚ‡ˆËË ÔË‚ÌÓÒËÚ ‰ÓÔÓÎÌËÚÂθÌ˚ „‡‚ËÚ‡ˆËÓÌÌ˚ ÔÓÎfl. 䂇ÌÚÓ‚˚ ÏÂÚËÍË ä‚‡ÌÚÓ‚‡fl ÏÂÚË͇ – Ó·˘ËÈ ÚÂÏËÌ, ËÒÔÓθÁÛÂÏ˚È ‰Îfl ÏÂÚËÍË, Ò ÔÓÏÓ˘¸˛ ÍÓÚÓÓÈ Ô‰ÔÓ·„‡ÂÚÒfl ÓÔËÒ‡Ú¸ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ÔÓ Í‚‡ÌÚÓ‚ÓÈ ¯Í‡Î (Ú.Â. ÔÓfl‰Í‡ ‰ÎËÌ˚ è·Ì͇ lP). ùÍÒÚ‡ÔÓÎËÛfl ‡Ò˜ÂÚ˚ Í‡Í Í‚‡ÌÚÓ‚ÓÈ ÏÂı‡ÌËÍË, Ú‡Í Ë Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË, ÏÂÚ˘ÂÒ͇fl ÒÚÛÍÚÛ‡ ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÍÓη‡ÌËfl ‚‡ÍÛÛχ Ò ‚ÂҸχ ‚˚ÒÓÍÓÈ ˝Ì„ËÂÈ (1019 É˝Ç, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ Ï‡ÒÒ è·Ì͇ mP), ˜ÚÓ ÒÓÁ‰‡ÂÚ ˜ÂÌ˚ ‰˚˚ Ò ‡‰ËÛÒ‡ÏË ÔÓfl‰Í‡ lP. èÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ÒÚ‡ÌÓ‚ËÚÒfl "Í‚‡ÌÚÓ‚ÓÈ ÔÂÌÓÈ" Ò ÏÓ˘Ì˚ÏË ‰ÂÙÓχˆËflÏË Ë ÚÛ·ÛÎÂÌÚÌÓÒÚ¸˛. éÌÓ ÚÂflÂÚ „·‰ÍÛ˛ ÌÂÔÂ˚‚ÌÛ˛ ÒÚÛÍÚÛÛ (̇·Î˛‰‡ÂÏÛ˛ ̇ χÍÓÒÍÓÔ˘ÂÒÍÓÏ ÛÓ‚ÌÂ), ËχÌÓ‚‡ ÏÌÓ„ÓÓ·‡ÁËfl, Ë ÒÚ‡ÌÓ‚ËÚÒfl ‰ËÒÍÂÚÌ˚Ï, Ù‡ÍڇθÌ˚Ï, ̉ËÙÙÂÂ̈ËÛÂÏ˚Ï: ̇ ÛÓ‚Ì ‚Â΢ËÌ˚ lP ÔÓËÒıÓ‰ËÚ ‡Á˚‚ ÙÛÌ͈ËÓ̇θÌÓ„Ó ËÌÚ„‡Î‡ ‚ Í·ÒÒ˘ÂÒÍËı Û‡‚ÌÂÌËflı ÔÓÎfl. èËÏÂ˚ Í‚‡ÌÚÓ‚Ó„Ó ÏÂÚ˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ Ô‰ÒÚ‡‚ÎÂÌ˚ ÍÓÏÔ‡ÍÚÌ˚Ï Í‚‡ÌÚÓ‚˚Ï ÏÂÚ˘ÂÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÓÏ êËÙÙÂÎfl, ÏÂÚËÍÓÈ îÛ·ËÌË–òÚÛ‰Ë Ì‡ Í‚‡ÌÚÓ‚˚ı ÒÓÒÚÓflÌËflı, ÒÚ‡ÚËÒÚ˘ÂÒÍÓÈ „ÂÓÏÂÚËÂÈ Ì˜ÂÚÍÓ ÓÔ‰ÂÎÂÌÌ˚ı χÒÒ [ReRo01] Ë Í‚‡ÌÚÓ‚‡ÌËÂÏ ÏÂÚ˘ÂÒÍÓ„Ó ÍÓÌÛÒ‡ („Î. 1) [IsKuPe90]. 䂇ÌڇθÌ˚ ‡ÒÒÚÓflÌËfl 䂇ÌڇθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û Í‚‡ÌÚÓ‚˚ÏË ÒÓÒÚÓflÌËflÏË, Ô‰ÒÚ‡‚ÎÂÌÌ˚ÏË ‚ ‚ˉ ÓÔ‡ÚÓÓ‚ ÔÎÓÚÌÓÒÚË (Ú.Â. ÔÓÎÓÊËÚÂθÌ˚ı ÓÔ‡ÚÓÓ‚ Ò Â‰ËÌ˘Ì˚Ï ÒΉÓÏ) ‚ ÍÓÏÔÎÂÍÒÌÓÏ ÔÓÂÍÚË‚ÌÓÏ ÔÓÒÚ‡ÌÒڂ ̇‰ ·ÂÒÍÓ̘ÌÓÏÂÌ˚Ï „Ëθ·ÂÚÓ‚˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. Ö„Ó m-ÏÂÌ˚È ‚‡Ë‡ÌÚ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ m-ÍÛ·ËÚÓ‚˚Ï Í‚‡ÌÚÛÏÌ˚Ï ÒÓÒÚÓflÌËflÏ, Ô‰ÒÚ‡‚ÎÂÌÌ˚Ï 2m × 2m χÚˈ‡ÏË ÔÎÓÚÌÓÒÚË. èÛÒÚ¸ X Ó·ÓÁ̇˜‡ÂÚ ÏÌÓÊÂÒÚ‚Ó ‚ÒÂı ÓÔ‡ÚÓÓ‚ ÔÎÓÚÌÓÒÚË ‚ ‰‡ÌÌÓÏ „Ëθ·ÂÚÓ‚ÓÏ ÔÓÒÚ‡ÌÒÚ‚Â. ÑÎfl ‰‚Ûı ‰‡ÌÌ˚ı Í‚‡ÌÚÛÏÌ˚ı ÒÓÒÚÓflÌËÈ, Ô‰ÒÚ‡‚ÎÂÌÌ˚ı ÓÔ‡ÚÓ‡ÏË ÔÎÓÚÌÓÒÚË x, y ∈ X, ÛÔÓÏflÌÂÏ ÒÎÂ‰Û˛˘Ë ‡ÒÒÚÓflÌËfl ̇ X. åÂÚË͇ ÌÓÏ˚ ÉËθ·ÂÚ‡–òÏˉڇ (ÒÏ. „Î. 13) ‡‚̇
Tr(( x − y)2 ), „‰Â
|| A ||2 = Tr( At A) ÂÒÚ¸ ÌÓχ ÉËθ·ÂÚ‡–òÏˉڇ ÓÔ‡ÚÓ‡ A. åÂÚË͇ ÒΉӂÓÈ ÌÓÏ˚ (ÒÏ. „Î. 12) ‡‚̇ || x – y ||, „‰Â || A ||tr = Tr ( AT A) ÂÒÚ¸ ÒΉӂ‡fl ÌÓχ ÓÔ‡ÚÓ‡ A. å‡ÍÒËχθ̇fl ‚ÂÓflÚÌÓÒÚ¸ ÚÓ„Ó, ˜ÚÓ Ò ÔÓÏÓ˘¸˛ 1 Í‚‡ÌÚÓ‚Ó„Ó ËÁÏÂÂÌËfl ÏÓÊÌÓ ·Û‰ÂÚ ÓÚ΢ËÚ¸ x ÓÚ y, ‡‚̇ || x − y ||tr . 2 ê‡ÒÒÚÓflÌË ÅÛÂÒ‡ ‡‚ÌÓ
2(1 − Tr (( xy x )2 )) (ÒÏ. åÂÚË͇ ÅÛÂÒ‡, „Î. 7).
ÑÓÒÚÓ‚Â̇fl ÔÓ‰Ó·ÌÓÒÚ¸ ‡‚̇ Tr (( xy x )2 )). ê‡ÒÒÚÓflÌË ɇ‰‰Â‡ ‡‚ÌÓ inf{λ ∈ [0, 1]: (1 – λ) x + λx' = (1 – λ) x + λx'; x'y' ∈ X}. Ç ‰ÂÈÒÚ‚ËÚÂθÌÓÒÚË, X fl‚ÎflÂÚÒfl ‚˚ÔÛÍÎ˚Ï, Ú.Â. λx + (1 – λ) y ∈ X ‚ÒflÍËÈ ‡Á, ÍÓ„‰‡ x, y ∈ X Ë λ ∈ (0, 1).
É·‚‡ 24. ê‡ÒÒÚÓflÌËfl ‚ ÙËÁËÍÂ Ë ıËÏËË
353
èËχÏË ‰Û„Ëı ‡ÒÒÚÓflÌËÈ, ÔËÏÂÌflÂÏ˚ı ‚ ˝ÚÓÈ Ó·Î‡ÒÚË, fl‚Îfl˛ÚÒfl ÏÂÚË͇ ÌÓÏ˚ îÓ·ÂÌËÛÒ‡ (ÒÏ. „Î. 12), ÏÂÚË͇ ëÓ·Ó΂‡ (ÒÏ. „Î. 13), ÏÂÚË͇ åÓÌʇ– ä‡ÌÚÓӂ˘‡ (ÒÏ. „Î. 21).
24.2. êÄëëíéüçàü Ç ïàåàà éÒÌÓ‚Ì˚ ıËÏ˘ÂÒÍË ‚¢ÂÒÚ‚‡ fl‚Îfl˛ÚÒfl ËÓÌÌ˚ÏË (Ú.Â. ÒÍÂÔÎÂÌ˚ ËÓÌÌ˚ÏË Ò‚flÁflÏË), ÏÂÚ‡Î΢ÂÒÍËÏË (·Óθ¯ËÏË ÒÚÛÍÚÛ‡ÏË Ò ÔÎÓÚÌÓÈ ÛÔ‡ÍÓ‚ÍÓÈ ÍËÒÚ‡Î΢ÂÒÍÓÈ Â¯ÂÚÍË, ÒÍÂÔÎÂÌÌ˚ÏË ÏÂÚ‡Î΢ÂÒÍËÏË Ò‚flÁflÏË), „Ë„‡ÌÚÒÍËÏË ÍÓ‚‡ÎÂÌÚÌ˚ÏË (͇Í, ̇ÔËÏÂ, ‡ÎχÁ˚ Ë „‡ÙËÚ˚) ËÎË ÏÓÎÂÍÛÎflÌ˚ÏË (χÎ˚ÏË ÍÓ‚‡ÎÂÌÚÌ˚ÏË). åÓÎÂÍÛÎ˚ ÒÓÒÚÓflÚ ËÁ ÓÔ‰ÂÎÂÌÌÓ„Ó ÍÓ΢ÂÒÚ‚‡ ‡ÚÓÏÓ‚, ÒÍÂÔÎÂÌÌ˚ı ÏÂÊ‰Û ÒÓ·ÓÈ ÍÓ‚‡ÎÂÌÚÌ˚ÏË Ò‚flÁflÏË; Ëı ‡ÁÏÂ˚ ÍÓηβÚÒfl ÓÚ Ï‡Î˚ı (Ó‰ÌÓ‡ÚÓÏÌ˚ı ÏÓÎÂÍÛΠ‰ÍËı „‡ÁÓ‚) ‰Ó „Ë„‡ÌÚÒÍËı ÏÓÎÂÍÛÎ (ÚËÔ‡ ÔÓÎËÏÂÓ‚ ËÎË Ñçä). åÂʇÚÓÏÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ‡ÚÓχÏË – ‡ÒÒÚÓflÌË (‚ ‡Ì„ÒÚÂχı ËÎË ÔËÍÓÏÂÚ‡ı) ÏÂÊ‰Û Ëı fl‰‡ÏË. ÄÚÓÏÌ˚È ‡‰ËÛÒ ä‚‡ÌÚÓ‚‡fl ÏÂı‡ÌË͇ Ô‰ÔÓ·„‡ÂÚ, ˜ÚÓ ‡ÚÓÏ Ì fl‚ÎflÂÚÒfl ¯‡ÓÏ Ò ˜ÂÚÍÓ Ó·ÓÁ̇˜ÂÌÌ˚ÏË „‡Ìˈ‡ÏË. ëÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‡ÚÓÏÌ˚È ‡‰ËÛÒ ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‡ÒÒÚÓflÌË ÓÚ fl‰‡ ‡ÚÓχ ‰Ó ̇˷ÓΠÒÚ‡·ËθÌÓ„Ó ˝ÎÂÍÚÓ̇, Ó·‡˘‡˛˘Â„ÓÒfl ̇ Ó·ËÚ ‚ÓÍÛ„ ‡ÚÓχ, ̇ıÓ‰fl˘Â„ÓÒfl ‚ Û‡‚Ìӂ¯ÂÌÌÓÏ ÒÓÒÚÓflÌËË. ÄÚÓÏÌ˚ ‡‰ËÛÒ˚ Ô‰ÒÚ‡‚Îfl˛Ú ÒÓ·ÓÈ ‡ÁÏÂ˚ ÓÚ‰ÂθÌ˚ı, ˝ÎÂÍÚ˘ÂÒÍË ÌÂÈڇθÌ˚ı ‡ÚÓÏÓ‚, ̇ ÍÓÚÓ˚ Ì ‚ÓÁ‰ÂÈÒÚ‚Û˛Ú ÌË͇ÍË ҂flÁË. ÄÚÓÏÌ˚ ‡‰ËÛÒ˚ ‡ÒÒ˜ËÚ˚‚‡˛ÚÒfl ÔÓ ‡ÒÒÚÓflÌËflÏ ıËÏ˘ÂÒÍÓÈ Ò‚flÁË, ÂÒÎË ‡ÚÓÏ˚ ˝ÎÂÏÂÌÚ‡ Ó·‡ÁÛ˛Ú Ò‚flÁË; ‚ ËÌ˚ı ÒÎÛ˜‡flı (̇ÔËÏÂ, ‰Îfl ‰ÍËı „‡ÁÓ‚) ËÒÔÓθÁÛ˛ÚÒfl ÚÓθÍÓ ‡‰ËÛÒ˚ LJÌ-‰Â-LJ‡Î¸Ò‡. ÄÚÓÏÌ˚ ‡‰ËÛÒ˚ Û‚Â΢˂‡˛ÚÒfl ‰Îfl ÚÂı ˝ÎÂÏÂÌÚÓ‚, ÍÓÚÓ˚ ‡ÒÔÓÎÓÊÂÌ˚ ÌËÊ ÔÓ ÒÚÓηˆÛ (ËÎË Î‚Â ÔÓ ÒÚÓÍÂ) èÂËӉ˘ÂÒÍÓÈ Ú‡·Îˈ˚ åẨÂ΂‡. ê‡ÒÒÚÓflÌË ıËÏ˘ÂÒÍÓÈ Ò‚flÁË ê‡ÒÒÚÓflÌË ıËÏ˘ÂÒÍÓÈ Ò‚flÁË (ËÎË ‰ÎË̇ Ò‚flÁË) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û fl‰‡ÏË ‰‚Ûı Ò‚flÁ‡ÌÌ˚ı ‡ÚÓÏÓ‚. í‡Í, ̇ÔËÏÂ, ÚËÔÓ‚˚ÏË ‡ÒÒÚÓflÌËflÏË Ò‚flÁË ‰Îfl Û„ÎÂÓ‰Û„ÎÂÓ‰ËÒÚ˚ı Ò‚flÁÂÈ ‚ Ó„‡Ì˘ÂÒÍÓÈ ÏÓÎÂÍÛΠfl‚Îfl˛ÚÒfl 1,53, 1,34 Ë 1,20 Å ‰Îfl Ó‰ËÌÓ˜ÌÓÈ, ‰‚ÓÈÌÓÈ Ë ÚÓÈÌÓÈ Ò‚flÁÂÈ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. Ç Á‡‚ËÒËÏÓÒÚË ÓÚ ÚËÔ‡ Ò‚flÁË ˝ÎÂÏÂÌÚ‡ Â„Ó ‡ÚÓÏÌ˚È ‡‰ËÛÒ Ì‡Á˚‚‡ÂÚÒfl ÍÓ‚‡ÎÂÌÚÌ˚Ï ËÎË ÏÂÚ‡Î΢ÂÒÍËÏ. åÂÚ‡Î΢ÂÒÍËÈ ‡‰ËÛÒ ‡‚ÂÌ ÔÓÎÓ‚ËÌ ÏÂÚ‡Î΢ÂÒÍÓ„Ó ‡ÒÒÚÓflÌËfl, Ú.Â. ̇ËÏÂ̸¯Â„Ó fl‰ÂÌÓ„Ó ‡ÒÒÚÓflÌËfl ‚ ÏÂÚ‡Î΢ÂÒÍÓÏ ÍËÒÚ‡ÎΠ(ÔÎÓÚÌÓ ÛÔ‡ÍÓ‚‡ÌÌÓÈ ÍËÒÚ‡Î΢ÂÒÍÓÈ Â¯ÂÚÍ ÏÂÚ‡Î΢ÂÒÍÓ„Ó ˝ÎÂÏÂÌÚ‡). äÓ‚‡ÎÂÌÚÌ˚ ‡‰ËÛÒ˚ ‡ÚÓÏÓ‚ (˝ÎÂÏÂÌÚÓ‚, Ó·‡ÁÛ˛˘Ëı ÍÓ‚‡ÎÂÌÚÌ˚ ҂flÁË) ‡ÒÒ˜ËÚ˚‚‡˛ÚÒfl ÔÓ ‡ÒÒÚÓflÌËÂÏ ıËÏ˘ÂÒÍÓÈ Ò‚flÁË ÏÂÊ‰Û Ô‡‡ÏË ‡ÚÓÏÓ‚, Ò‚flÁ‡ÌÌ˚ı ÍÓ‚‡ÎÂÌÚÌÓ: ˝ÚË ‡ÒÒÚÓflÌËfl Ò‚flÁË ‡‚Ì˚ ÒÛÏÏ ÍÓ‚‡ÎÂÌÚÌ˚ı ‡‰ËÛÒÓ‚ ‰‚Ûı ‡ÚÓÏÓ‚. ÖÒÎË ‰‚‡ ‡ÚÓχ fl‚Îfl˛ÚÒfl Ó‰ÌÓÚËÔÌ˚ÏË, ÚÓ Ëı ÍÓ‚‡ÎÂÌÚÌ˚È ‡‰ËÛÒ ‡‚ÂÌ ÔÓÎÓ‚ËÌ Ëı ‡ÒÒÚÓflÌËfl ıËÏ˘ÂÒÍÓÈ Ò‚flÁË. äÓ‚‡ÎÂÌÚÌ˚ ‡‰ËÛÒ˚ ‰Îfl ˝ÎÂÏÂÌÚÓ‚, ‡ÚÓÏ˚ ÍÓÚÓ˚ı Ì ÏÓ„ÛÚ Ò‚flÁ˚‚‡Ú¸Òfl ‰Û„ Ò ‰Û„ÓÏ, ‚˚˜ËÒÎfl˛ÚÒfl ÔÓÒ‰ÒÚ‚ÓÏ ÍÓÏ·ËÌËÓ‚‡ÌËfl ‚ ‡Á΢Ì˚ı ÏÓÎÂÍÛ·ı, ‡‰ËÛÒÓ‚ ÚÂı ‡ÚÓÏÓ‚, ÍÓÚÓ˚ ҂flÁ˚‚‡˛ÚÒfl, Ò ‡ÒÒÚÓflÌËÂÏ ıËÏ˘ÂÒÍÓÈ Ò‚flÁË ÏÂÊ‰Û Ô‡‡ÏË ‡ÚÓÏÓ‚ ‡Á΢Ì˚ı ÚËÔÓ‚.
354
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
äÓÌÚ‡ÍÚÌÓ ‡ÒÒÚÓflÌË LJÌ-‰Â-LJ‡Î¸Ò‡ èË ËÁÛ˜ÂÌËË ÏÂÊÏÓÎÂÍÛÎflÌ˚ı ‡ÒÒÚÓflÌËÈ ‡ÚÓÏ˚ ‡ÒÒÏÓÚË‚‡˛ÚÒfl Í‡Í Ú‚Â‰˚ ÒÙÂ˚. è‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ ÒÙÂ˚ ‰‚Ûı ÒÓÒ‰ÌËı ÌÂÒ‚flÁ‡ÌÌ˚ı ‡ÚÓÏÓ‚ (‚ ÒÓÔË͇҇˛˘ËıÒfl ÏÓÎÂÍÛ·ı ËÎË ‡ÚÓχı), Î˯¸ ͇҇˛ÚÒfl ‰Û„ ‰Û„‡. ëΉӂ‡ÚÂθÌÓ, Ëı ÏÂʇÚÓÏÌÓ ‡ÒÒÚÓflÌËÂ, ̇Á˚‚‡ÂÏÓ ÍÓÌÚ‡ÍÚÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Ç‡Ì‰Â-LJ‡Î¸Ò‡, fl‚ÎflÂÚÒfl ÒÛÏÏÓÈ ‡‰ËÛÒÓ‚, ̇Á˚‚‡ÂÏ˚ı ‡‰ËÛÒ‡ÏË Ç‡Ì-‰Â-LJ‡Î¸Ò‡, Ëı ڂ‰˚ı ÒÙÂ. ꇉËÛÒ Ç‡Ì-‰Â-LJ‡Î¸Ò‡ ‰Îfl Û„ÎÂÓ‰‡ ÒÓÒÚ‡‚ÎflÂÚ 1,7 Å, ÚÓ„‰‡ Í‡Í Â„Ó ÍÓ‚‡ÎÂÌÚÌ˚È ‡‰ËÛÒ – 0,76 Å. äÓÌÚ‡ÍÚÌÓ ‡ÒÒÚÓflÌË LJÌ-‰Â-LJ‡Î¸Ò‡ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ "Ò··ÓÈ Ò‚flÁË", ÍÓ„‰‡ ÒËÎ˚ ÓÚÚ‡ÎÍË‚‡ÌËfl ˝ÎÂÍÚÓÌÌ˚ı Ó·ÓÎÓ˜ÂÍ Ô‚˚¯‡˛Ú ÒËÎ˚ ãÓ̉Ó̇ (˝ÎÂÍÚÓÒÚ‡Ú˘ÂÒÍÓ„Ó ÔËÚfl„Ë‚‡ÌËfl). åÂÊËÓÌÌÓ ‡ÒÒÚÓflÌË àÓÌ – ˝ÚÓ ‡ÚÓÏ, ӷ·‰‡˛˘ËÈ ÔÓÎÓÊËÚÂθÌ˚Ï ËÎË ÓÚˈ‡ÚÂθÌ˚Ï Á‡fl‰ÓÏ. åÂÊËÓÌÌÓ ‡ÒÒÚÓflÌË ÂÒÚ¸ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆÂÌÚ‡ÏË ‰‚Ûı ÒÓÒ‰ÌËı (Ò‚flÁ‡ÌÌ˚ı) ËÓÌÓ‚. àÓÌÌ˚È ‡‰ËÛÒ ‡ÒÒ˜ËÚ˚‚‡ÂÚÒfl ÔÓ ‡ÒÒÚÓflÌ˲ ËÓÌÌÓÈ Ò‚flÁË ‚ ‡θÌ˚ı ÏÓÎÂÍÛ·ı Ë ÍËÒڇηı. àÓÌÌ˚È ‡‰ËÛÒ Í‡ÚËÓÌÓ‚ (ÔÓÎÓÊËÚÂθÌ˚ı ËÓÌÓ‚, ̇ÔËÏÂ, ̇ÚËfl Na+) ÏÂ̸¯Â ‡ÚÓÏÌÓ„Ó ‡‰ËÛÒ‡ ‡ÚÓÏÓ‚, ËÁ ÍÓÚÓ˚ı ÓÌË ‚˚¯ÎË, ÚÓ„‰‡ Í‡Í ‡ÌËÓÌ˚ (ÓÚˈ‡ÚÂθÌ˚ ËÓÌ˚, ̇ÔËÏÂ, ıÎÓ‡ Cl– ) ÔÓ ‡ÁÏÂÛ ·Óθ¯Â ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ‡ÚÓÏÓ‚. ÉˉӉË̇Ï˘ÂÒÍËÈ ‡‰ËÛÒ ÉˉӉË̇Ï˘ÂÒÍËÈ ‡‰ËÛÒ ÏÓÎÂÍÛÎ˚ ‚ ÏÓÏÂÌÚ ‰ËÙÙÛÁËË ‚ ‡ÒÚ‚Ó fl‚ÎflÂÚÒfl „ËÔÓÚÂÚ˘ÂÒÍËÏ ‡‰ËÛÒÓÏ Ú‚Â‰ÓÈ ÒÙÂ˚, ÍÓÚÓ‡fl ‡ÒÚ‚ÓflÂÚÒfl Ò ÚÓÈ Ê ÒÍÓÓÒÚ¸˛. чθÌÓÒÚ¸ ‰ÂÈÒÚ‚Ëfl ÏÓÎÂÍÛÎflÌ˚ı ÒËÎ åÓÎÂÍÛÎflÌ˚ ÒËÎ˚ (ËÎË ÒËÎ˚ ÏÂÊÏÓÎÂÍÛÎflÌÓ„Ó ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl) ‚Íβ˜‡˛Ú ‚ Ò·fl ÒÎÂ‰Û˛˘Ë ˝ÎÂÍÚÓχ„ÌËÚÌ˚ ÒËÎ˚: ËÓÌ̇fl Ò‚flÁ¸ (Á‡fl‰), ‚Ó‰ÓӉ̇fl Ò‚flÁ¸ (·ËÔÓÎfl̇fl), ‰‚Ûı‰ËÔÓθÌÓ ‚Á‡ËÏÓ‰ÂÈÒÚ‚ËÂ, ÒËÎ˚ ãÓ̉Ó̇ (ÔËÚfl„Ë‚‡˛˘‡fl ÒÓÒÚ‡‚Îfl˛˘‡fl ÒËΠLJÌ-‰Â-LJ‡Î¸Ò‡) Ë ÒÚ¢ÂÒÍÓ„Ó ÓÚÚ‡ÎÍË‚‡ÌËfl (ÓÚÚ‡ÎÍË‚‡˛˘‡fl ÒÓÒÚ‡‚Îfl˛˘‡fl ÒËΠLJÌ-‰Â-LJ‡Î¸Ò‡). ÖÒÎË ‡ÒÒÚÓflÌË (ÏÂÊ‰Û ‰‚ÛÏfl ÏÓÎÂÍÛ·ÏË ËÎË ‡ÚÓχÏË) ‡‚ÌÓ d, ÚÓ (ÓÔ‰ÂÎÂÌÓ ˝ÍÒÔÂËÏÂÌڇθÌÓ) ÙÛÌ͈Ëfl ÔÓÚÂ̈ˇθÌÓÈ ˝Ì„ËË P Ó·‡ÚÌÓ ÔÓÔÓˆËÓ̇θ̇ dn Ò n = 1, 3, 3, 6, 12 ‰Îfl ÔflÚË ‚˚¯ÂÔ˂‰ÂÌÌ˚ı ÒËÎ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. чθÌÓÒÚ¸ (ËÎË ‡‰ËÛÒ) ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl Ò˜ËÚ‡ÂÚÒfl ÍÓÓÚÍÓÈ, ÂÒÎË P ·˚ÒÚÓ ÔË·ÎËʇÂÚÒfl Í 0 ÔÓ Ï ۂÂ΢ÂÌËfl d. é̇ Ú‡ÍÊ ̇Á˚‚‡ÂÚÒfl ÍÓÓÚÍÓÈ, ÂÒÎË ‡‚̇ Ì Ô‚ÓÒıÓ‰ËÚ 3 Å; ÒΉӂ‡ÚÂθÌÓ, ÍÓÓÚÍÓÈ fl‚ÎflÂÚÒfl ÚÓθÍÓ ‰‡Î¸ÌÓÒÚ¸ ÒÚ¢ÂÒÍÓ„Ó ÓÚÚ‡ÎÍË‚‡ÌËfl (ÒÏ. ‰‡Î¸ÌÓÒÚ¸ ‰ÂÈÒÚ‚Ëfl ÙÛ̉‡ÏÂÌڇθÌ˚ı ÒËÎ). ç‡ÔËÏÂ: ‰Îfl ÔÓÎË˝ÎÂÍÚÓÎËÚ˘ÂÒÍËı ‡ÒÚ‚ÓÓ‚ ‰‡Î¸ÌÓ‰ÂÈÒÚ‚Û˛˘‡fl ËÓÌ̇fl ÒË· ‚Ó‰‡-‡ÒÚ‚ÓËÚÂθ ÒÓÔÂÌ˘‡ÂÚ Ò ÏÂ̸¯ÂÈ ÔÓ ‰‡Î¸ÌÓÒÚË Ò‚flÁÛ˛˘ÂÈ ÒËÎÓÈ ‚Ó‰‡-‚Ó‰‡ (‚Ó‰ÓӉ̇fl Ò‚flÁ¸). ïËÏ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ê‡Á΢Ì˚ ıËÏ˘ÂÒÍË ÒËÒÚÂÏ˚ (‰ËÌ˘Ì˚ ÏÓÎÂÍÛÎ˚, Ëı Ù‡„ÏÂÌÚ˚, ÍËÒÚ‡ÎÎ˚, ÔÓÎËÏÂ˚, Í·ÒÚÂ˚) ıÓÓ¯Ó Ô‰ÒÚ‡‚Îfl˛ÚÒfl ‚ ‚ˉ „‡ÙÓ‚, Û ÍÓÚÓ˚ı ‚¯ËÌ˚ (Ò͇ÊÂÏ, ‡ÚÓÏ˚, ÏÓÎÂÍÛÎ˚, ‰ÂÈÒÚ‚Û˛˘ËÂ Í‡Í ÏÓÌÓÏÂ˚, Ù‡„ÏÂÌÚ˚ ÏÓÎÂÍÛÎ) Ò‚flÁ‡Ì˚ ·‡ÏË – ıËÏ˘ÂÒÍËÏË Ò‚flÁflÏË, ÏÂÊÏÓÎÂÍÛÎflÌ˚ÏË ‚Á‡ËÏÓ‰ÂÈÒÚ‚ËflÏË Ç‡Ì-‰Â-LJ‡Î¸Ò‡, ‚Ó‰ÓÓ‰ÌÓÈ Ò‚flÁ¸˛, ÔÛÚflÏË Â‡ÍˆËÈ Ë Ú.Ô. Ç Ó„‡Ì˘ÂÒÍÓÈ ıËÏËË ÏÓÎÂÍÛÎflÌ˚È „‡Ù G(x ) = (V(x), E(x)) – „‡Ù, Ô‰ÒÚ‡‚Îfl˛˘ËÈ ÏÓÎÂÍÛÎÛ x Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ ‚¯ËÌ˚ v ∈ V(x) fl‚Îfl˛ÚÒfl ‡ÚÓχÏË,
355
É·‚‡ 24. ê‡ÒÒÚÓflÌËfl ‚ ÙËÁËÍÂ Ë ıËÏËË
‡ ·‡ e ∈ E(x) ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú Ò‚flÁflÏ ˝ÎÂÍÚÓÌÌ˚ı Ô‡. óËÒÎÓ ÇË̇ ÏÓÎÂÍÛÎ˚ ‡‚ÌÓ ÔÓÎÓ‚ËÌ ÒÛÏÏ˚ ‚ÒÂı ÔÓÔ‡Ì˚ı ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ‚¯Ë̇ÏË Ëı ÏÓÎÂÍÛÎflÌÓ„Ó „‡Ù‡. ÇÖ-χÚˈ‡ (Ò‚flÁÂÈ Ë ˝ÎÂÍÚÓÌÓ‚) ÏÓÎÂÍÛÎ˚ x ÂÒÚ¸ | V(x) | × | V(x) |-χÚˈ‡ ((eij(x))), „‰Â e ij(x) – ˜ËÒÎÓ Ò‚Ó·Ó‰Ì˚ı ÌÂÓ·Ó·˘ÂÌÌ˚ı ‚‡ÎÂÌÚÌÓÒÚ¸˛ ˝ÎÂÍÚÓÌÓ‚ ‡ÚÓχ Ai Ë ‰Îfl i ≠ j, e ij(x) = eji(x) = 1, ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ Ò‚flÁ¸ ÏÂÊ‰Û ‡ÚÓχÏË Ai Ë Aj, Ë eij(x) = eji(x) = 0, Ë̇˜Â. ÑÎfl ‰‚Ûı ÏÓÎÂÍÛÎ x Ë y ÒÚÂıËÓÏÂÚ˘ÂÒÍÓ„Ó ÒÓÒÚ‡‚‡ (Ú.Â. Ò Ó‰Ë̇ÍÓ‚˚Ï ÍÓ΢ÂÒÚ‚ÓÏ ‡ÚÓÏÓ‚) ıËÏ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ñ‡„Û̉ÊË–ì„Ë ÏÂÊ‰Û ÌËÏË fl‚ÎflÂÚÒfl ıÂÏÏËÌ„Ó‚‡ ÏÂÚË͇
∑
| eij ( x ) − eij ( y) |,
1≤ i , j ≤| V |
Ë ıËÏ˘ÂÒÍÓ ‡ÒÒÚÓflÌË èÓÒÔ˯‡Î‡–䂇¯Ì˘ÍË ÏÂÊ‰Û ÌËÏË ‚˚‡Ê‡ÂÚÒfl Í‡Í min P
∑
| eij ( x ) − eP(i ) P( j ) ( y) |,
1≤ i, j ≤| V |
„‰Â P – β·‡fl ÔÂÂÒÚ‡Ìӂ͇ ‡ÚÓÏÓ‚. Ç˚¯ÂÔ˂‰ÂÌÌÓ ‡ÒÒÚÓflÌË ‡‚ÌÓ | E( x ) | + | E( y) | −2 | E( x, y) |, „‰Â E(x , y) – ÏÌÓÊÂÒÚ‚Ó Â·Â Ï‡ÍÒËχθÌÓ„Ó Ó·˘Â„Ó ÔÓ‰„‡Ù‡ (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â Ì Ë̉ۈËÓ‚‡ÌÌÓ„Ó) ÏÓÎÂÍÛÎflÌ˚ı „‡ÙÓ‚ G(x) Ë G(y) (ÒÏ. ê‡ÒÒÚÓflÌË áÂÎËÌÍË, „Î. 15 Ë ê‡ÒÒÚÓflÌË å‡ı‡ÎÓÌÓ·ËÒ‡, „Î. 17). ê‡ÒÒÚÓflÌË ‡͈ËË èÓÒÔ˯‡Î‡–䂇¯Ì˘ÍË, ÔÓÒÚ‡‚ÎÂÌÌÓ ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ÏÓÎÂÍÛÎflÌÓÏÛ ÔÂÓ·‡ÁÓ‚‡Ì˲ x → y, ÂÒÚ¸ ÏËÌËχθÌÓ ˜ËÒÎÓ ˝ÎÂÏÂÌÚ‡Ì˚ı ÔÂÓ·‡ÁÓ‚‡ÌËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl Ô‚‡˘ÂÌËfl G(x) ‚ G(y). RMS åÓÎÂÍÛÎflÌ˚È ‡‰ËÛÒ RMS åÓÎÂÍÛÎflÌ˚È ‡‰ËÛÒ (ËÎË ‡‰ËÛÒ ‚‡˘ÂÌËfl) – Ò‰ÌÂÍ‚‡‰‡Ú˘ÌÓ ‡ÒÒÚÓflÌË ‡ÚÓÏÓ‚ ‚ ÏÓÎÂÍÛΠÓÚ Ëı Ó·˘Â„Ó ˆÂÌÚ‡ ÚflÊÂÒÚË; ˝ÚÓÚ ‡‰ËÛÒ ÓÔ‰ÂÎflÂÚÒfl ͇Í
∑ d02i
1≤ i ≤ n
n +1
=
∑ ∑ dij2 i
j
(n + 1)2
,
„‰Â n – ÍÓ΢ÂÒÚ‚Ó ‡ÚÓÏÓ‚, d0i – ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË i-„Ó ‡ÚÓχ ÓÚ ˆÂÌÚ‡ ÚflÊÂÒÚË ÏÓÎÂÍÛÎ˚ (‚ ÍÓÌÍÂÚÌÓÈ ÍÓÌÙË„Û‡ˆËË), ‡ dij – ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û i-Ï Ë jÏ ‡ÚÓχÏË. ë‰ÌËÈ ÏÓÎÂÍÛÎflÌ˚È ‡‰ËÛÒ ë‰ÌËÈ ÏÓÎÂÍÛÎflÌ˚È ‡‰ËÛÒ – ˜ËÒÎÓ
ri , „‰Â n – ÍÓ΢ÂÒÚ‚Ó ‡ÚÓÏÓ‚ ‚ n xij
∑
ÏÓÎÂÍÛÎÂ, ‡ ri – ‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌË -„Ó ‡ÚÓχ ÓÚ „ÂÓÏÂÚ˘ÂÒÍÓ„Ó ˆÂÌÚ‡ ÏÓÎÂÍÛÎ˚ (Á‰ÂÒ¸ x ij fl‚ÎflÂÚÒfl i-È ‰Â͇ÚÓ‚ÓÈ ÍÓÓ‰Ë̇ÚÓÈ j-„Ó ‡ÚÓχ).
j
n
É·‚‡ 25
ê‡ÒÒÚÓflÌËfl ‚ „ÂÓ„‡ÙËË, „ÂÓÙËÁËÍÂ Ë ‡ÒÚÓÌÓÏËË
25.1. êÄëëíéüçàü Ç ÉÖéÉêÄîàà à ÉÖéîàáàäÖ ê‡ÒÒÚÓflÌË ·Óθ¯Ó„Ó ÍÛ„‡ ê‡ÒÒÚÓflÌË ·Óθ¯Ó„Ó ÍÛ„‡ (ËÎË ÒÙ¢ÂÒÍÓ ‡ÒÒÚÓflÌËÂ, ÓÚÓ‰ÓÏ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ) fl‚ÎflÂÚÒfl ̇Ë͇ژ‡È¯ËÏ ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÚӘ͇ÏË ı Ë Û Ì‡ ÁÂÏÌÓÈ ÔÓ‚ÂıÌÓÒÚË, ËÁÏÂÂÌÌÓ ‚‰Óθ ÔÛÚË Ì‡ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË. ùÚÓ ‰ÎË̇ ‰Û„Ë ·Óθ¯Ó„Ó ÍÛ„‡, ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ ÚÓ˜ÍË ı Ë Û Ì‡ ÒÙ¢ÂÒÍÓÈ ÏÓ‰ÂÎË Ô·ÌÂÚ˚. èÛÒÚ¸ δ1 Ë φ1 fl‚Îfl˛ÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ¯ËÓÚÓÈ Ë ‰Ó΄ÓÚÓÈ x, ‡ δ 2 Ë φ2 – ‡Ì‡Îӄ˘Ì˚ÏË Ô‡‡ÏÂÚ‡ÏË y; ÔÛÒÚ¸ r – ‡‰ËÛÒ áÂÏÎË. íÓ„‰‡ ‡ÒÒÚÓflÌË ·Óθ¯Ó„Ó ÍÛ„‡ ‡‚ÌÓ r arccos(sin δ1 sin δ 2 + cos δ1 cos δ 2 cos(φ1 − φ 2 )). ÑÎfl ÒÙ¢ÂÒÍËı ÍÓÓ‰ËÌ‡Ú (θ, φ), „‰Â φ – ‡ÁËÏÛڇθÌ˚È Û„ÓÎ Ë θ – ÍÓ·ÚËÚ¸˛‰‡ (‰ÓÔÓÎÌÂÌ̇fl ¯ËÓÚ‡) ‡ÒÒÚÓflÌË ·Óθ¯Ó„Ó ÍÛ„‡ ÏÂÊ‰Û x = (θ1, φ1) Ë y = (θ2, φ2) ‡‚ÌÓ r arccos(cos θ1 cos θ 2 + sin θ1 sin θ 2 cos(φ1 − φ 2 )). ÑÎfl φ1 = φ2 ‚˚¯ÂÔ˂‰ÂÌ̇fl ÙÓÏÛ· ÒÓ͇˘‡ÂÚÒfl ‰Ó r | θ1 – θ2 |. ëÙÂÓˉ‡Î¸Ì˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË ÁÂÏÌÓÈ ÔÓ‚ÂıÌÓÒÚË ‚ ÒÙÂÓˉ‡Î¸ÌÓÈ ÏÓ‰ÂÎË Ô·ÌÂÚ˚. áÂÏÎfl ÔÓ Ò‚ÓÂÈ ÙÓÏ ·Óθ¯Â ÔÓıÓʇ ̇ ÒÔβÒÌÛÚ˚È ÒÙÂÓˉ Ò Ï‡ÍÒËχθÌ˚ÏË Á̇˜ÂÌËflÏË ‡‰ËÛÒÓ‚ ÍË‚ËÁÌ˚ 6336 ÍÏ Ì‡ ˝Í‚‡ÚÓÂ Ë 6399 ÍÏ Ì‡ ÔÓÎ˛Ò‡ı. ãÓÍÒÓ‰ÓÏ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ãÓÍÒÓ‰Óχ (ÛÏ·) – ÍË‚‡fl ÔÓ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË, ÔÂÂÒÂ͇˛˘‡fl ͇ʉ˚È ÏÂË‰Ë‡Ì ÔÓ‰ Ó‰Ë̇ÍÓ‚˚Ï Û„ÎÓÏ. ùÚÓ ÔÛÚ¸, ÔË ÍÓÚÓÓÏ ÒÓı‡ÌflÂÚÒfl ÔÓÒÚÓflÌÌÓ ̇ԇ‚ÎÂÌË ÔÓ ÍÓÏÔ‡ÒÛ. ãÓÍÒÓ‰ÓÏ˘ÂÒÍÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË Ì‡ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË ÔÓ ÎÓÍÒÓ‰ÓÏÂ, ÒÓ‰ËÌfl˛˘ÂÈ Ëı. éÌÓ ÌËÍÓ„‰‡ Ì ·˚‚‡ÂÚ ÍÓӘ ÔÛÚË ÔÓ ‰Û„ ·Óθ¯Ó„Ó ÍÛ„‡. åÓÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‰ÎË̇ ÎÓÍÒÓ‰ÓÏ˚ ÒÓ‰ËÌfl˛˘ÂÈ Î˛·˚ ‰‚‡ ÏÂÒÚ‡ ̇ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË, ‚˚‡ÊÂÌ̇fl ‚ ÏÓÒÍËı ÏËÎflı. é‰Ì‡ ÏÓÒ͇fl ÏËÎfl ‡‚̇ 1852 Ï. ê‡ÒÒÚÓflÌË ÍÓÌÚËÌÂÌڇθÌÓ„Ó ¯Âθه ëÚ‡Ú¸fl 76 äÓÌ‚Â̈ËË ééç ÔÓ ÏÓÒÍÓÏÛ Ô‡‚Û (1999) ÓÔ‰ÂÎflÂÚ ÍÓÌÚËÌÂÌڇθÌ˚È ¯Âθ٠ÔË·ÂÊÌÓ„Ó „ÓÒÛ‰‡ÒÚ‚‡ (Â„Ó ÒÛ‚ÂÂÌÌÓ ‚·‰ÂÌËÂ) Í‡Í ÏÓÒÍÓ ‰ÌÓ Ë Ì‰‡ ÔÓ‰‚Ó‰Ì˚ı ‡ÈÓÌÓ‚, ÔÓÒÚˇ˛˘ËıÒfl Á‡ Ô‰ÂÎ˚ Â„Ó ÚÂËÚÓˇθÌÓ„Ó ÏÓfl ̇ ‚ÒÂÏ ÔÓÚflÊÂÌËË ÂÒÚÂÒÚ‚ÂÌÌÓ„Ó ÔÓ‰ÓÎÊÂÌËfl Â„Ó ÒÛıÓÔÛÚÌÓÈ ÚÂËÚÓËË ‰Ó ‚̯ÌÂÈ „‡Ìˈ˚ ÔÓ‰‚Ó‰ÌÓÈ Ó͇ËÌ˚ χÚÂË͇. äÓÌ‚Â̈ËÂÈ ÛÒÚ‡ÌÓ‚ÎÂÌÓ, ˜ÚÓ ‡ÒÒÚÓflÌË ÍÓÌÚËÌÂÌڇθÌÓ„Ó ¯Âθه, Ú.Â. ‰‡Î¸ÌÓÒÚ¸ ÓÚ ËÒıÓ‰-
É·‚‡ 25. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓ„‡ÙËË, „ÂÓÙËÁËÍÂ Ë ‡ÒÚÓÌÓÏËË
357
Ì˚ı ÎËÌËÈ, ÓÚ ÍÓÚÓ˚ı ÓÚÏÂflÂÚÒfl ¯ËË̇ ÚÂËÚÓˇθÌÓ„Ó ÏÓfl, ‰Ó ‚˚¯ÂÛ͇Á‡ÌÌÓÈ „‡Ìˈ˚, ‰ÓÎÊÌÓ Ì‡ıÓ‰ËÚ¸Òfl ‚ ԉ·ı 200–350 ÏÓÒÍËı ÏËθ, ‡ Ú‡ÍÊ Ô‰ÔËÒ‡Ì˚ Ô‡‚Ë· (ÔÓ˜ÚË) ÚÓ˜ÌÓ„Ó Â„Ó ÓÔ‰ÂÎÂÌËfl. ëÚ‡Ú¸ÂÈ 47 ˝ÚÓÈ Ê äÓÌ‚Â̈ËË Ó·ÛÒÎÓ‚ÎÂÌÓ, ˜ÚÓ ‰Îfl „ÓÒÛ‰‡ÒÚ‚-‡ıËÔ·„Ó‚ ÓÚÌÓ¯ÂÌË ÔÎÓ˘‡‰Ë ‚Ó‰ÌÓÈ ÔÓ‚ÂıÌÓÒÚË (ÒÛ‚ÂÂÌÌÓ ‚·‰ÂÌËÂ) Í ÔÎÓ˘‡‰Ë Ëı ÒÛ¯Ë, ‚Íβ˜‡fl ‡ÚÓÎÎ˚, ÒÓÒÚ‡‚ÎflÂÚ ÓÚ 1 : 1 ‰Ó 9 : 1 Ë ‚˚‡·ÓÚ‡Ì˚ Ô‡‚Ë· ÔËÏÂÌËÚÂθÌÓ Í ÍÓÌÍÂÚÌ˚Ï ÒÎÛ˜‡flÏ. ê‡ÒÒÚÓflÌËfl ‡‰ËÓÒ‚flÁË ê‡ÒÒÚÓflÌË „ÓËÁÓÌÚ‡ – ‡ÒÒÚÓflÌË ̇ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË, ̇ ÍÓÚÓÓ ‡ÒÔÓÒÚ‡ÌflÂÚÒfl Ôflχfl ‚ÓÎ̇; ‚ ÂÁÛθڇÚ ÓÚ‡ÊÂÌËfl ‚ÓÎÌ ÓÚ ‡ÚÏÓÒÙÂ˚ ˝ÚÓ ‡ÒÒÚÓflÌË ÏÓÊÂÚ Ô‚˚¯‡Ú¸ ‰‡Î¸ÌÓÒÚ¸ ÔflÏÓÈ ‚ˉËÏÓÒÚË. Ç ÚÂ΂ˉÂÌËË ‡ÒÒÚÓflÌËÂÏ „ÓËÁÓÌÚ‡ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ‰Ó ̇˷ÓΠۉ‡ÎÂÌÌÓÈ ÚÓ˜ÍË Ì‡ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË, ̇ıÓ‰fl˘ÂÈÒfl ‚ ԉ·ı ‚ˉËÏÓÒÚË Ô‰‡˛˘ÂÈ ‡ÌÚÂÌÌ˚. áÓ̇ ÏÓΘ‡ÌËfl – ̇ËÏÂ̸¯Â ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓÏ Ó·ÂÒÔ˜˂‡ÂÚÒfl ÔËÂÏ ‡‰ËÓÒ˄̇· (ÓÔ‰ÂÎÂÌÌÓÈ ˜‡ÒÚÓÚ˚) ÓÚ Ô‰‡Ú˜Ë͇ ÔÓÒÎÂ Â„Ó ÓÚ‡ÊÂÌËfl (Ô˚Ê͇) ÓÚ ËÓÌÓÒÙÂ˚. ê‡ÒÒÚÓflÌË ÔflÏÓÈ ‚ˉËÏÓÒÚË – ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ ÔÓıÓ‰ËÚ ‡‰ËÓÒ˄̇ΠÓÚ Ó‰ÌÓÈ ‡ÌÚÂÌÌ˚ Í ‰Û„ÓÈ ÔË ÛÒÎÓ‚ËË, ˜ÚÓ ‡ÌÚÂÌÌ˚ ̇ıÓ‰flÚÒfl ‚ ÔflÏÓÈ ‚ˉËÏÓÒÚË Ë Ì‡ ÔÛÚË ‡‰ËÓÒ˄̇· ÌÂÚ ÌË͇ÍËı ÔÂÔflÚÒÚ‚ËÈ. àÏÂÌÌÓ, ‡‰ËÓ‚ÓÎÌ˚ ÏÓ„ÛÚ ‡ÒÔÓÒÚ‡ÌflÚ¸Òfl Ë Á‡ „ÓËÁÓÌÚ, ÔÓÒÍÓθÍÛ ÓÌË ‚Á‡ËÏÓ‰ÂÈÒÚ‚Û˛Ú Ò ÁÂÏÌÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛ Ë/ËÎË ËÓÌÓÒÙÂÓÈ. èË ËÒÔÓθÁÓ‚‡ÌËË ‰‚Ûı ‡‰ËÓ˜‡ÒÚÓÚ (̇ÔËÏÂ, 12,5 Ë 25 ÍɈ ‚ ÏÓÒÍÓÈ Ò‚flÁË) ‡ÒÒÚÓflÌË ÙÛÌ͈ËÓ̇θÌÓÈ ÒÓ‚ÏÂÒÚËÏÓÒÚË Ë ‡ÒÒÚÓflÌË ‡ÁÌÂÒÂÌËfl ÒÓÒ‰ÌËı ͇̇ÎÓ‚ (˜‡ÒÚÓÚ) ÓÔ‰ÂÎfl˛Ú ‰‡Î¸ÌÓÒÚ¸, ̇ ÍÓÚÓÓÈ ‚Ò ÔËÂÏÌËÍË ·Û‰ÛÚ ÔËÌËχڸ Ò˄̇Î˚ Ô‰‡Ú˜ËÍÓ‚ Ë ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÛÁÍÓÔÓÎÓÒÌ˚Ï Ô‰‡Ú˜ËÍÓÏ Ë ¯ËÓÍÓÔÓÎÓÒÌ˚Ï ÔËÂÏÌËÍÓÏ, Ò ÚÂÏ ˜ÚÓ·˚ ËÁ·Âʇڸ ÔÓÏÂı. DX Ó·ÓÁ̇˜‡ÂÚ Ì‡ ÒÎ˝Ì„Â ‡‰ËÓβ·ËÚÂÎÂÈ (Ë ‚ ÏÓÁflÌÍÂ) ‰‡Î¸ÌËÈ ÔËÂÏ; ‡·ÓÚ‡Ú¸ ‚ ÂÊËÏ DX – ˝ÚÓ ‚ÂÒÚË ‡‰ËÓÓ·ÏÂÌ Ì‡ ·Óθ¯ÓÈ ‰‡Î¸ÌÓÒÚË (‰Îfl ˜Â„Ó ÌÂÓ·ıÓ‰ËÏ˚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ÛÒËÎËÚÂÎË ÏÓ˘ÌÓÒÚË). ÑÓÔÛÒ͇ÂÏÓ ‡ÒÒÚÓflÌËÂ Ç ÍÓÏÔ¸˛ÚÂÌÓÈ „ÂÓËÌÙÓχˆËÓÌÌÓÈ ÒËÒÚÂÏ (GIS) ‰ÓÔÛÒÚËÏ˚Ï ‡ÒÒÚÓflÌËÂÏ fl‚ÎflÂÚÒfl χÍÒËχθÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË, ÍÓÚÓÓ ÛÒڇ̇‚ÎË‚‡ÂÚÒfl Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ Ó·ÂÒÔ˜˂‡Î‡Ò¸ ÍÓÂ͈Ëfl ÏÂÚ‚˚ı ÁÓÌ Ë ÔÓχıÓ‚ (Á‡ÙËÍÒËÓ‚‡ÌÌ˚ ‚ÏÂÒÚ ÎËÌËË) ÔÓ Ï ÚÓ„Ó Í‡Í ÓÌË Ó͇Á˚‚‡˛ÚÒfl ‚ ‡Ï͇ı ‰ÓÔÛÒ͇ÂÏÓ„Ó ‡ÒÒÚÓflÌËfl. ê‡ÒÒÚÓflÌË ̇ ͇Ú ê‡ÒÒÚÓflÌË ̇ ͇Ú – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË Ì‡ ͇Ú (Ì ÔÛÚ‡Ú¸ Ò ‡ÒÒÚÓflÌËÂÏ ÓÚÓ·‡ÊÂÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ÎÓÍÛÒ‡ÏË Ì‡ „ÂÌÂÚ˘ÂÒÍÓÈ Í‡ÚÂ. ÉÓËÁÓÌڇθÌÓ ‡ÒÒÚÓflÌË ÓÔ‰ÂÎflÂÚÒfl ÛÏÌÓÊÂÌËÂÏ ‡ÒÒÚÓflÌËfl ̇ ͇Ú ̇  χүڇ·. ÉÓËÁÓÌڇθÌÓ ‡ÒÒÚÓflÌË ÉÓËÁÓÌڇθÌÓ ‡ÒÒÚÓflÌË (‡ÒÒÚÓflÌË ̇ ÏÂÒÚÌÓÒÚË) – ‡ÒÒÚÓflÌË ̇ ÔÎÓÒÍÓÒÚË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË, Í‡Í ËÁÓ·‡ÊÂÌÓ Ì‡ ͇Ú (·ÂÁ Û˜ÂÚ‡ ÓÒÓ·ÂÌÌÓÒÚÂÈ ÂθÂÙ‡ ÏÂÒÚÌÓÒÚË ÏÂÊ‰Û ˝ÚËÏË ÚӘ͇ÏË). ê‡Á΢‡˛Ú ‰‚‡ ÚËÔ‡ „ÓËÁÓÌڇθÌÓ„Ó ‡ÒÒÚÓflÌËfl: ÔflÏÓÎËÌÂÈÌÓ ‡ÒÒÚÓflÌË (‰ÎË̇ ÓÚÂÁ͇ ÔflÏÓÈ, ÒÓ‰ËÌfl˛˘ÂÈ
358
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
‰‡ÌÌ˚ ÚÓ˜ÍË, ËÁÏÂÂÌ̇fl ‚ χүڇ·Â ͇Ú˚) Ë ‡ÒÒÚÓflÌË ÔÛÚ¯ÂÒÚ‚Ëfl (‰ÎË̇ ͇ژ‡È¯Â„Ó Ï‡¯ÛÚ‡ ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË, ËÁÏÂÂÌ̇fl ‚ χүڇ·Â ͇Ú˚ Ò Û˜ÂÚÓÏ ÒÛ˘ÂÒÚ‚Û˛˘Ëı ‰ÓÓ„, ÂÍ Ë Ú.Ô.). ç‡ÍÎÓÌÌÓ ‡ÒÒÚÓflÌË ç‡ÍÎÓÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ (ËÎË Ì‡ÍÎÓÌÌÓÈ ‰‡Î¸ÌÓÒÚ¸˛) ̇Á˚‚‡ÂÚÒfl (‚ ÓÚ΢ˠÓÚ ËÒÚËÌÌÓ „ÓËÁÓÌڇθÌÓ„Ó ËÎË ‚ÂÚË͇θÌÓ„Ó) ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË, ËÁÏÂÂÌÌÓÂ Ò Û˜ÂÚÓÏ Ì‡ÍÎÓ̇. ê‡ÒÒÚÓflÌË ‰‚ËÊÂÌËfl ÔÓ ‰ÓÓ„Â ê‡ÒÒÚÓflÌËÂÏ ‰‚ËÊÂÌËfl ÔÓ ‰ÓÓ„Â (ËÎË Ù‡ÍÚ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ, ÍÓÎÂÒÌ˚Ï ‡ÒÒÚÓflÌËÂÏ, ‰ÓÓÊÌ˚Ï ‡ÒÒÚÓflÌËÂÏ) ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË (̇ÔËÏÂ, „ÓÓ‰‡ÏË) ÌÂÍÓÚÓÓ„Ó Â„ËÓ̇ ̇Á˚‚‡ÂÚÒfl ‰ÎË̇ ͇ژ‡È¯ÂÈ ‰ÓÓ„Ë, ÒÓ‰ËÌfl˛˘ÂÈ ˝ÚË ÚÓ˜ÍË. èÓÒÍÓθÍÛ ˜‡˘Â ‚ÒÂ„Ó ËÁÏÂËÚ¸ Ù‡ÍÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË Ì Ô‰ÒÚ‡‚ÎflÂÚÒfl ‚ÓÁÏÓÊÌ˚Ï, Ó·˚˜ÌÓ ËÒÔÓθÁÛ˛ÚÒfl ÓˆÂÌÓ˜Ì˚ ‡ÒÒÚÓflÌËfl. ùÏÔˢÂÒÍË ‰‡ÌÌ˚ ÔÓ͇Á˚‚‡˛Ú, ˜ÚÓ ‡ÒÒÚÓflÌË ‰‚ËÊÂÌËfl ÔÓ ‰ÓÓ„Â Á‡˜‡ÒÚÛ˛ fl‚ÎflÂÚÒfl ÎËÌÂÈÌÓÈ ÙÛÌ͈ËÂÈ ‡ÒÒÚÓflÌËfl ·Óθ¯Ó„Ó ÍÛ„‡; ‚ „ÓÓ‰‡ı ò‚ˆËË ÏÓÊÌÓ Ò˜ËÚ‡Ú¸, ˜ÚÓ ‰ÓÓÊÌÓ ‡ÒÒÚÓflÌË ÔË·ÎËÁËÚÂθÌÓ ‡‚ÌÓ 1,25 · d, „‰Â d – ‡ÒÒÚÓflÌË ·Óθ¯Ó„Ó ÍÛ„‡. Ç ëòÄ Ú‡ÍÓÈ ÏÌÓÊËÚÂθ ‡‚ÂÌ ÔËÏÂÌÓ 1,15 ‚ ̇ԇ‚ÎÂÌËË Ò ‚ÓÒÚÓ͇ ̇ Á‡Ô‡‰ Ë ÔËÏÂÌÓ 1,21 ‚ ̇ԇ‚ÎÂÌËË Ò Ò‚‡ ̇ ˛„. çËÊ Ô˂‰ÂÌ˚ ÌÂÍÓÚÓ˚ ӉÒÚ‚ÂÌÌ˚ ÔÓÌflÚËfl. ÇÂÏfl ‰‚ËÊÂÌËfl ÏÂÊ‰Û Ó·˙ÂÍÚ‡ÏË; „ÓÓ‰Ò͇fl ‰ÓÓÊ̇fl ÒÂÚ¸ 20 ÍÛÔÌÂȯËı „ÓÓ‰Ó‚ ÉÂχÌËË fl‚ÎflÂÚÒfl ·ÂÁχүڇ·ÌÓÈ ËÏÂÌÌÓ ‰Îfl ˝ÚÓÈ ÏÂ˚ (‚ÓÁÏÓÊÌÓ, ̇˷ÓΠ·ÎËÁÍÓÈ ‰Îfl ‚Ó‰ËÚÂÎÂÈ). éÙˈˇθÌÓ ‡ÒÒÚÓflÌË – ÔËÁ̇ÌÌÓ ‡ÒÒÚÓflÌË ÂÁ‰˚ ̇ ‡‚ÚÓÏÓ·ËΠÏÂÊ‰Û ‰‚ÛÏfl ÔÛÌÍÚ‡ÏË, ÍÓÚÓÓ ËÒÔÓθÁÛÂÚÒfl ‰Îfl ‡Ò˜ÂÚ‡ ÔÛÚË Ë ÓÔ·Ú˚ Á‡ Ô‚ÓÁÍÛ (Ì ÔÛÚ‡Ú¸ Ò ‡ÒÒÚÓflÌËÂÏ ÒÚÓËÏÓÒÚË ÒËÒÚÂÏÌÓ„Ó ‡‰ÏËÌËÒÚËÓ‚‡ÌËfl ‚ àÌÚÂÌÂÚÂ). ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓ˜ÚÓ‚˚ÏË Ë̉ÂÍÒ‡ÏË (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ˝ÚÓ ÔÓ˜ÚÓ‚˚Â Ë ÚÂÎÂÙÓÌÌ˚ ÍÓ‰˚ „ÓÓ‰Ó‚) – ‡Ò˜ÂÚÌÓ ‡ÒÒÚÓflÌË ÂÁ‰˚ ̇ ‡‚ÚÓÏÓ·ËΠ(ËÎË ‚ÂÏfl ÂÁ‰˚ ̇ ‡‚ÚÓÏÓ·ËÎÂ) ÏÂÊ‰Û ‰‚ÛÏfl ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ÔÛÌÍÚ‡ÏË. ê‡ÒÒÚÓflÌË åÓıÓ ê‡ÒÒÚÓflÌË åÓıÓ – ‡ÒÒÚÓflÌË ÓÚ ÚÓ˜ÍË Ì‡ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË ‰Ó „‡Ìˈ˚ ‡Á‰Â· ‰‚Ûı Ò‰ ÔÓ åÓıÓÓ‚Ë˜Ë˜Û (ËÎË ÒÂÈÒÏ˘ÂÒÍÓÈ „‡Ìˈ˚ åÓıÓӂ˘˘‡) ÔÓ‰ ˝ÚÓÈ ÚÓ˜ÍÓÈ. ɇÌˈÂÈ ‡Á‰Â· ‰‚Ûı Ò‰ ÔÓ åÓıÓÓ‚Ë˜Ë˜Û Ì‡Á˚‚‡ÂÚÒfl „‡Ìˈ‡ ÏÂÊ‰Û ıÛÔÍÓÈ ‚ÂıÌÂÈ ˜‡ÒÚ¸˛ ÁÂÏÌÓÈ ÍÓ˚ Ë ·ÓΠ„Ófl˜ÂÈ Ë Ïfl„ÍÓÈ Ï‡ÌÚËÂÈ. ê‡ÒÒÚÓflÌË åÓıÓ ÒÓÒÚ‡‚ÎflÂÚ ÔÓfl‰Í‡ 5–10 ÍÏ ÔÓ‰ ‰ÌÓÏ Ó͇̇ Ë 35–65 ÍÏ ‚ „ÎÛ·¸ χÚÂËÍÓ‚ („ÎÛ·Ó˜‡È¯‡fl ‚ ÏË Ô¢‡ ä۷‡-ÇÓÓ̸fl ̇ 䇂͇Á – 2,14 ÍÏ, „ÎÛ·Ó˜‡È¯‡fl ¯‡ıÚ‡ ̇ ÁÓÎÓÚ˚ı ÔËËÒ͇ı "Western Deep Levels", ûÄê – ÓÍÓÎÓ 4 ÍÏ Ë Ò‚Âı„ÎÛ·Ó͇fl ·ÛÓ‚‡fl ¯‡ıÚ‡ ̇ äÓθÒÍÓÏ ÔÓÎÛÓÒÚÓ‚Â – 12,3 ÍÏ). íÂÏÔ‡ÚÛ‡ Ó·˚˜ÌÓ ÔÓ‰ÌËχÂÚÒfl ̇ Ó‰ËÌ „‡‰ÛÒ Ì‡ ͇ʉ˚ 33 Ï „ÎÛ·ËÌ˚. üÔÓÌÒÍÓ ËÒÒΉӂ‡ÚÂθÒÍÓ ·ÛÓ‚Ó ÒÛ‰ÌÓ "íËͲ" ("Chikyu") ‚ ÔÂËÓ‰ Ò ÒÂÌÚfl·fl 2007 „. ̇˜‡ÎÓ ÓÒÛ˘ÂÒÚ‚ÎflÚ¸ ·ÛÂÌË ‚ 200 ÍÏ ÓÚ ÔÓ·ÂÂʸfl „. 燄Ófl ̇ „ÎÛ·ËÌÛ ‰Ó ÒÂÈÒÏ˘ÂÒÍÓÈ „‡Ìˈ˚ åÓıÓӂ˘˘‡. å‡ÌÚËfl áÂÏÎË ÔÓÒÚˇÂÚÒfl ÓÚ ÒÂÈÒÏ˘ÂÒÍÓÈ „‡Ìˈ˚ åÓıÓӂ˘˘‡ ‰Ó „‡Ìˈ˚ ÏÂÊ‰Û Ï‡ÌÚËÂÈ Ë fl‰ÓÏ Ì‡ „ÎÛ·ËÌ ÓÍÓÎÓ 2890 ÍÏ. å‡ÌÚËfl áÂÏÎË ‡Á‰ÂÎflÂÚÒfl ̇ ‚ÂıÌ˛˛ Ë ÌËÊÌ˛˛ χÌÚËË, „‡Ìˈ‡ ÏÂÊ‰Û ÍÓÚÓ˚ÏË ÔÓıÓ‰ËÚ Ì‡ „ÎÛ·ËÌ ÓÍÓÎÓ 660 ÍÏ. ÑÛ„Ë ÒÂÈÒÏ˘ÂÒÍË „‡Ìˈ˚ ÓÚϘ‡˛ÚÒfl ̇ „ÎÛ·Ë̇ı 60–90 ÍÏ („‡Ìˈ‡ ï˝ÎÂ), 50–150 ÍÏ („‡Ìˈ‡ ÉÛÚÚÂ̷„‡), 220 ÍÏ („‡Ìˈ‡ ãÂχ̇), 410 ÍÏ, 520 ÍÏ Ë 710 ÍÏ.
É·‚‡ 25. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓ„‡ÙËË, „ÂÓÙËÁËÍÂ Ë ‡ÒÚÓÌÓÏËË
359
ê‡ÒÒÚÓflÌËfl ‚ ÒÂÈÒÏÓÎÓ„ËË áÂÏ̇fl ÍÓ‡ ÒÓÒÚÓËÚ ËÁ ÚÂÍÚÓÌ˘ÂÒÍËı ÔÎËÚ, ÍÓÚÓ˚ ÔÂÂÏ¢‡˛ÚÒfl (̇ ÌÂÒÍÓθÍÓ Ò‡ÌÚËÏÂÚÓ‚ ‚ „Ó‰) ÔÓ‰ ‚ÓÁ‰ÂÈÒÚ‚ËÂÏ ÚÂÔÎÓ‚ÓÈ ÍÓÌ‚Â͈ËË ÓÚ „ÎÛ·ËÌÌÓÈ Ï‡ÌÚËË Ë ÒËÎ Úfl„ÓÚÂÌËfl. ä‡fl ˝ÚËı ÔÎËÚ Ó·˚˜ÌÓ ‰‡‚flÚ ‰Û„ ̇ ‰Û„‡, Ë ËÌÓ„‰‡ ÂÁÍÓ ÒÏ¢‡˛ÚÒfl ÓÚÌÓÒËÚÂθÌÓ ‰Û„ ‰Û„‡. áÂÏÎÂÚflÒÂÌËÂ, Ú.Â. ‚ÌÂÁ‡ÔÌÓ (‚ Ú˜ÂÌË ÌÂÒÍÓθÍËı ÒÂÍÛ̉) ‰‚ËÊÂÌË ËÎË ‰ÓʇÌË áÂÏÎË, ‚˚Á‚‡ÌÌÓ ÂÁÍËÏ ‚˚Ò‚Ó·ÓʉÂÌËÂÏ ÔÓÒÚÂÔÂÌÌÓ Ì‡ÍÓÔÎÂÌÌÓ„Ó Ì‡ÔflÊÂÌËfl, ̇˜Ë̇fl Ò 1906 „. ‡ÒÒχÚË‚‡ÎÓÒ¸ Í‡Í Ó·‡ÁÓ‚‡ÌË ‡ÁÎÓχ (‚ÌÂÁ‡ÔÌÓ ÔÓfl‚ÎÂÌËÂ, Ó·‡ÁÓ‚‡ÌË ‡ÍÚË‚Ì˚ı ˆÂÌÚÓ‚ Ë ‡ÒÔÓÒÚ‡ÌÂÌË ÌÓ‚˚ı Ú¢ËÌ Ë Ò‰‚Ë„Ó‚) ÔÓ Ô˘ËÌ ÛÔÛ„Ó„Ó ‚ÓÒÒÚ‡ÌÓ‚ÎÂÌËfl ÔÓÒΠ‰ÂÙÓχˆËË. é‰Ì‡ÍÓ Ò 1996 „. ÁÂÏÎÂÚflÒÂÌË ‡ÒÒχÚË‚‡ÂÚÒfl ‚ ÍÓÌÚÂÍÒÚ ÒÍÓθÊÂÌËfl ÚÂÍÚÓÌ˘ÂÒÍËı ÔÎËÚ ‚‰Óθ ÛÊ ÒÛ˘ÂÒÚ‚Û˛˘Ëı ‡ÁÎÓÏÓ‚ ËÎË ÒÚ˚ÍÓ‚ ÏÂÊ‰Û ÌËÏË Í‡Í ÂÁÛÎ¸Ú‡Ú ÔÂ˚‚ËÒÚÓ„Ó Ò‰‚Ë„‡ ÔÓÓ‰ ‚ ÛÒÎÓ‚Ëflı ÙË͈ËÓÌÌÓÈ ÌÂÒÚ‡·ËθÌÓÒÚË. ëÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÁÂÏÎÂÚflÒÂÌË ÔÓËÒıÓ‰ËÚ, ÍÓ„‰‡ ‰Ë̇Ï˘ÂÒÍÓ ÚÂÌË ÒÚ‡ÌÓ‚ËÚÒfl ÏÂ̸¯Â ÒÚ‡Ú˘ÂÒÍÓ„Ó ÚÂÌËfl. Ñ‚ËÊÛ˘‡flÒfl „‡Ìˈ‡ ӷ·ÒÚË ÒÍÓθÊÂÌËfl ̇Á˚‚‡ÂÚÒfl ÙÓÌÚÓÏ ‡Á˚‚‡. é·˚˜ÌÓ Ô‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ Ò‰‚Ë„ – ˝ÚÓ ÓÔ‰ÂÎÂÌ̇fl ÔÓ‚ÂıÌÓÒÚ¸ ̇ԇ‚ÎÂÌÌÓ„Ó ÔÓ Í‡Ò‡ÚÂθÌÓÈ Ò͇˜Í‡ ÒÏ¢ÂÌËÈ, Á‡Íβ˜ÂÌÌ˚ı ‚ ÔÓÒÎÓÈÍ ÛÔÛ„ÓÈ ÍÓ˚. 90% ÁÂÏÎÂÚflÒÂÌËÈ ËÏÂ˛Ú ÚÂÍÚÓÌ˘ÂÒÍÛ˛ ÔËÓ‰Û, Ӊ̇ÍÓ ÓÌË ÏÓ„ÛÚ Ú‡ÍÊ ·˚Ú¸ ÂÁÛθڇÚÓÏ ‚ÛÎ͇Ì˘ÂÒÍÓ„Ó ËÁ‚ÂÊÂÌËfl, fl‰ÂÌÓ„Ó ‚Á˚‚‡, ÒÚÓËÚÂθÒÚ‚‡ ÍÛÔÌ˚ı ÔÎÓÚËÌ ËÎË „ÓÌ˚ı ‡·ÓÚ. ëË· ÁÂÏÎÂÚflÒÂÌËfl ÏÓÊÂÚ ËÁÏÂflÚ¸Òfl „ÎÛ·ËÌÓÈ Ó˜‡„‡ ÁÂÏÎÂÚflÒÂÌËfl, ÒÍÓÓÒÚ¸˛ ÒÏ¢ÂÌËfl, ËÌÚÂÌÒË‚ÌÓÒÚ¸˛ (ÔÓ ÏÓ‰ËÙˈËÓ‚‡ÌÌÓÈ ¯Í‡Î åÂ͇ÎÎË ˝ÙÙÂÍÚÓ‚ ÁÂÏÎÂÚflÒÂÌËÈ, ‚Â΢ËÌÓÈ, ÛÒÍÓÂÌËÂÏ (ÓÒÌÓ‚ÌÓÈ Ù‡ÍÚÓ ‡ÁÛ¯ÂÌËfl) Ë Ú.Ô. ëË· ÁÂÏÎÂÚflÒÂÌËfl ÔÓ ÎÓ„‡ËÙÏ˘ÂÒÍÓÈ ¯Í‡Î êËıÚ‡ ‡ÒÒ˜ËÚ˚‚‡ÂÚÒfl Ò Û˜ÂÚÓÏ ‡ÏÔÎËÚÛ‰˚ Ë ˜‡ÒÚÓÚ˚ Û‰‡Ì˚ı ‚ÓÎÌ, ÍÓÚÓ˚ „ËÒÚËÛ˛ÚÒfl ÒÂÈÒÏÓ„‡ÙÓÏ, ̇ÒÚÓÂÌÌ˚Ï Ì‡ ˝ÔˈÂÌڇθÌÓ ‡ÒÒÚÓflÌËÂ. ì‚Â΢ÂÌË ÒËÎ˚ ÁÂÏÎÂÚflÒÂÌËfl ̇ 0,1 ·‡Î· ÔÓ ¯Í‡Î êËıÚ‡ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ 10-͇ÚÌÓÏÛ Û‚Â΢ÂÌ˲ ‡ÏÔÎËÚÛ‰˚ ‚ÓÎÌ; ̇˷Óθ¯ÂÈ Á‡Â„ËÒÚËÓ‚‡ÌÌÓÈ ‚Â΢ËÌÓÈ fl‚ÎflÂÚÒfl 9,5 ·‡ÎÎÓ‚ (ÁÂÏÎÂÚflÒÂÌË ‚ óËÎË ‚ 1960 „.). åÓ‰ÂÎË Á‡ÚÛı‡ÌËfl ÍÓη‡ÌËÈ ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ ‡ÒÒÚÓflÌËfl, ËÒÔÓθÁÛÂÏ˚ ÔË ÔÓÂÍÚËÓ‚‡ÌËË ÒÂÈÒÏÓÒÚÓÈÍËı ÒÓÓÛÊÂÌËÈ (Á‰‡ÌËÈ Ë ÏÓÒÚÓ‚), Ó·˚˜ÌÓ ÓÒÌÓ‚˚‚‡˛ÚÒfl ̇ Ô‡‡ÏÂÚ‡ı Á‡ÚÛı‡ÌËfl ÛÒÍÓÂÌËfl ÔË Û‚Â΢ÂÌËË ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ËÒÚÓ˜ÌËÍÓÏ Ë Ó·˙ÂÍÚÓÏ, Ú.Â. ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÒÂÈÒÏÓÎӄ˘ÂÒÍÓÈ Òڇ̈ËÂÈ Ë ÍËÚ˘ÂÒÍÓÈ (‰Îfl ÍÓÌÍÂÚÌÓÈ ÏÓ‰ÂÎË) "ˆÂÌڇθÌÓÈ" ÚÓ˜ÍÓÈ ÁÂÏÎÂÚflÒÂÌËfl. èÓÒÚÂȯÂÈ ÏÓ‰Âθ˛ fl‚ÎflÂÚÒfl „ËÔÓˆÂÌÚ (ËÎË Ó˜‡„), Ú.Â. ÚӘ͇ ‚ÌÛÚË áÂÏÎË, ÓÚÍÛ‰‡ ËÒıÓ‰ËÚ ÁÂÏÎÂÚflÒÂÌË (Ò̇˜‡Î‡ ‚ÓÁÌË͇˛Ú ÍÓη‡ÌËfl, Á‡ÚÂÏ ÔÓËÒıÓ‰ËÚ ÒÂÈÒÏ˘ÂÒÍËÈ ‡Á˚‚ ËÎË Ì‡˜Ë̇ÂÚÒfl ÔÓ‰‚ËÊ͇). ùÔˈÂÌÚÓÏ Ì‡Á˚‚‡ÂÚÒfl ÚӘ͇ ̇ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓ Ì‡‰ „ËÔÓˆÂÌÚÓÏ. è˂‰ÂÌ̇fl ÌËÊ ÚÂÏËÌÓÎÓ„Ëfl Ú‡ÍÊ ËÒÔÓθÁÛÂÚÒfl ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ‰Û„Ëı ͇ڇÒÚÓÙ, Ú‡ÍËı Í‡Í Ô‡‰ÂÌË ËÎË ‚Á˚‚ fl‰ÂÌÓÈ ·Ó„ÓÎÓ‚ÍË, ÏÂÚÂÓËÚ‡ ËÎË ÍÓÏÂÚ˚, Ӊ̇ÍÓ ‰Îfl ‚ÓÁ‰Û¯Ì˚ı ‚Á˚‚Ó‚ ÚÂÏËÌ „ËÔÓˆÂÌÚ ÓÚÌÓÒËÚÒfl Í ÚӘ̇͠ ÁÂÏÌÓÈ ÔÓ‚ÂıÌÓÒÚË ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓ ÔÓ‰ ‚Á˚‚ÓÏ. чΠÔË‚Ó‰ËÚÒfl Ô˜Â̸ ÓÒÌÓ‚Ì˚ı ÒÂÈÒÏÓÎӄ˘ÂÒÍËı ‡ÒÒÚÓflÌËÈ. ÉÎÛ·Ë̇ Ó˜‡„‡ ÁÂÏÎÂÚflÒÂÌËfl – ‡ÒÒÚÓflÌË ÏÂÊ‰Û „ËÔÓˆÂÌÚÓÏ Ë ˝ÔˈÂÌÚÓÏ; Ò‰Ìflfl „ÎÛ·Ë̇ Ó˜‡„‡ ÁÂÏÎÂÚflÒÂÌËfl ÒÓÒÚ‡‚ÎflÂÚ 100–300 ÍÏ. ÉËÔÓˆÂÌڇθÌÓ ‡ÒÒÚÓflÌËÂ: ‡ÒÒÚÓflÌË ÓÚ ÒÂÈÒÏÓÒڇ̈ËË ‰Ó „ËÔÓˆÂÌÚ‡. ùÔˈÂÌڇθÌÓ ‡ÒÒÚÓflÌË (ËÎË ‡ÒÒÚÓflÌË ÁÂÏÎÂÚflÒÂÌËfl) – ‡ÒÒÚÓflÌË ·Óθ¯Ó„Ó ÍÛ„‡ ÓÚ ÒÂÈÒÏÓÒڇ̈ËË ‰Ó ˝ÔˈÂÌÚ‡. ê‡ÒÒÚÓflÌË ÑÊÓÈ̇-ÅÛ‡ – ‡ÒÒÚÓflÌË ÓÚ ÒÂÈÒÏÓÒڇ̈ËË ‰Ó ·ÎËʇȯÂÈ ÚÓ˜ÍË Ì‡ ÁÂÏÌÓÈ ÔÓ‚ÂıÌÓÒÚË, ‡ÒÔÓÎÓÊÂÌÌÓÈ Ì‡‰ ÔÓ‚ÂıÌÓÒÚ¸˛ ‡Á˚‚‡, Ú.Â. ‚ÒÔÓÓÚÓÈ ˜‡ÒÚ¸˛ ÔÎÓÒÍÓÒÚË ÚÂÍÚÓÌ˘ÂÒÍÓ„Ó Ì‡Û¯ÂÌËfl.
360
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ê‡ÒÒÚÓflÌË ‡ÁÎÓχ – ‡ÒÒÚÓflÌË ÓÚ ÒÂÈÒÏÓÒڇ̈ËË ‰Ó ·ÎËʇȯÂÈ ÚÓ˜ÍË Ì‡ ÔÓ‚ÂıÌÓÒÚË ‡ÁÎÓχ. ê‡ÒÒÚÓflÌË ÒÂÈÒÏÓ„ÂÌÌÓÈ „ÎÛ·ËÌ˚ – ‡ÒÒÚÓflÌË ÓÚ ÒÂÈÒÏÓÒڇ̈ËË ‰Ó ·ÎËʇȯÂÈ ÚÓ˜ÍË ÔÓ‚ÂıÌÓÒÚË ‡Á˚‚‡ ‚ ԉ·ı ÒÂÈÒÏÓ„ÂÌÌÓÈ ÁÓÌ˚, Ú.Â. „ÎÛ·ËÌ˚ ‚ÓÁÏÓÊÌ˚ı Ó˜‡„Ó‚ ÁÂÏÎÂÚflÒÂÌËÈ; Ó·˚˜ÌÓ ˝ÚÓ 8–12 ÍÏ. äÓÏ ÚÓ„Ó, ËÒÔÓθÁÛ˛ÚÒfl ‡ÒÒÚÓflÌËfl ÓÚ ÒÂÈÒÏÓÒڇ̈ËË ‰Ó: – ˆÂÌÚ‡ ‚˚·ÓÒ‡ ÒÚ‡Ú˘ÂÒÍÓÈ ˝Ì„ËË Ë ˆÂÌÚ‡ ÒÚ‡Ú˘ÂÒÍÓÈ ‰ÂÙÓχˆËË ÔÎÓÒÍÓÒÚË ÚÂÍÚÓÌ˘ÂÒÍÓ„Ó Ò‰‚Ë„‡; – ÚÓ˜ÍË Ì‡ ÔÓ‚ÂıÌÓÒÚË Ò Ï‡ÍÒËχθÌÓÈ Ï‡ÍÓÒÂÈÒÏ˘ÂÒÍÓÈ ËÌÚÂÌÒË‚ÌÓÒÚ¸˛, Ú.Â. χÍÒËχθÌ˚Ï ÛÒÍÓÂÌËÂÏ „ÛÌÚ‡ (ÏÓÊÂÚ Ì ÒÓ‚Ô‡‰‡Ú¸ Ò ˝ÔˈÂÌÚÓÏ); – ˝ÔˈÂÌÚ‡, Ú‡ÍÓÂ, ̇ ÍÓÚÓÓÏ Ó·˙ÂÏÌ˚ ‚ÓÎÌ˚, Óڇʇ˛˘ËÂÒfl ÓÚ ÒÂÈÒÏ˘ÂÒÍÓÈ „‡Ìˈ˚ åÓıÓ (‡Á‰ÂÎ ÏÂÊ‰Û ÍÓÓÈ Ë Ï‡ÌÚËÂÈ), ‚˚Á˚‚‡˛Ú ·ÓΠÁ̇˜ËÚÂθÌ˚ ÍÓη‡ÌËfl „ÛÌÚ‡, ˜ÂÏ ‚ÚÓ˘Ì˚ ‚ÓÎÌ˚ (̇Á˚‚‡ÂÚÒfl ÍËÚ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ åÓıÓ); – ËÒÚÓ˜ÌËÍÓ‚ ¯Ûχ Ë ÔÓÏÂı: Ó͇ÌÓ‚, ÓÁÂ, ÂÍ, ÊÂÎÂÁÌ˚ı ‰ÓÓ„, Á‰‡ÌËÈ. ê‡ÒÒÚÓflÌË ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ-‚ÂÏÂÌÌÓÈ Ò‚flÁË ÏÂÊ‰Û ‰‚ÛÏfl ÁÂÏÎÂÚflÒÂÌËflÏË ı Ë Û ÓÔ‰ÂÎflÂÚÒfl Í‡Í d 2 ( x , y ) + C | t x − t y |2 , „‰Â d(x, y) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ëı ˝ÔˈÂÌÚ‡ÏË ËÎË „ËÔÓˆÂÌÚ‡ÏË, | tx – ty | – ‡Á΢ˠÔÓ ‚ÂÏÂÌË Ë ë – χүڇ·Ì‡fl ÍÓÌÒÚ‡ÌÚ‡, ÌÂÓ·ıÓ‰Ëχfl ‰Îfl ÍÓÂÎflˆËË ‡ÒÒÚÓflÌËfl d(x, y) Ë ‚ÂÏÂÌË. ÑÛ„ÓÈ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ-‚ÂÏÂÌÌÓÈ ÏÂÓÈ ‰Îfl ͇ڇÒÚÓÙ˘ÂÒÍËı ÒÓ·˚ÚËÈ fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌË ã‡Ì‰ÂÌ‡Û ÏÂÊ‰Û Û‡„‡Ì‡ÏË (‰Îfl Û‡„‡ÌÓ‚, ̇Í˚‚‡˛˘Ëı ÍÓÌÍÂÚÌ˚È ‡ÏÂË͇ÌÒÍËÈ ¯Ú‡Ú). éÌÓ ‡‚ÌÓ ÔÓÚflÊÂÌÌÓÒÚË ·Â„ӂÓÈ ÎËÌËË ‰‡ÌÌÓ„Ó ¯Ú‡Ú‡, ÔÓ‰ÂÎÂÌÌÓÈ Ì‡ ÍÓ΢ÂÒÚ‚Ó Û‡„‡ÌÓ‚, Û‰‡‡Ï ÍÓÚÓ˚ı ¯Ú‡Ú ÔÓ‰‚„Òfl Ò 1899 „. 25.2. êÄëëíéüçàü Ç Äëíêéçéåàà íÂÏËÌÓÏ Ì·ÂÒÌ˚È Ó·˙ÂÍÚ (ËÎË Ì·ÂÒÌÓ ÚÂÎÓ) Ó·ÓÁ̇˜‡˛ÚÒfl Ú‡ÍË ‡ÒÚÓÌÓÏ˘ÂÒÍË ӷ˙ÂÍÚ˚, Í‡Í Á‚ÂÁ‰˚ Ë Ô·ÌÂÚ˚. ç·ÂÒ̇fl ÒÙ‡ – ÔÓÂ͈Ëfl Ì·ÂÒÌ˚ı Ó·˙ÂÍÚÓ‚ ̇ Ëı ͇ÊÛ˘ÂÂÒfl ÔÓÎÓÊÂÌË ̇ Ì·Ó҂Ӊ ÔË Ì‡·Î˛‰ÂÌËË Ò áÂÏÎË. ç·ÂÒÌ˚È ˝Í‚‡ÚÓ – ÔÓÂ͈Ëfl ÁÂÏÌÓ„Ó ˝Í‚‡ÚÓ‡ ̇ Ì·ÂÒÌÓÈ ÒÙÂÂ. èÓÎ˛Ò‡ÏË Ïˇ ̇Á˚‚‡˛ÚÒfl ÔÓÂ͈ËË ë‚ÂÌÓ„Ó Ë ûÊÌÓ„Ó ÔÓβÒÓ‚ áÂÏÎË Ì‡ Ì·ÂÒÌÓÈ ÒÙÂÂ. ç·ÂÒÌ˚Ï ÏÂˉˇÌÓÏ (˜‡ÒÓ‚˚Ï ÍÛ„ÓÏ) Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ fl‚ÎflÂÚÒfl ·Óθ¯ÓÈ ÍÛ„ Ì·ÂÒÌÓÈ ÒÙÂ˚, ÔÓıÓ‰fl˘ËÈ ˜ÂÂÁ ‰‡ÌÌ˚È Ó·˙ÂÍÚ Ë ÔÓβÒ˚ Ïˇ. ùÍÎËÔÚË͇ – ÔÂÂÒ˜ÂÌË ÔÎÓÒÍÓÒÚË, ÒÓ‰Âʇ˘ÂÈ Ó·ËÚÛ áÂÏÎË, Ò Ì·ÂÒÌÓÈ ÒÙÂÓÈ: ‰Îfl ̇·Î˛‰‡ÚÂÎfl Ò áÂÏÎË Ó̇ ‚ˉËÚÒfl Í‡Í ÔÛÚ¸, ÔÓ ÍÓÚÓÓÏÛ ëÓÎ̈ ÔÂÂÏ¢‡ÂÚÒfl ÔÓ Ì·ÓÒ‚Ó‰Û ‚ Ú˜ÂÌË „Ó‰‡. íÓ˜ÍÓÈ ‚ÂÒÂÌÌÂ„Ó ‡‚ÌÓ‰ÂÌÒÚ‚Ëfl ̇Á˚‚‡ÂÚÒfl Ӊ̇ ËÁ ‰‚Ûı ÚÓ˜ÂÍ Ì·ÂÒÌÓÈ ÒÙÂ˚, ‚ ÍÓÚÓÓÈ Ì·ÂÒÌ˚È ˝Í‚‡ÚÓ ÔÂÂÒÂ͇ÂÚÒfl Ò ÔÎÓÒÍÓÒÚ¸˛ ˝ÍÎËÔÚËÍË: ˝ÚÓ ÔÓÎÓÊÂÌË ëÓÎ̈‡ ̇ Ì·ÂÒÌÓÈ ÒÙ ‚ ÏÓÏÂÌÚ ‚ÂÒÂÌÌÂ„Ó ‡‚ÌÓ‰ÂÌÒÚ‚Ëfl. ÉÓËÁÓÌÚ – ÎËÌËfl, "ÓÚ‰ÂÎfl˛˘‡fl" ÌÂ·Ó ÓÚ áÂÏÎË. é̇ ‰ÂÎËÚ ÌÂ·Ó Ì‡ ‚ÂıÌ˛˛ ÔÓÎÛÒÙÂÛ, ÍÓÚÓÛ˛ Ï˚ ‚ˉËÏ, Ë ÌËÊÌ˛˛ ÔÓÎÛÒÙÂÛ, ÍÓÚÓÛ˛ Ï˚ ̇·Î˛‰‡Ú¸ Ì ÏÓÊÂÏ. èÓÎ˛Ò ‚ÂıÌÂÈ ÔÓÎÛÒÙÂ˚ (ÚӘ͇ Ì·ÓÒ‚Ó‰‡ ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓ Ì‡‰ „ÓÎÓ‚ÓÈ) ̇Á˚‚‡ÂÚÒfl ÁÂÌËÚÓÏ, ÔÓÎ˛Ò ÌËÊÌÂÈ ÔÓÎÛÒÙÂ˚ – ̇‰ËÓÏ. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ‡ÒÚÓÌÓÏ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÓÚ Ó‰ÌÓ„Ó Ì·ÂÒÌÓ„Ó Ú· ‰Ó ‰Û„Ó„Ó (ËÁÏÂÂÌÌÓ ‚ Ò‚ÂÚÓ‚˚ı „Ó‰‡ı, Ô‡ÒÂ͇ı ËÎË ‡ÒÚÓ-
É·‚‡ 25. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓ„‡ÙËË, „ÂÓÙËÁËÍÂ Ë ‡ÒÚÓÌÓÏËË
361
ÌÓÏ˘ÂÒÍËı ‰ËÌˈ‡ı). ë‰Ì ‡ÒÒÚÓflÌË ÏÂÊ‰Û Á‚ÂÁ‰‡ÏË (‚ „‡Î‡ÍÚË͇ı, ÔÓ‰Ó·Ì˚ı ̇¯ÂÈ) ÒÓÒÚ‡‚ÎflÂÚ ÌÂÒÍÓθÍÓ Ò‚ÂÚÓ‚˚ı ÎÂÚ. ë‰Ì ‡ÒÒÚÓflÌË ÏÂÊ‰Û „‡Î‡ÍÚË͇ÏË (‚ ÒÓÁ‚ÂÁ‰ËË) ‡‚ÌflÂÚÒfl ÔËÏÂÌÓ 20 Ëı ‰Ë‡ÏÂÚ‡Ï, Ú.Â. ÌÂÒÍÓθÍËÏ Ï„‡Ô‡ÒÂ͇Ï. òËÓÚ‡ Ç ÒÙ¢ÂÒÍËı ÍÓÓ‰Ë̇ڇı (r, θ, φ) ¯ËÓÚÓÈ Ì‡Á˚‚‡ÂÚÒfl Û„ÎÓ‚Ó ‡ÒÒÚÓflÌË δ ÓÚ ıÛ-ÔÎÓÒÍÓÒÚË (ÙÛ̉‡ÏÂÌڇθÌÓÈ ÔÎÓÒÍÓÒÚË) ‰Ó Ó·˙ÂÍÚ‡, ËÁÏÂÂÌÌÓ ÓÚ Ì‡˜‡Î‡ ÍÓÓ‰Ë̇Ú; δ = 90° – θ, „‰Â θ – ÍÓ·ÚËÚ¸˛‰‡ (‰ÓÔÓÎÌÂÌË ¯ËÓÚ˚). Ç „ÂÓ„‡Ù˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú (ËÎË Í‡ÚÓ„‡Ù˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰Ë̇Ú) ¯ËÓÚÓÈ Ì‡Á˚‚‡ÂÚÒfl Û„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÓÚ ˝Í‚‡ÚÓ‡ áÂÏÎË ‰Ó Ó·˙ÂÍÚ‡, ËÁÏÂÂÌÌÓ ÓÚ ˆÂÌÚ‡ áÂÏÎË. òËÓÚ‡ ËÁÏÂflÂÚÒfl ‚ „‡‰ÛÒ‡ı ÓÚ –90° (ûÊÌ˚È ÔÓβÒ) ‰Ó +90° (ë‚ÂÌ˚È ÔÓβÒ). 臇ÎÎÂÎË – ÎËÌËË ÔÓÒÚÓflÌÌÓÈ ¯ËÓÚ˚. Ç ‡ÒÚÓÌÓÏËË Ì·ÂÒÌÓÈ ¯ËÓÚÓÈ Ì‡Á˚‚‡ÂÚÒfl ¯ËÓÚ‡ Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ ̇ Ì·ÂÒÌÓÈ ÒÙ ÓÚ ÔÂÂÒ˜ÂÌËfl ÙÛ̉‡ÏÂÌڇθÌÓÈ ÔÎÓÒÍÓÒÚË Ò Ì·ÂÒÌÓÈ ÒÙÂÓÈ, ‚˚‡ÊÂÌ̇fl ‚ ÓÔ‰ÂÎÂÌÌÓÈ ÒËÒÚÂÏ Ì·ÂÒÌ˚ı ÍÓÓ‰Ë̇Ú. Ç ˝Í‚‡ÚÓˇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú ÙÛ̉‡ÏÂÌڇθÌÓÈ ÔÎÓÒÍÓÒÚ¸˛ fl‚ÎflÂÚÒfl ÔÎÓÒÍÓÒÚ¸ ÁÂÏÌÓ„Ó ˝Í‚‡ÚÓ‡, ‚ ˝ÍÎËÔÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú – ÔÎÓÒÍÓÒÚ¸ ˝ÍÎËÔÚËÍË; ‚ „‡Î‡ÍÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú – ÔÎÓÒÍÓÒÚ¸ åΘÌÓ„Ó èÛÚË; ‚ ÒËÒÚÂÏ „ÓËÁÓÌڇθÌ˚ı ÍÓÓ‰ËÌ‡Ú – „ÓËÁÓÌÚ Ì‡·Î˛‰‡ÚÂÎfl. ç·ÂÒ̇fl ¯ËÓÚ‡ ËÁÏÂflÂÚÒfl ‚ „‡‰ÛÒ‡ı. ÑÓ΄ÓÚ‡ Ç ÒÙ¢ÂÒÍËı ÍÓÓ‰Ë̇ڇı (r, θ, φ) ‰Ó΄ÓÚÓÈ Ì‡Á˚‚‡ÂÚÒfl Û„ÎÓ‚Ó ‡ÒÒÚÓflÌË φ ‚ ıÛ-ÔÎÓÒÍÓÒÚË ÓÚ ı-ÓÒË ‰Ó ÔÂÂÒ˜ÂÌËfl ·Óθ¯Ó„Ó ÍÛ„‡, ÔÓıÓ‰fl˘Â„Ó ˜ÂÂÁ Ó·˙ÂÍÚ, Ò ıÛ-ÔÎÓÒÍÓÒÚ¸˛. Ç „ÂÓ„‡Ù˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú (ËÎË Í‡ÚÓ„‡Ù˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰Ë̇Ú) ‰Ó΄ÓÚÓÈ Ì‡Á˚‚‡ÂÚÒfl Û„ÎÓ‚Ó ‡ÒÒÚÓflÌËÂ, ËÁÏÂÂÌÌÓ ‚ ̇ԇ‚ÎÂÌËË Ì‡ ‚ÓÒÚÓÍ ‚‰Óθ ˝Í‚‡ÚÓ‡ áÂÏÎË ÓÚ „Ë̂˘ÒÍÓ„Ó ÏÂˉˇ̇ (ËÎË ÌÛÎÂ‚Ó„Ó ÏÂˉˇ̇) ‰Ó ÔÂÂÒ˜ÂÌËfl Ò ÏÂˉˇÌÓÏ, ÔÓıÓ‰fl˘ËÏ ˜ÂÂÁ Ó·˙ÂÍÚ. ÑÓ΄ÓÚ‡ ËÁÏÂflÂÚÒfl ‚ „‡‰ÛÒ‡ı ÓÚ 0° ‰Ó 360°. åÂË‰Ë‡Ì – ·Óθ¯ÓÈ ÍÛ„, ÔÓıÓ‰fl˘ËÈ ˜ÂÂÁ ë‚ÂÌ˚È Ë ûÊÌ˚È ÔÓβÒ˚ áÂÏÎË; ÏÂˉˇÌ˚ fl‚Îfl˛ÚÒfl ÎËÌËflÏË ÔÓÒÚÓflÌÌÓÈ ‰Ó΄ÓÚ˚. Ç ‡ÒÚÓÌÓÏËË Ì·ÂÒÌÓÈ ‰Ó΄ÓÚÓÈ Ì‡Á˚‚‡ÂÚÒfl ‰Ó΄ÓÚ‡ Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ ̇ Ì·ÂÒÌÓÈ ÒÙÂÂ, ËÁÏÂÂÌ̇fl ‚ ̇ԇ‚ÎÂÌËË Ì‡ ‚ÓÒÚÓÍ ‚‰Óθ ÔÂÂÒ˜ÂÌËfl ÙÛ̉‡ÏÂÌڇθÌÓÈ ÔÎÓÒÍÓÒÚË Ò Ì·ÂÒÌÓÈ ÒÙÂÓÈ ‚ ‰‡ÌÌÓÈ ÒËÒÚÂÏ Ì·ÂÒÌ˚ı ÍÓÓ‰ËÌ‡Ú ÓÚ ‚˚·‡ÌÌÓÈ ÙËÍÒËÓ‚‡ÌÌÓÈ ÚÓ˜ÍË. Ç ˝Í‚‡ÚÓˇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú ÙÛ̉‡ÏÂÌڇθÌÓÈ ÔÎÓÒÍÓÒÚ¸˛ fl‚ÎflÂÚÒfl ÔÎÓÒÍÓÒÚ¸ ÁÂÏÌÓ„Ó ˝Í‚‡ÚÓ‡; ‚ ˝ÍÎËÔÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú – ÔÎÓÒÍÓÒÚ¸ ˝ÍÎËÔÚËÍË; ‚ „‡Î‡ÍÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú – ÔÎÓÒÍÓÒÚ¸ åΘÌÓ„Ó èÛÚË Ë ‚ „ÓËÁÓÌڇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú – „ÓËÁÓÌÚ Ì‡·Î˛‰‡ÚÂÎfl. ç·ÂÒ̇fl ‰Ó΄ÓÚ‡ ËÁÏÂflÂÚÒfl ‚ ‰ËÌˈ‡ı ‚ÂÏÂÌË. äÓ·ÚËÚ¸˛‰‡ Ç ÒÙ¢ÂÒÍËı ÍÓÓ‰Ë̇ڇı (r, θ , φ ) ÍÓ·ÚËÚ¸˛‰ÓÈ (‰ÓÔÓÎÌÂÌËÂÏ ¯ËÓÚ˚) ̇Á˚‚‡ÂÚÒfl Û„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÓÚ δ-ÓÒË ‰Ó Ó·˙ÂÍÚ‡, ËÁÏÂÂÌÌÓ ÓÚ Ì‡˜‡Î‡ ÍÓÓ‰Ë̇Ú; θ = 90° – δ, „‰Â δ – ¯ËÓÚ‡. Ç „ÂÓ„‡Ù˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú (ËÎË Í‡ÚÓ„‡Ù˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú ÍÓ·ÚËÚÛ‰ÓÈ (‰ÓÔÓÎÌÂÌËÂÏ ¯ËÓÚ˚) ̇Á˚‚‡ÂÚÒfl Û„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÓÚ ë‚ÂÌÓ„Ó ÔÓÎ˛Ò‡ áÂÏÎË ‰Ó Ó·˙ÂÍÚ‡, ËÁÏÂÂÌÌÓ ÓÚ ˆÂÌÚ‡ áÂÏÎË. äÓ·ÚËÚÛ‰‡ ËÁÏÂflÂÚÒfl ‚ „‡‰ÛÒ‡ı.
362
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ëÍÎÓÌÂÌËÂ Ç ˝Í‚‡ÚÓˇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú (ËÎË „ÂÓˆÂÌÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰Ë̇Ú) ÒÍÎÓÌÂÌËÂÏ δ ̇Á˚‚‡ÂÚÒfl Ì·ÂÒ̇fl ¯ËÓÚ‡ Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ ̇ Ì·ÂÒÌÓÈ ÒÙÂÂ, ËÁÏÂÂÌ̇fl ÓÚ Ì·ÂÒÌÓ„Ó ˝Í‚‡ÚÓ‡. ëÍÎÓÌÂÌË ËÁÏÂflÂÚÒfl ‚ „‡‰ÛÒ‡ı ÓÚ –90 ‰Ó +90°. èflÏÓ ‚ÓÒıÓʉÂÌËÂ Ç ˝Í‚‡ÚÓˇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú (ËÎË „ÂÓˆÂÌÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰Ë̇Ú), ÔË‚flÁ‡ÌÌÓÈ Í Á‚ÂÁ‰‡Ï, ÔflÏ˚Ï ‚ÓÒıÓʉÂÌËÂÏ R A ̇Á˚‚‡ÂÚÒfl Ì·ÂÒ̇fl ‰Ó΄ÓÚ‡ Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ ̇ Ì·ÂÒÌÓÈ ÒÙÂÂ, ËÁÏÂÂÌ̇fl ‚ ̇ԇ‚ÎÂÌËË Ì‡ ‚ÓÒÚÓÍ ‚‰Óθ Ì·ÂÒÌÓ„Ó ˝Í‚‡ÚÓ‡ ÓÚ ÚÓ˜ÍË ‚ÂÒÂÌÌÂ„Ó ‡‚ÌÓ‰ÂÌÒÚ‚Ëfl ‰Ó ÔÂÂÒ˜ÂÌËfl Ò ˜‡ÒÓ‚˚Ï ÍÛ„ÓÏ Ó·˙ÂÍÚ‡. èflÏÓ ‚ÓÒıÓʉÂÌË ËÁÏÂflÂÚÒfl ‚ ‰ËÌˈ‡ı ‚ÂÏÂÌË (˜‡Ò‡ı, ÏËÌÛÚ‡ı Ë ÒÂÍÛ̉‡ı), ÔË ˝ÚÓÏ Ó‰ËÌ ˜‡Ò ‡‚ÂÌ ÔËÏÂÌÓ 15°. ÇÂÏfl, ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl Ó‰ÌÓ„Ó ÔÓÎÌÓ„Ó ÔÂËÓ‰‡ ÔˆÂÒÒËË ‡‚ÌÓ‰ÂÌÒÚ‚Ëfl, ̇Á˚‚‡ÂÚÒfl è·ÚÓÌ˘ÂÒÍËÏ „Ó‰ÓÏ (ËÎË ÇÂÎËÍËÏ „Ó‰ÓÏ); ÓÌ ‰ÎËÚÒfl ÔËÏÂÌÓ 257 ÒÚÓÎÂÚËÈ Ë ÌÂÁ̇˜ËÚÂθÌÓ ÒÓ͇˘‡ÂÚÒfl. чÌÌ˚È ˆËÍÎ ËÏÂÂÚ ‚‡ÊÌÓ Á̇˜ÂÌË ‰Îfl ͇ÎẨ‡fl å‡Èfl Ë ‚ ‡ÒÚÓÎÓ„ËË. ó‡ÒÓ‚ÓÈ Û„ÓÎ Ç ˝Í‚‡ÚÓˇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú (ËÎË „ÂÓˆÂÌÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰Ë̇Ú), ÔË‚flÁ‡ÌÌÓÈ Í áÂÏÎÂ, ˜‡ÒÓ‚˚Ï Û„ÎÓÏ Ì‡Á˚‚‡ÂÚÒfl Ì·ÂÒ̇fl ‰Ó΄ÓÚ‡ Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ ̇ Ì·ÂÒÌÓÈ ÒÙÂÂ, ËÁÏÂÂÌ̇fl ÔÓ Ì·ÂÒÌÓÏÛ ˝Í‚‡ÚÓÛ ÓÚ ÏÂˉˇ̇ ̇·Î˛‰‡ÚÂÎfl ‰Ó ÔÂÂÒ˜ÂÌËfl Ò ˜‡ÒÓ‚˚Ï ÍÛ„ÓÏ Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡. ó‡ÒÓ‚ÓÈ Û„ÓÎ ËÁÏÂflÂÚÒfl ‚ ‰ËÌˈ‡ı ‚ÂÏÂÌË (˜‡Ò‡ı, ÏËÌÛÚ‡ı Ë ÒÂÍÛ̉‡ı). éÌ ÔÓ͇Á˚‚‡ÂÚ ‚ÂÏfl, ËÒÚÂͯÂÂ Ò ÏÓÏÂÌÚ‡ ÔÓÒΉÌÂ„Ó ÔÂÂÒ˜ÂÌËfl Ì·ÂÒÌ˚Ï Ó·˙ÂÍÚÓÏ ÏÂˉˇ̇ ̇·Î˛‰‡ÚÂÎfl (‰Îfl ÔÓÎÓÊËÚÂθÌÓ„Ó ˜‡ÒÓ‚Ó„Ó Û„Î‡), ËÎË ‚ÂÏfl ÒÎÂ‰Û˛˘Â„Ó ÔÂÂÒ˜ÂÌËfl (‰Îfl ÓÚˈ‡ÚÂθÌÓ„Ó ˜‡ÒÓ‚Ó„Ó Û„Î‡). èÓÎflÌÓ ‡ÒÒÚÓflÌËÂ Ç ˝Í‚‡ÚÓˇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú (ËÎË „ÂÓˆÂÌÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰Ë̇Ú) ÔÓÎflÌ˚Ï ‡ÒÒÚÓflÌËÂÏ PD ̇Á˚‚‡ÂÚÒfl ÍÓ·ÚËÚ¸˛‰‡ (‰ÓÔÓÎÌÂÌË ¯ËÓÚ˚) Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡, Ú.Â. ì„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÓÚ Ì·ÂÒÌÓ„Ó ÔÓÎ˛Ò‡ ‰Ó Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ ̇ Ì·ÂÒÌÓÈ ÒÙÂÂ. èÓ‰Ó·ÌÓ ÚÓÏÛ, Í‡Í ÒÍÎÓÌÂÌË δ ËÁÏÂflÂÚÒfl ÓÚ Ì·ÂÒÌÓ„Ó ˝Í‚‡ÚÓ‡: PD = 90° ± δ. èÓÎflÌÓ ‡ÒÒÚÓflÌË ‚˚‡Ê‡ÂÚÒfl ‚ „‡‰ÛÒ‡ı, Ë Â„Ó ‚Â΢Ë̇ Ì ÏÓÊÂÚ ·˚Ú¸ ·Óθ¯Â 90°. é·˙ÂÍÚ Ì‡ Ì·ÂÒÌÓÏ ˝Í‚‡ÚÓ ËÏÂÂÚ ÔÓÎflÌÓ ‡ÒÒÚÓflÌË PD = 90°. ùÍÎËÔÚ˘ÂÒ͇fl ¯ËÓÚ‡ Ç ˝ÍÎËÔÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú ˝ÍÎËÔÚ˘ÂÒÍÓÈ ¯ËÓÚÓÈ Ì‡Á˚‚‡ÂÚÒfl Ì·ÂÒ̇fl ¯ËÓÚ‡ Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ ̇ Ì·ÂÒÌÓÈ ÒÙÂÂ, ËÁÏÂÂÌ̇fl ÓÚ ÔÎÓÒÍÓÒÚË ˝ÍÎËÔÚËÍË. ùÍÎËÔÚ˘ÂÒ͇fl ¯ËÓÚ‡ ËÁÏÂflÂÚÒfl ‚ „‡‰ÛÒ‡ı. ùÍÎËÔÚ˘ÂÒ͇fl ‰Ó΄ÓÚ‡ Ç ˝ÍÎËÔÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú ˝ÍÎËÔÚ˘ÂÒÍÓÈ ‰Ó΄ÓÚÓÈ Ì‡Á˚‚‡ÂÚÒfl Ì·ÂÒ̇fl ‰Ó΄ÓÚ‡ Ì·ÂÒÌÓ„Ó Ó·˙ÂÍÚ‡ ̇ Ì·ÂÒÌÓÈ ÒÙÂÂ, ËÁÏÂÂÌ̇fl ‚ ̇ԇ‚ÎÂÌËË Ì‡ ‚ÓÒÚÓÍ ÔÓ ÔÎÓÒÍÓÒÚË ˝ÍÎËÔÚËÍË ÓÚ ÚÓ˜ÍË ‚ÂÒÂÌÌÂ„Ó ‡‚ÌÓ‰ÂÌÒÚ‚Ëfl. ùÍÎËÔÚ˘ÂÒ͇fl ‰Ó΄ÓÚ‡ ËÁÏÂflÂÚÒfl ‚ ‰ËÌˈ‡ı ‚ÂÏÂÌË. Ç˚ÒÓÚ‡ Ç „ÓËÁÓÌڇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú ‚˚ÒÓÚ‡ ALT – Ì·ÂÒ̇fl ¯ËÓÚ‡ Ó·˙ÂÍÚ‡ ÓÚÌÓÒËÚÂθÌÓ „ÓËÁÓÌÚ‡. é̇ ‰ÓÔÓÎÌflÂÚ ÁÂÌËÚÌ˚È Û„ÓÎ ZA: ALT = 90° – ZA. Ç˚ÒÓÚ‡ ËÁÏÂflÂÚÒfl ‚ „‡‰ÛÒ‡ı.
É·‚‡ 25. ê‡ÒÒÚÓflÌËfl ‚ „ÂÓ„‡ÙËË, „ÂÓÙËÁËÍÂ Ë ‡ÒÚÓÌÓÏËË
363
ÄÁËÏÛÚ Ç „ÓËÁÓÌڇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú ‡ÁËÏÛÚÓÏ Ì‡Á˚‚‡ÂÚÒfl Ì·ÂÒ̇fl ‰Ó΄ÓÚ‡ Ó·˙ÂÍÚ‡, ËÁÏÂÂÌ̇fl ‚ ̇ԇ‚ÎÂÌËË Ì‡ ‚ÓÒÚÓÍ ÔÓ „ÓËÁÓÌÚÛ ÓÚ ÔÓÎflÌÓÈ ÚÓ˜ÍË. ÄÁËÏÛÚ ËÁÏÂflÂÚÒfl ‚ „‡‰ÛÒ‡ı ÓÚ 0° ‰Ó 360°. áÂÌËÚÌ˚È Û„ÓÎ Ç „ÓËÁÓÌڇθÌÓÈ ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú ÁÂÌËÚÌ˚Ï Û„ÎÓÏ Z A ̇Á˚‚‡ÂÚÒfl ÍÓ·ÚËÚ¸˛‰‡ (‰ÓÔÓÎÌÂÌË ¯ËÓÚ˚) Ó·˙ÂÍÚ‡, ËÁÏÂÂÌ̇fl ÓÚ ÁÂÌËÚ‡. ãÛÌÌÓ ‡ÒÒÚÓflÌË ãÛÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl Û„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÎÛÌÓÈ Ë ‰Û„ËÏ Ì·ÂÒÌ˚Ï Ó·˙ÂÍÚÓÏ. ê‡ÒÒÚÓflÌË ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚ ê‡ÒÒÚÓflÌËÂÏ ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÓÚ Ú· χÒÒ˚ m, ̇ıÓ‰fl˘Â„ÓÒfl ̇ ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚÂ, ‰Ó Ú· χÒÒ˚ å ‚ ÙÓÍÛÒ ӷËÚ˚. ùÚÓ ‡ÒÒÚÓflÌË Á‡‰‡ÂÚÒfl Í‡Í a(1 − e 2 ) , 1 + e cos θ „‰Â ‡ – ·Óθ¯‡fl ÔÓÎÛÓÒ¸,  – ˝ÍÒˆÂÌÚËÒËÚÂÚ Ë θ – Ó·ËڇθÌ˚È Û„ÓÎ. ÅÓθ¯‡fl ÔÓÎÛÓÒ¸ ‡ ˝ÎÎËÔÒ‡ (ËÎË ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚) ‡‚̇ ÔÓÎÓ‚Ë̠ ·Óθ¯ÓÈ ÓÒË; ˝ÚÓ Ò‰Ì (ÓÚÌÓÒËÚÂθÌÓ ˝ÍÒˆÂÌÚ˘ÂÒÍÓÈ ‡ÌÓχÎËË) ‡ÒÒÚÓflÌË ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚. ë‰Ì ‡ÒÒÚÓflÌË ÓÚÌÓÒËÚÂθÌÓ ËÒÚËÌÌÓÈ ‡ÌÓχÎËË fl‚ÎflÂÚÒfl χÎÓÈ ÔÓÎÛÓÒ¸˛, Ú.Â. ÔÓÎÓ‚ËÌÓÈ Ï‡ÎÓÈ ÓÒË ˝ÎÎËÔÒ‡ (ËÎË ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚). ùÍÒˆÂÌÚËÒËÚÂÚ Â ˝ÎÎËÔÒ‡ (ËÎË ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚) – ˝ÚÓ ÓÚÌÓ¯Âc ÌË ÔÓÎÓ‚ËÌ˚ ‡ÒÒÚÓflÌËfl c ÏÂÊ‰Û ÙÓÍÛÒ‡ÏË Ë ·Óθ¯ÓÈ ÔÓÎÛÓÒ¸˛ ‡: e = . a r −r ÑÎfl ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚ e = + − , „‰Â r + – ‡ÒÒÚÓflÌË ‡ÔÓ‡ÔÒˉ˚ Ë r– – ‡Òr+ + r− ÒÚÓflÌË Ô¡ÔÒˉ˚. ê‡ÒÒÚÓflÌË Ô¡ÔÒˉ˚ ê‡ÒÒÚÓflÌËÂÏ Ô¡ÔÒˉ˚ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË r– χÍÒËχθÌÓ„Ó Ò·ÎËÊÂÌËfl Ú· χÒÒ˚ m Ò Ï‡ÒÒÓÈ å, ‚ÓÍÛ„ ÍÓÚÓÓÈ ÓÌÓ ‚‡˘‡ÂÚÒfl ÔÓ ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚÂ. r− = a(1 − e), „‰Â a – ·Óθ¯‡fl ÔÓÎÛÓÒ¸ Ë e – ˝ÍÒˆÂÌÚËÒËÚÂÚ. èÂË„ÂÈ – Ô¡ÔÒˉ‡ ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚ ‚ÓÍÛ„ áÂÏÎË. èÂË„ÂÎËÈ – Ô¡ÔÒˉ‡ ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚ ‚ÓÍÛ„ ëÓÎ̈‡. è¡ÒÚËÈ – ÚӘ͇ Ó·ËÚ˚ ‰‚ÓÈÌÓÈ Á‚ÂÁ‰ÌÓÈ ÒËÒÚÂÏ˚ ‚ ÏÓÏÂÌÚ Ï‡ÍÒËχθÌÓ„Ó Ò·ÎËÊÂÌËfl Á‚ÂÁ‰.
ê‡ÒÒÚÓflÌË ‡ÔÓ‡ÔÒˉ˚ ê‡ÒÒÚÓflÌËÂÏ ‡ÔÓ‡ÔÒˉ˚ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË r– ̇˷Óθ¯Â„Ó Û‰‡ÎÂÌËfl Ú· χÒÒ˚ m ÓÚ Ú· χÒÒ˚ å, ‚ÓÍÛ„ ÍÓÚÓÓÈ ÓÌÓ ‚‡˘‡ÂÚÒfl ÔÓ ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚÂ. r+ = a(1 + e), „‰Â ‡ – ·Óθ¯‡fl ÔÓÎÛÓÒ¸ Ë Â – ˝ÍÒˆÂÌÚËÒËÚÂÚ. ÄÔÓ„ÂÈ – ‡ÔÓ‡ÔÒˉ‡ ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚ ‚ÓÍÛ„ áÂÏÎË. ÄÙÂÎËÈ – ‡ÔÓ‡ÔÒˉ‡ ˝ÎÎËÔÚ˘ÂÒÍÓÈ Ó·ËÚ˚ ‚ÓÍÛ„ ëÓÎ̈‡. ÄÔÓ‡ÒÚËÈ – ÚӘ͇ Ó·ËÚ˚ ‰‚ÓÈÌÓÈ Á‚ÂÁ‰ÌÓÈ ÒËÒÚÂÏ˚ ‚ ÏÓÏÂÌÚ Ï‡ÍÒËχθÌÓ„Ó Û‰‡ÎÂÌËfl ÏÂÊ‰Û Á‚ÂÁ‰‡ÏË. àÒÚËÌ̇fl ‡ÌÓχÎËfl àÒÚËÌÌÓÈ ‡ÌÓχÎËÂÈ Ì‡Á˚‚‡ÂÚÒfl Û„ÎÓ‚Ó ‡ÒÒÚÓflÌË ÚÓ˜ÍË Ì‡ Ó·ËÚ ÔÓÒΠÔÓıÓʉÂÌËfl ÚÓ˜ÍË Ô¡ÔÒˉ˚, ËÁÏÂÂÌÌÓ ‚ „‡‰ÛÒ‡ı.
364
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
á‡ÍÓÌ íËÚËÛÒ‡-ÅӉ á‡ÍÓÌ íËÚËÛÒ‡-ÅӉ fl‚ÎflÂÚÒfl ˝ÏÔˢÂÒÍËÏ (¢ Ì‰ÓÒÚ‡ÚÓ˜ÌÓ ıÓÓ¯Ó Ó·˙flÒÌÂÌÌ˚Ï) Á‡ÍÓÌÓÏ, ‡ÔÔÓÍÒËÏËÛ˛˘ËÏ Ò‰Ì Ô·ÌÂÚ‡ÌÓ ‡ÒÒÚÓflÌË ÓÚ ëÓÎ̈‡ 3k + 4 (Ú.Â. Ó·ËڇθÌÛ˛ ·Óθ¯Û˛ ÔÓÎÛÓÒ¸ Ô·ÌÂÚ˚) Í‡Í AU (‡ÒÚÓÌÓÏ˘ÂÒÍËı 10 ‰ËÌˈ). á‰ÂÒ¸ 1 AU Ó·ÓÁ̇˜‡ÂÚ Ò‰Ì Ô·ÌÂÚ‡ÌÓ ‡ÒÒÚÓflÌË ÓÚ ëÓÎ̈‡ ‰Ó áÂÏÎË (Ú.Â. ÓÍÓÎÓ 1,5 × 108 ÍÏ ≈ 8,3 ÍÏ Ò‚ÂÚÓ‚˚ı ÏËÌÛÚ˚) Ë k = 0, 2 0 , 21 , 2 2 , 2 3 , 2 4 , 2 5 , 2 6 , 2 7 ‰Îfl åÂÍÛËfl, ÇÂÌÂ˚, áÂÏÎË, å‡Ò‡, ñÂÂ˚ (ÍÛÔÌÂȯËÈ ‡ÒÚÂÓˉ ‡ÒÚÂÓˉÌÓ„Ó ÔÓflÒ‡), ûÔËÚ‡, ë‡ÚÛ̇, ì‡Ì‡, èÎÛÚÓ̇. èË ˝ÚÓÏ çÂÔÚÛÌ Ì ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‰‡ÌÌÓÏÛ Á‡ÍÓÌÛ – ÏÂÒÚÓ çÂÔÚÛ̇ ( k = 27 ) Á‡ÌËχÂÚ èÎÛÚÓÌ. ê‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‰ÓÏËÌËÛ˛˘ËÏ ÚÂÎÓÏ Ë ÒÔÛÚÌËÍÓÏ ê‡ÒÒÏÓÚËÏ ‰‚‡ Ì·ÂÒÌ˚ı Ú·: ‰ÓÏËÌËÛ˛˘Â å Ë ÏÂ̸¯Â m (ÒÔÛÚÌËÍ Ì‡ Ó·ËÚ ‚ÓÍÛ„ å, ËÎË ‚ÚÓ˘̇fl Á‚ÂÁ‰‡, ËÎË ÔÓÎÂÚ‡˛˘‡fl ÍÓÏÂÚ‡). ë‰ÌËÏ ‡ÒÒÚÓflÌËÂÏ fl‚ÎflÂÚÒfl ҉̠‡ËÙÏÂÚ˘ÂÒÍÓ χÍÒËχθÌÓ„Ó Ë ÏËÌËχθÌÓ„Ó ‡ÒÒÚÓflÌËÈ Ú· m ÓÚ Ú· å. èÛÒÚ¸ ρM, ρm Ë RM, Rm Ó·ÓÁ̇˜‡˛Ú ÔÎÓÚÌÓÒÚË Ë ‡‰ËÛÒ˚ ÚÂÎ å Ë m. íÓ„‰‡ Ô‰ÂÎÓÏ êÓ¯‡ Ô‡˚ (M, m) ̇Á˚‚‡ÂÚÒfl χÍÒËχθÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË, ‚ ‡Ï͇ı ÍÓÚÓÓ„Ó ÔÓËÒıÓ‰ËÚ ‡ÁÛ¯ÂÌË m ÔÓ‰ ‚ÓÁ‰ÂÈÒÚ‚ËÂÏ ÔËÎË‚ÓÓ·‡ÁÛ˛˘Ëı ÒËÎ å, Ô‚ÓÒıÓ‰fl˘Ëı ‚ÌÛÚÂÌÌË „‡‚ËÚ‡ˆËÓÌÌ˚ ÒËÎ˚ m. чÌÌÓ ‡ÒÒÚÓflÌË ρ ρ ‡‚ÌÓ RM 3 2 M ≈ 1, 26 RM 3 M , ÂÒÎË fl‚ÎflÂÚÒfl ڂ‰˚Ï ÒÙ¢ÂÒÍËÏ ÚÂÎÓÏ Ë ρm ρm ρM , ÂÒÎË ÚÂÎÓ m fl‚ÎflÂÚÒfl ÊˉÍËÏ. è‰ÂÎ êÓ¯‡ ËÏÂÂÚ ρm ÒÏ˚ÒÎ ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÓÌ Ô‚˚¯‡ÂÚ Á̇˜ÂÌË RM. è‰ÂÎ êÓ¯‡ ËÏÂÂÚ Á̇˜ÂÌËfl 0,8RM, 1,49RM Ë 2,8RM ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‰Îfl Ô‡ ëÓÎ̈–áÂÏÎfl, áÂÏÎfl–ãÛ̇ Ë áÂÏÎfl–ÍÓÏÂÚ‡. ÇÂÓflÚÌÓÈ Ô˘ËÌÓÈ ÔÓfl‚ÎÂÌËfl ÍÓΈ ë‡ÚÛ̇ Ïӄ· ÒÚ‡Ú¸ Â„Ó ÎÛ̇, ÍÓÚÓ‡fl Ò·ÎËÁË·Ҹ Ò ë‡ÚÛÌÓÏ, Ô‚˚ÒË‚ Ò‚ÓÈ Ô‰ÂÎ êÓ¯‡. èÛÒÚ¸ d(m, M) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û m Ë M, ‡ Sm Ë SM – χÒÒ˚ m Ë M. íÓ„‰‡ ÒÙ‡ ïËη ‰Îfl m ‚ ÔËÒÛÚÒÚ‚ËË å ÂÒÚ¸ ‡ÔÔÓÍÒËχˆËfl „‡‚ËÚ‡ˆËÓÌÌÓÈ ÒÙÂ˚ ‚ÎËflÌËfl S m ‚ ÛÒÎÓ‚Ëflı ‚ÓÁÏÛ˘‡˛˘Â„Ó ‚ÎËflÌËfl å. Ö ‡‰ËÛÒ ÔËÏÂÌÓ ‡‚ÂÌ d ( m, M )3 m . 3SM ç‡ÔËÏÂ, ‡‰ËÛÒ ÒÙÂ˚ ïËη ‰Îfl áÂÏÎË ‡‚ÂÌ 0,01 AU; ãÛ̇, Û‰‡ÎÂÌ̇fl ̇ 0,0025 AU ÓÚ áÂÏÎË, ÔÓÎÌÓÒÚ¸˛ ̇ıÓ‰ËÚÒfl ‚ ԉ·ı ÒÙÂ˚ ïËη áÂÏÎË. è‡Û (M, m) ÏÓÊÌÓ Óı‡‡ÍÚÂËÁÓ‚‡Ú¸ ÔÓÒ‰ÒÚ‚ÓÏ ÔflÚË ÚÓ˜ÂÍ ã‡„‡Ìʇ L i, 1 ≤ i ≤ 5, „‰Â ÚÂڸ Á̇˜ËÚÂθÌÓ ÏÂ̸¯Â ÚÂÎÓ (̇ÔËÏÂ, ÍÓÒÏ˘ÂÒÍËÈ ‡ÔÔ‡‡Ú) ËÏÂÂÚ ÓÚÌÓÒËÚÂθÌÓ ÒÚ‡·ËθÌÓ ÒÓÒÚÓflÌËÂ, ÔÓÒÍÓθÍÛ Â„Ó ˆÂÌÚÓ·ÂÊ̇fl ÒË· ‡‚̇ ÒÛÏχÌÓÈ ÒËΠÔËÚflÊÂÌËfl å Ë m. í‡ÍËÏË ÚӘ͇ÏË ·Û‰ÛÚ ÒÎÂ‰Û˛˘ËÂ: – L1, L2 Ë L 3 , ÎÂʇ˘Ë ̇ ÔflÏÓÈ, ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ ˆÂÌÚ˚ å Ë m Ú‡Í, ˜ÚÓ d ( L3 , m) = 2 d ( M , m), d ( M , L2 ) = d ( M , L1 ) + d ( m, L2 ) Ë d ( L1 , m) = d ( m, L2 ); – L4 Ë L 5 , ÔË̇‰ÎÂʇ˘Ë ӷËÚ m ‚ÓÍÛ„ å Ë Ó·‡ÁÛ˛˘Ë ‡‚ÌÓÒÚÓÓÌÌË ÚÂÛ„ÓθÌËÍË Ò ˆÂÌÚ‡ÏË å Ë m . ùÚË ‰‚ ÚÓ˜ÍË fl‚Îfl˛ÚÒfl ̇˷ÓΠÒÚ‡·ËθÌ˚ÏË; ͇ʉ‡fl ËÁ ÌËı ÒÓÒÚ‡‚ÎflÂÚ Ò å Ë m ˜‡ÒÚÌÓ ¯ÂÌË (ÔÓ͇ ̯ÂÌÌÓÈ) „‡‚ËÚ‡ˆËÓÌÌÓÈ Á‡‰‡˜Ë ÚÂı ÚÂÎ. ÇÓÁÌËÍÌÓ‚ÂÌË ãÛÌ˚ Ô‰ÔÓ·„‡ÂÚÒfl Í‡Í ÒΉÒÚ‚Ë ·ÓÍÓ‚Ó„Ó Û‰‡‡ ÔÓ áÂÏΠωÎÂÌÌÓ ÔË·ÎËÁË‚¯Â„ÓÒfl ËÁ ÚÓ˜ÍË ã‡„‡Ìʇ L4 ‚ ÒËÒÚÂÏ ëÓÎ̈–áÂÏÎfl Ô·ÌÂÚÓˉ‡ ‡ÁÏÂÓÏ Ò å‡Ò.
ÒÓÒÚ‡‚ÎflÂÚ ÓÍÓÎÓ 2, 423 RM 3
É·‚‡ 26
ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
26.1. êÄëëíéüçàü Ç äéëåéãéÉàà ÇÒÂÎÂÌ̇fl ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÔÓÎÌ˚È ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ-‚ÂÏÂÌÌÓÈ ÍÓÌÚËÌÛÛÏ, ‚ ÍÓÚÓÓÏ Ï˚ ÒÛ˘ÂÒÚ‚ÛÂÏ ‚ÏÂÒÚ ÒÓ ‚ÒÂÈ Á‡Íβ˜ÂÌÌÓÈ ‚ ÌÂÏ ˝Ì„ËÂÈ Ë ‚¢ÂÒÚ‚ÓÏ. äÓÒÏÓÎÓ„Ëfl Á‡ÌËχÂÚÒfl ËÁÛ˜ÂÌËÂÏ ÍÛÔÌÓχүڇ·ÌÓÈ ÒÚÛÍÚÛ˚ ‚ÒÂÎÂÌÌÓÈ. ëÔˆËÙ˘ÂÒÍËÏË ÔÓ·ÎÂχÏË ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÚÂχÚËÍË fl‚Îfl˛ÚÒfl ËÁÓÚÓÔËfl ‚ÒÂÎÂÌÌÓÈ (‚ ÍÛÔÌÂȯÂÏ Ï‡Ò¯Ú‡·Â ‚ÒÂÎÂÌ̇fl Ô‰ÒÚ‡‚ÎflÂÚÒfl Ó‰Ë̇ÍÓ‚ÓÈ ÔÓ ‚ÒÂÏ Ì‡Ô‡‚ÎÂÌËflÏ, Ú.Â. ËÌ‚‡Ë‡ÌÚÌÓÈ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ‚‡˘ÂÌËflÏ), Ó‰ÌÓÓ‰ÌÓÒÚ¸ ‚ÒÂÎÂÌÌÓÈ (β·˚ ËÁÏÂflÂÏ˚ ҂ÓÈÒÚ‚‡ ‚ÒÂÎÂÌÌÓÈ Ó‰Ë̇ÍÓ‚˚ ÔÓ‚Ò˛‰Û, Ú.Â. ËÌ‚‡Ë‡ÌÚÌ˚ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÔÂÂÌÓÒ‡Ï), ÔÎÓÚÌÓÒÚ¸ ‚ÒÂÎÂÌÌÓÈ, ÒÓ‡ÁÏÂÌÓÒÚ¸ ‚¢ÂÒÚ‚‡ Ë ‡ÌÚ˂¢ÂÒÚ‚‡, ‡ Ú‡ÍÊ ËÒÚÓ˜ÌËÍ ÍÓη‡ÌËÈ ÔÎÓÚÌÓÒÚË ‚ „‡Î‡ÍÚË͇ı. Ç 1929 „. ·Î ÓÚÍ˚Î, ˜ÚÓ „‡Î‡ÍÚËÍË Ó·Î‡‰‡˛Ú ÔÓÎÓÊËÚÂθÌ˚Ï Í‡ÒÌ˚Ï ÒÏ¢ÂÌËÂÏ, Ú.Â. ‚Ò „‡Î‡ÍÚËÍË, Á‡ ËÒÍβ˜ÂÌËÂÏ ÌÂÒÍÓθÍËı ·ÎËÁÎÂʇ˘Ëı „‡Î‡ÍÚËÍ ÚËÔ‡ Ä̉Óω˚, Û‰‡Îfl˛ÚÒfl ÓÚ åΘÌÓ„Ó èÛÚË. àÒıÓ‰fl ËÁ ÔË̈ËÔ‡ äÓÔÂÌË͇ (Ó ÚÓÏ, ˜ÚÓ Ï˚ Ì ̇ıÓ‰ËÏÒfl ‚ ÓÒÓ·ÓÏ ÏÂÒÚ ‚ÒÂÎÂÌÌÓÈ), ÏÓÊÌÓ Á‡Íβ˜ËÚ¸, ˜ÚÓ ‚Ò „‡Î‡ÍÚËÍË Ú‡ÍÊ ۉ‡Îfl˛ÚÒfl ‰Û„ ÓÚ ‰Û„‡, Ú.Â. Ï˚ ÊË‚ÂÏ ‚ ‰Ë̇Ï˘ÂÒÍÓÏ, ‡Ò¯Ëfl˛˘ÂÏÒfl ÏËÂ Ë ˜ÂÏ ‰‡Î¸¯Â ÓÚ Ì‡Ò Ì‡ıÓ‰ËÚÒfl „‡Î‡ÍÚË͇, ÚÂÏ ·˚ÒÚ Ó̇ ‰‚ËÊÂÚÒfl (˝ÚÓ Ì‡Á˚‚‡ÂÚÒfl ÚÂÔ¸ Á‡ÍÓÌÓÏ ï‡··Î‡ (͇ÒÌÓ„Ó ÒÏ¢ÂÌËfl). èÓÚÓÍÓÏ ï‡··Î‡ ‰‚ËÊÂÌË ̇Á˚‚‡ÂÚÒfl Ó·˘Â ‡Á·Â„‡ÌË „‡Î‡ÍÚËÍ Ë ÒÍÓÔÎÂÌËÈ „‡Î‡ÍÚËÍ ‚ ÂÁÛθڇÚ ‡Ò¯ËÂÌËfl ‚ÒÂÎÂÌÌÓÈ. éÌÓ ÔÓËÒıÓ‰ËÚ ÔÓ ‡‰Ë‡Î¸Ì˚Ï Ì‡Ô‡‚ÎÂÌËflÏ ÓÚ Ì‡·Î˛‰‡ÚÂÎfl Ë ÔÓ‰˜ËÌflÂÚÒfl Á‡ÍÓÌÛ Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl. ɇ·ÍÚËÍË ÏÓ„ÛÚ ÔÂÓ‰Ó΂‡Ú¸ ˝ÚÓ ‡Ò¯ËÂÌË ‚ χүڇ·‡ı, ÏÂ̸¯Ëı, ˜ÂÏ ÒÍÓÔÎÂÌËfl „‡Î‡ÍÚËÍ, Ӊ̇ÍÓ ÒÍÓÔÎÂÌËfl „‡Î‡ÍÚËÍ ‚Ò„‰‡ ·Û‰ÛÚ ÒÚÂÏËÚ¸Òfl Í ‡Á·Â„‡Ì˲ ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò Á‡ÍÓÌÓÏ Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl. Ç ÍÓÒÏÓÎÓ„ËË ÔÂӷ·‰‡˛˘ÂÈ Ì‡Û˜ÌÓÈ ÚÂÓËÂÈ Ó ‚ÓÁÌËÍÌÓ‚ÂÌËË Ë ÙÓÏ ‚ÒÂÎÂÌÌÓÈ fl‚ÎflÂÚÒfl ÚÂÓËfl "·Óθ¯Ó„Ó ‚Á˚‚‡". 燷β‰ÂÌË ÚÓ„Ó, ˜ÚÓ „‡Î‡ÍÚËÍË Í‡ÊÛÚÒfl Û‰‡Îfl˛˘ËÏËÒfl ‰Û„ ÓÚ ‰Û„‡, ÏÓÊÌÓ ÒÓ‚ÏÂÒÚËÚ¸ Ò Ó·˘ÂÈ ÚÂÓËÂÈ ÓÚÌÓÒËÚÂθÌÓÒÚË Ë ˝ÍÒÚ‡ÔÓÎËÓ‚‡Ú¸ ÒÓÒÚÓflÌË ‚ÒÂÎÂÌÌÓÈ ‚ Ó·‡ÚÌÓÏ ÓÚÒ˜ÂÚ ‚ÂÏÂÌË. éÒÌÓ‚‡ÌÌ˚ ̇ ˝ÚÓÈ ÏÂÚÓ‰ËÍ ÔÓÒÚÓÂÌËfl ÔÓ͇Á˚‚‡˛Ú, ˜ÚÓ ÔÓ Ï ۉ‡ÎÂÌËfl ‚ ÔÓ¯ÎÓ ‚ÒÂÎÂÌ̇fl ÒÚ‡ÌÓ‚ËÚÒfl ÔÎÓÚÌÂÂ Ë Â ÚÂÏÔ‡ÚÛ‡ Û‚Â΢˂‡ÂÚÒfl. Ç ÍÓ̘ÌÓÏ ËÚÓ„Â ‚ÓÁÌË͇ÂÚ „‡‚ËÚ‡ˆËÓÌ̇fl ÒËÌ„ÛÎflÌÓÒÚ¸, ÔË ÍÓÚÓÓÈ ‚Ò ‡ÒÒÚÓflÌËfl Ò‚Ó‰flÚÒfl Í ÌÛβ, ‡ ‰‡‚ÎÂÌËÂ Ë ÚÂÏÔ‡ÚÛ‡ ‚ÓÁ‡ÒÚ‡˛Ú ‰Ó ·ÂÒÍÓ̘ÌÓÒÚË. íÂÏËÌ "·Óθ¯ÓÈ ‚Á˚‚" ËÒÔÓθÁÛÂÚÒfl ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ÌÂÍÓÈ „ËÔÓÚÂÚ˘ÂÒÍÓÈ ÚÓ˜ÍË ‚Ó ‚ÂÏÂÌË, ÍÓ„‰‡ ̇·Î˛‰‡ÂÏÓ ̇˜‡ÎÓÒ¸ ‡Ò¯ËÂÌË ‚ÒÂÎÂÌÌÓÈ. ç‡ ÓÒÌÓ‚Â Ôӂ‰ÂÌÌ˚ı ËÁÏÂÂÌËÈ Ô‡‡ÏÂÚÓ‚ ‡Ò¯ËÂÌËfl ‚ ̇ÒÚÓfl˘Â ‚ÂÏfl Ô‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ ‚ÓÁ‡ÒÚ ‚ÒÂÎÂÌÌÓÈ ‡‚ÂÌ 13,7 ± 0,2 ÏΉ ÎÂÚ. ùÚÓÚ ÔÂËÓ‰ ‰ÓÎÊÂÌ ·˚Ú¸ ·Óθ¯Â, ÂÒÎË ‡Á·Â„‡ÌËÂ, Í‡Í Ô‰ÔÓ·„‡ÎÓÒ¸ ̉‡‚ÌÓ, ˉÂÚ Ò ÛÒÍÓÂÌËÂÏ. ÑÓÙ‡Ò Ì‡ ÓÒÌÓ‚Â ‰‡ÌÌ˚ı Ó· ÓÚÌÓÒËÚÂθÌÓÏ ÒÓ‰ÂʇÌËË Û‡Ì‡ Ë ÚÓËfl ‚ ıÓ̉ËÚÓ‚˚ı ÏÂÚÂÓËÚ‡ı Ô‰ÔÓÎÓÊËÎ [Dau05], ˜ÚÓ ‚ÒÂÎÂÌ̇fl ÒÛ˘ÂÒÚ‚ÛÂÚ ÛÊ 14,5 ± 2 ÏΉ ÎÂÚ.
366
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
Ç ÍÓÒÏÓÎÓ„ËË (ËÎË, ÚÓ˜ÌÂÂ, ‚ ÍÓÒÏÓ„‡ÙËË, ̇ÛÍ ӷ ËÁÏÂÂÌËË ‚ÒÂÎÂÌÌÓÈ) ÒÛ˘ÂÒÚ‚ÛÂÚ ÏÌÓ„Ó ÒÔÓÒÓ·Ó‚ ‰Îfl ÓÔ‰ÂÎÂÌËfl ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË, ÔÓÒÍÓθÍÛ ‚ ÛÒÎÓ‚Ëflı ‡Ò¯Ëfl˛˘ÂÈÒfl ‚ÒÂÎÂÌÌÓÈ ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ‰‚ËÊÛ˘ËÏËÒfl Ó·˙ÂÍÚ‡ÏË ÔÓÒÚÓflÌÌÓ ËÁÏÂÌfl˛ÚÒfl, Ë ‰Îfl ̇·Î˛‰‡ÚÂÎÂÈ Ì‡ áÂÏΠÒÏÓÚÂÚ¸ ‚‰‡Î¸ ÓÁ̇˜‡ÂÚ ÒÏÓÚÂÚ¸ ‚ ÔÓ¯ÎÓÂ. é·˙‰ËÌfl˛˘ËÏ Ù‡ÍÚÓÓÏ ÔË ˝ÚÓÏ fl‚ÎflÂÚÒfl ÚÓ, ˜ÚÓ ‚Ò ÏÂ˚ ‡ÒÒÚÓflÌËÈ Ú‡Í ËÎË Ë̇˜Â ÓˆÂÌË‚‡˛Ú ‡Á‰ÂÎÂÌË ÏÂÊ‰Û ÒÓ·˚ÚËflÏË ÔÓ ‡‰Ë‡Î¸ÌÓ ÌÛ΂˚Ï Ú‡ÂÍÚÓËflÏ, Ú.Â. Ú‡ÂÍÚÓËflÏ ÙÓÚÓÌÓ‚, Á‡Í‡Ì˜Ë‚‡˛˘ËıÒfl ‚ ÚӘ̇͠·Î˛‰ÂÌËfl. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ÍÓÒÏÓÎӄ˘ÂÒÍÓ ‡ÒÒÚÓflÌË – ˝ÚÓ ‡ÒÒÚÓflÌËÂ, ‚˚ıÓ‰fl˘Â ‰‡ÎÂÍÓ Á‡ Ô‰ÂÎ˚ ̇¯ÂÈ „‡Î‡ÍÚËÍË. ÉÂÓÏÂÚËfl ‚ÒÂÎÂÌÌÓÈ ÓÔ‰ÂÎflÂÚÒfl fl‰ÓÏ ÍÓÒÏÓÎӄ˘ÂÒÍËı Ô‡‡ÏÂÚÓ‚: Ô‡‡ÏÂÚÓÏ ‡Ò¯ËÂÌËfl (ËÎË ÍÓ˝ÙÙˈËÂÌÚÓÏ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl) ‡, ÍÓÌÒÚ‡ÌÚÓÈ ï‡··Î‡ ç, ÔÎÓÚÌÓÒÚ¸˛ ρ Ë ÍËÚ˘ÂÒÍÓÈ ÔÎÓÚÌÓÒÚ¸˛ ρcrit (ÔÎÓÚÌÓÒÚ¸˛, Ó·ÛÒÎÓ‚ÎË‚‡˛˘ÂÈ ÔÂ͇˘ÂÌË ‡Ò¯ËÂÌËfl ‚ÒÂÎÂÌÌÓÈ Ë, ‚ ÍÓ̘ÌÓÏ Ò˜tÚÂ,  ӷ‡ÚÌ˚È ÍÓηÔÒ), ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÔÓÒÚÓflÌÌÓÈ Λ, ÍË‚ËÁÌÓÈ ‚ÒÂÎÂÌÌÓÈ k. åÌÓ„Ë ËÁ ˝ÚËı ‚Â΢ËÌ ÏÓ„ÛÚ ·˚Ú¸ Ò‚flÁ‡Ì˚ ÏÂÊ‰Û ÒÓ·ÓÈ Ô‰ÔÓÎÓÊÂÌËflÏË ‚ ‡Ï͇ı ÍÓÌÍÂÚÌÓÈ ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÏÓ‰ÂÎË. ç‡Ë·ÓΠӷ˘ËÏË ÍÓÒÏÓÎӄ˘ÂÒÍËÏË ÏÓ‰ÂÎflÏË fl‚Îfl˛ÚÒfl ÓÚÍ˚Ú‡fl Ë Á‡Í˚Ú‡fl ÍÓÒÏÓÎӄ˘ÂÒÍË ÏÓ‰ÂÎË îˉχÌ̇–ãÂÏÂÚ‡ Ë ÍÓÒÏÓÎӄ˘ÂÒ͇fl ÏÓ‰Âθ ùÈ̯ÚÂÈ̇-‰Â ëËÚÚ‡ (ÒÏ. Ú‡ÍÊ ÍÓÒÏÓÎӄ˘ÂÒ͇fl ÏÓ‰Âθ ùÈ̯ÚÂÈ̇, ÍÓÒÏÓÎӄ˘ÂÒ͇fl ÏÓ‰Âθ ‰Â ëËÚÚ‡, ÍÓÒÏÓÎӄ˘ÂÒ͇fl ÏÓ‰Âθ ù‰‰ËÌÚÓ̇-ãÂÏÂÚ‡). äÓÒÏÓÎӄ˘ÂÒ͇fl ÏÓ‰Âθ ùÈ̯ÚÂÈ̇–‰Â ëËÚÚ‡ ËÒıÓ‰ËÚ ËÁ ÚÓ„Ó, ˜ÚÓ ‚ÒÂÎÂÌ̇fl fl‚ÎflÂÚÒfl Ó‰ÌÓÓ‰ÌÓÈ, ËÁÓÚÓÔÌÓÈ, ËÏÂÂÚ ÔÓÒÚÓflÌÌÛ˛ ÍË‚ËÁÌÛ Ò ÌÛ΂ÓÈ ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÔÓÒÚÓflÌÌÓÈ Λ Ë ‰‡‚ÎÂÌËÂÏ ê. ÑÎfl ÔÓÒ1 3 8 2 1 9GM / 2 / 3 ÚÓflÌÌÓÈ Ï‡ÒÒ˚ ‚ÒÂÎÂÌÌÓÈ å H 2 = πGρ, t = H −1 , a = t , „‰Â RC 2 3 3 G = 6,67 × 10–11 Ï3 /Í„–1/Ò–2 – „‡‚ËÚ‡ˆËÓÌ̇fl ÔÓÒÚÓflÌ̇fl, RC =| k |−1 / 2 – ‡·ÒÓβÚÌÓ Á̇˜ÂÌË ‡‰ËÛÒ‡ ÍË‚ËÁÌ˚ Ë t – ‚ÓÁ‡ÒÚ ‚ÒÂÎÂÌÌÓÈ. 臇ÏÂÚ ‡Ò¯ËÂÌËfl a = a (t) fl‚ÎflÂÚÒfl ÍÓ˝ÙÙˈËÂÌÚÓÏ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl, Ò‚flÁ˚‚‡˛˘ËÏ ‡ÁÏ ‚ÒÂÎÂÌÌÓÈ R = R(t) ‚Ó ‚ÂÏÂÌË t Ò ‡ÁÏÂÓÏ ‚ÒÂÎÂÌÌÓÈ R0 = R(t0 ) ‚Ó ‚ÂÏÂÌË t0 , ÔÓ Í‡ÍÓÏÛ R = aR0 . Ç Ì‡ÒÚÓfl˘Â ‚ÂÏfl Â„Ó Ó·˚˜ÌÓ ‡ÒÒχÚË‚‡˛Ú ·ÂÁ‡ÁÏÂÌ˚Ï Ò a(tobser) = 1, „‰Â tobser – ÚÂÍÛ˘ËÈ ‚ÓÁ‡ÒÚ ‚ÒÂÎÂÌÌÓÈ. äÓÌÒÚ‡ÌÚ‡ ·Î‡ ç – ÍÓ˝ÙÙˈËÂÌÚ ÔÓÔÓˆËÓ̇θÌÓÒÚË ÏÂÊ‰Û ÒÍÓÓÒÚ¸˛ ‡Ò¯ËÂÌËfl v Ë ‡ÁχÏË ‚ÒÂÎÂÌÌÓÈ R, Ú.Â. v = HR. ùÚÓ ‡‚ÂÌÒÚ‚Ó ‚˚‡Ê‡ÂÚ Á‡ÍÓÌ a ′(t ) ·Î‡ (͇ÒÌÓ„Ó ÒÏ¢ÂÌËfl) Ò ÍÓÌÒÚ‡ÌÚÓÈ ï‡··Î‡ H = . íÂÍÛ˘Â Á̇˜ÂÌË a( t ) ÍÓÌÒÚ‡ÌÚ˚ ·Î‡, ÔÓ Ì‰‡‚ÌËÏ ÓˆÂÌ͇Ï, ‡‚ÌÓ H 0 = 71 ± 4 ÍÏÒ–1 åÔÍ –1 , „‰Â ÌËÊÌËÈ Ë̉ÂÍÒ 0 ÓÁ̇˜‡ÂÚ ÒÓ‚ÂÏÂÌÌÛ˛ ˝ÔÓıÛ, Ú‡Í Í‡Í ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ç ËÁÏÂÌflÂÚÒfl ÒÓ ‚ÂÏÂÌÂÏ. ÇÂÏfl ·Î‡ Ë ‡ÒÒÚÓflÌË ·Î‡ ÓÔ‰ÂÎfl˛ÚÒfl Í‡Í 1 c tH = Ë DH = (Á‰ÂÒ¸ Ò – ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡) ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. H0 H0 èÎÓÚÌÓÒÚ¸ χÒÒ˚ ρ (‡‚̇fl ρ0 ‚ ̇ÒÚÓfl˘Û˛ ˝ÔÓıÛ) Ë Á̇˜ÂÌË ÍÓÒÏÓÎӄ˘ÂÍÓÈ ÔÓÒÚÓflÌÌÓÈ Λ fl‚Îfl˛ÚÒfl ‰Ë̇Ï˘ÂÒÍËÏË ı‡‡ÍÚÂËÒÚË͇ÏË ‚ÒÂÎÂÌÌÓÈ. àı ÏÓÊÌÓ 8πGρ0 , ÔÂÓ·‡ÁÓ‚‡Ú¸ ‚ ·ÂÁ‡ÁÏÂÌ˚ ԇ‡ÏÂÚ˚ ÔÎÓÚÌÓÒÚË ΩM Ë Ω Λ: Í‡Í Ω M = 3 H03 Λ ΩΛ = . íÂÚËÈ Ô‡‡ÏÂÚ ÔÎÓÚÌÓÒÚË Ω R ËÁÏÂflÂÚ "ÍË‚ËÁÌÛ ÔÓÒÚ‡ÌÒÚ‚‡" Ë 3 H03 ÏÓÊÂÚ ·˚Ú¸ ÓÔ‰ÂÎÂÌ ËÁ ÓÚÌÓ¯ÂÌËfl Ω M + ΩΛ + ΩR = 1.
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
367
ùÚËÏË Ô‡‡ÏÂÚ‡ÏË ‚ ÔÓÎÌÓÈ Ï ÓÔ‰ÂÎflÂÚÒfl „ÂÓÏÂÚËfl ‚ÒÂÎÂÌÌÓÈ, ÂÒÎË Ó̇ Ó‰ÌÓӉ̇, ËÁÓÚÓÔ̇ Ë ÔÂËÏÛ˘ÂÒÚ‚ÂÌÌÓ Ï‡Ú¡θ̇. ëÍÓÓÒÚ¸ „‡Î‡ÍÚËÍË ËÁÏÂflÂÚÒfl ÔÓ ‰ÓÔÎÂÓ‚ÒÍÓÏÛ Ò‰‚Ë„Û, Ú.Â. ˝ÙÙÂÍÚÛ ÔÓ Ù‡ÍÚÛ ËÁÏÂÌÂÌËfl ‰ÎËÌ˚ ‚ÓÎÌ˚ ËÒÔÛÒ͇ÂÏÓ„Ó Ò‚ÂÚÓ‚Ó„Ó ËÁÎÛ˜ÂÌËfl ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ ‰‚ËÊÂÌËfl ËÒÚÓ˜ÌË͇. êÂÎflÚË‚ËÒÚÒ͇fl ÙÓχ ‰ÓÔÎÂÓ‚ÒÍÓ„Ó Ò‰‚Ë„‡ ÒÛ˘ÂÒÚ‚ÛÂÚ ‰Îfl Ó·˙ÂÍÚÓ‚, ‰‚ËÊÛ˘ËıÒfl Ò Ó˜Â̸ ·Óθ¯ÓÈ ÒÍÓÓÒÚ¸˛: Ó̇ ‚˚‡Ê‡ÂÚÒfl Í‡Í λ obser c+v = , „‰Â λ emit – ‰ÎË̇ ËÒÔÛÒ͇ÂÏÓÈ ‚ÓÎÌ˚ Ë λobser – Ò‰‚ËÌÛÚ‡fl ̇·Î˛c−v λ emit ‰‡Âχfl ‰ÎË̇ ‚ÓÎÌ˚. ê‡ÁÌˈ‡ ‰ÎËÌ ‚ÓÎÌ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÌÂÔÓ‰‚ËÊÌÓÏÛ ËÒÚÓ˜ÌËÍÛ Ì‡Á˚‚‡ÂÚÒfl ͇ÒÌ˚Ï ÒÏ¢ÂÌËÂÏ (ÂÒÎË ËÒÚÓ˜ÌËÍ Û‰‡ÎflÂÚÒfl) Ë Ó·ÓÁ̇˜‡ÂÚÒfl ·ÛÍ‚ÓÈ z. êÂÎflÚË‚ËÒÚÒÍÓ ͇ÒÌÓ ÒÏ¢ÂÌË z ‰Îfl ˜‡ÒÚˈ˚ Á‡ÔËÒ˚‚‡ÂÚÒfl Í‡Í ∆λ obser λ obser c+v z= = −1 = − 1. c−v λ emit λ emit äÓÒÏÓÎӄ˘ÂÒÍÓ ͇ÒÌÓ ÒÏ¢ÂÌË ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓ Ò‚flÁ‡ÌÓ Ò Ô‡‡ÏÂÚÓÏ a(tobser ) ‡Ò¯ËÂÌËfl a = a(t ) : z + 1 = . á‰ÂÒ¸ a(tobser ) fl‚ÎflÂÚÒfl Á̇˜ÂÌËÂÏ Ô‡‡ÏÂÚ‡ a(temit ) ‡Ò¯ËÂÌËfl ‚ ÔÂËÓ‰ ̇·Î˛‰ÂÌËfl ÔËıÓ‰fl˘Â„Ó ÓÚ Ó·˙ÂÍÚ‡ Ò‚ÂÚ‡, ‡ temit – Á̇˜ÂÌËÂÏ Ô‡‡ÏÂÚ‡ ‡Ò¯ËÂÌËfl ‚ ÔÂËÓ‰ Â„Ó ËÁÎÛ˜ÂÌËfl. ê‡ÒÒÚÓflÌË ·Î‡ ê‡ÒÒÚÓflÌË ·Î‡ ÂÒÚ¸ ÍÓÌÒÚ‡ÌÚ‡ DH =
c = 4220 åÔÍ ≈ 1, 3 × 10 6 Ï ≈ 1,377 × 1010 Ò‚ÂÚÓ‚˚ı ÎÂÚ, H0
„‰Â Ò – ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡ Ë H0 = 71 ± 4 ÍÏÒ–1 åÔÍ–1 – ÍÓÌÒÚ‡ÌÚ‡ ·Î‡. ùÚÓ ‡ÒÒÚÓflÌË ÓÚ áÂÏÎË ‰Ó ÍÓÒÏ˘ÂÒÍÓ„Ó Ò‚ÂÚÓ‚Ó„Ó „ÓËÁÓÌÚ‡, ÍÓÚÓ˚Ï Ó·ÓÁ̇˜‡ÂÚÒfl Í‡È ‚ˉËÏÓÈ ‚ÒÂÎÂÌÌÓÈ, Ú.Â. ‡‰ËÛÒ ÒÙÂ˚, ˆÂÌÚÓÏ ÍÓÚÓÓÈ fl‚ÎflÂÚÒfl áÂÏÎfl, ÔÓÚflÊÂÌÌÓÒÚ¸˛ ÓÍÓÎÓ 13,7 ÏΉ Ò‚ÂÚÓ‚˚ı ÎÂÚ. ùÚÓ ‡ÒÒÚÓflÌË ˜‡ÒÚÓ Ì‡Á˚‚‡˛Ú ÂÚÓÒÔÂÍÚË‚Ì˚Ï ‡ÒÒÚÓflÌËÂÏ, ÔÓÒÍÓθÍÛ ‡ÒÚÓÌÓÏ˚, ̇·Î˛‰‡˛˘Ë ۉ‡ÎÂÌÌ˚ ӷ˙ÂÍÚ˚, Ù‡ÍÚ˘ÂÒÍË "ÒÏÓÚflÚ Ì‡Á‡‰" ‚ ËÒÚÓ˲ ‚ÒÂÎÂÌÌÓÈ. ÑÎfl Ì·Óθ¯Ó„Ó v/c ËÎË Ï‡ÎÓ„Ó ‡ÒÒÚÓflÌËfl d ‚ ‡Ò¯Ëfl˛˘ÂÈÒfl ‚ÒÂÎÂÌÌÓÈ ÒÍÓÓÒÚ¸ ÔÓÔÓˆËÓ̇θ̇ ‡ÒÒÚÓflÌ˲ Ë ‚Ò ÏÂ˚ ‡ÒÒÚÓflÌËÈ, ̇ÔËÏ ‡ÒÒÚÓflÌË ۄÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡, ÙÓÚÓÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ Ë Ú.Ô., ÒıÓ‰flÚÒfl Í Ó‰ÌÓÏÛ Á̇˜ÂÌ˲. ÇÁfl‚ ÎËÌÂÈÌÛ˛ ‡ÔÔÓÍÒËχˆË˛, ÔÓÎÛ˜ËÏ d = zDH, „‰Â z – ͇ÒÌÓ ÒÏ¢ÂÌËÂ. é‰Ì‡ÍÓ ˝Ú‡ ÙÓÏÛ· ÒÔ‡‚‰ÎË‚‡ ÚÓθÍÓ ‰Îfl Ì·Óθ¯Ëı Á̇˜ÂÌËÈ Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl. ê‡ÒÒÚÓflÌË ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl Ç Òڇ̉‡ÚÌÓÈ ÏÓ‰ÂÎË "·Óθ¯Ó„Ó ‚Á˚‚‡" ËÒÔÓθÁÛ˛ÚÒfl ÍÓÓ‰Ë̇Ú˚ ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl, „‰Â ÔÓÒÚ‡ÌÒÚ‚ÂÌ̇fl ÒËÒÚÂχ ÍÓÓ‰ËÌ‡Ú ÔË‚flÁ‡Ì‡ Í Ò‰ÌÂÏÛ ÏÂÒÚÓÔÓÎÓÊÂÌ˲ „‡Î‡ÍÚËÍ. í‡Í‡fl ÒËÒÚÂχ ÍÓÓ‰ËÌ‡Ú ÔÓÁ‚ÓÎflÂÚ ÔÂÌ·˜¸ Ô‡‡ÏÂÚ‡ÏË ‚ÂÏÂÌË Ë ‡Ò¯ËÂÌËfl ‚ÒÂÎÂÌÌÓÈ, Ë ÙÓχ ÔÓÒÚ‡ÌÒÚ‚‡ ÏÓÊÂÚ ·˚Ú¸ Ô‰ÒÚ‡‚ÎÂ̇ Í‡Í ÔÓÒÚ‡ÌÒÚ‚ÂÌ̇fl „ËÔÂÔÓ‚ÂıÌÓÒÚ¸ Ò ÔÓÒÚÓflÌÌ˚Ï ÍÓÒÏÓÎӄ˘ÂÒÍËÏ ‚ÂÏÂÌÂÏ. ê‡ÒÒÚÓflÌËÂÏ ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl (ËÎË ÍÓÓ‰Ë̇ÚÌ˚Ï ‡ÒÒÚÓflÌËÂÏ, ÍÓÒÏÓÎӄ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ χ ) ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ‚ ÍÓÓ‰Ë̇ڇı ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË ‚ ÔÓÒÚ‡ÌÒÚ‚Â ‚ Ó‰ÌÓ Ë ÚÓ Ê ÍÓÒÏÓÎӄ˘ÂÒÍÓ ‚ÂÏfl, Ú.Â. ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÒÓÒ‰ÌËÏË Ó·˙ÂÍÚ‡ÏË ‚Ó ‚ÒÂÎÂÌÌÓÈ, ÍÓÚÓÓÂ
368
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ÓÒÚ‡ÂÚÒfl ÌÂËÁÏÂÌÌ˚Ï ÓÚÌÓÒËÚÂθÌÓ ˝ÔÓıË, ÂÒÎË Ó·‡ Ó·˙ÂÍÚ‡ ‰‚ËÊÛÚÒfl ‚ ÔÓÚÓÍ ·Î‡. ùÚÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË ËÁÏÂÂÌÌÓ χүڇ·ÌÓÈ ÎËÌÂÈÍÓÈ ‚ ÏÓÏÂÌÚ Ëı ̇·Î˛‰ÂÌËfl (ÒÓ·ÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌËÂ), ‰ÂÎÂÌÌÓ ̇ ÓÚÌÓ¯ÂÌË ÍÓ˝ÙÙˈËÂÌÚÓ‚ χүڇ·ËÓ‚‡ÌËfl ‚ÒÂÎÂÌÌÓÈ ‚ ËÒıÓ‰Ì˚È ÚÂÍÛ˘ËÈ ÔÂËÓ‰˚. àÌ˚ÏË ÒÎÓ‚‡ÏË, ˝ÚÓ ÒÓ·ÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌËÂ, ÛÏÌÓÊÂÌÌÓ ̇ (1 + z), „‰Â z – ͇ÒÌÓ ÒÏ¢ÂÌËÂ: dcomov ( x, y) = d proper ( x, y) ⋅
a(tobser ) = d proper ( x, y) ⋅ (1 + z ). a(temit )
ÇÓ ‚ÂÏfl tobser, Ú.Â. ‚ ̇ÒÚÓfl˘Û˛ ˝ÔÓıÛ, a = a(tobser) = 1 Ë d = dproper, Ú.Â. ‡ÒÒÚÓflÌË ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ÒÓÒ‰ÌËÏË ÒÓ·˚ÚËflÏË (Ò ·ÎËÁÍËÏË Á̇˜ÂÌËflÏË Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl ËÎË ‡ÒÒÚÓflÌËfl) fl‚ÎflÂÚÒfl ÒÓ·ÒÚ‚ÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÌËÏË. Ç Ó·˘ÂÏ ÒÎÛ˜‡Â ‰Îfl ÍÓÒÏÓÎӄ˘ÂÒÍÓ„Ó ‚ÂÏÂÌË t ‚˚ÔÓÎÌflÂÚÒfl ‡‚ÂÌÒÚ‚Ó d proper dcomov = . a( t ) èÓÎÌÓ ‡ÒÒÚÓflÌË ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl ÔÓ ÎËÌËË ÔflÏÓÈ ‚ˉËÏÓÒÚË DC ÓÚ áÂÏÎË ‰Ó Û‰‡ÎÂÌÌÓ„Ó Ó·˙ÂÍÚ‡ ‡ÒÒ˜ËÚ˚‚‡ÂÚÒfl ÔÓÒ‰ÒÚ‚ÓÏ ËÌÚ„ËÓ‚‡ÌËfl ·ÂÒÍÓ̘ÌÓ Ï‡Î˚ı dcomov(x, y) ÏÂÊ‰Û ÒÓÒ‰ÌËÏË ÒÓ·˚ÚËflÏË ‚‰Óθ ÎÛ˜‡ ‚ÂÏÂÌË, ̇˜Ë̇fl Ò ‚ÂÏÂÌË temit, ÍÓ„‰‡ Ò‚ÂÚ ·˚Î ËÁÎÛ˜ÂÌ Ó·˙ÂÍÚÓÏ, ‰Ó ÏÓÏÂÌÚ‡ tobser, ÍÓ„‰‡ ÓÒÛ˘ÂÒÚ‚ÎflÎÓÒ¸ ̇·Î˛‰ÂÌË ӷ˙ÂÍÚ‡: t obser
DC =
∫
t emit
cdt . a( t )
ç‡ flÁ˚Í ͇ÒÌÓ„Ó ÒÏ¢ÂÌËfl ‡ÒÒÚÓflÌË D C ÓÚ áÂÏÎË ‰Ó Û‰‡ÎÂÌÌÓ„Ó Ó·˙ÂÍÚ‡ ‡ÒÒ˜ËÚ˚‚‡ÂÚÒfl ÔÓÒ‰ÒÚ‚ÓÏ ËÌÚ„ËÓ‚‡ÌËfl ·ÂÒÍÓ̘ÌÓ Ï‡Î˚ı dcomov (x, y) ÏÂÊ‰Û ÒÓÒ‰ÌËÏË ÒÓ·˚ÚËflÏË ‚‰Óθ ‡‰Ë‡Î¸ÌÓ„Ó ÎÛ˜‡ ‚ÂÏÂÌË ÓÚ z = 0 ‰Ó Ó·˙ÂÍz
Ú‡:
DC = DH
dz
∫ E( z ) ,
„‰Â D H ÂÒÚ¸ ‡ÒÒÚÓflÌË ·Î‡, Ë E( z ) = (Ω M (1 + z )3 +
0
+ Ω R (1 + z )2 + Ω Λ )1 / 2 . Ç ÌÂÍÓÚÓÓÏ ÒÏ˚ÒΠ‡ÒÒÚÓflÌË ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl fl‚ÎflÂÚÒfl ÙÛ̉‡ÏÂÌڇθÌÓÈ ÏÂÓÈ ‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË, ÔÓÒÍÓθÍÛ ‚Ò ‰Û„Ë ‡ÒÒÚÓflÌËfl ÏÓ„ÛÚ ·˚Ú¸ ‚˚‡ÊÂÌ˚ ˜ÂÂÁ Ì„Ó. ëÓ·ÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌË ëÓ·ÒÚ‚ÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ (ËÎË ÙËÁ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ, Ó‰Ë̇Ì˚Ï ‡ÒÒÚÓflÌËÂÏ) ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÒÓÒ‰ÌËÏË ÒÓ·˚ÚËflÏË ‚ ÒËÒÚÂÏÂ, ‚ ÍÓÚÓÓÈ ÓÌË ÔÓËÒıÓ‰flÚ ‚ Ó‰ÌÓ ‚ÂÏfl. ùÚÓ ‡ÒÒÚÓflÌË ·Û‰ÂÚ ËÁÏÂflÚ¸Òfl χүڇ·ÌÓÈ ÎËÌÂÈÍÓÈ ‚ ÏÓÏÂÌÚ Ì‡·Î˛‰ÂÌËfl. ëΉӂ‡ÚÂθÌÓ, ‰Îfl ÍÓÒÏÓÎӄ˘ÂÒÍÓ„Ó ‚ÂÏÂÌË t ‚˚ÔÓÎÌflÂÚÒfl ‡‚ÂÌÒÚ‚Ó dproper(x, y) = dcomov · a(t), „‰Â dcomov – ‡ÒÒÚÓflÌË ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl Ë a (t) – ÍÓ˝ÙÙˈËÂÌÚ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl. Ç ÒÓ‚ÂÏÂÌÌÛ˛ ˝ÔÓıÛ (Ú.Â. ‚Ó ‚ÂÏfl tobser) ‚˚ÔÓÎÌflÂÚÒfl ÛÒÎÓ‚Ë a = a(tobser) = 1 Ë dproper = dcomov. í‡ÍËÏ Ó·‡ÁÓÏ, ÒÓ·ÒÚ‚ÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ‰‚ÛÏfl ÒÓÒ‰ÌËÏË ÒÓ·˚ÚËflÏË (Ú.Â. ÒÓ·˚ÚËflÏË Ò ·ÎËÁÍËÏË Á̇˜ÂÌËflÏË Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl ËÎË ‡ÒÒÚÓflÌËfl) fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ Ï˚ ·Û‰ÂÏ ËÁÏÂflÚ¸ ÎÓ͇θÌÓ ÏÂÊ‰Û ‰‚ÛÏfl ÒÓ·˚ÚËflÏË Ò„ӉÌfl, ÂÒÎË ˝ÚË ‰‚ ÚÓ˜ÍË Ò‚flÁ‡Ì˚ ÔÓÚÓÍÓÏ ï‡··Î‡.
369
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
ê‡ÒÒÚÓflÌË ÒÓ·ÒÚ‚ÂÌÌÓ„Ó ‰‚ËÊÂÌËfl ê‡ÒÒÚÓflÌËÂÏ ÒÓ·ÒÚ‚ÂÌÌÓ„Ó ‰‚ËÊÂÌËfl (ËÎË ‡ÒÒÚÓflÌËÂÏ ÒÓ‚ÏÂÒÚÌÓ„Ó ÔÓÔ˜ÌÓ„Ó ‰‚ËÊÂÌËfl, ÒÓ‚ÂÏÂÌÌ˚Ï ‡ÒÒÚÓflÌËÂÏ Û„ÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡) D M ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÓÚ áÂÏÎË ‰Ó Û‰‡ÎÂÌÌÓ„Ó Ó·˙ÂÍÚ‡, ÍÓÚÓÓ ÓÔ‰ÂÎflÂÚÒfl Í‡Í ÓÚÌÓ¯ÂÌË ‡ÍÚۇθÌÓÈ ÔÓÔ˜ÌÓÈ ÒÍÓÓÒÚË (‚ ‡ÒÒÚÓflÌËË ÔÓ ‚ÂÏÂÌË) Ó·˙ÂÍÚ‡ Í Â„Ó ÒÓ·ÒÚ‚ÂÌÌÓÏÛ ‰‚ËÊÂÌ˲ (‚ ‡‰Ë‡Ì‡ı Á‡ ‰ËÌËˆÛ ‚ÂÏÂÌË). éÌÓ ‚˚‡Ê‡ÂÚÒfl Í‡Í DH DM = DC , DH
1 sinh( Ω R DC / DH ), ΩR
Ω R > 0,
Ω R = 0, 1 sin ( | Ω R | DC / DH ), Ω R < 0, ΩR
„‰Â D H – ‡ÒÒÚÓflÌË ·Î‡ Ë D C – ‡ÒÒÚÓflÌË ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl ÔÓ ÎËÌËË ÔflÏÓÈ ‚ˉËÏÓÒÚË. ÑÎfl Ω Λ = 0 ÒÛ˘ÂÒÚ‚ÛÂÚ ‡Ì‡ÎËÚ˘ÂÒÍÓ ¯ÂÌË (z – ͇ÒÌÓ ÒÏ¢ÂÌËÂ): DM = DH
2(2 − Ω M (1 − z ) − (2 − Ω M ) 1 + Ω M z ) Ω 2M (1 + z )
.
ê‡ÒÒÚÓflÌË ÒÓ·ÒÚ‚ÂÌÌÓ„Ó ‰‚ËÊÂÌËfl DM ÒÓ‚Ô‡‰‡ÂÚ Ò ‡ÒÒÚÓflÌËÂÏ ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl ÔÓ ÎËÌËË ÔflÏÓÈ ‚ˉËÏÓÒÚË DC ÚÓ„‰‡ Ë ÚÓθÍÓ ÚÓ„‰‡, ÍÓ„‰‡ ÍË‚ËÁ̇ ‚ÒÂÎÂÌÌÓÈ ‡‚̇ ÌÛβ. ê‡ÒÒÚÓflÌË ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl ÏÂÊ‰Û ‰‚ÛÏfl ÒÓ·˚ÚËflÏË ÔË Ó‰Ë̇ÍÓ‚˚ı ͇ÒÌÓÏ ÒÏ¢ÂÌËË ËÎË ‡ÒÒÚÓflÌËË, ÌÓ ‡ÁÌÂÒÂÌÌ˚ÏË ÔÓ Ì·ÓÒ‚Ó‰Û Ì‡ ÌÂÍÓÚÓ˚È Û„ÓÎ δθ, ‡‚ÌÓ DMδθ. D ê‡ÒÒÚÓflÌË D M Ò‚flÁ‡ÌÓ Ò ÙÓÚÓÏÂÚ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ DL Í‡Í DM = L Ë Ò 1+ z ‡ÒÒÚÓflÌËÂÏ Û„ÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡ DA Í‡Í DM = (1 + z ) DA . îÓÚÓÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË îÓÚÓÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË D L ÂÒÚ¸ ‡ÒÒÚÓflÌË ÓÚ áÂÏÎË ‰Ó Û‰‡ÎÂÌÌÓ„Ó Ó·˙ÂÍÚ‡, ÓÔ‰ÂÎflÂÏÓ ÓÚÌÓ¯ÂÌËÂÏ ÏÂÊ‰Û Ì‡·Î˛‰‡ÂÏ˚Ï ÔÓÚÓÍÓÏ S Ë flÍÓÒÚ¸˛ L: DL =
L . 4πS
чÌÌÓ ‡ÒÒÚÓflÌË ҂flÁ‡ÌÓ Ò ‡ÒÒÚÓflÌËÂÏ ÒÓ·ÒÚ‚ÂÌÌÓ„Ó ‰‚ËÊÂÌËfl DM Í‡Í DL = (1 + z ) DM Ë ‡ÒÒÚÓflÌËÂÏ Û„ÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡ D L Í‡Í DL = (1 + z )2 DA , „‰Â z – ͇ÒÌÓ ÒÏ¢ÂÌËÂ. îÓÚÓÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ۘËÚ˚‚‡ÂÚ ÚÓ Ó·ÒÚÓflÚÂθÒÚ‚Ó, ˜ÚÓ Ì‡·Î˛‰‡Âχfl Ò‚ÂÚËÏÓÒÚ¸ ÓÒ··ÎÂ̇ Ù‡ÍÚÓ‡ÏË ÂÎflÚË‚ËÒÚÒÍÓ„Ó Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl Ë ‰ÓÔÎÂÓ‚ÒÍÓ„Ó Ò‰‚Ë„‡ ËÁÎÛ˜ÂÌËfl, ͇ʉ˚È ËÁ ÍÓÚÓ˚ı ‰‡ÂÚ (1 + z) – ÓÒ··ÎÂÌËÂ: Lobser =
Lemit (1 + z )2
ëÍÓÂÍÚËÓ‚‡ÌÌÓ ÙÓÚÓÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË DL′ ÓÔ‰ÂÎflÂÚÒfl Í‡Í D DL′ = L . 1+ z
370
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
åÓ‰Ûθ ‡ÒÒÚÓflÌËfl D åÓ‰ÛÎ˛Ò ‡ÒÒÚÓflÌËfl DM ÓÔ‰ÂÎflÂÚÒfl Í‡Í DM = 5 ln L , „‰Â DL – ÙÓÚÓ 10 pc ÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ. åÓ‰ÛÎ˛Ò ‡ÒÒÚÓflÌËfl – ‡ÁÌÓÒÚ¸ ÏÂÊ‰Û ‡·ÒÓβÚÌÓÈ ‚Â΢ËÌÓÈ Ë Ì‡·Î˛‰‡ÂÏÓÈ ‚Â΢ËÌÓÈ ‡ÒÚÓÌÓÏ˘ÂÒÍÓ„Ó Ó·˙ÂÍÚ‡. åÓ‰ÛβÒ˚ ‡ÒÒÚÓflÌËÈ Ó·˚˜ÌÓ ËÒÔÓθÁÛ˛ÚÒfl ‰Îfl ‚˚‡ÊÂÌËfl ‡ÒÒÚÓflÌËÈ ‰Ó ‰Û„Ëı „‡Î‡ÍÚËÍ. í‡Í, ̇ÔËÏÂ, ÏÓ‰ÛÎ˛Ò ‡ÒÒÚÓflÌËfl „‡Î‡ÍÚËÍË ÅÓθ¯Ó„Ó å‡„ÂηÌÓ‚‡ é·Î‡Í‡ ÒÓÒÚ‡‚ÎflÂÚ 18,5; „‡Î‡ÍÚËÍË Ä̉Óω‡ – 24,5; ÒÍÓÔÎÂÌË Ñ‚˚ ËÏÂÂÚ ÏÓ‰ÛÎ˛Ò ‡ÒÒÚÓflÌËfl, ‡‚Ì˚È 31,7. ê‡ÒÒÚÓflÌË ۄÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡ ê‡ÒÒÚÓflÌËÂÏ Û„ÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡ (ËÎË ‡ÒÒÚÓflÌËÂÏ Û„ÎÓ‚ÓÈ ÔÓÚflÊÂÌÌÓÒÚË) D A ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÓÚ áÂÏÎË ‰Ó Û‰‡ÎÂÌÌÓ„Ó Ó·˙ÂÍÚ‡, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í ÓÚÌÓ¯ÂÌË ÙËÁ˘ÂÒÍÓ„Ó ÔÓÔ˜ÌÓ„Ó ‡Áχ Ó·˙ÂÍÚ‡ Í Â„Ó Û„ÎÓ‚ÓÏÛ ‡ÁÏÂÛ (‚ ‡‰Ë‡Ì‡ı). éÌÓ ËÒÔÓθÁÛÂÚÒfl ‰Îfl ÔÂÓ·‡ÁÓ‚‡ÌËfl Û„ÎÓ‚˚ı ‡Á‰ÂÎÂÌËÈ ‚ ÚÂÎÂÒÍÓÔ˘ÂÒÍËı ËÁÓ·‡ÊÂÌËflı ‚ ÒÓ·ÒÚ‚ÂÌÌ˚ ‡Á‰ÂÎÂÌËfl ËÒÚÓ˜ÌË͇. ëÔˆËÙË͇ ˝ÚÓ„Ó ‡ÒÒÚÓflÌËfl ÒÓÒÚÓËÚ ‚ ÚÓÏ, ˜ÚÓ ÓÌÓ Ì ۂÂ΢˂‡ÂÚÒfl ·ÂÒÍÓ̘ÌÓ ÔË z →∞, ÓÌÓ Ì‡˜Ë̇ÂÚ ÛÏÂ̸¯‡Ú¸Òfl ÔË z ~1, Ë ÔÓÒΠ˝ÚÓ„Ó ·ÓΠۉ‡ÎÂÌÌ˚ ӷ˙ÂÍÚ˚ ‚ˉflÚÒfl Í‡Í Ëϲ˘Ë ·Óθ¯Ë ۄÎÓ‚˚ ‡ÁÏÂ˚. ê‡ÒÒÚÓflÌË ۄÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡ Ò‚flÁ‡ÌÓ Ò D ‡ÒÒÚÓflÌËÂÏ ÒÓ·ÒÚ‚ÂÌÌÓ„Ó ‰‚ËÊÂÌËfl D M Í‡Í DA = M Ë ÙÓÚÓÏÂÚ˘ÂÒÍËÏ 1+ z ‡ÒÒÚÓflÌËÂÏ DL Í‡Í DL DA = , (1 + z )2 „‰Â z – ͇ÒÌÓ ÒÏ¢ÂÌËÂ. ÖÒÎË ‡ÒÒÚÓflÌË ۄÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡ ÓÒÌÓ‚‡ÌÓ Ì‡ Ô‰ÒÚ‡‚ÎÂÌËË ‰Ë‡ÏÂÚ‡ Ó·˙ÂÍÚ‡ Í‡Í ÔÓËÁ‚‰ÂÌËfl ۄ· Ë ‡ÒÒÚÓflÌËfl (Û„ÓÎ × ‡ÒÒÚÓflÌËÂ), ÚÓ ‡ÒÒÚÓflÌË ÔÎÓ˘‡‰Ë ÓÔ‰ÂÎflÂÚÒfl ‡Ì‡Îӄ˘Ì˚Ï Ó·‡ÁÓÏ ËÁ Ô‰ÒÚ‡‚ÎÂÌËfl ÔÎÓ˘‡‰Ë Ó·˙ÂÍÚ‡ Í‡Í ÔÓËÁ‚‰ÂÌËfl ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ„Ó Û„Î‡ Ë Í‚‡‰‡Ú‡ ‡ÒÒÚÓflÌËfl (ÚÂÎÂÒÌ˚È Û„ÓÎ × ‡ÒÒÚÓflÌË 2 ). ê‡ÒÒÚÓflÌË ҂ÂÚÓ‚Ó„Ó ÔÛÚË ê‡ÒÒÚÓflÌËÂÏ Ò‚ÂÚÓ‚Ó„Ó ÔÛÚË (ËÎË ‡ÒÒÚÓflÌËÂÏ ‚ÂÏÂÌË Ò‚ÂÚÓ‚Ó„Ó ÔÛÚË) Dlt ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÓÚ áÂÏÎË ‰Ó Û‰‡ÎÂÌÌÓ„Ó Ó·˙ÂÍÚ‡, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í Dlt = c(tobser − temit ), „‰Â tobser – ‚ÂÏfl, ÍÓ„‰‡ Ó·˙ÂÍÚ Ì‡·Î˛‰‡ÎÒfl, Ë temit – ‚ÂÏfl, ÍÓ‰‡ Ò‚ÂÚ ·˚Î ËÁÎÛ˜ÂÌ Ó·˙ÂÍÚÓÏ. ùÚÓ ‡ÒÒÚÓflÌË ËÒÔÓθÁÛÂÚÒfl ‰ÍÓ, ÔÓÒÍÓθÍÛ ‚ÂҸχ ÚÛ‰ÌÓ ÓÔ‰ÂÎËÚ¸ ‚ÂÏfl temit – ‚ÓÁ‡ÒÚ ‚ÒÂÎÂÌÌÓÈ ‚ ÏÓÏÂÌÚ ËÁÎÛ˜ÂÌËfl Ò‚ÂÚ‡, ÍÓÚÓ˚È Ï˚ ‚ˉËÏ. ê‡ÒÒÚÓflÌË ԇ‡Î·ÍÒ‡ ê‡ÒÒÚÓflÌËÂÏ Ô‡‡Î·ÍÒ‡ D P ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÓÚ áÂÏÎË ‰Ó Û‰‡ÎÂÌÌÓ„Ó Ó·˙ÂÍÚ‡, ÓÔ‰ÂÎÂÌÌÓ ËÁÏÂÂÌËÂÏ Ô‡‡Î·ÍÒÓ‚, Ú.Â. ͇ÊÛ˘ËıÒfl ËÁÏÂÌÂÌËÈ ÔÓÎÓÊÂÌËfl Ó·˙ÂÍÚ‡ ̇ Ì·Ó҂Ӊ ‚ ÂÁÛθڇÚ ÔÂÂÏ¢ÂÌËfl ̇·Î˛‰‡ÚÂÎfl Ò áÂÏÎÂÈ ‚ÓÍÛ„ ëÓÎ̈‡. äÓÒÏÓÎӄ˘ÂÒÍËÈ Ô‡‡Î·ÍÒ ËÁÏÂflÂÚÒfl Í‡Í ‡ÁÌÓÒÚ¸ Û„ÎÓ‚ ÎËÌËË ‚ˉËÏÓÒÚË Ó·˙ÂÍÚ‡ ËÁ ‰‚Ûı ÍÓ̘Ì˚ı ÚÓ˜ÂÍ ‰Ë‡ÏÂÚ‡ Ó·ËÚ˚ áÂÏÎË, ÍÓÚÓ‡fl ËÒÔÓθÁÛÂÚÒfl ‚ ͇˜ÂÒÚ‚Â ÓÔÓÌÓÈ ÎËÌËË. ÑÎfl ‰‡ÌÌÓÈ ÓÔÓÌÓÈ ÎËÌËË Ô‡‡Î·ÍÒ α – β Á‡‚ËÒËÚ ÓÚ ‡ÒÒÚÓflÌËfl Ë, Á̇fl Â„Ó Ë ‰ÎËÌÛ ÓÔÓÌÓÈ ÎËÌËË (‰‚ ‡ÒÚÓÌÓÏ˘ÂÒÍË ‰ËÌˈ˚ AU,
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
371
„‰Â AU ≈ 150 ÏÎÌ ÍÏ – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ëÓÎ̈ÂÏ Ë áÂÏÎÂÈ), ‡ÒÒÚÓflÌË ‰Ó Á‚ÂÁ‰˚ ÏÓÊÌÓ ‚˚˜ËÒÎËÚ¸ ÔÓ ÙÓÏÛΠ2 DP = , α −β „‰Â D P – ‚˚‡ÊÂÌÓ ‚ Ô‡ÒÂ͇ı, ‡ α Ë β – ‚ ‡ÍÒÂÍÛ̉‡ı. Ç ‡ÒÚÓÌÓÏËË "Ô‡‡Î·ÍÒ" ÓÁ̇˜‡ÂÚ Ó·˚˜ÌÓ „Ó‰Ó‚ÓÈ Ô‡‡Î·ÍÒ , ÍÓÚÓ˚È fl‚ÎflÂÚÒfl ‡ÁÌˈÂÈ ‚ ۄ·ı ̇·Î˛‰ÂÌËfl Á‚ÂÁ‰˚ ÒÓ ÒÚÓÓÌ˚ áÂÏÎË Ë ÒÓ ÒÚÓÓÌ˚ ëÓÎ̈‡. ëÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‡ÒÒÚÓflÌË ‰Ó Á‚ÂÁ‰˚ (‚ Ô‡ÒÂ͇ı) ÓÔ‰ÂÎflÂÚÒfl Í‡Í 1 DP = p äËÌÂχÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË äËÌÂχÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ‰Ó „‡Î‡ÍÚ˘ÂÒÍÓ„Ó ËÒÚÓ˜ÌË͇, ÍÓÚÓÓ ÓÔ‰ÂÎflÂÚÒfl ËÁ ‚‡˘ÂÌËfl „‡Î‡ÍÚËÍË, ÍÓ„‰‡ ËÁ‚ÂÒÚ̇ ‡‰Ë‡Î¸Ì‡fl ÒÍÓÓÒÚ¸ ËÒÚÓ˜ÌË͇. çÂÓ‰ÌÓÁ̇˜ÌÓÒÚ¸ ÍËÌÂχÚ˘ÂÒÍÓ„Ó ‡ÒÒÚÓflÌËfl ‚ÓÁÌË͇ÂÚ (ÚÓθÍÓ ‚ ̇¯ÂÈ „‡Î‡ÍÚËÍÂ), ÔÓÒÍÓθÍÛ ‚‰Óθ ‰‡ÌÌÓÈ ÎËÌËË ‚ˉËÏÓÒÚË Í‡Ê‰Ó Á̇˜ÂÌË ‡‰Ë‡Î¸ÌÓÈ ÒÍÓÓÒÚË ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‰‚ÛÏ ‡ÒÒÚÓflÌËflÏ Ó‰Ë̇ÍÓ‚Ó Û‰‡ÎÂÌÌ˚ı ÓÚ ÚÓ˜ÍË Í‡Ò‡ÌËfl. чÌ̇fl ÔÓ·ÎÂχ ¯‡ÂÚÒfl ‰Îfl ÌÂÍÓÚÓ˚ı „‡Î‡ÍÚ˘ÂÒÍËı „ËÓÌÓ‚ ÔÓÒ‰ÒÚ‚ÓÏ ËÁÏÂÂÌËfl Ëı ÒÔÂÍÚ‡ ÔÓ„ÎÓ˘ÂÌËfl ‚ ÚÓÏ ÒÎÛ˜‡Â, ÂÒÎË ÏÂÊ‰Û Ì‡·Î˛‰‡ÚÂÎÂÏ Ë Â„ËÓÌÓÏ ËÏÂÂÚÒfl ÏÂÊÁ‚ÂÁ‰ÌÓ ӷ·ÍÓ. ê‡ÒÒÚÓflÌËÂ, ‡‰‡‡ ê‡ÒÒÚÓflÌËÂÏ, ‡‰‡‡ D R ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÓÚ áÂÏÎË ‰Ó Û‰‡ÎÂÌÌÓ„Ó Ó·˙ÂÍÚ‡, ËÁÏÂÂÌÌÓÂ Ò ÔÓÏÓ˘¸˛ ‡‰‡‡. ꇉËÓÎÓ͇ˆËÓÌÌ˚È Ò˄̇Π– Ó·˚˜ÌÓ ‚˚ÒÓÍÓ˜‡ÒÚÓÚÌ˚È ‡‰ËÓËÏÔÛθÒ, ÔÓÒ˚·ÂÏ˚È ‚ Ú˜ÂÌË ÍÓÓÚÍÓ„Ó ÔÓÏÂÊÛÚ͇ ‚ÂÏÂÌË. èË ‚ÒÚÂ˜Â Ò ÔÓ‚Ó‰fl˘ËÏ Ó·˙ÂÍÚÓÏ ‰ÓÒÚ‡ÚÓ˜ÌÓ ÍÓ΢ÂÒÚ‚Ó ˝Ì„ËË ÓڇʇÂÚÒfl ÓÚ ÌÂ„Ó Ó·‡ÚÌÓ Ë ÔËÌËχÂÚÒfl ‡‰ËÓÎÓ͇ˆËÓÌÌÓÈ ÒËÒÚÂÏÓÈ. èÓÒÍÓθÍÛ ‡‰ËÓ‚ÓÎÌ˚ ‚ ‚ÓÁ‰Ûı ‡ÒÔÓÒÚ‡Ìfl˛ÚÒfl Ô‡ÍÚ˘ÂÒÍË Ò ÚÓÈ Ê ÒÍÓÓÒÚ¸˛, ˜ÚÓ Ë ‚ ‚‡ÍÛÛÏÂ, ‡ÒÒÚÓflÌË D R ‰Ó ӷ̇ÛÊÂÌÌÓ„Ó Ó·˙ÂÍÚ‡ ÏÓÊÌÓ ‚˚˜ËÒÎËÚ¸ ÔÓ ‚ÂÏÂÌÌÓÏÛ ËÌÚ‚‡ÎÛ t ÏÂÊ‰Û Ô‰‡ÌÌ˚Ï Ë ‚ÓÁ‚‡ÚË‚¯ËÏÒfl ËÏÔÛθ҇ÏË ÔÓ ÙÓÏÛΠDR =
1 ct, 2
„‰Â Ò – ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡. ãÂÒÚÌˈ‡ ÍÓÒÏÓÎӄ˘ÂÒÍËı ‡ÒÒÚÓflÌËÈ ÑÎfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ ‰Ó ‡ÒÚÓÌÓÏ˘ÂÒÍËı Ó·˙ÂÍÚÓ‚ ËÒÔÓθÁÛÂÚÒfl Ò‚ÓÂ„Ó Ó‰‡ "ÎÂÒÚÌˈ‡" ‡Á΢Ì˚ı ÏÂÚÓ‰Ó‚; ͇ʉ˚È ËÁ ÌËı Ó·ÂÒÔ˜˂‡ÂÚ ‚˚˜ËÒÎÂÌËfl ÚÓθÍÓ ‰Îfl Ó„‡Ì˘ÂÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ‡ÒÒÚÓflÌËÈ, ‡ ͇ʉ˚È ÏÂÚÓ‰, ËÒÔÓθÁÛÂÏ˚È ‰Îfl ·Óθ¯Ëı ‡ÒÒÚÓflÌËÈ, ·‡ÁËÛÂÚÒfl ̇ ‰‡ÌÌ˚ı, ÔÓÎÛ˜ÂÌÌ˚ı ‚ ıӉ Ô‰˚‰Û˘Ëı ˝Ú‡ÔÓ‚. àÒıÓ‰ÌÓÈ ÚÓ˜ÍÓÈ fl‚ÎflÂÚÒfl Á̇ÌË ‡ÒÒÚÓflÌËfl ÓÚ áÂÏÎË ‰Ó ëÓÎ̈‡; ˝ÚÓ ‡ÒÒÚÓflÌË ̇Á˚‚‡ÂÚÒfl ‡ÒÚÓÌÓÏ˘ÂÒÍÓÈ Â‰ËÌˈÂÈ (AU) Ë ‡‚ÌÓ ÔËÏÂÌÓ 150 ÏÎÌ ÍÏ. äÓÔÂÌËÍ ·˚Î Ô‚˚Ï, ÍÚÓ Ò‰Â·Π(Dobovolutionibus, 1543) ÔË·ÎËÁËÚÂθÌÛ˛ ÏÓ‰Âθ CÓÎ̘ÌÓÈ ÒËÒÚÂÏ˚, ÓÒÌÓ‚˚‚‡flÒ¸ ̇ ‰‡ÌÌ˚ı, ÔÓÎÛ˜ÂÌÌ˚ı ‚ ‰Â‚ÌË ‚ÂÏÂ̇. ê‡ÒÒÚÓflÌËfl ‚ÌÛÚË CÓÎ̘ÌÓÈ ÒËÒÚÂÏ˚ ËÁÏÂfl˛ÚÒfl ÔÓÒ‰ÒÚ‚ÓÏ Ò‡‚ÌÂÌËfl ‚ÂÏÂÌÌ˚ı ËÌÚ‚‡ÎÓ‚ ÏÂÊ‰Û ËÁÎÛ˜‡ÂÏ˚ÏË ‡‰ËÓÎÓ͇ˆËÓÌÌ˚ÏË ‡‰ËÓËÏÔÛθ҇ÏË Ë Ëı ÓÚ‡ÊÂÌËflÏË ÓÚ Ô·ÌÂÚ ËÎË ‡ÒÚÂÓˉӂ. ëÓ‚ÂÏÂÌÌ˚ ÏÓ‰ÂÎË ÓÚ΢‡˛ÚÒfl ‚˚ÒÓÍÓÈ ÚÓ˜ÌÓÒÚ¸˛ ËÁÏÂÂÌËÈ.
372
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
ëÎÂ‰Û˛˘‡fl ÒÚÛÔÂ̸͇ ÎÂÒÚÌˈ˚ ‚Íβ˜‡ÂÚ ‚ Ò·fl ÔÓÒÚ˚ „ÂÓÏÂÚ˘ÂÒÍË ÏÂÚÓ‰˚; ÓÌË ÔÓÁ‚ÓÎfl˛Ú ÔÓ‰‚ËÌÛÚ¸Òfl ‚Ô‰ ̇ ÌÂÒÍÓθÍÓ ÒÓÚÂÌ Ò‚ÂÚÓ‚˚ı ÎÂÚ. ê‡ÒÒÚÓflÌË ‰Ó ·ÎËʇȯËı Á‚ÂÁ‰ ÏÓÊÂÚ ·˚Ú¸ ËÁÏÂÂÌÓ Ò ÔÓÏÓ˘¸˛ Ëı Ô‡‡Î·ÍÒÓ‚; ËÒÔÓθÁÛfl Ó·ËÚÛ áÂÏÎË ‚ ͇˜ÂÒÚ‚Â ÓÔÓÌÓÈ ÎËÌËË, ‡ÒÒÚÓflÌË ‰Ó Á‚ÂÁ‰ ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ ÏÂÚÓ‰ÓÏ Úˇ̄ÛÎflˆËË. чÌÌ˚È ÏÂÚÓ‰ ËÏÂÂÚ Ôӄ¯ÌÓÒÚ¸ ÓÍÓÎÓ 1% ̇ ‰‡Î¸ÌÓÒÚË ‰Ó 50 Ò‚ÂÚÓ‚˚ı ÎÂÚ Ë ÓÍÓÎÓ 10% ̇ ‰‡Î¸ÌÓÒÚË ‰Ó 500 Ò‚ÂÚÓ‚˚ı ÎÂÚ. ç‡ ÓÒÌÓ‚Â ‰‡ÌÌ˚ı, ÔÓÎÛ˜ÂÌÌ˚ı „ÂÓÏÂÚ˘ÂÒÍËÏË ÏÂÚÓ‰‡ÏË Ë ‰ÓÔÓÎÌÂÌÌ˚ı ÙÓÚÓÏÂÚËÂÈ (Ú.Â. ËÁÏÂÂÌËÂÏ Ô‡‡ÏÂÚÓ‚ flÍÓÒÚË) Ë ÒÔÂÍÚÓÒÍÓÔËÂÈ, ÏÓÊÌÓ ‰ÓÒÚË„ÌÛÚ¸ ÒÎÂ‰Û˛˘ÂÈ ÒÚÛÔÂ̸ÍË Í Á‚ÂÁ‰‡Ï, ‡ÒÔÓÎÓÊÂÌÌ˚Ï Ì‡ÒÚÓθÍÓ ‰‡ÎÂÍÓ, ˜ÚÓ Ëı Ô‡‡Î·ÍÒ˚ ÔÓ͇ ¢ Ì ÔÓ‰‰‡˛ÚÒfl ËÁÏÂÂÌËflÏ. èÓÒÍÓθÍÛ flÍÓÒÚ¸ Û·˚‚‡ÂÚ ÔÓÔÓˆËÓ̇θÌÓ Í‚‡‰‡ÚÛ ‡ÒÒÚÓflÌËfl, Ï˚ ÏÓÊÂÏ, ÂÒÎË ËÁ‚ÂÒÚÌ˚ ‡·ÒÓβÚ̇fl flÍÓÒÚ¸ Á‚ÂÁ‰˚ (Ú.Â.  flÍÓÒÚ¸ ̇ Òڇ̉‡ÚÌÓÏ ÓÔÓÌÓÏ ‡ÒÒÚÓflÌËË 10 ÔÍ) Ë Â ‚ˉËχfl flÍÓÒÚ¸ (Ú.Â. ËÒÚËÌ̇fl flÍÓÒÚ¸, ̇·Î˛‰‡Âχfl ̇ áÂÏÎÂ), Ò͇Á‡Ú¸, Í‡Í ‰‡ÎÂÍÓ ÓÚ Ì‡Ò Ì‡ıÓ‰ËÚÒfl ˝Ú‡ Á‚ÂÁ‰‡. ÑÎfl ÓÔ‰ÂÎÂÌËfl ‡·ÒÓβÚÌÓÈ flÍÓÒÚË ÏÓÊÌÓ ‚ÓÒÔÓθÁÓ‚‡Ú¸Òfl ‰Ë‡„‡ÏÏÓÈ Éˆ¯ÔÛÌ„‡–ê‡ÒÒ·: Á‚ÂÁ‰˚ Ó‰Ë̇ÍÓ‚Ó„Ó ÚËÔ‡ ËÏÂ˛Ú Ó‰Ë̇ÍÓ‚Û˛ flÍÓÒÚ¸; ÒΉӂ‡ÚÂθÌÓ, ÂÒÎË ËÁ‚ÂÒÚÂÌ ÚËÔ Á‚ÂÁ‰˚ (ÔÓ ˆ‚ÂÚÛ Ë/ËÎË ÒÔÂÍÚÛ), ÏÓÊÌÓ ‡ÒÒ˜ËÚ‡Ú¸ ‡ÒÒÚÓflÌË ‰Ó Ì ÏÂÚÓ‰ÓÏ Ò‡‚ÌÂÌËfl  ‚ˉËÏÓÈ flÍÓÒÚË Ò ‡·ÒÓβÚÌÓÈ; ÔÓÒΉÌflfl ÏÓÊÂÚ ·˚Ú¸ ÔÓÎÛ˜Â̇ ËÁ „ÂÓÏÂÚ˘ÂÒÍËı Ô‡‡Î·ÍÒÓ‚ ÒÓÒ‰ÌËı Á‚ÂÁ‰. ÑÎfl ÓÔ‰ÂÎÂÌËfl ¢ ·Óθ¯Ëı ‡ÒÒÚÓflÌËÈ ‚Ó ‚ÒÂÎÂÌÌÓÈ Ú·ÛÂÚÒfl ‰ÓÔÓÎÌËÚÂθÌ˚È ˝ÎÂÏÂÌÚ: Òڇ̉‡ÚÌ˚ ҂˜Ë, Ú.Â. ÌÂÒÍÓθÍÓ ÚËÔÓ‚ ÍÓÒÏÓÎӄ˘ÂÒÍËı Ó·˙ÂÍÚÓ‚, ‰Îfl ÍÓÚÓ˚ı ÏÓÊÌÓ ÓÔ‰ÂÎËÚ¸ Ëı ‡·ÒÓβÚÌÛ˛ flÍÓÒÚ¸ Ì Á̇fl ‡ÒÒÚÓflÌËfl ‰Ó ÌËı. è‚˘Ì˚ÏË Òڇ̉‡ÚÌ˚ÏË Ò‚Â˜‡ÏË fl‚Îfl˛ÚÒfl ˆÂÙÂˉ˚. éÌË ÔÂËӉ˘ÂÒÍË ËÁÏÂÌfl˛Ú Ò‚ÓË ‡ÁÏÂ˚ Ë ÚÂÏÔ‡ÚÛÛ. ëÛ˘ÂÒÚ‚ÛÂÚ Ò‚flÁ¸ ÏÂÊ‰Û flÍÓÒÚ¸˛ ˝ÚËı ÔÛθÒËÛ˛˘Ëı Á‚ÂÁ‰ Ë ÔÂËÓ‰ÓÏ Ëı ÍÓη‡ÌËÈ, Ë ˝ÚÛ ‚Á‡ËÏÓÒ‚flÁ¸ ÏÓÊÌÓ ËÒÔÓθÁÓ‚‡Ú¸ ‰Îfl ÓÔ‰ÂÎÂÌËfl Ëı ‡·ÒÓβÚÌÓÈ flÍÓÒÚË. ñÂÙÂˉ˚ ÏÓÊÌÓ Ì‡ÈÚË Ì‡ Û‰‡ÎÂÌËË ‰Ó ÒÍÓÔÎÂÌËfl Ñ‚˚ (60 ÏÎÌ Ò‚ÂÚÓ‚˚ı ÎÂÚ). ֢ ӉÌËÏ ÚËÔÓÏ Òڇ̉‡ÚÌÓÈ Ò‚Â˜Ë (‚ÚÓ˘Ì˚ Òڇ̉‡ÚÌ˚ ҂˜Ë), ÍÓÚÓ˚ fl˜Â ˆÂÙÂˉ Ë ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÏÓ„ÛÚ ËÒÔÓθÁÓ‚‡Ú¸Òfl ‰Îfl ÓÔ‰ÂÎÂÌËfl ‡ÒÒÚÓflÌËÈ ‰Ó „‡Î‡ÍÚËÍ, ̇ıÓ‰fl˘ËıÒfl ̇ Û‰‡ÎÂÌËË ‰‡Ê ÒÓÚÂÌ ÏËÎÎËÓÌÓ‚ Ò‚ÂÚÓ‚˚ı ÎÂÚ, fl‚Îfl˛ÚÒfl ÒÛÔÂÌÓ‚˚Â Ë ˆÂÎ˚ „‡Î‡ÍÚËÍË. ÑÎfl ‰ÂÈÒÚ‚ËÚÂθÌÓ ·Óθ¯Ëı ‡ÒÒÚÓflÌËÈ (ÒÓÚÂÌ ÏËÎÎËÓÌÓ‚ ËÎË ‰‡Ê ÏËÎΡ‰Ó‚ Ò‚ÂÚÓ‚˚ı ÎÂÚ) ËÒÔÓθÁÛ˛ÚÒfl ÍÓÒÏÓÎӄ˘ÂÒÍÓ ͇ÒÌÓ ÒÏ¢ÂÌËÂ Ë Á‡ÍÓÌ Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl (Á‡ÍÓÌ ï‡··Î‡). é‰Ì‡ÍÓ Ì ÒÓ‚ÒÂÏ flÒÌÓ, ˜ÚÓ Ò˜ËÚ‡Ú¸ Á‰ÂÒ¸ "‡ÒÒÚÓflÌËÂÏ", Ë ‚ ÍÓÒÏÓÎÓ„ËË ÒÛ˘ÂÒÚ‚Û˛Ú ÌÂÒÍÓθÍÓ ‡ÁÌӂˉÌÓÒÚÂÈ ‡ÒÒÚÓflÌËÈ (ÙÓÚÓÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ, ‡ÒÒÚÓflÌË ÒÓ·ÒÚ‚ÂÌÌÓ„Ó ‰‚ËÊÂÌËfl, ‡ÒÒÚÓflÌË ۄÎÓ‚Ó„Ó ‰Ë‡ÏÂÚ‡ Ë ‰.). ÑÎfl ‡ÁÌ˚ı ÒËÚÛ‡ˆËÈ ‚ ÍÓÒÏÓÎÓ„ËË ÔËÏÂÌfl˛ÚÒfl Ò‡Ï˚ ‡ÁÌÓÓ·‡ÁÌ˚Â Ë ÒÔˆËÙ˘ÂÒÍË ÒÔÓÒÓ·˚ ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ, ̇ÔËÏ ‡ÒÒÚÓflÌË ÓÚ‡ÊÂÌÌÓ„Ó Ò‚ÂÚ‡, ‡ÒÒÚÓflÌË ‡‰‡‡ ÅÓ̉Ë, ‡ÒÒÚÓflÌË ÚËÔ‡ RR ãË˚, ‡ Ú‡ÍÊ ‡ÒÒÚÓflÌËfl ‚ÂÍÓ‚Ó„Ó, ÒÚ‡ÚËÒÚ˘ÂÒÍÓ„Ó Ë ÒÔÂÍڇθÌÓ„Ó Ô‡‡Î·ÍÒÓ‚. 26.2. êÄëëíéüçàü Ç íÖéêàà éíçéëàíÖãúçéëíà èÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ÔÓ åËÌÍÓ‚ÒÍÓÏÛ (ËÎË ÔÓÒÚ‡ÌÒÚ‚Ó åËÌÍÓ‚ÒÍÓ„Ó, ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ÔÓ ãÓÂ̈Û, ÔÎÓÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl) – Ó·˚˜Ì‡fl „ÂÓÏÂÚ˘ÂÒ͇fl ÏÓ‰Âθ ‰Îfl ÒÔˆˇθÌÓÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË ùÈ̯ÚÂÈ̇. Ç Ú‡ÍÓÈ ÏÓ‰ÂÎË ÚË Ó·˚˜Ì˚ı ËÁÏÂÂÌËfl ÔÓÒÚ‡ÌÒÚ‚‡ ‰ÓÔÓÎÌfl˛ÚÒfl Ó‰ÌËÏ ËÁÏÂÂÌËÂÏ ‚ÂÏÂÌË Ë ‚Ò ‚ÏÂÒÚ ӷ‡ÁÛ˛Ú ˜ÂÚ˚ÂıÏÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl 1,3 ‚ ÓÚÒÛÚÒÚ‚Ë Úfl„ÓÚÂÌËfl.
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
373
ÇÂÍÚÓ˚ ‚ 1,3 ̇Á˚‚‡˛ÚÒfl 4-‚ÂÍÚÓ‡ÏË (ËÎË ÒÓ·˚ÚËflÏË). éÌË ÏÓ„ÛÚ ·˚Ú¸ Á‡ÔËÒ‡Ì˚ Í‡Í (Òt, x, y, z), „‰Â Ô‚‡fl ÍÓÏÔÓÌÂÌÚ‡ ̇Á˚‚‡ÂÚÒfl ‚ÂÏÂÌÌÓÔÓ‰Ó·ÌÓÈ ÍÓÏÔÓÌÂÌÚÓÈ (Ò – ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡ Ë t – ‚ÂÏfl), ÚÓ„‰‡ Í‡Í ‰Û„Ë ÚË ÍÓÏÔÓÌÂÌÚ˚ ̇Á˚‚‡˛ÚÒfl ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ÏË ÍÓÏÔÓÌÂÌÚ‡ÏË. Ç ÒÙ¢ÂÒÍËı ÍÓÓ‰Ë̇ڇı ˝ÚË ‚ÂÍÚÓ˚ Á‡ÔËÒ˚‚‡Ú¸Òfl Í‡Í (Òt, r, θ, φ). Ç ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË ÒÙ¢ÂÒÍË ÍÓÓ‰Ë̇Ú˚ ÂÒÚ¸ ÒËÒÚÂχ ÍË‚ÓÎËÌÂÈÌ˚ı ÍÓÓ‰ËÌ‡Ú (Òt, r, θ, φ), „‰Â Ò – ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡, t – ‚ÂÏfl, r – ‡‰ËÛÒ, Ôӂ‰ÂÌÌ˚È ËÁ ̇˜‡Î‡ ÍÓÓ‰ËÌ‡Ú ‚ ‰‡ÌÌÛ˛ ÚÓ˜ÍÛ Ò 0 ≤ r < ∞ , φ – ‡ÁËÏÛڇθÌ˚È Û„ÓÎ ‚ ıÛ-ÔÎÓÒÍÓÒÚË ÓÚ ı-ÓÒË ËÁÏÂÂÌÌ˚È Ò 0 ≤ ≤ ϕ < 2π (‰Ó΄ÓÚ‡), ‡ θ – ÔÓÎflÌ˚È Û„ÓÎ, ËÁÏÂÂÌÌ˚È ÓÚ z-ÓÒË Ò 0 ≤ θ ≤ π (‰ÓÔÓÎÌÂÌË ¯ËÓÚ˚). 4-ÇÂÍÚÓ˚ Í·ÒÒËÙˈËÛ˛ÚÒfl ÔÓ Á̇ÍÛ Í‚‡‰‡Ú‡ Ëı ÌÓÏ˚ || v ||2 = 〈 v, v〉 = c 2 t 2 − x 2 − y 2 − z 2 . éÌË fl‚Îfl˛ÚÒfl ‚ÂÏÂÌÌÓÔÓ‰Ó·Ì˚ÏË, ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÔÓ‰Ó·Ì˚ÏË Ë ËÁÓÚÓÔÌ˚ÏË, ÂÒÎË Í‚‡‰‡Ú˚ Ëı ÌÓÏ˚ ÔÓÎÓÊËÚÂθÌ˚, ÓÚˈ‡ÚÂθÌ˚ ËÎË ‡‚Ì˚ ÌÛβ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. åÌÓÊÂÒÚ‚Ó ‚ÒÂı ËÁÓÚÓÔÌ˚ı ‚ÂÍÚÓÓ‚ Ó·‡ÁÛ˛Ú Ò‚ÂÚÓ‚ÓÈ ÍÓÌÛÒ. ÖÒÎË ËÒÍβ˜ËÚ¸ ̇˜‡ÎÓ ÍÓÓ‰Ë̇Ú, ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó ÏÓÊÌÓ ‡Á‰ÂÎËÚ¸ ̇ ÚË Ó·Î‡ÒÚË: ӷ·ÒÚË ‡·ÒÓβÚÌÓ„Ó ·Û‰Û˘Â„Ó Ë ‡·ÒÓβÚÌÓ„Ó ÔÓ¯ÎÓ„Ó, ÔÓÔ‡‰‡˛˘Ë ‚ Ò‚ÂÚÓ‚ÓÈ ÍÓÌÛÒ, ÚÓ˜ÍË ÍÓÚÓ˚ı Ò‚flÁ‡Ì˚ Ò Ì‡˜‡ÎÓÏ ÍÓÓ‰ËÌ‡Ú ‚ÂÏÂÌÌÓÔÓ‰Ó·Ì˚ÏË ‚ÂÍÚÓ‡ÏË Ò ÔÓÎÓÊËÚÂθÌ˚ÏË ËÎË ÓÚˈ‡ÚÂθÌ˚ÏË Á̇˜ÂÌËflÏË ÍÓÓ‰Ë̇Ú˚ ‚ÂÏÂÌË ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, Ë Ó·Î‡ÒÚ¸ ‡·ÒÓβÚÌÓ„Ó Ì·˚ÚËfl, ‚˚Ô‡‰‡˛˘Û˛ ËÁ Ò‚ÂÚÓ‚Ó„Ó ÍÓÌÛÒ‡, ÚÓ˜ÍË ÍÓÚÓÓÈ Ò‚flÁ‡Ì˚ Ò Ì‡˜‡ÎÓÏ ÍÓÓ‰ËÌ‡Ú ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÔÓ‰Ó·Ì˚ÏË ‚ÂÍÚÓ‡ÏË. åËÓ‚‡fl ÎËÌËfl Ó·˙ÂÍÚ‡ – ÔÓÒΉӂ‡ÚÂθÌÓÒÚ¸ ÒÓ·˚ÚËÈ, Ó·ÓÁ̇˜‡˛˘‡fl ‚ÂÏÂÌÌÛ˛ ËÒÚÓ˲ Ó·˙ÂÍÚ‡. åËÓ‚‡fl ÎËÌËfl ÔÓ͇Á˚‚‡ÂÚ ÔÛÚ¸ ‰‡ÌÌÓÈ ÚÓ˜ÍË ‚ ÔÓÒÚ‡ÌÒÚ‚Â åËÌÍÓ‚ÒÍÓ„Ó. ùÚÓ Ó‰ÌÓÏÂ̇fl ÍË‚‡fl, Ô‰ÒÚ‡‚ÎÂÌ̇fl ÍÓÓ‰Ë̇ڇÏË Í‡Í ÙÛÌ͈Ëfl Ó‰ÌÓ„Ó Ô‡‡ÏÂÚ‡. åËÓ‚‡fl ÎËÌËfl fl‚ÎflÂÚÒfl ‚ÂÏÂÌÌÓÔÓ‰Ó·ÌÓÈ ÍË‚ÓÈ ‚ ÔÓÒÚ‡ÌÒÚ‚Â-‚ÂÏÂÌË, Ú.Â. ‚ β·ÓÈ ÚӘ͠ ͇҇ÚÂθÌ˚È ‚ÂÍÚÓ fl‚ÎflÂÚÒfl ‚ÂÏÂÌÌÓÔÓ‰Ó·Ì˚Ï ˜ÂÚ˚ÂıÏÂÌ˚Ï 3-‚ÂÍÚÓÓÏ. ÇÒ ÏËÓ‚˚ ÎËÌËË ÔÓÔ‡‰‡˛Ú Ò‚ÂÚÓ‚ÓÈ ÍÓÌÛÒ, Ó·‡ÁÓ‚‡ÌÌ˚È ËÁÓÚÓÔÌ˚ÏË ÍË‚˚ÏË, Ú.Â. ÍË‚˚ÏË, ͇҇ÚÂθÌ˚ ‚ÂÍÚÓ˚ ÍÓÚÓ˚ı fl‚Îfl˛ÚÒfl ËÁÓÚÓÔÌ˚ÏË 4-‚ÂÍÚÓ‡ÏË, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏË ‰‚ËÊÂÌ˲ Ò‚ÂÚ‡ Ë ‰Û„Ëı ˜‡ÒÚˈ Ò ÌÛ΂ÓÈ Ï‡ÒÒÓÈ ÔÓÍÓfl. åËÓ‚˚ ÎËÌËË ˜‡ÒÚˈ Ò ÔÓÒÚÓflÌÌÓÈ ÒÍÓÓÒÚ¸˛ (‰Û„ËÏË ÒÎÓ‚‡ÏË, Ò‚Ó·Ó‰ÌÓ Ô‡‰‡˛˘Ëı ˜‡ÒÚˈ) ̇Á˚‚‡˛ÚÒfl „ÂÓ‰ÂÁ˘ÂÒÍËÏË. Ç ÔÓÒÚ‡ÌÒÚ‚Â åËÌÍÓ‚ÒÍÓ„Ó ÓÌË fl‚Îfl˛ÚÒfl ÔflÏ˚ÏË ÎËÌËflÏË. ÉÂÓ‰ÂÁ˘ÂÒ͇fl ‚ ÔÓÒÚ‡ÌÒÚ‚Â åËÌÍÓ‚ÒÍÓ„Ó, ÒÓ‰ËÌfl˛˘‡fl ‰‚‡ ‰‡ÌÌ˚ı ÒÓ·˚ÚËfl ı Ë Û, fl‚ÎflÂÚÒfl Ò‡ÏÓÈ ‰ÎËÌÌÓÈ ÍË‚ÓÈ ËÁ ‚ÒÂı ÏËÓ‚˚ı ÎËÌËÈ, ÒÓ‰ËÌfl˛˘Ëı ‰‚‡ ˝ÚË ÒÓ·˚ÚËfl. ùÚÓ ÒΉÛÂÚ ËÁ Ó·‡ÚÌÓ„Ó Ì‡‚ÂÌÒÚ‚‡ ÚÂÛ„ÓθÌË͇ (ËÎË Ì‡‚ÂÌÒÚ‚‡ ‚ÂÏÂÌË ùÈ̯ÚÂÈ̇) || x + y || ≥ || x || + || y ||, ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò ÍÓÚÓ˚Ï ‚ÂÏÂÌÌÓÔӉӷ̇fl ÍË‚‡fl, ÒÓ‰ËÌfl˛˘‡fl ‰‚‡ ÒÓ·˚ÚËfl, ‚Ò„‰‡ ÍÓӘ ÒÓ‰ËÌfl˛˘ÂÈ Ëı ‚ÂÏÂÌÌÓÔÓ‰Ó·ÌÓÈ „ÂÓ‰ÂÁ˘ÂÒÍÓÈ, Ú.Â. ÒÓ·ÒÚ‚ÂÌÌÓ ‚ÂÏfl ˜‡ÒÚˈ˚, Ò‚Ó·Ó‰ÌÓ ‰‚Ë„‡˛˘ÂÈÒfl ÓÚ ı Í Û, Ô‚˚¯‡ÂÚ ÒÓ·ÒÚ‚ÂÌÌÓ ‚ÂÏfl β·ÓÈ ‰Û„ÓÈ ˜‡ÒÚˈ˚, ˜¸fl ÏËÓ‚‡fl ÎËÌËfl ÒÓ‰ËÌflÂÚ ˝ÚË ÒÓ·˚ÚËfl. чÌÌ˚È Ù‡ÍÚ Ó·˚˜ÌÓ Ì‡Á˚‚‡˛Ú Ô‡‡‰ÓÍÒÓÏ ·ÎËÁ̈ӂ. èÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl – ˜ÂÚ˚fiıÏÂÌÓ ÏÌÓ„ÓÓ·‡ÁËÂ, ÍÓÚÓÓ fl‚ÎflÂÚÒfl Ó·˚˜ÌÓÈ Ï‡ÚÂχÚ˘ÂÒÍÓÈ ÏÓ‰Âθ˛ ‰Îfl Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË ùÈ̯ÚÂÈ̇. á‰ÂÒ¸ ÚË ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ ÍÓÏÔÓÌÂÌÚ˚ Ë Ó‰Ì‡ ‚ÂÏÂÌÌÓÔӉӷ̇fl ÍÓÏÔÓÌÂÌÚ‡
374
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
Ó·‡ÁÛ˛Ú ˜ÂÚ˚ÂıÏÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ÔË Ì‡Î˘ËË „‡‚ËÚ‡ˆËË. ɇ‚ËÚ‡ˆËfl fl‚ÎflÂÚÒfl ˝Í‚Ë‚‡ÎÂÌÚÓÏ „ÂÓÏÂÚ˘ÂÒÍËı Ò‚ÓÈÒÚ‚ ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË, Ë ÔË Ì‡Î˘ËË „‡‚ËÚ‡ˆËË „ÂÓÏÂÚËfl ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË ËÒÍË‚ÎÂ̇. ëΉӂ‡ÚÂθÌÓ, ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl fl‚ÎflÂÚÒfl ˜ÂÚ˚ÂıÏÂÌ˚Ï ËÒÍË‚ÎÂÌÌ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ, ‰Îfl ÍÓÚÓÓ„Ó Í‡Ò‡ÚÂθÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó ‚ β·ÓÈ ÚӘ͠ÂÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚Ó åËÌÍÓ‚ÒÍÓ„Ó, Ú.Â. ÔÒ‚‰ÓËχÌÓ‚˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ Ò Ò˄̇ÚÛÓÈ (1, 3). Ç Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË „‡‚ËÚ‡ˆËfl ÓÔËÒ˚‚‡ÂÚÒfl Ò‚ÓÈÒÚ‚‡ÏË ÎÓ͇θÌÓÈ „ÂÓÏÂÚËË ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË. Ç ˜‡ÒÚÌÓÒÚË, „‡‚ËÚ‡ˆËÓÌÌÓ ÔÓΠÏÓÊÂÚ ·˚Ú¸ ÔÓÒÚÓÂÌÓ Ò ÔÓÏÓ˘¸˛ ÏÂÚ˘ÂÒÍÓ„Ó ÚÂÌÁÓ‡, ÍÓÚÓ˚È ÍÓ΢ÂÒÚ‚ÂÌÌÓ ÓÔËÒ˚‚‡ÂÚ „ÂÓÏÂÚ˘ÂÒÍË ҂ÓÈÒÚ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË, Ú‡ÍËÂ Í‡Í ‡ÒÒÚÓflÌËÂ, ÔÎÓ˘‡‰¸ Ë Û„ÓÎ. å‡ÚÂËfl ÓÔËÒ˚‚‡ÂÚÒfl Ò ÔÓÏÓ˘¸˛  ÚÂÌÁÓ‡ ˝Ì„ËË Ì‡ÔflÊÂÌËfl – ‚Â΢ËÌ˚, ı‡‡ÍÚÂËÁÛ˛˘ÂÈ ÔÎÓÚÌÓÒÚ¸ Ë ‰‡‚ÎÂÌË χÚÂËË. ëË· ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl ÏÂÊ‰Û Ï‡ÚÂËÂÈ Ë „‡‚ËÚ‡ˆËÂÈ ÓÔ‰ÂÎflÂÚÒfl ÔÓÒÚÓflÌÌÓÈ ÒËÎ˚ ÚflÊÂÒÚË. 쇂ÌÂÌËÂÏ ÔÓÎfl ùÈ̯ÚÂÈ̇ ̇Á˚‚‡ÂÚÒfl Û‡‚ÌÂÌË ӷ˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË, ÍÓÚÓÓ ÓÔËÒ˚‚‡ÂÚ, Í‡Í Ï‡ÚÂËfl ÒÓÁ‰‡ÂÚ ÒËÎÛ Úfl„ÓÚÂÌËfl Ë Ì‡Ó·ÓÓÚ, Í‡Í ÒË· Úfl„ÓÚÂÌËfl ‚ÓÁ‰ÂÈÒÚ‚ÛÂÚ Ì‡ χÚÂ˲. ê¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ fl‚ÎflÂÚÒfl ÌÂ͇fl ÏÂÚË͇ ùÈ̯ÚÂÈ̇, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ‰‡ÌÌÓÈ Ï‡ÒÒÂ Ë ‡ÒÔ‰ÂÎÂÌÌÓ„Ó ‰‡‚ÎÂÌËfl χÚÂËË. óÂ̇fl ‰˚‡ – χÒÒË‚Ì˚È ‡ÒÚÓÙËÁ˘ÂÒÍËÈ Ó·˙ÂÍÚ, ÍÓÚÓ˚È (ÚÂÓÂÚ˘ÂÒÍË) ‚ÓÁÌË͇ÂÚ ÔË ÍÓηÔÒ ÌÂÈÚÓÌÌÓÈ Á‚ÂÁ‰˚. ëËÎ˚ Úfl„ÓÚÂÌËfl ˜ÂÌÓÈ ‰˚˚ ̇ÒÚÓθÍÓ ‚ÂÎËÍË, ˜ÚÓ ÔÂÓ‰Ó΂‡˛Ú ‰‡Ê ‰‡‚ÎÂÌË ÌÂÈÚÓÌÓ‚, Ë Ó·˙ÂÍÚ ÒÚfl„Ë‚‡ÂÚÒfl ‚ ÚÓ˜ÍÛ (̇Á˚‚‡ÂÏÛ˛ ÒËÌ„ÛÎflÌÓÒÚ¸˛). чÊ ҂ÂÚ Ì ÏÓÊÂÚ ÔÂÓ‰ÓÎÂÚ¸ ÒËÎÛ ÔËÚflÊÂÌËfl ˜ÂÌÓÈ ‰˚˚ ‚ ԉ·ı Ú‡Í Ì‡Á˚‚‡ÂÏÓ„Ó ‡‰ËÛÒ‡ ò‚‡ˆ˜‡È艇 (ËÎË „‡‚ËÚ‡ˆËÓÌÌÓ„Ó ‡‰ËÛÒ‡) ˜ÂÌÓÈ ‰˚˚. çÂÁ‡flÊÂÌÌ˚ ˜ÂÌ˚ ‰˚˚ Ò ÌÛ΂˚Ï Û„ÎÓ‚˚Ï ÏÓÏÂÌÚÓÏ Ì‡Á˚‚‡˛ÚÒfl ˜ÂÌ˚ÏË ‰˚‡ÏË ò‚‡ˆ˜‡È艇. çÂÁ‡flÊÂÌÌ˚ ˜ÂÌ˚ ‰˚˚ Ò ÌÂÌÛ΂˚Ï Û„ÎÓ‚˚Ï ÏÓÏÂÌÚÓÏ Ì‡Á˚‚‡˛ÚÒfl ˜ÂÌ˚ÏË ‰˚‡ÏË ä‡. 炇˘‡˛˘ËÂÒfl Á‡flÊÂÌÌ˚ ˜ÂÌ˚ ‰˚˚ ̇Á˚‚‡˛ÚÒfl ˜ÂÌ˚ÏË ‰˚‡ÏË êÂÈÒÒ̇–çÓ‰ÒÚÓχ. á‡flÊÂÌÌ˚ ‚‡˘‡˛˘ËÂÒfl ˜ÂÌ˚ ‰˚˚ ̇Á˚‚‡˛ÚÒfl ˜ÂÌ˚ÏË ‰˚‡ÏË ä‡–ç¸˛Ï‡Ì‡. ëÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ÏÂÚËÍË ÓÔËÒ˚‚‡˛Ú, Í‡Í ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ËÒÍË‚ÎflÂÚÒfl χÚÂËÂÈ ‚ ÔËÒÛÚÒÚ‚ËË ˝ÚËı ˜ÂÌ˚ı ‰˚. ÑÓÔÓÎÌËÚÂθÌÛ˛ ËÌÙÓχˆË˛ ÏÓÊÌÓ Ì‡ÈÚË, ̇ÔËÏÂ, ‚ [Wein72]. åÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó åÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó – ÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇, ÓÔ‰ÂÎflÂχfl ̇ ÔÓÒÚ‡ÌÒÚ‚Â åËÌÍÓ‚ÒÍÓ„Ó 1,3, Ú.Â. ̇ ˜ÂÚ˚ÂıÏÂÌÓÏ ‰ÂÈÒÚ‚ËÚÂθÌÓÏ ‚ÂÍÚÓÌÓÏ ÔÓÒÚ‡ÌÒÚ‚Â, ÍÓÚÓÓ ‡ÒÒχÚË‚‡ÂÚÒfl Í‡Í ÔÒ‚‰Ó‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó Ò Ò˄̇ÚÛÓÈ (1, 3). é̇ ÓÔ‰ÂÎflÂÚÒfl ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ 1 0 (( gij )) = 0 0
0 −1 0 0
0 0 −1 0
0 0 . 0 −1
ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ds2 Ë ˝ÎÂÏÂÌÚ ds ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ-‚ÂÏÂÌÌÓ„Ó ËÌÚ‚‡Î‡ ‰‡ÌÌÓÈ ÏÂÚËÍË Á‡‰‡˛ÚÒfl Í‡Í ds 2 = c 2 dt 2 − dx 2 − dy 2 − dz 2 . Ç ÒÙ¢ÂÒÍËı ÍÓÓ‰Ë̇ڇı (ct, r, θ , φ ) Ï˚ ÔÓÎÛ˜‡ÂÏ ds 2 = c 2 dt 2 − dr 2 − − r 2 dθ 2 − r 2 sin 2 θdφ 2 .
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
375
èÒ‚‰Ó‚ÍÎË‰Ó‚Ó ÔÓÒÚ‡ÌÒÚ‚Ó 1,3 Ò Ò˄̇ÚÛÓÈ (3,1) Ë ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = − c 2 dt 2 + dx 2 + dy 2 + dz 2 ÏÓÊÂÚ Ú‡ÍÊ ËÒÔÓθÁÓ‚‡Ú¸Òfl Í‡Í ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ-‚ÂÏÂÌ̇fl ÏÓ‰Âθ ÒÔˆˇθÌÓÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË ùÈ̯ÚÂÈ̇. é·˚˜ÌÓ Ò˄̇ÚÛ‡ (1, 3) ËÒÔÓθÁÛÂÚÒfl ‚ ÙËÁËÍ ˝ÎÂÏÂÌÚ‡Ì˚ı ˜‡ÒÚˈ, ‡ Ò˄̇ÚÛ‡ (3, 1) – ‚ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË. åÂÚË͇ ãÓÂ̈‡ åÂÚËÍÓÈ ãÓÂ̈‡ (ËÎË ÎÓÂ̈‚ÓÈ ÏÂÚËÍÓÈ) ̇Á˚‚‡ÂÚÒfl ÔÒ‚‰ÓËχÌÓ‚‡ ÏÂÚË͇ Ò Ò˄̇ÚÛÓÈ (1, p). ãÓÂÌˆÂ‚Ó ÏÌÓ„ÓÓ·‡ÁË – ÏÌÓ„ÓÓ·‡ÁËÂ, Ò̇·ÊÂÌÌÓ ÏÂÚËÍÓÈ ãÓÂ̈‡. àÒÍË‚ÎÂÌÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË ÏÓÊÂÚ ·˚Ú¸ ÒÏÓ‰ÂÎËÓ‚‡ÌÓ Í‡Í ÎÓÂÌˆÂ‚Ó ÏÌÓ„ÓÓ·‡ÁË å Ò Ò˄̇ÚÛÓÈ (1, 3). èÓÒÚ‡ÌÒÚ‚Ó åËÌÍÓ‚ÒÍÓ„Ó 1,3 Ò ÔÎÓÒÍÓÈ ÏÂÚËÍÓÈ åËÌÍÓ‚ÒÍÓ„Ó fl‚ÎflÂÚÒfl ÏÓ‰Âθ˛ ÔÎÓÒÍÓ„Ó ÎÓÂ̈‚‡ ÏÌÓ„ÓÓ·‡ÁËfl. Ç ÎÓÂ̈‚ÓÈ „ÂÓÏÂÚËË Ó·˚˜ÌÓ ËÒÔÓθÁÛÂÚÒfl ÒÎÂ‰Û˛˘Â ÔÓÌflÚË ‡ÒÒÚÓflÌËfl. ÑÎfl ÒÔflÏÎflÂÏÓÈ Ì ÔÓÒÚ‡ÌÒÚ‚ÓÔÓ‰Ó·ÌÓÈ ÍË‚ÓÈ γ: [0, 1] → M ‚ ÔÓÒÚ‡ÌÒÚ‚Â1
‚ÂÏÂÌË å ‰ÎË̇ ÍË‚ÓÈ γ ÓÔ‰ÂÎflÂÚÒfl Í‡Í l( γ ) =
∫ 0
−
dγ dγ , dt. ÑÎfl ÔÓÒÚdt dt
‡ÌÒÚ‚ÂÌÌÓÔÓ‰Ó·ÌÓÈ ÍË‚ÓÈ l(γ) = 0. íÓ„‰‡ ‡ÒÒÚÓflÌË ãÓÂ̈‡ ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË p, q ∈ M ÓÔ‰ÂÎflÂÚÒfl Í‡Í sup l( γ ), γ ∈Γ
ÂÒÎË p Ɱ q, Ú.Â., ÂÒÎË ÏÌÓÊÂÒÚ‚Ó Γ Ì‡Ô‡‚ÎÂÌÌ˚ı ‚ ·Û‰Û¯Â Ì ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÔÓ‰Ó·Ì˚ı ÍË‚˚ı ÓÚ ‰Ó q fl‚ÎflÂÚÒfl ÌÂÔÛÒÚ˚Ï. Ç ÓÒڇθÌ˚ı ÒÎÛ˜‡flı ‡ÒÒÚÓflÌË ãÓÂ̈‡ ‡‚ÌflÂÚÒfl 0. ê‡ÒÒÚÓflÌË ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË ÑÎfl ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË (M4 , g) ÒÛ˘ÂÒÚ‚ÛÂÚ Â‰ËÌÒÚ‚ÂÌ̇fl ‡ÙÙËÌ̇fl Ô‡‡ÏÂÚËÁ‡ˆËfl s → γ(s) ‰Îfl Í‡Ê‰Ó„Ó Ò‚ÂÚÓ‚Ó„Ó ÎÛ˜‡ (Ú.Â. ËÁÓÚÓÔÌÓÈ „ÂÓ‰ÂÁ˘ÂÒÍÓÈ), ÔÓıÓ‰fl˘Â„Ó ˜ÂÂÁ ÒÓ·˚ÚË ̇·Î˛‰ÂÌËfl obser, Ú‡ÍÓ ˜ÚÓ γ(0) = obser Ë dγ g , Uobser = 1, „‰Â U obser – 4-ÒÍÓÓÒÚ¸ ̇·Î˛‰‡ÚÂÎfl ‚ obser (Ú.Â. ‚ÂÍÚÓ Ò dt g(Uobser , Uobser ) = −1). Ç Ú‡ÍÓÏ ÒÎÛ˜‡Â ‡ÒÒÚÓflÌËÂÏ ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË Ì‡Á˚‚‡ÂÚÒfl ‡ÙÙËÌÌ˚È Ô‡‡ÏÂÚ s, ‡ÒÒχÚË‚‡ÂÏ˚È ‚ ͇˜ÂÒÚ‚Â ÏÂ˚ ‡ÒÒÚÓflÌËfl. ê‡ÒÒÚÓflÌË ‡ÙÙËÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË fl‚ÎflÂÚÒfl ÏÓÌÓÚÓÌÌ˚Ï, Û‚Â΢˂‡˛˘ËÏÒfl ‚‰Óθ Í‡Ê‰Ó„Ó ÎÛ˜‡; ÓÌÓ ÒÓ‚Ô‡‰‡ÂÚ ‚ ·ÂÒÍÓ̘ÌÓ Ï‡ÎÓÈ ÓÍÂÒÚÌÓÒÚË pobser Ò Â‚ÍÎˉӂ˚Ï ‡ÒÒÚÓflÌËÂÏ ‚ ÔÓÍÓfl˘ÂÈÒfl ÒËÒÚÂÏ ÍÓÓ‰ËÌ‡Ú U obser. äËÌÂχÚ˘ÂÒ͇fl ÏÂÚË͇ ÑÎfl Á‡‰‡ÌÌÓ„Ó ÏÌÓÊÂÒÚ‚‡ ï ÍËÌÂχÚ˘ÂÒÍÓÈ ÏÂÚËÍÓÈ (ËÎË ‚ÂÏÂÌÌÓÔÓ‰Ó·ÌÓÈ ÏÂÚËÍÓÈ) fl‚ÎflÂÚÒfl ڇ͇fl ÙÛÌ͈Ëfl τ: X × X → ≥0 , ˜ÚÓ ‰Îfl ‚ÒÂı x, y, z ∈ X ËÏÂ˛Ú ÏÂÒÚÓ ÛÒÎÓ‚Ëfl: 1) τ(x, x) = 0; 2) ÂÒÎË τ(x, y) > 0 ÚÓ τ(y, x) (‡ÌÚËÒËÏÏÂÚËfl); 3) ÂÒÎË τ(x , y ), τ(y, z) > 0 ÚÓ τ(x, z) > τ(x, y ) + τ(y , z) (Ó·‡ÚÌӠ̇‚ÂÌÒÚ‚Ó ÚÂÛ„ÓθÌË͇).
376
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
èÓÒÚ‡ÌÒÚ‚ÂÌÌÓ-‚ÂÏÂÌÌÓ ÏÌÓÊÂÒÚ‚Ó ï ÒÓÒÚÓËÚ ËÁ ÒÓ·˚ÚËÈ x = (x 0 , x 1 ), „‰Â x0 ∈ Ó·˚˜ÌÓ fl‚ÎflÂÚÒfl ‚ÂÏÂÌÂÏ, ‡ x 1 ∈ – ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚Ï ÏÂÒÚÓÔÓÎÓÊÂÌËÂÏ ÒÓ·˚ÚËfl ı. 燂ÂÌÒÚ‚Ó τ(x, y) > 0 ÓÁ̇˜‡ÂÚ Ó·ÛÒÎÓ‚ÎÂÌÌÓÒÚ¸, Ú.Â. ı ÏÓÊÂÚ ‚ÎËflÚ¸ ̇ Û; Ó·˚˜ÌÓ ÓÌÓ ˝Í‚Ë‚‡ÎÂÌÚÌÓ Ì‡‚ÂÌÒÚ‚Û y 0 > x0 Ë Á̇˜ÂÌË τ(x, y) > 0 ÏÓÊÂÚ Ò˜ËÚ‡Ú¸Òfl ̇˷Óθ¯ËÏ (ÔÓÒÍÓθÍÛ Á‡‚ËÒËÚ ÓÚ ÒÍÓÓÒÚË) ÒÓ·ÒÚ‚ÂÌÌ˚Ï (Ú.Â. ÒÛ·˙ÂÍÚË‚Ì˚Ï) ‚ÂÏÂÌÂÏ ‰‚ËÊÂÌËfl ÓÚ ı ‰Ó Û. ÖÒÎË ÒËÎÓÈ Úfl„ÓÚÂÌËfl ÏÓÊÌÓ ÔÂÌ·˜¸, ÚÓ ËÁ ̇‚ÂÌÒÚ‚‡ τ(x, y) > 0 ÒΉÛÂÚ, ˜ÚÓ y0 − x 0 ≥ || y1 − x1 ||2 Ë τ( x, y) = (( y0 − x 0 ) p − || y1 − x1 ||2p )1 / p (Í‡Í ‚‚‰ÂÌÓ ÅÛÁÂχÌÓÏ ‚ 1967 „.) fl‚ÎflÂÚÒfl ‰ÂÈÒÚ‚ËÚÂθÌ˚Ï ˜ËÒÎÓÏ. ÑÎfl p ≈ 2 ÓÌÓ ÒÓ‚ÏÂÒÚËÏÓ Ò Ì‡·Î˛‰ÂÌËflÏË ÒÔˆˇθÌÓÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË. äËÌÂχÚ˘ÂÒ͇fl ÏÂÚË͇ Ì fl‚ÎflÂÚÒfl Ó·˚˜ÌÓÈ ‚ ̇¯ÂÏ ÔÓÌËχÌËË ÏÂÚËÍÓÈ Ë ÌËÍ‡Í Ì ҂flÁ‡Ì‡ Ò ÍËÌÂχÚ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ ‚ ‡ÒÚÓÌÓÏËË. ê‡ÒÒÚÓflÌË ãÓÂ̈‡–åËÌÍÓ‚ÒÍÓ„Ó ê‡ÒÒÚÓflÌËÂÏ ãÓÂ̈‡–åËÌÍÓ‚ÒÍÓ„Ó Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ̇ n (ËÎË Cn), ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í n
| x1 − y1 |2 −
∑ | xi − yi |2 . i−2
ɇÎËÎÂÂ‚Ó ‡ÒÒÚÓflÌË ɇÎËÎÂÂ‚Ó ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ̇ n, ÓÔ‰ÂÎÂÌÌÓÂ Í‡Í | x1 – y1 |, ÂÒÎË x 1 ≠ y1, Ë Í‡Í ( x 2 − y2 )2 + ... + ( x n − yn )2 , ÂÒÎË x1 = y1. èÓÒÚ‡ÌÒÚ‚Ó n, Ò̇·ÊÂÌÌÓ „‡ÎË΂˚Ï ‡ÒÒÚÓflÌËÂÏ, ̇Á˚‚‡ÂÚÒfl „‡ÎË΂˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ. ÑÎfl n = 4 ÓÌÓ fl‚ÎflÂÚÒfl χÚÂχÚ˘ÂÒÍÓÈ ÏÓ‰Âθ˛ ‰Îfl ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË Í·ÒÒ˘ÂÒÍÓÈ ÏÂı‡ÌËÍË ÔÓ É‡ÎËβ–縲ÚÓÌÛ, ‚ ÍÓÚÓÓÏ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÒÓ·˚ÚËflÏË, ÔÓËÒıÓ‰fl˘ËÏË ‚ ÚӘ͇ı p Ë q ‚ ÏÓÏÂÌÚ˚ ‚ÂÏÂÌË t1 Ë t2, ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‚ÂÏÂÌÌÓÈ ËÌÚ‚‡Î |t1 – t2|, ÚÓ„‰‡ Í‡Í ‚ ÒÎÛ˜‡Â Ó‰ÌÓ‚ÂÏÂÌÌÓÒÚË ˝ÚËı ÒÓ·˚ÚËÈ ÓÌÓ ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚӘ͇ÏË p Ëq åÂÚË͇ ùÈ̯ÚÂÈ̇ Ç Ó·˘ÂÈ ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË, ÍÓÚÓ‡fl ÓÔËÒ˚‚‡ÂÚ, Í‡Í Ï‡ÚÂËfl ËÒÍË‚ÎflÂÚ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏÂÌfl, ÏÂÚË͇ ùÈ̯ÚÂÈ̇ ÂÒÚ¸ ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ Rij −
gij R 2
+ Λgij =
8πG Tij , c4
Ú.Â. ÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ ((gij)) Ò Ò˄̇ÚÛÓÈ (1, 3), ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÈ ‰‡ÌÌÓÈ Ï‡ÒÒÂ Ë gij R ‡ÒÔ‰ÂÎÂÌ˲ ‰‡‚ÎÂÌËfl ‚¢ÂÒÚ‚‡. á‰ÂÒ¸ Eij = Rij − + Λgij – ÚÂÌÁÓ ÍË‚ËÁÌ˚ 2 ùÈ̯ÚÂÈ̇, R ij – ÚÂÌÁÓ ÍË‚ËÁÌ˚ ê˘˜Ë, R – Ò͇Îfl ‚Â΢ËÌÓÈ ê˘˜Ë, Λ – ÍÓÒÏÓÎӄ˘ÂÒ͇fl ÔÓÒÚÓflÌ̇fl, G – „‡‚ËÚ‡ˆËÓÌ̇fl ÔÓÒÚÓflÌ̇fl Ë Tij – ÚÂÌÁÓ ˝Ì„ËË Ì‡ÔflÊÂÌËfl. èÛÒÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó (‚‡ÍÛÛÏ) ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÒÎÛ˜‡˛ ÌÛÎÂ‚Ó„Ó ÚÂÌÁÓ‡ ê˘˜Ë: Rij = 0.
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
377
ëÚ‡Ú˘ÂÒ͇fl ÏÂÚË͇ ùÈ̯ÚÂÈ̇ ‰Îfl Ó‰ÌÓÓ‰ÌÓÈ Ë ËÁÓÚÓÔÌÓÈ ‚ÒÂÎÂÌÌÓÈ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = − dt 2 +
dr 2 + r 2 ( dθ 2 + sin 2 θdφ 2 ), (1 − kr 2 )
„‰Â k – ÍË‚ËÁ̇ ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË Ë ÍÓ˝ÙÙˈËÂÌÚ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl ‡‚ÂÌ 1. åÂÚË͇ ‰Â ëËÚÚ‡ åÂÚËÍÓÈ ‰Â ëËÚÚ‡ ̇Á˚‚‡ÂÚÒfl χÍÒËχθÌÓ ÒËÏÏÂÚ˘ÌÓ ‚‡ÍÛÛÏÌÓ ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ Ò ÔÓÎÓÊËÚÂθÌÓÈ ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÔÓÒÚÓflÌÌÓÈ Λ, ÓÔ‰ÂÎÂÌÌÓ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ Λ t 3 ( dr 2
ds 2 = dt 2 + e 2
+ r 2 dθ 2 + r 2 sin 2 θdφ 2 ).
ÅÂÁ ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÔÓÒÚÓflÌÌÓÈ (Ú.Â. ÔË Λ = 0) ̇˷ÓΠÒËÏÏÂÚ˘Ì˚Ï Â¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‚ ‚‡ÍÛÛÏ fl‚ÎflÂÚÒfl ÔÎÓÒ͇fl ÏÂÚË͇ åËÌÍÓ‚ÒÍÓ„Ó. åÂÚË͇ ‡ÌÚË-‰Â ëËÚÚ‡ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÓÚˈ‡ÚÂθÌÓÏÛ Á̇˜ÂÌ˲ Λ. åÂÚË͇ ò‚‡ˆ˜‡È艇 åÂÚË͇ ò‚‡ˆ˜‡È艇 – ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÔÛÒÚÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (‚‡ÍÛÛχ) ‚ÓÍÛ„ ÒÙ¢ÂÒÍË ÒËÏÏÂÚ˘ÌÓ„Ó ‡ÒÔ‰ÂÎÂÌËfl χÒÒ˚; ‰‡Ì̇fl ÏÂÚË͇ ‰‡ÂÚ ÓÔËÒ‡ÌË ‚ÒÂÎÂÌÌÓÈ ‚ÓÍÛ„ ˜ÂÌÓÈ ‰˚˚ Ò ‰‡ÌÌÓÈ Ï‡ÒÒÓÈ, ËÁ ÍÓÚÓÓÈ Ì‚ÓÁÏÓÊÌÓ ËÁ‚ΘÂÌË ˝Ì„ËË. ùÚ‡ ÏÂÚË͇ ·˚· ÔÓÎÛ˜Â̇ ä. ò‚‡ˆ˜‡Èθ‰ÓÏ ‚ 1916 „., ‚ÒÂ„Ó ˜ÂÂÁ ÌÂÒÍÓθÍÓ ÏÂÒflˆÂ‚ ÔÓÒΠÓÔÛ·ÎËÍÓ‚‡ÌËfl Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, Ë Òڇ· Ô‚˚Ï ÚÓ˜Ì˚Ï Â¯ÂÌËÂÏ ‰‡ÌÌÓ„Ó Û‡‚ÌÂÌËfl. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl Í‡Í rg 1 ds 2 = 1 − c 2 dt 2 − dr 2 − r 2 ( dθ 2 + sin 2 θdφ 2 ), rg r 1 − r 2Gm – ‡‰ËÛÒ ò‚‡ˆ˜‡È艇, m – χÒÒ‡ ˜ÂÌÓÈ ‰˚˚ Ë G – „‡‚ËÚ‡c2 ˆËÓÌ̇fl ÔÓÒÚÓflÌ̇fl. чÌÌÓ ¯ÂÌË ‰ÂÈÒÚ‚ËÚÂθÌÓ ÚÓθÍÓ ‰Îfl ‡‰ËÛÒÓ‚, ÍÓÚÓ˚ ·Óθ¯Â rg , ÔÓÒÍÓθÍÛ ÔË r =rg Ï˚ ÔÓÎÛ˜‡ÂÏ ÍÓÓ‰Ë̇ÚÌÛ˛ ÒËÌ„ÛÎflÌÓÒÚ¸. чÌÌÓÈ ÔÓ·ÎÂÏ˚ ÏÓÊÌÓ ËÁ·Âʇڸ ÔÓÒ‰ÒÚ‚ÓÏ Ô˂‰ÂÌËfl Í ‰Û„ËÏ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ-‚ÂÏÂÌÌ˚Ï ÍÓÓ‰Ë̇ڇÏ, ÍÓÚÓ˚ ̇Á˚‚‡˛ÚÒfl ÍÓÓ‰Ë̇ڇÏË äÛÒ͇·–óÂÍÂÂÒ‡. èË r → +∞ ÏÂÚË͇ ò‚‡ˆ¯Ë艇 ÒÚÂÏËÚÒfl Í ÏÂÚËÍ åËÌÍÓ‚ÒÍÓ„Ó.
„‰Â rg =
åÂÚË͇ äÛÒ͇·–óÂÍÂÂÒ‡ åÂÚË͇ äÛÒ͇·–óÂÍÂÂÒ‡ ÂÒÚ¸ ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÔÛÒÚÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (‚‡ÍÛÛχ) ‚ÓÍÛ„ ÒÚ‡Ú˘ÂÒÍÓ„Ó ÒÙ¢ÂÒÍË ÒËÏÏÂÚ˘ÌÓ„Ó ‡ÒÔ‰ÂÎÂÌËfl χÒÒ˚, Á‡‰‡ÌÌÓ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ r
rg rg 2 − r ds = 4 e g (c 2 dt ′ 2 − dr ′ 2 ) − r 2 ( dθ 2 + sin 2 θdφ 2 ), r R 2
378
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
2Gm – ‡‰ËÛÒ ò‚‡ˆ˜‡È艇, m – χÒÒ‡ ˜ÂÌÓÈ ‰˚˚, G – „‡‚ËÚ‡ˆËÓÌ̇fl c2 ÔÓÒÚÓflÌ̇fl, R – ÔÓÒÚÓflÌ̇fl, Ë ÍÓÓ‰Ë̇Ú˚ äÛÒ͇·–óÂÍÂÂÒ‡ (t⬘, r⬘, θ, φ) ÔÓÎÛ˜ÂÌ˚ ËÁ ÒÙ¢ÂÒÍËı ÍÓÓ‰ËÌ‡Ú (ct, r, θ, φ) Ò ÔÓÏÓ˘¸˛ ÔÂÓ·‡ÁÓ‚‡ÌËfl äÛÒ͇·– „‰Â rg =
r
r r ct ′ ct óÂÍÂÂÒ‡ r ′ − ct ′ = R2 − 1 e g , = tgh . r′ rg 2 rg àÏÂÌÌÓ, ÏÂÚË͇ äÛÒ͇·–óÂÍÂÂÒ‡ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ò‚‡ˆ˜‡È艇, Á‡ÔËÒ‡ÌÌÓÈ ‚ ÍÓÓ‰Ë̇ڇı äÛÒ͇·–óÂÍÂÂÒ‡. é̇ ÔÓ͇Á˚‚‡ÂÚ, ˜ÚÓ ÒËÌ„ÛÎflÌÓÒÚ¸ ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË ‚ ÏÂÚËÍ ò‚‡ˆ˜‡È艇 Û ‡‰ËÛÒ‡ ò‚‡ˆ˜‡È艇 r g Ì fl‚ÎflÂÚÒfl ‡θÌÓÈ ÙËÁ˘ÂÒÍÓÈ ÒËÌ„ÛÎflÌÓÒÚ¸˛. 2
2
åÂÚË͇ äÓÚÚ· åÂÚËÍÓÈ äÓÚÚ· ̇Á˚‚‡ÂÚÒfl ‰ËÌÒÚ‚ÂÌÌÓ ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÒÙ¢ÂÒÍÓ„Ó ÒËÏÏÂÚ˘ÌÓ„Ó ‚‡ÍÛÛχ Ò ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÔÓÒÚÓflÌÌÓÈ Λ. ùÚ‡ ÏÂÚË͇ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ −1
2 m Λr 2 2 2 m Λr 2 ds 2 = −1 − − dt + 1 − − dr 2 + r 2 ( dθ 2 + sin 2 θdφ 2 ). r 3 r 3 é̇ ̇Á˚‚‡ÂÚÒfl Ú‡ÍÊ ÏÂÚËÍÓÈ ò‚‡ˆ‡È艇-‰Â ëËÚÚ‡ ‰Îfl Λ > 0 Ë ÏÂÚËÍÓÈ ò‚‡ˆ¯Ë艇–‡ÌÚË-‰Â ëËÚÚ‡ ‰Îfl Λ < 0. åÂÚË͇ ê‡ÈÒÒ̇–çÓ‰ÒÚÓχ åÂÚË͇ ê‡ÈÒÒ̇-çÓ‰ÒÚÓχ – ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÔÛÒÚÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (‚‡ÍÛÛχ) ‚ÓÍÛ„ ÒÙ¢ÂÒÍË ÒËÏÏÂÚ˘ÌÓ„Ó ‡ÒÔ‰ÂÎÂÌËfl χÒÒ˚ ‚ ÔËÒÛÚÒÚ‚ËË Á‡fl‰‡; ‰‡Ì̇fl ÏÂÚË͇ ‰‡ÂÚ Ì‡Ï Ô‰ÒÚ‡‚ÎÂÌË ‚ÒÂÎÂÌÌÓÈ ‚ÓÍÛ„ ˜ÂÌÓÈ ‰˚˚ Ò Á‡fl‰ÓÏ. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ‰‡ÌÌÓÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl Í‡Í −1
2m e2 2 2m e2 ds 2 = 1 − + 2 dt − 1 − + 2 dr 2 − r 2 ( dθ 2 + sin 2 θdφ 2 ), r r r r „‰Â m – χÒÒ‡ ‰˚˚,  – Á‡fl‰ ( < m); Á‰ÂÒ¸ ËÒÔÓθÁÓ‚‡Ì˚ ‰ËÌˈ˚ ËÁÏÂÂÌËfl, ‚ ÍÓÚÓ˚ı ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡ Ò Ë „‡‚ËÚ‡ˆËÓÌ̇fl ÔÓÒÚÓflÌ̇fl G ‡‚Ì˚ ‰ËÌˈÂ. åÂÚË͇ ä‡ åÂÚË͇ ä‡ (ËÎË ÏÂÚË͇ 䇖ò‡È艇) ÂÒÚ¸ ÚÓ˜ÌÓ ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÔÛÒÚÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (‚‡ÍÛÛχ) ‚ÓÍÛ„ ÓÒÂÒËÏÏÂÚ˘ÌÓ„Ó ‚‡˘‡˛˘Â„ÓÒfl ‡ÒÔ‰ÂÎÂÌËfl χÒÒ˚; ˝Ú‡ ÏÂÚË͇ ‰‡ÂÚ Ì‡Ï Ô‰ÒÚ‡‚ÎÂÌË ‚ÒÂÎÂÌÌÓÈ ‚ÓÍÛ„ ‚‡˘‡˛˘ÂÈÒfl ˜ÂÌÓÈ ‰˚˚. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl (‚ ÙÓÏ ÅÓȇ–ãË̉͂ËÒÚ‡ ) Í‡Í dr 2 2 mr ds 2 = ρ2 + dθ 2 + (r 2 + a 2 )sin 2 θdφ 2 − dt 2 + 2 ( a sin 2 θdφ − dt )2 , ∆ ρ „‰Â ρ2 = r 2 + a 2 cos 2 θ Ë ∆ = r 2 − 2 mr + a 2 . á‰ÂÒ¸ m – χÒÒ‡ ˜ÂÌÓÈ ‰˚˚, Ë ‡ – Û„ÎÓ‚‡fl ÒÍÓÓÒÚ¸, ËÁÏÂÂÌ̇fl Ò ÔÓÁˈËË Û‰‡ÎÂÌÌÓ„Ó Ì‡·Î˛‰‡ÚÂÎfl. é·Ó·˘ÂÌË ÏÂÚËÍË ä‡ ‰Îfl Á‡flÊÂÌÌÓÈ ˜ÂÌÓÈ ‰˚˚ ËÁ‚ÂÒÚÌÓ Í‡Í ÏÂÚË͇ ä‡–ç¸˛Ï‡Ì‡. äÓ„‰‡ a = 0, ÏÂÚË͇ ä‡ ÒÚ‡ÌÓ‚ËÚÒfl ÏÂÚËÍÓÈ ò‚‡ˆ˜‡È艇.
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
379
åÂÚË͇ ä‡–ç¸˛Ï‡Ì‡ åÂÚË͇ ä‡–ç¸˛Ï‡Ì‡ ÂÒÚ¸ ÚÓ˜ÌÓÂ, ‰ËÌÒÚ‚ÂÌÌÓÂ Ë ÔÓÎÌÓ ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÔÛÒÚÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (‚‡ÍÛÛχ) ‚ÓÍÛ„ ÓÒÂÒËÏÏÂÚ˘ÌÓ„Ó ‚‡˘‡˛˘Â„ÓÒfl ‡ÒÔ‰ÂÎÂÌËfl χÒÒ˚ ‚ ÔËÒÛÚÒÚ‚ËË Á‡fl‰‡; ‰‡Ì̇fl ÏÂÚË͇ ‰‡ÂÚ Ô‰ÒÚ‡‚ÎÂÌË ‚ÒÂÎÂÌÌÓÈ ‚ÓÍÛ„ ‚‡˘‡˛˘ÂÈÒfl Á‡‡ÊÂÌÌÓÈ ˜ÂÌÓÈ ‰˚˚. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ‚̯ÌÂÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl Í‡Í ds 2 = −
∆ sin 2 θ 2 ρ2 2 2 2 2 2 ( dt − a sin θ d φ ) + (( r + a ) d φ − adt ) + dr + ρ2 dθ 2 , ∆ ρ2 ρ2
„‰Â ρ2 = r 2 + a 2 cos 2 θ Ë ∆ = r 2 − 2 mr + a 2 + e 2 . á‰ÂÒ¸ m – χÒÒ‡ ˜ÂÌÓÈ ‰˚˚,  –  Á‡fl‰ Ë ‡ – Û„ÎÓ‚‡fl ÒÍÓÓÒÚ¸. äÓ„‰‡ e = 0, ÏÂÚË͇ ä‡–ç¸˛Ï‡Ì‡ ÒÚ‡ÌÓ‚ËÚÒfl ÏÂÚËÍÓÈ ä‡. ëÚ‡Ú˘̇fl ËÁÓÚÓÔ̇fl ÏÂÚË͇ ëÚ‡Ú˘̇fl ËÁÓÚÓÔ̇fl ÏÂÚË͇ – ̇˷ÓΠӷ˘Â ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÔÛÒÚÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (‚‡ÍÛÛχ); ˝Ú‡ ÏÂÚË͇ ‰‡ÂÚ Ô‰ÒÚ‡‚ÎÂÌË ÒÚ‡Ú˘ÌÓ„Ó ËÁÓÚÓÔÌÓ„Ó „‡‚ËÚ‡ˆËÓÌÌÓ„Ó ÔÓÎfl. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ‰‡ÌÌÓÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl Í‡Í ds 2 = B(r )dt 2 − A(r )dr 2 − r 2 ( dθ 2 + sin 2 θdφ 2 ), „‰Â B(r) Ë A(r) – ÔÓËÁ‚ÓθÌ˚ ÙÛÌ͈ËË. åÂÚË͇ ù‰‰ËÌ„ÚÓ̇–êÓ·ÂÚÒÓ̇ åÂÚË͇ ù‰‰ËÌ„ÚÓ̇–êÓ·ÂÚÒÓ̇ – Ó·Ó·˘ÂÌË ÏÂÚËÍË ò‚‡ˆ˜‡È艇 ‚ Ô‰ÔÓÎÓÊÂÌËË, ˜ÚÓ Ï‡ÒÒ‡ m, „‡‚ËÚ‡ˆËÓÌ̇fl ÔÓÒÚÓflÌ̇fl G Ë ÔÎÓÚÌÓÒÚ¸ ρ ËÁÏÂÌfl˛ÚÒfl ÔÓ‰ ‚ÓÁ‰ÂÈÒÚ‚ËÂÏ ÌÂËÁ‚ÂÒÚÌ˚ı ·ÂÁ‡ÁÏÂÌ˚ı Ô‡‡ÏÂÚÓ‚ α, β Ë γ (ÍÓÚÓ˚ ‡‚Ì˚ 1 ‚ Û‡‚ÌÂÌËË ÔÓÎfl ùÈ̯ÚÂÈ̇). ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl Í‡Í mG mG 2 mG ds 2 = 1 − 2α + 2(β − αγ ) + ... dt 2 − 1 + 2 γ + ... dr 2 − r r r − r 2 ( dθ 2 + sin 2 θdφ 2 ). åÂÚË͇ ÑʇÌËÒ‡–ç¸˛Ï‡Ì‡–ÇËÌÍÛ‡ åÂÚË͇ ÑʇÌËÒ‡–ç¸˛Ï‡Ì‡–ÇËÌÍÛ‡ ÂÒÚ¸ ̇˷ÓΠӷ˘Â ÒÙ¢ÂÒÍË ÒËÏÏÂÚ˘ÌÓ ÒÚ‡Ú˘ÌÓÂ Ë ‡ÒËÏÔÚÓÚ˘ÂÒÍË ÔÎÓÒÍÓ ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, ÒÓÔflÊÂÌÌÓÂ Ò ·ÂÁχÒÒÓ‚˚Ï Ò͇ÎflÌ˚Ï ÔÓÎÂÏ. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ‰‡ÌÌÓÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl Í‡Í γ
2m 2m 2 ds 2 = −1 − dt + 1 − γr γr
−γ
2m dr 2 + 1 − γr
1− γ
r 2 ( dθ 2 + sin 2 θdφ 2 ),
„‰Â m Ë γ – ÔÓÒÚÓflÌÌ˚Â. ÑÎfl γ = 1 ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ ò‚‡ˆ˜‡È艇. Ç ˝ÚÓÏ ÒÎÛ˜‡Â Ò͇ÎflÌÓ ÔÓΠfl‚ÎflÂÚÒfl ÌÛ΂˚Ï. åÂÚË͇ êÓ·ÂÚÒÓ̇–ìÓÎ͇ åÂÚË͇ êÓ·ÂÚÒÓ̇–ìÓÎ͇ (ËÎË ÏÂÚË͇ îˉχ̇–ãÂÏÂÚ‡–êÓ·ÂÚÒÓ̇ìÓÎ͇) ÂÒÚ¸ ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ËÁÓÚÓÔÌÓÈ Ë Ó‰ÌÓÓ‰ÌÓÈ
380
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
‚ÒÂÎÂÌÌÓÈ Ò ÔÓÒÚÓflÌÌÓÈ ÔÎÓÚÌÓÒÚ¸˛ Ë ÔÂÌ·ÂÊËÏÓ Ï‡Î˚Ï ‰‡‚ÎÂÌËÂÏ; ‰‡Ì̇fl ÓÔËÒ˚‚‡ÂÚ ÔÂËÏÛ˘ÂÒÚ‚ÂÌÌÓ Ï‡Ú¡θÌÛ˛ ‚ÒÂÎÂÌÌÛ˛, Á‡ÔÓÎÌÂÌÌÛ˛ Ô˚θ˛ ·ÂÁ ‰‡‚ÎÂÌËfl. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË Ó·˚˜ÌÓ Á‡ÔËÒ˚‚‡ÂÚÒfl ‚ ÒÙ¢ÂÒÍËı ÍÓÓ‰Ë̇ڇı (Òt, r, θ, φ): dr 2 2 2 2 2 ds 2 = c 2 dt 2 − a(t )2 ⋅ 2 + r ⋅ ( dθ + sin θdφ ) , 1 − kr „‰Â a(t) – ÍÓ˝ÙÙˈËÂÌÚ Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl Ë k – ÍË‚ËÁ̇ ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË. ÑÎfl ÎËÌÂÈÌÓ„Ó ˝ÎÂÏÂÌÚ‡ ÒÛ˘ÂÒÚ‚ÛÂÚ Ë ‰Û„‡fl ÙÓχ: ds 2 = c 2 dt 2 − a(t )2 ⋅ ( dr ′ 2 + r˜ 2 ⋅ ( dθ 2 + sin 2 θdφ 2 )), „‰Â r⬘ Ó·ÓÁ̇˜‡ÂÚ ‡ÒÒÚÓflÌË ÒÓ‚ÏÂÒÚÌÓ„Ó ‰‚ËÊÂÌËfl Ò ÔÓÁˈËË Ì‡·Î˛‰‡ÚÂÎfl Ë r˜ – ‡ÒÒÚÓflÌË ÒÓ·ÒÚ‚ÂÌÌÓ„Ó ‰‚ËÊÂÌËfl, Ú.Â. r˜ = RC sinh (r ′ / RC ) ËÎË r⬘, ËÎË RC sinh(r⬘/RC ) ‰Îfl ÓÚˈ‡ÚÂθÌÓÈ, ÌÛ΂ÓÈ ËÎË ÔÓÎÓÊËÚÂθÌÓÈ ÍË‚ËÁÌ˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, „‰Â RC = 1 / | k | ÂÒÚ¸ ‡·ÒÓβÚÌÓ Á̇˜ÂÌË ‡‰ËÛÒ‡ ÍË‚ËÁÌ˚. åÂÚËÍË ÅˇÌÍË åÂÚËÍË ÅˇÌÍË – ¯ÂÌËfl Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÍÓÒÏÓÎӄ˘ÂÒÍËı ÏÓ‰ÂÎÂÈ, ÍÓÚÓ˚ ËÏÂ˛Ú ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ Ó‰ÌÓÓ‰Ì˚ ۘ‡ÒÚÍË, ËÌ‚‡Ë‡ÌÚÌ˚ ÓÚÌÓÒËÚÂθÌÓ ‚ÓÁ‰ÂÈÒÚ‚Ëfl ÚÂıÏÂÌ˚ı „ÛÔÔ ãË, Ú.Â. ‰ÂÈÒÚ‚ËÚÂθÌ˚ ˜ÂÚ˚ÂıÏÂÌ˚ ÏÂÚËÍË Ò ÚÂıÏÂÌÓÈ „ÛÔÔÓÈ ËÁÓÏÂÚËÈ, Ú‡ÌÁËÚË‚ÌÓÈ Ì‡ 3-ÔÓ‚ÂıÌÓÒÚflı. èËÏÂÌflfl Í·ÒÒËÙË͇ˆË˛ ÅˇÌÍË ÚÂıÏÂÌ˚ı ‡Î„· ãË Ì‡‰ ‚ÂÍÚÓÌ˚ÏË ÔÓÎflÏË äËÎÎËÌ„‡, Ï˚ ÔÓÎÛ˜‡ÂÏ ‰Â‚flÚ¸ ÚËÔÓ‚ ÏÂÚËÍ ÅˇÌÍË. ä‡Ê‰‡fl ÏÓ‰Âθ ÅˇÌÍË Ç ÓÔ‰ÂÎflÂÚ Ú‡ÌÁËÚË‚ÌÛ˛ „ÛÔÔÛ G B ̇ ÌÂÍÓÚÓÓÏ ÚÂıÏÂÌÓÏ Ó‰ÌÓÒ‚flÁÌÓÏ ÏÌÓ„ÓÓ·‡ÁËË å; Ú‡ÍËÏ Ó·‡ÁÓÏ, Ô‡‡ („‰Â G – χÍÒËχθ̇fl „ÛÔÔ‡, ‚ÓÁ‰ÂÈÒÚ‚Û˛˘‡fl ̇ ï Ë ÒÓ‰Âʇ˘‡fl ëB ) ÂÒÚ¸ Ӊ̇ ËÁ ‚ÓÒ¸ÏË ÏÓ‰ÂθÌ˚ı „ÂÓÏÂÚËÈ íÂÒÚÓ̇, ÂÒÎË M/G⬘ fl‚ÎflÂÚÒfl ÍÓÏÔ‡ÍÚÌ˚Ï ‰Îfl ‰ËÒÍÂÚÌÓÈ ÔÓ‰„ÛÔÔ˚ G⬘ „ÛÔÔ˚ G. Ç ˜‡ÒÚÌÓÒÚË, ÚËÔ IX ÅˇÌÍË ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÏÓ‰ÂθÌÓÈ „ÂÓÏÂÚËË S3 . åÂÚË͇ ÅˇÌÍË ÚËÔ‡ I ÂÒÚ¸ ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ‡ÌËÁÓÚÓÔÌÓÈ Ó‰ÌÓÓ‰ÌÓÈ ‚ÒÂÎÂÌÌÓÈ, Á‡‰‡ÌÌÓ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = − dt 2 + a(t )2 dx 2 + b(t )2 dy 2 + c(t )2 dz 2 , „‰Â ÙÛÌ͈ËË a(t), b(t) Ë c(t) ÓÔ‰ÂÎÂÌ˚ Û‡‚ÌÂÌËÂÏ ùÈ̯ÚÂÈ̇. ùÚ‡ ÏÂÚË͇ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÔÎÓÒÍËÏ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚Ï Û˜‡ÒÚ͇Ï, Ú.Â. fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÏÂÚËÍË êÓ·ÂÚÒÓ̇–ìÓÎ͇. åÂÚË͇ ÅˇÌÍË ÚËÔ‡ IX (ËÎË ÏÂÚË͇ åËÍÒχÒÚ‡) ı‡‡ÍÚÂËÁÛÂÚÒfl ÒÎÓÊÌÓÈ ‰Ë̇ÏËÍÓÈ Ôӂ‰ÂÌËfl ‚·ÎËÁË ÒËÌ„ÛÎflÌÓÒÚÂÈ Â ÍË‚ËÁÌ˚. åÂÚË͇ ä‡Ò̇ åÂÚË͇ ä‡Ò̇ – Ӊ̇ ËÁ ÏÂÚËÍ ÅˇÌÍË ÚËÔ‡ I, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ‚‡ÍÛÛÏÌ˚Ï Â¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ‡ÌËÁÓÚÓÔÌÓÈ Ó‰ÌÓÓ‰ÌÓÈ ‚ÒÂÎÂÌÌÓÈ, ÓÔ‰ÂÎÂÌÌ˚Ï ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = − dt 2 + t 2 p1 dx 2 + t 2 p2 dy 2 + t 2 p3 dz 2 , „‰Â p1 + p2 + p3 = p12 + p22 + p32 = 1.
381
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
åÂÚËÍÛ ä‡Ò̇ ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ Ë̇˜Â ͇Í
(
ds 2 = − dt 2 + t 2 / 3 t
1 / 3 cos( φ + π / 3)
dx 2 + t
1 / 3 cos( φ − π / 3)
)
dy 2 + t −1 / 3 cos φ dz 2 .
Ç ˝ÚÓÏ ÒÎÛ˜‡Â Ó̇ ̇Á˚‚‡ÂÚÒfl ÍÛ„ÓÏ ä‡Ò̇. é‰Ì‡ ËÁ ÏÂÚËÍ ä‡Ò̇, ˜‡ÒÚÓ Ì‡Á˚‚‡Âχfl ͇ÒÌÂ-ÔÓ‰Ó·ÌÓÈ ÏÂÚËÍÓÈ, Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = − dt 2 + t 2 q ( dx 2 + dy 2 ) + t 2 − 4 q dz 2 . ÄÒËÏÏÂÚ˘̇fl ÏÂÚË͇ ä‡Ò̇ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = −
dt 2 dx 2 + + tdy 2 + tdz 2 . t t
åÂÚË͇ ä‡ÌÚÓ‚ÒÍÓ„Ó–ë‡ıÒ‡ åÂÚË͇ ä‡ÌÚÓ‚ÒÍÓ„Ó–ë‡ıÒ‡ – Ó‰ÌÓ ËÁ ¯ÂÌËÈ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, Á‡‰‡‚‡ÂÏÓ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = − dt 2 + a(t )2 dz 2 + b(t )2 ( dθ 2 + sin θdφ 2 ), „‰Â ÙÛÌ͈ËË a(t) Ë b(t) ÓÔ‰ÂÎfl˛ÚÒfl Û‡‚ÌÂÌËÂÏ ùÈ̯ÚÂÈ̇. ùÚÓ Â‰ËÌÒÚ‚ÂÌ̇fl Ó‰ÌÓӉ̇fl ÏÓ‰Âθ ·ÂÁ ÚÂıÏÂÌÓÈ Ú‡ÌÁËÚË‚ÌÓÈ ÔÓ‰„ÛÔÔ˚. Ç ˜‡ÒÚÌÓÒÚË, ÏÂÚË͇ ä‡ÌÚÓ‚ÒÍÓ„Ó–ë‡ıÒ‡ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = − dt 2 + e 2
Λl
dz 2 +
1 ( dθ 2 + sin 2 θdφ 2 ) Λ
ÓÔËÒ˚‚‡ÂÚ ‚ÒÂÎÂÌÌÛ˛ Ò ‰‚ÛÏfl ÒÙ¢ÂÒÍËÏË ËÁÏÂÂÌËflÏË, ÒÓı‡Ìfl˛˘ËÏË Ò‚ÓË ‡ÁÏÂ˚ ‚ ıӉ ÍÓÒÏ˘ÂÒÍÓÈ ˝‚ÓβˆËË, Ë ÚÂÚ¸ËÏ ËÁÏÂÂÌËÂÏ, ‡Ò¯Ëfl˛˘ËÏÒfl ˝ÍÒÔÓÌÂ̈ˇθÌÓ. åÂÚË͇ GCSS åÂÚË͇ GCSS (Ó·˘‡fl ˆËÎË̉˘ÂÒÍË ÒËÏÏÂÚ˘̇fl ÒÚ‡ˆËÓ̇̇fl ÏÂÚË͇) – ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, Á‡‰‡‚‡ÂÏÓ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = − fdt 2 + 2 kdtdφ + e µ ( dr 2 + dz 2 ) + ldφ 2 , „‰Â ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ‡Á‰ÂÎÂÌÓ Ì‡ ‰‚ ӷ·ÒÚË: ‚ÌÛÚÂÌÌ˛˛ (Ò 0 ≤ r ≤ R) Í ˆËÎË̉˘ÂÒÍÓÈ ÔÓ‚ÂıÌÓÒÚË Ò ‡‰ËÛÒÓÏ R, ˆÂÌÚËÓ‚‡ÌÌÓÈ ‚‰Óθ ÓÒË z, Ë ‚ÌÂ¯Ì˛˛ (Ò R ≤ r < ∞). á‰ÂÒ¸ f, k, µ Ë l fl‚Îfl˛ÚÒfl ÙÛÌ͈ËflÏË ÚÓθÍÓ ÓÚ r, –∞ < t, z < ∞, 0 ≤ φ ≤ 2π, „ËÔÂÔÓ‚ÂıÌÓÒÚË φ = 0 Ë φ = 2π ÓÚÓʉÂÒÚ‚ÎÂÌ˚. åÂÚË͇ ã¸˛ËÒ‡ åÂÚË͇ ã¸˛ËÒ‡ – ÒÚ‡ˆËÓ̇̇fl ˆËÎË̉˘ÂÒÍË ÒËÏÏÂÚ˘̇fl ÏÂÚË͇, ÍÓÚÓ‡fl fl‚ÎflÂÚÒfl ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÔÛÒÚÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (‚‡ÍÛÛχ) ‚Ó ‚̯ÌÂÈ Ó·Î‡ÒÚË ˆËÎË̉˘ÂÒÍÓÈ ÔÓ‚ÂıÌÓÒÚË. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ‰‡ÌÌÓÈ ÏÂÚËÍË ËÏÂÂÚ ÙÓÏÛ ds 2 = − fdt 2 + 2 kdtdφ − e µ ( dr 2 + dz 2 ) + ldφ 2 , „‰Â
f = ar − n +1 −
c 2 n +1 r2 r , k = − Af , l = − A 2 f , e µ = f 1 / 2( n 2 −1) f n2 a
Ò
A=
cr n +1 + b. naf
382
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
èÓÒÚÓflÌÌ˚Â Ë Ò ÏÓ„ÛÚ ·˚Ú¸ ÎË·Ó ‰ÂÈÒÚ‚ËÚÂθÌ˚ÏË, ÎË·Ó ÍÓÏÔÎÂÍÒÌ˚ÏË, Ë ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ¯ÂÌËfl ÔË̇‰ÎÂÊ‡Ú Í·ÒÒÛ ÇÂÈ· ËÎË Í·ÒÒÛ ã¸˛ËÒ‡. Ç ÔÓÒΉÌÂÏ ÒÎÛ˜‡Â ÏÂÚ˘ÂÒÍË ÍÓ˝ÙÙˈËÂÌÚ˚ ËÏÂ˛Ú ‚ˉ f = r ( a12 − b12 ) cos( m ln r ) + + 2 ra1b1 sin( m ln r ), k = − r ( a1a2 − b1b2 ) cos( m ln r ) − r ( a1b2 − a2 b1 )sin( m ln r ), l = − r ( a22 − − b22 ) cos ( m ln r ) − 2 ra2 b2 sin( m ln r ), e µ = r −1 / 2( m 2 +1) , „‰Â m, a1 , a2 , b1 Ë b2 – ‰ÂÈÒÚ‚ËÚÂθÌ˚ ÔÓÒÚÓflÌÌ˚Â Ò a1b2 − a2 b1 = 1. í‡ÍË ÏÂÚËÍË ÒÓÒÚ‡‚Îfl˛Ú ÔӉͷÒÒ Í·ÒÒ‡ ä‡Ò̇-ÔÓ‰Ó·Ì˚ı ÏÂÚËÍ. åÂÚË͇ Ç‡Ì ëÚÓÍÛχ åÂÚË͇ Ç‡Ì ëÚÓÍÛχ – ÒÚ‡ˆËÓ̇ÌÓ ˆËÎË̉˘ÂÒÍË ÒËÏÏÂÚ˘ÌÓ ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÔÛÒÚÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (‚‡ÍÛÛχ) Ò ÊÂÒÚÍÓ ‚‡˘‡˛˘ËÏÒfl ·ÂÒÍÓ̘ÌÓ ‰ÎËÌÌ˚Ï Ô˚΂˚Ï ˆËÎË̉ÓÏ. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË ‰Îfl ‚ÌÛÚÂÌÌÓÒÚË ˆËÎË̉‡ Á‡‰‡ÂÚÒfl (‚ ÒÓ‚ÏÂÒÚÌÓ ‰‚ËÊÛ˘ËıÒfl, Ú.Â. ÒÓ‚ÏÂÒÚÌÓ ‚‡˘‡˛˘ËıÒfl ÍÓÓ‰Ë̇ڇı) Í‡Í ds 2 = − dt 2 + 2 ar 2 dtdφ + e − a
2 2
r
( dr 2 + dz 2 ) + r 2 (1 − a 2 r 2 )dφ 2 ,
„‰Â 0 ≤ r ≤ R, R – ‡‰ËÛÒ ˆËÎË̉‡ Ë ‡ – Û„ÎÓ‚‡fl ÒÍÓÓÒÚ¸ ˜‡ÒÚˈ Ô˚ÎË. ëÛ˘ÂÒÚ‚ÛÂÚ ÚË ‚‡Ë‡ÌÚ‡ ‚̯ÌËı ¯ÂÌËÈ ‰Îfl ‚‡ÍÛÛχ (Ú.Â. ÏÂÚËÍ ã¸˛ËÒ‡), ÍÓÚÓ˚ ̇ıÓ‰flÚÒfl ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò ‚ÌÛÚÂÌÌËÏË Â¯ÂÌËflÏË Ë Á‡‚ËÒflÚ ÓÚ Ï‡ÒÒ˚ Ô˚ÎË Ì‡ ‰ËÌËˆÛ ‰ÎËÌ˚ ‚ÌÛÚÂÌÌÂ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (ÒÎÛ˜‡È χÎÓÈ Ï‡ÒÒ˚, ÌÛ΂ÓÈ ÒÎÛ˜‡È Ë ÛθڇÂÎflÚË‚ËÒÚÒÍËÈ ÒÎÛ˜‡È). èË ÌÂÍÓÚÓ˚ı ÛÒÎÓ‚Ëflı (̇ÔËÏÂ, ÂÒÎË ar > 1) ‰ÓÔÛÒ͇ÂÚÒfl ÒÛ˘ÂÒÚ‚Ó‚‡ÌË Á‡ÏÍÌÛÚ˚ı ‚ÂÏÂÌÌÓÔÓ‰Ó·Ì˚ı ÍË‚˚ı (Ë, ÒΉӂ‡ÚÂθÌÓ, ÔÛÚ¯ÂÒÚ‚Ëfl ‚Ó ‚ÂÏÂÌË). åÂÚË͇ ã‚Ë-óË‚ËÚ‡ åÂÚË͇ ã‚Ë-óË‚ËÚ‡ fl‚ÎflÂÚÒfl ÒÚ‡Ú˘Ì˚Ï ˆËÎË̉˘ÂÒÍË ÒËÏÏÂÚ˘Ì˚Ï Â¯ÂÌËÂÏ ‰Îfl ‚‡ÍÛÛχ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ, Á‡‰‡ÌÌ˚Ï (‚ ÙÓÏ ÇÂÈÎfl) Í‡Í ds 2 = − r 4 σ dt 2 + r 4 σ ( 2 σ −1) ( dr 2 + dz 2 ) + C −2 r 2 − 4 σ dφ, „‰Â ÔÓÒÚÓflÌ̇fl ë ÓÚÌÓÒËÚÒfl Í ‰ÂÙˈËÚÛ Û„Î‡, ‡ Ô‡‡ÏÂÚ σ ËÌÚÂÔÂÚËÛÂÚÒfl ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò Ì¸˛ÚÓÌÓ‚ÒÍÓÈ ‡Ì‡ÎÓ„ËÂÈ Â¯ÂÌËfl ã‚˖óË‚ËÚ‡: ˝ÚÓ „‡‚ËÚ‡ˆËÓÌÌÓ ÔÓΠ·ÂÒÍÓ̘ÌÓÈ Ó‰ÌÓÓ‰ÌÓÈ ÎËÌÂÈÌÓÈ Ï‡ÒÒ˚ (·ÂÒÍÓ̘Ì˚È ÔÓ‚Ó‰) Ò 1 ÎËÌÂÈÌÓÈ ÔÎÓÚÌÓÒÚ¸˛ χÒÒ˚ σ. Ç ÒÎÛ˜‡Â σ = − , C = 1 ‰‡ÌÌÛ˛ ÏÂÚËÍÛ ÏÓÊÌÓ 2 ÔÂÓ·‡ÁÓ‚‡Ú¸ ÎË·Ó ‚ ÔÎÓÒÍÛ˛ ÒËÏÏÂÚ˘ÌÛ˛ ÏÂÚËÍÛ í‡Û·‡, ÎË·Ó ‚ ÏÂÚËÍÛ êÓ·ËÌÒÓ̇-íÓÚχ̇. åÂÚË͇ ÇÂÈÎfl-è‡Ô‡ÔÂÚÛ åÂÚËÍÓÈ ÇÂÈÎfl-è‡Ô‡ÔÂÚÛ Ì‡Á˚‚‡ÂÚÒfl ÒÚ‡ˆËÓ̇ÌÓ ÓÒÂÒËÏÏÂÚ˘ÌÓ ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, ‚˚‡ÊÂÌÌÓ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = Fdt 2 − e µ ( dz 2 + dr 2 ) − Ldφ 2 − 2 Kdφdt, „‰Â F, K, L Ë µ fl‚Îfl˛ÚÒfl ÙÛÌ͈ËflÏË ÚÓθÍÓ r Ë z, LF + K2 = r2 , ∞ < t, z < ∞, 0 ≤ r < ∞ Ë 0 ≤ φ ≤ 2π, „ËÔÂÔÓ‚ÂıÌÓÒÚË φ = 0 Ë φ – 2π ÓÚÓʉÂÒÚ‚ÎÂÌ˚. è˚΂‡fl ÏÂÚË͇ ÅÓÌÌÓ‡ è˚΂‡fl ÏÂÚË͇ ÅÓÌÌÓ‡ fl‚ÎflÂÚÒfl ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ Ë Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ ÓÒÂÒËÏÏÂÚ˘ÌÛ˛ ÏÂÚËÍÛ, ÍÓÚÓ‡fl ÓÔËÒ˚‚‡ÂÚ Ó·Î‡ÍÓ ÊÂÒÚÍÓ
383
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
‚‡˘‡˛˘ËıÒfl ˜‡ÒÚˈ Ô˚ÎË, ‰‚ËÊÛ˘ËıÒfl ÔÓ ÍÓθˆÂ‚˚Ï „ÂÓ‰ÂÁ˘ÂÒÍËÏ ‚ÓÍÛ„ z-ÓÒË ‚ „ËÔÂÔÎÓÒÍÓÒÚflı z = const. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl Í‡Í ds 2 = dt 2 + (r 2 − n 2 )dφ 2 + 2 ndtdφ + e µ ( dr 2 + dz 2 ), „‰Â ‚ ÒÓ‚ÏÂÒÚÌÓ ‰‚ËÊÛ˘ËıÒfl (Ú.Â. ÒÓ‚ÏÂÒÚÌÓ ‚‡˘‡˛˘ËıÒfl) ÍÓÓ‰Ë̇ڇı ÅÓÌÌÓ‡ 2 hr 2 h 2 r 2 ( r 2 − 8z 2 ) 2 n = 3 ,µ = , R = r 2 + z 2 Ë h – Ô‡‡ÏÂÚ ‚‡˘ÂÌËfl. èÓ Ï ÚÓ„Ó R 2 R8 Í‡Í R → ∞, ÏÂÚ˘ÂÒÍË ÍÓ˝ÙÙˈËÂÌÚ˚ ÒÚÂÏflÚÒfl Í Á̇˜ÂÌËflÏ åËÌÍÓ‚ÒÍÓ„Ó. åÂÚË͇ ÇÂÈÎfl åÂÚË͇ ÇÂÈÎfl fl‚ÎflÂÚÒfl Ó·˘ËÏ ÒÚ‡Ú˘Ì˚Ï ÓÒÂÒËÏÏÂÚ˘Ì˚Ï ‚‡ÍÛÛÏÌ˚Ï Â¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, ‚˚‡ÊÂÌÌ˚Ï ‚ ͇ÌÓÌ˘ÂÒÍËı ÍÓÓ‰Ë̇ڇı ÇÂÈÎfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = e 2 λ dt 2 − e 2 λ (e 2 µ ( dr 2 + dz 2 ) + r 2 dφ 2 ), ∂ 2 λ 1 ∂λ ∂ 2 λ + ⋅ + = 0, ∂r 2 r ∂r ∂z 2
„‰Â λ Ë µ fl‚Îfl˛ÚÒfl ÙÛÌ͈ËflÏË ÚÓθÍÓ r Ë z, Ú‡ÍËÏË ˜ÚÓ ∂2λ ∂2λ ∂µ ∂λ ∂λ ∂µ Ë = 2r . = r − ∂r ∂r ∂z ∂r ∂z ∂r
åÂÚË͇ áËÔÓÈ-ÇÛıËÁ‡ åÂÚË͇ áËÔÓÈ-ÇÛıËÁ‡ (ËÎË γ-ÏÂÚË͇) – ÏÂÚË͇ Ç˝ÈÎfl, ÔÓÎÛ˜ÂÌ̇fl ‰Îfl e
2λ
γ
R + R2 − 2 m ( R1 + R2 + 2 m)( R1 + R2 − 2 m) 2µ = 1 , e = 4 R1 R2 R1 + R2 + 2 m
γ2
, „‰Â R12 = r 2 + ( z − m)2 ,
R22 = r 2 + ( z + m)2 . á‰ÂÒ¸ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ì¸˛ÚÓÌÓ‚Û ÔÓÚÂ̈ˇÎÛ ÎËÌÂÈÌÓ„Ó ÓÚÂÁ͇ ÔÎÓÚÌÓÒÚË γ/2 Ë ‰ÎËÌ˚ 2m, ÒËÏÏÂÚ˘ÌÓ ‡ÒÔ‰ÂÎÂÌÌÓÏÛ ‚‰Óθ z-ÓÒË. ëÎÛ˜‡È γ = 1 ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ÏÂÚËÍ ò‚‡ˆ˜‡È艇, ÒÎÛ˜‡Ë γ > 1 (γ < 1) ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú ÒʇÚÓÏÛ (‡ÒÚflÌÛÚÓÏÛ) ÒÙÂÓˉÛ, ‡ ‰Îfl γ = 0 Ï˚ ÔÓÎÛ˜ËÏ ÔÎÓÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl åËÌÍÓ‚ÒÍÓ„Ó. åÂÚË͇ ÔflÏÓÈ ‚‡˘‡˛˘ÂÈÒfl ÒÚÛÌ˚ åÂÚË͇ ÔflÏÓÈ ‚‡˘‡˛˘ÂÈÒfl ÒÚÛÌ˚ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = −( dt − adφ)2 + dz 2 + dr 2 + k 2 r 2 dφ 2 , „‰Â ‡ Ë k > 0 – ÔÓÒÚÓflÌÌ˚Â. é̇ ÓÔËÒ˚‚‡ÂÚ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ‚ÓÍÛ„ ÔflÏÓÈ ‚‡˘‡˛˘ÂÈÒfl ‚ÓÍÛ„ ÒÓ·ÒÚ‚ÂÌÌÓÈ ÓÒË ÒÚÛÌ˚. èÓÒÚÓflÌ̇fl k Ò‚flÁ‡Ì‡ Ò Ï‡ÒÒÓÈ ÒÚÛÌ˚ ̇ ‰ËÌËˆÛ ‰ÎËÌ˚ µ Í‡Í k = 1 – 4µ, Ë ÔÓÒÚÓflÌ̇fl ‡ fl‚ÎflÂÚÒfl ÏÂÓÈ ‚‡˘ÂÌËfl ÒÚÛÌ˚ ‚ÓÍÛ„ ÒÓ·ÒÚ‚ÂÌÌÓÈ ÓÒË. ÑÎfl a = 0 Ë k = 1 Ï˚ ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ åËÌÍÓ‚ÒÍÓ„Ó ‚ ˆËÎË̉˘ÂÒÍËı ÍÓÓ‰Ë̇ڇı. åÂÚË͇ íÓÏËχÚÒÛ-ë‡ÚÓ åÂÚË͇ íÓÏËχÚÒÛ-ë‡ÚÓ [ToSa73] – Ӊ̇ ËÁ ÏÂÚËÍ ·ÂÒÍÓ̘ÌÓ„Ó ÒÂÏÂÈÒÚ‚‡ ¯ÂÌËÈ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ‚‡˘‡˛˘ËıÒfl χÒÒ, ͇ʉ‡fl ËÁ ÍÓÚÓ˚ı ËÏÂÂÚ ÙÓÏÛ ξ = U/W, „‰Â U Ë W Ë fl‚Îfl˛ÚÒfl ÏÌÓ„Ó˜ÎÂ̇ÏË. Ç ÔÓÒÚÂȯÂÏ Â¯ÂÌËË 2 U = p 2 ( x 4 − 1) + q 2 ( y 4 − 1) − 2ipqxy( x 2 − y 2 ), W = 2 px ( x 2 − 1) − 2iqy(1 − y 2 ), „‰Â p +
384
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
+ q 2 = 1. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ‰Îfl ‰‡ÌÌÓ„Ó Â¯ÂÌËfl Á‡‰‡ÂÚÒfl Í‡Í ds 2 = Σ −1 ((αdt + βdφ)2 − r 2 ( γdt + δdφ)2 ) −
„‰Â α = p 2 ( x 2 − 1)2 + q 2 (1 − y 2 )2 , β = −
Σ ( dz 2 + dr 2 ), p ( x − y 2 )4 4
2
2q W ( p 2 ( x 2 − 1)( x 2 − y 2 ) + 2( px + 1)W ), γ = p
= −2 pq( x 2 − y 2 ), δ = α + 4(( x 2 − 1) + ( x 2 + 1)( px + 1)), Σ = αδ − βγ = | U + W |2 . åÂÚË͇ Éfi‰ÂÎfl åÂÚË͇ Éfi‰ÂÎfl – ÚÓ˜ÌÓ ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ Ò ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÔÓÒÚÓflÌÌÓÈ ‰Îfl ‚‡˘‡˛˘ÂÈÒfl ‚ÒÂÎÂÌÌÓÈ, ‚˚‡ÊÂÌÌÓ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = −( dt 2 + C(r )dφ)2 + D2 (r )dφ 2 + dr 2 + dz 2 , „‰Â (t, r, φ, z ) – Ó·˚˜Ì˚ ˆËÎË̉˘ÂÒÍË ÍÓÓ‰Ë̇Ú˚. ÇÒÂÎÂÌ̇fl ÔÓ Éfi‰Âβ fl‚4Ω mr 1 ÎflÂÚÒfl Ó‰ÌÓÓ‰ÌÓÈ, ÂÒÎË C(r ) = 2 sinh 2 , D(r ) = sinh( mr ), „‰Â m Ë Ω – 2 m m ÔÓÒÚÓflÌÌ˚Â. ÇÒÂÎÂÌ̇fl Éfi‰ÂÎfl Ô‰ÔÓ·„‡ÂÚ ‚ÓÁÏÓÊÌÓÒÚ¸ Á‡ÏÍÌÛÚ˚ı ‚ÂÏÂÌÌÓÔÓ‰Ó·Ì˚ı ÍË‚˚ı Ë ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÔÛÚ¯ÂÒÚ‚ËÈ ‚Ó ‚ÂÏÂÌË. çÂÓ·ıÓ‰ËÏ˚Ï ÛÒÎÓ‚ËÂÏ ÓÚÒÛÚÒÚ‚Ëfl Ú‡ÍËı ÍË‚˚ı fl‚ÎflÂÚÒfl ÛÒÎÓ‚Ë m2 > 4Ω2. äÓÌÙÓÏÌÓ ÒÚ‡ˆËÓ̇̇fl ÏÂÚË͇ äÓÌÙÓÏÌÓ ÒÚ‡ˆËÓ̇Ì˚ÏË ÏÂÚË͇ÏË Ì‡Á˚‚‡˛ÚÒfl ÏÓ‰ÂÎË „‡‚ËÚ‡ˆËÓÌÌ˚ı ÔÓÎÂÈ, ÍÓÚÓ˚ ÌÂÁ‡‚ËÒËÏ˚ ÓÚ ‚ÂÏÂÌË Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó Ó·˘Â„Ó ÍÓÌÙÓÏÌÓ„Ó ÏÌÓÊËÚÂÎfl. ÖÒÎË ‚˚ÔÓÎÌfl˛ÚÒfl ÌÂÍÓÚÓ˚ „ÎÓ·‡Î¸Ì˚ ÛÒÎÓ‚Ëfl „ÛÎflÌÓÒÚË, ÚÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ‰ÓÎÊÌÓ ·˚Ú¸ ÔÓËÁ‚‰ÂÌËÂÏ × M3 Ò (ı‡ÛÒ‰ÓÙÓ‚˚Ï Ë Ô‡‡-ÍÓÏÔ‡ÍÚÌ˚Ï) ÚÂıÏÂÌ˚Ï ÏÌÓ„ÓÓ·‡ÁËÂÏ M3 , ‡ ÎËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ÏÂÚËÍË Á‡‰‡ÂÚÒfl Í‡Í ds 2 = e 2 f ( t , x ) ( −( dt +
∑ φµ ( x )dxµ )2 + ∑ gµν ( x )dxµ dx ν ), µ
µ, ν
„‰Â µ, ν = 1, 2, 3. äÓÌÙÓÏÌ˚È Ù‡ÍÚÓ e2f Ì ‚ÓÁ‰ÂÈÒÚ‚ÛÂÚ Ì‡ ËÁÓÚÓÔÌ˚ „ÂÓ‰ÂÁ˘ÂÒÍËÂ, Á‡ ËÒÍβ˜ÂÌËÂÏ Ëı Ô‡‡ÏÂÚËÁ‡ˆËË, Ú.Â. ÔÛÚË ÎÛ˜ÂÈ Ò‚ÂÚ‡ ÔÓÎÌÓÒÚ¸˛ ÓÔ‰ÂÎfl˛ÚÒfl ËχÌÓ‚ÓÈ ÏÂÚËÍÓÈ g = gµν ( x )dxµ dx ν Ë 1-ÙÓÏÓÈ φ=
∑µ φµ ( x )dxµ ̇ M 3.
∑ µ, ν
Ç ˝ÚÓÏ ÒÎÛ˜‡Â ÙÛÌ͈Ëfl f ̇Á˚‚‡ÂÚÒfl ÔÓÚÂ̈ˇÎÓÏ Í‡ÒÌÓ„Ó ÒÏ¢ÂÌËfl, ÏÂÚË͇ g – ÏÂÚËÍÓÈ îÂχ Ë 1-ÙÓχ φ – 1-ÙÓÏÓÈ îÂχ. ÑÎfl ÒÚ‡Ú˘ÂÒÍÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË „ÂÓ‰ÂÁ˘ÂÒÍË ÏÂÚËÍË îÂχ fl‚Îfl˛ÚÒfl ÔÓÂ͈ËflÏË ÌÛ΂˚ı „ÂÓ‰ÂÁ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË. Ç ˜‡ÒÚÌÓÒÚË, ÒÙ¢ÂÒÍË ÒËÏÏÂÚ˘Ì˚Â Ë ÒÚ‡Ú˘Ì˚ ÏÂÚËÍË, ‚Íβ˜‡fl ÏÓ‰ÂÎË Ì ‚‡˘‡˛˘ËıÒfl Á‚ÂÁ‰ Ë ˜ÂÌ˚ı ‰˚, ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ı ‚ÓÓÌÓÍ, ÏÓÌÓÔÓÎÂÈ Ó‰ÌÓÔÓβÒÌ˚ı ÁÓÌ, „ÓÎ˚ı ÒËÌ„ÛÎflÌÓÒÚÂÈ Ë (·ÓÁÓÌÌ˚ı ËÎË ÙÂÏËÓÌÌ˚ı) Á‚ÂÁ‰, Á‡‰‡˛ÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = e 2 f ( r ) ( − dt 2 + S(r )2 dr 2 + R(r )2 ( dθ 2 + sin 2 θdφ 2 )).
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
385
á‰ÂÒ¸ 1-ÙÓχ φ Ó·‡˘‡ÂÚÒfl ‚ ÌÛθ, Ë ÏÂÚË͇ îÂχ g ÔËÓ·ÂÚ‡ÂÚ ÓÒÓ·˚È ‚ˉ g = S(r )2 dr 2 + R(r )2 ( dθ 2 + sin 2 θdφ 2 ). í‡Í, ̇ÔËÏÂ, ÍÓÌÙÓÏÌ˚È Ù‡ÍÚÓ e2f(r) ÏÂÚËÍË ò‚‡ˆ˜‡È艇 ‡‚ÂÌ 1 −
2m , r
‡ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ÏÂÚË͇ îÂχ ÔËÓ·ÂÚ‡ÂÚ ‚ˉ 2 m −2 2 m −1 2 g = 1 − 1− r ( dθ 2 + sin θdφ 2 ). r r åÂÚË͇ pp-‚ÓÎÌ˚ åÂÚË͇ pp-‚ÓÎÌ˚ fl‚ÎflÂÚÒfl ÚÓ˜Ì˚Ï Â¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, ‚ ÍÓÚÓÓÏ ‡‰Ë‡ˆËfl ‡ÒÔÓÒÚ‡ÌflÂÚÒfl ÒÓ ÒÍÓÓÒÚ¸˛ Ò‚ÂÚ‡. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl (‚ ÍÓÓ‰Ë̇ڇı ÅËÌÍχ̇) Í‡Í ds 2 = H (u, x, y)du 2 + 2 dudv + dx 2 + dy 2 , „‰Â ç – β·‡fl „·‰Í‡fl ÙÛÌ͈Ëfl. ç‡Ë·ÓΠ‚‡ÊÌ˚Ï Í·ÒÒÓÏ ÓÒÓ·Ó ÒËÏÏÂÚ˘Ì˚ı pp-‚ÓÎÌ fl‚Îfl˛ÚÒfl ÏÂÚËÍË ÔÎÓÒÍËı ‚ÓÎÌ, Û ÍÓÚÓ˚ı ç Í‚‡‰‡Ú˘ÌÓ. åÂÚË͇ ÎÛ˜‡ ÅÓÌÌÓ‡ åÂÚË͇ ÎÛ˜‡ ÅÓÌÌÓ‡ fl‚ÎflÂÚÒfl ÚÓ˜Ì˚Ï Â¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, ÏÓ‰ÂÎËÛ˛˘ËÏ ·ÂÒÍÓ̘ÌÓ ‰ÎËÌÌ˚È ÔflÏÓÈ ÎÛ˜ Ò‚ÂÚ‡. ùÚÓ ÔËÏ ÏÂÚËÍË pp-‚ÓÎÌ˚. ÇÌÛÚÂÌÌflfl ˜‡ÒÚ¸ ¯ÂÌËfl (‚Ó ‚ÌÛÚÂÌÌÂÈ Ó·Î‡ÒÚË ‡‚ÌÓÏÂÌÓ ÔÎÓÒÍÓÈ ‚ÓÎÌ˚, Ëϲ˘ÂÈ ÙÓÏÛ Ú‚Â‰Ó„Ó ˆËÎË̉‡) ÓÔ‰ÂÎflÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = −8πmr 2 du 2 − 2 dudv + dr 2 + r 2 dθ 2 , „‰Â –∞ < u, ν < ∞, 0 < r < r0 Ë –π < θ < π. ùÚÓ Â¯ÂÌË ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ÌÂÍÓ„ÂÂÌÚÌÓ ˝ÎÂÍÚÓχ„ÌËÚÌÓ ËÁÎÛ˜ÂÌËÂ. Ç̯Ìflfl ˜‡ÒÚ¸ ¯ÂÌËfl ÓÔ‰ÂÎflÂÚÒfl Í‡Í ds 2 = −8πmr02 (1 + 2 log(r / r0 ))du 2 − 2 dudv + dr 2 + r 2 dθ 2 , „‰Â –∞ < u, ν < ∞, r0 < r < ∞ Ë –π < θ < π. ãÛ˜ ÅÓÌÌÓ‡ ÏÓÊÌÓ Ó·Ó·˘ËÚ¸, ‡ÒÒχÚË‚‡fl ÌÂÒÍÓθÍÓ Ô‡‡ÎÎÂθÌ˚ı ÎÛ˜ÂÈ, ‡ÒÔÓÒÚ‡Ìfl˛˘ËıÒfl ‚ Ó‰ÌÓÏ Ì‡Ô‡‚ÎÂÌËË. åÂÚË͇ ÔÎÓÒÍÓÈ ‚ÓÎÌ˚ åÂÚË͇ ÔÎÓÒÍÓÈ ‚ÓÎÌ˚ fl‚ÎflÂÚÒfl ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‚ ‚‡ÍÛÛÏÂ Ë Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = 2 dwdu + 2 f (u)( x 2 + y 2 ) du 2 − dx 2 − dy 2 . é̇ fl‚ÎflÂÚÒfl ÍÓÌÙÓÏÌÓ ÔÎÓÒÍÓÈ Ë ÓÔËÒ˚‚‡ÂÚ ‚ ÔÓΠ˜ËÒÚÓÈ ‡‰Ë‡ˆËË. èÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl ÔËÏÂÌËÚÂθÌÓ Í ˝ÚÓÈ ÏÂÚËÍ ̇Á˚‚‡ÂÚÒfl ÔÎÓÒÍÓÈ „‡‚ËÚ‡ˆËÓÌÌÓÈ ‚ÓÎÌÓÈ. чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl ÔËÏÂÓÏ ÏÂÚËÍË pp-‚ÓÎÌ˚.
386
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
åÂÚË͇ ÇËÎÒ‡ åÂÚË͇ ÇËÎÒ‡ – ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, ‚˚‡ÊÂÌÌÓ ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = 2 xdwdu − 2 wdudx + (2 f (u) x ( x 2 + y 2 ) − w 2 )du 2 − dx 2 − dy 2 . é̇ fl‚ÎflÂÚÒfl ÍÓÌÙÓÏÌÓ ÔÎÓÒÍÓÈ Ë ÓÔËÒ˚‚‡ÂÚ ÔÓΠ˜ËÒÚÓÈ ‡‰Ë‡ˆËË, ÍÓÚÓÓ Ì fl‚ÎflÂÚÒfl ÔÎÓÒÍÓÈ ‚ÓÎÌÓÈ. åÂÚË͇ äÛÚ‡Ò‡-å‡ÍËÌÚÓ¯‡ åÂÚË͇ äÛÚ‡Ò‡-å‡ÍËÌÚÓ¯‡ fl‚ÎflÂÚÒfl ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, ‚˚‡ÊÂÌÌ˚Ï ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = 2( ax + b)dwdu − 2 awdudx + (2 f (u)( ax + b)( x 2 + y 2 ) − a 2 w 2 )du 2 − dx 2 − dy 2 . é̇ fl‚ÎflÂÚÒfl ÍÓÌÙÓÏÌÓ ÔÎÓÒÍÓÈ Ë ÓÔËÒ˚‚‡ÂÚ ÔÓΠ˜ËÒÚÓÈ ‡‰Ë‡ˆËË, ÍÓÚÓÓ ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â Ì fl‚ÎflÂÚÒfl ÔÎÓÒÍÓÈ ‚ÓÎÌÓÈ. èË ‡ = 0 Ë b = 0 ÔÓÎÛ˜ËÏ ÏÂÚËÍÛ ÔÎÓÒÍÓÈ ‚ÓÎÌ˚, ‡ ÔË ‡ = 0 Ë b = 0 – ÏÂÚËÍÛ ÇËÎÒ‡. åÂÚË͇ ù‰„‡‡-ã˛‰‚Ë„‡ åÂÚË͇ ù‰„‡‡-ã˛‰‚Ë„‡ fl‚ÎflÂÚÒfl ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, ‚˚‡ÊÂÌÌ˚Ï ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = 2( ax + b)dwdu − 2 awdudx + + (2 f (u)( ax + b)( g(u) y + h(u) + x 2 + y 2 ) − a 2 w 2 )du 2 − dx 2 − dy 2 . é̇ fl‚ÎflÂÚÒfl Ó·Ó·˘ÂÌËÂÏ ÏÂÚËÍË äÛÚ‡Ò‡-å‡ÍËÌÚÓ¯‡. ùÚÓ Ì‡Ë·ÓΠӷ˘‡fl ÏÂÚË͇, ÓÔËÒ˚‚‡˛˘‡fl ÍÓÌÙÓÏÌÓ ÔÎÓÒÍÓ ÔÓΠ˜ËÒÚÓÈ ‡‰Ë‡ˆËË, ÍÓÚÓÓ ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â Ì fl‚ÎflÂÚÒfl ÔÎÓÒÍÓÈ ‚ÓÎÌÓÈ. ÖÒÎË ËÒÍβ˜ËÚ¸ ÔÎÓÒÍË ‚ÓÎÌ˚, ÚÓ Ó̇ ·Û‰ÂÚ ËÏÂÚ¸ ‚ˉ ds 2 = 2 xdwduu − 2 wdudx + (2 f (u) x ( g(u) y + h(u) + x 2 + y 2 ) − w 2 )du 2 − dx 2 − dy 2 . åÂÚË͇ ËÁÎÛ˜ÂÌËfl ÅÓÌ‰Ë åÂÚË͇ ËÁÎÛ˜ÂÌËfl ÅÓÌ‰Ë ÓÔËÒ˚‚‡ÂÚ ‡ÒËÏÔÚÓÚ˘ÂÒÍÛ˛ ÙÓÏÛ ‡‰Ë‡ˆËÓÌÌÓ„Ó Â¯ÂÌËfl Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇, ÍÓÚÓ‡fl Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ V ds 2 = − e 2β − U 2 r 2 e 2 γ du 2 − r −2 e 2β dudr − 2Ur 2 e 2 γ dudθ + r 2 (e 2 γ dθ 2 + e 2 γ sin 2 θdθ 2 ), „‰Â u – ‚ÂÏfl Á‡Ô‡Á‰˚‚‡ÌËfl, r – ÙÓÚÓÏÂÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π Ë U , V, β , γ fl‚Îfl˛ÚÒfl ÙÛÌ͈ËflÏË u , r Ë θ. ùÚ‡ ÏÂÚË͇ ËÒÔÓθÁÛÂÚÒfl ‚ ÚÂÓËË „‡‚ËÚ‡ˆËÓÌÌ˚ı ‚ÓÎÌ. åÂÚË͇ í‡Û·‡–çì행 ëËÚÚ‡ åÂÚË͇ í‡Û·‡–çìí–‰ÂëËÚÚ‡ fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚Ï (Ú.Â. ËχÌÓ‚˚Ï) ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ Ò ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÔÓÒÚÓflÌÌÓÈ Λ, Á‡‰‡ÌÌ˚Ï ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 =
r 2 − L2 2 L2 ∆ r 2 − L2 2 dr + 2 d ψ cos θ d φ + ( dθ 2 + sin 2 θdφ 2 ), + ( ) 4∆ 4 r − L2
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
387
Λ 4 1 L + 2 L2 r 2 − r 4 , L Ë M – Ô‡‡ÏÂÚ˚, Ë θ, φ, ψ – Û„Î˚ 4 3 ùÈ·. ÖÒÎË Λ = 0, ÚÓ Ï˚ ÔÓÎÛ˜ËÏ ÏÂÚËÍÛ í‡Û·‡-çìí, ËÒÔÓθÁÛfl ÌÂÍÓÚÓ˚ ÛÒÎÓ‚Ëfl „ÛÎflÌÓÒÚË. „‰Â ∆ = r 2 2 Mr + L2 +
åÂÚË͇ ù„ۘ˖ï‡ÌÒÓ̇–‰Â ëËÚÚ‡ åÂÚË͇ ù„ۘ˖ï‡ÌÒÓ̇–‰Â ëËÚÚ‡ fl‚ÎflÂÚÒfl ÔÓÎÓÊËÚÂθÌÓ ÓÔ‰ÂÎÂÌÌ˚Ï (Ú.Â. ËχÌÓ‚˚Ï) ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ Ò ÍÓÒÏÓÎӄ˘ÂÒÍÓÈ ÔÓÒÚÓflÌÌÓÈ Λ, Á‡‰‡ÌÌ˚Ï ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ −1
a 4 Λr 2 r2 a 4 Λr 2 ds = 1 − 4 − dr 2 + 1 − 4 − (dψ + cos θdφ)2 + 6 4 6 r r 2
+
r2 ( dθ 2 + sin 2 θdφ 2 ), 4
„‰Â ‡ – Ô‡‡ÏÂÚ, ‡ θ, φ, ψ – Û„Î˚ ùÈ·. ÖÒÎË Λ = 0, ÚÓ ÔÓÎÛ˜‡ÂÏ ÏÂÚËÍÛ ù„ۘ˖ ï‡ÌÒÓ̇. åÂÚË͇ ÏÓÌÓÔÓÎÂÈ Å‡ËÓÎ˚–ÇËÎÂÌÍË̇ åÂÚË͇ ÏÓÌÓÔÓÎÂÈ Å‡ËÓÎ˚-ÇËÎÂÌÍË̇ Á‡‰‡ÂÚÒfl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds 2 = − dt 2 + dr 2 + k 2 r 2 ( dθ 2 + sin 2 θdφ 2 ) Ò ÔÓÒÚÓflÌÌÓÈ k > 1. èË r = 0 ‚ÓÁÌË͇˛Ú ‰ÂÙˈËÚ ÚÂÎÂÒÌÓ„Ó Û„Î‡ Ë ÒËÌ„ÛÎflÌÓÒÚ¸; π ÔÎÓÒÍÓÒÚ¸ t = const, θ = ËÏÂÂÚ „ÂÓÏÂÚ˲ ÍÓÌÛÒ‡. чÌ̇fl ÏÂÚË͇ fl‚ÎflÂÚÒfl 2 ÔËÏÂÓÏ ÍÓÌ˘ÂÒÍÓÈ ÒËÌ„ÛÎflÌÓÒÚË; Ó̇ ÏÓÊÂÚ ·˚Ú¸ ËÒÔÓθÁÓ‚‡Ì‡ ‚ ͇˜ÂÒÚ‚Â ÏÓ‰ÂÎË ‰Îfl ÏÓÌÓÔÓÎÂÈ (Ó‰ÌÓÔÓβÒÌ˚ı ÁÓÌ), ÍÓÚÓ˚ ÏÓ„ÛÚ ÒÛ˘ÂÒÚ‚Ó‚‡Ú¸ ‚Ó ‚ÒÂÎÂÌÌÓÈ. 凄ÌËÚÌ˚È ÏÓÌÓÔÓθ ÂÒÚ¸ „ËÔÓÚÂÚ˘ÂÒÍËÈ ËÁÓÎËÓ‚‡ÌÌ˚È Ï‡„ÌËÚÌ˚È ÔÓÎ˛Ò "χ„ÌËÚ Ò Ó‰ÌËÏ ÔÓβÒÓÏ". íÂÓÂÚ˘ÂÒÍË Ô‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ Ú‡ÍÓ fl‚ÎÂÌË ÏÓÊÂÚ ‚˚Á˚‚‡Ú¸Òfl ÏÂθ˜‡È¯ËÏË ˜‡ÒÚˈ‡ÏË, ÔÓ‰Ó·Ì˚ÏË ˝ÎÂÍÚÓÌ‡Ï ËÎË ÔÓÚÓ̇Ï, ÍÓÚÓ˚ ÔÓfl‚Îfl˛ÚÒfl ‚ ÂÁÛθڇÚ ÚÓÔÓÎӄ˘ÂÒÍËı ‰ÂÙÂÍÚÓ‚ ÚÓ˜ÌÓ Ú‡Í ÊÂ, Í‡Í Ë ÍÓÒÏ˘ÂÒÍË ÒÚÛÌ˚, Ӊ̇ÍÓ ÔÓ‰Ó·Ì˚ı ˜‡ÒÚˈ ÔÓ͇ ‚ ÔËӉ Ì ̇ȉÂÌÓ. åÂÚË͇ ÅÂÚÓÚÚË–êÓ·ËÌÒÓ̇ åÂÚË͇ ÅÂÚÓÚÚË–êÓ·ËÌÒÓ̇ fl‚ÎflÂÚÒfl ¯ÂÌËÂÏ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ‚ÒÂÎÂÌÌÓÈ Ò ‡‚ÌÓÏÂÌ˚Ï Ï‡„ÌËÚÌ˚Ï ÔÓÎÂÏ. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË Á‡‰‡ÂÚÒfl Í‡Í ds 2 = Q 2 ( − dt 2 + sin 2 tdw 2 + dθ 2 + sin 2 θdφ 2 ). „‰Â Q – ÔÓÒÚÓflÌ̇fl, t ∈ [0, π], w ∈ ( −∞, +∞), θ ∈[0, π] Ë φ ∈[0, 2 π]. åÂÚË͇ åÓËÒ‡–íÓ̇ åÂÚË͇ åÓËÒ‡–íÓ̇ – ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ‰Îfl ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÈ ‚ÓÓÌÍË Ò ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ 2 Φ( w )
ds 2 = e
c2
c 2 dt 2 − dw 2 − r ( w )2 ( dθ 2 + sin 2 θdφ 2 ),
388
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
„‰Â w ∈ ( −∞, +∞), r – ÙÛÌ͈Ëfl ÓÚ w, ÍÓÚÓ‡fl ‰ÓÒÚË„‡ÂÚ ÏËÌËχθÌÓ„Ó Á̇˜ÂÌËfl ·Óθ¯Â„Ó ÌÛÎfl ÔË ÌÂÍÓÚÓÓÈ ÍÓ̘ÌÓÈ ‚Â΢ËÌ w , Ë î(w) – „‡‚ËÚ‡ˆËÓÌÌ˚È ÔÓÚÂ̈ˇÎ, Ó·ÛÒÎÓ‚ÎÂÌÌ˚È „ÂÓÏÂÚËÂÈ ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË. èÓÒÚ‡ÌÒÚ‚ÂÌ̇fl ‚ÓÓÌ͇ – „ËÔÓÚÂÚ˘ÂÒ͇fl "ÚÛ·‡" ‚ ÔÓÒÚ‡ÌÒÚ‚Â, ÒÓ‰ËÌfl˛˘‡fl Û‰‡ÎÂÌÌ˚ ‰Û„ ÓÚ ‰Û„‡ ÚÓ˜ÍË ‚ÒÂÎÂÌÌÓÈ. ÑÎfl ÒÛ˘ÂÒÚ‚Ó‚‡ÌËfl ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ı ‚ÓÓÌÓÍ Ú·ÛÂÚÒfl ÌÂÓ·˚˜Ì˚È Ï‡ÚÂË‡Î Ò ÓÚˈ‡ÚÂθÌÓÈ ˝Ì„ÂÚ˘ÂÒÍÓÈ ÔÎÓÚÌÓÒÚ¸˛, ˜ÚÓ·˚ ‚ÓÓÌÍË ‚Ò ‚ÂÏfl ·˚ÎË ÓÚÍ˚Ú˚. åÂÚË͇ åËÒ̇ åÂÚË͇ åËÒ̇ – ÏÂÚË͇, Ô‰ÒÚ‡‚Îfl˛˘‡fl ‰‚ ˜ÂÌ˚ ‰˚˚. åËÒÌ ÒÙÓÏÛÎËÓ‚‡Î ‚ 1960 „. ÏÂÚÓ‰ËÍÛ ÓÔËÒ‡ÌËfl ÏÂÚËÍË, Ò‚flÁ˚‚‡˛˘ÂÈ Ô‡Û ˜ÂÌ˚ı ‰˚ ‚ ÒÓÒÚÓflÌËË ÔÓÍÓfl, Ê· ÍÓÚÓ˚ı ÒÓ‰ËÌÂÌ˚ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÈ ‚ÓÓÌÍÓÈ. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË Á‡ÔËÒ˚‚‡ÂÚÒfl ‚ ‚ˉ ds 2 = − dt 2 + ψ 4 ( dx 2 + dy 2 + dz 2 ), „‰Â ÍÓÌÙÓÏÌ˚È Ù‡ÍÚÓ ψ Á‡‰‡ÂÚÒfl Í‡Í N
ψ=
∑
n=−N
1 sin h(µ 0 n)
1 x + y + ( z + coth(µ 0 n))2 2
2
.
臇ÏÂÚ µ0 fl‚ÎflÂÚÒfl ÏÂÓÈ ÓÚÌÓ¯ÂÌËfl χÒÒ˚ Í ‡ÒÒÚÓflÌ˲ ÏÂÊ‰Û Ê·ÏË (˝Í‚Ë‚‡ÎÂÌÚÌÓ, ÏÂÓÈ ‡ÒÒÚÓflÌËfl ÔÂÚÎË Ì‡ ÔÓ‚ÂıÌÓÒÚË, ÔÓıÓ‰fl˘ÂÈ ˜ÂÂÁ Ó‰ÌÓ ÊÂÎÓ Ë ‚˚ıÓ‰fl˘ÂÈ ËÁ ‰Û„Ó„Ó). è‰ÂÎ ÒÛÏÏËÓ‚‡ÌËfl N ÒÚÂÏËÚÒfl Í ·ÂÒÍÓ̘ÌÓÒÚË. íÓÔÓÎÓ„Ëfl ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË åËÒ̇ ‡Ì‡Îӄ˘̇ ԇ ‡ÒËÏÔÚÓÚ˘ÂÒÍË ÔÎÓÒÍËı ÎËÒÚÓ‚, ÒÓ‰ËÌÂÌÌ˚ı ÌÂÒÍÓθÍËÏË ÏÓÒÚ‡ÏË ùÈ̯ÚÂÈ̇–êÓÛÁÂ̇. Ç ÔÓÒÚÂȯÂÏ ÒÎÛ˜‡Â ÔÓÒÚ‡ÌÒÚ‚Ó åËÒ̇ ÏÓÊÌÓ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ‰‚ÛÏÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó Ò ÚÓÔÓÎÓ„ËÂÈ × S1, ‚ ÍÓÚÓÓÏ Ò‚ÂÚ ÔÓÒÚÂÔÂÌÌÓ ÓÚÍÎÓÌflÂÚÒfl ÔÓ Ï ‰‚ËÊÂÌËfl ‚Ó ‚ÂÏÂÌË Ë ÔÓÒΠÓÔ‰ÂÎÂÌÌÓÈ ÚÓ˜ÍË ËÏÂÂÚ Á‡ÏÍÌÛÚ˚ ‚ÂÏÂÌÌÓÔÓ‰Ó·Ì˚ ÍË‚˚Â. åÂÚË͇ ÄÎÍÛ·¸Â‡ åÂÚË͇ ÄÎÍÛ·¸Â‡ – ¯ÂÌË ۇ‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ Ô‰ÒÚ‡‚Îfl˛˘Â ‰‚ËÊÂÌË ÔÓ ÔË̈ËÔÛ ‰ÂÙÓχˆËË ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË, ‰ÓÔÛÒ͇˛˘Â ÒÛ˘ÂÒÚ‚Ó‚‡ÌË Á‡ÏÍÌÛÚ˚ı ‚ÂÏÂÌÌÓÔÓ‰Ó·Ì˚ı ÍË‚˚ı. Ç ˝ÚÓÏ ÒÎÛ˜‡Â ̇ۯ‡ÂÚÒfl ÚÓθÍÓ ÂÎflÚË‚ËÒÚÒÍËÈ ÔË̈ËÔ, ÒÛÚ¸ ÍÓÚÓÓ„Ó ÒÓÒÚÓËÚ ‚ ÚÓÏ, ˜ÚÓ ‰‚ËÊÂÌË ‚ ÍÓÒÏÓÒ ÏÓÊÂÚ ÓÒÛ˘ÂÒÚ‚ÎflÚ¸Òfl Ò Î˛·ÓÈ ÒÍÓÓÒÚ¸˛, ÒÍÓθ Û„Ó‰ÌÓ ·ÎËÁÍÓÈ, ÌÓ Ì ‡‚ÌÓÈ Ë Ì Ô‚˚¯‡˛˘ÂÈ ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡. èÓÒÚÓÂÌË ÄÎÍÛ·¸Â‡ ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‚‡Ô-‰‚ËÊÂÌ˲ ‚ ÚÓÏ ÒÏ˚ÒÎÂ, ˜ÚÓ Ô‰ ÍÓÒÏ˘ÂÒÍËÏ ÍÓ‡·ÎÂÏ ÔÓËÒıÓ‰ËÚ Ò‚ÂÚ˚‚‡ÌË ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË, ‡ Á‡ ÍÓ‡·ÎÂÏ – ‡Ò¯ËÂÌËÂ, ˜ÂÏ ÍÓÒÏ˘ÂÒÍÓÏÛ ÍÓ‡·Î˛ ÒÓÓ·˘‡ÂÚÒfl ÒÍÓÓÒÚ¸, ÍÓÚÓ‡fl ÏÓÊÂÚ Á̇˜ËÚÂθÌÓ Ô‚˚¯‡Ú¸ ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Û‰‡ÎÂÌÌ˚Ï Ó·˙ÂÍÚ‡Ï, ‚ ÚÓ ‚ÂÏfl Í‡Í Ì‡ ÎÓ͇θÌÓÏ ÛÓ‚Ì ÒÍÓÓÒÚ¸ ÍÓ‡·Îfl ÌËÍÓ„‰‡ Ì ·Û‰ÂÚ ·Óθ¯Â ÒÍÓÓÒÚË Ò‚ÂÚ‡. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË ËÏÂÂÚ ‚ˉ ds 2 = − dt 2 + ( dx − vf (r )dt )2 + dy 2 + dz 2 , „‰Â v =
dx s (t ) ͇ÊÛ˘‡flÒfl ÒÍÓÓÒÚ¸ ÍÓÒÏ˘ÂÒÍÓ„Ó ÍÓ‡·Îfl Ò ‰‚Ë„‡ÚÂÎÂÏ ‰ÂÙÓdt
É·‚‡ 26. ê‡ÒÒÚÓflÌËfl ‚ ÍÓÒÏÓÎÓ„ËË Ë ÚÂÓËË ÓÚÌÓÒËÚÂθÌÓÒÚË
389
χˆËË ÔÓÒÚ‡ÌÒÚ‚‡, xs(t) – Ú‡ÂÍÚÓËfl ÍÓÒÏ˘ÂÒÍÓ„Ó ÍÓ‡·Îfl ‚‰Óθ ÍÓÓ‰Ë̇Ú˚ ı (ÔË ˝ÚÓÏ ‡‰Ë‡Î¸Ì‡fl ÍÓÓ‰Ë̇ڇ ÓÔ‰ÂÎflÂÚÒfl Í‡Í r = (( x − x s (t ))2 + y 2 + z 2 )1 / 2 ), Ë f(r) – ÔÓËÁ‚Óθ̇fl ÙÛÌ͈Ëfl, ÔÓ‰˜ËÌÂÌ̇fl „‡Ì˘Ì˚Ï ÛÒÎÓ‚ËflÏ: f = 1 ÔË r = 0 (ÏÂÒÚÓÔÓÎÓÊÂÌË ÍÓÒÏ˘ÂÒÍÓ„Ó ÍÓ‡·Îfl) Ë f = 0 ‚ ·ÂÒÍÓ̘ÌÓÒÚË. LJ˘‡˛˘‡flÒfl ë-ÏÂÚË͇ LJ˘‡˛˘‡flÒfl ë -ÏÂÚË͇ fl‚ÎflÂÚÒfl ¯ÂÌËÂÏ Û‡‚ÌÂÌËÈ ùÈ̯ÚÂÈ̇–å‡ÍÒ‚Âη, ÍÓÚÓÓ ÓÔËÒ˚‚‡ÂÚ ‰‚ ÔÓÚË‚ÓÔÓÎÓÊÌÓ Á‡flÊÂÌÌ˚ ˜ÂÌ˚ ‰˚˚, ‡Á·Â„‡˛˘ËÂÒfl Ò ‡‚ÌÓÏÂÌ˚Ï ÛÒÍÓÂÌËÂÏ ‚ ‡ÁÌ˚ ÒÚÓÓÌ˚ ‰Û„ ÓÚ ‰Û„‡. ãËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ ˝ÚÓÈ ÏÂÚËÍË ËÏÂÂÚ ‚ˉ dy 2 dx 2 ds 2 = A −2 ( x + y) −2 + + k −2 G( X )dφ 2 − k 2 A 2 F( y)dt 2 , F ( y ) G( x ) „‰Â F( y) = −1 + y 2 − 2 mAy 3 + e 2 A 2 y 4 , G( x ) = 1 − x 2 − 2 mAx 3 − e 2 A 2 x 4 , m, e Ë A – Ô‡‡ÏÂÚ˚, Ò‚flÁ‡ÌÌ˚Â Ò Ï‡ÒÒÓÈ, Á‡fl‰ÓÏ Ë ÛÒÍÓÂÌËÂÏ ˜ÂÌ˚ı ‰˚, ‡ k – ÔÓÒÚÓflÌ̇fl, ÓÔ‰ÂÎÂÌ̇fl ÛÒÎÓ‚ËflÏË Â„ÛÎflÌÓÒÚË. ùÚÛ ÏÂÚËÍÛ Ì ÒΉÛÂÚ ÔÛÚ‡Ú¸ Ò ë-ÏÂÚËÍÓÈ ‚ „Î. 11. åÂÚË͇ å‡ÈÂÒ‡–èÂË åÂÚËÍÓÈ å‡ÈÂÒ‡–èÂË ÓÔËÒ˚‚‡ÂÚÒfl ÔflÚËÏÂ̇fl ‚‡˘‡˛˘‡flÒfl ˜Â̇fl ‰˚‡. Ö ÎËÌÂÈÌ˚È ˝ÎÂÏÂÌÚ Á‡‰‡ÂÚÒfl Í‡Í ds 2 = − dt 2 + +
2m ( dt − a sin 2 θdφ − b cos 2 θdψ )2 + ρ2
ρ2 2 dr + ρ2 dθ 2 + (r 2 + a 2 )sin 2 θdφ 2 + (r 2 + b 2 ) cos 2 θdψ 2 , R2
„‰Â ρ2 = r 2 + a 2 cos 2 θ + b 2 sin 2 θ Ë R 2 =
(r 2 + a 2 ) (r 2 + b 2 ) − 2 mr 2 . r2
åÂÚË͇ ä‡ÎÛÁ˚–äÎÂÈ̇ åÂÚË͇ ä‡ÎÛÁ˚–äÎÂÈ̇ fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ ‚ ÏÓ‰ÂÎË ä‡ÎÛÁ˚-äÎÂÈ̇ ÔflÚËÏÂÌÓ„Ó (‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ÏÌÓ„ÓÏÂÌÓ„Ó) ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË, Ô‰̇Á̇˜ÂÌÌÓÈ Ó·˙‰ËÌËÚ¸ Í·ÒÒ˘ÂÒÍÛ˛ „‡‚ËÚ‡ˆË˛ Ò ˝ÎÂÍÚÓχ„ÌÂÚËÁÏÓÏ. ä‡ÎÛÁ‡ ‚˚Ò͇Á‡Î ‚ 1919 „. ˉ² Ó ÚÓÏ, ˜ÚÓ ÂÒÎË ÚÂÓ˲ ùÈ̯ÚÂÈ̇ Ó ˜ËÒÚÓÈ „‡‚ËÚ‡ˆËË ‡ÒÔÓÒÚ‡ÌËÚ¸ ̇ ÔflÚËÏÂÌÓ ÔÓÒÚ‡ÌÒÚ‚Ó-‚ÂÏfl, ÚÓ Û‡‚ÌÂÌËfl ÔÓÎfl ùÈ̯ÚÂÈ̇ ÏÓÊÌÓ ‡Á‰ÂÎËÚ¸ ̇ Ó·˚˜ÌÓ ˜ÂÚ˚ÂıÏÂÌÓ „‡‚ËÚ‡ˆËÓÌÌÓ ÚÂÌÁÓÌÓ ÔÓÎÂ Ë ‰ÓÔÓÎÌËÚÂθÌÓ ‚ÂÍÚÓÌÓ ÔÓÎÂ, ÍÓÚÓÓ ˝Í‚Ë‚‡ÎÂÌÚÌÓ Û‡‚ÌÂÌ˲ å‡ÍÒ‚Âη ‰Îfl ˝ÎÂÍÚÓχ„ÌËÚÌÓ„Ó ÔÓÎfl ÔÎ˛Ò ‰ÓÔÓÎÌËÚÂθÌÓ Ò͇ÎflÌÓ ÔÓΠ(ËÁ‚ÂÒÚÌÓÂ Í‡Í "‡Ò¯ËÂÌËÂ"), ˝Í‚Ë‚‡ÎÂÌÚÌÓ ·ÂÁχÒÒÓ‚ÓÏÛ Û‡‚ÌÂÌ˲ äÎÂÈ̇– ÉÓ‰Ó̇. äÎÂÈÌ Ô‰ÔÓÎÓÊËÎ ‚ 1926 „., ˜ÚÓ ÔflÚÓ ËÁÏÂÂÌË ËÏÂÂÚ ÍÛ„Ó‚Û˛ ÚÓÔÓÎӄ˲, Ú‡ÍÛ˛ ˜ÚÓ ÔflÚ‡fl ÍÓÓ‰Ë̇ڇ fl‚ÎflÂÚÒfl ÔÂËӉ˘ÌÓÈ Ë ‰ÓÔÓÎÌËÚÂθÌÓ ËÁÏÂÂÌË ÒÍÛ˜ÂÌÓ ‰Ó ÌÂ̇·Î˛‰‡ÂÏÓ„Ó ‡Áχ. ÄθÚÂ̇ÚË‚Ì˚Ï Ô‰ÔÓÎÓÊÂÌËÂÏ fl‚ÎflÂÚÒfl ÚÓ, ˜ÚÓ ‰ÓÔÓÎÌËÚÂθÌÓ ËÁÏÂÂÌË (‰ÓÔÓÎÌËÚÂθÌ˚ ËÁÏÂÂÌËfl) fl‚ÎflÂÚÒfl ‡Ò¯ËÂÌÌ˚Ï. í‡ÍÓÈ ÔÓ‰ıÓ‰ ‡Ì‡Îӄ˘ÂÌ ˜ÂÚ˚ÂıÏÂÌÓÈ ÏÓ‰ÂÎË – ‚Ò ËÁÏÂÂÌËfl fl‚Îfl˛ÚÒfl ‡Ò¯ËÂÌÌ˚ÏË Ë Ô‚Ó̇˜‡Î¸ÌÓ Ó‰Ë̇ÍÓ‚˚ÏË, ‡ Ò˄̇ÚÛ‡ ËÏÂÂÚ ÙÓÏÛ (p, 1).
390
ó‡ÒÚ¸ VI. ê‡ÒÒÚÓflÌËfl ‚ ÂÒÚÂÒÚ‚ÂÌÌ˚ı ̇Û͇ı
Ç ÏÓ‰ÂÎË ‡Ò¯ËÂÌÌÓ„Ó ‰ÓÔÓÎÌËÚÂθÌÓ„Ó ËÁÏÂÂÌËfl 5-ÏÂÌÛ˛ ÏÂÚËÍÛ ‚ÒÂÎÂÌÌÓÈ ÏÓÊÌÓ Á‡ÔËÒ‡Ú¸ ‚ ÌÓχθÌ˚ı „‡ÛÒÒÓ‚˚ı ÍÓÓ‰Ë̇ڇı ‚ ‚ˉ ds 2 = −( dx5 )2 + λ2 ( x5 )
∑ ηαβ dxα dxβ , α,β
„‰Â ηαβ fl‚ÎflÂÚÒfl ˜ÂÚ˚ÂıÏÂÌ˚Ï ÏÂÚ˘ÂÒÍËÏ ÚÂÌÁÓÓÏ Ë η2 ( x5 ) – ÔÓËÁ‚Óθ̇fl ÙÛÌ͈Ëfl ÔflÚÓÈ ÍÓÓ‰Ë̇Ú˚. åÂÚË͇ èÓÌÒ ‰Â ãÂÓ̇ åÂÚË͇ èÓÌÒ ‰Â ãÂÓ̇ – 5-ÏÂ̇fl ÏÂÚË͇, Á‡‰‡Ì̇fl ÎËÌÂÈÌ˚Ï ˝ÎÂÏÂÌÚÓÏ ds = l dt − (t / t0 ) pl 2
2
2
2
2p p −1
( dx 2 + dy 2 + dz 2 ) −
t2 dl 2 , ( p − 1)2
„‰Â l – ÔflÚ‡fl (ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÔӉӷ̇fl) ÍÓÓ‰Ë̇ڇ. ùÚ‡ ÏÂÚË͇ ÓÔËÒ˚‚‡ÂÚ ÔflÚËÏÂÌ˚È ‚‡ÍÛÛÏ, ÌÓ Ì fl‚ÎflÂÚÒfl ÔÎÓÒÍÓÈ.
ó‡ÒÚ¸ VII
êÄëëíéüçàü Ç êÖÄãúçéå åàêÖ
É·‚‡ 27
åÂ˚ ‰ÎËÌ˚ Ë ¯Í‡Î˚
Ç ‰‡ÌÌÓÈ „·‚ ÔË‚Ó‰ËÚÒfl ËÁ·‡Ì̇fl ËÌÙÓχˆËfl ÔÓ Ì‡Ë·ÓΠ‚‡ÊÌ˚Ï Â‰ËÌˈ‡Ï ‰ÎËÌ˚ Ë Ô‰ÒÚ‡‚ÎÂÌ Ì‡ flÁ˚Í ‰ÎËÌ Ô˜Â̸ fl‰‡ ËÌÚÂÂÒÌ˚ı Ó·˙ÂÍÚÓ‚. 27.1. åÖêõ Ñãàçõ éÒÌÓ‚Ì˚ÏË ÒËÒÚÂχÏË ËÁÏÂÂÌËfl ‰ÎËÌ˚ fl‚Îfl˛ÚÒfl: ÏÂÚ˘ÂÒ͇fl, "ËÏÔÂÒ͇fl" (‡Ì„ÎËÈÒ͇fl Ë ‡ÏÂË͇ÌÒ͇fl), flÔÓÌÒ͇fl, Ú‡ÈÒ͇fl, ÍËÚ‡ÈÒ͇fl ËÏÔÂÒ͇fl, ÒÚ‡ÓÛÒÒ͇fl, ‰Â‚ÌÂËÏÒ͇fl, ‰Â‚Ì„˜ÂÒ͇fl, ·Ë·ÎÂÈÒ͇fl, ‡ÒÚÓÌÓÏ˘ÂÒ͇fl, ÏÓÒ͇fl Ë ÔÓÎË„‡Ù˘ÂÒ͇fl. ëÛ˘ÂÒÚ‚ÛÂÚ ÏÌÓ„Ó ‰Û„Ëı ÒÔˆˇÎËÁËÓ‚‡ÌÌ˚ı ¯Í‡Î ‰ÎËÌ˚; ̇ÔËÏÂ, ‰Îfl ËÁÏÂÂÌËfl Ó‰Âʉ˚, ‡ÁÏÂÓ‚ Ó·Û‚Ë, ͇ÎË·Ó‚ (‚ÌÛÚÂÌÌËı ‰Ë‡ÏÂÚÓ‚ ÒÚ‚ÓÎÓ‚ Ó„ÌÂÒÚÂθÌÓ„Ó ÓÛÊËfl, ÔÓ‚Ó‰Ó‚, ˛‚ÂÎËÌ˚ı ÍÓΈ), ‡ÁÏÂÓ‚ ‡·‡ÁË‚Ì˚ı ÍÛ„Ó‚, ÚÓ΢ËÌ˚ ÏÂÚ‡Î΢ÂÒÍËı ÎËÒÚÓ‚ Ë Ú.Ô. åÌÓ„Ë ‰ËÌˈ˚ ËÁÏÂÂÌËÈ ÒÎÛÊ‡Ú ‰Îfl ‚˚‡ÊÂÌËfl ÓÚÌÓÒËÚÂθÌ˚ı ËÎË Ó·‡ÚÌ˚ı ‡ÒÒÚÓflÌËÈ. åÂʉÛ̇Ӊ̇fl ÏÂÚ˘ÂÒ͇fl ÒËÒÚÂχ åÂʉÛ̇Ӊ̇fl ÏÂÚ˘ÂÒ͇fl ÒËÒÚÂχ (ËÎË ÒÓ͇˘ÂÌÌÓ ÒËÒÚÂχ ëà) fl‚ÎflÂÚÒfl ÒÓ‚ÂÏÂÌÌ˚Ï ‚‡Ë‡ÌÚÓÏ ÏÂÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ˚ ‰ËÌˈ, ÛÒÚ‡ÌÓ‚ÎÂÌÌ˚ı ÏÂʉÛ̇ӉÌ˚Ï Òӄ·¯ÂÌËÂÏ (åÂÚ˘ÂÒ͇fl ÍÓÌ‚Â̈Ëfl, ÔÓ‰ÔËÒ‡Ì̇fl 20 χfl 1875 „.), ÍÓÚÓ˚Ï ·˚· ÓÔ‰ÂÎÂ̇ Îӄ˘ÂÒ͇fl Ë ‚Á‡ËÏÓÒ‚flÁ‡Ì̇fl ÓÒÌÓ‚‡ ‰Îfl ‚ÒÂı ËÁÏÂÂÌËÈ ‚ ̇ÛÍÂ, ÔÓÏ˚¯ÎÂÌÌÓÒÚË Ë ÍÓÏψËË. Ç ÓÒÌÓ‚Â ÒËÒÚÂÏ˚ Á‡ÎÓÊÂÌ˚ ÒÂϸ ÓÒÌÓ‚Ì˚ı ‰ËÌˈ, ÍÓÚÓ˚ ҘËÚ‡˛ÚÒfl ‚Á‡ËÏÓÁ‡‚ËÒËÏ˚ÏË. 1. ÑÎË̇: ÏÂÚ (Ï) – ‡‚̇ ‡ÒÒÚÓflÌ˲, ÔÓıÓ‰ËÏÓÏÛ Ò‚ÂÚÓÏ ‚ ‚‡ÍÛÛÏ Á‡ 1/299792458 ‰ÓÎÂÈ ÒÂÍÛ̉˚. 2. ÇÂÏfl: ÒÂÍÛ̉‡ (Ò). 3. å‡ÒÒ‡: ÍËÎÓ„‡ÏÏ (Í„). 4. íÂÏÔ‡ÚÛ‡: äÂθ‚ËÌ (ä). 5. ëË· ÚÓ͇: ‡ÏÔ (Ä). 6. ëË· Ò‚ÂÚ‡: ͇̉· (͉). 7. äÓ΢ÂÒÚ‚Ó ‚¢ÂÒÚ‚‡: ÏÓθ (ÏÓθ). è‚Ó̇˜‡Î¸ÌÓ, 26 χڇ 1791 „., ,metre ÏÂÚ ÔÓ-ه̈ÛÁÒÍË ·˚Î ÓÔ‰ÂÎÂÌ Í‡Í 1/10 000 000 ˜‡ÒÚ¸ ‡ÒÒÚÓflÌËfl ÓÚ ë‚ÂÌÓ„Ó ÔÓÎ˛Ò‡ áÂÏÎË ‰Ó ˝Í‚‡ÚÓ‡ ÔÓ Ô‡ËÊÒÍÓÏÛ ÏÂˉˇÌÛ. Ç 1799 „. Òڇ̉‡ÚÌ˚Ï ÏÂÚÓÏ ÒڇΠÔ·ÚËÌÓ‚Ó-ËˉË‚˚È ÒÚÂÊÂ̸ ÏÂÚÓ‚ÓÈ ‰ÎËÌ˚ ("‡ıË‚Ì˚È ÏÂÚ"), ı‡ÌË‚¯ËÈÒfl ‚Ó Ù‡ÌˆÛÁÒÍÓÏ „ÓӉ ë‚ (ÔË„ÓÓ‰ è‡Ëʇ) Ë ÒÎÛÊË‚¯ËÈ ‰Îfl β·Ó„Ó Ê·˛˘Â„Ó ˝Ú‡ÎÓÌÓÏ ‰Îfl Ò‡‚ÌÂÌËfl Ò ÒÓ·ÒÚ‚ÂÌÌ˚Ï ËÁÏÂËÚÂθÌ˚Ï ËÌÒÚÛÏÂÌÚÓÏ. (ǂ‰ÂÌ̇fl ‚ 1793 „. ÏÂÚ˘ÂÒ͇fl ÒËÒÚÂχ ·˚· ̇ÒÚÓθÍÓ ÌÂÔÓÔÛÎfl̇, ˜ÚÓ ç‡ÔÓÎÂÓÌÛ Ô˯ÎÓÒ¸ ÓÚ͇Á‡Ú¸Òfl ÓÚ ÌÂÂ, Ë î‡ÌˆËfl ‚ÌÓ‚¸ ‚ÂÌÛ·Ҹ Í ÏÂÚÛ ÚÓθÍÓ ‚ 1837 „.). Ç 1960 „. ˝Ú‡ÎÓÌÌ˚È ÏÂÚ ·˚Î ÓÙˈˇθÌÓ ÔË‚flÁ‡Ì Í ‰ÎËÌ ‚ÓÎÌ˚.
É·‚‡ 27. åÂ˚ ‰ÎËÌ˚ Ë ¯Í‡Î˚
393
åÂÚËÁ‡ˆËfl åÂÚËÁ‡ˆËfl – ÔÓˆÂÒÒ ÔÂÂıÓ‰‡ Í åÂʉÛ̇ӉÌÓÈ ÏÂÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ (ëç). éÌ Â˘Â Ì Á‡‚¯ÂÌ (ÓÒÓ·ÂÌÌÓ ‚ ëòÄ Ë ÇÂÎËÍÓ·ËÚ‡ÌËË). éÙˈˇθÌÓ ÔÓ͇ ¢ ÚÓθÍÓ ëòÄ, ãË·ÂËfl Ë å¸flÌχ Ì Ô¯ÎË Ì‡ ÒËÒÚÂÏÛ ëà. í‡Í, ̇ÔËÏÂ, ‚ ëòÄ Ì‡ ‰ÓÓÊÌ˚ı Á͇̇ı ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ‡ÒÒÚÓflÌËÈ ËÒÔÓθÁÛ˛ÚÒfl ÚÓθÍÓ ÏËÎË. Ç˚ÒÓÚ˚ ‚ ‡‚ˇˆËË ‰‡˛ÚÒfl, Í‡Í Ô‡‚ËÎÓ, ‚ ÙÛÚ‡ı; ̇ ÙÎÓÚ ËÒÔÓθÁÛ˛ÚÒfl ÏÓÒÍË ÏËÎË Ë ÛÁÎ˚. ê‡Á¯‡˛˘‡fl ÒÔÓÒÓ·ÌÓÒÚ¸ ÛÒÚÓÈÒÚ‚ ‚˚‚Ó‰‡ ‰‡ÌÌ˚ı Á‡˜‡ÒÚÛ˛ Û͇Á˚‚‡ÂÚÒfl ‚ ÍÓ΢ÂÒÚ‚Â ÚÓ˜ÂÍ Ì‡ ‰˛ÈÏ (dpi). 킉‡fl ÏÂÚË͇ ÓÁ̇˜‡ÂÚ ÔËÏÂÌÂÌË ÏÂÚ˘ÂÒÍÓÈ ÒËÒÚÂÏ˚ Ò Ò‡ÏÓ„Ó Ì‡˜‡Î‡ Ë ÒÓÓÚ‚ÂÚÒÚ‚ËÂ, ̇ÒÍÓθÍÓ ˝ÚÓ ÔËÂÏÎÂÏÓ, ÏÂʉÛ̇ӉÌ˚Ï ‡ÁÏÂ‡Ï Ë Òڇ̉‡Ú‡Ï. åfl„͇fl ÏÂÚË͇ ÓÁ̇˜‡ÂÚ ÛÏÌÓÊÂÌË ̇ ÍÓ˝ÙÙˈËÂÌÚ ÔÂÓ·‡ÁÓ‚‡ÌËfl ÍÓ΢ÂÒÚ‚‡ ‰˛ÈÏÓ‚ – ÙÛÌÚÓ‚ Ë ÓÍÛ„ÎÂÌË ÂÁÛθڇڇ ‰Ó ÔËÂÏÎÂÏÓÈ ÒÚÂÔÂÌË ÚÓ˜ÌÓÒÚË; Ú‡ÍËÏ Ó·‡ÁÓÏ, ÔË Ïfl„ÍÓÈ ÏÂÚËÁ‡ˆËË ‡ÁÏÂ˚ Ô‰ÏÂÚÓ‚ Ì ËÁÏÂÌfl˛ÚÒfl. ÄÏÂË͇ÌÒ͇fl ÏÂÚ˘ÂÒ͇fl ÒËÒÚÂχ Ô‰ÔÓ·„‡ÂÚ ÔÂÓ·‡ÁÓ‚‡ÌË ڇ‰ËˆËÓÌÌ˚ı ‰ËÌˈ ‚ ‰ÂÒflÚ˘ÌÛ˛ ÒËÒÚÂÏÛ, ËÒÔÓθÁÛÂÏÛ˛ ‚ ÏÂÚ˘ÂÒÍÓÈ ÒËÒÚÂÏÂ. í‡ÍËÏË „˷ˉÌ˚ÏË Â‰ËÌˈ‡ÏË ËÏÔÂÒÍÓÈ ÒËÒÚÂÏ˚ Ë ÒËÒÚÂÏ˚ ëà, ÔËÏÂÌflÂÏ˚ÏË ‚ Ïfl„ÍÓÈ ÏÂÚËÁ‡ˆËË, fl‚Îfl˛ÚÒfl, ̇ÔËÏÂ, ÍËÎÓfl‰ (914,4 Ï), ÍËÎÓÙÛÚ (304,8 Ï), ÏËθ ËÎË ÏËÎÎË ‰˛ÈÏ (24,5 ÏËÍÓÌ) Ë ÏËÍÓ‰˛ÈÏ (25,4 ̇ÌÓÏÂÚÓ‚). êÓ‰ÒÚ‚ÂÌÌ˚ ÏÂÚÛ ÚÂÏËÌ˚ Ç ‰ÓÔÓÎÌÂÌËÂ Í ÒËÒÚÂÏÌ˚Ï Â‰ËÌˈ‡Ï ‰ÎËÌ˚ ÌËÊ Ô‰ÒÚ‡‚ÎÂÌÓ ·Óθ¯Ó ÒÂÏÂÈÒÚ‚Ó ÌÂχÚÂχÚ˘ÂÒÍËı ÚÂÏËÌÓ‚ ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ‰ÎËÌ˚. åÂÚ ‚ ÔÓ˝ÁËË (ËÎË Í‡‰Â̈Ëfl): ËÚÏ˘ÂÒ͇fl ÙÓχ, ÒÎÛʇ˘‡fl ÏÂÓÈ ËÚÏËÍË, ÎËÌ„‚ËÒÚ˘ÂÒÍÓÈ ‡ÁÏÂÂÌÌÓÒÚË Á‚ÛÍÓ‚Ó„Ó Ó·‡Á‡ ÒÚËıÓÚ‚ÓÂÌËfl. ÉËÔÂÏÂÚ – ˝ÚÓ ˜‡ÒÚ¸ ÒÚËı‡, ÒÓ‰Âʇ˘‡fl Î˯ÌËÈ ÒÎÓ„. åÂÚ ‚ ÏÛÁ˚Í (ËÎË ËÚÏ): ‡ÁÏÂÂÌÌÓÒÚ¸ ËÚÏ˘ÂÒÍÓ„Ó ËÒÛÌ͇ ÏÛÁ˚͇θÌÓÈ ÒÚÓÍË, ‰ÂÎÂÌË ÍÓÏÔÓÁˈËË Ì‡ ‡‚Ì˚ ÔÓ ‚ÂÏÂÌË ˜‡ÒÚË Ë ‰‡Î¸ÌÂȯ Ëı ‡Á·ËÂÌËÂ. àÁÓÏÂÚËfl – ËÒÔÓθÁÓ‚‡ÌË ËÏÔÛθÒÓ‚ (ÌÂÔÂ˚‚ÌÓÈ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÔÂËӉ˘ÂÒÍËı ͇ÚÍÓ‚ÂÏÂÌÌ˚ı ‚ÓÁ‰ÂÈÒÚ‚ËÈ) ·ÂÁ ͇ÍÓÈ-ÎË·Ó ÛÔÓfl‰Ó˜ÂÌÌÓÒÚË, ‡ ÔÓÎËÏÂÚËfl – ËÒÔÓθÁÓ‚‡ÌË ‰‚Ûı ÏÂÚÓ‚ Ó‰ÌÓ‚ÂÏÂÌÌÓ. åÂÚÓÏÂÚ ‚ ωˈËÌ – ËÌÒÚÛÏÂÌÚ ‰Îfl ËÁÏÂÂÌËfl ‡Áχ χÚÍË. Ç Ì‡ËÏÂÌÓ‚‡ÌËflı ‡Á΢Ì˚ı ËÁÏÂËÚÂθÌ˚ı ËÌÒÚÛÏÂÌÚÓ‚ ‚ ÍÓ̈ ÒÎÓ‚‡ ÔËÒÛÚÒÚ‚ÛÂÚ ÚÂÏËÌ ÏÂÚ. åÂÚ˘ÂÒ͇fl ÂÈ͇ – ˝ÏÔˢÂÒÍÓ ԇ‚ËÎÓ ‰Îfl ÔË·ÎËÊÂÌÌ˚ı ÔÓ‰Ò˜ÂÚÓ‚ ̇ ÓÒÌÓ‚Â Ôӂ҉̂ÌÓÈ Ô‡ÍÚËÍË, ̇ÔËÏÂ, ÒÚÓÓ̇ ÒÔ˘˜ÌÓ„Ó ÍÓӷ͇ ‡‚̇ 5 ÒÏ, ‡ 1 ÍÏ – ÔËÏÂÌÓ 10 ÏËÌÛÚ ıÓ‰¸·˚. éÚÏÂË‚‡ÌË – ÚÂÏËÌ, ˝Í‚Ë‚‡ÎÂÌÚÌ˚È ËÁÏÂÂÌ˲; ÏËÍÓÏÂÚËfl – ËÁÏÂÂÌË ÔÓ‰ ÏËÍÓÒÍÓÔÓÏ. åÂÚÓÎÓ„Ëfl – ̇ۘ̇fl ‰ËÒˆËÔÎË̇, ËÒÒÎÂ‰Û˛˘‡fl ÔÓÌflÚË ËÁÏÂÂÌËfl. åÂÚÓÌÓÏËfl – ËÌÒÚÛÏÂÌڇθÌÓ ËÁÏÂÂÌË ‚ÂÏÂÌË. åÂÚÓÒÓÙËfl – ÍÓÒÏÓÎÓ„Ëfl, ÓÒÌÓ‚‡Ì̇fl ̇ ÒÚÓ„Ó ˜ËÒÎÓ‚˚ı ÒÓÓÚ‚ÂÚÒÚ‚Ëflı. ÄÎÎÓÏÂÚËfl – ̇Û͇ Ó· ËÁÏÂÌÂÌËË ÔÓÔÓˆËÈ ‡Á΢Ì˚ı ˜‡ÒÚÂÈ Ó„‡ÌËÁχ ‚ ÔÓˆÂÒÒ ÓÒÚ‡. ÄıÂÓÏÂÚËfl – ̇Û͇ Ó ÚÓ˜ÌÓÏ ‰‡ÚËÓ‚‡ÌËË ‡ıÂÓÎӄ˘ÂÒÍËı ̇ıÓ‰ÓÍ, ÓÚÌÓÒfl˘ËıÒfl Í ‰‡ÎÂÍÓÏÛ ÔÓ¯ÎÓÏÛ Ë Ú.Ô. àÁÓÏÂÚÓÔËfl – Ó‰Ë̇ÍÓ‚ÓÒÚ¸ Âه͈ËË ‚ Ó·ÓËı „·Á‡ı. àÁÓÏÂÚ˘ÂÒÍÓ ÛÔ‡ÊÌÂÌË – ÛÔ‡ÊÌÂÌËÂ Ò ÙËÁ˘ÂÒÍÓÈ Ì‡„ÛÁÍÓÈ Ì‡ Ï˚¯ˆ˚, ÍÓ„‰‡ ÒË· ÔËÍ·‰˚‚‡ÂÚÒfl Í ÒÚ‡Ú˘ÌÓÏÛ Ó·˙ÂÍÚÛ. àÁÓÏÂÚ˘ÂÒ͇fl ˜‡ÒÚˈ‡ – ‚ËÛÒ, ÍÓÚÓ˚È (‚ ÒÓÒÚÓflÌËË Í‡ÔÒˉ‡ ‚ËËÓ̇) ӷ·‰‡ÂÚ ËÍÓÒ‡˝‰‡Î¸ÌÓÈ ÒËÏÏÂÚËÂÈ.
394
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
àÁÓÏÂÚ˘ÂÒÍËÈ ÔÓˆÂÒÒ – ÚÂÏÓ‰Ë̇Ï˘ÂÒÍËÈ ÔÓˆÂÒÒ ÔË ÔÓÒÚÓflÌÌÓÏ Ó·˙ÂÏÂ. àÁÓÏÂÚ˘ÂÒ͇fl ÔÓÂ͈Ëfl – Ô‰ÒÚ‡‚ÎÂÌË ÚÂıÏÂÌ˚ı Ó·˙ÂÍÚÓ‚ ‚ ‰‚Ûı ËÁÏÂÂÌËflı, ‚ ÍÓÚÓÓÏ Û„Î˚ ÏÂÊ‰Û ÚÂÏfl ÓÒflÏË ÔÓÂ͈ËË Ó‰Ë̇ÍÓ‚˚ ËÎË ‡‚Ì˚ 2π . 3 àÁÓÏÂÚ˘ÂÒ͇fl ÒËÒÚÂχ ÍËÒÚ‡ÎÎÓ‚ – Í۷˘ÂÒ͇fl ÍËÒÚ‡ÎÎÓ„‡Ù˘ÂÒ͇fl ÒËÒÚÂχ. åÂÚ˘ÂÒ͇fl ‡ÒËÏÏÂÚËfl ÍËÒÚ‡Î΢ÂÒÍÓÈ Â¯ÂÚÍË – ÒËÏÏÂÚËfl ·ÂÁ Û˜ÂÚ‡ ‡ÒÔÓÎÓÊÂÌËfl ‡ÚÓÏÓ‚ ‚ ·‡ÁËÒÌÓÈ ÍÎÂÚÍÂ. åÂÚ˘ÂÒÍË ÏÂ˚ ‰ÎËÌ˚ äËÎÓÏÂÚ (ÍÏ) = 1000 ÏÂÚÓ‚ = 10 3 Ï. åÂÚ (Ï) = 10 ‰ÂˆËÏÂÚÓ‚ = 100 Ï. шËÏÂÚ (‰Ï) = 10 Ò‡ÌÚËÏÂÚÓ‚ = 10 –1 Ï. ë‡ÌÚËÏÂÚ (ÒÏ) = 10 ÏËÎÎËÏÂÚÓ‚ = 10–2 Ï. åËÎÎËÏÂÚ (ÏÏ) = 1000 ÏËÍÓÏÂÚÓ‚ = 10–3 Ï. åËÍÓÏÂÚ (ËÎË ÏËÍÓÌ, µ) = 1000 ̇ÌÓÏÂÚÓ‚ = 10 –6 Ï. ç‡ÌÓÏÂÚ (ÌÏ) = 10 Å = 10–9 Ï. ÑÎËÌ˚ 103t Ï, t = –8, –7, ..., –1,1,..., 7, 8 Û͇Á˚‚‡˛ÚÒfl Ò ÔËÒÚ‡‚͇ÏË: ÈÓÍÚÓ, ˆÂÔÚÓ, ‡ÚÚÓ, ÙÂÏÚÓ, ÔËÍÓ, ̇ÌÓ, ÏËÍÓ, ÏËÎÎË, ÍËÎÓ, Ï„‡, „Ë„‡, Ú‡, ÔÂÚ‡, ˝ÍÒ‡, ˆÂÚÚ‡, ÈÓÚÚ‡ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. àÏÔÂÒÍË ÏÂ˚ ‰ÎËÌ˚ àÏÔÂÒÍËÏË Ï‡ÏË ‰ÎËÌ˚ (Ò΄͇ ÛÔÓfl‰Ó˜ÂÌÌ˚ÏË ÏÂʉÛ̇ӉÌ˚Ï Òӄ·¯ÂÌËÂÏ ÓÚ 1 ˲Îfl 1959 „.) fl‚Îfl˛ÚÒfl ÒÎÂ‰Û˛˘ËÂ: – ÎË„‡ = 3 ÏËÎË; – (‡ÏÂË͇ÌÒ͇fl „ÂÓ‰ÂÁ˘ÂÒ͇fl) ÏËÎfl = 5280 ÙÛÚÓ‚ ≈ 1609,347 Ï; – ÏÂʉÛ̇Ӊ̇fl ÏËÎfl = 1609,344 Ï; – fl‰ = 3 ÙÛÚ‡ = 0,9144 Ï; – ÙÛÚ = 12 ‰˛ÈÏÓ‚ = 0,3048 Ï; – ‰˛ÈÏ = 2,54 ÒÏ (‰Îfl Ó„ÌÂÒÚÂθÌÓ„Ó ÓÛÊËfl, ͇ÎË·); – ÎËÌËfl = 1/12 ‰˛Èχ; – ‡„‡Ú = 1/14 ‰˛Èχ; – ÏËÍË = 1/200 ‰˛Èχ; – ÏËÎ (·ËÚ‡ÌÒ͇fl Ú˚Òfl˜Ì‡fl) =1/1000 ‰˛Èχ (Ï Ë Î fl‚ÎflÂÚÒfl Ú‡ÍÊ ۄÎÓ‚ÓÈ ÏÂÓÈ π/3200 ≈ 0,01 ‡‰Ë‡Ì‡). ëÛ˘ÂÒÚ‚Û˛Ú Ú‡ÍÊ ÒÚ‡ËÌÌ˚ ÏÂ˚: fl˜ÏÂÌÌÓ ÁÂÌÓ – 1/3 ‰˛Èχ; ԇΈ – 3/4 ‰˛Èχ; ·‰Ó̸ – 3 ‰˛Èχ; Û͇ – 4 ‰˛Èχ; ¯‡ÙÚÏÂÌÚ – 6 ‰˛ÈÏÓ‚, Ôfl‰¸ – 9 ‰˛ÈÏÓ‚, ÎÓÍÓÚ¸ – 18 ‰˛ÈÏÓ‚. ÑÓÔÓÎÌËÚÂθÌÓ ËϲÚÒfl ÏÂ˚ ÁÂÏÎÂÏÂÌÓÈ ˆÂÔË: Ù‡ÎÓÌ„ = 10 ˜ÂÈÌÓ‚ = 1/8 ÏËÎË; ˜ÂÈÌ = 100 ÎËÌÍÓ‚ = 66 ÙÛÚÓ‚; ¯ÌÛ = 20 ÙÛÚÓ‚; Ó‰ (ËÎË ÔÓθ) = 16,5 ÙÛÚÓ‚; ÎËÌÍ = 7,92 ‰˛ÈÏÓ‚. åËÎfl, Ù‡ÎÓÌ„ Ë Ò‡ÊÂ̸ (6 ÙÛÚÓ‚) ÔÓËÁÓ¯ÎË ÓÚ ÌÂÒÍÓθÍÓ ·ÓΠÍÓÓÚÍËı „ÂÍÓ-ËÏÒÍËı ÏËÎÂÈ, ÒÚ‡‰ËÈ Ë Ó„ËÈ, ÛÔÓÏË̇ÂÏ˚ı ‚ çÓ‚ÓÏ á‡‚ÂÚÂ. ÅË·ÎÂÈÒÍËÏË Ï‡ÏË ‡Ì‡Îӄ˘ÌÓ„Ó ÚËÔ‡ ·˚ÎË: ÎÓÍÓÚ¸ Ë Â„Ó ÔÓËÁ‚Ó‰Ì˚ ‰ËÌˈ˚, ͇ÚÌ˚ 4, 1/2, 1/6 Ë 1/24, ̇Á˚‚‡ÂÏ˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Ò‡ÊÂ̸˛, Ôfl‰¸˛, ·‰Ó̸˛ Ë Ô‡Î¸ˆÂÏ. èË ˝ÚÓÏ ·‡ÁÓ‚‡fl ‰ÎË̇ ·Ë·ÎÂÈÒÍÓ„Ó ÎÓÍÚfl ÓÒÚ‡ÂÚÒfl ÌÂËÁ‚ÂÒÚÌÓÈ; ‚ ̇ÒÚÓfl˘Â ‚ÂÏfl Ô‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ Ó̇ ÒÓÒÚ‡‚ÎflÂÚ ÓÍÓÎÓ 17,6 ‰˛ÈÏÓ‚ ‰Îfl Ó·˘ÂÈ (ËÒÔÓθÁÛÂÏÓÈ ‚ ÍÓÏψËË) ÏÂ˚ ÎÓÍÚfl Ë ÓÍÓÎÓ 20–22 ‰˛ÈÏÓ‚ ‰Îfl
É·‚‡ 27. åÂ˚ ‰ÎËÌ˚ Ë ¯Í‡Î˚
395
ÓÙˈˇθÌÓ„Ó ËÒÔÓθÁÓ‚‡ÌËfl (ÔËÏÂÌflÎÒfl ‚ ÒÚÓËÚÂθÒÚ‚Â). í‡ÎÏۉ˘ÂÒÍËÈ ÎÓÍÓÚ¸ ‡‚ÂÌ 56,02 ÒÏ, Ú.Â. ÌÂÒÍÓθÍÓ ‰ÎËÌÌ 22 ‰˛ÈÏÓ‚. ä‡Í Û͇Á‡ÌÓ Ì‡ http://en.wikipedia.org/wiki/List_of_Strange_units_of_measurement, ÒÚ‡ËÌ̇fl ‰ËÌˈ‡ ‰ÎËÌ˚, ̇Á˚‚‡‚¯‡flÒfl ‰ËÒڇ̈ËÂÈ Ë ‡‚̇fl 221763 ‰˛ÈÏ‡Ï (ÓÍÓÎÓ 5633 Ï), ÓÔ‰ÂÎfl·Ҹ ‚ÂҸχ ÌÂÓ·˚˜ÌÓ, Í‡Í ‡‚̇fl 3 ÏËÎË + 3 Ù‡ÎÓÌ„‡ + + 9 ˜ÂÈÌÓ‚ + 3 Ó‰‡ + 9 ÙÛÚÓ‚ + 9 ¯‡ÙÚÏÂÌÚÓ‚ + 9 ÛÍ + 9 fl˜ÏÂÌÌ˚ı ÁÂÂÌ. ÑÎfl Ó·ÓÁ̇˜ÂÌËfl ‡ÁÏÂÓ‚ χÚÂËË Ë Ó‰Âʉ˚ ËÒÔÓθÁÛ˛ÚÒfl ÒÚ‡˚ ‰ËÌˈ˚: ÛÎÓÌ – 40 fl‰Ó‚; ÎÓÍÓÚ¸ – 5/4 fl‰‡; „ÓΉ – 3/2 fl‰‡; ˜ÂÚ‚ÂÚ¸ (ËÎË Ô fl ‰ ¸) – 1/4 fl‰‡; ԇΈ – 1/8 fl‰‡; ÌÓ„ÓÚ¸ – 1/16 fl‰‡. åÓÒÍË ‰ËÌˈ˚ ‰ÎËÌ˚ åÓÒÍË ‰ËÌˈ˚ ‰ÎËÌ˚ (ÔËÏÂÌflÂÏ˚ ڇÍÊÂ Ë ‚ ‚ÓÁ‰Û¯ÌÓÈ Ì‡‚Ë„‡ˆËË): – ÏÓÒ͇fl ÎË„‡ = 3 ÏÓÒÍËı ÏËÎË; – ÏÓÒ͇fl ÏËÎfl = 1852 Ï; – „ÂÓ„‡Ù˘ÂÒ͇fl ÏËÎfl 1852 Ï (҉̠‡ÒÒÚÓflÌË ̇ ÔÓ‚ÂıÌÓÒÚË áÂÏÎË, Ô‰ÒÚ‡‚ÎÂÌÌÓ ӉÌÓÈ ÏËÌÛÚÓÈ ¯ËÓÚ˚); – ͇·ÂθÚÓ‚ = 120 Ò‡ÊÂÌÂÈ = 720 ÙÛÚÓ‚ = 219,456 Ï; – ÍÓÓÚÍËÈ Í‡·ÂθÚÓ‚ = 1/10 ÏÓÒÍÓÈ ÏËÎË 608 ÙÛÚÓ‚; Ò‡ÊÂ̸ = 6 ÙÛÚÓ‚. ÅÛχÊÌ˚ ÙÓχÚ˚ åéë Ç ¯ËÓÍÓ ËÒÔÓθÁÛÂÏÓÈ ÒËÒÚÂÏ ·ÛχÊÌ˚ı ÙÓχÚÓ‚ åéë ÓÚÌÓ¯ÂÌË ‚˚ÒÓÚ˚ ÎËÒÚ‡ Í Â„Ó ¯ËËÌ fl‚ÎflÂÚÒfl ÓÚÌÓ¯ÂÌËÂÏ ãËıÚÂ̷„‡, Ú.Â. 2. ëËÒÚÂχ ‚Íβ˜‡ÂÚ ‚ Ò·fl ÙÓχÚ˚ An, Bn Ë (ËÒÔÓθÁÛÂÏ˚È ‰Îfl ÍÓÌ‚ÂÚÓ‚) ÙÓÏ‡Ú ën Ò 0 ≤ n ≤ 10 Ë ¯ËËÌÓÈ ÎËÒÚ‡ 2 −1 / 4 − n / 2 , 2 − n / 2 Ë 2 −1 / 8 − n / 2 ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ÇÒ ‡ÁÏÂ˚ Û͇Á‡Ì˚ ‚ ÏÂÚ‡ı, Ë ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ÔÎÓ˘‡‰¸ An ‡‚̇ 2 –n Ï2 . éÌË ÓÍÛ„Îfl˛ÚÒfl Ë Ó·˚˜ÌÓ ‚˚‡Ê‡˛ÚÒfl ‚ ÏËÎÎËÏÂÚ‡ı, ̇ÔËÏÂ, ÙÓÏ‡Ú Ä4 – 210 × 297, ‡ ÙÓÏ‡Ú Ç7 (ËÒÔÓθÁÛÂÏ˚È Ú‡ÍÊ ‰Îfl Ô‡ÒÔÓÚÓ‚ ‚ÓÔÂÈÒÍËı ÒÚ‡Ì Ë ëòÄ) ËÏÂÂÚ ‡ÁÏÂ˚ 88 × 125. èÓÎË„‡Ù˘ÂÒÍË ‰ËÌˈ˚ ‰ÎËÌ˚ èÛÌÍÚ (PostScript) = 1/72 ‰˛Èχ = 100 „ÛÚÂ̷„ӂ = 3,527777778 ÒÏ. èÛÌÍÚ (íÂï) (ËÎË ÔÛÌÍÚ ÔËÌÚ‡) = 1/72,27 ‰˛Èχ = 3,514598035 ÒÏ. èÛÌÍÚ (ÄíÄ) = 3,514598 ÒÏ. äÛ (flÔÓÌÒ͇fl) (ËÎË Q, ˜ÂÚ‚ÂÚ¸) = 2,5 ÒÏ. èÛÌÍÚ (ÑˉÓ) = 1/72 ه̈ÛÁÒÍÓ„Ó ÍÓÓ΂ÒÍÓ„Ó ‰˛Èχ = 3,761 ÒÏ Ë ˆËˆÂÓ = = 12 ÔÛÌÍÚÓ‚ ÑˉÓ. èË͇ (PostScript, íÂï ËÎË ÄíÄ) = 12 ÔÛÌÍÚÓ‚ ‚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÒËÒÚÂÏÂ. í‚ËÔ = 1/20 ÔÛÌÍÚ‡ ‚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÈ ÒËÒÚÂÏÂ. é˜Â̸ χÎ˚ ‰ËÌˈ˚ ‰ÎËÌ˚ ÄÌ„ÒÚÂÏ (Å) = 10–10 Ï. ÄÌ„ÒÚÂÏ Á‚ÂÁ‰‡ (ËÎË Â‰ËÌˈ‡ ʼnÂ̇): Å ≈ 1,0000148 ‡Ì„ÒÚÂÏ (ËÒÔÓθÁÛÂÚÒfl Ò 1965 „. ‰Îfl ËÁÏÂÂÌËfl ‰ÎËÌ ‚ÓÎÌ ÂÌÚ„ÂÌÓ‚ÒÍÓ„Ó Ë „‡Ïχ ËÁÎÛ˜ÂÌËfl, ‡ Ú‡ÍÊ ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ‡ÚÓχÏË ‚ ÍËÒڇηı). ï ‰ËÌˈ‡ (ËÎË ÁË„·‡ÌÓ‚‡ ‰ËÌˈ‡) ≈ 1,0021 × 10–13 Ï (‡Ì ËÒÔÓθÁÓ‚‡Î‡Ò¸ ‰Îfl ËÁÏÂÂÌËfl ‰ÎËÌ ‚ÓÎÌ ÂÌÚ„ÂÌÓ‚ÒÍÓ„Ó Ë „‡Ïχ ËÁÎÛ˜ÂÌËfl). ÅÓ (‡ÚÓÏ̇fl ‰ËÌˈ‡ ‰ÎËÌ˚): α 0, Ò‰ÌËÈ ‡‰ËÛÒ ≈ 5,291772 × 10–11 Ï Ó·ËÚ˚ ˝ÎÂÍÚÓ̇ ‡ÚÓχ ‚Ó‰ÓÓ‰‡ (‚ ÏÓ‰ÂÎË ÅÓ‡).
396
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
h è˂‰ÂÌ̇fl ÍÓÏÔÚÓÌÓ‚Ò͇fl ‰ÎË̇ ‚ÓÎÌ˚ ˝ÎÂÍÚÓ̇ (Ú.Â. ) ‰Îfl χÒÒ˚ mc r ˝ÎÂÍÚÓ̇ me : λ C = αα 0 ≈ 3, 862 × 10 −13 Ï, „‰Â ˙ – Ô˂‰ÂÌ̇fl (Ú.Â. ‰ÂÎÂÌ̇fl ̇ 2π) 1 ÔÓÒÚÓflÌ̇fl è·Ì͇, Ò – ÒÍÓÓÒÚ¸ Ò‚ÂÚ‡ Ë α ≈ – ÔÓÒÚÓflÌ̇fl ÚÓÌÍÓÈ 137 ÒÚÛÍÚÛ˚. r ä·ÒÒ˘ÂÒÍËÈ ‡‰ËÛÒ ˝ÎÂÍÚÓ̇: re : αλ C = α 2 α 0 ≈ 2, 81794 × 10 −15 Ï. äÓÏÔÚÓÌÓ‚Ò͇fl ‰ÎË̇ ‚ÓÎÌ˚ ÔÓÚÓ̇: ≈ 1,32141 × 10–15 Ï; ·Óθ¯‡fl ˜‡ÒÚ¸ ËÁÏÂÂÌËÈ ‰ÎËÌ ‚ ıӉ ˝ÍÒÔÂËÏÂÌÚÓ‚, Ò‚flÁ‡ÌÌ˚ı Ò ÙÛ̉‡ÏÂÌڇθÌ˚ÏË fl‰ÂÌ˚ÏË ÒË·ÏË, fl‚ÎflÂÚÒfl  ͇ÚÌ˚ÏË. hG ÑÎË̇ è·Ì͇ (̇ËÏÂ̸¯‡fl ÙËÁ˘ÂÒ͇fl ‰ÎË̇): lP = ≈ 1, 6162 × 10 −35 Ï, c3 „‰Â G – ÛÌË‚Â҇θ̇fl „‡‚ËÚ‡ˆËÓÌ̇fl ÔÓÒÚÓflÌ̇fl 縲ÚÓ̇. é̇ fl‚ÎflÂÚÒfl Ú‡ÍÊ Ô˂‰ÂÌÌÓÈ ÍÓÏÔÚÓÌÓ‚ÒÍÓÈ ‰ÎËÌÓÈ ‚ÓÎÌ˚ Ë ÔÓÎÓ‚ËÌÓÈ ‡‰ËÛÒ‡ ò‚‡ˆ˜‡È艇 ‰Îfl l hc χÒÒ˚ è·Ì͇ mP = ≈ 2, 176 × 10 −8 Í„ . ÇÂÏfl è·Ì͇ t p = P ≈ 5, 4 × 10 −44 c. c c3 38 43 9 àÏÂÌÌÓ, 10 lP ≈ 1 ÏËΠëòÄ, 10 t P ≈ 54 c Ë 10 mP ≈ 21, 76 Í„ , Ú.Â. ·ÎËÁÍÓ Í 1 ڇ·ÌÚÛ (26 Í„ Ò·‡, χ ‚ÂÒ‡ ‚ Ñ‚ÌÂÈ ÉˆËË). äÓÚÂÎÎ (http://planck.com/humanscale.htm) Ô‰ÎÓÊËÎ "ÔÓÒÚÏÂÚ˘ÂÒÍËÈ" ‚‡Ë‡ÌÚ ‡‰‡ÔÚËÓ‚‡ÌÌÓÈ ÔÓ‰ ˜ÂÎÓ‚Â͇ ÒËÒÚÂÏ˚ ‰ËÌˈ è·Ì͇ ̇ ÓÒÌÓ‚Â ÚÂı ‚˚¯ÂÛ͇Á‡ÌÌ˚ı ‰ËÌˈ, ̇Á‚‡‚ Ëı (Ô·ÌÍÓ‚ÒÍËÏË) ÏËÎÂÈ, ÏËÌÛÚÓÈ Ë Ú‡Î‡ÌÚÓÏ. ÄÒÚÓÌÓÏ˘ÂÒÍË ‰ËÌˈ˚ ‰ÎËÌ˚ ê‡ÒÒÚÓflÌË ·Î‡ („‡Ìˈ‡ ÍÓÒÏ˘ÂÒÍÓ„Ó Ò‚ÂÚÓ‚Ó„Ó „ÓËÁÓÌÚ‡) ‡‚̇ c DH = ≈ 4, 22 ÔÍ ≈ 13, 7 Ò‚ÂÚÓ‚˚ı „Ë„‡ÎÂÚ (ËÒÔÓθÁÛÂÚÒfl ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflH0 1 ÌËÈ d > åÔÍ ‚ ÚÂÏË̇ı ͇ÒÌÓ„Ó ÒÏ¢ÂÌËfl z: d = zD H, ÂÒÎË z ≤ 1, Ë 2 ( z + 1)2 − 1 d= DH , Ë̇˜Â). ( z + 1)2 + 1 ÉË„‡Ô‡ÒÂÍ (ÉÔÍ) = 103 Ï„‡Ô‡ÒÂÍÓ‚ (åÔÍ). ·Î (ËÎË Ò‚ÂÚÓ„Ë„‡„Ó‰, Ò‚ÂÚÓ‚ÓÈ „Ë„‡„Ó‰, Ò‚ÂÚÓ‚ÓÈ Ga) = 109 (ÏΉ) Ò‚ÂÚÓ‚˚ı ÎÂÚ ≈ 306,595 åÔÍ. 儇ԇÒÂÍ = 10 3 ÍËÎÓÔ‡ÒÂÍÓ‚ ≈ 3,262 MLY (ÏÎÌ Ò‚. ÎÂÚ). MLY (ÏËÎÎËÓÌ Ò‚ÂÚÓ‚˚ı ÎÂÚ) = 106 (ÏÎÌ) Ò‚. ÎÂÚ. äËÎÓÔ‡ÒÂÍ = 10 3 Ô‡ÒÂÍÓ‚. 648000 è‡ÒÂÍ = AU (‡ÒÚÓÌÓÏ˘ÂÒÍËı ‰ËÌˈ, ‡.Â.) ≈ 3,261624 Ò‚. „Ó‰‡ π ≈ 3,08568 × 1016 Ï (‡ÒÒÚÓflÌË ÓÚ ‚ÓÓ·‡Ê‡ÂÏÓÈ Á‚ÂÁ‰˚, ÍÓ„‰‡ ÔflÏ˚Â, Ôӂ‰ÂÌÌ˚ ÓÚ Ì ‰Ó áÂÏÎË Ë ‰Ó ëÓÎ̈‡, Ó·‡ÁÛ˛Ú Ï‡ÍÒËχθÌ˚È Û„ÓÎ, Ú.Â. Ô‡‡Î·ÍÒ, ‚Â΢ËÌÓÈ ‚ ÒÂÍÛ̉Û). ë‚ÂÚÓ‚ÓÈ „Ó‰ ≈ 9,46073 × 1015 Ï ≈ 5,2595 × 105 Ò‚ÂÚÓ‚˚ı ÏËÌÛÚ ≈ π × 107 (‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ ‚ ‚‡ÍÛÛÏ ҂ÂÚ ÔÓıÓ‰ËÚ Á‡ Ó‰ËÌ „Ó‰; ËÒÔÓθÁÛÂÚÒfl ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û Á‚ÂÁ‰‡ÏË).
É·‚‡ 27. åÂ˚ ‰ÎËÌ˚ Ë ¯Í‡Î˚
397
ëÔ‡Ú (ÛÒڇ‚¯‡fl ‰ËÌˈ‡) ≈ 1012 Ï ≈ 6,6846 AU (‡ÒÚÓÌÓÏ˘ÂÒÍËı ‰ËÌˈ). ÄÒÚÓÌÓÏ˘ÂÒ͇fl ‰ËÌˈ‡ (AU) = 1,49597871 × 10 11 Ï ≈ 8,32 Ò‚ÂÚÓ‚˚ı ÏËÌÛÚ˚ (҉̠‡ÒÒÚÓflÌË ÏÂÊ‰Û áÂÏÎÂÈ Ë ëÓÎ̈ÂÏ; ËÒÔÓθÁÛÂÚÒfl ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ ‚ ԉ·ı CÓÎ̘ÌÓÈ ÒËÒÚÂÏ˚). ë‚ÂÚÓ‚‡fl ÒÂÍÛ̉‡ ≈ 2,998 × 108 Ï. èËÍÓÔ‡ÒÂÍ ≈ 30,86 ÍÏ (ÒÏ. Ú‡ÍÊ ‰Û„Ë Á‡·‡‚Ì˚ ‰ËÌˈ˚, ͇Í, ̇ÔËÏÂ, ÏËÍÓÒÚÓÎÂÚË ≈ 52,5 ÏËÌÛÚ˚, Ó·˚˜Ì‡fl ÔÓ‰ÓÎÊËÚÂθÌÓÒÚ¸ ‰ÓÍ·‰‡, Ë Ì‡ÌÓÒÚÓÎÂÚË ≈ π ÒÂÍÛ̉). 27.2. òäÄãõ îàáàóÖëäàï Ñãàç Ç ‰‡ÌÌÓÏ ‡Á‰ÂΠ‡ÒÒχÚË‚‡ÂÚÒfl ̇·Ó ‡Á΢Ì˚ı ÔÓfl‰ÍÓ‚ ‚Â΢ËÌ˚ ‰ÎËÌ, ‚˚‡ÊÂÌÌ˚ı ‚ ÏÂÚ‡ı. 1,616 × 10–35 – ‰ÎË̇ è·Ì͇ (̇ËÏÂ̸¯‡fl ‚ÓÁÏÓÊ̇fl ÙËÁ˘ÂÒ͇fl ‰ÎË̇): ̇ ˝ÚÓÈ ¯Í‡Î ÓÊˉ‡ÂÚÒfl ̇΢ˠ"Í‚‡ÌÚÛÏÌÓÈ ÔÂÌ˚" (ÏÓ˘ÌÓ ËÒÍË‚ÎÂÌËÂ Ë ÚÛ·ÛÎÂ̈Ëfl ÔÓÒÚ‡ÌÒÚ‚‡-‚ÂÏÂÌË, ÌÂÚ „·‰ÍÓÈ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÈ „ÂÓÏÂÚËË); ‰ÓÏËÌËÛ˛˘ËÏË ÒÚÛÍÚÛ‡ÏË fl‚Îfl˛ÚÒfl χÎ˚ (ÏÌÓ„ÓÒ‚flÁÌ˚Â) ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ ‚ÓÓÌÍË Ë ÔÛÁ˚Ë, ‚ÓÁÌË͇˛˘ËÂ Ë ËÒ˜ÂÁ‡˛˘ËÂ. 10–34 – ‰ÎË̇ Ô‰ÔÓ·„‡ÂÏÓÈ ÒÚÛÌ˚: å-ÚÂÓËfl Ô‰ÔÓ·„‡ÂÚ, ˜ÚÓ ‚Ò ÒËÎ˚ Ë ‚Ò 25 ˝ÎÂÏÂÌÚ‡Ì˚ı ˜‡ÒÚˈ Ó·˙flÒÌfl˛ÚÒfl ‚Ë·‡ˆËÂÈ Ú‡ÍËı ÒÚÛÌ Ë ÒÚÂÏËÚÒfl Ó·˙‰ËÌËÚ¸ Í‚‡ÌÚÓ‚Û˛ ÏÂı‡ÌËÍÛ Ò Ó·˘ÂÈ ÚÂÓËÂÈ ÓÚÌÓÒËÚÂθÌÓÒÚË. 10–24 = 1 ÈÓÍÚÓÏÂÚ. 10–21 = 1 ˆÂÔÚÓÏÂÚ. 10–18 = 1 ‡ÚÚÓÏÂÚ: ӷ·ÒÚ¸ Ò··˚ı fl‰ÂÌ˚ı ÒËÎ, ‡ÁÏ ͂‡Í‡. 10–15 = 1 ÙÂÏÚÓÏÂÚ (·˚‚¯‡fl ÙÂÏË). 1,3 × 10–15 – ӷ·ÒÚ¸ ·Óθ¯Ëı fl‰ÂÌ˚ı ÒËÎ, fl‰‡ Ò‰ÌËı ‡ÁÏÂÓ‚. 10–12 = 1 ÔËÍÓÏÂÚ (‡Ì ̇Á˚‚‡ÎÒfl ·ËÍÓÌ ËÎË ÒÚ˄χ): ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‡ÚÓÏÌ˚ÏË fl‰‡ÏË ‚ ·ÂÎ˚ı ͇ÎËÍÓ‚˚ı Á‚ÂÁ‰‡ı. 10–11 – ‰ÎË̇ ‚ÓÎÌ˚ ̇˷ÓΠÊÂÒÚÍÓ„Ó (ÍÓÓÚÍÓ‚ÓÎÌÓ‚Ó„Ó) ÂÌÚ„ÂÌÓ‚ÒÍÓ„Ó ËÁÎÛ˜ÂÌËfl Ë Ì‡Ë·Óθ¯‡fl ‰ÎË̇ ‚ÓÎÌ˚ „‡Ïχ ËÁÎÛ˜ÂÌËfl. 5 × 10–11 – ‰Ë‡ÏÂÚ Ì‡ËÏÂ̸¯Â„Ó ‡ÚÓχ (‚Ó‰ÓÓ‰‡ ç); 1,5 × 10–10 – ‰Ë‡ÏÂÚ Ì‡ËÏÂ̸¯ÂÈ ÏÓÎÂÍÛÎ˚ (‚Ó‰ÓÓ‰ H 2 ). 10–10 = 1 ‡Ì„ÒÚÂÏ – ‰Ë‡ÏÂÚ ÚËÔÓ‚Ó„Ó ‡ÚÓχ, Ô‰ÂÎ ‡Á¯‡˛˘ÂÈ ÒÔÓÒÓ·ÌÓÒÚË ˝ÎÂÍÚÓÌÌÓ„Ó ÏËÍÓÒÍÓÔ‡. 1,54 × 10–10 – ‰ÎË̇ ÚËÔÓ‚ÓÈ ÍÓ‚‡ÎÂÌÚÌÓÈ Ò‚flÁË (ë–ë). 10–9 = 1 ̇ÌÓÏÂÚ – ‰Ë‡ÏÂÚ ÚËÔÓ‚ÓÈ ÏÓÎÂÍÛÎ˚. 2 × 10–9 – ‰Ë‡ÏÂÚ ÒÔˇÎË Ñçä. 10 –8 – ‰ÎË̇ ‚ÓÎÌ˚ ̇˷ÓΠÏfl„ÍÓ„Ó ÂÌÚ„ÂÌÓ‚ÒÍÓ„Ó ËÁÎÛ˜ÂÌËfl Ë Ò‡ÏÓ„Ó Í‡ÈÌÂ„Ó ÛθڇÙËÓÎÂÚÓ‚Ó„Ó ËÁÎÛ˜ÂÌËfl. 1,1 × 10–8 – ‰Ë‡ÏÂÚ ÔËÓ̇ (̇ËÏÂ̸¯ÂÈ ·ËÓÎӄ˘ÂÒÍÓÈ ÒÛ˘ÌÓÒÚË, ÒÔÓÒÓ·ÌÓÈ Í Ò‡ÏÓ‚ÓÒÔÓËÁ‚‰ÂÌ˲). 4,5 × 10–8 – ̇ËÏÂ̸¯‡fl ‰Âڇθ ÍÓÏÔ¸˛ÚÂÌÓÈ ÏËÍÓÒıÂÏ˚ ‚ 2007 „. 9 × 10–8 – ‚ËÛÒ ËÏÏÛÌÓ‰ÂÙˈËÚ‡ ˜ÂÎÓ‚Â͇ (Çàó); ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ‡ÁÏÂ˚ ËÁ‚ÂÒÚÌ˚ı ‚ËÛÒÓ‚ ÍÓηβÚÒfl ‚ ԉ·ı ÓÚ 2 × 10–8 (‡‰ÂÌÓ‡ÒÒÓˆËËÓ‚‡ÌÌ˚e ‚ËÛÒ˚) ‰Ó 8 × 10–7 (ÏËÏË‚ËÛÒ). 10–7: ‡ÁÏ ıÓÏÓÒÓÏ˚, χÍÒËχθÌ˚È ‡ÁÏ ˜‡ÒÚˈ˚, ÍÓÚÓ‡fl ÏÓÊÂÚ ÔÓÈÚË ˜ÂÂÁ ıËۄ˘ÂÒÍÛ˛ χÒÍÛ.
398
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
2 × 10–7: Ô‰ÂÎ ‡Á¯‡˛˘ÂÈ ÒÔÓÒÓ·ÌÓÒÚË ÓÔÚ˘ÂÒÍÓ„Ó ÏËÍÓÒÍÓÔ‡. 3,8–7,4 × 10–7 : ‰ÎË̇ ‚ÓÎÌ˚ ‚ˉËÏÓ„Ó („·ÁÓÏ ˜ÂÎÓ‚Â͇) Ò‚ÂÚ‡, Ú.Â. ˆ‚ÂÚÓ‚ÓÈ ÒÔÂÍÚ ÓÚ ÙËÓÎÂÚÓ‚Ó„Ó ‰Ó ͇ÒÌÓ„Ó. 10–6 = 1 ÏËÍÓÏÂÚ (·˚‚¯ËÈ ÏËÍÓÌ). 10–6–10–5: ‰Ë‡ÏÂÚ ÚËÔÓ‚ÓÈ ·‡ÍÚÂËË; ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ‡ÁÏÂ˚ ËÁ‚ÂÒÚÌ˚ı (Ì ̇ıÓ‰fl˘ËıÒfl ‚ ÒÓÒÚÓflÌËË ÔÓÍÓfl) ·‡ÍÚÂËÈ ÍÓηβÚÒfl ‚ ԉ·ı ÓÚ 1,5 × 10–7 (ÏËÍÓÔ·Áχ „ÂÌËÚ‡ÎËÛÏ: "ÏËÌËχθ̇fl ÍÎÂÚ͇") ‰Ó 7 × 10–4 ("ëÂ̇fl ÊÂϘÛÊË̇ ç‡ÏË·ËË" – Thiomargarita of Namibia). 7 × 10–6: ‰Ë‡ÏÂÚ fl‰‡ ÚËÔÓ‚ÓÈ ˝Û͇ËÓÚÌÓÈ ÍÎÂÚÍË. 8 × 10–6: Ò‰ÌËÈ ‰Ë‡ÏÂÚ ˜ÂÎӂ˜ÂÒÍÓ„Ó ‚ÓÎÓÒ‡ (ÍÓηÎÂÚÒfl ÓÚ 1,8 × 10–6 ‰Ó 18 × 10–6). 10–5: ÚËÔÓ‚ÓÈ ‡ÁÏ ͇ÔÎË ‚Ó‰˚ (ÚÛχÌ, ‚Ó‰fl̇fl Ô˚θ, ӷ·ÍÓ). 10–5, 1,5 × 10–5 Ë 2 × 10–5: ‰Ë‡ÏÂÚ˚ ‚ÓÎÓÍÓÌ ıÎÓÔ͇, ¯ÂÎ͇ Ë ¯ÂÒÚË. 2 × 10–4: ÔË·ÎËÁËÚÂθÌÓ ÌËÊÌËÈ Ô‰ÂÎ ‡Á΢ÂÌËfl Ô‰ÏÂÚ‡ ˜ÂÎӂ˜ÂÒÍËÏ „·ÁÓÏ. 5 × 10–4: ‰Ë‡ÏÂÚ ˜ÂÎӂ˜ÂÒÍÓÈ flȈÂÍÎÂÚÍË, ÏËÍÓÔÓˆÂÒÒÓ MEMS (ÏËÍÓχ¯ËÌ̇fl ÚÂıÌÓÎÓ„Ëfl). 10–3 = 1 ÏËÎÎËÏÂÚ: ͇ÈÌflfl ‰ÎË̇ ‚ÓÎÌ˚ ËÌه͇ÒÌÓ„Ó ‰Ë‡Ô‡ÁÓ̇. 5 × 10–3: ‰ÎË̇ Ò‰ÌÂ„Ó Í‡ÒÌÓ„Ó ÏÛ‡‚¸fl; ‚ Ó·˘ÂÏ ÒÎÛ˜‡Â ‡ÁÏÂ˚ ̇ÒÂÍÓÏ˚ı ̇ıÓ‰flÚÒfl ‚ ԉ·ı ÓÚ 1,7 × 10–4 (̇ÂÁ‰ÌËÍ Ï„‡Ù‡„χ – Megaphragma caribea) ‰Ó 3,6 × 10–1 (Ô‡ÎÓ˜ÌËÍ – Pharnacia kirbyi). 2Gm 8,9 × 10–3: ‡‰ËÛÒ ò‚‡ˆ˜‡È艇 ( 2 – ̇ËÏÂ̸¯ËÈ Ô‰ÂÎ, ÔÓÒΠÍÓÚÓÓ„Ó c χÒÒ‡ m ÍÓηÔÒËÛÂÚ ‚ ˜ÂÌÛ˛ ‰˚Û) ‰Îfl áÂÏÎË. –2 10 = 1 Ò‡ÌÚËÏÂÚ. 10–1 = 1 ‰ÂˆËÏÂÚ: ‰ÎËÌ˚ ‚ÓÎÌ˚ Ò‡ÏÓÈ ÌËÁÍÓÈ ˜‡ÒÚÓÚ˚ ÏËÍÓ‚ÓÎÌÓ‚Ó„Ó ÒÔÂÍÚ‡ Ë Ò‡ÏÓÈ ‚˚ÒÓÍÓÈ ˜‡ÒÚÓÚ˚ ‰Ë‡Ô‡ÁÓ̇ ìÇó (Ûθڇ‚˚ÒÓÍËı ˜‡ÒÚÓÚ), 3 ÉɈ. 1 ÏÂÚ: ‰ÎË̇ ‚ÓÎÌ˚ Ò‡ÏÓÈ ÌËÁÍÓÈ ˜‡ÒÚÓÚ˚ ìÇó ‰Ë‡Ô‡ÁÓ̇ Ë Ò‡ÏÓÈ ‚˚ÒÓÍÓÈ ˜‡ÒÚÓÚ˚ ‰Ë‡Ô‡ÁÓ̇ éÇó (Ó˜Â̸ ‚˚ÒÓÍËı ˜‡ÒÚÓÚ), 300 åɈ. 1,435: Òڇ̉‡Ú̇fl ÍÓÎÂfl ÊÂÎÂÁÌÓ‰ÓÓÊÌÓ„Ó ÔÛÚË. 2,77–3,44: ‰ÎË̇ ‚ÓÎÌ˚ ¯ËÓÍӂ¢‡ÚÂθÌÓ„Ó ìäÇ ‡‰ËӉˇԇÁÓ̇ Ò ˜‡ÒÚÓÚÌÓÈ ÏÓ‰ÛÎflˆËÂÈ Ò˄̇·, 108–87 åɈ. 5,5 Ë 30,1: ÓÒÚ Ò‡ÏÓ„Ó ‚˚ÒÓÍÓ„Ó ÊË‚ÓÚÌÓ„Ó (Êˇه) Ë ‰ÎË̇ Ò‡ÏÓ„Ó ‰ÎËÌÌÓ„Ó ÊË‚ÓÚÌÓ„Ó („ÓÎÛ·Ó„Ó ÍËÚ‡). 10 = 1 ‰Â͇ÏÂÚ: ‰ÎË̇ ‚ÓÎÌ˚ Ò‡ÏÓÈ ÌËÊÌÂÈ ˜‡ÒÚÓÚ˚ ‰Ë‡Ô‡ÁÓ̇ ‚˚ÒÓÍËı ‡‰ËÓ˜‡ÒÚÓÚ (Çó) Ë Ò‡ÏÓÈ ‚˚ÒÓÍÓÈ ˜‡ÒÚÓÚ˚ ÍÓÓÚÍÓ‚ÓÎÌÓ‚Ó„Ó (äÇ) ‰Ë‡Ô‡ÁÓ̇, 30 åɈ. 26: ҇χfl ‚˚ÒÓ͇fl (ËÁÏÂÂÌ̇fl) Ó͇ÌÒ͇fl ‚ÓÎ̇. èË ˝ÚÓÏ ‡Ò˜ÂÚ̇fl ‚˚ÒÓÚ‡ ‚ÓÎÌ˚ Ï„‡ˆÛ̇ÏË, ‚˚Á‚‡ÌÌÓ„Ó 65 ÏÎÌ ÎÂÚ Ì‡Á‡‰ ÒÚÓÎÍÌÓ‚ÂÌËÂÏ áÂÏÎË Ò ‡ÒÚÂÓˉÓÏ ä-í, ‚ ÂÁÛθڇÚ ÍÓÚÓÓ„Ó, ‚ÂÓflÚÌÓ, ÔÓ„Ë·ÎË ‚Ò ‰ËÌÓÁ‡‚˚, ÒÓÒÚ‡‚Ë· ÓÍÓÎÓ 1 ÍÏ. 100 = 1 „ÂÍÚÓÏÂÚ: ‰ÎË̇ ‚ÓÎÌ˚ Ò‡ÏÓÈ ÌËÁÍÓÈ ˜‡ÒÚÓÚ˚ äÇ ‰Ë‡Ô‡ÁÓ̇ Ë Ò‡Ï‡fl ‚˚ÒÓ͇fl ˜‡ÒÚÓÚ‡ ҉̂ÓÎÌÓ‚Ó„Ó (ëÇ) ‰Ë‡Ô‡ÁÓ̇, 3 åɈ. 115,5: ‚˚ÒÓÚ‡ Ò‡ÏÓ„Ó ‚˚ÒÓÍÓ„Ó ‚ ÏË ‰Â‚‡, ͇ÎËÙÓÌËÈÒÍÓ„Ó Ï‡ÏÓÌÚÓ‚Ó„Ó ‰Â‚‡. 137, 300, 508 Ë 541: ‚˚ÒÓÚ˚ ÇÂÎËÍÓÈ ÔˇÏˉ˚ ‚ ÉËÁÂ, ùÈÙÂ΂ÓÈ ·‡¯ÌË, Ì·ÓÒÍ·‡ í‡È·˝È 101 (Ò‡ÏÓ„Ó ‚˚ÒÓÍÓ„Ó Á‰‡ÌËfl ̇ 2007 „.) Ë ç·ÓÒÍ·‡ ë‚Ó·Ó‰˚, ÍÓÚÓ˚È Ô‰ÔÓ·„‡ÂÚÒfl ÔÓÒÚÓËÚ¸ ̇ ÏÂÒÚ ·˚‚¯Â„Ó ÍÓÏÔÎÂÍÒ‡ ÇÒÂÏËÌÓ„Ó ÚÓ„Ó‚Ó„Ó ˆÂÌÚ‡.
É·‚‡ 27. åÂ˚ ‰ÎËÌ˚ Ë ¯Í‡Î˚
399
187–555: ‰ÎË̇ ‚ÓÎÌ˚ ¯ËÓÍӂ¢‡ÚÂθÌÓ„Ó ‰Ë‡Ô‡ÁÓ̇ ˜‡ÒÚÓÚ Ò ‡ÏÔÎËÚÛ‰ÌÓÈ ÏÓ‰ÛÎflˆËÂÈ, 1600–540 ÍɈ. 340: ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓ ÔÂÂÏ¢‡ÂÚÒfl Á‚ÛÍ ‚ ‡ÚÏÓÒÙ Á‡ Ó‰ÌÛ ÒÂÍÛ̉Û. 103 = 1 ÍËÎÓÏÂÚ. 2,95 × 103: ‡‰ËÛÒ ò‚‡ˆ˜‡È艇 ‰Îfl ëÓÎ̈‡. 3,79 × 103: Ò‰Ìflfl „ÎÛ·Ë̇ Ó͇ÌÓ‚. 104 : ‰ÎË̇ ‚ÓÎÌ˚ Ò‡ÏÓÈ ÌËÊÌÂÈ ‡‰ËÓ˜‡ÒÚÓÚ˚ ëÇ ‰Ë‡Ô‡ÁÓ̇, 300 ÍɈ. 8,8 × 103 Ë 10,9 × 103: ‚˚ÒÓÚ‡ Ò‡ÏÓÈ ‚˚ÒÓÍÓÈ „Ó˚ ù‚ÂÂÒÚ Ë „ÎÛ·Ë̇ ÇÔ‡‰ËÌ˚ åË̉‡Ì‡Ó. 5 × 104 = 50 ÍÏ: χÍÒËχθÌÓ ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓÏ ÏÓÊÌÓ Û‚Ë‰ÂÚ¸ Ô·Ïfl ÒÔ˘ÍË (ÏËÌËÏÛÏ 10 ÙÓÚÓÌÓ‚ ‰ÓÒÚË„‡˛Ú ÒÂÚ˜‡ÚÍË „·Á‡ ‚ Ú˜ÂÌË 0,1 Ò). 1,11 × 105 = 111 ÍÏ: Ó‰ËÌ „‡‰ÛÒ ¯ËÓÚ˚ ̇ áÂÏÎÂ. 1,5 × 104–1,5 × 107: ‰Ë‡Ô‡ÁÓÌ ˜‡ÒÚÓÚ ÒÎ˚¯ËÏÓ„Ó ˜ÂÎÓ‚ÂÍÓÏ Á‚Û͇ (20 Ɉ–208 ÍɈ). 1,69 × 105: ‰ÎË̇ „ˉÓÚÂıÌ˘ÂÒÍÓ„Ó ÚÛÌÌÂÎfl Ñ·‚˝ (縲-âÓÍ), Ò‡ÏÓ„Ó ‰ÎËÌÌÓ„Ó ‚ ÏËÂ. 2 × 105 : ‰ÎË̇ ‚ÓÎÌ˚ (‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓ‰Ó¯‚‡ÏË ÔÓÒΉӂ‡ÚÂθÌ˚ı ‚ÓÎÌ) ÚËÔÓ‚Ó„Ó ˆÛ̇ÏË. 4,83 × 105: ‰Ë‡ÏÂÚ Í‡Ú‡ áÂÏÎË ìËÎÍÒ‡ (ÄÌÚ‡ÍÚË͇), Ó·‡ÁÓ‚‡‚¯Â„ÓÒfl 250 ÏÎÌ ÎÂÚ Ì‡Á‡‰ ‚ ÂÁÛθڇÚ ԇ‰ÂÌËfl Ì·ÂÒÌÓ„Ó Ú·; Ò‡Ï˚È ·Óθ¯ÓÈ ËÁ ̇ȉÂÌÌ˚ı ̇ áÂÏΠ(Ô‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ ˝Ú‡ ͇ڇÒÚÓÙ‡ ÔÓ‚ÎÂÍ· Á‡ ÒÓ·ÓÈ Ï‡ÒÒÓ‚Ó ÛÌ˘ÚÓÊÂÌË ÊËÁÌË ‚ ÔÂÏÒÍËÈ ÔÂËÓ‰); Ò˜ËÚ‡ÂÚÒfl Ú‡ÍÊÂ, ˜ÚÓ ÒÚÓÎÍÌÓ‚ÂÌË áÂÏÎË Ò „ËÔÓÚÂÚ˘ÂÒÍËÏ Ô·ÌÂÚÓˉÓÏ "íÂÈfl", ÔÓ ‡ÁÏÂ‡Ï ÒıÓ‰Ì˚Ï Ò å‡ÒÓÏ (ÚÂÓËfl "ÅÓθ¯Ó„Ó ÇÒÔÎÂÒ͇"), ÔË‚ÂÎÓ 4533 ÏΉ ÎÂÚ Ì‡Á‡‰ Í Ó·‡ÁÓ‚‡Ì˲ ãÛÌ˚. 106 = 1 Ï„‡ÏÂÚ. 3,48 × 106: ‰Ë‡ÏÂÚ ãÛÌ˚. 5 × 106 : ‰Ë‡ÏÂÚ LHS 4033, ̇ËÏÂ̸¯ÂÈ ËÁ‚ÂÒÚÌÓÈ Á‚ÂÁ‰˚ – ·ÂÎÓ„Ó Í‡ÎË͇. 6,4 × 106 Ë 6,65 × 106: ‰ÎË̇ ÇÂÎËÍÓÈ äËÚ‡ÈÒÍÓÈ ëÚÂÌ˚ Ë ‰ÎË̇ ÂÍË çËÎ. 1,28 × 107 Ë 4,01 × 107 : ‰Ë‡ÏÂÚ áÂÏÎË ‚ ˝Í‚‡ÚÓˇθÌÓÈ ÁÓÌÂ Ë ‰ÎË̇ ˝Í‚‡ÚÓ‡ áÂÏÎË. 3,84 × 108: Ó·ËڇθÌÓ ‡ÒÒÚÓflÌË ãÛÌ˚ ÓÚ áÂÏÎË. 109 = 1 „Ë„‡ÏÂÚ. 1,39 × 109: ‰Ë‡ÏÂÚ ëÓÎ̈‡. 5,8 × 1010: Ó·ËڇθÌÓ ‡ÒÒÚÓflÌË åÂÍÛËfl. 1,496 × 1011 (1 ‡ÒÚÓÌÓÏ˘ÂÒ͇fl ‰ËÌˈ‡, AU): ҉̠‡ÒÒÚÓflÌË ÏÂÊ‰Û áÂÏÎÂÈ Ë ëÓÎ̈ÂÏ (Ó·ËڇθÌÓ ‡ÒÒÚÓflÌË áÂÏÎË). 5,7 × 1011: ‰ÎË̇ ̇˷Óθ¯Â„Ó Ì‡·Î˛‰‡ÂÏÓ„Ó ÍÓÏÂÚÌÓ„Ó ı‚ÓÒÚ‡ (ÍÓÏÂÚ˚ ïÛ‡ÍÛÚ‡ÍÂ, ë/1996 Ç2). 1012 = 1 Ú‡ÏÂÚ (·˚‚¯ËÈ ÒÔ‡Ú). 2,9 × 1012 ≈ 7 AU: ‰Ë‡ÏÂÚ Ò‡ÏÓÈ ·Óθ¯ÓÈ ËÁ‚ÂÒÚÌÓÈ Ò‚Âı„Ë„‡ÌÚÒÍÓÈ Á‚ÂÁ‰˚ VY Canis Majoris. 4,5 × 1012 ≈ 30 AU: Ó·ËڇθÌÓ ‡ÒÒÚÓflÌË çÂÔÚÛ̇. 30–50 AU: ‡ÒÒÚÓflÌË ÓÚ ëÓÎ̈‡ ‰Ó ‡ÒÚÂÓˉÌÓ„Ó ÔÓflÒ‡ äÛËÔ‡. 1015 = 1 ÔÂÚ‡ÏÂÚ. 50 000–100 000 AU: ‡ÒÒÚÓflÌË ÓÚ ëÓÎ̈‡ ‰Ó ӷ·͇ éÓÚ‡ (Ô‰ÔÓ·„‡ÂÏÓ ÒÙ¢ÂÒÍÓ ÒÍÓÔÎÂÌË ÍÓÏÂÚ). 3,99 × 10 16 = 266715 AU = 4,22 Ò‚. „Ó‰‡ = 1,3 ÔÍ: ‡ÒÒÚÓflÌË ‰Ó ·ÎËʇȯÂÈ Í ëÓÎÌˆÛ Á‚ÂÁ‰˚ èÓÍÒËχ ñÂÌÚ‡‚‡.
400
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
1018 = 1 ˝ÍÒ‡ÏÂÚ. 1,57 × 1018 ≈ 50,9 ÔÍ: ‡ÒÒÚÓflÌË ‰Ó Ò‚ÂıÌÓ‚ÓÈ 1987Ä. 9.46 × 1018 ≈ 306,6 ÔÍ Ò‚. ÎÂÚ: ‰Ë‡ÏÂÚ „‡Î‡ÍÚ˘ÂÒÍÓ„Ó ‰ËÒ͇ ̇¯ÂÈ „‡Î‡ÍÚËÍË åΘÌ˚È èÛÚ¸. 2,62 × 1020 ≈ 8,5 ÍÔÍ Ò‚. ÎÂÚ): ‡ÒÒÚÓflÌË ÓÚ ëÓÎ̈‡ ‰Ó „‡Î‡ÍÚ˘ÂÒÍÓ„Ó ˆÂÌÚ‡ (‚ ÒÓÁ‚ÂÁ‰ËË ëÚÂθˆ‡ Ä * ). 3,98 × 1020 ≈ 12,9 ÍÔÍ: ‡ÒÒÚÓflÌË ‰Ó ·ÎËʇȯÂÈ Í‡ÎËÍÓ‚ÓÈ „‡Î‡ÍÚËÍË ÅÓθ¯Ó„Ó èÒ‡. 1021 = 1 ÁÂÚÚ‡ÏÂÚ. 2,23 × 1022 – 725 ÍÔÍ: ‡ÒÒÚÓflÌË ‰Ó íÛχÌÌÓÒÚË Ä̉Óω˚, ·ÎËʇȯÂÈ ÍÛÔÌÓÈ „‡Î‡ÍÚËÍË. 5 × 1022 = 1,6 MÔÍ: ‰Ë‡ÏÂÚ åÂÒÚÌÓÈ „ÛÔÔ˚ „‡Î‡ÍÚËÍ. 5,7 × 1023 = 60 ÏÎÌ Ò‚. ÎÂÚ: ‡ÒÒÚÓflÌË ‰Ó ÒÓÁ‚ÂÁ‰Ëfl Ñ‚˚, ·ÎËÊ‡È¯Â„Ó ÍÛÔÌÓ„Ó ÒÍÓÔÎÂÌËfl (ÍÓÚÓÓ fl‚ÎflÂÚÒfl ‰ÓÏËÌËÛ˛˘ËÏ ‚ åÂÒÚÌÓÏ Ò‚ÂıÒÍÓÔÎÂÌËË Ë ‚ ÍÓÚÓÓÏ ·˚ÎË Ó·Ì‡ÛÊÂÌ˚ Ô‚‡fl „‡Î‡ÍÚË͇ ÚÂÏÌÓÈ Ï‡ÚÂËË Ë Ô‚˚ ‚Ì„‡Î‡ÍÚ˘ÂÒÍË Á‚ÂÁ‰˚). 1024 = 1 ÈÓÚÚ‡ÏÂÚ. 2 × 1024 = 60 åÔÍ: ‰Ë‡ÏÂÚ åÂÒÚÌÓ„Ó Ò‚ÂıÒÍÓÔÎÂÌËfl (ËÎË ë‚ÂıÒÍÓÔÎÂÌËfl Ñ‚˚). 2,36 × 1024 = 250 ÏÎÌ Ò‚. ÎÂÚ: ‡ÒÒÚÓflÌË ‰Ó ÇÂÎËÍÓ„Ó ‡ÚÚ‡ÍÚÓ‡ („‡‚ËÚ‡ˆËÓÌÌÓÈ ‡ÌÓχÎËË ‚ åÂÒÚÌÓÏ Ò‚ÂıÒÍÓÔÎÂÌËË). 500 ÏÎÌ Ò‚. ÎÂÚ: ‰ÎË̇ ÇÂÎËÍÓÈ ëÚÂÌ˚ „‡Î‡ÍÚËÍ Ë ‡Î¸Ù‡ ÔÛÁ˚ÂÈ ãËχ̇, Ò‡Ï˚ı ·Óθ¯Ëı ̇·Î˛‰‡ÂÏ˚ı ÒÛÔÂÒÚÛÍÚÛ ‚Ó ‚ÒÂÎÂÌÌÓÈ (ÔÓÒÚ‡ÌÒÚ‚Ó ‚˚„Îfl‰ËÚ ÚÂÏ ·ÓΠ‡‚ÌÓÏÂÌ˚Ï, ˜ÂÏ ÍÛÔÌ χүڇ·). 12 080 ÏÎÌ Ò‚. ÎÂÚ = 3704 åÔÍ: ‡ÒÒÚÓflÌË ‰Ó ̇˷ÓΠۉ‡ÎÂÌÌÓ„Ó ËÁ‚ÂÒÚÌÓ„Ó Í‚‡Á‡‡ SDSS J1148 + 5251 (͇ÒÌÓ ÒÏ¢ÂÌË 6,43, ‚ ÚÓ ‚ÂÏfl Í‡Í 6,5 fl‚ÎflÂÚÒfl Ô‰ÔÓÎÓÊËÚÂθÌÓ "ÒÚÂÌÓÈ Ì‚ˉËÏÓÒÚË" ‰Îfl ‚ˉËÏÓ„Ó Ò‚ÂÚ‡). 1,3 × 1026 = 13,7 Ò‚. „Ë„‡ÎÂÚ = 4,22 ÉÔÍ: ‡ÒÒÚÓflÌË (‡ÒÒ˜ËÚ‡ÌÌÓÂ Ò ÔÓÏÓ˘¸˛ ÁÓ̉‡ ÏËÍÓ‚ÓÎÌÓ‚ÓÈ ‡ÌËÁÓÚÓÔËË ìËÎÍËÌÒÓ̇), ÔÓȉÂÌÌÓ ÙÓÌÓ‚˚Ï ÍÓÒÏ˘Âc ÒÍËÏ ËÁÎÛ˜ÂÌËÂÏ Ò ÏÓÏÂÌÚ‡ "ÅÓθ¯Ó„Ó ‚Á˚‚‡" (‡‰ËÛÒ ï‡··Î‡ DH = , ÍÓÒÏËH0 ˜ÂÒÍËÈ Ò‚ÂÚÓ‚ÓÈ „ÓËÁÓÌÚ, ‚ÓÁ‡ÒÚ ‚ÒÂÎÂÌÌÓÈ). ë Û˜ÂÚÓÏ ÚÓ„Ó ˜ÚÓ ˝ÚÓ ˜ËÒÎÓ ËÏÂÂÚ ÔÓfl‰ÓÍ ‡‰ËÛÒ‡ ò‚‡ˆ˜‡È艇 ‰Îfl χÒÒ˚ ‚ÒÂÎÂÌÌÓÈ, ÌÂÍÓÚÓ˚ ÙËÁËÍË ‡ÒÒχÚË‚‡˛Ú ‚Ò˛ ‚ÒÂÎÂÌÌÛ˛ Í‡Í „Ë„‡ÌÚÒÍÛ˛ ‚‡˘‡˛˘Û˛Òfl ˜ÂÌÛ˛ ‰˚Û. чÌÌÓ ˜ËÒÎÓ 1 –56 ËÏÂÂÚ Ú‡ÍÊ ÔÓfl‰ÓÍ (ÂÒÎË ÍÓÒÏÓÎӄ˘ÂÒ͇fl ÔÓÒÚÓflÌ̇fl Λ ≈ 1,36 × 10 ÒÏ – Λ 2 ), ˜ÚÓ ÌÂÍÓÚÓ˚ ۘÂÌ˚ ҘËÚ‡˛Ú χÍÒËχθÌÓÈ ‰ÎËÌÓÈ ÔÓ‰Ó·ÌÓ ÏËÌËχθÌÓÈ ‰ÎËÌ è·Ì͇. 7,4 × 1026: Ì˚̯Ì ‡ÒÒÚÓflÌË (ÒÓ‚ÏÂÒÚÌÓ„Ó) ‰‚ËÊÂÌËfl ‰Ó ͇fl ̇·Î˛‰‡ÂÏÓÈ ‚ÒÂÎÂÌÌÓÈ (‡ÁÏÂ˚ ̇·Î˛‰‡ÂÏÓÈ ‚ÒÂÎÂÌÌÓÈ Ô‚˚¯‡˛Ú ‰ÎËÌÛ ‡‰ËÛÒ‡ ·Î‡, ÔÓÒÍÓθÍÛ ‚ÒÂÎÂÌ̇fl ÔÓ‰ÓÎʇÂÚ ‡Ò¯ËflÚ¸Òfl). ëӄ·ÒÌÓ ÚÂÓËË Ô‡‡ÎÎÂθÌ˚ı ‚ÒÂÎÂÌÌ˚ı, Ô‰ÔÓ·„‡ÂÚÒfl, ˜ÚÓ Ì‡ Û‰‡ÎÂÌËË ÔÓfl‰Í‡ 1010 ˉÂÌÚ˘̇fl ÍÓÔËfl ̇¯ÂÈ ‚ÒÂÎÂÌÌÓÈ.
118
Ï ÒÛ˘ÂÒÚ‚ÛÂÚ ‰Û„‡fl,
É·‚‡ 28
çÖåÄíÖåÄàóÖëäàÖ à éÅêÄáçõÖ áçÄóÖçàü êÄëëíéüçàü
28.1. êÄëëíéüçàü, ëÇüáÄççõÖ ë éíóìÜÑÖççéëíúû èË·ÎËÁËÚÂθÌ˚ ‡ÒÒÚÓflÌËfl ÔÓ ¯Í‡Î ˜ÂÎÓ‚Â͇ ê‡ÒÒÚÓflÌË ÛÍË – ‡ÒÒÚÓflÌË (ÓÍÓÎÓ 0,7 Ï, Ú.Â. Ú‡Í Ì‡Á˚‚‡ÂÏӠ΢ÌÓ ‡ÒÒÚÓflÌËÂ), ÍÓÚÓÓ Ô‰ÛÔÂʉ‡ÂÚ Ù‡ÏËθflÌÓÒÚ¸ ËÎË ÍÓÌÙÎËÍÚ (‡Ì‡ÎÓ„‡ÏË fl‚Îfl˛ÚÒfl ËڇθflÌÒÍÓ bracio, ÚÛˆÍËÈ pik Ë ÒÚ‡ÓÛÒÒ͇fl Ò‡ÊÂ̸). ê‡ÒÒÚÓflÌË ‰ÓÒfl„‡ÌËfl – ‡ÁÌˈ‡ ÏÂÊ‰Û Ô‰ÂÎÓÏ ‰ÓÒfl„‡ÂÏÓÒÚË Ë ‡ÒÒÚÓflÌËÂÏ ÛÍË. ê‡ÒÒÚÓflÌË Ô΂͇ – ‚ÂҸχ ÍÓÓÚÍÓ ‡ÒÒÚÓflÌËÂ. ê‡ÒÒÚÓflÌË ÓÍË͇ – ÍÓÓÚÍÓÂ, ΄ÍÓ ‰ÓÒfl„‡ÂÏÓ ‡ÒÒÚÓflÌËÂ. ê‡ÒÒÚÓflÌË ۉ‡‡ – ‡ÒÒÚÓflÌËÂ, ‚ ԉ·ı ÍÓÚÓÓ„Ó Ó·˙ÂÍÚ ÏÓÊÂÚ ·˚Ú¸ ‰ÓÒfl„‡ÂÏ ‰Îfl ̇ÌÂÒÂÌËfl Û‰‡‡. ê‡ÒÒÚÓflÌË ·ÓÒ͇ ͇ÏÌfl ËÁÏÂflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ ÔËÏÂÌÓ 25 Ò‡ÊÂÌÂÈ (46 Ï). ê‡ÒÒÚÓflÌË ÒÎ˚¯ËÏÓÒÚË „ÓÎÓÒ‡ – ‰‡Î¸ÌÓÒÚ¸, ‚ ԉ·ı ÍÓÚÓÓÈ ÏÓÊÂÚ ·˚Ú¸ ÛÒÎ˚¯‡Ì ˜ÂÎӂ˜ÂÒÍËÈ „ÓÎÓÒ. ê‡ÒÒÚÓflÌË Ô¯ÍÓÏ – ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ ӷ˚˜ÌÓ ÏÓÊÌÓ (‚ Á‡‚ËÒËÏÓÒÚË ÓÚ ÍÓÌÍÂÚÌÓÈ ÒËÚÛ‡ˆËË) ÔÓÈÚË Ô¯ÍÓÏ. í‡Í, ̇ÔËÏÂ, ‚ ÌÂÍÓÚÓ˚ı ¯ÍÓ·ı ÇÂÎËÍÓ·ËÚ‡ÌËË ‡ÒÒÚÓflÌË 2 Ë 3 ÏËÎË Ò˜ËÚ‡ÂÚÒfl ÌÓχÚË‚Ì˚Ï ‡ÒÒÚÓflÌËÂÏ ıÓ‰¸·˚ Ô¯ÍÓÏ ‰Îfl ‰ÂÚÂÈ ‚ ‚ÓÁ‡ÒÚ ‰Ó Ë ÔÓÒΠ11 ÎÂÚ. ê‡ÒÒÚÓflÌËfl ÏÂÊ‰Û Î˛‰¸ÏË Ç ‡·ÓÚ ïÓη [Hall69] Ô‰·„‡ÂÚÒfl ‚ ÒÙ ÏÂÊ΢ÌÓÒÚÌ˚ı ÙËÁ˘ÂÒÍËı ÓÚÌÓ¯ÂÌËÈ ÏÂÊ‰Û Î˛‰¸ÏË ‚˚‰ÂÎËÚ¸ ÒÎÂ‰Û˛˘Ë ˜ÂÚ˚ ÁÓÌ˚: ËÌÚËÏÌÓÈ ·ÎËÁÓÒÚË – ‰Îfl Ó·˙flÚËÈ Ë ‡Á„Ó‚Ó‡ ¯ÂÔÓÚÓÏ (15–45 ÒÏ), ‡ÒÒÚÓflÌˠ΢ÌÓÈ ·ÎËÁÓÒÚË – ‰Îfl ‡Á„Ó‚Ó‡ Ò ıÓÓ¯ËÏË ‰ÛÁ¸flÏË (45–120 ÒÏ), ‡ÒÒÚÓflÌË ÒӈˇθÌÓ„Ó ÍÓÌÚ‡ÍÚ‡ – ‰Îfl ·ÂÒ‰˚ ÒÓ Á̇ÍÓÏ˚ÏË (1,2–3,6 Ï) Ë ‡ÒÒÚÓflÌË ӷ˘ÂÒÚ‚ÂÌÌÓÈ ‰ËÒڇ̈ËË – ‰Îfl ÔÛ·Î˘Ì˚ı ‚˚ÒÚÛÔÎÂÌËÈ (·ÓΠ3,6 Ï). ä‡ÍÓ ËÁ ˝ÚËı ÔÓÍÒÂÏ˘ÂÒÍËı ‡ÒÒÚÓflÌËÈ ·Û‰ÂÚ ÔËÂÏÎÂÏ˚Ï ‚ ÍÓÌÍÂÚÌÓÈ ÒӈˇθÌÓÈ ÒËÚÛ‡ˆËË, ÓÔ‰ÂÎflÂÚÒfl ÍÛθÚÛÓÈ, ÔÓÎÓÏ Ë Î˘Ì˚ÏË Ô‰ÔÓ˜ÚÂÌËflÏË ˜ÂÎÓ‚Â͇. ç‡ÔËÏÂ, ‚ ËÒ·ÏÒÍËı Òڇ̇ı ·ÎËÁÍËÈ ÍÓÌÚ‡ÍÚ (̇ıÓʉÂÌË ‚ Ó‰ÌÓÏ ÔÓÏ¢ÂÌËË ËÎË ÛÍÓÏÌÓÏ ÏÂÒÚÂ) ÏÂÊ‰Û ÏÛʘËÌÓÈ Ë ÊÂÌ˘ËÌÓÈ ‰ÓÔÛÒ͇ÂÚÒfl ÚÓθÍÓ ‚ ÔËÒÛÚÒÚ‚ËË Ëı χı‡Ï‡ (ÒÛÔÛ„‡ ËÎË Í‡ÍÓ„Ó-ÌË·Û‰¸ Îˈ‡ ÚÓ„Ó Ê ÔÓ·, ËÎË ÌÂÒӂ¯ÂÌÌÓÎÂÚÌÂ„Ó Îˈ‡ ÔÓÚË‚ÓÔÓÎÓÊÌÓ„Ó ÔÓ·). ÑÎfl Ò‰ÌÂ„Ó Ô‰ÒÚ‡‚ËÚÂÎfl Á‡Ô‡‰ÌÓÈ ˆË‚ËÎËÁ‡ˆËË Â„Ó Î˘Ì˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ò˜ËÚ‡ÂÚÒfl ‡ÒÒÚÓflÌË ÒÔÂÂ‰Ë 70 ÒÏ, ÒÁ‡‰Ë – 40 ÒÏ Ë 60 ÒÏ Ò Î˛·Ó„Ó ·Ó͇. èӂ‰ÂÌË β‰ÂÈ, ÓÔ‰ÂÎflÂÏÓ ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÌËÏË, ÏÓÊÌÓ ËÁÏÂflÚ¸, ̇ÔËÏÂ, ‡ÒÒÚÓflÌËÂÏ ÚÓÏÓÊÂÌËfl (ÍÓ„‰‡ Ó·˙ÂÍÚ ÓÒڇ̇‚ÎË‚‡ÂÚÒfl, ÔÓÒÍÓθÍÛ ‰‡Î¸ÌÂȯ ҷÎËÊÂÌË ‚˚Á˚‚‡ÂÚ Û ÌÂÂ/ÌÂ„Ó ˜Û‚ÒÚ‚Ó ÌÂÎÓ‚ÍÓÒÚË) ËÎË ÔÓ͇Á‡ÚÂÎÂÏ ÔË·ÎËÊÂÌËfl, Ú.Â. ÔÓˆÂÌÚÌ˚Ï ÓÚÌÓ¯ÂÌËÂÏ ¯‡„Ó‚, ҉·ÌÌ˚ı ‰Îfl ÒÓ͇˘ÂÌËfl ÏÂÊ΢ÌÓÒÚÌÓ„Ó ‡ÒÒÚÓflÌËfl, Í Ó·˘ÂÏÛ ÍÓ΢ÂÒÚ‚Û ¯‡„Ó‚.
402
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ì„ÎÓ‚˚ ‡ÒÒÚÓflÌËfl ‚ ÓÒ‡ÌÍ β‰ÂÈ – ËÁÏÂÂÌ̇fl ‚ „‡‰ÛÒ‡ı ÓËÂÌÚ‡ˆËfl ‚ ÔÓÒÚ‡ÌÒÚ‚Â ÔÓÎÓÊÂÌËfl ÔΘÂÈ Ó‰ÌÓ„Ó ˜ÂÎÓ‚Â͇ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ‰Û„ÓÏÛ; ÔÓÎÓÊÂ= ÌË ‚ÂıÌÂÈ ˜‡ÒÚË ÚÛÎӂˢ‡ „Ó‚Ófl˘Â„Ó ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÒÎÛ¯‡ÚÂβ (̇ÔËÏÂ, ̇ıÓ‰ËÚ¸Òfl ÎˈÓÏ Í ÌÂÏÛ ËÎË Ó·‡˘‡Ú¸Òfl ‚ ÒÚÓÓÌÛ); ÔÓÎÓÊÂÌË ÍÓÔÛÒ‡ „Ó‚Ófl˘Â„Ó ÓÚÌÓÒËÚÂθÌÓ ÍÓÔÛÒ‡ ÒÎÛ¯‡˛˘Â„Ó, ËÁÏÂÂÌÌÓ ‚ ‚ÂÚË͇θÌÓÈ ÔÎÓÒÍÓÒÚË, ÍÓÚÓ‡fl ‡Á‰ÂÎflÂÚ ÚÂÎÓ Ì‡ ‰‚ ÔÓÎÓ‚ËÌ˚ (ÔÂÂ‰Ì˛˛ Ë Á‡‰Ì˛˛). чÌÌÓ ‡ÒÒÚÓflÌË ÔÓÁ‚ÓÎflÂÚ ÒÛ‰ËÚ¸ Ó ÚÓÏ, Í‡Í ˜ÂÎÓ‚ÂÍ ÓÚÌÓÒËÚÒfl Í ÓÍÛʇ˛˘ËÏ Â„Ó Î˛‰flÏ: ‚ÂıÌflfl ˜‡ÒÚ¸ ÚÛÎӂˢ‡ ÌÂÔÓËÁ‚ÓθÌÓ ‡Á‚Ó‡˜Ë‚‡ÂÚÒfl ‚ ÒÚÓÓÌÛ ÓÚ ÚÂı, ÍÚÓ Ì ̇‚ËÚÒfl ËÎË ‚ ÒÎÛ˜‡Â ‡ÁÌӄ·ÒËÈ. ùÏÓˆËÓ̇θÌÓ ‡ÒÒÚÓflÌË ùÏÓˆËÓ̇θÌÓ ‡ÒÒÚÓflÌË (ËÎË ÔÒËı˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ) ÔÓ͇Á˚‚‡ÂÚ ÒÚÂÔÂ̸ ˝ÏÓˆËÓ̇θÌÓÈ ÓÚÒÚ‡ÌÂÌÌÓÒÚË (ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ˜ÂÎÓ‚ÂÍÛ, „ÛÔÔ β‰ÂÈ ËÎË ÒÓ·˚ÚËflÏ), ÓÚ˜ÛʉÂÌÌÓÒÚ¸ Ë ‡‚ÌӉۯˠÔÓÒ‰ÒÚ‚ÓÏ Á‡ÏÍÌÛÚÓÒÚË Ë ÌÂÓ·˘ËÚÂθÌÓÒÚË. ò͇· ÒӈˇθÌÓÈ ‰ËÒڇ̈ËË ÅÓ„‡‰ÛÒ‡ ‚ ‰ÂÈÒÚ‚ËÚÂθÌÓÒÚË ËÁÏÂflÂÚ Ì ÒӈˇθÌ˚Â, ‡ ËÏÂÌÌÓ Ú‡ÍË ‡ÒÒÚÓflÌËfl; ÔÓ ‰‡ÌÌÓÈ ¯Í‡Î ‡Á΢‡˛ÚÒfl ÒÎÂ‰Û˛˘Ë ‚ÓÒÂϸ „‡‰‡ˆËÈ "˜ÛʉÓÒÚË" ‰Îfl ÂÒÔÓ̉ÂÌÚÓ‚ – Ô‰ÒÚ‡‚ËÚÂÎÂÈ ‰Û„Ëı ˝ÚÌ˘ÂÒÍËı „ÛÔÔ Ë „ÓÚÓ‚ÌÓÒÚ¸ Í ‚Á‡ËÏÓ‰ÂÈÒڂ˲ Ò ÌËÏË ‚ ÚÓÏ ËÎË ËÌÓÏ Í‡˜ÂÒÚ‚Â: ÏÓ„ÎË ·˚ ÔÓÓ‰ÌËÚ¸Òfl, ÏÓ„ÎË ·˚ ÔËÌflÚ¸ „ÓÒÚÂÏ ‚ ‰ÓÏÂ, ÏÓ„ÎË ·˚ ÊËÚ¸ ÒÓÒ‰flÏË, ÏÓ„ÎË ·˚ ÊËÚ¸ ‚ ·ÎËʇȯÂÈ ÓÍÂÒÚÌÓÒÚË, ÏÓ„ÎË ·˚ ÊËÚ¸ ‚ Ó‰ÌÓÏ „ÓÓ‰Â, Ì Ê·ÎË ·˚ ÊËÚ¸ ‚ Ó‰ÌÓÏ „ÓÓ‰Â, ‚˚Ò·ÎË ·˚, Û·ËÎË ·˚. ÑÓ‰‰ Ë çÂıÌ‚‡ÒËfl ‚ 1954 „. ÔÓÒÚ‡‚ËÎË t ‚ ÒÓÓÚ‚ÂÚÒÚ‚Ë ‚ÓÒ¸ÏË ÛÓ‚ÌflÏ ¯Í‡Î˚ ÅÓ„‡‰‡ ‚ÓÁ‡ÒÚ‡˛˘Ë ‡ÒÒÚÓflÌËfl 10 Ï, 0 ≤ t ≤ 7. ùÙÙÂÍÚ ÒÓÒ‰ÒÚ‚‡ – ÚẨÂ̈Ëfl β‰ÂÈ ˝ÏÓˆËÓ̇θÌÓ Ò·ÎËʇڸÒfl, ‚ÒÚÛÔ‡Ú¸ ‚ ‰ÛÊÂÒÍË ËÎË ÓχÌÚ˘ÂÒÍË ÓÚÌÓ¯ÂÌËfl Ò ÚÂÏË, ÍÚÓ Ì‡ıÓ‰ËÚÒfl ·ÎËÊÂ Í ÌËÏ (ÙËÁ˘ÂÒÍË Ë ÔÒËıÓÎӄ˘ÂÒÍË), Ú.Â. c ÚÂÏË, Ò ÍÂÏ ÓÌË ˜‡ÒÚÓ ‚ÒÚ˜‡˛ÚÒfl. ìÓÎÏÒÎË Ô‰ÎÓÊËÎ Ò˜ËÚ‡Ú¸, ˜ÚÓ ˝ÏÓˆËÓ̇θ̇fl ‚ӂΘÂÌÌÓÒÚ¸ ÒÓ͇˘‡ÂÚÒfl Í‡Í d −1 / 2 ÔÓ Ï ۂÂ΢ÂÌËfl ÒÛ·˙ÂÍÚË‚ÌÓ„Ó ‡ÒÒÚÓflÌËfl d. ëӈˇθ̇fl ‰ËÒڇ̈Ëfl Ç ÒÓˆËÓÎÓ„ËË ÒӈˇθÌÓÈ ‰ËÒڇ̈ËÂÈ Ì‡Á˚‚‡ÂÚÒfl ÒÚÂÔÂ̸ ÓÚÒÚ‡ÌÂÌÌÓÒÚË ÓÚ‰ÂθÌ˚ı Îˈ ËÎË „ÛÔÔ Î˛‰ÂÈ ÓÚ Û˜‡ÒÚËfl ‚ ÊËÁÌË ‰Û„ ‰Û„‡; ÒÚÂÔÂ̸ ÔÓÌËχÌËfl Ë ÚÂÒ̇fl Ò‚flÁ¸, ı‡‡ÍÚÂËÁÛ˛˘Ë Î˘Ì˚Â Ë ÒӈˇθÌ˚ ÓÚÌÓ¯ÂÌËfl ‚ ˆÂÎÓÏ. чÌÌÓ ÔÓÌflÚË ·˚ÎÓ ‚‚‰ÂÌÓ ëËÏÏÂÎÓÏ ‚ 1903 „.; ÔÓ Â„Ó ÏÌÂÌ˲, ÒӈˇθÌ˚ ÙÓÏ˚ fl‚Îfl˛ÚÒfl ÒÚ‡·ËθÌ˚ÏË ËÚÓ„‡ÏË ‡ÒÒÚÓflÌËÈ ÏÂÊ‰Û ÒÛ·˙ÂÍÚÓÏ Ë Ó·˙ÂÍÚÓÏ (ÍÓÚÓ˚È, ‚ Ò‚Ó˛ Ә‰¸, fl‚ÎflÂÚÒfl ‡Á‰ÂÎÂÌËÂÏ Ò‡ÏÓ„Ó Ò·fl). éÚÒ˜ÂÚ ÔÓ ¯Í‡Î ÒӈˇθÌ˚ı ‡ÒÒÚÓflÌËÈ ÅÓ„‡‰ÛÒ‡ (ÒÏ. ˝ÏÓˆËÓ̇θÌÓ ‡ÒÒÚÓflÌËÂ) ‚‰ÂÚÒfl Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ ÓÚ‚ÂÚ˚ ‰Îfl ͇ʉÓÈ ˝ÚÌ˘ÂÒÍÓÈ/‡ÒÓ‚ÓÈ „ÛÔÔ˚ ÛÒ‰Ìfl˛ÚÒfl ÔÓ ‚ÒÂÏ ÂÒÔÓ̉ÂÌÚ‡Ï, ˜ÚÓ ‰‡ÂÚ Ì‡Ï ÔÓ͇Á‡ÚÂθ RDQ (ÍÓ˝ÙÙˈËÂÌÚ ‡ÒÓ‚Ó„Ó ‡ÒÒÚÓflÌËfl) ‚ ԉ·ı ÓÚ 1,00 ‰Ó 8,00. èËÏÂÓÏ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ÏÓ‰ÂÎÂÈ fl‚Îfl˛ÚÒfl: [Aker97], ÓÔ‰ÂÎfl˛˘ËÈ ‡„ÂÌÚ‡ ı Í‡Í Ô‡Û (ı1, ı2 ) ˜ËÒÂÎ, „‰Â ı1 Ô‰ÒÚ‡‚ÎflÂÚ ËÒıÓ‰ÌÓÂ, Ú.Â. Û̇ÒΉӂ‡ÌÌÓÂ, ÒӈˇθÌÓ ÔÓÎÓÊÂÌËÂ, Ë ı 2 – ÔÓÎÓÊÂÌËÂ, ÍÓÚÓÓ Ô‰ÔÓÎÓÊËÚÂθÌÓ ·Û‰ÂÚ Á‡ÌflÚÓ ‚ ·Û‰Û˘ÂÏ. Ä„ÂÌÚ ı ‚˚·Ë‡ÂÚ Á̇˜ÂÌË ı2 , Ò ÚÂÏ ˜ÚÓ·˚ χÍÒËÏËÁËÓ‚‡Ú¸ f ( x1 ) +
∑ y≠ x
e , (h + | x1 − y1 | ) ( g + | x 2 − y1 | )
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
403
„‰Â e, h, g – Ô‡‡ÏÂÚ˚, f(x1) – ÒÓ·ÒÚ‚ÂÌ̇fl ÒÚÓËÏÓÒÚ¸ ı Ë | x1 − y1 | | x 2 − y1 | – Û̇ÒΉӂ‡Ì̇fl Ë ÔËÓ·ÂÚÂÌ̇fl ÒӈˇθÌ˚ ‰ËÒڇ̈ËË ı ‰Ó β·Ó„Ó ‡„ÂÌÚ‡ Û (Ò ÒӈˇθÌ˚Ï ÔÓÎÓÊÂÌËÂÏ Û1 ) ÍÓÌÍÂÚÌÓ„Ó Ó·˘ÂÒÚ‚‡. ëÓˆËÓ-ÍÛθÚÛÌ˚ ‰ËÒڇ̈ËË êÛÏÏÂÎfl èÓ ÓÔ‰ÂÎÂÌ˲ êÛÏÏÂÎfl [Rumm76], ÓÒÌÓ‚Ì˚ÏË ÒӈˇθÌÓ-ÍÛθÚÛÌ˚ÏË ‰ËÒڇ̈ËflÏË ÏÂÊ‰Û ‰‚ÛÏfl β‰¸ÏË fl‚Îfl˛ÚÒfl ÒÎÂ‰Û˛˘ËÂ. 1. ã˘̇fl ‰ËÒڇ̈Ëfl – Ú‡ÍÓ ‡ÒÒÚÓflÌËÂ, ÒÓ͇˘‡fl ÍÓÚÓÓ β‰Ë ̇˜Ë̇˛Ú ‚ÚÓ„‡Ú¸Òfl ̇ ÚÂËÚÓ˲ ΢ÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ‰Û„ ‰Û„‡. 2. èÒËıÓÎӄ˘ÂÒ͇fl ‰ËÒڇ̈Ëfl – ‚ÓÒÔËÌËχÂÏÓ ‡Á΢ˠÏÓÚË‚‡ˆËÈ, ÚÂÏÔ‡ÏÂÌÚÓ‚, ÒÔÓÒÓ·ÌÓÒÚÂÈ, ̇ÒÚÓÂÌËÈ Ë ÒÓÒÚÓflÌËÈ (‚Íβ˜‡fl ÓÚ‰ÂθÌÓÈ Í‡Ú„ÓËÂÈ ËÌÚÂÎÎÂÍÚۇθÌÛ˛ ‰ËÒÚ‡ÌˆË˛). 3. ÑËÒڇ̈Ëfl ËÌÚÂÂÒÓ‚ – ‚ÓÒÔËÌËχÂÏÓ ‡Á΢ˠ‚ Ê·ÌËflı, Ò‰ÒÚ‚‡ı Ë ˆÂÎflı (‚Íβ˜‡fl ˉÂÓÎӄ˘ÂÒÍÛ˛ ‰ËÒÚ‡ÌˆË˛ ÔÓ ÒӈˇθÌÓ-ÔÓÎËÚ˘ÂÒÍËÏ ÔÓ„‡ÏχÏ). 4. ÄÙÙËÌ̇fl ‰ËÒڇ̈Ëfl – ÒÚÂÔÂ̸ ÒËÏÔ‡ÚËË, ‡ÒÔÓÎÓÊÂÌËfl ËÎË ÔË‚flÁ‡ÌÌÓÒÚË ÏÂÊ‰Û ‰‚ÛÏfl β‰¸ÏË. 5. ÑËÒڇ̈Ëfl ÒӈˇθÌ˚ı ‡ÚË·ÛÚÓ‚ – ‡Á΢ˠ‚ ‰ÓıÓ‰‡ı Ë Ó·‡ÁÓ‚‡ÌËË, ‡ÒÓ‚˚Â Ë ÒÂÍÒۇθÌ˚ ‡Á΢Ëfl, ‡Á΢Ëfl ‚ ÔÓÙÂÒÒËÓ̇θÌÓÈ ‰ÂflÚÂθÌÓÒÚË Ë Ú.Ô. 6. ÑËÒڇ̈Ëfl ÒÚ‡ÚÛÒ‡ – ‡Á΢ˠ‚ ·Î‡„ÓÒÓÒÚÓflÌËË, ÏÓ„Û˘ÂÒÚ‚Â Ë ÔÂÒÚËÊ (‚Íβ˜‡fl ‰ËÒÚ‡ÌˆË˛ ‚·ÒÚË). 7. ä·ÒÒÓ‚‡fl ‰ËÒڇ̈Ëfl – ÒÚÂÔÂ̸ Ó·˘Â„Ó ‡‚ÚÓËÚÂÚÌÓ„Ó Ô‚ÓÒıÓ‰ÒÚ‚‡ Ó‰ÌÓ„Ó Îˈ‡ ̇‰ ‰Û„ËÏ, ̇ıÓ‰fl˘ËÏÒfl ‚ Â„Ó ÔÓ‰˜ËÌÂÌËË. 8. äÛθÚÛ̇fl ‰ËÒڇ̈Ëfl – ‡Á΢Ëfl ÔÓÌËχÌËfl ÒÏ˚Ò·, Á̇˜ÂÌËÈ Ë ÌÓÏ, ÓÚÓ·‡ÊÂÌÌ˚ ‚ ÙËÎÓÒÓÙÒÍÓ-ÂÎË„ËÓÁÌ˚ı ÛÒÚ‡Ìӂ͇ı, ̇ÛÍÂ, ˝Ú˘ÂÒÍËı ÌÓχı, flÁ˚ÍÂ Ë ËÁÓ·‡ÁËÚÂθÌÓÏ ËÒÍÛÒÒÚ‚Â. äÛθÚÛÌÓ ‡ÒÒÚÓflÌËÂ Ç ‡·ÓÚ [KoSi88] ÍÛθÚÛÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl Òڇ̇ÏË x = ( x1 ,..., x5 ) Ë y = ( y1 ,..., y5 ) (Ó·˚˜ÌÓ ˝ÚÓ ëòÄ) ÔÓÎÛ˜‡ÂÚÒfl ‚ ‚ˉ ÒÎÂ‰Û˛˘Â„Ó Ó·Ó·˘ÂÌÌÓ„Ó Ë̉ÂÍÒ‡: 5 ( xi − yi )2 , 5Vi i =1
∑
„‰Â V i – ÓÚÍÎÓÌÂÌË Ë̉ÂÍÒ‡ i, ‡ Ò‡ÏË Ë̉ÂÍÒ˚ ÔÓ ÏÂÚÓ‰ËÍ [Hofs80] Ó·ÓÁ̇˜‡˛Ú: 1) ‡ÒÒÚÓflÌË ‚·ÒÚË; 2) Ô‰ÓÚ‚‡˘ÂÌË ÌÂÛ‚ÂÂÌÌÓÒÚË (ÒÚÂÔÂ̸ Ó˘Û˘ÂÌËfl ˜ÎÂ̇ÏË Ó‰ÌÓÈ ÍÛθÚÛ˚ Û„ÓÁ˚ ÓÚ ÌÂÓÔ‰ÂÎÂÌÌ˚ı ËÎË ÌÂËÁ‚ÂÒÚÌ˚ı ÒËÚÛ‡ˆËÈ); 3) Ë̉˂ˉۇÎËÁÏ ÔÓÚË‚ ÍÓÎÎÂÍÚË‚ËÁχ; 4) ÏÛÊÂÒÚ‚ÂÌÌÓÒÚ¸ ÔÓÚË‚ ÊÂÌÒÚ‚ÂÌÌÓÒÚË; 5) ÍÓÌÙۈˇÌÒÍËÈ ‰Ë̇ÏËÁÏ (Óı‚‡Ú˚‚‡ÂÚ ‰Ó΄ÓÒÓ˜Ì˚Â Ë Í‡ÚÍÓÒÓ˜Ì˚ ÛÒÚ‡ÌÓ‚ÍË). ì͇Á‡ÌÌÓ ‚˚¯Â ‡ÒÒÚÓflÌË ‚·ÒÚË ËÁÏÂflÂÚ ÚÓ, ̇ÒÍÓθÍÓ Ó·Î˜ÂÌÌ˚ ÏÂ̸¯ÂÈ ‚·ÒÚ¸˛ ˜ÎÂÌ˚ Û˜ÂʉÂÌËÈ Ë Ó„‡ÌËÁ‡ˆËÈ ‚ Òڇ̠ÓÊˉ‡˛Ú Ë ÔËÁ̇˛Ú ̇‚ÌÓ ‡ÒÔ‰ÂÎÂÌË ‚·ÒÚË, Ú.Â. ̇ÒÍÓθÍÓ ‚˚ÒÓ͇ ÍÛθÚÛ‡ Û‚‡ÊÂÌËfl Í ‚·ÒÚË. í‡Í, ̇ÔËÏÂ, ã‡ÚËÌÒ͇fl ÄÏÂË͇ Ë üÔÓÌËfl ÔÓ ˝ÚËÏ ÔÓ͇Á‡ÚÂÎflÏ Ì‡ıÓ‰flÚÒfl ‚ Ò‰ËÌ ¯Í‡Î˚.
404
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ê‡ÒÒÚÓflÌË ˝ÙÙÂÍÚË‚ÌÓÈ ÚÓ„Ó‚ÎË ê‡ÒÒÚÓflÌË ˝ÙÙÂÍÚË‚ÌÓÈ ÚÓ„Ó‚ÎË ÏÂÊ‰Û Òڇ̇ÏË ı Ë Û Ò Ì‡ÒÂÎÂÌËÂÏ x1 ,..., x m Ë y1 ,..., yn ÓÒÌÓ‚Ì˚ı Ëı „ÓÓ‰ÒÍËı ‡„ÎÓχˆËÈ ÓÔ‰ÂÎflÂÚÒfl ‚ ‡·ÓÚ [HeMa02] Í‡Í xi Σ 1≤ i ≤ m 1≤ t ≤ m x i
∑
1
∑
1≤ j ≤ n
r dijr , Σ1≤ i ≤ m yi yj
„‰Â dij – ‚Á‡ËÏÌÓ ‡ÒÒÚÓflÌË (‚ ÍËÎÓÏÂÚ‡ı) ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ‡„ÎÓχˆËÈ Ë r – χ ˜Û‚ÒÚ‚ËÚÂθÌÓÒÚË ÚÓ„Ó‚˚ı ÔÓÚÓÍÓ‚ ÚÓ„Ó‚ÎË Í dij . Ç Í‡˜ÂÒÚ‚Â ‚ÌÛÚÂÌÌÂ„Ó ‡ÒÒÚÓflÌËfl ÒÚ‡Ì˚, ËÁÏÂfl˛˘Â„Ó Ò‰Ì ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÓËÁ‚Ó‰ËÚÂÎflÏË Ë ÔÓÚ·ËÚÂÎflÏË, Ô‰·„‡ÂÚÒfl ËÒÔÓθÁÓ‚‡Ú¸ ‚Â΢ËÌÛ ÔÎÓ˘‡‰¸ 0, 67 (ÒÏ. [HeMa02]). π íÂıÌÓÎӄ˘ÂÒÍË ‡ÒÒÚÓflÌËfl íÂıÌÓÎӄ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ‰‚ÛÏfl ÙËχÏË fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌË (Ó·˚˜ÌÓ ˝ÚÓ χ 2 ËÎË ‡ÒÒÚÓflÌË ÍÓÒËÌÛÒ‡) ÏÂÊ‰Û Ëı ÔÓÚÙÂÎflÏË Ô‡ÚÂÌÚÓ‚, Ú.Â. ‚ÂÍÚÓ‡ÏË ÍÓ΢ÂÒÚ‚‡ ÔÓÎÛ˜ÂÌÌ˚ı Ô‡ÚÂÌÚÓ‚ ‚ ÚÂıÌÓÎӄ˘ÂÒÍËı (Ó·˚˜ÌÓ 36) ÔӉ͇Ú„ÓËflı. ÑÛ„Ë ËÁÏÂÂÌËfl ÓÒÌÓ‚‡Ì˚ ̇ ÍÓ΢ÂÒÚ‚Â ÒÒ˚ÎÓÍ Ì‡ Ô‡ÚÂÌÚ˚, ÒÓ‡‚ÚÓÒÍË ‡Á‡·ÓÚÍË Ë Ú.Ô. äÓ„ÌËÚË‚ÌÓ ‡ÒÒÚÓflÌË ɇÌÒÚ˝Ì‰‡ ÏÂÊ‰Û ‰‚ÛÏfl ÍÓÏÔ‡ÌËflÏË – ‡ÒÒÚÓflÌË µ ( A ∆ B) µ ( A ∩ B) òÚÂÈÌı‡ÛÒ‡ = 1− ÏÂÊ‰Û Ëı ÚÂıÌÓÎӄ˘ÂÒÍËÏË ÔÓÙËÎflÏË µ ( A ∪ B) µ ( A ∪ B) (̇·Ó‡ÏË Ë‰ÂÈ) Ä Ë Ç , ‡ÒÒχÚË‚‡ÂÏ˚ÏË Í‡Í ÔÓ‰ÏÌÓÊÂÒÚ‚‡ ÔÓÒÚ‡ÌÒÚ‚‡ Ò ÏÂÓÈ (Ω, Ä, µ). ùÍÓÌÓÏ˘ÂÒ͇fl ÏÓ‰Âθ éÎÒcÓ̇ ÓÔ‰ÂÎflÂÚ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (I, d) ‚ÒÂı ˉÂÈ (ÔÓ‰Ó·ÌÓ ˜ÂÎӂ˜ÂÒÍÓÏÛ Ï˚¯ÎÂÌ˲), „‰Â I ⊂ n+ , Ò ÌÂÍÓÚÓ˚Ï ËÌÚÂÎÎÂÍÚۇθÌ˚Ï ‡ÒÒÚÓflÌËÂÏ d. á‡ÏÍÌÛÚÓÂ, Ó„‡Ì˘ÂÌÌÓÂ Ë Ò‚flÁÌÓ ÏÌÓÊÂÒÚ‚Ó Á̇ÌËÈ Ar ⊂ I ‡Ò¯ËflÂÚÒfl ‚ Ú˜ÂÌË ‚ÂÏÂÌË t. çÓ‚˚ ˝ÎÂÏÂÌÚ˚ Ó·˚˜ÌÓ fl‚Îfl˛ÚÒfl ‚˚ÔÛÍÎ˚ÏË ÍÓÏ·Ë̇ˆËflÏË Ô‰˚‰Û˘Ëı: Ó·ÌÓ‚ÎÂÌËflÏË ‚ ÔÓˆÂÒÒ ÔÓÒÚÂÔÂÌÌÓ„Ó ÚÂıÌÓÎӄ˘ÂÒÍÓ„Ó Òӂ¯ÂÌÒÚ‚Ó‚‡ÌËfl. Ç ËÒÍβ˜ËÚÂθÌ˚ı ÒÎÛ˜‡flı ÔÓËÒıÓ‰flÚ ÓÚÍ˚ÚËfl (ÒÏ¢ÂÌËfl Ô‡‡‰Ë„Ï˚ äÛ̇). Ä̇Îӄ˘ÌÓ ÔÓÌflÚË Ï˚ÒÎÂÌÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ (χÚ¡ÎËÁÓ‚‡ÌÌÓ„Ó ÏÂÌڇθÌÓ„Ó ÔÓÒÚ‡ÌÒÚ‚‡ ˉÂÈ/Á̇ÌËÈ Ë ‚Á‡ËÏÓÓÚÌÓ¯ÂÌËÈ ÏÂÊ‰Û ÌËÏË ‚ ÔÓˆÂÒÒ Ï˚¯ÎÂÌËfl) ËÒÔÓθÁÓ‚‡ÎË ëÛÏË, ïÓË Ë é¯Û„‡ ‚ 1997 „. ‰Îfl ÍÓÏÔ¸˛ÚÂÌÓ„Ó ÏÓ‰ÂÎËÓ‚‡ÌËfl Ï˚ÒÎËÚÂθÌÓÈ ‡·ÓÚ˚ Ò ÚÂÍÒÚÓÏ; ËÏË ·˚· Ô‰ÎÓÊÂ̇ ÒËÒÚÂχ ÓÚÓ·‡ÊÂÌËfl ÚÂÍÒÚÓ‚˚ı Ó·˙ÂÍÚÓ‚ ‚ ÏÂÚ˘ÂÒÍËı ÔÓÒÚ‡ÌÒÚ‚‡ı. ùÍÓÌÓÏ˘ÂÒÍÓ ‡ÒÒÚÓflÌË è‡Ú· ÏÂÊ‰Û ‰‚ÛÏfl Òڇ̇ÏË – ‚ÂÏfl (˜ËÒÎÓ ÎÂÚ), ÍÓÚÓÓ ÔÓÚ·ÛÂÚÒfl ÓÚÒÚ‡˛˘ÂÈ Òڇ̠‰Îfl ‚˚ıÓ‰‡ ̇ ÚÓÚ Ê ÛÓ‚Â̸ ‰ÓıÓ‰Ó‚ ̇ ‰Û¯Û ̇ÒÂÎÂÌËfl, ͇ÍÓÈ ËÏÂÂÚ ‚ ̇ÒÚÓfl˘Â ‚ÂÏfl ‡Á‚ËÚ‡fl Òڇ̇. íÂıÌÓÎӄ˘ÂÒÍÓ ‡ÒÒÚÓflÌË îÛÍۘ˖ë‡ÚÓ ÏÂÊ‰Û Òڇ̇ÏË – ‚ÂÏfl (˜ËÒÎÓ ÎÂÚ), ÌÂÓ·ıÓ‰ËÏÓ ÓÚÒÚ‡˛˘ÂÈ Òڇ̠‰Îfl ÒÓÁ‰‡ÌËfl ‡Ì‡Îӄ˘ÌÓÈ ÚÂıÌÓÎӄ˘ÂÒÍÓÈ ÒÚÛÍÚÛ˚, ÍÓÚÓÓÈ Ó·Î‡‰‡ÂÚ ‚ ‰‡ÌÌ˚È ÏÓÏÂÌÚ ‡Á‚ËÚ‡fl Òڇ̇. éÒÌÓ‚Ì˚Ï ‰ÓÔÛ˘ÂÌËÂÏ ÔÓÔÛÎflÌÓÈ „ËÔÓÚÂÁ˚ ÍÓ̂„Â̈ËË fl‚ÎflÂÚÒfl ÚÓ, ˜ÚÓ ÚÂıÌÓÎӄ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl Òڇ̇ÏË ÏÂ̸¯Â, ˜ÂÏ ˝ÍÓÌÓÏ˘ÂÒÍÓÂ. Ç ˝ÍÓÌÓÏËÍ ÔÓËÁ‚Ó‰ÒÚ‚‡ ÚÂıÌÓÎÓ„Ëfl ÏÓ‰ÂÎËÛÂÚÒfl Í‡Í ÏÌÓÊÂÒÚ‚Ó Ô‡ (ı, Û), m „‰Â x ∈ m + fl‚ÎflÂÚÒfl ‚ÂÍÚÓÓÏ Á‡Ú‡Ú, ‡ y ∈ + – ‚ÂÍÚÓÓÏ ‚˚ÔÛÒ͇ Ë ı ÏÓÊÂÚ
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
405
ÔÓËÁ‚Ó‰ËÚ¸ Û. í‡ÍÓ ÏÌÓÊÂÒÚ‚Ó í ‰ÓÎÊÌÓ Û‰Ó‚ÎÂÚ‚ÓflÚ¸ ÛÒÎÓ‚ËflÏ Òڇ̉‡ÚÌÓÈ ˝ÍÓÌÓÏ˘ÂÒÍÓÈ Á‡ÍÓÌÓÏÂÌÓÒÚË. îÛÌ͈Ëfl ÓËÂÌÚËÓ‚‡ÌÌÓ„Ó ÚÂıÌÓÎӄ˘ÂÒÍÓ„Ó ‡ÒÒÚÓflÌËfl Á‡Ú‡Ú/‚˚ÔÛÒ͇ ı, Û ‚ (Á‡Ô·ÌËÓ‚‡ÌÌÓÏ Ë ‡Ò˜ÂÚÌÓÏ) ̇ԇ‚ÎÂÌËË ( − d x , d y ) ∈ −m × +m ‚˚‡ÊÂ̇ Í‡Í sup{k ≥ 0 : (( x − kd x ), ( y + kd y )) ∈ T}. îÛÌ͈Ëfl ‡Òy ÒÚÓflÌËfl ‚˚ÔÛÒ͇ òÂÔ‡‰‡ Á‡ÔËÒ˚‚‡ÂÚÒfl Í‡Í sup k ≥ 0 : x, ∈ T . ɇÌˈ‡ fs(x) k ÂÒÚ¸ χÍÒËχθÌ˚È ‰ÓÔÛÒÚËÏ˚È ‚˚ÔÛÒÍ ÔÓ‰Û͈ËË ÔË ‰‡ÌÌ˚ı Á‡Ú‡Ú‡ı ı ‚ ÛÒÎÓ‚Ëflı ÍÓÌÍÂÚÌÓÈ ÒËÒÚÂÏ˚ ËÎË „Ó‰‡ s. ê‡ÒÒÚÓflÌË ‰Ó „‡Ìˈ˚ ÚÓ˜ÍË ÔÓËÁ‚Ó‰ÒÚ‚‡ g ( x) ( y = gs ( x ), x ) ÒÓÒÚ‡‚ÎflÂÚ s . à̉ÂÍÒ å‡ÎÏÍ‚ËÒÚ‡ ‰Îfl ËÁÏÂÂÌËfl ËÁÏÂÌÂÌËfl fs ( x ) ÒÓ‚ÓÍÛÔÌÓÈ ÔÓËÁ‚Ó‰ËÚÂθÌÓÒÚË Ù‡ÍÚÓÓ‚ ÔÓËÁ‚Ó‰ÒÚ‚‡ ÏÂÊ‰Û ÔÂËÓ‰‡ÏË s Ë s' g′ ( x) (ËÎË Ò‡‚ÌÂÌËfl Ò ‰Û„ÓÈ Â‰ËÌˈÂÈ ‚ ÚÓ Ê ‚ÂÏfl) ËÏÂÂÚ ‚ˉ s . íÂÏËÌ ‡Òfs ( x ) ÒÚÓflÌË ‰Ó „‡Ìˈ˚ ËÒÔÓθÁÛÂÚÒfl Ú‡ÍÊ ‰Îfl Ó·‡˘ÂÌËfl ÒÓ‚ÓÍÛÔÌÓÈ ÔÓËÁ‚Ó‰ËÚÂθÌÓÒÚË Ù‡ÍÚÓÓ‚ ÔÓËÁ‚Ó‰ÒÚ‚‡ ÍÓÌÍÂÚÌÓÈ ÔÓÏ˚¯ÎÂÌÌÓÒÚË (ËÎË ÇÇè ̇ Ó‰ÌÓ„Ó ‡·ÓÚ‡˛˘Â„Ó ‚ ÍÓÌÍÂÚÌÓÈ ÒÚ‡ÌÂ) ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ÒÛ˘ÂÒÚ‚Û˛˘ÂÏÛ Ï‡ÍÒËÏÛÏÛ (‚ ͇˜ÂÒÚ‚Â „‡Ìˈ˚ Ó·˚˜ÌÓ ·ÂÛÚÒfl ëòÄ). ëÏÂÚ¸ ‡ÒÒÚÓflÌËfl ëÏÂÚ¸ ‡ÒÒÚÓflÌËfl, Ú‡Í Ì‡Á˚‚‡ÂÚÒfl ‡‚ÚÓËÚÂÚ̇fl ÍÌË„‡ [Cair01], ‚ ÍÓÚÓÓÈ ÛÚ‚Âʉ‡ÂÚÒfl, ˜ÚÓ Â‚ÓβˆËfl ‚ ÒÙ ÚÂÎÂÍÓÏÏÛÌË͇ˆËÈ (àÌÚÂÌÂÚ, ÏÓ·Ëθ̇fl ÚÂÎÂÙÓÌËfl, ˆËÙÓ‚Ó ÚÂ΂ˉÂÌËÂ Ë Ú.Ô.) Ô˂· Í "ÒÏÂÚË ‡ÒÒÚÓflÌËfl" Ë ÔÓӉ˷ ÙÛ̉‡ÏÂÌڇθÌ˚ ÔÂÂÏÂÌ˚: ÚÂıÒÏÂÌÌÛ˛ ‡·ÓÚÛ, ÒÌËÊÂÌË ̇ÎÓ„Ó‚, ‚ÓÁ‚˚¯ÂÌË ‡Ì„ÎËÈÒÍÓ„Ó flÁ˚͇, ‡ÛÚÒÓÒËË (Ô˂ΘÂÌË ‚̯ÌËı ÂÒÛÒÓ‚ ‰Îfl ¯ÂÌËfl ‚ÌÛÚÂÌÌËı Á‡‰‡˜), ÌÓ‚˚ ‚ÓÁÏÓÊÌÓÒÚË ÍÓÌÚÓÎfl Á‡ ‰ÂflÚÂθÌÓÒÚ¸˛ Ô‡‚ËÚÂθÒÚ‚‡, ‡Ò¯ËÂÌË „‡Ê‰‡ÌÒÍÓÈ Ò‚flÁË Ë Ú.Ô. Ç ÒÙ ÏÂʉÛ̇ӉÌ˚ı ÓÚÌÓ¯ÂÌËÈ Á‡ÏÂÚÌÓ ‚ÓÁÓÒ· ‰ÓÎfl Ó·˘ÂÌËfl ̇ ·Óθ¯Ëı ‡ÒÒÚÓflÌËflı. é‰Ì‡ÍÓ "ÒÏÂÚ¸ ‡ÒÒÚÓflÌËfl" ÒÔÓÒÓ·ÒÚ‚Ó‚‡Î‡ Ó‰ÌÓ‚ÂÏÂÌÌÓ Ë Òӂ¯ÂÌÒÚ‚Ó‚‡Ì˲ ÏÂÚÓ‰Ó‚ ÛÔ‡‚ÎÂÌËfl ̇ ‡ÒÒÚÓflÌËË, Ë ÒÓÒ‰ÓÚÓ˜ÂÌ˲ ˝ÎËÚ˚ ‚ „ÓÓ‰‡ı "ÏÓÎÓ˜ÌÓ„Ó ÔÓflÒ‡". Ä̇Îӄ˘Ì˚Ï Ó·‡ÁÓÏ [Ferg03] Ô‡ÓıÓ‰˚ Ë ÚÂ΄‡Ù (Í‡Í ÊÂÎÂÁÌ˚ ‰ÓÓ„Ë ‡Ì¸¯Â Ë ‡‚ÚÓÏÓ·ËÎË ÔÓÁÊÂ) ÔË‚ÂÎË ‚ÒΉ Á‡ Ô‡‰ÂÌËÂÏ ÒÚÓËÏÓÒÚË Ú‡ÌÒÔÓÚÌ˚ı Ô‚ÓÁÓÍ Í "ÎË͂ˉ‡ˆËË ‡ÒÒÚÓflÌËfl" ‚ XIX Ë XX ‚‚. Ç Â˘Â ·ÓΠ‰‡ÎÂÍÓÏ ÔÓ¯ÎÓÏ, Í‡Í Ò‚Ë‰ÂÚÂθÒÚ‚Û˛Ú ‡ıÂÓÎӄ˘ÂÒÍË ‰‡ÌÌ˚ (ÓÍÓÎÓ 140 Ú˚Ò. ÎÂÚ Ì‡Á‡‰), ÔÓfl‚Ë·Ҹ „ÛÎfl̇fl ÏÂÌÓ‚‡fl ÚÓ„Ó‚Îfl ̇ ·Óθ¯Ëı ‡ÒÒÚÓflÌËflı, ‡ ËÁÓ·ÂÚÂÌË ÏÂÚ‡ÚÂθÌÓ„Ó ÓÛÊËfl (ÓÍÓÎÓ 40 Ú˚Ò. ÎÂÚ Ì‡Á‡‰) ÔÓÁ‚ÓÎËÎÓ ˜ÂÎÓ‚ÂÍÛ Û·Ë‚‡Ú¸ ÍÛÔÌÛ˛ ‰Ë˜¸ (Ë ‰Û„Ëı β‰ÂÈ), ̇ıÓ‰flÒ¸ ̇ ·ÂÁÓÔ‡ÒÌÓÏ Û‰‡ÎÂÌËË. é‰Ì‡ÍÓ ‚ ̇ÒÚÓfl˘Â ‚ÂÏfl ÒÓ‚ÂÏÂÌÌ˚ ÚÂıÌÓÎÓ„ËË Á‡ÚÏËÎË ‡ÒÒÚÓflÌË ÚÓθÍÓ ÚÂÏ, ˜ÚÓ Á̇˜ËÚÂθÌÓ ÒÓ͇ÚËÎÓÒ¸ ‚ÂÏfl ÔÛÚË ‰Ó Ó·˙ÂÍÚ‡ ̇Á̇˜ÂÌËfl. Ç ‰ÂÈÒÚ‚ËÚÂθÌÓÒÚË ‡ÒÒÚÓflÌËfl (ÍÛθÚÛÌÓÂ, ÔÓÎËÚ˘ÂÒÍÓÂ, „ÂÓ„‡Ù˘ÂÒÍÓÂ Ë ˝ÍÓÌÓÏ˘ÂÒÍÓÂ) ¢ Ì ÛÚ‡ÚËÎË Ò‚ÓÂÈ Á̇˜ËÏÓÒÚË, ̇ÔËÏÂ, ÔË ‚˚‡·ÓÚÍ ÒÚ‡Ú„ËË ÍÓÏÔ‡ÌËË Ì‡ ‡Á‚Ë‚‡˛˘ËıÒfl ˚Ì͇ı, ‚ ‚ÓÔÓÒ‡ı ÔÓÎËÚ˘ÂÒÍÓÈ Î„ËÚËÏÌÓÒÚË Ë Ú.Ô. åӇθ̇fl ‰ËÒڇ̈Ëfl åӇθ̇fl ‰ËÒڇ̈Ëfl – χ ÏӇθÌÓÈ Ë̉ËÙÙÂÂÌÚÌÓÒÚË ËÎË ÒÓÔÂÂÊË‚‡ÌËfl ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Ó‰ÌÓÏÛ ˜ÂÎÓ‚ÂÍÛ, „ÛÔÔ β‰ÂÈ ËÎË ÒÓ·˚ÚËflÏ. ÑËÒڇ̈ËËÓ‚‡ÌË – ‡Á‰ÂÎÂÌË ‚Ó ‚ÂÏÂÌË ËÎË ÔÓÒÚ‡ÌÒÚ‚Â, ÒÌËʇ.ott ÒÓÔÂÂÊË‚‡ÌËÂ, ÍÓÚÓÓ ˜ÂÎÓ‚ÂÍ ÏÓ„ ·˚ ËÒÔ˚Ú˚‚‡Ú¸ Í ÒÚ‡‰‡ÌËflÏ ‰Û„Ëı, Ú.Â. Û‚Â΢˂‡˘Â ÏӇθÌÛ˛ ‰ËÒÚ‡ÌˆË˛. íÂÏËÌ ‰ËÒڇ̈ËÓ‚‡ÌË ËÒÔÓθÁÛÂÚÒfl Ú‡ÍÊ (‚ ÍÌË-
406
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
„‡ı ä‡ÌÚÓ‡) ‰Îfl ÔÒËıÓÎӄ˘ÂÒÍÓÈ ı‡‡ÍÚÂËÒÚËÍË Á‡ÏÍÌÛÚÓÈ Î˘ÌÓÒÚË: ·ÓflÁ̸ ·ÎËÁÍËı ÓÚÌÓ¯ÂÌËÈ Ë Ó·flÁ‡ÚÂθÒÚ‚ (Û·ÂʉÂÌÌ˚ ıÓÎÓÒÚflÍË, ÓÍÓ‚˚ ÊÂÌ˘ËÌ˚ Ë Ú.Ô.). ÑËÒڇ̈ËÓ‚‡ÌËÂ, Ò‚flÁ‡ÌÌÓÂ Ò ÚÂıÌÓÎÓ„ËÂÈ íÂÓËfl ÏӇθÌÓ„Ó ‰ËÒڇ̈ËÓ‚‡ÌËfl ÛÚ‚Âʉ‡ÂÚ, ˜ÚÓ ÚÂıÌÓÎÓ„Ëfl ÒÔÓÒÓ·ÒÚ‚ÛÂÚ Ô‰‡ÒÔÓÎÓÊÂÌÌÓÒÚË Í Ì½Ú˘ÂÒÍÓÏÛ Ôӂ‰ÂÌ˲ ÚÂÏ, ˜ÚÓ ÙÓÏËÛÂÚ ÏӇθÌÛ˛ ‰ËÒÚ‡ÌˆË˛ ÏÂÊ‰Û ‰ÂÈÒÚ‚ËÂÏ Ë ÏӇθÌÓÈ ÓÚ‚ÂÚÒÚ‚ÂÌÌÓÒÚ¸˛ Á‡ Ì„Ó. 蘇ÚÌ˚ ÚÂıÌÓÎÓ„ËË ‡Á‰ÂÎËÎË Î˛‰ÂÈ Ì‡ ÓÚ‰ÂθÌ˚ ÒËÒÚÂÏ˚ Ò‚flÁË Ë ‰ËÒڇ̈ËÓ‚‡ÎË Ëı ÓÚ Ó·˘ÂÌËfl ÎˈÓÏ Í ÎˈÛ, ÊË‚Ó„Ó ‡Á„Ó‚Ó‡ Ë ÔËÍÓÒÌÓ‚ÂÌËfl. íÂ΂ˉÂÌË Á‡‰ÂÈÒÚ‚ÛÂÚ Ì‡¯Ë ÒÎÛıÓ‚˚Â Ó˘Û˘ÂÌËfl Ë ‰Â·ÂÚ ‡ÒÒÚÓflÌË ÏÂÌ ‰Ó‚β˘ËÏ Ù‡ÍÚÓÓÏ, Ӊ̇ÍÓ ÔË ˝ÚÓÏ ÛÒËÎËdftn ÍÓ„ÌËÚË‚ÌÓ ‰ËÒڇ̈ËÓ‚‡ÌËÂ: c˛ÊÂÚ Ë ËÁÓ·‡ÊÂÌË Ì ÒÚ˚ÍÛ˛ÚÒfl Ò ÔÓÒÚ‡ÌÒÚ‚ÓÏ/ÏÂÒÚÓÔÓÎÓÊÂÌËÂÏ Ë ‚ÂÏÂÌÂÏ/Ô‡ÏflÚ¸˛. ùÚÓ ‰ËÒڇ̈ËÓ‚‡ÌË Ì ÛÏÂ̸¯ËÎÓÒ¸ Ò ‚̉ÂÌËÂÏ ÍÓÏÔ¸˛ÚÂÌÓÈ ÚÂıÌËÍË, ıÓÚfl ËÌÚ‡ÍÚË‚ÌÓÒÚ¸ ‚ÓÁÓÒ·. ÉÓ‚Ófl ÒÎÓ‚‡ÏË ï‡ÌÚ‡, ÚÂıÌÓÎÓ„Ëfl Î˯¸ ÔÓ-ÌÓ‚ÓÏÛ ÂÓ„‡ÌËÁÓ‚‡Î‡ ÒÓ‰ÂʇÌË ‡ÒÒÚÓflÌËfl ÍÓÏÏÛÌË͇ˆËË, ÔÓÒÍÓθÍÛ Â„Ó Ú‡ÍÊ ÒΉÛÂÚ ‡ÒÒχÚË‚‡Ú¸ Í‡Í ÔÓÒÚ‡ÌÒÚ‚Ó ÏÂÊ‰Û ÔÓÌËχÌËÂÏ Ë ÌÂÔÓÌËχÌËÂÏ. ãË͂ˉ‡ˆËfl ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚ı ·‡¸ÂÓ‚ ÛÏÂ̸¯‡ÂÚ ÚÓθÍÓ ˝ÍÓÌÓÏ˘ÂÒÍËÂ, ÌÓ ÌËÍ‡Í Ì ÒӈˇθÌ˚Â Ë ÍÓ„ÌËÚË‚Ì˚ ‡ÒÒÚÓflÌËfl. ë ‰Û„ÓÈ ÒÚÓÓÌ˚, ÏÓ‰Âθ ÔÒËıÓÎӄ˘ÂÒÍÓ„Ó ‰ËÒڇ̈ËÓ‚‡ÌËfl [Well86] Ò‚flÁ˚‚‡ÂÚ Ò˲ÏËÌÛÚÌÓÒÚ¸ Ó·˘ÂÌËfl Ò ÍÓ΢ÂÒÚ‚ÓÏ ËÌÙÓχˆËÓÌÌ˚ı ͇̇ÎÓ‚: ÒÂÌÒÓÌ˚Â Ó˘Û˘ÂÌËfl ÛÏÂ̸¯‡˛ÚÒfl ‚ ÔÓ„ÂÒÒË‚ÌÓÈ ÔÓÔÓˆËË, ÔÓ Ï ÚÓ„Ó Í‡Í Î˛‰Ë ÔÂÂıÓ‰flÚ ÓÚ Î˘ÌÓ„Ó Ó·˘ÂÌËfl Í Ó·˘ÂÌ˲ ÔÓ ÚÂÎÂÙÓÌÛ, ‚ˉÂÓÙÓÌÛ ˝ÎÂÍÚÓÌÌÓÈ ÔÓ˜ÚÂ. é·˘ÂÌË ˜ÂÂÁ àÌÚÂÌÂÚ ËÏÂÂÚ ÚẨÂÌˆË˛ Í ÓÚÒÂË‚‡Ì˲ Ò˄̇ÎÓ‚, ‚ ı‡‡ÍÚÛËÁÛ˛˘Ëı ÒӈˇθÌ˚È ÒÏ˚ÒÎ ËÎË Î˘Ì˚ ÓÚÌÓ¯ÂÌËfl. äÓÏ ÚÓ„Ó, ÓÚÒÛÚÒÚ‚Ë ÌÂωÎÂÌÌÓÈ ÓÚ‚ÂÚÌÓÈ Â‡ÍˆËË ÒÓ·ÂÒ‰ÌË͇, Ó·ÛÒÎÓ‚ÎÂÌÌÓ ÓÒÓ·ÂÌÌÓÒÚflÏË ˝ÎÂÍÚÓÌÌÓÈ ÔÓ˜Ú˚, ‚‰ÂÚ Í ‚ÂÏÂÌÌ˚Ï ÌÂÒÓ‚Ô‡‰ÂÌËflÏ Ë ÏÓÊÂÚ ‚˚Á‚‡Ú¸ ˜Û‚ÒÚ‚Ó ËÁÓÎËÓ‚‡ÌÌÓÒÚË. ç‡ÔËÏÂ, ÏӇθÌ˚Â Ë ÔÓÁ̇‚‡ÚÂθÌ˚ ÔÓÒΉÒÚ‚Ëfl ‰ËÒڇ̈ËÓ‚‡ÌËfl ‚ ÔÓˆÂÒÒ ӷۘÂÌËfl ‚ ÂÊËÏ ÓÌ·ÈÌ ‰Ó ÒËı ÔÓ ÓÒÚ‡˛ÚÒfl ÌÂËÁÛ˜ÂÌÌ˚ÏË. í‡Ì͈҇ËÓÌ̇fl ‰ËÒڇ̈Ëfl í‡Ì͈҇ËÓÌ̇fl ‰ËÒڇ̈Ëfl – ‚ÓÓ·‡Ê‡Âχfl ÒÚÂÔÂ̸ ‡Á‰ÂÎÂÌÌÓÒÚË ‚ ıӉ ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl ÏÂÊ‰Û ÒÚÛ‰ÂÌÚ‡ÏË Ë ÔÂÔÓ‰‡‚‡ÚÂÎflÏË Ë ‚ÌÛÚË Í‡Ê‰ÓÈ „ÛÔÔ˚ ÒÛ·˙ÂÍÚÓ‚. чÌ̇fl ‰ËÒڇ̈Ëfl ÒÓ͇˘‡ÂÚÒfl ÔË Ì‡Î˘ËË ‰Ë‡ÎÓ„‡ (Ô‰̇ÏÂÂÌÌÓ„Ó ÔÓÎÓÊËÚÂθÌÓ„Ó ‚Á‡ËÏÓ‰ÂÈÒÚ‚Ëfl Ò ˆÂθ˛ ÛÎÛ˜¯ÂÌËfl ÔÓÌËχÌËfl), ‡ Ú‡ÍÊ ÔË Ô‰ÓÒÚ‡‚ÎÂÌËË Ó·Û˜‡ÂÏÓÏÛ ·Óθ¯ÂÈ Ò‚Ó·Ó‰˚ ‰ÂÈÒÚ‚Ëfl Ë ÏÂÌ ԉÓÔ‰ÂÎÂÌÌÓÈ ÒÚÛÍÚÛ˚ Ó·‡ÁÓ‚‡ÚÂθÌÓÈ ÔÓ„‡ÏÏ˚. чÌÌÓ ÔÓÌflÚË ·˚ÎÓ ‚‚‰ÂÌÓ åÛÓÏ ‚ 1993 „. ‚ ͇˜ÂÒÚ‚Â Ô‡‡‰Ë„Ï˚ Ó·Û˜ÂÌËfl ̇ ‡ÒÒÚÓflÌËË. ê‡ÒÒÚÓflÌË ‰ËÒڇ̈Ëfl ê‡ÒÒÚÓflÌË ‰ËÒڇ̈Ëfl – ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ï‡ÒÒË‚ÓÏ ËÌÙÓχˆËË, „ÂÌÂËÛÂÏ˚Ï ÒËÒÚÂÏÓÈ ‡ÍÚË‚ÌÓ„Ó ·ËÁÌÂÒ-‡Ì‡ÎËÁ‡ (Business Intelligence), Ë ÏÌÓÊÂÒÚ‚ÓÏ ‰ÂÈÒÚ‚ËÈ, ÔËÂÏÎÂÏ˚ı ‰Îfl ÍÓÌÍÂÚÌÓÈ ‰ÂÎÓ‚ÓÈ ÒËÚÛ‡ˆËË. ê‡ÒÒÚÓflÌË ‰ËÒڇ̈Ëfl ‰ÂÈÒÚ‚Ëfl fl‚ÎflÂÚÒfl ÏÂÓÈ ÛÒËÎËÈ, ÌÂÓ·ıÓ‰ËÏ˚ı ‰Îfl ÛflÒÌÂÌËfl ËÌÙÓχˆËË Ë ‚ÓÁ‰ÂÈÒÚ‚Ëfl ˝ÚÓÈ ËÌÙÓχˆËË Ì‡ ÔÓÒÎÂ‰Û˛˘Ë ‰ÂÈÒÚ‚Ëfl. é̇ ÏÓÊÂÚ ‚˚‡Ê‡Ú¸Òfl ‚ ÙËÁ˘ÂÒÍÓÏ ‡ÒÒÚÓflÌËË ÏÂÊ‰Û ÓÚÓ·‡Ê‡ÂÏÓÈ ËÌÙÓχˆËÂÈ Ë ÛÔ‡‚ÎflÂÏ˚Ï ‰ÂÈÒÚ‚ËÂÏ. ÄÌÚËÌÓÏËfl ‡ÒÒÚÓflÌËfl ÄÌÚËÌÓÏËfl ‡ÒÒÚÓflÌËfl, Í‡Í Ó̇ ·˚· ‚‚‰Â̇ ‚ [Bull12] ‰Îfl ÒÙÂ˚ ˝ÒÚÂÚ˘ÂÒÍËı Ó˘Û˘ÂÌËÈ ÁËÚÂÎÂÈ Ë ‡ÍÚ‡, Á‡Íβ˜‡ÂÚÒfl ‚ ÚÓÏ, ˜ÚÓ ÓÌË Ó·‡ ‰ÓÎÊÌ˚ ̇ÈÚË Ú‡ÍÛ˛
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
407
Ô‡‚ËθÌÛ˛ ˝ÏÓˆËÓ̇θÌÛ˛ ‰ËÒÚ‡ÌˆË˛ (Ì ÒÎ˯ÍÓÏ ‚ӂΘÂÌÌÛ˛ Ë Ì ÒÎ˯ÍÓÏ ·ÂÒÒÚ‡ÒÚÌÛ˛), ˜ÚÓ·˚ ·˚Ú¸ ‚ ÒÓÒÚÓflÌËË Ú‚ÓËÚ¸ ËÎË ÓˆÂÌË‚‡Ú¸ ËÒÍÛÒÒÚ‚Ó. ùÚÛ ÚÓÌÍÛ˛ ÎËÌ˲ ‡Á‰Â· ÏÂÊ‰Û Ó·˙ÂÍÚË‚ÌÓÒÚ¸˛ Ë ÒÛ·˙ÂÍÚË‚ÌÓÒÚ¸˛ ÏÓÊÌÓ Î„ÍÓ ÔÂÒÚÛÔËÚ¸, Ë ‚Â΢Ë̇ Ò‡ÏÓÈ ‰ËÒڇ̈ËË ÏÓÊÂÚ ÒÓ ‚ÂÏÂÌÂÏ ËÁÏÂÌflÚ¸Òfl. ùÒÚÂÚ˘ÂÒ͇fl ‰ËÒڇ̈Ëfl – ÒÚÂÔÂ̸ ˝ÏÓˆËÓ̇θÌÓÈ ‚ӂΘÂÌÌÓÒÚË Ë̉˂ˉÛÛχ, ÍÓÚÓ˚È, „Îfl‰fl ̇ ÔÓËÁ‚‰ÂÌË ËÒÍÛÒÒÚ‚‡, Ó͇Á˚‚‡ÂÚÒfl ÔÓ‰ Â„Ó ‚Ô˜‡ÚÎÂÌËÂÏ. Ç Í‡˜ÂÒÚ‚Â ÔËχ Ú‡ÍÓÈ ‰ËÒڇ̈ËË ÏÓÊÌÓ ÔË‚ÂÒÚË ÔÂÒÔÂÍÚË‚Û ÁËÚÂÎfl ‚ Á‡Î ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Ô‰ÒÚ‡‚ÎÂÌ˲ ̇ ÒˆÂÌÂ, ÔÒËıÓÎӄ˘ÂÒÍÓÂ Ë ˝ÏÓˆËÓ̇θÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÚÂÍÒÚÓÏ Ë ˜ËÚ‡ÚÂÎÂÏ, ‰ËÒÚ‡ÌˆË˛ ÏÂÊ‰Û ‡ÍÚÂÓÏ Ë Óθ˛, Í‡Í Ó̇ Ú‡ÍÚÛÂÚÒfl ‚ Ú‡ڇθÌÓÈ ÒËÒÚÂÏ ëÚ‡ÌËÒ·‚ÒÍÓ„Ó. LJˇÌÚ˚ ‡ÌÚËÌÓÏËË ‡ÒÒÚÓflÌËfl ÔÓfl‚Îfl˛ÚÒfl ‚ ÍËÚ˘ÂÒÍÓÏ Ï˚¯ÎÂÌËË: ÒÛ˘ÂÒÚ‚ÛÂÚ ÌÂÓ·ıÓ‰ËÏÓÒÚ¸ ÛÒÚ‡ÌÓ‚ËÚ¸ ÓÔ‰ÂÎÂÌÌÛ˛ ˝ÏÓˆËÓ̇θÌÛ˛ Ë ËÌÚÂÎÎÂÍÚۇθÌÛ˛ ‰ËÒÚ‡ÌˆË˛ ÏÂÊ‰Û Ò‡ÏËÏ ÒÓ·ÓÈ Ë Ë‰ÂÂÈ, ˜ÚÓ·˚ ËÏÂÚ¸ ‚ÓÁÏÓÊÌÓÒÚ¸ ·ÓΠÚÓ˜ÌÓÈ ÓˆÂÌÍË Â Á̇˜ËÏÓÒÚË. ÑÛ„ÓÈ ‚‡Ë‡ÌÚ ‡ÒÒχÚË‚‡ÂÚÒfl ‚ Ô‡‡‰ÓÍÒ ‰ÓÏËÌËÓ‚‡ÌËfl: ‰ËÒڇ̈Ëfl Ë Ò‚flÁ¸ (http://www.leatherpage.com/rscurrent.htm/). àÒÚÓ˘ÂÒ͇fl ‰ËÒڇ̈Ëfl ÔÓ ÚÂÏËÌÓÎÓ„ËË [Tail04] fl‚ÎflÂÚÒfl ÔÓÎÓÊÂÌËÂÏ, ÍÓÚÓÓ ËÒÚÓËÍ Á‡ÌËχÂÚ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í Ò‚ÓËÏ Ó·˙ÂÍÚ‡Ï – ‰‡ÎÂÍÛ˛, ·ÎËÁÍÛ˛ ËÎË „‰Â-ÌË·Û‰¸ ÏÂÊ‰Û ÌËÏË; ˝ÚÓ – ‚ÓÓ·‡ÊÂÌËÂ, ÔÓÒ‰ÒÚ‚ÓÏ ÍÓÚÓÓ„Ó ÊË‚ÓÈ ÛÏ ËÒÚÓË͇, ‚ÒÚ˜‡fl ËÌÂÚÌÓÂ Ë Ì‚ÓÒÒÚ‡ÌÓ‚ËÏÓÂ, ÒÚÂÏËÚÒfl Ô‰ÒÚ‡‚ËÚ¸ χÚ¡Î˚ ‡θÌÓ ÊË‚˚ÏË. ÄÌÚËÌÓÏËfl ‡ÒÒÚÓflÌËfl Á‰ÂÒ¸ ‚ÌÓ‚¸ ÔÓfl‚ÎflÂÚÒfl ‚ ÚÓÏ, ˜ÚÓ ËÒÚÓËÍË Ó·‡˘‡˛ÚÒfl Í ÔÓ¯ÎÓÏÛ Ì ÚÓθÍÓ ËÌÚÂÎÎÂÍÚۇθÌÓ, ÌÓ Ë ÔÂÂÊË‚‡˛Ú ÏӇθÌÛ˛ Ë ˝ÏÓˆËÓ̇θÌÛ˛ ‚ӂΘÂÌÌÓÒÚ¸. îÓχθÌ˚ ҂ÓÈÒÚ‚‡ ËÒÚÓ˘ÂÒÍËı ÔËÒ‡ÌËÈ Á‡˜‡ÒÚÛ˛ Ó͇Á˚‚‡˛ÚÒfl ÔÓ‰ ‚ÎËflÌËÂÏ Ëı ˝ÏÓˆËÓ̇θÌ˚ı, ˉÂÓÎӄ˘ÂÒÍËı Ë ÍÓ„ÌËÚË‚Ì˚ı ÛÒÚ‡ÌÓ‚ÓÍ. ëÏÂÊÌÓÈ ÔÓ·ÎÂÏÓÈ fl‚ÎflÂÚÒfl ÚÓ, ̇ÒÍÓθÍÓ ·Óθ¯ÓÈ ‰ÓÎÊ̇ ·˚Ú¸ ‰ËÒڇ̈Ëfl ÏÂÊ‰Û Î˛‰¸ÏË Ë Ëı ÔÓ¯Î˚Ï, ˜ÚÓ·˚ ˜ÂÎÓ‚ÂÍ ÓÒÚ‡‚‡ÎÒfl ÔÒËıÓÎӄ˘ÂÒÍË ÔËÒÔÓÒÓ·ÎÂÌÌ˚Ï Í ÊËÁÌË. îÂȉ ÔÓ͇Á‡Î, ˜ÚÓ Á‡˜‡ÒÚÛ˛ ÏÂÊ‰Û Ì‡ÏË Ë ‰ÂÚÒÚ‚ÓÏ Ú‡ÍÓÈ ‰ËÒڇ̈ËË Ì ÒÛ˘ÂÒÚ‚ÛÂÚ. çÂÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó äËÒÚ‚ÓÈ èÓ ÏÌÂÌ˲ äËÒÚ‚ÓÈ (1980), ÓÒÌÓ‚Ì˚ ÔÒËıӇ̇ÎËÚ˘ÂÒÍË ‡Á΢Ëfl ‚˚‡Ê‡˛ÚÒfl ‚ ÚÂÏË̇ı ÔÂ-˝‰ËÔÓ‚‡ ËÎË ˝‰ËÔÓ‚‡ ‡ÒÔÂÍÚÓ‚ ‡Á‚ËÚËfl ΢ÌÓÒÚË. èËÁ̇ÍË Ò‡Ïӂβ·ÎÂÌÌÓÒÚË Ë Á‡‚ËÒËÏÓÒÚË ÓÚ Ï‡ÚÂË, ‡Ì‡ı˘ÂÒÍËı ÏÓÚË‚Ó‚ Ôӂ‰ÂÌËfl, ÔÓÎËÏÓÙ˘ÂÒÍËÈ ˝ÓÚÓ„ÂÌˈËÁÏ Ë Ô‚˘Ì˚ ÔÓˆÂÒÒ˚ ı‡‡ÍÚÂÌ˚ ‰Îfl Ô½‰ËÔÓ‚ÓÈ Ó„‡ÌËÁ‡ˆËË. ëÓÔÂÌ˘ÂÒÚ‚Ó Ë ÓÚÓʉÂÒÚ‚ÎÂÌËÂ Ò ÓÚˆÓÏ, ÒÔˆËÙ˘ÂÒÍËÂ Ë ÏÓÚË‚‡ˆËË Ôӂ‰ÂÌËfl, Ù‡Î΢ÂÒÍËÈ ˝ÓÚÓ„ÂÌˈËÁÏ, ‚ÚÓ˘Ì˚ ÔÓˆÂÒÒ˚ ·ÓΠı‡‡ÍÚÂÌ˚ ‰Îfl ˝‰ËÔÓ‚ÓÈ ÓËÂÌÚ‡ˆËË. äËÒÚ‚‡ ÓÔËÒ˚‚‡ÂÚ ÔÂ-˝‰ËÔÓ‚Û ÊÂÌÒÍÛ˛ Ù‡ÁÛ Í‡Í Ó·‚Ó·ÍË‚‡˛˘Â ‡ÏÓÙÌÓ ÌÂÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ıÓ‡ è·ÚÓ̇), ÍÓÚÓÓ ӉÌÓ‚ÂÏÂÌÌÓ Ë ÍÓÏËÚ, Ë Û„ÓʇÂÚ; ÓÌÓ Ú‡ÍÊ ÓÔ‰ÂÎflÂÚ Ë Ó„‡Ì˘˂‡ÂÚ ÚÓʉÂÒÚ‚ÂÌÌÓÒÚ¸ Ò‡ÏÓÏÛ Ò·Â. èË ˝ÚÓÏ ˝‰ËÔÓ‚Û ÏÛÊÒÍÛ˛ Ù‡ÁÛ Ó̇ ı‡‡ÍÚÂËÁÛÂÚ Í‡Í ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó (ÚÓÔÓÒ ÄËÒÚÓÚÂÎfl); ÒÓ·ÒÚ‚ÂÌ̇fl ΢ÌÓÒÚ¸ Ë ÓÚÌÓ¯ÂÌˠ΢ÌÓÒÚË Í ÔÓÒÚ‡ÌÒÚ‚Û ·ÓΠÚÓ˜ÌÓ Ë Í‡˜ÂÒÚ‚ÂÌÌÓ ÓÔ‰ÂÎÂÌ˚ ‚ ÚÓÔÓÒÂ. äËÒÚ‚‡ ÛÚ‚Âʉ‡ÂÚ Ú‡ÍÊÂ, ˜ÚÓ ÍÓÌË ÒÂÏËÓÚ˘ÂÒÍÓ„Ó ÔÓˆÂÒÒ‡ ÎÂÊ‡Ú ‚ ÊÂÌÒÍÓÏ Î˷ˉÓ, ÔÂ-˝‰ËÔÓ‚ÓÈ ˝Ì„ËË, ÍÓÚÓÛ˛ ÌÂÓ·ıÓ‰ËÏÓ Ì‡Ô‡‚ÎflÚ¸ ‚ ÛÒÎÓ ÒӈˇθÌÓ„Ó ÒÔÎÓ˜ÂÌËfl. ÑÂβÁÂ Ë ÉÛ‡ÚÚ‡Ë (1980) ‡Á‰ÂÎËÎË Ò‚ÓË ÏÛθÚËÔÎÂÚÌÓÒÚË (ÒÂÚË, ÏÌÓ„ÓÓ·‡ÁËfl, ÔÓÒÚ‡ÌÒÚ‚‡) ̇ ·ÓÓÁ‰˜‡Ú˚ (ÏÂÚ˘ÂÒÍËÂ, ˇı˘ÂÒÍËÂ, ˆÂÌÚËÓ‚‡ÌÌ˚Â Ë ˜ËÒÎÓ‚˚Â) Ë „·‰ÍË (ÌÂÏÂÚ˘ÂÒÍËÂ, ÍÓÌ‚˚Â Ë ‡ˆÂÌÚËÓ‚‡ÌÌ˚Â, ÍÓÚÓ˚ Á‡ÌËχ˛Ú ÔÓÒÚ‡ÌÒÚ‚Ó ·ÂÁ ͇ÍÓ„Ó-ÎË·Ó Û˜ÂÚ‡ Ë ÏÓ„ÛÚ ·˚Ú¸ ËÒÒΉӂ‡Ì˚ ÚÓθÍÓ "ÌÓ„‡ÏË").
408
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ùÚË Ù‡ÌˆÛÁÒÍË ÔÓÒÚÒÚÛÍÚÛ‡ÎËÒÚ˚ ËÒÔÓθÁÓ‚‡ÎË ÏÂÚ‡ÙÓÛ ÌÂÏÂÚ˘ÂÒÍËÈ ÚÓ˜ÌÓ Ú‡Í ÊÂ, Í‡Í ÔÒËıӇ̇ÎËÚËÍ ã‡Í‡Ì ÒËÒÚÂχÚ˘ÂÒÍË ÔÓθÁÓ‚‡ÎÒfl ÚÓÔÓÎӄ˘ÂÒÍÓÈ ÚÂÏËÌÓÎÓ„ËÂÈ. Ç ˜‡ÒÚÌÓÒÚË, ÓÌ Ô‰ÒÚ‡‚ÎflÎ ÔÓÒÚ‡ÌÒÚ‚Ó J (ÓÚ Ù‡ÌˆÛÁÒÍÓ„Ó Jouissance) ÒÂÍÒۇθÌ˚ı ÓÚÌÓ¯ÂÌËÈ Í‡Í Ó„‡Ì˘ÂÌÌÓ ÏÂÚ˘ÂÒÍÓ ÔÓÒÚ‡ÌÒÚ‚Ó. ÇÓÁ‚‡˘‡flÒ¸ Í Ï‡ÚÂχÚËÍÂ, ÌÂÏÂÚ˘ÂÒÍËÈ ÚÂÌÁÓ – ˝ÚÓ ÍÓ‚‡Ë‡ÌÚ̇fl ÔÓËÁ‚Ӊ̇fl ÏÂÚ˘ÂÒÍÓ„Ó ÚÂÌÁÓ‡. é̇ ÏÓÊÂÚ ·˚Ú¸ ÌÂÌÛ΂ÓÈ ‰Îfl ÔÒ‚‰ÓËχÌÓ‚˚ı ÏÂÚËÍ Ë Ó·‡˘‡Ú¸Òfl ‚ ÌÛθ ‰Îfl ËχÌÓ‚˚ı ÏÂÚËÍ. ê‡ÒÒÚÓflÌË ëËÏÓÌ˚ ÇÂÈθ "ê‡ÒÒÚÓflÌËÂ" – ˝ÚÓ Á‡„ÓÎÓ‚ÓÍ ÙËÎÓÒÓÙÒÍÓ-ÚÂÓÎӄ˘ÂÒÍÓ„Ó ˝ÒÒ ëËÏÓÌ˚ ÇÂÈθ ËÁ  ÍÌË„Ë "Ç ÓÊˉ‡ÌËË ÅÓ„‡" (縲-âÓÍ: èÛÚχÌ, 1951). é̇ Ò‚flÁ˚‚‡ÂÚ Î˛·Ó‚¸ ÅÓ„‡ Ò ‡ÒÒÚÓflÌËÂÏ; Ú‡ÍËÏ Ó·‡ÁÓÏ, Â„Ó ÓÚÒÛÚÒÚ‚Ë ÏÓÊÂÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í ÔËÒÛÚÒÚ‚ËÂ: "β·Ó ‡Á˙‰ËÌÂÌË ÂÒÚ¸ Ò‚flÁ¸" (ÏÂÚ‡ÍÒ˛ è·ÚÓ̇). ëÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÛÚ‚Âʉ‡ÂÚ Ó̇, ‡ÒÔflÚË ïËÒÚ‡ (̇˷Óθ¯‡fl β·Ó‚¸/‡ÒÒÚÓflÌËÂ) ·˚ÎÓ ÌÂÓ·ıÓ‰ËÏÓ "‰Îfl ÚÓ„Ó, ˜ÚÓ·˚ Ï˚ ÒÏÓ„ÎË ÓÒÓÁ̇ڸ ‡ÒÒÚÓflÌË ÓÚ Ì‡Ò ‰Ó ÅÓ„‡..., ÔÓÒÍÓθÍÛ Ï˚ Ì ÓÒÓÁ̇ÂÏ ‡ÒÒÚÓflÌËÂ, ÍÓÏÂ Í‡Í ÔÓ ÌËÒıÓ‰fl˘ÂÈ ÎËÌËË" (ÒÏ. ÔÓÌflÚËfl ãÛˇÌÒÍÓÈ Í‡··‡Î˚ ˆËψÛÏ ("Ò‡ÏÓÒÓ͇˘ÂÌËÂ" ÅÓ„‡), "‡Á·ËÂÌË ÒÓÒÛ‰Ó‚" (ÁÎÓ Í‡Í ÒË· ‡ÁÓ·˘ÂÌËfl, ÍÓÚÓÓ ÛÚ‡ÚËÎÓ Ò‚Ó˛ ÙÛÌÍˆË˛ ‡ÁÓ·˘ÂÌËfl Ë Ô‚‡ÚËÎÓÒ¸ ‚ ˜ÂÂÔÍË). ÇÁflÚ¸ Ú‡ÍÊ ÔÂÒÌ˛ "àÁ‰‡ÎÂ͇", ̇ÔËÒ‡ÌÌÛ˛ ûÎËÂÈ ÉÓΉ, ‚ ÍÓÚÓÓÈ ÔÓÂÚÒfl Ó ÅÓ„Â, ÍÓÚÓ˚È Ì‡·Î˛‰‡ÂÚ Á‡ ̇ÏË, Ë Ó ÚÓÏ, ͇Í, ÌÂÒÏÓÚfl ̇ ‡ÒÒÚÓflÌË (ÙËÁ˘ÂÒÍÓÂ Ë ˝ÏÓˆËÓ̇θÌÓÂ), ËÒ͇ʇ˛˘Â ‚ÓÒÔËflÚËÂ, ‚ ̇¯ÂÏ ÏË ¢ ÓÒڇθ ÏÂÒÚÓ ‰Îfl Ïˇ Ë Î˛·‚Ë. ç·ÂÒÌ˚ ‡ÒÒÚÓflÌËfl 낉ÂÌ·Ó„‡ àÁ‚ÂÒÚÌ˚È Û˜ÂÌ˚È Ë Ï˜ڇÚÂθ 낉ÂÌ·Ó„ ‚ Ò‚ÓÂÏ „·‚ÌÓÏ Úۉ "ç·ÂÒ‡ Ë Ä‰" (ãÓ̉ÓÌ, 1952, Ô‚Ó ËÁ‰‡ÌË ̇ ·ÚËÌÒÍÓÏ flÁ˚Í ‚ 1758 „.) ÛÚ‚Âʉ‡ÂÚ (ÒÏ. „Î. 22 "èÓÒÚ‡ÌÒÚ‚Ó Ì‡ Ì·ÂÒ‡ı", Ò. 191–199), ˜ÚÓ "‡ÒÒÚÓflÌËfl Ë Ú‡ÍËÏ Ó·‡ÁÓÏ ÔÓÒÚ‡ÌÒÚ‚Ó Ì‡ıÓ‰flÚÒfl ‚ ÔÓÎÌÓÈ Á‡‚ËÒËÏÓÒÚË ÓÚ ‚ÌÛÚÂÌÌÂ„Ó ÒÓÒÚÓflÌËfl ‡Ì„ÂÎÓ‚". Ñ‚ËÊÂÌË ̇ Ì·ÂÒ‡ı – Î˯¸ ËÁÏÂÌÂÌË ˝ÚÓ„Ó ÒÓÒÚÓflÌËfl, ÍÓ„‰‡ ‰ÎË̇ ÔÛÚË ËÁÏÂflÂÚÒfl Ê·ÌËÂÏ Ë‰Û˘Â„Ó, ‡ Ò·ÎËÊÂÌË ÓڇʇÂÚ ÒıÓÊÂÒÚ¸ ÒÓÒÚÓflÌËÈ. Ç ‰ÛıÓ‚ÌÓÈ ÒÙÂÂ Ë Á‡„Ó·ÌÓÈ ÊËÁÌË, Ò˜ËÚ‡ÂÚ ÓÌ, "‚ÏÂÒÚÓ ‡ÒÒÚÓflÌËÈ Ë ÔÓÒÚ‡ÌÒÚ‚‡ ÒÛ˘ÂÒÚ‚Û˛Ú ÚÓθÍÓ ÒÓÒÚÓflÌËfl Ë Ëı ËÁÏÂÌÂÌËfl". ê‡ÒÒÚÓflÌË ‰‡ÎÂÍÓ„Ó ·ÎËÁÍÓ„Ó ê‡ÒÒÚÓflÌË ‰‡ÎÂÍÓ„Ó ·ÎËÁÍÓ„Ó – ̇Á‚‡ÌË ÔÓ„‡ÏÏ˚ ÑÓχ ÏËÓ‚˚ı ÍÛθÚÛ ‚ ÅÂÎËÌÂ, ÍÓÚÓ‡fl Ô‰ÒÚ‡‚ÎflÂÚ Ô‡ÌÓ‡ÏÛ ÒÓ‚ÂÏÂÌÌÓ„Ó ÔÓÁˈËÓÌËÓ‚‡ÌËfl ‚ÒÂı ıÛ‰ÓÊÌËÍÓ‚ ˇÌÒÍÓ„Ó ÔÓËÒıÓʉÂÌËfl. èËχÏË ‡Ì‡Îӄ˘ÌÓ„Ó ËÒÔÓθÁÓ‚‡ÌËfl ÚÂÏË̇ ‡ÒÒÚÓflÌËfl ‚ ÒÓ‚ÂÏÂÌÌÓÈ ÔÓÔ-ÍÛθÚÛ fl‚Îfl˛ÚÒfl: "Some Near Distance" („‰Â-ÚÓ ·ÎËÁÍÓ) – ̇Á‚‡ÌË ıÛ‰ÓÊÂÒÚ‚ÂÌÌÓÈ ‚˚ÒÚ‡‚ÍË å‡Í‡ ã¸˛ËÒ‡ (ÅËθ·‡Ó, 2003), "A Near Distance" (·ÎËÁÍÓ ‡ÒÒÚÓflÌËÂ) – ·ÛχÊÌ˚È ÍÓÎÎ‡Ê èÂΠî‡È̇ (縲-âÓÍ, 1961), "Quiet Distance" (ÚËıÓ ‡ÒÒÚÓflÌËÂ) – ıÛ‰ÓÊÂÒÚ‚ÂÌ̇fl ÂÔÓ‰Û͈Ëfl ù‰‰‡ å·, "Distance" (‡ÒÒÚÓflÌËÂ) – flÔÓÌÒÍËÈ ÍËÌÓÙËÎ¸Ï ïËÓ͇ÁÛ äÓ‰˚ (2001), "The Distance" (˝ÚÓ ‡ÒÒÚÓflÌËÂ) – ‡Î¸·ÓÏ ‡ÏÂË͇ÌÒÍÓÈ ÓÍ-„ÛÔÔ˚ "ë·fl̇fl ÔÛÎfl", "Near Distance" (·ÎËÁÍÓ ‡ÒÒÚÓflÌËÂ) – ÏÛÁ˚͇θ̇fl ÍÓÏÔÓÁˈËfl óÂÌ ûË (縲-âÓÍ, 1988), "Near Distance" (·ÎËÁÍÓ ‡ÒÒÚÓflÌËÂ) – ÎˢÂÒ͇fl ÔÂÒÌfl χ̘ÂÒÚÂÒÍÓ„Ó Í‚‡ÚÂÚ‡ "è¸˛ÂÒÒÂÌÒÂ". íÂÏËÌ˚ ·ÎËÊÌ ‡ÒÒÚÓflÌËÂ Ë ‰‡Î¸Ì ‡ÒÒÚÓflÌË ڇÍÊ ËÒÔÓθÁÛ˛ÚÒfl ‚ ÓÙڇθÏÓÎÓ„ËË Ë ‰Îfl ̇ÒÚÓÈÍË ÌÂÍÓÚÓ˚ı ÒÂÌÒÓÌ˚ı ÛÒÚÓÈÒÚ‚.
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
409
àÁ˜ÂÌËfl Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ "·ÎËÊÌ„Ó-‰‡Î¸Ì„Ó" ‡ÒÒÚÓflÌËÈ "ãÛ˜¯Â ÒÓÒ‰ ‚·ÎËÁË, ÌÂÊÂÎË ·‡Ú ‚‰‡ÎË" (ÅË·ÎËfl). "ã˛‰Ë ËÒÔ˚Ú˚‚‡˛Ú ÒÓ˜Û‚ÒÚ‚Ë ÚÓθÍÓ ÍÓ„‰‡ ÒÚ‡‰‡ÌËfl ͇ÊÛÚÒfl ËÏ ·ÎËÁÍËÏË; ·Â‰ÒÚ‚Ëfl, ÓÚÒÚÓfl˘Ë ÓÚ ÌËı ̇ ‰ÂÒflÚÍË Ú˚Òfl˜ ÎÂÚ ‚ ÔÓ¯ÎÓÏ ËÎË ‚ ·Û‰Û˘ÂÏ, β‰Ë Ô‰˜Û‚ÒÚ‚Ó‚‡Ú¸ Ì ÏÓ„ÛÚ Ë ÎË·Ó Ì ÒÓÒÚ‡‰‡˛Ú, ÎË·Ó ‚Ó ‚ÒflÍÓÏ ÒÎÛ˜‡Â Ì ËÒÔ˚Ú˚‚‡˛Ú ÒÓËÁÏÂËÏÓ„Ó ÒÓ˜Û‚ÒÚ‚Ëfl" (ÄËÒÚÓÚÂθ). "èÛÚ¸ ‰Ó΄‡ ÎÂÊËÚ ‚ ÚÓÏ, ˜ÚÓ ·ÎËÁÍÓ, ‡ ˜ÂÎÓ‚ÂÍ Ë˘ÂÚ Â„Ó ‚ ÚÓÏ, ˜ÚÓ ‰‡ÎÂÍÓ" (åÂ̈ËÈ). "ç ‚„Îfl‰˚‚‡ÈÒfl ‚ ·ÎËÁÍÓÂ, ÂÒÎË ÒÏÓÚ˯¸ ‚‰‡Î¸" (ù‚ËÔˉËÈ). "ïÓÓ¯ËÏ Ô‡‚ËÚÂθÒÚ‚Ó ·Û‰ÂÚ ÚÓ„‰‡, ÍÓ„‰‡ ÚÂ, ÍÚÓ ·ÎËÁÍÓ, ·Û‰ÛÚ Ò˜‡ÒÚÎË‚˚, ‡ ÚÂ, ÍÚÓ ‰‡ÎÂÍÓ, Á‡ËÌÚÂÂÒÛ˛ÚÒfl" (äÓÌÙÛˆËÈ). "ä‡Í‡fl ‰ÓÓ„‡", – ÒÔÓÒËÎ fl χÎÂ̸ÍÓ„Ó Ï‡Î¸˜Ë͇, Òˉfl˘Â„Ó ÓÍÓÎÓ ÔÂÂÍÂÒÚ͇, – "‚‰ÂÚ ‚ „ÓÓ‰?" "ùÚ‡", – ÓÚ‚ÂÚËÎ ÓÌ, – "Ó̇ ÍÓÓÚ͇fl, ÌÓ ‰ÎËÌ̇fl, ‡ Ú‡ – ‰ÎËÌ̇fl, ÌÓ ÍÓÓÚ͇fl". ü ÔÓ¯ÂÎ ÔÓ ÚÓÈ, ˜ÚÓ "ÍÓÓÚ͇fl, ÌÓ ‰ÎËÌ̇fl". äÓ„‰‡ fl ÔÓ‰Ó¯ÂÎ Í „ÓÓ‰Û, fl ӷ̇ÛÊËÎ, ˜ÚÓ ÓÌ ·˚Î ÓÍÛÊÂÌ Ò‡‰‡ÏË Ë Ó„ÓÓ‰‡ÏË. ÇÂÌÛ‚¯ËÒ¸ Í Ï‡Î¸˜ËÍÛ, fl Ò͇Á‡Î ÂÏÛ: "ë˚Ì ÏÓÈ, ‡Á‚ Ú˚ Ì „Ó‚ÓËÎ ÏÌÂ, ˜ÚÓ ˝Ú‡ ‰ÓÓ„‡ ÍÓÓÚ͇fl?" à ÓÌ ÓÚ‚ÂÚËÎ: "Ä ‡Á‚ fl Ì Ò͇Á‡Î Ú· ڇÍÊÂ: "ÌÓ ‰ÎËÌ̇fl"? ü ÔÓˆÂÎÓ‚‡Î Â„Ó „ÓÎÓ‚Û Ë Ò͇Á‡Î: "똇ÒÚÎË‚ Ú˚, Ó àÁ‡Ëθ, ‚Ò ‚˚ ÏÛ‰˚Â, Ë ÏÓÎÓ‰˚Â, Ë ÒÚ‡˚Â" (ùÛ·ËÌ, í‡ÎÏÛ‰). èÓÓÍÛ åÛı‡ÏÏÂ‰Û ÔËÔËÒ˚‚‡˛Ú ÒÎÓ‚‡: "ç‡ËÏÂ̸¯ËÏ ‚ÓÁ̇„‡Ê‰ÂÌËÂÏ ‰Îfl β‰ÂÈ ‚ ‡˛ ·Û‰ÂÚ ÔËÒÚ‡ÌË˘Â Ò 80 000 ÒÎÛ„ Ë 72 ÊÂ̇ÏË, ̇‰ ÍÓÚÓ˚Ï ‚ÓÁ‚˚¯‡ÂÚÒfl ÍÛÔÓÎ, Û͇¯ÂÌÌ˚È ÊÂϘۄÓÏ, ‡Í‚‡Ï‡Ë̇ÏË Ë Û·Ë̇ÏË, Ú‡ÍÓÈ Ê ¯ËËÌ˚, Í‡Í ‡ÒÒÚÓflÌË ÓÚ Äθ-Ñʇ·ËÈfl (ÔË„ÓÓ‰ чχÒ͇) ‰Ó ë‡Ì˚ (âÂÏÂÌ)" (ËÚ, àÒ·ÏÒ͇fl Ú‡‰ËˆËfl). "çÂÚ Ì‡ÒÚÓθÍÓ ·Óθ¯Ó„Ó Ô‰ÏÂÚ‡, …ÍÓÚÓ˚È Ì‡ ·Óθ¯ÓÏ ‡ÒÒÚÓflÌËË Ì ͇Á‡ÎÒfl ·˚ ÏÂ̸¯Â, ˜ÂÏ Ï‡ÎÂ̸ÍËÈ Ô‰ÏÂÚ ‚·ÎËÁË" (ãÂÓ̇‰Ó ‰‡ ÇË̘Ë). "ç˘ÚÓ Ì ÔÓÁ‚ÓÎflÂÚ áÂÏΠ‚˚„Îfl‰ÂÚ¸ Ú‡ÍÓÈ ÔÓÒÚÓÌÓÈ, Í‡Í ‰ÛÁ¸fl ̇ ‡ÒÒÚÓflÌËË; ËÏÂÌÌÓ ÓÌË ÒÓÒÚ‡‚Îfl˛Ú ¯ËÓÚ˚ Ë ‰Ó΄ÓÚ˚" (ÉÂÌË Ñ˝‚ˉ íÓÓ). è‚˚È Á‡ÍÓÌ „ÂÓ„‡ÙËË íÓη‡: ‚Ò ҂flÁ‡ÌÓ ÏÂÊ‰Û ÒÓ·ÓÈ, ÌÓ ·ÓΠ·ÎËÁÍË Ô‰ÏÂÚ˚ ·ÓΠ҂flÁ‡Ì˚, ˜ÂÏ ‰‡Î¸ÌËÂ. èË̈ËÔ ·ÎËÁÓÒÚË (ËÎË ÔË̈ËÔ Ì‡ËÏÂ̸¯Ëı ÛÒËÎËÈ): ‰Îfl Ëϲ˘Â„ÓÒfl ‡ÒÔ‰ÂÎÂÌËfl Ó‰Ë̇ÍÓ‚Ó Ê·ÌÌ˚ı ÏÂÒÚ ˜‡˘Â ‚ÒÂ„Ó ‚˚·Ë‡Ú¸Òfl ·Û‰ÂÚ Ò‡ÏÓ ·ÎËÁÍÓÂ. Ç ÙËÁËÍ ÔË̈ËÔ ÎÓ͇θÌÓÒÚË ùÈ̯ÚÂÈ̇ ÛÚ‚Âʉ‡ÂÚ: Û‰‡ÎÂÌÌ˚ ӷ˙ÂÍÚ˚ Ì ÏÓ„ÛÚ ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓ ‚ÎËflÚ¸ ‰Û„ ̇ ‰Û„‡, Ó·˙ÂÍÚ ÔÓ‰‚ÂÊÂÌ ÔflÏÓÏÛ ‚ÎËflÌ˲ ÚÓθÍÓ ÒÓ ÒÚÓÓÌ˚ Ó·˙ÂÍÚÓ‚ ‚ ÌÂÔÓÒ‰ÒÚ‚ÂÌÌÓÈ ·ÎËÁÓÒÚË. Ç Ó·Î‡ÒÚË ÔÓ„‡ÏÏËÓ‚‡ÌËfl Á‡ÍÓÌ ÑÂÏÂÚ˚ ïÓη̉‡ ÒÓ‰ÂÊËÚ ÛÒÚ‡ÌÓ‚ÍÛ ‚ ÓÚÌÓ¯ÂÌËË ÒÚËÎfl ÔÓ„‡ÏÏËÓ‚‡ÌËfl "Ó·‡˘‡Ú¸Òfl ÚÓθÍÓ Í ·ÎËʇȯËÏ ‰ÛÁ¸flÏ" (Ó·˙ÂÍÚ‡Ï, "ÚÂÒÌÓ" Ò‚flÁ‡ÌÌ˚Ï Ò ‰‡ÌÌ˚Ï Ó·˙ÂÍÚÓÏ) Ë Í‡Ê‰˚È Ó·˙ÂÍÚ ‰ÓÎÊÂÌ ËÏÂÚ¸ Ó„‡Ì˘ÂÌÌÛ˛ ËÌÙÓχˆË˛ Ó ‰Û„Ëı. 28.2. êÄëëíéüçàÖ áêàíÖãúçéÉé Çéëèêàüíàü ê‡ÒÒÚÓflÌËfl ‚ˉËÏÓÒÚË ê‡ÒÒÚÓflÌË ÏÂÊ‰Û Á‡˜Í‡ÏË (ËÎË ÏÂÊÎËÌÁÓ‚Ó ‡ÒÒÚÓflÌËÂ): ‚ ÓÙڇθÏÓÎÓ„ËË ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆÂÌÚ‡ÏË Á‡˜ÍÓ‚ ‰‚Ûı „·Á ÔË Ô‡‡ÎÎÂθÌ˚ı ÓÒflı ‚ËÁËÓ‚‡ÌËfl. é·˚˜ÌÓ 2,5 ‰˛Èχ (6,35 ÒÏ). éÒÚÓÚ‡ ÁÂÌËfl (·ÎËÊÌflfl) – ÒÔÓÒÓ·ÌÓÒÚ¸ „·Á‡ ‡Á΢‡Ú¸ ÙÓÏÛ Ô‰ÏÂÚ‡ Ë Â„Ó ‰ÂÚ‡ÎË Ì‡ ·ÎËÁÍÓÏ ‡ÒÒÚÓflÌËË ÔÓfl‰Í‡ 40 ÒÏ; ÓÒÚÓÚ‡ ÁÂÌËfl (‰‡Î¸Ìflfl) – ÒÔÓÒÓ·ÌÓÒÚ¸ „·Á‡ ‰Â·ڸ ˝ÚÓ Ì‡ ·Óθ¯ÂÏ ‡ÒÒÚÓflÌËË ÔÓfl‰Í‡ 6 Ï.
410
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
éÔÚ˘ÂÒÍË ÔË·Ó˚ ‰Îfl ‡·ÓÚ˚ Ò ·ÎËÁÍËÏË Ô‰ÏÂÚ‡ÏË ÒÎÛÊ‡Ú ‰Îfl Û‚Â΢ÂÌËfl ËÁÓ·‡ÊÂÌËfl Ô‰ÏÂÚ‡ Ë Ô˜‡ÚË; ÓÔÚ˘ÂÒÍË ÔË·Ó˚ ‰Îfl ‡·ÓÚ˚ Ò Ô‰ÏÂÚ‡ÏË Ì‡ ‡ÒÒÚÓflÌËË ÒÎÛÊ‡Ú ‰Îfl ÔË·ÎËÊÂÌËfl Û‰‡ÎÂÌÌ˚ı Ó·˙ÂÍÚÓ‚ (ÓÚ ÚÂı ÏÂÚÓ‚ Ë ‰‡Î¸¯Â). ÅÎËÁÍÓ ‡ÒÒÚÓflÌËÂ: ‚ ÓÙڇθÏÓÎÓ„ËË ˝ÚÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÎÓÒÍÓÒÚ¸˛ Ó·˙ÂÍÚ‡ Ë ÔÎÓÒÍÓÒÚ¸˛ Ó˜ÍÓ‚. ê‡ÒÒÚÓflÌË ‚¯ËÌ˚: ‚ ÓÙڇθÏÓÎÓ„ËË ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ó„Ó‚ËˆÂÈ Ë ÔÎÓÒÍÓÒÚ¸˛ Ó˜ÍÓ‚. ÅÂÒÍÓ̘ÌÓ ‡ÒÒÚÓflÌËÂ: ‚ ÓÙڇθÏÓÎÓ„ËË ‡ÒÒÚÓflÌË ÔÓfl‰Í‡ 20 ÙÛÚÓ‚ (6,1 Ï) Ë ·ÓÎÂÂ; ÓÌÓ Ì‡Á˚‚‡ÂÚÒfl Ú‡Í, ÔÓÒÍÓθÍÛ ÔÓÔ‡‰‡˛˘Ë ‚ „·Á ÎÛ˜Ë ÓÚ Ó·˙ÂÍÚ‡, ̇ıÓ‰fl˘Â„ÓÒfl ̇ ˝ÚÓÏ Û‰‡ÎÂÌËË, Ô‡ÍÚ˘ÂÒÍË Ô‡‡ÎÎÂθÌ˚, ‡Ì‡Îӄ˘ÌÓ ÎÛ˜‡Ï, ÔËıÓ‰fl˘ËÏ ËÁ ÚÓ˜ÍË ‚ ·ÂÒÍÓ̘ÌÓÒÚË. ÑËÒڇ̈ËÓÌÌÓ ÁÂÌË – ÁËÚÂθÌÓ ‚ÓÒÔËflÚË ӷ˙ÂÍÚÓ‚, ̇ıÓ‰fl˘ËıÒfl ̇ Û‰‡ÎÂÌËË Ì ÏÂÌ 6 Ï ÓÚ Ì‡·Î˛‰‡ÚÂÎfl. ì„ÎÓ‚Ó ‡ÒÒÚÓflÌË „·Á‡ – ‡ÔÂÚ˛‡ ۄ·, Ó·‡ÁÛÂÏÓ„Ó ÎËÌËflÏË, Ôӂ‰ÂÌÌ˚ÏË ÓÚ „·Á‡ Í ‰‚ÛÏ Ó·˙ÂÍÚ‡Ï. ê‡ÒÒÚÓflÌË RPV (ËÎË ÚÓ˜ÍË ÒıÓʉÂÌËfl ‚ ÔÓÍÓÂ) – ‡ÒÒÚÓflÌËÂ, ÔË ÍÓÚÓÓÏ „·Á‡ ̇˜Ë̇˛Ú ÒıÓ‰ËÚ¸Òfl (Ò‰‚Ë„‡Ú¸Òfl Í ÔÂÂÌÓÒˈÂ), ÍÓ„‰‡ ÓÚÒÛÚÒÚ‚ÛÂÚ Í‡ÍÓÈÎË·Ó ·ÎËÁÍËÈ Ó·˙ÂÍÚ, ‚˚Á˚‚‡˛˘ËÈ Ú‡ÍÓ ÒıÓʉÂÌËÂ. éÌÓ ÒÓÒÚ‡‚ÎflÂÚ ‚ Ò‰ÌÂÏ 45 ‰˛ÈÏÓ‚ (1,14 Ï), ÂÒÎË ÒÏÓÚÂÚ¸ ÔflÏÓ, Ë ÛÏÂ̸¯‡ÂÚÒfl ‰Ó 35 ‰˛ÈÏÓ‚ (0,89 Ï), ÂÒÎË ÒÏÓÚÂÚ¸ ‚ÌËÁ ÔÓ‰ Û„ÎÓÏ 30°. ë ÚÓ˜ÍË ÁÂÌËfl ˝„ÓÌÓÏËÍË ÔË ÔÓ‰ÓÎÊËÚÂθÌÓÈ ‡·ÓÚÂ Ò ÍÓÏÔ¸˛ÚÂÓÏ ÂÍÓÏẨÛÂÚÒfl ‚˚‰ÂÊË‚‡Ú¸ ‡ÒÒÚÓflÌË RPV ‰Ó ˝Í‡Ì‡, ˜ÚÓ·˚ ÏËÌËÏËÁËÓ‚‡Ú¸ ̇ÔflÊÂÌË „·Á. ê‡ÒÒÚÓflÌË ҂ӷӉÌÓÈ ‡ÍÍÓÏÓ‰‡ˆËË (ËÎË ÚӘ͇ ‡ÍÍÓÏÓ‰‡ˆËË ‚ ÔÓÍÓÂ, ‡ÒÒÚÓflÌË RPA) – ‡ÒÒÚÓflÌË ‰Ó ÚÓ˜ÍË, ̇ ÍÓÚÓÛ˛ ÙÓÍÛÒËÛ˛ÚÒfl „·Á‡, ÍÓ„‰‡ ÌÂÚ ÍÓÌÍÂÚÌÓ„Ó Ô‰ÏÂÚ‡ ̇·Î˛‰ÂÌËfl. îÓÍÛÒÌ˚ ‡ÒÒÚÓflÌËfl ꇷӘ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ÓÚ Ô‰ÌÂÈ ÎËÌÁ˚ ÏËÍÓÒÍÓÔ‡ ‰Ó Ó·˙ÂÍÚ‡ ÔË Ô‡‚ËθÌÓÈ ÙÓÍÛÒËÓ‚Í ÔË·Ó‡. ê‡ÒÒÚÓflÌË ‰Ó Ó·˙ÂÍÚ‡ – ‡ÒÒÚÓflÌË ÓÚ Ó·˙ÂÍÚË‚‡ ͇ÏÂ˚ ‰Ó ÙÓÚÓ„‡ÙËÛÂÏÓ„Ó Ó·˙ÂÍÚ‡, Ú.Â. Ó·˙ÂÍÚ‡, ̇ ÍÓÚÓ˚È Ì‡‚Ó‰ËÚÒfl ÙÓÍÛÒ. ê‡ÒÒÚÓflÌË ËÁÓ·‡ÊÂÌËfl – ‡ÒÒÚÓflÌË ÓÚ Ó·˙ÂÍÚË‚‡ ‰Ó ËÁÓ·‡ÊÂÌËfl (͇ÚËÌÍË Ì‡ ˝Í‡ÌÂ); ÂÒÎË ÏÂÊ‰Û Ó·˙ÂÍÚÓÏ Ë ˝Í‡ÌÓÏ ‡ÁÏ¢‡ÂÚÒfl Û‚Â΢ËÚÂθ̇fl ÎËÌÁ‡, ÚÓ ÒÛÏχ ‚Â΢ËÌ, Ó·‡ÚÌ˚ı ‡ÒÒÚÓflÌ˲ ‰Ó Ó·˙ÂÍÚ‡ Ë ‡ÒÒÚÓflÌ˲ ËÁÓ·‡ÊÂÌËfl, ‡‚ÌÓ ‚Â΢ËÌÂ, Ó·‡ÚÌÓÈ ÙÓÍÛÒÌÓÏÛ ‡ÒÒÚÓflÌ˲. îÓÍÛÒÌÓ ‡ÒÒÚÓflÌË (ÙÓ͇θ̇fl ‰ÎË̇): ‡ÒÒÚÓflÌË ÓÚ ÓÔÚ˘ÂÒÍÓ„Ó ˆÂÌÚ‡ ÎËÌÁ˚ (ËÎË ËÁÓ„ÌÛÚÓ„Ó ÁÂ͇·) ‰Ó ÚÓ˜ÍË ÙÓÍÛÒ‡ (‰Ó ËÁÓ·‡ÊÂÌËfl). Ö„Ó Ó·‡Ú̇fl ‚Â΢Ë̇, ËÁÏÂÂÌ̇fl ‚ ÏÂÚ‡ı, ̇Á˚‚‡ÂÚÒfl ‰ËÓÔÚËÂÈ Ë ËÒÔÓθÁÛÂÚÒfl ‚ ͇˜ÂÒڂ ‰ËÌˈ˚ ËÁÏÂÂÌËfl (ÓÔÚ˘ÂÒÍÓÈ) ÒËÎ˚ ÎËÌÁ˚. ÉÎÛ·Ë̇ ÂÁÍÓÒÚË – ‡ÒÒÚÓflÌË Ô‰ Ó·˙ÂÍÚÓÏ Ë ÔÓÁ‡‰Ë Ó·˙ÂÍÚ‡, ̇ıÓ‰fl˘ÂÂÒfl ‚ ÙÓÍÛÒÂ, Ú.Â. ÁÓ̇ Ò ‰ÓÔÛÒÚËÏÓÈ Ì˜ÂÚÍÓÒÚ¸˛ ËÁÓ·‡ÊÂÌËfl. ÉËÔÂÙÓ͇θÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ÓÚ Ó·˙ÂÍÚË‚‡ ‰Ó ·ÎËʇȯÂÈ ÚÓ˜ÍË („ËÔÂÙÓ͇θÌÓÈ ÚÓ˜ÍË), ÍÓÚÓ‡fl ̇ıÓ‰ËÚÒfl ‚ ÙÓÍÛÒ ÔË Ì‡‚‰ÂÌËË Ì‡ ·ÂÒÍÓ̘ÌÓÒÚ¸; ‰‡Î ˝ÚÓÈ ÚÓ˜ÍË ‚Ò ӷ˙ÂÍÚ˚ ÓÔ‰ÂÎÂÌ˚ flÒÌÓ Ë ˜ÂÚÍÓ. ùÚÓ Ò‡ÏÓ ·ÎËÁÍÓ ‡ÒÒÚÓflÌËÂ, Á‡ ԉ·ÏË ÍÓÚÓÓ„Ó „ÎÛ·Ë̇ ÂÁÍÓÒÚË ÒÚ‡ÌÓ‚ËÚÒfl ·ÂÒÍÓ̘ÌÓÈ (ÒÏ. ·ÂÒÍÓ̘ÌÓ ‡ÒÒÚÓflÌË ‚ˉËÏÓÒÚË). îÂÌÓÏÂÌ˚ ‡Áχ-‡ÒÒÚÓflÌËfl á‡ÍÓÌÓÏ ‡Áχ-‡ÒÒÚÓflÌËfl ùÏÏÂÚ‡ ÓÔ‰ÂÎÂÌÓ, ˜ÚÓ ËÁÓ·‡ÊÂÌË ̇ ÒÂÚ˜‡ÚÍ „·Á‡ fl‚ÎflÂÚÒfl ÔÓÔÓˆËÓ̇θÌ˚Ï ÔÓ ‚ÓÒÔËÌËχÂÏÓÏÛ ‡ÁÏÂÛ (͇ÊÛ˘ÂÈÒfl
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
411
‚˚ÒÓÚÂ) ‚ÓÒÔËÌËχÂÏÓÏÛ ‡ÒÒÚÓflÌ˲ ‰Ó ÔÓ‚ÂıÌÓÒÚË, ̇ ÍÓÚÓÛ˛ ÓÌÓ ÔÓˆËÛÂÚÒfl. ùÚÓÚ Á‡ÍÓÌ ÓÒÌÓ‚˚‚‡ÂÚÒfl ̇ ÚÓÏ Ù‡ÍÚÂ, ˜ÚÓ ‚ÓÒÔËÌËχÂÏ˚È ‡ÁÏ ӷ˙ÂÍÚ‡ Û‰‚‡Ë‚‡ÂÚÒfl ͇ʉ˚È ‡Á, ÍÓ„‰‡ ‚ÓÒÔËÌËχÂÏÓ ‡ÒÒÚÓflÌË ÓÚ Ì‡·Î˛‰‡ÚÂÎfl ‰ÂÎËÚÒfl ÔÓÔÓÎ‡Ï Ë, ̇ӷÓÓÚ. á‡ÍÓÌÓÏ ùÏÏÂÚ‡ Ó·˙flÒÌflÂÚÒfl Ú‡ÍÊ ÔÓÒÚÓflÌÒÚ‚Ó Ï‡Ò¯Ú‡·ËÓ‚‡ÌËfl, Ú.Â. ÚÓ„Ó, ˜ÚÓ ‡ÁÏ ӷ˙ÂÍÚ‡ ‚ÓÒÔËÌËχÂÚÒfl Í‡Í ‚Â΢Ë̇ ÔÓÒÚÓflÌ̇fl, ÌÂÒÏÓÚfl ̇ ËÁÏÂÌÂÌË ËÁÓ·‡ÊÂÌËfl ̇ ÒÂÚ˜‡ÚÍ (ÔÓ Ï ۉ‡ÎÂÌËfl Ó·˙ÂÍÚ˚, Ò Û˜ÂÚÓÏ ‚ËÁۇθÌÓÈ ÔÂÒÔÂÍÚË‚˚, ͇ÊÛÚÒfl ‚Ò ÏÂ̸¯Â Ë ÏÂ̸¯Â). ëӄ·ÒÌÓ „ËÔÓÚÂÁ ËÌ‚‡Ë‡ÌÚÌÓÒÚË ‡Áχ-‡ÒÒÚÓflÌËfl ÒÓÓÚÌÓ¯ÂÌË ‚ÓÒÔËÌËχÂÏÓ„Ó ‡Áχ Ë ‚ÓÒÔËÌËχÂÏÓ„Ó ‡ÒÒÚÓflÌËfl fl‚ÎflÂÚÒfl ڇ̄ÂÌÒÓÏ ÙËÁ˘ÂÒÍÓ„Ó ‚ËÁۇθÌÓ„Ó Û„Î‡. Ç ˜‡ÒÚÌÓÒÚË, Ó·˙ÂÍÚ˚, ÍÓÚÓ˚ ͇ÊÛÚÒfl ·ÎËÊÂ, ‰ÓÎÊÌ˚ Ú‡ÍÊÂ Ë ‚˚„Îfl‰ÂÚ¸ ÏÂ̸¯Â. é‰Ì‡ÍÓ ‚ ÓÚÌÓ¯ÂÌËË ÎÛÌÌÓÈ ËÎβÁËË Ï˚ ËÏÂÂÏ Ô‡‡‰ÓÍÒ ‡Áχ-‡ÒÒÚÓflÌËfl. ë ãÛÌÓÈ (ÚÓ˜ÌÓ Ú‡Í ÊÂ, Í‡Í Ë Ò ëÓÎ̈ÂÏ) ËÎβÁËfl Á‡Íβ˜‡ÂÚÒfl ‚ ÚÓÏ, ˜ÚÓ, ÌÂÒÏÓÚfl ̇ ÔÓÒÚÓflÌÒÚ‚Ó Â ‚ËÁۇθÌÓ„Ó Û„Î‡ (ÔËÏÂÌÓ 0,52°), ‡ÁÏÂ˚ ãÛÌ˚, ̇ıÓ‰fl˘ÂÈÒfl ̇‰ ÛÓ‚ÌÂÏ „ÓËÁÓÌÚ‡, ÏÓ„ÛÚ Í‡Á‡Ú¸Òfl ‚ 2 ‡Á‡ ·Óθ¯Â, ˜ÂÏ ‡ÁÏÂ˚ ãÛÌ˚, ̇ıÓ‰fl˘ÂÈÒfl ‚ ÁÂÌËÚÂ. ëÛÚ¸ ˝ÚÓÈ ËÎβÁËË Â˘Â Ì ‰Ó ÍÓ̈‡ ÔÓÌflÚ̇; Ӊ̇ ËÁ Ô‰ÔÓ·„‡ÂÏ˚ı Ô˘ËÌ ÍÓ„ÌËÚ˂̇fl: ‡ÁÏÂ˚ ãÛÌ˚ ‚ ÁÂÌËڠ̉ÓÓˆÂÌË‚‡˛ÚÒfl, ÔÓÒÍÓθÍÛ Ó̇ ‚ÓÒÔËÌËχÂÚÒfl Í‡Í ÔË·ÎËʇ˛˘ËÈÒfl Ó·˙ÂÍÚ. ç‡Ë·ÓΠӷ˘ËÏ ÒÎÛ˜‡ÂÏ ÓÔÚ˘ÂÒÍÓÈ ËÎβÁËË fl‚ÎflÂÚÒfl ËÒ͇ÊÂÌË ‡ÁÏÂÓ‚ ËÎË ‰ÎËÌ˚; ̇ÔËÏÂ, ËÎβÁËË å˛Î·–ãÂȇ, ë‡Ì‰Â‡ Ë èÓÌÁÓ. ùÙÙÂÍÚ ÒËÏ‚Ó΢ÂÒÍÓÈ ‰ËÒڇ̈ËË Ç ÔÒËıÓÎÓ„ËË ÏÓÁ„ ÓÒÛ˘ÂÒÚ‚ÎflÂÚ Ò‡‚ÌÂÌË ‰‚Ûı ÍÓ̈ÂÔˆËÈ (ËÎË Ó·˙ÂÍÚÓ‚) ÚÂÏ ÚÓ˜ÌÂÂ Ë ·˚ÒÚÂÂ, ˜ÂÏ ·Óθ¯Â ÓÌË ‡Á΢‡˛ÚÒfl ‚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ÂÏ ËÁÏÂÂÌËË. ëÛ·˙ÂÍÚË‚ÌÓ ‡ÒÒÚÓflÌË ëÛ·˙ÂÍÚË‚ÌÓ ‡ÒÒÚÓflÌË (ËÎË ÍÓ„ÌËÚË‚ÌÓ ‡ÒÒÚÓflÌËÂ) – Ï˚ÒÎÂÌÌÓ Ô‰ÒÚ‡‚ÎÂÌË ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ‡ÒÒÚÓflÌËfl, ÒÙÓÏËÓ‚‡ÌÌË ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ ÒӈˇθÌÓ„Ó, ÍÛθÚÛÌÓ„Ó Ë Ó·˘Â„Ó ÊËÁÌÂÌÌÓ„Ó ÓÔ˚Ú‡ Ë̉˂ˉÛÛχ. é¯Ë·ÍË ÍÓ„ÌËÚË‚ÌÓ„Ó ‡ÒÒÚÓflÌËfl ‚ÓÁÌË͇˛Ú ÎË·Ó ÔÓ Ô˘ËÌ ÓÚÒÛÚÒÚ‚Ëfl ÍÓ‰ËÓ‚‡ÌËfl/ı‡ÌÂÌËfl ËÌÙÓχˆËË Ó ‰‚Ûı ÚӘ͇ı ‚ Ó‰ÌÓÈ Ë ÚÓÈ Ê ‚ÂÚ‚Ë Ô‡ÏflÚË, ÎË·Ó ËÁ-Á‡ ӯ˷ÍË ‚˚ÁÓ‚‡ ˝ÚÓÈ ËÌÙÓχˆËË. ç‡ÔËÏÂ, ‰ÎË̇ ÔÛÚË Ò ÏÌÓ„Ó˜ËÒÎÂÌÌ˚ÏË ÔÓ‚ÓÓÚ‡ÏË Ë ÓËÂÌÚˇÏË Ó·˚˜ÌÓ ÔÂÂÓˆÂÌË‚‡ÂÚÒfl. ù„ÓˆÂÌÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌËÂ Ç ÔÒËıÓÙËÁËÓÎÓ„ËË ˝„ÓˆÂÌÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‚ÓÒÔËÌËχÂÏÓ ‡·ÒÓβÚÌÓ ‡ÒÒÚÓflÌË ÓÚ Î˘ÌÓÒÚË (̇·Î˛‰‡ÚÂÎfl ËÎË ÒÎÛ¯‡ÚÂÎfl) ‰Ó Ó·˙ÂÍÚ‡ ËÎË ‡Á‰‡ÊËÚÂÎfl (̇ÔËÏÂ, ËÒÚÓ˜ÌË͇ Á‚Û͇). ä‡Í Ô‡‚ËÎÓ, ‚ËÁۇθÌÓ ˝„ÓˆÂÌÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ӈÂÌË‚‡ÂÚÒfl ÍÓӘ ‰ÂÈÒÚ‚ËÚÂθÌÓ„Ó ÙËÁ˘ÂÒÍÓ„Ó ‡ÒÒÚÓflÌËfl ‰Ó Û‰‡ÎÂÌÌ˚ı Ó·˙ÂÍÚÓ‚ Ë ‰ÎËÌÌ ‰Ó ·ÎËÁÍËı. èË ÁËÚÂθÌÓÏ ‚ÓÒÔËflÚËË ÔÓÒÚ‡ÌÒÚ‚Ó ‰ÂÈÒÚ‚Ëfl Ó·˙ÂÍÚ‡ Óı‚‡Ú˚‚‡ÂÚ 1–30 Ï; ÏÂ̸¯ÂÂ Ë ·Óθ¯Â ÔÓÒÚ‡ÌÒÚ‚‡ ̇Á˚‚‡˛ÚÒfl ΢Ì˚Ï ÔÓÒÚ‡ÌÒÚ‚ÓÏ Ë ÔÓÒÚ‡ÌÒÚ‚ÓÏ ÔÂÒÔÂÍÚË‚˚ ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ. ùÍÁÓˆÂÌÚ˘ÂÒÍËÏ ‡ÒÒÚÓflÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‚ÓÒÔËÌËχÂÏÓ ÓÚÌÓÒËÚÂθÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ó·˙ÂÍÚ‡ÏË. éËÂÌÚË˚ ‰Îfl ÓˆÂÌÍË ‡ÒÒÚÓflÌËfl éËÂÌÚË˚ ‰Îfl ÓˆÂÌÍË ‡ÒÒÚÓflÌËfl – ÓËÂÌÚË˚, ËÒÔÓθÁÛÂÏ˚ ‰Îfl ÓˆÂÌÍË ˝„ÓˆÂÌÚ˘ÂÒÍÓ„Ó ‡ÒÒÚÓflÌËfl. ÑÎfl ÒÎÛ¯‡ÚÂÎfl Ò ÙËÍÒËÓ‚‡ÌÌ˚Ï ÏÂÒÚÓÔÓÎÓÊÂÌËÂÏ „·‚Ì˚ÏË ‡ÍÛÒÚ˘ÂÒÍËÏË ÓËÂÌÚˇÏË ‰Îfl ÓˆÂÌÍË ‡ÒÒÚÓflÌËfl fl‚Îfl˛ÚÒfl: ËÌÚÂÌÒË‚ÌÓÒÚ¸ (̇ ÓÚÍ˚ÚÓÏ ‚ÓÁ‰Ûı Ó̇ Ô‡‰‡ÂÚ Ì‡ 5 ‰Å ‰Îfl Í‡Ê‰Ó„Ó Û‰‚ÓÂÌËfl ‡ÒÒÚÓflÌËfl (ÒÏ. ÄÍÛÒÚ˘ÂÒÍË ‡Ò-
412
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ÒÚÓflÌËfl, „Î. 21)), ÒÓÓÚÌÓ¯ÂÌË ÔflÏÓÈ Í ÓÚ‡ÊÂÌÌÓÈ ˝Ì„ËË (ÔË Ì‡Î˘ËË Á‚ÛÍÓÓڇʇ˛˘Ëı ÔÓ‚ÂıÌÓÒÚÂÈ), ÒÔÂÍڇθÌ˚Â Ë ÒÚÂÂÓÙÓÌ˘ÂÒÍË ‡Á΢Ëfl . ÑÎfl ̇·Î˛‰‡ÚÂÎfl ÓÒÌÓ‚Ì˚ÏË ‚ËÁۇθÌ˚ÏË ÓËÂÌÚˇÏË ‰Îfl ÓˆÂÌÍË ‡ÒÒÚÓflÌËfl fl‚Îfl˛ÚÒfl: – ÓÚÌÓÒËÚÂθÌ˚È ‡ÁÏÂ, ÓÚÌÓÒËÚÂθ̇fl flÍÓÒÚ¸, Ò‚ÂÚ Ë ÚÂ̸; – ‚˚ÒÓÚ‡ ‚ ÔÓΠÁÂÌËfl (‰Îfl ÒÎÛ˜‡Â‚ ÔÎÓÒÍËı ÔÓ‚ÂıÌÓÒÚÂÈ, ÎÂʇ˘Ëı ÌËÊ ÛÓ‚Ìfl „·Á, ·ÓΠۉ‡ÎÂÌÌ˚ ӷ˙ÂÍÚ˚ ͇ÊÛÚÒfl ‚˚¯Â); – ËÌÚÂÔÓÁˈËfl (ÍÓ„‰‡ Ó‰ËÌ Ó·˙ÂÍÚ ˜‡ÒÚ˘ÌÓ Á‡„Ó‡ÊË‚‡ÂÚ ‚ˉ ̇ ‰Û„ÓÈ); – ·ËÌÓÍÛÎflÌ˚ ‡ÒıÓʉÂÌËfl, ÒıÓʉÂÌË (‚ Á‡‚ËÒËÏÓÒÚË ÓÚ Û„Î‡ ÓÔÚ˘ÂÒÍÓÈ ÓÒË „·Á), ‡ÍÍÓÏÓ‰‡ˆËfl (ÒÓÒÚÓflÌË ÙÓÍÛÒËÓ‚ÍË „·Á); – ‚ÓÁ‰Û¯Ì‡fl ÔÂÒÔÂÍÚË‚‡ (Ó·˙ÂÍÚ˚ ̇ ‡ÒÒÚÓflÌËË ÒÚ‡‚flÚÒfl ·ÓΠ„ÓÎÛ·˚ÏË Ë ·Î‰Ì˚ÏË), ÔÓÚÛÒÍÌÂÌË ÓÚ ‡ÒÒÚÓflÌËfl (Ó·˙ÂÍÚ˚ ̇ ‡ÒÒÚÓflÌËË ÏÂÌ ÍÓÌÚ‡ÒÚÌ˚ Ë Ëı Ó˜ÂÚ‡ÌËfl ·ÓΠ‡ÁÏ˚Ú˚); – ÔÂÒÔÂÍÚË‚‡ ‰‚ËÊÂÌËfl (ÒÚ‡ˆËÓ̇Ì˚È Ó·˙ÂÍÚ ‚ÓÒÔËÌËχÂÚÒfl ‰‚ËÊÛ˘ËÏÒfl ̇·Î˛‰‡ÚÂÎÂÏ Í‡Í Ô·‚ÌÓ ÔÓÎÂÚ‡˛˘ËÈ ÏËÏÓ Ì„Ó). чΠÔË‚Ó‰flÚÒfl ÌÂÍÓÚÓ˚ ÚÂıÌ˘ÂÒÍË ÔËÂÏ˚, ËÒÔÓθÁÛ˛˘Ë Û͇Á‡ÌÌ˚ ‚˚¯Â ÓËÂÌÚË˚ ‰Îfl ÒÓÁ‰‡ÌËfl ÓÔÚ˘ÂÒÍËı ËÎβÁËÈ ‰Îfl ÁËÚÂÎÂÈ: – ÚÛÏ‡Ì ‡ÒÒÚÓflÌËfl: ˝ÎÂÏÂÌÚ ÚÂıÏÂÌÓÈ ÍÓÏÔ¸˛ÚÂÌÓÈ „‡ÙËÍË ‰Îfl ÒÓÁ‰‡ÌËfl ˝ÙÙÂÍÚ‡ ‡ÁÏ˚ÚÓÒÚË (Á‡ÚÛχÌË‚‡ÌËfl) Ó·˙ÂÍÚÓ‚ ÔÓ Ï Ëı Û‰‡ÎÂÌËfl ÓÚ Í‡ÏÂ˚; – ÔËÌÛ‰ËÚÂθ̇fl ÔÂÒÔÂÍÚË‚‡: ÍËÌÂχÚÓ„‡Ù˘ÂÒÍËÈ ÔËÂÏ, ‰Â·˛˘ËÈ Ú‡Í, ˜ÚÓ·˚ Ó·˙ÂÍÚ˚ ͇Á‡ÎËÒ¸ ·ÓΠ‰‡ÎÂÍËÏË ËÎË Ì‡Ó·ÓÓÚ ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ Ëı ÏÂÒÚÓÔÓÎÓÊÂÌËfl ÓÚÌÓÒËÚÂθÌÓ Í‡ÏÂ˚ Ë ‰Û„ ‰Û„‡. äËÌÓÒ˙ÂÏÍË, Ò‚flÁ‡ÌÌ˚Â Ò ‡ÒÒÚÓflÌËÂÏ äËÌÓÒ˙ÂÏ͇ – ˝ÚÓ ÙËθÏÓ‚˚ χÚ¡Î˚, ÓÚÒÌflÚ˚Â Ò ÏÓÏÂÌÚ‡ ̇˜‡Î‡ ‡·ÓÚ˚ ͇ÏÂ˚ (ÔÓ ÍÓχ̉ ÂÊËÒÒ‡ "ÏÓÚÓ") Ë ‰Ó ÏÓÏÂÌÚ‡  ÓÒÚ‡ÌÓ‚ÍË (ÔÓ ÍÓχ̉ "ÒÌflÚÓ"). éÒÌÓ‚Ì˚ÏË Í‡‰‡ÏË, Ò‚flÁ‡ÌÌ˚ÏË Ò ‡ÒÒÚÓflÌËÂÏ (̇ÒÚÓÈ͇ÏË Í‡ÏÂ˚), fl‚Îfl˛ÚÒfl: – Ò˙ÂÏ͇ Ó·˘ËÏ Ô·ÌÓÏ: ͇‰˚ ‚ ̇˜‡Î ˝ÔËÁÓ‰‡, Ò ÔÓÏÓ˘¸˛ ÍÓÚÓ˚ı ÛÒڇ̇‚ÎË‚‡ÂÚÒfl ÏÂÒÚÓ ‰ÂÈÒÚ‚Ëfl Ë/ËÎË ‚ÂÏfl ÒÛÚÓÍ; – Ò˙ÂÏ͇ ‰‡Î¸ÌËÏ Ô·ÌÓÏ: ͇‰˚, ÒÌflÚ˚Â Ò ‡ÒÒÚÓflÌËfl Ì ÏÂÌ 50 ÙÛÚÓ‚ (45,72 Ï) ÓÚ ÏÂÒÚ‡ ‰ÂÈÒÚ‚Ëfl; – Ò‰ÌËÈ Ô·Ì: ͇‰˚, ÒÌflÚ˚Â Ò ‡ÒÒÚÓflÌËfl 5–15 fl‰Ó‚ (4,57–13,75 Ï), ‚Íβ˜‡fl ˆÂÎËÍÓÏ Ì·Óθ¯Û˛ „ÛÔÔÛ, ÔÓ͇Á „ÛÔÔ˚ β‰ÂÈ/Ó·˙ÂÍÚÓ‚ ÓÚÌÓÒËÚÂθÌÓ ÓÍÂÒÚÌÓÒÚÂÈ; – ÍÛÔÌ˚È Ô·Ì: ͇‰˚, ÔÓ͇Á˚‚‡˛˘Ë ‡ÍÚ‡ Ò ÛÓ‚Ìfl ¯ÂË Ë ‚˚¯Â ËÎË Ó·˙ÂÍÚ Ò ‡Ì‡Îӄ˘ÌÓ ·ÎËÁÍÓ„Ó ‡ÒÒÚÓflÌËfl; – ‰‚ÓÈÌÓÈ Ô·Ì: ͇‰˚, ÒÌflÚ˚Â Ò ‰‚ÛÏfl β‰¸ÏË Ì‡ Ô‰ÌÂÏ Ô·ÌÂ; – ‚ÒÚ‡‚͇: ‚ÒÚ‡‚ÎÂÌÌ˚ ͇‰˚ (Ó·˚˜ÌÓ ÍÛÔÌ˚Ï Ô·ÌÓÏ) ‰Îfl ·ÓΠ‰ÂڇθÌÓ„Ó ÔÓ͇Á‡ Ó·˙ÂÍÚ‡. ê‡ÒÒÚÓflÌËfl ‚ ÒÚÂÂÓÒÍÓÔËË é‰ÌËÏ ËÁ ÒÔÓÒÓ·Ó‚ ÔÓÎÛ˜ÂÌËfl ÚÂıÏÂÌÓ„Ó ËÁÓ·‡ÊÂÌËfl fl‚ÎflÂÚÒfl Ò˙ÂÏ͇ Ô‡˚ ‰‚ÛıÏÂÌ˚ı ËÁÓ·‡ÊÂÌËÈ Ò ÔÓÏÓ˘¸˛ ÒËÒÚÂÏ˚ ÒÔ‡ÂÌÌ˚ı ͇ÏÂ. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û Í‡Ï‡ÏË (ËÎË ‰ÎË̇ ·‡ÁËÒÌÓÈ ÎËÌËË, ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÓÍÛÎfl‡ÏË Í‡ÏÂ) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ͇χÏË, ‰Â·˛˘ËÏË ÒÌËÏÍË ‚ ÓÎË ÎÂ‚Ó„Ó Ë Ô‡‚Ó„Ó „·Á. ê‡ÒÒÚÓflÌË ÒıÓʉÂÌËfl – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆÂÌÚÓÏ ·‡ÁËÒÌÓÈ ÎËÌËË Í‡ÏÂ˚ ‰Ó ÚÓ˜ÍË ÒıÓʉÂÌËfl, „‰Â ‰‚ ÎËÌÁ˚ ‰ÓÎÊÌ˚ ÒÓ‚ÏÂÒÚËÚ¸Òfl ‰Îfl ÔÓÎÛ˜ÂÌËfl ÒÚÂÂÓ-
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
413
ÒÍÓÔ˘ÂÒÍÓ„Ó ˝ÙÙÂÍÚ‡. ùÚÓ ‡ÒÒÚÓflÌË ‰ÓÎÊÌÓ ·˚Ú¸ ‚ 15–30 ‡Á ·Óθ¯Â ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û Í‡Ï‡ÏË. ê‡ÒÒÚÓflÌË ÔÎÓÒÍÓÒÚË ËÁÓ·‡ÊÂÌËfl – ‡ÒÒÚÓflÌËÂÏ, ̇ ÍÓÚÓÓÏ Ó·˙ÂÍÚ Í‡ÊÂÚÒfl ̇ıÓ‰fl˘ËÏÒfl ̇ (ÌÓ Ì ÔÓÁ‡‰Ë ËÎË Ô‰) ÔÎÓÒÍÓÒÚË ËÁÓ·‡ÊÂÌËfl (͇ÊÛ˘ÂÈÒfl ÔÓ‚ÂıÌÓÒÚË ËÁÓ·‡ÊÂÌËfl). ê‡Ï͇ – „‡Ìˈ‡ ͇¯ËÓ‚‡ÌËfl ‡ÏÍË ˝Í‡Ì‡ Ú‡ÍËÏ Ó·‡ÁÓÏ, ˜ÚÓ·˚ ÔÓfl‚Îfl˛˘ËÂÒfl ̇ ÌÂÏ (Ì Á‡ Ë Ì ‚Ì „Ó) Ó·˙ÂÍÚ˚ ͇Á‡ÎËÒ¸ ̇ıÓ‰fl˘ËÏËÒfl ̇ ÚÓÏ Ê ‡ÒÒÚÓflÌËË ÓÚ ÁËÚÂÎfl, ˜ÚÓ Ë Ò‡Ï‡ ‡Ï͇. ÑÎfl ‚ËÁۇθÌÓ„Ó ‚ÓÒÔËflÚËfl ˜ÂÎÓ‚Â͇ ‡ÒÒÚÓflÌË ÔÎÓÒÍÓÒÚË ËÁÓ·‡ÊÂÌËfl ‡‚ÌÓ ÔËÏÂÌÓ 30 ‡ÒÒÚÓflÌËflÏ ÏÂÊ‰Û Í‡Ï‡ÏË. ê‡ÒÒÚÓflÌËfl ‰ÓÓÊÌÓÈ ‚ˉËÏÓÒÚË Ñ‡Î¸ÌÓÒÚ¸ ‚ˉËÏÓÒÚË (ËÎË ‡ÒÒÚÓflÌË ‚ˉËÏÓÒÚË) – ‰ÎË̇ Ó·ÓÁ‚‡ÂÏÓ„Ó ‚Ó‰ËÚÂÎÂÏ Û˜‡ÒÚ͇ ¯ÓÒÒÂ. ÅÂÁÓÔ‡Ò̇fl ‰‡Î¸ÌÓÒÚ¸ ‚ˉËÏÓÒÚË ÓÔ‰ÂÎflÂÚÒfl Í‡Í ‰‡Î¸ÌÓÒÚ¸ ‚ˉËÏÓÒÚË, ÌÂÓ·ıÓ‰Ëχfl ‚Ó‰ËÚÂβ ‰Îfl ÚÓ„Ó, ˜ÚÓ·˚ ‚˚ÔÓÎÌËÚ¸ ÍÓÌÍÂÚÌÛ˛ Á‡‰‡˜Û; ÓÒÌÓ‚Ì˚ÏË ·ÂÁÓÔ‡ÒÌ˚ÏË ‡ÒÒÚÓflÌËflÏË, ËÒÔÓθÁÛÂÏ˚ÏË ÔË ÔÓÂÍÚËÓ‚‡ÌËË ‰ÓÓ„, fl‚Îfl˛ÚÒfl ÒÎÂ‰Û˛˘ËÂ: – ‡ÒÒÚÓflÌË ÚÓÏÓÁÌÓ„Ó ÔÛÚË – ‰‡Î¸ÌÓÒÚ¸ ‚ˉËÏÓÒÚË, Ó·ÂÒÔ˜˂‡˛˘‡fl ÓÒÚ‡ÌÓ‚ÍÛ ‡‚ÚÓÏÓ·ËÎfl Ô‰ ÌÂÓÊˉ‡ÌÌÓ ÔÓfl‚Ë‚¯ËÏÒfl ÔÂÔflÚÒÚ‚ËÂÏ; – ·ÂÁÓÔ‡Ò̇fl ‰Îfl χÌ‚ËÓ‚‡ÌËfl ‚ˉËÏÓÒÚ¸ – ‡ÒÒÚÓflÌËÂ, Ó·ÂÒÔ˜˂‡˛˘Â ‚ÓÁÏÓÊÌÓÒÚ¸ Ó·˙ÂÁ‰‡ ÌÂÓÊˉ‡ÌÌÓ„Ó Ì·Óθ¯Ó„Ó ÔÂÔflÚÒÚ‚Ëfl ̇ ‰ÓÓ„Â; – ·ÂÁÓÔ‡Ò̇fl ‰Îfl Ó·„Ó̇ ‚ˉËÏÓÒÚ¸ – ‡ÒÒÚÓflÌËÂ, ÌÂÓ·ıÓ‰ËÏÓ ‰Îfl ‚˚ÔÓÎÌÂÌËfl ·ÂÁÓÔ‡ÒÌÓ„Ó Ó·„Ó̇; – ‚ˉËÏÓÒÚ¸ Ó·ÁÓ‡ ‰ÓÓ„Ë – ‡ÒÒÚÓflÌËÂ, ÔÓÁ‚ÓÎfl˛˘Â Ô‰‚ˉÂÚ¸ ËÁÏÂÌÂÌË ÓÒÂ‚Ó„Ó Ì‡Ô‡‚ÎÂÌËfl (Í‡Í ÔÓ‚ÓÓÚ˚, Ú‡Í Ë ÔÓ‰˙ÂÏ˚ Ë ÒÔÛÒÍË) ÔÓÎÓÚ̇ ‰ÓÓ„Ë (̇ÔËÏÂ, ‰Îfl ‚˚·Ó‡ ÒÍÓÓÒÚÌÓ„Ó ÂÊËχ ‰‚ËÊÂÌËfl). äÓÏ ÚÓ„Ó, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘‡fl ‰‡Î¸ÌÓÒÚ¸ ‚ˉËÏÓÒÚË ÌÂÓ·ıÓ‰Ëχ Ë ‚ ÎÓ͇θÌÓÏ Ï‡Ò¯Ú‡·Â: ‰Îfl ÓˆÂÌÍË ÒËÚÛ‡ˆËË Ì‡ ÔÂÂÍÂÒÚ͇ı Ë Â‡„ËÓ‚‡ÌËfl ̇ Ò˄̇Î˚ Ò‚ÂÚÓÙÓÓ‚. 28.3. êÄëëíéüçàü éÅéêìÑéÇÄçàü ê‡ÒÒÚÓflÌËfl, Ò‚flÁ‡ÌÌ˚Â Ò Ú‡ÌÒÔÓÚÌ˚ÏË Ò‰ÒÚ‚‡ÏË íÓÏÓÁÌÓÈ ÔÛÚ¸ – ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ ÔÓıÓ‰ËÚ ‡‚ÚÓÏÓ·Ëθ Ò ÏÓÏÂÌÚ‡ ̇ʇÚËfl ÚÓÏÓÁÓ‚ ‰Ó ÔÓÎÌÓÈ ÓÒÚ‡ÌÓ‚ÍË. ê‡ÒÒÚÓflÌË ‡„ËÓ‚‡ÌËfl – ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ ‡‚ÚÓÏÓ·Ëθ ÔÓıÓ‰ËÚ Ò ÏÓÏÂÌÚ‡, ÍÓ„‰‡ ‚Ó‰ËÚÂθ ۂˉËÚ ÓÔ‡ÒÌÓÒÚ¸ ̇ ‰ÓÓ„Â, ‰Ó ÏÓÏÂÌÚ‡ ̇˜‡Î‡ ÚÓÏÓÊÂÌËfl (ÒÍ·‰˚‚‡ÂÚÒfl ËÁ ‚ÂÏÂÌË ‚ÓÒÔËflÚËfl Ë ÒÍÓÓÒÚË Â‡ÍˆËË ˜ÂÎÓ‚Â͇) (Ì ÔÛÚ‡Ú¸ Ò ‰ËÒڇ̈ËÂÈ Â‡ÍˆËË ÊË‚ÓÚÌÓ„Ó). ê‡ÒÒÚÓflÌË ÚÓÏÓÊÂÌËfl – ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ ÔÓıÓ‰ËÚ ‡‚ÚÓÏÓ·Ëθ Ò ÚÓ„Ó ÏÓÏÂÌÚ‡, ÍÓ„‰‡ ‚Ó‰ËÚÂθ ¯‡ÂÚ Á‡ÚÓÏÓÁËÚ¸, ‰Ó ÏÓÏÂÌÚ‡ ÔÓÎÌÓÈ ÓÒÚ‡ÌÓ‚ÍË Ú‡ÌÒÔÓÚÌÓ„Ó Ò‰ÒÚ‚‡ (ÓÔ‰ÂÎflÂÚÒfl ÒÍÓÓÒÚ¸˛ ‡͈ËË ÒËÒÚÂÏ˚ ÚÓÏÓÊÂÌËfl Ë ˝ÙÙÂÍÚË‚ÌÓÒÚ¸˛ ÚÓÏÓÁÌ˚ı ÛÒÚÓÈÒÚ‚). é·ÓÁ̇˜‡ÂÏ˚È ÔÓ ‡ÒÒÚÓflÌ˲ ÌÓÏ ‡Á‚flÁÍË ‰ÓÓ„ – ÌÓÏÂ, ÔËÒ‚‡Ë‚‡ÂÏ˚È ÔÂÂÍÂÒÚÍÛ (Ó·˚˜ÌÓ ˝ÚÓ ‡Á‚flÁ͇ ̇ ‡‚ÚÓÒÚ‡‰Â), ÍÓÚÓ˚È ÓÚÓ·‡Ê‡ÂÚ ‚ ÏËÎflı (ËÎË ÍËÎÓÏÂÚ‡ı) ‡ÒÒÚÓflÌË ÓÚ Ì‡˜‡Î‡ ‡‚ÚÓÒÚ‡‰˚ ‰Ó ‡Á‚flÁÍË. åËθÌ˚È Í‡ÏÂ̸ (ËÎË ÍËÎÓÏÂÚÓ‚˚È ÒÚÓη) fl‚ÎflÂÚÒfl ˝ÎÂÏÂÌÚÓÏ ÔÓÒΉӂ‡ÚÂθÌÓÒÚË ÌÛÏÂÓ‚‡ÌÌ˚ı Û͇Á‡ÚÂÎÂÈ, ÛÒÚ‡ÌÓ‚ÎÂÌÌ˚ı Ò ‡‚Ì˚ÏË ËÌÚ‚‡Î‡ÏË ‚‰Óθ ‰ÓÓ„Ë. çÛ΂ÓÈ ÒÚÓη ‚ ÒÚÓ΢ÌÓÏ Ç‡¯ËÌ„ÚÓÌ ҘËÚ‡ÂÚÒfl ̇˜‡ÎÓÏ ÓÚÒ˜ÂÚ‡ ‰Îfl ‚ÒÂı ‰ÓÓÊÌ˚ı ‡ÒÒÚÓflÌËÈ ‚ ëòÄ. ê‡ÒÒÚÓflÌË Ô‚‡ÌÌÓ„Ó ‚ÁÎÂÚ‡ – ‰ÎË̇ ‚ÁÎÂÚÌÓ-ÔÓÒ‡‰Ó˜ÌÓÈ ÔÓÎÓÒ˚ ÔÎ˛Ò ‰ÎË̇ ÍÓ̈‚ÓÈ ÔÓÎÓÒ˚ ·ÂÁÓÔ‡ÒÌÓÒÚË, ÍÓÚÓ‡fl Ô˄Ӊ̇ Ë ÍÓÚÓÛ˛ ‡Á¯ÂÌÓ ËÒÔÓθ-
414
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ÁÓ‚‡Ú¸ ‰Îfl ‡Á„Ó̇ ÔË ‚ÁÎÂÚÂ Ë ÚÓÏÓÊÂÌËfl Ò‡ÏÓÎÂÚ‡ ‚ ÒÎÛ˜‡Â ÔÂ˚‚‡ÌËfl ‚ÁÎÂÚ‡. ê‡ÒÒÚÓflÌË ÒÓ͇ ‰ÂÈÒÚ‚Ëfl – Ó·˘Â ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ ÔÓıÓ‰ËÚ Ò‡ÏÓ‰‚ËÊÛ˘ËÈÒfl ̇ÁÂÏÌ˚È ËÎË ÏÓÒÍÓÈ Ú‡ÌÒÔÓÚ Ò Á‡‰‡ÌÌÓÈ ˝ÍÓÌÓÏ˘ÌÓÈ ÒÍÓÓÒÚ¸˛ ‰‚ËÊÂÌËfl. î‡ÍÚ˘ÂÒÍË ÔÓȉÂÌÌÓ ‡ÒÒÚÓflÌË (ÏÓÒÍÓÈ ÚÂÏËÌ) – ‡ÒÒÚÓflÌËÂ, ÔÓȉÂÌÌÓ ÔÓÒΠÍÓÂÍÚËÓ‚ÍË ÚÂÍÛ˘Ëı ÓÚÍÎÓÌÂÌËÈ ÓÚ ÍÛÒ‡, ·ÓÍÓ‚Ó„Ó ÒÌÓÒ‡ (‰ÂÈÙ‡ ÍÓ‡·Îfl ‚ ÔÓ‰‚ÂÚÂÌÌÛ˛ ÒÚÓÓÌÛ) Ë ÔÓ˜Ëı ӯ˷ÓÍ, ÍÓÚÓ˚ ÏÓ„ÎË ·˚Ú¸ Ì ۘÚÂÌ˚ ÔË Ì‡˜‡Î¸ÌÓÏ ËÁÏÂÂÌËË ‡ÒÒÚÓflÌËfl. ㇄ – ÔË·Ó ‰Îfl ÓÚÒ˜ÂÚ‡ ÔÓȉÂÌÌÓ„Ó Ì‡ ‚Ӊ ‡ÒÒÚÓflÌËfl, ÔÓ͇Á‡ÌËfl ÍÓÚÓÓ„Ó Á‡ÚÂÏ ÍÓÂÍÚËÛ˛ÚÒfl ‰Îfl ‚˚‚‰ÂÌË fl Ù‡ÍÚ˘ÂÒÍË ÔÓȉÂÌÌÓ„Ó ‡ÒÒÚÓflÌËfl. GM-‡ÒÒÚÓflÌË (ËÎË ÏÂÚ‡ˆËÍ΢ÂÒ͇fl ‚˚ÒÓÚ‡) Òۉ̇ – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ˆÂÌÚÓÏ Â„Ó ÚflÊÂÒÚË G Ë ÏÂÚ‡ˆÂÌÚÓÏ, Ú.Â. ÔÓÂ͈ËÂÈ ˆÂÌÚ‡ ‚Ó‰ÓËÁÏ¢ÂÌËfl („‡‚ËÚ‡ˆËÓÌÌÓ„Ó ˆÂÌÚ‡ ‚˚Ú‡ÎÍË‚‡ÂÏÓ„Ó ÍÓÔÛÒÓÏ Òۉ̇ Ó·˙Âχ ‚Ó‰˚) ̇ ‰Ë‡ÏÂڇθÌÛ˛ ÎËÌ˲ Òۉ̇ ‚ ÏÓÏÂÌÚ ÍÂ̇. ùÚÓ ‡ÒÒÚÓflÌË (Ó·˚˜ÌÓ 1–2 Ï) ı‡‡ÍÚÂËÁÛÂÚ ÓÒÚÓȘ˂ÓÒÚ¸ Òۉ̇ ̇ ‚Ó‰Â. éÚÚflÊ͇ – ÔË ÔÓ„ÛÊÂÌËflı ÔÓ‰ ‚Ó‰Û fl‚ÎflÂÚÒfl ‚ÂÏÂÌÌ˚Ï Ï‡ÍÂÓÏ (Ó·˚˜ÌÓ ˝ÚÓ 50-ÏÂÚÓ‚‚˚È ÚÓÌÍËÈ ÔÓÎËÔÓÔËÎÂÌÓ‚˚È ÚÓÒ), Ó·ÓÁ̇˜‡˛˘ËÏ Í‡Ú˜‡È¯ËÈ ÔÛÚ¸ ÏÂÊ‰Û ‰‚ÛÏfl ÚӘ͇ÏË. é̇ Ô‰̇Á̇˜Â̇ ‰Îfl ÓËÂÌÚËÓ‚‡ÌËfl ‚ ÛÒÎÓ‚Ëflı ÔÎÓıÓÈ ‚ˉËÏÓÒÚË ÔË ‚ÓÁ‚‡˘ÂÌËË ‚Ó‰Ó·Á‡ Í ÓÚÔ‡‚ÌÓÈ ÚÓ˜ÍÂ. ê‡ÒÒÚÓflÌËfl ‚ ÒËÒÚÂχı ӷ̇ÛÊÂÌËfl ê‡ÒÒÚÓflÌË Ì‚ˉËÏÓÒÚË (ËÎË ‡ÒÒÚÓflÌË Ô‚ÓÈ Á‡Ò˜ÍË) – ‡ÒÒÚÓflÌËÂ, ÔÓȉÂÌÌÓ ‰‚ËÊÛ˘ËÏÒfl Ó·˙ÂÍÚÓÏ (̇ۯËÚÂÎÂÏ) ‰Ó ÏÓÏÂÌÚ‡ ÙËÍÒ‡ˆËË Â„Ó ‡ÍÚË‚Ì˚ÏË Ò‰ÒÚ‚‡ÏË ÒËÒÚÂÏ˚ ӷ̇ÛÊÂÌËfl (ÒÏ. 䂇ÁˇÒÒÚÓflÌËfl ÍÓÌÚ‡ÍÚ‡, „Î. 19); ‚ÂÏfl Ì‚ˉËÏÓÒÚË ı‡‡ÍÚÂËÁÛÂÚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ë ‚ÂÏÂÌÌ˚ ԇ‡ÏÂÚ˚. ê‡ÒÒÚÓflÌË Á‡‰ÂÊÍË ‰‡ÌÌ˚ı ӷ̇ÛÊÂÌËfl – ‡ÒÒÚÓflÌËÂ, ÔÓȉÂÌÌÓ ‰‚ËÊÛ˘ËÏÒfl Ó·˙ÂÍÚÓÏ (̇ۯËÚÂÎÂÏ) ‰Ó ÏÓÏÂÌÚ‡ ÔÓÎÛ˜ÂÌËfl ÍÓÌÚÓθÌ˚Ï Ó„‡ÌÓÏ ‰‡ÌÌ˚ı ÓÚ ÒËÒÚÂÏ˚ ӷ̇ÛÊÂÌËfl. é¯Ë·Í‡ ÔÓ ‰‡Î¸ÌÓÒÚË – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÎËÌËflÏË ÏÂÒÚ‡ ˆÂÎË, ÔÓÎÛ˜ÂÌÌ˚ÏË ÓÚ ‰‚Ûı ‡Á΢Ì˚ı Òڇ̈ËÈ Ó·Ì‡ÛÊÂÌËfl (ÒÏ. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔflÏ˚ÏË, „Î. 4). è‰Âθ̇fl ‰‡Î¸ÌÓÒÚ¸ ӷ̇ÛÊÂÌËfl – ‡ÒÒÚÓflÌËÂ, ‚ ԉ·ı ÍÓÚÓÓ„Ó Ó¯Ë·ÍË ÏÂÒÚÓÓÔ‰ÂÎÂÌËfl Ò˜ËÚ‡˛ÚÒfl ‰ÓÔÛÒÚËÏ˚ÏË ‰Îfl Ô‡ÍÚ˘ÂÒÍÓ„Ó ËÒÔÓθÁÓ‚‡ÌËfl ‰‡ÌÌ˚ı (ÒÏ. è‰Âθ̇fl ‰‡Î¸ÌÓÒÚ¸, „Î. 25). ÑËÒڇ̈Ëfl ‚˚ÌÓÒ‡ Ç ‚ÓÈÌÂ Ò ÔËÏÂÌÂÌËÂÏ fl‰ÂÌÓ„Ó ÓÛÊËfl ‰ËÒڇ̈ËÂÈ ‚˚ÌÓÒ‡ ̇Á˚‚‡ÂÚÒfl ‚Â΢Ë̇, ̇ ÍÓÚÓÛ˛ ‡Ò˜ÂÚÌ˚È (ËÎË Â‡Î¸Ì˚È) ˝ÔˈÂÌÚ ‚Á˚‚‡ ÓÚÍÎÓÌËÎÒfl ÓÚ ˆÂÌÚ‡ ‡ÈÓ̇ (ËÎË ÚÓ˜ÍË) ˆÂÎË. Ç ‚˚˜ËÒÎËÚÂθÌ˚ı ÓÔ‡ˆËflı ‚˚ÌÓÒÓÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÓÚ Ì‡˜‡Î‡ ÒÚÓÍ˚ ‰Ó ÍÓ̈‡ Û˜‡ÒÚ͇ ÒÚÓÍË. ÑÎfl ‡‚ÚÓÏÓ·ËÎfl ‚˚ÌÓÒÓÏ ÍÓÎÂÒ‡ ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÓÚ ÔÓ‚ÂıÌÓÒÚË ÒÚÛÔˈ˚ ‰Ó ÓÒ‚ÓÈ ÎËÌËË ÍÓÎÂÒ‡. ê‡ÒÒÚÓflÌË ۉ‡ÎÂÌÌÓÒÚË ê‡ÒÒÚÓflÌË ۉ‡ÎÂÌÌÓÒÚË – ‡ÒÒÚÓflÌË ӷ˙ÂÍÚ‡ ÓÚ ËÒÚÓ˜ÌË͇ ‚Á˚‚‡ (‚ ·Ó‚˚ı ‰ÂÈÒÚ‚Ëflı) ËÎË ÓÚ ÚÓ˜ÍË Ì‡‚‰ÂÌËfl ·ÁÂÌÓ„Ó ÎÛ˜‡ (‚ ÔÓËÁ‚Ó‰Òڂ ·ÁÂÌ˚ı χÚ¡ÎÓ‚). Ç ÏÂı‡ÌËÍÂ Ë ˝ÎÂÍÚÓÌËÍ ÓÌÓ fl‚ÎflÂÚÒfl ‡ÒÒÚÓflÌËÂÏ, ÓÚ‰ÂÎfl˛˘ËÏ Ó‰ÌÛ ˜‡ÒÚ¸ ÓÚ ‰Û„ÓÈ; ̇ÔËÏÂ, ËÁÓÎËÛ˛˘ËÏ ‡ÒÒÚÓflÌËÂÏ (ÒÏ. ·ÂÁÓÔ‡ÒÌÓ ‡ÒÒÚÓflÌËÂ) ËÎË ‡ÒÒÚÓflÌËÂÏ ÓÚ ÌÂÍÓÌÚ‡ÍÚÌÓ„Ó ‰‡Ú˜Ë͇ ‰ÎËÌ˚ ‰Ó ËÁÏÂflÂÏÓÈ Ï‡Ú¡θÌÓÈ ÔÓ‚ÂıÌÓÒÚË.
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
415
ê‡ÒÒÚÓflÌË Ó͇ÈÏÎÂÌËfl é·˚˜ÌÓ ‡ÒÒÚÓflÌËÂÏ Ó͇ÈÏÎÂÌËfl ̇Á˚‚‡ÂÚÒfl ‰ÎË̇ ËÌÚ‚‡Î‡ ÏÂÊ‰Û Ó͇ÈÏÎÂÌËflÏË (̇ÔËÏÂ, ÚÂÏÌ˚Â Ë Ò‚ÂÚÎ˚ ӷ·ÒÚË Ì‡ ËÌÚÂÙÂÂ̈ËÓÌÌÓÏ ÛÁÓ ҂ÂÚÓ‚˚ı ÎÛ˜ÂÈ; ÍÓÏÔÓÌÂÌÚ˚, ̇ ÍÓÚÓ˚ ‡ÒÔ‡‰‡ÂÚÒfl ÒÔÂÍڇθ̇fl ÎËÌËfl ÔÓ‰ ‚ÓÁ‰ÂÈÒÚ‚ËÂÏ ˝ÎÂÍÚ˘ÂÒÍÓ„Ó ËÎË Ï‡„ÌËÚÌÓ„Ó ÔÓÎfl – ˝ÙÙÂÍÚ˚ ëڇ͇ Ë áËχ̇ ‚ ÙËÁËÍÂ). èË ˝ÚÓÏ, Ò͇ÊÂÏ, ‰Îfl ÌÂÍÓÌÚ‡ÍÚÌÓ„Ó ËÁÏÂËÚÂÎfl ‰ÎËÌ˚ ‡ÒÒÚÓflÌËÂÏ Ó͇ÈÏλ ÎÂÌËfl fl‚ÎflÂÚÒfl ‚Â΢Ë̇ , „‰Â λ – ‰ÎË̇ ‚ÓÎÌ˚ ·Á‡ Ë α – Û„ÓÎ ÎÛ˜‡. 2 sin α Ç Ó·Î‡ÒÚË ‡Ì‡ÎËÁ‡ ËÁÓ·‡ÊÂÌËÈ ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÊ ·ÓÛÌÓ‚ÒÍÓ ‡ÒÒÚÓflÌË Ó͇ÈÏÎÂÌËfl ÏÂÊ‰Û ·Ë̇Ì˚ÏË ËÁÓ·‡ÊÂÌËflÏË (ÒÏ. ê‡ÒÒÚÓflÌË ÔËÍÒÂÎfl, „Î. 21). ÑËÒڇ̈ËÓÌÌ˚È ‚Á˚‚‡ÚÂθ ÑËÒڇ̈ËÓÌÌ˚È ‚Á˚‚‡ÚÂθ ÓÒÛ˘ÂÒÚ‚ÎflÂÚ ÔÓ‰˚‚ ‚Á˚‚˜‡ÚÓ„Ó ‚¢ÂÒÚ‚‡ ‡‚ÚÓχÚ˘ÂÒÍË ÔË ‰ÓÒÚ‡ÚÓ˜ÌÓÏ Ò·ÎËÊÂÌËË Ò ˆÂθ˛. чژËÍË ·ÎËÊÌÂÈ ÎÓ͇ˆËË Ñ‡Ú˜ËÍË ·ÎËÊÌÂÈ ÎÓ͇ˆËË Ô‰ÒÚ‡‚Îfl˛Ú ÒÓ·ÓÈ ‡ÁÌÓÓ·‡ÁÌ˚ ÛθڇÁ‚ÛÍÓ‚˚Â, ·ÁÂÌ˚Â, ÙÓÚÓ˝ÎÂÍÚ˘ÂÒÍËÂ Ë ÓÔÚÓ‚ÓÎÓÍÓÌÌ˚ ‰‡Ú˜ËÍË, Ô‰̇Á̇˜ÂÌÌ˚ ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËfl ÓÚ Ò‡ÏÓ„Ó ‰‡Ú˜Ë͇ ‰Ó Ó·˙ÂÍÚ‡ (ˆÂÎË). 뇂ÌËÚ ÒÓ ÒÎÂ‰Û˛˘ËÏ ÔÓÒÚ˚Ï ÒÔÓÒÓ·ÓÏ ÓˆÂÌÍË ‡ÒÒÚÓflÌËfl (‰Îfl ‡ÒÔÓÁ̇‚‡ÌËfl ‰Ó·˚˜Ë), ËÒÔÓθÁÛÂÏ˚Ï ÌÂÍÓÚÓ˚ÏË Ì‡ÒÂÍÓÏ˚ÏË: ÒÍÓÓÒÚ¸ ‰‚ËÊÂÌËÈ „ÓÎÓ‚˚ ·Ó„ÓÏÓ· ‚ ÏÓÏÂÌÚ ‚ÒχÚË‚‡ÌËfl ÓÒÚ‡ÂÚÒfl ÔÓÒÚÓflÌÌÓÈ Ë, ÒΉӂ‡ÚÂθÌÓ, ‡ÒÒÚÓflÌË ‰Ó ˆÂÎË ·Û‰ÂÚ Ó·‡ÚÌÓ ÔÓÔÓˆËÓ̇θÌÓ ÒÍÓÓÒÚË ËÁÓ·‡ÊÂÌËfl ̇ ÒÂÚ˜‡ÚÍÂ. íÓ˜ÌÓ ËÁÏÂÂÌË ‡ÒÒÚÓflÌËfl ê‡Á¯ÂÌË íùå (ÔÓ҂˜˂‡˛˘Â„Ó ˝ÎÂÍÚÓÌÌÓ„Ó ÏËÍÓÒÍÓÔ‡) ÒÓÒÚ‡‚ÎflÂÚ ÓÍÓ–10 ÎÓ 0,2 ÌÏ (2 × 10 Ï), Ú.Â. ÚËÔÓ‚Ó ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ‡ÚÓχÏË ‚ ڂ‰ÓÏ ÚÂÎÂ. í‡ÍÓ ‡Á¯ÂÌË ‚ 1000 ‡Á ·Óθ¯Â, ˜ÂÏ Û ÓÔÚ˘ÂÒÍÓ„Ó ÏËÍÓÒÍÓÔ‡, Ë ÔÓ˜ÚË ‚ 500 Ú˚Ò. ‡Á ·Óθ¯Â, ˜ÂÏ Û ˜ÂÎӂ˜ÂÒÍÓ„Ó „·Á‡. é‰Ì‡ÍÓ ‚ ÔÓΠÁÂÌËfl ˝ÎÂÍÚÓÌÌÓ„Ó ÏËÍÓÒÍÓÔ‡ ÏÓ„ÛÚ ÔÓÔ‡ÒÚ¸ ÚÓθÍÓ Ì‡ÌÓ˜‡ÒÚˈ˚. åÂÚÓ‰˚, ÓÒÌÓ‚‡ÌÌ˚ ̇ ËÁÏÂÂÌËË ‰ÎËÌ˚ ‚ÓÎÌ˚ ·ÁÂÌÓ„Ó ËÁÎÛ˜ÂÌËfl, ÔËÏÂÌfl˛ÚÒfl ‰Îfl ÓÔ‰ÂÎÂÌËfl χÍÓÒÍÓÔ˘ÂÒÍËı ‡ÒÒÚÓflÌËÈ, ÍÓÚÓ˚ ÌÂθÁfl ËÁÏÂËÚ¸ Ò ÔÓÏÓ˘¸˛ ˝ÎÂÍÚÓÌÌÓ„Ó ÏËÍÓÒÍÓÔ‡. çÂÚÓ˜ÌÓÒÚ¸ ËÁÏÂÂÌËÈ Ú‡ÍËÏË ÒÔÓÒÓ·‡ÏË ‡‚̇ ÏËÌËÏÛÏ ‰ÎËÌ ‚ÓÎÌ˚ Ò‚ÂÚ‡, Ú.Â. ÔÓfl‰Í‡ 633 ÌÏ. ëÓ‚ÂÏÂÌ̇fl ‡‰‡ÔÚ‡ˆËfl ËÌÚÂÙÂÓÏÂÚ‡ ˖èÂÓ (‰Îfl ËÁÏÂÂÌËfl ˜‡ÒÚÓÚ˚ Ò‚ÂÚ‡, Á‡Íβ˜ÂÌÌÓ„Ó ÏÂÊ‰Û ‰‚ÛÏfl ÁÂ͇·ÏË Ò ‚˚ÒÓÍÓÈ ÓڇʇÚÂθÌÓÈ ÒÔÓÒÓ·ÌÓÒÚ¸˛) ‚ ‚ˉ ·ÁÂÌÓ„Ó ÛÒÚÓÈÒÚ‚‡ ÔÓÁ‚ÓÎflÂÚ ËÁÏÂflÚ¸ ÓÚÌÓÒËÚÂθÌÓ ·Óθ¯Ë ‡ÒÒÚÓflÌËfl (‰Ó 5 ÒÏ) Ò Ôӄ¯ÌÓÒÚ¸˛ ‚ÒÂ„Ó 0,01 ÌÏ. ꇉËÓËÁÏÂÂÌË ‡ÒÒÚÓflÌËfl é·ÓÛ‰Ó‚‡ÌË ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ (DME) – ‡˝Ó̇‚Ë„‡ˆËÓÌ̇fl ‡ÔÔ‡‡ÚÛ‡ ‰Îfl ËÁÏÂÂÌËfl ‡ÒÒÚÓflÌËÈ Í‡Í ‚ÂÏÂÌË ÔÓıÓʉÂÌËfl ìäÇ Ò˄̇ÎÓ‚ ‰Ó ÓÚ‚ÂÚ˜Ë͇ (‡‰ËÓÎÓ͇ˆËÓÌÌÓ„Ó ÔËÂÏÓÓÚ‚ÂÚ˜Ë͇, „ÂÌÂËÛ˛˘Â„Ó ÓÚ‚ÂÚÌ˚È Ò˄̇Π̇ Ô‡‚ËθÌ˚È Á‡ÔÓÒ) Ë Ó·‡ÚÌÓ. ÄÔÔ‡‡ÚÛ‡ DME ÒÍÓ ‚ÒÂ„Ó ·Û‰ÂÚ ‚˚ÚÂÒÌÂ̇ „ÎÓ·‡Î¸Ì˚ÏË ÒÔÛÚÌËÍÓ‚˚ÏË Ì‡‚Ë„‡ˆËÓÌÌ˚ÏË ÒËÒÚÂχÏË: ÒËÒÚÂÏÓÈ GPS Ë Ô·ÌËÛÂÏ˚Ï ‚‚Ó‰ÓÏ ‚ ÒÚÓÈ ‚ 2009 „. ÒËÒÚÂÏ É‡ÎËÎÂÓ (ÒÚ‡Ì Ö‚ÓÔÂÈÒÍÓ„Ó ëÓ˛Á‡) Ë ÉãéëçÄëë (êÓÒÒËfl/à̉Ëfl). ëËÒÚÂχ GPS („ÎÓ·‡Î¸Ì‡fl ÒËÒÚÂχ ̇‚Ë„‡ˆËË Ë ÓÔ‰ÂÎÂÌËfl ÏÂÒÚÓÔÓÎÓÊÂÌËfl) fl‚ÎflÂÚÒfl ‡‰ËÓ̇‚Ë„‡ˆËÓÌÌÓÈ ÒËÒÚÂÏÓÈ, ÔÓÁ‚ÓÎfl˛˘ÂÈ Í‡Ê‰ÓÏÛ ÓÔ‰ÂÎflÚ¸ Â„Ó ÏÂÒÚÓÔÓÎÓÊÂÌË ̇ ÁÂÏÌÓÏ ¯‡Â (‚ β·Ó ‚ÂÏfl Ë ‚ β·ÓÏ ÏÂÒÚÂ). Ç ÒÓÒÚ‡‚ ÒËÒÚÂÏ˚ ‚ıÓ‰flÚ 24 ÒÔÛÚÌË͇ Ë Ì‡ÁÂÏÌ˚ Ò‰ÒÚ‚‡ ÛÔ‡‚ÎÂÌËfl, ̇ıÓ‰fl˘ËÂÒfl ‚ ‚‰ÂÌËË
416
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ÏËÌËÒÚÂÒÚ‚‡ Ó·ÓÓÌ˚ ëòÄ. ɇʉ‡ÌÒÍË ÔÓθÁÓ‚‡ÚÂÎË ÔÓÎÛ˜‡˛Ú ‰ÓÒÚÛÔ Í ÒËÒÚÂÏÂ, ÔÓÍÛÔ‡fl ÒÔˆˇÎËÁËÓ‚‡ÌÌ˚È ÔËÂÏÌËÍ Ò˄̇ÎÓ‚ GPS, ÍÓÚÓ˚È Ó·ÂÒÔ˜˂‡ÂÚ ÓÔ‰ÂÎÂÌË ÏÂÒÚÓÔÓÎÓÊÂÌËfl Ò ÚÓ˜ÌÓÒÚ¸˛ ‰Ó 10 Ï. èÒ‚‰Ó‡ÒÒÚÓflÌË GPS ÓÚ ÔËÂÏÌË͇ ‰Ó ÒÔÛÚÌË͇ – ˝ÚÓ ‚ÂÏfl ÔÓıÓʉÂÌËfl ‡‰ËÓÒ˄̇· ÏÂÚÓÍ ‚ÂÏÂÌË ÓÚ ÒÔÛÚÌË͇ ‰Ó ÔËÂÏÌË͇, ÛÏÌÓÊÂÌÌÓ ̇ ÒÍÓÓÒÚ¸ ‡ÒÔÓÒÚ‡ÌÂÌËfl ‡‰ËÓ‚ÓÎÌ (ÓÍÓÎÓ ÒÍÓÓÒÚË Ò‚ÂÚ‡). éÌÓ Ì‡Á˚‚‡ÂÚÒfl ÔÒ‚‰Ó‡ÒÒÚÓflÌËÂÏ, Ò Û˜ÂÚÓÏ ÌÂËÁ·ÂÊÌÓÈ Ôӄ¯ÌÓÒÚË ‚ ‡Ò˜ÂÚ‡ı: ˜‡Ò˚ ÔËÂÏÌË͇ ‰‡ÎÂÍÓ ÌÂ Ú‡Í ÚÓ˜Ì˚, Í‡Í Ò‚ÂıÚÓ˜Ì˚ ˜‡Ò˚ ̇ ÒÔÛÚÌËÍÂ. èËÂÏÌËÍ GPS ‡ÒÒ˜ËÚ˚‚‡ÂÚ Ò‚Ó ÏÂÒÚÓÔÓÎÓÊÂÌË (ÔÓ ¯ËÓÚÂ, ‰Ó΄ÓÚÂ, ‚˚ÒÓÚÂ Ë Ú.‰.) ÔÓÒ‰ÒÚ‚ÓÏ Â¯ÂÌËfl ÒËÒÚÂÏ˚ Û‡‚ÌÂÌËÈ Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÔÒ‚‰Ó‡ÒÒÚÓflÌËÈ, ÔÓÎÛ˜‡ÂÏ˚ı ÏËÌËÏÛÏ ÓÚ ˜ÂÚ˚Âı ÒÔÛÚÌËÍÓ‚, ÏÂÒÚÓÔÓÎÓÊÂÌË ÍÓÚÓ˚ı Á‡‡Ì ËÁ‚ÂÒÚÌÓ (ÒÏ. ê‡ÒÒÚÓflÌËfl ‡‰ËÓÒ‚flÁË, „Î. 25). чθÌÓÒÚ¸ Ô‰‡˜Ë чθÌÓÒÚ¸ Ô‰‡˜Ë – ÓÔ‰ÂÎÂÌÌÓ ‰Îfl ÍÓÌÍÂÚÌÓÈ (‚ÓÎÓÍÓÌÌÓ-ÓÔÚ˘ÂÒÍÓÈ, ÔÓ‚Ó‰ÌÓÈ, ·ÂÒÔÓ‚Ó‰ÌÓÈ Ë Ú.Ô.) ÒËÒÚÂÏ˚ Ô‰‡˜Ë ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ fl‚ÎflÂÚÒfl χÍÒËχθÌ˚Ï ‚ ÒÏ˚ÒΠ‰ÓÔÛÒÚËÏÓÒÚË ÛÓ‚Ìfl ÔÓÚ¸ ‚ ÔÓÎÓÒ ÔÓÔÛÒ͇ÌËfl. ÑÎfl ÍÓÌÍÂÚÌÓÈ ÒÂÚË ÍÓÌÚ‡ÍÚÓ‚, ÍÓÚÓ‡fl ÏÓÊÂÚ Ô‰‡‚‡Ú¸ ËÌÙÂÍˆË˛ (ËÎË, Ò͇ÊÂÏ, ˉ² ‚ ÒËÒÚÂÏ ۷ÂʉÂÌËÈ, ‡ÒÒχÚË‚‡ÂÏÓÈ Í‡Í ËÏÏÛÌ̇fl ÒËÒÚÂχ), ‰‡Î¸ÌÓÒÚ¸˛ Ô‰‡˜Ë fl‚ÎflÂÚÒfl ÏÂÚË͇ ÔÛÚË „‡Ù‡ ·‡ ÍÓÚÓÓ„Ó ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú ÒÓ·˚ÚËflÏ ËÌÙˈËÓ‚‡ÌËfl ˜ÂÂÁ ̇˷ÓΠ·ÎËÁÍÓ„Ó Ó·˘Â„Ó Ô‰͇ Ë ÏÂÊ‰Û Á‡‡ÊÂÌÌ˚ÏË Ë̉˂ˉÛÛχÏË. àÌÒÚÛÏÂÌڇθÌ˚ ‡ÒÒÚÓflÌËfl ê‡ÒÒÚÓflÌË „ÛÁ‡ – ‡ÒÒÚÓflÌË (̇ ˚˜‡„Â) ÓÚ ˆÂÌÚ‡ ‚‡˘ÂÌËfl ‰Ó „ÛÁ‡. ê‡ÒÒÚÓflÌË ÔËÎÓÊÂÌÌÓÈ ÒËÎ˚ (ËÎË ‡ÒÒÚÓflÌË ÒÓÔÓÚË‚ÎÂÌËfl): ‡ÒÒÚÓflÌË (̇ ˚˜‡„Â) ÓÚ ˆÂÌÚ‡ ‚‡˘ÂÌËfl ‰Ó ÚÓ˜ÍË ÔËÎÓÊÂÌËfl ÒËÎ˚. ä-‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ÓÚ ‚̯ÌÂÈ ÌËÚÍË ÔÓ͇ÚÌÓ„Ó ÒڇθÌÓ„Ó ÔÛÚ‡ ‰Ó ¯ÂÈÍË „‡ÎÚÂÎË ÔÓ͇ÚÌÓ„Ó ÔÓÙËÎfl. ê‡ÒÒÚÓflÌË ‰Ó Ó·ÂÁÌÓÈ ÍÓÏÍË – ‡ÒÒÚÓflÌË ÓÚ ·ÓÎÚ‡, ‚ËÌÚ‡ ËÎË „‚ÓÁ‰fl ‰Ó ÍÓ̈‡ (‰ÓÒÍË) ˝ÎÂÏÂÌÚ‡ ÍÓÌÒÚÛ͈ËË. ê‡ÒÒÚÓflÌË ‰Ó ͇fl – ‡ÒÒÚÓflÌË ÓÚ ·ÓÎÚ‡, ‚ËÌÚ‡ ËÎË „‚ÓÁ‰fl ‰Ó ͇fl (‰ÓÒÍË) ˝ÎÂÏÂÌÚ‡ ÍÓÌÒÚÛ͈ËË. ê‡ÒÒÚÓflÌËfl ÁÛ·˜‡Ú˚ı Ô‰‡˜ ÑÎfl ‰‚Ûı ¯ÂÒÚÂÌÂÈ ‚ Á‡ˆÂÔÎÂÌËË, ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ëı ˆÂÌÚ‡ÏË Ì‡Á˚‚‡ÂÚÒfl ÏÂÊÓÒ‚˚Ï ‡ÒÒÚÓflÌËÂÏ. çËÊ ÔË‚Ó‰flÚÒfl ‰Û„Ë ‡ÒÒÚÓflÌËfl, ËÒÔÓθÁÛÂÏ˚ ‚ ÓÒÌÓ‚Ì˚ı ÙÓÏÛ·ı ÁÛ·˜‡Ú˚ı Ô‰‡˜ (Ú‡ÍËı Í‡Í b = a + c). Ç˚ÒÓÚ‡ „ÓÎÓ‚ÍË ÁÛ·‡ ¯ÂÒÚÂÌË (‡) – ‡‰Ë‡Î¸ÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÓÍÛÊÌÓÒÚ¸˛ ˆÂÌÚÓ‚ ¯‡ÌËÓ‚ (ÓÍÛÊÌÓÒÚ¸˛, ‡‰ËÛÒ ÍÓÚÓÓÈ ‡‚ÂÌ ‡ÒÒÚÓflÌ˲ ÓÚ ÓÒË ¯ÂÒÚÂÌË ‰Ó ÔÓÎ˛Ò‡ Á‡ˆÂÔÎÂÌËfl) Ë ‚¯ËÌÓÈ ÁÛ·‡. Ç˚ÒÓÚ‡ ÌÓÊÍË ÁÛ·‡ ÁÛ·˜‡ÚÓ„Ó ÍÓÎÂÒ‡ (b) – ‡‰Ë‡Î¸ÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰ÌÓÏ ‚Ô‡‰ËÌ˚ ÏÂÊ‰Û ÁÛ·¸flÏË ¯ÂÒÚÂÌË Ë ‚¯ËÌÓÈ ÁÛ·‡. á‡ÁÓ (Ò) – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‚¯ËÌÓÈ ÁÛ·‡ Ë ‰ÌÓÏ ‚Ô‡‰ËÌ˚ ‰Û„ÓÈ ¯ÂÒÚÂÌË ‚ Á‡ˆÂÔÎÂÌËË. èÓÎ̇fl ‚˚ÒÓÚ‡ – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‚¯ËÌÓÈ ÁÛ·‡ Ë ‰ÌÓÏ ‚Ô‡‰ËÌ˚ ÏÂÊ‰Û ÁÛ·¸flÏË. ã˛ÙÚ – Ò‚Ó·Ó‰Ì˚È ıÓ‰ (¯‡Ú‡ÌËÂ) ÏÂÊ‰Û ÒÓÔflÊÂÌÌ˚ÏË ÁÛ·¸flÏË ¯ÂÒÚÂÂÌ. ê‡ÒÒÚÓflÌË ÛÚ˜ÍË ê‡ÒÒÚÓflÌË ÛÚ˜ÍË – ͇ژ‡È¯ËÈ ÔÛÚ¸ ÔÓ ÔÓ‚ÂıÌÓÒÚË ËÁÓÎflˆËÓÌÌÓ„Ó Ï‡Ú¡· ÏÂÊ‰Û ‰‚ÛÏfl ÚÓÍÓÔÓ‚Ó‰fl˘ËÏË ˝ÎÂÏÂÌÚ‡ÏË.
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
417
ÅÂÁÓÔ‡ÒÌÓ ‡ÒÒÚÓflÌË – ͇ژ‡È¯Â (ÔÓ ÔflÏÓÈ ÎËÌËË) ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÚÓÍÓÔÓ‚Ó‰fl˘ËÏË ˝ÎÂÏÂÌÚ‡ÏË. ê‡ÒÒÚÓflÌË ÔÂÂÌÓÒ‡ ‡ÒÚ‚ÓËÚÂÎfl Ç ıÓχÚÓ„‡ÙËË ‡ÒÒÚÓflÌËÂÏ ÔÂÂÌÓÒ‡ ‡ÒÚ‚ÓËÚÂÎfl ̇Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌËÂ, ÔÓıÓ‰ËÏÓ ÙÓÌÚÓÏ ÊˉÍÓÒÚË ËÎË „‡Á‡, ÔÓ‰‡˛˘Â„ÓÒfl ‚ ıÓχÚÓ„‡Ù˘ÂÒÍÛ˛ ÛÒÚ‡ÌÓ‚ÍÛ ‰Îfl ˝Î˛ËÓ‚‡ÌËfl (ÔÓˆÂÒÒ‡, ËÒÔÓθÁÛ˛˘Â„Ó ‡ÒÚ‚Ófl˛˘Ë ‚¢ÂÒÚ‚‡ ‰Îfl ËÁ‚ΘÂÌËfl ‡‰ÒÓ·ËÓ‚‡ÌÌÓ„Ó ˝ÎÂÏÂÌÚ‡ ËÁ ڂ‰ÓÈ Ò‰˚). ÑËÒڇ̈Ëfl ‡ÒÔ˚ÎÂÌËfl ÑËÒڇ̈ËÂÈ ‡ÒÔ˚ÎÂÌËfl ̇Á˚‚‡ÂÚÒfl ÛÒÚ‡ÌÓ‚ÎÂÌÌÓ ÚÂıÌÓÎӄ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÓÍÓ̘ÌÓÒÚ¸˛ ÒÓÔ· ÏÂÚ‡ÎÎËÁ‡ˆËÓÌÌÓ„Ó ‡ÔÔ‡‡Ú‡ Ë Ì‡Ô˚ÎflÂÏÓÈ ÔÓ‚ÂıÌÓÒÚ¸˛. ÇÂÚË͇θÌÓ ˝¯ÂÎÓÌËÓ‚‡ÌË ÇÂÚË͇θÌ˚Ï ˝¯ÂÎÓÌËÓ‚‡ÌËÂÏ Ì‡Á˚‚‡ÂÚÒfl ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰ÌÓÏ ÔÓÎfl ÙËθڇˆËË Í‡Ì‡ÎËÁ‡ˆËÓÌÌÓÈ Ó˜ËÒÚÌÓÈ ÒËÒÚÂÏ˚ Ë ÎÂʇ˘ËÏ ÌËÊ „ÓËÁÓÌÚÓÏ „ÛÌÚÓ‚˚ı ‚Ó‰. ùÚÓ ˝¯ÂÎÓÌËÓ‚‡ÌË ÔÓÁ‚ÓÎflÂÚ Û‰‡ÎflÚ¸ Ô‡ÚÓ„ÂÌÌ˚ ÏËÍÓÓ„‡ÌËÁÏ˚ (‚ËÛÒ˚, ·ÓÎÂÁÌÂÚ‚ÓÌ˚ ·‡ÍÚÂËË Ë Ú.Ô.) ÔÓÒ‰ÒÚ‚ÓÏ ÙËθڇˆËË ÒÚÓ˜Ì˚ı ‚Ó‰ ˜ÂÂÁ ÔÓ˜‚Û, ÔÂʉ ˜ÂÏ ÓÌË ‰ÓÒÚË„ÌÛÚ „ÛÌÚÓ‚˚ı ‚Ó‰. ê‡ÒÒÚÓflÌË Á‡˘ËÚÌ˚ı ÏÂÓÔËflÚËÈ ê‡ÒÒÚÓflÌË Á‡˘ËÚÌ˚ı ÏÂÓÔËflÚËÈ – ‡ÒÒÚÓflÌË ‚ ̇ԇ‚ÎÂÌËË ‚ÂÚ‡ ÓÚ ÏÂÒÚ‡ ÔÓËÒ¯ÂÒÚ‚Ëfl (ËÁÎË‚ ̇ ÔÓ‚ÂıÌÓÒÚ¸ ÓÔ‡ÒÌ˚ı ÔÓ‰ÛÍÚÓ‚, ‚˚Á˚‚‡˛˘Ëı ÓÚ‡‚ÎÂÌË ÔË ‚‰˚ı‡ÌËË), ‚ ԉ·ı ÍÓÚÓÓ„Ó Î˛‰Ë ÏÓ„ÛÚ ÔÓÎÛ˜ËÚ¸ ÔÓ‡ÊÂÌËÂ. 28.4. èêéóàÖ êÄëëíéüçàü ê‡ÒÒÚÓflÌËfl ‰‡Î¸ÌÓÒÚË ê‡ÒÒÚÓflÌËflÏË ‰‡Î¸ÌÓÒÚË Ì‡Á˚‚‡˛ÚÒfl Ô‡ÍÚ˘ÂÒÍË ‡ÒÒÚÓflÌËfl, Û͇Á˚‚‡˛˘Ë χÍÒËχθÌÓ ‡ÒÒÚÓflÌË ˝ÙÙÂÍÚË‚ÌÓ„Ó ‰ÂÈÒÚ‚Ëfl, ̇ÔËÏÂ, Ôӷ„ ‡‚ÚÓÏÓ·ËÎfl ·ÂÁ ‰ÓÁ‡Ô‡‚ÍË ÚÓÔÎË‚ÓÏ, ‰‡Î¸ÌÓÒÚ¸ ÔÓÎÂÚ‡ ÔÛÎË, ‚ˉËÏÓÒÚË, Ô‰ÂÎÓ‚ ‰‚ËÊÂÌËfl, Û˜‡ÒÚ͇ Ó·ËÚ‡ÌËfl ÊË‚ÓÚÌÓ„Ó Ë Ú.Ô. Ç ˜‡ÒÚÌÓÒÚË, ‡ÒÒÚÓflÌË ‡ÒÔÓÒÚ‡ÌËfl ‚ ·ËÓÎÓ„ËË ÏÓÊÂÚ ÓÚÌÓÒËÚ¸Òfl Í ‡Á·‡Ò˚‚‡Ì˲ ÒÂÏflÌ ÔÓÒ‰ÒÚ‚ÓÏ ÓÔ˚ÎÂÌËfl, ̇ڇθÌÓÏÛ ‡ÒÒÂÎÂÌ˲, ÔÎÂÏÂÌÌÓÏÛ ‡Á‚‰ÂÌ˲, ÏË„‡ˆËÓÌÌÓÏÛ ‡ÒÔÓÒÚ‡ÌÂÌ˲ Ë Ú.Ô. чθÌÓÒÚ¸ ‚ÓÁ‰ÂÈÒÚ‚Ëfl Ù‡ÍÚÓÓ‚ ËÒ͇ (ÚÓÍÒ˘ÂÒÍËı ‚¢ÂÒÚ‚, ‚Á˚‚Ó‚ Ë Ú.Ô.) Û͇Á˚‚‡ÂÚ ÏËÌËχθÌÓ ·ÂÁÓÔ‡ÒÌÓ ‰ËÒڇ̈ËÓ‚‡ÌËÂ. чθÌÓÒÚ¸ ‰ÂÈÒÚ‚Ëfl ͇ÍÓ„ÓÎË·Ó ÛÒÚÓÈÒÚ‚‡ (̇ÔËÏÂ, ÔÛθڇ ‰ËÒڇ̈ËÓÌÌÓ„Ó ÛÔ‡‚ÎÂÌËfl), Û͇Á‡Ì̇fl ‚ ÒÔˆËÙË͇ˆËË ÔÓËÁ‚Ó‰ËÚÂÎfl ‚ ͇˜ÂÒÚ‚Â ÓËÂÌÚËÓ‚ÍË ‰Îfl ÔÓÚ·ËÚÂÎfl, ̇Á˚‚‡ÂÚÒfl ‡·Ó˜ËÏ ‡ÒÒÚÓflÌËÂÏ (ÌÓÏË̇θÌÓÈ ‰‡Î¸ÌÓÒÚ¸˛ ËÁÏÂÂÌËfl ‰‡Ú˜Ë͇). å‡ÍÒËχθÌÓ ‡ÒÒÚÓflÌË ‡ÍÚË‚‡ˆËË ÒÂÌÒÓÌÓ„Ó ‚Íβ˜‡ÚÂÎfl ̇Á˚‚‡ÂÚÒfl ‰‡Î¸ÌÓÒÚ¸˛ ‚Íβ˜ÂÌËfl. ÑÎfl ÚÓ„Ó ˜ÚÓ·˚ ÔÓ‰˜ÂÍÌÛÚ¸ ·Óθ¯Û˛ ‰‡Î¸ÌÓÒÚ¸ ‰ÂÈÒÚ‚Ëfl, ÌÂÍÓÚÓ˚ ÔÓËÁ‚Ó‰ËÚÂÎË ‚˚ÌÓÒflÚ ˝ÚÛ ı‡‡ÍÚÂËÒÚËÍÛ ‚ ̇Á‚‡ÌË ÔÓ‰ÛÍÚ‡: ̇ÔËÏÂ, Ïfl˜ËÍË Ô‰ÂθÌÓÈ ‰‡Î¸ÌÓÒÚË ‰Îfl „Óθه (·ËÚ‡ ‰Îfl ÒÓÙÚ·Ó·, ÒÔËÌÌËÌ„Ë Ë Ú.Ô.). ê‡ÒÒÚÓflÌË Á‡ÁÓ‡ ëÎÂ‰Û˛˘Ë ÔËÏÂ˚ ËÎβÒÚËÛ˛Ú Ó·¯ËÌ˚È Í·ÒÒ ËÒÔÓθÁÛÂÏ˚ı ̇ Ô‡ÍÚËÍ ‡ÒÒÚÓflÌËÈ, Û͇Á˚‚‡˛˘Ëı ̇ ÏËÌËχθÌÓ ‡ÒÒÂflÌË (ÒÏ. åËÌËχθÌÓ ‡ÒÒÚÓflÌË ‚ ÍÓ‰ËÓ‚‡ÌËË. ê‡ÒÒÚÓflÌË ÔÂ‚Ó„Ó ÒÓÒ‰‡ ‰Îfl ‡ÚÓÏÓ‚ ‚ ڂ‰˚ı Ú·ı Ë Ú.Ô.).
418
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ê‡ÒÒÚÓflÌË ÔÓ ÙÓÌÚÛ – ÛÒÚ‡ÌÓ‚ÎÂÌÌÓ ÏËÌËχθÌÓ ‡ÒÒÚÓflÌË ‚ ÏÓÒÍËı ÏËÎflı ÏÂÊ‰Û Ò‡ÏÓÎÂÚ‡ÏË ‚ ‚ÓÁ‰ÛıÂ. ê‡ÒÒÚÓflÌË ËÁÓÎflˆËË –ÛÒÚ‡ÌÓ‚ÎÂÌÌÓ ÏËÌËχθÌÓ ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ (Ò Û˜ÂÚÓÏ ‚ÓÁÏÓÊÌÓÒÚË ÓÔ˚ÎÂÌËfl) ‰ÓÎÊÌÓ ·˚Ú¸ ÏÂÊ‰Û ÔÓÒ‚‡ÏË ‡ÁÌӂˉÌÓÒÚÂÈ Ó‰ÌÓ„Ó Ë ÚÓ„Ó Ê ‚ˉ‡ ÍÛθÚÛ, Ò ÚÂÏ ˜ÚÓ·˚ ÒÓı‡ÌËÚ¸ („ÂÌÂÚ˘ÂÒÍÛ˛) ˜ËÒÚÓÚÛ ÒÂÏflÌ (̇ÔËÏÂ, ‰Îfl ËÒ‡ ÓÌÓ ÒÓÒÚ‡‚ÎflÂÚ ÓÍÓÎÓ 3 Ï). ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÓÒÚ‡Ìӂ͇ÏË – ËÌÚ‚‡Î˚ ÏÂÊ‰Û ÓÒÚ‡Ìӂ͇ÏË ‡‚ÚÓ·ÛÒ‡; ҉̠‡ÒÒÚÓflÌË ÏÂÊ‰Û ÓÒÚ‡Ìӂ͇ÏË ‚ ëòÄ (‰Îfl ΄ÍÓ„Ó ÂθÒÓ‚Ó„Ó Ú‡ÌÒÔÓÚ‡) ÍÓηÎÂÚÒfl ÓÚ 500 Ï (‚ îË·‰ÂθÙËË) ‰Ó 1742 Ï (‚ ãÓÒ-Ä̉ÊÂÎÂÒÂ). àÌÚ‚‡Î ÏÂÊ‰Û Á͇̇ÏË – ‡ÒÒÚÓflÌË ÏÂÊ‰Û Á͇̇ÏË ÍÓÌÍÂÚÌÓ„Ó ÍÓÏÔ¸˛ÚÂÌÓ„Ó ¯ËÙÚ‡. èÓÓ„ ‡Á΢ËÏÓÒÚË (JND) – ÏÂθ˜‡È¯Â ËÁÏÂÌÂÌË ÏÂ˚ (‡ÒÒÚÓflÌËfl, ÔÓÎÓÊÂÌËfl Ë Ú.Ô.), ÍÓÚÓÓ ÏÓÊÂÚ ·˚Ú¸ ‰ÓÒÚÓ‚ÂÌÓ ‚ÓÒÔËÌflÚÓ (ÒÏ. ÑÓÔÛÒ͇ÂÏÓ ‡ÒÒÚÓflÌËÂ, „Î. 25). åÂÚËÍË Í‡˜ÂÒÚ‚‡ ùÚÓ Ó·¯ËÌÓ ÒÂÏÂÈÒÚ‚Ó Ï (ËÎË Òڇ̉‡ÚÓ‚ ËÁÏÂÂÌËÈ) ı‡‡ÍÚÂËÁÛÂÚ ‡Á΢Ì˚ ҂ÓÈÒÚ‚‡ Ó·˙ÂÍÚÓ‚ (Ó·˚˜ÌÓ Ó·ÓÛ‰Ó‚‡ÌËfl). èÓ ˝ÚÓÈ ÚÂÏËÌÓÎÓ„ËË Ì‡¯Ë ‡ÒÒÚÓflÌËfl Ë ÔÓ‰Ó·ÌÓÒÚË fl‚Îfl˛ÚÒfl "ÏÂÚË͇ÏË ÔÓ‰Ó·ÌÓÒÚË", Ú.Â. ÏÂÚË͇ÏË (χÏË), ı‡‡ÍÚÂËÁÛ˛˘ËÏË ÒÚÂÔÂ̸ Ò‚flÁ‡ÌÌÓÒÚË ÏÂÊ‰Û ‰‚ÛÏfl Ó·˙ÂÍÚ‡ÏË. çËÊ Ô˂‰ÂÌ˚ ÔËÏÂ˚ Ú‡ÍËı ÏÂÚËÍ, ÍÓÚÓ˚ Ì ҂flÁ‡Ì˚ Ò Ó·ÓÛ‰Ó‚‡ÌËÂÏ Ë ·ÓΠ‡·ÒÚ‡ÍÚÌ˚ ‚ ÒÏ˚ÒΠ͇˜ÂÒÚ‚ÂÌÌ˚ı ÓˆÂÌÓÍ. åÂÚË͇ ÒËÏÏÂÚËË (Åı‡Ì‰ÊË Ë ‰., 1995) ÒÎÛÊËÚ ‰Îfl ËÁÏÂÂÌËfl ˝ÒÚÂÚËÍË „‡m
∑ (a1i + a2i + a3i )
a + a2 i + ni , „‰Â a – ˜ËÒÎÓ 1i a 2 i =1 ‚ÒÂı ‰Û„, m – ˜ËÒÎÓ ÓÒÂÈ ÒËÏÏÂÚËË Ë n ‰Îfl Á‡‰‡ÌÌÓÈ ÓÒË i – ˜ËÒÎÓ ‚¯ËÌ, ÍÓÚÓ˚ ÁÂ͇θÌÓ ÓÚÓ·‡Ê‡˛ÚÒfl ÓÚ ‰Û„Ëı ‚¯ËÌ ÓÚÌÓÒËÚÂθÌÓ i, ÚÓ„‰‡ Í‡Í a1i , a2i Ë a 3i fl‚Îfl˛ÚÒfl ˜ËÒÎÓÏ ‰Û„, ÍÓÚÓ˚Â, ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ ‰ÂÎflÚÒfl ÔÓÔÓÎ‡Ï ÔÓ‰ ÔflÏ˚ÏË Û„Î‡ÏË ÓÒ¸˛ i, ÁÂ͇θÌÓ ÓÚÓ·‡Ê‡˛ÚÒfl ÓÚ ‰Û„ÓÈ ‰Û„Ë ÓÚÌÓÒËÚÂθÌÓ i Ë ÔÓıÓ‰flÚ ‚‰Óθ i. Ç Í‡˜ÂÒÚ‚Â ÓÒÂÈ ÒËÏÏÂÚËË ·ÂÛÚÒfl ‚Ò ÔflÏ˚ i Ò ni , a1i , a2i ≥ 1. ã‡Ì‰¯‡ÙÚÌ˚ ÏÂÚËÍË ËÒÔÓθÁÛ˛ÚÒfl, ̇ÔËÏÂ, ‰Îfl ÓˆÂÌÍË Û˜‡ÒÚÍÓ‚ ÓÁÂÎÂÌÂÌËfl ÍÓÌÍÂÚÌÓ„Ó Î‡Ì‰¯‡ÙÚ‡ Í‡Í ÔÎÓÚÌÓÒÚË Û˜‡ÒÚÍÓ‚ (ÍÓ΢ÂÒÚ‚‡ Ú‡ÍËı Û˜‡ÒÚÍÓ‚ ̇ Í‚‡‰‡ÚÌ˚È ÍËÎÓÏÂÚ), ÔÎÓÚÌÓÒÚË Í‡Â‚ (Ó·˘ÂÈ ‰ÎËÌ˚ „‡Ìˈ Û˜‡ÒÚÍÓ‚ ̇ „ÂÍE Ú‡), Ë̉ÂÍÒ‡ ÙÓÏ˚ („‰Â Ä – Ó·˘‡fl ÔÎÓ˘‡‰¸ Ë Ö – Ó·˘‡fl ‰ÎË̇ ͇‚), 4 A Ò‚flÁÌÓÒÚË, ‡ÁÌÓÓ·‡ÁËfl Ë Ú.Ô. ìÔ‡‚ÎÂ̘ÂÒÍË ÏÂÚËÍË ‚Íβ˜‡˛Ú ‚ Ò·fl Ó·ÁÓ˚ (Ò͇ÊÂÏ, ‰ÓÎË Ì‡ ˚ÌÍÂ, Û‚Â΢ÂÌËfl Ò·˚Ú‡, Û‰Ó‚ÎÂÚ‚ÓÂÌËfl Á‡ÔÓÒÓ‚ ÔÓÚ·ËÚÂÎÂÈ), ÔÓ„ÌÓÁ˚ (̇ÔËÏÂ, ‰ÓıÓ‰Ó‚, ÌÂÔ‰‚ˉÂÌÌ˚ı ÔÓ‰‡Ê, ËÌ‚ÂÒÚˈËÈ), ˝ÙÙÂÍÚË‚ÌÓÒÚË çàéäê, Òӷβ‰ÂÌËfl ‡·Ó˜ÂÈ ‰ËÒˆËÔÎËÌ˚ Ë Ú.Ô. åÂÚËÍË ËÒ͇ ÔËÏÂÌfl˛ÚÒfl ‚ ÒÙ ÒÚ‡ıÓ‚‡ÌËfl Ë ‚ ÙË̇ÌÒÓ‚ÓÈ ÒÙ ‰Îfl ‡Ì‡ÎËÁ‡ ÔÓÚÙÂÎfl (̇ÔËÏÂ, Á‡Í‡ÁÓ‚ ËÎË ˆÂÌÌ˚ı ·Ûχ„). äÓ˝ÙÙˈËÂÌÚ ‚ÓÁ‰ÂÈÒÚ‚Ëfl fl‚ÎflÂÚÒfl ÏÂÚËÍÓÈ Í‡˜ÂÒÚ‚‡, ÍÓÚÓ‡fl ‡ÌÊËÛÂÚ ÓÚÌÓÒËÚÂθÌÓ ‚ÎËflÌËÂ, ̇ÔËÏÂ, ‚ ÒÎÂ‰Û˛˘ÂÏ ÔÓfl‰ÍÂ: – ‡Ì„ ÒÚ‡Ìˈ˚ (PageRank) ‚ ÔÓfl‰Í ‡ÌÊËÓ‚‡ÌËfl Web ÒÚ‡Ìˈ ‚ ÒËÒÚÂÏ Google; – ÍÓ˝ÙÙˈËÂÌÚ ‚ÓÁ‰ÂÈÒÚ‚Ëfl ÔÓ ÏÂÚÓ‰ËÍ ISI (ËÌÒÚËÚÛÚ ISI ÔÂÂËÏÂÌÓ‚‡Ì ‚ Thomson Scientific) ËÒÔÓθÁÛÂÚÒfl ‰Îfl ÓˆÂÌÍË ÔÓÔÛÎflÌÓÒÚË ÊÛ̇· Á‡ ‰‚ÛıÎÂÚÌËÈ Ù˘ÂÒÍËı Ô‰ÒÚ‡‚ÎÂÌËÈ Í‡Í
i =1
m
×
∑
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
419
ÔÂËÓ‰, ÒÍÓθÍÓ ‡Á Ó·˚˜Ì‡fl ÒÚ‡Ú¸fl ‰‡ÌÌÓ„Ó ÊÛ̇· ÛÔÓÏË̇·Ҹ ‚ ͇ÍÓÈ-ÌË·Û‰¸ ‰Û„ÓÈ ÒÚ‡Ú¸Â, ÔÛ·ÎËÍÓ‚‡‚¯ÂÈÒfl ‚ ÒÎÂ‰Û˛˘ÂÏ „Ó‰Û; – h-Ë̉ÂÍÒ É˯‡ ‰Îfl Û˜ÂÌÓ„Ó, ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÈ Ï‡ÍÒËχθÌÓÏÛ ˜ËÒÎÛ ÔÛ·ÎË͇ˆËÈ Â„Ó ‡‚ÚÓÒÍËı ÒÚ‡ÚÂÈ, ͇ʉ‡fl ËÁ ÍÓÚÓ˚ı ·˚· ÒÚÓθÍÓ Ê ‡Á ÔÓˆËÚËÓ‚‡Ì‡ ‰Û„ËÏË ‡‚ÚÓ‡ÏË. ì·˚‚‡ÌË ‡ÒÒÚÓflÌËfl ì·˚‚‡ÌË ‡ÒÒÚÓflÌËfl (ËÎË ‚ÂÚË͇θÌ˚È „‡‰ËÂÌÚ ‡ÒÒÚÓflÌËfl) – ÓÒ··ÎÂÌË ı‡‡ÍÚÂËÒÚËÍË ËÎË ÔÓˆÂÒÒ‡ ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ ‡ÒÒÚÓflÌËfl. Ç ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓÏ ‚Á‡ËÏÓ‰ÂÈÒÚ‚ËË ÓÌÓ fl‚ÎflÂÚÒfl χÚÂχÚ˘ÂÒÍËÏ Ô‰ÒÚ‡‚ÎÂÌËÂÏ Ó·‡ÚÌÓ„Ó ÓÚÌÓ¯ÂÌËfl ÏÂÊ‰Û ÍÓ΢ÂÒÚ‚ÓÏ ÔÓÎÛ˜ÂÌÌÓ„Ó ‚¢ÂÒÚ‚‡ Ë Û‰‡ÎÂÌËÂÏ ÓÚ Â„Ó ËÒÚÓ˜ÌË͇. í‡ÍÓ ۷˚‚‡ÌË ËÁÏÂflÂÚ ‚ÎËflÌË ‡ÒÒÚÓflÌËfl ̇ ‰ÓÒÚÛÔÌÓÒÚ¸: ÓÌÓ ÏÓÊÂÚ Ò‚Ë‰ÂÚÂθÒÚ‚Ó‚‡Ú¸ Ó ÒÓ͇˘ÂÌËË ÔÓÚ·ÌÓÒÚË ËÁ-Á‡ Û‚Â΢ÂÌËfl ÒÚÓËÏÓÒÚË ÔÓÂÁ‰‡. èËχÏË ÍË‚˚ı Û·˚‚‡ÌËfl ‡ÒÒÚÓflÌËfl fl‚Îfl˛ÚÒfl: ÏÓ‰Âθ è‡ÂÚÓ ln Iij = a − b ln dij 1 Ë ÏÓ‰Âθ ln Iij = a − bdijp Ò p = , 1 ËÎË 2 (Á‰ÂÒ¸ Iij Ë dij fl‚Îfl˛ÚÒfl ‚Á‡ËÏÓ‰ÂÈÒÚ‚ËÂÏ 2 Ë ‡ÒÒÚÓflÌËÂÏ ÏÂÊ‰Û ÚӘ͇ÏË i Ë j, ÚÓ„‰‡ Í‡Í ‡ Ë b – Ô‡‡ÏÂÚ˚). äË‚‡fl ‡ÒÒÚÓflÌËfl äË‚‡fl ‡ÒÒÚÓflÌËfl – „‡ÙËÍ ‰‡ÌÌÓ„Ó Ô‡‡ÏÂÚ‡ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ‡ÒÒÚÓflÌ˲. èËχÏË ÍË‚˚ı ‡ÒÒÚÓflÌËfl, ‚ ÚÂÏË̇ı ‡ÒÒχÚË‚‡ÂÏÓ„Ó ÔÓˆÂÒÒ‡, fl‚Îfl˛ÚÒfl: ÍË‚‡fl ‚ÂÏfl-‡ÒÒÚÓflÌË (‰Îfl ‚ÂÏÂÌË ‡ÒÔÓÒÚ‡ÌÂÌËfl ÒÂËË ‚ÓÎÌ, ÒÂÈÒÏ˘ÂÒÍËı Ò˄̇ÎÓ‚ Ë Ú.Ô.), ÍË‚‡fl ‚˚ÒÓÚ‡-ÔÛÚ¸ (‰Îfl ‚˚ÒÓÚ˚ ‚ÓÎÌ˚ ˆÛ̇ÏË ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ‡ÒÒÚÓflÌ˲ ‡ÒÔÓÒÚ‡ÌÂÌËfl ‚ÓÎÌ˚ ÓÚ ÚÓ˜ÍË Û‰‡‡), ÍË‚‡fl ‡ÒÒÚÓflÌËÂ-‰ÂÔÂÒÒËfl, ÍË‚‡fl ‡ÒÒÚÓflÌËÂ-Ú‡flÌËÂ Ë ÍË‚‡fl ‡ÒÒÚÓflÌËÂ-Ó·˙ÂÏ ËÁÌÓÒ‡. äË‚‡fl ‡ÒÒÚÓflÌËÂ-ÒË· fl‚ÎflÂÚÒfl ‚ ÏËÍÓÒÍÓÔËË ÁÓÌ‰Ó‚Ó„Ó Ò͇ÌËÓ‚‡ÌËfl „‡ÙËÍÓÏ ‚ÂÚË͇θÌÓÈ ÒËÎ˚, ÔËÎÓÊÂÌÌÓÈ Ë„ÎÓÈ ËÁÏÂËÚÂθÌÓÈ „ÓÎÓ‚ÍË Í ÔÓ‚ÂıÌÓÒÚË Ó·‡Áˆ‡ ‚ ÏÓÏÂÌÚ, ÍÓ„‰‡ ÔÓËÁ‚Ó‰ËÚÒfl ÍÓÌÚ‡ÍÚ̇fl Ò˙ÂÏ͇ ËÁÓ·‡ÊÂÌËfl ‡ÚÓÏÌÓ-ÒËÎÓ‚˚Ï ÏËÍÓÒÍÓÔÓÏ (Äëå). äÓÏ ÚÓ„Ó, ‚ ÏËÍÓÒÍÓÔËË ÁÓÌ‰Ó‚Ó„Ó Ò͇ÌËÓ‚‡ÌËfl ËÒÔÓθÁÛ˛ÚÒfl ÍË‚˚ ˜‡ÒÚÓÚ‡-‡ÒÒÚÓflÌËÂ Ë ‡ÏÔÎËÚÛ‰‡-‡ÒÒÚÓflÌËÂ. íÂÏËÌ ÍË‚‡fl ‡ÒÒÚÓflÌËfl ÔËÏÂÌflÂÚÒfl ‰Îfl ÒÓÒÚ‡‚ÎÂÌËfl ‰Ë‡„‡ÏÏ ÓÒÚ‡, ̇ÔËÏÂ, „ËÒÚ‡ˆËË ‰ÂÚÒÍÓ„Ó ÓÒÚ‡ ËÎË ‚ÂÒ‡ ‚ ͇ʉ˚È ‰Â̸ ÓʉÂÌËfl. ɇÙËÍ ÒÍÓÓÒÚË ÓÒÚ‡ ÔÓ ÓÚÌÓ¯ÂÌ˲ Í ‚ÓÁ‡ÒÚÛ Ì‡Á˚‚‡ÂÚÒfl ÍË‚ÓÈ ÒÍÓÓÒÚ¸-‡ÒÒÚÓflÌËÂ. èÓÒΉÌËÈ ÚÂÏËÌ ËÒÔÓθÁÛÂÚÒfl Ë Í‡Í ÓÔ‰ÂÎÂÌË ÒÍÓÓÒÚË Ò‡ÏÓÎÂÚÓ‚. îÛÌ͈Ëfl χÒÒ‡-‡ÒÒÚÓflÌË xy . d ( x, y) Ö ̇Á˚‚‡˛Ú Ú‡ÍÊ ÙÛÌ͈ËÂÈ „‡‚ËÚ‡ˆËË, ÔÓÒÍÓθÍÛ Ó̇ ‚˚‡Ê‡ÂÚ „‡‚ËÚ‡ˆËÓÌÌÓ ÔËÚflÊÂÌË ÏÂÊ‰Û Ï‡ÒÒ‡ÏË ı Ë Û Ì‡ (‚ÍÎˉӂÓÏ) ‡ÒÒÚÓflÌËË d(x, y) (ÒÏ. á‡ÍÓÌ Ó·‡ÚÌ˚ı Í‚‡‰‡ÚÓ‚, „Î. 24). èÓ‰Ó·Ì˚ ÙÛÌ͈ËË ˜‡˘Â ‚ÒÂ„Ó ÔËÏÂÌfl˛ÚÒfl ‚ ÒӈˇθÌ˚ı ̇Û͇ı, ̇ÔËÏÂ, ÓÌË ÏÓ„ÛÚ ‚˚‡Ê‡Ú¸ Ò‚flÁ¸ ÏÂÊ‰Û ı Ë Û, ÍÓÚÓ˚ ÏÓ„ÛÚ ‡ÒÒχÚË‚‡Ú¸Òfl Í‡Í Ì‡ÒÂÎÂÌË ÓÚÔ‡‚Îfl˛˘ÂÈ Ë ÔËÌËχ˛˘ÂÈ ÒÚÓÓÌ, „‰Â d(x, y) ‚˚ÒÚÛÔ‡ÂÚ Í‡Í ÙËÁ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÌËÏË. ì·˚‚‡˛˘‡fl ÍË‚‡fl χÒÒ‡-‡ÒÒÚÓflÌË – „‡ÙËÍ Û·˚‚‡ÌËfl "χÒÒ˚" ÔË Û‚Â΢ÂÌËË ‡ÒÒÚÓflÌËfl ‰Ó ˆÂÌÚ‡ "„‡‚ËÚ‡ˆËË". èÓ‰Ó·Ì˚ ÍË‚˚ ËÒÔÓθÁÛ˛ÚÒfl ‰Îfl ̇ıÓʉÂÌËfl ÏÂÒÚ‡ ÛÍ˚ÚËfl ÔÂÒÚÛÔÌË͇ (ËÒıÓ‰ÌÓÈ ÚÓ˜ÍË; ÒÏ. ê‡ÒÒÚÓflÌËfl ‚ ÍËÏËÌÓÎÓ„ËË), χÒÒ˚ „‡Î‡ÍÚËÍË ‚ ԉ·ı Á‡‰‡ÌÌÓ„Ó ‡‰ËÛÒ‡ ÓÚ Â ˆÂÌÚ‡ (Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ ÍË‚˚ı ‚‡˘ÂÌËfl-‡ÒÒÚÓflÌËfl) Ë Ú.Ô. îÛÌ͈ËÂÈ Ï‡ÒÒ‡-‡ÒÒÚÓflÌË ̇Á˚‚‡ÂÚÒfl ÙÛÌ͈Ëfl, ÔÓÔÓˆËÓ̇θ̇fl
420
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ᇂËÒËÏÓÒÚ¸ ·Óθ¯ÓÈ ‰‡Î¸ÌÓÒÚË ëÚÓı‡ÒÚ˘ÂÒÍËÈ (ÒÚ‡ˆËÓ̇Ì˚È ‚ÚÓÓ„Ó ÔÓfl‰Í‡) ÔÓˆÂÒÒ Xk, k ∈ , ̇Á˚‚‡ÂÚÒfl Á‡‚ËÒËÏ˚Ï ·Óθ¯ÓÈ ‰‡Î¸ÌÓÒÚË (ËÎË ‰Ó΄ÓÈ Ô‡ÏflÚË), ÂÒÎË ÒÛ˘ÂÒÚ‚Û˛Ú Ú‡ÍË ˜ËÒ· α, 0 < α < 1 Ë cρ > 0, ˜ÚÓ lim cρ k α ρk = 1, „‰Â ρ(k) – ‡‚ÚÓÍÓÂÎflˆËÓÌ̇fl ÙÛÌ͈Ëfl. k →∞
ëΉӂ‡ÚÂθÌÓ, ÍÓÂÎflˆËË Û·˚‚‡˛Ú Ó˜Â̸ ωÎÂÌÌÓ (ÔÓ ‡ÒËÏÔÚÓÚ˘ÂÒÍË „ËÔ·Ó΢ÂÒÍÓÏÛ ÚËÔÛ) ‰Ó ÌÛÎfl, ˜ÚÓ ‚ΘÂÚ Á‡ ÒÓ·ÓÈ ρk = ∞ Ë ÍÓÂÎflˆË˛ ‰‡ÎÂÍÓ
∑
k ∈
ÓÚÒÚÓfl˘Ëı ‰Û„ ÓÚ ‰Û„‡ ÒÓ·˚ÚËÈ (‰Ó΄‡fl Ô‡ÏflÚ¸). ÖÒÎË ‚˚¯ÂÔ˂‰ÂÌ̇fl ÒÛÏχ ÍÓ̘̇ Ë Û·˚‚‡ÌË ˉÂÚ ˝ÍÒÔÓÌÂ̈ˇθÌÓ, ÚÓ ÔÓˆÂÒÒ Ì‡Á˚‚‡ÂÚÒfl ÔÓˆÂÒÒÓÏ Ï‡ÎÓÈ ‰‡Î¸ÌÓÒÚË. èËχÏË Ú‡ÍËı ÔÓˆÂÒÒÓ‚ fl‚Îfl˛ÚÒfl ˝ÍÒÔÓÌÂ̈ˇθÌ˚È, ÌÓχθÌ˚È Ë ÔÛ‡ÒÒÓÌÓ‚ÒÍËÈ ÔÓˆÂÒÒ˚, ÍÓÚÓ˚ Ì ËÏÂ˛Ú Ô‡ÏflÚË Ë, „Ó‚Ófl ÙËÁ˘ÂÒÍËÏ flÁ˚ÍÓÏ, fl‚Îfl˛ÚÒfl ÒËÒÚÂχÏË ‚ ÚÂÏÓ‰Ë̇Ï˘ÂÒÍÓÏ ‡‚ÌÓ‚ÂÒËË. ì͇Á‡ÌÌÓ ‚˚¯Â Û·˚‚‡ÌË ÒÚÂÔÂÌÌÓÈ Á‡‚ËÒËÏÓÒÚË ‰Îfl ÍÓÂÎflˆËÈ Í‡Í ÙÛÌ͈ËË ‚ÂÏÂÌË ÔÂÓ·‡ÁÛÂÚÒfl ‚ Û·˚‚‡ÌË ÒÚÂÔÂÌÌÓÈ Á‡‚ËÒËÏÓÒÚË ÒÔÂÍÚ‡ îÛ¸Â Í‡Í ÙÛÌ͈Ëfl ˜‡ÒÚÓÚ˚ 1 ¯ÛÏÓÏ. f Ë Ì‡Á˚‚‡ÂÚÒfl f èÓˆÂÒÒ Ó·Î‡‰‡ÂÚ ˝ÍÒÔÓÌÂÌÚÓÈ Ò‡ÏÓÔÓ‰Ó·Ëfl (ËÎË Ô‡‡ÏÂÚÓÏ ï‡ÒÚ‡) ç, ÂÒÎË Xk Ë t–H Xtk ËÏÂ˛Ú Ó‰Ë̇ÍÓ‚˚ ÍÓ̘ÌÓÏÂÌ˚ ‡ÒÔ‰ÂÎÂÌËfl ‰Îfl β·Ó„Ó ÔÓÎÓÊË1 ÚÂθÌÓ„Ó t. ëÎÛ˜‡Ë H = Ë H = 1 ÓÚÌÓÒflÚÒfl ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ Í ˜ËÒÚÓ ÒÎÛ˜‡ÈÌÓÏÛ 2 ÔÓˆÂÒÒÛ Ë ÚÓ˜ÌÓÏÛ Ò‡ÏÓÔӉӷ˲ Ó‰Ë̇ÍÓ‚Ó Ôӂ‰ÂÌË ̇ ‚ÒÂı ¯Í‡Î‡ı (ÒÏ. î‡Í1 Ú‡Î, „Î. 1 Ë ëÂÚË, ÌÂÁ‡‚ËÒËÏ˚ ÓÚ ¯Í‡Î, „Î. 22). èÓˆÂÒÒ˚ c < H < 1 fl‚Îfl˛ÚÒfl 2 Á‡‚ËÒËÏ˚ÏË ·Óθ¯ÓÈ ‰‡Î¸ÌÓÒÚË Ò α = 2(1 – H). ᇂËÒËÏÓÒÚ¸ ·Óθ¯ÓÈ ‰‡Î¸ÌÓÒÚË ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ ‡ÒÔ‰ÂÎÂÌËflÏ Ò ÚflÊÂÎ˚Ï "ı‚ÓÒÚÓÏ" (ËÎË cÓ ÒÚÂÔÂÌÌ˚Ï Á‡ÍÓÌÓÏ). îÛÌ͈Ëfl ‡ÒÔ‰ÂÎÂÌËfl Ë "ı‚ÓÒÚ" ÌÂÓÚˈ‡ÚÂθÌÓÈ ÒÎÛ˜‡ÈÌÓÈ ÔÂÂÏÂÌÌÓÈ ï ‡‚Ì˚ F( x ) = P( X ≤ x ) Ë F( x ) = P( X > x ). ê‡ÒÔ‰ÂÎÂÌË F( X ) ËÏÂÂÚ ÚflÊÂÎ˚È "ı‚ÓÒÚ", ÂÒÎË ÒÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÓ ˜ËÒÎÓ α, 0 < α < 1, ˜ÚÓ lim x α F( x ) = 1. åÌÓ„Ë ڇÍË ‡ÒÔ‰ÂÎÂÌËfl ËÏÂ˛Ú ÏÂÒÚÓ ‚ ‡θÌÓÈ x →∞
‰ÂÈÒÚ‚ËÚÂθÌÓÒÚË (̇ÔËÏÂ, ‚ ÙËÁËÍÂ, ˝ÍÓÌÓÏËÍÂ, ‚ àÌÚÂÌÂÚÂ), ‡ Ú‡ÍÊ ‚ ÔÓÒÚ‡ÌÒÚ‚Â (‡ÒÒÚÓflÌËfl) Ë ‚Ó ‚ÂÏÂÌË (ÔÓ‰ÓÎÊËÚÂθÌÓÒÚË). íËÔÓ‚˚Ï ÔËÏÂÓÏ fl‚ÎflÂÚÒfl ‡ÒÔ‰ÂÎÂÌË è‡ÂÚÓ F( x ) = x −α , x ≥ 1, „‰Â α > 0 – Ô‡‡ÏÂÚ (ÒÏ. ì·˚‚‡ÌË ‡ÒÒÚÓflÌËfl). ê‡ÒÒÚÓflÌËfl ‚ ωˈËÌ ê‡ÒÒÚÓflÌË ‚ÌÛÚÂÌÌÂ„Ó ÔËÍÛÒ‡: ‚ ÒÚÓχÚÓÎÓ„ËË ÏÂÊÓÍÍβÁËÓÌ̇fl ˘Âθ ÏÂÊ‰Û ÔÓ‚ÂıÌÓÒÚflÏË ‚Âı̘ÂβÒÚÌ˚ı Ë ÌËÊ̘ÂβÒÚÌ˚ı ÁÛ·Ó‚ ‚ ÏÓÏÂÌÚ Ì‡ıÓʉÂÌËfl ˜ÂβÒÚË ‚ ÒÓÒÚÓflÌËË ÔÓÍÓfl. åÂÊÓÍÍβÁËÓÌ̇fl ‚˚ÒÓÚ‡: ‚ ÒÚÓχÚÓÎÓ„ËË ‡ÒÒÚÓflÌË ÔÓ ‚ÂÚË͇ÎË ÏÂÊ‰Û ‚Âı̘ÂβÒÚÌÓÈ Ë ÌËÊ̘ÂβÒÚÌÓÈ ‰Û„‡ÏË. ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ‡Î¸‚ÂÓÎflÌ˚ÏË ÓÚÓÒÚ͇ÏË – ‡ÒÒÚÓflÌË ÔÓ ‚ÂÚË͇ÎË ÏÂÊ‰Û ‚Âı̘ÂβÒÚÌ˚Ï Ë ÌËÊ̘ÂβÒÚÌ˚Ï ‡Î¸‚ÂÓÎflÌ˚ÏË ÓÚÓÒÚ͇ÏË. åÂÊÁÛ·ÌÓÈ ÔÓÏÂÊÛÚÓÍ – ‡ÒÒÚÓflÌË Á‡ÁÓ‡ ÏÂÊ‰Û ÒÓÒ‰ÌËÏË ÁÛ·‡ÏË; Ô‡ÒÒË‚ÌÓ ÒÏ¢ÂÌË – ωÎÂÌÌÓ ‰‚ËÊÂÌË ÁÛ·Ó‚ Í Ô‰ÌÂÈ ˜‡ÒÚË Ú‡ ÔÓ Ï ÒÓ͇˘ÂÌËfl ÏÂÊÁÛ·ÌÓ„Ó ÔÓÏÂÊÛÚ͇ Ò ‚ÓÁ‡ÒÚÓÏ.
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
421
ê‡ÒÒÚÓflÌË ÏÂÊ‰Û ÒÚ·Âθ͇ÏË – ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‚ÂÚ·‡Î¸Ì˚ÏË ÒÚ·Âθ͇ÏË, ËÁÏÂÂÌÌÓ ÔÓ ÂÌÚ„ÂÌÓ‚ÒÍÓÏÛ ÒÌËÏÍÛ. ê‡ÒÒÚÓflÌË ËÒÚÓ˜ÌËÍ-ÍÓʇ – ‡ÒÒÚÓflÌË ÓÚ ÙÓÍÛÒÌÓ„Ó ÔflÚ̇ ̇ Ó·˙ÂÍÚ ÂÌÚ„ÂÌÓ‚ÒÍÓÈ ÚÛ·ÍË ‰Ó ÍÓÊË Ô‡ˆËÂÌÚ‡, ËÁÏÂÂÌÌÓ ÔÓ ˆÂÌڇθÌÓÏÛ ÎÛ˜Û. åÂʉÛÛ¯ÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ÏÂÊ‰Û Û¯‡ÏË. åÂÊÓÍÛÎflÌÓ ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌË ÏÂÊ‰Û „·Á‡ÏË. ÄÌÓ„ÂÌËڇθÌÓ ‡ÒÒÚÓflÌË – ‰ÎË̇ ÔÓÏÂÊÌÓÒÚË, Ú.Â. ‡Ì‡ÚÓÏ˘ÂÒÍÓÈ Ó·Î‡ÒÚË ÏÂÊ‰Û ‡ÌÛÒÓÏ Ë Ó·Î‡ÒÚ¸˛ ÔÓÎÓ‚˚ı Ó„‡ÌÓ‚ (Ô‰ÌËÏ ÓÒÌÓ‚‡ÌËÂÏ ÏÛÊÒÍÓ„Ó ÔÂÌËÒ‡). ì ÏÛʘËÌ ˝ÚÓ ‡ÒÒÚÓflÌË ӷ˚˜ÌÓ ‚ ‰‚‡ ‡Á‡ ·Óθ¯Â, ˜ÂÏ Û ÊÂÌ˘ËÌ; Ú‡ÍËÏ Ó·‡ÁÓÏ, ˝ÚÓ ‡ÒÒÚÓflÌË fl‚ÎflÂÚÒfl ÏÂÓÈ ÙËÁ˘ÂÒÍÓ„Ó Ï‡ÒÍÛÎËÌËÁχ. ÑÛ„ËÏË ÔÓ‰Ó·Ì˚ÏË ‡ÒÒÚÓflÌËflÏË fl‚Îfl˛ÚÒfl ÓÚÌÓ¯ÂÌË ‚ÚÓÓ„Ó Í ˜ÂÚ‚ÂÚÓÏÛ (Û͇Á‡ÚÂθÌÓ„Ó Í ·ÂÁ˚ÏflÌÌÓÏÛ) ԇθˆÛ, ÍÓÚÓÓ ÏÂ̸¯Â Û ÏÛʘËÌ Ó‰ÌÓÈ Ë ÚÓÈ Ê ÔÓÔÛÎflˆËË, Ë ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ Ï˚¯ÎÂÌËÂ, ÍÓÚÓÓ ‚˚¯Â Û ÏÛʘËÌ. ê‡ÒÒÚÓflÌË ÓÒ‰‡ÌËfl (ËÎË êéù, ‡͈Ëfl ÓÒ‰‡ÌËfl ˝ËÚÓˆËÚÓ‚) – ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ ÔÓıÓ‰flÚ Í‡ÒÌ˚ ÍÓ‚flÌ˚ ÚÂθˆ‡ Á‡ Ó‰ËÌ ˜‡Ò ÔË Ó҇ʉÂÌËË Ì‡ ‰ÌÓ ÔÓ·ËÍË Ò ‚ÁflÚÓÈ Ì‡ ‡Ì‡ÎËÁ ÍÓ‚¸˛. êéù Û͇Á˚‚‡ÂÚ Ì‡ ‚ÓÒÔ‡ÎËÚÂθÌ˚ ÔÓˆÂÒÒ˚ Ë ‚ ÒÎÛ˜‡Â Á‡·Ó΂‡ÌËfl ÔÓ‚˚¯‡ÂÚÒfl. éÒÌÓ‚Ì˚ÏË ‡ÒÒÚÓflÌËflÏË, ÔËÏÂÌflÂÏ˚ÏË ‚ ÛθڇÁ‚ÛÍÓ‚ÓÈ ·ËÓÏËÍÓÒÍÓÔËË (ÓÒÓ·ÂÌÌÓ ÔË Î˜ÂÌËË „·ÛÍÓÏ˚) fl‚Îfl˛ÚÒfl ‡ÒÒÚÓflÌË ‡ÒÍ˚ÚËfl ۄ· (ÓÚ Ó„Ó‚Ë˜ÌÓ„Ó ˝Ì‰ÓÚÂÎËfl ‰Ó Ô‰ÒÚÓfl˘ÂÈ ‡‰ÛÊÌÓÈ Ó·ÓÎÓ˜ÍË „·Á‡) Ë ‡ÒÒÚÓflÌË ڇ·ÂÍÛÎflÌÓ„Ó Ë ˆËΡÌÓ„Ó ÔÓˆÂÒÒÓ‚ (ÓÚ ÍÓÌÍÂÚÌÓÈ ÚÓ˜ÍË Ì‡ Ú‡·ÂÍÛÎflÌÓÈ ÒÂÚË ‰Ó ˆËΡÌÓ„Ó ÔÓˆÂÒÒ‡). èËχÏË ‡ÒÒÚÓflÌËÈ, ‡ÒÒχÚË‚‡ÂÏ˚ı ÔË ÒÌflÚËË ËÁÓ·‡ÊÂÌËÈ ÏÓÁ„‡ ÔÓ ÏÂÚÓ‰ËÍ åêí (χ„ÌËÚÌÓ-ÂÁÓ̇ÌÒÌÓÈ ÚÓÏÓ„‡ÙËË) Ë ÔÓÎÛ˜ÂÌËË ÍÓÚË͇θÌ˚ı Í‡Ú (Ú.Â. ‚ËÁÛ‡ÎËÁËÓ‚‡ÌÌ˚ı ӷ·ÒÚÂÈ ‚̯ÌÂÈ ÍÓÍË ÔÓÎÛ¯‡ËÈ „ÓÎÓ‚ÌÓ„Ó ÏÓÁ„‡, ÓÚÓ·‡Ê‡˛˘Ëı ‚ıÓ‰Ì˚ Ò˄̇Î˚ ÓÚ ‰‡Ú˜Ë͇ ËÎË ÏÓÚÓÌ˚ ÓÚÍÎËÍË) fl‚Îfl˛ÚÒfl: ͇ڇ ‡ÒÒÚÓflÌËÈ åêí ÓÚ „‡Ìˈ˚ ‡Á‰Â· ÒÂÓ„Ó/·ÂÎÓ„Ó ‚¢ÂÒÚ‚‡, ÍÓÚË͇θÌÓ ‡ÒÒÚÓflÌË (Ò͇ÊÂÏ, ÏÂÊ‰Û Û˜‡ÒÚ͇ÏË ‡ÍÚË‚‡ˆËË ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ ÒÏÂÊÌ˚ı ÒÚËÏÛÎÓ‚), ÍÓÚË͇θ̇fl ÚÓ΢Ë̇ Ë ÏÂÚËÍË Î‡Ú‡ÎËÁ‡ˆËË. ÑËÒڇθÌÓÒÚ¸ èË·„‡ÚÂθÌÓ ‰ËÒڇθÌ˚È (ËÎË ÔÂËÙÂËÈÌ˚È) ËÒÔÓθÁÛÂÚÒfl Í‡Í ‡Ì‡ÚÓÏ˘ÂÒÍËÈ ÚÂÏËÌ ÏÂÒÚÓÔÓÎÓÊÂÌËfl (̇ ÚÂÎÂ Ë ÓÚ‰ÂθÌ˚ı Â„Ó ˜‡ÒÚflı). ä‡Í ÔÓÚË‚ÓÔÓÎÓÊÌÓÒÚ¸ ÔÓÍÒËχθÌÓÏÛ (ËÎË ˆÂÌڇθÌÓÏÛ) ÓÌÓ ÓÁ̇˜‡ÂÚ ‡ÒÔÓÎÓÊÂÌË ‰‡ÎÂÍÓ ÓÚ, ̇ Û‰‡ÎÂÌËË ÓÚ ÚÓ˜ÍË ÓËÂÌÚËÓ‚‡ÌËfl (̇˜‡Î‡, ˆÂÌÚ‡, ÚÓ˜ÍË ÔËÍÂÔÎÂÌËfl, ÚÓÒ‡). ä‡Í ÔÓÚË‚ÓÔÓÎÓÊÌÓÒÚ¸ Ò‰ËÌÌÓÏÛ ÓÌÓ ÓÁ̇˜‡ÂÚ ‡ÒÔÓÎÓÊÂÌË ËÎË Ì‡Ô‡‚ÎÂÌË ÓÚ Ò‰ÌÂÈ ÎËÌËË ËÎË Ï‰ˇθÌÓÈ ÔÎÓÒÍÓÒÚË Ú·. àÌÓ„‰‡ ÚÂÏËÌ ‰ËÒڇθÌ˚È ËÒÔÓθÁÛÂÚÒfl ‚ ·ÓΠ‡·ÒÚ‡ÍÚÌÓÏ ÒÏ˚ÒÎÂ. í‡Í, ̇ÔËÏÂ, ÔÓÂÍÚ í-ÇËÊÌ (‚ËÁۇθÌÓ ÓÚÓ·‡ÊÂÌË áÂÏÎË) Ô‰ÔÓ·„‡ÂÚ ÙÓÏËÓ‚‡ÌË ‚ÓÒÔËflÚËfl áÂÏÎË Í‡Í ÓÚ‰‡ÎÂÌÌÓ„Ó Ó·˙ÂÍÚ‡, ˜ÚÓ ‡Ì ·˚ÎÓ ÔÓÌflÚÌÓ ÚÓθÍÓ ÍÓÒÏÓ̇‚Ú‡Ï. ê‡ÒÒÚÓflÌËfl ËÁÏÂÂÌËfl Ú· Ç ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò Ö‚ÓÔÂÈÒÍËÏ Â‰ËÌ˚Ï Òڇ̉‡ÚÓÏ ‡ÁÏÂÓ‚ Ó‰Âʉ˚ EN 13402 ‚ ‡Á‰ÂΠEN 13402-1 ÓÔ‰ÂÎÂÌ Ô˜Â̸ 13 ˝ÎÂÏÂÌÚÓ‚ ËÁÏÂÂÌËÈ Ë ÏÂÚÓ‰Ë͇ ˝ÚËı ËÁÏÂÂÌËÈ Ì‡ ˜ÂÎÓ‚ÂÍÂ. Ç Ô˜Â̸ ‚Íβ˜ÂÌ˚: χÒÒ‡ Ú·, ÓÒÚ, ‰ÎË̇ ÌÓ„Ë, ‰ÎË̇ ÛÍË, ‰ÎË̇ ÌÓ„Ë Ò ‚ÌÛÚÂÌÌÂÈ ÒÚÓÓÌ˚, Ó·˙ÂÏ „ÓÎÓ‚˚, ¯ÂË, „Û‰Ë, ·˛ÒÚ‡, Ó·˙ÂÏ ÔÓ‰ „Û‰¸˛, Ó·ı‚‡Ú Ú‡ÎËË, ·Â‰Â, ÍËÒÚË ÛÍË. çËÊ ÒÎÂ‰Û˛Ú ÔËÏÂ˚ ˝ÚËı ÓÔ‰ÂÎÂÌËÈ. ÑÎË̇ ÒÚÓÔ˚ – „ÓËÁÓÌڇθÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ÔÂÔẨËÍÛÎfl‡ÏË, ͇҇˛˘ËÏËÒfl ÍÓ̈‡ Ò‡ÏÓ„Ó ‰ÎËÌÌÓ„Ó Ô‡Î¸ˆ‡ ÌÓ„Ë Ë Ì‡Ë·ÓΠ‚˚ÒÚÛÔ‡˛˘ÂÈ ˜‡ÒÚË ÔflÚÍË.
422
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ÑÎË̇ ÛÍË – ‡ÒÒÚÓflÌË ËÁÏÂÂÌÌÓ ÏÂÌÓÈ ÎÂÌÚÓÈ ÓÚ ÔÎÂ˜Â‚Ó„Ó ÒÛÒÚ‡‚‡ (‡ÍÓÏËÓ̇) ÔÓ ÎÓÍÚ˛ ‰Ó ÓÍÓ̘ÌÓÒÚË Á‡ÔflÒÚ¸fl (ÎÓÍÚ‚ÓÈ ÍÓÒÚË), ÔË ˝ÚÓÏ Ô‡‚‡fl Û͇ ‰ÓÎÊ̇ ·˚Ú¸ Òʇڇ ‚ ÍÛÎ‡Í Ë ÎÂʇڸ ̇ ·Â‰Â ‚ ̇ÔÓÎÓ‚ËÌÛ ÒÓ„ÌÛÚÓÏ ÔÓÎÓÊÂÌËË. ÑÎË̇ ‚ÌÛÚÂÌÌÂÈ ˜‡ÒÚË ÌÓ„Ë – ‡ÒÒÚÓflÌË ÏÂÊ‰Û Ô‡ıÓÏ Ë ÔÓ‰Ó¯‚ÓÈ ÌÓ„Ë, ËÁÏÂÂÌÌÓ ÔÓ ‚ÂÚË͇ÎË, ÔË ˝ÚÓÏ ˜ÂÎÓ‚ÂÍ ‰ÓÎÊÂÌ ÒÚÓflÚ¸ ÔflÏÓ, Ò΄͇ ‡ÒÒÚ‡‚Ë‚ ÌÓ„Ë Ë ‡ÒÔ‰ÂÎË‚ ̇ ÌËı ÔÓÓ‚ÌÛ ‚ÂÒ Ú·. èÓÒΉÌËÈ ‡Á‰ÂÎ EN 13402-4, ͇҇˛˘ËÈÒfl ÍÓ‰ËÓ‚‡ÌËfl ‡ÁÏÂÓ‚ Ó‰Âʉ˚, ‰ÓÎÊÂÌ ÒÚ‡Ú¸ Ó·flÁ‡ÚÂθÌ˚Ï ‚ Ö‚ÓÔ ÔÓÒΠ2007 „. éÊˉ‡ÂÚÒfl, ˜ÚÓ Ò ‚˚ıÓ‰ÓÏ ‚ Ò‚ÂÚ ˝ÚÓÈ ˜‡ÒÚË ·Û‰ÂÚ ÛÒÚ‡ÌÂ̇ ÒËÚÛ‡ˆËfl, ÍÓ„‰‡ Ò‰ÌËÈ ÚËÔÓ‚ÓÈ ‡ÁÏ (34–28– 37 ‰˛ÈÏÓ‚, Ú.Â. 88–72–96 ÒÏ ·˛ÒÚ–Ú‡ÎËfl–·Â‰‡) ‚ ëòÄ ÔÓıÓ‰ËÚ ÔÓ‰ ÌÓÏÂÓÏ 10, ‚ ÇÂÎËÍÓ·ËÚ‡ÌËË – 12, ‚ çӂ„ËË, ò‚ˆËË Ë îËÌÎfl̉ËË – ë38, ‚ ÉÂχÌËË Ë çˉ·̉‡ı – 38, ‚ ÅÂθ„ËË Ë î‡ÌˆËË – 40, ‚ àÚ‡ÎËË – 44, ‚ èÓÚÛ„‡ÎËË Ë àÒÔ‡ÌËË – 44/46. Ä̇Îӄ˘Ì˚ ÏÌÓÊÂÒÚ‚‡ ‡ÒÒÚÓflÌËÈ ËÒÔÓθÁÛ˛ÚÒfl Ú‡ÍÊ (̇ÔËÏÂ, ‰Îfl ÒÍÂÎÂÚÌ˚ı ËÁÏÂÂÌËÈ) ‚ Òۉ·ÌÓÈ Ï‰ˈËÌÂ, ‡ÌÚÓÔÓÎÓ„ËË Ë Ú.Ô. ê‡ÒÒÚÓflÌËfl ‚ ÍËÏËÌÓÎÓ„ËË ëÓÒÚ‡‚ÎÂÌË „ÂÓ„‡Ù˘ÂÒÍÓ„Ó ÔÓÙËÎfl (ËÎË ‡Ì‡ÎËÁ „ÂÓ„‡Ù˘ÂÒÍÓÈ ÔË‚flÁÍË) ËÏÂÂÚ ˆÂθ˛ Ò‚flÁ‡Ú¸ ÔÓÒÚ‡ÌÒÚ‚ÂÌÌÓ Ôӂ‰ÂÌË (‚˚·Ó ÊÂÚ‚ Ë ÓÒÓ·ÂÌÌÓ Ì‡Ë·ÓΠ‚ÂÓflÚÌÛ˛ ËÒıÓ‰ÌÛ˛ ÚÓ˜ÍÛ, Ú.Â. ÏÂÒÚÓ ÔÓÊË‚‡ÌËfl ËÎË ‡·ÓÚ˚) ÒÂËÈÌÓ„Ó ÔÂÒÚÛÔÌË͇ Ò ÔÓÒÚ‡ÌÒÚ‚ÂÌÌ˚Ï ‡ÒÔ‰ÂÎÂÌËÂÏ ÏÂÒÚ Â„Ó ÔÂÒÚÛÔÎÂÌËÈ. ÅÛÙÂ̇fl ÁÓ̇ ÔÂÒÚÛÔÌË͇ (ËÎË ˝ÙÙÂÍÚ Û„ÓθÌÓ„Ó Ï¯͇) – ‡ÈÓÌ, ÓÍÛʇ˛˘ËÈ ÏÂÒÚÓ Ô·˚‚‡ÌËfl ÔÂÒÚÛÔÌË͇ (ËÒıÓ‰ÌÛ˛ ÚÓ˜ÍÛ), ‚ ԉ·ı ÍÓÚÓÓ„Ó ÓÚϘ‡ÂÚÒfl ÌÂÁ̇˜ËÚÂθ̇fl ËÎË ‚ÓÓ·˘Â Ì ÓÚϘ‡ÂÚÒfl ÔÂÒÚÛÔ̇fl ‰ÂflÚÂθÌÓÒÚ¸; ‚ Ó·˚˜Ì˚ı ÒÎÛ˜‡flı ڇ͇fl ÁÓ̇ ı‡‡ÍÚÂ̇ ‰Îfl ÔÂÒÚÛÔÌËÍÓ‚, Á‡‡Ì ӷ‰ÛÏ˚‚‡˛˘Ëı Ò‚ÓË ‰ÂÈÒÚ‚Ëfl. éÒÌÓ‚Ì˚ ÛÎˈ˚ Ë Ï‡„ËÒÚ‡ÎË, ‚Â‰Û˘Ë ‚ ˝ÚÛ ÁÓÌÛ, ˜‡˘Â ‚ÒÂ„Ó ÔÂÂÒÂ͇˛ÚÒfl ‚·ÎËÁË Û·ÂÊˢ‡ ÔÂÒÚÛÔÌË͇. ÑÎfl ÒÂËÈÌ˚ı ̇ÒËθÌËÍÓ‚ ‚ ÇÂÎËÍÓ·ËÚ‡ÌËË ‚˚fl‚ÎÂ̇ ·ÛÙÂ̇fl ÁÓ̇, ÒÓÒÚ‡‚Îfl˛˘‡fl ÔÓfl‰Í‡ 1 ÍÏ. èË ˝ÚÓÏ ·Óθ¯ËÌÒÚ‚Ó ÔÂÒÚÛÔÎÂÌËÈ ÔÓÚË‚ ΢ÌÓÒÚË ÔÓËÒıÓ‰flÚ Ì‡ Û‰‡ÎÂÌËË ÓÍÓÎÓ 2 ÍÏ ÓÚ Û·ÂÊˢ‡ ÔÂÒÚÛÔÌË͇, ÚÓ„‰‡ Í‡Í ‰Îfl Í‡Ê ËÏÛ˘ÂÒÚ‚‡ ı‡‡ÍÚÂÌÓ ·Óθ¯Â ۉ‡ÎÂÌËÂ. ì·˚‚‡˛˘‡fl ÙÛÌ͈Ëfl ÔÛÚË Í ÏÂÒÚÛ ÔÂÒÚÛÔÎÂÌËfl Ô‰ÒÚ‡‚ÎflÂÚ ÒÓ·ÓÈ „‡Ù˘ÂÒÍÛ˛ ÍË‚Û˛ ‡ÒÒÚÓflÌËfl, ÔÓ͇Á˚‚‡˛˘Û˛, Í‡Í ˜ËÒÎÓ Òӂ¯ÂÌÌ˚ı ÔÂÒÚÛÔÎÂÌËÈ ÔÓÒÚÂÔÂÌÌÓ ÒÓ͇˘‡ÂÚÒfl ÔÓ Ï ۉ‡ÎÂÌËfl ÓÚ ÏÂÒÚ‡ ÔÓÊË‚‡ÌËfl ÔÂÒÚÛÔÌË͇. èÓ‰Ó·Ì˚ ÙÛÌ͈ËË fl‚Îfl˛ÚÒfl ‡ÁÌӂˉÌÓÒÚflÏË ÙÛÌ͈ËÈ ˆÂÌÚ‡ ÚflÊÂÒÚË, ÓÒÌÓ‚‡ÌÌ˚ı ̇ Á‡ÍÓÌ 縲ÚÓ̇ Ó ‚Á‡ËÏÌÓÏ ÔËÚflÊÂÌËË ‰‚Ûı ÚÂÎ. ÖÒÎË ËÏÂÂÚÒfl ˜ËÒÎÓ n ÏÂÒÚ ÔÂÒÚÛÔÎÂÌËfl (xi , yi), 1 ≤ i ≤ n („‰Â xi Ë yi fl‚Îfl˛ÚÒfl ¯ËÓÚÓÈ Ë ‰Ó΄ÓÚÓÈ i-„Ó ÏÂÒÚ‡), ÚÓ Ò ÔÓÏÓ˘¸˛ ÏÓ‰ÂÎË ç¸˛ÚÓ̇–ë‚ÓÔ‡ ÏÂÒÚÓ Û·Â xi yi i Êˢ‡ ÔÂÒÚÛÔÌË͇ ÓÔ‰ÂÎflÂÚÒfl ‚ ԉ·ı ÍÛ„‡ Ò ˆÂÌÚÓÏ ‚ ÚӘ͠⋅ i n n Ò ‡‰ËÛÒÓÏ ÔÓËÒ͇ ‡‚Ì˚Ï
∑
max xi1 − xi 2 ⋅ max yi1 − yi 2 π(n − 1)2
∑
,
„‰Â χÍÒËÏÛÏ˚ Ô‰ÒÚ‡‚ÎÂÌ˚ Í‡Í (i1 , i2 ), 1 ≤ i1 < i2 ≤ n. äÛ„Ó‚‡fl ÏÓ‰Âθ ɇÌÚ‡– É„ÓË ÔÓÁ‚ÓÎflÂÚ Ô‰ÔÓ·„‡Ú¸ ÏÂÒÚÓ Û·ÂÊˢ‡ ÔÂÒÚÛÔÌË͇ ‚ ԉ·ı ÍÛ„‡,
É·‚‡ 28. çÂχÚÂχÚ˘ÂÒÍËÂ Ë Ó·‡ÁÌ˚ Á̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl
423
ˆÂÌÚÓÏ ÍÓÚÓÓ„Ó fl‚ÎflÂÚÒfl ÏÂÒÚÓ ÔÂ‚Ó„Ó ÔÂÒÚÛÔÎÂÌËfl, ‡ ‰Ë‡ÏÂÚÓÏ – χÍÒËχθÌÓ ‡ÒÒÚÓflÌË ÏÂÊ‰Û ‰‚ÛÏfl ÏÂÒÚ‡ÏË ÔÂÒÚÛÔÎÂÌËÈ. ñÂÌÚÓ„‡Ù˘ÂÒÍË ÏÓ‰ÂÎË ‡ÒÒχÚË‚‡˛Ú ÏÂÒÚÓ Û·ÂÊˢ‡ ÔÂÒÚÛÔÌË͇ Í‡Í ˆÂÌÚ, Ú.Â. ÚÓ˜ÍÛ, ÓÚ ÍÓÚÓÓÈ ÍÓÌÍÂÚ̇fl ÙÛÌ͈Ëfl ‡ÒÒÚÓflÌËfl ÔÛÚË ‰Ó β·˚ı ÏÂÒÚ ÔÂÒÚÛÔÎÂÌËfl ËÏÂÂÚ ÏËÌËχθÌÛ˛ ‚Â΢ËÌÛ; ‡ÒÒÚÓflÌËflÏË ‚ ˝ÚÓÏ ÒÎÛ˜‡Â ·Û‰ÛÚ Â‚ÍÎË‰Ó‚Ó ‡ÒÒÚÓflÌËÂ, ‡ÒÒÚÓflÌË å‡Ìı˝ÚÚÂ̇, ÍÓÎÂÒÌÓ ‡ÒÒÚÓflÌË (Ú.Â. ‡θÌ˚È ÔÛÚ¸ Ôӷ„‡), ‚ÓÒÔËÌËχÂÏÓ ‚ÂÏfl ÔÛÚË Ë Ú.Ô. åÌÓ„Ë ËÁ ˝ÚËı ÏÓ‰ÂÎÂÈ fl‚Îfl˛ÚÒfl ‰ÂÈÒÚ‚Û˛˘ËÏË ‚ Ó·‡ÚÌÛ˛ ÒÚÓÓÌÛ ÏÓ‰ÂÎflÏË ÚÂÓËË ÏÂÒÚÓÔÓÎÓÊÂÌËfl, (ˆÂθ˛ ÍÓÚÓÓÈ fl‚ÎflÂÚÒfl χÍÒËχθÌÓ ̇‡˘Ë‚‡ÌË ‡ÒÔ‰ÂÎËÚÂθÌÓÈ ÒÂÚË ‚ ËÌÚÂÂÒ‡ı ÒÓ͇˘ÂÌËfl ÔÛÚ‚˚ı ‡ÒıÓ‰Ó‚. ùÚË ÏÓ‰ÂÎË (ÏÌÓ„ÓÛ„ÓθÌËÍË ÇÓÓÌÓ„Ó Ë ‰.) ·‡ÁËÛ˛ÚÒfl ̇ ÔË̈ËÔ ·ÎËÁÓÒÚË (ÔË̈ËÔ ÏËÌËχθÌÓ„Ó ÛÒËÎËfl). ÑÎfl ‚˚fl‚ÎÂÌËfl ÍËÏË̇θÌ˚ı, ÚÂÓËÒÚ˘ÂÒÍËı Ë ‰Û„Ëı ÒÍ˚Ú˚ı ÒÂÚÂÈ ËÒÔÓθÁÛ˛ÚÒfl Ú‡ÍÊ ÏÌÓ„Ë ‰Û„Ë Ò‰ÒÚ‚‡ Ò·Ó‡ ‰‡ÌÌ˚ı, Ò ÔÓÏÓ˘¸˛ ÍÓÚÓ˚ı ÔÓÎÛ˜‡˛Ú ҂‰ÂÌËfl Ó Î‡ÚÂÌÚÌ˚ı ‚Á‡ËÏÓÒ‚flÁflı (‡ÒÒÚÓflÌËflı Ë ÔÓ˜ÚË ÏÂÚË͇ı ÏÂÊ‰Û Î˛‰¸ÏË), ËÒÒΉÛfl „‡Ù˚ ÔË·ÎËÊÂÌËfl Ëı ÒÓ‚ÏÂÒÚÌ˚ı ÔÓfl‚ÎÂÌËÈ ‚ ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘Ëı ‰ÓÍÛÏÂÌÚ‡ı, ÒÓ·˚ÚËflı Ë Ú.Ô. ê‡ÒÒÚÓflÌËfl ‚ ÏË ÊË‚ÓÚÌ˚ı à̉˂ˉۇθÌÓ ‡ÒÒÚÓflÌË – Û‰‡ÎÂÌËÂ, ̇ ÍÓÚÓÓÏ Ó‰ÌÓ ÊË‚ÓÚÌÓ ÒÚÂÏËÚÒfl ‰ÂʇڸÒfl ÓÚ ‰Û„Ó„Ó. ÉÛÔÔÓ‚Ó ‡ÒÒÚÓflÌË – ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓÏ Ó‰Ì‡ „ÛÔÔ‡ ÊË‚ÓÚÌ˚ı ‰ÂÊËÚÒfl ÓÚ ‰Û„ÓÈ. ê‡ÒÒÚÓflÌË ‡„ËÓ‚‡ÌËfl – ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓÏ ÊË‚ÓÚÌÓ ‡„ËÛÂÚ Ì‡ ÔÓfl‚ÎÂÌË ‰Ó·˚˜Ë; ‡ÒÒÚÓflÌË ‡Ú‡ÍË: ‡ÒÒÚÓflÌËÂ, ‚ ԉ·ı ÍÓÚÓÓ„Ó ıˢÌËÍ ÏÓÊÂÚ Ì‡Ô‡ÒÚ¸ ̇ Ò‚Ó˛ ÊÂÚ‚Û. ê‡ÒÒÚÓflÌË ·Â„ÒÚ‚‡ – ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓÏ ÊË‚ÓÚÌÓ ‡„ËÛÂÚ Ì‡ ÔÓfl‚ÎÂÌË ıˢÌË͇ ËÎË ‰ÓÏËÌËÛ˛˘Â„Ó ÊË‚ÓÚÌÓ„Ó ÚÓ„Ó Ê ‚ˉ‡. ê‡ÒÒÚÓflÌË ·ÎËÊ‡È¯Â„Ó ÒÓÒ‰‡ – ·ÓΠËÎË ÏÂÌ ÔÓÒÚÓflÌÌÓ ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ„Ó ÔˉÂÊË‚‡˛ÚÒfl ÊË‚ÓÚÌ˚ ÏÂÊ‰Û ÒÓ·ÓÈ ÔË ‰‚ËÊÂÌËË ‚ Ó‰ÌÓÏ Ì‡Ô‡‚ÎÂÌËË ‚ ÒÓÒÚ‡‚ ·Óθ¯Ëı „ÛÔÔ (Ú‡ÍËı, Í‡Í ÍÓÒflÍË ˚·, ÒÚ‡Ë ÔÚˈ). åÂı‡ÌËÁÏ ‡ÎÎÂÎÓÏËÏÂÚ˘ÂÒÍÓ„Ó Ôӂ‰ÂÌËfl ("‰ÂÎ‡È Ú‡Í, Í‡Í ÒÓÒ‰") ÒÔÓÒÓ·ÒÚ‚ÛÂÚ ÒÓı‡ÌÂÌ˲ ˆÂÎÓÒÚÌÓÒÚË ÒÚÛÍÚÛ˚ „ÛÔÔ˚ Ë ÔÓÁ‚ÓÎflÂÚ ÓÒÛ˘ÂÒÚ‚ÎflÚ¸ ͇ÊÛ˘ËÂÒfl ‡ÁÛÏÌ˚ÏË „ÛÔÔÓ‚˚ χÌ‚˚ ÛÍÎÓÌÂÌËfl ÔË ÔÓfl‚ÎÂÌËË ıˢÌËÍÓ‚. ê‡ÒÒÚÓflÌË ҂flÁË Ò ËÒÔÓθÁÓ‚‡ÌËÂÏ Á‚ÛÍÓ‚ (‚Íβ˜‡fl ˜ÂÎӂ˜ÂÒÍÛ˛ ˜¸) – χÍÒËχθÌÓ ‡ÒÒÚÓflÌËÂ, ̇ ÍÓÚÓÓÏ ÔËÌËχ˛˘ËÈ ÏÓÊÂÚ ÛÒÎ˚¯‡Ú¸ Ò˄̇Î; ÊË‚ÓÚÌ˚ ÏÓ„ÛÚ ÏÂÌflÚ¸ ‡ÏÔÎËÚÛ‰Û Ò˄̇· ‚ Á‡‚ËÒËÏÓÒÚË ÓÚ Û‰‡ÎÂÌËfl ÔËÌËχ˛˘Â„Ó ‰Îfl Ó·ÂÒÔ˜ÂÌËfl Ô‰‡˜Ë Ò˄̇· ê‡ÒÒÚÓflÌË ‰Ó ·Â„‡ – ‡ÒÒÚÓflÌË ‰Ó ÔÓ·ÂÂʸfl, ËÒÔÓθÁÛÂÏÓÂ, ̇ÔËÏÂ, ‰Îfl ËÁÛ˜ÂÌËfl ÒÓÒ‰ÓÚÓ˜ÂÌËÈ ÏÂÒÚ ‚˚·‡Ò˚‚‡ÌËfl ÍËÚÓ‚ ̇ ÏÂθ ËÁ-Á‡ ËÒ͇ÊÂÌÌÓÈ ˝ıÓÎÓ͇ˆËË, ‡ÌÓχÎËÈ Ï‡„ÌËÚÌÓ„Ó ÔÓÎfl Ë Ú.Ô. ÑËÒڇ̈ËÓÌÌ˚È ÙÂÓÏÓÌ – ‡ÒÚ‚ÓËÏÓ (̇ÔËÏÂ, ‚ ÏÓ˜Â) Ë/ËÎË ËÒÔ‡flÂÏÓ ‚¢ÂÒÚ‚Ó, ËÒÔÛÒ͇ÂÏÓ ÊË‚ÓÚÌ˚Ï ‚ ͇˜ÂÒÚ‚Â ÓθهÍÚÓÌÓ„Ó ıËÏ˘ÂÒÍÓ„Ó ‡Á‰‡ÊËÚÂÎfl (ÏÂÚÍË) ‰Îfl ÔÓ‰‡˜Ë Ò˄̇ÎÓ‚ (Ú‚ӄË, ÒÂÍÒۇθÌ˚ı ̇ÏÂÂÌËÈ, ÔËχÌÍË ÊÂÚ‚˚, ÛÁ̇‚‡ÌËfl Ë Ú.Ô.) ‰Û„ËÏ ÓÒÓ·flÏ ˝ÚÓ„Ó Ê ‚ˉ‡. Ç ÓÚ΢ˠÓÚ ÌÂ„Ó ÍÓÌÚ‡ÍÚÌ˚È ÙÂÓÏÓÌ fl‚ÎflÂÚÒfl ‚¢ÂÒÚ‚ÓÏ Ì‡ÒÚ‚ÓËÏ˚Ï Ë ÌÂËÒÔ‡fl˛˘ËÏÒfl; ÓÌ ÔÓÍ˚‚‡ÂÚ ÚÂÎÓ ÊË‚ÓÚÌÓ„Ó Ë fl‚ÎflÂÚÒfl ÍÓÌÚ‡ÍÚÌÓÈ ÏÂÚÍÓÈ. ê‡ÒÒÚÓflÌË ̇ ÎÓ¯‡‰ËÌ˚ı Ò͇˜Í‡ı ç‡ ÎÓ¯‡‰ËÌ˚ı Ò͇˜Í‡ı ÍÓÔÛÒ fl‚ÎflÂÚÒfl ÛÒÎÓ‚ÌÓÈ Â‰ËÌˈÂÈ ‰ÎËÌ˚ ‰Îfl Ó·ÓÁ̇˜ÂÌËfl ‡ÒÒÚÓflÌËfl ÏÂÊ‰Û ÒÓÔÂÌË͇ÏË (̇ ÎÓ‰Ó˜Ì˚ı „ÓÌ͇ı ÏÂÓÈ ‰ÎËÌ˚ fl‚ÎflÂÚÒfl ÍÓÔÛÒ ÎÓ‰ÍË).
424
ó‡ÒÚ¸ VII. ê‡ÒÒÚÓflÌËfl ‚ ‡θÌÓÏ ÏËÂ
ê‡ÒÒÚÓflÌËfl ̇ Ò͇˜Í‡ı ËÁÏÂfl˛ÚÒfl ‚ ‰ÎË̇ı ÍÓÔÛÒ‡ ÎÓ¯‡‰Ë, Ú.Â. ÓÍÓÎÓ 8 ÙÛÚÓ‚ (2,44 Ï). èÂËÏÛ˘ÂÒÚ‚Ó Ì‡ ÙËÌ˯ ËÁÏÂflÂÚÒfl ‚ ÍÓÔÛÒ‡ı, ̇˜Ë̇fl ÓÚ ÔÓÎÓ‚ËÌ˚ ÍÓÔÛÒ‡ ‰Ó 20 ÍÓÔÛÒÓ‚; ÍÓÔÛÒ Ó·˚˜ÌÓ Ôˇ‚ÌË‚‡˛Ú Í ‚ÂÏÂÌÌÓÏÛ ËÌÚ‚‡ÎÛ ‚ 0,2 Ò. ÅÓΠÏÂÎÍËÏË ‰ÎË̇ÏË fl‚Îfl˛ÚÒfl ÍÓÓÚ͇fl „ÓÎÓ‚‡, „ÓÎÓ‚‡ ËÎË ¯  fl. èËÏÂÌflÂÚÒfl Ú‡Íʠχ Û͇, Ú.Â. 4 ‰˛Èχ (10,2 ÒÏ), ÍÓÚÓÛ˛ ËÒÔÓθÁÛ˛Ú ‰Îfl ËÁÏÂÂÌËfl ‚˚ÒÓÚ˚ ÎÓ¯‡‰ÂÈ. ÑËÒڇ̈ËË ‚ ÚˇÚÎÓÌ ëÓ‚ÌÓ‚‡ÌËfl ̇ ÊÂÎÂÁÌÛ˛ ‰ËÒÚ‡ÌˆË˛ (‚Ô‚˚ Ôӂ‰ÂÌ˚ ̇ ɇ‚‡Èflı ‚ 1978 „.) ‚Íβ˜‡˛Ú 3,86 ÍÏ Ô·‚‡ÌËfl ÔÓ ÓÚÍ˚ÚÓÈ ‚Ó‰Â, 180 ÍÏ ‚ÂÎÓ„ÓÌÍË Ë 42,2 ÍÏ ·Â„‡ (χ‡ÙÓÌÒ͇fl ‰ËÒڇ̈Ëfl). åÂʉÛ̇Ӊ̇fl ÓÎËÏÔËÈÒ͇fl ‰ËÒڇ̈Ëfl (Ô‚˚ ÒÓ‚ÌÓ‚‡ÌËfl ÒÓÒÚÓflÎËÒ¸ ̇ éÎËÏÔËÈÒÍËı à„‡ı ‚ ëˉÌ ‚ 2000 „.) ‚Íβ˜‡ÂÚ 1,5 ÍÏ Ô·‚‡ÌËfl (ÏÂÚ˘ÂÒ͇fl ÏËÎfl), 40 ÍÏ ‚ÂÎÓ„ÓÌÍË Ë 10 ÍÏ ·Â„‡. ëÛ˘ÂÒÚ‚ÛÂÚ Ú‡ÍÊ ÒÔËÌÚÂÒ͇fl ‰ËÒڇ̈Ëfl (750 Ï Ô·‚‡ÌËfl, 20 ÍÏ ‚ÂÎÓ„ÓÌÍË Ë 5 ÍÏ ·Â„‡) Ë ‰ÎËÌ̇fl ‰ËÒڇ̈Ëfl (3 ÍÏ Ô·‚‡ÌËfl, 80 ÍÏ ‚ÂÎÓ„ÓÌÍË Ë 20 ÍÏ ·Â„‡). ê‡ÒÒÚÓflÌË ¯‡·‡Ú‡ ê‡ÒÒÚÓflÌËÂÏ ¯‡·‡Ú‡ (ËÎË ‡‚‚ËÌÒÍÓÈ ÏËÎÂÈ) ̇Á˚‚‡ÂÚÒfl ‰‡Î¸ÌÓÒÚ¸ ‚ 2000 Ú‡ÎÏۉ˘ÂÒÍËı ÍÛ·ËÚÓ‚ (1120,4 Ï), ‡Á¯ÂÌÌÓ ‡ÒÒÚÓflÌËÂ, Á‡ Ô‰ÂÎ˚ ÍÓÚÓÓ„Ó ‚ÂÛ˛˘ÂÏÛ Â‚Â˛ Á‡Ô¢‡ÂÚÒfl ‚˚ıÓ‰ËÚ¸ ‚ ‰Â̸ ¯‡·‡Ú‡. ÑÛ„ËÏË Ú‡ÎÏۉ˘ÂÒÍËÏË Ï‡ÏË ‰ÎËÌ˚ fl‚Îfl˛ÚÒfl: ÒÛÚÓ˜Ì˚È ÔÂÂıÓ‰, Ô‡Ò‡ Ë ÒÚ‡‰Ëfl (40, 4 Ë 0,8 ‡‚‚ËÌÒÍÓÈ ÏËÎË ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ), ‡ Ú‡ÍÊ Ôfl‰¸, ı‡ÒËÚ, ·‰Ó̸, 1 1 1 1 1 1 ·Óθ¯ÓÈ Ô‡Îˆ, Ò‰ÌËÈ Ô‡Îˆ, ÏËÁË̈ ( , , , , , ÓÚ Ú‡ÎÏۉ˘ÂÒÍÓ„Ó 2 3 6 24 30 36 ÍÛ·ËÚ‡ ÒÓÓÚ‚ÚÂÒÚ‚ÂÌÌÓ). ɇ·ÍÚÓˆÂÌÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ɇ·ÍÚÓˆÂÌÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË Á‚ÂÁ‰˚ –  ۉ‡ÎÂÌÌÓÒÚ¸ ÓÚ „‡Î‡ÍÚ˘ÂÒÍÓ„Ó ˆÂÌÚ‡. ɇ·ÍÚÓˆÂÌÚ˘ÂÒÍÓ ‡ÒÒÚÓflÌË ëÓÎ̈‡ ÒÓÒÚ‡‚ÎflÂÚ ÓÍÓÎÓ 8,5 ÍÔÍ, Ú.Â. 27 700 Ò‚. ÎÂÚ. äÓÒÏ˘ÂÒÍËÈ Ò‚ÂÚÓ‚ÓÈ „ÓËÁÓÌÚ äÓÒÏ˘ÂÒÍËÈ Ò‚ÂÚÓ‚ÓÈ „ÓËÁÓÌÚ (ËÎË ‡ÒÒÚÓflÌË ·Î‡, ‚ÓÁ‡ÒÚ ‚ÒÂÎÂÌÌÓÈ) ÂÒÚ¸ ÔÓÒÚÓflÌÌÓ Û‚Â΢˂‡˛˘ÂÂÒfl ‡ÒÒÚÓflÌË ‰‡Î¸ÌÓÒÚË: χÍÒËχθÌÓ ‡ÒÒÚÓflÌËÂ, ÍÓÚÓÓ ҂ÂÚ ÔÓ¯ÂÎ Ò ÏÓÏÂÌÚ‡ ÅÓθ¯Ó„Ó ‚Á˚‚‡, ̇˜‡Î‡ ÒÛ˘ÂÒÚ‚Ó‚‡ÌËfl 60 ‚ÒÂÎÂÌÌÓÈ. Ç Ì‡ÒÚÓfl˘Â ‚ÂÏfl ÓÌ ÒÓÒÚ‡‚ÎflÂÚ 13–14 Ò‚. ÎÂÚ, Ú.Â. ÓÍÓÎÓ 46 × 10 ‰ÎËÌ è·Ì͇.
ãËÚ‡ÚÛ‡
[Abel91] Abels H. The Gallery Distance of Flags, Order, Vol. 8, pp. 77–92, 1991. [AAH00] Aichholzer O., Aurenhammer F. and Hurtado F. Edge Operations on Non-crossing Spanning Trees, Proc. 16-th European Workshop on Computational Geometry CG'2000, pp. 121–125, 2000. [AACL98] Aichholzer O., Aurenhammer F., Chen D.Z., Lee D.T., Mukhopadhyay A. and Papadopoulou E. Voronoi Diagrams for Direction-sensitive Distances, Proc. 13-th Symposium on Computational Geometry, ACM Press, New York, 1997. [Aker97] Akerlof G.A. Social Distance and Social Decisions, Econometrica, Vol. 65, Nr. 5, pp. 1005–1027, 1997. [Amar85] Amari S. Differential-geometrical Methods in Statistics, Lecture Notes in Statistics, Springer-Verlag, 1985. [Amba76] Ambartzumian R. A Note on Pseudo-metrics on the Plane, Z. Wahrsch. Verw. Gebiete, Vol. 37, pp. 145–155, 1976. [ArWe92] Arnold R. and Wellerding A. On the Sobolev Distance of Convex Bodies, Aeq. Mathematicae, Vol. 44, pp. 72–83, 1992. p [Badd92] Baddeley A.J. Errors in Binary Images and an L Version of the Hausdorff Metric, Nieuw Archief voor Wiskunde, Vol. 10, pp. 157–183, 1992. [Bara01] Barabasi A.L. The Physics of the Web, Physics World, July 2001. [Barb35] Barbilian D. Einordnung von Lobayschewskys Massenbestimmung in either Gewissen Allgemeinen Metrik der Jordansche Bereiche, Casopis Mathematiky a Fysiky, Vol. 64, pp. 182–183, 1935. [BLV05] Barcelo C., Liberati S. and Visser M. Analogue Gravity, arXiv: gr-qc/0505065, Vol. 2, 2005. [BLMN05] Bartal Y., Linial N., Mendel M. and Naor A. Some Low Distorsion Metric Ramsey Problems, Discrete and Computational Geometry, Vol. 33, pp. 27–41, 2005. [Bata95] Batagelj V. Norms and Distances over Finite Groups, J. of Combinatorics, Information and System Sci., Vol. 20, pp. 243–252, 1995. [Beer99] Beer G. On Metric Boundeness Structures, Set-Valued Analysis, Vol. 7, pp. 195–208, 1999. [BGLVZ98] Bennet C.H., Gacs P., Li M., Vitanai P.M.B. and Zurek W. Information Distance, IEEE Transactions on Information Theory, Vol. 44, Nr. 4, pp. 1407–1423, 1998. [BGT93] Berrou C., Glavieux A. and Thitimajshima P. Near Shannon Limit Error-correcting Coding and Decoding: Turbo-codes, Proc. of IEEE Int. Conf. on Communication, pp. 1064–1070, 1993. [BFK99] Blanchard F., Formenti E. and Kurka P. Cellular Automata in the Cantor, Besicovitch and Weyl Topological Spaces, Complex Systems, Vol. 11, pp. 107–123, 1999. [Bloc99] Bloch I. On fuzzy distances and their use in image processing under unprecision, Pattern Recognition, Vol. 32 pp. 1873–1895, 1999. [BCFS97] Block H.W., Chhetry D., Fang Z. and Sampson A.R. Metrics on Permutations Useful for Positive Dependence, J. of Statistical Planning and Inference, Vol. 62, pp. 219–234, 1997. [Blum70] Blumenthal L.M. Theory and Applications of Distance Geometry, Chelsea Publ., New York, 1970. [Borg86] Borgefors G. Distance Transformations in Digital Images, Comp. Vision, Graphic and Image Processing, Vol. 34, pp. 344–371, 1986.
426
ãËÚ‡ÚÛ‡
[BrLi04] Bramble D.M. and Lieberman D.E. Endurance Running and the Evolution of Homo, Nature, Vol. 432, pp. 345–352, 2004. [BKMR00] Broder A.Z., Kumar S.R., Maaghoul F., Raghavan P., Rajagopalan S., Stata R., Tomkins A. and Wiener G. Graph Structure in the Web: Experiments and Models, Proc. 9-th WWW Conf., Amsterdam, 2000. [BGL95] Brualdi R.A., Graves J.S. and Lawrence K.M. Codes with a Poset Metric, Discrete Math., Vol. 147, pp. 57–72, 1995. [Brya85] Bryant V. Metric Spaces: Iteration and Application, Cambridge Univ. Press, 1985. [Bull12] Bullough E. "Psychical Distance" as a Factor in Art and as an Aestetic Principle, British J. of Psychology, Vol. 5, pp. 87–117, 1912. [BuIv01] Burago D., Burago Y. and Ivanov S. A Course in Metric Geometry, Amer. Math. Soc., Graduate Studies in Math., Vol. 33, 2001. [BuKe53] Busemann H. and Kelly P.J. Projective Geometry and Projective Metrics, Academic Press, New York, 1953. [Buse55] Busemann H. The Geometry of Geodesics, Academic Press, New York, 1955. [BuPh87] Busemann H. and Phadke B.B. Spaces with Distinguished Geodesics, Marcel Dekker, New York, 1987. [Cair01] Cairncross F. The Death of Distance 2.0: How the Communication Revolution will Change our Lives, Harvard Business School Press, 2-nd edition, 2001. [CSY01] Calude C.S., Salomaa K. and Yu S. Metric Lexical Analysis, Springer-Verlag, 2001. [CJT93] Chartrand G., Johns G.L. and Tian S. Detour Distance in Graphs, Ann. of Discrete Math., Vol. 55, pp. 127–136, 1993. [ChLu85] Cheng Y.C. and Lu S.Y. Waveform Correlation by Tree Matching, IEEE Trans. Pattern Anal. Machine Intell., Vol. 7, pp. 299–305, 1985. [Chen72] Chentsov N.N. Statistical Decision Rules and Optimal Inferences, Nauka, Moscow, 1972. [ChFi98] Chepoi V. and Fichet B. A Note on Circular Decomposable Metrics, Geom. Dedicata, Vol. 69, pp. 237–240, 1998. [ChSe00] Choi S.W. and Seidel H.-P. Hyperbolic Hausdorff Distance for Medial Axis Transform, Research Report MPI-I-2000-4-003 of Max-Planck-Institute fur Infor-matik, 2000. [COR05] Collado M.D., Ortuno-Ortin I. and Romeu A. Vertical Transmission of Consumption Behavior and the Distribution of Surnames, http://www.econ.upf.es/docs/ seminars/collado.pdf [Cops68] Copson E.T. Metric Spaces, Cambridge Univ. Press, 1968. [Corm03] Cormode G. Sequence Distance Embedding, PhD Thesis, Univ. of Warwick, 2003. [CPQ96] Critchlow D.E., Pearl D.K. and Qian ë The Triples Distance for Rooted Bifurcating Phylogenetic Trees, Syst. Biology, Vol. 45, pp. 323–334, 1996. [CCL01] Croft W.B., Cronon-Townsend S. and Lavrenko V. Relevance Feedback and Personalization: A Language Modeling Perspective, in DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries, pp. 49–54, 2001. [DaCh88] Das P.P. and Chatterji B.N. Knight's Distance in Digital Geometry, Pattern Recognition Letters, Vol. 7, pp. 215–226, 1988. [Das90] Das P.P. Lattice of Octagonal Distances in Digital Geometry, Pattern Recognition Letters, Vol. 11, pp. 663–667, 1990. [DaMu90] Das P.P. and Mukherjee J. Metricity of Super-knight's Distance in Digital Geometry, Pattern Recognition Letters, Vol. 11, pp. 601–604, 1990. [Dau05] Dauphas N. The U/Th Production Ratio and the Age of the Milky Way from Meteorites and Galactic Halo Stars, Nature, Vol. 435, pp. 1203–1205, 2005. [Day81] Day W.H.E. The Complexity of Computing Metric Distances between Partitions, Math. Social Sci., Vol. 1, pp. 269–287, 1981. [DeDu03] Deza M.M. and Dutour M. Cones of Metrics, Hemi-metrics and Super-metrics, Ann. of European Academy of Sci., pp. 141–162, 2003. [DeHu98] Deza M. and Huang T. Metrics on Permutations, a Survey, J. of Combinatorics, Information and System Sci., Vol. 23, Nrs. 1–4, pp. 173–185, 1998. [DeLa97] Deza M.M. and Laurent M. Geometry of Cuts and Metrics, Springer-Verlag, 1997. [Dzha01] Dzhafarov E.N. Multidimensional Fechnerian Scaling: Probability-Distance Hypothesis, J. of Math. Psychology, Vol. 46, pp. 352–374, 2001.
ãËÚ‡ÚÛ‡
427
[EhHa88] Ehrenfeucht A. and Haussler D. A New Distance Metric on Strings Computable in Linear Time, Discrete Applied Math., Vol. 20, pp. 191–203, 1988. [EM98] Encyclopedia of Mathematics, Hazewinkel M. (ed.), Kluwer Academic Publ., 1998. Online edition: http://eom.springer.de/default.htm [Ernv85] Ernvall S. On the Modular Distance, IEEE Trans. Inf. Theory, Vol. IT-31, Nr. 4, pp. 521– 522, 1985. [EMM85] Estabrook G.F., McMorris F.R. and Meacham C.A. Comparison of Undirected Phylogenetic Trees Based on Subtrees of Four Evolutionary Units, Syst. Zool, Vol. 34, pp. 193–200, 1985. [FaMu03] Farran J.N. and Munuera C. Goppa-like Bounds for the Generalized Feng-Rao Distances, Discrete Applied Math., Vol. 128, pp. 145–156, 2003. [Faze99] Fazekas A. Lattice of Distances Based on 3D-neighborhood Sequences, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, Vol. 15, pp. 55–60, 1999. [Ferg03] Ferguson N. Empire: The Rise and Demise of the British World Order and Lessons for Global Power, Basic Books, 2003. [FoSC06] Foertsch T. and Schroeder V. Hyperbolicity, C AT (–1)-spaces and the Ptolemy Inequality, arXiv:math.MG/0605418 v2 13 July 2006. [Frie98] Frieden B.R. Physics from Fisher information, Cambrige Univ. Press, 1998. [Gabi85] Gabidulin E.M. Theory of Codes with Maximum Rank Distance, Probl. Peredachi Inform., Vol. 21, Nr. 1, pp. 1–12, 1985. [GaSi98] Gabidulin E.M. and Simonis J. Metrics Generated by Families of Subspaces, IEEE Transactions on Information Theory, Vol. 44, Nr. 3, pp. 1136–1141, 1998. [GiOn96] Gilbert E.G. and Ong C.J. Growth distances: New Measures for Object Separation and Penetration, IEEE Transactions in Robotics, Vol. 12, Nr. 6, 1996. [Gile87] Giles J.R. Introduction to the Analysis of Metric Spaces, Australian Math. Soc. Lecture Series, Cambridge Univ. Press, 1987. [GoMc80] Godsil C.D. and McKay B.D. The Dimension of a Graph, Quart. J. Math. Oxford Series (2), Vol. 31, Nr. 124, pp. 423–427, 1980. [GOJKK02] Goh K.I., Oh E.S., Jeong H., Kahng B. and Kim D. Classification of Scale Free Networks, Proc. Nat. Acad. Sci. USA, Vol. 99, pp. 12583–12588, 2002. [Gopp71] Goppa V.D. Rational Representation of Codes and (L,g)-codes, Probl. Peredachi Inform., Vol. 7, Nr. 3, pp. 41–49, 1971. [Goto82] Gotoh O. An Improved Algorithm for Matching Biological Sequences, J. of Molecular Biology, Vol. 162, pp. 705–708, 1982. [GKC04] Grabowski R., Khosa P. and Choset H. Development and Deployment of a Line of Sight Virtual Sensor for Heterogeneous Teams, Proc. IEEE Int. Conf. on Robotics and Automation, New Orlean, 2004. [Grub93] Gruber P.M. The space of Convex Bodies in Handbook of Convex Geometry, Gruber P.M. and Wills J.M. (eds.), Elsevier Sci. Publ., 1993. [HSEFN95] Hafner J., Sawhney H.S., Equitz W., Flickner M. and Niblack W. Efficient Color Histogram Indexing for Quadratic Form Distance Functions, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, Nr. 7, pp. 729–736, 1995. [Hall69] Hall E.T. The Hidden Dimension, Anchor Books, New York, 1969. [Hami66] Hamilton W.R. Elements of Quaternions, 2-nd edition 1899–1901 enlarged by C.J. Joly, reprinted by Chelsea Publ., New York, 1969. [HeMa02] Head K. and Mayer T. Illusory Border Effects: Distance mismeasurement inflates estimates of home bias in trade, ëÖêè Working Paper No 2002-01, 2002. [Hemm02] Hemmerling A. Effective Metric Spaces and Representations of the Reals, Theoretical Comp. Sci., Vol. 284, Nr. 2, pp. 347–372, 2002. [Hofs80] Hofstede G. Culture's Consequences: International Differences in Work-related Values, Sage Publ., California, 1980. [Hube94] Huber K. Codes over Gaussian Integers, IEEE Trans. Inf. Theory, Vol. 40, Nr. 1, pp. 207–216, 1994. [Hube93] Huber K. Codes over Eisenstein-Jacobi Integers, Contemporary Math., Vol. 168, pp. 165–179, 1994.
428
ãËÚ‡ÚÛ‡
[HFPMC02] Huffaker B., Fomenkov M., Plummer D.J., Moore D. and Claffy K. Distance Metrics in the Internet, IEEE Int. Telecommunication Symposium (ITS-2002), September 2002, http://www.caida.org/outreach/papers/2002/Distance [InVe00] Indyk P. and Venkatasubramanian S. Approximate Congruence in Nearly Linear Time, http://www.research.att.com/~suresh/papers/hallj/hallj.pdf [Isbe64] Isbell J. Six Theorems about Metric Spaces, Comment. Math. Helv., Vol. 39, pp. 65–74, 1964. [IsKuPe90] Isham C.J., Kubyshin Y. and Penteln P. Quantum Norm Teory and the Quantization of Metric Topology, Class. Quantum Gravity, Vol. 7, pp. 1053–1074, 1990. [IvSt95] Ivanova R. and Stanilov G. A Skew-symmetric Curvature Operator in Rieman-nian Geometry, in Symposia Gaussiana, Conf. A, Behara M., Fritsch R. and Lintz R. (eds.), pp. 391–395, 1995. [JWZ94] Jiang T., Wang L. and Zhang K. Alignment of Trees – an Alternative to Tree Edit, in Combinatorial Pattern Matching, Lecture Notes in Computer Science, Vol. 807, Crochemore M. and Gusfield D. (eds.), Springer-Verlag, 1994. [Klei88] Klein R. Voronoi Diagrams in the Moscow Metric, Graph Theoretic Concepts in Comp. Sci., Vol. 6, 1988. [Klei89] Klein R. Concrete and Abstract Voronoi Diagrams, Lecture Notes in Comp. Sci., Springer-Verlag, 1989. [KlRa93] Klein D.J. and Randic M. Resistance distance, J. of Math. Chemistry, Vol. 12, pp. 81–95, 1993. [Koel00] Koella J.C. The Spatial Spread of Altruism Versus the Evolutionary Response of Egoists, Proc. Royal Soc. London, Series B, Vol. 267, pp. 1979–1985, 2000. [KoSi88] Kogut B. and Singh H. The Effect of National Culture on the Choice of Entry Mode, J. of Int. Business Studies, Vol. 19, Nr. 3, pp. 411–432, 1988. [KKN02] Kosheleva O., Kreinovich V. and Nguyen H.T. On the Optimal Choice of Quality Metric in Image Compression, Fifth IEEE Southwest Symposium on Image Analysis and Interpretation, 7– 9 April 2002, Santa Fe. IEEE Comp. Soc. Digital Library, Electronic Edition, pp. 116–120, 2002. [LaLi81] Larson R.C. and Li V.O.K. Finding Minimum Rectilinear Distance Paths in the Presence of Bariers, Networks, Vol. 11, pp. 285–304, 1981. [LCLM04] Li M., Chen X., Li X., Ma B. and Vitanyi P. The Similarity Metric, IEEE Trans. Inf. Theory, Vol. 50–12, pp. 3250–3264, 2004. [LuRo76] Luczak E. and Rosenfeld A. Distance on a Hexagonal Grid, IEEE Trans. on Computers, Vol. 25, Nr. 5, pp. 532–533, 1976. [MaMo95] Mak King-Tim and Morton A.J. Distances between Traveling Salesman Tours, Discrete Applied Math., Vol. 58, pp. 281–291, 1995. [MaSt99] Martin W.J. and Stinson D.R. Association Schemes for Ordered Orthogonal Arrays and (T, M, S)-nets, Canad. J. Math., Vol. 51, pp. 326–346, 1999. [McCa97] McCanna J.E. Multiply-sure Distances in Graphs, Congressus Numerantium, Vol. 97, pp. 71–81, 1997. [Melt91] Melter R.A. A Survey of Digital Metrics, Contemporary Math., Vol. 119, 1991. [Monj98] Monjardet B. On the Comparaison of the Spearman and Kendall Metrics between Linear Orders, Discrete Math., Vol. 192, pp. 281–292, 1998. [Mura85] Murakami H. Some Metrics on Classical Knots, Math. Ann., Vol. 270, pp. 35–45, 1985. [NeWu70] Needleman S.B. and Wunsh S.D. A general Method Applicable to the Search of the Similarities in the Amino Acids Sequences of Two Proteins, J. of Molecular Biology, Vol. 48, pp. 443–453, 1970. [NiSu03] Nishida T. and Sugihara K. FEM-like Fast Marching Method for the Computation of the Boat-Sail Distance and the Associated Voronoi Diagram, http://www. keisu.t.u-tokyo.ac.jp/Research/ METR/2003/METR03–45.pdf [OBS92] Okabe A., Boots B. and Sugihara K. Spatial Tesselation: Concepts and Applications of Voronoi Diagrams, Wiley, 1992. [OSLM04] Oliva D., Samengo I., Leutgeb S. and Mizumori S. A Subgective Distance between Stimuli: Quantifying the Metric Structure of Represantations, Neural Computation, Vol.17, Nr. 4, pp. 969–990, 2005.
ãËÚ‡ÚÛ‡
429
[Orli32] Orlicz W. Uber eine Gewisse Klasse von Raumen vom Typus B', Bull. Int. Acad. Pol. Series A, Vol. 8–9, pp. 207–220, 1932. [OASM03] Ozer H., Avcibas I., Sankur B. and Memon N.D. Steganalysis of Audio Based on Audio Quality Metrics, Security and Watermarking of Multimedia Contents V (Proc. of SPIEIS and T), Vol. 5020, pp. 55–66, 2003. [Page65] Page E.S. On Monte-Carlo Methods in Congestion Problem. 1. Searching for an Optimum in Discrete Situations, J. Oper. Res., Vol. 13, Nr. 2, pp. 291–299, 1965. [Petz96] Petz D. Monotone Metrics on Matrix Spaces, Linear Algebra Appl., Vol. 244, 1996. [PM] PlanetMath.org, http://planetmath.org/encyclopedia/ [Rach91] Rachev S.T. Probability Metrics and the Stability of Stochastic Models, Wiley, New York, 1991. [ReRo01] Requardt M. and Roy S. (Quantum) Spacetime as a Statistical Geometry of Fuzzy Lumps and the Connection with Random Metric Spaces, Class. Quantum Gravity, Vol. 18, pp. 3039–3057, 2001. [RoTs96] Rosenbloom M.Y. and Tsfasman M.A. Codes for the m-metric, Problems of information transmission, Vol. 33, Nr. 1, pp. 45–52, 1997. [RoPf68] Rosenfeld A. and Pfaltz J. Distance Functions on Digital Pictures, Pattern Recognation, Vol. 1, pp. 33–61, 1968. [RTG00] Rubner Y., Tomasi C. and Guibas L.J. The Earth Mover's Distance as a Metric for Image Retrieval, Int. J. of Comp. Vision, Vol. 40, Nr. 2, pp. 99–121, 2000. [Rumm76] Rummel R.J. Understanding Conflict and War, Sage Publ., California, 1976. [ScSk83] Schweizer B. and Sklar A. Probabilistic Metric Spaces, North-Holland, 1983. [Selk77] Selkow S.M. The Tree-to-tree Editing Problem, Inform. Process. Lett., Vol. 6, Nr. 6, pp. 184–186, 1977. [ShKa97] Sharma B.D. and Kaushik M.L. Error-correcting Codes through a New Metric, 41-st Annual Conf. Int. Stat. Inst., New Delhi, 1997. [Tai79] Tai K.-C. The Tree-to-tree Correction Problem, J. of the Association for Comp. Machinery, Vol. 26, pp. 422–433, 1979. [Tail04] Tailor B. Introduction: How Far, How Near: Distance and Proximity in the Historical Imagination, History Workshop J., Vol. 57, pp. 117–122, 2004. [Tymo06] Tymoczko D. The Geometry of Musical Chords, Science, Vol. 313, Nr. 5783, pp.72–74, 2006. [ToSa73] Tomimatsu A. and Sato H. New Exact Solution for the Gravitational Field of a Spinning Mass, Phys. Rev. Letters, Vol. 29, pp. 1344–1345, 1972. [Var04] Vardi Y. Metrics Useful in Network Tomography Studies, Signal Processing Letters, Vol. 11, Nr. 3, pp. 353–355, 2004. [VeHa01] Veltkamp R.C. and Hagendoorn M. State-of-the-Art in Shape Matching, in Principles of Visual Information Retrieval, Lew M. (ed.), pp. 87–119, Springer-Verlag, 2001. [Watt99] Watts D.J. Small Worlds: The Dynamics of Networks between Order and Randomness, Princeton Univ. Press, 1999. [Wein72] Weinberg S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York, 1972. [Weis99] Weisstein E.W. CRC Concise Encyclopedia of Mathematics, CRC Press, 1999. [Well86] Wellens R.A. Use of a Psychological Model to Assess Differences in Telecommunication Media, in Teleconferencing and Electronic Communication, Parker L.A. and Olgren O.H. (eds.), pp. 347–361, Univ. of Wisconsin Extension, 1986. [WFE] Wikipedia, the Free Encyclopedia, http://en.wikipedia.org [WiMa97] Wilson D.R. and Martinez T.R. Improved Heterogeneous Distance Functions, J. of Artificial Intelligence Research, Vol. 6, p. 134, 1997. [WoPi99] Wolf S. and Pinson M.H. Spatial-Temporal Distortion Metrics for In-Service Quality Monitoring of Any Digital Video System, Proc. of SPIE Int. Symp. on Voice, Video, and Data Commun., September 1999. [Yian91] Yianilos P.N. Normalized Forms for Two Common Metrics, NEC Research Institute, Report 91-082-9027-1, 1991.
430
ãËÚ‡ÚÛ‡
[Youn98] Young N. Some Function-Theoretic Issues in Feedback Stabilisation, Holomor-phic Spaces, MSRI Publication, Vol. 33, 1998. [YOI03] Yutaka M., Ohsawa Y. and Ishizuka M. Average-Clicks: A New Measure of Distance on the World Wide Web, Journal of Intelligent Information Systems, Vol. 20, No. 1, pp. 51–62, 2003. [Zeli75] Zelinka B. On a Certain Distance between Isomorphism Classes of Graphs, Ca-sopus. Pest. Mat., Vol. 100, pp. 371–373, 1975.