euolerrug Euo;1Euo11 slrsd uopusl IroA /(eN Eraqleprell ullreg o,(1oa Eepan-reEulrdS
Springer-Verlag Tokyo Berlin Heidelberg New York London Paris Hong Kong Barcelona
suorlBrlsnflI€t qlla
With 43 Illustrations
seredsrellnluqclel o] uopcnporluluv
to Teichmiiller Spaces An Introduction
rqrnEluel 'ntr . ilIsoferul 'A
Y. Imayoshi . M. Taniguchi
Yorcut IMAYOSHI lvayosHr YOICHI Departmentof of Mathematics, Mathematics,College college of of General GeneralEducation, Department Education,Osaka osaka University, University,Toyonaka, Toyonaka, Osaka560. 560.Japan Japan Osaka Ivfrrs.lHrxo Tesrcucnr M-\SAHIKO T-\:"IGliCHI Departmentof of Mathematics, Mathematics,Faculty Facultyof of Science, Science,Kyoto Kyoto University, Department University,Sakyo-ku, Sakyo-ku,Kyoto Kyoto 606, 606, Japan Japan
ISBN 4-431-70088-9 4-431-70088-9 Springer-Verlag Tokyo Berlin ISBN Springer-Verlag Tokyo Berlin Heidelberg HeidelbergNew New York York ISBN 3-540-70088-9 3-540-70088-9 Springer-Verlag ISBN Springer-Verlag Berlin Berlin Heidelberg HeidelbergNew New York Tokyo Tokyo ISBN 0-387-70088-9 0-387-70088-9 Springer-VerlagNew ISBN Springer-Verlag New York Berlin Berlin Heidelberg Heidelberg Tokyo Tokyo Springer-Verlag Tokyo1992 1992 © Tokyo @ Springer-Verlag Printed in Hong Hong Kong Kong This work work is subject All rights are reserved, reserved, whether the whole or part of the material subject to copyright. All i s concerned, c o n c e r n e d , specifically s p e c i f i c a l l y tthe h e rrights i g h t s of is o f ttranslation, r a n s l a t i o n , rreprinting, e p r i n t i n g , rreuse e u s e of o f illustrations, i l l u s t r a t i o n s , rrecitation, ecitation, broadcasting, ways, and storage banks. broadcasting, reproduction on microfilms or in other ways, storage in data banks. etc. in this publication does The use use of registered registered names, names, trademarks, etc. does not imply, imply, even in the absence absence of names protective o f a specific s p e c i f i c statement, s t a t e m e n t , tthat h a t such a m e s are r o t e c t i v e laws such n a r e exempt e x e m p t from f r o m tthe h e rrelevant elevant p l a w s and and regulations general use. regulations and therefore free for general use. Printing and binding: Best-set Best-set Typesetter, Ltd., Ltd., Hong Hong Kong Kong
August, 1991
1661'lsnEny
Yoichi Imayoshi M asahiko Taniguchi
tqcn|tuol oqxqDspW tr1sofr,ou.tJ ?tplo1
'{ooq rno Jo uorlrpe qsrpug srql Sur,rerqceur l.roddns 1ryd1eqpue pur{ rterl} roJ o,t1o; Eepen-.re3ur.rdgo1 pue ,, 1rsra,rru1 o1o.{y ;o oua11rfuey JosseJordof s{u€rlt . 1reeq .rno ssa.rdxeo} a{I plnolrr a^\ ,f11eurg 'ldr.rcsnueuraq1 slred snorr€A ;o Sutpea.r,tq dleq qcntu sn perapuer oq.u ,ena.e3ruelftunr€H pue ,errreSngr4n,{rqso; 'o1ournsey41 olo{€tri{ 'eurrfoy rqso,epeg ,tlprcedse ,san3eellocpus spuarq II" ol apnlrler3 rno prorar osl€ eM .e)rlp" elqenp^ qcnur arle3pu" uorlrpe qsrl3ug eq1 ;o ldr.rcsnueu aql pear f,lpulrl e^\€{lo ore}ox pue epoJnx lqsepeJ, srossaJord 'pa3ueqcun sr aq1 yo .{poq ureur eq1 ,asaq1 lxel ueql Jeqlo 's1led pappe ol pat€lal fgerqc secueJaJarAreu Iereles apnlcur eM '?c"duror ,t1en1ce$ 'g Kpueddy ur palcnrlsuoc ,ece3rns uueureru lceduroc e;o acedsrTnpou pegrlreduroc eql leqt ,!rre,r o1 ^{oq e?errpur aal '.req1rng'(2 raldeq3 crrla(u uossreladlraM aq1 o1 qlrrr,raceds ?'S$) Jo lcadsar ,(1 raldeq3 rellnurqcral eql Jo sernl€Arnr 3o ,(1rnr1e3au Jo uorle^rrep € pue 3o 7'6$) .recueds pue €rr€poy ol enp se)eJrns uuetuarg Jo sarnlcnrls xalduoc eq1 ;o .{roaq1 uor}euroJep pue f.roaql rellmuqrral uaa^rleq uorlceuuoc ,(g .re1deq3 Jo t$) uap,tog Jo sueroeql pelerqele) ;o goord eql Jo qrle{s e epnl?ur osle eA\ '9 leldeq3 g$ ul suorl€ruroJsuerl J?Inpotu Jellntuqtrel uorl€curss"l? aq? uo Jo Jo ,troaql sreg pue uolsrnql eql pu€ ,g .ra1deq3Jo ?$ ul aceds .rallnuqcral aq? Jo ,s3urql .raq1oBuoury uorlecgrlcedruo? s(uolsJnqJJo uortcnrlsuoc eql pp€ e,ra, 'suorltasqns Jo suorlras Ieuorlrppe se scrdol '1xa1 Pal€ler ..{,aulera^es epnl)ur o1 pue leurSrro eq} ur sroJre roullu etuos lrerro:) o? uorlelsuerl srq? fq paproge flrunlroddo eqt Jo e3etue^p€ ua{e} o^€q ed\ 'asauedel ur uellrrltl acedsrallntuq)ref uo rlooq frolcnpoJlur Jno Jo uorl€lsue.r1qsq8ug eql sr srqJ
This is the English translation of our introductory book on Teichmiiller space written in Japanese. We have taken advantage of the opportunity afforded by this translation to correct some minor errors in the original text, and to include several new related topics as additional sections or subsections. Among other things, we add the construction of Thurston's compactification of the Teichmiiller space in §4 of Chapter 3, and the Thurston and Bers theory on the classification of Teichmiiller modular transformations in §5 of Chapter 6. We also include a sketch of the proof of celebrated theorems of Royden (§4 of Chapter 6), connection between Teichmiiller theory and deformation theory of the complex structures of Riemann surfaces due to Kodaira and Spencer (§2.4 of Chapter 7), and a derivation of negativity of curvatures of the Teichmiiller space with respect to the Weil-Petersson metric (§3.4 of Chapter 7). Further, we indicate how to verify that the compactified moduli space of a compact Riemann surface, constructed in Appendix B, is actually compact. We include several new references chiefly related to added parts. Other than these, the main body of the text is unchanged. Professors Tadashi Kuroda and Kotaro Oikawa kindly read the manuscript of the English edition and gave much valuable advice. We also record our gratitude to all friends and colleagues, especially Sadayoshi Kojima, Makoto Masumoto, Toshiyuki Sugawa, and Harumi Tanigawa, who rendered us much help by reading various parts of the manuscript. Finally, we would like to express our hearty thanks to Professor Kenji Ueno of Kyoto University, and to Springer-Verlag Tokyo for their kind and helpful support in achieving this English edition of our book.
Preface to the English Edition
uoll.rPfl rlsrltug aq+ ol arBJard
snuaS;o saf,eJJnsuueluaru pasolo palueseJdaleH 'sJelaue.red xalduroc I - fg ,tq pezrr?eu"r€d rl (Z ? 6) 6W l€rlt pelrass€ uueuarg 'Lg8l uI 'aue1dxalduroc eql rlll^{ peul}uapl sl W leq} s^roqsselJnc crldqa pue suoll?unJ ot1dt11e;ofroeql eql '.r(11ecrsse1c u^rou{ IIe^{ $ sy '1utod auo Jo slslsuo) 0W ,(lsnonqo 'araqds uuetualg aql o? tual€^rnbe flleorqdrotuoloqlq sr oJez snua3 yo a?tsJrnsuu€ruerg pesol) ,trerraacurg '6 snua8 Jo saceJrnsuueurelg pasolc Jo sasselr ecuale,rrnbeclqdrou -oloqlq IIeJo las eql'q t€rlt'f snua3;o ecedsqnpour s(uusrualg aq.6W p"I 'se)"Jrns uuetueru (uollnlo^a sll Surceqtr pasolr ro; flesolc erou uelqo.rd srql aurrrrexesn lel 'uralqord lnpour s(uueruerg pell€? sI sIqI 'ploJrusru alqerluereJrp l"uorsueulp-o^\? peluerJo ua^rS e uo peuSrsseeq plnoc seJn+rnrls xalduroc lrurlsrp fueur ilroq ol se saslJ€ d11ern1euuorlsanb eqa 'luele
A Riemann surface is a connected one-dimensional complex manifold. Two Riemann surfaces R 1 and R2 are biholomorphically equivalent if there exists a biholomorphic mapping from R 1 onto R 2 . It is said that R 1 and R 2 have the same complex structure if they are biholomorphically equivalent. A Riemann surface can be also regarded as a real two-dimensional oriented ~ifferentiable manifold. Even ifthere is an orientation-preserving diffeomorphism between two Riemann surfaces, they are not necessarily biholomorphically equivalent. The question naturally arises as to how many distinct complex structures could be assigned on a given oriented two-dimensional differentiable manifold. This is called Riemann's moduli problem. Tracing its evolution, let us examine this problem more closely for closed Riemann surfaces. Let M g be Riemann's moduli space of genus g, that is, the set of all biholomorphic equivalence classes of closed Riemann surfaces of genus g. Since every closed Riemann surface of genus zero is biholomorphically equivalent to the Riemann sphere, obviously M o consists of one point. As is well known classically, the theory of elliptic functions and elliptic curves shows that M 1 is identified with the complex plane. In 1857, Riemann asserted that M g (g ~ 2) is parametrized by 3g - 3 complex parameters. He represented closed Riemann surfaces of genus
-arnba fllecrqd.rouroloqlq fltressacau lou ere feql'seceg.rnsuuetuelg o/r{}uae^t}eq usrqd.rouoagrp Surrrrasard-uorl"luerroue sr ererllJr ue g'ploJrueur alqetlua.ragrp
peluerro e se pap.re3al osle eq ue) er€Jrns uueruarg y leuorsuerurp-o^rl I€er 'lual€^Inbe flecrqd.rouroloqq are faql JI arnl)nr?s xeldluo? eur€s eql a^eq zU pue rU teqt PIes sI ?I'zU otuo Ig uror; Surddeur ctqd.rouroloqrq e slsrxe ereql Jr lualerr,rnbe,tllecrqdrotuoloqlq erc zA pu€ IU sec€Jrnsuu€urelg o^rl 'ploJrueur xalduroc leuorsuaurp-euo pel)auuo) e $ af,sJrns uuetualg V 'sacedsrallnurlf,rel Jo aruelsqns eqt dseJ3 rapeer eq1 dlaq sueld eseql t"q1 edoq e11 'spoqleur ?rlsrrneq pue saldurexe 1ecrd,t1q8norql slcelqns 'suor?e^r?oruall1ufl.rd pue slcedse freluaurala lsour eql tuoq lueserd osle eM urSaq a7y1'alqrssod s€ paurcluoc-Jless€ {ooq eq} e{eu ol palduralle e eq elA 'f.roaq13ur.r1saq1 uI selor 'f11uacag 'droeql luelrodrur Surdeld un3aq seq sacedsrallnurqrre;,;o f.roeql aq1 crpo3re pue 'sctueuf,p xeldruoc 'suorlenbe l€IluaraJlp 'suorsuauttpeeJql pue o^rl ur d3o1odo1'frlauroaE Fllualeltp 'frlauroe3 cre.rqaSle'srsdleue xelduroc 'sunog: crqd.rourolne'sdnor3 et1 'sdnor3 uelulely 'sdno.rEuelsqt\{ 'splogrueurxelduroc uorlcesJelul eql uI saII s?al€ luelrodun ,tueur apnlcul asaql 's?rl€lueqletu Jo ;o 'eceJrns ua,rr3 e uo seJn]f,nJlsxalduoc eq] 1cafqns srqtr IIe ;o uorlezrrlaurered e a,rr8 qrrqrrr sareds Jallnruq)ra; ;o froaql aql luasard arrr '4ooq $qt uI
In this book, we present the theory of Teichmiiller spaces which give a parametrization of all the complex structures on a given surface. This subject lies in the intersection of many important areas of mathematics. These include complex manifolds, Fuchsian groups, Kleinian groups, Lie groups, automorphic forms, complex analysis, algebraic geometry, differential geometry, topology in two and three dimensions, differential equations, complex dynamics, and ergodic theory. Recently, the theory of Teichmiiller spaces has begun playing important roles in the string theory. We have attempted to make the book as self-contained as possible. We begin from the most elementary aspects and primitive motivations. We also present subjects through typical examples and heuristic methods. We hope that these plans help the reader grasp the substance of Teichmiiller spaces.
'f.rlatuoe3 cre.rqeSle'sace;rns urr€urerU ,,{roaq}aq} '.{rlaruoa3 Jo Jo l€rluareJrp pue seeJ€aql ur elq€reprsuocuaeq seq ssarSo.rdpue 'suotle3llselur elrsualxe perrnds seq uralqord srqtr'uuerueql pr€qureg 'J 'C qfl^r peleurSrro ecsJrnsas€q pexg e uo soJnlcnrls xalduoc Jo suorl€rre^ eql ezrrlaue.red o1 1lrotlJo uralqord aq;
The problem of how to parametrize the variations of complex structures on a fixed base surface originated with G. F. Bernhard Riemann. This problem has spurred extensive investigations, and progress has been considerable in the areas of the theory of Riemann surfaces, algebraic geometry, and differential geometry.
Preface arBJard
vlll Vill
Preface Preface
as finite finite branched branched covering covering surfaces surfacesof of the the Riemann gg as Riemann sphere, sphere, and and determined determined parameters of the number number of of parameters of M Mo by the the by the number of degrees of freedom of number of degrees of freedom of the the g points. branch points. branch In this this book, book, we we treat treat moduli moduli spaces In spaces through through Teichmiiller Teichmiiller spaces spaces and and groups as Teichmiiller modular modular groups as follows. follows. Teichmiiller Let R R be be aa closed closed Riemann genus g, g, and Riemann surface surface of Let of genus and let let E X be be aa marking marking on on i.e., aa canonical canonical system ft, i.e., system of generatorsof of generators R, of aa fundamental fundamental group group of pairs of R. .R.Two Two pairs (R,D) and (R', (B', E') D') are arc defined defined to to be be equivalent equivalent if (R, E) and if there there exists exists aa biholomorphic biholomorphic mapping f: -R'such that f. is equivalent equivalentto mapping -+ R' such that (E) is E] the to E'. Dt. Denote Denote by by [R, the f : RR--/.(X) [E,X] equivalenceclass classof of (R, (R,E). Such an an equivalence equivalenceclass equivalence E). Such E] is called a marked class [R, I] is called a ma"rked [R, closed Riemann surfaceof genusg. g. The Riemann surface of genus The Teichmiiller Teichmiiller space closed spaceT genusgg consists ?o of genus consists g of of all all marked closed closed Riemann surfaces surfaces of genus g. g. It is of genus of is verified that T ?,g has has aa canonical complex complex manifold structure, structure, and and it is canonical is aa branched branched covering covering manifold of of spaceMg. Mn.Its covering transformation group group is the moduli space Its covering is called called the the Teichmiiller Teichmiiller group M Modo which corresponds correspondsto the modular group odg which the change changeof of markings. markings. It turns out out that M Mng is is identified with the quotient space space Tg/Mod that TofModr,g, which has has aa normal complex analytic space spacestructure. complex spaceT The Teichmiiller space h* appeared appearedimplicitly implicitly in the continuity arguments arguments 4 g has Felix Klein and and Henri Poincare, Poincar6, who who studied Fuchsian of Felix groups and Fuchsian groups and automor1880s.Robert Fricke, phic functions from the 1880s. Fricke, Werner Werner Fenchel Fencheland and Jakob Nielsen Jakob Nielsen constructed T as aa real (69 -- 6)-dimensional Tc constructed real (6g 6)-dimensional manifold. Fricke Fricke also also 2 2) as g (g k ~ asserted that T asserted ?,g is aa cell. cell. Their Their method was was based based on the uniformization theotheosurfaces due due to Klein, Poincare, rem of Riemann surfaces Poincar6, and and Paul Koebe: Koebe: every every closed closed genus gS (~ surface of genus (> 2) is Riemann surface is identified with the quotient space space H /f r I of the upper half-plane H .I/ by aa Fuchsian Fuchsian group r f which is is isomorphic isomorphic to aa fun.R. Then each damental group of R. each point [R, I] in T corresponds to a canonical ?,g corresponds canonical [R, E] system of generators generators of r. we see system E] is represented by a point in l- . Hence Hence we see that [R, X] is represented [.R, 6 g- 6 which is called R6g-0 called the Fricke R E]. Moreover, the Poincare Fricke coordinates coordinates of [R, Moreover, Poincar6 lR,t). f1 induces induces the hyperbolic metric on R, metric on H .R, and the conformal structure defined by this hyperbolic metric corresponds defined corresponds to the complex structure of R. .R. One of Oswald Teichmiiller's great contributions to the moduli moduli problem was was to recognize it becomes recognize that that it becomes more accessible we consider accessibleif if we consider not only conformal quasiconformal mappings. mappings but also quasiconformal mapping means mappings. A A quasiconformal means also quasiconformal = satisfies the Beltrami . a homeomorphism which satisfies Beltrami equation = J.lW A Beltrami equatiotr W pu". ut7 A Beltrami z z coefficient p J.l measures measures the magnitude of deformation of a complex coefficient complex structure or a conformal structure. Around Around 1940 discovered an intimate intimate relation 1940 Teichmiiller discovered between between extremal quasiconformal quasiconformal mappings and holomorphic quadratic differentials, entials, and asserted asserted that T g is homeomorphic homeomorphic to R6g-0. R 6 g- 6 • He also also introduced the thatTn Teichmiiller distance Ts. distance o\ on T g• of the 1950s, Lipman Bers Bers developed developed the In the end of 1950s, Lars V. Ahlfors and Lipman fundamentals of of the theory of of Teichmiiller spaces, spaces, and they gave gave rigorous proofs for Teichmiiller's results. results. They They also also showed showed that that To Tg @ (g 2~ Z) 2) has has a natural natural complex structure structure of of dimension 39 3g -- 3, and can be embedded embedded in A2(R) A 2 (R) as as a bounded domain, where ,42(R) A 2 ( R) is the space space of of holomorphic quadratic differentials of of a closed R of of genus genus g. From From the Riemann-Roch theorem, itit is closed Riemann surface surface E
ur Surddeu leruJoJuof,lssnbIeuerlxa eql t"ql sI €apl s(rellnruq?IeJ Jo e?uassa 'asues ulel er{J 'u uo l?r}uereJrP tlterpenb rrqdrouoloq e tuou Peul"}qo Pu? -Jec ur ((eug€ f11eco1,,sl q)IqA\ Eutddeur l"ruJoJuosls€nbe sueatu g'3o Surddeur rallnuqclatr y 'sgurddetu leruroJuof,IsenbSulsn fq palcnrlsuoc sr (6 Z) f snuaS aql 'g raldeq3 u1 Jo U ec€Jrnsuueruorll pesol?€ Jo (U)J eceds .rellntuqcletr, 'sluarclgeoc nuerllag uo suollnlos;o acuepuadaprtqdrouoloq eql pue 'uorlenba ''e'l (sreg rurerlleg ue.rlr8e 8ur.{;sr1esSurddeu leuroJuorlssnb e;o eruelslxe eql orrrl a,rord el!\ uaqtr 'poqleur ctrlauroeS pu€ sJoJIqv ol anP sueroaql lelueusPunJ '11e;o ,sSurddeur e pu€ seJnpaco.rdcr1f1eu" o^rl Eursn leurro;uoarsenbeugap eira 's3urddeu 1s.ug leulo;uocls€nb Jo sltsluaulsPunJol pelo^ep sr 7 .ra1deq3 'tgyo aldunsJo suoll?unJ pesol) scrsepoa3 eql euluralap slutod 's?Isapoa8asaql 3uo1e qlSual crsapoa31€qA\Jo uralqord eql q fpnls oqe eM srelaruersd lsrlrl pu€ s)Isepoe3pesol) eldurls I - rt Jo suolllunJ ql3uel llsapoa3 'scrsapoa3 ,tq peugap ere 6a uo saleurpJoor ueslelN{eq)ual eql uaq;, Pasolc aldurrs ,{q slued Jo srred G - 67,Jo }es e o}ur saceJrnsuu"ruaru esodurocapo1 sr f.rlauroa3 cqoq.red.'tq eql 'f,Irletu elstulod aq? ,tq poqleu Pacnpul leluauepunJ slsaP I raldeq3 ;o 1u1odr*ar,raql tuo.r; (Z 7 0) fu ;o uorlcnr}suot aql q}l^{ (suol?eurroJsuerl 'sdnorE uelsqcnJ snlqgl tr Pu€ '1ce; 'sace3:rnsuueurarg Jo uraroaql uotlszltuJoJ-Iuneql ,{gar.rqureldxa oqe ar* '.1'3o srole.reua3 srrll /r{oqso} rapro uI 'tJr qlyl\ t;;o uorlecgtluePl eq} sarrr3srq; d snuaSJo [3'U] q ;o surals.{sl€?nrou€?Surpuodsar.ro,eq} qll^{ pagl}uePl (A -) '.re1nct1redu1 '.7 dno.r3 uelsqlnd e dq H aceJJnsuu€uralg pesoll pa{r€u q)"a ,P aueld-;1eqraddn eql Io J lH aceds luatlonb e ,tq paluasa.rdaru sed,t1^ aJ roJ 6J sluaserdar ldecxe a?eJrnsuueluaql f.rarra1eq1^roqs aA\.g-rg?I Jo lesqns e se '6 reldeq3 u1 qclqa (U ?) 6 snua3 3o tg aceds e{rlrJ eI{} 1?nrtsuoa em 'sclrle(u ueluueruelu 'sSurddeur fq pacnpur selnlf,nlls leluJoJuot Jo Pue leuloJuoclsenb Jo slulod/rrell or{} uro{ tg ,(pn1s osle a71\'6 snueS Jo sec€JJnsuueurelg Pasol) Pe{relu Jo }as 'sac€ds eseqt eql s-e,' snuaSJo t; aceds rellnuqf,ral eql lcnrlsuoc at',r Jo lepour eql Surluesa.rdregy'1 snua3Jo sec€Jrnsuuetualg PesolcJo aceds rellmuq?Iel 's.raldeqo 8uu'ro1o; eql roJ '11e aql pue aceds rlnpou aql lpcar ar* Jo lsrlJ spunor3lceq pue suolls^llotu a^Illtulrd ar'r3 ol q I .ra1deq33o esod.lnd eqa 'peqlrtsep ,{garrq ^lou $ {ooq slql ;o raldeqr q)"a Jo lua}uol aqJ,
The content of each chapter of this book is now briefly described. The purpose of Chapter 1 is to give primitive motivations and backgrounds for the following chapters. First of all, we recall the moduli space and the Teichmiiller space of closed Riemann surfaces of genus 1. After presenting the model of these spaces, we construct the Teichmiiller space T g of genus 9 as the set of marked closed Riemann surfaces of genus g. We also study Tg from the viewpoints of quasiconformal mappings, and of conformal structures induced by Riemannian metrics. In Chapter 2, we construct the Fricke space Fg of genus 9 (~ 2) which represents Tg as a subset of R 6g-6. We show that every Riemann surface except for a few types is represented by a quotient space H / r of the upper half-plane H by a Fuchsian group r. In particular, each marked closed Riemann surface [R,17] of genus 9 (~ 2) is identified with the corresponding canonical systems of generators of r. This gives the identification of T g with Fg • In order to show this fact, we also explain briefly the uniformization theorem of Riemann surfaces, Mobius transformations, and Fuchsian groups. Chapter 3 deals with the construction of T g (g ~ 2) from the viewpoint of hyperbolic geometry induced by the Poincare metric. The fundamental method is to decompose Riemann surfaces into a set of 2g - 2 pairs of pants by simple closed geodesics. Then the Fenchel-Nielsen coordinates on Tg are defined by geodesic length functions of 3g - 3 simple closed geodesics and twist parameters along these geodesics. We also study in the problem of what geodesic length functions of simple closed geodesics determine the points of T g • Chapter 4 is devoted to fundamentals of quasiconformal mappings. First of all, we define quasiconformal mappings, using two analytic procedures and a geometric method. Then we prove two fundamental theorems due to Ahlfors and Bers, i.e., the existence of a quasiconformal mapping satisfying a given Beltrami equation, and the holomorphic dependence of solutions on Beltrami coefficients. In Chapter 5, the Teichmiiller space T(R) of a closed Riemann surface R of genus 9 (~ 2) is constructed by using quasiconformal mappings. A Teichmiiller mapping of R means a quasiconformal mapping which is "locally affine" in certain sense, and obtained from a holomorphic quadratic differential on R. The essence of Teichmiiller's idea is that the extremal quasiconformal mapping in
'sdrqsuorlelar rreql f;rre1c ol pue ,lrl,arrr slurod snorJ€Aaseql tuorJ seceds rellntuqole1, e?sSllselul ol sI selPnls 3.o aseql Jo ecuasseeqI 'reqlo qlee o1 Palelal(1eso1c er" suoll€ulloJaP aseqtr
These deformations are closely related to each other. The essence of these studies is to investigate Teichmiiller spaces from these various points of view, and to clarify their relationships.
.sSurddeur leuroJuorrs€nb fq pacnpur salnlcnrls xalduroc Jo suorleuroJap (gl) pue 'sctllaru crloq.redfq fq pacnpur selnltnrls IstuJoJuo?Jo suorleuroJeP (I) sdno.r8uelsqcnJ Jo suolleuroJaP (l)
(i) deformations of Fuchsian groups, (ii) deformations of conformal structures induced by hyperbolic metrics, and (iii) deformations of complex structures induced by quasiconformal mappings.
:pasn era!\ sac€Jrns uu€uralu 'setpnls asaq} uI Jo suorl€rrrroJapJo suorldrr?saP aarql 3ul^rolloJ el{l }s€al }e 'r; ;o sursrqdrourolne crqd.roruoloqrq ;o dno.r3 alercslP e eq o1 lno surnl 6a uo 0poy1 dnorS relnpou rallntuq)Ietr, aql Jo uollc" aql 'alour.reqlrng 'eceds rollal ultou{ l€uolsueutP-(g 0S) xelduroc € sl (U)zy leql
known that A 2 (R) is a complex (3g - 3)-dimensional vector space. Furthermore, the action of the Teichmiiller modular group M odg on T g turns out to be a discrete group of biholomorphic automorphisms of Tg • In these studies, at least the following three descriptions of deformations of Riemann surfaces were used: IX
XI
af,"Jard
Preface
Preface Preface
x
those which which determine determine aa given given point point of of "(E) T( R) is is aa Teichmiiller Teichmiiller mapping. mapping. Then Then itit turns out out that that Q Tg k(g >~ 2) is homeomorphic to to the space space Ar(F) A 2 (R) _of of holomorphic turns quadratic differentials on .R. R. Hence, Hence, ?s Tg is homeomorphic to to R6c-0. R6g-6. We also show quadratic that "(.R) T(R) is complete with with respect respect to to the Teichmiiller Teichmiiller distance. distance. that In Chapter Chapter 6, using the Schwarzian Schwarzian derivative, we construct the Bers In ofT(R) into a bounded domain in in ,42(.R.), A 2 (R*), the space space of of holomorphic hoiomorphic embedding of "(R) into quadratic differentials differentials on ft*. R*. Here, E* R* denotes the the mirror mirror image of of .R. R. By By the the quadratic A 2 (R*) is also also identified with with the (3g -- 3)-dimensional 3)-dimensional Riemann-Roch theorem, Az(R-) space C3r-3. C 3g - 3 . Using this embedding, embedding, we see see that that "(ft) T(R) has has a complex Euclidean space natural complex manifold manifold structure structure of of dimension 3c 3g -- 3. It It is also also proved that that natural the Teichmiiller Teichmiiller modular modular group M M odo odg is a discrete group of of biholomorphic biholomorphic autoautothe "0. of T properly discontinuously discontinuously on T This shows shows that that the ?r, morphisms of g • This g , and acts properly moduli space M g =Ts/Modc T g/ M odg has has a normal complex analytic space space structure structure of space Mo moduli dimension 3C 3g - 3. dimension Chapter 7 treats the Weil-Petersson Weil-Petersson metric on T 4.g • The holomorphic tangent with the dual space point space of T point [R, E] with space of of ,42(R). A 2 (R). Then is identified at a of To space g [.R,X] ?n' induces the Weil-Petersson Petersson scalar product on A 2 (R) induces Weil-Petersson metric on T on.42(R) scalar product the Petersson g• We give two two proofs for the fundamental that the Weil-Petersson metric metric is fundamental fact that Kahlerian. Both Both of due to Ahlfors. of them are a.redue Kihlerian. In Chapter 8, we establish beautiful formula due Wolpert, which due to S. S. Wolpert, establish a beautiful representation states that Weil-Petersson Kahler form on T has a simple representation h* Kihler the Weil-Petersson states that 4g with respect to Fenchel-Nielsen coordinates. coordinates. Fenchel-Nielsen with respect with Schiffer's We also deals with Schiffer's interior variA deals give two appendixes. Appendix A appendixes. Appendix also give Ahlfors' conation from quasiconformal mappings. We explain Ahlfors' viewpoint of quasiconformal from the viewpoint was , struction of the complex structure for which was the first construction of its for T Ts, g with respect degeneranatural complex structure. We also discuss variations with respect to degeneraalso discuss natural compactifications of Riemann surfaces. we explain briefly the compactificasurfaces.In Appendix B, we tion of moduli spaces. spaces. books and notes of books At the end of each are bibliographical notes there are each chapter, chapter, there is complete. articles to which we referred in the text. The bibliography is not complete. There we referred articles hope spaces. is a vast literature relating to the theory of Teichmiiller spaces. We hope that is a vast papers. omissions this list helps the reader to begin to explore these research papers. Any omissions these research explore reader helps ignorance. of references, reflects only our ignorance. theorems, reflects attribute theorems, references,or failure to attribute recThe authors are extremely grateful to Professor Osamu Takenouchi who recgrateful Professor extremely are genacknowledge ommended that we write this book. They also gratefully acknowledge the genalso book. we ommended erous and colleagues colleagues Makoto Masumoto, Hiromi friends and erous contributions of our friends manuread the original manuOhtake, Hiroshige Shiga, and Toshiyuki Sugawa, a^nd Sugawa, who read Ohtake, Hiroshige Shiga, and improvements. script, and made many helpful mathematical suggestions and improvements. suggestions script, and made many
=
Yoichi Imayoshi Yoichi Imayoshi M asahiko Taniguchi Taniguchi Masohiko
October, 1989 October, 1989
111 117
LII III q0I Z6 LL
92 105
77 77 , t
seloN ureroeql pumuEf2-ugrePleC Jo Joord V'V sluel?SeoC turerlleg uo ecuapuadeq t'V s3urddel4l leuroJuocls?n$ uo $uaroeql atuelslxg Z'V sarlrado.r4 frelueurelg pIrB suolllugeg I'V
Quasiconformal Mappings 4.1 Definitions and Elementary Properties 4.2 Existence Theorems on Quasiconformal Mappings 4.3 Dependence on Beltrami Coefficients 4.4 Proof of Calder6n-Zygmund Theorem Notes sturddel4l
luturo;uocrsen$ 7 raldeq3
Chapter 4
67 71 75
9L
u
seloN
Poincare Metric and Hyperbolic Geometry Fenchel-Nielsen Coordinates Fricke-Klein Embedding Thurston's Compactification Notes
L9 69 I9 I9
uotlecgrlceduoC s(uolsrnr{I t'8 Sutppaqurg ulaly-e{?q{ 8'8 sel€ulProoc uaEalN{erlcued 7,'t frlauroag cqoq.raddg Pue clrlel{ eJe?ulod I'8 cqoqJad'{g pue f-rlauroag
3.1 3.2 3.3 3.4
Hyperbolic Geometry and Fenchel-Nielsen Coordinates
59 51 51
sa?BurprooC
uaslarN-Iaqcual
g .ra1deq9
Chapter 3
seloN acedgerlct.rg 9'Z Eapow uslsqrnJ v'z suolleIuroJslle{l snlqg'Itr t'Z sSutrer\o3Iesra^Iuo z'z ueroar{J uoll€zrurroJlun I'c acedg eryltr
47 50
Frike Space 2.1 Uniformization Theorem 2.2 Universal Coverings 2.3 Mobius Transformations 2.4 Fuchsian Models 2.5 Fricke Space Notes
09 LV 8t t8 LZ 9Z 96
33 38 27
25 25
6 .ra1deq3
Chapter 2
20 24
vz OG 9I vl 8 I
16 1 8 14 1
I
seloN sernlcnrls l"urroJuoC Pue sernlcn.llS xalduro3 9'I acedg .relpurqcleJ Pue s3urddel4l pruro;uocrsen$ V'l f snueS;o acedS re1nwqcleJ, 8'I 4'I I snueg;o acedg rellnuqttal seceJJnsuu€tualu I'I aaedg Jallnurqcral
Teichmiiller Space of Genus g 1.1 Riemann Surfaces 1.2 Teichmiiller Space of Genus 1 1.3 Teichmiiller Space of Genus g 1.4 Quasiconformal Mappings and Teichmiiller Space 1.5 Complex Structures and Conformal Structures Notes f snuag;o
1 raldeqS
Chapter 1
slua+uoc
Contents
Contents Contents
XII
C h a p t e r 55 Chapter Teichmffller Spaces Spaces Teichmiiller Analytic 5.1 Analytic Construction Construction of of Teichmiiller Teichmiiller Spaces 5.1 Spaces 5.2 Teichmiiller Teichmiiller Mappings Mappings and and Teichmiiller's Teichmiiller's Theorerms 5.2 Theorerms Proof of 5.3 Proof of Teichmiiller's Teichmiiller's Uniqueness 5.3 UniquenessTheorem Theorem Notes Notes
119 119 119 119 127 r27 135 135 144 144
Chapter 66 Chapter Complex Analytic Analytic Theory Theory of of Teichmiiller Teichmiiller Spaces Complex Spaces 6 . 1 B e r s ' E m b e d d i n g 6.1 Bers' Embedding Invariance of 6.2 Invariance of Complex Complex Structure 6.2 Structure of of Teichmiiller Space Space 6.3 Teichmiiller Modular 6.3 Teichmiiller Modular Groups Groups 6.4 Royden's Theorems Royden's Theorems 6.4 6.5 Classification of Teichmiiller Teichmiiller Modular Transformations 6.5 Classification of Transformations Notes Notes
146 146 147 r47 152 r52 162 r62 167 r67 'l'71 171 179 179
Chapter 7 Chapter Weil-Petersson Metric Metric Weil-Petersson PeterssonScalar 7.I Petersson Scalar Product and 7.1 and Bergman Bergman Projection 7.2 Infinitesimal Theory of Teichmiiller Spaces 7.2 Spaces 7.3 Weil-Petersson Weil-Petersson Metric I\{etric 7.3 Notes Notes
182 t82 183 i83 189 189 loo 199 217 2t7
Chapter 8 Chapter Fenchel-Nielsen Deformations Deformations and Fenchel-Nielsen and Weil-Petersson Weil-Petersson Metric Metric 8.1 Fenchel-Nielsen Fenchel-NielsenDeformations 8.1 8.2 A Variational Formula for Geodesic 8.2 Geodesic Length Functions Functions 8.3 Wolpert's Wolpert's Formula Formula 8.3 Notes Notes
219 219 219 219 224 224 226 226 232 232
Appendices Appendices A A B
Classical Variations on Riemann Surfaces Classical Surfaces Notes Compactification Compactification of of the Moduli Moduli Space Space Notes
233 233 243 243 244 244 253 253
References References
254 254
List List of of Symbols Symbols
271 271
Index fu~x
2U 274
uopcnporluluv
An Introduction secBdsrellntuqrlel ol
to Teichmiiller Spaces
'eJnlcnJls xalduroc leuolsuetulp-auo qlrm ecedsJJopsneH pelceuuoc € srreeruplottuout xe\ilu.tocr)uorsueurp-euo to 'U uo emlxnJts xalduoc e saugeP }! }€tl} acn{.tnsuuoul?rg f)uoNsueurtP'?uo v s 91r3f{ (!z'!2) } te{t {es all pu€'U uospooqroqUfnu aToutp.tooc {o u.ta1sfi,e 'ursrqdrouroauroqcrqdrouroloq e ''a't 'Surddeur crqdrouroloqlq e sI
We say that { (Uj, Zj) hEJ is a system of coordinate neighborhoods on R, and that it defines a one-dimensional complex structure on R. A Riemann surface or one-dimensional complex manifold means a connected Hausdorff space with one-dimensional complex structure. is a biholomorphic mapping, i.e., a holomorphic homeomorphism.
n Uk)
Zk(Uj
n Uk)
(r2U !2)tz *
('VlU h)lz : rJzotz - lrz Burddeur uo-rtrsuertaql 'g * qnu rn U (IlI) 'aue1d
Zkj = zkozjl: Zj(Uj
-+
(i) Every Uj is an open subset of R, and R UjEJUj. (ii) Every Zj is a homeomorphism of Uj onto an open subset Dj in the complex plane. (iii) If Uj n Uk =P ¢, the transition mapping
xalduroe aq1 u1 f6, ?asqnsuado ue oluo f4;o ursrqdrouroeuoq e s lz ,treag (rr) 'g;o 'fpt>ln lesqns uedo ue sr f4 fra.tg (r) U pue
=
aq1 3ut,$st :(t'f 'El.l aas) suorlrpuoc eerql 3uu'ro11oy -les rrf{ (fz'fg) eq A P1 'slrolloJ i ,(tf.ttl e ql,ta ecedsgropsn€H Pelceuuoc e 'sSurddeu crqdrotuoloqlq fq s'p sr ef,"Jrns uueruelg Jo uoIlIuSeP PrsPuels eq; (fla^lqn?ul peqcled are qf,rqa{ aueld xelduro? aql uI suleruoP Jo uoll?allo3 3 sl }I 'acnttns uuounty e pell€c sI ploJlueur xaldruoc Palceuuo? I€uorsuaulP-auo Y
A one-dimensional connected complex manifold is called a Riemann surface. Intuitively, it is a collection of domains in the complex plane which are patched by biholomorphic mappings. The standard definition of Riemann surface is as follows. Let R be a connected Hausdorff space with a family { (Uj, Zj) hEJ satisfying the following three conditions (see Fig. 1.1): sacBJrns uuBrrrarlr Jo uol+Ilrsac
'I'T'I
1.1.1. Definition of Riemann Surfaces
s a J e J J n su u E r r r a r u ' I ' T
1.1. Riemann Surfaces 'aceJJnspeluelJo u€ uo crJlaru usruusrueru e fq pecnpur ernlrnrls leuroJuo) eql Pue alnlcnrls 's3urddeur xelduroc eq? uaealeq drqsuorlela.raql sl€ert g uollces leuro;uoctsenb r; ,(pn1s am 'p uorlcas uI 't snue3 ;o seceJrns uuetuelg ;o lulodarall eql urorJ pesolc pe{r?tu IIe Jo tes eql se I uotlcas uI PaugaP st t5 eceds renntuq)Ial eqJ 'I 'd t; snuaS;o eql aceds reilnurqttal frerltqre snuaS Jo lePoul e sa,il3 qllq/tr ;o 'salduexa aceds rellnruqcleJ ar{} pue eeeds Inpour aq} q1^{ sl€eP A uol}?es lecr '1sr1g -df1 auros pue sac€Jrnsuueruarll uoltrugap aq1 errrSar* '1 uorlcag ut Jo 'fqc1e4s 'pattluo eq II€I{s etuos Pu€ Jeql€r are s;oord aurog 'sraldeqc 3urno11o;eq? roJ spunorSlceq puts suotls^Ilou 'raldeqc s-rql uI arlr3 pue '6 snua3 ;o t; aceds rellnurqclal aql lcnrlsuoc aal
In this chapter, we construct the Teichmiiller space Tg of genus g, and give motivations and backgrounds for the following chapters. Some proofs are rather sketchy, and some shall be omitted. First, in Section 1, we give the definition of Riemann surfaces and some typical examples. Section 2 deals with the moduli space and the Teichmiiller space of genus 1, which gives a model of the Teichmiiller space Tg of arbitrary genus g. The Teichmiiller space T g is defined in Section 3 as the set of all marked closed Riemann surfaces of genus g. In Section 4, we study T g from the viewpoint of quasiconformal mappings. Section 5 treats the relationship between the complex structure and the conformal structure induced by a Riemannian metric on an oriented surface.
Teichmiiller Space of Genus 9 f snuag Jo aJBdS JaIInurIr.raI
I ra+dBtlc
Chapter 1
1. Teichmiiller TeichmfillerSpace Spaceof Genus Genus9g 1.
2
z a- Plane
ar-plane
Fig. F i g . 1.1. 1.1. (U, z) of aa Riemann surface A coordinate coordinate neighborhood neighborhood(U, surface R .R is aa pair of an open open set U ,R and aa homeomorphism homeomorphism zz of U into into the complex plane such such that that for [/ in R any element Uj iI ¢, (Ui, Zj) ri) of aa system system of coordinate coordinate neighborhoods neighborhoods with with un element (Uj, U nU1 $, the mapping z o z i L : Zj(U zi(U n z(Un zozt: Uj) Uj) nU ) - --+ - z(U nU i)
is biholomorphic. This U also called called aa coordinate coonlinale neighborhood neighborhoodof R. r?. Such [/ is also Such aa homeomorphism local parameter on U of R. z is said said to be be aa local local coordinate coordinale or ot aa local homeomorphism Z ([/, z) with A coordinate neighborhood called aa coordinate coorilinate neighborhood neighborhood with p E neighborhood (U, e U is called around p, and or local parameter around p. local coordinate local parameter arounil p. around p, and zz is is called called aa local coorilinateor Local analysis on aa Riemann surface surface R ,R is reduced to analysis on domains in parameters. For example, the complex function example, aa holomorphic holomorphic funclion complex plane via local parameters. on R ,R is aa function I/ on R l? such such that loz-1 f oz-L is holomorphic on z(U) for any (U,z) coordinate neighborhood z) of R. S neighborhood (U, surface,9 ft. A mapping If of R into aa Riemann surface is said mapping if wof oz-r1 is is holomorphic for all coordinate coordinate said to be aa holomorphic mapping if wo/oz(U, z) of R and (V, (V, w) neighborhoods u) of SS with with I(U) biholomorphic neighborhoods (U, /(U) C V. A biholomorphic --- SS means mapping onto S which has mapping I: means aa holomorphic mapping If of R has the Ronto,S f : R -+ -11 - R. holomorphic :: S surfaces Rand l? a"ndS Two Riemann surfaces holomorphic inverse mapping mapping 1S are are S -+ ft. Two f biholomorphically equiualenlif between R biholomorphically equivalent if there exists exists aa biholomorphic mapping between .R write and S. In this case, case, we regard Rand ,? and S ^Sas as the same same Riemann surface surface and write = S. R = also that Rand have the same same complex compler structure. slruclure. Complex S. We say say also R and SS have structures, biholomorphic mappings, mappings, and biholomorphic equivalence equivalencemay be be and are said to be conformal confortnal structures, straclures, conformal mappings, mappings, and and are actually often said (see§1.5). conlormal respectively conformal equivalence, equiaalence, respectively(see $1.5). Remark. A Riemann surface surface is aa two-dimensional two.dimensional real-analytic real-analytic manifold, manifold, and the Cauchy-Riemann determine its orientacoordinates determine Cauchy-Riemann equation implies that local coordinates
The holomorphic function z = w 2 maps biholomorphically both the upper half-plane H = { wEe I 1m w > O} and the lower half-plane H* = { w E C I 1m w < O} onto the domain D C - L, where L {x E R I x ~ O} is a cut on the z-plane. Take two copies D', D" of D and paste crosswise along their cuts L', L" as in Fig. 1.2. Then we get a two-sheeted covering surface Rover the z-sphere. Since the function f( w) = w 2 induces a homeomorphism F of the w-sphere onto R, we can define the complex structure of R from the complex structure of the w-sphere in such a way that F: C --+ R is a biholomorphic
crqdroruoloqlq e sl U r- C : Jr leql ferrr e qcns uI araqds
r } = ? e r e q a ' I - C - O u l " u r o pe q } o t u o { 0 > r r r , - I = H aueld-}1eq I C > ^l = *H aurld-;1eqra/(ol eql pus {0 < rnurl I C > t} raddn aq1 qloq fllecrqdrotuoloqrq sderu .rn - z uollcunJ ctqdrouroloq aq;,
=
=
'z'T'ttd Fig. 1.2.
eueld-or
w-plane
z-plane
aueld-z
z=w'l
-4
y
~ R D"
'euo JeuJoJ eqt al"ts er* 'ala11'uollsnulluoc ct1f,1euefq ro Pue ln)r' ,,e1sed - (n)l - z 'dleotsselC 'panle^-e13utssr "n Jo Poqlau aql fq Pelrnrlsuoc sr 1r uorlcunJ crqdrouroloq eqlJo uorl)unJ asrelur aql qllqa uo e?"Jrnsuueruelg aql sI (lxaN slql '4 - rn uorlrunJ cre.rqe3peql Jo eeeJrnsuuetuelll at{} aes sn lal 'Qlt'{o} p"n (z'3) spooqroqq3raueleurProo?o'n1fq Peusep ?) sr C uo eJnlcnJls xaldurbc V'eceJJns uueurelg e osl€ sI'3 aueld xelduroc aql '{-} go iorlecgrlcedtuoc lutod auo eql q qc$Iir{ n C = ? ataqds uuvu'ery aq; '(r'O) eleulproo, auo fluo fq uarrrSsr O uo ernlcnrls xalduroc e pooqroqq3rau 'flaurep 'e?€Jrnsuueruolg e st aueld-z xalduroa aqt ul O ul€ruoP ,traaa'1p;o 1sltg
First of all, every domain D in the complex z-plane is a Riemann surface. Namely, a complex structure on D is given by only one coordinate neighborhood (D, z). The Riemann sphere C = C U {oo}, which is the one point compactification of the complex plane C, is also a Riemann surface. A complex structure on C is defined by two coordinate neighborhoods (C,z) and (C - {O}, liz). Next, let us see the Riemann surface of the algebraic function w = vIZ. This is the Riemann surface on which the inverse function of the holomorphic function z f( w) w2 is single-valued. Classically, it is constructed by the method of "cut and paste" or by analytic continuation. Here, we state the former one.
=
sa"BJrnS uueurarlr 3o salduruxg
=
'Z'T'I
1.1.2. Examples of Riemann Surfaces '[86-Y] '[OO-V] re3ut.rdg 1e3ar5'[37-y] ueur.re3uts Pus '[ga-V] €rN pue se{re.{ '[ZZ-V] ,tqoC pue seuof '[Ol-V] Suruung '[ag-V] ratsrog '[gt-V] s.reg '[g-y] oIr€S pue sroJIqV 'ecuelsut roJ (llnsuol 'sace;tns uuerualg 'pa1e1n3u€Ir}aq u"c pue slas uado;o ;o ,{roeq1 1e.raue8eql pue s}teJ esaq} .rog 'uoll€luelro sr$q elqelunot € seq e?eJrns uueuralg ,t.ra,ta1eq1 u^{onl-llaa s-ItI '.rageara11'uor1 sr eceJrns uusruarg € letll etunsse airr slql qtla paddrnba s,tea,r1e
tion. Hereafter, we assume that a Riemann surface is always equipped with this orientation. It is well-known that every Riemann surface has a countable basis of open sets and can be triangulated. For these facts and the general theory of Riemann surfaces, consult, for instance, Ahlfors and Sario [A-6], Bers [A-13], Cohn [A-22], Farkas and Kra [A-28], Forster [A-32], Gunning [A-40], Jones and Singerman [A-48], Siegel [A-98], and Springer [A-99].
saf,"Jrnsuu?uraru'I'I
1.1. Riemann Surfaces
3
1. 1. Teichmiiller Teichmiiller Space Space of of Genus Genus g9
4
=
mapping. This This RR isis the the Riemann Riemann surface surface of of ww = t/7. -JZ. (See (See Ahlfors Ahlfors [A-4]' [A-4], Chap. Chap. mapping. 8; Jones Jones and and Singerman Singerman [A-48], [A-48], Chap. Chap. 4; 4; and and Springer Springer [A-99], [A-99], Chap. Chap. 1.) 1.) 8; Note that that the the Riemann Riemann surface surface RR of of the the algebraic algebraic function function ww -= 1/7 -JZ isis also also Note 2 = z. u,2 equation by the regarded as the algebraic curve defined by the equation w z. defined regarded as the algebraic curve Finally, we we see see elliptic elliptic curves, curves, i.e., i.e., tori tori from from the the viewpoint viewpoint of of algebraic algebraic curves. curves. Finally, For any any complex complex number number )A(# (:;l: 0, 0, 1), 1), Iet let .R R be be the the algebraic algebraic curve curve defined defined by by the the For
=
equation equation 2
((1.1) 1.1)
w ( z -- 1 1)(z ) ( z --. \A). ). w 2 = zz(z
In other other words, .R R consists consists of of all points points (z,w) (z, w) eE C C xx C C satisfying algebraic algebraic In oo). We can define equation (1.1) and the point point pPoo == (oo, (00,00). define the complex structure structure equation of ,? R by by the complex structure structure of of the z-sphere z-sphere so that that the projection projection r: 7r: E R ---+ of covering C, r(z,w) 7r(z, w) = z, z, is holomorphic. This This r? R is a two-sheeted two-sheeted branched branched covering e, z-sphere with with branch points 0, 1, 1, I'A, and oo. 00. The mapping surface over the z-sphere surface written as is function = This f: R --+ e, C, f(z,w) holomorphic. f as u, w = is holomorphic. w, / : R fQ,u) f z( z - 1)( z - A) and R R is a Riemann Riemann surface on which which the algebraic function function \rc=W]
=
=
V
=
w -= {z(z vz(z _tG - 1)(z -, - A) is is single-valued. single-valued. u The Riemann Riemann surface surface ,R R defined defined by algebraic algebraic equation (1.1) (1.1) is rega.rded regarded topoThe of logically as as a surface surface illustrated illustrated in Fig. 1.5. copies of the Riemann 1.5. Take two copies logically (fig' 1.3). 1'3)' and 00 m (Fig. between,\ 1, and and between and 1, A and spheres between 0 and cuts between Sz with cuts ,ph".", Sl, St, S2 The join 1.5). (Fig. 1.5). place them face cuts (Fig. along their cuts Place along and 1.4), and face (Fig. 1.4), face to face Hence, R looks surface -R. resulting R. Hence, homeomorphic to the Riemann surface surface is homeomorphic resulting surface torus. A torus surface a torus. like such a Riemann surface We call such surface of a doughnut. We like the surface (see comes from the elliptic integral (see is name comes Lhis name curue; this elliptic curve; called an elliptic is also also called §1.4). $1.4).
°
00
00
Fig. F i g .1.3. 1.3.
1.1. Riema.nn Surfa.ces
5
sef,"Jrns uu"uall|I'I
Fig. 1.4.
'r'r'ttJ
Fig. 1.5.
'e'r'tt.r sa?BJrns rruBtuaru pasolc '8'I'I
1.1.3. Closed Riemann Surfaces uoll€ler l€lueu"PunJ eql sogsll€s Ptre 6g t6, t"''rg Iy uro.r;pecnpul luql'luVJ ' "' ' llgr] ' lly] sess€lcfdolouroq eq1 fq pale.rauaEsr od lurod eseq q?lar U 1o (od'g1ttt dno.r3 leluaurePunJ eqtr '(f't ;St.f) seprs dy ql1,u uoE,tlod xaruoc e o1 crqdroruoeuoq ul€tuoP e 1aBar* ' " ' 'r€l(I}t selrnf, uerll 'g'I 'EU ul se od lutod as€q I{lI^r ug'6V Pasolcaldurts od e4e; e lurod 3uo1e g, lnt pue d snuat Jo U ac"Jrns uueuell{ Pasolc e uo 'acottns uuourery uado ve Pe11eo y 'snua! allug Jo ac"Jlns uuetuerll pesolc € sI st a?"Jrns uueruarg lceduroc-uou u^rou{-lle^{ sl U'I snuaS;o $ snro} e Pue /tJa^a a?€Jrnsuu€r.uaru l€qt lceduroc '6 snuaE;o sr araqds uuerualg aql 'f snua6 to ecottns uuDut?NAPesop e PelIe? sl g'I '3lJ uI sB solPu"q d qtl,u alaqds e o1 crqdrouroeuoq ec€Jrnsuueuary Y
A Riemann surface homeomorphic to a sphere with 9 handles as in Fig. 1.6 is called a closed Riemann surface of genus g. The Riemann sphere is of genus 0, and a torus is of genus 1. It is well-known that every compact Riemann surface is a closed Riemann surface of finite genus. A non-compact Riemann surface is called an open Riemann surface. Take a point Po on a closed Riemann surface R of genus 9 and cut R along simple closed curves AI, Bl, ... , A g , B g with base point Po as in Fig. 1.6. Then we get a domain homeomorphic to a convex polygon with 4g sides (Fig~ 1.7). The fundamental group 71'1(R,po) of R with base point Po is generated by the homotopy classes [Ad, [Btl, ... , [A g ]' [B g ] induced from AI, B I , ... , A g , B g and satisfies the fundamental relation 6
9
'(rlunaqr) r = r-[rB]r-tfvltrsltrvlL[ Il[Aj][Bj][Ajtl[Bjtl = 1
(the unit).
r=f
j=l
t=f{ !g'!V} lo srolor?u?6lo an1sfrsf)?ruouoc n
1ec e16
We call {[Aj],[Bj]U=1 or {Aj,BdJ=1 a canonical system of generators of 71'1(R,po). ro t=r1VAl'llV)}
'(od'a)rv
l.1. Teichmiiller Teichmiiller Space Space of of Genus Genus g9
6
. 6 . ((gg = Fig. 1.6. = 33)) F ig. 1
: 3) (g = 3) 1.7. (g Fig. Fig. 1.7.
of Tori Tori 1.1.4. Representations of Group Representations Lattice Group L.L.4. Lattice
r
plane C C by by complex plane of the the complex C/lf of quotierrt space spaceC We the quotient asthe torus as represent aa torus shall represent We shall meromorphic a single-valued = is aalattice group r. Since w(z) = J z( z 1)( z A) is a single-valued meromorphic lattice group l-. since ur(z) fiG4Q=U complex the complex considerthe we can can consider (1.1), we function by equation equation (1.1), definedby torus R R defined the torus on the function on = th9 on 'R,the p (z(p),u''(p)) point integral any of 1/w(z) along paths on R. For any point p = (z(p), w(p)) on R, For paths on ft' along integral of Ilw(z) u(z) function algebraic of branch elliptic integral
lJ*
o(d=
00
ddzz
Jz(z-1)(Z-A) ,/r(t-l)(z-))
,
(1.2) (1.2)
1.1. Riemann Surfaces
7
se)"Jrnsur"urerll'I'I
-ralep sr (z)np
'1er3a1ur ql"d aq1 3uo1e uoll"nulluot cltfleue dq paunu Jo enle aql pue 9.1'31g ur -d lurod aq? o? spuodsarroe oo eJal{^r
where 00 corresponds to the point Poo in Fig.1.5 and the value of w(z) is determined by analytic continuation along the path of integral.
l€IlueraSlp crqdrouroloq aq1 auII € s€ (6'1) pleSal o1 alenbape arour sr II'tlroureg 3o'q1ed e 3uo1e'1er3a1ur
Remark. It is more adequate to regard (1.2) as a line integral, along a path, of the holomorphic differential zp
dz
g__,la_at
vlz(z - l)(z - A)
'U uo ea.r3aP;o I
of degree 1 on R.
fq paluasarder are g'I '3rg ur Ig 'd pue -d Eurutof q1ed e uo (Iy salrn? pesol? eldtuts aq1 Suop O Jo sanle eq;, spuedep 11 '{lanbrun peururelap lou s-IO 1e.r3a1uratldqle slq} Jo enp^ eqtr
The value of this elliptic integral ifJ is not determined uniquely. It depends on a path joining Poo and p. The values of ifJ along the simple closed curves AI, B 1 in Fig. 1.5 are represented by 71"2 -
2
t'
- 10 or
,l
and
(u- z)(r- z)zf pue -rp dz
vlz(z - l)(z - A)
z=iv
1
,l
21
dz vlz(z - l)(z - A)'
,k__4$_4 - f
=
zp
,=tt
of
71"1
respectively. Setting
3ur11a5'flarrtlcadsar
r = {m7l"1 + n7l"2 1m, n E Z}, '{Z>u'*l'ou*rYut}
= J
'z fq paluasardar sselc acuale,rrnbeaqf [z] fq alouaq '(z)L= / {lla J ) L lueluele ue slslxe eral{}JI J raPun Tualoar,nba fes e6'a1ozau*rvut s l u r o do. / $ 1 Iz =(z)L uollelslr"rl€ are I 1 " t 1 1 C , z ' z '9 dnorS ursrqd qlr^r pagtuapl sl J ) qlu+rvrn, =,L fra,ra'1ce; u1 3o (9)ry -Jouroln€ arlrtpue aqt JoJ dnorS e?I11"1Y dnodqns 3 se papreSar sl ,7 u Jo 'U 'U roJ ilno.r,6acqyoye PIag raqunu I€er J qcns II€c alA fpeaurl ere faql '0 < (z)Llr)L)u1 ,$sr1eszv pue rl spollad aql ra^o luepuadaput '; aq? ecqs 'E, 1o pouad e Pall€? sI J Jo luauale fraag Jo slueuela dq raqlo qf,ee tuo+ rasrp qlrqAr senlel fueur .{1a1tugulseq (d)P uotlcun; eql t€q} ees a/tr
we see that the function ifJ(p) has infinitely many values which differ from each other by elements of r. Every element of r is called a period of ifJ. Since the periods 71"1 and 71"2 satisfy 1m (7I"t!7I"2) > 0, they are linearly independent over the real number field R. We call such r a lattice group for R. A lattice group r for R is regarded as a subgroup of the analytic automorphism group Aut( C) of C. In fact, every 'Y = m7l"1 + n7l"2 E r is identified with a translation 'Y(z) = z + m7l"1 + n7l"2 of C. We say that two points z, z' E Care equivalent under r if there exists an element 'Y E r with z' = 'Y( z). Denote by [z] the equivalence class represented by z.
Fig.l.S.
'e'r'ttJ
The quotient space C/ r of C by r consists of all equivalence classes [z]. This quotient space C / r is realized as a surface obtained by identifying sides
saprs Eurr(;rluapr fq peul"lqo aceJJnse ss Pazllear sl J/C eceds luarlonb sq; '[z] sasselc ecuele,rrnba lle Jo st$suoc.7 ,{q C P JIC eceds luarlonb aq;
Space of of Genus Genus I9 Teichmiiller SPace l.1. Teichmriller
88
A with with A' A' and BB with with 8' B' in in the the lattice lattice of of Fig. Fig. 1.8 1.8 by by the the translations translations 7r1,tr2, 11"1,11"2, ,4 respectively. respectively. Now, we we define define aa complex complex structure structure of of C CI/ f . Let Let r11":: C C +-+ C CI be the the projecprojecNow, / f be tion, i.e., i.e., "(r) 1I"(z) - lzl [z] fot for zZ €E C. C. Introduce Introduce the the quotient quotient topology topology on on C/f , which which tion, is defined defined as as follows: follows: asubset a subset U U of C open ifif the the inverse inverse image image r-r(Lr) 11"-1 (U) is is is open otC/f is open in in C. C. ItIt is verified verified that that C/f CI is a connected connected topological topological space. space. open [a], [b] €E Cf l,wewe can take take neighborhoods neighborhoods 7o,V6 Va, Vb of of a,b For any two two points points [o],[6] For with r(I/") 1I"(Va) nn r(%) 1I"(ltb) -= {.4>. Since Since z11" is an open mapping, mapping, this this shows shows that that C/iwith Hausdorff space. Moreover, Moreover, for any point point [c] [a] eE C/f , taking taking a sufficiently is a Hausdorffspace. Va of of a, we see see that that n11" gives a homeomorphism homeomorphism of of v" Va into into small neighborhood neighborhood vo small Ua = r(Vo) 1I"(Va) and Za: (Jo Ua --+ Vo Va be a homeomorphism with with zo(lzl) za([z]) = z. and zo: C/f . Let Uo Then (t/",2o) (Ua,za) gives gives a coordinate neighborhood around lalin [a] in C/f - Thus Thus C/f Then becomes a torus, i.e., i.e., a closed closed Riemann surface surface of of genus genus I1 such that that the projecbecomes 11": C ---+ Clf CI is holomorphic. The The triple triple (C,r,C/f) (C, 11", CI F) gives gives an example of of tion zr: tion universal coverings, coverings, considered considered in $2.1 §2.1 of of Chapter 2. universal '--' C lf As is known in the theory of of elliptic elliptic functions, the mapping [@]: [4>]: r? R -+ I we see Hence biholomorphic. sending a point pER point [4>(p)] E C Hence we see point C/lis p to a point sending e R [O(p)] e c/lr r that a torus defined defined by equation (1.1) (1.1) is represented represented by a Riemann surface surface CI that for a lattice group l-. In In Chapter 2, we we shall show show that that every torus is represented represented it is 2.13). Conversely, conversely, it by a lattice group l- in C (see the Corollary c (see corollary to Theorem 2.13). elliptic biholomorphic known that such a Riemann surface C I is always biholomorphic to an elliptic surface Riemann known that /f refer to Ahlfors [A-4], curve details, we refer algebraic equation (1.1). For details, defined by algebraic curve defined [A-4], Siegel 3; Siegel Chap' 3; 2; Jones and Singerman [A-48], Chap.7; Clemens [A-21], Chap. 2; Singerman Jones Chap.?; Clemens [A-21], [A-48]' Chap. [A-98], Chap.l. 1; or Springer Springer [A-99], Chap. 1; [A-99], Chap.1. [A-98], Chap.
r.
=
r
r
Iris
clr,
clr,
clr
clr,
clr.
=
clr.
=
clr
r
Iris
r. r
r
r
1.2. Genus 11 Space of Genus Teichmiiller Space 1.2. Teichmiiller genus 1. 1. Let us space of genus us construct the Teichmiiller space
1.2.1. of Tori Tori The Moduli Moduli Space of L.2.1. The c/f, surface C Riemann surface We I r, is represented represented by aa Riemann every torus is the fact fact that every use the we use 2.13). Theorem where r is a lattice group on C as in §1.4 (see the Corollary to Theorem 2.13). (see corollary group in on c as where ]- is a lattice $1.4 assumefrom from we may assume r* ZI1I"1 On necessary'we z ........ zf 4,if, if necessary, On performing the transformation Z I and ones ca"nonical I a,re the the beginning that the generators 11"1 and 11"2 for r are the canonical ones 1 and 12 Lor generatols ?r1 and the the beginning that Tr with 1m T > 0, respectively. respectively. with Imr ) 0, Now, group lattice group consider aa lattice Now, consider
rr m,€ nZ E} ,Z}, f " == { {, j== mm * n+ r lnT m ,I n group rr I} the lattice lattice group = { wa.sseen seenin in §1.4, where As was C II 1m ImrT > 0}. As > O}. H = where Tr E €C $1.4,the €H {rT E = Cf l, surface R, corresponds to a subgroup of Aut(C), and the Riemann surface R = CI rr isis and the Riemann ,Aul(C), corresponds to a subgroup of r the f, has thal cf Notice to c/f,. aa torus. Denote by 11" r the projection of C to C Irr. Notice that C Irr has the projection of c torus. Denote by r, the structure group. additive group. of an an additive structure of
'(z'dtsalH =tw
M1
~
H/PSL(2,Z).
'(Z'Z)lSd fq g;o eceds 'sl teqt luarlonb eql qtl^\ PeUIluePtsl I,f41}€tll sarTdurrI'I uraroeqJ'IrolJo sassBl?af,ual -earnba rrqdrotuoloqlq IIe Jo tas eqt ''a'r'r.uoqto aeods,Ppout eqt aq rW P"l 'g reddn aql aue1d11eq 'ilno.r,6Jolnpou eq1 ;l ,L fra.rrg
the modular group. Every, E PSL(2, Z) is a biholomorphic automorphism of the upper half-plane H. Let M 1 be the moduli space of tori, i.e., the set of all biholomorphic equivalence classes of tori. Theorem 1.1 implies that M 1 is identified with the quotient space of H by PSL(2, Z), that is,
3o ursrqdrourolne crqdrouroloqlq e s\ (Z'7,)'IS1
( l P + t ' c- , ' ' l = ( z ' 7 , ) r s d Q ) L| I\ t = " 9 - p o p u e z ) p ' ? ' q ' "ll '?7+=! o
PSL(2, Z) = { ,(T) =
:;:~ I a,b,c, dE Z
and
ad - bc = 1 }
) dnorS aq1 1ec a,u 'aaog
Now, we call the group
0
tr sl ,U -
'l'(P - ([z])/ fq ua'rt3 + n)) ,'A I t Surddeu crqdroruoloqrq e uaql 'splotl (8'I) ;t 'f1asra,ruo3 'I = cq - pD s^eq a1ll
we have ad - bc = 1. Conversely, if (1.3) holds, then a biholomorphic mapping f: RT, given by f([z]) = [(CT + d)z].
RT
IS
-lD + tcl '0< (, ,nD;q ,rwr _d
1m T'
= ICT + dl 2 (1m T) > 0, ad- bc
/-1
0
/(1)
=1
f = (t[or-;f
',! - (,t){or-/ pu" esuls 'I+ = ?q - pe l3q1 aas e^a ' (eJoureqlrr\{ 'srafielur eJ€ suotlela.reqt urorJ /p Pue ,?' ,9' ,D alaqlvr
where a', b', c', and d' are integers. Furthermore, from the relations and /-l o/(T') = T', we see that ad - bc = ±1. Since
a'T' +b' c'T' + d"
,tP*'rP -" rQ* ,'t,o 'r-! o, lueurnS.reetues eql 3ut{1ddy 1aBen T=-...,..-----,-,-
Applying the same argument to
/-1, we get aT+b cT+d
'Ptt? - " ' 9*te
T=--.
,
ur€?qo ein 'a.ro;ereqa 'sre8alur ar€ P Pue
'? 'q'D aleqlr
where a, b, c, and d are integers. Therefore, we obtain 'P+tc=n=(1)l
/(1) = a = CT + d, 'q+tP=1a-(,t')l
/(T') = aT' = aT + b, aleq a^{'ecua11'? rapun 0 = (0U o1 luap,rrnba are (1)/ pue (,-r.)rfqloq snq1, '0= d ecueq pue'0 = (0)1 leql erunsse,teur eaa'.re,roaro141 '(9'6 eufrua1 ,lc ra = (,)! lc) 0 + lc pue sreqlunu xelduoc 5rc ! pue ereIIA\'d + '(7'6 rue.roaql 15) s€ ualllr^a sr / uaqa 'j t, o. 'crqdrouroloqlq q .f esn€ceg 'l ,!)Lo! qanf 3 - C,! Eurddeurcrqdrouroloqe'sr 1eq1 P ! Wle lo"o-wrll 'pelcauuoc t(1durs sr acurg 1i slsrxe eraql teql salldtq ureroeqf fuorPouoru aq1 '1srtg 'ig oluo ,"A /oo"l4' Io / Surddeu crqdrouroloqlq e q arerll l€t{} alunss?
Proof. First, assume that there is a biholomorphic mapping f of RT, onto R T. Since C is simply connected, the monodromy theorem implies that there exists a lift / of f, that is, a holomorphic mapping /: C - C such that 7r T o/ = f07r T I ~f. Theorem 2.4). Because f is biholomorphic, so is f. Then / is written as f(z) = az+f3, where a and f3 are complex numbers and a:f. 0 (cf. Lemma 2.8). Moreover, we may assume that /(0) = 0, and hence f3 = O. Thus both /( T') and /(1) are equivalent to /(0) = 0 under FT' Hence, we have
'c 'q 'o e.taym 'I = cq - p,Dqwn sta,aTut arD p PUD
Theorem 1.1. For any two points T and T' in the upper half-plane H, two tori R T and RT, are biholomorphica//y equivalent if and only if T and T' satisfy the relation , aT+b T=--, (1.3) cT+d where a, b, c, and d are integers with a'd - bc = 1.
,Plrc _ t , g*tp uoxlnpt, tf, fi,1uopuD fi Tuapamba frllocttlilloutopqrq erD 'tg puo at17filsr7os p puv t lt .r,edilneql w / pao t squr,oilony fiuo rol '11- tuaroaql uol onl 'g auold-{1ot1
(e'r)
'Z'I I snue5;o aoedg rall+urqrral
1.2. Teichmiiller Space of Genus 1
9
1. Teichmiiller Teichmiiller SPace Space of of Genus Genus g9 1.
10 l0
is known known that that the the quotient quotient space HIPSL(2, is aa Riemann Riemann surface surface (cf. (cf. PSL(2,2)Z) is spaceHf ItIt is (cf. of §2.4 of of Chapter Chapter 2) 2) and and that that aa fundamental fundamental domain domain (cf. $a.2 §4.2 of Chapter Chapter 2) 2) for for $2.4 PSL(2, Z) is is the the shaded shaded area area in in Fig. Fig. 1.9. 1.9. Intuitively, Intuitively, we we get get the the Riemann Riemann surface surface PSL(2,2) HIP S L(2, Z) bV by identifying identifying the the sides sides of of this this fundamental fundamental domain domain under under the the H/PSL(2,2) -lfz transformations zz >1--+ zz +1 + 1 and and zz e1--+ -liz as as is is illustrated illustrated in in Fig. Fig. 1.9. 1.9. Hence Hence transformations we see see that that the the moduli moduli space space of of tori tori is is biholomorphic biholomorphic to to the the complex complex plane. plane. For For we more details, see, see, fot for example, Ahlfors Ahlfors [A-4], [A-4], Chap.7; and Jones Jones and Singerman more [A-48], Chap. 6. [A-48],
-1
o Fig. 1.9. Fig.1 .9.
parameter A(# ,\(f Remark. (1.1) depends depends on a complex parameter Remark. A torus given by equation (1.1) tori S>. S1, such tori 51 and S>., 0,1), It is well known that two such ,Sr. It denoted by S>... 0, 1), which is denoted are exists aa linear fractional if there there exists and only if equivalent if and biholomorphically equivalent are biholomorphically set oo }} of S>. transformation which takes 1, A, }, 00 Sr to the set set of branch points {O, takes the set { 0, 1, Chap. example, of branch of S>" (see, for example, Clemens [A-21], Chap. (see, for Clemens points {0,1,A',00} ,91, 1,^',m} branch points [A-21], {0, and only equivalent if and 2.7). are biholomorphically equivalent 51, are we see see that S>.. 51 and S>..' 2.7). Thus we if A' numbers: one of the following numbers: )/ is is equal equal to one 't l A-I l-1 11 1 A, 1A, ) , . \ . ~' ' + , 1 - 1-A-' ,\-1 ) ,r r - ) A' ' = l/A 1/) and and generated by gl(A) Now, group of of order order 6, 6, generated finite group be aa finite let G G be Now, let cr()) = -.\ = This fact C 1 of D = C - {O, g2(A) = 1I - A which are automorphisms of are analytic analytic automorphisms {0, I}. }. This fact Sz(\) = (cf.§2.4 quotient space of D Dby G (cf. spaceof shows where DIG by G meansthe the quotient Df G means D/G,where that M ML= showsthat $2.a 1 ~ DIG, ---+ which C, F : D of Chapter 2). Moreover, we find a biholomorphic mapping F: DIG --+ C, which mapping of Chapter 2). Moreover, we find a biholomorphic lG = f(A) is with uy F([A]) r([.1]) = is defined defined by /(.\) with
( ,2\ -2 -A^+ + 1)3 l)3 (A = A2(A _ 1)2 /()) = f(A) 1)2 t2()
'Z'I I snuaD1o aoedgrallnurq)ra;
1.2. Teichmiiller Space of Genus 1
11
I snuaC go acedg rallntuqcral
1.2.2. Teichmiiller Space of Genus 1 'Z'Z'I
'(Ot't'3t.f pu€ .{1a.,rr1cedsa.r',r. aas) I o? (,r)/ pue (1)1 '{q spuas (1)//z
First of all, we study the meaning of the difference between 'I and 'I' which repC / r T and R T , C / r T " respecresent biholomorphically equivalent tori R T tively. For a biholomorphic mapping I: R T , :::-' R T , take the lift j(z) = (cT+d)z of 1 as in the proof of Theorem 1.1. Then 1 maps the lattice group T , to the l~ttice group r' generated by 1(1) and 1('1'). From relation (1.3), we see that 1(1) = CT + d, 1('1') = aT + b, and r' = rT' Thus this difference is considered as the one corresponding to the choice of generators of T , i.e., {I, 'I} and tCT+ d,a!+ b}. Note that the coordinate transformation z 1--+ z/1(I) sends 1(1) and 1('1') to 1 and 'I', respectively (see Fig. 1.10).
=
=
r
r
-
,,1 + Fig. 1.10. '01'T'tIJ
1o (od''g)rl I"lueu"punJ
r ueaaleq a)uaraJrp aql l€rll reprsuo) uec e1t{snql'sdno.r3 arr11e1ueemlaq I * ,'J:/ rusrqdourosreqt o1 spuodsauoc q?rq^,r'[((,r)tg)/] = ([(,r)tg])V pun = ([(,r)ty])V reqr qcns (od''A)ru * (od','g1rv: { ursrqd.rourosr l((,4trtll u€ sarnpur "A - ,"A:/ Surddeu ctqdloruoloqlq e^oqe aql leql ees e.tretueg 'l(,t)tV) srole.reua3 '{ go tua1s,{sle)ruou€) € seq qclqm (od' ,tA')r)Lqtrw ] [(,r),g] p a g r t u a p rs 1 , 1 . ( f p e p u r r S ' . { 1 e , r r 1 c a d s a r ' [ ( r ) t g ]p u e [ ( " r ) t y ] o t , p u e I s P u e s qclqlr\acuapuodseiloraql repun (od'"A)to o1 crqdrouroq sl iI ueql'(odtrU)I, Jo srol€reua3 go urals,ts letluoue? e a;rt3 ['g] Ptn [Jy] sasselcddolouroq aqa 'od ?urod es€q qtl^{'U uo (-r,)tg pue (z)ty sa,rrn, pesoll aldurts eulure}ap ''U '.{1a.l.r1radsar'C pue'I Pu" 0 uea^l}aq sluaru3asaql ul r pue 0 uae^4,laq dno.r3 leluetu"PunJ aql Jo lurod aseq € sB [0] - od a4ea'dno.r3 eql uorJ luelua?els e^oqe eql rePlsuoc el!\ eql Jo 1utod,r,ret.rr.
We consider the above statement from the viewpoint of the fundamental group. Take Po = [0] as a base point of the fundamental group 71"1 (R T , Po) of R T • The segments between 0 and 1, and between 0 and 'I in C, respectively, determine simple closed curves A1(T) and B1(T) on R T with base point Po. The homotopy classes [AT] and [B T] give a canonical system of generators of 7I"l(R T ,po)' Then rT is isomorphic to 7I"l(RT ,po) under the correspondence which sends 1 and 'I to [A1(T)] and [B1(T)], respectively. Similarly, rT' is identified with 71"1 (R T , ,Po) which has a canonical system of generators { [AI ('I')], [B 1 ('I')] }. Hence we see that the above biholomorphic mapping I: R T , ----> R T induces an isomorphism 1*: 7I"l(R T "po) ----> 7I"l(RT ,po) such that 1*([A1(T')]) = [/(A1(T'))] and 1*([B1(T')]) = [/(B1(T'))], which corresponds to the isomophism I: T ,----> r T between lattice groups. Thus we can consider that the difference between 'I
r
l.1. Teichmriller Teichmiiller SPace Space of of Genus Genus g9
12 12
and r'corresponds r' corresponds also also to to the the different different choices choices of of generators generators of of ur1(R',po), 1r1(RT,po), i.e., i.e., and
[B 1(r)]}] and and {{/.([A I. ([B 1(r'))) ]} (see (see Fig. Fig. 1.10)' 1.10). 1(r)], [B'(")] 1(r'))), /-([s'("')]) /.(Fr("')l)' {{[A F'(")1, generators E, Now, for any torus R, take canonical system generators E p = {{[A [B 1 ]}] of system take a canonical any torus ft, 1 ), [Br] Now,for Fr]' pair (r?,Xo). Such the of the fundamental group 1r1(RT,p) of R, and consider the pair (R,E ). Such and consider group of R, r1(.R,,p) p of the fundamental = and .Do' Ep ]} a E is called a marking on R. Two markings E = {[A ), [B and Epl = markings r?. Two on p a p called a Xo is 1 {[1t]'1 [Bt]] _= curve continuous Co exists a { [A~], [Bi]] [Bn} are said to be equivalent when there exists a continuous curve Co when there to be equiaalenl said are { [,4i], on R R f.oln from pP to to p' p' which which induces induces the the isomorphism isomorphism Ts": Tc o : T1(R,p) 1r1(R,p) --+ t1(R,pr) 1r1(R,p') ot = an element sends Here, ?c'" = with [A~] = Tc ([A )) [BU = Tco([Bd). Here, Tc sends [C) of of Tc"(lBr)). and Tc"(lAi) 1 with [Ai] [C] o o [Bi] 'C,] . product of the definition 1r1(R,p) to [C;l . C· Co] of 1r1(R,p'). For the definition of product For ol r{R,p'). C an element r{R,p) to [Co-1 of curves, curves, see see $2.2 §2.2 of of Chapter Chapter 2. Next, Next, two pairs (R, E) E p ) and (S, -Do) E q ) as above above of '-+ R h: S mapping equivalent if only if biholomorphic mapping h: are a biholomorphic exists if there and only if equiaalent arc = o i s e q u i v a l e n ttto = ) such that h.(E = h.({[A~],[B~]}) = {h.([Am,h.([Bm} is equivalent t . ( { t h a t h . ( D ) such q lA',,1,[B't]]) {h-([Ai]),h.([Bi])] call of (R,D). We class E {[A ], [Bd}. Denote [R, E ] equivalence class of (R, E ). the equivalence = by Denote p p p 1 Ep [fi,X0] 1[Ar],[Bt]]. such a [R, torus. The The Teichmiiller space space T1 T1 of of genus genus 1 consists consists of of p] a marked lorus. Do] lR, E all marked tori. tori.
=
Theorem 1.2. every point E H, H, let let E(r) E(r) == {{[A [B 1(r)]} be be the the point rr € For euery L.2. For 1(r)), [Br(t)]] Theorem [,41(r)], and, r in to I conv,sponil for which (r)] (r)] correspond on R = CIF [A [B 1 and r marking and R,T c/1, T for 1 1 marking [Br(r)] lA1(r)l = r r' . only if if and in T1 , respectively. Then [RT,E(r)] F = [RT"E(r')] T if ifr = r'. T rvspecliuely. Then [-R",X(r)] 1 1,, lR,, , E(r')l is a biholomorphic there is Proof. Assume biholomorphic Assume that [RT,E(r)] Prool. fR,,,E(r')]. Then there [R",](r;1 = [RT"E(r')]. = is - R mapping RT, RT t h a t h.(E(r')) h . ( X ( z ' ) ) = {h.([A s u c h that h: R , such , , -+ m a p p i n g h: { h . ( [ . 4 11(r'))),h.([B ( r ' ) ] ) , h . ( [ , B11(r')))} ( r ' ) ] ) ] is = h([0]) that assume equivalent E(r) = {[A h([O)) [0] W" may assume 1(r)], [B 1(r)]}. We equivalent to I(r) [0] [Bt(t)]]. { [41(r)], - h([z)) by replacing if necessary. necessary.Then, the definition h(tO]) if n(lrl) -- h([O)) hr(ltl) with h replacing h with 1([z)) == that h.([A h.([.41(ti)]) implies that of equivalence h.(X(r')) implie~ X(r) and h.(Elr')) equivalence of E(r) 1(r)] and 1(rJ)) = [A [,41(r)] = = az for some some h() with h(0) O. 0. Then h(:) = h.([B Take a lift h of h with_h(O) h.([,B1(r')]) 1(r)]. Take 1(r'))) = [B [,B1(r)]. = r. = = ar' and h(r') h(rt) = ar' = d 1, and complex 1, h(1) a we conclude concludethat h(l) Hence we number a. Hence complex number Therefore, we 0tr converse is obvious. T' , The converse we have have r = r'.
=
=
=
=
some r in Since E p ] is is represented representedby [R marked torus [R, every marked T , E( r)] for some Since every [.R',X(r)] [ft,Xo] H, I/' 7r1 is is identified with H. shows that T f/, this theorem shows diffeo' Another method to mark tori is orientation-preserving diffeorealized via orientation-preserving is realized groups. generatorsof fundamental groups. morphisms systemsof generators instead of systems between tori instead morphisms between pair (S, (S,/) = {[Ad, Then any any pair on,R. For [B 1 ]} on R. Then f) purpose,fix E = fix aa marking marking E that purpose, For that {Ft],[.B1]] defines aa R--+ Ss defines of S and diffeomorphism I: orientation-preserving diffeomorphism an orientation-preserving torus.g and an of aa torus f :R = {/.([A ([.B1]) on S. S. marking 1 )) }] on ma.rkingI.(E) 1 )), I. / ([B f.(21 = { /.([At]), -- S, - S' be S' be R -+ let I: R -+ S,g: Theorem S, and g: R tori, and and let be tori, anil S' St be Let R, R,S, L.3. Let Theorem 1.3. f :R = [S',g.(E)] in T if T1 orientation-preserving Then [S,/.(E)] diffeomorphisms. Then 1 if orientalion-preserving diffeomorphisms. [S',9-(t)] in [S,/-(t)] = - S'. --* h: St. mapping S and : S -+ S' is homotopic to a biholomorphic mapping h: S -+ a biholomorphic to homotopic is .9 S' if go/-l andonly only if Sof-L:
points r,r' I/ for for r,r' E = [S',g.(E)]. two points € H Proof. Take two that [S,/.(E)] Proof. Suppose Supposethat [S',g.(t)].Take [S,f.(t)] = = E(r), where .R", R,', which [~,E(r)] and [S,/.(E)] [RT"E(r')), where R , RT" E(r), and E]: T which [R,E] fR7,D(r')], [S,/.(tI lR,,x(r)] [,R, to of ~ E" to diffeomorphisms of and r') are as diffeomorphisms and gg as a^sabove. above. Regard Rega-rd1 defined as are defined and E( ':(z') / and r', 1, and and r', and rr to to 0, 0, 1, l, and RT,. send 0, 0, 1, and g their lifts lifts jI and that their assumethat may assume .R,,. We We may f send by setting setting and'g respectively. between jf and homotopy between we obtain obtain aa homotopy Thus we respectively. Thus i by
=
=
8I
I snueC 1o acedg rapurqslal
1.2. Teichmiiller Spa.ce of Genus 1
13
'r; I;0 'c) "
'Z'I
Ft(z) = (1 - t)j(z) + tg(z),
z E C, 0 ~ t ~ 1.
'(r)0r+(z)!(?-t)=Q)'4
Putting Ft([z)) = [Ft(z)], we have a homotopy Ft between I and g. Hence, go/-l: R.,.I --+ R.,., is homotopic to the identity. Conversely, suppose that go/-l: S --+ B' is homotopic to a biholomorphic mapping h. Two mappings hoI and 9 from R to B are homotopic. Let Ft : R --+ B' (0 ~ t ~ 1) be a homotopy between hoI and g, and let Po be a base point for the marking E. Let Co be a continuous curve on B' from hol(po) to g(po) which is given by Ft(po), 0 ~ t ~ 1. By the isomorphism Teo: '1r1(B', ho/(po)) --+ '1r1(B',g(po)) induced by Co, we see that markings (hof)*(E) and g*(E) on B' are equivalent, which implies that [B.!*(E)] = [B',g*(E)]. 0
'1ue1e'unbaele '5i] '[(f)'t'rS] =l(S)'l teql saqdurr qcrq'u tr s3ull.reur t"qt ees et 'og.{q pacnpur ((a)0',g1rt, ,g uo (g3)*f pu€ (3').(/"q) "c; rusrqdroruo$ aqt fg 't j ? ; 0'('d)tg fq uarr3 q qtlq/'a * (("it)1or1'r,S)r:r : ruor; ,S' uo elrnc snonurluo? e eg. oC ?e'I'3 Euqreu aqt ('d)6 oq ('i\!rrt rog lurod aseq e aq od 1e1pue 'f pue /or1 uear$leq ,tdolouroq 3 3q (I i t i O) rf, p"I'ctdolouroq e.reS: ol U uror; f pue ;l'or1sEutddeur o/'al 'V Eurddeur ,S * U : 'd1asra,ruo3 * g : crqd.rouroloq.rq€ of crdolouroq sI 1eq1 esoddns rS ,-to6 'f1r1uapreql ol ctdolouroq sr ,? - 'tg : r-to6 '[(z)rd'] = (lr))',t 3q?tnd (ecuag 'f ptre ;f uaenlaq rg fdolouroq e a^eq ear
Surddeu reeutl eql teql '"2f = 'S] pue aas eal 'l(")S'oA) = k'U] rsqr qsns l? ) !'o! slurod [(".r.)3' log = [d3'g] ret{t q?ns S' +- A i;f urstqdrouroa; om1 3ur1e1 ',(1en1cy't(f)T'S] -;rp Suur.rasard-uor1e1ue1ro lre PuU "^ '[d3'5] snrol pe{reur f.rerltq.re rr€ roJ
For an arbitrary marked torus [B, Ep ], we find an orientation-preserving diffeomorphism I: R --+ B such that [S, Ep ] = [B,I*(E)]. Actually, taking two [R.,., E(T)]' we see points To, T E H such that [R, E] [R.,.o' E(To)] and [B, Ep ] that the linear mapping
=
=
z E C,
'c)z'6ffia=Q)'!
'(Z'dlSa l,;igaeeds /(ff); qrp pagltuaPrsI uol;o s\ (Z'Z)IS1'acuepuodsalrocslql qnpoutrr eql pu€'(U)J.to lc€ ol PelaPrsuoc (U)Z;o ursrqdrourolneerqdrouroloqlqaql ^A'(Z'Z)lSa I t ol Sutpuodsarroc sI *[fr] uaql '[r1oo"t''A) = (l't ''U])-["] fq (U),, uo uoll?e EI eugePPu" ""A = 'r-(("')L1o"'rt) =.'! tnd '(U)J A loursqdrouroaglPe sr qctq^r !1as1roluo ui 1t"llr;"""rrti'!,Ul = l(')tS,(r)!'] ulelqo "^ r("t)Llo"tqo'! = (')r;'o'r1ecurg 'l(i)'ri = (Ir])'rl fq ua,rrE'A <- Q)tU :'t1 Surddeu crqdrouroloqlqe sacnPul z(p+-tc) = (t)'! fq paugap(C)t"V;o'r1 luauralaaql'I{ 3 -r.1utod,(uero; (prr€qraqlo aql uO 'lQ)L! .(t)fu] of eql,(q uarrr3 [{']g] Surpuaseeuapuodsauo? ,tpeturrd q (U),2 uo l, go uoltc€ eI{J '(S'I) urroJeql w uol}"turoJsuerl l"uollc€rJ '(u)z u" spe (2'7,)ISd r€aurl e sr.(z'?hsd ) ,L luaurale.{ra a 1eq} 11ecell 'ruo11 dnorE .relnpou aql pq1 ureldxa e,$ (U)J p I7 uorlecgrtuePlaql Sursn 'arnlcnrls xalduroce seq oEe (U).f ttqt ''g] Surpuasacuapuodseuoc 'arogaraq;'l't ''Al ol er1]raPun lno surnl 11 [(r)3' (U)Z qU^ t7 fgluapl u?f, a/n 'g'1 uraroaql Pu" $lrsruar Sutpacardeql urord '5] '(/'5) sled qcns t(ef); fq pelouepq qcg,ra'g 1o [rf 1o acodsren!,uqrre; eql sasselcacualelrnbaIIs Jo les eql ilet e1l 'rS * S :q tutdderu ctqdrouroloqtq 'JI e o1 rrdolouroq sl ,.g .- ,g : ,-lo6 't'l ruaroaq;, ul se fpo pue y. Tueyoatnba ere eloq" s (f ',S) pue (/'5') s.rredoil,1 ?eql fes ean'putut ut stql qfl1l .(t)g = ((,r),<)'(,;) 1eBa,r,t'.re1ncr1red = (lrl)"1 "l'l?)"!l "2 : { ursrqd.rouroeJlPSur,uasard-uollelualJoII? sacnPul Eurllas ,(q 'U -
induces an orientation-preserving diffeomorphism IT: R.,. --+ R T by setting IT([Z)) = [iT(Z)]. In particular, we get (fT)*(E(To)) = E(T). With this in mind, we say that two pairs (B, f) and (B', g) as above are equivalent if and only if, as in Theorem 1.3, go/-l: B --+ B' is homotopic to a biholomorphic mapping h: B --+ B'. We call the set of all equivalence classes [B, I] of such pairs (B, f), the Teichmiiller space of R, which is denoted by T(R). From the preceding remarks and Theorem 1.3, we can identify T 1 with T(R) under the correspondence sending [RT, E(T)] to [RT, IT]' Therefore, it turns out that T(R) also has a complex structure. Now, using the identification T 1 ~ T(R) we explain that the modular group PBL(2, Z) acts on T(R). Recall that every element 'Y E PBL(2, Z) is a linear fractional transformation in the form (1.3). The action of'Y on T(R) is primarily given by the correspondence sending [RT, IT] to [R.y(T) , f.y(T)]. On the other hand, for any point T E H, the element hT of Aut(C) defined by hT(z) = (CT + d)z induces a biholomorphic mapping h T : R.y(T) --+ R.,. given by hT([z)) = [hT(z)]. Since hTOI-Y(T) ITOhTool-Y(To)' we obtain [R.y(T).!-Y(T)] [RT.!TOhTool-Y(To)] in T(R). Put w-y (hTool-Y(To»)-I, which is a diffeomorphism of R R To onto itself, and define its action on T(R) by [w-y]*([RT.!T)) = [R T.!Tow;l]. Then [w-y]* is the biholomorphic automorphism of T(R) corresponding to 'Y E PBL(2, Z). By this correspondence, PBL(2, Z) is considered to act on T(R) , and the moduli space M 1 of tori is identified with T(R)j PBL(2, Z).
= =
=
=
Teichmiiller Space Space of of Genus Genus g9 1. Teichmfiller
14 L4
Teichmiiller Space of of Genus Genus g9 1.3. Teichmiiller In accordance accordance with with observations observations in in the previous section, section, let us construct the In Teichmiiller space of of arbitrary arbitrary genus g9 in in two two ways. Teichmiiller The first first construction is given by considering considering marked Riemann surfaces. surfaces. A A The system of of canonical generators generators Dp Ep == {lAil,lBil}f=t {[Aj], [Bj] }j=1 of of a fundamental group 71"l(R,p) of of a closed closed Riemann surface surface E R is called a marking on E. R. Two Two markings n{R,p) = are equiaalent there on it and Dp,Ep = {[Ai],lBil]f=1 {[Aj ], [Bj]}J=l Ep' = {lAil,pf}fu {[Aj], [Bj]}J=l R are equivalent ififthere Dp exists a continuous curve Co Co on .R R such such that that [,ai] [Aj] = Tc"(AiDand Tco([Aj])and [Bj] [Bj] = ( . R , ptto )o r71"l(R,p') 1(R,p') 1,, .... ,g, where Tsco" iiss tthe off z71"1r 1(R,p) h e r e? h e iisomorphism s o m o r p h i s mo ..,9 , w o r Ij - 1 fTco([B c " ( B i l )j ]) ffor sending any [C] [C] to to lC;r [C;l . C C .. C"). Co]. Let Do E p and E q be markings on closed closed and Eo Riemann surfaces surfaces i? Rand S of of genus genus g, respectively. respectively. Two Two pairs (.R, (R, Xo) E p ) and and ,S (S, E q ) are said to be equiaalenl equivalent ifif there exists exists a biholomorphic mapping (S,E) = h.(E) h: S ---* R such that h.(E {h.([AjD, h.([Bj]) }j=r }j=1 itis equivequiv) that the marking h; 8 such q {h,(lA!i),h.(lBjl) = (R,Dr) denoted by of is equivalence class alent to E = {[Aj], [Bj] The equivalence class (R, E denoted Epp p) alent {lAil,lBil}j=r.Th" genus g. Teichrn'iiller [R, E ] called marked closed surface of genus Teichmiiller of The surface a markeil closed Riemann and called lR, Eip surfaces of genus space Tg of of genus genus g9 is the set of all marked closed closed Riemann surfaces genus g. g. spaceTo difconsidering orientation-preserving orientation-preserving second construction is given by considering The second feomorphisms. Fix a closed closed Riemann surface genus g. Consider Consider an arbitrary arbitrary surface R of genus feomorphisms. Fix I) of a closed closed Riemann surface orientation-preserving diffeodiffeosurface S .9 and an orientation-preserving pair (S, /) ---.9. said to tobe S. Two pairs pairs (S,I) and (S',g) are are said be equiualentif equivalent if (S,/) and morphism ff:: R ---* - S'. Let [S, - S' gof-1: S ---* f] mapping h: S ---* biholomorphic mapping homotopic to a biholomorphic gof-L:,S S'isis homotopic [S,/] classes[S, these equivalence (S, be the equivalence f] set of all these equivalence classes class of (S, I). equivalence class [S, /] /). The set is denoted space of R. is called called the Teichmiiller space bv T(R) "(r?) and is denoted by genus g(~ spaceT ?o As in the case we assert assert that the Teichmiiller space caseof tori, we s(>- 2) g of genus surface R -R of is identified with R) of a closed closed Riemann surface space T( ?(.R) with the Teichmiiller space genus genusg. 9. base point .R with base To see D = {[A see this, first fix aa marking E j ], [B j ] }]=1 on R {[1i],lBil1]oi=t (X) ,S determines a Po. in T(R), a marking f.(E) on S determines aa T(R), po. Corresponding to aa point [S,J] //] [^9, depend ?, does point [S, f.(E)] in T • It is noted that this point [S, f.(E)] in T does not depend "r. It is g g f.(D)) [.9, [.9,f.(t)] we Hence we 5.1. Hence on aa representative is seen seen from Lemma 5.1. ?(.R), which is representative of [S,J] [S,/] in T(R), --- T define R) ---* To A2: : T( T(R) define aa mapping !PIJ g by setting
=
=
=
=
U=l'
=
az(lS,/l) = [S,J.(E)] !p.d[S,J]) [S,/.(t)] for any [S,J] for any € T(R). [S,/] E ---+ Theorem R) ---* TTo is bijective. bijectiue. A 2 :: T( T(R) mapping !PIJ The mapping L.4. The Theorem 1.4. g is Nielsen's the so-called se'called Nielsen's Proof (an follows from the @s injectivity of !P (an outline). The injectivity IJ follows proved However, by Lemma 5.1. theorem (Harvey [A-41], p.43). It can also be proved by Lemma 5.1. However, p.43). be It can also theorem (Ilarvey [A-41], we Suppoeethat two points explanation for its injectivity. Suppose give an an intuitive intuitive explanation we shall shall give = [S',g.(E)] = O E ( [ S ' , e ] ) , i . e . , [S,J],[S',g] E T(R) satisfy !PIJ([S,J]) = q)IJ([S',g]), i.e., [S,J.(E)] g l e r @ ) s a t i s f y @ . r ( [ S , [S',e.(X)] f]) [S'.f.(t)] = [,S,/],[.9', an onto and an h of S' • in T Then we can take a biholomorphic mapping h of S' onto SS and mapping a biholomorphic we can take in Tn. Then g to go which is homotopic itself, orientation-preserving homeomorphism go of S onto itself, which is homotopic to of onto S homeomorphism orientation-preserving g). and Bi with on each Ai the identity, so that g1 = goohog coincides with f on each A and B (1 ~ j ~ g). gy coincides that j j $ f i S the identity, so / looho!
9I
15
6 snuag;o aeedg rallgurqrral 't'I
1.3. Teichrniiller Space of Genus 9
'.raq1rng ' 1as ,3 ro1 op 'salrnc qloous pasolc aldurs "t" t=;{ = ,K wj lurod aseq aqt eq llal'l!,vjI pu" I=r{ llAl'llV)l = Z ur fg pue '!,V'lg 'ff I1eteqt aurnssefetu am'1srrg 'J ue qcns go 'l(6-)-l',gj = uorlcnr?suor e earE 1leqs ea\ 1nq 'lceJ u^\oul-ila/( € sr sIqJ [,9',9] qcrq^\ roJ S: oluo A p { ustqdroruoeuroq Surnresard-uorlelueuo u" slsrxe ereql 'f1r,rr1ca[rns eql a,rord o;, 'g] fue roJ uJ > teql /$oqs ol lu?Icgns sr 1r lB ',S] eleq e.rlrsnqa 'ctdolouoq er€ rd '16' Pue / feqt flrsea a,rord ,Sl = [/ uec a \ 'aue1d aql ul {s!p lrun aq} o1 crqdrouroeuoq $ U urorJ fg pue fy 1e Eur -1e1apfq peurc?qo uretuop aql aculs 'uorlrusap aqt fq [td'S] = [6',9] teqt atoN
Note that [5', g] = [5, gl] by the definition. Since the domain obtained by deleting all A j and B j from R is homeomorphic to the unit disk in the plane, we can prove easily that f and gl are homotopic. Thus we have [5,/] = [5', g]. To prove the surjectivity, it is sufficient to show that for any [5, E'] E T g there exists an orientation-preserving homeomorphism f of R onto 5 for which [5, E'] [5, f*(E)]. This is a well-known fact, but we shall give a construction of such an f. First, we may assume that all Aj, Bj,Aj, and Bj in E = {[Aj ], [Bj] and E' = { [Aj], [Bj] are simple closed smooth curves. Let P~ be the base point for E'. Further, set
=
U=I
U=I
6
6
9
= U(Aj U Bj),
Ro
= R- C,
r=! =oA,CAn!,V))=,C'(gnlil)=
"
r=f
j=1
C' = U(Aj U Bj),
5 0 =5-C'.
.,C-S=oS,C-A
9
C
j=1
Surf;sr1es{odl - ,C '1xap oluo {0d} - C Jo 3;| usrqdrouoagrp Sur,traserd-uotleluelro ue a1e1 '(,2'S) uor; fear aruesaq? ur peurclqo {srp lrun pesolc st{} "y fq elouaq 'uy {slP }Iun Pasol, eql o1 crqdroruoaJlp sl d leqt asoddns feur arvr'4,;o xalra,r qcee punor€ ernlcnrls alqerlueragrp Surceldag '(f 't '4.f ;c) aueld eql uo saprsf6 qll/'^ d uo3flod Pesolc e pue oU ueearleq ursrqdrotuoagtp Sur,trase.rd-uorleluetro ue s1srxe eraql ueqtr,
Then there exists an orientation-preserving diffeomorphism between R o and a closed polygon P with 2g sides on the plane (cf. Fig. 1.7). Replacing differentiable structure around each vertex of P, we may suppose that P is diffeomorphic to the closed unit disk .dR. Denote by .d s the closed unit disk obtained in the same way from (5, E'). Next, take an orientation-preserving diffeomorphism II; of C - {Po} onto C' - {p~} satisfying {'d}
- !g)21 lS = (oit}
fI:(Bj - {Po}) = Bj - {p~} -
fI:(Aj - {Po}) = Aj - {p~}, ' { o d } - t , V= ( o d }
- !y)s1
for all j = 1, ... , g. Here we assume that II: preserves the orientation of all loops A j , Bj, Aj, and Bj. Let i be the restriction of fI: to the boundary aLJ.R of .dR. Take a sufficiently small neighborhood U of Po in R which is diffeomorphic to a closed disk, and consider the set E on aLJ.R corresponding to C n U. Then we can construct a diffeomorphism aLJ.R -+ aLJ.s for which coincides with on aLJ.R - E. It is shown that this extends to an orientation-preserving diffeomorphism F: .dR -+ .d s (Hirsh [A-42], Chap. 8, Theorem 3.3). Now, projecting F to R- U, we obtain an orientation-preserving homeomorphism g: R- U -+ 5 - g(U). This g is not necessarily smooth in a neighborhood of each A j and B j . Thus, using a smoothing theorem (Hirsh [A-42], Chap. 8, Theorem 1.9), deform g homotopically to an orientation-preserving diffeomorphism gl : R - U -+ 5 - g(U). Furthermore, take a neighborhood UI of Po which contains U and is diffeomorphic to a closed disk. In the same way as for construct an orientation-preserving diffeomorphism go on UI from gl on aUI . Define an orientation-preserving diffeomorphism g2: R -+ 5 so that g2 = g on R - UI and g2 = go on UI . This g2 is not necessarily smooth in a neighborhood of aUI , and hence by using again the smoothing theorem, deform g2 homotopically to an orientation-preserving diffeomorphism f: R -+ 5. The construction of f shows that f*(E) and E' are equivalent, and hence [5, f*(E)] = [5, E']. 0
'[f 'S] =l(5).{ '5'l acuaq pue'1ua1e,rtnbe are ,3 Pu€ (g)Y tnql E s,r,roqs/ Jo uollrnJlsuol aql 'S - U : / usrqdroruoagrp Sur,trasard-uot1e1uat.ro ue o1 .{llerrdolotuoq zf ur.ro;aptlualoaql Eurqloours aq1 ureSeSursn .'tqecuaq pu€ 'rng z, slq;,'r11 uo 06 = 7'6pue lo pooqroqq3reu e ur qloorus dl.ressaeaulou sI rn - A uo f - z6 WqI os S r- g : zf ursrqdrouoegp Surrrrasard-uoll€lualJo u€ augeq 'r1lg uo Id uorJ tp uo o6 usrqd.rouroagrpEut,rreserd-uolleluelro ue lf,nrls -uoc '3[ ro; se fe,r,r atu€s eq? uI '{qp pesol? e o1 crqdrouroagp q Pue 72 sul€}uoc qcrqaiodgo t4 pooqroqq3tau e ar1e1'aroruraqlrng '(tD| - S * If -y :16 tustqd -rouoesrp Surarasard-uolleluelro ue o1 flectdoloruoq f ruro;ap '(6'1 ureroeql 'g 'd*qC '[ZfV] qsqg) ueroeql Surqloorus e Sursn 'tnqtr 'lg p* fy qcea;o <- n-A td urstqd pooqroqq3rau€ uI qlootus fpessacau 1ou st f sHI'(r)t-S -JouroeuroqSutrrrese.rd-uoll€luelJo ue ulelqo e&' I) -A o1 g 3ut1celord 'alo11 '8 'deqC '[Al-V] qsrlg) tV - "? t,! ursrqdrouroagrp '(g'g uraroaqJ, uo t ue o? spualxa sJ'$ql teql u^{oqs q }I'g -uyg Surarasard-uorleluarJo q1!^{ sepl)ulqx eJ' qcrqa roJ syg *- ive : e;l usrqd.rouoeglp e lcnrlsuoc ue1 '4srp pesol? e A ueql 'flu 5 ol Surpuodselroc UVQ uo 5i 1as eql raplsuo? pue e o1 crqdrouroaglp sl qrlq^a U ut od;o n pooqroqq3tau 11eus{lluatcglns e a{"J 'l,S pue ' !,V ' lg ' lV .aV lo uyg ,{repunoq eq} o1 a! p uor}crrlser aql aq ! pl ' " ' 'I sdool pe Jo uorleluelro eql selresard 3/ 1"ql eurnss€eir e.rag 6' f 1e rol
i
if):
if)
if)
i,
ueql'[/3' 'S] = [(f)V'5r] 3ur,{;sr1es.g*- g:rf ursrqdrouroeluoqSurrrraserd -uorleluarJo ue slsrxe araql 1€rll /r\ou{ e^r 'a.roqe palels uaroeql s.uaslelN .{g'smo1o; s"eparrord eq osle uec 7'I {uaroeql ut dlt,rtlcafrns aqJ'tlrDuev
Remark. The surjectivity in Theorem 1.4 can also be proved as follows. By Nielsen's theorem stated above, we know that there exists an orientationpreserving homeomorphism f: R -+ 5 satisfying [5,/*(E)] = [5, E']. Then
1. Teichmriller Teichmiiller SPace Space of of Genus Genus 99 1.
16 16
we find find aa qua.siconformal quasiconformal mapping mapping /o fo homotopic homotopic to to /f (Bers (Bers [26] [26] or or Lehto Lehto [A[Awe there however, smooth; 68], Chap.5, Theorem 1.5). This fo is not necessarily smooth; however, there necessarily is not 1.5). This Theorem 68], Chap.5, fo to f,fo (the (the Corollary Corollary to to exists aa real-analytic real-analytic quasiconformal quasiconformal mapping mapping homotopic homotopic to exists Theorem 6.9). Theorem 6.9). Finally, we we define define aa canonical canonical group group action action on on the the Teichmiiller Teichmiiller space space ?(R). T( R). Finally, of orientation-preserving Let M od(R) be the of all homotopy classes [w] of orientation-preserving classes homotopy of all be the set Let Mod(R) [o] diffeomorphisms ar: w: .R R *-+ -R. R. We We call Moil(R) M od( R) the Teichmiiller Teichmiiller modular modular group group or or diffeomorphisms by on ?(R) group of R. Every [w] T(R) by the mapping class acts group Every element of .R. class [ar] or-']1 ] [w]*([S, /]) f]) == [S, [S, ffow[r].([S,
for any [S, [S, /]f] eE "(n). T(R). We call every lw)* [w]* a Teichmil,ller Teichmiiller moilulor modular transformation. M g be the moduli space space of of closed closed Riemann sarfaces surfaces of of genus genus g, i.e., i.e., the Let Mo set of of all all biholomorphic biholomorphic equivalence classes classes [S] [S] of of closed closed Riemann Riemann surfaces surfaces ,9 S g genus there of surface .s of Since for an arbitrary closed Riemann S of genus closed Riemann g. a,n arbitrary genus for of since exists an orientation-preserving orientation-preserving diffeomorphism diffeomorphism of of R R onto onto ,S, S, the the moduli moduli space space the action by of "(i?) M is identified with space T(R)jMod(R) of T(R) quotient space T(.R)/Mod(R) with the M,g space Mo of Mod(R). Therefore, Therefore, we can study study the moduli moduli space M g via via the Teichmiiller Teichmiiller of. Mod,(R). 6, group In Chapter space T(R) and modular group Mod(R). 6, we shall Mod(R). modular the Teichmiiller space ?(.R) that see that T(R) has a (3g 3)-dimensional complex manifold structure and that (3c 3)-dimensional has see that "(E) biholomorphic of as M od(R) acts properly discontinuously on T(R) as a group of biholomorphic "(8) properly discontinuously M od(R) (3g -- 3)-dimensional has a (3g 3)-dimensional automorphisms. M g has spare Mo moduli space automorphisms. In particular, the moduli normal complex analytic space space structure.
1.4. Quasiconformal Teichmiiller Space Mappings and Teichmiiller Quasiconformal Mappings previoussection section in the the previous Let R) constructed constructedin spaceT( ?(,R) the Teichmiiller Teichmiillerspace us review reviewthe Let us from the view-point of the theory of quasiconformal mappings. theory view-point from coefficients Beltrami Coefficients 1.4.1. and Beltrami structures and of Complex complex Structures Deformation of L.4.1. Deformation g T(R), ft and structures of Rand For aa point we want to compare the complex structures point [S, ?(,R), we /] E [S, f] neighborhood coordinate and a S. Take a coordinate neighborhood (U, z) on R and a coordinate neighborhood (u,z) on I s. Take a coordinate neighborhood = wofoz-l. (V,w) Then ?r,ofoz-l. Then and set set F = (lz,to) on V, and on S ^5with f(U) C V, f (U) C
F Fz z pIJ=FF'z complex in the the complex set z(U) z(Lr) in is iur open open set on an defind on function defind complex-valued function is aa smooth smooth complex-valued u.'.Since Since coordinate w. local coordinate plane. choice of of aa local of the the choice it is is independent independent of plane. Note that it Note that 2 F, i.e., i'e., IFzl of F, the Jacobian Jacobian of f] isi, an diffeomorphism, the .n orientation-preserving orientation-pr"r"ruing diffeomorphism, lF,l' 2 F' is is Further, F on z(U). z(U). Further, we have have IIJI IF Thus we < 11 on on z(U). z(U). Thus positive-definite on z l isi" positive-definite lpl < l&12 the Beltrami Belt'rcrni = 00 on call IJy' the z(U)' We We call on z(U). biholomorphic if IJF = only if if and and only on z(U) z(U) if biholomorphic on coefficient (U ,z). z). to (U, with respect respectto of f/ with coefficientof of the choice choice of on the depends on It of f/ depends coefficient of that aa Beltrami Beltrami coefficient noted that be noted It should should be coordina*e take coordinate follows: take as follows: aa local is shown shown as depends is How itit depends on R. R. How coordinate zz on local coordinate
K(O) = 1 + 1J-l(0)1. 1 - 1J-l(0)1
. l ( o ) ' r l --I
i(g;ffi=(o)>r
the ratio of the major axis to the minor axis of this ellipse is
u asdrlla srr{}Jo srxe rounu aqt o} srxe roleur aq] Jo ol]er el{l
'l"l(l(o)'rl - r)l(o)"/l + r)l(o)"/l i l(o)zl 5 l,l(l(o)'tl sarlrlenbeutaqt ,tg '(tt't '8t"f) aueld-rn aqt ul asdrlla ue o1 aueld-z aql ur 0 raluec qt-ra elcrlc e spues 7 deur 't > r€aurteqt 'raaoero141 l$)"t /(O)ttl = l(g)r/l pue O * @)"1 1eq1saqdunqcrq,ra
which implies that fz(O) =P 0 and 1J-l(0) I = Ifz(O)/fz(O)1 < 1. Moreover, the linear map L sends a circle with center 0 in the z-plane to an ellipse in the w-plane (Fig. 1.11). By the inequalities
'o< - .l(o)"/l = (o)/r .l(o)"/l sagsrles0 - z le (6)f uerqocel s1t 'urstqdrouroagrpSutrlraserd -uorleluerro ue sr / acurs '0 - z Ie / ;o uorsuedxa ro1,te; eql Jo tural rapro lsrg eqt aq z(iltt + z(g)'t = G)l 1a1 'aue1d-rnxalduroc eqt ul /O uIPruoP e oluo aueld-z xaldruoc aql ul 6 urSr.roeq1 Surureluor O ureluop € Jo tuuqd.rouroagrp Surarasard-uorl€luarroue sr / l€ql etunssearra'spooqroqq3reualeurpJoo?Surraprs -uoc 'srql easoI 'sluer)lgeoc tusrtleg;o Surueeurcr.rlatuoa3eq1 ureldxa a.tr'1srrg
First, we explain the geometric meaning of Beltrami coefficients. To see this, considering coordinate neighborhoods, we assume that f is an orientation-preserving diffeomorphism of a domain D containing the origin 0 in the complex z-plane onto a domain D' in the complex w-plane. Let L(z) = fAO)z + fz(O)z be the first order term of the Taylor expansion of f at z = O. Since f is an orientationpreserving diffeomorphism, its Jacobian Jj(O) at z = 0 satisfies 1.4.2. Quasiconformal Mappings s8urddetr4l lBruroJrrocrsen$'6'7'1
',t1t1eur.royuoc uorJ 3[ 3o uotletaap aql ernseauro1 pesn sl / Jo luerrlgaof, lruprllag aql pue 'g uo arnlrnrls xaldtuoc eql '(U)"f ul Jo uorleruroJepe sluasardar (y)"6 ul U'S] lurod e leql su€errrlr ef,uag {y :l 7eq1 Wl'lAl = [/'^g] ?eql s^roqssrq;'Surddeur crqdrotuoloqlq€ q,S * pue 'tusrqd.rouoeJrp Surl.rasard-uolleluelro ue sr /U * A :p? deu flrluepr eq1 'tl)D{ 's1as se (Io"*'("1)r-t) 1eq1 U = /U leql eloN } spooqroqq3raueleurp 'deilr slqt uI -rooc ;o uals,ts qlurr paddrnba IU ateJJns uu€uIeIU A\eu e aleq ea,t 'U uo arnlf,nrls xaldruoc " seugep v>a{(toDm'("1)vt) } spooqroqq3raueleu ',9 - g : ursrqdrouoeslp Sut,uasard-uolleluelro ue roJ -rprooc rt ;o ualsIs B puts S uo vl"{ ("*'"A) } spooqroqq3rau eleutp.roocJo ualsds e rog '.Lrop
which is called the Beltrami coefficient of f on R. Now, for a system of coordinate neighborhoods {(Va' wa ) }aEA on 5 and for an orientation-preserving diffeomorphism f: R ----> 5, a system of coordinate neighborhoods {U- 1 (Va ), waoJ) }aEA defines a complex structure on R. In this way, we have a new Riemann surface Rj equipped with system of coordinate neighborhoods {U- 1 (Va ), waoJ) }aEA. Note that Rj = R as sets, that the identity map id: R ----> R j is an orientation-preserving diffeomorphism, and that f: Rj ----> 5 is a biholomorphic mapping. This shows that [5, f] = [R j , id] in T(R). Hence it means that a point [5, f] in T(R) represents a deformation of the complex structure on R, and the Beltrami coefficient of f is used to measure the deviation of f from conformality.
'U uo / 1o Tuata$aocnaDr?Iegeql pallec$ q)nl^t
(e'r )
dz J-lj = J-l dz'
(1.5)
''P ,t - trl
zp
where Zkj = Zkoz;l. This shows that the set of Beltrami coefficients of f on coordinate neighborhoods of R induces a differential form of type (-1, 1) on R. Thus we denote this differential form of type (-1, 1) simply by
,tq ,{ldurrs (t't-) ed{1 ;o ruroJ l"rluereJlp slq} a}ouap e^r snq;, 'U el€ulprooc uo ad{1 (I'1-) Jo urroJ leltuareJlp € se)npul U Jo spool{ro,Q{31au - l{z areq^l uo /go sluerrlgeoc rur€rllagJo les eqt leql s.lroqsslql'rizors
(~~j) / (~~:)
'(trut2)tz uo (#) on
Zj(Uj n Uk),
(r r)
trl
J-lj = (J-lkOZkj) .
(1.4)
l@).(rzotrl)=
e^tsqa,lr'Q * qnU ln '(qz'qn) pue rurerllag uaq,11',,(learlaadsar ol qll/'^ Jo sluarf,lgeoc (lz'fn) leadsar ./ eqt eq 'trl pup ld lr,1't1 1 (r2)l pue ln > (dI ?€qt qcns g p (tn'tn1 '(!m'11) spooq.roqq3reu eleurproocpue gr 1o (tz'qn) '(tr '.!2) spooqroqq3rau
neighborhoods (Uj,Zj), (Uk,Zk) of R and coordinate neighborhoods (Vj,Wj), (Vk,Wk) of 5 such that f(Uj) C Vj and f(U k ) C Vk. Let J-lj and J-lk be the Beltrami coefficients of f with respect to (Uj, Zj) and (Uk, Zk), respectively. When Uj n Uk =P ifJ, we have
'7'1
1.4. Quasiconformal Mappings and Teichmiiller Space
17
a*dg
L1
ralnurqf,ral pu? s8urddul4l purro;uorrsen$
1. Teichmiiller Space Space of of Genus Genus g 1. Teichmriller
188 1
This shows shows that that any infinitesimally infinitesimally small circle with with center center 0 is mapped by /f to This ellipse whose whose ratio ratio of of the major major axis axis to the minor minor axis is K(0). K(O). an ellipse
L(z) L(z)
I'
-I'
--t ~
cp rp -= a := a bb =:
1
8=Zar o : l a r egutL(O) $)
8+arg/,(O) 0+aref,Q)
( 1 +l p ( o ) l ) r l l , ( o ) l (l+ltL(O)I)rl/,(O)1 (r-lp(0)l)rlf,(o)l (l-ltL(O)I)rl/,(O)1
Fig.l.ll. Fig. 1.11.
This statement holds we also also call the Beltrami Beltrami holds at every every point in D. Thus we coefficient , \
ffz(z) t(r)
p t Q=) =fz(z)' f f i , zED, z eD , IlI(z) if /f the complex of /f at z. As we we saw before, III saw before, dilatationof complen dilatation Ft = 0 on D if and only if quasiconfonnal D. We call f a quasiconformal mapping mapping of D to is a biholomorphic mapping on a We is a f D' if f satisfies satisfies Dt if f = sup .". sup11l*+ IIIlI(z)1 Kr . 00. lrrl'J! KI ' = < t ?()I zED z) l , e b r -- l pIII coefficient Ill. Further, ff is called quasiconformal mapping We mapping with Beltrami coefficient called aa quasiconformal Lrt.W" call K I d,ilatationof ff.. call K1 the maximal dilatation quasiconformal mappings. mappings. We We shall shall In this chapter, we only consider consider smooth quasiconformal chapter, we quasiconformal mappings 4. study more general general quasiconformal mappings in Chapter 4. value IIlI(z)1 absolute value Transformation (1.4) implies implies that the absolute tansformation formula (1.4) lprl(z)l of the = diffeomorpJQ)dzldz an orientation-preserving Beltrami = III (z) di/ dz of an orientation-preserving diffeomorcoefficient III Beltrami coefficient W is aa - S l?. Thus III phism f: I II is local coordinates coordinates on R. does not depend depend on local .9 does lpy I : R --+ get we get r? is is compact, compact, we I I| < 11 on continuous and III on R. ,t. Since Since R continuous function and lpty
= sup su pIIlI(z)1 111l11i00 l py( z)<
(1.6) (1.6)
In we have have ln particular, we
= 1+ = 1+ II 1100 "'=::B 1-1I1l11100 HP)t=il+ffll:'*
K
I
sup IIlI(z)1 zER 1-IIlI(z)1
III
<
00.
(1.7) (1.7)
'@)"ttpO nP s|uo1aq o7 Quo puv l? A lo dout fi1t7uaptaq7o7 ctiloTouroqsr, 6rl '(A)+ttlO aq7 uotTo1et' sp1ot1 oeluos.r.ot (d)*ott, lorlor-6'atou.t.r,eql,.rng + f, i0 { r f i 1 u op u o t ? r S - S : r 1 A u t d d o u tc t y i l t o u , r o l o t poq s q r n e u a l l ' t S puo S * A i{ stusttliltoutoa$tp 0untasa.td-uotToTueuorof, '9'I ureroaqJ
Theorem 1.6. For orientation-preserving difJeomorphisms f: R --+ Sand g: R --+ S', there exists a biholomorphic mapping h: S --+ S' if and only if the relation /-Lg = w*(/-Lj) holds for some W in Dif f+(R). Furthermore, g-l ohof is homotopic to the identity map of R if and only if W belongs to Dif fo(R). 'r(A)g
Jo luauele ue sr /r/ pus (U)+//?O
Jo luaruale ue sI r't areq^l
where W is an element of Diff+(R) and /-Lj is an element of B(Rh.
Iil:a-I
z /-Lj - /-Lw) -1 = /-Ljow- = (w -==1 oW , Wz - /-Lw /-Lj ',v l _ n o/ \ - r i l : l r l
g)
(1.9)
r.)-
"-\ = ({rt)*n = "r-.o[rt 1
(o'r)
W*( /-Lj )
fq ua,u3 q r(2,)g uo (A)+ttlO Jo uollc€ aqJ .@)+l lgO;o dnor3qns '{1.rea13'pg deru flrluapr eq} ol ctdolouroq (u)+l tlo Ieurou e q (A)'! !16r ur s?ueutrrela II€ Jo slflsuoc qclqar dnor3 e aq, (U)"t lpO leT JIeslI oluo Ur uo sursrqdrouoagrp Suu.raserd-uorlelualroIIe Jo dnor8 aq1 (A)+t tlO fq elouag '(g't) fq uarrrSurrou-oo? eQt Eursn {q t(g.)g uo f3o1odo1e eugeq'seceJ -rns uueureru pesol, oluo ar ec"Jrns uuerualu pesolc pexg e;o sursrqd.rouoeJlP 'U uo Surlrasard-uorlplua-IroII" Jo stualrgao? Itu€rlleg Jo les aqt aq r(U)g larl sluer?lgeoc lru€rlleg go aceds eq1 Eursn dq sacedsrellntuqclal replsuof,eJsn lerl
Let us reconsider Teichmiiller spaces by using the space of Beltrami coefficients on R. Let B(Rh be the set of Beltrami coefficients of all orientation-preserving diffeomorphisms of a fixed closed Riemann surface R onto closed Riemann surfaces. Define a topology on B(Rh by using the Loo-norm given by (1.6). Denote by Dif f+(R) the group of all orientation-preserving diffeomorphisms on R onto itself. Let Dif fo(R) be a group which consists of all elements in Diff+(R) homotopic to the identity map id. Clearly, Diffo(R) is a normal subgroup of Diff+(R). The action of Diff+(R) on B(Rh is given by '8't'I 3o sacedS
1.4.3. Spaces of Beltrami Coefficients sluarcsaoC
rtuertlag
'seceds rellnuqtlal go froaql t.Ildleue xelduroc e dole,rap eirr eraqm '9 reldeq3 ur elor luelrodur ue sr(e1dslqJ'tr/ uo rtllertqdrouoloq spuedap /orrl luarclsao) rurcrllag aqt'./ paxg e roJ l€q? suoqs (g'1) elnruroJ'ta,roaro141 '((g'Z) "lnurroJ'9'6 eurural) y ut lutod e fl o pu" requnu Ieer " $ d aleq^r 'aue1d xaldruoc eql ul y cslp ?tun eql Jo
of the unit disc .d in the complex plane, where () is a real number and a is a point in .d (Lemma 2.8, formula (2.6)). Moreover, formula (1.8) shows that for a fixed f, the Beltrami coefficient /-Lgoj depends holomorphically on /-Lg. This plays an important role in Chapter 6, where we develop a complex analytic theory of Teichmiiller spaces. 1- az Z D _ T
= (z)L
,(z)=ei9 z-:: "a
-
'tlrDu.Iay ctqdrouroloqlq e se ruroJ eruss aql seq (8'I) "1nlurod
Remark. Formula (1.8) has the same form as a biholomorphic automorphism ursqdrouolne
.z{il --'trt t g : r } l o z l | u r i l d o u . te W ' ( 7 , ' l f i n p o p u o l t c t y i f u o r a o p q Nsqp z g + u1 |utatasatd-uotToTuauo.tot '.t'o7nct'7-tod = !) lS 1- U : lt sutstrld.tou.toa$tp 'spptt
holds. In particular, for orientation-preserving difJeomorphisms Ii: R --+ Sj (j = 1,2), the mapping hof11: SI --+ S2 is biholomorphic if and only if /-Lit = /-Lh' - fz J.lgoj - J.l j J.lgO f - = fz I-J.lj·/-LgOj {ooyl.[il-I'l
(a'r )
_ r^oe
-H:j;Frt
(1.8)
T-t-"
uotlllar eqt 'J + g :6 'S ,- A : t su,tst'r1d.t'ou-toa[9p 'g secol.tnsuuour?tg Jotr 'g'T uollrsodor6 puD 'J'g |um.tasand-uorlDlueuo
Proposition 1.5. For Riemann surfaces R, S, T, and orientation-preserving difJeomorphisms f: R --+ S, g: S --+ T, the relation
'elnl uleql eql ,tq pe,rord ,,(lsee sr Surddeur elrsodtuoc e Jo sluelcseoc rtu€rlleg roJ elnuroJ 3ur,u,o11o;eq5 'g ;o Surdderu l€ruJoJuoctsenb g, : / usrqdrouoe$IP Sur,r.reserd-uoll€lueuo ue leql {es feru ai ecuaH
Hence we may say that an orientation-preserving diffeomorphism f: R --+ S is a quasiconformal mapping of R. The following formula for Beltrami coefficients of a composite mapping is easily proved by the chain rule. e s-I,g -
'l'f acedg relnurqf,reJ Pu? s8urddeyl TeurroJuof,rsenb
104. Quasiconformal Mappings and Teichmiiller Space
19
6I
1. Teichmiiller Teichmiiller Space Space of Genus Genus g 9 1.
20 20
Proof. Suppose Suppose that that there exists exists a biholomorphic mapping h: h: S 5 *-+ S'. 5'. Setting Prool. :..J g-l we see see that that formula (1.8) (1.8) gives gives g-Lohof, ohof, we u
=
=
=
=
*(Pt). Jlgg = Jlhojoww*(Jlj). F h o J o r1- r= JljowP J o u1- t= u F
there exists exists an element element uW eE Dif Diffa(R) f + (R) with with pc Jlg = = u*(pt),then w* (Jl j), then Conversely, ifif there Conversely, * gowof-r: Proposition 1.5 shows that h = gowof-1: 5 -+ 5' is a biholomorphic mapping. biholomorphic mapping. ,S S'is Proposition 1.5 shows The second assertion is clear from the definition. 0 D second assertion clear
Corollary. The mapping of of sending sending (5, (S,f) f) to pt Jl j eE B(R\ B(Rh induces iniluces the lhe following following Corollary. The mapping identifications: identif,cations:
r(R) = T(R) ~ B(R\lDif B(Rh/ Diffo(R), I"(R), Mo M ~ B(R)r/Dif B(Rh/Diff+(R). ge f+(R).
1.5. 1.5. Complex Structures and Conformal Structures means of conconIn this section, R) by means space T( ?(R) us reconstruct the Teichmiiller space section, let us formal structures induced induced by Riemannian metrics on R.
1.5.1. Riemannian and Conformal Conformal Structures Structures Riemannian Metrics Metrics and 2 is given Suppose two.dimensional orids2 is given on a real two-dimensional Riemannia.n metric ds Suppose that a Riemannian ented represented as as M. This metric is is represented ented smooth manifold M.
2 -f2Fdxdy 2 = Edx ds 2Fdxdy + ds2 Ednz + * Gdy2 = xt + we see seethat on aa coordinate y)) of M. ([/, (x, (r,V)) M. Setting coordinate neighborhood neighborhood (U, SettinE z = f iy, we it is written in the form is written (1.10) (1.10) ds2= \ldz * prdZl2, pl is is aa complex-valued complex-valued smooth where where A ,\ is is aa positive smooth function on U and Jl ( p given are given by l and and Jl are function with IJlI lpl < 1 on U. Actually, A
^==~i (E J --nF2) c - ,r ) , A ( " ++GG++ zEG
2V
E _ GG+2iF +2iF E-
t'- E +G+2 \/E E= 7t' 2 ds2 (u, v) isothermal coordinates coordinate.sfor ds Local coordinates if u) on U are said said to be be isothermal Lr are coordinates (u, ds as is represented representedas ds2 is (1.11) (1.11) ds2=p(duz+du2)
2
we assume €Issumethat both of on positive smooth function on U. Here we [/. Here where p is is aa positive on U, where (c, u) on U coincide coincide with the orientations induced by the coordinates (x, y) and (u, v) on and coordinates induced = an 1r iu also called the one on M. The complex coordinate w = u + iv is also called an isothermal u) is complex coordinate one M. * 2 . coordinate coordinatefor for ds ds2.
fq uarr3 q ;4I uo (z'fr'r) - d lurod e'T,I'I'3ld rl pel"rlsnllr n (d'il seleulproot I€col aql 3urs1 'r11 uo )ulaur ueqJ crrlau ueruuetuelg € s€q u"ep{?ng eqt dq pef,npur J,tI Ietluouec zsp '(Zt't'ft.f) D > q > areq^4, 0 'srx€ z eql punor€ aueld-(z'f) "qt uo = zz * z(D - f) ala.rrcaql 3u-I^lo er zg fq paurelqo fl r{?rqr'r gll af,Bds ueaprTcng aql u! e?eJrns e aq W p1 'aldutoxg
Example. Let M be a surface in the Euclidean space R 3 which is obtained by revolving the circle (y - a)2 + z2 = b2 on the (y, z)-plane around the z axis, where 0 < b < a (Fig. 1.12). Then M has a canonical Riemannian metric ds 2 induced by the Euclidean metric on R 3 . Using the local coordinates (0,
'droeql pue drqsuorleler slql paztuEo uollcunJ ctrlatuoa3 aql papunoJ 'g 'ses?c -rer .raqSrq roJ enrl lou $ qtlq^\ 'sployrueur uu€uerg lsrs leuorsueurp ''e'l 'sp1o;rueur xalduroc I€uorsuaurp-1 .ro; ,tl,radord elqe4reur Iear l€uorsueurp-A -eJ e sr uorlrasse stq; 'Surdderu l"ruJoJuor € pells? sr Sutddeur cqdrouoloqtq e teql uos€er " $ srqJ '1ua1e,rrnbaare aln?cnrls IsruroJuo? Jo pu" aJnltnrls (teql s^\oqs uaroeql slqJ xaldtuoc ;o sldacuoc 'esea leuorsuaurp-oirrl aql q
This theorem shows that, in the two-dimensional case, concepts of complex structure and of conformal structure are equivalent. This is a reason that a biholomorphic mapping is called a conformal mapping. This assertion is a remarkable property for 1-dimensional complex manifolds, i.e., 2-dimensional real manifolds, which is not true for higher dimensional cases. B. Riemann first recognized this relationship and founded the geometric function theory.
'att1d.rouro1ot1lq tl fi1aopuo s! ([sp '.,1I)- Qsp'W):l s? *A lr lout^,t,otuoc S t! '([sp'N) splottuotu uvruuDutary uaql 'fi1aar7cedsar puo (zsp'W) louorsueurrp 'Z'I uraloaql -Z pa?ueuo frq pacnput,sacottns uuou?tg eq S puv A pI
Theorem 1.7. Let Rand S be Riemann surfaces induced by oriented 2dimensional Riemannian manifolds (M, ds 2 ) and (N, dsi), respectively. Then f: (M, ds 2 ) -+ (N, dsI) is conformal if and only if f: R -+ S is biholomorphic.
'ureroeql 3ur,no11o; eql ol speal (61'1) uoll"lues -e.rda.raq1 go ssauenbrun eql esef, ar{l uI aas o1 fsee sl 'U uorsuaurlp ll 1eql Jo 'uaql uaa&rlaqSurddeur FluroJuol s slsrxa ereq? J! ernptury loru.totuoc euros eq1 eler1 ro Tuapatnba Qlou.t.r,oluoc a r e ( [ s p ' N ) p u e ( z s p ' W ) 1 e q 1{ e s a 1 l ' N u o ( z C ) t p u e ( t 5 l ; ; ' u e a a l l a q ' l s p fq pa.rnseaur 'a1Eue aql slenba W uo 7'C pue I, selrn? qloours fue uaeiu,leq 'f1arrr1rn1ul'W uo uorlcunJ rlloorus 'zsp fq, pernsperu 'e13ueaq1 leql srrcetu 1r penle^-lear v 4 6 araq,n '_;211 uo .sp(d)dxa o1 lenbe q ./ ,(q ltp to lceq 1nd e q 1y f u t t l d n u t p u t l o t u o c " s l N * W i t u s r q d r o u r o e g r p B u r , r r a s a r d - u o r l e l u a r r o ue '(|sp'N) poe (csp'A[) sploJrueurueruuetuel]r leuolsuetulp-U palualro rod 'zsp clrleru u€ruueruerg eql fq pecnpw ?rnpnr?s lout^to{uoceql palle) aq ,(eu U uo arnlcnrls xaldruoo eq; 'deu, slql q pautelqo aceJrns uueurelu eql g itq eloueq 'W uo ernlcnrls xalduroc s saugep r>!{(!n'h)} l€q} f;r.re,ro1 (,;ig;o qncJlp lou sr lI '!2 qcee uo lm elsurpJoo? I€r.uraqlofl ue slsrxe araql r)!{((n'!x)'12) spooq.roqqErau eleurprooc uralsdse ro; 'acua11'I > -llr/ll Jo } '7 .ra1deq3 ?eql paphord slsrxa s.ile,rale01 uorlnlos " qcns Jo A$ ul pe,rord st sy 'uo4onba ,urDrlleg aql pell€r sr uorlenba slql 'rn uorlnlos crqdrotuoaglp e seq
has a diffeomorphic solution w. This equation is called the Beltrami equation. As is proved in §2 of Chapter 4, such a solution w always exists provided that IIJllloo < 1. Hence, for a system of coordinate neighborhoods {(Uj, (Xj, Yj)) }jEJ of M, there exists an isothermal coordinate Wj on each Uj. It is not diffcult to verify that {(Uj, Wj) }; EJ defines a complex structure on M. Denote by R the Riemann surface obtained in this way. The complex structure on R may be called the conformal structure induced by the Riemannian metric ds 2 . For oriented 2-dimensional Riemannian manifolds (M, ds 2 ) and (N, dsi), an orientation-preserving diffeomorphism f: M -+ N is a conformal mapping if the pull back of dSI by f is equal to exp(
(elr)
(1.12)
9a=9 m8
m8
comparing with (1.10), we conclude that an isothermal coordinate w for ds 2 exists if the partial differential equation esp roJ /'1 al€urprooc l€uraqlo$
'
t
z
o
uorlenba prluereJrp lerlred eql JI s?s1xe ue leql apnlcuoc erra'(0I'I) qlrrn Sur.reduroc
t
, l z ni +
r
l
z P l z l z m=l"dl n n l d Since an isothermal coordinate
for ds 2 satisfies
sagsr??sesp roJ nl eleurProoc leruraqlosl u3 a?uIS W
sernlrnrls I"ruroluoC pu€ sarnlf,ulg xalduro3 'g'1
21
1.5. Complex Structures and Conformal Structures
tz
22 22
1. l. Teichmiiller Teichmriller Space Space of Genus 9g
z
\
a
y
x Fig. F i g . 1.12. 1.12. = (a (o+ g ) ccos o sB, 0, 6 cos c o s
z=bsin
1
b
rl,@)== [' ---!4o, t/J,1,== t/J(
2d'(t/J)(dB ( { ) ( d 0 22++ddt/J2). rl}). ds 2 to = B 0+ fry' is an isothermal Thus w on M, isothermal coordinate coordinate for for ds ds2 M, which defines defines aa + it/J complex structure on M. M. Hence Hence R is aa torus. A little little more more calculation shows ft is shows generated by 1 and that R is / r, where is biholomorphic to C C/f, where r l- is aa lattice group generated ib/\/i,a2 --F.b2 . ib/V
1.5.2. of L.5.2. Reconstruction Reconstruction of Teichmiiller Teichmiiller Spaces by by Riemannian Riemannian Metrics Metrics genus gg ~ ) 1. Fix Fix aa closed closed Riemann surface surface R r? of of genus L. Take any local coordinate coordin ate zz on
R. R. 2 For an arbitrary on R, arbitrary Riemannian metric ds ds2 rR, from the uniqueness uniqueness of the (1.10), we p on R, expression we obtain aa globally defined coefficient J.I expression in (1.10), defined Beltrami Beltrami coefficient p (-1,1) and is called being < 1. Such a J.I is called the being aa differential differential form of type (-1,1) and IIJ.1l1oo 1. a Such llpllBeltrami melric. Bellrarni coefficient coefficientinduced inducedby by a Riemannian Riemannian metric. Let us coefficient of an us observe observe the relationship between between the Beltrami Beltrami coefficient orientation-preserving orientation-preserving diffeomorphism diffeomorphism and the one one induced induced by aa Riemannian metric. metric.
'@)+llvo/(a)w = uw '@)'llto l(a)w = @)t M g ~ M(R)/Diff+(R).
T(R) ~ M(R)/Diffo(R),
Theorem 1.8. The mappings which send an element [S,f) in T( R) to the equivalence and strong equivalence class, respectively, of a metric corresponding to f give the following identifications: :suotToc{zyuapt, 6urmo11ol ayy aatf
acuapatnba6uo.t7spuD nuelD { o7 0utpuodser,ror)uleru o to'fr1aa4cadsa.r,'sso1c 'g'I uraroaqJ - a m b aa q 7o t ( A ) J u ! l t ' S l l u e u e p u o p u e sq n q m s f u r d d v u e q J 'uorlress€
on each coordinate neighborhood (U, z), we obtain a Riemann surface R' whose complex structure is induced by the isothermal coordinate (U, w). Then the identity mapping fo: R -+ R' is an orientation-preserving diffeomorphism and its Beltrami coefficient coincides with J-I. Conversely, let an orientation-preserving diffeomorphism f: R -+ S be given. We can take a Riemannian metric dsr on S so that the complex structure induced by dsr is equivalent to the original one of S. In fact, the universal covering surface of S is biholomorphic to the Riemann sphere, the complex plane, or the upper half-plane (Theorem 2.2 of Chapter 2). We take the metric on S which is induced by the spherical, Euclidean, or Poincare metric, respectively (cf. §1.3 of Chapter 3). Then the pull back f*(dsi) of dsr under f gives the same Beltrami coefficient as that of f. Note that this assertion does not depend on the choice of a metric dsr inducing the complex structure of S. Such a metric f*(dsi) is said to be a Riemannian metric on R corresponding to f. In this way, we see that the set B(Rh of Beltrami coefficients of orientationpreserving diffeomorphisms on R is equal to the set of Beltrami coefficients induced by Riemannian metrics on M. Now, using the set M(R) of Riemannian metrics on R, we reconstruct the Teichmiiller space T(R) of R. Two elements ds 2 and dsr in M(R) are defined to be equivalent if there exists an element w in Dif f+(R) such that w: (R, ds 2 ) -+ (R, dsi) is conformal. Further, ds 2 and dsr are defined to be strongly equivalent if this w belongs to Dif fo(R). Denote by M(R)/ Dif f+(R) and M(R)/ Dif fo(R) the set of all equivalence and all strong equivalence classes of M( R), respectively. This observation and the Corollary to Theorem 1.6 lead to the following assertion. 3ur,rao11o; eql of p€al g'I ruaroeql o1 ,t.re1oro3 eql pu€ uorle^Jasqo srql
',,t1e,rr1cedser'(A)W p sass'elc acuaprr,rnba 3uor1sIIe pue ecuele.,lrnbe IIeJo las eq? pue (a)+IlpO/(A)W rq eloue6l '(A)"lIlO o1s3uo1aqo srql @)"ttpo/(A)W y Tualoamba fi16uo.t7s eq o1 paugepa.re|sp pue usp 'reqlrnJ 'l€ruroJuocq (I*p'U) - (zsp'A),o ?tsqtqrns (A)+ttlO ur r,l luerueleue slsrxe areqlJr Tualoaznba aq 01 paugap erc (g)4r ur |sp pue 6s'pslueuale o rI 'g Jo (U)J eceds rallnurqcraa aql llnrlsuocer a^r '9, uo scrrlaur u€ruueurelg Jo (U)hf les eql Sursn 'no51 'w uo s)rrleru ueruu€ruaru ,{q parnput sluarrlg:aof,ttu€rllag Jo las aql ol lenbe sr Ur uo srusrqdrouroagrp Surarasard -uorleluarroJosluer)Ueo, rurerllagJo I(U)5. ?eseql leql eesa,r.'.{e.nsqt uI 't o7 0utpuodsatloc uo culeur uvruuoulery A e eq ol pr€s sr (|rp)-t crrlaru e qcns'S'Jo ernlcn.rlsxalduroc eq1 Surcnpur[sp crrleru € Jo ecroq) eql uo puadep lou saop uotlress€ slql l€r{l eloN '/ Jo }€r{t se '(g luel)cgeor rur€rlleg erueseql se,rr3/ .repun |sp l" (trtp) -l >1ceq11ndeq1 uaql 'crrleru er€rurod .ro 'ueaprlcng 'pcrraqds eql ,(q raldeq3 Jo t'I$ 'gc) ,t1a,rr1cedse.r pe)npul sr qcrq/( S' uo crrleu eql e{€t alA '(U .ra1deq3Jo 6'Z ueroeqa) eueld-;pq raddn aq1 ro 'aue1d xalduoc eql 'araqds uu€ruerg eqt ol crqdroruoloqlq sl S Jo ac"JrnsSurra.roclesrelrun aq1 '1ce; uI 'SJo auo leur8rro aql ol lual€^rnbe sr Ltp fq pa?npur arnl?nrls xelduroo eql leql os S' uo |sp or.rlaurueruu€ruerll " a{€l uer eM 'ue,rr3eq * :/ ursrqdrouoegrp Surrr.raserd-uorleluerro ue 1e1'd1asra,ruo3 .g U 'rl qtl* saprcurocluercgeoc rureJllag sll pue ursrqdrouroagrpSurrr,.rasard-uorleluarJo u€ sl ,U * g. : { Eurddeur ,t1r1uepr aq? ueqJ '(^'n) eleurproof, leurreqlosl aql ^q pernpur sr arnlcnrls xaldtuoc asoq^r /U a)eJrns uuer.uerge urclqo all.'(z 'p) pooqroqq3rau eleurpJoof,q)Ba uo
zo --:- fl m8
zo n8
= ::-
uorlenbe rurcrlleg aql Surr'1os'I'g$ ul uaes ueeq s€q sV 'A to zsp rrrleur ueruueruerll e ,tq pecnpur luerrlgeor rtuerllag eql s! r/ 1eq1 esoddns '1srrg
First, suppose that J-I is the Beltrami coefficient induced by a Riemannian metric ds 2 on R. As has been seen in §5.1, solving the Beltrami equation 23
8,2
sarnlf,nrls l"urroJuoC pu" sarnl)nrlg xaldurop 'g'1
1.5. Complex Structures and Conformal Structures
1. 1. Teichmriller Teichmiiller Space Space of Genus Genus g
24 24
Notes Notes function theory originated with with Riemann's 1851 Gottingen dis1851 Gottingen The geometric function [181] and his 1857 1857 paper [182]. [182]. In connection connection with with multi-valued sertation [181] such as as algebraic algebraic functions, he introduced the concept concept of of the analytic functions such Riemann as the Riemann sphere. the sphere. He surface as a branched covering surface over Riemann Riemann also recognized recognized clearly the intimate intimate relationship between between holomorphic functions also plane. In [181], he proved and conformal mappings on a domain in the complex plane. [181], he Riemann's mapping mapping theorem theorem which asserts asserts that that any simply domain simply connected domain Riemann's plane with with mor'e mor~ than one one boundary point point is biholomorphic to in the complex pla.ne unit disk. In [182], he obtained the Riemann-Roch theorem. theorem. By By using this the unit [182], he determined the degree degree of of freedom of of finite finite branched coverings coverings over theorem, he determined Riemann sphere which which represent closed closed Riemann Riemann surfaces of genus genus g, and surfaces of the Riemann obtained the complex complex dimension mo m g of of the moduli moduli space of closed closed Riemann Riemann space of he obtained l, and g that is, m g = 0, 1, 3g -- 3 for g 9 = 0, 0, 1, 9 > ~ 2, 2, surfaces genus g, that is, ms 1, and 39 surfaces of genus of Riemann's work, work, we refer to Ahlfors Ahlfors exposition of respectively. For more complete exposition [4] [A-53]. [a] and Klein [A-53]. The standard surface, that that is, a one-dimensional standard definition definition of a Riemann surface, complex manifold was classic [A-1l1] was introduced for the first time in Weyl's classic [A-111] "Die Idee "Die 1913. Fl6che" in 1913. Idee der Riemannschen Riemannschen Flache" celebrated books The material of classical.Some of this chapter is classical. Some of the many celebrated on Riemann surfaces are Ahlfors and Sario Bers [A-6], Bers [A-13], are surfaces Sario Riema.nn [A-6], [A-13], Cohn [A-22], [A-22], Farkas Forster [A-32], Griffiths and Harris [A-39], Forster Griffths Kra [A-28], Farkas and Kra [A-39], Gunning [A-32], [A-28], [A-40], Siegel [A-98], Schlichenmaier [A-95], Jones and Singerman Singerman [A-48], [A-95], Siegel [A-98], and [A-48], Schlichenmaier [A-40], Jones are Springer [A-99]. For details of topology on surfaces, there are further books by details surfaces, Springer [A-99]. Moise Birman 6, Moise [A-75], Birman [A-18], [A-75], Stillwell [A-I0l], [A-101], [A-4lj, Chapters 1 and 6, [A-18], Harvey [A-41], curves, we we refer refer to and Zieschang, algebraic curves, Ziescha,ng,Vogt and Coldewey Coldewey [A-114]. [A-114]. For algebraic the books by Arbarello, Cornalba, Griffiths and Harris [A-9] , Griffiths [A-38], Grffiths books [A-9], [A-38], Mumford [A-78], Namba [A-82], and Shafarevich [A-97]. space The moduli space of Shafarevich Mumford [A-78], [A-97]. [A-82], tori considered in §2 is studied in the context of elliptic curves, elliptic integrals, curves, integrals, isstudied considered $2 see Clemens and theta functions. Clemens functions. For an an interesting exposition on this subject, see [A-21], Jones and Singerman Singerman [A-48]. [A-48]. [A-21], and Jones For textbooks on Teichmiiller spaces, spaces,there there are are Abikoff Abikoff [A-I], [A-1], Ahlfors [A-2], [A-2], Nag [A-80]. Gardiner [A-34], [A-80]. [A-68], and Nag [A-41], Krushkal' [A-60], [A-60], Lehto [A-68], [A-34], Harvey [A-41], For and [11], papers on this subject, consult articles articles by Ahlfors [8] For expository papers [11], [8] and spaces as in and Bers [22], §4 approaches to Teichmller Teichmller spaces as $4 and §5 $5 [40]. The approaches [22], [29], [29], and [40]. respectively. are tomba [71], Eells [62], Fischer and Tromba are found in Earle and Eells [7L], respectively. [62], [63], [63], and Fischer
=
=
' H J o ' J ' 3 s e c o t t n su u D u r e l y st acoltns-uuouaty peloauuo? 'tuaroaqtr, uoltBznuJoJrun
Uniformization Theorem. (Klein, Poincare and Koebe) Every simply connected Riemann surface is biholomorphically equivalent to one of the three Riemann surfaces C, C, or H. a?rtn e1t lo auo o7 TualoatnbaQparydloruoptfq fi1du.tzsfueag (aqeox pue ?recurod '.r!"IX)
'(w6d '[y-y] sroylqy eas) {$p }run aq} ot crqdrouroloqrq sr lurod f.repunoq euo u"q? arotu qlra C ur ul€urop pelceuuot fldurts dra,ra 1€rll slresse qcrq/rr uraJoall ,utdrlou,t s.uuDur?ta ol Pa)nPer sI rueroaq? sHl'c aueld xelduroc eqt ur sur€urop ro; 'r(gercadsg 'sac€Jrns uu€tuerlf roJ sploq uaro -eql uollezlruloJlun eql Pallec sl q?lq,$ ?oeJalqe{r€IueJ e }sq} u^lou{ 11ams! 1I
It is well known that a remarkable fact which is called the uniformization theorem holds for Riemann surfaces. Especially, for domains in the complex plane C, this theorem is reduced to Riemann's mapping theorem which asserts that every simply connected domain in C with more than one boundary point is biholomorphic to the unit disk (see Ahlfors [A-4], p.247).
rrreroaql uorlBzlruroJlun'I'z
2.1. Uniformization Theorem '6 snuaS;o tg aceds rellnurq)Iel eql ql!,u PagluePl q ll }"qt alord pue'g-ngll uI lasqns e se td aceds alcr.rg aql eu$ep aal '(6 l)f snueS3o sereJJnsuu€r.uarlr pasolc Surluasardar suelsfs Ierruorr€cEursn'g uorltas ur 'fgeurg sdno.rEuersrl?ndJos.ro1e.raua3;o 'ralel pasn ele qtlq^\ 'sdno.r3 uersqcr\{ yo satl.redord freluaurala euros a,rord airrr'7 pue t suolltes uI '; dno.r3 u€rsrlf,nde Aq H Jo J/H aceds luatlonb e fq paluasardar q (Z ?)n snua3 ;o ereJrns uuetuerg pasolc fre^e leql epnl?uot a,rl 'dem srql uI 'suolleuroJsueJl snlqgl 'dnor3 'relnarlred uersqrnd e uI tr J II€r ell'' 11 = U uerl^r 'Il ro'C '? ;o Surlsrsuocdnor3 e sB g uo rtlsrionurluo?srpfpadord slce J pu" o1 lualelrnba fllecrqd.rouioloqlq sr g, 'ruaroaql uorleznuJoJrun eql fg '6 uorlaai ur palrnrlsuoc s-rJ dnor3 uorleur.r5gsue.rlSurra,roc sll 'U Jo U eceJrns Eutreloc tg, Iesra^run eql JePrsuo?arn aae;rns uueuaru frelrqre ue ol ueroeql uollezfluroJ -run eql {1dde o1 repro uI 'g aueld-g1eq.reddn eq} ro '9 aueld xalduroc eql 'e a.raqdsuu€rueq aql :sae"Jrns uueruenr eerql eql Jo euo o1 crqdrouroloqlq $ eceJ -rns uusruarg palreuuoc fldurrs .,(Jea leqt slrass'e qcrqilr 'aqaox pue 'atecuto4 'ura1y o1 enp rueroeql uorlsznuroJlun aql urc1dxa er,r '1 uotlcag u1 'sdno.r3 u€rsqrnJ pue 'suorleurroJsueJl snlqgl [ 'sece3:tnsSurralroc lesrellun uo s]c€J f,Issq 'asodtnd 'sace3:rns sn{l roJ uu€ruerg Jo ruaroaql uort"z-turoJlun eql apuro.rda,u 'd snua8 (e-rsg ur }asqns e se pezrper sr (6 l)f snua3 ;o eceds e{llq aq} pag"c fl rlcrq^{ ;o aceds rellnurq)ral eql l"qt ^{oqs ol u .raldeqc luesard eql Jo esodrnd aqa
The purpose of the present chapter is to show that the Teichmiiller space of genus g(~ 2) is realized as a subset in R 6g-6, which is called the Fricke space of genus g. For this purpose, we provide the uniformization theorem of Riemann surfaces, basic facts on universal covering surfaces, Mobius transformations, and Fuchsian groups. In Section 1, we explain the uniformization theorem due to Klein, Poincare, and Koebe, which asserts that every simply connected Riemann surface is biholomorphic to one of the three Riemann surfaces: the Riemann sphere C, the complex plane C, or the upper half-plane H. In order to apply the uniformization theorem to an arbitary Riemann surface R, we consider the universal covering surface R of R. Its covering transformation group r is constructed in Section 2. By the uniformization theorem, R is biholomorphically equivalent to C, C, or H, and r acts properly discontinuously on R as a group consisting of Mobius transformations. In particular, when R = H, we call r a Fuchsian group. In this way, we conclude that every closed Riemann surface of genus g(~ 2) is represented by a quotient space H / r of H by a Fuchsian group r. In Sections 3 and 4, we prove some elementary properties of Fuchsian groups, which are used later. Finally, in Section 5, using canonical systems of generators of Fuchsian groups representing closed Riemann surfaces of genus g(~ 2), we define the Fricke space Fg as a subset in R 6 g- 6 , and prove that it is identified with the Teichmiiller space Tg of genus g.
Fricke Space
ar€ds a{rlqjt u raldBrlc
Chapter 2
26 26
2. 2. Fricke Fricke Space Space
Remark. These Riemann Riemann surfaces surfaces 0, C, C, C, and and /y' H are are not not mutually mutually biholomorphibiholomorphiRemark. These The Mobius transformation transformation tr w = (z --i)lQ i)j(z *+ f)i) maps biholocally equivalent. The morphically 11 H onto onto the unit unit disk 4, Li, and hence hence we often use use the unit unit disk 4Li morphically of the the upper half-plane IfH.. instead of
=
Corollary. A A closed closed Riemann Riemann surface surface of of genus genusO biholomorphic equiualent equivalent to 0 is biholomorphic Corollary. C.. Thus modu./i space space Ms M o of of closed closed Riemann surfaces surfaces the Riemann spheree Thus the moduli the Riemann sphere of genus genus 0 consists consists of of one one poinl. point. of
closed Riemanil Riemann surface surface R R of of genus genus 0 is simply simply connected, connected, the Proof. Since Since a closed uniformization theorem implies that that .R R is biholomorphic to one of of the three uniformization C, C, C, and 11. H. Since Since .R R is compact, itit should be biholomorphibiholomorphisurfaces e^, Riemann surfaces equivalent to C. C. !0 cally equivalent For proofs of of the uniformization uniformization theorem, we we refer to to books on Riemann also Ahlfors notes of See also [A-3]. For historical surfaces listed 1. in the notes of Chapter See surfaces [A-3]. and expository accounts, accounts, see Abikoff [2], Bers [29] [36]. and Bers and see Abikoff [29] [36]. [2], Among standard proofs proofs for the uniformization uniformization theorem, theorem, there is a method in which a mapping function is is constructed by using Green Green functions. functions. Let us us example from elucidate the concept concept of Green Green functions by using using an intuitive intuitive example elucidate electromagnetism. We rega.rd regard a Green function on a Riemann surface R as as the surface .R Green function electromagnetism. given at a point p and whose whose electric potential potential on R where where a positive charge charge is given boundary is earthed. Mathematically, when z is a local coordinate around p is is earthed. p as minimal on R, we define the Green function g(.,p) on R with pole at as the minimal ,R we define Green are harmonic function in the family of positive superharmonic superharmonic functions which are -loglz p. existenceof a in R The existence z(p)lI at singularity -log Iz - z(p) and have have the singularity .R - {p} {p} and "capacity" of the boundary of R is indepent of Green rt and is depends on "capacity" Green function depends with disk Li 4 with the choice example, the Green Green function on the unit disk choice of aa point p. For example, there are no the other hand, pole 1(1 - Zo z)j(z - zo)l. given by log z")1. On the other hand, there are no pole at Zo logl(l-z;z)/(z zo is is given C or C. Green functions on C Green = g(-, g = g(,p)p) on R. Then we we Now, assume exists aa Green Green function 9 assume that there exists obtain aa biholomorphic mapping ff:: RR'-'+ -- Li; A;
exp(-g(q) (-s(q)+ ig*(q)), ic.k)), I(q) f k) == exp
(2.1) (2.1)
g* is is aa where on R -- {p g* is where g* is the conjugate conjugate harmonic function of 9g on {p }. }. Note that g* 1r (n E multi-valued function whose periods are becauseof the singularity of whoseperiods are2n 2ntr e Z) because is aa single-valued single-valuedholomorphic holomorphic 9g and Hence, I/ itself is R. Hence, and simple simple connectedness connectednessof R. i.e., aa is univalent, univalent, i.e., function on we see see that I/ is argument principle we on R. .R. By the the argument biholomorphic mapping of R (see Fig. 2.1). 4 (see Fig. 2.1). -Ronto Li on R. We functions on R. We Next, we where there there exist exist no no Green Green functions casewhere we deal deal with the case .R' is such connected subdomains E take of simply connected subdomains of R such that Rn is aa take aa sequence sequence{{ Rn n' }~=1 }Lr for at coversR .Rexcept except for n, that U~=l Rn covers relatively eachn, Uf=rR" subsetof Rn+l E +r for each compact subset relatively compact g,. with with the the common common most the Green function gn point, and every Rn has the Green function and that that every ftr has one point, most one biholomorphic pole we can can construct construct aa biholomorphic way as as before, before, we pole p. p. Then, the same same way Then, in in the - Li constant, by aa suitable suitable constant, eachIn mapping for every every n. n. By By multiplying multiplying each Alor mapping In Rn n -/' by fn:: R - {{ w r' }} SO so tr E C Ilwl mappings F F'n :: Rn R- -we < get aa sequence biholomorphic mappings we get sequenceof of biholomorphic eC I lr.rll< Tn
sBurra,rog lesrel-ru1'Z'Z
LZ
27
2.2. Universal Coverings
+--I I I
lrnf/1 So1 (*)"6;o qder3
((4t)"0 - (r)6 uort?unJuaarg erlt Jo qder3
graph of the Green function 9(Z) = 9o(f(Z»
graph of 9o(W) = log
l/lwl
f
[€ruJoJuot -~
conformal l r > l m l l :v
fldurrs e
a simply connected Riemann surface
L1={lw!
Fig. 2.1.
'r'z'8tJ
'Ur*n ;o Eurddeu erqdrotuoloqrq parrsape sef,npur
uo uorl?unJ fr-uliaqf leql
that the limit function on R onto C or C.
U~=lRn
induces a desired biholomorphic mapping of
'c ro oluo c u
stur.ra,ro3 lesJa,rrun'e'Z
2.2. Universal Coverings 'e?sJrns uueruarg f.rerlrqre ue Jo aceJrns Surrarroc pelceuuoc fldurs € lcnrlsuoc aaa'uraroeql uorlszrruJoJruneql ,f1ddeo1 rapro uJ
In order to apply the uniformization theorem, we construct a simply connected covering surface of an arbitrary Riemann surface. sdno.rg rrorlerrrroJsue4l, Eurre^oC puB saceJrns Eurraaog Jo suor+Iugo1, 'TZ'Z
2.2.1. Definitions of Covering Surfaces and Covering Transformation Groups 'U I€sJelrun y Jo acottns |ut.taaoclDsrearun" U pue'g 1o 6uuaao) IDsrearune (A'o'A) II€) e^\ 'palcauuoe flduns sr U uaqm '.raillrnd 'U otuo g 1o uo4cato"tdeq| pa11ec6qe sr z deur Surra,rocaql 'Ujo acn!.rns|uuaaoc e g iue 'g 1o |uttaaoc e (A'v'U) IIec aaa'r1ooq srql uI 'crqdlouroloqlq q /? * ]1 :t deur palcr.rlsar aql '11 p (A)r.-" a3eun asra.rlura{l;o 1 luauodruoc pe}cauuor qcee roJ leql qcns pooq.roqqSreue s€q d fra,re y dout, Fuueaoc e eq ol pres sr lurod , A Jo 'sac€JJnsuueuaru aq pue Ur Ar ]erl A - U : ! Surddeur crqdroruo-Joqanrlcalrns y
Let Rand R be Riemann surfaces. A surjective hol'omorphic mapping 11": R ---+ R is said to be a covering map if every point p of R has a neighborhood U such that for each connected component V of the inverse image 11"-1 (U) of U, the restricted map 11": V ---+ U is biholomorphic. In this book, we call (R, 11", R) a covering of R, and R a covering surface of R. The covering map 11" is also called the projection of Ronto R. Further, when Ris simply connected, we call (R, 11", R) a universal covering of R, and R a universal covering surface of R. A universal
2. 2. Fricke Fricke SPace Space
28 28
covering of of R R mea,ns means that that itit is is the the "highest" "highest" covering covering surface surface of of all all coverings coverings of of covering R (cf. Theorems 2.2 and 2.4, and the remark remark in in $2.2). §2.2). Theorems2.2 and,2.4, r? Example I.1. We give a few simple simple examples of of covering surfaces. surfaces. Example
'11": C C -- C C -- {0} {O} be given given by r(z) 'II"(z) == e'. eZ • Then C C is a universal universal covering covering (i) Let r: ssurface u r f a c of e oC f C-- {{O}. 0}. niversal i v e n bby - .d e22".iz. ((ii) i i ) LLet y r'II"(z) ( z ) -= e ' i " . TThen h e n IH/ iiss a uuniversal bbe e ggiven : H + A --{ 0 {O} } e t r'11": covering surface surface of of A .d - {{ 0 }. }. covering } ositive *- C -- {{O} i v e n bby h e r e n iiss a ppositive ( z ) = zzn, n, w where ((iii) i i i ) LLet e ggiven y r'II"(z) : C --{ 0{O} e t r'11": 0 } bbe universal but it is not a integer. Then Then C -- {{O} covering surface of but it not of itself, a covering surface is 0} covering surface. surface. covering nd A For given 1),) , sset = exp and A== {{w E C Il tr < < lIwl < i v e n ^A(> e x p(-2'11"2jlog ( - 2 r 2 / l o g , \A) ) a ((iv) iv) F (> 1 et r = or a g .l < w € w h e r e l o g z d e n otes l}. Define'll": exp(2'11"ilogzjlogA), (z) = e x p ( 2 t r i l o g z / l o g . \ ) , where logz denotes A bby y r'II"(z) e f i n e r ; H - --- + A 1 ). D its principal principal branch. Then Then 11 H becomes becomes a universal covering surface of of the its annulus ,4. A. e /, a n d llet e t r'II"b be (v) bee aal alattice byy 1 aand and n d aa ppoint o i n t r €E IH, t t i c e ggroup r o u p ggenerated e n e r a t e db ( v ) tLet et 4T b C is a universal projection of of C onto onto the quotient quotient space Then space C fj rfr.T • Then the projection covering surface of the torus C/ C j lr.T • covering surface of
=
r
r
=
'1, R - R wittr '1ro^l is-called Any biholomorphic mapping "I: 1"0"1 = z'II" is called a coaering covering fr, E with Any (R,r, denote by (R,r,R). given covering covering(ft, transformation '11", R). For a given '11", R), denote covering(R, transformalion of a covering mappings, rl' the set covering transformations. By the composition of mappings, set of all its covering group (,R.'r,,R). forms a group, which is called the covering transformation group of (R, 11", R). transfonnation coaering called lgroup of (R, (-R,'r,.R) In particular, particular, we 11", R) lransformation group uniaersal covering coaering transformation we call I the universal if R is a universal covering surface of R. r?. if ,R
r
r
Example 2. We give covering transformation groups (i)', ... , (v), of coverings (i), ... , (v) in Example 1. The notation ("11,' .. ,"In) expresses the group generated by "11, ... ,"In' - *2tri. with "I1(Z) (i)' 2'11"i. (i)' r f = ("11) (rr) with 71(z) zz + (ii)' (ii)' r f ==( r("11) r ) w with i t h 7"I1(Z) 1 ( z )== Z z+ * 11.. - zz exp groupof order n. ordern. finitegroup is aa finite (iii)' r (2'11"ijn) , which is exp(2riln),which with "I1(Z) ('rt) with 1= ("11) 71(z) = )2. with "I1(Z) (iv)' AZ. (iu)' r r = ("11) (zr) with 71(z) "fz(z)= Z z+ a,nd"I2(Z) where"I1(Z) (T,72) -- r f,,T , where + r. (")' r (v)' 7 = ("11,"12) * 11 and 7{z) = zz +
=
=
= = =
= =
=
=
=
2.2.2. Construction Surfaces Covering Surfaces of Universal tJniversal Covering Construction of means aa path on surface R R means First of on aa Riemann Riemann surface definitions. A path we need need several several definitions. of all, all, we points and C(0) 1]. The continuous The points C(O) and the interval interval [0,1]. where.II is is the I -- R, R, where curve C: C: 1 continuous curve [0, also points of respectively. We We also of C, C(l) lern'inal points C, respectively. initial and and terminal to be be the the initial are said said to C(1) are confusion book, if if no no confusion the book, say path from Throughout the to C(1). from C(O) c(0) to c(1). Throughout that C is aa path say that c is same letter letter C. C. is by the the same possible,its also denoted denoted by is also its image image C(I) C(/) is is possible,
s8urraaogl"sra^ru1'Z'Z
2.2. Universal Coverings
29
'd = (ilu tlA u\ il,"r;3:"9:r|"'; A uo CWed e sI Ar uo,, qled e o't11llv 61 pre6 sl q!. q d lurod y 'U ecsJrnsuueruelg e;o Sutrerroce eq (g')L'A) p"l '0),C lurod leururrel eql pue (0)C lutod prltut aq1 qf!^A U uo ,C . C rlled e 1aBaar 'rg;o lurod FIlluI eqt qq^a C;o lutod Ieunurel eq1 Eurlcauuoc ,(q '(g),9 = (t)C lsq? qcns A ao tC Pue C sqled oarrlrog
For two paths C and C' on R such that C(1) = C'(O), by connecting the terminal point of C with the initial point of C', we get a path C . C' on R with the initial point C(O) and the terminal point C'(1).
Let (R, 'Tr, R) be a covering of a Riemann surface R. A point p in R is said to be lie over a point P in R if 'Tr(p) = p. A lift of a path C on R is a path G on R with 'TroG C. Now, by using paths we shall construct concretely a universal covering surface of a Riemann surface. Fix a base point Po on a given Riemann surface R. Let (C, p) be a pair of any point p on R and any path C on R from Po to p. These two pairs (C, p) and (C', p') are equivalent if p = p' and C is homotopic to C' on R. Denote by [C, p] the equivalence class of (C, p). Let R be the set of all these equivalence classes [C, p].
=
= 4z turl eql }eql ees err,r')Lodz xelduroc parrnba.raq1 splarf {(!z'!2)},tgurel -les 'gg ur ureurop pelcauuoc fldurrs e s\ dn l€qt qrns (or'on) pooqroqq3rau al€urprooc e e{sl 'U p [d'C] - gf lurod fue ro;'1ce; u1 'Surddeur ctqdrouroloq '1xe11 e setuof,aqA * U:1, l€qt os Ar uo alnltnrls xalduroc 3 euueP a,n 'deur e Eurra,roc Jo uorlrpuoc aql sagql"s pue U oluo Ur yo Eutddeur (uolllnrlsuof, eql ,cg 'a : (la'gl)r. rq eas o1 fsea q snonurluoc € sr l 1l 1eql ua,rr3 uorlceto.rd eql ee U * A:)L p1 'sceds 1ecr8o1odo1 JroPsneg € seuoteq g ueql 'A u\ 4 Jo spoor{roqq3rau pluaurepunJ Jo uralsfs e ouuep s^\ 'd2 aseql p;" dn uea/$leq aauapuodsauoc euo-ol-euo Isf,Iuouef, e a^€LI e,t 'uteutop ig,'h palcauuoc ,tldurrs e sr.d2 acurg 'D o1 d uroq d4 ur pauteluoc qled frerlrqre ue st d4 ';2 ul .{eirrr e qcns ul ur e sr b pw 1eq1 lutod 2I lb'bC.9] slurod II3 Jo les aqt dn pooqroqq3rau e 4p fq alouaq 'U ul ul€ruop pelceuuoc fldurrs-e $ qtul^r d lo '9, ol Peau an '1srrg e ecnPor?ul rog uo ,(3o1odol {ue e{el 'g lurod { Jo ld'Cl 's,lrolloJ se qqt leqt ees eA\ e satuoreq eceJrns Surra,roc U l"srelrun Jo B '[d'g] sasselcacuale,rrnba aseq?ileJo les eql eqU lef '(d'C) Jo ssplt acuele,unbaeqlld'CJ dq aloueq'g uo tC ol crdolouroq sr j pue d - d !\Tuapanba erc (d' ,g) pue (d'9) srted oarrl aseq; 'd o1 od uror; A uo C r{led fue pue U uo d lutod fue 3o rted e eg.(d'C) 'ecsJJns ulretuelg e 'U eosJrns uuetuell{ ualrE e uo od Jo lurod es€q 3 xld te1 'alotr1 ecsJrns Surre,rocl"srellun e i(lalarauoc lcnrlsuoc lleqs arrrsqled Sutsn fq
We see that this R becomes a universal covering surface of R as follows. First, we need to introduce a topology on k For any point p = [C,p] of R, take a neighborhood Up of p which is a simply connected domain in R. Denote by Up the set of all points [C· C q , q] in R in such a way that q is a point in Up and C q is an arbitrary path contained in Up from p to q. Since Up is a simply connected domain, we have a canonical one-to-one correspondence between Up and Up. By these Up, we define a system of fundamental neighborhoods of pin k Then R becomes a Hausdorff topological space. Let 'Tr: R -+ R be the projection given by 'Tr([C,p]) = p. By the construction, it is easy to see that 'Tr is a continuous mapping of R onto R and satisfies the condition of a covering map. Next, we define a complex structure on R so that 'Tr: R -+ R becomes a holomorphic mapping. In fact, for any point p = [C, p] of R, take a coordinate neighborhood (Up, zp) such that Up is a simply connected domain in R. Setting Zp = Zpo?!, we see that the family {(Up, zp)} yields the required complex structure on R. 'ur uo ernlcnrls
R,
'p?peuu@ fiylul'ts puD pep?uuoc st 'aaoqo pautoldxa sD peptulsuoc 'g acottns ?qJ 'T'Z Btutuarl
Lemma 2.1. The surface
constructed as explained above, is connected and
simply connected.
fdolouroq € eleq am'f11eutg 'I ) n roy (n1)"g = (n)(c't)p fq g'uo (t't)p qled e ausep a,r'7 x / f (s'?) fue ro3'uaqJ,'1 3 s due .lo;'d = (I)"f, = (0)'J pue 'C = rI 'oI - og sagsrles tl'{ ("'.)uf = 'd } leql q?ns uaql uee^.rleq rldolouroq € eq U * 1 x I ii p1 'o7' o1 crdolouoq sI C leql su€etu q?Iqtl 'l"d'Cl,tq peluasarde.r 'q1ed pasoll " $ 'fod'Cl -C ecurs lod'ollleqt epnpuoa am sl C Jo lurod leurturel eql puie 'od lutod es€q IIII^a g uo qled Pasolee sI 5t uaql 'ei" '[od'olTol crdolouroq q C tnd [od''I] lutod eseq q]p\ g uo g qled Pesop ',r,r,o11 fierta 1eq1 aes ol luelrgns fl 1I 'Paleeuuos ,(ldturs q f€qt b,rord arr,r !f '[d'g] ol 'pelceuuoc q U leql satldtut qclqar lod'oll uro+ U uo I qled € a^eq al,r '7 ) s fle,ra iog [(s)g'"C] = (s)g 3ur11ag'I ) 1ro; (ls)j = (rt"C rq A uo'C Wed e eugep'1 I s q?ea ro,{'U uo qled e Aqlod'o1f ql.I^{ pal?auuoc sl lI f [d'g] lurod i(ra^a teql A{oqsol sjcgns }l 'U Jo ssauPa}ceuuoc aq1 a,rord ol1[t'0] - I ) ?,(ue ro; oa = (t)"1,(q paugap g-uo qled eq] aq oI p"I'too.t'4
Proof. Let 10 be the path on R defined by Io(t) = Po for any t E I = [0,1]. To prove the connectedness of R, it suffices to show that every point [C, p] E R is connected with [Io,Po] by a path on k For each s E I, define a path C$ on R by C.(t) 9(st) for t E I. Setting G(s) [C.,C(s)] fo: every s E I, we have a path Con R from [Io,po] to [C,p], which implies that R is connected.
=
=
Now, we prove that R is simply connected. It is sufficient to see that every closed path G on R with base point [10 , Po] is homotopic to [Io,Po]. Put C = 'TroG. Then C is a closed path on R with base point Po, and the terminal point of G is represented by [C, Po]. Since G is a closed path, we conclude that [Io,Po] = [C, Po], which means that C is homotopic to 10 , Let F: I x I -+ R be a homotopy between them such that {F. = FC. s) }.El satisfies Fo = 10 , F 1 = C, and F.(O) F.(1) Po for any s E I. Then, for any (t, s) E I x I, we define a path C(t,.) on R by qt,.)(u) = F$(tu) for u E I. Finally, we have a homotopy
=
=
30 30
2. 2. Fricke Fricke Space Space
F1r,"; E between b"t*""n C and[Io,Po] F(t, s):; I Xx I -- t R i and by setting settingF(t, F1t,"; s) = [Get,.), F.(t)] for for llo,polby [C1r,,;,r"(t)] (r, s) s) E 1 1. Therefore, we (t, I x I. Therefore, we conclude that R is simply connected. 0B conclude E is connected. € putting these these observations observations together On putting together with the uniformization theorem, theorem, we we obtain obtain the following following theorem. theorem. ,
Theorem Theorem 2.2. For Fo'revery eoerg Riemann surface surfaceR, there there exists exislsa universal uniaersalcovering coaering surfaceR which is is biholomorphic surface R of R, which biholomorphic to to one one of the the three three Riemann surfacesC, Riemann surfaces A, C, or H. C,orH. Throughout Throughout this section, section, as 6 ao universal universal covering covering surface surface R E of aa Riemann surface R r? we we always surface always take take the one one constructed constructed above. above. From the construction of such such aa universal universal covering, covering, it is get the is easy easy to get following lemma by an an argument argument similar to that used used in the case case of analytic continuation (Ahlfors [A-4], 8). [A-4], Chapter 8). (Existence and path) For any Lemma Lemma 2.3. (Existence and uniqueness uniqueness of of aa lift path lift of of aa path) any path point p, p, on with point C on R initial and for any P R initial and for ang there exists erists a unique R oaer there unique F of Rover lifl C wilh initial initial point p. lift C of C with fi. (Litt of Theorem Ttreorem 2.4. (Lift of aa mapping) mapping) For Riemann surfaces surfaces Rand let R and S, let (R,Tn,R) (S,trs, (R, 1fR, R) and 1fs, S) be and (5, be their universal uniaersal coverings coaeringsconstructed construcledas as explained etplained preaiously,respectively. giuen an previously, respectiaely.Then Then given an arbitrary arbitrary continuous continuousmapping mapping ff:: R R-- t S, S, there exists etists a continuous there -t 5 continuousmapping mapping it R fr,--with f01fR osoi. This Thit mapping mapping S with forp== 1fSoj. - (1, where is uniquely uniquety determined tleterminedunder iI is untler the the condition conditionthat that i(pd wherePI fr. and € Rand i@) = ql, fu E = ff(1fR(PI». are such such that that 1fs(qt} rs(Q1) = S are iiI e 5 4r E brn(Fr)) Moreover, Morvooer, if if ff is differentiable differentiable or holomorphic, holomorphic, then then if is also also differentiable differentiable or holomorphic. holomorphic.
i:
i:
This mapping -t 5 f: R mappine i t RFl.ir called called a lift lift of f: ^9is .R -* t S.
= =
= =
Proof of Theorem Theorem 2·4· 2./. Setting and ql get a Setting PI we get fu = [CI,pd 4t = [DI,f(pd]' lCr,pr] and [Dt,/(pr)], we 1 .f m a p p i n g defined d e f i n e dby b v i([C,p]) p o i n t s . mapping = [D f(Cdf(C),f(p)] for all points [C,p] ( C t ) t ( C ) , / ( p ) l . a l l f(lc,pl) [C,p] _ l D tI. f Jor - ql and f01fR - 1fSoj. R. Then it it is is obvious obvious that that i(pd in k Since 1fR and 1fs nsol. zrp a.nd n5 Since /(f1) {1 fSrp are locally biholomorphic and f/ is continuous, are continuous, / must be continuous. continuous. It It is is also also that ifif f/ is differentiable j. the The uniqueness uniqueness trivial differentiable or holomorphic, then so trivial that so is /. 2.3. 0 assertion assertion follows follows from Lemma 2.3. D
i
(Uniq:reness of Remark. (Uniqueness universal covering) covering) For any two universal universal coverings of universal Rernark. (R,r,R) (R, 1f, R) and (r?1 R I ,,11,R) 1fl' R) of a Riemann Riemann surface R, there there exists exists a biholomorphic biholomorphic surface r?, mapping g cp of R to r?q RI with with 1fIOcp example, Ahlfors and Sario [A-6], Trog - 1f. n. See, See,for example, [A,-6], Theorem 18A of of Chapter l. L
l
=
Proof. To prove (i), suppose that 7I"(p) = 7I"(if) = p. Then we ~ave p = [C1 , p] and if [C2 , p] for some paths C 1 and C 2 on R. Putting Co C 2 . C 1 1 , we see that I = [Co]. satisfies if = I(P)· To see (ii), take a point pER, and set P = 7I"(p),p = [C,p]. Choose a neighborhood U of p in R which satisfies the condition in the definition of a
e Jo uorl-rugep ar{} ur uorlrpuo? aql sessrl€s qclq,$ u ur d 3o 2 pooq.roqqStau e esooqo 'ld'Cl = 4'@)" - d 1as pue 'g f gl tutod € a{€t '(rr) aes o5 " '(g),0 - i sagsp, 'l"C) -- L ', - o5l 3ur11n4 'A uo zg pue IC sqled euos rc1 t€rl? aas am IC . 7'C fd'z7l = p pue [d'rCj = 4 a,re{ er'ruaql 'd = (!)y = (4)a 1eq1esoddns '(r) a.,'o.rdoa '{oo.t4
=
=
'Q* X u ( y ) r p q l q c n s J ) L s l u a u a l a f i u o u t Q a T g u { I s o l l t?' o a . t ' oa " r ' a q y ' g sSaoi (rrr) lo y TasqnsTcoilutocfiuo.to!'st IDW:ry uo fipnonu4u@srp fr.1.r,ailo.ti1 'sTurodpat{ ou soy fiyquapt.ayy.tol Tilacxa - J ) L f r ^ r a a"ar o t Q = n U ( d L e ) D e ' " t o l n c q t o dq ' { p ! } 1 lo yueu,a1q ? D q l 1 l ? n sU u ! 4 ! o 2 p o o t l . r o q q \ n u a l q l p n s o f l e r e q l ' U ) g f . r a a a i o g ( n )
(i) For any P, if E R with 7I"(p) = 71" (if) , there exists an element I E r with if = I(P)· (ii) For every pER, there is a suitable neighborhood U of p in R such that I( U) n U = ¢ for every I E r - {id}. In particular, each element of r except for the identity has no fixed points. (iii) r acts properly discontinuously on R; that is,for any compact subset K of R, there are at most finitely many elements I E r such that I(K) n K f. ¢.
'@)L= D uo s?srseatayT'(p)tt.= (4)v q?!nU ) !'q fruo.tog o ltlln J a L \uau.ta1a
Lemma 2.6. The universal covering transformation group Riemann surface R satisfies the following properties:
:sa4.tado.td6utno11otaq7 sa{stqos g acottns uuvur?tg eqJ 'g'Z BtutrroT 6ut.r,eaoc o Io (U':r-'A) to .1 dnotf uorTout.tolsuo"tT losJeaNutu
r
of (ll, 71", R) of a
'a,rr1calrnssr acuepuodsa.rroc O srql ecueq pu€'.[C] - l, teql seqdrur7'Z ruaroeqJ'(d'A)ro Jo luetuele u€ = ["d'Cj = (l'd ''I])t reqr s^\oqs g'U €urureT snql sr [9] ecurg '(t'd'"tl).[C] 'flarrrlcadsar'g;o s1u1od pue', pue pue aql ar€ Ierlrur Ieurural ['d'oI] I'd'Cj C l€I{} Jo lJll € sl , acuaH'od lurod eseq qlu{ g. uo qled pesol? s sI Col, sarldurr y JLov uorleler aql ueql '(l"d'"tl)L ollod'oll uroq Ur rio qled e al Q 'a,rr1celrns slq] 1eq1 aaord o; sr ecuapuodsarJoc 3 ,L luaurela ,tue a1e1 'err,r1celur st eeuepuodseJJo?sltl]
where 10 homotopic to 10 , and hence [Co] is the unit element of 7I"l(R,po). It follows that this correspondence is injective. To prove that this correspondence is surjective, take any element I E r. Let C be a path on R from [Io,Po] to 1([10 , Po]). Then the relation 71"01 = 71" implies that C 7I"oC is a closed path on R with base point Po. Hence C is a lift of C, and [Io,Po] and [C,Po] are the initial and terminal points of C, respectively. Thus Lemma 2.3 shows that 1([Io,PoD [C,Po] [C].([Io,PoD. Since [C] is an element of 7I"l(R,po), Theorem 2.4 implies that I = [C]., and hence this correspondence is surjective. 0
=
=
=
Ie.I'J
l€qt sA^olloJII'ed'a)rL Jo luatuale lrun eqt q [u ef,uaq Pu€'07 o1 ctdolouroq sr op 'snq;'[t'O] = 1 ) t fue to1 od - (l)'l reqr qrns U uo qled eq] sl o1 ereq!\
= [Co, Po] = [Io,Po], is the path on R such that Io(t) = Po for any tEl = [0,1]. Thus, Co is
'lod' o " o If = fod' Cf = (l"d' tl).|' Cl a^eq a^r ueql 'J Jo lueurele lrun eql q -[?] 1eq1asoddns 'arrrlcefutq ]l ]€q] e,rord oa '.7 o1 (od(g)tv;o rusrqdroruouor{e sr ecuapuodserrocsrq} }tsqt pI^Ir} sl rI'loord
[Co].([Io,PoD
we have
r. To prove that it is injective, suppose that [Co]. is the unit element of r. Then Proof. It is trivial that this correspondence is a homomorphism of
71"1 (R,
Po) to
'(A'o'U) 0ut.taaoc losrearun n to 1 dnot'6 uotTotu.totsuo.r,T |uuaaoc losraarun?ql oluo A Io ("d'A)rv dnot6 pTuau,opunt aql uo spyaffi-['d - log)acuapuodsauocaaoqDeyJ'g'Z rraroaqJ to tustrlilrotuost.
Theorem 2.5. The above correspondence [Co] 1-+ [Co]. yields an isomorphism of the fundamental group 7I"l(R,po) of R onto the universal covering transformation group r of a universal covering (R, 71", R).
'(A'v'A) Jo uorleruJoJ -sue.r1Sur.rar'oce sr 1r 'sl leql '..,1o1 s3uolaq -[op] srql 'uo1]-ruuepeql fq 'fpea13
Clearly, by the definition, this [Co]. belongs to formation of (R, 71", R).
r, that is, it is a covering trans-
'ld'c.'c) = ([d'c1).1'c] ry> la'c) [Co].([C,pD
= [Co' C,p],
[C,p] E
R.
fq g uo -[op] uorlce eql eugep e^{'(od'U)rv>['C] ]ueuele fue rog 'f, 1o (od'g)rY eqt o1 crqd.rouroslsl J dnor3 Eurraaoclesrelrun slt l€q? aas dnorE leluaurepunJ 'p ace;rns uueuerg e II€qs alll Jo (g'.u'9,) ece;rns EutrarrocIesJeAIunuarrrEe rog
For a given universal covering surface (R, 71", R) of a Riemann surface R, we shall see that its universal covering group r is isomorphic to the fundamental group 7I"l(R,po) of R. For any element [Co] E 7I"l(R,po), we define the action [Co]. on R by 2.2.3. Universal Covering Transformation Groups sdno.rg uor+BrrrroJsuer;, EurreloC
31
lesrallun'e'Z'Z
2.2. Universal Coverings s8urra,ro3l"sra^rufl'Z'Z
IT
g2 32
2. 2. Fricke FrickeSpace Space
I covering map map in in §2.1, and denote (U) covering denote by by U the connected connected component U the component of of 7rr-r(J) $2.1, and containing p. Actually, it is containing Actually, it is sufficient to take a simply connected domain sufficient to take a simply connected domain U f. U c o n t a i n i n gp. f o r s o m e containing If I(U) n U f:. if; for some I E r, then f t h e n there p o i n t sPI, t h e r e are a r e points e.lt1(0)n0 e 0U + { 1€ , f u , fihu E with ih Since7r0 ro7 we get get 7r(pd n, we T(fr1) = 7r(lll), r(4), and with for and hence henceiiI f1 = I(PI). l(it). Since l = 7r, Q1 PI, fi1,for r7r is is biholomorphic biholomorphic on = on U. Thus we U. Thus we have have I(pd id(Ft), where where id fd is is the the identity. identity. l(Ft) = id(pd, - id. By Theorem Theorem 2.4, we conclude 2.4, we conclude that lhat I1 = By id. Finally, to to verify verify (iii), (iii), assume assumethat that there there exists Finally, exists aa sequence sequence{{ In consisting Z" }~=l }f,r consisting of mutually mutually distinct distinct elements elements of of r l- such such that of that In(I<) I{ f:. n I< for all all n. n. Then Then 7"(1() n * if;/ for .ln([n). for each each n, = In n, we we can can take take two points iin, two points for rn E€ I< (iin). Since 1{ with with rfn Since K n = [n,Fn is compact, compact, taking taking aa subsequence subsequenceif if necessary, necessary,we we may is }~=l' may assume assume that that {iin { drl1T=r, converge to to iio, + 00. = 7r, /{, respectively, respectively, as {r ro E€ I<, as nn --+ oo. Since Since 7r0 zro7, ?r,we we {i"n }~=l }Lr converge Qo,io ln = = 7r(r r(4") = r(f")n ) and and 7r(iio) o(4") = 7r(r r(i,). obtain 7r(iin) Take aa neighborhood neighborhood U [/ of 7r(iio) r(,i'") in R .R o). Take satisfyigg the the condition ofthe of the definition of aa covering satisfying coveringmap map in §2.1, and denote denote by $2.1,and and,V U and I/ the connected connectedcomponents componentsof 7rU (U) containing zr- I1(U) containing iio and rfo, respectively. o, respectively. f, and .y"(y)n0 f:. if; Since {In(iin) convergesto rfo, we ha~e hav,eInCt})nU for aa s~~cientJy sufficient-lylar~e large Sinc.e o, we { j"(q") }J:"=l }f-, con:erges t' g for (J,it n. Smce ro7"(0) Since7rO followsthat In(U) 7, namely, namely,bn+d ("tny)-|,1n(0) n. It follows 0ln(U) = U. 0. ln (U) = U, 7"(U) = V, assertion (ii), we we conclude conclude that In+l By the assertion 0! is aa contradiction. 7,.11 = In' 7,. This is
=
=
=
=
=
=
=
Exarnple 3. Here is is an a"nexample group which does 3. Here example of aa group Example does not act act properly discontindiscontinuously. Let a be be aa real real number not equal uously. equal to 27r 2r multiplied by aa rational number. number. = generated by I( Then the group generated z) = eia: z does not act properly discontinuously edoz does act discontinuously l(z) o nC C - { {O}. 0}. on
Representation of 2.2.4. Representation of Riemann Riemann Surfaces Surfaces as Quotient Quotient Spaces
r
We shall explain a way to construct a Riemann surface surface RI Rlf from fro a Riemann surface R subgroup r R and a subgroup l- of the biholomorphic automorphism group Aut(R), surface Aut(R), where f is is assumed assumed to satisfy the properties properties (ii) and (iii) in Lemma 2.6, where 2.6, that is, every element element of r f except except for the unit is, unit element element has has no fixed points in R, E, and acts properly disconti~uously discontinuously on R. acts E. -equiaalentor Two tobe Two points F,C P, ii eE RRare are said to be r or equivalent if there f -equivalent equiaalentunder uniler fr if exists exists an e-lement element I.f e E fr satisfying 4=t@). ii = I(P), Denote Denote by [p] equivalence class the equivalence class [f] of the set of of fi. p. Let R/f RI r be !he of all these these equivalence equivalence classes cl~ses [PJ, called the p], which is called quolient quotient space space of of r? R by .i-. r. Define Define the projection 7r: RI r by r(fi) 7r(p) == [p]. r'. R *--+ R/f \fl. We introduce the quotient topology "n on fr,/f RI r.. AA subset RI/fr isis said to subset U of R be open if if and only only ifif the inverse inverse image image 7r(U) of of [/ U is an open subset subset of of E. R. the The o-t I (U) p_rojection projection r7r is readily seen seen to to be a continuous continuous mapping of of E R onto tr/f. RI r. Since Since ,R R is connected, connected, so is r?/f. RI Moreover, Moreover, we we see see that that Rl RI f is a Hausdorffspace, Hausdorff space, for lr acts acts properly discontinuously discontinuously on .R. R. Now, we define define a complex structure structure o" on n/ RI fr as as follows: follows: for any point point fpER, e E, take a neighborhood. neighborhood Up Up of of Ip satisfying the property property (ii) (ii) in Lemma 2.6. 2.6. We may assume assume that that there exists a local coordinate zp zp on 0p. Up. Then, putting putting p == r(fi), 7r(p) , Uo Up =,tr(0), = 7r(Up), we see see that that r: 7r: 0O Up ---+ tJ, Up is homeomorphic. homeomorphic. Hence, Hence, setting zo zp == I zpozr-r, (Up,zp)}rrrtl , defines Zp 07r- , we conclude conclude that that {{(Up,zp)}PER/r defines a complex complex structure structure so ihut that
r
r.
r
'29-r - (z)L ,'a , -;
with
lal 2 - IW =
1. This is also written as
(2.5)
G'z)
,(z)=ei8 z-£¥, 1- £¥z
s, u?lprn oslo st slttJ 'T = "lql - "lrl ,ltp^ ) ) Q(o anqm
a, b E C
,
where
az + b =-----=-, bz +a
,p+z!_k)L
(2.4)
@'z)
9t zo
,(z) =
fi.r'aag(nr) ru.ro!o soq (V)nV Tuaurap to '0*Dql?n C)q'oanym where a, b E C with a f. O. (iii) Every element of Aut(Ll) has a form
'q+zo=(z)L
(s'z)
,(z) = az + b,
(2.3)
tuaag Q1) ut.rolo soq (g)wy to Tuaurala ' I = " q - p Dq w n ) c P ' c ' q ' oa n a y m where a, b, e, dEC with ad - be = 1. (ii) Every element of Aut(C) has a form
az + b ,Z() = --d' ez+
,P*zc _k\L
(z'z) (2.2)
Q* zo
fr"raag(r) ur"roto soq (g)7ny lo Tuaua1a
(i) Every element of Aut(C) has a form 8'Z stutuoT
Lemma 2.8 erll e^sr{ Il pue 'V 'C'Q
:sturoJ 3utmo11o; sul"tuoP l€?Iuoue?;o surstqd.rouolne erqdrouroloqrg
Biholomorphic automorphisms of canonical domains following forms:
C,
C, Ll, and H have the
crt1daoruoloqrg'1p'8'Z
2.3.1. Biholomorphic Automorphism Groups of Canonical Domains srrrerrroq [BcruorrBC go sdno.rg rusrqdrourolny
'
1 g ) t n vp u e '( v ) t n v ' ( o ) t n v ' ( q ) n y
In the preceding section, we have seen that every Riemann surface R is represented by the quotient Riemann surface RI r of a universal covering surface R by its universal covering transformation group r. Here, by virtue of the uniformization theorem, R is biholomorphic to one of the three Riemann surfaces C, C, or H. We denote by Aut(R) the group of biholomorphic automorphisms of R. From Lemma 2.6, r is a subgroup of Aut(R), consists of elements without fixed points in R except for the identity, and acts properly discontinuously on R. With this in mind, let us study the biholomorphic automorphism groups Aut(C), Aut(C), Aut(Ll), and Aut(H).
'puttu ul qql qllft sdnor3 ursrqdrourolne crqd.rouroloqlq aq1 fpnls sn 1a1 'g, uo flsnonulluo?$p fFadord eql roJ ldacxa g' ur slutod paxg E?" Pue'fllluepl '9'A €Luluel urord 'ur '19)tnv;o dnor8qns 3 sl Jo J 1noq1r,nslueruelaJo slsrsuo? 'i'Q sursrqdrourolne-clqdrouroloqtqlo dnorE aql (U)t"V,(q alouap eAyI/ to 'ureroeql uorlezrur.rd; seceJrns uuetuerg "".rq1 nq1 jo "uo o1 crqdrorioloqlq q U -run aql Jo anlnl fq 'era11 '.7 dno.r3 uolleuroJsuerl Sfrueaoc l€srollun 8ll ,(q Ur eceJrns Surra,roc lesralrun e p J/A eceJrns uusruarll luarlonb eqt fq Paluas lerdar sr U eceJlns uu"IuaIU ,(re,ra 16q1 ueas aAeq eal 'uollcas Surpeee.rdeql uI
suorleurroJsuBl,I,snlqgtrAtr'8'U
2.3. Mobius Transformations
'@)".--,W [P]
I--.
1I'(p).
r
r
?Ul repun. A o7 Tuapanba filloatydtotuoto\?q q J nq V k I /U acuapuodsa.u,oc acottns uuotu?ty Tuat1onbeqt u?qJ 'tr dno.t6uotyont"totsuntT0uuaaoc losJearun 'Z'Z rrraroaq.1, qnn A acottns uuour?rg o to |uueaoc losrearun o eq (A')L'A) pI
Theorem 2.7. Let (R, 11', R) be a universal covering of a Riemann surface R with universal covering transformation group Then the quotient Riemann surface RI of R by is biholomorphically equivalent to R under the correspondence
r.
'uorlresse Surrrrrollo;eq1 ,(lalerpeurul el"q a \ ueql 'J ,(q acopns uuouery tf 1o eW J /A eteJrns uueruelg sql ilec eM'J /A 3o Euirarroce st (tr f g';u'g) TuatTonb
r.
(R, 11', RI r) is a covering of RI r. We call this Riemann surface RI r the quotient Riemann surface of R by Then we have immediately the following assertion. suorl"rurolsu?rl snlqol I 't'z
33
2 .3. Mobius Transformations
34 34
2.2. Fricke Fricke Space Space
w h e rBeE0Re R a nadEaLl. eA. where and (iv) Every Eaeryelement elemenlof of Aut(H) Aut(H) has hasaaform (iv) form. az+b az+b = cd + d' t(z) = I(Z) cd+d'
(2.6) (2.6)
= 1. w h e r a,b,e,d ea , b , c , dEe R with w i t had a d--, be b c= I. where In (2.2), (2.2), it it is is sufficient sufficient that that complex complex numbers In numbers a, o,,b, b, e,c, and and dd satisfy satisfy the the concondition ad od -- be b" :f. However, 0. does dition O. However, I does not change when a, b, e, and d are multinot change when a, b, c, and d are multi# 7 plied by by aa common common constant. constant. Hence, Hence,-we we may plied may normalize normalize the the expression expressionof of I7 by by - 1. ad -- be bc = 1. Every Every element element of of Aut( Aut(e) ad C) isis called called aa Mobius M1bius transformation transformation or or aa linear fractional transformation. transformalion.In particula.r, an linear In particular, an element element of of Aut(H) Aut(H) is is called called aa real Mobius Miibius transformation transformation or or aa real real linear real transformation. linear fractional fractional transformalion. Proof^of Lemma 2.8. 2.8. First First of of all, all, let let us us determine Proof of Lemma determine the the form form of of an an element element I7 E € = 00, Aut(C). If,( If 7(oo) oo, then in aa neighborhood neighborhood of 00, Aut(C). 00) = the Laurent expansion oo, I7 has has expansion 00
L
I(Z) t Q )== "az, ++i
b n zn ,- n , bnz-
n=O
where a :f. 0. Then I(Z) oz is is holomorphic on C, where e , and and hence hence the maximum I O. tQ) -- az shows that I(Z) oz must be principle shows be aa constant constant function, say say b. 6. Thus we we have have lk) -- az - l/(z a z l+ b b with w i t h a:f. o + 0O. z o # @ , t h e n I(Z) If 1(00) = Zo :f. 00, then setting 11(Z) = zo), s e t t i n g t l Q l @ ) == az z"), .If z(oo) t{z) we see see that that both 11 are elements Aut(e), we are elements of Aut(C), and 1101(00) = 00. Thus oo. 11 and 1101 lpl 71o7(m) = l/(,(z) w e have h a v e 110l(Z) I / Q Q ) - - zo) z o ) = a1z a r z *+ b rb,1, where w h e r e a1,b we 0 r , 61r E w i t h a1 o , :f. 0. € C with folQ) = * O. Therefore, I7 is expressed expressedin the form (2.2). (2.2). Therefore, Next, every element element It E Aut(C) is extended Aut(C) if extended to an element element of Aut(e) e Aut(C) if we we - oo. By the above put above argument, it is obvious put 1(00) obvious that that I7 is represented represented in 7(oo) = 00. (2.3). the form (2.3). Let 7 element in Aut(A). Aut(Ll). Set Set 1(0) Then the Mcjbius Mobius transforI be an element 7(0) = {3. B. Then .y2 - 1101 also mation belongs to Aut(A). mation r(z) 11(Z) = (, (z -- {3)/(1 pz) belongs Aut(Ll). Hence 12 Hence 0)/G Bz) 1*.r also belongs belongs to Aut(A) Aut(Ll) and 92(0) 92(0) = = 0. O. Schwarz' Schwarz' lemma implies that 12 rotation 72 is a rotation i8 z, with real number d. = eiqz,with Hence, 12(Z) = e B. Hence, I expressed form (2.5). It is is expressed (2.5). in the forrn trQ) It T easy easy to to see see that that 7I is written written in the form form (2.4). Finally, for any element element 7IE Aut(H), taking taking a biholomorphic mappin mapping T(z) == e Aut(H), gT(z) , oT- 1 eE AutlA). (z-i)/(z+i) (z-i)/(z+i) of of fI H onto .4, Ll, we have have an element element lr 11 == To Aut(Ll). Thus 71 11 ToloT-r is a Mijbius Mobius transformation transformation and is represented represented in in the form form (2.2). Since Since 7I sends sends ry' H onto itself, we may may assume assume that that c, a, D, b, c, and d are real numbers, numbers, and ad bc > O. and ad- Dc ) 0. Therefore, this 7I is written written in in the form form (2.5). 0 tr
=
=
For For more more on the the fundamental properties properties of of M6bius Mobius transformations, such as transformation transformation of of circles into into circles, circles, and the the invariance of of the crms cross ratio ratio under them, them, we we refer, refer, for for instance, instance, to to Ahlfors Ahlfors [A-4], [A-4], $3 §3 of of Chapter Chapter 3; 3; and and Jones Jones and and Singerman Singerman [A-48], [A-48], Chapter Chapter 2. 2. Now, Now, for for every every 7I eE Aut(e) Aut(C) given given by by
'slueruel€?s3urno11o;eql e^€rl a,r,r'uor1e1nc1ec aldurs e ,(g 'oz - (oz)L Surr(;sr1es oz > Jo tas aqt C IIs 'r(1r1ujpreq} oz slurod pexgJo las aql eq (t)xrg 1a1 }ou sr qcrqn
which is not the identity. Let Fix(,) be the set of fixed points Zo of" that is, the set of all Zo E C satisfying ,(zo) = ZO° By a simple calculation, we have the following statements. 'sl
ler{}1'L1o
, I = c q- p D , ) ) p , c , q , o
_ az + b ,Z( ) ---, cz +d
a, b, c, dEC, ad - bc
= 1,
, ' . 1 1 , i= Q*zo
@)L
Let, be a Mobius transformation given by
.{q ue,tr3 uor?euroJsuer} snrqory e aq I 1a1 'z'e'z
2.3.2. Canonical Forms of Mobius Transformations suorlBurroJsuBrl
snlqgl trJo srrrroJ lBcruouBc
'{1aar1aadsa.r '(1'1) atnTvufts to dno.r,6fil,opun lonads eq1 '1)29 pue (U'6)79 araqirr plle 7 aa.r6ap lo dno"r6nautl yonads lDa, eqt are (1
where SL(2, R) and SU(l, 1) are the real special linear group of degree 2 and the special unitary group of signature (1,1), respectively.
' { t+} lfi 'r)ns= G't)nsa = (v)wv ~
PSU(l, 1) = SU(l, 1)/{ ±I},
pue
}/(u'?,hs= (ll'z)tsa = (n)pv
PSL(2,R) = SL(2,R)/{±I}, '{(e)t"v
~
'{ r+
Aut(Ll)
and
Aut(H)
a^eq a^{ 'flrelrurrg ) Ll 6oLor-.{ } = (ra)lny reqr pue
and that Aut(pl) = {F-Io,oF Similarly, we have
I, E Aut(C)}.
' = -, :; lz:ii';il li:1, | l Zl] [ Zo
t--+
A [Zl] Zo
CZI
+ dz o
= [azl + bZo ] ,
Remark. When the Riemann sphere C is identified with the one-dimensional complex projective space pI, an element of Aut(C) corresponds to a projective transformation of pl. Indeed, define a biholomorphic mapping F: pI --+ C by F([zo : zd) = zo/Zl, where [zo : zd is a homogeneous coordinate of pI Then we see that an element ,(z) = (az + b)/(cz + d) of Aut(C) corresponds to a projective transformation
uorleuroJsuerl a.,rr1ce ford e o1 spuodser.roc(3)tnv Jo (p + zc)l&+ zD) - (z)1, lueurale ue 1eq1 ees e/tr uaq;,'rd Jo eleulProoc snoeueSouoqe sr [tz : 0z] araqrrr'rz/02 = (ftz : ozl)g * rd :J Surddeur crqd.louroloqrqe euuep 'paepul 'rd Jo uorleruroJsu€rl f,q ? a,rrlcefo.rde o1 spuodsauoc (3)lny Jo luetuela ue '1d aceds err,rlcalo.rd xalduroc Ieuorsuaurp-euo aql qlra pagrluapl q C a.raqdsuuetuerg eql ueq1\ llrDureq 0
'(c'dts
We set PSL(2, C) SL(2, C)/{ ±I} and call it the projective special linear group of degree 2. An element A of M- I (,) for an element, E Aut(C) is called a matrix representation of ,. Note that, is represented by two elements ±A in SL(2, C).
ul yT sluauala o,rl!,1 ,tq peluasarder sI ,L 1eq1elop "L Jo uorlD?uesa.tdat rt.tTou e pelle)c$st(g)l"y 3 ,L luaruele ue rog (1,)r- W lo V lueuala wtr '4 aa.rfaplo dno.t6 = (C'Z)lSd toauq lotcads aar,Ttato.td eql tr lpc pue {1+}/6'dlS tas aIA
' { r + } / 6 ' z ) t s= ( q ) w v
of the special linear group SL(2, C). Conversely, we have a homomorphism M of SL(2, C) onto Aut(C) defined by M(A)(z) = (az+b)/(cz+d) for A E SL(2, C), where a, b, c, and d are the entries of A as above. Then the kernel of Mis {±I}, where I is the unit matrix. Hence, by the homomorphism theorem, M induces an isomorphism Aut(C) ~ SL(2, C)/{ ±I}.
ursrqdrourosrue secnpur (ruaroeq? tusrqdrouoruoqeql dq 'ecua11'xrr?Burlrun aql sI 1 ereq^r ltl '{ 'c'g 'o ereqrrl 'eloqe se y f + 1 sl W Jo loura{ aql ueqtr, Jo saulueeq?er€p pue '(C'Z)1S )>y .ro;(p+zc)/(q+zo) = (z)(y)W tq paugep(q)ny oluo (3'6)79 yo ;;4rusrqdroruoruoqe e^eqem'r(lasrarruo)'(C'dlS dnor3 reauqletcadsaq1;o
A=[~
:]
lp c1 l'^ -l =V L q D)
qll^{ j
luauele u3 aAeq e^r
= cz+ az + b, d
,I =cq-pp
we have an element D+z) (1__-i_ (z\L 9*zo
a, b, c, dEC with ad - bc
> p'?'q'D
,(z)
= 1,
suorl"urrolsu"rJ snrqol{'t'z
2.3. Mobius Transformations
35
9t
3366
2. 2. Fricke Fricke Space Space
o.
(i) The The case case where where oo 00 € E Fix(7),i.e., Fix("Y), i.e., cc == 0. (i) If a/d aid = 1, that that b, is, ca - 6f d === *1, ±1, then then 7"Y has a sole sole fixed point point oo 00 and it it is lf written in in the form form written
=
=
1'(z)=z+b, 1 e)=z*b, On the other other hand, ifif a/d aid f:j:. 1, then 7"Y where b is a non-zero complex number. On another fixed fixed point point zo, and is represented as as has another uw- -z oZo= = \ ( A(Z z - z -o )zo), ,
w =lQ), = 1'(z), and )A is a complex number equal neither to to 0 nor to to 1. where to
(ii) The The case case where oo 00 f~ Fix(7), Fix(/), i.e., i.e., cc:j:. o. (ii) f 0. point = If (a + d)2 4, then "Y has a sole fixed point Zo and it is written written as as zo and it If * d)2 7 has sole
=
1 1 W -- % Zo= ; : Z1-+ Zo w o'
---=--+0', (c*+ d)' If (a where to w = 1'(z), and a a is is a a non-zero non-zero complex complex number. number. If d)2 :j:. 4, then then l' where 7 # 4, lQ), and the form has two fixed points Zl and Z2, and it is represented in points 22, and it is represented z1 and fixed has w Z - Zl W - Z Zl t ^, Z7 ---Z' -l , --=A W Z - Z2 " , - tZ2r -
L. where A is equal neither to 0 nor to 1. is a complex number equal where W w = "Y(z), 1(z), and ,\ contobe Aut(X)'conjugate Now, E Aut(C) are said to be Aut(X)-conjugate or conare said Aut(A) elements"Y1,"Y2 Now, two elements e 7r,jz that "Y2 6o"ho6-t such that jagale in Aut(X) jugate Aut(X) if Aut(X) such ob- 1 ,, element b 6E if there exists exists an element e Aut(X) 1z = bO"Y1 where H, or ..:::1. A. C, C, H, where X X is is one one of C, This following lemma. leads us us to the following This leads two f,xed id) has has one otueor two Lemma fixed points tmnsformation "Y(:j:. Mdbius tronsformation 2,9. Every Eoery Mobius Lemma 2.9. 7(f id) tmnsformation "Yo: on following Mobius M|bius tronsformation the foltowing antl is Aut(C)-conjugate Aut(e)-conjugate to the on C, e , and 7o: , a a* 0:j:. . s o m eaa €ECC, (i) +da for z+ ( i ) If"Y t, h e n"Yo(z) T.Q)= Z h a sa sole s o l efixed I f t has f o r some f i x e i lpoint, p o i n tthen \ C , ) (ii) points, then "Yo(z) = AZ for some A E C, A :j:. 0,1. p o i n t s , ) , 2 s o m e t h e n T o ( z ) € ( i i ) If"Y h a stwo t w o fixed I f 7 has for +0,1. fited
o.
canonical representations of canonical We Matrix representations canonical form We call this "Yo form of "Y. 7. Matrix 7o aa canonical forms and (ii) correspond correspond to forms in (i) and
0] [;?], [tf..;>.o ,f.^), 11";>"
respectively. respectively. = RU{ points are fl = RU{ 00 m }} a.rein in R A whosefixed fixed points fd) whose transformation "Y(:j:. A real real Mobius Mobius transformation 7(l id) ) of a matrix a or that the entry is such that the entry a or A of a matrix such canonicalform form "Yo to aa canonical is Aut(H)-conjugate Aut(H)-conjugate to 7o representation '''Yo is real number. number. is aa real representation.To
'peuueplla,lr '1, sr sll a.renbs (1,)rr1 Tnq fq flanbrun peurrurelap olw peretlesr ec€r1slr ueql'V- f,q pacelda.r sr y 1ousr (l).r1 snql'(p+D)'.{. uorleurroJsusrlsnlqgl4le 'p ;1 Jo nD4 " pelpc q qcg/'r * o (l)r1 1nd a14
We put tr(r) = a + d, which is called a trace of a Mobius transformation r. If A is replaced by -A, then its trace is altered into -(a + d). Thus tr(r) is not determined uniquely by r, but its square tr 2 (r) is well-defined.
' T= ? q, l \ ' ^ l= , ,C PD ) p,c,q,o L 9 DJ
A =
[~ ~],
a, b, c, dEC, ad - be = 1.
Now, a Mobius transformation r which is not parabolic is Aut(C)-conjugate to a canonical form ro(z) = AZ (A E C, At 0,1). This A is called a multiplier of r. We have two choices for the multiplier of r, i.e., A and l/A. It depends on the choice of a fixed point of r corresponding to the attractive fixed point of roo Its multiplier A satisfies the equation (a + d)2 = A+ l/A + 2. Note that a + dis the trace of a matrix representation of r:
:,L;o uorleluasa,rdarxrrleru " Jo ecerl eql np+p tsql atoN 'Z+y/I+y= e , ( pa r ) u o r l e n b ea q l s e g s l l e sy r a q d r l p t u s 1 1 'ol,;o lurod pexg e^r1?€r11ea{} o1 Eurpuodsarroc,L;o lurod pexg sJo alloq? aql uo spuadep yy/I pue aqt roJ sarroqr o,lrl e eq a64'l;o 1''a'r'l,yo.rar1dr11ruu .taqd41nut, e pallsc sl y slql'0'O* y'C ) y) zy - Q)'L uroJ Iscruouer € ot apSnluoc-(g)tnv o. cqoqered lou sr rl?rqar ,L uorleurroysrrerl snrqotrtre 'alo1q 'g uo sTurodpae{ omy soq L fipo puo ctloqtedfitl s! ,t (H) ta tt, .zz = rz puV , *H 'H 'rz slutod par{ on\ sorl L ) zz ) rz pUl qtns zz tt fi1uopuo tt, ctTdqla st' L 'g uo sr L Tutod pat{ alos o soy L lr fiyuo puo lt cqoqn.r,od
is is H", (iii) r is
(r) (r)
(i) (ii)
r r
parabolic if and only if r has a sole fixed point on ft. elliptic if and only,jf r has two fixed points Zl, Z2 such that and Zl = Z2' hyperbolic if and only if r has two fixed points on ft.
Zl
E H,
Z2
E
Lemma 2.10. Let r be a real Mobius transformation which is not the identity. Then the following hold: :p7or16utmo71olaq7 uayl 'fr,7t7uapt ?ql pu s, q)rqn uotgou.t.r,olsuorl sntqory loar o eq L pT 'Ot'Z eurtuarl
's11nsaresaql Surulqurop 'uor?ross€ aqt urelqo ea,r 3ura,ro11o; /tls"a 'cqoqradr(q ro 'cr1dt11a ro 'cqoqered reqlla sI ','[1t1uapt ro (11)7ny Jo luetuale fra^a 1€ql ^\oqs ol fsea st 11 'fla,rrlredsar '1,
Note that there are Mobius transformations which are neither parabolic, elliptic, nor hyperbolic. An example is given by r(z) = Az (A E C, IAI # 1 and A fi. [0,00)). A Mobius transformation which is not the identity is said to be loxodromic if it is neither parabolic nor elliptic. In this book, we assume that the loxodromic transformations include hyperbolic ones. Let Zl and Z2 be the fixed points of a loxodromic Mobius transformation r. Suppose that Zl and Z2, respectively, correspond to the fixed points and 00 of a canonical form ro(z) = AZ for some A with IAI > 1. Then Zl and Z2 are called the repelling fixed point and the attractive fixed point of r, respectively. Denote by r-y and a-y the repelling fixed point and the attractive fixed point of r, respectively. It is easy to show that every element of Aut(H) or Aut(~), which is not the identity, is either parabolic, or elliptic, or hyperbolic. Combining these results, we obtain easily the following assertion. eql lou sr q?rq^r'(V)lnV
go paxg Suqledar eq} !o pue r; ,(q alouaq pexg a^rlrer11e a{l pue lurod lurod 'flarrleadser 'L elql pve Turotl pax{ 0ur11ada,eq} pell€, 1o yut,odpar{ aatyco.tqqo elre ez pue rz uaqJ, 'I < lVl qll^ y euos to! zY - Q)'L ruroJ l"tluouec e Jo qurod pexg eql o1 puodsarroa 'fla,rrlcadser'zz pu€ Iz 1eq1 asoddng oo pu" 6 'l, uorleur.ro;suer? snrqoq cnuorpoxol e;o slurod pexg aql aQ zz pue rz lo.l 'seuo ?rloqredr(qapnlcur suorleurroJsusrl c[uoJpoxol eql airr '4ooq slql uI 'crldqe rou ttloqersd .raqltau sl ?l JI cruoJporol l€ql eurrrnss€ eq ol pres sr flrluepr eql lou s! qrlqa uorleurroJsuerl snrqory y'((oo'O] / V zV : ue,rrEsr aldurexauy 'cqoq.redfq rou 'cr1dq1a pu€ > I f) I lVl'C Q)L.{q 'cqoqered raq?reu are qf,rqra suorl€ruroJsu"rl snlqol are eraq+ teql aloN I
°
' I + y ' 0 < y e r u o s r o Jz y = ( z ) o L u o r t e l l p e o l a l e 3 n f u o c s r l I ; r c t l o y , a d f i qq f ( U ) '(7 3 u) ttuT - (r)'L uorlelor e o1 ele3nluoc sr ycr,Ttlqla q t (I) ]I * 0'1g )f g auos tol zsp
(i) r is parabolic if it is conjugate to a translation ro(z) = z + Q' for some Q'EC,Q'#O. (ii) r is elliptic if it is conjugate to a rotation ro(z) = eie z for some () E R, () # 2mr (n E Z). (iii) r is hyperbolic if it is conjugate to a dilation ro(z) = AZ for some A> 0, At 1.
'o+n'c>p
eurrros roJ a + z -
(z)ot uorlelsuerl e o1 ele3ntuoa s! 1l y cqoqotod q f (t)
'f1r1uapr eql tou $ qcrrlAr uorl€ruJoJ -suerl snrqontr e eq ,L 1a1 'sadf1 earql otq suorl"ruroJsusrl snlqotr tr fSsselc all
We classify Mobius transformations into three types. Let r be a Mobius transformation which is not the identity.
snlqg,trtrJo uorlBcgrssBlc '8,'8'z suorlBrrrroJsrrB.LT.
2.3.3. Classification of Mobius Transformations suorl"urolsuerl snlqgl I 't'z
2.3. Mobius Transformations
37
LT
38 38
2. 2. Fricke Fricke Space Space
By a simple calculation, we we see seethat Mobius transformations transformations are are classified classifiedby trace. ' trace. Lemma be a Mobius transfonnation which which is not the the identity. Lernma 2.11. 2.LL. Let r7 be M6bius transformation idenlity. Then Then the following hold: hold: the following if and and only ift-?(r) if tf (7) = 4. a. (i) r7 is parabolic parabolic if if and only if if 0 ~ tf (1) < a. (ii) r7 is elliptic if < 4. f t-?(r) (iii) rr is hyperbolic hyperbolic if if and and only ift-?(r) if tf Q) > > 4.. (iv) (iu) rr is loxodromic lorodromic if if and and only only ift-?(r) if tf (1) E e C -- [0,4]. [0,4].
=
Finally, we we define define the axis axis of a hyperbolic real real Mobius transformation r. 7. - )z with A ,\ > 1, by a Suppose that r7 is conjugate conjugate to a canonical canonical form ro(z) > 1, Suppose that U@) = AZ = 6oroo6-1. real 6. Namely, suppose that r7 = 6oloo6-1. The half-line Mcibius transformation 6. Namely, suppose real Mobius joining 0 and = { geodesic, L = iy I 0 < y < 00 } in the upper half-plane H is the geodesic, joining oo} half-plane .Il is < < {iy | 2 I1 (see 00, I(Im Z)2 on H (see §3 of Chapter 3). with respect respect to the Poincare Poincar6 metric IdzI z)2 3 3) . oo, with $ ldzl2I [m denoted by A-y. Ar. Then The image L) of Lunder .L under 6 is called called the axis oris of r7 and is denoted image 6( 6(L) joining the fixed A-y geodesicjoining r,, and a-y a., of r, is characterized characterized fixed points r-y ,4', is the geodesic 1, which is as real axis. axis. Similarly, r., and a-y o., and is orthogonal to the real as a semi-circle semi-circle which joins T-y we Aut(A). we define axis A-y A, of a hyperbolic transformation r7 in Aut(Ll). define the axis
2.4. Fuchsian Models Fuchsian Models First, we whose universal universal covering covering surface surface is is not we show that a Riemann surface surface whose show that biholomorphic to the upper half-plane one of C, e , C, C -halfplane H f/ is is biholomorphic to one properties of discrete discrete subgroups subgroups {O}, we study some some fundamental properties { 0 }, or tori. Next, we groups. of Aut(H), i.e., Fuchsian Fuchsiangroups. Aut(H), i.e., 2.4.1. Type Surfaces of of Exceptional Exceptional Type 2.4.L. Riemann Riernann Surfaces
Let us whose universal universal covering covering surfaces surfacesare are biholosurfaceswhose us determine determine Riemann surfaces morphic to either C or C. morphic either 0 biTheorem R has a universal uniuersal covering coaering surface surface R fr. bisurface^ 2.L2. A Riemann Riemann surface R has Theorem 2.12. holomorphic to the Riemann sphere C if and only if R itself is biholomorphic is biholomorphicto holomorphic lhe Riemann sphereC if and only if R
C. C. transformation Proof. that R .E = C. e . Since Sitt"" every element r7 of its covering transformation Prool. Assume that Flom Lemma is a Mobius transformation, it should have fixed points. From group r should have fixed is M
=
=
surface biholobiholoTheorem has a universal uniaersal covering coueringsurface surfaceR Theorern 2.13. 2.L3. A Riemann Riemann surface R has lo one one of C, morphic plane C if biholonrorphicto if and and only only if if R R is biholomorphic morphic to the lhe complex complexplane C --{ 0{ }0, }, or o r ttori. ori.
'zry = tr @)rL ^q palereua3 sl J leql qcns Iy raqrunu a.Lrlrsode slsrxe a.req1'g uo flsnonurluorsrp dl.radord s+re J ecurs .y reqrunu aarllsod auos roJ zy - (z)L yr fpo pue yr o,Lqlyr e^rlelnuruoc fl (g)7ny ) L .19)WV ur uorle3nfuoc ,tq (g ^{oqs ol fsea sr lueuala ue leql < oy) zoy ,1 - (r)"L 'orToqred{q sr oL ,,no11 leql aunss€ {etu a,u uaql Wql asoddns 'rq z = (z)rL fq pale.reua3sl + J teqt q)ns rg requrnu a,rrlrsode s?srxaaraql 'g uo dlsnonurluoc$p dl.radord slce J a?urs .tI ) g auros .rogg * z = (z)L urroJ aqt ur uellrrA\ sl f ,,l1uopue gr o,L a^rl"lmuurot JI {tgl * (g)wV 3 l" luaurala u€ leqt ees ol fsea sr 14'(g)nV ur uorle3nfuoc fq > o g ) o q + z - ( z ) o L r y q 1 e r u n s s ef e u r e a ru a q l , c q o q e r e ds o , L ; 1 'cqoqrad{q
Proof. We may assume that r =1= { id}. Take an element 'Yo E r with 'Yo =1= id. Since 'Yo has no fixed points on H, Lemma 2.10 implies that 'Yo is parabolic or hyperbolic. If 'Yo is parabolic, then we may assume that 'Yo(z) = z + bo (b o E R, bo =1= 0) by conjugation in Aut(H). It is easy to see that an element 'Y E Aut(H) is commutative with 'Yo if and only if 'Y is written in the form 'Y( z) = z + b for some b E R. Since r acts properly discontinuously on H, there exists a positive number b1 such that is generated by 'Y1 (z) = z + b1 . Now, suppose that 'Yo is hyperbolic. Then we may assume that 'Yo(z) = AoZ (A o > 0) by conjugation in Aut(H). It is easy to show that an element 'Y E Aut(H) is commutative with 'Yo if and only if 'Y(z) = AZ for some positive number A. Since r acts properly discontinuously on H, there exists a positive number A1 such that r is generated by 'Y1 (z) = A1Z. 0
r
@*'q'U
'H uo slurod pexg ou seq ol, acurg o,L .ro crloqered sr saqdurr etuure1 1eq1 0I'Z 'p! oL qtl,lr '{pgl1 o,L .too.t4 luaurale ue a{€tr * J 3 * J leqt arunsss,(eu e11
'ct1cfics, u?Vl 'uoqaqos? 'H uo snonut?uocsrp lN J II fr4.rado.rd s! J to uorl?o eW llUI q?ns puv g uo sTutoilpac{ ou sly {p?} - J .VTZ BururaT lo Tuaua1e fi.raaa Toqgqcns (g)nv {o dnolfiqns D eq J pI
r be a subgroup of Aut(H) such that every element of has no fixed points on H and such that the action of r is properly discontinuous on H. If r is abe/ian, then it is cye/ic.
r - {id}
Lemma 2.14. Let
'adfi7 TouorTdnr? lo eq ol pres sr rrol ro '{ O} - C 'C 'C Jo euo o1 erqd.rouroloqlqq qcrq^\ ac€Jrnsuueuer}I V
A Riemann surface which is biholomorphic to one of C, C, C - {O}, or tori is said to be of exceptional type.
' .t / C ot cryd.toutoloqrq s! A pW q?ns J dno.tf ac47ol D slstr,? a.r,aq1'g sn"to7fr.tana"lo3r .z(.re11o.ro3
r.
Corollary. For every torus R, there exists a lattice group biholomorphic to C /
r
such that R zs
'3 o1 crqd.rouroloqlq sr snrol € Jo aceJJns D 'dno.r3erlc{c e aq pFoqs 3ur.ra.,loc I€srelrun e e)ueH J e qcns leq} slras$ qcrrl^r (p1'6 eurtual) eurural 3ur,rlo11og eqt s1?rp€rluoc srqJ .g. ;o dno.r3 FluauepunJ eq? o1 crqdrourosr sl J roJ (6 4uer;o dno.r3 uerlaqe aarJ € eq lsnur J uar{} ,.Fl o1 ctqdrouroloqlqq U JI'snrol e q g 1eq1asoddns'fleurg'C = U leqt ^rou{ a , $ ' I ' Z $ y o 1 e l d u r e f g u r u a e ss e A rs V . { O } - C = A 1 a 1 , } x a N. C = A 1 a Ba m 'palcauuoc 'C fldurrs =A fl ?eql aurnsselsrg,asra,ruoc aq1 lroils o1 C ecws 'flalrlcadsa.r 'snro1 e pue '{ '9 o1 crqdrouroloq 0} - C '(II) pue '(ll) ,(r) sasecur ,e.ro;araqa U ac€Jrnsuueuerg eql
Therefore, in cases (i), (ii), and (iii), the Riemann surface R = C/ r is biholomorphic to C, C - {O}, and a torus, respectively. To show the converse, first assume that R = C. Since C is simply connected, we get R = C. Next, let R = C - {O}. As was seen in Example 1 of §2.1, we know that R = C. Finally, suppose that R is a torus. If R is biholomorphic to H, then must be a free abelian group of rank 2, for is isomorphic to the fundamental group of R. This contradicts the following lemma (Lemma 2.14) which asserts that such a r should be a cyclic group. Hence a universal covering surface of a torus is biholomorphic to C. 0
r
-lq sl J/C
r
-
'U re^o luapuedepur fpeauq er€ qcrq^r C f r g ' o g a u t o sr o y t g * z = ( z ) r L p r r s o g* z = ( z ) o l a r a q a r ' ( r t ' . t ) = J ( l l l )
(i) r={id}. r = ('Yo), that is, r is generated by a translation 'Yo(z) = z + bo for some bo E C - {OJ. (iii) r = ('Yo,'Y1)' where 'Yo(z) = z+b o and 'Y1(Z) = z+b 1 for some bo,b 1 E C which are linearly independent over R.
'{o}-c)oq
oruos roJ oq*z
(sr - (z)ol uorlelsuerl e {q pele.reueErl ,('tl leq} J
--,t
(tr) (ii)
{ p t l = . t (r)
:(1'deq3 Jo Z$ '[t-V] sroJlqy ';c) sesecaerql 3ur,rao11og aql rncco ereql l"ql elo.rd uec e^{ ueql '(9'6 eruuel ;c) g uo flsnonurluocsrp 'g uo slurod pexg ou seq -,f > f fpadord slc€ J teql [eeer em '.ra,roaro1,1i {pl } f u e a s n e r e q ' l = D ' r a q l r n g ' ( O f " ' C f g ' o ) q + z o - ( z ) L t u r o Je q l u r uellrr^,l\sl J ;l,L fre,re g'A"uure.I fq,(g)lnV;o dnorEqnse sl J acurg.dno.rE uol+€ruroJsue.rl Sur.ra,rocl€sralrun st! eq J lel 'C = U leqt aunssy '{oot4
Proof. Assume that R = C. Let r be its universal covering transformation group. Since r is a subgroup of Aut(C), by Lemma 2.8 every 'Y E r is written in the form 'Y(z) = az + b (a, b E C, a =1= 0). Further, a = 1, because any 'Y E r - { id} has no fixed points on C. Moreover, we recall that r acts properly discontinuously on C (cf. Lemma 2.6). Then we can prove that there occur the following three cases (cf. Ahlfors [A-4], §2 of Chap.7): sIePoI{ u"rsrlf,nJ 't'z
2.4. Fuchsian Models
39
6t
2. 2. Fricke Fricke Space Space
40
2.4.2. Fuchsian Fuchsian Models Models and and f\rndamental FundaIllental Dornains Domains 2.4.2.
The following is an immediate immediate consequence consequence of of Theorems 2.I2 2.12 and 2.13. 2.13. The surface fr, Theorem 2.L5. 2.15. A A Riemann covering surface R biunioersal couering surface R has has a universal Riemann surface Theorem and only lype; that is, if holomorphic to H if and only if R of exceptional type; is, if is not exceptional if R H if holornorphic ^of if R is not biholomorphic to anyone of C, C, { 0 }, or tori. C o r t o r i . o n e o f C , C , is not biholomorphicloany if {0},
If a universal universal covering surface E R of of a Riemann Riemann surface ,R R is the the upper upper halfhalfIf plane fI, H, we call its its universal covering covering transformation transformation group Ir a Fuchsian Fuchsian rnodel model of .R. R. In In this this case, case, fr is asubgroup a subgroup of of Aut(H). Aut(H). However, However, identifying identifying I/ H with with 4, ,,1, of we sometimes sometimes consider consider a F\chsian Fuchsian model fr as as a subgroup of Aut(A). Aut(Ll). Remark 1. By By an argument similar similar to that that in the proofs of of Theorem 2.13 2.13 and Remark -1. Lemma 2.I4, 2.14, we see see that that the fundamental group of of a Riemann surface surface R is commutative ifif and only only ifif .R R is biholomorphic to to one of of C, C, C, C -- {O}, tori, { 0 }, tori, r } . unit disk orr aannuli n n u l i {{ zz E < Iz < }. i s k ,,1, . 4 , ,,1 4 - - {{ 00} }, tthe he u nit d e C 11 l z Il < | 1< , o
geometric image image of correspondence correspondence between between a Riemann In order to obtain a geometric surface R and its Fuchsian model f, r, we use use a fundamental fundamental domain domain for f. r. An An satisfies for f if F open set F of the upper half-plane H is a fundamental domain r if satisfies domain 11 of open fundamenlal the following three conditions: with 1 =f (i) ,(F) f with, every 7 E oFF = ¢ e r / for every, { id. z({) n (ii) If 11, then closure of Fin .F in H, .F is the closure If F
a H
,r(F). =U [J ,(F). 'YET 7el
with respect respect to the (iii) The relative boundary of measure zero zero with has measure 0F of F in H has two-dimensional measure. Lebesguemeasure. twodimensional Lebesgue as is considered consideredas These surface R = H //fr is us that that the Riemann surface These conditions tell us l.. points on of covering group r. under the covering dF identified under
F F with
y'. For we define definesimilarly its Example coveringgroup r l- in Example 2 in §2.1, each covering For each Emmple 4. $2.1,we give examples of fundamental (i)", ... (t)" give examplesoffundamental fundamental domain. The following (i)", ..., , (v)" 2, respectively. respectively' domains groups of (i)', ... (t)' in Example 2, . . . ,, (v), covering groups domains for covering
(i)" ( i ) "F I mzz< 2211"}. r =- {z r}. e C | 0 < 1m { , Eel - {z Ee H I| 00 < Re (ii)" ( i i ) "Fr = R ez z< 11}.} . {, (iii)" a r s z< 2211"/n}. ( i i i ) "F r/n}. F =- {z | 0 < argz { 0 } 10< { , Ee cC -- {O} (iv)" ( i v ) F" .=F {z - { zE eHH11l I << Izl l r l< foX}. }. - {z Eel 1 , 0< } bbr,r , 0< 0 < bD<< 11}.} . (v)" 0 < aa < 1, ( u ) "FF = { , e C l rz -= aa+ domain for for aa There fundamental domain canonically aa fundamental way to to construct construct canonically There is is aa simple simple way paths smooth paths along suitable suitable smooth Fuchsian cut R -Ralong r?. First, First, cut surface R. model of of aa Riemann Riemann surface Fuchsian model of component of connectedcomponent on .F be be aa connected Let F domain RRo. get aa simply simply connected connecteddomain on R ,Rto to get o . Let
sIePoII u"rsqf,nJ't'z
TV
2.4. Fuchsian Models
41
'saldurexa 'fe,u, slql uI aa,rq1 eql u-r"lqo aal Eur.nolloJ 'J IoJ uleuroP IelueuepunJ e sI d slql 1eq1flrsea aeseAr'Z'Z$ul (A'y'A) Eurraloc lesJe^IuneJo uorl?nrlsuoc eql ,tg'.u detu Sur.ranoceql rapun tA p (;A)t-! a3eurr esra^ur eql
the inverse image 11'-1 (R o ) of R o under the covering map 11'. By the construction of a universal covering (il, 11', R) in §2.2, we see easily that this F is a fundamental domain for r. In this way, we obtain the following three examples.
'6, u1 $ qcrqrr ureluop Fluarrr€punJ e ser{ J l"ql leeduroc f1a,rr1e1a.r smolloJ 'rslncur€d ul'?,'7,'3U ul patertsnll sB J roJ ureuop le]uetuepunJ e l.I sl ('U)r-l;o g luauoduoc pelf,euuoc V'oU ur€ruop pelrauuoe rtldurrse 1e3 aa,r 'lg pue fy 1yeEuop g,3ur11ng'od lurod aseq qlr&t salrn? pesolc alduns qloorus il€ arp {g pue fy trqt qans (6 l) d 6nua3 Jo Ur eceJrns uueruarg pasop " roJ (od,A)to Jo srol"reuaS;o ualsfs l"cruouec " nq,=f{ lg'lV } tet 'g a\duorg
Example 5. Let {Aj,Bj }J=l be a canonical system of generators of 1I'1(R,po) for a closed Riemann surface R of genus g (~ 2) such that Aj and Bj are all smooth simple closed curves with base point Po. Cutting R along all Aj and B j , we get a simply connected domain R o . A connected component F of 11'-1 (R o ) is a fundamental domain for r as illustrated in Fig. 2.2. In particular, it follows that r has a fundamental domain which is relatively compact in H .
.4, B,
R
€- )t
------------R Fig. 2.2.
'z'z'Btr 'g alilu,oag
Example 6.
c, I
'V Fig. 2.3.
'8'Z'8tJ
aa.rq13uo1e U ln? pue U 3 od lurod e e{e; 'tO pue 'zO 're self,rrc ea.rq1fq pepunoq 'aue1dxalduroe eql ut Ar ureuop e 'g'Z '3ld ur pal€rlsnll se 'raprsuo3
Consider, as illustrated in Fig. 2.3, a domain R in the complex plane, bounded by three circles D 1 , D 2 , and D3 • Take a point Po E R and cut R along three
2. Space 2. Fricke FrickeSpace
42 42
smooth curves same argument as as that that in example example 6, curves C 6, Ct, Cz, C3. 1, C 2 , and C 3 . By the same elements we for R tr'for .R as as is shown shown in Fig. 2.3. 2.3. The elements we have have a fundamental domain F q(R,po), give respectively,give corresponding to the elements elements [Ad, 12 E [A 2] E 7r'1(R, Po), respectively, 11, l- corresponding € r [At],[Ar] Ir,''lz generators of r. we a canonical of Chapter 3, we shall describe describe f. In §1.5 3, ca.nonicalsystem of generators $1.5 another way of cutting fundamental domain for this group. cutting R .R to get a fundamental D;i degenerate degenerateto a Example case of Example 6, each circle circle D limiting case 6, let each Example 7. 7. As a limiting pi to obtain a Riemann surface surface,R C-{n,pz,ps}. single R biholomorphic to C{PI, P2, P3 }. single point Pi A Fuchsian principal congruence congraencesubgroup subgroup r(2) f(2) .R is conjugate conjugate to the principal Fuchsian model of R - (o, + b)/(cz + such that that of level consists of all elements elements I(Z) leoel 2, 2, which consists * d) such + b)j(cz 7(z) = (az 2 . As s y s t e mof of l , and a n d a = d = 1,b 1 , 6 : ec = 00 mod m o d 2. A s a system a,b,c,dE Z , a d --b cbe = 1, a,b,e,d € Z,ad picture generatorsof r(2), we have and 11(Z) z/(22 + 1). The picture generators f(2), we have 11(Z) *2 2 and * 1). fQ) = z + fQ) = zj(2z on the left hand side of Fig. 2.4 shows Fig.2.4 shows an example of of a fundamental fundamental domain for r(2). side of this figure figure illustrates a fundamental f(2). The picture on the right hand side domain for a subgroup details, see see Ahlfols Aut(A) conjugate conjugate to r(2). l-(2). For details, subgroup of Aut(L1) §2 of Chapter 7; and Jones and Singerman [A-48], Chpater 6. [A-4], Singerman 6. 7; Jones [A-48], [A-4], $2
== ==
I
-------1:= z+2------
c,
c,
F
----)
~
Z
C,
1:= 2z+1
C,
-1I
z-i z-t
t(}=--.
Z+l
-_ ......1 ----+-0---..L-- R
rQ) a fundamental .F/ for r(2) fundamental domain in H
a fundamental fundamental domain in L1 4 for r(2) f(2)
Fig. F i g . 22.4. .4.
Remark subgroup of Aut(H) Aut(H) acting domains for a subgroup canonical fundamental domains Remark 2. 2. As canonical regions. For properly discontinuously regions and Ford regions. ff , we we have have Dirichlet regions discontinuously on H, details, Ford [A-31], we refer books such such as as Beardon [A-ll], refer to standard text books details, we [A-31], [A-11], Jones Lehner [A-66], [A-67], and Maskit [A-71]. Lehner Singerman [A-48], Jones and Singerman [A-71]. [A-66], [A-67], [A-48],
sIaPoII u"rsqsnd 't'z
t
2.4. Fuchsian Models
43
(n)pV
go sdnorEqns alarcsrq 'g'V'Z
2.4.3. Discrete Subgroups of Aut(H)
qll,!{ (U,Z)IS lo t;3{ "y } ecuenbasaq1 ,ara11.(U,Z)ZS;o f3olodol eqt,tq paenpursl (U'Z)ZSa;o fEolodol aql'I't$ ur ux\oqs $ sp uorl€rgrluepr eql repun (1g'Z)lSa dnor3 ar1 eqtJo euo eql 01 luale,rrnbasr f3o1odo1 slql'oo ol spual u * H Jo slesqns lceduroc uo I o1 .{pr.ro;run set.raauoc "L I (n)pV I I ol saEre,ruoc 1g)lnV Jo I=J{ u,L} acuenbas e teql sueeru srql '{to1odo1 uado-lcedruoc eql ''e'r.'(11)WV uo ,(Eo1odo1Iernleu e Surugap q1ral ur3aq e11
We begin with defining a natural topology on Aut(H), i.e., the compact-open topology. This means that a sequence {1'n }~1 of Aut(H) converges to l' E Aut(H) if 1'n converges uniformly to l' on compact subsets of H as n tends to 00. This topology is equivalent to the one of the Lie group PSL(2, R) under the identification as is shown in §3.1. The topology of PSL(2, R) is induced by the topology of SL(2, R). Here, the sequence {An }~1 of SL(2, R) with
l"p t t " o l =o "rl
fl il=,
ol saEre,ruoc
converges to
'dno.t6 uvrsq?ng e se ol perraJer osle fl (V)l"V l" dnor3qns elercsrp '(C)lnV rc'(3)wV '(V)l"V;o dnol3qns elercsrp€ augep V jo Jaqunu elqelunoc e lsoru leJo slsrsuoc dnorE u€rsr1rr\f eira'f1.re1turg'sluaurala e '{1tlqe1unoe tuorxe puoees eql segsr}es (U'A)ZS ecurg 'dno.r,6uvrsycnl e Jo palp? q (H)InV;o dnorEqns eterf,srp O '19)tnV Jo leql uorJ pernpu! J uo f8o1odo1 e^rl"ler aql ol lcadsar qlrar slurod pelsloflJo slsrsuoc J ''a'l'Gt)lnv Jo lasqns alansrp e s.t J ! ?pr?erp eq ol pres sr.(11)7ny ;o .7 dnol3qns y 'oo ol sPuel u se 'dle,rrlcedsar'p pr. '" 'q'o o1 aE.rarruortp pue 'uc 'ug' ro yr fluo pue (U 'Z)I rrl JI S
in S L( 2, R) if and only if an, bn , Cn , and dn converge to a, b, c, and d, respectively, as n tends to 00. A subgroup r of Aut(H) is said to be discrete if r is a discrete subset of Aut(H), i.e., r consists of isolated points with respect to the relative topology on r induced from that of Aut(H). A discrete subgroup of Aut(H) is called a Fuchsian group. Since SL(2, R) satisfies the second axiom of countability, a Fuchsian group consists of at most a countable number of elements. Similarly, we define a discrete subgroup of Aut(Ll), Aut(C), or Aut(C). A discrete subgroup of Aut(Ll) is also referred to as a Fuchsian group.
r
efitaouocWyln J to sTuau,ep purlstp fi11onynu.t to sacuanbasou ?srseereqJ 'dno.t6 uvrsqcnf, o s! J .gT.Z BrrruraT lo ,7 dnol0qns D ro4 :Tuaparnbaato 6utmo71otaq7 (g)ny
Lemma 2.16. For a subgroup
of Aut(H) the following are equivalent:
(i) r is a Fuchsian group. (ii) There exist no sequences of mutually distinct elements of r which cont'erge in Aut(H).
(s) (r)
'(11)wYuP
Proof. Clearly, if r is not Fuchsian, then the assertion (ii) does not hold, and hence (ii) implies (i). Now, assume that there exists a sequence {1'n }~1 of distinct elements of r which converges to an element l' E Aut(H). Considering their matrix representations, we see that {(-Yn)-l }~=1 converges to 1'-1 in Aut(H). Since (1'n)-l o1'n+1 E r and (1'n)-l 0 1'n+l f. id for any n, and since the unit element id of r is not an isolated point of r, r is not discrete. Hence (i) implies (ii). The proof of Lemma 2.16 is hereby complete. 0
'a1e1duocfqaraq sl gI'Z eurruerl '(I) saqdrur D ;o;oord eql (r) ecuag 'elercsrp tou sr J '; go lurod palelofl ue lou sl J Jo p? luetuela lrun eql ecws pue 'u fue .ro;pg iL r+uLor_("f) p* J J I+ul,or_(u,[) acurg .Q1)lnV ul r-f o1 saS.rerluoctfi{ ,_("t) } W{t aes e,ra'suorleluase.rda.rxrrleur neql 3ur -raplsuoC '(U)t"V ,L ue o1 saS.raauosr{rrq^\ J Jo sluauela ?cultslp I luaurela '/'roN '(l) serldurr (rr) ecuaq I=":{ ul,} acuanbas ? s}srxa ararl} leq} arunss? Jo pue 'p1oq lou seop (rr) uorl.rasseeql ueql 'uersqcng lou sr J y'f1tea1a 'too.t4 .lI.U to tr ilno"t\qnso ro4
uraroaql
r r
r
:Tuapatnbaa.ro6utmo11otayq (g)lny
Theorem 2.17. For a subgroup
of Aut(H) the following are equivalent:
.r
'g uo filsnonur?u@stp filtadaul sTco J (II) 'uDtsq)nf, st (l)
(i) (ii)
is Fuchsian. acts properly discontinuously on H.
on <- (oz)uL I;:{ 'l q?ns sluatuela ecuenbase pu€ leql lcurlsrp H ) J Jo Jo } 'I1 uo dlsnonurluocsrp dpedord oz lutod e eAeq e^l ueql H ) lce lou saop J 'f1asra,r,uo3'uor?rugap eqt ,tq snor^qo sr (r) seqdu4 (ll) teql /oota leql aurnsse
Proof. That (ii) implies (i) is obvious by the definition. Conversely, assume that does not act properly discontinuously on H. Then we have a point Zo E H and a sequence {1'n }~=1 of distinct elements of r such that 1'n(zo) -+ Wo E H
r
2. 2. Fricke Fricke Space Space
44 44
as n --+ ~ oo. 00. Since {{In };:::'=1 is is aa normal normal family, family, taking taking aa subsequence, subsequence, ifif necessary, necessary, r" }Lr we may may assume assume that that {{ 7, In }p, };:::'=1 converges converges uniformly uniformly on on compact compact subsets of of f/H to to a in 11 H . Flom From the following lemma (Lemma (Lemma 2.18), 2.18), holomorphic function function 7I defined in this 7I must be an element of of Aut(H). Aut(H). Hence Hence by by Lemma Lemma 2.16, 2.16, fr is not not F\rchsian, Fuchsian, this D hence (i) (i) implies (ii). (ii). 0 and hence Remark 1. For a subgroup fr of of Aut(d), Aut(C), the discreteness discreteness of of l-r does does not always always Remark -/. given by example is imply that it properly C. A typical properly e . A typical on discontinuously it acts imply that (
az*b
az + b .r= = t{t I(Z) Q ) = *cz+d +d
Iaa,b,c,dEZ+zZ , b , c , d . e Z +.i Z}\. .
Lemma 2.L8. 2.18. Let {{ f" 'Yn }Pr };:::'=1 be be a sequence sequence of of Aut(H) Aut(H) which which conaerges converges uniformly Lemma compact subsets of H to a holomorphic function function ff defined defined in H H.. Here, Here, ff subsels of on compact admits a constant constant function function with value a. 00. Then Then either either one one of of the the following following holds: holds: with aalue admits
(i) /f is an an element element of Aut(H). Aut(H). (ii) /f is a constant constant function function c with c E R. € R. S 1 on Proof. We consider consider the unit unit disk ..:1 instead of of I/. H. Clearly, Clearly, we we have have l/l If I ~ 4 instead Proof. ..:1. If If(zo)1 = 1 for some point Zo E ..:1, the maximum principle implies that /f maximum some zo € A, l A.If lf(2")l is constant is a constant function. Thus either If I < 1 on ..:1, or f is a constant function c 4, constant / l/l < I f a c t , t o A u t ( A ) . I n with lei = 1. If If I < 1 on ..:1, then f belongs to Aut(..:1). In fact, {(/n)-l };:::' = 1 1. If l/l < on ^4,then / belongs with lcl {(r")-t har we may assume assume that being a normal family, taking a subsequence, if necessary, necessary,we subsequence,if it converges uniformly on compact subsets of ..:1 to a holomorphic function g 4 subsets it converges uniformly we see see same argument, defined in ..:1. In particular, we have gof = id. By the same argument, we fd. pa.rticular, we have defined 4. ( = i d . t o Aut(H). Aut(H). that 0D b e l o n g sto o g = id. Hence, H e n c e ,/f belongs 4 and a n d ffog t h a t Igi n ..:1 l 9 l < 1 oon surface of Proposition model of a closed closedRiemann Riemann surface be a Fuchsian Fuchsian model Let rf be Proposition 2.19. Let
t h e r c exists e d s t s a sequence sequence genus ~22. {oo}, there p o i n t ((E R - = RU RU{m }, g e n u sgg 2 . For a r b i t r a r ypoint F o r an a n arbitrary € R point zo H. conaerges {In };:::' = 1 of r such that {'Yn(zo) };:::' = 1 converges to ( for any point Zo E H. € f for {6Q,)}f=t f" }Lppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp {
is closure F F of F is that the closure Proof. Take such that fundamental domain F for rf such Take aa fundamental domain, fundamental domain, compact I/ (Example 5 in §4.2). compact in H $a.2). By the definition of aa fundamental points in F F sequence{Zn pick aa sequence and aa sequence we In };:::'=1 of rl- and };:::'=1 of points we can sequence{{Zr}Lr can pick {rr}f;=, we normal family, family, we such };:::'=1 isis aa normal convergesto (. Since Since {In such that {/n(Zn) {'l'}Lr {l.Q^)}[,};:::'=1 converges ff to aa subsetsof H on compacts compacts subsets may convergesuniformly on supposethat {{f"In };:::' may suppose }Lt=1 converges must be be shows that f/ must holomorphic 2.18 shows 11. Thus Lemma 2.18 defined in H. holomorphic function ff defined aa constant 0 constant (. points of of the the set set {IlQ")lt Remark Let L( r) be I( zo) I I E all accumulation accumulationpoints e be the the set set of of all L(f) 2.Let Remark2. I(f) is is independent independent r}, implies that that L(r) point on Lemma 2.18 2.18 implies on H. f/. Lemma where Zo zo is is aa point l-], where call subset of of R. fr.. We We call is aa closed closed subset of It is that L(r) I(f) is well known known that of zoo zo.It is well of the the choice choice of = R R tells us us L(r) ,(l-) = 2.19 tells L(r) group r. ,l-. Proposition iroposition 2.19 of aa Fuchsian Fuchsian group the limit limit set setof I(f) the = H provided / r is provided that is compact. compact. that R H/f ft =
uJoJ oql ur uellrr^\ sl "y lsql aas elt 'u raEalur errrlrsod ,(ue rog - rluV pus y - Iy Eurllnd 'ol,;o uorleluasardar xrrlpru e q qclqa
which is a matrix representation of 10. Putting A 1 = A and An+! = A n A o (A n )-l for any positive integer n, we see that An is written in the form ,_(V)oV"V
' f ] 9 l= ' n Ao =
[~
n,
[I II 'I tes e1l > lal > 0 qll,lr (1g'Z)IS 3 y uorleluasardar K:
Proof Assume that there exists an element I E such that I has a matrix representation A E 8L(2, R) with 0 < lei < 1. We set
r
lei ~
1 provided that
'0
satisfies
e::f O.
t ? l"l sa{nqos # c to1t paprao.ul
' l' ^ ' ^l = ,
| - ?g- pD 1 g > p 'c'q ' o a, b, c, dE R,
ad - bc
=1
Lq D)
'l uotToTuasa.til?J ruloru o 6unoq ) L frtaaau?qJ a z - (z)oL uotyo1 ,! -suDrln 0ututoyuoc dnafi uotsycri"l o ?q pI (lt1?,] nzturrqg) .IZ.Z BrrruraT J
Lemma 2.21. (Shimizu [203]) Let r be a Fuchsian group containing a translation lO(Z) = Z + 1. Then every I E r having a matrix representation
'uorlrrpsrluoc € ol speel qcrqal'alarcsrp tr lou sr J '91'6 eurural ,(q 'aro;a.raqa'sluetuale --?{ l?qlqp Jo slsrsuor ? } leql ease,rl 'l + y p u e ' 0 < y ' 0 f g o a c u r g ' o o -t s u w C t s ? u a q l , I < y J I . o o + t s u s e
r
as n - +00. If A> 1, then Cn - C as n - -00. Since ab ::f 0, A > 0, and A ::f 1, we see that {Cn }~=-oo consists of distinct elements. Therefore, by Lemma 2.16, is not discrete, which leads to a contradiction. 0
I r o l =' I'qt'; j "t ueqt'I > y > g y'acua11 o1 sa3ra.iluoc
Hence, if 0 < A < 1, then C n converges to
o'l = ' I 'I | . ( , r ,- I ) e D; i
C_[10 n -
ab(l- A 1
2n
)]
.
- ug 3ur11as'arrolq'flalrlcadsar
respectively. Now, setting C n = BAn B- 1 A-n for any positive integer n, we get arrrlrsod{ue.ro; u-VrBuVB 1eBea,r'u.ra3a1ur
, o* q e , u ) 9 , o
A=[~ A~l]' B = [~ a~l]'
a,b E R,
ab::f 0,
,
g] -
[,;,
, r + y, o < y , l ' ; . A > 0,
A::f 1,
i]
g
_V
Proof. Assume that neither (i) nor (ii) holds. By Aut(H)-conjugation, we may assume that Fix(I) {O, 00 } and Fix(I) n Fix(6) 00 }. Then matrix representations A, B of I' 6 are given by
dq uerrr3an g'L lo g'V suorle?uas '{ -e.rda.r xr.rleur ueql oo } = (g)*1.{ U (l)xrg pue { m'O } = (l)*tg t€rll eunsse feur aar 'uorle3nfuoc-(Hhnv fg 'sp1oq (rr) rou (r) raqlrau l€ql eunssv 'loo.r,4
=
={
.0 = (g)xr.{ u (r)4.{ (r) (i) Fix(I) (ii) Fix(/)
n Fix(6) =
= Fix(6).
:sp1oy furmoilo! eyrlo euot"rl, 'plTg"r;r'::r:;"::, 'OZ'Z
hyperbolic and 6 ::f id, then one of the following holds:
s? L lI 'tr dno.r0uorsq?nf,o to sTuaualeonl ?q g puo L pI
Lemma 2.20. Let I and 6 be two elements of a Fuchsian group
r.
If I
IS
BruuraT
'ralel pesn ar€ rl?rq,a,r, 'sdnor3 u"rsqcr\{ sarlradord auros luesard all ;o
We present some properties of Fuchsian groups, which are used later.
2.4.4. Further Properties of Fuchsian Groups
sdno.rg uBrsqcr\{ ;o sarl.radord Jaq}JqlI'V'?'Z
sIePoI{ u"rsqf,nJ't'z
2.4. Fuchsian Models
45
9t
2. Fricke Space Space 2. Fricke
4466
6".l "o" -- l o n d nJ ' l"n
=
=
_d
=
=
2 - an-rcn-r, * a n -n(-1C n - tn . -l. an = Il-a bn = (an-!)2 (a n Cn = -(cn-1)2, -(Cn _l)2, and and d,. d n = Il+a where o, where n -1Cn _l, bn ,, cn n-l 2 -"'n-t * * Thus itit follows follows that that cr Cn = = _c ->- 0 0 as as nn ->- oo. 00. Next, Next, setting setting M M = Thus
=
max{ lol,l/(L lal, 1/(1 -- lcl) leD}, we obtain obtain inductively inductively lo"l lanl S~ M M for for any any n. n. Thus Thus each each max{ }, we an, bn, bn , and and d, d n converges converges to to 11 as as nn +->- oo. 00. Hence, Hence, .Ar An converges converges to to Ao, A o , which which ant tr the discreteness discreteness of of l-. r. 0 contradicts the contradicts
Theorem 2.22. Eaery Every element element of of a Fuchsian Fuchsian model model of of a closed closed Riemann surface surface Theorem of genus genus S g (|=2) (~ 2) consists of the the identity and hyperbolic hyperbolic elements. elements. consislsonly of of
r-{
Proof Since Since every element 7I eE f - { id id}} has no fixed fixed points points on I/, H, itit is parabolic parabolic Proof. that f contains contains a pa"rabolic parabolic element element 10. By Aut(H)Aut(H)Assume that or hyperbolic. Assume lo.By suppose that 10(Z) -= z*1. z+1. From Lemma2.20, Lemma 2.20, any element element lhatT"Q) conjugation, we may suppose .y I (+ (:f id) of of .i- with with f(m) 1(00) = oo 00 is parabolic, which is written writ ten in in the form form = oo} = is a j f = 6. Hence, ]-I(Z) Z + b for some b. Hence, {I E 11(00) oo} number e some real z r(*) *b I { ilz) assume we may with element, if necessary, we assume if necessary' element, with another cyclic group. Replacing 10 7, - ((az L, a a z *+bb)/(cz generator Since every I(Z) add - b cbc= 1, v e r y7 e n e r a t o rffor or ft. S i n c ee ) l @ z * d+) d), , tthat h a t 10 (z) 7 o iiss a g we Thus 1. that 2 shows belonging to l0, 2.21 shows that lei ~ 1. we 2.21 Lemma 0, ,i-- satisfies satisfies c :f belonging lcl +
r
=
r
r - roo
obtain
=
roo =
=
roo.
Iml(z) rmTQ)~S
r
=
=
1
1 ~511 (Imz)1e1 1r-;pp2 -
distinct any two distinct 2}. Then any 1m z > 2}. for all zz with 1m 1. Set Uo e H Illmz Imzz > Set U ) 1. o = {z {z E - roo. l--. Thus the quotient points on U 0 are element of r f are not equivalent equivalent under any element [/o corresponds r?. Since space Ro since 10 = U space Do = Uo/f* o/ roo is biholomorphic to a domain R o in R. 7o corresponds closure R R,o .r?,the closure to aa non-trivial E o of R element of the fundamental group of R, non-trivial element disk in R is Do is is biholomorphic to the punctured disk connected. Since Since Do is not simply connected. ( I}, t o {z € C |0 < b e homeomorphic h o m e o m o r p h i cto {z must w e infer that R 1 } , we i n f e r that o u < Izi 4m s t be e C |0 < { z Eel l"l < { z Eel Izi ~ I}. This contradicts that R is compact. 0tr is compact. contradicts | ltl S ). geometry disdisRemark. using the hyperbolic geometry obtained by using is also also obtained theorem is Remark. This theorem 2 = 2/(lmz)2 be be present dsz cussed of Chapter 3. We present its outline. Let ds = IdzI its outline. 3. We Chapter cussedin §1 ldzl2l(Imz)2 $1 - H/r. H/f . on R = the hyperbolic metric on which induces induces the hyperbolic on H, 11, which the Poincare Poincar6 metric on positive number a, o, 1. For For any any positive Assume f has has aa translation 10(Z) * 1. that r Assume that 7o(z) = zz + fo segment La tro joining ia denote of the segment which is is the the image image of ,Rwhich on R closedpath on by C denote by C"a au closed of -.R. length of the hyperbolic hyperbolic length and (ia) by R. Let C a ) be the projection 11": Let f( l(C")be r: H H ->by the the projection and10 1o(ia) we see seethat that Then we C metric. Then to the the Poincare Poincar6metric. with respect respectto of La .Lowith length of the length a, i.e., the Co,i.e., we have sequence have aa sequence f(C being compact, compact, we + 00. .Rbeing - 00 as other hand, hand, R oo. On the other On the as nn ->t(C") a ) ->+ 00, + Po + po oor as r(l'o") oo and ) {an };;"=l of positive numbers such that an ->00 and 1I"(ia ->as nr, ->that dn positive such numbers of o" n }L[r { which connecteddomain domain U u which where simply connected we take take aa simply point on Hence,if if we po is on R. rt. Hence, where Po is aa point n. large n. for sufficiently sufficiently large path Can in U contains is included included in [/ for C,. is po, then the closed closedpath then the contains Po, - id, This = a contradiction. id, a contradiction. implies 10 This implies lo
L?
acedg arpug '9'7
47
2.5. Fricke Space
oreds a{rl{,{ '9'U 2.5. Fricke Space
:suorlrpuoc uorlezrleurou aq1 esodurl e,!\ ,U uo 3 3ur4.reurue,rr3e o1 J Ieporu uersqrnd e ,,{lanbrunu8rsse o} rapro uI .ile,lr se Ur aures eqt Jo lapour uersqrnd e sl dnor3 eq1 '(g)wv fue ro; ,s1 ryql :(11)7ny go sursrqd ) ,.7 9 r_9J9 -rouoln€ .reuur{q pasnec ,{lrn8rqure egl seq ,lop A Io J Iapour uersqcnd e '6'"''Z'I = ! q c e e r o J ' f 1 a , r r 1 c e d s,e( .ord , A ) t o q [fg] pue [fy] o1 SurpuodsarrocJ Jo stueuela oq1 ld pue fo fq alouap ,9.6 utrreroeqlur pelels A lo J Iepou u€tsqcnd e pue (od,U)Iz uae.nleqursrqd.rourosr aql repun 'f snuaS;o U e)eJJnsuuetuerg pesol) e go (oa,g') t.u dnor3 plueur€punJ t=f{ aql srolerauaS;o uralsds q ''e'l 'U uo 3urr1.reu n rl Jo Ierruouec [lS],[!V]] 'f snuaE sec"Jrns uu€urarg pesol) pa{retu s}srsuo) 3' eraq^r Jo [3''U] II€ }o tg aceds rellnuqrrel eqt ,I raldeq3 ur peugap se^.rsv kZ) 0 snuaS;o Jo t$ 'QZ) 0 snue3go se)eJrnsuueuarg pesolc r; ecedsrefintuq)rel eql uo sel€urprooc e{]r.U pall€c Jo 'slapour u€rsqcr\{ sroleraueS;o ue1s.{s -os eugap fteqs ellr Jo l€)ruorr€c e Bursn fg
By using a canonical system of generators of Fuchsian models, we shall define socalled Fricke coordinates on the Teichmiiller space Tg of closed Riemann surfaces of genus 9 (~ 2). As was defined in §3 of Chapter 1, the Teichmiiller space T g of genus 9 (~ 2) consists of all marked closed Riemann surfaces [R, E] of genus g, where E = {[A j ], [Bj] }]=1 is a marking on R, i.e., a canonical system of generators of the fundamental group 11"1 (R, Po) of a closed Riemann surface R of genus g. Under the isomorphism between 11"1 (R, Po) and a Fuchsian model r of R stated in Theorem 2.5, denote by OJ and j3j the elements of r corresponding to [A j ] and [B j ] in 1I"1(R,po), respectively, for each j = 1,2, ... ,g. Now, a Fuchsian model of R has the ambiguity caused by inner automorphisms of Aut(H); that is, for any 8 E Aut(H), the group r' = 8r8- 1 is a Fuchsian model of the same R as well. In order to assign uniquely a Fuchsian to a given marking E on R, we impose the normalization conditions: model
r
r
'1 1e lurod paxg a^rlcerl?e sll ser{ t^a (I) ',{1anr1cadsa.r 'oo pue 6 1e slurod pexg a^r}ceJ}le pue 3ur11eda:s1 seq td (l)
(i) j3g has its repelling and attractive fixed points at 0 and (ii) a g has its attractive fixed point at 1.
00,
respectively.
'(tt) p u n s u o r l r p u oc ( r ) uorlezrl€rurou aq1 f;sr1es ud pun to lr.I? etunsse.r[eura,ll ,r(ressaceu y,(g)Wy ul Surle3nfuor'.raq1.rng'Q = (6d)xllU(to)xrg seqdrur0U.Z€unueT ,arrrlelmuuroc ..,ir ud pun to acurg 'cr1oq.red,tq arc 6j pue to q1oq,Z7-(,tuaroeqtr dq ,1cegu1 lou ere 'suotllpuoc uor?ezrlsruJouaql segsrlss rIJlqA\u Jo lepo{u u"rsq)nJ 3 s}srxesferrrle araql 'f snuaS;o a)eJrns uu€urerg pesop e uo 3' 3ur>1reuuarrr3e Jod .tlJDurey
Remark. For a given marking E on a closed Riemann surface of genus g, there always exists a Fuchsian model of R which satisfies the normalization conditions. In fact, by Theorem 2.22, both a g and j3g are hyperbolic. Since a g and j3g are not commutative, Lemma 2.20 implies Fix(a g )nFix(j3g) =
,(27)6 snuaf ppolu uvzstlcngo lo t=ou[!d'ln] s.tolo.tauaf lo ua7sfrslD?tuouD)p uant6 D rol .gZ.Z uorlrsodo.r4 lo g acottns uuDuery pesop D uo g 6utt1.tou,
Proposition 2.23. For a given marking E on a closed Riemann surface R of genus 9 (~ 2), a canonical system of generators {aj, j3j }]=1 of a Fuchsian model of R which satisfies the normalization conditions with respect to E is uniquely determined by the point [R, E] in T g •
fi.anbrun s?K otTcailsa.r-q7rm suortzpuor ,"n frriJE":Hti:'{:ri:::r"'r:;'Y;::
r
r
u uorrelaJ ,s.ro1o"raua6 uta7sfr,s Ieluau"punJ alos eq? sagsrl€s qcrq.lr to IoJ.uouDJ slr se ol parreJarrl I=;{ ld ' lo s.roleraua3yo ualsfs eql .[3' ,g] acey.rnsuueruerll pesoll } pe{r€ru e Io pporu uorsqrnl peztlDturou eq1 .7 dno.r3 u€rsqrnd srq} ilec e11\
We call this Fuchsian group the normalized Fuchsian model of a marked closed Riemann surface [R, E]. The system of generators {aj, j3j }}=1 is referred to as its canonical system of generators, which satisfies the sole fundamental relation 9
'P?= 't"]L[ lld
II[aj,j3j] j=l
= id,
r=! = lld 'fo] eraqm
where [aj,j3j] = ajoj3joa;l oj3j-1. 'rldorloolgoln
'/G ol tuale^rnba sr (,<)Y r"qr q?ns /U * A : ! Surdderu crqdlouoloqrq / Utt V € slsrxe ereqt ueqtr '6Jul[g',A) = qcns uo,3 Bur4.retu€ pue l€ql lr [3',Ur] 6 snua3 Jo /Ar ec€Jrns uueruarg pesolc raqloue e{€I .6A.A uoxllsoilo.t4 lo !oo.t,4
Proof of Proposition 2.23. Take another closed Riemann surface R' of genus 9 and a marking E' on it such that [R, E] = [R', E'] in Tg • Then there exists a biholomorphic mapping f: R --+ R' such that f. (E) is equivalent to E'. A lift j of f to H, which is an element of Aut(H), is taken to satisfy
,Hor{ro ,,u",u^ -,;,j"ii 1.j.,,i,",,; i";:;"Jn
2. 2. Fricke Fricke Space Space
48 48
where {ot;,01 {aj, {3j }f=, H=l itis the the canonical canonical system system of of generators generators of of aa Fuchsian Fuchsian model model of of where condito ^D'. From R' which satisfies the normalization conditions with respect to E'. From condiwith respect conditions .R' which iatisfiLs the normalization tion (i), (i), we we have have iQ) j(z) == )z AZ for for some some lA )> 0. 0. Further, Further, by by condition condition (ii), (ii), a, a g and and tion = = a~ have have the the common common fixed fixed point point at at L, 1, and and hence hence )A = 1, 1, i.e, i.e, ij = id. Thus Thus we we get get a! tr aj = ati aj and Bi {3j Fi. {3i. 0 ai
=
=
Lemma 2.24. 2.24. Let Let {oi,gi}o;=, {aj, {3j U=l b" be the canonical canonical system system of of generators generators of of the Lemma for aa point lR, [R, El E] in in To. T g. AIf an element element t(z) ,(z) = normalized Fuchsian Fachsian model i for normalized + b)/(cz ++ d) d) of of {o;, { aj, {3j H=l do"t does not not coincide coincide with Bo, {3g, then bc bc }i= 0. (az + |i}t=,
r
= = =
=
=
Proof. ln In the case case where where 6b = c = 0, we have have Fix(7) Fixb) = Fix(Be) Fix({3g) - {0,*}, {O, oo}, Proof. case where the Next, in hence, and {3g in case a contradiction. are commutative, and and hence Bn 7 and Bo 0, we get Fix(7) Fix(,) = Fix(Be) Fix({3g) = {0}. {O}. Thus, 7, and {3g being non6b = 0 and c *i= Q,we commutative, Lemma Lemma 2.20 implies implies that that f is not not F\rchsian. Fuchsian. Hence we have a commutative, By the same same argument, in in the case case where b Ii= 0 and c == 0, we contradiction. By tr obtain a contradiction. 0 obtain
=
r
=
°
11=1
By this lemma, the canonical canonical system system {loi,gi aj, {3j )f=t of generators generators of of the norBy written uniquely in the malized Fuchsian Fuchsian model lr for a point point [.R, [R, E] E] in TTog is written form form
a·z 1 +b·1 , CjZ + dj T#, a'.z b,, atrz + * b~ 1 {3 9ij --= c',1 z + d'· ffa 6i,'
~._
*, -= "'1
1
ai di, ci € R,
ci > 0, ) 0, Cj
aidi- bici= I,
dili "'i> d'. -- b'· c'· = 1| 0' a'· o'i,our,C, ) 0, eF., cj fiCi 1 1 1 1
1
=
, i ,2,. .... . , 0, 9- -, 1. for f o r each e a c jh= 1 1, 6 -* R Now, we define g- 6 by R6e-6 coorilinates:F Fo:Tn Fricke coordinates g : Tg --+ we define the Fricke d ' s- r ) . a ' o- 1 ,C~_l' c ' n -r , d~_l)' ce - t , dgdg - 1r ,, a~_l' . . . ,,ag-l, as- | t Cg_l, a l , c~, c \ , d~, d 1 ,... ( 4 1 ,Cl, c 1 ,d 11, ,a~, :Fg([R, l ] ) = (al, f o ( [ R , E])
=
surfaces closed Riemann surfaces The image F space of closed the Fricke Fricke space is called the g(Tg ) is fo(To) g = :F Fn Fo topology of genus g. The topology of F is introduced by the relative topology of F Fo genus 9. g in g is introduced connected R 6g 6. In §2 of Chapter 5, we shall verify that F is a simply connected domain is asimply that.F, 5, we shall R6c-0. g $2 6 g- 6 • By the following theorem (Theorem 2.25), :F is a in R 2.25), Fsg is a bijective mapping theorem R6g-0. with F -Q ?,g with of identifying T on T g. Hence we define define aa topology on g to FFo. g under Hence we ?o of T Qg by identifying Riemann a closed of :F Therefore, a topology of the Teichmiiller space T(R) of a closed Riemann • space ?(.R) Teichmiiller of d.g Therefore, a we book, we rest of of this book, In the rest surface of T ?n. from that of genus 9g is is induced induced from of genus -R of surface R g • In assume that T and T(R) are equipped with these topologies. topologies. with these are equipped "(.R) assume that Tn g and 6 ---+R is injective. injectiae. Theorem g- 6 is R6'-6 coorilinales:F fo: g --+ Fricke coordinates g : TTo 2.25. The The Fricke Theorern 2.25.
=
= (al,cl,dl, ( o r , " t , d v , .... ..,a 's-r, p o i n t :Fg([R,E]) Proof. ,a~_l' e v e r y point fo(lR,t]) t o show s h o w that t h a t every W e need n e e d to P r o o f . We genof system canonical dg-l' d~_l) in F determines uniquely the canonical system {aj, {3j } of genthe uniquely determines Co-r,ils-1) in F,g {oi,0i } point E)eTo. erators ofthe normalized Fuchsian model r for the point [R, E] E T • the Jfor model F\rchsian normalized eiatoriof the g [8, : 1t a i dji --bjcj bici = r e l a t i o najd = 1,2, t h erelation For , g-1), o b t a i n e dfrom f r o m the i sobtained (j = I , 2 , .... ..,9 - l ) , 6 i bj is e a c hjj (j F o reach the same BV by with 0, and hence aj is determined uniquely by :Fg([R, E]). By the same fo(1R,4)' uniquely oi is determined hence and with Cj cr' > 0, ) argument, = 1,2, is also alsodetermined. determined. 1) is 1,2,..... .,,gg -- 1) argument,{3j 0i (j U=
6'
2.5. Fricke Space
aredg e:1crrg'g'g
49
What remains to show is that both O:g and {3g are determined by .rg([R, ED. By the normalization condition (i) for r, we have {3g(z) = ,\z with ,\ > 1. By the normalization condition (ii) for r, O:g has its attractive fixed point at 1, and hence
eeuaq pue'I 1e lutod pexu e^rlcertle sll mq to'J roJ (ll) uorlrpuoc uorl€zllsruJou aql {g'I y q}l^{ zy = (z)6! el"q a.&t'J.loJ (r) uorlrpuoc uorl€zrl€ruroueq} /tg < '(g'Ul)ot,{q paururralap ers 6d p* to qloq }sq} q ^roqs ol sureuer leq1\
Q'z)
(2.7)
=
'lld'fall=[U IeS'rldo6po6g= 6noLaltsqe/$ '.raq1rng lfd'!plr=!6lJ uolleler pluatuepunJ aql urorJ
id, putting ,
=
Set
, P + z c_ Q ) L 9tzo
a, b, c, d E R,
ad - bc = 1.
' I - ? q- p D
,(z)=az+b, CZ+ d
.
,L 3ur11nd 'pl
nJ;:;[O:j,{3j], we have ,00:g = {3goO:go{3"9
1
=
'opa6c=6q+6o
Further, from the fundamental relation rU=l[O:j,{3j]
'g)
p'e'q'o
:ploq suorlenba 3uu*o11o;aql 1eql aurnsse .[eur 'p- po* '"- 'q- 'r- ,(q p pue 'a 'g 'o Surceldag arrr 'fressacau ;t '.,f1arr1cadser
Replacing a, b, c, and d by -a, -b, -c, and -d, respectively, if necessary, we may assume that the following equations hold: (a - l)ag + bCg = 0, ca g + (d - ,\-l)cg = 0,
(orz) (o'e) (s'a)
(2.8)
'0=6?q+6e(t-o)
(2.9)
'0=ta(r_y-p)*6ec
cbg + (d - l)dg = O.
(2.10)
.0=tp(I-p)+6qc
'(Ot'Z) pue (9'6) uro.rg 1aBaan '16l pauru.ra?ap e^eqa^,recuag '(p - i/0 - o) - y pue 'I 'ZZ'ZvrarceqJq?rpsrluoc sSlJ 'cqoqeredu ,l * p'l * e ryql s^rolloJll snql qclq/'{'}- (f)zrl ecuaqpue'I = p ueq}'I = DJI'(p - I)y = I - p 1eq1sarldurr ol€q a^\ (O'Z) p* (9'6) uro.g 'qsrue,rlou saop 6c ro 6o Jo euo lseal le aculs
Since at least one of a g or cg does not vanish, from (2.8) and (2.9) we have a-I ,\(1 - d). If a 1, then d 1, and hence tr 2 (,) 4, which implies that , is parabolic. This contradicts Theorem 2.22. Thus it follows that ai-I, d i- 1, and ,\ = (a - 1)/(1 - d). Hence we have determined {3g. From (2.8) and (2.10), we get
=
ag
=
bCg = --, I-a , D _ I - ocq -
=
(rrz)
=
(2.11)
cb g
(zrd_
-(2.12)
= 1 _ d'
.-P\ -al - -ro ^ dg
san€ (2'6) otq (UI'Z) pu€ (II'Z) Jo uorlnlrlsqns
Substitution of (2.11) and (2.12) into (2.7) gives I-q+D
a+b-l _c+d-l 1 - a cg 1 - d bg. .onP-I 'I-p+c
(erz)
(2.13)
-0"
o-L
Here, if c + d = 1, then we have a + b = 1, because cg i- 0 by Lemma 2.24. Thus, from the relation ad - bc 1, we find that a + d 2, and hence , is parabolic. Again this contradicts Theorem 2.22. Therefore, we have determined O:g by .rg([R, ED. 0
paururalap a^eq ellt.'aro;araq; 'ZZ'Z ureroeqtr slcrperluoc srql ureSy 'cqoqered sr ,L acuaq pu€ '6 = p D pug e,lr 'I = cq - pD uorlelel aq1 uror; 'snq; + leql ' V 6 ' Z e : U u . U u i e l f q 6 c a s n e c a q ' I = q + p a ^ e q e ^ , ru e q ? ' I = p a a OI ;r'are11
=
n
=
'(ls'al)U rq,u"
5500
2. 2. Fricke Fricke Space Space
Notes Notes For historical historical and and expository expository accounts accounts of of the the uniformization uniformization theorem, theorem, we we refer refer to to For universal covering Abikoff [2], [2], and and Bers Bers [29] [29] and and [36]. [36]. The The original original idea idea of of using using universal covering Abikoff surfaces is is due due to to H. H. A. A. Schwarz Schwarz (cf. (cf. Bers Bers [29], [29], pp.264-265). pp.264-265). Complete Complete details details of of surfaces covering surfaces surfaces are are contained contained in in the the books books on on Riemann Riemann surfaces surfaces listed listed in in the the covering notes of of Chapter Chapter 1. notes The notion notion of of a F\rchsian Fuchsian group was was first first introduced by by Fuchs Fuchs in in the the study study of of The ofthe equations analytic continuation continuation ofsolutions of solutions ofcertain of certain ordinary ordinary differential of the analytic second order (cf. Ford [A-31], [A-31], Chapter XI). XI). See See also also Yoshida [A-113]. [A-113]. For more second Fuchsian groups, groups, we refer to to Jones Jones and Singerman Singerman [A-48], [A-48], and Lehner details on F\rchsian called Kletnian [A-66] [A-67]. subgroups of PSL(2, C) called Kleinian groups, gro 1J,ps, are of PSL(2,C) subgroups Discrete and [A-67]. [A-66] intimately related to to the theory theory of of Teichmiiller spaces. spaces. It It is most which are intimbtely that this interesting subject cannot be covered. covered. Concerning Kleinian Kleinian regrettable that groups, see see Beardon Beardon [A-11], [A-ll], Berset Bers et al. al. [A-15], [A-15], Ford [A-31], [A-31], Krushkal" Krushkal', Apanasov Apanasov groups, GusevskiI [A-61], [A-61], Lehner [A-66], [A-66], Magnus Magnus [A-70], [A-70], and Maskit Maskit [A-71]. [A-71]. For and Gusevskil between Kleinia"n Kleinian gloups groups and 3-manifolds, 3-manifolds, we we also also refer refer to Epstein [A[Arelation between Bass and Morgan 25] and [A-26], Laudenbach Poenaru [A-29], Bass [A-76], Po6naru and Laudenbach Fathi, 25] [A-76], [A-29], [A-26], McMullen [154], Thurston [231]. Poincare [A-90] collected works works on McMullen [A-90] is his collected [231]. Poinca"r6 [154], and Thurston Fuchsian groups functions. groups and automorphic functions. Fuchsian groups, see see Nicholls For the interaction between between ergodic Nicholls discrete groups, ergodic theory and discrete Velling [A-86], Bowen and Series [47], Morosawa [158], Series [195], and VeIling and Series Morosawa Bowen Series [195], [158], [47], [A-86],
Matsuzaki Matsuzaki [241]. [241]. Fricke and Klein [A-33]. Fricke and appeared in Fricke spaces first appeared Fricke spaces [A-33]. For modern treatBers and Gardiner [42], ments, Goldman and Magid [A-36], Bers and Abikoff [A-1], see Abikoff ments, see [42], [A-36], [A-1], Keen Saito [186], and Weil [243]. and Keen [110], Saito [243]. [186], [110], group .9cfioltky group we can can use use aa Schottky For aa representation surface' we Riemann surface, representation of aa Riemann space instead instead of aa instead we obtain aa Schottky schottky space and we F\rchsian group, and instead of aa Fuchsian and Sato Sato Teichmiiller space. Bers [35], is discussed discussedin Bers space. This topic is [98], and [35], Hejhal [98], [188] and [189]. and [18e]. [188]
sa{s4os V V '1'g uorlrsodor;
Proposition 3.1. (Schwarz-Pick's lemma) Every holomorphic mapping f : ..1 ----+ ..1 satisfies : t |utddoru ctryl"toutoloyfr"taag (wlo ru:al s6{crd-z.re,*qcg)
'zz pup- Iz uee/r leq ??uDlslp?rDourod eq1 (zz'rz)d llet e^\.aclr€lslp Jo $uorxe aql seuslles d ryqI u^roqs sr.Il'zz pue rz ?ceuuoct{clq,$ 7 ut se^rnf, elqeul}leJ II€ sa^ou 3 'arag
Here, C moves all rectifiable curves in ..1 which connect Zl and Z2. It is shown that p satisfies the axioms of distance. We call p(Zl, Z2) the Poincare distance between Zl and Z2. , l 'zi l' - t 'o i'
rf c / - l u' = l (zz'tz)d
lzplz J
'V tlz slu-tod orr,r.1fue log ) zr las alrlr eJo lapotu e lrnrlsuoc ol clrletu stt{l pesn ?J€culod 'H
H. Poincare used this metric to construct a model of a non-Euclidean geometry. For any two points Zl, Z2 E ..1, we set 'drlauroaS ueaprlcng-uou
. z Q l '-l i = "tP "1'P1tr
ds = (1 _ Iz12)2 . 2
41dzl 2
The unit disk ..1 = {z E C Ilzl < I} has several "natural" metrics. One of them is the Euclidean metric ds 2 Idzl 2 dx 2 + d y 2, and another important one is the Poincare metric
xuleu 9rv?utod eq} sr euo luelrodrur leqloue pue 'rftp * "*p = ,ltpl -- es'pclrletu ueepqcng aql sl ureqlJo auo'srrrla{u ..letrnleu,,Iere^es seq {I > lrl I C ) zI = 7 }tslP }Iun eqtr
=
=
crrlatr l ?rBcurod 'T'I'8
3.1.1. Poincare Metric 'I'g
3.1. Poincare Metric and Hyperbolic Geometry l(llaruoag
pue rlrlatr tr ?rerutod
rrloqrod/tH
'uolsrnql
In this chapter, we shall discuss some aspects of the hyperbolic geometry on Riemann surfaces which is induced by the Poincare metric on the unit disk. First, in Section 1, we define the Poincare metric and study basic properties, especially those concerning geodesics. Using hyperbolic geometry, in Section 2 we define a system of coordinates, called Fenchel-Nielsen coordinates, on the Teichmiiller space of a closed Riemann surface. In Section 3, we discuss an embedding of the Teichmiiller space into an Euclidean space by means of geodesic lengths, which has its origin in classical investigations of Fricke and Klein. Finally, in Section 4, we give a sketch of the construction of a notable compactification of the Teichmiiller space, which was recently proposed by W. Thurston.
'A\ fq pasodorddlluacars€^rqcrq/!\'acedsrellnurq)Ial aqt uotlecyrlceduroe Jo q)le{s e e,rr3 aaa.'p uorlcag ut 'fleutg elq€1oue uorlf,nrlsuot eql Jo Jo 'sq1Eua1 'urely pup a{?tJd suorle3tlsa,rul Jo Ieclsselcut ur3trosl! seq qctq,lr crsepoe3go sueeru,(q acedsueaprlcngue olur acedsrallntuqclel eql JoSutppequa ue ssncsrpa,n 'g uorlces uI 'e?€Jrnsuu€ureru pesoll e 3o ecedsrallnuq?Ial 'saleurprooc uralsdse auuaPe1'r aql uo 'saleurp.roolueslerNleq?uad ;o Pallec 'd.rlauroaE esoql fletcadsa crloqradfq 3urs11'scrsapoe3 Sutu.recuof, 6 uorlces ur 'serlredordcrseq{pn1spue elrlau ereculodaql eugepaiu.'1uorlcagut'1s.rtg '{srp uuetuelg }run eql uo crr}eruersculodaql dq pecnpulfl tlclq^rseceJrns uo frleuroa3 cqoqredfq aq1;o slcedseaurosssnc$pII€qsa^\ 'reldeqc sql uI
salBurProoc uoslarN-Iaqruad puB rt.rlauroa.D rrloq.radfll
Hyperbolic Geometry and Fenchel-Nielsen Coordinates
t raldBrlc
Chapter 3
52
3. Hyperbolic Hyperbolic Geometry Geometry and and Fenchel-Nielsen Fenchel-Nielsen Coordinates Coordinates 3.
1f'(z)1 lf'.(:)l
1
=.~ 1+, -lzI - l " r2-' I1--If(z)12 lf(r)l' =
z €E a. Ll.
point in Moreover, ifif the equality equality holds holds at one one point in A, Ll, then then ff is a biholomorphic biholomorphic Moroaer, automorphism of A, Ll, and the equalitg equality holds at any point point of of A. Ll. aulornorphism of
Fix a point point z in in A Ll arbitrarily, arbitrarily, and set Proof. Fix w *z w+z .tt\w) =TlZw, 'n (w) = 1 + zw' / \ w-f(z) . l12(W) z t w t == ,W- f- z f(z) 1w' 1- f(z)w
11 and 72 12 belong to to Aut(A), Aut(Ll), and ,F(to) F(w) == J2 12 o 0 ff "0 lr(w) 11(W) is a holomorphic Then 71 Ll into into 4. Ll. Since Since .F(0) F(O) == g0 attd and mapping of 4 ' l - l , l 22
'( ) 1 - Izl f'() F,(o)= F 0 = 1 _ If(z)12 ffif'(r), z,
otr
we have have the assertion assertion by Schwarz' lemma. Schwarz'lemma. we
denote by /-(ds2) j*(ds 2) the pull-back of the Poincard Poincare metric ds2 ds 2 = we denote When we 2 2 implies that 4IdzI 3.1 implies Proposition 3,1 aldzl2/(1 /, Proposition /(l - Iz1 lrl')')2 by f, f* (ds2) < ds2
2 if - ds and that f*(ds 2) = Aut(Ll). ro Aut(A). if /f belongs belongs to dsz if and only if that I.(dt2) ------Ll Corollary. A satisfies satisfies mapping ff : Ll A --+ holomorphic mapping Eaery holomorphic Corollary. Every p(f (zt), f (zzD 1 p(21, z2),
21,22 € A.
Remark. /{(h) of aa Riemannian Riemannian metric general, the curaalure K(h) the Gaussian Gaussian curvature Remark. In general,
h(z)2IdzI2 g i v e n by by ( h ( r ) >> 0) i s given o ) is h ( z ) 2 l d z l z(h(z) 2 4 fl2logh g K(h) , h ( h=) _~ = - F d10 h.
h2
a azaz
Poincar6 metric A simple curvature of the Poincare showsthat the Gaussian Gaussian curvature simple computation shows -1 on is on Ll. 4. equal to -1 is identically identically equal under the is invariant under Moreover, )2Idz\2 is h(z)2ldzl2 when aa metric h(z we can can see see that, when Moreover, we constant up to to aa constant metric, up action with the the Poincare Poincar6 metric, coincideni with it is is coincident by Aut(Ll), Aut(A), it action by factor. factor.
t9
,{r1auroag cuoqradifll pu" f,rrlel{ gr"f,u-Iod 'I't
3.1. Poincare Metric and Hyperbolic Geometry
53
scrsaPoaD 'z'T't
3.1.2. Geodesics
Ie
eleq e^r JI '9z ul zz pve Iz $ullcauuoc (cr.r1eru gr€oulod aq1 o1 lcadsar q1ra,r)ctsapoe0e 'V ul zz pue rz Surlcauuot'g cre pasolc elq€Urlcar€ IIef, e \'V ) zr 'rz s?ulod orrr1fue rod'(r)/ fq 1r elouap pu€'C p y76ua1cqoqtadfr,tlaql sp "[ lV, ell.'V ur , ]re pasolc alqegrlcer fre,ra rog
For every rectifiable closed arc C in .d, we call ds the hyperbolic length of C, and denote it by f( C). For any two points Zl, Z2 E .d, we call a rectifiable closed arc C, connecting Zl and Z2 in .d, a geodesic (with respect to the Poincare metric) connecting Zl and Z2 in .d, if we have '(C)l = (zz'rr)d
sl puD zz puo rz q0norqt sassodt1cn1m7uau,6as Vg fi.topunoqeql oI 1ouo0or17.to euq eql ro el?Jr?eyyto ctoqns o s, puD anbtun st 7r |teaoanory'V ul zz puo rz |utTcauuoc crsapoa0o slsNaeere1l 'V ) zz'rz fi^to4tq.toro,I 'Z'g uorlrsodor6
Proposition 3.2. For arbitrary Zl, Z2 E .d, there exists a geodesic connecting Zl and Z2 in .d. Moreover, it is unique and is a subarc of the circle or the line segment which passes through Zl and Z2 and is orthogonal to the boundary {).d of .d.
'v lo
'0 1 zz pue = rz luauela ue fq tuaql Sururrogsuert /tq 1eq1 etunsse deur 0 en'(V)1ny fq uorlce ar{l repun lu€rrelur sr crrleru ar€curod eq1 acurg /oo.l4,
Proof Since the Poincare metric is invariant under the action by Aut(.d), we may assume that Zl = and Z2 > 0, by transforming them by an element
°
i9 Z -
Zl
zlz -t
= Q) L ()
#eP
,Z = e
1-
ZlZ
eleq era 'zz pue g Surlcauuoo trts pesolc frala ro;'r".II C 'U f d elq€1lns qYal. (V)7nY P
of Aut(.d) with suitable 0 E R. Then, for every closed arc C connecting
°
and
Z2,
we have
,W"[ ",ol
-:-2-=-ld-;-z > t' _2_dx_. e 1 -lzl 2 - 10 1 - x 2
= f(C)
7 luaur3es euq eq? qlr^r lueprcurof, sr Cyr fluo pueJI (rh
if and only if C is coincident with the line segment L =
-
tr
Hence p(O, Z2)
,:;:-1
.2, I xp7,
1 = (zz'1)d acuag
[0, Z2].
0
'lzz'o)
''V LV uo slurod oall i(ue Eurlcauuoc crsapoe3fre,ra'6'9 Jo rr"qns e q uorlrsodor4 ,tq 'teql a?ou eJaH ',0 fq uorlce eql rapun luerrslur sr f,y uxe aq; 'L p'V sDr€eql palpc sr Ve oI 1euo3oq1.ro sr pue slurod asaql q3no.rq1sassed qcrqa,llluaur3as auq eql ro alcrr? eql Jo y u1 lred aql l"ql Ip?eU 'Vg uo Lo prte L.r, slurod paxg Irurlsrp otrl seq l, 'crloqredfq 4 (VhnV 3 ,L uaqal '1eq1 lpcag
Recall that, when, E Aut(.d) is hyperbolic, , has two distinct fixed points r-y and a"( on {).d. Recall that the part in .d of the circle or the line segment which passes through these points and is orthogonal to {).d is called the axis A"( of ,. The axis A-y is invariant under the action by ,. Here note that, by Proposition 3.2, every geodesic connecting any two points on A"( is a subarc of A,,(. 3ur11as,(qpaugap sr g aueld-geq .raddnaql uo {sp crrlaur ar"curod eq&'tlrout?[
Remark. The Poincare metric dSk on the upper half-plane H is defined by setting
"l'Pl
2
IdzI 2
, z(lu'l) = ,rrp dS H = (Imz)2'
'y otuo H lo (! + z)/(? - ,) = (z)1,uorleurroJsuert snlqgl i eqt ,,(qv uo zspcrrleru ?r"curod eql Jo {req11nd aql 1nq3mq1ouq qclq,tr
which is nothing but the pull-back of the Poincare metric ds 2 on .d by the Mobius transformation ,(z) = (z - i)f(z + i) of H onto .d.
Hyperbolic Geometry Geometry and Fenchel-Nielsen Fenchel-Nielsen Coordinates Coordinates 3. Hyperbolic
54 54
3.1.3. Hyperbolic Hyperbolic Metric Metric on on a Riemann Riemann Surface Surface 3.L.3.
Let itR be a Riemann lliemann surface whose universal universal covering surface is biholomorphibiholomorphiLet L1. Consider Consider a Fhchsian Fuchsian model I of of ,R R acting on /.L1. Let Let cally equivalent to 4. 11": A L1 -----+ r? R be the projection of of 4L1 onto R = = A/f. L1/ Since Since the Poincar6 Poincare metric r: ds 2 is invariant under the action by .l-, we obtain obtain a Riemannian metric ds2p dsh on ds2 R which satisfies satisfies r- (dszp)= d,s2 1I"*(dsh) ds 2 .
r,
r.
r
We call this dsft dsh the Poincar6 Poincare metric, or the hyperbolic hyperbolic metric on R. E f corresponds corresponds to an element element [Cr] [G,] of the fundamental group Now, every, every 1 e 1I"1(R,po) R (Theorem 2.5). 2.5). In particular, ,7 determines determines the free free homotopy r{R,po) of ,R class say that of the class G" where G, representative of class [G,]. say that, covers We of where is a representative class C7, C,, 7 coaers [Cr]. the closed curve G,. curue the closed Cr. j € -t, - A-, When, E f is hyperbolic, it it is seen that the closed closed curve L, A,/I < ), seen that 1l , >, When image on .R R of the axis axis A, A, by 11", geodesic (with (with respect respect to the zr, is the unique geodesic the image hyperbolic metric metric on ,R R )) belonging belonging to the free homotopy homotopy class class of of G,. L, Ct. We call L-, hyperbolic geodesic to corresponding to or the closed "7, G,. closed geodesic corresponding C.,.
r
r
=
coueringsurface surface Proposition be a Riemann surface with with universal uniaersal covering Lel R be Riemann surface Proposition 3.3. Let H, and r be a Fuchsian model of R acting on H. Let model acting on Let H , and 11l be Fuchsian
+ = ---, ,Z tk) cz+ ( )
a z * bb _ az c z * dd'
a , b , c , dE a,b,c,d e PR, -,
a d -- bc b c = 1, 7, ad
r
geodesic be element on and L, bethe the closed closedgeodesic on R corresponding hyperbolic elemenlof 11, L, be R corresponding beaa hyperbolic I , and to lenglhl(L,) I(Lr) of L, L, satisfies satisfies to ,. Then the the hyperbolic hyperboliclength 7. Then
t.'(r) - @+d)2= 4cosh2 e) 2 an {t) are Proof. tr2(7) are invariant under the conjugation of, of 7 by an t(L-r) and and tr Prool. Since Since l(L,) - AZ )z (.\ 1). also element = (A > 1). We may also we may assume assume that ,(z) element of ol Aut(H), Aut(H), we 7(z) we have this case, case,we have and d = 1/-/>.. I/\5.In In this assume t5, b = c =0,0, and assumethat ao - -/>.,
=
= =
=
dy ((L.t) =fIr^ = 210ga. ) = l o gA 2log a. = -y = + = log A
l(L,)
1
Hence we have have the assertion. assertion. Hence we
o!
3.1.4. 3 . 1 . 4 , Pants Pants
Consider which admits the hyperbolic metric by aa surface R r? which Riemann surface Consider cutting aa Riemann family of mutually geodesicson R. Let P be be aa relatively simple closed closed geodesics mutually disjoint simple compact subsurfaces.If If P contains contains connectedcomponent component of the resulting union of subsurfaces. compact connected no more geodesicof R, be triply triply connected, connected, i.e., i.e., .r?,then P should should be more simple simple closed closed geodesic homeomorphic region, say say homeomorphic to aa planar region,
cc
55
frlauroa.g rqoqraddll
'I't Pu€ f,rrlel{ grsf,urod
3.1. Poincare Metric and Hyperbolic Geometry
({i t rr- ",}^{i >rr+,r})- { z > l z l } = 0 4 Po =
({ Iz
{izi < 2} -
+ 11 ~ ~} U {Iz - 11 ~ ~}) .
'U uo rlsapoe3 pasolc elduns € sl 2I ul d Jo frepunoq e^rleler eqt Jo luauoduroc palrauuoc frarra 3r Pue Palceuuoc i(1dt.r1q d JI g' 'g e IIef, e^\ '.re1;eara11 1o sTuod;o .rted e U Jo d eD€Jrnsqnslcedtuoc f1errr1e1e.r Surppnqa.r.ro; secerdlseilerus eql Jo auo s€ pereplsuoc aq ue? d et"Jrnsqns e qcns
Such a subsurface P can be considered as one of the smallest pieces for rebuilding R. Hereafter, we call a relatively compact subsurface P of R a pair of pants of R if P is triply connected and if every connected component of the relative boundary of P in R is a simple closed geodesic on R.
4J/V:d
Fig. 3.1.
'r'8'tIJ
Fix a pair of pants P of R arbitrarily. Let r be a Fuchsian model of R acting on ..1, and 1r : ..1 ---+ R = ..1/ r be the projection. Let P be a connected component of 1r- 1 (P). Denote by rp the subgroup of r consisting of all elements ,of such that ,(P) = P. Then p is a free group generated by two hyperbolic transformations, and P = P/ p. Set P = ..1/ rp. Then P is a surface obtained from P by attaching a suitable doubly connected region along each boundary component. Hence, P is again triply connected, and rp is a Fuchsian model of P (see Fig. 3.1). Clearly, P is considered as a subsurface of P, which is the unique pair of pants of P. In other words, P is uniquely determined by rp. Habitually, P is called the Nielsen kernel of P, and P is called the Nielsen extension of P.
'd louoNeuelseueslerNaql Pellet sr d Pu€'d Jolaweq ueslerN erll Pall€l 'd st 2r 'f11en1rq€H'-dJ fq paurunalap flanbiun ,, j '.pto^ reqto uI Jo slued ',,(pee13 '2' 3o aee;rnsqns € s'e pereplsuoc sl d ;o rred anbrun eql s! plq^{ 'pelcauuoc ,{1dr.r1 '(t'g '31.{ eas) ; Jo lapour uelsqcqil e q d.7 pue 'acue11'lueuodtu6r ,t.repunoq qcee Suop uorSar palceuuof, .{1qnop ure3e sr 2' paul€tqo areJrns€ sI uaql 'a,t/V - d las elq€lrns e Surqcelp fq dr 4'uro.r; ql/d d pue'suotleurrogsuerl crloq.rad,tqom1fq pele.reue3dno.r3aa.ge s1 d.7 uaql 'd = ({)t }€tI} q?ns J Jo L dnor3qns eqt dJ fq alouaq '(d) r -! Jo lueuoduroc sluetuele yo Surlsrsuoc J Jo 1e = U aq1 aq pelceuuoce aQ V i )L pve'7 uo 3ur1ce JIV d 1e1'uorlcelord 'fpre.r1rqr" g 3o 7 slued ;o .rted e xtg U Jo lapour uersqcqE e aq J 1e1
r
r
r
56
3. Hyperbolic Hyperbolic Geometry Geometry and and Fenchel-Nielsen Fenchel-Nielsen Coordinates Coordinates 3.
3.1.5. Existence Existence and and Uniqueness Uniqueness of of P'-ts Pants 3.1.5.
shall discuss the the relationship relationship between the the complex complex structure structure of of a triply triply conWe shall domain J? Q and and the the hyperbolic hyperbolic structure structure of of P, P, the the unique unique pair pair of of pants pants of of nected domain Q, induced by by the hyperbolic hyperbolic metric metric on O. Q. O, Let L1,L2, L 1 , L 2 , and L 3 be the boundary boundary components, components, which a.re are simple closed closed and..L3 Let geodesics, of of the the pair pair of of pants pants P. P. Let Let J-e model of of the domain domain geodesics, o be a Fuchsian model Q acting on A. Ll. Then'i-s Then'ro is a free free group generated generated by two two hyperbolic transO that 1'1 and may assume that 1'1 and 1'2 cover .L1 L 1 and L2, formations, say, say, 7r may assume and. 1'2. We formations, 72 71 72. respectively.
r
Theorem 3.4. 3.4. For given triple triple (ayaz,as) (a1, a2, a3) of of positiae positive numbers, numbers, For an arbitrarily giaen Theorem planar Riemann connected planar surface Q such such that there exists Riemann surfoce triply connected lhere erists a triply
=
t£(L ( L ji )) = a aj, 1,
=
ji - 1 ,1,2,3. 2,3.
it by constructing constructing O Q explicitly. explicitly. Proof. We prove it say C C2, Let Cr C 1 be the part part of of the imaginary imaginary axis in A. Ll. Fix Fix another geodesic, geodesic, say 2, 2. On the Ll such that the Poincar6 Poincare distance distance between between C1 C 1 and C2 C 2 is equal equal to a1f at/2. such that on 4 from which which the Poincar6 Poincare distance to C1 C 1 are equal other hand, geodesics geodesics on 4Ll from other a3/2 form form a real one-parameter one-parameter family family (i.e., (i.e., the family family of circular arcs arcs Cl C~ to oBf2 geodesic, Hence there exists exists a geodesic, tangent to the broken circular arc in Fig. 3.2-i)). Hence and C Cg Cz2 and say that the Poincare Poincard distance between C such that family such say C 3 is Cs, 3 , in this family equal a2f2. equal to a2l2.
i)
ii)
Fig. 3.2. Fig.3 .2.
determined by the condition Next, let Zl 4 uniquely determined z2 be be the points in Ll 21 and arrd Z2 a1
p(rr,r) p(Zl,Z2)
== 2' ?,
zzEe C2· zr Ee CCt, Cz. 1 ,Z2 Zl
and {zs, let {Z3, 22. Similarly, Let Z4} and Z6} geodesicconnecting 21 and and Z2. Similarly, let connecting Zl L\ be be the the geodesic Let L~ {rs,re]1 {z3,za} be by the the conditions conditions pairs of points uniquely determined by uniquely determined of points be the the pairs
L9
pu" rrrlel l ?r"3ulod 'I't
3.1. Poincare Metric and Hyperbolic Geometry i(rlauroag ruoqradi(g
a2 = 2'
57
Z9
' 8 8 8 8 8 C ) v z ( z C ) ,E zz - ( v z ' e s ) 6 p(Z3' Z4)
Z3
a3 tp
= 2'
E C3 , Z6 E C ll
'rC)sz'eC)sz
, 7 , = (sz(s2)i p(zs, Z6)
E C2 , Z4 E C3 ,
Zs
'eslrlurod fg Eur,rraserd les 3 go ursrqdrour ''e'l'f^2 -o1ne crqd,rouroloq-rlu" aqt qlr^r o1 uorl?auer eql;q (g'Z't = f) laadsar 't=[{!,1'!c} lh p1 pepunoq uo3exaq cqoqrad,(q pesolt eq? eq o p"r fq ('(fa'g 'ft9 eag) 'ez Pue ez Pue'?z pue 8z Eurlceuuoc scrsapoaSeq1 'f1a,rr1cadse.r'!7 pve 1I ,{q alouaq 'flelrlcedser
respectively. Denote by L~ and L~, respectively, the geodesics connecting Z3 and Z4, and Zs and Z6. (See Fig. 3.2-ii).) Let D be the closed hyperbolic hexagon bounded by {Cj, Lj }J=1' Let 'TJj (j = 1,2,3) be the reflection with respect to Cj, i.e., the anti-holomorphic automorphism of C preserving Cj pointwise. Set 'TJ2,
tebsV)-rl0
1'2 = 'TJ3
'TJ1·
'Vtoeb-zL
1'1 = 'TJ1
0
Then 1'1 and 1'2 are hyperbolic elements of Aut(Ll). Let ro be the group generated by these 1'1 and 1'2' pele.rauaEdno.rEaq1 aq o.ir1e1 '(V)l"V
.z,L pue rl, aseqt fq t" sluauele arloqrad,tu are zl, pue rl, ueq,L
Q=L1/ro Fig. 3.3.
'8'8'ttJ
It is clear that il = Ll/ ro is triply connected, and that the unique pair of pants P of il is the interior of the set obtained by identifying the boundary of DU'TJ1(D) under the action by roo Thus il is a desired surface (see Fig. 3.3). 0 '(g'g '81.{ eas) ace;rns peilsap " sr snqtr '0J ,tq uorlce eql rapun (O)tbnO tr {Ji go ,trepunoq eq1 Surf;rluapl fq paurclqo ?as eql Jo rorrelur eql sl (J ;o 2, slued yo rpd anbrun arl? lstll pue 'pelceuuoc f1du1 sr.oJ /V = U leq+ realc s-rlt
'4 perepro aq1lo st176ua7 cqoqtedfrq aqy fiq lo sTuauoduoefi".topunoq p?aunrepp fryanbrunsa 4 syuodto .ttorl o to ernlrtuls aelilutoc ?ttJ .g.g ruoJoaql
Theorem 3.5. The complex structure of a pair of pants P is uniquely determined by the hyperbolic lengths of the ordered boundary components of P.
feur e,r. 'r(.ressacau.l uorleEntuot-(g)7ny ue 3ur:1et 'asodrnd srql lsrll eutrrnssp rog'r={{{o},(q peururralap,{lanbrun are zL pue I,L }eql ^\oqs o} seclsns U 'e? 'I zL) eL sraloc o teql pue (e = 1) 17 s.rairoc{1, ?sqt arunsss feur aa,r ,_(tf 'ara11'0.7 srolereuaS;o rualsfs e aq 'I.L} 'g eueld-y1eqraddn eq} uo leT Jo {zt 3ur1ce Jo lepour uersqr\{ e eq 0J pu€ 'd Jo uorsuelxe ueslarN eql eq d ?c,-I'd d Jo (g'Z'l = f) f7 lueuoduroc frepunoq aq1 ;o q1Eua1crloqlad,(q eql eq lp p"I 'fy.rer1rq.reuaarEsr sluedgo ned s 'too.r4 teql esoddng ('IIt'[Ott] uaay'93) 2,
Proof. (Cf. Keen [110], III.) Suppose that a pair of pants P is given arbitrarily. Let aj be the hyperbolic length of the boundary component Lj (j 1,2,3) of P. Let P be the Nielsen extension of P, and ro be a Fuchsian model of P acting on the upper half-plane H. Let h1,I'2} be a system of generators of roo Here, we may assume that I'k covers L k (k = 1, 2) and that 1'3 = (1'2 0 I'd -1 covers L 3. It suffices to show that 1'1 and 1'2 are uniquely determined by {aj }1=1' For this purpose, taking an Aut(H)-conjugation if necessary, we may assume that
=
58 58
3. Hyperbolic HyperbolicGeometry 3. Coordinates Geometryand and Fenchel-Nielsen Penchel-Nielsen Coordinates
11(Z) 1 ,1, I t ( z )=,x2 = \ 2z2, , 00 < ),x< < a z * b az + b / \ .r2(z) ad-- be bc- 1,I,c 0, ) 0, 12(Z) =;ii,, ez + d' ad e>
=
=
and that that 11 is is the the attractive attractive fixed point of fixed point and of 12, or equivalently, equivalently, 12,or
=
a l b = e+d, sai, a+b
b
O <-- ! <
Then we we see see that that 12(00) a/c > and aa + Then ) 00 and since the 0, since the middle-point middle-point > 0, + dd > fz(m) == a/e (a -- d)/(2e) d)/(2c) of points of of two two fixed fixed points of 12 has aa value value less (a lessthan than 12(00). 72 has Zz(oo). Next, write write Next,
az -1,, -u+ u Ab, ad-be =) -_-_, (, 7 3\ -1 ) -(z) ' ( z= a d - b z= - 1.1 (,3) dz*b
ez+d
(73)-l = 12 j2o0 ,7r, we may Since(,3)-1 may assume assumethat Since 1> we
6 , = a \ , b=b/>', 6 = b 1 \ , e=e>., E - c \ , d=d/>.. d=a1>,. a=a,x, particular,e> d > O. Moreover,the In particular, of the 0. Moreover, the middle-point middle-point(a (6 - d)/(2e) a11pe1of points the fixed fixed points (73)-1 has greaterthan hasaa value valuegreater than (,3)-1(00) (73)-r(x) = a/c. of (,3)-1 d < O. d/8. Hence, Hence,a a+ O. + the other On the other hand, hand, by by Proposition On Proposition3.3, we have 3.3,we have
=4cooh2 () + 1/>.)2 l/r)' =4cosh2 (>' (~1) (+) ,, 2 =4cosh (a+ d)2 d)2=4 cosh2 (a (~2) f +) ,, \ 2 / '
(a;) . \ 2 /
=4cosh2 (+) (a J:2=4 cosh2 @+ d)2
j2 are Therefore,'y1 and 12 are uniquely uniquely determined determined by {a1, Therefore, 11 and a3 }. az,as}. {or, a2,
D tr
proved that, for any triple have proved We have triple of positive numbers, numbers, there exists exists a pair of pants admitting admitting a reflection reflection (induced, (induced, for example, example, by "7d that the hyperrlr) such such that bolic lengths of of the ordered ordered boundary components components are are the given given triple (Theorem 3.4), and that 3.4), that it it is uniquely determined by the given given triple triple (Theorem 3.5). Thus we (see also we have have the following corollary (see also Fig. 3.4). 3.4). Corollary. Corollary. Eaerg Every pair pair of of pants P has has an anti-holornorphic anti-holomorphie automorphism Jp J p of of order two. two. M o r e o a e r ,the L h esset e t F Jr rp = {{z E P Il JJpp( off a all points off J pp consists Moreover, l l ffixed ixedp oinlso consists z e ( r z) ) = zz}} o of satisfyingthe of thrce three geodesics geodesics {Di}|=, {Dj }1=1 in P satisfying the following following condition: condition: For euery L,2,3), Di every j (j (j = 1,2,3), D j has has the the endpoints endpoints on, on, and is orThogonal orthogonal to, to, both both LL ij aand n d LL 1j +; r1,, w h e r eLL +4 = LL t1.. where
=
=
=
=
We call "Ip J p described described in this corollary the rc,fl,ection reflection of of P. P.
.6J
Let R be a closed Riemann surface of genus g (~ 2). As before, consider cutting R along mutually disjoint simple closed geodesics with respect to the hyperbolic metric ds1t on R. When there are no more simple closed geodesics of R contained in the remaining open set, then every piece should be a pair of pants of R. Recall that the complex structure of each pair of pants of R is uniquely determined by the triple of the hyperbolic lengths of boundary geodesics of it by Theorem 3.5. It is clear that R is reconstructed by gluing all resulting pieces suitably. Hence, we can consider, as a system of coordinates for the Teichmiiller space T g , the pair of the set of lengths of all geodesics used in the above decomposition into pants and the set of the so-called twisting parameters used to glue the pieces. Such a system of coordinates is called Fenchel-Nie/sen coordinates on Tg .
uo selDuzpron ueslely-leq?ury pelle;. sI sel€ulprooc;o rua1s.{s€ qcns 'sacerdaql an13o1 pasn sralatuered 3ut1stall pellec-os arll Jo las aql pue slued olur uorysod -ruocep e^oqe eql ur pesn scrsapoe311e;o sqlSualJo les aq1;o.ued aq1 'rg aceds rellnurqcral aql roJ sel€urproo?;o ue1s.{s e se '.reptsuocue, a^\ 'ecue11'f1qe1tns secard3ur11nsarIIe 3urn13fq palcnrlsuocer sI U leql r€elc sI lI 'g'g ura.roaq; ,{q 1r Jo scrsepoe3,{.repunoqyo sqlEual cqoqradfq eql Jo a1dtr1aq1 fq paunurelep .{lanbrun sl g. slued ;o rred qcea Jo ernlf,nrls xelduroc eq} }eql II€reU Jo '1as uado Surureurereql ul 'p. yo qued 3o .rrede eq plnoqs ecard drarraueql paureluoc U Jo s)rsepoa3pasolc alduns eroru ou are areql uaq1yg, uo {sp f,Ir}aur flenlnur 3uo1ey crloqrad.rtqaq1 o1 laadser qllr* srtsepoa3pesolc aldurts 1u1ofs1p 3ur11ncraprsuoc'eroyaq sy'(e {) f snua3Jo af,eJrnsuu"ruerg pesol?e aq Ur lerl
3.2.1. Pants Decomposition uorlrsodtuocaq
slusd'1''Z'e,
'.re1deqc$r{} Jo rapulqurer aq1 ut fleeq suollJasseeql esn 'g .ra1deq3 lr]un rueroer.{lsqtJo;oord e Sur,rr3auodlsod a6 [eqs e,lr q3noql 'g-fgll o7 ctr1d.r,ou.to?uo?! puD e-oell a! uzD'tuopD s! 6l acods aqu.r,treqJ (g1'g uraroaqa) 'uraroaql s.rallnurqtraJ
We postpone giving a proof of this theorem until Chapter 5, though we shall use the assertions freely in the remainder of this chapter.
Teichmiiller's theorem. (Theorem 5.15) The Fricke space Fg is a domain in R 6g-6 and homeomorphic to R 6g-6.
'.{1e,rr1rn1ur reql€r 1nq 'o3e aurrl 3uo1e pelrecuof, sehruaJoaql Euro,o11o; eq1 're,roarohtr'e-6etlJolasqnse sl tdr ecedse4crrgaql'flsnoue.rd pa1e1ssy '.{rlaruoa3crloqred,tq Sursn ,,lq 6g o1 saleurproo) Jo ad.{1raqloue acnpor}ur a,r. 'uotlces slt{l uI 'saceJrnsJo slepotu uelsqcnd Sursn ,{q 'eceds ueeprpng tg lasqns l€uorsueurp-(S-0g) learJo (eceds e{clq aq1 parueu) (Z ?) f snua3 ;o tg aceds rellnuqtlal aql peluasardar am,'6 reldeqS u1
In Chapter 2, we represented the Teichmiiller space T g of genus g (~ 2) as a subset F g (named the Fricke space) ofreal (6g-6)-dimensional Euclidean space, by using Fuchsian models of surfaces. In this section, we introduce another type of coordinates to T g by using hyperbolic geometry. As stated previously, the Fricke space F g is a subset of R 6g- 6 • Moreover, the following theorem was conceived a long time ago, but rather intuitively. * *
sa +B ur P r o o cu a sla r N{ a q r u a J' z' 8
3.2. Fenchel-Nielsen Coordinates '?'8'ttJ
Fig. 3.4. 3.2. Fenchel-Nielsen Coordinates
59
sat"urProoc uaslarNlaqruad'z'8
60 60
3. 3. Hyperbolic Hyperbolic Geometry Geometry and and Fenchel-Nielsen Fenchel-NielsenCoordinates Coordinates
grve a precise precise definition Now,. these coordinates, and verify verify that that they they Now,. we give definition of of these give a system of global coordinates on T To. g• point [R, For this purpose, first E] of first fix a point of T ?r. mutually disjoint disjoint 4 of mutually g • A set £[.R,.D] geodesics on R simple closed closed geodesics .R is termed maximal matirnal if if there is no set £' 4' which properly. We call a maximal maximal set £.C = {Lj mutually disjoint disjoint includes £4 properly. {fi}j!,If=l of mutually geodesics on R simple closed syslem of closed geodesics rt a system of decomposing decomposing curves, curaes, and the family family pants of all connected components of of R -- Uf=lLj the pants p consisting of the UltLi P = {Pd~l {PxW' decomposition of R corresponding corresponding to £-. decompositionof L.
Example. Emmple. When When 9g = 2, there are the two kinds of pants decompositions shown in Fig. 3.5. 3.5.
Fig. F i g . 33.5. .5. system of decomposing decomposing an arbitrary arbitrary system Proposition 3.6. Let £If=l bebe an Proposition L = {Lj {li}l=, genas 9C (~ (>-2), letPP = {Pkl~l 2), and let curves curaes on a closed closed Riemann surface R of genus Riemann surface lPxlf=t
be pants decomposition and N satisfy satisfy decomposition of of R corresponding concsponding to £-. Then M and be the lhe pants t,. Then N ==3 3g g - -3 3
and a n d M ==2 2g g - -2 .2.
Proof. Cut of connected element Ly1 of £-. n1 be the number of r? along an elementL L. Let n1 Cut R genera components be the sum of genera of all connected components connected components components of R .R-- L .t1, 1, and gl 91 of R -- L we have have tr1. 1 . Then we
gl 9 r-- nn1r ==( (g g - -1 )1)- 1- . 1.
Clearly, components of R ,R-- L -t1 Clearly, the number of boundary components 1 is two. Moreover, we can whenever we we add a cut along along a new can see see inductively that, whenever Moreover, we element increasesby two, and the components increases element of £-, 4, the number of boundary components connected sum of genera genera of all connected connected components components minus the number of connected we have components by one. one. Hence, Hence, we have components decreases decrea^ses _ _2N 2 N and gM = = ((gg _- 11)) _- NN, , 3M a n d 0 -_ M =
I9
u3,{'z't seleuProoc uaslarN-Iaqf,
3.2. Fenchel-Nielsen Coordina.tes
61
o
which imply the assertion.
'uorlrasse aql ,(1dun qcqaa
suorlcur\{ q1Eua1 crsapoaD 'Z'Z't
3.2.2. Geodesic Length Functions Fix a point [R, 17] of Tg , and a system £ = {L j }f=l of decomposing curves on R. For every t in the Fricke space F g , we denote by [Rt,17t ] the point in T g corresponding to t. Then, we can determine uniquely a system £t = {Lj (t)}f=,l of decomposing curves on Rto Namely, take a marking-preserving homeomorphism ft : R ---+ R t (cf. Theorem 1.4). For every Lj in £, let Lj(t) be the unique closed geodesic in the free homotopy class of the closed curve ft (Lj) on Rt. It is not difficult to show that Lj(t) is simple, and that Lj(t) and Ljl(t) are mutually disjoint when i :f; i'· Hence, £t {Lj(tnf=l is a system of decomposing curves on Rto Let r t be the Fuchsian model of R t represented by t. Note that Lj(t) is the projection of the axis of an element of rt which covers ft(L j ) for every i. Now, for every tin Fg and every i, we denote the hyperbolic length l(Lj(t)) of Lj(t) simply by lj(t). We consider lj(t) as a function on Fg (or equivalently, on T g ) and call it the geodesic length function for Lj. Then Proposition 3.3 implies the following lemma.
uo 'flluelerrrnbe.ro) 6g uo uorlcunJ € se (1)f7 raprsuoc eM'(ib fq fldrurs Ol7 p qfual cqoqrad{q eq} elouep eiu'f l(ra,repue td ur 3 itre,re ro;'aro11 ((l)!l)l 'f, fra,ra q (!1)tg sreloc qcq/rt ,J Jo luatuala u€ Jo slx€ eq1 ;o uotlcafo,rd aq1 sr (1)f7 leq? eloN'1fq paluesardarrgrJo lepow u"rsqcr\{ eqt aq tJ ta1 .rar uo salrnc Sursodruocap;o uralsfs e sr t--;f{11;t1\ = rj'eoue11 ',1 + | uaqar lurofsrp .r(11en1nur ere (7),17 pue (3)f7 l€rl? pue 'eldurrs sr (1)f7 ?€rll aorls ot llnclgrp tou '? uo (!7)r1 a^rne pasole arlt q ss€p fdolouroq eerJaql ur crsapoe3pesolc lI Jo enbrun aql eq (l)fZ f"t 'J ul !7 {ra,re rog '(y'1 uraroaq; 'Jc) tU A : tt 'tgr uo selrnf, Sutsodurooap ursrqdrouroauroq Eur,rrasard-Eur4retue alel tr(1arue11 I=J{(t) l?} = ,J urelsfs e ,tlanbrun aunurelap uec er$'t".II '? o1 Eurpuodserroc Jo t; ur "U] ,tq alouep e$'6,tr a*ds aqcrq4eqt ul t fra,ra rog '3. uo aqt lurod lt3' '6J selrnc Eursodurocepf" tlf{fZ} 7 ure1s.{se pue lo [g'g,] lurod e xld
=
serTdur ueqy t7 rc1uot1cun! 6'9uorlrsodord vtfuq ?*?po;fflttftTopH iU
Lemma 3.7. Every geodesic length function lj (t) is real-analytic on Fg •
'6d uo cr1fi1ouo1oa.r, st (l)h uo4cunt y76ua7nsapoa| fi.taag 'Z'g BuruxaT sralaruerBd Eullqar;'g'Z'g
3.2.3. Twisting Parameters alouep pu" '(e'I o1 fre11oro3 eql 'z'f4 leql II€lsU g" f7 Eul\eq d
Next, for every i, let Pj,l and Pj,2 be two pairs of pants in P having Lj as a boundary component. Here we allow the case where Pj,l = Pj,2' Recall that Pj,l and Pj,2 admit the reflection J l and J 2, respectively, by the Corollary to Theorem 3.5. Take a fixed point of h, on Lj for each Pj,k (k = 1,2), and denote it by Cj,k. Fix also an orientation on Lj (see Fig. 3.6). As before, let [R t , 17t ] be the point of Tg corresponding to t for every t in Fg • For every t and i, let Pj, 1 (t) and Pj ,2 (t) be the connected components of Rt Uf=,lLj(t) (which are pants of Rt) corresponding to Pj,l and Pj,2, respectively. Recall that each Cj,k (k = 1,2) is the end point on Lj of the geodesic Dj,k joining Lj and another boundary component, say Lj,k' in Pj,k' Let Lj,k(t) be the boundary component of Pj,k(t) corresponding to Lj,k' Denote by Dj,k(t) the geodesic joining Lj(t) and Lj,k(t) in Pj,k(t) with minimal length, and by Cj,k(t) the point of Dj,k(t) on Lj(t). Then each Cj,k(t) (k = 1,2) is a fixed point of the reflection of Pj,k(t). Let 1j(t) be the oriented arc on Lj(t) from Cj,l(t) to Cj,2(t). Since Lj(t) has the natural orientation determined from that of L j , we can define the signed hyperbolic length Tj(t) of 1j(t) (so that Tj(t) is positive or negative according to whether the orientation of 1j(t) is compatible with that of Lj(t) or not). Set
1ag'(1ou rc (7)17 Jo 1eql qlrar alqrleduroc s1 (3)fuJo uorteluerro eql raqleqa ol Eurproace a.,rrleEauro a,rrlrsod sg (3).r.r.1eq1 os) (l)l,l,l" (l)f, qt3n"t cqoqred,tq pau3rs eql eusap ust e^l 'lI lo l"ql uro+ peururalep uorleluarro l€rnl"u eql seq (l)fZ acurg'(3)z'fc o1 (3)t'fa urory (3)f7 uo f,trepatuerro eqt aq (t)fap1 .(ic'ta Jo uorlcagar aqlgo lurod pexss sl (U'I = t) (1)t'!c qcee uaql'(l)f7 uo Ot't1;o lurod aq1 (ic'ft fq pue '{t3ua1 prurunu qtyn (1)r'12,ur (7)t'!7 pue (1)f7 Eururof crsapoa3 aq1 (1)r'fc, i(q alouaq 't'17 ol Eurpuodsarro) (i't'!d;o luauodruoc frepunoq eq1 eq (7)t'!7 p"l'1'14 u1 tr'!7 fes 'luauoduroc f.repunoq raqloue pue !7 Sururof r'f6. crsepoe3 aq1 yo f7 uo lurod pua a{} sl (Z,I - q) t'fc qcee }€ql IIeceU 'f1a,rr1cadsa.r 'z'!4 pue r'14 o1 Surpuodsa.uo?(tU;o slued a.re qcrq,u,)(l)fZt=Jn - ? Jo sluauoduroc palcauuo? aql aq (iz'fa pue (1)t'f4' 1a1'f, pue l fra,re rog ''d.rl 'a.ro;aq ';;o sy I {rara.rog 1o1 Eurpuodserroc lurod aql aq l,3'rA) 1a1 '(g'g'3t.{ aas) f7 uo uol}sluerro us osls t1 "g'r'fa,tq = {) r't, qcea rc1 !7 uo Y Jo lurod paxg " e{"I 'g'g ureroaqJ ^q 'flarrrlcadse.r 'zf pue r/ uorlcager aql lrurpe z'!4 pue t'14 - r'.r2'a.raq,r,r es€l aql ,&roll"e^r areH'lueuoduroc drepunoq e ul slued;o s.rred oiu.1aq z'!4 pue r'fd 1a1'/ fra,re roy 'lxaN
Tj (t) Bj(t) = 211" lj(t)' (t)!t-"
.l.r!t!"^ -= (7)!6
62 62
3. Hyperbolic 3. Hyperbolic Geometry and Fenchel-Nielsen Fenchel-Nielsen Coordinates
Dt,z
D;,r
(P.;,1: Pi,z)
Fig. F i g . 3.6. 3.6.
Then Bj(t) Bj(t) the twisting parameler parameter with 0i(f) is well-defined well-defined modulo 271". hr. We call caII01(t) respect respect to Lj. L1. Lemma j, exp(iBj(t)) Lemma 3.8. For every eueryj, exp(id1(t)) is well-defined well-definedand and real-analytic real-analylicon on F Fn. g• Proof j. For every Proof. Fix Ftx 1. every tf in F .Fr, Fuchsian group represented represented by t. fi t be the Fuchsian g , let r Take which covers Lj(t), and denote it by 'Yj(t). Take an element element of r covers tr;(l), denote each 4t 71(t). Next, for each 1,2),Iet be the element of which k&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&(= (= 1,2), let 'Yj,k(t) be the element of which covers Lj,k(t) and satisfies that covers L1,x(t) and satisfes that [ t 7i,x(t) geodesicDj,k(t), Di,n(t), connecting connecting Aj(t) the geodesic ,41(f) and and Aj,k(t) A1,*Q) with the minimal length, length, is is projected onto Dj,k(t), Di,*(t), where where,4i(t) and Aj,k(t) A1,r(t) are are the axes axesof 'Yj projected Aj (t) and (t) and and 'Yj,k(t), 7i(l) T,x(t), (see Fig. respectively respectively(see Fig. 3.7). 3.7). points of 'Yj(t), we may assume Here, we assumethat the fixed fixed points Here, and 'Yj,2(t) move 7i(t), 'Yj,l(t), ti,t(t), and 7i,2(t) move • Hence, real-analytically on F when we take a conjugation of r by an element Hence, when we take aconjugation ,Q an element g t d. \(t) > j ( r ) .. zz((Aj(t) o f Aut(H) s o that g o e sto points of A u t ( H ) so t h a t 'Yj(t) t o 'Yj(t)(z) 1 ) , the t h e fixed f i x e d points ) 1), 7 1 ( t ) goes f u ( t ) ( z ) = . \Aj(t) corresponding to 'Yj,k(t) move also of 'Yj,k(t) also real-analytically on F Fo each k. #. g for each 7i,1(t) move fu,*(t) corresponding projection of the end c1,1(t) is the projection Now, Cj,k(t) end point Cj,k(t) Zi,r(t) of "t Dj,k(t) Now, to Aj(t). A1Q). fu,x(t) Ifence, if we show Hence, if we show that Cj,k(t) 6i,x(t) moves moves real-analytically on F Fr, assertionfollows follows g , the assertion by the definition definition of Tj(t) 11(t) and and Lemma 3.7. 3.7. p1 and P2 p2 be show this, fix k, /c, and let PI To show be the fixed points of 'Yj,k(t). Set ii,i(l). Set (v* > 0). c13(t) = iYk iv* (Yk 0). Since Since Cj,k(t)
r
+ (PI - P2) = + P2 ) , =(PI '7* (ry)' (o'to')' 2 2' 2
Yk
we see we seereal-analyticity real-analyticity of Cj,k(t). ci,r(l).
2
2
o
';c) ursrqd.rouroe$lpe sl g_ogtl x ,_rg(ag)
-
.([tqz] pue ,h-yl 1.rad1o44 6l : 'dgenlcy 'IrDur?A 4i
----+
(R+?g-3
X
R 3g- 3 is a diffeomorphism (cf. Abikoff
.Uo{lqy
[A-l), and Wolpert [251]). Remark. Actually, .p : F g
'(sa,r.rncEursodurocep;o uralsfs eql qtyr\ 'to) d uotltsodtuocap slued aql 7 rl?-rrA paler)osse t;;o selouxprooxueslery-Ieq)uef ^seler;rprooc asaql II€r elA
We call these coordinates.p Fenchel-Nielsen coordinates ofTg associated with the pants decomposition P (or, with the system I:- of decomposing curves).
.6a uo uI 'e-oellX nuaq puD'6,I uo sa?Durproo? 7oqo16 lo ue7sfrro saat64i'.to7nc4.r,od 'OI'8 tuaroaql 6g to rusttld;oruoeuoq e s? 4 6utddnu, s?ttJ e-re(+U) oTuo
Theorem 3.10. This mapping .p is a homeomorphism of F g onto (R+)3 g-3 xR3g- 3 . In particular, .p gives a system of global coordinates on F g , and hence on T g . 'le,roelotr41 'uaroaql 3uralo1o; eq1 erro.rd,r.ou ilBqs aru
Moreover, we shall now prove the following theorem.
'uf uo ctTfipuo-pat st
is real-analytic on F g . ( ( l ) " - u " a ' . . . , ( t ) r0 , ( t ) e - u e T. . . , ( t ) r t ) = ( t )r t
ueqJ '! tuaaa ut 6g uo (7)lg nTatuo.tod 6ut7stm7aqyto qcun"tqsnonurluo? panlna-e16utsD ottr '6'g eurtrrarl
Lemma 3.9. Fix a single-valued continuous branch of the twisting parameter OJ(t) on F g for every j. Then
:3ur,r.lo11o; eql e^€r{ e,lr snqtr '(uraroaql ftuo.rpouour eql) t/ uo r{ou€rq snonurluoc panp,r,-e13urs € s€rl (3){6 frarra',{13urp.roccy'uleurop paltauuof, .{ldurrs (pueq raqlo aqt uO e s-rtJ l"q1 sale?s(91'g ura.roaql) ura.roaqls(rellnuqclatr
Here we set R+ {x E R \ x > O} and Sl {z E C \ \z\ l}. On the other hand, Teichmiiller's theorem (Theorem 5.15) states that Fg is a simply connected domain. Accordingly, every OJ(t) has a single-valued continuous branch on Fg (the monodromy theorem). Thus we have the following:
'{f = Itl I C > t} = rS pue tO < t lu>
t} - +lI 13seA\ereg
=
=
=
' (((r)t-rtOl)dxa'. . .' ((1)t6r)dxa'(t)e-aq . .'' (t)rt) = (t)'t
tJt(t) = (£l(t), .. ·£3g_3(t),exp(iB 1 (t)), ... ,exp(i03g _ 3(t))).
:e-re(rS) x e-oe(+tI) -
6tr :
e Paugepeleq ax\ '.re;o5 4i Surddeu cr1.,{1eue-1ear
So far, we have defined a real-analytic mapping tJt : F g
----+
(R+)3 g-3
X
(51 )3 g-3;
3.2.4. Fenchel-Nielsen Coordinates uaslalN-IaqcuoJ'v'z'
salBurPlooc
I
't'8'ttd
Fig. 3.7. Q|'r,
(t)z''g
(t1z''t
U7t'rt
63
sal"urprooc uaslarN-leqf,uaJ'z't
3.2. Fenchel-Nielsen Coordinates
t9
64 64
Ilyperbolic Geometry 3.3. Hyperbolic Geometry and and Fenchel-Nielsen Fenchel-Nielsen Coordinates Coordinates
Prool. First, First, we we show show that thatitrr injective. Suppose Proof ~ isis injective. ~(t2) for Supposethat that ~(td fr(tr) ==rir(t) for some some t1 and t2 in Fo. Let be the Ra, the Riemann Riemann surface surface represented t 1 and t 2 in Fg- Let Rt. be representedby by tit; (with (with the the natural marking), marking), and and Pi pa^ntsdecomposition natural b" the th" pants decomposition of of R A == {Pk(i)}~~;;3 {P}(i)};s=;" be &,t • correspondingtoP, for each eachif (= (= 1,2). 1,2).BV corresponding to P, for By Theorem Theorem 3.5 3.5 and and the the assumption, assumption, there is is aa conformal conformal mapping, mapping, say g&, of say gk, of Pk(l) P7,(1)onto there onto Pk(2) P1(2) which which respects respectsthe the boundary correspondence correspondencefor for every every k. /c.Moreover, proof of boundary Moreover,the the proof of Theorem rheorem 3.5 implies B.bimplies that that dsl== (gk)*(ds~). (si4.@sl). dsi = 1,2) Here,ds; dsl (i (f = 1,2) is is the the hyperbolic hyperbolicmetric metric on on Rt pa.rticular,every Here, •. In particular, every gk is aa &,.In 9r is hyperbolic isometry isometry of of the the closure closureof of Pk(l) Pi(l) onto hyperbolic onto the the closure closureof of Pk(2). Pp(2). Since Since |j(tr) = ?i(tr),
j = 1,...,39- 3,
g1 can all gk glued together can be be glued together into into aa marking-preserving all ma^rking-preservinghomeomorphism, homeomorphism, say say h, h, of R rt1, onto R -R1r. is holomorphic on Since hlr is of on R r?1, except for for aa finite finite number of of t2 . Since t1 except t1 onto analytic curves, curves, so so is is hh on on the entire entire Rt .R1, analytic by Painleve's theorem. Hence, h is aa Painlev6's theorem. Hence, h is 1 biholo-morphicmapping of R -R1,, which implies implies that t1 biholomorphic t1 = t2. lz. Thus we we have proved have proved t1 , which P is is injective. injective. that ~ we show show that ~ f is is surjective. surjective. For purpose, we Next, we For this purpose, we begin begin with fixing aa g -3 x R 3 g-3 arbitrarily. For every .. . ,a3g-3,0'1,'" (4a1, (R+;sc-a point (a1,'" R3s-3 arbitra.rily.For every ,eas-s,e1t. . . ,0'3g-3) ,ass-z) of (R+)3 P3 decomposition P of R, denote denote by {L P (C .C) the boundary k,j}1=1 (C,C) k in the pants decomposition {Il,i}i=, components of P Pp. there is components 1.5, there is aa unique unique pair of pants, pants, say say P~, Pto,such such that $1.5, k . From § lengths of the boundary components the triple of the hyperbolic lengths components of P~ Pf is is equal equal pil pi,2 given triple {ak,j}1=1' to the given Set pi = {pk}~~~3. As before, let Pj,l and Pj,2 be and be {ou,i}i=r.SetPt= {P;}ir=lt.As before, let pj,xbe elements of P neighboring j, neighboring each each other along the elements Lj for every j, and let PIl be along .Li every element of P/ correspondingto Pj,l Pip (f (l = 1,2). the element pi corresponding be the point on I,2). Let cj,l Ci,2be oii the th" j Pjp corresponding correspondingto ci,t for every boundary of Pj,l to Cj,l and f. every and l.Now, by gluing Pj,1 suitablV along Pj,l and P/,2 Pj,2 suitably L j for along curves curves corresponding corresponding to ,Li every j, we obtain a Riemann surface, surface, say every j, we R . We need to choose a suitable say r?'. need choose ' gluing (and aa-suitable suitable marking of .R') R ' ) so R ' corresponds so that that R/ corresponds to a point tt,' of F u c htthat h a t f~(t') ( t / ) iiss e i v e n((a1' q u a ltto o tthe he g a 1 ,... . . . ,,aa3g-3, 1 s _ B 0'1,' , d l , . .. . . , ,a0'3g-3)' ss_a).T Fg, ssuch equal given This h i s ccan an be achieved gluing by Pr{,1 and Pj,2so achieved Pj,l Pj,2 so that that the twisting twisting parameter becomes becomes the given ai 0' j for every j. j. We shall explain this procedure procedure more rigorously by using Fuchsian Fuchsian models. models. pi,z, In the proof, rest of this we consider In of consider only only the case case where where Pj,l Pil t'"I Pj,2, for the other case case can be considered considered similarly. Fix Fix j,j, and let 4,r rj,k be a Fuchsian Fuchsian model of of the Nielsen Nielsen extension extension Pj,k of fj,t Pj,k P|,r "t for each each &. k. Here we assume assume that that every 4.,r rj,k acts on the upper half-ptanl half-plane fH,, aird and that that the transformation transformation
=
AZ, l,(Z) (z)=\2 ,
=
)A- e xexpaj p a i ) L> 1
belongs li,z, and, and 7 covers belongs to to both both 4,r r j ,l and rj,2, covers the the boundary boundary component, say Lj,k' of of say Ll1r, Pj,r Pj,k corresponding to.Li to Lj for each each & k (& (k == 1,2). We We also assume assume that that the the nilural natural orientation orientation of of the the axis axis ,4 A == {z {z €E Hl, HI Z -= 'iu,y iy, y )> 0} O} of of 7, corresponds corresponds to to the the prescribed prescribed orientation orientation of of .ti, Lj, and and that that the the point point ii €E /lH lies lies over cj,k with with respect respect over cl,x to to li,* Ij ,k for for each each /c. k.
99
sal"urProoc uaslarN-Iaqf,uad'z't
3.2. Fenchel-Nielsen Coordinates
65
luauale eql raplsuoopue'(r,6f lofo)dxa = fp 1eg
Set di = exp(aiG:i/27r), and consider the element 0 < lp
'ztp - (z)g
of Aut(H). Identify every z on the axis A of'Y considered as an element of rj ,2 with b(z) on the axis A of'Y considered as an element of ri,l' (See Fig. 3.8.) ('g'g'q.{ aag) 't'1Jo tuetuelerrc se pareprsuoo,LJoy srxe aq} uo (")g qft^ z'!tr p lueutueleue se pereprsuoc,LJo y srx€ eql uo z f.tete,tg11uap1'(n)WV lo |;e
'nJ
Fig. 3.8.
'8'8'EtJ
'eroJeq "'fa r'{" 3urn13 * pue l€tll q?ns ,U oluo A p rt tusqd.rouroauoqe xrJ fq paurclqoec"Jrnsuueuerg eql sq ,A 1eI"tr;o dlrrrrlcaf.rns;oyoord er{l Jod ('r 'dtq3 '[tz-f] tl{se4 acu€tsulroJeas'sruaroaql uorl€urquo) .rog'(saaeg.rns om1Surlaauuor.rog)uuoeql uorlDurquocs(uNelNse ulrou{ flpcrsselc q slqtr) '!/A Jo uorsuelxeueslarNeql Jo Iapou u€rsqcr\{ e sr I'lJr {q paleraueEdnorSuersqf,ndaq1'sprornraqlo uI'{ rl"€a roJ ,-gz'!J9, l ' pue ! , tt'!4 uo '?"p ,It!^ {.raaaEuole'}'I$ ul s (a,unaf.repunoqEurureura.r lueprcuror r'la p uorsuelxe uaslarN aqlJo uorlrnrlsuor eql ur pasnse^rqf,rq^\'ureuropEurr elq"lrns e 3urqce11e fq lnt urorJpeurelqoec"Jrnsuusuarg eql ''e'l) fr14ureurop ?ql uorsuelxeueslerNeql uo f,rrlerucqoqred,(q"ql'(H)?nV 3 9 acurg 3ur11nsar Jo 'fo r'fa uorJ fp3o1 olnpou ot lenba sr z'!p oI {fua1 uor}elsusrlarlt }erll qcns t'l,l z'!4 pue t'fa p 3urn13e e^eqe^{ueqJ to uorlecgrluapleql ,(q) 1z'!,7pue
Then we have a gluing of Pj,l and Pj,2 (by the identification of Lj,l and Lj,2) such that the translation length from Cj,l to cj,2 is equal to log di modulo ai' Since b E A ut( H), the hyperbolic metric on the Nielsen extension of the resulting domain Wi (i.e., the Riemann surface obtained from Wi by attaching a suitable ring domain, which was used in the construction of the Nielsen extension of P;,k in §1.4, along every remaining boundary curve) is coincident with dS~/,, on Pj,k 1,
for each k. In other words, the Fuchsian group generated by ri,l and bri,2b-1 is a Fuchsian model of the Nielsen extension of Wi' (This is classically known as Klein's combination theorem (for connecting two surfaces). For combination theorems, see for instance Maskit [A-71], Chap. 7.) For the proof of surjectivity of .j" let R' be the Riemann surface obtained by gluing Pj,l and Pj,2 as before. Fix a homeomorphism h of R onto R' such that 'Z-6?,'...'I = {
"la =(qa)rl
h(Pk)=P£,
k=1,···,2g-2.
66 66
3. 3. Hyperbolic Geometry Geometry and and Fenchel-Nielsen Fenchel-Nielsen Coordinates Coordinates
point ofT Then Then [R',h.(E)] determinesaa point be the point of of To.Let l'be the corresponding correspondingpoint g • Let t/ [rR',h-(t)] determines preceding .Fo. • F From the preceding construction, construction, it is is clear clear that g
=
=
, " ' ,3g l i ( t ' ) = aj, a t , ji = I1,··· fj(t') , 3 9-- 33,, and that and ).t
0 1 ( t ' 1 : ^ : I " e d 1 p o 1 ) ( m o d2 r ) , uj
j = t , . . ' , 3 9- 3 .
preseni, we we cannot (Note that, at present, cannot say say that OJ(t/) 01(t') = aj, ai, because because the choice choice of 0i is is not unique.) unique.) branch of OJ ------R' Hence,letting 7j Ti; : R' ---+ R'be the Dehn Dehnlwist Hence, be the twist with respect respectto Lj, trl , the the curve curve on.R'corresponding we can on R' corresponding to to.ti, Lj, we can find find integers integersn1, ... ,n3g-3 such that ftrt.'. such ,fl3s-3
[R :,(T i 'o...orti :i" o h) .( t) ] corresponds correspondsto aa point, say say t", ttt, which satisfies satisfies , i r 1 t ,= , 1( (a1' o r , .... . . , ,a3g-3, a s s _ s ,a1, o t r... . . . ,a3g-3). ,osc_s). !it(t") we have have shown that that j, fr is is surjective. Thus we Here, the Dehn twist 7j with Here, with respect respect to to.Lj Lj is, is, by definition, aa homeomorphism homeomorphism Q of R' onto R' ,? corresponding to the following following surgery: cut R' along along Lj L! and a.ndreglue rotation of 211" (see Fig. 3.9). 2zr (see after aa rotation 3.9). Note that applying T Ti, we can can make make the j , we value of OJ value di increase increase by 211" 2r while every every other OJ j) remains unchanged. 0i (i/ remains unchanged. U'+j)
t
o0 o twist F Fig. i g . 33.9. .9.
g-3 xX R3r-3 -------+ we have have proved that fr j, : F (R+)3 R 3g- 3 is bijective. By Now, we Fo (R+)sr-a g ---+ j, is also also continuous. continuous. On the other hand, Teichmiiller's theorem Lemma 3.9, 3.9, tit 6 6 (Theorem 5.15) homeomorphic to R g- • Hence Hence the following states that F 5.15) states Fo R6c-0. g is homeomorphic theorem, Brouwer's theorem on invariance theorem, invariance of of domains, domains, implies that thatV!it is actually n a homeomorphism. 0 homeomorphism.
aldurrs (anbrun) aql aq lV m 'raqtrr\{ 'IV tq tr alouap pue '17 s])asre]ur qcrq^r fr14ur crsapoaEpasolc aldurs e xrg 'z'f4, n lI nt'!4 - lr14 ps'f fre,ra rog as"r eq} ^{olls e,lr'ure3y) 'luauoduroc,trepunoq e se lI Eur,teq ('7"{d = I'fd teqf '7 o1 Surpuodserroc 'J > lI {rarra rog dJo slueuele eq1 a'f4, pue I'ld' fq elouep U Jo uorlrsodurocapslued aql aq d +aI'U uo selrnc Sursodurocapgo 7 uelsds e pue (6 f' snua3 ersJrns uu€ualu e xg 'uorlces snor,rerd eql q sY l) Ur Jo '21'9 uorlrs 'uorl€zrJlerue.red;o pur{ raqloue arrrS leqs aira. -odo.r4 ur 'ra1e1 'suorlrunJ {lEua1 crsapoa3o^\} qll^r sa}eurproof,ueslerN-leqrueg paxg q relaurered 3ur1sral1qcea Surcelde.rfq '6g go slurod aleredas suoll?unJ 'a.re11 {}8ua1 esor{^\ scrsapoa3 pesolc aldurrs 6 - d6 Jo }es e lcn.rlsuoc aa,r '(FOt] IIBAToSpue eleddag ';c) elqrssodurr q slql '.rala,no11'oJuo selsurprooc pqo13 a,rrEsuorlcuny qfual asoql( srrsapoa3 posolt aldurs g - 69 Jo les € 6?ilrererll ;t elqsrrsap lsoru eq plnoa lI 'areJrns eql eururalep sqfual crloqradfq asoq^\ k ?) 0 snuaS;o af,eJrnsuuetuarg pasol, e uo scrsapoe3pesop eldurrs;o 1ese Surpug;o uralqo.rdeql replsuor e,n 'uotlaas qql uI
In this section, we consider the problem of finding a set of simple closed geodesics on a closed Riemann surface of genus 9 (~ 2) whose hyperbolic lengths determine the surface. It would be most desirable if there was a set of 6g - 6 simple closed geodesics whose length functions give global coordinates on Tg- However, this is impossible (cf. Seppala and Sorvali [194]). Here, we construct a set of 9g - 9 simple closed geodesics whose length functions separate points of T g , by replacing each twisting parameter in fixed Fenchel-Nielsen coordinates with two geodesic length functions. Later, in Proposition 6.17, we shall give another kind of parametrization. As in the previous section, fix a Riemann surface R of genus 9 (~ 2) and a system .c of decomposing curves on R. Let P be the pants decomposition of R corresponding to .c. For every Lj E .c, denote by Pj,l and Pj,2 the elements of P having Lj as a boundary component. (Again, we allow the case that Pj,l = Pj,2.) For every j, set Wj = Pj ,l U L j U P j ,2. Fix a simple closed geodesic in Wj which intersects L j , and denote it by ,1J. Further, let ,1} be the (unique) simple
3.3. Fricke-Klein Embedding tu rp p e q tu g u la lx- a { r l4 4 ' g ' g
e. ')
corresponds to a continuous curve in T g • The variation of a Riemann surface represented by such a curve is called a Fenchel-Nielsen deformation. We shall investigate the deformation of this type in Chapter 8 by using quasiconformal mappings. We shall also give a direct proof of continuity of ~-1 with respect to
o1 lcadsar {1a r_4;o flmurluor;o;oo.rd }cerrp € arlr3 osle lleqs a1ys3urddeu IeuroJuocrsenb Sursn fq g reldeq3 ur adfl $rll Jo uorleruroJep eq1 ele3rlsaaut Upqs a1yuotTotu.totap u?slerN-Ieycuadre pelpr sr elrnf, " qf,ns ,tq pelueselder ac€Jrns uu"tuerg e Jo uorlerJel eql 'tJ ur eAJnf,snonulluot e o1 spuodsauoc ( { U > I | ( € - 6 s o t. . . r r * l n , J ' t - ! n , . . . , I r 2 , 8 - 6 t D. ,. . , I p ) } ) r _ 4
ljf
- -1
({(a1,··· ,a3g-3,0'1,··· ,O'j-1,e,0'i+1,··· ,0'3g-3) leER})
eqt yo fg e3eurre.rdeql '0I'g ueroeqtr dg 'sralaure.red3ur1sr,ra1 e u oe { € l p u e ' n - r s ? I x e - n e ( + u ) ; o ( e - E e o ' . . . ' r D ' s - 6 8 D' . ' . ' 1 o ) l u r o d e x r g (}j
Fix a point (a1, ... , a3g-3, 0'1, ... , 0'3g-3) of (R+)3 g-3 x R 3g- 3 , and take one of the twisting parameters. By Theorem 3.10, the preimage
'uollJasse aql a^eq arrr "{rerlrq.re ! sr f erurg'IO uo snonurluocsl r-d pue'O;o lurod rorJelur ue sr f '.re1nct1.red uI'IO qlr^r luaprf,uroceq plnoqs d dq g Jo g lul rorrelur eqf Jo (g' 1u1)d e3eur 'pueq retllo eq} uO -,lI aq1 'acue11'pelrauuoc s\ u^roqs eq u"? ll ler{} fI '/s' Jo uleluop rolrelxe eql pue ureruop rorJalur eql 'fla^llredsar 'zO pue IO {q alouaq 'slueuoduroc pelcauuoc o,r.l s€q ,S - .rll (uraloeql s(u€pJof leuorsueurp-, "ql fq 'acue11 'rll ul 'fle.rrrlcedser'ereqds pcrSolodol e pu€ IIeq pesol) 1ecr3o1odo1 e erc (gg)dt - rS pue,g're1ncr1redu1 '(g)dt = ,g oluo €r go ursrqdrouroeuoq € s.r g uo o1yo uorlculsar aq1 'lceduot sr Br aculs 'r reluar qll/rl - o pue'f1t.re.r1tqre pesop e f1tre.r1tq.re xg'(f)r-d las 5' ileq '[ZI-y] sreg 'y3) '(qc1aqs y) too.r4 O q n lurod e xIJ ('[98-y] ueu^\eN pue
Proof (A sketch). (Cf. Bers [A-12], and Newman [A-85].) Fix a point y in D arbitrarily, and set x = ep-1(y). Fix arbitrarily a closed ball B with center x. Since B is compact, the restriction of ep on B is a homeomorphism of B onto B' ep( B). In particular, B' and S' ep( BB) are a topological closed ball and a topological sphere, respectively, in R n . Hence, by the n-dimensional Jordan's theorem, R n - S' has two connected components. Denote by D 1 and D 2 , respectively, the interior domain and the exterior domain of S'. On the other hand, it can be shown that R n - B' is connected. Hence, the image ep(Int B) of the interior Int B of B by ep should be coincident with D 1 . In particular, y is an interior point of D, and ep -1 is continuous on D 1 . Since y is 0 arbitrary, we have the assertion.
=
=
'o oluo 'utotuop o s.t ("g)dt ueqJ ' iy olu! uE O ;g to tustrliltoutoeuoU o st d) puo 'onl uDlI ssq lou ta,a\ut. uo to uo4catut snonur?uo?p eg uE {_ ull : 6 7a7 eq u pI (sureurop Jo acuBrJBlur uo uraroaql s6rar*no.rg) 'tt'B uraroatlJ
Theorem 3.11. (Brouwer's theorem on invariance of domains) Let n be an integer not less than two. Let ep : R n ---+ R n be a continuous injection of R n into R n . Then D = ep(Rn ) is a domain, and ep is a homeomorphism of Rn onto D. turppaqurg uralx-a{f,rrJ't't
3.3. Fricke-Klein Embedding
67
L9
68 68
3. Coordinates 3. Hyperbolic HyperbolicGeometry Geometryand and Fenchel-Nielsen Fenchel-Nielsen Coordinates
geodesicwhich is closed closed geodesic is freely freely homotopic to the simple simple curve curve obtained from L1J 4! (seeFig. by applying L j (see 3.10). applying the Dehn twist with respect respectto to,ti Fig.3.10).
(Pi.r: Pi,z)
Fig. F i g . 3.10. 3.10.
?0. For every every For Fc,let b" the corresponding correspondingpoint of T For every every t E e F t , L't] be g • For g , let [R [it1,&] geodesicon geodesicL on R, we closed geodesic closed we express express as as L(t) I(t) the corresponding corresponding closed closed geodesic R f(L(t)) the hyperbolic length of L(t). I(t). Set Set denote by l(L(t)) ft1, t , and denote
fj(t) = t(Lj(t)), f(Lj(t)), tuo_"+i(t) f 3g - 3+j (t) = t(al(t)), f(L1J(t)), ftao-a+i(t) f(L1}(t)) ti(t) 6g - 6+j(t) = t(Aj(t)) j, and set for every set every j,
I 1 t 1= ( r ( t ) , . . . , / g o - s ( r ) ) . We the following: following: Wehave havethe -s. Theorem inlo (R+)9 (n+;seg-9. mapping 1 L is it a o proper embedding embeddingof F Fo Theorem 3.12. 3.L2. The The mapping g into
(That is, preimage of any and the the preimage any onto the the image irnage l(F t(F),g ), and is, 1 I is a homeomorphism homeomorphism onto g-9 under compact (R+)ee-s L is compact.) compact.) sel in (R+)9 under 1 compactset To prove prove this theorem, we fix a point to ts of F Fs theorem, first we g arbitrarily, and write
3 c -33 . .Tr( = (( a1,'" ( R + ; a9 s-3 -t x R R 3go r , . . . ,a3g-3,lll,'" f r 1tot )o 1 € (R+)3 '£' -_ X . , e 3 s - J , e r t . . . ,ll3g-3 , o e g - s) )E t(s) Fix j, and for every s) of F every Ss E define a point t( Fix j, € R, define d g by --1
t ( s ) = f r - ' ((a1,··· o r , " ' ,a3g-3,lll,'" t(s)=1Jf ,asc-e). , a ! - r t o i + s ' o . i + r , " ' ,ll3g-3). , a 3 s - s , Q r t " ' ,llj_1,llj+S,llj+1,'"
Then we we have have the following Proposition.
alsq era acueg 'f1a,rr1cadse.r ',? pue og ol pue 0z spues pue '? slt<eeq? qll,r{ crloq.redfq e s rLoeL luetuele ,z uorltsoduror aql uaqf 'slurod paxg se'f1a^rrrleadse.r'0rn pue oz er.ie-q qcrrl^it,olrr1 raPro Jo {H)?nV Jo slueruala arldqla eql eq zl pue Il, }al 'pueq reqto aql uO
On the other hand, let /1 and /2 be the elliptic elements of Aut(H) of order two which have Zo and wo, respectively, as fixed points. Then the composition /2°/1 is a hyperbolic element with the axis L, and sends Zo and Zl to io and i', respectively. Hence we have '(,V'
(' ') +pw,z. (' ") pz,Z _pz,w ( I ") <
, m ) d| ( , m ' , z ) d ) ( , 7 ' , z ) A
'(,n',?)d - (n'z)d 'suorlrugapeql ,(g teql r"elc s! ll prr€
By the definitions, p(z, w) = p(Z', w'), and it is clear that .II'8'IIJ
Fig. 3.11. "I m om
Zo, respectively, with respect to Wo (in the sense of the hyperbolic geometry). (See Fig. 3.11, where we replace H by the unit disk and assume that Wo = 0.)
aunss€ puts{srp }run aql fq p aceldar era eraq^a,11.g.3rg aag) ('0 = or leql '(rtrlatuoa3 cqoq.radfq erll ,f1e,rr1cadse.l ,02 Jo asues eql W) orn o1 lcadsar qlral pue',2'z o1 crrlatutufs slutod aQ 0z pue '?',V Ie.I '0o1pu€ oz r{SnorqtSurssedg uo crsapoe3aqt aq I Ie.I'F f z ueqll. dlqenbeur aq? ilroqs ol seclgns 11'loo-t4
Proof. It suffices to show the inequality when z f. Zl. Let L be the geodesic on H passing through Zo and woo Let i', i, and i o be points symmetric to z, Zl, and
'tm=ffLpuo - z fi1uopuD spyoyfrp1onba ay1t.taaoa.to141 lt fi F 'fi4ao4ceilsat'(acuoTstpcqoqtadf,tl ayl o7 Tcadsa"t p puo m to puo F puo z to sTutod-aypptut?Ul ^tD om pup oz ?reqn 'splo1
=
=
holds, where Zo and Wo are the middle-points of z and Zl and of wand w' (with respect to the hyperbolic distance), respectively. Moreover, the equality holds if and only if z Zl and w w'.
\lln)
p(ZI,W')+p(Z,w) 2
(m'z)d * (,m',z)d
P( Zo,Wo ) ~
) (on'o116
Lemma 3.14. Let two mutually disjoint geodesics L 1 and L 2 in H be given. Then p(z, w) is strictly convex on {(z, w) E c 2 I z E L1, wE L 2 }. Equivalently, for every z, Zl E L 1 and every w, w' E L 2 , the inequality
f r T q o n b a u?tU l ' z I ) , 0 1 , ' t fnr . t a a a puo rI ) ,z'z fi,.taae.tot 'frpualoatnbg'{"1> m'r7 sr (m,z)d uat17 ) z I zC) (n'z)} uo &?auo?fi17cVr1s 'uaa$ aq .7I.g BurrrraT H q zI puo rI eusepoa| yu.to[sppQpnTnut onl prl 'ur.ro; SurmolloJ eqt ur pe?"ls sr urn+ ur qcrqaa 'd ecu"lsrp ?Jecurod eq1;o {1xa,ruoc Eursn fq pa,rr.rapaq ileqs uorlrsodo.rd srq;
p, which in turn is stated in the following form.
This proposition shall be derived by using convexity of the Poincare distance
'urnunutur sp sulnllo { t1cryn 7o s '.r,o1nc4,toil uI '(E o7 taulilout o so) g uo ..tailo..til puo to aqoa anbtun o fl ?r?Vl uauor fi17cg"r1s q (((s)l)jill = G)t uotTcun! aatTtsoil?ttJ .tT.e uog11sodo.r4
Proposition 3.13. The positive function f(s) = t'(.~J(t(s))) is strictly convex and proper on R (as a mapping to R). In particular, there is a unique value of s at which f attains its minimum.
3.3. Fricke-Klein Embedding
tutppaqurg u-ralx-a{rlrd't't
69
70 70
3. Hyperbolic Hyperbolic Geometry Geometry and and Fenchel-Nielsen Fenchel-Nielsen Coordinates Coordinates 3.
p(zo,2s)<< p(z', 2'). 2p(zo,wo) ws)==p(zo,zo) p(z',Z'). 2p(zs, Thus we we obtain obtain Thus
w') ++ p(z,w). p(z',w') p(z,w). 2p(zo,wo) 1< p(r', 2p(ro,*o)
tro Proof of Proposition 3.13. We consider the the case case where where P1,r Pj,l *:f:. Pi,, Pj ,2 and and ^4! £1J interinterProposition3.19.Weconsider Proofof similarly. L at two points. The other cases can be treated similarly. sects be treated cines can points. other The sects ,Lij at two Let l's Fa be be the the Fuchsian Fuchsian group group represented represented by by ts, to, and and 7i 'Yj be be an an element element of of l-e Fa Let projected to an point which is zs a which covers Lj(to). On the axis A of 'Yj , fix a point Zo which is projected to an which covers Li(to). On the axis,4;j of 1, fix point, say p, p, of of Li(t6) Lj (to) and al(to).Let £1J(to). Let 6l 6J be be the the element of of l-o Fo which which intersection point, ar'd Bi covers £1J(to) whose axis passes passes thiough through zs, Zo, and B j be be the the ax-is axis of of 6f 6J. .By By Al(til and whose covers the assumption, assumption, the projection projection of of the geodesic geodesic .II contained contained in in Bi B j and connecting the Zo to to zto z~ = = 6l 6J(zo) L j (to) at at some some point point gq other than than p. p. Let z1 Zl be (zo) should intersect Li(to) zs lift of of qbn q on 1, I, a.nd,4j and Aj be the lift lift of of Ii(ts) Lj(to) passing passing through z1 Zl (see (see Fig.3.12). Fig. 3.12). the lift
A;
Fig. F i g .3.12. 3.12.
let z(a)L z(a)r R",let any aa E€ R, and any on H I/ and geodesicL-t on For oriented geodesic point Zz on on an an oriented any point For any bY along positive direction the be the point on L obtained by translating z in the positive direction along L.Lby be the point on tr obtained by translating z in
Eurdderu € eleq elvrueql ', o1 Surpuodsa.r.rortgr uo sselc fdoloruoq ea+ eql ul t, crsapoaSanbrun oql Jo (t2)l 'S g {raaa rog '1 dq peluaserder ec€Jrns r{l3ue1crloqrad{q aql aq (d!)-l I }el uueutrrarlleq? eq ,A tel'6,4:l l r(rar'aJod '(6 {) f snue3Jo Ar er"Jrns pesolc € uo selrn? pasolcelduns sassel?,fdolouoq ae.r;II€ Jo Surlsrsuoc1asa{} g ,(q alouaq Jo 'srrlolloJsp pegrpour q t1r;o Surppequraue '1srrg UI'g rueroaql ur sp euo qcns '[OZ-V] nreueod pue qcequepn"T 'lq1€d 'acuelsur 'punoy 's;oord 'uolsrnrlf ul ro; eq ueo qcrqrrr 1p lsourp lpro all 'A{ o? enp sr qclq^a '(e tg aceds rallnurrlrrel eq} roJ f.repunoq ?) d snua3 3o (te"pt) InJasne Jo uorl?nJlsuoc aql Jo auqlno ue aar8 llsr{s a^\ 'uorlcas slq} uI
In this section, we shall give an outline of the construction of a useful (ideal) boundary for the Teichmiiller space Tg of genus 9 (~ 2), which is due to W. Thurston. We omit almost all proofs, which can be found, for instance, in Fathi, Laudenbach and Poenaru [A-29]. First, an embedding of F g such one as in Theorem 3.12 is modified as follows. Denote by S the set consisting of all free homotopy classes of simple closed curves on a closed surface R of genus 9 (~ 2). For every t E Fg , let Rt be the Riemann surface represented by t. For every C E S, let £.(t)(C) be the hyperbolic length £( Ct ) of the unique geodesic Ct in the free homotopy class on R t corresponding to C. Then we have a mapping
uollBrullredruoc s6uolsrnqJ .7.s
3.4. Thurston's Compactification
'gl't tueroeql uroq s^rolloJuorlresss eq1 'drc.r1rqre u_f aourg ! 'a(+tI) olur U Jo Surppaquraradord e sr lr acueg 'snonurluo) pue 'aarlcafur 'redo.rd sr zll otur ?I Jo
ofR into R 2 is proper, injective, and continuous. Hence it is a proper embedding of R into (R+)2. Since j is arbitrary, the assertion follows from Theorem 3.10. 0
(f(s),f(s
+ 211"))
("2 + s)rr'(s)rr) --+ s S 1---+
Since f(s) is strictly convex and proper on R by Proposition 3.13, the mapping Surdderuaqt'tI't
uorysodor4 fq 11 uo.redo.rdpue xeluor.{11cr.r1s sr (s)/ eeurg
'@z+s)/ = (((16 +s)i[v)t = (((")r)fv)a £(L1](t(s)))
= £(L1J(t(s + 211"))) = f(s + 211").
e^€q e1'r'f, .,(.ra,ra ry (7)17 Euole 1srm1uqeq eqt Surfldde dq (l)jy uo.ry paurelqo e^rn, eql o1 crdolouroq flaery q (l){V &urs'AI'6 uruoeqJ lo !oo.r,4
Proof of Theorem 3.12. Since L1J(t) is freely homotopic to the curve obtained from L1J(t) by applying the Dehn twist along Lj(t) for every j, we have
'uorlress€ eql aPnlcuo) a^{ 'eroJeq peuorsuetusB tr (g)- = (s)rf acurg '11 uo .rado.rdpue xaruoc ,{11cr,r1s st (g)u, ?eql ^\oqs o1 f,sea sr 1r 'arourJeqlrng '1urod auo fllcexa te (g)u/ urnturunu eq? su.rep€ ll 'relncrlred uI'l,V y ly uo rado.rdpu" xaluo? rf11cr.l1s sl (g'rn'r),I'g paxg,{ue roJ snql 'g yo drepunoq aql o1 spuel ol ro z raqlra s" oo+ (rr"'z)d Wql tceJ aql ruorJ uaes.{lsea eq u€f, s€ 'rado.rd sr g 'os1y 'xeluoc ,t11crr1s$ J teql aas uec ar\{'tl't eurural ,{g
By Lemma 3.14, we can see that F is strictly convex. Also, F is proper, as can be easily seen from the fact that p( z, w) - - +00 as either z or w tends to the boundary of H. Thus for any fixed S, F(z, w, s) is strictly convex and proper on Aj x Aj. In particular, it attains the minimum m( s) at exactly one point. Furthermore, it is easy to show that m( s) is strictly convex and proper on R. Since f( s) = m( s) as mensioned before, we conclude the assertion. 0 .
( r r v r l e l s ; 1 2 ) j e, . ) a q ( , v 1 s - 1 m , 2 ) d- ( q , ^ ' r ) , 4
F(z, w, s)
= p(z, w( -S)A) + P ( w, 6J(z)(S)oj(Aj)) .
lVuo (s'rn'z)g uorlcun; ? eugap alr 'acue11
Hence, we define a function F(z, w, s) on A j x Aj x R by setting 3ur11as,tq U x |V *
J 1
J
J
.
= ZEAj,WEAj inf {p(z,w)+p(w(s)A
,6J(z)(S)OO(A-))}.
o ,,y]i"iu't"' { ( t r r r f r l s ) 1 2 7 [ s , i v ( s 1 n* )@
= (r)! f(s)
we can see that
leql
aas ue? a/r{
2~ £(Lj(to))s = S,
'g = s((07)t7)7!3 " r hyperbolic length a. Since t( s) represents the marked surface obtained from the surface represented by to by twisting along L j (to) by hyperbolic length
,(q 0? fq palueserder e?eJrns {fua1 crloqladfq fq (01)f7 3uo1e3ur1sr,r,r1 eql ruo.t; peur€lqo er€Jrns pe{reur aq1 sluasardar (s)1 acurs 'la q13ua1cqoqraddq 71
3.4. Thurston's Compaetification
uorleryrpeduroC s.uolsrnqJ'?'t
TL
3. Hyperbolic Hyperbolic Geometry Geometry and and Fenchel-Nielsen Fenchel-Nielsen Coordinates Coordinates 3.
72 72
/.(1):S-R*
for every every tt eE Fs, F g , or or equivalently, equivalently, we we have have aa mapping mapping for
i. :Fg~(R+t Fo -'--* (R+)t [: of ,F'o F g into into (R+)s. (R+)s. Ilence Hence Theorem Theorem 3.12 3.12 implies implies the the following: following: of
Corollary. The mapping mapping I*: i. : Fo Fg -~ (R+)s (R+t is aa proper proper embedding. embedding. Corollary. Moreover, this this mapping mapping remains remains an embedding' embedding, even when we take the the quoMoreover, tient space space P(n+;s P(R+t == (R+)s/R+ (R+)S /R+ as the target space. space. In In fact, letting letting Pl* Pi. be tient composed mapping mapping of of /* i. with with the projection projection n7f of of (R+)t (R+)S into into the projective the composed space P(R+)s, P(R+)S, we have have the following theorem. space
Theorem 3.15. 3.15. (cf. [A-29], [A-29], Expos6 Expose 7) The The mapping Pi. : Fo Fg -~ P(R+)s P(R+t is IS mapping Pl, Theorem an ernbedding. embedding. an natural mapping of of 5S into into (F;s, (R+t, which is defined defined by Next, there is another natural of curves. curves. Here Here and in the remainder using the geometric intersection numbers of of this section, R+ = {x x~ O}. section, we set [T € R II e 2 0}. {o E f(o1,42) For any two a1 geometric intersection a2) of interseclion number i(al, o2 E o1 and a2 € S, the geometric intersection points a1 infimum of the number of intersection o2 is, by definition, the infimum a1 and a2 each j.j. In cla^ssof of aj ai for each of .L1 L 1 and tr2, L 2 , where ,Li L j moves homotopy class moves in the free homotopy every a o E f(o'o) a) = 0 for every particular, € S. 4lro, note note that i(a, i(oz,ar). Also, particular, i(a1,a2) i(ay,a2) = i(a2,aI). -* (R Define S ~ by setting bV (F)"+ )S -- {O} i* ::.9 Define a mapping i. {0}
i.(a)(.) i * ( o X . )= - i (i(a, o , . .), ),
ao €ESS, ,
(cf. [A-29], Expos6 3) 3) that where we can can show show (cf. 0. Then we we denote where we denote {O}S [A-29], Expose {0}s simply by O. - zro i* :S~P(R+t Pi. ;.9 -----*P(F)s Pi* =7foi.
is " an injection. bv into (R+)S (R+)t -- {O} Here, note that to of R+ R+ xx S5 into to aa mapping mappingof is extended extended that i. i* is i:3:""T: {0} by setting setting - aa . ii(a,') (a,-) i.(a, i - ( c ,a)(·) a ) ( . )= for is clear clear that It is (o, a) a) E every (a, for every € R+ x S. It
PLIs). x S) - {O}) " (i.(R+ (am;O{o})==Pi.(S).
7f
Now, following: weknow the following: know the Now,we is homehomeo/P(R+)s Theorem Pi.(S) P(R+)S is Fr](S of Thesubset subset 4) The (cf. [A-29], Expos64) 3.16. (cf. Theorem 3.16. [A-29],Expose 6g - 7 =- {x 6 = omorphic to 5 E R g-6 Ilxl = 1}. l}. R6s-6 b omorphic SGs-7 {s € | lol written herehere(andisis written with (and Remark. be identified identifiedwith canbe I.IFD x S) -- {O} The set seti.(R+ Remark.The {0} can precisely, (or more more precisely, after classes(or equivalenceclasses of all all Whitehead Whitehead equivalence as) the the set set MF after as) Mf of
TL
uorleogrlaeduroC s.uolsrnqJ't't
3.4. Thurston's Compactification
73
se (S)-la ssardxaoE" uec e^{ ecueg ('g gsodxg'[OZ-V]aes)'U uo suorlsrloJ parnseatu;o (suorleredos,peaqalrq1\pu€ fdolosr repun sesselcecuep,rrnba equivalence classes under isotopy and Whitehead's operations) of measured foliations on R. (See [A-29], Expose 6.) Hence we can also express Pi.(S) as P M:F 1r(M:F).
=
'Gw)" -- Jwd
'g to1 rl arn6?er.ul"sraAsrr"rl e pue 'sarlrreln3urs pelslo$ q?ns qll^ar uo uorl€rloJ€ .rrede 'uorlrugap ,fq 'q (r/'d) uo4otlol p?Jnsoeu y U dr Jo '(!)d = (n)r1 uaql ,4 yo 'ddolosr ue fq ;ea1 a13urs€ ur paurcluoc sr qcrqar Jo llqro qtea ,/ euo Jerllou€ ol '1eql sauslles qclq/'\ pe^oru aq u3? u dr Jo sJ€al h'0] , la cJ? lesre^susrl e;1 Jo scJ"qns lesrelsuerl II€ Jo las aql uo arnsseru e sl 3, .ro; r/ e.rnseatulesJelsu€r? e '1xa11 '0 = z .{lrreln3urs eq} r"eu '1 re3elur a,rrlrsod etuos q}ua errllrsod sr '{O} C uo uorlelloJ e Jo teq} s? eJn}cnJ}s zzp,tz q)qM Jo Jeel ,f.razra3uo1e elqellueraJlp l€ool atu€s eql e eq ppoqs qolq^rJo qcea 'sarlr.repSurs pelelosr qlr^r '(g '[OZ-V] ';c) g gsodxg eceyrns lceduroc e uo uorlerloJ A' uo uo.rlsgoJe eq d la1 'ereH 'e?uarue^uoc Perns"au s Jo uorlluuep aql lle?er e^\ Jo e{es eql roJ
Here, for the sake of convenience, we recall the definition of a measured foliation on a compact surface R (cf. [A-29], Expose 5). Let F be a foliation on R with isolated singularities, each of which should have the same local differentiable structure as that of a foliation on C - {O}, along every leaf of which z k dz 2 is positive with some positive integer k, near the singularity z = O. Next, a transversal measure J-L for F is a measure on the set of all transversal subarcs of leafs of F which satisfies that, if a transversal arc 0' : [0,1] --+ R can be moved to another one (3 by an isotopy, each orbit of which is contained in a single leaf of F, then
J-L(O') = J-L({3).
A measured foliation (F, J-L) is, by definition, a pair of a foliation F on R with such isolated singularities, and a transversal measure J-L for F.
uollelloJperns€eru " qlr^irpeglueprq (s 3 p,+lr f p) (,,,r;-, .rffi.t:;y;f]
Remark 1. When i.(a, 0') (a E R+, 0' E S) is identified with a measured foliation (F, J-L), we have J-L[{3] = i.(a, 0')({3), (3 E S,
'g>d
'@)("'D).!-ldlrl
' lW ) (rt',i) = d leraua3 e rog ua,ra (g ) d) @)(d)., se uatlrra{ s\ [d]d 'uo ereq uroq{ '(7)r/ d)'Ilur = ldlrl areq^r
where J-L[{3] = infLE,B J-L(L). From here on, J-L[{3] is written as i.(p)({3) ({3 E S) even for a general p = (F, J-L) E M:F. arns?erul"sralsu"rl lecruouec aql qlpt paddrnba '(7 raldeq3Jo U$ 'Jc) e,rrlrsod fl U uo d prlua.legrp crle.rpenb crqd.rouroloq orez-uou paqtrasard e qrrqra Jo J"?l f.raaa Euop 'uorleqo; e $ 'arnlcnrls xalduroc e qty( paddtnbe fl U uaq^{ 'g uo uorlerloJ parns?eu e yo aldurexa pcrdr(1 v 'A IJoueA
Remark 2. A typical example of a measured foliation on R, when R is equipped with a complex structure, is a foliation, along every leaf of which a prescribed non-zero holomorphic quadratic differential cp on R is positive (cf. §2 of Chapter 4), equipped with the canonical transversal measure
IIm0?l·
'lfutv4l - rt J-L =
'g-rsll o1 atqdlouroeuoq eq ol uaou{ $ urnl uI q?Iq^,r '(e.rn1cnr1s xalduroc ua,rrE aq1 o1 lcedsar q?l,rl) U uo sl€rlueraJrp crle.rpenb erqd -rourolorlJo aceds eq1 ql!/{ pagrluepr aq rrcc uo arnlcn.rls xalduroc {0}nJW'g ua,rr3 fue .rog'pq1 pe^roqs [191] lnsery pus preqqnH 'pueq reqlo eqt uO
On the other hand, Hubbard and Masur [101] showed that, for any given complex structure on R, M:F U {O} can be identified with the space of holomorphic quadratic differentials on R (with respect to the given complex structure), which in turn is known to be homeomorphic to R 6g- 6 . ul lW
u-ro.{7arctnp q (6[).1a6our
Proposition 3.17. The image £.(Fg ) is disjoint from M:F in (R+)s. '"(tg)
ay1 'zr'g
uor+rsodor4
'uorlJesse aq1 saqdurr 0 qarqn 'r > (l)rt leql qcns ? a rnc pasolo alduns € eleq e^\ acuaH ',| 1e spua pue q}-I/'astlsls qcrq^r,Jr Jo J3el 3 Jo cr€qns e sr areql 'uraroaql ecuerrncer s (L)rl ryq1 qcns I cr€ l"srelsrrerl e a{el'0 < I frane.ro;'t:eIul'JW >(rl',1)-dfra.rlaroJ0otBurEra,ruocecuanbasesureluoc{S>ol["]rl]]esaql 'uraroaql acuerrncers(gr"curod Sursn ,(q (pu€q Jaqlo eq} uO +eql aoqs u?c e^{ (3 uo Sutpuedap) luelsuoc e,ttlrsod e sanlel aql 't4 3 3 {ra,re rcg.too.r4
fq rrolaq uorJ pepunoq ars (S 3 o) (o)(l)-/
Proof For every t E Fg , the values £.(t)(O') (0' E S) are bounded from below by a positive constant (depending on t). On the other hand, by using Poincare's recurrence theorem, we can show that the set {Jl[O'] 10' E S} contains a sequence converging to 0 for every p = (F, J-L) E M:F. In fact, for every £ > 0, take a transversal arc 'Y such that J-L('Y) < £. By Poincare's recurrence theorem, there is a subarc of a leaf ofF which starts with and ends at 'Y. Hence we have a simple closed curve L such that J-L(L) < £, which 0 implies the assertion.
74 74
3. Hyperbolic Hyperbolic Geometry Geometry and and Fenchel-Nielsen Fenchel-Nielsen Coordinates Coordinates 3.
Now, the the crucial crucial fact fact to to construct construct Thurston's Thurston's compactification compactification is is the the following following Now, theorem. theorem. Theorem 3.18. 3.18. (cf. (cf. [A-29], [A-29], Exposd Expose 8) 8) For For eaery every system system LI:- == {Lj}?s-13 {Lj}J;~3 of of d'edeTheorem composing curues curves of of R, R, there there is is aa nalural natural homeomorphism homeomorphism composing qx : l*(F.) -.
U(L) C Mf
,
where where
= =
R + ) " ) lIpJL(Lj) U(I:-) MF(c F ( c ((R+)8) U ( L ) = {{p ( L i ) >>0 0 p = ( F(F,JL) , p , ) eE M
ffor o r eevery v e r y LL ij eE LI:-}. }.
The construction of of qa qt:. is as follows. follows. Here and in the remainder of of this disThe same notation notation both both for a cutve curve and for the free free homotopy cussion, we use use the same cussion, class of of it. it. For every t €E Fs, Fg , we can construct a measured measured foliation Pt = (fi,p'r1 (Ft , JLt) class that F1 F t is transversal transversal to Li Lj for every j,j, and that that such that
=
l,(t)(Lj)=i.(p1)(L1), i = 1,"''3s -3,
or equivalently, equivalently,
=
=
3 9 --3 3, , , " ' ,,3g l(Lj(t)) l ( L j ( t ) ) = JLtlLj], t t r l L i l , ij = 11,··· represented by t, surface represented Lj(t) is the geodesic, where geodesic, on the marked Riemann surface where,Ll(f) which corresponds Lj as before. We set as before. We set corresponds to Li q2(1.(t)) = Pr' onLo U(I:-). U(L). ga is actually aa homeomorphism homeomorphism onto It that this mapping qt:. It is is known that "projections" qL, we Using following: *u can can derive derive the following: these natural "projections" qt:., Using these
Theorem subsel The subset (cf. [A-29], Expos6 8) 8) The Theorem 3.19. (cf. [A-29], Expose Pt.(Fs)U PMT boundary. of P(R +)8 with the wilh boundary. compacl manifold with topology is is aa compact relatiue topology the relative o/P(FF)s (69-l)-dimensional the real Moreover, Pl. (F )uP MF is homeomorphic to the real (6g 6)-dimensional to is homeomorphic Moreoaer,Pt.(Fs)UPMf g 6 6 PMf wilh PMF is coincident coinciilent with closed gIlxl the boundary boundaryis l}, and and the Rog-o closedball ball {x € R S I}, I l"l ~ {c E 6g 7 (which is homeomorphic to 5 ). (which is homeomorphicto Soc-7). an of an neighborhood of We in aa neighborhood local coordinates coordinates in construct local how to to construct shall show show how we shall arbitrary point of the boundary PMF. . PMf point of the boundary arbitrary 1 = is aa system system I:I = there is Fix MF and (po) arbitrarily. p[' E ps E arbitrarily. Then Then there "-t(p[.) and Po PMF Fix Po e 1re P {lfij|5" L j } J;~ 3 of decomposing curves of R such that that of ,R such of decomposing curves
i.(po)(Lj f . ( p s ) ( . L)t )>0, > 0,
j=I,···,3g-3. i = I, "' ,39 - 3.
"t (See this 1:-, family {L we construct constructaafamily 4, we Fromthis (See[A-29], Expos66.) 6.) From j , L1J, L1J} J;~3 of {Li,A?,A}}}n=1" [A-29],Expose g as in (n+;s0-e simple closed curves which gives an embedding of F into (R+)9 -9 as in §3.3. Fo into gives an embeddingof which curves simple closed $3.3. g For set For every every fe > 0, set ) 0,
saloN
Notes
75
= {x E l.(F I x(Lj) >
, t < ( f 7 ) a l ( u , t ) . 1 fc } = ( r , 7 ) 1 g)
f,
= 1""
'{g-fg, ...,1= !
U(.c.,f)
j
,3g - 3},
'f1rea13 osl€uec eM'.1A= (Q'7)n)tb o I pue '(u,I)*ld ur uados\ Q'J)t)a '(0)d" - rA pue(("1)n)" = Q'7)nd
PU(.c., f) = 7r(U(.c., f)) and W = 7r(U(.c.)). Clearly, PU(.c.,f) is open in Pl. (Fg ), and 7roqJ;(U(.c.,f)) = W. We can also show that W U PU(.c., f) is open in the closure of Pl. (Fg ). Recalling that 7r is injective on l.(Fg ), we define a mapping t.p of W U PU(.c.,f) into W x [0,1) as follows: We set t.p(p) = (p,O), PEW.
$srr, l"ql 3ul1ecag '(ol)Va Jo ernsop eql ur uado sr (r'l)fla
n1t4 lerlt raoqs
se(t'ol x l4 olur(r'f,)2a n /A lool Eurddeur e eugep "'1urf'"j;f""tfi:i[i 'M)q
'(o'd)=(4)o1
'(t'7)n 1nd e,rll,
3 c ,(rarra .rog
For every x E U(.c., f), we put ((a)t)d
t.p( 7r( x))
3g-3
f; {i.(qJ;(x))(Lj ) + i.(q.c(x))(..1J) + i.(qJ;(X))(..1J)}) ).
'(4'n",)= (ivx(')'b)'t + (D(@)qb)*r) ((rtl"lrr 47b)*t+ 3 -) o*" = (7r 0 qJ;(x),exp ( -
l€q} qcns y ?uelsuo) e sr eraql 'S g ,c ,(rale ro; '1eq1 sa1e1sqcrqu, '.{lqenbaur pluaur€punJ e Sursn fq 'rn.{I
Then, by using a fundamental inequality, which states that, for every a E S, there is a constant A such that ~
i.(qJ;(x))(a) + A,
'H+(o)((c)7b).!)
(")r > (o)((c)20).r
x(a)
x E u(.c., f),
a
~
'(t'7)p)
i.(qJ;(x))(a)
:3ur,uo1o3aql ,(q u^roqs aq feur uorlecgrlcedruoc $ql yo ecuelrodurl eql '6a p fi"topunoqspolsrn?J pell€c s\ ,(repunoq slr pue '6a 1o uorToc{9ycod lWd -ntoo s.uo?srnqJ peIV) sr tg aceds rallnuqclel erll Jo uorlecgrlceduroe srq; 'od Jo pooqroqq3rau e uI seleurproor l€col se,u3 F ecuaq pue 'a3eurr slr oluo ursrqdrotuoauoq € sr d Surddeur slql leql a\oqs ue) e^r
we can show that this mapping t.p is a homeomorphism onto its image, and hence it gives local coordinates in a neighborhood of Po.
This compactification of the Teichmiiller space T g is called Thurston's compactijication of Tg , and its boundary P M:F is called Thurston's boundary of Tg . The importance of this compactification may be shown by the following:
'l1asp oTuo D saonp n(6g).ru = (i)*ld IWd lo u.rsnld.tou.toau,oq .f.tu11otog t1asyzopo A lo utstrltLtnuoeuoq fun.taserd-uorlDlueuo fi^teag
Corollary. Every orientation-preserving homeomorphism of R onto itself in-ut
duces a homeomorphism of Pl.(Fg ) = Pl. (Fg ) U P M:F onto itself.
'r-o1 tuor; peurclqo sl @Jo asre^ul aqJ tr 'Surddeur-;1es flrll repun ?uerrelur f1.rea1c arc IWd pun (61)*ld'a.reg '"(+U)2, ;o p Surdderu-Jlassnonurluo? s sacnpur ef,uaqpue J1as1rotuo StJo uorlce I€rnleu e sa?npur Jleslr o?uo A Jo d ursrqd.rouroatuoqSurrrraserd-uorleluarro fra,rg '{oo.t4
Proof. Every orientation-preserving homeomorphism t.p of R onto itself induces a natural action of S onto itself, and hence induces a continuous self-mapping tJj of P(R+)8. Here, Pl. (Fg ) and P M:F are clearly invariant under this self-mapping. The inverse of tJj is obtained from t.p-l. D
saloN
Notes ad{1 ;o ef,€Jrns uu"rualg e ;o areds rellnuqcrel aq? l€q} ^{ou{ a^it ,.re1ncr1.red ut ('[t-V] .Uo{lqv 'acuelsur ro; 'aag) '(g)g aceds rellnuqcratr eql yo s3urppequra s(ulaly-a{?rrd pue sa?surprool uaslarNlaqcuad eqt 'g$ pu" U$ ul suorlrugep ol dl.repurrs 'augap uer ear 'arlleur cqoq.radfq aql slFupe U ereJrns e q?ns Jl '(u'0) adfiy aTru{ fr11ocryfr1ouo uI'(ur'u'0) ailfiy Jo eq o? pres sr (0'u'6) edfl;o aceJrnsuueruerg e'.re1ncr1.red 'srlsrp pesolc u, pu€ slurod u lo acoltns uuourerq e lurolsrp ,(1en1nur3ur1a1apfq f snua3 Jo ar€Jrns uueruerg pasolc s ruoq peur€lqo 'ace;lns uu€tuerll e IIel e \
We call a Riemann surface, obtained from a closed Riemann surface of genus g by deleting mutually disjoint n points and m closed disks, a Riemann surface of type (g, n, m). In particular, a Riemann surface of type (g, n, 0) is said to be of
analytically jinite type (g, n). If such a surface R admits the hyperbolic metric, we can define, similarly to definitions in §2 and §3, the Fenchel-Nielsen coordinates and Fricke-Klein's embeddings of the Teichmiiller space T(R). (See, for instance, Abikoff [A-I].) In particular, we know that the Teichmiiller space of a Riemann surface of type
76 76
3. Hyperbolic Hyperbolic Geometry Geometry and a.nd Fenchel-Nielsen Fenchel-Nielsen Coordinates Coordina.tes 3.
(g, n, m) is is homeomorphic homeomorphic to to g6s-6*2n*3m. R6g-6+2n+3m. Abo, Also, Thurston's Thurston's compactification compactification (g,n,^) for such a surface (cf. Fathi, Fathi, Laudenbach Laudenbach and and Po6naru Poenaru [A-29]). [A-29]). is considered for to $3, §3, we recall recall the the inverse problem, problem, of of whether whether we can determine determine Relating to Relating the length spectra, i.e., the the set of of the hyperbolic hyperbolic closed Riemann surface surface by by the a closed lengths, of of all all simple simple closed geodesics geodesics on the the surface. This This problem problem is equivalent equivalent lengths, to the the problem problem of of M. M. Gel'fand: Gel1and: whether whether a closed surface is determined determined by by the the to eigenvalue spectra, i.e., the set of of all eigenvalues, eigenvalues, of of the Laplace-Beltrami opereigenvalue ator on the surface surface with with respect respect to to the hyperbolic metric. On On this problem, see see ator and,Wolpert [A-lID]' McKean McKean [152], [152], Sunada [218], [218], Vign6ras Vigneras 12421, [242], and Wolpert [246]. [246]. Venkov [A-110], embeddings, we further further refer to to Keen [110] [110] and Okumura Okumura For Fricke-Klein's embeddings, and Pc€naru [173]. The in §3 that Laudenbach Poenaru [A-29], that Fathi, Laudenbach in follows in The argument [A-29], $3 [173]. Expose 7, which which is due to to A. A. Douady. As for for more advanced investigations investigations on Expos6 of geodesic geodesic length functions, see see Kerckhotr Kerckhoff [112] [112] and Wolpert Wolpert [256]. [256]. convexity of A survey on Thurston's Thurston's compactification compactification by Thurston Thurston himself himself is given in in A Thurston [234]. [234]. Fathi, Laudenbach Laudenbach and Po6naru Poenaru [A-29] [A-29] is a good introduction introduction to to Thurston foliations and Thurston's Thurston's bounda,ry. boundary. See See also Gardiner Gardiner [A-34] [A-34] Chapter Chapter measured foliations 11, [101], Marden Strebel [137], Marden and Strebel and Masur Hubbard 11, Strebel Strebel [A-102]' [137], and [101], [A-102], Masur [144]. [144]. generalization of of Fenchel-Nielsen deformations, deformations, the earthquake deforAs a generalization have been been considered. considered. See Thurston [233]. See Kerckhoff [112] mations have [233]. [112] and [114], [114], and Thurston also cite Bonahon [45]. We also [a5]. Finally, Teichmiiller's theorem stated in this chapter. Finally, there are many proofs of Teichmiiller's are also proofs by For example, see that chapter. There are see Chapter Chapter 5 and Notes of that tomba [74] using geodesic length functions, and by Fischer and Tromba Wolpert [256] geodesic Fischer functions, [74] [256] from viewpoint. differential geometric viewpoint. from a differential
? raldBrlc
Chapter 4
sturddetr I ler.rrroJuorrsunb
Quasiconformal Mappings
'sJoord 'qooq 1noq1t^/l, lxal PJsPU€lsuI PunoJ eq lil/'l qcrqrn p.r3alur anEsaqal ;o froaql aql ul $uaroaql plueurepunJ lereles esn e \ 'sJaB '-I pu" sJoJIqy 'rI ol anp 's3urddeur roy elnuroJ ltsuroJuoersenb 'g uorlcas uI 'uorl"nba Ieuoll"rrel l"lueurepunJ e arrr3 aal lerlua.ragrp rurerllag erlt Jo uorlnlos aql Jo ruaroeql ecuel$xe eql errordean'7 uorlcag uI 'suor?ruUepaql ruo.r; fpsea Suurrollogsll€J crs?q elels pue 'suorlrugap esorll Jo ecuele,rrnba aloqs 'sSutddeur '1 leuroJuocrs?nb p.raua3Jo suor?ruUapIeJaAasalr 3 ea,r uorlceg u1 'sur"urop .reueld uaearlaq s3urddeur 'raldeqc qq} ul 'f13urp.roccy IeruroJuocrsenb;o asea ar{t ol sellesrno lcrrlser am 'sur€ruop .reueld uee/\{}aq esoql Jo esec eq} ol sareJrns uustuerg uaarralaqs3urd -deur go esrc aql ecnpar uec e^\ 'uraroaql uorl"zrurroJrun eql fq '1eq1 elop 'aser alqerluere$p eql ur se erues aql sureruar s3urddeur qcns Jo lueul€arl 'suorl"nlrs I€tuJoJ ayqal IeJeueE arou flqe.raprsuoc w Iool e sr sEurddetu Ietu 'uorlruUep eql ul -roguocrsenb asn ol sn sluolle luauralordurr Iscruqcel " qcns uorlrpuos ,(lrpqerluaragrp eql ua{ee^r e,n 'era11 's3urddeu leruroJuocrstsnba1qer1 -ueJeJIp paugap a^eq ell.r'1 raldeq3 u1 's.raldeqcJa1eIaql ur pepaeu arc q)Iq^r sEurddeu leuroJuocrsenb;o sarl.radordcrseq ureldxa II€qs e^{ '.ra1deqcslq} uI
In this chapter, we shall explain basic properties of quasiconformal mappings which are needed in the later chapters. In Chapter 1, we have defined differentiable quasiconformal mappings. Here, we weaken the differentiability condition in the definition. Such a technical improvement allows us to use quasiconformal mappings as a tool in considerably more general situations, while formal treatment of such mappings remains the same as in the differentiable case. Note that, by the uniformization theorem, we can reduce the case of mappings between Riemann surfaces to the case of those between planar domains. Accordingly, in this chapter, we restrict ourselves to the case of quasiconformal mappings between planar domains. In Section 1, we give several definitions of general quasiconformal mappings, show equivalence of those definitions, and state basic facts following easily from the definitions. In Section 2, we prove the existence theorem of the solution of the Beltrami differential equation. In Section 3, we give a fundamental variational formula for quasiconformal mappings, due to L. Ahlfors and L. Bers. We use several fundamental theorems in the theory of Lebesgue integral without proofs, which will be found in standard text books.
serlredor4 r(.reluawalg pu€ suorl.ruuac 'I'?
4.1. Definitions and Elementary Properties sturddel4l luurroJxrootsen$ ;o y uorlrugaq
4.1.1. Analytic Definition A of Quasiconformal Mappings
c11,(puy .l.t?
'[g'r] >cfraralsorul" .rog uo snonurluocflelnlosqe sr (/i'*)t 'fr Jo uor]cunJe s€ pue 'ftt'cl ) fi [p'a] f.ra,ra1sour1e.rol [g'o] uo snonurluorflalnlosqe x (fi'a)l'c;o uorlcunge sy :srxe f.reurEeurreql ol ro srxe I"eJ eqt ol reqlle lalered ar" seprsasoq^{ ul '"] x = e13ue1car f.ra,re.rogsploq uorlrpuocSuraaol O A W [g'rf loJ eql y (saut1uo snonurluocfi1a7n1osqo) nV aq o1 pr"s $ O ur€ruop.reueld e uo (rt'r)l = (z)/ uorlcunge 'araq :lCy q / ter{t Eururnsse ,(q 'eldurexaro; 'paalue.ren3 'a'e alqerlua q s1ql'uretuop q pereprsuoc eql (areqal{rarra lsorule) 'esuasalqe?rns -ragrp i(ler1red '1sea11e'aq ppoqs 'luaurarrnberqqt 3f Jo esn€)eg aruosur ztrl - z1 uorlenbenueJtleg eql segql"s fpressacau 1nq'alqerlueresrp ue reprsuor o? lu"^r eM lou $ qtrqa 3[ ursrqdrouroauoqSur,,rraserd-uorlelueuo
We want to consider an orientation-preserving homeomorphism I which is not necessarily differentiable, but satisfies the Beltrami equation Iz = J.tlz in some suitable sense. Because of this requirement, I should be, at least, partially differentiable a.e. (almost everywhere) in the considered domain. This is guaranteed, for example, by assuming that I is ACL: here, a function I(z) = I(x,y) on a planar domain D is said to be ACL (absolutely continuous on lines) if the following condition holds for every rectangle R = [a, b] x [c, d] in D whose sides are parallel either to the real axis or to the imaginary axis: As a function of x, I(x, y) is absolutely continuous on [a, b] for almost every y E [c, d], and as a function of y, I(x, y) is absolutely continuous on [c, d] for almost every x E [a, b].
4. Quasiconformal Quasiconformal Mappings Mappings 4.
78 ?8
Remark .1. 1. An An absolutely absolutely continuous continuous function function .F(t) F(t) on on an an interval interval 1I is is differendifferen(z) on a domain D tiable at at almost every ttEl. Hence, when a function function fI(z) D is tiable € /. Hence, ACL, the the partial partial derivatives derivatives /,Iz and fz !z of of fI are well-defined well-defined and finite finite at at almost almost ACL, every zzED. It is not not difficult difficult to to show that that they they are measurable. € D. It
Now, as a natural natural generalization generalization of of the the notion notion of of conformal conformal mappings, mappings, we Now, make the the following following definition: definition: Analytic definition definition A A of of quasiconformal quasiconformal mappings. mappings. Let Let f(z) I(z) be an Analytic orientation-preserving homeomorphism homeomorphism of of a planar planar domain domain D D into into the the complex complex orientation-preserving quasiconlormal (qc) on D D ifif /I satisfies satisfies the following (z) is quasiconformal plane. We say that that fI(z) conditions: ACL on D. D. (i) /I is ACL < & (ii) There exists exists a constant & k with with 00::; k< < I1 such such that that (ii)
I/zl kl/z I a.e. a.e. on on D. D. S klf"l lfd ::; on D. Setting K = = (l+k)/(I-k), we say that If is is K-qc K-qcon D. We We call call the the infimum infimum saythat (l+k)/(L-/c), we SettingX it by I(y and denote dilatation of of 1((> K(~ 1) such that I is K-qc the maximal of I, denote it Kf marimal K-qc such that / /, or K(f). or quasiconformal on D. Since Since Example -1.A conformal mapping of a domain D is quasiconformal Example 1. is can take 0 as k in the above condition (ii), a conformal mapping I is l-qc we above as I we / and 1. and Kf K1 = 1.
=
is C , l b l < lal) (a,b c E c (a, az + Example b,,c m a p p i n g I(z) € C,lbl A n affine a f f i n e mapping * c 2 . An * b zbi + E x a m p l e 2. l o l ) is f ( r ) = az = (al+ hence Ks as k, &, and and hence K f = (Ial + Ibl)/(Ialquasiconformal.We tal<eIbllial quasiconformal. can take We can lbl). l0l)/(ldl- Ibl). lDl/lol as
Example given k, we set set lc, we Emrnple 3. 3. For aa given ( z, z.
zE ze H
f ( t )== { xr ++il'K I(z) H ,K K > !1.. c -- H, * i iy y eE C K vy,, zz = xx + \ and K Ktf = K. I{. Then I/ is quasiconformal mapping of C, and is aa quasiconformal
Remark Set Remark 2. 2. Set
z
I ( , )==l-lzI T : E2p' , I(z)
z €..1. A.
z E
disk ..1 .4 onto C, the unit disk Then I/ is diffeomorphism of the orientation-preserving diffeomorphism is an an orientation-preserving quasiconformal mappings 4 mappings of ..1 but not quasiconformal. there are are no no quasiconformal quasiconformal. Actually, there onto C. See Proposition 4.32 later in this chapter. chapter. 4.32 See domain D', D', another domain domain D D onto onto another Remark -qc mapping of aa domain mapping of be aa K K-qc Let If be 3. Let Remark 3. is K K-qc. mapping go and -qc. the composite composite mapping Then the of D'. Then mapping of conformal mapping and 9g be be aa conformal I oI/ is (ii), and and (i) and and (ii), satisfies(i) that 9g 0o I/ satisfies In definition that the definition to see seefrom from the it is is easy easy to In fact, fact, it • that = K I{y. KsoT that K f gof
sarlrador4 ,(reluauralg pu" suorlrug:aq 'I't
4.1. Definitions and Elementary Properties
79
'peurtslqo uaeq seq olqarl pue Sur.rqag o? enp llnser elqe:lreurar Suro,olloJ eqt 'stusrqdrouroeuroq Jo ese) aql ur '.rale.tro11'uorle3rlselur JaqlrnJ o1 alqecrldde ;l';o sarl.radordpoo3 aalue.ren3 o1 qEnoua 1ou sr a/ pue ,t salrlelrrep lerlred ar{} Jo ef,uelsrxe 'leraue3 u1
In general, existence of the partial derivatives fz and fz is not enough to guarantee good properties of f applicable to further investigation. However, in the case of homeomorphisms, the following remarkable result due to Gehring and Lehto has been obtained.
'O uo 'e'D alqn4uaufitp fi11o7o7 st t uaqT'g uo 'a'o ut pu, 'l saatToau,ap eql sDq C ory! e urDtuopDIo I tustyiltotuoauoq Dfi .tV uorlrsodo.r4 1ory.r,od
Proposition 4.1. If a homeomorphism f of a domain D into C has the partial derivatives fx and fy a.e. on D, then f is totally differentiable a.e. on D.
'u 'f1tre.r1rqr€, 1as draae .rog 1u€lsuoc e,r111sod e xld 'eer" alrug e s€q O ueq^\ uorlJass€eql a,rord o1 sargns ?;''/ oo.t4
Proof. It suffices to prove the assertion when D has a finite area. Fix a positive constant t arbitrarily. For every n, set
It't't Q)l - ? t+,)l
I
l u ) q ' u l r > l q l >- o dns (r)"0 I _ Un () Z -
sup
O
If(Z+h)-f(Z)_f()1 x Z h
•
slesqns aq1 go slurod ,(lrsuep a.re 0f pue 0r 'g ) ont * 0e dre,ra lsorule '1s.rrg ro; 'pq1 dldun uraroaql s.lurqng pue rualoeql ,,{lrsuap s,an3saqel 'f.rerlrqre sr ro;'g uo r 'e'e elqetlueragrp 'uorlresse ,t1e1o1 ^roqs sl ol secgns aq1 a,rord o5 leqf 1r / 'snonurluoc sr .rog'g uo ;l' snonurluoc erc nt pue t/ 1eq1sarldur ecueS.ranuoc ruroJrun aql leql aloN .Ar ue q)ns xU em Joord srqlJo 1sa.ratll uI'0 - q se fl uo.,(1uro;run (r)uI o+ se3ra,ruoc VI (?) I - @! + z) l) teql etunsseosle {eu aar'1uarun3.rer€lrrurs€ /tg'0 1- q e g uo flurrogrun (r)'l ol sa3raruoc,t/(@)l -(rt+t)l) teq? pue r u€q? ssel$ rr-O Jo €are er{} }?ql qrns o Jo ar lasqns elqerns"eeue puu uer e,r,r't}{"6} eeuenbas eql ol ueroeql s,go.ro3g Surflddy 'oo + u se (I uo 'o'e 0 * uf ?sq? aloN
Note that Un - 0 a.e. on D as n - 00. Applying Egoroff's theorem to the sequence {Un} ;;:'=1' we can find a measurable subset E of D such that the area of D - E is less than t and that (f(z +h) - f(z»jh converges to fx(z) uniformly on E as h - O. By a similar argument, we may also assume that (f(z+ih)- f(z»jh converges to fy(z) uniformly on E as h - O. In the rest of this proof, we fix such an E. Note that the uniform convergence implies that fx and fy are continuous on E, for f is continuous. To prove the assertion, it suffices to show that f is totally differentiable a.e. on E, for t is arbitrary. First, Lebesgue's density theorem and Fubini's theorem imply that, for almost every Xo + iyo E E, Xo and Yo are density points of the subsets
E xa = {y E R
I Xo + iy E E}, J\
0n!+o u ) n} = ong {s ) I
pue
and
> fi!+0r I u ) fr) =o"g
I x + iyo E E}
'{g
E Ya = {x E R
'flerrrlcedse.r Jo lurod flrsuap e sr 0r 1eq1 ,{es ealr,e.reg)
respectively. (Here we say that Xo is a density point of E Ya if
l
ong
'*#,i" 'r - *p(r)oor, ,:*"""'[T
1 -h h>O,h-.O 2
lim
xa
h
+ IE (x)dx = 1,
Xa-
h
.
Yo
1eg'dperlrqre I > L I 6 q1r,ul,l xrg '0- 0z ?eq1eunss€ ar*'flrcqdursJo a{es eq} rod'02 }e elqelluareJrp,tlelol sl / ?eql ^roqs Iprls e \ pue 'lfi! + oa = 0z lurod " qrns xlJ ('"? ;o slurod dlrsuep eugap e^\ 'fgelnurg 'ofrg lo uorlcunJ orlsrralr€req, eql fl onal araq,u
where 1E ya is the characteristic function of E ya . Similarly, we define density points of E xa .) Fix such a point Zo = Xo + iyo, and we shall show that f is totally differentiable at zo0 For the sake of simplicity, we assume that Zo = O. Fix TJ with 0 < TJ < 1 arbitrarily. Set
I(z) = If(z) - f(O) - xfx(O) - yfy(O)I·
'l ( o) o /n -ft),l a -(o ) / - ( r ) { l= ( z) t
ef,urs
Since
' l(( o)u-/ ( *)u t)n+l l (s)'tx- ( o ) /- ( ") / l - @)l - @p+ n)tl ) Q)1 l@)utn I(z) ::; If(x
+ iy) -
f(x) - yfy(x)1
+ If(x) - f(O) - xfx(O) I + Iy(fy(x) - fy(O» I,
'g n! pue 9 > lrl qlp z fra,rerc1lzlh > (t)t ) g rell€urse 3ur1e1'luarun3re.repturse,,(g leql osl€arunss deurerrr',,(lessacauJr 'g ) n pue > to1lzll"t> (z)t leql q)ns 9 e,rrlrsode sr araql 9 lrl qtt^ z .,l.ra,re
there is a positive 6 such that I(z) ::; TJlzl for every z with Izi < 6 and x E E. By a similar argument, taking a smaller 6 if necessary, we may assume also that I(z) ::; TJlzl for every z with Izi < 6 and iy E E.
4. 4. Quasiconformal Quasiconformal Mappings Mappings
80 80
Further, taking taking a smaller smaller 68 ifif necessary, necessary, we may assume assume that, that, for every z = = Further, x1t X2, r 2,iy1 x *+ iy iy with with c, x, y )> 0 and lzl Izi << 6/2, 8/2, there there exist exist points points Xl, iY1,, and iy2 iY2 of E E a that such that - rt), < (1-1J)x < nXll << eX << xX22 << ((11 ++41J)x, )c, Q r < ((1L -1J)Y - q ) a (<e Y1 < aY l
=
=
ys = 0 a.re (Note that that oo Xo = 0 and Yo are density points of Euo E yO and.8ro, and E xo ' respectively.) respectively.) = lx1,x2)x qlz* I| for every z* on the boundary of the rectangle ,R = I(z*) <~ 1Jlz* rectangle R [Xl, X2] X Then, 1(z*) principle holds for since other hand, the maximal [Y1' Y2]. maximal I, since the On /, /I is a tyr,yz). homeomorphism, and hence hence is an open mapping. Therefore, Therefore, for some some suitable z* homeomorphism, boundary of of R, .R, we have on the boundary
(r.) -- 1(0) I(r) I(z) < ~ lf I/(z*) xlx(O) -- y/y(0)l yly(O)1 /(0) -- 0f,(0) < r.l (l/,(0)l ~ I(r') I(z*) + z*1 (1Ix(O)1 + I/y (O)I).. + Iz + l/y(0)l) l, everyzz with Since z*1 ~ 1Jlzl, we conclude conclude that, that, for for every with c,y x, Y > 0 and and Izi < 8/2, ) 0 SinceIz lzl<6/2, lz -- z*l
L ~ A(E) l"t,p1a,a,s Jj(z)dxdy
A(E)
(4.1) (4.1)
for every measurable subset E of D. differentiable we see see that I/ is totally totally differentiable On the other hand, 4.1 we hand, by Proposition 4.1 point z we we can can show that that at almost every zED, such a point z € D, and at such
JyQ)= l f" (r)l ' - lf,( ' ) l' . Since implies that Since the condition (ii) on I/ implies 2 1 a.e. on D, I/zl liz I2 ~s 1lfA' ~slil' *rt pJj a.e. on D,
(a.1). the followsby by (4.1). assertionfollows the assertion
otr
y'. Actually, continis absolutely absolutelycontinRemark A in the the above aboveproof is function.A the set set function Actually, the Remark4. 4'12in in §1.3. uous, (4.1).See Lemma4.12 in (4.1). equalityholds holdsin SeeLemma and hence hencethe the equality uous,and $1.3.
el€q a^r uaql '(f)zd(t),d *toJ qlr^1,uollrunJ e a{€}'((oo)tl)"$CJo ue sv'r o1 qg,rtr/Jo elrleArrep 1er1.red }uetuala leadsar 'W'")xlor'of = (or)U f"r pue ,[g,o] uo 0c Fuorlnqrrtsrp eql ["/] ,(q aloueq 'fgrerlrqJe e xg ,esod.rndsrqt roJ lurod e xrg O ur W'rlx [g'r] = g, e13ue1ca.r '1CY
Proof. We have already shown as Propositions 4.2 and 4.3 that a quasiconformal mapping f in the sense of the definition A satisfies the condition (i),. Hence, f is quasiconformal in the sense of the definition A'. Let f be quasiconformal on D in the sense of the definition A'. To show that f is quasiconformal in the sense of the definition A, it suffices to show that f is ACL. For this purpose, fix a rectangle R = [a, b) X [c, d) in D arbitrarily. Fix a point Xo on [a, b], and set R(xo) [a, xo] X [c, d). Denote by [fx] the distributional partial derivative of f with respect to x. As an element of ego (R(xo)), take a function with form
=
sl ./ l€rl? /roqs ol secgns t! 'y uorlrugep eql Jo esues aql ur leuJoJuocrsenb sr 3l' leql ^\oqs oL' ,V uorlrusap eql Jo esuaseql ul O uo leuroJuocrsenb aq / la1 '/H uorlrugap aql Jo esueseql ur I€ruroJuocrsenbsr 'eaua11'r(r) uorlrpuoc arll sess-rpsy uorlrugep aql Jo esuesaq? ur / Surddeur / .loo.t4 IeruroJuo?rsenbe 1eq1 t'7 pue 6'p suorlrsodord ss uiroqs fpee.qe a^"q a \
'Tuapatnba fr11on7nu.t a.to s0utddou loru.totuoctsonblo rV puo y suotytu{ag .7.? uraroaql
equivalent.
Theorem 4.4. Definitions A and A' of quasiconformal mappings are mutually
'O uo'e'€ l'tlq)lttl
Ifzl ~ klfz 1 a.e. on
D.
(i)' The distributional partial derivatives of f with respect to z and z can be represented by locally integrable functions fz and fz, respectively, on D. (ii) There exists a constant k with 0 ~ k < 1 such that
? s q l q r n s I > { t 0 q ? l i a{ } u e l s u o c s s } s f f e a r a q l ( r r ) '6r uo'f1a,rr1cadsa.r'rt pnt "/ suorlcun; alqer3alur r(1eco1fq paluasa.rda.r aq u€? Z pue z o1 laadser qll,lr / Jo salrlelrrep 1er1.redlsuorlnqrrlsrp aql /(l)
Analytic definition A' of quasiconformal mappings. Let f be a homeomorphism of a domain D into C which preserves orientation. We say that f is quasiconformalon D if f satisfies the following two conditions:
:suorllpuoc oall Eur,rnollo;eql segsrlesI y O uo lout"loluocrconb sl / leql ,(es e711'uorl"luarJo se,r.resardq?!q^a C olq O uretuop e yo ursrqdrour .sturddBru -oeuoq s eq / 1a1 [BturoJuocrsenb Jo ,v uol+rugop c1+rtpuy
:s^{,olloJqrrqa auo a{t se qcns 'sEurdderu leruroJuocrsenb go y 'g'? pue uoltlugep eqt Jo uorlecglpour e raprsuocu?c a/r4, 6'7 suorlrsodo.r43ur1o11
Noting Propositions 4.2 and 4.3, we can consider a modification of the definition A of quasiconformal mappings, such as the one which follows: .2.T.?
4.1.2. Analytic Definition A' of Quasiconformal Mappings
s8urddel4l lBruroJuocrsen$ go /I/ uolllugaq
c11,tpuv
's1rcd ,tq uorler3alur z(q .no11o3 O suollrasse aqt 'TCV st ;f aaurg 'sp.r3elur paleeder e{l se ue}lrr!\er eq uec (g'p) pue (Z'7)Jo saprsprrerl Ual eql(ureroaql s,lulqnJ pue Z,'Vuorlrsodor4 Ag.loo.r,4
Proof. By Proposition 4.2 and Fubini's theorem, the left hand sides of (4.2) and (4.3) can be rewritten as the repeated integrals. Since f is ACL, the assertions 0 follow by integration by parts.
JL JLfz .
(z'v)
'fi,pxpz61 'ttf ttil - - fi,papdt
(e'r)
I
and
JL JL
f·
f .
puD
'frprpzdt t"il -=ftpapdt,t"lI fz .
(4.3)
(4.2)
'sq.toililns Toqysnollol 7t Tcndu.tocypm .tot 'frputo7J 0 uo suotl?unt qToorus11oto 7aseW'(O)JC to dt Tuauala fi.r,aaa 'uorryqpprp zt saatToauappty.toil to asuaseUIur ?soql Vpn lu?pN?uroJ?JD,l puo urDurop o lo I Futrldoutlouttotuoctsonbfuaaa JoI .g.V uorlrsoilo.r6
with compact supports, it follows that
Proposition 4.3. For every quasiconformal mapping f of a domain D, the parti~l derivatives fz and fz are coincident with those in the sense of distribution. Namely, for every element
?t#'O
4.1. Definitions and Elementary Properties
81
sarlrador6 freluauralg pu" suorlrugtag'I'?
T8
4. Quasiconformal Quasiconformal Mappings Mappings 4.
8822
Jr(
Jr{
(p r)' (c))
1/ (Xo
fq
11/ ro
lso
lxo
fn
[fx](x, y)
ro (r, v)y)(
"'
| ""
for almost every y on [c, [c, dl. dJ. Next, for every sufficiently large integer n, take as as oo' 00, then by the above above equality, equality, we have
=
(xo,il JaIro lLl@,y)dxdy [fx](x, y)dxdy = ff(xo, y) -fto
y) almost almost every every y y e1",4. E [c, dJ· ff(a, @,v)
(4.4) e.4)
Ja
dependence, Here, xo. To get rid of this dependence, depends on 00. set of y depends Here, the exceptional set countable, Since,E consider b]. Since E is countable, numbers in [a, say E, -8, of all rational numbers set, say consider the set, [a,b]. continuous (a.a) are sides (4.4) dJ for every Xo in E. Since both sides of (4.4) are continuous o0 since d] every (4.4) holds a.e. on [c, holds a.e. [c, a.e. (a.a) holds holds a.e. we conclude conclude that (4.4) with D],we denseon [a, .E is is dense since E rs, and since with respect respect to Xo, [o, b], every holds where (4.4) on [c, dJ for every XQ in [a, b]. Note that for every y where (4.4) holds for every every b]. cs every d] [o, [c, coincident o, and that [fx] Xo, f(x, y) is absolutely with respect respect to x, continuous with absolutely continuous xo, f(x,y) [/'] is coincident with fx a.e. b]. pa,rtial derivative a.e. on [a, derivative f, usual partial with the usual [o,6]. y, we we can can confirm aa similar As for the partial respect to y, partial derivative derivative of f/ with respect distributional and that the distributional assertion. ACL on D and is ACL we conclude conclude that f/ is assertion. Thus we derivatives 0tr usual ones. ones. are coincident coincident with the usual derivatives are Dt , another D', onto another domain D onto Corollary mapping of aa domain confonnal mapping be aa conformal Let 9g be L. Let corollary 1. mapping of D. and -qc mapping -qc mapping is aa K l{'qc of D'. Dt. Then Then fog mapping of K-qc be aa K and ff be f og is the there exist exist the a.ssumption,there Proof. = urtr+ By the assumption, variable on on D'. D' . By the variable lu be be the u) = Let w Proof. Let * iv on D' . integrable distributional and fw, and they are locally integrable on D'. are locally and and derivatives fw distributional derivatives /,5, /. seenthat that easily seen it is is easily Since (D') for every
Corollary is conformal. conformal. mapping is l-qc mapping 2. AA l-qc Corollary 2.
'0 - npnp dl"Ut) - "H)lt [ [ T;lli J J
'g uo t"ql (g'?) 3ur1ou ,tq ,uoqs u?c eilr ecurs pue
on F, and since we can show by noting (4.6) that
zt = z(lb) pu€ ,I = "(tb) (TJf)z
= fz
and
(TJfh
= fz
acurs 'oo ts u se g uo fprloJrun 3f o1 saSrerr '.reloe.rotr41 -uoc u/ pue 'u a3rel rflluarcgns fraaa lof (O)JC o1 sEuolaq $
Moreover, fn belongs to C[f(D) for every sufficiently large n, and fn converges to f uniformly on F as n ---.. 00. Since (4.6) (g'f)
.t]h)
* "dt = z("1)
pu€
"(ttt) * "d = "("t) eleq eilr 'u fleaa roJ uerlJ
Then for every n, we have 'npxp(z)!(z)t(, -*)"d,"[[
Jl
wE C. n
J J
=
'))
=@)(!u)*udt
- (m)u!
fn(w)
and
Pu€
zEC C)z
'(zu)6.ru-(z)"dt
'u .re3alure,ulrsod fre,re ro; 'reqlrng
Further, for every positive integer n, set 1es
vf f '1=npxp(z)dt | | JJ '{srp 'e.rag lu"lsuo, e esooqC }run aq1 sr y
JL
Here, ..:1 is the unit disk. Choose a constant C so that leql os ,
'v-c)z
'0)
z E C-..:1.
0,
(-1-l I2)' ,("+-)
{c.ex
Proof. Fix an element TJ E C[f(D) which is identically equal to 1 in some neighborhood of F. Then TJf has a compact support in D. Further, (TJf)z and (TJfh exist and belong to LP on D. We set p z E..:1 z
v>z
d x ae
]=?)d)
les eA\ 'O vo o1 3uo1eq pue lsrxa a7 'd z(lL) pue z(/lr) 'raq1.rnd 'O ul l.roddns lceduroc e seq ll-t uaql Jo poor{roq -q3reu euros ur 1 o1 lenba {pecrluapr sr qctq^r (O)"$.e ) lr luaurela ue ng'too.t4
's= nprpolz! -,("!)l"lf *tf (4.5)
(q'')
'o - npap - ,('!)1"[[ *tf al"!
'oo + u s0 tDq?puD f uo fiyl^tolmn t "{ p1t o7 safi.taauoe u? r-;j{"!} acuanbasD s, areql ,O lo I lasqns Vcns (q)}g tuana.tot ueUJ'CI uo a1qo$ayur fi,11oco7 ato fils1,7os Taodu.toc alzllpuD alzllll?t? 'fr,pu.rou'e uo "t fr11oco1 zt ^to puD senqDtuuap pqlod puorlnquqtp esoqm aI 'uaafi eq .g,V Bururarl O uxprilopn uo uotTcunlsnonuNlu@D ?q t 7a1 l
whose distributional partial derivatives fz and /z are locally LP on D, namely, satisfy that Ifz IP and 1/zIP are locally integrable on D. Then for every compact subset F of D, there is a sequence {In};;''=l in C[f(D) such that fn converges to f uniformly on F as n ---.. 00, and that
Lemma 4.5. Let p ;::: 1 be given. Let f be a continuous function on a domain D
'etutual uorleurrxordde Suurrolloyeql esn e^rd eterqut'outtual s,fiap1 ;o;oord e elrS e.,n'acuarualuo? Jo e{€s aq? ro; ,ere11
Here, for the sake of convenience, we give a proof of Weyl's lemma, where we use the following approximation lemma.
'1fa6 'ecua11 'uor]nqrJlsrp go €rmuel eql ,iq crqdrouoloq sr D l€crssrlc 3[ - z/ sagsrles .too"t4 Jo esuas eql q O uo 0 O ur€ruop e Jo I Surddeur cb-1 y
Proof. A l-qc mapping f of a domain D satisfies /z = 0 on D in the sense of D distribution. Hence, f is holomorphic by the classical lemma of Weyl. sarlrador4 freluauralg pu" suorlruyae 'I't
83
4.1. Definitions and Elementary Properties
84
4. 4. Quasiconformal Quasiconforrnal Mappings Mappings
and and
ardy= o, lim I I l$"), - Qtf)rlo J JD
N-6
obtain (4.5). we obtain
tr D
sequence {/.} {fn} *as in in Lemma Lemma 4.5 an LP-srnoothing LP -smoothing Hereafter, we call such a sequence sequence for /f with with respect respect to to F. F. seqaence
Lemma 4.6. 4.6. (Weyl's (Weyl's lemma) lemma) Let ff be be a continuous continuous function function on D D whose whose Lemma distributional derivative f2 fz is locally locally integmble integrable on D. D. IfIf fz fz =0 0 in lhe the sense sense of of distribational ileriaatioe distributions on D, D, then then ff is holomorphic holomorphic on D. D. distributions
=
Fix a relatively relatively compact compact subdomain sub domain Dr D I of of D D arbitrarily, arbitrarily, and construct construct Proof. Fu LI-smoothing sequence sequence for /f with with respect respect to 4D I as as in the proof proof of of Lemma an .tl-smoothing From the construction there, we see see that (TJfh = 0 in some some neighborhood 4.5. Flom thaf (nf)z 4.5. = sufciently large . of D By (4.6), see that (fn)z = D for every sufficiently large n. Thus, Thus, on D1 for every (a.6), we see thar (f")7 0 of E[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[. I By I converges to /f fn is holomorphic D sufficiently Since fn converges large n. every sufficiently Since on D1 for holomorphic I /' /,. --+ we D1 is arbitrary, uniformly D as -+ 00, f D Since D we on D1 . Since n oo, is holomorphic on as uniformly I I I I / obtain the assertion. assertion. D
=
4.1.3. Definition G of Mappings of Quasiconformal Geometric Definition 4.L.3. Geometric Quasiconformal Mappings we first quasiconformality. For this purpose, we We give a geometric definition definition of quasiconformality. introduce the notion of quadrilaterals. quadrilaterals. called a Jordan closed closed The closure curve is called closure of a domain bounded by a Jordan curve (Q;qt,9z,Qs,Qq) of a Jordan domain. A is, by definition, a pair (Q;ql,q2,q3,q4) quadrilateralis, A, quadrilateral q4 on the boundary aQ 0Q of Q which closed closed domain Q 8r, q2, Q2,q3, 93, q4 Q and four points ql, oriendistinct and located in this order with respect to the positive orienare mutually with respect located are mutually confusion, tation of aQ. We call each qj a verlexofthe quadrilateral. If there is no confusion, q1 If there aertexof the each a 0Q. we quadrilateral (Q;ql,q2,q3,q4) (Q; er,8z,Qe,qa)simply simply by Q. we denote denote aa quadrilateral Q. lhere is is aa homeohomeo' quadrilateral(Q;QI,Q2,Q3,q4), (Q;Cr,Q2,QB,qs),there Proposition euery quadrilateral Proposition 4.7. For every (a,b which is 0) morphism onto some rectangle R = [0, a] x [0, b] (a, b > 0) which is onto some reclangle R ) morphism hh of Q Q [0,4] [0,b] conformal Int Q of Q, and satisfies and satisfies the interior interiorlntQ conforntal in the Q, h(gr) : 0,
h ( q 2 )= a ,
h(c") = a*ib,
a n d h ( q a )= i b .
Moreover, o h. i s independent i n d e p e n d e nof t f h. a f b is M o r o u e r , alb quadrilateral (Q; and (Q;qt,!2,Q3,9+)' the quadrilateral We QI, Q2, Q3, Q4), and the module moduleof the value alb the call the the value We call denote b V M(Q). M(Q). o, r simply s i m p l y by y M(Q;QI,Q2,Q3,Q4), M ( Q ; 8 r , Q z , e e , Q e )or d e n o t eiti t bby conformal mapping mapping Proof. there exists exists aa conformal theorem, there mapping theorem, by Riemann's Proof. First, First, by Riemann's mapping is theorem, hI h1 is hI H. By By^Caratheodory's the upper upper half-plane half-plane H. Carath6odory's theorem, onto the h1 of of Int Int Q Q onto suitable by composing composing aa suitable extended fl U R. Here, Here, by of Q onto H U It. homeomorphism of extended to to aa homeomorphism Q onto Mobius we may assume that that may assume transformation, we Miibius transformation,
98
Pu" suorlruyeq'I'}
4.1. Definitions and Elementary Properties sarlrador4,{rcluauralg
= -1,
= 1,
85
= -h 1(q4) > 1.
Pue'(sr;tq7l { ?aS 't < (vb)rq- = (80)It1 pu€ '1 = (zb)tq 'I- = (ID)rtl
h1(qt}
h 1(q2)
and
h1(qa)
Set k = 1/h 1 (qa), and
z
P
dz
,Qt"rt--lG,
| =e)",
r z
v'(1- z2)(1- P z2)
-il
10
, z E H.
'H)z
h 2 (z) =
a13ue1cer auos Jo rolralul eql o?uo g ;o Sutddetu lsruroJuoc 3 sr zV ueqJ
Then h2 is a conformal mapping of H onto the interior of some rectangle [-K, K] x [0, K'] (K, K' > 0). Hence we see that
'0] x .(0 leql eesel'aaruaH < ,y,x) l,x [y'>l-]
z E Q,
'b)z
h(z) = h2 0 h1(z) + K,
'x*Q)tq"zr1-@)rt 'EU) Eutddeur P?rrsaPe sI
is a desired mapping (Fig. 4.1). '(t'f
I't
h
<_
~
q,
q,
x+'l ~
h,
"q ffi
I :
s
' T
!
T
a
Fig. 4.1.
.I'?'EIJ
'P '(O f"I ) z) P * Q)t1c = (z\rt eleq e,rr Pu" t sreqrunu xalduoc elqellns qlr^1' 'flpaleedar 'acue11'(c)pV to lueruela u€' o1 papue1xeaq uea , -V o V leqt ees a,u '2'7 uI se suolllPuoc aures eql uotltsodord aldrcur.rd uorlcegar (zJs^rq?SEutflddy 'lxap sessrles qcrqa'rEurddeu raqlou" aq [g'o] x [g'o] = v *@ : q le1
=
Next, let h : Q ~ R [0, a] x [0, b] be another mapping which satisfies the same conditions as in Proposition 4.7. Applying Schwarz' reflection principle repeatedly, we see that hoh- 1 can be extended to!\n element of Aut(C). Hence, with suitable complex numbers c and d, we have h(z) = ch(z) + d (z E Int Q). Since h(qd = h(ql) = 0, h(q2) > 0, and h(q2) > 0, A?UIS
'l'? uollls tr -odo.r4Jo uorlress" puoceserll se[du4 qclqa '0 = p pu€ g 4 a ]e{} aPnlf,uocert.r '0 < (b)q '0 = (ID)tl= (b)t! '0 < (zb)y Pu€
we conclude that c > 0 and d = 0, which implies the second assertion of Proposition 4.7. 0
'erutuel 3uuro11o;aql e^"q eir ueqtr, '(vb)!' ...'(ID)/ rllllrl Plel"Urpenbe t" (O)f lePlsuotaru'3 olut @;o seclllel ro; '.rary:earag e pu" (tD,ab'zbtrb1fl) le.Ialeyrpenb,(.ra,ra /' ursrqdrouroauoq
Hereafter, for every quadrilateral (Q; ql, q2, qa, q4) and a homeomorphism f of Q into C, we consider f(Q) as a quadrilateral with vertices f(qt},··· ,f(q4)' Then we have the following lemma. sa{stqosO uroulopo lo { tutililoru cb-51fr.nog'8'? BurtnaT
Lemma 4.8. Every K -qc mapping
f of a domain D
satisfies
686 0
4. Quasiconformal Quasiconformal Mappings Mappings 4.
~M(Q) ~ I
M(f(Q))
~ KM(Q)
KM(Q)<MU@))
F=hofohF = - h o f o h - r1 of the the interior interior of of R R onto the interior interior of of E R which is a quasiconformal mapping of n$ ( c f . maps 0,, aa,, iib, 0,, iii, and Remark §1.1 + i D , rrespectively e s p e c t i v e l(cf. y R e m a r k3 iin n d 6a+ib, b , aand n d aa+ib * i b t o to 0,A b , ib, a m a p s0 1.1 particular, hence is ACL on Ii, and Corollary 1 to Theorem 4.4). In particular, .F(z) F(z) ACL R, hence and Corollary every y €E [0,D], [0, b], we have have for almost every
iv) -- F(iy)l a< ~ lF(a IF(a + + iy) F(iy)1 = =
11
a
l
a
~~ (x + + iv)drl= iY)dxl ~ (lFzl + IFzl)dx. l.zt)dr 1,"F"t+ l,' #o
Since ffR Jpdrdy JFdxdy S ~ ,4(n) A(R) = = dD ab (as (as was was stated in the proof proof of Proposition 4.2), 4.2), Since /J* we obtain integrating both both sides above inequality over over [0, b], we sides of the above [0,b],
r
( [ [ (lFzl ~ (fL + l+Da"av) IFzl)dxdy "Ur,l+ / \"r.h
(ab)2 -< @b)'
f IFzl + IFzl
Jr f (I 12 1 12 )
dxdy . J , Fz'' - Fz dxdy - JJJ^, ~ JR' IFzl_lFzl JJo," R 1r1:77d'oa' r
fL,
fL,
t o o , o y !~KK(ab)(ab). (ab)@b). I ( d x d- y . [ [ JFdxdy ~-. J[J[ n ' Kdxdy· JJn' M(f@)) ~ haveM(f(Q)) Thus^we Here, R' = {w have 0}. Thus_we ,R11Fz(w)l:/; we set setl? Here,we eR < KM(Q). lIF"(*)l I O}. {tr,'E (or considering = h 0o ff 0o h(ih)-r (or considering Next, h-r1 by by (ih) (ih) 0o f 0o (ih)-l f' = replacingF Next, replacing that (Q;q2,q3,q4,qt)), the same sameargument argumentthat we can canshow showby by the (Q;qr,qs,q+,qr)),we 1I K M(f(Q)) ~ M(Q)' Ma) W@Ds tr D
Thus we we have assertion. have the assertion.
quasiconformal Now, we give give another another definition of quasiconformal 4.8, we Now, by noting Lemma 4.8, mappings derivatives. without using using partial derivatives. mappings without be aa homeohomeoquasiconformal mappings. Geometric mappings. Let f/ be of quasiconformal definition G of Geometric definition that preserves say orientation. We We say morphism of aa domain f/ isis which preserves orientation. C which domain D into C quasiconformalon condition: satisfiesthe following following condition: quasiconfonnal on D if f/ satisfies
(iii) (iii) There > 11 such such that that constant K K 2: is aa constant There is
IiM(Q) M(f(Q)) MU@)) ~S KM(Q) quadrilateral Q holds in D. D. every quadrilateral holds for for every Q in
'a.rolaqso ftpnp{ilt11
= @)V alaqm 'g lo g ?esqnselglrnsoelrz fri,aaa.ro!
for every measurable subset E of D, where A(E) = ffJ(E) dxdy as before.
(4.7)
Q'v)
sf f
- ,l"lD (s)v= nprpQl'll IJ sa{sr7os CI utvluop Dlo I |utddoru Totu.to{uocrsonb fuaag 'ZT'V r.urrrroa
Lemma 4.12. Every quasiconformal mapping
I
of a domain D satisfies
'oraz ear? seq ((A)/)r -t = g D '91'7 ureroaqJ les aqt wq+ zI'v eurtuerl {q ureSeees e/lt Jo (l) fq pu.ro;uocrsenb osle sI r-l eculs 'orez ear€ s€r{ (ar)/ }as eql '71'V eluuo.urc1 }xeu eql dq acuag 'A uo'e'e "t 0 = zt pu€ elqernseeu $ A ueqJ'{0 = I O ) z} = g pg'too"r4
Proof. Set E = {z E D I Iz = O}. Then E is measurable and !z = 0 a.e. on E. Hence by the next Lemma 4.12, the set I(E) has area zero. Since f- 1 is also quasiconformal by (i) of Theorem 4.10, we see again by Lemma 4.12 that the set E = 1-1 (f(E)) has area zero. 0
'o
Proposition 4.11. If f is quasiconformal on a domain D, then D.
uo 'a'o 0+ "l ueql'(I utDu.topo uo lout"toluoctsonb s! I lI 'II'7
Iz # 0
a.e. on
uolllsodo.r4
',) uollluuecl ruoq r€al) sI PJIqI eql tr '(2'7 uorlrsodo.r4go yoo.rd aq? aag) 'appour ar{} Jo e)u€rJelur leurJoJuocaql ,(q ueas sI puo?asaqtr'{reureg Eurpace.rdeq} urorJ s^{olloJuorlresse lsrg aqa /oo.l2,
Proof. The first assertion follows from the preceding Remark. The second is seen by the conformal invariance of the module. (See the proof of Proposition 4.7). The third is clear from Definition G. 0
'cb-eXrX '(O)l st t o 6 0utddout pasodruoceq? .tog (t$) {o 6 0utddout cb-zX fi.taaapun e urotilop D Io I |utildout ab-rX fr".taaa 'ab-y oslo s? ?q?'e oluo O to t |uzrldout t_\o I oU 0utddou.tpasodu.t,oc cb-y fr.tana.tol puo'fr1aai7tadsa.t'epuo q suwu,6p lo tq puo t1 |urildotu 'fi1atuo111 'Tuottiaut fi11ow.to{uoc st fiTtfoutoluoct,sonb-y Tout^totuocfi.taaa.tot 'cb-y oslo st Outildou cb-y o to as.taauraytr
(i) The inverse of a K -qc mapping is also K -qc. (ii) K -quasiconformality is conformally invariant. Namely, for every conformal mapping hand h of domains D and D, respectively, and for every K -qc mapping I of D onto D, the composed mapping hoi 0 h- 1 is also K-qc. (iii) For every K 1 -qc mapping I of a domain D and every K 2 -qc mapping g of I(D), the composed mapping go f is K 1 K 2 -qc.
(r) (r)
'0I'7
Theorem 4.10. urorooql
( '''t ureroaql o1 1 frego.roC pu€ I'I$ q I {reureg se perlord.{pearle ueaq s€q gl'f ureroeqtr Surmolo; erll Jo (11)wut II"csU) '6'? ureroaqJ prre 5l uorlrugao Jo sarrsllorot 'a.rag 'y'1$ ol Ierelas e,rr3 e.r,r. 6'? ruaroeql yo goord aq1 auodlsod geqs all
We shall postpone the proof of Theorem 4.9 to §1.4. Here, we give several corollaries of Definition G and Theorem 4.9. (Recall that (ii) of the following Theorem 4.10 has been already proved as Remark 3 in §1.1 and Corollary 1 to Theorem 4.4. )
'guapamba Q7on7 '6'V urarooql -nur, etD s0utddou.t loru.totuoctsonblo g puo V suotTru{ap onJ
Theorem 4.9. Two definitions A and G of quasiconformal mappings are mutually equivalent.
'O ul roJ sploq 0l€replrrpenb .,(.re,ra
holds for every quadrilateral Q in D.
~M(Q) :::; M(f(Q))
:::; KM(Q)
@ ) w > r > ( } i l w > @ wI ! (iii)' There is a constant K
~
1 such that
l€rll qcns I < >I lu€lsuoc e st a.req; ,(ttt)
Remark. Condition (iii) in the foregoing definition is equivalent to the following one:
:euo eql ol lualerlrnba fl uorlrugep Suro3e.ro;eql ul ($) uorltpuoC 'qrDuaq Surr*o11o; 't to t X uorlet"llp lerurxetu eql ol lenbe sr jyr qlns Jo turuugur aq? 1eql aasa^{'ra1e1pa,rord$ qrrqa gI'? €ruurarl pue 8'} eurural {g
By Lemma 4.8 and Lemma 4.15 which is proved later, we see that the infimum of such K is equal to the maximal dilatation K f of I. 4.1. Definitions and Elementary Properties
87
sarlrador4 dreluarualg pu€ suorlluu:aq'I't
L8
4. 4. Quasiconformal Qua.siconformal MaPPings Ma.ppings
88 88
Proof First, First, we we consider consider the the case case that that EE isis aa rectangle rectangle contained contained in in DD and and that that Prool. I/ isis absolutely absolutely continuous continuous on on the the boundary boundary 0E 8E of of E. E. In this this case, case, in in view view of of Proposition Proposition 4.2, 4.2, we we find find an an tr2-smoothing L 2-smoothing sequence sequence In = put un* ian.n . n' every For (cf. Lemma 4.5). {fn}~=l for I with respect to E (cf. Lemma 4.5). For every n, put In = Un +iv to E' respect with for /' / {/"}Lpr By Green's Green's formula, formula, we we have have By tt - (.,-)r('")"} I I {@^),(an)v J Jn
dxdv -
I u^d'an J| , E
for every every nnand m. Let Let m m *-+ oo. 00. Next, Next, to to the the right right hand hand side, side, apply apply the the formula formula and.m. for for integration integration by by parts parts for for the the Stieltjes Stieltjes integral. integral. Letting Letting 7r n *'+ -+ o9, 00, we we obtain obtain for t[ t [n
- uuo,)dtdy[ uda. Uf"P- lf1\ara,- = [ [ (u,oc Jan JJn'
=
Here, we write write /I = u+ia. u+iv. The The right right hand side of of the above above equality is interpreted interpreted Here, as the the line line integral integral of of uda udv along the Jordan curve df(E) 81(E) on the w(w( = u*ia)-plane. u+iv)-plane. as By the the assumption, assumption, Af@) 81(E) is rectifiable. Hence, Hence, we can show that that By t
(
tl
{ udv = J~ dudv = A(E)' A(E). JJ,r"rdudo J aE JJ(E) Ju""o'
=
=
Thus we we have have the assertion in in the case case stated stated at the beginning beginning of of the proof. Thus such Since contained in D can be approximated by such every rectangle recta,nglecontained ACL, every Since I/ is ACL, D. By a routine rectangles. contained in D. rectangle contained every rectangle holds for every Hence, (4.7) holds rectangles. Hence, tr subset E of D. 0 measurable subset argument, every measurable (a.7) holds holds for every that (4.7) it is proved that argument, it quasiconformal mapping If of a domain Now, by Propiosition 4.11, every quasiconformal 4.11, for every D, we can consider a quantity quantity a consider we can D,
Iz f, Iz
J1.J r t t= =T and satisfies satisfies a.e. bounded measurable measurablefunction on D, and pt is b arbounded D. This J1.J a.e. on on D.
< ~J ess. sup IJ1.J (z)1 ::; - ~ ess.sup lptQ)l 9+ t fJy + *L zED zED
<< 1.r.
We of Ion D. dilot'ationof prythe complerdilatation the complex call J1.J We call f on D. D, proposition 4.13. domainD, of ao domain andgg 01 Proposition mapping qaasiconfortnal moppingIf and For every eoeryquasiconlormal 4.13. For 1 giaenby by g o1mappinggo the mapping composed pso!-t 01 of the the composed dilatationJ1.goJ-t I-r isis given complexdilatation thecomplex
Izf, J1.g J1.J . Fo--!!_, J1.goJ-t l r s o l -0 r I" I== T=I _ - t r r_ l r n, Iz 1- J1.JJ1.g
D. a.e.on on D. a.e.
(4.8) (4.8)
Hence proof.By quasiconformalon on I(D). gof-L isis quasiconformal Proof By (i) 4.10,go/-l of Theorem Theorem 4.10, (iii) of /(D). Hence (i) and and (iii) 1 for a subset proposition except for a subset by on I(D) differentiable on g o1totally differentiable 4.1, go /(D) except by Proposition 4.1, f-r isis totally 1 quasiconformalmapping mapping 1E.Oof to the the quasiconformal 4.12to Lemma 4.12 /-1, , Applying Lemma zero. Applying of measure ,rr"""rrre zero. 1 both 4.1, by Proposition Proposition 4.1, both I/ we (E) isis also zero. Hence Henceby of measure measurezero. also of we see seethat that 1f-r(E)
'1purs dlluatr leqt atunss€ feur aaa 'U -gns eql uo snonurluoc ,(pr.ro;tun sr 3f acuts 'alo11 & 3ul{"t }as lceduroc ('e't 'St,f aeg) 'oo - ll uaqn tlt Aq .{lrlenbeur eq} Jo eprs pueq lq3rr aq1 acelda.re^\ pue 'llq'lr) = {J 1es ein 'era11
Here, we set I j = [aj, bj ], and we replace the right hand side of the inequality by 1/{ when fj = 00. (See Fig. 4.2.) Now, since f is uniformly continuous on the compact set R, taking 1] sufficiently small, we may assume that
k=1
I={
'Z/,-!,1?lr-q)-{)13
L
and
I(k - (k-d
2: fj -
{/2.
n
Pu3
, ( o f r ?!+e ) l = o )
+ iVa),
+ iVa)
(4+!q)I =2
(0 = f(aj
(n = f(bj
1€rl1q?ns({on} x ft)/ (0 <) r pue f xrg uo slurod r=l{{)} }esalruge sr areql ueq; 'f1.re.r}lqre Jo 'd1e.rr1cadse.r'({on} x ft)/ pue f7 1osqfual eqt eq !,1pu, ll t"j '{ f.rer.aro;
for every j. Let fj and fj be the lengths of I j and f(Ij x {Yo}), respectively. Fix j and { (> 0) arbitrarily. Then there is a finite set {(d~=1 of points on f(Ij x {Yo}) such that
(A)t = lO pue fft(ofrlx !7 - lg '[g 'r] r--,I{!il e a{el ,tlF tJ ellug les pu€ Jo sle^ralurqns 1u1ofs1pf11en1ntuto 'uo a.requrorg '6 < & leql erunss? (orf- /t e qcns xlJ'[p'af 'on - n - & ) ff frale lsotule l€ alq€ItuereJlp sI 1aspue e sr (f)g ecurg '[p'a] uo /t f.ra,re.roy([n'a] x [g'r])/ Jo g 'uor1cun3Sursea.rcap-uou exr.g'too.t4 eer€ eql (n).I fq aloua(I'fp,re.ryq.re0 qW '"1x [g'rf =A e18ue1cer
Proof. Fix a rectangle R = [a, b] x [c, d] in D arbitrarily. Denote by F(y) the area of f([a, b] x [c, V]) for every y on [c, d]. Since F(y) is a non-decreasing function, F is differentiable at almost every y E [c, d]. Fix such a y = Yo, and set 1] = y - Yo. From here on, assume that 1] > O. Take a finite family {Ij }j=1 of mutually disjoint subintervals of [a, b], and set
'O uo ICV sr g uorTtu{ap aq7 ''I'' Bruurarl to asuas?W u? CI utDtuop D lo t |ut,rldout Toutlotuoctsonbfinag
Lemma 4.14. Every quasiconformal mapping f of a domain D in the sense of the definition G is ACL on D.
'(g) p"" (r) suorlrpuoe aql segslles gr uollluuep eql Jo asuesaql ur Suldderu leuroJuocrsenb e lsql ^ oqs gI'? pue ?I't s€ururaT 3ur,uo11o;eq1 'dlesre,ruoC'($) uorlrpuoc eqt segsltes y uolllugap aql Jo esuas aql q Sutddeu leuroJuoclsenb ts 1eql 8'' eururerl uI u^roqs fpeerp e^eq el6
We have already shown in Lemma 4.8 that a quasiconformal mapping in the sense of the definition A satisfies the condition (iii). Conversely, the following Lemmas 4.14 and 4.15 show that a quasiconformal mapping in the sense of the definition G satisfies the conditions (i) and (ii). 'v'T'v
4.1.4. Proof of Theorem 4.9 6'7 tuaroat{I
0
tr
Jo Joord
'uorlresse aq1 fldurr sarlrpnba e^oqe eql snqtr, 'O J z ,'hala lsorul€ roJ
for almost every zED. Thus the above equalities imply the assertion.
O*1"^G-t"6) pu€ '0*'6 '0#'l Using a similar argument, we can show by Proposition 4.11 and Lemma 4.12 that
leql fq ,raoqs uet e^t 'luaurn3rerelltuls e 3ursl Zl'V evutej pup II'f uo11tsodo.r4 'g). -'0 lo t(r_/o f) *'l' I o'(,_1o 6) Pu€ and
^G-t o6)= z6 "!' "t(r-l" 6)+'t' I t o eAeIIa/rr'(r)I - ^ 'r{lEurproccy'p[e^ q elnr urcq?eql (z lulod e qcns ?V 'O uo z frale Eur1r.r,n 'flarrlcadsar'(z)rf ?s pus z le elqellueraslpf1p1o1a.re1-./ o d pue lsourle .ro; gz =(gor 1 )w o f·fz+(gor 1 )w o f·lz
and go f- 1 are totally differentiable at z and at f(z), respectively, for almost every z on D. At such a point z, the chain rule is valid. Accordingly, writing w = f(z), we have 89
4.1. Definitions and Elementary Properties sarlrador4 dreluauralg pu" suorlruyaq'I't
90 90
4. Quasiconformal Quasiconformal Mappings
}~
Ir
Ir r5 0 r> 1 Fig. F i 9 . 44.2. .2.
en -
i(yo+ If(xo f(xo + +€)) - /("0 +;vil S~ lf(ro+ i(yo .iYo)1 ~ *4n
e
e
with 0 ~ < € ~ D] and every { with Ri for every Xo cs on [a, < TJ. 4. Take any curve L in Rj [o, b] parallel to the y-axis. Then connecting two sides a"reparallel Then we we can see see sides of oRj )Ri which are that f( L) is less than that the length of ol f(L) is not less
I,=il(*-(*-,1i. &=1
=
rectangleRj On hj ] x f, be be aa homeomorphism homeomorphismof some somerectangle fr.1= [aj, the other other hand, hand, let h On the la1,6il quadrilateralQj interior of Rj and [Cj, dj ] onto which is is conformal conformalin the the interior Ei and onto the the quadrilateral Qi which l\i,dil respects verticessuitably. suitably. Then we have have respectsthe the vertices Then we /
"
,6;
Ii s | |
\/a;
\2
,6;
tlt'ta,)s tai- ai).t |'ai li,'t'a,. /
we obtain obtain Integrating dj], we sideswith respect respectto y on on [Cj, Integratingboth both sides lei,dil, ii2
-
u { o i ) .A4j .i . lj S ~s M(Qj). Here, area of Qj. Here, we we denote denote by A li j the area Qi. Now, suppose senseof the definition G. Since suppose that that f/ is K-qc K-qc in the sense Since
u(Q)
(l-)
I6
91
4.1. Definitions and Elementary Properties sarlrador6,(rcluauralg pup suorlluya('I'p
'O uo rIcY sr D '[g'r] > 0c .frerralsotup ro; d ;o uorlcunJ e se [p'a] uo / reqr epnl)uof, ar'l snqtr, snonurluoc {1e1n1osqe* (fi'oa)l }€q} ^\oqs uec ea\ 'luaurn3re eures aq1 fg 'o Jo uorlrunJ * * [g'o] uo snonurluoc * llt--,t'3se 0 - !,lt--,j31€rll apnlruo? flalnlosqe 4(fr'r)!'flluanbesuoC'0 '6 sr f7 r(.ra,ra e.!r', - lA? l€ql ees rr€c ea\'relncrlred u1 <- & se \e?urs'ellug anl€ etlug e ol spuet (ofr - q/((on)a - (n)A) '0n te alqeltuereJlP sI dr e)uts
Since F is differentiable at Yo, (F(y) - F(yo)) j(y - Yo) tends to a finite value as 'TJ -+ O. In particular, we can see that every i} is finite. Since Ij ~ i} - f, we conclude that Ej:l i} -+ 0 as Ej=l i j -+ O. Consequently, I(x, Yo) is absolutely continuous on [a, b] as a function of x. By the same argument, we can show that I(xo, y) is absolutely continuous on [c, d] as a function of y for almost every Xo E [a, b]. Thus we conclude that I is ACL on D. 0
uayl 'N uor?Dlolrplourroou eUl ypn g uotTru{apaqy 'St'V BtutuaT {o asuas ?qI u? CI urvulop o to 0utddoru Tou.totuottsonb p sr I lt
Lemma 4.15. II I is a quasiconformal mapping of a domain D in the sense of
the definition G with the maximal dilatation K, then
'O uo'e'o l'llq > Itll
I/EI :5 kl/zl
where k = (K - l)j(K
a.e. on
D,
+ 1).
'0+x)10-x)=qer?qn
'6'7 uorlrsodordJo;oord eq1 ur pelou e \ sy'anrleEau-uou a.re(g)z/ pu€ (0)"/ (20 pve Id sraqurnu leer alqelrns qq^a (z . "sre)t . ,6re l€ql eurnsspJeqlrnJ feur an Sutreptsuoc ,(g '0 = oz Ie-qI'flqelaua! Jo ssol lnoqtl^t 'eurnss€ feur er* ara11 'acua11 'oz = z e q?ns xld 'O ) z f.rcrlo lsorul€ le elqerluaragp f11e1o1sr 3f '1'7 uorlrsodord 'loo.r4 Jo uorldurnsse aql segsrles / teqt saqdur yl't €ruural
Proof. Lemma 4.14 implies that f satisfies the assumption of Proposition 4.1. Hence, I is totally differentiable at almost every zED. Fix such a z = zoo Here we may assume, without loss of generality, that Zo = O. By considering ei81 . f( ei82 . z) with suitable real numbers (}1 and (}2, we may further assume that Iz(O) and fz(O) are non-negative. As we noted in the proof of Proposition 4.2, fz(O) ~ fz(O) (~ 0). If Iz(O) = 0, then the assertion is clear. Hence, we assume that fz(O) > O. In this case, note that I is expanded as
o < (o)"/ teqt 'r?elc$ uorlrassB aurnsss arrr'acue11 eql ueql'o = (o)"/JI'(0 <) $)tt 7(il"t se papuedxa q ./ l€rll elou 'asec srql uI
(lrl)o + z'(il'l + z'(o)"1+(o)/= ?)t f(z)
= 1(0) + Iz(O) . z + IE(O) . Z + o(lzl)
elEuelce.raq1 flaleurxo.rdde sr ('g,)/ .t"ql 'a elrlrsod frarr.aro; [r'0] * [r'0] = 'g a13ue1rere raprsuoC 'ur3rro sqlJo pooqroqq3rau e ur
in a neighborhood of the origin. Consider a rectangle R f = [0, f] positive L Then I(R f ) is approximately the rectangle
X
[0, f] for every
' [, ((o)"/- (o),/)+ s's]x P((o)"/+ (o)"/)+ D'Df
[a, a + (/z (0) + fz(O)) f) x [b, b + (/z (0) - fz(O)) f] ,
where 1(0) = a + ib. Hence, by Rengel's inequality (cf., for instance, Lehto and Virtanen [A-69), I 4.3), we obtain
ul"tqo r '(g'' f '[Og-V]ueuelrr1 pue olqerl'ecuelsurro; '';a) flrpnbaur s,1a3uag fq'acua11'g?*e = (0)/ eraq!\
Iz (0) + fz(O) ~ M(/(R f ) ) ~ Iz(O) _ IE(O)
:x ? (dDw 7 ('a)wx = K M(R
f )
'(t)o +ffi
K
+ 0(1).
'6 'snq6 13ql epnlcuoc a,ll o+ puel r 3ur11a1
Thus, letting
f
tend to 0, we conclude that
,$),t - 6)'l < (oETl6)"/ )/
K> fz(O) + fz(O) - Iz (0) - IE(O) ,
'ft)"lq j 6)tl
or equivalently, IE(O) :5 klz(O).
o
'f11ua1e,rrnbe ro
92 92
4. Quasiconformal Quasiconformal Mappings
4.1.5. 4.L.5, Other Other Fundamental F\rndamental Properties Properties of of Quasiconformal Mappings Quasiconformal Mappings proofs, two of the fundamental and important We state here, here, without without proofs, properties important properties quasiconformal mappings. on continuity continuity of quasiconformal (Mori's theorem Theorem -qc mapping Theorem 4.16. 4.16. (Mori's theorem [157]) mapping of the K-qc the unit A ff is a K ll57D If (0) = 0, disk disk..1 A onto onto itself with with ff(O) then 0, then - (rz)l < t 6 lzz11-- Z2!I/K, ,rltlK , If(zd < 161 l f ( r t ) - ff(z2)1
2 1 , 2 2E z 1 i= f Z2. A , ZI 22. ZI,Z2 € ..1,
Theorem -qc mappings fixing 0 and Eaery sequence sequenceof K Theorem 4.17. Every K-qc mappingsof C onto onto itself firing and 1I contains subsequencewhich which converges conlains a subsequence conaergesuniformly unifonnly with respect respectto the the spherical spherical distance. d,istance. function of such is again -qc. Moreover, Moreoaer, the the limit limil function such a subsequence subsequence again K I{-qc.
For proofs of of these these theorems and further further information information on quasiconformal mappings, see, pings, see,for instance, instance, Ahlfors [A-2], [A-2], and Lehto and Virtanen [A-69]. [A-69].
4.2. 4.2. Existence Theorem Theorem on Quasiconformal Quasiconformal Mappings We have have seen seen that that aa quasiconformal mapping mapping f/ of of aa domain D induces aa pJ on D which satisfies measurable function Pion satisfies ess.suPzEDlpl(z)1 ess.sup362lttt!)l < L. bounded measurable < 1. p with In this section, we shall show with section, we show the converse. converse.Namely, Namely, for every every measurable measurableP quasiconformal mapping whose whose complex ess.supzED Ip(z)1 < 1, we we construct aa quasiconformal €ss.supz(DlpQ)l < 1, dilatation dilatation is equal equal to p.
4.2.1. Preliminary Considerations Preliminary Considerations We denote the complex Banach bounded measurable measurable denote by LOO(D) I-(D) Banach space space of all bounded given by functions on aa domain D. Here, Here, the norm is given
=
pE ess.supz€Dlp!)|, L*(D). Ilplioo P e LOO(D). llpll- = ess.suPzEDlp(z)l, of LOO(D), L*(D), and andcall call Let be the II 00 < I} Let B(Dh B(D)1be theunit unitopen openball ball{p L*(D) I| lip 1} of e LOO(D) {p E llpllany element element of B(Dh B(D)1 aa Beltrami Beltrami coefficient coeficient on D. prescribed complex quasiconformal mapping with First, we with the prescribed we note that that aa quasiconformal precisely, we dilatation we have essentially unique. unique. More precisely, have the following: following: dilatation is essentially Proposition that there pr be be an an arbitrary arbitrvry element elernentof B(Dh. B(D)1. Suppose Supposethatthere Proposition 4.18. Let p pJ = p. Then quasiconformal mapping Then for exists for mapping ff with wilh the the complex cornpler dilatation PI erists a quasiconformal (D), the every mapping hho0 ff has has the the same same confortnal mapping mapping h of ff(D), the composed cornposedmapping eaery conformal complex complexdilatation dilatotion p. = p, quasiconformal mapping Conversely, for every pg = mapping g with Fg the composed composed euery quasiconformal Conaersely,for H, the 1 (D). mapping g o fconformal mapping mapping of "f ff(D). mapping go f-L is a conformal
stu-rddery l?uroJuof,rsen$
4.2. Existence Theorem on Quasiconformal Mappings
93
uo uraroaql
eluetsD(g 'Z'?
= =
'rb-1 sr 't'? ureroeql o1 f.re1oro3 ,(q tr 6 leurro;uoc8I etueq pue '-Io61€rll s&olloJtl'gl't uotltsodor4fq (O)/ uo'e'e g ol lenbas.r'-lotrl acu-ts '1xatr1'rl = trl - {ottil e^eq e/{'tI'} uo11rsodor43o;oord aql uI s€'1s.rrg/ool2'
Proof. First, as in the proof of Proposition 4.13, we have J-lhoj J-lj J-l. Next, since J-lgoj-l is equal to 0 a.e. on f(D) by Proposition 4.13, it follows that gof-l is 1-qc, and hence is conformal by Corollary 2 to Theorem 4.4. 0
uoll€lar e e^sq aruue{} ',t1en1ry 'zJ' ue^€ eq? urorJ 'et)C / / uorleluaserdarelqellns e 1eBa,n3r elqelrnse Surpug''a'r 'tualqold-g..If Eunlos 1srgrePlsuocea.'asodlnduq1 rog '"lrt - zs uorlenba1er1ue -regrprtu€rlleg eql e^losol lr.roqreplsuoceaa'I(C)B 3 r/ ua,r€ {ue ro;',tlo1q
Now, for any given J-l E B(Ch, we consider how to solve the Beltrami differential equation fz = J-lfz. For this purpose, we consider first solving the a-problem, i.e., finding a suitable f from the given fz. Actually, if we get a suitable representation f = G(fz) , then we have a relation fz = G(fz)z = G(J-lfz)z
'(trt)C='el)g=zt
,(q uarrrEfl rurou aql eJeqA{'C uo alqerSelur a.re alll 1etll qcns c uo / suollcunJ elq€rns?au 1e 3o aceds qc€ueg xalduroc eq+ eq (C) n lel 'oo > d ; I qll^{ d f.ra,ra rog 'uolleruroJsuerl fqcne3 'pueq Jaqlo eql uo aql m ua\our1iflecrsselc u e/ urog / lanrlsuooar o1 fem e 'uorlenba aql p ((rl)grl)9 = t ua,u3 ruerlleg ''l pue r/ uaaallaq uorlnlos e ur?lqo a,r,r,'(r/)g = zt tjd'rol aql u-r 11 3ut1t.ra,rag
between J-l and fz. Rewriting it in the form fz = F(J-l) , we obtain a solution f = G(J-lF(J-l)) of the given Beltrami equation. On the other hand, a way to reconstruct f from fz is classically known as the Cauchy transformation. For every p with 1 ~ p < 00, let LP(C) be the complex Banach space of all measurable functions f on C such that Ifl P are integrable on C, where the norm is given by
(fL
= oil,ltl ot,(np,por:[f)
'(r)ar),t
Ilhllp =
IhIPdXdY) liP,
hE LP(C).
'uralqord-g aql e^los ol Frluasse x opru"tot s,ntadtuo4 letrsselc Euu,ro11o;eqa
The following classical Pompeiu's formula is essential to solve the a-problem. tt puo lt s7uau;1afr,qpeTuesaul^teJo searry)auap1otq.tod PuorlnquqrP esoqn C uo uotTeunt cnonutluoz o ?q I pI '@ > d > ?, qfn d qI 'At'V uollrsodorg
Propositiun 4.19. Fix p with 2 < p < 00. Let f be a continuous function on C whose distributional partial derivatives are represented by elements fz and fz of LP(C). Then f satisfies
sa{s4nst uaqJ '(dn
Io
a)),nP,pfi'ff +_#"'[,+=o)/ f(() = ~ [ 211"l
1
&B
.!. j~ [
f(z)dz _ Z -
(
1
fz(z) dxdy,
B Z -
11"
(E B
(
for every open disk B in C.
'C u! g tlnp uado tueaa .tot
se,rr3elnurro; s(uearp 'u fla,ra rog ',tpe.r1rqre g ) ) lutod e xg aauanbesSutqloours-o7 ue a4e1 '1xa1i pu"'g o1 lcadsar qgi'a / roJ I*{"/} 'flqenbaur s(raploH fq s.uo11o; uorlresse aq? 'g uo alqe.rEalulsI rl() - z)/11 acurg 'trsJ u1 'alqer3alur f1a1n1osq€sI apls 'I = b/I +dlI fq paugep aq (Z >)D lal '1sq1g pueq lq3rr eql uo turel puo?es arll Jo puer8alut eqt l"ql a?ou erlr /oor2r
Proof. First, we note that the integrand of the second term on the right hand side is absolutely integrable. In fact, let q « 2) be defined by l/p + l/q = 1. Since 11/(z-(W is integrable on B, the assertion follows by Holder's inequality. Next, take an LP-smoothing sequence {fn}~=l for f with respect to fJ, and fix a point ( E B arbitrarily. For every n, Green's formula gives
[ (fnh(z) di
,Pv,Pffi"il+-ffi"f +=e)"! =~ [ 2n 1&B
fn(z)dz _ ~ j~ Z -
(
211"l
'uotllesse eql aAeq e^r "("/) pt" 'g uo ttpuroyun / +- u/ aautg
Since fn -+ f uniformly on fJ, and (fnh we have the assertion.
1B
Z -
1\ dz.
(
tr '@me u se 'flartlcadsa.r '(g)a7 ul zt *
fn(()
-+
fz in LP(B), respectively, as n
-+ 00,
0
3ur11es,tq (C)aZ uo d roleredo reeutl € augap eA\
We define a linear operator P on LP(C) by setting
( o ' r ) ' c r ) ' ( c ) )atzt ' o p (, p 1 -+ ) e t u " f+l -=o ) q a Ph(()
= _.!. jr[ h(z) (_1__ .!.) dxdy, 11"
lc
z- (
z
hE LP(C), (
EC.
(4.9)
94 94
4. 4. Quasiconformal Mappings QuasiconformalMappings
Then we have have the following: following: q and Lemma L e m m a 4.20. 4 . 2 O . For F o r every e a e r y p with w i t h 22 < a n d ffor e u e r yh E L p ( C ) , Ph Ph < p < < 00 e LP(C), o r every is a unifonnly function on - 2/p), and uniformly Holder Hiilder continuous continuousfunction (7-2/p), on C, with wilh exponent erponenl (1 and satisfies satisfiesPh(O) Ph(0) = O. 0. Moreover, Moreouer, P Pff satisfies satisfies (Ph)a = h
on on C in in the lhe sense senseof distribution. distribution.
proof of Proposition Proof. we shall Prool. First, First, as as in the the proof Proposition4.19, 4.19,we shall show showthat the the integral integral (4.9) is purpose,define well-defined.For on on the the right right hand hand side sideof (4.9) is well-defined. For this this purpose, defineqq by the the equationl/p \/p+I/q equation + l/q = 1.1. Since Since 1
11
(C
---zz -( - C - -zr = z(z r 1 r- -()q belongs belongsto Lq(C), Holder's Hcilder'sinequality inequalityimplies impliesthat 1 (a h IPh(() : : ; );lI I P A (IC ; * n_ l()l cIlq ;ll
( 00. @. <
Further, the variable, variable,we we have have when ( :I 0, by by changing changingthe Further, when I 0, q . t tqQ trt 1 lo, 2 2, f l l axay=lCl2-z'II d,rda. l--;----l II l--:--l L ) l dxdy. J J c l z(z z ( z- () dxdy 1(1 - qJ J g lz(z z ( z- 1)
fL I
~ C I) l
fL I
=
~ I
Hence, depending only on p such such that Hence, there is aa constant constant K I(op depending
l P h ( ( )Sl K r l l h l l o ' l c l ' - ' t(o€, c , e + 0 .
=
(4.10) (4.10)
=
(4.10)is valid even evenwhen when ( = O. Since 0. Ph(0) - 00 by by the the definition, definition,(4.10) is valid SincePh(O) we obtain Next, Then we obtain Next, set set h hr(r) h(z + + (d. 1 (z) = h(z Ct).Then
phlCz(,)=-+il"h(z+c,)(4+_6- l) o,o, 1
f f
/
1
zrJJc "\z-(z = Ph(cz)- Ph((r).
1
\
z-Q/
(4.10),we we conclude Combining this with (4.10), concludethat Combiningthis 1 2P pn4)l ::::; 'lc,-- (21 c, Kollhllo - / , IPh((d ·1(1 (1,(2 crlt-'to, cr,czEQC, S Kpllhllp lph((r)-- Ph((2)1
(4.11) (4.11)
with exponent or equivalently, that Ph is aa uniformly uniformly Holder continuous continuous function with equivalently, that | - 2/p. 2/P' 1(C) such that sequence{h such that To show show the second second assertion, assertion, take take aa sequence Cf (C) n };:"=l in COO {h"}Lr ---+00. - h"llop -+ * 0 as example, as as in Ilh as n -+ oo. (Such (Such aa sequence sequenceis is constructed, constructed, for example, llh - hnll we have the proof of Lemma 4.5.) 4.5.) Then for every every h h., have n , we
96
s8urddel4l l"uroluof,rspn$
4.2. Existence Theorem on Quasiconformal Mappings
95
uo ruaroaqJ af,ualsrxg 'Z''
(^0.r6{;s"ll +)# =eFyta) =
(_~
8_
8(
71"
Jr f
JrJcf hn(zz+ () dXd y)
lzt'v)
(Phnk(()
(4.12)
cff v )-z 'np,pG)1",1 Jlt-=
= _~
(hn)z(z) dxdy.
Jc
71"
z-(
Hence Green's formula gives
se,rr3elnurro; s.uaalg ecueg
.()),q= rpY*{=tt-zt! = (illeltd) ' (z)"tl +t;ri t I 1 . 1 = lim -2 f-+O
7I"Z J{lz-(I=f}
hn(Z() dz = hn (().
z-
'(C)JC 1eBa,ra.
(Ph n )((()
'relnctlred u1 lt d .{rerraro3
In particular, for every ep E Cg<'(C), we get
fL
- fiPxPdtu;t [ t J J
=-
Phn . epzdxdy.
'frPaPz4''' "'ld"[
hnepdxdy
J J
fL
Since Ilh - hnll p -+ 0 as n -+ 00, Ph n converges to Ph locally uniformly on (i.e., uniformly on any compact subsets of) C by (4.10). Hence, when we let n -+ 00, the above equality gives
seat3 ,(1t1enbaa^oqe aql '(Ot'l),tq 'oo + u lal e^r ueq/t'acue11 C (lo slesqns lceduroc fue uo r(luro;tun ''a'r) uo .{pr.royrunrtlpcol t12,o1 seS.rar'uotut14'oo s u se 0 F oll"U - qll ecutg
fL
fL
'(c)Jc>a'fipxpz41''ld -=npxpdq II || J J I J cf f
=-
Ph· epzdxdy,
ep E Cgo(C). tr
hepdxdy
)f
f
'uollresse Puoces aq1 pe,rord e^eq e/rl snqJ
Thus we have proved the second assertion.
0
sarrr3elntu.ro; s(ueerC'asec stql uf (C)"3C o1 s3uolaq q eJaq^l esec aql eulurexa aal.'asod.rnd elqsllns e ul€lqo ol Peou ear'1xa11 slql rod '"(qa) roJ uollsluasa.rder1e.r3a1ul
Next, we need to obtain a suitable integral representation for (Ph)z. For this purpose, we examine the case where h belongs to ego (C). In this case, Green's formula gives
)-zcffz:t6 = zPvzPGfi o))('1a) ll ; 7I"Z
JrJfc hz(Z() dz /\ dz z-
{-1 i
( tn)
1 (Ph)«(() = -2.
(4.13)
1J1
2 . { r r u , r z ) - z )t " t t - " l \ [ [ ? " + -r' o ( z1,)'ut , = l ) - z l [r y g ] n i = (4,1 I Y) lJ | f.-' · = 11m
f-+O
h(z) - d-z
-
271"i
{Iz-(I=f}
z- (
+-
271"i
h(z) d z /\ d-} z
{Iz-(I>f}
(z - ()2
.
1er?e1urrelnEurs eql ,iq 'acua11'lerluasse $ lurel peugap ; roleredo r€eull aql ol uorluelle .rno fed am puores aql '0 e , sB 0 ol sa3rarruocapls pueq lr{3tl aq1 uo tural }srg aq} eculs
Since the first term on the right hand side converges to 0 as { -+ 0, the second term is essential. Hence, we pay our attention to the linear operator T defined by the singular integral
= lim {-~j" f
( h(Z~)2dXdY},
'(c)"3c >,1' {**fft*rt-4t11i-}"i =o),tt Th(()
f-+O
71"
J{lz-(I>f} z-
ego (C)
hE Cgo(C).
sa{s4os(C)JC ) t1tuaag 'TZ'7 Bururarl
satisfies
= Th
uo rtJ = "(Ud) on
C,
'C
(Ph)z
ftr'v)
Lemma 4.21. Every hE
(4.14)
and
(qrr) (4.15)
puD
'zllqll = zllutll
'(C)"3C q ,trerraroJ (C)-C o1 sEuolaqqd IeqI ) leql pu€ '(tt'l) paglre^,(pea.rpe^"q eM'too.t4 (gt't) p"* (Zt'f),(q aasu?c aa,r'1xa11 Proof. We have already verified (4.14). Next, we can see by (4.12) and (4.13) that Ph belongs to Coo (C) for every h E ego (C), and that
4. 4. Quasiconformal Mappings Quasiconformal Mappings
96 96
;i 11 ;i fL
IIThll~ = --* ll;ro>"r-rolzdz (Ph)z(Ph)zdz AAdZ di 1rh17= == + Ph· (Phhzdz AAdZ di Il"ph.(-ph),,d2 == ~ jr f Ph. (1£ hdz A^dz di (h)zdz * ll"ph 2z Jc -+1j~-h(Phhdz AAdz 2 d2==IIh112' ==-----; llhll1. 2z ll"nenl,dz c
_
otr
we have proved(4.15). Thus we haveproved (4.15). Thus
particular, that Lemma 4.21 4.21 implies, implies, in in particular, Lemma that the the operator operator T7 is is extended extendedto to aa 2 (C) into boundedlinear linear operator operatoron on LL2(C) bounded into itself itself with with norm norm 1. we have 1. Since Sincewe haveconconsideredthe the operator operator P P as as that that on sidered on LP(C) LP(C) with with pp > 2, we we consider considerT? also also as ) 2, as such an an operator operatoron on LP(C). .tr(C). Then Then we we see such seeby by the the following followingclassical classicalCalderonCalder6nZygmund'stheorem theoremthat that T? gives givesaa bounded boundedlinear Zygmund's linear operator operatoron on LP(C) (p > 2) U(C) (p 2) into itself. itself. into (Calder6n and Zygmund) For 4.22. (Calderon Proposition 4.22. ~ p < 00, Forevery eaerypp with with 22<-p 1crc, Cp -
sup ll"hllo n€c8p(c),llallr=l
is finite. Hence,the the operator operalorTT is is extended is finite. Hence, edendedto to aa bounded boandedlinear linearoperator operatorof LP(C) Lr (C) into itself itself with with norm norm Cpo into Co. Moreoaer,C is continuous continaoaswith p. In particular, parlicular,C Moreover, Co wilh respect respeclto lo p. satisfies p satisfies Co p is 1. lim C C.p = 1.
p P..... - 22
(4.16) (4.16)
we shall include a proof proof of this basic In §4, basic result for the sake sake of conveconve$4, we nience. Here, Here, assuming assuming this proposition, we nience. we solve solve the Beltrami Beltrami equation. equation. Note that that Proposition 4.22 4.22 gives gives the following: Proposition arbitrarily giaen (> 2) and euery Proposition 4.23. 4.23. For an arbitrarily given p (> every h e E U(C), LP(C), = Th (Ph), = Th (Ph)z on C in the the sense sense of of dislribulion. distribution. Proof. Take a sequence sequence {h"}8, {hn}~=l in Cff(C) C~(C) approximating approximating h in Lp(C) LP(C) (cf. the proof proof of of Lemma 4.20). 4.20). For every n, (4.14) (4.14) implies that that
1l
1l
f I tl nn" .. gepzdxdy, ,dady, p rTh n "n . .gepdxdy d x d y= = -- I I pPh f(C). ep €ECCo(C). I I JJc JJc
Here, Here, Ph,, Ph n ---+ Ph locally locally uniformly uniformly on C by (a.10) (4.10) and and Thn Th n ---+ 11, Th in 7r(C) LP(C) bV by Proposition Proposition 4.22, 4.22, respectively, respectively, as as rl n+ --+ oo. 00. Hence, Hence, we we obtain obtain
epnltuoc a^r eunual s,1fa6 r(q ure3e'ecua11'C uo'e'e zD = zt salrE osle uorlenbe rurerlleg eqt uaqJ'C uo'e'" "6 =,! 1eBaar'uorldtunsseaq1 fq 1 ) dg1 ecurg
Since kCp < 1 by the assumption, we get fz = gz a.e. on C. Then the Beltrami equation also gives fz = gz a.e. on C. Hence, again by Weyl's lemma we conclude
' oll'0 -' 6,t),t- $ rt),tll= dll,6 -, tll I lloCq ) dll(" By Proposition 4.22, we obtain ul€lqo e$'ZT,'V uorlrsodor6 fg
'l*('6rl)a="0
Next, using equation (4.18), we shall show the uniqueness of the normal solution. Suppose that there is another normal solution g. Then, as above, we have
aA?r.l arrr'arroqe se 'ueq; 'f uorlnlos l€rurou Jeqloue sr areql 1eq1 asoddns 'uorlnlos '(gf 'f) uorlenba Sursn '1xa11 Ier.urou eql Jo ssauenbrun er{} ^roqs n"qs eAr
(st'r)
'l+('tilh= "t
Taking the derivatives with respect to z and noting Proposition 4.23, we finally obtain the equation (4.18) fleug
uorlenba eql ulelqo all^'tC'V uorlrsodor4 Eurlou pue z ol lcadsar qlr^{ sa^r}e rrep eql Eur4ea
'C)z
(trv)
' z+(z)(zt)d=?)t
f(z) = P(Jz)(z) + z,
z E C.
(4.17)
- (r),,tr e c u e qp u e ' 0 = o a A " r Ia ^ { ' 0 = ( 0 ) / a c u r g ' ( 3 ) D ) D + z - ( z ) I ' ' " ' ! ' I 'I '(C)al o1 Euolaq (rt)l = '(t)a l"eql epnlcuoc usc a^r snql d saop os pu€ ecurs (pu"q raqlo eql uO 'C elor{A{ eq} uo crqdrouroloq q (z),9 I J 'acua11'uorlnqrJlstp eql 1eq1 sarldun (9'7 eururel) eurural s,1fa7y1 Jo esues eql ul 0 = cdr rraloerol tr 'O = (O),9 pu" snonulluoc sr (z)g '96'7 eurural fq ueqa
=
=
=
=
Then by Lemma 4.20, F(z) is continuous and F(O) O. Moreover, Fz 0 in the sense of the distribution. Hence, Weyl's lemma (Lemma 4.6) implies that F(z) is holomorphic on the whole C. On the other hand, since fz - 1 and P(Jz)z = T(Jz) belong to LP(C), so does F' - 1. Thus we can conclude that F'(z) 1, i.e., F(z) z + a (a E C). Since f(O) 0, we have a 0, and hence
=
=
'c)z
'(r)(l)a-Q)t=Q)t
F(z) = f(z) - P(Jz)(z),
z E C.
Proof. First, we derive a condition which the partial derivative fz of the normal solution f for J1. should satisfy. Since fz = J1.fz has a compact support, and since fz -1 belongs to LP(C), fz also belongs to LP(C). Thus we can consider P(Jz). Set
tes
'(Da reprsuor ue? e,r,rsnqJ '(C)d? o1 sEuolaq osle zt '(C)al o1 sEuolaq 1 f eculs pu" 'lroddns lceduroc e seq ztd - ?'J'acurs 'i(;sr1esplnoqs rl rc1 uorlnlos I '1s.ng "/ elllellrap 1er1.redaqt qcrr{irr uorlrpuo? € aArrap aaa /oo.l2'
I€Lurou eql Jo
We call this f in Theorem 4.24 the normal solution of the Beltrami differential equation for J1..
purrou eqrv.''iluaroeqtr,r,lrl#rlojii"o" I*Iluara'rprurertag aqrrouorwlos
'suor,ppuo?asaqTfrq frqanbtunpeurulJepp sy, uo. qcns 'taaoa.to14J I 'uotlnqu?s'P esueseql u' J uo to - z1 lrt sa{n1os t puo '(3)67 o7 sfuo1aq - 't '0 = (0)/ uotTcunl snonuNluo) D slsrr,eanqT 'l,.toildns lDUl I Urns t 'I > dCtt Tcoilutocq?tn puv { > -llt/ll ql4rr"r(C)g ) rt tuaaa .tot uaqa UWn o ?tloJ'fr1g.to"r.7gy,n I > { t 0 toql qrns q a!.{'VZ'V urarooql k <) a aarTtsod,
on C in the sense of distribution. Moreover, such an f is determined uniquely by these conditions.
Theorem 4.24. Fix k such that 0 ~ k < 1 arbitrarily. Take a positive p (> 2) with kCp < 1. Then for every J1. E B(Ch with 11J1.lIoo ~ k and with compact support, there exists a continuous function f such that f(O) = 0, fz - 1 belongs to LP(C), and f satisfies fz = J1.fz 'tueJoeql
'mo1q lelueuepunJ Eurmolloy aq1 alo.rd o1 {pea.r are alr
Now, we are ready to prove the following fundamental theorem. suol+nlos [BurroN aql Jo acualsrxg 'z'z',
4.2.2. Existence of the Normal Solutions
o
' ( c ) J cr a ' f t p r p z d t , " " [ - - f i p x p d t , t " i l f sturddul4l l"ruroJuorrs"nS uo uraroeqJ af,ualsFg 'Z't
4.2. Existence Theorem on Quasiconformal Mappings
97
L6
98 98
4. 4. Quasiconformal Mappings QuasiconformalMappings
t h a t f/ - g u r . holomorphic h o l o m o r p h i con o nC, C , which w h i c h in i n tturn urnim p l i e s that that - a9n dand fl - g- 9 are implies t h a t ff -- g9 should be be aa constant. constant. Since we conclude should Since f(O) concludethat f/ = g, 0, we which /(0) = g(O) S(0) = 0, 9, which implies the the uniqueness uniquenessof the the normal solution. implies solution. (4.18). In fact, existenceof the the normal solution follows Finally, the existence follows also also from (4.18). fact, repeat substituting the whole whole right hand hand side side for for fz repeat on the right hand hand side. side. Then, /, on we have have the following formal series seriesfor fz we l: f" -- 1:
f" - | = Tp * TjtrD + T(p,r@Tp))+ . .. . series actually converges convergesin LP(C), ,Lp(C), since This series since the linear operator operator which sends sends h € LP(C) Lp(C) to T(J-th) T(p.h) E ,p(C) has has the the operator operator norm not greater greaterthan kC hE &Co (< 1). 1). € LP(C) p« We set set We r f u r+ f i ..+,... . . hh==TTJ-tp++ T(J-tTJ-t) (4.19) (4.1e) belongs to LP(C). trp(C). We shall shall show Then h belongs show that
f(z) f ( ' ) ==PP(J-t(h ( p ( h++ l))(z) I ) ) ( z+) +z z is aa desired desired solution. is fact, J-t(h 1) belongs belongs to p has b LP(C), Lr(C), for for J-t has aa compact In fact, compact support. support. Hence, Hence, tt(h++ 1) = Lemma4.20 implies that /f is is continuous, continuous,"f(0) p(h-t and 1). Lemma 4.20 implies f(O) = 0, and fz J-t(h+1). Moreover, 0, Moreover, 7, 4.23 implies irnplies that Proposition 4.23
=
=
f"=T(p(h+1))+1=h+1. = J-tfz, Hence, /f satisfies satisfies the Beltrami Beltrami equation pf,, and equation Jz and f" Hence, fz -- 1 belongs belongs to LP(C). Ip(C). fz =
o!
4.2.3. Basic Basic Properties Properties of of Normal Normal Solutions Solutions
From the construction of the normal solution in the proof of Theorem 4.24, we 4.24, we have have immediately the following: following: Corollary 1. l, Under Corollary the same the following following same circumstances circumstancesas as in Theorem Underlhe Theorem4.24, /.2l,lhe inequalitieshold: inequalities hold: I
ll|illp S *L - / I ; V p llpllp,
(4.20) (4.20)
and, and
l/((r)- f&z)ls fi^lrllpl(r
- czlt-ztp+ l(r - (zl
(4.21) (4.2r)
euery(1,(2 for C. Herv, Here, I{o K p is the given in the Lemma y'.20. 4.20. the constant conslanlgiaen Lheproof of Lemma €C. for every Cr,CzE Proof. Proof. Let h be as as in the proof of Theorem Theorem 4.24. 4.24. Since (4.19), Since h = T(J-th)+TJ-t T(prh)*Tpbyby (4.19), we we have have
kcpllhllp collpllo. p + CplIJ-tllp, IIhllp ~ kCpllhll llhlloS = p(h (4.20). Since f/; 1), we Since fz = J-t(h + we obtain (4.20). * 1), (4.17) we Next, by (4.17) we have have
s8urddey4i l"urroluof,rssn$
99
uo uraroaql
af,ualsrxg 'Z't
4.2. Existence Theorem on Quasiconformal Mappings
'lz)- r)l+l(z))('l)a- ())el)dl t l(z))/- (r))/l If«l) - f«2)1 ~ IP(fz)«l) - P(Iz)«2)1
+ 1(1 -
(21·
o !
'$6V) pu" (II'p) fq s,rao11o3 (16'y) acueg
Hence (4.21) follows by (4.11) and (4.20).
'sllrolloJ s" sluarrlgeoc rtupJ]leg eq] uo suorlnlos leturou eql Jo ecuapuedap eleq a^\ 'arourJeq]rnd
Furthermore, we have dependence of the normal solutions on the Beltrami coefficients as follows. nf
4.24.
Let
{Jln}~=l
ur acuanbaso aq r/{ur'}
:suot?xpuo? 6utmo17ol aq70utfitstTosr(C)g 'fa'f uero?qJ u, sD eq d puo t1pI .Z it.relloaog
Corollary 2. Let k and p be as in Theorem B(Ch satisfying the following conditions:
be a sequence in
(i) IIJlniloo < k for every n, (ii) every Jln has a support contained in {z E C 1Izi < M} with a suitable constant M independent of n, and (iii) Jln converges to some Jl E B(Ch a.e. on C as n --+ 00.
'u tuaaarol tt > *ll"rlll (t)
puo 'u to Tuapuadapu!W luolsuo) elqo?rnsD y?!n {W > lrl I C ) z} u? pauwtuo? T"toddnso soy url tuaaa (n)
rr,t
:, :, :, "r:" : " ::,, :;" ;r: : ::," : r,:^::," :,
.rt t ot uo,4n ros * *
r.J
Let fn be the normal solution for Jln, and f be the normal solution for Jl. Then fn --+ f uniformly on C as n --+ 00, and
puo 'a + u so 3 uo fiTnttotr,unt +- uI ueqJ
kz'v)
'0= dll,!- "(Y)ll?i,r"
(4.22)
selr3 (91'7) 'u .,(.rarre ro3 '1srrg 3foo.r4'
Proof. First, for every n, (4.18) gives
+ II T «Jl- Jln)fz)IIp
'dll zl( d-, t) l l o c+ d l l '(" 1-)' lllo cq ) oll("led-,t)).r,ll+ oll(('(V)- "t)",t)l;ll, oll'el) - "!ll IIfz - (fn)zllp ~ IIT(Jln(fz - (fn)z))IIp ~ kCpllfz - (fn)zllp
+ Cpll(Jl- Jln)fzllp·
al"q ell 'acue11
Hence, we have
.dllz!(uil - ql:"T; t,
dll,('!)- "!ll
urclqo e,rn'(0I'?) pue (ZI't) fq 'txaN '(ZZ'V) 'oo 1aBa,r,r, * s se 3 uo 'a'e r/ url ecurspue 'pepunoq,tpr.rogrunetr- url o1 seS.ra,ruoc 1e yo slroddns eql ecurs
Since the supports of all Jln are uniformly bounded, and since Jln converges to Jl a.e. on C as n --+ 00, we get (4.22). Next, by (4.17) and (4.10), we obtain
l()X'(V)-'l)al = l())Y- O)/l
If«) - fn«)1 = IP(fz - (fnh)(OI
"l) - "Illt + dll' l(,t - ,t)ll}ox } * -rl)l {dll'(
~ K p {II(Jl- Jln)fzllp
+ kllfz -
(fn)zllp} 1(1
1
-%
'g uo fprro;tun tr / o1 sa3ra,ruor Y fnqf epnlf,uoc aan'u {ra.re roJ oo pooqloqqftau paxg e ur crqdrouroloq sr ,f - $ acurg Jo 'oo <- u se .C "! I ) {ra,le ro; C uo rlprroyun f1eco1 t * lsql aes eilr snqJ
for every ( E C. Thus we see that fn --+ f locally uniformly on C as n --+ 00. Since fn - f is holomorphic in a fixed neighborhood of 00 for every n, we conclude that fn converges to f uniformly on C. 0
'3;o Surddeu 'g1as1r oluo C Jo leuroJuocrsenb e sr erueq pue rusrqdrouroauoq e '1ce; u1 'sr uorlnlos l€urrou eqt teql ^\oqs ileqs e,u,,inolq
Now, we shall show that the normal solution is, in fact, a homeomorphism of C onto itself, and hence is a quasiconformal mapping of C. IDttltou eW
Theorem 4.25. Under the same circumstances as in Theorem 4.24, the normal solution f for Jl is a quasiconformal mapping of C, and satisfies J.l f = Jl (a. e. on C).
'(c uo 'a'o) trt rl sa{sqos puo'5to |urddou o st rl .tol Tottt"totuoetsonb I uo\nlos 'fA'f uteroeyJ u, sD snuolsurnrrn eutDseV?repun .gU.' uraJoaqJ
100 100
4. 4. Quasiconformal Quasiconformal Mappings
To prove this theorem, we we need generalization of Weyl's lemma need the following following generalization (Lemma 4.6). 4.6). Lemma 4.26. Let U u and vo be be continuous continuous functions simplg connected connecleil Lemrna 4.26. functions on a simply
domain partial derivatives by domain D whose whose distributional distributional padial derioatiaes can can be be represented reprc.sented, by locally locally = V integrable functions. Further, suppose that u.. . Then there exists a function FurTher, suppose u2 u". integrablefunctions. z Then there edsts funclion fz = u and which is continuously continuously differentiable differcntiable (i.e., (i.e., of class classG satisfiesfz anil Crl )) and satisfies ff which f ..r = uv.. Proof. Fix Ftx a rectangle R in D arbitrarily. a^rbitra"rily. Take an Ll-smoothing .Ll-smoothing sequence sequence rR o, respectively, with respect r? such such {Un}:::"=l and {Vn}:::"=l on R for u and v, respectively, with respect to R {,rr}Lt {or}f;=, possible. that )..= (vn)z for every~. (This is possible. See the proof of Lemma 4.5.) that (u (u")7 (u,)" every n. 4.5.) See n gives Then for every every n, Green's Green's formula gives [ 6 ^ a r * u ^ d z ) =J[J[R {("")t - (o^),} dz A dz 0.
JAR
--+00, Hence, oo, we have have Hence, letting letting n -+
pa, + = O.o. f (udz udz) * vdi)
I JaR J8R
Since we conclude udZ is ,R is arbitrary, arbitrary, we conclude that that the indefinite integral of udz + Since R * vdi gives a desired well-defined, 0tr well-defined, and gives desired function. Returning to the proof of Theorem 4.25, 4.25, we we take a sufficiently large large M so so p, contains rest that E C Ilzl < M} contains the support of Jl-, and fix it in the rest of this M} that {z < e I lzl {z ( * such sequence{Jl-n}:::"=l with lIJl-nlloo such that that the also a sequence Cf (C) with in Gg"(C) proof. Fix also {p"}flr llp"ll- ~ k - Jlp.n -+ p, is every is contained contained in {z support of Jl-n E C Ilzl < M} for every n, and that Jl-n M} < € 1t I l"l {z --* 00. ptnfor every n. a.e. fn the normal oo. We denote by /. normal solution solution for Jl-n a.e. on C as as n -+ ------C is a homeomorphism Lemma foregoing situation, fn: C --+ the foregoing situalion, fr: honteornorphism Lemrra 4.27. In the l ( C) for every n. In particular, every fn is quasiconformal. quasiconformal. belonging belongingto G euery fn Cr(C) for euery
- pngz. Set g with with g.. Proof. Consider Set function 9 Consider a function 9z = Jl-ngz. tt = gz and u=gz
= I,tnt-r, a = gz =Jl-nU. v=g..
To show 4.26 to see see that that u is belongs to Gl(C), suffices by Lemma 4.26 show that that g9 belongs C1(C), it suffices (lt"u)r.If we set set (j a = log logu, a continuous u)z. If we u, this is satisfies u.. u7 = (Jl-n continuous function which satisfies equivalent that (j continuous function which satisfies satisfies o is is a continuous equivalent to proving that
=
cz=Fncz*(tt")".
=
(4.23) (4.23)
(4.23) is solved case of Now, differential equation (4.23) solved in a similar way to the case (4.18), we we can the Beltrami as in the case caseof (4.18), can construct a equation. In fact, first as Beltrami equation. solution h (C) of the equation h in LP IP(C)
i, =r1p^rt1+T((p),).
s8urddell FruroJuof,rsen$ uo uraroaql af,ualsrxg 'Z't
TOI
4.2. Existence Theorem on Quasiconformal Mappings
101
1as'1xep
Next, set
- o
u = P(J.Lnh
+ (J.Ln)z) + C.
'C+(eil)*q"rt)4
= O.
= J.Ln h + (J.Ln)z,
* qurl = zo
= T(J.Ln h + (J.Ln)z) = hand
(Note that u is holomorphic in a Uz
'"("rt)
"".rrrl'oo = z Jopooq.roqq3rau = (z)o -*"urll l€ql os C esooqc alu\ereg
pu€
rl = ((rl)
* qurl)a = ,o
Uz
e ur crqdrouroloq sr r leql aloN)'0
Here we choose C so that limz -+ oo u(z) neighborhood of z = 00.) Since
uerqocef eql ef,urs'rl11eurg '1c sselcJo sl "/ - 6 t€q? apnlcuor ellr snqJ,'"1 +eql serldturuollnlos eqlJo ssauenbrunaql'acua11 '(C)al o1 s3uoleq I- r0 leturou 'g **"u41 pu€ oo - z leql aes aal 3o ecroqc eq1 ,(q 1 = @)t lo pooq.roqq3rau e ur crqdrouroloq sr t = zD aours '0 = (0)t l"ql ewnss? feru arn 'ara11 '(rurl -1z6url - z6 Surfgsrles(C)rC ] f uorlcun; e slsrxa ereqt leql sarldurr gA't surua'I snql '"(t"rl) - zt snonulluoc sI r uaql ' oe = ! 1as 'u,o11 Pue 'GZ'V) Jo uollnlos snonul?uoce flenlce sL slql
this u is actually a continuous solution of (4.23). Now, set T = e U • Then T is continuous and Tz = (J.LnT)z. Thus Lemma 4.26 implies that there exists a function 9 E C 1 (C) satisfying gz = J.Lngz(= J.LnT). Here, we may assume that g(O) O. Since gz T is holomorphic in a neighborhood of z = 00 and limz -+ oo T(Z) = 1 by the choice of C, we see that gz - 1 belongs to LP(C). Hence, the uniqueness of the normal solution implies that 9 = fn. Thus we conclude that fn is of class C 1 • Finally, since the Jacobian
=
=
"eel.(el"dl- r) = "lr(I)l - "l"et)l 'Jleslr oluo go ruslqdrouoeuoq s sl salldun eurual lxau aql ! 1eq1 3 V 'aro;e.reqa'C eloq^{ aql uo crqdrouroaruoqf11eco1osl€ sr ut (@ = z 1e alod aldurrs e wq V acrirg '3 uo crqdrouroeuroqflecol q V 'ereq,nfterla earlrsod sl V Jo
of fn is positive everywhere, fn is locally homeomorphic on C. Since fn has a simple pole at z = 00, fn is also locally homeomorphic on the whole C. Therefore, the next lemma implies that fn is a homeomorphism of C onto itself. 0
'C oluo g o fi11onyco lo tus.tyd.touro?uto! <- g :i uotTcunl o fi 'gZ'7 BururaT sr t uayT 'crqtuoruoatuotlfi11oco1 sl ?
Lemma 4.28. If a function f: C -- C is locally homeomorphic, then f zs actually a homeomorphism of C onto C.
Proof Denote by Cz and by Cw the Riemann spheres which are the domain and the target of f, respectively. Since f is an open mapping, f(C z ) is open. Since C z is compact, and hence so is f(C z ), we conclude that f(C z ) = CWo Next, one way to show that f is a homeomorphism is to consider f as a holomorphic function. This can be done by introducing a new complex structure on Cz by pulling back the structure on Cw as in §1.4.1 of Chapter 1. (Note that the topology on Cz is unchanged, for f is locally homeomorphic.) Now by assumption, f- 1 has holomorphic branches in a neighborhood of any point of Cw , and any branch of f- 1 can be continued analytically along every curve on Cw . Since Cw is simply connected, the classical monodromy theorem implies that f- 1 has a single valued branch on the whole Cw . Thus, f is a homeomorphism. 0
'ursrqdroruoauroq tr ''C " q./'snql eloq!\ eql uo qeu"rq panle^ e13urse *{ r_/ pq1 serldurr uraroaql {ruo.rpoirour aq1 'peleauuoc fldurrs sr m3 acurg 'nC uo eAJn? l"rrssrlt fraaa 3uo1eflecrlfpue panurluoc eq uec rl Jo qcuerq fue pue 'mg ;o 1u1od fue;o pooq.roqqSraue ur seqf,u?rqarqd.rouoloq wq r-.f 'uolldurnsse fq mop ('crqd.rouroeuroqf1pco1 s1 ,f roy 'pa8ueqcun sr z3 uo f3o1odo1 aq1 '1 1eq1a1op) raldeq3Jo I'7'I$ ul s€ '? uo ernlcnrls "q1 1c*q 3uq1ndfq 'C uo ernlcnrls xalduoc alau e Surcnporlur ,tci auop aq uec stlJ 'uorlcun; crqdrourbloq e se / raprsuoc o1 sr ursrqdrouroeuoq € sl / ltsqt aoqs o1 ferrr auo '1xa11 ''? = (e)t "? 1eql apnpuoc a,ra'(,p)/ sr os o?uaqpue'lcedtuoc sl ecurg'uado q ("?)/'Surddeur uado ue sr 3f acurg'flarrrlcadsal'/;o 1aEle1aql pus ulsuutopeql ere qcrqn sareqdsuu€tuet1l aqt 'C,tq pue '9 fq eloueq'too.t4 :3uraro11og eql pe?u e,u 'arourraqlrng
Furthermore, we need the following: Lemma 4.29. Every fn satisfies
sa{s4os ut fuaag '62'} BrrruraT
p 2 K t+ 211 J.Lnllplfn(zt) - fn(Z2W- / P 1- kCp ) P
l(zr)"1- (r)"ll + +r(4 - t) pz - r71 ) a1"-rl(zr)'!- (tz),!111'r11ft
+ Ifn(zt} -
) e z t r z f r r e a er o t
for every Zl, Z2 E C.
fn(Z2)1
ftz'v)
IZ1 - z21 ~(
(4.24)
'C
102 702
4. Quasiconformal Quasiconformal Mappings Mappings 4.
Proof. For For aa fixed fixed n, n, we we can can see see from from the the proof proof of of Lemma Lemma 4.27 4.27 that that (/,)-1 Un)-l is is of of Proof. class Cl. C 1 . Also, (/,)-r Un)-l is quasiconformal quasiconformal by by (i) (i) in in Theorem Theorem 4.10. 4.10. By By Proposition Proposition class 4.13, we obtain 4.13, J.ln. tJ.l(j,,)-' t ( J . ) - , 0o ffn n ==- *-' r ,Un)z . lUn)z h)' In particular, putting putting un lin = p(I^)-t, J.l(j,,)-l, we have have lr"" Illn 0 f"l fnl = ltr"l lJ.ln I (a.e.). (a.e.). Thus we have have In
=
=
= Ii = Ii lJ.lnjP(IUn)zI2 - l(f"),12)axay | | lv"lpdxdy I I lp"lo(l(f")"1' tf
ll
2
IlInlPdxdy
JJC,
-IUnh-1 )dxdy
JJC
fL
fL
p 2 2 2 lJ.lnIPIUn)z 1 dxdy = = [ [ U,^l'-'l(f^)zl2drdy lJ.lnl - IUnh-1 dxdy t~ [ | l,,l,l(f^)"l2drdy JJC
JJc
(Ii
(Ii
.E..=2.
2-
/rt \'t' /rf \; dxdv y) dadv P • ~ (//" lu"lP lJ.lnIPdXdY) IUn)zIPdxd = \J J"l$"),lP ) )
p
Then (4.20) (4.20) in Corollary Corollary 1 gives gives Then
. lle"llo. IllInllp S ~ (1kCp)-p ·11J.lnllp, 0 - kc)-3 llr"llo 2
Thus, clude the
=
=
=
(i = f"Qi) (, = 1,2), we (.f")-t and (j applying (4.21) with /f = Un)-l fn(zj) (j we concon(4.21) with assertion. !0 assertion.
before Lemma and {fn}~=l as defined defined before Proof of Theorem Let {J.ln}~=l be as Theorem 4·25. 4.25.Let {p"}T=t and {/,}Lr 4.24. 4.27. Then fn converges to f uniformly on C by Corollary 2 to Theorem 4.24. uniformly 4.27. /,. converges / --* when we * valid 4.29 is still oo), (4.24) Since valid when we Since lIJ.lnllp $.2\ in Lemma 4.29 llpllp (n ---+ 00), llp"llo ---+ 11J.lllp ----we conclude conclude that /'0 replace fn and J.ln by ff and f : C --+ p, respectively. Hence we pnby and,J.l, respectively. Hence r^eplace/, since C therefore is a homeomorphism. homeomorphism. Next, since C is a continuous continuous bijection, and therefore = J.lfz. assumptions in satisfiesthe assumptions Lp (C), so so does does ffzz = belongs to LP(C), Ff ,. Thus, /f satisfies ffz, -- 1| belongs Definition A', 0tr quasiconformal. hence is is quasiconformal. At, and and hence
4.2.4. Existence Theorem Existence Theorem with complex dilatadilataWe have existence of aa quasiconformal mapping with have shown the existence is valid for aa tion J.lp when conclusion is p E compact support. This conclusion when J.l B(C)l has has aa compact € B(Ch general p E well. generalJ.l as well. B(C)r as e B(Ch homepE lhere exists exisls a homeTheorem B(C)1, there coefficientJ.l eaeryBeltrami Beltmmi coefficient 4,3O. For every € B(Ch, Theorern 4.30. compler quasiconformal C wilh omorphism f of C onto C which is a quasiconformal mapping of C with complex mappinC is e onb e which omorphism f "f dilatation pr. dilatation J.l. condinormalization condiMoreover, by the the following determined by is uniquely uniquely determined Moreouer, ff is following normalization tions: tions: oo. a n d f(oo) f(O) 1 , and 0 , f(l) / ( o o ) = 00. / ( 1 ) = 1, / ( 0 ) = 0,
=
=
=
the conditions, the We determined by by the the normalization normalization conditions, uniquely^determined call this this f, We call /, uniquely C quasiconformalmapping of C rnapping of canonical p-qc mapping or the the canonical canonicalquasiconformal mapping of of C, C, or canonicalJ.l-qc with by fl'. p, and itby and denote denoteit compler dilatation dilalalion J.l, with complex f u.
sturddery l"ruroluo)rssn$ uo uraroaqJarualsFg 'Z''
t0I
103
4.2. Existence Theorem on Quasiconformal Mappings
+aseAr'r/l= (z),0 uorleuroJsrr€rl snlqgltr eql ,fq d laeq 3ur11nd,asec slqt uI 'ur3uo aql Jo pooqroqq3reu aruos ut ('"'r) O = r/ leql asoddns '1xag 'euo pensep e{f sl (I),r,4 /?)n,t teql salldur gZ'V l.uu'er 'asec srql u1 'lroddns -oaql ueql'r/ ro; uorlnlos lcedruoc lerurou aql aq a,iI pl e seq r/ reql asoddns '1srrg 'at Jo ecualsrxe eql .&oqs il"qs e^a 'acua11'suorlrp 'too.t4 -uoc uorlezrleurrou eql pue 8I'? uorlrsodo.r4 fq sArolloJssauenbrun eqa
Proof The uniqueness follows by Proposition 4.18 and the normalization conditions. Hence, we shall show the existence of flJ. First, suppose that J.L has a compact support. In this case, let FIJ be the normal solution for J.L. Then Theorem 4.25 implies that FIJ(z)/ FIJ(l) is the desired one. Next, suppose that J.L = 0 (a.e.) in some neighborhood of the origin. In this case, pulling back J.L by the Mobius transformation ,( z) = 1/ z, we set Z2
z
E C.
(4.25)
'))z
1) z2'
= J.L (-;
{gz'v)
'5G)d=Q)! ji(z)
Surddeur leuroJuocrs"nb aq1 'zf 11ur.odqcns fra,re 1V 'C uo'e'e elqerlueregrp ,t11e1o1 sl il 'fV uorlrsodor4 ,tS '? go nrf Surddeut cb-rl l€?ruorr€c aql slsrxe araql 'aro;aq se acueg 'lroddns lceduroc e seq pue r(C)S o1 sSuolaq d uaql
Then ji belongs to B(Ch and has a compact support. Hence as before, there exists the canonical ji-qc mapping fiJ of C. By Proposition 4.1, fiJ is totally differentiable a.e. on C. At every such point l/z, the quasiconformal mapping
1
= fiJ(l/z)
-?/r)rl ;=(z)l
f(z)
'C uo'e'€ (z)r= t ( = l l C- a = Q ) { i l rl/ zz eeq e.rrlsnqJ 'elnr ursrl?Pnsn eql fldde uec a^r leqt os elqerlueregp,t1e1o1osle sr
is also totally differentiable so that we can apply the usual chain rule. Thus we have a.e. on
C.
/z\
-7
(es€) slql uI '?uarogeor rrrr€rtlag lerauaS e u r/ 1eq1 asoddns 'dleurg las e^r 'euo palrsep aql sl / leql epnl)uoc e^t eoueH 'suorlrpuoc uorlszrlerurou eql seg$les / 'r(pea13
Clearly, f satisfies the normalization conditions. Hence we conclude that f is the desired one. Finally, suppose that J.L is a general Beltrami coefficient. In this case, we set
v-c)z
zEC-..1 z E..1,
(4.26)
'v)z
',3\= u*
_ { J.L(z), 0,
'(r)rt
-
$zv)
J.Ll ( Z )
'slslxe rrrJ ler{} u^roqs e^€q e^\ uaql ?as osle aM
lrun aql fl 7 alarl/I{
where ..1 is the unit disk. Then we have shown that fIJi exists. We also set
{tz'v)
(4.27)
'{srp
1_(.'rl)"(#H)=",
'auo pansap aq1 s f 'acua11'suorlrpuoc uorlszrlerurou aql sagsrles O d'f1.ree13(rl = 6il 1"qt os zrl peuufapeler1ea\'g1'7 uorlrsodo.r43ur1ou fq'1oeg u1) '('a'e) d - 6il leq? eas u?? a.rapu" 'gl't tueroeql ul (H) fq leurro;uocrsenb 's?stxa osle 'lroddns sl ,r/ o ",tt = f 'ra,roarotr11 "n/ lreduroc e seq zrl s3u1g
Since J.L2 has a compact support, fIJ2 also exists. Moreover, g fIJ2 0 fIJi is quasiconformal by (iii) in Theorem 4.10, and we can see that J.Lg = J.L (a.e.). (In fact, by noting Proposition 4.13, we have defined J.L2 so that J.Lg = J.L.) Clearly, g satisfies the normalization conditions. Hence, g is the desired one. 0
'(69'p uraroaq;) ureroaql eruelsfxa aql Jo suorlecqdde lereles elels ar\ 'uorlcas slql Jo pue aql ?y
At the end of this section, we state several applications of the existence theorem (Theorem 4.30).
'O oluo y, lo tusyldlouoauroy D ol pepue?ses? CI uxDttropuDprof .tt.7 uolllsodorg p oluo V qslp pun ayl to 0utddou.tlou.t.totuoctsonbfri,ang
Proposition 4.31. Every quasiconformal mapping of the unit disk ..1 onto a Jordan domain D is extended to a homeomorphism of..1 onto D.
Proof· Fix such a quasiconformal mapping f : ..1 ---+ D, and set J.L = J.LJ. By setting J.L = 0 on C - ..1, we can regard J.L as an element of B(Ch. Hence by Theorem 4.30, there exists the canonical J.L-qc mapping flJ of C.
'C Jo ,tt Surddeu ab-r/ lecruoues eqt slstxa araql'gg'7 uraroaqa .,(qacuag 'I(C)g Jo luauala ue se r/ pre8ar ue? a^r 'V - C uo 0 - r/ 3ur11es 'O + - r/ tg'lrl 1aspue V: 3f SurddeurIeuroJuocrsenbe qcns xyg'!oo.t4
4. Quasiconformal Quasiconformal MaPPings Mappings 4.
104 104
-t Then 9 is a quasiconformal F o0 ff-l. mapping of of D. D. By By Proposition Proposition . Then g is a quasiconformal mapping Set g9 -= fflJ 4.13, we see see that that Fg J.lg = 0 a.e. a.e. on D. D. Hence, Hence, Corollary Corollary 2 to to Theorem Theorem 4'4 4.4 implies that that 4.13, mapping of of D. D. Since Since /p(4) flJ(l1) is a Jordan domain, Ca,rathdodory's Caratheodory's g9 is a conformal mapping theorem gives gives the extension of of g9 to to a homeomorphism of of D fJ onto onto ;r'14;. flJ(I1). Since Since lh"or"* t', we = g-' g-1 o 0 fflJ, we obtain obtain the assertion. assertion. 0 If =
=
Proposition 4.32. 4.32. There There exist exist no no quasiconformal quasiconformal mappings mappings of A 11 onlo onto C. Proposition
Suppose that that there there exists such a quasiconformal quasiconformal mapping mapping ff : A 11 -- Proof. Suppose Then f- 1 is also also quasiconformal. quasiconformal. We set set pJ.l == pJ-t;then J.lJ-l; then there there exists exists the C. Then,f-1 . e .o h e n pJ.lg, = u sset et g off eC.. IIff *we 9 = = fflJ =00 aa.e. onn 411,, ccanonical a n o n i c a J.l-qc l p - q cmapping m a p p i n gflJ f Po P o0f f,, tthen hence g is a conformal mapping of of A. 11. and hence On the other hand, hand, since since g-1(C) g-I(C) = = A, 11, Liouville's Liouville's theorem theorem implies implies that g-I g-1 On D constant, a contradiction. 0 should be a constant, Proposition 4.33. Let pJ.l be be an arbitrary element of of B(H)1. B(Hh. Then Then lhere there exists exists arbitmry element Proposition pt. a quasiconfonnal quasiconformal mapping mapping w of of H H onto H H with complex dilatation J.l. wilh compler a Moreover, such such a mapping mapping w (which can be be edended extended to a homeomorphism homeomorphism (which can Moroaer, lhe of fl H UR R onto onto itself by Proposition 4.31) is uniquely uniquely delermined determined by by the itself by Proposition1.31) of H = I/ normalization conditions: nditi ons: o rrn ali zalio n co oI Iowin g n ffollowing g, = 0, w(O) tr(0) =
= 1, to(l) = 1, w(1)
- 00. m. and w(oo) ur(oo) = and
canonical We call this unique w to satisfying the normalization conditions the canonical lJ J.l-qc ut'.. and denote denote it by w p-qc mapping mapping of H, and condiProof. The uniqueness 4.18 and and the normalization condifollows by Proposition 4.18 uniquenessfollows Proof.The tions as before. as before. To show set existence.set show the existence,
J.l(z), = ( z ) j1(z) ~ t {{ ; : ' ' J.l(Z) ,
I t(t,
z€H zEH z€R zER
zz E € H* H *= - CC- -8 fl. .
e satisfies satisfies By the mappi.tg fi' canonical j1-qc theorem, the the canonical the uniqueness uniquenesstheorem, .ft of C ;l-qc mapping
fi(r)=74 p(H) = -= R. preservesorientation, orientation, f{l(H) In A. Since Since fi' particular, we we see seethat that fi'(R) In particular, f /P preserves /a(R) = one. H. 0tr is the the desired desired one. onto H l/ is of fi' the restriction restriction of Hence, the I/. Hence, /i onto
.21t r7-
=11
+ 12 . J{1/2
tu>l"l>z/rir'l
-
J{lzl~R}
}IZ2(FIS)z(Z)_IIPdXdY (FIJ(z»2 IzI 4
#,1'-##l{'"''*il*l l l = ( , t ) r I(JJ)-{Jrr
+Jrr
n u
)
:s^rolloJse /t = ?),r,tr eraq^,r
where FIS(z) = Ij FIJ(ljz).For this purpose, we divide the domain of integration as follows: uorler3elur;oureuop eql apr,rrpeaa'asodrnds-rqtrod '?/t)al
I(JJ) = JrJ{lzl<2} r I(FIS)z -
{ z > l " lrl r 'npxpalr-,Gd)l =ttlr
Wdxdy,
IJ
{1r1uenbaqt eterurtseo} secgnsq 'I .- (I),r,4 pue (r lt)r,l /fi)n2, = (z)n./ acurg
= FIJ(I)j FIJ(ljz) and FIS(I) -. 1, it suffices to estimate the quantity
r J{lzl<2}
.0*- -llr/ll = -lldll se g * fipapoll - ,G)ltz>vtrfI
1(/IJ)z - Wdxdy -.0 as lIillioo = IIJJlloo -. O.
(ez.r)
Since jlS(Z)
Jr
(4.28)
JJ
a/y1'0 poorlroqqfteu aruosur qsru€ d IIe teqf asoddng teqt aor{s Jo llerls '0 pooqroqq3raupexg aurosuo Jo rlsrueA ,{1uopue Jr papunoqfpr.ro;run a.rer/ 11ego slroddns eqt leqt e}oN d U* I '(gg'7 ura.roeql;o ;oo.rdaqf Jc) C lo il Eurddetueb-r/lecruoueceql u 7/ uaql
Then jlS is the canonical il-qc mapping fis of C (ef. the proof of Theorem 4.30). Note that the supports ofall J.l are uniformly bounded if and only if all il vanish on some fixed neighborhood of O. Suppose that all il vanish in some neighborhood of O. We shall show that '(72/"21' ?l:.)rt (4'!,t = (r)d
pue (r/;.)nl /t = (,)a! 'lxeN
Next, set las
0 -- -llr/ll se O- Y'dllt-'Gt)ll 'VZ'Vruaroeql o1 fre11o.ro3 ,tq 1eq1sarldurr(ZZ'V) 6 -llr/ll $a I ts (1)ng ecurg'fi)ng/?)a,t = (z),tt a^eqa^. '69'7ura.roeq;,yo 0'rl qcns fre,ra rog ,/d uollnlos leturou er{l slsrxa araql ;oord eql ur palets seit.rsy '-llr/ll ,C. -llrlll acurg'fpre.r1rq.re (6 a) lpus {lluarcgns q}l^ar/ fre,ra roJ I > d xrg 'papunoq ,(prro;run er€ r/ 1e ;o sl.roddnseql 1"q1 etunss?'1srrg /oo.l2'
by Corollary 2 to Theorem 4.24, (4.22) implies that
Proof First, assume that the supports of all JJ are uniformly bounded. Fix p (> 2) arbitrarily. Since 1IJ.llloo . Cp < 1 for every J.l with sufficiently small 1IJ.llloo, there exists the normal solution FIS for every such JJ. As was stated in the proof of Theorem 4.30, we have flS(Z) = FIS(z)jFIJ{I). Since FIJ(I) -.1 as 1IJ.llloo -.0
o,u: = v'dttqtl 0,,(oo,o I I) where JJ E B(Ch and puor(C)g3danym
'0 * -llt/ll 80 - Y'dllt- "Gl)ll 0 '(Z <) d finaa tog 'tg'7
Lemma 4.34. For every p (> 2), BurruaT
'eurual aq1 errord ?srg e^n 'n1l' lecruouec eql roJ 'lZ'' ureroeql ol 6 ifre11o.ro3 3ur,rao11o; ur r/ o1 lcadsa.r {lln ;^{ suol}nlos Isurou aq1 ;o ,(lmulluoc u^{oqs fpeaqe a,req ai!\ 'rl luerf,Ueoc nu"rlleg aql uo ;3f ;o acuapuadap ure?uo? q lo il Eurddeur I?ruroJuof,rspnb lecruouec aql uo st?eJ InJesn pue luelrodul tsotu eqt Jo aluos
Some of the most important and useful facts on the canonical quasiconformal mapping flJ of C concern dependence of flS on the Beltrami coefficient JJ. We have already shown continuity of the normal solutions FIS with respect to J.l in Corollary 2 to Theorem 4.24. For the canonical flS, we first prove the following lemma.
'8'?
4.3. Dependence on Beltrami Coefficients sluerJsaoc
105
ilrrBJlleg uo eruapuedeo
uo acuapuadaq 'g'7
4.3. Dependence on Beltrami Coefficients sluarf,SaoC ur"rtleg
90t
106
4. 4. Quasiconformal Quasiconformal MaPPings Mappings
on{z C I lzl Note that, for asufficientlylargeR,everyFts a sufficiently large R, every FI' isholomorphic is holomorphic on {z €Eel IzI >> R} R} Notethat,for = we Hence, can on C i?}. and FI.I converges FO(z) = uniformly {z E Ilzl > R}. Hence, we can z uniformly to Fo(z) ) and Fp converges {z e I lzl see that Iz 12 -~ 0 *as llpll1IJ.llloo *~ 0. O. On the the other other hand, hand, since since see . = tt
l z 2 1 1 r u 1 " 1 -z )1 ) ,
fI
i
J Jt'tr.t,t."tl-lFu(')r
z2
@t'(z)Y
'l, l P
dxdy
lu
'
Theorem 4.24 shows shows that 1r h -~ 0 *as llpll1IJ.llloo -~ 0. O. Thus Thus we we obtain obtain Corollary 2 to Theorem4.24 Corollary (4.28). (4.28). Finally, for a general general p, J.l, set set Finally,
z €ELl A zE € C -.1. -4.
uQ)' v(z) u ( z \= ={ [ J.l(z), 1 0, 0,
Letting I" be the the canonical canonical z-qc v-qc mapping mapping of C, we we set set gF gl.l = f/1.1Po(f')-r' 0 (1")-1. Again, Again, Letting /v be '--+ Corollary 2 to Theorern Theorem 4.24, 4.24, I" uniformly on on C as as 11J.l l oo --~ 0. O. Hence Hence by Corollary tv ~ id uniformly llpllwe may may assume assume that every every 1"(.1) is contained contained in {z E C Ilzl and contains contains we I lrl < 2} and f'(A) is {z € somefixed {z E C Ilzl ~ 1/2}. Then by Proposition Proposition 4.13, 4.13, every every per J.lg .. vanishes vanishes on on some fixed t/Z}. Then I lzl < {z e neighborhood of 0. O. Further, Further, since since neighborhood
(f p)" = (gF)"o f, .(f,)" * (c\, o f' . (V),,
=
=
(gp)t"0 I" on C, we we have have (/'); = 0 or (gl.lh a.e.on and either(I"h and since sinceeither f' =00 a.e.
- 1)" f' '(f')"llp,a+ ll(f'), - 1llp,a. S ll((su)" ll(f')" - 1llp,a already shown shown have already Express as 1 /3*/a. We have side of this inequality as Express the right hand side 3 + 14 , We --* O. * 0 as we that 1.Ia ~ As for h we obtain -I3, 0. as 1IJ.llloo 4 ~ llpll"l
ll ( t " ) os = : - I I l ( s u ) "- \ P l ( f ' ) , " ( f ' ) - L l P - 2 d x d v L_tc"JJy"1ay
-t
(rt
^ I x d Y ' l l ^ l t r l " l ' o - ' d]''dr v' |
-. | _ kz t l l '." l ( s,-r ) , - l l 2 p d . x d y . I l l ( f ' ) " | ' o - ' ' tJJtt,t.rt gtsand and = 1IJ.llloo. and ppby (4.28), where where we we replace replace jl.l with kft = by gl.l using (4.28), Hence,by using iF and llpll-. Hence, * O. * 0 as we have have the as 1IJ.llloo 0. Thus we 2p, we can show that 1.I3 can show 2p, respectively, respectively, we 3 ~ llpll- ~ as~~. assertion.
0D
derive the following following we shall shall derive To investigate J.l, first we on;r, of./1.1 dependence of investigate dependence fp on P. integral for /1.1. formula for integral formula f of B(Ch B(C)1 be an an element elemenl 0/ Let J.lp be Lemma arbitrarily. Let with p > 4.35. Fix Fix p with Lemrna 4.35. > 88 arbitrarily. .C the C satisfies p-qc of mappins satisfying . < 1. Then the canonical J.l-qc mapping 0/ C satisfies the the canonical I. Then Co satisfuing1IJ.llloo 1 p Ip llpllfollowing integral formula: following integral formula:
r
r0I
uo acuapuadag 'g'p
sluerf,saoC ru"rllag
107
4.3. Dependence on Beltrami Coefficients J
(()
1 =(- -1r..:l (JlJ)z(z)
_.!. Jr r (fiJ)z(z)
(-1 - - ( z-( z-1
+ (-1) - z dxdy
Gz'v)
J1
n- n ,(e \zr _ 1r +- z; - ,) - z \ , . - . - . v f f y ) ( , ) ' G It I) t - ) = Q ) a t Jl
(4.29)
(2 ~ _ ~ ) dxdy l-z( l-z
"-u(, op,p \'=l'!)" [[ . (' ,)--r- !;) ,") / (r)'G!) il r \ J..:l(1IJ(Z))2
= 1/ flJ(l/z).
,V nt /t = Q)r! a.raqm ) ) fr^taaa
for every ( E ..1, where jlJ(z)
'Q/t)nt
1r
serrr3(61'puorlrsodo.r6) "lnuroJ s,nreduro4'lsug'too.t4
Proof First, Pompeiu's formula (Proposition 4.19) gives
o+=Q)a! v)) ,op,pffi"ff +-;e"'l r(() = ~ 21rt
r
J&..:l
flJ(z)dz _ Z -
(
.!. Jr r
J..:l
1r
UIJ)z~z) dxdy,
(E..1.
z-
e^eqe^racuag'Q)nI /, o1 pnbe * n/(n)nl uaqa.zf 1- m 'asodrnd 'V ol z elq"rr"^ aq1 a3ueqc qq1 .16g eare elq€trnse dq C uo 1e.r3a1ur aprspu"q 1q3r.raq1uo 1e.r3a1ur plnoqsen ,uorlresseaq1anordo; tsrg eql acelda.r To prove the assertion, we should replace the first integral on the right hand side by a suitable area integral on C - ..1. For this purpose, change the variable z to w = l/z. Then fIJ(w)/w is equal to z/jlJ(z). Hence we have
r
r
r fIJ (!)Z (!z +(+~) dz l-z(
. \ , " ) " r zl \) (/ z.\ t J "l/= ;Qf ,f i t ) , l =_ ,_r^ )b ) , rJ flJ(l/z)dz J&..:l z(1-z()
=
J&..:l
zP
-
z vQr
I"
=
- I ,o (), * r.
onf
flJ(z) dz J&..:l z-( -,
onf
z -.dz- . =A+B(+( 21 - _ &..:l flJ(z) 1- z(
. ) z- t G ) a ! o n [ )*)s
+v=
lou se^eqeq (r)n! /r leql {raq? plnoqs ar* 's1q1op oI 'epturoJ s(ueer9 fldde aar '7 uo ?er€ ue fq aprs pueq aql uo aq1 acelde.ro1 ,,rno11 1e.r3a1ur lq3rr ler3alur 'sluelsuo? ar€ €r pu€ y'eraH
Here, A and B are constants. Now, to replace the integral on the right hand side by an area integral on ..1, we apply Green's formula. To do this, we should check that z/ jlJ(z) behaves not so badly at the origin. Actually, we can show that there exist a neighborhood V of the origin, and a positive constant m such that
/pooqroqqsreuers,xeareqlffilX'&'.T":':11..i':.1"T: (oe'r)
(4.30)
'A> z'
k _ q t d l z l tZul ( r ) n l l
In fact, d'ecompose jlJ(z) as 12 0/1, where Ii are defined similarly as in the proof of Theorem 4.30. Namely, Ph has a compact support and Ph vanishes in some neighborhood of the origin. Then we know that UI}-l is conformal, and hence uniformly Lipschitz continuous in some neighborhood of the origin. On the other hand, (12)-1 is uniformly (1 - 2/p)-Holder continuous in some neighborhood of the origin, as was shown in the proof of Theorem 4.25. Thus we conclude that (11')-1 is (1 - 2/p)-Holder continuous in some neighborhood of the origin, which gives (4.30). Further, note that m is independent of P as long as IIplloo is sufficiently small. Now, for every sufficiently small positive 6, set ..16 = {z E C 16 < Izi < I}. By applying Green's formula, we can see as in the proof of Proposition 4.19 that
leql 6I'? uorlrsodo.r4goyoo.rdeql ur se ees u€f, e,lr ,e1nurro;s(uearC Surfldde ,(g (9 '{t > l"l > g I C ) z} = ey tes enrysod geurs flluarcgns fra,re .ro;'irro11 'leus dlluarcgns sr -llr/ll * 3uo1 se r/;o luapuadepur $ u, t"ql alou ,.raq1.rng.(Og'l) sa,rr3qrrqal ,ur3r.roaq1 Jo pooqroqq3rauauros ur snonurluoc raplog-(d/Z- il.1 r_(,r1) leq+ epnlcuo? e^r snql 'ge't uraroeql;oSoord eql ur u^toqs s€^ s? ,ur3rro eqtJo pooqJoqq3reu ,prnq Jaqlo eq? uO eruos ur snonurluof, rep19g-(d/6 - 1),tpr.royrun sr ,_(21) 'utErro aql pooqroqqSrau aruos ur snonurluoc zlrqrsdrl fpr.royun a?ueq pue Jo 'leur.roguoo.l .ur8rro aq? Jo pooq.roqq8raua(uos ur r_(V) l€ql ^rou{ e,lr ueql saqsruel t{rl pue poddns laeduroc e serTc{rl ,f1aue11 .gg.t ureroeql go;oo.rd eql ul se fl.repurrs peugep aw lt eraqa.r,'rl ozt s (z)7/ esodurocap ,1ae; u1
2·jJ..:lr
( ) z - 1 ) " ( ( z ) a { ) ' vff 'nnxn::----)?)-#: _ Jl ,,
zp
z
r I
z dz _ J&..:l6 jlJ(z) 1- z( - -
r
t
(11J)z(z).z dd 6 (11J(z))2(1- z() x y.
_),
-t@)n!'onI
'arag 1eq1saqdrur(gg'p)
Here, (4.30) implies that
I
r
---J:.L
Idzl J{l z l=6} IflJ(z)111 - z(1
= O(6~)
- rl 112) ( g t ) o =l)zW T all
{ c = l " lrl
4. 4. Quasiconformal Quasiconformal MaPPings Mappings
108 108
as 66 -- 0. O. Since Since pp >> 8, 8, we we can can show show by by Htilder's Holder's inequality inequality and and (4.30) (4.30) that that the the as area integral integral on on the the right right hand hand side side converges converges absolutely absolutely as as 66 -* - 0. O. Hence Hence we we area have have
rrp((\=o!?c \ s / - 2 " i -!r J tt Ja
Gu),(')--L,d,ay U'),Q)0,0,,-c' t - ; l l a j[[ t'@yl-rc z-\
for every C ( gE A.Moreover, ..:1. Moreover, since since both both sides sides of of the the above above equality, considered considered functions of of (,(, are continuous continuous on ^4, L1, the the equality equality still still holds holds for for every C ( eE A. L1. as functions = = we 1, and Hence, by using the normalization that flJ(O) flJ(l) we that 0 conditions the normalization using by Hence, /p(1) .f'(0) obtain the desired desired formula. formula. 0
=
=
U sing integral integral formula formula (4.29), we prove the following: following: Using
Proposition 4.36. It If 1t J1. conuerges converges Io to 0 in B(C)1, B(Ch, then then the the canonical canonical p-qc J1.-qc nxap' mapProposition ping flJ converges to the identity mapping locally uniformly C. anifonnlg on C. locally identity ping fP conaerges
Proof. Fix > 8. Since Since 1IJ1.lIoo we may assume assume that, that, for every pJ1. considered, considered, F:xpp > Proof. llpll- *- 0, we .Cp the right hand valid. Writing 1IJ1.lIoo . C < 1, hence (4.29) 4.35 valid. Writing 4.35 is (-4.29) in Lemma and hence 11, p llpll-
1(() ana side or of 14.20; (4.29) as as ((+ + i(C), i(), we we shall shall show show that that both both I() and i(1; i() converse converge r11;+ ria" + I() to to O. 0. First, First, since since (fp)r=p((fp)"_1)+p,
we such that constant M such inequality, a constant H
l / ( OS l M ( l l ( f r )-"l l l p , a + l ) l l p l l - ,e e a uniformly on converges to 0 uniformly for every J1.. we see that I() .I(() converges 4.34, we see that p. Hence Lemma 4.34, Hence by Lemma -* as 0. 4 as 11J1.lIoo ..:1 llpll* - O. with respect respect to uniformly with Next, recall (a.30) can be chosen chosenuniformly can be rn in (4.30) recall that V and m J1.. such that we can constant M such p. Thus we can find aa constant
l i ( ( )< l M $ G \ " - l l l p , a + l ) l l i l l - ,e e a proofof 4.30.Since of Theorem Theorem4.30. SincejlJ for J1., where (4.25) in the proof by(a.25) in the is defined definedby whereji! is for every every;r, ir = p-qc by Lemma we see is the canonical ji-qc mapping of C, and since 1IJ1.lIoo = lljilloo, we see by Lemma and since of C, mapping is the canonical lllll-' llpllO. on ..:1 .4 as as 1IJ1.lIoo 4.34 uniformlyon i(C) -- 00 uniformly 4.34that that i() llpll- -* O. -'- 0. as1IJ1.lIoo on ..:1 4 as provedthat id uniformly uniformlyon Hence, lhat flJ we have haveproved Hence,we f rt-- id llpll- - O. consider (z and consider p',(z)Finally, for every positive r « 1), set J1.r(z) = J1.(zlr) (z E C), and positive (< set r 1), eC), every Finally, for tt|/r) the of C. C. Set Set mapping flJr the canonical canonicalJlr-qc fl" of ,rr-qc mapping f,(r) = fP'(rz)l fP"(r).
=
=
normalization the normalization satisfiesthe p(z) (a.e.), (a.e.),and and since sincefr Since p1.(z) - J1.r(rz) SinceJ1.Jr(z) /" satisfies F,Qz) = J1.(z) = hand,since since the other givesfr conditions, theorem On the other hand, theoremgives uniqueness the uniqueness conditions,the /" = flJ. fP.On Ilr}. on {z < 1/r}. flJr doesfr so does shownbefore, before,so on ..:1 ^4as asshown fd uniformly uniformly on f, on I lzl < {z Ee CC Ilzl fp" _- id C. on C. uniformly on Since id 0tr fd locally locally uniformly thal flJ weconclude concludethat arbitrary, we Sincerr isis arbitrary, f tt ----+
60t
109
sluarf,Ig:eoC rurcrllag
uo acuapuadaq 'g'p
4.3. Dependence on Beltrami Coefficients
''a'l'0nt^totaq1u, u?I1r.l,r.l" sl q G)rt tID elqv?tua.ta$ry Q)il 'TnTaunroil aalilu.roc o ro IDar tayt puo'0 *- l sD 0 {- -ll(l)rlll 7oq7asoililng o uo |utpuadapsTuarc$aoc runuH?glo fr,1gutol o aq {(7)d} pI .Le.? ruorooq;,
Theorem 4.37. Let {Jl(t)} be a family of Beltrami coefficients depending on a real or a complex parameter t. Suppose that IIJl(t)lIoo -+ 0 as t -+ 0, and that J1-(t) is differentiable at t = 0, i.e., J1-(t) is written in the form
+ tf(t)(Z),
c ) z'(z)(1pr*
J1-(t)(z) = tv(z)
zEC
( z ) ' t y= ( z ) ( 7 ) i l
'0 *- s? ts -ll(l)rll r rour u?ns (c)-z 0
) (7)t puo (c)-z
ueqJ ) n ?lqopncqnn
with suitable v E Loo(C) and f(t) E Loo(C) such that Ijf(t)lIoo Then f~(t)«() - ( . f[v]«() = lim -'---'-'-'----0.
-+
0 as t
O.
O)r,l,r/
t'ii'' = (:)t"lf =--*-----. , )-
(re'r)
(4.31)
t
t-O
-+
:uotlvlu?seJdat,pliayut aqy soq lnlt '.teaoato141 '3 uo tu.tottun 'C) ) fi.r,aaa"tot sTnia Qpcol * acue6.taauo?e1l puo
exists for every ( E C, and the convergence is locally uniform on C. Moreover, j[v] has the integral representation:
JrJcf v(z) z(z (( - 1) _ l)(z _ () dxdy,
et.v)
.cr ) ,oo,oWUy"[;-
. 1 f[v]«() = - ;
(4.32)
(E C.
=e)t^l!
(3)r/rol (66'p) elnutoJJo aprspueq 1qEr.r eql ssa,rdxg'1frara.rol (3)r/- r/ qq^ p1e^ q (OZ'f) t"qt erunss?feur aar 'gg'7 uorlrsodor4 ;o ;oord eq1 u sy 'too.r4
Proof As in the proof of Proposition 4.36, we may assume that (4.29) is valid with J1- = J1-(t) for every t. Express the right hand side offormula (4.29) for J1-(t) as (+ I t «() + i t «(). First, since (f1J(t»)z = J1-(t)«f/J(t»)z - 1) + J1-(t)
'O)'^r+())'r+)"' erurs 'lsJrJ
='(nl) (t)a+ $ - "QsrlD(r)rt
and since 1IJ1-(t)/t - vll oo -+ 0 as t -+ 0, we can show by an argument similar to that in the proof of Proposition 4.36 that It«()/t converges to
o1 seEreruoct/Q)\ leqf gg'? uorlrsodor4go;oo.rdeql ur leql ol relrrmsluaurnSreue,tq,noqs usc e,r\'0 - I se 0 + -ll, - l/(l)rtll e?urspu€
_.!. JrJi:1f v(z) (_1 z-(
@:[f+-+
**(*+T-.)
uniformly on L1 as t Next, set
(_ + (-1)
z-l
dxdy
(se'r)
7r
(4.33)
z
O.
'1xap 1as '0-ts"f,Zuor(luroyun
Qz/ "21'Q/i!),t = ()'!il = G)(t)d
Pu"
and
v(z) = v(l/z)· (z2/ z2).
'Qz/rz1'Q/i"=Q)c
eqru-rreqlol rerrurs "" fi1:Tfi:{Lt-?ffii:jl,il luaurnEre ;oo.rd
Since IIP(t)/t - vll oo -+ 0 as t -+ 0, by an argument similar to that in the proof of Proposition 4.36, we can show that
£.-)
(r-t ) r - r \ z ( @ ) a , r ! ) ""f _ _ \ | _ _ f ,r)) Q)t ttrJ O)'^/ \z)
{_.!. JrJi:1f (i~(t)(z))2 v(z) 7r
(~ _ 1-z(
1-z
t r
t
g+- \fipxp
i t «() _
dxd } Y
-+
0
aloqs aq] go puer3alul lueroleur e seq 1e.l3a1ur aql teql sarldurr(gg'y) aleurrlsauroJrun eq1 'raql.l\{ '0 *- t s? y uo ,t1u.ro;run
uniformly on L1 as t -+ O. Further, the uniform estimate (4.30) implies that the integrand of the above integral has a majorant
Mlzl- 2P /(P-2)
Izl
( E L1
( l )-lr ) v > ) , l , - r l'ffa-qtdz-lzlw (1 - 1(1)11 -
zl'
o1 saSrerruoo?/ Q)rl |€rll ees uef, ara'V ) ) frarra.ro; y uo alqerEalur dlalnlosqe s1lue.rofeu sql ecurs 'yg a?w1r(lluaragns elqelrns " qll,$ 3 fra,ra ro3
for every t with a suitable sufficiently large M. Since this majorant is absolutely integrable on L1 for every ( E L1, we can see that it«()/t converges to
110 110
4. 4. Quasiconformal Mappings Quasiconformal Mappings
/,\ c , _ -fr1a'ao _ ! t f .v .(~). / 1 \~r ((~-~) _~J'f dxdy 7r 1.t1 1 - z( 1- z " JJ^"1;) tz2 (r= Z
G34)
(4.34)
* O. locally uniformly uniformly on ..:1 4 as as tI ---+ 0. (a.3a) and (4.33), we Thus, changing the variable variable z to l/z we Thus, changing If z in (4.34) and adding adding it to (4.33), have (4.32) for every every (C E A. have (4.32) € ..:1. Finally, the same same argument as as in the last part of the proof of Proposition 4.36 - ()/t converges to the right hand (/p(t)(()-./)/t showsthat (f1J(t)() convergesto side of (4.32) (4.32) locally 4.36 shows hand side locally O.. D uniformly u n i f o r m lon y oCast n C a s---+ t*0
Corollary. Let family of Beltrami depending on Let {Jl(t)} be a family Beltramicoefficients coefficienls depending on a real real {p(t)} be =0, p(t) is p(t) or a complex parameter t. Suppose that at 0, i.e., lhat Jl(t) is differentiable i.e.,Jl(t) complerparametert. differentiable attt = Suppose is form is written writtenin the theform
= Jl(z) p Q ) Q )= p ( z )+ - ttv(z) t v ( z )++ t((t)(z), t e ( t ) ( z ) , zz E Jl(t)(z) € CC - 00 a n d((t) e ( t )E . L - ( C ) such s u c hthat t h a t11((t)lloo with w i t hsuitable s u i t a b lJlpe€E B(Ch, B ( C ) 1 ,v E L * ( C ) , and e Loo(C) e Loo(C), l l e ( t ) l l ----+ ---+ as Then as t ---+ O. 0. Then
1 t,(r)1=1 ;Iu (0+tj t'l u l( O+o|r l) , ( € c * 0, locally where locally uniformly unifor"rnly on on C as as t ---+ 0, where
i'vc)=-+|1",v,ffi0*0 - fJ1.(t) 0 given by ft = (f1J)-1. Then the complex ft is Proof. ,\(t) of fl is given complex dilatation dilatation >'(t) Proof. Set Set 1, 7u(t) o(.fr)-t.Then
/ t'(t)-t'%) ' \ ( ' =t'r,= )
\i:Fmffi)u\r
' , r u/, - ' '
Hence, .\(t) is is written as as Hence, >.(t)
. \ ( r=) =t>'r + i +o(ltl) o ( l r las a) s tr *---+00 >.(t) in where i n .Loo(C), L - ( C ) , where \
(fP)" >.^\ -_ (fJ1.)z) (fI')-l =( (( ,1--IJlI tvuP 2 ((fIJ)z) ( * : ) o ( 0r u ) - ' . (fi(() -- ()/t we conclude conclude that (ft() Apply Theorem 4.37 to this family {ttl. Theorem 4.37 C)/t {/r}. Then we converges to converges . . 1 f . «(( - 1) f[>.]() = - ; 7 t lc >.(z) z(z z\; _ 1 ) l)(z k - _ () dxdy
(((-1) / t i l ( (=) - 1 J' [J J[c ^ t a C)axav
* O. variable z in this integral locally uniformly Hence, changing changing the variable C as t ---+ 0. Hence, uniformly on Cast u, we - fo)/t} o ffI', we have to (f1J)-l(z) have the (f r')-r(z) and (/r(t)t ) -- fI')/t and noting that (flJe fo)/t} 0 Ir)/t = {(ft {(/, assertion. D assertion.
uraroeqJpunurt.{2-ugrepFCJo Joord 't'?
III
111
4.4. Proof of Calder6n-Zygmund Theorem
'C f ) paxg fra,re roJ t ol lcadsar qlr,u crqd.rouroloqfl Q)fr>nt uaql 'l ralaurered xalduroc eql o? lcedsar qt-ra aleqa{Ja^e elqerlueraJlp q (l)r/ ''a'r 'fllerrqd.rour -olotl ? ralaurered xalduroc e uo spuedap (irt uaqm. '1eq1 palou eq ol sl 1I
It is to be noted that, when p(t) depends on a complex parameter t holomorphically, i.e., p(t) is differentiable everywhere with respect to the complex parameter t, then fll(t)«(;) is holomorphic with respect to t for every fixed (; E C. Remark. Some deeper investigations give the following results (cr. Ahlfors and Bers [13]): Fix a positive constant R. Set
'ar las luslsuoc erlrlrsod e xrg :([91] sreg pue sroJlqy ';c) s11nse.rEurmollo; aq1 e.rrr3suorle3rlse,rur radaap aurcS 'qJDuaA
r"r ,qr. / r_ 1; ",- ::) ,u ir e "f = , , "s1l/ ll l(zz)I- P)tl If(zl) - f(z2)1
sup
Izd,IZ21~R
IZl
-
Z2P- 2/ P
a/r\
l o p , p o l ' {r lrll l/ *
(jr[Jlzl~R IfzIPdXdy)l/P + (jr[Jlzl~R IIzIPdXdy)l/P a 5 l " l rr \
/
all"lr r\
+
/
-
l o p , p o l , rllrll l/ *
-
,F
a/r\
Ilfll BR
tlll^{ { xlJ 'Z 4 d pue ) Jo I SurddeurIsuroJuorrsenb lecruouec ,tra,re roy
for every canonical quasiconformal mapping f of C and p > 2. Fix k with o :::; k < 1, and suppose that kCp < 1. Then {1If1'IIBR'F I IIplioo :::; k} is a bounded set. Moreover, let {Pn}~=l be a sequence of Beltrami coefficients such that IIPniloo :::; k for every n and that Pn ---> P a.e. on C as n ---> 00. Then IIf lln - fllllBR'F ---> 0 as n ---> 00. In particular, flln converges to fll locally uniformly on Cast ---> O. Next, when p(t) is differentiable at t = 0 with respect to a real or a complex parameter t, then
e q {{ t -ll/ll | '''slln/ll} uaqyr > oCrtpq1 asoddn, p,* 'Tti"i"l';
n'"slln! ,t11eco1 o1 sa3reauoc u1 'oo + u sB * ,73f '.re1ncr1red "nlll ;rf 0 ueql 'oo <- u s€ uo'e'e d <- url pue u.r(.ra.rre roJ { > -ll"r/ll teql C tel'reroarotr41 leql qcns s?uerrlgaoorurerlleg 3o acuanbase eq IT{"d} '0 *-
t se C uo f1u.ro;run
uaql '? ralaurered xalduoc e ro I€ar e o1 lcadsar qll/tr 0 = ? le elqerlueraJrp st (l)r/ uaq,rl '1xe11 fll(O) _ (j1l(0)
[dP(0)] II dt
= B
R,F
"''"llf..tp1
llo*, -ll urr
t
, - (torn.f) llL(o)Dl
II fll(t) -
o.
'o-
lim
t-+O
r
'o'"all .ll ur.roueql ol lradsar qll^{.{ll€rlr{d.rouroloqro f11ecr1.{1eue 'fllecrqdrourolor{ ro f1ecr1,{1eue -leer uo spuadap ueql ',t1arlr1cadsa.r ? (r),// 'elourraqtrnd -leer ? .relarue.redxelduroc € ro l€er e uo spuedap (l)rl uaqin
Furthermore, when p(t) depends on a real or a complex parameter t realanalytically or holomorphically, respectively, then fll(t) depends on t realanalytically or holomorphically with respect to the norm II . IIBR,F'
tuoroaql punrutfz-ugrapl€C Jo Joord 'p.?
4.4. Proof of Calder6n-Zygmund Theorem
'u1(ou{ 'uorleuro;suerl lJaqlrH eql Jo sarlJado.rdssncsrplsrg 11eirr,tlecrsselc ere qcrrl/rr '(66'7 uorlrsodor4) ureroeql s,punur3,{Z-ugJepleCa.rrordo; [eqs a^r eroJalaqt 'uorleuroJsusrl ?reqlrH 'esec Ierlss€1f,eql sl J srrll of Surpuodsar.rocrolerado aq1 leuorsueurp-euo eql uI 'atl = g uo pr3alur reln3urs e s€ paugap ser uorlrsodo.r4ur 7 .role.redoeqa T,?,'V
The operator T in Proposition 4.22 was defined as a singular integral on C = R 2 . In the one-dimensional case, the operator corresponding to this T is the classical Hilbert transformation. To prove Calder6n-Zygmund's theorem (Proposition 4.22), therefore we shall first discuss properties of the Hilbert transformation, which are classically wellknown. ?Dtlllons
frq pau{ap dtto dtp uotTotu.totsuvr?peql?H aqt '(U)J,? ) d'tfitaaa.rol (g) puD 'I - zV puo 'd o7 TcadsatVpn snonutluoa st.dy (r) o s, ^reql'(2 1) d frtaaa.tog (zsar11) .gg.7 BrrruraT TuoTsuoc
LeIllIlla 4.38. (Riesz) For every p (:2: 2), there is a constant A p such that dy
(i) A p is continuous with respect to p, and A 2 = 1, and (ii) for every cp E CQ'(R), the Hi/bert transformation Hcp of cp defined by
/ t*r
[ cp(x) dx, J{!x-el>£} x - ~
f y o*, 1r
~ER
) - r ['
£-+0
(qe'r)
Hcp(~) = lim.!.
(4.35)
= (?)dn
4. 4. Quasiconformal Quasiconformal MaPPings Mappings
112 ll2
satisfies salisfies
IIH
where llII .llp,n . IIp,R means means the the LP'norm LP -norm on on R'. R. wheru prool. Proof. Since Since the the assertion assertion for for the the complex-valued complex-valued functions functions follows follows from from that that for for we may may a.ssume assume that that I
I:
=€* =+ iu(() r(() F(() = =u(C)+ u(() + iv(() = ~ I:*0,, :~~dX, ((= e+ i1],itt,n> 1] > 0. O. Since u(() v(() is is the the Poisson Poisson integral integral of of rp,
11l:d#e@)do e ,(o=* + 00
u(() =71'
(
-00
x-
x-
e)2
1]
2
2 =.!.1°O
for * H 0, every( = e for every ?> €+a4 everye E R. every( € Next, set Next, set W(() = IF(()IP --f,t"t}Y. -p-1u(()IP. w(0=lr(c)lo p-1
Then that computation that we obtain obtain by simple computation Then we
azw ,*, = -2
l " ( ( ) l P - 2 ) l F>' (0c,) 1c2e H . ffi,G) f,tlrtc)lo-2domain Hence, on the domain formula on Green's formula applying Green's Hence, applying
<E o, <e < fR}, t } ' 00 < f f Il n1] >>rf,, l\(1c l< D"R f < R (
( i \ a l-uc y (_~) oW d( O. o<~>o'
ff
laD.,R J,o.*(j,2
o(
Now estimate get aa rough roughestimate to get easyto Now itit isis easy , , , , _ 1 t (l(l-*). =o(cl-') lal law |
Hence, + 00, we have have oorwe .R-letting R Hence,letting
1t
Y u <-so.o
oW de
otl 01] J{t/=,} 1r1=ey
estimate Note rough estimate obtained rough easily obtained another easily that another alsothat Note also
'eturuel Surirrolo; aq1 sarrr3 3 a1pue c I ) araq^\
where ( E C and cp E CO'(C). With respect to this operator S, Lemma 4.38 gives the following lemma. gg'7 eururerl'g.ro1e.redoqql ol lcadsa.rqll1\'(C).35)
' ftztz f i Q + ' 1 4{t
'l
{
cp( z
+ () dxdy , zlzl
71" J{zERllxl>f}
x ,
J{lzl>f}
{;4lcllg3ar^
Jt I <-+0
\
(lim.!. (
/
=~ f" 2 Jo
opey-,(*O;;ooe
f-+O 271"
= lim ~ J~
Scp«()
cp(xe
i8
+ () dX)
e- i8
dB
+'*'i)""1|=,t,^t
Now, take a function cp in CO'(C) and change the variable x to x = x - ~ in (4.35). Considering ~ as a complex variable, we regard H cp as a function on C. As one of the generalizations of the Hilbert transformation on R to the two-dimensional case, we can consider the "circular avarage" operator, i.e., the following singular integral operator:
,ro1erado aqr,.a..r "urr"oirT:i"*t:f?lHJ,[Y"1.::*t'T:[i ,,a3?*elerncrr),,
aql o1 U uo uorlsuroJsrrerl 1reqllH erllJo suorlezrl€raue3aq1 Jo euo sV'C uo uoll)unJ e se dtg p.re3ara,n'elqerrea xalduroc e s€ l Surraprsuo3'(qg'l) "t = q oI e alqerr"^ aq1 a3ueqc pu" (C)JC ur d uorlcun; e aqel'mop ? -,
'd ,{.ra^rra JoJlu€}suoc peJrsepe sr
is a desired constant for every p.
D
("to\'-
/r-a\\ ot"\T))
-o-, 'acua11
Hence,
-,,('-,r,(#)) t - -, tu'dlldflll
-!" .a'a114511zlax 1
sa,rr3eururel s(noleJ '0 ol puel r 1e1',{1eutg f
o.
tend to
Fatou's lemma gives
'?par(,p + il^r*f "''(t
Finally, let
-'t'(#)) +?),r*[ t tu dre? Thus we conclude that l€q} aPnlruoc e^\ snql
*
{(jOO lu(~ + if)IPcJe )21P + (jOO Iv(~ + ifWd~ )2IP}PI2 -00
+ tq ",,{,,"(rrot('r
/)
*
+ ))nt :/) } ","(*ur'p -00
fq papunoq $ aprs pueq lJel eql leql aas er\ 'flqenbeur s(r{srtro{ur4 fq 'a.ra11
Here, by Minkowski's inequality, we see that the left hand side is bounded by
-7 ltudllp+l).rl
*-[ 'JpalQt+ t)nl + o J
t
-
J
'p.r3e1ur ?€ql apnlcuocaar'(oo'r] uo lr o1 lcadsar qlrm Surler3alur'acua11 1se1 aql uI uollsllueres1p pu€ uor1e.r3a1ur Jo repro eq1 e3ueqc uec e/r pq1 sa11dur1 qcrqal, 'lr o1 lcedsar ql1,u ,(1turo;run ,t1eco1 sploq '.Ztl e3.re1dlluarcgns e qlr^r
with a sufficiently large M, holds locally uniformly with respect to TJ, which implies that we can change the order of integration and differentiation in the last integral. Hence, integrating with respect to TJ on [f, 00), we conclude that
'u > + l ' , ( I " l ? l ) w l f tr., r # r l uraroaqJ punurtfT-ugrappC Jo Joord '?'t
4.4. Proof of Calder6n-Zygmund Theorem
113 TII
4. 4. Quasiconformal Quasiconformal Mappings Mappings
114 ll4
Lemma 4.39. 4.39. For For aa giaen given pp (> (~ 2), 2), lhe the inequality inequality Lemrna
llsell,< ioollollo holds for for eaery every I'f' €E Cf C8" (C). (C). holds In particular, particular, lhe the operator operator S is extended extended lo to a bounded, bounded linear operator operator on In LP (C) (C) into into ilself. itself. LP 0, set 'f'IJ(z) -= 9Qei0). 'f'(ze iIJ ). Then set gs(z) Proof. For every 9, 71'
H 'f'IJllp· II S 'f'lIp ~ *-2z 'uo sup IIllneellp. llsello. |IJE[O,"-l elo,rl 0, Lemma 4.38 4.38 gives gives On the other hand, for every d,
( [* Wrrloa,\av 1:(1: < . I (1: ll ~A~A l·1: l'lfe 'IJIs l P d x l d y
= IIH'f'IJII~ = [* lneell!, '
J-o
IH'f'IJ1PdX) dy
\J-o
/
f @ / 1 6
-
F
J--
"
\./--
P
\
dX) dy /
=allleelll = elllvlll. =A~II'f'IJII~ = A~II'f'II~· o0
Hence, the the assertion follows. assertionfollows. Hence,
the following following is reduced reducedto the The theorem theoremis of Calder6n-Zygmund's first assertion assertionofCalder6n-Zygmund's The first lemma. lemma. Lemma For every eaery'f' Cfl(C), 4.4O. For Lernrna 4.40. € C8"(C), I E
Tp = -S(Sp).
Proof. we obtain obtain formula we First, by by Green's Green'sformula Prool. First, 't tt ();a / - 22\ dxdy S'f'(() 'f'(z + sp(0=lim -21 +()~
(-I ) lg n71' jr[ J{lzl>f} JJrr,r,r,Pe \a 1)o,oo t ( o r} \ 11 {j~ z +, \()) di = hm n. ^ -1 [[ = 'f'z(Z -li P'f'(Q e " e+* ()-dxdy c"' l 1l a , a- y++ [ f-+O
vZ
.*o 71'ur __a {Izl>f} "l>,J ["/"/11
fl
Z
Izi lzl
fl
| tt
1
1
J{lzl=f} 9"p,122 1
Izi lzl
)
= * C) + C) =~ JJ.e"(z 'f'z(z+()I~ldXdY 'f'((z+()I~ldXdY ^dxdu ^a'av= ~; I J.peQ =;I t t
(jr
e ? )dxdy . d "")/d , ) . [['f'(z) = 1L {)? ( [ Jc . =;{)( r 0 . , \ J J c Iz_(l lr-Cl (l of integral of the the integral As we replace the kernel1/lz kernel Lll, -- (I P, we replace the of the the operator operator P, the case caseof As in in the on by hand side side by the right right hand on the
k ( t , C==) k(z,()
11
1l
Iz _- (I. .-~' ll,
A'
c' z , (Ee C. z,(
9II
uaroaqtr punurtd2-uoroppC Io 1oord '?'t
4.4. Proof of Calder6n-Zygmund Theorem
(fl ~(Z)k(z,()dXdY)
uaqr a^eq a^a
' (owor|z)q(z)dt"il) o)ds ++=
S~«() = ~ :(
(ge'r)
Then we have
115
(4.36)
.
aq1 ;o ecuaEtreluoc et{1 aalu€r"n3 o1 sr uorlecgrpour srqa) I al frarra .ro; 1e.rEa1ur
(This modification is to guarantee the convergence of the integral for every ~ E LP(C).) By a standard argument, we can show that (4.36) is still valid for every ~ E LP( C) (p ~ 2) in the sense of distribution. On the other hand, Lemma 4.39 implies that S~ belongs to LP(C) for every ~ E CO'(C). Hence, we see by using Fubini's theorem that
;?l{"1'1 rrerr,a ro;pte^ ,"ur,Xll,t'lJ:l{;":ffi:Jffitffi? IIII'q(ge't)
'ecue11'(C)JC > a 1eql ueroeqt s(lulqndSursn,(q easar\ ro; (C)al o1 s3uoleqdS tn,{t saqdur 68't €IuureT'ptreqraqlo eq} uO d.ra,re
{fl S~«()k«(, =:2 {)~ {fL (fL ~Z(Z)I:~~I) =:2 {)~ {fL ~z(z) (fl ~;~~~
I I I it=('xas)s \uotr@')ho)as W)dedfJ }
)f f\
(
S(S~)(W) =~ {)~ morL
^"|[ ] ry+= (**F#"[u," [) {0,,0 "f ^"t (E#u," t)('')h[] ry+= {uo* k«(,w)
dedfJ}
dedfJ) dXdY}
'c ) n dra,ra .ro; urelqo aa,r'e1nullo; s(ueerc Sursn ,(g
for every w E C. By using Green's formula, we obtain
(ze r) {oo,o (**F#"1[) 3 ,4^"[f]++- =(rn)(ars)
{fL ~(z)· (fL ~;(~~~
S(S~)(w) = - :2 {)~
:Z
dedfJ) dXdY}.
(4.37)
'ale11 1er3e1ureq1 yo f111q€Iluareglp prl.red eql {caq? o} Peau aal
Here, we need to check the partial differentiability of the integral
**m"lI {) (j' f
f"etefu)t
u/ e
k«(,w) ded )
11_21{a
Iz _ (I
J{I(-wl>R}
fJ
/
tlsrtg tgq? eas uec arr,r
First, we can see that
'acue11'oo {U s€ C uo f,prroyun d1eco1 g o1 se3ra,ruoc 1eBeaa
converges to 0 locally uniformly on C as R
-+
00. Hence, we get
[) + [?] *r =(,,wffi"[ {**F*{a'n-)| ~ (j'f k«('W)dedfJ) {)z Jc Iz - (I -
lim
R-oo
{~j"f {)z
J{I(-wI5R}
k«(,W)ded fJ }
Iz - (I
.
fq aprs pueq tqSy aq1 aceldag
Replace the right hand side by
t-rt;p
ll Q--tplp
tt ni-u
-.)ll)- zl {u;t*-ttt ) --a' -,tt>l{a>ttt}S ze I l> I _ln SS's lsql alq"lr"^;o
a3ueqc fq aas a,u,'urJa1lsrg eql roJ sY
As for the first term, we see by change of variable that
1 11 _ u
11'
P
2
dO
{) = {)z
o
"
t
R
)
a
I
- z)g- = l*-a- tl of@- zLln 2 (z - w)lz - wi
(jrJ{I(151'~"I} f \(111- (I
0
I Iz-wl Re i8
dedfJ
L
= --1
dedfJ
Iz - (II( - wi
.(oo - u) ry-)
*''^-n',,1 * J{I(-wI5R}
(E;Y'n'uu [[) +=(W
{) (jr f
{)z
7r
-+ - - -
z- W
(R
-+
00).
)
4. 4. Quasiconformal Quasiconformal Mappings Mappings
116 116
Similarly, we we obtain obtain Similarly,
(jr[
~( t t !0z
: {d{dTJ 4:)
)
oZ \J J{I(I~R} 1(llz -- Cl (I ) Juetsny l.,ll,
(Rp-+*00). - -_~ oz 1 --/' m). \'-
-+
z
Hence, we conclude conclude that that Hence.
(jr[ *(ll"f*"*) oz Je Iz - (I ~
k(, w) d{d ) 77
to exists and is equal to 7r
7r
---+-. zz-w -r=-'z (4.37), we have have shown that that Now, going back to (4.37),
- ~) **\ s(s,p)(,o) S(S~)(w) =* = 0: {~ 11 ~(z) (* dXdY } {+| l.ora(z ~ w - i) oa ^ =-i;,rr(w)=-Te@). =-P~(w) = -T
otr
Thus Thus the assertion follows.
continuity of 4.22 follows follows from the continuity assertion of Proposition 4.22 Finally, the last assertion ) verified easily, C with respect to p. Noting that C :::: 1, which is verified easily, the continuity, 1, is top. Co with respect Co p p theorem. in turn, follows from the following Riesz-Thorin's Riesz-Thorin's convexity theorem. turn, follows (0,I12). wilh respect respeclto lo l/p llp on on (0,1/2]. Lemma logCp is convex conuet with The lunction 4.4I. The Lemma 4.41. funclionlogC, j. Set p2 with pi :::: oi = l/pj llpi and and Cj Cpi p1 and P2 with Pj ) 2 for each each j. Ci = C Proof. Fix Set aj Fix Pi Pj : 1,2). (j (j = show that 1,2). It suffices sufficesto show t .cl.llfllq. C,'-' . C~ ·1I/111/a IITllli/a llrfllu" ~S ci-
< tt ~ holds 1 ) and a n devery e v e r yIf E ( 1 - r t)al ) o r ++ t ata2 2 ( 0(0 ~ f o r every e v e r yaa == (1 e tLl/a(C). ' r 1 " 1 C 1 Since .S i n c e h o l d sfor S 1)
Ijr[ I t l
IITII11/a sup TI·' 9dXdyi sdxdv llrfllu' = 9ELl/(1-"')(e),lIgIl1/(1_",)~1 J"Tf e s6Ltt(t-a1rllirn,r.,-., rrlJJ .gdxdy. by we shall estimateffe duality,we shallestimate by duality, il"f TIf . gdxdy. For g with compact compactsupports. supports.For First, we assume that I and 9 are step are stepfunctions functionswith First, we assumethat / and every complex value (, we set (, every complex value we set
f, F() r(O == I/la(O/a 177GY'
L
t/l III
and and
'l:1c'l '
e G(() G(O== Igj<1-a«())/(l-a) ;r1(t-a(e))/(t-d
= (1functionsfor for arealso alsostep stepfunctions where ,F'(O and andG() (1 - ()al G(() are wherea() o(O = Clearly,F() + (a2. C)ar+ Caz.Clearly, write every (. With .11, we wecan canwrite real constants constantsAk, every(. suitablereal With suitable
'y xtPuaddY;o p u e ' g r a l d e q 3 J o s e t o N a e s ' o s 1 y ' [ 9 1 6 ]u e a r t l n sp u e ' h O I ] e m e 3 e g ' [ 6 9 1 ]s a u o l '[gg] Surrqag '[99] ut.*tq 'lttl'ltZl s.rag '[61] sroJIqY '[gO-V] raqoqts '[tO-V] r€{eN pue orreg '[16-y] rauaqc,(g pue uuerulag '[Sg-V] zfztypve zcrr*oufrinel '[qg-V] Surrqag '[gt-V] ralqceqos pu€ uqof 'srag ees'aldurexa roJ 'suollnqlrlslp 'sace;rns uueruelg enl€A Jo pue 'suorlcunJ luel"Alun ;o 'sdnor3 u€Iulely ;o Jo salroaql aql s€ qtns elqelJe^ auo srsfleue xaldtuoc Jo splag snolrel uI osle lnq Jo 'sacedsra[nuq)IeJ;o ,t.loaq1aq] ur fluo paqdde pue '1oo1l€]uau€punJ pue 1ou 'luelrodurt '1n;asne se paztuSocar's{eperrrou'are s3urddeu 1eu.lo;uocrsen$ '[gSa].H.\t Pu€'[69I] !\otsotrl'[g] pre3y ol uolluel]e ll\€rP osle e/11'[60I-v] gpslg1 'actrelsut ro; 'aas 'sSutddeur leuroJuoJrsenb prleds rog '[Og-V] uauelrt1 Pue otqarl se qtns s3utddeur leturoJuo?Isenbuo s1xa1 ctseq Jerl?opue suolllugep asaql roJ 'pasn flluanbaq prepuels aas 'sar1.rado.rd '1 osl€ are 'q13ue1l€ruallxe eql ,(q euo Pue (7$ .ra1deq3jc) uorlel"llP lelncrl) eql '[6-y] fq auo 's3urddeur leuroJuocrs"nb;o suolllugep luale^Inbe reqlo 1o aurog alou ern??alpaterqelac (sroJlI{YJo A Pue 11 s.ra1deq3uo paseq st laldeqc stqa
This chapter is based on Chapters II and V of Ahlfors' celebrated lecture note [A-2]. Some of other equivalent definitions of quasiconformal mappings, one by the circular dilatation (cf. Chapter 1, §4) and one by the extremal length, are also frequently used. For these definitions and other basic properties, see standard texts on quasiconformal mappings such as Lehto and Virtanen [A-69]. For spatial quasiconformal mappings, see, for instance, Vaisala [A-109]. We also draw attention to Agard [3], Mostow [159], and Tukia [238]. Quasiconformal mappings are, nowadays, recognized as a useful, important, and fundamental tool, and applied not only in the theory of Teichmiiller spaces, but also in various fields of complex analysis of one variable such as the theories of Riemann surfaces, of Kleinian groups, of univalent functions, and of value distributions. For example, see Bers, John and Schechter [A-16], Gehring [A-35], Lawrynowicz and Krzyz [A-65], Reimann and Rychener [A-91], Sario and Nakai [A-93], Schober [A-96], Ahlfors [12], Bers [27], [37], Drasin [56], Gehring [85], Jones [109], Segawa [191], and Sullivan [213]. Also, see Notes of Chapter 5, and of Appendix A.
saloN
Notes 'uollJass" aql sa^IraP luaun3re uolleunxo.rdde D eurlnor e 'slroddns lceduoa qt!^{ suol}?un; dals frerltq.re ere f pue / acutg '?=)W
at (= t. Since f and g are arbitrary step functions with compact supports, a routine approximation argument derives the assertion. 0
. " / ' l l / .l \l c . , _ I cI l ( t ) o l 1q)(t)1 ~
l€ql aPnlruot II€? era
we can conclude that
ci- t . C~ ·llfllt/a'
,D/rlUll?ol - c7?o1j- r28"r(l - t) - lO)olsot zpl+tp(l-r) uorlcunJ truowreqqns aql ol ,fllcallP 'acua11 eldrcurld leurrx"ru aq1 turrtldde fq ro 'uraroaql sauq-?arql l€elss?lc eq] /tq
Hence, by the classical three-lines theorem, or by applying the maximal principle directly to the subharmonic function
',
r,C I tlltll)zc> l())ol
1q)«)1 ~ C2 (1lfllt/a)a./a.
e= I}, we obtain ulelqo "^'{I
Similarly, on {( Eel
= } | C ) )} uo'{gePu15
.,1,,(ttlvll),c> t'"-r)/rll())cll'"/'llo)a-rll t l())ol
Iq)«) I ~ IITF«)1I1/a,IlG«)1I1/(1-a,) ~ C 1 (lIflll/a)al/a.
{( Eel e= O}, we have
aeqaa{'{0=llC>)} uO'{I > ) > O I C > )} uo crqdrouoloqpu€ papunoqq ())O'relnrrlred u1
In particular, q)(() is bounded and holomorphic on {( Eel 0
"f 'fiptp0.la | =r,t, q)(t) =
< e< I}. On
J
LTf' gdxdy.
'(oo >) l"qt snol,rqosI lI 7,9,(ra,raro3 '{11uenbasuo3 {W > l}ll C > bp+ I = )} uo arqdrouroloqPrrePePunoqtI O)O
Consequently, q)«) is bounded and holomorphic on {( = for every M « 00). It is obvious that
e+ if] E C I lei < M}
"[l '(tunsalruse) O).r.2 = OW 2,rara! = ftpap())g. q)«)
=
J
L TF«) . G«)dxdy
= ~ake>'k(
(a finite sum). 117
seloN
Notes
LTI
118 118
4. 4. Quasiconformal Mappings QuasiconformalMappings
quasiconformal mappings played aa crucial Recently, quasiconformal mappings have have played crucial role Recently, role in in new new invesinvesin the complex complex dynamics. dynamics. A new new notable notable result, result, called called the improved tigations in improaed proved, the \-lemma, has has been been proved, the statement statement of of which, which, for for the the sake sake of )"-lemma, of convenience, convenience, we include include here. here. we The improved improved A-lemma. )-lemma. Let Let E be beaa subset subsetofC, of C, and and let tet f().., The z): .<1 C Axx E --+ e f (\,2): be admissible, admissible,i.i.e., let f satisfy satisfy the the following be e., let conditions: condilions: following (i) (i) (ii) (iii) (iii)
z , zz E E, f(O,z) € E, / ( 0 , z ) = z, eueryfixed)" \ A, the the map map f()..,·): E --+ A is it an on injection, injection,and for every E .<1, C and e fired /(), .) : E e u e r y ( . , r ) , z E , t h e m a p for every fixed z E E, the map f(-, z) : .<1 --+ C is holomorphic. A e i s h o l o m o r p h i c . /or fired e f
J()..,
J
-----*C Then there there is is an arlmissiblemap an admissible map iQ,4z) :i .<1 Then Artsx e --+ A such suchthat that ff = on 1/ 3 x C i on A1t/t3e x E, E , where w h e r e.<1 C A, t1t/ s3 == {).. 1 / 3 } . .<1 E € C 11)..1 < 1/3}. llll {} Moreoaer,for every eaeryfixed)" quasiconforrnal Moreover, Atls,l(f homeomoris aa quasiconformal homeomor€ .<1 fixed \ E 1 / 3 , J()..,.) , .) is phism of C A onto oilo itself itself. phism second assertion assertion is is the contents contents of the so-called proof, The second so.called )"-lemma. ),-lemma. For the proof, see Bers Bers and Royden see [217]. See Royden [43], Sullivan and and Thurston Thurstonl2lTl. Seealso also Slodkowski Slodkowski [43], and Sullivan [209]. [20e]. papersin As As for for related related papers in this this field, field, we we further further cite cite Blanchard Blanchard[44], Douady [44], Douady Douady and [52], and Hubbard Hubbard [55], Mafr6,Sad and Sullivan Sad and Sullivan[135], Shishikura[206] [52],Douady [55],Mane, [135],Shishikura [206] and [207], and Sullivan and [215], and Sullivan[214], and [216]. [207],and l2l4l,l2I5l, [216].
g ra+dBqc
Chapter 5 saJBds Ja[[nuqJ.raI
Teichmiiller Spaces
's8utddeur railnuq?IeJ pa11ec'sSurddeur I€ruJoJuo?rsenbpurerlxa eql Jo sseuenbrun pue ecuelsrxe eq1 sr;oord eqt ;o ,ta4 eq; 'aceds ueapqcng l"uorsuaurp-(g - 0g) I€ar eql q II€q lrun uado eq1 o1 crqd -Joruoaruoq q (a f snuaS;o ec€Jrns uu€tuerg pasop e go eceds ralpuqcreJ eql ?) 'ruaroeql s(rallnuqcrel arrord plr€ '(Z () 6' snua3 }€q} sel€ls qcrqin Jo sat€Jrns uusruerl{ pesolc esec aq1 ele3rlselur ear 'g pue suor}ces u1 's3utddeu leur U Jo -.ro;uoarsenbEursn fq a?eJrns uuerueql frerlrq.re ue ;o aceds Jallntuqrle1, eql Jo uorlruuep areu e arrrSaal '1 uorlaaS ur '1srrg 's3urddeur l€ruJoJuocls€nbEutsn fq f1e,r 1eure11esaceds Jallnr.uqcral lcnrlsuoc II€rIs eiIr 'reldeqc $ql uI
In this chapter, we shall construct Teichmiiller spaces alternatively by using quasiconformal mappings. First, in Section 1, we give a new definition of the Teichmiiller space of an arbitrary Riemann surface by using quasiconformal mappings. In Sections 2 and 3, we investigate the case of closed Riemann surfaces of genus 9 (~ 2), and prove Teichmiiller's theorem, which states that the Teichmiiller space of a closed Riemann surface of genus 9 (~ 2) is homeomorphic to the open unit ball in the real (6g - 6)-dimensional Euclidean space. The key of the proof is the existence and uniqueness of the extremal quasiconformal mappings, called Teichmiiller mappings.
sacedg rallnuqrlel
Jo uorlrnrlsuo3
cry(leuv 'I'g
5.1. Analytic Construction of Teichmiiller Spaces 'asodrnd qql 'ace;lns aseq 1U f11eeu s3urddeur IsruroJuocrs€n$ eql uo sernlcnrls xelduroc aqt Jo 1as a{l se aceds reilnuq?ral eq} reprsuoc e^r ueqin 'sa.rn1cn.r1s xelduroc eqt suorlJol$p eq? ol uollrpuo? sseupepunoqruroJ Jo -Iun aql esodurrol sI qqt op o1 ,teu aug 'sacedsrellnurqcral eql Jo uorlrugep eq? ur 'sauo pcrSolodol rrcql rer{?sr 'suorlrpuoc c1!t1eue pu€ e^r}f,rJ}seJeJoru reprs -uoc plnoqs em 'q3noua suorleErlsarr,u! eq} e{pru o1 'acuanbesuoc s sV InJtln{ 'C uo 'y uo lou op lnq lsrxa suorlcunJ crqdrouoloq pepunoq luelsuocuou pue suorl?unJuearC s? qcns suor??unJcrseq 'f11en1cv 'sarl -.rado.rdctytleue xalduroc luaregrp snorJ?Ae^€q lnq 'crqdrouoagrp f11en1mu are y {slp lrun eql pue C aueld xalduo? aql 'acuelsur .rog 'srs,tleue xelduoc 3o 'fpureg a13urse ur se?sJrns crqdrouroegrp flpnlnur lurodalar,r aql urorJ ts?al 1" uu"ruerll praue3Jo esecaq1 ur'ralemog'(I 1e eceld o1 q3no.root sl 11'secegrns raldeq3 yo g$ ees) sEurq.reurse sdno.r3 l"luauspunJ eql ueealeq sursrqdlourosr qlgm paddrnbe g, o1 crqdrouroagrp sac"Jrns uueruarg (paryeur) il€ Jo las aql 'g. 'pa.raprsuoceler{ eru'9, ace;rns uu€ruerg pasolc e rod ;o eceds rellnurq?ral aql se
For a closed Riemann surface R, we have considered, as the Teichmiiller space of R, the set of all (marked) Riemann surfaces diffeomorphic to R equipped with isomorphisms between the fundamental groups as markings (see §3 of Chapter 1). However, in the case of general Riemann surfaces, it is too rough to place all mutually diffeomorphic surfaces in a single family, at least from the viewpoint of complex analysis. For instance, the complex plane C and the unit disk .1 are mutually diffeomorphic, but have various different complex analytic properties. Actually, basic functions such as Green functions and nonconstant bounded holomorphic functions exist on .1, but do not on C. As a consequence, to make the investigations fruitful enough, we should consider more restrictive and analytic conditions, rather than topological ones, in the definition of the Teichmiiller spaces. One way to do this is to impose the uniform boundedness condition to the distortions of the complex structures, when we consider the Teichmiiller space as the set of the complex structures on the base surface. Quasiconformal mappings neatly fit this purpose.
120
5. 5. Teichmiller Teichmiiller Spaces Spaces
5.1.. 1. Teichmiiller Teicluniiller Space Space of of an an Arbitrary Arbitrary Riemann Riemann Surface Surface 5.1.1.
Fix an arbitrary, not necessarily necessarily closed, closed, Riemann Riemann surface surface .R. R. For every every quasiconquasiconFix onto another another Riemann Riemann surface.9, surface S, consider consider a pair (^9,/). (S, I). formal mapping mapping fI of R onto formal I1 is homotopic are equiaalentif We say say that two pairs pairs (S1, (Sl, fi) 11) and and (Sz, (S2, 12) are equivalent if 12 0/1 homotopic We fz) f2o f , conformal mapping mapping of 51 Sl onto,S2. onto S2. Denote Denote bV by [S,/] [S, I] the equivalence equivalence class class of to a conformal
(S,I). (s, t).
call the the set of of all all such equivalence classes classes lhe the Teichmiiller Teichmii//er space space of of R, We call denote itit by "(r?). T(R). This This "(,R) T(R) can be identified with with the secalled s~called reduced reduced and denote T#(r) of of a Fuchsian Fuchsian model I of of R, as as shall be seen seen in $1.2. §1.2. Teichmiiller space space ?#(I) Teichmiiller id be the identity identity mappingof mapping of .R, R, we call [.R,id] [R, id] the base base point of of "(A). T(R). Letting idbe Letting The topology topology of of "(.R) T(R) shall be introduced introduced in $1.3 §1.3 by by means of of the Teichmiiller Teichmiiller The distance. distance. In this this definition, definition, we have used the notion notion of of quasiconformal quasiconformal mappings mappings In Riemann surfaces. surfaces. Since Since quasiconformality quasiconformality is a local local property property and conbetween Riemann quasiconformal mappings between naturally define quasiconformal formally invariant, we can naturally formally invariant, way: namely, by the uniformizais another uniformizaRiemann surfaces. surfaces. However, there Riemann quasiconformal mappings tion theorem in §1 of Chapter 2, define them from mappings we them from quasiconformal tion theorem $1 of Chapter between plana,r planar domains as follows. as
r
of ,R. R, take a universal-covering universal covering surface ,E R of R. By By Riemann surface E, For every Riemann the uniformization C, C, or the upper assume that that R I is one of 6, uniformization theorem, we may assume half-plane H. of R onto another Riemann surface homeomorphism If of I/. For every homeomorphism oj R universal S, 2.4, there is lift of I, E onto a universal is a homeomorphism homeomorphism /, a lift Theor em2.4,there .9, by Theorem /, of Il). We say say covering one of C, C, C, or H). is also also assumed assumedto be one surface § covering surface .9 of S 5 (which is quasiconformalor /(-qc. that -qc if the lift or K -qc. (Here a qaasiconformalor K K-qcif lift / is quasiconformal that I/ is quasiconlormalor mapping of 6 e quasiconformal quasiconformal mapping d means means aa canonical quasiconformal mapping mapping of 6 composed with a Mobius transformation.) Note that by conformal invariance of that composed with a M
I,
I
the only Riemann 0, and and the Riemann Example 1. Suppose e. Then R E = 6. fr.== R = 6, Example.l. Supposethat R C mapping of 6 surface homeomorphic C.. Moreover, every quasiconformal mapping .R is is^e homeomorphic to R is single point. consistsof aa single Hence T(C) ?(C) consists is homotopic to id. Hence - C. equivalent Example is conformally equivalent C. By Theorem 2.13, 2.I3, RRis E= Example 2. 9. Suppose Supposethat R quasiconformal a to one of C, C {O}, or tori. The image of C or C {O} by a quasiconformal C image C, C one {0} {0}, every Moreover, every mapping is respectively.Moreover, C - {0}, respectively. equivalent to C or C-{O}, is conformally equivalent ?(C) consists quasiconformal of C is homotopic to id. Hence T(C) consists of aa id. Hence quasiconformal self-mapping is self-mapping quasiconforma.l is of C {O} is homotopic single point. Next, every quasiconformal self-mapping self-mapping single {0} of e liz. also consists consistsof to fG -- {O}) lf z. Hence, Hence,T(C conformal mapping mapping zz 1-+ id or or to to the the conformal to id {0}) also aa single point. single point. argument as as in in §2 by the the same same argument Finally, .l?,we we can can show show by caseof of aa torus torus R, in the the case Finally, in $2 .EI. upper half-plane half-plane H. of R) can with the the upper can be be identified identified with that T( ?(R) of Chapter Chapter 11 that
'7'I ureroeqJ o1 spuodsarroc euruel 3urmo11o; aq; ' r.7 sserdxeosp e1y rJ / H = S t-! .t ! .n pue 'rJ dnor3 uersqrnJreqloue oluo J;o Jg ursrqdroruosr ue elsq e&ruaql 'J)L 'r-!oLo!=G)!g
Then we have an isomorphism OJ of r onto another Fuchsian group S = Hlr1. We also express r 1 as jrj-1. The following lemma corresponds to Theorem 1.4.
0j(/)=l%l-1,
r 1,
and
/Er.
^q PeuseP$ qcrq^r
which is defined by
'(a,'z)rsa * 1:!6 Or
r --- PSL(2,R),
ursrqdrourouroq airrlcalur ue aA€q a r '/ UI Ie?ruoue, aq1 Sutsg 'tr o7 Tcadsat qryn I to l,ttlu lonuouw eql / qqt II€c a1l ('g ot g;o Surddeu leruroJuoersenb B Jo uorl?rJlser aql s.rprr€ 'flanbrun pau[uralap sr 3f ue qcns 'gg'7 uorlrsodor4 fS) '- pue 'I 'g;o qcea saxu qcrq^{ ,g *- U : ,f Surdderu l€ruJoJuocrs€nbe;o '{p!} 'asrmreqlo al"}s lou op e,raJI J Jo H +- II : / lJll eql reprsuoc s,{e,rnpam '0Jo rpso ?uarualaauiosSolurod paxgs sr oo pu"'I l"ql aurnssefeur ea,r'mo11 '02'Z eululerl ,tq tf Jo slurod paxg eqlJo rlc€e tuo.r; lcurl$p sl zlJo lurod paxg /tue uaq?'eqoq.radfq s-t'I,L fes '1uaua1aauosJI 't={{!Llyo flurtlelnuruo?-uou ,tq t=j{ fa} lcurlsrp fgenlnur are 'cqoqered f,L ere ?eql eas uec aal'f,LJo turod paxy enbrun aql eq fd Surllel ueql '(0I'A pue g'U ssrutueT '3c) aqoqered .ro cqoq.radfq raqlra sr f,L frerra letll IIe JI /r\ou{ eAr'oqy'e,rtlelntutuot-uou are t={{if1 Jo o!\1 fue uaql 'zLorL - ef }es '.reroero141'rL ozL * zLo t,l qtyn zl, Pge Il, sluaurale o11rlsul,gluoc .1"1ce3 u1 'slurod ee.rq1 ls€el 1€ sureluoc {pp} - J Jo slueuela yo slurod paxg il" Jo }es aq} l€q} a}ou 'esec srql uI'e^rlelnunuoc-uou sl J leql arunsse sfemle aar'I'I$ ur uorssnf,srp eq1 3ur,llo11og'g aueld-g1eq.raddn eql uo 3ur1ce U Jo J Iepour uersqo\{ e xrJ
I,
Fix a Fuchsian model r of R acting on the upper half-plane H. Following the discussion in §1.1, we always assume that r is non-commutative. In this case, note that the set of all fixed points of elements of r - {id} contains at least three points. In fact, r contains two elements /1 and /2 with /1 ° /2 /2 ° /1. Moreover, set /3 = /1 ° /2, then any two of hi }j=l are non-commutative. Also, we know that every /i is either hyperbolic or parabolic (cf. Lemmas 2.6 and 2.10). If all /i are parabolic, then letting Pi be the unique fixed point of /i' we can see that {Pi are mutually distinct by non-commutativity of {/i }j=l' If some element, say /1, is hyperbolic, then any fixed point of /2 is distinct from each of the fixed points of /1 by Lemma 2.20. 'Now, we may assume that each of 0, 1, and 00 is a fixed point of some element of r - {id}. If we do not state otherwise, we always consider the lift 1: H --+ H of a quasiconformal mapping f : R --+ S which fixes each of 0, 1, and 00. (By Proposition 4.33, such an 1 is determined uniquely, and is the restriction of a quasiconformal mapping of C to H.) We call this 1 the canonical lift of f with respect to r. Using the canonical lift we have an injective homomorphism
U=l
t
'Z'1-'g
5.1.2. Teichmiiller Space of a Fuchsian Group dno.rg
uursqrr\{
u 5o acudg roilnurqclal
'(*+'t) Ie^ralur uedo eq1 qlr,lr pegrluepl q (U)J 'ecue11'lualerrrnba {1pru.ro;uoc flpnlnur lou are s luaragrp o1 Eurpuodsarrocsuretuop Eur.rlsq? apnlcuoc eu, 'aldrcurrd uotlceger eqf dq'ranoarotr4i'zf s +t z Eutddeur leturoJuoc eql o1 ropxo? crdolouroq sl .gJo fre,ra lsql pue'{" > lrl > I I C ) z} =S: uleuop Surddeur-;1as leuroJuocrsenb dleur.roguoc st Eutddeur leturoJuotlsenb e fq gr go 3ur.r raqloue o1 luapltnbe iraoqsuer e11\'{t > a3eun eq1 ) z} =U }"qt esoddns'1xa11 leql I C lrl> I '1urod alEurs" Jo slsrsuoc ({O} - V)1, p* (V),1 'pr o1 crdolouroq q Jo qlea eruag U;o Surddeur-;1esFr.uJoJuoctsenbfrarra 1eq1 pu€ 'U o1 lualerrrnba ,tlpurro;uoc sr Eurddeur leuroJuo?rs€nb e itq g;o a3eurl aql '6 leq? eas ot llneurP 1ou s! 1I'to) - v =a tol = u ?"ql asoddnS a\du'oag
Example 3. Suppose that R = ..1 or R = ..1 - {O}. It is not difficult to see that the image of R by a quasiconformal mapping is conformally equivalent to R, and that every quasiconformal self-mapping of R is homotopic to id. Hence each of T(..1) and T(..1- {On consists of a single point. Next, suppose that R = {z E C 11 < Izl < r}. We can show that the image of R by a quasiconformal mapping is conformally equivalent to another ring domain S = {z E C 11 < Izi < s}, and that every quasiconformal self-mapping of S is homotopic to id or to the conformal mapping z 1-+ s I z. Moreover, by the reflection principle, we conclude that ring domains corresponding to different s are not mutually conformally equivalent. Hence, T(R) is identified with the open interval (1, +00).
'{(* >), > l r l > I I C ) z } s u r c u r o pS u t r . r o ' { O } y ' ( q s r p l r u n aql) y Jo auo o1 luele,rmba flpur.ro;uoe sI U JI ,t1uo pue Jr u€Ileq" sr g ;o dnor3 'es?c slrll IelueruepunJ eIIl ?sqt 6 laldeqg Jo U''$ m I {retudg uI Palou aA"rI a^r u1 'aue1d-;1eq.reddn eql 'Il = U. ler{t arunsse sfea,lle e^a'uo araq uro.r;'snq;
Thus, from here on, we always assume that R = H, the upper half-plane. In this case, we have noted in Remark 1 in §4.2 of Chapter 2 that the fundamental group of R is abelian if and only if R is conformally equivalent to one of ..1 (the unit disk),..1- {O}, or ring domains {z E ell < Izl < r« oo)}. '1'9 Jo uorltrnrlsuog rr1,{puy
5.1. Analytic Construction of Teichmiiller Spaces
121
tzr
saezdg re[lurqf,ral
I22 122
5. Teichmiiller 5. Teichmiiller Spaces Spaces
Lemma 5.1. 5.L. Two Two points "(n) satisfy satisfy [Sl.!d Lemma points [Sl.!l], € T(R) [Sr,.fr], [S2,hJ lSz,fz) E [Sr,.fi] = [S2,hl [S2,f2l in ,f and only if if ()i, 0i, = ()0i", f@)R) if where Ii lhe canonical each T( i2' where is the canonical lift of Ii for each fi for fi jj(=1,2). (= I,2). Finst, suppose suppose that that [Sl, Proof. First, composing aa suitable conformal Proof 12]. By composing ft] = [S2, [S1,hl lSz,/z]. we may assume assumethat Sl ,S1onto S2, 52, we .S1= S2, Sz, and h homotopicto mapping of Sl to h. fi is homotopic f2. between h "nd h written as as aa I-parameter l-parameter family {fth9~2 A homotopy between .fr an_d /2 is written {.fr}r5r5, of U" the th" canonical mappings of R l? to Sl. 51 . Let h canonical lift lift of h with respect respect to r. mappings f . Then /, be fi with a continuous say the homotopy {It} has a unique continuous lift, say {i'd, under the condition {ft} bas {F1}, gives aa homotopy between that F F1 between fi and aalift F2 that lift F 1 = fi, and {Ftl 2 of h. f2. {fl1} gives o Fix an element, element I E f and zz E Il arbitrarily. Then both of the paths {F Fix e rand € H {f'1t ° 1 ( < < " " < 1 2} have the same initial 2} and ,(z) 11 ~ t ~ 2} and {f1 0, ° (F (z)) I 1 ~ t ~ 2} have the same initial t {it t i;r1rr1z71 | {z) | ! o7(z), projection {It < t ~ < 2} on Sl. and have have the the same same projection Hence, 51. Hence, ,(z), and point fi ° {f, II 1L ~ p-arlicular, the terminal point with each both paths actually coincide coincide with each other. In particular, 1 F2"7Q) former is is coincident coincidentwith hoto ° 1 is arbitrary, arbitrary, F Since z is 2 o,(z) of the former ir'6'rQD. 1 (F2 (z)). Since we conclude conclude that that we
11,
11
l1
11
110,
--1 = 0()i,i ,(,). 0). FF2 2°,o 7°oF2F ; t=
Since, also arbitrary, and since sinceeach eachof 0, 1, and 00 oo is is fixed fixed by some some element element Since 7 is also 0, 1, of r-{id}, fixes 0, 1, and 00. In fact, assume, for instance, that 0 is we see seethat that F F2 fixes 1, oo. fact, assume, instance, f -{id}, we 0, 2 1 element ,0. 0 the attractive fixed point of aa hyperbolic element Then F 0,0 ° F = () i, ('0) F2"1so Flt 2 7s. 2 i,(to) we see is also has 0 as as the attractive fixed fixed point. Hence, Hence, we see that also hyperbolic, and has
r2(0) F 0. 2 (0) = O.
12
Thus we we have that F F2 with the canonical lift lift f2 of 12 have shown that 2 is coincident with f2 = ()0i2' with respect f , and hence hence ()0i, = respect to r, with i, i,. we obtain Conversely, assume that (}i, 0ir- = (}i2 0ir== (). d. Then, for every, every 7 E Conversely, assume € rf we
ho,=(}(,)olj, iiol=0(t)"ii,
jj=1,2. =1,2.
geodesic For every every z E fI, letting letting !"gz be be the geodesic every t in the interval [0,1] € H, [0, 1] and every (with respect to the Poincare metric) connecting (z) and (z we_denote by Poincard connecting and respect metric) fi(z) fz(z),we_denote frith p o i n t which g , in ( z , t -- l )1) I| ( 1 - l )t). . Then ( r , tt) ) the t h e point w h i c h divides d i v i d e sgz i n the t h e ratio r a t i o t : (1T h e n {It ff(z, { f i = ff(z,t < t ~ we have 1~ 2] is is aa homotopy between between fi and /2. From the above, above, we have S 2}
11
11
ito,=(}(,)olt, ftot =0(t)" fr,
12 2,
12.
,Er,tE[1,2]. I e l, t € [1,2].
- S2, Hence, into Sl "n".y it is projected to aa continuous continuous mapping ft 51 = ^92,and Hence, every fi of RRinto /, is we 0E we have have aa homotopy homotopy between hand f1 and h. f2.
Noting this lemma, lemma, we we set set
11
= {(}i quasiconformal mapping of C C T#(r) = f#Q) ir au canonical .utronical quasiconformal {ei l/ is 1 group). such j( r) = if r i-t is is aa Fuchsian Fuchsiangroup}. such that ()eiQ)
1 1-
We call this T#(r) l- . It It can can be be also also rerethe reduced reduced Teichmii//er Teichmtiller space spaceof r. "#(l-) the groups isogarded the set {() i(r) I () i E T#(r)} of Fuchsian groups equipped with isogarded as T*(f)} Fuchsian equipped as set {d;(f) l0; e "marked" Fuchsian groups obtained morphisms set of "marked" Fuchsian groups morphisms to r, l-, or equivalently, lquivaleirtly, the set quasiconformal mappings as mappings of C. as deformations deformations of rf by canonical canonical quasiconformal
tzr
saoedg rafilrurlf,ra.1 Jo uollf,u]suo3
123
5.1. Analytic Construction of Teichmiiller Spaces ctlfpuy
'1'9
'(6 ul ,ra1deq3 8't$ aq} uo Jo Z {rsrudg ur uartS s?^\ uolllugap esoq,r,r)J Jo (U :t) ("f)Z }as lIruIT "!6- V6 : f s3urddeur leur.ro; z! = rlgr,{po pue y. r(;sr1es(?,'l = D lS r-g -irocrs6nbo Ll l"q? 'rnolaq U'g eurual 3o;oo.rd eql q se 'noqs usc aM 'tlrDureg
Remark. We can show, as in the proof of Lemma 5.2 below, that two quasicon= formal mappings Ii : R ---+ Sj (j = 1, 2) satisfy 0il = 0i2 if and only if on the limit set L(r) (c R) of r (whose definition was given in Remark 2 of §4.3 in Chapter 2).
11 12
uersqf,ng aql Jo (.7)"1' aceds re[nuqcla;
On the other hand, we define the Teichmiiller space T(r) of the Fuchsian model r as follows. Let QC(r) be the set of all canonical quasiconformal mappings w of C such that wrw- 1 are also Fuchsian groups. We say that two elements W1, W2 E QC(r) are equivalent to each other if W1 = W2 on R. Denote by [w] the equivalence class of w. Set T(r) = ([w] I wE QC(r)}.
fq elouaq 'lI uo eot = rlt reqlo qcee ol Tuapatnba ate ss€lc acuel€Arnbaaq1 JI [nr.] 'sdno.r3 osle are r-rnJrn }eql uslsqlnJ Q)Cb ) zm'rm sluetualeoA{1}€tll ,tes a6 ar s3urddsu qcns les aqt eq (l)CCI l.l IIe Jo lecluou€? IeurroJuoctsenb C ;o 'sa\olloJ s€ J laPolu aql eugap e^{ rPu€rl raqlo aq} uO
les 'rnJo
'{Q)cbe-l[rn]]=Q)t
:3ura,l,o11og eql a^€q ear 'f1en1cy 'e?eJrns uu€uelg 'are11 pasol, e q J I H - Ar ueq!\ (t) +J qll^{ luaPlculot sI (J)J leql a}ou altl '(,f)Z f" aceds pacnpar Jo PUI{ € sI '(t)*J1o (D+J 1eq1des uec e^a'acua11 lurod aur€s eql osle a,rrE(.i')13o 1ulod etues eql Surururrelep s3urddeur o,lrl l"ql r€elf, sr 1t'4reureg e^oqe eql tuoq ('fem eures eql ul J dnor8 uersqcng ,t.re.r1rqrslre roJ PaugeP eq uec (.7)7 aceds rallnurqclal eql 1eq1 elop) '1 1o acodsrelptaq?Nal eql (J)J II€c aA\
We call T(r) the Teichmiiller space of r. (Note that the Teichmiiller space T(r) can be defined for an arbitrary Fuchsian group r in the same way.) From the above Remark, it is clear that two mappings determining the same point of T(r) give also the same point of T#(r). Hence, we can say that T#(r) is a kind of reduced space of T(r). Here, we note that T(r) is coincident with T#(r) when R = H / r is a closed Riemann surface. Actually, we have the following: 'Z'9 BtuuraT s|utddoul lotn.totuousonb om1 'Tcodtuocs, A 7oq7 asoddng
11 12
: I
Lemma 5.2. Suppose that R is compact. Two quasiconformal mappings R ---+ Sj (j = 1,2) satisfy 0jl = 0iJ if and only if = on R.
Ii
"!e='!6 frlstlos 'vuo z! =r! (7,'l= f) lS *A puo!? fi fi1uo
11 12
Proof First, suppose that = on R. Then for every 'Y E r, Mobius transformations 0jl (/) and 0j;(/) are coincident with each other on R. Hence, OIl = 012 for every 'Y E r, which means Oil = 0i2 . Conversely, suppose that Oil = 012 = O. Fix a point Zo E H. By Propo-
'(oz)!! ll o (oz)uLo ("L)e acuIS t?{",t} ') uorlrun; ecuanbas llr€lsuoc e ol I/ uo r(prro;run {1eco1 se3la,ruoc 'rerroa.rot{ ') = (oz)"t -*'tu-Il e qcns leql saoqs 8I'U eurtuarl;o ;oo.rd eq1 I=J{"f} ecuanbass slslxe eleq} 'U I ) ttla.te .ro; '61'6 uotls leql qcns J ul -odor4 r(g'g 0z e xld'd ='!9 = WW asoddns'f1asra,ruo3 J l u r o d , e ''! g - )'!! g susatu y?lq,ll 'J 3,L freaa .rog "!6 -'!g 'ecue11'u uo reqlo qt€e qll^{ }ueplf,ulo, arc (L)'!g pue (r)Yg suol}eru -roJsu€rl snlqgl tr'J ) L frarra ro; ueqtr 'U uo z! - V teqt asoddns '1srtg /oo.l2'
sition 2.19, for every ( E R, there exists a sequence {In}~=l in r such that lim n --+ oo 'Yn(ZO) = (. Moreover, the proof of Lemma 2.18 shows that such a sequence {In }~=1 converges locally uniformly on H to a constant function (. Since
h 'Yn(ZO) = O('Yn) !;(zo), we can conclude that A«() = 12«(). Since ( is arbitrary, we see that 11 = 12 on 0
uo c! - V r"qr aos e,rir'frerlrqre u ) acutg 'Q)"1 = ())!
t
r
'
wUt apnlcuoc utsc a^r
U
R.
0
0
Thus we conclude the following:
aql apnl)uot e^\ snql :3ur,no11oy
'(.7)t s? oslo sN rttp^ pa{t'7uapt (a)l,urrlt'Tcodutoc A fi'.t'aqTtng '(sles so) (,t)*Jyr?n pe{lwew s? eql a Io (d1 acods.ta11nu'w?eJ '8'g uollrsodor4 ueqJ 'A aao!.tnsuuDutaty o to Tapotuuocsq)nl D eq J pI
Proposition 5.3. Let r be a Fuchsian model of a Riemann surface R. Then the Teichmiiller space T(R) of R is identified with T#(r) (as sets). Further, if R is compact, then T(R) is also identified with T(r).
€uruerl fq ar'r1cafutpue'paugap{le^r sl eql ul se / qcns fraaa ro;'lxaN'I'9 !0 ol (2I)J I U',g] tutoO e spues qerqn Surddeut aqa'!oo.t4 a^oqe se G)+,t>
Proof. The mapping which sends a point [S, f] E T(R) to OJ E T#(r) as above is well-defined, and injective by Lemma 5.1. Next, for every such 1 as in the
124 124
5. 5. Teichmuller Teichmiller Spaces Spaces
i
definition of = 0gi(f). of T#(R), T#(R), we we set set r\ 1 = projected to definition j(r). Then Then /isis projected quasiconforto aa quasiconfor= mal mapping.f of R R H/l onto'^9 H/\, mal mapping f of H / r onto S - H / r 1 , and and hence hence determines point determines aa point ?(.R). Thus Thus the the original original mapping mapping is e T(R). is also alsosurjective, [S, surjective, and and we we have havethe the first /] E first [S,fl assertion. assertion. The second secondassertion assertionfollows follows by by Lemma Lemma 5.2. The 0 5.2.
=
=
5.1.3. Teichmiiller Teichmiiller Distance Distnnce 5.1.3. shall now now introduce We shall introduce aa topology topology on purpose,we on T(R). "(.R). For We For this this purpose, we define defineaa disdistanceon on T(R). ?(,R). tance point [,S,fj Ee T(R). py be T(R). Let Let It! be the the complex complexdilatation Take dilatation of of the the canonical canonica] lake aa point [S,fl with respect respectto to r. l-. Then Then we we have have lift / of f/ with
i
i Q )°oi f== ii o°t-y,, o0j(-y)
-y' rEer.r .
Hence, for for almost almost every every zz E Il, it follows follows that that Hence, € H,
10i0)'" f) . f" = (f, ot). t' and and
( oj(-y)' i 0 )°'i)" h. iz. i =, =(iz( i°z-y)" i. .-y'V. . (0
we obtain Thus we
jti " t)|/l pi = (ltj0-yh'h' Itj
a.e.on on H, ff, a.e.
f . -yt E e r.
(5.1) ( 5 .1 )
if (5.1) (5.1) holds Conversely, if holds for every every -y Conversely, j( -y) = f, then we we can can see see that 0 0i0) € r, 7 E 1 homeomorphism of H, io-yoiis aa holomorphic homeomorphism 11,i.e., i.e., belongs belongsto Aut(H). Aut(H). Hence, Hence, i"l"i-'is we conclude conclude that that 0j(r) d;(l-) is a Fuchsian Fuchsian group, which implies that i/ is we is projected quasiconformal mapping of R to a quasiconformal j(r). .R onto another a"notherRiemann surface surface H/0 H/0iQ). measurablefunction It We call a bounded measurable (5.1) with with It p instead instead 1t on H satisfying (5.1) py a Beltrami BeVrami differential differentialon of It! on H I/ with respect respect to r. f. We denote denote by B(H,r) B(H,l-) the of all Beltrami Beltrami differentials differentials on H set of 11 with with respect to r. l-. Further, F\rther, we set
= {It B (H ,rh = B (H ,r) I| lilt t} . e B(H,r) B(H,rh 1100 < I}. {p E llpllWe call any element element of of B(H, B(H, rh Beltrami coefficient with respect respect to r. f)r a Beltrami coefficienl on H with l- . Simila"rly, we call a measurable (-1,l)-form Similarly, measurable (-1, I)-form pIt = p(z)d//dz It(z)dz/dz on R such that such that ess.supz€Rh(r)l < - a Beltrami Beltrarni differential differcntialon lilt II 00 = ess.supZERIIt(z)1 on R. Denote by B(R) < 00 r?. Denote B(R) the llpllset of of all Beltrami Beltrami differentials differentials on ,R. R. Further, Further, we set
=
=
B (R )'= (R )'II lpllB(Rh = {p {It e EB B(Rh lilt 1100 < t1. I}. We call any element element of of .B(^R)1 B(Rh a Beltromi Beltrami coefficient coefficient on R. Remark /. 1. By By the definition, B(.R) B(R) and B(H,f) B(H, r) are canonically identified togather with with norms. Also, Also, for for every quasiconformal quasiconformal mapping mapping ff of of R onto another another Riemann Riemann surface, Ronto the complex dilatation dilatation Fi It j eE B(H,l-)1 B(H, rh of of the canonical canonical lift lift / of of /f determines determines
i
'0 < I f.ra,ra .rog 'P aruet$P Jellnurq?Ial eql 1eq1 sarldurr p Jo uorlgsep eql 'too.r'4 o1 lcadsa.rqty( (lI)J ul r1:{[V ''S] = ud] acuenbasfqcne3 krc a4ea
Proof. Take any Cauchy sequence {Pn = [Sn, fn]}~=l in T(R) with respect to the Teichmiiller distance d. For every f > 0, the definition of d implies that
'ecualsrprallnuty?tal ay7 o7 Tcadsa.tql.tm sy (os1o (,t) *J acuaqpuo) (g)a acodsreIInu'UcNU eVJ '?'9 tueroaql aTayihuoc
Theorem 5.4. The Teichmiiller space T(R) (and hence T#(r) also) is complete with respect to the Teichmiiller distance. 6't {rare ro;
f, g E QC(R), where p is the Poincare distance on the unit disk
'y
{sp }fun aq1 uo ecu"?srparccurod aq1 sr d araqar'(g')pO)
for every
Lt
H
(6d ' Iil)d df,' 't'"=
=ess. sup p(J.lI, J.lg)
H -\ / (lttA- rl . ,\ ) I A tu,r i l l n - r l_ t) I VAlt)}3o1dns'ssa= t \l - {,t I
(,-ro'r)v3o1 logK(f 0 g-l)
=ess.s~plog{ (1 + I(~:::I I) / (1-1 (~:gJ.l:I I) }
1eq1saqdurr91'7 uorlrsodord'6 ,lJDu?A
Remark 2. Proposition 4.13 implies that
'n raldeq3 '[gg-V] olqel elus]sul roJ aas '.1 dnor3 uetsqcng preuaE e 'uorlsrgrluepr qql repun (U),2 f" leql ,(q PeugeP sI Jo (J)J uo r(3o1odo1e roJ 'acuel ("f),2 oo f31odo1 e '(t'9 uorlrsodo.r4) (U),2 qt1,r.rPeUIluePIsl (J)J a?uIS -srp ra[ntuq]lal qqt ,tq (u,)-t uo f3o1odo1 e eu$aP errr 'lcedutoc sI Ur UaIIA\ 'zd = rd 1eq1 saqdut sq;
This implies that P1 = P2· When R is compact, we define a topology on T(R) by this Teichmiiller distance. Since T(r) is identified with T(R) (Proposition 5.3), a topolgy on T(r) is defined by that of T(R) under this identification. For a topology on T(r) of a general Fuchsian group r, see for instance Lehto [A-68], Chapter V.
'J ) L 'r - (.t)'-!!"t e we conclude that 13ql aPnlluoc
el\{
'NI u'J ) L'(L)'!e=(L)'-!:'{o
e?urs'pu€q raqlo eql uO '.& uo .,(lurro;runf1pco1 pr o1 saErarr,uotuQ lsql 98'7 uorlrsodor4 "0rl e?uIS'u,tra,ra ro; Q)'lg o1 lcedse.rqlrrlr 3 r, s" urorJ s1r^olloJ l!'oo 0 zt'r{1 u1 u0 1:r.-l'oo "f u se I ("6))I leql qcns Jo IJII Iecruouec eql aq t;:{"f} ecuanbes€ sr areql leql e}oN '0 = (zd'td)P tet{t asoddns',t11eutg
Here, K(g) means the maximal dilatation of g (Le., that of a lift of g). We call this quantity the Teichmiiller distance on T(R) between P1 and P2. It is easy to see that d(P1' P2) is independent of the choice of the representatives of P1 and P2· We need to check that this function satisfies the axioms of distance. First, since K (g) = K (g-l) in general, we can see by using the argument as in the proof of Lemma 5.1 that the Teichmiiller distance d is symmetric. Next, the triangle inequality follows by the fact that K(gl 0 g2) ~ K(gt) . K(g2). Finally, suppose that d(p1' P2) = O. Note that there is a sequence {gn }~=1 in :F11>I2 such that K(gn) ----+ 1 as n ----+ 00. Let Un be the canonical lift of gn with respect to Oil (r) for every n. Since J.lg" ----+ 0 as n ----+ 00, it follows from Proposition 4.36 that Un converges to id locally uniformly on H. On the other hand, since
'(26)>t
'?xa1q .(4X ) (0" t6')y teqr l)eJ eql ,tq sno11o;flqenbaut a13uetl1aq1 'crrlaruurfs sr p eruelsrp Jellnuqlletr aql terl? I'g sururarJ;o;oord eqt ul '1srrg aq1 Sutsn fq aas u?c a,ri\'1e.raua8ul (t-t))I = (6)X ecurs se luaurn3re 'ecuelsrpJo suorx" eql sausrl€suorlcunJ sII{l }eq} {caqc o1 oaau aa.zd eqlJo etlol{f, al{lJo luapuadeput { (zd'Id)p pqt aas pue IdJo se^rleluesa.rdar o1 fsea s-r 'zd pu" Id uee!\laq (U),2 uo e?uDIsrPr?nntuq?try eq1 flrluenb stql tI 'arag ''a'l) dJo uolteteilP Isurxeru eql slr€atu (6)y IIe? a11\'(f .lo tltt e Jo l€q1 z1'tt r)6 '(f)y so1 - (d' ril)p ' las eA{ FV o zI o1 crdoloruoq ere qclqa zS' otuo rg ;o sEurdderu IsturoJuortsenb IIe Jo las eql eqz['tI1 ]al'(U)J ) lzt'zg1 = zd'lrt 'IS] = Id slulod o,r,r1fue ro3'lltop
Now, for any two points P1 = [Sl,Jd, P2 = [S2,f2] E T(R), let :F1t.!2 be the set of all quasiconformal mappings of Sl onto S2 which are homotopic to 12 0 It -1. We set
'{d fq lt e}ouaP PUB 3 r/ lueurala ue f11e.rn1eu
'I(u)g 1o Tuatc$eoc,tuo4pg aq1 r/ slt{t IFc e^t
J.l
E B(Rh. We call this
J.l
't
naturally an element and denote it by J.l I.
the Beltrami coefficient of f,
ctp{puy
'1'9
5.1. Analytic Construction of Teichmiiller Spaces sacedg raflnruqf,Ial Jo uollrnrlsuo3
125
9Zr
126 126
5.5.Teichmiiller TeichmillerSpaces Spaces
we can can find find aa sufficiently sufficiently large large N N.f such such that, that, for we for every every n, n, m rn ~) N N., there isis aa f , there quasiconformal mapping, mapping, say sayIn,m, homotopic to -1 and satisfying that quasiconformal to 1m and satisfying that fn,^, homotopic f^o0 In fi-l ( f,e, where where J.ln,m pn,^ = J.lf.. pl..^.In particular, we we can can find find aa subsequence lIJ.ln,mlloo ,m. In particular, subsequence llp",-ll- < and aa sequence sequence{/nj,nj+l quasiconformalmappings of quasiconformal {Pnj }j;1 and mappings such such that that {l"r}pr {fni,n;+, }j;1 }p, of
=
i ,, j == 1,2,3,···. z-i lIJ.lnj,nj+llloo <<-2l ? tn r'n ,*Jl i r ,2,3,"" ps be Next, let let Po point of be the the base basepoint of T(R). T(R). Since Since{d(po, Next, Pnn~=l is is aa bounded bounded {d(ps,p")}Lr ( K sequence, we may assumethat that K(fn) K(/r) < 1( for for every sequence, we may assume every nn with with aa sufficiently sufficiently large large (> 1). 1( (> 1). Since Since K L r2- ji 11+ .
K ( f n , , n ,::;* )1s_#2-j < r ::; + 41 + . 24·2-; -i K(fnj,nj+J
j, we for every every j, we see seethat that for gi = fni-r,n;
o fni-z,ni-r
o "'o
fnt,n,
o fn,
quasiconformal is aa quasiconformal mappingof of R onto 5nj' R onto .9,.r,homotopic homotopicto to Inj' is mapping and satisfies satisfies /r' and
j-1 i-r K ( s i 3) K· K . l l ( 1 + 4· K(gj)::; 4 'Tj). 2-i). j=1 j=l
II(1
Hence, {K(gj is aa bounded bounded sequence. sequence.We Hence, nj;l is We denote denote by K Kr1 the supremum of {f(gi)}r_4, {K(gj)}. {rcki)}. Now, let let 9i be the the canonical j. Then canonicallift of gj gi with respect Now, respectto r l- for every every j. ii be = J.lgj ( belongsto B(H,rh, B(H,f)r, and and IIJ.ljlloo &1 (1 K')10 J.li ::; k = (1Kd/(1 + Kd «(< 1). Kr) 1). 1 Fj = lii; belongs a llpillAlso, we we have have Also,
1""
"
r r - l l ti+~Pi*'-Pill
= IIJ.lnj,nj+llloo (2-r -2111J.lj - J.li+11100 II -J.ljJ.li+1 J.lj II = < Tj rr+rll-::;slll:F;r,,.rll_ llru,,"i+,ll,llui00 particular, {J.lj}j;l every j. for every j. In particular, is a Cauchy Cauchy sequence sequencein B(H,r). B(H,l.). Hence, Hence, {pi}p, = limj**ti pr et. . J.l = limj-+oo J.lj exists exists in B(H,f), B(H, r), and and satisfies satisfies 11J.l1100 ::; k llpll- S 1 Let / be the canonical canonical p-qc J.l-qc mapping of of 11. H. Then we we can can show show that that / belongs belongs = [5,/] to QC(r). point in T(R) "(.R) determined by OJ. d1. Since Since QCQ). Let p = [S, /] be the point
i
i
(d(p",,p)\ - ll p- pi ll
,^^, I tann
\
;:)sllT:wll-
I
,, ,r s Tl6yttt'ir'tt*'
we see see that that pn, Pnj converges converges to to p. p. Since Since the limit limit of of a Cauchy sequence sequence is unique, p, Pn also also converges converges to to the same same p. p. This This implies the completeness. completeness. D tr Now, Now, fix fix a point point lPa-1_,ftl [R 1 , il] €E T(R) T( R) arbitrarily. arbitrarily. By By setting
[il].([5, /]) I]) = [S, [5,f il -1], [.f,].([S, f "0 f{r],
[5,/] eE r(R), T(R), [S,.f]
we we can can define define aa mapping mapping lf1l. [il]. :: T(R) T(R) -----. "(Rr) T(Rd of of "(E) T(R) onto onto the the Teichmiiller Teichmiiller space point space ?(.R1) T(R 1 ) with with base base point [R1,fd]. [R 1 , id]. Moreover, Moreover, we we have have the the following following proposiproposition. tion.
LZI
sueroeqJ s.ralFurq)ral puc s8urddel4lrallnurq)ratr'Z'9
127
5.2. Teichmiiller Mappings and Teichmiiller's Theorems
lvrNrleuros, uo n (rg)a -
Proposition 5.5. This mapping [11]. : T(R) -----+ T(Rt} is an isometrical homeomorphism with respect to the Teichmiiller distances. In particular, T(Rt} is homeomorphic to T(R). -euroq
'(a),f, u1 s? (rA)J'.topcr,7.tnd ot nr1ifu,ou,oatuott 'se?ullsrp rellnruy?t4 aq7o7 qTtmutstyd.t'ou.to Tcadsa"t (A),t : *lrll |utddDur styJ '9'9 uorrysodo.r4
Proof. First, since [11 -1]. : T(Rt} -----+ T(R) gives the inverse mapping of [11]., clearly [11]. is a bijection. Next, for any two points p [S, f], q [S',g] E T(R), the family :Fj,g in the definition of the Teichmiiller distance coincides with :Fjoh -1 ,goft -1. Hence it is clear that [11]. is an isometry. 0 '-[V]Jo Surddeu esreAuleq1 sar-r3(U),-f --
..,l.r1aurosr ue sr _[r/] ]erll Jeal, tr sr lr ocueH 'r-rto6'r-r{o/^/ qtl^ seplf,utoce?uelslp rellntuqclel eI{} Jo uol}IugeP e'41q 6'tl rtlT,o*Jeql '(U)J I [f ',,S] =b'll 'S] = d slurod orrtl fue .ro;']xaN 'uorlcafrq € sl -[V] fpealc (,U)-f : -[r-VJ ecurs'1srrg 'too"t4
=
'(g); aceds rallntuqtlal er71 1o Tutod asoq (U)Z : *[t/] srql se qcns Surddeur e ilec aiA
We call a mapping such as this [11]. : T(R) base point of the Teichmiiller space T(R).
*
-----+
aqTto uorTolsuvrt e (rA)t
=
T(Rt} a translation of the
'1 raldeq3 ur paugep esoql qlla luePlruloc aJ€ uorlres sql ul PeuueP 6J Pun (g),, t*qt uollces lxeu aql uI ^^.oqsoA\ 'k?) 0 snual eq11-III€c Pu€'t;.'(q aceds lo acods;a11nuqz??J e qcns alouap feru a,s.'ecue11'1urod aseq aql Jo luepuadapur $ Ur qcns ro3 aceds rallnuqcrel aq1 '{laurep '(27) 0 snue3 atues eql Jo U sac€Jrnsuu€tuaw pesolt ge ro3 crqd.roruoeruoqfpenlnur are (g)g 1eq1saldu1 g'g uorlrsodotd'6 qroueq
Remark 3. Proposition 5.5 implies that T(R) are mutually homeomorphic for all closed Riemann surfaces R of the same genus g (2': 2). Namely, the Teichmiiller space for such R is independent of the base point. Hence, we may denote such a space by T g , and call it the Teichmiiller space of genus 9 (2': 2). We show in the next section that T( R) and T g defined in this section are coincident with those defined in Chapter 1.
srrroroaql
s6rallntuqclol
5.2. Teichmiiller Mappings and Teichmiiller's Theorems pue sturddel4l
rallnuqr.ral'Z'9
slerluara.DlqcllBrpen$ crqd.rouolog'I'Z'g
5.2.1. Holomorphic Quadratic Differentials
sauroceqzlzpq+ zpl w1t eesa^r '()),t = e fq z ralaure.red z Eurddetu l€?ol eql 3u€ueqc uodl'.leP{ l€r.uroJuo? ctrlau ueapqcng uroJ eql seq repun aueld-areql uo + + zpl / )/)) .lrnpl zklfi 'I< eqlJo {teq-1nd aq1'(t + >f)/(t - N) = { les erlruaqo,'acue11 >I auos roJ z J--frp+ex<---12 -z r - ) I ' a , l+>I uroJeql 'aue1d-rn .ro) EurqclerlsPue uollelor eql o1 (Eutsse.rduroc ul ?)t allr^t uec aarr. elq€lrnspue'aue1d-zeqt of uoll"lor alq€tlnse 8ur,t1ddy'9 3o Sutdderueuge ue aq (15/[< lol'C > d'o) 4d * zn = (r)l - n Io"l Sur,rrasa.rd-uort"lua-Iro '716 rBIIluIs ssn?$pfleqs eA\ as€c eql lo; s3urddeur snuaS;o ((lecluouse,, '3;o Surddeu aulgpEut,rrasa.rd-uolleluelro u€ Jo uollf,elordaq1rapun aqt'U ur lurod I; ur lurod raqlo rtue ol lues sr'1 snueS;o acedsreilnruqcletr, uu"tuerg pesolc'-t.ro1 fue lerll ueeseleq s,lr 'auo snua3go sa?€JJns ;o aseceql uI
In the case of tori, closed Riemann surfaces of genus one, we have seen that any point in T 1 , the Teichmiiller space of genus 1, is sent to any other point in T 1 under the projection of an orientation-preserving affine mapping of C. We shall discuss similar "canonical" mappings for the case of genus 9 2': 2. f(z) az+/3z (a,/3 E C,lal > 1/31) be an orientation-preserving Let w affine mapping of C. Applying a suitable rotation to the z-plane, and suitable rotation and stretching (or compressing) to the w-plane, we can write f(z) in the form
=
=
K+1 K-1 2 2 for some K 2': 1. Hence, when we set k = (I< - 1)/(K + 1), the pull-back of the Euclidean metric Idwl 2 on the w-plane under f has the form ((K + 1)/2)2Idz + kdzl 2. Upon changing the local parameter z by a conformal mapping z = h((), we see that Idz + kdzl 2 becomes
.
K x + zy = - - z + - - z
lJr
1-----+
zl
z
l''
ltutz\'qlt, ' + )pl"l,,tl 20q) , 2
(h')2_
2
Ih I "I d( + k l(h')21 d( 1
|
. .,
I
'lertuereglp € pell€r-os crqd.rouroloq alprpenb Jo e^Il€luesardat e se 'e.la11 '.le1e1ureldxa pereprsuo?aq uec urroJ stql ul a(r?) ,t1r1uenbaq1 II€qs a^\ se
Here, as we shall explain later, the quantity (h')2 in this form can be considered as a representative of a so-called holomorphic quadratic differential.
I28 128
5. 5. Teichmiiller Teichmiiller Spaces Spaces
= {SOj} A family family SOp = pj on of holomorphic holomorphic functions functions SOj on Zj A (Uj) for zi(Ui) for all all coordinate coordinate {pi} of neighborhoods (U (t/i, zi) of of aa Riemann surfaceR Riemann surface ,Ris is called called aa holomorphic quadratic neighborhoods holomorphic quadratic j , Zj) differtntial on on R .R if if itit satisfies satisfies differential p*(rn) = pj o z1r(zx).(z1e'(21,))o 2n Ui fiU3,
(5.2) (5.2)
= Zj where Zjk zi* = zi 0o Zk zk-r. where -1. (5.2) simply express(5.2) We express simply as as We
dz k)2. SOk(Zk) e*Qp) = SOj(Zj)(dzj elQi)(lzi //dr*)'. write We also alsowrite We
2
g = SO(z)dz SO . 9e)d,22. Denote by by A A2(R) the complex complexvector vector space quadratic Denote spaceof of all all holomorphic holomorphicquadratic 2 ( R) the differentialson quadraticdifferential on R. r?. A holomorphic holomorphicquadratic differentialcorresponds differentials to corresponds to aa holoholo-4 with morphic automorphic automorphicform form of of weight weight -4 with respect morphic respectto to aa Fuchsian Fuchsianmodel model rlof R .Racting acting on on the the upper upper half-plane half-planeH. 1/. Here, of Here,aa holomorphic holomorphicautomorphic automorphicform form -4 with p(r) of weight weight-4 with respect respectto to r ,f is, is, by so(z) by definition, definition,aa holomorphic holomorphicfunction function on H Il such suchthat SO( z) on 9Q)
p\eDt,e), == SO(z), H, 'Y7 Ee r. SO(-y(Z))'y'(Z)2 r. e(r), Zz E€ H, denote by A A2(H,l-) We We denote 2 (H, r) -4 functions of weight weight -4
the complex the complex vector vector space spaceof all holomorphic holomorphic automorphic with respect respect to f .
r.
these definitions, Remark. Remark. From these definitions, A Az(R) is canonically canonically identified identified with A ,42(I1,f). 2 (R) is 2 (H, r). In fact, any element element of A A2(H,,l-) clearly determines determines an an element element of A ,42(r?). 2 (R). Con2 (H, r) clearly versely, for every every SO p = {SOj} versely, A2(R), formula (5.2) (5.2) implies that the family e A2(R), {pi} E o o r)((21 0 11")')2} r)')'}, , as as a whole, whole, determines {SOj(Zj determines exactly one one single-valued single-valued holo{piQi 0 1I")((Zj morphic function function on H, I/, which which belongs morphic to A R belongsto A2(H,f). Here, 11": r: H ---> R== H H/f/ r 2 (H, r). Here, is the projection.
Teichmiiller Mappings 5.2.2. Teichmiiller Mappings "locally affine" quasiconformal quasiconformal mapping As a "locally mapping of mapping f/ such of R, .R, we take a mapping that some constant &(0 < & that for some k (0 ~ k < satisfies < 1), it satisfies
!z = kf" kfz fz for a suitable local coordinate zZ around almost every point point of of -R. R. More precisely, precisely, we discuss discuss a quasiconformal quasiconformal mapping /f whose whose Beltrami Beltrami coefficient coefficient 11 J-l J satisfies satisfies that that (j5
w = kl e&l J-lJ=k~
with with a suitable suitable pSO eE Az(R).(See A 2 (R). (See Proposition Proposition 5.19 5.19 below.) below.) Let Let a positive & k (< « 1) and ISO eE Az(R) A 2 (R) -- {0} {OJ be given. Then Then we call a quasiconformal quasiconformal mapping ff a formal formal Teichrnilller Teichmii//er mapping of of ,R R for the pair pair (ft, (k, p) SO)
6Zr
suaroaql
129
5.2. Teichmiiller Mappings and Teichmiiller's Theorems s.rallnruqtral
put sturddel4l ra11ltnq]ral
'Z'9
asec aql o1 puodsarroc q?Iqa 'sEurddeur Jallnurqclel leuroJ se oqe s3utddeur 'Vllaq o1lenba sI /Jo /r/ ?uapgaoo rurerlleg aqlJr I€ruroJuospreSar an'ara11
if the Beltrami coefficient J.l J of f is equal to kSO/ l
q ld',lldttrto;lffolt:;"Jtif;:"; e,,nueq,opaiueqcun qlrmdc dq o5aaeldar .{r > Illall | @)"v ) 6} = r(a)zv 1nd eru
tes
From here on, writing
'"zp(z)dt = o5Eurltraa 'uo araq uro.rg
1I
2
JL
1
"[[z='llall 'npxpl(z)d>l
(This integral is often written simply as ffR l
Sutddeur € eA€q am ',uo1q 'aceds ('leuorsueunp auo sr (A)"V'g' snrol e Jo es€eeql w l"tll ilersg) rolf,el xalduroc leuorsueurp-(g-rg) e f11en1ce{ (U)zy teql s[el rueroaq] s.qoog -uueruerg 'laloeto141'tll . ulou slql qtl/'t acedsqeeueg xalduroc tssE ParaPlsuoc ll '(Z q (U)zy pue '(U)e!. ) dt f,ueroJ ellug q llldll 'esec stql uI <) f snuaE;o sace; -rns uueruerH pasolc Jo es"c aql ,(po rePrsuoc eal 'uolssncsrp Eurmollo; aql uI '1) 'dt railntuq?Iatr, .rred qql roJ Eurddeur e rqlnutlcyaa (dt ro1 |utrltlout 'r(A)zV 9 d luaurala ue rod I€nrroJe IIec e^ytlldll = { leqt arunssefetu am se flduns uelllr^{ ualJo sI 1e.rta1ursrql) W\uil
(U)-r *- r(g)cy :1
defined by
fq paugap
to! p.r- / pue'0 I dt tolEutdderure[nuqclal € sl (U)/ =,9 tt(g)zy ) dt '$'Sl = Qt)-f T(
=
=
g' : 3f araqm
where f : R --+ 8 f(R) is a Teichmiiller mapping for
(pueq .raqlo Surddeure a^"q aa,r'g,uo t=[{[t7]'llV)] = 3' Surrgeur€ Eqrxg a rlrefrnse sr oI ,- orlJ, oJ ?eql os 6 raldeq3 go g$ eqt uO 'ursrqd.rouroatuoq ur.o,!J uo f3o1odo1e ernporlul e { l€q} pus 't'I tueroer{I uI Palels n ,r"(A)J IIll^{ pegrtuapr.4 pl"J teql IIsctU 'g 3o sursrqdrouoaslPSur,uase.rd-uolleluelro '(e Sursn,(q 1 .ra1deq3 ?) f snuaE1osacsJrns Jo g$ ul paugep?sq1q pp(A),t Pue 'fleurep 'ra}}sl eql roJ aW sl uusruarH pe{rcu pesolc tes priJ lle Jo o,!J pu" 'uotlaasslllr uI '1 raldeqS ut PausaPesoqlqll^{ PeU pp(a),t uollelou eql e6nea,r lit,r"pl are .raldeqcslt{l w pel?nrlsuoc 'J put (U)Z r"qr ^{oqs11"qsem '1srrg '6 raldeq3 g$ ul peugaptg Jo eql esn aal 'asodrnd $q? roJ 'ursrqdroruoauroqarrtlaalrnse u (gt)J aeedsa:1cr1E + t(g)zy : 7 Eurddetusrrll leql ^toqsol $ uorlcesslqlJo esodrndulerueq; '0=6
o,!J* (a)1, so q>E: T(R)
-+
T;'d
given by
,(q ue,rr3
'(a),t>ll'sl '[(r)Y's]= ([/'s])3o q>E([8,/]) = [8, f.(E)),
[8, f) E T(R),
where f.(E) = {f.([Aj ]),f.([Bj])}1=l' Note that Lemma 5.1, Proposition 2.23 and Theorem 2.25 imply that q>E is well-defined and injective. Also, recall that
'oqy 'arrlcefu1 pue peugePlla^{ q 34i leql f1dutl 96'6 tueroeqtr,Pue t"qt ilecer 't=[{(llgD.l '(tfy])Y} = (S).1eraq^r 'I'9 "ruuarl 1"qt eloN 96'6 uorlrsodord
130 130
5. Teichmiiller TeichmiillerSpaces Spaces 5.
given by the same the identification between T(Ryld and T;ld was betweenT(R)'td andTftd was given same qJE. @s. Hence, Hence, we have qJ E is @e is clearly surjective. surjective. Thus we have the following lemma. - - - - -T;ld - T ; ' oand + F gg are Lemma L e r n m a 5.6. 5 . 6 . The T h e mappings m a p p i n g sqJE i D y:: T(R) T ( R ) --+ a n d F sg oOqJE are i D y : :TT(R) ( R ) --+ bijectiue.In particular, Fo bijective. particular, F qJE(T(R». Fog 0oAy(T(R)). g = F we set set it = F For the sake qJ E 0o T. sake of simplicity, we 7. Then we we obtain the fsg 0o(Dy following: following: Lemrna 5.7. The The mapping rnapping i: t :A Az(R)t Fc continuous. Lemma F 2 (Rh --+ g is continuous. rps be Proof. Let {If'n}~=l a.rbitrary convergent convergent sequence sequencein A A2(R)1, be Proof. 2 (Rh, and If'o {p"}f;=r be an arbitrary gn, limit. For every every n, n,let a .E for and be let In be a Teichmiiller mapping of R for If'n, and in be the its limit. fn fn fI with with respect respect to r, where r f is the normalized normalized Fuchsian Fuchsian canonical canonical lift lift of In f , where /. on H model E). Set Set model for [R, [,R,I].
f ^ = i- , f i--1 rn=lnrln, ;r,
n=0,I,2,... n=0,1,2,···.
=i(g)_is Then tt,n = i( If'n) is aa point of F 1,g representing representing r/l.n by definition. 1 = = o pi1^ set h lrn every n. Then we we obtain We set /-lh n in in 0 io /;1 and /-In Fn n for every
=
=
_ ( /-lIn - /-llo /-In , , =- ( r ' i ^ -_' i , '
(io)z) 1-1 i ; r. . @ ) -_0o Jo
l'r. . /-lin Fi" (fo)z (fo)"/ \'-1- /-lio
( 1, positivekI < 11 such we can lim,,*- II1f'nll1 1, we canfind find aa positive suchthat that Sincelimn_co Since llp"llt = 1IIf'0lh llpollr<
< II/-lnllco l l p " l l :s; - kr
1,2,"'). ( t == 00, ,1,2,.··). (n
gs = 0, f,'n converges .orru"rg". then limn_co Hence,by Proposition Proposition 4.36, 4.36,h 0, then lim'-When If'o IIIf'nl11 0. Hence, llp"llr = O. gs we locally on when to id uniformly H. can show show the same same assertion. assertion. uniformly I/. Even Even when If'o :f. 0, we can f 0, tfisQ) convergesto fo tPo( uniformly since limn_co lim'-In fact, since IIlf'n - 1f'01l1 = 0, z) locally uniformly 0, tPn(Z) Qn(z) converges llp"-pollt rp,. Hence, where tPn(z) r) corresponding on H, f/, where is the the element elementof A A2(H correspondingto If'n. Hence,letting 2 (H,,l-) Q^Q) is ti'sQ) we pr, H' E H I tPo(z) :f. O}, we can show that /-In converges to 0 locally uniformly H' = {z can show converges uniformly {z e I 0}, I on H', on Ht, which is is enough enough to show show the locally uniform convergence convergenceof {hn}~=l {h"}[1 proof H. However, since it needs a fairly long argument, we first finish the proof of since it needs we .I1. a fairly first Lemma 5.7. 5.7. Since f,,n converges converge-sto id locally Since h locally uniformly uniformly on H I/ in any case, case, in i- 0" It 0" i;;l f;t 1 'l E convergesto io every converges 0 I 0 i for every I r, which implies that t converges to to. l, implies that t, converges ts. e n iso"l" i;L o proved the assertion. Thus we we have have proved assertion. we return to the proof of the locally uniform convergence Now, we convergenceof {hn}~=l {i"}p, gs :f. on.F/ even when If'o to id on H even 0. f O. we set For every every n, we set
€H zz EH I u"Q),
v"(z)=\0,
Itla,
R zz € ER
H* zz EeH*.
tr
'(t)".t l?)"t = (r).ul
JAn(Z) = Fn(z)/Fn(l).
D
saop os a)uar{ pue'g uo r(pr.rogrunf11eco1pe o1 saS.ra,ruocuy roJ ",_{uor}nlos 'y 'acueg 'V 'e'e ol .reldeqC Ierurou eql Jo g'U$ ur 6 f.re11oro3fq ure3e C uo 0 sa8rerruocosle uy ?eql ees o1 fsea q ll 'C uo flur.rogrun ,(11eco1 p.r o1 saS.re,ruoc "r/' e?uls 'oo 1- u s€ y uo 'e'e ol saEra,ruoc"y ux\oqs a^€q e.f$,snr1J l€ql 0 'y uo 'e'e g o1 seS.reauo" un 1eq+epnlcuo? e/d ,_(Irl) o '{,H ) Z to ) z 3 z} uo fpuroyrun f11eco1g o1 seS.reruocun acurs'os1y rH lV 'y uo sorez ou ser{ r(:"/) r(t"nn ecurs'y uo flurro;run,(1eco1 1o1 sa3raluoc
converges to 1 locally uniformly on £1, since every (Jv~)' has no zeros on £1. Also, since lin converges to 0 locally uniformly on {z E £1 I z E H' or z E H'}, we conclude that lin 0 (JV~ )-1 converges to 0 a.e. on £1. Thus We have shown that An converges to 0 a.e. on £1 as n -+ 00. Since JI/~ converges to id locally uniformly on C, it is easy to see that An also converges to 0 a.e. on C -.d. Hence, again by Corollary 2 in §2.3 of Chapter 4, the normal solution Fn for An converges to id locally uniformly on C, and hence so does
/ ,(t^l) \
vQ'l)"{-r
, \ ,\i,I) ) ,acuag.3 uo flurro;run f11eco1pr o1 saS.raluo, ,_(ynl) 1eq1luaurn3re prspu€ls e fq rrroqsuec arrr'os1y 'g uo fpure; e sr acuiq pue 'snonurluocrnbafgeool pue papunoq I"ruJou .{1uro;run ,{11eco1 I?{r-(1"/)} ,(tg"l eql eas uer eM'gi.,'V tuaroaqJ, Jo leq} { '7 .ra1deq3 segsr?esr.,!' drerra aours 'alog (VZ'V) ;oord eq1 uI pel€ls se,lrs€ Jo '3 uo {puroyun f1eco1 o1 pr sa3rearioc osp "r,f }eq} ,raoqs 'popunoq fpuroyun a.re uy 're1ncr1.redu1 'u d.ra,rero; Ileqs a A ;o sl.roddns aq1
for every n. In particular, the supports of An are uniformly bounded. We shall show that fAn also converges to id locally uniformly on C. Now, since every Fn satisfies (4.24) of Chapter 4, as was stated in the proof of Theorem 4.25, we can see that the family {(J"~ )-1 }~=1 is locally uniformly bounded and locally equicontinuous, and hence is a normal family on C. Also, we can show by a standard argument that (Jv~ )-1 converges to id locally uniformly on C. Hence,
'o
( v ) i ^ l- c ) '
z E C - J"~(£1)
(v)i^t>,
z E J"~(£1)
/ty"D \ ,r_(i^l)"\ffi-)
) )=(r)"Y
)
ueqJ 'irl o "r/ se "r3f esodtuocap'u fraaa rog 'lxaN 'p uo {pr.ro;run d11eco1 pr o1 seS.re,ruoc (z l1)ug lG)g = @)l^l 'oo ol spuel u se 1"q1 aes o1 fsea $ lr ueql C uo fpr.royui pl "i se3rer'uoc u4 tol uotlnlos leturou aql '7 ratd€r{C Jo g'6$ ur 6 ,(re1oro3 fq 'ecueg '3 11, uo'e'e oo u s€ 0 +- u/t pue u frara roJ { > -ll"4ll 'f1.rea13.@/1)"a{lI = (z):^t leql ^rou{ a/rrpue'y ur paureluo) sr urt,f.tare;o lroddns aq} uaqf
Then the support of every vn is contained in ,1, and We know that J"~ (z) l/Jiin(l/z). Clearly, IIvn ll oo ~ k for every nand vn --+ 0 as n --+ 00 a.e. on C. Hence, by Corollary 2 in §2.3 of Chapter 4, the normal solution Fn for vn converges to id uniformly on C as n tends to 00. Then it is easy to see that J"~(z) = F(l)/ Fn{l/z) converges to id locally uniformly on C. Next, for every n, decompose J"n as fAn 0 J"~. Then
e Qr=G)'l 'v-J),
z
'u*;j
z
E.d E C -.d,
v)z
=Q)i^
Then hn is the restriction of the canonical lin -qc mapping J"n of C to H (cf. the proof of Proposition 4.33). Also, we know that IIl1n ll oo < k for every nand that lin --+ 0 as n --+ 00 a.e. on C. Hence, if we use the fact in the Remark at the end of §3 of Chapter 4, we obtain the assertion immediately. However, since we have not given a proof of this fact, We take another fairly long but rather elementary approach, for we only use properties of normal solutions stated in §2 of Chapter 4. For this purpose, we decompose J"n as in the proof of Theorem 4.30. First, for every n, we set
lASA^r'U Are^e rOJ '1s.rl,{'09't 'esodrnd srql .rog uraroeqtr yo yoo.rd eql ur s? esoduroeap arrr .rjf 'p raldeq3;o 6$ ut pa1e1ssuorlnlos l€urrougo serlredo.rdesn dluo aM roJ'qceo.rdde ,(reluaurale raql"r 1nq 3uo1 fpre; .raqloue e{el aal '1ce3 slrl} Jo yoo.rd e ua,rr3 1ou eler{ e,!r ecurs 'rela,!ro11'flalerpeurrur uorlrasse eql urclqo eilr '7 .raldeqC g$ pue aql Jo Jo 'c u.l leql le {I€Iuau aq} ul 1"3J eql esn eai!,Jr'aeua11 uo'e'e oo <- u sp 0 + pue u drarra roJ { > -ll"rll leq} aou{ a.tr 'os1y '(gg'7 uorlrsodor4 ;o;oo.rd aq} 'Jc) I/ o1 ? Jo ,r/ Eurddeur cb-un lecruouef, eql Jo uorlcrrlser aql $ "? uaqJ 131
5.2. Teichmiiller Mappings and Teichmiiller's Theorems
srueroeqJ s.rallnruq)reJ pue s8urddeyq rallBurqf,ral'Z' g
III
132 132
5. 5. Teichmriller Teichmiiller Spaces Spaces
Similarly, (but (but more easily by applying applying Proposition Proposition 4.36) we can show the Simila,rly, following lemma. lemma. following Lemma 5.8. The The mapping mapping fF sg o@2 0 qj E :f@) : T( R) ---+ Fe Fg is continuous. continuous. Lemma
5.2.3. Theorems Teich-iiller's Theorems 5.2.3. Teichmiiller's
The injectivity uniquenesstheorem. theorem. of t follows foilows from the following Teichmiiller's Teichmtller's uniqueness injectivity ofT an element element I{) he a Teichmiiller Teichmiller mopping Theorem mapping for for an A 2 (Rh, Theorem 5.9. Let ff be e A2(R)1, 9 E quasiconformalmapping Io which letT(p) Then every eaery quasiconformal R S and let T(I{)) =fS,fl. [8, fl. Then mapping h of to 8 which h is homolopic homotopic to ff satisfies satisfes
=
llpr,ll-> llprll-. holdsif if and and only only if if h Moreover, the the equality equalilyholds Moreoaer, h =
ff..
preliminary given in §3, needssome somepreliminary proof of this shall be be given for it needs A proof this theorem theoremshall $3,for discussions. surjectivehomeomorhomeomorthe fact fact that T is is aa surjective the proof of the discussions.Returning Returning to the phism, phism, we Theorem5.9. we note note the the following followingcorollary corollaryto Theorem 5.9. Corollary. TT and and T t are are injective. injectiue. rnappings Corollary. The The mappings 7. Assume Assumethat Proof. show the the injectivity injectivity of T. sufficesto show Lemma 5.6, 5.6, it suffices Proof. By Lemma mappingfor for be aa Teichmiiller Teichmiillermapping pr,pz E Az(R)r. Let Ii some1{)1,1{)2 = T(1{)2) T(pz) for for some eA 2 (Rh. Let /i be j. there is assumption implies I{)j T(l{)j) = [8j,fj] for each j. Then the assumption implies that there is aa each Then the gi and for and.T(pi) [Si,/i] Thus conformal is homotopic homotopic to h. onto 8,92 such that h 0o h conformal mapping mapping h of 8Sr1 onto 2 such /2. Thus /1 is gives Theorem Theorem5.9 5.9 gives T(l{)d f (pt)
= IIJJholt IIJJ It 1100 1100 ~> IIJJ h 1100' llp,t, ll-. llp,r, ll- = llttnoy,ll-
we have Similarly, since h isis homotopic to h, have h-l 1 0o.fz since hfi, we
IIJJhlloo lpr,ll-. l l p r " l l~2- lIIJJltlloo. = which implies impliesthat that hh 0o h that IIJJholt we conclude concludethat Hence 1100 IIJJ 12 1100, which f1 Hencewe llprrll-, llp;,oy,ll-
= h fz = particular,JJIt again againby by Theorem Theorem5.9. 5.9.In particular, F!, JJh' Fiz. and then 1I1{)1111 0, then pt = 0, then 1{)2 0. If I{)l 0, then Thus Thus if 1{)1 9r I* 0, ll91ll1 = 111{)211l, llrpzllr,and 92 = 0. positivea.e. = a'e. we conclude that 1{)2/l{)l is positive Hencewe concludethat 1{)I/11{)11 1{)2/11{)21 pzllprl a.e. a'e' on on R. R. Hence 92/91 is n/lprl Namely, there is on be aa constant. constant.Namely, there is aa R. Since pz/pt is shouldbe is meromorphic, meromorphic,it should on.R. Since1{)2/l{)l = = 1, weconclude concludethat cc = 1, gr C1{)2' positiveconstant cgz.Since Since1I1{)11h 111 , we positive constantcc with 1{)1 llrpllll 111{)2 llpzli, = pt of 7. i.e., 1{)2, 0tr whichshows showsthe the injectivity injectivity ofT. i."., 1{)1 92, which -------+ an Fo is an underT: t :A Az(R)r A2(R)r Lemma F imageT(A t(A2(R)) 5.to. The The image Lerrrma 5.10. g is 2 (Rh under 2 (Rh --+ 2 (Rh) of A open onto onto its its image. irnage. homeomorphism andT t is is aa homeomorphism openset, set,and t is is aa conconwe see seethat that T Proof. Theorem5.9, 5.9, we the Corollary and the Corollary to Theorem Lemma 5.7 5.7 and Proof. By Lemma 6 6 theorem tinuous Brouwer'stheorem g- , Brouwer's R6c-6, ,,{2(,R)r is homeomorphic homeomorphicto R tinuousinjection. injection.Since SinceA 2 (Rh is (Theorem3.11) givesthe on a.ssertion. 0D the assertion. 3.11)gives domains(Theorem on invariance invarianceof domains
'(t@)"v)t)r-(soo o.d)= ((a)zv)-t = a '0I'g pue 1aBaru 8'g seurueTurord '-L to1uorlress?eql ^loqsol seclgns 'g'g eurural 8ur1ou[.9'too.t4 1r
Proof. By noting Lemma 5.6, it suffices to show the assertion for 7. From Lemmas 5.8 and 5.10, we get
,(A),r .69 = (r(g)zV) [. ruo = (I(U)zy) 1, 'Qauto71'aatTcaftns ?ro -L puo -L sfutddpru ?ttJ .gT'g BrrnuaT
=
Lemma 5.13. The mappings 7 and T(R), and f(A 2 (R)d Fg •
f
are surjective. Namely, 7(A 2 (Rh) =
'1xag 'pe1)euuocosle $ '.{ t*.{l ,tldtur g'g ptr€ g'g seurural
Proof. Fix an arbitrary point [S,/] .E T(R), and set jjl = jj. For every t with be a quasiconformal mapping of R whose Beltrami coefficient is tjj. We set St ft(R). Then we obtain a continuous curve {[St, It] I 0 ~ t ~ 1} in T(R) which connects between the base point [R, ill] and [S, fl. Thus T(R) is arcwise connected. Next, Lemmas 5.6 and 5.8 imply that F g is also connected. 0
tr
'p91?euuocasl/rrJI3 sl (U)Z snr{I'[.f ',S] prr [p!'lf] fuloa es€q aql uea^r?eqstceuuor qctq,rl (g)g ut a , r . r n cs n o n u r t u o c eu r " ] q o s a a u e q t r ' @ ) r l = r g 1 a sa / v y r / l {t I l;0l[t/'rg]] e aq T lel'I > I t 0 q rur€Jllag esoq!\ g;o Eurddeu ?uel?Ueoc l"uroJuorrsenb 'too.r4 qll,r{ 3 fra,ra rog 'd - Iil tas pus'(A),f,>'[/',S] futoa f.rergqre u" xld
=
o ~ t ~ 1, let ft
'p?l??uuo?ero 6l puo (Ah
secoilseUJ 'ZT'g BtutuaT
Lemma 5.12. The spaces T(R) and Fg are connected. :3urao,o11o; eq? ilecal am '1srrg '7;o
,(1v'tlcekns eql r'roqs ileqs aal 'fgeutg
Finally, we shall show the surjectivity of 7. First, we recall the following: 'snonurluoc q -t ?3r{} aPnpuos ein'{rerlrqre s o1acurS 'urErro eqt ts snonurluo? st t; snq;
Thus 7 1 is continuous at the origin. Since cp is arbitrary, we conclude that 7 is continuous.
((4)ra'6)'t')p +l4ll+?o1' 1+ IItPnlll 1-lItPnlll
o
'(oo - u) o--
d('Ii(O), 'Ii (tPn)) ~ log
--+
0
(n
--+
00).
elsrl a/$'u fra,raroJ (Illuf ll - I)/(Illutlll + I) o1 pnba s1 u4l ro; Surddeurrallnuqrral e Jo uorlelepp Ieturxeur aql aculs 'oo 'nog r?{ ",/l} eauenbas r(ry)zv <- rll"/1ll fue ar1e1 ttr s€ q?ns ul t"ql 0 'ur8rro eq? (sEurddeurrel1ntuqcrelSursn,(q o1 ,{pelrurrspauyap) ts 7 t(rg)zy : 11 to1enrl osle sl slql yr dluo pue JI a51e snonurluocsr (-U)-f + 'o1 'acua11'aEeurr oluo ursrqdrouroatuorl € s-r pue slr 1, Jo pooqJoqqEtauatuos r ( U ) z VI L o * l f l " r - ( l r ) = ur peugap{lam s r t ( t g r ) a v+ t*Ut Io,-(!) saqdur 0I'g surureT'(O)? = (a1)/.acurg'trJo esecaql ur se fe,n etrrcseql uI
in the same way as in the case of T. Since T(cp) = 'ii(0), Lemma 5.10 implies that ('ii)-l 0 f = ('Ii)-1 0 [ill. 07 : A 2 (Rh --+ A 2 (Rlh is well-defined in some neighborhood of cp, and is a homeomorphism onto its image. Hence, 7 is continuous at cp if and only if this is also true for 'Ii : A 2 (R1h --+ T(R 1) (defined similarly to 7 by using Teichmiiller mappings) at the origin. Now, take any sequence {1Pn}::'=1 in A 2 (Rd1 such that IItPnlh --+ 0 as n--+ 00. Since the maximal dilatation of a Teichmiiller mapping for tPn is equal to (1 + IItPnlld/(l-lItPnlld for every n, we have t,tr-
r(rg)zy :r1o Keo ul = ,!lU)o V
'Ii = :Fg 0
--+
Fg
Surddeur" eugapeA\ 'f.rlaurosrarrlcelrnse q '[I/] g'g uorlrsodor4fq ,raouqe^{ ueqJ '(U),1 f"ql '1urodes?qeql Jo (IU)J .- (g)Z Io Wg'tgr] lurod es€qeqt o1 d spuesqerq,r : *[t/] uorlelsrrerle reprsuoC'[V'IU] = (6)L - d 1aspue'fprerlrqre r(U)zy 3 d lurod e xg 'asodrnd stql rog 'snonulluo? q 7, lsql ^roqs ol sulsrueJ?[ '3r uo snonurluocsl r--r. ryqI ,(1dung1'g pue '(r(U)zV)I = '(Keo ul) o g'g spurrrurarl A uo paugapjla^rsr ,_L = r-L a?urs 'loo.t4 r--L leq} s^{olloJ1-t'6'9ureroaq; o1 drelloroCaq} {q e,rtlcefutsry a?uIS
Proof. Since 7 is injective by the Corollary to Theorem 5.9, it follows that 7- 1 is well-defined on E T(A 2 (Rh). Since 7- 1 f- 1 0 (:Fg 0
=
=
=
=
'afputt,
T(R) is a homeomorphism onto its o q (U)J
--+
s?, oluo rustrldlnutoauoq
1-
Lemma 5.11. The mapping 7: A 2 (Rh Image. r(A)zV
: l,0utililout
eVJ '1.1-'g BurrrraT
suaroeqJ s.ranlruqrlal pue sturdduq ralllurqf,reJ 'Z'g
5.2. Teichmiiller Mappings and Teichmiiller's Theorems
133 ttI
134 134
5. Teichmiiller Teichmiiller Spaces 5. Spaces
open set set in T(R). ?(,R). Further, F\uther, Lemma 5.12 which is an open implies that T(R) 5.12 implies 7(r?) is is conconnected. Hence Hence the assertion assertion follows follows if if we we show show that the relative nected. relative boundary BE 0E of T(R) is empty. empty. E in T( R) is suppose that BE AE =f Take any any [S, Now, suppose I] E there is d,E. Then there is aa sequence sequence e BE. 6. Take * ¢. [S,/] . * .--i n , 4 2 ( R ) s s u c h t h a t T ( p " ) a n d a s n --+ {If'n}~=l in A (Rh such that T(lf'n) --+ [S,/]' and IIlf'nlh --+ 1 as 2 {p"}L[r [,S,/], llp"llr oo. Let In = be a Teichmiiller gn. mapping for We set T(p") 00. be a Teichmiiller mapping for If'n. We set T(lf'n) = [Sn,/n]. /, [S,,f,].ByBy quasiconformal mapping h assumption, there is is aa quasiconformal the assumption, h,n of Sn S, onto S ,S which is .-* o I every such homotopic to 101;;1 for every n such that lIJ.lh lloo --+ 0 as n --+ 00. as oo. In / fil n llpl"llwe have particular, for aa suitable k& < 1, 1, we have
, 2 , " ', , IIJ.lgnlloo l l P r " l~l *k,< i ,nn = I1,2"" g, = h;;l where gn h;L 0o I. where f. g,, is other hand, hand, since since gn is homotopic homotopicto Theorem 5.9 On the other to In, 5.9 implies implies that fn, Theorem
- 11 (n - 00). ( n --+ oo) . IIJ1g l trt" lool -== 1IIf' l l pnr"llool l *~2 lIIJ.lfnll l l pIIoo l l ---+ This is is aa contradiction. Thus we we conclude conclude that BE 0E is is empty. empty.
otr
As aa corollary to Lemma 5.13, we obtain the following 5.13, we following Teichmii/ler's Teichmiiller's existence eristence theorem. lheorem. quasiconformalmapping Theorem S, Theorem 5.14. For every euergquasiconlormal mapping If :: R there exists edsts a R --+ S, there Teichmii/ler Teichmiillermapping mappinghomotopic homotopicto to I. f
proof of Teichmii/ler's Lemma Lemma 5.13 finishesaa proof Teichmiiller's theorem. lheorem. Namely, Namelv. we we have have 5.13 finishes provedthe proved the following followingtheorem. theorem. Theorem Theorern 5.15. The The mapping mapping T: T: A A2(R)1* "(Ii) is a surjective surjectiuehomeomorhomeomor2 (Rh --+ T(R) phism. phism. 6 6 In parl.icular, particular, T(R) gT(R) is is homeomorphic homeomorphicto A henceto Az(R)r, and,hence lo R Roc-o 2 (Rh, and
In the course course of this proof, we we have have also also shown shown that all representations representations we we have considered as genus have considered as the Teichmiiller Teichmiiller space space of aa closed closed Riemann surface surface of genus g 2) are are mutually homeomorphic. homeomorphic. S (~ P_2) 6 g- 6 are mutually Corollary. Corollary. The The spaces spacesT(R), f@), T(R)old, T(R)otd, T Ts,T;td, Fs, and R R6c-a are mutually g , T;ld, F g , and homeomorphic homeomorphicto to each each other. olher.
m+2 cannot be single-valued in any neighborhood of Po. Anyway, we may consider that this (maps a domain {z E C 10< argz < 211", 0 < Izi < r}, with a sufficiently
,tlluarcgns" qly{'{t > > > z?rc > a z} ureurope sdeur) srql 0'!?, O C lrl I eq }ouue? leql Jeplsuoc{eru ear'{errrfuy'0dJopoor{roqqftaufue ur panlerr-a13urs
l
Po
= zlrd"onf = rD er(z+*)z ry
for a suitable local coordinate z on some neighborhood U of Po. Hence, we see that p (p) =
?"q1 ees aA\ 'acua11'od lo l) pooqroqq3rau etuos uo z eleutproot lecol elq€llns € roJ
6 'zP*z ruJoJ eql ur uellrru. sr d 1eq1pa,ro.rdq 1l'(I {) u^llepro p 61o '0d fes'oraz e 1y ('61'g uorlrsodo.r4oqe aag)
(See also Proposition 5.19.) At a zero, say Po, of tp of order m form
(~
1), it is proved that tp is written in the
" #'=$'= This follows from the assumption that 1eq1 uorldurnsse aql urorJ sl',rolloJsnll
. m l l r r=/ l1l , ) t t + ) = O)s F«() = (+ k(,
k=
IIJlflloo.
gives a conformal mapping of U into C. We call this mapping a tp-coordinate around Po (or, in U). (Recall that zeros of tp are independent of local coordinates.) By using tp-coordinates, a Teichmiiller mapping f for tp is represented locally as an affine mapping F given by
,{q uaar3 g Eurddeur euSP u€ se ,{11eco1 paluese.rda.rsr a1.ro; / Surddew railntuqcretr e 'seleurprooc-ol Sursn fg ('sapurprooc IerolJo luapuedapur ele a1;o soJezleql lecag) '(4 ur 'ro) 0d punore aTourp.tooc-6e Surddetu qqt IF? a7yyC o?q 72 ;o Surdderu leruroJuoc e sarrr8 'zlt6
"oof = "'
Jpo
r tpl/2,
2 >d
(p)=
pEU
Fix an element tp E A 2(Rh - {O}. If Po E R is not a zero of tp, then tpl/2 = tp(z)1/2dz has a single valued holomorphic branch in some neighborhood U of Po, and the function defined by
fq peugep uorlcunJ eq1 pue(od
Jo , pooqroqq3tau auros ur qcuerq crqdrouroloq panl€^ e13urse seq zp"1rQ)dt - t(A)"V 3 d = ueql'dt oraz € sr ue xlJ ) 0d lou luaurele 1o A JI'{0} "1rdt 'I'g'g
5.3.1. Geometry Induced by a Holomorphic Quadratic Differential IBI+uara.SrC crlerpun$
crqd.rouroloH B ,(q pacnpul
r(rlouroag
'uorlcesqns 'fgatrq ((crtrleru,e qf,ns ureldxa aru. lxeu eql uI 'rtllncgrp ou qlr^r pernporlur aq u€c tl13ua1pu€ €are s" q?ns suorlou eql 'reae,no11'dt go orcz.r(.ra,re sale.reue3ap 'Surddetu Jallntuqcrel 1e (f,rtr?eur,,srqS uarrt3 aq1 o1 Surpuodsarroc I(U)uy Jo luauala eq1 x "zp(z)d - o5 a.raqr* '9. uo "lzpll(z)61 = "sp ((crrleur,, eql raprsuor ain 'crrleur e qrns sy 'Surddeur Iellnluqcletr uartrS aql qll^{ pel?I?osse cularu eruos 01 lcedser q1r,n scrsepoa3 raprsuoc ol lernleu aq feur l.r 's3urddeur rellnuqcrel Jo eseo eql ul uelg 'rrJ -1eu ueeprl)ng aql o1 lcadser qll/'a scrsepoa3e.re C uo seuq teql ileceg 'Eurdderu
Teichmiiller's uniqueness theorem (Theorem 5.9) asserts that deformations of the complex structures with the best "efficiency" are given by applying "locally affine" mappings called Teichmiiller mappings. One of the decisive properties of affine mappings is that they send lines to lines. First, we discuss the meaning of "lines" with respect to a Teichmiiller mapping. Recall that lines on C are geodesics with respect to the Euclidean metric. Even in the case of Teichmiiller mappings, it may be natural to consider geodesics with respect to some metric associated with the given Teichmiiller mapping. As such a metric, we consider the "metric" ds 2 Itp( z) Iidz 12 on 2 R, where tp = tp(z)dz is the element of A 2(Rh corresponding to the given Teichmiiller mapping. This "metric" degenerates at every zero of tp. However, the notions such as area and length can be introduced with no difficulty. In the next subsection, we explain such a "metric" briefly.
=
rellnurqclel e o1 lcadsar qll^{ (seull, ;o turueaur eql ssnrsrp aill '1srrg 'seur1 ol saurl puas ,{aq1 leq} sl s3urddeu euge Jo sellradord elrsrcep eq} Jo auo 's3urddetu re[nuqoretr pa11ecsSurdderu,,aug:e d1pco1,, 3ur,t1dde fq uear3 are ,,fcuercge,, lsaq aql q?!la seJnlcnrls xalduroc aq1 Jo suorl"ruroJep 1eq1 slrasse (6'9 ue.roeql) uraroaql ssauenbrun s.rellnuqcrel
'g'g
5.3. Proof of Teichmiiller's Uniqueness Theorem uraroaql
ssauanbrun s6rallntuqrlal
135
Jo Joord
'g'g
5.3. Proof of Teichmiiller's Uniqueness Theorem uaroaqJ ssauanbrull s.rall$uqrral
98I
Jo Joord
5. 5. Teichmiller Teichmiiller SPaces Spaces
136 f36
C | 00 << ""g( small r, r, conformally conformally onto onto aa "domain" "domain" {( {( eEel arg( << (-* (m + 2)t, 2)11", 00 << small (-plane. we also call may 1(1 < 2r(m+2)/2/( m + 2) } spread over the (-plane. Hence, we may also call (( aa Hence, over the spread lClcZrt^+')lz/(rn*2)) p6. ep-coordinate around PO. g- coordinalearound Now, we we consider consider the the "metric" "metric" ds2 ds 2 == lgQ)lldzl2, lep(z)lIdzI 2 , which which is is nothing nothing but but the the Now, grcoordinate (-plane by an arbitrary pull-back of the Euclidean metric on the (-plane by an arbitrary
c.
9 b = [ l,vQ)lu2ldzl. JC
21,22 We call call this lCl,p IClrp the rj;-length of C. For For any any two points points Zl, Z2 € E I/, H, denote denote by the Q-length We H. We 21 and z2in £ZI,Z2 the set of all piecewise piecewise smooth smooth curves curves connecting connecting Zl and Z2 in We set set the set L"r,""
do(rt,rr)= cr9!,,,"1c1a. the Q-distcnce rj;-distance between between 21 Zl and 22. Z2. An An element element Cs Co of of L2r,7, £ZI,Z2 is called called a itlhe We call it rj;-geodesic between between 21 Zl a\d and z2 Z2 if if ltit satisfies satisfies t/-geodesic lColo = d,v(21,z2)' t/r/-geodesic looks. Assume that that there exists a rj;Now, we describe how a rj;-geodesic geodesic Co between Zl and Z2 in H. For every p E Co which is not a zero of Co z2 H. 21 € geodesic C6 P ',i, ((p) segment nea,r rj;, the should be a segment near «p) on the that Co tn" length-minimality lenglh-mlnimaliiy implies that G g-coordinate (-plane, rlcoordinate, i.e., composedmapping of a ep-coordinate (-pla,ne, where i.e., the composed where ( is a rj;-coordinate, rf of order n)0, order m C6 may and R. At aa zero pE > 0, Co zerop Co of rj; projection of H onto.R. I/ onto the projection € Co and the (SeeFig. 2tl(m* 2). (See be less lessthan 211"/(m+2). be should not be angle at p should However, the angle be broken. broken. However, 5.1.) 5.1.)
-
)
yi
(lctlo << IColep for ()0 << 27r/(m 2r /(rn + 2)) (IC1Iep + 2)) lCol,pfor Fig. F i g .5.1. 5.1.
point pp of is of.L, L, LL is tf-segmenl if, interior point We for every every interior if, for H aa rj;-segment arc L-t on on H closedarc call aa closed We call tf-segment,it it of aa rj;-segment, the definition definition of mapped By the r/'coordinate at segment.By at pp to to aa segment. by aa rj;-coordinate mapped by
'syutoil pua sp 6u4cauuoc crcapoaf-dtanbtun ?Ul s? ,I 'z(.re11orog Tuau0as-dty
Corollary. A if'-segment L is the unique if'-geodesic connecting its end points.
(zz .ro 'UOllf,IP€rlUOC e SarttSqCrqar D rz ol Eurpuodserroc 1ou f, fre,la roJ (Z + !u)/t7 { fB ,ra,ra,nog .s,f aerqt ls?el 1e rog (6 + !u)/vZ ueql ra1ea.r3lou aq pFoqs !0 wql s,rrolloJq'0 < N eours
Since N ~ 0, it follows that OJ should be not greater than 211"/(mj + 2) for at least three j's. However, OJ ~ 211"/(mj + 2) for every j not corresponding to Zl or Z2, which gives a contradiction. 0 j=l
t=!
'k+ til"Z=(e(Z+!ut)- "dZ
L (211" -
(mj
+ 2)Oj) = 211"(N + 2).
m
r€rrt apnrcuo,"^1"r.t"" 'luaur3as-de uo
on a ifl-segment. Hence, we conclude that
dargif'(z)
+ 2d(argdz) =
0
0=Qp?w)p7+Q)QEwp 1lrou)I ellr 'raqllnJ
Further, we know that leql
I=f
'tty= (t6- ")T + Qparqpoef er\eq ern 'pueq raqto eql ug '^r(1rcqdr11nur Surpnlcul O q dt 1o sorcz Jo reqr.unu aql $ l.r ereqru
where N is the number of zeros of if' in D including multiplicity. On the other hand, we have t - f
o e f . t t = 't0[ut'3+ - (z)/t?wp rLNT, I
'aldrcutrd 1€IIt ^{oqs us? e^\ luatun3re eql ,(g'f,.,tre,ra roJ O u-r t+!7 pue f7 uee,lrleqa13ueaq1 eq (0 <)fd tat 'os1y 'oraz aqol !s, irro1€a^{ pu" I? - t*-I araq,u'f, frarr.ero; r+!7g ll +n 4 t--,j{|il fq uraql alouap pue 'O p Oe Jo sorezJo rapro aql eq lur p"l'Q 7 u") f.repunoq eql Jo uo.rleluerro elrlrsod eq1 o1 lcadsar qlr^r Japro us ureql e,rt3 e7y1 'sluaur3as-dJo raqunu elrug sJo zC prre rC(eroJeq uees ueeq seq sy ls.rsuo? 'H ul CI ureruop ueprof e spunoq e, n I, uaqJ '{zz'tz} zCl) Ig teqt r(lqereua3Jo ssol tnoqlr^{ erunss€{ew au'.,(ressaceu;r slutod3o red e1qe1-tns e qlytr zz pue Iz Sutcelder ,fg 'alduns arc zC pu€ rC ',t1.rea1c ueql'cz pue rz Eurlceuuoc zC'rC scrsepoeS-al o,rr1ere eraql tsql asoddng ;l'oo.l2'
Proof Suppose that there are two if'-geodesics C 1 , C 2 connecting Zl and Z2. Then clearly, C 1 and C 2 are simple. By replacing Zl and Z2 with a suitable pair of points if necessary, we may assume without loss of generality that C 1 n C 2 = {Zl, Z2}. Then C 1 U C 2 bounds a Jordan domain Din H. As has been seen before, C 1 and C 2 consist of a finite number of if'-segments. We give them an order with respect to the positive orientation of the boundary aD of D, and denote them by {Lj }j=l (m ~ 2). Let mj be the order of zeros of if' at Lj n Lj+l for every j, where L m +1 = L 1 and we allow mj to be zero. Also, let OJ(> 0) be the angle between L j and L H1 in D for every j. By the argument principle, we can show that 'anbtun s! zz puo rz futlcau -uo? crsepoe6-0"rtt ' H ) zr'rz slutod l?urlstp omy fiuo rof, .gl.g uorlrsodo.r4
Proposition 5.16. For any two distinct points Zl, Z2 E H, the if'-geodesic connecting Zl and Z2 is unique.
'crsapoaS-de;o ssauanbrun3uuao11o;aq1 aleq elr 'os1y 'uraq1 turlcauuoa crsapoaS-q!s slsrxa araql 'Il ;o slurod oa,r1f.ra,re ro;'relncrlred u1 'acuelsrp4 sgt o1 lcadse.rq1u,relelduroc q I/ teql noqs r(lsea u€f, e^\ uerlJ 'u eceJrns uutsuaru pasolc € Jo es?? aq1 ,(1uo Jeprsuor aiu 'are11 '0 ur repro < Jo otez e 1e (Z + *) l"Z ueq? ssel 1ou a13ue ue e{€ru slueurEas-d qens o^rl uaes elsq elr.r'ra,roaro141 l"ql '61o sorc2 to'zz lo (Iz raqlla are slurod pue esoq$ sluauEas-ol Jeqr.unualrug Jo s Jo slsrsuoc .g ;o slurod olnl Surleeuuoc crsapoaS-d fra,ra 'Suro8aro; eql uroJ.{ '(t - z i e sr (uo Suop 116olnpour > I 5 O) (l)z luaurEas-ol,tue luslsuoc I eraq uorJ zzp@)QEre su uatlrr^r fldurrs q qclq,lr) "(l),r((l)r)fEre 1eq1 r"ep sr
is clear that argif'(z(t))z/(t)2 (which is simply written as argif'(z)dz 2 from here on) is a constant modulo 211" along any ifl-segment L : z = z(t) (0 ~ t ~ 1). From the foregoing, every ifl-geodesic connecting two points of H consists of a finite number of ifl-segments whose end points are either Zl, or Z2, or zeros of if'. Moreover, we have seen that two such ifl-segments make an angle not less than 211"/(m + 2) at a zero of order m > O. Here, we consider only the case of a closed Riemann surface R. Then we can easily show that H is complete with respect to this ifl-distance. In particular, for every two points of H, there exists a if'-geodesic connecting them. Also, we have the following uniqueness of a if'-geodesic. 137
ssauanbrull s.rallgruqf,ral Jo Joord 't'g
5.3. Proof of Teichmiiller's Uniqueness Theorem uaroaqJ
1,8I
138 138
5. Teichmiller Teichmiiller Spaces Spaces
to prove Theorem 5.9, 5.9, the following lemma due to to Teichmiiller plays Now, to and rp. it, we prefer to to returning returning to ft Rand cp. In In particular, particular, the a crucial role. To state it, g-Iength cp-Iength lll, ILl"" of of a curve L on R is defined defined by
l L l v =J[Lv f , ' . g-segment. The projection projection of a rf-segment <,O-segment to -R R is called called a cp-segment. + - R be quasiconformal self(Teichmiiller) Lel be a quasiconformal Lemma 5.17. (Teichmiiller) Let h : R selfLemma 5.17. constant M depending depending Then there lhere is a positiue mapping of R homotopic homotopic to id. Then positive constant mapping only cp such such that only on on R, h, and g
l h (L )l ,2 l Ll*- M (Here, h(L) be reclif,able, for every may not be rectifiable, i.e., 2.e., it may may happen happen g-segment L. (Here, h(L) may euery cp-segment for
- 00') x.) thatIh( that L) I"" = lh(L)1,
canonical Fuchsian Fuchsian Proof. with respect respect to the canonical b" the th" canonical canonical lift lift of h with Proof. Let h be model r constant M such such that suf;Hcesto find a constant f of R. .R. Then it suffices
li'G)lq>lLl,e- u rlsegment L for every L in n. r" H. every <,O-segment Hence, every7 E f. Hence, First, that h 7'rol = fo, every, followsthat First, by by Lemma Lemma5.1, 5.1,it follows € r. :1oh h for we have rp-geodesic h(z) for everyzz E H , we have letting connecting and h(z) for every the <,O-geodesic connectingzz and be the € H, letting C C,z be
0, ,0
lC"lo
-_
lCrpllo
for we see seethat that -Ris compact,we every1 E f . Since SinceR is compact, for every, e r.
sup{lC " l I, zi l Ez eH} H} M ==22sup{IC z l
* lc""lqs li6)la+ M. lLlos lc",lq* li,G)lo Thus M is is aa desired desired constant. constant.
oD
5.3.2. Preliminary Considerations Considerations Preliminary following Grotzsch's A prototype of Teichmiiller's uniqueness theorem is is the following Griitzsch's uniqueness theorem = xx*iy where R is aa rectangle rectangle{{zz = theorem, which treats + iy EeCC I| 0 ~< xc ~< treats the the case casewhere .Ris lheorem,which r , 00 ~( yy (~1 I}. ). r,
ueroaqJ ssauanbrull s.ralpruqrral Jo Joord 't'9
6tI
5.3. Proof of Teichmiiller's Uniqueness Theorem
139
fiq pau{ap 'O] x = g a16uo7ca.r pesop re1?ouoo7 f1'0] x [r'0] = U a16uo7 [t ["'0] 4N, pesop o {o 0utddotuTotu.toluoctsonb au$n uo aq t pI 'g1.'g uorlrsodo.r4
Proposition 5.18. Let f be an affine quasiconformal mapping of a closed rectangle R = [0, r] x [0,1] to another closed rectangle S = [0, s] x [0,1] defined by
f(z) =
z+kz
~
.
= Kx+ zy,
'tu+sx=#=?)!
pql peutnsso st 7t'a.tep'g lo.touaTu,eql uo cb-y st,ycryn
which is K -qc on the interior of R. Here, it is assumed that
= s/r ~ 1,
= (K -
'I > (I + X)/ft- X)={'I
<'t/s- X
K
k
1)/(K + 1) < 1.
'! 'p 'fr1aatycedsa.t 't puo '? + r'r'0 7oq7snopol l! puD + s's'g o7 sdotupuo 'g .touaTu!?q?ao cb-(tq sl q?lyn S <- g : tt + to t)/Fq I) utstyd.toutoau,oy fi.teaa.tot :fi1.tado.td purerp? 6utmo11ot ay1sa{st1ost urrm
Then f satisfies the following extremal property: for every homeomorphism ---+ S which is (1 + k 1 )/(1 - kd-qc on the interior of R, and maps 0, r, r + i, and i, respectively, to 0, s, s + i, and i, it follows that
It : R
'q
'1sug'too.t4 leqt a?ou
Proof. First, note that
l
il
of
~
r
1(It)x(x + iy)1 dx
opl@t+ ')"(V)l
- @t+r)r/l = s t Koul''t s = IIt(r + iy) - f1(iy)1
JJ 1aBa'r'r '[1 'g] .re.,rof o1 '[I '0] 3 n fra,ra 1sou1e ro; lcadsal q]l^\ seprs qloq Surler3e]ul
for almost every we get
y
E [0,1]. Integrating both sides with respect to
~
y
over [0,1],
fL
'nprylasy11"U t, s
+ Udz,
sa,rr3dlrpnbeur(zre^rqcs'z(tl) *'(!)
Schwarz' inequality gives
='(t/)
{fL (IUdzl + rf IUdz 1+ IUdzl ~J JR
z (
Since (It)x = Udz
~
IUdx Idxdy.
acurg
l'('/)l)JI JI )lt "' |np,p(l'(t)l+ l(lthl)dXdY }
ar f \
IUdzl-l(lthl dxdy .
[I t
~(K1r)
2
-,y$0"[ . np,pel,(!)t [( uo,offi
S2
JrJRf (I( It )z 1 2
I( ) 12 ) It z
dxdy
,s. (.rrrr)l
. s,
= K,
to'y
where K 1 = (1 + kd/(1 - kd. Hence we conclude that K 1 ~ s/r equivalently, that k1 ~ k. (Compare with the proof of Lemma 4.8.) Next, if the equality holds, then we obtain
or
ul€tqo e^1, ueql 'sp1oq,{1r1enba aq1JI '}xaN ('g'7 eunual;o;oord eql qll,r.ra.reduro3)'tl < rtl lerll ',(lluap^Fba = .rls < r)1 1eql epnpuor arlrarueH '(tq - t)/$t + I) = rX areq,$
' l ' ( V ) l +l " ( V )=l l ' ( V )+ " ( V ) l Pue
and
l"(V)lt= l"(V)l 'l = rl 'sl 'p! - 6 D leqJ WLll saoqs uotlrsodor6 ar{} puoceseql ul se arueseql l'? luaurn3re ;o ;oo.ld Jo JIeq 'g 'S' ecueqpue 'cb-1 sr ;o secrlre^[e saxg d ecurg Jo rorrelur eql uo l€r.uroJuo? - d lsql saqdurrqqtr 'U uo 'e'€ = 'trt l€r{l aese^\ snrll 'U uo 'e'€ I ,-t o rt
a.e. on R. Thus we see that /lit = k a.e. on R. This implies that g = It 0 f- 1 is l-qc, and hence conformal on the interior of S. Since 9 fixes all vertices of S, the same argument as in the second half of the proof of Proposition 4.7 shows that 9 = id. That is, f1 = f. 0
5. Teichmiller Teichmiiller Spaces Spaces
140 140
Thus an affine mapping mapping as as in in Proposition Proposition 5.18 5.18 is is extremal. extremal. Returning Returning to to aa Thus find that that any any Teichmiiller Teichmiiller mapping mapping looks very very Riemann surface R, we find closed Riemann similar to to an affine mapping. mapping. Actually, Actually, we have the the following following proposition. proposition. simila,r eichmiller a r b i t r v r i l y .LLet e t ff : R +------+ S bbee a TTeichmiiller Proposition Fix arbitrarily. i r gr.p€ AEzA ( R2 (Rh \ P r o p o s i t i o n 5 .5.19. 19. F = a holomorphic (< Then therc etists unique g, and set k l). mapping for r.p, set k 11r.plll « 1). Then there exists unique holomorphic mapping for lltpllt t/J on S satisfying following conditions: conditions: quadratic differenlial differential tlt quadmtic satisfging the following
=
(p) is a zew If p is a zero zero of of pr.p of of order m, then ff(p) zero of of r! t/J of of lhe the same same order m. (i) tf (ii) Let p be be an arbitrary arbitrary point of of R which is not a zero zero of of g, r.p, and ( be be a 9r.p(ii) erists a $-coordinate coordinate around around p. Then Then therc there exists t/J-coordinate uw at f(p) f(p) such such lhat that coordinate
'
wof= u o f=
C +n( (+k(. L - n 1-k
(5.3) (5.3)
initial differential of r.p and ry' t/J in Proposition 5.19 5.19 the initial of /f and the We call cp terminal differential of f,f, respectively. respectively. Ieryninal differcntial = up i\ a r.p, we define a mapping mapping u w = wp in of g, Proof. For every p which is not a zero of neighborhood f(p) by (5.3). Then in some neighborhood U of p, we we have have some neighborhood neighborhood of /(p)
d(
p tp
, d c= E, ; i ' = kt c d( = Fro! = Pwej k j;j' a@7\ lYl
we see that w u 0ottt-r see that Since f(U), we w- l coordinate w ur on /(t/), p.o1 = ktp/lr.pl kpllpl for every local coordinate Since Pwej also aalocal coordinate around is l..:qc, f(U). Thus w is also local coordinate Thusar hence conformal on f(U). l.qc, and hence f(p). f(p). m dz 2 with a g = zz^dz2 a that r.p Next, for aa zero g of order m, rn, we we have have seen seen that zero p of r.p branch determined determined by suitable a, as as aa continuous continuous branch coordinate z. z. Define Define w suitable local coordinate
wof= , " f = ((
+
z(m+2)/2 @ + z ) l z 2/(m+2) z ( m + 2 ) 1I2 k1 ,Z2(m+2)/2)
1-& 1-k
)2t(n+2)
Then we is neighborhood of f(p). c..r is aa local local coordinate coordinate in aa neighborhood we can seesimilarly that w can see /(p). such Finally, consider such that p every point f(p) (fu)'p )2 in aa neighborhood neighborhood of every consider (dw /(p) these we can can show show that these rp, where is u is is as as above. above. Then we where w @p zero of r.p, is not aa zero p = w we denote denote quadratic differential (dw ^S,which we differential on S, single holomorphic quadratic (fu)'give p )2 give aa single ry' of t/J (i) a,nd (ii). The uniqueness by t/J. From the construction, t/J clearly satisfies (i) and (ii). The uniqueness of ry' clearly satisfies construction, /. (i) and (ii). follows 0 and (ii). at once once from from (i) follows at 5.3.3. 5.9 Proof of of Theorem Theorem 5.9 5.3.3. Proof r! be the terminal terminal Let t/J be the Assume a,resatisfied. satisfied.Let assumptionsof of Theorem Theorem 5.9 5.9 are that the the assumptions Assume that p e R which which is is not not aa every PER differential For every obtained in in Proposition Proposition 5.19. 5.19. For differential of of f/ obtained = f(p) p, and ry'-coordinatew r.raround around qq = zero rp,take g-coordinate (( around and aa t/J-coordinate a,roundp, take aa r.p-coordinate zero of of r.p, f (p) "horizontal dilatation" as dilatation" the "horizontal as in in Proposition Proposition 5.19. 5.19. Consider Consider the
sff '"prps f f l4opr(b'6)y lJ lJ
u-relqoa/',r'(g'g) o1 flrpnbaul (zreaqcsEutfldde '1xep
.a uo.e.e @)('!)r'x> + (o)lr('/)l)) ,@,r!)u ,(tolt:tv)l - r(o)l)('/)l = @)(rilt a,nuaqa'r(6)lJ('/)l 1aB
~ (l(idd(O) + l(it),I(O)f ~ K 1J(fl)(p)
a.e. on
R.
(z.q)
Next, applying Schwarz' inequality to (5.6), we obtain
>'(fl,p)2
(5.7)
Here, we assume (5.4), or equivalently (5.6), and prove Theorem 5.9 by the same argument as in the proof of Proposition 5.18. First, we set k 1 IIJ-lh 1100, K1 (1 + kt}/(l - kt}, it w 0 fl 0 (-1, and J(fl)(p) = 1(it}d(0)2 - l(id(i(0)2. Then we get
I ) = t ) r ' ' - l l ' I r l l l = r 1 1 a sa m ' t s r l . {
=
p u e ' 1 - )6 r t o o = V ' ( I { - i / $ t +
=
=
aues aqr,(q "^.,0p",8Id. o.suaroaqr ;iltff"Hi"i:i:lii ;iT'":.t:iT# '"r"0 t4op(b'qy fl [[ >'(g, q)dudr
~
lis
dudr.
(g's)
lis
(5.6)
o1 lualerrtnbaq (t'9) flrlenbaur aq1 'aeua11
Hence, the inequality (5.4) is equivalent to sf f 'tpop(b'6)y IJ
=
lL
11
>'(g,q)dudr.
lis
L= upy1a,'nu 4op((b)r-!,'nutfl ll >'(fl,p)cJ.edTJ = ~
1 >'(fl,r (q»dudr
aleq e^r 'bplpy - tpop acurs 'U J d ,{.ralalsourt€ roJ
for almost every pER. Since dudr = K dedTJ, we have
= >'(fl,p)
(d,tt)u= (@)1.6)yN
(q.s)
K>'(g,/(p»
(5.5)
of 9 is defined a.e. on S. It is measurable, and satisfies segsrlsspue'elqernseaur sf lI'S'uo'a'€ pausapu f;o oo
..1 tollffil
I
o~; w-
I
=(r'r)v
>.(g, q) = 8(w
where cJ.edTJ dilatation"
)
1
I(0)
(uorlel"lrP .frpxpl(z)dtl= bp?pareq/{ .!.t+o = r'l pu" leluozrroq,,eql ueql ,_I ort = f 1a5
= 1
= u+ir. Then the "horizontal
andw
'tptpN"fl ,hp''p@'.ny ||
lL
lL
~
>'(fl,p)dedTJ
KcJ.edTJ,
(5.4)
for almost every pER. In the rest of this section, we set K = (1 + k)/(l - k). Now, recalling the proof of Proposition 5.18, we may regard the following inequality as one way to represent the fact that a Teichmiiller mapping 1 has the best "efficiency" for deformation of the complex structure of R:
:U Jo eJnlcnrls xalduroc eql Jo uorleurroJap ro; ,,fcuarrge,, lseq eql seq / Eurdderu rellmuqcle;1 e l€ql lceJ eql luese.rdar o1 ,(e.n euo s? ,(lqenbaur 3urmo11o3aq1 preEar feur e,n '91'g uorlrsodor4 ;o ;oord aq1 Suqlecar 'no61 '@ 'U 'uorleas slq? f d fre,ra lsourp roJ t)/Q + I) = l9r las air Jo 1se.ratll uI
= ffi =(o) |1ojjy)sltor |#DI
=(o'r).
urclqo e,n ,o pue ) o1 lcedsa.rqll,rrr/ lo (d,/)V .(uorlelelrp '1eq1 selldurr 'uorlcunJ alq"rns Ieluozrrorl,, erlt roJ 6I'9 uorlrsodo.r4 leql II€ceU -sarue s.rprrp'g uo'a'e peugap q (d'V)V slqJ'ra pue )ot leadsar qfl,r VJo
of fl with respect to ( and w. This >'(fl, p) is defined a.e. on R, and is a measurable function. Recall that Proposition 5.19 implies that, for the "horizontal dilatation" >'(f,p) of 1 with respect to ( and w, we obtain
'trt * ?=)'tol115f;;aal=(o'v), 'g'g
5.3. Proof of Teichmiiller's Uniqueness Theorem
141
uraroarll ssauanbrull s.ralpruqf,ral
I?I
Jo Joord
142 t42
5. 5. Teichmiller Teichmiiller Spaces Spaces
Hence, (5.5) and and (5.7) give give Hence,
ff
, - f f (^$r,d\'
s JJ"(tf-, JJ,ooo'
Kd(drt
='# | I,o,o, d(dr1 t+ il "t (r,)(p) K 1 2~ K, K, and hence hence &1 k1 )~ /c. k. Thus, K1 if &r k 1 -= t, k, then both both equalities equalities in (5.7) should hold. Namely, Namely, Finally, if
= l(/r)e l(0)+ l(/,).1(0) l(/r)e+ (n)el(o) and
IUd,I(O) = &l(/r).1(0) kl(id,I(O) l(o)= l(/r)e l-qc, i.e., a.e. on -rR. R. This implies implies that py, JJit = = kQ/lpl.Hence, k
Since g is homotopic to fd, id, the canonical canonical lift lift of of g on H is coincident with with on R. Since id we have have II fd by Lemma 5.2. 5.2. Thus we h = f. f . lemma. show the following lemma. prove Theorem 5.9, remains to show it remains 5.9, it Now, to prove
=
Lemma holds. The inequality inequality (5.6) holds. 5.2O. The Lemma 5.20. Proof. It we need need Lemma 5.17. proof where 5.17. where we Proof. lt is in this proof rltlz has single-valued global For the sake has a single-valued we assume assume that that t/Jl/2 sake of simplicity, we If not, take any branch on S, which is diflerential on S. If is a holomorphic Abelian differential possible. Then we we as possible. local branch of t/Jl/2, as far far^as continue it analytically as rrLl2, and and continue can surface S S of S, with a branch covering surface branched covering two-sheeted branched can construct a two-sheeted single-valued point at every such that ,ltrlz becomes becomes a single-valued that t/Jl/2 t! of odd order, order,such every zero zero of t/J below to this argument below (holomorphic Abelian) differential on S. Applying the argument s. Applying general case. case. differential on S, assertion for the general we have have the assertion S, we an Abelian d, which is is an When t/Jl/2 branch, say say B, rl.'Llzhas single-valued global branch, has aa single-valued with respect respect to the R} on S S with differential, geodesicflow {F we define define the geodesic € R} differential, we t I| t E {.F1 "metric" It/JI. To explain the construction, we take we always always take "metric" ldl.
u = irrr(q)=
t loo
,!.We inverse continue the inverse We continue as zero of t/J. is not aa zero around p which is ry'-coordinatearound as aa t/J-coordinate 1 along segments on R in both directions as possible' as far as mapping tJr far as possible. Then directions on segments tr;l along p same notation we which is is denoted denoted by the same mapping, which get aa locally locally biholomorphic mapping, we get = (Ul, where .9, where tJr; U2) of R into S, an open open interval I1o containing an domain containing V;l 1,, of ol aa domain (r1,ur)--of.R p = ( 00. -'oo :S ( Ul =vor(I). the B-horizontal |-horizontal flop is is called called the This H -00 U2 :S tJr;l(Ip). This flop = set H oo. We we set u1 <1u2 r/. (See (See Fig. Fig. of t/J. trajectory of line p. It horizonlal trajectory also called called aa horizontal passing through p. It is is also lize passing 5.2.) 5.2.) at aazero flop ends ends at direction, either either H Note zero flop in in one one direction, we trace trace along along H when we that, when Note that, of tends to 00. to oo. r!, or tends of t/J, or Iwl lc.rl with aa either with we can identify.[/o In Hp either can identify ty'-distanceon on H Hp, particular, restricting restricting t/J-distance In particular, p , we Let preserving orientation and length. length. Let orientation and circle of R, R, preserving say I/o with aa subinterval, subinterval, say or with circle or p of
'lfil "l 1eBarrr lradsa.rWIm oraz €ere spq u - s - or ecurs'u x et uo uorlDunJ alq€rnseeue s (?'D'd)y ueqa
Then ).(g, q, t) is a measurable function on il x R. Since E = S - il has area zero with respect to I'l/JI, we get
'u I ? ' U ) b ' ( ( b ) , u l ' 6 ) y= ( t ' b , 6 ) y
).(g,q,t)
= ).(g,Ft(q)),
q E il, t E R.
'1xag 1esa.n 'S'uo seJ€,,eqt s€ tpop srql esn e.rrr,uoa.raquolg .ltil ((crJleru,, aql .(lueruala o1 lradsar ql1,rnSura.raserd-eare q t4, ''a.l ,U Jo X ?esqnselqernseeufraaa ro;
for every measurable subset X of il, i.e., Ft is area-preserving with respect to the "metric" I'l/JI. From here on, we use this dudr as the "area element" on S. Next, we set
r JiF/eX)
Jrirx dudr
(x)urr xrr rpop ll -"pop ll dudr =
JJ
r
JJ
'.re1nar1redu1 'saleurproo, leql aes o1 .,(seasr 1r -@ o1 lcadser qlr.&rI i{q eq} sluesa.rdarqcrqrrr ,,uor1e1sueJ} I"luozrroq 1a11e.red,, '6 ;o Surdd€ur-Jleselq"rns€aru arrrlcaftq e sl ?d fraaa 1eq1 ees uec elrr uer{I
Then we can see that every Ft is a bijective measurable self-mapping of il, which represents the "parallel horizontal translation" by t with respect to 'l/Jcoordinates. In particular, it is easy to see that 'U)d 'U)?'(t)dV=@)tg
3ur11as,tq rg augep eAyA - S - t;i las pue 'arogeqse eq gr p1 .lfil (clr?aru), 'a,ro51 aql o1 lradsal qll^{ S uo {U ) ll tdl ^rog crsapoe3aq1 augap yleqs e,r,r, 'S uo ldl ((crrleru,, aql pue U uo )rrlatu u€eprlcng aqt of lcadsar qlr^\ rrrler.uosr f11eco1sr qrlq&l
which is locally isometric with respect to the Euclidean metric on R and the "metric" I'l/JI on S. Now, we shall define the geodesic flow {Ft I t E R} on S with respect to the "metric" I'l/JI. Let E be as before, and set il = S - E. We define Ft by setting 'd = (0)ol
'dH *E,dl
E be the set of pES such that I p is a proper subinterval of R. Since 'l/J has only a finite number of zeros, we can see that E has area zero with respect to the "metric" I'l/JI. Thus for every p E S- E, setting f p = tJi;lIR, we obtain a mapping
Eurddeu € ur€lqo a,u 'ul ,!n = d7 3ur11as'fl - S 3 d f.rala roJ snqJ .lr7tl,,crr1eur,,eq1 o1 lcadser ql-r.{ oraz "ere s€rl 3' }eqt ees uB) e1r{,sotrezJo Jaqrunu elrug e fluo seq qt aeurg 'U Jo Ie raturqns radord e sl dI leql qcns S ) d Jo tes eql eq A (g p ol:,z aldurrs p rpau saurl pluozrroq-p)
'z'9'tlJ
Fig. 5.2. (8-horizontallines near a simple zero of 8)
\\ \
l - ,l, \\ t| t/r,r /
r \ ll l
uaroeqJ ssauanbrun s(rellnruqf,ral Jo Joord 'g.g
5.3. Proof of Teichmiiller's Uniqueness Theorem
143
tlI
144 t44
5. 5. Teichmiller Teichmiiller Spaces Spaces
I: (lis =l:1 (J1,,,',)(g' at c)a"a') "(l f = =l:"(l I: (lisl,^r, d dodr)dt=2LIlisl,^ro,q)dodr
,I ===
>'(g, q, t) dUdr) dt dt I"(ll,^r,t,t)dodr) L
=
-L
r
JF,(n)
(5.8) (5.8)
>'(g, q) dUdr) dt
>'(9,q)dUdr) dt = 2L
>'(g,q)dudr
L. for every every positive positive .t. for On the the other other hand, hand, since since g9 is is quasiconformal, quasiconformal, and and hence hence is is ACL, ACL, we we see see that that On Fubini's theorem theorem gives gives Fubini's
lis (I: = =ilrls(Lr)ledodr. lis
at)aoar ,I = = >.(g,q,t)dt) dudr I I,(l _"ur,t,i
(5.e) (5.9)
Ig(L q)l1/J dudr.
Here, we we set set .Lo Lq -= lr([-t,.L]), Jlq([-L, L]), and and hence hence lLolq IL ql1/J =2L. = 2L. Here, (5.8) from Finally, applying Lemma 5.17, we conclude from (5.8) and and (5.9) (5.9) that that we conclude Finally,applyingLemma5.17,
lis
lis
\(s,q)dodr>(21 2L 2L [ [ >.(g, q)dudr ? (2L -- tt1 M) [ [ a"a,dudr. JJS JJS
the desired desired we obtain obtain the Then we oo' Then Divide L tend tend to 00. and let let ,L 2L, and sides by 2L, Divide both sides tr inequality (5.6). 0 (5.6). inequality
Notes Notes Earle [57]. instance Earle For for instance spaces,see seefor reduced Teichmiiller spaces, For the reduced [57]. space corresponding the corresponding Teichmiiller space When r "(1) the we denote denote by T(l) f = {id}, {id}, we Chapter-III. Lehto [A-68], spoce.See see Lehto T(r), Teichrniiller space. the universal aniuersal Teichmiiller call it it the and call ?(f), and [A-68], Chapter III. In Eells [62]. Earle and and Eells shown in in Earle was firstly firstly shown The contractible was is contractible that T(l) "(1) is The fact fact that [62]. In f. every for contractible Douady proved that is also also contractible for every r. that T(r) "(f) is it is is proved Earle [53], and Earle Douady and [53], it the differential-geometric differential-geometric from the metric from For on the the Teichmiiller Teichmiiller metric For investigations investigations on metric on on Teichmiiller The viewpoint, see Kravetz [128] and O'Byrne [169]. The Teichmiiller metric viewpoint, see Kravetz [128] and o'Byrne [169]. and Gardiner T?,g is not smooth. See Earle and Kra [65], Royden [184], and Gardiner [A-34], Kra Royden is not smooth. See Earle and [A-34]' [184], [65], "curvature" with respect to the the respect to §9.4. non-positive "curvature" with have non-positive does not not have Moreover, T?o g does $9.4. Moreover, in Chap6.21 also Theorem Teichmiiller metric, as is proved in Masur [142]. See also Theorem 6.21 in Chapproved See in Ma.sur [142]. Teichmiiller metric, as is ter ter 6. 6. the Teichmiiller Teichmiiller of the compactification of Teichmiiller's gives another another compactification theorem gives Teichmiiller's theorem This differof space T , which is called Teichmiiller's compactification of T This isis differ• compactification called Teichmiiller's space ?e, g which is 4.g Masur and Kerckhoff ent from Thurston's one defined in Chapter 3. See Kerckhoff [111] and Masur 3. see in chapter one defined ent from Thurston's [111] [146]. - .itr" lr46l. *proof' of Teichmiiller [Afound in in Teichmiiller theoremisis found The original of Teichmiiller's Teichmiiller'stheorem original "proof' [Ato Abikoff Abikoff also referto Bers We that in 106]. The proof in this chapter follows that in Bers [23]. We also refer chapter follows proof in this 106].The [23].
=
ItI
seloN
Notes
145
'[Orz] '[Oea]qcea1 pue ,[666]rqcn8ru€J ,[67I] ,[gtt] ,[rtr] ,[qrr] ,[Wt] rns"trAtr'[gtt] "I[*S pue msstr l 'goqqo.ray ,[lg] pr"qq.,H pue ,(penoq ol reJar osp a \'[ZO1-V] Ieqarts pue'[Z]-V] sur{uaf ,[lS-V] raurpreC ol reJer a^{,g$ ur se sl€rlueJagrp )rlerpenb crqdrouroloq Jo setpnls lecr.rlauroa3 .rog ,flpurg seloN slr pu" y xpuaddy ur pelels are sef,eJrnsuueruorg praua3 yo suorleuroJep FuJoJuotrsenb uo scrdol aurog '[291] ue4eg pue'[08] .raurp.reg'[62] ue{es pue uueurlqeJ '[Og-V] (p{qsnry alr) e,tr,s3urddeurleruroJuocrs€nb1eure.r1 -xe uo suorle3rlsa,rur raqlo sy'[016] Iaqerls pu€'[0/I] a{"tqo,[gg1] ue11nrycry aes 'l"uerlxa dgressacau lou $ e?eJrns Eurrarloc e o1 Surddeu l"urroJuocrsenb 'alourrarlllng 's3urdderu Isuerlxe u€ Jo lJrl e IsruroJuocrsenb leurerlxa Jo sseu -anbrun uo s?lnser ureluoc ,I"l"U pue treurfell ,os1y [961] sareqles pue,[6] '[gg1] 'l€tuer]xa ,(lanbrun aq ol 1aqa.r1spue qcleg eldurexe roJ aas lou paeu lr 'leurarlxa sr 'letuerlxa Surddeur ra[nuqrral e ua^g fpressacau ]ou arts FurroJ Jr 'sSurddeur s8urdderu rellnurqrreJ aIq.,rr l"ruroJ leur.ro;uocrsenb leuerlxa flanbun 'ece;.rns uueuarg Ilrls a.rc s3urddeur rellnuqcrel lelauaS € Jo es?r aql uI 'qrstep e.rour roy [gg-y] '([I ';r) otqerl pus .reurpreC ees auo e oEe sr uozlrpuo? tuercgns IA] [pg-y] leqarlg ,la,roero141 .uaroeq? sseuenbrun spollnang slql pa$oqs pue qrrsg 1eq? leqarts s(rellnur{f,ral alord o1 ruaroeq} s(uollrru"H slql asn uec a11t .Fuerlxe aq ol Surddeur .roy e uorlrpuo? fressaceu e srsfleue IsuorlounJ Sursn ,tq leruroJuof,rs?nb '(asuas eruos ur purrunu) pe,lord [69] uollueg Itsuerlxa sr Surddeur JellnuqcraJ e Jo luel?lgaor nueJllag eql leq] sa]€ls rueroeql ssauanbruns(rell3ruqtlal .[I-y]
[A-l). Teichmiiller's uniqueness theorem states that the Beltrami coefficient of a Teichmiiller mapping is extremal (minimal in some sense). Hamilton [89] proved by using functional analysis a necessary condition for a quasiconformal mapping to be extremal. We can use this Hamilton's theorem to prove Teichmiiller's uniqueness theorem. Moreover, Reich and Strebel showed that this Hamilton's condition is also a sufficient one (cf. Strebel [211]). See Gardiner [A-34] and Lehto [A-68] for more details. In the case of a general Riemann surface, Teichmiiller mappings are still uniquely extremal quasiconformal mappings, while formal Teichmiiller mappings are not necessarily extremal. Even if a formal Teichmiiller mapping is extremal, it need not to be uniquely extremal. See for example Reich and Strebel [180]. Also, Hayman and Reich [97], and Sethares [196] contain results on uniqueness of extremal quasiconformal mappings. Furthermore, a lift of an extremal quasiconformal mapping to a covering surface is not necessarily extremal. See McMullen [153], Ohtake [170], and Strebel [210]. As other investigations on extremal quasiconformal mappings, we cite Krushkal' [A-60], Fehlmann and Sakan [70], Gardiner [80], and Sakan [187]. Some topics on quasiconformal deformations of general Riemann surfaces are stated in Appendix A and its Notes. Finally, for geometrical studies of holomorphic quadratic differentials as in §3, we refer to Gardiner [A-34], Jenkins [A-47], and Strebel [A-I02]. We also refer to Douady and Hubbard [54], Kerckhoff, Masur and Smillie [115], Masur [144], [145], [147], [148], [149], Taniguchi [222], and Veech [239], [240].
Chapter 6 Chapter Complex Analytic Analytic Theory Theory of of Teichmiiller Teichmiiller Complex Spaces Spaces
space natural complex manifold structure of the Teichmiiller space We introduce a natural which as a genus 9 realized T(R) (~ 2), is realized as surface R of genus closed Riemann surface "(R) of a closed C(> 3g 3 - . Furthermore, we we prove prove that that the Teichmiiller modC3s-e. bounded domain in C od(R) acts as a group of biholomorphic acts properly discontinuously discontinuously as Mod(R) ular group M automorphisms of T( R). ?(,R). Fuchsian we assume is a Fuchsian In this chapter, stated, we assume that rl- is unless otherwise otherwise stated, chapter, unless genus 9S (~ (Z 2) and that each each of 0, 1, and 0, 1, model of a closed surface of genus closed Riemann surface (cf. 00 (cf. §1.2 of Chapter 5). 5). element in l'- {id} Chapter is fixed fixed by an an element oo is $1.2 {i,d}
r-
derivatives, using Schwarzian In Section due to Bers, Bers, by using Schwarzian derivatives, L, following the idea due Section 1, Tn!) bounded domain TB(r) we is realized realized as as a bounded prove that the Teichmiiller space spaceT(r) ?(.1-) is we prove in the space r) of holomorphic quadratic differentials differentials on the Riemann A2(H. space A 2 ( H* /lf) theorem surface lower half-plane. half-plane. The Riemann-Roch Riemann-Roch theorem where H* 11* is is the lower surface H* H*/f/ r,, where space. Hence Hence shows r) is (39 -- 3)-dimensional 3)-dimensional vector space. is aa complex complex (3g A2(H. shows that A 2 (H* /lf) 3 3 Tn(f), TB(r) g- . Identifying T(r) "(l-) with TB(r), Csg-s. as aa bounded bounded domain in C TaQ) is is regarded regarded as dimension 3g 3s -- 3. 3. we has aa complex complex manifold structure of dimension we see see that T(r) T(f ) has independent of "(f r)) is is independent In Section complex structure of T( 2, we we show show that this complex Section 2, another Fuchsian Fuchsian r, equivalent to T(r') T(ft) for another is, T(r) ?(f) is is biholomorphically equivalent ,| , that is, g. genus g. model surface of genus f' of ol aa closed closed Riemann Riemann surface model r' group M Mod(f) modulat group It od(r) of verified in Section It is is verified Section 3 that the Teichmiiller modular
rf
of acts group of of biholomorphic automorphisms automorphisms of as aa group discontinuously as acts properly discontinuously
=T(l)lMod(f) norhas aa norT(r). T(r)/Mod(r) has spaceM Mn the moduli moduli space we conclude concludethat the "(f). Thus Thus we g = we shall 4, we shall mal complex of dimension dimension 3g 3g -- 3. 3. In Section Section 4, spacestructure structure of complex analytic analytic space automorphism explain every biholomorphic automorphism which asserts assertsthat every theorem which explain Royden's Royden's theorem of od( r). of M Mod(f). an element elementof of T( "(f)r) is is induced induced by an theory Thurston-Bers theory Finally, of the the Thurston-Bers we give give aa brief brief exposition exposition of Finally, in in Section 5, we Section 5, on the classification of Teichmiiller modular transformations. transformations. modular on the classification of Teichmiiller
,tq uarrrSe * ? :/ ursrqdrouroeuoqe el€q elrruaqt '11 uo ,rn - ,1m11 'too.r6 Proof If wI' = WV on R, then we have a homeomorphism f:
C -+ C given by
' nn = nn (rr) *H uo 'U uo nn = tn (\)
(i) wI' = WV (ii) wI' = Wv
on R. on H*.
:luel omy fi.uoJotr 'T'g BrrruraT > n'rl s7uau,a1a
Lemma 6.1. For any two elements IJ, v E B(H, rh, the following are equivalent:
-oamba a.r,o6utmo11ot eW'r(J'H)g
'fle,rtlcedser 'n.t nJ ld H o1 crqd.rouroloqlqarc l!,U pue 'uotlezrurroJlun snoeuellnruls *U Jo U a3eurr .ror.rrureql pue S ?erll epnlf,uoc errr 'S o1 'trl - r/ '/ tas *2f ;o / Surddeur Jo luelcgeoc rurerlleg aql ,s.reg ,tq ueqtr 'U;o *gt e3eurt Jorrnu eql Jo J lepour u€IsqcnJ e rlctd IeuroJuocls?nb e ar1e1Pu€ '1ceg u1 ',S pue g flsnoeuellnurls sazlurroJlun qclq^r /.7 dno.r3 uetsqcng-rsenb e u1 due ro; 're1ncr1.red pug e r 'f snuaS;o S pue U sec€Jrnsuuetuelg pesolco,ra.1 '([76] q slr{J, snoaunlputs.sreBr srag aes) uotToztrulolrun Pelle? ttg 'd.7 dnor3 u€rsq?ng-Isenb e13urse ,tq ,(lsnoeuellnuls pezluroJlun er€ +Urpu€ saceJrnsuuerualu orrrl'f1e.,lr1cedset'd1flg pue nJ/nH,{q peluesarderer€ *Ur = g;o e3eun rorrflu et{t sl *2f eraqlrr pue ttg saceJrnsuueualg o,lrl eculs'lltt 'Ulln = dA o+ JIH oI Jl *H = *U Jo Surddeur crqdrouroloqlq e pu€ h/nn = sacnpur trn, g' e Surddetu Surddeur leuJoJuoctsenb eq; Jo leuJoJuoclsenb 'in put rtg qloQ uo slurod paxgou seq {pl} -nJ Jo }uatuala f.rarra1eq1eloN'paxg C uI elrnf, pasol) eldurts 'uorlrugap fq'st dno.t0 palcerrp € sa^eel q)lqrtr (c'z)lsa 3o dno.rqnsalarcslP e uDrsqcnl-rsnnDe 'a.re11'sdnor3 uelsqcnJ-Isenbgo eldurexa lecrdfl e sr d.7 dnort slce e q?ns'GH)n^ - ltl pt* (U)'* = "-t1 qtoq uo {lsnonurluo)slp.{1.redo.Id q c r q , n ' ( 3 ) l n v J o { J ) L l ( L ) ' X } = n J d n o r 8 q n s€ e l e q a ^ \ s n q l ' ( q ) t " V 1 " ''e'r'uorleurro;su€J1snrqotr^tr e sr (1")/X leql easeu'g raldeqCJo t'I$ luerueleue ul ?eql o1 SuruosearrBIIruIsfq 'r-(/rn)o Lodm = (1,)/X 3ur11nd'J f ,Lfue rog "_' m .{q 1r alouep a,u '(gg't uorlrsodo.r4) H lo ,tn Eurddeur ob-r/ lecruouec eq} uorJ srql qsrn3utlstp ol repro u1 'flerrtlcadse.r'pexg oo pue '1 Surddeu IsurroJuotlsenb '6 saaeal pue '/ uorlel€lrp xelduroc eql seq qrlq.tr go Surddeur leruro;uocrsenb ? e ''a'l '? 3o Surddeur cb-r/ lecruouec e dlanbrun slsrxa areql '08'? ruaroeql tuord
For any 'Y E r, putting XI'('Y) = wl'0'Yo(WI')-l, by similar reasoning to that in §1.3 of Chapter 5, we see that XI'('Y) is a Mobius transformation, i.e., an element of Aut(C). Thus we have a subgroup rl' = {XI'('Y) I'Y E r} of Aut(C), which acts properly discontinuously on both HI' = wl'(H) and H; = wl'(H*). Such a group rl' is a typical example of quasi-Fuchsian groups. Here, a quasi-Fuchsian group is, by definition, a discrete subroup of PSL(2, C) which leaves a directed simple closed curve in C fixed. Note that every element of rl' - {id} has no fixed points on both HI' and H;. The quasiconformal mapping wI' induces a quasiconformal mapping of R = Hlr to RI' Hl'lrl' and a biholomorphic mapping of R* H*lr to H;lrl' , where R* is the mirror image of R = HIr. Since two Riemann surfaces RI' and R* are represented by H 1'1 rl' and H;I rl" respectively, two Riemann surfaces RI' and R* are uniformized simultaneously by a single quasi-Fuchsian group r w This is called Bers' simultaneous uniformization (see Bers [24]). In particular, for any two closed Riemann surfaces Rand S of genus g, we find a quasi-Fuchsian group rl' which uniformizes simultaneously R and S. In fact, pick a Fuchsian model r of the mirror image R* of R, and take a quasiconformal mapping f of R* to S. Set IJ = IJJ, the Beltrami coefficient of f. Then by Bers' simultaneous uniformization, we conclude that S and the mirror image R of R* are biholomorphic to H 1'1 rl' and H;Irl" respectively.
=
=
wI"
From Theorem 4.30, there exists uniquely a canonical ji-qc mapping of C, i.e., a quasiconformal mapping of C which has the complex dilatation ji, and leaves 0, 1, and 00 fixed, respectively. In order to distinguish this quasiconformal mapping from the canonical IJ-qc mapping wI' of H (Proposition 4.33), we denote it by
'H-c.)z
=?)d ,(,)2\
= { IJ(z),
z E C z E
H.
H
H>z
0,
ji(z)
les e1( 3 r/ lueuele uarr,rEe rog '*H
Following Bers, we shall represent the Teichmiiller space T( r) by quasiconformal mappings of the Riemann sphere C which are conformal on the lower half-plane H*. For a given element IJ E B(H, rh, i.e., a Beltrami coefficient IJ on H for r, we set ''e'l'r(l'n)S 'J roJ Ff uo r/ luercgaor rruerlleg e
aueld-;1eq re^\ol eql uo leuroJuoc er€ q?rq^\ C a.raqdsuuetuelU eql;o s3urdderu 's.reg Surrrrollog IeruroJuocrs€nbfq (.7)g aceds rallnurqclel eql luasardar lleqs elri
6.1.1. Simultaneous Uniformization uol+BzrruJolrrlf snoauBllntllrs'T'I'9
6.1. Bers' Embedding and the Complex Structure of Teichmiiller Space Jo arnlrnrls
xalduoC
arBds rallntuqrraJ, aql pue Eurppaqtug (srag 'I'g
Surppaqurg,srag'I'9
147
6.1. Bers' Embedding
LVI
148 148
6. Complex Analytic 6. Analytic Theory Theory of Teichmiiller Teichmiiller Spaces Spaces
f (") =
z €H zEH
{(")-t"''(")'
uR.
e IH* l*UA. zz E
quasiconformal on C, we (tot')-rotul is quasiconformal Since we see see that fhat ff is ACL ACL on C. Thus, by Since (w~)-loW/I quasiconformal mappings mappings (§1.1 ([1.1 of Chapter 4), f/ is the analytic definition A of quasiconformal quasiconformal.Hence, Hence,9g = w~ofo(w/I)-l wpof o(wr)-1 is is aa 1-qc L-qcmapping mapping on on C, i.e., i.e., aa Mobius Mobius quasiconformal. leaveseach each of 0, 1, and 00 oo fixed, transformation. Since Since 9g leaves 0, 1, fixed, 9g must be the identity. = W/I we have have W~ up = u, on H*. I1*. Therefore, we Therefore, It)y on H* wu = W/I IDv on H*, I/*, then w/-l we obtain if w/-l utt = W/I Iy'* U R. R. Thus we Conversely, Conversely, if - H. quasiconformalmapping aa quasiconformal By the the same mapping h = w/-lo(w~)-low/lo(W/I)-l: wpo(wp)-Low,o(w')-L: H ~ H.By same it follows that that h must be the identity, identity, which means argument argument as as before, it means that that = w/I w/-l R.. . 0 wF = w ' on onR
=
p,vv E B(H,f)1, wu and and'wv are said said to be equivalent equiaalent elementsJ-l, Now, rh, w~ W/I are Now, for two elements € B(H, class wrfor every element wu-= W/I w, on H*. H*. Denote Denote by [w~] equivalence if the equivalence class of w/-l for every element if w/-l [ror] these classes B(H fB€) set of equivalence 6.1 J-lp E B(H, rho Let T{3(r) be the set ofthese equivalence classes [w/-l]' Lemma 6.1 e ,.1-)r. [tor]. * (f correspondence[w~] is a of "(l"p . shows 1--+ [w~] is a bijection ofT(r) to T{3(r). The shows that the correspondence l*,) [tor] ) ) topology of T{3(r) TBQ) is induced from that of T(r) "(f) under this correspondence. correspondence.In gives aa homeomorphism other words, words, this correspondence correspondencegives homeomorphism of T(r) 7(f) onto T{3(r). fBQ). In this way, also call way, we we can can identify T{3(r) fpQ) with with T(r) "(f) as as topological topological spaces. spaces.We also We T{3(r) the fp!) the Teichmiiller space spaceof r. l. = [w~]. given by 00t) B(H,f)r TBQ) given Let B f3 be aa mapping of B(H, rh onto T{3(r) f3(J-l) = [or]. Then by the definition of topology of T{3(r), we we immediately obtain the following. olTB(f), following. * T{3 Proposition f3: B(H, rh ~ (r) is The mapping mapping B: B(H,f)1 fBQ) is a continuous continuous surjecsurjecProposition 6.2. The tion. tion.
One merit of the Teichmiiller space (r) introduced by Bers spaceT{3 Bers is the applicaapplicaTB(f) bility bility of the theory of univalent functions, functions, i.e., i.e., conformal conformal mappings mappings of H*. H* . 6.1.2. 6.L.2. Schwarzian Schwarzian Derivative Derivative quasiconformal mapping A quasiconformal lower halfmappin E w~ u p as 6 defined defined in §1.1 $1.1 is conformal on the lower plane H*. plane 11*. Now, assume assumethat w/-l wu is aa Mobius Mcibius transformation. Since uru leaves leaveseach eachofO, of 0, 1, 1, Since w~ fBQ).It It may we have have [w~] and 00 oo fixed, w/-l tuu must be be the identity. Thus we [rd] in T{3(r). [tou] = lid] be be considered considered that that the difference diflerence between between [w/-l] and lid] fpQ) is is indicated by [tou] and liQ in T{3(r) the difference differenceof the conformal mapping w/-l wu on H* H* from Mobius transformations. transformations. To measure measure the difference of aa conformal mapping mapping on H* I/* from aa Mobius Mobius transformation, we we shall find aa differential equation equation which all Mobius Mcibius transd) be aa Mobius Mijbius transformation, formations satisfy. b)/(cz + satisfy. Let ,(z) +b)/(cz * d) 7Q) = (az + = 1. e, dEC where where a, and ad -- be bc = 1. Take Take derivatives derivatives of ,7 to eliminate eliminate a, a, c, b, b,c,d e C and - -2c(cz + j'Q) = (ez b, and ,"(z) d)-", we we obtain b, e, c, and and d. d. Since Since ,'(z) + d)-2 and + d)-3, l'(z) = -2e(ez @z + -z12 -- d/2e. -1/2. Consequently, = -z/2 we have (lf (7" h'))' dl2c. Thus we have (1/(," ,'(z)h"(z) l'G)/t"Q) 1t'))' = -1/2. Consequently, we we get
=
=
uo ndt - ndt leql arunsse'f1as.ra,ruo3',I/ uo pruroJuor e Surugap uer{J'*Il ndt = f,dt 1eq1 sa11dur1 uo not - drn ueql '(,1)d,t ul ["m] = [dt]lI {rpla'.II '(6'9) elnur.roJe eq a.trsmlJ'*I/ uo = "(z),L{(z)L'dm } 1aBa,u 8'9 {r'n^} ut st "urrrutrrerl Aq(rt6ortL - LodmJo e^rle^rrap uerzrs^{qcs eq1 3ur:p;'t(;(g)g 'loo.t4 r/ asnecaq 'uotleurro3.suer?sntqoni e sr ,-(/rn)oLodm = dl uaql 'J > L 11
wJ.lo,o(WJ.l)-l is a Mobius transformation, because J10 Proof. If, E r, then is in B(H, rho Taking the Schwarzian derivative of wJ.lo, = 'J.l0wJ.l' by Lemma 6.3 we get {wJ.l"(z) h/(z)2 = {wI" z} on H*. Thus we have formula (6.2). If [wI'] [w v ] in Tp(r), then wI' Wv on H*, which implies that
=
=
=
'I' =
'*H uo nd - 'td) fi1uopuo fi ) , 7 ' t t e t u ? u e p o m yf , u o . t o t ' t a a o a . t o 1 4 1 fi Q)gl,q [,n] = [n.]'t(J'H)g 'J / ,H acottns ',1 o7 uuoulery D uo lorlueta[ry c4o.tponb ctyd.toruopy o co papto|a.t st 7t puo q??n *H uo V- Tq|nn lo ut.tot ctyrltou.toTtoatyiLtoruopy o sN ndt 'fipu.to7J Tcadsat,
Namely,
,(t)nd="(z),L((z)L)d6
=
z E
H*.
(6.2)
(z.g)
ueql 'J ) L lI 'V'g BturuaT
Lemma 6.4. If, E
r,
then
'3urmo11o;aql e^er{ e.&rueqtr,
Then we have the following.
'{z'dm}=(z)ddt
= {wI"
z},
z E
H*.
E B(H, rh, we set las e,/rr'r(J'H)g
3 r/ r(re.rltqre rog J10
'*H)z
For arbitrary
6.1.3. Bers' Embedding and the Complex Structure of Teichmiiller Space ra[nurqcral
aql PrrB Eurppaqrug
xeldurog
Jo arnl"nrlg
6srag
acudg 'g'I'9
'uolleturoJ tr -suerl snrqontr" q / feqt apnlcuoc aan'uorlenba FlluaraJlp slql 3ul^los 'O uo
on D. Solving this differential equation, we conclude that formation.
I
0
is a Mobius trans-
- {''!) -,,((r),!sor) o= r{,((r),!sq)}f
{f, z} = (log f'(Z))" -
~{(10g f'(z))'}2
=0
l e q ?l n o s u r n ll r ' O u o 0 - { r ' I } '/} sagsles uotpurlo;suerl snlqotr{€ 13ql uees 'O uo = 0 / ;r'flasreluoC {z itpearle e erl e1yuorlress? tsrg aql sn sarrrSuolleln?Fc preruro;lq3ler1s'rg'loo.r'4
Proof. A straightforward calculation gives us the first assertion. We have already seen that a Mobius transformation I satisfies {I, z} = 0 on D. Conversely, if {f, z} = 0 on D, it turns out that
'O u o 0= {t't} o 'teaoa.r,o141 sn qory o s? CI{o furddout'Tortt"t'otuoc 19fi1uopuv fi uotyout.rotsuorl
{I, z} =
Moreover, a conformal mapping of D is a Mobius transformation if and only if 0 on D.
(r'g)
'Q) z
'{r'l}+
'f "(z),t.{Q)t } = { z'to6}
Lemma 6.3. If f and g are conformal mappings of D and I(D), respectively, then {gof, z} = {g,/(z)} . f'(z)2 + {I, z}, zED. (6.1)
u?tll pu, q to s|utildotu lotu.totuoc atp 6 puo I It 't'g BtutuaT
-"2
3
(f"( z)) I/(z)
'(O)l 'fi1aat1eailsa.t
(94\s-!',)'Ii={,'!} _ /'" (z)
2
,\(r),J ) t
{/,z}- f'(z)
(z),,,!
For an arbitrary conformal mapping Schwarzian derivative { I, z } of I by
,(q / lo {t'l } aaqoarrePuotzrDnqrs aqt auuep e^{ 'C uI ururuop e uo 3[ Surddeu l€trrroJuoc frerltqre ue rod (r),L
,II/(z) _ ~ ,/(z) 2
I on a domain in C, we define the
(,II(Z)) ,/(z)
-.
( (z),L
, - . \ I ; ' Z )\ ET,- G l J , 2 _
0
Suppaqurg .srag 'I'9
149
6.1. Hers' Embedding
6'I
150 150
6. Complex Complex Analytic Analytic Theory Theory of Teichmiil1er Teichmtller Spaces Spaces
we see u,(H*) by F ,F = wvo(wlJ)-l, w,o(uu)-L, again again by Lemma Lemma 6.3 see mapping mapping F: F: wlJ(H*) wu(H*) - wv(H*) 6.3 we that = {Fowl" = {F, pp/) g,(z) = ipv(Z) wlJ(z)} + iplJ(z) {F,w u Q ) } ' .. 'w~(z)2 uQ)' + { F o w p tz} r} = - ipv - 0 on wlJ(H*). gu = g v on H*, we have that iplJ H *, we have {F, z} = uu(I{' ). on H*. 11*. By the assumption assumption that { F, z} f leaves leaveseach each of 0, 1. and 00 oo Thus F .t' must be aa Mobius Miibius transformation. tra.nsformation. Since Since F 0. 1, '.i)v = W we see that F is is the identity. Consequently, uu = f1*, that IS, is, fixed, fixed, we see that Consequently, wI' v on H*, in TBQ). [WIJJ = [wvJ in Tf3(r). 0tr l.ul= [u'"] space of holomorphic automorphic Let A A2(H*, f) be be the complex complex vector space 2 (H*, r) -4 on H* with respect with the vector forms of weight -4 -I1* with respect to r. f . Since is identified with Since it is quadratic on H* space differentials H* fj r, A2(Ht) of holomorphic differentials | , the RiemannRiemannspaceA 2(H* /j r) complex vector (3S - 3)-dimensional Roch shows that that A A2(H*, f) is aa (3g 3)-dimensional complex Roch theorem shows 2 (H*, r) space. space. = iplJ' pu, where where :tBQ) into A A2(H*,f) Now, define define aa mapping mapping B of Tf3(r) B(lwrl) = Now, 2(H*, r) by B([wlJ]) g p == {wI" d e r i v a t i v eof o fwI' w u on o n H*. f I * . Then, T h e n , by b y Lemma L e m m a 6.4 6 . 4 this this t h e Schwarzian iplJ S c h w a r z i a nderivative { u p , zz}, } , the and that is called called Bers' Bers'embedding.The mapping B embedding. The mapping is well-defined well-definedand and injective, injective, and 6 is given by is called called Bers' projection. Az(H* f ) given bV q>(J-l) @(p) = BofJ(J-l) q>: projection. iD: B(H,rh B(H ,I)t ----*A 8"0(p) is 2(H*,, r) previous chapter, In §2.2 was considered considered as as aa complex complex chapter, A Az(H* f) was 2 (H*,, r) $2.2 of the previous Banach with L1-norm. chapter, in connection connection with the next subsubBanach space space with trr-norm. In this chapter, section r) the we introduce the hyperbolic -L--norm by using using the the section §1.4, introduce on on A A2(H* hyperbolic LOO-norm 2 (H*,,f) $1.4,we 2 = Idzl 2 j(Imz)2 on • Poincare H* as follows. By formula (6.2) dss.z on f1* as follows. (6.2) Poincar6 metric ds ldzl2/(Imz)z H and the invariance R), every Poincar6 metric under PSL(2, P.9.t(2,R), every element element inva,riance of the Poincare ip p eEAA 2 2( (H*, H . , f )r) s a satisfies tisfies
(Im1Q\2le(.r("))l= (Imz)zleQ)1, zz Ee H*, H*, 'Y1 Ee r. = H*Jr. Thus, The (Im r)2lp(r)l is as aa function on R* .R* = H*ll. The hyperbolic hyperbolic is regarded regarded as function on Thus, (Imz)2Iip(z)1 in A (H*, r) is defined by L defined L*OO -norm of ip Az(H* is 2 9 ,l-)
z)'leQ)| llpll* =,s.S.(Im whole H*, Here, that the supremum suffices sufficesto be taken taken over, over, not the whole If*, but Here, note that only aa fundamental domain in H* case, R* .R* being compact, compact, we we 11* for r. .l-. In our case, (see Example 5 in can compact subset as such such aa domain (see can pick aa relatively compact subset in H* f1* as p E for any any ip A2(H*, l-), and and hence hence §4.2 2). Therefore, Therefor", Iliplioo is finite finite for Chapter 2). € A 2 (H*, r), $4.2 of Chapter llpll- is A (H*, r) becomes a complex Banach space with this norm. Throughout this a complex Banach space norm. Az(H*,f) becomes 2 chapter, (H*, r) is equipped with this norm. we assume that A equipped chapter, we assume that A2(H*,1-) 2 r o j e c t i o nq>: Proposition projection Bers' p Q : B(H,rh B ( H , f ) 1 -* A z2(H*,r) ( H * , f ) and a n d ,Bers' Bers' P r o p o s i t i o n 6.5. 6 . 5 . Both B o t h Bers' embedding (r) - A (H* ,r) are continuous. embeddingB: Tf3 TBQ) A2(H* f are conlinuous. 2 , ) @ is is continuous. continuous. By the definition of topology of Tf3(r), also 0 also continuous. continuous.
n=1 I=l
L nlb 1 rn
~
r
7r - u7_r7l"ql" 3 2
2n
2
N
N
which implies that
1eq1 seqdur qcrqrrl
t = 'o- / - "v -\ l\ , r - ' " 1o" s 1 " 3"/ t l o
al"q eA\ ' gz?J= m rc1 mf ".t - qr,3ur1ou 'snq;
Thus, noting iiJ
= r 2 /w for w = re i6 , we have "3f r
'@),rp@)t"l *I = " , - J
Ar
li-
= 2i
F(w) dF(w).
C
fq ua.,rt3sl iC ,tq pepunorrns uretuop pepunoq eql Jo 'y eere aql 1eq1 sarldurrelnuroJ s(ueerD ueqJ 'd repun { .r = lnl I C > .l = "C elcr.nreqt yo a3eun aql aq ',C 1el 'I < .r ,{.rerlrqrero;'1ce; uI'I t |tql ,r"qt
then Ibil ~ 1. In fact, for arbitrary r > 1, let C; be the image of the circle Cr = {w E C Ilwl = r} under F. Then Green's formula implies that the area A r of the bounded domain surrounded by C; is given by
(e' g) -
'
+t*t*oq*m=(rn)g=) b
b
(6.3)
= C - ..1, the ?
+ bo + -wi + 2w2 + ... ,
rorre?xe fq ua,rr8q aes e 'y aq} 1er{} lrun rf A Jo JI lleqs {slp '*V uo '1srrg Jr uorlcunJ luale^run € Jeprsuof,aiu *y ereqa 3foo"r4, zEH·
eql 'y -
(= F(w) = w
Proof. First, we consider a univalent function F on .1*, where .1* exterior of the unit disk .1. We shall see that if F is given by 'H)z z ' { } 1 " ( z wd1n) s- * l l { " ' / } l l tr; l{
'!
II{j,z}lloo =
sup (Imz)21{j,z}1 ~ -2'
3
Lemma 6.7. (Nehari and Kraus) Every univalent function on H* satisfies the inequality sa{sr,7ns*H uo uotTaunt lualDarun fitaag (snutx
puB r.reqag)
fr,Tqonbaue ayl 'Z'g BrrruraT
'sneJy pus rJ€qeN ol enp sr rIJrrIA\'*Il uo suollounJ luale^Iun ro; ,(lqenbaul ue Jo ecuanbesuoeel€rpeuurr ue sr rueJoeql slt{I
This theorem is an immediate consequence of an inequality for univalent functions on H*, which is due to Nehari and Kraus. ' 1 f g s n t p o " pr u D 0 r ? l u n q ? g n( J ' * H ) G V acoils .tapnu,?pl4 eUJ 'g'g uraroaqJ
Theorem 6.6. The Teichmiiller space TB(r) is contained in the open ball in A 2 (H*, r) with center 0 and radius 3/2. u? nvq uado aql u, peurDlu@ s? (ilal '(J'*H)zV
The following theorem shows that TB(r) is a bounded domain in A 2 (H*, r). ur ureurop pepunoq e sl (J)sJ
l€rl1 slrroqsuraroaql 3urno11o;eq; .t.I.g
6.1.4. Boundedness of TB(r)
Q)slJo
ssaupapunog
('9'6$ aas 'oqy 'asec l€uorsueurp-auo eql JoJ leql ol relrturs sr ploJrrr€ur xelduroc Ieuorsueurp raq3rq s Jo uorlrugep eqJ) 'J/H = Ar eraq/!\ 'sp1o;rueu xelduroc Ieuorsuaurp-(g - 0g) se peraprsuoc osle are (g),, p"n '(l)gJ'(I)t sacedsrellnurqcral aql '(J)aJ qlr^r uollecgrluepr rapun '1 1o acodsrelpu.tqcteJ aql palleo osle sr (l)sJ slql '(J'*H)zV Jo ernlcnrls ploJrueur xalduoc aq1 slrraqur (l)al,'aceds rol?el xaldtuoc leuorsueurp-(g - 0g) e sl (J ',p.)zy ecurg 'uruqdrouroeuoq e q (J)sJ -ur ureruop e sr prre'(J'*H)zV Q)d,l:g (J'*H)zV * (t)d,f,:g uorlcafursnonurluoceqlJo (J)sJ a3erureql1eq1se11dur1 sureuopJo ecuerJsAuruo rueroeql s(rea{norgsnql'(.i,)ag sr os pue'g-ogtl ol crqd.rouroauroqsl (J)J areds rallnurqclel aql '91'g ue.roeql ur pelels sV
As stated in Theorem 5.15, the Teichmiiller space T(r) is homeomorphic to R 6 g- 6 , and so is Tf3(r). Thus Brouwer's theorem on invariance of domains implies that the image TB (r) of the continuous injection B: Tf3 (r) -> A 2 (H* , r) is a domain in A 2 (H*,r), and B: Tf3(r) -> TB(r) is a homeomorphism. Since A 2 (H*, r) is a (3g - 3)-dimensional complex vector space, TB(r) inherits the complex manifold structure of A 2 (H*, r)' This TB(r) is also called the Teichmiiller space of r. Under identification with TB(r), the Teichmiiller spaces T(r), Tf3(r), and T(R) are also considered as (3g - 3)-dimensional complex manifolds, where R = H/r. (The definition of a higher dimensional complex manifold is similar to that for the one-dimensional case. Also, see §2.3.) 'I'9 Surppaqurg,sra6l
6.1. Bers' Embedding
151 I9I
6. 6. Complex Complex Analytic Analytic Theory Theory of of Teichmriller Teichmiiller Spaces Spaces
152 152
for any any positive positive integer integer N. N. Letting Letting rr *-+ 1 and and then then letting letting N'--+ N -+ oo, 00, we we obtain obtain inequality the inequality 00
L nlbn l s~ 1. 1. i"'ul, 2
nn=l =L
This is the content of of the so-called so-called Bieberbach's Bieberbach '8 arta area lheorem. theorem. In In particular, particular, we This have lDll Ib l l S~ 1. 1. have Differentiating the series series in in (6.3) term term by term, we obtain Differentiating
{ 4 , }=- # 0 , * i # ,
wE eLl* A- {* - { * } .
W
00 }.
Hence, we get Hence,
. 1 4 $ l . ,r' ,{ . } l = 6 l a r l 6<. givenpoint function on on I/*. be an univalent function H*. For For aa given point zo Zo = Now, let I/ be an arbitrary a,rbitraryunivalent Now, a Mcibius transformation oo. Taking -j:. 00. Taking a Mobius transformation * ---+^4* T: H* -+ Ll* defined zo)/(z -- zo), zo), we we put "(z) = (z --Z;)lQ definedby T(z) (r.) H*,, first supposethat fI(zo) iao E first suppose € H* o+ * iyo
X ro
=
w€A*.
F(u)=r@w*,
wE Ll*.
(6.3). From Flom expansionas as (6.3). Then and has has an an expansion on Ll*, A*, and univalentfunction function on is aa univalent Then F is T(t") = Thusnoting notingT(zo) z} = {F, T(z)} . T/(z)2 on formula on H*. I1*. Thus (6.1),we we have have{I, formula(6.1), { f ,r} {F,T(z)l.T'(t)" -4v|fQ)alQ 00 we conclude that concludethat and T/(z)2 T'(r)'== -4y;T(z)4/(z zo)4, oo and %)n, we
l l l }I{l"{F,r ,T(z)} I{ r , } l== ,lim l {I,f ,zo}1 r p 1 }. .T'(Z)21 r,Q)rl z~zo
Il*n{ F l' 3 =.rgg r,, }}lI .,!g" 1 4y; 1 < Z - Zo =S#" 2yo &
_ l'1m
-
W-+OO
W
4{
,W
.
1m
Z-+Zo
4
-2 .
- {1/ I, ZO } by the the relation relation{I, Next, that zo} = oo.Then Then by that I(zo) Next,suppose suppose {f,tol {Ilf,r"} f(r") = 00. zo is is that I{ Sl!yl). SinceZo and zo}1 ~ y;). Since we see seeagain againthat argument,we and the the above aboveargument, f,zo}l t 3/(2 l{ I, proof of Lemma arbitrary, 0o Lemma6.7. 6.7. we complete completethe the proof arbitrary, we
Teichmiiller 6.2. Structure of Teichmiiller 6.2. Invariance of Complex Structure Space Space the is introduced in the Let us "(f)r) which is prove that the complex structure of T( complex structure us prove model r ,l- of of aa the Fuchsian Fbchsian model preceding of the of the the choice choice of preceding section is independent independent of section is genus gc(>2). closed (~ 2). of genus surface of closedRiemann Riemann surface
t9I
aredg rallnurql-ral Jo ern?f,nrls xaldurog Jo af,u"rr"^ul 'Z'g
6.2. Invariance of Complex Structure of Teichmiiller Space
153
tmppaqurg
6srag Jo asralul
IBcoT
6.2.1. Local Inverse of Hers' Embedding 'l'Z'g
snql 'J/.F/ uo rurerllage s zp/zp(z)dtr(zul = Itp/"r!Q)fi_ 3ur11es lerluareJrp p.I'H 3 z fue .roy = ueqJ'II uo rrrleru er"f,uroderll eq Itp ,(zu4)/"lzpl '(J ' *H)zV 3 al luaurela Q)a = Q)fr fq paugap(l'tt)"V ) ql luatualaue 1aB"^ fre.rlrq.reu€ roJ 's,raolloJ * (,1 ';J)g 3 drl luarualaue qlra (tr' .11)cy ) dt '(;)ag e ur (,t)s,l ur urSr.ro eqt luauela qcsa elercossee,ra Jo pooq.roqqSreu * (l)d,l:g Eurppaqure (sregJo asralur crqdrouroloqe f1t1c11dxa lcnrlsuo? oJ
To construct explicitly a holomorphic inverse of Bers' embedding B: T{3 (r) -> TB(r) in a neighborhood of the origin in TB(r), we associate each element E B(H, r) as follows. For an arbitrary element
= -2(lmz)2
'H ) z
I-'<{>(z)
z E H,
'(z)dt"(zwl6- =Q)drt
tq Q)d,t +- A i 4 Surddeur€ euuape,tlsnql ' A ) o\ itra,raro3.1,o1 laadsarqll^{ }uenlgaor nuerlleg eql Jo pooq.roqq3reu e ''e'l 'r(t'n)A o1 sEuolaqdrl ueqa '(l'*n)zv ur urSr.ro 'crrteru -lldll (t'.n)"V eq} fq pecnpul n'{Z/t 6} = > ) A1e.I ?r€f,urod | qlr^aurroJ(t 't-) cruorureq€ sr lI ef,uls roleradoruerlleg-er"1de1aq1o1 lcedsa.r 'p4uataSrp ,urDrlleg?ruouuDqe pell"c osle st 'o1uror; pelsnrlsuo, 11 lo4uetal -lrp tutotTlag.sreg eq! pellsc sr "/.HI'(*t'n)A 3 drl luarueleue ulslqo aa{
we obtain an element I-'<{> E B(H, r). This I-'<{> is called the Bers' Beltrami differential constructed from <po It is also called a harmonic Beltrami differential, since it is a harmonic (-1, 1) form with respect to the Laplace-Beltrami operator induced by the Poincare metric. Let V = { belongs to B(H, rh, i.e., a Beltrami coefficient with respect to r for every
T{3(r) by
'[^n*) - (d),n '6'9 uorlrsodoJd ruo+ snonur?uocsr qtlq^r
which is continuous from Proposition 6.2. Theorem 6.8. Under the preceding situation, U = W(V) is an open neighborhood of the base point in T{3(r), and W: V -> U is a right inverse of B: U -> V, i.e., a holomorphic mapping with BoW = id.
'p! = o ,utddout ctyd.tou-to1or1 ttrog \?pm ''a'!'A<'(l)dt ut T u t o da s o qa y 1 / o 2 : g l o e s r e a u f, 1 6 u ro s ! / ) < - A i 4 p u D pooty,oqq|nuuedo uo s! (A)4 - 2 'uoqon7ts|utpaca.tdell repun '8'g uraroaql sroJlr{y or anp ruaroaq} Bur,u.o11oy aqr Jo acuanbesuoc "r"ro"**,'|lJl
This is an immediate consequence of the following theorem due to Ahlfors and Weill [14]. ttt'",ttt 1""
'dt = (l"dnl)g sa{n1os d>uto.{ p?prul.suo? 6111o4uau$rp Nravrqeg ?Nuoruroy?Ul '2,/I > -lldll qlr,n (J'*H)zV 3 dt Tuauale fiuo.r,og (tU"rf4, pue sroJIqV) 'O'S tuaroaqtr,
Theorem 6.9. (Ahlfors and Weill) For any element
constructed from
Proof. In order to construct a univalent function on H* with Schwarzian derivative
(r'g)
1 2
1J" + -
(6.4)
'g=bdt9q,,tt
uorlrpuor uorl"zrlerurou aq1 f;st1es zb,pue It t"q1 etunss€ a,t. 'ata11
Here, we assume that 1Jl and 1J2 satisfy the normalization condition
(q'g)
't = (t-)zu = (l-) I& \ O= Q-)It" = (p-)rh )
1Jl(-i) = 1JH-i) = 0 { 1J~ (-i) = 1J2(-i) = 1.
(6.5)
eleqeir\'*I1uo g= ,(lltrlt,- z&l&)eculs
= 0 on H* , we have (g'g)
1-\bru-zultt
Since (1J~ 1J2 - 1JI1J~)'
(6.6)
154 t54
6. 6. Complex Complex Analytic Analytic Theory Theory of of Teichmiiller Teichmiiller Spaces Spaces
=
on ff*. H*. Set /(z) I(z) = ,nQ)lrtz(z) "11(Z)/"12(Z) for for any any tz eE H^*.From H*. From (6.6), (6.6), we we see see that that /1 is is on locally biholomorphic biholomorphic mapping mapping of of 11* H* into into C. C. AA straightforward straightforward calculation a locally ggives i v e s{I, { f ,z} z } = 9ipoon n HH*. *. put Now, we put
=
F(z) _ "11(Z) + (z - z)"1~(z) z€H' F(z)=ffi, - "12(Z) + (z _ z)"1~(z)' z E H.
((6.7) o . {)
Then ,F' F is a real-analytic mapping mapping of of /1 H into into eC,, b"""n." because its numerator and Then denominator do not not vanish vanish simultaneously from from (6.6). (6.6). Bv By a simple computation, computation, ( of 1, the on I1. Jacobian see that FzJ F, Fz Hv fLcp H. Since Since llprllIIfLcplloo < of P F is positive we see that Fsf on 11. H, and hence hence F is locally diffeomorphic H. on 11, Next, we set : . \ = {F(Z), | F ( r ) ' zz €EHH l(z) I\z)=l/(r), z€H*. I(z), z E H*.
=
1
to prove that that f exte^nds extends to to a quasiconformal quasiconformal mapping mapping of of eC onto onto itself itself We need to such a way that that upn w!J", = So/ Sol for some some Mijbius Mobius transformation transformation S, which implies in such tthat h a t {{ w!J"" u p , , Zz }} ==pip. . g is holomorphic in a neighborhood purpose, first suppose that ip neighborhood of suppose that For this purpose, 4) as ---+00. = qz defined on are defined as z oo. H* U R O(lzl--+ Then "11 and "12 are fr. in C 0 and lip(z)1 O(lrl-n) ,F1. ?r lp(t)l and so are 1 and F. Since 1 = F on R, a neighborhood of the real axis are Since axis R, f / \, R. This putting f = 1 on into C C by putting we obtain a continuous continuous mapping f of C into f extended neighborhood of R. homeomorphic on a neighborhood is locally homeomorphic extended mapping f is we see see with center center z, z, we In fact, for any point z on R, choosing choosing a small disk D with and that both I: D --+ I(D) and F: D --+ F(D) are homeomorphic, and 1 = F on F(D) are homeomorphic, and F: D---+ : D--f /(D) f I1*) and F(DnH) DnR. and F are orientation-preserving, I(DnH*) and F(DnH) are orientation-preserving, and DnR. Since Sinceboth 1 f(Dn / easy to see see that f It is easy do not intersect, intersect, which implies that / is injective on D. It --is a homeomorphism. is an open mapping, and hence D --+ l(D) is a homeomorphism. and hence f^: is an open /(D) e Moreover, proved that f also homeomorphism on C also extends extends to aa local homeomorphism is proved Moreover, it is 4 near 00 oo and "12 ate expanded expanded near as zz'--+ oo, "11 r/1 and as --+ 00, ) as O(lzl-a) as follows. follows. Since Since lip(z)1 \z are l9(z)l = O(lzlin the form 1
=
=
1
1
1: 1
1=
1
1
qte) = a1Z a1z+ O(lzl-r), "11(Z) ), * bbt 1 + O(lzl1 azz+ O(lzl-L), "12(Z) ), * bbz 2 + O(lzlnz(z)== a2z = "11/"12 = 1. function in aa neighborhood neighborhood is aa univalent univalentfunction where 1. Hence, Hence,1 wherea1b2-a2b1 c162- a2b1= f = rylnz is we have of 00, hand, we have at/az. On the other hand, and 1(00) oo, and .f(*) = a1/a2. a tzz+ * bb1t ++OO(lzl( l z l - 11) ) __ a1 * 00). (z (z --+ oo). F(z) F(z) = a 2 z+! b22++ O(lzlO ( l z l 1- )t ) a2z of 00 oo Thus on aa neighborhood neighborhood of diffeomorphism on is an an orientation-preserving orientation-preserving diffeomorphism Thus F is = is a Iocal we see at/az, with F(oo) a1/a2. Therefore, putting 1(00) a1/a2, we see that 1 is a local ,F(oo) ar/az. Therefore, / l(o") --* C e --+ e is it au homeomorphism 4.28 implies implies that i: C itself. Then Then Lemma 4.28 of C 0 into itself. homeomorphism of homeomorphism. homeomorphism. Mobius there exists existsaa Mobius Applying W!J", 0(/)-1, we we see seethat that there t?.r,o(.f)-1, theoremto Painlev6'stheorem Applying Painleve's = So/. transformation with w!J", wp, = Sof . transformation SS with at with zero zero of of order order at To g is on R R with is holomorphic holomorphic on that ip the hypothesis hypothesis that To remove remove the given by by least pick up tra.nsformation Tn up aa Mobius Mcibius transformation oo, we we pick least 44 at at 00, fl. given
=
=
1:
uorlenba rtuerlleg aq1 3o (1'9) ut.to; eql ul uoltnlos e pug ol poqlau cll$rnaq e ureldxa ol e{ll plno^^ eM'6 qrvueq
Remark 2. We would like to explain a heuristic method to find a solution in the form (6.7) of the Beltrami equation
'lcedtuoc sl JIH leqt srsaqloddq eql asn lou plp a,r,r;oordaql q ecurs'.-;'dnor3 uetsqcng.,(ueroJ sploq 6'9 tueloaqJ,'[ slrDuev
r, since in the proof we 0
!
Remark 1. Theorem 6.9 holds for any Fuchsian group did not use the hypothesis that H / r is compact. '6'9 ueroeqJ ;o Soord eq1 salelduro? slqJ
This completes the proof of Theorem 6.9.
' {r'los} = {z'6rim) = (l^'^l)g *H uo 6 'drnor-5 '3 uo Surddeu urelqo eal 'ra,roe.roy41 leturo;uoctsenb ^amor-S = u1 € o l s p u e l x a / t e q t s e q d t u rq c l q , \ { ' l I - C u o ;l'pue'(q)nV "S ler{l eesarr,r'relncryed uI 'U - C Jo slesqns lcedruoc uo (orrleur lect.raqds S '?l.l '.{1a,rr1cedsa.r 'uorlcnrlsuoc fq snqa eql o1 lradsar qp.,u) fpro;run 3l <- $ ud t'o1(7'9) uotlenbe pu€ Il, oI *H Jo slesqns lcedruoc uo ,{pu.ro;tun a3ra,ruoc u'zb pu€ u'rl, suollnlos pezllerurou eq? 'pueq raqlo eql uO I€rluereJ-rp"ql p ^dot *- "dotr 'C Jo slasqns lceduroc uo flurro;tun ud teq} ees am'2'9 '.{lluanbesuoC'C Jo slasqns lcedtuoc uo fpruo;run P! * 'ecua11'U eurrreT ;o goo.rd eql ul se luarunSre atutss eql fq 3 Jo slesqns "6rl '.t"ql Wql sarldtur gl't uoltlsodor4 ur (8't) lcedtuoo uo ,{prroSrun 0 *
B([wf.L-pD = { wf.L-p ,z } = { Sol, z } = 'P
on
H*.
Then, (4.8) in Proposition 4.13 implies that {lgn -+ 0 uniformly on compact subsets of C - R. Hence, by the same argument as in the proof of Lemma 5.7, we see that gn -+ id uniformly on compact subsets of C. Consequently, wf.Ln -+ wf.L-p uniformly on compact subsets of C. On the other hand, the normalized solutions "11,n and "12,n of the differential equation (6.4) for 'Pn converge uniformly on compact subsets of H* to "11 and "12, respectively. Thus by construction, -+ uniformly (with respect to the spherical metric) on compact subsets of C - R. In particular, we see that Sn -+ S in Aut(C), and i = S-lowf.L-p on C - R, which implies that i extends to a quasiconformal mapping S-lowf.L-p on C. Moreover, we obtain
in
i
+ I)/-lldllt; -ll"u'lll r > (?llalF lI{1gn 1100
~ 411'P1l00/(l + 411'PII;'J < 1.
urctqo a { snql 'z{(-lldllA - I)/(*lldllZ + I)} J uotlelepp l€ulrxeur 'r-(^ilm)o"dm = u6 3ur11e1ug e seq 'f leql ees e/tr 0I'7 ueroeqJ uror.;: u{ous = "drn 1eq1 qcns 'u5 snlqgl uotleu.roJsuerl tr etuos roJ tol 'uant3 uollrnr]suoc "! Surddeur ler[roJuocrsenb e sernpord Jleslr oluo e J" t"6rl = 'rl 3ur11nd'rrlo1q a q t , { Q ' e c u e 1 1' t > - l l a l l Z S - l l " d l l Z = - l l " t / l l 1 e Be r ' t
Now, putting {In = {lepn' we get lI{1nlloo = 211'Pn1100 ~ 211'P1l00 < 1. Hence, by the construction given, 'Pn produces a quasiconformal mapping in of C onto itself such that wf.Ln = Snoin for some Mobius transformation Sn. On letting gn = Wf.Lno(wf.L",)-l, from Theorem 4.10 we see that gn has a maximal dilatation ~ {(1 + 211'P1100)/(1 - 211'P1100)}2. Thus we obtain
' 9 t - l l r l l;
~ 11'P1100 < ~. T L
zEH'
z;2 ur1;f,riJ; l(@"t)al.11 l(r)"otlr1rqlf,,i."= -ll'dll
~ sup (ImTn(z))21'P(Tn (z))1 zEH'
II'Pnlloo
= sup (Imz)21'Pn(z)1
e^eq e.!\ snql
Thus we have
IT~(zW (ImTn (z))2'
-fFtt-'
> =
*H)'
(Imz)2
,z((t)";*I) =eQutl)
. ,.\,
r
1
z E
H*.
'1'g 1eEa,r.r, uotltsodor4 'oo de'*11 ) Gn)"t Eur1otr1 le ? ls€el 1€ reProJo otaze seq Pue'(p'),l,Z.lo "6 aprslnopaugep uollcunJ crqdrouoloq e sr ud>teql aes el.l.'"(z)ia' (Q)"a)d = ' "J pue 3ur11ag'oo F u s€ pl o1 C Jo slesqns lceduroc uo ,tpu.ro;run sa3re,ruoc H ro; ueql'u.re3alut arr.tlrsod,'{ue Jo ur€uropqnslcedruoc flarrtlelar e sr (g)1lj
for any positive integer n. Then T;;l(H) is a relatively compact sub domain of H, and Tn converges uniformly on compact subsets of C to id as n -+ 00. Setting 'Pn = 'P(Tn(z)) ·T~(z)2, we see that 'Pn is a holomorphic function defined outside of T;;l(H), and has a zero of order at least 4 at 00. Noting Tn(H*) C H*, by Proposition 3.1, we get i zz + 2n
u7 -t zl
= (z)".L ?-zuz Tn(z)
= ~nz -
'Z'9 acedg rallnurq)-reJ ]o arnlf,nrls xalduroS Jo af,u"rr"^ul
155
6.2. Invariance of Complex Structure of Teichmiiller Space
991
156 156
ComplexAnalytic Analytic Theory 6.6.Complex Theory of of Teichmiiller TeichmrillerSpaces Spaces
1I , = 2(z -_ z)2 w, z)2
on H fI for for any any
=
=
=
Denoteby by w(x, w(x,U) with an an arbitrary arbitrary constant generalsolution Denote y) == CC with constantC C aa general solutionof of RicRiccati's differential differentialequation equation cati's I
u'=-|@-r)2p(r). gives aa solution Then this this w u gives solution of partial differential of the the above above partial Then differential equation. equation. P u t t i n g uu = Uy- - x, o , we w e get get Putting
=
u '++1r u' 1I ~ = -2
t
--rv@)'
=
-af/ v', Thus, setting settingu= we obtain a/, we obtain the the second-order Thus, u -v differential second-order differentialequation equation I _ )1v @ ) a . u , ,= --
2
independent solutions 7]1 Take linearly independent rp of this equation. equation. Then we we see seethat that [1 and 1]2 7]1t + --. -. - T + ((yY-- 'x)7]~ )n'r
w= ffi|;--;rt' 7]2+(Y-X)7]~' hence we obtain F (6.7). F' in (6.7). and hence Corollary. For every g E eaery
=
[S,g] in in r(R). T(R). lS,sl
=
Proof. In In the proof proof of of Theorem 6.9, 6.9, we saw that that w~ .. = S"i, Soj, ij is real-analytic tnp, 1 on ff and which B-t(p) shows H,, 8- (
=
L9l
acedg .ralpurqrleJ Jo ernlf,uls
xalduro3 Jo ef,u"rn
6.2. Invariance of Complex Structure of Teichmiiller Space
157
tr ecurg'(g)gJo ur [u/orJf 'S] .ro3["f',u5] = -leer s slswe
uI 'Z'9
'(U)Z of lenba aq lsmu O'palaauuoc q (U),2 'snql'(U)J tasqns pesolce q O ecuaq Pue'6'ol s3uolaq [/'S] = cl$pue-par sr "/o,lf snqtr'u e3.re1f11uategnsdue Pot [/',S] ud Eurddeu "s o1 l"uroJuoarsenb c1ld1eue s;o fr_to"t,".g] q]l^ eJeql 1eq1 saqdurr uollrasse lsrg eql '(,S); lo lutod eseq eql ol
to the base point of T( S), the first assertion implies that there exists a realanalytic quasiconformal mapping gn of S to Sn with [Sn'/nof-l] [Sn,gn] for any sufficiently large n. Thus g;;lofn is real-analytic and [S, f] [S, g;;lofn] in T(R). Thus, [S, f] belongs to D, and hence D is a closed subset of T(R). Since T(R) is connected, D must be equal to T(R). 0
=
=
'dd'[Og-V] 3eplo '6VT,-ZV1, o1 {ooq eq} ol reJarear's1te1ep.rog'uap,tcrg enp pu€ elr€g ol enp ere qf,rqrh ueJoeql qqt o1 saqceordde reqlo ere eraql 'gtI-IgI 'dd'[e-V] sroJIr{Y aas) (;)a; '([6] prr€ srolgy uoll?as pcol crqdrouroloq " ltnJlsuoc pooq.roqqSrau ? uo fue ur lurod O Jo ;o (uorlceger 'uorpes o1 elqrssod sr 1t 11a1y-s.tol1qyeq1 leruroJuocrs"nb Sursn ,tg ur lurod as€q aqt Jo Poollroqq8rau e uo 6rt <-+a1 uorlcas pallsc fl qc1q,r,r'(;)a; 'E pcol crqd.rouroloqe seq O uorlealord (srag 1€ql selsls 6'9 rueroeqJ, ,lroue[
Remark 3. Theorem 6.9 states that Bers' projection ~ has a holomorphic local section t.p f-+ Pcp on a neighborhood of the base point in TB(r), which is called the Ahlfors- Weill section. By using quasiconformal reflection, it is possible to construct a holomorphic local section of ~ on a neighborhood of any point in TB(r) (see Ahlfors [A-2], pp. 131-135, and Ahlfors [9]). There are other approaches to this theorem which are due to Earle and due to Royden. For details, we refer to the book of Nag [A-80], pp. 242-249.
uollcaford
'z'7,'g 6srag Jo uor+Bl+uara:gTCI
6.2.2. Differentiation of Hers' Projection
ueqJ '0 {- I se g..- -ll(l):ll P* '("1'g)g ,tq paugep q [n]dO qcns ur8rro eql Jo pooqroqq3rau r1t d' - trl o1 sSuolaq n araq^r '(l)al + + leql uI lueruala ue aq trl 1a1 e ul I reqtunu xalduroc fue ro; paugeP t(t'n)S 'Q'n)g I r/ fre.rlrq.re :l z pue r(J'n)g 'lro11 [n]dO e^IlsAIreP eq] eugoP of qsIA{ arrr
Now, we wish to define the derivative 4>1'[11] of ~ in the direction II at P for arbitrary J1. E B(H, rh and II E B(H, r). Let J1.t be an element in B(H, rh defined for any complex number t in a neighborhood of the origin such that J1.t = J1. + til + tc(t), where II belongs to B(H, r), and 11c:(t)lIoo -+ 0 as t -+ O. Then 4>1'[11] is defined by . ro; r/ 1e z uorl?arrp eqt ul O p
'((,t)o-P|d: ?-fi'=[nlne t .
~I'[II]
1
= lim t ..... oo t
(~(J1.t) - ~(p)),
where the convergence is norm convergence with respect to the hyperbolic L oo _ norm in the preceding section. The existence and integral representation of 4>1' [II] is given in Theorem 6.11. First, we consider the case where p = O.
'0 = es?t aql JaPlsuocairn'1srtg ereqr$ tt 'II'9 ulaloaq; ur ue,rt3 sr 'uol]?as Eurpacerdeql uI turou [n]nO lo uorleluasarder ler3alur pu" ef,ua]slxaaq;, -oo? crloqredfq eq1 o1 lcadsar Wlu ecuaS.raluocrurou st acuaS.re.tuoceql areq^r uaal6sr pu, ,7.rrr, lrtfo1aatTonu?peql'(.t'tt)g
Theorem 6.10. For every II E B(H, r), the derivative 4>0[11] exists and is given by
(e'g) (6.8)
* H) z , t f i p % ? . [
rol ) /7fr,r?a?
;-
fiq 'Ol'g uraroaq&
=e)ta]06
Proof. By Theorem 4.37, we have
eler1 a^\ '19'y ura.roaqa 'tg'loo.t4
Wl't(Z) = Z + tW[II](Z)
+ o(t)
(7)oa (z)lnlp?* z - (r)'n*
araq.n 'g (- ?'se c Jo slesqns lceduroc uo dluro;tun
0, where
1jr[ z(z-l) JH II«) «( _ 1)« _ z) d{,dTJ·
,^"[[ !r- = e)v]q
= -;
uoy?-ffo
. W[II](Z)
-+
(o'g)
uniformly on compact subsets of Cast
(6.9)
taE tdor.acurg aar'seueselqnopuo rueJoeq? (ss?rlsrale1turor;'*g uo crqdrotuoloqsr
Since wl't is holomorphic on H*, from Weierstrass' theorem on double series, we get
158 158
6. Complex Analytic Analytic Theory 6. Theory of Teichmiiller Teichmiiller Spaces Spaces
* ' r r== I1*+t itw[v]' l t f u ]+ ' +o(t), o(r), W~t - ' 1 ,=, =tW[V]" t r b f r ]+" oo(t), W~t (t), t ' 1 ,=' , =tW[V]1II t r b f v+ ) " o(t) '+o(t) w~: ---+O. uniformly on compact compact subsets subsets of H* .F/* as uniformly as tI -+ we see 0. Thus we see that - tw[v]/I' = { uwI''' i D ( p r )={ z} = tttfv)"' + o(t) (J.lt} + o(t) p , , Z} - O. uniformly on compact compact subsets subsetsof H* f1* as as t -+ uniformly 0. Since Since H* f/./f/ r is compact, compact, it follows follows iDs[v] exists and is is equal equal to W[V]III. rblv]"' . Further, formula (6.9) provides (6.8). that 4>0 [v] exists (6.9) provides (6.8). 0tr p E T h e o r e m 6.11. 6 . ' L L . For F o r every e a e r yJ.l B ( H , frh ) t and and v E t h e derivative Theorem B ( H , r), f ) , the d e r i a a t i u e4>I'[v] Qr[u] e B(H, e B(H, giuen by and is given exists erists and bg
ouv'11'v=f-* lLmaea,t]-u1"1' ,
zeH* (610)
Proof. Set f = *r, !11= wprowrl , and \t = pcr.Then we have
A , (' -c )(=L f 'r -- ,F p 4)) "" 'r - , ( ( ) ,c € f ( H ) . \E
putting Thus, Thus, putting
)\ / (l \ o =\/ ;f "L d'"' r -\ ' { c ) ' get we we get = tA )t = l) + At t8(t) +t6(t)
on /(f1), on f(H),
- 0 as + o. astI -+ where118(t)lloo 0. where l16(l)ll--+ On the other other hand, hand, from from the the relation relation On the O ( p , ) ( z= ) {s*f ,r} = {gt,f(z)}.f'(r)'+AQt)(z), we we obtain obtain
ib,1,11,7= zE€ H*. H*. 4>1'[v](Z) = [lim~{gt,f(Z)}] j'(z)2, Z f,k)r, hi"r 1{n,,tel}1 Lt r..... +o u ,t I
Then by the same same argument as as in the proof of Theorem 6.10, we see see that that 4>I'[v] @r[u] 6.10, we exists exists and and is represented represented in the form
f t ibu1,11,1= z e H*. ' ' Jy'e')2, "' ' l-9" l [l 1[ q 1 -fg-'.,n ( C - f Q ) ) ' alartl ,
we obtain the integral f( () for ( in this integral, Therefore, Therefore, by substituting substituti"g /(O integral, we (6.10). formula (6.10). formula 0tr
69I
acedgralnurqrlal Jo ernl)nrls xalduro3 Jo af,u"rr"^ul 'Z'g
6.2. Invariance of Complex Structure of Teichmiiller Space
159
(,f)^Z f" arnlcnrls
Jo acuerrBlul
6.2.3. Invariance of Complex Structure of T(r) xelduro3
't'Z'g
roJ JI O uo uorsuedxasarrasrau,ods s"q tl'O ) (up' "''tD) - n .r(.ra,ra ctyrl.totuoloy pell€? sr uC Io CI ur"ruop e uo peugep 3l uotlcun; panlerr-xeldtuoc y 'uorsuermp raq3rq Jo splo;tueur xaldruoc fgarlq /rarleJ ero, 'q1t.tr ut3aq o5
To begin with, we review briefly complex manifolds of higher dimension. A complex-valued function f defined on a domain D of cn is called holomorphic on D if for every a = (al' ... , an) ED, it has a power series expansion
T 00
L
'tq:, ,r(ro - rz)"q
= Q)l
=
Ck1 ...k,.(Zl - al)k 1
•••
.r(uo - "r)'
f(z)
(zn - an)k"
k1, ... ,k,,=O t { ' '
'r{
which converges for all Z = (Zl,"" zn) in a neighborhood of a. By Cauchy's integral formula, it is easily seen that f is holomorphic in D provided that f is continuous in D and holomorphic in each variable separately. Further, Hartogs' theorem asserts that separate analyticity of f implies its continuity (see Bers [A-14], p.2). As in the case of one-dimensional manifolds in §1.1 of Chapter 1, we can define n-dimensional complex manifolds, holomorphic functions on a complex manifold, holomorphic and biholomorphic mappings between complex manifolds, and so on. For details, we refer to Griffiths and Harris [A-39]' Chapter 0; and Morrow and Kodaira [A-77]' Chapter 1. Now, we shall prove that the complex structure ofT(F), which was defined in §1.3 by using Bers' embedding B: T{J(F) --+ TB(F), is independent of the choice of F. Take a Fuchsian model F 1 of another closed Riemann surface R l of genus g such that each of points 0, 1, and 00 is fixed by a suitable element in F l - { id}. Let w be a lift of a quasiconformal mapping II : R --+ R l . We may assume that F l = wFw- l . When we identify T(R), T(R l ) with T(F), T(FI) , respectively, the translation of the base point [II].: T(R) --+ T(RI) induces a homeomorphism
" uo suorlcun; crqdrouroloq'sp1o;rueurxalduoc leuorsueurlp-u eugep uec arrt'1 raldeq3 Jo I'I$ ur sploJrusu l"uorsuaurp-euo Jo es"f, eql ur sy '(6'd 'hf -V] srag aas) dlrnurluoc s1r sarldurr ,f go ,tlrcrfleue aleredas leql slresse uaroaql (raqlrn{ 'f1a1e.redes alq"rr"^ qf,ea ut crqdrouroloq pu€ O uI snonul}uo) ,sEo1re11 sl 1€ql pepr,ro.rd ur erqd.rouoloq sl lerl? uaas fltsea sr 1t 'elnurro; 1e.l3e1ur 6. / / = z IIe JoJ saS.raruocqctq,u. s,dqcnep dg 'o yo pooqroqqEraus ur (ur'"''rz) acroqf,eqlJo luepuadapursl'(J)sZ * Q)dl,:g Surppaqure(sreg Sursn,tq g'1$ ur peusep se^r qf,rq^\ '(;); lo ernlcnrls xaldruoc eql l€tl1 a,rord 11eqsa,t. '.nog '1 reldeq3 'ltt-Vl srrcpox pue rrorrol{ pue 19 raldeq3 '[Og-V] srrr€H pue sq]lgrJ9 o] reJeraa,r's1e1eprod 'uo os pu€ 'sp1o;rueur xalduroo uee.&\1eq s3urddeur crqd.rouroloqlqpue ctqdrouroloq'p1o;tueur xelduoc .J
JO
rq (I.r)d,Z+ (1)da:.@l 'r_mod(nora usrqdrouroa{uoq e euuepelr'ralroaro141 nn Ir-qI qtns pu€'oo pue 'I '0 l€q} IlsnsuollsruroJsuerlsnlqotr{IeaI € sI D arel{l!\ Jo qc€asexu r_oott(nolo 'l.n^l = ([n.])'[r] lanl :(lt)t - (.7)g :.[o] uotyo1suo"r7 ursrqdrouoauoqs secnpur(tU),-U-- (U).f :*ltl) Turod?saqeql to '(t '(g)g - rJ ,(gluapr e^\ uer{11y eq1'flerrrloadsar 7)"6'(,1),2qtt^ (tU)-f r-nJn 'IU *-g:tf eJo l;ll € eq t't taT SurdderuleruroJuocrsenb 1€r[]eunss€,teure11 '{pp} - r.7ur 'g luaurelaalqe}rnsefq pexgsr oo pue'1 slurodJoqceet€q} qcns pesolcreqloue;o t7 Iepouru€rsqrnde e{€I 3 snue3Jo rU. a?€Jrnsuueruar11
[w].: T(F)
--+
T(FI);
[w].([wl']) = [Wll], where a is a real Mobius transformation such that aowl'ow- l fixes each of 0, 1, and 00, and such that w ll = aowl'ow- l . Moreover, we define a homeomorphism (w).: Tf3(F) --+ T{J(Fl ) by [wI']
1-+
.(J,H)zV p (J)sJ ureuroppapunoq€ se pazrleerq (r"f)dZueql'(IJ'H)"V o1u1(y)dglo Surppaqura (sregeq Ig ta1 '7utodasoqay1 uotyolsuDrle *(o) .ro *[o] lec osle elA to 'ln*7= ([nt]).(t),--, ^] [n
[wI']
1-+
(w).([wl']) = [WII]'
We also call [w]. or (w). a translation of the base point. Let B 1 be Bers' embedding ofT{J(FI) into A 2 (H, rI). Then T{J(F1 ) is realized as a bounded domain TB(FI) of A 2 (H, rI).
.(r,t)al, - (J)sJ : r_Ao*(o)or1 ,(Il)dt * (1)0a :*(o) ,(tt)t* (1)a:.la'l ,(tU)Z * (U)Z ,.[V] eqJ 'ZT'g uaroaqJ :ctrld.totuolorlrq nD eto sfutddput.6urmo11ol
Theorem 6.12. The following mappings are all biholomorphic:
[II]. : T(R)
T(RI), [w]. : T(F) --+ T(FI), (w).: T{J(F) --+ T{J(FI), Blo(w).oB- l : TB(F) --+ TB(FI). --+
Proof To see that F = Blo(w).oB- l is biholomorphic, we need to prove that F is biholomorphic in a neighborhood of any point B([wl']) E TB(F), since F is
sr C acurs'(.t)al> ('*DA lurod fue Jo pooqroqq3reue ur crqdrotuoloqlqsl d 1eq1arro.rdo? peeu am'crqdrouroloqlq8I r-go*(rr))org d }€ql aesoa'too.r'4
6. Complex Complex Analytic Analytic Theory of Teichmiller Teichmiiller Spaces Spaces 6.
160 160
lJ ). If TB(f ts).If. homeomorphic. Let fr plJ = = wpl(dr)-l wlJ r(wlJ)-l and Bu BIJ be Bers'embedding Bers' embedding of of Tf3(r homeomorphic. two mappings mappings two
- B o ( ( w P ) - t ) . o B ; t T B ( I PlJ)) -~ T sTB(r), (f), fFi l =Bo(wlJ)-l)*oB;l:: TB(r P ) IJ lJ = B ; .o(wo(W o ( u o ( . t ' )-1)*oB;1: ) - r ) * o B p L : TB(r Fz2 =B T s ( f ) *~ TB(r " s ( | 1 )1) F
1
lJ ), then F .F = of TB(r Ta(fP), are neighborhood of base point of of the base are biholomorphic in a neighborhood 1 is biholomorphic in a neighborhood of FFloFlL oF neighborhood of B([wlJ]) E TB(r). B([trlr]) eTBQ). l 2 Thus, proof that that F F is biholomorphic biholomorphic in a neighborhood neighborhood it is sufficient sufficient to give a proof Thus, it of base point point of TB(r). TaQ). of the base 1/2}, of the base say V = {ep < 1/2}, Take neighborhood, say A2(H*,,f) r) IlIeplloo base Take a neighborhood, e A2(H* | llell- < {9 E P ut I / } . C p,t E s e t p o i n t of point For o r arbitrary a r b i t r a r y ep,1/J V, we set D = {t E e 11/J + tep E V}. Put € e o f TB(r). Tn(l). F €V,we Itb+t9 {t - [wlJ(t)]. 1(ep(t)) = we have Flom Theorem B-'(p(t)) p(t) 6.9, and p(t) = 1/J+tep ep(t) and J-I(t) = J-Icp(t). From Theorem 6.9, we have B[urr1tyJ. Its(t). t+t9 given by Let )(t) A(t) be the Beltrami Beltrami coefficient w lJ (t)ow- 1 , which is given coefficient of wr(t)ou-t,
=
( t ) -- uJ-Iw, )\ ^ow-1 r " rJ-I(t) ,.,_, -) _((~ \\o ( rt= ^.A(t) -F -*J-I(t) { a ) "t W 1 J-Iw \q z
={
get F(ep(t)) is holomorholomorwe get on H. w),(t), Z}. Since A(t) is f(e(t)) = {ror(r),2}. Since,\(t) construction, we f/. By the construction, phic with is holomorphic on that F(ep(t)) F(g(t)) is with respect respect to t, Theorem 6.11 6.11 implies that g and 1/J .F' is injective injective D. Since ry' are a.re arbitrary, arbitrary, F .F is holomorphic holomorphic on V. Since Since F Since ep on TB(r), inverse mapping 6.13) and the inverse ?s(i-), from the following lemma (Lemma 6.13) theorem, we that F .t' is biholomorphic biholomorphic on V. I/. we see see that trivial. By 0O rest of this theorem is trivial. By the definitions, the rest injecliae holoholo' of an injective det(0Fi/0zp)4i,1'=n of Lemma 6.L3. The The Jacobian "Ip = det(8Fj/8zl:h~j,l:~n Lemma 6.13. Jacobian JF . , f ',"F) n ) of (Fr ,1.,.... en en morphic intoC n vanishes a a n i s h e at sa t o f a domain d o m a i nD D in inC " into m o r p h i cmapping m a p p i n gF = ( F no points on on D. no points First of all, clearly Proof. We prove this assertion a.ssertionby induction induction for dimension n. First Proof.We it holds 1. holds for n = 1. '/.,, Given an integer n > we assume assume that that the assertion holds for any positive ) 1, we vanishes. We want n -1. Let Do be the set of all points in D where J.Ip F vanishes. integer ~ set 1. S to prove that that Do is empty. Suppose that the Jacobi matrix matrix of F\rrther, assume assume that that Do is non-empty. Further, Suppose that we may F is with 1 ~ some point a E is of rank r with S r ~ S nn- - 1 at some € Do. Then we assume does not vanish vanish at a. c. The inverse inverse mapping det(d.Q /|rx)1.5i,x9, does a^ssumethat det(8Fj/8zl:h~j,l:~r h a s the t h e inverse inverse theorem ( F1 1(z), ( z ) ,... . . . ,,F F rr((z),Zr+1, z ) , z r * r t . . ... .,zn ) ,Zn) has t h a t G(z) t h e o r e m implies i m p l i e s that G ( z ) = (F we a. have F"+r(() (Ht,. a neighborhood ... , H ) in a neighborhood of a. Then we have H + mapping H = (H , . . Hn) r 1«) = 1 , n -O (n, ( ' , . . . , F n o H i n aa ( ( r , . ' . , G , F " + r o I / ( ( ) , m d F o H G ) + (r+l, F . F / " ( ... ,H «) = and FoH«) = «1, ... ,(r,F oH«), ... ,F oH«)) n ( ( ) ) in r 1 G+t,..., n G(a). We set neighborhood of set We neighborhood G(c).
=
( ( r ,... . . . ,, (n) (,) E . F " ( o}), C ' 1(1 F r ( o ) ,... . . ., ,(rG = Fr(a)}, W W = {( € en | ( r = Fl(a), { ( = «1, t r ' ' ( o )} . w r = F1r (a), ( a ) ,... . . ' ,W ( w r , . . . , w n) E C ' II W1 WI W t = {w € en , u rr = Fr(a)}. { w = (W1,"" neighThen the restriction FoHlw holomorphic mapping of aa neighFoHllat is is an an injective holomorphic borhood of G(a) in W follows By the hypothesis of induction, it follows that . hypothesis I,7 into W Wr.By 1
'8'I ul $ pa?npurauo aql o1 luap,rrnbes1(.i,)dg uo ernlcnrls xaldurocstql 'ecue11'Q)aJ, ol (J)dJ;o Surdderucrqd.rouroloqlq e q g Suppaqrue(srag 1eql reelt q ?I '(t)d,1, uo arnlcnrls ploJlrreu xelduroce se,rt3{(.t)d,t > ln^) | ("nlnl'ntl)} 'erogaraq; 'p nn U nn q1r,u rp pue n2 f.rcra ro; rtqdrouroloqlq sI +
is biholomorphic for every UJ' and Ull with UJ' n Ull :f
(nnUnn)nt *_ (nnudn)df : r_(d,{)on,{ 'zI'9 tuaroeql ,tg '[nr] 1l l€q} s^irolloJ Punorepooq.roqqtraue]eulProoc e se ("n1,tg'nn) n{rt uec et$'acua11'd4 oluo /4go usrqdroruoeruoqe secnpur d4 pqt s?ress"g'g uraroaql ueqJ nd por '(,1)d.t ul [/.]Jo pooqroqq3raue s1
Then Theorem 6.8 asserts that UJ' is a neighborhood of [wJ'l in T(j(r), and FJ' induces a homeomorphism of UJ' onto VI" Hence, we can take (UJ', FJ'lu,.) as a coordinate neighborhood around [wJ'l. By Theorem 6.12, it follows that
' ( n t n ) r - ( n d=) ' n
pu" {zlt > -lldll | (rJ',H)zv ) d} = nA
with FJ'([wJ']) = 0, where BJ' is Bers' embedding ofT(j(rJ') into A 2 (H*, rJ'). We set
+es 'g '(rJ'*H)zV o1q (n.i,)dggoSurppaqura al111\ (sregsr dg araqn = ([dnt])dgqlrm
*(nmlod - ag g G,t)st * (.t)dt : Eurddeur :snolloJn (l)g,t > ln*] lutod fue e,rrlcafurue a^€qaar'r-(no-l).ir{n = tJ 3ur11as 'f1aure11'lelluesseur,tlen1ce fl ploJllrelu Jo pooqroqq3raualeurp.rooce e)p+ ea.l, sI pcrSolodolleuorsueurp-(g- 0g) I"er € sr (l)gl, leql lc€J aq1'ctqd.rouroloqlq g qcns ernlonrls plo;tueruxalduroce seq (.7)dg eeso1 'ralarrroll l€ql leql 'crqdrouroauroq -sl Surppequre (J)sJ (l)dl,:g (sreg l€q1 aasol sureuopJo parEolodolleuolsueurP acu€rJe^ur uo rualoeqls(JeA{norg Pasna/$acurs'p1o;rueur -(g - 0g) I"er e sr (l)dt leql /$oul ol pepaeuaarr'eraq; '(J' *H)"V acedsrolcaa xalduroceql ur ur€ruoppepunoq" $ qcrq^{'(t)s,t uo arn}rnrls xaldurocaq1 r.uorJpernpul seo,(;)dg uo ern?f,nrlsxalduroceql'g'I$ ur pelsls sy'tlrautey
FJ' = BJ'0(wJ')*: T(j(r)
~
TB(rJ')
Remark. As stated in §1.3, the complex structure on T(j(r) was induced from the complex structure on TB(r), which is a bounded domain in the complex vector space A 2 (H*, r). There, we needed to know that T(j(r) is a real (6g - 6)dimensional topological manifold, since we used Brouwer's theorem on invariance of domains to see that Bers' embedding B: T(j(r) ~ TB(r) is homeomorphic. However, to see that T(j(r) has a complex manifold structure such that B is biholomorphic, the fact that T(j(r) is a real (6g - 6)-dimensional topological manifold is actually inessential. Namely, we take a coordinate neighborhood of any point [wJ'l E T(j(r) as follows: setting rJ' = wI' r( wJ')-l, we have an injective mapping
tr
'u ror sProq s."."er eqr acuaq oT"i,il}i,T ffifi;"_;:':iil:*",,
the Jacobi matrix of FoHlw is of rank n - rat G(a). Hence, the Jacobi matrix of FoH is of rank n at G(a). On the other hand, since G is biholomorphic in a neighborhood of a, the Jacobi matrix of F must be of rank n at a, which contradicts that F is ofrank ~ n -1. Thus every OFj/OZk should vanish on Do. Now, assume that Do = D. Then each Fj must be a constant, because all OFj/OZk vanish on D. This contradicts that F is injective on D. Next, assume that Do is a proper subset of D. Since Do is the set of zeros of the holomorphic function JF on D, from Weierstrass' preparation theorem (Bers [A-14], pAO), we may assume that there exists a holomorphic function 'ljJ on a domain U1 in e n - 1 such that Do n U = {(r, 'ljJ(r)) IrE U1 }, where U is a suitable domain in en. Let Pj be the restriction of Fj to Do n U, which is considered as a holomorphic function on Ul. Since all OFj/OZk vanish on Do, every oPj/ork vanishes on U1 . Hence, every Pj must be a constant, which contradicts again that F is injective. Therefore, Do should be empty, and hence the lemma holds for n. 0
qcrqar'1ue1suo?" aq lsntu .!,{rarra'acua11 'In uo saqsrrrelttg/lge fra,ra'06, uo qsrusA tzg/lgg 1e acurf 'Ln uo uorlcunJ crqd.rouroloqe s€ pereprsuo) sI q)lq^{ 'n U oO ol .{4';o uorlcr.r?saraql aq fd fe1 'rC u-r ul€ruop elq€?rns€ sI '{tn = n U o O 1 6 q 1q r . , r 1 - , C 4 I p u r e u o p e u o > " | ((t)f'r)} n araq^\ 4l uorlcun; crqd.rouroloqe slsrxe araql leql arunssedeur er,.r'(07'd'[ft-y] srag) ueroaql uorlerederd (sserlsJaralt urory 'g uo if uorlcunJ crqdrouroloq eql Jo soraz Jo 1as a{l sr 06r acurg 'O Jo lesqns radord e 4 oO 1eq1 aurnsse '1xe11 'O uo e^rlcelq q A 1eql slcrp"rtuoc slqtr'O uo tl$uel^ tzg/lgg 'lrolq '1ue1suoce aq 'O = oO lsnru fg qcee ueqJ l€q? arunssr IIe esneceq 'oO uo qsruel plnoqs tzg/lgg i(ra,rasnqa'I -u t {u€rJo sl J leq} slrrpsrluoc qcrqin 'o le u {u€I Jo aq lsnur dr Jo xrr}€ur rqo?ef aql 'p Jo poor{Ioqq3rau e ur crqdrouoloqlq q 5t ecurs 'pu"q reqlo aql uO '(r)g tr u {uer Jo s! IIoJr Jo xrrl"ru rqocsf aq1 'acua11'@)C t" r - u {uer yo sr zltlgog Jo xrr}etu rqocef aq} acudgralpurqrlel Jo ernlf,uls xalduro3 Jo a)u"u"^ul 'Z'g
161
6.2. Invariance of Complex Structure of Teichmiiller Space
I9I
162 162
6. Complex Complex Analytic 6. Analytic Theory Theory of of Teichmiiller Teichmiller Spaces Spaces
6.3. Teichmiiller Teichmiiller Modular Modular Groups Groups prove that shall prove that the Teichmiiller We shall Teichmiiller modular We modular group M od(R) of Mod(,R) of aa closed closed Riemann genus surface of of genus 9C(]=2) acts properly discontinuously surface (~ 2) acts discontinuously on on the the Teichmiiller space space "?(r?) as as aa subgroup subgroup of of the the biholomorphic automorphism group Aut(T(R)) T(R) of automorphism group Aut(f@\ of
r@). T(R).
6.3.1. Definition Definition of Teichmiiller Teichmiiller Modular 6.3.1. Modular Groups Let.E be aa closed genus9C(22). closedRiemann Riemannsurface surfaceof genus Let R be (~ 2). We definethe We define the Teichmii/ler Teichm[iller group rnodulargroup M Mod(R) groupofthe group ofR asthe the factor groupof quasiconformal od(R) of R as factorgroup all quasiconformal modular ofall self-mappings ,Rover overthe the normal normalsubgroup subgroupof those self-mappings of R thosehomotopic homotopicto to the the identity identity (cf. §3 1). The The element elementof quasiconformal Chapter 1). oI M Mod(R) (cf. od( R) defined definedby by aa quasiconformal selfself$3of Chapter mappingfo is denoted denotedby UV[fo]. R is action[fo]. mapping The action od(R) an element element[fo] Uoa@) eM f " of R [/,].The [/,], of an lf "l E givenby on T(R) ?(r?) is is given by on
[fo].([3,f]) [/,].([S,/])== [3,fof;1] [S,f"f"'l (see §1.3 every [3,1] T(.R) (see for every We call such such an an [fo]. e T(R) $1.3 of Chapter 5). We [S,/] E [/o]. aa Teichmilller modular moilular transformation of Teichmii/ler oI T(R). T(R). f be aa Fuchsian Fuchsian model of R. quasiconformal self-mapping Let r fo ft. By lifting, aa quasiconformal selfmapping "f, quasiconformal self-mapping rR corresponds corresponds to aa quasiconformal of R self-mapping w ar of the upper half-plane half-plane H I/ = r. with wrwc..,fc.r-l1 = f . Let Wi or; be aa lift with fi of R lift of aa quasiconformal self-mapping f; with r? with u;f (u;)-r = rl- for for i = 1,2. Wir(Wi)-l I,2. By the same sameargument axgumentas as in the proof of Lemma Lemma 5.1, 5.1, = we see seethat [fd Mod(R) if and and only if we [12] od( R) if if W2 u2 = W10,0 ca1o7,holds holds on the real real axis axis [fi] [/2] in M some 10 jo E |. With quasiconformal self-mappings R for some With this in mind, two quasiconformal self-mappingsW1 € r. {rr1and and = rf (i u2 of H satisfying satisfyingWirWi-1 W2 be equivalent u;fulr 1,2) are are said said to tobe equiaalenlif there there exists exists U = 1,2) element 10 ol rI such such that that W2 an element 010 on R. Denote e2 = W1 uroTo Denote by [w] equivalence 7o of [c.r]the equivalence classof w. ar. The Teichmiiller Teichm'iiller modular group group M class M od(r) odQ) of rf is is the group of all these these equivalence classes classes[w]. equivalence element [w] Mod(f) on T(r) T(l-) is [a.'].The action [w]. [c.r]-of an element [w]eE Mod(r) given by given
=
=
=
=
=
=
1tf [w].([wl-']) [r]- ([ru]) = [aowl-'owlaowq ow- ]
every [wI-'] for every 7(f), where where a is is an an element element in Aut(H) Aut(H) such such that aowl-'owe T(r), eorlrou-r 1 [ru] E fixes each each of 0, fixes Theorem 6.12 asserts that [w]. is 0, 1, 1, and 00. oo. (cf. §2.3). asserts 6.12 $2.3). [cr]- is a biholoautomorphism of ?(f ). Furthermore, this [w]. morphic automorphismofT(r). induces a biholomorphic induces [c.r]* (c,r),of T~(r) automorphism (w).of TaQ) defined defined by
(r).([ru]) = lw,) for any [wI-'] T~(r), where z /I is the Beltrami Beltrami coefficient use coefficient of aowl-'owoowrou-l 1. We use e TB(f), lrul E the same same notation (cl). for the biholomorphic automorphism of notation (w). ol TB(r) Tp(f) instead instead 1, where is Bers'embedding of Bo(w).oBwhere B is Bers' embedding of Tf3(r). We also [w]. or (w). Bo(w),oB-1, Tp(l). We also call [ar](c.,)* a Teichmiiller modular transformation. By By the construction, it is obvious that obvious that ModQ) Mod(r) is isomorphic to Mod(R). Mod(R). By of T(r) By the identification of ?(f) and T(R) "(rR) (Proposition 5.3), 5.3), the Teichmiiller distance on T(R) 7(-R) induces induces the Teichmiiller distance distance distance on T(r). ?(f). Then Proposition 5.5 implies the following. 5.5
',t1duns arou pagrre^ q tnq 'ZI'g rueroaql u€ql ra{pellr sr q)rq^r 'l1nsa.rqcns raqlou" ^roqs lleqs a,r'are11 '(61'gure.roeql'Jc) UJo J Iepour u€rsqcndpezrl"urrou€ sa)npulU uo scrsepoe3pesolcJo sqfuel crloq.redz(q;oles e '61'g ureroaqtr uI u^roqs s€^r sV
As was shown in Theorem 3.12, a set of hyperbolic lengths of closed geodesics on R induces a normalized Fuchsian model r of R (cf. Theorem 3.12). Here, we shall show another such result, which is weaker than Theorem 3.12, but is verified more simply.
'L to aco.t7aqyto a.tonbs e ? i ls e l . o u e p s ! { J ) L l ( t ) z r t } ? ? se q J ' f r e 1 1 o r o 3 (L)"r1e;eqn'1gur a1atcslp
square of the trace of I'
Corollary. The set {tr 2 ( ,) I I E r} is discrete in R, where tr 2 (/) denotes the ',t.re1oroc3urmo11o;eql ol peal g't pu€ gI'g suorlrsodor4
Propositions 6.16 and 3.3 lead to the following corollary.
8)'urut 'gl'g eururarl slcrperluoc slq,L'u .{ue ro3 o W > (il1 = (Q)uL'z)d u,0} uaql'u,[3o leql qrns JJo sluauele lcurls-rp,tlen1nur;o ecuenbase q r?{ "ty s l x " ee q l s l e r a q , u ' p * " t V U d t t s q l P u e ' ( 8 r e l d e q 3 J o 8 ' I $ e a s )" 7 s r e l o s 'g ut ",1 u,L sI qclqrr J roJ .4 leeduroc ,(1errt1e1a.r leql os .1, ) luetuale u€ e{sJ ur€urop Ftueu"punJ e esooqC '"I Io t{fua1 cqoqradfq eq} sl ("7)/ araqrrr',tr4l seg$les u7 ,trerle leql qcns g' uo scrsepoe3 raqurnu aarlrsod aruos roJ W j (l)t pasolc lf,urlsrp fgenlnur Jo r=.:{ u7 } ecuanbese slsrxa eraq} ?eq} aurnssy /oo.l2,
Proof Assume that there exists a sequence { L n }~=1 of mutually distinct closed geodesics on R such that every L n satisfies f(L n ) :::; M for some positive number M, where f(L n ) is the hyperbolic length of Ln. Choose a fundamental domain F for r which is relatively compact in H. Take an element In E r so that In covers L n (see §1.3 of Chapter 3), and that F n A-Yn -t
'7 y76ua7ctloqtadfiy IlWn A uo sctsapoa0 paso1cfruorufipyru{ Four ID Isrre N,eq?'7aa4tsodfiuo .tol 'taaoano147 'E u, ?pns?p s! 6 snua6to g acottns uuDureNypesol? Q,7) eqoq.radfiqto 1as eqJ 'gT'g uorlrsodor4 D uo s?r,sepoafpasolt 1r'oto st176ua1
Moreover, for any positive f, there exist at most finitely many closed geodesics on R with hyperbolic length f.
Proposition 6.16. The set of hyperbolic lengths of all closed geodesics on a closed Riemann surface R of genus g (~ 2) is discrete in R.
'uorlslPeJl tr -uoc e'(n)lnv;o dno.rEqnselerf,srp€ lou $ J'gI'7, euurerl ,(q snqJ,'Q1)nV o1 s3uolaq / feqt srrrorls8I'Z €rrrueT'17 ul sl orn acurg'oot = (oz){ ateqell^ uo peugep / uotlcuny ctqdrouroloq uer{J 'Il uo fprue; I€Lurou e fl lI asn€caq '.,ir1, etunss€ osle .{eur arrr e ol sles uo fpulogrun sa3ra,ruoc I*{ "f teqt lcedruoc } '.raq1rr1g'oo + u w oz +- "z om <- ("r)"L prc leq+ eurnsse fetu )1 ) H ) e,rl 'r(resseceu;r acuenbesqnse Eut1e1 'alalduroc sr d pue lceduroc $ I4 etuls 'X u,L.r(ra,r.e ) "z auos roJ W j (("r)"L'"2)d sagsrles leql qcns J uI slualu -ele l)urlsrp ,t1en1nurJo I1{ u,L acuenbas3 slsrxa araqt }€tl} asoddng /oo"l4' }
Proof Suppose that there exists a sequence { In }~=1 of mutually distinct elements in r such that every In satisfies p(zn, In (zn)) ~ M for some Zn E I<. Since I< is compact and P is complete, taking a subsequence if necessary, we may assume that Zn -+ Zo E I< and In(Zn) -+ W o E H as n -+ 00. Further, we may also assume that {,n }~=1 converges uniformly on compact sets to a holomorphic function f defined on H, because it is a normal family on H. Then we have f(zo) = woo Since W o is in H, Lemma 2.18 shows that f belongs to Aut(H). Thus by Lemma 2.16, r is not a discrete subgroup of Aut(H), a contradiction. 0
'ytr 'H uo e?uolsrp ?rmurod aqy st d a.taqm Y)'uutt j ere1l '14Jtaqu,nu aatT q??n L fiuout fr.1a7tu{ ((r)t'z)d ) lsoluu ID lswe J -tsod puo 11 auoyd-l1ot1 fitaaa "tog 'gl'g Btrrwarl .r,addnayl u, >J psqns Tcodu.toc
M, where P is the Poincare distance on H.
Lemma 6.15. For every compact subset I< in the upper half-plane H and positive number M, there exist at most finitely many IE r with min. eK p(z, I(Z)) ~
'suorlrsodord
To prove that M od(r) acts properly discontinuously on T(r), we prepare some propositions. auros e.reda.rdem '(.7)"6 uo rllsnonutluo?slp fgedord s1re-(,1)poq
1eq1 a,rord o;
slas qnpotr I 'z'8'9
6.3.2. Moduli Sets 'ecuDlsNp qTtmfi.tyau,os,uD sN (l),f, lo *lnl tustrld rellnuqral eyq oy Tcailsa"t -routolnD ctyd.r,otuo1otllg eW '(J)poW > l'r,l lueuep fi"raaatog '?I'g uraroaq5
phism [w]* ofT(r) is an isometry with respect to the Teichmii/ler distance.
Theorem 6.14. For every element [w] E Mod(r), the biholomorphic automor163 t9l
6.3. Teichmiiller Modular Groups sdnorg r"lnpol4l ralllurqf,raJ't'9
6. Complex Complex Analytic Analytic Theory Theory of of Teichmiiller Teichmiiller Spaces Spaces 6.
164 164
r
Proposition 6.17. Let Let f be be aa Fuchsian Fuchsian model model of of aa closed closed Riemann Riemann surface surface of of Proposition g e n e r a t o r s a s tthe he I s u c h t h a t T ggenus e n u sg9 ((~ a s y s t e m o f 2 22). ) . LLet such that "Yl hhas e t {{t"Yi or i } T}T=1 = , bbee system of generators ffor repelling fired fixed point point 0 and the attractiae attractive fixed fixed point point oo, 00, and such such that 72 "Y2 has the repelling point I. Then each repelling fired fixed point point r with r < < 0 and the attractiue attractive f,red fixed point 1. each 7i "Yi repelling the sel of elements in determined bE by lhe the absolute absolute ualues values of of traces traces of elements in finite set is iletermined fi'nite
r
r. ±1 0"Yk, ("YI 0"Y2 )±1 0"Yk, } g o1,r}, r, (lro7r)*' l:f = = {{ 1"Ylp'l 0"Y2, "Yij, , "Ylft1±1 ol 0"Yk, 1'2 oj x, ^tt' z, 7
=
=
n d kl c= 3 . . ,,m. ffi. where 1,, ... and 3,, .... . . . ,,m, m, a w h e r cjj - 1
Proof. First First of of all, we may a^ssume assume that that 71 "Yl has a matrix matrix representation representation Prool.
' ,= Lf o) ' lol 'I l ' A > 1 ' Thus "Yl determined by the absolute absolute value value of tr(lr). trbd. Thus 71 is determined normalization condition condition we we may may assume assume that y "Y2 has has a a matrix Next, by the normalization representation representation
o ' , .~], |, * bb ==cc{ + d .d. a, d- - be b c==1,1 ,aa + a ,b,bc,, cd ,>d 0, . ) 0ad B a, a = l [~ LC dJ' Thus Thus we get
- Itr("YI0"Y2)1· d)-r1 = a.\+ aa + * dA* dd,= Itr("Y2)1, ltr(71"72)1. lt.(rz)1, aA
of "Yl, valuesof of traces tracesof Hence by "Y2, by the the absolute absolutevalues aredetermined determined and d are both ao and Henceboth 7r,72, we have 1, has a and "YI0"Y2. Since the quadratic equation "Y2(Z) = z has a solution 1, we have and 7p72. Since l2(z) b= c*d- a. 2c=a-d+J(a+d)2-4, 2 c = a - a + 1 f t 1 a 1 2- 4 , b=c+d-a. is deterdeterd. Therefore, Therefore, "Y2 Consequently, and d. determined by ac and D and c are are determined 72 is Consequently, both band and mined by the absolute "Y2, and "Yl 0"Y2· values of traces traces of "Yl, absolute values 71o72. 7r,'Yz, - 3, has aa matrix Now, ... , m, the Mobius transformation "Yk Mobius transformation every k[ = 3,...,rn, Now, for for every 7; has representation representation
l C " == l[p r
q r== 1.r ' p s- qr q], p, q, r, s E R, R , ps s: ] , P , e , r , E €
Here, assumethat we may assume 2.22 we Here, by Theorem 2.22 p+ P + ss>> 2.2 '
Then, using the relation Then, using
tr(.4-1rC), tr(AC)+ tr(A)tr(C) C), tr(.a)tr(C)== tr(AC) * tr(A-
(6.11) (6.11)
of "Yl, of traces traces of values of absolute values tr( AC) is the absolute is determined determined by the tr(,AC) 7* lt, "Yk positive, we have is of (6'11) side In fact, since the left hand side of (6.11) is positive, we have left hand since the fact, In 1C)I. If tt providedthat that Itr(AC)1 0"Yk)I provided tr(AC) =- Itr("YI tr@Cj == Itr(AC)1 lt.(e-'q)|. ltr(,Ac)l ~] Itr(Altr(71o7r)l ltr(,aQl 1 1 1 10 = = ft(A-tC) *" oLtuin Itr(AC)1 < Itr(Athen we obtain tr(AC) = Itr(AC)1 = Itr("Yl "Yk)l, C)I, then 1tr(A-rc)l ltr(7!r"7i)1, It;(/i)l < ;tt(e-rc)1, and tr(AC) tr(AC)== Itrbdl·ltrbk)I-ltr("Yl1o"Yk)l. andhence hence ltr(7r)l. ltt(z*)l- ltr(7r-1o7j)1.
we we see see that and and "Yro"Yk. 7fo73.
99I
sdnorg r"InpoIAI reillurqrlal
6.3. Teichmiiller Modular Groups
165
't'9
suorlenba reaurl Jo uralsfs eq1 3ut,r1og ''tLo+(?'LorL)pue '{1, (zLorL saf,erl 6enlp^ e}nlosqe eql ,tq peuruJelep Jo Jo sl (CSy).rt 'f1.regu4g 'cto*L pus '{1, 'zf Jo sare.rl Jo senle^ elnlosq" eqt fq paurrurelep sl (CA).rt 1eql aasam'y;o pealsur g Sur.reprsuoc'feaa euresaq1 u1
In the same way, considering B instead of A, we see that tr( BC) is determined by the absolute values of traces of 'Y2, 'Yb and 'YtO'Yk. Similarly, tr(ABC) is determined by the absolute values of traces of 'Yl 0'Y2, 'Yk, and ('YI0'Y2)±0'Yk. Solving the system of linear equations tr(C) = p+ s, tr(AC) = p>. + S>.-I, 's
1d - (g)r1
'r_ysp* r_yDa+ yrg + ydo= (CaV)rt 'sp+bc+rq+do-(gg)r1 'r_ys*yd=(gy)r1 tr(BC) = ap + br + cq + ds, tr(ABC) = ap>. + br>' + cq>. -1
+ ds>' -1,
(qL (eLorL ' q L o + ( z L o r L )p u e ' l L o f L ' t t o l L Jo sarcrl Jo 6anl"A etnlosq" aql ,tq paunuretap st {,L }e{l epnlcuoc e^r
we conclude that 'Yk is determined by the absolute values of traces of 'Yl, 'Y2, 0 tr (zL 'rL
'Yl 0'Y2, 'Yk, 'Yt 0'Yk, 'Yt 0'Yk, and ('Yl 0'Y2)±0'Yk.
6.3.3. Discontinuity of Teichmiiller Modular Groups sdno.rg Jslnpor4l rallnruqcral,
yo z(lrnurluocsrq'
g' g'g
dno.tf rustrlil"rotuolnonyd.toutolotl?q?W Io dno.tfiqnso so (1)a uo filsnonutTuoc -stp fiy"tado.rd sTco (.1)po141ilno"rf l,o1npou reIInurUoNeJeUJ '8I'g uraroaql
Theorem 6.18. The Teichmiiller modular group Mod(r) acts properly discontinuously on T(r) as a subgroup 01 the biholomorphic automorphism group Aut(T(r».
'(Q)Dt"v
les e^\'u qcse IoJ 'Q),f,> oD '(J)J lurod e o1 sa3ra,ruocr?{ ("d)"{ } acuanbaseql e o1 sa3raluoe q?rq/r ("f)'f q ,-*{"a acuanbesur€lree e ro3 'leqt 3 od lurod } I=g{ qans (.2.)po7g ur sluetuale flenlnur 1?urlsrp Jo $ } acuanbas s s}srxe ereql ueql '(J)J uo flsnonurluo?$p fl.redord lce lou seop (1)po1,tg1eq1asoddng '(6 reldeq3 Jo g$ ul {r€urag aas) 11'g uorlrsodor6 ur srsaqlodfq aq1 Surf;slles srolereua3 ;o urelsrts e seq J leql IFcaU 'too.t4
Proof. Recall that r has a system of generators satisfying the hypothesis in Proposition 6.17 (see Remark in §5 of Chapter 2). Suppose that M od(r) does not act properly discontinuously on T(r). Then there exists a sequence {In }~=1 of mutually distinct elements in M od(r) such that, for a certain sequence {Pn }~=1 in T(r) which converges to a point Po E T(r), the sequence {In(Pn) }~=1 converges to a point qo E T(r). For each n, we set gn = /,n-1 , 'utorlufi - uq
'rlI
= "6
'[prJ ot sa3ra,ruocr-*{Wl]"rl } feUt erunssr feu aar 'od olur (,f )Zfo lurod aseq aq1 Eurlelsuerl 'acue11'od o1 sa3ral -uoc Il{ ('d)"rt} ttql 'od - (ob)o6 = ('d)'rt 1aEaal '("d)"Sor+"6 - ("d)"U fg'od - (n)'0 ulelqo en'ud - ("a)uSou6uro14 'rtlaarleadsar'oq pr* od s$urd -deu crqdrouroloq ol (J)J ur slas lceduroc uo fpr.ro;run aS.rarruocr*{ 'rl } prt 'ob = (od)ol eleq e,a{'relncrlred u1 'of Eurddeur crqdrour t}{"}',t1rc1yu19 -oloq e ot (J)J ur slas lceduroa uo ,(puoyun sa3raluoa r-/{"t } te{t erunsss feu aaa'fressacau y acuanbasqns e 3uu1e1 'snq; 'f1rure; l€rurou B sl r?{ T } '(g'g uraroaq,f,) (.f)s,J ursruop papunoq e o1 crqd.rouoloqrq sr (;)g ecurg
Since T(r) is biholomorphic to a bounded domain TB(r) (Theorem 6.6), {In }~=1 is a normal family. Thus, taking a subsequence if necessary, we may assume that {In }~=1 converges uniformly on compact sets in T(r) to a holomorphic mapping 10' In particular, we have 10(Po) = qo· Similarly, {gn }~=1 and { hn } ~= 1 converge uniformly on compact sets in T( r) to holomorphic mappings go and h o, respectively. From gnoln(Pn) = Pn, we obtain go(qo) = Po. By hn(Pn) = gn+l oln(Pn), we get ho(Po) = go(qo) = Po· Thus {hn(po) }~=1 converges to Po. Hence, translating the base point of T(r) into Po, we may assume that {hn[id) }~=1 converges to [id]. For each n, we set hn = [w n ]. with some quasiconformal self-mapping W n of H such that wn rw;;1 = r. Then we have
-JIesIeurloJuo cIse"o "-:::;t,"f t ":i j"; ;o uoEutdd€ru
;; \7"'lft:
l:T
"
'[1loo"n1 = ([pp]).["] ulstqo ar$snql ',Lo1 seEra,ruorI?{ 1-(rloo"o)oLo(rlnouo) } acuanbas aql 'J =l Lt.ra,re roJ ?"ql aes a^{ '(,t)z ol [pl] ot se3re,ruocI;i{ [rloo"o1 1 eturs 'oo pu" 'I 'g go qcea saxg ,loouo leqt qcns (g)lny 3 uo ereq^{
where an E Aut(H) such that a now;;1 fixes each of 0, 1, and 00. Since {[a now;;l] }~=1 converges to [id] in T(r), we see that for every 'Y E r, the sequence {(a n ow;;1 )o'Yo(anow;;1 )-1 }~=1 converges to 'Y. Thus we obtain
166 166
6. Complex 6. Complex Analytic Analytic Theory of of Teichmiiller Spaces Spaces
since { t,2(z) r,,. ;;;,i;":l;"
"i,];J,'.;..,*ition 616), and
Since {tr2 (-y) If E r} is discrete in R (the Corollary to Proposition 6.16), and since every every WnOfow;;-l wno7ou|r belongs belongs to r, f, we we have since have
=
t r 22(w;;-lofOW (uf,ro1ou t r 22(f)' (7), tr n,)) = tr
fI Ee g9
g is every sufficiently sufficiently large large n, where where 9 is the finite subset given in Proposition subset of r l- given for every Hence, Proposition 6.17 6.17. Hence, implies that for every 6.17 implies every sufficiently 6.17. sufficiently large large n, there there exists an an element element 13n AutlH such exists E Aut(H) such that e 0" ) unro1oun -
|ito',to\n,
I e l.
showsthat that 13n belongs to the normalizer normalizer N(r) N(f) of rf in Aut(H), Aut(H), and and [w This shows Bn belongs n]* = [c.r,,]* tfrus every every such such [w fixes the base base point lid) T(l-). [13nk n]* fixes [f"]-. Thus [c.,,]* [fd] of T(r). is easy easy to see see that the isotropy subgroup subgroup of M By the definition, it is od(r) at Mod(f) is isomorphic isomorphic to N(r)1r. N([)lf . On the the other hand, hand, it is is well well known known that N(r)1 lid) N(l-)/f r [id] is is isomorphic isomorphic to the biholomorphic automorphism group group Aut(HI is r) of the Aut@ lf) the closed closed surface Hlr, H f f , and group (see and that that Aut(Hlr) Aut(H/f) is aa finite group (see the following is Riemann surface 1). Therefore, Therefore, {[w should be be aa finite set. Remark 1). set. This contradicts that n ]* };;<'=l { [ar,,]* ][1 should consists of infinite elements. elements. {{ f" fn }~=l 0D }T=t consists -1.Every element element a o E N(f) induces Remark 1. induces aa biholomorphic automorphism [a] € N(r) [o] = [a(z)] ot Hlr Hll defined defined by [a]([z)) for any any [z] H/f .ItIt is is easy easy to see of seethat the the [a]([z]) = [o(z)] for [z]eE Hlr. r* [a] is aa homomorphism of N(r) mapping a f--o> whose N(l-) onto onto Aut(HIr) whose kernel Aut(H/f) kernel is is [a] is l'. Thus N(r)1r N (f) I f is is isomorphic isomorphi c to Aut(HIr). Aut(H / f). r. proved that Schwarz proved that Aut(HIr) Aut(H/i') is group. Further, H. A. Schwarz is aa finite group. F\tther, A. Hurwitz Hurwitz showed that the number of Aut(Hlr) greater than 84(g showed Aut(Hlf) is is not greater 84(9 - 1). 1). For these these facts, we we refer p.242; facts, refer to Farkas Farkas and and Kra p. 242; Siegel [A-98], Vo1.2, p. 91; Tsuji Kra [A-28], Siegel Vol.2, 91; Tsuji [A-28], [A-98], [A-108], 496; and and Imayoshi Imayoshi [104]. [A-108], p. 496; [104]. proof of Theorem 6.18, Remark 2. 2. In the proof we have 6.18, we have used used the fact that T(r) "(.1-) is biholomorphic to a bounded bounded domain. domain. However, we can However, we can also also verify Theorem 6.18 6.18 from Theorem 6.14, 6.14, i.e., i.e., the fact that [w]* respect to [r.r]. is an isometry with respect the Teichmiiller distance distance on T(r) "(l-) for all [w] E Mod(r) (see Gardiner [A-34], Mod(l-) (see e [w] [A-34], §8.5). Moreover, by using using a theorem theoremof of Nielsen Nielsen on topology of surfaces, surfaces, we we can can $8.5). Moreover, show directly that that M od(R) od,(R) induces induces a discrete show discrete subgroup subgroup of the biholomorphic automorphism group of T(R). 7(,t). The proof of this kind is in Nag [A-80], $7.1 of [A-80], §7.1 Chapter 2. 2.
we have have the following fundamental theorem on the moduli moduli space Mg. Now, we spaceMn. Theorem moduli space space Mo M g of closed Riemann surfaces surfaces of genus 9g Theorem 6.19. 6.L9. The The moduli closedRiemann of genus (2 compler analytic (~ 2) has has a norrnal normal complex space strtclure structure of dimension analytic space dimension 3g 3S -- 3. This theorem is an immediate consequence consequenceof a theorem due due to H. Cartan Cartan given [48]. Namely, for a given discrete subgroup G of automorNamely, discrete the biholomorphic [48]. phism group of D in en, DIG has has a of a bounded domain D Cn, the quotient space space DIG
L9l
sruaroaqJ s,uapfog'p'g
6.4. Royden's Theorems
167
'7 tueroeql'[6lt] pw '[911] qcneg eag 'slurod .reln3urs setl d11en1ce (Z 7 0) 674Jacedsrlnpou drarra1eq1uldou{ $ lI 'g raldeq3 '[gI-V] dgng ol reJar am 'tueroaql s(uelJeC .crqd.rouoloq sr Jo U$ ;o;oord e rog CIO - O :1, uorlceto.rdeql teql qcns arnl)nrls aceds cr1{1euexalduror leurrou
normal complex analytic space structure such that the projection 7r: D --+ D /G is holomorphic. For a proof of Cartan's theorem, we refer to Baily [A-lO], §2 of Chapter 5. It is known that every moduli space M g (g ~ 2) actually has singular points. See Rauch [178], and [179], Theorem 4.
stuoroaql
s(uap^oll
?'g
6.4 Royden's Theorems
'[gzt] '[gg] '[?t-V] ntx pue €rx pue a1.reg .raurpreg'pg1] uep,(og aas 'sgelap 'llnsar 'drqsuorlela.rSurr'ro11o; rod srq ureldxa fger.rq eql e^eq II€qs eM (;)g eceds rallnurqcrel er{} Jo ((l),Dl"V dnor3 ursrqdrouro}n€ crqd.rotuoloqrq aqt pu€ (,ilpoW dnorE relnpou rallntuqclel eql leql parord uapfog .1 .11
H. L. Royden proved that the Teichmiiller modular group M od(r) and the biholomorphic automorphism group Aut(T(r)) of the Teichmiiller space T(r) have the following relationship. We shall briefly explain his result. For details, see Royden [184], Gardiner [A-34], Earle and Kra [65], and Kra [123]. (uapfo11)'0e'9
uraroaql
Theorem 6.20. (Royden)
(g = 2) (g > 2).
( t ) p o lw. e z/Q)p owJ = \\J) J) ? n v
'k
Mod(r)/Z Aut(T(r)) ~ { 2 Mod(r)
We define a homomorphism i. of Mod(r) to Aut(T(r)) by i.([w]) = [w]. for every [w] E M od( r). For g > 2, it is known that there exists a closed Riemann surface R with Aut(R) = {id} (see Griffiths and Harris [A-39], p.276; Lewittes [130], and Rauch [179], Corollary to Proposition 7). Thus the kernel of i. is equal to {[id]}, and hence i. is injective provided that g > 2. On the other hand, any closed Riemann surface R of genus two has a biholomorphic automorphism of order two, since R is hyperelliptic, that is, R is represented by a two-sheeted branched covering surface over C. From this fact, it follows that the kernel of i. is isomorphic to Z2 provided that g = 2 (see Nag [A-80], pp. 125-127). The surjectivity of i. is proved by the following theorems (Theorems 6.21 and 6.22) which are also due to Royden. To describe Royden's theorems, we introduce the Kobayashi distance, which is a generalization of the Poincare distance p on the unit disc L1 to a general complex manifold. Let M be a complex manifold. Given two points P, q E M, we set
'W 'd ) b slurod ollr1ue^l9 'ploJlueur xalduroc e eq W pj les e^r 'ploJrueu xalduroc preua3 e oI V ,srp lrun eql uo d acuelsrp eJe?urod eql Jo uorlezrleraua3 e sr qcrqan'acuelsp rqser(eqox aql ecnporlur a/rr'sureJoeq}s,uap,tog eqrmsep oJ 'uapfog ol anp osl€ eJ€ qcrq,rl (66'9 pue *? eql f,q pe,rord sl ,tlurlcafrns eqa IZ'g $ualoeq;) suraroaql Eur,rlo11o; Jo '(tZt-gZt'dd '[OS-V] 8ep aes) - 6 e7 peprno.rd ol cr.rqdtoruosr sr +r'q1 Z 'lce; srql uord 'C ralo +r;o eceJrns 3ur.re.,roc paqcu€rq ll 1aura1aql l€ql s^r\^.olloJ palaaqs-orlrle ,{q paluaserda.rsr U 'sl leqt 'cr1-dr11a.raddq sl ZI acurs ,orll1 .rap.ro 3o rusrqdrouolne rrqd.rouroloqlq e seq oar? snua3 ;o Ur er€Jrns uueruarg pasols ,{ue'pueq raq}o eq? uO'e t }eql papuo.rd earlcalursr *z ecuaq puts ,{ [pp]] of < '(1 uorlrsodor6 o1 frelo.roo ,[6lI] q?n€U pue ,[0gI] *? lenba sr Jo leura{ aq} snql sapr/{arl :gZ,Z'd'[Og-V] srrreg pue sqtgrr5 aas) {pz } = (A)?nV qll,!\ gr ereJrns uueruerg pesop e slstxe eraql l€rll u^{oDI sl ll'e 4 f .rog '(,DpoW ) [o] ,(.re,re roJ +[rn]= ([r]).1 fq ((.7)g)nv ot (J)poW;o +r tusrqd.roruotuoq€ auuep eM lur
dk(p,q) = infp(a,b), '(q'o)d
- (b'd)\p
'u 1nd arrr .ra3alur arlrlrsod ,tue rog 'b = (ilt pue d - (r)/ qtp W - V :rf Surddeur crqdrourolotl e slsrxa eJaq? t"ql qcns y ) g'o slurod IF ra^o ue{el fl rumuuul eq? alaq/{
where the infimum is taken over all points a, b E L1 such that there exists a p and f(b) q. For any positive holomorphic mapping f: L1 --+ M with f(a) integer n, we put
=
=
n
r 1t4,r1d)\pT
r", = (b,Q n{p d'M(p,q)
= infE dk(Pi-1,p;), I=!
i=l
pued - odr{ly*w > ,d'"''od,slurod IIera^o*orrt;tffifdtJ,i;';#
where the infimum is taken over all points Po, ... ,Pn E M with Po = P and Pn = q. It is clear that
'd W ) b
' (b 'd)n{,p (b 'a) } ,l{,p
d'J/ 1 (p,q) ~ dM(p,q),
p,q E M
6. 6. Complex Complex Analytic Analytic Theory Theo.ry of of Teichmiller Teichmiiller Spaces Spaces
168 168
for all all positive positive integers integers n. n. The The Kobagashi Kobayashi pseudo-distance pseudo-distance d7,,1 dM on on M M is is defined defined for by by
du(p,il = "1!g{u@,q). is an an ea.sy easy matter matter to to show show lhat that dva: dM: M M xx M M -* -+ R R is is continuous continuous and and satsatItIt is and d1,a(q,p), ilu(p,d pseudo'distance: dru(p,C) 0, > the axioms axioms for for pseudo-distance: dM(p, q) ~ 0, dM(P, q) = dM(q,p), isfies the isfies dM(p,q) *+ du(q,r) dM(q,r) 2~ d,a(p,r) dM(p,r) for for all all P,Q,r p,q,r €E M. M. ItIt is is said said that that d74 d M is is non' nondM(p,C) always g. du is not p that = Note to equivalent if dM(p, q) = 0 is equivalent to p = q. Note that d is not always degenerate 0 is degenerateif d|,a(p,C) M nondegenerate. For For example, example, ifif M M == C, C, then then obviously obviously du dM === o.If O. If dru dM is is nondenondenondegenerate. a hyperbolic is called M on M generate, distance d is called the Kobayashi distance on M, and M is called a hyperbolic Kobayashi generate, dyM is called , complex manifold. A hyperbolic hyperbolic complex complex manifold manifold M M is is said said to to be be complete complete if. if itit manifolil. A compler is complete with with respect to to d1'a. dM . distance decreasing The most important important property property of of dru dM is the distance decreasing property,the property, the The be two proof of of which which is trivial trivial by by the the definition: definition: let let M M and N N two complex complex manifolds manifolds proof let ff:: M M --+ N N be a holomorphic holomorphic mapping. mapping. Then Then itit follows that that and let
du(p,c)Z dv(f(p),fkD, p,qe M. In particular, particular, every biholomorphic biholomorphic mapping mapping of of a hyperbolic hyperbolic complex complex manifold manifold In M is is an isometry with with respect respect to dya dM.' M space of of a Fuchsian Theorem Fuchsian be the the Teichmiiller Teichmaller space (Royden) Let T(r) rQ) be 6.2L. (Royden) Theorem 6.21. the Teichmiiller genus (22).Then model Riemann surface surface of genus cg (~ 2). Then the Teichmiiller closedRiemann I of a closed rnodel r dr1). dislance dT(T)' distance Kobayashi distance the Kobayashi equalto the iI on T(r) T(f) is equal dislanced proof' Proof outline). We give a sketch of its proof. Proof (an outline). = d. fact, d. In fact, df,.y = = d, show that dhT) sufficient to show prove dT(r) d, it is is sufficient In order to prove dre) = inequality' Thus, by the definition = d, if dhr) satisfies the triangle inequality. d|1"; satisfies d, then dhr) dl(r) = = d. d. d71;; = hence dT(r) n, and and hence integer n, any positive integer we d|,r, for any we have have dT(r) 4
di(i4,[r^]) : dt (lidl,lw^l), [r^] e T(f') lJ ] Ee T(r). the relations relations then the holds,then for equalityholds, if this this equality In fact, fact, if "(l-). In for any any [w [trl,] 1]), lJ ], [W V ]) = = dlJ d([w ([id] , [W V o( WIJ)-l]), dr(1i4,[to'o(up it(lrul,[r']) )V V o( top) I ] ) 4(r)([w ], [W , [W o(wlJ)-l]) di
=
lJ ], [W V ]) = dhr)([w lJ ], [W V ]) for lJ ], [W V ] EeTQ). for all all [w imply T(r). di(1.'1,[to"]) that d([w d(I.ul,[r']) implythat [tue],lw') A lJ arerewitten rewitten equality aboveequality are in the the above To r , dlJ , and andwu) in the notation, notation,lp,dp, To simplify simplifythe lJ that as showthat d, and , respectively. Then, weshall shallshow Then,we respectively. andwroP, f,d, asr,
dl
.p =p .(,f teq? u^,\oqssr tr uaql )Z ut b pue d Eururolp sqled qloous esrmacard1e ier.o ua)Fl sl runtugur eql ereq^{
where the infimum is taken over all piecewise smooth paths C joining p and q in T(r). Then it is shown that d = d.
d(p, q) = inf L('Y), c
,@)tfri = (b,d)p '(,t)l>
For any two points p, q E T(r), we put 1nd aal
D'd slurod oir,r1fue .rog
of '?p((t),c'G)c),t = O)t
L(C) =
i
F(C(t),C'(t))dt.
1
1J
where F II is a fundamental domain for r ll in H, and the supremum is taken over all Y' E A 2 (H, r ll ) with 1IY'1I1 = 1. It is verified that F is of class C 1 on the tangent bundle of T(r) except at points of the zero section. (See also Earle [60].) It is also known that F is not of class Coo. (ii) For an arbitrary piecewise smooth path C: [0,1] --+ T(r), we set
,C qled qlootus asrarecardf.rerlrqre ue .rog (rr) las e^\'("1)Z *[t'O] 'ooC sstspJo lou sI d teql uarou{ oEs sr tt ('[Og] alr"f, osle aeg) 'uorlras oraz eql 3o slurod 1e ldacxa (.f); fo epunq luaEuel eql uo 1C sselt Jo sl ,t teql paUIreAsl lI 'I = Illolll q1,r ("J'H)zV 3 ol ge .rarro ue{el sr urmuardns eql pu" 'H u\ nJ roJ ureuop leluaurcpunJ " sl n,{ erar{^{
,loo*o (z),-(^q"lrlnl| *1"" e)d>
= (v,[,.]),4 [ [ "rldns6
" ' | " ( n m t 1 r r V | I 'p ?rJlalu Jallnuq?ratr aql uorJ pacnpur 1eq1 pa,rord q lI (.f)Z f" elpunq 1ue3ue1eql uo f,Irlatu leursalrugul aql se pareprsuoc sl 3' slql
This F is considered as the infinitesimal metric on the tangent bundle of T(r) induced from the Teichmiiller metric d. It is proved that
ll lim d([w ], [Wll+t.~]) . t-O,t>o t 3
G;WW
o
F([wll], A) =
This is the most crucial part of the proof due to Royden. We briefly explain the proof of this inequality. For details, see Royden [184], and Gardiner [A-34], Chapter 7. (i) For any point [Wll] E T(r) and A E B(H, r), we set
tas e,$'(,1'tt)g ) y pue (.f),f f [,ar] lurod due rog (r) '1 raldeq3 '[ru-V] reurpre9 pue 'F8I] uap{og aas 's1re1eprog 'flqenbaul qq};o;oord aq? urc1dxa i(gerrq e11 'uapfog ol anp ;oold aqt go 1rcd l"rcn.rc lsoru eqt q sHI
' (0,r,> [an]' (lr*l'Wpl)p ? ([n']'W'4)Q)1p a,rord o1 paau aa,r'fleurg
Finally, we need to prove
'Q),t)
'(lr4'Wtl)p j ([n'] 'WtDQ)*p
la^l
a^eq era 'ecueH
Hence, we have
sor- (r'g)d ; (lr*J'Wp))op
~ p(O, k) = log ~ ~:.
ffi
dhr)([id], [wI'])
On the other hand, setting 1''1" = r<,e/IY'I, we see that the mapping fcp: ..:1 --+ T(r) given by fcp(r) = [w!Jr] is aholomorphic mapping with fcp(O) = [id], fcp(k) = [w!J]. Thus we obtain
= QD^!'W!l=(o),/ qq^ Burddeur crqd.rouroloqe sr[,nm]=*[j[it;]* 1-V:d/
iY;
- rrl Eurllas'pueq reqlo aql uO
Eurddeureql l"ql aes e{'ldtl/$t
'p.Pl)P = ([nrn] 3o1
= log ~ ~:. ffi
d([id], [wI'])
spled (6'9 ureroaq;) ueroeql ssauanbruns.railnuqtrel uerlJ, 'I > { ; 0 '{ euos roJ Vl/{q - orl qt.r^ [,rm] = [",rrn] ]"qr qans (.7'H)zV I d luaurale ue sl$xe aleql '(91'g ura.roaql) ruaroaql ecualsxe s(rallnuqcral ruoq 's^rolloJ se
as follows. From Teichmiiller's existence theorem (Theorem 5.15), there exists an element Y' E A 2(H, r) such that [w!J o ] [wI'] with 1'0 k<,e/IY'I for some k, 0 ~ k < 1. Then Teichmiiller's uniqueness theorem (Theorem 5.9) yields
=
=
169
suaroaql s.ueP^o'u't'9
6.4. Royden's Theorems
69I
6. 6. Complex Complex Analytic Analytic Theory Theory of of Teichmiiller Teichmiiller Spaces Spaces
170 170
(iii) (iii) ItIt is is verified verified that that every every holomorphic holomorphic mapping mapping ff:: ALl ---+ ?(l-) T( r) satisfies satisfies
F(f (r),f'(,)) S
:W
r e a.
this inequality inequality is essential, essential, though we shall omit omit the details. To prove this To (iv) arbitrary holomorphic mapping ff:: A Ll ----+ "(f) T(r) with with f(") f(a) = (iv) Take an arbitrary points (ii)_ and (iii) imply that a,b A. Then rid] f(b) [wI'] some a, bELl. Then (ii) (iii) imply that (O) for some and e f [fd] - [rop] d([idj, [wl'D = d(lid),[ru]) d([id] , [wl'D S ~ p@,b). p(a, b). By By the definition definition of of d|r,rr, 4(r)' we get d(lidl,lwpfi
=
=:
d(lidl,fwp] d([id] , [wl'D 5 ~ dlr.l([id], 4(r)([idj, [ru]), [wI'D, fwp) [wI'] EeTQ). T(r). This completes completes the proof proof of of Theorem 6.21. 6.21. This
tr 0
6.21 asserts asserts that that every element element ff eE Aut(TQ)) Aut(T(r)) is an isometry Now, Theorem 6.21 with respect respect to to the Teichmiiller distance distance on ?(f). T(r). with we set q = "(f), every p = l.ul Take an element E ,+".t1f1f)). A~t(T(r)). For every [wI'] €E T(r), we set element ff e V]. The derivative f of = p "f at f(p) [W fat is a complex linear isometry of Tp(T(r)) (p) f f f Q(7(f )) [tr']. and with respect respect to the infinitesimal where Tp(T(r)) and infinitesimal metric F, where with to Tq(T(r)) fo("(f)) Q(?(f)) q, respectively. of "(,l-) at p and q, Tq(T(r)) respectively. spacesofT(r) denote the holomorphic tangent spaces Tq(I:(f)) denote canonically isomorphic to Here we use use the fact that that the dual space is canonically fpgg)) spaceof Tp(T(r)) Here lor rl', lP , aa fact which the space holomorphic automorphic forms on H for spaceA Az(H,l.p) 2 (H, rl') of hoIomorphic Proposition.T.8). Similarly, the is 7.8). Similarly, (Theorem 7.5 and Proposition proven in the next chapter chapter (Theorem 7.5 and is proven complex Hence,/j induces inducesaa complex dual is ,42(11, f'). Hence, is identified identified with A spaceof Tq(T(r)) foQQ\ dual space 2 (H, rV). infinitesimal respect (H, rl') to A (H, rV) with respect to the infinitesimal linear Az(H,f') o of A Az(H,1"t) linear isometry isometry a 2 2 cometric induced by the Teichmiiller distance d. distance d. Here we know the following fact. fact. we Here
=
=
lo A2(H,lp) Theorem linear isometry isomelrg of A (Royd,en) Let be a complex complexlinear Let a be Theorem 6.22. (Royden) 2 (H, rl') to lhe Teichmiiller Teichm'iiller A inducedby by the comelric induced to the the infinitesimal infinitesimal cometric with respect respeclto Az(H, f') with 2 (H, rV) v ---+ and htFll' HllP d. Then there exists a biholomorphic mapping h: H/ r H/ rl' and distance mapping biholomorphic distanced" Then lhere edsts ' = (h')2 caoh c with lei = 1 such that a(tp) = ctpoh . (h')2 for all tp a complex number that a(9) 1 such € compler number_c with lcl for 9 E A (H, rl'), where h is a lift of h to H. to where h is li,ft Az(H,lP), 2 and Gardiner [A-34], For we refer refer to Royden theorem, we Royden [184], For aa proof of this theorem, [A-34], [184], and Theorem 5 in Chapter 9. Theorem Chapter 9. of i•. f.. of the the surjectivity surjectivity of Proof of the i•. Now, we return to aa proof of o/i*. Now, we the surjectivity surjectiaity of and ,Aut("(f)) for every every f/ E From previous observation Theorem 6.22, observation and and Theorem 6.22, for e Aut(T(r)) and Frorn the previous = Mod(f) with [wp].(p) every exists an an element element [w there exists fQ) there every point p E p] Ee Mod(r) e T(r) [c..'o]-(p)= ["0] p. a of ] f(p). We need to show that [w can be chosen independently of p. Fix a point chosen independently show p can be /(p). W" need [c.,o] domain bounded domain qq Ee T(r) "(l-) is is biholomorphic to aa bounded TQ) arbitrarily. arbitrarily. Recall Recall that T(r) and (Theorem 5.4), 5.4), and (Theorem is complete complete(Theorem the Teichmiiller distancedd is that the Teichmiiller distance (Theorem 6.6), 6.6), that we (Theorem Then "(l-) 6.18). that Mod(r) acts properly discontinuously on T(r) (Theorem 6.18). Then we properly on discontinuously that Mod(f) acts with "(i-) 26 for any can find a positive constant fJ so that d(p, [w]. (p)) > 2fJ for any p E T( r) with d(p,[r].(p)) > € can find a positive constant 6 so that ( fJ, we have have Thus we d(q,p) with [w].(p):I Mod(f) with for any any [w] d(q,p) < 6, and and for ["]-(p) lp.p. Thus luleE Mod(r)
'([69] uralsdg 3c) crdolosr are feql;r fluo pue;r crdolouroq ers eceJJnspesop e yo s3urddetu o,lr1 eql ll€car osl€ aA '*u fq l-relouep pu€ 'ar sr a?eJ }eql l?eJ u^rou{-lla^{ ,{11ecrsse1c -rns Surr(1.repunasoqAraceJrns uuetuerg e xg e^\ '.raq1.rng'Surarasard-uolleluauo pue crqd.rouroauoq sr Eurddeur fra,ra 1eq1 pu€ '(Z ?) 6 snueEJo er€Jrns ("lq*lf -ua.ragrp) pesolc peluerro rre q U ?eql etunsse sfeule aa,r 'uorlcas sH? uI '([tSZ] uolsrnql pu€ gg'g ruaroeqtr aes) ace;rns pesop e;o s3urddeur -JIes rueroeql uorlecurssel, s(uolsJnr.{tr-uaslarNel€q er* 'acuenbesuoc e sV Jo '[rzt]"rx puts'[28-V] uaslerN'[Ot-V] ralralg pue uoss'eCot raJerosle e11\'[OZ-V] nr€ueod pue qoequapnel 'yq1egaas 'sluatuleerl IInJ rog 'adf1 elrug {leerldpue Jo eceJrns(pasolc fl.ressaceu 1ou) e;o ese) eql ur paraprsuocoqe sr uorlersrsselc e qcns '6 snua3 Jo e?"Jrns pasoll e go dnor3 sselc Surdde- "qt Jo sluetuele Jo uollc€ aq1 'f11uap,rrnbaro '(Z < 5) t; ;o suorleruroJsueJ?relnporu railnuqcretr '[gg] srag Surr',ro11o;'uorlcas qq] uI Jo uorlecgrssel?Jelnurs " ssnc$p II€qs eAr 'rqoqered pue 'crloqradfq 'cr1dq1apelle) ere qrrq^,r 'sad,t1eerql olur raldeqC ut pegrsselcueeq elerl suorleuroJsuerl snrqotr{ 6 IeeU
Real Mobius transformations have been classified in Chapter 2 into three types, which are called elliptic, hyperbolic, and parabolic. In this section, following Bers [38], we shall discuss a similar classification of Teichmiiller modular transformations of Tg (g ~ 2), or equivalently, the action of elements of the mapping class group of a closed surface of genus g. Such a classification is also considered in the case of a (not necessarily closed) surface of analytically finite type. For full treatments, see Fathi, Laudenbach and Poenaru [A-29]. We also refer to Casson and Bleiler [A-19], Nielsen [A-87], and Kra [121]. As a consequence, we have Nielsen-Thurston's classification theorem of selfmappings of a closed surface (see Theorem 6.35 and Thurston [234]). In this section, we always assume that R is an oriented closed (differentiable) surface of genus 9 (~ 2), and that every mapping is homeomorphic and orientation-preserving. Further, we fix a Riemann surface whose underlying surface is R, and denote it by R•. We also recall the classically well-known fact that two mappings of a closed surface are homotopic if and only if they are isotopic (cf. Epstein [69]).
6.5. Classification of Teichmiiller Modular Transformations rBInPotr I rallnuqr.ral
'p1otruoruuNals D s? (ilJ
suorlBrrrJoJsue.I,I, '9'9 Jo uorl€rgrss€lc
acods.ralputp?eJ eqJ 'e7'g rrraroaql
Theorem 6.23. The Teichmii/ler space T(r) is a Stein manifold. 'ueJoaql eql e^Bq e,.l\aJueg Surr'ro11o; ',,tqdrouroloq '(trtt 'A '67 uraroeq; Jo ursuop e s1 (.7)ag leql luep^rnba sr srql '[rt-V] srag) ura.roeq]s,e{O rg '(1, .ra1deq3ut ?'t tuaroaql'[tq-Y] rqsefeqoy eas) xa,ruocopnasd sl (.f)s't snql 'ecu€lsrp rqse{eqoy eq} o1 lcadsa.r q1r,rl elelduroc sl (J)sJ lerll epnlcuoc airn'16'9 pue l'g $uaroeqtr uroq 'fleurg
Finally, from Theorems 5.4 and 6.21, we conclude that TB(r) is complete with respect to the Kobayashi distance. Thus TB(r) is pseudoconvex (see Kobayashi [A-54], Theorem 3.4 in Chapter V). By Oka's theorem (Bers [A-14], Theorem 40, p. 134), this is equivalent that TB(r) is a domain of holomorphy. Hence we have the following theorem.
'02'g ureroeq; pa,rord el€q e,lr snqJ'(J)J uo rf - *['o] 'pelleuuoc s-r 1eq1 sarldrur suorlrunJ crqdrouroloq roJ ruaroeql ssauanbrun aql (.i,)g acurg 'g > (d'b)p qlt,r (J)J f d 1p .rog(d)/ = (d)'fdnJ - (d).[to] ''e'1 'il = (d),ldnlor'[to] 'ecua11'g > (d'b)p qll,r (J)J ) d 1e .roy ]€qt s.trolloJ1r
for all p E T(r) with d(q,p) < 6. Hence, it follows that [w q];l o [w p].(p) = p, i.e., [wq].(p) = [wp].(p) = f(p) for all p E T(r) with d(q,p) < 8. Since T(r) is connected, the uniqueness theorem for holomorphic functions implies that [w q ]. = f on T(r). Thus we have proved Theorem 6.20.
d(p, [w q];l o [w p].(p)) = d([wq].(p), [wp].(p)) ~ d([wq].(p), [wq].(q)) + d([wq].(q), [wp].(p)) = d(p, q) + d(f(q), f(p)) = 2d(q,p) < 26
9z > @'b)pz= (@)l'(l)t)p * (b'a)p((d)- [o"4'(D).[or])p + ((r) -[,r'l]'(d),lor))p ] ( (d). [dr]' (d).lorl)p = ((d). [do]o,lfb ol' a\p
171
TLT
6.5. Classification of Teichmiiller Modular Transformations suorl"urroJsuPrJ r"lnPoIAI re[nuqf,reJ Jo uorl?f,ursselc'9'9
6. Complex Complex Analytic Analytic Theory Theory of of Teichmfiller Teichmiiller Spaces Spaces 6.
172 172
6.5.1. f\rndarnental FundaIIlental Extremal Extremal Problems Problems 6.5.1. We can can deal deal with with the the classification classification of of real real Mobius Mobius tra.nsformations transformations relating relating to to We an extremal extremal problem problem on on hyperbolic hyperbolic translation translation length. length. More More precisely, precisely, for for every every an PSL(2, R), set set element 1/ eE PSL(2,R), element
a(t) a(/) = i\f_nQ,tk)), inf p(z,/(z», zEH
H is the the upper upper half-plane, half-plane, and pp is the the Poincard Poincare dista.nce distance on ly'. H. Then Then real where .E[
Mobius transformations transformations 7/ are are classified classified as as follows: follows: Mobius elliptic ifif o(7) a(/) == 0 and and there there exists exists a point zt z-y €E I/ H with a(t) a(/) = = (i) 7/ is elliptic of p(z-y, /(z-y», i.e., z-y fixed point /, z, is a fixed i'e', Point 7, PQt,l@t)), / is parabolic parabolic ifif o(7) a(f) = 0 but there there exist exist no points points z,l z-y €E I/ H with a(t) a(/) = (ii) 7 p(z-y,/(z-y», and p(zr,yQr)), ar.d point z, (iii) 7/ is hyperbolic ifif a(7) a(/) >> 0 (and then, there always always exists a point z-y €E H H (iii) (zr,yQt))). with a(/) w ith o ( 7 ) = pp(z-y,/(z-y))).
=
=
=
Teichmiiller modular modular transformations, transformations, we consider the following following Now, for Teichmiiller similar extremal problem. Bers' extremal extremal problem problem for for Teichmiiller TeichmUller modular modular transformations. transformations. Bers' we set set ?(R-)' we For every X of T(R.), every Teichmiiller modular transformation X
a(x)== a(x)
d(p,x(d)' inf d(p,X(p», o.#it".,
pET(R.)
px E T{n.) € T(R.) where ?(.R-). Then find a point Px distance on T(R.). where d is is the Teichmiiller distance such such that that d ( p * , xX(Px»' @)). a ( x ) = d(px, a(x)
=
point- We y'minimal point. p* aa x-minimal We we call Px p, E If T(R*), then we there exists exists aa solution Px e T(R.), If there classify Teichmiiller modular transformations X into four types: Teichmiiller modular transformations 1 be should be (i) X exists aa x-minimal and there there exists o(x) = 0 and is elliptic if a(x) x-minimal point (which should 1 is aa fixed X), ofX), fixed point of points, exist no x-minimal (ii) X there exist parabolicif a(x) = 0 but there is parabolic x-minimal points, 1 is point, and and ax-minimal (iii) is hyperbolic if a(x) > 0 and there exists a x-minimal point, there exists and (iii) X if o(1) 0 hyperbolic ) is X points. no exist (iv) is pseudo-hyperbolic if a(x) > 0 but there exist no x-minimal points. but there pseudo-hyperbolic if o(1) 0 (iu) X is 1-minimal X strucof the the complex complex strucchoiceof Note of the the choice is independent independent of classificationis this classification Note that that this T(R-)' spaceT(R.). ture the Teichmiiller Teichmiiller space define the is used used to to define which is on R .R which ture on of (see§1.4.1 by [R fd] (see Recall is represented representedby point [S, "(n-) is q , id] every point that every € T(R.) $1.4.1of Recall that [Ro, /] E [,S,f] structure with aa complex complex structure qa Chapter equipped with surfaceequipped q is where R is aa Riemann Riemann surface Ro 1), where chapter 1), f dl is is simply simply Hereafter, [R on onto R of R. .R*onto fto. q • Hereafter, q , id] mapping of the identity identity mapping rd is is the and id on R, fi, and lRo, by is represented representedby [fl. written Every Teichmiiller transformation is modular transformation Teichmiiller modular * [q]. written as [f]* ["].Every for (see§3.1 of Chapter 6). Chapter 6). of R .R(see self-mapping f"f of for aa self-mapping $3.1of version the following following version points, we considerthe Now, we may may consider to investigate investigate x-minimal Now, to x-minimal points, of this extremal problem. of this extremal problem. complex For every every complex Bers' structures. For problem for complex structures. for complex extremal problem Berst extremal self-mapping us a of R, consideringf.f as a self-mapping structure R, considering every self-mapping self-mapping ff of on R .Rand and every structure qo on
Proof. If X has a fixed point, then there is a complex structure 17 on R and a self-mapping f of R inducing X such that f is a biholomorphic automorphism
ursrqdroruolne atqdrouroloqlq e sl / ?Bql qcns X Surcnpur A Jo { Surddeur-g1as e pue Ar uo , ernl?nr1s xalduroe e sr ereql uaql '1urod pexg e seq x JI 'loo.t4
'ctpoutail s? t! l? fr.1uopuo 11 cpTdglast X uorTouttotsuo.tT rnlnpout reIInurUcNU v 'g7'g tuarooq;,
Theorem 6.25. A Teichmiiller modular transformation X is elliptic if and only if it is periodic.
' u^,i,oul-lla^,rf gecrs -s"lt sr uaroaql Sura'ro11o; aq1 'suorleruroJsuerl relnpour rallnulqereJ cr1d11erog
For elliptic Teichmiiller modular transformations, the following theorem is classically well-known. 6.5.2. Elliptic and Hyperbolic Transformations suorleruroJsrrBr,l cnoqradfll
o
tr
pue arldwlg'Z'g'g
'uorlresse aqt ePnleuol ein 'fFe[urrs ua{oqs st asra^uoc eqJ Pue '1eu1u1tu-*[rf]"l oa'acue11
Hence, Po is [f].-minimal. The converse is shown similarly, and we conclude the assertion.
.((td).[/]'rd)p] ((od).vl,od)p d(po, [f]. (Po))
~
d(P1, (f].(pt)).
Since [fl. is an isometry of T(R.) with respect to the Teichmiiller distance, we have
a^"q aal'acuelsrp rellnurqrral aql ol q1/rr (-U)Jgo frleuosr ue sr *[3f] ecurg laadser '(( rd), j[/]' od)p td)p ((od), :[/]' > o1 luap,rmba sl (UI'g) flqenbaur'I'e$ u! (,A)l uo rf go uortre erllJo uoltrugep eqt,{q ueqA 'flaarlcedsar'Io pue o o1 Surpuodsarroc (.U),2 ur slurod eql aq Id pue od p.I
d(po, [f];l(pO)) ~ d(p1' [f];l(pt)).
Let Po and P1 be the points in T( R.) corresponding to 17 and 171, respectively. Then by the definition of the action of f on T(R.) in §3.1, inequality (6.12) is equivalent to
(zrg)
(6.12)
'(l)'"x ) Pl)"x
eler{ ein 'g uo Io arnlcnrls xelduroc i(re,re pue / o1 ordolouroq U Jo V Surddeur-g1as.{rana.ro;'uorlrugep eql ,ig '(6'9 ruaroeqJ lc) ? aceJrnsuueuerg aqt uo / o1 ordolouroq (Surddeur lerueJlxa anbrun aql ''a'r) Surddeur reilnuqrral aql eq oI p1 'leununu-;| sru arnlf,nrls xeldruoc e l€rlt asoddng 'loo.t4
Proof. Suppose that a complex structure 17 is f-minimal. Let fo be the Teichmiiller mapping (i.e., the unique extremal mapping) homotopic to f on the Riemann surface Ru (cr. Theorem 5.9). By the definition, for every self-mapping It of R homotopic to f and every complex structure 171 on R, we have 'lorututra-'fl) st o o7 |utpuodseuo? ("A)J ) [o] Tutod aq1lt fi1uopuo tt louttutul -l s! o ernl?nrls xaldutoc o'A D rof, '?Z.g uolllsodo.r4 lo t 6utdtlou.t-11?s
Proposition 6.24. For a self-mapping f of R, a complex structure 17 is fminimal if and only if the point [17] E T( R.) corresponding to 17 is [fl. -minimal.
'uol?resse Surr*o11o;aql a^"q e,rl ueqJ :(6'9 ureroaqJ Jc) ooy * o"A , o1 ardolouroq eJe qorq^,rooy * ooq :rt s3urddetu t leur.ro;uocrsenb ge ;o flurey aql ur Surddeur leueJlxe anbrun aq1 ''a'r 'Surddeur rellnuq?rel e q o,U * ooU:o/ terl? palou $ ?I'o"U a?eJrnsuueruarll arll Jo |ut,dilpru -t1aspua.tTra fi1a7n1osqo ue org * ooy:o/ pue ernllnrls talihuoc lou.uutut-t ue 0p IIec e,rl uaql(paqr.rcsap s" (0/'0o) r-red e 'uor1n1os" slstxa areql JI '{ ot ctdolouroq A p rl Surddeu-gas f.rarla pue gr uo r, ernlcn.rls xalduroc {.rerr.a.ro;
for every complex structure 171 on R and every self-mapping II of R homotopic to f. If there exists a solution, a pair (170'/0) as described, then we call 170 an f-minimal complex structure and fo: RUG -. RUG an absolutely extremal selfmapping of the Riemann surface RUG' It is noted that fo: RUG -. RUG is a Teichmiiller mapping, i.e., the unique extremal mapping in the family of all quasiconformal mappings II : RUG -. RUG which are homotopic to f: RUG -. RUG (cf. Theorem 5.9)~ Then we have the following assertion.
(l)'"x > (t)'"x l€ql r{cns / o1 crdolotuorl U Jo o/ Eurddeur-;lase pue U uo 0, ernlcnrls xaldtuoc € pug uaqJ 'leuJoJuocrssnb aal 'ara11 sr * = 1nd lou U)"X / lt '/ go uotlelellp ',U ec€Jrns uu€urenl aq} I€rulxeur eW $)'>I {q elouap ar\{ Jo
of the Riemann surface R u , we denote by I
=
173
t/I
6.5. Classification of Teichmiiller Modular Transformations
suorl" ruroJsu"rJ r"ln PoI,\l rallnurqf,ral Jo uorl"f, ursselc' 9' 9
174 t74
6. Complex Complex Analytic Analytic Theory Theory of of Teichmiller Teichmiiller Spaces Spaces 6.
of Ro. R q • Since Since ftR is is compact, compact, itit is is well-known well-known that that /f should be be of of finite finite order order (see (see of Remark 2 in in $6.3), §6.3), and hence hence is periodic. Rema.rk that X X is periodic. Nielsen Nielsen showed showed that that xX has has a fixed Conversely, suppose suppose that Conversely, point in in ?(E-), T(R*), whose whose proof proof we shall omit omit here. here. (Actually, (Actually, itit is shown that that the point of every finite finite subgroup of of Mod(R*) M od( R*) has a fixed point point in "(,R-). T( R*). This This is the action of solution for Nielsen's Nielsen's realization problem problem (cf. Notes of of this this chapter). affirmative solution D [112] or Wolpert Wolpert [256].) [256].) 0 See for instance Kerckhoff Kerckhoff [112] See Remark. A A weaker weaker version version of of Theorem 6.25 6.25 is easily shown. shown. Namely, Namely, itit is easy easy Remark. that a self-mapping ff of of R is homotopic to to a periodic self-mapping of of to prove that R ifif and only only ifif there exists exists a complex structure structure o(J' on R, and a self-mapping /s fo -R to /f such such that that /e fo is holomorphic on .Ro. Rq • homotopic to
Note that that Proposition 6.24 6.24 implies the following theorem. Theorem 6.26. Let ff be be a self-mapping self-mapping of R. Then Then lhere there is an f-rninimal f-minimal Theorem modular complex structure if and only if the Teichmiiller transformation [f]* if the Teichmtiller if compler stracture lfl. hyperbolic. corresponding to f is either elliptic or hyperbolic. elliplic either corresponiling f " ' ,Cn} closed ,Cn } of mutually mutually disjoint simple closed set {C Now, a finite non-empty set {Ct,1 , ... to none of homotopic curves on .R R is called every C admissible if if every Cij is freely homotopic called admissible self-mapping say {C (C )-1 h;tj, and is not homotopic to a point. We say that a self-mapping , homotopic and is k k {Cx,(Co)-t}*1i, and is reduced set is is admissible admissibleand bv {C reducedby 1 , ... ,C n } if this set ,Cn} {G,"' ff of RRis
f ( C t u . . . uC " )= C rU . - . u C n . reduced mapping, A self-mapping if it is is homotopic to a reduced red,ucibleifit r? is is called called reducible selfmapping /f of R theorem. and we have have the following theorem. if not. Then we and.irreducible irceduciDleif thenthe Teichmiiller Theorem the Teichmiiller self-mappingof R, then irteducibleself-mapping If ff is is an an irreducible Theorem 6.27. If hyperbolic. modular transformation [f]* induced by f is either elliptic or hyperbolic. eilher bg induced moilular f [f]. we start with the prepare several To prove lemmas. First, we we prepare several lemmas. prove this theorem, theorem, we following fundamental one. one. following quasiconformal mapping mapping of aa Riemann Lemma Let ff be (Wolpeft) be aa quasiconformal Lernma 6.28. (Wolpert) geodesic on 8 with hyperhyper51 surface geodesic on closed, be aa simple simple closed antl C be anolher 852, onto another surface8 51 1 with 2 , and 1 onto geodesic uith lenglh to a closed C) is bolic homotopic to a closed geodesic with length is freely Then f( bolic length length£1' freelg homotopic \. Then f (c) £2 thal lc such such that (6.13) (6.13) t2< K(f)h,
where of f· dilalation of is the the maximal maximal dilatation K(f) is where.K(J) f .
For in Wolpert Wolpett [246]. proof, see of Lemma Lemma 3.1 3.1 in seethat that of For the the proof, [2aG)' followshow the the followwe can easily show can easily the collar lemma (cf. Matelski [150]), Next, by (cf. Matelski Next, by the collar lemma [150]),we ing: ing:
'acua11'elqrcnparrr ,elqrcnpe.r.rrsr {t1 osle $ d.rarra 1eq1 satldtut 0g'g etutuerl 3f ,.re1ncr1redu1 acurg 'f i{ra,re .ro; V > (0>t }€ql q)ns y luelsuoc € sr areq?
In particular, there is a constant A such that K(hi ) < A for every j. Since f is irreducible, every hi is also irreducible. Hence, Lemma 6.30 implies that
'(.[/]),= (t,ixao1ffif
eleq eal '(gt'g) dg ';l' o1 erdolouroq Eurddetu rellnuqcral aql eq ooq - t"A , !r! lel pue ,(!d)-Vl pue ld qloq ot turpuodsarroc ern?f,nrls xalduroc eql aq lo pI , [ ,{re.l,a.rog
For every j, let (Ti be the complex structure corresponding to both Pi and [f].(Pi)' and let hi: R t7j --+ R t7j be the Teichmiiller mapping homotopic to f. By (6.15), we have
'(.[/]), = ((td).[/] 'ta)pTir1!
.lim d(Pi, [fl. (Pi» = a([f].).
(qrg)
)-+00
(6.15)
leqt qtns (.U),2 q r;i{fd}
acuanbese e{eJ 'La'g ueroeqJ {o !oo.r4
Proof of Theorem 6.27. Take a sequence {Pi }j;1 in T(R.) such that
'(.a)l ut' sa6.t'aauoc r-;f {("!d)ux} acuanbas ?T?tDrg qcns (.9)alo suotTont.totsuorl rvlnpou rellnuy?reJ lo t--f.{"X} acuanb -es D puD 't=j{fd} 'g r-*{"!d} acuanbasqns o slsrce ereql ueqJ uDrll .ra7oa.ro lo sx fg qcoa uo crcepoa| pasolc alduts fiuo r176ua1 cqoqtadfr,tl aUl ?Dql lo Vxns g aatpsod D s, ?raql {fl asoddng 't fi.taaa .r,ol o7 |utpuodsa.u,oc aco!.tns 7oq7 .Ig.9 EurrrraT uuDurety aq7aq lg puD '(,A)J ur ecuanbas, ,q t{{!d} ?aI
Lemma 6.31. Let {Pi }j;1 be a sequence in T(R.), and Si be the Riemann surface corresponding to Pi for every j. Suppose that there is a positive Ii such that the hyperbolic length of any simple closed geodesic on each Si is greater than Ii. Then there exists a subsequence {Pin}~1 of {Pi}j;I, and a sequence {Xn};:"=1 of Teichmiiller modular transformations ofT(R.) such that the sequence {xn(PiJ};:"=1 converges in T(R.).
'([69] srag e?u€tsur sseulcedruoc s.proJirunq 3uralo11o;eq? ilecer arrr ,f11eurg
Finally, we recall the following Mumford's compactness theorem (d. for instance Bers [30)).
rog 'yc) ueroaql
'uorldurnsse eq? sl?rperluoc q?rqlr 'alqranpe.r tr e q p l n o q s / s n q J , ' ( s 1 a ss l u r o d s ) 0 , = ( " C ) , 1 p u e ( I - r ' . . . t 0 - 9 ) r + ! g = (C),1 qcns Surddeur e o1 flsnonurluoc urroJep u€r a..r{(ra,rau,o11 teql ,/ 3f '(s1asslurod se) 0, - t|'C pue lurolsrp e.re 'C' . . .'0, leql qrns r re3alur alrle8eu-uou e sr eraql 1"ql 6U.g€rrruarl ,{q aurnsse .{eur a,u '9'g uorlrsodor4 {q er€ tueql erurs .0g ueq} ssal sr lugofqp ?ou Jo lle , ( g I . g )f g . ( g - 6 t , . . . , I = e-rEC' ...'oCJo euo.r(ueyo { f u a 1 c r 1 o q . r e d .a { qq l [) "l crdolouoq f1ea.gcrsepoe8pasolc alduns eql eq fg 1"1 p,rn , = 0, tas
Set Co = C and let Ci be the simple closed geodesic freely homotopic to fi (C) (j = 1"" ,3g - 3). By (6.13), the hyperbolic length of anyone of CO,," ,C3g - 3 is less than liD. Since not all of them are disjoint by Proposition 3.6, we may assume by Lemma 6.29 that there is a non-negative integer r such that Co,, .. ,Cr are disjoint and Cr +1 = Co (as points sets). However, we can deform f continuously to a mapping f' such that f' (Ci) = CHI (j 0"" ,r - 1) and f'(C r ) Co (as points sets). Thus f should be 0 reducible, which contradicts the assumption.
=
=
(C) {
' o g> i. '-oe?))t K(J)3 g-3 . f < liD.
''n'l 'plo.I
lou seop(p1'g)l(lqenbeur'3[eurosJoJ'1eq1esoddng'i oo.t4
Proof. Suppose that, for some f, inequality (6.14) does not hold, i.e.,
'64'9 DurueI ux ?uD?sunay7 st 09 a.taqm where liD is the constant in Lemma 6.29.
Lemma 6.30. Let C be a simple closed geodesic with hyperbolic length f on a closed Riemann surface S of genus 9 (2: 2). Then every irreducible self-mapping f of S satisfies Ii ) 1/(3g-3) K(J) 2: ( f O , (6.14)
(rrg)
? (/):r
,r-rrrrr(u?)
sa{sz7osS lo I 6uzddout-t7as elqr?nperr,fi.taaauaqA'k7) 0 snuaf lo g acnl.tnsuulurexq pesop n uo V r170ua1 ctloq.tadfiqy.tn nsapoa| paso1caldtuts D ?q C leT .Og.g eururaT
Thus we have the following:
:turrr,r,o11og eqt a^eq ar'r snqtr
'09 uotg ssel ero uaqT ctloq.tadfiyIDW pepraord Tutotstp a"tp 6 snua| lo st176ua1 [o acot.tns uuDur?ry p?soli D uo sctsapoaf paso1calduts l?ut?srp omy fiuo 7ot17 q c n s ' 6 s n u a 6u o f r . 1 usop u a d a pW l q n ' 0 < 0 g l u D l s u n D s , a t ? q J . 6 Z . 9 e u r u r a r l
Lemma 6.29. There is a constant liD > 0, which depends only on genus g, such that any two distinct simple closed geodesics on a closed Riemann surface of genus 9 are disjoint provided that hyperbolic lengths of them are less than liD. 175
.g' g
6.5. Classification of Teichmiiller Modular Transformations
suorl"urrolsusrJ
9LI
r"lnpow
raflnulrlf,ral Jo uorl")yrss"lc
6. Complex Complex Analytic Analytic Theory Theory of ofTeichmiiller Teichmiiller Spaces Spaces 6.
176 L76
the hyperbolic hyperbolic length length of of any any simple simple closed closed geodesic geodesic on on each each Eo, R qj isis greater greater than than the 80 A 3 - 3 g. By By Lemma Lemma 6.31, 6.31, we we may may a^ssume, assume, taking taking aa subsequence subsequence ifif necessary, necessary, 6sA3-3t. that there there isis aa sequenc" sequence {Xi}Er {Xi }~1 of of Teichmiiller Teichmiiller modular modular transformations transformations such such that == q1 set point q We ?(R-). a to converges € that the sequence {xi (Pi ~ 1 converges to a point q E T( R.). We set qi the sequence that {Xr(pi)}Et Teichmiiller the to j. with respect an isometry is Xi (Pi) for every j. Since each Xi is an isometry with respect to the Teichmiiller eaih every Since Xi Xi@) for metric, (6.15) (6.15) gives gives metric,
n
ilg
d(qi,Xi olfl* o (xi)-'(ci)) = o([f].)'
((6.16) 6.16)
Again taking taking aa subsequence subsequence ifif necessary, necessary, we we may may a^ssume assume that that {xi {Xi o0 [/][f]. ?0 Again (Xi )-l(qi nj;l converges converges to to aa point point q' q' eT(R,), E T(R.), for for ?(r?.) T(R.) is is finite-dimensional finite-dimensional (Xi)-t(qr))Fl and is is complete complete with with respect respect to to d. d. since Since each each 1r. Xi o0 [.f][fl. o0 (xi)-' (Xi )-1 is is an an isometry, isometry, itit and is easy easy to see see that that.
" (x.i)-'(q)= c'' o itg xi [.f].
Hence, by by Theorem Theorem 6.18 6.18 we may assume, assume, taking taking a subsequence subsequence ifif necessary, necessary, that that Hence, large j,j, say sufficiently every for on "(ft.) Xi 0 [fl. 0 (Xi )-1 same T(R.) action same the "lf).o (Xr.)-1 has Xi jj >~ jo. jo. Then (6.16) implies that that Then (6.16) d(q,xioo [/]- o (xr")-t(q)) = d((xi")-t(c),[/].((xi")-'(q))) assertion. Thus there is an [f].-minimal shows the assertion. Thus there [/].-minimal point, which shows
= o([/].)'
on
6.5.3. Mappings Extremal Mappings Absolutely Extremal 6.5.3. Absolutely when seen that, when have seen We have Next, mappings. We absolutely extremal mappings. we characterize cha.racterizeabsolutely Next, we corresponding mapping, aa self-mapping f is homotopic to a periodic mapping, then the corresponding a self-mapping / is we discuss discuss Hence, we 6.25). Hence, absolutely is conformal conformal (Theorem 6.25). absolutely extremal mapping is the case that [fl. is of infinite order. order. the case [/]- is of the spacein the line space straight line is aa straight ?(fi-) is Here, space T(R.) the Teichmiiller space note that the Here, note pa,rticular, In Masur see sense of Busemann (cf. Kravetz [128], and also see Masur [142]). In particular, and also [142]). senseof Busema,nn (cf. Kravetz [128], which say L, tr' which line, say stroightline, unique straight on aa unique any p|,pz E lie on points P1,P2 "(ft-) lie e T(R.) distinct points two distinct any two metric, Teichmiiller with the equipped isis an isometric image of R into T(R.) equipped with the Teichmiiller metric, an isometric image of R into "(E') and points P p such that such that all points contains all and contains d(pr, p) * d(P, Pz) = d(Pr,m) -
We fact: elementary fact: the following following elementary note the also note We also oxler, infinite order, of infinite transformation X7 isis of Theorem moilular transformation Teichmiiller modular If aa Teichmiiller 6.32 If Theorem 6.32 thrvugh line through straight line leaaesaa straight if X7 leaves then only if R.) isis x-minimal y-minirnal if if and and only pointPp E€ T( "(R,) lhenaapoint Pp invariant. inaoriant. points three points order, three of infinite infinite order, Proof. since Xx isis of that Pp isis x-minimal. Assume that Proof. Assume x-minimal. Since "seg2 the of the "segp2 be the midpoints midpoints of p1 and be the and,P2 P,p, X(p), (p) are Let P1 distinct. Let are distinct. and XX2(p) X(p), and 2(p)], respectively. seethat that ea'syto to see Then itit isiseasy ments" X(p)] and respectively.Then and [X(p) -"tttr'; [P, [1(p),, Xxz(p)], [p,x@\
1eq1 saqdurl (gt'g) €lnuroJ 'GI)X ! (V)y a?urs pue ,(U) Ot.l rueroaql fq zU)X ) ("t)X e?urs 'leurer1xef1a1n1osq€ sr / feqt etunsse,alolg
where h is the Teichmiiller mapping homotopic to p. Now, assume that f is absolutely extremal. Since K(f2) ~ K(f? by Theorem 4.10 (iii), and since K(h) ~ K(P), formula (6.18) implies that
(srs)
'./ o1 ctdolouroq Surddeur Jallnuqcretr eql $ 11ereq^r
,(u)>t = "U)y
K(f)2 = K(h),
(6.18)
se uellrrr,r,er q (ft'g) 'Surddeur rallnurqrreJ e sr 3l aaurg
Since f is a Teichmiiller mapping, (6.17) is rewitten as
(rrg)
'((["]).(.[/])' [r])p= ((["]).[/] '[o|)pz=
d([u], [f].([u])) + d([f].([u]), ([f].)2([u])) = 2d([u]' [f].([u])) = d([u], ([f].)2([u])).
(6.17)
((["])'(.Ul)' (["])-[/])p+ (([o]).[/]'[o])p
o1 luele,rrnbqfl s-rrll,69.9 ureroeq;, ,tg .leurut.tu--[/] sl (.U),2 ) [o] lutod Surpuodsa.rroeeq] JI {po pue 3r Isuer}xe flalnlosqe q ! 'V?,.g uotlrsodor4 fg 'o ernlcnrls leuroJuoc elqqlrns e rlty( oA = S 1n4 .Eurddew rallnuqcratr e sr erueq pue 'leuro;uoc lou q / 1tsq1erunss? Aern a71y.loo.t4
Proof We may assume that f is not conformal, and hence is a Teichmiiller mapping. Put S = R q with a suitable conformal structure u. By Proposition 6.24, f is absolutely extremal if and only if the corresponding point [u] E T(R.) is [f].-minimal. By Theorem 6.32, this is equivalent to
'z$)x = (z|)x qTtm|ut'ddotu rennuruz'eJ D oslD cr futrldou otp qcns |utildour rqpuq)r4 o ro |utddotu to1? 7t Totu^tot -uol D r?qpe s, 7t fryuopuv s! ,g g : I 6ut,ddou.t, o lt fi lourar?se fr1ayn1osqn ueqJ '(?, -) 6 snua| to acottns uuouery p?sop o aq g pT .gg.g uraroatll
Theorem 6.33. Let S be a closed Riemann surface of genus g (~ 2). Then a mapping f: S ----+ S is absolutely extremal if and only if it is either a conformal mapping or a Teichmiil/er mapping such that the mapping P is also a Teichmiil/er mapping with K(P) = K(f)2. 'rualoeq? Eur,raollo;eql ur"lqo eiu 'alo11
Now, we obtain the following theorem.
'[167] ealie?ru€trosp 'auq ees l{Ere.r1s ?uelr?Aur auo ?soru +e s€q uorl"uroJ -su3r1relnpolu reilnuq?ral /tue l"ql ,(roaq1s(uolsrnqr ruog s^rolloJlr'I clrDuea
Remark 1. It follows from Thurston's theory that any Teichmiiller modular transformation has at most one invariant straight line. See also Tanigawa [221]. 'luougau, autl D setuDel fr1uopuo tt u1oqtadfiy sg *flf uo4out^totsuo.tT 7t16to.r.7s 7g tg rDlnpout rellnuq?pJ eW'(A)poW > fl)Wauala atpouad-uou D ro4 .r(.re11o.rog
Corollary. For a non-periodic element [J] EMod(R.), the Teichmiil/er modular transformation [fl. is hyperbolic if and only if it leaves a straight line invariant.
o
O
'1eururur-X s1d pqt sarTdurrqclqa'(-U)J)
for every p' E T(R.), which implies that p is x-minimal. d f.ra,raro;
d(p, X(p» ~ d(p', X(p'»
((d)x'd)p
2 ((d)x'd)p
'f.rerlrqJe sr u a?urs leqt apnl?uoc eal
Since n is arbitrary, we conclude that
' (( d)X' d)p . u ( d' d)pz * > ((d) "x, d)p = ((d)x, d)p . u
n· d(p,X(p» = d(p,Xn(p» ~ 2d(p,p') + n· d(p',X(p'».
Hence, we conclude that d(Pl,P2) ~ a(x)· On the other hand, since P2 = X(Pl), we have d(PbP2) ~ a(x) by the definition of a(x). Thus X(p) is the midpoint of the segment [Pl, P2], which implies that the straight line, on which P and X(p) (and hence also Pl, P2, X2(p» lie, is invariant under X. Next, suppose that a straight line L through P is invariant under x. Then, for any point P' E T(R.) and any positive integer n, we can see, by using the triangle inequality, that
teqt'flllenbeut a1Euet.r1 aq1 Eursn fq 'aas uec a^\ 'u reSalur a,rrlrsod fue pue (?),2 3 d lurod fue .ro; 'ueqA 'X rapun eull lq3rerls € lsql asoddns ,1xap luerr€Aur sr d qEnorql Z 'X .rapun luerrslur sr 'eU ((d).X (ed 'rd osp eruaq pue) (d)X ptre d qarq,u uo ,aur1lq8rerls aql leqt sarldurrqcrq^a([zd(rd]?ueur3asaq1go lurodplu eq] sr (d)X snqa'(X)oJo uorlru '(a)X ,pueq .raq1oeq} uO -gep zd aqt fq (X)o eAeq (za'41, a^{ aculs 7 '(x)' j (zd'rd)P 'acua11 leql epnlcuoc aiu'
.(x)"1= (d,(d)x)p= ((d)x,td)p 177
LLI
suorl"ruroJsu"rJ r"lnpon railnuqtral Jo uorl"f,urss"Ic .g.g
6.5. Classification of Teichmiiller Modular Transformations
6. 6. Complex Complex Analytic Analytic Theory Theory of of Teichmiiller Teichmiiller Spaces Spaces
178 178
K(h) = K(f,).Hence, K(f2). Hence, the the mapping mapping .f2 f2 isis also also aa Teichmiiller Teichmiiller mapping mapping with with I{(h) K(j2) K(f)2.. (Note (Note that, that, by by Theorem Theorem 5.9, 5.9, we we conclude conclude that that hh = f2.) f2.) I{(-ff xift)= Conversely, ifif the the mapping mapping /2 j2 isis also also aa Teichmiiller Teichmiiller mapping mapping with with K(/2) K(j2) = Conversely, E0 K(f)2, then then clearly clearly (6.17) (6.17) holds. holds. Therefore, Therefore, /f is is absolutely absolutely extremal. extremal. K(f)2,
=
=
=
Remark 2. we We can show show further further that that the the condition condition that that the the mapping mapping f2 j2 isis also also Remark 2. that = to the condition is equivalent K(f)2 mapping with K(j2) = K(f)2 is equivalent to the condition that a Teichmiiller with 1{(/2) mapping a Teichmiiller the initial initial and and the the terminal terminal differential differential of of /f (cf. (cf. Proposition Proposition 5.19) 5.19) coincide coincide with with the each factor. other up to a positive constant factor. positive constant to a each other up
6.5.4. Reducible Reducible Mappings Mappings and and Nielsen-Thurston's Nielsen-Thurston's Theorem Theorem 6.5.4. For reducible mappings, we can show the following theorem.
Theorem 6.34. Let ff be be a rcducible reducible self-rnapping self-mapping of of R. If If ff is nol not homolopic homotopic Theorem to aa periodic mapping, then then lfl. [fl. is either parabolic parabolic or pseudo-hyperbolic. pseudo-hyperbolic. periorlicmapping, to Thus, by Theorems Theorems 6.25,6.26,6.27, 6.25, 6.26, 6.27, and 6.34, we we conclude conclude the following: following: and 6.34, Corollary. Corollary. Let if if ff only if if and and only
-rninimal complex exists complex structure exists An ff-minimal be a self-mapping self-mapping of R. An ff be irteducible. periodic mapping is either homotopic to a periodic mapping or irreducible. either homotopic
we shall explain the strucInstead, we We 6.34. Instead, We shall omit the proof of Theorem 6.34. arguforegoing argupurpose, recall that the foregoing ture reducible mapping. (For this purpose, ture of aa reducible ments surface of finite type.) caseof aa surface even for the case ments still work even continuously we can can deform /f continuously Let /f be self-mapping ff of R. Then we reducible self-mapping be aa reducible ft self-mapping fo precisely, to aa self-mapping to more precisely, fs of R mapping, or more reduced mapping, completely reduced to aa completely set {C an admissible admissibleset is an which there is condition: there ,Cn} the following following condition: {C1,... sa[isfiesthe which satisfies 1 ,··· ,C n} H of R -comp-onent R' every component of such that, for every curves on R such closed curves disjoint simple closed of disjoint = R', the R', the with fN(R/) positive integer N with integer N C the smallest smallest positive a.ndfor for the /Jv('?') = 1 U··· U C n and CtU-...UCn \ mapping IRI is irreducible. it irreducible. mapping fN /t l,*, c a s eof o f aa t h e case A s in i n the . . . , R ; } be U"... Let C1r U ' UU CC , . n . As of R R- C c o m p o n e n t sof b e the t h e components L e t {R~, { . R i ,... ,R:n}
and an an on Rj oi on Rli and structure (J'j complex structure -minimal complex closed "r, (fN; is an there is surface,there closedsurface, (/", IRj) Ini )-minimrl = (i 1,"' every (R!)"1for (H)", absolutely )17; -+ (Rj )17; for every ji (j = 1,··· ,m), Fit ,m), mapping F extremal mapping absolutelyextremal j : (Rj -- Rj. (We can can Rli (We that fN; such that where (Rj) = positive integer integer such smallest positive the smallest Ni is is the |Ni(Rii) where Nj type.) finite type.) of analytically analytically finite further surfaceof (Hi),, is is aa Riemann Riemann surface that (Rj)l7; slow that further show We that show that We can can show o([/]-) - max{Iio,(f'1),''', Ko^(F^)}, point. but no [f].-minimal exists no there exists but there [/]--minimal point. conformal, are conformal, all Pj .Q are or equivalently, equivalently,ifif all Hence, to 1, 1, or equal to areequal K"r(S) all K Hence,ifif all 17 ;(Fj) are pseudohyperbolic. then then [fl. paraboiic. If If not, not, then then [f]. [f]. isis pseud
'([t t t] 'auos(uotsrnt{J Uoq{rrey pue [6S]srag 3r) [911]uolsrnqJpueJoq{rrex ees
For fundamental materials on several complex variables and complex manifolds, we refer to the books by Bers [A-14], Griffiths and Harris [A-39], Kodaira [A-57], and Morrow and Kodaira [A-77]. The complex structure of the Teichmiiller space T g of genus 9 (~ 2) was first introduced by Ahlfors [5], as shall be explained briefly in Appendix A. Alternative treatments of this subject are found in Jost [A-49], Fischer and Tromba [73], Nag and Verjovsky [164]' and Saito [186]. We have rather explicit holomorphic coordinates on T(r) which are called the Maskit coordinates (see Kra [125] and Maskit [139]). The method to define the complex structure of T g in this chapter is due to Bers [25]. This method is applicable to the Teichmiiller space T( r) of an arbitrary Fuchsian group r. It is known that T(r) is finite dimensional if and only if the Riemann surface H / r is of analytically finite type (g, n), i.e., a Riemann surface which is obtained by removing n distinct points from a closed Riemann surface of genus g. In particular, Bers' embedding realizes T(r) as a bounded domain TB(r) in C 3g -3+ n provided that 2g - 2+ n > O. The boundary 8TB(r) of TB(r) is closely related to the theory of Kleinian groups. For this subject, we refer to Abikoff [1], Bers [28], Maskit [138], and McMullen [155]. We also note that the compactification of T g using Bers' embedding is different from Thurston's one. See Kerckhoff and Thurston [116] (cf. Bers [39] and Kerckhoff [111]).
ruorJ lueJeJrp sr Surppaqure(srag Sursn t 6 Jo uorlergrlceduroc aql leql alou osle e \ '[qql] uefln4ctr{ pue '[8gI] tl{sel tr'[96] srag '[t]goUqV o] raJeralll'1ca[qns q (.f)sz Jo (J)sJg srqt rod 'sdnor3 u€ruraly ;o ,froaql aql o1 palelar .{1aso1c frepunoq eql'0
Notes saloN
'(yloq aosouy-opnasd \ou 1nq) alqtcnpa.tst .r'ouL,sttld.r,ouoa[r,p pu s, q?tqn'(27) 6 snua| to o o 7 c t , d o T o u t osyt ' a u o c t p o u a d o o 7 c t d o T o t u o U acottns pesop o to futildoru-l1as y (uolsrnql pue uaslarp) 'gg'g tuaroaq;,
Theorem 6.35. (Nielsen and Thurston) A self-mapping of a closed surface of genus g (~ 2), which is not homotopic to a periodic one, is homotopic to a pseudo-Anosov diffeomorphism or is reducible (but not both).
'uolsrnql pue ueslerN rueroaql Surrrrollogeq1 fldtur ?g'g pu€ /6'9 suraroeql Jo snqJ 'rrloqradfq sr -[/] yr fluo pue yr usrqdrouoeJrp ^osouv-opnasd e o1 crdol 'tt'g '96'9 'e.royeraq; -ouoq sl sure.roaqa / leql fldurr g'g$ ur A {reru€rg pu€ 'rolceJ lue?suo, allltsod e o1 dn raqlo q)se ql-ri apIDuIo?slelluareJlp leurturel pue I€IlIuI esol1\^ Sutddeur rallnuq)retr € seurooeq/ tn,It qcns U uo arnlf,nrls xalduroc € ulelqo u€? a^! 'A tusrqdrotuoegrp ^osouy-opnasd ua,rrE due ro; '.{1esre,tuo3 Jo { 'u.tsrtld,totuoaficp 'ernlcnrls xalduoc eq1 aosouv ?a3.ro3a r uarlirr -opnesd pell€c-os e se,rr3rolceJ luelsuoc errrlrsode o1 dn raqlo qc"a qllrrr eplc '.{1eutg -uroc slsrluaraJrp l€unuJal pue Ierlrur esoq^\ Surddeur rellnurqcrel e
Finally, a Teichmiiller mapping whose initial and terminal differentials coincide with each other up to a positive constant factor gives a so-called pseudoAnosov diffeomorphism, when we forget the complex structure. Conversely, for any given pseudo-Anosov diffeomorphism f of R, we can obtain a complex structure on R such that f becomes a Teichmiiller mapping whose initial and terminal differentials coincide with each other up to a positive constant factor. Therefore, Theorems 6.26, 6.33, and Remark 2 in §5.3 imply that f is homotopic to a pseudo-Anosov diffeomorphism if and only if [f). is hyperbolic. Thus Theorems 6.27 and 6.34 imply the following theorem of Nielsen and Thurston.
'cqoqered
Example. Let f: R -+ R be the Dehn twist with respect to a simple closed curve C. Then f leaves R - C invariant componentwise, and f is homotopic to the identity mapping on each component of R - C. Hence, we can see that [f). IS parabolic.
sl -U] 1"ql ees uec aal 'acua11'C - A ;o luauodtuoc qcee uo Surddeur .r(1r1uepr eql ol crdolouroq sr / pue 'asro.luauodtuoclu€Irelur C - A ser'ee1/ ueqtr, 'C a rnc pesolc aldturs e o1 lcedsar qlr^r lsrlrl uqeq eql ag U - A : I p1 'aldutotg
179
6LI
Notes saloN
180 180
6. Complex Complex Analytic Theory Theory of of Teichmriller Teichmiiller Spaces Spaces 6.
Let "s(1) TB(l) be be the image of of Bers' embedding of of the the universal universal Teichmiiller Teichmiiller Let proved that group. T(l), 1 denotes trivial [83] that "3(1) TB (l) space the trivial Gehring where I denotes space ?(1), [83] of derivatives of coincides with interior of S(l) consisting of Schwarzian derivatives of the set consisting Schwarzian of S(1) with the interior coincides H. ItIt is also known that that S(1) S(l) S "s@ TB(1) (see (see holomorphic univalent functions on 11. [19], Gehring Gehring [84], [84], and Thurston Thurston [232]). [232]). Shiga [200] [200] showed showed that that ifif l-r is Astala [19], Astala coincides then fBQ) group of the first kind, finitely generated generated Fbchsia.n Fuchsian of kind, TB(r) coincides with with a finitely the interior S(l-), S(r), where where S(l-) S(r) == S(1) S(l) nn Az(H*,l-)' A 2 (H*, r). When fr is of of the second second fn!).However, kind, Sugawa Sugawa l2,l2l [212] has shown recently that that S(l-) S(T) I TB(l). However, in in the case case kind, where l-r is infinitely infinitely generated generated and of of the first kind, itit is unknown whether S(r) cc ra!) TB(r) or not. S(f) arbitrary Fuchsian Fuchsian group i-, r, the Nehari-Kraus lemma (Lemma (Lemma 6.7) For an arbitrary 3l2inin that TB(r) with center center 0 and radius 3/2 "s(l-) is contained in the open ball with implies that A 2 (H*, l-). r). The The infimum infimum of of radii radii of of open balls with with center center 0 in A2(H* A 2 (H*,,i-) r) which Az(H., includes TB(r) [166], Sekigawa Sekigawa [192], [192], and Sekigawa Sekigawa and fBQ) is studied by Nakanishi [166], includes Yamamoto [193]. [193]. Yamamoto connections with with projective structures on Riemann surfaces, surfaces, there are are For connections and [120], and Shiga [202]. papers Gunning [88], Kra Shiga papers [202]. [120], [88], induces It was known by Fricke Fricke that that the Teichmiiller modular group Mod(l-) M od( T) induces It was Aut(T(r)) (see, Fricke and Klein [A-33]). a discrete (see, for example, example, Fricke discrete subgroup of Aut(T(f)) [A-33]). Mod(l-) is The proof proof in this chapter is due to Bers Bers [31]. [31]. The modular group Mod(T) studied Bers [39], Hejhal [100], Kerckhoff [111], Ivanov [108], studied in Bers [154], [111],McMullen [154], [108], Kerckhoff [100],Ivanov [39], Hejhal Mumford classification theory of Teichmiiller modwolpert [249]. Mumford [161], [249]. For classification [161], and Wolpert Laudenbach ular transformations, we we refer refer to Casson Casson and Bleiler [A-19], [A-19]' Fathi, Laudenbach Kerckand Thurston [231]. and Bers [38], Shiga [201], Podnaru [A-29], and Poenaru [231].Kerck[201],and [38],Kra [121], [121],Shiga [A-29], Bers asserts realization and Wolpert [256] solved the Nielsen realization problem which asserts hoff Nielsen solved hotr [112] [256] [112] ?(f). has a fixed point in T(r). that the action of every od(r) has Mod(l-) subgroup of M every finite subgroup See also Kerckhoff [113]. See also [113]. curve, and the Teichmiiller curve, For Bers' space and over aa Teichmiiller space space over Bers' fiber space spaces between we refer to Bers [31] and Earle [61]. The relation between Teichmiiller spaces and we refer Bers [31] [61]. Nag [A-80], and surfaces is is found in Nag families of Riemann surfaces and holomorphic families [A-80]' Chapter are applications 5, Earle [58], Earle and Fowler [64], and Imayoshi [102]. Their applications are and Imayoshi and Fowler 5, [102]. [64], [58], Ea"rle and Imayoshi Shiga treated in Griffiths [87], Imayoshi [103], [105], [106], Imayoshi and Shiga [107], [107], [87], Imayoshi [103], [105], [106], Reimann and over aa holomorphic family of Reimann sectionsover For holomorphic sections and Riera [183]. [183]. For surfaces, and Kra [66]. and Earle Earle and see Hubbard [A-44], surfaces,see [66]. lA-441,and Many more details of the Kobayashi distance are a.re found in Kobayashi [A[A?(,l-) indistance on on T(r) For aa distance 54], and Noguchi and Ochiai [A-88]. and and Noguchi Ochiai 54], Lang [A-64], [A-88]. For [A-64], we distance, we variant under od(r) other than the the Teichmiiller distance, of.M Mod(f) action of under the action proved complete "(l') is have proved that T(r) is complete with Earle [59] distance. Earle the Caratheodory have the Carath6odory distance. [59] respect between the Teichmiiller connection between distance. The connection Carath6odory distance. respect to the Caratheodory are also also invariant There There are and is studied studied in Kra [122]. distances is and Caratheodory Carath6odory distances [122]. and the the invariant metric distances the Bergman Bergman metric and induced by the are induced distances which are in the the Even in see Royden on subject, see Royden [185]. For this this subject, half-space.For upper half-space. on the the Siegel Siegel upper [185]. Even that the is shown shown by by Gardiner Gardiner [81] that the case it is of infinite infinite dimension, dimension, it where T(T) is of "(l-) is casewhere [81] also the the distance. See See also Teichmiiller with the the Kobayashi Kobayashi distance. also coincides coincides with distance also Teichmiiller distance book by Gardiner book by Gardiner [A-34]. [A-34].
i
i
'rrrell Jo lurod srql urorJ palPnts st se?eJrnsuuetuelg ;o t(pue; e ;o '1 uorprrel Isrursalruuw aql eraqa '[996] lradlol\ ol reJarosle eA\ re1deq3lo 7'6$ ur fgarrq pessncslp eq ll€tls sploJlueur xelduroc ;o f.roeql uollsturoJeP .racued5 -eiltspoy aql pu" saceds relpruqcle;, ,(.roaq1 eql uaa^r}eq uolleler eq& ;o .[996] r.radlolt pue [66I] e3rqg ur s;oord e^Ilsurelle errl areql 'ploJlueur ulals € st aceds railnuqoleJ I"uorsueurp alruS e t"ql h?] srarduarqg Pue srag fq pe,rord 1srg se^{ 1I
It was first proved by Bers and Ehrenpreis [41] that a finite dimensional Teichmiiller space is a Stein manifold. There are alternative proofs in Shiga [199] and Wolpert [256]. The relation between the theory of Teichmiiller spaces and the KodairaSpencer deformation theory of complex manifolds shall be discussed briefly in §2.4 of Chapter 7. We also refer to Wolpert [258], where the infinitesimal variation of a family of Riemann surfaces is studied from this point of view. 181
I8I
Notes
Chapter Chapter 7
Weil-Petersson Metric Metric
otherwise stated, stated, aa Fuchsian Fuchsian group r, l-, considered consideredin this chapter, chapter, is Unless Unless otherwise is aa (Z 2). genus g (~ Fuchsian model of aa closed closed Riemann surface surface of genus 2).We also assume assume Fuchsian We also 1, and 00 oo is is fixed fixed by an a"nelement element in rf -- {id}. that each each of 0, 0, 1, lid\. distance on the Teichmiiller As stated in §1.3 of Chapter 5, the Teichmiiller distance 5, $1.3 complex structures space spaceT(r) 7(.l-) measures measuresaa kind of magnitude of deformation of complex with respect surfaces, and T( ?(f)r) is is complete complete with respect to the Teichmiiller of Riemann surfaces, distance. saw in §3.4 distance is is equal equal distance. We also also saw $3.4 of Chapter 6 that the Teichmiiller distance to the Kobayashi Kobayashi distance, distance, which is is defined defined complex complex analytically. analytically. However, However, the Finsler induced by the Teichmiiller distance distance is is not of class class Coo Finsler metric induced C-. . purpose of this chapter The purpose chapter is is to introduce another natural metric on on T(r), ?(l-), prove that it is which is called called the Weil-Petersson is aa Kahler Kd,hlermetric Weil-Peterssonmetric, and to prove whose curvatures, scalar scalar curvature, curvature, and and holomorphic sectional sectional curvatures curvatures whose Ricci curvatures, are are negative. negative. The first section Peterssonscalar scalar section is preliminary and devoted devoted to studying the Petersson -4 product on the space (H, r) of holomorphic automorphic forms of weight -4 forms weight space A ,42(.I/, f) 2 with with respect respect to r l- on H, .Il, and related related topics topics such such as as the reproducing reproducing formula projecfor holomorphic automorphic forms, forms, Poincare Poincar6 series, series, and the Bergman projection. In Section (H, r) is the dual space of the holomorphic we see see that thaL A is space 2, we A2(H,,l-) Section 2, 2 tangent space space To(T(r)) Zs(?(f)) of T(r) TQ) at the base base point. We also represent represent elements elements We also of To(T(r)) by harmonic Beltrami Beltrami differentials. differentials. Then the Weil-Petersson "r(Z(f)) Weil-Petersson metgiven by the dual metric of the Petersson ric on To(T(r)) is is given Petersson scalar scalar product "0("(f)) on A (H, r). In Section 3, we define the Weil-Petersson metric on T(r) we define 7(f) and and A2(H,l-). Section Weil-Petersson 3, 2 verify that scalar curvature, that it is is Kahlerian Kiihlerian and that its Ricci curvatures, curvatures, scalar curvature, and holomorphic sectional sectional curvatures curvatures are are negative. negative.
n=O
= L(
. u"d,t v. (\ u" d, t-, d , /r \J7_ -- , d ,
00
to1 urroJ eql uI uelllr^{ sl (V)zV I d flera 'relnrtlred q'(y)zy ra8alut eltleSeu-uou.{ue.ro; srseq leurouoql.ro elalduoc e sI 0--J{"6 } t"qJ'u
for any non-negative integer n. Then {
,z (t,+ u)(z+uXr+ q: l\ - G)"d
J~(n + 1)(n + 2)(n + 3) zn
(r'z)
3
(7.1)
1nd a111 'lcnpord rel"cs srql q1r,neceds e sauro?eq(y).y t"qf treqllg alqe.redes
Then A 2 (L1) becomes a separable Hilbert space with this scalar product. We put
= v (,/r'6) npxp(z)rlt(z)d)z-e)y" [[ J J fq(V)zV uo v( . '. ) tcnpord rel€cs uossratedeql augep eM'y {slp llun aql uo clrlatu erecurod eq1 * "lzplr(")V = zsP''a'\'("ltl - t)lZ = (z)y areqm
where A(Z) 2/(1 - IzI 2 ), i.e., ds 2 A(z)2IdzI2 is the Poincare metric on the unit disk L1. We define the Petersson scalar product ( " . }..:1 on A 2 (L1) by
=
=
'a > npxp ,l?)al"-Q)u"l[ = )l^tt 1I
Ji
A(Z)-21
00,
l"ql qrns V uo d suorllunJ crqd.rouroloq;o areds roltel xelduror eql aq (V)eV +"1 *;. eueld-;pq remol aqt uo J ol lcedse.r qll^r sruroJ crqd.rourolne ctqdrouoloq lo (J'.H)zV pue uo lcnpord relecs uossJeled eql eugep eAl'r(errr aures aql uI '(tJ' V)eV uo lrnpo.td rel€?s uossreled secedslraqllg rltoe esn eA\'(/J'V)zV (l'n)"V eq1 'flrepurrs eugap e$'V {srp ?run eql uo 3ut1ce E Io il Iepou uelsrlcnd € 3uqe1 'g aueld-;1eqraddn eql uo 3ur1ceU Jo J Iapou u"Isq?nJ B Jo peelsul '(l'n)zV u(''.) uossreled aql uo rDlms lcnpo.rd reuur uellpurell slt{l 7cnpo.r.d '1cnpo.rdJeuul uelllureH slql qtyr,r aceds treqllH e setuoceq (l'n)zV II€r el!\ '.H ul 'lceduroe $ l€rll s/rtolloJ1r u atuls J roJ ulsruoP lelueuepunJ e sI Jr eJaI{^{
where F is a fundamental domain for r in H. Since R is compact, it follows that A 2 (H, r) becomes a Hilbert space with this Hermitian inner product. We call this Hermitian inner product (., '}R the Petersson scalar product on A 2 (H, r). Instead of a Fuchsian model r of R acting on the upper half-plane H, taking a Fuchsian model r' of R acting on the unit disk L1, we define similarly, the Petersson scalar product on A 2 (L1, r'). We use both Hilbert spaces A 2 (H, r) and A 2 (L1, r'). In the same way, we define the Petersson scalar product on A 2 (H*, r) of holomorphic automorphic forms with respect to r on the lower half-plane H* . Let A 2 (L1) be the complex vector space of holomorphic functions
fq paugap q u({1 'd) lcnpord reuur uer}runa11aq1 'r*o11 ar uo uorlcunJ e s€ pereprsuoc sI 1l ''a'-I '.y rapun lu?lrelul l? uo uolltunJ e sl (41'ai) uaqS
Then (
z E H.
) z
' ( z ) r f u ( z ) d u l y= ( z ) ( r / t , ' d t )
(
'(J'H)"V ) ,lr'o\ sluetueladue rog les e a 'J /n = Ur a?"Jrns ulrctuarll aql uo luetuala fq pacnpur frpap"(z)ny - ,p luaruele eere eqJ, €are ue se papre3a.r s\ lsp ''e'\'H uo rrrleur ar€rurod aqt aq - H"spp"I 'r_("*t) @)nU "lrplr(r)rU 'Il uo q?l^{ sturoJ crqdrotuolne ctqd,rotuoloq 3o o1 lcadse.r J '11e (t'tt)eV ecedseq1 uo lcnpo.rd rauul u€I?IturaH lecluousc € augep e,lr 3o lsrtg
First of all, we define a canonical Hermitian inner product on the space A 2 (H, r) of holomorphic automorphic forms with respect to r on H. Let dSh AH(Z)2IdzI 2 be the Poincare metric on H, i.e., AH(Z) (Imz)-l. The area element d(1 = AH(Z?dxdy induced by dSh is regarded as an area element on the Riemann surface R = H / r. For any elements
=
=
'1-'1-'L
7.1.1. Petersson Scalar Product and Reproducing Formula BImuroJ Euranpoldall
puu +cnpord TBIBcS rrossralad
'T'2
7.1. Petersson Scalar Product and Bergman Projection uorlra[ord
u€rutJag
TBIBJS uossJalad
PUB ]rnPord
't'^L lf,nPord r"lef,s uossrelad
183
7.1. Petersson Scalar Product
t8I
7. Weil-Petersson Weil-PeterssonMetric 7.
184 184
We set 00
2:
=) i r
( 7.2) (7.2)
n=0 n=D
Ka(2,.) .) belongs belongs to A A2(A) z E satisfies the Then K,1(z, A, and satisfies the reproducing rvproducing € L1, 2(L1) for any Z formula formula p ( z ) = (
o
2
12
=, C -= 71"(1z ,( (E€ L1. ^ , /)\ '(r n 3 , f)\ '(" n -K - A \7 - r !1 / , ( z= 2 d - 1 2z()4' , , , . Z, A. v ,3 r\') s ,( z = K,1(z,() ~ +I +2)(n +t +3)(z(t i ) ;(n ? @+*| 1l)(n n(l_Z4!)4, ^U_U"r'"
ry' we consider considerthe the Hilbert space spaceA A2(H) holomorphic functions functions 1/J Similarly, Simila,rly,we 2 (H) of holomorphic on H .EIsuch such that on 2 = 2 dxdy (,)1, dxd,y x. 1 00. 1I1/J1I = AH(Z)-211/J(z)1 < ll,tll,
JL
Ilr^rr'r-,1,t
- L1 given by (z -- i)/(z i)/(z + induces The transformationT: ?: H --+A given by T(z) = (z The Mobius M<jbiustransformation f i) induces an (L1) --+A (H) defined by ?* : A A2(H) defined by an isomorphism isomorphismToO: A2(A) 2 2 T'(p) = (9oT). (T')2, I e Az(A). givenby leemelKH for A by Hence Hencethe the reproducing reproducingkernel Ks for Az@) is given 2(H) is
y+.
= ~ (z ~- ()4' z,( - K,1(T(z), rz.( '5 E H. Kn(z,e) Ka(r(4,r|))T(ffr'111' e H. KH(Z, () = T«)) T'(z)2 T'«)2 = 7r(z C)n'
(7.3) (7.3)
Note that Aut(L1) and and,KH Ks are are invariant inva^riantunder under.4ut(4) and Aut(H), Aut(H), respectively. respectively. that K,1 I{6 and For example, KH Kg satisfies t(z),1$\1(St'(e)2, KH(Z,() K n ( " , Q == K n H((')'(z),')'«))-r'(z)2')"«)2,
z , ( eEHH, , z,(
(7.4) (7.4)
for E AAut(H). f o r all')' allTe ut(H). (Reproducing formula) Theorem formula) Every Eaery
p(z)= [[ xrfCl-',p()rciQda€a,t, z€H. J JH
(z.b)
Proof that Proof. It It is sufficient to prove that
,1,(r)=[[ ^rcfrl'G)@aea,t, JJA
zea,
(7.6)
2 H /tr is is compact, compact,A^-'lrltl for 11/J! wherer' l' = TrTTIT- 11.• Since for every every1/J rbE SinceR = HI e AAz(A,l-'), 2 (L1, r'), where is (7.6) converges absolutelyfor for all all z. z. By the integral integral in (7.6) convergesabsolutely is bounded boundedon on L1. 4. Thus Thus the we have have the for aa holomorphic holomorphicfunction, function, we the mean mean value value theorem theorem for
lrnPord r"Ff,s uossratad'I'2
98I
7.1. Petersson Scalar Product
185
fi fi
= tnlee)fi,("|)l-r)"il f tolo (1 -
1(1 2)21/J«() ~dTJ
Q)fr" -Q) u J"[[J =
=
(7.7)
' t plp ()'i l vx
~
Q't)
1/J(0) =
)..«()-21/J«() K i1 (O,()dedTJ.
This asserts that formula (7.6) holds for z = O. Now, for any z E .1, choose an element, E Aut(.1) with ,(0) = z. If we set 1/Jo = (1/Jo,)· (1')2, then 1/Jo is an element of A 2(.1,,-1r',), and satisfies 1/Jo(O) = 1/J(zh'(0)2. Applying (7.7) to 1/Jo and putting 8 = ,-1, we obtain .0 - z roJ splorl (g'Z) elnuroJ leqt stress" slq;,
uletqo a,rn', _,0- 9 3ur11ndpua ofi oI (L'L) Surflddy ' "6),L(r)fr = (g)"fr seqsll€spue'(L,,1,_L'V)ZV Jo luetualeue sr o4lueql '.(,.!) .(L",lr) - ofr ps e$ lI'z = (O)t qll/{ (y)tny 3 L luauale u€ esooqr'V ) z fue ro3'aao11
fi = (fi
apnp ((^)g'(,)il, >r(@)il'h"_((.)g)v = @",fu "l(n),sl IJ )"(8(w))-21/Jo(8(w)) K i1 (8(z), 8(w)) 18'(wW dudv
J J / vff
\
' ( n ' z ) u; t @ ) f i"- - ( q r " [ [ \ " ( o ), r ( a p n -p
1/Jo(O) =
)..(w)-21/J(w) Ki1(z, w) dudV) ,'(0)2.
=
'V ) z II€ roJ sploq (g't) 1eq1s^\oqssrqtr z
O
This shows that (7.6) holds for all
o
E .1.
sarras gJBcurod z.I'1,
7.1.2 Poincare Series
s€ uellrr^rarsl (g'Z) elnuroJ ueql 'y ur sl d leql os y ur tJ rol3{ ureruopIe}uauepunJe e{ptr lceduoc d1arr,r1e1a.r
Take a fundamental domain F for r' in .1 so that F is relatively compact in .1. Then formula (7.6) is rewritten as
f1 L Jr L [f1 L [!h
t ptpzl()),Ll (A!:yZ(()),t)@ z- ((>lrlr"' I I'? = " = ttplp O,z)vx e),fur_e)u I I Z e),t, n rJ)L
=
-yErl
J-Y(F)
-y(F)
)..«()-21/J«()Ki1(z,()~dTJ
)..(,«())-21/J(I«()) K i1 (z, ,«()) 1,'«()1 2 dedTJ
"|4 7 7 1 r J ) L lo)f ,-o)v | 3 = "(z),(,-r1lt'p1pQ' G),-r),>t ) =
-yEr l
( 8'z )
L
-yErl
( r\Ln
1/J(z) =
(7.8)
)..«()-21/J«() K i1 (, l(z),()dedTJ] (I-1)'(z)2
F
I "J r , t ' J j ! = . "(z),1 QJ,Wz())4,_o)v I| ) 3 lorw -yErl
)..«()-21/J«() K i1 (,(z),()
F
'1t,r'oN las ellr
Now, we set
~dTJ] ,'(z)2.
fl )..«()-21/J«()Ki1(z,()~dTJ·
"fl .bpJp(),2)v:r())d._o)v = ev j(z) =
(o'r)
=
(7.9)
se ue??rr^r sr pu" 'v ernsol?aql poorlJoq fl Jo Jo v -q3raue uo crqd.rotuoloq q ./ uorlcunJeq1'V ur lceduroc,t1a,rr1e1ar sr dr e)urs
Since F is relatively compact in .1, the function j is holomorphic on a neighborhood of the closure ..1 of .1, and 1/J is written as
=L
.v ) 2,"(z),1((z)L)/= ' ?? ) f i 1/J(z)
j(,(z)h'(z)2,
E
Z
.1.
-yEr l
'V uo uor}3unJ crqdlotuoloq e ro; 'leraua3 u1 les am {
In general, for a holomorphic function j on .1, we set
L
'r(z),1((')L)i =k){O 3 -yEr l
j(,(z)h'(z)2,
Z
E.1.
'V)z
rJ)L
ej(z) =
186 186
7. Weil-Petersson Weil-Petersson Metric Metric
r
call this Of e f the Poincar|, Poincare series of of /f for l-/ of of weight -4. -4. Similarly, Similarly, we define We call Poincare series series of of a holomorphic holomorphic function function on I/H for a Fuchsian group group l- acting acting the Poincar6 onn H H.. o
r
Theorem 7.2. Let ff be be an integrable integrable holomorphic holomorphic function function on A, ..1, i.e., i.e., Theorem
J[i[ v a y d n d y < x . If(z)1 dxdy
JJA
<
00.
on ..1. Then Poincare series for a Fuchsian Fuchsian group group r' l' acting acting on A. Then Lhe Poincar| seriesof ff for Let eOff be be the and belongs belongsto on compact compact sels A, and eOff converges sets in ..1, absolutely and and uniformly on conuergesabsolutely
A 2 (L1, r). A2(A, r'). center at z and radius r. Take Proof. Denoteby Denote by B(z,r) B(z, r) the closed with center closed disk with Proof. .4, and any compact subset acts properly discontinuously discontinuously on ..1, A. Since l-' acts subset K in ..1. Since r choose a 4, we can choose since has no fixed points in ..1, element 1 E f' -- {id} since every element, e r' {i.d} ha.s =
G)'la'ea,t lroQ))t'QYl = # | l "u,ulr(t(cDt' = #r f f K)la€an' JJ.,rur,urlr Thus get we get Thus we
dtdn e)'rs # D,rr(te))r' *r,,,,rrG)t F*,11., s 1r r 2 =
[ [ v r c y d , ( d , q
JJa'
Hence, turn implies that f converges K, which in turn absolutely and and uniformly uniformly on K, convergesabsolutely Hence, e @/ f/ isis holomorphic on ..1. 4. Next, for any 86 E we have have € rl-' we
= ef(8(z))8'(Z)2 (z), = o f (6(z))6,
L D
A'Q)2 ff(,08(z)),'(8(z))28'(z)2 0"6(r))t,(aQ))2
-yEr' 1el'
=L fe"6(r00"6),(r), I f(,08(z))(,o8)'(z)2 -yEr' 1eP
= ef(z). = Of (z).
Therefore, f belongs A2(A,f'). belongsto A Therefore,e @/ 2 (L1, r').
otr
corolwe have From the observation preceding Theorem 7.2, have the following corol7.2, we observation preceding laries. laries.
Jf
f
trplp ()'z)nx())/._())sv = f,lu JJ
eJeqm
'H uo 6O {zd sa{st7os puv '(J'H)zV o7sfuopq lzd uaqJ
on H,
(rlz)
where
f32f = $g
(7.11)
Then f32f belongs to A 2(H, r), and satisfies
' H > z ' t t p l p O ' z ) n > t O ) / r _ O ) fHff vf = ? ) U r g ) I| J J AH(()-2!(()]{H(Z,()dedTJ,
z E H.
(orz)
Ii
(7.10)
'(J'n)Jl ?es
(f32f)(z) =
Theorem 7.3 For an arbitrary f E Lf(H,r), set
uDrol g'Z uraroaqtr, ) I fi.r,olpq.ro
'Q'U) s\ (,t'tt)zv uo u( ' ' . ) Jl ot Pepuetxa 'reqlrnJ 'Q'H) 'H)zv lcnpo.rdrelef,suossreledarlt Jl to acedsqnspesolce sl (J 'lcedtuocsr ecurs'rrrrou$ql q1ralacedsqr€usg e sauroceq(.f 'g)iZ ,r"ql Ar
Then Lf(H, r) becomes a Banach space with this norm. Since R is compact, A 2 (H, r) is a closed subspace of Lf(H, r). Further, the Petersson scalar product ( " . )R on A 2(H,r) is extended to Lf(H,r). zEH
'* > l(4!lz-Q) Hudfr?;"= -ll/ll
Ilflioo = ess.sup AH(z)-2If(z)1 < 00.
Let Lf (H, r) be the set of all measurable automorphic forms of weight -4 with respect to r on H with
qtl,llt I/ uo J ol lcedser r{}l^{ 7- lqSraaaJo sruroJerqdrourolne elqsrns€eu II€ Jo }es eq} eq (l'U) &l l"l
.1 3 L,H ) z,(r)t =,e),t((z)t)t sausIlss pue 'Il uo uorlcunJ elqsrnwaru s sl 1l JI /i uo ..1,o1 lcedsar qlpa p- lq3rer'r go u.r,ol cttltl.totuolnv elqornsoaur, e pell"r sr H uo I uorlcunJ penler'-xaldruoc y .(n)zV Hy to! leure{ - g Surcnporda.req1 Sursn fq g uo slerlueresrp crlerpenb elqsrnseeu luuuoq 1f p eceJrns uueruerlf eql uo slerlueraJrp crlerpenb crqdrouroloq lrnrlsuor ileqs eA\
We shall construct holomorphic quadratic differentials on the Riemann surface R = H / r from measurable quadratic differentials on R by using the reproducing kernel ]{H for A 2 (H). A complex-valued function f on H is called a measurable automorphic form of weight -4 with respect to r on H if it is a measurable function on H, and satisfies fb(z)h'(z)2 = f(z), z E H, / E r. 7.1.3 Bergman Projection uorlcafor4
ueuErag
g'1'2
'(g'g ue.roaq;;o;oord eql 'Jc) 11 Jo sles lceduoc uo .{lurro;run pue dlalnlosee o1 se3rerruocJ rol I lo lO serras are)urod eql uaqJ,'((y zz/l - t)i - r)t)/6 - V) = Q)l fq uaLrS .;1,uo uortrunJ crqdrouroloq alqerSelur ue aq / le1 'H uo 3ur1ce dnorS uersqcnd € sr qrlq/'\ 'I < y qll,lr zy - (z)oL f.q pelereua3 dnor3 e aq J laT 'sarreserecurod e ;o aldurexe ue errr3e11y'a1du-tnxg
Example. We give an example of a Poincare series. Let r be a group generated by /o(z) = AZ with A > 1, which is a Fuchsian group acting on H. Let f be an integrable holomorphic function on H given by f(z) = (A - 1)/(z(z - 1)(zA». Then the Poincare series $f of f for r converges to l/z 2 absolutely and uniformly on compact sets of H (cf. the proof of Theorem 8.3).
'11 ut sles 'H u? Tcodu.toa J .tot utoutop loTuauopunt o s? ,I ataym uo filtu.totrunpuo fr.yaTqosqo safileaun eprs puoy 7t16t"t, e1l uo saxr?s eql puo
and the series on the right hand side converges absolutely and uniformly on compact sets in H, where F is a fundamental domain for r in H.
LH > z' Hu" 3 = Q)d Q'e)qr rr-Q)a "(z),1 z-e) ill luo*, 'YEr
r.p(z)
= I:
F
[11
AH(()-2r.p(()]{H(/(Z),()dedTJ] /'(z)2,
z E H,
3 dt fi^raag '6 riregoro3
Corollary 2. Every r.p E A 2(H, r) is written in the form
tu.tol aq7 u, u?llu,rr"s! (J'H)zV
'V uo o\ tottt V?ns V to pootltoqrl|tau o uo peu{ap t@ D c?sweNeUl'(J'V)zV ro,tr 'T fte11o.ro3 ) dt fr^taaa { uorTcun! ctyd.r,oruoloy
Corollary 1. For every r.p E A 2(..1, r'), there exists a holomorphic function f defined on a neighborhood of..1 such that r.p = $ f on .1.
'I'1, lf,nPord r"l"f,s uossralad
7.1. Petersson Scalar Product
187
r.8I
188 188
7. Weil-Petersson Weil-Petersson Metric 7. Metric
and F is is aa fundamental domain for rI in and in H. fundamental domain Proof. From From Ilflloo oo and and formula forrnula (7.3), (7.3), we we see seethat integral Proof. integral (7.10) (7.10) converges converges ll/ll- < 00 absolutely. It is clear that is holomorphic holomorphic on (7.4), we absolutely. It is clear that /321 on H. 11. From formula formula (7.4), we fzf is conclude that that /32f belongs to A A2(H,f).By an argument conclude argument similar simila^rto that in the the B2f belongs 2(H, r). By an proof of the the Corollary get formula (7.11). Corollary to Theorem Theorem7.2, we get 7.2, we formula (7.11). 0tr is easy easyto see seethat /32: Lf (H , r) f) - A Az(H, f ) is is aa bounded boundedlinear It is linear operator. operator. B2: L'f(H, 2 (H, r) The reproducing formula in Theorem 7.2 implies that that /32 7.2 implies is the identity mapping B2 is on A A2(H,f). projectionof L'f(H, We call call /32 the Bergman Bergman projection Lf (H,f)r) to fo A A2(H,f). on B2 the 2 (H, r). We 2 (H, r). can also also use use the U-norm Remark. Rernark. We can .Le-norm (q (C ~ t) instead instead of the Loo-norm. ,L--norm. Namely, Namely, ] 1) L\(H,f)r) be be the Banach Banach space spaceconsisting consistingof all measurable measurableautomorphic forms let LHH, forms respect to r I on H 11 such such that f/ with respect
iL
2Q (,)lo dxdv Ilfll~ = AH(Z)2- lf(zW dxdy <1oo00. llflli= Ilr^'r,r'-'olf we obtain the Bergman projection from Then we from L~(H, Llr(H, r) f) to A A2(H, ,i-) (equipped (equipped 2 (H, r) with LLnorm). ,Ls-norm). For details, we refer with Chapter 3, §§2 and 3. details, we refer to Kra [A-58], and 3, 3. $$2 [A-58],
The Bergman projection is is aa self-adjoint self-adjoint operator; operator; that is, is, we we have have the folassertion. lowing assertion. Theorem 7.4. A Ang two elements elemenlsff,,g Theorem ny two 9E Lf (H, (H,f)r) satisfy satisfy e L'f
(1 rf,sl n= {/,/32g}R. (f ,1zc) n. (/32f,g}R Proof Proof. Take a relatively relatively compact fundamental fundamental domain F F. for rf in H. fI. By using (7.11), the transformation relations formula (7.11), g, and Fubini's relations for AH, )s, KH, Kn, ff,, and g, theorem, we we get theorem,
(02f,g) (/321, clR n
1L [~1L -1 \se)-z@l,e)z Ks(ve),edxayl aurt i JL lr^n\s/ ,'..)|[~1 E/, L = iL JJrls(o-'l(o --=-------------------::;----[2:E iI1l,\H(z)-2s(z)ffi 4a,av rt rrF
f-
tr
I
l tT rttr
J
= [ [ ^ \ AH(Z)-' n ( , ) - 2 | D t f ^ ^ HAH«)-'/«() ( o - 2 f ( 0 MKH(1(Z),() d $ r 1 | 7 , d{d Q )q2] g1'(Z)'g(z)dxdy Q)axay = =
[ [ , r r t - 2 t r r t - " l - t r - e - - - , , l
AH«)-'I«)
Ltert
=
tr
AH(z)-' g( z)
(z)' KH(1( z), () dXdY] d(dq i
fl
AH«()-2 f«()
AH(Z)-2 g (z) KH(r-l«(), z) dXdY ] (r-l )'«()2 de d 17 0-')'G)'d€dn
X X
'YEr
F
= (f,?zcln .
otr
'
*(J'H)zv= ((t),D1t
'U)g 'ro1nc4.roduI ' ' *(J H)zV oTao (1) 71/(l to tustrlil"rourostuo sectuput nV = Qt)V fi.q uaar6 *(J'H)zV * (.1'H)g ty |urdtlour ?yJ g'L tuaroaql
Theorem 7.5 The mapping A: B(H, r) ~ A 2 (H, r)* given by A(J.l) = AI' induces an isomorphism of B(H, r)/N(r) onto A 2 (H, r)*. In particular, 'Il ul J roJ uletuop leluaur€punJ " sl d pue J/H
r in H.
'(J(H)z,V
- g"a.ra11
Here, R = H / rand F is a fundamental domain for
'npap(z)dt(z)d"[[ =a(6'rt) ) d't TJ
= (dt)dy
Next, we shall identify canonically To(T(r)) with the dual space A 2 (H, r)* of A 2 (H, r). Associate every J.l E B(H, r) with an element AI' E A 2 (H, r)*, i.e., a linear functional on A 2 (H, r) defined by
r€eull e fq paugap (l'U)zV uo leuollf,unJ '(t ' ''a'l '*(J ' /y luaurale us qll,rr (.t ' tt)zv p H)zV ) U)A ) r/ fre,re elsr?ossy '1xa11 eceds lenp eqt qll,rr ((.t),D',1fllecruouea fg11uap11eqsa,r,r, ,(J'H)"V
' Q)n I Q' H)s = (Q).r)'.r,
(eu)
To(T(r)) ~ B(H, r)/N(r).
(7.13)
el"q arn 'oOray = (.fhf Eurllas 'snql'((.i')ag)'Jol H uo J roJ sl"rtueraJrp rurerlleg p ('J'H)g aceds aq1;o Surddew .reaurla,rrlcelrns e sr lurod as€q aql ?" O uorlrafo.rd ,srag ;o 04; airrle,urap eql 'g raldeq3 ;o = ((;)ag)og aceds 6$ ur uaes s€it{ sv'1urod aseq eqt 1e (.t)alJo'(J'*H)zV p.rc3a.ra,r,r'(.7)ag qll/" (J)J Sutfgluapl lue3uel crqd.rouroloqaW se ((l)D",t '1urod aseq eql le (,f),2 fo aceds lua8uel ctqd.rouroloqat{} ((J)J)',2 fq elouaq
Denote by To(T(r)) the holomorphic tangent space of T(r) at the base point. Identifying T(r) with TB(r), we regard To(T(r)) as the holomorphic tangent space To(TB(r)) = A 2 (H*, r) of TB(r) at the base point. As was seen in §2 of Chapter 6, the derivative d>o of Bers' projection o, we have oqJ, 'l'Z'L
7.2.1. The Tangent Space at the Base Point lulod
aseg aqt 1e aced5 lueEue;
'aceds
We shall give an explicit representation for the tangent spaces of a Teichmiiller space. rellnruq?ral e ;o saceds lua3uel eql roJ uo.Ileluasardar lrcqdxa ue a,rtE 11"qs o1t
7.2. Infinitesimal Theory of Teichmiiller Spaces sarsds rellnl'IlqclaJ, Jo f.roaq;, lBtutselruVuI'Z'
L
' H ) z'(z)l 4 " o z- = Q) ( d Hr u ) zd
(zrt)
(7.12)
uplqo em 'uorlreford ueurS.rageql Jo uolt$Sep aql fg '("f ' H)zV Io lueruele wr sr
is an element of A 2 (H, r). By the definition of the Bergman projection, we obtain
.[[ "-= -(z)l4o t"plp19,..............., --rJr 1) 9 O)rl
tt
'(J'*H)"v l€rll eas e^1,snqJ,
which belongs to A 2 (H*, r). Thus we see that
'* H) z ' t p t u W " [ f Z
E H*,
;-
o1 sSuolaq qarq.n
=? ) [ 4 ' Q
Remark. In §2.2 of Chapter 6, the derivative d>o[P] of Bers' projection
",'11'f$":l?t1trtff.'"#511 eqruro uorlce rord (sras ;;,lt Tjffi:T ro1,r1,a saredg ra11nruqrral;o froaqa 1eurrsatruyq 'Z',
189
7.2. Infinitesimal Theory of Teichmiiller Spaces
68r
190 190
7. 7. Weil-Petersson Weil-Petersson Metric Metric
proof of of this theorem, we we need need the following For the proof following lemma due due to Teichmiiller. (Teichmiiller) Lemma 1.6. 7.6. (Teichmiiller) pE element JJ B(H, r) f) belongs belongsto to N(r) Lemma An element N(f) if if and and e B(H, only if if AI' A, = 0, i.e., (JJ, (tt,p)n Az(H, 0, i.e., all cP f). cp)R = 0 for all E A (H, r). only € 2 9 Proof of Theorem Theorem 7.5. 7.5. Clearly, Cleaily, A z1 is linear. Teichmiiller's Teichmiiller's lemma asserts Proof asserts that that A2(H,f)* N(l-).Every is written as as f/ = (.,rlt)n for some some t/J ry'E € A KerA = N(r). Every f/ E t/J)R for € 2(H, r)* is ( H , fr), ) , where w h e r e ( .", . ). n)R denotes p r o d u c t on d e n o t e sthe t h e Petersson P e t e r s s o nscalar s c a l a r product A z2 (H, on A2 ( H , fr). ). 2 (H, ^;rb,wewe see seethat JJ p E B(H,f)r) and and AI' Au = f. showsthat A z1is is Putting JJp = >"1/1/;, This shows € B(H, f .This surjective. Hence, Hence, by the homomorphism theorem surjective. theorem we we conclude conclude that A ,4 induces induces an isomorphism of B(H, B@ , r)/N(r) f ) /N (f ) onto A Az(H f)* . an 0D 2 (H,, r)*.
=
= (.,
Lemma 7.6. 7.6. We consider this lemma in the unit disk We consider Proof of Lemma disk .d 4 instead instead of H. fI. -i(z+l)lQ = -i(z Take aa Mobius transformation S^9given given by S(z) = which^sends Take + l)/(z -- 1), sends 1), which 4 and a"nd.d* A* to H and and H*, f1*, respectively. respectively. Here, .d Here, .d* 4* is is the exterior of .d 4 in C. C. We We set r' group acting l-l = S-l Fuchsiangroup S-rfS, acting on .d d and and .d*. 4*. Then JJ p E set rs, aa Fuchsian B(H,f)r) e B(H, corresponds to vu E B(A, r') ft) defined defined by corresponds € B(.d,
S'(z) u(z= ) =JJ(S(z» p(S )@-, ' " @S'(z) v(z) 5 ' \ z ),
zzE.d. €A.
Further,ci>o(j.t] O"lpl E Az(H*,1-) givenby corresponds to W iL E Further, to by eA e AA2(A*,f') 2(H*, r) corresponds 2(.d*, r') given
irr(z)==tb,1p1151'115,1272, w(z) ci>o(j.t](S(z»S'(z)2, zz E A*. e .d*. (6.8) in Now, formula formula (6.8) Now, in Chapter is rewritten rewritten in the Chapter 66 is the form form
-* Jr r (v( W\4 dudv, zzEe.d*. =-~ = v(z) A*. Jil w-z ll"ffiauao,
w(z)
7r
f is expanded expanded in the form Thus w 1 1
-1t w(z) i l r ( 'z = ) =--
Ladnnz-z -Cn( +n + 1 ) ,z Ee .d*, A*, € 00
1
7f u 7r
),
n=3 n=3
where where
an== n(n n(n-- l)(n lX" --r)2) an
Ji JJ^v(()("-'d(dn. f l
v«()(n-3 df,dTJ·
- 0 for all integers Hence, W f = 0 if if and only if Hence, if an an = integers n ~ equivalent 2 3, which is equivalent to condition to the the condition = 0a ,tclrn df,dTJ dutt = [ [ v«()f«()
Ji
J JA
for all holomorphic functions f/ in a neighborhood neighborhood of Ll 4 . By By the same same computation as as that that in (7.8), we we obtain
J[i[ ,rclro dtd,t= @,of)n. J JA
v«()f«() df,dTJ
(v, BJ)R.
Therefore,by Corollary Therefore, proved. Theorem7.2, the lemma lemmais is proved. Corollary 1 to Theorem 7.2, the
on
Gz'D
(7.21)
'(t'u)a = ,t '14"o= l[,t]ul'o urelqo a,ta(qI'z) ruo.r; '.re1ncr1redu1
In particular, from (7.15) we obtain
'(t'n)a )'t
p E B(H, r).
(7.20)
6z'D
'[4o\= tt4n)a
r.p[H[P]] = r.p[p],
'(tt't)'(gt'Z) 1eq1fldurr elnwroJ Surcnporda.reql pue
'raaoarotr41
Moreover, (7.16), (7.17), and the reproducing formula imply that
(O ;r )
(7.19)
'1t'1 1 )zy)d 'l d l,l- ffa ]A n 'elnur.roy aqt pue (gt'Z) '(lt'Z) ,(q 'reqlrng Surcnporda.r 1aBan
Further, by (7.14), (7.18) and the reproducing formula, we get
'(,f),rf F/raX '(21'2)pue (91'2)uorg ?sq1apnlruoca,rn
KerH = N(r).
From (7.15) and (7.17), we conclude that
.(,t'u)a ) ,t ,(dHru)zd = rlU l\n
p E B(H, r).
(er.r)
H[P] = Xilf32()..'kfi),
(7.18)
ot peel (tt't) p"" (91'2)selnutrog
Formulas (7.16) and (7.17) lead to
' ( t ' n ) g u - ( J ' H ) s :H H: B(H,r)
--+
HB(H,r).
Surddeur reeurl elrlrelrns e urelqo an '.{€.trsrql uI '[r/]g qerluareJrp rurerlleg f,ruorureq asaql II€;o aceds ro?)al eql (J'n)g U fq elouaq'r/ fq pacnpurloquataStptu,rornegzruontrvq ar{t eq o} pl€s u [r/]g stqa
This H[p] is said to be the harmonic Beltrami differential induced by p. Denote by H B(H, r) the vector space of all these harmonic Beltrami differentials H[p]. In this way, we obtain a surjective linear mapping (7.17)
et t)
.(z)lr4dt"_(z)ry = ?)l,tlH
,(q (,f 'A)A > [4n lueurelaue eusepaa\'(J 'H)g > r/ drare .ro;'txaN
Next, for every p E B(H, r), we define an element H[P] E B(H, r) by ' 1 1tp ) z y ) d ' 6
= [[6]illdl aq1 eABqair 'e1mu.ro; Surcnpo.rde.r uorlcefo.rd ueu3rag eql sr z5la.reqm
where f32 is the Bergman projection of L'2(H, r) to A 2(H, r). From (7.14) and the reproducing formula, we have pue (7I'l) urorg'(.7'H)eV ol(l'n)Jl3o
,(t,n)g > ,t ,(dg"U)zg = l4d (gt.r) sp1ar,( (61'2) elnurroJ'g'I$ Jo {reureg aql ur pal"ts s?.r\sy 'H)z '(z)lrt)"?7-=Q)ltt)d (qt'z) fq uanrS(L 'n)zV r/ {.reaaaler)ossearrl'pueq raqlo eq} uO u€ q}-r^r(l ' ) 3 lua{uale n)S 146 'd .{q pacnpu p4ua.taStptruDr?I?g?tuoulrvUeq1 l6ld $q} IlBc a14
(7.16)
As was stated in the Remark of §1.3, formula (7.12) yields
We call this p[r.p] the harmonic Beltrami differential induced by r.p. On the other hand, we associate every p E B(H, r) with an element r.p[P] E A 2 (H, r) given by (7.15) r.p[p](z) = -2
'H)z p ) c ! " ( z ) H y = ( z ) l d l r l &;D fq .ro3'arag '(.7)g 3o srotcal (l 'U)A ) ld',lrteugapa^r'(J 'H)"V ) d lueruela,{.raae ol sprlualegrprurerllag ?ruorur"qasn a1yalor luelrodun ue lue3uel luase.rde.r pa,{e1d (l'n)ev Jo slueualeuorJ peuuepsler}ueraJrprtuer?lagrruoureq pell€l -os 'g'Z ueroeqJ pue (6'9 uraroaq;) ureroaqlilla6-sroJlqv eq1;o s;oordaql uI
In the proofs of the Ahlfors-Weill theorem (Theorem 6.9) and Theorem 7.5, socalled harmonic Beltrami differentials defined from elements of A 2 (H, r) played an important role. We use harmonic Beltrami differentials to represent tangent vectors ofT(r). Here, for every element r.p E A 2 (H, r), we define p[r.p] E B(H, r) by (7.14)
sIBrluaraJIC rurerllag cruourrlall'z'z' L
7.2.2. Harmonic Beltrami Differentials sacedg raflnurq]ral 1o i(roaq; Furrselruyul 'Z'l
191
7.2. Infinitesimal Theory of Teichmiiller Spaces
16I
192 192
7. Weil-Petersson Weil-Petersson Metric 7. Metric
(7.17) and and (7.20), (7.20),we we also Using (7.17) also have have Using H 22 =H. =H. H
(7.22) (7.22)
prepa,rations, we get the following these preparations, we get following assertion. With these assertion. With Theorem 7.7 7.7 The The space spaceB(H,r) B(H,f) differentials for on H is is the the Theorem of Beltrami differentials for rI on d i r c c l sum s u m of o f HB a n d N(r), ( H , f )r) and N ( f ) , i.e., i.e., direct B(H,
- H B(H, B(H, r) f) = B(H,f) N(i-). B(H, r) EB o N(r).
(7.23) (7.23)
projectioniD deriuatiue~o iDo of Bers' projection The derivative al the lhe base basepoint induces inilucesthe lhe isomorisomorThe ~ at tbo : H B(H, - To(TB(r». phism ~o: particular, B(H, r) l) ~ T,(TB(-I-)). In /n particular, phism
r" Qg g D~=H HB(H, B( H,r To(T(r» r).) .
(7.24) (7.24)
Morcouer. Moreover, j t , p ) n = = (H[jJ],
p E (H,f). B ( H , f ) ,
(7.25) (7.25)
- KerH, = O. p E Proof. Take Take an an element element J1. N(i-). Since N(l-) = Kerf/, we we have have H[jJ) Proof. Since N(r) H[p] = tf 0. If € N(r). B(H,l-), an element element v E J1.p E r), then by the definition there exists B(H, r) with B(H,f) with e H B(H, exists an € p. Hence, (7.22) leads H[v]== J1.. Hence, (7.22) leads to H[v) 2 H [ v ] -= H 2 ["]= - H[jJ) H [ p ) -= 0, 0, J1.p == H[v) [v)
we obtain and we
H B ( H , l - nN(r) ) n N ( l -=) ={O}. {0}. HB(H,r) p E B(H,f ) is decomposed decomposedinto Every J1. e B(H,r)
= H[jJ] Hlpl+ HU'l), J1.p = + (J1. U'-- H[jJ)), and (7.22) (7.22) implies we have KerIlH = N(r). implies that that J1.pr-- H[jJ) and N(l-). Thus Thus we have (7.23). (7.23). It € Ker IIljtl E * is obvious from (7.f3) that @o:H HB(H,I-) T"(?:BQD is is obvious from (7.13) that ~o: B(H, r) ~ To(TB(r» is an an isomorphism. isomorphism. we have (7.24).Further, Accordingly, Accordingly,we have (7.24). Further, Teichmiiller's (Lemma 7.6) yields Teichmiiller'slemma lemma (Lemma 7.6) yields (7.25). 0 (7.25). Tangent Space of 7.2.3. Tangent of T(r) "(.f) at a General General Point Point give a representation of the holomorphic tangent space We shall give representation of space Tp(T(r» Q(T(l-)) of = l-'1. T(f) at an arbitrary arbitrary point T(r) point p = [W V ). = W T(f') V ) be the Teichmiiller space Let T(r translaspace of rl' v = w'V r(wv)-l. l(w')- I . Then the tra.nslaV tion mappinglw'l* ($2.3 of of Chapter 6) ofT(r) of "(.l-) toT(f') to T(r V ) induces mapping [W ) . (§2.3 induces an a,nisomorphism give an explicit of Tp(T(r» Z)(f(f)) b T"(T(f')).V ». We give to To(T(r explicit description desciption of of this isomorphism. isomorphism. Defining
we have
/ -!. \ rc= F(.\)= [ % !r - ' ^ l ] o(,,)-', . \(ta')"
t6r
sacedg rallBurqf,ral ;o froaq;
'[,t] = ([tr-r])'[,rn1
B(H, rV) be an isomorphism given by i(q ua,rr3usrqdrouost ue aq (r.i,'H)g
#)
(l'n)A
: nI Ia'I
= -&?rdiwl=t4^t 6r LV[P)
r-(.').(+
*
-+
[tm'1
Let LV: B(H, r)
[w A ) E T(r).
'(.r)z >
[WV).([w A]) = [w K ],
193
= lim F(I/+tj.l)-F(I/) = ((WV)z t ..... O
j.l ) o(wv)-l. (wv)z 1 -11/1 2
t
@z't)
Frursalruyul'Z',
7.2. Infinitesimal Theory of Teichmiiller Spaces
(7.26)
Denote by H V the projection of B(H, rV) to the space HB(H, rV) of harmonic Beltrami differentials for r v on H, which is given by (7.17). Then we have the following assertion.
'uollress€ Sur.troloy aql e^eq e1t{ueqJ,'Qt'D fq ua,r6 $ qstq^r'Il. uo nJ to! qelluereslP rurerlleg cruoureq Io (nJ'n)g U ecedsaq1 ol (,J'H)g Io uorlaalo.rdelq1nH fq alouaq
Proposition 7.8. For every p = [W V) E T(r), the mapping H V 0 LV is an isomorphism of B(H, r)/Ker~v ::! Tp(T(r)) to H B(H, TV) ::! To(T(TV)), where ~v is the derivative of Bers' projection at 1/. Moreover, H V 0 LV is independent of the choice of a representative W V of the point p.
'd o to enoqc ay7to Tutotl ayqto nm ea4oTuasa.tdat ng 'taaoano141 'rt 7o uotTcato.td,s.tag Tuapuailapusl nI o ng lo eatToaueparfi s? nOny/(,t'n)g ataqn '((n1)J)'.t = (t'n)g H ot ((l),f)d,t = lo utsttld.totuost uD s, aI o ng |utddout eW'(J)J > l^^l - d'fitaaa rotr 'g'L uollrsodor6
Proof. We consider TB(r) and TB(r V) instead ofT(r) and T(r V), respectively.
aql :urerEerp all?slnturuoc 3ut,ra,o11o; pue r(J'H)g Io suorlcalord (srag eq uplqo e^t ueqJ'flalrlcadse.r'r(nJ'H)g + (tr)aa i*\nnl Surddeur uorlelsuerl erll 4i ,(q elouaq ni1pue A p.I'(^J)aa ',(1a,rr1cadser'(^J),l,pue (J)JJo peelsul (^J)s1 pue (;)aS reptsuo?e14'{oo.r4
Denote by t[f the translation mapping (W V).: TB(r) -+ TB(r V). Let iP and iPV be Bers' projections of B(H,rh and B(H,rVh, respectively. Then we obtain the following commutative diagram: ,I
F
~
{-
r(l'n)g
1
1" I
l~v
"'l -^
Q)s,t,
~
~
'(^J)aJ
~
B(H,rVh r(nJ'H)fl
B(H,rh
Taking derivatives, we have the commutative diagram: :ure.r3erp elrlelnruruoc aql a sq am 'sarttleltlep Suqe; LV
G J'H )B .- ^ 1
( t' n ) a
~vl
B(H,rV)
1(~V)o
"(^o)T '
~
B(H,r)
t
Il ",
Tp(TB(r)) ---:---+ To(TB(r V)). '((^.t)a,t)",t
^
((t)sJ)oJ,
~
Thus, noting that KerH V = Ker(~V)o, and that LV and l.ii are isomorphic, 'crqd.rourosr are
4 pu" a,I Wql pue'o(r4i).reX
-
,IIraX
leql aes a.l!r 1eq1 3ug1ou'snq;,
we see that
'anrlralrnssl aql 'acua11 1eq1seqdurrtualoeql ursrqdrourouroq nI o zll ]"ql pue "(^O))raX= (n7 o 4i)ray = (nI o ng)rcy 'ngrr>[,= (^go
and that H V 0 LV is surjective. Hence, the homomorphism theorem implies that H V 0 LV: B(H, r)/Ker~v -+ H B(H, rV) is an isomorphism. Further, from (7.15) and (7.17), we get
'H ) z '(z)(l4"go 4)"-(z)u14- = (z)(14^t " "( ^9))z-Q)u ue- = Q)lttl(^1o ^11) '(tt't) pu" (gl'f) urog'raqtrng 1aBaar 'ursrqd.rouosl rresl (^J'tt)gtt <- ^6rcyf (J'H)g i n'I o nH (H V 0 LV) [P](z) = -2AH(Z)-2((~V)o 0 LV lJ.l]) (z)
= -2AH(Z)-2(l.ii 0 ~v[P])(z),
z E H.
Since ~v and l.ii are independent of the choice of a representative WV of p, we have the second assertion. 0
'uorlJess?puoces aql a €q D a,ra'd;o rol e^rleluasa.rda.re Jo e?roqc eql Jo luapuadeput ere li Pu€ r4i acutS
7. Weil-Petersson Metric 7. Weil-Petersson
194 194
and ""("(f')) ll )) with fplgD Remark. In the rest rest of this chapter, chapter, we we identify Tp(T(r)) and To(T(r with Remark.In with B(H, r)/Keri>1I and and HB(H,f'), H B(H, TV), respectively. respectively. We also also identify Tp(T(r)) with B(H,f)lKer6, Q("(f)) under HII h e iisomorphism s o m o r p h i s mH ' o 0 L 'II. . n d e r tthe H BB(H, ( H , f ' ) ll ) u
r
7.2.4. Connection with the the Kodaira-Spencer Kodaira-Spencer Deforrnation DeforIllation Theory Theory Connection with The subject of this subsection subsection is not needed needed for further development development in this space chapter. However, it it is interesting by itself. itself. We shall deal deal with with the tangent space chapter. However, of T(r) theory. cohomology theory. T(,l-) from the viewpoint of cohomology We recall the fundamental idea of of Kodaira Kodaira and Spencer Spencer on the deformation of complex structures. For details, details, we we refer refer to Kodaira Kodaira [A-57], [A-57], and Morrow and Kodaira [A-77]. [A-77]. was stated in §1.1 surface R r? is obtained by 1, a Riemann surface As was $1.1 of Chapter 1, patching domains D1 D j = z1(U1) Zj(Uj) in the complex plane. plane. The identification between between = zp(U1n set D* D j and D k is given by a biholomorphic mapping zjk Zjk of D kjj = Zk(Ujn of an open set Di and D1 = is considered Di. A deformation Rr of r? Uk) Zj(Uj n Uk) C D j . deformation R t R is considered Dpk onto Djk Dip z1(UinU*) U*) C D to be the gluing . ,t), viaaa different identification !ik( gluing of the same same domains domains Dj D1 via different identification /ir(.,1), = parameter where !ik( " t) is a biholomorphic mapping of D onto Djk with parameter tI = where /i1(.,1) is a biholomorphic mapping Dpi kj onto Di* = w f u n c t i o n s , (h, z 1 p ( z y ) If .I f all a l l !ik(Zk, a r e Coo ( 1 , , ... . . . ,,t t- m ) ) such s u c h that t h a t !ik(Zk, C - functions, wee f i x ( z p , t) t ) are f i p ( 2 p , 0) O ) = Zjk(Zk). particular,il get a differentiable family {R h of Riemann surfaces. In particular, if /jk(Zk, t) surfaces. get a differentiablefamily { /?,t }, Riemann f 1yQp,t) are holomorphic, we have a holomorphic family of Riemann surfaces. From here surfaces. here we holomorphic have a are family on, closedRiemann surfaces. surfaces. we consider differentiable or holomorphic family of closed on, we consider aa differentiable In order to know the actual dependence of the complex structure of R of.R1 dependence complex t on the parameter t, we follows. For simplicity, we consider as follows. consider its infinitesimal deformation as = 1, we coveringof R, and and is aa locally locally finite finite open open covering we assume 1, that {U assumethat m = j h is {Ui}i plane. Take that every complex plane. Take the differentiation of Di is is an an open open disk in the complex every Dj = O. vector fjk(zk, t) with respect as aa holomorphic holomorphic vector is regarded regarded as respect to tI at t = 0. This is fi*(rp,t) field written as as is written field on Uj Ui n f\ Uk, Up, which is
,t 1 *=
}f;r, ^, 4 fi;(zr'o) ari'
The relationfir(fxiQi,t),r)
- zi on Ui fl [[ gives
? i n * 0 6 1= 0 Further,the relationfiiltt,t)
zk= zki(zj)'
on
U1flUp.
= f 1t(f *t(tt,t),t) on Ui fiU* i [/z yields
0i**0ul0q =0 0jk+Okl+Olj=O
on on
ujnUknU U 1 f i U P n lU. 2 '
= {Ojk} Thus element[0] the first first cohomology cohomology that 0d = definesan an element Thus it follows followsthat [d] of the {01x } defines group in germsof holomorphic vector holomorphicvector group Hi(R, coefficients in 8, the sheaf sheafof germs //1(R, 8) @,the @)with coefficients fields we refer referto to Gunning on R. For the the cohomology cohomologytheory, theory,we Gunning[A-40]. fieldson .R.For [A-40]. This complexstructure structureof of sensethe the derivative derivativeof the the complex representsin in some somesense This [0] [d] represents - 0, of R. R deformation. of R. at tI = and is is called calledan an infinitesimal infinilesimal deformation /?r respectto tI at 0, and t with respect We (R, 8) the of of R. ,R. the space spaceof infinitesimal infinitesimaldeformations deformations call Hi Hr(R,@) We call
Eur11n4'!17 uo pleg rot?e^ *C s sl qcrqn '(fz)fr,z/((lz)lrzSlto((!z)nz)rd tf - la ''e'ltlqeqd q3= lre/gfo a/vl ''tt)u ln uo pleg rolcel crqd.rouroloqe sr las lzg/g(fz)tlp - r!6 qtea ?sql qcns sr qcrqirl {'t!0I = B alcfaoc e dq paluase.rde.r (O'A)fl {ue a1e;'UJo { lp} Surreroc uedo eql o} el€urproqns > lueurala [g] flrun yo uorlrlred e eq { !6 } 1a1 'sr'ro11og se ua,rr8sl *9 Jo Surdderu asralur eqJ
Then ()jk is a holomorphic vector field on Uj n Uk, and () = {()jk} induces an element [()] of H 1 (R, 8). This [()] depends only on the equivalence class [fJ] of fJ in HO(R,£0,1(",-1))18HO(R,£0,0(",-1)). It is clear that the mapping 8* defined by 8*((J1-]) = [()] gives a homomorphism of HO(R,£0,1(",-1))18HO(R,£0,0(",-1)) to H 1 (R, 8). The inverse mapping of 8* is given as follows. Let { Pj } be a partition of unity subordinate to the open covering {Uj } of R. Take any element [()] E H 1 (R, 8) which is represented by a cocycle () {()jk} such that each ()jk ajk(zj)oloZj is a holomorphic vector field on Uj n Uk. We set Vj I OZj = I:k Pk()kj, i.e., Vj = I:kPk(Zkj(Zj))akj(zkj(Zj))lz~j(zj), which is a Coo vector field on Uj. Putting
=
a
=
'{o'a)tn ot ((t-r)0,03'a)ogQl(G-")r,03'a)oH;o ursrqd.rourouoq e se,rr3[p] = ([4)-g dq '((r-v)o,og'u)oug/((,-v)r,03'u)o1lul pauuep Surddeur aqr realc sr r€ql 1I *9 '(O!)fl rl p ssel) acuel€Arnba eql uo fluo spuadap qq.f, yo lrll [A] [6] luaurala .s fl rfB uaqJ, u€ se)npur{'t!0} = 0 ptrr-'rtng !2 uo plag rolce^ crqd.roruoloq UJ·
on
uo
ttzo. lzo - - 'tte - - - : - ( ! z ) ! a:" (cz)'ta
a
' q n U l.n
a
n Uk.
(7.27)
Qz't)
()'k = Vk(Zk)- - v·(z·)J OZk J J OZj
e
a
't2U ln uo seqslu€Alzg/gla - rzgf gta les aM fra,re 1eq1 fl U uo pleg rolra^ e sa,rr3{!zg/gla} teUt uorlrpuo? }uar?lgns pue f.ressacauV'U uo pleg rol?a^ *g 1eqo13e eugap sfernle lou seop {ftg/glo} 'rarreruoll '12 'f4 lrl = lggf lag uo pleg rolla^ uo -C € sl lrQlglo ueqa fo uorlnlos e a{€l '{fzpl[Zplrt] = il.{ue rog uotlenba eqt Flluareglp Jo '!ag/lag = frl qur* {lzp/lzpfd },(q paugap sr og pue'g' uo {lzglgfa} - o plng rotrel -C e f,g uarrr3sr ((r_")0,03'A)oH 3 a luaurale u y ' l I u o l € I l u e r a g l pr u r e r l l e g - C e ' ' e ' l ' U r o ( I ' 1 - ) e d , { 1p { ! z p / f a p f r t } r/ uno; IerluereJrp -C € sl ((,_r)r,03'A)oH Jo luetuele uB ?eq} eloN aqt ul ('tualoaql s(1ln€eqloq;o ecuenbasuo?€ sI srql) 'fe,r 3urmo11oy
in the following way. (This is a consequence of Dolbeault's theorem.) Note that an element of HO(R, £0,1(",-1)) is a Coo differential form fJ {fJjdzjldz j } of type (-1,1) on R, i.e., a Coo Beltrami differential on R. An vlJ 10 Zj } on element v E HO (R, £0,0 (",-1)) is given by a Coo vector field v R, and 8v is defined by {fJjdzj Idzj } with fJj = OVj lozj. For any fJ = {fJj dZj I dZ j }, take a solution Vj of the differential equation oVjlozj = fJj on Uj' Then vjolozj is a Coo vector field on Uj' However, { Vj I Zj } does not always define a global Coo vector field on R. A necessary and sufficient condition that {Vj I Zj } gives a vector field on R is that every vk8!ozk - Vj8!OZj vanishes on Uj n Uk. We set
aa
aa
={
(('-v)n,03'A)oHg . ' ^
( o ' a, ') , u- # ( \
'-' ) ''n3W)oH
*t
We construct the isomorphism
usrqdrotuosleql lcnrlsuol eA\
' ( ( " ) o , r O ' A ) o H= ( A ) z V
pue '(r_")O - O Then we have
a^?rl allr ueql '!, Jo suollces-ssolr er€ q)rq1rrsenl"A qllllr surroJ-I ctqdrouroloq;o sur.ra8Jo Faqs aW - (y)o,rC) pue 'r_v suorlres-ssorr er€ qcrq^\ senl€^ qlr^r Jo sur.raS;o eqt = (r_r)r,03 (1 'g) ed,t1 surroJ Jo lerluaregrp Jo Jeeqs *C 'r_y sura3 go aql = (r_r)0,03 Jo suorlf,es-ssorc Jo Jsaqs *C - (r_!r)O
with values which are cross-sections of "'.
0 ,°(",) = the sheaf of germs of holomorphic I-forms 1
with values which are cross-sections of ",-1, and
£0,1 (",-1)
= the sheaf of germs of Coo
differential forms of type (0, 1)
£0,0(",-1) = the sheaf of germs of Coo cross-sections of ",-1,
'r_v
0(",-1) = the sheaf of germs of holomorphic cross-sections of ",-1, Jo suorlres-ssorccrqd.rouroloq;o sur.raEJo Jeaqs aql
:uorl€1ou aq1 ldope e1t '{n g lp uo 1l,r/t fq ue.tr3 sr rfv uor?cunJuorlrsu"rl sl-r ''e'l 'g, uo alpunq eurl Iecruou€r eql aq x p1 'too.t4
Proof. Let", be the canonical line bundle on R, i.e., its transition function "'jk is given by IIzjk on Uj n Uk. We adopt the notation:
'yutod
Theorem 7.9. The space H 1 (R, 8) of infinitesimal deformations on R is identified with the tangent spcae To(T(R)) of the Teichmiiller space T(R) at the base point.
esogeqt p (A)J acoilsu11nu,ycpalaqTlo ((U),D"1eocds Tua|uot ayl qpn p?*l -uep, st A uo suorlout.totap (O'A)rn acodsaqa.6.2 urarooq.1, Tou,nsal.?u{u?lo 'e'l
7.2. Infinitesimal Theory of Teichmiiller Spaces
195
sacedg rafl]urqf,ral;o
96I
froaq;
Furrsalusul
196 196
7. Weil-Petersson Weil-Petersson Metric 7. Metric
pi = aVj/aZj, get an we get g HO(R,£0,1(,.,-1». /-lj an element element/-lp = {/-ljdzj/dz Ho(R,t0'r(rc-1)).Then then AailAzi, we {pidzildri}j } E 1(R, 8) the of H to HO(R, £0,1(,.,-1 »/8HO(R, £0,0(,.,-1)) sending the homomorphism homomorphismof ^I{1(.R, Ho(R,to,r(n-t))/6Ho(R,8o,o(,6-t)) O)to sending givesthe the inverse inversemapping mappingof 6*. d*. [8] [d] to [/-l] [p] gives we have canonicalisomorphism Next, Next, we haveaa canonical isomorphism , , 1 o( 6 ' ) - 1 : H L ( R , o ) * where where
A2(R)*,
A : H o ( R , t o , L( n - | \ I 6 H o ( R , t 0 , 0 ( , i - 1) ) -
is defined defined by
A2(R).
JL tl
= I I /-l(z)
(This is proof of Theorem is aa consequence consequence duality theorem. theorem.See the proof Theorem7.5.) (This of Serre's Serre'sduality Seethe 7.5.) (Theorem 7}("(r?)) is is isomorphic isomorphicto A ,42(,R)* follows the Since (R)* (Theorem 7.5), it follows that the SinceTo(T(R» 7.5), 2 1 spaceH H'(R,@) is identified identifiedwith the the tangent tangent space space infinitesimal (R,8) is infinitesimaldeformation deformationspace point. This ?(.R) of R the base basepoint. This completes completes To(T(R» f"Q@D of the the Teichmiiller Teichmiillerspace spaceT(R) .Rat the proof of Theorem 0D the the proof Theorem7.9. 7.9. 1 Now, (R, 8) is of we wish identifiedwith aa subspace subspace Now,we wish to see seethat H H'(R,@) is canonically canonicallyidentified 1 groupH whichis whererf is is aa the (r, II cohomologygroup I11(l-, I/2), is defined definedlater, later,where the first first Eichler Eichlercohomology 2 ), which polynomialsin one Fuchsian onecomplex va,riable model of R, -R,and and II I/22 is is the the space spaceof polynomials complexvariable Fuchsianmodel of degree the space spaceof holomorphic holomorphic most two. two. Note Note that II IIz2 is is regarded regardedas as the degreeat most vector Further,II If22 is is canonically canonicallyidentified identifiedwith vectorfields fieldson on the the Riemann sphereC. Further, Riemannsphere at C), which C) at the C) of 8£(2, sI(2,C) whichis is the the tangent tangentspace spaceof 8£(2, the Lie Lie algebra algebra5/(2, S.L(2,C) SL(2,C), the the unit element. element. Let 11", R) .R with covering coveringtransformation transformation (H,r, ,R) be be the the universal universalcovering coveringof R Let (H, group group r. usethe the notation: notation: l'. We We use
B(H,r) under11", er, the lift of HO(R,£0,1(,.,-1» .Ho(.R,to,t(^-t))under B(H,r) = the = V(H,r) the r. the lift lift of HO(R,£0,0(,.,-1» Ho(R,50'o1r-t))under under11". V(H,r) element Then jj. for smooth Beltrami differentials differentialsit for ron I on H. I/. An element Then B(H, .l-) consists consistsof smooth 6(I/, r) of v6 E V(H, r) is a Coo complex-valued function on H such that vo,h' function on 11 such that 6o7f for eV(H,l-) is a C- complex-valued 7'== v0 for a n y/ TE€ r. f. any j-). Obviwhichbelongs For V(H, r), we we set set 8v belongsto B(H, ObviFor every everyv6 E 60 = av/az, 7itf 02, which B(I/, r). eV(H,f), ously, isomorphi c to B(H,r)/8V(H,r). is isomorphic B(H, f ) I AV@, D. ously,HO(R,£0,1(,.,-1»/8HO(R,£0,0(,.,-1» f/0 (,R,to't (*- t)) / AHo(R,go'o1r- t )) is we put For jj. E r), we For any any it B(H,l-), e B(H, €H ( F Q ) , zz E ^ , \ = {jj.(z), (L(z) H
/ r ( z r = 0,1 0 , zz E€ CC -_ H. H.
Let F be satisfies the differential equation be a continuous continuous function on C which satisfies
o nCc f~~f ==,it on
(7.28) (7.28)
2 e 00. as z -+ oo. For For example, example, ) as in such that F(z) .F(z) = O(lzI in the the sense senseof distribution distribution such O(lrl2) we we see and Theorem Theorem4.37 4.37that the the function function seefrom from Lemma Lemma4.20 4.20and
LOL
saredg rafl]uqf,raJ;o
froaq;
Furrsalrusul
7.2. Infinitesimal Theory of Teichmiiller Spaces
jrJHf ((( - il(() dedT} 1)(( - z)
(7.29)
ttp?p
("-)Xr-))) 0t
GF-=?)t
"[l
1r
\62'L)
'e'l
F(z) = _ z(z - 1)
197
-oloq e sl si$oqsBtur.uals,1fa11'rl to1C prlualod reqtou€ rod l€rl} .{ O 'r! ro11o4ua7od ue g u€ r{ensner eM '[gg-V] €rX uI 41 .ra1deq3Jo ''I "tuurerl osle aas '(86'l) Jo uorlnlos perrsape sarrr3 gives a desired solution of (7.28). See also Lemma 1.4 of Chapter IV in Kra [A-58]. We call such an F an potentia/for jJ.. For another potential G for jJ., Weyl's lemma shows that G - F is a holomorphic function on C. Since G(z) - F(z) = O(lzI 2 ) as z -+ 00, it follows that G - F is a polynomial of degree at most two. A potential F for jJ. is not always contained in V(H, r). A necessary and sufficient condition that FE V(H, r) is that FO l h' - F vanishes for any I E r. Now, we set FO l XF(-Y) = - F, I E r.
* zse("lzns:ili;"r6;lf,",Xj:Jt#Tj,t'"H'i,f.;fl s^rorror reqr r!,oo 'lroN las art 'J ) L {ue.rog saqsru€A -,Lf Log leqt sr (l'n)A, f d }eql uor?rpuof,luerclgns f, pue f.ressacauV'(J'H)ft ul peur€luor sfe,ra.p1ou sr / roJ dr lerluatod y ,vo,{
'J)L ',t-
ii=-W)rx I' I
,zII * ,1 :.{X Surddeur e urelqo ain 'acua11'211 3 (L).rX l"ql s^tolloJ l! '/ roy 1er1ue1ode oqe sr ,1"/l"og ecurg
Since Folh' is also a potential for fl, it follows that XF(-y) E II2 . Hence, we obtain a mapping xF:r-+II2 ,
uorppu@ a1cfrcocaql sagfll"s rlorq^\
which satisfies the cocyc/e condition .J
) zL,rL
,(zt).tx
+ ((rr)rx).(zt)
= (zLotL),tX e\^ zil uo slce .7 'a.ra11
Here, r acts on II2 via
'#;=61-r 'Y
r,
' 2 2) d ' J ) L
POI I.(P) = - "
IE
P E II2 .
'a = (a).L (t)(a)g lsrtl q)ns zil orul J yo Surddeureq?.{q uanrSsr q)lqr'rd p fi.lopunoqoc eq1q (a)g araqar'(4.)9-p.rX - cX sn{I'til ol sEuolaq reqloueq rJI I C d ueql'r/ ro;1er1ua1od
If G is another potential for fl, then P = G - F belongs to II2 · Thus Xa = XF + 6(P), where 6(P) is the coboundary of P which is given by the mapping of r into II2 such that 6(P)(/) = I.(P) - P. For every il E B(H, r), we have a differentiable family {Htl r t } with Ht = It(H) and r t {It I It Itololt- 1 , I E r}. Here, It is the quasiconformal mapping Wtp of C with Beltrami coefficient tfl, which is constructed in §1.1 of Chapter 6. This rt corresponds to {!ik(-, t)}. For every I E r, denote by i' the derivative of It with respect to t at t = O. From Theorem 4.37 in Chapter 4, t~e differentiation j[jl] of It with respect to tat t = 0 is given by (7.29), that is, l[jl] is a potential for fl· Since Itol = Itolt for every I E r, we have
aleq a^r'J > L f.rara rog rtotl-- l,o!l"acurs'1/ rog 1er1ue1od e sr [r/l/ 'sI '(AZ'D,tq uaar3 sl = lpql l l" I ol lcadse.rqlp y lo ltlll uorprluaragrp a{1 0 '7 '0 -raldeqg q /t'7 ueroaqJ ruo.1{ I Ie I o1 lcadser qll,t{ ,,! Jo e^rle^lrep aql L dq alouap 'J ) L frara rog '{(t'.yf1} o1 spuodsa.rrocr.7 qql 'g .re1deq3 Jo I'I$ ur pal?nr?suoc sr rlf,rqtt'r/1 luarcgaor r.ueJllag q?l^r C 1o dtm Surdderu - tL ,; pue (ff prrrroJuo)rsenbaq1 sr t/ 'a.ra11'{.1 > L , | *I = )T ,JIoLor! - rg17 qfli* {r,t/rU } ,(t1urnlelq"rluereJrp e eleq a^'(J'H)g > r/ f.rarrarog
=
=
j[jl]ol =
i' + j[jlh'·
',IIil{r(=Lo[rfll
ultslqo a/rr snqJ
Thus we obtain
j[jl]ol ._ i' Xj[~l(-y) = -1'- - J[J.l] = I"
r.
'r)L 'i=Wlf-h=@)t!ltY IE
'mo1q 1es aair 'QZ'D,(q paugep o1 spuodsallel [/)/X leql slsaE3nsslqJ B
This suggests that Now, we set
Xj[~l
corresponds to () defined by (7.27).
,lr_,il=' = (cr, J )|H !_1,s= (zII'J){
elaqAr
where
198
7. 7. Weil-Petersson Weil-Petersson Metric Metric
B 1(r, (r, II = 6(IIz), 8(II2), II2) BL 2) -I I z , xX(T1,2) 2Zl(r,II2) 1 ( f , I I 2 ) = {{X - II2, }. ( t n z ) = ( t(T2)*(x(,d) z ) . ( x ( t r ) ) ++x (X(T2), z z ) , 7 t , 7 2E€ lr}. x II yX:: |r +
=
,1,,2
=
H 1 (r, II is called called the first Eichler cohomology cohomology group group of l. r. nz) This Ilr(f, 2) b first Eichler
Theorem 7.LO. 7.10. Let Let B* {3* be be the the mapping mapping Theorem
B*: B(H,D/6v@,f) - Ht(f,IIz) defined bg by defined,
(3* ([ji]) = = [xr], [xF], 0.(li'D
where F is a potential potential for for p. jl. Then Then B* {3* is an injectiae injective homomorphtsm. homomorphism. where If p,i Proof. First, we show show that B* (3* is well-defined. well-defined. If ji, ii eE B(H,f) B(H, r) are are equivalent, equivalent, then there there is an element element 6v eE V(H, with t, v = irji ++ AilAz. ov/oz. Let FF and G be V(H,f)r) with ii, respectively. respectively. We put put potentials for pjl and /,
=
( F ( r )+ * i lv(z), ( z ) , zz eE H Go(z) H,, G " ( =z ){ -F(z) c -- HH.. zzEeC oi,i, t F(z), - v,' d(z) - 0 Q every ( E seen that Since that for every .i-, it it is seen € R, v(z) 61t for every, every 7 E 0o7 = Since VOl € r, 2 11. Thus Go oo through H. Go as z -+ 00 d(z) = O(lzI O(lzl2) as that v(z) ) as I/, and that as z -+ ( through H, - ii. is also also a /. Hence, Hence, Go Go is is a continuous satisfies oG%z AG"lAz = continuous function on C, and satisfies some IIz. 6(P) potential for ii, = XG + c5(P) for some P E II . Noting e l', which implies that XG + 2 X6 XGo o - XF, we = XXF r l 6+ ( Pc5(P), ), in H H |1((r, f , I I II 2 )2. ). a n d hence h e n c e[XG] that and h a v e XG t h a t XG 16 = [ x 6 ] = [XF] [ X r ' ] in F , w e have X 6 o. = X homomorphism. This implies is well-defined. It is clear that {3* is a homomorphism. well-defined. It is clear implies that {3* B* B* Then, 0. Then, Next, we injective. Assume Assume that (3*([ji]) we verify verify that (3* is injective. B.([/]) = [XF] B* is [Xr] = O. -P' = we see 6 6(P). there exists an element P E II such that XF = c5(P). Putting v = F P, we see such IIz exists an element there e 2 XF p. toV(H,f), and 06 d belongs that v6 is and Xii = O. Thus v belongs to V(H, and [)v = ji. potential for for jl, and is aa potential X6 9. 1.r, p] = = 0 in B(H, is injective. Therefore,{3* This shows r)/[)V(H, r). Therefore, is injective. 0tr B(H,f)I)V(H,f). showsthat [ji] B*
=
=
n,
We canonical homomorphism shall construct aa canonical We shall
P t H t ( r , I I z )- B @ , r ) l A v @ , r ) . (6-)-r the proof of )-1 in the (It is and (15* 6* and and {3 correspondto 8* consideredthat {3* is considered B correspond B* and Theorem respectively.) Theorem 7.9, 7.9, respectively.) three condicondithe following following three Choose which satisfies satisfies the on H which smooth function pp on Choose aa smooth tions: tions:
( i )00 ~5 pp~Sl.r . (i) of r f finite subset subset JJ of of zz and and aa finite (ii) neighborhood U U of there is is aa neighborhood (ii) For 11, there For each each zz E € H, = 00 on such every 7 E f -- J. J. on ,(U) for every, such that pp = €r 7(U) for - 1I on p"t/) = o n H. H. (iii) ( i i i ) L"YEr D ? € r po,(z) proof of existence, of its its existence, For aa proof Such parlition of on H. f/. For of unity unily for for rl- on is called called aa partition Such aa pp is see in Kra Kra [A-58]. V in of Chapter Chapter V seeLemma Lemma 3.1 3.1 of [A-58]. 1 For (r, II2 ), we we set set any [X] //t(l-,I12), For any eH [X] E
) zd 'rrl
'*
= (
'Q 'u)a
h(H[J-ld,H[J-l2D
J-ll,J-l2 E B(H,r).
= (lerllH'ltrt)n)rt lltrtos'[zrl]d,)
where F is a relatively compact fundamental domain for and (7.31) yield
p1ar,{ (19'2)pue (21'2)selnurrod'I{ ul J roJureuop l"lueurepunJlceduroc,{1arrr1e1e.l € sr dr areq^l
iL
r in H. Formulas (7.17)
' f i p x p( 4 e r t( z ) r d r(z)uytfl = (ed,vt)tt
AH(Z)2J-ll(Z)J-l2(Z)dxdy,
(re'z)
h(J-ll,J-l2) =
(7.31)
,{q paugap sl (J'77)g ) ztt'rrl s?ueueleo.tlJo lcnpord reuur eqf .(l,U)A uo lcnpord Jauur u€rlnu.ra11e SurarS r(q lrels er'\ acueq pue,(L.L uaroaql) q r p ( ( J ) J ) o , 6 p e g r l u a p re 1 4 . 1 u r o d a s e q a q t w ( 7 ) J l " (t'n)AU (Q)t)"t aceds lua3uel crqd.rotuoloqeql uo lrnpo.rd rauur uer?nura11e a,u3 a.tr,11eJo lsrrd
First of all, we give a Hermitian inner product on the holomorphic tangent space To(T(r)) of T(r) at the base point. We identified To(T(r)) with H B(H, r) (Theorem 7.7), and hence we start by giving a Hermitian inner product on B(H, r). The inner product of two elements J-ll, J-l2 E B(H, r) is defined by .I.g.z
7.3.1. Definition of the Weil-Petersson Metric crrlatr l uossralad-Ila
\ aql Jo uorlrugao
'rrrlal'u
We shall define the Weil-Petersson metric on T(r) and show that it is a Kahler metric.
ralqgy e sr 1r leql aoqs pu€ (,1)Z uo crr?etu uossraledlra1\ aql augep II€qs e A
rrrlatrN uossralad-lla^. .t.z
7.3. Weil-Peterssol1 Metric '(l'n)zV oluo 5/ray yo usrqd.rourosr D ue sr 12leqt pagrra^ = ([X])o tes eM.[X] ssep acualenrnbaeq1 uo,tluo 41I',,,t (//// spuadeppue'(J'H)zV luauela ue sr,sarurl aa.rq1/Jo uorlsrluareJrp aql Jo 'J roJ = W)X t€ql qcns l? uo uortrunJ 1eq1 parord q tI ) I II€ / ,L/Lol crqd.rouoloq€ sl g - otr - ./'"nql'(l'U)A ) g auros rct Zglgg = Zgl"lg segsrles (Og'Z) fq pelrnrlsuoc og uorlcun; aq1 (6/.ray I [X] .tue rcg.too.t4
8v/8z for some v E V(H, r). Thus, f Fo - v is a holomorphic function on H such that X(-y) = f 0,17' - f for all , E r. It is proved that f"', the differentiation of f three times, is an element of A2(H, r), and depends only on the equivalence class [X]. We set a([xD = fill. It is verified that a is an isomorphism of Ker{3 onto A 2 (H, r). 0 8Fo /8z
=
=
Proof For any [X] E Ker (3, the function F o constructed by (7.30) satisfies
'J ro{ g uo su.tto{ctyo.tponb acodsaq7qTtmpa{cTuaptst j"tay .II.Z uoltlsodo.r4
quadratic forms on H for
r.
Proposition 7.11. Ker{3 is identified with the space A 2 (H, r) of holomorphic
culd.r,outolorl Io (.t'tt)ev
'flaarlcedse.r'sasso1cfi6o7oruot1oc ralqcxfl pu€ sassDl, fr,6o1oruot1oc sragr pe1ec a.re6/lay pue *5/ru1Jo stuetuelg
Elements of 1m {3* and Ker (3 are called Bers cohomology classes and Eichler cohomology classes, respectively. 'd n>L O *drul = (til'J)tH
pue 'alrlcel.rns sr 6/ '(91'2 ua.roeql ]r) e,rrlcafursr *6/ pue uorlcnrlsuor eql uord leql s1l\olloJII'p! = Wql rselc sr lJ,*5/ *dod 5/;o [/] or [X] spues qrlr{,ra(J'n)A.g/Q'H)g - (21'J)fl:6/ tusrqd.rouotuoqe ure}qo arrr,ecua11 '(eII'J)rH sselc acuale,rrnbaeqt uo,{1uo spuadap (.t,n)Ag/e,tilg ) "l [X] o1 s3uolaq zg/"}g - r/ snql [r{ sselc acuale,rrnbaeq} t€rl} uees sr tI.(J,H)€l
Thus J-l = 8Fo/8z belongs to B(H, r). It is seen that the equivalence class (j,t] in B(H, r)/8V(H, r) depends only on the equivalence class [X] E Hl(r, II2). Hence, we obtain a homomorphism (3: H1(r, II2) --+ B(H, r)/8V(H, r) which sends [X] to (j,t]. From the construction of {3 and {3*, it is clear that {30{3* = id. It follows that {3* is injective (cf. Theorem 7.10), {3 is surjective, and
= Foo,h' -
Fo,
'J
,E r.
) L ' o , 4 - , L 1 L o o g= ( L ) X
X(-y)
?eql q)ns _iTuo uotl)unJ _C e sr od. uaql
Then F o is a Coo function on H such that -rEF
J)L
'H > z'(z)(L)x((z)L)d 3p(-y(z))X(-y)(z),
z E H.
(oe'z)
L
= G)otr
Fo(z) = -
7.3. Weil-Petersson Metric
(7.30)
199
f,ulaw uossreladlral|t'l
66I
7. 7. Weil-Petersson Weil-Petersson Metric Metric
200 2OO
pr,ltz e 7.12. For anA any J.Ll,J.L2 E B(H,f), B(H, r), the the following following hold: hold: Lemma 7.L2.
= = h(Hlpi,u[pzD h(H[J.Ll],H[J.L2]) = = (Hlpi,plpzDa (H[J.Ll],
h(Hlttrl,nlyz)) h(H[J.Ld,H[J.L2]) = h(Hltttl,pz) h(H[J.Ll],J.L2) = h(h,Hlpzl), h(J.Ll,H[J.L2]),
(7.32) (7.32) (7.33) (7.33)
(7.18) and (7.31)lead Proof. First, First, (7.18) and (7.31) lead to Prool.
= (.xh-J.L2,{32(.xh-J.Ld) - (.,\h-J.L2' *, n 1p1) = (\'uE,9r(r ?,f,t )R" h(Hlp rl,t'J.L2) (^hE, .xh-H(J.Ll])R h(H[J.Ld, r) = ". "
(Theorem7.4), Since f32 is self-adjoint (Theorem 7.4), we we have have Since the Bergman projection B2
p), \'nE) n = h(yr, n lyzD. h(H lpt), p2)= (9 z(o?n get (7.22),we In particular, using using (7.22), we get In particula,r, h(HIptl, nlpz))= h(h, H'lpzD= h(pr,H[pzJ), (7.31), we we obtain (7.33). (7.33). (7.32). Moreover, (7.17), (7.25), (7.25), and (7.31), which shows shows (7.32). Moreovet, from (7.17),
otr product on induced by by h under under the the Now, on To(T(r» is induced inner product Now, aa Hermitian Hermitia^ninner [(?(l-)) is = H B(H, r). f). identification f"gQD ~ identificationTo(T(r» product on the tangent tangent space spaceTp(T(r» Next, inner product on the we define defineaa Hermitian Ilermitian inner Next, we Q,("(f)) using the the identification identification of T(r) as follows: follows: using a,rbitra,rypoint p = [w"] "(f) at an an arbitrary lw'l as producton on Tp(T(r» = H an inner inner product Tp(T(r» ~ B(H, r") (see (seeRemark HB(H,f') Rema.rkin §2.3), fpglD $2.3),an Q("(l-)) givenas (7.31).Actuproduct h" which is is given as (7.31). Actuis h' on on B(H, r") f') which by the the inner inner product is induced inducedby product of elements L' (J.L2] f '), ally, 11' 0o L" L' (J.Ll] andH" H' 0o L" inner product elementsH" ally, the the inner [pz)in H B(H, r"), lpr) and givenby by which Z)(f(f)), is is given alsoconsidered consideredas as elements elementsin Tp(T(r», which are are also h'(H' o L' lptf, H' o L' lpzl),
Ft,ttz € B(H, f).
product on eachtangent tangentspace space In this inner product on each we have the Hermitian Hermitianinner this way, way,we havedefined definedthe "(f). Tp(T(r» . rpQQD of T(r). p. For product with respect For Now, of the respectto p. the inner inner product we study study the the dependence dependence Now, we a neighborhood the this purpose, it is sufficient to consider dependence in a neighborhood of the purpose, dependence is sufficient consider this point base point in T(r). "(f). base pi}1;5" and set set for A A2(H,f), Take }J~13 for basis{{
L
v(t) u ( t )= D r ttivi, rr,
. . . ,,tf3g t -- s3 )) ED, t = ((tt lt ,, ... e D,
j=l i=l
3g 3 C3g-e. where - • an open open neighborhood neighborhood of the origin in C where D is is an
Here, X and Y on the left hand side are real tangent vectors, and those on the right hand side are regarded as holomorphic tangent vectors under the identification given before. We call gwp the Weil-Petersson Riemannian metric on T(F). The fundamental 2-form, or the Weil-Petersson form Wwp of the WeilPetersson metric h w p is defined by
fq paugapil d AV crrlaruuossJelad "^o uttol uoss-ral?d1l?/14 aql ro'ru"tot-4 loTuauopunt eqa lla l aql Io
'Q).r'
uo ?uleu uoNuuouety uossr?Ied1r?/fi aql aa6 11ece71t'eJoJequarr,r3uorleag -lluapl eq? repun srolcel lueEuel crqdrouroloq se pepre3ar ere aprs pueq 1q3r.r aql uo esoql pu€'slolcan lua3uel Isar ale aprs pu€q Ual eql uo { pue ;g'ara11
. ( A ' X)a ilrlsu Z = (A, X)"^6 urroJ aql ul uellrur q "^6 ueql 'tI-gI'dd '[Og-V] $rreH pus sqls[rp aas'spelap rog 'f, f.rera ro;'flaarlcadsat'd(!zgf g)p'o(!rg/d o7 d(ng/g)'o(!re/g) Surpuastusrqdrotuosr = f) lnp+lr = lz ! ql'dpunore (t-tgt"''1 l B a re q l , t q u a , r r 3 f l u o l l e f , g l l u a pe saleulprool 1eeo13ur4e1 :snolloJ * ((.1)'CXZ eceds lue3uel crqd.roruoloq aq1 rltlru Paglluapr sr d lurod e l€ (J)J go aceds 1ue3ue1Iser eqJ 'dlt{V culetu uossreledlle^\ aql ,tq Pecnpul (.t); "" crrlaru ueruuerueru eql aq "n0 le.I
Let gwp be the Riemannian metric on T(F) induced by the Weil-Petersson metric h wp . The real tangent space of T(F) at a point p is identified with the holomorphic tangent space Tp(T(F)) as follows: taking local coordinates Zj Xj + iYj (j 1, ... ,3g - 3) around p, the identification is given by the real isomorphism sending (0/ OXj )p, (0/ oYj)p to (0/ OZj)p, i( 0 /OZj)p, respectively, for every j. For details, see Griffiths and Harris [A-39], pp.16-17. Then gwp is written in the form gwp(X, Y) = 2 Rehwp(X, Y).
=
=
aq?;o {11.ra1qg1 'Z't'L
7.3.2. Kiihlerity of the Weil-Petersson Metric crrtotr tr uossralad-Ila/$,
'(t)poW dno"rf .tolnpourr?llnuqcreJ aqt lo uotTco aqq )uleur uossreled-INel1 eqJ 'tT'Z rrraroaql
Theorem 7.14. The Weil-Petersson metric hwp on T(F) is invariant under the action of the Teichmii//er modular group M od(F). repun luolroaut st (.1)a uo da!
'uoll -rasse SurmolloJ eql a\oqs usc aaa'crrlaru uossreled-lraAl eql Jo uorlrugep eq1 ,tg
By the definition of the Weil-Petersson metric, we can show the following assertion. 'llPttP(l)lfq
I={'f
L
3
?,= zd/YtsP
3g-3
j hj;c(t) dt dt k .
'r) (qe
j,k=l
dswi = 2
(7.35)
e-6e
se uelllud sr 1t',tgeco1 'auq fq palouap sl prrs'(J)J ro )uleur uossr???d-Ir?/! "qI peil"c $ (.f )Zfo elpunq lua3uel er{t uo lcnpord reuur eql 'Z'g$ ul I {r€ueg ur uanE $ uorlresse slq? Jo;oord y
A proof of this assertion is given in Remark 1 in §3.2. The inner product on the tangent bundle ofT(F) is called the Weil-Petersson metric on T(F), and is denoted by hw p. Locally, it is written as 'q uo *Cssolc lo n lfqqcoa'sacuoTstanc.tr?eaoqoe1tr?pun'gl'l
Theorem 7.13. Under the above circumstances, each hj;c is of class COO on D. 'rueroer{l 3urmo11o;eqt e^eq e,r,l,uaql
'6,1^J
rraroaql
/H = (l)ef araq^{
where R(t) = H / Fv(t). Then we have the following theorem.
(vt'D'(r)u((3)rnld'(it,r1=
( [ ( l ) t a ] 1 ,1y1, ' [ O ! ' t ) g 1 ^ H ) 1=7 1( 7^)t !t ! q
hj;c(t) = hv(t)(Hv(t)[vj(t)], Hv(t)[Vk(t)]) = (Vj(t),
(7.34)
Proposition 7.8 shows that {Hv(t)[vj(t)] };~~3 is a basis of H B(H, pet») for every tED. Thus the inner product h{;c(t) of tangent vectors %tj,O/Otk E Tp(t)(T(F)) with p(t) = [wv(t)] is given by
,(q uanr3 sl [(r),orj - (7)d qlraa ((.7)g)(t)ag (l)!lq lcnpord reuur aql snql 'O 3 1 f.rarr,a > 't?g/e'!W/g srolcel lua3uel lo roJ (1r;,J'H)gH Jo s-rs€qt q teql s^1,oqs 8'Z uorlrsodor4 el;j{[(t)!A
Vj(t) = Lv(t)[vj],
tED.
) t'ltn)6y^I
= (7)t,t
Choosing a sufficiently small D, we may assume by Theorem 6.8 that the mapping ~o : D -+ TB(F) defined by ~o(t) = ~(v(t)) is a biholomorphic mapping of D onto an open neighborhood of the base point in TB(F). We set
?as e,1\'(t)al, u1 lurod e$eq aql;o pooqroqq3rau uado ue oluo 6,go Eurddeu rrqdrouoloqlq e q ((t)n)O = (t)"O ,(q peugap (.t)sl, *- O i o4i Eurddeur aql leql 8'9 uraroeql ,(q aurnsse feru em '6r leurs ,(lluarcgns e Sursooq3
201
7.3. Weil-Petersson Metric rulaN
IO7,
uossraled-Iral\'8'l
7. 7. Weil-Petersson Weil-Petersson Metric Metric
202 202
* r ( i X , YY), ), ,Wwp(X, * r ( X , Y )Y) == ggwp(iX,
X X,, YY eEf Tp(T(r)). pQQD.
iX means means the real tangent vector corresponding corresponding to to the holomorphic tantanHere, iX preceding iX under the the preceding identification. identification. Namely, ifif ./J denotes denotes the gent vector iX structure on ?(l-) T(r) which corresponds corresponds to to the complex multiplimultiplialmost complex structure iX means means "IX. J X. cation by i,i, then fX This c.r*, W wp is also also written written as as This
=
2Im hsrp(X,Y ). u * r ( X , Y Y) ) = --2Imhwp(X, Wwp(X, Y). W wp is represented represented by Locally, u*,
3 g-3 3g-3
L
e*" w wp = i t
j natx. hj;(r) dti hjE(t) dt A dt k .
(7.36) (7.36)
jj,k=l ,k-L
?(f). that u*, W wp is a positive positive (1,l)-form (1, I)-form on T(r). Note that say that hsp h wp is a Kiihler Kiihler rnelric metric ifif the Weil-Petersson Weil-Petersson form form tr-" w wp is dWe say
closed, i.e., dw wp = 0, which is equivalent to the condition "" that i'e''du*'= crosed'
ahjE ahtE Ut'];"t,;,r=,,.'",::T ott = atj' rj,k,f= " u ' ! 1, ... ,3g-3 \trAil'
(7.s7) (7.37)
hysp osculates osculates to on D, where where hjE means that hwp (7.32). This condition means hi1 are are as as in (7.32). 3g 3 is, order at every T(r), that is, every point p E C3g-3 efQ), Euclidean metric on C order two to the Euclidean z3g-3 around we which around p for which Zr ,.... . . ,,z3g-3 coordinateszl, we can cim find local local coordinates 3g-3 3g-3
L
j dT dzi aix(z))dz dr*r'= ds d-;k,, w / = D (Ojk @1,+ ajk(z)) j,k=l i,k-1 p. vanish at p. where less than two vanish air of order less derivatives of ajk where all partial derivatives Now, we theorem due due to Ahlfors. we have have the following theorem (Ahlfors) The Theorem ?[e Weil-Petersson Weil-Petersson metric is Kiihlerian. Theorem 7.15. (Ahlfors) is sufficient sufficient base point, it is By aa translation of the base Proof. We follow Ahlfors [7]. Proof.We [7].Bv to prove prove formula (7.37) (7.37) at the base base point. - H f/ r"(t), - w"(t) - w ' Q ) , r"(t) = We P(t) = f v ( t ) , and a n d F(t) R(t) = p u t ft f'Q) = * v ( t ) r( 7 1w"(t»)-l, . v ( t ) ) - t , R(t) W e put f l = w"(t), r(F). set f ' ( F ) . WWe e set 1
I{(z,O= (z-()2' --l-:. K(z,()=
Q c)2'
We set We also also set
/ ' ) e( o U ' ) " ( ' ) .' ((r)d() r , , 2 \ = (ft)z(z) t\t\z'\) Kt(z,() = 7V1oy (tt(z) -_ tt(() )2 .' J1q1y
=TO that to see seethat Since tt(z) for C, it it isis easy easyto for all all zz E€ C, Sincer(z) /'(z) =
EI;n Kt(z,()
K{z,a), ==Kt(Z,(),
-) Kt((,z) - Kt(z,() Kr((,z) K r ( 2 , C= I { 1 Q , O= Kt(z,()
(oe'r)'apnp (n)ltrt)r,r^, ffi"il
= +- @#*
By an argument similar to that in the proof of Proposition 4.23, we see that this integral can be differentiated with respect to ( under the integral sign. Thus, it follows that
'snq5'uars eqrrepun) o1lcadsa.r qrr^{pat"r}uareJlp "- ".T[Tf"T:il; 1er?a1ur
leql ees er,l.'t?,'Vuorysodor4 ;o goo.rdeql ur leql ol r€grurs 1ueun3.re ue . g
' apnp (n)ltrtrrrr,, W'
il +-
=
,rM-()),n?"r# Since this integral can be differentiated with respect to we have
'u3ts qrr^{pa}erruereJ-rp eq uec ler8elurdlt"Htt lerEaluraqt rapung o1 lcadse.r
z under the integral sign,
- ^)l"tt ^)!Q)'I 'apnp(n)lrnJ,,r^t l# -i r +((4:!-- r l t Jr
~ fL [(ft(W) - jf(())l(jt(w) - jf(z)) + jttw) - jf(w~ _ 1] ((ft)w(w))2 Vl(W) jr r [ vet) = -;: lH (w - jf(())(w _ jt(z)) + w - w _ 1 L [vtJ(w) 1
1
1]
dudv.
L r
1
a p n p ( n ) r r t , ( ( r n ) - (, , f/L)t ) ( ' ) ' f - @ ) J * I I
dudv
( 9 ) ; [ - - ( ^ ) , t ) ( Q-)@ ,! )J)]"tt u _= I lll r
=-
- trJ)aq+ ((,),! ()~l log(P(() -
jf(z))
urelqo a,rl ,/t-t tueroeql o1 dre11oro3eql pu€ (z)rl = (z)r/ Bursl
Using jt(z)
= rU)
and the Corollary to Theorem 4.37, we obtain
'nln = .H ) z,) ,((r),!- ()),/)sor @,)),>t I
= ()~;Z log(f\() -
jt(z)),
(, z E H.
zU
Since (z) is of class Coo for (z, t) in H x D (cf. Remark 2 at the end of this subsection), a simple computation leads to
.r,)o:r;Tii,Ti::;t5":LJlj::,'[;;?::il; srqr a{r1€a{r"ureu ropua
r
= iL {~ fL I
np,p (z)qn"(2,)),>r"l[ {up4p())ta *] t
Vk(Z) Vj(() ded7J} dxdy.
(ee'z)
=frlrt,
[[
hjre(t)
(7.38)
uplqo ea,r,'{{q - lfi1 uro.r; snq;,
= h k ], we obtain = fL {~ fL I
npap(z)ta e)qn"(),,t,x l[ *]"il {**
Thus from h j re
=e)!tt1 hjre(t)
ded7J} Vj(z) dxdy.
'(gZ't) pue 1aBe,u flrrl1lnI = (7)l,r ')'z r,o1 '1er3e1ur 3ut11eoa.r'ueqa'flaarlcadser $ql uI Q)rt'Q)rt elnlr?sqns In this integral, substitute r(z),r(() for z,(, respectively. Then, recalling Vj(t) = Lv(t)[vj] and (7.26), we get
( 'nPxp(z)()lrt l,tplp (
Hff
v, ) (r).Irr
{~ fL I«z,()2 Vk(t)(() ded7J} Vj(t)(z) dxdy. Q ) ( t ) q n , ( ) ' z )l:l r : l JJ 6L)
-
hjre(t) = fL(t)
ll =(r)!!a
JJ
uroJ eql ur uellrr^\ s! ('g'Z) ur 1{r1}eq} aese/( '(gt'z) pue (0I't) urorg'rrro51 'O ) t Pu€ *FI n H > )'z 1P'ro3 for all z, ( E H U H* and tED. Now, from (7.10) and (7.16), we see that hjre in (7.34) is written in the form
203
7.3. Weil-Petersson Metric
t0z
f,rrlel I uossraladTalUt'l
7. 7. Weil-Petersson Weil-Petersson Metric Metric
204 204
Here, this this integral integral is is defined defined as as the the Cauchy Cauchy principal principal value. value. Here, From (7.38), (7.38), (7.39), (7.39), and and the the definition definition of of K1(2,O, Kt(z,(), we we have have From 0h't
#(') daav v1 =+ il,{ I Lryr I{,(c, G)du,t} 4;ke)
( tl . = - - T i ? - - - - i t - T , u {t) r rzrr rr- f d4dn dxda, 7'( r )lvl(C) = - 24 lf o z)r1e, 0T6 l,J@ fr, # JJ,u.,\ JJ. I
(7.40)
where where
Tt(r,C)=
I I,
dudu. I{ (w,z)K (o,C)L'@[ut](w)
integral is also also defined defined as as the Cauchy Cauchy principal principal value. value. In this step, step, we we This integral justify procedure, this differentiated (7.3S) (7.38) under under the integral integral sign. sign. To justify procedure, we we need need differentiated show that the integral integral in (7.a0) (7.40) converges converges absolutely absolutely and and uniformly uniformly with to show = r} for respect to t. More More precisely, precisely, putting putting H(r) H(r) = {z {z e E H IIlzl any positive positive respect lrl }~ r} for any number r, we we shall shall prove prove the the integral integral number
I(r) I(r) -= =
( rr J"[[r fr {J" I I If
l l rIF(t) o [ J / lH(r) r1";l
I d~dTJ}
| l v(t)[lIj](() ' dxdv L'@l,;G)ldg,tl z\r2(z,oT4Vtr IK((, z)Tt(z,() £V(t)[LlIk](Z) ' ' ) dxdy &J\/ L
l^(,,
--+ 00 above Tt ?2 is 4.2I, the above converges 1. By Lemma 4.21, oo for all t. as r -+ uniformly to 0 as convergesuniformly estimated as estimated as
alart aea,t 1llrv,t,,c)l' i ~dTJ ~= u 1 i ~dTJ IIrII{(w,z)r"@[v2](w)P ITt(z, ()1 2
IK(w, z)Lv(t) [lItl(wW
71"2
11
2 dedn, ~s Cc2tr2 71"2 [ [ IK(w, zW d~dTJ, Vr@,2)12 JJa
wehave have andt. l. Thus Thuswe for any anytt and where c for that IILv(t)[lItllloo suchthat is aa constant constantsuch whereC c is s C llL,@lu2]ll- ~
Jttf r
J lH(r) J H(r)
g(,2)r2(z,ioldtd,t IK((,z)Tt(z,()I~dTJ
11(r)
~1c* C7I" | I I \"//41'1 / rr
(
1/2
(11
\ r1/2 /z
dtd,n) [i@,2)l2d'udu| (w,zW dUdv) IK((,zW~dTJ . ( t t IK lK(c,z)l' ) / \l l n' \1/z / tt 1
^
side tends tends hand side right hand on the the right factor on If the first first factor f1, the set of of H, compact set in aa compact If zz stays stays in which leads bounded, + remains to 0 as r -+ 00, and the second factor remains bounded, which leads uniformly factor the second and r oo, as uniformly to 0 to the desired conclusion. conclusion. to the desired 4.2I isis Lemma 4.21 in Lemma operator T?' in Finally, the linear linear operator that the the fact fact that againthe using again by using Finally, by 2 (C) , we can show that isometric on L that we show can isometric on trz(C) ,
rulal I uossralad-Ira |t'l
902
7.3. Weil-Petersson Metric
205
a)# ohjf. (t) otl
= -
~: ftCt) {fL K«(, Z)Tl(Z,()LIICt)[Vj](() dedT/}
= -
~: ftct) {fL K(W,Z)1j(Z,W)L IIC t)[Vl](W)dUdV}
frpxp-(z)l,r,1l n}61ar(7,z)ta@, )) )r e),il { uOrO17)( t £IICt) [Vj:](Z) dxdy
npxp (z)l'h)el^7 ornO 1n)lt,t) (n' z) ttr(4' n) y 61,r { - t £IICt)[vj:](z)dxdy
#-= .lilu'"[[#-=
"lnu'"il = ohl.f. (t).
.a)#= atJ
'gI'Z uraroeq;, ;o;oo.rd aq1 salalduroc srql
o
This completes the proof of Theorem 7.15.
Remark 1. From the proof of Theorem 7.15, we see that all ohjf./otl, ohjk/otl are continuous, that is, all hjf. are of class Cl. Repeating the same argument as that in this proof, we can show that each hjf.(t) is a COO-function of t (see Ahlfors [7], p. 172). Furthermore, each hjf. is real-analytic. In fact, from Wolpert's formula (Theorem 8.6), the fundamental form WWP of the Weil-Petersson metric is written in the form
aas) I ;o uollcunJ-oop e sr (1)!fr1 qcee Ttsql ^,roqsu"c a,u ';oord qql u! teql se '1g sselc 'sr 'snonurluoc ale e.rc !f,/ luaurnSre etues_eql Eurpadeg 1eq1 Jo il* 'g1'2 ure.roaq;;o;oord aq} tuoq 'I ile t"q} ees ar\{ 1rout'ey N/llqg'rlrQ/r{qe
'Qn'a'[1] srollqy
e_6e urroJ aqt ur uallrJiir sr rrrlaru uosseled-lralt aq1 3o '-o ruJoJ FluauepunJ eql '(g'3 ura.ro -eq;) epu.ro; s,1rad1o11uor; '1ae; u1 'cr1,(pue-lear sr 1lr1 qcea (eJourreqlrng 3g-3
=
L
dTj /I. dlj.
'!7pyltp3="^,
W WP
t=!
j=l
'? Jo uorlrunJ crl,tpue-par e sr qma aes etr (3)Ifr1 snql'(J)J uo cr1,(1eue-l"er ar" lt pue leql are sel€urproo?e{?rq acurs b tt"'(t),t acedsralpurq?lal eql uo cr1,(1eue-lear 'tg acedse{rlq eql uo suorlcunJcglr(1eue-1ear are .t, pue ll ilt'6'g etuural ,(g
By Lemma 3.9, alllj and Tj are real-analytic functions on the Fricke space Fg • Since Fricke coordinates are real-analytic on the Teichmiiller space T( r), alllj and Tj are real-analytic on T(r). Thus we see that each hjf.(t) is a real-analytic function of t.
,tq (J '.H)zV ) 6 lueuele ue eugepeM ,O 3 I fue .rog 'CI x H > G'r) ol lcadse.r{lle ooCsssloJosl gI', tueroaqlgogoordaql ur (z)rrf Surddeurl€ruroJuocrs"nb aql leql uollrasseeql;o;oord e ear3aM 'A qrvuey
Remark 2. We give a proof of the assertion that the quasiconformal mapping It(z) in the proof of Theorem 7.15 is of class Coo with respect to (z, t) E H x D. For any tED, we define an element cp E A 2 (H*, r) by e-fe
3g-3
'*H) z '(4ta ,r Zi- '
1" . cp(z) = -2" Li t J CPj(z),
z E H*.
= @)dt
l=!
j=l
'e '3 'lxatr1 les a^r ) s 11elo3 '(l'r) Surddeu Jo Surddeurcrlfleuelear e osle sr (^)rll esJe^urslr l3rll saoqs rueJoeqlEurddeuresraAureql 'o x H ) (l'z) lo Eurdderu ctlfpue-pe.r e u (z)rg' acurg'(1)a luercgeocrur€rllag " s"q pu" ,g raldeq3 ;o (Z'g) fq peugap s.rq?HAr'H Jo ,I Surddeu leuroJuocrsenbe sacnpuro1'uaqa
Then, cp induces a quasiconformal mapping Ft of H, which is defined by (6.7) of Chapter 6, and has a Beltrami coefficient v(t). Since Ft(z) is a real-analytic mapping of (z,t) E H X D, the inverse mapping theorem shows that its inverse mapping Ft- 1 (w) is also a real-analytic mapping of (w,t). Next, for all t, sED, we set
0,
'O
l=@)n,rt
{ --,-..,....,.......,.. v(s)(z),
zEH z ER z E H*.
E)z
, ( r ) ( t ) nI )
'*H)z '(z)(s), I
J-ltAz) =
H>z
v(t)(z),
xg at$JI '(" '?'or) go Surddeu snonur?uor" sr (rn) t'rq leql easan ' , sgos'r! - t't1 Eur11n4'(s'lz);o Eurddeursnonurluoc e sraolloll!,gg.7 uorlrs lsrlt 4 Q)"t! 'C yo Surddeur tb-s.'ril -odo.r4 'tg't'tg = "'t! p.I l€f,ruouer eql eq ,/ leql e?oN
Let It,. be the canonical J-lt,.-qc mapping of C. Note that p = It,f. By Proposition 4.36, it follows that It,.(z) is a continuous mapping of (z, t, s). Putting h t ,. = It,.oFt- 1 , we see that ht ,.(w) is a continuous mapping of (w, t, s). If we fix
7. 7. Weil-Petersson Weil-Petersson Metric
206 206
t and s, then 1r1," ht,. is a conformal mapping of of f'1(f1), Ft(H), because because fi,, It,. and .F1 Ft have have the same Beltrami Beltrami coefficient coefficient v(t) vet) on -Fl. H. Thus, applying Cauchy's Cauchy's integral formula same are continuous ht ," we see see that that all derivatives derivatives of of h1,r(u.,) ht,. (w) with with respect respect to tu ware continuous to h1,", with respect to z functions of (w,t,s). (w,t,s). Hence, Hence, all pa"rtial partial derivatives derivatives of It,.(z) respect functions f1,"(z) z are are continuous continuous functions functions of (z,t,s) (z, t, s) eE H xX D2. D 2• and Z 4.37 implies that that for a fixed On the other hand, the Corollary to Theorem 4.37 (t,s). applying integral z, It,.(z) is a holomorphic function function of (t, s). Hence, Hence, applying Cauchy's Cauchy's integral z, is holomorphic ft,,(z) partial with respect we conclude that derivatives formula to It,.(z), we conclude that all partial derivatives of It,.(z) with respect fl,"(z) f1,"(z), (2,1, Thereforc, ft.. are continuous continuousfunctions functions of (z z, and z are ,t, s) eE I/ H xX D2. D 2 . Therefore, (z) to t, s, s, z, and Z f1,r(z) = a r t i c u l a r , fIt(z) i s o f (z, ( z , tt,, ss)) € n p is E H H xX D 22 . IIn particular, It,f(Z) is a Coo_ i s a Coo-mapping C -C - - m a p p i n g of '(t) ftiz) mapping ofo(z, D.. m apping f ( zt), tE) €HH x D
=
7.3.3. Alternative Alternative Proof Proof of Kiihlerity of the Weil-Petersson Weil-Petersson Metric Metric of Kiihlerity of the proof of Theorem 7.15, is also also due due to Ahlfors [6]. give another proof We shall give 7.15, which is We [6]. element induced induced by the area element Here, we use use the fact that the first variation of the area Here, we hyperbolic metric vanishes which is interesting by itself. itself. vanishes (Lemma 7.16 7.16 below), which prove the relations By a translation of the base relations in base point, it is sufficient suficient to prove (7.37) at the base (7.37) base point. We use use the notation notation in §3.2. $3.2. We set set
, l ' i ( t ) ( r ) =e l u j ( t ) l ( f ' ( r ) ) { ( f ' ) " ( ' ) } ' , t e D , z € H . (7.16), we Then from (7.16), we have have
,t,i1)e)= + [ [ Kk, 02-vl;)d€d,rt. r JJs ,/ti(t)(r) we see seethat 'l/Jj(t)(z) By an 7.15, we an argument similar to that in the proof of Theorem 7.15, get is t). From formula (2,1). (7.38), we we get formula (7.38), is aa Coo-function C--function of (z,
hln1)=
tl
dxdY. J J"riQ)'t'rQ)Q)
(7.4r) (7.41)
Further, setting
pt(z)= (l(f)"(,)l' - lU'),Q)l') 'x'(f'(,))',
(7.42) (7.42)
we (7.3a) is is rewritten in the form we see see that formula (7.34)
- l'(t-\')l')' = t t vrcra$xg)e)o a'av hin(t) r rF Pt(z)
g.4r)
(7.43)
(7.43) with respect because We 12under under the integral sign, sign, because respect to tt can differentiate differentiate (7.43) We can (z,t). F t). and the integrand integrand is is aa Coo-function compact set set in H, -Il, and C--function of (z, F' is is aa relatively compact Hence, we obtain Hence,we obtain
se uallrrtr sr ur3rro aql l" z uollcerrp eq1 ur "d Jo e^rlellJep aq? snqtr II
at the origin is written as
'("!)l("1't'l - rrt(2:[-- (')'I) v- ,l(,)"(J)l) = (z)' d ("|(,)'Gt)l "((,),1)'v eA€rIetr 'uorlrugep eqt ,tB {ue sr s 'ereg 'r"otr = "./ pue ln = rt 1ase11 ]foo.la,
= IIj and f" = w· v . Here, s is any sufficiently small real number. Ieer ll€urs flluatcgns
II
'raqunu
Thus the derivative of P. in the direction By the definition, we have Proof We set
t3
. t - f t . . . =. .! I, 0 = ' = ' \ f f i t=O
aaP~ I = 0,
j
= 1, ... ,3g -
3.
ur pau{ap td uor?cunl eqJ 'g1''L BrnuraT
Lemma 7.16. The function Pt defined in (7.42) satisfies se{sz7os(a/'D
'u"Irelqey $ d/t? tr feq| sarlo.rdqc-rqrh'0 - t le ploq (Zg'f) ut suorl€ler eq1 ',trerlrqre ere / pue 'q 'f, ecurg
Since j, k, and f are arbitrary, the relations in (7.37) hold at t that hw p is Kiihlerian.
0
= 0, which proves
'o= 6l !!,9 ,1tg
all (0) = o.
ah 'k 1
'(w'D pu" '(gt'Z) '(W't) uror; 'aro;araq; 1aEer'r
Therefore, from (7.44), (7.46), and (7.47), we get
.o- npxp ,_(z)HuG)16(,)' lUgrr*"il
(7.47)
Uv't)
el€q e,ll 'r1 o1 lcadsar qll/r{ |fi1 3o e,rrlerrrrep eq} 3ur4e1 '{l.rel.-,ols
Similarly, taking the derivative of h jk with respect to t l , we have
.o-npry "-?)ny1,1t^(4' ldfu"lI I j r a1/Jaj~t) t
t=O
(Z)'Pk(Z)AH(Z)-2 dxdy
r
(ev'L)
iF
= o.
(7.46)
urctqoa,ra'(gt'l) pue (W'2) ,tg
By (7.44) and (7.45), we obtain
=' . = n p x p _(z), u @' " w @g"| | @ffi Iv_Lr) =
F
a1/Jk(t) 'Pj(Z) a l t
it -
t=o
I
(Z)AH(Z) -2 dxdy.
(sv't)
jk aha l (0) t
(7.45)
e^eq osl€ a,r 'r? o? lcedsa.rqll^{ (I7'z) Surlerlue.raglp'}xaN
Here, using Lemma 7.16 below, we see that the second term on the right hand side of (7.44) vanishes. Next, differentiating (7.41) with respect to t l , we also have
pueqlq'rr aql uourralpuo'asaqrreql aasa^r''.o1aqt;;Tffi:{?"i]J?i:l;
0,,, . { l(#) ff}et,^r,t'^'il
'l&\"ll (wt) npxp"-(z)u,{r"l'='l ffie)u+lzyralzf
=
7!e nt ,",!!qg )rrlel I uossralad-Ira^Ut'/
7.3. Weil-Petersson Metric
207
L0z
?. 7. Weil-Petersson Weil-Petersson Metric Metric
208 208
p(z) = °P, I (z) iQ)=kl,="r,, os 1=0
. -.--4· . = +-i i, tz) k)) = (z _ z)3 t(f(z) --ian f(z)) - (z _ z)2 (fz(z) + fz(z)) i @ 6!1 fi 8
= =-8Re{t+ a+\ -8Re {
jz(z) _ 2j(z) } (z-z)2 (z-z)3
(7.48) (7.48)
- -8Re~ { j(z) } =-sRELa,{&\, oz (z - z)2 ' where /(z) j(z) = (0f"(z)/0s)1,=o.Thus (or(z)/os)!,=o. Thus we we need need to obtain obtain more more information information on where
j(z). f(,).
we see see the followings: followings: First, we
(i) (ii) (iii)
= =
=
whete9.= >'i/ 9rjJ on H, where
=
=
=
For the the proof of these these assertions, assertions, we we refer refer to Lemma Lemma 4.20 4.20 and and Theorem Theorem 4.37. 4.37. For p'136. Lemma 1.4 in Chapter IV, p.136. See 1.4 Chapter Lemma alsoKra [A-58], Seealso [A-58], folrp is A2(H,f), an element elementin A Now, is an as follows. follows.Since Since
Solving i.e., equation in (i), i.e., diflerential equation the differential Solving the
. (z-z)2_ 4
(t-;\2-
Iz(z) = we we obtain obtain
7 Z'l/JI(Z) 6Y; -t 'at _- @ j(z) ~ z)2 z; 'l/J;z) + F(z), ^ \( z ) , *' F ' .6. - t _- 2 i e )==_- (z9 + T 1'l/J"(z) 4
2
2
where on H. I{. function on holomorphic function where F F is is aa holomorphic extended conconwe see that F ]7 is is extended (c), we seethat Let (ii), (b), (b), and and (c), From_(ii), F.. From us determine determine F. Let us -rb/2 that (iii) it it follows follows that by (iii) = -i[J F\rrther, by tinuously /2 + on R. R. Further, F on R, and and jf = to R, * F tinuously to -{/2+ + F = F function -rtr/2 + rh/2 is holomorphic function is aa holomorphic = -'l/J/2 F+ -i[J/2 R. Thus Thus hh = F on on R. + 'l/J/2 F = + F on R. R. Hence, Hence, is real-valued real-valued on on that hh is such that extension such continuous extension has aa continuous which has on H, Il, which to C. C. holomorphically to Schwarz' is extended extended holomorphically principle shows that hh is shows that reflection principle Schwarz' reflection at most most 1. 1. polynomial of of degree degree at Then should be be aa polynomial (d), this this hh should and (d), (ii) and from (ii) Then from that implies that This implies Consequently, that hh =- O. 0. This we conclude conclude that (ii) and (b), we and (b), by (ii) Consequently, by
L RiTe viv k . i,k=l
'tf
l=q,!
lta 3
= 6)ou
=
Gv't)
Rp(V)
(7.49)
N
n
,
f
q
Let V = E i =1 vJ (0/ atJ)p be an element of the holomorphic tangent space Tp(M) of M at p such that (V, V)p = 1, i.e., V is a holomorphic tangent vector at p with unit norm. The Ricci curvature Rp(V) at p in the direction V is defined by
peugep sr uorlcerrp eqt q d (1)oA arnloarw ,??NAeql.urrou qlrrrr d 1e / ry lrun rolf,el 1ue3ue1crqdrouroloqe s! = o(tl,,,,tl qrns d p (W)dl /,.e.1,I ?eq1 ry W aceds lua3uel crqd.rouoloq e{t Jo luaruele ue eq d(r4g/d pr=j3 = A p.l N'
.
n=l
.lutrAatq 3_=
wttty
RiTelm = - L
hinRZml ·
N
N
{q uerrr3arc w71!A sJosuelNnlDaJn) uDtuuoutery aq1 ,.raq1lng
Further, the Riemannian curvature tensors RiTelm are given by RiTe = LRJlTe· l=l l=7
"'ra3-
lta
N
N
The Ricci curvature tensors RiTe are defined by
fq paugap ew !!A sJosuelernlDarw ,?cNA aq;.
.*18 _-t4rzrtr
i _ artl R klm - - aim·
'l'te
ld
where (h iTe ) is the inverse matrix to (h iTe ). Then the curvature tensors Rtlm are given by
,(q uaar3
erc atq,g srosuel arnlDarnc aql ueqtr .1lfq) o1 xul€ru esrelur aq1 sr ("rg) areq.u
r i _ ~ himahkm kl - ~ atl ' m=l t-u
, l?Q ,ffi*rrt J =r.lJ N
^I
We show that the Ricci curvatures, the scalar curvature, and the holomorphic sectional curvatures of the Weil-Petersson metric are negative. First, recall some notions of complex differential geometry on Kahler manifolds (see Kobayashi and Nomizu [A-55], Chapter IX). Let ds 2 = 2 Ef,k=l hiTe dt i dik be a Kahler metric on a complex manifold M of dimension N. The Christoffel symbols rtl of the metric connection associated with the Kahler metric ds 2 are given by
fq uaar3 ere zsp f,rrlau Jelqgx aqt qtl/tt Pel€rcosseuor?f,euuoc)rrlatu aql Jo 7lJ qoqnrfs Ia,uolsrrqc eqJ 'y'/ uorsuaurp Jo /t/ ploJlrr"u xalduoc ts uo crrlau relr{gy p ae qlpt:ipIlqr=ci!Z,= rsp 7e1 '(y1 '[qq-V] reldeq3 nzruroN pue rqsefeqoy aas) splo; -rueu relqex uo f.r1auoa3 ,1s.rrg xalduroc suorlou euros 11eca.r l€rluarasrp Jo 'elrle8au are crrleru uossraledlral\ aql Jo sarnle^Jnc leuorlces ctqdroruoloq eql pue 'alnle,rlnc relsos eql 'se.rn1el.rncrc?lg eql t?r{} ^4,or{seA\ .t.8.^l
7.3.4. Curvatures of the Weil-Petersson Metric
crrlatrAtruossralad-Ila/$,
aql Jo sarnlB^rnc
,aro;alaqa 'f.reur3etur flarnd sr 0 = 4 1eql apnlruoc am (9p.1) ruor;
(z-z?
p=
'
j(z) } (z-z?
0 .
0
tr
is purely imaginary. Therefore, from (7.48) we conclude that
az
(z-z)3
rn"_
rk-r)\ . q ( z - . 2 )o _ . . " ( z - r ) * =- [ -Gt"(z)4, +(z),/,o Aro
-8~ {
= 41/;'(z) -:;pw _ 81/;(z) + ~
'acua11 l"q? s^rolloJlf
Hence, it follows that
' z = (z)! t - , t . 1 - z _ z- \P),,fr-:--=/',t + \-/.. ( r ) f r ?),frJ"(z_r) 4
2
2
2·
j(z) = _ (z - z)2 1/;"(Z) _ Z - Z 1/;'(z) _ 1/;(z) _ 1/;(z)
(r)fi
209
7.3. Weil-Petersson Metric
602
f,rrlal^l uossralad-Ira^{'9./
7. 7. Weil-Petersson Weil-Petersson Metric Metric
210 270
is said said that that the the Ricci Ricci curvature curvature of of ds2 ds 2 is is negatiae negative at at pp ifif Rp(V) Rp(V) (< 00 for for any any ItIt is V. The The holomorphic holomorphic sectional sectional cuntature curvature KoV) K p(V) at at pp with with respect respect to to VV direction 7. direction is defined defined by by is N ,u " - m t uv ji lkvo t Tv l-m ((7.50) 7.50) K (V) R ij 1kim .v . K pp ( v ) == - LJ R D jj,k,l,m=l ,k,l,m-r
that the the holomorphic holomorphic sectional sectional curvature curvature of of dsz ds 2 is negatioe negative at at pp ifif We say that Kp(V) (< 0 for for a"ny any direction direction I/. V. The The scalar scalar curttaturv curvature R R is given by by Ko(V) N N
((7.51) 7.51)
R =Dftii. R=LRjJ. jj=l =l
scalarcurtt&lure, Theorem 7.L7. 7.17. The Ricci curvatures, the scalar curvature, and the holomorphic Ricci curttatures, Theorem are metric sectional curvatures of the Weil-Petersson are negatiae negative onT(f). on T(r). of the Weil-Pelersson sectional curaatures "(f). Proof. It is sufficient sufficient to verify this assertions assertions at the base base point of of T(r). Proof.It = we For simplicity, and We use use the same same notation notation as as in §§3.1, 2, 3. we set N = 2, 3. $$3.1, - d w r i t e = n d y . W e d o ( z ) 3g 3. For a complex variable Z = x + iy, we put dlT(z) = dxdy. We write n l i y , w e p f i v a r i a b l e z complex 3g-3.For . . d o ( 2 " ) v a r i a b l e s 2 1 , . . . 2 n . dlT( Zl, ... , zn) = dlT( Zl) ... dlT( zn) for complex variables Zl, ... , Zn. f o r c o m p l e x d.o(21,...,2n) ilo(21). Petersrespectto the PetersTake }f=l for AA2(f H) with respect basis {!.pj an orthonormal orthonormal basis Take an 2 (r,,Il) {ei}l=rfor k d-txthe Weil-Petersson Weil-Petersson = 2l:fk=1 son ds21,yp 2 Dilo=, hjk(t)dtjdl scalar product. Denote by ds~p son scalar \l$)ati follows preceding subsection, metric defined in (7.35). Then, as was seen in the preceding subsection, it follows was seen (7.35). as defined
that that
0h,t ah'k - 1, N. 1,. o' j, 6 i k, a:l (0) = 0, h 1 t(0=) bjb hjk(O) k, £ = .... . , N. i,k,l ff{o )
( 7.52) (7.52)
Hence, (7.52),we we obtain obtain and (7.52), definitionsand the definitions from the Hence,from , af 2hf hi -t u , = -_atlat RR klmi -t ^ m (0), j
2
_
k]
a
h ,k, 022h' = atla~m jklm = RRiltm ffi(o),(0),
(7.53) (7.53)
a h'[ jk RRi.=-i#r, r t u= - L at 8l (0) N
2 l
k
7='' l=l
at t = 0. Therefore, we only need to calculate 02hr7l AttAI^ at t = 0. From (7.40), we have 1h;-r 01fi(21,2;) , 24 f f ---# - ^ + ( t,,l . , = Ii{21,72)viQ1)a(22)do(22,21), I ... I dtl r J Atr Jptn (tz,rt) in H, 11, and and (Z2' for rf in domain for where zI) fundamental domain compact fundamental relatively compact where FF is is aa relatively we obtain (7'26), and runs (7.39) and (7.26), we obtain from (7.39) H. Furthermore, Furthermore, from over FF xx H. runs over \xt?1'a)
A*
- - 1 [[
r JJu
*,@r,zy)I{1(w1,2-)v2(w1)do(w).
(7.54) (7.54)
salqerJ" uorle.r3alureql ?eql eeselr 'suorleurro;su€rlsnrqotrJI"aJ ol lcedsa.rqltm aqt,{B slerluera.Urp rurerllegpue'()'z)y'()'r)X'@)op roJsalnruorl€ruroJsu€r1
By the transformation rules for du( z), K (z, (), K (z, (), and Beltrami differentials with respect to real Mobius transformations, we see that the integration variables '(32' 3@)>I (r2' 2)x Gn' ilx
C =K(z, W2) K(z, zd K(W2' wd K((, wd K(, Z2) K(Zl' Z2) +K(Wl' zd K(z, W2) K(z, wd K(W2' Z2) K((, zd K(, Z2) +K(Wl' zd K(z, wd K(z, Z2) K(, W2) K((,zd K(W2, Z2). (32")x (n'z)N
(rz' tm)x+
(gz'))x(z'2)x (2'@)x (n'z)N (s'r)v (rz'tm)>r+ (?'r21, (9'))x (n'))x (rrl"'eol")x (z'z)y (3s'r)x- c where
areq^.t
(os'z)
(7.59)
'HxJ[
J... tXH' J
~~
' ( ) ' z ' z m ' r o t ' t z ' r z ) o p ( z * ) * n( r * ) t n ( z r ) c n( r z ) t n C
.. [ + =
=
C Vj(Zl) Vk(Z2) vl(wd vm (w2)du(Zl,Z2,Wl,W2,Z,(),
J V 6
...,........,...,..;,l,-k (0) 8t l 8t m
6)v#e a'! fPh·-
zO
eq} uo dr pug eA{uaql '(lg'Z) Jo eprspueq 1qEr.r Jo urlrra? Prlql eql u\ (rz'lll)X'(zz'|m)N o1 Pus'urra1puoceseql ul (zz'rz)>I '(tm'cm)x o1'rura1 '(rz'em)N ol €lnuroJsrql ,(1dde a6 lsrg eql u (zz'rn17o B on the right hand side of (7.57). Then we find
We apply this formula to K(W2, zd, K(wl, Z2) in the first term, to K(W2, wd, K(zl, Z2) in the second term, and to K(Wl, Z2), K(W2, zd in the third term of
'H) a'n '(r)op(s'r)x @'z)>r"il +- @'n)>t -~
JL
K(z, u) K(z, ii) du(z),
u, v E H.
(es'r)
K(u, ii) =
(7.58)
urelqo am 'ureroaql enplsar eql pu€ slnruroJ s(uaeJC Sursn 'a,ro11
Now, using Green's formula and the residue theorem, we obtain
(tg't) . ( z * , r * ( z z ( r z ) e p ( z m )(urrnn) t n( " r ) r n( r z ) l ng " " " [ (7.57)
[ #=
(r,ffi)=6)f Thus we have e^€q e/ll snql
'(9'@)x (rz'cn)x (9-"^1o Fz'tn)N+
B =K(W2' zd K(W2, wd K(Wl, Z2) K(Zl, Z2) +K(Wl' zd K(W2' wd K(W2' Z2) K(Zl, Z2) +K(Wl' zd K( Wi, Z2) K(W2' Zl) K(W2' Z2). (72'rz) (9'@) (rm' zm) (tz' tm)N * N X N (zz'rz)>I(zz'tcrl)>I (rm'zrrl)>I (rz'zm)N= g
eHxrI ,(zm,rm(rz.z,z)op(zm)un g ( r z ) l r t ( r ^ ) t n ( " r ) , h I
eraq^!
where
.-.) #rltlzQ t * = @ I VZ,
plel,((gq'Z)pue'(99'l)' (Vg't) selnuroJ'acue11 '(32'tr1ry (zz(h)tx (rz (rn)tx - y erar{^{
"*"1 (gs'z) '(r*'rr'zz)op(^)tn ("r)'h(rz)lav
(7.56)
t #-
= @;!* Thus we get 1aBer* snq;
(qq'r)
(7.55)
. *!8 .(zn)op -(zn)t,t (g.,zn)to (rz,zm)ty (zz'rz)tYg J[ J[ +1 By a similar calculation, we have aleq e \'uor1e1no1ea.repurtse fg )rrlal{ uossraledlra A 't'l
7.3. Weil-Petersson Metric
211 IIZ
212 212
7. 7. Weil-Petersson Weil-Petersson Metric Metric
in (7.59) can can be be interchanged interchanged in in an an arbitrary arbitrary manner. manner. Thus Thus (7.59) (7.59) is is rewritten rewritten in as 02h,t,
mintot .rA
f
I
= - 2 I ... I o5 J Jr.r"
c viQ)r{6
u{w) i^@}aoG,z,21,z2,wr,w2), (7.60) (7.60)
F. where ( ranges ranges over over ,F. where We introduce introduce the notation notation We
J L2 = J L2
_ t t * ( w r )d o ( 2 1wt}, ,w1), ( z 1 ,Wi) wvK )K(Wl' ( * r , zz) ) vIJj(zt} 1 Q 1 )uIJk(Wt} ( q , C()) K L 1 *«(, ( ( ,z) 2 )= I . . . I K Ljk K(Zl' K(Zl' d(j(Zl'
=
J
JHz
f
f
o ( 2 2W2). ,w2). ( a , wW2) z) K ( * " , 2z)) vIJj(Z2) 1 Q 2 )IJk(W2) r n ( . 2 )d ('d,0 K L ';jkr («(, C ,z)z )= I . . . I K K(Z2,() K(Z2' K(W2' d(j(Z2' rH2 J ((7.61) z'61) Then, we find find from (7.60) (7.60)we Then, from
W,, J 1 k
='# a(Ph' laJ (0) = 524 t tm ~
|
...
FxH lr,u
do((' z)' Di,tm D jklm d(j«(, z),
(7.62) (7.62)
where where
= LLin(e D z) Lml«(, z) DiEm jk «(,,z1T-;qg jklm =
z) . L^*( L1/C,2) + LL1/(,4me «(, z) L z). jl «(, z) L km «(, z) + Ljl mk «(,C,
,'«() .
L1*0(O,lGD z) = Ljk(-Y«(), andsince sinceLjk«(, trir((, z) Since ,(z)) . i@ L1,i(2,(),and trir((,2) = Lkj(z,(), SinceLjk«(,z) ,'(z) (7.62) that we see see from (7.62) any 7 E f, we for any, € T, 1tQ) for 02h.,
W#lol
=
1, r
... t Eirmdo(c,z), # J Jr,,
(7.63) (7.63)
where where
= Q1/(,2)+ L21((,2)lGrcA +Tffi) EiErm
+2L1n(C,z)TRe.
the base base point. In Now, are negative negative at the curvatures are we show show that the Ricci curvatures Now, we N' . J (A/A$)o = element V V = L: e (7.63), for for any any element fact, (7.53), and and (7.63), (7.49), (7.53), fact, from (7.49), Dl=rai j =l v (a/atJ)o E the the base base point in the ,Rs(U) at the To(T(T)) with unit norm, the Ricci curvature Ro(V) "o("(l-)) with direction given by is given direction V 7 is
12 J 1,," ( LI EjllkV j k ao11,'1 Egr*i& R'(v) Ro(V) ==--x ~5 L ... iF v d(j«(, z) j,k=l l=l
21
N N
N
t2 12
= -5 ~7fo
where where
FxH
J1 L'" l=l
i,k-L
t=t1,,. N
FxH
0, S 0, Fld(j«(,z) h do(C,z) ~
(7.64) 9.64)
214 2t4
Weil-Petersson Metric Metric 7. Weil-Petersson
By the same same argument argument as as in in the case case of of the Ricci Ricci curvature, curvature, we can show By that if Ko(V) = 0, then V = O. Ko(V) < hence the holomorphic if KoU) 0, and hence that 0. Thus Ks(V) < 0, sectional curvatures base point. point. D tr curvatures are negative at the base Remark. Wolpert Wolpert [253] estimates for the curvatures curvatures of the Remark. [253] obtained the following estimates Weil-Petersson metric: Weil-Petersson
(i) the holomorphic sectional are bounded sectional curvatures curvatures and Ricci curvatures curvatures are -l/2r(g - 1), above 1), and and above by -1/2tr(g -3(3S --\lar. (ii) the scalar 2)/4tr. scalar curvature is bounded above above by -3(3g refer to Jost [A-49], Wolf [244]. also refer tomba [235], We also [235], and Wolf [2aa]. [A-49], Chapter 6; Tromba 7.3.5. Weil-Petersson of Genus Genus 1L Metric of of the the Teichmiiller Teichmiiller Space of Weil-Petersson Metric
We define a metric genus 1 which corresponds to Teichmiiller space space T metric on the Teichmiiller fi 1 of genus the Weil-Petersson with with 9 ~ 2. hsp Weil-Petersson metric h wp on T S ?:2. Qg As was spaceT ?r1 is is identified with with 1, the Teichmiiller space wa.sseen seen in §2.2 52.2 of Chapter 1, we the upper half-plane H. H, we denote by rr every point r E //, denote I/. In fact, for every € I the lattice group generated generated by 1 and r. The torus R C I rr l, has has a marking marki\g E D,r R,r = C/ associated with the generators 1 and r. Then the above identification of H to generators above and associated with T is given by the correspondence sending r to [R E , ]. Er). correspondence sending is r fi 1 lR,r where r E and,\, is aa torus Rr C/f, r , where Let A;ldzl Ar is \lldzl22 be be aa metric metric on aa torus € H, and fu = c/r 2 so that positive constant. Here, we impose a normalization condition On Idzl on \zrldzl2 so Here, we impose a constant. we put A the area i.e., we \,r = l/Vlm l/tfirrn. r. measured by this metric is is 1, 1, i.e., area of R .R, r measured quasiconformal we Now, for any consider aa quasiconformal any tI E € C with sufficiently small Itl, lll, we consider + mapping It: induced by aa linear mapping Ro ---+ R Rt+t rH induced ft: Rr
A;
-
( t)
-t
zz E It z + --_ Z, € C. c. i ,(z) ( z' =) = (1 t+* --_ _ r-r r -1r = / ) , r-r r- - \r 2 , \
-tlQ r -- fi + the derivative derivative Since t), the pt of it is equal equalto -t/( the Beltrami Beltrami coefficient coefficientJ.lt Sincethe +t), it is given by of J.lt pr1at at rr is is given by F p. , = I'l1m l l i-J.lt T = tr il ;i; 1=l J.lr
=
t-+O
t
- -1 1 = -2 -=--. 1m r rr _ - if '
This Pr vector a/or on T T1 p, is as aa holomorphic tangent ta,ngentvector 0 / 0r On is regarded regarded as r ],, 1 at p = [R lR,r ,, EErf and gives aa basis basis for the tangent space spaceTp(Tt}. ?p("r). and gives We and itself by define the scalar scalar product of a/or 0/0r and We define
.
,a a.
= nwp( hWP(ar'ar)= ar,a)
Jr[iJR.l
. 11 11 )'i2 dxdy= _,?Ardxdy=--:=.~. _ all^ ry I l r.t1, 11, 1-
This metric is on T and is is written as as is the the desired desired metric on fi,1 , and 2 1I rt ) - t z2 -2g^r1r9,l = n dsw p'2 = ds / L _ _ \? Idrl , ' wp
e sr (z'4) 'ara11'(1 reldeq3 Jo I'g$ ees)g Jo ern?onrls l€turoJ uo el€urprooc lts)ol -uoc eql seuTurrelaPqllqr!\ u uo e erle; '1utod ,lzPlTd zsp 3lrlelu usruu€ruetl{ es€q aql le (gr)J lo ((U)"f)".2 eceds lua3u€l eql replsuo? ol lualcgns s-IU '(U),2 "" rrrlaru uossrelad-llal\ eq1 saar3 @)W uo lcnpo.rd reuur I€rnleu e fq pe?npul (g,)Z "" clrletu e lsql aes aA\ '.{1r1uepreq1 o1 crdolouoq ere qcrqa JIastI o}uo Ur go susrqdrouroagrp Surlresard -uorleluerro IIe Jo (U)0//16, dno.I3 eql ,tq Ur uo s?Irletu ueluuetuelg Ie Jo (A)W eceds eqt yo eceds luarlonb " qtyla pagttuepr $ U aceJJnsuuetualg pesolc e Jo (g); eceds rallnuq)reJ arll lsql ilres a^r '1 raldeq3 Jo A'g$ ur pelels se^r sy
As was stated in §5.2 of Chapter 1, we saw that the Teichmiiller space T(R) of a closed Riemann surface R is identified with a quotient space of the space M(R) of all Riemannian metrics on R by the group Diffo(R) of all orientationpreserving diffeomorphisms of R onto itself which are homotopic to the identity. We see that a metric on T(R) induced by a natural inner product on M(R) gives the Weil-Petersson metric on T(R). It is sufficient to consider the tangent space To(T(R)) of T(R) at the base point. Take a Riemannian metric ds 2 = p2 1dzl 2 on R which determines the conformal structure of R (see §5.1 of Chapter 1). Here, (U, z) is a local coordinate on
7.3.6. A Differential Geometric Interpretation of the Weil-Petersson Metric uossra+ad-Ila 4, aqt Jo uorlBlardrelul
crr+auroa9 IBIluoro.SIC v
crrlatr l 'g'g'Z
'ZZ 6 qlylr tJ o1 spuodsarroc elil.uJoJ slqtr ro; g .raldeqC Jo g'8 tueroeql uI elnuroJ s,1.rad1o14
Tg with
This formula corresponds to Wolpert's formula in Theorem 8.6 of Chapter 8 for g ~ 2. dan 'VPV W =
W WP
= dt /I. df.
el€q e.$ 'eroruraqlrng
Furthermore, we have .I'Z'EIJ
Fig. 7.1.
i I t :1,-
"56rF.
,l
t------------'
.z-6
Then as indicated in Fig. 7.1, we see that f, t are distances from the origin to 1,-ReT, respectively, measured by >';ldzI 2 . If we set 8 = 21rt/f, then (f,8) gives coordinates on T 1 , which correspond to Fenchel-Nielsen coordinates on T g with g ~ 2.
qll,lr rJ uo se?€urprooruaslarNleqrual o? puodse.r.rocq?lqr!\ 'Ig uo seleurprooc ser'r3(B (/) uaql 'Vf lW, - d las en g'"lzpl[y fq pa.rnseaur'flazr.rlcadser'-r aU-'I o1 ur3rro eql tuorJ secu€+srpete 7'7 l"q1 ees e^{'I'Z'3U ul pe}e?Ipul se uaqJ '
,J-vtl^
= _1_
t _ _ ReT vIm T
llJdlf
vIm T
.
JEU
I
f
'pueq reqlo eql uo las eitr
On the other hand, we set
= dao
= .._
z
'tpy tp ey
W WP
.ndT/l.df.
,tq uerrrSq ediltp Jo "^o turoJ leluaur€punJ aql 'rolreJ lu"lsuof, e o1 dn l? uo crrleru ere)urod aq? qtl^{ seprf,uro, qlq^t
which coincides with the Poincare metric on H up to a constant factor. The fundamental form w WP of ds w l is given by 215
7.3. Weil-Petersson Metric rrrlel I uossrelad-IralUt'l
> tc
216 216
7. Weil-Petersson Weil-Petersson Metric 7.
=
The tangent space T = Td.~(M(R» of ll(n) M(R) at dsz ds 2 consists consists of of all symmetric epaceT Ta"r(M(R)) of R. The R. Every written as Every element a c of of T 7 is written as tensors of of degree degree 2 on J?. a ==A Adzdz dzdz*+ B dBdz z 2 +2B+d fJd z 2z , 2, A and B are smooth smooth functions functions on U, A is real-valued, and B is complexwhere .A to a real symmetric matix valued. This This a o corresponds to symmetric 2 xX 2 matix
e + B + BB i(B-Bt] i(B-B)l - = ,r l [A+B-t a-~ o - 2 | i(B B) A - ' -B B -- ' BB l . e 1 A 4a Now, the inner product of two elements elements Now,
=
2 + Bj dz 2, ei = Ajdzdz Aidzdz + Bidz2 aj * Bjdz +4 ilz2,
in T is defined definedby 7 is
- 1,2 j = I,2
fL
dxdy. (or,azln= t(dfi2)p2 dxdy. (aI, a2)R = [[ tr(ala2)p2 JJR
2 , the metric metric ds dsz, Here, trace of the the matrix ala2 d1d2 with respect respectto the tr(d1&2) is is the the trace Here, tr(ala2) that is, is, AtA2 2(Bt6 +E[a) + 2(B l A2 + l B;" + tr(ala2) lhB2 ) ' - A tr(&fi2) = 22p4 p4
Thus we have Thus we have
(ot, ozl ar,,nr)l +2(B1g y. n= i l iLlA,,q, ry
(al,a2 )R= '1 2 Jr [ [A l A 2 + 2(B l -B 2 + -B l B 2)] dxdy R
Note correspondto zero zerovectors vectors two types typesof elements elementsin T 7 correspond the following following two Note that the in in To(T(R»: [("(E)): p. This is (i) A vector is an an infinitesinfinitesthe scale scalefactor Lactorp. vector induced induced by by deformation deformation of the generated by imal deformation r|,p2ldzlzwhich which is is generated by aa I-parameter l-parameter family deformation tPp21dzl2 2 ry'is , where ds2, where tP is {{p'"'$ld"l'}re;deformationsof the the metric metric ds conformaldeformations p 2 et l/J Idzl 2 heR of conformal aa real-valued function on on R. real-valuedfunction ft. is an in(ii) A vector itself. Namely, Namely,this this is an invector induced by diffeomorphisms diffeomorphismsof R R to itself. induced by finitesimal deformation finitesimal deformation
(alloz
oa oz
oa d-2) '-'\ p'o'2 (*- d4rz z 2 +z *Aro'-) \dz 2 2 Lds2, where{It is aa 1deformations induced of ds heR is ) heR of deformations , where inducedby by {J:(ds {.fr}ren {/i(ds2)hen generatedby vector parameter which is by aa vector parameter family .R which is generated family of transformations transformations of R field a(z)(0/02) on on R. fieldX = a(z)(%z) E. 2 such 2 + Bdz Bdzz such We Adzd2 + Bdzz condition on on an an element elementac = Adzdz shall obtain obtain aa condition We shall * Bdz the that ac is and (ii) in T7 with respect respectto the all elements elementsof types types (i) and is orthogonal orthogonal to all given . , ..)n. ) R. First, product ((., orderthat that ao satisfies satisfies giveninner First, in in order inner product
fL
= 0o dtdy= = ~ I LA{t AtPdxdy
(,,g\a =; (a,f3)R
Lr7,
217
saloN
Notes
sagsrl"sla lsrll repro ur 'lxeN '0 eq plnoqs y '(r) adfl;o 5/ fue ro3
for any {3 of type (i), A should be O. Next, in order that a satisfies
jrr
o - n w P(At.#r)"il
(a,{3}R= JR (aa Baz+B-aa) az dxdy=O
=a(d'ol
e^"q e!$ slmuroJ s(uearc urog '(g) ad{1 ;o 6/ luaurala ,tue .ro3
for any element (3 of type (ii), from Green's formula we have
fL ~~
fL ~~
's npxp" nPxP " + #"[ I #"[ | adxdy +
adxdy = O.
fq ua,rrE sr '-6, '1urod ul (U'I = f) !,fi + !4t = fio slueurela o^rl Jo lcnpord reurn eq? 'rarroe.ro;41 espq eqt le (31r)Jl" ((U)Z),,2 aceds lua3uel arqdroruoloq aql ot spuodsarroc 1, o;, aaedsqns aqt ?eqt s^{oqs uolt"^rasqo srql lo {(U)zV ) $ | f +,fu} = '(A)zV ur ,f euros rc1 rlt * fi = o s€ uellrrrlr sr o ;r fluo pue;r (g) p* (r) sad,t1Jo sluauala 11eo1 leuoSoqlro $ L ul p luatuela ue 'acuag 'u uo EerlueJeJ 'crqdrour -Ip crlerpsnb crqd.rotuoloqJo (U)zy aceds aql o1 s3uoleq ezpg snq; -oloq fl g 's! t€ql '0 = Zg/gg leql aas aar 'frerlrq.re x (zg/g)(z)o - y acurg
Since X = a(z)(Ofaz) is arbitrary, we see that aBjaz = 0, that is, B is holomorphic. Thus Bdz 2 belongs to the space A 2(R) of holomorphic quadratic differentials on R. Hence, an element a in T is orthogonal to all elements of types (i) and (ii) if and only if a is written as a = 1/J + 1f for some 1/J in A 2 (R). This observation shows that the subspace To = {1/J + 1f I 1/J E A 2 (R)} of T corresponds to the holomorphic tangent space To(T(R)) of T(R) at the base point. Moreover, the inner product of two elements aj = 1/Jj + tfj (j = 1,2) in To is given by
r
af f -d = a(za'tol 4f*pg'fr ll duz
r -dxdy (al,a2}R = 2Re JR 1/Jl1/J2-;;:-'
J
'(U)Z uo daf rrrleur ueruueruarg uossrelad-llel\ eq1 sa,rtEqeH,u ((U)J)oJ uo euo eql qlr^\ sapllutoc lcnpord rauul s-Iql l€ql aas ern'.sp se U uo crrlel'u cqoq.radfq eq1 3q1et'relnctlred u1
In particular, taking the hyperbolic metric on R as ds 2 , we see that this inner product coincides with the one on To(T(R)) which gives the Weil-Petersson Riemannian metric 9 wp on T(R).
Notes saloN
lurodalar,reql urorJparpnlsere sacedsraflnuq?ra; araq,rl'[776]1o7y1pue'[996] equro{,1'[62] equrorl pus reqsrd'[lg] arreuraTpue sllag,[6t-y] tsol o1 ra;ar 'aroturaqFn{ '[0gz] prrc '[6gu] '[976] 'snlncle?sse€I4leql a,ra. r.radlo1tosl€ aas uo pas€qsl WH,!r '[996] fredlo1t ,(q uarr€ sr;oo.rd a^r]€urall€uy '[/] pue [g] sroJIqV ot enp er" rrrlaru uos$eledlre \ aql Jo flrralqey .ro; .raldeqcslqt ul syoordo,lrl'[g]U] IIaAI /tq pecnporlurlsrg ssl{ )lrleur uossreladlre1\ eqtr '[gg1] epe4eN pue'h9I] r{eznsteW '[ezr] '[Oet] *ty '[28] "tx 'sdnor3 ueuraly tllselt Pue ery PIr" raulPr€g aas go flqrqels IsuroJuoers"nbo1 ,(Solouoqoeralqcrg erll Jo suorlecqdderod '[gg -y] "ry ,tq looq aql ur punoJ sr ,iSolouroqocrelq?rg eql Jo leep 1ea.r3y '(gsr-qqrdd 'g '[tfV] le1deq3 ul aas) a1.regot enp sl Z$ ul;oo.rd rng '[6-y] sroylqy ur UI$ '(9'2 euwal) €tutuels(rellnuqtrel;o;oord e .rog g .ra1deq3 Jo I "uuraT aas '[tlt] ptt [971]olounselI pue'[lzt] ttx fq e.resauesereculod uo sraded,tueur;o auog '[gg-y] .rauqalpus '[89-v] e.ry fq s{ooq aq} w peulet -uoc are ur sarras erecurod pue $uroJ arqdrourolneJo slretep a1a1duro3 1$ 'ltt-v| €rnlpox pue,$,orro4 pue'Lg-V] srlepox '[qq-V]nzruoN pue rqsefeqoy '[69-v] srrreg pue sq]lgrr9 fq slooq aq] m punoJ sr ,trlauroe3l€rlueragrpxeldurocuo lerrel"ru .,t.ro1cnpor1ur 1n;d1aq;oleap 1ee.r3y
A great deal of helpful introductory material on complex differential geometry is found in the books by Griffiths and Harris [A-39], Kobayashi and Nomizu [A-55], Kodaira [A-57], and Morrow and Kodaira [A-77]. Complete details of automorphic forms and Poincare series in §1 are contained in the books by Kra [A-58], and Lehner [A-66]. Some of many papers on Poincare series are by Kra [124], and Masumoto [140] and [141]. For a proof of Teichmiiller's lemma (Lemma 7.6), see Lemma 1 of Chapter 6 in Ahlfors [A-2]. Our proof in §2 is due to Earle (see [A-41], §12 in Chapter 5, pp.155-158). A great deal of the Eichler cohomology is found in the book by Kra [A58]. For applications of the Eichler cohomology to quasiconformal stability of Kleinian groups, see Gardiner and Kra [82], Kra [120], Kra and Maskit [127], Matsuzaki [151], and Nakada [165]. The Weil-Petersson metric was first introduced by Weil [243]. Two proofs in this chapter for Kiihlerity of the Weil-Petersson metric are due to Ahlfors [6] and [7]. An alternative proof is given by Wolpert [253], which is based on the Maass calculus. See also Wolpert [248], [259], and [260]. Furthermore, we refer to Jost [A-49], Eells and Lemaire [67], Fisher and Tromba [72], Tromba [236], and Wolf [244], where Teichmiiller spaces are studied from the viewpoint
Ltz
Notes
217
seloN
segsrlesla lsql rapro ur 'lxaN '0 aq plnoqs y '(r) ed,t13o 5/ fue .ro;
for any {3 of type (i), A should be O. Next, in order that a satisfies
rr (oa -00.) = jiR B oi + B OZ
o-np,p (#r.#")"ll =a(s,o,) (a,{3}R
dxdy
=0
g/ luaurala fue ro;
for any element {3 of type (ii), from Green's formula we have el"q aar slmuroJ s(uaerC uro.rl '(g) adfl;o
fin ~~
fin ~~
's t*" t*" npap npop " t 1[ + II adxdy+
o.dxdy= O.
,(q uarrr3sr ! '1urod q (Z'I = !) !,1,+ !fr = fra sluauralao/rt Jo lcnpo.rd raum aql '.ra,roe.rotr11 eql o1 spuodsarroc,1, es€qeq?fe (U)'f l" ((U)"f),,-f aaedsluaEuel arqd.rouroloq fo {(ff)zy ) ,1,I f + fi} = } ecedsqnsaql }eqt s^otls uotl€^resqosIqI '(a)cv ur aurosro3ril * 4l fr = a se uallrr^r sl ^oJI fluo pue;r (l) p* (r) sed,(1Jo sluetuele11eo1 puoSorllro sr -L u\ p luauela ue 'arua11 'u uo slerluereJ 'ctqd.rour -yrpcrlerpenbcrqdroruolorlJo(U)uy aaedsaq1o1 s3uolaq zzpg E\qL -oloq $ g 'sr 1eq1'0 = zg/ge l€rll eesaar 'frerlrqre il (zg/d@)D - X eculs
Since X = a(z)(8foz) is arbitrary, we see that oB/oi = 0, that is, B is holomorphic. Thus Bdz 2 belongs to the space A 2 (R) of holomorphic quadratic differentials on R. Hence, an element a in T is orthogonal to all elements of types (i) and (ii) if and only if a is written as a = 1/J + 1/J for some 1/J in A 2 (R). This observation shows that the subspace To = {1/J + 1/J I 1/J E A 2 (R)} of T corresponds to the holomorphic tangent space To(T(R)) of T(R) at the base point. Moreover, the inner product of two elements aj = 1/Jj + ¢j (j = 1,2) in To is given by
fin 1/J11/J2 d;~Y.
. f"df i " L ' f iaf f JJrz=u(zo,ral (ai, a2}R = 2Re
rauul slql leql aes em'rsp se U uo tlrlatu cqoqredfq aq1 3uqe1 'relncryed u1
In particular, taking the hyperbolic metric on R as ds 2 , we see that this inner product coincides with the one on To(T( R)) which gives the Weil-Petersson Riemannian metric 9 wp on T(R).
uosslarad-rra^\ aq1saarE q?Hi$ ((u)rl, ""
(""Ji Jr; #i""$;"trjiT"T:'#
Notes seloN
'[776] '[996] lurod,uarr\aql urorJperpntsare secedsra[nuqrreJ a.raqaa 1o1q pue €quro{L '[62] equoqtr pus raqsrJ 'Lg] "r,r*"f pu€ slleg '[6?-V] tsol ol .raya.r aar'arourraqlrn{'[0gZ]pue'[6gU]'[gy6] 1rad1orlA osl" eas'snFrlec sse€I4leql uo paseqsr qerr{^r'[996] lradloA\ fq uer€ sr ;oo.rde^rleuralle uy '[/] pue [g] sroJltly ol enp are Jrrlaur uossJaled-lre11t eqt Jo fluelqey ro; raldeqc srql ur s;oord orlrl '[g?Z] IIel\ ,tq pecnporlur lsrg se^t crr]eru uossraledlre1\ eql '[gg1]epeqeNpu€ 'hgI] rlnznslelq '[tzt] '[0at] ttx '[48] tty 'sdnor3 uetutely tl{.eru Pue erx Pue reurPreg aas '[89 ;o flqtqels leuroJuocrs€nbo1 fSolouoqoc ralqrrg eql Jo suorlecqdderoJ -y] erx ,iq looq aqt ur punoJ sr ,(Soloruoqocre1lrrg arll Jo leap 1ea.rEy '(ggr-ggrdd 'g raldeqg ul '[tf-V] aes)a1.regol enp q '[6-y] srolpy ur ZI$ A$ ul goord .rng g raldeq3 Jo I "uureT eas'(g'2 euural) srutuals.ra1nuqcral;o;oo.rd e .rog '[tlt] pt" [971iolounseltl Pu"'Fzt] ttx,tq ale salraser€culod uo s.radedfueur;o auog '[99-y] rauqe1pu€ '[89-y] e.ry fq s{ooq aq} ur peulet -uoc ers ur sarras pus surroJ crqdrourolne slretep a1a1duro3 1$ ?J€?urod Jo '[tt-vl errepox pue ir,!,orrotr{ pue'[Zg-v] errepox '[qq-v] nzruoN pue rqse,leqoy'[69-v] srrreg pue sqlgrrC ,(q s4ooqeql ur punoJ sr f.rlatuoeSlerlueresrpxaldurocuo lerreleru i{.ro1cnpor1ur lnydleq;o leep 1ea.r3y
A great deal of helpful introductory material on complex differential geometry is found in the books by Griffiths and Harris [A-39], Kobayashi and Nomizu [A-55], Kodaira [A-57], and Morrow and Kodaira [A-77]. Complete details of automorphic forms and Poincare series in §1 are contained in the books by Kra [A-58], and Lehner [A-66]. Some of many papers on Poincare series are by Kra [124], and Masumoto [140] and [141]. For a proof of Teichmiiller's lemma (Lemma 7.6), see Lemma 1 of Chapter 6 in Ahlfors [A-2]. Our proof in §2 is due to Earle (see [A-41], §12 in Chapter 5, pp.155-158). A great deal of the Eichler cohomology is found in the book by Kra [A58]. For applications of the Eichler cohomology to quasiconformal stability of Kleinian groups, see Gardiner and Kra [82], Kra [120], Kra and Maskit [127], Matsuzaki [151], and Nakada [165]. The Weil-Petersson metric was first introduced by Weil [243]. Two proofs in this chapter for Kahlerity of the Weil-Petersson metric are due to Ahlfors [6] and [7]. An alternative proof is given by Wolpert [253], which is based on the Maass calculus. See also Wolpert [248], [259], and [260]. Furthermore, we refer to Jost [A-49], Eells and Lemaire [67], Fisher and Tromba [72], Tromba [236], and Wolf [244], where Teichmiiller spaces are studied from the viewpoint
2I8 218
7. Metric 7. Weil-Petersson Weil-Petersson Metric
of harmonic ha^rmonicmaps. maps. Moreover, Moreover, see seeTakhtadzhyan Takhtadzhyan [219] of and [220], and Zograf Zograf and and [219]and [220],and Takhtadzhyan [264], and tomba Takhtadzhyan and [266]. Tromba [235] showed that the sectional showed that the sectional 12641,[265], [265], [266]. [235] curvatures of of the the Weil-Petersson Weil-Peterssonmetric metric are curvatures are also also negative. negative.It It is is also also known known that that the Weil-Petersson Weil-Peterssonmetric metric is is non-complete; proofs are non-complete;proofs the Masur are found found in in Chu Chu [49], Masur [49], and Wolpert Wolpert [245]. [143], [143],and [245]. For the the subject subject in in §3.6, werefer refer to to Fischer Fischerand For and Tromba tomba [72]. Suchaa differential diferential $3.6,we [72].Such geometric interpretation interpretation of of the the Weil-Petersson Weil-Peterssonmetric geometric metric is is closely closely related related to to the the Polyakov integral integral in in string string theory (see,for theory (see, Polyakov See also for example, example, Polyakov Polyakov [176]). also See [176]). Nag and and Verjovsky Verjovsky [164]. Nag [164]. For the the Weil-Petersson geometry on Weil-Petersson geometry on moduli For moduli spaces spacesof of higher higher dimensional dimensional complex manifolds, manifolds, we we refer refer to to Besse Besse[A-17], complex Fujiki and Schumacher [77], Fujiki and Schumacher Koiso [A-17], [77], Koiso Schumacher[190], and Siu [118], and Siu [208]. [118],[119], [119],Schumacher [190], [208].
'ttr*9rrart>oo-I u>r)="7r4 We = {z E H
Ii - 0
0
< arg Z <
i +0
0 } .
se cAA ssardxa u€) ell\ 'Z/u ) od > 0 qq^{ 0, elqelrns e rod'01 lo oLV sr)rc eql rt,"iuor qrlqi{ (J o1 lcadsa.rqlrm) - (z)oL H uo 3A4Jo 1JIIe eq,cA Ial'C sraAor pu€ J o1 s3uolaq (t < V) zy '{pp} -._i' leqt pue ;o fuaurela atuos go lurod paxg e sl I }eq} etunsse detu eM 'fI eueld-g1eqreddn aq1 uo 3ur1oe uersq)nd e ar1e1'1srtg A J Jo Iapour (rl4 'cA1 A uo p? o1 pnba sr pue ul /tq g 3uo1e aql sluasardar q?rqa g,;o Surdderu l€ruroJuocrsenb e I ,,Eur1sra,r1,, ', ''a'r 'pooqroqqErau lcnrlsuoc e^r uaql Jo pooqroqqErau palreuuoc flqnop e r€lnqnl € seruoceq cAA Wrn llprus os p luelsuoc aarlrsod e esooqc ern 'era11
Here, we choose a positive constant a so small that We becomes a tubular neighborhood, i.e., a doubly connected neighborhood of C. Then we construct a quasiconformal mapping of R which represents the "twisting" along C by t in We, and is equal to id on R - We. First, take a Fuchsian model r of R acting on the upper half-plane H. We may assume that 1 is a fixed point of some element of r - {id}, and that 70(Z) = AZ (A > 1) belongs to r and covers C. Let We be a lift of We on H (with respect to r) which contains the axis A-yo of 70. For a suitable 00 with 0< 00 < 1r/2, we can express We as
'{, > (C'd)d ) d} = ctr4 lA
We = {p E R I p(p, C) < a}.
cqoq.red.ilq aq1eq d 1e1 aql 'U uo ecu€lsrp les 'ltsp fq pacnpuracuelsrp
Let R be a closed Riemann surface of genus 9 (~ 2). Fix an oriented simple closed geodesic C with respect to the hyperbolic metric dsk. Recall that the Fenchel-Nielsen deformation of R with respect to C, which is simply called the FN deformation from here on, means the family {R t It E R} of marked Riemann surfaces Rt obtained by cutting R along C, by twisting by hyperbolic length t and then by regluing the borders. See §2 of Chapter 3 and Fig. 8.l. We represent such a deformation by using quasiconformal mappings. Let p be the hyperbolic distance on R, the distance induced by dsk. Set
'sEurddeur leuroJuocrsenb Sursn fq uorleur.rogepe qens luese.rdar e11 'I'g'3ld pue g raldeqCJo ees'sraproq eq? SulnlSarfq uaql pue U$ 'p 3uo1eg' 3ur11nc{q peurelqo ? r{13ua1cqoq.radfq fq Eurlsranlfq Q. saceyrns uueruerll pa{r€urJo {U > I I tg} fguey aql sueew 'uo ataq rnoquorlDulto{ep Ntr eql pefiec fldurrs sr q)rq^r 'p o1 lcedser q]l/{ A lo uoNlDu.totepuesptTlleyouetr eqt t€rll ilerdg '{sp cr.rlaur crloq.redfq eql ol lcadsar qrlta C crsapoe3pesol? aldurrs paluarro ue x-r.{ '(Z <) f snue3 Jo er€Jrns uuetuarg pesolc € eq U larl
8.1. Fenchel-Nielsen Deformations suor+errrroJecuaslarN-Iarlrued'I'8
'seleurProoc ueslerNleq?uag ,{q uroJ l"}uau€punJ uossJaled{aM eqt Jo uol}s} -uasardar alduns e 'flaureu 'e1nur.ro;s,1.rad1o14 e a,rord aiu 'g uotloeg ur ',{11eutg 'fu ur uotleuuoJep uaslalN{eqtueJ e fq paurur -Jalap Jolce^ lua3uel eql etelnrpc en'4 uollcas ur '1xag 'sEurddeur l€ruroJuoc -rsenb Sursn fq suorleuroJep uaslerNlaq?ueJ eqrJtsep am '1 uorlcag ur '1srtg 'salsurProoc
In this chapter, we shall give a beautiful representation, due to S. Wolpert, of the Weil-Petersson fundamental form on Tg (g ~ 2) by using Fenchel-Nielsen coordinates. First, in Section 1, we describe Fenchel-Nielsen deformations by using quasiconformal mappings. Next, in Section 2, we calculate the tangent vector determined by a Fenchel-Nielsen deformation in TgFinally, in Section 3, we prove a Wolpert's formula, namely, a simple representation of the Weil-Petersson fundamental form by Fenchel-Nielsen coordinates.
ueslarN{aqrueg Eursn fq 6) 6a uo uroJ leluaruepunJ uossre}adjla1\ eq} Jo (Z ? 'raldeqa sql uI '1red1o11'S ol enp 'uorleluasardeJ InJlln€aq e a.,rr3IFqs e^\
JrJlatrtr uossJa+ad -lla/y\ aql PUB suol+BIIIroJa( uaslalN-lallruad
Fenchel-Nielsen Deformations and the WeilPetersson Metric
g ra+deqc Chapter 8
220 220
Weil-Petersson Metric 8. Fenchel-Nielsen Deformations Deformations and the Weil-Petersson Metric
V
FN vN deformation deto'*ation;t
V
/
c ,,
R
*,,-'-H*..**-
-/
l_L
I
IIll
i+ I
I
mapping
\qc ~mg Rt
\
Fig. F i g . 8.1. 8.1.
Next, R, we define define a quasiconformal mapping mapping w utt of H 11 onto Next, for every t E € R, itself by
* ' ( r )-
=
0 < 0d<< ~t --e0o0 0< ( z, < ~t + 000 z e x n( r ( 0 t + e o ) ) ,~, -- 000 o~1 0g ~ { ~ < 00 <
=
t gives -t/(2eo). givesaa surgery the axis axis Here, z, and This w tor surgeryof H I/ along along the Here,0d = arg a;tgzt and f.e = -t/(20 0 ). This papers[247] and A-yo' the sign signof tI is is different differentfrom from that in Wolpert's Wolpert'spapers Aro. Note Note that the [247]and [251]. (See Fig. 8.2.) (See Fig. 8.2.) [251]. t . A simple computation gives Now, the complex complexdilatation dilatation of w urt. simplecomputationgives Now, denote denoteby Tt 4 the if.
Z
r1(= z )-2- -Z{ f 7.xXI(O)-=, , @ Zi ,
Tt(Z)
z E€ H. H.
Z
Tf 2 + on R. FurtherFurtherHere, is the the characteristic characteristicfunction functionof 1= -I = [1r/2 Ilere, XI * 0d6] 0 , 1r/2 0 ] on 17 is [" /2 -- 00s, 11 satisfies more, ITlor€, Tt satisfies
o.yo. (T'o/t0 = Tt· rt 0,0' ,r. Tt
(,bhb)
(7e). with respect Thus, Tt is a Beltrami Beltrami coefficient coefficient with respect to the cyclic group ('0)' 4 is lOn the other hand, it elements in r it is clear that that the set re ,l-c consisting of all elements t o . H, Il, which 0t'o 0o0 t h i s FN F N deformation d e f o r m a t i o nto w h i c h cover c o v e rC is i s {, f } . BBy l i f t i n g this € r}. l -,r- 1 Il t, E { To y lifting we surgeries along the axes axes of all we have I/ which give surgeries have a family family of self-mappings of H quasiconformalself-mappings elements self-mappings we can can construct a family of quasiconformal elements in re. l-c. Thus, we bv ('0) (zo) \\ r l- the set set of H as follows. follows. Denote Denote by ^t{ which induces induces this FN deformation as (to), and set with respect set cosetsof r l- with respect to ('0)' of all right cosets
- dz
(ow - I ) at t=O
.
'(o='lJg-\ "P = 'a \ l,,r,g/ ,p
d3 ipe-3
t
In particular, we have obtained a curve {J.lt I t E R} in B(H, rh, which represents the FN deformation of R along C. Next, we shall compute the tangent vector of this FN deformation in TB(r) considered as a real manifold. For every J.lt, we set Wt = wI" , where wI'. is defined in §1.1 of Chapter 6. Then, as in the proof of Theorem 6.10, we can conclude that the tangent vector of the curve {4i(J.lt) I t E R} at the base point of TB (r) is equal to
e rnc eqtJo o1 lenba sl (J)sJgo lurod es€q aql 1e {U 3 ll(rrt)d rolral lua3uel aql l€rll apnlcuocu?, a^r'61'9 ureroeq;;o;oord aq1 ur se'uaq; 'rrl drerra rog "dm = tot '9 .reldeqg las en Jo I'I$ uI peugap sl'd(n eraq,n 'ploJrutsru leer e s€ pereprsuor (.t)sJ ur uor?euroJap NJ slq? Jo rolcel 'lxeN 'C 8uo1eg lua3uel aq1 alnduroc IFqs ar* Jo uorleuroJep Ng eq1 sluasarder t{cr{rlr 'r(._;r'H)g ul {U > I | ,t/} "nt.,t e peul€lqo aAsq a.{r 'relncrlred u1 '909
Remark. We can construct wI'· more directly and geometrically by using w t , which "twists" along A"Yo by t in H. Actually, "twist" inductively along ,(A"Yo) by t on ,(We) as described before for every ('0),-1 E ('0) \ r, and then normalize the resulting mapping. For more details, see Wolpert [247], pp.503505.
-ggg'dd '[1y6] tradloA\ aas 's1te1aperotu roJ 'Surddeur 3ut11nsareq] azll"turou ueqt Pue 'J \ (0.t) 3 r-1,(01,) {.rarra .ro3eroJeq PeqlnsaP se (c1-)L uo 1 fq (",V)L 3uo1e,tlartrlonpur ((lsrrhl,,'i(11en1cy'ff ul t fq o'V 3uo1e ,,s1srall,,ql.rq^r 'ror Sursn fq rtlpcrrleruoa3 pue fllle{p eroru,,rrn lcnrlsuof, u€e aJ1yIJDuu e[
'g 3uo1e Ur Jo uorleuroJep 'snq; N1I eqt sluaserdar qrlqa (J)J u! {U f I | [,7rrr]] ,(lTueJ s ul"tqo eirl 'slstxe 'Q)l > ['arn] lurod € seunuralap pue H lo ,an Surddeur cb-rr/ Iecruouec aq1 '3 fraaa rog 'aoue11'1(,1 'U)g o1 s3uolaq trl ltsql uorlrugep eql urog reelc st lI
Thus, we obtain a family {[wl'·] deformation of R along C.
It
E R} in T(r) which represents the FN
It is clear from the definition that J.lt belongs to B(H, rh. Hence, for every t, the canonical J.lrqc mapping wI" of H exists, and determines a point [wl'·] E T(r).
""
"YE (-yo) \r
J \ ( o L )) r
,
L:
(Tt
0 ,) - .
'
!-l
-4t
=
L(tort\1 7
J.lt
'z'8'ttJ
Fig. 8.2.
--\1 I
, ,,
1
1/{"
,,rrT
221
8.1. Fenchel-Nielsen Deformations suorl"ruroJeo uaslerNlaqf,uaJ' I'8
tzz
8. Fenchel-Nielsen Weil-PeterssonMetric 8. Deformations Fenchel-Nielsen Deformationsand and the the Weil-Petersson Metric
222 222
(Here, recall that that such (Here, such a tangent vector is considered consideredas as an element element of A A2(H* f).) 2 (H*,, r).) = (awt!at)lt=o gives an integral formula for w (0q/0t)11=s 4.37 gives ti = Furthermore, Theorem 4.37 as follows. We set as
v(z)
'"
= vo(z) +
,'(z) vo(,(z)) ,'(z) ,
LJ
zEH,
(8.1)
-yE ho)\T, -Yllho)
where where
x , ,z uslz)= --yllargz)=. 'lvo
that It It is easy easy to see see that
z
fLt -/ll- = o' lim II - vll = o. ]13tt? t
t .... O
oo
we obtain Thus we
it(z)=-+ ilr,G)ffid€dr,
zec.
(8.2)
we know that As has has been been stated in the proof of Lemma 7.16, 7.16, we = vL, on C in the sense (i) (w).. (d)" = senseof distribution, distribution, and 2 -----'00. oo. d(0) = w(l) tt(1) = 0, and w(z) b(z) = o(lzI o(lzl2) as z ----+ ) as (ii) W(O)
Conversely, and (ii) characterize characterize w tir in the class classof continthese conditions conditions (i) and Conversely,these uous using Weyl's lemma (Lemma can be be easily easily shown shown by using uous functions on C, which can 4.6). 4.6). gc, we we rewrite formula (8.2) (8.2) as Now, to get a simpler representation as representation of
w
Lemma Lemrna 8.1. 8.L. The The derivative deriuatiae b is written as as ( l rrgz a
-, { in i(z)== -z w(z)
(t) i } o,+* L*^r,) *.,.,,,.,F,, F-y(z) ;0 dt 211" log z +
X
# \1,*" o
0
L
rhotr,(,)
(8.8)
(8.3)
-yEho) \T, -Yllho)
for every and and eoery zz E Here, arg argzz takes lakes values aaluesin [-11",11"), € C. Here, for l-r,r),
=-#U,*",'' o# o,+ fibs1et\ F.,(z) * fir.,1,1, deterwhere most two. two. This This P-y P, is uniquely aniquely deterdegrveat aI most wherc P-y(z) P.r(z) is a polynomial of degree = = o(lzl2) as and that Fr(z) mined F-y(l) 0 and that F-y(z) = o(lzI 2 ) as mined by by the the conditions conditions that that F-y(O) Fr(O) 4(1) zz +----+ @ . 00.
Moreover, (8.3) converges conaergeslocally locally uniunion the the right hand side sid,eof of (8.9) Moreooer, the the series series on formly on on C. formly (8.1) for fL p in (8.2). (8.2). Then we we have have Proof. side of (8.1) Prool. First, substitute the right hand side
'*rr uo onH*,
(q's)
/
t r
"IE (-yo)\r
J\(o[]l't
w=-~ ~ (J....IOg"'(-P-y) 211' L..J "'('
(8.5)
(t - ,r"r;) 3
)17 !
serrr31'g evrute1 'loo.td
Proof. Lemma 8.1 gives
'*H uo fryu.r,ofiunfipoao1safitaauocycnlm
which converges locally uniformly on H*.
"'(
,,.
, l L \
211' "IE (-yo)\r
J \ ( o L )) L
L ("'(')
v ( _ c d t
=..!..-
"\r) I
?
2
'sacuoTsrunc.nc 6uto6atol eql repull 'Z'8 uraroaql 7oq7snollot 7t
Theorem 8.2. Under the foregoing circumstances, it follows that .s^rolloJ uorlresse aql E uaqa'r,61 L4l- s€ e?uereglp slql ?asa1yo^rl lsoru 1e ear3epSo leurou,tlod e st acueraJrp slql teqt saqdun qctqn 'oo + z w (rlrDO sr pue 'g uo ctqdrouroloq st
is holomorphic on C, and is O(lzI 2 ) as z --+ 00, which implies that this difference is a polynomial of degree at most two. We set this difference as -iP-y /211'. Then the assertion follows. 0
( ,tf:_\_(,),1 o),r. " ' - X; g ) , f (o)r)oa ,"" ioplpQ'))a tlr l J Q)Lo1 l?q? u/rroqssI 1I snqJ
Thus it is shown that 'J
) L',L'
( L o o n )- t ( L " t )
e^eq eir{ 'uorlnqr.rlsrp Jo esues aq1 ur 0n = z7 acurs '1xe11 110
in the sense of distribution, we have
{l
ooz
Next, since I z =
20 0
a
211'
. { reoto1'*,n' Y G Y x " T\ r * t' - ! t I'-":= '?t?,} tP{z?o1-(3)({"e"''3}xeru's)x ffi ""1
=-
z
XJ(t) dt
--
argz
i } + -log z
.
=211' 10 ~ 211'z, X(o,max{O,argz})(t) -logz dt
XJ(t) {
.
}
'yor=)'tp{.
r
iz
":=
j"lHf (( z(z - 1) XJ(arg() dedT/ - 1)«( - z) 20 _ iz r XJ(t) {(JO (z - l)e dr } dt -211' 10 ~ 10 (re l)(re z) , it -
it -
( = re it ,
it
=tr _"[}ffi "'[
onz
-))
,"
0
,
:2(r t'p?p666ffi,xt(t_4,
",
211'
[[ JJ ?
= (,),
I(z) =~
eleq ad\ ueql '(?'8) Jo aprs pueq lq3rr eql uo urrel lsrg aqt (z)1 ,(q aloueq '9 uo fprro;tun 'fpealC f11eco1pue flelnlosqe sa3raluoc (f'g) f" eprspu"q 1q3u eql uo selresaq1
Clearly, the series on the right hand side of (8.4) converges absolutely and locally uniformly on C. Denote by I(z) the first term on the right hand side of (8.4). Then we have
. (z . )XI . ))) = G,))a R«(, z)
= (( _ 1)«( _
z)'
z(z - 1) G-z)t
(r'e)
Here, we set les at\'eJeH
"fl +
r/".J\ tL
't plp(z'))a
611&(())r)0z
(8.4)
'[[:--(z\m
ttplp (z '))uO)0" 223
"'
IJ I
8.1. Fenchel-Nielsen Deformations suorl?ruroJao ueslerN-Iaq)uad't'8
tzz
Fenchel-Nielsen Deformations Deformations and the Weil-Petersson Weil-Petersson Metric Metric 8. Fenchel-Nielsen
224 224
=
where P;7 Fid = S. O. computation gives gives the following, following, Bol's equation: equation: On the other hand, a direct computation
(')2
= ;,log7 =- (i,l ~ 1.7'"ttl /t
\ ' 11I '
(
)
/r'\2
Thus, differentiating both both sides sides of of (8.5) three times, times, we have have the assertion. assertion.
tr 0
f geodesic C on r? general, for any simple closed element 70 closed geodesic In general, R and any element e r T E basic series as More which covers C, can construct a similar basic series as in Theorem 8.2. we 8.2. covers precisely, of 70, set precisely, let ao and b 6 be the two real fixed points of 7s, and set (a (a
b)2 b\2
-w-Yo(z) ' t o/ \ .\----l----------t= - (z _ a)2(z _ - b)2' e_a)2(z_b)2.
Then
=
oc= Be
L t
( r r , o07) t ) ' (.t(7')2 )' (w-Yo
-yEho)\r re ('vo)\r
call this this Be the and belongs belongsto A A2(H,l-). We call Oc the converges locally uniformly on on H, .[/, and converges locally uniformly 2 (H,r). We reformulatedas asfollows: follows: Petersson this series, series,Theorem Theorem8.2 is reformulated seriesfor for C. Using 8.2 is Peterssonseries Usingthis
Corollary. Then N(l) be be as as in in §2.1 7. Then Corollary. Let Let N(r) Chapter7. 52.1of Chapter II u
i . _-r2 - Z --)fi'Oc = --A = H Be 7r
modN(r). N(f). mod
(7.15)in and (7.15) in Chapter Proof. Theorem8.2 8.2and Chapter the notation notationin §2 Chapter7, 7, Theorem Prool.Using Usingthe $2of Chapter = ~Be. gives (7.17) in 7 glvl = 77 imply Hence, (7.17) in Chapter 7 gives Hence, Chapter imply that that !p[lIl *Oc. Z
2-
-*^o ' U; H l u l== --Ali H[lIl Be. 7r
Thus, by Theorem Theorem7.7. 7.7. the assertion assertionfollows followsby Thus, the
o
8.2. Geodesic Length 8.2. A Variational Variational Formula for Geodesic Functions = [5, p = geodesicC on R For every every point P Fix aa simple ,R arbitrarily. For € simple closed closed geodesic /] E [^9,fl and geodesic freely homotopic T(R), be the simple closed geodesic on 5 freely homotopic to f(C), and ,S be simple closed ?(.R), let C Co /(C), p that Ie tc is is aa real-analytic real-analytic denote Recall that length of C Co. bV Ic(p) tc(p) the hyperbolic length denote by p . Recall function on (seeRemark 11 in §3.2 7). on T(R) T(,R) (see $3.2 of Chapter 7). po = [R, Here, id]. More 16 at the base base point Po we compute the variation of Ie Here, we lR,fd]. tJJ canonical tpr-qc wtp be precisely, B(H, r) arbitrarily, and let w be the canonical t/-L-qc precisely, take and B(H,f take /-Lp E € ) tJJ determines aa point, mapping of H determines l. Then w rptP real t. every sufficiently sufficiently small real f/ for every value we compute compute the value say pr, of T(R) these circumstances, circumstances,we such t. Under these say Pt, T(.R) for such
( z - zY uotu \(-*t,o, I*fut)
*=",-,
1 ",vj
!'tnoa17t
())"
I L-
= (rt)"d(c7p
uretqo el,l.'(z)n - (tU)" acurg '{og ) z og sureruop eqt uo asoqt se qer3alul aq} l r\ = !.q pu€ {y > lrl > ll H ) z} = ',uo11 alrraer pue '(/'8) Jo aprs pueq lqErr eql ,(q ,t1r1enbaslql ul ,14 aceldar
Now, replace W in this equatity by the right hand side of (8.7), and rewrite the integrals as those on the domains F o = {z E H 11 < Izi < A} and = {z I Z E Fo}. Since V(AZ) = v(z), we obtain
Fa
'o+z'&-
dn=(o)ffi @)"d(cg)
(0) = W(AZ) _ W(z) ( dl c )Po (P ) = dlogAt dt AZ z'
Z
#: o.
:"lnuroJ freurt.rd eq? e^€II au 'ecue11
Hence, we have the primary formula:
. ? D 'Q)4tu+'(o)\p: = ?u)41
W(AZ) = &(0) z + AW(Z). .
dAt
.
1€ql s^\oqs(9'8)
'pr"q reqlo aqt uo
On the other hand, (8.6) shows that
cf f v 't'p?p = (z'))uQ)n I I ;- @)4
-~
fL
(z'e)
W(z) =
v«()R«('z)t:Ie d7].
(8.7)
has the integral representation:
:uorleluesarda.rp.r3alut eql seq
t
'c>z
t-+O
rV(z)-z , W· ()-l' z - 1m
zE C,
,L121 rhi=@4t
'fl 1eq1sa11dur1 zt'? ueroeqJ = 1'aoDI e^{ ueIIJ'9;oSurddewtb-rt| I??Iuouecaql eq nJ +e'I vo l?r{t nrt rltn '(z)rt
be the canonical tv-qc mapping of C. Then we know that wtJ.l = H. Theorem 4.37 implies that v
~
p(i),
'*H ) z
'0
r
{
lrfz H ) z
Let
v(z)=
'(r)rt
p(z),
Next, we set
r
v
on
zER Z E H*.
Z
EH
1esaal'1xa11
' r 1 E o 1- ( d ) o t l€r{t slllolloJ l\'c7 1o uor}IusaP eq} /tg
By the definition of fc, it follows that 'zty=Q)r_Gr^)ooLo
(g'a)
wtJ.l 0 'Yo
(8.6)
(wtJ.l)-l(z) = AtZ.
0
ttn
'1 1€rl1uortrPuoc eql ,tq paurur.ralePq (I () r1 luelsuoc e .r(laaa
Proof. As in §1, we may assume that 'Yo(z) = AZ (A > 1) covers C. Then, for every t, a constant At (> 1) is determined by the condition that
ro3 'uaq; 'g sra^oe(t < V) zy = (z)oL 1"ql eunss? feur a,t 'I$ ul sY 'loo.t4 '
a/
)L
| \
"Oj,rt 6
\
/
= (d)oaQ7p) I tU
'g'Suraroaqr
Theorem 8.3.
'([62] rautpr"C 'Jc) u,laourl-ila,ll fletluassa s! sIqI
This is essentially well-known (cf. Gardiner [79]). (dfc)po(p) = dd fc(pt) \ . t t=O
.
o=ll
lrt
l(rqcti I
P
= Qt)od(c7p)
suorlounJ {ttua1 f,rsepoeCro} "FruroJ [uoIl"-Ir"A V 'Z'8
225
8.2. A Variational Formula for Geodesic Length Functions
9ZZ
226 226
8. Fenchel-Nielsen Fenchel-Nielsen Deformationsand 8. Deformations and the the Weil-Petersson Weil-Petersson Metric Metric
Furthermore, since since Furthermore,
)"ft(c,4=-+(+-*) we see seethat we
i
,?*
^ r " { n (l., l i ( , r-zR) ( z\ c , z )=} - 1 i |
)
{ . , 1 " _ .s n) -: t.(' - z})
C,?*L)"(-,
=-i^u*#=-b
Hence. we we have have Hence,
=- + (dtc)o"oi (-!) ut, t |^,,,"ret
=+11."(g.F)** =?Ru 11,"8**
Finally, divide Fa F's into domains domains {-y(F) f}, where where F is is aa fundamental e F}, {Z(f) I| ,I E domain for F. l-. Then we we conclude conclude that
=,,.H,,. (#)" oro, I1,"8*'o Il,urct =[[ u{0 ,H,"(#)'0,0,
=i,,2",." proof of Theorem 8.3. completes the proof This completes 8.3.
oD
8.3. Wolpertts Wolpert's Formula Formula have computed the tangent vector (represented We have (represented by zv in §8.1) of the FN $8.1) of deformation with with respect respect to C at the base base point, where where C is a given simple closed closed geodesicon ,R. geodesic R. By By a translation of the base base point, we can ca.ncompute the tangent vector field on (the real manifold) T(R) with the FN deformation ?(r?) associated associated with with with respect respect to C, which we we denote FN vector for denote by a/arc, 0f 7rs, and call the Flf ueclor field fieldfor C. Namely, Namely, a/arc 0/7rs is the vector field obtained by applying the FN deformation with with respect respect to C with with unit unit speed with respect respect to the hyperbolic length. Note speed with that a/arc 0/016 is a real-analytic vector field. field.
Ww p
(o~c' o:c
l)
= -
::~I
.
.'c!8 - = ('"t9,3\
=-
dtao- -
cte \B e/ (%-,Y.) "rn,,= (::g\ (,4,\- cto ,c78 I / \s \8 /'"" -olci =(dlc orc
l )
(
orc
-
0) =
Wwp
(0orci orc0) --,-
el€q e^r 'fre11o.ro3 Euro3ero; eq1 ,Lg .too.r.4
Proof. By the foregoing Corollary, we have .,c!g _ = "rg clg ,clg
olci orc
olc - orc l
•
'A uo .g.g uorlrsodo.r4 ,C puo C sctsepoa|pasola a1dtutsIIo Jo[
Proposition 8.5. For all simple closed geodesics C and C' on R, 'ur?roeql fr,7tco.r,dtca.t 3ur,uo1oyeql sl t.g ueroaqJ o1 zt.re11o.roc reqlouv
Another corollary to Theorem 8.4 is the following reciprocity theorem.
(o~c' .) = die( . ).
.(.)ctp=(.,"19-\*^.
\
Ww p
s /
'zt.re11orog
Corollary.
'uollrasse aql e^eq ea\ ecuaH '(rt)"o(tlp) tr o1 sr aprs pueq eql sa,rr3g'3 ueroeqr 'pueq .req10aql uo lqErr l3rll lenba '(t'H)gU 3 r/ frana .ro;
for every J.l E H B(H, F). On the other hand, Theorem 8.3 gives that the right hand side is equal to (dlc)po(J.l). Hence we have the assertion. 0
(J.l'
"
=2Re
~ec) R
( """.,t) "g 6= \ [ /
( , ,t",-"v
(~>'H-2 ec, J.l)
i) d htu e1z-
-"
I/
(i o~c ' J.l) =2 Re
\
=2 Rehwp
(i o~c' J.l)
(, '!#r\ d^ qeaz=(,1,'"-nr\ "^u s / \ 9'l \ gw p
hw p
Proof. By a translation of the base point, it suffices to show the former equality at the base point Po of T(R). First, from the Corollary to Theorem 8.2 and Lemma 7.12, we have
eleq e^r'61'2elouwe1 pue r.ueroer{Jo1 ,(re11o.ro3aq1 uro.r;,1s.rrg Z'g '(U)Z.lo od lulod eseq eqt te flrlenba JeruroJeql ^{oqs ol seclsns 1r '1urod es"q aqlJo uorlelsu€t1 e ,Lg.too"t4
.(.
' / " ^6 )orp= ( .,'"-e-r\ g \ ,.a.? (d/vr6oI qpn pnp aq7 6uu1o7 fiq uaa$.toTnradoeq?il * puo '(6'6'7$'lc) Tcadsa.t (g)a pyotguou p^t eql-uo etnl.rnrls ralilutoc lsouqo lDrnpu ?Tl suDeu c ?r?qn
z.e.,
where i means the natural almost complex structure on the real manifold T(R) (cf. §7.3.2), and * is the operator given by taking the dual with respect to gwp,
(i o~c
r
'crp= (%r\' / = dlc,
.\ I
'A uo Jo,{ .V.g ruaroatll C ctsapoaf paso1calilutts fr.r.aaa
Theorem 8.4. For every simple closed geodesic C on R, 'urero?rll fi.4t1onpSuruolo; eql ^roqs a1il 'clp ppg rolcal 1ue3ue1occrlfleue-par eq? U.g$ uorlcunJ {fue1 crsapoe3eq} urorJ ,pueq reqlo eq} uO
On the other hand, from the geodesic length function lc, we have defined in §8.2 the real-analytic cotangent vector field dlc. We show the following duality theorem.
ur peugep aleq ea'cl
8.3. Wolpert's Formula
227
"InuroJ s,1rad1o11'g'g
228
8. Fenchel-Nielsen Fenchel-Nielsen Deformations Deformations and and the the Weil-Petersson Weil-Petersson Metric Metric 8.
o
This shows shows the the assertion. assertion. This we have have the the following, following, Wolperl's Wolpert's fonnula, formula, which which is is proved proved later' later. Finally, we Finally,
arbieuraesL£- == {Ci}?c=13 decomposing Theorem 8.6. 8.6. Fb Fix aa system of decomposing curves {Gj }J~;13 on on R R arbisysternof Theorem coordiby {tcr,... {lc l , ••• ,lcsg-s,0cr,"' , lc 3g _ , BC1 , ... ,0c"o-"} , Bc _ } the Fenchel-Nielsen coorditrarily. Denote Denote by the Fenchel-Nielsen trarily. 3 39 3 £-. Set Set rs, rCj = = (tgrf2T)|st (lc j f21r)Bcj for for eaery every j.j. Then Then nates associated associated with with L. nates
3g-3
3g-3
I::
u w p ==D O r "drcj o A dAl 6 , j. WWP dlc ij=l =L
Corollary. For For eaerg every simple simple closed closed geodesic geodesic C G on R, Corollary.
l fau , '\ - d r c ( ' ) . , * , I(o~c' .)) == -drc(·).
WWP
Proof. Take decomposing curves contains G, C, and apply Thecurves which contains Take a system of decomposing Proof. orem 8.6. 0 8.6. fields Now, to prove we take a base base of tangent vector fields prove Theorem 8.6, 8.6, we
={#,, ,#,#., {X,,...,Xu'-u}
,#;}
we set set on T(R), as aa real real manifold. Further, we consideredas ?(.R) is is considered where T(R) ?(r?), where
{Xl,'" , T c39" _" 3 - "}· }. , t c 39 " "_3,rc -",TC , " ' ,rc l , r••• , o o g - o }= {lc { t r , ' . . ,X6g-6} { t c rl r, '""' ,lc Then Ww P is the form written in the arpp is written
I::
wwp= uwp =
a;idx; A dxi. aijdxiAdxj.
I lj
l~j
deformations the FN FN deformations First, under the a;i is invariant under every aij is invariant show that that every we shall shall show First, we with /c. to G/c for every every k. C3 for with respect respect to
Lemma k, i,i, and and k, eaeryi,i, 8.7. For For every Lemma 8.7.
=
Oaij - 00 on on T(R). r@).
arc.
the from the and results results from notions and Proof. basic notions we use use some some basic prove the the assertion, assertion, we To prove Proof. To differential Matsushima [A-72]. geometry. See for instance instance Matsushima Seefor differential geometry. [A-72]. to the Corollary corollary to X. Then Then the Let product with to X. with respect respect to the interior interior product be the Let I(X) /(X) be Theorem gives Theorem 8.4 8.4 gives
Lemma 8.7 implies that, when we change R to another Ro by applying the FN deformation with respect to any Cj , the representation Ww P = 'L, a;jdx; /\ dXj is unchanged. On the other hand, after suitable FN deformations, we can generate an Ro admitting an anti-conformal reflection. In fact, let P = {Pk}i~12 be the pants decomposition of R corresponding to the given £. Then every pair of pants Pk has the reflection J k of Pk (cf. the Corollary to Theorem 3.5). Moreover, the set. F Jk of fixed points of h divides each boundary component, say Lk,j (j = 1,2,3) of Rk, into two geodesics with the same hyperbolic length. Thus, applying the FN deformation for every Lk,j (E £), we find a Riemann surface Ro satisfying the following condition: for every Lj E £, let Pj,l and Pj ,2 be pants mutually adjacent along L j , and Jj,l (f = 1,2) be the reflection of Pj,l for each f. Then the sets of fixed points FJj,l n L j of Jj,l on L j (f = 1,2) are coincident with each other. Then we see that each reflection J k becomes a restriction of a reflection J of Ro, an anti-conformal self-mapping of R o of order two, and that F n Pk FJ k for every k, where F is the set of fixed points of J. Note that F consists of a finite number of simple closed geodesics on Ro. (See Fig. 8.3, where we omit some part of the sets of fixed points, to avoid unnecessary complexity.) In the rest of this discussion, we may assume without loss of generality that R admits a reflection J. Then J induces a mapping, say :J, of T( R) onto itself as follows. For every point [S, f] E T(R), let rs be a Fuchsian model of S acting on H. Denote by S* the mirror image H* / rs of S, where H* is the lower half-plane. Define an anti-holomorphic canonical mapping
Surddeur l")ruousc crqdrouroloq-llue u" auuae 'aue1d-g1eq reaol aql sr *lT areqa\ 'S Jo sJ / *H aSerurronrur eqt ,S ,tq alouaq .g uo 3ur1aeS'Jo Iepour uersrlcnd" aq sJ lel '(U)J > [/ ,S] lurod f.reaa roJ 's,lrolloJ s€ Jlastr oluo (g)g 3o ' t fus'Surddeur e secnput / ueql 'f uorlcegar e s?turp" U 'uorssncsrpsnll 1eq1flrlerauaE;o ssol lnoqlr^a erunssefeur ell Jo tser eql uI ('flrxalduroc ,(lesseceuunpro^e o? 'slurod pexg Jo sles eql go lred etuos 'g'g '3rg aag) 'W uo scrsapoaSpesop aldurrs lTrrro allr araq,ra Jo raqunu alrug e Jo sl$suoc d leql etoN 'f ;o slurod pexs Jo 1as e{} sr Jr eJeq^i!,,ry fre,ra .ro; rtg - 14 Ud l"q1 pue'oaa1 raproJo og;o Eurdd€ur-Jlesl€ruroJuoe-rlue ue'0U Jo 1 uorloeuer e Jo uorlcrJlsar e saruo?eqY uot?ceUarq?€e leql ees el!l'ueqJ 'Ieqlo
=
qcee qlr^{ }uepnuro? ale (6'1 = il fl uo 7'![ Jo lI v''rrg slurod pexgJo sles aql ueql'/ r{?BeroJ r'!4 p uorlcager eq} aq (A'I = il llf pue'!7 Suop luacetpe f11en1nu slued aq z'!4 pue I'id fal 'J ) lI fra,,re .ro; :uor?rpuoc3ur,r,ro11o; eq1 Surfgsrles OUrer"Jrns uusruarg e pug oiu '(l >) f'r7 frena JoJ uorlsr.uJoJapNd aq1 Surfldde 'snq;'q13ue1 cgoq.radfq eru€s eq? qlra\ scrsepoa3o,lr1olur({g;o (t'Z'l = t) f't7 fes 'luauoduroe frepunoq qcse sepr^rp {1 slurod paxg;o {rg ;o '.rarroatotr11 '(g'g ura.roaq; o1 frelloroC aqt 'Jc) {d go 1asa{} f uorlcagar aqt s€r{ {2, slued ;o rrcd f.re,raueq; '7 uelrS aql o} Eurpuodsa.rrorUr Jo uorlrsodtuocep '1ce; 'uorloegar slued eq1 "q = dpl u1 l€ruroJuo?-rlue ue Surllrurpe "51{'dl1 'suorleurJoJap 'pueq Jar{?o aqt uO Qr ue aleraua3 uec an NJ elqelrns rage 'pa3ueqaun sr lapy txpllp3"^, uolleluasarde.req1 'lg {ue o1 qll,lr uo-r}?urroJap lcadsar '1eq1 sarldurr NJ ar{l Sutfldde fq og' raqlou" o} U aEueqr e^r ueqlr l'g €ururerl 'PeJrsepse
o
as desired. 'lcJo
aaij = -a=0 TCk
.6
r3!o
= (!X(!y)dan---
a
g=
-a-wwP(X;,Xj ) TCk
--
ul€lqo ailt(6'8) pue (8'8) tuo.r;'fy - Z pue'!X = A"ctg/g = X Eurllas'relnarlreduI'0 = lZ'Xl = h'X] r"qt 'n|;j{lX} of splegrotra^ Z pue 'l'y se eqel a,ray '1eql aloN 'Z pue 'r{'X sples rolf,el Jo las frela .roy (Z 'X|A)a n, - (Z '1,+,.Xl)d ^h - (Z .A)d/$oX = (Z (a)a noxT
for every set of vector fields X, Y, and Z. Note that, if we take as X, Y, and Z vector fields in {Xj}J~~6, then [X,Y] [X,Z] O. In particular, setting X = a/ aTC k , Y = Xi, and Z = X j , from (8.8) and (8.9) we obtain
=
(8.9)
(O'e)
=
Lxwwp(Y, Z) = Xwwp(Y, Z) - wwp([X, Y], Z) - wwp(Y, [X, Z])
el€q a^r 'se,rr1e,r,trepelT arll Jo uorlrugep eql urorJ 'f11eurg
Finally, from the definition of the Lie derivatives, we have
(e's)
'$ -
(8.8)
d,746(1c'e/e),
''a'r'uerralqey sr dzllo acurg
Since WWP is Kiihlerian, i.e., dw wp = 0 by Theorem 7.15, we conclude that
leqt apnltuoc aa,r'91'2ruaroaql dq 0 = dary
(1 (a~k) wWP) + 1(a:Ck) dwwP. dil ry ( #)
r + (a n . (# )
L(8/8rCk)WWP = d
,) , = d no ( c' e ' d ,
\ sarlr3elnur.rog s(uelreC'H 'ueql 'y o1 lcedsarqll^r elrl€Arrapel1 aql eq x7 7a1
Let Lx be the Lie derivative with respect to X. Then, H. Cartan's formula gives
.o=(,cm)p= ((,#) "^,)n= ("^,(#),), 8.3. Wolpert's Formula
229
"lnruroJ s,lrad1ol4'6'9
6ZZ
230 230
8. Fenchel-Nielsen Fenchel-Nielsen Deformations Deformations and and the the Weil-Petersson Weil-Petersson Metric Metric 8.
F
R,
Fig. 8.3. F ig.8 .3. jis: 5 : ,SS ----+ S S** by setting
j s ( [ z l== [z], l z ] , l[z]z lEe HI is([z]) H lrrss·. Then we have have a mapping Then given by
7'(R) .1: T(R) ---+ T(R) r(Q -----* f,:
= [S* ], .1([S,/]) J(lS,fl) = [ S *,is , J s 0o ff 0o JJ],
[S, € "T(R). (rR). [ S ,f] /] E
base point fixes the base This .1 R) which fixes "(.R) .7 is an anti-holomorphic automorphism of T( and weil-Petersson [R, id]. We can easily show from the definitions of .1 and the Weil-Petersson definitions show easily J can lR,idl.we following: we have have the following: metric that Furthermore, we gvpp is invariant under .1. that gw "7. Furthermore, by .1. Then inducedby Lemma pull-back operator operalorinduced the pull-back J. Then by J* the Denole by.1* Lemma 8.8. Denote
- dicj' dtc;, .1*(diCj) J. (dlci) = - -dTcj -drcl + .1* (dTCj) = n; dRc" +\ab,, J.(drc)
(8.10) (8.10) ni E QZ nj Z
(8.11) (8.11)
satisfies for ... , 3g -- 3). p satisfies Qwp Further,Ww I,...,3g 3). Further, eaeryi (i = 1, for every - -uwP. .1*(wwp) J * ( u w p ) = -wwp·
(8.12) (8.12)
both sides sides of of of both derivative of Proof. the derivative by taking taking the (8.10) follows follows by assertion (8.10) The assertion Proof. The RCj l c i o0.1 J== l t (RJ(cj) c ) - l c= i . RCj' orienpoints sets, sets,the the orienj, we as points Ci as Next, every i, OJ) == OJ though J( J(Cj) we see that, though seethat, for'every Next, for clear p is T(R).II every for every p E tation "t .1(p) e T(R). It is clear of that that at converseof the converse at pp isis the of OJ ci at J(p) for tation of we have have that Hence,we tcj12. modulo R is determined determined modulo rs, is c J2. Hence, that TCj
n· - -TC' -rci+ ?-!....R 4 J· r c, i0.1 oJ = TC' '+ 2 (8.11): with which implies implies(8.11). ni, which integernj, with aa suitable suitableinteger
Thus, we have a3g-3+j,3g-3+k = 0 for all j, k with 1 $. k Similarly, for all such j, k, we see that
'r - dr; | >E! r qrr,u u,r[u]"rTir?,{#ll.',$';':;fi""tf,':"rt <j
$. 3g - 3.
.{+E-te'!1e-6to _ -
a3g-3+j, 3g-3+k·
"tg
'"g)
OTC; , OTCk
(
=-
,
(_a _0) I
\ 0
(>1UTc; a ,~) UTCk (2:g-,-'"p)
/
-
dtuo - =
--wwp
=(.1·ww p)
FLtn+t)\ e e)' ( (ru\ ,ro" , ('"'s) ."-) " dtu \\ s / \ e) ) =ww p (-.1.
(o:cJ ' (o:cJ ) -.1.
(>1UTC; a ,~) UTCk , bg\
I l
\ s
=wwp
('"tg
dam-
,tre-oe,!*e-6to
a3g-3+j,3g-3+k
'(61'9),tq ecuag'(g - dg' ...'I = teql apnpuoran f) ! frera ro3
3). Hence by (8.12), we conclude that f
!c.tp\
-c=t o - = 1 /- ; l - t \e,
= 1,··· ,3g -
(~) --~ OTC; OTC; g
for every j (j
•
:J, and
ou"
{)fc·]
{)fc·]
-
OTC·' ]
2
,o "te g ( t"tg \ ., = *t" vQ e l u e \ e / "
.1.
(~)
~ + nj ~
_
'1xag ul€?qoe,rr'(II'8) pue (0I'8) ur aq1Eu11e1 lenp 'g - tg q'[ ) ] I qry'{ {'f il" roJ
for all j, k with 1 $. j, k $. 3g - 3. Next, taking the dual in (8.10) and (8.11), we obtain
,rs=
d/r,o = q'!*t-6to
= (#,?)
ffi
eleq ea 'p'g uraroaq; o1 ,(le11o.ro3aq1 ,tq '1srrg '71 go lutod paxg P sl qctqa '1urod as"q eql le pereplsuoc eq o1 erc ^roleq suorlelar 11e,acue11.1urod a$srqeql le "1nturoJ eq? ,lrorls ol seclgns y 'aro;eq sv 'g'g ut?ro?lJ lo loo.t4
Proof of Theorem 8.6. As before, it suffices to show the formula at the base point. Hence, all relations below are to be considered at the base point, which is a fixed point of .1. First, by the Corollary to Theorem 8.4, we have
'(Zt'g) saqdurrsrqS
o
This implies (8.12).
'(7''X)d^ro - -
(.1·wwp)(X, Y) = - gWP(.1.(iX),.1.Y) = - gwp(iX, Y) = - wwp(X, Y).
(a,ylau6 _ _ (.t.t,(Xl),t)da6 - = (a,y)(ann*S)
Since.1 is anti-holomorphic, we see that i.1.X = -.1.(iX). Since gwp is invariant under .1, we conclude that
leql epnpuoc eu'f, repun lue 'crqdrouroloq--rlu€sr -Irelur sr d/116acurg '(;61)*/ - = X*tg leql ees ein ll ecurs
'(I*t'X*t?)dtur|-
(.1·wwp)(X, Y) =wwp(.1.X,.1.Y) =gwp(i.1.X, .1.Y).
( A*t' x *t) d u r= (A' x) (d ilo *,C)
Finally, let X and Y be arbitrary tangent vector fields on T(R). Then we obtain
e a uaql '(g);
urelqo
uo splag roloel luaEuel frerlrq.re aq ,4 pue y 1a1'fgeurg
rtz
8.3. Wolpert's Formula
231
"FruroJ
s,lrad1o11'g'g
232 Zg2
8. Fenchel-Nielsen Fenchel-Nielsen Deformations Deformations and and the the Weil-Petersson Weil-Petersson Metric Metric 8.
aih =@wp
l a
a \
, 6t",
) \a/c, l A n ; A 0 n x ? \ uwP T-ar^) ar",'W* \atct+;
- - aik.
s - -3 .3. i t h 11 <~ ,kt << ij <~33g Hence, we with e t aajk o r aalll l jj,, f kt w i r ==0 0 ffor H e n c ew , e gget Therefore, we we have have proved proved that that Therefore, 33g-3 g-3
L
@ w p== D d t rdX3g_3+j o - " * i A d1\r dXj, i, WWP ij=l =l
desired. as desired.
tr o
Notes chapter follows follows wolpert's Wolpert's papers papers 12471and, [247] and [251]. [251]. We We remark remark again again that the This chapter that in these from is different sign of the parameter parameter t of the FN deformation deformation is different these sign papers. papers. B.5' seeAppendix Appendix B.5. For formula,see Wolpert'sformula, applicationsof Wolpert's someapplications For some Weiluyp Ww P of the WeilSeveral potential functions of the fundamental form the fundamental functions Several Wolf tomba Petersson metric have been obtained, for instance, in Tromba instance, [236], [244], [244], Peterssonmetric have beenobtained,for [236], also See Jost Wolpert and Zograf and Takhtadzhyan [264], [265], [266]. See also Jost Takhtadzhyan and Zograf and wolpert [254], [266]. [265], [264], [254], [A-49], Takhtadzhyan[219]. and Takhtadzhyan [219]. [A-49],and
Y xlpuaddV
Appendix A
SaJEJJnSuuBr,rraru uo suorlErJB^ I€rrssBIC
Classical Variations on Riemann Surfaces
'uorlerJel l"?rsselt l€luauspunJ go adrtl rar{}oue 'sacey.rnsuueurarg uorleraueEapssncsrp e^r ,g.V rl ,,(1eurg Jo II€qs 'flanrlcedser'e'y pue I.y ul (Z ?) d snua3go d; aceds rafinurqcreJ arll Jo arnl)nr1s xalduroc eq] ecnpor]ur o1 1uaun3.re (sroJlqy pue uorl€rJel Jorralul s.Jagqcs fgarrq ureldxa all 'uorlerr?A s(prerlrepeH uorlezrlereueS 3o raqlou" s€ paraptsuof, osle sr sq; .sSurdderu Jellnruq?lel ,(q pecnpur (suorleru ,s.ro;1qv .1 fq pacnpor?ur ,(11s.rg -roJep ser\{ U ac€JJns lpurs,, Sur.raprsuoc{q uu"tuarll pesolc € Jo (U)J aceds .ra11ntuqclatr eq? Jo arnlcnrls xalduroc eq6 '([ru-V] .racuadgpu" raJrqrs ,[g6-y] prc yo xrpuaddy ;c) tu"rnoC uollerr€A s(prsruspeH plueu€punJ pue l"clssep alotu eql Jo uorlezrl€raua3 e se 'uorlerle,r Jorrelur s(JeJrq?s sr uorlsrr?A PeJaprsuocil qcrqa\ ltscrsselclecrddl y 'sac"Jrns uueruaru suorlsrr"A se paleSrlsaAur uaeq p€q .(uorl€turoJap Jo Iscrss€lc 'dl.repdod pesn aq o1 ueSaq sSurddeur Il€rus,, qcns l"uroJuocrsenb alogag 'U a?€JJnsua,rr3 aql a?slnurJoJo1 fluo peeu a&r ,r(roaq1 ((uor?tsruJoJap Jo lletus,, '.re,ra,lro11'U eceJrns uueruarlf uaar8 e p (U),2 aceds rallnurqcra; Fcol aql .ro; aql uo saleurprooc FqolE ecnporlur o1 sfeat lere^as pessnrsrp e eq aA{
We have discussed several ways to introduce global coordinates on the Teichmiiller space T(R) of a given Riemann surface R. However, for the local theory, we need only to formulate "small deformation" of the given surface R. Before quasiconformal mappings began to be used popularly, such "small deformation" had been investigated as classical variations of Riemann surfaces. A typical classical variation is Schiffer's interior variation, which is considered as a generalization of the more classical and fundamental Hadamard's variation (cf. Appendix of Courant [A-23], and Schiffer and Spencer [A-94]). The complex structure of the Teichmiiller space T( R) of a closed Riemann surface R was firstly introduced by L. Ahlfors, by considering "small deformations" induced by Teichmiiller mappings. This is also considered as another generalization of Hadamard's variation. We explain briefly Schiffer's interior variation and Ahlfors' argument to introduce the complex structure of the Teichmiiller space T g of genus g (2:: 2) in A.I and A.2, respectively. Finally, in A.3, we shall discuss degeneration of Riemann surfaces, another type of fundamental classical variation.
uorlBrJ€A rorJelul ssraJrqJs .I.v
A.I. Schiffer's Interior Variation Eurddeur eql raprsuo?ea,r'esod.rndflql rod .dq uo fluo gr ,(lrl flluarcgns qlran) r .ralatue.red Jo arn?cnrls xalduroc aq1 Eurur.ro;ap,tq lpurs xelduoc e uo Surpuadap sacegrnsuuetuerll flrureg " a \ ??nrlsuoc Jo {rU} 'oO lo,{repunoq a ^ l ? € l a ra q l d C f q e l o u a q . ( g ) r _ , - o O p r * , { I > C ) z} = g ?eS l r l l '{Z> .A d ) ltll C > r} = (n), pue 0 (d)z ryqlaunssv lurod uar,i8€ punore (z'2) pooqroqqSraual"utproo? e xrd 'ac"JJnsuueruerg f.rerlrq.re ue eq U laT 'asec 1ecrd,t11nq aldurrss ur uorl"rr"A rotrelul s(JeJrqcsurc1dxaIpqs aA\ .(rhrlp pcol (a:ou .ro) auo;o rorrelur aql ur uorleruroJepe $ uorl"rre^ Jorralur s.rasrqcs 'frepunoq aql ,Buupads z(lq3nog Jo uorleuroJep " sl uorlsrrel s.prsruepeH 1nq
Roughly speaking, Hadamard's variation is a deformation of the boundary, but Schiffer's interior variation is a deformation in the interior of one (or more) local disk(s). We shall explain Schiffer's interior variation in a simple but typical case. Let R be an arbitrary Riemann surface. Fix a coordinate neighborhood (U, z) around a given point pER. Assume that z(p) = 0 and z(U) = {z E C Ilzl < 2}. Set B {z Eel Izi < I}, and D p z-l(B). Denote by Cp the relative boundary of D p • We construct a family {R e } of Riemann surfaces depending on a complex parameter ( (with sufficiently small 1(1), by deforming the complex structure of R only on D p . For this purpose, we consider the mapping
=
=
1-yz-tz )
Ze
=
(
Z
+-z
Variations on Riemann A. Classical Variations Riemann Surfaces
234
every f. €. When lei z,(Cp) on U for every closed curve curve p ) is a simple closed lel is sufficiently small, z,(C ellipse in this case) case) in the z,-plane, z.-plane, which is is denoted denoted by C" (actually an ellipse and z, C. and gives a conformal mapping of a suitable suitable neighborhood (see Fig. A.l). gives neighborhood A, .4. of C A.1). Co p (see paste the domain D, delete D Dop from R, D. in the z,-plane z.-plane surrounded Now, delete ft, and paste surrounded p r e c i s e l yset g l u e (R ( R -- D p) ) U ,A, b y C,. s, e t V, D r UUzz,(A,), r ( A r ) , and a n d glue a n d V, by More C..M o r e precisely, V r == D, 4 . and I / . by by identifying z,(A,) z,(A,) and A, ,4. under the mapping Z,. we have identifying 2.. Then we have a family {R,} {r?.} of pa,rameter f, surfaces depending on the complex parameter e, which is a special case case Riemann surfaces Here, note that, considering considering V, of Schiffer's Schiffer's interior variation. Here, as a subdomain of % as we can can take z, ze as as a local coordinate on V,. R" ft., we V..
'1",,ffi-, i
R
t-----',..rsi
I".
t,
v
I
/
/
/
.,------ ........
...
z(A)
I
I
\, '\ '-.............
_----
......,.
z.- Plane zE-plane
z-plane
Fig.A.l. Fig.A.1.
points, say given on we disjoint points, say Pl,'" a,regiven on R, .R, we When severalmutually mutually disjoint When several ,pn, are ?r, ..' ,Pn, pj so take Zj) for (Ui,zi) for every everyPj so that take aa coordinate coordinateneighborhood neighborhood(Uj, = o' zi(Pi) =0, Zj(Pj) z i ( U i= ) - {z Zj(Uj) l z l << 22}, |, I t Ee C lIlzl Uji fni U Ukp = $¢,, ji +i=k k. A .
=
, " ' ,n, ji = r1,··· ,n,
with sufficiently any complex complexnumber numberfj ei with sufficiently Set For any Dij = z;l({z z;r(12 E 1)).For Set D e C Ilzl I lzl < I}). the small j I, consider the mapping small Ie consider mapping leil,
9t7,
uorl"u?A rorreluJs.ra$q)s '['Y
A.I. Schiffer's Interior Variation
235
f'
''T *(d)tz=tr,
+ Z)p) ,
P E Dj .
'ts)d
Zj" = Zj(p)
uo Surpuadap se"eJrns uueruarg Jo {'U}
.rog) 'leluaurepur-rJsl r.uaroaq?3uralo11o;aq1 ,,uoN .(rr, . ..,Il) = r s.ralatueredxalduroc ,tFu"J e lcnr}suoc uee a/$,,aro;eq sy
As before, we can construct a family {R,} of Riemann surfaces depending on complex parameters f = (f 1> •.. , fn ). Now, the following theorem is fundamental. (For instance, see Patt [174].) ('FZt] ll"d
aas 'acuelsur
0uttlrlotuaqyto as.taauteq?ueqJ .g - t lo (e_7,eC))tA poorl.r,oqq,tau lotus fr17uarcfinso ul , puo ,t_=u[{tayu,o$ a.rolaqsD pal?nr1,lsuo) saeoltns uuowary lo filptuoteto ?q {'alt 7a7:ior\ipuoc |urmoylo! ay| sa{nlos ycryn ld qw^ sTuroil i sTsrzaer?qt uayJ 'i1uo.r7tgt, uaarf aq 't h) 1is lo ,\[{ra} fi.r,aaa.to! {a Io h pootl.roqq|nu o puo 'g "o sTurod..urrsrp fi1lonlnu ,t-;[{{a} g-tg IeT '(?,7) 6 snuaf to ecottns uuouLerypesop D aq A IeI .I.V uraroaql
Theorem A.I. Let R be a closed Riemann surface of genus g (~ 2). Let 3g - 3 mutually distinct points {pnJ~~3 on R, and a neighborhood ltj of pj for every
j, be given arbitrarily. Then there exists a set of points {Pj} J~~3 with Pj E ltj which satisfies the following condition: let {R,} be the family of Riemann surfaces constructed as before from {Pj }J~~3 and f in a sufficiently small neighborhood W( C C 3g - 3) of f = O. Then the inverse of the mapping
['u]*------,, 'o.tazfr41ocryuapt st ld fi.r,aaa7o |utysruoa (U)zV ur-lueutap fruo tt fr1uopuo tl salou.proo?1oco7ctrltLtou.tolorl lo tualsfis o sea$ rol ['AJ +--< t |utdilout ay! lo ?sr?aul at17,l,aaoa.to14J ,t_=ol{!d} ('pa47nuoy.totacuaq s, q?nln '6uu1.r,otu pau{ap Qp.tnTou ?qt yryn paddnba sr,'g ,atag) .@),t 1" Tutodasoqay7 punorp se?ouNpron7nco1cttlil.toruolorllo ruaTsfisn saat6 b = (A)l oyu.t 14 lo
of W into T(R) = T g gives a system of holomorphic local coordinates around the base point ofT(R). (Here, R, is equipped with the naturally defined marking, which is henceforth omitted.) Moreover, the inverse of the mapping f 1--+ [R,] for {Pj }J~~3 gives a system of holomorphic local coordinates if and only if any element in A 2 (R) vanishing at every Pj is identically zero.
'1'y uaroeql goord e aar3 o; 1nd aaa 3o '7 '[Og-V] E .raldeqp ll pue '[6/] reurpreg osl" eas 's^{olloJ se uorl"ruroJap e fq uorle leurroJuocrsenb -Ir€A rorrelur s(ragrq?S Eurluasa.rdar ,(q uaaoqs fpsee sr llnsar l"crsselc sllJ
This classical result is easily shown by representing Schiffer's interior variation by a quasiconformal deformation as follows. See also Gardiner [79], and Nag [A-80], Chapter 4. To give a proof of Theorem A.l, we put
1;,,(Zj) = Zj
+ fj Zj
lZb+lz=(!z)t'll
for every j (= 1"" ,3 g - 3). Each 1;" is of class Coo on B j = { Z Eel IZ j I < 1 }, continuous on Bj , and coincident with Zj" on the boundary of Bj. We set
' las a t fg ;o ,(repunoq eql uo r' lz qlr^r luaprruroc pus , {g uo snonur}uoc '{f > l14l C) r} = lguo *Cssel)Josr,'f qceg.(g-Oe,..T -) f,fraaaro;
=X'!g3d R-
3
39 - 3 D· Uj=l J'
"'-1[11-s3 d,
'o
P
E
'to
P,
= 1,,,, ,3g -
g-ft'...'I
\ " , ( d ) ! z o ) ' ! t o r _ 1 t ' \t r 1 ,o,,, 1
_ { (Zj,,)-l 01;,,0 Zj(p), P E Dj, j
_
f,(p) -
'a o+a;o Eurddeur e sr,/ reqr.^"#::rfr"rt".ffit:'i.1TJt+ l"uroJuof,rs"nb A simple computation shows that with Beltrami coefficient
t-69,...,I - g'fq)d,!rp/!zplt ) fj
0
'o
{
,
az;/dzj
,
P E Dj , j = 1"" ,3g - 3 E R - U~9-3 D·
ro r'-i[fi-a)d
_
\ _,o.,,, \ / j1-,(p) -
f, is a quasiconformal mapping of R to R,
P
J=l
J
'ur3r.roeql ol reau flluarcgns r fra,r,a.ro; for every
f
sufficiently near to the origin.
,(q uarrEq (U)g > 6)(!tg/f0) pue ,.lA uo Eurddcurerqdrouroloq e s! d uaq; ''rl = (r),1 ,tq I(U)A +- ful:g Eurddeur€ eugaq.g_rgC uf u6r.ro aq?Jo ,,14pooqroqq8raulpurs f11uar?gnse xl,{ .I.y lul,e.toeqJ-loloo.t4
Proof of Theorem A.i. Fix a sufficiently small neighborhood W of the origin in C 3g - 3. Define a mapping F: W ---+ B(Rh by F(f) = j1-,. Then F is a holomorphic mapping on W, and (OF/Ofj)(O) E B(R) is given by
236 236
A. A. Classical Classical Variations Variations on on Riemann Riemann Surfaces Surfaces
€Di ,\ l ddZ;/dZj, 4 / d r i , ppEDj rI'ji t() P l = f{ ppE € RR-D - D 1 j. . o0,,
=
On the the other other hand, hand, by by using using the the mean mean value value property property we we obtain obtain On
ll_rr,=Il,,
tlt(21)d.21 AEj
- -2rir!(pi).
(0). set r!(p1) Here, writin writing t/J == ,lriQi)dzf t/Jj(zj)dzJ on Bi, Bj, we we set t/J(Pj) == /it/Jj(O). Here, e {, Now, to prove prove that F F is biholomorphic biholomorphic in a neighborhood neighborhood of of the origin, origin, Now, suffices by the implicit function function theorem theorem that {p1}f!;3 {I'j} J~13 gives gives a basis basis of the itit suffices tangent space space ?6(?(.R)). To(T(R)). Since Since 7r("(r?)) To(T(R)) is identified identified with .42(.R)A 2 (R)* by Theorem Theorem tangent 7.5, this is equivalent equivalent to assert assert that any any complex complex vector vector ("r, (C1' "' ... ,csc-s) ,C3g-3) satisfying satisfying 7.5,
= (8",,,,r). 3 9 _3
(
~ Cjl'j, t/J
;=1
)
- 00, ,
$eA2(R),
R
should be zero. zero. The second second assertion assertion is seen seen easily easily by linear algebra. algebra. As {Pj }J~13 in the {pi}}o=1" where det(g1(pi)) 0, where such that first assertion, we can choose a set of points such that det(lt'k(pj)) ff 0, set we can choose assertion, {It'd ~;,-;.3 is 0tr for A .42(,R). is aa base basefor 2 ( R). ler\?,!=1"
A.2. Period Matrices as Moduli as Moduli ) 2) was was (g ~ To As stated complex structure of T introduction of the complex before, the first introduction stated before, g (g show Rauch's Rauch's variational based shall show matrices. We We shall investigations of period matrices. based on investigations get explain how to get and explain formula for the period matrices, following Ahlfors [5], matrices, following [5], and local formula. using this formula. ?o coordinates of T local coordinates g by using be aa closed closed Riemann Riemann First, we terminology. Let R be we recall recall some some fundamental terminology. induces ,R which induces curveson R surface Fix aa set closedcurves 29 simple simple closed set of 2g genus9s (~ (> 2). 2).Fix surfaceof genus group homology group aa canonical base of the first homology canonical base Dcse,i.e., i.e., aa canonical homologg base, canonical homology (seeFig. Fig' this set set (see for this H Bj H=l for the notation notation {Aj, we use use the this section, section,we In this H1(R,Z). 1 (R, Z). In {Ai,Bi}ni=, A.2). A.2). of simple simple = T set {f(Aj we have have aa set For n;=l of Te1 "(ft) = For every every [5,/] e T(R) g , we f(Bi)}tt {/(.4i),), f(Bj [S,/] E denote base on on 5. We denote S. We closed homology base canonical homology which induces induces aa canonical on 5.S which curves on closedcurves this notation {Aj, the same same notation set by by the j H=l' this set {,4i, BBi}oi=t. Abelian of hoiomorphic holomorphic Abelian Next, set {OjH=l uniquely aa set there exists exists uniquely ,S,there on every every 5, Next, on {di}f-, of that differentials, such that on 5,Ssuch l-forms on holomorphic I-forms i.e., holomorphic differentials, i.e.,
- 6i*, j,k = 1,"' ,9.
Io.t'
Abelian of holomorphic holomorphic Abelian space of of the lhe space We baseof the canonical canonicalbase call this this {OjH=l we call {di}f=, the put we put F\rrther,we on B j }ff=l' Further, differentials ro {Aj, with respect respectto on 5S with differentials {A1,Bi}oi=t'
('pt7ua,ta$tp ctTotpanb o so paptofie-ts9 t6lg Tcnpo.ttl aqt 'any)
(Here, the product (}j(}k is regarded as a quadratic differential.)
'd . tgtg
aff
I I = lt[o(rfrlp)
JJ
qonbe puo 'sqstaaTutod esoq ?qt 7o rt uo4cer,rp eW u? rly frteaalo frllo(tftp) aatpauap aq1 '*g ssolc to (U)A a il fr^r,aaa.rogr(elnru.roJ lBuo.rlBlru^ s.qcnuig) .g.V uo111sodo.r4
Proposition A.3. (Rauch's variational formula) For every Jl E B(R) of class COO, the derivative (d7fjk)OfJl] of every 7fjk in the direction Jl at the base point exists, and equals
'1urod aseq eql ,1urod es€q aql 1e qql e^oJd ol sa?gns 1r Jo uorl€lsuerl e Ag 'il yo itlgqellueraJlp xalduoc raoqs alu ,uorllasse lsrg eql elord o;
To prove the first assertion, we show complex differentiability of II. By a translation of the base point, it suffices to prove this at the base point.
'zalo '7, - 6 uaq74 Tutotlfinaa 7o t lua.r f)u,wotil eqt soq IIp 'sacopns a4fu11andfrqo7 iutpuodsa.uoc esoql ut TilacxeEalo Tutorlfruo 7o g- 69 tlurv eql soq ea4oauep eql u?!1 ,?, < 6 uayn ,taaoatoy4l lorutxou II,Io Up 'ctyil"toutoloy tg *- oJ t |utildnu eVJ .Z.V uraroaql ry II
Theorem A.2. The mapping II: T g ---+ 6 g is holomorphic. Moreover, when 9 > 2, then the derivative dii of/II has the maximal rank 3g - 3 at any point ofTg except for those corresponding to hypere//iptic surfaces. When 9 = 2, dii has the maximal rank 3 at every point ofT2 •
'ruaroaql 3uraao11o; erll Jo;oo.rd e all3 all ('[gZ-V] ery pue s"{reJ pue '[g-y] orres pu? sroJIqV ,acuelsur roJ eas 'slF?ap arour rog) .acods-t1ot1.tediln p,ary a{l sI (z/(r+r;aC )) rg ,e.ra11
Here, 6 g (C C g (g+1)/2) is the Siegel upper half-space. (For more details, see for instance, Ahlfors and Sario [A-6], and Farkas and Kra [A-28].) We give a proof of the following theorem.
'(u)-r> [/'s] '(s)z= ([/'s])z II([S, f]) = II(S),
[S, f] E T(R).
,tq paugap
defined by
og *- (a),J,n
II: T(R)
-+
6g
Surddeur € urelqo am 'eaue11 'elrugap a,rrlrsod q (S)Z yo {reurteur aqt pue ,cr.rlaururr(r q G)Z 1.red t"r{t ol lcadsar 1eq1 sarldurr uorl€lar por.rad lecrss"lc eql lsqt il"rsg 't=[{l7,lv} rllll'A ,S lo rulotu pouail loe,ruoao?aq1 (rfz) = (S)Z x-rrpur 6 x t $ql iltsc e,1t
We call this 9 x 9 matrix II(S) = (7fjk) the canonical period matrix of S with Recall that the classical period relation implies that respect to {Aj, B j II(S) is symmetric, and that the imaginary part of II(S) is positive definite. Hence, we obtain a mapping
U=l'
JB
k
"[
f
(}j,
' 6 (. . . ' r= r ' f
7fjk=
j,k=l,···,g.
=,,o
'z'v'ttJ
Fig.A.2. 'z'v InPon s" sarulel{ PoFad
A.2. Period Matrices as Moduli
237
Ltz
A. A. Classical Classical Variations Variations on on Riemann Riemann Surfaces Surfaces
238
proof Proof of of Theorcm Theorem A.2. A.2. From From Proposition Proposition A.3 A.3 and and Ha"rtogs' Hartogs' theorem theorem (cf. (cf. Bers Bers [A-14]), we can see the first assertion. assertion. the first see we can [A-14]), Assume that that g9 )> 2. 2. Then Then the the classical classical theorem theorem of of M. M. Noether Noether gives gives that, that, ifif Assume S is is aa non-hyperelliptic non-hyperelliptic closed closed Riemann Riemann surface surface of of genus genus g, g, we we can can find find aa base base ,s of A among the the set set of of products products of of two two holomorphic holomorphic Abelian Abelian differentials. differentials. of Az(s) 2 (S) among Hence, by by the the same same argument argument as as in in the the proof proof of of Theorem Theorem A.1, A.l, we we have have the the Hence,
second assertion. assertion. second Finally, when when g9 == 2, 2, we we can can see see directly directly that that the the set set of of products products of of holoholoFinally, morphic Abelian Abelian differentials differentials spans spans .42(R) A 2 (R) for for every every closed closed Riemann Riemann surface surface S S morphic n0 of genus genus two. two. Thus, Thus, we we conclude conclude the the third third assertion. assertion. of Theorem A.2 A.2 implies the following: Furthermore, Theorem Corollary. The complex complex slrttclure structure of of To Tg introduceil introduced in in Chapter 6 is lhe the unique Corollary. one under that the canonical period matrix matrix nloaes moves holomorphically canonicalperiod uniler the condition thal one oonn T o g •.
Remark. Besides {r1x}, {7rj d, Ahlfors considered considered integrals of of holomorphic Abelian Abelian difRemark. Besides ferentials along suitable l-chains, I-chains, and succeeded succeeded in introducing introducing a system ofhole' of holoferentials morphic local coordinates coordinates at every point point of of T This was was the first ?og (cf. Ahlfors [5]). morphic [5]). This ?r. introduction of the standard complex structure of of T introduction g•
p E B(R). For € B(R). Beltrami differential p, Proof of Proposition Fix a smooth Beltrami /{.9. Fix Prvposilion A.3. ---- R, quasiconformal ( E. every < 1, let f, : R ---+ be a quasiconformal 1, with IItp,lIoo , every complex number te with f ll.pllbase of canonical base mapping with the canonical ep,. Let {OJ,,}J=l with complex complex dilatation tp,. {|i,r}t=t be -the respect to {Aj, with respect .R. with holomorphic Abelian Bj }J=1' differentials on R, Abelia,n differentials {Ai,Bi}J=t. Fix set arbitrarily. We set Fix j arbitrarily. w = ( f , ) * ( 0 1 , , -) 0 i , o , integrable is aa square square integrable c,ris where by f,. 0i,,bV is the pull-back of OJ,, where (f,)*(Oj,,) /.. Then w 1{]..7.@i) is closed differential on R, and we have we have .R, and on differential closed f
t
l
= 11", ,... ',g. ,9. 0 i ,= o 0, = 0 ,kk = [ w = [ OJ,, - [I OJ,O JAI , = J| e i , , -JA JAx
k
JA*
Ak
JAr
k
Hence, that periodrelation impliesthat relationimplies the period ffence,the - u A a ==0O. . fl-W!\W
= [[ (r,r*) = (w,w*)
(A.1) (A.l)
JJR
write parameter on .R.. We We write Let be aa generic on R,. genericlocal local parameter Let z,zrbe 0i,, = ai,r(zr)dz, we parameter on -R,we on R, genericlocal local parameter be aa generic with Letting zz be ai,e.Letting function aj", holomorphic function with holomorphic decompose w as decompose c,.ras (A'2) (A.2) u)= ur + @2;
',{larrtlcadsarrzU pue IUr uo selrnc pasolr alduns sles aq l="1u11+t0g,q+t6v} Jo ,1srrg pue t pue'sacegrns zgr uutsrueql-pasolc oml eq pueig, rf{fS,(fy} 1a1 'g xpuaddy eeg 'aceds rTnpou aq1go {repunoq eql o1 Sur8rarr,uoc saouanbas;o adflolo.rd e serrr3pue 's3urddetu IeuroJuo?rsenbo1 enp asoq?tuor; }uareJlp fll€ll -uassesr uorlerr€A uq; 'paleErlseaurfldaap uaaq a^€rl 'sace;.rns;osuorle,rauaSap pelF)-os 'sace;rns uuetuaru Jo uorlerJe^ Ielueu€punJ pu€ Iscrsselc raqloue sv
As another classical and fundamental variation of Riemann surfaces, so-called degenerations of surfaces, have been deeply investigated. This variation is essentially different from those due to quasiconformal mappings, and gives a prototype of sequences converging to the boundary of the moduli space. See Appendix B. First, let R I and R2 be two closed Riemann surfaces, and {A j , Bj }j;1 and {A g , +k> B g , +k H~I be sets of simple closed curves on R I and R 2 , respectively,
.g.y
A.3. Degeneration of Riemann Surfaces sareJrns uueruerll Jo uorl€rauataq
o
tr
's^tolloJ uotlress€ eql snql
Thus the assertion follows.
-ll'/'ll- t '(rlrl)o= . ll0'rBll . > llo'{dll
TIitiEl
Ptul l,tr''ro'rsa[[l; JJ I I
urelqo aan'(g'y) urorg
From (A.5), we obtain
iL
Ok,OOj,O' J.t
+ TJjk·
J J
=f
.qtr.t il . o't6o'tt6" + [ [,
1l"jk(f) -1l"jk(O)
=16;rfi - e),rt:t
We express this difference as s? a)uereJrp srql ssardxa all
.zov 0"t0"[[
=(g*
,o'rr;- = (9)r{r - (a)rt:t
J J
eleq atr 'uolleler porrad eql ^q ure3e ,,t1eurg
Finally, again by the period relation, we have
(qv)
II W III < IIfJ.tlloo ·1I 0j,oll. - I-lIfJ.tlloo
#ffifu>l,,ll
'(g'V) dq '.re1ncr1.red u1
In particular, by (A.3),
1-
(A.5)
IWj,oll 11cJ.tlloo
. _ l l r r r l l _/ rl;l r o l l llo'toll -
(r.v)
2
IIw II <
(AA)
?eql (Z'V) uorJ ^\oqs u€? e,lr ,{lrlenbaur el3uerrl eq? pu€ (g.V) fg 'zorlt - co
By (A.3) and the triangle inequality, we can show from (A.2) that W2
= fJ.tW2.
Then we have
a^?q e^l uerlJ
'zp(z)"('l). )'lp = zO @)'I o ' lxeN las a^t 'f, qcee rc1(fo'!o) = ,llroll eraq^\
where IIwjl12 = (Wj,Wj) for each j. Next, we set
'"llznll = ,llrrll
(s'Y) (A.3)
o1 luep,rrnbeq (I'v) l"ql slrorlsuorlelnduor eldurrsy .zp(z)'('l) . )'!o- zo ?)'t o ,zp ((z)o'{o- (r), (l) . (t)'l o '' fo)= ro
A simple computation shows that (A.l) is equivalent to W2
WI
= (aj" 0 t,(z) . (f,)z(z) - aj,o(z)) dz, =aj" 0 t,(z) . (f,)z(z)dz.
setr"Jrns uu"ruerg1ouorlerauateq.t.v
6tZ 239
A.3. Degeneration of Riemann Surfaces
A. A. Classical Classical Variations Variations on on Riemann Riemann Surfaces Surfaces
240 240
which give give aa canonical canonical homology homology basis basis on on Er Rl and and ft2, R2' respectively respectively (see (see Fig. Fig. A.3). A.3). which gj (i (j =1,2) 1,2) is is the the genus genus of of Ri, R j , which which we we assume assume to to be be positive. positive. Here, gi Here,
=
A,
R, (g,:1)
1
R" R, (s":2) (g,=2)
Fig.A.3. Fig.A.3.
(U1,zi) neighborhood, (U coordinate neighborhood j, fix aa point Pj p; E For each Ri, and aa coordinate € Rj, j , Zj) each j, = For everv 1 Bij ti(Ui)j ) = B around {z and Zj(U e C Ilzjl p;' such zi(p)= = 0 and that Zj(Pj) such that around Pj }. For every lkil < 1}. {z E ( 1, complex we set set 1, we with 0 < < kl complex fe with l.l <
( J i , , = U-i { z e C l l r i l < l . l } ' i = 1 , 2 ' mapping Then, by the the mapping and U2,f Uz,, by U1,6and identifying Ul,f Then, identifying ZL' 22= e,
= gl Note that that A.3). Note gr*+ g2 (seeFig. Fig. A.3). genus9g = we of genus surface R E.f of Riemann surface we obtain obtain aa Riemann 92 (see 9s "? 2. >2.
=
(which with aa node node (which surfacewith When closedRiemann Riemannsurface .Rothe the closed we take take as asRo 0, we when f6 = 0, B)' cf' Appendix p1 E€ Rl and P2 Rz'Also E R2. Also cf. Appendix B). comes of Pi ftr and € identificationof the identification from the comesfrom Pz degeneration we call a which 1}, Thus I kl < 1}, which we call a degeneration < family {R constructedaa family wehave haveconstructed Thuswe f {8. I l.l base the canonical canonicalbase we consider considerthe to everyR-R., to (U (t/r, u2). on every with respect respectto to RRo 2 ). On f , we o with 1, U and' to with respect differentials {OJ,f}ff=l of holomorphic Abelian differentials with respect to {Aj, Bj U=l' and Abelian holtmorphic of {Ai,Bilt=r, {0;.rlsr:, the following following (r1r(e)). Furthermore, Furthermore,the define periodmatrix II(e)== (lI"jk(f)). matrix lI(f) canonicalperiod ;#;;;h"the canonical andYamada Yamada[261].) (Forthe proof,see Fay[A-30], variational seeFay the proof, known.(For formulaisisknown. [261].) va,riationalformula [A-30],and
'[I9Al spelus^ uI I fre1o.ro3 ees 'Erelap aql otut a^lep lou op ain 'rarraiuog .r ol lcadse.rqtur turel rapro ?srg eql pue '0a pue X Jo senlsA eq1 dllrcqdxe urlrop alrr^\ ppoc eA\
We could write down explicitly the values of X and co, and the first order term with respect to f. However, we do not delve into the details. See Corollary 6 in Yamada [261]. 'lur,lsuoo elqDpnso s, b puo '.toycaa tg uo tt"tToutpouad ,ata17 f)uorsu?utrp-(t -n) o c! X ID)tuouD? ayq st,oy
Here, lID is the canonical period matrix on R, X is a (g -I)-dimensional vector, and Co is a suitable constant.
. ( o * l , l )e ) o + f o e + ' j q + = t , l z # - u l) ^t L
.g.Y uraroaql
Theorem A.5. ([196] epeu"A pue '[Og-V] feg ya) ur\ou{ sr €lnturoJ l€uorterrel 3urno11o;eql ueql '(r)7 secrrleur por.rad aql auuep erlr ,7.V .3rg ur se lerruouec ug pw ty Sursooqg 'f snueS;o e?eJrnsuueruarll pasolc€ sl ,gr uaql ,g t;1 f
If f :f; 0, then R f is a closed Riemann surface of genus g. Choosing A g and B g as in Fig. A.4, we define the canonical period matrices lI(f). Then the following variational formula is known (cf. Fay [A-30], and Yamada [261]). .?.V'EIJ
Fig.A.4. p,
'(zn'rn) o1 lcadsa.rqll/'^ ry oluoNllreu?fiapelpt osls e!$,q?!q,!\'{I > lrl | ,U} dltureye lcnrlsuoc uec e^ 'a.ro;aqs-efem etu€seq? ur 'uaq; 'Q = zn U r, leqt Pu€'f qceeroJ{r > | tzll c ) z} = (frilt, pue 0 - (!d)!z wqtqcns 161 = .r; fd puno.re (!r'12) spooqroqq3reu alsurproocpue 'g uo zd pue ld slulod 1?urlsrp 'eseq oral xld ,(Eolouroq Iecruousre secnpurqclr{rt U uo se^.rncpesolceldturs;o pue '(t <) t - f snuaE;oaceJrnsuuerueqlpesolce eq Urlel las e eq FI{\A'fy} 'flesreard erotrq'feal Jelrrurse ul zU = IU leqt aspJerll l€erl uet a,u,,1xa11 Next, we can treat the case that RI = R2 in a similar way. More precisely, let R be a closed Riemann surface of genus 9 -1 (~ 1), and {Aj, Bj }f:~ be a set of simple closed curves on R which induces a canonical homology base. Fix two distinct points PI and P2 on R, and coordinate neighborhoods (Uj , Zj) around Pj (j = 1,2) such that Zj(Pi) = 0 and Zj(Uj) = {z E C Ilzj I < I} for each j, and that UI n U2 = ¢. Then, in the same way as before, we can construct a family {R f Ilfl < I}, which we also call a degeneration to I4J with respect to (UI, U2).
'lg uo qo4ua.tafitpuDrIeqVcryd.totuoloy asoq to r=,ro{t'!61 a.teyn'(!6' ...'I = {) l2 uo lzp(lz)r'to - t'!6 yt!,n f)cruoun?aq1st
with f)j,k = aj,k(zj)dzj on Uj (k = 1"" ,gj), where {f)j,kH~1 is the canonical base of holomorphic Abelian differentials on Rj.
.'.'(o ) t' r o=) r x ((o )'o 'rr'
X j = (aj,I(O), ... ,aj,gj(O»
p u o ' f g u o e u l o u t p o t . t a dl o r r u o u o ?a q 1 s 9l y ' 2 , ' T =
Here, for each j = 1,2, lIj is the canonical period matrix on Rj, and
t qcna.tol'ate11
[~I ~J
-
211"if
[t X~XI tX~X2 ] + 0(f2)
'(o-lrl)
t X z X'l't"z'1 | z r r n l =(')r ( . r'u lo+f- 9 L ; '|rl Lzxtx, o lI(f) =
'7'V rrraroaql
Theorem A.4.
(jfl- 0).
241
A.3. Degeneration of Riemann Surfaces
rt7,
saf,"Jrns uu"urarlf ;o uorleraua8eq't'V
242 242
A. A. Classical Classical Variations Variations on on Riemann Riemann Surfaces Surfaces
In the the described described degeneration degeneration to to ,8o, Ra, ifif we we take take aspecial a special (Ut,Uz), (U l , U2 ), and and restrict restrict In 2 < where constant with t 1}, is a to the set {1}t |I 0 ~ t << I}, with lql 11}1 = 1, then we obtain obtain set {qtz ef to 41} the so-called so-called Schiffer-Spencer's Schiffer-Spencer's aariation variation (cf. Schiffer Schiffer and Spencer Spencer [A-94]). [A-94]). to the second second case case is called the uariation variation by A variation variation corresponding corresponding to A we explain more closely. handle, which closely. shall attaching a handle, Let .R R be as in in the the second second case. case. Fix Fix two two distinct distinct points p1 Pi and p2 P2 on .R. R. Fix Fix Let po a harmonic function point Then there exists uniquely also a point Po €E RR - {pt,pr}. {Pi, P2}' function also u c h tthat: hat: G(p) onn R -- {{Pl,P2} G (p) o p t , p e } ssuch
=
G(po) == [, 0, (i) G(ps) -log(I/lz{p)l) (ii) G(e) G(p) -log(I/lzl(p)I) is extended extended to to a harmonic function function in a neighborhood (ii) it nd off pPi, and o 1, a (iii) G(p) --log IZ2(p)1 is extended extended to a harmonic function in a neighborhood neighborhood of (iii) loglz2@)l P2, P 2, where zi Zj is a local coordinate with 4(p1) Zj (Pj) = = 0 at pi Pj for each each 1. j. We may call this where Green function function on R normalized at ps Po with with positive pole at pl Pi and with with G(p) the Green pole at p2. negative pole P2. negative t0, we Now, for a sufficiently small positive to, we put
u,=
a c6y' toe! r,o,r, {oe II > log t~ }} U {pd,
Ul = {p E R G(p)
and
= {p logts} u {P2}' G@)< log Uz n II G(p) U to} U 2= {pz}. {peE R t0' and take take Fix such such a to, Then U domains. Fix connected domains. are both simply connected and U U2 [/1l and 2 are (j ' on say (j, coordinate, say these case.As a local coordinate, second case. as U atd U Uz these domains domains as U1 2 in the second l and Uj, such that that chooseone one such we choose Ui, we = eexp x p (((-I)jG(p)), (-1)iG(p)), Re(j(p) R"(i(p) =
=
=
,2. j = r 1,2.
=
2 for every qt2 with every t with consider fe = 7]t Fix with 17]1 1, and and consider constant 1}4 with Fix aa complex complex constant hl = 1, < we can can construct construct aa family {~t~ o0 << t << to. as before, before, we sarne way as ts. In the same {&,r, I| 0 ~ the handle.We know the We know tl
and pole at q2. Then at q2. Then negatiuepole and with with negative 11 2Re (7]c) 2) (t * 0). (t --+ (qc)+ o(t o(tz) o). go(p) G(qr))+ tl2Re gt(p) == -21 G(p)(G(qd -- G(q2)) ct(p)-- go(p) ogt #*"tol(c(c') uniforrn on on is locally locallyuniform Here, oft, is lhe convergence conaergence of t, and and the independ,enl is a constant constantindependent Hew, cc is RR - {Pl,P2,ql,q2}' {Pr,P",Qr,9z}.
w Z
saloN
Notes
243
seloN
Notes 'eldtuexe 'ueqA 'U leql epnl)uoc ol repro ur Jo lesqns e eq g 1a1 roJ 'ploq fgressaceu lou seop I'V rueroaql se uotlJesse u€ qrns 'leuorsuatutp flalrugur sr U a?€Jrnsuu€tuerll uado uefo (U),2 eceds rallnuqrletr eql uaq1\ '[696] rqcn3etue pue 'lt1Zl'lgZel rqcnSrue;'[eOt] '[fOt] eqlqs'FtI] Iue]IetrAtr alrc osp aal'sace;.rnsuusruorg le.leuaEJoas€c eql ur suorlerrel roJ sy'[661] ruel '(p)g -r"tr{ pue l{ounsny errr€lsur roJ aes eceds Jellnurqclal aql uo i(lerrqdlour 'sl€rlueragrp u€ITeqv ctqd.rotuoloq -oloq eloru ..secrtrleruporred Iecruouec,,eseqJ Jo ror^er.leqdrepunoq aql uo uorlrpuo? elqelrns e Sursodurr .{q ,,xtr1eur pouad 'g u" roJ ualg ace;.rns uu"ruerp frerltqre Iecruou€c,, eql Jeplsuoc uec eA{ 'rl 'ralano11 'rl lerlua.ragtp le.rauaE" roJ sploq llrls llnser eq1 rurerlleg qloous e fpo reprsuof,a,r,r'{lrcqduls Jo a{ss aq} roJ 'g'y uotltsodord uI
In Proposition A.3, for the sake of simplicity, we consider only a smooth Beltrami differential 1-". However, the result still holds for a general 1-". Even for an arbitrary Riemann surface R, we can consider the "canonical period matrix" by imposing a suitable condition on the boundary behavior of holomorphic Abelian differentials. These "canonical period matrices" move holomorphicallyon the Teichmiiller space T(R). See for instance Kusunoki and Maitani [129]. As for variations in the case of general Riemann surfaces, we also cite Maitani [134], Shiba [197], [198], Taniguchi [226], [227], and Yamaguchi [262]. When the Teichmiiller space T( R) of an open Riemann surface R is infinitely dimensional, such an assertion as Theorem A.l does not necessarily hold. For example, let E be a subset of R. Then, in order to conclude that -U uo leuroJuor q.f (U)-r > | [/'S]]
If
{A
{[S, f] E T(R)
is conformal on R - E}
'g xpueddy osp ees 'sacedsllnpour peg -rlceduroc aq1 fpnls aql ur ;o Iool plueuepunJ ? sr sa?€Jrnsgo uorleraua3aq .ec€Jrnsuuelueru fre.rlrq.re ue .lvzzl pu" [966] rqcnSrueJ eas roJ prle^ IIIIs sl elnuroJ s,racuadg-ragrqog'rarroaront '[qUZ] pue IVZZIrqcn3ruea aql roJ araq pe^rJap esoql ol relnuls selntu eas 'sacrJleur porrad l"f,ruouef, 'suorle.raua3appue suoll€turoJep -roJ leurro;uoctsenb leuorlerJel urelqo u€f, pu€ SurleureEleure dq suorlerrel raprsuoc u€) e/r\ 'sace;tns uueruelg frcr1tq.re rog ';c) '([gZA] rqcn8ruea pue f11uercgns,, ,,a3.re1 [IfI] e{e}qo q ar l€ql erunsss plnoqs a,u '(ar)J;o lurod aseq aql Jo PooqroqqErau e sra^oc
covers a neighborhood of the base point of T(R), we should assume that E is "sufficiently large" (cf. Ohtake [171] and Taniguchi [228]). For arbitrary Riemann surfaces, we can consider variations by amalgamating quasiconformal deformations and degenerations, and can obtain variational formulas similar to those derived here for the canonical period matrices. See Taniguchi [224] and [225]. Moreover, Schiffer-Spencer's formula is still valid for an arbitrary Riemann surface. See Taniguchi [223] and [224]. Degeneration of surfaces is a fundamental tool in the study of the compactified moduli spaces. See also Appendix B.
Appendix B Appendix
Compactification of the Moduli Moduli Space Space
Following Bers Bers [32], and [40], we shall Following shall construct construct aa compactification [32], [33], [33], [34], [34], and [40], we space M Mog of closed closed Riemann genus gg by adjoining to of the moduli space Riema^nnsurfaces surfacesof genus Mn the set set of biholomorphic equivalence M equivalenceclasses classesof closed closed Riemann surfacesof Riemann surfaces g the genus g with nodes. nodes. genus
B.1 8B.1 Compaetification Compactiffcation of of M M11 an example, example, we we construct aa compactification Aft As an M1 of the moduli space space M M11 of tori. was seen seen in the remark in §2.1 As was l, M My1 is is identified identified with with the $2.1 of Chapter 1, plane C, and complex plane and every every point in M M11 is is represented represented by the biholomorphic 2 equivalence class class [SA] equivalence = ,S1 defined defined by the algebraic algebraic equation w urz [.91] of the torus SA l)(z --,\)A) for aa complex z(z -- l)(z with A of 0,1. A compactijication ift of complex number number A ) ^ + 0,1. compactificationM1 = C M11 is is the Riemann sphere C M U {oo}. Here Riemann sphere e = CU{-}. Ilere the point 00 oo in C e corresponds corresponds 2 = to an an algebraic given by the equation = 0, algebraiccurve curve given = z( 1)( z --,\)A) for A equation w w2 z(zZ --l)(t ) = 1, or 0, 1, @. 00.
)-n
degeneration degeneration -------) ( l -~O) 0) (11
)
00
00
Fig. F i g . B.I. B.1.
- 0, For example, example, taking taking IA = we see that the algebraic So given by the see that 0, we algebraic curve ,9o 2 equation w2 1) is equation w = z2(z z2(z -1) which has has a sole Po = (0,0). is the one one which sole singular singular point at po
=
=
9VZ
B.2. Compactification of M g 614Jyo uoqetyrleeduro3 'g'g
245
zv'Z=! and
,(q paluasardar sr og elrnc cleJqa3p aq1 'I - zfz + n = .1A pue I - zfz -m = Z uorlsruroJsuerl eleurprooc eq?.,(q'od;o pooq.roqq3raue u1
In a neighborhood of Po, by the coordinate transformation Z = w W = w + zv'Z=!, the algebraic curve So is represented by
l u l ' t > l z l ' o - - t t 4 zI c x c > ( u ' z ) }
I ZW = 0, IZI < r, IWI < r}, '{t >
{(Z, W) E C x C
'og se papre3ar st uotlecgtlceduroc lutod-auo s1t pue '{ o1 fqecrqd.rouroloqrq sl -J/C e)eJrns uueruelg eql luelearnba O C } 'g rcJ rl q3norql oo r se lerll ees a.!r ;o uorleraua3ap aqt ,(g paurelqo sl '3lJ uI €ar€ pap€qs eq1 3ut1e; '(Z'Z)lSa roJ J urerrropl"lueur€punJ e se 6'I 'H ) r aruos roJ I + z - (t)'g't * z = (z)',L suorlelsuerl o.rl r(q pale.reua3 dnor? acrllel aql eq | 1a1:ssacordSurarolloyeql fq peurclqo sr 6,_;rdnor3 srq; 'I + z - (z)9 uorlelsuert eql .,{qpele.raue8(C)l"V yo dnor3qns e sl -J eraq^r '*J/J eceJrnsuu"uraru eql ol spuodsauoeC f oo lurod aql ueqJ,'I .ra1deq3 e.tr '1xetr1 eceds luarlonb ei11qtlm I,ZV,ty11uap1 Jo I'Z$ ul s (Z'dlsaln '0 od Y5'uo * y e olul se epou a rl s)lool (y)Iy a^rnc pasol) eJo uotlerauaSepaqt,tq paurelqo sr 1r pu"'I'g'3lJ 'uorlerr.rasqosrql uord 'epou to oS: l€r{l ees a^r 7ur,odalqnop fuoutplo ue pellel sl ,9Jo odlurodreln3urse qcns'peyluapr are 0 - ,Mpue 0= Z slutodorr,rl areqr'n'{ t > lUl I C > U} p"" { t > lZl I C > Z} rr{"lp o^rl Jo uolun eqt s€ papreSarsl o5lslql'od;o pooqroqq3reue ur'snq;'?uelsuof, e,rrlrsod" $., ereq^\
where r is a positive constant. Thus, in a neighborhood of Po, this So is regarded as the union of two disks {Z E C I IZI < r} and {W E C I IWI < r}, where two points Z 0 and W 0 are identified. Such a singular point Po of So is called an ordinary double point or node. From this observation, we see that So looks like Fig. B.1, and it is obtained by the degeneration ofa closed curve A1('A) on SA into a node Po as .A --+ O. Next, we identify M 1 with the quotient space H/PSL(2, Z) as in §2.1 of Chapter 1. Then the point 00 E C corresponds to the Riemann surface C / roo, where roo is a subgroup of Aut(C) generated by the translation o(z) = z + 1. This group roo is obtained by the following process: let T be the lattice group generated by two translations IT(z) Z + T, OT(Z) Z + 1 for some T E H. Taking the shaded area in Fig. 1.9 as a fundamental domain F for PSL(2, Z), we see that roo is obtained by the degeneration of IT as T --+ 00 through F. The Riemann surface C / roo is biholomorphically equivalent to C - {O}, and its one-point compactification is regarded as So.
=
=
=
r
( z= )
=
6 "roy 'W Jo uorlergrlceduro3
B.2 Compaetification of My for 9 (~ 2) g'g
:suorlrpuo, aa.rq1Sur,r,rolloJ aql segsrl€sA I sepou q?!n 6 snua| to acn!.tnsuuDurexv pasop p, palpt $ gr ecedsJropsneH pelf,euuot lceduroc y '(Z 7) 0 snua8;o sa?eJrns uueuttrergpesol) Jo 6W aceds qnpour eqt Jo uorlecgrlceduroc e ltnrlsuoc eA\
We construct a compactification of the moduli space M g of closed Riemann surfaces of genus 9 (~ 2). A compact connected Hausdorff space R is called a closed Riemann surface of genus 9 with nodes if R satisfies the following three conditions: uaql '.{laarlradsar '9, yo slred pue sapou sraqunu er€ pu" u/ JI (II) Jo { 's1 '.i? ec€JrnsSuuarr.oc 1eq1 IesJeAIunaqt seq fg, i0 < lu + Z - !62 segsrles pue '16 snua8 go e?€Jrnsuueruelu pesol? e uro{ fu Sutaoruar,{q paurelqo sI qclq.t\ eceJrns uueuratg e ''a'r slurod l)ullslp '(!u'!0) ed.{1e1rug.{11ecr1,{leueJo e)eJrnsuu"urarg € sl Ugo fg, 1.reddleag (u) (g 1o 1.tode pellec sr sepou slr II€ snurur g;o luauodtnoc palf,euuoc V 'ellug sl U Jo sepou Jo u, raqunu aql 'lf,edruoc sr U ecurs 'Ur > ltrl P,tn t > lrzl I C x C lo epou € pell€r sr d'asec ratt€l aq?uI)'{I ) (zz't7) ) rasa{t to {I > lrl I c f z} {slp }Iun eqt o1 crqdrouoauoq er€ sluetuale esoqn\ spooq.roqq3reul€?ueuepunJ Jo ure1s.{ss seq U 3 d ,{re,tg (t)
(i) Every pER has a system of fundamental neighborhoods whose elements are homeomorphic to the unit disk { Z E C I IZI < 1 } or the set { (Zl' Z2) E C x C I IZll < 1 and IZ21 < I}. (In the latter case, p is called a node of R. Since R is compact, the number m of nodes of R is finite. A connected component of R minus all its nodes is called a part of R.) (ii) Every part Rj of R is a Riemann surface of analytically finite type (gj, nj), i.e., a Riemann surface which is obtained by removing nj distinct points from a closed Riemann surface of genus gj, and satisfies 2gj - 2 + nj > 0; that is, Rj has the universal covering surface H. (iii) If m and k are numbers of nodes and parts of R, respectively, then k
g=Lgj+m+1-k.
' { - I + - * ' ' ". 7 r .- o r=!
j=l
'(Z'g'31,{ aas)g uo epou qrea Sutuedo fq sapou lnoqltm d' snuaS;o og acegrnsuueuralg pasolce 1aBe.n l"ql sueau (rrr) uorypuoJ'qrou.tey
Remark. Condition (iii) means that we get a closed Riemann surface R o of genus 9 without nodes by opening each node on R (see Fig. B.2).
246 246
B. B. Compactification Compactification of of the the Moduli Moduli Space Space
Ro
R
p,
node node Fig. B.2. Fig.B.2.
--- S homeomorphism f: between Riemann A homeomorphism R -+ S between surfaceswith nodes Riemann surfaces nodes is is said said f :R be biholomorphic biholomorphic if if f/ induces induces aa biholomorphic mapping of to be of Rj Ri to aa part of of ^9for every every part Rj .Ri of R. .R. If If there there exists exists aa biholomorphic mapping of R S .R to S, ^9, rR and S,S are are said said to be be biholomorphica//y biholomorphically equivalent. then Rand equiaalent.We We denote denote by [R] [E] the equivalenceclass biholomorphic equivalence class of aa closed closed Riemann surface R Riemann surface r? with nodes. nodes. As compaclification M Mog of M Mog with g ~ aa compaciification 2, we we take take the union of M > 2, Mog and and the set set biholomorphic equivalence equivalence classes of all biholomorphic classesof closed closed Riemann surfaces genus gg surfaces of genus with at least least one one node. node. with Now, we we define define aa topology on M Now, Mog by using using the Fenchel-Nielsen Fenchel-Nielsencoordinates coordinates as as follows: let r? be aa closed closed Riemann surface genusgg with m follows: R surface of genus parts. rn nodes nodes and k,bparts. preceding remark, we As stated in the preceding we can can take take aa closed closed Riemann surface surface R .R, o of g genus without nodes and and aa system system of decomposing genus without nodes decomposingcurves curves[, . . .,, G L = {{ G Cr, C"o 3} 1 , ... 3g -_"} on R -R, so that that R rt is obtained from R ftoo by degenerating degenerating each each element element of aa subset subset o so {{ C Gh Gjm [,i into i r ,, .... . . ,,C j ^ } }o of f,C n t o aa ppoint. o i n t .Denote D e n o t by e b (f,8) y ( t . ,= 0 ) (f1, = ( 4... , . . ,f . ,3g L s- 3 s ,_831 ,, ... 0 1 ,, 8 . 39 . . -, |3s)c _ s ) Fenchel-Nielsencoordinates the Fenchel-Nielsen coordinates on the Teichmiiller space genusg associated spaceT ?,g of genus associated with [, (see §2.1 .C (see with 3.10, for any point $2.1 of Chapter 3). From the proof of Theorem 3.10, 3g-3, we (1,0) E (n+;sr-s X (f,8) x R R3e-3, we can can construct aa closed closed Riemann surface e (R+?g-3 surface Ri,e R2,sof g genus such that ,Ra,einduces induces a point in T genus such that Ri,e whose Fenchel-Nielsen Fenchel-Nielsen coordinates ?o coordinates g whose (1,0). a r e (l,8). are Here, casewhere somelh, Here, we we admit the case where some 13g-3 }} vanish. vanish. In /r', ,.... .. ,fjn . . . ,,lsg-z ,lj^ in {{ f/11 ,, ... this case, case,we get a closed closed Riemann surface genus g with surface Ri,e with n nodes nodes by a conR2,9of genus construction similar to that struction that in the proof proof of Theorem 3.10. that each consider that 3.10. (We consider each eleelem e n t Gh, C 1 r ,... ...,C d e g e n e r a t einto s i n at opoint a p o i on n t oRi,e.) n R l p .T )h e n .RRhas ment Gjj .n iinn ,[,C degenerates Then h a sthe t h eFenchelFenchelN i e l s e nccoordinates o o r d i n a t e s((l(R),8(R)) l(R),0(R)) = R ) , .... . . , 1,l3g-3(R), 2c-s(R),0 ( R ) , .... . . ,,d8s3gc-- r3((R)) ft)) = ((f41((R), 81t (R), Nielsen w i t h /lh i , ((R) f t ) = . - . = lljn j . ((R) R) = 0 or a n y ((f, . , 8) 6 ) - ((f1,"" e r , . : . , f3g-3, € B s - 28,16, ... 1 , . ,. 83g . , d-e3c) - s ) with O.. F For any with with positive €i fj and 6i, 8j , the (e (f,, 6)-neighborhood 8)-neighborhood of [^R] [R] in M, Mg is given given by the set set of of all biholomorphic equivalence equivalence class class [.R1,e] [Ri,e] of of closed closed Riemann surfaces surfaces r?z,a Ri,e with with or without without nodes nodes satisfying the following two conditions:
= ... =
=
=
((i) i)
- 1 , . . ... . , 3,3g-3, s-3, ffor o r all a l l ji=1, Ilj-lj(R)I
(ii)
18j -- 08j(R)l 8j for all ji with with 4@) fj(R) +:I 0. O. j (R)1 (< 6i l9j
'.(a)pow fq
where hand h o are bijective homeomorphisms homotopic to a biholomorphic mapping and to the identity, respectively. The strong deformation space V(R) of R is the set of all equivalence classes [f: 5 - R] of strong deformations f: 5 - R. If R has no nodes, V( R) is identified with the Teichmiiller space T(R) of R. Every strong deformation fa: R' - R induces a mapping [fa].: V(R') V(R) which sends [f: 5 - R'] to [foof: 5 - R]. The mappings [w]., induced by all orientation-preserving homeomorphisms w: R - R, form a group. We call this group the Teichmiiller modular transformation group of V( R) and denote it by Mod(R) •.
rDlnpoutJellnun!?rry aq1 dno.r8srql l! alouap pue (g)41o dno.t0uorTonuotsuo.tT 'A IIetr e1ydno.r3 e uroJ A : rn srusrqd.rouoeuroq 3ur,r.rasa.rd-uorleluarro1p ,fq pecnpur (i[nl] sEurddeureql'[U - S:looll ot [,U - g:/] spuasqrlq/" (U)d * (U)A:-[o/] Surddeu € sa?npul U * ,A:ot uotl€ruroJep3uo.r1s,,(.rarrg
'a
Jo (a)J
eceds rallnurqclaf eql qlra peyluepl q (U)C 'sapou ou seq U JI 'g' t- S I t suorleuroJap Euolls Jo [U - g:,f] sasselc acualenrnbeIJe Jo las aqt sl U Jo (g)g acods uotTounotap 6uo.t7saq; 'flairrlaadsar ,f1r1uapl aql ol pu€ Surddeur crqdrouroloqlq s ol crdolouroq suuqdrouroauoq alrlce[q "* orl pue q ereq^d et
h
'a*zS
----+
R,
" vf l
1
^
ho
l'/
h
R
u*v
----+
ts
We say R is terminal if it has the largest possible number of nodes, namely 3g - 3 nodes. Note that there are, up to biholomorphic mappings, only finitely many terminal closed Riemann surfaces with nodes of genus 9 for a given g. Two strong deformations fl: 51 - Rand f2: 52 - R are said to be equivalent if there is a commutative diagram
urer3erp elrlelmuruot e sr eJer{}l\ ryel -oatnba eq ol pres ere F zg :zt pue .- r.9 :I/ suorleur.rogep3uor1s om; U U 'f ualr3 e ro; f snuaS;o sepou qlr^{ saceJrnsuueurarg pesolc leurur.rel fueur flaltug fluo 's8urddeur crqd.rouroloqlqof dn 'ale ereql leql eloN 'sepou g - dg ,,(1aueu'sepou Jo raqunu alqrssod 1se3.re1 aql seq ll lr lvuttuel sr p, fes e11 'rusrqdrouoeuoq Surarasard-uorleluarro ue sr Ur Jo sepou 11eyo sa3eturesrelur or{l Jo }ueuelduroc eqt of /;o uorlcrrlsa.raqa (rrr) 'sepou 11eSurpro,reg uo alrn) pesol? aldurs e ro apou € sl apou e;o a3eur esrelur eql U S'Jo Jo 'Ur epou € st Jo S'Jo apou " 3o a3erur aq; (r)
(i) The image of a node of 5 is a node of R. (ii) The inverse image of a node of R is a node of 5 or a simple closed curve on 5 avoiding all nodes. (iii) The restriction of f to the complement of the inverse images of all nodes of R is an orientation-preserving homeomorphism.
(rr)
In order to prove Theorem B.I, we construct the strong deformation space of a Riemann surface with nodes, a generalization of Teichmiiller space in which closed Riemann surfaces are replaced by Riemann surfaces with nodes. Let Rand 5 be two closed Riemann surfaces with nodes of genus 9 (2: 2). A continuous surjection f: 5 - R is called a strong deformation of R if it satisfies the following three conditions:
:suorlrpuor aa.rq1Sura'rolloJaql sagsrl"s llJl U lo uotyout.totapfuatTs " pallec sl U * g :/ uorlcatrns snonurluoc V'(Z ?) f snue3Jo sapou qlllr sec€Jrnsuu"ruerlr pasolt o^rl eq,g pu€ A p"l 'sePou qlrAr sal€JJns uuel'ueru ,{q pacelde.r er€ sereJrns uu€tuaru pesol) 'sapou qlr^r ec€Jrns uu€tuarg e qf,rqa ur aceds .ra11nurq?latr Jo uorlezrlereuaSe go aceds uorleruJoJeptuorls eql lcnrlsuoc e,n'1'g tuaroeql errord o1 Jepro uI
B.3 Strong Deformation Spaces sacedg uorlBruroJeq tuo.rls
'uorlras
g'61
An outline of a proof of this theorem is explained in the next section. lxau oql ur paureldxa $ ueroaql slqt Jo;oold e Jo eulllno uy
'acods $.topsnog 6) 6W acodsaqa .I.g uraroaqtr,
Mg
'(77 Tcoiltuoco st'paquasep so pe?ctunsuoc
Theorem B.l. The space Hausdorff space.
2: 2), consuructed as described, is a compact
(g
'tuaroeql
These (t, b)-neighborhoods give a system of fundamental neighborhoods of [R] in Mg, which induces a Hausdorff topology on Mg. Now we have the following theorem.
Surr'ro11o; eql e^eq arrr/!!oN ''W uo fEolodolSropsntsH € sa?npur qcrqr*'t1,g ur [g] yo spooqroqqErauleluaurepun; ;o ruelsfs e a,rp spooqroqqSreu-(g'r) aiaql B.3. Strong Deformation Spaces
247
saredg uorl"urrolaq tuorlg'g'g
Ltz
B. B. Compactification Compactification of of the the Moduli Moduli Space Space
248 248
We define define aa Hausdorff Hausdorff topology topology on on 2(R) V(R) as as follows. follows. Let Let SS be be aa closed closed RieRieWe mann surface surface with with nodes, nodes, and and C C be be aa closed closed curve curve on on aa part part S; Si of of S. S. We We set set mann
.
ts,(C'), tslCl fs[C] = = igl inUs,(C'), CI
where C' C' runs runs over over all all closed closed curves curves on on S; Si freely freely homotopic homotopic to to C, C, and and lsr(C') fSi (C') where of Ct C' with with respect respect to to the hyperbolic metric metric on ^9i. Si. We also also set is the length of l's[P] == 0 ifif P P is a node of of S. IIIP] a r t s ooff S a n d eE a n pparts u r v e soon e t ooff cclosed l o s e dccurves , . .. , C Sand } bbe e a ffinite i n i t e sset LLet e t C = {{C 1 r Cr,...,Cr} e)-smallif it positive number. number. A A strong strong deformation deformation h: h: S' ---+ S is said said to be (C, (C,€)-smallifit positive satisfies satisfies
=
((i)i ) (ii) (ii)
1 . . ,,r, r, o r 7j -= r1,, .... (Cj)] lll's,[hts,lh-L ( C 1-l's[Cj]1 ) lt-s l C l l l<< €e ffor 1 , If s [h- (q)]1 < E E for for all all nodes nodes q of S. S. lls,[h-1(q)]l
for every [/: say that that a set set [/ U in in 2(r?) V(R) is open, open, ififfor [f: ^9 S *--+ /?] R] €E [/, U, there exists We say positive number e parts and a set C of of closed closed curves curves on of ^9, S, E such such that' that, of a finite set belongs 2(,R) oh: S' St'.whenever h'. h: S' -,9 --+ S is (C,e)-small, (C,€)-small, the point lf [foh: --+ R] € E V(R) belongs to whenever U (compare with with §3 [/ (compare $3 of Chapter 3). canonical projection np: Il R : V(R) Mg which sends sends [/: [f: S S *--+ R] to D(R) ---+ Ms There is a canonical open mapping. continuous open [S]. IlR is a continuous canonical projection I/6 seen that that the canonical It is seen [S]. It Let us coordinates on a strong deformation Fenchel-Nielsencoordinates us introduce the Fenchel-Nielsen
space. space. genus g with with nodes nodes First, assume surface of genus Riemann surface is aa terminal Riemann that R rR is assume that is a simple * It 2(l?). {Pj }J~13. Take an arbitrary point [f: S --+ R] E V(R). If f-1(pj) is a simple n] € an Take f-t@i) [/:,s {ei}10=1t. geodesic closedgeodesic simple closed unique simple closed we can can choose chooseaa unique ,91of S, then we curve on aa part Sk closei curve we then we node, then is aa node, Lj f-1(pj). If f-1(pj) is lf f-t@i) homotopic to f-t@i). is freely freely homotopic which is on Sk Li on 516which consisting put In this way, we have a system £ = {Lj }J~13 consisting of a system L we have way, this p,rt Lj f,i = f-1(Pj). {fi}1n=1" f-r(Pi).In S. all nodes geodesicson parts of S. closed geodesics some simple simple closed and some nodes of SS and -t@i) 1(Pj) is If we set set node, we is not aa node, lf ff
,j =
*rs*(L)e;ei,
(B.1) (B.1)
1 ()j 01 < 2t that 00 ::; < 271" tri such such that to Lj where parameter with with respect respect to twisting parameter is the the twisting where ()j di is by geodesic.Li measured of the (cf. §2 of Chapter 3), and l'Sk (Lj) is the length of the geodesic Lj measured by length is the (cf. $2 of chapter 3), and ts*(Li) put zi 0. the hyperbolic metric on Sk. If f-1(pj) is a node, put Zj = O. is anode, If the hyperbolic metric on S1. f-r@i) the equivalence equivalence on the only on dependonly It (rr,' . . , Z3g-3) zzs-s)depend the numbers numbers(Zl,"" that the is shown shown that It is 3g 3 * R] to R] to sending class [f: S --+ R] and the mapping of V(R) to C sending [f: S to C3g-s * of D(R) r?] and the mapping class [/: S [/: S --+ coordithe Fenchel-Nielsen called which is (Zl,'" , Z3g-3) is a homeomorphism, which is called the Fenche/-Nielsen coordi(rr,...,zzc-z) is a homeomorphism, + R, R, Rt --+ strong deformation deformation fa: V(R). It isis also nates every strong proved that for every that for alsoproved fs: R' naleson oni@).It its onto -D(R) map covering a universal the induced mapping [fa].: V(R') --+ V(R) is a universal covering map onto its is the induced mapping lfsl-:D(Rt) 1 * R] not aa which ffor which image, (Pj) isis not -R]for those [f: ^9--+ set of of those being the the set the image image being f-'@i) image, the [/: S 1(p1) to is homeomorphic D(R') node whenever fr;l(pj) is not a node. Furthermore, V(R') is homeomorphic to F\nthermore, is not a node. node whenever /o 3 g- 3 . C C3s-2. spaceV( 2(R') deformation space strong deformation Next, R') on the the strong coordinaleson the Fenche/-Nie/sen Fenchel-Nielsencoordinates Next, the as are defined g nodes genus with of an arbitrary closed Riemann surface R' of genus g with nodes are defined as of an arbitrary closed Riemann surface ,? of
We describe briefly how to introduce the complex structure of Mg in two ways. The first introduction of the complex structure of Mg is the following. Let R o be a closed Riemann surface of genus 9 without nodes, and let R be any other closed Riemann surface of the same genus with or without nodes. As stated in the previous section, 1J(Ro ) is identified with the Teichmiiller space T(R o ), and hence 1J(Ro ) has a complex structure. Take a strong deformation fo: R o --> R. Then the image [fo]*(1J(R o )) of the induced mapping [fo]*: 1J(R o ) --> 1J(R) is a domain in 1J(R) and 1J(R) - [fo]*(1J(R o )) is nowhere dense. Moreover, [fo]*: 1J(Ro ) --> [fo]*(1J(R o )) is a universal covering map. Hence, [fo]*(1J(R o )) has a natural complex structure induced from the complex structure of 1J(Ro ). Then 1J(R) has a ringed structure, i.e., a continuous function on an open set U in 1J(R) is called holomorphic if its restriction to un [fo]* (1J(R o )) is holomorphic. This ringed structure induces a complex structure on 1J(R) and the induced mapping [fo]* becomes holomorphic.
pa)npureqrpue(a)auoaln?f, nrrs'",0*'ilT',Tfi ;T,':T"r:".1r:t'#rXTiit
'orqd.rotuoloqsl (("U)A)-[oI)U n ol uor]crr]ser stl Jl ctrld.tou.roloypa11ecsr (g)g ur 72 les uado ue uo uorlcunJ snonu?uoc e ''e'r 'eln1ln.r1spa3urr e seq (g)4 ueq; '('U)A Jo ernlrnrls xalduoc eql tuoq pecnpur arnlf,nrls xelduroc Iernleu e s€q ((A)A).10t] 'ecueg 'deru Eur.rerroc l€sralrun * q ((,U)C).[0/] - (A)At.[ol) 'rarroa.rotr11 'esuep eraq.nou rt (('U)C)-[ot] @)A pue (lI)@ ur ureruop € sr (A)A ,- ("A)A: *[o/] Eurddeu pacnpur eq] Jo (("A)A).loll a3eurr eq] ueqJ 'A - oA : 0;| uorleu.ro;ap 3uor1s e e{€I 'arn}rnJ?s xelduroc e seq (og)4 acuaq pue '('U)J aceds .ra11nuq)lel aql qtr^r pegrtuapl q ("U)@ 'uorlces snorrlard aq1 uI palels sV 'sepou lnoqlr^r ro r1lrrlrsnuaS aures eql Jo e)€Jrns uuetuarll pasolc .req1ofue eq U lel pue 'sapou lnoqlr/( 6 snua3 Jo eceJrnsuueruarg pesolo e eq oA p.l '3urmo11o; aq1 sr ty,ggo ern?rnrls xalduoc eql Jo uorltnporlur lsrg aql 'sfeiu, o.tr1uI 6W Jo "rt1rnr1. xalduroo eql ecnporlur ol ^roq,tgar.lq aqrrf,sapaM
otr_ll ernlrnrls Jo
xalduo3
p.g
B.4 Complex Structure of
My
'lceduoc ,\ 6try WqI rtfi suorlcafo.rd apnlf,uo) e^\ snqtr '6141rerot uW * (a)A; lecruouec aql repun "N'"' 'I;l7 Jo sa8erureql l"qt qrns (fy)4 3 fy slas lceduroc erc araql leql satldrur Z'g "rutuaT 'saleurprooc ueslarNlaq)uag Sursn 'ueqa 'd snua33o sepou ' " ' ' IU sa?€Jrnsuuetueru qll/tr e4ef ino11 lualearnbe-uou ? leurturel II€ '([6p] stag '3e) rasng .,tqua,rr3 sI eurural srql ;o yoord l u a r a J r pV ' [ 0 g I ] r { q e l e r y p u e ' [ 8 1 ] € r l r € s n r r qi 8 6 ' d ' I I . r a 1 d e q 3u r g e u u r a l ' [ 1 -v] "Uo{lqv 'eldurexe ro; (aag'Durutalronoc eql Sursn,(q pe.rlo.rd sr eruural srqtr
This lemma is proved by using the collar lemma. See, for example, Abikoff [AI]' Lemma 3 in Chapter II, p. 98; Furusawa [78], and Matelski [150]. A different proof of this lemma is given by Buser (cf. Bers [40)). Now, take all non-equivalent terminal Riemann surfaces R I , ... , Rr with nodes of genus g. Then, using Fenchel-Nielsen coordinates, Lemma B.2 implies that there are compact sets K j C 1J( Rj) such that the images of K I, ... , K r under the canonical projections IIRj : 1J(Rj ) - . Mg cover Mg. Thus we conclude that Mg is compact.
' E''I f t ' " ! = j saarw |uzsodu.rocap (13)7|ugfitstlos to {t-0tg'"''rCl
j
= 1, ... ,3g- 3.
Lemma B.2. For arbitrary g ~ 2, there exists a positive constant L depending only on g such that every closed Riemann surface of genus g has a system £ = {CI , ... , CSg - s } of decomposing curves satisfying l( Cj ) ~ L for all
17o.rol 7 j
ula4sfiso sorl 6 snuaf lo aco!.r,nsuuDurezy pasop fuaaa pql qcns 6 uo fi1uo |urpuad,ap.J luolsuo? aatTtsodD s?smea.taq7'676 fi.to.t7tq.tD ro4 ,Z.B BruruaT 'euurtuel8urrr,lo11o; aq? peeu eM'6W;o ssaulredruor aql /t\oqs ol rapro uI 'usrqdrouoeuoq
where (ZI, ... , ZSg-s) are the Fenchel-Nielsen coordinates of [fo 0 h: S --> R] given by (B. 1). Here, if fa I (Pj ) is not a node of S, then the monodromy theorem implies that the function log Zj has a single-valued continuous branch on 1J(R'), since 1J(R') is homeomorphic to C Sg - S (cf. Lemma 3.9 in Chapter 3). It is shown that the mapping of 1J( R') to C Sg - S sending [h: S --> R'] to (WI, ... , wsg-s) is a homeomorphism. In order to show the compactness of Mg , we need the following lemma.
e
s r ( e - r e , 7 , ' " ' ' r r r l ) o l [ r U * g : q ] S u r p u e se _ o e C o l ( , A ) A g o S u r d d e u e q ] ? t s q ] u^,roqsq lI '(t .ra1deq3ur 6'g €urue1 'gr) ,_rgC o1 crqd.rouroeruoqsr (,g')4 acurs '(,A)A {z uo q)uerq snonurluof, panpr'-a13urs uorlcunJ aql € serl 3ol }eq} saqdurr '(1'g) ,tq uear3 uraroaql durorpouotueql uoqt 'gyo apou e lou $ (ld):l;r'ara11 dql ar€ (t-68,2'"''rz) eret{.n [ t t - S : t t o o t ] J o s e ] e u r p r o o ru a s l e r N - l e q ) u a e
= 10gZj
',U Jo "po.t e lou fl (fd)r-o/ ft 'g;o apou e sr (fa)r_o;"r,
Wj
lzSol= lm lz - lm Zj
if fol(pj) is not a node of R', if fol(pj) is a node of R',
R'] E 1J(R'), its Fenchel-Nielsen coordinates
> [,U *
=
-->
seleurProof, uaslarN-laqrueJsll'(U)A
Wj
'tq uartr3 ale (e -fe61 ' ' ' ' 'rm) g:r1j lurod {rara ro;:s,llolloJ
follows: for every point [h: S (WI, .. " Wsg-s) are given by 6.;ig arnlcnrlg xalduro3 'p'g 3:o
Mg
249
6VZ
BA. Complex Structure of
250 250
B. B. Compactification Compactification of of the the Moduli Moduli Space Space
Using the the Klein-Maskit Klein-Maskit combination combination theorems theorems (Maskit (Maskit [A-71]), [A-71]) , we we have have the the Using following theorem theorem (cf. (cf. Bers Bers [40]). [40]). following Theorem 8.3. B.3. D(R) V(R) is is aa comltler complex manifold manifold and and is is rvalized realized as as aa bounded bounded domain domain Theorem 3 3g iin n C C 3 c- - 3•.
Now, we get the following two two results. results. Now, Theorem 8.4. B.4. The Teichmiiller Teichmiiller rnoilular modular transformation transformation group group Mod(R)* M od( R). is aa Theorem discrete subgroup of of the analgtic analytic automorphism group group "f of D(R). V(R). Moreouer, Moreover, the discrele subgroup subroup M odo(R). induced induced by the biholomorphic mappings of of R onto itself itself is biholomorphic mappings subroup Modo(R)* in Mod(R).. finite the stabilizer of [id: R -+ R] in M od(R)•. of RRl the stabilizer and is fid: finite Theorem 8.5. B.5. Therv There exists neighborhood N of of[id: R -+ R] inD(R), in V(R), inuari' invarierists a neighborhood Theorem lid: -RMod"(R)- is homeomor' under Modo(R)*, Modo(R)., such such that the the quotient quotient space space Nf N/Modo(R). homeomorant uniler neighborhood of of[R] Mg. phic to a neighborhood lR) in Mo.
By H. Ca.rtan's Cartan's theorem, theorem, the quotient space space NlMod"(R)* N /M odo(R). has has a normal comcomBy plex space space structure. Thus M, Mg becomes becomes a normal complex space, space, and itit leads leads to the following, the main theorem in this Appendix. closedRiemann spaceof closed Theorem the moduli space Mng of the The compactification compaclificationM B. 6. The Theorem B. dimension straclure space surfaces of genus g (~ 2) has a normal complex space structure of dimension compler surfaces genus C e_ D has 3g 3 g-- 33.. following. is the following. Mog is The second complex structure of M introduction of the complex second introduction g, considering genus g, considering both For aa given with nodes nodes of genus surface R with given closed closed Riemann Riemann surface surfaces we construct Riemann surfaces quasiconformal deformations degenerations, we deformations and degenerations, which represent us follows. follows. Mog as neighborhood of [R] represent aa neighborhood [n] in M s u c h that that p a r t s R1,"" p 1 ,... . . . ,,Pm P m and ftr,...,-R a n d k& parts Assume Ric1 such has m r n nodes n o d e sP1, r ? has that R A s s u m e that each Rj is nj). Then it follows follows that (Si,ni). type (gj, is of type each.Ri Ic
Ic
m -- kk = =9 g. . I:nj D ogjr+* m D n i == 22m, ^ , I: j=l j=l
j=l i=L
point obtained by obtained by to aa point pa corresponds For correspondsto that POI po on supposethat on R, rR,suppose node POI For each each node -.Ro, d1 and some for point in fto, 6o E* identifying a point a in ROIl ROIl with a point bOi in R R for some a1 and with a point oo in E* a identifying Oi 0I2 0I2 Take aa of R Ror. compactificationof a2 k}.}. Here, the natural natural compactification denotesthe Here,R OIj . Take I,.... . . ,,k o2 in in {{ 1, { OIj denotes = and zo(ao) that at aoo on ROIl E[such such that zOl(a Ol ) = 00 and local (Uj, ZOl) zo) at neighborhood(U~, coordinateneighborhood Oi on local coordinate neighborhood coordinate neighborhood ZOl(U~) local coordinate chooseaa local unit disk. disk. Similarly, similarly, choose the unit 4, the z.(u:) == .1, take aa Further, take 4. Further, and wOl(U;) ."(UZ) = .1. (U;, wOI ) at that wOI(b too(bo) such that 6o on on R R', (U3,J") at bOi Ol ) = 00 and 0I2 such = so that that VI/ l' ... .. . ,k for every every ji = 1, relatively U;=l in Rj Ri for open set set \Ii Vi in compact open l)!=rV\Ii relatively compact , /cso = meets neither U~ nor U; for all a = 1, ... , m. a 1 , . . . , f f i . f o r a l l n o r U 2 " m e e t sn e i t h e r [ { r n ,m, we on d i f f e r e n t i a l sJ.L1, Setting c a n find f i n d Beltrami B e l t r a m i differentials w e can N == 3g 3 9 -- 33++ P ' t -... t . . ,J.LN . , p 7 yon S e t t i n gN j all for outside I/ pi vanishes identically R' = R {PI, ... ,Pm} such that J.Lj vanishes identically outside V for all j = = such lhat R' R- {pr,...,pm}
=
=
=
=
(CJ U~,s,u) U (CJ U;,s,u) . a=l a=l
(".rnn)n (""u f)
- ta = "':a
= Rs -
'{ l'"1t l(d)''"*ll''zn)
Iual}, ~ Iual},
"' ? tl l " " l 5 l (d )" '" r ll )
d\ -
= {p E U~,s
Ilza,s(P)1 ~
'{
R:,u
o's'an
U;,s,u = {p E U;,s Ilwa,s(p)1 d| -
U~,s,u
o's'nn
"''ro) I = 1 2 I I €r o J I > l " r l l e q t q r n s u c u r l u r o d e a q ( u o '
(U1,""
Um)
be a point in
em such that Iual <
' u . L"' '
Let U = We put
1 for all ex = 1 ... ,m.
1nd a6 - D !3-I
'8'g'ttJ
Fig.B.3. w,-plane Rs.15
sapou
ope~
\
z,-plane
nodes
':'
L
A
x"uo
z/
qc deformation
uotleurro;ap cb
€-lsrd f
~
I.(s)
Rs
uo!l€f,grluaPr
'g uo Dd epou eql o1 Eurpuodsa.rrocsgr uo epou eql t'Dd fq elouag 's1red I prre sapou u, qlr^t f snua3 ;o sgr ecey.rnsuueuerg pasolc e u p t q o a t ' l . ' u t r " ' t 1 = r c q ? " a J o J( " 9 ) ' / q l l ^ ( " D ) ' / E u r , t ; r l u a p(r8 ' { U ( " ' ' ' ' I U ruoq '8'zDUuo ("9)'/ yo (r-toorn'7n) = ('"n'?n) pooqroqqSreualsurprooc € 'flrelnurg 's'rDU uo ("a)t e^eq a/rd, Jo pooqroqq3raualeurp.rooce sr (tjto"z'"n) - (''or'?n) trqt ees e,lr'l.nlu'o leuroJuoc s "/ ecurg'"'fU ol fUSo Surddetu e o1 spuelxe lA ol'[ Jo uorlcrrlsa.raq1 pue'1!u-.nl) adfl elrug I€ruroJuof,rsenb "/ .repun {g, - ''!A a3eur f11ecr1f1eue lred e lo (!A)"t Jo ec€Jrnsuuetuarg " q aql '( {U)J t=jU ul lpl' ,Aho pooqroqqSreue oluo 6'go Eurddetu orqd.rouoloqrq ot s Surpues(ig)t t=j[ of,q g;o Surddeur aql t€q] erunss?feur e16
image Rj,s = fs (Rj) of a part Rj under fs is a Riemann surface of analytically finite type (gj, nj), and the restriction of fs to Rj extends to a quasiconformal mapping of Rj to Rj,s. Since fs is conformal on U~, we see that (U~,za,s) = (U~, zaof;l) is a coordinate neighborhood of fs(aa) on Ral,s. Similarly, we have a coordinate neighborhood (U~,wa,s) = (U~,waofs-1) of fs(b s ) on R a2 ,s. From R 1,s,"" Rk,s, identifying fs(aa) with fs(b a ) for each ex = 1, ... , m, we obtain a closed Riemann surface R s of genus g with m nodes and k parts. Denote by Pa,s the node on R s corresponding to the node Pa on R.
n7=1 T(Rj) sending to [R~, fs] is a biholomorphic mapping of D onto a neighborhood of [R', id] in n7=1 T(Rj). The 8
€ sl ["/'iU]
We may assume that the mapping of D into
J-ls = L8j J-lj. j=l
I=f 'lr1 lsf : c71 n, rua,saoc rur*rlrag qlr.ryr : Surdderu e slsrxa e.raq1'g ) (t"' "' .I") - s fue J FruroJuorrssnb 7A *,A ro;'uaqa 'n,C ul ur3r.roaq1;o pooqroqq3rau uado ,flluaralgns€ aq O ?eT lpurs '(y xrpuaddv ul I'V ureroeql t=jLJ "rnot :.:c) W?',U] ?ulod eseq aq? w (!A)l saceds rellnuqtlal f" (rU),f rN' ( ' ' ' (I lcnpord aq1;o eceds luaEuel aql Jo srs€q e ecnpur ,taq1 1eq1q?ns pue N
1, ... , N, and such that they induce a basis of the tangent space of the product space T(R j ) of Teichmiiller spaces T(Rj) at the base point [R',id] (cf. Theorem A.l in Appendix A). Let D be a sufficiently small open neighborhood of the origin in eN. Then, for any 8 = (81, ... , 8 N) ED, there exists a quasiconformal mapping fs: R' --+ R~ with Beltrami coefficient
n7=1
o7g;o arnlcnrlg xaldurog 'p'g
Mg
251
19Z
BA. Complex Structure of
252 252
B. B. Compactification Compactification of of the the Moduli Moduli Space Space
Identify any any two two points points ca and and bb in in .Rl,o R; l7 ifif oa and and Db a.re are contained contained in in Uj,,,o U';. l7 Identify - ao. By this za,swa,s satisfy and if they some a, for and U;,.,l7' respectively, for some 0', and if they satisfy za,. w = U a' By this " and(J!.r.o, respectively, a genus with n nodes, of surface rR",o identification, we obtain a closed Riemann surface R.,l7 of genus 9 with n nodes, a closed Riemann we obtain 9 identifiiation, where rn m -- nis n is the the number number of of o's a's with with oo U a I=1= 0 0 (see (see Fig. Fig. 8.3). B.3). where Now, we we set set Now,
v
. . ., ,m}, m}, ( s ,u) a )E€D D xx C em^ |Iluj 6 == {{(s, l o iI < l< 11, , ij == L1,, ... ugoIl (s,u) G , Q ED}. eb]. 1) =={ {[R.,l7] D [ f t " , o €]E fM Then, 21) is is aa neighborhood neighborhood of of [R) [R] in in Mn' Mg. However, However, the the mapping mapping of of 6V onto D 1) Then, sending (s,a) (s, u) to to [.Rr,"] [R.,l7] is is not not always always injective. injective. By By changing changing D V suitably, suitably, we we may may assume that that the the biholomorphic biholomorphic automorphism automorphism group Aut(R) Aut(R) of of .R R induces induces a finite finite assume G, consisting of of analytic analytic automorphisnT automorphisms "jD, of V, sl'ch such that that the the quotient space space group G, V/G is homeomorphic to to aneighborhood a neighborhood of of [n] [R] in in Mn Mg .• For details, details, we refer to to DlCts H. before, As and Wolpert Bers [33], XIII in §7, and Masur [143], §2, [249], §4. before, Bers [33], XIII [249]' $4. $7, [143], $2, space Df G has a normal Cartan's theorem theorem implies implies that that the quotient quotient space V/G normal complex complex cartan's 3g -- 3. of dimension space a normal^complex structure. Thus, M becomes normal complex space of dimension space I4,g becom"r space Note that that this complex space space structure structure on M, Mg is equivalent equivalent to the one given in Note the first first introduction. introduction. the
the Moduli Moduli Space B.5 Form on the K6.hler Form Weil-Petersson Kahler 8.5 Weil-Petersson of ?(.R) spaceT( on the the Teichmiiller Teichmiiller Since Kahler p on space R) of wylp formWw Kihler form the Weil-Petersson weil-Petersson sincethe genus genus 9g (~ (= 2) is invariant under the action of the Teichmiiller modular group denoted spaceMg. Mo. This form is denoted Mod(R), as a form on the moduli space is regarded regarded as Mod(R), it is near the u.,ryp behavior of Ww by the same Ww p. We p near interested in the behavior are interested we are notation^uwp. same notation boundary Mo. Mog in Mg. boundary of M uvvp 8.6), WWP From the construction of M and Wolpert's formula (Theorem 8.6), Mog and = (t,r) coordinates the extends smoothly to the boundary with respect to the coordinates (£, T) = with respect extends a n = 3 1 , . . , 3 9 f o r r y = £/J t i 0j1/27r w h e r eTj (£1, ( l r , .... . . ,,£3g-3,T1, l s g - s , T L ,... . . .,T3g-3), , r s g - s ) ,where f 2 t for jX = 1, ... ,3g - 3 andd -assocoordinatesassoFenchel-Nielsencoordinates are the the Fenchel-Nielsen (£,0) ,03g-3) are . . .,flsg-t) (h,. ... . . ,£3g-3,01, (t,0) = (£1, ,tss-2,01, ... h* aa finite finite particular, M M go has In particular, ciated on R. ft. In curveson of decomposing decomposingcurves with aa system system of ciated with volume metric. to the the Weil-Petersson Weil-Peterssonmetric. with respect respect to volume with coordito the the coordiwith respect respectto of Ww uw pp with On behavior of the boundary boundary behavior hand, the the other other hand, On the and Wolpert wolpert by Masur Masur [143], studied by nates previous section is studied section is given in the previous in the (s, u) o) given nates (s, [143],and [251]. '[ 2 5 1 ] . 2 is aa that [wwP]/7r suchthat on M Mo Next, class[wwp] cohomologyclass inducesaa cohomology g such curypinduces lusr p)lt2 is Next, WWP [c.,szp]on 2 some integer, integer, multiplying [wwP]/7r rational by some (seeWolpert Thus multiplying wolpert [249]). class(see rational class [c..,szp]lo'by t249]). Thus bundle line proved that this we proved that this line bundle isis over Mg. rt[o. Wolpert wolp"rr [252] bundle over get aa line line bundle we get l252l projective Hence, space. complex in a positive, is embedded in a complex projective space. Hence, is embedded Mo consequentlyM positive, and and consequently g Mumford and Mumford proved by Knudsen and by Knudsen we wasfirst first proved which was result, which the following following result, we have have the [117] by using algebraic geometry. geometry. algebraic using by [117] genus9g of genus Ms spaceM moduli space the moduli Theorem 7. The of the Mo compactificationM The compaetification 8.7. g of Theorem B. g of (~ is a projective algebraic variety. uariety. algebraic projectiae (] 2) a ts 2)
t9z
Notes
253
saloN
seloN
Notes ur uar.r3 saceJrns uue[uar]I pasolc go aceds rlnpou aqt Jo uotlecgtlceduoc
The compactification of the moduli space of closed Riemann surfaces given in this appendix was first introduced by Deligne and Mumford [51]. Our treatment is due to Bers [32], [33], [34], [40], Masur [143], and Wolpert [249], [252]. We also refer to Kra [126]. Furthermore, see Mabuchi [133], Marden [136], and Namikawa [A-83]. For the geometry of the moduli space, there are many papers such as Arbarello and Cornalba [18], Bowditch and Epstein [46], Eisenbud and Harris [68], Giddings and Wolpert [86], Harer [90], [91], [92], Harer and Zagier [93], Harris [94], [95], Harris and Mumford [96], Maclachlan [132], Mumford [162], [163], Penner [175], and Wolpert [250], [255]. Recently, on Jacobi's problem on Jacobian varieties, there has been made a great progress. For this subject see, for example, Arbarello [17], Beauville [21], Mulase [160], and Shiota [204] and [205]. In string theory of particle physics, the theory of Teichmiiller spaces and moduli spaces play an important role. For this interesting topic, we refer to Yau [A-1l2], Alvarez [15], Alvarez-Gaume and Nelson [16], Friedan [75], Nelson [167], and Polyakov [176]. There it is necessary to know the behavior of the Selberg zeta function and the Green functions near the boundary of the moduli space. These are studied in Hejhal [99], Taniguchi [226], and Wolpert [257]. In connection with super string theory, Teichmiiller spaces and moduli spaces of super Riemann surfaces have been studied: for example, see Batchelor and Bryant [20], Crane and Rabin [50], LeBrun and Rothstein [131], Nelson [168], and Rabin and Freund [177].
eqtr,
osp e \'lzgzJ'l'vzl1.rad1o,11pu€'[t?I] rnsew'[ot]'[te] '[eg]'[ze]srego] enpsr stql lsrs sealxrpuadde luerul€erlrno 'hq] proJurn4pueau3rleqfq pacnporlur
eare{ru"N pue '[ggl] uaprcN '[gg1] gqcnqey4lees'a.rourJeqtrnJl'[gat] nrX ol raJar
'[ee-v]
'[221]punaq pu" urqeg pue '[991]uosleg'[191]uralsqtogpu€ unrgerl'[09] tlqtg pu" auerC'[96] luedrg uu€tuerg .radns;o pu" roleqrl€g aas 'aldurexeroJ :parpnlsuaaq aA"rI se?eJJns sacedsrlnpou pue sacedsreflnurq]lel (/tJoeqlEurrls radns qlr^r uorlreuuocuI '[gzzj rqcn3ruea'[oo] pq!"n uI palPnls are eseql 'aceds '[296] tradtom pu€ rTnpouaql;o f.repunoqaql reau suorlrunJueerg eql pus uolltunJ elez Sreqlag eql Jo ror^€qeqaqt ^rou{ o1 fressacauq q erer{tr,'[911] ,ro1ef1o4pue '[291] uosleN'[92] ueparrg'[91] uoqap pu€ aun€C-zers^ly '[9I] ,ntnr'1y '[att-V] .,"L o1 .rap.raru 'crdo1Surlsaralurqql rod 'a1orluelrodtul ue feld sacedsqnpou pue sacedsrellnuqcrel froaql aql 'scrsfqd alcrlred f.roeql 3ur.r1su1 ;o ;o '[09I] '[qOZ] as€tntr pt" l [tOA]"tolqS pue '[16] elpr'neaS'[ft] o[ereqrY 'aldtnexato3:'aaslcafqns $ql rod 'sse.r3o.rd 1ear3 e epetuuaeqs€q e.raq1'sarlau€Auerqocsfuo uralqold s(Iqoc"f uo 'f11uacag '[qqa]'[oqz] pu€ '[9ZI] rauua4 '[gg1] 1.rad1o7y1 '[691] proyrunry'[UtI] u€lqc"le€I '[96] p.rolurnntr pue slrr€H '[qO] '[fO] slrrsg I '[gg] '[96] rar3eg prr" rarlag '[ZO]'[tO] '[66] re.reg '[99] 1.rad1ol\pue sSurpprC srrr€H pus pnqua$g '[gf] uralsdg pu€ rplrp^roS '[gt] €ql"uroC pue ollersqry se q?ns s.radedfueru ere areql 'ecedsqnpotu eql Jo frlauoa3 aq? rod
References References
Books and Proceedings Proceedings Books Abikoff, W. : The Real Real Analytic Analytic Theory of Teichmuller [A-I] Teichmiiller Space, Space,Lecture Notes Notes [A-1] Abikoff, Vol. 820, 820, Springer-Verlag, Springer-Verlag,Berlin and and New New York, York, 1980. in Math., Vol. 1980. Lectures on Quasiconformal [A-2] Mappings, D. Van Nostrand, Quasiconformal Mappings, [A-2] Ahlfors, L. V. : Lectures Princeton, Princeton, New Jersey, Jersey,1966. 1966. [A-3] Ahlfors, L. V. : Conformal Conformal Invariants, Inaariants, McGraw-Hill, McGraw-Hill, New York, 1973. 1973. [A-3] AhHors, [A-4] 3rd ed. Ahlfors, L. V. : Complex Complet Analysis, Analysis,3rd ed. McGraw-Hill, McGraw-HilI, New York, 1979. 1979. [A- ] AhHors, [A-5] Ahlfors, L. V. : Collected Collected Papers, Papers, Vols. Vols. 1, 1, 2, 2, Birkhauser, Birkhi.user, Boston, 1982. 1982. [A-5] AhHors, [A-6] Ahlfors, L. V. and Sario, Sario, 1. L. : Riemann Riemann Surfaces, Surfaces, Princeton University University Press, Press, [A-6] AhHors, Princeton, New Jersey, Jersey, 1960. 1960. (eds.) : Advances [A-7] Ahlfors, L. V. et al. al. (eds.) Aduances in the the Theory of Riemann Riemann Surfaces, Surfaces, 1969 1969 [A-7] AhHors, Stony Stong Brook Conference, Conference, Ann. Math. Studies, Studies, No. 66, 66, Princeton University University Press, Press, Princeton, New Jersey, Jersey, 1971. 1971. (eds.) [A-8] Ahlfors, L. V. et al. (eds.) : Contributions to Analysis, A Collection of Papers al. Papers [A-8] Dedicated Dedicated to L. Bers, Bers, Academic Press, Press, London, 1974. 1974. C o r n a l b a , M., [A-9] A r b a r e l l o , E., E . , Cornalba, M . , Griffiths, G r i f i t h s , P. P . AA. . a nand d Harris, H a r r i s , J. G e o m e t r y of J . : : Geometry ol [ A - 9 ] Arbarello, Algebraic 1984. Algebraic Curves, Curues,Vol. Vol. I, Springer-Verlag, Springer-Verlag,Berlin and and New New York, York,1984. [A-I0] L., Jr. Jr. :; Introductory Introductorg Lectures Lectures on Automorphic Automorphic Forms, Forrns, Iwanami[A-10] Baily, W. 1., Shoten, Shoten, Tokyo, and Princeton University University Press, Press, Princeton, New Jersey, Jersey, 1973. 1973. [A-H] Beardon, A. F. : The Geometry of Discrete Groups, Springer-Verlag, Berlin The ol Discrete Groups, Springer-Verlag, [A-11] and New York, 1983. 1983. [A-12] Bers, L. : Topology, Topology, Courant Courant Institute Institute of Mathematical Mathematical Science, Science, New York [A-12] Bers, University University Press, Press, New York, York, 1956-1957. 1956-1957. [A-13] Bers, L. : Riemann Surfaces, Surfaces, Courant Courant Institute Institute of Mathematical Mathematical Science, Science, New [A-13] Bers, York University University Press, Press, New New York, York, 1957-1958. 1957-1958. [A-14] Bers, L. :; Introduction Introduction to Several Seaeral Complex Compler Variables, Variables, Courant Courant Institute Institute of [A-14] Bers, Mathematical Mathematical Sciences, Sciences, New York University University Press, Press, New York, 1964. 1964. [A-15] (eds.) : A Crash Bers, L. et al. (eds.) Crash Course Course on /{leinian l{Ieinian Groups, Groups, Lecture Notes Notes in [A-15] Bers, Math., Math., Vol. 400, 400, Springer-Verlag, Berlin and New York, 1974. 1974. [A-16] Bers, 1., L., John, John, F. and Schechter, Schechter, M. : Partial Partial Differential Differential Equations, Equations, American [A-16] Bers, Mathematical Society, Providence, Mathematical Society, Providence, Rhode Island, Providence, Providence, Rhode Island, Providence, Providence, Rhode Rhode Island, Island, 1964. 1964. [A-17] Besse, A. L.: Einstein Manifolds, : Besse, L. Manitolds, Springer-Verlag, Berlin and New York, 1987. 1987. [A-17] [A-18] Birman, J. S. : Braids, Links, and Mapping Class Groups, Ann. Math. Studies, Birman, J. S. ; Linles, Class Groups, Math. Studies, [A-18] No. No. 82, Princeton University 82, Princeton University Press, Press, Princeton, Princeton, New Jersey, Jersey,1975. 1975.
992
sef,ueralau
References
255
'1161 'uopuoT 'ssard 'ecuatatuog f,ruap"rv lDuorlnlqruJ aflpuqutog g26y tsuotycung cttldtoutolnv puD tdnotg ep$st1 , (.p") .f .L4 ,rtarrreg [If-vJ '9961 'fasral a,ra11'uolarurr4 'ssar4 dlrsraaru1 uolaf,urrd 'ncoltng uuotxerA uo salnl?a1 : .C .U ,turuung [g7-yJ .gl,6I ,{ro^ a,rag 'i(a116 'fitlatuoag cntqa1ly {o sa1dnut.t4 : .f (sur"H pu" .y .d ,sqfUIrC [6t-v] '6961 'pue1s1 apoqg 'aouapr,ror4 ',(1aoog uerrraruv ,gl.lo1 ,sqderEouo141 lpf,ll"rueql"I I lecr ,santng -l"uraqlpl^l cntqa0yy ol uoq)n[nryul : .V a ,sqfUIrD [gt-y] Jo suorl"Isu?rJ 'p161 'fasral alalq 'uolarurr4 (ssar4 r(lrsraarufl uolarurrd '62 'oN sarpnls .ql"W .uuv bcuataluog puol -frron EL6I 'eacoltng uuDuarA puo tdnotp snonurluocsr1 : .1 .traquaarg [lS-v] '886I 'pu"lsl 'acuapr,ror4 ',(laroog 'ruor1 apoqg uecrraury Frrl"uaql"I4l .U 'V ,pp"tr[ pu€ .I^i .r14 ,ueurplog -oluatardag dnotg to frtgauoag : (.spa) [9t-vl 'zg6I 'l"artuow 'l?arluow ap ?1lsra^run(T ap sasserd sa1 'rlnrprronfi to taqndot4 ctlntalcDrDUC : .M .J ,turrqag [9t-v] 'lg6I '{ro rrag'da11q't1otlua.laStq cqotponfi puo ffnaqa rellnuq)EJ: .g .g ,raurprng [le-Vl 'ZI6I 'I06I '168I 'lr"qllnts 'rauqnal 'D 'g '(Z 'I) '1'1o71 'uauotpung II'loA ua{dtoutolny r?p uoeqtr eW r4!! ua0unnpoll : .g ,ura1y pu" .U ,arprrg [tt-vl 'I86I'{ro rt eN puta uryrag '8epan-ra8urrdg 'saco{tng uuoraery uo sarnpel ; .g ,ralsrog [ZS-VJ '196I '{ro1 natri 'easlaqg ''pg po7 'tuotlcung ctydtouto1ny : 'U 'T 'prod ht-v] '{ro ,rleN puu uqrag '8epan-raturrdg 'Zgt 'lo4 tl6I ''qleIt ur saloN ernlf,aT 'tacottng uuDuatq uo suo.Icunl optlJ | .O .f ,r(eJ [gS-V] '6tr61 'stre4 'aruetg ap anbr1eur9q1e141 'l,g-gg 'slo1 'anbsrrglsy 'arreururag fesr6 'tacopng n7 ?lg_r)os 2261-9 261 rns uo$rnqJ ap xnvaoil : .n ,nreuaod pue .g ,qcequapnsT ..V ,Hl"J [62-V] '086I '{ro^ l|^aN pue urlrag '3egan-raBurtd.g ,taco{tng uuDraatA : .1 ,rary pue .I I .H ,szrlreJ [gz-v] '(asaurdel) 9961'o{4o;'oqso;-of1o1 'tcttfit14 .1 ,uurrfoy pus .H ,pt l-zg laal?ouaqpry lo quautdoleoa6, : (.spa) ILZ-V] 'g961'atprrqure3'ssar4'lru11 atprrqureg 'acodg cr1oqtadnn .g .q ,uralsdg {o qcadty ".4auoeC puo 1oct1fi1ouy: (.pa) [92-v] '9961 'a8puqure3 'ssar6 ',rru11 a8prrqurcg 'tdnotg .g .q ,u1e1sdS uDrurelx puo fi6o7odoa louorcueurp-noq : (pa) [SZ-V] '886I '{IoA 1!leN Pu" urgag '3epan-raturrdg 'sarras tepan-raBurrdg 'acuara;uoC 9g6I lggyq IUSI I 'II p,t" 'slo1 .I" .O ,urser( llnpory puv cuoq)un.r utld.toutoyog : (.spa) ?e I [tz-v] '(lz6l'{ro^ n aN pu" uqrag 'tegan-ra8urrdg 'lurrdar) 096I ,{ro1,ta1q ,aruaosrc1u1,ncot ta1dnuu4 s.plqc.rr1 ; .g ,1uernog -rns IDurruW puo's0utddo141 Touttotuog [SZ-VJ 'Lg6I '{ro1 'sacoltng ,uqog malq'ra,roq uuvutetq uo iutddo1,y Totu.ro{uog :.11 [ZZ-vJ '086I 'uoPuorl Pu? {ro^ ,rra11'sser4 urnuald'fitaaq1 aatng ca1dutog {o qooqdotcs y : .H .g ,suaura13 [IZ-VJ '986I')IIo i aN pue uqrag 'tepan-ra8urrdg '(taun7o11 lDtrouery q?noy 'g 'g) stofilouy xaldutog puo fi4auoag ptyuetagtg : (.spa) .14i .11 ,seryeg pue .1 ,1a,rzqC [02-V] '9961 'a8prrqureg (ssar6 ',rru1 atpuqureg'uo1ttnq7 puo : 'V .S 'rapalg pu? 'f .v ,uosseg [6I-VJ saco{tng {o tutsttldtouolnv
[A-19] Casson, A. J. and Bleiler, S. A. : Automorphisms of Surfaces after Nielsen and Thurston, Cambridge Univ. Press, Cambridge, 1988. [A-20] Chavel, I. and Farkas, H. M. (eds.) : Differential Geometry and Complex Analysis (H. E. Rauch Memorial Volumes), Springer-Verlag, Berlin and New York,1985. [A-21] Clemens, C. H. : A Scrapbook of Complex Curve Theory, Plenum Press, New York and London, 1980. [A-22] Cohn, H.: Conformal Mapping on Riemann Surfaces, Dover, New York, 1967. [A-23] Courant, R. : Dirichlet's Principle, Conformal Mappings, and Minimal Surfaces, Interscience, New York, 1950 (reprint, Springer-Verlag, Berlin and New York, 1977). [A-24] Drasin, D. et al. (eds.) : Holomorphic Functions and Moduli, Vols. I and II, 1986 MSRI Conference, Springer-Verlag MSRI series, Springer-Verlag, Berlin and New York, 1988. [A-25] Epstein, D. B. (ed.) : Low-dimensional Topology and Kleinian Groups, Cambridge Univ. Press, Cambridge, 1986. [A-26] Epstein, D. B. (ed.) : Analytical and Geometric Aspects of Hyperbolic Space, Cambridge Univ. Press, Cambridge, 1987. [A-27] Ezawa, H. and Kojima, I. (eds.) : Developments of Mathematical Physics, Tokyo-Tosho, Tokyo, 1988 (J apanese). [A-28] Farkas, H. M. and Kra, I. : Riemann Surfaces, Springer-Verlag, Berlin and New York, 1980. [A-29] Fathi, A., Laudenbach, F. and Poenaru, V. : Travaux de Thurston sur les Surfaces, 1976-1977 Orsay Seminaire, Asterisque, Vols. 66-67, Societe Mathematique de France, Paris, 1979. [A-30] Fay, J. D. : Theta Functions on Riemann Surfaces, Lecture Notes in Math., Vol. 352, Springer-Verlag, Berlin and New York, 1973. [A-31] Ford, L. R. : Automorphic Functions, 2nd Ed., Chelsea, New York, 1951. [A-32] Forster, O. : Lectures on Riemann Surfaces, Springer-Verlag, Berlin and New York, 1981. [A-33] Fricke, R. and Klein, F. : Vorlesungen uber die Theori der Automorpfen Functionen, VoLl, Vol.II (1, 2), B. G. Teubner, Stuttbart, 1897, 1901, 1912. [A-34] Gardiner, F. P. : Teichmuller Theory and Quadratic Differentials, Wiley, New York,1987. [A-35] Gehring, F. W. : Characteristic Properties of Quasidisks, Les Presses de L'universite de Montreal, Montreal, 1982. [A-36] Goldman, W. M. and Magid, A. R. (eds.) : Geometry of Group Representations, American Mathematical Society, Providence, Rhode Island, 1988. [A-37] Greenberg, 1. : Discontinuous Groups and Riemann Surfaces, 1973 Maryland Conference, Ann. Math. Studies No. 79, Princeton University Press, Princeton, New Jersey, 1974. [A-38] Griffiths, P. A. : Introduction to Algebraic Curves, Translations of Mathematical Monographs, Vol.76, American Mathematical Society, Providence, Rhode Island, 1989. [A-39] Griffiths, P. A. and Harris, J. : Principles of Algebraic Geometry, Wiley, New York, 1978. [A-40] Gunning, R. C. : Lectures on Riemann Surfaces, Princeton University Press, Princeton, New Jersey, 1966. [A-41] Harvey, W. J. (ed.) : Discrete Groups and Automorphic Functions, 1975 Cambridge Institutional Conference, Academic Press, London, 1977. uesp,N nlto
256 256
References References
M. W. W. :: Differential Topology, Springer-Verlag, Springer-Verlag, Berlin Berlin and and New New York, York, [A-42] Hirsh, Hirsh, M. Differential Topologg, [A-42] 11976. 976. Functions of [A-43] Hitotsumatsu, Hitotsumatsu, S.: S. : Theory Theory of of Analytic of Seaeral Several Complex Complex Variables, Analytic Functions [A-43] Baihukan, Tokyo, Tokyo, 1960 (Japanese). (Japanese). Baihukan, [A-44] Hubbard, Hubbard, J. H. H. :: ,9ur Sur les Sections Analytiques Universelle de Analytiques de la Courbe Uniaerselle [A-aa] Teichmiiller, Memoires Memoires of of the the American American Mathematical Mathematical Society Society Vol. Vol. 4, Number Number Teichmiller, 166, American American Mathematical Mathematical Society, Society, Providence, 1976. 1976. 166, Spirit of [A-45] Iitaka, Iitaka, S., Ifeno, Ueno, K. K. and Namikawa, Y.: Y. : Spirit of Descartes Descartes and Algebraic [A-45] 980 ((JJ apanese). Geometry, Nihonhy6ron-sha, Tokyo, Tokyo, 11980 apanese). G eometry, Nihonhy6ron-sha, [A-46] Ito, Ito, S.: S. : Introduction Lebesgue Integral, Sh6kabo, Tokyo, 1963 1963 (Japanese). (Japanese). Introduction to Lebesgue [A-46] Mappings, Springerand Conformal [A-47] Jenkins, A. Univalent Functions and Conformal Mappings, SpringerFunctions J. A. : Uniaalent [A-47] Jenkins, 1958. Berlin and New York, 1958. Verlag, Berlin Functions: An [A-48] Jones, Jones, G. A. A. and Singerman, D. D. : Complex Functions: An Algebraic and [A-48] 1987. Cambridge University University Press, Press, Cambridge, 1987. Geometric Viewpoint, Cambridge Wiley, New Variational Problems, Geometric [A-49] Two-Dimensional Variational Problems, J. : Tuo-Dimensional Jost, [A-49] York, Y o r k , 11991. 991. 1978 (Japanese). Kato, M. M. : Topology, Topology, Science-sha, Science-sha, Tokyo, Tokyo, 1978 (Japanese). [A-50] Kato, [A-50] Variable, Department ol One Variable, Functions [A-51] : Theory of Automorphic Functions of Department of Automorphic Y. Theorg Kawada, [A-51] (Japanese)' 1963, 1964 1964 (Japanese). of Mathematics, Mathematics, Tokyo Tokyo University, Tokyo, 1963, (Japanese)' 1979 (Japanese). [A-52] Kawai,, S. Baihl1kan, Tokyo, 1979 Geometrg, Baihfrkan, S. : Algebraic Geometry, [A-52] Kawai [A-53] Klein, : On Riemann's Theory of and their Integrals, Integrals, Functions Theorg of Algebraic Riemann's F. Klein, [A-53] 1963. Dover, New York, 1963. Marcel [A-54] Holomorphic Mappings, Marcel Hyperbolic Manifolds Manitolds and Holomorphic S. : Hyperbolic Kobayashi, S. [A-sa] Kobayashi, Dekker, New York, 1970. 1970. Yols' Geometry, Vols. [A-55] Differential Geometry, Foundations of Differential S. and Nomizu, K. : Foundations [A-55] Kobayashi, S. 1, 1963' 1969. 1969. 2, Wiley, New York, 1963, l, 2, 1978 [A-56] III, Iwanami-Shoten, Tokyo, 1978 Analysis, I, II, III, Kodaira, K. : Complex Analysis, [A-56] Kodaira, (Japanese). (Japanese). Structures, Complex Structures, [A-57] Deformation of Complex Manilolds and Deformation Compler Manifolds [A-57] Kodaira, K. : Complex Springer-Verlag, Berlin and New York, 1986. 1986. W' A. Benjamin, Benjamin, Menlo Groups' W. [A-58] Kleinian Groups, Forms and Kleinian Automorphic Forms [A-58] Kra, I. : Automorphic Park, California, 1972. 1972. Park, California, 7978 Related Topics, Topics, 1978 Surfaces and Related [A-59] (eds.) : Riemann Riemann Surfaces [A-59] Kra, I. and Maskit, B. (eds.) University 97, Princeton University Stony No. 97, Studies, No. Conference, Ann. Math. Studies, Stony Brook Conference, Press, 1981. Jersey, 1981. Press, Princeton, New Jersey, Winston, Surfacec,Winston, Riemann Surfaces, [A-60] Krushkal', S. L. : Quasiconformal Mappings and Riemann S. L.: Krushkal', Quasiconlormal Mappings [A-60] Washington, C., 1979. 1979. Washington, D. C., Groups Kleinian Groups [A-61] Gusevkii, N. A. : Kleinian Apanasov, B. N. and Gusevkil, S. L., Apanasov, [A-61] Krushkal', S. Mathematical Tra.nslations of Mathematical and Problems, Translations Uniformization in Examples and Problems, and Uniformization Rhode Providence, Rhode Monographs, Society, Providence, Mathematical Society, Vol. 62, 62, American American Mathematical Monographs, Vol. Island, 1986. Island, 1986. Tokyo, 1962 1962 [A-62] Kusunoki, Y. Hirokawa-Shoten, Tokyo, Functions, Hirokawa-Shoten, Y. :: Theory Theory of ol Analytic Analytic Functions, Kusunoki, [A-62] (Japanese). (Japanese). Conlormal (Riemann Surfaces Surfaces and and Conformal [A-63] Functions (Riemann Y. :: Theory Theorg of of Functions Kusunoki, Y. [A-63] Kusunoki, ( J apanese). Mappings), I 973 (Japanese). Tokyo, 1973 Asakura-Shoten, Tokyo, M app ings), Asakura-Shoten, Berlin Spaces,Springer-Verlag, Springer-Verlag, Berlin [A-64] Hyperbolic Spaces, to Complex Complex Hyperbolic Introduction to Lang, S. S.:: Introduction [A-64] Lang, and 1987. New York, York, 1987. and New in the the Plane, Plane,LecMappings in Krzyz, J. Lec[A-65] J.:: Quasiconformal J. and andKruyz, Lawrynowici, J. Quasicontormal Mappings [A-65] Lawrynowicz, York, 1983. 1983. and New New York, ture Berlin and Springer-Verlag, Berlin Math., Vol. Vol. 978, 978, Springer-Verlag, Notes in in Math., ture Notes
'g96l '{ro1 'ra,roq 'rr1tor14 ,uag pepenoC : 'g 'uueurary [26-v) '9/6I '{ro^ ^ aN pu" urlrag 'telran-raturrds '/8t '1on ''qle11 uI saloN ernltrarl 'uotgo1ltzsg raraln.u-t rafporqctaq ueuoqlunl : '; 'rauaqc,tg pu" ';41 '11 'uueurlag h6-V] '996I '{ro^ AraN pu" urlrag 'Began-ra8urrdg buorlcung uoltq)nl uo uedo4 : '11 'grracuro4 [06-VJ '(asauedel) 'od1o; 'ueddnqg-ns1ugf,y'tacottns uuDuety : 'X 'p,rel{lo 2961 [68-y] '9661 'pur1s1 apoqg 'acuapnor6 '{lartog l"f,lleruaql"W u"f,rraurv '08 'lo1 'sqdcr8ouo141lef,rl"ruarll"I I Jo suorl?lsu€ta'rc1qouo1 xepd 'J 'IsIpO pu" 'f 'rqrntop -u,toC IDraaaS ut frtoaql uotpuntr ),rlauoe7 : [gg-VJ '986I 'uolsog 'rasneqlrrg 'Z puu 'qon 'r"lado2, '1 'uaqarg I IDcttouraqpn pepeiloC : [29-y] '6961'atprrquep'ssar4 dlrsrarrull a8prrqureg 'tdnotg a1atcstg to fuoaql ctpod-tg aqJ : 'l 'd 's11oq]IN [gg-v] '1961'a8prrqureg'ssar4 dlrsraaruq a8prrqure3''pg pu7's1uto4 {o qag auo14 to fi6o7odo1 aq1lo sluautag | 'V '11 '141'ueuraraN [99-V] '9961'dasral lra11'uolacurr6'ssarg dlrsraarull uolaf,urrd 'acuata{uop 'tuo4tung ct1fi1ouy : ('spa) 'p 'U 'euuqueaap uolnurrd la []g-vJ '086I '{ro1 /r.raNpup uqrag '8egan-ra8urrdg 'Z18 'lo1 ''qten ur satoN arnl)a.I bacodg p6a1g {o uorlocyftycodutoCpptoil : '1 'ea,reryur"N [tg-y] .'86I ,{ro^ ara11'ra11aq laf,r"W 'eeotng cntqaily aaqcaCo-t4to fi4autoag : 'W '€qureN [28-v] '(asauudel) 'od1oa 'urddnqg-c1r4rroy41'raaopns uuDuety '1,'g'ro1ep 6961 lo finaq1 : [t3-v1 'gg6I '{ro 'fep16 'ncodg rallnurq?,eJ ,raatr1 tuoayl ct1fr1ouy xaldutog aqJ : 'S'8on [Og-V] {o '(asauedel) 'or(1o; 'ueddnqg-nslug[y'sp1olzuary : 'S'ruruqernyq 6961 [6/-vJ '926I 'IoqrY uuY 'ssar4 ueBrqrrl4l;o dlrsra,rrun aqJ 'tuotqoco1 rrell puD se1rnC : 'q 'prolurnyl [8]-vl 'Il,6I '{ro^ ,r aN 'uolsull!\ 'rrrepox pue '1 ',r,rorro1q [12-y] 't86I'uoPuoT
[A-66] Lehner, J. : Discontinuous Groups and Automorphic Functions, American Mathematical Society, Providence, Rhode Island, 1964. [A-67] Lehner, J. : A Short Course in Automorphic Functions, Holt, Rinehart and Winston, New York, 1966. [A-68] Lehto, O. : Univalent Functions and Teichmiiller Spaces, Springer-Verlag, Berlin and New York, 1987. [A-69] Lehto, O. and Virtanen, K. I. : Quasiconformal Mappings in the Plane, 2nd Ed., Springer-Verlag, Berlin and New York, 1973. [A-70] Magnus, W. : Noneuclidean Tesselations and their Groups, Academic Press, London, 1974. [A-71] Maskit, B. : Kleinian Groups, Springer-Verlag, Berlin and New York, 1987. [A-72] Matsushima, Y. : Differentiable Manifolds, Marcel Dekker, New York, 1972. [A-73] Mizohata, S. : Theory of Partial Differential Equations, Iwanami-Shoten, Tokyo, 1965 (J apanese). [A-74] Mizohata, S. : Lebesgue Integral, Iwanami-Shoten, Tokyo, 1966 (Japanese). [A-75] Moise, E. E. : Geometric Topology in Dimensions 2 and 3, Springer-Verlag, Berlin and New York, 1977. [A-76] Morgan, J. W. and Bass, H. (eds.) : The Smith Conjecture, Academic Press, London, 1984. [A-77] Morrow, J. and Kodaira, K. : Complex Manifolds, Holt, Rinehart and Winston, New York, 1971. [A-78] Mumford, D. : Curves and their Jacobians, The University of Michigan Press, Ann Arbor, 1975. [A-79] Murakami, S. : Manifolds, Kyoritsu-Shuppan, Tokyo, 1969 (Japanese). [A-80] Nag, S. : The Complex Analytic Theory of Teichmiiller Spaces, Wiley, New York, 1988. [A-81] Nakai, M. : Theory of Riemann Surfaces, Morikita-Shuppan, Tokyo, 1980 (Japanese). [A-82] Namba, M. : Geometry of Projective Algebraic Curves, Marcel Dekker, New York,1984. [A-83] Namikawa, Y. : Troidal Compactification of Siegel Spaces, Lecture Notes in Math., Vol. 812, Springer-Verlag, Berlin and New York, 1980. [A-84] Nevanlinna, R. et al. (eds.) : Analytic Functions, Princeton Conference, Princeton University Press, Princeton, New Jersey, 1960. [A-85] Newman, M. H. A. : Elements of the Topology of Plane Sets of Points, 2nd Ed., Cambridge University Press, Cambridge, 1951. [A-86] Nicholls, P. J. : The Ergodic Theory of Discrete Groups, Cambridge University Press, Cambridge, 1989. [A-87] Nielsen, J. : Collected Mathematical Papers, Vols. 1 and 2, Birkhiiuser, Boston, 1986. [A-88] Noguchi, J. and Ochiai, T. : Geometric Function Theory in Several Complex Variables, Translations of Mathematical Monographs, Vol. 80, American Mathematical Society, Providence, Rhode Island, 1990. [A-89] Oikawa, K. : Riemann Surfaces, Kyoritsu-Shuppan, Tokyo, 1987 (Japanese). [A-90] Poincare, H. : Papers on Fuchsian Functions, Springer-Verlag, Berlin and New York, 1985. [A-91] Reimann, H. M. and Rychener, T. : Funktionen beschrankter mittlerer Oszillation, Lecture Notes in Math., Vol. 487, Springer-Verlag, Berlin and New York, 1975. [A-92] Riemann, B. : Collected Works, Dover, New York, 1953. pu" lr"qaurg
'l1oy1 'tpyo/luoy4yxaldutog : 'y
'ssar4 crurapety 'atnlcatuoC tttluts arg : ('spa) 'H 'ss"g pu" 'lA '1 'uz8rolq [9^t-V1 '116l '{ro llraN pu" urlrag '3e1ran-raSurrdg '5'puo 'g 'g 'asroyq 6 suor.r' ueurt1ut fi6o1odo1crrleuoeg : [92-vl '(asaucdel) 'o{:1o; 'ualoqg-rureuenl'1olfaquJ an|taqaT : 'g 'uleqozlyq 9961 [ll-VJ '(asauedel) 9961'od1o; 'ualoqg-rurruenl 'tuotlonbg 'g 'eleqozrltl Totyuata$rg IDrlrDd to fitoaytr : [eZ,-V] 'Zl,6I '{ro1 ,r,rag 'ra41ag 'tp7ofiuo741alqoquan$tg : '1 'eurrqsnslpl lerr"I I l [Zf-y] '186I '{ro ,r aN pu" uqrag 'tepan-raBurrdg 'tdnotg uDtunIN : '9.'fHsen hl-y] ''z6I 'uoPuol 'ssar4 crruapraty'tdnotg Jre1l puo suo.Jvlessal uoep\rneuoN ; '14 'snu8cyrl [g]-VJ 'Cr6I ':IroA /t{aN pu" uqrag '8ega1-ra8urrdg ''pg pt7 'auo14 aq1 ut siugddol,tgTouttotuoctson\ | .I.N .rau"lrr1 pu" .O ,o1qa1 [OS-YJ '186I '{ro^ ,r aN Pue uqrag '8e1ran-ra8urrdg 'saaodg rellnu!ilel puD suo.puntr yapayn : .O 'ofqaT [gg-v] '996I '{ro^ ^|aN 'uolsurd\ pu" lr"rlaurg 'l1oy1 'tuorlcung uqdtoarcpv ul etrnoC : '1 'rauqal [trg-y] ,roUS V '7961'puc1s1apoqg'aeuapr,ror6'flarcog l"f,-rl"uaql"nl u"f,rraruy 'tuotlcung culdloutolny puo tdnotp snonuquo?sr1 : 'f 'rauqaT [gg-V]
References
257
sef,ueralau
L9Z
258 258
References References
Riemann Surfaces, [A-93] Sario, Sario, L. L. and and Nakai,M. Nakai, M. :; Classifcation Classification Theory Theory of of Riemann Surfaces, SpringerSpringer[A-93] Berlin and New New York, York, 1970. 1970. Verlag, Berlin Finite Riemann and Spencer, Spencer, D. D. C. C. :: Functionals of Finite Riemann Surfaces, [A-94] Schiffer, Schiffer, M. M. and Functionals of [A-9a] Princeton University University Press, Press, Princeton, Princeton, New New Jersey, Jersey, 1954. 1954. Princeton Riemann Strtaces, [A-95] Schlichenmaier, Schlichenmaier, M. M. :: An An Introduction Surfaces, Algebraic Algebraic Curttes Curves Introduction to Riemann [A-95] and Moduli Moduli Spoces, Spaces, Lecture Lecture Notes Notes in in Physics Physics Yol. Vol. 322, Springer-Verlag, Springer-Verlag, Berlin Berlin and New York. York, 1989. 1989. and New Univalent Functions-Selected Functions-Selected Topics. Topics, Lecture Lecture Notes in in Math., Math., [A-96] Schober, Schober, G. : Uniualent [A-96] Berlin and New York, York, 1975. 1975. Vol. 478, Springer-Verlag, Berlin
[A-97] Shafarevich, I. I. R. Basdc Basic Algebrcic Algebraic Geometry, Springer-Verlag, Berlin Berlin and New New [A-97] York,1974. 1974. York, Function Theorg, [A-98] Siegel, C. L. : Topics in in Complex Complex Function Theory, Vols' Vols. I, IIII and III, III, Wiley, Wiley, [A-98] 1971, 1973. 1969, 1971,1973. New York, 1969, [A-99] Springer, Springer, G. : Introduction Addison-Wesley, Reading, Reading, Riemann Surfaces, Addison-Wesley, Introduction to Riemann [A-99] Massachusetts, 1957. 1957. Massachusetts, Functions, [A-lOO] Stein, Stein, E. M. M. : .9ingular Singular Integrals and Difierentiability Differentiability Properties Properties of of Functions, Integrals and [A-100] 1970. Princeton University University Press, Press, Princeton, Princeton, New Jersey, Jersey, 1970. Princeton Theorg, SpringerCombinatorial Group Theory, [A-101] J. : Classical Classial Topology Topologg and Combinatorial Stillwell, J.: [A-101] Stillwell, Berlin and New York, 1980. 1980. Verlag, Berlin [A-102] K. : Quadratic Berlin and New York, Quadratic Differentials, Springer-Verlag, Berlin [A-102] Strebel, K. 1984. 1984. (Theory of of Conformal Conlormal Mappings), Mappings), [A-103] II (Theory Function Theory Theorg II Modern Function Suita, N. : Modern [A-103] Suita, Morikita-Shuppan, (Japanese). 1977 (Japanese). Morikita-Shuppan, Tokyo, 1977 [A-104] Laplacian Kinokuniya-Shoten, Kinokuniya-Shoten, Tokyo, Groups and and Laplacian, Fundamental Groups Sunada, T. T.: : Fundamental [A-104] Sunada, 1988 (Japanese). 1988 (Japanese). 1987 1986, 1987 [A-105] SurJacesI, /, II, /1, Maki-Shoten, Tokyo, 1986, S. : PL Topology Topology of Surfaces [A-105] Suzuki, S. (Japanese). (Japanese). [A-106] Papers, Springer-Verlag, Berlin and New York, Collected Papers, Teichmiller, O. : Collected [4,-106] Teichmiiller, 1982. 1982. (Japanese). 1976 (Japanese). [A-107] Science-Sha,Tokyo, 1976 Riemann Surfaces, Surfaces, Science-Sha, [A-107] Toda, N. : Riemann Chelsea, New York, [A-108] Tsuji, M. : Potential Theory in Modern Function Theory, Chelsea, Function Theorg, Potential Tsuji, [A-108] 1959. 1959. Mappings, Lecture [A-109] n-Dimensional Quasiconformal J. : Lectures Lectures on n-Dimensional Vi.isi.li., J. Quasiconformal Mappings, [A-109] Viiisiilii, 1971' 229, Springer-Verlag, Notes Springer-Verlag, Berlin and New York, 1971. Yol.229, Notes in Math., Math., Vol. its Spectral Theory of Automorphic Functions and its Applications, [A-llO] Venkov, A. : Functions Automorphic Spectral Venkov, [A-110] 1990. Kluwer Academic Publishers, Netherlands, 1990. Publishers, Dordrecht, The Netherlands, 1913. Stuttgart, 1913. G' Teubner' [A-ll1] Weyl, H. : Die Idee der Riemannschen Flache, B. G. Teubner, Stuttgart, Fliiche, Riemannschen Idee [A-111] World Scientific, [A-ll2] Yau, S. T. : Mathematical Aspects of String Theory, World Scientific, ol String Theorg, Aspects : Mathematicol S. T. Yau, [A-112] Singapore, Kong' 1987. 1987. York and and Hong Hong Kong, Singapore, New York & Shon, Shon, Vieweg & Friedr. Vieweg [A-ll3] Yoshida, M. : Fuchsian Differential Equations, Friedr. Equations, Differential M. : Fuchsian Yoshida, [A-113] Braunschweig, 1987. Germany, 1987. Braunschweig, Germany, Discontin' and Planar Planar DiscontinSurlaces and [A-ll4] H'-D. :: Surfaces and Coldewey, Coldewey, H.-D. H., Vogt, Vogt, E. E. and Zieschang, H., [A-114] Zieschang, and Berlin and uous Vol. 835, 835, Springer-Verlag, Springer-Verlag, Berlin in Math., Math., Vol. Notes in Lecture Notes uous Groups, Groups, Lecture New 1980. New York, York, 1980.
'996f i(a1aryag 'ttg-gzg 'dd ''qlDW 't6uog 'lDur?7uJ 'co.r7 (,{411oqrsep eur?lqord np anbrrlauroa8 aqrordd",T : 'y.'alprneag
[1] Abikoff, W. : On boundaries of Teichmiiller spaces and Kleinian groups, III, Acta Math. 134 (1975), 212-237. [2] Abikoff, W. : The uniformization theorem, Amer. Math. Monthly 88 (1981), 574-592. [3] Agard, S. : A geometric proof of Mostow's rigidity theorem for groups of divergence type, Acta Math. 151 (1983), 231-252. [4] Ahlfors, L. V. : Development of the theory of conformal mappings and Riemann surfaces through a century, in Contributions to the Theory of Riemann Surfaces, Ann. Math. Studies No. 30, Ahlfors, L. V. et al. (eds.), pp. 3-13, Princeton University Press, Princeton, New Jersey, 1953. [5] Ahlfors, L. V. : The complex analytic structure of the space of closed Riemann surfaces, in [A-84], pp. 45-66, 1960. [6] Ahlfors, 1. V. : Some remarks on Teichmiiller space of Riemann surfaces, Ann. Math. 74 (1961), 171-191. [7] Ahlfors, L. V. : Curvature properties of Teichmiiller space, J. d'Analyse Math. 9 (1961), 161-176. [8] Ahlfors, L. V. : Teichmiiller spaces, Proc. Internat. Congr. Math., pp. 3-9, lnst. Mittag-Leffler, 1962. [9] Ahlfors, L. V. : Quasiconformal reflections, Acta Math. 109 (1963), 291-301. [10] Ahlfors, L. V. : Quasiconformal Mappings and their Applications, in Lectures on Modern Mathematics, Vol. II, pp. 151-164, Saaty, T. L. (ed.), Wiley, New York,1964. [11] Ahlfors, L. V. : Quasiconformal mappings, Teichmiiller spaces and Kleinian groups, Proc. Internat. Congr. Math., pp. 71-84, Helsinki, 1978. [12] Ahlfors, L. V. : Ergodic properties of groups of Mobius transformations, in Analytic Functions, Kozubnik 1979, Lawrynowici, J. (ed.), Lecture Notes in Mathematics, Vol. 798, pp. 1-9, Springer-Verlag, Berlin and New York, 1980. [13] Ahlfors, L. V. and Bers, L. : Riemann's mapping theorem for variable metrics, Ann. Math. 72 (1960), 385-404. [14] Ahlfors, 1. V. and Weill, G. : A uniqueness theorem for Beltrami equations, Proc. A. M. S. 13 (1962), 975-978. [15] Alvarez, O. : Theory of string with boundaries, Nucl. Phys. B. 216 (1983), 125-184. [16] Alvarez-Gaume, L. and Nelson, P. : Riemann surfaces and string theories, in Supersymmetry, Supergravity, Superstrings '86, Proceedings of the Trieste Spring School, 7-15 April 1986, de Wit, B., Fayet, P. and Grisaru, M. (eds.), pp. 419510, World Scientific, Singapore, New York and Hong Kong, 1986. [17] Arbarello, E. : Periods of Abelian integrals, theta functions, and differential equations of KdV type, in Proc. Internat. Congr. Math., pp. 623-627, Berkeley, 1986. [18] Arbarello, E. and Cornalba, M. : The Picard groups of the moduli spaces of curves, Topology 26 (1987), 153-171. [19] Astala, K. : Selfsimilar zippers, in [A-24], Vol. 1. pp. 61-73, 1988. [20] Batchelor, M. and Bryant, P. : Graded Riemann surfaces, Commun. Math. Phys. 114 (1988), 243-255. [21] Beauville, A. : L'approche geometrique du probleme de Schottky, Proc. Internat. Congr. Math., pp. 628-633, Berkeley, 1986.
'992-tt?'(886r) ?rr
[IZ]
'tfrt14 't11oy 'untuuroC 'sace;rns uu"rrary pap"rg : 'd (lu"drg pu€ 'I 'rolaqcleg [ [02] ' g g 6 l ' t z - I g . d d ' 1 . 1 o n , l v Z - V j u r , s r a d d r z r " l r u r r s J l a s: . y , e p r s y [ot] 'Il,I-€9I'(fAOf ) 97 fr6o1odo1'salrnf, 'I['eq1uuro3 pu"'g'olareqry [gI] '986I
yo saoedsrlnpou aq1 yo sdnort pr"rrd aqJ:
'falarlrag 'LZg-tZg'dd,t't11o7,t1'.r0uog 'louralul lord rur.'ed{1 npy;o suorlenba prluaraglp pue 'suorlrun;: e1aq1 'sler8alur u"rlaqy Jo sporrad : 'g 'ogareqrV [Zt] '9961 'tuoy 'arodrturg 'ryrluarog pIroIA '0Ig tuo11 pue {ro ,$aN '1oot1cg -6It 'dd '('rp") 'y,I 'uesug pu" 'd '1aIeg ''g 'lI.&\ ap 'gg6t llrdv g7-2 'fiyaotflndng 'fitgauutfruadng 6uttdg aryeuJ aq1lo t6utpaacot4 'gg, t$uttltndng ur 'sauoarll 3urr1s pue sa)"Jrns uu"rrarg : '4 'uos1alqpu" 'T 'aurnrg-zarr,rly [gI]
'r8r-9zr
'(ggot) 'g 'zarealy 'g 'tfit14 'pn71 'sarrepunoq q1r,r,rturrls 9Iz ;o u(roaq; : [9I] '816-926'(ZSOt) 'V 'cord e|S'n 'suorlenba ru"rlleg roJ ureroaql ssauanbrun y : 'C 'pa16 pue 'n '1 'sro;1qV [lt] 'uuv 't0t-98t '(OSOf ) Z,L'tltoW 'slrrlaur alq?rr"^ ro; r[aroaql turddeur s(uu?ruerg : '1 'srag pu" 'n '.I 'sroJlqy [tI] '086I '{ro1 r$eN pu" uqrag '8epan-ra8urrdg '6-I 'dd'g62 'lo1's3rl"ureql?l4l ur seloN arnlf,eT '('pa) 'f 'zcrllrour(raae1bl6t Tuqnzox 'suo.puntr ct1fr1ouy ur 'suorleurro;su"rl snrqol{ ;o sdnort yo sarlradord rrpotrg : 'A 'T rsroJlqv [ZI] '9161 'nlurqag 't8-Il 'dd ''IIDW 't0uog 'IDureIuJ 'ao"r4r'sdnort uerurelx pue sacrds relnuq)reJ 'sSurddeur FuroJuo)rsenb , 'l '.I 'sroJIqV [II] .t96I ,Uo 'dd '11 '1on tffirtouegory ,r,ra11'fa1r46 '('pa) 'T '; 'f1eeg 'tgI-IgI uo urapory 'T 'sroJlqy sernpel ur 'suorlectlddv rreql pue s8urddelll l€ruroJuof,rsenb lA [0I] 'I08-16Z '(SSOI) 'suorleaper '1 'sroJIr{V 60T'qlory olcy FurroJuor-rsen$:.'A [O] '9961 'raga1-3"tlIW 'lsul '6-t 'dd ''t1qo741 '.tiuop 'lvureluJ 'aor4r 'sareds rall$uq)ral : 'A '1 'sroJlqy [8] '92I-r9I'(tg0t) 0 't19y aefi1ouy,p'7'ateds ralpurqlraJ;:o sarlradord arnl"^rnC: 'A'T'sroJIIIy [/] .t1toW .I6I_ILI,(tSOt) V2 'uuy 'sace;:rns uu"ruary 'A 'T 'sroJlqy 3:oacuds rallnurqf,ral uo $lrerrrar eruos : [g] '096I'99-9t'dd'[?e-Ir] ut'saf,eJlns uu"ruarll pasol) Jo aceds aql Jo arnlrnrls crlfpur xalduror aqJ : 'A '1 'sroylqy [S] '9961 ',{asra1,ra11 'uolarutr4 'ssarg d11sra,rru11 uota)urrd 'tl-t 'dd '('.p") 'p la 'A 'T 'sroylqy '09 'oN sarpnts 'ql"W 'uuv 'eacottng uuouatg {o frrcaqg eql o1 suoqng.rluoC ur'rfrnluar c q3norql sa)"Jrns uu"ruerlr pur sturddeur purroluor Jo i(roaq1 aq1 ;o luaurdole^eq : 'n '1 'sroygy [l] 'ZgZ-ltZ '(eSOf) 'edf,1 atrua? Ig1.'ytory olcy 'g 'prety -ra^rp Jo sdnort roJ uraroaql {lrprtrr s.lrolsol I yo loord crrlauroa8 y : [g] '269-?19 'ruaroaqt uortezlurrollun aqJ : 'a\ '.uo{lqv [z] '(rgor)
gg fi1t11uo741 llpn
'rauv
' Ltz-uz'(sror) vBt'!q110w DtcY
'111 'sdnor8 upruralx puc sacuds rallBurqtrreJ Jo selr"punoq
uO : 'lA '.UolIIqy h]
Papers srad€d
References
259
saf,uereJau
692
260 260
References References
Bers, L. L. : : Spaces Spacesof of Riemann Riemann surfaces, surfaces,Proc. [22] Proc. Internat. Internat. Congr. [22] Bers, Congr. Math., pp. 349Math., pp. 34g361,Edinburgh, Edinburgh, 1958. 1958. 361, Bers, L. L. :: Quasiconformal mappings and [23] and Teichmiiller's reichmriller's theorem, [23] Bers, Quasiconformal mappings theorem, in in [A-84], pp. [A-g4], pp. 8 9 - 1 1 91960. ,1960. 89-119, Bers,L. L.:: Simultaneous Simultaneousuniformization, uniformization, Bull. [24] S. 66 (1960)' 94-97. Bull. A. A. M. M.5.66 (1960),94-92. [24] Bers, "spaces of Bers, L. L.: : Correction correction to to "Spaces [25] of Riemann Riemann surfaces surfaces as as bounded [25] Bers, bounded domains", domains,, B u l l .A. A . M. M . S. 5.6 7 (1961), ( 1 9 6 1 ) ,465-466. 465-466. Bull. 67 pure Appl. Bers, L. L. :: Uniformization uniformization by by Beltrami Beltrarni equations, [26] equations, Comm. [26] Bers, comm. Pure Appr. Math. Math. 14 14 ( r 9 6 1 ) ,215-228. 215-228. (1961), Bers, L. L. :: A A non-standard non-standard integral integral equation [27] equation with with applications applications to quasiconformal [27] Bers, to quasiconformal mappings, Acta Math. (1966),113-134. Math. 116 116 (1966), mappings, Acta 113-134. Bers, L. L' :: On on boundaries boundaries of of Teichmiiller reichmiiller spaces [28] spacesand and on on Kleinian Kleinian groups, groups, I,r, Ann. [28] Bers, Ann. Math. 91 (1970),570-600. 9L (1970), 570-600. Math. Bers, L. L. :: Uniformization, uniformization, moduli, moduli, and [29] and Kleinian groups, Bull. Kleinian groups, Bull. London [29] Bers, London Math. Math. Soc. soc. (1972),257-300. 44 (1972), 257-300. Bers, L. L. :: A A remark remark on on Mumford's Mumford's compactness [30] compactness theorem, theorem, Israel [30] Bers, Israel J. J. Math. Math. 12 12 (1972), 400-407. 400-407. (1972), Bers, L. L. :: Fiber Fiber spaces spacesover over Teichmiillar Teichm[llar spaces, [31] 130 (1973), spaces,Acta Acta Math. Moth.1g0 (1973),89-126. [31] Bers, 89-126. Bers, L. L. :: On On spaces spacesof of Riemann Riemann surfaces surfaceswith [32] M. S. with nodes, nodes,Bull. Buil. A. (1924), A.,U. [12] Bers, S. 80 AO (1974), t2t9-1222. 1219-1222. Bers, L. :: Spaces Spacesof degenerating degenerating Riemann surfaces, [33] surfaces,in [A-37], pp. 43-55, [33] Bers, 43-55, 1974. 1974. [A-32], pp. Bers, L. :: Deformations and and moduli of Riemann surfaces [34] surfaces with nodes [34] Bers, nodes and and signasignattres, Math. Math. Scand. Scand.36 (192s), 12-16. tures, 36 (1975), 12-16. Bers, L. : Automorphic forms [35] forms for for Schottky Schottky groups, groups, Adv. Adu. in Math. (1925), Math. 16 (1975), [35] Bers, 3 32 - 3 61 . 332-361. Bers, L. : On on Hilbert's Hilbert's 22nd problem, in Mathematical Developments [36] Deuelopments Arising [36] Bers, Arising pure Math., Vol. Problems, Browder, from Hilbert Problems, Browder, F. E. (ed.), (ed.), Proc. Proc. Sympos. Sympos. Pure lrom Vol. 28, American American Mathematical Mathematical Society, 28, Society, Providence, Providence, Rhode Island, Island, pp. 559-609, 559-609, 1976. 1976. [37] with applications to differential diferential equations, [37] Bers, L. : Quasiconformal mappings, with equations, topology, Bull. A. M. S. function theory and topology, 1083-1100. S. 83 89 (1977), (L977),1083-1100. [38] L. : An An extremal extremal problem for quasiconformal mappings and a theorem by by [38] Bers, L, Thurston, Acto 14f (1978), Acta Math. 141 (1978), 73-98. 73-98. [39] The action of the modular modular group on the complex boundary, in [A-59], [3S] Bers, L. : The [A-bg], p p. 3 3 - 5 2 ,1 981. pp. 33-52, 1981. [40] Bers, L. : Finite Finite dimensional reichmiiller Teichmiiller spaces spaces and generalizations, generalizations, Bull. Bull. A. A. [+o] M. S. (Neu Series)5 (19S1), (1981), 131-172. 131-t72. (New Series) and Ehrenpreis, L. : Holomorphic [41] Bers, LLand Holomorphic convexity of of reichmiiller Teichmiiller spaces, spaces, Bull. Bull. A r 9 6 4 ) , 7761-764. 0 ((1964), 6r-764. A.. M M.. 5S.. 770 [42] Bers, Bers, LL and and Gardiner, Gardiner, F. F. P.: P. : Frickespaces, Fricke spaces, Ada. Adv. in in Math.62 Math. 62 (1986), (1986), 249-284. [42] 249-284. [43] Bers, Bers, LL and and Royden, Royden, H. H. :: Holomorphic Holomorphic families of of injections, injections, Acta Acta Math. Math. L|o7 157 (1986), (1986), 259-286. 259-286. [44] Blanchard, Blanchard, P. P. :: complex Complex analytic analytic dynamics dynamics on on the the Riemann Riemann sphere, sphere, Bull. Bull. A. A. M. M. [44] S. Series) 11 S. (/fero (New Series) 11 (1984), (1984), 85-141. 85-141. [45] Bonahon, Bonahon, F. F. :: The The geometry geometry of of reichmiiller Teichmiiller space space via via geodesic geodesic currents, currents, Invent. Inuent. [45] 1 9 8 8 ) , 1139-162. m a t h . 992 2 ((1988), 39-162. math. [46] Bowditch, Bowditch, B. B. H. H. and and Epstein, Epstein, D. D. B. B. A. A. :: Natural Natural triangulations triangulations associated associated to to aa [46] surface, surface, Topology Topology 27 27 (1988), (1988),91-117. 9l-117. [47] Bowen, Bowen, R. R. and and Series, Series, C. C. :: Markov Markov maps maps associated associated with with Fuchsian Fuchsian groups, groups, IIIOS IHES [47] Publ. Publ. Math., Math., No. No. 50 50 (1979), (1979), 153-170. 153-170.
r9z
References
261
sa)ueleJau
'[ eseull1C'areds rlnpow aql ur )ulaur uossralad-Ire aq'1,: 'J'nqC [6t] \ ?'UIDW '2961 ',{asral nalq 'uolaourrd 'ssar4 flrsraarull uolaf,urrd 'Z0I-06 'dd '('spa) '1y1 'y 'ra1cn; pu" ''C 'q 'raouadg ''H 'U 'xoJ 2pt1c{a1 'fi6o1odo1 'g u1 ctotqaily fi4auoeP puo uotqe0yy {o touog ut unnodutfrg y 'sursrqdrourolne,p dnort un red anbr1,{1euearedsa un(P luellonb : 'g 'ut1re3 [8]]
[48] Cartan, H. : Quotient d'un espace analytique par un group d'automorphisms, in Algebraic Geometry and Algebraic Topology, A Symposium in Honor of S. Lefschetz, Fox, R. H., Spencer, D. C., and Tucker, A. W. (eds.), pp. 90-102. Princeton University Press, Princeton, New Jersey, 1957. [49] Chu, T. : The Weil-Petersson metric in the moduli space, Chinese J. Math. 4 (1976), 29-51. [50] Crane, L. and Rabin, J. M. : Super Riemann surfaces (uniformization and Teichmiiller theory), Commun. Math. Phys. 113 (1988), 601-623. [51] Deligne, P. and Mumford, D. : The irreducibility of the space of curves of given genus, IHES Publ. Math. No. 36 (1969), 75-109. [52] Douady, A. : Chirugie sur les applications holomorphes, Proc. Internat. Congr. Math., pp. 724-738, Berkeley, 1986. [53] Douady, A. and Earle, C. J. : Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), 23-48. [54] Douady, A. and Hubbard, J. : On the density of Strebel differentials, Invent. math. 30 (1975), 175-179. [55] Douady, A. and Hubbard, J. : On the dynamics of polynomial-like mappings, Ann. Sci. Ecole Norm. Sup. 18 (1985), 287-343. [56] Drasin, D. : Proof of a conjecture of F. Nevanlinna concerning functions which have deficiency sum two, Acta Math. 158 (1987), 1-94. [57] Earle, C. J. : Reduced Teichmiiller spaces, Trans. A. M. S. 126 (1967), 54-63. [58] Earle, C. J. : On holomorphic families of pointed Riemann surfaces, Bull. A. M. S. 79 (1973), 163-166. [59] Earle, C. J. : On the Caratheodory metric in Teichmiiller spaces, in [A-37], pp. 99-103, 1974. [60] Earle, C. J. : The Teichmiiller distance is differentiable, Duke Math. J. 44 (1977), 389-397. [61] Earle, C. J. : Families of Riemann surfaces and Jacobi varieties, Ann. Math. 107 (1978), 255-286. [62] Earle, C. J. and Eells, Jr., J. : On the differential geometry of Teichmiiller spaces, J. d'Analyse Math. 19 (1967), 35-52. [63] Earle, C. J. and Eells, Jr., J. : A fiber bundle description of Teichmiiller theory, J. DifJ. Geom. 3 (1969), 19-43. [64] Earle, C. J. and Fowler, R. S. : Holomorphic families of open Riemann surfaces, Math. Ann. 270 (1985), 249-273. [65] Earle, C. J. and Kra, I. : On isometries between Teichmiiller spaces, Duke Math. J. 41 (1974), 583-591. [66] Earle, C. J. and Kra, I. : On sections of some holomorphic families of closed Riemann surfaces, Acta Math. 137 (1976), 49-79. [67] Eells, Jr., J. and Lemaire, L. : Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524. [68] Eisenbud, D. and Harris, J. : Progress in the theory of complex algebraic curves, Bull. A. M. S. (New Series) 21 (1989), 205-232. [69] Epstein, D. B. A. : Curves on 2-manifolds and isotopics, Acta Math. 115 (1966), 83-107. [70] Fehlmann, R. and Sakan, K. : On extremal quasiconformal mappings with varying dilatation bounds, Osaka J. Math. 23 (1986), 751-764. [71] Fischer, A. E. and Tromba, A. J. : On a purely "Riemannian" proof of the structure and dimension of the unramified moduli space of a compact Riemann surface, Math. Ann. 267 (1984), 311-345.
'rs-62'(el6r)
(ef,grns 'gtt-IIt'(rgot) Lgz'uuY'tlro]t[ uu"uarg leedruoce;o aeedsrlnPoruPeguu"runaql Jo uorsueurPPu? ernlf,uls aq1 ;o ;oord su?ruu?urary, i(1arnd" uO : '1 'y 'tquror; Pu" 'g 'V 'reqrs-rJ[Il] 'VgL-lgL'(ggOt)gZ'qtory 't orlDsO'spunoquorlelepptur -fre,r q1r,us8urddeurI"urroJuoJrsenbpurarlxa uO : 'X 'ue:les Pue 'U 'uuurugag [0ll 'l0I-t8 '(ssor) uo salrnC : 'V'g'q'uralsdg [691 gl'1.'tttory olay'srrdolos! Pu" sPloJru"ru-z 'W 'V 'nng 'ZtZ-902'(OSO1) 17 (sauagneN)'S 'sa,rrnrcprqatp xalduroc ,(roaqtaql u-rssarEord: 'f 'sur"H Pu? 'O 'pnquaqg [891 Jo 'utol^I 'tz9-98t '(eee t) oz'NS uopuoT'11ng'sdtur truorur"q uo lrodar raq?ouv : '1 'arreural pue '1 ''r1 '"U"9 [lg] 'sace;rnsuu?ruery '61-6t '(916i) Ztt'tltonl oley pasolf,Io sarlnu"JcrqdrouroloqaruosIo suollf,esuO : 'I 'ery pue 't 'g 'aptg [SSJ ' r 6 9 - 1 8 9' G n t ) w ' t 'I 'ery pue 't '3 'apeg 'qlohl : uo uea,rlaq sarrlaruosl ran]urq)ral erin.o'saltds [s9l ' t L Z - 6 t ? , ' ( S e OO t)LZ'uuv'ttlory 'sace;rnsuu"ualg uado;o sarpru"J crqdrourololl:'5'g'ra1,raogPu"'t'C talreg [tg] '[lo 't 'tt-6I '(696I) g'uoa) 'f ''rf 'q1ag pue 't '3 'ageg {froaql : raqy alpunq uorldgrsap rellsuqrraJ;o [89J V '1 '29-9t '(196I) at'utow asfi\ouv,p 'seredsrafi]urqrraJ]o i(rlauroatprluaraJlP aql uO : 'f ''rf 's11agpue '1 '9 'agug [Z9J '982-992'(816I) Z o r 't 'C 'apeg 'qtDIAI'uuv 'sal1aue,rlqof,"f [tSl Pu" saf,"Jrnsuu"ruarg Jo saIIur"J : 'r,6t-68t 'Ol,Ai 'l 'UIDNa1n6,'alqerlualaJlPs-Ief,u"lslPla[lulqf,Ial aql : 'f '3 'apeg [09J ?? 'tr6I't0I-66 'dd'[zs-V] ar{l uO.:,'t '9 'aFeg [091 ur rrrlaur i(.ropo9q1ereo rall]urqttal ur'saceds ' 9 9 r - r 9 I ' ( e / 6 I , 16 l ' S 'hl 'V 'nng (saceynsuu"urarg palulod sarJrur"J crqdrouroloquO : 'f 'C 'alr"g [89] Io '€9-'9 '(/2,96I)SZf 'S 'W 'V 'cuo{'sa)cds rel]urqf,ral Paf,nPall: '1 '3 'ageg [19] 'orl.1 '?6-I '(f86I) a^sq fruarcgaP urns gg1.'ttloN olcy 'O 'urs€rq 'g q)nl^asuorlf,unltururaruoc ?uurJueAaN [99] 1o arnlrafuot 3 Io Joord : 'dns 'utroN "larg 'tcs 'uuv 'trt-Lgz'(sgot) 8r 's8urddcura:111-prruouflod;to scnueufP aqf uO : 'f 'preqqng Pu" 'Y 'fpenoq [99) ' 6Lr-gLr'(slot) ot'tltout 'V 'fpenoq '1 'prraqqnll 'luenuJ 'sprluarag,rp Pu" []9] Ieqerls 1o flrsuap aql uO : 'alf,rrf, '8?-tz '(986I) aql Jo zst'tttoy'l D?ty 'Y 'fPenoC '1 '3 'ageg sursrqdroruoauroq Pu" [t9] Jo uorsualxal"rnl"u i(lpurro;uo3 : '9961'dalarga g,' 8t L-VZL'dd''t11o 1t1 't6uog 'lourelul'co,r4, 'saqdrourolorlsuorl"oqddesa1rns ar8nrrqS: 'y 'dpenoq [ZS] 'snua8 'Iqnd 'oN '60I-92 '(OgOf lttory 5gg7 ) 9g 'autgaq ua,rrt;o saarnf,Jo amds aq1;o {lqrqrcnparn eql : 'q 'prcilurn11pue '4 [tSl 'CZ9-T09'(ggOf t1'1''sfrUd'UloN 'unuruop '(,(roaql rallBlrrqr-Ial ) pu" uorl"zrurrolrun)saf,"Jrnsuu"ruarU redng : 't{ 'f 'ulqsg Pu" 'T 'auerC [09]
262 262
References References
Fischer, A. A. E. E. and and Tromba, Tromba, A. A. J. J. :: On On the Weil-Petersson metric [72] the Weil-Petersson metric on on Teichmiiller Teichmtller [72] Fischer, s p a c e ,Trans. ( 1 9 8 4 ) ,319-335. 319-335. ? r o n s . A. A . M. M . 5S. . 2 284 8 4 (1984), space, Fischer, A. A. E. E. and and Tromba, Tromba, A. A. J. J. :: Almost principal fiber [73] Almost complex complex principal fiber bundles bundles and and [73] Fischer, the complex complex structure structure on on Teichmiiller Teichmiller space, (1934), the space, J. J . Reine Reine Angew. Angew. Math. 352 352 (1984), 151-160. 151-160. Fischer, proof that A. E. E. and and Tromba, Tromba, A. [74] Fischer, A. A. J. J. :: A A new new proof that Teichmiiller Teichmriller space space is is aa cell, cell, [74] Trans. A. M. S. (1987), 257-262. S.3Og Trans. 303 (1987), 257-262. Introduction to Polyakov's string theory, in 1982 [75] 1982 Les Les Houches Houches [75] Friedan, D. :: Introduction -B. and School, Zuber, J. (eds.), North J. -B. and Strora, R. Summer School, R. (eds.), North Holland, Amsterdam, Amsterdam, 839-867,1984. 1984. pp. 839-867, Fujiki, : polarized algebraic manifolds Moduli space space of polarized [76] Fujiki, A. : The Moduli manifolds and Kahler Kihler met[76] rics, Sugaku, ,Srigalcu, (1990), 231-243 (Japanese). rics, 42 (1990), 23L-243 (Japanese). Schumacher, G. G. : On the moduli [77] moduli space spaceof extremal compact Kahler Kiihler [77] Fujiki, A. and Schumacher, manifolds, Publ. Publ. RIMS, Kyoto Univ. (1990), 101-183. manifolds, 26 (1990),101-183. Uniu.26 Furusawa, H. : A remark on the hyperbolic collar lemma, Tohoku [78] 39 T6hoku Math. J. J.39 [78] Furusawa, ( 1 9 8 7 ) ,291-298. 29r-298. (1987), P. : Schiffer's [79] Schiffer's interior interior variation and and quasiconformal mappings, Duke Dulce [79] Gardiner, F. P. J. 42 (1975), (1975),371-380. Math. J. 371-380. partially Teichmiiller [80] P. : On partially Teichmiiller Beltrami Beltrami differentials, diferentials, Michigan Math. [80] Gardiner, F. P. (L982),237-242. J. 237-242. J. 29 (1982), [81] P. : Approximation Approximation of infinite infinite dimensional Teichmiiller Teichmiiller spaces, spaces, [81] Gardiner, F. P. (1984), 367-383. Trans. 282 (1984), Trans. A. M. S. 5.282 367-383. [82] P. and Kra, I.: I. : Quasiconformal stability of Kleinian groups, Indiana Kleinian groups, Indiana Quasiconformal stability [82] Gardiner, F. P. (1972),1037-1059. Univ. Math. J. 21 Univ. 1037-1059. Math. J. 2L (1972), [83] Schwarzian derivative, Comment. [83] Gehring, F. W. : Univalent functions and the Schwarzian (1977),56r-572. Math. 561-572. Math. Helv. HeIa. 52 (1977), [84] Gehring, F. W. W. : Spirals and the universal universal Teichmiiller Teichmiiller space, space, Acta Acta Math. 141 L41[84] Gehring, ( 1 9 7 8 ) ,99-113. 99-113. (1978), [85] W.: : Topics in quasiconformal mappings, Proc. Proc. Internat. Internat. Congr. [85] Gehring, F. W. pp.62-80, Math., 62-80, Berkeley, Math., pp. Berkeley, 1986. 1986. [86] S. B. and Wolpert, Wolpert, S. S. A. : A A triangulation triangulation of moduli moduli space space from lightlight[86] Giddings, S. cone cone string theory, theory, Commun. Commun. Math. Phys. Phys. 109 (1987), (1987), 177-190. 177-L90. [87] Griffiths, P. P. A. : Complex-analytic Complex-analytic properties of certain Zariski open sets sets on [87] Griffiths, varieties, Ann. Math. (f 971), 21-51. algebraic 94 (1971), algebraic varieties, Math.94 21-51. projective structures on Riemann surfaces, [88] Gunning, R. C. : Affine and projective surfaces, in [A[88] Gunning, [d59], pp. 225-244, 225-244, 1981. 1981. [89] Hamilton, R. S. S. : Extremal Extremal quasiconformal mappings with with prescribed boundary boundary [89] Hamilton, (1969), 399-406. values, Trans. values, Trans. A. M. S. S. 138 L38 (1969), 399-406. [90] mapping class The second second homology group of of the mapping class group of of an ori[90] Harer, J. : The entable surface, Invent. math.72 math. 72 (1983), 221-239. surface, Inuent. 221-239. [91] J. : Stability mapping class Stability of of the homology of of the mapping class groups of orientable [91] Harer, J. (1985), 215-249. surfaces, Ann. surfaces, Ann. Math. 121 121 (1985), 215-249. [92] virtual cohomological dimension of the mapping mapping class The virtual class group of of [92] Harer, J. : The an orientable Invent. math.84 math. 84 (1986),157-176. orientable surface, surface, Inuent. (1986), 157-t76. [93] moduli space The Euler characteristic of the moduli space of curves, of curves, [93] Harer, J. and Zagier, D. : The Inaent. (1986), 457-485. Invent. math.85 math. 85 (1986), 457-485. [94] Kodaira dimension of the moduli moduli space space of curves, curves, II. II. The The [94] Harris, J. : On the Kodaira even Invent. math.75 math. 75 (1984), even genus genus case, case,Inoent. (1984), 437-466. 437-466.
t9z
se)uaraJe[
References
263
'\lDhl '11 'rnseyq '1 'preqqng D1?V'suor1ulo; pu" sl"rtuaraJrp : pue crlerpen$ [I0I] '886I 'Z6I-69I'dd 'IgtI 'yon 'scrleuraql"I ur saloN i ernlraT re8urrdg '('.p") 'J 'r1e,rrogpu" '.S 'ueurlcrg ''I 'nu1eT '296y nnsuao1 'ttsfi1ouy xa1dutog ur's1sraa1-uqaq paleadar pue dnortn reln8ag :'V'O 'IEqfaH [00I] '186I '6I 'oN '?Jodag 'qnl 'arun sraulotlC 'froaql prloads pue 'saoepns uu?ruarU Eurleraua8ap'sdnorS-g reln8ag : 'v 'O 'FqfeH [66] '99I-ttI '(szor) g|tttDw q 'apv'sacsds rallnurq)ral pue ,(411oqrg uO : 'y 'C 'I"qfag [86] 'ZI-I '(286I) I ffiIqDtrDA xaldutop ({s;rp eql yo s8urddeur rall}urqlreJ uO : 'g 'qorag pue 'y 'tr6 'ueu{eg [Z6l '98-tZ'(286I) Lg'Uto*'luenuJ'selrntr yo aeeds rlnporu aql Jo uorsuaurrp"rrcpox eql uO : 'g 'pro;un14i pue '1 'srrreg [96] '2961 'pue1s1apoqg ,aruaprnor6 dlarcog p)rl"uraqt€I4[ u"rrreruv ,gpl-66 .dd ,I 'g' '1on 'scrlruraql"I 't 'S 'qrolg tr"d I arnd ur ersodrui(g 3:os8urpaacora ('p") '996l uropmog 'fulautoag cntqe0ly ur 'qnpour rraql pu" saarnC ; 'g 'srrreg [96]
[95) Harris, J. : Curves and their moduli, in Algebraic Geometry, Bowdoin 1985, Bloch, S. J. (ed.) Proceedings of Symposia in Pure Mathematics, Vol. 46, Part 1, pp. 99-143, American Mathematical Society, Providence, Rhode Island, 1987. [96) Harris, J. and Mumford, D. : On the Kodaira dimension of the moduli space of curves, Invent. math. 67 (1982), 23-86. [97) Hayman, W. K. and Reich, E. : On Teichmiiller mappings of the disk, Complex Variables 1 (1982), 1-12. [98) Hejhal, D. A. : On Schottky and Teichmiiller spaces, Adv. in Math. 15 (1975), 133-156. [99) Hejhal, D. A. : Regular B-groups, degenerating Riemann surfaces, and spectral theory, Chalmers Univ. Tech. Report, No. 19,1987. [100) Hejhal, D. A. : Regular b-group and repeated Dehn-twists, in Complex Analysis, Joensuu 1987, Laine, 1., Rickman, S., and Sorvali, T. (eds.), Springer Lecture Notes in Mathematics, Vol. 1351, pp.169-192, 1988. [101) Hubbard, J. and Masur, H. : Quadratic differentials and foliations, Acta Math. 142 (1979), 221-274. [102) Imayoshi, Y. : Holomorphic families of Riemann surfaces and Teichmiiller spaces, in [A-59), pp. 277-300, 1981. [103) Imayoshi, Y. : Universal covering spaces of certain quasi-projective algebraic surfaces, Osaka J. Math. 20 (1983), 581-598. [104) Imayoshi, Y : Generalizations of de Franchis theorem, Duke Math. J. 50 (1983), 393-408. [105) Imayoshi, Y. : An analytic proof of Severi's theorem, Complex Variables 2 (1983), 151-155. [106) Imayoshi, Y. : Holomorphic maps of compact Riemann surfaces into two dimensional compact C-hyperbolic manifolds, Math. Ann. 270 (1985), 403-416. [107) Imayoshi, Y. and Shiga, H. : A finiteness theorem of holomorphic families of Riemann surfaces, in [A-24), Vol. II, pp. 207-219, 1988. [108) Ivanov, N. V. : Complexes of curves and the Teichmiiller modular group, Russian Math. Surveys, 42 (1987), 55-107. [109) Jones, P. : Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), 41-66. [110) Keen, L. : On Fricke moduli, in [A-7), pp. 205-224, 1971. [111) Kerckhoff, S. P. : The asymptotic geometry of Teichmiiller spaces, Topology 19 (1980), 23-4l. [112) Kerckhoff, S. P. : The Nielsen realization problem, Ann. Math. 117 (1983), 235-265. [113) Kerckhoff, S. P. : The geometry of Teichmiiller space, Proc. Internat. Congr. Math., pp. 665-678, Warszawa, 1983. [114) Kerckhoff, S. P. : Earthquakes are analytic, Comment. Math. He/v. 60 (1985), 17-30. [115) Kerckhoff, S. P., Masur, H. and Smillie, J. : Ergodicity of billiard flows and quadratic differentials, Ann. Math. 124 (1986), 293-31l. [116) Kerckhoff, S. P. and Thurston, W. P. : Non-continuity of the action of the modular group at Bers' boundary of Teichmiiller space, Invent. math. 100 (1990), 25-47. [117) Knudsen, F. and Mumford, D. : The projectivity of the moduli space of stable curves I, Preliminaries on "det" and "div", Math. Scand. 39 (1976), 19-55. [118) Koiso, N. : Einstein metrics and complex structures, Invent. math. 73 (1983), 71-106.
' v L z - r c | ' ( a mzt )t t
'(oeor) '\?DW 'nun 'o4g uorsualxg ; '4 'sauo1[60I] DuotpuJ roJ sruaroaql 6z't 'qyo741 '1,0I-99'(lgOf ) 7V'sfieatng uosssny'dnor8 relnpourrallnurqf,reJarll pu€ salrnf,Josaxalduro3:'n'1q 'aouu,rt [AOt] '886I '6le-loz 'dd'II 'lo^ '[?Z-Y] ut'sa:eFns uu"ruarU 'H 'etrqg 'a 'rqsofeurl puu Jo sarlnu"JcrqdrouroloqJo ruaroaql ssauelruyy : [191] 'rlrr1ry'splo1rueueqoqraddq-3 '9lt-t0? '(ggOf lcedurorpuols ) OLZ'uuv -ueurp oml olur saf,"Jrnsuu"urarg lrraduroclosdeurrrqdrourololl : '1 'rqsofeurt [SOt] ' g s I - Ig I '(sgot) xa1dutog(uraroarll s(rralasJoloorderli(1uue uV : 'A'rqso,ieurl [ggrJ z,selqotrDA '80t-t6€ '(ggOt) 'UloW 'uraroaqt : n 'qsodeurl []0I] aqn6r srr{f,uerJ apJo.suollezll"rauaC Og't '869-189'(t86I) Oz'ttlory'I DqosO'se)"Jrns crerqa8luarrrlcaford-rsrnburc1rac1o saoedsturra,ror l"sra^ru1 : '1 'rqsodeurt[SOt] .I86I ,oot_1,1,6 .dd ,[6s_v] uI 'sacrdsrelpurq)ral pu" saf,"Jrnsuu"ruarU sarlnu"Jcrqdrourololl: 'n 'rqsofeurl Jo [ZOt] rellnruqf,rel;o r(rlauroatcrloldrudsraqJ :'d'S'Jolpllrax hII] 61 fi6o1odo7'saceds 'IL6I'tZZ-gOZ'dd '[Z-V] ur 'qnpouralf,rrJ uO : '1 'uaay [0II] '99-It
'It-sz'(086r)
'9961 'e,raezsr"l '8Lg-ggg 'dd ''t11o141 't6uog 'lDureluJ 'cot4 'eceds rallnuqrral 'd 'S 'JorOIrreX ;o frlauroat aqJ : [tII] '992-9tZ uorlezqraar uaslalN er{I : 'd '5 'goqpray [ZIIJ '(gSOr)
LTI
'tttory 'uuy
'ualqord
'08-r,I '(SgOt)Og'npg 'qtoh[ 'lueuuop 'crlIpue ere salenbqlr"g: 'd 'S 'Joqrl]rax [tII]
'(ooor) 'aceds ralnurqllal i(repunoq dnor8 reln (sreg l" ool''ttlaut luenuJ Jo - P o r ua q t J o u o r l f , " a q 1 i { l r n u r l u o r - u o N: ' d ' l A ' u o ' } s r n q J 1o Pu"'d's'goqPray [911] '(SgOf 'ttlDw 'uuy 'slarluaragrprrlcrpenb IIt-862 ) ?ZT d1r:rpo3rg : '1 'ar11urg pu" 'H 'rnsz141''d 'S '.Uoqr{cray [gII]
pu" s,rog pr"ilIq;o
'Lr-92
'90I-Il, '(ggOt) '1u?auJ 'sarnlonrls xalduror pu" s)rrletu ulalsurg : 'tr1 'osroy EL'rllr* [8IIJ '1 saarnc '99-6I '(916I) 'PuDcS 't!lDJ4|' 68 ,,t'tp, Pu" (laP, uo sarr"uuurlar4 alq"ls Jo areds qnpour aq1 yo {11,rr1ca[ordaq; : 'q 'pro1urn1,1pu" 'J 'uaspnuy [211]
264 264
References References
Koiso,N. N. : Yang-Mills Yang-Millsconnections connectionsand and moduli moduli space, space,Osaka OsakaJ. J. Math. Math. 24 (1987), (1987), [119] [tt9] Koiso, 147-171. 147-171. Kra, I. I.:: Deformations Deformationsof Fuchsian groups,I, (f969),537[120] 36 (1969), 537Fuchsiangroups, l, II, ll, Duke Duke Math. Math. J. J.36 [120] Kra, 546,ibid. ibid.38 (r97r), 499-508. 546, 38 (1971),499-508. Kra, I. : On On the the Nielsen-Thurston-Bers Nielsen-Thurston-Bers type of some [121] type someself-maps self-mapsof Riemann Riemannsursur[f Zf] Kra, (1981),231-270. faces, Ianes,Acta Acta Math. Moth. 146 L46 (1981), 231-270. Kra, I. : The The Caratheodory Carath6odorymetric metric on [122] on abelian abelianTeichmiiller Teichmiller disks, disks, J. "I. d'Analyse d'Analyse ll22l Kra, (1981),129-143. Math. 40 4O (1981), 129-143. Math. Kra, I. : Canonical Canonicalmappings mappingsbetween betweenTeichmuiiller Teichmuffllerspaces, spaces,Bull. BuII.A. M. [123] M. S. S. (New (New [123] Kra, (198f), 143-179. Series)4 (1981), 143-179. Series) vanishingof and Kra,I.I. : On On the vanishing and spanning spanningsets setsfor for Poincare Poincar6series seriesfor cusp cuspforms, forms, [124] 11241Kra, Acta Math. Math.153 (1984),47-116. 47-L16. Acta 153 (1984), global coordinates Kra, I. : Non-variational Non-variationalglobal coordinatesfor for Teichmiiller Teichmiller spaces, [125] spaces,in [A-24], [125] Kra, [A-24], pp. 221-249, Vol. II, pp. 22I-249,1988. 1988. Vol. Kra, I. : Horocyclic Horocyclic coordinates coordinatesfor for Riemann [126] Riemann surfaces surfacesand and moduli moduli spaces spacesI: I: [126] Kra, and Riemann groups,J. (1990),497Teichmtller and Riemannspaces spacesof Kleinian Kleinian groups, J. A. M. M. S.3 S. 3 (1990), 497Teichmiiller 5t6. 578. grorp, Amer. Kra, I and Maskit, Maskit, B. : The The deformation deformation space space of a Kleinian Kleinian group, Amer. J. [127] ItZll Kra, (1981), 1065-1102. lO3 (1981), 1065-1102. Math. 103 [128] S. : On the geometry of Teichmiiller Teichmiller spaces spa.cesand the structure of their [128] Kravetz, S. groups, Ann. modular modular groups, Ann. Acad. Sci. (1959), 1-35. Sci. Fenn. Fenn. AI278 A1278 (1959), 1-35. quasi[129] Kusunoki, Y. and Maitani, Maitani, F. : Variations of abelian differentials under quasi[129] Kusunoki, (1982), 435-450. conformal deformations, Math. Z. Z. 181 18L (1982), 435-450. quadratic differentials, Bull. [130] 68 (1962),320-322. J. : Invariant Invariant quadratic Bull. A. M. S. 5.68 (1962), 320-322. [130] Lewittes, J. [131] LeBrun, C. and Rothstein, M. : Moduli of super Riemann surfaces, Commun. LeBrun, Moduli surfaces, [131] ( 1 9 8 8 ) ,1 5 9 - 1 7 6 . Math. M a t h . Phys. P h y s . 117 1 1 7 (1988),159-176. (1971), [132] 29 (1971), Modulus space space is simply-connected, simply-connected,, Proc. Proc. A. M. S. 5.29 [132] Maclachlan, C. : Modulus 85-86. 85-86. [133] Mabuchi, T. : Compactification Compactification of the moduli moduli space space of Einstein-Kahler Einstein-Ki.hler orbifolds, [133] Mabuchi, in Recent Recent Topics Topics in Differential Difierential and Analytic Analytic Geometry, Geometry, Ochiai, T. (ed.) Adv. pp.359-384, Kinokuniya-Shoten, Studies in Pure Math., Math., Vol. 18-1, 18-I, pp.359-384, Kinokuniya-Shoten, Tokyo, and Academic Press, Press, London, 1990. 1990. [134] Maitani, F. : Variations of meromorphic differentials diferentials under quasiconformal [134] Maitani, 24 (1984), 49-66. deformations, deformations, J. Math. Math. Kyoto Kgoto Univ. Uniu.24 (1984),49-66. [135] Mane, R., Sad, P. and Sullivan, D. P. : On the dynamics of rational Mafl6, Sad, P. P. rational maps, maps, Ann. .Ann. [135] (1983), 193-217. Sci. 16 (1983), Sci. Ecole Eale Norm. Norm. Sup. Sup.16 lg3-277. [136] between homeomorphic Riemann surfaces, surfaces, [136] Marden, A. : Geometric relations between (1980), 1001-1017. Bull. Bull. A. M. S. S. (New Series) Series)3 (1980), 1001-1017. quadratic differentials on [137] [137] Marden, A., and Strebel, K. : The heights theorem for quadratic Riemann surfaces, surfaces,Acta Acto Math. 153 (1984), (1984), 153-211. 153-211. [138] Maskit, B. : On boundaries of Teichmiiller Teichmriller spaces groups, II, spaces and on Kleinian groups, [138] Maskit, Ann. ( 1 9 7 0 ) ,607-639. A n n . Math. M o t h . 991 r (1970), 607-639. [139] Maskit, B. : Moduli Moduli of marked Riemann surfaces, surfaces, Bull. BuIl. A. M. ]1. S. S. 80 (1974), (1974), [139] Maskit, I t.'-t I t. 773-777. [140] Poincar6 series series operator, [140] Masumoto, M. : A characterization of the kernel of the Poincare (1987), 695-704. Trans. Trans. A. M. S. S. 300 3OO(1987), 695-704. [141] Adjoints ofthe of the Poincare Poincard series seriesoperators, J. Math. Kyoto Univ. Uniu. [l4l] Masumoto, M. : Adjoints (1989), 569-589. 29 (1989), 569-589. geodesicsin Teichmiiller [142] class of geodesics Teichmiller space, space, Ann. .Ann. Math. 102 7O2 (1975), (1975), [142] Masur, H. : On a class 205-221. 205-22t.
992
References
sef,uelalau
265
'06I-88I 'rnseyq '(ZgOf 'I 'WoW 'areds alng rallluqrreJ Jo sau"punoq o,$J : g ) 6? '/ 'af,"ds '0I-I '(I86I) 68'qow afi\ouy,p qnporu uo si oU crsapoat pue cqc,(roroq aql ]o selpadord f1r,rr1-rsu"rJ : 'H 'rnstltl 'WDN 'luauuroC ''8I-6/I '(616I) vg'aIaH 'g 'rnse11 'asuap are rapuqi(c auo qlr,$ sl"-rluaralrp laqarls-supluef eqJ : '\loN eqng 'eced'sralllurq)ral '9t9-sz9 '(szof) 59'7 eql ol f,rrlau uossralad-lra \ eql Jo uorsualxa arlJ : 'g 'rnsey'1
yo frcpunoq
[tll]
[143] Masur, H. ; The extension of the Weil-Petersson metric to the boundary of Teichmiiller space, Duke Math. J. 43 (1976), 623-635. [144] Masur, H. : The Jenkins-Strebel differentials with one cylinder are dense, Comment. Math. Helv. 54 (1979), 179-184. [145] Masur, H. : Transitivity properties of the horocyclic and geodesic flows on moduli space, J. d'Analyse Math. 39 (1981), 1-10. [146] Masur, H : Two boundaries of Teichmiiller space, Duke Math. J. 49 (1982), 183-190. [147] Masur, H. : Interval exchange transformations and measured foliations, Ann. Math. 115 (1982), 169-200. [148] Masur, H. : Ergodic actions of the mapping class group, Pmc. A. M. S. 94 (1985), 455-459. [149] Masur, H. : Closed trajectories for quadratic differentials with an application to billiards, Duke Math. J. 53 (1986), 307-314. [150] Matelski, J. P. : A compactness theorem for Fuchsian groups of the second kind, Duke Math. J. 43 (1976), 829-840. [151] Matsuzaki, K. : Geometric finiteness, quasiconformal stability and surjectivity of the Bers map for Kleinian groups, to appear in Tohoku Math. J. [152] McKean, H. P. : Selberg's trace formula as applied to a compact Riemann surface, Commun. Pure Appl. Math. 25 (1972), 225-246. [153] McMullen, C. : Amenability, Poincare series and quasiconformal maps, Invent. math. 97 (1989), 95-127. [154] McMullen, C. : Iteration on Teichmiiller space, Invent. math. 99 (1990),425-454. [155] McMullen, C. : Cusps are dense, Ann. Math. 133 (1991), 217-247. [156] Mori, A. : On Quasiconformality and Pseudo-analyticity, Sugaku 7 (1955), 75-89 (Japanese). [157] Mori, A. : On an absolute constant in the theory of quasi-conformal mappings, J. Math. Soc. Japan 8 (1956), 156-166. [158] Morosawa, S. : Invariant subsets of the limit set for a Fuchsian group, Tohoku Math. J. 42 (1990), 429-437. [159] Mostow, G. D. : Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, IHES Publ. Math. 34 (1968), 53-104. [160] Mulase, M. : Cohomological structure in soliton equations and Jacobian varieties, J. Diff. Geom. 19 (1984), 403-430. [161] Mumford, D. : Abelian quotients of the Teichmiiller modular group, J. d'Analyse Math. 18 (1967), 227-244. [162] Mumford, D. : The structure of the moduli space of curves and Abelian varieties, Pmc. Internat. Congr. Math., Vol. 1, pp. 457-465, Nice, 1970. [163] Mumford, D. ; Towards an enumerative geometry of the moduli space of curves, in Arithmetic and Geometry, Artin, M. and Tate, J. (eds.), Vol. II, pp. 271-327, Birkhauser, Boston, 1983. [164] Nag, S. and Verjovsky, A. : Diff(Sl) and Teichmiiller spaces, Commun. Math. Phys. 130 (1990), 123-138. [165] Nakada, M. : Quasi-conformal stability of finitely generated function groups, Tohoku Math. J. 30 (1978),45-58. [166] Nakanishi, T. : A theorem on the outradii of Teichmiiller spaces, J. Math. Soc. Japan 40 (1988), 1-8. [167] Nelson, P. : Lectures on strings and moduli space, Physics Reports 149, No.6 (1987), 337-375. []]I]
[g]I]
[9?I]
'002-69I'(zeor) gtl'q\vw 'g 'rnseyl 'uuy 'suorlegoJ a8uzqoxa pu" suor??uroJsu"rl parns€aur P^ratul : [l?I] V6'S
'N 'V ')ord 'dnort sselo turddeu
eql ]o suorlf,e rrpo8rg ; 'g 'rnseyq [g]I]
'(seor) '69r-9sr
efiyouy,p '1 'dnort r"pporu ra[]urqf,tall aql Jo sluallonbueuaqy : 'O 'Pro]urnl\i hgll '$t6 '1 'sar1a '09?-g0t'(ruOf) 6T'uoe1 -rr?A u"rqof,/ef pu" suorl"nba uolqos ur arnlf,nrls lecrtolouroqoC : 'W 'asepyrl [OSII 'surro;aoedscqoqrad,{q 'Iqnd ''0I-e9 '(gSOf S7HI ) ,t'qpn 'C 'g 'r,rolsoyq [69IJ 1o flrprtrr aql pu" a)"ds-u ur sturddeur Furoluof,-rssnb : 'tt10w 'Lt -62''(OOOr) Zn't nqoqgL'dnort uersqonJ" ro} les ?nuq aql Jo slasqnslu"rr"Aul : 'g 'tarresotonf[ggt] .99I_99I,(SSOI)guado| eos .qtvw .t 'V 'FoI 'sturdderu [ [lgl] ;o ftoaql aql ur lu"lsuof, alnlosq" u" uO : l"ruroluof,-rsenb '(asautdel) '(996l) pu" {lrpruro;uocrsen$ ug : 'y 'rro1A1 [99I] 6g-9/ 2nqoing'{1rcr1f1tue-opnasd '3 'ua1p14Pl{ 'tltoN .uuy ,asuap .LVZ-Lrc,(tOOt) sdsng : gg1 are [SSt] 'rgt-g1r '(OOO1 relnurqf,ral uo uor?"rall : 'g'ualplqrll [lgt] ) 66'Utour'lua,nuJ'aceds ' LZr-96'(OgOr)L6'qtout ',(lqrqtuaury : 'g 'ua11n141cnf 'lueauJ'sdeur [SSt] leruroluocrsenbpu" sarraser?f,urod 'grZ-9ZZ'kni gZ'ttIDN 'yddy en4 'unrautog'acc1 -rns uu"ruarlTlreduroc t o1 paqddzs" "InruroJacerl s,traqlas : 'd 'H 'ueayc;rr1[ZSIJ 'sdnort 'I 'WDn aql ro1 deur srefl u"ruraly nWUgJ ur readde o1 Jo dlrarlcafrnspue {1qrqu1sprrroJuoJrssnb'ssaualruyf,Ir}aruoeC: 'y 'r:1ezns1e141 [tgt] 'ltDw 'ot8-628'(slor) e l n o E?'t 'puu1puocasaql sdnor8uersqf,nJroJruaroaqlssaulceduroc : 'd 'f 'qqale;A1 v [0gt] Jo 'tttow a{ncr 'sPr"rFq '?It-zot '(ggor) e9't o1 uorlecqdd" u? qll/r spltuaralrp rrlerpenb ro1sarrolcalcrlPasoIC: 'g 'rnse;1 [6]IJ
'rv|,-Lz?,'(rsot) 8r' ttlD w
'LZt-lLZ 'dd'11 '1on'('tp")'t'a1e; pue 'I\I'ullrv'fr4eutoeg puD crleurU$rv nr 'q 'prolurnytl 'sa,rrnl [t9I] 3:oaceds qnpour aqt Jo frlauoa8 a,rrlerarunue u" spr"MoJ : '.t6uog 'louralul ')ord .01,6I ,alIN 'gg7-Lgt'dd '1 '1on ''t11o141 'q 'proyutn1q 'sarlauea u"rlaqv pu" saarnf, aceds rlnpour aql Io ernlf,uls eqJ : [791] Jo
g 'oN '6?I tltodag tcttfril4'aceds qnpour pue sturrls uo sarnlraT : '4 'uoqep [191] '8-I '(886I) gV uodo1 'I 'rqsrue:lep ')oS 'qtory '1 'saeeds ralllurqllal Jo np"rlno aql uo rueroeq? V : [g9I] 'f 'WoW nqoq1oJ '89-st'(8t6I) oe 'n '"P"{"N 'sdnor8 uorlf,unJ palerauat flalruy;o flqrqels leruroJuof,-rs"nb : [ggl] 'rlk/d '8tI-tZI '(OOOr) 0gI pu" ('S).UIO:'y',{:ls,rofran Pu"'S'geN [pgf] 't86I'uolsog'rasn"wlrlg
'qyDyunururop
(saoedsralllurqrlal
'(rgor) '91,t-1,t8
266 266
References References
Nelson, P. P. :: Holomorphic Holomorphic coordinates coordinates for [168] for supermoduli supermoduli space, space,Commun. commun. Math. [168] Nelson, Math. (1988),167-175. Phys.115 t.L5(1988), 167-175. Phys. o'Byrne, B. B. :: On on Finsler Finsler geometry geometry and and applications [169] applications to to Teichmiiller Teichmiller spaces, [r0s] O'Byrne, spaces,in in p p . 317-328, 3 1 7 - 3 2 81971. ,1 9 ? 1 . [A-7], [ A - 7 ] , pp. ohtake, H. H. :: Lifts Lifts of of extremal extremal quasiconformal quasiconformal mappings [170] mappings of of arbitrary arbitrary Riemann [170] Ohtake, Riemann surfaces,J. J. Math. Math. Kyoto (1982),191-200. Kyoto Univ. Uniu.22 surfaces, 22 (1982), 191-200. ohtake, H. H. :: On on the the deformation deformation of of Fuchsian Fuchsiangroups groups by quasiconformarmappings [171] by quasiconformal [171] Ohtake, mappings partially vanishing with partially vanishing Beltrami Beltrami coefficients, coefficients, J. with 29 (1989), J. Math. Math. Kyoto Kyoto Univ. (19g9), unia.29 69-90. 69-90. Oikawa, K. K. :: On On moduli moduli of of Riemann Riemann surfaces, surfaces, Sugaku [172] Sigaku 12 12 (1960/61), (1960/61) , 79-104 7g-I04 [172]Oikawa, (Japanese). (Japanese). okumura, Y. Y. :: On on the the global global real real analytic [173] analytic coordinates coordinates for for Teichmiiller Teichmiiller spaces, spaces, [123]Okumura, J. Math. Math. Soc. Soc. Japan Jap.n 42 (1990), 91-10l. 42 (1990), 91-10r. J. Patt, C. C. :: Variations Variations of of Teichmiiller Teichmriller and and Torelli [174] Torelli surfaces, surfaces, J. J. d'Analyse d,Analyse Math. Math. 11 LL [174]Patt, ( 1 9 6 3 ) ,221-247. 22r-247. (1963), Penner,R. R. C. C. :: The The moduli moduli space punctured surfaces, spaceof of punctured [175] surfaces,in pp. 313-340, in [A-112], 313-340, Irz5]Penner, [A-112], pp. 1987. 1987. Polyakov, A. M. M. :: Quantum geometry of bosonic bosonic strings, [176] strings, Phys. Phys. Lett. 103 10g B Quantum geometry B [176j Polyakov, ( 1 9 8 1 ) ,2 0 7 - 2 1 0 . (1981),207-210. J. M. and and Freund, Freund, P. [177] P. G. O. :: Supertori Supertori are are algebraic algebraic curves, curves, Commun. Commun. lL77l Rabin, J. ( 1 9 8 8 ) ,131-145. M a t h . Phys. P h y s .114 1 1 4 (1988), 131-145. Math. Rauch, H. E. : The singularities of the modulus spaces, [178] spaces,Bull. A. M. S. (1962), S. 68 (1962), [178] Rauch, 390-394. 390-394. Rauch, H. H, E. : Transcendental view of the space [179] space of algebraic algebraic Riemann surfaces, surfaces, [17e] Rauch, B u l l . A. A . M. M . S. S . 771 L (1965), ( 1 9 6 5 ) ,1-39. 1-39. Bull. Reich, E. and Strebel, K. : On the extremality [180] extremality of certain Teichmiiller Teichmiiller mappings, [180] Reich, Comm. Math. (1970), 353-362. Math. Helv. Hela.45 Comm. 45 (1970), 35J-362. eine allgemeine [181] allgemeine Theorie der Functionen einer [ 1 8 1 ]Riemann, B. : Grundlagen fiir eine verinderlichen complexen Grosse, Grosse, in [A-92], veranderlichen 3-48, 185l. 1851. [A-g2], pp. 3-48, Riemann, B. : Theorie Theorie der Abel'schen [182] 88-144, 1857. Abel'schen Functionen, Functionen, in [A-92], pp.88-144, 1857. [182] Riemann, [A-92], pp. products of Fuchsian [183] Duke Fuchsian groups and uniformization, uniformization, Duke [ 1 8 3 ]Riera, G. : Semi-direct products (1977),291-304. Math. J. J. 44 (1977), 291-304. L. : Automorphisms [184] Automorphisms and isometries of Teichmriller Teichmiiller space, space, in [A-7], [184] Royden H. 1. [A-7], p p. 3 6 9 - 3 8 3 ,1971. 1971. pp. 369-383, [185] Invariant metrics on Teichmtller Teichmiiller space, space, in [A-8] 393-399, [185] Royden, H. L. : Invariant [A-8], , pp. J93-399, t974. 1974. [186] Saito, K. K. : Moduli Moduli space space for Fuchsian groups, in in Algebraic Analysis, Analysis, Kashiwara, ll86l M. M. and Kawai, Kawai, T. T. (eds.) Vol. II, II, pp.735-?86, pp.735-786, Academic Academic Press, Press, London, 1988. 1988. [187] sakan, Sakan, K. K. : Necessary Necessary and sufficient conditions conditions for extremality extremality in in certain classes classes [187] of of quasiconformal quasiconformal mappings, mappings, J. Math. Kyoto Unia.26 Univ. 26 (1986), (1986), 3f-37. 31-37. 88] Sato, H. [188] H. : Introduction Introduction to to new coordinates to to the the Schottky Schottky space-The general [1 ccase, a ^ s eJ. , , IM . ath. S 1 9 8 3 ) , 23-35. 23-JE. o c . JJapan apn35 Math. Soc. 35 ((1983), [189] Sato, H. : Limits Limits of of sequences sequences of of Riemann Riemann surfaces surfaces represented represented by by Schottky Schottky [18e] groups, groups, T6hoku T6hoku Math. Math. J.36 J. 36 (1984), (1984), 521-539. 521-539. [190] Schumacher, G. G. :: On On the the geometry geometry of of moduli moduli spaces, spaces, Manuscripta Manuscripta math. bO 50 [1eo] ((1985), 1 9 8 5 ) , 229-267. 229-267. [191] Segawa, Segawa, S. :: Martin Martin boundaries boundaries of of Denjoy Denjoy domains domains and and quasiconformal quasiconformal [re1] mappings, mappings, J. J. Math. Math. Kgoto Kyoto Uniu. Univ. g0 30 (1990), (1990), 297-976. 297-316. f[192] 1 o r ] Sekigawa, Sekigawa, H. H. :: The The outradius outradius of of the the Teichmiiller Teichmiiller space, space, T6hoku Math. Math. J.3O J. 30 ((1978), r 9 7 8 ) , 6607-612. 07-6t2.
L9Z
267
References
saf,uaraJau
'1 'suorleunolsu"rl uO : 'H 'earqg [1OZJ oqofiy 't11o1ty r"Inporu pue saceds raflSurqtrral '299-Ttq'(seor) 'tttoN tg'7 nqoqgl 'saceds ralllurqf,ratr pu" $lsrp-Issnb yo uorlezrral)"r"qC : 'H 'e8qg [967] 'atup olofiy T,gr-t1'(lAOf ) V7 llIDW 't'saceds ralllurq)ralJo sarlradord crrlauroat pue rrlflaue uO :'H'etqs [OOt] 'IIt-662 '(fSOf) 'S 'AI 'V tuoil 'auo snuat yo I0g saf,"Jrns uu"ruary uado ue Jo suorl"nurluoc lczduroc Jo {nporu aql : 'W '"qHS [86I] .(asauedel) g?,2-g0z,(leot) se nqoigg 'suorlrun3:urearls Iq saf,"Jrns uu"luary uado 1o uorl"zrleeg : 't{ teqgs [fOf] '6II-86 '(egOf 'Ulolr[ 'YeuuroC ) 8V'aPH 'C 'C 'sar"qlas 'sBurddrur ra[]urqf,reJ ulelraf,;o flradord lsuarlxa aqJ : [g6t] '929-109 '(sgot) 'utoufiO 'ttJ, 'po6tg 'arnle,rrnc g'fii a,rrletau puD 'g 'sagag lu"lsuof, Jo sa)"Jrns uo sersapoaB 1o turpoc ^o{r"I [ l€f,rrlauroeD : [96I] 'gg6t ''gZ-r9Z 'dd 'II 'IoA '[?Z-Vl ur 'suorlcun;: qfual : 'I 'r1v,rrog pu? 'W 'epddag [rcIJ lsapoat i(q saceds rallBurqrlel Jo uotl"firlaru"r"d '0lC-998 '(geOf) ge't 'tttory nqoqg;'pun1 puoces aq1;o sdnort aqlJo np"rlno : '11 'oloureur" pup 'g'e,taet5r1ag [C6t] u"rsqrnJJo sacudsralnurqrral
[193] Sekigawa, H. and Yamamoto, H. : Outradii of the Teichmiiller spaces of Fuchsian groups of the second kind, Tohoku Math. J. 38 (1986), 365-370. [194] Seppiila, M. and Sorvali, T. : Parametrization of Teichmiiller spaces by geodesic length functions, in [A-24], Vol. II, pp. 267-284, 1988. [195] Series, C. : Geometrical Markov coding of geodesics on surfaces of constant negative curvature, Ergod. Th. and Dynam. Sys. 6 (1986), 601-625. [196] Sethares, G. C. : The extremal property of certain Teichmiiller mappings, Comment. Math. Helv. 43 (1968), 98-119. [197] Shiba, M. : Realization of open Riemann surfaces by streamfunctions, Sugaku 36 (1984), 208-226 (Japanese). [198] Shiba, M. : The moduli of compact continuations of an open Riemann surfaces of genus one, Trans. A. M. S. 301 (1987), 299-311. [199] Shiga, H. : On analytic and geometric properties of Teichmiiller spaces, J. Math. Kyoto Univ. 24 (1984), 441-452. [200] Shiga, H. : Characterization of quasi-disks and Teichmiiller spaces, Tohoku Math. J. 37 (1985), 541-552. [201] Shiga, H. : On Teichmiiller spaces and modular transformations, J. Math. Kyoto Univ. 25 (1985), 619-626. [202] Shiga, H. : Projective structure on Riemann surfaces and Kleinian groups, J. Math. Kyoto Univ. 27 (1987), 433-438. [203] Shimizu, H. : On discontinuous groups operating on the product of upper halfplanes, Ann. of Math. 77 (1959), 33-71. [204] Shiota, T. : Characterization of Jacobian varieties in terms of soliton equations, Invent. math. 83 (1986), 333-382. [205] Shiota, T. : The KP equation and The Schottky problem, Sugaku Expositions 3 (1990), 183-211. [206] Shishikura, M. : On the quasiconformal surgery of rational functions, Ann. Sci. Ecole Norm. Sup. 20 (1987), 1-29. [207] Shishikura, M. : On complex dynamics on the Riemann sphere, Sugaku 41 (1989),34-48 (Japanese). [208] Siu, S. T. : Curvature of the Weil-Petersson metric in the moduli space of compact Kahler-Einstein manifolds of negative first Chern class, in Contributions to Several Complex Variables, In Honour of W. Stoll, Howard, A. and Wong, P. (eds.), Aspects of Math., Vol. 9, pp. 261-298, Friedr. Vieweg & Sohn, Braunschweig, Germany, 1986. [209] Slodkowski, Z. : Holomorphic motions and polynomial hulls, Pmc. A. M. S.l11 (1991), 347-355. [210] Strebel, K. : On lifts of extremal quasiconformal mappings, J. d'Analyse Math. 31 (1977), 191-203. [211] Strebel, K. : On quasiconformal mappings of open Riemann surfaces, Comment. Math. Helv. 53 (1978), 301-321. [212] Sugawa, T. : On the Bers conjecture for Fuchsian groups of the second kind, J. Math. Kyoto Univ., to appear. [213] Sullivan, D. P. : On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, in [A-59], pp. 465-496, 1981. [214] Sullivan, D. P. : Quasiconformal homeomorphisms and dynamics I, Ann. Math. 122 (1985), 401-418. [215] Sullivan, D. P. : Quasiconformal homeomorphisms and dynamics II, Acta Math. 155 (1985), 243-260.
'929-6t9'(SeO s Zr )' a r n
g tuotltsodrg nqoing 'uralqord ,{111oqegaqJ pu" uorlenba dX aqJ : '1 'e1ogg [S0Zl 'luaaul '288-888 '(SeOt) 88'Ulout 'J '"toHS 'suorlunba uolrlosJo surral ur sarlarr"A u"rqof,?f Jo uorl"zualf,"r"qC : [tgg] 'Il-tt '(696I) 'uuy 'sauuld t z'Won to 'H 'nzruqr{S -1pq raddn 1o lcnpord aql uo Burlcrado sdnort snonur?uof,srpuO : [t6Z] .8tt-ttt ,(feOt) .nyn oyofiy .r11o1tt1 LZ '1 'sdnort u?ruralx pu" saf,"Jrns uu"uarg uo arnlf,uls a,rrlcafor4 : 'H 'eBgS [ZOZ]
' r r z- 8 8 r ' ( o o o r )
'oqos 'dd'6'1on ''qle4;o sloadsy'('.p")'d'tuo1y1 T 8a,r,rarn'rpalrJ'96?,-197 pu"'V'pru.rao11 'nols'lA tnouoll u1 'ra1qouo11 xe1dutogloraaes ol suol1 to -nq.rpoC ur 'sse1curaqC lsry a,rr1e8au Jo splolru"ur uralsurg-ralqey lceduroe aql Jo arnl"^rnC : 'J 'g 'nrg [eOZl 3:oaceds r1nporuaql q )rrtaru uossralad-Ira6/r '(asauedel) 8t-tg'(686I) ,araqdsuuptuerU aql uo sorureu,{pxalduror uO : 'I{ '"In{qsHs 1g nsp'ng [r0Z] '62-I '(186I) 'uroN eP)g oz'dns 't?S 'uuv 'suorlcunl '141'ernryqsgs 1euorl"r;o fra8rns l?uroluorrspnbaq1ug : [g0Z] ITI'S
'W 'V '?ord 'sgnq pruroudlodpue suorlorucrqdrourololl: 'Z 'r{s/$o{pols [602] '9961'dueurrag'Sra,u.qxuncrg
'ggr-Lrr'(roor)
't11oygafi1ouy,p '1 's8urdderu 'X '1aqar1g Furroluof,rsrnb purarlxa Jo surl uO : [O1ZJ
' r o z - r 6 r ' ( l l e rt)g
'qtDN opv '11scrrueu{ppur sursrqdroruoaruoq 'uu,rgng puroJuof,rsenb, 'd [gIZ1 ' 8 t t - I 0 t ':g (986I,t ZZI 'qtory 'uuv'1 'a 'C 'uea111ng scrureu,{p pur sursrqdrouoaruoq l"rrroJuorrsenb : [?IZJ 'I-86I '96?-99?'dd '[69-Y] ur 'suorlourrqoqradi(q;o dnor8 alarosrpi(rerlrqre ue yo ,(lrugur1c {roaql rrpo8raaql uO : '4 'q 'ue,rq1ns[SIZ] 'readde o1 "atu11 o7ofiy 'r1go1,t1 'f 'pupl puorasaq1 sdnort u"lsqrnJ rof arntllluol "t".9 "r{1,"O : '; 'eaaetng ;o [916] 'IZt-I0€ '(etor) 'tttow 89'apr 'lueuutoC 'saczyrnsuu?ruerlTuadoyo s8urddeur 'y 'laqarfg leuro]uo)rs"nb ug : [IIZJ
' o g z - w z ' ( g gsost r)
268 268
References
Quasiconformal homeomorphisms homeomorphisms in in dynamics, dynamics, topology, topology, and and [216] Sullivan, Sullivan, D. D. : Quasiconformal [216] geometry, geometry, Proc. Proc. Internat. Internat. Congr. Congr. Math., Math., pp. pp. l2l6-L228, 1216-1228, Berkeley, Berkeley, 1986. [217] Sullivan, Sullivan, D. D. P. and Thurston, Thurston, W. W. P. : Extending Extending holomorphic holomorphic motions, motions, .Acta Acta [217] Math. r57 157 (1986), 243-257. 243-257. Math. Ann. Math. [218] Sunada, Sunada, T. T. :: Riemannian Riemannian coverings coverings and and isospectral isospectral manifolds, manifolds, Ann. Math. L2L 121 [218] ((1985), 1 9 8 5 ) , 1169-186. 69-186. [219] Takhtadzhyan, Takhtadzhyan, L. A. A. : Uniformization,,local Uniformization, ,local index index theorem, and geometry geometry of of [219] the moduli moduli spaces of of Riemann Riemann surfaces and vector vector bundles, bundles, in in Theto Theta Functions, Functions, the Bowdoin 1987, 1987, Ehrenpreis, L. and Gunning, Gunning, R. C. (eds.), (eds.), Proceedings Proceedings of of SymBowdoin in Pure Pure Math. Math. Vol. 49, Part Part I, I, pp. 581-596, 581-596, American American Mathematical Mathematical Sociposia in 1989. ety, Providence, Rhode Island, 1989. [220] Takhtadzhyan, A. and Zograf, A local local index index theorem theorem for for families families of of L. and Zograf, P. G. : A Takhtadzhyan, A. [220] a-operators on punctured punctured Riemann Riemann surfaces and a new Kihler Kahler metric metric on their their d-operators 399-426. moduli spaces, spaces, Commun. Math. Phys.137 Phys. 137 (1991), (1991), 399-426. moduli points of [221] Orbits their points of cyclic subgroups of of : and their accumulation H. Orbits Tanigawa, [221] 289-299. groups, T6hoku T6hoku Math J.43 J. 43 (1991), (1991), 289-299. modular groups, [222] Taniguchi, Taniguchi, M. M. : Abelian Abelian differentials differentials whose squares have closed trajectories trajectories on [222] (1978), 417-443. compact Japan. J. Math.4 Math. 4 (1978),417-443. surfaces, Japan. compact Riemann surfaces, surfaces under pincharbitrary Riemann surfaces [223] M. : Variational Variational formulas on arbitrary [223] Taniguchi, M. ing deformation, Kyoto Univ. 27 (1987), 507-530; Supplements to my Univ.27 (1987),507-530; deformation, J. Math. Kyoto previous paper, paper, ibid. (1988), 81-86. previous 81-86. dDid.28 (1988), [224] Taniguchi, M. : Pinching deformation of Riemann surfaces and varivariof arbitrary arbitrary Riemann Pinching deformation M. Taniguchi, [224] of One Theory of ational Analytic Function Function Theory abelian differentials, differentials, in Analytic formulas for abelian ational formulas Research (eds.) Pitman Pitman Research Complex Variable, Komatu, Komatu, Y, Y., Niino, K., and Yang C. (eds.) Complet Variable, 1989. & Technical, 1989. Notes in Math., Ser. 212, 212, 330-345, 330-345, Longman Scientific &. Math., Ser. pinching complex pinching with normal behavior and complex [225] normal behavior differentials with Abelian differentials Taniguchi, M. : Abelian [225] Taniguchi, (1989), 45-56. deformation, 29 (1989), Unia.29 45-56. Kgoto Univ. Msth. Kyoto deformation, J. Math. quasiconformal under quasiconformal [226] functions under variation of of Green's functions first variation Taniguchi, M. : On the first [226] Taniguchi, deformations, 29 (1989), (1989), 591-600. 591-600. Univ.29 Math. Kyoto Univ. deformations, J. Math. [227] variational formulas of functionals on second variational [227] Taniguchi, M. : A note on the second (f989)' 283-295' Riemann surfaces, "/. 12 (1989),283-295. surfaces, K6dai Math. J. surface, infinite Riemann surface, [228] boundary of an infinite rigidity of the ideal boundary [228] Taniguchi, M. : On rigidity Complex (1990), 161-167. r6l-167. Variables14 (1990), Complea Variables quadratische DifDifquasikonforme Abbildungen [229] Abbildungen und quadratische Extremale quasikonforme Teichmffller, O. : Extremale [229] Teichmiiller, ferentiale, pp. 335-531, 335-531,1939. 1939. ferentiale,in [A-106], [A-106], pp. quasikonformen Abbildungen Abbildungen [230] extremalen quasikonformen Bestimmung der extremalen Teichrniller, O. : Bestimmung [230] Teichmiiller, pp' 635-676, 635-676, bei geschlossenen Flichen, in [A-106], Riemannschen Flii.chen, geschlossenenorientierten Riemannschen [A-106], pp. 1943. 1943. hyperbolic [231] Kleinian groups and hyperbolic dimensional manifolds, manifolds, Kleinian P. : Three Three dimensional Thurston, W. P. [231] Thurston, (1982), 357-381. 357-381. geometry, (New Series) S. (New Series) 66 (1982), geometry, Bull. Bull. A. M. S. Conjecin The The Bieberbach Bieberbach Conjec[232] functions, in W. P. and univalent univalent functions, P. :: Zippers Zippers and Thurston, W. [232] Thurston, pp. 185-197, Society, (eds.), pp. Mathematical Society, ture, 185-197, American American Mathematical al. (eds.), A. et et al. ture, Baernstein, Baernstein, A. Providence, 1986. Rhode Island, Island, 1986. Providence, Rhode geometry, in in [A[233] twodimensional hyperbolic hyperbolic geometry, in two-dimensional W. P. P. :: Earthquakes Earthquakes in Thurston, W. [A[233] Thurston, 25], p p . 91-112, 9 l - 1 1 2 , 1986. 1986. 2 5 1 ,pp. of surfaces, surfaces, [234] of diffeomorphisms diffeomorphisms of geometry and and dynamics dynamics of W. P. P. :: On On the the geometry Thurston, W. [234] Thurston, Bull. (1988), 417-431. 417-431. (New Series) Series)19 19 (1988), A. M. M. S. S. (New Bull. A. of almost almost on the the space spaceof connection on [235] affne connection natural algebraic algebraic affine A. J. J. :: On On aa natural Tromba, A. [235] Tromba, to the the with respect respect to space with complex Teichmriller space the curvature curvature of of Teiehmiiller and the structures and complex structures (1986)' 475-497. 56 (1986), 475-497. Weil-Petersson math. 56 Manuscripta math. metric, Manuscripta Weil-Petersson metric,
692
sef,uaraJau
References
269
'utoufig puv'tttr'po6tg ur readde o1'surolu a^eq lou paausuorlorucqoqrad,(q yo sdnort alrlelrasuof, {lruyur uor}r" aqJ : 'X r{pznqsl4l pue 'v '1.'tugan [1pg] l" Jo 90I-t0I '(ggot) 'S 'N 'V 'nng 'aceds ra11$ur{f,ral re^o scrureufq : 'y '1v\ 'qlea1 [otz] vl '0c9-Itt'(ggor) 'uuy 'noy rrsapoa8 rafllurqrral aqJ,: 'y'14 'qcaan [697] tzl'UIVW 't6I-t9I '(SeOf 'qIDn opy 'dnor8 snlqgru" qt-r^r ) tgl '4 'eqn; alqrledurors8urdderucrrlatuurrfsrsenb ;o uorsualxal"urro]uof,rscn$: [SSZJ 'i886I '{ro1 '3epan-ra8urrdg'98I-99I 'dd '9991 '1on ,traN pu" uqrag 'srrl"utrreqlpelur saloN ernlf,al '('p") 'n 'elurnberg 'uot1otto11 rn1ncyogut I to tctdol ur tfroaql rafl]urqlral o1 qceordde["uorl"rr"a pf,rss"If,v:'f 'v'equrorl [ggg] ' 092-6VZ'(tgOf ) 69' UlDutolducenuoyg'acedsrallnurqcra; uo f,rrlau uossraledlra1\ aql roJ uorlf,unJftraua u" uO : 'f 'v '"qurorJ [gt3]
[236] Tromba, A. J. : On an energy function for the Weil-Petersson metric on Teichmiiller space, Manuscripta math. 59 (1987), 249-260. [237] Tromba, A. J. : A classical variational approach to Teichmiiller theory, in Topics in Calculus of Variation, Giaquinta, M. (ed.), Lecture Notes in Mathematics, Vol. 1365, pp. 155-185, Springer-Verlag, Berlin and New York, 1988? [238] Tukia, P. : Quasiconformal extension of quasisymmetric mappings compatible with a Mobius group, Acta Math. 154 (1985), 153-193. [239] Veech, W. A. : The Teichmiiller geodesic flow, Ann. Math. 124 (1986), 441-530. [240] Veech, W. A. : Dynamics over Teichmiiller space, Bull. A. M. S. 14 (1986), 103-106. [241] Velling, J. A. and Matsuzaki K. : The action at infinity of conservative groups of hyperbolic motions need not have atoms, to appear in Ergod. Th. and Dynam. Sys. [242] Vigneras, M. F. : Varietes riemnanniennes isospectrales et non isometriques, Ann. Math. 112 (1980), 21-32. [243] Weil, A. : Sur les modules des surfaces de Riemann, Sem. Bourbaki 10 (1957/58). [244] Wolf, M. : The Teichmiiller theory of harmonic maps, J. DiJJ. Geom. 29 (1989), 449-479. [245] Wolpert, S. A. : Non-completeness of the Weil-Petersson metric for Teichmiiller space, Pacific J. Math. 61 (1975), 573-577. [246] Wolpert, S. A. : The length spectra as moduli for compact Riemann surfaces, Ann. Math. 109 (1979), 323-351. [247] Wolpert, S. A. : The Fenchel-Nielsen deformation, Ann. Math. 115 (1982), 501528. [248] Wolpert, S. A. : On the symplectic geometry of deformations of a hyperbolic surface, Ann. Math. 117 (1983), 207-234. [249] Wolpert, S. A. : On the homology of the moduli space of stable curves, Ann. of Math. 118 (1983), 491-523. [250] Wolpert, S. A. : On the Kiihler form of the moduli space of once punctured tori, Comment. Math. Helvetici 58 (1983), 246-256. [251] Wolpert, S. A. : On the Weil-Petersson geometry of the moduli space of curves, Amer. J. Math. 107 (1985), 969-997. [252] Wolpert, S. A. : On obtaining a positive line bundle from the Weil-Petersson class, Amer. J. Math. 107 (1985), 1485-1507. [253] Wolpert, S. A. : Chern forms and the Riemann tensor for the moduli space of curves, Invent. math. 85 (1986), 119-145. [254] Wolpert, S. A. : Thurston's Riemannian metric for Teichmiiller space, J. DiJJ. Geom. 23 (1986), 143-174. [255] Wolpert, S. A. : The topology of the moduli space of Riemann surfaces, in Arbeitstagung Bonn 1984, Hirzebruch, F., Schwermer, J., and Suter, S. (eds.) Lecture Notes in Mathetatics, Vol. 1111, pp. 431-451, Springer-Verlag, Berlin and New York, 1986. [256] Wolpert, S. A. : Geodesic length functions and the Nielsen problem, J. DiJJ. Geom. 25 (1987), 275-296. [257] Wolpert, S. A. : Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces, Commun. Math. Phys. 112 (1987), 283-315. [258] Wolpert, S. A. : Cut-paste deformations of Riemann surfaces, Ann. Acad. Sci. Fenn. A. 1. Math. 13 (1988), 401-412. [259] Wolpert, S. A. : The hyperbolic metric and the geometry of the universal curve, J. DiJJ. Geom. 31 (1990), 417-472.
'6Lt-6r' '(OgOt) '#lO 't 'sdeurcruourreq;o,(roaq1ra[]ruqf,ral erII : 'W 'y1o16 6Z'rucaC [llZJ '(gS/lSOt) 'urag 'uueurarg ap sar"Jrns sap salnporu sal rns : 'V 'l-rad\ [gtz] Ol.tpqrnog .Zt-IZ ,(086I) .t6go1,,y .uuy 711 'sanbrrlaurosruou la salerlcadsosrsauueruu?ut[arrs?l?rre1 : 'J 'Il[ 'sergutrn [6pg] '8nS
'saleyrns .y .S ,yaA1o6 uu"uaru lczduroc roJ rlnpo.'' se erlrads {fua1 aq; : [g?ZJ ' LLg-tLg'(SfOt) Tg.rttory' 7 c$co7'aceds roJ rrrleru uossra]ad-lre6 aql Jo ssaualalduroc-uo1q: 'y 'g '1rad1o46 [976]
rafl]urq)ral
'Igt-tzt '(oror)60r'wvn 'uuv
'uuy 'sarrn) .y .g ,yad1o6 elqels to Jo a*ds rlnpour aq1 ;o dtoloruoq eql uO : [6]Z] 'ttz-Ly?,'(eg6t) 'uuy 'ace;rns Llt'WDN oqoqraddq " Jo suorl"uroJap Jo i(rlauroa8 :rlcaldurds aql uO : 'v 'S '1raa1o16 [g]Zl '829 'uuy 'uorleurroJaP uaslalNlar{rued eqJ : 'v 'g '1rad1o1q [l,tz] -I09 '(286I) gII'ttlory
' tz9-r6,'(ssor) 8r| won
'SIt-t8z '(fge 'qlory 'unutuop 'sare3:rnsuueruerg f ) Ztl'sfrUd 1o aeeds aql uo uorlf,unJ ulaz Sraqlag aql pu? runrlcads aql Jo sf,rlotdrudsy : .V .S ,fradloA\ [ZgZ] ' 9 6 2 - 9L z ' ( l e o t ) g z ' a r c ? D '#:O 't 'uralqord 'V .g ,1rad1o16 uaslarN eql pu" suorlf,unJ q13ua1 rrsapoag : [992J '9g6l '{ro^ rraN Pu? uqrag 'tepan-ratuudg 'Igt-Igt 'dd 'IIII '1on 'serlelaqlrlI q saloN arnlrarl ('tp") 'S 'ra1ng pue ''1 'raurra,uqcg''g 'qxrqazr\H'fg6I uuog iun|olqtaqrv ur 'sarr3lns uu"uarg ;o areds rlnporu aq1 ;o ,{tolodot eqJ : 'v 'S '1raa1o7y1[SSZJ 't LI-til'(ggOf ) gZ' ruoeC '{lO 't 'areds ralqnurqrlal ro} rrrlaru u"ruueruarq s.uolsrnql : 'y 'g 'pad1o7q [797] 'S?I-6II'(SgOt) gg'qlaur'lueauJ'sa,rrnf, 'V'S '1raa1o1q 3:oaceds qnpour aql ro; rosual uu?lualg aqt pu" surro; ureqC : [ISZJ '1,09I-98tI '(986I) '1 'Jauly 'ssslr LOI'WoW uossralad-Ia1\ aql tuorl alpunq auq a,rrlrsod e tururelqo uO : 'y 'g 'gad1o6 [g96] .166-696,(SeOf .I .reuv ) LOI-.WDN 'sa,rrnf, aceds rlnpour aqg frlauroat uossrala4-lla^\ eqt uO : 'y 'S 'tradlo^\ 1o ;o hgz] ' 9 9 2 - 9 t Z ' ( 8 8 6 I , 18 9 . ? , p a P H ' U I D W ' l u a u u o C 'rro1 parnlound aruo;o aceds rlnpour eqt 'y 'g '1rad1o6 Jo urroJ ralqSx aql uO : [696]
'ZIV-rcV'(eeOr) EI'WDn 'l 'V 'uuef 'nS 'pwv 'uuf 'saf,"Jrns uu"ruargJo suorleruroJap alsed-1n3: .v .S ,1rad1o1q [SSZJ 'aarno
'y .g ,1radyo7y1 lesra,rrun aql Jo frlauroa8 aql pue rularu )rloqrad,{q aq; : [OSZ]
'ZLv-Ltv'(oOOr) rt,'uroaD'filO 't
)70 270
References References
Wolpert, S. S. A. A. :: The The Bers Bers embedding embedding and and the the Weil-Petersson Weil-Petersson metric, [260] metric, Duke Duke Math. [260] Wolpert, ( 1 9 9 0 ) ,497-508. 497-508. " / . 60 6 0 (1990), J. Yamada, A. A. :: Precise Precise variational variational formulas formulas for [261] for abelian abelian differentials, differentials, K8dai K6dai Math. [261] Yamada, ( 1 9 8 0 ) ,114-143. . / . 3 (1980), 114-143. J. Yamaguchi H. H.: : Calcul Calcul des des variations variations analytiques, (198f), [262] analytiques, Japan. Japan. J. J. Math. 7? (1981), [262] Yamaguchi 319-377. 319-377. Yoshida, M. :: The Schwarz Schwarz program, Sugaku [263] Sigaku 40 (1988), (1988), 36-46 (Japanese). 36-46 (Japanese). [263] Yoshida, Zograf, P. P. G. and and Takhtadzhyan, L. A. : On Liouville's equation, accessory [264] accessory f264) Zograf, parameters, and the geometry geometry of Teichmiiller parameters, Teichmffller space space for Riemann Riemann surfaces of genus 0, 0, Math. Math. USSR USSR Sbornik Sbornik60 (1988), genus (1988), 143-161143-161. Zograf., P. Takhtadzhyan, [265] Zograf, P. G. and Takhtadzhyan, 1. A. : On uniformization L. uniformization of Riemann Riemann surfaces surfaces 12651 Weil-Petersson metric metric on Teichmiiller Teichmiiller and Schottky and the Weil-Petersson Schottky spaces, spaces, Math. USSR USSR (1988), 297-313. Sbornik60 (1988), 297-313. Sbornik Zograf., P. P. G. and Takhtadzhyan, 1. [266] L. A. : On the geometry of moduli moduli spaces spaces of 12661Zograf, over aa Riemann surface, surface, Math. USSR (f 990), 83-100. vector bundles over USSR Izvestiya Izuestiga 35 (1990), 83-100.
5 38 37 47 150 92 124 124 124 124
vel vzl
vzr
vzI z6 0sr
'(u)e
{Qj, Pj }J=1 B B(Dh B(H,F) B(H,Fh B(R) B(Rh
(u)g '(l'u)a (t'u)a t(o)a g
r=[{!d, !D} a")'
LD
,v '=[{(al'ltv]I
{ [Aj], [Bj ] }J=1 A")'
LV 18, 8t I
( t ' t t ) zv
68I 8AI
(c)t"v ( J' v) zv r(u)zv @) zv ( J' *H) zv
@)r"v (q)nv
tt tt 8t 88r 6Zr 86r 09r
(v)pv
88
128 189 150 128 129 183 33 33 33 33
identity mapping absolute value equivalence class
sself, e)uele^rnba enF^ elnlosq" Surdderu flrluapr
{a/ax - ia/ay}/2 {a/ax + iO/ay}/2 a//az a//ai
za/le z8/I8
+ rela} z/{ne/ep - ralQ} z/{ne/et
{, - )*t ') = )sU qll^r ) alq€rre^ xelduroc n - zt;ll'a = z sU qtl^r z alqerre^ xalduroc a - oaurl'n = ffLeU qlr/rr o-l elqelrc^ xalduroa
.(J'H)ev
tl t.l p?
/z z{
,t ze/e
z8/8 lrp*J=) f i , rl a. = z ax+n=m uII
e+ i1]
eu
cn
e,
n-dimensional real Euclidean space n-dimensional complex Euclidean space real part imaginary part complex variable w with Re w = u, 1m w = v complex variable z with Re z = x, 1m z = y complex variable ( with Re( = Im( = 1]
lred f.reur8erur lred lear eceds ueaprlcng xelduroc lpuorsueurp-u aceds ueaprlrng l"ar leuorsuaurp-u
A 2 (H,F) A 2 (H, F)* A 2 (H*,F) A 2 (R) A 2 (Rh A 2 (..:1, r') Aut(C) Aut(C) Aut(H) Aut(..:1)
1·1 [ .]
id
a/az a/ai /z
( =
= u + iv z = x + iy
w
Re 1m
oO ulI
H H* ..:1 ..:1* Rn
C-L1
*V V *H H
V_Q
positive real numbers nonnegative real numbers complex numbers, complex plane Riemann sphere upper half-plane lower half-plane unit disk
{sIP }lun eueld-;1eq .ra,lao1 eueld-;pq reddn eraqds uueruerg eueld xalduoc 'slequrnu xelduroc sJaq(unu 1ea.rerlrle3auuou slaqunu leer ezlrlrsod
C
? C
)
R+ R+
+u +1r
u
R
RU{oo}
{oo}nu
slxe Ieer 'sJaqunu IBar sreqrunu leuor?er s.raBelur sraqurnu l€rnl€u
natural numbers integers rational numbers real numbers, real axis
R
?I
Q
b
z
N Z
N
List of Symbols
sloqul{s Jo tslT 271
tL7,
List of Symbols
sloqurfg Jo tslT
List List of of Symbols
272 2 72
(3 a p2 (32
[Co]. lg"l.
C C
clr c/r C-C' C .C' (C,p) (c,p) [C,p] lc,pl C(f(D) Cf (D) XF XF V(R) D(R) Dif Dillo(R) fo(R) Dif Dill+(R) f +(R) d dtc die 2 ds ds2 dt', dSk dt'o dSh ds?vp d"'* p F F Fsg
:F Fsg Fix(,) li*(t,)
fj [10] lf "l
[10]. [/"].
[/d. [/t]. IT f, IIJ frt jIJ i,
j.l,l j[lI] jIJ[II] f'1") {I, { L z} r} [/:S--+R] [/: .9 * R] gwp gwP rf rp rIJ
rfpIJ
,,.T rf, 7
H H(Jl] Htpl
148 148 188 188 311 3 29 29 .| 7 29 29 29 29 29 29 81 81 197 r97 247 247 19 19 19 19 125 t25 225 225 20, 2 0 ,51, 5 1 135 1 , 35 53 53 54 54 201 20r 40 40 48 48 48 48 35 35 30, 121 3 0 ,121 162 162 162, 1 6 2 247 ,247 127, 127,159 159 13 13 102 r02 105 105 109 109 110 110 149 r49 247 247 201 201 7, 40 7 ,28, 2 8 ,40 147 t47 160 160 8 197 t97 197 r97 191 191 191 191
H v H"
B(H,r) HB(H,r) H h h h"v \hj,.{t) n(t) h wp wp i i* i. Jp Jp K K
Kt KJ,K(f) ,I{(f) I{n KH Kt I{t K;1 I{a = {L L = I:{ L ij}}f=l l=t LP(C) LP(C) £CXJ(D) L*(D) L'f(H, L T ( H , r) f ) L""' L1( L" L' L"[Jl] !'[u)
it
(* i. ilse i(C) t(c) ij (t) 4(A A A A ) \u AH M Mr1 M Mt1 M g Yo
M Msg
Mod(R) Mod(R). Mod(R). Mod(r) Mod(f) M(Q) M(Q) N(r) nr(j-) M:F MT M(R) M(R) p(z)dz/ dz Jl(z)dz/dz JlJ llJ Jlrp Fq
193 193 191 191 199 199 200 200 201 201 20r 201 72 72 72 72 58 58 202 202 1 8 ,78, 7 8 125 ,1 2 5 18, 184 184 202 202 184 184 60 60 93 93 92 92 187 187 54 54 193 193 193 193 68 68 72 72 224 224 53 53 61,68 6 1 ,6 8 189 189 37, 1 4 1 ,183 183 3 7 ,141, 183 183 9o 244 244 16 16 246 246 162 16, 16, 162 247 247 162 t62 84 84 191 189, 1 8 9 ,191 72 72 23 23 r24 17, 17, 124 17,18,88,125 1 7 ,1 8 , 8 8 ,1 2 5 153 153
sloqur,{gJo ls-rT
t.17,
List of Symbols
9ZZ I9 LT
vzT,
'09I 'e6'8I z8I 86 6Zr gIU'1,8I'88I t8r 68r 8'I LNI 8'I Lil,VOI t7,I I9 IZr 98r
("r).,r
Q)+r Q)A,I
Q)ot
((.r)z)o.,r T (Q\Dot
+
c"e/e (i t" (r)'t c6
(ite lo lo [.]
dn
lanl not
u(.'.) (.'.) u(.'.) ['*)
-ll.'.ll oll.'.ll , l l '..l l
II-. ·111 II-.·\lp II-. ·\100
0tr 6Zr 7,6r
pp(a),t'
(., ·)R (., .) (., ·)R
68I 8?I I9I
pir
(u),-r [w] wI' [wI'] wI' [wI']
zzr
uJ ta ()j
()j(t)
tT,l 6Zl IZT,VI.TI 67,I LEI,VI
J
tr(-y) rj (t) alarc Be Bf
zl
l"l Q)s f
zl
0 9r EL
,VI 6?,I 'tgl 89I LgI
6Vr 8Ar rz4
87,2 7,t 8 7,LI LI ILI LVI 6z'17, t7,l t8 89 I ?,t'62'Lz'g 8V7, I6I
0ur
LZ 8I 7,LI VI'7,1 VI,ZI
d
d
JWd *7d *!d t--,},{ra}= d
o
l"l'g vlog s6
"zp(z)dt cd., dt
1,11"\ tl ay
)L
4 (a'a)t-u
o
a Q)cb *U
*a
oa {g
(a'u'U) I't''al Wl'"al log'al (og'u) WP'ul Q' )a JIU 'a
[R,.'/T] (fl,'Tr,R)
[00]
T T1 Tg Told 9 T(R) T(R)old T(r) T#(r) TB(r) Tf3(r) To (T(r)) Tp(T(r)) T
71
12, 13, 14, 120 13, 14, 120 12, 14 12 172 95 12 14, 127 129 13, 14, 121 129 123 122 151 148 189 192 129 130 37 61 226 224 185 121 61 123 104, 147 148 147 148 189 183 183, 187, 216 129 93 18, 92, 150, 187 96 ZLT
dan
l"^rf
Q qC(r) R R· R. Rf Rq RT fllr R((, z) [R, id] (R,Ep) [R,Ep] [R q , id]
oK
-(') *["] -[r]
~l(R,po)
I[f
[/'s] (/'s) s
[']
'Tr
Z,L ZL 09 99 86'99 297, 697,'20?,'l0z '69I z9I TI '69I 'gI ugl
IIR
d
LJ
r"
P S (8,f) [8, f] Ep E(r)
12 37 51
,e
q)I:
[R,., E(r)]
VI,7,I 'rI '8I 0zI 'vl'tr'7,r 07,1 IL I9
ldl,t
d>o[v] d> I' [v]
I6I
q)
7,gr'gr
P = {Pd~l Pi. Pl. PMF
l?)s'21
p
191 16, 162 16, 159, 162 13 159, 162 201, 202, 252 252 55, 93 55 60 72 72 73 150 157 157, 158 14, 129 221 128 149 191 248 8, 27, 29, 32 5 63 84 123 27, 29 147 171 17 172 8 32 223 120 12, 14 12, 14 172 13 27
ZI
Jl[
273
Index Index
274
Index Index
A
c C
lines, 77 absolutely continuous on lines, 77 absolutely continuous selfmapping, 173 173 absolutely absolutely extremal self-mapping, ACL,77 ACL,77 discontinuously, 31 31 act properly discontinuously, 174 admissible, admissible, 174 Ahlfors' theorem, 202 202 Ahlfors'theorem, theorem, 153 153 Ahlfors-Weill theorem, Ahlfors-Weill's section, section, 157 157 almost complex structure, 202 202 n), 75 analytically (g,n),75 finite type (g, analytically finite attractive fixed fixed point, 37 37
theorem, 96 Calder6n-Zygmund's 96 Calder6n-Zygmund's theorem, space of canonical canonical base base of the space holomorphic Abelian differentials, 236 236 differentials, canonical form, 36 36 canonical base, 236 236 canonical canonical homology homology base, canonical lift, 121 121 canonical p-qc mapping of C, canonical e , 102 102 canonical J1.-qc canonical J1.-qc mapping of H, 104 104 canonical ;r-qc canonical quasiconformal mapping mapping pr,102 of C 102 with complex C with complex dilatation J1., period canonical matrix, matrix, 237 237 canonical generators, 5, canonical system of generators, 5, 47 canonical system Caratheodry distance, 180 180 Carath6odry distance, Cartan's theorem, 166 theorem, 166 (C, €e)-small, )-small, 248 248 closed geodesiccorresponding closed geodesic corresponding to C-y, C.r, 54 54 closed geodesiccorresponding corresponding closed geodesic to 'Y, 54 54 1, g, 5 genus g, closed surface of genus closed Riemann surface genus g closed surface of genus closed Riemann surface with nodes, nodes, 245 245 coboundary, coboundary, 197 197 cocycle 197 cocycle condition, 197 collar lemma, 174, 249 174,249 colla.rlemma, complete, complete,168 168 complex 18, 88 complex dilatation, 18, 88 complex dynamics, 118 118 complex dynamics, complex structure of a Riemann surface, surface, 1 o f CIF, C / f , 88 of
Aut(X)-conjugate, 36 Aut(X)-conjugate, 36
axis, axis, 38 38 B B point of Teichmiiller base Teichmiiller base point space, space,120 120 Beltrami coefficient, coefficient,16, 16, 17,92, 124, r24,125 r25 Beltrami coefficient induced induced by Beltrami coefficient a Riemannian metric, 22 22 Beltrami 21 Beltrami equation, 21 Beltrami 124 Beltrami differential, differential, 124 Bergman projection, 188 188 Bers class, 199 199 Bers cohomology cohomology class, Bers' Beltrami 153 Beltrami differential, diferential. 153 Bers' embedding, 150 Bers'e m b e d d i n g ,150 problem, 172 Bers' extremal problem, 172 Bers' fiber space, 180 Bers'fiber space,180 Bers' projection, 150 Bers'p r o j e c t i o n ,150 Bers' simultaneous L47 simultaneous uniformization, 147 Bieberbach's theorem, 152 152 area theorem, Bieberbach's area biholomorphic mapping, 2, 246 2, 159, I59,246 biholomorphically equivalent, equivalent, 2, 2, 246 246 Brower's theorem on invariance invariance of domains, domains. 67 67
ofV(R),249 of D(R),249 of o f .R, R , 229 9 otRIF, of fr,/r,32 sz of 166 o f M go,, 1 66
xapul
Index
uorlecgrlceduroc 'I 'ploJluetu xalduroc 69I .(J)J IgI Jo '(u)J I9I Jo ,6J IgI JO 'lgr 'dJ lgl Jo ,gJ T9I JO 097,'6w Jo
of Mg , 250 of T B , 151 of T{3, 151, 161 of Tg , 151 of T(R), 151 of T(r), 151 complex manifold, 1, 159 compactification of M 1 , 244 of M g , 246 conformal mapping, 2, 21 conformal structure, 2, 21 conformal structure induced by a Riemannian metric, 21 conformally equivalent, 2, 21 conjugate in Aut(X), 36 coordinate neighborhood, 2 coordinate neighborhood around p, 2 cover a closed curve, 54 covering, 27 covering map, 27 covering surface, 27 covering transformation, 28 covering transformation group, 28 curvature tensor, 209 x-minimal point, 172
elliptic integral, 6 equivalent, 2, 7, 12, 13, 14, 23, 29. 32, 120, 123, 148, 162, 247, equivalent under r, 32 ergodic theory, 50 exceptional type, 39
'LVZ'7,91 'gtl 'gal '0zl 'Gt '62'tz'?I'gI'zr' L'?,'lualearnba g'1el3e1ur cr1dr11e 69
'adf1 69 leuorldacxe (^roaql crpoS.ra 0g '.;r rapun lualearnba J
F
Fenchel-Nielsen coordinates, 59, 63, 215, 248 Fenchel-Nielsen deformation, 67, 219 first Eichler cohomology group, 198 I-minimal complex structure, 173 FN deformation, 219 FN vector field, 226 formal Teichmiiller mapping, 128 Fricke coordinates, 48 Fricke-Klein embedding, 67 Fricke space, 48 Fuchsian group, 43 Fuchsian model, 40 fundamental domain, 40 fundamental relation, 5, 47 fundamental 2-form, 201
( I 0Z w toJ-Z l"luau€punJ 'g 'uorleler zt l"luauePunJ 6p'ureruop lelueurepunJ ,lapour uersqcnd 67 gp 'dnor3 u€rsqrnJ g7 'a?"ds a{clrd 29'Surppaquraurely-e{rrrJ ,saleurplooc e{?rrd 97 'Eurdderu rellnuqtrel purroJ 961 97,7,'PlpArolte^ NJ ,uorleuroJap 616 Nd 911'arnlcnrls xaldurocleururu-;f 'dnor3 ,(Solouoqoc relqtlg 961 tsrs 6lz' L9'uorl"turoJep uaslerNlarlcuad gv7,'glz ' gg '69 'saleurplooc uaslarNleq?ued
c
G
g vz' 6 wJo wz'rw lo
'1urod 621 leururur-X 696'rosual alnl€Arnc 96'dnor3 uorleruJoJsuerl Eurraloe 96'uorleurrogsue.rl Surrarr,oc (e?eJJns turrarroc lU 27'deru Surraaoc /U'3uua^oc 'elrnc pasolJ € relo? tg 'd punore pooq.roqq3rauel€urproot 6 6'pooqloqqSrau aleurprooc gt'(X)?nV ut ale3nfuoc 16' 6' lualuttrnba flpurro;uoc 'crrleul ueruu€ruerll e IZ dq pacnpur arn??nrls leruroJuoc 'Z reJnlrnrls I6 I€ruroJuoc '6 'Surddeur 16 leuroJuof,
'6I'seceJrns ,lualearnba-.7 uueruerg go flgreg elqerluareJrp 69 ,gg ,1sr,u,1 gg1'uraloaql s.qrszlorC uqaq 6ZI tg7,'T,iT,'93'uorlcunu y eeJC uueruarll 3o uorle.reua3ap 1p6rsace;lns 62'raqurnu uorlf,asrelur crJleruoaE W 7 , 'M , ' 6 p 6 ' u o r l e r a u a 8 a p (uorlcunJ Ig {l3ua1 orsapoa3 p61 'arnlcnrls xaldtuoc Jo uorleuroJep pg 'rrsapoa3 C Ug'arnlelJnc u"rssneC tt
247,warcaq1 flqenp (uraroeql s(llneaqloq 96I gg1'fl.radord Sursearcapecuelsrp ' elartsrP
s
E 661
'elrnc crldqla t 'Lg ,cr1dq1a ZLI 'sse1cfSolotuoqoc ralqcrg
Eichler cohomology class, 199 elliptic, 37, 172 elliptic curve, 4
H 16I'6,(q pacnpur PrluereJrP rru"rllag ?ruol.ur€q 16I,d fq pacnpur FlluaraJrp rurerllag sruoureq '89I I6I ' prlua.ragrp rtu€rlleg cruorur"q gll'uorlrpuoc s(uo?lrueg t8z'uorlerr€^ s(Pr?r.ueP"H
deformation of complex structure, 194 degeneration, 240, 241, 244 degeneration of Riemann surfaces,-241 Dehn twist, 66, 179 differentiable family of Riemann surfaces, 194 discrete, 43 distance decreasing property, 168 Dolbeault's theorem, 195 duality theorem, 227
H
D
Gaussian curvature, 52 geodesic, 54 geodesic length function, 61 geometric intersection number, 72 Green function, 26, 242, 253 Grotzsch's theorem, 138 r-equivalent, 32
Hadamard's variation, 233 Hamilton's condition, 145 harmonic Beltrami differential, 153, 191 harmonic Beltrami differential induced by fl., 191 harmonic Beltrami differential induced by cp, 191
Index Index
.276 !to
218 harmonic map, 218 Hartogs' theorem, 159 159 Hartogs'theorem, product Hermitian product inner Hermitian To(T(r)), 200 200 on ?|("(i-)), Hermitian inner product product Ilermitian
Kodaira-Spencer deformation Kodaira-Spencer 194 theory, 181, 194 theory, 181, 120 K-qc, 78, 78, 120
on 200 on Tp(T(r)), {,("(r)),200 holomorphic automorphic form form automorphic holomorphic -:4), (of weight "";4), 128 L28 (of holomorphic family of Riemann Riemann family of holomorphic surfaces, 194 surfaces, 180, 180, 194 I59,249 249 2, 159, holomorphic function, 2, holomorphic mapping, mapping, 2, 159 I59 holomorphic quadratic differential, holomorphic quadratic differential, holomorphic 73, 7 3 , 1128 28 210 holomorphic sectional curvature, 210 holomorphic tangent space space holomorphic tangent of 1 8 9 , 192 192 o f T(r), ? ( f ) , 189, horizontal trajectory, 142 142 hyperbolic, 37,172 37, I72 hyperbolic complex manifold, 168 168 hyperbolic length, 53 53 hyperbolic Loo-norm, 150 150 hyperbolic,L@-norm, hyperbolic metric, 54 54 hyperbolic metric,
lattice group, 7 lie over a point point p, 29 29 of a mapping, 30 lift lift of 29, 30 lift of of a path, 29, 30 lift limit set, set, 44 limit linear fractional transformation, 34 coordinate, 2 local coordinate, a.roundp, 2 local coordinate around local parameter, parameter, 2 lbcal parameter around p, 2 37 loxodromic, 37 sequence,84 LP-smoothing -LP-smoothingsequence, A-lemma, ,\-lemma, 118 118
I
improved A-lemma, ,\-lemma, 118 118 infinitesimal deformation, 194 194 initial differential, 140 140 initial differential, initial initial point, 28 28 irreducible, irreducible. 174 174 isothermal coordinates, coordinates. 20 20 JJ
Jacobi's 253 Jacobi's problem, 253 K K
Kahler 202 K2ihlermetric, metric,202 Klein-Maskit theorem, Klein-Maskit combination theorem, 250 250 Klein's combination theorem, theorem, 65 65 group, 50, Kleinian 217 L79,217 Kleinian group, 50, 179, Kobayashi distance, 168 168 Kobayashi distance, Kobayashi pseudo-distance,168 168 Kobayashi pseudo-distance,
L
M M 162 iR, 16, 16, 162 mapping class class group of R, marked closed closed Riemann surface genus g, g, 14 of genus 14 marked torus, 12 12 14 marking, marking, 12, 12, 14 coordinates, 179 179 Maskit coordinates, maximal,60 maximal.60 maximal dilatation, 18, 18, 78 78 matrix matrix representation, representation, 35 35 187 measurable measurable automorphic form, 187 measured measured foliation, 73 73 Mobius 34 Miibius transformation, 34 group, 9 modular group, moduli closed Riemann moduli space space of closed g, 16 surfaces 16 genus g, surfacesof ofgenus moduli space space of tori, 9 module, module, 84 84 Mori's theorem, theorem, 92 92 multiplier, 37 37 175 compactnesstheorem, theorem, 175 Mumford's compactness
277
LLZ
xaPuI
Index
b
N
6ZI'ureJoaql uo?srmlJ-ueslerN .uraloa{t s(ueslarN 71 'uelqord uorlezqeer ueslerN 08I gg .leure{ uaslarN gg 'uorsualxe ueslarN IgI'"ululel sn€rx-rreqeN ,e.rn1el.rnc 616 Ieuorlces crqdrouroloq erlrle3au gIU 'eJnle^rn? rf,crll a,rrle3au
negative Ricci curvature, 210 negative holomorphic sectional curvature, 210 Nehari-Kraus lemma, 151 Nielsen extension, 55 Nielsen kernel, 55 Nielsen realization problem, 180 Nielsen's theorem, 14 Nielsen-Thurston theorem, 179 node, 245 nondegenerate, 168 normal solution, 97 normalized Fuchsian model, 47
projective structure, 180 properly discontinuous, 31 pseudo-Anosov diffeomorphism, 179 pseudo-hyperbolic, 172 so-coordinate, 135, 136 so-length, 138 so-segment, 138 ep-distance, 136 ep-geodesic, 136 ep-Iength, 136 ep-segment, 136
gg1 ,luau3es_d gg1 (qfua1-ol gg1 ,crsapoaE_g! 'ecuelsrp-al 991 gg1 ,luaru8es-ol gg1 'q13ua1-d ggl ,ggl ,aleurprooc-d ,cqoqradfq-opnasd 621 621'ursrqdrouroaJlp aosouy-opnasd (snonurluocsrp {1.redord Ig gg1,a.rn1cn.r1s aarlcaford
N
Q qc, 78 quadrilateral, 84 quasiconformal mapping, 18, 78, 79, 81, 86, 120 quasiconformal mapping with Beltrami coefficient j.l, 18 quasiconformal stability of Kleinian group, 217 quasiconformal reflection, 157 quasi-Fuchsian group, 147 quotient Riemann surface of R by r, 33 quotient space, 6, 32 quotient topology, 8, 32
gvu'apou
'lapotu uersqc\{ pezrlerurou 2p 'uorlnlos /6 Ierurou ,ale.reua3apuou 991
gg,uorlrsodurocep slued gg ,J ,tq Jo ?r gg's1ued ef,eJrnsuueueru luerlonb 171'dnolE uersqeq4-rsenb d /gI'uorltegar letu.ro;uocrsenb (dnorEuerurely gp6 '1urod alqnop f.reurp.ro 116 Jo re)"Jrns uueurarg uado f lqrqe 1s 9 leruro;uocrsenb 'rl 91 luarcgaoorrrrerlleg TgZ,'gVZ'sapou Suruado q?lA{Surddeu xalduroc Isuorsuaurp-auo 1'a.rn1cnr1s l€ruroJuoarssnb 'gg 'Ig '62 1' plogueur xaldruoc l?uorsuerurp-euo OaI '81 'gI 'Surddetu purlo;uoarsenb o ,pralep.rpenb 79 8/'cb
u R
uorleur.rogsueJl leuorlc"{ r"eurl Iear .296'elnurro;Ieuor?€rr"^s(rlrneg
Rauch's variational formula, 237 real linear fractional transformation, 34 real Mobius transformation, 34 real special linear group of degree 2, 35 real tangent space of T( r), 201 reciprocity theorem, 227 reduced by {Gl,'" ,Gr }, 174 reduced Teichmiiller space, 122 reducible, 174 reflection, 58 repelling fixed point, 37 reproducing formula, 184 '
vt
791,e1nu.ro; Surcnpolda.r ,1urod paxg Burllada.r 29 gg'uo11caga.r 'elqrrnpar ?lI 'err-ds rellnuqcral pecnpar 771 '{"C' ' ' ''rC} dq pacnpar tLl 247, urc rcaq1 flrco.rdrcar I0Z'(J)Jyo acedslua3uel pa.r gg ,6 ae.t3ap;o dnor3 reeurl (uotl€ruroJsusrl lercads lear snrqol{ Isar ?g
pants, 55 pants decomposition, 60 parabolic, 37, 172 part, 245 path, 28 period, 7 Petersson scalar product, 183 Petersson series, 224 Poincare distance, 51 Poincare metric, 51, 53, 54 Poincare series, 186 Polyakov integral, 218 Pompeiu's formula, 93 potential, 197 principal congruence subgroup of level 2, 42 problem of M. Gel'fand, 76 projection, 8, 27 projective special linear group of degree 2, 35
'g ,f3o1odo1 luarlonb ,g ,aeeds luarlonb
p
69
one-dimensional complex manifold, 1 one-dimensional complex structure, 1 opening nodes, 245, 251 open Riemann surface, 5 ordinary double point, 245
69
o
916,1e.r3a1ur,ror1ef1o4 ggl 'serreseJ€curod 'gg ,19 ,cr.r1aurererurod tg ,a?uelslp arecurod Ig 'sar.rasuossreled 766 gg1 '1cnpo.ld lpl"?s uossreled 'porrad I 8z'qled gv?'yed' , ZLI LE,,cqoqe.red
gg ,6 aar8ap;o dno.rE reaurl arrrlcalord lercads ,uorlce[o.rd LZ,g gz 'pueJ.lec .141.;otualqord 'u u7 la^al Jo dnor3qns acuanlSuoeledrcurrd '1er1ua1od 261 g6 (eln(uroJ s(ntadruod
2278 78
reproducing kernel, kernel, 184 184 reproducing Ricci curvature, curvature, 209 209 Ricci Ricci curvature curvature tensor, tensor 209 209 Ricci Riemann sphere, sphere, 33 ' Riemann surface, 1 Riemann surface, surface of of type type (g (g,,n), n), 75 Riemann surface g , nn,, m ) , 775 5 Riemann m), y p e ((g, u r f a c eooff ttype R i e m a n n ssurface mapping theorem, theorem 25 Riemann's mapping tensor', 209 Riemannian curvature tensor, Riemannian metric, 20 metric Riemannian metric ccorresponding o r r e s p o n d i n gtot off,, 2 23 3 convex theorem, 116 116 Riesz-Thorin's convex Royden's theorem, theorem, 168, 168, 170 170 Royden's
ss same complex structure, 2 same same conformal structure, structure 21 21 same scalar curvature, 210 ' scalar curvature, 210 Schiffer's 233 Schiffer's interior variation, 233 Schiffer-Spencer's variation, 242 variat 242 ion, Schiffer-Spencer's Schiffer-Spencer's variation Schiffer-Spencer's by attaching a handle, handle, 242 242 Schiffer-Spencer's variational Schifer-Spencer's formula, 242 242 Schottky group, 50 50 Schottky group, Schottky space, space, 50 50 Schwarzian 149 derivative, 149 Schwarzian derivative, 51 Schwaz-Pick's lemma, Schwaz-Pick's lemma, 51 Selberg 253 zeta function, 253 Selberg zeta Serre's duality theorem, 196 theorem, 196 Serre's Shimizu's 45 lemma, 45 Shimizu's lemma, Siegel 237 half-space,237 upper half-space, Siegelupper space of infinitesimal space of infinitesimal deformations, 194 deformations, 194 special group unitary group special unitary of ( 1 ,1), 1 ) , 35 35 o f ssignature i g n a t u r e(1, straight line space, 176 straight line space,176 straight line, 176 176 straight line, string theory, 218, 253 string theory,2I8,253 strong deformation, 247 strong deformation, 247 strong space,247 247 deformation space, strong deformation strongly 23 equivalent, 23 strongly equivalent, super 253 surface,253 super Riemann Riemann surface,
Index Index
system of of coordinate coordinate neighborhoods, neighborhoods, 11 system system system of of decomposing decomposing curves, curves, 60 60 TT Teichmiiller Teichmiiller curve, 180 180 Teichmiiller Teichmiiller distance, distance, I25, 125, 162 162 Teichmiiller Teichmiiller mapping, 129 129 Teichmiiller modular modular group, 16, 16, 162 162 Teichmiiller modular modular transformation, 172 transformation, 16, 16, 162, 162, L72 Teichmiiller modular modular transformation transformation group, group, 247 247 Teichmilller Teichmiiller space space 2,2I4 o enus 1 off ggenus 1,, 112,214 genus g, 14, 127, of of genus 14, 127, 2I5 14,120, of 13, 14, of .r?, R, 13, 120, 215 13 torus, 13 of a torus, 1 4 8 , 151 151 1 2 3 , 148, off l , 122, o I 2 2 , 123, 134 theorem, 134 existence theorem, Teichmiiller's existence 138, 190 190 lemma, 138, Teichmiiller's lemma, 134 theorem. 59, 59. 134 Teichmiiller's Teichmiiller's theorem, theorem, 132 132 uniquenesstheorem, Teichmiiller's uniqueness 247 terminal, terminal, 247 140 differential, 140 terminal differential, 28 terminal point, 28 3-manifold, 50 3-manifold, 50 boundary, 75 75 Thurston's boundary, compactifi cation, 75 75 Thurston's compactification, topology of C/f ,8 of of D(R),248 ofV(R),248 of 299 o f R, R,2
r,
clr,
otRlr, sz of fr,/r,32 of of M M go,, 1166 66 of 246 M gn,, 2 46 of M 48 of o f TTgn, , 48 48,125 of 125 of T(R), ?(.R), 48, 125 of of T(r), T(f), 125 torus, torus, 44 trace, trace, 37 37 point, 127, 159, 127,159, the base basepoint, translation of the translationof parameter,62 62 twisting twisting parameter, 142 line, 142 B-horizontal d-horizontal line,
p21'eurural s,1red1o14
Weil-Petersson form, 201, 215, 252 Weil-Petersson metric, 201 Weil-Petersson Riemannian metric, 201,217 Weyl's lemma, 84, 99 Wolpert's formula, 228 Wolpert's lemma, 174
966'elnurro; s,1lad1o14 66't8'etuuray :,lfa6
LTZ'IOZ
'crrlalu ueruuetuarlf uossraladite6
166'crrlatu uossraledlre1\ gl1,' 196'ur.ro; uossraledjra1{ T,gT,'
W
/Il.
(l"rel€lupenb e go xalrel t8 'alpueq e 3urqce11efq uorlerrel
variation by attaching a handle, 242 vertex of a quadrilateral, 84
6p6
v
/\
'??I 'aceds rallnuq?retr 0gI lesralrun 'dnor3 96 uorleuJoJsue.rl Eur.ra,rocl€srelrun 26'aceg.rnsSur.ralroclesrelrun 'SurJelor lZ lesreArun gg 'Sur.raaoclesre^run go sseuanbrun gZ (ueJoaq? uorlezftrrroJrun
uniformization theorem, 25 uniqueness of universal covering, 30 universal covering, 27 universal covering surface, 27 universal covering transformation group, 28 universal Teichmiiller space, 144, 180
u
n
279
6lZ