0047-2468/82/010089-0551.50+0.20/0 9 Birkh~user Verlag, Basel
J o u r n a l of G e o m e t r y V o l . 1 9 (1982)
A BE...
30 downloads
502 Views
193KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
0047-2468/82/010089-0551.50+0.20/0 9 Birkh~user Verlag, Basel
J o u r n a l of G e o m e t r y V o l . 1 9 (1982)
A BECKMA_N-QUARLES
Walter
TYPE
THEOREM
FOR FINITE
DESARGUESIAN
PLANES
Benz
Dedicated
to G.
Pickert
on the
occasion
of h i s
65. b i r t h d a y .
Abstract: The characterization t h e o r e m g i v e n in [2] for L o r e n t z transformations of t h e ~ a is c a r r i e d o v e r to t h e c a s e of f i n i t e planes. Consider
the plane
F 2 over
Lorentz-Minkowski-distance Q=
(ql,q~)
the G a l o i s between
o f F ~ is d e f i n e d d(P,Q)
:=
field
the
points
_
s e t of all n o n - e m p t y
result
of t h i s
is
M
: Given
fixed
elements
Then
~PT
plane
in
subsets
of F 2. T h e m a i n
Given
a mapping
S(F 2)
that
Vp,Q s F 2
The
P = (pl,pa),
a,b:s F ~ := F ~ {O}.
T : F2+ such
The
(q~ _ p ~ ) 2
b y S(F 2) t h e
Theorem
q = pn.
by
(ql _ p i ) 2
Denote
note
F = GF(q),
a | for a l l
F a if o n e
P s
of the
p 9 2,3,5,7
b)
p6
c)
q=
d)
p = 7, n o d d a n d
[8],
{5,7}
2 and
= a
implies
T is a b i j e c t i v e conditions
d(P',Q')
= b.
collineation
of the
holds:
n even
7
GF(7),
who was
proved
a square
and
d(P,Q)
following
a)
cases
M are
Vp, s pT,Q, 6 QT
in
GF(11)
3/n
.
of this
theorem
applying
a computer.
[3] w i t h
the i n f i n i t e l y
in F, b u t n o t
-11.
Our proof
were
treated
The other
in
many [3]
by H . - J . S a m a g a
results
exceptions in c a s e
of t h e o r e m that
that
-3 is
-3 is n o t
Benz
90
a square
applies
noticed der),
that
q= 5
Different
an i m p o r t a n t
theorem
(H.-J.Samaga,[8]), authors
have
Beckman,
D.A.Quarles
minyh
[5]
in
J.Lester
for the
1.
For
P,Q s
We
like
real
PQ
Then
Given
:=
ping
Beckman-Quarles
[I] for the
real
hyperbolic
Type
euclidean
case,
It m i g h t
case,
Theorems: case,
W.Benz
in
be
E.M.Schr~-
F.S.
A.V.Kuz'-
[2],[4]
B.Farrahi
and
(unpub-
case.
theorem
~ : F2§ Q,s Qa
Consider
M is a c o n s e q u e n c e
2) s u c h
that
PQ = 1
implies
P 6F 2 and
conditions
a),
bijection
c),
d)
a
:
a ~ xl
- x2)
a by b in t h i s ~ = a T 8 -I . H e n c e
F 2
§
collineation
of F 2
e of F ~ ,
a ( ~ xl + x2,
M define
= 1
holds.
8, r e p l a c i n g
T of t h e o r e m
of
P'Q'
~ is a b i j e c t i v e
b),
the b i j e c t i o n
(x1,x~) ~ := and the
([3]).
[9].
(H.Schaeffer,
(ql - Pl ) (q~ - P~)
that
I for all
if one of t h e In fact!
q= 9
elliptic
~ Vp, 6 pO,
~PO=
for q = 3
2 define
to v e r i f y
Vp,Q s
in
of G . T a l l i n i ,
true
[6] for the r e a l m i n k o w s k i a n
lished)
A:
proved
for the r e a l
in
Theorem
result
M is not
,
formula.
Given
a map-
S(F 2)
2
Consider
P,Q s F
with
d ( P ~ , Q ~) = a and d((P') 8 (Q')8) = b By'means
PQ = I a n d m o r e o v e r
(P')86 since
of t h e o r e m
P' 6 P~,
Q' 6 Qo.
(P~)~ , ( Q ), ~ s (Q~) T . This
implies
T is a m a p p i n g
A now
of t h e o r e m
~ is a c o l l i n e a t i o n
and
M.
Hence
Hence
thus
P'Q' = 1
also
--I
= ~
a 8
9
Furthermore Theorem
we
like
B: G i v e n
to v e r i f y
~ : F2 §
2 such
V p , Q E F 2 P-~= I Then a),
~ is a b i j e c t i v e b),
In fact! point
c),
P such
mappings
d)
Assume
that
theorem
A is a c o n s e q u e n c e
of
that
implies
collineation
P~QO
=
I
of F 2 if one
of the
conditions
holds. there
that ~P
would
exist
a mapping
a~ 2 . Consider
points
a of t h e o r e m VsW
A and a
of pa a n d d e f i n e
Benz
91
oI,~ 2 : F2+ F 2 as
follows: X
gl
Hence,
by
X~2
=
P~
= V,
X~
s
for all X~P,
pS2 = W
theorem
B,
.
the mappings
F 2 . But there do not exist oI o 1 P * P~= and X = X ~= So w h a t
one actually
theorem
B.
It m i g h t
for Galois Theorem # 2,3
fields
Vp,Q s Then
c a s e d) square
and
being
2
the
Now
-11
being
exclude Lemma
following
to
theorem
show
theorem
M is
B is a g e n e r a l i z a t i o n
([7])
if p g Q o =
I
of F 2
of
[3] it r e m a i n s
fields
F = GF(pn),
to p r o v e p >7,
theorem
such
that
B in -3 is a
-11.
proof
of theorem
-3,
-11
is u s e d
are
only
2 P-~ = 3
in o r d e r
implies
not a square
B in
[3],
squares
part
in F we
II,(section
realize
that
to e x c l u d e . P ~ = Q ~
3), -11
in t h e
p ~ Q a = 3 o r P ~ = QO
we have
to f i n d
some
other
argument
to
pa = Q~
I:
Let
a square
Proof:
F be a finite
in F. T h e n
AB = AC =
3
and
there
Now
It m i g h t
B-~ =
may
assume
of t r a n s i t i v i t y I
be noticed
c h a r F % 2,3.
or
infinite
do n o t
exist
field
such that
points
-11
is n o t
A,B,C 6 F 2 with
BC = I .
We otherwise
x y # O, b e c a u s e tries.
not
that
implication YP,Q6F
in o r d e r
that
P-Q = I if a n d o n l y
in F, b u t
a square
that
a c o m m u t a t i v e f i e l d F of c h a r a c t e r i s t i c a bijection g : F 2 ~ F 2 such that
to r e s u l t s
for t h e c a s e
oI,~ a such
of
Given
for Galois
If w e c h e c k
be collineations
for all X s
to p r o v e
o is a c o l l i n e a t i o n
2. A c c o r d i n g
must
two collineations
be noticed
of t h e
of F.Rado:
and given
9
has
~I,~2
implies that
A =
(O,0),
properties
B =
of the group
the contradiction
-1!
being
(x, ~i,), C =
(5 - 6 ~ ) 2
not a square
3 (y, ~ ) ,
of i s o m e = -11.
in F i m p l i e s
92
Benz
Lemma with
2: L e t
F be a finite
or infinite
field
of characteristic
~2,3
the property
(~) T h e r e
exists
square Given
5
t s
3,4}
9 t2+t_-T~ is a
such that
in F.
then
such that
an element
points PA =
P,Q 6F 2 with
~
= 3 there
exist
points
A,B 6F 2
I a n d A B = BQ = 3.
Proof:
B e c a u s e of 9 2 ta + ~-~_4 = s .
(~) t h e r e
exist
t,s 6 F
with
s ( t-3
I)
t #~,
3,4
t E {3,
~_}
and
Define t-4 x = ~
t_s3 t-4 ( _ + I), y = 2 t - 5
It is x y @ 0 b e c a u s e o t h e r w i s e s2 9 a I = O, i.e. (t-3) 2 = t 2 + ~ (t-3) Furthermore (1 + y - x)(I Because P =
of
3)= x
3.
(O,O) (x, ~ ) = 3 w e m a y
(O,O),
Q =
Lemma
3: L e t
lemma
2 and
a mapping
+ 3 y
(x, x ) .
Now
such
that
g : F2
-3
assume
put A
F be a f i n i t e
or
, i.e.
:=
without
(1,1)
infinite
is a s q u a r e
and B
loss :=
field with
in F,
of g e n e r a l i t y
(1+y,
1+--~). Y
property
but not
-11.
(~) o f
Consider
F = with
vp,Qs F 2
P-Q = I
~
p~Qs =
I .
Vp,Qs
P-Q = 3
~
poQs = 3
Then
Proof:
Consider
we h a v e
char
F~2,3
P,Q 6F 2 with of F.
Put V
e 6 F with and
e2=-3.
thus
P-~ = 3. H e n c e := P +
Q = P+' (z, ~ ) , z % O a s u i t a b l e
(ez,-~'),
W
= QV= QW = I .
This
implies
If pS # Q S
the
last
equations
[3],
II.)
part
Vp,Q s Now assume with
We t h u s
:= P +
(Bz, ~ ) .
P~Vd = PSWS
have
2 P-Q = 3
p S = QS
S i n c e -11 is n o t a s q u a r e 3+~ ~ 3 e e := --6--30, 8 := ~ - - ~ O " Given
= VaW ~ = QSVO = QSWS
implies
2 there
It is A S #
otherwise
B ~ because
exist
points
( o b s e r v e pS = QS)
B ~ PC; = 3 or B s = pS
1
= I. 3,b,
in
p s Q s = 3 or pS = QS
of l e m m a
P-~ = I, A-B = B-Q = 3. T h i s
=
proved
A S B ~ = 3 or A s = B ~,
PSAs =
element
PV=PW=VW
l e a d to P S Q S = 3. (S. s e c t i o n generally
implies
Because
Hence
in F
A,B s F a
poAs =
.
~AsP G = 3 or A s = pS c o n t r a d i c t i n g
I,
Benz
93
It is B ~ # p a Thus
because
otherwise
A--dP~ =
3 or A ~ = P ~
P ~ A ~ = 1, A O B ~ = 3, BOP ~ = 3, w h i c h
Lemma
4:
Given
F = GF (pn)
contradicts
lemma
1.
with
1)
p >7
2)
p = 7, n o d d and 3/n
Then there
.
or
exists
a t ,~
.
,3,4 in F such that t 2 +
is a s q u a r e
in F. Proof:
I)
If 2 is a s q u a r e
If -2 is a square
observe
observe 5 I #~,3,4
6 ,5,3,4 and
and 6 2 + ~ - C ~ 9 12 + ~ = -2.
If 2 and -2 are n o n - s q u a r e s then 2. (-2) m u s t be & square 5 02 9 32 a l s o -1 Now observe O #~,3,4 and + = -( ) 0-4
= 2.(
)2.
and h e n c e
"
2)
In this
case GF(73)
is a s u b f i e l d
of F. The p o l y n o m i a l
t3 + 3 t2 - t - I
is i r r e d u c i b l e o v e r GF(7) and hence has a zero t 9 = 1 is a square in F. in GF(73) . Thus t ~ 5 ,3,4 and t 2 + t-4
Remark: square
In all
GF(7 n) , n odd and 3/n, we h a v e t h a t
-3 is a
b u t not -11.
The proof section
fields
of t h e o r e m
2, part
III,
B in case
d) m a k e s
use of c o n s i d e r a t i o n s
in
[3]
References [1]
Beckman, F.S., Quarles, D.A.: On i s o m e t r i e s Proc. Am. Math. Soc. 4, 810-815 (1953).
of E u c l i d e a n
[2]
Benz, W.: A B e c k m a n - Q u a r l e s T y p e T h e o r e m for Plane T r a n s f o r m a t i o n s . Math. Z. 177, 101-106 (1981).
[3]
Benz, W.: On m a p p i n g s p r e s e r v i n g a single L o r e n t z - M i n k o w s k i distance. I,II,III. I (Proc. Conf. in m e m o r i a m B e n i a m i n o Segre, R o m e 1981), II,III (To a p p e a r in J o u r n a l of Geometry).
[4]
Benz, W.: Eine B e c k m a n ~ Q ~ a r l e s - C h a r a k t e r i s i e r u n g der Lorentzt r a n s f o r m a t i o n e n des ~ . A r c h i v d.Math. 34, 550-559 (1980).
[5]
Kuz'minyh, A.V.: On a c h a r a c t e r i s t i c p r o p e r t y of i s o m e t r i c m a p p i n g s . Dokl. Akad. Nauk. SSSR, T o m 226, Nr.1 (1976).
~6]
Lester, J.: The B e c k m a n - Q u a r l e s T h e o r e m in M i n k o w s k i Space a S p a c e l i k e S q u a r e , d i s t a n c e . To a p p e a r A r c h i v d. Math.
[7]
Rado, F.: On the c h a r a c t e r i z a t i o n of plane R e s u l t a t e d. Math. 3, 70-73 (1980).
[8]
S ~ m a g a , H . - J . : Zur K e n n z e i c h n u n g von L o r e n t z t r a n s f o r m a t i o n e n e n d l i c h e n Ebenen. To appear J o u r n a l of Geometry.
[9]
Tallini, G.: On a t h e o r e m by W.Benz c h a r a c t e r i z i n g plane L o r e n t z T r a n s f o r m a t i o n s in J ~ r n e f e l t ' s World. To appear J o u r n . o f Geometry.
affine
Lorentz
13
!Eingegangen
am 2.Oktober
for
isometries.
Mathematisches Seminar der Universit~t Hamburg B u n d e s s t r . 55 0-2000 Hamburg
spaces.
1981)
in