!
"#$%&'%( )*)+), - '""'."/ 01 2 & &" ."&3 '""& &44' 015'"'." & .&63 4'"$% 4' 015' & 0" 0 '" 01
$$% - ,))7
,8
+ 0'&&" 94"&" &"3'&&3 6 $%& :&'5 & $" *7 "4"&" *7 ";& ννγγ *<
"3'&&/ "''% 0'&&: :1 ,< ="$"&" 0'& & 4 0'& $%& :&'& 5 $" 7> "4"&" &"' ="$"&/ 0'& γ → γγ
$'4 #" γ → γγ $%& :&'& $" "/'&'% ="$"&/ 0'& @94"&/ 646
7> +, +< +? A+
B'&" 0'& "1$%''" 94"&/ C$"'&51'&5 &3 6 $%& :&'& $" A< "4"&" A< B'&" C$"':&'&3 $&6 $%& :&'& $" D) E'&5&"3'&&6" #"6 ν → νγ νγ → ν $%& 1:&."&&3 $1" D?
78
"4"&" D? 6.$"&" $'46 <)
6.$"&" "/'&' #" >D
>?
?)
?,
?7
?A
?>
+8
&'/="" "/ 4& 1 &@$"" &'"&& 1F=/ 14"$ 01 /$/"'/ 01 5 '&'"$%& &"4& 1&;/ &.&/ 4#$&G $"9=/ & """."& 01 C$"5 "&'&6 .'#G '01 $: H*-7I &&6 @J5 "' $"4&/ 01 /$/F'/ &&// "$"&&/ '01."" @J"'6G '6 "$1F'/ C'"$%&6" 015 ."" $/ $/ &&/ #"G '6" 4/' ' @J"' 4&3 '&6 '"@"'/ $"."&" '" C$""&'&6 .'# 4:3 '&6G C$""&'&6" .'#6 5 0'&6G &"3'& ."" $. /$/F'/ &'/="" "/ &&6 '.& &0# &@$"" :&41&6 /$"&/ "$"&&3 " C' 4"' &&" ''% &&FF "$"&&F &:" '01."" @J"'6 ::&'" "'"'"&&6" $@' 01 C$""&'5 &6 .'#G &&: "4/=" 19&'/ &1"&6" '"$ "&& 1 '01." &@$F4"&3 &'/="" "/ $.F' &@$"" $%&6" :&."&/ & 3' 1"'&6G ' :'"'." .'# & "'6 14"3'/ 1"'&6 ' &&6 "'4G 1$/F=" $%1'% 1"146 ."'" $@'3 01 .'# 5"6G 1"146 - "'"'"&&6" '.& 0'& &"3'&G 4"'"'"6 & B"$" $% C' .'#6 4/' 1&.'"$%&6" '/&/ 4 ': "&'G & 4F' 4"'"'G "4'$/"' &"&"&&63 &'"" $"4&" C00"' 4" '&"&/G $F./ #$$/# &"3'& $ &50'&&6" #$$/# :&'&6 $/ ; 1"'5 &G .' 94"&" "94 "41&&6 '""'." $."&&6
A8 C""&'$%&6 '" "' &"3'& H+-DI /$/"'/ &@$"" / 1&" & 19&" ="'&" #$$/#3 &"&$"6 &"3'& K' :'"1 @6$ @$"'/=" 4'"94"& C"5 "&'" & '/9"$3 4"G ="'$"&& $&".&3 "3'&&3 @5 "' LMNOP 4@"G &4 H<-?I C""&'" 1"/$% '4"$%& $&63 ' &"3'& " ' ' $ ' '$% C$"'&&6 &"3'& "1$%''6 C': C""&' &4/'/ $5 & :$ ' &16"3 '&4'&3 $&".&3 4"$%F H*)I
@1G 4'"94"&" :'"16 @ #$$/# &"3'& &"5 &"&& /$/"'/ 4& 1 6 1&.'"$%&6 4'9"&3 5 01 1 $"4&"" "/ 5'6G 0'& $ 4'&6 1""&F &"3'& 4' 4 .'# ' 4$"&&6 '.& '9" /$/"'/ C05 0"'&6 "'4 $"4&/ '''" x5 γ 5$."3 ' $&5 # 4"' @$"" ':" L? /4PG ." $@'&6" 1""&/ :&5 ."&" & 4#&&63 4 &"3'& @$"" 9"'" :&."&" - '''" γ 5$."3 ' MN *?>
D8 &3 1$/"' $.'% @$"" 9"'" :&."&/ & &6" 14"35 '/ .'# 1."&" C$""&'&6 #" '01." $/ "5 "' @"&&' 6 '""' @$%; $'&5 '"3 '" ' @J"'G &"@4 ' 9" .'6'% &$." &'"&&: C$"':&'&: $/G '" 9"' :"&"'%/ &' & '"'G .' $%&" C$"':&'&" $" 9"' 5 /$/'% "@/ "4G '/ ="'"&& $/"' & 4"&5 &6" 3' .'#G ' & 14"3'" 4: 4: 5 @$"" $%& C' /$/"'/G :4 "$.& &/9"&&' :&'5 &: $/ '&'/ @$%;" ' &16": '.": 1&."&/ Be = m2e /e 4.41 · 1013 '01." @J"' :' :"&"'%/ :&'&6" $/ '3 &/9"&&'R &"4&": ""& .'$%G .' &@5 $"" $%&6" :&'&6" $/ ="'F' $% - '01." @J"'G '6" #F'/ @6' =F=/ &"3'&&65 1"14 @$%;&' $% &@$F4"'/ "&%;"&" "5 4 ="&/ ""&"G .' @6.& /16"'/ '"/ &"'."5 3 C&": ="&/ 1 ."' :&'4$%&: 1$."&/ :4 4$/ '&4'&6 "' &"3'&&6 1"14G M 1.4M, R 106 G "5 $.& :&'&: $/ & $F "4"$/"'/ $"4F="3 0$3( B = 6.4 × 10
19
P P˙
,
:4" P 5 "4 ="&/ $% "&4 @$F4"&/ 16F'G .' '.&6" &/9"&&' :&'&: $/ @$%;&' $%5 &" "4/' 1012 4& &.$" ?)5 :4 @6$ "4$9"5 ½
c = = 1 e > 0
<8 & '""'."/ 4"$% :"&"# :&'&: $/ &' &"3'&&3 1"146 "$.&3 &/9"&&' $'% 4 1016 H**G *,I "3'&5 &6" 1"146 :&'&6 $" B Be $.$ &1&" S:&'5 6T " $%&" :&'&" $" 9"' :"&"'%/ $"4'" ."&% @6': ="&/ &"3'&&3 1"146 LP ∼ 1 P & 6 &5 & C' "" @1&/ 4"$% S:&'T @6$ $%1& 4$/ @J/&"&/ =&6 6;" :5 "&':"&: 1$."&/G 5 4/= ' ' &16"6 /: '/F=/ :5$" LMUVP *??> :4 "6" @6$ 1""& &" '$% "4 4&: 1 ' @J"'G MUV *>)D5,)G & ' 9" '% 1"&"&/ "4 ""&" H*7I #"& :&'&: $/ MUV *>)D5,) 4$ "$.& B 8 · 1014 K' &@$F4"&" @6$ 4& 1 "6 C""&5 '$%&6 4"'"$%' $%1 :&'&3 4"$ 14&"" @6$ @5 &9"&6 "=" &"$% 4@&6 @J"' H*+G *AI '"' '9"G .' :&' &'/="" "/ '&'/ /4 ' &16"6 &$%&6 "&':"& $% LQWXP =" 4& :"&' $%1 :&'&3 4"$ '$ &"4&"" &@$F4"&" 4"'$ "' MUV *>)D5,)G '/ &'""'"'/ '&&/ #$'&&/ $&/ H*DG *
>8 &: $/ LB ∼ 1018 P & "4"$/"'/ "&' C&": :5 &'&: $/ :'#&&3 C&": /1 &"3'&&3 1"146 Y$"" $%&6" '#&&6" :&'&6" $/ 54 &" :' ="'5 '% &"3'&&6 1"14 ="'"' "=" 4& $ '01." /$"&3G '6G "G 9"' :"&"'%/ "$%&" :&'&" $" &" '&'/ #" 16 "&3 ' ZZ "&6" C': ' /16F' $46 &6 1"14 C' 6; "5 &6 .'F'/ &".&3 '4"3 C$F# 1"14 3 8 − 10 M C'3 '4 &.$" 4' $$G 1'" @ @$. @1&" '' 4" &"3'&&3 1"146 $ ."&3 466 "5 :4&/;&3 4"&% "4$9"& &"$% "&1 16 "&3 4& 1 & /$/"'/ :&''#&&63 "&1 @ @$.5 "&3 4"/ C': "&1 '' 'G .' @ @$. 14'/ :&'&6 $" @6' =F="3/ &"3'&&3 1"15 46 #" 4' 4" '4 "3 1 &G $"4'" :5 4"&' :$6 '"3 ="&/ @$. @1"'/ '4$%&" :&'&" $"G '" $&"3& '"' ""&" $'"$%&'% C'3 '4 1' ' ' ="&/ &"3'&&3 1"146 ' "" &.$%5 &: :&'&: $/ :4 :&'&" $" 4':"' &/9"&&' ∼ 1016 − 1017 G 4' :&''#&&63 16G '63 5 /"' @6"' @$. 1 0.01 − 0.1 H*?G,)I '"'G .' "# .'" &"3'&G 4=" "&' 16 :' ="'"&& 5 $/'% & '% S&'T "' :"&"# '4$%&: :&'&: $/ "=" @$%;"3 &/9"&&'%F H,*I
@1G '01."" @J"'6 4F' & &$%&F 15
?8 9&'% $"4&/ &'6 #" 3' .'# C'"5 $%&6 $/G .'&'G $%&6 &";& C$"':&'&6 $/ 4&G ."'6 C$""&'&6 #" ' $%&6 $/ '"@F' 1'/ &6 "'4 6.$"&3 C'3 /1G ";"& /4 $%&6 14. 14"3' .'# C$"':&'5 &6 $" @$%;" 1&."&" @"$ "'4G ' $/&" &";5 &": $/ .'6"'/ &" "4' '" 1="&3G & &" '.&6 ";"&3 &"&/ &";&" C$"':&'& 5 $" &'3 "$/''3 '" .$ $."G :4 &"&" ";"'/ &$'." 4"G &""$( 14. 49"& C$"'& $& $" L' 44PG 4&4& :&'5 & $"G $" $3 C$"':&'&3 $&6 &"'6 $5 ./ @&# 4&4&6 C$"'.": :&'&: $"3 5 ."' &"'&6 01." /$"&3 "4$:"' $%1&" 45 :&3 '"& E"3&& $"4F= @@="&"( &.$%& &".& '/&/ 1/9"&&63 0"& &4'/ &";&" $" 6"'/ ";"&" &"&/ C' $"G &'"&&" $5 & 1/9"&&6 0"& '"''F' :'G '"&&6 & &" C' ";"&3 &&63 "'4 $"1"& '"G .' ": =%F 9& &$1'% #"6 $/ @$%;3 &/9"&&'G :4 ."' $/&/ $/ '" 1="&3 9" &"19"& $ '35 .' "$%& :&'& $" 9& ''% #"6 $/ &/9"&&'%FG 1&.'"$%& "6;F="3 '5 ."" 1&."&" Be &&63 6;" "'4 1$/ C00"'&6 $"4& /5 4 #"G 4= $%&6 C$"':&'&6 $/ "F=
*) 8 $4&" 1&."&"G 'G β 54 $" &'"&&: $1"&5 : 1$."&/G &'6" C00"'6 94"& $%'"$/''5 1/9"&&6 .'# .""1 &'$$6G 4:" "4 &'6 #"G 3' '6 ="'"&&G &:5 4 $%& "&/F'/ 4 14"3'" $%&: &";&": :5 &'&: $/G @63 &'"" "4'$/F' "'$"6" #"6G :4" &".& &.$%& '/&/ ''F' '$% C$"'." &"3'$%&6" .'#6G '"G &"3'& 0'&6 14"3'" &";5 &": $/ & '" #"6 @$$"&G 5"6G .''"$%&'%F 1/9"&&6 '$%&6 0"& $/&F $/G C' &5 &F $% 14"% :"' C$"'& - .'# $%&6 4"$%&6 1/4 e/me 5'6G $%&" :&'&" $" ="'"&& "&/"' 4"&&6" 3' 0'&G 1&.'G &"' 1"'&G 01 &"3'& :"' "4"$/F=F $% ' '01." '$1G 166 "&6G $/&/ &"35 '&&6 1"14G '9" &&"3 "$"&&3 $"4'" C': @$%;3 &'"" "4'$/"' 1."&" &"3'&&6 14"3'3G .'&5 'G &"3'&5C$"'&&6 &"3'&50'&&6 #" &";&"3 '&3 "4" @$"" &'"&& @94"6 &"3'&50'&&6" #" /$/F'/ 4";&&6" "'$"6" #"6 γ → ν ν¯, ν → νγ #" 40'&&: 94"&" &"3'&5&'&"3'&&3 6 γγ → ν ν¯ 16F' $"4&/ H+,G ++G +AI $%&" :&'&" $" 9"' ="'"&& '$1'% 4&&6" "# '5 "6" #"6 :' :'% ="'"&&F $% #" 16 "&3 $ :5$" @$'/G 1&/'6 :/."3 $%& 15 :&."&&3 $13 $3 @&&3 '$/F="3
** 8 =" 4& "'$"3 #"G '63 &'/="" "/ @& @5 94"'/ $'"'" 5 ="$"&" 0'& & 4 0'& :&'5 & $" &&6" #" 9"' ="'"&& $/'% & 0&" 41$."&/ $%& 1:&."&&6 &"3'&&6 1"14 &G .' 4"$% 0&/ 41$."&/ $% '' $"45 F=" H,,I =F="3/ 1:&."&&3 &"3'&&3 1"146 @$1 $F :"&""'/ @$'%G 1&/'/ $%&6 C$"'." $"G $6" $& ': &$"&6 4$% $6 $&3 :&'&: $/ B/9"&&6" .'#6G /"6" C' $" "1$%''" 1:@&5 : 1$."&/ $ @'&: '&5#" 1$.F' 6C&":.5 &6" 0'&6 '&//% :&'& $" 4$%&3 &0:5 # 0'&6 #"" γ → e+e− :' 4'% 4''.&" $."' C$"'&51'&&6 4$/ 0&/ $16 41$."&" :"&""'/ $"4'" 1&&"&/ 1$.&6 &"'3.'"3 $1"G &"G 4 .3 &"'3.' '4 4&G $."G :4 &/9"&&'% :&'&: $/ &"3'&&3 1"146 1&.'"$%& "6;"' '."" 1&."&" BeG '&'/ ="'"&&6 #" ="$"&/ 0'& & 4 0'& :&'& $"G '63 9"' $%& 4'% #" 94"&/ e+e−5G '" 6 4"$ &"15 9&6 :"&"#F 41$."&/ HD>G
*, 8 '/=/ 4"'#/ /="& $"4&F 0'&5&"3'&&6 #" &";& C$"':&'&6 $/ $1" "'#/ '' 1 "4"&/G ."'6" :$G 1$F."&/G ."'6" $9"&3 $'"'6 "3 :$" 4'/ 4@&63 ."' C00"'&: ννγγ 5 14"3'/ $%& :&'& $"G &4/'/ $'46 5 #" γγ → ν ν¯ 4$/ 1$.&6 &0:#3 $/1# &.$%&6 0'& 6.$/"'/ $4 &"3'&&F "''% #" γγ → ν ν¯ γ → γν ν¯ $." $4&:G T me G :/.":G T me G 05 '&&: :1 [ ."' 4" ""& $&3 0&# 0'& $%& :&'& $" '/ :$ /="& 1."&F ="$"&/ 0'& & 4 0'5 & γ → γγ $%& :&'& $"G $."&6 69"&/ 4$/ #5 $%&6 $'4 @"1 :&."&/ $$&"&' &"'G 6.5 $/F'/ "/'&' ="$"&/ ."' 4" ""& $&3 0&# 0'& $%& $" '"'%"3 :$" $"4"'/ 1'&" C$"':&'&3 $&6 '' $%&: :&'&: $/ &"'."3 @$' @$15 3 : 94"&/ C$"'&51'&&3 6G $."& ";"&" &"&/ "$$ $:3 @$'G 6.$"& C00"'&63 C00#"&' 1'&/ ."'"'3 :$" 1."'/ $/&" $%&: &";&": :&'&: $/ & 0'&5&"3'&&6" #"6 ν → νγ G νγ → ν $."&6 65 9"&/ 4$/ $'4 #"G 6.$"&6 "/'&' 4&&6 5 #" ."' 4" ""& $&3 0&# 0'& $%& 1:&."&&3 $1"
γγ → ν ν¯ ! "#" $ % (eν)(eν) $ & ' ()* + γγ → ν ν¯ (),* ' $ $ ! - $$ (V − A) . + $ "/0 $ ()#* ' $ $ γγ → ν ν¯ $ 1 2 $ 1 & 3 4 $ ννγγ $$ $ 1 5 ' $ $1& 6
1 $ $ $ ()/ )7* 8 9$:; < $ 3 4 $ $$ ! &
, $ $ ννγγ $
M=
α GF √ [¯ νi(k ) Tαβµν νi (−k )] f1αβ f2µν , π 2
8
;
i $ $ i = e, µ, τ f αβ = q α εβ − q β εα ' < Tαβµν 1& < 3 4 $ $& $ Tαβµν 91 $ 3 4 $ $ 8
; < $ $
γγ → ν ν¯ - ()= )"* 1 < Tαβµν $1& 6
Tαβµν = −
i mν (2δie − 1) 2i γ5 εαβµν . 24 me
' $ $ > $ $ $ $ W (0?)* < Tαβµν ' $
Tαβµν
m2W 1 8i 3 ln 2 + = [γα gβµ (p1 − p2)ν + γµ gνα (p1 − p2 )β ] (1+γ5). 3 me 4 m2W
@& $ $ $ ννγγ (* (,?/* ! ' $ qα f αβ = 0 $ $
# $ Tαβµν 6
i 1 (2δie − 1) 2 γ ρ(1 + γ5) (εραµν k1β + ερµαβ k2ν ) . 24 me A $ - γγ → ν ν¯ Tαβµν = −
' 1 B ! -
1 %'$
γγ → ν ν¯ $ - C
Fµν $1 Tαβµν $ 8
;
! B Be
γγ → ν ν¯ (7"?, * ! (7* ' γγγνν (=* - $ ' ω me D ' (B/Be)2 E (" ,0* ' $$ γγ → ν ν¯ ' $ $1& ! ω me $ (",0* $ $ (7* ! (, * $& $ γγ → ν ν¯ $ < 4π - (7 " ,0* % B Be γγ → ν ν¯ (,)* $ ' $ Z %
/ ' 1&
+ $ ' A (,)* $ $ $& $ ! (,* & - $ F - G ? ? G8SV V ; G ? ? G8P V V ; G ? ? G8V V V ; G ? ? G8AV V ; ! $ SV V $ P V V V V V AV V $& $$1 C ' γγ → ν ν¯ - ' ' ννee ! & γγ → ν ν¯ (,,?,/* % ' ' < $ $ & 1 $ - $ (,)* $ ' A $
$ - γ → γν ν¯ 1 $
7 $ % ' γγνν & $
- % $ % $ $ ! $1 γγ → ν ν¯ γ → γν ν¯ $ T me T me F $ $
ννγγ ! $& ' ' ννγγ $ H ) ¼¼
¼¼
¼
¼¼
¼
¼
ννγγ ' : S(x, y) % I J$ $ ' $ $1& - W < ' 6
GF L = √ [¯ eγα (gV + gA γ5)e] jα , 2
8 );
= gV = ±1/2 + 2 sin2 θW , gA = ±1/2 K $ ' $ 8ν = νe; W
Z C $ µ τ $ $ - Z L jα = ν¯γα (1 + γ5 )ν D $1& S ' $1& 6 √ i4παGF / 2 d4x d4y d4 z Sp{(jγ)(gV + gA γ5)S(x, y) × S=√ 2E V 2E V 2ω V 2ω V × (εγ)S(y, z)(εγ)S(z, x)}e−i(kx−q z−q y) + (ε , q ↔ ε , q ), 8 ; α 1/137 $$L qα = (ω , q), qα = (ω , q) , ' $ εα εα L kα $ $ ' E E L (εγ) = εµ γ µ C ' 1 S ' 8 ; % J , δ $ $1& $ ' $
5 '
X = z − x, Y = x − y x 8 ; < γγ → ν ν¯ S ' $1&
S=√
i(2π)4δ 4 (k − q − q ) M. 2E V 2E V 2ω V 2ω V
8 ,;
+ $ M ' ννγγ $
" @
GF M=√ jµ εν ερ {gV ΠVµνρ + gA ΠA µνρ }, 2e 3
8 #;
ΠVµνρ
= e
d4 X d4 Y Sp{γµ S(X)γν S(−X − Y )γρS(Y )} ×
ΠA µνρ
× e−ie (XF Y )/2 ei(q X−q Y ) + (ε, q ↔ ε, q ), 8 /; 3 d4 X d4 Y Sp{γµ γ5S(X)γν S(−X − Y )γρS(Y )} × = e
× e−ie (XF Y )/2 ei(q X−q
Y)
+ (ε, q ↔ ε, q ),
8 7;
Fµν S(X) ' 8F % E; $ 8 #; $ dX0 dX3 dX1 dX2 δ $ $1& 1 $ $ ! 1 & $ % ! ! & $ - $ $ % S(X) $ $ 8 ,; $ 1 $ C ' $ J
$ ' !
)0 $ (,7 ,=*6 2 iβ βX d2 p (pγ) + m ⊥ ˆ ˆ Π−e−i(pX) , 8 =; exp(− ) S(X) Sa (X) = 2 2 2 2π 4 (2π) p − m
Π− =
1 2 [I
+
i 2
(γϕγ)] β = eB ⊥ ,
$ 1 B
$
$ 80 ;
<
, Aµ B µ
Aµ⊥ = (0, A1, A2, 0),
Aµ = (A0, 0, 0, A3), (AB) = (AΛB) = A 0 B0 − A 3 B3 ,
(AB)⊥ = (AΛB) = A1 B1 + A2B2 ,
µν = (ϕ˜ϕ) Λµν = (ϕϕ)µν = ϕµρ ϕρν , Λ ˜ µν = ϕ˜µρ ϕ˜ρν ϕµν = Fµν /B µν Λµν 1 ˜µν = 1 εµνρσ ϕρσ 4 Λ $ $ ϕ 2
-
µν − Λµν = gµν = diag(1, −1, −1, −1). Λ % Sa (X) 8 #; $ ΠVµνρ ΠA µνρ $1& 6 A ΠV, µνρ
V πµνρ
φ⊥ e3 β V, A exp − πµνρ + (ε, q ↔ ε, q ), 8 "; 2 (2π ) 2β d2 p i = − Sp{γµS (p − q )γν S (p)γρS (p + q )}, 8 0; 2 π (2π)
A V πµνρ = ϕ˜µσ πσνρ ,
8
;
Π−
)
S (p) =
(pγ) + m Π− , p2 − m2
φ⊥ = q⊥2 + q⊥2 + (q q )⊥ + i(q ϕq ),
K $1& -$ 8 "; $ -$ 5 γ -$ 1 $ Π± 8 % J;
Sp{γµ γν . . . Π+ } = Sp{γµ γν . . . Π− }, Sp{γµ γν . . . γ5Π+ } = −Sp{γµ γν . . . γ5 Π−}, -$ $ 8 "; 1 < β q2 , q⊥2 1 5 $1& & $ $1 ˆ $1& 6 ' S(X)
ˆ S(X) = Sˆ− (X) + Sˆ+(X) + Sˆ⊥ (X),
8
);
8
;
∞ dτ d2 p i ˆ S±(X) = − [(pγ) + m]Π±(1 ∓ thτ ) × 4π thτ (2π)2 0 τ (m2 − p2 ) βX⊥2 − − i(pX) , × exp − 4 thτ β
))
∞ dτ d2 p β (Xγ)⊥(1 − th2τ ) × Sˆ⊥ (X) = − 2 2 8π (2π) th τ 0 τ (m2 − p2 ) βX⊥2 − − i(pX) . × exp − 4 thτ β
8
,;
! $$ M Sˆ±(X), Sˆ⊥ (X) $ $ $6 ; Sˆ± Sˆ± Sˆ±L ); Sˆ± Sˆ±Sˆ⊥ L ; Sˆ± Sˆ⊥ Sˆ⊥ L ,; Sˆ⊥ Sˆ⊥ Sˆ⊥ K $
Sˆ− (X) τ ∼ β/|p2 − m2 | 1 > thτ 1 τ 1 Sˆ− (X) $1 $ $ 8 =; 5 Sˆ+ (X) Sˆ⊥ (X) τ ∼ 1 ! ' $ 8 ; 8 ,; $ Sˆ+ (X) Sˆ⊥ (X) $ $1& 6
eBX⊥2 i eBX⊥2 2 ˆ S+ (X) − [−i(γ ∂/∂X) + m] δ (X) Π+ exp( ) Γ(0, ), 4π 4 2 8 #; 2 1 (Xγ)⊥ eBX⊥ Sˆ⊥ (X) − δ2 (X) ), exp(− 2π X⊥2 4 8 /; δ2 (X) = δ(X0 ) δ(X3 ) Γ(a, z) $6
∞ Γ(a, z) =
ta−1e−t dt.
z
5
$ % 3
) $1& $ $$ 6 Sˆ− Sˆ− Sˆ+ Sˆ−Sˆ− Sˆ⊥ Sˆ− Sˆ⊥ Sˆ⊥ ! $ $1& Sˆ− Sˆ− Sˆ− $ 1 8 "; & $ $
$ $1& ' exp(−φ⊥ /2β)
1 − φ⊥ /2β + O(1/β 2) + $ $ $ 1 ,$ 1 2 $ M $ $1G $$
MR (q , q ) = M(q , q ) − M(q , 0) − M(0, q ) + M(0, 0),
8
7;
$ 1 $ 8
7; $
E $ & $ $ $ %$ ! 6
MR (q , q ) = M(q , q , me ) − M(q , q , M),
8
=;
M ? ' - $ $ 1& $ 1 β M 2 m2e , q 2 , q 2 5 - 1 + - $ $ $1& Sˆ−Sˆ⊥ Sˆ⊥ $ 1 + $ γγ → ν ν¯
),
$1& 6
GF M√ jµ εν ερ {gV ΠVµνρ + gA ΠA µνρ }, 2e ΠVµνρ = −
8
";
ie3 1 V {(q ϕq ) π + (q I ) ϕ + ((q − q )I)µ ϕνρ + ν ρµ µνρ 2 2π 2
+ (q I )ρ ϕνµ − Iνρ (q ϕ)µ + Iµν (qϕ)ρ + Iµρ (qϕ)ν − − Iνρ (q ϕ)µ − Iµν (q ϕ)ρ − Iµρ (q ϕ)ν },
ΠA µνρ
8 )0;
ie3 1 V = − 2 {(q ϕq ) ϕ˜µσ πσνρ + (q ϕI ˜ )ν ϕρµ − ((q − q )I ϕ) ˜ µ ϕνρ + 2π 2 + (q ϕI ˜ )ρ ϕνµ − (ϕI ˜ )ρν (q ϕ)µ + (ϕI ˜ )µν (qϕ)ρ + (ϕI ˜ )µρ (qϕ)ν − − (ϕI ˜ )νρ (q ϕ)µ − (ϕI) ˜ µν (q ϕ)ρ − (ϕI) ˜ µρ (q ϕ)ν }.
8 ) ;
K $ M $ 6
Iµν
i ≡ Iµν (q) = − π
d2 p Sp{γµ S (p − q)γν S (p)}, (2π)2
V πµνρ $ 8
8 ));
0; +
$ <
Iµν $1& 6 4m2 q µ qν e ˜ µν − , Iµν (q) = Λ H 2 2 q q H(z)6
z 1 8 ); arctg √ − 1, z ≥ 1, z−1 z−1 √ 1 − z − 1 z z 1 − 2 + iπ √ √ ln √ , z < 1. H(z) = 2 1−z 1 − z + 1 1−z H(z) = √
)# V $1& 6 ! πµνρ V πµνρ =
1 q 2 q 2 q 2
)ν (Λq )ρ H [(q ϕq ˜ ){(ϕq) ˜ µ (ϕq ˜ )ν (ϕq ˜ )ρ π⊥ + (ϕq) ˜ µ (Λq
)ρH − (Λq) µ (Λq )ν (ϕq µ(ϕq ˜ )ν (Λq ˜ )ρ H } −(Λq) µ (ϕq ˜ )ν (ϕq ˜ )ρ (H − H ) +(q q )(Λq) )ρ (H − H ) ˜ µ (ϕq ˜ )ν (Λq +(qq )(ϕq) )ν (ϕq ˜ µ (Λq ˜ )ρ (H − H)], +(qq )(ϕq)
8 ),;
π⊥ = H + H + H q2 q2q2 − 2m2e [q2(q q )H − q2(qq ) H − q2(qq ) H ] + 2 . q2q2 q2 − 4m2e [q2 q2 − (q q )2 ]
8 )#;
H ≡ H(4m2e /q2 ) ! $ $ ΠVµνρ ΠA µνρ $1& - 6 A V, A qν ΠV, µνρ = qρ Πµνρ = 0.
C 8 )0; 8 ) ; 1 ' 5 - 6 V qν πµνρ = Iµρ − Iµρ ,
V qρ πµνρ = Iµν − Iµν
8 )/;
C $ γγ → νν $ ' $ (,)* 5 ' 2 4m 2 2 q me $ H q2 e
6
2 q2 4me H , q2 6m2e
8 )7;
)/ V ' 6 πµνρ
1 {(ϕq ˜ )ρϕ˜µν − (ϕq ˜ )ν ϕ˜µρ − (ϕq) ˜ µ ϕ˜νρ }, 8 )=; 6m2e % 8 )7; 8 )=; 8 "; $ V πµνρ
$ $ $ (,)* gV =
gA = 1 N (,)* ! & + ' $ & & $ exp(φ⊥ /2β) D ' $ $ 5
(,)* - $ $1 1& K $
$ $ ! ' $ $$ $& $ $ $ $ $ ! 1 ' $ $ 8
";
$ ' 6
GF igae Maγγ = M(gV = 0, gA √ jµ → qµ ), 2me 2 $ & γ → γγ 6 GF Mγγγ = M(gA = 0, gV √ jµ → εµ ), 2e
)7 gae '
εµ γ → γγ
% γγ → ν ν¯ $1 ' 1 B ! $ ' 5 ' $ 5
$ & 8
";
$ 1& 6
Mλ1 λ2 = M(ε(λ1) (q ), ε(λ2 ) (q )).
8 )";
(λ)
K εµ (q) λ C
(qϕ)µ ε(1) µ = 2 , q⊥
(q ϕ) ˜µ ε(2) µ = 2 , q
8 0;
1& $ 6
q 2 − P (λ) (q) = 0,
8 ;
P (λ) (q)
!
" # $$% " &
)= % 8 0; &
8
";
$ $1& $6
M11
˜ ) 2α GF (q ϕq )(q ϕq √
=i [gV (j ϕq) ˜ + gA (jq) ] H, π 2 q2 q⊥2q⊥2
M12 = −i
8 );
1 2α GF √
π 2 q⊥2q2
) (q q )⊥ (j ϕq)(qq ˜ × gV [(jq )⊥(q ϕq ˜ ) + (j ϕq ˜ )(qq )⊥ ]H − H q2 (jq)(qq ) (q q )⊥ H , 8 ; +gA [(jq ) (qq )⊥ − (jq )⊥ (q q ) ]H − q2 (q ϕq ) 1 2α GF √
M22 = −i ((q ϕq ˜ )[gV (j ϕq) ˜ + gA (jq) ]π⊥ 2 π 2 q2q2 q +(q q )[gV (jq) + gA (j ϕq)](H ˜ − H )) − (jϕq )H [gV (q q ) + gA (q ϕq ˜ )] −(jϕq )H [gV (q q ) − gA (q ϕq ˜ )] < ' $ $ B $1& 6
QB γγ→ν ν¯ = Q11 + Q12 + Q22 ,
4
Qλ1 λ2 = (2π) gλ1 λ2 ×
3
8 ,;
|Mλ1 λ2 |2 Zλ1 Zλ2 (Ei + Ei) δ 4 (q + q − k − k )
i
dq d3k d3 q d3 k f (ω ) f (ω ) . (2π)32ω (2π)3 2 ω (2π)3 2 Ei (2π)3 2 Ei
8 #;
K Ei, Ei '
i = νe , νµ, ντ L ω , ω ' L f (ω) = [exp(ω/T ) − 1]−1 $ $
)"
T L gλ1 λ2 = 1− 12 δλ1 λ2 $ + $ 8 #; $ A $ $ - $ Zλ1 , Zλ2 H $ $ T me ! ' P (λ) (q) 1 6
P (1) (q) −
α 2 q , 3π ⊥
P (2) (q) −ξ q2 ,
$ ξ =
α B 3π Be
8 /;
$
< 10Be ÷ 104 Be ξ 7.7 · 10−3 7.7 8 ; 8 /; $
$$ q 2 0
ω 2 = q⊥2 /(1 + ξ) + q32.
8 7;
$ ξ - $$ A
' $ $& $ )6
ε(2) µ
√ → Zε(2) µ ,
Z=
∂P (2) 1− ∂q2
−1
1 . 1+ξ
8 =;
0 + ' $ $ 8 7; 6
d3q = (1 + ξ) ω 2 dω dϕ dy,
y = cos θ
1 + ξ/ 1 + ξ cos2 θ,
ϕ θ $ $ ! $ - eB m2e /α ξ 1 Qλ1 λ2 $1& 6
Q11 = + Q12 = + Q22 = +
2 8 α2 G2F 13 2 2 g ¯ 7π T π ζ(5) + 330 ζ(7) + V 8505 π 3 m4e 4 2 2 g¯A 9π ζ(5) + 70π ζ(7) + 420 ζ(9) = ' 8.5 · 107 T913 , 8 "; · 3 32 α2G2F 13 2 2 2 T 24π ζ(5) + 285 ζ(7) + g ¯ 14π V 127575 π 3 m4e 2 2 2 2 g¯A (309π + 20)π ζ(5) + (1410π + 315)ζ(7) + 38430 ζ(9) = ' , 8 ,0; 6.9 · 108 T913 · 3 8 α2G2F 13 2 2 2 T π − 50)ζ(5) + 10110 ζ(7) + g ¯ (609π V 127575 π 3 m4e 2 2 2 2 g¯A (879 π + 50)π ζ(5) + 5490π ζ(7) + 56700 ζ(9) = ' , 8 , ; 3.3 · 108 T913 · 3
T9 $ 109K 0.17me ' 2 g¯V2 0.93, g¯A 0.75 $ $
νe , νµ, ντ % ' $ 9 13 QLT γγ→ν ν¯ 1.1 · 10 T9
' . · 3
8 ,);
% $1 γγ → ν ν¯ $ < $
$ $1 ()"*6 ν Qm γγ→ν ν¯
1.4 · 10
−4
T911
' mν 2 . · 3 1 '!
8 ,;
+ $ γγ → ν ν¯ ()*6 L −10 13 QN T9 γγ→ν ν¯ 9.9 · 10
' . · 3
8 ,,;
' $
γγ → ν ν¯ $ $ - $ B Be $ (7*
'
6
9 13 QLT γγ→ν ν¯ 0.3 · 10 T9
B Be
2
' , · 3
8 ,#;
$ $ B 0.1Be 8 ,#; $ $1 $ D Qγγ→ν ν¯
$ (,)* $ $1&$1 $ 8 13 QLT γγ→ν ν¯ 0.7 · 10 T9
' . · 3
) "* +* " *
(
8 ,/;
,' -% *% * "+ 4π " * ,!.- ) % +* ,'- + T = m e *
) ! $ 8 ,); - 8 ,/; % - $ 1 ' $1 (,)* 1 $ $ 1& ' ' C- $ 8 ,); $ $
+ (,)* $ $ $
ξ 1 $ $ $& $ 2 $ H , ξ =
α B 3π Be
$1&
$ $ $
!"
# T me# ξ " ! $ $ " %! # & " ! & " Q11 , Q12 , Q22 ' & ( ) 8 −13 Q0 = 10 T9 · 3
+ &
1& γγ → ν ν¯ H γ → ν ν¯γ % $ $ < γγ → ν ν¯ - $ C γ → ν ν¯γ
$
%'$ $1 ' γγ → ν ν¯ 5 8 #; $ f (ω) → (1+f (ω)) q → −q $ γ1 → ν ν¯γ2 K H # H , H #
* Qγ→γνν¯ ξ !" # T me $1 γ → ν ν¯γ 1 γγ → ν ν¯ γγ → ν ν¯
, 1 γγ → ν ν¯γ C
$& $ $ γγ → ν ν¯ %'$ $ $ ! γγ → ν ν¯γ (,"* $ $1& / 6 2 B ' Qγγ→ν ν¯γ 1.7 · 104 T917 . Be · 3
8 ,7;
$ $ $ T = 109 K γγ → ν ν¯ - γγ → ν ν¯γ B 250Be !
γγ → ν ν¯γ γγ → ν ν¯ + ' $ γγ → ν ν¯γ $ 1 $ $ γγ → ν ν¯ $ $& $ ! $ T me $$ $ $
m2e q2 β ! ' $ P (λ) (q) 6
P (1) (q) −
α 2 q , 3π ⊥
P (2) (q) 6 ξ m2 .
8 ,=;
< ξ 1 0 +
'. +* " * ,(1-% *% * 2 ννγγγ 2" % "+ * % "
% +* ,'3-
# $$ 5 $ $1&$1 $6
QHT γγ→ν ν¯
2.7 · 10
18
T me
9
' . · 3
8 ,";
D $ 8 ,"; γ → ν ν¯ ! ' (# #)* A γ → ν ν¯ - ,$
q 2 > 0 ! ' $ $ q2 > 4m2e C $ $ exp(−2me/T ) $ ! T me 1 $ 1 q2 4m2e +
$ γγ → ν ν¯ $1 γ → ν ν¯ m2e q2 β ! ' $ $ $ T 2 eB, m2e 6 5 2 ' T B HT 18 Qγ→ν ν¯ 0.40 · 10 . me Be · 3
8 #0;
< - $ $1&
6
2 QHT B γ→ν ν¯ R = HT 0.15 . T2 Qγγ→ν ν¯
8 # ;
< $ 8 ,"; 8 #0; -
/ - 8 # ; $ γ → ν ν¯ $ - γγ → ν ν¯ $ < $ T = 2 4'! B = 100Be $ R 5.86 <
' $ $ $ γγ → ν ν¯ γ → ν ν¯ 1 < - T me $ γγ → ν ν¯ $1& ! $ 1 γ → ν ν¯ γγ → ν ν¯ D $ ' & 1 OPQI < OPQI $
1/3 ' ρ 27 6 QD , U RCA ∼ 10 T9 ρ0 · 3 OPQI 2/3 ' ρ M 21 8 QU RCA ∼ 10 T9 , ρ0 · 3
8 #);
8 #;
ρ0 = 2.8 · 1014 /3 8 (#* ; %$
7
$ OPQI B < 1019 3 8 (#* (#,*; 8 #); 8 #; OPQI $ + OPQI $& $ $ < $ $ $ $ - - OPQI (#* + ' $ ' 1
! ' $ 1& D $ $ $1 $ $
! & $ ! $ ' ννγγ ! $ % $
- $ % $1&
γ → γγ ! " " !! #" γ → γγ !$ $ %&' (' )**+*,- ( ! $ . ( )*+%&- $ ! ' ' !' ' (' / ! $0 ' ' /ω me 0 1!
( )**+*, %&- )* *2- ' " ! ! 3 )**+*, %&- ! $ (' )* *2 )* *2- 4 ( 5 " " "$ !! ! " ' !("
2 6 ( )%7- (" ! ( )**+*, %&- "
" ' !"
8 ( 9 ( )%7- : CP ( !
( !"
' ( " ! $
/ω ≤ 2me 0
" " ;
' <
! '
( = 9 " " (
(' )%>+%?- . γ → γγ
(' )%* %%- : !! $ . " (
(@ (
' ! )%,- ! !" ! (! ' " ! " A A B! /CBD0 ' /EFG0 )%- ' "' (@ " " $ " " $ " 1014 − 1016 4 . "
γ → γγ !
?&
γ → e+ e− ! " e+ e− (
' ' ( ($ !" ( ( )%2- ! " ( (" ! ! H! I !' )%2-
(
),&-
" ! ' " ' )* *2 %7 %* %%- γ → γγ ( 9 ),7- (
)%2 ,&- " " "
!" )%2 ,&- !
' '
! (" $ J" !$ γ → γγ " !
.( " (
)%, ,>+,?-
! !" ' )* *2 %7 %* %%- (' ),> , - ( " !
γ → γγ B Be
( !" "' (@ / )%, %- ),*-0 . " '
),>, -
! " ' " ' 1 → 2 2 /γ → γ⊥ γ⊥ (" ' 9 )%7-0 I (B Be ) ),% " 5 ( " ( ),,-
?7 ( ( ! γ → γγ !" ),+ - > ! !" . " ! ( !" " ! ! 1 → 1 2 I" ( ' !" ' !
! :
!
' !
" !" !
! ! ! !
),> , - 1 ? "$ ' !" .!" " K L 1 → 1 2 ( ' $ ω m 8 '
$ " (' ! 1 → 2 2 1 → 1 2 * (!$ "
?>
γ → γγ 6 !! . Pαβ < %
Õ
Õ
! " (λ)
# Pαβ !( ( bα
Pαβ =
(λ) b(λ) α bβ λ
(b(λ) )2
P λ,
P λ = ∆P λ (q, F ) + Π(q 2),
/>70
b(1) = (qϕ)α, α = (q ϕ) ˜ α, b(2) α
/>>0
b(3) = q 2 (qϕϕ)α − (qϕϕq)qα, α ? qα (!$ ( ? M N( " !! !$ " Π(q 2 ) !!$ " ∆P λ ( ( ! ∆P λ " ( ),% ? *-O
∆P
(λ)
α = − 2π
1
∞ du
0
0
2 dt βt −iΦ −iΦ0 q 2 e vλ − e (1 − u ) /> 0 t sin βt 2
?
v1 = q2
u sin βut cos βt cos βut − sin βt
2
2
2
v2 = q cos βt(1 − u ) − q⊥ v3 = q 2
− 2q⊥2
cos βut − cos βt ; sin2 βt
u sin βut cos βt cos βut − ; sin βt
u sin βut cos βt cos βut − ; sin βt
2 1 − u q 2 cos βut − cos βt + ⊥ Φ = t m2 − q2 4 2β sin βt 2 q Φ0 = Φ(B = 0) = t m2 − (1 − u2) ; 4
/>?0
!$ ∆P λ $ !$ !O
α 2 q⊥ − q 2 Λ(β, q 2), 3π 2 4me 2α β (2) − q 2 Λ(β, q 2), H P (q) − 2 π q
/>*0
P (3) (q) − q 2 Λ(β, q 2),
/>,0
P (1) (q) −
/>%0
α [1.792 − ln(B/Be)] , 3π H(z) ! 4 P ! /7>&0O Λ(β, q 2) =
z 1 />0 arctg √ − 1, z ≥ 1, z−1 z−1 √ 1 − z − 1 z z 1 − 2 + iπ √ √ ln √ , z < 1, H(z) = 2 1−z 1 − z + 1 1−z H(z) = √
?? . !" ! ( />>0 ( !$ O
Gαβ =
(λ) (λ) 3 bα bβ λ=1
−i , (b(λ) )2 q 2 − P (λ)
/>20
! !$ !
q 2 − P (λ) = 0
(λ = 1, 2, 3).
/>7&0
1 ! />7&0 $ " !' λ = 1, 2 ),%-
(qϕ)α , ε(1) = α q⊥2
(q ϕ) ˜α ε(2) = , α q2
/>770
< λ = 3 " 8 P (3) (q) ! />7&0 !( " ! q 2 = 0 5 ! " !
( ! !$ (" ( (1)
(" ' ( )%7- 7 εα /γ 0
(2)
> εα " /γ⊥ 0
Q ( ! !$ K!L q 2 = 0 " ! : , " (
7 > ! q2 q⊥2 6 K L
q 2 = q2 − q⊥2 ,
?* ¾ ¾
¾ ¾
# $ ! % % % & ' q 2 = 0 # ( , √ 7 q2 < (m + m2 + 2eB)2 " q 2 < > " ( √ 4m2 < q2 < (m+ m2 + 2eB)2 " q 2 5 " " !" γ → γγ ' " ( " ! N ! " " ! ! 1 → 2 2 ( " / K L" "
!
KL" ' "0 ; ! "
> "!$ ( q2 < 4m2
( !$ " q 2 !" ! ! "
?% 6 ! 1 → 2 2 !" ),> , - " " # ( !$ " q2 = 4m2 q 2 !$ 5 (! !! ! ( ),%- "'
2 q2 = Enn m2 + 2neB + m2 + 2n eB)2, (B) = (
/>7>0
n, n = 0, 1, 2, · · · ,
! % ! ' H! q02 eB !
n = n = 0
q2 = 4m2 N! " ( q2 = 4m2 ' ( (! $ ! ! $ ),%- N ! " ( ! (' !" ' !
ε(λ) α
→
ε(λ) α
Zλ ,
Zλ−1
∂P λ =1− . ∂q2
/>7 0
!
>
?, . ( I ' (! " ! ! $ ! "!$ α ln2 (B/Be) ' !$ )%- ( B
Be /α "!$ α ln(1/α) ln(B/Be) ),-
γ → γγ
. ( ! Þ Õ
Ü
Õ ¼¼
Ý
¼
¼¼
Õ ¼
( ) % * N!$ S " ie3
S(γ → γ γ ) = √ ε(k)S(x, y)ˆ ε(q
) × d4x d4y d4z Sp{ˆ 2ωV 2ω V 2ω
V × S(y, z)ˆ ε(q )S(z, x)}e−i(qx−q z−q y) + (ε(q ), q ↔ ε(q
), q
), />7?0
qα = (ω, q) ? ! εα ˆ − y) S(x, y) = eiΦ(x, y) S(x /! /C>0 . 90 ; ! M S "
i(2π)4δ 4 (q − q − q
) M, S(γ → γ γ
) = √ 2ωV 2ω V 2ω
V
/>7*0
? ( !$ O ˆ )ˆ ˆ ˆ M = e3 d4X d4Y Sp{ˆ ε(q)S(Y ε(q
)S(−X − Y )ˆ ε(q )S(X)} ×
× e−ie (XF Y )/2 ei(q X−q
Y)
+ (ε(q ), q ↔ ε(q
), q
),
/>7%0
X = z − x, Y = x − y N />7%0 ! /7*0 ! " ! M ( O
M = εµ (q)εν (q
)ερ (q ) ΠVµνρ ,
/>7,0
ΠVµνρ = −
ie3 1
V
((q − q )I)µ ϕνρ + {(q ϕq ) π + (q I ) ϕ + ν ρµ µνρ 2 2π 2
+ (q
I )ρ ϕνµ − Iνρ (q ϕ)µ + Iµν (qϕ)ρ + Iµρ (qϕ)ν −
− Iνρ (q
ϕ)µ − Iµν (q
ϕ)ρ − Iµρ (q ϕ)ν }.
/>70
: "
π⊥ = H + H
+ H q2 q 2q
2 − 2m2e [q2(q q
)H − q 2(qq
) H − q
2(qq ) H
] + 2 , q2q 2 q
2 − 4m2e [q 2 q
2 − (q q
)2 ]
/>720
H ≡ H(4m2e /q 2 ) 8 " !( ' ( />7%0 ! $ />770 $ O
Mλλ λ = M(ε(λ) (q), ε(λ ) (q ), ε(λ ) (q
)),
λ, λ , λ
= 1, 2.
/>>&0
?2 M
!" !$ ' !
"$ " O(1/B)O
M111 = 0,
/>>70
M112
/>>>0
M122
M222
α 3/2 (q ϕq
)(q ϕq ˜
) 4m2 , = i4π H π (q
)2 [(q )2 (q
)2⊥ q⊥2 ]1/2 α 3/2
) (q Λq = i4π × π [(q )2 (q
)2 q⊥2 ]1/2 2 4m 4m2
× (qΛq )H + (qΛq )H . (q )2 (q
)2 α 3/2 (q ϕq
)(q ϕq ˜
) = −i 4π π⊥ π [q2 (q )2 (q
)2 ]1/2
/>> 0 />>?0
I " " ' ' ! ( " " ?!
q, q , q
6 />>>0 />>?0 qα ∼
qα ∼ qα
!
M112, M222 ( $
! M122 " ! ! ( ),> , - I " " (@ 1 → 2 2 ! ! ),> , - " "
1 '"" ! " ! !! ! ? ! " .! " !$
*& !
(@O
g Wλλ λ (γ → γ γ ) = 32π 2ω
|Mλλ λ |2 Zλ Zλ Zλ ×
× δ(ωλ (q) − ωλ (q ) − ωλ (q − q ))
d3 q
, ωλ ωλ
/>>*0
g = 1 − 12 δλ λ !" " Zλ !" $ ( KL
! ω = ωλ (q) N !" ! />>70/>>?0 γ →
γγ > $ 1 → 2 2 1 → 1 2 2 → 1 2 2 → 2 2 I " > " (
q2 = ω 2 − q32 > 4m2 I ( K L γ → e+ e− )- ! ( $ 2 W (γ → e+ e− ) 1 eB ∼ 2 1. />>%0 W (γ → γγ) α ω2 N ! 7 !$ ! √ ω < m + m2 + 2eB "$ ( N " " ' "' )%,- " 1 → 2 2 / 0 1 → 1 2 / 0 6 />>*0 " " " M
" "
*7
+ $ * γ → γγ , - ,% .ω sin θ 2me/ 1a, 1b 0 % 1 *2 ! 1 → 12 , B = 102 Be 103 Be 3 2a, 2b 0 % 1 2 ! 1 → 22 , B = 102 Be 103 Be 3 3 0 % 1 2 ! 1 → 22 ! - , - " - 4 % 4 ! $% W0 = (α/π)3 me
!
ω 2 sin2 θ eB /θ +
! ! ! $ q $ B0
27> "
' ' ( $ ! " K L 1 → 1 2 ! " m2 ω 2 sin2 θ eB 1 → 1 2
*>
&5 $ * γ → γγ ,% 1a, 1b 0 % 1 *2 ! 1 → 12 , B = 102 Be 103 Be 3 2a, 2b 0 % 1 2 ! 1 → 22 , B = 102 Be 103 Be !" " O
α3 m2 1 − x · W [1 − x + 2x2 + 2(1 − x)(1 + x)2 ln(1 + x) + 2 4ω x 2 2m 2 2−x ln x], x= 1. />>,0 + 2x 1−x ω sin θ : 77 ! ( ! 4 " ! $ ! B !"
* ¼
½¼
½¼
½¼
½¼
½¼
½¼
½¼
½¼
&& $ * 1 *"2 ! " 1 → 12 4 4 , B = 100 Be . 1 /3 103 Be . 2 /3 104 Be . 3 / 6 4 - , " ! " .''#/ O
(ω − ω )2 − 4m2 dW α3 · , dω
2 ω + (ω − ω)2 − 4m2 ω 2m2 − < ω < ω − 2m, 2 ω
ω, ω " "
/>>0
7
*? ¼
½
½¼
½¼
½¼
½¼
½¼
½¼
½¼
½¼
¾
¿
&' $ * 1 "2 ! " 1 → 22 4 , 4 , &&
!"# $ $ 6 ! " " ! " " !" (@ ! !" ! (! ' " !" A A B! /CBD0 ' /EFG0 )%- :( ! $ (@ ($ ' '
** "' (@ "
" 1014 − 1016 4 ( !$ ! γ → γγ '
e+ e− (' ' ( !" . " e+ e−
$ " γ → e+ e−
" q2 > 4m2 9
e+ e− !" ( ( ),*- Q " e+ e− ! ( !" 1 → 2 2, 1 → 1 1, 2 → 1 2
CP $ 9
"$ "
" ( 1 → 2 2 " ! ( I "
CP " !" ( ( " 1 → 2 2 ! ' 1 → 1 2 # ( e+ e− ( ! N !
),*- !"
γ → γγ $ ! ! ! ! # (
*%
!" (! ( !" γ → γγ "
!
"
' " ( " " ( !
1 → 2 2
! !" (' ),> , - ; !" ' ! ! " $ " O 1 → 2 2 1 → 1 2 2 → 1 2 2 → 2 2 8 ' !' $ ' "' ' "
(' " ! !" " KR ! 1 → 1 2
! " # $ % & ! % 'ρ ∼ 1014 − 1015 / 3 (#
$ % )* $ ! ! " % # + ! % % # Be = m2e /e
4.41 · 1013 , * $ ! # $ $& % $ + - $ $ $% ! # $$ " γ → e+ e− & . $
!
" ' (# " ! ! q2 =
q02 − q32 ≥ 4m2e # q0 # q3 $% %
/ *
" ! - 01 2 3//4 5 $ $ γ → e+ e− .
" 36# /17184 ! ! * 319# 184 %# % ! $ 3//4
$& $
$% %
* $ $! %% ! ! # % $ % : $ 5 # # ! % ! % q2 = 4m2e - % 364# % % $ ! " $ & ! " $ * $
! " $
% $ " $ ; 364 % % $
$ " $$ ; # #
*
# ' $ (# $
$& $ < ' % "
(# #
1 & # =
% $
$ $
! % # " % > $ $ % * 364 % % "
! # % $ $ " ; % $&
$ ! #
' ! % % ( ! % # "% $ $ $ ? # $ $% $ @$A % *# $ % $ % # $ $& "% ? # $ & $ $
* & $ $% ! % 3124 B $
$
! e+ e− ) %$ #
$ # 31 4 B ! & $ $ $ " $$ * $
6C $ # % # Be q 2 , m2e
; " Aα (x) 'Aα (x) $$( # t = −∞ t = 0 . t > 0 $ " % % ? % ; " $ "
;
$ % D
Jα (x) = jα ei kx eεt θ(−t), ε → 0+.
'80(
% Aα (x) $
(gαβ ∂µ2 − ∂α ∂β ) Aβ (x) + + d4x Pαβ (x − x) Aβ (x) = Jα (x),
'89(
Pαβ (x − x) "
B # # $ '89( & # ∂α Jα = 0# %
jα D jα = (0, j), j · k = 0 &
# &
"
½x
µ
= (t, x)
Aα (x)#
D R Aα (x) = d4x GR αβ (x − x ) Jβ (x ),
'88(
60 GR αβ (x−x ) & $ " , B $
Aˆα (x)
D ˆ ˆ GR αβ (x − x ) = −i0|[Aα (x), Aβ (x )]|0 θ(t − t ),
3164 . % $ $ " $ "
'82(
$
,
GCαβ (x − x ) = −i0|TAˆα (x)Aˆβ (x)|0 ,
'8 (
%$ $ &
D C GR αβ (x − x ) = 2 Re Gαβ (x − x ) θ(t − t ).
'86(
=$ $$ $%# %#
GCαβ (t − t , x − x ) θ(t − t ) = −i0|Aˆα (t, x)Aˆβ (t, x )|0 θ(t − t ). '8( . $ $
!
$ ! '82(# $ '86( * $ !% $ "
, '8 (
"
# '99(D d4 q C GCαβ (x) = Gαβ (q) e−iqx 4 (2π)
GCαβ (q)
=
(λ) (λ) 3 bα bβ λ=1
1 , (b(λ) )2 q 2 − P (λ) (q)
'8/( '81(
P (λ) (q) "
. ! '80(# '86( $ '88(# %$ ! '8/(# '81(# ! $ AR α (x)
69 $ & $% t > 0D
AR α (x) ×Re
=
3
Vα(λ) (x) = 2 ei kx ×
λ=1 3
(λ)
dq0 bα (b(λ) j)/(b(λ) )2 e−i q0t , 2πi (q0 − iε) (q02 − k2 − P (λ) (q))
λ=1
'80C(
qα = (q0 , k) E $ %# $ $ # % ! ! !% # $ '80C(# $ %
% $ " ; % # P (λ) (q)#
"
* % $ %
$ & # $ '9 9( FFD
P (1) (q) −
α 2 q⊥ − q 2 Λ(B, q 2), 3π
P (3) (q) − q 2 Λ(B, q 2), P
(2)
1 2α eB arctg ( (q) − π z(1 − z)
'800(
'809(
z − 1) − 1−z
− q 2 Λ(B, q 2),
'808(
α [1.792 − ln(B/Be)] , 3π z = q2 /4m2e , q⊥2 = q12 + q22.
Λ(B, q 2) =
B # q2 = 0# & (2)
(3)
bα bα # E $ "
'800('808(
68 ! % $ $ " ? $ % % $ & $
D
q 2 − P (λ) (q) = 0.
'802(
- % % λ = 1, 2 ' FF# (# "D
ε(1) α
(1)
(2)
(qϕ)α bα (q ϕ) ˜α = = ; ε(2) = = 2. α q q⊥2 (b(1))2 (b(2))2 bα
'80 (
* % % (2)
" εµ ! % $
$# %$
% "
P (2) (q) '808(
$
% q2 ≥ 4m2e ?
$ ! '80C( (2)
% % Vα (x) ; $ & % $
$ # k = (k1 , k2 , 0)# ! % $ . q2 = q02 # " (2)
(2)
9 D εα = (0, 0, 0, −1) * Vα (x) $ $ &
! D
Vα(2) (x) = Vα(2) (0, x)
F (t) = C
ReF (t) , ReF (0)
dq0 e−i q0 t , 2πi (q0 − iε) (q02 − k2 − P (2) (q))
'806(
'80(
62 (2)
(2)
Vα (0, x) = 2 εα j3 ei kx ReF (0). - $ C '80( P (2) (q) ! 0C >$ " P (2) (q) q0 G % & # 0C * |q0 | < 2me
P (2) (q) & # $ $ '802(
& #
¼
¾
xxxxxxxxxxxxxxxxx xxx xxx xxxxxxxxxxxxxxxxx xxx
xxx xxxxxxxxxxxxxxxx xxx xxxxxxxxxxxxxxxx xxx xxxxxxxxxxxxxxxx
¾
C q0
! "#$% & ' ! (
; % # $ $ % $# ! 00 ? '80( ! % $
F (t) = Fpole(t) + Fcut(t),
'80/(
q0 = ω # & $
'802( B $ $ & $
6
ω < 2me 364
¼
¾
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxx xxx
C !( !( ! Fpole(t) Fcut(t) * % !
$% D
∞
dq0 Fcut (q0)e−iq0t , 2π
'801(
2 θ(q0 − 2me ) I , q0 ([q02 − k2 − R]2 + I 2 )
'89C(
Fcut(t) = −∞
Fcut(q0) =
√ √ z + z−1 1 α √ R ≡ ReP (2) (q0) = eB ( + 2), '890( ln √ π z− z−1 z(z − 1) α eB , I ≡ −ImP (2) (q0 + iε) = z(z − 1)
z=
q02 . 4m2e
'899(
*! '801('899( $ '806( $ ! $ " ! $ %
66 E # $% Fcut(q0 ) $ $ " Fcut(t)# $ " Aµ (t)# "% B # !
%
$ " ! ! % "% $ &
Aµ (t) ∼ e−γ t/2 cos(ω t + φ0 ).
'898(
% ω γ # ! % % '801('899( ! $% k#
!
¾
½
¿
) * ( ! ! B = 200Be + 1 ! γ → e+e−
! , ! , (- 2 !
!
./01- 3 ! γ
2 "#)#%
¾
γ → e+ e−
6
½
¾
¿
# * ( ! ! ω = 2.5me 3 2 , ) *! $
% ! γ
& % & γ ! e+ e− B %$ ! " & $ γ → e+ e− !&$
$
$ %#
364 - % 364# ! e+ e− # " & ' ( % 364 ! $& $ $%$ # 09 08 "% $ " $$ & 31# 1/4# # # ! *
# $ $$ # $ $ $
6/
"
.$ $ $% % ! ! # " $% * & % $ $ % $ ! . # "% $ $ B $! # # γ → e+ e− # $& % $ $%
ν → νγ νγ → ν
ν → νγ νγ → ν
!
" # ! $ $! $ %
& ν → νγ νγ → ν '( ')** )*)( & "
ν → νγ " ')*+,)* ( & $ - . " - " ')*+( $ ')*/( & ν → νγ " ')*0,)* ( - & " ')*0( - # Eν < 2me $-$ " $- "$ $ $ q 2 = 0 1 $ # ')*2 )* ( " $ - $ ν → νγ " $ $
3* $ " & ν → νγ νγ → ν $ - ')*3,)))( $ - "4 -
β > Eν2 , µ2 , T 2.
50)6
7 β = eB µ -$ #$ T
& - $ - & - $! ! #
1 - - - # 4 - W " & # - ! #$ ! #$ $ 8
GF L = √ [¯ eγα (gV + gA γ5)e] jα , 2
50+6
gV = ±1/2 + 2 sin2 θW , gA = ±1/2 7 $ #$ 5ν = νe6 $ $ " W
Z " ! $ µ τ $ 4 " Z "9 jα = ν¯γα (1 + γ5 )ν $
3) & . 5% )06 ¼
"! #$ 4 8 S0 (x, x) = eiΦ(x, x ) Sˆ0 (x − x ),
50/6
Φ(x, x) S0 (x − x ) 1! : & - 50/6 ! : -$ ! . " Sˆ0 (x − x ) 5 1! &68 2
p pˆ + m − β⊥ Π− e S0(p) 2i 2 . p − m2 + iε
5006
: %)0 ! "
GF MB = − √ εµ jν {gV VBµν + gA Aµν B }, 2e
VBµν Aµν B
d4 p = −ie Sp{γ µS0(p)γ ν S0 (p − q)}, 4 (2π) d4 p = −ie2 Sp{γ µS0(p)γ ν γ5S0 (p − q)} 4 (2π) 2
5026
50 6 5036
3+ ´ µ
´ ¼ µ
´ µ
·
· ´
µ
´
½µ
´ µ
´ µ
µ
´ ¼ µ
´
µ
¾µ
´
µ
!" # ! $!!
# p → −p 7 εµ # $ q µ 0 ; ν → νγ ! VBµν Aµν B ! - " ')*0 )* ( & 2 qµ qν e 4me µν µν VB = β {g − } H 50<6 2π 2 q2 q2 µρ ν Aµν ˜ρ , 506 B = −VB ϕ
H(z) $ = > 5)+*6 & ! $ #$ " 5 ? @6 - =-$ $ #$ " % )2 A$ $ #$ - - - ! B$ $ " $ ν → νγ C
S - # $ - $ "8
Spl =
n,s
dnp [S− f−(p) + S+ f+ (p)].
50)*6
3/ 7 dnp # "D
dnp =
dpz dpy Lz Ly , (2π)2
Lz , Ly "D $ V = Lx Ly Lz
S - # S∓ ? @ - #$ $
f∓ (p) $ & - -$
f∓(p) =
1 p0 ∓µ
e T +1 E 50)*6 F #$ & #$ F n = 0 ; ! S - # S∓ # ! 4 ;$ A$ '))+( F $ 4 ! 5 $ " A = (0, Bx, 0)68
ψp
β 1/4 −i(Ep t−py y−pz z) −ξ2 /2 = √ e e u (p), ( π2EpLy Lz )1/2
50))6
√ p β(x + βy ) = ±1 "- 4 #$ ! # Ep = p2z + m2
ξ =
G 1 (Ep + m)Ψ , u (p) = 50)+6 −pz Ψ Ep + m 0
Ψ = 1
30 H # 4 - S - # % )2 !
(1) S−
ieGF (2π)3δ(ω − Ek + Ek )δ(qy − ky + ky )δ(qz − kz + kz ) √ = − √ × 2EpLy Lz 2Ek V 2Ek V 2ωV 2 × Sp [(ˆ p + m) εˆ
(ˆ p + qˆ + m) ipy (qx −kx +kx )/β j ˆ , (gV + gA γ5 ) Π− ] e q2 + 2(pq) 50)/6
ω, Ek , Ek # - $- q, k k &! 50)/6 " -
! 0 - - $ - (2)
&! - # S− % )2 ! " -
q → −q ,
qx ↔ kx − kx ,
ε ↔ j(gV + gA γ5 )
$ 4 #$ : - " - S - # B$ S - # $ +6 % )2 5 p → −p #$ 6 - (2) S+
ieGF (2π)3δ(ω − Ek + Ek )δ(qy − ky + ky )δ(qz − kz + kz ) √ = − √ × 2EpLy Lz 2Ek V 2Ek V 2ωV 2 × Sp[ jˆ(gV + gA γ5)
(ˆ p + qˆ − m) εˆ (ˆ p − m) Π− ] eipy (qx −kx+kx )/β . 2 q + 2(pq) 50)06
32 1 γ $ 4 ! Π± 5 ! G68
Sp[γµ γν . . . Π+ ] = Sp[γµ γν . . . Π− ],
µ, ν, . . . = 0, 3 ,
Sp[γµγν . . . γ5Π+ ] = −Sp[γµ γν . . . γ5 Π−],
µ, ν, . . . = 0, 3 ,
- (2)
(1)
S+ = S− . (1)
(2)
B$ ! " - S+ = S− B $- $ S - # ν → νγ
-
Spl =
dnp [f−(p) + f+ (p)] S−, (1)
(2)
S− = S− + S− .
50)26 50) 6
1$$ νe± → νγe± " - 0
# -$ " $$ - $ - $ # &! 50)/6 #$ ! $ δ $ C$ S - # 50)26 - #$ ! ""
py $ δ $ : $ ! " '))/(
i(2π)4δ 4 (q − k + k ) Mpl , Spl = √ 2Ek V 2Ek V 2ωV
50)36
3
Mpl =
dpz [f−(p) + f+ (p)] (M(1) + M(2)), 2 (2π)
50)<6
(ˆ p + qˆ + m) eGF M(1) = − √ Sp[(ˆ p + m) εˆ 2 jˆ (gV + gA γ5 ) Π−] 50)6 q + 2(pq) 2 2Ep M(2) = M(1) (q → −q ,
ε ↔ j(gV + gA γ5 ))
50+*6
1 - 4 ! " - $ 50268
GF Mpl = − √ εµ jν {gV Vplµν + gA Aµν pl }, 2e
50+)6
Vplµν Aµν B J (q) =
2
2q m2e
qµ qν e µν = β {g − 2 } J (q), 2π 2 q = −VBµρ ϕ˜νρ ,
dpz f−(Ep) + f+(Ep) , Ep 4(pq)2 − (q2)2
Ep =
50++6 50+/6
p2z + m2e .
50+06
1 ν → νγ 5026 50+)6 $
M = MB + Mpl
50+26
A$ 5026 50+)6 M $" - ! A $
Mpl $ ! $ - - -
MB B$ " $ "D - - $
33 ; 4 $ " ! " 5++6 >>8
b(1) = (qϕ)µ, µ = (q ϕ) ˜ µ, b(2) µ
50+ 6
b(3) = q 2 (qϕϕ)µ − (qϕϕq)qµ, µ = qµ , b(4) µ (λ)
- $ bµ " $ " E 50+ 6 $ - 4 µν
g
qµ qν ˜ ν (ϕq) ˜ µ(ϕq) − 2 = q q2
B 50+26 ν → νγ ! "
M =
eGF eB √ (εϕq){g ˜ ˜ + gA (jq) } F (q), V (j ϕq) 2π 2 2 q2 F (q) = H
4m2e q2
50+36
+ J (q).
50+<6
: " - $ " & " - $ F (q) ! " ! - $ $ $ - !
- ! B$ ! µ T J (q) $ -
F (q) ! " 8
3<
z(vF − vφ ) + vF (v 2 − 1) z φ √ F (q ) = √ arctg + 2 z−1 (vφ2 − 1) z − 1 1 z(vF + vφ) + vF (v 2 − 1) φ √ − 2 arctg √ + 1, 50+6 + arctg (vφ2 − 1) z − 1 z−1 µ2 − m2e 4m2e ω z = 2 , vF = , vφ = . q µ qz 1 -$ $ F (q) ! " - $-$ " q2 = 4m2 $ $ & # - $ F (q ) 8
π sh x F (q) − √ 2 z − 1 ch x + sh η µ ω , η= x = 2T T
50/*6
E $$ - $ $
" $ $ & - - $ 5IJKLMNOJ MPJIOKL QIRQKSKMRI6 '))0( & ! " - ! "
S(p) = S0 (p) + ST (p),
3 −
ST (p) −4π{ˆ p + m}Π− e
p2⊥ β f
F (p)
δ(p2 − m2 ),
50/)6
fF (p) = f−(p0, pz )θ(p0) + f+(−p0, −pz )θ(−p0). E $ - - 50/)6 ! "! $ -$ '))2( - $ ! " T T" $ - $ fF (p) $ E - # -
50/)6 50+26 C - - $ (2)
εµ B ν → νγ - (2) ˜ µ/ q2 ! " # εµ = εµ = (q ϕ)
M =
β eGF √ {gV (j ϕq) ˜ + gA (jq)} F (q). 2π 2 2 q2
50/+6
& ν → νγ ! " - "D - q2 − q⊥2 = P (2) √ 2 1 d3 k |M Z| δ(Eν − Eν − q0 (k − k ))(1 − fB (q0)) Eν W = , 32π 2 E ν q0
fB (q0) =
1
50//6
eq0 /T − 1 & γν → ν -$ $ "-
- C ! "
<*
- 50//6 8(1 − fB ) → fB q0 → −q0 δ $ U - - " $
# ! "- - -$ $ ½¼½ ¾
¼
½ ¿
½¼¼
½ ¾ ¿
½¼
½
½¼
¾
% & '
νe → νeγ " ( T µ )!
# ! '! νe → νeγ " * ( +( ,( $ " # " ! -! ! "
#
θ = π/4, π/2, 3π/4
& W0 = α(GF eB)2µ/8π2 & " - ! 50//6 ! 7 - - µ T - T µ 7 - $
$ $ $ q0 q32 + 4m2e
<) ½¼½
¼
½¼¼
½¼
½
½¼
¾
. & # ' "
" ( T µ )!
! '! νe → νe γ " / 0 $ " ' νe → νe γ " 1 $ - ' γνe → νe * ( +( ,( $ " " ! -! ! "
θ = π/4, π/2, 3π/4
& W0 = α(GF eB)2T /8π2 & $ µ T ν → νγ
- !8
α(GF β)2 Eν
4µ 4µ 2 2 (g Wν→νγ − g ) [(1 − λ ) − (1 + λ)]θ(1 − λ − )+ V A 16π 2 Eν Eν 4µ 4µ 2 2 (1 − λ)]θ(1 + λ − ) . 50/06 + (gV + gA ) [(1 − λ ) − Eν Eν 7 λ $ ! - k
& $ $ T
<+
µ ν → νγ ! " 8
Wν→νγ
E (1 − λ) α(GF β)2
ν T (gV − gA )2 (1 + λ) F1 + 2 4π 8T Eν (1 + λ) 2 , 50/26 + (gV + gA ) (1 − λ) F1 8T
F1(x) = x + ln(cosh x) −
1 tanh2 x − tanh x 4
& ! " ! 50/06 50/26 ! " ')* (8
α(GF β)2 2 WB (gV + gA2 )Eν (1 − λ2 ). 2 8π
50/ 6
H - ! γν → ν # - $ !8
Wγν→ν
α(GF β)2 −2µ/T µe {(gV − gA )2(1 + λ) + (gV + gA )2(1 − λ)}. 2 4π 50/36
H - Wγν→ν "! ν → νγ ! & - -
γν → ν ! " $$ α(GF β)2T 3 − ln 2 {(gV − gA )2(1 + λ) + Wγν→ν 4π 2 4 + (gV + gA )2(1 − λ)}. 50/<6
; - #$ νe 50/06 50/26 50/36 50/<6 ) )3 H ! -$ ! 4 - - #
- ! " $$ 0 $8 dEν dPν , ), Qµ = Eν dW · qµ = −Eν ( dt dt
$ Q0 # $ Q ; $ Qµ
T µ - !8
Q0,3
α(GF eB)2 3 Eν (1 − λ2 ) × 2 64π
4µ 16µ2 2 × (gV + gA ) [(1 + λ) − 2 ] θ(1 + λ − )± Eν (1 + λ) Eν 4µ 16µ2 2 ] θ(1 − λ − ) . 50/6 ± (gV − gA ) [(1 − λ) − 2 Eν (1 − λ) Eν
& ! - $ µ T 8
Q0,3
α(GF eB)2 2 Eν T (gV + gA )2(1 − λ) F2 2 2π Eν (1 − λ) 2 , ± (gV + gA ) (1 + λ) F2 4T
Eν (1 + λ) 4T
x xex (1 + 2ex) 1 tanh − F2(x) = + (2 + x) ln(1 + ex ) + x 2 2 2 (1 + e ) π2 x + Li2(−e ) − ln 4 + , 12
± 500*6
<0
Li2 (x) $ 7 - T →
0, µ → 0 " ! 50/6 500*6 0 $ " ')* (8
Q0,3
α(GF eB)2 3 2 2 2 = Eν (1 − λ ) (gV + gA ) (1 + λ) ± (gV − gA ) (1 − λ) . 64π 2 500)6
H - #$ $ ! ν → νγ V #$
$ 4 5$ F (q0 ) 50+36 4 6 #$ ! - - : ! 50/06 $ - #$ - $ 4 -
50/ 6 & ν →
νγ γν → ν # &-
ν → νγ γν → ν - $ $ 1$ - 4 ν → νγ # - &
γν → ν # - "! Wν→νγ $ 1- - # $
<2 " -$
! " #
γγ → ν ν¯ γ → ν ν¯γ $ #% &' γγνν % ( ) ' " " % " $ ' %
" (" * ' γγ → ν ν¯ γ → ν ν¯γ $') % " % " + $ % γ → γγ # B Be ' ' % " ) ' # ( '' ' (# # ' 1 → 2 2 ) ! '' " ) ' '
, 1 → 2 2) 1 → 1 2) 2 → 1 2) 2 → 2 2 - " " ') " '" #% ") (% " & ' # ' . / ' 1 → 1 2 0 ! " &' % '' ( (' ' # &'% $') (% &' "' " &' 1(#) &' % ) γ → e+ e− ) 2 ! % ν → νγ γν → ν % 3 & "%
ν → νγ γν → ν ' '% $') ν → νγ & % " γν → ν & (# Wν→νγ '" $ " & ) ' ( " '" "
1 # 42252), 5 0)62) 7,5 78 9 # (' ( ' ) 3' :" ' () (# " ) ) '% 9 ( % ;9 ') 9< $"') 99 = ) 9 >% ) -9 ? ) @3 3' !A 1
#' 9 ( '# 9 ?(') :! ') B A') AA = ) 9- >' (#
[iγ µ{∂µ − eAµ (x1)} − me ] S(x1, x2) = δ 4 (x1 − x2),
e e > 0 me !! ∂µ = (∂/∂t, ∇)
Aµ (x) " # γµ # $ % & ' ( !'! ) * +,-./0 !1 ! S(x1 , x2) & ! ( !2 3
ˆ 1 − x2), S(x1, x2) = eiΦ(x1 , x2 ) S(x x2 Φ(x1, x2) = −e dξ µ Kµ ,
. 4
x1
1 Kµ = Aµ (ξ) + Fµν (ξ − x2)µ , 2
"
Fµν !2! 1 ! !# 1! ˆ 1 − x2) $ 5 # ' ( 1! 1 S(x & )(3 ∞ 2 i dτ d p ˆ S(X) = − [(pγ) + m]Π−(1 + th τ ) + 4π th τ (2π)2 0
iβ 2 + [(pγ) + m]Π+(1 − th τ ) − (Xγ)⊥ (1 − th τ ) ×6 2 th τ τ (m2 − p2 ) βX⊥2 − − i(pX) , × exp − 4 th τ β
/ β = eB τ !'! Π± = 12 [I ∓ 2i (γϕγ)] 7 1 ! ⊥ " 1 1 & ! ! B !1 ! (
( ! ! &! ( ! ! / 4 8 (5 " Aµ B µ
Aµ⊥ = (0, A1, A2, 0),
Aµ = (A0, 0, 0, A3),
(AB)⊥ = (AΛB) = A1 B1 + A2 B2,
(AB) = (AΛB) = A 0 B0 − A 3 B3 ,
µν = (ϕ˜ϕ) # Λµν = (ϕϕ)µν = ϕµρ ϕρν , Λ ˜ µν = ϕ˜µρ ϕ˜ρν ! ' ϕµν = Fµν /B µν Λµν ( ϕ ˜µν = 1 εµνρσ ϕρσ 9 # Λ 2
( 1! 5 ! ! ( 1 ! ! 5 ! !
µν − Λµν = gµν = diag(1, −1, −1, −1). Λ : 1 . & ' ( ! ! ( √ ; β = e −F 2
Π± !! # B ( ( ! # Π± 52 & 6 ' ( ! !2 3
i 1 1 1 Π± = [I ∓ (γϕγ)] = [I ± iγ1γ2] = [I ± Σ3], 2 2 2 2
<
! # ! ! 2 !! ! ! ! ! (
: Π± ' !! !2! ! ( 1! 15 #!! : 5 (
Π± Π± = Π± ,
Π±Π∓ = 0,
<.
# !!
Π± γ µ = γ µ Π± ,
Π± γ⊥ µ = γ⊥ µ Π∓
Π± γ5 = γ5 Π± .
<4 <"
=! !! <. <4 ! !2 !
Π± γµ Π± = γµ Π± ,
Π∓ γµ Π± = −γ⊥µ Π± .
<6
> 1!5 ! !2 ;
Π±γ⊥µ γ⊥ν Π± = (−Λµν ± iϕµν )Π±,
<?
!! 1! γ # 15 5 ;; ( ( ! ! 7& ! ! ( 5 5 1 1! γ #
Sp{Π±} = 2,
µν , Sp{γµ γν Π±} = 2Λ
ρσ + Λ νρ − Λ νσ ), µν Λ µσ Λ µρ Λ Sp{γµ γν γρ γσ Π± } = 2(Λ
<,
Sp{γµ γν γ5Π±} = ±2ϕ˜µν , ρσ ). µν ϕ˜ρσ + ϕ˜µν Λ Sp{γµ γν γρ γσ γ5 Π±} = ±2(Λ * 1 1! γ # & '1 1 5 ! !
. > 1! ! 12! ! 3
(ϕγ) ˜ µΠ± = ∓γµ γ5Π± γµ γµ = 2,
γµ γν γµ = 0,
γµ γν γρ γµ = 2γρ γν ,
<
˜ µν γρ + Λ ˜ νρ γµ − Λ ˜ µρ γν . γµ γν γρ = Λ @ ( 1 ! 5 γ # & 5 ! ' 1 1! γ # '2 ! (
A!( . '2 !1 1! ( #!! ( 1 : ( ! ( !& >
!( #!' !( ( ! 1! & $ 5& 1 ! τ ; 6 '! ( τ ∼ β/|m2 − p2 | ! β/|m2 − p2 | 1 8 1 1 th τ 1 τ 1 1 !2 ! 1! ˆ & S(X) 3 2 βX d2 p (pγ) + m iβ ⊥ ˆ ˆ S(X) Sa (X) = exp(− ) Π−e−i(pX) . 2 2 2 2π 4 (2π) p − m =! ! β/|m2 − p2 | 1 ! ' ! " (! 1! # 1! 25 #!! ! ! 1 : 1 & ! !
4 # 1! ( 52! @
' (! ! $ ! @ A ! ( & ; 1
n 115 5 1! ! 2( ! 1 ! ! 1 $! ( ! ! ! 2 ! n ; (eB)n 1! 1 ! ! (eB)n−1 δ ; # 2 !5 (! #!! B! ! ( & ' 1 ! 2 ! & '1( !! '& eB qi2
qi2 " (! 5 1! # 1! 25 # 8 ' 5 #!! !( ! '! 1 ; # 1
! Φ(x1, x2) n :!' ! ( 1 !# 5 & Φ(x1, x2) 4 &
S(x1, x2 ) . 1! n 115 5 1! ! %!
!2 ;; ννγγ
! ! 5 11
" < !! ∂µ Kν − ∂ν Kµ = 0 ( x
y " !1 5 ; ! ;
Φ(x, y) + Φ(y, x) = 0. !1 n ; n ≥ 3 ! ; n !# '1 $ ! ( ! " # ! ( '
1 Aµ (x) = xν Fνµ + ∂µ χ(x), 2
C
χ(x) - ( ; #
1! ∂µ Aν −∂ν Aµ =
Fµν 1! " 1 e Φ(x, y) = − (xF y) − e [χ(y) − χ(x)]. 2
C.
1 ! ; ! !&2 ; # χ ! ( ! 2 ! > ; n 11 '& !
& ! 1
! 3
Φtot
n n−1 l−1 e ef = − (xiF xi+1) = (Zk F Zl ), 2 i=1 xn+1 =x1 2
C4
l=2 k=1
Zi = xi − xi+1.
$ 5
e Φ(x1, x2) + Φ(x2, x3) + Φ(x3, x1) = − (x1 − x2)µF µν (x2 − x3)ν , 2
C"
6
Ü Ü
Ü
Ü
Ü
n
" #
A 1 X⊥ Y⊥ &
M C D 6 ! ! 1! 1 5 ''25 !!5
3 !
( 1!
5 ! 2! 2 ! ! ! ; ( " Z " (! Q 1 ! ! 2 X⊥ Y⊥ (! ; q⊥ q⊥ !2 ' 3 q⊥ µ X⊥µ , Qµ = , Zµ = Y ⊥µ −q⊥µ
$
5 Z Q ! !! 2 1! M ! ! !2 3
β − 4 (ZRZ) − i(QZ) . J⊥ = d4Z e $. 9 # E & ' ( ! !
(2 × 2) # #! 5 1 ! ! 3
Rµν = R1 δµν + iR2 εµν ,
$4
δµν ! F εµν ! ( ! 1 ! ! (1, 2)3 ε11 = ε22 = 0, ε12 = −ε21 = −1
?
1 R1 = t1 t2t3
t1 t3 t3 (t1 + t2 ) t1 t3 t1 (t2 + t3 )
,
R2 =
0 1 −1 0
.
ti = tanh τi τi !'! A
J=
dn Z e− ((ZGZ) − i(QZ)) ,
$"
G ! 1 # 1! ! !2 ; 3 π n/2 − 1 QG−1Q , J=√ $6 e 4 detG ( ! ( 1 ' ! 1 # & ' ( ( ! ! 2 ( ' 8 $" ' ! ''25 !!5 1! ! $ ' ' 1 1 # ! ( ' 1 ( $6 8 ' 1 M ! ! 3
J
⊥
Jµ⊥
β 4
(ZRZ) − i(QZ)
−1
(16π 2/β) t1t2 t3 − QRβ = e = t1 + t2 + t3 + t1 t2 t3
β − 4 (ZRZ) − i(QZ) ∂J⊥ = d4Z Zµ e = −i ∂Qµ =
Jµν =
4
2i −1 [R Q]µ J ⊥ , β
⊥
− d Ze
− d Z Zµ Zν e 4
β 4
(ZRZ) − i(QZ)
∂ 2J ⊥ =− ∂Qµ∂Qν
Q
,
$?
,
Jµνρ ⊥
2 −1 2 −1 −1 = R − [R Q]µ [R Q]ν J ⊥ , β µν β
β − 4 (ZRZ) − i(QZ) =i = d4Z Zµ Zν Zρ e
∂ 3J ⊥ ∂Qµ∂Qν ∂Qρ
4i −1 −1 −1 −1 [R−1Q]ν + Rνρ [R−1Q]µ Rµν [R Q]ρ + Rµρ 2 β
2 −1 −1 −1 − [R Q]µ[R Q]ν [R Q]ρ J ⊥ , β =
$,
R−1 # ' R −1 ˜ 1 δµν + iR ˜ 2 εµν , Rµν =R
1 ˜1 = R t1 + t2 + t3 + t1 t2 t3
−t1 t3 t1 (t2 + t3) −t1 t3 t3 (t1 + t2 )
,
˜2 = R
0 −1 1 0
.
# +0 EGHHIJK LL MKGNO GO PGQRNGKRNSIO HRN TUVWGXIVKGJYY Z[\OS]O ^[S]G_R3 `VSaINOSK\ RH ^[S]G_R ZNIOO ? ??" b +.0 c[JRbRa deU ^ROXRbGNKS]JI Z[\OS]OYY MSV_GbRNI3 fRNJW M]SIVKSHS] ZNIOO 6? b +40 FF 5! C g' F ! ; 5 1! #YY 93 % # & hi!5 ;1! 5 j ./// "? ! +"0 kG[]GJJ lm mIUKNSVR GOKNRb[\OS]O YY ^GXQNSW_I3 ^GXQNSW_I `VSaIN OSK\ ZNIOO +60 MKSn d o[I MUV - pV DVKNRWU]KSRV YY kINJSV3 MbNSV_IN +?0 oUN]q^[SIrI M IK GJ o[I ORJGN SVKINSRN YY Z[\O EIbK 4 s .4/ t ." Z 6,.46 +,0 p[XGW uE IK GJ Mmv ]RJJGQRNGKSRV dIGOUNIXIVK RH K[I NGKI RH
nue + d → p + p + e− SVKING]KSRVO bNRWU]IW Q\ k ORJGN VIUKNSVRO GK K[I MUWQUN\ mIUKNSVR vQOINaGKRN\ YY Z[\OEIaPIKK .// s , Z/,4/ + 0 p[XGW uE IK GJ Mmv ]RJJGQRNGKSRV wSNI]K xaSWIV]I HRN mIUKNSVR TJGaRN oNGVOHRNXGKSRV HNRX mIUKNGJ^UNNIVK DVKING]KSRVO SV K[I MUWQUN\ mIUKNSVR vQOINaGKRN\YY Z[\OEIaPIKK .//. s Z/4/ +0 p[XGW uE IK GJ Mmv ]RJJGQRNGKSRV dIGOUNIXIVK RH wG\ GVW mS_[K mIUKNSVR xVIN_\ MbI]KNG GK Mmv GVW ^RVOKNGSVKO RV mIUKNSVR dSnSV_ ZGNGXIKINOYY Z[\OEIaPIKK .//. s Z/4/.
+/0 kG[]GJJ lm ZSVORVVIGUJK dy GVW kGOU M MRJGN dRWIJO3 ]UNNIVK IbR][ GVW KSXI WIbIVWIV]IO
VIUKNSVRO
GVW [IJSROISOXRJR_S]GJ
bNRbINKSIO YY pOKNRb[\O l .// s 666 Z //. +0 wUV]GV E^ o[RXbORV ^ TRNXGKSRV RH aIN\ OKNRV_J\ XG_VIKSrIW VIUKNRV OKGNO3 SXbJS]GKSRVO HRN _GXXGNG\ QUNOKO YY pOKNRb[\O l .s 4. t Z PP4 +.0 o[RXbORV ^ wUV]GV E^ mIUKNRV OKGN W\VGXRO GVW K[I RNS_SVO RH bUJOGN XG_VIKSOX YY pOKNRb[\O l 4s "/
t Z ".,
+40 cRUaIJSRKRU ^ IK GJ pV zNG\ bUJOGN {SK[ G OUbINOKNRV_ XG_VIKS] HSIJW SV K[I ORHK γ NG\ NIbIGKIN MLE /? ./ YYmGKUNI s44 Z.46| +"0 cRUaIJSRKRU ^ IK GJ wSO]RaIN\ RH G dG_VIKGN pOOR]SGKIW {SK[ K[I MRHK LGXXG EIbIGKIN MLE //}" YYpOKNRb[\Ol s6/ ZP6| +60 cRUaIJSRKRU ^ IK GJ dUJKS{GaIJIV_K[ vQOINaGKSRVO RH K[I MRHK LGXXG EIbIGKIN MLE //}" WUNSV_ DKO .// pbNSJ p]KSaGKSRV YYpOKNRb[\Ol .// s66 ZP", +?0 DQNG[SX p D MGHSyGNQ M M{GVq ly ZGNqI f ~GVI M oUNRJJG E wSO]RaIN\ RH ^\]JRKNRV EIORVGV]I TIGKUNIO SV K[I MRHK LGXXG EIbIGKIN MLE /?./ YY pOKNRb[\O l PIKK .//. s6," P6 +,0 DQNG[SX p D M{GVql y ZGNqI f mI{ xaSWIV]I HRN ZNRKRV ^\]JRKNRV EIORVGV]I SV G dG_VIKGN MKNIV_K[ TSIJW HNRX MLE /? ./ YYpOKNRb[\O l.//4 s6 " P, + 0 <! F C = : 5 22! !5 YY,/8 ", ^ 4
// +0 pNWIJGV
m
s
kSOVRaGK\ScR_GV
L
M
dRSOIIVqR
M
L
dG_VIKRNRKGKSRVGJ XI][GVSOX3 .w OSXUJGKSRV YYZNR] Dp` ^RJJ mR ?? o[I JR]GJ QUQQJI GVW QI\RVW xWO w kNISKO][{INWK dl TNI\QIN_ GVW l oNUXbIN PI]KUNI mRKIO SV Z[\OS]O s6/? Z"6 +./0 pNWIJGV
m
s
kSOVRaGK\ScR_GV
L
M
dRSOIIVqR
M
L
mRVOKGKSRVGN\ XG_VIKRNRKGKSRVGJ bNR]IOOIO SV G NRKGKSV_ XG_VIKSrIW ]JRUW YYpp .///s 466Z +.0 C : A : : & ! #!! 1 '1 !5YY >!( 8) 8 ? t 6 = 44,4". +..0 <! = % (! YY i)7 8 ? t ^ ? +.40 < 9 > i!(! ( ! ) ! ; YY8) 6 s4? ^?6?? +."0 yx ^[SU Z dRNNSORV mIUKNSVR IXSOOSRV HNRX QJG]qQRW\ NGWSGKSRV GK [S_[ OKIJJGN KIXbINGKUNI YYZ[\O EIa PIKK ?/ s6 Z6,46,6 +.60 LIJJdGVV d o[I NIG]KSRV γγ → ν ν¯ YY Z[\O EIa PIKK ? s ? t . Z ,/, +.?0 @ @$ : !! 5 ; YY$7 ===% " 8 ?/ = ./, +.,0 eGV_ ^ m MIJI]KSRV NUJIO HRN K[I WIXGKINSGJSrGKSRV RH G bGNKS]JI SVKR K{R b[RKRVO YYZ[\O EIa 6/ s ,, Z .".."6
/ +. 0 ^NI{K[IN El TSVRNW l dSVqR{OqS Z o[I GVVS[SJGKSRV bNR]IOO ν ν¯ →
γγ {SK[ XGOOSaI VIUKNSVR SV ]ROXRJR_\ YY mU]J Z[\O . s k./, t . Z .?. , +.0 wRWIJORV M TISVQIN_ L mIUKNSVR K{Rb[RKRV aINKIn YY Z[\O EIa s w"4 t 4 Z 4./ +4/0 PIaSVI dl o[I bNR]IOO γ + γ → ν + ν¯ YY mURaR ^SX ?, s p" t Z ?,, +40 wS]UO wp MKIJJGN IVIN_\JROO NGKIO SV G ]RVaIN_IVK K[IRN\ RH {IGq GVW IJI]KNRXG_VIKS] SVKING]KSRVO YY Z[\O EIa ,. s w? t " Z " " +4.0 wS]UO wp EIbqR ff Z[RKRV VIUKNSVR O]GKKINSV_ YY Z[\O EIa 4 s w" t Z 6/?6/ +440 EROIVQIN_ P xJI]KNRXG_VIKS] SVKING]KSRVO RH VIUKNSVRO YY Z[\O EIa ?4 s . t ? Z ., ?., +4"0 ^UV_ sc eRO[SXUNG d xJI]KNRXG_VIKS] SVKING]KSRV RH VIUKNSVRO SV _GU_I K[IRNSIO RH {IGq SVKING]KSRVO YY mURaR ^SX ,6 s p. t " Z 66,6?" +460 cUrVIKORa ps dSq[IIa ms ^RXbKRVJSqI SVKING]KSRV RH XGOOSaI VIUKNSVRO {SK[ aSNKUGJ b[RKRVO YY Z[\O PIKK 4 s k. t 4" Z 4?,4? +4?0 F# 95 7 #!! νi γ ∗ → νj γ ∗ !
( ; 1 !!
! YY
) 4 8 6? t ? = / "
/. +4,0 M[GSOUJKGVRa E Z[RKRV VIUKNSVR SVKING]KSRVO SV XG_VIKS] HSIJWO YY Z[\O EIa PIKK s / t Z 6 ?6 , +4 0 wS]UO wp
EIbqR ff Z[RKRV VIUKNSVR SVKING]KSRVO YY
Z[\O EIa PIKK , s , t " Z 6?6, +40 ^[\S oc y{GV_ ^f cGR fT IK GJ mIUKNSVR b[RKRV O]GKKINSV_ GVW SKO ]NROOIW bNR]IOOIO SV G QG]q_NRUVW XG_VIKS] HSIJW YY Z[\O PIKK s k"?? t ." Z .,". / +"/0 ^[\S oc y{GV_ ^f cGR fT IK GJ o[I {IGqHSIJW InbGVOSRV HRN bNR]IOOIO SV G [RXR_IVIRUO QG]q_NRUVW XG_VIKS] HSIJW YY Z[\O EIa ./// s w?. t / Z /6/" 4 +"0 wS]UO wp EIbqR ff mIUKNSVR b[RKRV O]GKKINSV_ SV G XG_VIKS] HSIJW YY Z[\O PIKK ./// s k" . t 4 Z """ +".0 @! 9 = ' $5; & !( YY ! 9Ci3 ; ! 8 .. t " = /4 +"40 p s cUrVIKORa m s dSq[IIa Z[RKRV bGSN ]RVaINOSRV SVKR VIUKNSVRO SV G OKNRV_ XG_VIKS] HSIJW YYdRWZ[\OPIKK .// sp? t .6 Z?6 +""0 ^[SOK\GqRa d s cUrVIKORa ps dSq[IIa ms o[I KNGVOSKSRVO
γγ → ν ν¯ GVW γ → γγ SV G OKNRV_ XG_VIKS] HSIJW YYDV ZNR]IIWSV_O RH ESV_QIN_ xUNR]RVHINIV]I hmI{ oNIVWO SV mIUKNSVR Z[\OS]Oj oI_INVOII LINXGV\ Z ."6
xW Q\ k cVSI[J IK GJ fRNJW M]S MSV_GbRNI
/4 +"60 ^[SOK\GqRa ds dSq[IIa ms Z[RKRV VIUKNSVR SVKING]KSRVO SV OKNRV_ XG_VIKS] HSIJW YY dRWZ[\OPIKK .//. sp, t 4 Z.664 .6?. +"?0 95 7 ! 9 >#!! γγ → ν ν¯ !( YY A!! 5 1! #
! "3 ' !' !
! ! ; 1! ;
Ci
! !
!( .//4 ! ?",. +",0 = ' ># ; !5!( YY A ) ,6 t / = "."4 +" 0 PROqUKRa eUd
MqRQIJIa ss mRVJSVIGN IJI]KNRW\VGXS]O SV G
OUbINOKNRV_ XG_VIKS] HSIJW YY Z[\O PIKK ,? s p6? t 4 Z 6 6. +"0 @! 9 = ' ;; & A3 (ν ν¯) ! #!! γγ → γ(ν ν¯) '& YY 89) , 8,/ =4/4 +6/0 F# 95 7 ) & 5 !( YY >!( 8) .//. o ,6 t = 6464" +60 cUrVIKORa ps dSq[IIa ms sGOOSJIaOqG\G Pp Z[RKRV WI]G\ γ →
ν ν¯ SV GV InKINVGJ XG_VIKS] HSIJW YYZ[\OPIKK s k"., Z/6 +6.0 F# 95 7 !! @ A# ; ννγ ! YY
)8 ?.=,6
/" +640 eGqRaJIa wL cGXSVqIN pw LVIWSV ve yGIVOIJ Z mIUKNSVR xXSOOSRV HNRX mIUKNRV MKGNO YYZ[\OEIbK .// s 46"Z +6"0 C : A= >#!! ! ! '1 !2 ! !( YY8) .//. 8 . t ? ^ ..4" +660 = ' C %! ; ; YY 8) 6 846 =46 +6?0 dSV_UrrS Z[RKRVO SVKING]KSRV {SK[ [RXR_IVIRUO ]RVOKGVK XG_VIKS] HSIJW YY mRUaR ]SX ? s Z ", +6,0 = == : ! ; YY 8) ?, 86. =4/4 +6 0 pWJIN MP kG[]GJJ lm ^GJJGV ^L EROIVQJUK[ dm Z[RKRV ObJSKKSV_ SV G OKNRV_ XG_VIKS] HSIJW YY Z[\OEIaPIKK ,/ s.6 Z/? +60 kSGJ\VS]qGkSNUJG ~ kSGJ\VS]qGkSNUJG D mRVJSVIGN IHHI]KO SV UGVKUX IJI]KNRW\VGXS]O Z[RKRV bNRbG_GKSRV GVW b[RKRV ObJSKKSV_ SV GV InKINVGJ HSIJW YY Z[\OEIa ,/ sw. Z.4" +?/0 C(# $ = ' %!2 ; # &! 1 (! YY >!( 8) , 84 =,4 +?0 pWJIN MP Z[RKRV ObJSKKSV_ GVW b[RKRV WSObINOSRV SV G OKNRV_ XG_VIKS] HSIJW YY pVV Z[\O me, s?, Z6
/6 +?.0 > : % ! A ># !2 ; ! YY 8) , 8? =..4 +?40 > : % ! A 85; ! ! ! ' ! (YY 8) ,4 8?6 =,6? +?"0 > : % ! A 85; ! ! YY 8 )A7 ? 8? =./ +?60 MKRVI[GX El Z[RKRV ObJSKKSV_ SV XG_VIKSrIW aG]UUX YY lZ[\Op , s. Z. , +??0 < 7 9( A *! % %!2 ;
!( YY 8) ? 8?4 =??6 +?,0 yGNWSV_ p^ kGNSV_ dL LRVK[SIN ZP Z[RKRV MbJSKKSV_ ^GO]GWIO SV LGXXGEG\ ZUJOGNO GVW K[I MbI]KNUX RH ZME6/6
YY
pOKNRb[\Ol , s",? Z."? +? 0 kGNSV_ dL yGNWSV_ p^ EGWSRuUSIK ZUJOGNO {SK[ `JKNGOKNRV_ dG_VIKS] TSIJWO YY pOKNRb[\OlPIKK s6/, ZP66 +?0 dIVKrIJ d kIN_ w fUVVIN w Z[RKRV ObJSKKSV_ SV OKNRV_ XG_VIKS] HSIJWO YYZ[\O EIa " s w6/ Z.6 +,/0 fUVVIN w MGV_ E kIN_ w Z[RKRV MbJSKKSV_ SV MKNRV_J\ dG_VIKSrIW ^ROXS] vQI]KOEIaSOSKIW YYpOKNRb[\OlPIKK 6 s "66 ZP6 +,0 pWJIN MP ^RXXIVK RV hZ[RKRV MbJSKKSV_ SV MKNRV_J\ dG_VIKSrIW vQI]KO EIaSOSKIWj YYGOKNRb[Y?/6?
/? +,.0 kGSIN sm dSJOKISV pD M[GSOUJKGVRa E~[ Z[RKRV ObJSKKSV_ SV G aIN\ OKNRV_ XG_VIKS] HSIJW YY Z[\OEIaPIKK ? s,, Z? +,40 < 7 9( A *! % %!2 ;
!5!( YY 8) , 8 =6. +,"0 pWJIN MP
M][UQINK ^ Z[RKRV ObJSKKSV_ SV G OKNRV_ XG_VIKS]
HSIJW3 NI]GJ]UJGKSRV GVW ]RXbGNSORV {SK[ bNIaSRUO ]GJ]UJGKSRVO YY Z[\OEIaPIKK ? s ,, t Z ?6? +,60 kGNSV_ dL yGNWSV_ p^ Z[RKRV MbJSKKSV_ GVW ZGSN ^NIGKSRV SV yS_[J\ dG_VIKSrIW ZUJOGNO YY pOKNRb[\Ol ./// s 6", t . Z. +,?0 *' px ># ! ! YY 8 )A7 ===% h># ; ; 5 '15 5j 93 7
8 .
^ 66. +,,0 i! *' p x : ! ' 1 ' 5! (!YY >!( ! & 4 8 ^ "/"/" +, 0 F# d5 7 ! 9 %!2
( ; ; !( YY
( ' ; =' 1
!(3
! ! , = ... +,0 ^[SOK\GqRa ds cUrVIKORa ps dSq[IIa ms Z[RKRV ObJSKKSV_ GQRaI K[I bGSN ]NIGKSRV K[NIO[RJW SV G OKNRV_ XG_VIKS] HSIJW YYZ[\OPIKK s k"4" Z?,
/, + /0 ^[SOK\GqRa d s cUrVIKORa p s dSq[IIa m s Z[RKRV MbJSKKSV_ SV G MKNRV_ dG_VIKS] TSIJWYY DV ZNR]IIWSV_O RH K[I /K[ DVKINVGKSRVGJ MIXSVGN huUGNqO j
IWSKIW Q\ TP kIrNUqRa
sp dGKaIIa
sp EUQGqRa pm oGaq[IJSWrI M soNRSKOq\ dRO]R{3 DVOKSKUKI HRN mU]JIGN EIOIGN][ RH EUOOSGV p]GWIX\ RH M]SIV]IO s D Z . 4/ + 0 F# 95 7 ! 9 %!2 ; ; !( YY
) 8 ?. ^?4 + .0 ^[SOK\GqRa ds cUrVIKORa ps dSq[IIa ms Z[RKRV ObJSKKSV_ SV G OKNRV_ XG_VIKS] HSIJW YYMUNaI\O SV yS_[ xVIN_\ Z[\OS]O .// s 6 Z. + 40 ^[SOK\GqRa d s cUrVIKORa p s dSq[IIa m s mIUKNSVR b[RKRV GVW b[RKRVb[RKRV bNR]IOOIO GO XGVSHIOKGKSRV RH K[I K[NII aINKIn JRRb SV OKNRV_ XG_VIS] HSIJWYY DV bNR]IIWSV_O RH K[I zDK[ SVKINVGKSRVGJ O][RRJ ZGNKS]JIO GVW ^ROXRJR_\IWSKIW Q\ x m pJInIIa s p dGKaIIa c[ M mSNRa s p EUQGqRa dRO]R{3DVOKSKUKI HRN mU]JIGN EIOIGN][ RH EUOOSGV p]GWIX\ RH M]SIV]IO .//4 Z.,,. ? + "0 oOGS f xNQIN o o[I bNRbG_GKSRV RH b[RKRVO SV [RXR_IVIRUO XG_VIKS] HSIJWO3 SVWIn RH NIHNG]KSRV YYZ[\OEIa ,6 s w. Z4. + 60 dIJNROI wk
MKRVI[GX El
sG]UUX bRJGNSrGKSRV GVW b[RKRV
bNRbG_GKSRV SV G XG_VIKS] HSIJW YYmURaR ^SX ,? s p4. Z"46 + ?0 @! 9 @! < = ' > # ! 1! '(5 5 YY89 ) . 864 = "?
/ + ,0 @! 9 = ' :; 1! ! !! YY! 9! i = 43 )! 4 8." =6 +
0 F 7> A1 ; 5 YY 8) 6" 8 .? t = 4"
+ 0 MKUNNR]q Zp p XRWIJ RH bUJOGNO YYpOKNRb[\Ol , s ?" Z6. +/0 oGWIXGNU x vV K[I xVIN_\ MbI]KNUX RH EIJGKSaSOKS] xJI]KNRVO SV K[I ^NGQ mIQUJG YYpOKNRb[\Ol ,4 s 4 Z?.6 +0 EUWINXGV dp MUK[INJGVW ZM o[IRN\ RH bUJOGNO3 bRJGN _GbO ObGNqO GVW ]R[INIVK XS]NR{GaI NGWSGKSRV YYpOKNRb[\Ol ,6 s ? Z6 +.0 <! = %& !( YY! ; . 8 ="4 +40 wGU_[INK\ lc
yGNWSV_ pc
ZGSN bNRWU]KSRV SV OUbINOKNRV_
XG_VIKS] HSIJWO YYpOKNRb[\Ol 4 s .,4 Z,? +"0 95 7 ! 9 B 5 ; ( & !( YY >!( 8) .// 8 ,4 . ! ,.?,4/ +60 kR\GVRaOq\ w WI sI_G yl m_ el PII wM fGV_ Me' TINXSRV WGXbSV_ SV G HINXSRVO]GJGN bJGOXG YYZ[\OEIa s w6 Z/6// +?0 @ @$ @# 9 = ! 1! ; 1 . YY 7 9!
/ +,0 ; @ YY8) 6, 8 44 = 4, + 0 lRS][S D dGKOUXRKR M[ eRO[SXUNG d uUGVKUX WSOOSbGKSRV GVW WI]G\ SV G XIWSUX YYZ[\OEIa s p6, Z, +0 7 g 1 8) ?" s ^ ? +//0 wvJSaR l mSIaIO l ZGJ Z ^[INIVqRa NGWSGKSRV Q\ XGOOJIOO VIUKNSVRO YYZ[\OPIKK? sk4?6 Z, +/0 yGNW\ M l dIJNROI w k PGV_XUSN {GaI IXSOOSRV Q\ VIUKNSVRO SV G XIWSUX YYZUQJ pOKNRV MR] pUO ? s4 Z"" +/.0 C(# $ 7 7= ) #!! !( YY 8) ,. 8 ?. = .// ./. +/40 = ' : #5 γ → ν ν¯ ν → γν !( YY 8) ,? 8 , t "/ = .?4.?, +/"0 DRGVVSOSGV pm
EGHHIJK LL ^[INIVqRa NGWSGKSRV Q\ XGOOJIOO
VIUKNSVRO SV G XG_VIKS] HSIJW YY Z[\O EIa , s w66 Z ,/4 ,/"4 +/60 LaRrWIa pp dSq[IIa ms sGOOSJIaOqG\G Pp mIUKNSVR SVVIN QNIXOOKNG[JUV_ SV G OKNRV_ XG_VIKS] HSIJW YY DV ZNR]IIWSV_O RH K[I K[ DVKINVGKSRVGJ MIXSVGN huUGNqO?j IWSKIW Q\ sp dGKaIIa pp ZIVSV sp EUQGqRa GVW pm oGaq[IJSWrI dRO]R{3 DVOKSKUKI HRN mU]JIGN EIOIGN][ RH EUOOSGV p]GWIX\ RH M]SIV]IO , sRJ D Z 444"?
/ +/?0 LaRrWIa pp dSq[IIa ms sGOOSJIaOqG\G Pp EIORVGV]I VIUKNSVR QNIXOOKNG[JUV_ ν → νγ SV G OKNRV_ XG_VIKS] HSIJW YY Z[\O PIKK , s k"/ t ." Z ..6 +/,0 d5 7 ! 9 %# 5
ν → νγ YY =' ( ' ; ! .3 =' 15 5 15 ! !
! !
!( = 4.4 +/ 0 ^[SOK\GqRa ds dSq[IIa ms EGWSGKSaI VIUKNSVR KNGVOSKSRV ν → νγ SV OKNRV_J\ XG_VIKSrIW bJGOXG YY Z[\OPIKK s k"?, b .4..4, +/0 ^[SOK\GqRa ds dSq[IIa ms EGWSGKSaI VIUKNSVR KNGVOSKSRV ν → νγ SV OKNRV_J\ XG_VIKSrIW bJGOXGYY MUNaI\O SV yS_[ xVIN_\ Z[\OS]O ./// s 6 Z .4."? +/0 ^[SOK\GqRa d s dSq[IIa m s Z[RKRVVIUKNSVR SVKING]KSRV SV OKNRV_J\ XG_VIKSrIW bJGOXGYYDV bNR]IIWSV_O RH K[I SVKINVGKSRVGJ {RNqO[Rb MKNRV_ dG_VIKS] TSIJWO SV mIUKNSVR pOKNRb[\OS]O IWSKIW Q\ p s cUrVIKORa m s dSq[IIa p eG ZGNq[RXIVqR eGNROJGaJ ./// Z "/" +0 ^[SOK\GqRa d s dSq[IIa m s Z[RKRVVIUKNSVR DVKING]KSRVO SV MKNRV_J\ dG_VIKSrIW ZJGOXGYY ZNR]IIWSV_O RH K[I K[ DVKINVGKSRVGJ MIXSVGN uUGNqO./// IWSKIW Q\ L k ZSaRaGNRa sp dGKaIIa pp ZIVSV sp EUQGqRa GVW pm oGaq[IJSWrI dRO]R{3 DVOKSKUKI HRN mU]JIGN EIOIGN][ RH EUOOSGV p]GWIX\ RH M]SIV]IO .//. Z /66 +.0 A 5 < <! # F YY 7 9!
+40 < <! # 9 @;# @> > ! F
YY 7 9! +"0 <! # = ! > ) 5 5 1 ! i)7 , s?, ^ ." +60 fIJWRV yp MSXbJI NUJIO HRN WSO]RVKSVUSKSIO SV HSVSKI KIXbINGKUNI HSIJW K[IRN\ YY Z[\O EIa 4 s w. Z .//, +?0 oOGS fe sG]UUX bRJGNSrGKSRV SV [RXR_IVIRUO XG_VIKS] HSIJW YY Z[\O EIa ," s w/ Z .? .,/. +,0 ) %' @3 A @Ci 6, + 0 A# ! F B' < F Y > ] 8 93 9 " "" = +0 M][{SV_IN l vV _GU_I SVaGNSIV]I GVW aG]UUX bRJGNSrGKSRV YY Z[\O EIa 6 s . Z ??"?, +./0 * ! # ! 1 Y > ! 8 93 9 ,4 6/" =| 8 . 93 9 ,? ", =