This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
@l | =snql !(Jrt)n rog (/)o e1rr,n fldrurs IIBr4s a^\ 'tp ! = trtp puz, (C)rZ > ! ll ' a l a l d r u o cs 1 'f1leurg '((S'l'O) E 3oord eqt 'xg Eur,l,o11oJsluatutuoc eq1 '3c) snonulluoc .,(14ea,n-oflluanbasuoc 'snql pue reaurl aallrsod e sl (rr)" o l€uorlcunJ, IBruJou 'o3uaH 'g ,(q peceldar y qll/K pll€^ Q sur€ruar I luotuelels o^oqe erll leql paonpap flrsee s1 ll 'lceduoc-o sl g sV y, X, (t[tn) t J '(t)rtp<|'e)'r >
'g j X lcudruoc roJ tsql s.trolloJ t1 i9 3o slasqns lcedruoc uo ruroJrun oq lsnu acuaEraluoc eql ' u r a J o a q ls . 1 u r q { g ' < 0 ' ( x ) ' o > u o l l c u n J snonurluoJ eqt ol osr/r\lurod s o s € o r _ J u ls u o l l c u n J s n o n u r l u o r J o { . 0 ' ( ! x ) ' o > ) l a u e q l . u a q J 'x 1\x lrql pue *n u! lau ouolouoru ? sl {!r} teqt mou esoddng 'O
< Q)rtp
'+n x u l roJ acurs'0 < (tlc o O ruql 0 < '0 'a,r1l1sodsr .ool .srql < rl uorg s/{olloJ lI 0 0 l€ql otunsse ,(eu arrr toJ :;W r (rt)p o Q sorlclurr ,W ? Q lBrll ir\or{s ol poau ol[ 7' eJnseau e ^ l l r s o d € r o J s l g l o p o l s e J r J J n s { 1 , r e a 1 cl 1 l s n o n u J l u o c , { 1 1 e e m - o sl (d)p qc€e ltql ,{,grrarr ol peeu eA\ '3ootd cql alalduoc oJ
'= (s)^p= J (s)np = J (t)rtp(s)apcq'(x)r+'ot =l! 'acuoq19 uo E uoll3unJalqurnseeru pepunoqi(ue rog uollcv ue Jo r,untlccdg uoserrryoqa 'Z'e
96
96
3 . T h e C o n n e sC l a s s i f i c a t i o n o f T y p e I I I F a c t o r s
(c)
Let {k,: i e I) be a bounded approximate identitv for lr(G) -i . e . ,{ k 1 } i s a n e t s u c h t h a t il.
tl
s y p l l k i l l< @
ano
tim llt,-/- /ll = o
for all f in Lr(G). Then
rim ll0o c(k,)- Oll= o i
for all Q in M*. (Hint: as sup ll
l l o o ( r , , ) - o
also .11(G)is commutative.) If (ki)i€r is a bounded approximate identity for Illc), E cr(k,)r i x o-weakly for each x in 11L
then
We shall use the symbol t to denote the set t =^{l e zrlc;: i nas c o m p a c t s u p p o r t ) . I t i s h o p e d t h a t t h e n o t a t i o n c w i l l s u g g e s tt h e phrase "compactly supported Fourier ^tra.nsform"to the reader' Since (f * d^ = i ;, ^it-is clear that a is an ideal in Zr(G)' It is well-known that C tras a rich supply of f unctions. We gather together some results (which may be found in [Rud], for instance) which we shall need. (Parts (a), (b) and (c) of the f ollowing p r o p o s i t i o n a r e , r e s p e c t i v e l y ,T h e o r e m s 2 ' 6 . 2 ,2 . 6 . 8a n d 2 . 6 . 6i n [ R u d ] . ) Proposition 324. (a) (b) (c)
If K g U C t,^with K compact and U open, there exists f in C suchthatlK(/0, there exists k in C such t h a tl l k l l , . l + e a n dk = l o n K 'ti'i';"tt(C),
ina e > Q, there existsk in t sttchthat llt n in Lr(c). i.l[], . e;'iri partictilar,t is norm-dense
Excrciscs
(3.2.s) Let A = {k e b: llkll, . 21. (a) If k,,k, e A, say that kl I k2 if i<, = t on the support9f [.r, bi this order relation; i.e.,il SnoJ'tfiat A is directed'upwa'rds k,k, e 4,, there exists k, e A such that ki _1 k, fot i = 1,2. (ftint: apply Prop. 3.2.4(b) wit\ e = I ^and K any compact set containingthe supportsof both kt and kr.) (b) Show that A is a bounded apiroxima"seidentity for tr(C). (Hint: since llt ll . Z for all k in A, it is enoughto prove that
n
'{s
'l IETIJAdS{ p0l€rcossB 3r{l eurJap
. { 0 = & ) l + 0 = x ( / ) D : J) L\ =
i (r)Dds :yrgt x} = (gd)n ,(q ,,ecedsqns Jo lasqns posolc € sl g JI
r{O
= x(,iF :(9)J
(r)
) l\ = 1r)Dds ]aI,W 9 X JI
.{0 =
(q)
&)l c 0 = u),r :1 t Ll =T(0 = aF :@)rz r /) = n ds f q n g o r u n r l o e d su o s o ^ J v o r l l o u l J o q
(e)
'n uo 'z'z'€ uolrlulJeq I Jo uollcs u€ 3q D l3.I '[oo1] go 3'19 n = !r se/r\ se parro:d sr (e) uorlc3s ur ruoroor{l € sl (q) lorroqe 1@)t 'I ) 'i ! uary Io pootltoqqSou D uo sallstuo^ I tutlt Llrns st (C)rZ t ! lt puo (D)rl'ut papt pasop o s! I It G) -(Z)"1 = Z puo (C)rl ut papt uo s! {Z lo pootpoqq8nu D Lto saqsyorr I i(g)J ) I\ = @)ot uary'1 ut tas pasolz o s! g lt @) 9'7:g uollpodorf, '([oof] '3c) tlnsar Eutltrollog aq1 fq JoJ palesuaduroc uauo sr srsaqluz(sIErlcads Jo >Ic€l oql 'acllcerd 'slseqluf uI s lerlcods e^rq slos uolalEurs leql sel€ls r,uoroeql 'Z rol€lrqruu€ rlll^\ utrreqn€I rouell[ pel€rqolac eql @)rl ur Ieepl pesolc ,{luo aql sl (^?)131 slseqtu,(s lerlceds e^€q ol pr€s sr J ur 'srsaq1u,{s ? los posolcy I e r l c o d s J o r u o l q o r d p s l l € c - o sa q l o l p o l s l s r sr uoueruouaqd srrll 'lcrJts oq 'rarr.emoq'uec uorsnlcur srql '(-S)f 'S s7 er5qm E u l u l e l u o c J s1 leqt pue leepr pesolc lsellerus aql sl '(j))r? j 'uorl€nlrs = l€rll reels sI ll s uar{,r Ienp aql uI
ft r" 'oT"u,': .(ii(1rra1c) :?l; / l, ^;TlXlto;fl-"1"il -(z)r= !r ecurs..,@)r
(L)I (9),7 ur s1s{xa (e) areql s^\ogs idq'g rcr$ l€rll L dcns / V'Z't / ''(rh7 ur I€epl pasot3B sr (a)t reqt puB (a)1 = Q)t leql ree15-sr 11 JI '({O)= 'f1os:aauo3 @)l :@)fl ) {} = @D l:l'J Jo ? lasq-ns,{ue rog ul les pasolc e '{s ut / acurg 'tc)rl i s tes eql sellrepun posol3 ol (rh7
.J s,(en1e sl TS les a{l '(g)r7 u1 t f,ue roJ snonulluoc sl ./ II€ roJ d = &)/ :J r f} - Ts: rol€lrqruu€ eql eulJep € ro; 'asrcard ad oa ('fEoldctol leura{-llnq polleJ-os €opl slql 'lJ€J uI) '€sre^ ecr^ puB J Jo slesqns Jo sleapl pesolc ruor3 ssed ol ,(e.n IBrnlBu e sl areqJ
('ruro3suerl rerrnoC aill Jo ,(1rrr1lcofuroql osn ol poau [ n o , { ' s l q l - r o 3l 1 l 0 Z t t q f q c n s V u l l l l u r o J ! = / * Z l u q t q c n s 0Z slsrxo ereql luql alou ') ) :s../ les asuop € roJ V ul / J I J o v trt
0 = ll/ - /'211tu'y
uollJv uB Jo unrlccd5 uosarrry oq1 'Z't
L6
9E
3 . T h e C o n n e sC l a s s i f i c a t i o n o f T y p e I I I F a c t o r s
l-cmma 32-t.
Let x e M and let E be a closed set in l.
x e M(q,E) <+ (,f)x = 0 whenever f e Ll(G) ts ,suclt that I vanishes on a neighborhood of E (i.e., E c ht {f)-, where lnt denotes interior); consequently M(qE) is a o-weakly closed subspace of M', (b) spcr(x)=0(9x=0; ( c ) s p ; ( x ) = { 0 ) ( + c r f x ) = x f o r a l l t i n G ( i . e . , x e M s T , a n dx * 0 . (3)
Proof. Let I* = {f e !-'(C): cr(flx = 0). Clearly 1* is a closed ideal in tt(c) -- recal-i that .r,l(C) intrerits commutativity ?rom G. Further, by definition, spo(x) = {. ( a ) T h e i m p l i c a t i o n s ( ) ) a n d ( € ) a r e e a s y c o n s e q u e n c e so f ( b ) a n d (a) of Prop. 3.2.6applied to the closed ideal f* and the closed set t, r e s p e c t i v e l y . T h e s e c o n d a s s e r t i o nf o l l o w s f r o m t h e f i r s t i n v i e w o f the o-weak continuity of the cr(/)'s. (b) If spo(x) = o,-then by (a) (applied to E = 0), we find that c(rx = 0 f o r a l l / i n L ' ( G ) , a n d s o , b y E x . ( 3 . 2 , 3 )( a ) , x = 0 ; i t i s c l e a r , using Prop, 3.2.4, that spo(0) = 6. (c) If If (= sn..(x)) = (0), it follows from Wiener's Tauberian theorem that 1* = 1({0})= ({ , L'(G): /(0) = 0}. Let A be the bounded a p p r o x i m a t e i t i - e n t i t y f o r ^ l r ( C ) c o n s t r u c t e da s i n E x . 3 . 2 . 5 . I t i s c l e a r that the set Ao= {k € A: k(0) = l} is co-final in A -- in fact, k'k, e A, kr 1 k2 and k, e Ao imply k, e Ao. Thus Ao is also a bounded a p p r o x i m a t e i d e n t i t y f o r Z ' ( G ) a n d s o , b y E x . ( 3 . 2 . 3 )( d ) , x = o-w€Bk - lim cx(k)x. k€Ao If, now,rf e Lr1G1,note that ft -i
-. .
) IQ)
- x,Q> dt == 0.
Since / is arbitrary, conclude -- since the dual of ZI(G) is I-(G) -that= 0 almost everywhere (with respect to Haar measure). Since the f unction I - is continuous, c o n c l u d e t h a t < < r . ( x )- x , 0 > = 0 f o r e v e r y / . S i n c e 0 i s a r b i t r a r y , conclude that x e"Mq. Also, by (b), x I 0. Conversely, if crr(x) = x for all t, it follows that . l e(f)x (= ) f(t)ar(x)dt) = /(0)x
for any f in LL(G). So, if x * O, Ix= 1((0)) and so spcx(x)= 1((0))I =
t0). n
The following proposition lists some f urther elementary f acts concerning the notions introduced in Definition 3.2.7; we use the
'A[ ur. x Al. ,(yrea13 7 5 (^x)DOs IIB roJ p ds 5 (r)pcls ecurs 1o ds r t AL >1c1diE I (^x)Dcts '(q) 8'Z'€ Brurua'1 ,(q 'uaqt '(l'n)lU s ^x * 0 ',{1esrarluo3 'L JI Jo tl pooqroqq8tou ,(raro roJ {0) * U%DU esodclns r ds / L os l0 * &)3 stlr{1( 0 = (3)n snqJ 'g = x(3)n os puE '(A'o)w I x(3)n arueq^\ '71j 661")pds leqt selldur (p) uud 'm u\ x fuu ro3 'uaql 'A 3 3 lds puu I = (1.)Btcrll q c n s J u r 3 4 c 1 d ' L J o A p o o q r o q q S r a ua u o s i o ; t O ) = C 4 ! o D t / J i ( e ) .(x(/)D)Dds / l. acueq ig * (L)3 olq,r\'0 = (x(/)n)(3)n leql os O = { * 3 leqt apntcuoJ 'dor4 ,{q) slsrxe '0 = {3 pue i = G)B leql qrns ;r ut 3 ((e) V'Z't rpueq reqro e"qr ug '(x(/)n)Dds q (x)Dds os 16 oraql't tds / L JI = x(3)n(/)n = (x)(3 * t)p = (x)(I * 3)o = (r(/)nXt)p e g = x(3)n (p) '@'o)ltt a (r)to (e) €rurue'I ruorJ s^\olloJ r x leql @'byit S'Z'g e ',{lluanbasuoJ 'Q = g = (f,)/ ter{l os '(L)[,-= lI G)rI e "1r)rn(/)n (1,)t/ oste :(t - s)! = (s)r./ eioq,v' 'x(V)" = rcqr bio51 1c) r ds / L*rlt roJul '0 * (1.)/ acurs '0 = @rc lBql ernsue mou (/)n go .,{.1rnur1uoc 'S u l {eea-o aqt priu g uo uolldunssu oql 4 tte rog g = d(/)n '-((f)rds 8'nn) leql (B) g'Z'€ eruue.I uorJ s/AolloJ lI Jo pooqroqqEgau uodo uB uo ser{slue^ / pun | = (LY leql qcns (C)rZ ut ./ >tctcl
'_[{o"or[A^1 It 3r
'I1osre,ruo3
si^1eo o, -[t,o"o, 'pasolc sr p ds aculs pue 'd loE e,tr 11ero3 (f)Dds f n ds l€rll s^\olloJ t\'.AI u\ f 11erog O = tU)n serldurr O = (/)p ,(1rea13(q)
' (L-){ = (L) {
Pu€ *x(IF = *(x(/)n)
suorlenbe polJlre^ ,(lrsee or{l ruory s^\olloJ sltIl (E) 'Joord 'g = x(rl)n uary'(x)nds {o poor1toqtlStauo uo,(1ptc1yuapt saqsluv^ tl puo (g)n t TI {I 'L {o,t pootltoqqSrauttaaa rcl {O\"* Qf4n <+ D ds , f :/ lds u 1r)Dos 3 (r(/)D)Dds
(;) (e) (p)
:D ut t ilo to! (az)w = (r'nfufiin (c) :-[{r)" o sB i^ ] =o o ,
(q) uaqt'hl {o lasqns1o7o1t1>1oau-o [uo s! I {I i(r)Dos-=1*x)Pds (r) '1{o '(tO)
66
lasqns pasop D aq Z puo'1,r7t x'(9){I
t t ta7 6'f€
uolrFodor4
\ l)r-{ = I $s :1 uollcunJ aql Jo lroddns aql roJ / lds uollttou uorlJv uE Jo unrlcadg uosc,rry aq1 'Z't
r00
3 . T h e C o n n e sC l a s s i f i c a t i o n o f T y p c I I I F a c t o r s
So, Z fi sp cx I 0, for every open neighborhood V of 7; since sp cr is closed, conclude that 7 € sp cr. = ? i vanishes on a neighborhood of (f) lf f e LL(G), tlrrn /i spcr(x) and so, by Lemma 3.2.8 (a), o(/)o(tr)x = 0. Since / was a r b i t r a r y , c o n c l u d e f r o m E x . ( 3 . 2 . 3 )( a ) t h a t c r ( p ) x= 0 . E We conclude this section with an analogue of the statement that
spt(/ * s) g sprEp-t
s.
Proposition 32f0. Let E, and E, be closedsubsetsof T and let E = Er,T, If xre M(a"E1) iori = l-,2,andx= xrxz,thenx e M(c"E). Proof. Casc(i). spo(x,)is compact,for i = 1,2. In view of Lemma 3.2.8 (a), we need to show that cr(flx = 0 wheneverf e Lr(G) is such that j vanishesin a neighborhoodof E. Also, in the case under discussion,we may assumeE, and E, are compact (by replacing fi by spo(x')); then E = Et + E, is also compact. !-et V be a neighborhoodof 0 in f such that f vanisheson E +^V + V. Appeal to Prop. 3.2.4 {a), and pick fi in C such^that /, is identicallyequal to one on a neighborhood of E, and spt /i c E, + V, f or i = 1,2. (Locally compactHausdorff spacesare regular!) Notice that, by Prop. 3.2.9(f), "(/i)xi = xr, i = 1,2. So, for any Q in M*,=
=
dt dt Ldt2 I | ! t Ult r
= JfJftrlfrts, - s)/r(s,+ s, - s) . <(crrr(xr)Xcxr ds dsrds, r+"r(* )),Q, where we have used (i) Fubini's theoremand the o-weakcontinuity of a(g) which ensuresthat c(g) may be "taken inside" a o-weakly defined integral, in the secondequality, and (ii) Fubini's theorem and the substitutionss = l, Jl = I + tt, s2 - t2 tr, in the third equality. Hence
=JJ t{r'sr)h(s'sr)ds,ds, where &(s'sr) = <(cx.r(x1))(orr+rr(xz)),0t and
k(s'sr)= J /tr)/rtr, - s)fz!z+ s, - s)ds.
'""r:)l
I=f
t.r:' !1 ' l3u > ll':"ll 3 )l z/r( zl l f:xl l l t:l>l g l ftx;1 ueql [(*: '"' 'It)] = [(ul l€ql qons les lururouorllro us sl {"1 '"''I:} JI '(O re g
) > . ; o{ 1 r n u r l u o c , ( q € r t r> I > I r o J , > l l ' : r l l l p q l q 3 n s - :I' " ' ' Il :( x ) 0 1 '(A)ru'i x 0 < r pu€,l ul {cld lsrrg:lurg) IIB roJ ( ..,- .. I=!l
-zlr\ , - l r l l ' : *{ lJl " > l(x)01 leql qcns 0 < ) lu€lsuoc u pu€ ,l ul {"1 "" "l} tos I€rurouoquo u8 slsrxo ejsql lerll ^\oqs
(€)
'snonurluoc ,{1Euor1s sJ rlclr{/AIuuollounJ reourl e aq O - (A)f :0 la"I (tt.Z.g) srsIJJexl '@'o)n zxrx t o p n louoc'((q)l'€'0 l € r l l 'xg 'JJ) oplculoc sar8olodol 'slas papunoq lean pue {Ba^\-o eql uo 'ocurs lposolc {11eaa-o sl '(e) B'Z'€ €rurue'1 ^q 'gclq ^ (Z}o)W '(p) 'ctor4 o1 sEuolaq 1 z x 1 ! A p ; 1 I x 1 ! 1 1 ns;l c n p o r d a q l J o q c e a - 6'Z'€ pue (I) ase3 [g ',(1>1eo,n oouoq pue '[1Euor1s zxrx * 1zx1!A;n;1rr1lp; 'slas papunoq uo snonurluoc [ISuorls fllurof sl uoll€clldlllnru eJurs
rrt ' - ' re!(ll"(r:)"ll ';1Ix1!1p1;1ons Gx zx1!31n pue Ix * I"(!F pue g t I;;!a;; leql -eloN 'f18uor1s '((rrtz'E) "ll7ll 'c t t3't{ ql qrns (r t l s { : l t 1 p u e l t ! 1 ' y ;s l o u l r a t a s 'xg rgc)'oprcuroo sernsolJ{€e,lr\pue tuorls oql '(fi)f Jo slasqnsxeluoJ roJ leql anrl sr tl pue 'xeluo3 sl les slql '{Z r rll 4ll 'J ) 4 lt({o} acuaq pue) {ee^\-o aql'6l"sElolaq d leql les oql Jo ernsolc(>1ea,v' (p) (€'Z'€) 'xX pue (q) (S'Z'€) 'xA uorJ si(oltoJ 1r.'147 ur.( f ue rog 'frerlrqr? ax'Ix (1g)ese3 '(r) asec goordaql sapnlJuocslql '{rerlrqre s€,r ocurs 0 '0 = <0'xU)p> leql;o'Arou 'sernsuoruoroegl s.lurqnC Jo uolleJrldde '0 = (zs'.)ry'os pu€ = raqloue la1 tttu"nbosuoJ 0 .{'"'zI.t!).{ -) 'A + zg + Ig u1 paugeruoJsr qJIq^\ u'-'a1rds + A + g I + A + t/ to, eplsul polroddnss\ (2"'z! pue r./ Jo uollnlo^uocorll {11er1uesse sr qcrq,n) (""'z!.t./) rgq^ 'A + A + ? uo s a q s l u B ^ $ ' $ {
ocllou
L
:(r-s)S = (s)r3 puE lrnpord esr,nlurod selouep l o p o q l e r a q / $ ' ( - " - ' N I ' r { ) * / lcnporcl uollnlo^uoJ aql sl (us'.)Z leql alou 'Gs pexrJ s Joc
IOI
uollcv ue Jo unrlJaclg uoselry aq;
'Z't
3. The ConnesClassificationof Typc III Factors
t02
(b)
Note that ll"i,ll = 0 fo.r all..j t Q(x)= Q. Show (by considering - r m a x , l l x ( , lwl o r k s . ) K-lx) that K i e (well-dbfin6d) There existsa boundedlinear functional 0 on Xf, where
fr=fte...olf n copiee
such that
,[,i, "r,]=o{") (c)
for all x in t(lf). There exist vectors rl1, ..., 4r, in lf such that
<xl,,n,>; 0(x)= j.t, =1
(d)
in particular, 0 is weakly continuous. (Hint: look at (b) and appcal to Riesz.) A convex subset of I(lf) is weakly closed iff it is strongly closed. (Hint: the (locally convex version of the) Hahn-Banach theorem says that a closed convex set in a locally convex topological vector space can be separated from any point n outside it by a continuouslinear functional.)
3-3. Thc Conncs Spcctrum of an Action I f a i s a n a c t i o n o f C o n M , w e s h a l l , a s i n D e f i n i t i o n 2 . 5 . 1 3( w h c r e o n l y t h e c a s e G = l R w a s c o n s i d e r e d ) ,d e n o t e b y M o t h e f i x e d p o i n t algebra: Mq = {x e M: er(x) = x Yt e Gl. Clearly^_Ma is a von Neumann subalgebra of 1L For a projection e in W, eMe may be viewed as a von Neumann algebra M" of operators on ran e. Since e € Mq, it follows that a induces an action creof G on M" such that ai@xe) = e(crt(x))e. (The invariance crr(e)= e is needed to ensure that t h i s d e f i n i t i o n i s u n a r n b i g u o u s ,a n d t h a t a e i s a n a c t i o n . V e r i f y this!) Proposition 3.3.1. Let q be an actiott of G ott M; let e, e,ez e P(l'tq) and let E ll be closed. (a)
M.(a",E) = M(q,E) i M.i
(b)
er l er+ sp c(tl c sp o"2;
(c) (d)
) a(q(tt)x)b; i f u e M ( G ) , x e M a n d a , b e I + { d , t h e nc x ( p X a x b = if x e l+[ and iI a and b are invertible operators itt l+:[q, then spo(axb) = spa(.r).
Proof.
(a) If x e M", note that cre(flx = c(f)x for all I i\ Lr(G)
'n uo g to p ttottco tto tol
.€-€-€ uollFodord
ur eJe r{Jrq^\ suorlceford oJoz-uou ,(1uo raprsuo, o, ,rrrg;nffl Ie'luec ' ( n ) 1 E u r u r 3 e pu l l € r { l s l u o r l r e s s eE u r , n o l l o ge q l J o l u o l u o o a q l . J J o l e s q n s p e s o l c e s , { e m 1 es l ( p ) . 1l u q l u o l t l u l J a p e q l u o r J r e e l c s l l I ! '(Gn)a ) a * 0:"n dslu = (D)J :snql paurJop sl '(lr)l ,{q palouop !o 3o urnrlceds sauuoJ oql 'n uo g Jo uorlce u€ sr lc JI .2.€.€ uoIfIuIJa( E
'(gxz)pds
3 (r-q(qxo)r-u;pds = 1x;pcrs e o u r s' s / I \ o l l o Ju o r s n l c u r o s r a ^ o r e q l l(r)Dcts =
-({O} + (x)Pcts+ t0}) j -((q)"cls + (x)Dds + (u)Dos)j (gxa)Dds leql (c)8'Z'€ €ruua'I pu€ OI'Z'€ 'dor4 ruorg apnlcuo3 .(p)
'((p)(e'e'o)'xs 'Jc)
,{8o1odo1{Belr\-o eql ul snonurluoc flaleredas sr uoglecrldlllnru aJurs '= o> = Q)ap
J
=',n ul0 ^u€ JoC (c)
.
?"lrte*l
(
.2"o. ds , n ds = l(t oa _l..c)""
(( e) .;c)
'xl
_[(" rd r'" ^ ;-]
=
z"
=
^i.] r. = _[tr)"0,
=, "o o , _ [t" l '" "0 r ' "T*]
'.{1a1erperuw,r^",,;:o)'f ;i;:r11";:,{'1J%. '1x;"Pds=
1x;Dds
ecueq pu€ ( ^ . 1 Itp a(x)' n aQ)l '| = tp(axa)' p(t)I "ll) L
g0r
uoJlJV uB Jo runrlceds sauuoJ oqJ. .€.€
104
3.
The ConncsClassification of Type III Factors
r(cr) = fl {sp ce: 0 * e e P(z(Mq))); in particular, if Mo is a factor, then t(a) = sp d. Proof.
We shall show that if 0 * e e
P(M'\, then there exists a
non-zero d in PQ@[c\) such that Sp cre= rp o{ ln fact, define d = Y(ueu*: u e U(l/qD. On the one hand, d e Mq since it is the supremum of a family of projections in ifd; on the other hand, it is (bv clear that udu* = d for all u in Lt(L{c1 and so d e (W)' Scholium 0.4.8); thus e e P(Z(MG\). I n o r d e r t o p r o v e S p q e = s p q { i t s u f f i c e s ( b y P r o p . 3 . 2 . 9( e ) a n d Prop. 3.3.1 (a)) to show that, for any closed set E in t, M(o,E) n ItI, t {0} if and only if l+{(o"E)n M; * (0). Since i{" { M; (as e < f, the " o n l y i f " p a r t i s c l e a r ; c o n v e r s e l y s u p p o s e0 I x e M ( a , E ) t 1 M u ; s i n c e x = VxV, therc cxist u,v e U(Mo) such that Qteu*)x(vev*)* 0; then y = eLfxve 10, and it is clear that / e M"; and since e, u, v € Mq, it f o l l o w s f r o m P r o p . 3 . 2 . 1 0a n d L e m m a 3 . 2 . 8 t h a t s p c r ( y )C s p o ( x ) C E , O whence M(",8) n Me t (0), as desired. We shall head towards the main result of this section via a s e q u e n c eo f l e m m a s . Irmma 3.3.4. Let {Vr: j e^A) be an open cover of t and let x e I[. If x 10, there exists f in C such that spt / c V, /or sonte i in h and d(f)x t 0. Proof. Let Io be the set of linear combinations of elements of ll(C) whose Fourier transforms are supported inside compact subsetsof members of the cover {2,}. It is clear that /n is an ideal in Zl(G); hence,the closure r of Ii in tl(G) is a closed-idcalin LrG). If 7 e ( a ) , c h o o s e/ i n f, pick j e A such that / e Vri t!,en, using Prop. 3.2.4 = I and ^spt / g Z,; thus, for each 7 in r, there C such that f(i 0. On the other hand, it is a fgct exists an f in I such that l(7\{ (cf. [Loo], Section 37) that if I is a closed id^ealin LL(G) and lf I I LL(G), then there exists a 7 in t such that i0) = 0 for all f in I. Conclusion: 1o is dense in Zl(G). .. This conclusion, together with Ex. (3.2.3) (a) and the fact that l l . ' ( g ; ; ; < l l g l l , f o r a l l g i n r t ( G ) , c o m p l e t e st h e p r o o f o f t h e l e m m a . E Lcmma 3.3.5. Il e, and ez are non-zero projections in lrt[q,wltich are equivalentrelative to I{ (as in Def. l.l.l), then r1
rra
putt 6r (x)tn = lIIa 6r r)tl,
tvqt Llans(1'1'g uatoaql 'lc) (l)ztrt = g uo ttortcu up sts:rr.aitatg uatla @ L to lootd n hl lo 'W Lto g .d o asoddttg 9-g-€ suur-I lo sttotlcv ato g puD b atal1x ;
= (r)?dpue(',r;tnrn = "rr,1,r#;rt":'r;\f Xll;tj'J""J,rlt9t3' dBlu snonurluoc .{l8uorls € sl aJor{lJI (s1oqu{s ul .g : n) luelulrnba r a l n o o r e h l u o g J o d p u e p s u o r l c e l e q l , { r s l 1 e q se , i , - - [ f = g a s e c otll ol se^los.rnopal3rrlsar e^\ eJoq^\ -- (q) Z't'g uotlrurJoq ul sv
o
" 7' n v U \ n ) z * o 'ocueqpue ' A j -(n + 'il3
-((x)Dds- (d)Dds+ (x)Dos;= - ({)Dds + 11x;Ib;Dos)j (z)Dcrs -111r;ztn;Dos lErll
pue 'zt^ ) zI zz! = z $qr rzelc sr l! 'l 1Ie rog (r)tn z1 = 1")to ,ruij 'o
I *(x)alP tllx'1rrn= z
'r/ leql rlcns g ur.zt Jo acualsrxe aql oJnsue t / , c ' I = d i ( 1 r 1 e n b ec q l p u e r ; g o u o r l l u l J a p e q l -tt^ , (np)n ut u(luaruele orez-uou B slsrxe aJoql'(ra)r)1 r l, puu,( 3o pooqroqqErau € s r l ? a J u r s : t a > r I l e q l a l o u ' r a ( x ) r n z 1 = 1 r a x z 1 1 r n= ( r ) r n s e 'os1e l ( o 7 g ) 4 t r ! r e e l c s l lI '(D t t:(*x)tn dll=tI I0leql t"-l 'dor4 r(q) 3 ,lL i ({)oos - (x)pcts le ql os ((p) O'Z'e lds J (x)pds le ql = nzq aruls 'taxN! = x ((r) I'€'€ 'dbra fq) teqr atou puB 'r?.,{{.zl 'O puv 1nz/161n - rc la.I * @zl)(8)p pue /14j .s lds - 3 1ds leqr qcns '0 'zi Ia V a € esooqJ ol V't't etuue'I asn 1 nz1 ec"urg *nn puu ? 'slsaqlod,(q ,{g : n*n leql qcns ,{ ur n frloruosl leltrud u sl eroql "
'rxaN - tA n*qtqcnsr p (t) roaocuadouE osoorrc \t;"j41t:'(,
qcns ,{lo,rglcadsar(: ut) 0 pu€ l. 3o spooqroqqElau dq til pue n t:-I
'{d
s0r
*'tw u (A"b)I^t 'E
uollcv uE Jo rrrulceds seuuoJ aql
€
106
3 . T h e C o n n e sC l a s s i f i c a t i o n o f T y p e I I I F a c t o r s
7r@oe2)=Br(x)6e* for all t in G and x in M. Proof. If {ar}: (crt}: {Bt},simply define
',[;;:;;;]l l;;;:,, ;1.;l''l
and verify that'l does the job.
I
Thcorcm 3-3-7. Let q be an actiort of G on M. (a) (b) (c)
I(cx)+spct=spog I(cr) is a closed subgroup of t; If B is another action of G on M, wlticlt is outer equivalent to q, then T(a) = r(B).
Proof. (a) If 0 I e e P(Mo), then e is an identity for M" and hence spo"(e) = {0} (cf. Lemma 3.2.8 (c)), so that 0 e spo"(e) G sp cru; so 0 e I(o) and consequently f(cx) + sp d I sp ct Suppose, conversely, that 7L e f(cr) and 7, € sp oq we need to verify that M(q"lO I {0} for 'yr1. Pick neighborhoods Z, of any ndighborhood Z-of (7, + 7, such c v. Since 7, e sp oc there exists a non-zero element tnat ffi x , i n A 1 a , V , 7 . P u t e = V l r p c x . ( x f ) :t e G | a n d n o t i c e ( a s i n t h e p r o o f o f L e - - a i . l . S ) t t r a t 0 * e e - P i U a y S i n c e / , e t ( c x ) ,t h e r e e x i s t s a non-zero element x, in M(a,Vr) n Mo It follows from the definition of e and the fact tliat 0 * xr= ex1, that there exists t in G such that er(xr)x, * 0; set x = ar(xr)x1and notice that x e M(q"V) (as spa(x) c (spo(crr(xr))+ spo(xr))- = (spo(xr; + spo(xr))-
C(V,+ V)- tn. ( b ) F i x a n o n - z e r o e i n P ( M ' \ a n d c o n c l u d e f r o m ( a ) t h a t t ( c r e )+ sp cre= sp de. Since clearly r(cr) ! f("") ! sp cr",infer that r(ct) + f(cr) c sp cxe;allow e to vary and conclude that r(cx)+ I(cx) c f(
'E'tS s^\oqs oIII edft Jo srol3€J Jo ocualsrxocql p a l r q rqxo eq u l 'I 'III adfl 1 1 r ms c d f , 1e s o q l I I B J o s r o t J B J g o s a l c l r u t x S > \ > 0 roJ J o a r c \ 1 1 1 e d , { 1J o s r o l J B J l c r l l ( q ) 0 ' g ' g r ( r 1 1 1 o r o 3r u o r J s ^ r o l l o J l I
D
' ( - ' o )= 0t): JI'Iut (r)
l((t'o) ut \ roJ) {z r u :,1} = (tDs JI '\III : ( r ) = O t ) _ rp u e I I I a d f l g o s t 7 g J I ' 0 I I I odfl 3o aq ol prus sr 111rolceJ V
(r) (O)
.0I.€.€ uolllulJcq
'{t) = (ro)1 = .3c) pue prt = hr os :n O At)t ((c) g'Z.e eurula-r ul r pu€ U, ul , 11f ro3 x = (x)lo ueqt 'N uo er€rl sug e-sr r JI (q) 'seuocrlc^c ar{l 3r€ (1ry clnorE crqdroruosr erll Jo ',(lluanbasuoc pue) 6 3o sdnorEqns posolc 'Joord IcrlrJl-uou fluo aql lerll loeJ aql Jo eJuenbesuoce sr srql (e) '(t) = (rV): uatp'a7rutlnuas sr trI It Q) l ( 1 ' g )t t t \ a u o s t o ! ( Z
'(-'0) = Qtr)-l (t) r u:,1) = @)S (r) l{l) = Qtt): (O)
:s1as3utuo71o! aLfilo auo [1uo ptto auo sr Q;g)1 (e) '6.9'9 [ru11oro3 eurJap '4
'7,9uo lqErom su3 f ue s1 Q aroqrrr '(ao)l = U,tt)l D etqe?le uu€unaN uo,r frerlrqJe ue roJ 'g'g'g'uo1t1u13cq
'N uo JEInpou,, eql $ pue Q slqEre^\ suJ qll^\ palBrcossB,rs./AolJ er€ do pue do oraq^\'(6o)1= (Oo)r tcqt (c) f'g'S pue I'l't sueroeql r u o r J s i r , r o 1 1 ot r3' e r q o 8 1 e u u e u n e l q u o l i ( r e . r l r q r B u B s r l t l J I ' t L =
.(d)J = (n)1 ecuoq
', 'zzt@r^) (B'c'n) i(,r. = ""e6I 1 $
puB 'g 'rr"@r (r, ^) = (o'c'n) '-a@IL :suels,{sleclrutufp spueqroqlo aql uO IBrnl€uor€ oreql l€r{l rBalcsl ll Jo sruslgdrouosr = (,, (,, " " a @ I ,()J . ' a 6 I L)s l s q l s p n l J u o c' S ' E ' €
uorlov ue Jo unrlcrds souuoJer{I '€'E
l0l
3 . T h e C o n n e sC l a s s i f i c a t i o n o f T y p e I I I F a c t o r s
108
that the condition l(lut = ( I ), while s e m i f i n i t e n e s s ,i s b y n o m e a n s s u f f i c i e n t .
3.4- Altcrnativc
l)cscriptions
being
necessary f or
of r(liI)
As the title of this section announces, we shall derive some equivalent dcscriptions of r(fut), which will be useful when it comes to explicit computation. Lcnna
3.4.1. Let q be an aclion of G on a lactor lt[ of type llI.
Then,
r(cr)=n{spB'oi8}. j Proof. If cr 3 B, then r(cr) = r(B) g sp B and so r(cr) c n(sp 8: cx B). The reverse inclusion will be proved once we show t-hat for each j non-zero e in P (Mc\, there is an action B such that ct B and sp a" =sPB. So, suppose 0 I e e P(Mq); since M is of type III, any two non-zero projections in M are equivalent, and in particular, there exists an isometry u in M such that u*u = | and uu* = e. Since e e = t and ctr(u)crr(u)*= e for each t in G; L[d, it follows that crr(u)*cx1(a) = u * d r ( u ) defines a strongly continuous unitary v t so the equation path in M. Notice that for any s,t in C, u* a"(u)) = u* e o.r*"(tt)= Vr+, vrcrr(ur)= u*crt(u)crt( (since u*e = u*): hence, by Ex. (3.1.3) (b), the equation Br(x) = vrcrr(x)rf defines an action B of G on M, which is outer equivalent to Observe now that B.(x) = u*a,(ux u*)u; the operator u may be regarded as a unitary bperator fiom lf to ran e, which sets up an isomorphism between the dynamical system (lr[,G,B) and (M",G,cr")-is a von Neumann nlgebra explicitly, if z(x) = uxu*, then n M'M. isomorphism such that
rsplsuoJlsnu auo '( 1I'Z'E) 'x:I ur s€ uorlBlou orll r{ll/'r;snonurluoJ ,(1>luarrr-o s1 Oh uo leuortounJr€aull snonurluoc*{1Euorls-oltue lcql '(lt.Z'g) .xg u1 pedolclep auo er{l ol JelrrursluorunEreuu Eursn'moqs lsnu euo :slrBlapoql ul IIIJ ol pall^ul sr rapearaq1) 'pasolcf14eam-osl ll JI ,(1uopue pasolc*f1Euo-r1s-o sl las xe^uoc B leql IJEJ e sl lI .G.V'Z 'dor4 'gc)JrsnonuJluocluos Je^\ol f14eam-osr 'lzurrou Euraq 'Q ocurs pus sles p0punoq uo snonulluoc,(1Euor1s ,{ttulol sr uo1lec11dr11nu 'xaluoc € sr ccurs pasolJ*,(1Euor1s-o sl X las aql 'las pepunoq-r.uJou
'll"ll> > ll(z)0a;; {ll(r)0r,11 ll'll '0N t z\ = y les eql l8ql esrlou : r = t p ( t ) ! f t n q t p u e 0 1 I W , q t ( i ( l r l e r a u a EJ o s s o l o u q l 1 , n ) c r u n s s e'e1rurgu1 si 0 JI
'0ux,4v= 0u'Qv"r0,v = Ou1r)jo OJUIS
'Ou"(r{v){= tp tr!)$o(t)l =Qu$(h'o) = (x(!)ro)Qu t = 0N
'uoql acurs) I E t ^ r J l s r u o r l r o s s €l s J r J o q l ' o l l u l J
allq,\{ 'Utl s l O e s B Ju I
'(x10u1,0-y14 =gg)ro)Qa pueOry t rU)Qo= /6Ory ) x :uoruessy ',{14eaalpo}orclrolur Euraq lerEalul eql
tp ?F(t)I
t''o'1= tgoly
IBI{I pue '0g uo rolurado papunoq peulJep . , { 1 1 n . ; S u r u e aeu s l . ( r ? v ) / ( g t e p a u r g c p l o u s r / q S n o q t ) l e r l l s i ' r o l l o J 'elqrlra^ur sr 9y octrs llp,,_t(l)"/ ll | = (r)/ l(q (-'0) uo peurJep uollounJ snonurluoc pepunoq aqt s1'/ u"qi '(U/)rz r ./ Jt 'Joord (fu ,ttt^ g to drrotS pnp aLfi Sutttvuapl a r o a t u . ' € ' V L t o l l r . a sl o p u a a t i l t D s o ' o s l o ' . Q g t o t o t a d o r u 1 o { p o - l p s art|tsod ?qt Io untlcads aqt 'astnoz lo 'sa\ouap 0y ds pqw,$ atla) '(-'0) u 9y ds = ,o ds uatp'141 tto tt13pu suJ , sl O /7 'r't€ uuue-I eql uI dn ue4e1 s1
,o
'ErurualEur,rro1lo3 cls Eururuexa Jo dals lxau lernleu grll
'Z' n't pue I't'€ s€ruruo'I J p u e I ' I ' g r u a r o o r l J g o a c u a n b e s u o JB s r u o l l r o s s p e q l ' I I I e d , { l g 9 s r 7 . 9 'n uo e}eJl s suJ sr r JI {I} = ,o ds lsrlt lJeJ snor^qo eql puB (q) JI 'allulJlrues sr 'Joord 6'9'9 f:e11oroJ ruorJ s^\olloJ uo1lr5ssuaql /.t/ JI
'{1t1tro 1t18pusuJ r, :ro ds} v = (n)l 0 (n)l p suolldycseq o^rl€urollv 't'E
601
3. The Connes Classification of Type III Factors
ll0
[ =
,r=t* nlo
fr,, with lfr, = lf for
n > 0, and
xtn= 1l
(the conjugate Hilbert space) for n < 0.) Thus K is a o-weakly closed convex set which contains of(x) for all l; since f ) 0 and ) lQ)at = l, conclude that
v=!I@o!{;oatex: observe that for arbitrary z in
NO,
= iQ*y)
= I le)."*o!G),o>dt = I /tr).4'6no(x),nok)>dt = .i1a-4f)nq(x), n6k)>, the validity of the assertion. thus establishing Hence,iffeLr(R), oQ(n =o I
oO(flx = o
vx in
^Jo
= o vx in No <+l1a-4|ln6(x)
<+i1a-l)= o €* / vanisheson (so a;rrn mp (9 f vanisheson (sp AOn lRl), following from the equation JOAQJ6= n:rt. Set the last equivalen^ce I = {f e Ir(lR): av(f) = 0} and E = SP AO n,Rl; thb,above statement t r a n s l a t e si n t o / = I ( E ) , a n d h e n c e , s p o e ' = P = I ( E ) - = E , a s d e s i r e d .
Thcoren
3-45. If M is a factor, then r(ln, = RI. n (n(tp aE: Q a fns weight on luI)).
Proof. This is an immediate consequenceof Lemmas 3.4.3 and 3.44. F o l l o w i n g C o n n e s ,l e t u s i n t r o d u c e t h e n o t a t i o n S(M) = n{sp A0 Q a fns weight on lul). Then S(I4) is clearly an isomorphism-invariant;further, if DI is a factor, it follows, from Theorems 3.3.7 and 3.4.5, that S(14 is a
) a I 0 /I
'+'"nlQ- "o ttl'eN)
'yr1 lo1co{ o uo ltl?tau suJ o aq Q ta1
2-g-g uogrl$dor4
d.
'7,1uo lq8ra/rr suJ paxrJ suo fue Jo srural ur sl ll leql (g't'€ rueroorlJ ,(q ualrE leql rano) a3uluc^pe orll seq lsql Utt)l lo uogldlrcsep reqloue rllli( uollcas slql epnlcuoc IIEqs a/,1 1 - ' 6 1r o ^ ( Z r u : , , \ ) n ( 0 ) ' ( I ' 0 ) s l O t l ) ^ Ss e E u r p r o c c u tIII ro (t > r > 0) \ttI '01f1 ad,(1lo rl lt, rolceJ e 'g'v'€, uorllsodo:d g'p'E lueroor4J Jo ecuanbasuoc B sE ,leql osle aclloN pue
,{lrrrssacau sr 0v uor{r,rojfinlo rlttt}iT';'rt"#
::';:ii'::X1: ore ,9v puu 9y eculg llnsar e^oqe aql 'luslcnrnbai(1r-rellun-lluB 'alrurJlruas q n'g'l'E rueJoeqldq'ecuaq n pue':auur sl 60 iholJoql'spto,nJeqlo.ulU ul I pue g41Qyur r IIB JoJ lErll qrns (hl)vUur.{'n} dnort frelrun raleuered-auo |nx'n = H|_axH!'Ja snonulluoc ,{ltuorts E lsrxe lsntu araql 'suolllpuoc esaql flesgcord rapun leql sel?ls-- serqe8leuuerunoNuol suorle^rJep tururacuoc Jo sIJBJeruosuo sarlar ;oord asoq,n-- ([leS] 'gc) re>1eg ol onp llnsor V uJ ut r IIe roJ @)Qu = 11t.-e(14)Qu"r,a tuql qonsg;1u^oJoleradopapunoq A ^ " * r L P X S o l : U ' o S ' ( L ' 0 ) u r r a l u o sr o 3 ( r _ r ' r )5 9 y d s l c q l a p n l o u o r 'v frYvvf = Yv aJuls v9 ds / 0 teql qcnsy'{ uo Q lqEramsuJ B slsrxe araql l€ql sl (lll) uortdunsst oql '(l{)S ;o uoltyul3ap,{g :(l) e (lg) 'IIO:(III)€(II) rfi1 ry '{t} f,v = = (ru)S cls os pue ueqt 5 'W uo ac€rl suJ € sl 1' gr 'i(1es:e,ruo3'(n)S > I l€rtl g't.€ r,ueroaql ruorJ s^\olloJ ll '(t'€'€ 'qI 'Jc) (/t/)l r I ecurg :(rr) 6 (r) .Joord 'U/'t)s
(lll)
/ o '{r) = Un)s (l)
ia1luttnaas s1y,t1 (l)
atv
W
to7ct{
D tto suo!1!puo? Euruol1ot
Jualottnba '9.V.€, uolllsodor4
aqJ
'elluJJlulas sl JrtluoqiY\,(losrcard acuereJJlp ou sr aJer{l leql sr uolllsodord Eur,nollog or{l Jo lueluoc aql '0 reqrunu aql l(q lsour l€ raJJIp snql uec (f,V)Spue (79)1 stos aq1 'rolcuJ B sl ttl Jl
.IUl
u (tt)s = Uu)J
:scruoceqg't'€ r,ueroeql '0{)S Jo sural uI 'n uo 0 t q 8 l a , v ' s u 3 , ( u e r o J C Z V ) ^ S .rual q u n u e r r l l l s o d { u e { q u o l l e c r l d r t l n r u ropun luerJelur lJel sl 9v ds leql r.Icns (-'Ol Jo losqns pasolc
(.rt)r ;o suoJldJrcsaq e^lleurotlv
III
'v'E
rt2 (a)
ibi
3.
T h e C o n n e sC l a s s i f i c a t i o n o f T y p e I I I F a c t o r s
Q" is a f ns weight on M"i
;in
= Ri n dtp Lq":6 * e e P(z@qD: in particutar,if MQ is
a factor,thenr(nfi = nl n sPAO Proof. (a) 11 is clear that 0" is a faithful and normal weight on M.. Since e e Mv, it follows from Theorem 2.5.14r that eD6e c Dpi so
D6"2 eD6e. of a monotonenet {x;} the existence The semifiniteness of 0 ensures in D6 such that xi .t' I (cf. Ex. (2.4.8));then {ex,e) is a monotone net i n D i " w h i c h c o n v e r g e sw e a k l y t o e , t h e i d e n t i t y o f M " i c o n s e q u e n t l y 0 -. i s s e m i f i n i t e . ( b ) I n v i e y o f P . r o p .3 . 3 . 3 a n d L e m m a 3 . 4 . 4 , i t w o u l d s u f f i c e t o show that 1o$" = o9" for non-zeroe in P(Z(MAD. Since tO" g tO, it is trivial to^verify that 0e satisfiesthe KMS condition with respect n t o t h e f l o w ( o P ) " ,a n d t h e c d n c l u s i o n f o l l o w s . Corollary
3-4-E. If M is a factor, then S(tt4) = n{sp aO": 0 * e e
PQ@\)),
for any fns weight 0 on M,with 0eas in Proposition 3.4.7. Proof. Case (i): M is of type III. In this case, 0 € S(M), by Prop. 3.4.6. lf 0 t e e p(z(aQ)), since M is of type III, there exists an isometry u in l+[ such that u*u = | and uu+ - e: the map x - ttxtr+ is a von Neumann algebra isomorphism of M onto M"and hence M" is also a factor of type III; s o , b y P r o p . 3 . 4 . 6a n d P r o p . 3 . 4 . 7( a ) , 0 e s p 4 6 " . Case (ii): M is semifinite. In this cage, 0 | S(luI),by Prop. 3.4.6. We must exhibit a non-zero e i n ? ( Z ( M \ ) s u c h t h a t 0 I s p A O " ,o t , e q u i v a l e n t l y , s u c h t h a t A g " i s bounded. Let r be a fns trace ot M. So, by Theorem 2.6.3, there exists an invertible positive self-adjoint operator H n M such that 0 = r(H.).Pick e > 0 such that e = l6,yr1(H) 10. We know -- by for x in M and I in ft thus x Theqrem 3.1.10 -- ttrut of{r) = 11it*11-it', e uQ if and only if x^ iommutes with lB(H) for all Borel sets E; in -'e particular, e e P(Z(Mv)). It follows from ee ( l/e ( e that
! e Me,+) er(y) < 0(y) < e-rr(y); SO'
('g'p'g [ru11oroJ pu€ (q) f'f'g 'dor4 3o s3oord aql al€llrul :tulH)
'tQfud ) a * o'"Oyorp = Ov)s (q) a,
:(Qw)d ) a* 0 :0v ds)uulUl= Czvl: (e) 'hl totceJ fue rog lBlll /t\oqs
(A'V'e)
sesrJJexfl
E
'perrsap s€ t > r-r t il#ott l€rll os
'zll(r)"ou;1r-r = (x*x)Qz-, (*rxP =
= all(*')"0u;;
"9 "0 = zl1*;o u:frv"oril tt:fivll* N u N' x zl1co'o ' 3 C u e qp u B
'(r*xlPr-r (x*r)lr_ r
=
(*r(x)lr-r ) (*xx)g +"n
>x
(n)l p suolldlrcsoqo^ll€urallv 'r't
€II
Cha p t e r 4 CROSSED-PRODUCTS
T h e c r o s s e d - p r o d u c tc o n s t r u c t i o n w a s f i r s t e m p l o y e d b y M u r r a y a n d von Neumann to exhibit examples of factors of types I, II and III. The set-up is as follows: one starts with a dynamical system (M,G,q.) -- with G not neceSsarily abelian -- and constructs an associated von Neumgpn algebra M (usually denoted by M oo G) on a larger Hilbert space Xf. Section 4.1 discussesthis construction when G is a countable discrete group, and develops some of the features of the crol;sed p r o d u c t ; f o r i n s t a n c e , a n e c e s s a r ya n d s u f f i c i e n t c o n d i t i o n f o r M t o be a factor, is given in terms of the action a. In Section 4.2, we assume that M is sgmifinite and use a fns trace on M to construct a fns weight 0 on M, whose associated modular operator is explicitly conlputed; this description is used to compute the invariant .S(14),when M is a factor. S e c t i o n 4 . 3 i s d e v o t e d t o t h e c o n s t r u c t i o n o f e x a m p l e so f f a c t o r s o f , II* III\ (0 < \ < l)' Practically all these a l l t h e t y p e s : I , , , I * I I t^crossed-p?oduct of L-(X,T,p1 by an ergodic examplej arise"as the g r o u p o f a u t o m o r p h i s m s ;t h e c o n s t r u c t i o n o f f a c t o r s o f t y p e I I I l ' \ e ic groups of automorphisms [ 0 , 1 1 ,r e q u i r e s t h e c o n s t r u c t i o n o f e r g o"dr a tio sets" in the sense of o f a m e a s u r e s p a c e , w i t h s p e c i fi e d Krieger. S e c t i o n 4 . 4 t a k e s u p t h e c o n s t r u c t i o n o f t h e c r o s s e d - p r o d u c t ,w h e 3 G i s a g e n e r a l ( n o t n e c e s s a r i l yd i s c r e t e ) l o c a l l y c o m p a c t g r o u p . f f A = M @qG, with G locally compact and abelian, an action d of I on lf is conitructed. The main reSult of this section is Takesaki's duality theorem which states that M @d t is naturally isomorphic to l4 @ r(t2(G)). This is a genuine dualiiy theorem if it is the case that M = It is shown that such is the case for a fairly large M @ f&zGD. ( t h e so-called properly inf inite) von Neumann algebras, class of which includes all infinite factors. Section 4.5 applies the results of Seption4.4 to the casewhen M is a factor of type III, G = lR and cr = o9, where 0 is a fns weight on ly'.
('(e) asn 's1ql ro3 lecuo8reluocEuorlsazr,ord o l ' ( q ) , ( q ' s a c r 3 3 nrsl t l l 4 l l ' l l t l l ) x e u r > l l u n s ; e r l r e d ( o r r u r 3 ) ,(ue;;ccurs:lulH) '*f1Euoi1$'-o Bu'iEranuoc tqSrr aqt uo s3rrasoql ' (t'tt) {(rt,s)xct" = 1l.s;z '9 ) t's uaql'tX = pue (r{h ) A Z Z,{,X JI (c) 19 r 1's4 *(s'l)I = (/'s)*{ uSql .(Ah , { JI (q) i I ur rurou ur EurEraauoc tqEJraq1uo"i;arreseq1
Dit = '(r)l(r's)t (rXlx) 'o ut s ,o, urui
" r I pue(a)r r I .lI (e) (r'r'l) sasrJraxl
,l ur U'l IIB roJ <1e;t{'11;1I> = < & ' : ( / ' s ) { > E u r f g s l l e s r o l eredo papunoq anbrun oqt s1 (l,s)1 u o { 'g ur. puE s qcee JoJ J'areq,n -- g ,(q pexepur suunloJ pu€ s1r\or t r{ll,!r -- (((l's)E)) xrrlBu enbrun e ,{q poluese:der sr (A)f ul { ^uV t { r o J s r s € q l e - t u r o u o r l u ou e s r { 9 r y . s : 1 , ! l } . r e y n f r l r e d u l ! 9 u r I puu g.trr ! 11ero3 rl o--l -- (r)l {qaroq,n tcl)-i-o $ = u uorlcrrJlluepr 'l'"9 = .g tfl (i')f,,,1 errrm IBrnlBu B sr arer4l , pue $ ur I 11uqde,n rot '- > d?ru € sl ,t Jo luauota uV ., IIB a l l ( r ) t l l 3l e y l - q o n s i l ; ' b ; l -> roJ rf = rg'5re[lh 'r$cere = arunss€ller{s eA{ rrt put (A)f nier$ I '[?tj ul uolltluosarder .ru1-nEar (-tqElr ..ctser)-lJel eql ,rou.O 9 Jo''dsar) r\ / / pue (t"g = (s)tl [.q peulgap) (g)rt to1 srseq luturouoquo ,D I B c r u o u B co q l o l o u a p ( g t 1 : , 1 ) Jo luouelo {1r1uepr eql elouap r tel IIBqs d^ '7,'(, uollcas Jo pue oql le sv .1,t1etqeEp uu€unoN uol e uo g dnoJE (uerlaqe {lrressoceu lou) aleJcsrp olq€lunoJ E Jo uorlc? ue sr rc l€ql arunsse II€rIs e^\ .uorlJes slql lnoqEno:q1 SlJnpord-ptssorJ cltrtsrq'I't'
roJ"uu' rr' toJtt-a= roo 1 ,{ssyres ,{rrfiT lJ'l?.13fr.'r:',"""
Jo {'g} dnorE raleuerud-euo e fq 1g erqaEle uu?uneN uo^ alrurJlruas € Jo lcnpord-pessorc eql s€ alqrssardxa ,[lanbrun i(1yu11uossa,, sI adf rolceJ ? eql uI ,,Je!loq alq€uos€ar,, t l8ql llnsar III Jo 'padoq sl sgcJg^{.uerrrEa:e sluaun8re 3 qll,r\ rep€eJ orll e^Bal 11raa, ll cllslrneq euos 'peelsul isgoord ,reJ r(raa sulBluoJ uollJes sIqI
9II
s l c n p o r d - p e s s oor lce r c s r q ' I . y
4. Crossed-Products
I 16 Definition 4.1.2. With the above notation, define
irt= tx e r(i): I(s,/) e M andl(s,t) = 1-r(i(st-1,e)) for all ,,, ,n G). of M with G (by cr)and also The set ff is called the crossed-product by M @oG. O denotedsometimes Note that if 7 e ft and s,t,u e G, then i(su,tu) = cr,r_Ji(s,t)). It is easy to see that f4 !s weakly closed (in [(il);; it is not mugh harder io verify that M is a self-adjoint subalgebra of f(Xf) contlriningl, and consequently A von Neumannalgebraof operators on ii. (For instance,if 7,,! e M and V = 77, it follows from Ex' (4.1.1)(c) and the fact that M is weakly closed, that V(s,t) e M: further, z(s,t) = I i(s,u)I(u,t) = Ii(s,u)crr-r(I(ul-1,e)) = = E r(s,v/)cr,-17(v,e)
!
ct-r(i(sr-1'u)/(v,e))
= cr-.,(Z(sl-r,e)).) t '
Define n: M - ir Uy tne prescription (n(x))(s,r) = 6rrcrr-1(x). (When there is more than one action floating around, we shall sometimes *-algebra write n- for z.) It is rJpadily verified that tr is a normal isoggorpiism of M into M. Hence n(I4) is a von IJeumann subalgebra = of M: in fact it is precisely the set of those 7 in M for which i(s,r) 0whens#t. N e g t , d e f i g e \ : G ' f ( l f ) b y l e t t i n g ( \ ( u ) ) ( s , l ) = 6 r , u , ,o r e q u i v a l e n t l y , (r(,rixr) = \1u'rt1. It is clegr that \ is a unitary iepresentation of G in'f; i" the identifigation k = tt 6 !2(G), r(u) = I @ ru' It is easilv verified that I(G) g M arLd that (4.1.1)
I(ri)n(x)\(u)* = n(cr.,(x))
for all u in G and x in M. It follows from the above discussion that (n(M) u XG))' c M; the f o l l o w i n g e x e r c i s e so u t l i n e a p r o o f o f t h e r e v e r s e i n c l u s i o n .
'H > tl'((rl)r-'1o)l = (rlXl{n) uollenba 3ql leql parJrra^ flrsee sI lI
'Qr\tt'(ur9o'9no) = (tt'tDr-(>t'o u)
(*)
lcql slee^eruollelnduoc fsee ue '.(zrtrr!'(c rl)r4or tt) = ( tt,8rl)(r t!) 4,r fq uanrEsr uo11ecr1d1t1nru-dnorE aroq,n 'y x .F/sl 1asturi(lrepun osoq^r9 dnorE oql sI 'X o@H {q olouop l1eqs o/h I{cIq/$ 'lcnpoJd lcoJrpruraseql l€ql l1ecar 'usrqdrououroq e sr G/)lnV - ) : rc pup sdnorEelercsrpalq€lunoJ ere X pue H JI (q) '@)*ll erqeEle uu8unsN uo,r dnorE oql lsnf sl "(gx = n ese)srql ur .snqa .n\ qllan palJrlueprsraE(n)1 = (t\E ,(Cf,r Vl1,ttpelJlluaprfJlurnluu ,pue II sr fi uar{I ', II€ JoJ,,p! ='o 1a1'dnorEeloJcslpalq€lunocfue rog ? = .fr snql l(A)f = n pue leuorsueurp-auooq fi lo-I (€) .y.1.9sa1
cl" .1r;111n;x;u s1oy,1 {lrualerrnba ro) sluuoEuJo H:'.tllri,XrT",*?:l'j:rt:: :H
qclf,y. n q X asogl Jo les eql sl 0// JI '[1l1cJ1clxa aroru i,,((9)1 n Q;q)u)-=,2Vr€lncllr8ct ur i(q) ur sf pelerctrolurturoq uns oql '(n)1(((r'n)gfo)u"i'
=f
ler{l ^\orls 'n ) X Jl (c) 'srunselrurJ Jo lou eql Jo l1tu11*tuorls-6 oq1se palordralurEuraqlqErr oql uo serJeseql (r[c,"3 = r l€Hl ,no{S
'nt r-rsJI n = ,_ls J[
'0 '(l's)I
I = (r'sx(n){) I J
fq (t)r ) (n)X eulJap 'D ) n pue (nh r { JI (q) ('pelou uaaq ,ipuCile seq slql ') = n ueq1\) ',;igtr x auros rog (n)1(r)u = { JI [1uo pue g1 leuoturp qln,oql uo palroddns sI I l"ql A\oqs 'n * vls ra^aueq^\6 = (t's){ JI .g ul n auos rog 'leuoEelp qfr? aql uo palroddns st I l?ql 6,es,.7t9, I lo.I (e)
(e'r'r) sssrcJcxfl slcnpord-passorc el0rcsro'I't
Ltl
4. Crossed-Products
ll8
I e f(m def ines a unitary representation/< - u, of K in l21H;;if r, denotesthe left-regular representationof 1{, it is easy to check that for k in K and h in H. It follows that there aulr(lr)af = r" (cr1(/r)) eiists an action d. of K on W(H) such that d1(x) = u*xuf f or all x in W(m and k in K. 'The W(m od K acts on the Hilbert spacetf = lz(K: crossed-product !2(m) which can be natural$ identified with n21Flx K) = t2161. Under this identification, ( z6( l"(ft o))I)(h,k) = E(crk-1(&6r)/,,k) and
= i6, *-orrr'; (r(ko);x&,k) for ho e H, ko e K and i in l2(c). lf ri denote! the (clearly unitary) operatoron !2(G) defined by
(rixa,t) = f(
= iq:o'n,4 ()r/ra( rH(ft0))w*ixlr,t) and
(h,k)= l(cr,-r(/r),tortl; 1wr1&o)w*i) ko-
in view of equation (*), this says that wz6(\H(fts))w* = rc(lto,€x) and w\(ko)w* = \o(er, ks); thus w(W(H) @a K)w* = W(H oo K).
E
Remark 4.1.5. Although the construction of the crossed-product seems to depend upon the Hilbert space lf on which M acts, it is a f act -- which we shall prove in Section 4.4, when dealing wi{r that the isomorphism class of M continuous crossed-products depends only on the isomorphism class of the dynamical system (M,G,a,);explicitly, if (Mr,G,a), i = 1,2, are dynamical systems and if fl; M,' M, is a von Neumann algebra isomorphismsuch that tr o or,t = d2,r o z for all /, then
ft tluo puo Il aart st D uottlo aLlJ 6'1'g [ru11oro3 'a^oqc (e) ur se 'aorJ sr ln ursrqdrourolnu E aql 'r I I roJ JJ aarJ oq ol plBs sr ,,ryuo I Jo )c uollJB uv (q) '0 = r salldrur n u\ K Il€ roJ x({)g = {x 'g'I't uoIfIuIJeC JI aarJ aq ol ples sl .ZVJo g tusrqdrouotneuV (e) [
'oleldruoJs1 '(sr_n= I Eulltnd uo) .yoordaql pue
I ul ,A
G
't)X = ((t 'r-nn){)t-"o (+
g ul sA (r 'sr-n)x = ((r 'r-,?s)I)r-"o<+ g ul sA (r 'sr-n)E= (/,'s)I <+ 's)(1(tz)1) = (r 's)((n)19)q9 9 ut sA (r {(n)1 = (r)1x ueql 'D ) n n'I (q) 's/r\olloJuolilOssseql pu€ 'g ul ,A 9 ul tA
(e 'l)1(d)I-rn= /q) 'DX e = (r'r)((f)ug) e X(Ou = (t)uX (>'r(XQ()u) uaql
'n ) t le'I (€) 'Joord
'g u! n't yo toS ((r'l)g)"n = ({ywn)X <+ ,(g)f r I ( t ' t ) y ( t ) f - n= , { ( r ' 1 ) I ( * r ( n f u ,
igult pupnultllotol
'n t 'l'I't x 147
X
(q) (e)
"uutI
'JolcEJB s\ n IBIII ernsuaqJlg/r.(n'?'n) uralsfs luclueudp eql uo suolllpuoc ao uo$sncslpB ol lxeu urnl eA,\ el^ ssauallulJlrues aql osn 0 D ('(p) Q'7d'xg Jo 'ssaualrurgruras 'n roJ :fulH) uo suJ B sl tqEle,n 0 l€ql ^\oqs t-ry ut I ro3 ((r'r)f)9 = (XDtuJep'n uo 1qE1am suf fue sl O JI (q) '$t1lu e4e?IuqnsuuuruneNuo^ oql oluo 'InJqlleJ B sl g teql e^ord (e) W Jo uoq)aford euo-ruroulcurrou '((r'r)g)z = XZ 8q (4)u - W :Z elurJae (S't't) srslrJexg 'g'oo'I,tt
= gtort^
s l c n p o r d - p 0 s s o JeJl a J c s r c l ' l ' ,
6II
r20
4. Crossed-Products
f,tnn4!W)=IJZ(M)). Proof. Supposethe action cr is free. Then, it follows from Lemma 4.1.7(a) that 7 e MnnJM)' )f(/,e) =0 for t * e )7 = fl(i(e,e))e n(A. Since zo is l-1, tle assumptionI e nJIr|.' forces i(e,e) to belong to z(M), and so, M n not(M)t c not(z(lut); the other inclusion is obvious. If conversely,there exists , * e such that cr, is not free, then (by definition) there exists a Uon-zerox.in M such that x/ =