This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Maximal subgroups
Order
Index
56
Specifications
Structure
G.3
Character
Abstract
Linear
Orthogonal
9
23 :7
23 :7: 3
1a+8a
N( 2A 3)
point
isotropic point
18
28
°18
9:6
1a+9abc
N(3A)
14
36
°14
7:6
1a+8a+9abc
N(7ABC)
@
@
@
504 p power pi part
ind
[6]
1A
@
8 A A 2A
x,
+
X2
+
7
-1
x,
+
7
-1
x.
+
7
-1
Xs
+
7 -1
x.
+
8
X7
+
9
x.
+
9
x.
+
9
@
@
@
@
@
°2(8), L1(64) °2(8), base
@
9 7 7 7 9 9 9 A A A A A A A A A A A A A A 3A 7A B*2 C*4 9A B*2 C*4 fus ind
@
minus point
Ree
point
plus point
@
6 2 3 A A BA A BA A 3B 6A 90
+00
0
-2
0
°0 ° °0 0 °0 -y9 *2 *4 -y9 0
0
-1
° Y7 ° *4*2 °
°1
*2
*4
y7
*2
*4 y7
-1
+00
*4
+
*2
*2
*4 -y9
-1
-1
-1
°0 ° 00 ° 0 ° °
° °
0
+00
2
0 -1
+
0
0
0
~B9
9
3
Order = 660 = 2 2 .3 .. 5.11
Mult = 2
OUt = 2
Constructions
Linear
GL 2 (11) ;; 5 x 2.G.2 : all non-singular 2 x 2 matrices over F 11 ;
Unitary
GU 2 (11) ;; 3 x 2.(G x 2).2 : all 2 x 2 matrices over F 121 preserving a non-singular Hermitian form; PGU 2 (11) ;; G.2; 3U (11) _ 2.G; P3U 2 (11) ;; G 2
Orthogonal
00 (11) ;; 2 x G.2 : all 3 x 3 matrices over F 11 preserving a non-singular quadratic form; 3 PG0 (11) ;; 30 (11) ;; P30 (11) - G.2; 0 (11) ;; G 3 3 3 3 G : the automorphism group of a system of 11 "points" and 11 "lines" which can be numbered (mod 11) so
Biplane
that Li = {Pi+1,Pi+3,Pl+9,Pi+5,Pl+41; any pair of points determines two lines; any pair of lines determines two points; G.2 is obtained by adjoining duality Mathieu
G : the stabilizer of a point in the 12-point representation of M11 ; i.e. the stabilizer of a point and a
Presentations
total in M12 ; becomes G.2 by adjoining an automorphism interchanging points and totals b 5 c d G E G5 ,5,5 E < a
Specifications
Maximal subgroups Order
Index
60
11
60
11
55
12
Structure
660
P power p' part ind 1A
@
@
@
N(2A,3A,5AB)
lcosahedral
point
1a+10b
N(2A,3A,5AB)
icosahedral
total
1a+11a
N(11AB)
point
isotropic point
1a+5ab+10bb+12ab
N(2A), N(3A)
O2(11), L1 (121)
minus point
Abstract
3 4 , D20
1a+10b
12
@
Mathieu
Character
11 : 10
11:5
Orthogonal
G.2
@
@
@
@
12
6 5 5 6 11 11 A A A AA A A A A AA A A A A 2A 3A 5A B* 6A 11A B** fus ind
A
+
o o
0
0
** b11
-2
o
0
-1
10
2
o
0
-1
+
11
-1
+
12
o
o
b5
+
12
o
o
*
ind
1 2
o
5
-1
x,
o
5
-1
+
10
+
x,
-1
b11
2B
6 5 A BB A AB 4A 10A
@
@
@
566 AB AA AA BB AA AA B* 12A B*
-1 -1
o
0
0
0
000
-1
++
0
2
0
0
-1
-1
++
0
0
0
0
r3 -r3
0
++
-1
-1
-1
-1
* o
++
2
o
b5
*
0
0
b5
o
++
2
o
*
b5
0
0
355 6 10 10
12 12
11 fus ind 22
4
8 20
20 20
24 24
24 24
**
11 22
o
6
0
0
0-b11
x,.
o
6
0
0
o
**-b11
Xu
-
10
0
-2
10
-
A A
@
+
**
x.
x"
10
@
duad
++
X2
x.
@
Linear
8
20
o
0
0
000
0
0
0
-1
-1
o
r2
0
0
r2
r2
0
o
0
r3
-1
-1
o
r2
0
0-y24
*7
10
0
o
0 -r3
-1
-1
o
r2
0
0
12
0
0
b5
*
0
o
0 y20
*3
0
0
12
0
0
*
b5
0
o
0
*7 y20
0
0
8
6
*7-y24
[7]
Out = 2
Mult = 2 Constructions Linear
=3
GL 2 (13)
= G.2;
PGL 2 (13) Unitary
x 2.(G x 2).2 : all non-singular 2 x 2 matrices over F 13 ;
=7
GU 2 (13)
=G
P3L 2 (13)
x 2.G.2 : all 2 x 2 matrices over F 169 preserving a non-singular Hermit1an form;
= G.2;
PGU 2 (13)
= 2.G;
3L 2 (13)
=2
=G
3U 2 (13) - 2.G; P3U 2 (13)
Orthogonal
00 3 (13)
Presentations
= 30 3 (13) = P30 3(13) = G.2; 03 (13) = G G = G3.7.13 = (2.3.7;6) _ (2.3.7;7) = <3.TI37=T2=(3T)6=(32T)3=1> G.2 = G3.7.12 = G3.7. 14 _ (2.4.7;3); 2 x G.2 = G4• 6.7
x G.2 : all 3 x 3 matrices over F 13 preserving a non-singular quadratic form;
PG0 3 (13)
Maximal sUbgroups
Specifications
Structure
G.2
Character
Abstract
Linear
Orthogonal
14
13:6
13: 12
1a+13a
N(13AB)
point
isotropic point
14
78
D14
D28
1a+12abc+13a+14aa
N(7ABC). C(2B)
O2(13). L1 (169)
minus point
12
91
D12
D24
1a+12abc+13aa+14aa
N(2A). N(3A)
O (13). base
1a+7ab+12abc+13aa+14a
N(2A 2 )
Order
Index
78
12
@
1092 P power p' part
ind
X,
1A
@
@
@
12 6 6 A A AA A A AA 2A 3A 6A
@
@
@
@
@
@
7 7 7 13 13 A A A A A A A A A A 7A B*2 C*4 13A B* fus ind
@
2
plus point base
@
@
@
@
@
14 6 6 6 777 A A AA AA BB CB AB A A AA AA AB BB CB 2B 4A 12A 8* 14A B*5 C*3
++
+ +
7 -1
-1
o
0
O-b13
X,
+
7
-1
-1
o
0
0
X.
+
12
0
0
0 -y7
*2
*4
-1
Xs
+
12
0
0
0
*4 -y7
*2
X.
+ 12
0
0
0
*2
X,
+
13
-1
-1
X.
+
14
2
-1
-1
0
o
o
++
X.
+
14
-2
-1
1
0
o
o
++
1
4
3
12 12
7
6
14
7 14
7 14
ind
2
[8]
_ <3.TI313=(34T37T)2=1.(3T)3=T2[=1]>;
+
0
0
0
0
0
0
0
-1
++
2
0
0
0
Y7
*2
*4
-1
-1
++
2
0
0
0
*4
y7
*2
*4 -Y7
-1
-1
++
2
0
0
0
*2
*4
Y7
-1
0
-1
-1
-1
2
-1
-1
*
*-b13
13 26
o
++
13 fus ind 26
o o
o r3 -r3
000 0
0
0
4
8 8
24 24
24 24
28 28
28 28
28 28
o
o
0
0
0
0
0
*9
X,.
6
o
0
o
-1
-1
-1 b13
X"
6
0
0
0
-1
-1
-1
X,2
12
0
0
0 -y7
*2
*4
-1
-1
o
0
0
0
*3 y28
X"
12
0
0
0
*4 -y7
*2
-1
-1
o
0
0
0
*9
X,.
12
0
0
0
*2
*4 -y7
-1
-1
0
0
0 y28
XlS
14
0
2
0
0
0
0
o o
r2
r2
r2
X"
14
0
-1
r3
0
0
0
o
r2-y24
X"
14
0
-1 -r3
0
0
0
*
* b13
*3 y28 *9
*3
0
0
0
*7
0
0
0
o r2 *7-y24
0
0
0
GEJ9 BE~} 9
7
Lz(17) Mult = 2
Out
=2
Constructions GL 2 (17) :: 2.(G x 8).2 : all non-singular 2 x 2 matrices over F
Linear
17
;
PGL 2 (17) :: G.2; SL 2 (17) - 2.G; PSL 2 (17) :: G GU 2 (17) :: 9 x 2.G.2 : all 2 x 2 matrices over F 289 preserving a non-singular Hermitian form;
Unitary
PGU 2 (17) :: G.2; SU 2 (17) _ 2.G; PSU 2 (17) :: G 00 (17) :: 2 x G.2 : all 3 x 3 matrices over F 17 preserving a non-singular quadratic form; 3
Orthogonal
Presentations
PG0 3 (17) :: S03(17) :: PS0 (17) :: G.2; 0 (17) :: G 3 3 2 9 G:: <S,TIS =T =(ST)4=(s2r)3=1> _ <s,TIS17=(S4TS9T)2=1,(ST)3=T2[=1l>
Max imal sUbgroups Order
Index
136
18
24
102
24
Specifications
Structure
G.2
Character
Abstract
Linear
Orthogonal
17:8
17: 16
la+17a
N(17AB)
point
isotropic point
S4
1a+9ab+ 16bcd+ 17a+18a
N(2A 2 )
base
102
S4
1a+9ab+16bcd+17a+18a
N(2A 2 )
base
18
136
018
036
1a+9ab+16abcd+17a+18aa
N(3A), C(2B)
16
153
016
032
1a+9ab+16abcd+17aa+18aa
N(2A)
@ 2448 p power pt part
ind
1A
@
@
@
@
@
@
@
@
@
16 9 8 8 8 9 9 9 17 17 A A A A A A A A A A A A A A A A A A A A 2A 3A 4A 8A B* 9A B*2 C*4 17A B* fUs ind
+
+
9
x,
+
9
+
16
0
+
16
+
x,
o o
-1
-1
o
0
0-b17
-1
-1
o
0
0
0
0
0
0
o
0
0 -y9
16
0
o
0
+
16
0
o
0
x,
+
17
X.
+
18
2
0
-2
X,.
+
18
-2
0
0
XII
+
18
-2
0
o -r2
ind
X"
X17
X20
@
@
@
@
@
@
base
@
minus point plus point
@
18 9 8 8 8 8 999 A B A B BA CA AA A AB A AB A A A A AB BB CB 2B 6A 16A B*3 C*7 0*5 18A B*7 C*5
++
x,
Xs
@
@
2 O2(17),
O (17), L1 (289)
-2
+
0
0
0
0
0
0
000
*-b17 -1
-1
++
2
2
0
0
0
0
-1
-1
-1
*2
*4
-1
-1
++
2
-1
o
0
0
0
y9
*2
*4
0
*4 -y9
*2
-1
-1
++
2-1
o
0
0
0
*4
y9
*2
0
*2
*4 -y9
-1
-1
++
2
o
0
0
0
*2
*4
Y9
-1
-1
-1
0
++
-1
-1
-1
0
0
0
0
++
0
0
r2 -r2
0
0
0
r2 -r2
0
0
0
++
0
0 y16
*3
*7
*5
0
0
0
r2
0
o
o
++
o
o
*5 y16
*3
*7
0
o
0
16 16
9 18
9 18
9 18
17 fus ind 34
4
12 12
32 32
32 32
32 32
36 36
36 36
36 36
o
0
r3
r3
-1
143
*
0
o
2
6
8 8
16 16
8
0-1
o
0
0-1
-1
-1 b17
8
0-1
o
0
0-1
-1
-1
-2
0
0
0
16
0
16
0
o
0
0 -y9
16
0
o
0
16
0
o
18
0
0
18
0
0 -r2
18
0
0
18
0
0 -r2
17 34
*
-1
-1
r2 -r2
32 32
o
000
000
* b17 -1
-1
o
0
0
0
0
0
r3
*2
*4
-1
-1
o
r3
0
0
0
0 *13 y36 *11
0
*4 -Y9
*2
-1
-1
o
r3
0
0
0
0 *11 *13 y36
0
0
*2
*4 -Y9
-1
-1
r3
0
0
0
0 y36 *11 *13
r2 y16
*3
0
0
0
o o
0 Y32 *13
*9
*5
0
0
0
*5 y16
0
0
0
o
0
*5 Y32 *13
*7
0
0
0
*3
0
0
0
o
0
*7
*3
0
0
0
*5-y16
0
0
0
o
0 *13
*9 *11 Y32
0
0
0
r2-y16
*5 Y32
[9J
Alternating group A 7 Mult
6
Out : 2
Constructions
Al ternating
3 7 :: G.2 : all permutations of 7 letters; A7 :: G : the even permutations; 2.G and 2.G.2 : the Schur double covers
Lattice
2A 7 :: 2.G : the symmetries of the lattice 1\ 4,b7 whose minimal vectors are obtained from ±(i7;0,O,O) ±(0;i7,O,0) t(1;x,y,z) t(-x;1,y,-z) t(-xyjl,1,l) t(ljxy,1,-1) t(xyjO,z,1) !(-Xjyz,O,-l) ±(_ljO,xy,z) ±(Ojl,-x,yz) by replacing each of x,y,z by one of b1 or b1**, and cyclically permuting the last 3 coordinates
Vectors
3A7 : symmetries o.f the 21 (w)vectors obtained from (20 00 00), (00 11 11), (01 01 wW') by bodily permuting the 3 couples, and reversing any 2 couples (see A6 (hexacode»j the lattice these generate has automorphism group 6U 4 (3).2 (see U4(3»
Unitary
3A 7 has a 3-dimensional unitary representation over F 25 (see U (5» 3
Presentations
G::
G.2:: Maximal subgroups Order
Index
360
Specifications
Structure
7'6
'68
'5
L2 (7)
'68
'5
L2 (7)
120
21
S5
72
Character
Abstract
Al ternating
S6
la+6a
N(2A,3A,38,4A.5A)
point
7: 6
la+14b
N(2A, 3B, 4A, 7AB)
S(2, 3, 7)
la+ 14b
N(2A, 3B, 4A, 7AB)
S(2, 3,7)
la+68+14a
N(2A,3A,5A), C(2B)
duad
la+6a+14ab
N(3A), N(2A 2 )
triad
3
5
x 2
3 4 x S3
('4 x 3):2
35
G.2
@@@@@@@~@
2520 p power
p' part ind lA
24
•• 2.
36
9
4
5
'2
7
@@@@@@@
7
•
H
+62300
x, x,
-1
-2
o
0
b7
n
o
10
-2
o
0
n
b7
+
14
2
:2
-1
+
14
2-1
2
+
15
•
2'
+
35 1
-1
0
4
3
o -, 0
0 -,
-3
0
-1
-1
-1
4
3 6
3 6
o
-2
-1
++
0
0
++
6
2
-1
o
0
++
It
0-2
++
5 -3
o -,
p
-,
12
o
0
H
o
0
H
7 14
° -b7 o
o -, -,
2
2
-1
5 '0
0
+0000000
o -,
8 8
4
-3
5
7 fus ind
0
o -,
o
0
-,
o
-1 -1
-1
2
4
8
6
o
o
o
o
o
o
o
o -, 10 10
24 24
°
0
0
o
0
0
0
o
r3
°
0
o
0
0
14 n
o
0-1
12 12
4
o
-2
14
o
2
-1
r2
-1
o
0
0
14
o
2
-1 -r2
-1
o
0
0
X14
20
-4
-,
o
0
-1
o
o
20
2
2
0
0
o o
-1
X1S
o o
-1
-1
o
o
o o
X16
36
o
0
0
0
o
o
o
° °
r5
1 3
2
3
345
2
2
4
6
10
XI1
0
X12 X13
-
ind
3
6 6
0-1
'2
12
'5
15
02
6
2
0
0
0
XiS
02
15
-1
o
0
-1
X19
02
15
3
0
0
X20
02
21
o
-0
X21
02
21
-3
0
0
X22
02
24
0
0
0
0
-1
X23
02
24
0
0
0
0
-1
6 3
4 '2 '2
3 6
3
8
5 30
,
6
o o
2'2'
2
-1
-1
8
3
24 24
6
° 12
* •
2
*
0
* •
°
24 24
7 fus ind
6 7 6 2' 6 2'
r6
9
•
-200*+
-1
2
6
-b7
n
o
X17
ind
[10]
-1
10
2 XIO
-1
o
ind
24 '2 6 3 5 6 A AB BC AB AB A A A A AABBCABAB 2B 2C 48 68 6C lOA 12A
'20
AAAAAAAA AAAAAAAA 3A 3B 4A 5A 6A 7A Bn fus ind
'5
'0
0
0
o
b7
n
°
n
b7
7 42 21
42
12 12 12
'4
'5
2' 42
30
'4 2' 42
Xzs;026000_r2
o -, -,
-1
Xu
02
24
0
0
0
0
-1
o
b7
..
X27
02
24
0
0
0
0
-1
o ..
b7
X28
02
36
°
0
0
0
2
4
8
6
'2 '2
2'
o
o
+
7 fus ind
X24026000r2
-1
*
*
10 10
24 24
7
L2 (19) Hult : 2
OUt :
2
Constructions GL 2 (19) :: 9 x 2.G.2 : all non-singular 2 x 2 matrices over F,g;
Linear
PGL 2 (19) = G.2; SL 2 (19) =2.G; PSL 2 (19) = G Unitary
GU 2 (19) :: 5 x 2.(G x 2).2 : all 2 x 2 matrices over F 361 preserving a non-singular Hermitian form;
Orthogonal
00 (19) :: 2 x G.2 : all 3 x 3 matrices over F 19 preserving a non_singular quadratic form; 3
PG0 3 (19) = S03(19) = PS0 3 (19) = G.2; 03(19) = G G = G3.9.9 = (2,5,9;2) = < a 5 b c 5 d I (abc)5:(bcd)5: 1 > _ <S,TIS19:(S4TS10T)2:1,(S,)3:T2[:lJ>;
Presentations
G.2:: a4,5,9; 3
3
x G:: G3,9,10 Specifications
Ma.x tmal sUbgroups
Structure
G.2
Character
Abstract
Linear
Orthogonal
20
19:9
19: 18
la+19a
N(19AB)
point
isotropic point
60
57
A5
la+18cd+20a
N(2A.3A.5AB)
icosahedral
60
57
A5
1a+ 18cd+20a
N(2A,3A,5AB)
icosahedral
20
171
D20
la+9ab+18ccdd+20abcd
N(2A). N(5AB)
°2(19), L1(361)
minus point
18
190
D18
1a+9 ab+ 18ccdd+ 19a+20abcd
N(3A), C(2B)
02(19). base
plus point
Order
Index
171
@
@
@
3420
20
9
p power
A
A
pt part
ind
lA
A
A
2A
3A
@
@
@
@
@
10 10 9 9 9 A A A A A A A A A A 5A B* 9A B*2 C*4
@
10 BA AA lOA
@
@
@
@
10 19 19 AA A A BA A A B* 19A B** fus ind
18 A A
2B
@
@
@
o
9
o
-1
-1
000
o
9
o
-1
-1
o
0
0
*
0
0
0 -b5
* -b5
0
0
0
*
0
0
0 b5
* -b5
0
0
0
b19
**
@
@
@
**
b19
*
-1
* -b5
+
0
0
0
0
0
0
0
0
0
0
-1
++
0
2
0
0
0
0 b5
*
b5
*
-1
-1
++
0
2
0
0
0
0
*
-1
-1
++
0
0
0
0
0
0 y20
*3
*9
*7
* b5
-1
-1
++
0
0
0
0
0
0 *7 y20
*3
*9
0
++
-1
-1
-1
-2
0 -b5
+
18
-2
0
+
18
2
0 -b5
+
18
2
0
x.
+
19
-1
x,
+ 20
0
2
0
0
-1
-1
_1
o
0
++
2
0
Xw
+
0-1
o
0 Y9
~
*4
0
0
++
2
0 -1
Y9
x"
+ 20
0
-1
o
0
*4
y9
*2
0
0
++
2
0
+ 20
0-1
o
0
*2
*4
y9
0
0
++
2
5 10
5 10
9 18
9 18
9 20 18 20
20 20
19 fus ind 38
4
n
20
-1
3 6
-1
-1
-1
o
ind
1 2
4
o
10
0
o
0
o
0-b19
o
10
0
o
0
o
0
x"
18
0
0 -2
-2
0
0
0
0
0 -1
x,.
18
0
0 -b5
•
0
0
0 y20
18
0
0
* -b5
0
0
0
18
0
0 -b5
*
0
0
0-y20
18
0
0
* -b5
0
0
0
20
0
2
0
0
-1
-1
-1
o
20
0-1
o
0 y9
*2
*4
Xn
20
0-1
o
0
*4
Y9
x'"
20
0-1
o
0
*2
*4
X,,
@
10 9 9 9 9 10 10 10 10 AABBACAAABA AA BA AA AABABBBCBAA BA AA BA 4A 6A 18A B*7 C*5 20A B*3 C*9 D*7
+ 18
x"
@
++
+
x.
@
19 38
* b5
-1
-1
* b5
-1
-1
o
0
0
0
*2
*4
0
0
0
0
*4 y9
*2
0
0
0
0
0 -1
*2
*4
y9
0
0
0
0
8 8
12 12
36 36
36 36
36 36
40 40
40 40
40 40
40 40
000
0
0
0
0
0
0
0
-1
o
r2
0
0
0
0
r2
r2
r2
r2
*9
*7-y40
2 -1
-1
n-b19
*3
-1
-1
o
r2
0
0
0
0 *17
*7 y 20
-1
-1
o
r2
0
0
0
0-y40 *17
*3
-1
-1
o r2
0
0
0
0
*7-y20
-1
-1
o r2
0
0
0
0 *9
0
o
0
0
r3
r3· r3
0
0
0
0
0
0
o
0 r3 *13 y36 *11
0
0
0
0
*2
0
0
o
0
r3 *11 *13 Y36
0
0
0
0
y9
0
0
o
0 r3 Y36 *11 *13
0
0
0
0
*9
*7
*7-y40 *17
*9
*7-y40 *17
[11]
L2(16) Out : 4
Mult : Constructions Linear
GL 2 (16) ;: 15 x G : all non-singular 2 x 2 matrices over F,6; PGL 2 (15) " SL 2 (15) " PSL 2 (15) " G; rL 2 (15) " (15 x G).4; PrL 2 (15) " !L 2 (15) " P!L 2 (15) " G.4
Unitary
GU 2 (16) ;: 17 x G : all 2 x 2 matrices over F 256 preserving a non-singular Hermitian form;
PGU 2 (15) " SU 2 (15) " PSU 2 (15) " G G0 3 (15)" PG0 3 (15) " S03(15) " PS0 3 (15) " 03(15) " G : all 3 x 3 matrices over F 15 preserving a non-singular
Orthogonal (15)
quadratic form; r0 3 (15) , pr0 3 (15) " !03(15) " P!03(15) " G.4 G0 4 (4) " PG0 4 (4) , S04(4) " PS04 (4) " G.2 : all 4 x 4 matrices over F 4 preserving a non-singular quadratic form of
Orthogonal (4)
Witt defect 1, for example wx~+xlx2+wx~+x3x4; 04(4) ;: G Presentation4
G "
Maximal sUbgroups Order
Index
Specifications
Structur~
G.2
G.4
Character
Abstract
Linear
2 4 :<3 xO lO)
24 : 15:4
la+15a
N(2A 4 )
point L2 (4)
50
5S
A5
A x 2 5
(A5 x2)'2
la+15a+17abc
N(2A,3A,5AB), C(2B)
34
120
0 34
17:4
17:S
1a+17abcdefg
N(17A-H)
30
135
0 30
s3 x 5:4
la+15a+17abcdefg
N(3A), N(5AB)
Orthogonal (15)
Orthogonal (4)
isotropic point
isotropic point
03(4)
non-isotropic point
°2(15),
plus line
@
@
40S0
15
P power pt part
A A
ind
1A
2A
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
-1
°
0
0
0
0
0
0-y17
+
15
-1
o
0
0
0
0
0
+
15
-1
o
0
°
0
0
+
15
-1
o
0
0
0
+
15
-1
°
0
0
+
15
-1
o
0
+
15
-1
o
+
15
-1
o
Xw
+
15
Xu
+
17
-1
2
2
-1
-1
-1
-1
+
17
2
b5
*
b5
b5
*
*
o
o
+
17
2
*
b5
*
*
b5
b5
o
+
17
-1
*
b5 y15
*4
*2
*S
+
17
-1
*
b5
*4 y15
*S
+
17
-1
b5
*
*S
*2 y15
+
17
-1
b5
*
*2
*S
X16
[12]
3
@
@
@
50 4 3 5 A A AB BB A A AB AB 2B 4A 5A lOA
@
5 AB BB B* fus ind
++
15
Xu
@
15 15 15 15 15 15 15 17 17 17 17 17 17 17 17 A A A BA BA AA AA A A A A A A A A A A A AA AA BA BA A A A A A A A A 3A 5A B* 15A B*4 C*2 O*S 17A B*4 C*2 O*S E*5 F*7 G*5 H*3 fus ind
+
x,
5
pair of isotropic points
+
x.
°2(15), base
17
minus line
L1 (255)
*4
*2
*S
*5
*7
*5
*3
0
*4-y17
*S
*2
*7
*5
*3
*5
0
0
*S
*2-y17
*4
*3
*5
*5
*7
0
0
0
*2
*S
*4-y17
*5
*3
*7
*5
0
0
0
0
*3
*5
*5
*7-y17
*4
*2
*S
0
0
0
0
0
*5
*3
*7
*5
*4-y17
*S
*2
0
0
0
0
0
0
*7
*5
*3
*5
*S
*2-y17
*4
0
0
0
0
0
0
*5
*7
*5
*3
*2
*S
*4-y17
-1
-1
-1
-1
-1
-1
-1
000
o
o
o
o
°
o
0
0
0
*2
0
0
*4
0
*4 y15
0
°
0
0
0
+
0
0
000
+
0
0
0
0
0
+
0
0
0
0
0
-1
++
4
0
0
0
++
5
o
o
o
++
3
o
o
o
o
++
3 -1
°
o
* -b5
0
0
0
+
0
0
0
0
0
0
0
0
0
0
0
+
0
000
0
0
0
0
0
° °
0
0
0
0
0
0
0
°
0
@
@
5
2
3
B A
A AB A AB
4B
SA 12A
:+0+0
+
000
@
-1 -1
-1
0
o
° -b5
0
+
0
0
0
+
0
0
0
-1
:+0+0
2
0-1
0
:+0+0
*
++
o
o
o
+
0
°
0
i
-1
Out = 2
Mult = Constructions Linear
GL 3 (3)
-
2 x G : all 3 x 3 non-singular matrices over F ; 3
SL 3 (3) - PGL 3 (3)
= PSL 3 (3) =G;
the points and lines of the corresponding
projective plane can be numbered (mod 13) so that Li = {Pi,Pi+1,Pi+3,Pi+9J; G.2 is obtained by adjoining the duality (graph) automorphism Presentation#
=<s,TIS6=T3=(ST)4=(S2T)4=(S3T)3=IS2,(TS2T)2J=1>
G
Maximal sUbgroups
Specifications
Structure
Character
Abstract
Linear
32 :2S 4
1a+12a
N(3A 2 )
point
32:2S4
1a+12a
N(3A 2 )
line
13: 6
1a+13a+16abcd+27a+39a
N(13ABCD)
L 1(27)
S4 x 2
1a+12aa+16abcd+26aa+27aa+39a
N(2A 2 ), C(2B)
0 3 (3), base
@
@
Order
Index
432
13
432
13
39
144
13:3
24
234
S4
G.2
12
@
5616 p power p' part ind 1A
@
@
48 54 A A A A 2A
3A
@
9 A A
3B
@
@
8
6
A AA A AA 4A 6A
@
@
@
@
@
@
1
+
12
4
3
+
13
-3
4
o
16
0
-2
Xs
o
16
0
x.
o
16
o X8
0
o
0
@
8 8 13 13 13 13 A A A A A A A A A A A A 8A Bn 13A Bn C*5 D*8 fus ind
+
X2
6
0 -1
24
24
A A
A A
2B
4B
@
3 BB BB 6B
@
466 A AB AB A AB AB 8C 12A B*
1
++
0
0
1
-1
-1
-1
++
0
0
o
0
0
0
++
**
*5
*8
+
0
0
0
000
** d13
*8
*5 **
+
0
0
0
0
o
-1
o
0
0
0 d13
-2
o
0
0
0
0
-2
o
0
0
0 *8
*5 d13
16
0
-2
o
0
0
0
*5
*8
+
26
2 -1
-1
2
-1
000
0
0
0
++
2
-2
-1
o
X9
o
26
-2
-1
-1
o
1 i 2 -i 2
0
0
0
0
+
0
0
0
XlO
o
26
-2
-1
-1
o
1 -i 2 i 2
0
0
0
0
Xu
+
27
3
0
0
-1
++
3
3
X,2
+
39
-1
3
0
-1
++
3-1
o -1
-1
-1
@
-3
-1
r3 -r3
o
0
0
0
0
0
0
0-1
o
0
** d13
-1
10000
o
-1
-1
[I3]
U 3 (3)
Unitary group U (3) 3
G 2 (2) , = 2A2 (3);
Derived Chevalley group G2 (2)'
=
Mult
Out = 2
Constructions
=4 x G : all j x 3 matrices PGU (3) = SU (3) = PSU (3) = G 3 3 3
Unitary
GU (3) 3
Chevalley
G2 (2)
= G.2
preserving a non-singular Hermitian form over F 9 ;
: ad joint Chevalley group of type G2 over F 2 ;
G.2 : the automorphism group of a generalized hexagon of order (2,2) consisting of 63 vertices and 63 edges, each object being incident with 3 of the-other type. G.2 : the automorphism group of the F 2 Cayley algebra, whose elements are integral Cayley numbers modulo doubles of
Cayley (2)
integral Cayley numbers (see below). A pair {x,y}
{O,1} of elements with x+Y
~
=1
is either isotropic with
x2 =y2=O (36 cases), non-isotropic with x 3 =y3: 1 (28), or mixed with x 2 =O, y2=l t or vice versa (63).
Cayley (Z)
G.2
the fixed points of 08(2) under its triality automorphism
G.2
the automorphism group of the integral Cayley algebra in which i oo =1, i n+1 =i, i n +2 =j, i n +4 =k define a
quaternion subalgebra for each n (subscripts modulo 7);
~xnin
is integral provided that all 2x n are integral and
the set of n for which xn is integral is one of (0124l, (0235), (0346l, (0156l, (00013l, (00026), (00045), (000123456l or their complements.
Alternatively, they can be generated by the even sums of Xoo' XO' ••• X6 together with 1 = ~Xn' with multiplication defined by the equations 2Xn 2 = Xn -1, 2X OXoo = 1-X 1-X 2-X 4 , 2X oo XO = 1-X 3-X 5-X 6 and their images under the coordinate permutation group L2 (7). Quaternionic
2 x G : the group generated by the 63=3+12+48 quaternionic reflections in the vectors (2,0,0)S (3), (O,a,a)S (12), and (a,1,1)S (48) and their images under diag(±1,±i,±i)S, where 2a = -1-i-/5j+k
Presentation
Maximal subgroups
Specifications
Structure
G.2
Character
Abstract
Unitary
Cayley (2)
28
3+1+2'8·2 • •
1a+27a
N(3A)
isotropic point
non-isotropic pair
168
36
L (7):2
1a+7bc+21a
N(2A,3B,4C,7AB)
96
63
2 -i.\+. "53 'l·g4"2
1a+ 14a+21a+27a
N(2A)
non-isotropic point
isotropic space
96
63
4 2 :D 12
1a+7bc+21a+27a
N(2A 2 )
base
mixed pair
Order
Index
216
Chevalley
isotropic pair
Quaternionic
14
@ 6048
p power p' part ind
lA
@
vertex
root vector
edge
base
@
@
96 108 .,,9
@
6
@
@
96
96
16
A A
A A
A A
A A
A A
A A
2A
3A
3B
4A
B**
4C
12 AA AA 6A
7
7
A
A
8
8
A A
B AB A AA
12
12 AA A A AB 7A B** 8A B** 12A B** fus ind
+
[14]
@
@
24
24
3
A A
A A
BB
2B
4D
6B
o
o
0
BB
@
@
466 C AD AD A AD AD 8C 12C D**
++
6
-2
-3
+
7
-1
o
o
o
-2
-2
2
-2
3
3
-1
7
3 -2
-2i-l
o
7
3 -2
+
14
-2
5
X7
+
21
5
3
o
x.
o
21
3
o
X9
o
21
3
o -2i-3
x"
+
27
3
o
o
Xl1
o
28
-'l
4i
-4i
o
-1
o
o
o
o
i
-i
Xu
o
28
-'l
-4i
4i
o
-1
o
o
o
o
-i
i
o
32
0
-4
-1
o
o
o
0 -b7
**
o
0
o
o
o
32
0
-'l
-1
o
o
o
o
** -b7
o
o
o
o
x,
Cayley (Z)
-1
-1
-1
0
00
2
0
o
-1
2i-l
o
0
°
i
-1 i-1-i-1
2i-l -2i-1
o
o
o
-i
i-1-1 i-1
o
o
o
0
-1
-1
-1
o
o
1
-i
-i
i
-1
o
o
-i
i
i
-i
2
2
2 -1
2i-3 -2i-3
3
2i-3
3 -1
o
-1
o
-1
o
o
-1
o
-1
o
-1
o
-3
++
+
0
o
++
2
-2
++
3 -1
o -1
o
-1
o
0
o
0
++
3
3
o
+
0
o
0
+
0
o
o
o
o
o
0
o
o
+
i3 -i3
-1
o
-1
o
o
o
0
o
o
0
o
o
0
-1
Mult : 2
Out: 2
Constructions Linear
GL 2 (23) :: 11 x 2.G.2 : all non-singular 2 x 2 matrices over F
=G.2;
PGL 2 (23) Unitary
GU 2 (23)
3'
PGU 2 (23) Orthogonal
= 2.G;
SL 2 (23)
23
;
=G
PSL 2 (23)
3 x 2.(G x 4).2 : all 2 x 2 matrices over F 529 preserving a non-singular Hermitian form;
= G.2;
= 2.G;
SU 2 (23)
=G
PSU 2 (23)
00 3 (23) :: 2 x G.2 : all 3 x 3 matrices over F 23 preserving a non-singular quadratic form;
= S03(23) = PS0 3 (23) = G.2; 0 3 (23) = G G = (2,3,11;4) = <s,Tls23:(S4TS12T)2:1;(ST)3:T2[:1J>; PG0 3 (23)
Presentations
Max imal subgroups Order
Index
253
24
24
253
S4
24
253
S4
Structure
G.2
Character
Abstract
Linear
Orthogonal
23: 11
23:22
1a+23a
N(23AB)
point
isotropic point
1a+22bcddee+24abcde
N(2A 2 )
base
N(2A 2 )
base
1a+22bbddee+24abcde
N(2A), N<3A)
22
1a+22bbddee+23a+24abcde
N(11ABCDE), C(2B)
6072
24 12 12 12 11 11 11 11 11 12 A A A AA A A A A A AA A A A AA A A A A A AA 2A 3A 4A 6A 11A B*3 C*2 0*5 E*4 12A
12
23
23
AA
A
A
11
-1
-1
-1
0
0
0
0
0
b23
o
11
-1
-1
-1
0
0
0
0
0
n
b23
+
22
-2
o
0
0
0
0
-1
+
22
2
0
0
0
0
0
0
0
+
22
-2
2
o
0
0
0
0
-1
+
22
2
o
-1
0
0
0
0
0
+
22
2
o
-1
0
0
0
0
0 -r3
+
23
-1
-1
-1
+
24
0
0
0
0 y11
plus point
22 12 12 11 11 11 11 11 12 12 12 12 A A A CB DB EB AB BB BB AB BA AA A A A AB BB CB DB EB AA AA AB AB 2B 8A B* 22A B*3 C*9 D*5 E*7 24A B*7C*11 D*5
+
24
0
0
0
+
24
0
0
+
24
0
+
24
ind
-2 -2
0
2
-1
**
+
0
0
0
0
0
0
0
0
0
0
0
0
-1
++
0
2
2
0
0
0
0
0
-1
-1
-1
-1
-1
-1
++
0
r2 -r2
0
0
0
0
0
r2
r2 -r2 -r2
-1
-1
-1
++
0
0
0
0
0
0
0
0
r3 -r3
r3 -r3
-1
-1
++
0 -r2
r2
0
0
0
0
0 y24
r3
-1
-1
++
0 -r2
r2
0
0
0
0
0
-1
-1
0
0
++
-1
-1
*2
*5
*4
0
0
++
2
0
0 y11
0
*4 y11
*3
*2
*5
0
0
++
2
0
0
0
*5
*4 y11
*3
*2
0
0
++
2
0
0
0
*2
*5
*4 y11
*3
0
0
++
0
0
0
0
*3
*2
*5
*4 y11
0
0
1 2
4
3 6
8 8
12 12
11 22
11 22
11 22
11 22
24 24
24 24
o
12
0
0
0
0
o
0-b23
o
12
0
0
0
0
o
0
-
22
0
-2
r2
0
0
0
0
0
0
r2
r2
-1
-1
o y16
-
22
0
-2 -r2
0
0
0
0
0
0 -r2 -r2
-1
-1
-
22
0
-r2 -r3
0
0
0
0
0 y24
*7
-1
-
22
0
-r2
r3
0
0
0
0
0
*7 y24
22
0
r2 -r3
0
0
0
0
0-y24
22
0
r2
O.
0
0
0
0
24
0
0
0
0 y11
*3
*2
*5
*4
0
0
o
0
24
0
0
0
0
*4 y11
*3
*2
*5
0
0
o
24
0
0
0
0
*5
*4 y11
*3
*2
0
0
24
0
0
0
0
*2
*5
*4 y11
*3
0
24
0
0
0
0
*3
*2
*5
*4 yl1
0
-
x,.
°2(23), base
*3
x"
minus point
1
++
o
-
L (529)
@@@@@@@@@@@@
AA A A B* 23A Bn fus ind
+
x'"
°2(23),
24
P power p' part ind lA
Xn
= G3,8,11
Specifications
@@@@@@@@@@@@@@
x.
G.2
r3
11 22
23 46
r3 -r3
*7 *11
*5
*7 y24
*5 *11
-1
-1
-1
-1
*3
*2
*5
*4
0
0
0
0
0
*4 y11
*3
*2
*5
0
0
0
0
0
0
*5
*4 y11
*3
*2
0
0
0
0
2
0
0
*2
*5
*4 y11
*3
0
0
0
0
++
2
0
0
*3
*2
*5
*4 y 11
0
0
0
0
23 fus ind 46
4
16 16
16 16
44 44
44 44
44 44
44 44
48 48
48 48
48 48
48 48
**
000000000000
44 44
**-b23 *3
0
0
0
0
0 y16 y16
o
*5 y16
0
0
0
0
0
-1
o
*5 y16
0
0
0
0
0 *17 y48 *19 *13
-1
-1
o
*5 y16
o·
0
0
0
0 y48 *17 *13 *19
*7
-1
-1
0-y16
*3
0
0
0
0
0
*7-y24
-1
-1
0-y16
*3
0
0
0
0
0 *11
0
*7 y44 *19
*9
*5
0
0
0
0
0
0
*5
*7 y44 *19
*9
0
0
0
0
o
0
0
*9
*5
*7 y44 *19
0
0
0
0
0
o
0
0 *19
*9
*5
*7 y44
0
0
0
0
0
o
0
0 y44 *19
*9
*5
0
0
0
0
*7
*5
*3
*3
*5 y16 y16
*5 *11 *17 y48 *5 y48 *17
[15]
-
£)
Out =
22
S5
S5
26
65
65
300
325
300
'20
'20
26
24
°24
°26
52: '2
Index
Order
: °48
: °52
I
: 52: 24
G.2,
: 08 x S3
: '3: 4
: S5 x 2
: S5 x 2
: 52 :(4XS ) 3
G.2 2 3
: Q8
x S3
: '3: 4
I
: H.2
G.2
'a+13ab+24abcdef+25aa+26aacc
: H.2 2
L2 (5)
C(20)
N(2A), N(3A)
13
7
5
(*) There is no group 2.G .2.1' See the Introduction: 'lsoclinism'
15
~12.G.21112.G.221~G'~14 L:J L(*)--l
0"2(25), base
0;;(25), L, (625)
L2 (5)
C(2C)
N('3A-F), C(2B)
point
Linear
N(5A 2 )
Abstract
Specifications
GEJEJ[~~}5
'a+'3ab+24abcdef+25a+26aacc
'a+ '3b+25a+26a
'a+ '3a+25a+26a
'a+25a
Character
: 26:4
I
: 5 2 :24:2
G.2 2
G =
Structure
Maximal SUbgroups
Presentation
G0 4 (5) = 2 x G.2 2 : all 4 x 4 matrices over F 5 preserving a quadratic form of Witt defect ';
Orthogonal (5)
PG0 4 (5) = G.2 2 ; S04(5) = 2 x G; PS0 4 (5) = 04(5) = G;
G0 3 (25) = 2 x G.2, : all 3 x 3 matrices over F 25 preserving a non-singular quadratic form; PG0 3 (25) = S03(25) = PS0 3 (25) = G.2,; 03(25) = G; r0 3 (25) = 2 x G.2 2 ; pr0 3 (25) = I0 3 (25) = PI0 3 (25) = G.2 2
PGU 2 (25) = G.2,; SU 2 (25) = 2.G; PSU 2 (25) = G
GU 2 (25) = 13 x 2.G.2, : all 2 x 2 matrices over lF 625 preserving a non-singular Hermitian form;
rL 2 (25) = (3 x 2.(G x 4).2,).22; prL 2 (25) = G.2 2 ; IL 2 (25) =2.G.2 2 ; PIL 2 (25) = G.2 2
PGL 2 (25) = G.2,; SL 2 (25) = 2.G; PSL 2 (25) = G
GL 2 (25) = 3 x 2.(G x 4).2, : all non-singular 2 x 2 matrices over F 25 ;
Mult = 2
Orthogonal (25)
Unitary
Linear
Constructions
Order = 7,800 = 23 .3.5 2 .'3
Linear group L2 (25) = A,(25) = U2 (25) = S2(25) = 03(25) = 04(5)
plus point
minus point
°3(5 )
°3(5 )
isotropic point
Orthogonal (25)
non-isotropic point
non-isotropic point
isotropic point
Orthogonal (5)
Ut "-"
N
~
~ N
-
.:::l
12
2q
7aoo p power p' part 1nd lA
0
0
1
2
-2
2
2q
2q
25
26
26
26
+
+
+
+
+
+
+
X8
X9
XIO
Xll
XI2
X13
X,.
XIS
2 -r2
-1 -r2
-1 -r2
r2
-1
o
o
o
o
o
o
o
2q
26
26
26
26
26
26
X23
X24
X2S
X26
X27
X28
X29
-1
0
2 r2
r2
0
o
2q
0
0
1
1
1
1
-1
-1
-1
o
o
o
2q
X2I
-1
o
o
o
2q
2
5 10
0
0
0
0
0
o
o
o
o
o
@
-1
*q
*6
*3
o
o
o
o
o
o
o
-r2
r2
o
o -r2
r3
*7-y2q
*7
*7 y2q
-r3 y2q
r3
*7
r2
0
0
0
0
0
o
o
o
0
0-y13
o
o
o
-1
o
o
o
*5
-1
-1
0
0
0
0
0
0
*6
*q
*2
*3
-1
*2
*3
@
0
0
0
0
0
0
*q
*6
*3
-1
*6
*q
-1
_1
13 26
0
0
0
0
0
0
*2
*3
*6
*q
*2
*3
-1
-1
13 26
o
0
0
0
0
0
0
*3
0
0
0
0
0
0
++
*5
*q
*6
0
0
0
0
o·
0
:
:
13 fus 1nd 26
*3
-1
0
0
0
0
0
0
-1
0
0
0
0
0
0
0
0
0
0
0
0
o
o
o
0
@
@
@
@
@
@
0 0
o o
o y 16
*3
*5 yqa *5 *13 * 17 y qa * 19
*3-y16 *17 *11
o
*5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*9
*9· *7
*9 *15 *23
*7 *23 *11
0 *15 *23 *21 y52 *19
*5 *11 *17
*3-y16 yqa
*21 y52 *19 0 *23 *11 y52
o
*5 y 16
0
0
o
*5 *19 yqa *17 *13
o
o y16
*5
0
0
o
*3 y16 y16
*5 Y 16
0
0
000
o
*9
*5
o
o y52
o
*9 *15 *23 *21 y52
o *19
*5
o
o
000
*3 y16
o
o
o
r
r
[
[
00
52 rus 1nd 52
o
o
o y 16
52 52
52 52
52 52
*7 *23 *11 y52
o
52 52
o
o
I
+
o
o
o
o
0
o
o *9
52 52
qa qa
o
o
o
o
o
o
o
o
++
++
++
++
+
+
0
0
0
-1
I I I
+
++
++
++
0
0
0
-1
*5 y13
*5
*q
*6
*3
*2
o
o
o
0
*7
0 0
0 0
0
0
0
0
*3
000 0
*6
*q
*2
*3
0
*2 y13
-1
*2
*3
*5 y13
*5
-1
-1
*q
*6
*3
*2 y13
*q
*6
0
o
o
*6
*q
*2
*3
*6
*q
0
1
o
o
o
r2
-1
*5
o
*5 y13
1 -1
0
0
0
0
0
*7 *11 qa qa
o
0 y13
0
1
o
qa qa
qa qa
o
o
16 16
o
o
@
r3 -r3
*5 *11
*5 y2q
o
o
16 16
r2 -r2
r2 y2q
0 r3 -r3
o
o
q
o
o -r2
0
r2 -r2 -r2
0 r2 -r2
2
0
0
0
0
0
0
0
++
2
0
0
0
0
0
0
o
1
1
-1
++
*2
@
0
o
-1
@
++
++
-1
@. @
@
@
@
@
@
@
@
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o o o
o
o
o
o
o
o
0
0
o
0
o
o
000
10 10
o
r5
o
o
o
-1
-1
o
o
0
o
a
o
-1
0
1
-1
0
0
12
q
o
0
0
1
-1
o
0
6
2
o
q -q
0
6 -6
0
0
0
0
o
o
I
I
+
00
00
++
++
+
+
+
+
++
o
o
o
o
o
o
15
0
I I I I 1 I I
02
02
02
02
02
02
02
20 fus 1nd 20
o
1
-1
-1
0
0
0
0
1
o
0
1
-1
1-1
1
-1
-1
1
0
5
0
0
o
5
1
q
q
5
0
0
0
5
1
q 6 6 5 5 120 120 12 12 12 12 12 12 13 13 13 13 13 13 A A A AC AD AC BD A A BB AA BA AB FB EB BB AB DB CB A A A AC AD AC BD A A AA AB AB AA AB BB CB DB EB FB 2C fus 1nd 2D qB 6B 6C lOA lOB fus 1nd BA B* 2qA B*5C*11 0*7 26A B*5 C*9 0*7 E*3F*ll
@
1
2
2
2
2
2
2
0
2B
A
A
26
@
-1
++
++
++
++
++
++
++
+
++
o
0
0
*5-y13
*2-y13
*5-y13
*5
*q
*6
-1
-1
13 26
o
o
o
o
0 0
0 0
o
-1
*5~y13
*5
*q
*6
*3
*2
o
o
000
-1
*3
*2-y13
*6
*q
*2
*3
0
0
*2-y13
*5-y13
-1
o
o
2q 2q
o
2q 2q
r3
13 26
o
o
r3 -r3
13 26
0
*5
*q
*6
*5-y13
*2-y13
*6
*q
000
-1
*6
*q
*2
*3
*5-y13
o
-1
0
0
0
0
0
*5
o
o
000
-1
12 12
@
o
0
-r3
@
o
000
1
@
000
0-y13
-1
-1
A
.;2
-1
0
o
-1
-1
-1
1
1
6A 12A
AA
12
AA
12
AA
13
@
13 13 13 13 13 A A A A A AA A A A A A A B* 13A B*5 c*q 0*6 E*3 F*2 fus 1nd
@
12
@
AA AA
@
1 -r3-y2q
-1
-1
-1
-1
-1
-1
2-3
-3
5 10
1
1
0
o
-1
~1
-1
-1
-1
3
-1
-1
X20
1
-1
-1
-1
-1
-1
-1
-2
o
o
o
2q
-
@
3-2
1
-1
XI9
X22
@
o
o
o
2q
X,8
o
o
0
12
-
X,7
a a
o
o
-2
0
2
0
0
0
0
0
0
o
0
3 6
-1
-1
-1
2
-1
1
0
0
0
O.
0
0
-1
-1
1
o
12
q
1 2
0
2q
+
X7
1nd
0
2q
+
X.
-2
0
2q
+
Xs
26
0
2q
+
X.
+
1
13
+
X3
-2
1
13
+
X2
26
1
1
+
X,
X,.
@
12 25 25 A A A A A A A A A A 2A3A qA 5A 5B
@
@
@
@
@
a
16
o
o
16
o
2q
o
2q
o
X29
X28
X27
X26
X"
X24
X23
X22
X2I
X20
X,9
X,8
X,7
XI.
XIS
X14
X13
0
0
0 1 3 -13
X,O
X9
X8
X7
X.
Xs
X4
XI2
-1
o
0
o
0
0
-1
o
0
o
0 12 -12
1
o
o
o
Xll
0
o
0
o
0
-2
-1
0
0
0
o
X,
X2
o o
o
0
XI
1
1
1
12C
on
A A qC ac
on
@
6 6 AC AC A AC AC
@
6 q q A ··AA
@
"-'"
N Ut
~
~ N
Sporadic Mathieu group M11 Out =
Mult = Constructions
l1_point
G
=- M11 : stabilizer of a point in M12 ;
the automorphism group of the Steiner system 5(4,5,11); automorphisms of the ternary Golay code C12 that fix a coordinate 12-point
G :: M11 : stabilizer of a total in M12 ;
automorphisms of the ternary Golay code C12 that fix a weight 12 word (total word); in particular, the coordinate permutations that fix the set of 22 words obtained from :(-;++-+++---+-) by cyclic permutations of the last 11 coordinates
---v •
a
Presentations
Hax imal subgroups Order
Index
120
b 5 c
d
Specifications
Structure
Character
11
M1O ;; A6'2
660
12
1~~
120
Abstract
'11-point
12-point
1a+10a
point
total
L2 (11)
1a+11a
total
point
55
M :2;; 32:Q8.2
1a+10a+~~a
N(3A 2)
duad
quadrisection
66
55
1a+10a+11a+44a
N(2A,3A,5A)
hex ad
duad
MS:5 3 - 2~S4
1a+10a+11a+44aa+55a
N(2A)
triad
tetrad
165
9
@@@@@@@@@@
7920 p power
pi part
ind
x,
x.
lA
~8
18 8 5 6 8 8 " 11 A A A A A A A AA A AAAAAAA A A 2A 3A ~A 5A 6A 8A Boo 11A B** A
+ +
10
2
2
0-1
o
10
-2
o
0
o
10
-2
o
0
+
11
3
2
-1
o
16
0
-2
o
16
0
-2
x, 55
-1
-1
-1
i2 -i2
-1
-1
-1
-1
i2
o
-1
-1
0
o
0
0 b11
0
o
0
0
o
0
o
+
0
-i2
-1
x. x"
o
-1
o
0
o
-1
-1
o
10
0
**
** b11
0
0
o
0
-1
Hult = 2
Out = 6
Constructions Linear
GL 2 (27) :: 13 x 2.G.2 : all non-singular 2 x 2 matrices over F 27 ;
PGL 2 (27) ;; G.2; SL 2 (27) ;; 2.G; PSL 2 (27) ;; G rL 2 (27) ;; (13 x 2.G.2).3; prL2 (27) ;; G.6; !L2 (27) ;; 2.G.3; P!L2 (27) ;; G.3 Unitary
GU 2 (27) :: 7 x 2. (G x 2).2 : all 2 x 2 matrices over F 729 which preserve a non-singular Hermitian form;
PGU 2 (27) ;; G.2; SU 2 (27) _ 2.G; PSU 2 (27) ;; G· Orthogonal
Presentation
00 (27) :: 2 x G.2 : all 3 x 3 matrices preserving a non-singular quadratic form over F 27 ; 3
PG0 3 (27) ;; S03(27) ;; PS0 3 (27) ;; G.2; 03(27) ;; G; r0 3 (21) ;; 2 x G.6; Pr0 3 (21) ;; !03(27) ;; P!03(27) ;; G.6 G =-
Maximal sUbgroups Order
Structure
28
351
D28
26
318
D26
12
[18)
Index
819
A~
Specifications
G.2
G.6
13:6 A~ x
3
Character
Abstract
Linear
Orthogonal
point
isotropic point
°2(27),
28:6
N(2A), N(7ABC)
26:6
N(13A-F), C(2B)
°2(27), base
N(2A 2), C(3C)
L2 (3)
s~
x 3
L1(129)
minus point plus point
°3(3), base
~
:£
2
-1
0
26
27
28
28
28
+
+
+
+
+
+
+
+
+
+
x,
X.
x,
x,
x,
Xw
x"
x"
XI)
X\4
XIS
X16
0
0
o
o
o
7
14
0
3
6
**
o o
o
4
0
0
0
28
28
28
1 2
14
14
26
26
+
+
ind
o
o
x"
x"
x"
x"
0
0
0
0
0
0
0
0
26
28
28
28
28
28
28
-
-
-
-
x"
x,.
x"
x"
X29
X30
X31
Xu
26
-
0
26
x"
0
26
-
x"
0
26
-
x"
-2
-1
-1
03
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
o
o
o
o
0
0
0
0
*2
*6
*5
*3
*3
*4
0
0
0
0
0
0
0
0
*3
0
0
0
0
0
0
0
13 26
*6
*5
*2
03
*4
0
0
0
0
0
0
0
13 26
*5
*2
*6
*5
*5
*2
*6
*4 y13
*2
*2
*6
*5
0
0
0
0
0
0
0
0
*3
*6
*5
*2
0
0
0
0
0
0
0
0
*3
*3
*4
*5
*2
*6
0
0
0
0
0
*3
*6
05
*2
0
0
0
0
0
0
0
13 26
*4 y13
*3
*4
*5
02
*6
0
14 BA CA
0
o
03
0
0
03
03
0
0
0
0
0
0
0
0
0
0
0
09 y28
0
°3
°9
0
0
0
0
0
0
03
09
09 y28
09-y28
03
0
09-y28
0
:
:
:
:
@
@
@
@
@
@
@
@
@
@
@
@
@
++
++
++
*3 *5 *6 *2 52 52
o o
o o 8 8
*3
*4
0
0
0
0
0
0
52 52
*3 52 52
0 0
r2 r2 r2 r2 0
o o o o o
0
0
0
0
0
0
0
0
0
*7
0
0
0
0
0
0 *21 *15 *19 y52 *23
o
0
56 56
0
0
0
0
0
0
0
56 56
0
0
0
0
0
0
-1
0
56 56
0
0
0
0
0
0
-1
o o 0
o
*9 *15 *17 *23
*7
*5
*9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*9 y56
*9 y56 *25
0 *17 *23 *15 *25
0 *23 *15 *17
0 *15 *17 *23 y56 *25
*9 y56 *17 *23 *15
o
o
0
0
0
-1 -1 0
2
_00
o
-z3
o
o
o
o
o
o
-z3 -z3**
18
0 -z3**
0
18
2
-00
ind
++
: -00-00
9 fus
o
000
9
o
++
o
o
0
12
o
0
2
o
0
:+00+00
++
++
o
o
x,
o
o
0
0
0
0
o
o
r2
0
0
0
24 24
0
0
-1
0
0
12
0
0
0
0
x"
x'o
X29
x"
x"
X26
x"
x"
X23
x"
x"
X20
X19
x"
X17
x"
X15
x"
x"
x"
XII
XIO
x,
x,
X7
X.
x,
X4
x,
+0000X2
o
o
000
+
0
3 -1
0
3 6
t
+
+00
+
o
0
o
0
+
56 fus ind 56
0
0
0
0
0
0
-1
*5 * 13 * 11
*5
*9 y56 *25 *23 *15 *17
0 *25
0
*9 y52
0 *15 *19 *21 *23
0
56 56
0
0
0
0
0
0
0 y56 *25
*9 y52 *23
*5 *11
o
*9
0 *19 *21 *15
0 y52 *23
o
*7
0
56 56
0
0
0
0
0
0
-1
_1
-1
*3
*9 *13 *11
*9 y28
Y7
*3
*2
*5 *13
*2
Y7
*3
Or2r2r2r2r2r2
0
52 52
*5 *11
0
0
0
0
0
o
0 *23
o
*9 y52 *11
*9 y52 *23
0
0
0
0
r2
0
o
0
0
r2
o 0
0000
0
*3
*4
*5
*2
*6
0
*3
*9 y28 *11
*3
*2
y7
*3
Y7
*3
*2
*2
Y7
*3
*3
'*2
Y7
0 y28
0
0
0
0
*4 y13
*4 y13
*3
*6
*5
*2
0
0
0
0
0
0
000
52 52
*5
*2
*6 y13
*2
*6
*5
0
0
0
0
0
0
Or20
0
52 52
*6
*5
*2
*4 y13
*4 y13
*3
0
0
0
0
0
0
0
0 y13
-1
0
0
000
4
2
2
2
2
2
++
++
2
++
++
++
0
0
0
0
++
0
0
0
0
++
2
0
++
0
2
0
++
0
2
0
++
z3
z3**
z3**
z3
1nd
:+00+00
98 fus
A
9A
A
2
CB AA CB CA 6B 12A
2
3 B
A
12 4 A CA A CA 3C 6A
@
@
@
3
@
@
@
000
000
+00
26 14 13 13 13 13 13 13 14 14 14 14 14 14 A A EB FB DB BB CB AB CA AA BA CA AA BA A A AB BB CB DB EB FB AA BA CA AA BA CA 2B 4A 26A B03 C09 D05E011 F07 28A B03 C09D013Eoll F05 fus ind
@
+00000000000000
++
28 fus 1nd 28
0
0
0
0
0
0
-1
Y7
°3
*2
000
28 28
0
0
0
0
0
28 28
0
0
0
0
0
0
-1
-1
y7
*3
02
0
*3
*2
*2 -y7
03
02
y7
*3
0 y28
0
0
*3
*2 -y7
0-y28
0
0
13 26
14 AA BA
14A B*3 C*5 fus ind
14 CA AA
0 -y7
0
0
*4 y13
*4 y13
y13
*2
06
*5
0
0
0
0
0
0
0
13 26
*3
*4 y13
*6 y13
*4 y13
04 y13
0 y13
02 -y7
o
03
03
02
02 -y7
02 -y7
-1
-1
03
03
-2
0
0
13 26
7 14
*6
*2
02 -Y7
-1 -y7
-1
-1
*3
o
o
*3
0
0
0
0
0
0
0
0
'14 y13
o *5
o
0
02
-2
0
0
14
7
0
0
0
0
0
0
0
0
0 y13
-1
03
-1 -Y7
-1
-1
-1
-1
-1
_1
U-b27
O-b27
6
0
0
o
o
0
0,
o
3
03
*2
02 -Y7
0
03
02 -Y7
*3
0
0
-1
-1
*3
*2
-1
-1
*2 -y7
o
0
-1
-1
*3
*2 -y7
-1 -y7
-1
-1
-1
2
-1
-1
-1
*3
-1
-1
-1
26
2
-2
26
26
-2
26
_1
-1
14 14 14 13 13 13 13 13 13 A A A A A A A A A A A A A A A A A A 7A 8°3 Co2 13A B03 C04 005 E*2 F*6
-1 -y7
-1
-2
26
+
X.
b27
**
13
o
..
x,
A
3A 'Bn
A
b27
o
x,
13
+
2A
A
28 27 27 A A A
x,
9828 P power pi part 1nd lA
@@@@@@@@@@.@@@@@@
16
14
4
2
BEJBE}
GBBBI6
"-"
N ......:t
~
r N
Mult
=2
=2
Out
Constructions GL 2 (29) =- 7 x 2.(G x 2).2 : all non-singular 2 x 2 matrices over F
Linear
PGL 2 (29)
= G.2;
= 2.G;
SL 2 (29)
PGU 2 (29) Orthogonal
=G
PSL 2 (29)
= G.2;
=G
SU 2 (29) _ 2.G; PSU 2 (29)
G0 3 (29) =- 2 x G.2 : all 3 x 3 matrices over F
29 preserving a non-singular quadratic form;
= S03(29) = PS0 3 (29) = G.2; 0 3 (29) _ G = G3,7,15 =
G
PG0 3 (29) Presentations
_ <S,1IS29,(S41S151)2,l,(S1)3,12['l]>
Max imal sUbgroups
Specifications
Structure
G.2
Character
Abstract
Linear
Orthogonal
29: 14
29: 28
1a+29a
N(29A8)
point
isotropic point
A5
la+28defg+30abc
N(2A,3A,5AB)
icosahedral
203
A5
la+28defg+30abc
N(2A,3A,5AB)
icosahedral
30
406
D30
la+28abcdefg+29a+30aabbcc
N(3A), N(5AB), C(2B)
02(29), L1 (841)
minus point
28
435
D28
la+28abcdefg+29aa+30aabbcc
N(2A), N(7ABC)
°2(29),
plus point
Order
Index
406
30
60
203
60
@
12180 P power pi part ind lA
@
@
@
@
@
@
@
@
@
@
@.
@
@
@
@
@
15
-1
o
0
-1
-1
-1
OOOO-b29*
+
15
-1
000
-1
-1
-1
o
+
28
0
+
28
0
-2 -b5
'If
0
0
0
0
0
0 -b5
+
28
0
-2
*
-b5
0
0
0
0
0
0
+
28
0
-b5
'If
0
0
0
0
0
+
28
0
* -b5
0
0
0
0
+
28
0
*
0
0
0
x"
+
28
0
* -b5
0
0
0
Xu
+
29
+
30
+
X,.
x,. X",
[20]
30 14 A A A A 2B 4A
15 15 AB BB AB AB 6A lOA
@
@
@
@
15 14 14 14 14 14 14 15 15 15 15 AB BA CA AA BA CA AA BBA CAA DBA AAA BB AA BA CA AA BA CA AAA BBA CAA DBA B* 28A B*9 C*3D*13 E*5F*11 30AB*13C*11 D*7
x,
++
+
x"
base
@@@@@@@@@@@
28 15 15 15 14 14 14 14 14 14 15 15 15 15 29 29 A AAA A A A BA CA AA BA AA BA AA A A A A A A A A A AA BA CA AA BA AA BA A A 2A 3A 5A B* 7A B*2 C*3 14A B*5 C*3 15A 8*2 C*4 0*7 29A B* fus ind
+
x"
;
00 2 (29) :: 15 x 2.G.2 : all 2 x 2 matrices over F 841 preserving a non-singular Hermitian form;
Unitary
x,
29
0
0
0
0
-2-2000000
-b5
+
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
Xz
*-b29 -1
-1
++
2
0
-1
2
2
0
0
0
0
0
0
-1
-1
-1
-1
X4
2
0
2
b5
*
0
0
0
0
0
0
b5
*
b5
*
Xs
* -b5
*
-1
-1
++
* -b5
*
-b5
-1
-1
++202*b5000000
0
*7-y15
*2
*11
-1
-1
++
2
0
-1
b5
*
0
0
0
0
0
0
*7 y15
0
0
*4
*7-y15
*2
-1
-1
++
2
0
-1
*
b5
0
0
0
0
0
0
0
0
0
*2
*4
*7-y15
-1
-1
++
2
0
-1
b5
*
0
0
0
0
0
0
0
0
0-y15
*2
*4
*7
-1
-1
++
2
0-1
*
b5
0
0
0
0
0
-1
-1
-1
-1
0
++
-1
-1
-1
-1
-1
-1
o
*b5*b5X6 *2
*4
X7
*4
*7 y15
*2
Xs
*2
*4
*7 y15
X9
0 y15
*2
*4
XIO
*7
-1
-1
-1
2
0
0
0
y7
*2
*~.
y7
*2
*3
0
0
0
0
++
0
2
0
0
0
y7
*2
*3
y7
*2
*3
o
0
0
0
Xl2
30
2
0
0
0
*3
y7
*2
*3
y7
*2
0
0
0
0
++
0
2
0
0
0
*3
Y7
*2
*3
y7
*2
o
0
0
0
Xl3
+
30
2
0
0
0
*2
*3
y7
*2
*3
y7
0
0
0
0
++
0
2
0
0
0
*2
*3
y7
*2
*3
y7
o
0
0
0
X14
+
30
-2
0
0
0
y7
*2
*3 -Y7
*2
*3
0
0
0
0
++
0
0
0
0
0
*3 y28
*9 *11 *13
*5
OOOOXIS
+
30
-2
0
0
0
*3
y7
*2
*3 -Y7
*2
0
0
0
0
++
0
0
0
0
0
*9
+
30
-2
0
0
0
*2
*3
y7
*2
*3 -Y7
0
0
0
0
++
0
0
0
0
0 y28
ind
1 2
3 6
5 10
577 10 14 14
7 14
28 28
28 28
28 28
15 30
15 30
15 30
15 30
8 8
12 12
20 20
29 58
14
0
-1
-1
-1
o
0
0
0
0
0
-1
-1
-1
-1 b29
14
0
-1
-1
-1
o
0
0
0
0
0
-1
-1
-1
-1
-
28
0
-
28
0
-2 -b5
-
28
0
-2
-
28
0
-
28
0
28
0
28
0
0
0
0
0
0
0 -b5
* -b5
0
0
0
0
0
0
* -b5
*
0
0
0
0
0
0
*7-y15
* -b5
0
0
0
0
0
0
*
0
0
0
0
0
0
* -b5
0
0
0
0
0
29 fus ind 58 *
56 56
*5 *11 *13
*9
*3 *13
*5 *11
56 56
56 56
56 56
56 56
56 56
Xu
o
0
0
0
Xl6
o
0
0
0
Xl7
60 60
60 60
60 60
60 60
OOOOXlS
* b29 -1
o
0
*
-1
-1
o
* -b5
-1
-1
* -b5
20 20
*3 y28
00000000000
-1
-2-2000000 *
-1
0
0
0
0
0
0
0
0
r3
r3
r3
r3
x'"
0
0 y20
*7
0
0
0
0
0
0 y20
*7
*9
*3
X21
o
0
0
*3 y20
0
0
0
0
0
0
*3 y20
*7
*9
X22
*7
0
0
0
0
0
0 *13 *11 *23-y60
X",
*3 y20
0
0
0
0
0
o-y60 *13 *11 *23
X24
*7
0
0
0
0
0
0 *23-y60 *13 *11
X25
*3-y20
0
0
0
0
0
0 *11 *23-y60 *13
X,.
r3
*2
*4
-1
-1
o
0
r3 y20
*4
*7-y15
*2
-1
-1
o
0
r3
*2
*4
*7-y15
-1
-1
o
0
r3-y20
O-y15
*2
*It
-1
-1
o
0
r3
3000002220000000
Or2
0
0
Or2r2r2r2r2r2
0
0
0
0
Xn
30
0
0
0
0
y7
*2
*3
*3 y28
0
0
0
0
X28
30
0
0
0
0
*3
y7
*2
*9
*9 *17 *15 *23
0
0
0
0
X29
30
0
0
0
0
*2
*3
y7 y28
*9 *25 y56 *23 *17 *15
0
0
0
0
X30
30
0
0
0
0
y7
*2
0
0
0
0
X31
30
0
0
0
0
*3
*9
0
0
0
0
X32
30
0
0
0
0
*2
*9 *25 y56
0
0
0
0
X33
-b5
-b5
*7
*9
0
0
0
0
o
r2
0
0
0 y56
*3 y28
0
0
0
0
o
r2
0
0
0 *25 y56
*9
*3
0
0
0
0
o
r2
0
0
0
*3
*3-y28
*9
0
0
0
0
o
r2
0
0
0 *15 *23 *17 y56
Y7
*2
*9
*3-y28
0
0
0
0
o
r2
0
0
0 *17 *15 *23 *25 y56
*3
Y7-y28
*9
0
0
0
0
o
r2
0
0
0 *23 *17 *15
*3
*9 *25 *15 *23 *17
*9 *25
Mult = 2
Out = 2
Constructions Linear
GL (31) :: 15 x 2.G.2 : all non-singular 2 x 2 matrices over F 31 ; 2
Unitary
GU (31) :: 2.(G x 16).2 : all 2 x 2 matrices over F 961 preserving a non-singular Hermitian form; 2
= Go2;
PGU 2 (31)
= 2oG;
=G
PSU2(31)
00 (31) :: 2 x G.2 : all 3 x 3 'matrices over F 31 preserving a non-singular quadratic form; 3
otthogonal
= S03(31) = PS03(31) = Go2;
PG0 3 (31)
~esentation# Maxim~l
SU 2 (31)
G
0 3 (11)
18
=G
= <S,TIS31=(S~TS16T)2=1,(ST)3=T2[=ll> Specifications
sUbgroups Structure
G.2
Character
Abstract
Linear
Orthogonal
31,15
31 :30
1.+31.
N<31AB)
point
isotropic point
A 5
1a+31a+30defg+32abc
N(2A,3A,5AB)
icosahedral
2~8
A 5
1a+31a+30defg+32abc
N(2A,3A,5AB)
icosahedral
32
~65
D
1a+30ddeeffgg+32abcdefg
N(2A)
O2(961), L1 (31)
minus point
30
~96
D
1a+30ddeeffgg+31a+32abcdefg
N(3A)t N(5AB), C(2B)
02(31), base
plus point
Order
Index
~65
32
60
2~8
60
32 30
5...
1
@.@$.,.@ 1~880
P power
p' part ind lA
32 A A 2A
15 A A 3A
@
@
@
@
@
@
@
@
@
@
@@@
@@@@@@@@
16 15 15 16 16 15 15 15 15 16 16 16 16 31 31 A A A A BA AA BA AA A B A B ~ A ~, A A A A AA BA AA BA A A A A A A ~A 5A B* 8A B* 15A B*2 C*4 D*7 16A B*3 C*7 0*5 31A B** fus ind
o
15
-1
0
-1
0
0
-1
-1
0
0
0
0
b31
**
o
15
-1
0
-1
0
0
-1
-1
0
0
0
0
**
b31
+
30
-2
0
-2
0
0
2
2
0
0
0
0
x,
+
30
-2
0
2
0
0
0
0
0
0
0
0 -r2
x.
+
30
-2
0
2
0
0
0
0
0
0
0
0
x,
+
30
2
0
0
0
0 -r2
r2
0
0
0
0-y16
Xii
+
30
2
o
o
o
o
r2 -r2
o
o
o
+
30
2
0
0
0
0 -r2
r2
0
0
+
30
2
0
0
0
0
r2 -r2
0
0
+
31
-1
x"
Xu
x", x",
.15
15
A AB
BB
30
A AB AB 2B 6A lOA
15 15 15 15 15 16 16 16, 16 16 16 16 16 AB BBA CAA OBA AAA ABCDABCD BB AAA BBA CM. DBA AAAAAAAA B* 30AB*13C*11 D*7 32A B*3 C*9 D*5E*15F*13 G*7H*11
++
+
x"
16
-1
-1
0
0
-1
-1
++
0
0
0
0
0
0
0
0
r2 -r2
r2
-1
-1
++
0
0
0
0
0
0
0
0 y16
r2 -r2
-1
-1
++
0
0
0
0
0
0
0
0
*3
*'7
*5
-1
-1
++
0
0
0
0
0
0
0
0 Y32
o
*5-y16
*3
*7
-1
-1
o
o
0
o
o
o
o
o
0
0
*7
*5-y16
*3
-1
-1
++
0
0
0
0
0
0
0
0
0
0
*3
*7
*5-y16
-1
-1
+~
0
0
0
0
0
0
0
0
-1
-1
-1
0
0
r2 -r2
-1
"',
••
r2 -r2
X4
*3
*7
*5
Xs
*5 y16
*3
*7
X6
*7 *11
x,
*3
*7
*5 y16
*5 y16
*3
*7
*3
*9
*5 *15 *13
*11 y32
*3
*9
*5 *15 *13
*7 *11 y32
*3
*13
*7
X8
*9
*5 *15 *13
X9
*7 *11 y32
*3
*9
*5 *15
XI0
-1
-1
-1
-1
Xli
-1
-1
-1
o
0
o
o
o
o
*
o
o
0
o
o
o
o
o
X13
*
b5
o
o
0
o
o
o
o
o
Xl4
*7 y.15
*2
*4
OOOOOOOOX1S
y15
*2
OOOOOOOOX16
-1
0
2
2
o
-1
o
o
0
o
++
2
-1
2
2
-1'
+
32
0
2
0
b5
*
00b5*b5*
o
o
0
o
++
2
2
b5
*
+
32
0
2
0
*
b5
OO*b5*b5
o
o
0
o
++
2
2
*
b5 .1,'b;5 :~ /~~
b5
*.io;;P~
+
32
0
-1
0
b5
*
0
0
*7 y15
+
32
0
-1
0
*
b5
0
0
+
32
0
-1
0
b5
*
0
0
+
32
0
-1
0
*
b5
0
ind
1 2
~
3 6
8 8
5 10
5 10
16 16
16 16
o
16
·0
o
o
o
16
0
o
-
30
0
0
r2
-
30
0
-
30
-
-1
r2 -r2
o
0
-1
r2 -r2
o
32
-1
r2 -r2
-1
·1
++
+
0
oooooooox,
0
-1
0
+00000000
-1"i -1
-1
X12
*2
*4
0
0
0
0
++
2
-1
b5
*
*4
*7 y15
*2
0
0
0
0
++
2
-1
*
b5
*4
~7
*2
*4
*7 y15
0
0
0
0
++
2
-1
b5
*
*2
*4
*7 y-15
OOOOOOOOX17
0 y15
*2
*4
*7
0
0
0
0
++
2
-1
*
b5 y15
*2
*4
*7
OOOOOOOOX18
15 30
15 30
15 30
32 32
32 32
32 32
32 32
31 fus ind 62
~
12 12
20 20
20 20
60 60
60 60
60 60
0
o
0
0
0-b31
..
00000000
o
0
o
0
0
0
0
0 y16
*3
0
0
9'
0 y32
*3
*9
*5
-1
-1
o
0
0
0
0
0
0
0 -r2
0
0
*5 y16
0
0
0
0 *11 Y32
*3
*9
-1
-1
o
0
0
0
0
0
0
0
r2
0
0-y16
*3
0
0
0
0
*7 *11 y32
*3
-1
-1
o
0
0
0
0
30
0
0 -r2
0
0
*5-y16
0
0
0
0 *13
*7 *11 Y32
-1
-1
o
0
0
0
-
30
0
0
r2
0
0 y16
*3
0
0
0
0-y32
*3
*9
*5
-1
-1
o
0
0
-
30
0
0 -r2
0
0
*5 y16
0
0
0
0 *11-y32
*3
*9
-1
-1
0
-
30
0
0
r2
0
0-y16
*3
0
0
0
0
*7 *11-y32
*3
-1
-1
o o
-
30
0
0 -r2
0
0
*5-y16
0
0
0
0 *13
*7 *11-Y32
-1
-1
-
32
0
-1
0
2
2
0
0
_1
-1
-1
-1
0
0
0
-
32
0
2
0
b5
*
0
0
b5
*
b5
*
0
0
-
32
0
2
0
*
b5
0
0
*
b5
*
b5
0
-
32
0
-1
0
b5
*
0
0
*7 y15
*2
*~
32
0
-1
0
*
b5
0
0
*~
*7 y15
32
0
-1
0
b5
*
0
0
*2
32
0
-1
0
*
b5
0
0 y15
-
15 30
6~
M
6~
6~
6~
6~
6~
6~
6~
6~
6~
6~
6~
6~
6~
6~
o
0
0
0
0
0
0
0
X19
0
y6~
*3
*9 *27 *17 *13 *25 *11
x"
0
0
*21 y6~
*3
*9 *27 *17 *13 *25
Xn
0
0
0
*3
*9 *27 *17 *13
X23
0
0
0
0
*19
*3
*9 *27 .17
XZ4
0
0
0
0
0
*15 *19
*3
*9 *27
x"
0
0
0
0
0
0
*3
*9
xu
0
0
0
0
0
0
0
*23
*7 *21 y6~
*3
x,.,
o
0
0
0
0
0
0
0
*29 *23
*7 *21 yM
x",
0
o
r3
0
0
r3
r3
r3
r3
OOOOOOOOX'"
0
0
o
0 y20
*7 y20
*7
*9
*3
OOOOOOOOX'"
0
0
0
o
0
*3 y20
*7
*9
OOOOOOOOX31
0
0
0
0
o
r3 y20
*2
0
0
0
0
o
r3
*~
*7 y15
0
0
0
0
o
r3-y20
*2
*~
0
0
0
0
o
r3
*7
31 62
60 60
**-b31
1
*3 y20
*7 *13 *11 *23-y60
*3 y20-y60 *13 *11 *23
*7 *21 y64
*7 *21 y64
*7 *21 y6~
*5 *15 *19
o
*7 *21 y6~
*5 *15 *19
0
*5 *15 *19
0
0
0
0
0
0
Xn
OOOOOOOOX:u
*7 *23-y60 *13 *11
OOOOOOOOX"
*3-y20 *11 *23-y60 *13
OOOOOOOOX"
[21]
Mult
=2
Out • 2
Constructions A1 ternating
Sa :: G.2 : all permutations on 8 letters; Aa :: G : all even permutations; 2.G and 2.G.2 : the Schur double covers
Linear
GL 4 (2) :: PGL 4 (2) :: SL 4 (2) ;: PSL 4 (2) :: G : all non-singular It x 11 matrices over F 2 ; ~ints
the
Pi and planes Qi of the corresponding projective 3-space can be numbered (mod 15) so that
= {Pi,Pi+5,Pi+10,Pi+"Pi+2,Pi+4,Pi+S};
Qi
G.2 is obtained by adjoining the duality (graph) automorphism, interchanging points and planes
6
00 (2) ;: PG0'6(2) =- 50'6(2) :: PS0'6(2) :: G.2 : all 6 x 6 matrices over F 2 fixing a quadratic form of Witt
Orthogonal
defect 0, for example x,x2 + x3x4 + x5x6; 0'6(2) ;: G;
by taking the 6-space to be the even weight vectors in F~ modulo (11111111), with form equal to half the
weight, we see the isomorphism with S8
G : the stabilizer in M24 of an octad and a point outside it; the group acts as A8 on the octad, and
Mathieu
L 4 (2) on its complement
Presentations
G.2::
_
Maximal subgroups Order
Index
2520
8
1344
15
1344
Specifications
Structure
G.2
Character
Linear
Orthogonal
A7
S7
la+7a
24 :S4'
la+14a
N( 2A 3)
15
2 3 :L (2) 3 2 3 :L (2) 3
3(3,4,8)
point
isotropic plane
la+14a
N(2A3)
3(3,4,8)
plane
isotropic plane
720
28
36
S6 x 2
1a+7a+20a
C(2C)
duad
576
35
2 4 :(3 x3 ) 3 3
(S4x34):2
la+14a+20a
N(2 4 ) • N(2A B6 ) 9
bisection
360
56
( A x3):2 5
35 x S3
18+78+20a+288
N(3A), N(2B,3A,5A)
triad
L (2):2
3
Abstract
point
14
@
@
20160 192 P power
pi part ind 1A
A
@
@
96 180
A A
A 2A 2B
A A 3A
@
@
@
@
18 16 A A
8 15 B A A A A A 3B 4A 4B 5A
@
12 AB AB 6A
@
@
@
6 7 7 BA A A BA A A 68 7A B**
0
@
15 AA AA
15 AA AA
15A Bn fus ind
2C
isotropic point
@
48
A A 20
@
48
B A 4C
@
16 B A 40
@
@
@
18 AC AC 6C
18 BC BC 6D
2
-1
@
6 BD BD 6E
0
-1
-1
0
0
2
2
2
-1
++
9
-3
3-1
000
+
0
0
0
0
0
0
++
10
2
-2
-2
000
++
-1
++
4
-1
-1
0
++
0
0
0
-1
o
0
0 b15
**
-1
o
0
0
**
b15
o
o
0
0
0
b7
**
0
0
0
0
**
b7
0
0
o
-1
0
0
0
0
2
2
+
20
4
4
5
-1
0
+
21
-3
6
0
-1
o
21
-3
-3
0
x,
o
21
-3
-3
0
x,
+
28
-4
4
x,
+
35
3
-5
5
2
x"
o
45
-3 -3
0
0
o
x"
o
45
-3 -3
0
0
o
+
56
8
0
-4
-1
0
0
+
64
0
0
4
-2
0
0
+
70
-2
-2
0
8
o
0
-1
-1
4
10
-1
-1
3 6
2
0
2
3 6
-2
0
6
124
0
5
14
2-5
-1
++
-1
o
-2
-2
-1
o
-1
-1
3
-1
+
x"
A A
-1
4
Xn
720
0
3
x,.
@
@
0
-1
2
[22]
2
7
Xl7
line
@
@
6 4 5 A AC AC A AC AC 8A lOA 12A
++
+
1nd
non-isotropic point
10
+
x"
A1 ternating
0-1
5 12 10
6 6
o
5 -3
-2
0
000
0
0
o
0
0
0
0
0
0
0
++
4
4
0
0-2
-1
o
2
0
0
-1
-1
0
0
0-1
o
-1
+
o
-1
-1
o
000
o
-1
0
o
-1
-1
++
16
0
0
0
0
++
10
-2
-4
0
15 fus ind 30
2
4
8
8
6
6
12
8 8
10 10
24 24
00
0
0
0
0
0
0
0
2i
0
0
o
0
0
0
0
0
0
000
o
0
0
7 14
7 14
15 30
-2
-2
0
0
o
0-1
+
8
0
0
-4
2
0
0
-2
0
0
o
24
0
0
-6
0
0
0
-1
0
0
b7
**
-1
-1
0
24
0
0
-6
0
0
0
-1
0
0
n
b7
-1
-1
48
0
0
6
0
0
0
-2
0
0
-1
-1
o
0
0
0
0
0
0
0
0
r6
o
56
0
0
-4
-1
o
0
o
13
0
0
o
0
0
0
0
0
0
0
0
0
o
56
0
0
-4
-1
o
0
o -13
0
0
o
56
0
0
2
2
0
0
o
0
0
0 b15
**
o
0
0
0
0
0
0
0
0
0
o
56
0
0
2
2
0
0
o
0
0
0
**
b15
64
0
0
4
-2
0
0
o
0
-1
-1
o
0
0
0
0
0
0
0
r5
0
-1
';:3 ~
1
Out:= 2xS 3
(be)2=(cde)5. d=(ab)4,1=[e,(cbaba)5]
>
c3
d
c
d
: M10
: L2 (7):2
: L2 (7):2
: L2 (7):2 : 32 :Q8 x2
2 4 :A
A6
A6
A6
L2 (7)
L2 (7)
L2 (7) 32 :Q8
21
56
S6
56
120
120
120
280
960
360
360
360
168
168
168
72
:M 1O
: M10
S5
22+4. 3• 2 ,
2 4 :A 5
21
G.2 ,
c
b
d
•
b
b3
•
.3
3
2,
1 -1 1 1
c3
b3
d2 d2
b
7:3 x 3
: 32 : 2A 4
\
: 2 4 :(3 xA ) 5 : 2 4 :( 3xAS)
G.3
d
.3 1
_1
1
1
4,
: 32:2A4 x 2
r:6 x 3
3x3 5
1
1
1
-1
42
G.2 2
z3
-1
-1
1
6
z3
-1
1
1
: 32 :QS·2
I
z3
1
1
_1
12, 12 2
: L2 (7)x2
I
: S6
: 24S5
: 24sS
z3
1
,
1
3
cohort
122+4.3.2,
G.6
1
-1
1
•
b3
c3 c
2
.3
22 2 3
6
, ,
coset
: 32 : 2S 4
7':3 x S3
: 2 4 (3xA )2 5 : 2 4 (JxA )2 S
G.3.2 2
acting as (abc)(d) on M. and as (XXIX") on cosets and cohorts.
by characters in the printed cohorts. There is an automorphism
transformed by elements in the printed cosets and represented
960
5
I
: 32 :QS·2
I
: L2 (7):2
[
: PGL 2 (9)
2 x AS
[ 22+4. 3• 2,
G.2 3
whose full automorphism group is 6U 4 (3).2 (see U4 (3»
abc := a4 = b 4 = c 4 = d3 = 1. The table shows how these are
Index
I
e
V
c 5 d
I
g3,
The multiplier Mis generated by elements a,b,c,d satisfying
\
8 b
Order
structure
stabiliZes the complex lattice 1\
12 .G.2 :: 2 3
6.G.2
=
Mult := 4 x 4 x 3
2 .3 .2, 3 3 x AS
4
: 32 : 2S 4
\ (7:3x3):2
I
I i+
G.3. 2 3
: 32:Q8.2 x 2
I
1 1
3 3 x Ss
22 +4 .3 2 .22 ,
: 32:234 x 2
7
la+208+35abc+45ab+64a
1a+20a+35c+64a
1a+208+35b+64a
1a+20a+35a+6 1Ia
1a+208+3Sc
1a+20a+35b
1a+20a+35a
1a+20a
1a+20a
Character
6
11 11;-- -
1'-1- -
It
\7:6XS 3
\
I
10
G.D'2
122·G 1 12 2'·GI
12j.G 1 12'(G 1
11 11
BB EJF EJF 6'.GI 6".G I
: L2 (7):2 x 2
I
11
2
I
0
!
0
!
!42.G.2 2
14t.G.22
12.G·2
I
0
3
!42.G.2 3 I
0
0
0
0
1
14t.G.231
12.G.2
7
6
3
I
I
N(JA 2 )
N(2A, 3A, 4C, 7AB)
N(2A, 3A ,4B, 7AB)
N(2A,3A,4A,7AB)
N(2A,3A,3A,4C,5AB)
N(2A,3A,3A,4B,SAB)
N(2A,3A,3A,4A,5AB)
N(2A 4)
N(2A 4 )
Abstract
Specifications
6
2
!lhG.2
L (2) 3
L (2) 3
L3(2)
oval
oval
oval
line
point
Linear
6
1 6,G,2 3
I
6
5
ennead
heptad
heptad
heptad
hexad
hex ad
hex ad
pentad
point
Mathieu
I
7
4'1~BBEJF,rF,r '
4i·G1
2 x Ss : A6 '22
I
11 11
BF
4{.GI 4;'.GI
1
1
11
11
BB EJF 8
G.2.i G.23'
~EJBB~~~~~GIO
2'.GI 2".GI
22+4. 3 .2 2 ,
G.i
GL (1I) i 3.G.3 : all non-singular 3 x 3 matrices over F 4 ; 3 PGL (4) i G.3; SL (4) i 3.G; PSL 3 (4) G; 3 3 G.2 etc. are obtained by adjoining the duality (graph) automorphism; 3 rL (4) • 3.G.3.22' PrL (4) • G.3.22' IL3 (4) • 3.G.22' PIL 3 (4) • G.2 2 3 3 H .S -= G.3.2 : the set-stabilizer of a triad in M24 ; M21 i G : the pointwise stabilizer; 2 21 3 the remaining 21 points form the projective plane whose lines are the 21 pentads which complete the triad to an octad
Maximal subgroups
Presentation
Lattice
Mathieu
Linear
Constructions
Order:= 20,160:= 2 6 .3 2 .5.7
Linear group L (4) i A2 (4) 3
G.2 2 G.2'j
"-"
~
~
~ W
~
0"5-3'0
0
o
+ 35
o 115 -3
63 _1
63
+
+
+
x,
X.
x,
X.
X.
x..
0
_1
0
_1
0
o
_1
_1
+
+36110000
x"
x" x..
0
0
O-b5
o
0
o
0
0
_1
_1
OOOI_b500
o
90
2
0
-2
0
0
0
_1
_1
1( 1 l 5 5 7 7 :2 :2:2:2:2
0
02
)(20
8
8
2
-1
_1
0
0
12
12
0
0
0
0
8
0
0
8
:2
b7
.
,
u
0
2'
28
2
12
12
3
-b5
o •
o
-2
80
02
02
X;lO
x"
and no:
no:
ami
+
+
02
0
11 •
2
2
2
8 8
6 :2
4
2
16 :2
:2
6 16
and no:
+2
16 :2
8 :2 8 :2
16 :2
" "
•• •• ""
16 :2
16 16
8 :2
8 :2
8 :2
16 :2
16 :2
8 :2
16 16
8
8
8 :2
8 :2
8 :2
8 :2
16 :2
6 :2
6 :2
ahd123881l5577 no: :11 :2 :4 :4 :4 :11 :11 :4
1
+
+
2
4
• •,
6 :2
6 :2
:2
00000ub7
00000b7
0
+
J 02
•
8 8
0
++0000r2-r2
2
_1
-1
o
0
0
11
8 8
6 6
0
++0000r2r2
7 fUB 1nd 28 14 28
-1
0
_1
and no:
0
0
0
o
o
-1
7 28 111 28
0
and12381l85577 no: :4 :2:11 :11 :11:4:4:11
80
64
02
X29
_1
11
o -b5
o
-2
_1
0
5 20 10 20
0
5 20 10 20
0
8
0
2
8
X28023600200
0
28
02
Xv
0
?8
02
Xu
0
20
02
X2S
2
2
•, • •
1
o
++003000
2
'od
o
_1
_1
_1
_000200
J +2
•
11
I
o
_1
_1
_1
+000000
7 fue 1nd
:2
00000Il.b7
0
o
7 28 111 28
:2
C A
se se
B A
+000000
and no:
-1
0 _.- 0
-1
8
andt238845577 no: :4 :2 :4 :2 :4 :4 :4 :4
0
0
o
-1
++
2
80
0-1
0
• -.b5
o o o
and no:
02
x~
80
0
o
5 20 10 20
5 20 10 20
~b5
:2
:2
SA
A A
~
~
~
: 000
: 000
+
~
~
(us
• • •
+000000
+
++
++
++
and1238485577 no: :4 :2:11 :2 :11:4:4:4
02
)(23
Xno2MO
)(21025602000
02
3
2
1
'nd
•• • •
:2
:2
:2
no:
and1231111115577
and1234 no: :2 :2 ~2
+
+70-2-22000000
X'9
x" x..
-4
28
lOCOO.lb?
+
..
20000b7
x"
14
2
M
0
0
9
_2-22000
++
ind
8
A A AB A A AB 2B liD 6A
72
••••••
77fusind2
0
0
b7
0
0
14
5
10
5
10
_1
• -b5
•
o o ..
11
10
+
o b7 ..
o
_1
o
-lI
o
o
0
0
o
o
0
0
o
-1
o
_1
A A
A A 7A
an (us
7
7
0
BI
0
_1
x"
28
5
0
SA
_1 -b5
3
o
2'
-1
0
4C
3-1
_1
-1
_1
_1
5
AAA AAA
x"
10
0
liB
3 -1
0
IIA
ind12311 2 2' 6 11
611
3 _1
35
+
X.
3 _1
3-1
35
+
2'
x,
11
+
20
+
3A
AAA AAA
9 16 16 16
x,
64 A A :?A
x,
pI part ind lA
p power
20160
!ef!@@f!!@@@
Linear group L3(1I) = '\2(11) ; K21 ., F1212+6 = Fll1+
o
o 0
o
0_1
o
0
3
3
•
•
0
0
b7
u
0
-1
8.
7 AC BC
-1
_1
lI_b500
-b5
o u-
o
o
o _1
o b7
-1
21A
o
BII
7 BC AC
o
o o
1SA
5 AB BB
o
o
sa
AB
BB
5
o 3
-1
3C
5
3B
60 21 11 A A BA A A BA
••• • ••• ,,, 'od
o
o
o
++
o o o
+00+00
2
-1
0
2
III
o o
3 _1
0
o o b1
0
0
0 -_1
-1
0
7 BC
b7
u
0
0
-1
-b7
o u
o
4
00
-1
8
8
o
-1
-1
8 8
0
-1
11
10 10
_1
2
2
-1
-1
o
0
0
0
+.
o
0
_1
11
b5
14
•
6
0
o
o
o
o
0_1_1 0-1
0
o
o
_1
III
-b7
_1
• • • •
02
002
_1
28
28
-b7
u
_1
I
•
•
+2
+
+
+
• • • +
111 fUB 1nd fus 1nd fus 1nd
• • • •
2
2
_1
_1
12
0
0
8 B
0
0
8 8
2 2
o
,,
o
8 8
o
o
• 8
0
0
0026000
002
: 002
2
, 12
• , •
2
10 10
o
_1
I
b5
10 20 10 20
I ++
++
++
+
,I +:
++
++
++
++
+
++
+
++
++
10 fUB 1nd fUB 1nd 10
-1
lI-bS
-1 -b5
++6000
++
++
14 fUB 1nd ruB 1nd rue 1nd
_1
o o o o
01+1
0
6
8
002
14
14 14
_1
B 14 B 28
•
12
2
12
B
0
•
002 002
0
•• •, •
-2
• •• •• • 2' ,. 2
2 2
6
002
02
002
fUB 1nd
0
o
+
+
02
fUB 1nd
•
0
-1
o
-1
b5
11
• • • • •
•
10 fUB 1nd fue 1nd 10
0
_1
b5
10 fUB 1nd rue ind 20 10 20
++0002r200
_1
0
o o
o o
o o o o
o
++002r2000
0
0
6 6
o
o
0
0
_1
+000000
2 2
o
o
5
++
8
++
2
++
++
++
+
+
++
000002100
6
++
+000000
00
u
-b7
o
0
2 2
++
+
+
00
++
+
++00_2200
++
BII fuB 1nd fUB 1nd
5 AD BD
5 BD AD
++
00
++
A
8
A A 8E 8F lOA
A
8
++
14 fUB 1nd rus 1nd ruB 1nd 14
fUB 1nd
o 14 14
-1 8 8
0
8
++
3
AD A AD 2D 6F
A
••
60
++
00
00
,I +:
++
++
A AC BC 8D 14A BU fus 1nd rue 1nd ruB 1nd
• 7 A AC
3 _1
o
7 -1
6
8 3 A AC A AC 4E 6E
•••••• 168 A A 2C
+000000
00
00
+
++
++
_1
_1
2
BD BD 6D t2A fus
3 CB CB
+00000
~o
++
+00+00
+00+00
6C
• BB BB
•••
Xv
XU
"" XU
Xv
",.
x"
",.
x"
Xv
x"
XU
x..
x" x..
x..
XU
x"
x"
x"
x"
x'"
X"
X8
'"
X.
X.
X.
x,
X2
X,
"-'"
~
~
~ u,)
~
.
15
21
115
45
02
02
02
02
02
x)~
x~
X;J.'
x~
x"
2
•
3
2
3
3 6
0
11 12
12
12 11 12 12
0
11 12
0
12
11 12
0
'-20200
••
• ••
11
15 10 15 30
5 30
_1
60..ll
90
02
X47
42
-1
21
t4
-1
21
42
u_b7
6 12
3 12
3
11
8
24
,q
~
21
011
x"
0
0
0
2
o
0
-2
-2
o
•
_1
0
o
0
-1
-1
0
o • -b5 -1 o o o o -b7 o o o o ..
o
8 :6
16 :6
16 118 Q8 16 1f8 118
%3+1
0
0
o 0
o _1
o
1
0
.7
7
7
•• 1
-b7
-1
02
olf
6
:2
:6
16
8
:6
:6
16
211616168 :3 :3 :2 :6 :6 :6
4
:3
2
:3
+
+
o
o
02
.
•
o
o
+
• +
+
+
+2
1
• • • •
•
•
•••• •• •• •• I.
•• ••
.5
15
+
02
011
02 02 02
.5
'5
'5 •5
005 '5
.5 'S .5 .5
••
+2
l. ..
+2
••
o. '5
+2 +2
••
12
111 rus 1nd fus 1nd fus ind
8 28 28 8 ,. 14 8 28 28
8 8
10 20 10 20
K~
x..
+
+
• • •
K.,
x.. x.,
'"
+
x"
x~
2
2
••
• '2
"
2 "
•
12
2
8
8
8
8 8
10 10
'5
'5
.5 .5
N
..
••••
•• •• •• ••
10 rus 1nd fus 1nd 10
'5 .5 '5 .5
10 fus ind fus ind 20 10 20
K~
x"
x~
x..
x~
x..
x"
x"
Xw
x" x..
x.,
x"
x.,
8
8
+
• •
+2
10 fus ind fus ind 10
•
+
+
+2
1 1
x"
••
2
8
x,.
+
02
fus ind
+2
••
+
02t02Xn
B' 10 fUll 1nd futt 1nd
+2
+
+
+
111 fus ind fus 1nd fus ind 111
• • • •
2 2
8 10 8 10
8F lOA 8 10
•
02
1
8E 8
.+·+X35
+
6F 6
+
02
12
+
02
• •
+ 02
2D 2
+ •
•
111 fUll ind fus ind fus ind 111
I
o o
+
•
+
•
I
02
'5
,.
111 111
111 111
•
02
111 fus 1nd full 1nd full 1nd
all
••
8
8 8
8 8
80 ll1A 8 n
02
"
"" ••
• " • " 2
6E 6
"" ••
liE 11
'5
02
2 2
2 2
2e 2
l. ""
02
•• ••
fus ind
I
+
fus 1nd
•
02
o
o
•
+
o
0_1
o
o
13
0000002 -i3
0002
0002
0000002
]"2
15
6 8 16 16 621111848 211 48 118 8 16 16 211 118 118 2Q 118 118
16 :6
8 :6
16 48 Q8 16 118 118
z3+1
'2
12
-, J 0"
and no:
811
011
0
o
o
.7
and1238845577 no: :12 :6 :4 :3 :3 :12 :12 :12 :12 :12
60
60
ot!
K~
0
0
o
" 12 12
16 :6
16 :6
8 211 2Q 8 211 211
-213+3
0
• o
o
o o
• -bS
-bS
3
o -, o _,
x63
.'8
o
••
002000'+
'''''
60 12' 12 fus 1nd
6 18
6C
•5
2 • •
6 :2
Q 6 :3 :2
11 :3
6 6
0002
0002
o
0
0
63
63
118
0
0
B.
63 fU.
o x63
z3
o
B. 21A 15 63 15 63 15 63
o
o o
'3
o
15 15 15
15'
o o o
o
0
6 • •
55
0-1
0
o
~213-3
9
3C
3 3 3
35
02
7 fus ind 811 112 28 21 8Q 111 811 21 28 42 8iI
and no:
1f8
olf
x"
0
7 811 112 28 21 811 111 811 21 28 112 84
and1238t!85517 no: :12 :6 :t! :3 :12 :3 :12 :12 :12 :12
118
011
x~
-bS
123118855 12 12 12 12 211 211 60 60 6 6 6 12 211 211 30 30 11 11 12 11 20 20 3 6 12 15 15 12 12 12 60 60 2 11 10 10 12 12 60 60 12 15 15 3 11 11 20 20 12 30 30 6 12 12 60 60
X»043600200
'0'
2 :3
and no:
02
and12388115577 no: :12 :6 :11 :3 :3 :6 :12 :12 :12 :12
.7
0" 2 :3
0
7
I
7
0"
and no:
0
-,
_1
b7
••
2 " 12 6• .12
and12381185577 no: :12 :6 :11 :3 :6 :3 :12 :12 :12 :12
0
oQ 120
X~2
0
oQQ80000
K"
0
_1
-b5
o -bS o •
0llQ80000
Kw
0
..
b7
_1
-1
•
_1
_1
0
42
28
J
7 rus ind
8Il
M M 8q ~ 15 15 21 21 20202828 3030q2q2 60 60 ~ 8q
lq
10
10
28
~
811
7
-1
15 21 M 8q
20
~
60
5
0
15 M
20
~
60
5
0
-1
M
24
8
0
01l2qOOOO
12 12
11
12 N
12
0
x..
12
6
12
-2
o o
12 3 q 6 12
2
6
11
6
11
2
12
1
12
0
oq2qOOOO
ind
2
K"
x~
02000000
02000000
002000200
snd2116888 no: :3 :3 :2 :6 :6 :6
0
8 211 21f
and12341145577 no: :6 :6 :2 :3 :3 :6 :6 :6 :6 :6
0
8 2Q 24
8 211 211
and2116888 no: :3 :3 :2 :6 :6 :6
0
8
0
and123114115577 no: :6 :6 :2 :3 .6 :3 :6 :6 :6 :6
0
O_b7u
b500
8
0
0020000r2-r2
0
0
I
12
•
8
0
o o o
6242112Q 211 24 24
6
O.
o
0020000r2r2
"
'2
•
2
o
2
6
o
-1
0
0
02
0
x....
0
o260-ll
x..~
0
0211220200
x...
002
02
1 fus ind
0
21 111 21 112
7 112
0
x.~o211220200b5'OO
15 10 15 30
5 30
-1
o
0002
'-bS
0002
0002
o
_1
-1 -b5
o o o o
0
-1
02
o o
_1
o
_1
-1
-1
l-t
-1
'od
_1
o
3
0
-1
,
,.2'
8 fus
se
_1
02
: 002
-1
0
3 -1 3
0
-1
3
2B liD 6A SA 8B 2 11 6 8 8 61221124 6 12 211 211
o
0
002
002
: 002
7 fus lnd 21 21
an
b7 ..
o
1A 7 21 21
0002
o
0
0
0
BI 5 15 15
b7
0
0
0
SA 5 15 15
o o ••
3
-1
_1
4C 11 12 12
o o
-1
-1
3
_1
liB 11 12 12
o
-1
-1
3
IIA 11 12 12
o
0
0
0
0
3A 3
x.~o2361l0000
02
•
,
'0'
X~,
2
811
02
-1
-1
X..,
63
63
02
02
x~
-3
-3
5
-1
_1
-1
2A 2 6 6
X)Il
15
15
02
1A , 3 3
Jl')2
,
VJ
"-'"
~
~
~
Mult = 2
Out
2
Constructions Unitary
GU 4(2) :: 3 x G ; all 4 x 4 matrices over F4 preserving a non-singular Hermitian form;
Orthogonal (2)
PGU 4 (2)
= SU4(2)
G06 (2)
= PG06(2)
- PSU 4 (2)
=G
_ S06(2) :: PS06 (2) :: G.2 ; all 6 x 6 matrices over F 2 preserving a non-singular quadratic form of
Witt defect 1, for example x~+X1x2+x~+x3x4+x5x6; 06(2) :: G Orthogonal (3)
G0 5 (3) :·2 x G.2 ; all 5 x 5 matrices over F PG0 5 (3)
= S05(3) = PS0 5 (3)
_ G.2; 0 5 (3)
3
preserving a non-singular quadratic form;
=G
G : the automorphism group of a generalized 4-gon of order (3,3) consisting of 40 vertices and 40 edges, each object being incident with 4 of the other type Symplectic
SP4(3) : 2.G : all 4 x 4 matrices over F 3 preserving a non-singular symplectic form;
Weyl
G.2 : the Weyl group of E6 , generated by the 36 reflections in the minimal (root) vectors of the E6 lattice; these may be taken as 11111111 ( 0,0,0.0,0,0;1,-1) (1), (1,-1,0.0,0,0;0,0) (15), (2'2'2'-2'-2'-2;2'-2) (20) (first base) 1 1 1 1 1 1 1 1 or ( ±1,±1,0,0,0;0.0,0) (20), ±(±2'±2'±2'±2'±2i 2'2'2) (even sum) (16) (second base) where the coordinates before the semicolon may be freely permuted. The coordinates are obtained from the Ea root lattice (see 08(2)) by imposing the conditions x1+x2+x3+x4+x5+x6=0=x7+xa (first base) or x6=x7=xa (second base).
6)
The Weyl group permutes the 27 vectors (which belong to one coset of the lattice in its dual E
5.1111111 5.1111111 221111 a i = (b'-5'-5'-5'-5'-5;~'-2) (6), bi = (0:'-5'-5'-5'-5'-5;-2'2) (6), Cij = (-3'-5'3;'5'5'3;0,0) (15); the fUll automorphism group of the lattice is 2 x G.2 and is obtained by adjoining negation. Reducing modulo 2 shows the isomorphism with Biflection
°6 (2).
2 x G ; the group generated by the 45 complex reflections of order 2 in the vectors (±2,O,O,0,0)C (5), (O,±w,±w,±w,±w)C (40), where w = z3. Reducing mod 8 = i3 shows the isomorphism with
°5
(3).
6 x G : the full automorphism group of the lattice these generate.
Triflection
3 x 2.G : the group generated by the 40 complex reflections of order 3 (triflections) in the (±W)vectors (8;0,0,0) (0;8,0,0) (O;wa,wb,wc ) (wa;O,wb,-W C ), where the last 3 coordinates may be cyclically permuted; the triflection in r takes v to v - (1-w)(v.r)r/(r.r), where x.y = ZXiYi. Reducing mod 2 shows the isomorphism with U4 (2); reducing mod €I shows the isomorphism with S4(3).
Schurfli
G.2 : the group of the incidence-preserving permutations of the 27 lines on the general cubic surface in projective 3-space : a i (6), b i (6), Cij (15) Ci,j = 1, ... 6, iij). These lie in threes in 45 tritangent planes (ai,bj.cij) (30), (cij,Ckl,cmn) (15) (i,j.k.l,m,n, distinct), and two lines intersect if and only if they lie in some tritangent plane. There are 36 "double sixes" such as (adbj}' in which each line of either "six" meets all but one line of the other "six".
Hesse
G.2 : the stabilizer of a bitangent in Hesse's group (see S6(2»
of symmetries of the 2a bitangents to the general
quartic curve in the complex projective plane; the bitangents may be labelled with unordered pairs from £1,2,3,4,5,6,a,b} and the 27 bitangents other than ab then correspond naturally with ai
~
ai' bj
(see S6(2»
~
b j , ij
~
Schl~fli's
27 lines:
Cij. Generating permutations may easily be obtained from Hesse's bifid maps
e.g. (a123Ib456) and (ab12j3456)(a 1)(b 2). The 45 quartets {ab,bj,ji,ia} (30) and {ab,ij,kl,mn}
(15) containing ab yield the 45 tritangent planes. Presentations
G.2 :
Maximal SUbgroups Structure
G.2
Character
Abstract
Unitary
Orthogonal (2)
27
2 4 ;A
2 4 :S 5
1a+6a+20a
N(2 4 ) = N(2A 5B10 )
isotropic line
isotropic point
36
S6
S6 x 2
1a+151>+20a
N(2B,3C,3D,4B,5A), C(2C)
S4(2)
non-isotropic point
40
31+2. • • 2A 4
31+2 : 23 4
1a+ 15a+24a
N<3AB)
non-isotropic point
U3 (2)
base
0'2(2)wr3 3
isotropic point
isotropic line
Order
Index
960 720 648
Specifications
S
648
40
33'S4
33,(S4 x2 )
1a+151>+24a
N(3 3)
576
45
2· (A 4 xA ).2 4
H.2
1a+20a+24a
N(2A)
Orthogonal (3)
[26J
3ymplectic
N<3AB4C3D6)
Weyl
Biflection
Triflection
Schl'Mfli
base
minimal vector of E~
line
minus point
root vector of E 6
double six
isotropic line
point
isotropic point
isotropic line
plus point
reflection trisection reflection
tritangent plane
@
25920 576 p power P': part irid lA
A
A 2A
648
96
A
A A
2B
648 108 A
A
54
48
8
5
A
A
A A
5A
A
A
A
A
A
B A
3A
B..
3C
3D
4A
4B
@
@
@
@
@
72
36
36
18
12
AA
BA
6A
B..
CA CA CA CA 6C D..
DA DA 6E
CB CB 6F
72 BA
AA
@
@
@
9 A A
9 12 B BA A AA
@
12
AA BA 9A Bf. 12A B** fus ind
+
o
5
-3
..
-b27
-1
2
-1
0
**
z3-1
o
5
-3
-b27
**
-1
2
-1
0
z3-1
**
+
6 -2
-3
-3
..
3
0
2
10
2
o
10
2-2
+
15
-1
x.
+
15
x.
+
x.. Xn
X,.
-2 3z3-2
2
i3 -13 -13
13
0
0
200
z3
**
** -z3 **
z3
-z3
0 -2
-1
o
**
0
-1
-1
••
-b27
-1
-1
-1
**
z3 -z3
**
z3
** **
-z3
**
3z3-2
-1
6
6
3
0
7
3
-3
-3
0
3 -1
20
4
4
2
2
5
-1
0
0
0
-2
-2
+
24
8
0
6
6
0
3
0
0
-1
2
2
2
+
30 -10
2
3
3
3
3
-2
0
0
-1
-1
-1
-1
o
30
6
2
3b27
••
-3
0
2
0
0
z3-1
**
-i3
o 30
6
2
••
3b27
-3
0
2
0
0
**
z3-1
0
0
-2z3
2
0
0
-b27
**
-1
-1
-1
3
-1
o
2
2
-1
-1
2
@
720
48
48
A
A
B
A
2C
A
A
@
16
@
18
@
18
@
@
@
@
6
4
5
6
BCCDCDD ACC DC DD
A AC FC A AC CC 8A lOA 12C
4C
4D
6G
6H
6I
000
0
0
0
0
0
o
4
2
-2
0
0
-1
2D
-2
-2
o
5 -3
0
0
-1
-1
++
5
-1
-1
o
0
++
10
2
2
2
0
0
0
0
++
4
4
0
-1
o
0
++
10
-2
13
0-1
o
I)
**
-z3
+
0
13 -13
0-1
o
0 -z3
** +
o
2-1 -1
o
o
o
40
-8
0 3i3-5-3i3-5
-2
000
o
45
-3
-3
-9z3
**
0
0
o
3z3
**
0
0
o
45
-3 -3
••
-9z3
0
0
o
**
3z3
0
+
60
-4
4
6
6
-3
-3
0
0
0
2
'2
-1
+
64
0
0
-8
-8
4 -2
0
0
-1
o
00000
+
81
9 -3
o
o
0
0
-3
-1
o
o
0
0
0
0
2
3
3
3
3
4
8
10
6 6
12
4
6 6
6
666
6 6
6
6
9 18
9 18
12 12
**-2z3
**
Xz
x.
-1
o
-1
o
0
Xs
o
0
-1
X.
0-2
o
-1
0
XlO
-4
0
o
0
-1
Xll
0
0
0
0
0
0
0
0
0
X,.
0
0
0
0
0
0
0
0
0
0
X14
+
0
0
0
0
0
0
0
0
0
0
X16
-1
o
0
0
0
o
X19
-1
o
X20
20 20
24 24
3 -1
o **
z3
0
0
o
z3
**
0
0
0
0
0
0
z3
**
0
0
0
0
0
**
z3
-1
-1
o
0
0
0
++
10
2
-2
-2
o
0
++
16
0
0
0
000
0
++
9
-3
12 fus ind 12
4
2
** -2z3 **-2z3
0
+OOOOOOOOOOX,
++
-2
5
-2
0
0-3i3-5 3i3-5
4
0
0
-8
1
++
0
40
2
+
o
-1
o
ind
@
++
o
x,
@
3-1 8 8
8
-1
2
2
-1
0
-1
-2
-2
000
12
12
6
8 8
\
o
4
0
0
b27
**
-2
2
0
-1
z3-1
**
0
0
13
0
**
z3
**
-z3
o
4
0
0
..
b27
-2
2
0-1
**
z3-1
o
0 -13
0
z3
**
-z3
**
-
20
0
0
-7
-7
2
2
2
0
0
3
3
0
0
0
0
-1
-1
-1
-1
00
0
0 212
0
0
0
0
12
o
20
0
0 3z3+8
••
2
2
2
0
0
-3z3
**
0
0
0
0 -z3
**
-z3
**
+
0
0
0
0
0
0
0
o 20
0
0
•• 3z3+8
2
2
2
0
0
**
-3z3
0
0
0
0
**
-z3
**
-z3
20
0
0 3i3+2-3i3+2
-4
-1
2
0
0
-i3
i3
0
0
i3
0
•• -z3
-1
-1
o 20
0
0-3i3+2 3i3+2
-4
-1
200
i3
-i3
0
0 -i3
0 -z3
-1
-1
36
0
0
9z3
••
0
0
2
0
3z3
**
0
0
0
0
0
0 -z3
**
o 36
0
0
••
9z3
0
0
2
0
**
3z3
0
0
0
0
0
0
**
-z3
60
0
0
-3
-3
-6
0 -2
0
0
3
3
0
0
0
0
0
0
•• -3b27
0
3
-2
0
0
**
z3-1
o
0 -i3
0
0
0
z 3 ••
3 -2
0
0
z3-1
**
0
0
0
0
0
** o
z3 0
00
0
0
0
0
0
0
0
0
i5
0
X:n
o
0
00
0
0 4i2
0
0
0
0
0
0
i2
x,.
o
o
x••
X31
o
60
0
0
x,.
o
60
0
0 -3b27
••
0
64
0
0
-8
-8
4 -2
0
0 -1
o
00000
80
0
0
8
8
2
0
0
o
o
-
-4
0
0
0
13
0
0
-1
••
-1
+OOOOOOOOOOX21
0
0 -12
X:u
0
X,.
0
+OOOOOOOOOOX,.
+OOOOOOOOOOXzs
00
0
0 212
0
0
0
0 -12
0 -12
X30
+oooaoOOOOOX31
X,.
[27]
sz (8)
5uzuki group 5z(8) ': 2 B2 (8) Order = 29,120 = 26 .5.7.13
Mult = 22
Out = 3
Constructions Sz(8)
Suzuki
=G
the centralizer in 5 4 (8) of an outer (graph) automorphism of order 2;
G : all Lt x Lt matrices overF S preserving the set of vectors (t,x,y,z) for which xy+(x s + 2 +ys+z)t=O, where s : x -7 x4 is the automorphism of Fa with s2=2; projectively this defines an oval of 8 2 +1:65 points
on which G acts doubly transitively Orthogonal
2.G has an 8-dimensional orthogonal representation over F ; it may be generated by the maps A and B S which take (x co ,x O, •.. ,x6) (subscripts mod 7) to (xlt,-xS,x2,x,,-x6,xoo,xO,x3) and (x oo ,X"X 2 'X3'Xlt'X S 'X6'X O), respectively, together with the map
C : Xoo xt
~ ~
2x oo + Xo
+
xl + x2
+
x3
Xq + Xs + x6
+
Xoo - x_ t - X3_t + X4_t + 3Xl_t + 3X2_ t
+
3X6_t
G has a 14-dimensional complex representation which we write as a 7-dimensional representation over the
Complex
Quaternion algebra with units 1,j,k,1 and complex coefficients a+bi; G is generated by
A' :(qO .... q6) -7 (-iQO.-ikQ1.-ilQ2,lq3.-ijq4,kq5.jq6) Bt :(QO, ••• Q6) -? (Q1,Q2,Q3,Q4,Q5,Q6,QO)
C'
-4iQn -7 (i+j+k+l)Q_n+(i-l)Ql_n+(i-j)Q2_n+(1-k)Q3_n+(i-k)Q4_n+(k-j)Q5_n+(j-l)Q6_n
this is connected with the fact that one of the involution centralizers in the Rudvalis group is 22 xG
Max imal sUbgroups Order
Index
Specifications
G.3
Structure
Abstract
Character 1a+64a 1a+35abc+64a+65aabbcc
base
N(13ABC)
13: 4
13: 12
20
1456
5: 4
5:4 x 3
N(5A). C(3A)
5z(2)
14
2080
D14
7:6
N(7ABC)
L (8)
@
@
@
@
@
@
@
@
@
@
@
64 16 16 5 7 7 7 13 13 13 A A A A A A A A A A A A A A A A A A A A 2A 4A Bn 5A 7A B*2 C*4 13A B*3 C*9 fus ind
@
@
20 4 4 A AA AB A AA AA 3A 6A 12A
@
1
@
4 5 AA AA AB AA B* 15A
+00
+
[28]
parabolic
560
29120 P power pt part ind 1A
o
14
-2
o
14
-2 -2i
+
35
3
-1
-1
+
35
3 -1
+
35
3 -1
+
64
o
+
65
o
y7
*2
+
65
o
*4
)(w
+
65
o
)(u
+
91
-5
-1
-1
ind
1 2
2
4
4
X12
+
40
0
°
X14
+
40
0
+
56
+
)('9
Orthogonal
52
@
)(6
Suzuki
2i -2i
-1
000
000
-1
-i
i
-1
-1
o
0
0
000
-1
i
-i
-1
o
0
0
0-c13
+
0
-1
0
0
0
-1
0
0
0
2i
*3
*9
0
*9-c13
*3
0
*3
*9-c13
-1
-1
-1
+00
*4
0
0
0
+
Y7
*2
0
0
0
*2
*4
y7
0
0
0
o
0
0
0
0
0
7 14
7 14
7 14
13 26
13 26
13 26
0
0 -y7
*2
*4
0
0
0
.4 -y7
0
0
0
o
0
0 c13
*3
*9
56
0
0
0
o
0
0
*9 c13
*3
+
56
0
0
0
o
0
0
*3
*9 c13
+
64
0
0
0
-1
-1
-1
-1
+ 104
0
0
0
-1
-1
-1
-1
0
0
0
0
o
-1
5 10
.2
and no:
1 :2
2
4
4
5 :2
7 :2
7 7 :2·:2
13 :2
13 :2
13 :2
and no:
1 :2
2
4
4
5 :2
7 :2
7 :2
13 :2
13 :2
13 :2
7 :2
o
0
0
0
0
o
o
o
-1
o
o
o
0
~[~~}
8
2'.GCI~~ 2".G I = +00
-1
-1
11
8
5
L 2 (32) Linear group L2 (32)
= A1(32) = U2 (32) = S2(32) = 03(32)
Order: 32,736: 25 .3.11.31
Mult : 1
Out : 5
Constructions Linear
= 31
GL 2 (32)
~
PGL 2 (32) Unitary
PGU 2 (32)
~
~
SL 2 (32)
= 33
GU 2 (32)
x G : all non-singular 2 x 2 matrices over F
PSL2 (3 2 )
~
G0 3 (32)
Presentations
G
Order
Index
992
33
66 62
32736 power p' part ind lA
(31 x G).5; prL 2 (32)
~ ~L2(32) ~ P~L2(32) ~
G.5
x G : all 2 x 2 matrices over F 1024 preserving a non-singular Hermitian form;
SU 2(32)
~
PSU 2(32)
G
~
33
G.5
Character
Abstract
Linear
Orthogonal
25 :31
25 :31:5
la+32a
N(2A 5 )
point
isotropic point
496
D66
33:10
la+33a-o
N(3A). N(llABCOEF)
°2(32).
528
D62
31:10
la+32a+33a-o
N(31A-O)
02(32). base
@
32 33 A A
2A
3
Specifications
Structure
@
G[~~}
F 32 preserving a
=
Max imal subgroups
p
;
= PG0 3 (32) = S03(32) = PS03(32) = 03(32) = G : all 3 x 3 matrices over non-singular quadratic form; r0 3 (32) = pr03(32) = ~03(32) = P~03(32) = G.5
Orthogonal
@
~
G; rL 2 (32)
32
@
33
@
@
@
@
33
33
33
33
A
A
A
A
@
31
@
31
@
@
@
@
@
@
@
@
@
L
1(1024)
@
minus line ·plus line
@
@
@
@
@
@
@
@
@
@
@
@
@
31
31 31 31 31 31 31 31 31 31 31 31 31 33 33 33 33 33 33 33 33 33 33 A A A A A A A A A A A A DA EA AA BA CA DA EA AA BA CA A A A A A A A A A A A A A A A A A A A A AA BA CA DA EA AA BA CA OA EA 3A 11A B*2 C*4 0*3 £*5 31A B*2 C*4 0*8£*15 F*5G*lOH*11 I*9J*13 K*6L*12 M*7N*14 0'3 33A B'2 C.4 0*8E*16F*10G*13 H*7I*14 J'5 A A
A
A
A
@
A
x,
+
x,
+
31
-1
-2
-2
-2
-2
-2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x,
+
31
-1
-2-Yl1
*2
*4
*3
*5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 -yl1
x.
+
31
-1
-2
*5-yl1
*2
.4
*3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x,
+
31
-1
-2
*3
*5-y11
*2
*4
0
0
0
0
0
0
0
0
0
0
0
0
0
x,
+
31
-1
-2
*4
*3
*5-yl1
*2
0
0
0
0
0
0
0
0
0
0
0
0
x,
+
31
-1
-2
*2
*4
*3
*5-yl1
o
0
0
0
0
0
0
0
0
0
0
x,
+
31
-1
1-yl1
*2
*4
*3
*5
0
0
0
0
0
0
0
0
0
0
x.
+
31
-1
*5-yl1
*2
*4
*3
0
0
0
0
0
0
0
0
0
x"
+
31
-1
*3
*5-yl1
*2
*4
0
0
0
0
0
0
0
0
x"
+
31
-1
*4
*3
*5-y11
*2
0
0
0
0
0
0
0
x"
+
31
-1
*2
*4
*3
*5-yl1
0
0
0
0
0
0
x"
+
31
-1
1-yll
*2
*4
*3
*5
0
0
0
0
0
x"
+
31
-1
*5-y11
*2
*4
*3
0
0
0
0
x"
+
31
-1
*3
*5-yl1
*2
*4
0
0
0
x"
+
31
-1
*4
*3
*5-yll
*2
0
0
x"
+
31
-1
*2
*4
*3
*5-yl1
0
0
x..
+
32
0
-1
-1
-1
-1
-1
x"
+
33
o
0
0
0
0
0 y31
*2
*4
*8 *15
x"
+
33
o
0
0
0
0
0 *15 Y31
*2
*4
*8 .13
x"
+
33
o
0
0
0
0
0
*8 *15 y31
*2
*4
x"
+
33
o
0
0
0
0
0
*4
*8 *15 y31
x"
+
33
o
0
0
0
0
0
*2
*4
x~
+
33
o
0
0
0
0
0
*6 *12
x"
+
33
o
0
0
0
0
0
*3
x"
+
33
o
0
0
0
0
0 *14
x"
+
33
o
0
0
0
0
0
x"
+
33
o
0
0
0
0
0 *12
x~
+
33
o
0
0
0
0
0
x'" x"
+
33
o
0
0
0
0
0 *13
+
33
o
0
0
0
0
0
x"
+
33
o
0
0
0
0
0 *11
x"
+
33
o
0
0
0
0
0 *10 *11
Cus
ind
@
@
6 2 A AA
3 AA
A AA
AA
5A lOA 15A
x,
+0000
*2
*4
*3
*5-yl1
0
*5-yl1
*2
*4
0
0
*3
*5-yl1
0
0
0
*4
0
0
0
0
*2
0
0
0
0
0
*8 *16-y33
0
0
0
0
0
0
*4
*8 *16-Y33
0
0
0
0
0
0
0
*2
*4
*8 *16-Y33 *13
0
0
0
0
0
0
0
0 -Y33
*2
*4
*8 *16 *10 *13
0
0
0
0
0
0
0
0
0
*16-y33
*2
*4
*8
0
0
0
0
0
0
0
0
0
0 *14
*5 *10 *13
*7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 *13
0
0
0
0
0
0
0
0
0
0
0
0
0 *10 *13
0
0
0
0
0
0
0
0
0
0
0
0
0
-1
*7 *14
*5 *10 *11
*9 *13
*2 *11
*9 *13 *9
*6 *12 *3
*5 *10 *11 *14
*9 *13
*5 *10
*7 *14
*2
*4
*8 *16
*7 *14 *15 Y31
*2
*4
*8 *13
*8 *15 y31
*2
*4
*6 *12 *3
*5 *10 *11
*3 Y31
*7
*6 *12
*4
*8 *15 Y31
*3
*2
*4
*6
*9 *13
*5 *10 *11
*9
*6 *12 *3
*5.10 *11 *14
*9 *13
*5 *10
*9 *13
*7 *14
*5 *12
*3
*7 *14
*5 *10 *11
*7
*9
*5 *10 *11
*9 *13
*5 *10
*5
+OOOX3
*3
*5-yll
*2
*4
*3
x.
*2
*4
*3
*5-yl1
*2
*4
x,
*3
*5-yl1
*2
*4
*3
*5-yl1
*2
x,
*4
*3
*5-y11
*2
*4
*3
*5-yl1
x,
*2
*4 *14 *2
*5 *10 *13
*7 *14
*7
+OOOXk
*5 *10 *13
x.
*7 *14
*5 *10
*7 *14
x"
*8 *16-y33
*2
*4
*4
*8 *16-y33
*2
x"
*2
*4
*8 *16-y33
Xl~
*5-y33
*2
*4
*8 *16
x"
*5 *10 *13
*7 *14 *16-y33
*2
*4
*8
x"
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
+0000
2
0
_1
XliI
o
0
0
0
0
0
0
000
+
0
0
0
X19
*7 *14
*5 *10 *13
*7 *14
*5 *10
*7 *14
*7 *14
Xw
0
0
0
Xn
0000000
0
0
X2"
0000000
000
x"
0
000
0
0
x"
00000
0
0
0
0
0
x"
000
0
0
0
0
000
+OOOXZ4
000
0
000
000
X2~
o
0
0
0
0
x"
0000000
000
x"
000
000
x"
0
0
0
0
0
0
+
0
000
0
*7 *14
*2
*4
*8 *15
00000
000
0
0
+OOOX29
*7 *14 *15 Y31
*2
.4
*8
o
0
000
000
0
0
x"
.8 .15 Y31
*2
*4
o
0
0
0
0
000
0
0
x"
.2
o
0
0
0
0
000
0
0
x"
000
0
0
0
000
x"
*6 *12 *3
*7 .14
*7
*6 *12
*4
*8 *15 y31
*3
*2
*4
*6
*8 .15 y31
0
0
*9 *13
*3 Y31
*5
*3
*5 *10 *13
*3
*9 *13
*4
x"
o
*6
*2
*5
*6 *12
*5 *10 *11
*9 *13
*2 *11
*7 *14
*6 *12 *3
*3
x,
-1
*8 *15 Y31 *10 *11
*6 .12 *3
*5 *12
*7 *14
*6 *12
*7 *14
*9 *13
*7 *14
*9 *13
*5 *10 *11
*8 *15 Y31 *10 *11
*6 *12 *3
+0000
0
[29J
U 3 (4)
Unitary group U (4) 3
= 2 A2 (4)
Order = 62,400 = 26 .3.5 2 .13
Out = 4
Ml1'lt
Construction
= 5 x G: all 3 x 3 matrices PGU 3 (4) = 3U 3 (4) = PSU 3 (4) = G;
Unitary
GU (4) 3
over F,6 preserving a non-singular Hermitian form;
Design
G : the automorphism group of a Steiner system 3(2,5,65) whose blocks are the sets of 5 isotropic points corresponding to vectors orthogonal to a non-isotropic vector
Specifications
Maximal sUbgroups
Structure
G.2
2 2 +4: 15
22+4: (3 xO
Order
Index
960
65
300
208
5
150
416
52 :3
39
1600
13:3
x AS
lO
)
010 x AS
3
G.4
Character
Abstract
Unitary
22+4: C3xOlO )'2
1a+64a
N(2A 2 )
isotropic point
(010 x AS)'2
1a+39ab+64a+6Sa
N(SABCO)
non-isotropic point
1a+39ab+S2abcd+64a+65a
N(5 2 )
base
N(13ABCO)
U 1 (64)
S2:0 12
S2:(4 x 3 3 )
13:6
13: 12
~BEJ22 2 6
@
@
@
@
@
62400 320 15 16 A A A pi part A A A ind lA 2A 3A 4A
300 A A
300
300
A A
A
5A
B..
p power
[30]
x,
•
x,
-
12
-4
x,
o
13
-3
25-3&2
X.
o
13 -3
x,
o
13
x,
o
x,
@
@
@
@
@
25
25
A
300 A A
A A
A A
C*2
0*3
5E
C*
..
-3
-3
2
2
*2
*3
-bS
*
**
z5-3&2
*3
*2
*
-3
*3
.2
zS-3&2
..
-b5
*
-bS
13
-3
*2
*3
zS-3&2
*
+
39
7
0-1
-3b5
-3bS
*
*
x,
+
39
7
0 -1
*
-3bS
b5+2
x,
o
52
11
o
4z5+3&2
..
-3bS
*2
*3
x"
o
52
11
o
. . 425+3&2
*3
*2
x"
o 52
4
o
*3
*2 4zS+3&2
x"
o
52
4
o
*2
*3
**
4zS+3&2
x"
+
64
0
o
4
4
4
4
x..
•
65
-1
5
5
o
o
x"
o
65
-1
5z5
..
5
*2
*3
o
o
x"
o 65
_1
5z5
*3
*2
o
x"
o
65
_1
*3
*2
5z5
x"
o
65
-1
*2
*3
..
**
x..
o 75
-5
0-1
o
o
Xw
o
75
-5
0-1
o
x"
o 75
-5
0-1
x"
o 75
-5
0-1
0
0
-3
-3
*
n
..
@
20 CA
@
@
20 OA
BA
AA
BA
10A
B**
20
CA C*7
@
4
@
@
@
@
@
@
@
13 13 13 13 15 15 15 15 A A A A OA CA AA BA A A A A AA BA CA OA OA 0*3 13A Bn C*5 0*8 15A Bn C*2 0*8 fus ind 20
AA
@
@
3
8
A
8 5 A FB
EB
A
A ES
FS
A AB
A AB
..
2B
6A
@
8A Bn 10A
@
@
5
6 3 B AB
B* fus ind
@
@
@
4
4
A
A A
A AB A liB 12A 16A 16B
x,
:+0+0
-1
-1
-1
0
0
0
0
00
0
0
+
0
0
2i -2i
0
0
0
0
:0000
0
0-i+1 i-1
Xz
..
*2
*3
0
0
0
0
z5
**
*2
*3
z5&2
*3
*2
0
0
0
0
**
z5
*3
*2
*3
*2
z5&2
**
0
0
0
0
*3
*2
z5
**
-b5
*2
*3
**
z5&2
0
0
0
0
*2
*3
**
z5
* b5+2
b5
b5
*
*
0
0
0
000
0
0
++
3
0
-1
-1
*
-b5
++OOOOX7
*
*
*
b5
b5
0
0
0
0
0
0
0
0
++
3
0
_1
_1 -b5
*
x.
b5
*
*2
*3
**
-z5
0
0
0
0
z5
**
*2
*3
+
0
0
0
000
+0000X9
b5
*
*3
*2
-z5
**
0
0
0
0
**
z5
*3
*2
bS
-zS
*2
*3
0
0
0
0
*3
*2
z5
**
b5
**
-z5
*3
*2
0
0
0
0
*2
*3
**
zS
-1
o
o
o
o
-1
-1
-1
-1
o
0
0
0
-1
-1
-1
**
* * -1
z5&2 n
..
+
0
0
4
-1
++
5-1
*2
*3
+
*3
*2 **
0
0
0 -z5
o
z5
*3
*2
0
0
0
0
** -z5
o
o
*3
*2
z5
0
0
0
0
*3
*2 -z5
5z5
o
o
*2
*3
..
** z5
0
0
0
0
*2
*3
o
o
o
o
o
o
o
0-d13
**
*5
*8
0
0
0
0
o
o
o
o
o
o
o
o
o
**-d13
*8
*5
0
0
0
0
o
o
o
o
o
o
o
o
o
o
*8
*5-d13
**
0
0
0
0
o
o
o
o
o
o
o
o
o
o
*5
*8
**-d13
0
0
0
0
+OOOOX3
0
0
0
x,
0
x"
••
0
0
x,
0
*3
z5
0
)(.
+
*2
..
60
@
-1
.. ..
5
@
@
0
0
0
x"
0
0
0
0
o
0
-1
-1
:+0+0
o
0
:+0+0
0
000
,,,
2
_1
0
0
X13
-1
_1
Xl4
+OOOOX1S
x" +
0
0
0
0
0
0
x" x"
** -z5 +
0
0
0
0
0
0
+OOOOX19
Xw
+
000
000
x" x"
M 12 Sporadic Mathieu group M12
Order
= 95,040 = 26 .3 3 .5.11
Mult = 2
Out = 2
Constructions
Golay (3) code
2G : the automorphism group of the unique dimension 6, length 12 code over F 3 of minimal weight 6 (the ternary Golay code) which is defined in several ways below. The weight distributions of the code c.lnd the cocode (words modulo the code) are 01 62x132 9 2x220 12 2x'2 and O'12x1222x13232x220, respectively. The minimal weight representatives for the cocode are unique except that words of weight 3 are congrUF:,i;:' in sets of 4 (whose supports are linked threes).
Steiner hexads
G : the
automorphis~
group of the Steiner system 3(5,6,12) of 132 special hexads from a '2-set, such
that each pentad is in just one special hexad. The hexads are the supports of the weight 6 words in the ternary Dolay code. For a group element of shape 24 ,4 or 3 3 ,3, the fixed points together with any cycle form a hexad. Below we give, in the MINIMOG array, 3 involutions of a 4-g,oup whose fixed tetrads (linked fours) are disjoint, and 4 elements of a 9-group any 2 of whose fixed triads (linked threes) form a hex ad.
~I::IIIIII::I MINIMOG
[JTI][[]][[J[IT]
The MINIMOG constructs the code in such a way that both signed and unsigned hexads are easily recognized. Each word is written over W3
j,
three rows (rowo ' row+, row_) of four digits
ea~h,
and
belongs to the code just if: sum of each column = -(sum of rowo) row+ - row_ is one of the
~tr~~de
w?rds:
0000 0+++ 0--- +0+- +-0+ ++-0 -0-+ -+0- --+0 (or in general (a
oo ;8 0 ,a 1 ,a 2 )
= (s;a,8+s,a+2s).
For example we check co 1 ',Imn sums: + + + .f0 + -
thus:
o
rowo
SU!l1:
row
-
+ + +
+
++0-1 +
.f-
o 0 + 1++0rOW :
-
-
-
+
0
A hexad is in the Steiner system just if its column distribution is 320 2 , 3 1 ,3, 230', or 2 2 12 and its Uodd-men-out" form part of a tetracode word. For example
" " "" "" D EJ D D
colunn distribution:
odd-men-out:
030 3
1 1 3 ,
2 0 2 2
1 1 2 2
" " " "
" " ""
" "
"
+ 0 ? -
- ? - +
? ? ? ?
"
+
"
0
"
+ -
(if a point in a column is the only one in (resp. not in) the hexad, it is the odd man out for that column). We find the corresponding Gblay code words using cols and tets: col-col
col+tet
tet-tet
[]+ D + +
-
+
col+col-tet
a col
Do++ [TI]++ 0+ +0
++
~
(Mbdulo the code we have (every col)
qQ_~~
-(every tet), where
a tet
DD
and
t~t~
are the obvious words of weight 3 and
4 corresponding to columns and tetracode words.) Here is a dictionary between numberings of the 12-set and the MINIMOO array:
-eo
e 3 e oo -e 2
6
309
6
3
0
9
-dO
-e5
e9
e 8 -eX
5
2
7
10
18
2
16
13
d4
-e4
e,
e6 -e7
4
8
11
4
shuffle
modulo 11 Mathieu 24
8 12
d 1 d3 . d2 d 6 d8
d,O
-d 5 -d 7 -d 9 -d 11 lexicographic
modulo 23
G : the stabilizer in M24 of a weight 12 word (dodecad) in the binary Golay code. The hexads arise from octads of 3(5,8,24) meeting the dodecad in 6 points. The outer automorphism interchanges the dodecad with its complement. The stand ard pair of dodecad s is
Q
= {Ot
quadratic residues modulo 23},
If we define
n+
= whichever
N
= {co,
non-residues modulo 23}.
n-
of n, -n is in Q
= whichever
of 8/n, -8/n is in N
we convert the modulo 23 numbering of the MOO into shuffle numberings for Q and N, thus:
0
00
1
11
2
22
'9
3
20
4
10
18
15
6
14
16
17
8
5
9
21
13
7
12
=
0+
0-
,+
r
2+
8-
2-
3+
5-
4+ 10-
5+
1-
6+
6-
7+
8+
r
9+
4- 10+ 11- ,,+
9-
[31J
M 12 Modulo 11
The ternary Golay code is a quadratio residue code, modulo 11. Letting Q ;; Woo ;; -~ei
{O,l,3,4,5,9} and N;; {oo,2,6,7,8,X=10 . the words
to,
quadratic residuesl ;;
and wi ;; !eq_i - Ien_i (over F 3 ) and their
negatives are called total words, and span the code. 2G is generated by the maps
_w
ei ~ eA(i)
Wi
ei -
wi -
wB(i)
ei ~ tee(i)
wi -
+WC( i)
ei -
wi -
wD(i)
eB(i)
eD(i)
- (i) A 1
(upper sign just on
Q)
where A(i) : i+l. B(i) : 3i. C(i) : -l/i and D: (2X)(34)(59)(67). The group
=SL 2 (11).
so
all automorphisms of the projective line are in G. The code is self-dual in the sense that !CiW i ;; 0 just when (Ci) is in the code. There is an outer automorphism E that interchanges the actions on ei and wi' and takes A -7 A- 1 , B ~ Loop
at
C -? c- 1 ;;
-e,
D ~ D.
G is generated by the multiplication maps x -? x.a in the loop {Eoo,Eo' ••• Ex} of order 12 defined by Et.Et
= Eoo = 1,
Et.Et + q
= Et +2q ,
Et.Et + n
= Et _ n
(q in Q, n in N). For each pin L2 (11) there is a
= Ep*(c)
permutation p* such that Ea.Eb = Ec ~Ep(a) .Ep(b) the permutations given above, A*
= A,
B* = B, C*
= D.
and G is generated by the p and p*. For
These results extend (with some subtlety) to
the loop of order 24 defined by Et.Et = -E oo ' Et.Et+ q = -E t +2q , Et.Et + n = Et _ n , whose right mUltiplications generate 2G.
Orthogonal (2)
G is the intersection of two subgroups A12 in 010(2), as follows: the even SUbsets of {0,1, .•. 11} modulo complementation form an orthogonal 10-space over F 2 with quadratic form q(X) :
~IXI. The reflections x
-? x - (x.r)r in the 11 duads r : {0.11 •••• {10.111
generate one subgroup 3 12 , while those in the 11 hexads with sum 21, namely r =
{1,2,3,4,5,6} {0,1,2,3,7,S} {0,1,2,4,5,9} {0,1,3,4,6,71 {0,1,2,3,5,10} {0,1,2,4,6,S} {O,2,3,4,5,1} {O,1,2,3,6,9} {O,l,3,4,5,8} {O,1,2,5,6,7} {O,l,2,3,4,11}
generate the other. The outer automorphism of 0;0(2) interchanges the generators in the order 3t~iner
given. The above hexads generate the
Shuffle
system by reflection and complementation.
G : the case n = 12 of the following construction: If n112 we define
~
to be the group of permutations of {O,l, ••• n-l} generated by the reversal and
R : t _
Mongean shuffle permutations:
n-l-t
S : t _
min{2t .2n-1-2tl.
If mn = 12, the stabilizer in G of the canonical partition 0 .•• /n ••• /2n ••• / ••• into
o
m sets of n is a SUbgroup Mm x Mn acting on one of the standard arrays displayed:
1
o o
o 1 2 3 4 5 6 7 8 9 10 11
1 7
6
2
3
4
o
5
7
8 9 10 11
8
012 345 678 9 10 11
1 2 3 6 5 4 9 10 11
2
1
3
3 2 4 5
4
7
6
8 9 11 10
The 3teiner system is the same as that given under the "Orthogonal" construction above. The outer automorphism
R -,., R, 3 -,., 3-
5 6 7 8
9 10 11
1 conjugates Mm x M to M x Mm. n n
The shuffle numbering is related to the modulo 11 numbering as follows:
Shuffle:
o
2
3
4
5
6
7
8
9
10
11
8
6
2
X
7
Modulo 11:
00
9
3
4
:;
o
(mnemonic:
00
-2
3
4
5
o -3
6 -9 -12 -15)
G x 2 : the group of permutations on {0,1,2, ••• ,23} generated by the turnaround permutations Td : qd + r --, qd + d - 1 - r
(0
i
r
< d) for each divisor d of 24
There is an outer automorphism taking Td to T24/d.(T24)d +24/d Hadamard
2G : the automorphism group of any 12 x 12 Hadamard matrix (that is, a matrix with orthogonal rows and entries ±1); the outer automorphism interchanges rows with columns. Particular definitions of Hadamard matrices are (modulo 11 ) : a ij = ±1 according as i is in Q or N
(shuffle) : a .. : (_1)[(ij+i+j-1)/13) lJ An automorphism is a monomial permutation of rows that has the same effect as some monomial permutation of columns. Lexicographic
The code is generated by 6 words, written (d O, ••• d 11 ), each the lexicographically earliest word that differs in at least 6 places from all linear combinations of its predecessors:
000000111111 Presentations
G
000011001122
000101010212
001001012021
= G3.5.5.5.5,5.5 =
[32]
010001021201
100001022110
M 12 Max imal sUbgroups
Specifications
Structure
G.2
Character
12
M ll
L (11):2
7920
12
M
1440
66
1440
66
MlO :2 ;; A6 '2 2 MlO :2;; A '2 2 6
660
144
L ( 11) 2
L (11):2. 3
432
220
1+2: 0 3+' 8
432
220
M :3 ;; 32 :23 4 9 3 M :3 ;; 3 2 :23 4 9 3
240
396
2 x 3
192
495
M8 ·3 4 ;; 21+4' 33
192
495
4 2 :0 12
72
1320
A x 3 4 3
Order
Index
7920
2
ll
Mathieu 12
Golay (3) code
1a+ lla
point
± weight 1 cocode word
1a+llb
total
± weight 12 code word
la+ 11a+54a
N(2B. 3A. 3A, 4B. 5A)
duad
± weight 2 cocode words
la+ 11 b+54a
N(2B • 3A. 3A. 4A, 5A)
hexad pair
± weight 6 code words
1a+ 16ab+45a+66a
N(2A. 3B, 5A. 6A. 11AB)
projective line
la+11a+54a+55a+99a
N( 3A 2)
triad
± weight 9 code word
1a+11b+54a+55a+99a
N (3A 2)
linked threes
± weight 3 cocode word
(22xA5 ):2
la+16ab+45a+54aa+66a+144a
N(2A). N(2B, 3B. 5A)
2 x 6 array
M2 x M6
H.2
la+llab+54aa+55a+66a+99a+144a
N(2B)
tetrad
: H.2
1a+ 16 ab+45a+54aa+66a+99 a+ 144a
N(2B 2 )
linked fours
N(2A 2 ). NC3B)
4 x 3 array
2
5
Abstract
34 x 3
5
3
@@@@@@@@@@@@@@@
95040 240 192 A A p power p' part A A ind lA 2A 2B
54 A A
3A
36 A
32
32 B
A
B A
A
3B
4A
4B
10 12 A BA A BA 5A 6A
6 AB AB 6B
8 A A
8A
x,
+
x,
+
11
-1
3
2
-1
x,<
+
11
-1
3
2
-1
x,
o
16
4
0
-2
o
0
o
0
x,
o
16
4
0
-2
o
0
o
x"
+
45
5
-3
0
3
-1
x,
+
54
6
6
0
0
o
x,
+
55
-5
7
x·,
+
55
-5
-1
XlO
+
55
-5
-1
x"
+
66
6
2
3
0
Xl2
+
99
-1
3
Xu
+ 120
0
-8
x"
+ 144
XIS
+ 176 ind
@
@
8
10 11 11 120 AA A A A A A A A AA 8B 10A l1A B.. fus ind 2C
24
B
B A
4C
@
@
@
6 10 BC AC A BC AC 40 6C lOB 12
A
@
@
@
@
10 6 6 AC AD BC AC BD AC C. 12A 12B
6 BC AC C.
M x M 4 3
++
3
-1
o
3 -1
-1
o
-1
o -1
-1
o
0
-1
o
0
0
-1 bll
••
0
0
-1
o
-1
-1
o
0
0
0
-1
-1
2
2
-1
-1
o
3 -1
o
-1
-1
3
0
-1
-2
-2
0
3 -1
-1
_1
-1
3
o
0
o
0
o
400
-3
0
o
-1
-4
o
-4
-1
0
o
1 2
4
2 2
3 6
3
4
4
6
o
-1
-1 -1
-1
-1
o
+
0
0
++
5
-3 0
0
0
0
0
-1
o
0
-1
++
0
o
0
0
++
5
o
0
0
o
0
0
o
0
-1
0
o
-1
0
0
-1
-1
r5 -r5
o
0
++
6
2
0
-3
-1
0
:
++
:
++
o
o
0
++
4
o
2
-1
-1
++
4
o
-2
-1
-1
11 fus ind
2
4 4
8 8
6
10
10
o
0
o
o
o
-1
-1
o
o
o
1
0
o
5 10
12
6 6
8 8
8 8
20 20
11 22
22
i2
i2
0
-1
-1
00
0
2
i2
0
0
0
-i2 -i2
0
-1
-1
00
0
2 -i2
0
++
0
0
0
00
0
0 2i2
o
10
0
-2
-2
0
0
0
0
x"
o
10
0-2
-2
0
0
0
0
x,.
+
12
0
4
3
0
0
0
2
0
x,"
-
32
0
0
-4
2
0
0
2
0
X20
o
44
0
4-1
2
0
0
-1
x"
o
44
o
4 -I
2
0
0
x"
o 110
0
-6
2
2
0
x"
0
110
0
-6
2
2
x"
+ 120
0
8
3
XlS
o 160
0
0
x,.
0
160
0
0
-1
o
0
0
0
0
0
-1
-1
o
o
0
i5
0
0
-1
o
o
0 -i5
0
0
0
0
0
0
0
0
0
0
0
0
0
0 -i2
i2
0
0
0
0
0
0
0
0
-1
o
0
0
-1
-2
-2
0
0
0
0
0
0
0
0-bl1
-2
-2
0
0
0
0
0
0
0
0
0
i2 -i2
0
0
o
0
0
0
0
-1
+000000000
o
x,,,
0
•• bl1
-1
0
o
+000000000
:
o
o
o
o
-1
-1
-1
0
0
o -1
r3 -r3 0
0
o
0
24 24
12 12
12 12
i2
-1
-1
0
0 -i2
-1
-1
0
0
0
r3 -r3
0
0
0 -i2
0
0
EJEls
GE}, 's
9
0
+000000000
+
0
0
0
0
0
0
000
-1
++
0
4
0
0
0
0
0
••
+
0
00000000
"-bll
[33]
~
w
Index
50
50
50
126
175
175
175
525
2520
2520
2520
1000
720
720
720
240
= S3
3
2S 5
M10 ;; A6 '2 3
M10 ;; A6' 2 3
M10 ;; A6 '2 3
: 3 x 2S 5
32 : 2A 4
: 2S 5 • 2
I
: A6 '2 2
•• 51+2'8'2 + ••
: <3 x 2S 5 ).2
32 :2S 4
•• 5+1+2 •'24'2 •
(7: 3x3): 2
1a+21a+28b
la+21 a+28a
Character
N(2A)
N( ••• 50 ••• )
N(. .. 5C ... )
la+21a+28b+125a 1a+21a+28c+125a
N( ••• 5B ... )
N(5A)
non-isotropic point
Petersen graph
edge
co-clique
co-clique
N( ••• 5C ... ) N( ••• 50 ... )
vertex
isotropic point
Unitary
N( ... 5B ... )
Abstract
1a+21a+28a+125a
la+125a
: 51+2 : 24
3
62 :0 12 ,
G,S
51+ 2 :8
[ L2 (7):2
: S7
G.2
la+21a+28c
7: 3x3
2 6 :S 3 •
G.3
A 7
A 7 A7
Structure
Specifications
Graph
: the set stabilizer in 2Co 1 of an S-lattice of type 3 1+3 23 (see COl); the pointwise stabilizer is G;
hence G appears in Co 2 ' Co • HiS. and McL, which stabilize various sublattices of this S-lattice. 3
2 x G,S
50 sets (co-cliques) of 15 points no two of which are joined.
from {i); two totals are joined if A7 contains an element of order 5 fixing them both. There are two systems of
stabilizer is A • and the suborbits are 1. 7. 42. The vertices may be labelled by 00 (1). 0.1, ••• 6 (7). and the 7 42 totals (see A6 ) on 6-element subsets of {0.1 •••• 6}. The vertex i joins 00 and the totals on the set disjoint
PGU 3 (5) ;; G.3; SU (5) ;; 3.G; PSU (5) ;; G; 3 3 G.2 : the automorphism group of the Hoffman-Singleton graph. a rank 3 graph on 50 vertices. in which the vertex
Maximal sUbgroups
Order
Out
2 x 3.G.3 ;; GU 3 (5) : all 3 x 3 matrices over F 25 preserving a non-singular Hermitian form;
Mult = 3
Remark: G.2 is a maximal subgroup of the Rudvalis group.
Leech
Graph
Uni tary
Constructions
2 53 .7 Order - 126 .000 -_ 24 .3.
Uni tary group U (5) ;; 2A2 (5) 3
14
11
8
BEJFII13
GBEJ~~'4
G.2' G.2"
w lJl "-" ~
e
~
'CO
6
-6
-6
0
0
2
6 6
+ 126
o 126
o 126
o 144
o 144
1
3 3
Xw
x"
x"
x"
x,.
0
-4
9
84
02
02 105
X,o
X"
X"
0
0
0
o
o
o
0
0
o
o
-1
o
5
o
0
6
-6
-6
0
0
02 105
02 126
02 126
02 126
02 144
02 144
X'3
X24
X,s
X,6
X'7
-6
o
o
-1
-1
-1
-1
-6
-1
o 0 o -b7 o __
o o
o
-1
0
o
o
o
0
0
0
o
o
-1
-1
-1
-1
-1
0 0
__
-b7
0
0
i2
i2 -i2
0 -i2
0
0
0
-1
-1
-1
:0002
:0002
:0002
:0002
:0002
o
o o
o o
-55 -x'63
-55 -x'63
o
o
o o o o
0 -i2
o o o -6
o 6
0
0
0
0
0
i2
o
o
-1
-1
-1 -z3-1
z 3+ 1
o
o
0
z3+2
-z3
30 30 30
o
o
-1
-1
o
-2
o
o
30A
AAB
10 AAB
@
-1
24 24 24
0
0
i2
i2 -i2
0
-6
o
0
o
o z 3+ 1
o
-1
o
o z 3+1
0
o o i3
o
o
o
o
o
o
o
o
o
o 6
6
o
o
-z3
-1
o
o
-z3
24 24 24
63 63 63
63 63 63
15 15 15
12 12 12
o
..
o
-b7
o
0
i2 -i2
0
-2
i3
o -i2
o __
o
o -b7
o
o
o
-1
-1
-1
o
-1
o
o
-1
0
-1
0
000
0
o
@
o
o
o
0 2i3+7
0-2i3+3
0
0
6
:0002-2i3+3
:0002-2i3+3
:0002
-4 -i3-1
o
o -4i3
o
o
o o
o
o
o
o
o
o
o
-1
0-2i3-1
:0002 2i3+3
-i3
6
6 6
6 6 6
o
000
0
0
0
o 0
0
o o
-2
0
o
-1
2
-1 02
0
o
o
o
-1
o
o
0
-1
o
0
@
788 AC AA AB BC BA BB B_ 24A B_
@
-1
7 BC AC 21A
10 AB AB 15A
2
0
@
@
-1
2
o
0 2i3+3
@
12 8 BA BA BA BA 6C 12A
@
o
o
-6
-6
6
5
8
o
5
-4
240 BA BA 6B
@
-1
20000
-2
0
0
-1
3
0
0
0
-1
-2
-2
0
0
5
0
-2
-1
-2
3-2
-2
-1
-2
-2
o
-2
3
-1
-2
o
:0002 2i3+3
2
3 3 9
o -3 3
0
0
0
0
-1
0
0
o -3
ind
rUB
000
6
10 30 30
0
000
6
6
5
788 21 24 24 21 24 24
0
-1
000
+00
+00
9
o
0
o
000
0
0
i2
-1
o
+00
+00
0
-1
-3
-4
0
0
7 21 21
0
-1
0
+
+00
-00
0
-b7
__
-1
-1
o
0-1
0
0
-1
0
i 2 -i2
0
-1
0
0
0
0
-1
o
+00
A 3C
A 3B
8A Bn 10A
ind
A
rUB
21
@
A
@ 240
8 A A
@
8 10 A AA A AA
@
@
0 -i2
0
0
-1
2
6 6
6
o __
o 0 o -b7
-1
-1
-4
5 15 15
-1
-1
0
o
0
0
o
o
-1
-1
000
5 15 15
-1
-1
0
-1
-1
2
7A Bn
-4
5 15 15
-1
-1
9
0
o
o
o
48
02
X,9
o
o
o
48
02
X18
o
o
o
48
02
X17
0
21
02
X,6
5
21
0
5 15 15
4 12 12
3
02
-3
-6
-6
0
0
0
0
-2
0
0
-1
o
-1
0
-1
3
500
0
0
0
0
XIS
ind
5-1
+ 125
X9
0
-3
+ 105
9
x,
0
84
+
X7
-4
3 -2 -2
o
4
28
+
-2
0
@
3-2
X6
-2
3
o
4
28
3
0
3 -2
0
+
Xs
-4
-5
3
+
x.
3
0
o
+
X3
2
4
5
21
-
x,
28
-4
20
+
x,
@
7 A A
@
7 A A
@
126000 240 36 8 250 25 25 25 12 p power A A A A A A A AA p' part A A A A A A A AA ind 1A 2A 3A 4A 5A 5B 5C 5D 6A
@
@
@
@
@
@
@
+
+
++
++
++
++
+
++
++
00
++
1
+2
+2
+
+
+
+
02
+
+
+
ind
1
-
-
-
-
I
-
-
-
rUB
I
rUB
@
@
0
4
5
0
5
2
0
0
4
0
0
6 -6
5
5
4-4
0
4
0
6
0
0
0
-1
-1
0
0
6 120 120 A AB A A AB A ind 2B 4B 6D
@
@
@
@
@
8
0
0
0
-1
o
0
o
-1
0
rUB
++
++
+
++
10
0
0
12
0
20
0
0
-1
o 0
o -1
20
0
0
-1
1
1
*
* * *
-j
+
*
+2
+2
+
+
+
+
+
02
+
*
ind
+
+
++
++ 0
0
-1
0
00
o
0
-1
o
i5 -i5
++
ind
++
-1
0
-1
0
rUB
o
-1
0
-1
0
4 5 6 10 10 A BB AB AB AB A BB AB AB AB 8C 10B 12B 20A Bn
@
1
+2
+2
+
+
+
+
+
02
+
+
ind
+
+
++
++
++
++
++
+
++
00
++
ind
1
*
* *
-*
1
*
*
rUB
rUB
X,7
X'6
X,s
x,.
X23
X22
X21
X20
X,9
X18
X17
X16
X,S
X,.
X13
X"
Xl1
XtO
X9
Xs
X7
X6
Xs
x.
X3
X2
Xl
"-"
.--... Ut
c
t.Jj
J1
Sporadic Janko group J, Order = 175,560 = 2 3 .3.5.7.11.19
Out
Mult
Constructions G is a sUbgroup of G2 (11) : in the 7-space of pure imaginary Cayley numbers over F 11 , spanned by i t
Janko
(subscripts mod 7), G may be generated by the elements
S : it -?-2i_ t
R : it '""-?.:!:i t (- for t:O,3,5,6)
Q : it ~ i 2t
P : i t --?it+l ;
(i,_t+ i 2_t+ i 4_t) + 3Ci6_t+iS_t+i3_t).
+
In the corresponding projective 6-space there is an orbit of 1596 (isotropic) "Whitelaw points ll each lying in two out of 266 normal sex tic curves of 12 such points.
G : the automorphism group of an l1-valent graph on 266 points in which the point stabilizer is L2 (11) and
Graph
the suborbits have size 1 (distance 0), 11 (distance 1), 110 (distance 2). 132 (distance 3) and 12
(distance 4, or opposite). There are 11 involutions indicated by superscripts i,j from {0,1,2, ••• ,S,9,X}, the involution
° being
DCDCD below. In these termS the 266 points can be written P (1), pi (11), pi,j
(110), ~ (12), and Qx i (132), for x = 00,0,1, ••• ,9,X; p is joined to pi and opposite to Qx • The group is generated by the elements A: t ----7t+1, B: t ----73t, on i,j,x C : (2X)(34)(59)(67) on i,j, and (roO)(1X)(25)(37)(48)(69) on x
pt,t+q
D
,
Q
q-t
Sq-t) (pt,t-q
p-t,-t-q) (Q t+q p3q-t,6q-t) ( Q t-q Q -t-3q t' t ' -t-2q
'
P, Qoo ) ( pt , Q_t-t ) ( Q ' Qoo-t ), (t = 0,1, ••• ,9,X, q = 1,3,4,S,9) t In the 20-space over F 2 of vectors v = ~xtet + ~Ytft (subscripts mod 11) with LX t = ~Yt =
Orthogonal (2)
° and
invariant
quadratic form q(v) = !xtY t , the above generators act as follows:
A
et ----7 et+ 1
f t ----7 f h1
B
et ----7 e3t
f t --l>f 3t
C
eO ----7 eO
f O ----7f O + eO'
et ----7 e1/t
f t ----7 f 1/ t + eO + e 3 / t + e 4 / t + eS/ t
et .-..., e9/t
f t -? f 9 / t + eO + e3/t + e4/t + eS/ t + e1/t + eS/t
D : et .-..., f_ t b S c a
G=<
Presentation
f
where et = !e i (i i t) (t = 1,3,4,S,9) (t
= 2,6,7,S,10)
t .-..., e_ t
d S e I (abc)S=1, (cde)S=a
>
Remark : G is the centralizer in the DINan group of an outer automorphism of order 2.
Maximal subgroups Order
Index
660
Specifications
Structure
Character
266
L ( 11)
1a+S6ab+76a+77a
168
1045
2 3 :7: 3
N(2A3)
120
1463
2 x A 5
N(2A)
114
1540
19:6
N(19ABC)
110
1596
11:10
N(11A)
opposite points
Whitelaw point
base: {et,f t }
60
2926
06 x D 10
N(3A), N(SAB)
pentagon
non-isotropic point
point
42
4180
7:6
N(7A)
2
Abstract
Graph
Janko
Drthogonal (2)
point
sex tic curve
10-space
{et}
base : {±it} edge
point :
eb
non-isotropic point
point: (1111111)
@@@@@@@@@@@@@@@
175560 120 30 P power A A pt part A A ind 1A 2A 3A
[36]
30 A A SA
x,
+
X:
+
S6
0
2-2bS
X,
+
S6
0
2
X.
+
76
4
X,
+
76
-4
X.
+
77
X,
+
77
-3
x~
+
77
X.
30 6 A AA A AA B* 6A
7
10 A BA A AA 7A lOA
10 11 15 AA A BA BA A AA B* 11A 15A
19 19 19 A A A A A A ~* 19A B*2 C*4 15 AA BA
*
0
0
0
0
bS
*
-1
-1
-1
*-2bS
0
0
0
0
*
bS
-1
-1
-1
-1
-1
-1
-1
o
0
0
-1
-1
1
1
_1
1
1
0
0
0
2
2
-1
0
0
0
0
-1
-1
2
bS
*
0
0
bS
*
0
bS
*
-3
2
*
bS
0
0
*
bS
0
*
bS
+ 120
0
0
0
0
0
o
0
-1
o
0 c19
Xw
+ 120
0
0
0
0
0
o
0
-1
o
X"
+ 120
0
0
0
0
0
o
0
-1
o
X"
+ 133
5
-2
-2
-1
o
0
0
000
X"
+ 133
-3
-2
~b5
•
0
0
b5
•
-bS*OOO
X"
+ 133
-3
-2
* -bS
0
0
*
bS
X"
+ 209
S-1
-1
-1
-1
-1
o
-1
15
*2
*4
0
*4 c19
*2
0
*2
* -bS -1
8
*4 c19
0
0
0
o
0
0
15
Ag
Alternating group Ag Order
= 181.440 = 2 6 .34 .5.7
=
Mult
2
=2
Out
Constructions Alternating
59 ; G.2 : all permutations of 9 letters; A9 ; G : all even permutations; 2.G and 2.G.2 : the Schur double covers
Orthogonal
2G has an 8-dimensional real orthogonal representation, which may be generated (with sUbscripts modulo 7) by A : et ~ et+1' B : et ~ e2t' C : et ~ e_1/t' D : et ~ ±et (- for 0,3,5,6) and ~
E : 4e oo
-2eoo-3eO-e3-e5-e6
4eO
4en -? -2en-3e3n+eoo-e5n+e6n (n
= 3,5,6)
~
-2eO+3eoo+e1+e2+e4
= 1,2,4)
4e q ~ -2eq+3e5q-eo-e6q+e3q (q
which permute (oo.0.... 6.Zl as (0123456). (124){365). (ooO){16){23){45). (ooO){23){15){46). and (OooZ)
respectively Presentations
G = <X1, ••• x7Ixr:(XiXj)2:1); G.2
=
Maximal sUbgroups Order
Index
20160
9
5040
Specifications
Structure
G.2
Character
A 8
38
1a+8a
36
3
57 x 2
1a+8a+27a
C(2C)
duad
2160
84
(A
1a+8a+27a+48a
N(3A)
triad
1512
120
L (8):3 2
1a+35a+84a
N(2B,3B,7A,9A)
projective line
1512
120
L (8):3
1a+351>+84a
N(2B,3B,7A,9B)
projective line
1440
126
(A
1a+8a+27a+42a+48a
N(2A 2), N(2A, 3A, 5A)
tetrad
648
280
33: 54
33:(2 x 34)
1a+27a+48a+84a+120a
N(33)
32:2A4
2 3 : 25 4
216
840
@
@
7 6
x 3):2
36 x 3
3
2
5
x A ):2 4
3
5
x 34
Abstract
n
x,
+
8
x,
o
x,
o
x,
+2773900
X.
+
28
x,
+
35
-5
3
5
-1
x,
+
35
-5
3
5
x,
+
42
6
2
x"
+
48
8
Xu
+
56
x"
+
= N(3A3B4C6)
@
@
@
•
BEJl2 18
14
trisection
N(3B 2 )
1 181440 480 192 080 81 54 24 16 60 24 6 7 9 9 20 12 15 P power A A A A A A B A A A C B A B B AA AA AA pt part A A A A A A A A A A C B A A A AA AA AA ind lA 2A ~ g ~ ~ U ~ ~ M ~ ~ lOA 12A 15A +
~E}8
point
@@@@@@@@@@@@
x,
Al ternating
5(2.3.9)
@
@
@
@
@
@
040 144 240 16 A A A A A A A A fus ind 2C 2D 4C 4D
72 AC AC 6C
72 AD AD 6D
18 CC CC 6E
18 CD CD 6F
9 BD BD 6G
3
-1
0
2
_1
@
@
@
@
@
@
@
@
@
5 15
AA AA
B**
4 10 12 7 10 B AC AC AC AC A AC AC AC AC 8A lOB 12B 14A 20A
++ 4
0
o
0
5
-1
2
2
3
21
-3
-3
3
0
-1
o
21
-3
-3
3
0
-1
-1
-1
0
0
0
-1 b15 **
o
0
0
0
-1
o
-1
0
0
-1
0
-1
2
o
0
3
2
-1
-1
0
o
0
2
-1
2
-1
-1
0
o
0
0
-3
3
0
2
-3
0
-1
0
6
3
0
0
0
-2
2
-4
0
11
2
2
-2
0
-1
84
4
4
-6
3
3
0
0
x"
+ 105
5
15
-3
-3
-1
x"
+ 120
0
8
0
3
-3
0
0
0
x"
+ 162
6
-6
0
0
0
0
-2
-3
x"
+ 168
4
0 -15
-3
0
-2
0
3
o
x"
+ 189 _11
-1
x"
+ 216
4 -4
10
-1
o
-3
9
0
0
-4
0
-9
0
0
2
0
-1
-1
2
0
0
++
6
2
4
0
** b15 -1
-1
++
15
3
5 6
3
3
0
2
-2
-1
000
0
0
0
-1
-1
0
-1
-1
0
0
0
0
0
0
0
-1
0
-1
2
0
o
0
0
-1
0
-1
o
-1
0
o
-1
0
0
0
0
-1
0
0
++
14
-2
-1
0
-1
0
0
+
0
0
-1
2
0
-1
0
0
0
0
0
o
0
0
++
14
2
-4
0
2
2
0
_1
0
0
++
20
4
0
0
2
-2
0
0
-1
-1
++
14
-6
4
0
-1
3
2
-2
o
0
0
_1
0
-1
-1
++
14
-2
-6
2
2
-2
-1
-1
o
0
0
0
-1
0
0
++
35
-1
5
-1
-1
-1
0-1
000000
++
20
4
0
0
o
0
++360-6-2000000
0
0
0
_1
o
0
0
0
-1
-1
0
-1
0
0
7 14
9 18
9 18
20
24 24
0
000
o -1
1 2
4
2
3 6
3 6
3 6
8
4
5 10
12
6 6
x"
+
8
0
0
-4
-1
2
0
0
-2
0
0
2
-1
0
0
x'"
+
8
0
0
_4
-1
2
0
0
-2
0
0
-1
2
0
0
x"
o
48
0
0
6
3
0
0
0
-2
0
0
_1
0
0
0
i6
x"
0
48
0
0
6
3
0
0
0
-2
0
0
_1
0
0
0 -i6
x"
+
56
0
0 -16
2
2
0
0
-4
0
0
0
-1
-1
x'"
+ 112
0
0
4
4
4
0
0
2
0
0
0
x"
o 120
0
0
0
3
-3
0
0
0
0
i3
x,.
o 120
0
0
0
3
-3
0
0
0
0 -i3
x.,
+ 160
0
0 -20
-2
-2
O'
0
0
0
0
_1
x..
o 168
0
0
12
-3
0
0
0
-2
0
0
0
0
x,.
0 168
0
0
12
-3
0
0
0
-2
0
0
0
x,.
+ 224
0
0
-4
-1
2
0
0
4
0
0
0
0
++
14
2
-1
++
21
-3
-4
0
-4
-1
0
-1
o
4-1
-1
-1
2
2
-1
0
-3
-3
0
0
0
-1
15 30
15 fus ind 30
2
4
8
8
6
12
6
12
12 12
8 8
0
0
o
-1
-1
-1
0-1
o
-1
0
o
++6-6-40330000
-1
ind
o
0
0
2-2 0
o
0-1
o
0
0
-2
0
0
-2
-1
+00000000000000
-1
-2
-1
0
10
-1
-1
24
14 14
40 40
+00000000000000
o
0
0
0
0
0
00
0
0
0
0
0
0
0
0
0
-1
-1
00
0
0
0
0
0
0
0
0
0
2i
0
0
0
o
0
-1
-1
00
0
0
0
0
0
0
0
0
0
0
0
0
0 110
0
0
0
0
00000000000000
000000
o
0
0
0
0
0
0 b15
••
0
0
0
0
-1
-1
0
0
00
0
0
0
0
0
0
0
0
0
0
0
0
17
0
00000000000000
.. b15 000000000031000
o
0
[37]
L3 (5)
Linear group L ,S) 3
=A2(S)
Order = 312,000 = 25 .3.5 3 .31
Mul t
Out = 2
= 1
8E}0
Constructions Linear
GL (S) ;: 11 x G : all non-singular 3 x 3 matrices over F S ; 3
PGL (S) ;: SL (S) ;: PSL (S) ;: G 3 3 3
30
Specifications
Maximal subgroups
@
[38]
@
@
@
372000 480 211 P power A A pt part A A ind lA 2A 3A
480
x,
+
x,
+
30
6
x,
+
31
7
X.
A A 4A
@
480
Order
Index
Structure
G.2
Character
Abstract
Linear
12000
31
S2: GL2 (S)
51+2 :[25 ],
la+30a
N(5A 2 )
point
12000
31
S2: GL2 (S)
la+30a
N(5A 2 )
line
120
3100
S5
N(2A,3A,5B), C(2B)
0 (5) 3
96
3875
42 :3
1I 2 :D 12
N(2A 2 )
base
93
4000
3" 3
3"6
N(31ABCDEFGHIJ)
L
@
@
@
16 500
25 A A A A A A A A Bn 4C 5A 5B
@
24 AA AA 6A
8
@
43 5 .2 Ss
3
@
@
@
x 2
@
@
@
24 24 20 24 24 20 20 A B AA AB AA AA AB A A AA AA AB AA AB 8A Bn lOA 12A B** 20A Bu
@
@
24
24
@
@
A8
8A
24 AB
AA
AB
AA
24 BA AB
24A
B..
Cu7
D*7
@
@
1
(125)
@
@
@
@
@
@
@
@
@
@
@
31 31 31 31 31 31 31 31 31 31 6 '20 '20 A A A A A A A A A A A A AB A A A A A A A A A A A A AB 31A Bn C*2Dn2 E*4F**4 G*8H**8I*16J*15 fus ind 2B 4D 6fl
@
@
4
@
@
@
5
6
10
C B8 A BB
AD AD
AD
10 AD
AD 8C 'OB 12C 20C
D*
AD
x,
++
0
6
-5
625
-5
-1
0
o
000
o
o
o
o
0
-,
-1
-1
0
6
-1
-1
2
6
-1
1
0
-1
-1 1-1-1-1
-i
i
-i
61-1
6
1
-1
0
-1
-1-1-1 1-1
i
-i
i
o -1
_1
o
-1
-1
-1
_1
-1
-1
-1
-1
-1
++
0
0
0
0
0
0
0
0
0
++
o
31
-5
x,
o
31
-5
x,
o 96
0
0
o
o
0-4
o
0
0
0
0
0
0
0
o
o
o
o
x,
o
96
0
0
o
o
0-4
o
0
0
0
0
0
0
0
o
o
o
o
** x31 **2
x,
o 96
0
0
o
o
0
_4
o
0
0
0
0
0
0
0
o
o
o
o
*16 *15 x31
x,
o 96
0
0
o
o
0
_4
o
0
0
0
0
0
0
0
o
o
o
o
*15 *16
x"
o
96
0
0
o
o
0
_4
o
0
0
0
0
0
0
0
o
o
o 96
0
0
o
o
0
_4
o
0
0
0
0
000
o o
o
Xu
o
o
o
x"
o
96
0
0
o
o
0
_4
o
0
0
0
0
0
0
0
o
o
o
o
Xu
o 96
0
0
o
o
0
-4
o
0
0
0
0
0
0
0
o
o
o
o
96
0
0
o
o
0-4
o
0
000
0
0
0
o
o
o
o o
**4
x,. x"
o 96
0
0
o
o
0-4
o
0
0
0
000
0
o
o
o
o
**2
x"
+ 124
11
4
4
0
-1
-1
2
2
-1
-1
-1
x"
+ 124
4
4
4
0
-1
-1
-2
-2
-1
-1
-1
x"
o 124
11
_4
_4
0
-1
-1
21 -21
-1
-1
-1
x"
o 124
4
_4
_4
0
_1
-1
-1
-1
-1
h,
o 124
_4
-2
41
-41
0
-1
-1
-21
21
x"
o 124
-4
-2
-41
41
0
-1
x"
o 124
_4
41
-41
0
x"
o 124
_4
-4i
41
Xu
o 124
-4
41
x"
o 1211
_4
Xu
+ 125
x"
+ 155
11
-1
Xu
o 1S5
-1
_1
X~
o 155
_1
_1 -61-5
X~
+ 186
-6
61-1 -61-1 -6i-1
5-1
0
-21
21
2
0
0
_1
2
0
0
21 -21
_1
-1
-1
0
0
-1
0
-1
-1
-1
0
0
-i
-41
0
-1
-1
-1
0
0
1
-4i
4i
0
-1
-1
-1
0
0
-i
5
5
o
0
-1
-1
-1
-,
-1
5
0-1
5
0
-1
1
5
0 -1
-1
11
o
0
-1
61-5 -61-5
6
61-5 6
-2
-i
0
-1
i-i
-1
0
*4 **8
*2 **2
*8 *15 *16
*4 **4
*2 **4
*4 **4
+OOOOOOOOXIO
*2 **4 **
*4
Xu
*2 **2
+00000000X12
** x31 **2
*2
x"
*8 **8 *16 *15 x31
**
+00000000X14
**
x31
x"
*4 n8
*8 *15 *16
00000
0
0
000
++
4
-4
o
-1
o
-1
0
0
0
++
4
4
o
0
0
0
0
0
0
0
0
0
+
0
0
-i
i
-i
o
0
0
0
0
0
0
0
0
0
-1
x" -1
0
0
-1
X17
0 XIS
0
x"
o
o
o
o
0000000000
+00000000X2O
o
o
o
o
o
"7
*1
y'24 **
i
-i
*1
**7
-1
-1
-i
0
*8 **8 *16 *15 x31
x,
0
*7
i
*4 **4
+00000000X8
*8
*4 **8
*2 u2
** x31 **2
*8 u8
0
**1
-1
*8 *15 *16
X3
x,
0
*1
-1
**8
0
*8 *15 *16
*4 u4
*2 **4 **
0
+00000000X6
0
0
y'24
-1
*8 u8 *16 *15 x31
-1
*8 **8 *16 *15
0
0
**
_1
** x31 **2
-,
Or5-r5Xz
x,
*4 **8
*2 n2
0
0
0
0
-i
-1
*4 **4
*2 **4 n
0
0
i
-1
*2 **2
0
0
**1
0
**
0
o
**
0
x31
0
0
+00000000X4
i
y'24
-1
0
0
5
-i
i
-1
o
0
i
-1
-1
i-1 0
i
-i
-, -, -, -, -i
-1
0000000000
0
-i
o
y'24
0
0
0
0
0
0
0
0
x"
0000000000
+OOOOOOOOX22
0000000000
i
i
-i
o
-i
o
x"
000000000
0
+OOOOOOOOX24
o
0
0
0
0
0
0
0
0
0
x"
o
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0000000
0
0
0
-, -,
-i
o
..
0
++
5
++
5
5
o
-1 -1
-1
-1
0
0 X26
0
x"
+OOOOOOOOX28 X~
++
6
-6
0
0
o
-1
_1
X30
M 22 Sporadic Mathieu group M22 Order = ~~3,520 = 27 .3 2 .5.7.11
Mult = 12
Out = 2
Constructions For almost all purposes, M22 is best studied as a subgroup of M24 (q.v.). Thus M22 02: G.2 is the set stabilizer of a
Mathieu
= G is
duad in M24t and M22
=G.2
M22 .2
~
the pointwise stabilizer.
the automorphism group of the Steiner system 3(3,6,22), whose 77 hex ads are derived from the oetacts of
3(5,8,24) containing the fixed duad.
G.2 : the automorphism group of a rank 3 graph on 77 points, with sUborbits 1, 16, 60, and point stabilizer 2 4 :3 6 :
Graph
(Every hexad of 3(3,6,22) is disjoint from 16 others and meets the remaining 60 in 2 points each.) Lattice
2M 22 .2
= 2.G.2
: the automorphism group of a 10-dimensional lattice with coordinates (in Z[b7]) indexed by the
triples of 6 points, modulo complementation. The lattice is defined by requiring all coordinates xabc to be fo~m
congruent modulo b7 and their sum to be divisible by 2b7**, while their sums over sets of the
S(ab.cd.ef)
=
{ace,acf,ade,adf} and S(ab) = {abc,abd,abe,abf} must be divisible by 2 and (b7)2 respectively. There is a monomial group 2 5 :S 6 generated by permutations of {a,b,c,d,e,f} and sign changes on the sets S(ab.cd.ef). With the natural norm ~!lxabcI2 the vectors of norms ~ and 5 fall into four orbits 4X, 4Y, 5X, 5Y. The vectors of 4X are the images under the monomial group of (4,0,0,0,0,0,0,0,0,0) (i7, 1, 1, 1, 1, 1, 1, 1, 1, 1) (1 on S(ab»
(1, 1,1, 1,b7**,b7**,b7**,b7**,b7**,b7**)
(b7 on S(ab), 0 on S(ab.ed.ef)
(b7,b7,b7,b7,0,0,0,0,2,-2) and fall into 77 congruence bases modulo b7**. Unitary
In a 6-dimensional vector space of vectors (ab cd ef) over F 4 with unitary norm ab+ao+cd+ca+ef+eT, the group 3M22
= 3G
is the automorphism group of a configuration of 22 isotropic vector 3-spaces. Each non-zero isotropic
vector appears in just two of these spaces. The coordinates (ab cd ef) of a typical vector in each of the 22 3-spaces are given in the HOG array below, where X,y,z are independent elements of F 4
= x+z,
y
Presentation
3.G
=< a
2
= x+y,
S
= x+y+z,
and At
= wA,
B"
= W'B
= {O,l,w,w},
xO yO zO
SX Sy SZ
SX Styt S"2"
S"X" Styt SZ
xtXt yy zZ
xO Oy Oz
SX YS ZS
SX y'S' 2"S"
S"X" ytS' ZS
xX y"Y" zZ
xX ytY' z2
Ox yO Oz
XS SY ZS
XS Sty, Z"S"
X"S" S'yt ZS
xX yy Z"Z"
xX yY ztZt
Ox Oy zO
XS YS SZ
XS Y'S' S"2"
X"SII ytSt SZ
V
= y+z,
:
X"X" yy zZ
b 5 e
X
d I (eab)3=(abe)5=(bee)5[=(bed)5J=(aeed)~=1 >
adjoin (abee)8 = 1 for G.
e
Specifications
Maximal sUbgroups
Abstract
Mathieu
Lattice
Unitary
point
5X 1-space mod b7
isotropic 3-space
hexad
4X or 5X 1-space mod b7**
isotropic 3-space
structure
G.2
Character
22
L (4)
L 3(4):22
1a+21a
5760
77
2~:A6
2~:S6
1a+21a+55a
2520
176
A 7
1a+21a+154a
heptad
2520
176
A 7
1a+21a+15~a
heptad
1920
231
2~:S5
25 :S 5
13~~
330
2 3 :L (2) 3
720
616
M10
660
672
L 2 ( 11)
Order
Index
20160
3
=A6 '2 3
N(2A 4 )
1a+21a+55a+154a
N(2A~)
duad
4Y l-space mod b7
isotropic 1-space
2 3:L (2) x 2 3 A '22 6
1a+21a+55a+99a+15~a
N( 2A 3), C(2B)
octad
4Y l-space mod b7**
isotropic 3-space
1a+21a+55a+154a+385a
(do) deead
5Y l-space mod b7**
pair of isotropic 3-spaces
L2(11):2
1a+21a+55a+154a+210a+231a
endecad
page 40
8BI2 BBII BI4.G.2 12
10
8
---------------------~
non-isotropic 1-space
,--------------------I page 41
I
BFII BFIO
\
7
! I
\ I .
BI12.G.2 12
10
[39]
M22
@
@
@
@
@
@
443520 384 36 32 16 5 p power A A A A A p' part A A A A A ind 1A 2A 3A 4A 4B 5A XI
+
1
x,
+
21
5
3
X3
o
45
-3
0
x.
o
45
-3
0
x,
+
55
7
X6
+
99
3
x,
+ 154
10
1 -2
Xs
+
210
2
3 -2
X.
+
231
7 -3
1
XIO
o 280
-8
XII
o 280
-8
XI'
+
385
ind
1 2
2 2
XI3
o
10
X,.
o
X"
+
@
@
@
@
1
o
0
b7
**
o
0
**
b7
-1
-1
3 -1
-1
0 -1
0
3 -5
3 -1
0
-1
00
3 -5
3 -1
0
-1
3
++
13
5
-1
0
0
++
15
-1
0
0
++
14
6
2
2 -1
0
++
14 -10
-2
2 -1
0
7 -9
-1
-1
0
0
0
5 -3 -3
0 6 6
o
0 -1
000
o
0
0
0
++
0
0 bl1
**
+
0
o
0
0
++
21
0
3 -1
1
0
-2
0
0
4 4
4
5 10
6 6
7 14
7 14
8 8
11 22
11 fus ind 22
2 2
2
4 4
4
2
2
0
0 -1
b7
**
0
-1
-1
00
4
0
-2
10
2
2
0
0
n
b7
0 -1
-1
00
4
0
56
-8
2
0
0
1 -2
++
0
XI6
+ 120
-8
3
0
0
0
X17
o 126
6
0
-2
o
1
0
XIS
o 126
6
0
-2
o
1
XI'
o 154
2
1
-2
o
Xzo
o 154
2
1
-2
X'I
+ 210
10
3
X"
+
2 -3
XZ3
+ 440
-8
3 6
-1
@
@
@
n
-1
0
o
0
b7
n
o
0
n
b7
-1
-1
-1
0
0 -1
-1
0
0 -1
0
1-1
0
-1
1
0
0
o
0
0
0
0
000
o
000
b11
o
0
8
10 10
0
o
0
-2
0
o
0
0
0
0
0
0
r5
12 12
14 14 -b7
14 14 n
** -b7
0
0
1
1
0
-1
-1
++
8
0
4
0 -1
0
0
o
0
0 bl1
**
o
o
o
o
o
o
o
o
o
o
0
o
0
0
I
+
-1
-1
o
0
2i
0
0
o
o
o
o
o
o
o
o
o
o
o
-1
-1
o
0 -2i
0
0
[
+
2
0
0
++
28
0
2
0
o
0
-1
0
0
2
0
0 -1
000
++
20
0 -2
0 -1
0
0
-1
-1
-1
0
0
0
-1
0
++
8
0 -4
0 -1
0
0
-1
8
5 20 10 20
677 12 28 28 14 14 28 28
11 fus ind 44 22 44
2 2
4
4
8
20 20
24 24
14 14
14 14
1
2
3
4
4
4
12
4
2
6
4
12
X2402560200
0
-1
0
0
-2
@
8 6 5 7 7 A AC AC AB BB A AC AC AB BB 8B 10A 12A 14A Bn
o
0
-1
-1
00
0
-1
-1
-1
0
0 -1
@
1
7 -1
0
-2
@
++
o
2-1
@
1
++
0
0
@
7 7 8 11 11 344 320 48 32 6 A A A A A A A A A AB A A A A A A A A A AB 7A Bn 8A 11A Bn fus ind 2B 2C 4C 4D 6B
-1
-1
@
1
0
ind
[40J
@
0
330
1
12 AA AA 6A
@
1
3
0
@
000
-1
0
0 2z8
o
0
0-2z8
02
56
0
2
0
0
Xu
02 144
0
0
0
0
-1
0 -b7
Xz,
02 144
0
0
0
0
-1
Xu
02 160
0
-2
0
0
X,.
02 160
0 -2
0
0
X~
02 176
0 -4
0
0
X31
02 560
0
0
0
0
8 11 8 44 8 22 8 44
o
Xz,
2
** bl1
1
02
**
0
0
n -b7
0
o
0
-1
-1
0-b11
o
0
-1
-1
o
1
0
0
0
o 0
0
0
0
1
1 n
*
0
*
0
1 -2
n-b11 00* -1
-1
*
8 8
6 6
0
0
0 1
M 22
ind
1A
2A
3A
1
2 6
3
3 3
6
4A
4B
5A
6A
7A B**
8A 11A B**
445 12 12 15 12 12 15
6 6 6
7 21 21
7 21 21
8
11
24 24
33 33
11 fug ind 33 33
2
0
0
-1
-1
-1
o
0
b7
**
-1
o
0
**
b7
-1
-1
0
Xn
02
21
5
0
1
Xn
02
45
-3
0
1
X~
02
45
-3
0
X3S
02
99
3
0
X~
02 105
9
0
X~
02 105
9
0
1
X~
02 210
2
0
-2
-2
X39
02 231
7
0
-1
-1
X~
02 231
-9
0
X'I
02 330
-6
0 -2
2
X'2
02 384
0
0
0
0 -1
3 6
4 12 12 4 12 12
4 12 12
ind
1
2
6 3
6 6
2
2
3 6
6 6
3 -1
-1
* * 0
0
*
**
I
o
0
0
0
1-b11
o
0
0
0
1 **-b11
0
2
0
0
0
-2
0
0 -1
3 -1
000 0
5 30 15 10 15 30
0
o
+
o
0
*
+
00*
+
6 6 6 6 6 6
7 42 21 14 21 42
8 24 24 8 24 24
11 66 33 22 33 66
11 fug ind 66 33 22 33 66
02
66
-6
0
2
0
o b7 **
0
0
0
*
0
X~
02
66
-6
0
2
0
o **
0
0
0
*
0
X.S
02 120
-8
0
0
0
o
-1
-1
*
+
X~
02 126
6
0 -2
0
o
0
00b11
**
X~
02 126
6
0 -2
0
o
1
0
0
0
X~
02 210
10
0
2
0
0
-2
0
0
0
X~
02 210
-6
0 -2
0
0
0
0
0
2i
Xso
02 210
-6
0 -2
0
0
0
0
0 -2i
XSl
02 330
2
0
2
0
0
2
XS2
02 384
0
0
0
0
-1
0 -1
-1
2 12 6 4 6 12
3 12 6 12
4 8 12 24 12 24 4 12 12
5 60 30 20 15 60 10 60 15 20 30 60
6 7 12 84 6 42 12 28 6 21 12 84 14 84 21 28 42 84
7 84 42 28 21 84 14 84 21 28 42 84
ind
1 12 6 4 3 12 2
12 3 4 6 12
0
-2
** b11
*
1
0 -1
-1
*
+
11 132 66 44 33 132 22 132 33 44 66 132
04 120
o
o
o
o
o
o
XS'
04 120
o
o
o
o
o
o
Xss
04 144
0
0
0
0 -1
0 -b7
**
0
XS6
04 144
0
0
0
0 -1
0 ** -b7
0
XS7
04 336
o
0
0
0
000
0-b11
XS8
04 336
o
0
0
0
000
o
XS9
04 384
0
0
0
0
0 -1
0 -1
2z8,-1
-1
6
8
10
12
14
14
2 2
2
4 4
4
6 6
8
10 10
12 12
14 14
14 14
2
4
8
4
6
8
20 20
24 24
14 14
14 14
+2
+
XS3
-1
4
1
*
1-2z8
4
+
0
8 24 24 8 24 24 8 24 24 8 24 24
2
+2
0
o
2
+
X~
b7
8B 10A 12A 14A B**
+2
*
*
6B
+
+
-1
4D
0
*
0 -1
4C
0
0
-1
2C
+
0
0 -1 7 42 21 14 21 42
*
2B
-1
11 fug ind 132 66 44 33 132 22 132 33 44 66 132
L
04
1
**
02
1
**
02
1
-4
-1
2
8
6
-1
** **-b11 -1
* **
-2
[41]
J2 -- HJ
Fs-
j> ;
Sporadic Hall-Janko group J 2 Order = 604,800 = 27 .3 3 .5 2 .7
Mult = 2
Out = 2
Constructions Graph
J 2 .2
=G.2
: the automorphism group of a rank 3 graph on 100 points, with suborbits 1, 36, 63, and point stabilizer
=G2 (2).
U3 (3).2 Quaternionic
2J 2
= 2.G
This graph is one of a series continuing through G2 (4) and Suz.
: a group generated by 315 quaternionic reflections. There is a diagonal sUbgroup 23+4 of right
mul tiplications d iag( g1 ,g2,g3) (gt in (±1,±i,±j,±k}) with g1 g 2g3 = ±1, and the reflecting vectors (roots) are the images under this of (2,O,O)S (3), (O,h,h)S (24), (n,1,n S (96), and (1,wc,bW)S (192) (where W=~(-1+i+j+k)=Z3, b=b5, c=b5*, h=z3-b5). The ring of left scalar mUltiplications is the icosian ring, which contains 2A 5 as a group of units (see AS). The quaternionic reflections x
<x,y> =
~XtYt.
~x
- 2<x,m>m/<m,m> preserve the quaternionic inner product
The Euclidean norm defined by N(x) = a+b when <x,x> = a+h/5 (a,b rational), converts the lattice
generated by the above vectors into the Leech lattice. Some of the subgroups are definable over proper sUbrings, often realizable by complex numbers, for example
=~(b7l.
G = ; 2'(S3 x G) G.2
=< a
=< a b
5 b c 8 d
c 8 d e l a = (cd)4 > : adjoin (bcde)10 = 1 for 2 x G, (abcdecbdc)7 = 1 for G. e
f I a=(Cd)4,(bcde)8=1 >
Maximal sUbgroups Order
Index
Structure
6048
100
U
2160
280
1920
Specifications
G.2
Abstract
Character
Quaternionic
point
decad
1a+36a+63a
3'PGL 2 (9)
3 (3):2 : 3'A6' 22
1a+63a+90a+ 126a
N(3A)
315
2~ +4 :A 5
1 •• 2- +4 • S5
1a+14ab+36a+90a+160a
N(2A)
reflection
1152
52S
22+4: (3 xS 3)
: H.2
1a+36a+63a+90a+1608+17Sa
N(2A 2 )
base
720
840
A4 x AS
: (A4xA S ):2
1a+63a+90a+126a+160a+17Sa+22Sa
N(2B 2 ), N(2A,3B,SAB)
icosahedron
600
1008
AS x D10
: (ASxD lO )'2
1a+ 14ab+90aa+ 126a+160a+22Sa+288a
N(SAB), N(2B,3A,SCD)
pentad axis
336
1800
: L3 (2):2 x 2
N(2A,3B,4A,7A), C(2C)
300
2016
L3 (2):2 S2: D12
: S2:( 4xS3)
N(S2) = N(SAB 3CD ) 3
60
10080
AS
: Ss
N(2B,3B,SCD)
3 (3 )
: U
0EJ21 BBI7 21
[42]
Graph
11
edge
vector
HJ - Fs-
J2
@
604800 P power pt part
ind
lA
@ @ @ @ @ 1 1 920 240 080 36 96 A A A A A A A A A A 2A 2B 3A 3B 4A
@
@
@
300
300
50
A
A
A
A
A
A
5A
B.
5C
@
50 A A D.
@
24 AA AA 6A
@
12 BB BB 6B
@
@
7 8 A A A A 7A 8A
@
20 BB AB lOA
@
@
20 10 AB DA BB CA B. 10C
@
@
10 12 15 CA AA BA DA AA AA D. 12A 15A
x.
+
x,
+
14
-2
2
5
-1
2
-3b5
*
b5+2
•
-1
0
0
b5
x,
+
14
-2
2
5
-1
2
•
-3b5
*
b5+2
-1
0
0
•
b5
X4
+
21
5 -3
3
0
b5+4
•
-2b5
•
-1
0
0
-1
b5
•
0
0
x,
+
21
5 -3
3
0
*
b5+4
•
-2b5
-1
0
0
-1
•
b5
0
0
x.
+
36
4
0
9
0
4
-4
-4
o
0
0
-1
-1
x,
+
63
15
-1
0
3
3
3
3
-2
-2
o
_1
-1
0
x,
+ 70 -10
-2
7
2
-5b5
•
o
o
-1
o
0 -b5
•
x,
+ 70 -10
-2
7
2
•
-5b5
o
o
-1
o
0
• -b5
x"
+ 90
10
6
9
0-2
5
5
o
o
Xn
+ 126
14
6 -9
x"
+ 160
0
4
lJi
x"
+ 175
15
-5
-5
x..
+ 189
-3
-3
0
x"
+ 189
-3
-3
x,.
+ 224
x"
+ 224
x"
+ 225 -15
5
0
x"
+ 288
4
0
-3
x,.
+ 300 -20
0 -15
x"
+ 336
16
0
1 2
2 2
4
x"
6
-2
0
-3
0
x"
6
-2
0 -3
x~
14
6
0
ind
@
@
@
@
@
@
6 15 336 48 12 AA A A B BC BA A A A BC B. fus ind 2C 4B 4C 6C
@
@
@
@
@
@
48 16 6 6 7 12 A A AB BC AC AB A A AB BC AC AB 8B 8C 12B 12C 14A 24A
@ 12 AB AB B.
x,
++
0
o
2
o
0-1
-1
o
-1
0
0
0
0
• -b5
.-1
• -b5
-1
o
0
o
0
• -b5
0
0
++
7
3-1
0
0
-1
b5
•
+
0
0
0
0
-1
•
b5
o
0
-1
-1
0
2
-1
0
0
0
0
-1
0
0
++
7
-1
+
0
0
b5
•
b5
•
0
0
0
0
0
-3
•
-3b5
•
b5+2
0
0
0
•
b5
•
b5
0
0
0
0 -4
8
-1
0 2r5-1-2r5-1
2b5
*
0-1
o
0
o
0
0
• -b5
0 -4
8
-1
0-2r5-1 2r5-1
•
2b5
0-1
o
0
o
0
0 -b5
•
o
o
o
o
0
0
3
3
_2
-2
0
0
4
o
o
o
o
0
0
-4
-4
3 3 4 664
5 10
5 10
5 10
5 10
2
-2b5
•
*
0
2
•
-2b5
_4
2
2
4
4
0
0
0
0
++
o
-1
-1
o
0
0
0
0
++
0
0
o
0
0
0
0
-2
0
0
0
0
0
6 6
12
7 14
8 20 8
20
b5-1
o
-1
0
b5-1
•
o
-1
-1
-1
0
0
0
0
0
0
-1
-1
X6
-1
0
0
0
x,
000
0
D
0
0
0
-1
0-1
o
0
0
0
-1
-1
-1
0
0
0
0
-1
o
-1
0
x" -1
Xu
0
XIZ
o
-1
-1
X13
0
0
0
X14
0
0
0
0
0
0
0
0
0
0
0
-3
-1
8
0
-2
++
6
-2
3
-1
-1
0
0
0
0
-2
-2
o
0
XIS
0
o
0
X19
o
-1
x,.
0
0
0
0
0
0
0
15 fus ind 30
4
4
8 8
12
8 8
8
12 12
24 24
28 28
24 24
24 24
o
0
0
0
0
0
0
o
0
0
0
15 30
0
0 -b5
•
-1
b5
•
0
0
0
• -b5
-1
•
b5
0
0
0
2
0
5
2
2
o
o
o
o
o
2i
0
0
0
0
-1
0
0
x,.
o
50
10
0
5
2
2
o
o
o
o
o
-2i
0
,0
0
0
-1
0
0
x"
-
56
-8
0
2
2
0
-2b5
•
•
b5-1
-2
0
0
0
0
0
b5
•
0
b5
•
x,.
-
56
-8
0
2
2
0
•
-2b5
b5-1
*
-2
0
0
0
0
0
* b5
0
*
b5
x"
-
64
0
0
-8
-2
0 2r5+4-2r5+4
2b5
o
0
0
0
0
0
b5
•
x",
-
64
0
0
-8
-2
0-2r5+4 2r5+4
•
2b5
o
0
0
0
0
0
•
b5
x"
84
4
0 -15
0
4
-6
-1
-1
x"
- 126 -10
0
-9
0
2 3r5+1-3r5+1
-2b5
•
x"
- 126 -10
0
-9
0
2-3r5+1 3r5+1
•
-2b5
x"
- 216
24
0
0
0
0
6
6
x"
252 -20
0
9
0
4
2
2
x,.
336
16
0 -6
0
0
_4
-4
x"
- 350 -10
0 -10
2-6
o
o
o
o
2
0
0
0
0
0
0
x"
- 448
0
-2
-2
-2
-2
0
0
0
0
0
0
0
o
o
0
0
0
0
-1
-1
-1
0
0
0
0
0
0
0
-1
-1
0
0
0
0
0
0
0
-1
0
-1
0
0
0
-1
-1
0
o
0
0
0
0
0
0
0
X16
0-1
0
12 12
X4
-1
0
10 10
x,
o
++
10
0
0
-1
50
-2
0
-1
o
16
0
o 10 10
r6 -r6
XZl
XZ2
x"
o
0
r2
o
0
0
0-2r2
0
0
0
0
0
0
r2
0
r2
r2
X24
OOaQXZ5
x,.
o
0
0
0
0
0
0
OOOQXZ7
x,. 000
0
000
o
0
0
0
XZ9
x",
o
0
0
0
0
0
r3
o
0
0
0
0
0
0
o
0
r3 -r3
X31
oooaX32
x" 0
0
o
0
0
0
0
0
0
o
-1
-1
o
0
0
0
0
0
r3
o
-1
-1
o
0
0
0 4r2
0
0
0
0
0
o
0
r2
0 2r2
0
0
o
0 2r2
0
-200000
0
x"
0
x"
0
+
0
-1
0
x"
0
o
0
2-2
8
0
0
4
++
0
o
0
0
0
0
2
0
0
*
2
2
0
b5+2
0
6
-1
*
0
++
0
-3b5
0
x,
0
-3
2
0
4
0
0
-3
0
o
2
0
0
++
3
o
0
-1
o
-6
-2
-1
o
0
0
-1
0 -1
0
x,
0
o
0
0
0
o
.00
0
6
-1
0
0
++
-1
-6
+
-1
0
0
0
x,
-1
o
-1
0
1
o
-1
0
•
-5
3-3
0
-b5
-5
-1
+
0
0
0
x"
o
0 -r3
r3
X35
0
o
0
r2
X36
0
0
r2
0 -r2 -r2
X37
0
0 -r2
0
x"
r7
r2
0
0
[43]
!
=C2 (4) =05(4)
=G.2
: the automorphism group of a generalised 4-gon of order (4.4). consisting of 85 vertices and 85 edges.
all 4 x 4 matrices over F 4 preserving a non-singular symplectic form;
Out = 4
Gx 2
05(4)
G0 5 (4)
=< a
=G;
5 b 5 c
d e l (abc)4=1
120
136
136
1360
8160
7200
7200
720
S6
(A5xA5 ):2
(A 5 xA 5 ):2
L2 (16):2
L2 (16):2
120
8160
: S6 x 2
: (A5 xA5 ):22
: (A xA ): 22 5 5
: L2 (16):4
: L2 (16):4
: 26 :<3xA5 ):2
26 : <3 xA5 )
85
(S6 x 2)'2
52 :[2 5 ]
117: 16 N(2C.3B.5CD.... )
1a+50a+85b
N(2C.3A.3B.4B.5E). C(2D)
N(2A.3A.5AB)2
1a+50a+85a N(2B,3B.5CD) 2
1a+34b+85b
1a+34a+85a
1a+34b+50a
S4(2)
S2(4)wr2
°4(4)
S2(16)
°4(4)
isotropic line
N(2B 2 ). N(2C 4 )
11520 N(2C.3A.5AB •••• )
point
N(2A 2 ). N(2C 4 )
: 26 :<3 xA5):2
26 : <3xA 5 ) 1a+34a+50a
85
11520
(22 x2 2+4: 3 ): 12
Symplectic
Character
Abstract
G.4
Index
Order
Structure
Specifications
G.2
°5(2)
pI us hyperplane
minus hyperplane
isotropic line
isotropic point
Orthogonal
all 5 x 5 matrices over F 4 preserving a non-singular quadratic form;
Max imal sUbgroups
>
= PG0 5 (4) = S05(4) = PS0 5 (4) = G:
G.4 is obtained by adjoining the duality (graph) automorphism. interchanging vertices and edges
each object being incident with 5 of the other tYPe
C2 (4).2
= PSP4(4) = S4(4) = G : rS 4 (4) = G.2;
SP4(4)
Mult =
Remark: G.2 is a maximal subgroup of the Held group.
Presentation
Orthogonal
Symplectic
Constructions
2 .17 Order = 979.200 = 28 .32.5
Symplectic group S4(4)
11
5
8EJEJ27 27
"-'
~
~
rJJ ..j:::..
t;
3
3
3 -13
3 -13
9
-4
-4
12
12
51
51
+
+
+
+
+
+ 85
+ 153
+ 204
+ 204
+ 204
+ 204
X6
x,
Xg
X9
XtO
x"
X12
X13
Xt4
x"
Xt6
X17
15
+ 255 -17
15 -17
15 -17
0
4
20
+ 255
+ 255
+ 256
+ 340
+ 340
x"
x"
X24
x"
Xu
x"
4
20
0
-3
15
+ 255 -17
X21
-5
4
-3
o
4
-3
0
0
o
0
-1
-1
-1
-1
0
0
0
•
•
o
o
-5
o
o
-5
-4
-4
-5
-4
-4
o
o
-5
-5b5
•
o
@
@
@
•
-1
-1
o
-1
0
-1
0
0
0
o
-1
o
0
0
-1
0
*
0
0
0
0
0
0
-1
0
0
o
-1
0
0
•
b5
0
0
0
0
0
-1
0
0
b5
•
0
0
0
0
0 -b5
o
0
0
-1
b5
•
0
0
0
0
0
.2
0
0
0
0
0
0
0
0
'3
.6
o
*6
'3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.6
0
0
0
0
0
0
0
0
0
0
0
0
*2 d17
*2
'3
*6
0
0
0
0
0
0
0
0
0
0
0
-1
0
0
++
++
++
+
+
+
+
+
10
10
16
0
0
0
0
0
2
-2
0
0
0
0
0
0
0
0
-2
0
0
0
0
0
0
0
0
-2
-2
2-2
0
-2
000
-2
0
@ @
0
0
-1
-1
0
0
0
0
0
-1
o
0
0
0
0
o
0
o
0
0
0
0
0
0
0
0
0
0-1
000
0
000
0
-1
o
0
-1
o
0
-1
0
0
0
0
0
0
0
0
o
0
000
000
0
0
-1
-1
0
000
0
0
0
0
0
-1
0
0
0
0
o 0
-1
o
o 0
-1
o
0
o
-2
o
0
@
2i
2
0
@
@
@
@
0
0
0
0
0
-1
0
0
0
0
0
0
0
Xw
Xt9
x"
X17
Xt6
x"
Xt4
X13
X12
x"
XI0
X9
Xg
x,
~
XS
X4
x,
x,
Xt
4
0
: +0+0
++
0
0
0
0
0
0
0
-1
x"
Xu
X2s
X24
x"
x"
+OOOOOX21
+
0
+
0
0
r2 -r2
-1 0
0
0
0
:+0+0
0
0
0
+
++
0 :+0+0
o
o o
o
++
o
1
0-i+1
4 4 4 5 E A A EF A A A EF 8C 16A B. 20A
@
o
4F
D A
20
@
:0000-1+1 i-1
:+0+0
6 5 6 8 8 A A ED AC BD A A ED AC BD 8A B•• 10E 12A 12B fus ind
@
0 -2i
18 BD BD 6D
@
-1
2
000
0
0
0
0
-3
9 -3
++
0
-3
5
+
0
2
o
o
0
000
0
2
4
o 2
o
0
@
4
0
@
5 -3
0
0
10
4
4
0
@
++
++
+
+
++
++
o
o -1
++
o
00
++
o
*3 d17
.2 d17
0 d17
0
0
0
0
0
0
o 0
0
0
0
0
0
0
0
0
0
0
-1
o
o -1
o
o
000
-1
•
b5
0
0
0
0
0
0
•
• -b5
0
o
0
0
•
• -b5
0
000
0 -1
0
o
o
•
-1
-1
0
0
0
-1
0
@
18 AD AD 6C
@
720 48 48 16 15 17 17 17 17 A A B C CB A A A A A A A A DB A A A A D. 17A B.2 C'3 D.6 fus ind 2D 4C 4D 4E
@
@
@
@
@
• -b5
0
0 -b5
0
-1
0
0
•
0
0
-1
0
• -b5
b5
-1
* -b5
0
0
0
0
0
0
0
o
-b5
*
0
0
0
0
0
•
-b5
0
0
0
0
b5
0 -b5
o
o
0
0
0
0
•
o
0
0
0
0
0
-1
-1
o 0
b5
-1
o
*
-1
0
o
•
@
15 15 AA DB BA CB B. 15C
@
• -b5
0
-1
o
• -b5
b5
-1
b5
-1
0
o
-1
-1
•
b5
•
0
000
• -b5
•
@
20 15 CB BA DB AA D. 15A
@
• -b5
0
0
-1
-1
b5 -b5
•
0
o b5
-1
o
-1
-1
0
-1
-1 -b5
o
o
o
0
o
-1
0-1
0
0
0
0
o
o
-5b5 •
0
o
o
-5b5
0
o
o
o
*
0
o
0
o
o
o
o
0
o
o
o
o
-1
-1
* 4b5+1
•
-1
-1
-3b5
* 4b5+ 1
•
-3b5
3
3
0
0-1
o
•
-5b5
o
o
o
o
•
-3b5
• 4b5+ 1 -3b5
3
@
0-1
5
o
o
o
o
-1
o
0
• 0
0
-1
-1
-2
-1
b5+4
5
@
25 12 12 20 20 20 AAABBBAAADB A AA BB AA BA CB 5E 6A 6B lOA B. 10C
@
•
3b5
o
4
-1
3
D.
•
b5+4
3
o
o
3
5
3b5
•
5
•
3b5
•
3b5
•
•
b5+4
o
o
o
b5+4
4
-1
3
-1
4
3
-1
4
3
0 4b5+1
-1
-1
-1
-1
2
-2
-2
2
0
0
-1
-1
0 -1
o
4-5
4
0
-1
-1
-1
-3
0
o
+ 225 -15 -15
X,O
0
0
0
0 -1
0
o
+ 225 -15 -15
Xt9
-1
0
o
+ 225 -15 -15
x"
3
0
0
0
0
0
3
3
0
4
0
3 -1
4-5
-5
-1
-1
-2
2
2
-2
3 -1
0
0
5
o
_4
_4
_4
_4
-7
5
5
0
0
3
3
5
+ 225 -15 -15
-4
-4
12
12
9
21
5
3
3
2
4
4
0
3
5
21
3
3
10
2
0
0
85
51 -13
51 -13
10
10
2
+ 50
-6
-6
Xs
34
10
+
34
X4
2
+
-6
x,
18 -6
+
+
A
5C
B.
5A
x,
Xt
A
A
A
300
@
A A
@
A
A
@
300
@
300
@
300
3
3
@
979200 840 840 256 180 180 32 32 P power A A A A A C C p' part A A A A A A A 1nd lA 2A 2B 2C 3A 3B 4A 4B
@
@
@
@
@
@
"-"
~
~
..j::::..
rJ).
8 6 (2)
= C3 (2)j
Symplectic group 5 6 (2)
Orthogonal group 07(2)
2 9 .3 4 .5.7
Order = 1,451,520
Mult
= 83(2)
2
Out
Constructions Symplectic
SP6(2)
Orthogonal
G0 7 (2)
= PSP6(2) = 3 6 (2) = G : all 6 x 6 matrices = PG0 7 (2) = 507(2) = PS0 7 (2) = 07(2) = G :
over F 2 preserving a non-singular symplectic form all 7 x 1 matrices over F 2 preserving a non-singular quadratic
form; Weyl
2 x G : the Weyl group of E7 ; the vectors may be taken as the vectors of the
Ea
root lattice (see 08(2»
with
X'+ ••• +X8 = 0 (first base) or x7 = x8 (second base); the minimal (root) vectors are (in the first base) (1,-1,0,0,0,0,0,0)5 (28) and (~,~,~,~,_~,_~,_~,_~)S (35), reflections in which correspond respectively to
transpositions (ab) in SS' and Hesse's bifid maps (abcd!efgh) (see below); the minimal vectors of the dual lattice E* 3 3 1 1 1 1 1 1 S . 7 are ±(~'~'-4'-4'-4'-4'-4'-4) and correspond to the 28 bltangents ab.
Reducing mod 2 shows the isomorphism with 07(2). G : there are 28 bitangents to the general plane quartic curve, which in Cayley's notation are labelled by the 28
Hesse
unordered pairs ab, ••• gh of 8 objects. The group is generated by Hesse's bifid maps such as (abcdlefgh) = (ab,cd)(ac,bd)(ad,bc)(ef,gh)(eg,fh)(eh,fg). The relations (abcd\efgh)2=1, (abcdlefgh) (abcejdfgh)=(abcejdfgh) (de) , (abcd\efgh)(abeflcdgh)=(abghlcdef)(ab)(cd)(ef)(gh)
show that the subgroup S8 of permutations of {l,2, ••• 8l has index 36, and coset representatives the identity together with the 35 bifid maps. These 35 maps together with the 28 transpositions of S8 form the conjugacy class of "Steiner transpositions"; the group preserves the 315 quartets such as {ab,cd,ef,gh} (105), {ab,bc,cd,da} (210), whose 8 points of contact lie on a conic Presentation
G x 2 "
[
Maximal SUbgroups Order
Index
51840
Specifications Symplectic
Orthogonal
Weyl
1a+27a
0;;(2)
minus hyperplane
minimal vector of
1a+35b
°6(2)
pI us hyperplane
point
isotropic point
Structure
Character
28
U4 (2):2
40320
36
3
23040
63
12096
120
10752
135
4608
315
4320
336
1512
960
8 25 :3
6
U (3):2 3 6 2 :L (2) 3 2.[2 6 ],(3 X3 ) 3 3 3 x 3 6 3 L2 (8):3
1a+27a+35b
Abstract
N(2A)
E;
bitangent osculating cubic
root vector
Steiner transposition
G2 (2)
1a+35a+84a 1a+15a+35b+84a
N(28 3 )
isotropic plane
isotropic plane
1a+27a+35b+84a+ 168a
N(28)
isotropic line
isotropic line
1a+27a+35b+l05b+168a
N(3A), N(2C,3A,3C,48,5A)
non-isotropic line
1a+70a+84a+l05b+280a+420a
N(28,38,7A,9A)
3 2 (8)
~30
Gl3 30
[46]
Hesse
conic
56(2) @ 1451520 p power pr part ind 1A
@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ 23 4 1 2 040 608 536 384 160 648 108 384 192 192 128 32 30 144 144 A A A A A A A B C C B C A AA AB A A A A A A A A A A A A A AA AB 2A 2B 2C 20 3A 3B 3C 4A 4B 4C 40 4E 5A 6A 6B
Xl
+
1
X2
+
7 -5
X,
+
15
X4
+
21
Xs
+
21 -11
5
X.
+
27
15
X7
+
35
X.
+
35
X.
@ 72 BB BB 6C
@
48 AC AC 60
@ 36 CA CA 6E
@
36 CB CB 6F
@
@
@
@
@
12 7 16 16 9 CO A A 0 B CD A A A A 6G 7A 8A 8B 9A
@
@
@
@
10 24 24 12 15 AA DB DC CA AA AA AB AC BA AA 10A 12A 12B 12C 15A
1
3 -1
4-2
3
-1
0
-3
3
-1
-3
-3
6
3
0
5
-1
3
5
-3
6
3
0
-3
-3
3
7
3
9
0
0
3
-5
3
-5
3
5
-1
2
7
-1
15
11
7
3
5
-1
2
-1
5
+
56 -24
-8
8
0
11
2
2
0
4
-4
0
0
XIO
+
70 -10 -10
6
-2
-5
7
2
2
2
2
-2
0
-1
Xll
+
84
4
4 -6
3
3
4
0
0
4
0
-1
-2
Xl2
+
5
15
-3
-3
5
-1
-5
-1
0
X13
+ 105
25
-7
9
o
6
3
-3
-3
-3
Xl4
+ 105
5
17
-3
-7
0
6
3
-3
XlS
+ 120
40
-8
8
0
15
-6
0
0
-4
4
Xl.
+ 168
40
8
8
8
6
6
-3
0
0
0
Xl7
+ 189
21
-3 -11
-3
9
0
0
9
Xl.
+ 189 -51
-3
-3
9
0
0-3
Xl9
+ 189 -39
21
-3
9
0
0 -3
X20
+ 210
50
2
2
-6
15
3
0
X21
+ 210
10 -14
10
2 -15
-6
X22
+ 216 -24
24
8
0
-9
0
X23
+ 280 -40
-8
-8
8
10
10
X24
+ 280
24
8
0
-5
-8
X2S
+ 315 -45 -21
3
3
0
X2.
+ 336 -16
16 -16
0
X27
+ 378 -30
-6
2 -6
X2.
+ 405
45 -27
X29
+ 420
20
X,.
+ 512
-5
-1 7
9-3
4
20
105 -35
40
13
-3
3
-1
2 -2
o
-1
-2 -1
-1
-1
1·
-1
2
o
3
3
0 3
0
0
-1
-1 -1
0
0
0
0
-1
2 -1
2
-2
2
0
0
-1
0
0
-1
X2
0
0
0
-2
-1
0
X,
o
-1
2
0-1
X4
-1
0
-1
0
G
Xs
-1
0
0
3
0
o
0
0-1
-3
3
-2
0
0
0
-1
0
-1
-1
o
2
0
0-1
-1
0-1
0 -2
0
0
-1
1
-2
-1
-1
3
2 -1
-2
-1
-1
-1 -1
0
0
000 1
0
0
-1
-1
0
-1 -1
-1
0 -1
o
-1
-1
0
-1
X.
o
X7
0
X.
X. 0
XlO
-1
Xli
-1
0
Xl2
0
0
-1
0
-1
0
0
-1
-1
0
0
0
0
0
0
X13
-1
0
0
0
2
0
0
Xw
o
0
0
0
-1
o
0
XlS
0
0
o
-1
Xl
-2
-1
-2
1
o
0-1
3
-3
o
4 -4
2
0
-1
0
2
2
0
-1
-1
-1
0
0
0
-2
-1
-2
-2
0
0
0
-2
-2
2
2
2
-1
-1
0
0
0
0
-1
-3
-3
0
o
0
0
0
-1
-1
0
-1
-3
-3
0
000
0
o
-1
-1
3
3
0
o
0
0
0-1
o
-1
-1
-1
2
2
0
0
0
0
0
0
1 -1
0
0
0
0
0
0
-1
0
0
0
-1
0
0
0
00000X2'
o
1 -1
-3
3-1
-3 -5
-1
-2
2
2
-2
-2
0
3
6
-2
-2
-2
-2
0
0
0
-4
4
0
0
o
0
0
0
0
0
0
4
-4
0
0
0
-9
0 -5
3
3
3
-1
0
6
-6
0
0
0
0
0
0
-9
0
0
6
2
2
-2
2
0
-3
-3
-3
5
3 -4
0
0
-4
-2
2
0-2-210
3
5
2
@
2
-1
o
-1
-2
0
-1
0
0
0
1
0
-1
Xl7
o
-1
Xl.
0
-1
Xl9
-1
-1
-1
Xl.
o
Xw
o
0
X21
o
1
X22
-1
-3
-3
0
-1
0
2
-2
-2
-2
-1
-3
0
-1
-2
0
0
0
0
0
0
0
3
0
0
0
0
0
-1
-1
0
0
0
0
2
-2
-2
2
2
-2
0
0
0
0
0
-1
0
0
0
X2.
-2
3
3
0
-1
0
0
0
0
0
0
0
0
-1
-1
0
X27
o
0
0
0
0
0
0
0
-1
0
0
-4
4
o
-1
-3
-3
0
0
4 -12
4
0
-3
0
0
0
0 -16
8
-4
0
0
0
0
0
2
0
0
0
0
0
0
0
o 7 14
-1
0
0
X24
o
X2S
OOOOOOX,.
0
0
0
0
0
0
-1
0
X~
o
0
-1
0
0
0
0
-1
X,.
8
8 8
9 18
20 20
24
24
12 12
15 30
o
2
-1
0
0
0
0
0
0
0
-1
-2
X'2
ind
1 2
4
2
4
2
3 6
3 6
3 6
4 4
8
8
4
8
5 10
12
6
6 6
12
12
6
6
X31
+
8
0
0
0
0
-4
-1
2
4
0
0
0
0
-2
0
0
3
0
0
0
0
X32
+
48
0
0
0
0 -12
3
0
8
0
0
0
0
-2
0
0
3
0
0
0
0
-1
0
0
X"
o 64
0
0
0
0
4
-8
-2
0
0
0
0
0
-1
0
0
0
0
0
0
0
1
0
0
i5
0
0
0
-1
X31
X,.
o
64
0
0
0
0
4
-8
-2
0
0
0
0
0
-1
O.
0
0
0
0
0
0
o
0
-i5
0
0
0
-1
X,.
x"
+ 112
0
0
0
0
-8
-5
-2
8
0
0
0
0
2
0
0
3
0
0
0
0
0
O.
0
0
0
0
-1
2
X"
X,.
+ 112
0
0
0
0
4
4
4
8
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
o
0
0
2
-1
X,.
X"
+ 120
0
0
0
0
0
3
6
-4
0
0
0
0
0
0
0
3
0
0
0
0
-1
0
X"
X,.
+ 168
0
0
0
0 -24
-3
0
4
0
0
0
0
-2
0
0
-3
0
0
0
0
X39
+ 280
0
0
0
0 -20
1
4
-4
0
0
0
0
0
0
0
-3
0
0
0
X40
+ 448
0
0
0
0
16
16
-2
0
0
0
0
0
-2
0
0
0
0
0
X41
+ 512
0
0
0
0 -16
8
-4
0
0
0
0
0
2
0
0
0
0
X42
+ 560
0
0
0
0
20
-7
2
8
0
0
0
0
0
0
0
-3
X43
+ 720
0
0
0
0
0
-9
0 -8
0
0
0
0
0
0
0
3
1
X31
O·
-2
0
0
0
0
0
0
-2
0
0
0
0
0
0
0
2
o
0
0
-1
0
0
0
0
0
1
0
0
0
0
0
0
0
o
0
-1
0
0
0
0
-1
X41
0
0
0
0
0
0
0
-1
0
0
0
-1
0
X42
0
0
0
0
-1
0
0
0
0
0
0
o
X43
X,. 0
X~
X40
[47J
~
""
0
Index
10
45
120
126
210
945
2520
Order
181440
40320
15120
14400
8640
1920
720
= 0.2 =0 :
M10
=A6 ·23
2 4 :35
(A 6xA 4 ):2
(A 5xA ): 4 5
(A x3):2 7
38
A 9
Structure
Out = 2
x 3
: A6 ·2 2
: 3 6 x 34 5 •• 2 .3 • 5
7
3 : (3 5 x35 ):2
: 3
: 38 x 2
: S9
0.2
=
1a+35a+42a+90a+225a+252a+300a
1a+9a+35a+75a+90a
1a+35a+90a
1a+98+35a+75a
1a+9a+35a
1a+9a
Character
0.2
quinquisection
N(2 4 ) = N(2A 10B5 ). C(2D)
3(3.4.10)
tetrad
N(2A 2)
N(2B. 3C. 4C. 5B)
bisection
triad
duad
point
Al ternating
N(2A.3A.5A)2
N(3A)
C(2C)
Abstract
Specifications
all even permutations; 2.0 and 2.0.2 : the Schur double covers
: all permutations of 10 letters;
Mult = 2
= <x1 •••• x8Ixi=(XiXj)2=1>;
A10
S10
Max imal subgroups
Presentations
Alternating
Constructions
Order = 1.814.400 = 27 .3 4 .5 2 .7
Alternating group A10
GEls 24 20
GB24
o
> ~
;!5
0
-5
-2
14
_1~
16
6
16
0
19
+ 126
+ 160
+ 210
+ 224 -16
8
+ 225
+ 252
+ 288
+ 300
315
+
+ 224 -16
5
90
+
+ 350 _10
x,
X.
x,
x"
x"
x"
x"
x"
x"
x"
x"
+ 450
+ 525 -15
+ 567
x"
x"
Xu
-15
~
~
o
o -20
o -36
o
o
o
o o -20
o -36
0
o
o
o
o
0
0
0
0
0
0
o 48
64
+
+
+ 216
+ 216
+ 336
+ 336
+ 384
+ 384
+ 400
+ 432
+ 448
+ 800
x"
x"
x"
X~
x"
x"
x"
x"
x"
x"
x"
x"
x"
6~
~
0
0
48
0
0
6
6
0
0
0
20
2fl
36
0 -20
0 -24
0 -24
0
_4
4
0
-8
0
0
6
6
o
0
0
4
o
-8
x"
0
3 6
16
0
-2
0
0
-2
-1
-2
0
2
-1
-2
0
4
-3
-3
3
3
o
o
3
3
-2
3 6
0
_2
0
0
2
_1
0
0
0
o
o
0
0
0
0
0
0
0
0
0
0
0
o
o
0
o
o 6
o
0
0
0
0
0
0
-2
-8
0
4
4
6
o
0
-~
o
-~
o
o
o
-6
o
o
-6
o
o
-2
-2
-4
5 10
0
0
0
4
0
-2
2
0
-1
-1
-1
-1
-2
-2
5 10
2
0
o -3
0
-1
-1
0
0
0
-2
0
4
4
0
-5
0
-7
2
0
o 2
-1
-1
0
0
0
-1
0
2
0
-1
~
-1
-1
5
5
-5
~
0
-3
6
5
4
Y
o
0
0
0
8
3 _1
3
-2
0
0
-2
-1
2
0
-2
0
0
2
0
-2
2
0
-1
2
0
_1
~
~
12
0
-3
0
0
0
0
2
6
0
8 8
7
-1
0
0
0
14
0
0
2
-1 -1
-1
-1
0
0
0
0
0
0
o
o
0
0
0
0
0
0
0
0
0
0
0
0
o
2
0
-2
1
-1
-1
0
0
o
o o
-1
o
-1
1
1
-1
-1
o
o
o
o o
o
o
o
0
0
o
0
0
o
o
0
0 0
0
0
0
0
0
0
0
0
0
-2
2
0
-1
1
0
1
0
0
0
0
0
0
0-2
0
0
9 18
-1
1
0
1
0
0
o
_1
0
@
0 0 0
o o
o
0
0
0
0
0
0
o
o
o
0
-1
-1
0
0
2
15 30
0
0
o
0
0
0
0
0
0
o
0
0
0
0
0
0
-r6
++
++
-1
-1
-1
-1
-1
-1
-1 -1
-1
0
0
-2
0
*
0
-1
0
-1
0
*-b21
1-b21
0
-4
10
9
-5
0
70 -10
0
0
6 -10
0
10
3 -1
-8 -10
0 -16
70 -10 -10
91
5
0 -10
3
0
-4
16
4
-4
"10
++
0 0 0 0
00 00 00
0
o
0
0
0
0
0
o
o o
o
0
o o
0
2
15
0
00
+
+
+
+
++
2
63
0
0
0
0
0
o
o
o
0
0
4
-9
0
0
0
0
0
o
o
o
0
0
8
-9
0
0
0
0
0
o
o
o
0
0
8
_1
_2
0
2
_1
2
0
2
0
0
0
0
0
_2
0
_2
A A 4E
5
32
A A 40
@
~~o
1
@
++35-575
21 fus Ind 42
0
0
++
+
++
0
20
15
20 -20
64
28
55
0
0
+
0
0
-6
2
0
6
6
-8
14 -10
14
10
4
++
* -1
2
0
5
3
2E
64
++
-1
~2
21
0
0
-1
@
++
++
34
0
*_b21
l-b21
o
0
o
-4
5
14 -10
20
21
++
++
-1
-1
2D
7 -1
2C
28
o
0
0
0
0
@
1 320 920 576 A A A A A A
++
++
0
0
0
0
-1
0
o -1
-1
-1
@ ~O
++35-575
++
++
++
++
++
fus ind
-1
-1
0
-1
-1
-1
-1
0
0
0
-1
o
0
0
-1
a.
21 AA AA
@
Or6000
0
o
o
0 0
16
0
0 -16
0
0
2~
0
o 24
-1
0
0
-1
0
-1
0
0
0
0
0
_1
o
o
o
0
_1
0
0
o 0
0
_1
0
0
o -1
0
-1
o
-1
o
0
o
24 24
o o
@
_1
-1
20
0
0
0
0
0
-1
o
o
@
0
0-1
-2
0
0
18
9
0
0
o 0
0
0
0
0
0
0
-1
o -1
0
o
0
o 0
0
-1
-1
-1
0
0
-2
0
AB AB
12
@
12 15 21 BA AA AA BA AA AA AA lOA 12A 128 15A 21A 20 AA
@
0-2
0
2
-1
0
0
0
0
0
0
0
-1
0
0
0
o 0
0
0
-1
2
0
0
0
0
0
-1
0
0
0
0
0
0
0
0
0
0
-1
0
P •
0
-1
o
0
0
0
-1
0
-1
0
0
0
0
0
0
0
0
0
0
-1
-1
-1
0
o
-1
n •
O· -2
-1
-1
0
~
00020"
12
0
0
0
0
-1
3
-3
-1
-2
-1
2
2
2
0
-2
-2
-1
3
0
-2
-1
-1
2
2
3
-2
2
-3
3
3
-1
-1
0
2
2
2-1
y
32 300 25 72 72 12 21 8 9 9 BAAAABABBACCC AAAAABABBAAAA
@@@@@@@@@@
o
0
0
0
8
3
3 -1
0
0
0
-4
0
-~
0
-2
0
2
3
3
3-1
0
0
0
0
0
11
2
-3
-3
-3
-1
0
3
0
0
0
-1
-1
3
-2
0
0
3
0
+
3 6
0
0
-~
-2
3
-1
~B
~A
3-3
-3
0
-1
0
96 A A
96 A A
-3
0
0
-1
-3
3
6
3
-6
2
2
x"
2
-9
5
2 -15
0 -24
0 -24
35
21
-6
-21
~
0
15
9
14
14
0
-2
6
3
3
0
3
3
2
3
1 2
4
34
21
6
21
15
0
-6 -21
0
6
2
-4
3
2
15
1~
6
ind
-9
10
0
+ 384
x"
0
15
+ 384
75
6
x,.
x"
.•
0
0
8~
+
x,
~2
+
x,
8
-4
36
+
3
X.
11
35
+
x,
5
+
x,
9
+
X.
XI8
7
880 38~ 560 216 81 A A A A A pt part A A A A A 1nd lA 2A 28 3A 3B 3C
p power
181~~00
2
@@@@@@@@
0
0
0
0
0
o
o
o
0
0
4
-1
-1
3
2
3
-5
0
-5
5
4
-5
0
-1
4
-1
4
0
0
0
0
0
o
o
o
0
0
6
0
3
0
-1
0
3
0
2
-3
2
0
0
0
0
0
0
o
o
o
0
0
12
0
3
0
-1
-3
0
0
0
0
0
0
o
o
o
0
0
12
0
-2
3
0
-1
-3
0
3 -3
0
0
2
0
0
-3
5-2
2
5
6
~
-1 -10
2
0
2
-1
0
0
0
-1
0
-2
0
-2
2
0
-1
-2
0
-1
323607272 B AC BE AE A AC BE AE ~F 6D 6E 6F
0
0
0
0
0
o
o
o
0
0
6
0
-1
0
-1
-2
-2
0
2
-2
2
2
-1
-1
0
36 BC BC 6G
0
0
0
0
0
o
o
o
0
0
6
0
-1
0
-1
31
0
0
0
0
o
o
o
0
0
12 12
0
0
0
-1
o
0
0
-1 0
0
0
-1
0
0
o
-1
0
-1
0
9 CE CE 6I
0
0
2
0
0
-2
-1
-1
2
-1
BD BD 6H
2~
0
0
0
0
0
o
o
o
0
0
8
-1
-1
0
0
0
0
0
0
0
o
o
o
0
0
10
3
0
0
0
0
0
o
0
-1
-2
o
0
-1
-1
-1
0
0
0
0
0
0
-1
-2
o
-1
0
2
0
0
@
@
@
@
@
@
0
0
0
0
0
o
o
o
0
r5
10 10
0
0
0
0
0
0
0
0
0
o
o
o
0
0
24
0
2
_1
0
_1
o 0
_1
2
_1
_1
0
_1
_2
2
_1
0
0
0
0
0
0
0
0
-1
0
2
0
o 0
2
-1
0
0
0
0
0
o
o
o
0
0
24
0
-1
-1
0
-1
-1
2
-1
2
0
2
-2
-2
_1
2
-1
0
-1
0
x..
0
0
x"
X26
0
0
o
o
0
0
X39
X38
X37
X36
x"
X34
x"
X32
x"
X~
o x" x,.
0
0
X2S
Xu
o 30 30
X23
X22
x"
X20
0
0
0
0 i 15
0
0
o
o
o
0
0
40 40
0
0
0
0 i 10
0
17
0
o
o
o
0
0
1~
14
0
0
0
0
000XI9
0
XI7
x" -1
XI6
XI4
-1
0
x"
XI2
Xli
-1
0
XI0
X9
Xs
-1
-1
-1
x,
X6
x,
2 0
X4
x,
X2
0
-1
x,
0
0
0
-1
0
0
0
-1
0
0-1
-1
0
-1
0
0
0
-1
o
0
0
-1
0
0
7 10 15 5 36 36 30 AC BD AD BD AC AD ABD AC BD AD BD AC AD ABD lOB 10C 12C 12D14A20A30A
@
-1
0
0
-1
8 C A 8B
@@@@@@@@
> o I---"
s
= A2 (7)
PGL 3 (7)
GL (7) 3
Out
= S3
SL 3 (7)
= 3.G; PSL 3 (7)
=G
x 3.G.3 : all non-singular 3 x 3 matrices over F 7 ;
=G.3;
=2
Mult = 3
L2 (7):2
L2 (7):2
L2 (7):2
57
57
5586
5586
5586
26068
26068
32928
32928
32928
336
336
336
72
72
57
N(19ABCDEF)
L1 (43)
base
NOA), N(2A 2 )
: 57:6
°3(7)
N(2A,3A,4A,7D)
: 19:6
° 3 (7)
N(2A,3A,4A,7C)
: 57:3
°3(7 )
N(2A,3A,4A,7B), C(2B)
19: 3
line
N(7A 2 )
N(3A 2)
point
Linear
N(7A 2)
Abstract
•• 32 .Q • 8''2
1a+56a
1a+56a
Character
: 32 : 2A4
GL 2 (7).2
2 : 62 : 2,
3
•• 62 'D • 12 : 32 : 2S 4
I
I
71+
G,S
: S3 x S4
1
: L2 (7):2 x 2
2'(L2(7)x2) .2
171+2:0 x D8 ),
G.2
2 •• 6 ·S • 3
: 7 2 : GL2 (7) : 7 2 :GL 2 (7)
G.3
Specifications
(3 x A4 ):2 32 :Q8
7 2 :2'L2(7):2
72 :2'L2(7) :2
Index
Order
Structure
Maximal subgroups
Remark: The O'Nan group contains two classes of maximal subgroups isomorphic to L3 (7):2.
Linear
Constructions
Order = 1,876,896 = 25 .3 2 .7 3 .19
Linear group L (7) 3
19
10
B8FI121 2
GBB~~22
G.2' G.2"
"-'"
'-J
VJ ...-.....
~.
_.
v:
7C
7D
8A
6
~
6
-6
-6
-6
-1
o 288
o 288
+ 342
+ 342
+ 342
o 342
o 3112
o 3112
o 342 -6
7
o 288
+ 343
+ 399
+ 456
x.
x,
X,IO
Xn
x"
x"
x..
x"
x"
x" x..
x"
Xw
x"
x"
0
0
0
o
o
o
-6
-6
_6
02 342
02 342
02 342
02 342
02 399
02 399
02 456
x"
x"
x"
Xw
x..
x"
x.,
-8
-1
15
-6
2
0
6
02 342
X36
0
-1
o
o
0
-1
o
2
o
0
-1
-1
-1
-2
2
o
15
7
7
0-1
0-1
0
0-1
0
0
-1
0
-1
o
o
o
o
-1
r2 -r2
-1
-1
r2 -r2
r2
o
-1
_1
-1
-1 -r2
r2
0
o
**
-1
-1
0
1 -1
0
-1
0
-1
H
*3 m16
1 *3 **3
r2
0
-1
m16
**
*3
*3 **3
r2
** m16 **3
1 **3
1
1 m16
-1 -r2 -r2
r2 -r2 -r2
*2
*4
:0002
o o o
o
o
o
:0002-413+3
o o
o
o
o
o
o
o
o
o
o
o
o
o o
o
6
6
6
-813
:0002-413+3
:0002
:0002
:0002
6
o
6
6
o o o o
:0002
:0002
-6 -6 -6 -4i3+3 4i3+11
o o o o o
-8
-6
o
o
6
6
0
0
2
o
0
o
_1
-1
-1~z3-1
0 -13
-1 i3+1
r2
0
-1
-1
0
-1
o
r2
1
_1
z3+1
o
-1
48
48
48
19
@ 19
@
**
0
-1
0
-1
*3 **3
o
o
0
1112 *34 *61 *37x171
**2 **5 *61 *311x171 *37
*4 *37x171 **5 **2
r2
0
**
*3
0
-1
0 0
0
0 0 0 0
0
o o o o
o O'
o
0
0
0
0
0
o *37x171
o
o
o
o
o
o o o o
o o
o o
o
o
o
o
o
o
o o o
o
o
0
0
0
o
0
0
0
o o
0
0
0
o
0
0
0
.22 *43 *34 *61
Ox171 *37 *43 *22 *61 *311
o
o
0
0
0
*10x171 *37 **2 **5
o
o
o
o
0
0
0
000
0
0
o
0
0
-1
0
0
0
o
** m16 -1
++
++
0
0
7
7
0
0
2
0
7
-1
0
000
-6
-6
000
0
+
+
6
++
6
++
0
0
16
0
0
0
0
16
0
-1
0
0
r2
++
• •
+
28 fus ind fus ind
28
++
++
••
++
++ ++
•
+
+
++
•
++
++
+
++
++
•
•
•
_1
_1
0
0
0
-1
0
•
•
++
-1
-1
o
0
0
-1
0
000
0
••
•
++
•• •
X2~
X22
X21
X20
x"
XIII
x"
X16
XIS
X14
Xl3
x"
Xli
x"
x,
x, x.
x.
x,
X.
X~
X2
.2
.2
•
+
+
.2
.2
•2
02
• • • • • •
I
I
*
*
J
J
J
.2
.2
.2
•
.2
.2
x,•
.2
x"
x"
x"
Xw
x"
x"
• •
J J
x"
02
J
.2
J .2
.2
• • • • • • • • • • • •
I I
.2
x.,
x"
x..
Xw
x"
x"
x"
*+*+X36
*+*+X~S
*+*+X~4
I
I
.j
02
x"
14
o
-1
0
0
0
++
++
Xl
• •
12
o
o
0
0
0
r7-r7
000
0
-1
0
r2 _r2
0
0
0
0
0
o
-1
0
-1 -r2
-1
-1
0
0
0
0
0
++
*+*+Xu
+
8
-1
0
0
0
0
0
0
0
0
0
_1
-1
0
••
14 AB AB B* fus ind fus ind
@
+
*
*
2
6
0
0
0
0
0
0
0
0
6
0
0
0
0
4
0
0
0
0
0
0
0
0
6
0
++
+
000
000
0
o
0
48 171 171 171 171 171 171 fus ind 48 171 111 171 171 171 171 48 171 171 171 171 171 171
0
0
0
0
0
0
0
0
** x19
**
+
+
0
_1
0
o
0
0
0
0
0
0
0
0
*11
*2
*2 **2
*4 **11 x19
** x19
** **2
*4
*4 **4
0
+
B
-7
0
-1
0
*2
8
0
++
••
++
4B
2B
@ 14 AB AB 2BA
@
B 686 7 8 A A AB A AB 88 A A AB A AB 88 6D BC 12B 148 16E F*
B -8
o
0
0
0
0
0
0
0
0
-1
A A
A A
@
@
@
@
@
++
*3 **3
*3 m16
*2
*4
0
_1
000
0
-1
*2 **2 **4
**2
0
0
-1
++
@
336 336
@
-1
r2 -r2 _r2
r2
0
o
o
** m16 **3 1 **3
1
1 m16
_1
_1 -r2 -r2
_1 -z3-1
r2 -r2
r2 -r2
-1 -r2
r2
0
0
o o
2
2
-1 -r2
-1
-1
-1
-1-z3-1
0
o -13
0
0
o
o
0
2
o o
-2
o
_1
o
6
0
19
@
-1
-1
0
0
0
o o **5 o
6
-1
** m16
**
*3
0
0
0
0
o
o
:0002
o
r2
If
0
0
_1
*2 **2 **4
o
o o
o
o
0
o o
o o
o
o
o
o
o
:0002
19
@
*4 **4 x19
o o o *4 o o o *10
-1
-1
"8
"48 "4488
z3+2
-'3
42 42 42
o o
o o
o
19
@
** x19
0 **2
20000
-1
0
0
-1
0 **11
*3 **3
*3 m16
*3 **3
**3
0-1 -1
**
r2
** m16 **3
m16
0
0
0
0
r2 -r2 _r2
_ 1 -r2 -r2
;.. 1
o
o
o
o
0
0
o
o
:0002
0
o r2
000
0
o -1
0
0
0
0
o
0
0
0
0
o o
o
o o
o
19
@
0 x19
o
0
0
o
o
-1
0
o
0
o o
-1
0
0
o o
o
:0002
o
o
o
o
16
o
o
o
:0002
-1
o
o
o
_1
0
o
o
o
o
16
@
00000
o
o
o
o
16
16
14
@
AA8 ~ AD 00 M oc ~ re ~ OC ~ AA8 M 00 oc BD ~ OC ~ oc ~ FC 42A 48AB*31C*37D**5 57AB*37C**2D**5 E*4F*34 fus Ind
@
@
@
o o o o o o
o
-'3
-'3
o
o
o
12
o o
-1
-i3
6
24 24 24
24 24 24
21 21 21
12
-1
_1
12
-1
_1
r2 -r2
r2 -r2
r2
6
o
-1
-1
_1 -r2
o
o
o
0
o
o
o o
0
o
r2
2
2
-1 -r2
-1
-1
-1
000
000
000
o
:0002
0
6
6
o
0
000
o
000
000
6 6 -1113-3
0
000
2
o
BB B.
AA
16
@
0
-2
16
o o
0
9
@
o
:0002
o
0
o
_6
413+5
o
o
0
o
-6
0
o
o
0
o
-6
@
o
0
0
0
3 3
3
o
0
0
** x19
**
0
o
-6
0
o
o
o
*2
*4
2
o
6
o
:0002-4i3-3
:0002
2
o
6
-1
:0002-4i3-3
02
-2
o
-1
0
o
o
_1
0
6
0
o
o
0
0
6
0
o
o
15
0
6
0
o
o
-1
0
6
0
o
o
6
0
0
o
o
o
0
o
-1
2
7
0
6
@
12 16 14 16 BA BA AB A8 BA BA AB BA 6c 12A 21A 24A
@
-7
8
68
BA BA
672
@
7
0
3
o 6
3
o 0
3
o
6
3
3
o o
3
0
0
o
o
9
0
0
0
0
0
3C
8 -1
3B
A A
57
672
A A
@
@
0
0
0
0
0
'00
'00
'00
000
000
000
000
'00
.00
'00
000
000
000
000
000
000
•
'00
'00
'00
19 fus ind 57 57
0
0
0
0
0
0
0
0
0
*2 **2
** **2
*4
I!lI
*4 **4
0
*4 **4 x19
0
0
0
*2
0
0
51 0
19 57 57
19
0
0
0
0
0
0
0
0
0
57
*2
_4
III x19
0
0
0
0
0
0
0
0
0
*4
0
0
0
0
_1
*2 **2
.. **2
** x19
*2 **2 **4
**2
**4
0
r2
A
19
@
*4 **4
0
0
0
0
-1
*2 n2 **4
*4 **4 x19
0
-1
0
0
** **2
0
** x19
o
-1 -r2
_1
-1
o
o
x19
0
o
o
o
o o o c o o o o o o o o o o o o o o o o 2 2-1 o 000
o
o o
-1
_1
-1
-·1
-1
_1
-1
-1
-1
-1
-1
6
-1
02 342
-1
-6
-1
bs
0
0
6
02 342
X~4
-2
o
o
o
o
02 288
x"
-6
o
o
o o
02 288
x"
-6
o
o
o
o
02 288
x"
o
o
o
-6
o
o
o
02 288
Xw
o
o
o
o o o o
-6
o o
o
o
o
02 288
x"
o
o
o
o
o
o
-6
o
o
o
o
02 288
x"
o
o
o
o
o
o
o
0-2-2-25
96
o
o
-1
o o
02
o
-1
-1
o
-1
0
o
19
2
19 57
0
57
0
57
o
x"
0
0
0
0
0
0
0
000
0
0
0
0
0
0
0
51
o
24 24
o
2' 2'
16 48 48
0-2-25-2
96
02
x"
21 21
16 48 48
A
19
@
*4 **4 x19
19 57 57
-1
0
0
0
0
0
0
0
*2
0
0
0
0
_1
III x19
*2 **2 *114
*2
*4
*4 **11 x19
16 48 48
16 48 118
8
0
-1
A
19
@
*2 **2 .. 4
.. '*2
0
0
-1
** m16
**
*3
0
0
0
_1
0
14 42 112
-1
o
_1
o
r2
*3 **3
*3 m16
*3 **3
0-1
_1
-1
n
r2
** m16 **3
**3
0
0
.. x19
0 **2
0
A
19
@
000
0
0
0
o 0
-1
-1
0 **4
0
0
A
19
@
A A A A A A 19A Bue**2 0*2 E*4F**q fus ind
A
19
@
0 x19
o o o o o o o
8
2
21 21
8
o
-1
-1
r2 -r2
r2 -r2
r2
m16
0
0
0
0
0
0
0
0
r2 -r2 -r2
0
o
r2
0
0
0
0
0
0
0
0
0
0
0
0
_1 -r2 -r2
_1
-1
0
0
0
0
0
0
000
0
o
8
o
21 21
7
0
0
-1
-1
_1 -r2
r2
0
2
2
o
0
o
0
0
o
o
0
0
0
0
0
o o
o o
0
-1 -r2
-1
_1
-1
5
000
0
_1
0
o
21 21
6 6
7
0
0
-1
-1
-1
-1
-1
-1
_1
-2
-1
0
o
96
02
x"
0
-7
12 12
677
4
0
0
o
7
-1
_1
-1
-1
-1
-1
_1
-1
-1
-1
-1
-1
-1
-1
-6
-6
-6
-6
_6
-2
15
-1
0
0
0
0
0
0
0
0
0
0
0
0
5
0
-1
_1
0
0
0
0
2
2
-2
0
0
0
0
0
-1
o
-1
0
000
-1
A
A
0-25-2-2
57
02
Xu.
0
3
-3
3
0
0
0
0
0
0
0
0
0
0
9
2 6 6
-8
0
0
8-1
5-25-2.00
o
16 8
16 8
en C*3D**3
@
@
o o o o o o
57
02
X23
3 3
1
0
0
o 288
x,
ind
0
0
o 288
02880000-6
0
+ 152
-1
o
55-2-200
x,
8-1
_1
8
+ 152
o
-1
x,
8-1
3
+ 152
-7
X.
57
+
o
B* 14A 16A
+568202100000
•
x,
x,
x,
78
A
1A
7A
A
1nd
3A
A
2A
16
A
@
16
AA AA 6A
@
12 686 49 49 49 16 16 14 A A A A A A AA A A A A A A AA
A A lIA
@
16
@
1876896 672 36 A A p' part A A
p power
@
@
@
@
@
@
@
@
@
@
......:J "-'"
~
r VJ
U 4 (3) = 2 A3 (3) = 06(3)
Unitary group U4 (3)
Mult = 3 2 x 4
Order = 3.265.920 = 2 7 .3 6 ,5.7
Out
= D8
Constructions Unitary (3)
GU 4 (3) =- 4.G.4 : all 11 x 4 matrices over F g preserving a non-singular Hermitian form; PGU 4 (3)
Orthogonal (3) G0'6(3)
=G.4; SU 4 (3) = 4.G; = 2.G.(2 2 )122 : all 6
example
Unitary, (2)
x 6 matrices over F
x~ + x~ + x~ + xt + x~ + x~; PG06(3)
3
preserving a non-singular quadratic form of Witt defect 1, for
=G.(22)122;
S06(3)
=S06(3) =2.G.2,;
PS0 6 (3)
=G.2 1 ;
06(3)
=G
3.G.22 has a 6-dimensional unitary representation over F 4 (see U6 (2». This can be obtained from the representation comple~
of 6,.G.22 as a Leech
=G
PSU 4 (3)
U4 (3).D :: G.D 8 a
: the
reflection group (see below).
set stabilizer in
Co, of an S-lattice of type 2 1+ 4 32 ; the pointwise stabilizer is G (see Co,);
hence G is the point' stabilizer in the 275-point representation of the McLaughlin group.
Complex: Leech
(2x32).GoDa: the normalizer- in 2Co, of an elementary Abelian 3 2_group; (2x3 2 ).G : the centralizer, i.e. the
centralizer in 6Suz of an element of order 3. When the Leech lattice vectors are written as quaternionic vectors (Q1, •.• ,Q6) the 32_group is generated by left and right multiplication by w Reflection
= ~(-l+i+j+k)
6 1 .G.22 : the automorphism group of the 6-dimensional lattice over Z[w) (where w = z3) whose typical vector is v1+ev2
e
(with
= i3, vl in the E6 root lattice, v2 in its dual). The group is generated by the 126 reflections in the
6 x 126 minimal vectors, which are listed (modulo scalars) in four bases below. Each base renders a different maximal subgroup monomial. The standard norm in the n-base is nl~lx.1 12 , and modulo scalars there are 126, 672, 3402 . vectors of norm 2, 3, 4 respectively. Read modulo
e
these numbers become 126, 112, 126 and we obtain the
"Orthogonal (3)" construction. Read modulo 2 they become 126, 672, 567 and we have the "Unitary (2)11 construction. In the 2-base the vectors are just those whose coordinates reduce modulo' 2 to give a hexacode word (see A6 ). The monomial SUbgroup (of 6.G.2) is (2 6 x 3)A 6 , and the minimal vectors are the images under this group of (2,0,0,0,0,0) (6) and (O,l,O,l,w,w) (120). In the 3-base the monomial subgroup is (2 x 35 )3 6 and the minimal vectors are of form
(w8e,-w be,o,O,O,O)S (45) and (wa,wb,wc,wd,we,wf)S (a+b+c+d+e+f
a 0 mod 3) (81).
In the 4-base the monomial SUbgroup is (3 x 2 5 )S6 and the minimal vectors are (±2,±2,0,0,0,O)S (30) and (±8,±1,±1,±1,±l,±1)S (even signs) (96). In the 7-base the monomial group is 6 x S7 and the minimal vectors are (2+3w,-2-3w,0,0,0,0,0)S (21) and (2w,-2-w,-2-w,1,', 1,1)S (105). (Another type of 7-base is obtained by taking the complex conjugates of these numbers.) Presentations
6,.G.22
=< a
b
d e l (edef) 3=1 >;
e
V f
32 .G.(22)'33
=< a
8 bId 8 e
I
f=(ab)4=(de)4, 1=(bedf)5 >; normal 3 2 is generated by (ebaba)5 and (edede)5
f
See also page 232.
Max imal SUbgroups Structure
G.2 1
G.4
G.2 2
G.(22)122
G.2
112
34:A6
3 4 :(2XA6 )
3 4 :(2XA6 ) '2
34:S6
34:(S6 x2 )
25920
126
U4 (2)
U4 (2):2
(S6 x2 )'2
U4 (2) x 2
U4(2):2 x 2
25920
126
U4 (2)
U4(2):2
U4 (2):2
U4(2):2 x 2
20160
162
L (4)
L 3 (4):22
Order
Index
29160
162
L3 (4)
1166~
280
31+
6048
540
U (3) 3
5760
567
5760
567
2520
1296
20160
2520 • 1296
[52J
3
L (4):22
3 3 1+4 4S
2
G.(2 )'33
G.D 8
34 :M 1O
3 4 :(2xM 1O )
34:(2XA6'22)
A '22
A6'22 x 2
(A6'22 x 2)'2
L (4):2 3 3
L (4):22
L (4):2 1 3
L (4):22
3
6
3
3
31+4. 4S4 ·2
31+4.2S4:2
31+4.4S4:2 +
3 1+4 • (2S x2) 4 +
1+4 21+4 S 3+ • • 3
21+4.D12 31+4 ._
U (3) x 2 3
U (3) x 4 3
U (3):2 3
(U (3) x 4):2 3
4 2 :S6
43S4
24 :S6
U (3):2 3 42 ( x2)S4
U (3):2 x 2 3
24 :A 6
U (3):2 x 2 3 5 2 :S6
(4 2 x2 )( 2xS4)
4 3 ( 2XS 4)
24 :A 6
2 4 :S 6
5 2 :A6
5 2 :S6
H.2
H.2 2
4(S4 xS4) .22
M10 x 2
H.2 2
A6 '2 2
H.2 2
4 • 2S
4
+.
4
+
A7 A7
+
S7 S7
2520
1296
A7
2520
1296
A 7
1152
2835
2(A4 xA 4 ).4
720
4536
M,0
= A6 '2 3
720
4536
M,0
=A6 '23
4(A4 xA 4 ) .4
A6 '22 A6 '2 2
4(S4xS4) .2
H.2
2' (22x(A4XA4) .4)
U 4 (3)
8EJi BElOEJG~;~
812.00211: 120004112.G0221~1200.23In 19
page 54
page55
I
81400021111400.41140002211400023116 - - - - - - - - - - - ---:t- - - - - - - - - - - - - - - - -
.BFi 131000221~ BFi 16100.2210 6(0 FI 12(G BF! 3(01
page 56
11
I
11
I
I.
I
11
ID
I
:
15
page 57
ID
I
. I
16
12
I
------------4-----~------------
B~ 13
813200021 i 32'001
page 58
i
11
BFi 62'001 11 BFi 122'001
I
B~ 12
I
20
11:
16
I I
ID
I
page59
ID
FI9 12
16
I
I
10
I I
Specifications Characters
Abstract
1a+21a+90a 1a+35a+90a
C(2D)
1a+351>+90a
Unitary
Orthogonal
Reflection
isotropic line
isotropic point
3-base
S~(3)
non-isotropic point
norm 2 point
S~(3)
non-isotropic point
norm 11 point mod
e
1a+21a+140a 1a+21a+ 140a
1a+90a+1898
NOA)
isotropic point
isotropic line
1a+140&+1898+210a
C(2B)
non-isotropic point
U (3) 3
18+21 a+908+ 140a+315a
base
4-base
la+21a+90a+140a+315b
base
2-base
1a+21a+90a+140a+315a+729a
7-base
1a+21a+908+140a+315a+729a
7-base
la+21a+90a+l~Oa+3151>+729a 1a+21a+90a+1~Oa+3151>+729a la+35ab+90aa+l~Oa+189a+315aI>+729a+896a
N(2A)
U2 (3)wr2
C(2F)
04<3 ) 0 4(3)
O2(3) x 0~(3)
[53]
U 4 (3)
•
@@@@@@@@@@@
1 5 3265920 152 832 972 972 81 96 16 5 72 36 36 p power AAAAAAAAAABACA pI part AAAAAAAAAABACA ind. lA H D g ~ W u ~ ~ M ~ ~ X.
+
x,
+
21
5-6
x,
+
35
3
X.
7
A A
7
A A
7A BII
8
A A
27
A
27
27
A A
A A
A A
BA
8..
••••• •• • • • • ••• 7 7
•• 6
12
0118 720
AA AA
9C nn 12A fus lnd
A
A
576 A
A
A
A
2B
2C
4C
64 108 A AB A AB liD 60
8
8
_1
-1
-1
0
0
-1
o
o
0
0
-2
++
-7
0
3
0
0
-1
2
2
-1
';'1
0
++
1
-1
0
++
-1
-1
0
0
8 _1
8-1
_1
0
0
9
0
2
0
.11..11
5
o
0
o
0
0
_1
-1
_1
_1
0
o
0
0
0
0
go
10
9
X.
+
140
12
5
x,
+
189
-3
27
X.
+
210
2
21
X.
o
280
-8
10
10
000_2-2
OOOb27
x..
o
280
-8
10
10
000_2-2
o
0
0
x..
o
280
-8
10
0
0
0
x"
o
280
-8
10
315
11
-9
18
-9
0
-,
-1
315
l'
18
0
-1
-,
9
0
-2
0
0
5
3
3
-2
o
10 10
-2
0
-3
-Cl
-1
3
0
0
0
0
0
5
-1
_1
0
0
0
-2
-2
_1
o o
0
••
o -1
-9
-9
1120
11 -39
6
6-3
x..
560 -16 -34
2
2
2
0
0
-1
0
_1
o
0
0
0
2
_1
0
0
.1
2
0
0
2
2
0
0
-1
_1
2
-5
-1
_1
-2
1
-5
~
';'1
~
6
10
10
++
28
0
CC
6G
8B
lOA
126
C..
-1
_1
2
2
_1
-1
0
0
X1
1
-1
2
2
2
_1
0
0
x,
2
2
-1
2
0
0
X4
_1
-1
XJ
-3
3
0
0
..
10
2
5
-1
_1
_1
0
o
o
AB
CC AB 12' 14A
88 8B
an
o
0
X.
0
o
0
o
o
o
o
o
0
0
X9
+
0
0
o
0
0
0
0
o
0
o
o
o
o
o
0
0
Xn
-2
o
0
x"
x"
0
x"
0
0
-1
++ _21
-5
7 _1
-3
o
o o
0
0
_1
++ _21
-5
7 -1
-3
o
o
0
0
++
28
0
12
-'I
_1
_1
0
00
0
0
o
0
9
11
3
3
3
11
2
6
6
6
I;
2
6
0
0
0
1
-1
o
o
0
0
0
++ -21
o
0
0
0
0
0
_1
_1
-1
-1
0
++
0
16
5
6
6
6
7
7
8
10
6
9
12fus1nd 12
2 2
11 4
6
6
14
11<
8
18
999 18 18 18
_2
-2
-,
_1
0
-1
_1
-21-2000
2
204-7222lfOQ
56
-8
2
11
2
2
0
0
-8
2
2
11
2
0
0
o
0
0
o
0
0
x"
+
56
X~
+
70-21677_22004
X~
o
70
_2 _11
1
_2
-2
2
0
0
-2000b21
X~
o
10
-2 _11
7
-2
-2
2
0
0
-2
X~
o
70
-2 _11
-2
1
-2
2
0
0
X~
o
10
-2 _11
-2
7
-2
2
0
0
X~
+
120
-8
12
-6
-6
X~
o
210
10
21
3
3
3
2
0
0
o
0
X>.
o
210
10
21
3
3
3
2
0
0
Xn
+
1
-2
1
-2
0
0
-2
000
_2
o
0
504
-8
18
18
-9
0
0
0
-1
-2
-8
18
-9
18
0
0
0
-1
-2
540
_2 -2
n
21
o
21
21
-1
0000000
o
o
o
o
..
o
_1
0
o
0
0
_1
b21 ••
-1
.. b27
-1
X13
_100X14 XllI
Xn
o
0
0000000
8
0
o
o
o
o
o
o
0
0
)(:t'1 X~
3
o
21
21
21
liOOx).!!
0 101
-41
0
0
o
21
o
21
21
_1
-100)(:16
o o
0
o
0
o
o
o
o
o
0
o
0
o
o
0
0
o
0
0
_1
_1
-1
0
0
o
-
0
00
o o
00 -32
0
00 -32
0
0
00
0
"
0
-111
0
8
0
-1
0
-1
-1
21+2
21+2
-1-1
-1-1
-1 1+1
-3
-31
0000000
o
o
o
o o
000)(41
0
0
0
0000000
o
o
o
o
OOOX4$
002
28
0
111+11
0
o
0
o
o
41+1
1+4
1+1
002
28
0
111+4
0
o
0
:002280
111+11
0
o
0
o o
o -21+ 1 o -21+ 1
1-2
~1_2
1+ 1
: 002 _111
0
21+2
0
-5
0
0
1 1+1
-1-1
_1_1
:00260
61+6
0
-3
0
0
0:002-320 0:002_320
21+2
0
3
0
0
0
0
-2
: 002
20
0
-41-11
0
2
0
0
_1
: 002
111
0
61+6
0
5
0
0
02
0
02
0
0
-3
0
0
0
0 1+1
0
-1
0
0
0
0
0
0
X#
02
224
0
8
8 _10
_1
0
0
_1
0
0
0
0
0
0
n
X4$
02
224
0
8 -10
8
_1
0
0
_1
0
0
0
0
0
0
X46
02
224
0
8 -10
8
_1
0
0
-1
0
0
0
0
0
0
X4'
02
280
0
31
4
0
0
-3
0
0
0
0
0
X48
02
280
0
X49
02
280
X.so
02
420
x"
02
Xn
02
X53
02
)(54
02
X55
02
896
032~~~
_1
_1
_1_1
n
_1
_1
0
-1
-1
0
_1
-1-b27..
0
-1
_1
0
-b21
o
0
o
0
0
0
0
11
0
0
3
0
0
0
0
0
-3
2
0
0
-3
0
0
0
0 1+1
o
0
_2
0
0
-3
0
0
1_1_1
o
000000b7
••
000000
b70
••
0
-2
-b27
n-b27
-2 -2
-2
o
0
0
o
0
0
0
3
0
0
0
0
o
0
0
000
o -1
b1x:18
o o
0
0
••
-1-1
-6
-2
x),
Ob7
-1_1
: 002
5
Xn
-1+2
_1
_1
o
21_1
_1
_4
Xn
o
-1
8 -10
X32
0
0-1-1
_1
5
0
0
12 12 12 12
36
8
o
12 12 12 12
-1
0
-21
X30
8 8
-1
0
_21
OX)I
12 12 12 12
12 fus 1nd 12 12 12
140
-21 -21
0
12 12 12 12
36 18 36
2211
-21 -21
_1
'0 '0 '0 '0
9 36 18 36
02
-1
0
9 36 18 36
02
21+3
0
OOOX»
9
Xc
21-3
X~
o
o
36
o·
o
o
o
7 1 8 28 28 8 14 14 8 28288
o
o
o
o
_1
o
o -21+3
o
_1
-1_1_1
o
o -21-3
o
-1
9
o
o
o
-1
18
0
00
0
X4~
00
o
-3
6 12
0
o -21
o o
6 12
0
_21
0
5 6 20 12 10 6 2012
-4
-21
0
8
3
_21
0
1233334 11 11 12 12 12 12 4 2 666611 11 12 12 12 12 4
12
-1
0
0
12
0
0
0
3
o
0
0
o
-8 -8 -8
0 -21
0
0
0
0
0
-41
0
0
0
-81
0
+
640
111
0 101
-3
X~
8110
0
00
0
000000nb10
-8
00
2
0
06400-8-8-8
-8
0
2
o
Xn
-8
2
-1
X1'
_161
o
0
0
0
000000b1**0
640
_21
0
0
06400-8-8-8
0
0
3
-21
-81
0
x"
0
o
-3
-1
41
-118
0
0 -'Zr
OX12
o
0
0
00
0
540
_1
0
0
o
0
00
0
0
6
-1
-2
o
0
-8100-121
-1
6
o -21
0
0
~
0 -41
_1
0 -39
o
o
...
2 -1
X:lO
00
2
10
14 14
0
0
-8
0
111 111
0
0
10
0
12 12
0
_6
-8
o
12 12
1 -21
20 20
o
0
-11
o
12 12
6 6
o
9
0 -17
o
12 12
12 12
0
9
10
8 8
12 12
0
14 -18
10
6 6
,,
x..
0
630
-11
o
o
-810021-100
+
0
o
0
0 -41
Xn
0
o
_1
00
o
0
o
o o
0
-1
0
-1
000
000-2_2
x"
0
0
0
b7X'8
0
o
4
0· ••
o
0
3
o
o
0
-6
o
0
2
-6
o
0
0
12
••
o
o
0
0
Ob7
o
28_101
2
120
o
0
00
2
02
o
-1
-3
X41
o
0
0
0
o
0
0
0
o
o
0
-3
0
o
0
0
000X'6
0-21
4
0
o
28 101
0
2
61
00
2
2
_61
_1
0
2
OOOXIJ
0
o
0
2
2
o
0
0
-7
-3
o
2
0
0
-3
++
0
20
o
-200X'4
o o
0
12 -27
02
0
o
0
560 -16 -34
x..,
0
o
0
+
032-4-4-4
0
o
-2
o o
Xn
896
11
o
o
_1
0
o
0
-2
o
_1
1 b27
o
0004_2_2
504
0
_1
x,
0
9
123
0
0
0
_1
0
0
o
0
o
o
0
0
o
0
00 -32
032-ll_II..1I
3
0
o
896
_1
-200X6
o
b27
-1
o
-2
+
0
729 9 0 0 0 0 _ 3
o
-3
o
-8
o
o
0
9
0
0
0
111 _10
00 -32
640
_1
o
21
lnb21
-1
-2
o o
++
o
1"
18
BC BC 120
++
OOOOOOb7"O
Xn
18
AC AC
0
aOaODO.*b70
X~
72
AC AC
0-1
-8 -8
+
72
AC AC
0
o
X~
5
A
-2
o
061100-8-8-8
x"
8
A
OB
2-3
x..
,"
9
DB
0
o
o
0
2 0
-3
lb27·.0
-2_2000 2
2 0
5
x"
+
18 CC CC 6F
o
000-21_2000
x..
X~
BC 6E
X.
2
+
x..
18
ac
++
35
+
27
A 9A
x,
x" x..
[54]
••• • ••••
_1
o
0
0
-1
-1
_1
_1
0
0 161
2 ,
,
8 8
2
000_21_2100
,, ,•
621121168 12 211 24 12 8
6
6
12
12
0
••
111
111
111
14
U U
U U X~
-1
_1
)(4'
OOOX43
X#
X#
1+ 1 -21-2
0
0
x..,
0
0
x..
0
0
X49
0
0
X.so
-1
-1
XJ'
21-1
-1+2
0-1_1
o o
-3
-31
o
o
00400
o
o
o
o
o
Ob7**Xn
o
0
11
0
0
o
o
o
o
o
0**b1x53
"o
o
OOOX54
o
o
: 002 -28
0
121+12
0
-1
0
0
-1
0
o
3
: 002
0
o
0
0
0
0
0
0
vl1l0
o
0
1-2
1+1
0
0
XJS
U4(3)
, ,, , , , , , 60118 B A
fU'
10d
X.
+~o
x,
+~o
x,
++
.
4E
96B '"C A
A
" '"
118 C
16 C
A 8C
A hD
108 OE AE
12F
12 OF
9 GE
AF
DE
120 12H
@
@
@
@
5
6
7
7
AG
BC
AE
AG AC AE 20A 21lA 2eA
@
@
@
920 576 BE A A BE A A a. fus ind 2D 2E
@
96 A A IlH
118 A A 111
2S
, •• "8
AD AD 6H
6118 108 AD CD AD CD In 6J
@
@
@
@
•••
@
@
;
++
7
o
_1
o
-1
-3
0
o
0
-2
2
o
o
-1
0
o
_0
6
_2
0
•
0
-3
o
X.
_0
0
2
2
5
-1
x,
"
-2
_0
21
5
_1
X.
_0
28
o
2
_2
X.
+
o
o
0
o
o
o o
0
0
++
9
0
0
0
++
15
++
-5 -5
_1
0
_1
o
o
o
o o
-1
-1
o
-3 _1
_1
3
3·'
o
o -3
6
6
•
3
0
_1
o
-1
++30622
3
0
0
++2041;0
-7
. -7
2
2-2
o
0
++
9
9
0
0
3
_1
-1
0
-1
0
2
_1
0
0_1 _1
0
_1
o
0
++
++
0
0
++
+
x..
+~o
x..
0000
x" x..
0000
o
0
o
0
-2
0
-2
_2
281+28 -41-11
0
o
0
32
o
0
o
0
0000
32
o
0
o
0
x..
+~o
27
3
X~
_0
o
o
full
Ind
"
•• • •
-3
o
1.'
-.
-.
0
o
0
0
-1
o o
0
o ... 1 o _1
o
0-b7
o
0
00
0
0
0
0
0
++
o
0
o
_1
_1
_1
o
0
0
o
0
z3
••
o
o
o
o
o
o
o
0
0
0
0
0
o
o
o
o
0
o
o
++
75
_1
_
15
-9 -5
0
o
~1
-3
~30300
o
-3
-3
-6
0
2
-1
0
0
3
o
0
_60-!lijO
0
0
00
3 -3
0 -3
-1
++
K.
o
0
0
++
X2
000
0
0
+
-1
_1 0
2
0
0
-1
~1
-1
o
o
K.
o
o
o
o
o
o
X,o
1 :: 1 ++
Kn
x" +
0
0
0
0
0
0
0
000
2
0
0
0
0
0
0
+
+
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
O'
0
0
+
-3
o
o
++6ijOOO
-8
-8
++
81
9 -3
0
o
o
0
0
0_1
-2
0
0
0
-1
0
0 12 12
++16000
-2
-2
o 1+1
0
0
++20002
2
2
o
o
o
o
00
'"
o
o
2 313+2-3i3+2
_Il
_1
o
00
20
o
o
2-313+2 313+2
_11
_1
o
+
0
o
o o
o
o
0
0
o o o o
++0000
o
0
0
0
0
o o
o
0
0
0
++96000
6
6
o
++2ijOO_ij
6
0
++
++
++
++
16
0
-2
0
0
0
18 fus 1nd fus ind 18
2
ij
6 6
8 8
8
8 8
0
0
0
0
0
o
0
0
0
0
0
0
02r2
0
r2
o o
o
o
o
o
28 ius 1nd 28
2 2
2
11
ij •
6 6
6 6
6 6
6 6
6 6
6 6
8
10 10
12 12
00
o
0
0
0
313
-3i3
0
0
0
0
0
0
13
0 -13
13
00
6
0
3
0
0
0
-1
0
o
0
++
o
0
5
_1
3
0
0
0
o
o
o
o
18 18
00
9 -3
o
0
0
_1
_1
_1
_1
++
X's
16 _16
-1
00
X'6
0
0
+
++
o 13 o -13
-1
•• -z3
o
o
o
o
o
o
0
3-1
-1
0
0
0
++
X,9
0
0
++
X20
10 10
12 12
2ij 211
0
0
13
13-13
0
0
0
211 fus 1nd 2ij 00
X2'
0
+
Xn
OO-r2-r2
++
K..
o
o
K~
o
o
0
-1 -z3
K"
••
0
0
0
0
o o o o o o
o o
00
X~
0000
x"
0000
x"
00
x" x..
-0-0
'"
•
0
-71+21 -31+1
0
71.21
0
2
1+3-1+1
21+3
o
0
o
0
o
6
-2
0
2
_2
-3
o
o
-1-1 1+1
0
1.1
0000
211+21
1.'
0 -31-3_1_1
31+3
Xn
0000
32
o
0
o
0
x..
0000
32
o
0
o
0
x..
0000
o
o
0
o
0
8
8
8 8
8
x..
00002
x..
00002
x..
02
...
0
o
0
00002
o
-1
-1+31.' -21+3
281+28 -41_4
X~
0
0
0000
Ind
o o
_1
31+1
x" x..
fus
-2
•• • •• ••
-1
0
0
o
0
0
0
6
0
o
~1
-1
_1
00
0
0
0
0
9i3
-9i3
0
000
0
++
80
0
0
0
_10
-10
0
++6000-2
6
6
0
o
++MOOO
-8
-8
11
-2
0
0
0
_1
0
0
12 12
12 12
12 12
12 12
6 6
6 6
8
20 20
12 12
12 12
0
o
_1
o
0-b7
o
-1
00
o
o
0
v'lla
0
12 12 12 12
12
12
12 12 12
12 12 12
80 80 80 80
211 2ij 211 2ij
1 1-1
-. -.
0
2
0
61+111 -21-2
0
o
0 -31+5
1.'
0
2
0
o
o
o o
o
0
o
1-3
-11+21
o
0
16
8
-1
1+1
•
1-7
o
-1
0
0
+
0
0
0
0
++
K..
0
0
0
0
0
0
0
+
-3
0
0
o
0
0
0
++
3
0
0
0
0
_1
0
0
++
0
0
0
0
0 -13
0
0
0
_11
2
0
0
0
0
0
0
_1
-3
-3
o
0
0
0
28 28 fus 1nd 2828 28 28 28 28
_1
o
0
-1
-1
21+3 -21.'
-1
o
-1
0
0
o
o
o o o
+
•
+
•
0
I
x.. 28
-'I
0
•
0
x..
02
o
o
o
o
o
o
_1
o
o
o
o
o
o
0
o
o
x.. K"
I
00002
211-7
51-3
0
-2
0
31+2
x"
: 00002 -.211+21 -31.1
0
-2
0
3
x"
: 00002
32
o
o
K"
, 00002
32
o
o
o
o
o o
K..
00002
28
-'I
0
_.
""
00002
o
o
0
o
0
0
-. -.
o
-1
-1
o
o
o
o
1
0
-1
o
o -b7
••
o
-1
o
o ••
-b7
o
+2
0
0
0
0
++
X29
0
0
0
0
0
0
0
0
+
Ku
0
0
0
0
000
0
0
+
Kn
0
0
0
0
0
0
0
13 -13
13
00
++
0
0
0llr2
0
0
0
r2
++
++
++
0
0
02r2
0-r2
00_r2_r2
+
+
0
000
0
0
o
0
+
0
00
00
_1
++
0
00000000000
"
0
0
0
-1
o
K"
0
0
X34
X's
Ku
0
+
Xn
++000000r5000
++
Xw
0
0
r2
11 11
2
••
++
36 36
36 fus 1nd fus 1nd 36
•
• •
•
11
6 6
8 8
8
8 8
10 10
12 12
211 211
24 fus 1nd 211
•
+
+
K~
•
+
+
X4'
+
+; 11 ::
•
I
+
X.,z
02
K..
02
K.. K..
•
K. +
+ +
+2
02
I
+
02
I •
X47
x.. K~
+
+
•
•
I
+
•
I
+
2
• +
•
o _1
0
+
x..
00002
0
0
o
x..
o
0
++
K"
0
o
o
0
0
"-b7
-1
o
0
0
K"
n
1+1
1+2
+
o
Ku Kn
00
o
XI1
o
++
x.. +~o
Xl] K••
0
o
K.
o
2
0
++
o
0
0
.,
o
0
0
X6
++
o
_1
o
++
o
0
0 -13
-1
0_1
-2
0
_1
X5
0
0
0
++
o
++ -10
0
_1
K..
Xn
X~
K,
_1
n_b7
o
o
12 AF AF
00
0
o 1+1
o
12 AF AF
++
0
++2ijOOij
o
6 AJ AJ
00
0
0
o
AF
13
0
0
o
5 B AF
000
-6i3
0
o
0
613
o
o
0
0
_1
o
0
0
0
o
1+1_1_1 -21-2
0
-1
0
0
0
-1
0
0
31+3
2-1
o
-1
11+7
++ _10
o
8
0000
++
2
o o o o
28 28
x" x..
o
2
_2
2ij 2ij
o
9
o 613+ij-613+ij
110 ijO
3
10
++
00110-80
12 12
o
++
++
o
12 12
0
++
o
12 12
_2
0
o
n
•
A
02_200
++
o
8 8
2
0
o
8 8
o
0
o •• z3
0
0
0
o
0
0
0
o
-1
2
0
0
0
o
-1
0
-1
o
o
-1
o
_1
o
_6
3
-2
3
0
00
-3
0-613+ij 613+11
0
o
-0-0
8H 100 12J 2ijB Cn fus 1nd
0
-8
0
•
x"
@
16 A A 8G
2-2
++ '00
, , •••
@
ij8 A A SF
40
0
o
_1_1 1+'
o
X~
x" x..
o
@
30 -10
0
+
o
@
ij8 9 A OF A OF IlJ 6N
K.
x" ++
@
-3
x"
x" x..
;
9
0
9
_1
_2
-2
_1
x"
;
++
0
X.
;
5ij3698 5 12 6 9 9 720 BDCEDEA AD AH BI BI AH A BO CE DE A AD AH BI AD BD A 6K 61.. 6M 8E lOB 12I 12J 1eA Bn fus ind fus 1nd 2F
+
+
+
+2
+2
•
+
•
+
X"
+2
Kn
r A
o
-1
0
0
•
+
•
'+
•
+
0 w'80
0
0
0
•
+
•
+
•
+
•
Xso
x" +
K..
+
X»
[55]
U 4 (3) ind
lA
2A
3A
38
3C
3D
i1A
1
2
6 6
3 3 3
3
3114
3 3
3 3 3
12 12
x~
02
15
-1
6
3
0
0
)(57
02
21
5
3
6
0
0
Xss
02
105
9
15
3
0
0
X59
02
105
-7
15
3
0
0
X60
02
105
9 -12
12
0
0
2
liB
5A
6A
566
13
-13
0
0
-2
•
+
Xoo
•• _z3+1
0
0
• •
x..
0
0
-2
0
0
-1
o
0
0
0
-13
b7"
0
o
o
0
0
•
0
X~
o
000
0
•
0
x"
0
•
360
8 -18 -9
0
0
0
0
0
38i1
0
211
12
0
0
0
0
-1
X67
02
1120
11
33
-6
0
0
11
0
0
x~
02
630
6
9 -9
0
0
2 -2
6
6
6
0
-2
-2
-2
2
-1
2
2 -1
2..
b7
0
0
0 -1
-1
0
0
0
••
2:3-1
0
0
+
XM
0
0
13
-13
0
0
• •
x"
3
0
0
0
0
o
o
0
0 -1
•
+
x"
0
0
0
1
-1
o
o
0
0
0
•
+
x~
3
0
0
0
0
0
o
o
0
0
-1
•
+
x,.
o
-3
0
0
0
0
o
o
0
0
5
6
6
677
9
9
9
9 12
and
'3 '3 '3
no:
9
9
9
18 9
18
18
18
12 12 12 12 12
-13
0
0
-1
0 -3
0
8
5 30 15 10 15 30
02
Xu
02
84
6
0
0
4
0 -1
X74
02
120
-8
-6
15
0
0
0
0
X75
02
126 -10
18
9
0
0
2
0
6 6 6
6 6 6
6
6
7
7
8
6
6
42
42
24
6 6
6 6 6 6
21 llj 21 112
21 111 21 42
24 8 24 21j
9 18 9 18 9 18
-2
-1
_1
0
13
6 6
6-2-330020
0
-2 _2 2
-2
0
0
_1
0
o
-2 2
0
0
18 9
•
•
12 rus 1nd
x" 2
2
4
4
6
6
6
6
8
10
12
12
12
12
14
14
2 2
4 4
4 4
4
6 6
12 12
12 12
6 6
8 8
20 20
12 12
12 12
12 12
12 12
14 14
111 14
•
x"
•• -z3+1
0
0
•
x"
••
0
0
0
•
x"
2:3-1
0
o
o
0
0
2
•
x"
i3
0
0
0
•
x"
Xu
02
210
-6 -24
-3
0
0
6
0
0
0
3
0
0
0
0
-13
X17
02
270
627
0
0
0
2
0
0
3
0
0-b7
..
0
o
o
0
0
-1
•
0
X78
02
270
627
0
0
0
2
0
0
3
0
0
"-b7
0
o
o
0
0
-1
•
0
Xl?
02
336
16
-6
6
0
0
0
0
-2
-2
-2
0
0
0
-13
13
0
0
0
•
x,.
XM
02
384
0
24
12
0
0
0
0
-1
0
0
0
-1
-1
0
••
2:3-1
0
0
0
•
Xoo
X81
02
420 -12 -21
12
0
0
-4
0
0
3
0
0
0
0
0 -z3+1
••
0
0
-1
•
X~
Xn
02
630 -18
9
-9
0
0
2
0
0
-3
-3
0
0
0
0
o
o
0
0 -1
•
x"
X83
02
630-2
9-9
0
0-2
0
0
-20021
o
o
0
0
XlW
02630-29-900_200
-200_21
o
000
Xss
02
840
8
12
6
0
0
0
0
0
-Ii
2
2
0
0
0
X86
02
840
8 -42
-3
0
0
0
0
0
2
_1
2
0
0
0
z3-1
.nd
no:
1
~6
3 :2
3 :6
3 :2
4 :6
4 :3
5 :6
6 :6
6 :6
6 :6
7 :6
7 :6
8 :6
9 ,2
ind
12333 12 12 12 12 12 6 6 6 6 6 4 4 12 12 12 3 6 3 3 12 12 12 12 2 6 6 12 12 12 3 3 3 4 12 12 6 6 6 12 12 12
3 12
4 12 12 4 12 12 4 12 12 4 12 12
8
5 60 30 20 15 60 10 60 15 20 30 60
6 12 6 12 6 12 6 12 6 12 6 12
6 12 6 12 6 12
6 12 6 12 6 12
7
7 84 42 28 21 84 14 84 21 28 42 84
8
9 36 18 36 9 36 18 36 9 36 18 36
0
-1
-3
0
0
0
-3
0
0
-3
0
0 -1
•
X~
..
84
2 :6
3 :6
0 -15
6
0
6 12
0
2
M 24
~
42 28 21 84 14 84 21 28 42 24 0
0
•
••
0
0
0
•
9
9
9 12
:2
:6
9
9
36 18 36 9 36 18 36 9 36 18 36
36 18 36
•• -2:3+1
0
0
0
0
.5 02
000
.5 02
x" XM
4 :2
11 :2
4
no:
2 :2
12 12 6 8 :2:2:2:2:2
20
9 12 rus 1nd
2
8
4
4
8
4 4 11 11
6 12
:6 36 18 36
and
:6 12 12 12
2 4
12 12 12 12
12 12 12 12 -1
.5
0 1+1
13
-13
0
0
.5
02
Xoo
0
2:3-1
••
0
0
0 _5
02
x"
0
2:3-1
••
000.502
x•
0
-1
0
0
0
_1
X91
04
420
0 -21
12
0
0
2
0
0
3
0
0
X92
04
420
0
33
-6
0
0
2
0
0
-3
0
0
Xn
04
480
0 -24
6
0
0
0
0
0
0
0
0 -b1..
X~
04
480
0 -24
6
0
0
0
0
0
0
0
0
504
0
-9 -18
0
0
4
0
_1
•• -b1
13
0 .5
_1
3
0
0
0
0
0
o
o
0
0
0
0
0
0-1-1
o
o
0
0
_1
*5
02
-3
0
0
0
0
0
-13
13
0
0
-1
*5
02
000
0
0
0
0
0
.. -z3+1
o
0
0-4
123333485666778 :12:6 :12 :4 :12 :4 :12 :3 :12 :12 :6 :6 :12 :12 :12
9
,4
X. Xoo
02
3
0
x" x.
02
0
0
0
14 28 14 28
x"
0
840
14 28 111 28
02
0
04
12 12 12 12
.5
12
x.
12 12 12 12
0 Ml
24
0
12 12 12 12
0
0
0
12 12 12 12
••
384
0
8 8
40 40 40 40
0 1+1 -2:3+1
04
0
6 12
14 :2
0
Xw
0 -15 -12
6 12
,2
111 :2
0
0
840
8 8
12 :2
0
0
4
04
6 12
12 ,2
z3-1
11
Xn
211 24
12 ,2
••
0 0
04
24 24
12 ,2
0
0 0
0475602700020
6
-1
6 0
no:
0
o
21
0 -27
6
0
0
0
0
216
X95
X~
-1
120
04
XlI6
x"
0
-13
04
12
24 8 24 24 8 24 24 8 24 8
•
•• -2:3+1
x" x,.
o
XA
-4
M
0-1-1
Xll9
and
[56]
x"
13000.+
0
Xn
4 -15
x"
+
-2
_1
4 12 12
6
0000.
-2
:3 '3 '3 '3 '3 '3 :3 '3 '3
3 6
x" x,.
• • • •
0
02
3
+
2
02
11 12 12
•
_1
x~
2
x~
0
0
x~
q 12 12
12 12
0
0
4
211 211
0
0
4
21 21
0
0
_11
21 21
0
0
X690272990000_3
6 6
o
-9
6 6
14
x"
8 -18
2
14
+
360
3
12
•
02
3
12
-1
X6-<
3
12
0
0
3
12
0
0
6
10
..
0
3 6
8
-1 -z3+1
0
3
6
0
6
:3
6
0
-6
3 6
6
2
16
3 6
12£ 14A B. .
_1
336
2 6 6
120
o -1
02
1 6
C..
0
X63
'3 '3 '3
12B
0
4
ind
lOA
••
_1
no:
8B
-z3+1
0
3
0
6G
0
0
3
0
6F
6
0
-1
3
••
6£
0
-2
3
z3-1
60
3
3
2
0
4D 4
3
o 5
-2
1
0
4C 4
0 _1
0
.nd
%3-1
2C 2
0
0
0
••
2. 2
2
0
0
9 9
12 rus 1nd
2
0
0
9
9
-1
9
9115 -15 -27
9
9
2
15
02
9
_1
3
}(71
9
gc D.. 12A
2
-5 -36
0
8
B..
0
315
0
9A
3 _1
210
0
677
BA
6 6
02
Zl
an
6 6
02
756 -12
7A
15 15
)(61
02
6C
12 12
X6:
Jew
6B
x" x.
.5 02
2 .5
x" x.
02
12
and
2
8
:11 :12 :12 :12
no:
:11
:2
9
9
9
411621121168 :11 :4:2:2:11:11
40
,4
12 :4
12
,4
12
,4
12 :1I
24 :1I
24 :4
U 4 (3) 42
4F
lIG
BC
BD
12F
120 128
20A 24A 28A
Ba
2D
!us ind
2E
4H
224 6 6 12 6 6 12
X~
002
x"
002
11
3
X~
002
25
9'
X~
002
4I
4 12 12
5 -3
6H
r.*
6 6 6
6
-4z3 _1
6J
6K
6L
666
6M
6
6 6 6 666
8
10
12
12
18
18 Cus Ind
30 30
12 12
12 12
18 18
18 18
2 _1
0
0 _1
2
0
0
213+1-213+1
4
o
0
o
413-7-413-7
2 -1
0
0 -1
0
0 -2
1 -z3..
•
+
x~
-1
0 •• -z3
•
+
XS1
••
z3
•
+
x~~
•• -z3
•
+
X5'J
-1
•
+
Xro
_1 -z3..
•
+
X...
002
35
3
3
3-213-4 213-4
2
0
0
_1
0
x..
002
50
_6
-2
2-213-7 213-7
2 _1
0
0
0
0
x" x..
002
45 -3 -3
o
_6 -3
0
0
002
64
0
0
0 213+4-213+4
_2
11
0
0
0
-1
0
0
o
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
-8z3
4
-2
0
0
0
-1
l?
0
z3"
20 -12
_4
0 413-1-413-1
2
2
0
0
0
0
-1
0
_1
2
2 613+3-613+3
0
-3
0
0
0
0
_1
-1
0
-3
}(w
x..
;
I
02
o o
_4
2
o
0
0
0
-1
X~
: 002
}(67
:
X..,.
: 002
30
6
Xw
002
81
9 -3
o
o
0
0
0
0
-1
x?"
002
36 -12
4
0
9
9
0
0
0
0
0
x"
002
45
-3
5-3
-9
.nd
2
2
4
4
6
6
6
6
6
6
2
2 6 6
4 12 12
• 12 12
6
6 6
6 6 6 6 6 6
6 6
6 6
002
no: Cus ind
6 6 2
6 6
• 12 12
n
•
0
+
X6)
+2
X....
•
+
Xu
-1
•
+
X67
0
•
+
x....
0
6 6 6 6
6 6
6 6 6 6 6 6
6
6
6
x"
002
4
0
0
2 -13-2
13-2
-2
X7)
002
16
0
0
0 -13-8
13-8
-2
x"
002
40
0
0
4-413-2 413-2
-2
Xn
00236002
o
*
0
0
8
10
12
12
18
18
8 24 24
10 30 30 10
30 30
12 12 12 12 12 12
12 12 12 12 12 12
18 18 18 18 18 18
18 fus lnd 18 18 18 18 18
-1
13
_1
*
+
Xn
13
0
z3
**
*
+
Xn
**
z3
*
+
X74
0
0
0
0
+
o
0
0
3
0
0
0
o
-1
0
0
*
+ X7S
-4
_1
0
0
0
0
0
-1
-1
-1
*
+ X~
o
0
0
0
0
o
o
0
0
0
20
0
0
2 413+8-413+8
x"
02
o
0
0
0
o
0
0
1
+2
x"
x" X~
Xn
002
16
0
0
0-8z3+6
n-2-2000
x..
002
64
0
0
0
-8z3
n
002
80
0
0
0
x"
002
60
0
0
x"
02
o
0
0
0
o
X"S
002
80
0
0
0
8z3
X~
002
40
0
and 2 no::2
2
x",
8H 10C 12J 2/JB C. .
X7'
6
: 002
8G
OOO*+X"" 0
0
SF
OOOO*+X69
-1
o
6H
X"
o
X76
o
-2
1
o
_90000
lIJ
OO·+X~2
x" 64
2F
24 24
3-213-1 213-1
5 -3
••
8E lOB 12! 12J 18A 8..
:
-1
o
0
*
+
X79
0
0
z3
**
*
+
x""
0
.. -z3
*
+
x",
4
-2
0
0
0
13-4 -13-4
_4
2
0
0
0
0 -13
-2 313+6-313+6
0
3
0
0
0
0
13
o
0
0
0
0
0
0
0
0
..
2
_4
0
0
0
0
0
0 -z3
0
-4-413-2 413-2
-2
o
0
0
0
0
4
4 :2
6 6 :2:2
8
10 12 12 18 18 :2:2:2:2:2 20 60 60 20
00*+X"2 0
0
I
+2
X~
Xl<3 X~
fus Ind
• •
12 12
12 12
2 6 6
• 12 12
•
12 12
•
12 12
6
,2
6 :2
6 :2
6 :2
12 12 12 12 12 12
12 12 12 12 12 12
12 12 12 12 12 12
12 12 12 12 12 12
6
6
8
6
6
24 24
60 60
12 12 12 12 12 12
-1
12 12 12 12 12 12
**
36 36 36 36 36 36
n
*
+ X"S
z3
*
+
XIlt>
36 fus 1nd 36 36 36 36 36
x"
*7
02
**
+2
X""
X~
*7
02
**
+2
X811
X~
*7
02
••
+2
X89
Xw
*7
02
••
+2
Xoo
x",
*7
02
••
+2
X91
X~
*7
02
••
+2
X
x"
1 o.
X~
7
1 *.
+4
•
X93 X~
x"
_7
02
X~
*7
02
**
+2
X96
x"
*7
02
••
+2
X97
x"
*7
02
__
+2
X93
and no:
42IJIJ :2 :2
12 ,2
12-1212 :2 :2 :2
6 6 :2:2
8
~
12 12 ~ ~ :2:2:2:2:2
+2
~
_7
*7
.7
Xo»
[57]
U 4 (3)
ind
lA
2A
3A
38
1
2 6 6
3 3
3
3
3 Xw
x\oo XliII
02
02 02
3D
3
3
3
4A
11 12 12
45 -3 -9 45 -3 -9
0 0
0 0
126
14
-9
0
0
0
2
02
189
-3
27
0
0
0
5
X,04
02
315
11
18
0
0
0
_1
XIQ5
02
315
-5
18
0
0
0
3
X,06
02
315
XIQ?
02
630
6C
6 6 6
6 6 6
677
9
21
211
21
21
24
-2 0
0
b7
••
••
b7
9
9
4C
40
6D
610;
6F
6G
88.
lOA
12B
Cn
12D
12£ 14A
an
2
2
•
4
6
6
6
6
8
10
12
12
12
12
14
12 12
o
o
000
_1
o
000
o
000
-1
12 fus 1nd
2C
14
Xw •
+
•
0
•
0
X,oo XLOI
_1
2
2
0
0
0
o
o
0
0
_1
•
+
_1
3
0
0
0
0
.,
o
o
0
0
-1
•
+
X1
-1
0
2
2
2
0
0
o
o
0
02.
+
X'M
_1
0
-2
-2
4
0
0
_1
o
0000.
+
XIIIS
2
X,~
0
3
-1
0
-2
4
-2
0
0
-1
o
0000.+
0
2
-2
0
3
0
0
0
0
0
o
o
0
0
-1
•
+
X,oo
0
0
-2
-2
-2
-1
-1
0
o
o
0
0
0
•
+
X'M
_1
0
0
0
_1
o
o
0
0
0
•
+
X,oo
3
0
0
0
0
0
o
o
0
0
-1
•
+
X110
o
-3
0
0
0
0
o
000
•
+
4 4 5 :3 :3 :3
6 :3
8 :3
9
9
a
9 18
18
0
0
0
0
9
0
0
0
0
-3
XIIO
02
756 -12
27
0
0
0
_4
XIII
02
9115 -15 -27
0
0
0
12333
:3
02
XlP
02
126 _10.
XU 4
02
126 -10
Xus
02
126
2 -18
6
6
3
0
6 :3
6 :3
3
331i4S66
6
6
6
7
7
6
42
112
211
21 14 21
21 14 21
24 8 24
:3
1 2 3 666 3 6 3 2 2 6 3 6 3 6 6 6
XI12
6
7 :3
7 :3
9
9
9
9
9
18
18
18
4
4
6
6
6
6
~
10
12
12
12
12
111
111
2
4 4
4
4
6 6
12 12
12 12
6 6
8
4
8
20 20
12 12
12 12
12 12
12 12
111 14
14 14
12
15 10 15 30
6 6 6 6
6 6 6 6
6 6 6 6
1i2
42
211
6
0
0
2
2
2
-1
-1
0
o
o
0
0
0
•
X'l2
_4
2
0
0
0
o
o
0
0
-1
•
X,l3
-1
•
XU4
0
0
2
0
-1
0
0
0
2
0
-1
2
_4
0
0
0
o
o
0
0
-9
0
0
0
-2
0
3
0
0
0
0
21
o
o
0
0
o
o
0
0
-2
0
3
0
0
0
**
0
o
o
0
o
o
0
0
0
o
o
o
o
000
0
0
0
0
o
o
0
0
-2
-2
-1
_1
0
o
o
0
-1
2
2
0
0
0
o
o
0
6 :6
6 :6
6 :6
7 :6
7 :6
8 :6
9 :2
:2
02
270
6
27
0
0
0
2
0
0
3
0
0 -b7
02
270
6
27
0
0
0
2
0
0
3
0
0
XU9
02
504
-8 -36
0
0
0
0
0
-1
4
-2
-2
XI20
02
540
12 -27
0
0
0
4
0
0
-3
0
0
XI2'
02
630 -18
36
0
0
0
2
0
0
0
0
X122
02
720
16
18
0
0
0
0
0
0
_2
Xl23
02
1260
.JI
-9
0
0
0
-4
0
0
and
1 :6
2 :6
3 :6
3 :2
3 :2
344 :2 :6 :3
5 :6
1 12
2 12
3 12 6 6 6 4 4 12 3 6 3 12 12 12 2 6 12 12 3 3 4 12 6 6 12 12
3 12 6 12
3 12
3 12 6 12
4 12 12 • 12 12 4 12 12 4 12 12
5 60 30 20 15 60 10 60 15 20 30 60
XI24
04
Xl2S
011
216
0 -27
0
0
0
11
0
X'26
011
360
0
9
0
0
0
_11
0
X127
04
360
0
9
0
0
0
_4
X'28
011
504
0 -36
0
0
0
360900020
6
6
12
12
6
6
12
12
6
6
12 6
12
12 6 12 6
12
n
677 8 12 84 84 24 6424224 12 28 28 8 6 21 21 24 12 84 84 24 14 14 8 84 84 24 21 21 24 28 28 8 42 42 24 84 84 24
9
XlI7
0
0
-1
*
0
Xl IS
0
0
0
•
XU9
•
X,m
2
•
XI2'
0
0
•
X'22
0
-1
•
XI23
9 ,9 :2
9 12 :2
36
9
9
9
36
36
18
18
36 18
36
36
36
36
i+l
o
o
0
18
0
0
-1
_1
0
o
000
0
-3
0
0
b7
..
0
o
0
0
-3
0
0
••
b7
0
o
o o
4
0
_1
0
0
0
0
0
0
0
0
o
0
0
6
7
7
8
9
9
9
9
:6 :12 :12 :12
:4
:11
:4
027
0
0
0
2
0
3
0
0
XIJ2
011
1260
0
-9
0
0
0
-2
0
0
3
0
and
1
2
3
3
3
3
4
8
5
6
6
:12:6 :12
:4
:4
:3 :12 :12
:6
:4 :12
6 12
'0 40 40 40
12 12 12 12
12 12 12 12
12 12 12 12
12 12 12 12
111 28 14 28
14 28 111 28
6 12
211 211
24 211
6 12 6 12
8 8 8 8
.5
02
*5
02
X'2S
X,24
X,W
o
756
14 :2
Xl27
0 1+1
04
14 :2
000-2·502
0
X13l
12 :2
o
0
0
12 :2
02
0
0
0
4
12 :2
.5
0
0
-3
4
• •
12 :2
_1
o
-3
0
4
:2
0
000
-1
0
8 8
20
0
o
0
-2
2 4 2 4
6 12 12 6 8 :2:2:2:2:2
Xl26
o
4
0
11
02
0-1-1
0
0
11 :2
.5
0
0
0
12 12 12 12 12 12 12 12 12 12 12
11 :2
-1
o
0
12 fus 1nd
2 :2
0
o
45
0 -27
no:
0
0
0
and
:6
0 -1
1-1_1
5011 540
X1I6
0
-3
04
0
•
0
04
•
-1
0
X'29
0
0
-3
Xuo
XIIS
•
0
-b7
XI17
8 24 24
0-21
2
12 12 12 12
0
12
2
12 4 12 12
-9
6
12 fus ind 12
2
6
-9
0
no:
6
0
0
and
:3
30
0
0
12
12
0
-9
XIIl
12
Xll8
no:
9
21
6
2~
0
16
ind
8
6
9C D.. 12A
0
720
no:
B..
0
729
126
0
9A
0
02
go
3
0
SA
18
02
:3
3
7A en
6 -45
-5
XIOS
02
6B
X,oo
X109
X1l6
6A
_2
o
0
02
ind
SA
5 15 15
o
0
X,
no:
4B
11 12 12
364900040
"'M
and
[58]
3e
0
0
-1
12 :4: 12
.5
02
X,~
.5
02
X,m
.5
02
Xl31
*5
02
XIJ2
and
2
8
no:
:4
:2
4 :11
11
6 24 24 6 8 :4:2:2:11:4
40 :4
12
:.
12 :4
12
:4
12 :4
14 :4
14 :ll
U 4 (3)
4E
...
'0
8C
80
,,,.
12G 12H
20A ZlIA 28A
e.
2D
2E
llH
41
6H
I..
6J
6K
6L
6M
8£ lOB 121 12J lSA 81.
2F
fus ind
2 6
6 Xw
002
x"x,
02
lIJ
• 12 12
6N
6
SF
SG
8H lQC 12J 2118
en
8 10
8
8
24
24
24
30
12 12
24 24
21l
211
2ij
30
12
24
24 fus Ind 24 24
-1
-1
6-2
o
2
2
0
o
o
o
o
o o o o o
o
:t"" 2
0
o
X"'1
002
6
x,,,.,
002
9
x"'..
002
15
3
0-3
XIM
02
o
o
o
o
o
Xl
002
0
4
0
2
XU'"
002
0
0
0
0
Xu'"
002
9-3
o
3 _1
XIIl'
0026-20_2-2
X,II
002
15
,nd no:
2
q
o
0 _1
o
0
o
o
o o o
_2
0
0
0
0
0
0
0
x,,'"
fus ind
2
6 6
_1
• •
002
XII)
1
-1
+
X"'2
•
+
Xu"
•
+
Xu"
02
XIU~
1
X'w
-1
•
+
>:'07
16 -16
•
+
X"18
000*+XI09
o
•
+
XIlO
•
+
XIII
-1
_1
-1
o
-1
-1
-1
6
8
8
8
10
12
24
24
10 30 30 10 30 30
12
24
24 fus Ind
12
24
24
12 12
24 24
2.
12
24
12
24
6
12 12
8
8
24
24
,.8
21l
24
2. 8
,.2'
0002rZOr20
24
2'24
o -r2 -r2
*
o
1
02
o
o
o
o
o
o
o
02
o
o
o
o
o
o
o o o o
02
o
o
o
o
o
o
o
o
o
+
02
Xli"
XII2
x,,) X"4
Xll~ XI16
X1l7
o
o
o
Xll~
X"9
002
Xu"
: 002
XI2l
002
Xm
x...., X,IlO XLOI
o
8 24 24 X112
-1
+
+2
•
-1
-1
0
•
o
o
0
0
o
o
0
0
o
o
r5
0
o
o
o
13 -13
13
1 1
+2
X"6 +2
•
+
X,l9
•
+
XI~
+
X,21
0
0
02rZ
O-r2
0
O-r2-r2
:00200
04r2
0
0
0
0
0
0
0
0
8 :2
10 :2
12 :2
211 :2
24 :2
8 2'
10 30 30 10 30 30
12 12 12 12 12 12
24 24 24 24 24 24
24 fus 1nd
002
0
0
and no:
2
4
6 ,2
8 ,2
8
fus 1nd
2
4 12 12
6
8 2' 2' 8
8 2' 24
6 6
8 24 24
2. 2'
X,24
*7
02 02
X'2~
*7
Xm.
1
X.21
7
XI2H
*7
02
X,29
*1
2.
XlI7
X"3
00
X'2.\
X1I5
Or2r2
* *
+X,U
13 13 -13
*
+
Xl23
24 24 24 24
2.
** **
04
1.
+2
X124
+2
X12~
+.
X,~
X,21
**
+2
02
**
+2
X'29
+2
X,30
X128
X,w
'7
02
**
XUI
*1
02
**
+2
XUI
X,12
*1
**
+2
X,32
*7 *7
'7 .7
02
,nd no:
2
4
6 ,2
8 ,2
8
8 ,2
10 '2
12
24
:2
:2
24 :2
[59]
Gz(3)
Chevalley group G2 (3) Order
= q,2q5,696 = 2 6 .36 .7.13
Mult = 3
Out
= 2
Constructions Chevalley
G : the adjoint ChevalIey group of type G2 over F 3; G.2 is obtained by adjoining the graph automorphism;
G : the automorphism group of a generalized hexagon of order (3,3) consisting of 364 vertices and 364 edges, each
object being incident with 4 of the other type; G.2 is obtained by adjoining an automorphism interchanging
vertices and edges Cayley
G : the automorphism group of the mod 3 Cayley algebra of vectors
!8ni n , with an in F 3 (subscripts mod 7), where n
runs over {oo,O,1,2,3,4;'S,6} and 1 00 =1, 10+ 1=1, i n+ 2 =j, i n+ 4 =k form a quaternion sUbalgebra
14-dtmensional G.2 acts on a 14-space with base {e oo ,eO, ••• e12} and is generated by
A
et ~et+l'
D
'V-3.eoo ~ 3e oo + /3.~e1 (1 • (0)
B: et ~e3t'
C: (e 2 e 12 -e8 ) (e6 e l0 -ell) (e5 eq
-"7)
4./-3.e i .....,. /3e oo -3(eSi+eSi+2+eSi+S+eSi+4). +(eSi+ 1+eSi+3+eSi+4+eSi+7+eSi+8+eSi+9+eSi+ 10+ e Si+ 11+ e Si+ 12) 2 D : e oo -? -e oo '
e i -:.'t -e2_i-e4_i-eS_i-e6_1+e7_1+e8_1-elO_i+e11_i-e12_i
The subgroup G2 (3) = is represented by real matrices. -There are 2 x 378 images under G2 (3) of each of the vectors (4/31013) and (31/3 13 ). These vectors are fixed by the respective subgroups and of type L (3), and negated by D2 • The two orbits are interchanged by outer elements of G2 (3).2. 3
@
@
@
@
5
5
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
q2q5696 576 832 832 729 162 162 96 96 72 72 18 18 7 8 8 27 27 27 12 12 13 13 512 2q 27 p power A A A A A A A A A A B A D A E A A A B C C C AA B8 A A A A CB p' part A A A A A A A A A A B A D A E A A A A A A A AA BB A A A A CB 1nd lA 2A 3A 3B 3C 3D 3E qA qB 6A 6B 6C 6D 7A 8A 8B 9A 9B C.. 12A 12B 13A B* fus ind 2B qC 6E
x,
+
[60]
@
@
@
@
@
@
@
18 18 6 EB EB CC EB EB DC 6F G. . 12C
6
7 9 9 9 AB AE CE BE AB AB BB C8 D. lqA 18A 18B C..
CC DC
x,
++
x. x,
+
lq
o
x.
5
5
-2
6q
0 -8
o
M
0
x,
+
78
x.
+
91
x,
+
x.
-q
o
2
-1
2
2
-8
q
-2
0
0
0
0
0
-8
-8
q
-2
0
0
0
0
0
-2
-3
-3
-3
-3
6
2
2
-5
10
10
10
3
3 -2
91
3 -8
19
q
-2
3
-1
0
3
0
0
0
+
91
3 19 -8
q
-2
-1
3
3
0
0
0
0
-1
x.
+
10q
8
lq
lq
5
2
-1
0
0
2
2
2
-1
-1
0
0
2
-1
-1
x"
+
168
8
6
6
6
-3
6
0
0
2
2
-1
2
0
0
0
0
0
Xn
+
182
6
20
-7
-7
2
2
2
2
0
-3
0
0
0
0
0
-1
x"
+
182
6
-7
20
-7
2
2
2
2
-3
0
0
0
0
0
0
x"
+
273
-7
30
3
3
3
3
-3
2
-1
-1
-1
0
-1
x,.
+
273
-7
3
30
3
3
3
-3
-1
2
-1
-1
0-1
x"
+
qq8
0
16
16 -11
-2
-2
0
0
0
0
0
0
0
0
0
o
0 b13
x,.
+
qq8
0
16
16 -11
-2
-2
0
0
0
0
0
0
0
0
0
o
0
x" x..
+
5q6
2 -21
+
5q6
x..
+
X20
0
0
0
o
0
0
o
0
-2
o
0
-2
o
-2
-1
2
-1
-1
-1
-1
b27
••
0
0
-1
•• b27
0
0
-1
00
8
0
-1 2z3
-1
-1
00
8
0
-1
-1
0
0
++
6
-2
-3
o
0
0
0
++
7
-1
-2
o
-1
0
0
+00000000000X7
0
0
0
x.
o
0
0
0
++
8
0
-1
-1
-1
0
0
0
-1
-1
++
0
0
0
0
0
-1
-1
2
-1
0
0
+
0
0
0
0
0
-1
-1
-1
-1
2
0
0
0
0
0
0
o
0
o
00
-1
-1
-2
-1
-2
-3
-3
-2
6
-1
2
-1
-1
0
0
0
0
0
0
2
6 -21
6
-3
-3
6
-2
2
-1
-1
-1
0
0
0
0
0
0
0
728
-8
26 -28
-1
-1
-1
0
0
-2
q
o
0
0
-1
-1
-1
0
+
728
-8 -28
26
-1
-1
-1
0
0
q-2
o
0
0
-1
-1
-1
x"
+
729
9
0
0
0
0
0
-3
-3
0
0
0
0
-1
-1
0
0
x",
+
819
3
9
9
9
0
0
-1
-1
-3
-3
0
0
0
o
0
x",
+
832
0 -32 -32
-5
q
q
0
0
0
0
0
0
-1
3
3
3
q 12 12
q 12 12
6
6
6
6
1
2
3 3
6
3
3
6
8
+
0
0
0
0
0
0
0
0
0
0
0
-1
-1
0
o
0
0 13 39 39
2q 2q
8
9
9
9
12 12 12
12 12 12
+
02
27
3
0
0
0
0
0
-1
3
0
0
0
0
-1
-1
1
0
0
0
2
0
Xzs
02
27
3
0
0
0
0
0
3
-1
0
0
0
0
-1
1
-1
0
0
0
0
2
x,. x",
02
189
-3
+
-1
.. 2z3
0
0
-1 -z3
-1
0 -1
0
-1
0
0
0
X4
0
Xs
x,
0
2
-1
-1
X9
0
0
0
0
XIO
0
0
0
0
XII
0
r3 -r3
0
**
0
0
0
0
0
0
0
0
0
0
0
o
o
'0
o
o
0-b13·
02
189
o
o
o
x"
02
X29
Xu
0
0
0
0
0
0
0
0
0
0
0
XIS
0
0
0
0
0
0
0
0
0
0
0
Xl7
x.. +
0
0
0
0
0
0
0
0
0
0
0
Xl9
X20
++273000
OO..;1000Xtl
0
++
21
-3
3
0
0
0
0
0
++
8
0
-1
2
2
0
0
13 fus 1nd 39 39
2
q
6
6
6
12
12
02
0
lq
0
0
0
Xt2
-1
-1
-1
X23
18
18
18
x,. x"
1
o -3 -3
o
o
o
o
-3
o o o o o o o o
o -3 -3
o
o
o
o o
o o
351
15
0
0
0
0
0
3
3
0
0
0
0
00000
0
0
•
02
351
-9
o
0
0
0
o -1
3
o
o o
o
o
02
X30
02
351
-9
o
0
0
0
o
3 -1
o
o
o o
1
x"
02
378
-6
0
0
0
0
0
-2
6
0
0
0
0
0
0
0
.0
0
0
1
02
Xn
02
378
-6
0
0
0
0
0
6
-2
0
0
0
0
0
0
0
0
0
0
0-2
Xn
02
729
9
0
0
0
0
0
-3
-3
0
0
0
0
-1
-1
0
0
0
0
0
x,.
02
1728
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-1
0
x..
1
X24
-1
0
• b13
0
2q 2q
-1
**
0
0 -13
x,.
000
21 21
7
0
x"
•
o
0
0
000
6
0
X3
-1
0
0
** -z3
0
0
13 -13
x.
0
0
0
13
00
6
1nd
@
1
•
02
x",
.-b13
000
2
o
o
000
o
2
o o
-2
0
x,.
+
x" x..
x,. x" Xn
-1
-1
•
+
Xn
•
+
x,.
Gz(3)andS 4 (5)
Maximal subgroups
Specifications
Order
Index
12096
351
U3O):2
12096
351
11664
364
U3 O):2 01+2x 3 2 ):23
11664
364
11232
Structure
G.2
I I
Character
Abstract
1a+ 168a+ 182b
Chevalley
Cayley
2 A20 )
minus point
1a+ 168a+ 182a 2 2 3 .O x31+ ):D8
G2 (Z)
1a+91 b+ 104a+ 168a
N<3B 2 ). N<3A)
vertex
isotropic point
01+2x 3 2 ):23 4
1a+91 c+ 104a+168a
NOA2), N<3B)
edge
null subalgebra
378
L O):2
1a+91b+104a+182b
A2 O)
plus point
11232
378
L O):2
1512
2808
L 2 (8):3
: L 2 (8):3 x 2
N(2A.3C.7A.9A). C(2B)
2G20 )
Ree
1344
3159
2 3 ·L (2) 3
: 2 3 'L 3 (2):2
N(2A 3)
1092
3888
L (13)
: L (13):2
N(2A.3D.6C.7A,13AB)
576
7371
4
3
I
3
2 2 2+1+4-.3 • •2
1a+91c+104a+182a
2 : 2+1+4 .(3 3 x3 3 )
base
N(2A)
D2 (3)
quaternion subalgebra
~B23
BFII 23
11
3ymplectic group 3 4 (5) E C2 (5) E 0 (5) 5 Order
= 4.680.000 = 26.32.54 .13
Mult = 2
OUt
=
2
Constructions 3ymplectic
= 2.G
Sp4(S)
: all 4 x 4 matrices over F S preserving a non-singular symplectic form;
P3P4(5) E 3 4 (5) E G;
C2 (S)
=G :
the automorphism group of a generalized 4-gon of order (5,5), consisting of 156 vertices
and 156 edges. each object being incident with 6 of the other type Orthogonal
G0 5 CS)
=2
x G.2 : all 5 x 5 matrices over F S preserving a non-singular quadratic form;
PG0 5 (5) E S05(5) E PS0 5 (5) E G.2: 05(5) " G
Maximal subgroups
Specifications
structure
Order
Index
30000
156
5+1+2 •'4A 5
30000
156
15600
Character
Abstract
3ymplectic
Orthogonal
1 2 •• 5++ •'43 5
1a+65b+90a
N(5AB)
point
isotropic line
5 3 :(2XA ) '2 5
: 5 3 :(4x3 ) 5
1a+65a+90a
N(5 3 )
isotropic line
isotropic point
300
L2 (25):22
: L2 (25):22 x 2
1a+65a+104b+130a
N(2B.3A.5C.5D .... ). C(2C)
3 2 (25 )
0;;(5)
14400
325
2'(~xA5)
1a+90a+ 104b+ 130a
N(2A)
3 (5)wr2 2
0;';(5)
960
4875
2 4 :A
: 2'(A xA ) .22 5 5 4 •• 2 •'3 5
720
6500
3
480
9750
360
13000
G.2
.2
5
= N(2A 5 B10 )
: D x 3 12 5
N(3A). N(2B,3A.5C). C(2D)
(22 x A ):2 5
: 0
N(2B). N(2B.3A,5D)
A6
: 36
3
x 3
N(2 4 )
5
8
x 3
5
base
U (5) 2
O (5) x 0 (5)
2
3
2
3
O (5) x 0 (5)
N(2B.3A.3B.5EF) I
I
page 62
88
34
~c:l
WD I 34 I
page 63
26
20
[61]
84 (5)
@
pI part ind
@
@
@
@
@
lA
AAAAAA
2A
2B
3A
3B
4A
4B
@
15000
A A 5A
@
@
@
15000 150 500 A A A A A A
B*
se
5D
@
@
@
@
@
~~~~M
m A A M AA m
A
A
M
AA
~
F*
M
~
x,
+
x,
+
13
5
-2
-3
-1
5b5+3
It
-2
3 -b5
x,
+
13
5
-2
-3
-1
*
5b5+3
-2
3
x,
+40-804400
-10
-10
5
x,
+
65
17
-10
-10
X.
+
65
-1
-1
15
x,
+
78
6
x,
+
78
x,
+
90
18
x"
+ 104
x"
+ 104
6C
@
600 BA AA
lOA
@
@
@
600 100 100
AA BA
DA DA
B. 10C
@
50
@
20
@
@
12
12
@
13
@ 13
@ 13
DA CA DB CB AA A A A DA CA DB AB BA A A A D. 10E 10F 12A 12B 13A B*3 C*9
x,
5
It
2-1
b5+3
It
-b5
2-1
It
0
0
0
4
-2
0
5
0
0
-1
-1
15
5
0
0
0
5
-1
0
0
-1
0
0
0
0
X2
-1
0
0
0
0
X3
0
0
0
2
2
2
2
-3
2
2 -3
-3
2
3
3
-2
3
5
-1
5
-6
0
3
2
0
5b5+ 18
It
3
3 -b5
*
3
0
0 5b5+6
6 -6
0
3
2
0
It
5b5+ 18
3
3
*
-b5
3
0
0
6
0
0
6
0
15
15
0
5
0
0
0
0
8
0
-4
5
4
0
-21
-21
4
4
-1
-1
5
2
16
4
5
_4
0
2
4
4
9
-1
-1
-1
4
x"
+ 104 -16
4
5
-4
0-2
4
4
9
-1
-1
-1
-4
x"
+ 130
26
6
4
4
-6
0
5
55500-420
x..
+ 156 -36
4
6
0
0
0
6
6
X15
+ 208 -16
0
4
-2
0
0 -10r5+8
10r5+8
-1
-2 -b5
X16
+ 208 -16
0
4
-2
0
0
10r5+8 -10r5+8
-1
-2
x"
+ 312
24
0
0
3
-4
0
20b5-3
*
-3
x"
+ 312
24
0
0
3
_4
0
*
20b5-3
x"
+ 312 -24
0
0
-6
0
0
*
Xw
+ 312 -24
0
0
-6
0
0
x"
+ 325
5
5
-5
-2
-3
x"
+ 325
5
5
-5
-2
x"
+ 390
30
-6
0
x"
+ 390
30
-6
0
x"
+ 520
40
0
4
x"
+ 520
16
4
x"
+ 520 -16
4
x"
+ 516
0
0
x"
+ 576
0
x"
+
576
0
-1
x, 0
0
0
Xs
o
0
0
X6
-1
•
-1
0
-1
0
0
0
X7
It
5b5+6
-1
0
-1
0
0
0
X8
0
3
3
o
0
-1
-1
-1
X9
0
3
3-2-2-200
o
0
0
X10
0
0
0
X11
-1
0-2
*
2
*
-b5
2
b5
-3
2
30b5+2
-3
30b5+2
*
-25b5
-3
-3
-2
-3
-2
0
*
4
0
4
-4
-4
4
4
-6
3
3-2
-1 -1
-1
-1
-1
_1
0
0000XI2
o
0
0
0
0
;(13
-1
-1
-1
-1
0
0
0
0
0
;(14
2
0-2r5+4 2r5+4 2b5
It
-1
0
0
0
0
0
0
XIS
2
2
0 2r5+4-2r5+4
*
2b5
-1
0
0
0
0
0
0
X16
*
3
0
0-2r5-1 2r5-1 2b5
*
-1
0
0
-1
0
0
0
Xl7
*
b5
3
0
0 2r5-1-2r5-1
* 2b5
-1
0
0
-1
0
0
0
Xl8
2
b5
*
6
0
0 3r5+1-3r5+1
*-2b5
o
0
0
0
0
0
XlI"
-3
2
*
b5
6
0
0-3r5+1 3r5+1-2b5
*
0
0
0
0
2
-1
-1
-5b5
*
0
0
0
0
0000X21
*
-25b5
0
0
0
0
2
-1
-1
*
-5b5
0
0
0
0
0000X22
0 25b5+15
*
0
5
0
0
-3
0
0
b5+3
*
r5 -r5
0
-1
0
OOOXn
25b5+15
0
5
0
0
-3
0
0
*
0
-1
0
OOOX24
-5
-5 -10
0
0
0
-2
0
-5
-500000
000X2S
0-2
20
20
-5
-5
0
0
4
-4
-4
4
0
2
20
20
-5
-5
0
0
_4
-1
4
4
-1
-1
-1
-1
-1
0
0
0
0
-24
-24
6-4
o
0
0
o
o
0
0
0
0
0
0
0
0
0
-24
-24
6
_4
o
0
0
o
o
0
0
0
0
0
0
0
0
-24
-24
6-4
o
0
0
o
o
0
0
0
x"
+6240-86000
24
24
4
-6
-1
-1
0
0
-2
o
0000200000X31
x"
+ 624 -48
0
0
6
0
-26
-26
-6
4
-1
-1
-6
0
0
2
2222000000X32
x"
+ 625
25
5
-5
-5
5-1
o
0
0
0
0
-5
-1
o
o
0
0
0
x"
+ 180 -36
-4
-6
0
0
0
305500002
-6
-6
-1
-1
-1
4
3 6
3 6
4 4
8
5 10
5 10
5 10
5 10
5 10
6
10
10
10 10
1 2
2
0
30
5
o
-6
-2
0
0
o
11
r5 -r5 r5
-1
-1
*
b5+3 -r5
5
ind
[62J
@
14 4680000 400 480 360 360 240 24 P power A ~ A A A B
b5+3 -r5
r5
OOOOOOXw
-1
6
12
10 10
10 10
10
6
*
OOOOX:u;
0
0
0
Xv
0
0 c13
*3
*9
X28
0
0
0
*9 c13
*3
X29
0
0
0
*3
en
X30
0
0
*9
-1
-1
o
0
0
0
0
20
24 24
12 12
13 26
13 26
13 26
x" x~
x"
-
12
0
0
0
-3
-2
0
*
5b5+2
-3
2
b5
*
-3
0
0
b5+3
*
0
0 -r5
0
0
-1
-1
-1
X3S
x"
-
12
0
0
0
-3
-2
0
5b5+2
*
-3
2
*
b5
-3
0
0
b5+3
0
0
r5
0
0
-1
-1
-1
X36
x"
-
52
0
0
4
2
0
*
5b5-8
2
2
b5
*
-3
0
0
* *
-5b5
0
0
0
0
0
-1
0
0
0
X37
x"
-
52
0
0
4
2
0
5b5-8
*
2
2
*
b5
-3
0
0
-5b5
*
0
0
0
0
0
-1
0
0
0
X38
x"
- 104
0
0
_4
5
4
0
-21
-21
4
4
-1
-1
-3
0
0
5
5
000
0
0
x"
- 156
0
0
0
6
6
0
31
31
6
6
-6
0
0
5
5000000000X40
X41
- 208
0
0
4
-2
0
0 -10r5+8
10r5+8
-1
-2 -b5
*
-6
0
0
-2r5
2r5
0
0 -r5
0
0
0
0
0
0
X41
X42
-
208
0
0
4
-2
0
0
10r5+8 -10r5+8
-1
-2
* -b5
-6
0
0
2r5
-2r5
0
0
r5
0
0
0
0
0
0
X42
x"
- 260
0
0
_4
-1
2
0 25b5+10
*
-5
0
0
0
-3
0
0
*
b5+3
0
0
r5
0
0
-1
0
0
0
X43
X«
- 260
0
0
-4
-1
2
0
*
25b5+10
-5
0
0
0
-3
0
0
b5+3
*
0
0 -r5
0
0
-1
0
0
0
X44
x.,
- 300
0
0
0
-3
-2
0
25b5
*
0
0
0
0
-3
0
0
-5b5
*00000
x.,
- 300
0
0
0
-3
-2
0
•
25b5
0
0
0
0
-3
0
0
*
-5b5
0
0
0
0
0
x"
- 312
0
0
0
3
-4
0
20b5-3
*
-3
2
b5
*
3
0
0-2r5+5 2r5+5
0
0 -r5
0
0
-1
0
0
0
X47
x"
- 312
0
0
0
3
-4
0
*
20b5-3
-3
2
*
b5
3
0
0 2r5+5-2r5+5
0
0
0
0
-1
0
0
0
X48
x.,
- 416
0
0
_4
8
0
0
16
16 -14
_4
o
0
0
o
x"
- 468
0
0
0
0
-6
0
*
-30b5+3
3
8 -b5
*
0
0
0
3r5
-3r5
0
0 -r5
0
0
0
0
0
0
Xso
x"
- 468
0
0
0
0
-6
0 -30b5+3
*
3
8
* -bS
0
0
0
-3r5
3r5
0
0
r5
0
0
0
0
0
0
XSl
x"
- 520
0
0
4
-5 -10
0
0
9
0
0
5
5
000
0
0
x"
- 576
0
0
0
x"
- 516
0
0
x"
- 576
0
x"
- 624
x"
r5
OOOX39
x., x.,
0000000000X49
4
0
-5
0
0
0
-24
-24
6-4
o
0
0
o
o
0
0
0
0
0
0 c13
0
0
0
0
-24
-24
6-4
o
0
0
o
o
0
0
0
0
0
0
0
0
0
0
-24
-24
6-4
o
0
0
o
o
0
0
0
0
0
0
0
6
0
0
-26
-26
-6
4
-1
...1
-6
0
0
-10
-10
0
·0
0
0
- 624
0
0 -12
0
0
0
24
24
4
-6
_1
-1
0
0
0
o
0000000000XS7
x"
- 624
0
0
6
0
0
0
24
24
4
-6
-1
-1
0
0
0
o
00000r60000XS8
x"
- 624
0
0
6
0
0
0
24
24
4
-6
-1
-1
0
0
0
o
o
0
0
0
0 -r6
0
0
0
0
Xw
x"
- 780
0
0
0
-6
6
0
5
5
0
10
0
0
6
0
0
-5
-5
0
0
0
0
0
0
0
0
Xoo
0
000XS2 *3
*9
XS3
0
*9 c13
*3
XS4
0
0
*3
*9
en
Xss
0
0
0
0
0
XS6
0
@
30 BB AB 15A
@
@
@
30 15 20 AB CA BA BB CA AA B* 1se 20A
@
@
20 AA
BBA
BA Bt-
AAA 30A
30
@
30 AAA BBA
B*
x,
@
@
@
15 600 720 240 A A B A A A fus ind 2C 20 4C
@
@
@
@
@
@
@
@
@
@
@
@
12
10
-b5
•
•
b5
b5
•
x,
*
-bS
b5
•
•
b5
X.
-1
-1
-1
0
0
_1
x,
-1
-1
0
0
0
-1
X.
o
x,
-b5
36
24
18
12
12
12
13
13
13
AC AC
BD BD
BA
BC
CC
AC CIn
BA
AC
BC
CC crD
6E
6F
6G
A CC DC CD CC Fe BA A CC DC CD AC DC BA 8A lOG lDH 10r 12C 2DC 24A
40
60
50
50
30
15
S* 26A B*3 C*9 30C
x, +
0
0
0
0
0
0
0
0
0
0
0
-1
++
12
-4
0
0
-4
2
0
2
0
-3
2
-1
++
13
5
-1
-1
-2
3
o
o
++
13
*Ob5*-b5
•
+
0
o
-1
0
0
0
5 -1 -5
-1
0
0
-1
0
0
0
0
0
o
3-2
0
0
0
0
o
o
o
o
++
12
0
6
2
0
0
0
0
0
2
-3
0
0
x..
o
o
o
o
++
0
8
0
0
-4
2
0
-1
-2
0
0
-2
0
++
26
6
4
0
3
3
-1
0
0
-1
-2
0
3 -1
++2664060200
-2 -1 0
-1 ·,-1
x"
o
0
0
x"
o
0
0
-1
-1
o
0
o
o
_1
-1
-1
-1
o
o
x"
*
-bS
-1
0
0
•
b5
Xt6
-b5
*
-1
0
0
b5
•
Xl'
-b5
-b5
•
*
-b5
-1
•
0
*
-b5
0
-1
-1
0
0
0
-1
-1
0
0
0
-b5
*
0
b5
x"
*
-b5
0
x"
b5
*
0
•
b5
x"
•
*
b5
•
b5
*
-b5
b5
•
0 -b5
*
•
b5
-1
x"
-1
-1
o
0
x"
-1
-1
o
0
0
0
0
0
-1
-1
-1
-1
-1
0
0
0
o
-1
-1
0
0
0
0
0
0
0
0
0
+
0
0
0
0
0
0
0
0
0
o
0
0
0
0
-1
-1
-1
o
0
0
h
X.
0
Xs X. ~
0
0
X9
x"
0
0
0
0
0
-2
XlI
o
0
0
0
0
0
X12
-1
0
0
0
0
0
0
-1
0
0
0
0
0
0
0
0
0
0
0
0
x" -1
o
X14 XIS
x.. +
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
XI7
x" 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-1
-1
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0000
0
XI9
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
++
0
8
0
0
-4
2
0
-1
2
0
0
-2
0
0
-1
-1
0
0
0
++
26
14
_4
0
-1
-1
-1
2
0
-1
-1
o
0
0
0
0
++
26
6
4
0
-9
-3
-1
0
0
-1
0
0
0
0
0
x"
*3
*9
0.'(28
*3
0
X29
*9-013
0
X30
o
o
0
0
0
o
o
++
48
0
0
0
0
0
0
0
0
-2
-2
0
0
0
0
O-c13
o
o
0
0
0
o
o
++
48
0
0
0
0
0
0
0
0
-2
-2
0
0
0
0
0
*9-013
x"
o
o
0
0
0
o
o
++
48
0
0
0
0
0
0
0
0
-2
-2
0
0
0
0
0
*3
x"
o
o
o
0
o
o
++
52 -12
0
0
6
0
-2
0
0
2
2
-2
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
r6-r6
0
0
0
o
0
0
-1
-1
-1
0
0
0
-1
OX23 b
x"
-1
OX21
x"
x..
x"
0
Xw
*
-1
0
0
-1
++26-6-62-60200
+
b5
-1
0
X.
++26-2-40_5
x" x,.
0
0
x,
0
0
x,
-b5
X~
54 (5)
@
AD AD
*
XZl
@
B AD A AD
*-b50*b5
Xw
@
16 360
X.
x..
@
H
X2
x..
@
++
0
0
0
0
25
5
-5
-1
x" -1
xu
x" 0
X32
x"
o
o
0
0
0
o
o
++
X~
o
o
-1
0
0
o
o
++26-66-2-60200
15 30
15
15
20
20
30
30
20
20
30 30
30
x"
b5
*
0
*
-b5
b5
•
00000000000000000000X3S
x"
•
b5
O-b5
*
b5
x,.
X37
b5-1
*
-1
*
b5
• •
b5
00000000000000000000X37
x"
*
b5-1
-1
b5
*
b5
•
x"
o
o
-1
-1
2
2
o
0
-1
-1
o
0 6r2
o
X~
30 fus ind
2
4
8
8
8
5-1
12
12
-1
6
12
12
8
12
8
-1 10
10
20
o o
0
0
0 X33 -1
24
40
24
24
26
26
26
60
24
40
24
24
26
26
26
60
X34
x" 0
0-4r3
0
0
r3
0
0
0
0
0
0
0
0
0
0
r2
0
0
0
0
r2
0
r3 -r3
0
0
0
r3
X39
r2
0
0
0
0
X40
r2
x"
*
-b5
-1
0
0
*
b5+2
OOOOOOOOOOOOOOOOOOOOX41
X42
-b5
*
-1
0
0
b5+2
•
x"
x"
*
-b5
b5
•
•
b5
OOOOOOOOOOOOOOOOOOOOX43
X44
-b5
•
•
b5
b5
x"
b5
*
0 -b5
*
b5
• •
x"
•
b5
*-b5
•
b5
-b5
•
•
-05
X47
-b5
0
•
0
x...
*
-b5
0
x"
-2
-2
x"
o
o
0
x"
o
o
x"
o
X~
OOOOOOOOOOOOOOOOOOOOX4S
x"
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X47
x...
0
o
o
o
-1
-1
o
o
ooooooooooooooooooooxso
0
-1
-1
o
o
-1
-1
-1
-1
0
0
0-4r3
0
0-2r3
0
0
0
0
0
0
0
0
0
0
0
r3
X~
x"
-1
o
0
0
0-4r3
0
0
r3
0
0
0
0
0
0 -r3
r3
0
0
0
r3
XS2
*3
*9
0
X~
*3
0
XS4
*9 113
0
XSS
x"
o
o
0
0
0
o
o
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 113
X~
o
o
0
0
0
o
o
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*9 113
x"
o
o
0
0
0
o
o
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*3
o
0
0
-1
o
0
0
0
0
0
0
0-2r2
0
0
0
0
0
r2
r2
0
0
0
0
X~
-2
0
0
o
o
o
0-4r2
0
0
0
0
0
0
0
0
0 2r2
r2
0
0
0
0
0
0
XS7
x"
-1
x"
o
o
x"
o
o
o
0
o
o
o
0-4r2
0 6r3
0
0
0
0
0
0
0 -r2
r2
0
0
0
0
0
r3
XS8
x" x..
o
o
o
0
o
o
o
0-4r2
0-6r3
0
0
0
0
0
0
0 -r2
r2
0
0
0
0
0 -r3
XS9
o
0 6r2
0
0
0
0 -r2
0
0
0
r2 -r2 -r2
0
0
0
Xw
-1
-1
0
0
0
0
[63]
2::
57
15
... 399
~56
-9
-9
-9
-9
o 567
o 567
o 567
567
929
929.4
15
8
1
1
-9
-9
-9
-9
-9
02 399
02 399
02 399
02 456
02 456
02 1156
02 513
02 513
02 513
02 513
02 513
02 513
02 513
02 513
02 513
02 567
02 561
02 561
02 567
02 567
02 567
x..
x",
""
X..
Xl<>
x."
X.,
X.,
x.,
Xc<
x.,
x..
X.,
x..
;(.9
x'"
X"
X"
x"
X...
K..
-9
1
1
1
1
8
8
o
o
929'7
92914
929
929.7
92914
929
929*7
29'7-7&4
<:9.4_7.1.1
29-7&1
729-7&4
15 7z9'7-7"'1
15 7;;:9.4-7&7
-3
02 189
X..
-3
.,3
02 189
29'7-7&1
02 189
-1
<:9.4-7&7
t9-1&4
o
o
..
x"
57
..
-3
_2
..
o
o
o o
..
.... .... .... .... ....
o
....
o
o
9z3
_1
_1
_1
-t9.4
0
0
_1
_1
_1
_1
_1
_1
_1
_1
_1
18 18 18
o
0
o
..
..
..
..
..
-,/:'9.4
-z9'7
-t9
z9
z9.4
o
_1
_1
_1
_1
_1
o
o
29'7
z9.4
o
..
..
o o
_1
'2
o
o
o
o
_1
o o o
o
_1
A
lI_x19
n
.2
n_x19
n
.2 n2
n2
.4
o
Y9+1
o
o
o
u
o
..
o o
o
14
n
u
119
o
..
."
o
o o
o
o o o
110
.19
y"63
o
o
119
**
.26
o
.26
o
o
.17
.26
.26
r'
0' 0'
.. .. I0'
.17
." .10
017
117
o o
o
I 0' .. I0' .... I0'
:0002
:0002
:0002
...... I0'
.10
117 y"63122
**
• 26
.26
117 y"63143
z9'7
z9
z9.4
o
z9'7
z9·4
.,
63 fus 1nd
63
63
o
o
o
.00
: 000
: 000
+00
+00
.00
63 63
11
n
o
o o
000
-00
: 000
:
.00
1nd
63
..
o
o o
.... ..
63
63 63
.19
.10
.17 y"63143
.10
y"63
.26
.26
.17
u
010
."
.10
o y"63122
n_x19
14 ..4-x19
y"63
.10
z9'7
z9.4
.,
o
o
z9'7
z9·4
.,
63 63 63
o o
14
**2
n4
**
•
'2
y"21
y"21
n2
y7
**4
12
,7
.4
.19
.2 n2
., .,
z3
y"21
117 y"63.22
12
o **
•• ••
.. "
o
z3
11
11
y"21
.10
14
,7
"
o
o
., " ••
,7
.,
o
o
o y"63143
.4 n4
o
.. n2
n_x19
12 112 114
12
.4
12
o
o o o
0
.2 ..2 n4
112
.4 114_x19
o n2 o
n
0
n-x19
0_x19
o
o
0
o
0 ..4
o o
o
o
0
o
o
o
o
.26
"
z9'7
z9.4
."
o
_1
_1
_1
63 63 63
o o
y"21
n2
n4
.,
., ....
o o
63 63 63
n
y"21
•2
14
.,
..
o
o
0
_1
_1
_1
E"
" ,.,""
cn2
.. .. .., ., ....., .,•• .. ... .. .., .,• ... ••
•• ••
y7
,7
z9'7
.,
o
0
o
0
_1
_1
_1
o
o o
o
.." .,..
o
o
o
o
_1
_1
_1
o
o o
,..""
21
"CA Fn4"" fus
21
21
21 AA
., .. ., .. ., .. .. ., ..
.,
,lA
21
.4 -y9-1
y9+1
o
_1
_1
_1 _1
_1
_1
o
9 19 19 19 19 19 19 9575757575757 9575757575757
.4
0
_1
o
-1
.4 ..4
o
o
0
_1
0
0
0
o
_1
.4 n4_x19
.2 n2 n4
.2
o
.4
o n4
o n2
o
o
A
.2 n2 114
112
o
_1
o
o
o
_1
.4 n4_x19
0
o
.2
.4
y7
'4
y7
.2
y7
.2
A
21 CA AA
z9.4
1 _y9_1
.4
A
19 A
o
.4
y9+ 1
u
lI-x19
o-x19
., •• .,
o
0
0
_1
0
0
o o
o
-1
000
" ••.2 y9+1
.4
A
19 A
" .,•• .4 -Y9-1
.,
'4
y9+1
.2
•4
1 y9+1
7 21 21
o
y7
y7
o
o
o
0
o
y7
12
y7
.4
.4
'2
.4
y7
.4
y7
.2
7 21 21
.2
y7
z9'7
.,
12
.4
.2
.4
y7
z9·4
..
n
..
..
o
u
7 21 21
o
.4
'2
z3
_1 t9.4-&1
z9
_1
.2
y7
.4
..
_1
.4
.4
y7
.2
.2
.4
.2
u
o o
_1
.4
y7
y7
.2
..
-z9
z9'7
o
..
z3
u
o
o
_1
o o
0
o
o
_1
.4 y9-&2
.,
••
o
_1
1
..
-z9.7
18 18 18
o
z3
_1
o
.,
A
19 A
C.4 19A BIICu2 D.2 E:.4r..4
A
• 19 19 19 A A A
o
.4
.,
C
.4 Y9-&2
o Y9-&2
o
.'
9A
C
27 C
1.4y7.2
.2
o
0
uz3.4y7.2
z3
z3
o
0
7A !llI2 C.4
21 A
,., ,., , , , , ,.,,
•
21 21 A ,
1 y7
z9-&7
_1
u
.. -z3
-z3
o
_1
_1
_1
_1
_1
_1
o
_1
_1
_1
o
_1
u
.. 2%3
2t3
AA
24
BA 6A B..
" AA
24
_1 z9'7-&4
5 -3
_1
o
12 12
-3 -3
12 12
-3 -3
-3
12 12
o
o
_1
_1
_1
_1
_1
_1
o
_1
_1
_1
-,
-3
lie
A
A
64
• • •
_1
_1
_1
_1
_1
_1
_1
_1
_1
_1
o
0
_1
o
_1
_1
_1
_I
_I
_1
o
_1
-3
0
4B
A
A
64
-3 -3
_2 -3
-,
0
A
4/1.
A
3e
,
A
A
•
64
81
15z3 -3
u
o
-623
-7
,,' ,., ,,' ,., ..
,.,
,
..
15z3
o
o
7
..
-(,23
-7
lA
1512
,, ,, ,..
1512
16'
02
-7
02
57
-7
6 6
02 51
"d
,
-9
o 567
0
-9
o 567
o 513
o 513
o 513
o 513
o 513
o 513
.. 513
.. 513
.. 513
.. 512
o
~56
15
.. 399
o
15
-7
-7
.. 399
133
133
133
57
o
" ...
o
",
'" ,.
,. '"x..
'" ",
'" ,,,
'" ,,,
,,, ,,, ,,,
,..
,,, ,,,
,,, ,,,
,,,
,,,"
,. ,.
,." ,."
"
"
A
1nd
2/1.
p' part
lA
A
P
power
5515776 536
1
••
""
-,
o
o
0
0
o
8
o
o
o
o
o
o
o
8
o
o
o
o o
O.
o
o
_1
,
o
o
o
o
o
o
o o
o
o
o
o
o
o
o
o
o
o
o
2z3
2z3 2z3**
_1
,
-z3 0
1
o
o
_1
0
o
1
o
12 12 12
0
o
_\
o
o
o
,
o
12 12 12
o
o
o
o
_1
z311
o z3
DB EB 12B
0
.00
.00
• 00
+00
000
o o
o
o
,
0
-3 -3
: 000
'7
o o
:0002
:0002
:0002
:0002
:0002
0
0
o
o
o
.7 :0002
:0002
,.,.,
'7
."
o o
'7
:0002
:0002
:0002
:0002
:0002
,.,., ."
:0002 :0002
01'
:0002
'7
o o
."
9.'"
01'
o
o
o
o
,.,.,
.13 8z27+7&13
.4
.13 7z27-7&13
113 8z27+7&13
'7
.,,
z27-&13
27 27 27
o
_1
.7
.7
'7
o
o
o
o
o
o
o o
o
'7
.13
_z27+&13
27 27 27
o
o
o o
o
o
_1
z9n-&2
z9-&7
y9+1
.4
.,
••
.
,, J.' 27
o
o
o
o
o
o
24
'7
'7
01'
o
o
o o
.7
01'
.27
'7
."
.27
'7
.,,
.27
24
""
.4
.4
I~
.4
.4
.4
17
.7
_y9_1
.2
.4
;<4
'7
,..
", '" '" '" ".
X»
Xn
x""
X, •
XIS
X17
,,, ".
,..
",
x,.
XLI
X,,,
x"
X•
" ",.
"
" "
'7
EA CA Cn5
..,
o
113
z27&13
o o
'"
• 27
.27
...", ...,"
.27
..,
'" ..,
-.27
",
X.,
,. ,,,
X""
X..
X.,
x...
x.,
x..
x., x.,
X.,
X""
x'" x,.
x"
x""
'" x..
", ,,, ",
o '" o '"
o
z27
n2
14
z27
.12
.4
z27
"2
.4
.4
_z27
112
113_z27+&13
n2
.4
z27&13
.. .."••, ,.,,,
"" ",
o
'7
.7
'7
•7
'7
.7
-z9n
-.,
.4
-y9-1
.,
o
-z911
-"
"7
CA FA
"3-'/:27+&13
-z27+&13 _z27110
-2t27-&13
o o
o
o o
o
o
o
113
_z27+&13
In
'7
113
z27&13
"" "
o
o
z9n
.9
z9n
., ., Z911
o
.4
.
.,
14
_y9-1
.4
.,
1SA
EA
• "
FA
14_z27+&13
o
z27-&13
.., .., .., ...,,
'"o
z27-&13
14
.., ..,
27 27 27
o
o
o o o
o
o o
o
-\
.4
•• ••
,'''
.,
o
•7
'7
"7
,,
27
.13 -2z27-&13
'4 -2z27-&13
z27_7&13
n2
,.,,., ,., ••
o
o
o
••
•• •• •• ••
••
•• ••
Y9+1
o
z9n-&5
z9_&4
"
A A
,.,
.••, .••,
7Y9+7
z9n-7&5
z9-7&4
-7
G••
•
,,
1512
.., .., .., .., .., .. ,,,., .., .., ,.,.,..••, 9.'" ." ,.,., .., ..••,
o
113
z27-7&13
..
,.,,.,,., ,
o
'7
'7
'7
•7
'7
'7
'7
'7
••
7Y9+7
.,
.4
••
-7
"7
,,
1512
1137z27-7&13
7z27-7&13
o 8z27+7&13
o
o
17
'13
z27-7&13
,.,
,.,,.,
o o
o
9z9**
,.,
9z911
9z911
,., ,.,
Z911-7&2
z9-7&7
••.,
7y9+7
,.,.,
:0002
:0002
:0002
:0002
:0002
:0002
0'
I
:0002
:0002
:0002
o
-3
000
-3
-3
-3
0
0
0
0
-1
0
: 000
: 000
: 000
: 000
: 000
:000
: 000
: 000
: 000
: 000
: :
:000
.00
.00
~
'7
-7
"
:000
0
-\
3G
,,
1512
'7
~
•
,,
57
: 000
12 fus 1nd 12 12
o
o o
o
o
_1
z3
z3n
.00
E:C FC 12C rus lnd
• • •
9 C CA A BA 9D 12'
_2
2 2%3**
,
_1
• 24 FA FA 6E
-z3 -z3**
_2
24 EA E:A 6D
_1 -z3**
_1
o o o
o
6z3
6z3 I>z3n
o
-,
3z3
3z311
-,
6C
2-2
3F
3z3 3z3"
2
3E
DA
24
A DA
A
A
A
216
216
6 6z3n
_2
_2
,
3D
,,
216
"-'"
00
~
e VJ
~
o
o
o
*55
.,17
"62
"71
-'37
u71
"62
-x171
*37 -x171
X"
x"
X..
x"
.,0
*26
.,0
x"
*37
o
o
o
o
171 171 171
.4
.. 4
126
.. t7
*55
u'7
128
*91
uS3
..53
.91
*37 _x171
*37
155
"
.,
., .,
.,
.4
.4
.4
.4
o o
"
z9..
.4
C'4
CE
"ca "
AF
".4
.,
,,9"
"
., .,
o
DI 37
88
CO
"
..
.4
"
.,
.4
.4
z9"
"
o
"
EE Aa FIZZ
. .,
z9**
"
o
., .,
OF CE GI10
"
."
."
.52
'88
u53
...
'34
'".,
,21
'" ,21
19' 19'
....,
19' 19' 19'
o
o
14
.,
19' 19'
o
."
y"63"
y"63
o
."2
o
o
AE
.4
19'
o
o
14
.4
on
."
.2
...
."
." ." ." .52 ."
o
o o
o o
o
.., o
o o
o o o
o o o
o
..29
•58
.. 53
04
o
.. 53
..29
.40
y'189
o
o
..53
.34
.52
.52
..2
.61
." ." ." .52 ."
,"
.4
o o
..2
.4
.., .., '" '" '"
o
I
1
I
I
I I I
06
06
06
06
06
06
06
06
06
189 tus ind
o
y n l>3"
y"1>3
." ."
"0
04
'00
: 000
.,
: 000
14 14
o
" " ....,, ."
.,
.,
o
000 : 000
" :1:9"
_00
.00
'"
.4
IuS tua
BG
"
.4
161y'189164
.. 29
o
o
'" ."
.52
.88
'".,
,"
o
*58y'189*64
..53
.4
..,
y'189
,"
."
.4
o
.4
uS3
"29
o
.4
y'189
."
.., ..,
'52
.61
"53
...
• 34
167y'189*64
.88
.52
.,29
...
••2
*S8y'169,64
'"
.61
uS3
."
,"
..,
o
," ." ,"
.85
." ."
uS3
"29
...'"
167y' 189.64
o
.4
.., .., ,"
o
o
19' 19' 19'
o
o
'43
..
EO
"
AF HI43
''"" '" 19' 19' ' " '", '" .. .. 42' .., "" .. , ." '" ,21 on ," .., '" ,21 ., ." ,21 ., ." ," ., ." ,"
'"''""
o
19' 19' 19'
."
o
o
1"63**
*4
'"
"
..
y"63
.4
."
'",
•4
.4
.. .,
., .,
o
o
.4
.4
o
::*25
OF
." ."" '" '43" ." on ." '4' .. , '43 ." , ." , '43 ." .., ." ." on ." '43 , "0 ..,
.,
"• 4
"
~9..
., .,
o
B"2
"
63'
AE
"
Aa
".
"
• •
Oy'189*64
o
o
o o o
171 171 171
-x19
.. 2
.,
.4
.. 4
o
o
*55.,17
o
o
o
o
o
171 171 171
-x19
*2
••2
..4
14
o
"0 -x171
*37 -x171
.,0 _x171
o
o o
o
o
o
.26
o
o
o
o
o
111 171 171
•• 4
x'"
o
o
o
o
o
171 171 171
o
..2
11 111 1"11
14
-x19
..
x" x..
x"
x.
x"
x.
x.,
x"
x..
x" x" x.
x"
x" x.
x"
x"
x.,
x..
'"
x"
x"
_2
•• '·l
X,.,
..~
.. .., .,
,ij
".
Iil
x"
_x19
..2
.2
..
_x19
.,
o
. . . .2
o
o
o
o
_~lg
",
o
-, -, -, -, -, -,
o
X"
x.,
x"
'"
x"
x"
x"
x"
x"
x"
x"
x"
x"
o
o
o
o
x"
o
o
x.
x.
x,
x.
x,
o
"4
x.
"".,
o
Cu2
19
Aa Fa FI10
x,
"'"
19
BG EO
-, -, -, -, -, -,
57'
19
EO VG
19
Fa
ca
x,
x,
19
BG
ca
19
VG Aa
• • •
18 A
2
17
17
17
17
_1
-z9+&7
_1
z9-&7
-z9
-z9
o
0
,"
o
o
o
_,
18
o
0 _z9"
o
o
2
14 z9.._&2
14
o
666 LA MA KA
18
o
o o
o
17
17
17
17
o
o
o
.00
: 000
: 000
: 000
: 000
..
00
06
06
06
06
06
06
06
06
06
I
1
I
,
I I
I
J
.2
.2
02
I I .,
,
18 fus ind tus 1nd
0
14
14
o
14
14
-00
'00
KA " HA leD E*1FnS full Ind tus ind
0 _z9"
_1
C 9N
• •
• Mill
14-z9..+&2
14
_1
91( LI?
18 •
• • " , A
2
o
o
o
16
A
o
1
0
0
o
0
o
0
_1
_1
y7
0
o
12
o
t4
8
0
0
0
14
t2
14
t4
14
o
o
y7
o
t2
18
o
0
o
0
_1
t2
18
_1
t2
....
..
,I ..
00
00
.2
.2
.2
I .,
I
J ., J .2
J
I
-j"
02
+00
.2
0002
! ! I ! !
1
:t
100
:+00+00
.00
'00
:+00+00
'00
:000000
:+00+00
18 fus 1nd tus 1nd tus
o
o
o
_1
t4
t4 -y9
t4 -y9
o
0
o -y9
o
o
o
lt4y7t2
1
_1
_1
_1
o
_1
-1
_1
0 212-212
_2
•
777999 A BB CB AB BF er Af A AB BB CB AB BB CB BA B.. 14A BI5 Ct3 laG Ht7 Xt5 tus lnd !us 1nd !us
11>
9
CB CB 6f
8 -,
0
A
, "
504
••• @
@
@
6
o
18
0
o
-,
24
o
o
o
-,
o
o _12
"
+2
+00
0002
X,
x"
,,,
x..
,,,
x""
'" ,,,
,,.
'"
,,,
,,,
'"
x"
,,, ,,,
x"
,.
x"
Xl>
,,, ,,, ,,, ,,,
x"
X"
,,,"
,.
X,
x.
X,
x.
X,
X>
x"
x" x.
x"
x"
)(""
x•
",
,,,
x"
x"
'" '" ,,,
x"
x"
,.
I ! I ! ! ! . ,. ! ! ,. I ., ! ,.
"j
'00
~2
I
1nd
:+00+00
+00
:+00+00
+00
+00
:000000
ind tus
•
:+00+00
'00
" '00 : +00+00
'00
:000000
24 fus
o
0
-, 0
12
'od
:+00+00
1nd tuS
:+00+00
I> 3 4 4 DB DF AA AA DB DB DA DB 6G lSJ 24A St7 fus
@
e
w ~ 00 '-"
g::
= 3.(3
Out=3 x 8 3
x G).32 : all 3 x 3 matrioes over F64 preserving a non-singular Hermitian form;
PGU 3 (8) =G.32; 8U3 (8) = 3.G; P8U3 (8) = G
GU 3(S)
Mult .:: 3
3 2 :2A 4
(9 x 3).8
19: 3
3648
25536
25536
25536
34048
96768
1512
216
216
216
162
57
3 2 :2A
4
3 x L2 (8) 32 : 2A 4
2 3+6 :21
513
10152
structure
Index
Order
Maximal sUbgroups
3
: 19:9
: (9x3) .Ox8 3 )
: 32:2A4 x 3
: 32 :2A 4 x 3
: 32:2A4 x 3
: 3 x L2 (8):3
: 2 3+6 :(1:3x3)
G.3,
19:9
2 G.O )1233
Index
344
2107
14749
16856
43904
Order
16464
2688
384
336
129
=8
=1
3
43:3
L2 (7):2
8 2 :8
2(L 2 (7)x4).2
7 1+2 :48
Structure
19:6
(9x3) .012
x L2 (8) 3 2 23 3 : 4
: 8
Out = 2
(9x3) .(6x8 ) 3 19:18
x L2 (8):3 3 : 3 2 :23 4 x 3
: 8
: 23+6:(7:3x83)
G.6
(19:3 x 3):2
9 :012
2
: 018 x L2 (8)
: 23+6:(7x018)
G.8 3
: 43:6
: 2 x L2 (7):2
: (2(L 2 (7)x4).2).2 2 : 8 :°12
: 7 1+2 :(6x016)
G.2
1a+343a
Character
3 (19:9 x 3):2
92 .(6x8 )
: (0'8 x L2 (8»:3
non-isotropic point base
N(43A-N)
U1(43)
I
page 65
G.3
3'
10
G.2' G.2"
4
G.6' G.6"
10
7
10
5 8 G8 58
la+133abc+399abc+512a+51jabc
1a+512a
Character
N(19ABCOEF), C(3G)
Nt3C)
Nt3C 2 ), COF)
U1 (512)
base
U (2) 3
U (2) 3 U (2) 3
Nt3C 2 ), COO) Nt3C 2 ), COE)
non-isotropic point
isotropic point
Unitary
Nt3AB)
N( 2A 3)
Abstract
Specifications
(*) There is no group 3.G.33 or 3.G.3 3'. See the Introduction:'Isoclinism'.
: 23+6:(7x018):3
isotropic point
Unitary
N(2A t 3A,4C,7B)t C(2B) 03(7)
N(2A 2)
N(2A)
N(7A)
Abstract
Specifications
page 64
GB G.32B~EJ~~B~~28 813.G.3113.G.32 ~g)~~FrrFrr 27 28 251 G.(3x8 ) 3
x G : all 3 x 3 matrices over F49 preserving a non-singular Hermitian form;
Mult
G.2 : 2 3+6 :(7X8 ) 3
PGU 3 (7) = 8U3 (7) = P8U3 (7) = G
GU 3 (7)
Maximal subgroups
Unitary
Constructions
Order = 5,663,616 = 27.3.73.43
3 x 19:9
9 2 .OX3 3 )
: (9 x L2 (8»:3
: 2 3 +6 :63:3
= 2A2 (7)
(9 x3)'( 3x83)
: L2 (8):9
: 23+6 :7:9
G.3 3
Unitary group U (7) 3
19: 3 x 3
9 2 :83
9 x L2 (8)
2 3+6 :63
G.3 2
Remark : G.3 1 1~ a maximal subgroup of the Harada-Norton group. while G.6 is a maximal subgroup of the Thompson group.
Unitary
Constructions
Order = 5,515,116 = 29 .3 4 .1.19
Unitary group U (8) = 2 A2 (8) 3
......:J "-'"
~
C VJ
0..
§
00 "-'"
~
c VJ
"X
"X
"X ":I:
''X
..x ·X
..x
":I:
". ". •'X
"X
«x
"X
"X
''X "X
'"
"X 'X
"X
'"
0
0
,
~-
0
.., "X
0
0
0
0
0
o
L-
0
o 1.f- 1.1
0
0
0
"X
"X
"X "X ''X "X
'X 'X
'X
'X
'X
'X
.x 'X
QV QY
o
o
o
o
o
L
o
o
o 0
e
Y H
110 :l8C' ';1
aY
tr1
av
"I
o o o
o
0
0
o 0
o
o
o
o o
o
o o
o
0
o o
o
o
o o
o
0
o
0
o
..
o o
o
o
,. S'
,.
,.
S'
..
,. ,.
,.
S'
o
.... .. ,.
o
o
o
o
S'
o o o
o
o o
S'
o o
o
.. ,. ,. ,. ,. ,. .. .. S'
S'
..
S.
,.
S'
,. ,.
,. ,. ,. ,.
S.
,. ,. ,. ,.
S'
,. .. ,.
,. ,. S'
,-
,. ,.
L-'1
,.
o o
o
o
..
0
0
o o 0
o
o
o
0
o 6<:'
0
o
o
o 6~'
o o
1-
0
YV
0
0
QY
o o
o
o
0
.-
o o
o o o o
o
o
o
o o
o
o
o
o
o
o o
•
o
o
o
o
o
o o
o
o o
o
o
o
o
0
0
o
0
0
o o
o
o
o
o
o
o
o o
o
o
0
o
o
o 0
,-
,-
o o
o o
o o
,-
,-
o
o
o
o
o
i
s* r*
1-
0
o
o
~
i
o o
o
0
0
o
o
1-
gZl"
'1-
0
~
i
o 0
o o
o
0
o
000
o
o 0
o
o
0
o o
o
o
o
000
o o
0
0
000
000 0
o o o
L"GO
o
,-
o
t-
0
o
o
l
0
E.
0
S'
0
o
o
o If
1+2'1- L+(:1
•
o
'G'L
e~
,,
..
•
, V
o o
o
o
o
o
o
0
'H V
o o o
o
o o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
,.
S'
S'
o
o
o
o
o
o
o
,.,
o
S'
S'
o
o
o
o
o
o
..
,.,
S'
,.
,.,
S'
,. ,.
,
..
,
n-gZ9
,-
,-
lL-g Z 9
H
L-
e-
ee-
eee-
e-
L- eL- ee\- e-
L-
L-
L-
L-
1-
L-
L-
o
o
o
£L
£L
L-
L-
9+G',.(9-
9""2'19-
9+2.19""
£1
9"";::'19
S'
,. .. ,.,..
S'
,., ,.
S'
,.
,.
S'
IS-
IS
IS-
IS
,,-
S.
, ,.
9""2J9
9+2.19
L-
IrIlL
0
0
0
,-
0
0
0
0
0
o
o
o
o
o
o
1r9£0
~a£o
"X
"X
0
o
~e£o
"X
"X
0
00
o
°
119£ 0
~9£
~e£ 0
!rS£ 0
"X
IIS£ 0
119£ 0
·X
o
o o o
o
~9£ 0
·X
"X
"X
o
1I1r£ 0
o
119£ 0
9-
o
L-
L-9-1I11£0
1I1r£ 0
"X
9-
L-9-1I~£O
"X
·X
L-
°
1111£
Irll£ 0
Irll£
9-
L-e-III1£O
L-
L-e-III1£O
9-
Ir!r£o
9-
9-
1111£
2
1111£ 0
0
\-
1111£ 0
"X
"X
"X
"X
"X
"X
"X
"X
"X
«x
°
£1
£1
9~'2
0
LO£ +
LO£ 0
>IX
-,'X
"X
"X
"X
LO£
° ""
9-
9~20-
Sl
9""
S~
0
0
+
g;z+
"X
"X
919£99~
'X
'X
'X
"
0
VL
£Ir
.!Modd
1,.(ed ,d
1.
"
"X
"X
"X
9-
LO£ 0
10£
LO£ 0
LO£ 0
.., .,
L-
L
L-
£1
"'X
o
o
1-19-
,
o
VG
9- 21r
9-
,
S-
°
L-
,,,,-
o
IS-
,,,,-
1.-'19- 1.-19
0
L-
"
9
L-J9- L
o
1.-J9- L
1.-19
£L
L-
£-
9
L-19
2
,
G'
119
PUJ
,
999
,
V£
.., ..
91r
V V
,
V V
L-Jg- L-19
L-J9
L-J9- \-J9
,
:)11
9-
,-
,-
,-
o
, ,
61r
air , • • • "" • ••• • ""
,
lU ,1. V9
, ,
vv , vv ,
. ,- ,
9+2'.19
S'
,.
"
V V 9992
,,-
9+;::,.(9
..
,-
S'
,-
..,
•
S99;::
V
S"
V V 9992
,
,.
9+2.19""
19
,,-
,. ,.,
S'
.. ,., ,., .. ,. ,. .. ,., .. ,.,..
,., ,.,
S'
,.
S-
,-
,.
,
S992
,-
,.
9+2'.19-
9+2.19
9-219-
L-ZJ- 'l
,-
J;::
,
S' .
1;::-
,-
,
.
V
V V
L-2.1- 1-
o
,
V
•
, , ..s , ," , ," , " ,,'''' "" "" " " " " " " V
l-Z.l
l+;n- l-Z.l
82
\-
~
212-
,-
,
,
212
l
0
S'
Y
i
o
£*
0
o
o
o
,-
92
o
Y
i
e~
..
o
0
VV Y
i
vaSV:)ll(l'(I:)S'VV ~ ~ ~ ~ ~ ~ ~ ft 9~
~
£ta S':> ne: VIIZ ('Q St:) liS V9l Vlrt
'1-
1-
l+1Z- 0
L+12- i+H: L+1(:
L-l
""
,
o
L-l-
L-'-
o
L-1
t-1-
o
l-l
o o
o
o
o
••
~
;::1I:)ng vEIl lIa
•••
(:'Q
000
o o o
o
o
o
o o
o
o o o
0
o
o
o
o
o
o
o
o
o o o
o o
,-
o
o
o
0
o
0
0
o o
o
o
o
o o o
o o
o
o
o
o
0
o SII
,. '1-
o
o
o o o
o
o
o o
o
o
0
o
(*
0
o
s*
0
If
0
0
If
0
o
•
ZZ*NLZIH<:E*1LI*llLz*r9L'IllIH SlIo"II,)"I]
• •••
YVVY,YVl/YlIVVYVVV "'" " EIr EIr" fir " EIr , EIr V EIr Ell " Ell ' Ell V Ell Ell 'EllY Ell EIr"
0
s*
::IV
•••
o
gz
El
J-
av vv
,-
gz (*
o
000
'I
!iz' SII S'
!iZI (Z' S'
0
o
i
S' El 92
o o
9trg,(HI 6<:' El"
g",J:u
o o
It
..
s* ..
0
s*
(.
o
,-
gz
ay
,-
(*
S'
J-
:>11
•
,QS::l::l9:0VYOll:l:)QQV air Sir 1111 Sir air ell etr lltr
QV
6L*H6C:*DEZ'.:ISC':*3!iIlOSr.l liS yelr
o
,-
.. gz
112 gz
S'
L-J-
. L-J
L-J-
S'
L-1
.. L-J-
o
..,
o
L-J
S"
"S
" " " "• "• QV
" " "
o
1-'1-
S'
,.
,.
o
S'
po,
00
...
.,
o
o
Si:'
V V V v 9££ 9££
air
g-
o
o
o o
o
L-
o
o
0
o
o
,- , o
o
Z
o
0
L-
o 0
o 0
o
o
9
,'" """ ,
o 0
0
9
39L girL :lZL
,
V sa aY o ,ea av v
,
•••••• ••
L 4 (3) Linear group L4 (3) :: A (3) :: 0Ge3} 3
Order = 6,065,280 = 27 .36 .5.13
=
Mul t
GBBB29 BI2.G.21112.G.22112.G·23!22 29 19 23
Out = 2 2
2
Constructions
Linear
GL ll (3) :: 2.G.2, : all non-singular 4 x 4 matrices over F • 3
PGL 4 (3) :: G.2,; SL 4(3) :: 2.G; PSLlj(3) :: G Orthogonal
GO'6(3) 3' 2 x G.2 2 : all 6 x 6 matrices over F 3 preserving a non-singular quadratic form of Witt defect 0,
for example
xl
+ x~ + x~
•• ••• •• • 2
x,
+
x,
+
26
6
2
-1
-1
x,
@
@
@
@
@
@
@
@
@
+
26
6
2
_1
8
-1
1440 A
A 4A
96
32
BA A A ~
IIC
20
36
8
27
ABACAABBBCB ABACAABBBCB
B A
A A
~
72 M
72 ~
72 ~
36 W
~
M
%
@ 27
, •, , , , •••, 20
12 13 13 13 13 20 20 A AA AA BA CB A A A A AA AA A AA 8A CA AB A A A A AA AA W lOA 12A 128 120 13A Bn C*5 DJi8 20A 8.. fus 1nd
36
36
@ @ @ 5 616 16 511
@
• •,
.. •
96
110
40
16
A A
A A
B A
80 E.**
8F
9
96
A B AC OC AAACOC 2C 40 6F 6G
B
B
A
A
8B
C..
12 CB AB 24A
• 12 CC AC
B..
x,
++
8 -1 -1
_1
420
3
0
_1
-1
2
420
o
3
-1
2
0
2
-1
_1
0 -1
2
o
X.
+
39
7
12
3
3
-1
3
-1
-1
_1
_1
4
x,
+
52
8 -4
-2
7
7
-2
-10
0
2
2
_1
-1
2
-1
_1
0
x,
5
-7
11
2
11
2
-5
_1
0
2
_1
_1
2
-1
-1
2
_1
2
_1
_1
2
-1
+
65
x,
+
65
5
-7
11
11
2
2
-5
_1
0
X.
+
go
10
10
9
9
9
0
10
-2
2
0
2
-9
18
-9
0
-4
2
0
-1
2
x.
+
234
14
x..
+
234
14
-9
-9
18
0
_11
2
0
-1
Xn
+
260
0
-4 -la
17
-1
-1
10
0
-2
0
x"
+
260
0
_4 -10
-1
17
_1
10
0 -2
0
3
x"
+
260
20
11
17 -la -10
-1
o
4
0
x"
+
351
-9
15
27
0
-9
-1
-1
x"
+
390-10 _10
x"
+
1116
16
x"
+
416
16
x"
o
x"
o
Xw
+
468
0
2
2
0
_1
0
0
0
o
000
0
o
++
12
0
3
0
-2
-2
0
0
2
+
0
0
0
0
o
o
0
0
0
o
o
+
0
0
0
0
o
o
0
0
0
o
o
0
0
2 -1
-2
o
0
0
0
0
0
_1
-1
-1
-1
0
0
0
0
0
0
0
0
0
-3
2
-1
-1
0
_1
2
0
o
0
0
0
0
0
0
0
0
2
2
-16
0
0
-2
-2
0
0
0
0
_1
_1
416 -16
0 -16
2
2
2
o
0
0
2
2
0
0
0
0
_1
_1
416 -16
0 -16
2
2
2
000
-8
-4 -18
9
9
0
-10
0
2
-2
18
-9
18
0
-5
-3
-1
0
-8
0
0
2
-8
+
0
0 -16
-8
0'00000
0-2
0
0
-8
Xs
0
_1
0
12
0
0
0
_12
0
_1
0
0
0
0
0
-212 12 _12
o
0
640
X.
2i2
_1
0
640
o
0
2
_1
+
o
0
-1
0
X~
-1
0
0
_1
2
_1
2
0
0
0
o
0
0
o
0
0
0
-1
0
0
0
0
_1
0
0
0
0
-1
0
0
0
0
-1
0
0
0
0
0
0
0
15 -15
0
0
0
o
0
0
o
o
XIS
0
o
o
XI9
0
-12
12
X:w
000
o
o
0
0
212-2i2
-2i2 -12
o
12
X21
Xn
*8
*5
0
0
00
16
0-2
o
000
0
o
o x"
0
00
16
0-2
o
o
0
0
0
o
o
16
0-2
o
o
0
0
0
o
-1
_1
o x" o x"
0
o
0
0
0
x"
0
0
X~
+64000-8-8-8
o
0
0
0
0
0
0
0
0
0
o o
x"
+
729
9
9
0
0
0
0
-1
0
0
0
0
0
-1
0
0
_1
0
0
x"
+
780 -20
12
-3
6
6
-3
o
4
0
0
_2
-2
-3
0
0
0
0
0
0
0
0
x"
+
0 -16
14
-4
-4
-4
o
0
0
0
0
0
2
2
2
0
_1
_1
0
0
0
1423333 2 6 6 6 6
8 8
8
5 10
12
12
6 6
6
6
8 8
9 18
9 18
20 20
24 24
24 24
0
0
0
*8
*5 d13
0
0
0
*5
*8
**
*1 d13
0 0
0
00
-1
_1
o
++
27
-1
0
0
-3
-3
o
0
0
0
0
0
++
26
2
-1
-1
-2
-200-2
0
0
0
0
0
0
0
00
0
0
0
0
412
-412
0
0
0
12
-12
12 12
13 26
13 26
13 26
13 26
40 40
40 fus ind 40
2 2
6
6
8 8
16
6
8 8
16
6
8 8
24 24
24 24
o
0
0
0
o
11
0
0
0
0
-3
0
0
0
10
-4i2
o
o
_2
o
o
o
o
o
o
-2
o 2i2
-12
o
o
o
o
-8
10
412
o
o
-2
o
o
o
o
o
o
-2
0_212 12
o
o
o
-8
10
-8
_IU2
o
o
_2
o
o
o
o
o
o
1
-2
o -12
212
o
o
o
-8
10
-8
412
o
o
-2
o
o
o
o
o
o
1
-2
o
12-212
o
0
0
17 -10 -10
-1
1012
2
0
0
0
0
-3
0
0
12
_1
_1
0
12
12
260
0
0
17 -10 -10
_1 -1012
2
0
0
0
0
-3
0
0 -12
-1
-1
o
416
0
0 -16
2
2
2
812
0
0
o
0
0
0
0
0
_1
_1
b
o
416
0
0 -16
2
2
2
-812
0
0
o
0
0
0
0
0
_1
-1 -i5
12
12
x"
o
416
0
0 -16
2
2
2
-812
0
0
o
0
0
0
0
0
_1
-1
12
12
o
X2S
x" X29
0
++
12
0
3
0
4
o
i2 12
o
o
o
o
o
o
o
o
o
o
o
o
X>I
o
o
-12 -12
o
o
o
o
o
o
o
o
o
o
o
o
Xn
o
o
o
o
o
o
o
-1
0
0
0
0
0
0
0 -12 -12
_1
0
0
0
0
0
15 -12 -i2
0
0
0
0
0
0
0
0
0
000
i5
x"
-12 -12
"
x" 0 -1
_1
0
00
26
0
-1
-1 -12+2
0
0 w40 *19
00
0
0
0
0
0
0 *19-w1l0
00
0
0
0
0
0
0-w40 *19
00
0
0
0
0 119 w40
00
0
0
0
o
416
0
0 -16
2
2
2
812
0
0
o
0
0
0
0
0
_1
+
480
0
0
48
12
12
3
o
0
0
0
0
0
0
0
0
0
0
x.,
+
520
0
0 -20
16
16
-2
o
4
0
0
0
0
0
0
0
0
x.,
+
520
0
0
7 -20
16
-2
o
4
0
0
0
0
3
000
XM
+
520
0
0
7
16 -20
-2
o
4
0
0
0
0
3
0
0
0,-2
x..
064000-8-8-8
o
0
0
0
0
0
0
0
0
0
o
X~
064000-8-8-8
o
0
0
0
0
0
0
0
0
0
o
0
0
0
u
18
15
x.,
064000-8-8-8
o
0
0
0
0
0
0
0
0
0
o
0
0
0
18
*5 d13
11
X~
064000-8-8-8
o
0
0
0
0
0
0
0
0
0
o
0
0
0
15
*8
*1 d13
0
0
0
0
0
0
x"
12
26
X~
-1 -i5 -i2 -12
12
00
x..
12+2 -12+2
0
0
12
12_1 -12-1
12+2
0
0 -12 -12-1
o
o
0
0
0
o
o
Xl7
o
o
0
0
0
o
o
XU
0
o
o
0
0
0
o
o
Xu
0
o
000
0
o
o
o
0
0
0
o
o o
X41
12
-12
X42
o
o
12-1
X>s
X36
0
0
0
0
0
0
0
0
_1
-1
_1
-1
0
0
++11004
o
0
0
-2
0
0
0
0
0
0
00
0
0
0
0
-212
212
0
0-212
0
0
0
o
0
0
0
0
0
+
0
0
0
0
o
o
0
0
000
o
0
0
0
0
0
*5
*8
0
0
00
16
0-2
o
0
0
00
16
0-2
0
0
00
16
0-2
0
0
00
16
0-2
0
0
00 -26
0
312+2-312+2
0
0 -12
-1
_1
X49
0
0
00 -26
0
1-312+2 312+2
0
0
12
-1
-1
Xso
o
0
++
12
0
o
-40'00
_1
-1
XSI
0
0
0 d13
X*
o
780
0
0
-3
6
6
-3
1012
-2
0
0
0
0
-3
0
0 -12
0
0
0
12 12
o
x"
o
780
0
0
-3
6
6
-3 _1012
-2
0
0
0
0
-3
0
0
12
0
0
0 -12 -12
o
x"
+
1080
0
0
27
0
0
o
_4
0
0
0
0
3
0
0
0
0
0
0
0
0
o
0
*Ji d13
0
-2
0-212 212
0
o x"
0
0
o
0
o
0
x"
00
0
0
o
Xl7
000
0
X~
o
o
0
260
o
0-2
0
o
0
16
0
x"
0
0
00
0
o
o
0
0
0
208
o
o
0
0
0
o
0
0
000000
0
0
x"
-1
x"
0
0
X~
XI/)
0
0
o
o
Xl4
*8
0
o
o
_1
0
o
208
0
-1
*5
o
o
0
11
Xu
JiJi
-8
x"
0
4
o
0
-8
-8
0
0
0
+
o
4
-1
_1
o
0
_1
0 d13
o
-1
0
_1
0
208
-1
0
2
0
o
-2
+
0
-2
-8
26
-20000000
0
o
o -8
++
212
0
0
o
_1
0
_1
0
208
_1
0
_1
0
o
0
0
2
0
x"
3
0
0 -15
-2
4
_1
00
0
0
4
39
0
0
-2
4
++
o
0
0
13
2
0
0
-1
0
-1
0
0
2
0
-1
0
0
0
40
2
0
-1
0
+
26
00
-1
Xn
++
15
-1
000
x.
2
++
0
0
0
0
2
0
Xw
0
0
o
X.
x"
0
2
-1
9 -3
0
0
-2
o x,
x"
0
2-2
3
x,
-2-200000
000
1040
-3
-1
0
-1
0
-5
13
00
0
-J
0
++
0
_1
-2
-8
_1
0
2
-1
-9
_1
0
_2
18
0 0
0
_1
-8
0 0
0
_1
-1
o x, x,
0
2
0
3
o
0
-1
o
0
0
-1
0
0
0
_1
o
0
0
2
_1
o
0
_1
_1
o
-1
2
0
0
-1
3
-2
0
-1
_1
-2
0
-1
-3
2
0
-1
-1
2
+
-2
-1
2
18
_1
2
0
-8
_1
_1
2
0
0
0
0
0
0
0
16
640
0
0
10
+
0
-1
3
x"
-1
_1
2
5
_1
_1
2
5
-1
0
3
585
0
0
3
S85
0
2
2
+
0
0
39
+
0
0
0 -16
x"
_2
-1
-1
0
0
-2
o
0
Xn
ind
[68]
@
1
5 1 1 6065280 880 152 832 9114 944 81 p,power A A A A A A pi part A A A A A A ind lA 2A 2B 3A 3B 3C 3D
13
_ x~ _ x~ _ x~; PGO;(3) :: G.2 2 ; S0'6(3) :: 2 x G; PS0'6(3) :: 06(3) :: G
0
0
_1
u
d13
0
X~
X4J
XM
o
0
0
o
o
0
o
o
o
-4
0
o
o
X4S
0
0
o
o
X~
000
0
o
o
X47
0
o
o
X
0
0
L 4 (3) Maximal subgroups Q-der
Index
151632
110
@
structure
G.2 1
G.2 2
G.2 3
3 3 :L (3) 3 3 3 :L (3) 3
33:(L (3h2) 3
31+ll:( 25 I1 x2 ) ,
31+ll:(25 q x2),
31+4:(25 q x2 2 ),
la+39a
N(3A3)
point
isotropic plane
la+39a
N<3A3)
plane
isotropic plane
2(5 q x5 4 )·2
la+26bt90a
C(2D)
5 11 (3)
non-isotropic point
la+268+90a
C(2E)
5 4 (3)
non-isotropic point
qO
51840
117
Uq (2):2
518110
117
Uq (2):2
q6656
130
3 4 :2(Aq xA q ).2
2880
2106
(qxA 6 ):2
720
842q
56
@ @
@
10530
@
@
@
13 13 13 13 20 20 20 20 CC IX; BC AC BE AD BD AE AC BC CC IX; AD AE AE AD 26A B.. C!l5Du5 qOA B.. C.21D*19 fus ind
x,
++
X200000000
++
L (3):2 3
L (3):2 x 2 3
2(5qx511) .2
2(5 I1 x5 4 ).2 x 2
H.2
H.2
H.2 2
H.2
08 x S6
H.2
H.2 2
A6·22 (5 q x 5 q ):2
A6 ·22
56 x 2
A
H.2
@
@
51 51 8qO 8qO 576
A
A
B A qE
111
6
2
++
6
1q
0
_1
-1
_1
++
9
9
Xs
0
0
0
0
i2 -i2 -i2
i2
++
20 -20
0
X6
00000000
++
25 -15
-3
x, Xs
++ _15 -1
_1
_1
-1
0
0
0
0
x2
@
(5 11 x 5 q ):2
3 q x Sq x 2
, , , , , , ,
96
96 6118 6118 216 216 108 108 A A AD AE CD BE BD CE A A AD AE cO BE BD CE qF IIG 6H 61 6J 6K 6L 6M
25
2
-2 -2
q 0
0 q
-3 0
2
-2
3 -1 _1
-3
3
5
-3
2
3
_1
5
3
2
0
-1
o
0
-3
-3
3
3
2
-2
5
-5
-1
7
3
3
7
++3030622233
o
o
20
66
60
x"
++
60
20
XI300000000
++
20
20
X'40000
++
9
9
~s
0
0
0
0
0
0
0
0
X'6
0
0
0
0
-1
-1
_1
-1
++
611
i5 -i5
i5 -i5
++
611 -6q
.. *21 *19
+
0
0
0 wqO
X,9
0
0
0
0
X2Q
0
0
0
0 -i2
++ -30 -30
0
i2
i2 -i2
++
**
15
*8
0
0
0
0
d13
*8
*5
0
0
0
0
u
0
0
0
0
*8
*5 d13
Xu
*5
*8
u
d13
-8
-8
2
0
0
_2
0
2
4
0 -3
9
4
2 -2
3
2
3
6
6
2
0 -7
-7
-3
9
9
to
-2
2
2
-3
-3
0
0
0
0
-8
-8
-3
0
5
_1
3 -3
-1
-1
-3
,
0 -3
0 -1
-1
0
0
0
0
0
0
0
-1
0
0
0
-1
0
0
3
3
0
0
0
0
0
_1 -3
-3
0
0
-3
0
0
0 -3
0
0
0
-3
o
_1
o
0
0
0
-3
-3
-2
-2
0
0
o
-1
2222_2-2
o
o _1
-1
0 0
0
-1
@
@
q8 9 96 96 16 BDGBBB ADGAAA 4H 50 SH 1* 8J
, , , 8 C
8 10 C AG
A
A AG L* 10D
8K
@
@
@
10 6 12 AG CH Cl AG AH AH E* 120 24C
@ 12 CH AI DI
x,
-8
8
q -q
-2
2
0
0
0
0
-1
0
0
0
000
0
0
0
0
0
0
0
0
0
++
-1
3
-1
-3
-3
++
0
0
0-2r2 2r2
0
+
0
0
0
0
0
0
0
0
r2 -r2 0
0
0
0
0
-1
-1
0
0
0
X4
0
0
0
r2 -r2
Xs
0
0
0
-1
0
0
++
0
q
0
2
2
-2
0
0
0
0
o
0
+
0
0
0
0
0
0
0
0
0
0
0
0
0
-1
_1
o
_1
0
o
_1
0
_1
_1
..
10
2
2
2
2
0
0
0
-1
-1
_1
-1
0
++
9
0
++
10
_2
0
0
++
16
0
-2
0
0
0
0
0
-1
++
0
0
0
0
0
0
0
0
0
+
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
3
3
_2
0
-1
-1
0
0
-1
-1
-1
x..
-q-qOOOOO
-1
-1
r5-r5 0
0
0
0
0
0
0
0 XIS
15-105
3
3
-3
-3
3
3
-3
0
0
0
0
0
-1
0
0
++
0
0
0 2r2-2r2
0
6
-3
o
3 -3
3
0
3
0
0
-1
0
0
0
o
0
0
+
0
0
0
0
0
0
0
00000
OX2'
6 -6
3
0
0
-3
0
3
0
-1
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
OX23
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
+
+
0
0
0
0
0
0
0
C
000
0
0
0
0
0
0
0
0
0
0
0
0
+OOOOOOOOOOOOOXzs
0
0
0
0
_1
000
++
60
60
_4
q
0
0
-3
-3
-6
-6
0
0
2
2
_1
0
0
0
X2900000000
++
80 -80
0
0
0
0 -10
10
-ll
4
2
_2
0
0
0
0
0
0
0
0
0
8
S
12 12
12 12
12
12
12
12
6
6
6 6
8
20
20
12 12
2q
24
0
0
0
0
r3
0
0 -r3 -r3
o
o
o
o
o
0
0
0
o o
X"
o
o
o
o
o
o
o
X"
o
o
o
o
o
o
o
0
0
0
Xw
80 fus ind 80
X"
0
X~
0
0
x"
0
0
_1
X20
0
o
-1
r2
0
0
-1
0 -r2
0
0
_1
0
0
-3
80 80
0
0
-3
80 80
r2 -r2
+
-3
80 80
X,?
-6
9
26 26
x,s
OOOXI6
6
81
26 26
Xl3
-6
81
26 26
~
2
++
26 26
Xs
-3
0
0
~
x" ++
0
000
0
OOOOOOOOOOOOOXll
0
0
0
Xw
-1
0
0
0
o
~
0
-1
o
0
0
0
_1
-1
0
0
-1
0
0
0
_1
0
-1
0
+
x,
-1
X30
@
x,
o
-1
0
0
@
-1
0
o
0
0
_1
0
@
0
_1
0
0
_1
0
0
,
base. 03<3 )wr2
0
000 0
o
o
_1
o
°3(9)
-1
-1
0
0
0
Xw
04(3)
_1
-1
o
-1
-1
Xv
C(2G) N(2 4 ), C(2F)
0-1
0
333 -3
2
2
0
15
++
X2S
0
60 -60
x" u
0'2(3) x 04(3)
x..
++-105
X24
isotropic point
L2 (9)
.. wllO *19 *21
X2100000000
X23 d13
64
6
-1
-3
5 -3
0
6P
0
++
0
60
line
N(2A)
10
-3
XnOOOOOOOO
0
6N
N(3 )
10 12 12 12 720 9 9 B AD AE CE AF 80 8H AI A A AD AE AE 8F CO BD AE A 8G 108 10C 120 12E 12F 18A 18B fus ind 20
727298 BFCFDF BF Cr OF'
q
, , , , , , ,
q
o -3 -3
0
@
Q-thogonal
x 5q ):2 x 2
-3
++66-6624033
0
@
llnear
x 2
q
++
x,?
@
·-;l
(SII
Abstract
la+398+90a
-3
Xw
-6
0
-3
X900000000
X'S
@
6
Character
++
0
_1
96
A
0
X4
@
A A A 2D 2E 2F'
0
x,
Uq (2):2
Uq (2):2 x 2
54 x S4
@
L (3): 2 3
33:(L <3)X2) 3
151632
576
@
Specifications G.2 2
q
2
++
0
0
0
0
0
0 3r3 3r3
o
0
0
0
0
0
+
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
0
000
++
-9
3
-3
-3
-1
_1
++
10
2
-2
-2
-2
0
0
0
0
-1
x"
-1
++
0
0
0 qr2-llr2
0
0
0
0
0
0
r2 -r2 X29
36 36
36 fus ind 36
2
q
6
S
8
8 8
16
16
10
10
12 12
++
0
0
0
0
0
0
0
0
0
0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
X3'
o
o
o
o
o
o
o
o
o
o
o
o
o
o
Xn
000
o
0
o
I I[
0
OOOX27
2q 211
r3-r3
2q 24 r3 X30
+
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
+
0
000
0
0
0
0
000
0
0
0
0
0
0
0
0
0
0
0
0
+
0
0
0
0
0
0
0
0
00000
0
0
0
0
0
0
0
000
+
0
0
0
0
0
0
0
..
0
0
0
0
0
0
0
0
00000
0
0
0
0
0
0
0
0
0
0
+
0
0
0
0
0
0
000000
OX»
++
0
0
0
0
0
0
0
0
o
0
300
0
0
0
0
0
0
++
0
0
0
0
0
11
0
0
0
0
0
0
OX41
++
0
0
0
0
0
0
0
0
0
0
0
r6
o
o
o
o
x"
X~
X~
o
0
X~
o
X"
o
X"
0
0
0
0
0
0
0
0
0
0 w80
0
0
0
0
0
0
.. 161 *19
X"
o
0
0
0 . " w80 *19 *61
Xw
o
0
0
0 *21 *59 w80
X~
o
0
0
0 *59 *21
o
X..
0
..
+OOOOOOOOOOOOOX3S
x" 0
0
0
0
OOX3?
x"
** w80
0
0
X~
0
0
0
0
X.,
000
0
0
0
0
0
++
0
0
0
0
0
0 6r3-6r3
o
0
0
0
0
0
0
0
0
0
0
0
0
r3 -r3
X.,
o
0
0
0
0
0
++
0
0
0
0
0
0-3r3 9r3
o
0
0
0
0
0
0
0
0
0
r3
0
0
r3
0
++
0
0
0
0
0
0 9r3-3r3
o
0
0
0
0
0
0
0
0
0
r3
0
0
0
r3
+
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
+
0
0
0
0
0
0
0
0
0
0
0
0
+
0
0
0
0
0
000
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
+
0
0
0
0
0
0
0
0
0
0
0
OOX4?
+
0
0
0
0
0
0
00000
0
0
0
0
0
0
0
000
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x" X4S d13
..*5 d13
*8
0
0
0
0
*8
*5
0
0
0
0
..
0
0
0
0
X46
u
X4?
*8
*5 d13
X48
*5
*S
If
d13
0
0
0
0
x~
o
0
0
0
0
0
0
0
x~
o
0
0
0
0
0
0
0
XSI
_1
-1
-1
-1
0
0
0
0
0
r6
X42
+OOOOOOOOOOOOOX43
x" OX45 X~
x" 0
0
OX4\> X~
++
0
0
0
0
0
0 9r3 9r3
000000000
0-r3
0000
++
0
0
0
0
0
0
0
0
0
0
r3
r3-r3
x"
[69]
L s (2)
Linear group L (2) :: Alj.(2) 5
= 9,999,360
Order
= 21°.32 .5.7.31
Mult
=1
Out = 2
Constructions
Linear Presentations
GL S (2) :: PGL 5 (2) :: SL 5 (2) :: PSL5 (2) :: G : all 5 x 5 non-singular matrices over F " 2 5 2 :G = < a~c d e l (bcf)3"(abcd)6", >; adjoin (fbaCde)5", for G f
Remark: There is a non-split extension 2 S0L 5 (2) (the Dempwolff group), which is a maximal subgroup of the Thompson group.
Maximal subgroups Order
Index
322560 322560
Specifications
Structure
G.~
Character
Abstract
Linear
31
24 :L 4 (2}
21+6: L3 (2):2,
1a+30a
N(2A 4)
point
31
2 4 :L 4 (2) 26 :(3 XL (2)) 3 3 2 6 :(3 XL (2)) 3 3 31:5
Llj. (2): 2
64512
155
64512
155
155
64512
1a+30a
N(2A 4)
hyperplane
2 4+4 : (S3xS3): 2,
1a+30a+124a
N(2 6 )
line
3 3 x L (2):2 3
1a+30a+121(a
N(2 6 )
plane
N(31ABCtf;F)
L1(32)
31:10
88 27
@ 9999360 power
p
pt part ind 1A
[70J
@ @ @ @ @ @ @ @ 21 1 504 536 504 180 384 128 32 15 A A A A B A A. A A A A A A A A A 2A 28 3A 3B 1IA 4B 4C 5A
X.
+
x,
+ 30
14
6
x,
+ 124
28
12
X.
+ 155
27
-5
x,
+ 217
-7
X.
+ 280
@
24 AA AA 6A
@
12 BB BB 6B
@
@
@
@
@
@
@
@
27
13
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
42 42 16 12 111- 14 15 15 21 21 31 31 31 31 31 31 720 48 18 18 96 96 16 6 5 8 8 12 A A B AA AA BA AB AB BA AA A A A A A A A BACBCAAA AC BD A A AC A A A A AA AA BA AB AB AA BA A A A A A A AACBCAAA AC BD A A AC 7A Bn 8A 12A 14A Bn 15A B** 21A B** 31A B** C*5D**5E**6 F*6 fus ind 2C 4D 6C 6D 8B C* 80 lOA 128 16A B* 24A
@ 12 AB AB
B*
++
6
0
6
2
2
4
4
4
0-1
8
5
3 -5
9
7
4-7
56
8
7
-5
8
0
x,
o 315 -21
3
0
0
3
x,
o 315 -21
3
0
0
X.
o 315 -21
3
0
x"
o 315 -21
3
Xu
o 315 -21
x"
-1
0
2
0
2
0
0
0-2-20
0
0
2
-1
0
0
-1
-1
o
-1
-1
0
0
0
3
-1
-1
0
0
0
3
-1
_1
o
0
0
3
-1
-1
3
0
0
3
-1
o 315 -21
3
0
0
3
-1
Xu
o 465 -31
9
3
0
x..
o 1165 -31
9
3
0
Xu
o 1165
17 -15
3
0
x..
o 465
17 -15
3
0
x"
+ 496
48
16
-8
x"
+ 651 -21
-5
0
x..
o 651 -21
-5
0
Xw
o 651 -21
-5
x"
+ 868 -28
4
7
x"
+ 930
50
-6
6
Xn
0930 -14
-6
Xu
o 930 -14
-6
x"
+ 960
64
x"
+1024
x"
+1240
-1
0
0
0
0
o
0
-1
-1
o
-1
0
-1
-1
-1
-1
++
0
a
000
0
0
0
++
4
0
o
0
0
0
0
0
++
5
0
0
0
000
++
5 -3
_1
_1
-1
-1
0
0 -1
_1
o
0
0
0-1
o
0
0
0
0
0
0
0
o
0
0
0
0
0
0 f31
0
0
0
o
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0 **6
0
0
0
0
0
o
0
0
0
0
0
0
*6 **6
-1
0
0
0
0
0
o
0
0
0
0
0
0
*5 **5 **6
-1
0
0
0
0
0
o
0
0
0
0
0
0 **5
-3
o
-1
0
b7
** -1
-b7
..
0
0 b7
**
0
0
0
0
0
0
-3
o
-1
0
**
b7
** -b7
0
0
**
b7
0
0
a
0
a
a
o o
-1
0
b7
**
b7
a
0 b7
**
a
0
0
0
a
0
_1
o ..
b7
**b700**b7000000
_1
-1
0
0
000
o
6
3
3
-1
o
-3
3
3
-1
o
o
0 -3
3
3
-1
o
_4
4
a
-2
-1
0
-6
-2
-2
a
2
-3
a
2
-2
2
-3
0
2
-2
0 -6
0
0
0
a
4
-8
8
-5
-1
o
-1
-1
0
000
-8
2
**
0
-1
-1
-1
0
0
0
0
-1
0
0
0 b15
o
0
-1
0
0
0
o
0
0
_1
0
0
_1
-1
o
0
a
o 2b7
**
0-1
a
2
0
o
0
-1
0
0
0
0
-2
0
o
0
0
0
0
-1
0
0
0
0
-8
0
0
0
-2
a
-1
** 2b7
2
2
o
-1
-1
**
*5 **5 **6
** f31 **5
o
*6 f31
*5
0
*6
*5
*6 **6
**
*5 **5
** f31 **5 *6 f31
*6 **6
**
+
0
0
-1
0
0
-1 -1
o
0
-1
o
0
2
2
0
-1
0
0 -1
0
a
0
a
0
0
0
0
-1
X6
0
~
0
0
0
0
0
0
0
0
0
0
+
0
0
0
0
0
0
0
0
0
a
0
0
x.. aXIl
+
+
0
0
a 0
a a
0
0
0
a
0
0
4
4
-2
o
0
9 -3
0
0 -3
-3
0
0
a
a
++
**
0
0
0
0
0
0
0
0
+
** b15
0
0
a
0
0
0
0
0
o
0
0
0
0
0
0
++
10
-2
0
0
0
0
a
++
0
0
a
O-b7
**
a
0
0
a
a
a
0
0
0
** -b7
0
a
0
0
0
0
o
0
-1
-1
-1
-1
-1
-1
-1
-1
-1 000
0
0
a 0
a 0
a 0
0
a
0
OX13
a
x.. aXIS x..
++
a
~
x"
0
-1
X4
x,
2
0
0
-1
X2
x,
000
o
2
r2
a
0
0
-3
r2 -r2 -r2
0
0
o
-3
0-1
0
0
000
0
2 -1
a
+
0
o
11
0
x,
o
-1
4
0
-1
-1
2
-2
0
0
-1
10
0 2r2-2r2
** f31
a
0
++
0
*5
a o
0
X.
0
0
0
0
0
o
-1 ·-1
o
0
0
0
0
0
0
0
X17
o
a
X18
0
0
XIII Xw
2
-2
0
o
0 2r2-2r2
a
0
0 -r2
2
0
0
-1
-1
X21
r2 -r2
r2
Xn
+OOOOOOOOOOOOOX23 Xu
++
0
0
++
16
0
++
10
2
0
0 1Ir2-4r2
-2 -2
0
0
0
0
-2
-2
-2
0
0
0
0
r2 -r2
X:2S
OOOOOX26
0
-1
0
0
x"
M 23
Sporadic Mathieu group M23 Order
= 10,200,960 = 27 .3 2 .5.7.11.23
Mult = 1
Out
Constructions Mathieu
For almost all purposes, M23 is best studied as the point stabilizer in M24 (q.v.). Thus, G is the automorphism group of the Steiner system S(4,7,23), whose 253 heptads arise from the octads of S(5,8,24) containing the fixed point.
G : the automorphism group of the (unextended) binary Golay code of dimension 12, length 23, and minimal weight 7, or
Golay
of its subcode of even weight words. The weight distribution of the code is 01725385061,12881212881550616253231, and that of the cocode (words modulo the code) 01123225331771. The minimal representatives in the cocode are unique (i.e. the code is a perfect 3-error correcting code). Presentation
G~
< a~d I a"(cf)2. b"(ef)3. 1"(eab)3"(bce)5"(aeCd)4"(bcef)4 > 6 f
e
Maximal subgroups Order
Index
443520
23
40320
253
40320
253
20160
506
A 8
7920
1288
5760
1771
253
40320
Specifications
Structure
Character
Mathieu
Golay
M22
la+22a
point
weight 1 cocode word
L (4):22
la+22a+230a
duad
weight 2 cocode word
heptad
weight 7 code word
la+22a+2308+253a
octad
weight 8 code word
Mll
la+22a+2308+1035a
endecad, dodecad
weight 11 or 12 code word
24:(3xA5):2
la+22a+230aa+2538+1035a
triad
weight 3 cocode word
3 2 4 :A
Abstract
N(2A 4)
1a+22a+230a
7
N(2A 4 )
N(23AB)
23:11
~17 17
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
2
10200960 688 180 32 15 p power A A A A pI part A A A A ind lA 2A 3A 4A 5A
12 AA AA 6A
14
A A A A A 7A 8** 8A
2
0
o
o o
0
b7
**
-1
0
••
b7
-1
-1
-1
0
0
0
-1
o
0
14
8
A
11
23
23
A
A
11
14
14
15
A A
A
AA
BA BA
AA AA
0
0
-1
-1
-1
-1
-1
-1
-b7
••
0
0
-1
-1
•• -b7
0
0
-1
-1
o
0
0
0
0
0
••
o
0
••
15 AA
A AA AA A A 11A Bn 14A Bn 15A Bn 23A Bn
x,
+
x,
+
22
6
4
x,
o
45
-3
0
X.
o
45
-3
0
x,
+
230
22
5
2
X.
+
231
7
6
_1
x,
o
231
7 -3
_1
o
0
-1
0
0
0
0 b15
x,
o
231
7
_1
o
0
_1
0
0
0
0
Xo
+
253
13
-1
o
0
-1
-1
x..
o
770 -14
5
_2
0
o
0
0
0
0
0
0
0
0 b23
x"
o
770 -14
5
_2
0
o
0
0
0
0
0
0
0
0
x"
o
896
0
_4
0
o
0
0
0 b11
n
0
0
-1
_1
x"
o
896
0
-4
0
o
0
0
0
**
bll
o
0
-1
-1
X14
0
990 -18
0
2
0
0
b7
**', 0
0
0
b7
n
0
0
XIS
0
990 -18
0
2
0
0
n
b7
0
0
**
b7
0
0
x"
+
'035
27
0
_1
0
0
-1
-1
-1
-1
o
0
0
0
x"
+
2024
8
-1
0
-1
_1
-1
-1
0
0
-3
2
0 -2
-2
0
-1
-1
000
•• b15
•• b23
[71]
U s(2) Unitary group U (2) ;: 2AIj (2) 5
Order = 13.685.760 = 21°. 35. 5• 11
=
Mult
Out
1
= 2
Constructions GU S (2) ;: 3 x G : all 5 x 5 matrices over FIj preserving a non-singular Hermitian form;
Unitary
PGU S (2) ;: 5U (2) ;: PSU (2) ;: G 5 S Quaternionic
~
G x 2 : the group generated by the 165 quaternionic reflections x
x _ 2<x,m>m/<m,m> in the vectors
C2,O,O,a,O)e (S), (o,w,w,w,w)c (160) and their images under the diagonal group 2x 24 +4 = {diag(±l.±j.±k,±k.±j)C}
of right multiplications, where w = ~(-1+i+j+k). and <x,y> = Ixtyt. The vectors whose coordinates are in Z[w] form a complex lattice whose automorphism group is 6 x Uq (2) (see U4 (2). "biflection tl ) . Reducing modulo 1+1 shows the isomorphism with U (2). 5
Complex Leech
G: the stabil izer of a minImal vector 1n the complex Leech lattice (see Su1.).
• ••
82 " 13685760 9411 608 P power pt part
ind
x,
A A
lA
2A
2B
10
-6
2
•
•
77760
3888
A A
A
A
A A
3A
B..
3C
• ••• • • • 1
3888 944 3211 152 3811
A A Du
A A
A A
3E
3F
A A 4A
A A 4B
•
• • • • • • • • 288
96
15
1728
1728
1296
1296
B
A
AA
DA
CA
BA B..
CA
DA
CA
DA
AB
6C
D..
6E
F..
A
A
BA AA
4e
5A
6A
"32 DA
"32 CA
288 216
lOB
108
36
FA
FB
K..
FA FA 6L
FA
FB
Mu
6N
-1
-1
o
o
2
X2
..
1.3+2
-2z3
0
X3
-2 1.3+2
..
-21.3
••
0
X4
-1
o
o
2
X5
61
-1
0
-13
13
-2
13
-13
6c
AB BB Hn
-3
-1
1.3
EA EA
CB DB
x, 4-22-2-20
.. .. ..
-5
3
3
3
o
11
-5
3
-3i3+2
313+2
31.3-1
..
2
2
3
-1
_1
13-2
-13-2
b27
X.
o
11
-5
3
3i3+2
-313+2
**
31.3-1
2
2
3
-1
-1
-13-2
13-2
**
b27
z3
x,
• •
411
12
-4
,.
-1
_1
5
2
4
4
0
_1
6
6
3
3
3
3
2
2
-3
55
23
7
10
-1
-1
3
0
2
2
5
5
5
5
-2
-2
2
-2
-2
-2
-2
-21.3
31.3-3
..
**
x,
o
55
7-1
x,
o
55
7
-1
x,
o
66
18
10
",0
o
66
18
10
91.3-6
110
-2 -10
-25
Xn
151.3-5
,.
.. .. .. .. 10
151.3-5
-2b27
7
3 _1
0
**
7
3
0
91.3-6
u
10
-2b27
_1
3b27332-22
3b27
1.3+2
2226-620
2
**
31.3-1
8
-4
6
2
2
31.3-1
**
8
-4
6
2
2
71.3+3
1.3+2
**332-22
-25
.. .. **
71.3+3
n
3
-3
-5
x,
x,
m
DB CB 6J
BB
• • ••
•• m
•
x,
** 31.3-3
7
7
0
-313-6
313-6
0
313-6
-313-6
-21.3
n
1.3-1
n
..
-1
.. 31.3-1
2
2
••
2
2 -13-2
.. 31.3-1 1.3-1
-1
u
b27
..
3
u
b27
n
b27
3
b27
u
x,
-1
13-2 -13-2 13-2
13
-13
-13
13
-1
X7
-1
Xs
xo
x"
-2
-2
-1
_1
-2
2
2
-2
-2
2
Xli
-31.3
**
-13
13
0
..
1.3-1
o
o
0
X12
..
-31.3
13
-13
0 z3-1
..
o
o
0
X13
313+2-313+2 -13-4
13-4
1.3+2
**
-1
13
-13
••
2z3
0
X\4
13-4 -13-4
**
z3+2
-1
-13
13
21.3
••
0
X15
-2
-2
..
XI2
o
110
30
6-1513-10 1513-10
Xn
o
110
30
6 1513-10-1513-10
x"
o
110 -311
6
5b27
-313+2
313+2
11
2
-2
2
-2
0
x"
o
110 -311
6
5b27
**
313+2
-313+2
11
2
-2
2
-2
0
x"
+
120
24
8
30
30
12
12
3
3
8
0
0
0
6
6
6
6
o
o
2
2
3
2
2
3
3 -1
X16
Xn
+
165 -27
5
30
30
3
3
3 -6
5
5
-3
0
6
6
-9
-9
3
3
2
2
3
-1
-1
o
o
XI7
x..
+
176 -16
16
-"
-"
0
0
0
-"
-"
2
2
2
2
4
-4
-2
-2
-1
-1
x"
o
220 -36
-4 1513+25-1513+25
513-3
**
31.3-3
13
-13
-1
XI9
Xw
o
220 -36
-4-1513+25 1513+25
-513-3 31.3-3
..
1.3-1
1.3-2
-13
13
-1
X20
Xn
o
220
-4
12
10b27
u
-b27
2
2
0
X21
x"
o
220
-4
12
**
10b27
0
X22
x"
o
264 -211
-8 -2713+3
Xu
o
264 -24
-8
Xn
[72]
A A
• 77760
320 _64
0
..
..
z3-2
,.
14
..
-31.3+7
7
4
_4
0
0
-513-3
-31.3+7
..
7
4
-4
0
0
513-3
151.3-2
-5
4
4
4
0
0
2b27
151.3-2
**
-5
4
4
4
0
0
2713+3
-6
-6
3
3
8
0
0
_1
2713+3 -2713+3
-6
-6
3
3
8
0
0
-1
-"0
X~
o
330
-6
2 451.3+60
Xv
o
330
-6
2
Xa
+
440
88
8
Xw
o
X~
..
-"0
..
n
-"
-11
-4
14
5
-4
0
0
0
(j
..
u
3b27
n
3b27
1.3-2-313+2 313+2
..
-b27
2b27
n
-b27
13-9
-13-9
u
-61.3
-13-9
13-9
8
..
9z3-3
-3
-3
10
-2
2
0
-3
-3
10
_2
2
0
llz3+7
8
..
111.3+7
u
-61.3
8 31.3
..
B
91.3-3
..
-10
8
8
17
-1
-8
0
0
0
-2
440 -40
8 1513-55-1513-55
613+8
-613+8
_1
_1
8
0
0
0
313+5
-313+5-313+5 313+5
o
440 -40
8-1513-55 1513-55
-613+8
613+8
-1
-1
8
0
0
0
-313+5
313+5 313+5-313+5
x"
o
495 -81
15
9z3
..
9
0
-1
-1
_1
0
3z3
x"
o
495 -81
15
9z3
9
0
_1
-1
-1
0
** 451.3+60
-10
-45z3
.. .. .. ..
-1151.3
n
x"
o
495
63
-9
..
X~
o
495
63
-9
-451.3
x"
+
660
84
20
30
X~
o
704
64
0-1213-52 1213-52
x"
o
704
611
0 1213-52-1213-52
X~
o
880
118
X~
o
880
118
X~
+
891
21 -21
x..
o
891
27-21
x..
o
891
27 -21
x..
o
990 -18 990 -18
16 16
6 6
.. -20b27
91.3
9
0
-1
-5
-1
0
9z3
..
9
0
-1
-5
_1
0
-15
-15
3
3
-4
4
0
0
-4b27
2
2
0
0
0-1
2
2
0
0
0-1
-451.3
30
-20b27
u
-4b27 313+7
u
-313+7
-8
-5
0
0
0
-313+1
313+7
-8
-5
0
0
0
o
.. .. .. .. ..
o
0
0
3
3
o
o
0
0
o
o
0
0
81
u
81
811.3
811.3
451.3
18z3
Xu
o
451.3
x..
+
1024
0
0
6'
6"
16
X~
o
1215 -81
-9
o
o
x.,
o
1215 -81
-9
o
o
o o
U_9
0 0
-2
..
u
-2
..
1.3-1
n
u
" 21.3
.. 21.3
u
13-3 -13-3
n
-b27 -13-3
3
-21.3
**
213
-213
••
-21.3
-" -"
o
5z3+1
z3+1I
..
" "2
-2
2
o
n
z3-1
2
2
••
-21.3
13
-13
x" Xu
;; -2z3
••
-13
13
_1
Xu,
13
-13
-1
X27
2
2
_1
Xu
2z3
2
2
2z3
u
_1
..
u
2z3
-1
21.3
2
-31.3
..
31.3
..
u
n
-3z3
**
3z3
-3
••
3z3
..
-91.3
••
-3z3
••
31.3
-3
..
3z3
n
-91.3
..
-3z3
**
31.3
u
-3
3z3
3
3
-3
-1
-8
-8
4z3
-8
-8
u
.. ..
-81.3
-81.3
-213-6
213-6
-6z3
u
u
..
41.3
-3 -31.3
.... ..
X25
-1
-1
-1
XZ9
-1
-1
_1
X30
o
o
0
X31
-31.3
o
o
0
X32
3z3
o
o
0
}(33
o
o
0
X34
-3
-3
-1
X35
o
-2z3
••
0
}(36
0
X37
2
2
3
o
o
-2
o
o
-2
o
o
••
-2z3
0
••
-21.3
13
-13
X~
0 -21.3
..
-13
13
X~
o o
o
O}(40
o
0
X41
4z3
••
-13-3
13-3
••
4z3
13-3 -13-3
0
-z3
2
-3
2
..
3z3
6
2
-z3
-3
91.3
6
13
.. -3
..
91.3
-13
o
u
o
....
u
.. ..
x..
2
z3+4
u
..
-1 z3-1 -1
213
31.3 51.3+1
3
13-3
-213
u
3 1.3-2
2
o
-1
213-6
-213-6
-6z3
-1
9
9
o
o
o
-3
-3
0
o
o
3
3-1
9z3
..
o
o
o
o
-31.3
..
0
o
o
3
3
.. .. ..
o
9z3
o
o
o
o
u
-31.3
0
o
o
o
0
X42
o
-61.3
..
3
o
o
o
0
X43
-31.3
o o
o o
o
-31.3
3
o
o
o
o
0
X44
0
o
o
o
o
0
X45
0
o
o
o
0
X46
0
o
o
o
o o
0
X47
-1
0_2-6_2
0
-3z3
u
u
-31.3
-61.3
u
18z3
-9
0
_2
-6
-2
0
16
-8
4
0
0
0
-1
o
o
o
o
o
o
000-9330
o o
o o
o o
o
o
o
o o
o
o
o
o
000-9330
o o o
U 5 (2) Maximal subgroups
Specifications
Structure
G.2
Character
Ab stract
Unitary
165
2~+6:31+2:2All
2~+6:31+2:2Sll
la+44a+120a
N(2A)
isotropic point
root vector
17760
116
3 x Ull (2)
C3 x Ull (2»:2
1a+558+120a
N(3AB)
non-isotropic point
complex lattice
46080
291
2 4 +ll : C3 xA ) 5 34 :S 5 S3 x 31+2 :2A
2ll+IJ:C3xA5):2
1a+1208+116a
isotropic line
base
3 :( 2xS5)
N(2 ll ) = N(2A SB10 ) ll N(3 ) = N(3(AB)5(CD)10El0F15)
base
S3 x 31+2: 2S4
N(3CD). N(3E)
non-isotropic line
L 2 (11 ):2
N(2B. 3F. SA. 6N. l1AB)
Order
Index
829114
9120
1408
3888
3520
660
20736
4
ll
L 2 (11)
88 47
@
@
@
@
@
@
@
16 5ll 54 21 27 11 11 B C D C D A A A A A A A A A 8A 9A an 9C Du 11A Bu
@
m BA AA 12A
@
@
@
m
72
72
AA BA Bu
FA CA
DA
12C
Du
EA
@
@
@
24
24 36 lA HC GC EA AC BC 12E 12F Gu
@
24
@
24
12H
@ 15
@
@
15
18
AA AB AB AA Iu 15A Bu
BC AA
DB
18A
@
720 fus ind
A A 2C
@
@
@
@
@
@
@
@
@
@
@
@
ll8 18 18 96 96 16 6 12 12 8 5 8 BECFCAAA AC ND A A EB EC AECFCAAA AC FD A EB EC A llD 60 6P 8B Cn 8D lOA 12J 16A Bn 24A Bu
x,
++
x,
o
x,
1 -z3
X.
X6
@
18 AD
BA Bu
x,
x,
47
13
FB EB CB
Q.laternionic
-2
_1
-1
-1
_1
-1
2
u
0
0
-i3
i3
z3-1
..
0
_1
-1
u
-z3
0
0
i3
-i3
..
z3-1
o
_1
-1 -z3
-1
-1
o
0
-2
-2
o
0
2
2
-1
n -z3 -z3
n
o
_1
-2
2
2
_1
-1
2
000 n
-z3
z3
0
00
0
0
0
+
0
0
000
..
z3
..
....
z3
..
z3
_1
-1
o
0
0
++
II
0
0
-1
-1
o
0
_1
_1
++
5
-z3
..
0
0
0
0
..
z3
+
0
•• -z3
0
0
0
0
z3
..
n -z3
z3
..
**
z3
0
0
....
0
0
n
z3
n
z3
0
0
z3
..
-2z3
X.
z3
••
z3
u
0
0
u
z3
..
-2z3
0
0
0
z3-2
-z3
..
..
-z3
z3
z3
..
o
0
_1
-1
o
0
0
0
..
0
0
0
0
u
0
0
0
0
0
0
0
0
_1
i2 -12 -i2 0
0
0
12
Xz
0
~
X.
o
x,
0 212-2i2
-2
4
11
2
-1
-3
-3
0
0
0
0
0
0
0
0
x,
000
o 0
_1
_1
o
0
X6
0
0
0
0
b
X.
x,
o
Xw
o
0
0
0
0
0
0
x"
o
-1
_1
-1
-1
o
0
3
3
o
x"
o n
2z3
.. -z3
0
0
-13
i3
z3+2
..
0
_1
-1 -z3
x"
o
2z3
.. -z3
u
0
0
i3
-i3
..
z3+2
0
_1
_1
..
-z3
0
0
0
0
x"
x..
o -z3
.. -z3
..
0
0
..
b21
z3
..
-1
_1
o
0 -z3
..
+OOOOOOOOOOOOOX14
x"
o ..
u
n
z3
-1
-1
o
0
x"
o
0
000
.. z3-2
u
_1
-1 -z3
-z3
0
0
b21
0
0
0
-1
_1
2
2
2
2
-1
o
0
0
0
o
0
0
0
0
0
2
2
-1
-1
_1
o
0
-1
-1
000
0
_1
-1
-1
o
0
o
o
o
0
0
000
_1
-1
n
z3
0
0
-2z3
z3
u
0
n
x..
o
_1
x"
o
u-2z3
Xw
0-2z3
0
..
x"
Ouz3nz300
..
••
o
z3
u
o
0 -z3
-2z3
u
z3
o
-2z3
u
z3
u
0
0
0
0
0
0
0
0
0
~
Xw
0
0
0
0 2i2-212
0
0
0 -i2
i2 -12
i2
XII
+OOOOOOOOOOOOOXI2
.. -z3
x" ++ ++
10
2
2
S -3
_1
2
2
2
o
++44_2
0
0
0
-1
o
0
-1
o -1
0
-1
-1
_1
X16
x"
0000X18
0
+OOOOOOOOOOOOOX'9
0
.. -z3
0
0
0
0
Xw
o
0
**
z3
0
0
.. -z3
+OOOOOOOOOOOOOX21
o o
0
z3
..
0
**
x"
-1
0
0
0 -z3
..
0
0
+OOOOOOOOOOOOOX23
2z3-1
o
0
0
0
**
-z3
0
0
Xu
0
0
0
0
0
0
-1
-1
-z3
..
z3
u
0
0
0
0
.. -z3
..
z3
0
0
0
0
000
0
0
0
-1
o
0
0
0
0
0 -z3
2z3-1
o
0
0
0
0
0
n
0
0
0
0
-z3
0
0
0
0
x"
n
z3
..
0
0
-2z3
u
z3
x"
0
0
0
0
0
0
2z3
••
2z3
Xu
o
0
0
0
0
0
0
..
2z3
..
x"
o
-1
-1
-1
-1
o
o
o
Xu
000
0
0
0
0
z3
u
z3
u
Xn
000
000
0
u
z3
u
z3
Xu
o
X~
o -z3
Xw
o
u ..
o
-1
-1
o
0
-2
-2
-2
-2
•• -z3
..
0
0
2z3
..
2z3
..
-z3
0
0
••
2z3
..
u
0
0
z3
-z3
0
0
o
n
0
0
o
-1
0
..
x"
-1
+
00
0
x"
-z3
000
0
0 -z3
00
0
()
0
0 4i2-4i2
0
0
0
0
0
i2 -i2
X2S
+OOOOOOOOOOOOOXu
x" ++
10
2
-2
-2
-2
0-1
o
0
Xu
..
+OOOOOOOOOOOOOX:w
. . -z3
Xw
X31
-1
o
0
0
0
0
-z3
..
-z3
..
Xn
-1
o
000
0
0
••
-z3
..
-z3
-1
.. -z3
n
x"
o
0
0
0
0
0
••
-z3
..
-z3
-1
u
-z3
..
z3
0
0
0
0
.0000000000000X33
x..
o
0
0
0
0
0
-z3
..
-z3
**
-1 -z3
**
z3
**
0
0
0
0
x..
_1
-1
0
0
.. -z3
o
0
0
0
0
2
2
-1
o
.. -z3
..
0
0
o
o
o
o
0
0
0
0
0 -z3
.. -z3
0
0
o
o
o
o
0
0
0
0
0
z3
..
0
0
o
o
o
o
0
0
0
0
0
0
0
0
0
..
z3
0
0
o
o
000
0
0
0
0
0
0
0
0
0
0
0
-3
-3
o o
-1
o
0
o
0
u
n
x"
o
X3£>
0 -z3
x"
o ..
-z3
x..
0-2z3
n
X:w
0
X40
-1
X41
_1
o o
X4Z
-1
o
0
0
0
x"
o
0
0
0
0
X«
000
0
0
0
0
X4S
0
0
-1 -z3
0
n-2z3
0 0
0
0
o
0
-1
0
-3z3
o
o
0 -z3
0
0
..
-3z3
o
o
0
0
0
..
..
-2z3
z3
o
o
o
o
o o
o
o
o
o
o
0
-2
-2
X~
o
0
0
0 bll
x"
o
0
0
0
••
.. b11
z3
u
n
000
..
z3
..
-z3
n
z3
.OOOOOOOOOOOOOX3t
++
10
-2
2
2
-2
o
0
0
_1
-1
X3S
.000000000000
OX3£>
•
0
x" 0
0
0
0
0
0
0
0
0
0
0
0
X~ x~
++
9 -3
0
0 -3 -3
-1
o
o
0
X40
0
0
n
z3
0
0
.. -z3
0
0
z3
..
0
0
x"
z3
**
0
0
0
0
0
0
.OOOOOOOOOOOOOXe
*.
z3
0
0
0
0
0
0
X«
0
0
0
0
0
-1
-1
o
0
0
0
0
0
0
0
0
0
0
.0000000000000X46
000
0
0
0
0
0
0
0
x.,
u
-2z3
.OOOOOOOOOOOOOX41
++
16
0
-2
-2
0
0
0
OOOOOX4S
[73]
L3 (8) and 2P4(2), Linear group L3 (8)
= A2 (8)
= 16,482,816 = 29 .32 .72 .73
Order
Mult
=1
Out
=6
Constructions
Linear
=7
GL 3 (S)
x G : all non-singular 3 x 3 matrices over F 8;
PGL 3 (8) " SL3 (8) " PSL3 (8) "G; rL (8) " (7 x G).2; PrL (B) "!L3(B) " P!L3(8) "G 3 3
Maximal subgroups Order
Index
225792
Specifications
Structure
G.2
G.3
G.6
Character
Abstract
Linear
73
2 6 :<7xL2 (8»
2 3+6 :72 : 2,
2 6 :<7xL 2 (B»:3
2 3+6: 72: 6,
1a+72a
N(2A 6)
point
225792
73
18+72a
N(2A 6)
line
294
56064
2 6 :<7 xL2 (8» 7 2 :S 3
2 7 :D'2
72 : OxS3)
2 7 :( 6xS3)
N(7 2 )
base
2'9
75264
73:3
73:6
73:9
73: ,B
N(73A-X)
L,(512)
,6B
9B112
L2 (7)
L (7):2 2
L 2 (7) x 3
L 2 (7):2 x 3
COB)
L (2) 3
2 6 :<7 xL 2 (B»:3
D'4 xL 2(B)
~BBEJ72
72
Abbreviated character table.
@ ,
@ 3
64828'6 584 A A 2A
p power
p' part ind lA
@
@
63
64
A A 3A
A A 4A
@
352B/6
A A
7AF
(D'4xL2(S»:3
@
@
49/2 A A 7GH
49/3
@
@
A
A
56/6 CA
A
A 9AC
AA
AA
14AF
21AF
7IK
63/3
@
63/6 FA
10
@
6
@
@
@
@
504 9 63/' B 73/24 A A8 FB A AA A A AB 63AR 73AX fus ind 28 6A
+
@
@
@
'6/2 713 9/3 A
JB
72
8
0
06
73
9
024 441
-7
0
+ 511
-1
-2
+3 511
-1
06511
-1
01851'
-1
0
-2
9
2
2
z7+9&3
b7
Y7+1
o
o
o
-1
7
o
o
-,
7
o
o
-1
7z7
o
o
-1
7z7
o
o
512
0-1
o
8
06 584
8-1
o
8z7+9&3
b7
Y7+1
o o -y9
o
o
z7&3
z7
z7
o
o
o
-1
-2
-1
-z7
A IB AB 8AB14GIl8AC fus
A BA
ind
0
0
o
0
0
*2
020000
o
**
+12
0
0
o
0
0
*2
080000
7 -2
-,
0
-1
0 -Y9
x73
**
+3
0
0
o
0
o **
+9
0
0
o
0
++
8 -1
o
o **
+3
0
0
o
*
+
0
0
000
++3
9
0
y7
_1
-1
-1
z7*3
-z7
-z7
0
9b7
b7+3
-,
o
b7
o
o
+3 657
17
0
9y7+9
_1
y7+2&3
o
Y7+1
o
o
Order
+3
o
17
= derived
o **
o o
+00
0
6
2
0
0
-1
+00
7
-1
*
+
0
0
0
0
0
*2
02
0
0
0
0
0
*2
060000
-, 0
0
+00
8
0
-1
0002
3
-1
0
+
0
0
0
*
0
Ree group R(2)t =: 2 F4 (2)1
= 17,971,200 = 2 11 .3 3 .52 .13
Mult
=1
Out = 2
Constructions Ree, Tits
2F4 (2) =: G.2 : the centralizer in F4(2) of an outer (graph) automorphism of order 2. This leads to a description of G.2 as the automorphism group of a generalized octagon of order (2,4), which has 1755 "vertices" and 2925 "edges". Each vertex is incident with 5 edges, and each edge with 3 vertices. Tits established the existence of the simple subgroup G of index 2 (2 F4 (2 n ) is simple for n> 1).
Rudvalis
2F4 (2) =: G.2 : the point stabilizer in the permutation representation of the Rudvalis group (q.v.) on 4060 points, which form a rank 3 graph of valence 1755.
Max imal subgroups Order
Index
11232
G.2
Character
1600
L (3):2 3
13:12
1a+351a+624ab
',232
1600
'0240
1755
L (3):2 3 2.(2 8 ):5:4
7800
2304
L 2 (25)
2925
22.[2 8 ):S3
6144
[74]
Specifications
Structure
1440
124BO
1440
12480
1200
14976
A '22 6 A6 '2 2 5 2 :4A
4
Abstract
Ree, Tits
Rudvalis
N(2A)
vertex
adj acent point
1a+351a+624ab 2. [2 9 ): 5: 4
1a+78a+351a+650a+675a
L2 (25)·2 22. [2 9 ):S3
1a+27ab+ 351 a+624ab+650a
52:4S4
1a+351 a+624ab+650a+675a
non-adjacent point N(2A 2)
edge
N(28,3A,3A,4C,5A)
8 2 (2)
N(28,3A,3A,4C,5A)
8 2 (2)
N(5A 2 )
6 3 4/2 BB DA AB BB DB BA 6C '8D24AB
+00+00
0
0 -r2
•
+
0
0
0
0**2
+4
D
0
0
-1
o
-1
+00+00
o =* o •
++
0
0
0
+
0
0
0
o
+3
0
0
0
+00+00
2
-1
0
**2
0
020000
*2
ind
@
+00+00
0
z7
o
IlB
9D 12A 21HI fus
0
7
-1
IB
2r2
++3
z7 -y'63*2
712
0
o
-z7
A
4 BA BA
@ @
@
0
-y9
-y9
6B
3 A
@
++
++
-2z7
3B
@
+00
o
02 657
Tits group
-1
@
'68 B A BA
BA
++
+
+
4
o
•
+
0
0
0
b7
:*
+00
0
0
0
o :.
++
0
0
0
2P4(2), and All ~822
2 12
@
@
@
@
@
@
10 1 17971200 240 536 108 192 128
A
p power
pI part 1nd lA
A
A
B A
A A
A A A 2A 2B 3A 4A
4B
@
@
64
50 12 A AB A A AB 4C 5A 6A
32
B
B
@
@
@
@
32
16
B
C
@
16 C A A A B** 8C 8D
A
8A
@
@
10 12 AA AA AA AA lOA 12A
@
@
@
@
@
@
@
@
13 13 16 16 16 16 A A A B A B A A A A A A B* 13A B* 16A Bn C*5D**5 fus iod 12 AA AA
x,
+
x,
o
26
-6
2
_1
-2
-2
2
-1
o
o
0
0
-1
o
0
x,
o
26
-6
2 -1
-2
-2
2
1·-1
o
o
0
0
-1
o
0 -12
i 2
X.
o
27
-5
3
0
3 -1
-1
2
0
-1
-1
000
-1
i
-1
i
x,
o
27
-5
3
0
3 -1
-1
2
0 -21-1
21-1
-1
-1
000
i
-1
i
-1
x,
+
78
14
-2
-3
2 -2
2
3
2
2
0
0
-1
-1
-1
0
0
0
0
x,
+
300 -20
-4
4
0-1
o
o
0
0
0
-1
-1
o
0
0
x,
+
325
-1
-1
o
X.
+
351
31
15
0
3-1
x"
o
351
-1
-9
0
x"
o
351
-1
-9
x"
+
624 -16
x"
+
x••
640 A A
4D
@
@
@
@
@
@
@
@
@
@
@
640 96 64 16 8 6 6 8 8 10 10 A B A B A AF AF A B AD AE A A A A A AF AF A A AD AE EH lIF 40 8E 8F 12C Du 16E Fu 2aA Bn X.
++
3 -4
4
5 -11
21-1 -21-1
o
5
o
0
12 -12 -12
i i+ 1-1+ 1
Xs
x,
0
0 13 -13
0
0
0
0
x,
-1
-1
o
0
Xg
-1
-1
X9
o
0
-1
-1
-1
-1
++
5
5
9
9 -3
0-1
o
o
0
0 -1
624 -16
16
3
0
0
0 -1
o
o
0
0
+
650
10
10
2
6
2 -2
0-2
2
2
0
0
0
x"
+
675
35
3
0
3
3
3
0
0
-1
-1
-1
-1
x"
+
702
30
6
0 -6
2 -2
2
0
o
o
0
x"
+
702
30
6
0 -6
2 -2
2
0
o
o
0
x"
+ 1300
20 -12
4
0 -4
0
0
0
o
02-2000000000
x"
+
1300
20 -12
4
0 -4
0
0
0
o
o -2
2
x"
+
1728 -64
0
0
0
3
0
o
o
0
0
x"
+204800-4000-20
o
o
0
0
Xn
+
o
o
0
0
0
-1
0
0
-2
0
o
0
0
o
o
3
0
-1
00
16
0
-1
0
o
_4
-3
-1
-1
-1
++
-1
o
0
0
0
i
-1
i
-1
00
-1
o
0
0
0
-1
i
-1
i
00
r3 -r3
0
0
0
0
0
0
r3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
_1
-1
0
0
0
0
0
0
0
0
0
0
0
0 -r2 -r2
r2
+
41+5 -41+5
0
-1
-3
-1
o
0
-3
-3
-1
o
0
-1
i
-1
i
XI0
o
0
i
-1
i
-1
Xu
0
0
0
0
0
0
X12
-41+5
41+5
-3
-3
-1
o
o
0
0
0
0
x" ++
10
++ +
r2 -r2 -r2 r2
X4
0
3 -1
0
-1-1+1 1+1
o
3
0
i
-1
0
2048
0
0 -1
o
0
o
2
0 -1
0
-1
2 -2
0
-1 -r3
-1
6
0
21-1
-3
6
o
21-1 -21-1
41+1 -41+1
++
3 -1
0
00
41+1
3
-21-1
x, 00 -41+1
o
-1
aoooooaaaOQX2
i 2 -12
3
-1
o
12
10
6
2
5
5 -3
5
o
o
0
0
-2
0
0
0
0
0
0
0
0
0
X14
o
0
-1
-1
o
0
XIS
0
0
0
0
0
0
Xl6
x"
r2 +
o
0
0
0
0
0
0
0
0
o
0
_1
-1
o
0
0
0
00
161
0
0
O-b13
*
0
0
0
0
+
o
0
0
0
*-b13
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
XI8
x" -161
0
0
0
0
0
0
0
0
i
-1
Xw
OOOOOOOOOOOX21
Xn
Alternating group All
Order = 19,958,400 = 27 .34 .52 .7.11
Mult
=2
Out
=2
Constructions
Alternating
Presentations
S11
= G.2
A11
=G
: all permutations on 11 letters;
: all even permutations; 2.G and 2.G.2 : the Schur double covers
G ~ <x1, ••• x9Ixr=~XiXj)2=1>; G.2 _
Remark: 2.G is the involution centralizer in the Lyons group.
Hax imal SUbgroups
Specifications Structure
0.2
Character
11
A10
SlO
1a+10a
362880
55
S9
S9 x 2
1a+108+44a
C(2C)
duad
120960
165
(A8 x3):2
S8 x S3
1a+10a+44a+-110a
N(3A)
triad tetrad
Order
Index
1814400
Al ternating
Abstract
point
60480
330
(~xA4):2
S7 x S4
1a+108+44a+110a+165a
N(2A 2 )
43200
462
(A6 xA S):2
S6 x S5
1a+108+44a+110a+132a+165a
N(2A,3A,5A)
pentad
7920
2520
M11
11:10
1a+132a+462a+825a+1100a
N(2B,3C,4B,5B,8A,11AB)
S(4,5,11)
7920
2520
M11
1a+132a+462a+8258+1100a
N(2B,3C,4B,5B,8A,11AB)
S(4,5,11)
~E}I
G8 31
18
27
[75]
~X
0
0
0
0
0
0
0
11 L.l 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
o
+
++
0000000000000000+
0
000000000000000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
+
0
0
0
0
0
0
0
0
0
0
0
0
0
++
0
0
0
00000
0
00
0
0
0
0
000000000++
00
+
++
000000000
0
0
9>XOOOOOOOOOO HX
0
0
0
,ox OOO
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
!OJ
0000000000000
0
0
0
0
0
0
0
9£
QV
OL
8
,0
9 0
9
ZL
9
2L
1-
9
OL
Oe- 0
o
0
2-
2'-
2L
o 0
0
o
e-
0
2-
0 9
,
0 0
,0 0
2-
, IIL- 02
!O£-!O0
9£- OL
Oc
9-
c
LCQ-O
o
o L-
0
0
0
0
0
o
L-
0 0
0
0
0
0
o
l-
c-
0
c- 0
9J- 0
o
0 0
0 0
0 0
0 0
0 0
0
cOO
cOO
0
0
0
0
0
0
L-
l-
o
o
0
0
0
0
0
0
9
9
811
811
0
0
0
0
118Sl
118SL
+
+
+
9J
+
0
IIS!OL
0
IISSL
0
0
o
0
L-
cL- 1Ic- 0
L-
cl- lie- 0
0
0
0
0
0
0 0
0
0
11 0
o
cOO
0
cOO
o
+
0
0
+
0
0
000000 0
o 0
c-
OIlIlL
0
0
0
8tr 0
0
cL
Oc
0
0 c-
0
0
0
0
0
0
0
1-
0
L-
cOO
L-
1-
o
c
0
s-
8-
cL
911
cL L-O
9S- 0
9S- 0
0
0
0
0
0
0
0
0
I1hL
9c!O
0%
9L9
9L9
cL9
+
+
+
+
eOOOOOO
0
8
Str 0
11900088
1190008S+
+
0
0
c£Cl
0
9-
c£cL
O'
0
0
0
0
c-
0
0
0
0
c-
0
S-
0
o
0
9
0
S-
OL-
0
0
9!O
c
0
OL- 0
0
9!O
c
0
0
0
tr
0
o
0
cL
tr
o
0
0
0
0
L-
0
0
£-
0
o
0
0
0
o 0
0
0
0
L-
0
0
0
0
o o
0
e
+
0
0
OOeL
0
0
0
0
0
OeL-O
0
0
0
c-
0
c
ZL
0
Oe-OOO
o
0
0
0
11-
0
0 0
0
9
c-OOOOOO
0
0
o o
0
0
0
0
0
Oc- 0
0
0
0
0
0
0
9L- 0
cl- 0
0
0
L-
c-
0
0
0
0
0
0
L-
0
0
0
o 0
0
0
0 0
0
,L-
0
0
0
0
o
t-
11-
0
0
0
L-
0
0
0
g-
9 £
£9- c-
9 £
c
P01
+
SZ
OL- 05
el- LZ
"
cl
9L- 0
IIL- OL£Z
L
,
o
0
0
0
,-
o
o
0
0
9 £
0
£-
0
9
S-
,
Z-
1I-000Z-
o
9
0
0
0
0
0
Ol 5
S-
0
5
1I-000Z9
9
OL 5
o
8
Zl
o
OeOOOOO
9L
ZL
GC
".
GC
ne
9
hS- S
11 L L
9!O
0
tr
9
9
L-
£-
0
0
6
Ll
0
o
LL
0
2'L
01
112'
0
0
1Ic.
o
11-
e
+
o
c
+
L-
95- 01l5L 0
£-
tr COO
0
tr05-Z09 t-
0
+
c-
Oe£ L
0
0
c£cL
0
11-
o
n
+
0
0
Oc- OOL l
0
0
0\-
6
0
0
0
Z
9-
9-
5-
+
c
e-
5-
+
8
Z-
066
ZOO
o
066
L0
h£
0 l-
0
11£
0 0
0
11-
9
9
12'
L-
Z-
L-
cl1- 9
0 0
0
0
£-
+
0 0
0
0
5-
LL-
0
e-
o
+
0
0
L-
0
£-
£-
95- lIe6
0 L-
Z-
0
0
o
£-
5L- 5ZS
o
o
0
0
0
0
L-
0
0
L-
0
0
0
ZOO
e
0
0
0
611
£69
+
£-
LZ
L-
c
5
0
L-
£-
£-
z-
,
6
6
LZ
ZII
£9
9-
5
e
L-
e
6
6e
IIL- OLZ
!O£
ZZ
l£Z
o££
+
+
+
,,,
Ol- 11-
£
Z-
9L
9-
oz cB
o
0
Z-
0
11-
0
2'
0
l-
V V
V V OOS 96 L
96
'9L
9
9
OZ
LZ
62'
9£
LZ
LZ
L
V V
e
S-
9
9
9
9L
£- B
9
V V
92'
9
'1L pUl ~Jlld ,d JaMod d
Ol
hll
Sh
Oll
02'l
IIL- 9Zl
nL- 9ZL
+
+
+
0
+
vE
09L 001l9566L
+
0
Z
V V
5
09
L
L
V V
59!.
2-
n
2
9
5
9
0
5l- 6 0
0 0
+
L-
Sir 9-
+
o
£-
Sir 9Z
o 0
0
0
e-
2
+
0
069-91165
Z-
0
0
0
9-
0
0
11-
0
o
Z
0
h-O
11-
055
+
+
0
Z-
e
<:911
L-
o
c
05
!OS£
0
Z-
0
o
0
0
OL
lZ
nL
0
Z
o L-
0
o
Ztr c-
o
0
0
0
,-
s-
611
2-
£-
0
Z-
Z
V>
9
0
V
all
0
o
OL
0
,,-
o
5
£-
,
£- 0
e
5
V
:lll
5
099 L-
9-
0
£
Z
6
OL
L-
V
'15
L-
9\ 0
9-
Z-
S-
0
".
a9 V9 as
V V
V'I a'l '1'1 'I 9S2' 9L5 Se
v "" " " av a ", "0 ", • • • • • • • • • • •'" •" •
0
9£- to
o
0
tr
9-
0
0
0
z
0
0
0
c
0
0
Z-
l.
0
0
0
Z
6
c- e
1.-
L-
Z
o
1-
L-
£-
0
l-
0
\-
Z-
0
0
,-
0
e-
0
0
il
116!O
o
0
0
0
0
o
B
9
o o
L-
0
0
o
0
e-
6
0
0
0
0
Z
L-
0
L-
L-
'19 V
B
Vi. 39 09 :>9 v 8:) 8aya yaJas'Ia h9 9l 9£ Cl. B
£- 0
Z-ccc-Z8-0
L-
0
0
o
L-
0
"
0
0
0
L-
0
0
0
0
o
o
o
t-
L-
Z
L-
L-
0
Z-
ZOO
L-
0
0
1-
L-
0
0
0
0
0
V
,
a
o
.-
00000e-
0
0
LLq
VV
6
vv ,
VOL '16
2-
o
0
U
l-
VLL
Z-
0
L-
0
LLQ U
o
V
0
V
..a
V LL
0
91.
0
0
o
92'
0
o
L-
o L-
t-
0
0
0
Z
eL-
0
9L
0
0
0 0
L-
,0
0
0
0
0
o 0
l-
0
0
o o
Z-
e
02'
L-
O£ Sl
Z-
0 Z-
0
0
L-
0
V>L
V LL
"
••• ••• ••••
v
VV
0
o
0
0
o£ !OL
0
,-
o
0
o
Z
0
0
0
o
0
0
c c
000£-00000
o 0
o
0
Otl On
OccOOOO
0
OOc-c-OOOO
o
ell
L-
GtI
l2'
L-
PUl snJ LZ
++
0
89L ++ 9L- 82
o
o 0
0
Z-
L-
0
Z-
0
0
L-
0
o
0
o
o
o
o
0
o
++
0
++
6LL
o
0
o L-
0
o
av
'IV
8'1 511
'10e a5L
Oe
'1'1
VV LZ
'1'1
ne LZ
PUl snJ .a '1'1 '1'1
.-
OOoe-Z-O OL
L-
++
5069++
.-
IIl- 2'11
o
9n
9-
9LZ ++
e9L ++
09L ++
LL- 1.IIL ++ 0
CL
I1S
".
IIL- Oe- S
0
0
0
2
0
0
6-
2-
o
0
c-
o
6SL ++ 0
0
6 9-
0
£- 0
0
06L
8L- 291 ++
0
OL- OL
9-
0
02'
LZ
SL
++
9£
0
0"- 01- 2'
5L 0
ilL
SOL ++
2-
Z-
00S-09911++
0 +
o 0
il
0
0
il
o
o 0
0
0
++
0
0
9S
0
cL
++
8-SII++
il
++
Le
:lZ V
++
tr020 0
S
ac
0
3Z
V
S2'
90
ilL
IlL
il
'I V 'I 'I OSO OZ6 OS8 099 Ol l Z c9£
V
++
Z
Z
311 J:)
ell
0
'OL
c
0
IIZ
S
z-
e e-
!OL
IIL- OL
OL
,
,
0
0
,-
0
aJ
IH
,
LL 0
o
2'
0
!O-
0
0
2-
!O-
9-
2
112'
all V
0
.111
OL
6
'I
96
'I 'I
9
~
z£
a
c
::IV JV
o
'" aa aa
!O
o
0
£-
£-
,
0
,11-
L-
,£-
0
0
5
0
£-
o
0
£- 0
0
0
0000000000000000+
1.-
Oc.
0
2
CL OL
c0
tl2
2'-
2-
zoo
2'-
0
0
2'-
0
o
tl2
0
0
0
0
0
0
0
0
tl2
o
0
0
0
0
ilL
0
0
0
0
0
9L 8L
0
0
0
0
0
011
c-
o L-
0
c £-
0
£-
0
L-
0
0
0
0
0
0
0
L-
0
£-
0
0
2-
0
£-
0
0
2-
0 \-
0
o
0 0
0
0
o
0 0 11-
£-
c:
o 0
£-
o
L-
0
0
0
£
2'
0
c-
0
0
0
0
o
e
0
L-
L-
Z-
,-
Z-
"
L-
o
2-
0
0
0 1-
0
0
o 0
0
0
o
,
e
o
0
o
0
Z
,-
c-
o \-
0
0
0
0
ne n2'
0
0
o
0
0
0
0
0
0
0
Z-
0
e-
0
o 0
0
0
z0
0
L-
0
Z-
0
f9
, 0
)19
Z9L 09£ 09L
19 HO av :l:)
£0
19
3a
,
o c-
,
as
OJ
L-
o
'I
"
c
o
e-
2'
£
0
L-
2
c
e
e
£
e
L-
L-
aOL :lOL 'OL
av ov
o
L-
o
L-
0
0
0
0
!OL l O O
SS SS
o 0
0
0
L-
o
0
0
0
o
0
0
0
0
0
L-
0 0
1-
o
3V
"L a" ov aa "L av '"
o
!O L.l 0
0
tOXOOO£.lcOO
..x ""X 6C){
«x
0
000000000
0
9CXOOOOO ~CX
0
..:X
o£ o£
0
L-
0
0
L-
L-
0
L-
0
0 L-
o 0
VSC YIIZ aoc V'lL 0'1 av a'l ov 0'1 a'l av HV hL Cl Oc 6
0
o
0
,,'x \-
"X
0
0
0
L-
0
0
0
L-
0
0
L-
ntX
0
0
~'X
0
o
0
L-
91X
LlX
0
o
0
L-
0
0
SIXOOOO OIX L-
0
0
0
ox
"X
<x
'X
Q
ao£ '10£ DJa .lav D:la .lay Sl SL
av ov a 3a as " ov a, , " " , '" '" " "L 0" " • • • • • • • • •" • • • • • • • • • • • • • •
'·X
"'X
"X
'X
5z(32) Suzuki group 3z(32)
= 2 82 (32)
Order = 32,537,600 = 2 10 .5 2 .31.41
=
Mul t
Out = 5
1
Constructions Suzuki
G : the centralizer in 3 4 (2) of an outer (graph) automorphism of order 2 G : all 11 x 4 matrices over F 32 preserving the set of vectors {t,x,y,z} for which xy+(x s + 2 +ys+z)t=O, where s : x ~ x8 is the automorphism of F 32 with $2:2 ; projectively this defines an oval of 32 2 +1=1025 points on which G acts doubly
transiti vel y.
Specifications
Maximal subgroups
Order
Index
Structure
G.5
Character
Abstract
Suzuki
317114
1025
2 5 +5 :31
2 5+5 :31:5
1a+1024a
N(2A5)
point
164
198400
41:4
111:20
N(41A_J)
100
325376
25: 11
25: 20
N(SA)
62
524800
062
31: 10
N<31A-O}
L,(32), point pai,r
8[~~}5 35
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
5
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
1
32537600 024 64 64 25 25 25 25 25 25 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 41 41 41 41 41 41 41 41 41 41 p power A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A pT part A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A ind lA 2A 4A Bn 5A 25A B*6C*11D*16E*21 31A B.2 C.4 D*8E*16 F*5G*10H*20 I*9J*18K*25L*19 M*7N*140*28 41A B*2 C*4 D*8E*16 F*3 G*6H*12h24 "7 fus X.
+
x,
o
124
-4
x,
o
124
_4 -4i
X.
+
775
7
x,
+
775
x,
+
775
ioo
4 4 5 AA AB A A AA AB 58 lOA 20AB*11 25F 20
4
A A
BA BA
X.
+0000
41 -41
-1
-1
-1
-1
-1
-1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00000
-1
4i
-1
_1
-1
-1
-1
_1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00000
-1
_1
-1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 -w41
*2
*4
*8 *16
*3
*6 *12 *24
7
-1
-1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 *16-w41
*2
*4
*8
*7
7
-1
_1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*8 *16_w41
*2
*4 *24
x,
+
775
7
-1
-1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*4
*8 *16-w41
x,
+
775
7
-1
-1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*2
*4
x,
+
775
7
-1
-1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*3
*6 *12 *24
x"
+
775
7
-1
_1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*7
Xn
+
775
7
-1
-1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 *24
x"
+
775
7
_1
-1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Xn
+
775
7
-1
_1
o
0
0
0
0
0
x..
+
1024
0
0
0
-1
-1
-1
_1
-1
-1
x"
+
1025
o
0
0
0
0
0 y31
*2
*4
*8 *16
x..
+
1025
o
0
0
0
0
0 *16 y31
*2
*4
*8 *18
x" x..
+
1025
o
0
0
0
0
0
*8 *16 y31
*2
*4
+
1025
o
0
0
0
0
0
*4
*8 *16 y31
x..
+
1025
o
0
0
0
0
0
*2
*4
x"
+
1025
o
0
0
0
0
0 *25 *19
x"
+
1025
o
0
0
0
0
0 *28 *25 *19
0
0
0
0
0
0
*5 *10 *20
0
*9 *18
*5 *10
*4
*8 *16
*7 *14 *16 y31
*2
*4
0
0
0
0
0 *14 *28 *25 *19
X~
+
1025
o
0
0
0
0
0
X~
+
1025
o
0
0
0
0
0 *19
X~
+
1025
o
0
0
0
0
0
x"
+
1025
o
0
0
0
0
0 *18
X~
+
1025
o
0
0
0
0
0
X~
+
1025
o
0
0
0
0
0 *20
X~
+
1025
o
0
0
0
0
0 *10 *20
X~
+
1271
-9
-1
-1
x"
+
1271
-9
-1
-1
Xn
+
1271
-9
-1
-1
*21-w25
x"
+
1271
-9
-1
Xu
+
1271
-9
x"
+
1271
-9
*7
*7 *14 *28 *25 *19 *7 *14 *28 *25
*5 *10 *20
*8 *16 y31
*5 *10 *20
*2
*4
*8 *16 y31
*2
*4
*9 *18 *25 *19
*9 *18
*9 *18
*5 *10 *20
*9 *18
*2 *20
*9 *18
*5 *10
Xl
-1
X3
+00000X4
*3
*6 *12 *24
x,
*7
*3
*6 *12
X.
*7
*3
*6
x,
*6 *12 *24
*7
*3
X.
+OOOOOX"
*7-w41
*2
*4
*8 *16
*3
*6 *12 *24 *16_w41
*2
*4
*8
Xl(>
*7
*3
*6 *12
*8 *16-w41
*2
*4
x..
*12 *24
*7
*3
*4
*8 *16-w41
*2
x" XLJ
*6
*6-. *12 *24
*7
*3
*2
*4
*8 *16-w4l
-1
_1
-1
-1
-1
_1
-1
-1
-1
_1
+0000
4
0
0
0
_1
Xl4
o
0
0
0
0
0
0
0
0
0
+
0
0
0
0
0
Xl~
o
0
0
0
0
0
0
0
0
0
x"
o
0
0
0
0
0
0
0
0
0
x"
000
0
0
0
0
0
0
0
Xl;
0000000
0
0
0
x..
000
0
0
+OOOOOXzo
0
0
x"
0000000000
X~
o
X~
o
0
0
0
o
0
0
000
0
0
0
0
0
000
0
000
000000000
0
X~
*8 *16
000
0
0
0
0
0
0
+OOOOOX25
*2
*4
*8
o
0
0
0
000
0
x"
*8 *16 y31
*2
*4
0000000
0
X~
*4
*8 *16 y31
*2
o
*2
*4
*2
*4
*7 *14 *16 y31
*7 *14 *28 *25
*9
*5 *10 *20
*7 *14 *28 y31
*7
*7
*7 *14 *28 *25
*5 *10 *20
*8 *18
*7 *14 *28 *25 *19
*5 *19
*7 *14
*7 *14 *28 *25 *19
*5 *19
*4
0
*7 *14 *28
*9 *18
*9 *28 *25 *19
*5 *10
0
*8 *16 Y31 *10 *20
*5 *10 *20 *14 *28 *25 *19
*9 *18
0
*5 *10 *20 *14 *28 *25 *19
*2
o
0
*9 *28 *25 *19
*7 *14 *28 y31
1025
0
*9 *18 *25 *19
*5 *10 *20
*9 *18
*2 *20
0
*9 *18
+
*9 *18
0
*8 *16 y31 *10 *20
Xn
~4
0
-i
_1
*7
*2 *12 *24
*8 *16-w41
-i
*5
*8 *16 y31
0
0
0
0
0
000
0
0
000
X~
00000
0
0
000
X~
0
_1
-1
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0000000000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
000
+OOOOOX31
*6 *11 *16
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0000000000
x"
-1
*16 *21-w25: *6 *11
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
000
0
x"
-1
-1
*11 *16 *21-w25
*6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0000000000
Xu
-1
-1
.6 *11 .16 *21-w25
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0000000000
x"
l-w25
*6 *11 *16 *21
0
0
0
0
0
0
0
0
0
0
0
0
+0000
X~
[77]
11
91
91
91
+
02
04
19
19
19
19
-1
30
04 819
+ 910
+2 910 -10
02 910 -10
02 910 -10
9
9
19
02 819
9
19
819
+
0
0
0
-1
-1
-1
-1
-1
o
o
o
10
201-10
""
2
""
3
o
-10
10
-1
0
_1
-1
-1
-1
-1
-1
-1
-1
-b5
-b5
-b5
-2
-b5
-b5
101-9
-2
3
9
+729900
-1
-1
19
0
8i
-1
-8
016 728
0
-1
-1
-8
8
08 728
-1
0
_1
0
8
8
8
04 728
-1
-1
0
8
0
-8
04 728
-1
-1
0
0
o
o
0
o
0
o
= 22
2
o
o
o
1012-10
101
o 10r2+10
2
-21
-2
i
o 10z8-91
10
21-1
101-9
o
-1
-1
o
9
o
o
o
-212
o
o
o
o
o
2
o
-1
-1
21-1
-1
-1
-1
-1
o
b5
-1
-i
-1
_1
o
-1
o
o
o
o
o o
o
o
o
o
o
o
o
o z8**
-1
o
_1
-m20
o -1
b5
2z8
-b5
-21
-b5
-b5
o
o
o
21
o
-2
2
o
o
o
_1
o
20AD
AA
BA
80/4
@
o
o
o
o
o
x13
)(13
o
o o
-i
Z8113
o
o 1-1
3
-1
o
2
o
o
13AD
16AD
A A
A
80/4
A
@
91/4
@
-1
12AB
A,B AA
72/2
@
-i
2
-b5
-2
12_1
_1
-2
-21"2
-2
1"2+1
_1
o
o
o
-8z8
o
-b5
o
o
o
81
o
-b5
o
o
-8
o
o
o
8'8
o
o
o
8
o
-b5
o
o
o
8
o
o
o
o
o
o
b7
o
o
o
o
o
o
12-1
o
o
tQAB
AA
BA
80/2
@
1"2+1
o
21-1
-1
_1
_1
8IJ
8GH
2
C A
2
64/2
C A
@
64/2
@
14
2
A 8EF
A
64/2
@
12
o
3
o
0
o
0
o
b7
10z8-i
o
o
101-1
8i
8
+2 728
-1
0-8
024 640
8
0-8
04 6110
10
101-1
o
BAD
A
A
5760/4
@
2
-1
-9
10
A A 7AB
91/2
@
-9
2
AA 6A
72 AA
@
12
o
3
11
o
A SAS
80/2 A
@
90
10
10
0-8
+2 728
Out
~EJEJ[~~}o
-1
A 4C
64 A
@
2
0
A 4AB
A
5760/2
@
10
02 640
-9
11
10
go
+
•
9
36
3A
A
2A
A
A A
p power pi part ind lA
81
@
@
A A
@
= 1
PGL 3 (9) =- SL (9) :; PSL (9) ;; G; rL (9) :; (8 x 0).2 2 ; PrL (9) ;; IL (9) :: PIL (9) =- G.2 3 3 3 3 3 2 3
Abbreviated character table.
@
Mult
GL 3 (9) ;; 8 x G : all non-singular 3 x 3 matrices over F g ;
4 5 5 2456960 760 832
Linear
Constructions
Order = 42,456,960 = 27 .3 6 .5.7.13
Linear group L (9) ;; A2 (9) 3
'::::i 2S
12-1
i
1"2.1
'B
-1
o
020
o
-b5
b5
..
9
40 68
A BB
A BB 8K
B C A
@
0
0
0
.12
** ++2
++2
+2
11
8
8
0
0
8
-8
0
0
_1
-1
0
0
0
0
0
0
0*+ 0*+
o o
o o
++2
o
o o
++
+2
10
0
0
9
0
0
0
0
0
o
0
0
""o
0
0
0
0
0
0
000
10 -10
10
0
**
o
9
9
0
0
..
++
+8
011+
o
o 11*
0**.40000
0**.20000
0**.20000
o
o
x91**2
x13
b7*.OOQO
0**.20000
0
9
@
@
A
G
18 8/2
AD AD AD AD
18
@
-,
0
0
0
0
o
0
0
0
-1
0
_1
0
o
0
0
000
o
o
o
0
0
r2
o
0
0
o
0
0 -1
0
0
0
-1
-1
0
0
0
0
0 000
0
000
-1
0
0
0
0
o
o
o
-b5
-b5
o
o
o
0
0
-1
000
0
o
0
o
-3
3
o
o
10CD 12C 12D16EF
AB
BB
10/2
@ @
.. ++
++
*3
02
004 *3 012
:
@
0
16
0
0
0
13
12
0
0
0
0
0
-3
4
0
-2
0
0
0
3
0
0
0
0
0
@
@
o
-1
o
0
o
0
0
0
0
0
0
0
0
0
0
000
0
*3
++
++
08
04
02
02
+
*3
++
02
o
: 002
0*+
0*+
o
o
0*+
-1
*3
o o
*3
*3
11
o
o
-b5
26
0
0
26
0
0
39
27
0
0
0
0
0
-2
0
0
2
0
0
-1
3
0
0
0
0
0
-1
0
0
-1
0
0
3
0
0
0
0
0
0
_1
0
0
_1
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
-1
-1
0
0
0
0
0
@ @
0
0
0
0
0
0
0
0
0
0
1 -12
0
0
_1
0
0
-1
0-1
0
0
0
0
0
7
6
9
@
_1
-2
4F
-2
-3
6E
@
@
@
*
+
**3 012
+2
*
0
0
0
0
32
0
0
0
-11
0
0
0
-1
000
0
0
0
0
002
++
21
21
27
0
0
0
5
3
0
0
0
3
3
0
0
0
0
o
o
o
o
*
*
+
002
+
++
0
28
0
14
0
-4
0
o
_111
o
2
0
0
0
2
0
o 5-1
0
0
o
3 -1
0 0
o o
-1
000
-2
0
o
0
()
o o
0
0
o
o
0 -21-3
0
0
0
0
0
0*5020000
o
o
++
08
04 **3
o **3 o
02
o **3
0*5020000
0*+
o
o
xl 3
002
:
0
0
0
0
o
-1
o
o
0
0
0
0
0
0
0
0
0
0
o 0
0
-i 0
o
0-1
-1
o -1
0
o
0
0
o
0
o
o
000
o
o
000
000 000-b70
0
0
_1
0-1
o
o 2
-1
o
21-1
3 -1
2
C
16
@
@
\0 '-'"
~
o
_1
o
-1
o
1
o
o
o
o
o
o
o
o
o
o
o
-1-1
o
12 7/2 8/2 12/2 AN AF AD E A A AF AO A AM 8MN 80 12Fi4AB16lJ 211EF A
96/2
@
o
0
6F
A AD BD A AD BD
00273-2
++
++
••
@
96 108
@
0*5020000
o
o
-1
2D
A A
6 048
L 1 (729)
N(7AB). N03ABCD)
(D 14 xD
6 8/2 13/4 9 8 AAACBCC AE I DC A A AC BC A AE A AC 2C 4E 6C 60 8L 12E16GH 26AD fus ind
@
base
H.2 2 26 ): 3
0 (9) 3
L (J) 3
C(2C)
N (2A 2 )
"3(3)
line
point
Linear
C(2D)
N(3A 4)
N(3A 4)
Abstract
C(2B)
1a+90a
1a+90a
Character
Specifications
A6·22 x 2
L (3):2 x 2 3
U (3):2 x 2 3
rL 2 (9).2
32 +4 : 82 .22
G.2 2
b5*+0000000
o
o
0*+
o
0*+
-1
o
20EF fus ind
AD
BD
10/2
2
(7 xD26):3
H.2
A6· 22
L (J),2 3
x
rL 2 (9 ) U (3) 3
@ @ @ 5 616 48 54
(13x0 14):3
91: 6
91:3
H.2
3
82 : D12
A6 ·2 2
x2
82 :3
x2
L (3) 3
U (3):2 3
PGL (9) 2
L (3),2 3
"3(J),2
GL (9 ).2 2
3 4:rL 2 (9 )
32 +11: 82. 2
3 4 :rL 2 (9)
32 +4: 8 2 .2
3
G.2
G.2 2
G.2 1
PGL 2 (9)
L3 (3)
U (3) 3
34 : GL 2 (9)
34:GL2(9)
Structure
++0000
o
28**
_1
80 '
..
011+
o
_1
28
A
A
720 120
@
155520
273
@
110555
384
@
58958
720
91AX fus ind
AA
CB
91/24
@
7560
5616
o
o
-1
-1
y
-m20 y'40**3
b5
-2z8
-b5
-b5
z8 y' 40**3
-i
-z8
-1
-1
o o
o
o o
o
o
o o
z8*3
-i
-1
o
BOAP
80/16 HO AA
@
-i
-1
o
40AH
AA
80/8 DD
@
z8-1
1-1
o
AA 24AD
AC
72/4
@
91 7020
6048
91
466550
466550
Index
Order
Maximal subgroups
r UJ
A
A
-8
10z5
2
o
0
0
9
9
0
9
10
10
10
+ 729
+ 730
+2 730
04 730
04 730 -10
10
04 657
6
o
10z5
10z5
o
-2
o
o
016 730 -10
024 800
~
r2
o
10
0 -10
-1
1,
-1
0
o
o
-1
o
r2
o
-2
o
1
o
o
10
-2
o o
o
o
-10z5
o
o
o
r2
o
o
o
10z5
o
z5
z5
m16
o
o
0 0
o
-2z5
0
2z5
-2
2
z5
o
-z5
z51
-1
z5
o
z5*2
z5 -z5*2
m16
o
o
-10
10z5
10
o
r2
o
-1
o z5
o
-z5*2
-z5*2
-1
z5
o
b5
o
o
o -b5-2 o -m5+1
o
o
o
-1
m5*2+1
b5
-1
z5&2
o
90/4 CDA AAA 30AD
@
z5 z5-&2
z5
o
20AD
AA
80/4 CA
@
o
o
o
-1
-1
o
16AD
A A
80/4
@
o
o
-1
z5
b5*
b5
2z5*3 -z5-2&2
m5+2z5*3
-b5+1
b5
z5&2
z5&2
2
15AD
AA
90/4 DA
@
o
.
10
o
-2
9
o
0
10
0
9z5+8&2
2z5*2
2z5
2b5
b5*
m5*3-1
-z5 2
-b5
-1
2
100/4 FA EA 10KN
@
z5+2&2
-1
2
10GJ
b5 -z5-2&2
2
9z5+8&2
2
-1
-1
-8z5
o
b5
-1
b5
8m5-8
o
-8b5 -b5+ 1
3b5+1
o -4r5+12
o
b5+2
z5+8&2
9
9z5+8&2
-3
2b5
b5+2
-3
0
-b5
z5-8&2
2
-1
-8
9
o
100/4 CA
80/2 7200/4 100/2 A CA FA AA A EA lOAD 10EF 8AB
AA
@
@
9z5-8&2 -b5-2
08 730
Out = 4
@
@
b5
17
17
8z5+16&2
-8b5*
04 657
0
0
-8b5 -b5+1
0
-1
0
9
-8
04 584
17
-1
-b5
-8b5 -b5+1
+ 657
-8
04 584
17
-10
-1
24
+2 584
17
17
-8
+2 584
9-8
-7
z5-8&2
2
-b5
z5-8&2
73
04
0473
0
9-8
3
5EF
-7
A 5AD
73
4A
90 AA AA 6A
+
3B
A A
2
A
3A
A
2A
A
@
-8
lA
@
7200/4 100/2
@
72-8-900
+
ind
pI part
@ @ @ @ @ 4 7 7 2573600 200 290 81 80 p power A A A A
12
~EJB92 92
PGU 3 (9) " SU 3 (9) " PSU 3 (9) " G
Abbreviated character table.
Unitary
Mult = 1
GU 3 (9) :: 10 x G : all 3 x 3 matrices over FS 1 preserving a non-singular 'Hermitian form;
= 42,573,600 = 2 5 .36 .52 .73
Constructions
Order
Unitary group U (9) " 2 A2 (9) 3
-z5
o
o o
o
o
-x73
o y"80*21
o y"40*3
m16
++2
+8
+4
+2
+2
++2
++
++
+2
+2
++
*f +12
1*
**
*f
o **
o o
r2
** **
o
o
o
-z5
o -1
z5
o
y"40*3
o
r2
-2z5
o
-2
z5
z5
@
@
8
8
0
0
0
8
-8
0
0
9
0
A
4B
A
2B
-1
-1
0
0
0
6B
BB
o
o
0
0
0
8C
A
A
8
@
10
9
0
0
o
o
o
o
o
o
o
o
-1
o
o
o o o o o o o
o
o
o
-2
0
0
-1
o
o
o
o
0
0
0
o
o
o
-b5*
-b5*
o
o
o
10/2 FB EB lOOP
@
o o o
o o
o
10 -'ID
10
9
0
0
9
0**+20000 -1
o
o
+2
** ++2
+2
*f
++
00
@
73:6
10 2 :0 12
720 720 9 A A BB
3
A6:22 x 2
°10 x2 • A6· 22
3 2 +4: 80 : 2
0**+20000
o
o
o
z5
o
o
-1
o
o
-1
o
o
o
z5
z5
o
++
80AP fus ind
AA
80/16 GO
@
194400
219
@
73:3
70956
600
5 x 2·A 6 .22
32 +4: 80
A6 :22 10 2 :S
5913
730
59130
720
7200
58320
80/8 73/24 CB A AA A 40AH 73AX
@
G.2 G.4
Character
@
@
o
o
r2
o
0
0
-1
0
0
0
o
0
0
-1
0
o o o o o o
o
o
-1
o
o
o
o
o
-1
o
o
o
-31
:*
:*
* *
*
*
o
o
o o
o
*3
*3
*3
*
*
o a
o
-1
o
o
* o * o
-b5*
b5*
o
o
-1
o
18/2 8/2 10/2 AB A FB AB A EB 12AB16EF 20EF fus
@
73: 12
102 : (4xS 3)
(A6: 22 x2 )'2
(Dl0 x2 • A6· 22)·2
32 +4: 80 :4
... "1
0
3
@
4
@
0
0
0
0
0
000
0
3 -1
0
+6
+4
+2
+
+
++
+0+0
+0+0
+
+
+0+0
+
+
++
0
0
0
0
o
o
o
o
o
0
2
3
0
0
3
0
0
0
0
o
o
o
o
o
0
-2
3
o
o
o
o
o
0
-1
0
o
o
o
o
o
0
0
-1
000
000
-1
000
0
0
++0000
+
+0
+0+0
0000
+0+0
ind
B
24
@
N(73A-X)
@
o
o
o
o
o
o
o
o o
-1
o
o
o
o
o
o
o
y'24
6/2 AD AD 24AB
N(2A 2 ), N(5 2 )
C(2B)
N(2A), N(SABCD)
N(3A 2 )
BC C A A BC A 4C 80 12C 16G B
24
@
1a+729a
Abstract
Structure
Order
Index
Specifications
Maximal SUbgroups
U1 (729)
base
03(9)
non-isotropic point
isotropic point
Unitary
~
\0
~
c VJ
i,
HS Sporadic Higman-Sims group HS Order = 44.352.000 = 2 9 .3 2 .5 3 .7.11
Out = 2
Mult = 2
Constructions G;2 : the automorphism group of the graph of D.G.Higman and C.C.Sims. a rank 3 graph of valence 22 on 100 vertices.
Graph
Any given vertex has 22 neighbours (points). and each of the remaining 77 vertices is joined to 6 of these points, and may be labelled by the corresponding hex ad • Two of these 77 vertices are joined just i f the corresponding hexads are disjoint. The hexads form a Steiner system SO,6,22) and the point stabilizer is Aut(SO,6.22»
=-
M22 .2. The simple group G is the subgroup of even permutations. Higman
G : the automorphism group of G. Hi gm an , s "geometry" of 176 points P and 176 quadrics Q. The group acts doubly transitively on each set. and each object is incident with 50 of the other type. There are 1100 conics. each of which defines a polarity between the 8 points on it and the 8 quadrics containing it. A quadric and a point on it are polar with respect to just one conic. The intersection of tWJ quadrics is uniquely the union of tw::> conics,
which meet in two points. The duality interchanging points and quadrics gives G.2. Taking M22 as the stabilizer of
00
and 0 in M24 , the points are labelled by the octads P containing
quadrics by octads Q containing 0 but not 2-graph
00,
00
but not 0,
and P is incident with Q just if their intersection has size 0 or 4.
G : the automorphism group of a 2-graph on 176 points, that is, an assignment of parities to the triples of points, so that the sum of the parities of the four triples in any quadruple is even. Labelling the 176 points by octads as in the previous construction, a triple of octad s is even or odd accord iog as the sum of the sizes of their pair wise inter sections is 0 or 2 mod 4.
In the Leech lattice (see Co 1 ) G is the pointwise stabilizer of a triangle OAB of type 233, for instance 0= (0,0.0 22 ), A = (5,1,1 22 ), B = (1.5,1 22 ). The setwise stabilizer is G.2.
Leech
The 100 vertices V of the Higman-Sims graph are represented by lattice points with VO, VA, VB all of type 2, namely (4,4,0 22 ) (1), (1,1,_3,1 21 ) (22), (2,2,2 60 16 ) (77), V and V' being incident in the graph just i f type(VV') = 3. There are 2x176 points P with type(PO) = type(PA) = 2, type(PB) = 3, falling naturally into 176 pairs IP L =(2,O.27 0 15 ). PR=O,1._1 7 1 15 )} satisfying PL+PR-A = 0, which correspond to the points of Higman's geometry. The quadrics correspond to the pairs IQL=(O,2,27 0 15 ), QR=(1,3,_1 7 115)} obtained by interchanging the roles of A and B in the above definition. A point is incident with a quadric just if type(PiQj) is even. In the Leech lattice mod 2 the 3-spaces containing the fixed 2-space (of type 233) become points in the quotient 22-dimensional representation over F 2' They are described below by the types of their non-zero vectors. Presentation
G =-
b4c
d
~
e
I e=(fa)2, 1=(cbf)3=(fdc)5=(bcde)4 >
f
Remark: 2.G.2 is the involution centralizer in the Harada-Norton group.
Max imal SUbgroups
[80l
Specifications
Order
Index
Structure
443520
100
M22
252000
176
U (5):2
252000
176
U (5):2
40320
1100
L (4):2 1 3
: L (4):22 3
1a+22a+778+175a+825a
N(2A, 3A, 4B. 4C. 4C, 5C , 7A)
40320
1100
S8
: S8 x 2
1a+77a+154a+1758+693a
C(2C)
11520
3850
2 4 ,S6
: 25 • S6
N(2A 4 )
10752
4125
4 3 :L (2) 3
: 43 :(L (2) x 2) 3
N(2A3)
7920
5600
M11
7920
5600
M11
7680
5775
4'24 :S
2880
15400
1200
36960
3
G.2 : M22 :2 2 5 51+ :[2 )
1
3
Character
Abstract
Graph
Higman
point
1a+22a+77a
Leech 233-2224-po in t
1a+ 175 a
point
233-2233-point
1a+175a
quadric
233-2233-point
edge
233-2233-point
conic non-edge
233-2244-point 233-2244-point
N(2A, 3A.4C.5C, 6B, 8B,11AB)
233-2334-point
1
N(2A, 3A. 4C. 5C. 6B, 8C, 11AB)
233-2334-point
1 +6· S •• 2+ • 5
N(2A)
2 x A6 '22
: H.2
N(2B) , N(2A,3A.3A.5B)
5:4 x A5
: 5: 4 x S5
N(5B), N(2B,3A,5A)
5
point pair
HS
@
@
@
7
2
@
@
@
ij4352000 680 880 360 840 256 indl A
A A 2A 28
61t
@
soo
@
300
@
@
@
@
25362117 AABAAA
A
A
A
A
A llA
A 4B
A
A
lie
A 5A
5B
4 -6
2
2
-3
2
2
2
-3
2
o
4
_1
o
4
_1
_1
o
4
-1
-1
5
0
2
0
o
ppowerAAAA
p' part
@
3 A 3A
AABAA se 6A 68
A 7A
@
16
,B
BA
@
@
@
16
16
20
20
C A
C
AA
BB
8B
+
x,
+
22
x,
+
11
13
X.
+
154
10
10
-2
x,
+
154
10 _10
-10
-2
2
x,
+
154
10 -10
-10
-2
2
x,
+
175
15
11
4
15
-1
3
0
x.
+
231
7
-9
6
15
-1
-1
6
x,
+
693
21
9
0
21
5
x"
+
170
34 -10
5 -14
2
Xn
o
770 -111
10
5 -10
x"
o
770 -14
10
5 -la
x"
+
825
25
9
6 -15
x..
o
896
0
16
-lI
0
0
0
_li
-2000000
x"
o
896
0
16
-4
0
0
0
-11
-2000000
x"
+
1056
32
0
-6
0
0
0
6
_ll
o
2
_1
0
0
0
x"
+
1386
-6
18
0
6
-2
-2
11
6
o
0
0
0
0
0
-1
x"
+
1408
0
16
4
0
0
0
8
-7
-2
0
o
0
0
0
10
555 6-2
40
11 A
12 BA
0
0
0
o
0
-1
15 BA
BA
20 AA AA
", 2" Bn" _1
0
0
++
21
-2
-2
++
28
-2
0
0
0
0
0
0
0
0
2
-2
0
0
0
0
-1
o
0
o
0
-2
2
0
0
0
0
-1
o
0
0
-1
-1
_1
o
o
0
++
21
-2
0
_1
o
0
0
o
0
++
21 -11
0
0
0
0
0
0
++
63
15
o
++
o _1
_1
_1
-1
2
-1
o
-2
0
0
0
0
0
-5
0
0
o
0
0
0
o
0
0-1
o
-2
-2
-5
0
0
o
000
o
0
0
-1
0 -i5
i5
o
-5
0
o
0
0
o
0
bl1
**
0
o
0
**
blt
0
o
0
0
0
0
_1
0
0
0
0
0
0
o
0
0
_1
o
o
0
o
o
0
6
2
0
0
0
5
5
-3
0
5
0
x"
+
1925
5
_1 -35
-3
Xn
+
2520
24
x"
+
2750 -50 -10
X~
+
3200
1nd
1
2
-8
-1
050 0
-5
0
0
0
-2
-1
-1
o
_1
_1
2·0 -2
-1
9-20000
-1
o
-1
0
0
0
5
10
2
2
0
0
0
-1
_4
0
0
0
0
-5
0
2
0
2
3
,
4
5
5
5
6
2
6
4
10
10
10
12 12
6
6
_4
+
56
8
0
2
0
0
0
X~
o
176
16
o
5 161
0
o
6
x"
o
176
16
o
5-161
0
o
6
Xu
o
616
24
0
4 161
0
0
-9
-11
o
0
x"
o
616
24
0
4-161
0
0
-9
-11
o
Xw
o
924
4
0
6 241
0
0-1
4
_1
x"
o
924
4
0
6-241
0
0
_1
,
1000 -110
0
10
0
0
0
0
0
-1 161
0
0
_1
0
0
_1
o
_1
o
o
0
14
8
o
2
0
0
-1
-1
3'
o
o
o
o
0
0
-1
0
-31
o
o
o
o
0
0
1
0
0
0
0
0
-1
0
0
0
21
-1
0
0
0
0
0
-1
0
0
0 -21
_1
o
-2
0
21
0
0-1
o
0
0
0
-1
o
-2
0 -21
0
0
_1
o
0
0
0
0
0
0
2
o
0
0
0
0
_1
_1
o
0
7
2
2 -31
-1
o
0
0
0
-1
0
0
0
-1
-1
0
o
0
0
o
o
o
o
0
0
0
0
000
o
o
0
0
-6
0
0
0
++
69
5
5-3
3
0
0
0
_1
-2
-2
0
0
_1
o
0
0
0
0
0
0
0
0
0
0
0
2
-1
0
0
_1
-1
+000000000000000
X3
X.
0
X5
o
o
x,
o
x. o x,
-1
o
o
XIO
0
Xli
o
o
-1
X13
o
o
0
X14
o
o
x" ++
48
16
0
0 -24
++
6 11
0
0
0-2
o
-1
0
00000-220
o
0
0
0
0
2
-5
0
4
6
4
0
-2
0-5
-2
0
0
0-1
o
-1
2
2
0
-1
-1
_1
-1
-9
-3
0
0
-1
o
5
-1
2
-2
++
0
0
0
0
0
0
0
0
0
0
L+
o
o
o
o
o
o
o
o
o
o
0
-1
-1
x" 0
X17
_1
o
o
-1
X18
o
0
o
o
0
X'9
o
o
-1
o
o
o
o
-1
0
-1
++000000000000000
2
0
-2
x"
0
0
o o
_1
2
-1
0-1
_1
64
-1
-2
0
++
-1
x,
_1
0
20 fus 1nd 20
-1
-1
o
0
-1
+
0
20 20
10 15 AD Ace AD ACC E* 30A
_1
-5
0
15 30
10 AD AD 200
-2
0
20 -20
12 12
@
@
2
2
++
11 22
@
-2
3 -1
6
0
11 22
0
3
70 -10
0
20
o _1
0
0
10 10
10
Br Br
o
o
o
8
@
"A 20C
3
-1
8
7
'c'C
-1
-1
8
5 12 CO BE CD AE
0
5
7
30 BC BC
o
5
o
8E lOC 100 12B
, ,
o
21
o
24 AD AD 6E
-1
++
0
6C
36 AC AC_ 6D
2
0
-1
8D
@
0-2
o
0
32 B
@
0
-1
-1
32 B
@
@
6
-5
0
@
6
-5
_1
0
5
91
0
@
5 -3
5
70 -10 -10
0
@
@
x,
++
0
_1
0
++
0
4F
o
0
0
liE
'cAC
o
0
0
@
,
-1
o
0
@
40 360 B
5
0
0
020000-20
5
_1
o
_1
x"
0
-1
-1
o
++ 0
liD
96 A
++80400-11202_2_200
i5 -i5
o
@
x,
0
-2
_1
20
-1
-2
-5 -10
2'
0
-1
5 -19
..
fus 1nd
-1
0
1925
,
_1
o
@
1
,, ,, , ,
_1
0
-2
@
320 920 320
20 AA
-5
0
@
@
-2
1750 -10
x"
@
0
+
0 -16
-2
@
-2
+
24
@
3
x..
0
o
0
,,
11
@
-7
X~
0
-2
@
A AA BB A AA BC lOA lOB 11A B" 12'
x,
6 -2
@
0
-1
o
14
111
40 40
o
o
r5
-r5
X~
x" 0
Xn
o
o
0
X23
o
o
_1
X24
20 20
20 20
30 30
o
0
10 10
12
0
r5
0
0
0
o
o
0
X25
o
o
o
o
o
o
o
o
Xu
0
-lI
4
-2
0
0
0-1
4
8
6
6
6
8
8
10
x" 000000000000000
o
o
0
+000000000000000
o
o
0
X28
x" X30
x"
,
0
o
o
0
X32
+000000000000000
o
o
0
X33
00
0
0
0
0
0
0
0
0
0
0
0
0
0
17
x"
o
1232 -16
X~
o
1232 -16
0
-1-161
0
0
7
2
2
31
-1
o
0
0
0-1
o
0
0
1
-1
-1
-1
x"
1792
0
0
-8
0
0
0
-8
2
2
0
0
0
0
0
0
0
0
_1
-1
o
2
0
0
00
0
0
0
0
0
0
0
0
0
0
0
0
0
0 110
o
0
X3S
X~
1848
8
0
-6
0
0
0
-2
8
-2
0
2
0
0
0
0
-2
0
0
0
0
-1
0
0
00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
o 115
X36
1980
36
0
0 241
0
0
5
0
0
0
0
_1 -21
0
0
o
0
0
0
0
-1
-1
+000000000000000
o
o
X37
0
0
_1
2i
0
0
o
0
0
0
0
0
0
0
0 bl1
**
0
0
0
0
0
0
**
bl1
0
0
0
0
x"
o
Xu
o
1980
36
0
0-241
0
0
5
0
0
x"
o
2304
0
0
0
0
0
0
4
-6
-1
o
0
o
X~
o
2304
0
0
0
0
0
0
4
-6
_1
o
0
o
0
0
x..
2520 -24
0
0
0
0
0
-5
0
0
0
0
0
0
0
0
o
00
x"
2520 -24
0
0
0
0
0
-5
0
0
0
0
0
0
0
0
o
o
X~
o
0
1
r5-rS
o-rS
r5
X~
+000000000000000
o
o
0
X39 X~
00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
m5&3
*3
0
X41
00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*7
n6&3
0
X42
GEJ24 G8 24
18
18
[81J
J3 Sporadic Janko group J
3
Order = 50,232.960 = 27 .3 5 .5.17.19
Mul t = 3
Out
=2
Constructions Unitary (2)
3 .. G has a 9-dimensional unitary representation over F 4 = {O,1,w,w} with basis vectors e( z), where z = x + iy is in
F • We also write e(O) = e co ' e«1_i)n) = en' Le. 9 ,
I
j
-1+i
1+1
o
-1
-1-i
-i
or 1-i
5
2
3
4
co
o
7
6
3.G is the subgroup of the unitary group (for the form
~xnxn)
which preserves the sUbspace S of the exterior
square spanned by the 18 vectors e ne n+4 + en+2en+6' eooe O + en_,e n_ 3 , and we ne n+3 +
wen_ 1e n_2.
3.G.2 is generated by the maps (specified by thlO image of e(z»:
z:
A
wXx+YYe(z)
BZ : e(Zz)
(z~O)
2 2 :w(X-x) +(Y-y) e( z)
DZ : W«z+Z)/z)e(z+Z)
E Z
where Z = X+iY is in F , e*(t) 9
= e(it)+e(-it)+e(-t).
W(i)
= w,
Cz
e*(Zjz)
FZ
e(Zz)
(UO)
WC-i) = W. and otherwise Wet)
= 1;
the map FZ is
antil inear .. There are four orbits {O}, I, Il. ill on vectors. (e.g. O. e co ' eO+e4' e co+eO+e4) the minimal weights of representatives being 0, 1, 2, 3 respectively. The stabilizer of <e oo > in 3.G is a group C32xA6).2 ;; 3 x 3:PGL2(9) in which <EO> is normal and AZ ' BZ ' Cz map to the elements t -7 Z+t, t -7 Zt. t -7 Ut of PGL 2 (9). The stabilizer in 3.G of <e co+eO+e4> is 3 x L2 (17), in which the L2 (17) (centralizing F 1 ) is generated by D1 and C_1' whose product has order 17. All non-zero isotropic vectors are of type Il and the group preserves a symmetrical joining relation between isotropic vectors. the vectors joining v (iO) forming a 3-dimensional space J(v). We define J(U) = <J(u):u of type Il in U>. A type If vector v (e.g. v = e O+e4) is contained in five 2-spaces (projectively, lines) inside J(v) , namely two ~~ ones
a distinguished orbit of special 4-spaces, such as <wen+wen+2In=O,1,4,5>, each the disjoint union of 17 even spaces ..
3.G has an 18-dimensional complex representation writable over QCI-3,,/5). for which explicit matrices have been
Complex
computed. In characteristic 2 this becomes the representation given above on the 18-space S.
Max im al subgro ups
[82]
Order
Index
8160
6156
3420
Structure
Specifications G.2
Character
Abstract
Unitary (2)
L 2 (16):2
: L2 (16):4
14688
L2 (19 )
, 19: 18
3420
14688
2880
17442
L2 (19) 2 4 :<3xA 5 )
: 2 4 : (3xA 5 )·2
N(2A 4 )
even line
2448
20520
L2 (17)
: L2 (17) x 2
C(2B)
type ill point
2160
23256
: <3 x MlO ):2
N(3A)
type I point
1944
25840
C3 x A6 ):22 3 2 • C3x3 2 ): 8
: 3 2 .<3x3 2 ):8.2
N(3B2)
base
1920
26163
2~ +4 :A 5
1 ..• 2- +4 .. S5
N(2A)
odd line
1152
43605
22+4:<3 xS ) 3
: 22+4:(S3xS3)
N(2A 2 )
type If (isotropic) point
special 4-space
1a+323ab+324a+1140a+1215ab+1615a
J3 @
@
@
@
1 1 50232960 920 080 243 P power A A A
pi part ind
lA
A 2A
A 3A
A 38
@ 96 A
A 4A
@ 30 A
A 5A
@ 30 A
@ 24 AA
A AA 8*
6A
@
8 A
@
@
27
27
A
B A
B A
8A
9A
B*2
@
@
27 B
10 BA
A
AA
C*4 lOA
@
@
10
12
AA BA
AA AA
@
15 BA
AA
B* 12A 15A
@
15
@
@
@
@
@
17
17 19 19 A A A BA A A A A B* 17A B* 19A Bn fus ind
AA
A
2 448 A
A 26
@
48
@
@
9
48
A BB
A
A
BB
A
4B
6B
8B
@
@
@
@
@
@
16 6 9 9 9 12 A AB BB CB AB AB A AB AB BB CB AB 8C 12B 18A B*7 C*5 24A
@
12 AB AB
@
17
@
AB
17 BB BB
B* 34A
B*
AB
X.
+
x,
o
85
5
-5
4
o
0
-1
-1
o
0
o
0
0
0 b19
**
x,
o
85
5
-5
4
o
0
-1
-1
o
0
o
0
0
0
**
b19
x,
x,
+
323
3
8
_1
3 -b5
*
0
-1
-1
-1
-1 -b5
*
0 -b5
*
0
000
+ooOOQOOOOOaOQX4
x,
+
323
3
8-1
3
*
-b5
0
-1
-1
-1
-1
*
-b5
*
-b5
0
0
x,
+
324
4
9
0
4_1
-1
_1
-1
-1
-1
x,
+
646 -10
7
-2
2-2bS
o
o
0
_1
bS
*
x,
+
646 -10
7
_2
2
-1
o
o
0
_1
x,
+
816 -16
6
6
0
2
0
o
o
o
_1
-1
x..
+
1140
20
15
6
-4
0
0
-1
o
o
o
o
0
0
_1
Xn
+
1215
15
0
0
3
0
0
0
o
o
o
0
0
x.,
+
1215
15
0
0
3
0
0
0
o
o
o
0
x"
+
1615
15
-5
-5
-1
o
0
3
-1
x..
+
1920
0
0
3
0
0
0
0
0
*4 y-9-&4
x"
+
1920
0
0
3
0
0
0
0
0
*2
x"
+
1920
0
0
3
0
0
0
0
0 y9-&4
x"
+
1938
2
3
-6
-2 -b5
x"
+
1938
2
3
-6
-2
x"
+
2432
0 -16
2
0
2
2
x"
+
2754 -14
9
0
-2
-1
-1
x"
+
3078 -10
-9
0
2
-2
-2
3
4 12 12
5
5
15 15
15 15
ind
X.
++
1
3 3
2 6 6
3 3 3
o
*-1
*-2bS
o
o
0
0
o
o
-2
-1
0
0
0
+
0
0
0
0
0
0
0
0
0
0
++
0
0
0
0
0
0
0
0
0
r6
*
o
0
++
18
2
0
2
2
-1
0
0
0
-1
-1
-1
++
9
-3
0
3-1
o
0
0
0
0
O-b17
0
0
0
0
*
b17
-1
-1
++
9 -3
0
3-1
o
0
0
0
0
0
o
0
_1
o
0
0
0
0
0
++
17
-1
-1
-1
*2
0
0
0
0
0
-1
-1
++
16
0
o
0
0 -Y9
*2
*4
0
0
*4 y 9-&4
0
0
0
0
0
-1
-1
++
16
0
o
0
0
*4 -y9
*2
0
*2
*4
0
0
0
0
0
-1
-1
++
16
0
o
0
0
*2
*4 -y9
+
0
0
0
0
0
0
-1
0
0
-1
o
o
o
o
*
bS
*
-b5
0
0
0
0
0
0
o
0
-1
-1
o
0
++
16
0
-2
-1
-1
-1
++
0
4
0
0
++
18
-2
0
-4
0
19 57 57
19 fus ind 57 57
2
4
6
8
8
0
o
o
o
o
-1
o
o
o
o
0
0
-1
6
8
9
9
9
10 30 30
10 30 30
12 12 12
o
o
o
o
b5
o
o
o
o
o
o
o
o
0
-1
o
*
-b5
*
-1
-1
*
b5
*
-b5
-1
-1
o
-bS
*
-b5
*
0
0
o
o
*
-b5
*
-bS
0
0
o
o
o
*
o
o
o
0
0
-1
b5
*-2bS
o
o
o
0
0
_1
o
o
o
-1
-1
17 51 51
o
-2 -b5
x"
02
18
2
3
o
-2
X~
02
153
-7
3
0
-b5
x"
02
153-7
3
0
*
X>o
02
171
11
6
0
x"
02
171
-5
-3
o
-1-2b5
x,.
02
171
-5
-3
o
-1
x"
02
324
4
9
0
4
-1
-1
X~
02
1215
15
0
0
3
0
0
0
o
o
o
0
0
0
0
0 b17
x"
02
1215
15
0
0
3
0
0
0
o
o
o
0
0
0
0
Xn
02
1530
10 -15
o
-2
0
0
o
o
o
o
0
0
x"
02
1530
o
-2
o
o
o
o
0
0
x,.
02
2736 -16
6
0
0
0
o
o
o
-1
-1
x"
02
2754 -14
9
0
-2
-1
-1
o
o
o
o
x"
02
2907
-5
-6
0
3
2
2
o
o
o
0
0
0
x"
02
3060
20
15
0
-4
0
0-1
o
o
o
o
0
0
-1
b
02
3078 -10
-9
0
2
-2
o
o
o
o
0
0
-1
0
2
-2
-1
-1
0
-1
-1
17 51 51
0
0
0
0
b Xw
*
Xll
*-b17
X12
o
0
X13
-1
-1
XI4
0
-1
_1
XIS
0
0
-1
_1
Xl6
0
0
0
0
X17
x..
1
02
1
02
0
*
*
o o
0
*
b5
o
1
0
-1
-1
o
~
DOh
*
0
o
0
-1
0
-1
0
0 b17
-1
0
x,
-1
*
2
0
x,
-b5
-1
0
0
3
-2
-2
*
*-1
0
0
2
0
0
b5
-1
0
2
o
*-1
0
18
o
6 24 6 24
0
++
o _1
0
0
18
3
0
o
02
-b5
0
x,
0
15 15 15
-b5
0
0
15 15 15
*
0
*b5Daaa
x"
10 -15
0
0
0
o
*-1
* -b5
o
0
+
0
0
0
2-2
12
o
0
o
0
0
-1
-1
o
0
0
-1
-1
18
18
18
24
24
-1
o
-1
Xl9
0
X20
x" 34
34
x" x" X~
x" +
02
x" x"
x"
*
+
x"
*
-1
-1
*
+
x'"
0
* b17
-1
-1
*
+
x"
o
0
0
O-b19
**
o
1
0
0
0
-1
-1
o
+2
0
*
+
x" x,.
**-b19
o
x"
-1
-1
o
0
-1
-1
*
+
x"
-1
-1
o
0
0
0
*
+
x"
0
0
0
+
x"
0
* *
+
x"
o
o
~EJ21
GFI7 21
13
[83]
~
5
••
08
11
1110 -10
1110 _10
12
1221
1221
1332 _12
12
1221
1332
1332
1332
011
04
02
02
04
04
011
04
08
11140
0211
0
1332 _12
016
12
21
21
1110 -10
02
30
1110
02
0
0
0
0
0
o
0
0
-3
21
b5
o
o
0
bS
b5
121
0
O·
12
b5
12
-12
2
o
o
o
121
_1
-2
20i_l0
10i-11
2
2
0
0
_1
10
10
_10
o
0248000
10i-l
o
0
o
11
-9
-9
0248000
111
111
02
04
-9
0
0
0
_2
o
-,
o
2
6 6
15 15
12 12
12 12
6
5
0
, ,
0248000
111
6 6
2
o
_1
21
_2
o
_1
o
o o
o
11
11
11
21
_1
0
0
0
-1
_1
21
o _12
-bS
b5
bS
bS
-2
o
_1
_1
21
21
_1
-1
_1
_1
_1
O-~--lI-~
_1
_1
_1
o
-1
-1
2
o
o
o
1+ 1
_2
2
m20-1
o
o
-1
_1
_1
-3
0
o
b5
-bS
o
b5
21
o
o
r3-1
_2
-i-l -r3+1
r3-1
2
2
_1
o
o
20 60 60
22 66 66
020
-b5
bS
_1
o o
o
o
-x37
o m'~0"3
o
o
o
o
-1
_1
_1
_i
o
o
132 132
120 120
o
-1
_1
-1
-2i+l
_1
_1
_i_l
o
~~
_1
o
37 111 111
~O
Cus
12
12
12
12
12
11
21
513+6
-10i3 -1013
-10i3
o
-5i3-~
5i3+6
5i3+6
6
6 6
0002~
00016
0008
000'
ooo~
12
12
12
12
-12
12
12
12
_12
-5i3+6
-513+6
5i3+16
000'
513+6
10
-10
10z12"-1
-513--11
2
2
o
13+2
-i3
12 12 12
o
_1
_1
_2
2
2
-,
o
_1
120
"
BC BC
o
13
13
13
121
-12
12
12
121
10z12**_11
o
o
o
o
_1
513+ 16 -13-2
-513+6
_1
-13
12 12 12
_1
_1
-3i+ 1
r3-1
_1
2
12JK
BC
CC
~8/2
-z 12+21+Z 3
2z3+2
-2z3-2
o
13
o
o
o
o
o
o
-z12+z3** z12-2i_z3**
13
-z12+21+z3
z 12-2i-z 3
-2z3-2
-2z3-2
o
_z12_z3" z12-21+z3**
_1
-13
12 12 12
o
o
_1
-21+1
_i_l
-r3+ 1
-2
2
o
-21-1
_1
2
CB BA 12HI
~8/2
10z12-10z3** 2z3+2 -3z12+2i-z3
-10-2z3-2-5r3+15i-513-5_2z3-2 -10-2z3-2
12
0
0
0
213
_1
-i3
-i3
12 12 12
121
_12
12
12
121
11
101_11
-101-10
-10r3+10
10
20
10i_l
11
_10
12
6 6 6
_1
-3
2
2
-1
6C
BA BA
"
5280/2 BB BA 12EF
_12
12
12
_12
11
0 10i3+20
0
o
0
-3
0
0
_1
21
20
20
-10
o
11
-9
-10
5280 BA BA 58
14
000~-5i3+6
0002-5i3+6
0002-513+6
ooo~
ooo~
0002 -1013
0002 -10i3
02
ooo~
0002 513+6
0002 513+6
lnd
000' : 00012
-x37
o
'002 ooo~
'002
b5 _b5
.00
0002
0002
_1
_1
0
21
."
0
0
_1
A A 3C
o
o
_1
30
o
-9
-9
_10
A A 38
5280 111
0002
.002
." ."
0002
'00
_00
.00
1nd
o m' ~0"3
o
_1
o
_1
o _1 o _2i+l
o
o
o _1
_1
_1
-1_1
fus
m20
o
_1
o
o
o
o
o
_1
_1
o
~~AB
~OAH
",20
_1
-1
_1
-3
_1
-1
-1
_1
AB AA
AA
CA
~~/2
•
45
BBFI147 48 • ~0/8
G.2' G.2"
GBB~~48
-b5
b5
r3+1
12 12 12
_2
o
_1 _31+1
_1
_1
-~--lI7-~
O_~
2
1-1
o
12 12 12
_10
7-~--lI
11 33 33
-10
-10
11 33 33
_1
_1
30
~
11 33 33
10
11 33 33
_1
o -12
o
_1
24 24
,
o
-b5
b5
o
o
1440
_1
o -21+ 1
2i_l
o
b5
b5
121
0
o
1332 -12
02
'"
012
0
0
_12
12
1332
04
12
2
1-2r3_1
_2
_1
b5
b5
0
12
1332
+2
_2
21
0
b5
0
12
12
1332
+2
o
o
_1
_1
_1
_1
o
_1
2
~~
.,
37/12 BA AA A AA AA A 20AD 22A 37AL
~O/~
21
11
_1
_1
_1
_1
-~
-1
1200
AC AC
~812
-2
b5
0
bS
0
121
0
1332 -12
0
0
2
_1
_1
-1
11
0
11
-1
1 -3
lOi-l1
-2
_1
20i-l0
_1
21
_1
_1
_1
_1
-~
_1
21
21
o
o
21
o
7
7-~7-~
_1
_10
077-~--lI
_21_1
-10
_1
-1
_1
-11
2
~8/2
•
o
@
o
BA'
@
'3
AB AA 12AB
o
-3
11
M
121 121 121 BAAAAA AAAAAA lOAB llA 11B l1C 110
32~
5
@
o
o
o
1331
-3
""
_1
2
o
1
6A
5AB
A
A AA A AA
,
~0/2
~a
~O/2
1221
21
02
02
1221
1110 _10
02
2
10
1110 _10
1110 -10
2
10
30
-6
10
_10
10
-2
310
""
1110
10
10
10
10
10i_l
_1
11
370
11
2
_10
A
A 4e
,
, llAB
48
310
111
+2
02
-9
2
110 _10
111
A A 3A
A A 2A
5280/2
•
~0/2
G.2 is a maximal subgroup of Janko's group JIj
tl
preserving a non-singular Hermitian form;
PGU (11) :: G.31 51)3(11);; 3.G; PSU (l1);; G 3 3
10915680 280 144
P power pt part iod lA
HUlt
GU 3 (11) :' 4 lC 3. G.:3 : all 3 )( 3 matrice:'l over F 121
Abbreviated character table.
Remark
Unitary
Constructions
Order = 70,915,680 = 2 5 .32 ,5.,,3. 31
lklitary group U (11) ;; 2A2 (11l 3
o
bS
os
b5
os
2
o
o
15 15 15
os
o
21
-2
2
o
_1
o
o
o
_1
_1
24
24 24
2i
o
-b5
b5
bS
b5
_2
o
30
30 30
-'5
b5
'5
b5
b5
_2
o
30AB
AA'
'BB
os -2
_1
o
-1
_1
o
2~AB
"
BA
'5
o
o
15AB
AB
BB
~O/2
• ""AB
o
z3+1
z3+1
z3+1
13
13
13
13
-~3
-'3
-'3
33 33 33
o
_1
_1
-3
33'
AB
-2
-2
o
13
z3+2
-'3
-'3
66 66 66
_1
z3+1
z3+1
o
020
-bS
b5
b5
21
_1
_z 1211II-1
z3+2
-'3
132 132
132
_1
_1
1.1
r3-1
_1
-2
_1_1
o
132A8
ABF AAE
ijij/2
020
-1>5
1>5
_1
o
_1
-z121111
-z3-1
z3+1
_z 12+z31111
o z12-2i-z3**
o
o
_1
_1
120 120 120
o m'~0""3
o
o
o
o
o
o
m m m
-x37
o -x' 333"~6
-1
-1
_1 -z3-1
o
020
-b5
OS
_1
o
o
_1
_1
o
120AH
AAA
CCA
o m'40**3
o
_1
o
o
o
o
_1
111AL
66A
37/12
32:2S~
32:2A~
2 3 :°8. 2
1
+6
+~
+2
+8
+~
+2
+2
+2
+2
+2
+2
02
+2
"" +12
""
""
..
lIII
""
""
11II
11II
11II
Cus 1nd
11II
*It
11II
++2
++2
++2
"++
10
0
10
o
_1
0
12
0
o
12 -12
12
11
o 11
11
_1
o
10 _10
10 _10
10
o
10
11
o
6
0
o
o
_1
_1
-2
_1
0
o
_1
o
o
o
-2
o
0
10
o
b5
b5
o
_1
o
o
o
o
12
o
0
_1
_1
_1
o
_1
10/2 12 BB AD AB AD lOCO 12L
•
1a+ 1331a
Character
12 C A 8C
..
320 320 12 A A A8 A A AB fus ind 2B ijD 6D
1
,
111: 6
EC AC
_1
H).2
111: 3
""
_1
x
122 :0 12
(J
37: 6
40/8
3
111 +2: (5x2~: 2»
G.5
122 :5
3
3 , H
111+2: 120
G.3
(~2x3):D12
2
PGL (9)
L 2 (11):2 x 2
(2(L 2 ( 11)x2) .2).2
111+2:{5x8: 2)
C.2
AAB ,AB
o -i3-2
o
_1
60
60 60
o
.20
-b5
OS
os
2i
-1
_1
AA' 6OAO
'1£
~O/~
32 :°8
98~9~0
~0/2
37: 3
638880
111
~O/2
(~2X3):S3
72
A6
196988
360
2~6235
A6
196988
288
A6
196988
L2 {11l:2
5372~
1320
360
L 2 (11):2
5372~
1320
360
L2 {11):2
~372~
1320
11~+2:~0
St.ruct.ure
2(L 2 (11)x2).2
1332
Index
13~31
5280
532~0
Q-der
Maximal subgroups
20
-b5
b5
o
_1
22
o
o
o
_1
o
_1
_1
_1
o
_1
o
o
10/2 11 BD BB AD BB 20EF 22B
•
N(3A 2 )
24
o
o
_1
o
o
-r3
o
_1
o
2~CD
AC
QC
12/2
..2
n
+2
. .2
..2
11II
+6
+~n+~
+2
..2
..2
.. n+6
..
n
H H
.. ..
..2
H
..
++
"
j
m2
+2
n
•
•
02
+2
+2
+2
+2
""
III
""
+2
+2
• •
+2
+2 +~
III
.".
+~
+2
.. +12
.. +12
n+81111+8
..
""
n+2."+2
III
""
11II
u+2n+2
• •
n
44 Cus ind fus ind
O
-1
o
o
o
_1
I
"
fus 1nd fus ind
0:
_1
_1
111
~~CD
AO AD
22/2
• •
base U l (l331)
N(37A-L)
°3(11)
°3(11)
(1)
°3
non_isot.ropic point
isotropic point
Ulitary
N(3A). N(2A 2 )
C(2B}
N(2A), C(JB)
N{11A)
Abstract.
Specifications
"-'"
~ ~
~
d V-J
Og(2)
Orthogonal group 08(2) :: D1I (2) Order,. 174,182,400:. 2 12 .35 .52 .7
Mutt:. 2 2
Out :. 53
Constructions
G.2' G.2"
a
Orthogonal
008:(2) " PGO (2) ;; 308(2) :: psoa:(ZJ ;; G.2 : all 8 x 8 matrices over F2 preserving a non-singular quadratic form of
Weyl
2.G.2: the Weyl group of the
~EJ~~EJ53
Wltt defect 0, for example x1 x2 + x3x4 + XsX6 + x-rx8; 08:(2) :: G
standard base are
Ea
root lattice, generated by the 120 reflections in the 240 root vectors, which in the
(;tl.~l.O.O.O.O.O.O) (56)
and
(:t!.~.~.~.~.±!.~.~)
(even sign combinations) (64).
BB
Various other bases are useful. for example that described in the nCayleyn construction below. and that in which
~(~3._!6)s
the root vectors are
(811) and (l,_'.0 7 )S (36) on 9 coordinates adding to zero.
Redooing mod 2 shows the isomorphism with 0a(2). Caytey
2'.G I 2".G I
22. G : the isotopy group of the non-associative ring of Cayley integers. The real Cayley algebra is spanned by l eo = "
10 ••••• 16 with the condition that for the sets of subscripts:
{co,l,2.41, {oo,2,3.5}. £co,3,II,6J. {co,O,1l,5}, {oo,1,5,6J. too,O,2,6}, {co,O,l,3}
53
--,I
30
0
I 27
o 14
::
scaled copy of the Ea root lattice) of vectors ~anin (n = 00.0••••• 6) for which all 2a n are in Z and {n:a n in Zl is one of:
O. {0.l,2.1I1. {0.2,3.5}, £O.3,1I.6}. {oo.0.II,5}. {O,l,5,61. {oo.O,2,6}, {oo,O,l.3} or their cOlllplements. There are 2110 unit Cayley nU!l'lbers. corresponding to the E8 root vectors. An isotopy is a triple of maps (A,B.C) such that xyz = 1 ~ xAyBzC
= 1. There ar-e two such isotopies (A.B.C) and
(-A.-B.C) for- each deter-minant 1 symmetr-y C of the lattice. The isotopy gr-oup can be extended to 22' G' S3 by adjoining the triality automorphism (A,B.C)
~
(B.C,A). and the duality automor-phism (A.B.C)
~
(J-1B-1J.r'A-1J.rlc-1J) wher-e J is the Cayley conjugation map x ~x. The 1sotopies are gener-ated by (Lu.~.Bu)' Where Lu : x ~ ux.
Ru :
x ~ xu.
Bu :
x ~ u- 1 xu- 1 and u ranges over the 2110 unit Cayley nWlber-s. The r-eflection
in u is -J.Bu ' Presentation
2.G.2
~
Remark: G,S3 is a maximal subgr-oup of the Fischer- group Fi22
Specifications
Maximal sUbgroups Order
Index
Structure
11151520
120
S6(2)
11151520
120
S6(2)
11151520
120
S6(2 )
[
12902110
135
2 6 :A 8
: 26:3a
12902110
135
2 6 :A 8
3
12902110
135
2 6 :A 8
18111110
,60
18111110
960
1814110
960
" " "
G.2 :S6(2)x2
,2 "'[L 3 (2)>2)
I
155520
1120
155520
1120
(3xU 4 (2»:2
I
110592
1575
21+8:(S3xS3xS3)
: H.2
15552
11200
11 3 : 23 ' S4
111400
12096
(!sxA 5 ):z2
111400
12096
(A5 XA 5):z2
14400
12096
(A5xAS): z2
"/3"2, 3
I
[2 12 .32 ]
Character
Abstract
Orthogonal
Weyl
eayley
"3(3),2 , 53
la+35a+8I1a
C(2F)
non-isotropic point
root vector, Art£i
<J .Bu>
I I
: S3 x UIj(2):2
: S3wrS 4 : SSW r2
I
<J .Lu>
la+351>+-811 b
<J.~>
la+35C'"8I1c
2
13
.3 ]
[2
la+50a+8Ila
N(2 6 )
la+50a+8I1b
N(2 6 ) = N(2A 35C28 ) N(2 6 ) = N(2A 350 28 )
maximal isotropic subspace
null subalgebra mod 2
maximal isotropic subspace
null subalgebra mod 2
1a+ 35a+84a+300&+700b
N(3A)
minus line
la+35b+-811b+- 300a+700c
N(3B)
U4 (2)
la+35C'"811<:+300a+700d
NC3C)
UII (2)
la+50&+84abe+300&+972a
N(2A)
isotropic line
N(3 11 ) = N(3A4B4C4016E12)
0'2(2) wrS 4
A2 +A 2 +A 2+A 2
N(2B,3A,5A)2
0ij(2)wr2
A4+A4
N(2C.3B.5B)2
01j(1I)
N(2D,3C.SC)2
01j(1I )
1a+50a+allc
155520
C3xUIj(2»:2
I
G'S 3
: 39
1120
C3xU 4 (2»:2
G.3
= N(2A 35B2a )
isotropic point
standard base
congruence base mod 2
1a+8I1a+175a+700b
I
I 1
3l ""2S'
: H.3
1a+841>+-175a+700c la+811<:+ 175a+700d
j3l""(25"2)
: H,S 3
: H.3
: H,S3
52
52
1
''',
1
''''
A2 +E 6
[85]
Ot(2) •
@ @ @ @ 110 46 116 46
@
@
3 71
@ @ 77 77
@ 1
@
@ 11
P power p' part ind lA
U
A A
~
A A
~
A A
~
A A
~
A A
~
A A
~
A A
A A
~
W
A A
3£
A A
4A
A A
liB
B A 4C
@
@
, , • •
@
C OD
o
liE
,
,
7
32
, 32
27
.. • • • •
21
21
20
A
A
B
D
0
D AB
A
A
A
A
A
A
7A
M
M
~
~
20 BC
AB BC ~ 10' lOB lOC
••
36 " " 15 15 cc15 BO " " "12<" '" " 158 15C 12B 12C 120 12E 12' 15'
20 144 CO CO
BA BA
144 CA CA
CA
QC
DA
AC
2" EO
BB BB
CE
CC
120
x,
+
1
1
t
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
X,
X,
+
28
-Il
11
4
11
_11
10
10
10
1
1
8
0
0
0
0
0
3
3
3
2
2
2
-2
-2
_2
5
_1
_1
_1
1
1
1
_1
0
-2
2
1
1
1
_1
_1
_1
2
2
2
_1
0
0
0
0
0
0
X,
X,l
+
35
3 11
-5
-5
3 14
5
5
_1
2
1
_1
3
_1
_1
_1
5
0
0
6
-3
-3
2
3
0
0
0
2
-2
-2
0
0
1
1
2
_1
_1
1
0
0
-2
1
1
1
0
_1
_1
_1
0
0
):4
+
35
3
-5
11
-5
3
5
111
5
-1
2
7
_1
_1
'3
_1
_1
0
5
0
-3
6
-3
1
2
3
0
0
0
-2
2
-2
0
0
1
1
_1
2
_1
0
1
0
1
_2
1
1
_1
0
_1
0
_1
0
x, x.
x_,
+
35
3
-5
-5
11
3
5
5
14
_1
2
7
-1
_1
_1
3
_1
0
0
5
-3
-3
6
1
1
3
0
::l
0
-2
_2
2
0
0
1
1
_1
_1
2
0
0
1
1
1
_2
1
_1
_1
0
0
0
_1
X,
x~
+
50
18
10
10
10
2
5
5
5
_4
5
-2
6
2
2
2
2
0
0
0
-3
-3
-3
1
0
3
3
3
1
1
1
_1
1
0
0
_1
_1
_1
0
0
0
1
1
1
-2
_1
_1
_1
0
0
0
x~
2
X7
+
811
20
20
4
II
II
21
-6
_6
3
3
II
II
II
0
0
0
II
_1
_1
5
2
2
5
_2
-2
_1
5
_1
_1
_1
1
1
1
0
0
0
0
0
0
0
_1
_1
1
_2
_2
1
1
0
0
1
_1
_1
X,
X~
+
84
20
II
20
II
4
_6
21
-6
3
3
4
II
0
4
0
0
_1
4
_1
2
5
2
_2
5
_2
_1
_1
5
_1
1
_1
1
1
0
0
0
0
0
0
_1
0
_1
_2
1
-2
1
0
1
0
_1
1
_1
X.
84
_1
X~
+
20
4
4
20
4
-6
-6
21
3
3
4
4
0
0
4
0
-1
_1
II
2
2
5
-2
-2
5
X'"
+
175 -17
15
15
15
_1
-5
-5
-5
13
4
-1
_1
_1
_1
_1
3
0
0
0
-5
-5
-5
3
3
3
Xli
+
210 -14
26
10
10
2
39 -15 -15
-6
3
6
-2
2
_2
-2
2
5
0
0
7
1
1
_1
X'l
+
210 -111
10
26
10
2 -15
-6
3
6
_2
-2
2
_2
2
0
5
0
1
7
1
1
Xl.l
+
210 _14
10
10
26
2 -15 -15
39
_6
3
6
-2
_2
_2
2
2
0
0
5
1
1
7
X..
+
300
12
20
20
20
12
8
0
0
0
0
0
0
0
0
6
6
_1
5
1
1
_1
1
0
0
0
0
0
0
_1
_1
0
-2
-2
1
1
0
0
1
_1
-1
1
X~
-2
_2
0
0
0
2
0
_1
_1
1
1
1
0
0
0
_1
_1
_1
_1
_1
_1
_1
0
0
0
X'"
1
-2
-5
1
_1
1
1
_1
0
0
0
0
0
0
1
0
0
3
-3
-3
0
_1
1
1
_1
0
0
X"
_1
1
-2
1
-5
1
_1
1
_1
0
0
0
0
0
0
0
1
0
-3
3
-3
0
1
_1
1
0
_1
0
Xll
1
1
-1
_2
6
2
2
2
3
1
-5
1
1
_1
_1
0
0
0
0
0
0
0
0
1
-3
-3
3
0
1
1
_1
0
0
_1
X"
0
0
2
2
2
0
_1
2
_2
0
0
0
0
0
0
2
2
2
_1
0
0
0
0
0
0
X,.
30
30
3
-6
-2
35
35
35
-1
-1
26
2
-2
_2
-2
2
0
0
0
-5
-5
-5
_1
_1
_1
7
1
1
1
_1
_1
_1
1
0
0
0
_1
_1
_1
0
0
0
_1
_1
_1
_1
1
1
1
0
0
0
x"
5 -19
30
30
30
12
3
-7
1
-3
-3
-3
1
0
0
0
6
6
6
2
2
2
0
3
3
3
_1
_1
_1
_1
0
_1
_1
0
0
0
0
0
0
2
2
2
2
0
0
0
0
0
0
X,~
x"
+
350
-2 -10 -10 _10
+
525
45
Xl>
+
567
Xl"
+
567
x..
+
X,.,
0
5
5
-9
39
-9
-9
-9 81
0
0
0
0
15
_1
_1
3
3
_1
7
-3
-3
9
0
0
-3
0
0
0
0
0
0
0
0
0
0
0
-1
_1
0
0
0
_1
1
1
-3
0
0
0
_1
0
0
1
0
0
Xl>
-9
-9
39
-9
-9
0
81
0
0
0
15
-1
3
_1
3
_1
-3
7
-3
0
9
0
0
-3
0
0
0
0
0
0
0
0
0
0
_1
_1
0
0
0
1
-1
1
0
-3
0
0
0
_1
0
0
1
0
x,~
567
-9
-9
-9
39
-9
0
0
81
0
0
15
-1
3
3
-1
_1
-3
-3
7
0
0
9
0
0
-3
0
0
0
0
0
0
0
0
0
.1
_1
0
0
0
1
1
_1
0
0
-3
0
0
0
-1
0
0
1
X,.
+
700
92
20
20
20
_4 _20 -20 -20
-2
7
0
8
0
0
0
0
0
0
0
_4
_4
_4
_11
_4
_4
2
-1
_1
_1
_1
_1
_1
_1
0
2
_2
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
x,.,
60 -20 _20
X11
Xl'
+
700
_ll
Xn
+
700
_ll -20
Xl.l
+
700
_ll _20 -20
60 -20
X,.
8110
8
X"
8110
8 _40
x...
8110
8 _110 -110
X"
972 108
60
211 _110 -40
12
55
10
10
7
4
_4
_4
II
0
0
0
0
0
0
_1
2
2
3
-2
-2
-1
_4
2
2
0
-2
_2
0
0
0
0
_2
1
1
0
0
0
_1
2
2
_1
1
0
0
0
0
0
12
10
55
10
7
4
-4
_4
0
4
0
0
0
0
0
2
_1
2
-2
3
_2
_1
2
_4
2
-2
0
_2
0
0
0
0
1
_2
1
0
0
::l
2
_1
2
_1
0
1
0
0
0
0
X>l
12
10
10
55
7
4
-4
_4
0
0
4
0
0
0
0
2
2
_1
-2
-2
3
_1
2
2
_4
-2
_2
0
0
0
0
0
1
1
-2
0
0
0
2
2
_1
_1
0
0
1
0
0
0
x>..
8 _211
0
8 -10 -10
0
2
2
_1
_1
_1
_1
3
_1
_1
_1
0
0
0
0
0
0
_1
0
0
4
-2
-2
1
0
0
0
1
0
0
X>4
8 _10
2
0
2
_1
_1
_1
_1
_1
3
_1
-1
0
0
0
0
0
0
0
_1
0
-2
4
_2
1
0
0
0
0
1
0
Xl_' X...
30
30
3
3
16
0
0
0
0
0
-5
0
8
30 -211
30
3
3
16
0
0
0
0
0
0
-5
211
8
30
3
3
16
0
0
0
0
0
0
0
36
12
0
0
0
0
0
0
8
0
0
0
0
-3
-3
50 -30 -30
-6
15
15
15
-3
6 -10
_2
2
_2
-2
_2
0
0
_6
15
15
15
-3
6 -10
_2
_2
2
-2
_2
0
0
-6
15
15
15
-3
6 _10
_2
-2
_2
2
_2
0
0
811 -211 -211
-6
-6
0
0
0
0
0
0
_1
4
4
4
-8
-6
-6
0
0
0
0
0
0
4
_1
4
-8
11
84
-6
-6
0
0
0
0
0
0
11
4
_1
-8
-8
11
36
211 -110 36
1050
58
1050
58 -30
1050
58 -30 -30
XJ,
131111
64
64
0
0
0
X.l>
1344
611
0
64
0
0 -24
1344
611
0
0
611
X,.,
39 -15
_1 -2
30
x,~
X>.
+
X",
50 -30 50
30 -211
811 -24
0 -10
-5 -10 _10 -3
8
2
2
0
-1
_1
_1
_1
_1
_1
3
_1
0
0
0
0
0
0
0
0
_1
_2
_2
4
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-1
_2
2
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
Xl'
0 -17
7
7
_1
3
3
1
4
-2
-2
2
0
0
0
0
0
0
0
0
0
0
0
0
_1
_1
_1
_1
_1
1
1
0
0
0
X",
0
7 -17
7
3
_1
3
1
_2
4
-2
0
2
0
0
0
0
0
0
0
0
0
0
0
_1
_1
_1
_1
1
_1
1
0
0
0
X""
0
7
7 -17
3
3
-1
1
_2
_2
4
0
0
2
0
0
0
0
0
0
0
0
0
0
_1
_1
_1
_1
1
1
_1
0
0
0
X.'"
-8
4
0
0
-2
11
_2
_2
-2
0
0
0
0
0
0
0
0
0
_1
0
0
0
0
0
0
0
0
0
-1
1
1
X.ll
-8
0
4
0
_2
_2
4
-2
0
-2
0
0
0
0
0
0
0
0
0
_1
0
0
0
0
0
0
0
0
1
-1
1
0
0
11
-2
_2
_2
4
0
0
-2
0
0
0
0
0
0
0
0
0
_1
0
0
0
0
0
0
0
1
1
_1
x" X,..
X_,_,
+
X,.
+
11100 -72
110
110
110
-8
50
50
-11
5 -16
0
0
0
0
0
0
0
0
_6
-6
-6
-2
-2
-2
0
-3
-3
-3
1
1
1
1
0
0
0
_1
_1
-1
0
0
0
2
2
2
2
0
0
0
0
0
0
X,..
X."
+
1575 -57
15
15
15
-9
90 -45 -115
9
0
11
3
-1
_1
_1
_1
0
0
0
-6
3
3
_6
3
3
-3
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
2
_1
_1
_1
2
_1
_1
0
0
0
X..,
x",
+
1575 -57
15
15
15
-9 -45
9
0
11
3
_1
_1
_1
_1
0
0
0
3
-6
3
3
-6
3
-3
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
_1
2
-1
_1
_1
2
_1
0
0
0
X....
X_"
+
1575 -57
15
15
15
-9 -45 -45
90
9
0
11
3
_1
_1
-1
_1
0
0
0
3
3
-6
3
3
_6
-3
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
_1
_1
2
_1
_1
_1
2
0
0
0
X_"
X.'"
+
2100
52 -60
20
20
11
75 -60 -60
-6
3
12
-11
-11
0
0
0
0
0
0
-5
4
11
3
_4
_4
-2
1
1
1
3
_1
_1
1
0
0
0
0
0
0
0
0
0
3
0
0
0
_1
0
0
0
0
0
X_'"
x.w
+
2100
52
20 -60
20
II -60
-6
3
12
-11
0
_4
0
0
0
0
0
4
-5
4
-ll
3
_4
-2
1
1
1
_1
3
_1
1
0
0
0
0
0
0
0
0
0
0
3
0
0
0
_1
0
0
0
0
x_,.
X..,
+
2100
52
20
-6
3
12
-4
0
0
-11
0
0
0
0
4
4
-5
_4
_4
3
-2
1
1
1
_1
_1
3
1
(,
0
0
0
0
0
0
0
0
0
0
3
0
0
0
_1
0
0
0
x..,
X..
+
2240 -64
611
0
-11 -40 -40 -10
2
0
0
0
0
0
0
-5
0
0
_4
8
8
11
0
0
2
_4
2
2
-2
0
0
0
0
0
0
2
_1
_1
_1
0
0
0
0
0
0
0
0
0
1
0
0
X..
x.,
22110 -611
0
611
0
X."
22110 -611
0
0
611
X....
2268 -36
X4_'
+
20 -60
2268 -36 -36
12 -36
2268 -36 -36 -36
X4'
2835 -45
12
51 -45 -45
2835 -115 -115
x..
0
12 -36 -36
x...
X..
,..
224
...
1100
672 840
o ,
,.. ,. '" x,,,
...
1008
672
x_
x"
,,, ,,, ,,,
...
1008
o " o "
1008
o "
1296 11100 ...
11100
+
21100
o o
-2' 60
35811
,
"'00
,," 11536
o o o
60
,
...
5600
0_80
o
,,' no:
1
2
2
X'"
,,,
,,,
,,' 00'
1
,2
2
0
0
0
0
0
0
0
0
0
1
0
X.>
0
_1
0
0
0
0
0
0
0
0
0
1
X.,
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
_1
_1
-3
0
0
0
_1
0
0
1
0
0
x..
12
0
81
0
0
0 -12
4
0
_4
0
0
3
-2
3
0
9
0
0
-3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
_1
2
_1
0
-3
0
0
0
-1
0
0
1
0
X4'
12
0
0
81
0
0 -12
4
0
0
_4
0
3
3
_2
0
0
9
0
0
-3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
_1
_1
2
0
0
-3
0
0
0
_1
0
0
1
X....
3 -81
0
0
0
0
3
-5
3
3
_1
5
0
0
-9
0
0
3
0
0
0
0
0
0
0
0
0
0
0
_1
_1
0
0
0
1
0
0
3
0
0
0
1
0
0
_1
0
0
X.7
3
0 -81
x••
3
0
3
0
0
-9
0
0
3
0
0
0
0
0
0
0
0
0
0
_1
_1
0
0
0
0
1
0
0
3
0
0
0
1
0
0
-1
0
5
0
0
-9
0
0
3
0
0
0
0
0
0
0
0
0
_1
-1
0
0
0
0
0
1
0
0
3
0
0
0
1
0
0
_1
X.,
0
0 -40 -40 -40
14
-11
0
0
0
0
0
0
0
0
0
8
8
8
0
0
0
2
-11
_4
_4
0
0
0
0
1
0
0
_1
-1
_1
0
0
0
0
0
0
0
0
0
0
0
0
0
x_'"
0
64
-8
-8
0
0
0
0
0
0
-11
-'I
_4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
1
0
0
0
0
0
0
0
8 -30 -30 -30
15
-3
-8
-8
0
0
0
0
0
0
0
-6
-6
-5
_2
-2
-2
3
3
3
3
1
1
1
_1
0
0
0
0
0
0
0
0
0
-2
-2
_2
_1
3
0
0
0
0
_1
1
1
0
0
0
0
0
0
0
0
0
7 111
8
8 9 9 9 10 818181810
20
20
64 0
o
5
64 0
0
0
0
-9
3
3
3
3
3
3
3
4
4
,
8
6
6
6611
4
_4
-'I
o o
_1
2
4
o o 11 -16 _16 2 2 12 o o 31 4 4 11 4 8 o o 34 -20 -20 -2 -2 16 o o 14 -40 -'I -1 2 16 o o 111 -4 -40 -1 2 16 o o 25 -20 -20 II 10 -8 o o 16 16 16 16 -2 0 o o 74 20 20 -7 2 8 o o -30 -84 24 -3 6 16 o o -30 24 -811 -3 6 16 o o 21 -60 -60 3 -6 20 o 0903636908 o 0-4536-72908 o 0-45-72 3 6 9 0 8 o o 81 0 0 0 0 24
,2
,2
_1
0
-3
2 :2
0
o o o
4
o
o o o Q o 2
o
o o o o
0
2
o o o
o o
-2
o
334
:2:2:2:2:2:2
o
03-2-2-6
-8
-2 _2
_4
0
0
1
669
0
0
0
15
o o
0000_9
o
o
o
0
0
0
12
o o o o o o
00003
o
0-5009
, , , ," , ,2
0000-9 00003
o
5
0
0
18
011_640
o o o o o o
0
0
0
-3
0-466-9
o
0
0
0 -12
555 :2
:2
:2
555 :2
:2
:2
o
2 -2
o o o o o o o o o
o o o 6
o o o o o o o o o o o
0
o o o o o o o o o
0 -3
_1
000
_1
o -3
_1
-3
o o
-3 _2
0
000 000 000
0
000
-7
003
3
000
o 6 12
:2
0
6 12
o o o
:2
12
12
6 :2
~
~
2
2
_1
_1
_1
0
2
_1
_{
_1
1
0
o o o
0-2-2-2_20
1 -2
-2
1_1
3
0
0
0
1
_1
2
2
2
1
15 15 15 303030
o 0011X" o o 1 _1 _1 X" o o 1 _1 _1 X'" o o -1 0 0 x.<7 o o _1 0 1 X" 0
Ox""
0
0
o
0
o
0
1
1
2
0
1
1
0
o
0
_1
_1
_1
1
0
o
_1
0
0
X'"
-2
0
0
o o
0
0
0
0
0
1
0
0-2_2410
o
0
1
-1
X6"
-2
0
0
o
0
o o
o o o
1
0
o o
o
0
0
000
1
0
0-24-210
o
o
_1
1
x....
-2
0
0
0
o
-2
_1
0
o
5
o o
0
0
0
2
o o
0
0
0
_1
0
0
0
_1
_4
o
0
0
o o o o o o o o o o o o o o o o o
o o o
0
C
0
0
2
0
0
2
0
0
-2
0
2 2
000
o o
o o
o o o o o o o o o
o o o o o
o o o o o o o o o o o
6
12 12 12 12 12 1212121212
1
6 6 :2
X"
0
0 _2
0
0
0
-2
0
0
2
0
0
2
0
0
2
0
0
0
0
0
-2
0
0
0
0
0
0
0
0
0
0
0
2
0
0
6
0 _1
0
1
1
1_1
0
1
1
1
1
0
0
_1
_1
2
_1
0
0-211_210
0
_1
2
_1
_1
0
0
0
0
o
0
0
0
_1
0
0
o
0
0
0
-1
0
o o o
0
o
0
0
0
0
_1
0
1
0
0
0
0
1
0
_2
2
_1
-1
0
0
-2
_1
_1
_1
0
0
0
0
0
000
0
o o o o o
0
1
1
1
0
001_2100
o o o o o
0
0011_20
0
0 _1
0
o
2
0
0
-1
0
0
o o
0
000
1
0
C
0
0 0 1
o
0
0
_1
2
-1
o
_1
_1
2
0
0
0
1
1
1
0
0
0_200000
0
0
0
o
o
2
0
0
0
0
o
o
0
_1
_1
12
6 '2
12
7 :2
8
12
12
6 :2
7 :2
8
6
0
_1
_2
:2:2
6
0
_1
o o o
-3
0
o
o o
0 0
0
00
o
-3
0
o
000
-3
0
o
3
0 0
o o
0
0
01-2-2_21
003
o o o o
o
1
0
X.,
00-21100
3
3 3
o o
X"
0
1
o o o o o o o
-6
0
_1
0
0
o o o o
o 0 -3
0
0
_1
0
0-2-2410
000
003
0
2
-1
0
o
1
_2
0 0
0
000
0 -3 0 -3
o o o o o o o o o o
0 12
0 0
o o
o
o o
o
0 12
0 0
o o o o
3 3
o
_2
o -3
0114-60 0_4_4_40
o
o 2
o
o
o o
3
o
2
o
o o
_11
3
-6
0-500-3
006
03-2-23
-16
3
-8
_2
o o
0646464_8_80
2
-3 -3
o o o
o o
o o o o o o
4 :2
o o
0
o o o
_4
0
3 :2
0-2-2-20 0500-6
o o o
-4
o o
12
009
_1
o
o o o
0
2_16
0722_9
o o
03-2-23
-4
0
o
o
-'1
-,
-16
0
0
2-6
o o o o o o o o o o
o
o
o
11
3
6
o o
0
-3
_4
6
2
20
_2
-11
4
0
11
_2
1
-5
o
6
6
11
o
15
0
6 6
-6
0 -12
60
0
12
_1
-6 -16
o
0
12
_1
0
10 -24
0
6 6
o o
o o o o o o o o
12
-8
0
6
o o o o
0
8
16
0
6
0
-2
-4
6
0
6 6
0500-6
1
-'I
-3
0
5 10
o o
8
-4
0
5 10
4
_2
8-4
0
0
o o o o
2 _2
1
-13
0 5 10
o o o
o o
o o o o o o o o
3 :2
35811
16
0
2
0
3 :2
+
o o
_1
_1
0
233 :2 :2
3360
2
_1
9
0
32110
+
_1
0
3
20
+
,.
0
0
3
o o -81 o o 20
,,, ". ,,. ,..
o -110 o "
0
0
-2
60
2800
0
0
0
-75
+
0
-2
0
o
x"
-'10
0
0
0
20
o
_2
0
_4
o o
2800
0
_4
4
o
2800
2
2
0 -12
0
+ +
_11
2
0
0 0
60
2
2
0
o o -25 20 20 o o o 95 -40 -40 o o o 60 60 60 o o o 55 -80 -80 o o o -5 1l0-140 o o o -5-1110 40 o o o 81 0 0 o o o -6 -60 -60 o o o -611 80 -64 o o o -64 -64 80
o -80 o -40
Xn
o o o o o o
2
11
0
o o
...
XM
0
0
5
o o
o
4
0
0
2
o o o
0
_4
0
o -'1 o 24 o 16 o -16 o -16
...
560
8
8
0
o
,,,
",
X~l
-11
8
81
2
o " o 32 o 56 o 16 o 16
8
-5
12
27 -'15 -45 -45 -21
o
0
0
_1
122
224
X"
". ,•.
-5
0
_1
6075
o o
0
0
3
+
"
0
-5
0
160
0 0
3
40
112
0 0
_5
0
...
0 0
3
110
+
0 0
3
0
x"
0 0
3
110
'"
2 2
3
0
,
-11 -10
3
4200 -211
.
-4 -40 _10
3
4096
X"
0 -40
0 -110 -40
0
+
X,.
0
75
0
+
2
75 -60
11 -60 -60
0
X'l
,,'
90 -115
0
3200 128
0
50
0
51
+
0
0 -211 -211
0 -81
51 -45
2835 -45 -45 -45
x_'" x"
x,_,
[86]
A A
• ••
1 1 6ll 300 300 300 728 128 128 288 288 288 216 216 216 216 72 72 12 211 E AAABACAABBC CD DA EA EA EA ~ ~ ED ~ A AA BA CA AB BC CD CA EA EA EAEBECEDEE Ilf SA 58 se 6A 6B 6C 60 6£ 6f 6G 6H 61 6J 6K R M 6N
, , , ,, ,,
1711182400 592 060 030 080 072 760 760 760 944 6118 608 512 192 192 192
000
0
0
0
0
0
2
2
2
_1
_2
2
_1
2
2
_1
2
o o
2
-4
_1
_1
o
2
_1
_1
o o o o o
2
-3
o
0
_1
2
2
-1
_1
0_1 _1
1
_4_421 -2-210
Xbl
0100XM
o
0
1
1
x""
01-2X~;
o
-2
1
x""
1
0
0
X".,
00
o
OX.,.,
o
OOOOX7I OOOOX"
3
o
0
0
_1
_4
2
_1
1
o o
OOOOX"
_1
o
_1
2
_4
-1
1
o
OOOOX"
o o o o o o
-3 2
o
0
0_1
o
0100X;6
2
2
2
0
o
o
0
o
0
0
0
0
000
0
0
o
0
0
_2
_2
o 0101X,. o o 1 1 0 X'" o o _1 _1 _1 x.., oooox., o o _1 0 0 X'l
Q
0
1_1
000
1
2
0
OOOOX74
_1
0
0
0
0
o
8 9 9 9 :2:2:2:2
20
10 :2
~
12 12 12 12 :2:2:2:2
~
12 :2
~
15 15 15 :2:2:2
8 9 9 9 :2:2:2:2
20
20
10 :2
12 :2
~
~
12 :2
15 :2
_1
X,...
_4
12 :2
2
12 :2
_1
12 :2
o
0
15 :2
0
15 :2
X"
x""
,
I\J
0
0
0
0
0
0
0
000
'"
0
~ ~
o
0
0
b-
0
0
0
0
I\J I\J
o
000
o
0
,
N
.!.
o
0
000
o
0
o
0
0
0
o
o
0
o
.t. 1-
0
0
o!.
000
o
000
!.
0
o
0
00
0
o
0
!...
o
o!.!.o
o
0
o
0
!.
0
o
0
000
0
0
0
0
o
o
o
o
o
0
00
o
"
,
0
!.
0
000
I\J
.t.
"
I
0
0
000
0
o
0
0
0
0
o
o
0
0
o
o
o
o
o
o
000
o
0
o
1 !.
0
o
o
o
00
o
0
w
I.
0
o
0
o
o
o
o
00
o
00
000
o
ONO
0
N
o
000
o
o
0
0
1:
000
0
0
~
000
o
1:
I\J
0
, I\J
o
o
~j,Uik
o
CO
,
o
o
'"
o
0
~ ~
co
, ~ ,
o~:::l~~~ o~~o(t>~ 00 ~ ~
~~
o
~ ~ ~ ~
t
t t t t
I :
: : : t
t
0
o
o
o
N
,
o
o
0
0
0
"'
0
J.,
!. !.
o
0
00
o
000
o
o
o
o o
000
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
0
0 0
0
0
0
0
0
0
_
o
o
0
o
o
o
w
0
o
o
1
Vi
0
o
o
N
0
0
000
0
0;;
o
o
N
1
0
o
;;;j
o
000
,
~ ~
t
o
+
o
0
o
0
0
0
o
o
I\J I\J
0
N
o
0
o
o 0
!.
rv !.
000
o
000
0
N
N
00
000
0
0
000
o
o
o
o
o
o
o
;;;j
;;;j
co 0
_
w
0
o
0
o
o
0
N
N
~ ~
0
0
0
0
0
~
!...
0
!...
0
0
0
0
0 0
o
0
!..
0
o
0 0
o
0
J.,
0
°
°
0
J., !.
0
0
I\J 0
o
°
o
8888
°
o
o
o
0
o!.oo
!.
o
o
1
:
o
o
o
o
o
o
o
o
o
o
o
o
o
o
0
0
0
0
0
_
o
o
o
o 0
0
00
o
o
o
o
I"
o
0
o
N
0
0
I"
0
0
0
0
,;
, ~ ,
~
,
0
0
0
0
o
o
_
I..
~
N
"
"
~
"
0
°
o
o
o
o
o
°
o
o
o o 0
o
o
o o
o
o
o o
o
o
o
o o
o o o
o
o
o
o
o o
o
o o
o
o
o
o
o
o
o
J.,
o
N
0
0
o
1
0
o
0
0
o
o
o
o
o
0
!.
o
0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
•
. . .• •
o
o
o
o
0
o
o
0
0
0
o
o
o
o
o
o
o
o
o
o
I •
o
o
o
o
,
o
o
o
ON
o
0
ONO
o
000
o
N
o
o
0
,
N
I..
Vi 0
o
I"
0
0
:
o
N
N
,
o
o
o
o
o
0
00
o
o
o
o
o
.
0
000
o
o
o
OWN
o
o
0
,
~
rv ~
;;;
.;;
..l.,
o
0
o!:::
o
!..
~
1 0
;;; 0
0 ;;;
o
,
o
0
.!.
o
0
0
0
!.
!..
!. 0
° ° o
o
!. I\J !.
!. ~
888
o
000
0_0
°
0
0
o
o
o
o
o
0
o
o
o
o
o
o
o
o
0
0
o
J,
_
o
0
0
o
o
o
o
o
o
o
o
,
0
N
N
,
• 8
co
o
,
N
N
,
0
0
N
0
00
o
o
01"
o
o
o
o
0
000
o
o
o
o
o
o
o
o
o
o
ONO
o
000
0"
.• . .• •
o
o
o
o
o
00_
o
o
o
o
o
° $ ~ <3, '2
o
,
o
o
1-
000
o
o
t
1-
o
o
o
0
o
o
o
o
N
t
00<3
+
1
h
1
o
o
o
!.
0
0
ONO
o
o
!.
Vi
o
o
I..
o
o
o
0
~
I"
0
,
rv .;;
0
o
o
0
I"
o
o
o
o
o
o
o
••
!..
1
o
0
o
o
,
N
o
I..
•
o
o
0
0
0
0
0
!.
0
o
o
o
00
o
\$<
o
o
o
o
o
o
o
o
o
o
o
0
0
~
o
°
;;;
°
o
, c..
0
J:, ;:;
0
!...
~
Vi
o
o
o
o
o
o
••
W
o
o
•• •
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o o
N
:
•
•• •
o
o
o
o
o
o
o
o
0
o
o
o
o
o
o
ON
o
o
o
o
00
o
o
N
I..
o o
. ·• .
,
0
0
0
,
,
0
00
o
o
o
o
I..
"
o
• ••
o
o
·:
:
o
o
o
o
o
o
o
o
o
.
o
o
N
0
N
,
"'I
~
~ ~
;(
C
·
",
o
~_
(0)
""
~
Cl»'"
W
""
"'l»"'I\J
W
g,:;;
:g > >>nol\J
~» > Cl ,",0
fi ~ ~'"
8~8t5
N > 0:;; ::r:::r:::r: ...
g;1;ll;ig
OCl<;)'"
0»>:;;
W»
""
"'10 rv""
"'00'" "CI"'l"'lCO
o
0»>(;
... >0> ~ ...
W
... » , c ~
W
W
> CllOW
~>Cll~rv""
Cl
· . · ·
? 88 [
0
0
-
rv ~
N-
,
N
g
~
Cl»CO"'''''
N
~. N~
"'1»0_""
N
@
@
36
35
50
_4
476
595 -115
714 -22
714 106
1020
+
+
+
+
+
+
+
+
+
x,
x,
x,
x.
x.
x" x..
20
60
1176
_11
-11
11
63
-2 -21
14 -21
14 _21
0
3
3
3
3
8
20 -28
+ 2142 126 -10
+ 2142 -66 -10
+ 2142 -66 -10
15
15
15
+ 2295-105
+ 2835 -45 -45
0
+ 22,95-105
+ 2835 _45 -45
64
+ 2295-105
+ 2835 -45 -45
56
+ 2176 128
+ 2835 -45 -45
40
~~
+ 2142 126 -10
0
+ 1344
+ 2856 -88
+ 2856 104
+ 3264 _64
+ 4096
x"
Xw
x"
x"
x"
x"
x"
Xv
x"
x"
Xw
x"
x"
x"
x"
+
+ 5355
x"
x"
64
90
-8
84
35
21
21
@
@
0
-2
A
3
@
@
-8
-6
-9
9
0
0
0
0
0
0
0
3
3
3
3
3
-6
11
-5
14
7
7
@
@
@
@
0
0
9
0
0
-9
-1
0
4 -12
0
0
5 -10 -16
0
-8
6
16
o
3
3
3
3
_1
0
@
@
3
0
-4
0
0
0
0
3
3
3
-1
0
1
0
_1
-1
-1
0
2
2
-2
-2
3
0
0
0
0
0
0
-1
-1
-1
_4
8
@
@
8
0
0
-4
_1
0
0
0
0
0
0
0
0
5
0
-3
2
0
-4
0
_4
-1
0
_2
0
4
-4
-2
0
0
0
0
3
3
0 -6
0
@
@
0
-1
0
0
0
0
0
-3
0
0
0
0
o
2
0
_1
0
@ @
@
@
_1
2
o
-1
0
0
-1
0
0 0
o o
0 0
0 -1
o
o
-1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
0
0
0
-1
2
0
0
0
0
0
0
0
-2
* 2b5 -2
o
0
*
0
-1
0
r5
1-2b5
0 2b5
0
0-2b5
0
0
_1
o -r5
-1
0
-1
0
0
0
0
-1
0
2
0
0
0
-1
0
0
_1
0
0
0
0
0
_1
-1
-1
0
o _1
0
-1
_1
0
_1
-1
-1
_1
-1
-1
0
•
-1
0 2
o o o o -1
o o o -1
0
0
0
0
0
0
0
0
0
0
0
0
0
o 0
0 0
0 0
0
0
0
0
0
~1
o
0
0
-1
0
0
0
0
0
0
0
0 0
0
o _1
0 -1
0
000000-r56
000000r5-r5
0
o
_1
o o
o o
0
0
39
0
0
0
0
o 0
-1
0
0
0
*6
_1
0
o
0
*3
*6
*3
0
0
0
0
0
0
0
0
0
0
0
-1
0
0
0
0
*2
*3
*6
0
0
0
0
0
0
-1
27
_1
_1
0
0
0
0
0
0
0
-1
0
0
0
*
_1
_1
0
0
0
0
0
0
0
0
0
-1
39
0
0
0
0
•
b5 b5
•
0
0
0
o
-1
_1
0
0
0
0
0
0
0
0
0
0
0
-1
_1
0
0
0
0
0
0
0
* -b5
O-bS
0
0
l-b21
0-b21
0
0
0
0
0
0
*2-d17
*3-d17
*2-d17
*2
0
0
0
0
0
0
0
0
88
-2
0
0
0
0
0
0
0
0
0 *6
0
2 -1
-2
2
-1
0
o
o o
-1
0
0-d17
0
o
o
o 0
2
_1
o
-1
* 3b5+2 -1
0
0
0
_2_200000000
o
3b5+2
0
0
o 0
0
0
-2000000
0
-1
0
0
000000
-1
o
o
o
_1
o
*
0
0
0
_1
-1
++
++
++
210
84
0
-3
16
0
32
0
0
0
0
81l
_4
_4
_Il
0
0
0
9
0
0
0
10
16
2
0
-3
-3
-6
-8
11l
-8
-6
0
-6
0
15
-9
0 -16"
10
0
16 -16 -16
20
++ 315 -21
++ 280
++ 378
++ 512
++ 336
++
0
4 -20
0
000
000
++ 420
+
+
+
++ 405 -27 -15
++ 160
+
10
16
10
0
29
000
++ 210 _14 +
10
16
-3 -19
18
70 -10
0
++ 336
oH
+
++ 189
++ 189
++
++
2 -10
-6
Il
0
0
0
-3
0
0
0
2
0
-2
0
-3
-3
7
0
-6
0
0
0
9
9
15
7
0
0
6
-6
10
0
8
-6
3
0 -9
10
2 -9 0
0
0
0
0-3
0
0
0
0 -16
0
-4
-4
0
0
0
0
o
0
0
-6
-2
0
0
1
0
_2
3
0
_2
2
0
0
0
0
_4
0
0
-2
_1
0
-3
0 -3
3
_6
0 -20
0
0
-3
0
-4
2
-2
0
3
0
0
0
3
-2
-2
0
0
0
0
2
0
0
3
-2
0
0
0 -2 -4
0
-2
_1
0
0
0
0
0
0
0
-2
-1
0
0
0
0
2
2
0
0
0
-2
0
_4
0
-2
2
-4
0
0
0
-2
0
0
0
1
-2
-2
0
-1
0
0
0 -3
2 o
0
0
0
0
0
0
0
2
0
0
0
o
0
0
0
-2
0
0
0
0
o 0
0
0
0
-2
5
0
3
3
-3
0
0
0
0
1
0
0
_1
-1
0
-1
0 _1
o
0
-1
0
0
0
0
0
0
0
0
-2
2
-1
0
2
0
2
o
0
0
0
o
2
-2
0
0
_4
@
@
@ @
@
-1
0
0
0
0
0
0
0
0
0
0 _1
0
0
0
0
0
0
-1
o
0-1
000
0
2
0
0
0
0
0
0
1-1
-1
0
0
0
0
0
0
0
0
1
o
X4
x,
0
0
0-1
0
0
0
-1
-1
-1
0 0
0
0 -1
0
0 0
o
o
-1
X14
_1
o
0
Xw
x"
X'8
x"
OX'6
XIS
Xl3
-1
X'2
o
XU
XIO
0
x" 0
0
0
Xu
000X25
0
_1
0
_1
-1
_1
x"
X36
x"
)(34
000X38
0
0
0
0
_1
o 0
00000X39
o
o
o o
OOOOOX33
x"
00000X3'
x~
00000X29
x"
OOOOOX27
-1
-1
00000X23
x"
OOOOOX2I
o
0
o
x. X9
_1
0
0
_1
N
x, " - "
x,
-1
0
0
_1
0
00000
0
0
0
0 0
o 0
0
0
o
_1
0 0
o
-1
o
0
o
-1
0
0
0
_1
o
0
0
0 _1
o 001 x, ,,-......
x,
OOOOOX,
-1
o
0
0
o 0
_1
-1
0
-1
o o
_1
_1
000
-2
2
-2
0
0
0
0
0
0
0
-2
1 -1
0
-1
_1
_1
0
2
-1
-1
-1
o
1
2
-3
@
-2
2 _1
0
@
o
3 -1
2
2
@
7 9 10 12 15 48 36 12 12 BE EF DG EH AD AB CE AC coo AD AD A£ AC coo AE BF CG 8H 12E 12F 120 12H 14A 18A 20A 24A 30C
@
2 -2
000
0
0
0
0
0
0
0
0
0
_1
0
0
0
4
2
4
-1
144 BF AF 12D
@
0 -2
-2
2
o
0 -1
0
0 -1
0
0
0
3-1
0
0 _1
30 AD AD 10D
@ @
-1
0
o 0
2
_1
2
3
-2
0 -1 2
@
96 32 8 A B D A A A 8c 80 8E
@
000
0
3 -1
3
0
0
0
0
-2
0
0
3 -2
0
0
-1
1 _2
0
2
1 -1
0
0
0
o
-3
2
1
36 BE BE 6L
@
2 _1
-1
_2
72 CE CE 6K
@
0 _1
2
-2
2
-3
-3
3
_1
1 2
3 -1
6 -6
2 -15
0
2 -5
0
-3
5
2
3 -1
8
-6
0
0
4 _4
_Il
0
0
0
9
0
0
0
-6
0
2
0
-3
-3
2 -6
0
-2 9
8
6
6
o
2
2 _4
0
6
15
6
6
1 -3
2 -2
-3
3
2
6 -3
9
6
5
-2
18 -2
6
-3
2
2 _2
2
o
++ 210
-6
2
13
-6
2
2
1 -3
o
5 _1
10
10
5
6 -2
14
10
8
++353-5-5-53
++ 151l
10
-2 -10
10
6 -10
78
42
++2159
++2040
18
0
0
_1
0
0
++
@ @ @ @ @ @ @ @ @ @ @ 1451 4 3 2 2 520 608 840 304 384 384 128 160 648 144 108 A A B B A 8 B AD CD AE BD A A A A A A A AD CD AE BD fUs ind 2D 2E 4E 4F 4G 4H 4I 6G 6H61 6J
-7
o
0
_1
0
0
@
98
-1
0
_1
0
0
000
_1
o
o
@
21 30 30 AA BBBAAB AAAABBBB B* 30A B*
@
105
-1
* 3b5+2
0
@
++
-1
o
0
@
++
3b5+2
0
@
2200000000
o
0
@
2
-2
o
@
2
_1
-2
-2
-2
45 AA AA
@
17 17 17 17 21 A A A A AA A A A A AA BI 15C 17A B*2 C*3 D*6 21A
90 AB AB
@
2
_1
-2
-2
90 A8 A8 15A
@
0
0
0
0
0
o
0
0
0
0
_1
_1
2
0
_1
0
0 0
_1
0
0
-1
_1
_1
0
0
0
0
0
-1
_1
2
0
0
1 _1
_1
0 -2
0
0
0
0
0
0
0
0
0-1
0
0-1
0-1
2
-1
0 -1
-1
1
-1
-1
o _1
0
-1
_1
_1
0-1
o
0
0
0
0
0
0
0-1
_1
o
2
-2
2
0
0 -1
0
0
-2
-1
0
1
r5 -1"5
-1
0
-2
0
0
0
-1
0
-2
0
_1
S* 10C 12A 128 12C
0
0
0
0
0 -2
o
0
0
0
0
0
o 0
0
0
0
_1
-1
_1
_1
0
0
0
0
0
0
0
0
-1
_1
0
0
0
-1
@
000
0 -1
0
2-1
-2
_1
2
-2
0
0
400
2
0
0
_1
-1
-1
-1
o
0
0
-1
0
0
0
0
0
_1
0-1
0
0
0
-2
-1
0
o 0
0
o
0
0
o
0-1
0
-1
-1
0
0
0
0
0
-1
0
_1
0 -1
0
0
1 _1
0
0
0
0
0
0
0
0
0
o 0
0
0
0
0
-2
2
-2
2
_1
0 -1
0
0
o
-2
2
0
_1
2
9A lOA
0
0
@
9 60 60 20 48 211 12 C AA AA AB AA CC DB A AA AA A8 AA AC CB
o
0
8B
B A
32
@
o
0
BA
A A
32
@
2
_1
7A
A A
0 _2
0
0
0
0
-1
_1
0
_1
6F
BC BC
@
0
2
-1
_1
0
0
0
0
0
0
0
2
0 _1
0-1
0-1
2-1
3 _1
_4
2 -1
0
0
0
0
3
3
-2
o
0 -1
-1
-1
-2
o
-2
-2
o
-2
-2
o
3 -1
3 -3
3
7
5 -1
3 -3
-1
4
-5
0
-3
-5
0
6
-3
-3
-3 -6
0
3
-9
2
2
0
2
_1
_1
2
6E
BB BB
3
-2
-5
-5
0
_1
1 _4
-4
0
0
0
0
0
0
_1
0
5 -3
0
2
2
2
_1
2
60
CA CA
_1
_4
0
0
0 -6
-4
2
2
2
2
-2
-11
5
2
6C
AB AB
5 _2
-1
-5
5
11
6
2
2
4
5
_2
4 _1
-1
6B
BA BA
5-1
0 -3
0 _2
0
2
-1
_1
-1
3
0
2
3 -1
3 _1
3 -1
-8
3
3
3
3
11
11
0
_2
-2
-2
-2
-4
0
3 -1
0
-6
-6
3 -8
0
0
0
0
0
0
'1
2
2
0
0
-6
12
0
-2
3 -1
3 _1
-1
-9
4
2
2
-1
11
11
11
0 _4
0
0
0
2 -2
-5
0
0
-3
0
0
If
_1
10
2
SA
40
6A
A AA A AA
C A
3 _1
2
-9
2 -6
2
-4
0
_2
0
0
0
6
-6
2
0 -5
0 -5
0
0
_4
6
-2
8
0
0
8
0
a
~
8
Ij
0
11
3 _4
-6
6
A
7 _1
-2
A
3 -10
_1
8
6
6
5 -7
6
6
6
6
0
9
6
10
-11
2
-3
9
3 -3
3
6 -3
A
21 -12
64
-8 -70
12
0
0 -36
8 -84
42
0
0
0
0
-9 -45
-9 -45
-9
0
15
15
75 -45 -21
40
60 -20
4760 -110
+ 4284
x"
b
x"
1428
0
-2 -21
64
+ 1190
x"
x~
70 -50 -10
4 63
15 _41
+
x"
1071
15 -111
+ 1071
21
x"
31 -17
1071 111
+
21
15
x"
-1
12
10 _21
-6
1071 -81
31
56
14
3 -35
12
12
42
-6
36
21
6
13
A
+
60
311
20
13 -11
4
20
20
3
2
-A
x..
60
5
114
357
204
204 -20
84
11
+
19
x.
51
10
+
2
x,
311
lA
A
+
x"
@
B A A A A A A A A A 2A 28 2C 3A 3B 3C 4A 4B lie
A
x,
ind
ppower pI part
+
x"
@
81146360111
197406720 320 080 072 480 080 648 536 536 192 64 t80 576 360 288 12 72 24 21
@
x,
~
00
0 8(2) and 3D 4 (2)
=2DlI (2)
Orthogonal group 0a(2)
Order = 197.1106,720 = 2 12 .311 .5.7.17
Mul t = 1
Out = 2
Constructions
a
Orthogonal
= PGO a (2) = SOa(2) = PSOa(2) =G.2
GO (2)
: all 8 x 8 matrices over F 2 preserving a quadratic form of Witt defect 1.
=G
for example x1x2 + x3xll + x5x6 + x¥ + x7x8 + xij; 0a(2) Presentation
See page 232.
Max imal subgroups
Specifications
Order
Index
1658880
119
2 6 :U ll (2)
11151520
136
2580118
765
1811320
1071
120960
1632
8160
211192
4320
45696
'68
11750110
Structure
G.2
Character
Abstract
Orthogonal
: 26 :U lI (2):2
la+311a+811a
N(2 6 ) = N(2A27B36)
isotropic point
S6(2)
:S6(2)x2
la+51a+811a
C(2D)
non-isotropic point
2 3 +6:(L (2)X3) 3 21+8 :(3 3 xA5)
: 2 3+6:(L (2)x3 ) 3 3 : 21+8 :<3 3 x35)
1a+811a+201lb+1I76a
N(2A 3 )
isotropic plane
la+311a+811a+1I76ab
N(2A)
isotropic line
(3 x A8 ):2
:S3 xS 8
la+811a+1I76ab+595a
N(3A)
°i(2)x06:(2)
L 2 (16):2
: L2 (16):4
N(2e. 3S. 5A. 15AB. 17ABCD)
04'(4)
(S3 xS 3xA5):2
: (S3xS3):2 x S5
N(3 2 ) = N(3A2B2)' N(2B.3A.5A)
Oq(2) xOij'(2)
L2 (7)
: L2 (7):2
N(2C. 3C, 40. 7A)
Tr1ality twisted group 3011 (2) Order = 211,341.312 = 2 12 .34 .7 2 .13
Mult = 1
<Xlt = 3
Constructions Steinberg
G : the centralizer in 0'8(8) of an outer automorph1sm of order 3. This leads to a description of G.3 as the automorphism group of a generalized hexagon of order (2.8). consisting of 819 "verticesll and 2457 "edges". Each vertex is incident with 9 edges. and each edge is incident with 3 vertices.
Jordan
G.3 is a subgroup of the compact Lie group F4cnn. the automorphism group of the 27-dimens1onal exceptional Jordan algebra. This consists of 3 x 3 Hermitian matrices
[
~C
b
5]
B
A
c
C
A
(a,b.cIA.B.C)
(a,b,c real)
over the real Cayley algebra with units i oo ' i O' ••• i 6 • in lOhich i oo = 1. i n+ 1 """7 i. i n+ """7 j. i n+ 4 ....., k 2 generate a quaternion subalgebra. G.3 is the automorphism groUp of the set of 819 images (roots) of the
0]
",,"potents[, ° o
0
0
[0 ° 0: (3)
000
~
0
~
[ks' , 'J ,:2 'Its'4, 'ijs,'It
(48)
Jis
~
011 2 2
(768)
~
under the group [2 11 ]. S3 generated by the maps taking (a,b.colA.B,C) to (a,b.cliAi.iB,CO, (b,c.a!B,C,A) and (a,c,bIJr.-C'.-g)
(*)
where i = :tin and s = ~!in. This group extends by (i O i 1 ••• 16 ) to a maximal subgroup of G. and by (i 1 i 2 1 11 )(i 3 i 6 i 5 ) to a maximal SUbgroup of G.3. The simple group G is generated by the llreflections" y ~ y + 1I«y.r)r - y x r) in the roots, where y x z is the Jordan product ~(yz + zy) and y.z is the natural inner product corresponding to Norm(y) = !(Norm(Yij». There are 2457 sets of 3 mutually orthogonal roots
(~).
and
each root is in just 9 bases. By restricting i in (*) to be :t;l, we obtain the SUbgroup L2 (7), while by restricting it to be ±1 or ti o ' we obtain the subgroup U (3). The normalizers of these groups are maximal subgroups of G, and 3 they are related to the complex and quaternionic reflection groups 2 x L (2) and 2 x U (3) respectively. 3 3 Remark: G.3 is a maximal subgroup of Thompson's group.
Maximal subgroups ll-der
Index
258048
8'9
86016
2457
Specifications Structure
G.3
Character
Abstract
steinberg
Jordan
1a+26a+324a+1I68a
N(2A)
vertex
root
la+324a+4683+1664a
N(2A 2 )
edge
base
G2 (2)
quaternionic
21+8 : L2(8)
: 21+8: L2 (8): 3
2 2 .[2 9 ]:(7 XS ) 3
: 22.[2 9 ]:<7:3xS ) 3 : U (3):2 x 3 3
COC) N(3A)
12096
171172
U (3): 2 3
3024
69888
S3 x L2 (8)
: 3
2352
89856
(7xL 2 (7»:2
: (7: 3xL2(7»:2
N(7ABC)
163072
31+
: H.3
N(3B)
1176
179712
7 2 :2A
N(7 2 )
2'6
978432
32 :2A 4
: 72 :<3 X2A 4 ) : 32 :2A 4 x 3
NOB 2 ), C(3D)
52
4064256
13:4
: 13: 12
N(13ABC)
1296
2 • 2311
1I
3
x L2 (8):3
88 35
complex
35
14
[89]
@
@
468 -12
637 -35
1053 -99
1274 154 -14
1664 128
1911 119
1911 119
1911 119
90
90
2106
2106
2106
2184-120
2457-135
2457-135
2457-135
2808 -72
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
x,
x,
x"
Xu
x"
x"
x"
x"
x"
x"
x"
x"
x"
x"
x"
Xu
0
-9
0
9
0
0
14
14
3822
3822
3969 -63 -15
3969 -63 -15
3969 -63 -15
4096
5096 168
+
+
+
+
+
+
+
x"
x"
x"
x"
x"
x,.
0
14
3822
+
-8
0
6
6
6
-7
-8
0
0
0
0
-9
-9
@
@
16
16
16
5
5
5
-8
-2
-2
-2
7
7
7
0
-7
-8
0
0
0
9
9
9
-6
-6
-6
0
0
0
-3
-3
-3
-8
6
6
6
7
7
7
0
0 -16
0
-7
-7
-7
6 -14
6 -14
0
-3
17
8
3
3
3
0
5
8
0
-2
14 -10
29
-7
0
11
11
11
8
13
0
8
6
6 -14
0
0
0
0
9
-9
0
9
0
0
0
3
3
3
-3
x"
8
5
0
15
0
0
0
2808 -72
8
8
8
18
18
18
0
0
-9
9
0
0
0
0
3
7
-2
-1
8 -10
14
0
+
x"
@
7 -11
0
9
9
-9
0
-3
5
12
7
7
9
x"
2808 -72
90
63
63
7
0
+
351
63
12
x,.
x"
x"
351
+
x,
351
324
+
X.
36
273 -15
+
x,
-6
7
-'I
196 -28
+
X.
-7
7
-'I
20
52
+
-1
x,
2
+
-6
+
26
@
@
@
@
0
-1
-1
-1 0
o
*4
*2
*2
*4 6y7-3&4
*4 6Y7-3&4
7
o
o
*2
7
0
0
o
o
0
0
o
0
0
0
0
-1
2
2
2
o 0
0 0 0
0 0
o
o
o
o
o
8
o
o
o
o
o
o
8
o
o
o
o
o
o
8
o 0
0
0
o
o
o 0
0
0
o
*4 8y7+3&4
*2
0
0
0
-1
-1
*2
o
o 2
2
-2
o
o -2
o
o
*2
@
0
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-1
0
0
0
2
-2
-1
0
0
0
o o
0
o
*3
0
*3
*3
*9
0
0
*9 013
*9 013
013
*40000
*4 y9-&4
*4 y9-&4
*2
0
o
o
o 0
0
o
o
o o
0
o
o
o
o
0
o
o
o
o
0
o
o
o
o
0
0
o
o
o
o
o
0
o
o
o 0
0
0
o
0
o
0
o
o
*4
0
o
0
0
0
0
0
0
0
-1
0
0
0
0
o
o
@
0
0
0
*2
*2
*4 Y9-&2
-1
-1
-1
0
0
0
0
0
0
-1
0
0
o
*4 Y9-&2
0 Y9-&4
0
0
0
*4
*2
o
-1
*2
7y7
*4
*4 8y7+3&4
-1 8Y7+3&4
-1
_1
0
0
0
_1
0
0
0
0
-1
o
*2
-1
*2
-1
-1
-1 y9-&2
-1
0
0
-1
7y7
*2
0
0
0
0
-1
_1
-1
0
0
-1
*2
o
-1
0
0
0 6Y7-3&4
0
0
0
o
o
o
0
*4
0
o
o
o
0
7
-2
-2
-2
-2
0
0
o
o
o
o
-2
o
3 -4
3
3
-1
0
-1
0
o
o
o
-1
*4
0
-1
o
o
o
-1
6
6
6
0
o
0
0
o
o
o
7y7
0
0
o
o
o
o
0
o
o
o
-1
0
o
o
-1
o
o
2
-1
o
o
y7+3&4 2
@
@
12 13 13 13 B AB A A A A A A A BB C*4 12A 13A B*3 C*g 54
@
o
2
A B*2
B
54
@
*4 -2
-2
-1
2
9A
A
54 B
@
*2
*4
2
_1
-2
2
0
32 B A 8B
@
*2
*4
*2
2
9
9
9
y7+3&4
0
7
7
7
2
0
o
o
o
0
3 -2
-2
3
5
3
5
@
3
5
A
B*2
A
7A
@
49 32 A A A A A A C*4 70 8A
1176
@
Y7+3&4
0
2
-1
-1
-1
1176 A
@
1176 A
@
o
-3
0
0
0
-1
-1
-1
2
0
-3
0
0
0
0
3
-1
2
3
0-3
0
-2
-2
-2
0
0
0
0
2
2
2
-1
_1
-1
0
2
-3
-3
0
-1
-1
-1
0
0
0
2
258 3 1 3 1 048 072 512 648 584 536 64 72 24 AAABBAAB A A A AAAABAAB A A A 2A 2B 3A 3B 4A 4B 4C 6A 6B
x,
pt part 1nd lA
211341312 p power
@
x,
~
0
0
0
0
0
-1
AA
0
0
-1
BA
0
0
-1
0
0
0
0
0
0
*2
*4
y7
.4
y7
*2
28 BA
Y7
y9
*2
*4
-1
0
0
0 0
0
0
0
o 0
0
0
0
0
0
,1
0
0
000
*2
*4
y7
0
0
0000000
o o
0
-1
-1
-1
3
5
-1
3
4
3
-1
-1
3
-2
-1
3
-1
0
0
0
0
_1
0
o
-1
-1
0
-1
0
0 -1
0-1
o
-1
-1
-1
0
X6
Xs
X4
x,
x,
+
+
+00
+00
+00
+00
+00
0
0
8
14
27
7
27
0
0
8
5
0
-2
0
-1
3
0
0
8
-2
0
0
0
-2
3 -3
7
3
0
0
0
0
2
0
0
0
-1
-1
0
0
0
0
0
2
3
-1
-1
0
0
0
2
-3
-1
-1
0
0
0
2
-1
-1
3
0
0
0
-1
0
0
0
0
0
-1
0
0
0
0
o
-1
o
-1
0
0
o
0
-1
-1
0
0
0
0
-1
XIS
XI4
XI3
x"
Xn
x"
x,
x,
0
0
0
0
2
0
0
0
2
0
0
0
0
0
0
-2
0
0
-2
0
0
0
0
0
0
0
0
0
0
0
0
0000000
0
0
-2
0
0
0
x,.
X,s
Xu
x"
X22
X21
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OX28
0
0
0
-6
o
0
0
0
6
x" +
0
0
+
+
42
+00
x"
x"
Xt8
*4
y7
*2
-y7
*2
*4
-1
*4
-y7
*2
-2
0
0
0
0
0
o
0
X34
+005620_2_22_42000000X3S
0
o
0
o
0
o
-8
o o o
64
+00
o o
x"
x"
o 0
0
0
0
2
o o
0
0
-1
2
2
-1
X31
o
0
3
-1
-1
-1
2
x,
o
o
0
@
o o 0
@
x"
0
0
@
o
o
0
@
x"
o o
0
@
o
o
0
0
0000000
o o
y9
0
o 0000000
o
o
*4
0
0
*2
*4
y7
*4
-y7
*2
-1
*2
*4
-y7
o *2
*2
0
@
x"
o o
Y9
0
@
o
o *4
*4
@
o
o
o
o
3
0
+0027
@
+00000000000000X7
-3
3
21
-1
-1
0
+00
-2
-2
-1
7
7
8
+00
+00
+00
+00
@
6 7 8 8 4 48 24 18 96 48 32 CBOBBCB CB CA EC DA DC BB DA CBDBACB CB CA DC DA DC CB CA 60 6E 90 12B 12C 12D 12£ 180 210 24A 24B
@
x"
o o
*2
y7
*2
*4
*2
*4
-y7
-1
-y7
*2
*4
o
@
o
o
o
@
o
o
o o
o
o
o
o o
o
o
o
*4 *2
o Y9
-1
o
-1
28
*4 -y7-1
*2
@
12 096 216 192 A A CA AA A A CA CA C*3 fus ind 3C 30 6C
@
*4 -y7-1
-1
o
-1
28 CA BA B*5
@
o o
o
*4 -Y7
*2
*4
Y7
*2
*4
0
0
o
*2
*4 -y7
*2
*4
y7
*2
0
0
o
0
0
0 -y7
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
o
*4
-y7
*2
-y7
*2
*4
-1
2y7+&4
*2
*4000000
*4
y9
*2
-1
0
*2
-1
o
-1
*2 -Y7-1
*4
*2
*4
-y7
*4
-y7
*2
-1
*4
2y7+&4
0
-1
-1
0
CA
-y7
*2
*4
*2
*4
-y7
-1
*2
*4
*2
*2
o
o
o 217+&4
*4
o
o
-1
0
o
2
o
-1
o
o y9
2
2
0
-1
-1
0
BA
2000000
y7-&4
*2
.4
o
o
o
21 BA
000000
0
o
-1
o
o -1
2
.4
y7-&4
*2
2
*2
.4
y7-&4
-1
-1
o
o
o -1
-1
o -1
-1
21 AA
AA
21 CA 28A
18 AA
CA
AA
CA
18 CA
@
C*3 laA B*7 C*S 21A B*2 C*4
18 BA
56 AA
@@@@@@@
-1
56 CA BA B*5
@
-1
56 BA AA 14A
@
"-"
N
",-......
o ..j:::;.
VJ
L3 (11)andA 12 Linear group L (11) ;; A2(11) 3 Order = 212.427.600 = 2 4 .3.52 .7.11 3 .19
Out = 2
Mult =
Constructions
Linear
GL 3 (1l)
= 10
x G : all non-singular 3 x 3 matrices over F 11;
PGL 3 (11) ;; 3L (11) ;; P3L (11) ;; G 3 3
Maximal subgroups Order
Index
1597200
Specifications
Structure
G.2
Character
Ab stract
Linear
133
11 2 : (5x2L 2 (11) .2)
l1l+2 : 10 2 ,
1a+132a
N(11 2 )
point
1597200
133
11 2 : (5x2L 2 (11) .2)
[
1a+132a
N(11 2 )
line
1320
160930
L2 (11):2
600
354046
10 2 :3
: L2 (11):2 x 2 : 102 :D 12
N(2A 2 ). N(5 2 )
base
399
532400
133:3
: 133: 6
N(7AB). N(19A-F)
L 1 (1331)
168
1264450
L2 (7 )
: L2 (7):2
3
2L 2 (11).2.2
0 (11 ) 3
The characters of L 3(ll) are not printed
Al ternating group A 12
Order
= 239.500.800 = 2 9 .35 .52 .7.11
Mult = 2
Out = 2
Constructions Al ternating
3 12 =- G.2 : all permutations on 12 letters; A12 =- G : all even permutations; 2.G and 2.G.2 : the Schur double covers
G =- <x,' ••• 'X1olxr=(XiXj)2:1); G.2 =-
Presentations
Remark: A12 is the largest alternating group involved in the l-bnster group F,. It arises in several large groups involved in F" notably the Fischer group Fi
24
and the Harada-Norton group.
Maximal subgroups
Specifications
Crder
Index
19958400
12
All
: 3 11
1a+ 11a
3628800
66
S10
: S10 x 2
1a+ 11a+54a
C(2D)
duad
1088640
220
(A9x3):2
: S9 x S3
1a+ 11 a+54a+ 154a
NOA)
triad
518400
462
(A6xA ):22 6
: (3 6 x36):2
1a+54a+132a+275a
N(2A. 3A. 3B. 4A. 5A)2
bisection
483840
495
(A8 xA 4 ):2
: S8 x S4
1a+11a+54a+154a+275a
N(2A 2)
tetrad
302400
792
(A 7 xA 5 ):2
: 37 x 35
1a+11a+54a+154a+275a+297a
N(2A.3A.5A)
pentad
95040
2520
M12
95040
2520
M12 2 6 :3 3 : 3 4
: S4wrS 3
N(2 6 )
structure
G.2
I
L2 (11):2
Character
Abstract
AI ternating point
1a+132a+462a+1925b
S(5.6.12)
1a+ 132a+462a+ 1925b
3(5.6.12)
41472
5775
23040
10395
25 :S 6
: 26 :3 6
N(2B)
15552
15400
34 :23 '3 4
: S3wr3 4
4 N(3 )
= N(2AgB27C27)
trisection hexasection
= N(3A4B12C8D16)
quadrisection
~EJ43
BEJn 43 37
[91]
Al2
@
@ 161
@ 23
@
@
@
@
@
45446
@
@
@
@
@
@
12
2
@
@
@
@
@
239500800 280 040 608 320 460 972 486 880 38' 192 128 600 50 440 576 1411 144 144 P power A A A A A A A A C A C A A AA AC BA BB BC pi part A A A A A A A A A A A A A AA AC BA BB BC ind lA 2A 2B 2C 3A 3B 3C 3D !lA .C 40 SA 58 6A 6B 6C 6D 6E
.
x,
54
22
6
6
Zl
9
55
19
-5
-1
28
10
x,
..
132
20
20
11
6
6
6
x.
+
154
42
-6
10
119
7
4
x,
+
165
21
5 -11
57
12
3
3
5
x,
+
215
55
15
11
50
5
-4
5
5
x,
+
291
49 -15
9
21
9
0
0
x"
+
320
6ll
0
0 104
14
..Ji
..Ji
16
0
0
0
x"
+
330
-6
10
15
-3
6
-6
-2
2
-2
x, X.
[92]
@
@
@
@
@
@
@
@
@
@
@
@
@
@
36 CB CB 6F
18 420 16 DC A B DC A A 50 7A BA
16
27
D
D
A
A
8B
9A
27
27 120
10 AA BB
11
11
2'
@
@
@
@
@
@
@
28 180
45 20 21 60 35 AB AA AA AAA AA A A AA BA AB BC AA A A AA BB AB AA AA AAA AA 98 C.. lOA lOB l1A Bn 12A 120 12C 12D 14A 15A 158 20A 21A 30A 35A 0
D
A
72
72
@
'8
A AA CA BB CC AA
AA AA
@ 35 AA AA
en
x,
• • • •
x,
@
1
11
7
-1
3
-6
8
18
5
-1 0
2 0
-3
5
3
-1
6
•
-1
0
3
_1
10
2
2
2
14
-1
7
3
9
3
-3
-1
15
0
4
-4
-2
-2
2
0
4
0
4
-8
2
2
-2
2
2
-2
10
-2
2
-2
111
-1
9
3
-3
20
0
-3
o
2
-2
-1
0
0
10
2
3
_1
0
-3 -13
2
1
3
-3
-3
35
0
4
0
-2
0
0
15
0
-6
6
3
-3 -1
3
5
330
0
0 -1
4
5
-1
000
-1
-1
0
0
0
0
2
-1
0
0
_4
_1
-1
0
0
0
_1
0
0
0
0
0
5
0
0
-1
-1
-1
-1
0
o
0
0
0
0
-1
0
2
0
_4
-3
-1
x"
2
-2
-1
-3
x..
+
616
56
211
8 112
-5
4
-5
4
0
4
0
21
-4
8
-1
3
x"
+
891 111
-9
3 162
0
0
0
9
-5
-3
-1
21
x"
+
945
49 -15 -15 189
9
0
0
x"
o
1050 -10
10
10 105
15
-3
-3 _10
-2
-2
-2
0
0
5
-1
o
0
x"
o
1050 -10
10
10 105
15
-3
-3 -10 -2
-2
-2
0
0
5
-1
o
0
x..
+
1155
91
-5
21
21
-6
-6
x"
+
1320
56 -40
8 -48
15
6
x"
o
1320
8
40
8 -84
6
-3
-3
0
0
0
0
10
x"
o
1320
8
110
8 -84
6
-3
-3
0
0
0
0
10
x"
+
1408 128
0
0 112
11
4
4
0
0
0
0 -22
X~
+
1485
29
45
-3 -21
18
0
0
5
-3
x"
+
1650
50 -30
2 -15 -15
12
3 -10
-2
-2
x"
+
1128 -6ll
18
0
0 -16
0
0
x"
+
1925 105 -15
13 140 -25
..Ji
-1
-5
-3
-1
Xu
+
1925 -35
45
21
35 -10
8
8
5
5
-3
-9
15 189 -18
0
0
-5
1
0
0 216
x"
+
2019
X~
+
2112
64
x"
+
2376
56
x"
+
2613 111
x»
+
2910
34 -30
X~
+
3080
56 -40 -24
x»
+
3520 -64
X~
+
3564-132 -36
1
0
0-120
45
0
o 0
_1
0
0
0
0
0
3
0
0
0
-2
0
0
0
-1
0
0
0
0
0
0
0
_1
0
0
-2
o
0
0
-2
0
0
-1
2
_1
4
0
-1
-3
0
-1
-1
0
0
-2
0
0
5
-7
5
3
-1
o
-1
5
0
0
0
0
13
-2
_4
0
2
0
0
0
0
-1
0
0
o
0
0
4
3
-3
-3
0
0
-5
3
-2
0
0
0
0
0
3
-1
14
-1 _11
-3
-2
0
0
0
0
0
-1
1
4
0
-2
0
0
0
0
5
0
_4
0
-1
3
3
0
0
-4
0
0 0
0
0
0
0
-9
-3
3
-6-216
9
0
0 -111
6
2
56
11
2
2
4
0
-8
10
-8
10
16
12 162
0
0
0
6
6
2
-21-200100006 _2
35
0
4
0
4
0 -35
0
_4
0
0
0
0 -15
0
-4
0
4
0
4
_1
-3
0
0
0
0 -14
-2
10
-2
2
-2
0
-2
10
-2
2
-2
0
2
-2
2
28
-6
0
0
0
0
-2
-1
_1
-1
0
0
0
0
_1
-1
0
0
0
2
o
0
0
0
0
0
-1
0
0
-5
-2
o
_1
_1
_1
-1
o
0
0
-2
o
o
0
0
-2
-2
0
0
-1
0
0
0
0
-2
0
000
0
3
-1
-3
-3
0
0
0
0
0
0
0
-1
0
0
0
0
-2
8
0
ub210000
-1
o
0
0
_1
_1
_1
0
0
0
0
0
2
-1
-1
X20
b35
**
X21
**
b35
X22
_1
-1
X23
o
X~
0
o
-3
0
-3
0
_1
-1
-1
0
0
X30
o
",
0 _1
0
x" 0
0
X33
o
0
X34
-1
X3s
-1
-1
X~
0
00_200X37
-1
0
0
0
0
0
0
0
0
X38
-1
0
0
0
0
0
0
0
0
X39
o
0
3
0
-1
o
o 0
0
0 -1
-1
-1
o
0
0
0
0
0
0
2
-1
-2
8 8
9 18
9 18
9 18
20
20 20
11 22
11 22
211
24
12
211
28
15 30
15 30
40 40
21 42
60
35 70
35 70
2
-1
-1
-1
_1
0
0
0
0
0
4
_2
0
_2
0
-1
_1
u
0
0
0
0
0
4
0
0
0
0
0
4
-
32
0
0
0 -16
8
2
_4
0
0
0
0
-8
2
0
0
0
0
0
0
0
4
0
0
0
0
X~~
o
160
0
0
0 -56
16
-2
-2
0
0
0
0 -20
0
0
0
0
0
0
0
0
6
0
0
o
0-bl1
X%
o
160
0
0
0 -56
16
-2
-2
0
0
0
0 -20
0
0
0
0
0
0
0
0
6
0
0
o
0
x" x..
o
104
0
0
0-160
20
2
2
0
0
0
0 -36
_1
0
0
0
0
0
0
0
4
0
0
-1
-1
-1
0
15
0
0
0
0
0
0
0
0
0
0
o
104
0
0
0-160
20
2
2
0
0
0
0 -36
-1
0
0
0
0
0
0
0
4
0
0
-1
-1
-1
0 -15
0
0
0
0
0
0
0
0
0
0
x,"
+
1408
0
0
0 112
4
4
4
0
0
0
0 -22
-2
0
0
0
0
0
0
0
-6
0
0
o
0
0
0
0
0
0
0
0
2
_1 rl0
0
X~o
+
1408
0
0
0 112
4
4
4
0
0
0
0 -22
-2
0
0
0
0
0
0
0
-6
0
0
o
0
0
0
0
0
0
0
0
2
-1-rl0
x"
+
1760
0
0
0 128
8 -16
-4
0
0
0
0 -20
0
0
0
0
0
0
0
0
-11
0
0
-1
0
0
0
0
0
0
0
0
0
-2
-2
x"
o 1760
0
0
0-232
8
2
-4
0
0
0
0 -20
0
0
0
0
0
0
0
0
_11
0
0
-l-b27
u
0
0
0
0
0
0
0
0
0
-2
x"
o
1160
0
0
0-232
8
2
_11
0
0
0
0 -20
0
0
0
0
0
0
0
0
_1I
0
0
-1
u-b21
0
0
0
0
0
0
0
0
0
-2
X~
+
1160
0
0
0 104
-4
..J.i
5
0
0
0
0 -20
0
0
0
0
0
0
0
3
_11
0
0
-1
-1
-1
0
0
0
0
0
0
0
0
0
-1
-1
-1
0
0
0
0
0
0
0
0
-1
X42
00000000X4J
X~
2
X40
x..
-1
o
0000000004_20
u_b11
X2S\
X29
-1
0000000_2
b21uOOOO
X19
-1
o _1
-2
0
0
2
0
o
0
-1
0
11
7 14
XI'"
_1
0
0
-2
6 6
0
0
o
0
0
12
0
0
0
-1
0
6
XIS
0 X28
0
0
0
12
0
0
0
0
-1
12
o
0
0
0
-1
6
X14
0
0
_1
-2
-3
12
0
X27
0
0
-3
5 10
o
0
0
-1
5
5 10
XI3
0
0
0
5
4
0
0
0
0
0
8
0
Xu;
0
0
0
4
x"
-1
-1
-1
-2
8
X10
_1
o
2
0
3 6
-1
0
0
3 6
-1
0
0
3 6
-2
-1
0
0
-1
0
-2
0
0
0
o
-1
0
0
-2
0
0
-1
_1
0
-1
-2
-2
o
-3
2
0 -10
0
0
-2
0
-2
0
2
-1
-2
0
8
-5
2
0
0
-2
2
-1
0
8
5
-1
0
2
0
-2
-3
2
0
0
0
6
o
-3
0
0
15
0
2
2
-1
_1
0
0
3 6
_1
0
4
2
_1
o
0
4
2
0
0
4
2
0
0
1 2
2
o
0
0
ind
0
0
0
1-210
0
0
0
-5
0
-6
0
o
-1
0
-1
6
2
-1
0
OOOOX12
0
~
0
-8
_1
x,
-1
0
0
0
0
-1
o
0
-1
0
0
o
0
0
0
3
0
0
0
0
-1
0
0
0
-2
-1
0
0
0
-8
_1
-1
2
2
64 -32
_1
0
-1
0
-4
2
0
0
-1
0
-1
-1
0
-1
0
_1
0-1
0
-1
0
2
-3
0
4
0
0
X8
0
0
0
0
0
_1
0
0
6
0
0
0
0
-6
o
0
-3
0
2
0
0
o
0
3
15
0
0
0
_1
3
X7
-1
0
_1
-3
-1
-2
0
0
_1
-1
-2
0
0
9
2
0
0
0
0
220
_1
0
0
0
X6
2
0
0
0
0
4
0
-5
0
0
0
0
0
-3
-1
_1
0
0
o
0
2
_1
-2
3
0 -10
35
-2
3
-3
0
_1
o
-2
_1
0
5115
0
0
-9
+
0
0
30 -18-189
x"
0
0
0
0
0
0
1
0
0
2
x~
00000000XI8
0
-3
-1
-1
0
-7
_1
_1
0
0
-3
bll
u
0
-20
-1
0
-1
0
o
-2
_2
x, X.
0
2
0
o
0
00000000X17
0
0
-1
0
0-1
~
0
0
0
2
X2.
-1
o
0
0
_1
-1
.*
0
0
-1
-1
0 bl1
0
0
0
0
_1
0
0
-3
-1
3
o
0
-6
2 -2
0
_1
-1
0
0
_1
-1
-1
-4
0
0
0
2
o
0
0
0
-3
o
0
o
0
-3
000
-4
-5
0
0
0
-6 -35
5632
0
8
10
+
0
-2
-5
x"
0
2
0
15-162
0
2
-6 -35
11455 -21 -45
0
-2
10
+
0
-2
16 -16 168
x..
0
2
3696-112
14
-1
2
3850 -10
4158
0
-4
o
+
0
-4
+
x"
o
_4
x"
X~
0
0
X~
o 3850 -10
0
-4
-4
0
0
0
0
0
0
-3
o
0
0
0
3
-2-200
0
-1
o _1
0
6-600000-5
o
0-1 -1
o
0
6 -16
0
-1
8
0
9
6 -12
-1
-4
-9
24 -24 216
0
-1
2
-1
0
-1
1
-1
-1
-5
1
0
2
-1
2
0 -15
-2
2
2
_4
0
-1
2
0
0
0
2
-3..Ji
0
0
2
-3
0
0
-6
0
0
_1l
-6
-1 -35
0
0
3
-1
0
0
3
1
0
0
12
-1
0
-1
3
3
0
_1
21
-3
-1
0
11
84
0
-1
_2
14
-1
0
0
-2..Ji2
0 _1
-1
0
30
-3
-1
o
14
-3
2
o
462
0
0
0
o
0
2
0
0
462..Ji2 -10
0 -11
0
-1
0
+
35
0
2
_1
+
-1
-1
2
-3 -1
-1
6-1
x"
3 _14
2
X~
000
x.,
000
X%
o
-1
-1
X~7
o
_1
-1
X~8
0
-1
_1
X49
0
0
-1
-1
Xso
0
2
0
x"
-2
0
-1
0
x"
-2
0
-1
0
x"
1I
o
_1
0
X~
0
4
o
-1
0
x"
0
0
x"
+
1160
0
0
0 104
-4
-4
5
0
0
0
0 -20
0
0
0
0
0
0
0
-3
_11
0
0
X~
+
1192
0
0
0-2211
-8
-8
10
0
0
0
0 -28
2
0
0
0
0
0
0
0
0
0
0
o
0
-1
-1
0
0
0
0
0
_4
2
0
0
0
XS6
x"
o
2112
0
0
0 -48
24
6
6
0
0
0
0
32
2
0
0
0
0
0
0
0
-2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
_1
0
O...b35
..
XS7
x"
o
2112
0
0
0..Ji8
211
6
6
0
0
0
0
32
2
0
0
0
0
0
0
0
-2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
_1
0
o
u-b35
X58
XS9
0
2640
0
0
0-168
12
-6
-6
0
0
0
0
20
0
0
0
0
0
0
0
0
-6
0 212
0
0
0
0
0
0
0
0
0
0
0
0
2
2
0
0
0
_1
-1
XS9
Xw
0
26110
0
0
0-168
12
-6
-6
0
0
0
0
20
0
0
0
0
0
0
0
0
-6
0-212
0
0
0
0
0
0
0
0
0
0
0
0
2
2
0
0
0
_1
-1
XW
x"
+
38110
0
0
0
24 -12
6
0
0
0
0
20
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
o
0
0
0
0
-4
-1
0
-2
0
_1
-1
X61
8
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
-1
-1
0
0
OOOOOOOOOOOOX62
-8
-2
0
0
0
0
-8
2
0
0
0
0
0
0
0
4
0
0-2
12
12
-6
0
0
0
0 -28
0
0
0
0
0
0
0
96
x"
+
5600
0
0
0-280 -40
X~
+
5632
0
0
0
XM
+
1392
0
0
0 336
XM
+
1176
0
0
0
64 -32
0
36
0000000004-20
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-4
0
0
0
0
0
0
0
6
0
0
0
0
0
0
0
-1
-1
0
0
0
o
-1
0
0
0
0
0
-11
2
0
000
0
0
0
0
000
_1
X<'>J
0 X64
x.,
@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ 3628 17 3 80 15 2 800 280 840 640 768 384 192 64 120 160 432 432 432 162 54 54 48 96 32 600 120 A A A A A A B C AD BE AE BD BE DD CE DE SF B B AD AE A A A A A A A A AD BE AE BD BE DD CE DE BF A A AD AE fus ind 20 2E 2F 4E !IF 4G 'H 41 6H 61 6J 6K 6L 6M 6N 60 6P BC 80 lOC 100
@
@
@
50 10 720 BD BF AE BD BF AE
++
x,
++
9
5
x,
++
36
12
X.
++
x,
7
_1
ij
20
11
35
7 -5
21
-3
++
48
8
0
-8
8
0
x,
++
84
20
11
28
_4
x,
++
75
-5
-5
35
x,
++ 125
25
5
15
@
@
@
'8
2'
6
'2
@ 9
@ 60
@ 12
@ 14
@ 30
@ 15
@
21
@
30
AG GF FH AD AM AE CC AE ACH BDI ASH ABE BE AG BF CH AD AD AE AC AE ACH BDI ASH ABE 10E 10F 12E 12F 12G 12H 121 14B leA 20B 24A 28A 30B 30C 42A 50A
3-1
CE
•
o
-1
-1
2
0
2
0
0
o
0
-1
-1
6
5
2
3
-1
0
-1
2
3
-1
4
0
0
15
9
3
3
3
0
0
0
2
2
6
2
-1
14
10
-2
2
-2
-1
-2
3
_t
5
-3
0
0
6
0
-2
0
0
0
6
_4
2
0
_4
3
2
_1
0
0
0
-2
-2
-2
0
1.1
-2
0
2
0
-1
0
2
11
0
0
21
5
5
3
-1
3
2
_,
-2
-2
4
0
-1
-1
-1
0
0
0
-2
3
-5
_1
_1
15
10
-5
0
11
3
o
0
0
0
5
2
o
-1
-2
0
0
7
3
3
o
0
0
0
0
3
-1
-1
0
1.1
0
-1
20-545
-2 -2
-1
-3
-1
-1
x,
++ 117
21
5
-7
-7
15
-9
3
3
3
0
0
0
_1
_1
-1
-3
2
x"
++ 160
16
0
611
0
0
0
0
34
16
_2
-2
-2
-2
-2
-2
0
0
0
5
o
Xu
++
90 -22
10
34
2
-6
-2
_2
6
5
2
3
-1
0
-1
2
x"
++
42 -111
10
14
_2
-2
2
-2
0
4
3
-5
-3
x"
++
42
2
10 _14
2
2
6
-2
0
5
_4
3
-1
-3
x..
++ 224
8
16
56
8
0
0
0
14
5
2
-7
5
_1
x"
++ 351
27
-9
69
-3
-3
_1
36
0
0
0
0
0
0
0
x"
++ 315 -21
-5
91
-5
-5
3
3
21
9
-3
-3
-3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
-2
-2
-3
0 0
5 4
-2
0
-3
2_1
o
0
-3
2-1
o
0
-1
0
0
-3
2
0
2
-3
2
0
-2
3
-1
1
_4
-1
-1
o
o
0 -1
-1
00-53004
o
o
5-1
0
0
o
_1
-2
0 0
-2
_1
-1
-5
-1
0
0
0
0
o
0
0
0
-1
0
-1
x"
++ 315
19
-5 -49
_1
_1
3
_1
-5
-1
0
0
11
x"
++ 240
8
0 -56
-8
0
0
0
6
5
2
-3
5
-3
2
-1
-3
0
0
-5
3
0
0
4
0
0
0
000
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
O'
0
-1
_1
-1
0
0 -1
o o
3
-1 0
0
0
o
0-1
-1
0
0
-1
0
0
0
-1
_1
_1
XII
o
2
X12
-2
XI)
0
0
o
0
0
0
0
0
_1
0
0
-1
o
0
-1
0
0
0
0
0
0
0
0
-1
0
0
0
o
0
x.. _1
-1
0
0
0
0
0
+
0
21 -11
-3
-1
_1
-1
o 0
0
0
0
0
0
o
_1
o
2
0
-1
0
0
o
-1
-1
X20
0
0
0
0
0
0
0
0
0
X21
0
x"
x"
x" x"
++ 1148
X~
++ 225 -15 -15 -55
x"
++ 300
32
0
0
20 -20 -20
0
0
9 -4
0
0
-3
-3
-4
0
28 -16
_4
4
_4
_2
2
2
0
0
0
-2
2
-2
0
0
0
0
-1
-1
o
0
0
0
5
2
2
2
0
0
-7
-3
-2
3-1
o
0
0
15
0
3
-6
-6
0
0
0
0 -15
5
5
3
-1
3
2
-1
6
0
0
0
0000-5
x"
++ 288 -48
0
64
0
0
0
0
-6
0
6
6
x"
++ 525
25
5
35
-5
-1
3
-3
0
-5
4
-3
x"
++ 175
15
15
35
3
3
3
_1 -35
0
-3
-2
6
4
0
0
0
x"
++ 441 -15
9
77
-3
5-3
-21
0
3
-6
-6
0
0
0
0
x"
++ 288
0 -64
0
0
0
0
-6
16
-2
6
-2
0
-2
-2
0
0
0
x"
++ 576 -24 -16
56
8
0
0
0
6
-9
_6
3
3
0
0
0
_1
0
0
0
3
-1
-3
-3
o
0
-5
-1
5
:
16
3 -2
0 _1
++ 567
27
15 -63
9
-3
-3
3
0
0
0
0
0
0
0
0
90
-1
-1
0
-7
:-6
10 -34
-2
6
-6
_2
6
9
_6
3
3
0
0
0
X~
++ 560 -24
0 -56
-8
0
0
0
14
-9
_6
-1
3
2
0
0
3
0
0
)6,
++ 160 -48
0 -64
0
0
0
0
34
0
6
-2
6
-2
0
0
0
0
0
5
-3
X~
++ 216
48
0
8
0
0 -36
0
0
0
0
0
0
0
0
0
0
-4
0
x"
++ 336 -48
16
0
0
0
0
0
0
-6
0
6
-6
3
0
-3
-2
0
0
6
2
0
0
0
0
0
0
0
0
0
0
0
0
0
000
0
0
o
0
+
0
0
0
o
0
-1
-1
0
0
0
4
-2
0
0 -10
-1
2
o
0
o
0
0
o
0
-1
_1
-1
2
-1
0
-2
_1
_1
o
0
0
-1
o
0
-1
0
-1
0
0
0
o 0
0 X2S -1
0
0
0
o
-1
0
0
-1
_1
o
0
-1
0
2
0
o
0
2
0
0
0
0
0
0
0
0
0
0
0
0
-4
-1
0
o
-1
0
o
o
0
-1
0
XM
0
-1
0
o
0
-4
0
X2)
0
_1
0
-1
0
-1
2
o
00.
0
xu;
0000000000X27
-20-42000
++
0 -24
0
0
000052-3000 -'I
x"
-4
2
0
0
0
-1
6
0
2
0
0
-1
0
-3
-1
o -1
-2
X29
x"
-1
0
X211
h,
0
0
-1
-1
0
X32
x"
0
0
-1
o
o
-1
-1
0-1
x"
0
-1
-1
0-1
X~
-1
X34
o
0
0
0
0
0
0
0
0
0
0
-1
0
0
X37
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x~
h,
x" Xw
++ 252
12 -20,-23
x..
++ 135
27
15
x.,
++ 768
0
0
x.,
~7
x"
x"
x"
XIS
x"
x"
X32
Xs
X10
0
0-1
0
-1
_1
-1
x,
-1
2
o
Xs
o x,
-1
-1
_1
o x,
0
0
X2
X.
0
000 0
-1
o x,
0-1
o
-1
000
0
o
o
_1
-60-200
-3
0
+
72
@
x,
x,
x"
@
A 12
++ 525 -15
4
-4
0
0 -21
9
3
3
3
0
0
0
21
-3
-7
-3
_1 -36
0
0
0
0
0
0
0
0
-3
0
0
0
0
0 -48
0
0
0
0
-6
0
0
0
0
5-105
-2
-2
0
2
2
2
0
_1
-1
_1
5
-3
0
0
6
0
2
0
o
0
0
0
2
0
2 o
o
-1
0
_1
-1
0
_1
x..
0_1
80-2000000-2000020 0
X40
o
X~2
0
X~3
-1
3
3
o
15
0
-3
-3
3
0
3
-1
-3
o
0
0
0
0
-3
0
-1
0
0
0
0
0
0
0
0
fus ind
2
4
2
8
8
8
8
4
6
12
12
6
12
6
12
12
6
8
8
10
20
10
10
24
24
24
24 24
211 24
14
18 18
40
24 24
56 56
30
60 60
X~
00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
i6
0
0
0
0
0
0
0
0
0
x"
+
0
0
0
0
0
0
000
0
0
0
0
0
0
0
0
0
0
0000000000000000
0
OX~s
42 120 42 120
X~
X~
x"
+
0
0
0
0
0
000
0
0
0
0
0
0
0
0
0
0
0
0000000000000000
0
OX~7
x..
x..
x"
OX~\I
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0000000000000000
0
x"
++
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
Or30
x"
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
000
x"
x" 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
XSl
000000000000000000XS2
x"
x" X~
X~~
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x~
x"
x"
x"
++
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
XS6
x"
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0
000
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
XS7
0
x" x"
X~
+
0
0
0
0
000
000
000
0
0
0
0
0
0
000000000000000000X59
x" x"
++
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0 r15
0
0
X61
x"
++
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0 2r3
0
0
0
0
0
X62
x"
++
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 r21
0
X63
XM
++
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
000000
02r6
0
0
0
0
0
0
0
0
0
0
XM
x"
++
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0 rt 4
0
0
0
0
X6S
x"
0
0
0
0
0
0
[93]
M 24 .
Sporadic Ma thieu group M
24
Order
= 244.823,040 = 2'°.33.5.7.11.23
Out
Mult
Constructions Golay (2) code
G : the automorphism group of the (extended) binary GoIsy code, the unique dimension 12 length 24 code over F 2 of minimal weight 8, which is defined in several ways below. The code and cocode (words modulo the code) have
weight distributions 0'8759,22576,675924' and 0',24 2276 32024 4 '771 respectively. The support of a code word is called a C-set, and C-sets of size 8 and 12 are called Qctads and dodecads respectively. A pair of complementary dodecads 1s a duum. and a triple of disjoint octads is a trio.
Elements of the cocode are called C*-sets. Their minimal representatives are unique except that each tetrad is one of a set of six disjoint mutually congruent tetrads (forming a sextet). We usually arrange the coordinates in the 4 x 6 MOG array, which is particularly valuable because it simultaneously exhibits the elements of several distinct maximal subgroups. Steiner system
G: the automorphism group of the Steiner system S(5,S,24) of 159 special octads f'o-om a 24-set such that each
pentad is in a unique special octad. The octads are the supports of the weight S words of the binary GolaY code (see above). If {apa 2 , •••• aS} is any octad, then the number of octads (resp. dodecads) that meet {ap •• etai} in precisely {a1 .... aj} is the (j+1) l th entry in the (i+1)fth roW of the left (resp. right) table below.
2576
759 506 330 210
46
30
Hexacode
16
12
48
o
4
4
120
5 4
8
o
280
21
16
28
16
16
56
o
4
o
o
o
4
16
o
o
o
o
336
120
16
32
40
o
o
16
16
24 24
4e
72
88
24
o
16
160
48
40
16
280
336
88
32
616
176
160
72
16
1288
672
616
77
40
20
32
o
30
120
52
78
176
80
130
1288
253
16
o
o
In this construction it is easy to recognise codewords and to complete octads from 5 given points. The 64 hexacode words (see A6 ) (ab cd eO are obtained from yz yz yz
Ox Ox yz
00 xx xx
xx yy zz
00 00 00
(in which (x,y,z) is any cyclic permutation of (1,w,w)) by freely permuting the three couples ab, cd, ef and reversing the order in any even number of them. The Golay code words are obtained from hexacode words either by giving all their digits
~
interpretations in any way for which the top row receives an
~
number of
entries, or by giving the digits odd interpretations in any way for which the top row receives an odd number of entries. even interpretations
odd interpretations
80r880r8Bor8 80r8
Bor8 80r 8Bor8 80ra o
o
w
w
w
w
We give one even and one odd interpretation of (01 01 wW):
• • • ••• •• • •• •
•••• • • •• • • ••
o
0101ww
1 0 1
wW
To complete an octad from 5 given points: In the example (a) below, if the parity of the answer were even, we must change the three columns? of (b). So the remaining columns are correct, and the digits below them determine the hexacodeword and trial octad of (c), whose top row has the wrong parity. So the parity is odd, and the digits in (d) determine the hexacodeword and octad as in
(e).
EEBEEB O?w?O?
( a)
I!D CLCJ ~
01ww01
(b)
· EEB EEE °•°
••
?w?1?w (d)
(c)
•
~Oww10w
(e)
Using the fact that a hexacodeword is uniquely determined by any 3 correct digits, or by 5 digits of which at most one may be mistaken, the method more generally finds the unique Golay codeword nearest to any given set of odd cardinal. (The method also works for sets of even cardinal, although the answer need not be unique.) Sextet
The group fixing the sextet of MOG columns has structure 26 :3.36' the stabilizer of the top row being a subgroup 3°S6, and the code, as constructed above, is invariant under this group. The elements of the subgroup 26 correspond to hexacodewords (a), and there are other correspondences between hexacodewords and the remaining elements of 26 :3 (b) and the involutions of 3.36 (c), (d):
[94]
r:~:~~1 0101ww
mm
I;; id
(a)
(b)
(c)
0101ww
o
1 0 1 .or W
8J .~~ . .~
.
~
0101ww (d)
Triad
In terms of the 21 point projeotive plane over JF 4 = {0.1,w,w} the ootads of the Steiner system are the points of a line
+
3 extra points I.
a hyperconic
+
2 of I.
an IF'2-subPlane
+
one of I,
n,
]I.
M24
ill
ill
] I , ill
or the points of two lines without their intersection. Every maximal set of points with no three in line is a hyperconic, consisting of the five points of a conic and the unique point not on any chord. Hyperconics whose equations have coefficients in IF'2 mate with {IT ,ill}, while the IF'2-subplane of all points with coordinates in lF 2 mates with I. A~' element of GL (4) with determinant w 3 effects the permutation (I
ill). In fact the construction is invariant under PrL (4), with the field
]I
3
automorphism effecting (IT ill). In the MCXi array below points (x,y.O) in the left-hand octad are denoted ylx, while the points (x,y)=(x,y,1) form the right-hand square. We also show the elements of M24 obtained from some elements of prL (4): 3 y/x
00
o
,
x'=y, yf=X
n
o points (x,y)
w
II
y
w
= (x.y,1)
m w
xf=>:, yf=y
x'=x, y'=wy
w
w
0
I
Trio
x
W
1111 111
11111 X
We select two disjoint extended Hamming codes on V = {oo,0 .... ,6}, for example (i) 0, {co, i+3, 1+5, i+6}, and complements (11) 0, {co, i+1, i+2, i+4}, and complements
The binary Oolay code consists of all words of the form (X+t,y+t,Z+t) for which X, y, Z are elements of the
°
first Hamming code with X+Y+Z =
or V, while t is in the second Hamming code. Using the indicated numbering
for each brick of the MCXi, this construction exhibits a maximal sUbgroup 26:(S3xL2(7)) of M24 in which the typical element of
z5
consists of three translations (see below) with trivial product, S3 permutes the three
bricks, and L2 (7) acts on each brick in the same way. The brick numbering and the translations I
I
00
0
3
2
1
4
I I
5 6
I
t
!
-
i
\\ H
~ X
X X
-
The eight 3-sets permuted by the L2 (7) in this construction give rise to 14 dodecads by taking unions. There is one other type of family (octern) of eight 3-sets with this property, whose stabilizer is a maximal subgroup L2 (7), acting transitively. Octad
This construction uses the isomorphism between AS and L4(2), and is only briefly sketched here. The 24 points are taken as the points of an affine 4-space V over JF 2 (whose automorphism group is 24 : L4 (2) =- 24 : AS)' together with those of the S-point set S
{',2, ••• ,S} on which AS acts. They can be written in the MCXi array thus:
5
o
a
b
a+b
2
6
c
a+<:
b+c
a+b+c
3
7
d
a+d
b+d
a+b+d
4
8
c+d
a+c+d
b+c+d
a+b+c+d
s
v
The stabilizer of a system of four parallel 2-spaces in V is also the stabilizer of a bisection of S into two complementary tetrads. The six 4-sets so obtained form one of a familY of 35 sextets which suffice to define the code. The 759 octads of S(5,S,24) are the 1 octad S, 280 = 35x2x4 meeting Sin 4 points (obtainable from the above sextets). 448 meeting Sin 2 points, and the 30 affine 3-spaces in V. Modulo 23
The binary Golay code is a quadratic residue code, modulo 23. In the projective line PL(23), let Q={O.quadratic residues},. N={co,non-residues}. The code is spanned by the words Woo = !e i (all i), Wt = !en_t (n iri N). We have
~ci wi
= 0
~~
(ci) is in the code. G is generated by the elements A : t ---7 t+ 1, B : t ---7 2t. C :
t -'?-1/t and D: t ---7t 3 /g (t in Q) or gt 3 (t in N), in which =- PSL 2 (23) and =- M23 • Mathieu '2
The Mathieu group M12 acts on two 12-sets L={n+}, R={n-}, interchanged by its outer automorphism (duality). The stabilizer of a tetrad in one stabilizes a tetrad in the other while the stabiliZer of a duad in one stabilizes a pair of complementary hexads in the other. The resulting octads splitting 4+4, 2+6, 6+2 form the Steiner system S(S.S,24). Thus (using the shuffle numbering, see M12 ) the binary Oolay code is spanned by {1+2+3+4+5+6+0-1-}, {0+1+2+3+7+a+1-2-}, {0+1+2+4+5+9+2-3-}, {0+1+3+4+6+7+3-4-}, {O+1+2+3+S+10+4-5-}, {O+'+2+4+6+a+S-6-}. {O+2+3+4+S+7+6-7-}. {O+1+2+3+6+9+Y-8-}, {0+1+3+4+5+a+S-g-}, {0+1+2+S+6+7+9-'0-}, {0+'+2+3+4+'1+10-'1-} and {0+1+2+3+4+5+6+7+a+g+10+11+}. The shuffle and modulo 23 numberings are related by: n+ = whichever of n, -n is in Q
= whichever
n-
of a/n, -8/n is in N.
These and the lexicographic numbering (see below) appear in the Mex:; array as follows:
o
Lexioographio
11
00
2
22
0+
0-
1+
7-
8-
dO
d4
dS
d'2 d'6 d 20
3+
5- 4+ 10- 5+
d1
d5
dg
d 13 d 17 d 21
d2
d6
d 10 d 14 d'8 d 22
2+
19
3
20
4
,0
18
2-
'5
6
,4
'6
'7
8
1-
6+
6-
5
9
2'
'3
7
'2
r
g+
4- '0+ 11- 11+
7+
g-
8+
d 3 d7 d"
d'5 d '9 d23
Each code word can be defined in succession as the lexicographically earliest word {dO •••• ,d23' dln'ering in at least S places from all its predecessors: (0 24 )
(0'6,8)
(0 '2,4 04,4)
( ,24)
[95J
M 24 Presentation
G ;;
I a=(Cd)5:(Cde)5,f=(cdg)5,e=(bcf)3,1=(abf)3 )
g
f
Maximal sUbgroups Order
Index
10200960
24
887040
276
Specifications Structure
Character
. Abstract
"23
1a+23a
1a+23a+252a
322560
759
M22 :2 2 4 :A
190080
1288
M'2:2
1a+252a+1035a
138240
1771
26 :3'3 6
1a+252a+483a+1035a
120960
2024
L (4):S3 3
1a+23a+252a+483a+1265a
64512
3795
6072
40320
168
1457280
N(2A 4 )
1a+23a+252a+483a
e
N(2 6 ) : N(2A 45 B,8 )
Mathieu
Golay
point
weight 1 cocode word
duad
weight 2 cocode word
octad
weight 8 code word
doom
weight 12 code words
sextet
weight !I cocode word
triad
weight 3 cocode word
N(2 6 ) : N(2A 21 B42 )
trio
"2(23)
N(2B,3B,4C,6B,llA,12B,23AB)
projective line
"2(7)
N(2B,3A.,4C,7AB)
octern
26:(L3(2)xS3)
1a+252a+483a+1035a+2024a
G26 26 @
@
@
@
@
@
@
21 7 1 244823040 504 680 080 504 384 128
p power p' part ind lA
[96]
A
A
A
A
A
3A
3B
A 4A
A 4B
A A
A A
A
2A
28
@
@
@
@
@
@
96 60 24 24 42 42 BAAABBA A AAAABBA A 4C 5A 6A 6B 7A Bn
x,
+
x,
+
23
7
-1
5
x,
o
45
-3
5
0
3-3
o
X.
o
45
-3
5
0
3-3
o
x,
o
231
7
-9
-3
0
-1
-1
x,
o
231
7
-9
-3
0
-1
x,
+
252
28
12
9
0
4
x,
+
253
13 -11
10
x,
+
483
35
3
6
0
3
3
3
-2
Xw
o
770 -14
10
5
-7
2
-2
-2
x"
o
770 -14
10
5
-7
2
-2
x"
o
990 -18 -10
0
3
6
x"
o
990 -18 -10
0
3
x"
+
1035
27
35
0
x"
o
1035 -21
-5
x"
o
1035 -21
x"
+
1265
x..
+
1771 -21
x"
+
2024
x"
+
x"
@
16
@
@
@
11
12
A A
AA
@
@
@
@
@
@
@
@
@
12 14 14 15 15 21 21 23 23 BC AA BA AA AA BB AB A A AA BC AA BA AA AA AB BB A A BA lOA 11A 12A 128 14A Bn 15A Bn 21A Bn 23A Bn B A
20 AB AB
x, -1
-1
_1
-1
0
0
0
-1
-1
0
0
X2
n
0
0
b7
n
-1
-1
X3
-b7
0
0
**
b7
-1
-1
X4
0
0 b15
**
0
0
x,
0
0
0
n
b15
0
0
x,
o
0
0
-1
-1
0
0
-1
-1
0
0
0
0
-1
2
2
0
-1
b7
**
-1
0
o
-b7
0
-1
**
b7
_1
0
o
**
3
o
0
0
-1
o
-1
0
-1
3
o
0
0
-1
o
-1
11
0
o
0
0
0
2
-1
-1
-1
0
0
3
-1
3
2
3 -2
-3
0
_1
-1
X,
o
0
X8
0000X9
0
-1
-2
-1
0
0
o
0
0
0
0
-1
o
0
0
0
0
0 b23
**
XIO
-2
0
o
0
0
0
0
-1
o
0
0
0
0
0
**
b23
XII
2
-2
0
0
-1
b7
**
0
0
0
0
b7
**
0
0
b7
n
x"
6
2
-2
0
0
-1
**
b7
0
0
0
0
**
b7
0
0
n
b7
x"
6
3
-1
3
0
0
2
-1
-1
0
-3
3
3
-1
0
0
2b7
**
-5
0
-3
3
3
-1
0
0
**
2b7
49 -15
5
8
-7
-3
0
-2
-2
11
16
7
3
-5
-1
24
-1
8
8
0
0
2277
21 -19
0
6
-3
+
3312
48
16
0
-6
0
x"
+
3520
64
0
10
-8
0
x"
+
5313
49
9 -15
0
XM
+
5544 -56
24
9
0
x"
+
5796 -28
36
-9
Xu
+ 10395 -21 -45
0
o o
-1
-1
-1
0
-3
-3
0
2
0
0
-3
0-2
0
0
0
-3
-3
-8
0
0
0
-4
4
0
0
3
-1
3
o
o
0
-1
-1
0
0
_1
_1
0
0
Xl4
-1
0
o
- 1
0
0
0
0 -b7
**
0
0
X15
-1
0
o
- 1
0
0
0
0
-b7
0
0
XI6
0
-1
0
0
0
0
0
o
0
X17
o
0
-1
0
0
0
0
XI8
0
-1
0
o
0
X19
o
0
0
0
0
0
X20
o
0
-1
o
0
X21
0
0
o
0-1
o 2
2
-1
-1
o
n
o -1
-1
0
0
0
-1
0
0
o
0
-1
-1
0
-1
x"
-1
0
-1
-1
0
0
0
3
o
0
0
-1
-1
0
000000000X23
-1
o
0
0
0
-1
0
o
0
0
-1
0
0
0
0
0
0
0
0
0
-2
0
0
0
0
8
2
-1
o
_1
-1
0
0
0
0
0
0
0
0
-1
_1
0
0
XM
0000X25 0
0
0
0
-1
-1
X26
G2 (4) Chevalley group G2 (4) Order
= 2 12 .3 3 .5 2 .7.13
= 251,596,800
Mult
2
Out
=2
Constructions Chevalley
G2 (4)
=G
: the adjoint Chevalley gt'OUp of type G2 over IF 4;
G.2: the automorphism group of a gene:'alized hexagon of or'del' (4,4). consisting of 1355 vertices and 1355 edges, each object being incident with 5 of the other type. Cayley
G : the automorphism gr'oup of the lF 4 Cayley algebra. the tensor product of the field lF li = {O.l.w,w} with the non-associative ring of Cayley integers. Calculations are complicated by the fact that there is no very symmetric base for the Cayley integers. They can be generated (in :R 8 ) by the even sums of Xoo ' Xo ' •••• X6 together' with
= ~!Xn'
1
with multiplication defined by the equations
2X~ = Xn -1, 2X OXoo = 1-X 1-X 2 -X 4 , 2X ooXO
= 1-X3-X5-X6
their images under L2 (7). Additively. this is a scaled copy of the E8 root lattice under the norm
and
N{~anXn) = ~~a~.
Each lF li Cayley number' has the form A+wB where A and Bare Cayley integers modulo doubles of Cayley integers. (Note: since Xn is not a Cayley integer. 2X n is not 0 in this algebra.) There are 1 + 4095 + 2080x2 + 2015x4 elements of determinant 1. with respective order's 1. 2, 3 and 5. The elements of order 2 fall into 1355 triples c,f the form {l+X,l+wX,l+wX}. The map X ~ A- 1XA is an automorphism of the algebra just if A has order 3 (or 1). There is a subgroup isomot'phic to the Hall-Janko gl'OUp J Quaternionic 2G
2
containing 280x2 of these maps.
: the automorphism group of the quaternionic Leech lattice. whose typical element is written (qoo;Q0 ••••• q4). The quaternions ::1, .:ti, ±j • .:tk. w =
~(-1+i+J+k)
multiplicatively generate a group 2A li and additively generate the
Hurwitz ring of integral quaternions. The lattice is closed Undel" the scalar left multiplications by these numbers. There is a monomial group 2 5+6 .OXA ) (acting on the l'ight) generated by diag(i;i.J.k,k,j). 5 diag(w;w.w,w,w.w), (qoo)(qo ql ••• q4) and (qoo qO)(ql q4). There are 195560
= 24
x 8190 minimal vectors, which
generate 3190 1-spaces. and span the lattice. They are the images under the monomial group of (2+2i;05) (6), (2;2,0 4 ) (120). (O;O,l+k.l+j.l+j.l+k) (1920). (i+j+k;1 5 ) (6144), and fall naturally into 1365 congruence bases mod <1+i>. The corresponding basic decompositions. such as <e
oo
)m ••• e<e4) each refine 5 trio decompositions such as
<e oo ,eO)@<el,e4)@<e2,e ). which in turn each refine to 5 basic decompositions. 3 The quaternionic form of a real Leech lattice vector is obtained by interpreting the columns of the MOO as the quat ern ion coordinates of a vector (qoo;qO ••••• qij) =
~qtet,
according to the scheme:
qoo qo
ql
q2
qij
q3
k
j
k
j
k
j
i
k
i
k
i
k
j
i
j
i
j
i
and then diViding by 2. The tmit gt'OUp 2Aij extends in 2Co
to 2A • which addiUvely generates the fcosian ring of integt'al quaternions, and 5
1
converts the lattice into a 3-dimensional module over this ring, whose automorphisll gt'OUP is 2J 2 (q.v.). The subgroup 3L (4) can be written over the complex subring Z[w]. 3 Graph
G.2 : the automorphism group of a rank 3 graph of valence 100 on 416 points, in which the point stabilizer is J 2 .2.
Presentations
G.2
=< a
G "
<e
b d 8 c
c 8 d
e
f
g
I
a=(cd)4,{bcde)8=1 >
I~ 1 a.(cd)4, h(abf)5.(abcf)5.(abcdecbdc)7[.(abc)5] > a
Remark
G2 (4) is a maximal subgt·oup of the Suzuki group. 'and contains the Hall-Janko group J?"
Specifications
Max imal subgroups Order
Index
604800
416
Structure
G.2
Character
J2
J 2 :2
la+658+350a
Abstract
Chevalley
Cayley
Quaternionic
Graph
icosian ring
point non-edge
184320
1365
22+8: OxA ) 5
~+8:(3XA5):2 la+350a+364a+550a
N(2A 2 )
184320
1365
2 4 +6: ( A x3) 5
24+6: (ASx3):2
1a+350a+3641>+650a
N(2A 4 )
124800
2016
U (4):2 3
U (4):4
la+6508+1365a
120960
2080
3""3(4):2
3'L3(4):22
1a+3508+36ijI>+1365a
12096
20800
U3 0):2
"30):2 x 2
C(2C)
G2 (2)
subfield
edge
3600
69888
A5
(A xA ):2 5 5
N(2A.3B,5AB). N{2B,3A.5CD)
"2(4 )
quaternion suoalgebra
6-point coclique
1092
230400
"2(13):2
N(2B,3B.6B.1A.13AB)
x
A5
"2(13)
3
3
vertex
null sUbalgebra
trio decomposition
edge
order 2 triple
base
2A2 (4 )
order 5 element
NOA)
A (4 ) 2
order 3 element
complex sUbring
[97]
G 2 (4)
@
251596800 p power
pi part ind lA X.
+
x,
+
65
x,
+
78
X.
o
x,
@
@
@
@
@
@
@
61 3 60 1 ijijO 8ijO ij80 180 536 768 512 A A A A A A A A A A A A A A 2A 28 3A 38 ijA ij8 ijC
@
300
A A 5A
@
@
300
300 A A 5C
A A
B.
@
@
300 192 A AA A AA
a.
6A
@ 12 BB BB 6B
@ 21 A A 7A
@ 32 A A 8A
@
@
32 2a C DA A CA 8B lOA
@
20 CA DA B*
@
20 BB BB
lac
@ 20 AB AB
@ ij8 AA AA
D* 12A
@
@
ij8 AB AB 128
ij8 AB AB
@ 13
A A
C.. 13A
@ 13
@ 15
@
@
15
15 DB CB B. 15C
A BA AA A AA BA B. 15A
@
@
15 21 CB AA DB AA D* 21A
@ 21 AA AA B*
X.
o
o
5
5
ij
-1
-2
3
3
3
3
-1
0
8
-ij
o
o
a
o
o
ij
8
-ij
o
o
o
o
o
6
2-2
o
o
o
o
5
20
-1
-6
15
0
6
2
300 -20
0 -15
0
ij
o
300 -20
0 -15
0
x,
+
350
30
10
35
5
x,
+
36ij -20
ij
ij9
x,
+
36ij
ijij
0 -lij
x,
+
378
-6
-6
x"
+
650
10
x..
+
x"
lij
9-3
3
2
000 3
o
o
0
0
0
0
-1
-1
0
0
0
a
o
0
-1
-1
-1
-1
x, x,
-2
2
-1
-1
-1
-1
-1
0
0
0
0
0
0
1 2i3-1-2i3-1
o
0
0
0
-1
-1
x.
-1
0
0
0
0
0
0
1-2i3-1 2i3-1
a
0
0
0
-1
-1
x,
o
2
-2
0
0
0
0
3
-1
0
0
o
0
0
0
X6
o
0
a
0
0
-1
-1
-3
0
-1
-1
o
0
X7
-1
0
0
Xs
-1
-1
-1
12
ij
-ij
-1
-1
ij
ij
ij
ij
8
-ij
ij
ij
-1
-1
2
0
0
0
0
-1
-1
0
0
-2
2
200
0
0
-6
-6
10
3
3
3
3
0
0
0
2
-2
-1
-1
-1
-1
0
o
o
10
20
5
-6
-6
10
o
o
o
o
ij
-1
-2
2
0
0
0
0
0
o
o
819 -13
-9
63
0
11
-1
3 2r5-1-2r5-1
-3b5
*
-1
0
0
-1
-1
b5
*
-1
-1
+
819 -13
-9
63
0
11
-1
3-2r5-1 2r5-1
•
-3b5
-1
0
0
-1
•
b5
-1
-1
Xu
+
819
51 -13
0
3
3
3
3
-3b5
*-2r5-1 2r5-1
0
-1
0
-1
-1
b5
*
0
o
x"
+
819
51 -13
0
3
3
3
3
•
-3b5 2r5-1-2r5-1
0
-1
0
_1
-1
•
b5
0
o
x"
+
1300
20
20
85
-5
ij
ij
ij
o
o
o
o
5
-1
-2
0
0
0
0
x"
+
1365
85
21 -21
0
5
5
5
5
5
o
o
-5
0
x"
+
2925
ij5 -15 -ij5
0
5
-7
-3
o
o
o
o
3
x"
+
2925
ij5 -15 -ij5
0
5
-7
-3
o
o
o
o
x"
+
2925
ij5 -15
90
0
5
-7
-3
o
o
o
x'"
+
3276 -52
12
63
0
-ij
-ij
_ij
*
b5+4
x"
+
3276 -52
12
63
0
-ij
-ij
-ij
b5+ij
•
x"
+
3276
12
8
0
3 -12
0
-ij
3b5
x"
+
3276
12
8
0
3 -12
0
-ij
x"
+
ij095 -65
3 -63
0
7
-5
X25
+
ij095 -65
3 -63
0
7
-5
b
+
ij095
63
-5
0
-3
-9
3-1
x"
+
ij095
63
-5
0
-3
-9
3-1
x"
+
ij096
0
0
6ij
ij
0
0
x"
+
ij 160
6ij
0
20
-ij
0
Xoo
+
ij725 -75 -15
0
0
x"
+
ij725 -75 -15
0
Xn
+
5ij60
20
2ij -8ij
ind
1
2
2
2
x"
12
-ij
x"
10ij
x"
10ij
0
0
0
o
0
0
-1
o
0
0
3
0
-1
o
0
o
-6
0
-1
o
•
3b5
-1
0
0
0
0
3b5
*
-1
0
0
0
0 -b5
•
*
b5+4
0
-1
0
0
0
*
•
3b5
b5+ij
*
0
-1
0
0
0
b5
-1
-5b5
•
o
o
o
0
-1
-1
-1
•
-5b5
o
o
o
0
-1
-1
o
o
-5b5
o
o
0
-ij
0
0
-3
9
0
-3
0
3
3
6
o
-1
o
0
o
0
0
0
X9
0
0
0
0
o
0
-1
-1
XIO
-1
0
0
• -b5
o
0
0
0
XII
-1
0
0 -b5
•
o
0
0
0
X12
0
0
0 -b5
*
0
0
XIJ
0
000
*
-b5
0
0
XI4
0
o
0
o o
0
000
x"
-1
-1
-1
0
0
-1
-1
o
0
0
0
XI6
0
-1
-1
-1
0
0
0
0
o
O-b21
*
XI7
0
0
-1
-1
-1
0
0
0
0
o
0
*-b21
XI8
0
0
0
2
2
2
0
000
o
0
• -b5
•
b5
-1
-1
-1
0
0 -b5
•
OOOQX20
*
b5
*
-1
-1
-1
0
0
• -b5
OOOOX21
b5 -b5
*
0
o
0
0
0
0 -b5
*
0
0
X22
*
-b5
0
o
0
0
a
a
*
-b5
0
0
X23
0
0 -b5
•
a a
b5
•
OOOOX24
0
0
• -b5
*
b5
OOOOX2S
*
0
0
0
a
OaQOOb5*OQX26
• -b5
0
0
0
a
a
*
o o
o
0
-1
-1
Xl9
•
0
o
-1
-1 -b5
•
-5b5
0
o
-1
-1
-ij
-ij
-ij
0
0
o
0
0
0
0
0
0
o
a
o
o
-5
-5
ij
0
0
0
-1
-1
0
0
0
a
000
a a
5
o
o
o
o
000
o
0
0
0
0
a
a b13
0
0
OOOOX30
9
5
o
o
o
o
0
0
0
a
0
0
0
0
a
a
a
o
12
0
ij
-5
-5
o
o
-ij
0
0
0
0
0
0
-1
-1
0
a
a • b13 o a a
ij
ij
6
ij ij
7 lij
8
8 8
10 10
10 10
20
20
12 12
12
-6
0
-ij
0
002
a
8
0 -22
2
-8
0
0
8
0 -22
2
•
0
0-2
a o
x"
36ij -36
0 -lij
ij
x"
560 -16
0 -70
x"
1260 -36
0
0
6
ij
0
2
5
5
5
10
10
5 10
6 6
12
10 0
2
2
-3
-3
2
0
-2
0
2
0
0
2b5
•
b5-3
•
2
0
-1
0
0
-8
0
0
•
2b5
•
b5-3
2
0
-1
0
0 -b5
-ij
0
0
ij
ij
_1
-1
-6
0
0
0
2
-1
-1
0
0
2
-ij -16
0
0
o
o
-5
-5
2
0
0
0
0
-1
-1
0
0
2
12
a
0
o
o
-5
-5
0
0
0
0
-2
-1
-1
0
0
0
0
0
0
0
0
-2
• -b5
-2
x" x..,
-
1800
ijO
0 -90
0
-8
0
0
o
o
o
o
-2
0
o
-
1800
ijO
0 -90
0
-8
0
0
o
o
o
o
-2
0
000000-2
x••
-
1820 -52
0 -70
2
-ij
0
0
o
o
-5b5
•
2
0
0
0
-2 -b5
x.,
-
1820 -52
0 -70
2
-ij
0
0
o
o
•
-5b5
2
0
0
0
-2
x.,
-
2016
96
0
0
6
0
0
0
6
6
X#
-
218ij -88
0
ij2
0
-8
0
0 2r5+ij-2r5+ij
-3b5
•
2
0
0
0
0
b5
•
0
0
-2
x"
-
218ij -88
0
ij2
0
-8
0
0-2r5+ij 2r5+ij
•
-3b5
2
0
0
0
0
•
b5
0
0
-2
x...
-
3276
60
0
0
-6
12
0
0
6
6
-ij
-ij
0
0
0
0
-2
0
0
0
0
0
x.,
-
3600
80
0
90
0 -16
0
0
o
o
o
o
202
0
0
0
0
0
0
2
x"
-
37ijij
32
0 -36
0
0
0
0-3r5-1 3r5-1
-3b5
•
-ij
0
-1
0
0
b5
•
0
0
0
x"
-
37ijij
32
0 -36
0
0
0
0 3r5-1-3r5-1
•
-3b5
-ij
0
-1
0
0
•
b5
0
0
0
x"
-
3900 -20
0 -60
0
12
0
0
o
o
o
o
ij
0
020
0
0
0
x"
-
3900 -20
0 -60
0
12
0
0
o
o
o
o
ij
0
o
2
0
0
0
x"
-
ij096
0
0
6ij
ij
0
0
0
-ij
-ij
-ij
-ij
0
0
o
0
0
0
0
x"
-
582ij -6ij
0
28
-2
0
0
0
2b5
*-2r5-1 2r5-1
-4
0
0
0
x,.
-
582ij -6ij
0
28
-2
0
0
0
*
2b5 2r5-1-2r5-1
-4
0
0
x"
-
7ij88
0
36
0
0
0
0
-2
ij
0
-2
•
0
0
2
• -b5
0
0
2
00000
000
-2
3
3
a
a -1
13
•
x" -1
0
0
-1
0
15
15
15
15
21
21
3a
~
~
~
~
a
-1
-1
-1
-1
o
0
0 -b5
o
a a
a a
a • a
a a a
a a -1 a b13
a a a
a • b13 a 0 o 0 0 0 0 a a a a a
a a a o o o
a
-1 •
X29
X31
a
0
*
b5
*
-1
-1
X34
-b5
*
b5
-1
-1
X3S
-1
-1
0
0
X36
o
0
X37
o
0
X38
a 0 a 0 a a
o
a a
b5
*
o
*b5
x"
x"
x.., 0
0
X41
OOX42
o
a a
0
X43
a a o 0 a o 0 a o -1 -1 o 0 0
b5
•
OOOOX44
•
b5
OOOOX4S
0
0
0
0
-1
a a
-1
o
-1
0
0
x...
0
-1
-1
X47
-1
o a
-1
-1
x"
-1
o
0
-1
-1
X49
a
o
0 b21
000
o
0
o
0
0
0
o
a a
0
0
o
o
0
000
00
O-b5
0
0
000
a o
o
a
a
0
0
0
o
a a
0
0
-1
3a
0
0
-1
OOXZ7
13 26
0
-1
-1
*b5
26
o
-1
a
oaOOX32
a o
[98] 6ij
12
a
0
-1
•
-1
-1
o
*
* b21
Xso XSl
-1
-1
*-b5
*
0
QXS3
*-b5
0
0
-b5
o
0
x"
XS4
x"
@
@
12 096 192 A A fus 1nd
A
A
2C
4D
@
@
48 216 B AC A AC 4E 6C
@ 18 BC BC 6D
@
@
96 A A 8C
48 B A
8D
@
@
@
@
@
@
@
++
x,
++
7 -1
x,
++
6
-2
0
-3
x.
00
6
-2
0
x,
00
6
-2
0
x,
++
28
4
2
x,
++
14
-2
2
5
x,
++
14
6
0
-4
x,
000000000000
x"
++
20
4
4
2-1
o
0
0
-2
f
+
0
0
0
0
0
0
0
0
0
t
+
0
0
0
0
0
0
0
0
0
x,
o
_1
0
2
4
-2
o
-1
o
0
-3
0
-2
0
2
o
-1
o
0
-3
0
-2
0
2
o
-1
o
0
-13
13
x,
-1
-1
x,
2
-1
-1
420
-1
000
-1
2
-1
o
2
-2
-2
2
0
0
000
x,
-1 13 -13
x.
x,
-1
0200000-20axs
o
21 -21
o
0
0
X9
-1
o
0
0
0
0
Xw
0
0
0
0
0
0
0
Xll
0
0
0
0
0
0
0
x"
x"
Xl)
x"
x"
++
14
x"
++
21
x"
+
0
-2
-2
5-1
5 -3
3
0
0
0
0
0
2
0
2
0
o
2
0
o
0
-1
o
0
-1
-1
0
0
0
0
0
-1
-1
-1
0
0
0
XIS
x"
x"
Xl7
x"
x"
++
x"
+
27
3
-3
0
0
3
-3
-1
0
0
-1
1
1
0
0
000000000000000
0
x"
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x"
Gho
x" 0
x" X24
x,
3 -3
-2
x" XI)
G z(4)
@
32 24 6 8 8 12 12 12 7 A AD BE AC B B AC BD CD A AD BE AC A A AC AD AD 8E 12D 12E 14A 16A Bn 24A 248 Cn
x,
XII
@
x" x"
~EJ32
BEJ23 32 16
x" f
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x"
X24
x"
X26'+OOOOOOOOOOOOOOOOXU
x"
x"
x"
++
64
0
0
-8
-2
0
0
0
0
0
++
56
-8
0
2
2
0
0
0
-2
0
aOOOQX28
0
0
0
0
0
0
X29
:
X29
Xm
f+OOOOOOOOOOOOOOOOX30
x"
x" ++
42
2
0
6
0
-6
0
-2
2
0
0
0
0
0
0
0
rus ind
2
4
8 8
6
6
8
8 8
8
12
24 24
14 14
16 16
16 16
24 24
24 24
24 24
x"
o
0
0
0
0
0 2r2
0
0
0
0
r2
r2
o -r2
-r2
X33
x"
o
0
0
0
0
0
0
0
0
0
0
0
0
x"
X32
:
0
0
0
x"
X32
x"
x"
o
0
0
0
0
0 2r2
0
0
0
0 -r2 -r2
0 -r2 -r2
X36
x"
o
0
0
0
0
0 4r2
0
0
0
0
0
0
r2
r2
X37
0
0 212
0
0
0
0
0 -12
0
i 2 -12
0
0
0
X38
X38
:
00
0
0
x" x@
000000000000000
x..
o
Ob
x@ 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x"
x" X43
:
00
x«
0
0 412
0
0
0
0
0
0
12
0
0
0
0
0
0
X43
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x«
0
x.,
x.,
X46
:
00
0
0 212
0
0
0
0
0
0 -12
0 -12
X47
:
00
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
0
0
0
0
0
x"
12
0
0
0
0
0
0
0
0
0
X46
16 -16
X47
0
0
o
x"
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x"
x"
x" 00
x"
0
o
0
0
0
0
0
0
0
0
17
o
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
Xs2
0
0
0
0
0
x"
x"
x" XS5
x" x"
x"
x"
X.,
00
0
0
0
0
0
0
0
0
0
0
0
0
0 213
0
0
x"
[99J
MCL Sporadic M"Laughlin group MCL Order = 898,128,000 = 27 .3 6 .5 3 .7.11
Out = 2
Mult = 3
Constructions Graph
G.2 : the automorphism group of the M"Laughlin graph, a rank 3 graph of valence 112 on 275 points in which the point stabilizer is U4 (3).2. Under the simple group G, the 2-point stabilizers are L3 (4) and 34:A6' and there are two families of 22-point cocliques stabilized by M22 , and interchanged by the outer automorphism. G : the pointwise stabilizer of a triangle ABC of type 322 in the Leech lattice (see C0 1 ). G.2 : the setwise
Leech
stabilizer. The 275 vertices V of the M"Laughlin graph are represented by the lattice points for which VA, VB, VC are all of type 2, and V is joined to V' in the graph just when VV' has type 3. Taking A = (0,0,0 22 ), B = (4,4,0 22 ), C = (5,1,1 22 ) these points are (4,0,4,0 21 ) (22), (2,2,2 60 16 ) (77) and (3,1,_1 7 115) (176), and the containment of M22 is visible. In the Leech lattice modulo 2, the 3-spaces containing the fixed 2-space (of type 223) become points in the quotient 22-dimensional representation over F 2 • They are described below by the types of their non-zero vectors. The remaining maximal sUbgroups arise as intersections of G with maximal sUbgroups of C0 1 (q.v.). Unitary (5)
3. G has a 45-dimensional unitary representation written over F 25 • Explicit matrices have been computed.
Presentation
3.G " < a
b 5 c
d I a=(cf)2,b=(ef)3,1=(eab)3=(bce)5=(aecd)4=(cef)21
\I;/~7 e f
> ; for G adjoin (cef)7=1
6
Remark
3.G.2 is a maximal subgroup of the Lyons group.
Specifications
Max imal sUbgroups Structure
Leech
1a+22a+252a
vertex
223-2223-point
1a+22a+252a+1750a
coclique
223-2234-point
1a+22a+252a+1750a
coclique
223-2234-point
Index
3265920
275
443520
2025
M22
443520
2025
M22
126000
7128
58320
15400
U (5) 3 4 : 2S
58320
15400
34 : M10
: 34 :(M lO x2)
N(3 4 ) = N(3A 10 B30 )
edge
A2 12-hole
40320
22275
L (4):2 2 3
: ~(4):22
N(2A,3B,4A,4A,4A,5B,7AB)
non-edge
223-2333-point
40320
22275
2'A 8
: 2'S 8
N(2A)
octad space
40320
22275
2 4 :A 7
[ 22+4: (S3 xS 3)
N(2A 4 )
223-2344-point
40320
22275
24 :A 7
N(2A 4 )
223-2344-point
7920
113400
Ml1
: M11 x 2
C(2B)
223-3334-point
3000
299376
51+2 :3:8
: H.2
N(5A)
2 53 1O _S_lattice
U4 (3)
31+
G.2
Graph
Order
: U4 (3):2 3
[ 5
: U (5):2 3 1 4 •• 3++ •'4S 5
Character
Abstract
1a+22a+252a+1750a+5103a
N(2A,3B,4A,5A,5B,5B,5B,7AB)
223-2333-point
N(3A)
227 336 _s_lattice
~B24
EJF21 24 14 [100]
A l3 andRe Alternating group A 13
Order: 3,113,510,400 : 29.35.52.7.11.13
Mul t :; 2
Out:; 2
Constructions Al ternating
3 13 :: G.2 : all permutations cf 13 letters; A13 :: G : the even permutations; 2.G and 2.G.2 : the Schur double covers
G:: <X,t ••• ,Xl1Ixr=(XiXj)2:1>; G.2::
Presentations
Max imal 5ubgroups
Specifications
Order
Index
239500800
Structure
G.2
Character
13
A12
S12
1a+12a
39916800
78
Sll
3
10886400
286
(A 10 x3):2
4354560
715
2419200
x 2
Abstract
Alternating point
la+ 12a+65a
C(2D)
duad
SlO x S3
la+ 12a+65a+208a
N(3A)
triad
(A 9xA 4 ):2
S9 x S4
la+12a+65a+208a+429b
N(2A 2)
tetrad
1287
(A8 xA 5 ): 2
S8 x S5
la+12a+65a+20Ba+429b+572b
N(2A,3A,5A)
pentad
1814400
1716
(A7 xA 6 ):2
S7 x S6
la+ 12a+65a+208a+429bb+572b
N(2A, 3A, 38, 4A, 5A)
hexad
5616
554400
L (3) 3
N(2B,3C,3D, .•. )
S(2, 4, 13)
5616
554400
L (3) 3
N(2B, 3e, 3D, •.. )
3(2,4,13)
78
39916800
13:6
11
13: 12
N(13AB)
~EJ55
66 5 -49
27
Spor ad ic Held group He :: F7
Order
= 4,030,387,200 = 2 1°.3 3 .5 2 .7 3 .17
~fult
=
Out =
~
Constructions
Held
G : the automorphism group of a directed graph of rank 5 and out-valence 136 on 2058 points; the point stabilizer is 3 4 (4) .2, and the suborbit lengths are 1, 136, 136, 425, 1360. The outer automorphism rever ses the directi.'ons of the edges, thereby fusing the two orbits of size 136. The eentralizer of a 2B-involution is isomorphie to the centralizers of suitable involutions in L (2) and t1 . 24 5
Monster
7 x G : the centralizer in the t10nster group F 1 (q.v.) ofan element of class 7A. The normalizer is <7.3 x GL2. An element of order 3 in the normal subgroup ? 3 of this is centralized by 3.Fi
24
, and this leads to an embedding
of G.2 in Fi 24 . The group er has been explicitly constructed as the subgroup of Fi stabilizing a set of 2058 24 3-transpositions in F'i 24 . Presentations
G.2;;
< a 4-
b
C 10
1
e 8 f
I g:(ef)4:
Max imal subgroups
3pecifications
Order
Index
1958400
2058
S4(4):2
483840
8330
138240
3tructure
G.2
Character
Abstract, Held
: 34 (4):4, (S5 xS5):2
1a+51 ab+680 a+ 1275 a
point
22 'L 3 (4) ,S3
: 22· L3 (4).D
1a+51 ab+680a+ 1275a+5272a
N(2A 2 )
29155
26 :3'36
1 24+4 .(3 3x3 3 )·2
138240
29155
6 2 :3" S6
21504
187425
16464
244800
15120
12
N(2 6 ) : N(2A 18 B45 ) N(2 6 ) : N(2A 18 B45 )
21+6 •L (2) 3 72 :2L 2 (7)
: 21+6 .L (2).2 3 : 72 :2L 2 (7l.2
266560
3'S7
6174
652800
: 3'37 x 2 : 71+2 :(S3x6 )
NC3A), C(2C)
71+2 : (3 x3) 3
4032
999600
34 x L3 (2)
: 34 x L3 (2):2
N(2A 2 ), N(2B,3A,7AB)
3528
1142400 3358656
: 7:6 x L (2) 3 : 52 :43 4
N(7AB), N(2A,3B,7C)
1200
7:3 x L3 (2) 52 :4A 4
N(2B) NC7C 2 )
N(7C)
N(5A 2 )
~B33 33
[104]
19
0 7 (3)
"3, 3
u
~
~
38
~
x"" 02
Zl
x.., 02
351
x.,
02
351
x~,
02
Jl'8
-126
34
x~_,
02
1728
3$4
M
90
x...
02
1728
-384
64
90
77 -15
"
111
% U
~
31
lS
0
35
0
-6
o o
'15
0
2457
-315
02
2457
-399
xo,
02
2457
441
x..
02
2808
-216 -56
2~
0
~5
x""
02
2808
456 104
24
0
45
X".,
02
~914
714
18
0
99
o
x""
02
4914
546..ll6 -30
0
99
o
x",,,
02
5265
-855 105 -15
x,,,,
02
7020
74
300 140
x.."
02
7371
..ll41 111
x,,,_,
02
7371
-189
x"..
0,2
7560
840
zr
51
40 -24
x,,,,
02
7560
840
~0-24
02
9477
729
81
45
x..'"
02
9828
420 -92
36
x,...
02 12285
-735 -55
21
x".
02 12285
-315-155
-3
x",
02 12285 -1155 125
-3
x'l.'
0212285
525-115-3
X",
02 12285
945
x,,,
02 14742 _1386
x,,"
02 16848
x",
02 19656
25
90
o
90
21
15
6
6
"
6
6
6
_1
o "
o
o
x".
02 19683
-729 -81
Xu..
02 22464
384
54
x." x,,,
02 22464
-384
64
56 -24
., 1)..128
-3
_1
1
-3
0
-2
14
o
0
0
02 12095
x.,_
02 12095
x",.
02
1~0~0
o
1)..180
x",
02 15120
o
0 180
x,,"
02 19655
o
0
x".
02 20736
X,W
02 22464
o
0
Xl."
02 22464
36
h"
02 24192
o -35
x"",
02 24192
x""
02 29160
o
-5
10
21
0
_4
_1
o
~,
1
9A
8
9 9 9
_1
54
o
30 0 -13
o
o
-5 _15
-3
_1
-6
-6
_2
o o
o
O..ll
0
1_1
o _,
o
_1
0 -15
o "
,
_4
, , 3
8 24 24
3
0 -10
_1
o
-3
o
-3
o -3 o
-,
o
_5
_4
o
_5
_1
0
-7
() _15
0 -3
, 12 12
o -16
o _1 o _,
_1
o
-3
_1
o
_1 -24 -12
24
12
0
, ""
• 12 12
8 24 24
5 ~
15
•
12 12 12
12 12 12
12
o
-5
0
_1
-8
o _,
-8
-,
•"
12 12 \2
"""
_1
0
_1
, -,
~
o
2
_1
_1
_1
_1
1
_1
-3
_1
-3
,
o
o _,
o
2
o
_1
Complex
o _,
o -<
, -,
o
o -3
-2
1
Xo'
,
x",
_1
x.,
_1
_1
0
_1
_1 Xu"
0
_1
_1
-13
13
13 -13 13
o 0
13 -13
0
o 13
o
o _1 o _,
678899 6 42 24 24 18 18 2124249 14 8 18 21 24 9 42 24 18
o
o
1 -13
o
-13
1.3
13-13
o
0 -13
0
o
o _,
1 -13
_1
13 0
12 12
'"
2~
24
24 24
2~ 2~
12 12 12
12 12
12 12
_1 -13
0
13
o
\3
28
P
Out
x G.2 : all 7 x 7 matrices over lF
3
15 ~
84
~
_1
_1
36
36
36
36
o
».
(P (H)
W
,
o
x",
OX".. OX",
OX,,"
o
ox",
o
OX,," OX,,,,,
_1
_1
0_1
o
_1
_1
-,
Q-rl0 XL','
o
Ox""
= w-w = i3:
6 on ab, cd, and 1 on ac, bd, ad. bc, ef, gh, eg.fh, eh. fg
antilinear in each coordinate, and 3.G.2 is generated by the antilinear maps ("reflections")
2 10 itself, and the product of two distinct coordinate vectors has the form (A ,8 ,016), where A = (7w-4)/216, B = w/8, and the coordinates are distributed as in the corresponding root vector. The reduction modulo 2 of this
(3).
0
o
6 on. ac, bc, and 1 on ad. bd, ae. be. af, bf, ag, bg, ah,bh
°7
40
OX,,,,
~IXijI2/4 - I~XijI2/112. The root
The Fischer group Fi 22 contains two conjugacy classes of maximal subgroups isomorphic to
x,,,
Ox","
in which there is an orbit of 3 x 378
representation extends to 3Fi 22 and 3·(2 E6 (2)).3.
1
OX,,,
o -r7
The subgroup 3 (2) permutes the coordinates (see 3 (2), "Hesse"). There is an invariant multiplication x*y 6 6
= x*r
x,,,,
o c,
preserving a non-singular quadratic form;
16 2 1 vectors are the multiples by powers of w of the following vectors of shape (6 .1 °,0 ), where 6
x".
_1
120 120
-,
2
The norm of the vector (x 12 •••• ,x 7 8) is
36
15
o _,
o
= z3),
x,,"
_1
36120
o
_5
PG0 (3) • 507(3) • P50 7 (3) • G.2; 07(3) • G 7 3.G has a 27-dimensional complex unitary representation over Z(w] (w
x",
1
0-2
1536
U U 28 ~ D P
• b13
o
6
_1
1
-,
Mult
1
_1
13
o _,
= 29 .3 9 .5.7.13
0 X'"
~
0-20-2_5
o
0
nnp~36363636120
"
x",
_1
~
o b13
-5
0 Xu"
~
o
o
x,,'" Xl<..
~
n n
-5
13
-,
_1
1
o
_1
1_113_13 _1
x,,~
Ox,,,
, -, o
x,..,
o
1 x"'
, -, _2
Xl<...
1
Ox".
o
_2
x.."
ox",
o
_1
0 _1
o -3 -3
o
o
x,..,
ox""
o -3 -3
_1
99202012 18 18 60 60 12
60
_1
013-130
o
1
x""
Ox,..,
o o
0
Xo.'
, ,.
o
o _,
x._, x...
_1
13 _13 _1
1
_1
o -<
-3
_1
o
o
and work modulo the l-space «1 28
[108]
o 13
1
root vectors. It is simplest to take 28 coordinates indexed by unordered pairs from the 8-set {1,2.3,4,5,6,7,81
Remark
x.,
,
= 8 3 (3)
r x """7 x
_1
o
, -<
=2
X",
_1
o -13 13
.-b13
o _1 o _,
-2
o -<
, -,
_12
G0 (3) 7
0 -13
1
0
_1
Constructions Orthogonal
-3
1
0
o
-3
o o
-3
o 13 -13 o _,
I)..b13
_1
o
1
60 60
o '"
o
o o
" '" 18 18
o
o
"
13-13
o _,
, -,
"""
_1
o
-3
_1
18
o
o -<
, -,
_1
o
18e 180 20A
o -<
_1
o
1
o _1
-2
0 -36
Order; 4,585,351.680
_1
o
-,
,
Orthogonal group 0 (3) 7
o
_1
, -,
-6
o
18 18
_1 -13
_1
36
o
_1
-3
o "
o
18
18 18
-<
-3
o o ~
18
15 1S
o -<
,
o -.
o
1S
42 42
o
,
o -.
o " o _12
o
-3
o -.
o
14
39 39
o _,
o -<
0
an
13
o _, o
-3
o
o
B. 14A 1SA 18A
o -3
o o
o _4
39 39
1-1-1313
-2
o -< -<
_1
o -3
1
0
1
0160-8
o "
0
_1
-3
-9
12 12
o
o _1 o _,
, -,
o
,
0-7
o -12
1..ll8
~
o
0_9016 -3'-36
12F 12G 1211 13A 12 12 12 13
o _,
, _4
'"" " , -, "
_1
-3 0-1
o _,
-3
o
o
1-6
-3
_5
0
12C 12D 12 12 12 12 12 12
0-2-2-2
o
o_~
12
o
, -<
0-30-2-6
o
0
0
0_30_2_5
15
12
, -,
o _,
-3
-9
•• ••
o -,
-23513012
~
10
_1
0_4
24 -15 43
10
_1
o
')
9
_1
o
o "
-,
W1M1OO1~1~
_1
1
1$ -18
ge 9
o _,
o _1 -3
'" 0-6
98 9
o
o
-3
8B
S
-,
o -.
36
-3
0-215
o
_4
0
24 -15
, -,
1~4
72
()
12
_1
o o
'". o
-9
-2
-3
1)..108
x",
36
_6
-3
3
o
2
-3 -30
_1
-3
3
02
0-3
_2
-3
o
o
3
x""
3 _24 -12
1 -35
, , ,
3
-,
8A
7
, -,
o -.
o "
_4
-5
1)..126
,
-9
1 -3
o
o -15
1)..126
12 \2
3 -18
7A
21 ·2~ 24 212424
012_40-26-240_20-3
0-9
0 -36
0
o -18 -9
o
45
135
18
o "
"'
o
o
o _,
~
6
o
324120-$
-5
o -9
zr
0
1
3 -12
"'
0-9
1175
-3
_11
-3
6P
o -<
, "
-,
36
504- 104 -24
02 19655
~536
12
o -9 -3
0-5~
12 12
12
90
~5
6K 6L 6M 6N 60 660$&66
12
12
"'
61 6J
12
o
0
~
6
0-90
0
~
6
-3
90
M 6
O_H
o o
0
~
6
-3
0 -54
~
6
o -15
0
~
6
'35
48..ll8
x".
,, ,
o
0
9
15
o -5'
x,,'"
,.d
o
0
12
U
~
12
o -16
02
41
~D
12
"
x",
02 24192
~
12
-,
x....
-720
~B
~~4~5666666S66
12
9
9911-9036
3
is
3D 3E
~
2223333333 6 6 6 3 6 6 6 3
o
0 rl0 Xl."
0 7 (3) , , ", "• "• "'• , "',
2D
fUll lnd
2E
OH
6Q
6
"
6
65
61
61J
6V
6
6
6
6
" " 6
6Z 6Al 681 6 6 6
6Y 6
6
8
s* 2eA
2~A
S* 30A 36A
" " " " " " " " " " " " " " " " '" '" '"" " " "
8D loe 100 10E 121 12J 121( 121. 12M 12" 120 12f' 120 1211 16E 18F 18G 20B
BC
8
30
)6
)0
72 72
,-
,., ,.
x~,
x._,
,. ,. ,. ,. ,. ,. XI<..
x"" x""
X,,,_, XI<.. x,,~
x"..
x,,,, x".. XI("
x,,,, x,,, x"'
x,,_, x". x", x".
I
·• ·· ·• · · • · ·· ·• ·· • · ·• ·· ·• · · • · ·· · ·· ··· ·· •· · ·· ··• · ·
page
I I I I I I
106
page
107
G1Bss
[~]E}o
-----------~-----------
BiF34 I
BiF'2 S8
:
46
I
I I
page
108
I I
page
109
x", x". x"..
". x",
x", fus 1nd
, ,
2
8
8 8
8
8
,
" " "
6
" "
6
6
" "
6
6
8
!
"" '" '" "" "" "" "" "'" " " "
12
'" " " " "" '"'" "
24
52
52 52
56 56
56 55
"
x"-'
x".
x", x,,"
x", X'l,
". XlJ"
Presentation
X,."
3.G
~
b
c
1: .
f
I (abCdefg)9~1 >
replacing the last relation by
Xl.'>
x'" x" ...
(bcdefdghd)10=1 gives 2 x G; both relations give G. See page 232.
Maximal subgroups
Specifications
Order
Index
Structure
13063680
351
2U 1/3);2 2
: 2U q (3).(2 2 )122
12597120
364
3 5 :"4 (2): 2
: 35 :(U q (Z):2x2)
12130550
378
L4 (3):22
: L4 (3):22 x 2
4245696
1080
G (J) 2
4245696
1080
G2 (3)
I
4094064
1120
33+3: L3 (J)
: 33+3:(L (3)x2) 3
1451520
3159
S6 (2)
1451520
3159
S6(2)
1259712
3640
3~+6:(2A4xA4)·2
362880
12636
S9
362880
12636
S9
207360
22113
151280
28431
17280 13824
Character
Abstract
Orthogonal
1a+168a+182a
N(2A)
minus point
1a+158a+195a
N(3 5 )
1a+182a+195a
C(2D)
plus point
N(JA 3 )
isotropic plane
: 3~+6:(2S4XS4)
N(JA)
isotropic line
(2 2 x U (2)):2 4 26 :A 7
: D x U4 (2):2 8
N(2B)
non-isotropic line
: 26~S7
N(2 6 ) ~ N(2A7B21C35)
base
265356
S4 x S6
: 2 x S4 x S6
N( 2S 2). C(2E)
°3(3) xOii(J)
331695
S4x2(A4xA4) .2
: S4 x2 (A 4 xA 4 )·4
N(2C). N( 2S 2)
°3(3)x01j(3)
G.2
I
~ N( 3A 40 B36 C45)
isotropic point
la+260a+819a la+260b+819a 18+105a+195a+819a 18+ 1688+250a+2730a la+168a+260b+2730a
[109]
G2 (5)
Chevalley group G2 (S)
= 5.859,000.000 = 26 .3 3 .56 .7.31
Order
Mult
Out
Constructions 02(5) =: G : adjoint ChevalleY group of type G2 over F S :
Chevalley
the automorphism group of a generalized hexagon of order (S,S), consisting of 3906 "vertices" and 3906 "edges". each
object being incident with 6 of the other type; Cayley
(subscr~pts
G : the automorphism group of the Cayley algebra modulo 5, consisting of vectors Iani n • with an in F S
modulo 7). where n runs over {<:x>.O ••••• 6} and 100 =1, 1 0 + 1 ~ i, 1n+ 2 '"""'7 j, 1n+ 1I ~ k form a quaternion subalgebra. Remark: G2 (S) is a maximal subgroup of the Lyons group.
Maximal subgroups
Order
@
5 859000000 p power p' part ind lA
x,
x,
Specifications
Index
Structure
Character
Abstract
Chevalley
Cayley
~44
1500000
3906
Sl+4: GL2 (S)
la.930a.l085a.1890a
N(5A)
vertex
null subalgebra
1500000
3906
S2+3:GL2 (5)
la.930a.l085b+1890a
N( 5A 2)
edge
isotropic point
756000
7750
3'U (5):2 3
N(3A)
2 A2 (5)
minus point
744000
7875
L (5):2 3
A2 (5 )
plus point
14400
406875
2'(AsxAs).2
D2 (5)
quaternion subalgebra
12096
484375
U (3):2
1344
4359375
2 3 'L (2) 3
@
@
@
@
@
N(2A)
G2 (Z)
3
@
@
44
N( 2A 3)
@
@
@
@
@
14 378 3 1 1 375 15 400 000 720 480 480 000 000 750 875 250 720 720 A A A A A A A A A AA BA A A A A A A A A A A A AA BA 2A 3A 38 4A 4B SA 58 5e 50 5E 6A 68
@
36
@
21 A
BA
BA 6C
@
@
base
@
@
24 600 600 B AA BA
2' A
A
50
@
@
@
50
@
@
@
75 AA CA AA CA
2' 750
2' EA AA EA AA
CA CA
BA
AA
@
BB BB
A A 7A 8A
8B lOA lOB 10e 100 12A 128 15A 15B
-2
0
_2
-1
4
-1
_1
o
2
-3
0
@
75
75
OA OA 15e
OA OA
@
@
30
20
20
BB BA BB BA
AB AB
Ou 15E
@
@
@
@
21 211 AA AA AA AA 8* 211A
21 AA AA 21A
20A 20B
@
@
@
@
@
@
@
@
@
x,
+
•
124
o
4 -20
x,
•
280
-8
28
X.
•
651
11
21
x,
+
930
18
4
9
-6
-1
30 -10
0
-5
5
-1
o
0
-3
-5
-5
26
26
48
0
6
6
55
15
4
4
-2
0
0
0
2
2
5
5
_1
0
-1
_1
6
6
-1
0
-5
5
0
0
0
0
5
0
o
o
3
3
-2
-2
-, -2
0033-2300-23
X.
o
960
0 -48
0
0
0 -40
0 _10
-5
10
0
0
0
o
0
0
0
0
0
0
0
2
2 523.2
x,
o
960
0 -48
0
0
0 -40
0 _10
-5
10
0
0
0
o
0
0
0
0
0
0
0
2
2
x.
•
1085
5
77
-1
5 -40
5
0 -10
10
5
-1
-1
0
_1
0
5
0
0
x,
•
1085
5 -49
5
5
85
10
-1
5
_1
0-1
5
0
0
0
-1
x"
+
1240
-8 -20
4
0
0 -10 -10
15 -10
11
4
-2
2
2
-3
2
0
0 -10 15
-5
Xu
+
1890
0
0
6
6
15
15
x"
•
2480 -16 104
-4
0
0 -20 -20
5
5
Xu
•
2604
20
84
-3
0
4 -21 -16
14
-1
x,.
+
2604 -12
21
0
4
0 104 -21
18
15
15 -10
o
0
-1
n
5
_1
_1
_1
0
0
_1
o
-1
0
0
o
o
_1
o
o
0
0
0
5
8
-4
2
2
0
0
4
4
_1
_1
0
0
4
_1
_1
_1
, , ,
4
_4
5-1
002-50000
9
_1
-1
-1
-3
0
0
0
o
0
0
0
0
-1
_1
o
0
0
0
0
0
0
0
0
_1
0
0
0
0
0-2
0
0
0
-1
_1
_1
_1
-1
0
o
0
2
0
_1
o
-1
o
-1
0
o
0
5820200-500
o
-1
o
o
0
-1
o
o
0
o
0
10
15
0
5
x..
+
3906 -30 126
0
-2
6
31
36
16
x"
+
3906 -30
0
6
6
-2 156
31
6
6
6
0
6
0
0
0
0
0
-5
0
0
0
-2
0
o
o
x,.
+ 10416 -16
84
0
0
0 -84
36 -19
-4
-9
_4
8
2
0
0
0
4
4
-1
_1
0
0
9-1
-1
-1
x"
+ 12096
0
0
0
0
0
96 -24
6
-9
_4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
x"
+ 12096
0
0
0
0
0
96 -24
6
-9
_4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x"
+ 12096
0
0
0
0
0
96 -24
6
-9
-4
0
0
0
0
0
0
0
0
0
0
0
0
0
Xu
+ 12096
0
0
0
0
0
96 -24
6
-9
_4
0
0
0
0
0
0
0
0
0
0
0
0
0
x"
+ 12096
0
0
0
0
0
96 -24
6
-9
-4
0
0
0
0
0
0
0
0
0
0
0
0
0
x,.
• 13020
4 -84
9
0
4-105
20
-5
-5
-5
4
o
0
2
-1
4
_1
_1
o
x"
+ 13020
36 105
0
4
0
15 -15
0
-5
9
0
-2
0
-4
-9
o
-5
_1
6
-1
_1
5
0
-1
-1
o
_1
o
0
0
-8
-2
0
2
0
4
-1
_1
_1
0
_4
5
_1
2
0
-2
-5
0
0
0
0 124
-6 _11
4
-1
12
0
0
0
0
0
-11
6
0 124
-6 _11
,
_1
6
0
0
0
0
0
11
-6
0-5
-1
_1
5
0-1
o
_1
XI3
-2
0
0
0
0
0
Xl5
00000X16
000000
0
000000
o
0
0
0
o
0
o
0 e31
*2
*11
*8 *16
XZ1
o
o
0
0
0
000000
o
0 *16 e31
*2
*4
*8
XZ2
0
o
o
0
0
0
000000
o
0
*8 *16 e31
*2
*4
X23
0
o
o
0
0
0
000000
o
0
*11
*8 *16 e31
*2
Xu
0
o
o
0
0
0
000000
o
0
*2
*11
*8 *16 e31
X2~
_1
0
o
o
0
o
0
0
o
0
o
o
0-1 -1
0
0
o
_1
0
0
_1
0
0
200000X28
o
OOOOOOX29
0
0
_1
_1
_1
0
0
0
0
0
0
0
0
0
0-1
r6 -r6
0
0
_1
-1
000000X'32
r6
0
0
_1
-1
0
0
0
0
0
0
X33
2
0
0
0
0
0
X~
o
o
0-1
0
o
o
0
0
-1
00-2-2
-2
-2
0
0
0
o
0
o
2
0
o
0 0
0
0
-1
_1
o 0
_1
2
0
-11
6
o
0
o
0
0
x"
+ 156211 _24 126
0
0
0 1211
-6 _11
11
_1
-6
0
0
0
0
0
-4
6
o
0
o
0
0
o
0 -r6
X~
+ 156211 -211
0 -12
0
0-126
11
9
-6
_1
o
12
0
0
0
0
6
_11
o
0
0
0
o
o
-2
0
0
o
0
0
0
0
0-1
o
X~
+ 15624
211
0
6
0
-8-126
11
9
-6
_1
o
6
0
0
0
0
-6
11
o
-2
0
0
o
o
o
2
o
0
0
0
0
0-1
o
X~
+ 156211 -211
0
6
0
0-126
11
9
-6
-1
0-600006-11
o
0
0
0
o
o
o
0
o
0
0
0
0-.600006-4
o
0
o
0
0
0 -r6
0
0
-1
_1
o
0
0
0
o
o
0
0
0
-1
_1
o
0
o
o
5
5
0
0
-1
_1
-5
0
o
o
0
_1
_1
r6 -r6
-1
OOOOOX26
0
0
0
0
0
0
0
0
0
0
0
0
Xv
X30
000000X31
0
o
00000X19 _200000X20
0
0
_1
0
o
0
_1
0
-2
0
-1
0
0
0
-1
0
000000X1S
-6
-6
0
000000X17
_1
9
0
0
4
11
00000X12
0
-6 _11
0-126
XIl
_1
0 124
0
-1
2000000X1"
0
6
-1
0
0
0
-1
-1
+ 15624 -24 126
+ 156211 -211
_1
0
x"
_1
X9
0-1
o
_1
0
0
5
-2
0
o
000000
-5
o 0
0
OOOOOX",
_1
o
_1
0
o -1 -1
0
-2
-9
o
0
0
_2
_1
OOOOOXS
o
6600000-5000-20
0
-8
o
o -,
5
0
0
0
o -,
-1
24 126
0
o
_2
-5
+ 15624
o
o
,
X>
2
0
-1
0
X>
0
6
0
x,
_2
-1
.0
-1
3
o
0
-1
3
-5
0
-1
3
-2
0
-1
0
3
0
-1
0
8
0
-1
0
0
X.
_1
0
-2
C
-1
0
0
0
_1
3
x"
0
0
_1
31 105
0
0
0
0
3255
0
0
0
0
+
• 15624 -24-252
0
0
0
x"
x,.
_1
-1
o 0
5
0
_1
0
0
15 _15
-1
0
5
20
-1
x,
0
5
4-125
_1
0
0
5
0
0
0
0
-5 130
4
o
0
0
-1
0
0
0
_1
0
9
0
0
_1
0
31 -21
5
2
o
0
o
3255
20
0
o
•
4 105
0
0
x"
20
0
0
4
+ 13020
0
0
0
+ 15500
0
0
21
x,.
o
x,
0
20
x"
0
_1
0
2604
20
0
0
_1
**
•
0 104 -21
o
_1
0
-, 0
.1
523+2 2
2-3
o
-2
Xu
x"
@
@
211 25 30 30 31 31 31 31 "31 BB A AAA EBB A A A A A BB A AAA EBB A A A A A 0* 25A 30A 30B 31A B*2 C*4 D*8E*16
211 211 AA BB AA BB B* 211C
00000X3S
-1
0
r6
_1
0-1
-1
_1
0
0
0
o
_1
_1
0
0
0
0
0
X3f>
00000X37 X~
X~
+ 15625
25-125
-5
5
5
0
0
0
0
0
-5
-5
x,.
+ 16275
35-105
-9
_1
_1
25
25
0
0
0
_1
_1
_1
o
x~
+ 17856
0-288
0
0
0-11111 -211
-11
11
6
0
0
0
-1
0
0
0
0
0
0
0
0
12
2
2
2
0
0
0
_1
_1
+ 17856
0 11111
0
0
0_11111 -211
_11
11
6
0
0
0
-1
0
0
0
0
0
0
0
0
-6
_1
-1
-1
0
0
0 -b21
*
0
0
0
0
o
0
0
0
*-b21
o
0
0
0
O O O O O O O X.. 2
0
0
o
0
0
0
0
0
0
_1
0
0
0
0
0
0
X4'
o
0
0
0
0
0
0
0
_1
0
0
0
0
0
Xu
x.,
x.,
+ 17856
0 11111
x.,
+ 19530
-6-126
[114] xu
+ 19530
-6
0
0
0
0 _10 -6
_11
11
6
0
0
0
-1
0
0
0
0
0
0
0
0
-6
_1
-1
-1
30
5
5
5
-6
0
0
0
0
0
_1
-6
-1
_1
2
0
-1
_1
_1
-1
35
15
0
5
0
-6
0
0
0
0
-6
-1
-1
_1
o
2
0
0
0_11111 -24 6 155
6 -10
30
o
o
_1
o
o
0 0
0
0
0
0
0
0
0
0
X39
OOOOOOOX4<'
0
0
0
0
0
0
X.. 1
M Sporadic Fischer-Griess llMonster" or "Friendly Giant" Broup H :; FG :; F 1
Order = 808.017.424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 246.320.59.76.112.133.17.19.23.29.31.41.47.59.71
Mult
=
Out
Constructions Griess
G : the group of orthogonal autOl1'lorphisms of a certain 195834-dimensional algebra. There is a fixed vector It and
G acts irreducibly on the 195833-space orthogonal
1. A base for the space can be defined in terms of the
'\"..0
action of the maxi'llal subgroup 2'+24Co ,. The algebra and an element of G outside this sUbgroup have been computed explicitly in this base. The mUltiplication used below differs slightly from that of Griess, so care
is necessary in comparing results. Algebra
The inner product (a,b) and algebra product a ~nd
( a
*
*
a )
lli
*
a , c
C
b
defi~ed
*
= a
lli
a
(
c ) > ( a
c ) = (a,b,c), say;
*
c ), then ( a
lli
*
b
)
.'3
*
{ x I x alternates with all s in S
~lternat~
If C
a ,
b
*
c ) for all b (and we say that a and c
c , a *" c ) , h'ith equality just when a and c alter'nate.
I f a set S is closed under taking algebra squares
and
later have the following properties:
(a,h) is positive definite;
( a , b
if ( a
*
*
s = 0 for all s in 3 }
are subalgebras. If elements v1' v2'
all alternate with
S , then its annihilator { x
I
x
their own squares and Hith eac:' other, then the subalgebra they generate is associative. The algebra has a unit 1, and the projection 1s of 1 onto any subalgebra S is a unit for 3. For an idempotent i, the eigenvalues of the map x --7 x are suoalgebras wi th Vo (i)
*
lli
i lie in [0,1], and the 0- and 1-eigenspaces Va(i) and V 1 (i)
V1 (i) = 1. tloreover, i f i and j are irje'llpotents with (i ,j) = 0, then
To each element of class 2A there is a corresponding lattice containing
~_~s..p9sition
vector t with t
*t
= 64t, and there is a
and these vectors that is closed under algebra 'Ilultiplication. When equipped with the
inner product 2(a,b) this lattice is integral (and probably unimodular). For further details see the section lIVectors" below. In the following sections, we shall describe a simplified construction for G and the algebra using the loop P described under Fi 24 , section "Loop". The several sections construct: The group N, which is a !.I-fold cover of the normalizer NO of a certain four_group {1,x,y,z} in the Monster. The Leech link, which is a homomorphism from a certain group Qx onto the Leech lattice modulo 2. Representations of various groups, which can be assembled into representations of degree 19688q for Nx ' Ny ' Nz' the centralizers of x, y, z in N. A dic.!-~onary which identifies the 195884-spaces for Nx ' Ny ' Nz compatibly with the action of their intersection Nxyz • A
multiplic~tion
on the resulting 19688 11-space, invariant under G.
Enlargements of certain quotients NXI)' NyO ' NzO of Nx ' My' Nz to groups GxO ' GyO' GzO which preserve the algebra and generate the Monster, in which they are the centralizers of x, y, z. Vectors corresponding to various elements of G. The action of a transposition can be defined in terms of the corresponding vector and the algebra structure. The group N
This is defined using the loop P described under Fi 24 , section "Loop". It is the group of permutations of the triples (A,a,C) of loop elements with ABC = 1 generated by the particular maps (specified by the irnage of CA,B,C)):
(DAD, DB, CD)
YD X
s Ys
(AD, DBD, DC)
ZD : (DA,BD,DcD)
(AS,BS,C S )
(~S = U, Le. 3 even)
(CS,SS,XS)
zS: (SS,XS,CS )
(D
(US
in P)
= -U,
Le. S o-dd)
where S is a standard automorphisrn of P and X = .0.- 1 is the loop inverse of A. Important particular cases of xs' yS' Zs are xd' Yd' zd for d a C*-set. The composition factors in the structure (22X22L211.222.(S3xM24) are defined modulo earlier ones by K
v• 2 11
<
2 22
< xD'YD,zD I
D in P
S3
< xi'Yi'zi >
for some i in (U], regarded as an (odd) C*-set
xd
< Xs
I d an even C*-set >
or ys or Zs
>,
in which we have xnYnzo=1
all 3
>.
in which xS,yS'zS all act as (S], the permutation corresponding to S.
By considering the subgroups S2 and S1 in 3 , we see that N has subgroups Nx ' Ny '
3
Nz of index 3 whose
intersection N has index 5 in N. The group Nx = (22x22).211.222.(S2xM24) has the alternative structure xyz 2.21+24.C212:M24) in which the normal subgroup 2.2 1+24 is called ~ and is generated by the Xo and xd' while the quotient Nx/Q x is isomorphic to the group of monomial automorphisms of the Leech lattice, and is generated by yO (or zD)' acting as the sign-change on (D], and xs' acting as the permutation (S].
[228]
M The Leech link
The typical element XAXgXC'"
}Idl
xDxE = z~
of Ox is written xA.8.C ••••• and we write x_R = x_1.R' The formula
xDExd' where d is the intersection of ~D] and ~J::], regarded as a C*-set, shows that Ox contains z,
and so contains k,=xU?.' There is a natural homomorphisrn taking xR
~
vR' from Ox onto the Leech lattice modulo
2, defined by
where i is one of the 24 points of (U], regarded as a C*-set. The preimages of the 98280 type 2 vectors of the Leech lattice (modulo 2) are called the shor_t_ el.e;nents of Ox' We USe x'R and x'R to mean xU.R and x_U.R when these are short, and otherwise xR' Then typical short elements, and their images in the Leech lattice, are Xi:. ij
~ (4 on i' _4 on j .Oelsewhere)
X;ij ~
.Oelsewhere)
(,I· on i.j
xo.i ~ (-3 0n i"elsewhere)sign-Changed on [0] xt.d ~ (:?:on (D],Oelsewhere)sign-changed on d where in the last line [0] is an octad and d an even subset of it. Representations
The group Nx has the followi":'lg representations (named by their degrees sUbscripted by x): 24 x : kernel (xO.xd> of order 2-26· , l'nage 2'2.u "·'24' 1 8'
This acts on the space generated by 24 orthogonal vectors i 1 (i in (U]) of norm
The image is the group of
monomial autollorphisms of a copy of the Leech lattice L (with (""xi"") interpreted as
~xii1)
in which yO
and zD act as the sign-change on [0]. and Xs as the per"llutation (S] in M24 that corresponds to S. 4096 x : kernel (YU,z_U> of order 2 2 , i.mage 21+24.(2 11 :M 24 ). This is contained in the matrix normal i zer of the faithful representation of the extraspecial group 2' +24 • There are 2 x 4096 norm' basis vectors D1" and Di. permuted like the triples (?,O,?) and (7,7,D) under conjugation (7 indicates an immaterial entry) with the identifications (-UO)1
= 0"
(UD)1
= 01'
(-O)f
= -(D~).
98280 x : kernel (k"k 2 ,k ,x> of order 2 3 • 3 This is a monomial representation on norm 1 vectors XR with XR
= -X R
permuted in the way that the short
elements xR of Qx are permuted under conjugation by the quotient group NX1
= Nx/(k 1>
of Nx '
300 x : the symmetric tensor square of 24 x ' This acts on symmetric 24 x 24 matrices A.A.s basis elements, we take the matrices (ij)1 (for i 'I j) and (H)" whose only :'lon-zero entries are 1 in places (i,j) and U,i) (for (ij),) and (i,t) (for (11)1)' In tensor
•
98304 x : the tensor product of 4096 x and 24 x ' We take the basis elements 0, Dictionary
= 300 x
We define 196884 x NxO
= Nx/K.
~
i, to have norm 1.
+ 98280 x + 98304x' Since K is in the kernel, this can be regarded as a representation of
We define similar representations· 196884 y of Nyor Nyo and 196884 z of Nz or NzO by cyclicallY
permuting the letters (x ,y, z), (X, Y, Z), (A, 8, C), and the subscripts (',2,3) in all our notations. Thus there is a representation 300 y of Ny with basis elements (ij)2 and (ii)2' and typical element B. The dictionary reads: (A. X, , )-name
(8, Y, 2)-namp.
(C,Z,3)-name
(ij) ,
Zij - ZIj
Xij - Xlj
(iJ)2
Zij + ztj
Xij + Xlj
Yij - ytj
(iJ)3
(ii) ,
(ii)2
(11) 3
20
O
XO• i 0
10
i,
03 03
i2
YD• i
2~
O
D1" 0 i 1
i2
0 i3 ~ i3
x;).d
8~-e-deYD.e
~~-d-deZ;'e
+ 8~-d-deXD.e
YO•d
1 + 8~-e-deZD.e
~~-e-deXD.€
8 4 -d-de Yo.e
1,
(11). say
ZO.i
1
1
=
+
ZO.d
The sums in the last three rows are over all C*-sets e which can be represented by even subsets of (0], and the
l ldl
symbol -d means (_1)2 MUltiplication
.. In the three previous rows it is supposed that i is not in (0] ..
There is a symmetric invariant multiplication * defined on 196884-space .. We specify it below in the notation of
A.
*
At
2(AA' + AlA) (A, vR 81 vR) ,XR (X R• S
= X±1)
(X R• S short) (otherwise)
W '&I vA X • R
(W €I v)
=
(W '&I v) • X R
(W 8l v) • (W' 0 Vi)
1
+
81 tr
A • W~ v
R
8 W 81 (v - 2(v,vR)·vR]
~ ~(WR.wt)[(v,vt) - 2(v,vR)(v l ,vR)],XR + + (W,WI).( (v,v')I + 4.. v €I v' + 4.v' 0 v]
Vectors of 300 x are represented by 24 x 24 symmetric matrices A, A', ..... The general vector of 24 x is called v, and vR denotes either of the two type 2 Leech lattice vectors corresponding to the short element xR of Ox' W is the typical vector in 4096 x-space. Its image under xR is written WR.. The sum in the last line is over all short XR (the factor ~ may be omitted if we sum instead over just one of each pair XR, X_R). The quadratic form on '96884-space is defined by the condition that (ij), has norm 2, and all our other basis vectors have norm '. Our basis vectors are orthogonal except when opposite or equal.
[229]
M Enlargements
= 2 12 :M 24
The images of Nx in the representations 211 x and l.1096 x are matrix groups Nx (211) 21+24.(211:M24) 'xhich have a common quotient 2 11 :M 21t • and can be extended
to
and Nx (!W96) =
matrix groups Gx (24)
=
2°Co, and
Gx (4096) = 21+21~.Col having a common quotient Co, (extending 211:~24)' Since the intersection of the kernels of Nx for 24 x and 4096:< is K, Nx (24) ~
2
11
:M 24
=
i t follows that NX1 = Nxf!<:, is isomorphic to the diagonal product
Nx (l./096) which can be extended to a larger group Gx1
= Gx (2li).t::.
Co
1
Gx (4096) of structure
2'+24. 2co ,. (The diagonal product A!::J. c 8 is the set of (a,h) in the Cartesian product whose coordinates have
the same image in C.) Plainly the rapresentations 24 x and 4096 x extend to Gx1 ' as does 98280 x since
~1
= Qx /!<'
is still normal and GX1 still permutes the short glements of Ox, by conjugation. So the representation '96884 x extends to Gx '. Since k 2 ;::md k are represented trivially, the result is actually a representation of GxO 3 Gx ,/K 2 , where :'<2
=
The three such groups GxO ' GyO ' GzO whi-::lh can be supposed (using the dictionary) to
act on a single '963811-space, generate the Monster group G. Vectors
There are certain vectors in the algebra that are permuted by G in the way that i t transforms the elements of certain conjugacy classes. Thus the
~ntire
300 y or 300 z ' -",hlch S:::lt isf ies Cl, 1) = 24, I
group fixes the unit. 24x24 matrix I, regarded as a vector of 300 x '
*
x = 4x, and so ~I is a unit element 1 for the algebra,
corresponding to the unit element of G. Again, the centraliozer (a double cover of the Baby Monster) of an element of class 2.t1.. (a transposition) fixes a further vector t (which we call a transposition vector) satisfying (t,t) :: '28, t
*
t:: 64t. The lattice generated by 1, t, t • t', where t and t' range over all
transposition vectors, is closed under algebra multiplication, and integral (and probably unimodular) with respect to the inner product 2(a,b). There are similar vect·?rs corresponding to (written
~)
elements of certain other conjursacy classes. We describe
the structure of the algebra generated by transposition nctors to and t, corresponding to two transpositions a and b. The conju:sacy classes of ab <md its powers are given in the table, followed by certain relations in the algebra. These involve the vectors t n correspQndi~g to transpositions a(ab)n, ~nd t, u, v, r~ corresponding to any powers of ab that lie in t'1.e respective conjugacy classes 2!1., 3A, 4A, SA..
*
lA
to
2A, 'A
to. t,
2B, ,A.
to • t 1 :: 0 = (to,t,)
3A, 1.0.
to to
* *
to :: 64t O' (to,t O) :: '28, (t o ,1)
= !3(t O+t 1-t),
(to,t,)
= 16,
t
= 2, ~
ab
t, :: 4tO+4t,+2t2-3u, (to,t,) = '3/2, u :: 'O(2t O-t,-t 2 +U), (to'u) :: IlS, u
= 3/2
(1,1)
U ~
912
ab, (u,1)
* u = 90u,
(u,u)
= 1l0S
3C, 1.0.
to. t, :: to+t,-t;:::, (to,t,) :: 2
!lA., 28, '1\..
to. t, = 3tO+3t1+t2+t3-v, (to,t,) :: 4, v ~ ab, (v,1) :: '2 144, v
4B, 2A, 1A.
t o+t,-t 2-t 3+t, (to,t,)
SA, 1A
1
*
v :: 192v, (v,v) :: 2304
'2<3tO+3t,-t2-trt4+N) , 1
2(3to+3t2-t4-t,-t3-w) , to
* 1,4::
'4(t,-t 2-t 3+t 4+w), (to'w) :: 0, (1,4,1) :: 0
W * w:: 350(tO+t1+t2+t3+t4)' (1,4,1,4) :: 3500 6A, 3A., 21\.., 'A
to
*
to+t1-t2-t3-t4-ts+t+u, (to,t,) = 5/2, t ~ (ab)3, u ~ (ab)2
t,
(t ,u)
The complete structure of the algebra generated by to and t, can in fact be read off from the table. Thus if ab is in class 6A., then (ab)2 is in class 3A, and so to
*
t 2 :: !ltO+4t2+2t4-3u.
In terms of the algebra, the action of a transposition can be recovered from the corresponding vector t by the formula x -? x -
141 [
24(x,t)t + ,6x
*
t -
(x
*
t)
*
t )
The vector corresponding to a short element xR of Qx is 2A R - 8X R, where the matrix AR = v R
~
vR
XR • XR•
In particular, for Xij :: Yij :: Zij the vector is 4(ii)+(jj)-(ij)1-(ij)2-(ij)3). The MOnster is generated by NO together with any transposition outside NO' We exhibit the vector t for such a transposition, from which the action of that transposition can be recovered from the above formula. Take an involution of 2Co, outside 212M24 which fixes an ~-dimensional sublattice L8 • For each of the type 2 vectors vR in L8 (modulo 2) select one of the preimages xR in Ox' in such a way that the chosen preimages generate an elementary abelian group 28 • Then t :: A. - 1 XR (summed over the corresponding XR), where A is the matrix of the projection onto L8 •
"Presentation"
(G x G).2 ':
<
I more relations >
The three outermost dots are redundant. By omitting the lowest two dots we obtain generators for G. Further redundant generators may be added so as to complete the diagram to the 26-point graph whose nodes are the 13 points and 13 lines of the order 3 projective plane, joined by incidence. See page 232.
[230]
M Moonshine
There is an infinite sequence of characters I\t (the head characters) of G such that for each element g of G the is fixed up to scalar factors by a
function Tg{z) :: q-l + !il(g).Q + H2 (g).q2 + ••• (where q:: eKp{21Tiz»
certain group ECg) of transformations A
B
C
D
Az + 8
):z--)
Cz + D
In particular for g :: 1 we find that EO) is the group PSL 2 (Z) and T,(z) :: j(z) - 744, where j(z) is the
classical 'elliptic :nodular function q-l + 144 + 196884q + ?1493760q2 + 864299970q3 + 20245856256q4 + 333202640600q5 +
The group ECg) always has the form r o(nlh + el'e 2 •••• ), where the parameters are integers with h dividing n and each et a divisor of nlh prime to nIChe i)' This group is deflned to consist of all matrices
ae
b/h
cn
de
of determinant e
for which a, 0, et d are integers and e is one of1, e1' e2' '.' • He abbreviate its name by omitting !Ilhll when
h = 1, and by writing r')(nlh) or ro(nlh-) when no ei (save 1) is present, and ro(nlh+) when all possible e1 are present. The scalar factors for elements of S(g) are : for elements ()f the normal subgroup rO(nh + e1.e2".') ex p( -2rri/h)
for the ele:nent (
exp(±217i/h)
for the element (
1 1/h
o 1 1
0
n
1
)
).
where the sign is + or - according as nlh is or is not among the e i • These rules completely deter:nine the subgroup F(g) of index h in
ra(nlh+el"~2"••
) that fixes Tg(z) exactly. In fact Tg(Z) is characterized as the
canonioal Hauptmodul for this group F(g) - that is to say, it generates the field of all modular functions invariant under F( g) and has a series of the form 1 Iq + a1 q + a2q2 + •••• The symbols n\h+e1,e 2 , ... serve as names for the conjugacy classes of G, with the slight ambiguities that g and g-1 have the same symbol, and that classes 27A and 27B both have symbol 27+. In this notation the "class" of gk
= n/(n,\(),
is n' Ih'+e',e} •••• where n'
h'
= h/(h,\(),
and e,.
e2' ...
are the divisors of n'lh l allong
e1' e2' •••• Many properties of the elements of G and their centralizers are illU'llinated by this parametrization. Using Fn1 h+ e 1'e2.... for the non-.!\..belian composition factor (when this exists) of the appropriate centralizer, we have
Suz
B
The na'lles F1' F2 , f'3' and FS often used for
SI2 _
F 4 j2+
F!.I_
F
F'1.I(2)
S6(2)
G2 (4)
FS+ HN
He
8, 'rh, :md HN may be regarded as abbreviations of these F_narnes.
~·l.
The full forms can be used to exhihit the analogies between these groups. There are
repli~~ion
H2o (g)
formulae relating the various characters
= Hn+1 (g)
+!' ;ii(g);.!n_i(g) (1
where:£.1 indicates that when n
= 2m
~
Hn,
for instance the
~~~~i:~tion
formula
i": n/2)
the term l\nCg)2 must be replaced by ~2-(S)
= ~(Hm(g)2
- Hm(g2)). The
duplication formula can be used to express all the Rn in terms of Hp H2 , 11 3 and HS ' The head characters H_ 1 , H9 are the linear combinations of the first few irreducible characters with the coefficients
o 4 5
3
2
4 7
5
3
7 11
7 6 3 4 2 2
a 1S 12
8
12 23 16 14
Groups involved
3
4
8
4
4
8 12
7
7
0 3
o
2
0
Which simple groups are involved in M ? We list all simple groups whose order divides that of M, in an abbreviated notation. The relevant parameter is followed by x when the group is not involved in M, by'? when the involvement is undecided, and by , when the simple group intended is the derived group of the group named,
C2 ,3,S,7,11,13,17,19,23,29,31,1.I1,47,S9,71
AS- 12 ,13x-32x
L2 (4,S,7,8,9,11,13,16,17,19?,23,2S,27?,29?,31?,32x,41?,47x,49?,S9?,64x,71?,a1,12Sx,169x,102I.1x) L3 C2, 3, 4. S, 7x, 9x, 16x ,2Sx) U (3,I.I,S,a) 3
L4 (2,3, 4x, Sx, 7x, 9x)
UI.I(2,3,4x,Sx,8x)
S4(21,3,I.I,Sx,7x,ax,9x)
US (2,4x)
S6(2,3x,l.Ix,5x)
~7(2,3,Sx)
08:C2,3)
Sz(8?,32x)
G2 C2',3,4,Sx)
0'8(2,3)
1. 6 C2x, 3x ,4x)
U6 (2,l.Ix) SaC2,3x)
09(2,3x)
3 04 (2)
LS (2, 3x,4x)
F4 (2)
S10(2x)
0iO(2,3x)
01'O(2)
2FI.I(21)
2 E6 (2)
S12(2x) 011C2x)
[231J
The Y-groups We amplify the remarks in the section "presentation", and in so doing provide presentations for
a large number of groups. The wreath square of the Monster is a homomorphic image of the Coxeter group defined by Figure 1. Redundant generators can be added to form a graph of 26 nodes a, zi' ai' b i , ci' d it ei' fit 8i' f (1 = 1,2,3) in which the joins are from a
to bit bj • bk , f
zi to ai' Cj' ok' ei
ai to zi' b i , f j • f k
bi to a , ai' ci' 8i
cl to Zj' zk' bit di
di to ci' ei' .gj' gk
ei to zi' d it fit f
f 1 to aj' sk' ei' gi
gi to b i , dj' dk , f i
f
to a , ei' ej' e k
where {i,j,k} = {1,2,3}. Abstractly, this is the incidence graph of the 13 points (zi,bi,di,fi,f) and 13 lines (a,ai,ci,ei,gi) of the projective plane
~f
order 3.
We define Ypqr to be the subgroup of Mwr 2 generated by a and the first p terms of the sequence b 1, cl' d 1 , el' f 1 the first q terms of the sequence b 2 , c2' d 2 , e2' f 2 the first r terms of the sequence b 3 , c 3 ' d 3 , e3' f 3 (see Figure 1). Similarly, we define Xpqr to be the group generated by a and the first p terms of the sequence b 1 , cl' d 1 , el (p
~
4)
the first q terms of the sequence b2 , c2' d2 , e2 (q
~
4)
the first r terms of the sequence b3 , a3 (r and if p, q
~
~
2) (see Figure 2a),
3 obtain Xpqrs by adjoining the first s terms of f, e3 (see Figure 2b). Similarly,
Qpqr is generated by f 1 , f 2 , f and 3 the first p terms of the sequence al' b 1 , cl' d 1 the first q terms of the sequence a2' b 2 , c2' d 2 the first r terms of the sequence a3' b 3 , c3' d 3 (see Figure 3). The structures of these groups, and multiple covers of certain of them, are tabulated on the next page. The intersection of Ypqr ' Xpqr(s)' Qpqr with M x M is a subgroup of index 2 which projects isomorphic ally into M in all cases of the table except Y444 (image
= M)
X2222 (image
= 210+16.09(2»
X3222 (image
= 2 10+16 .0;0(2»
We have Y5qr = Y4qr if q > 1, r > 0
= Q3qr = Y3 ,q+l,r+l
Xpqr = Ypqr i f r < 2
if q > 0
·X 33rs = X32rs if r, s > 0
Defining relations. We define f ij
= (abibjbkCiCjdi)9,
whenever {i,j,k}
= {1,2,3}.
We conjecture
that Mwr 2 is the abstract group defined by the Coxeter relations of Y555 (Figure 1) together with f1
= f 12
or f 13 ,
f2
= f 23
or f 21 ,
f3
= f 31
or f 32 •
It is known that the eight alternatives here are mutually equivalent, and define the same group as the Coxeter relations of Y444 together with the relation S = 1 of the table, when the above relations are used to define the f i • With the further definitions zi
= fi(abibjbkCidi)5
f
= fi(cidibjCjdjZk)5
ai
= fjejdjCjbjabkCkdkekfk
gi
= ci(abjCjckeif)5
these relations imply all the Coxeter relations of the projective plane. The "relations" column gives relations that complete (or conjecturally complete) the Coxeter
relations to a presentation in the other cases. Using also the information in the "centre" column of the table one can derive presentations for many groups. Thus the Coxeter relations of Y332 together with 3=1;
are presentations for the respective groups
[232]
M==F 1 Relations
Group
Structure
Ql10
S6
none
Q210
25 :S 6
none
Q220
26 :2 5 :S 6
X=l
Q111
4 3 :S6
V=1
none
Q211
2.0;;(3):2
V=l
2 6S8
P=1
Q2 21
23 .U 6 (2)
V=l
Y221
0;;(2):2
none
Q222
24 .220. U6 (2)
V=l ?
Y321
°7(2) x 2
none
26 :0;;(2):2
W=l
Y421
08(2) :2
Q=l
X222
22 .2 6 .07(2)
W=l
R=l
f 12t
X322
08(2) :2
Y331
R=1
X422
W=l
°9(2) x 2
f 21
°9(2) x 2
Y431
W=l
°;0(2):2
R=l
X332
28 :°8(2) :2
Y441
35 :°5 (3):2
W=l
S=1
X432
°;0(2):2
Y222 Y322
° 7 (3) x 2
S=1
X1111
22.2 1+6 :S 4
Y422
° 8 (3):2
Q=S=l
X2111
2.2 4 .2 1+8 :s
Y332
22' Fi22
S=l
f 12 ,
X3111
2.2 4 .[2 11 ],S6
Y432
2 x Fi 23
S=l
f 21
X2211
2 8 .2 8 .2 6 .°-( 6 2):2
Y4 42
3Fi 24
S=1 ?
X3211
28 .2 8 .27 • ( 07(2 ) x2)
Y333
2 3 .2 E6 (2)
S=l ?
f 12 ,
X2221
1 16 2 °.2 '°8(2):2
Y433
22. 8
S=1 ?
f 21 , f 31
X3221
21O .2 16 .(09(2)X2)
Y443
2 x M
S=1 ?
f 31
X2222
(210+16x210+16).(09(2)X2)
Y444
M wr 2
S=l ?
X3222
(210+16x210+'6).0;0(2):2
2Y 511
27S8
none
P
P = (ab,b 2b3c,d 1"l f l)7
2Y 421
2·°8(2):2
none
Q
Q = (f'2",)3 or (ab 1b 2b C,C 2d,",)15 3
3Y 222
36 .° 5 (3):2
T=,
S
R = [f 12 ,d 2 ] or [f21 ,d 1]
3Y 322
3.° 7 (3) x 2
U,=l
f'2' S
S = (ab1clab2c2ab3c3)10
2Y 422
2.° 8 (3):2
S=l
Q
T = ( ablc1b2c2b3c3) 18
3Y332
(22 x 3) .Fi 22
U,=U 2 =,
f 12 , f , 21
3Y333
(2 3 x 3). 2E6 (2)
U1=U2 =U 3 =1 ?
f 12 , f 23 , f 31' S
Group
Structure
Relations
YmnO
Sm+n+2
none
Ylll
23S4
none
Y211
24S5
none
Y31 !1
25S6
none
Y41 h
26 S7
Y5 1,1
Centre
(ab 1b 2b )3 3
(ab1b2b3c1d1)
5
f 12
f 21
f 12
f 21
f 23 , f 31
5
Ui = f ijf ik or [fij,c k ] or [fik,c j V = (alf,a2f2a3f3) 4
S
]
W = ( ablb2b3c,c2a3) 12 X = (a,a2blb2f1f2f3)8
f1
f2 "1
"2 d1
d2 cl
c2 b1
b2 a "1 b
c
d1
cl
b1
a
3
Figure 2a
3
Figure 1
d
3
"3 f
d2
d1 cl
3
f b,
c2 3
b2
a1
a2
f2
f1
"3 f
d1
c,
b,
a3
a
b2
c2
b3
d2 Figure 3
b3
c3
a
d
Figure 2b
3
3
[233]
M Maximal p-local sUbgroups (complete for p #. 2) p
Structure
Specification
2
2°8
N(2A)
22.(2£6(2»:S3
N(2A. 2 }
2'+24· Co
N(28)
+
2
2.2
11
.2
1 22
.(S3xM2l\)
23.26.2'2.2'8.(L3(2)X3S6) 5
2.2
3
10
.2
20
,(S3xL5(2»
N( 2B 3) N(2B 5 ) N(2'O)
3°Fi 24
N(3A)
0
31+
:2 x
°8(3»
'S4
12 • 23uz:2
53 x Th
N(3A 2)
N(3B)
3 .3 5 .3'0.( M, 1x2Slj)
N(38 2 )
33.36.[38l.(L3(3)x[24l)
N(3B3)
38 '0"8(3)02
N(38)
(D
x HN)"2
lO
sl+6: 4J2 "2 2
(5 :(2
2
4]
x U3 (S» .S3
= NOA 221 4a'066)
N(5A) N(SB) N(5A 2 )
5 .5 .5 ,(S3XGL2(5»
4
N(5S 2 )
5 3+ 3 '(2 x L (5» 3
N(58 3 )
54: (Jx2L 2 (25) .2)
N(5B")
(7:3 x He):2
Ne?A)
11+4 :(3x2S 7 )
N(7B)
(72:(3x2A4) x L2 (7».2 7 2 .7.7 2 :GL 2 (7)
N(7A 2 ) N(78 2)
(11:5 x }1,2):2
N(11A)
11 2 : (5 x2A ) S
N(l1A2 )
(13:6 x L (3»'2 3
N(13A)
13~+2:(3x4S4)
N(13B)
13 2 :4L 2 (13)'2
N(13B 2 )
17
(17:8 x L (2»'2 3
N(17A)
19
(19:9 x A ):2 5
N(19A)
("3(8):3 x A5 ):2
7
11
13
2
= N(2A4968527)
N(3G)
2
5
N(2B 2 )
2 'O + 16 ·0tO(2)
2
Supergroups
(S4(4):2 x L (2))'2 3
23
23:11xSlj
N(23AB)
22. 2 1 1. 2 22. (M 24 x3 ) 3
29
(29:14x3)'2
N(29A)
3·Fi 24
31
31: 15 x 3
N (31 AB)
3
41
41:40
N(lnA)
L2 (41):2 ?
47
47:23 x 2
N(47AB)
2'B
59
59:29
N(59AB)
L2 (S9) ?
71
71:35
N(71AB)
L2 (71) ?
3
3
x Th
Some non-local subgroups (AS x A'2):2
N(2A,3A,5A)
(L 2 (11) x H,2 ):2
N(2A, 3A, SA, 11 A), N(2A, 26, 38, 3A, SA)
A °2 2 6
N(2A,3A,5A,11A), N(2B,3B,3B,4A,5A)
M '1
x
(A 6 x A6 x A6 ) .(2 x 54)
N(2A,3A,3A,4B.5A)3
('7
N(2A,3A,3A.5A,7A), N(2A,3A,SA)2
x (AS x A5 )·4).2
(L (2) x S4(4):2)'2 3
N(2A.3A,4B,7A)
(AS x "3(8):3):2
N(2A,3C.SA)
(SS x S5 x 3 5 ):5 3
N(2A.3A,5A)3
(L 2 (11) x L2 (11»:4
N(2A,3A,5A,11A)2
~194 194
[234]
Chevalley group E8 (2) Order = 337,804,753,143,634,806,261,388,190,614,085,595,079,991,692,242,467,651,576,160,959,909,068,800,000
= 212°.313.55.74.112.132.172.19.312.41.43.73.127. 151.241.331 t1ul t = 1
Out
=
1
Constructions
Chevalley
G :
adjoint Chevalley group of type E8 over the field lF 2
Max imal 2-10cal sUbgroups (278 J:014(2) (2 98 J: (5 xL (2» 3 7
(2106J:(53xL3(2)XL5(2» (2104J:(A8xL5(2» (297J:(L3(2)x010(2» (2 83 J:(5 xE 6 (2) 3 57 (2 J:E 7 (2) (2 92 J :L8 (2) Some other sUbgroups S3 x E7 (2)
(L (2) x E6 (2»:2 3 3'(32 :Q8 x 2E6 (2»:S3
(L 5 (2) x L5 (2».4 (U 5 (2) x U5 (2».4
L9 (2):2 3'U 9 (2):S3 0;6 (2)
5·U5 (4).4 U5 (4).5.4 (08(2) x 08(2».012 °8(4)·°12 (304(2) x 304(2».6 3°4(4).6 32+8.24+8.32.2S4 (L (2) x L (2) x L (2) x L3 (2».2S 4 3 3 3 (U (4) x U (4».8 3 3 U (16).8 3 (S3) 8 .2 3L3 (2) U (3):2 x F4(2) 3
[235J
Partitions and the classes and characters of Sn The table gives the usual correspondences between partitions and the classes and characters of Sn' In the table, N
is the largest part of the partition,
m+
refers to the m'th printed character of the ATLAS table,
m-
to its associated character, and
m,M to the sum of the m'th and M'th ATLAS characters of An' The characters of the Schur double covers are also indexed by partitions. More precisely, a partition of n into distinct parts refers either to two characters of 2An that fuse in 2Sn , or to two characters of 2Sn that agree on 2~.
The partition indicates the Sn image of the classes on which the two
characters differ. The following provides enough information to define the Schur double covers
2~, 2+Sn and 2-S n • The preimages in 2±Sn of the permutation (abc • ., )(ghi. ., ) (pqr., • ) • ., are ±e, where e
= [abc ••• l[ghi ••• l[pqr ••• l •••
and we have
= [a1a2l[a1a3l ••• [a1akl.
[a1 a 2a 3··· a k l
If 0 is either preimage of the permutation taking a "-?A, b "-?B, c "-?C,
then we have 0- 1e0
=±
[ABC ••• l[GHI ••• l[PQR ••• l •••
where the sign is - just when the images of
e
and 0 are both odd permutations.
We have [a1 a 2·.,ak lk according as
[236]
={ ..
k
+1
+1
+1
-1
-1
-1
-1
+1
in 2+Sn
+1
+1
-1
+1
-1
-1
+1
-1
in 2-S n
0
1
2
3
4
5
6
7
(mod 8)
form of n :: 12 n = 13 n = 11 partition (pp 102,103) (pp 92,93) (page 76)
N
13AB
1+
121
1+
l1A8
1+
Nl
12M
2+
llA8
2+
10D
2+
N2 N11
22A l1A
3+ 4+
lOB 10F
3+ 4+
18A 9A
3+ 4+
N3 N21 N111
30F 10C lOG
5+ 7+ 6+
98C 6+ 18A 10+ 9A 7+
24A 8A 8B
N4 N31 N22 N211 N1111
36A 98C 18A 18B 9A
8+ 17+ 15+ 18+ 12+
88 24A 8D 8A 8C
8+ 15+ 14+ 16+ 11+
N5 N41 N32 N311 N221 N2111 Nl1111
40A 88 24A 248 8D 8A 8C
13+ 19+ 23+ 29+ 27+ 22+ 14+
35A8 28A 42A 21A 14A 14B 7A
N6 N51 N42 N411 N33 N321 N3111 N222 N2211 N21111 Nl11111
428 35A8 28A 288 218 42A 21A 14C 14A 14B 7A
9+ 21+ 36+ 38+ 26+ 49+ 40+ 28+ 39+ 30+
N61 N52 N511 N43 N421 N4111 N331 N322 N3211 N31111 N2221 N22111 N211111 Nll11111
n = 10 49)
(page
n =8 22)
(page
n =7 10)
(page
n =6 5)
(page
n =5 (page
2)
1+
9A8
1+
8A
1+
7AB
1+
68
1+
5AB
1+
9A8
2+
8A
2+
7A8
2+
6C
2+
5AB
2+
4A
4+
8A 88
3+ 4+
14A 7A
5+ 6+
6B 6E
4+ 5+
lOA 5A
5+ 7+
4A 4B
6+ 7+
6A 3A
5+ 2,3
5+ 12+ 6+
21AB 6+ 14A 10+ 7A 7+
6G 6B 6F
10+ 13+ 11+
15A8 8+ lOA 13+ 5A 9+
12A 4A 4B
6+ 9+ 3,4
3B 6A 3A
34,5 7-
2A 2B
54-
28A 21A8 HA 148 7A
10+ 16+ 14+ 17+ 11+
12B 61 6H 6C 6E
8+ 18+ 14+ 19+ 9+
8+ 897-
2C 2A 2B
3+ 62-
9+ 23+ 27+ 31+ 29+ 26+ 12+
308 12C 6E 6L 6K 6D 6G
9+ 21+ 24+ 28+ 26+ 23+ 7,8
58 20A 30A 15A lOA 108 5A
5+ 16+ 22+ 24+
lA
1-
6F 30C 12H 12D 6N 6G 60 6D 6P 6E 10, 11 61
5+ 19+ 32+ 34+ 25+ 42+ 37+ 28+ 36+ 17,18 12-
5B 20A 20B 158 30A 15A 10C lOA 108 5A
13+ 25+ 27+ 20+ 31+ 30+
6H 308 30E 12F 12L 12E 68 6R 6G 6P 6F 6Q 6C 6J
16+ 34+ 35+ 37+ 53+ 46+ 47+ 50+ 54+ 45+ 44+ 453014-
20+ 24+ 30+ 43+ 35+ 40+ 41+ 38,39 3635372611-
12A 4F 48 12F 12E 128 12D 4C 4E 4A 4D
2931262728176-
N53 N521 N5111 N44 N431 N422 N4211 N41111 N332 N3311 N3221 N32111 N311111 N2222 N22211 N221111 N2111111 Nl1111111
15C 10F 58 20A 60A 20D 20B 20C 30D 158 30A 30C 15A lOA 10E 108 10D 5A
24+ 43+ 33+ 20+ 52+ 51+ 55+ 4448+
41283340434229243431167-
6H 3C 6C 6J 38 6A 61 6B 6F 3A
N441 N432 N4311 N4221 N42111 N411111 N333 N3321 N33111 N3222 N32211 N321111 N3111111 N22221 N222111 N2211111 N21111111 Nl11111111
41 12K 12C 4D 4H 4B 12H 12C 121 128 12J 12A 12G 4G 4C 4F 4A 4E
25+ 31,32 4851502825524743534927353829186-
3C 6M 3D 6L 6C 6K 3B 68 6J 6A 6H 3A
13302520322714192315104-
N3331 N3322 N33211 N331111 N32221 N322111 N321il11 N31111111 N22222 N222211 N2221111 N22111111 N211111111 Nl111111111
3D 6D 60 3C 6N 6E 6L 38 6K 6B 6M 6A 61 3A
20243726343623151621191774-
28 2F 2C 2E 2A 2D
598632-
N222221 N2222111 N22211111 N221111111 N2111111111 Nl1111111111
2C 28 2E 2A 2D
9138532-
lA
1-
Nl11111111111
lA
1-
2F
10E 58 60A 20A 208 15B 30A 30B 15A 10D lOA 10C 5A
4H 12C 4D 41 48 128 41,42 12F 12G 555412A 12E 394F 33464C 404G 224A 4E 12-
10C
n =9 37)
(page
4A 12A 4D 4B 4C
3+ 14+ 12+ 9-
3B 6A 6B 3A
12+ 16+ 18+ 181711-
6D 38 6A 6C 3A
6,7 1214135-
2C 2A 28
652-
231724197-
38 6E 3C 6D 6A 6C 3A
3,4 16141215136-
2A 2D 2B 2C
3842-
lA
1-
3C 68 6G 38 6F 6A 6D 3A
111522141618104-
28 2D 2A 2C
91052-
lA
1-
1520252414132116124_
2D 28 2E 2A 2C
58632-
lA
1-
2E 2B 2D 2A 2C
910532-
lA
1-
lA
1-
22+
302311-
4F 4C 12D 12A 12C 4A 4E 4B 4D
20A 9+ 15A8 15+ lOA 14+ 108 17+ 5A 7,8
4B 12A 128 23+ 4D 12,13 4A 4C 9-
15+ 17+ 11+ 20,21
10,11
, lA
1-
'"
15+ 29+ 2218,19
13+ 33+ 21,22
[237]
Involvement of sporadic groups in one another For each sporadic simple group G, we ask which smaller sporadic groups are involved in G (that is, are quotients of subgroups of G)? In the table the entry in the row for G and the column for S is if S is involved in G
+
if S is not involved in G if we don't know ( S
?
= J 1,
,
G
=M )
If J 1 is involved in M, then it must be as a maximal subgroup, with conjugacy classes lA, 28, 3C, 58, 6F, 78, 10E, llA, 150, 19A.
+,'
M11 M12
.¥ +
+,'t-
.¥
.¥
J1
':>'
.¥
M22
.¥
J2
M23 HS J
+'t-'t-
+
.¥
+
+
':>'t+'t-'?
.¥
+
~
.¥
3
M24
+
MCL
+
+
+
':>'?
.¥
+
+rt
.¥
+
~'v
.¥
He
~
.¥
Ru Suz
+
O'N
+
C0 3
+
CO 2
+
Fi 22
+
HN
+
Ly
.¥
+
+
,>::-V
+
+
+ +
,~
.¥
+ +
":l,;,'"
+
+ +
.¥
+
'
-
Cl
v°'?
.
+
.¥
+
+
+
+
v°'t-
¥
«-",'t-'t-
.
¥
+
+
.¥
+
23
COl J4
[238]
+ + +
+
+
+
+
+
+ +
+
+
+
+
+
+
8
+
+
+
+
+
+
?
+
+
+
+
+
+
+
+
«..""
¥«-'"'t-'?
.
+
+
Fi 24
M
'v'"
.¥
Th Fi
'X:-~
(,0'
.¥
+
.
¥
+ + + +
+
+ +
+
+
+ +
+
+
+
+ +
+
+ +
«-",'rt
.¥
+ +
':>~
.¥'9
+ +
+
+
+
.¥
+
Order of simple groups This list contains all the simple groups of order less than 10 25 , except that we have stopped the series
at orders
Name(s)
'5
="2(4) ="2(5)
Hult
Order
60
2 2 .3.5
2
'68
2 3 .3.7
2 6
="2(7) '6 ="2(9) =3 4 (2)' "2(8) =R<3l'
360
23 .32 .5
504
23 .3 2 .7
2
3
"2(11)
660
2 2 .3.5.11
2
2
"2(13)
1092
22. 3• 7 • 13
2
2
"2('7>
2448
2
2 .3 "7
2
2
'7
2520
23.32 .5.7
6
2
3420
22. 32. 5 • 19
2
2
4080
2 4 .3.5.17
4
5616
2 4 .3 3 .13
2
6048
2 5 .33 .7
2
6072
2 3 .3.11.23
2
7800
2 3 .3.52 .13
2
"11
7920
2 4 .32 .5.11
"2(27)
9828
2 2 .3 3 .7.13
2
6
"2(29)
12180
22. 3• 5 • 7 .29
2
2
"2<3 1 )
14880
2 5 .3.5.3'
2
2
20160
26 .32 .5.7
"3(4)
20160
26 .32 .5.7
"2<37>
25308
2 2 .3 2.19.37
25920
26 .34 .5
2
3z(8)
29120
26 .5.7,'3
3
"2(32)
32736
25 .3.11.3'
5
"2(41)
34440
2 3 .3.5.7.41
2
2
39732
2 2 .3.7.11.43
2
2
5'888
2 4 .3.23.47
2
58800
2 4 .3.52 .72
2
"3(4)
62400
26 .3.5 2 .13
"2(53)
74412
22. 33. 13 • 53
2
2
95040
2 6 .3 3 .5.11
2
2
102660
22. 3• 5 .29.59
2
2
113460
2 2 .3.5.31.61
2
2
126000
2'.32 .5 3 .7
3
"2(67)
150348
2 2 .3.11.17.67
2
J,
175560
2 3 .3.5.7.11. '9
"2(71)
'78920
2 3 .32 .5.7.7'
2
2
'9
181440
26 .3 4.5.7
2
2
"2(73)
194472
2 3 .32 .37.73
2
2
2 4 .3.5.13.79
2
2
"3(2)
"2(19) "2(16)
"3<3l U (3) =- G2 (2)' 3
"2(23) "2(25)
'8
="4(2)
"4(2)
=3 4 (3)
"2(43) "2(47) "2(49)
",2 "2(59) "2(61) "3(5)
"2(79)
4
2
D'2 2
2
262080
2 6.32.5.7. '3
"2(81)
265680
2 4 .3 4 .5.41
2
2 x 4
"2(83)
285852
22.3.7.4,.83
2
2
352440
2 3 .32 .5.11.89
2
2
372000
25 .3.53 .31
443520
2 7 .32 .5.7.11
'2
2
456288
2 5 .3.7 2 .97
2
2
515100
2 2 .3.52 .17.101
2
2
546312
23 .3.13.17. '03
2
2
J2
604800
2 7 .3 3 .52 .7
2
2
"2('07>
612468
22.33.53.107
2
2
"2(109)
647460
22. 33. 5• 11 • '09
2
2
"2('13)
721392
2 4 .3.7.19.113
2
2
"2(121)
885720
2 3 .3.5.n 2 .61
2
22
"2('25)
916500
22.32.53.7.31
2
6
979200
28 .32 .52 .17
"2(64 )
"2(89) "3(5) "22 "2(97) "2(101) "2(103)
3 4 (4) 3 (2) 6
'451520
29 .34 .5.7
',0
1814400
4 2 2 7 .3 .. 5 .7
6
2
4 2 2
2
[239]
Name(s)
Mult 3
Out 3 3
1876896
2 5 .3 2 .7 3 .19
".0)
3265920
2 7 .3 6 .5.7
32 x 14
D8
G2O)
4245696
2 6 .3 6 .7.13
3
2
3.(5)
4680000
2 6 .3 2 .5'.13
2
2
5515716
2 9 .3'.7.19
3
3 x 53
5663616
27 .3.7 3 • '3
6065280
2 7 .3 6 .5.13
9999360
2 10 .3 2 .5.1.31
"3(8) "3(7) L.O) L (2) 5
2 2
22 2
"23
10200960
2 1 .3 2 .5.1.11.23
"5(2)
13685760
2 10 .35 .5.11
2
L (8) 3 2F4 (2)1
16482816
2 9 .32 .12 .13
6
17911200
2 11 .3 3 .5 2 .13
2
All
19958400
21 .3 4 .52 .1.11
5z(32)
32537600
2 10 .5 2 .31.41
5
L (9) 3
42456960
27 .3 6 .5.7.13
22
"3(9)
42573600
25 .3 6.52 .73
M3
44352000
2 9 .32 .5 3 .7.11
2
2
J
50232960
2 7 .3 5 .5.17.19
3
2
10915680
2 5 .3 2 .5.11 3 .37
3
3
2
2
22
3
3
U (11) 3
2
2
• 3
3.(7)
138291600
2 8 .3 2 .5 2 .7'
0"8(2)
114182400
2 12 .35 .52 .1
0 (2)
197406120
2 12 .34 .5.1.11
2
3D.(2)
211341312
2 12 .3 4 .1 2 .13
3
212421600
2'.3.52 .7.11 3 .19
2
239500800
2 9 .3 5 .52 .1.11
"2.
244823040
2 10 .33 .5.1.11.23
G2 (·)
251596800
8
L (11) 3
A
3
2
2
2 12 .3 3 .52 .1.13
2
2
210118272
25 .32 .7.13 3 .61
3
3
"3(13)
811213008
2 4 .3.1 2 .13 3 .157
"cL
898128000
21 .36 .53 .1.11
L.(4)
987033600
2 12 .34 .52 .1.17
22
".(4)
1018368000
2 '2 .3 2 .53 .13.'7
3.(B)
2 12 .3 4 .5.12 .13
•
1056106560
L (16) 3
1425715200
2 12 .3 2 .52 .1.13.17
3
4 x 53
3.(9)
1121606400
28 .3 8 .52 .41
2
22
"3(17)
2311618212
2 6 .3 4 .7.13.11 3
3
3
An
3113510400
2 9 .3 5 .5 2 .1.11.13
2
2
He
4030381200
210.33.52.73.11
2
4219234560
2 12 .3.5.17 2 .241
8
'585351680
2 9 .3 9 .5.7.13
2
2
4585351680
29 .39 .5.7.13
6
2
5644682640
2\34 .5.19 3 .1 27
3
3
G2 (5)
5859000000
2 6 .3 3 .56 .7.31
L (17) 3
6950204928
2 9 .32 .173 .307
1254000000
27 .3 2 .5 6 .13.31
"6(2)
9196830120
2 15 .3 6 .5.7.11
R(27)
10073444412
2 3 .3 9 .7.13.19.37
3.(11)
12860654400
".(5)
'2
L (13) 3
"3(16) 3 6 0> 0 7 0> L (19) 3
L.(5)
3
2 3
2
6
3
3
2
•
D 8
22 x 3
3
2 6 .3 2 .52 .11 4 .61
2
2
14142000000
2 5 .3 4 .54 .7.13
2
22
"3"9)
16938986.00
25.3 2 .52 .73 .19 3
2
L (2) 6
20158709760
2'5 .3'.5.1.3'
2
"/23)
26056457856
2 7 .32 .11.132 .23 3
5z(128)
3.093383680
2 14 .5.29.113.127
A14
43589145600
210.35.52.72.11.13
3 (2) 8
47377612800
2'6.35.52.7.17
L (25) 3
50718000000
3
3
3
3
3
7 2
2
2 7 .3 2 .5 6 .7.13.31
3
685189814.0
2 6 .3 2 .5.7 2 .13 4 .11
2
D '2 2
78156525216
25 .3.7.11 2 .23 3 .19
145926144000
2".33.53.7.'3.29
"3(25)
152353500000
25 .3.5 6 .132 .601
"3(29)
166551358800
4 2 .32 .52 .7.29 3 .271
L (3) 5
237183237120
2 9 .3 10 .5.11 2 .13
2
"50)
258190571520
2 11 .3 10 .5.1.61
2
L (27) 3
282027186768
2 4 .39 .7.13 2 .751
6
"3(27)
2820564 4 5216
25 .3 9 .72 .13.19.37
6
L/31>
283991644800
2 7 .32 .52 .31 3 .331
3
3
"3 (32)
366151135872
2 15 .32 .11 2 .31.331
3
5 x 53
3.(13) L/23) Ru
[240J
Order
L (7) 3
2 2
• 3
3
3
3
Name(s)
Order
Su.
qq83q5q97600
O'N
460815505920
2 '3 .37 .52 .7""'3 q 29 .3 .5.73 .11.19.31
q95766656000
2 '0 .37 .5 3 .7.".23
q99631102880
25 .3.5.72 .293 .87'
65383718qOOO
2'0.36.53.72.11"3
C0 L
3
3(29)
',5 G2(7) U (31) 3
66q376'38q96
28 .33 .76 .817
852032133'20
Sq(7)
100qq97oqqqSO
.3.5.72 .19.3,3 " q q 2 'O .3 .5.17 .29
Sq(6)
10951999118800
216.32.52.172.257
Uq (7)
1165572172800
210.32.52.76.113
6
Out 2
3
2
'Mult
2 2
2
2
2 2
2 8
q
08
2
22
2
2
L q(7)
2317591180800
Sq(9)
30570' 7889600
S6(q)
4106059776000
q 29 .3 .52 .76 ,'9 q q 26 .3 .52 .19 .181 q 2 '8 .3 .53 .7.13.'7
G2 (8)
q329310519296
218.35.~. 19.73
°8(3)
4952179814400
212.312.52.7.13
22
Sq
2
22
2
2
° 80)
1015'968619520
2 'O .3 '2 .5.7.'3.q,
',6 3Dq O)
10461394944000
2,q.36.53.72.".'3
20560831566912
26.312.72.132.73
2 3
3
20674026236160
2 8 .32 .5.11 2 .23 4 .53
G2(9)
225911320403200
28 .3 '2 .52 .7.13.73
2
°;0(2)
23q992959q8800
220.35.52.7.17.31
2
°10(2)
250'5379558qOO
2
L q(8)
3q5585313382qO
220.36.52.7.1"'7 q 2 '8 .3 .5.73 .'3.73
6
Uq(8)
3q693789777920
2 '8 .3 7 .5.72 .13.19
6
5z(512)
35115786567680
2'8.5.7.13.37.73.109
9
CO
42305421312000
2
22
Sq(23)
2
2
2 Sq(25)
47607300000000
2 '8 .3 6.5 3 .7.".23 28.32 .5 8 .132 .313
L q (9)
507598Q3097600
210.312.52.7.13.111
Q
2 x D8
U (Q) 5
53443952640000
2 20 .32 .5 4 .13.17.41
5
5:Q
Fi 22
64561751654400
2 17 .3 9 .52 .7.11.13
6
2
UQ(9)
101798586Q32000
2 9.3 '2 .53 .Q1.73
2
2 x Q
SQ(27)
10280Q 15783Q560
26.3'2.5.72"32.73
2
6
7 (2)
1638Q9992929280
2 21 .34 .5.72 .31.127
1778437140118000
2,Q.36.53.72.11.13.17
2
2
210103196385600
2 6 .32 .52 ;72 .294 .421
2
2
227787'03272960
2 21 .38 .5.7.11.43
228501000000000
29 .3 Q.5 9 .7.13.31
2
2
228501000000000
Q 29 .3 .5 9 .7.13.3'
2
2
258492255436800
2 20 .3 5 .52 .7.11.17.31
22
273030912000000
2 14 .36 .5 6 .7.11.19
2
G2 (11)
376611192619200
26 .3 3.52 .7.11 6.19.37
SQ<3 1 )
1109387254681600
212.32.52.13.314.37
2
2
Q
D8
L
'17 SQ(29) U7 (2) S6(5) °7(5) L
5 HN
(Q)
2
2
U1I( 11)
1036388695Q78QOO
2 7 .3 4 .5 2 .11 6 .37.61
SQ(32)
11211799322521600
220.32.52.112.312.41
L Q(11
2069665112592000
27 .3 2 .53 .7.11 6.19.61
2
22
SQ<37>
2402534664555840
Q 26 .3 .5. 192 .37Q• 137
2
2
',8
3201186852864000
2'5.38.53.72.1,.13"7
2
2
FQ(2)
3311126603366QOO
22Q.36.52.72.13,'7
2
2
G2(13)
391Q077Q89672896
26.3 3.72 "3 6.61.157
SQ(Q1)
670733Q818822QOO
28.32.52.72.292.414
2
2
6(3)
21032402889738240
211.315.5.7.112.132
2
22
U6 0)
228374724320870110
2 13 .3 15 .5.72 .13.61
2
22
5 10 (2)
24815256521932800
2 25 .3 6 .52 .7.11.17.31
Sz(2048)
36011213418659840
222. 5.23.89.397.2113
11
Q9825657Q393Q0552
2 3 .3 15 .7.11 2 .31.61.271
5
51765179004000000
28.37 .5 6 .7.11.31.37.67
56653740000000000
211.32.510.11.13.31.71
2
U5 (5)
57604365000000000
2 9 .3 5 .5 10 .7.13.521
2
"9
60822550204416000
2'5.38.53.72.1,.13"7.19
2
2
S80)
6578Q75665QQ89600
2111.316.52.7.13.41
2
2
0 9 0)
6578Q75665QQ89600
214.316.52.7.13.41
2
2
°8(11)
670108955QQ320000
°a(Q)
67536Q711956Q8000
22Q.35 .5 Q.7.13.172 22Q.3Q.5 3 .7.13.17.257
D'2 Q
3DQ (Q)
67802350642790400
22Q.3 Q.52 .72 .132 .2Q1
6
G2(6)
7177611478302?ZQO
224.33.52.7.13.172.241
Q
Tb
90745943887872000
215.310.53.72.13.19.31
L
)
R(2Q3) Ly L
5 (5)
G2 (17)
167795197370551296
2 '0 .35 .7"3.'7 6 .307
10
[241]
Mult
Out
'6(7)
2734572'8604953600
2'2. 34. 52. 79"9.43
2
2
0 7 (7)
273457218604953600
2'2.34.52.79.19.43
2
2
G2(19)
796793353927300800
.26.35.52.73.196.127 2
2
Name(s)
A20
'216451004088320000
2'7.38.54.72.11.13"7"9
F1 23
4089470473293004800
2'8.3'3.52.7""'3"7.23
Co,
4157776806543360000
221.39.54.72.11.13.23
L (2) 8
5348063769211699200
228.35.52.~.'7.31.'27
"8(2)
7434971050829414400
228. 39.52 .7.11.17.43
°8(5)
8911539000000000000
2
2'2.35.512.7.132.31
2 2 22
'4
'6(8)
9077005607'76765440
G2 (23)
'157092'62'943780096
227 .37 .5.73 "3"9.73 28 .33 .7.1,2"32.236 .79
08(5 )
17880203250000000000
2'0.34.5'2.7.13.31.313
2
22
A21
25545471085854720000
2'7.39.54.73.1"'3.17"9
2
2
'z(8'92)
36888985097480437760
226 .5.53.157.1613.8191
13
G2(25)
37193298187500000000
28.33.5'2.7.132.31.601
2
3°4(5)
35817806390625000000
26.34.5'2.72.3,2.60'
0;2(2)
500275571482'6524800
230.38.52.72.11.'7.31
2
0'2(2)
51615733565620224000
230 .36.53 .7.1,.13.17.3'
2
'6(9)
54025731402499584000
2'2. 3'8. 53. 7• 13.4,.73
2
22
0 (9) 7
54021)73140;>1199'584000
2'2.3'8.53.7"3.4,.73
2
22
J4
86775571046077562880
221.33.5.7.1,3.23.29.3,.37.43
3
L5 (7)
187035'98320488089600
2".35.52.7'0.19.280'
2
"5(7)
188151359720376729600
2'5.32.52.7'0.'1.43.19'
2
L6 (4) A22
3613'0'34959341568000
230.36.53.72.11.13.17.31
3
562000363888803840000
2'8.39.54.73.1,2.13.17.19
2
°'0(3)
650084965259666227200
215.320.52.7.13.41.61
4
"6(4)
1120527288631296000000
230.34.56.7"32"7.41
°8 4
0;0(3)
1289512799941305'39200
215.320.52.7.112.13.41
2
22
'6(11)
3669292720793456064000
29 .34.53 .7.11 9 .19.37.61
2
2
0 7 (")
3669292720793456064000
29 .34.53 .7.11 9.19.37.6'
2
2
'8(4)
4408780839651901440000
232.35.54.7"3.'72.257
2
L5 (8)
463822600749'0'0887680
230 .34.5.74 ,'3.31.73.151
6
"5(8)
4656663745464977326080
230 .39 .5.72 .".13.19.331
6
°'2 2
A23
12926008369442488320000
218.39.54.73.112.13.11.19.23
2
2
"5(9)
15775810414207914240000
2".320.54.41.73.'18'
5
5:4
'z(32768)
37777778976635853209600
230 .52 .7.13.3,.41.61,'51.1321
15
L (3) 7
67034222101339041669120
2'3.32'.5.7.1,2.132.'093
2
"7(3)
72853912155490594652'60
2'6. 321. 5• 72"3.61.547
2
2E6 (2) L5 (9)
76532479683774853939200
236.39.52.72.11.13,'7,'9
18660280796419613491200
2'5.320.52.1.'12.13.41.61
°8(1)
112554991177198901160000
216.35.54.112.19.43
22
'4
'6(13)
1227969793359061'387'360
2
2
° 7 (13)
122796979335906113871360
29 -3 4.5.7 3.13 9.17.61.157 29.3 4.5.7 3.13 9.17.61.157
2
2
8 12 (2)
208114637736580743168000
236.38.53.72.11.13. '7. 31
E6 (2)
214841515522005575270400
236-36.52.73.13. '7. 31. 73
°8(7)
225297514001560801689600
213.34.52.712.19.43.1201
0(2'87>
239189910264352349332632
23 .3
.1 2 .43.541.1093.2269
7
2F4 (8)
264905352699586116614400
236.35.52.12.132.19.31.109
3
'24
310224200866619719680000
221.310.54.73,112.13.17.19.23
2
2
"9(2)
325473292721108444174400
2 36 .3 11 .5 2 .1.11.11.19.43
3
'3
304 (7)
450782974156649555296512
28,34.712.13.192.432,181
"6(5)
468755520181500000000000
2".36.5'5.72.13.3,.521
L (2) 9
6996'23'0033197642547200
236.35.52.73. 17.31. 73.127
F1 24
1255205109190661121292800
221.3'6.52.73.11.13.17.23.29
3
2
1383059421750000000000000
213.34.515.7.11.13.312.11
2
22
5
°10
21
22 x 3
'3
;,2
2 2
22
3 6
°12 2
L6 (5) L (11) 5 F4 (3)
1952052708565059186240000
29.32.54.7.1110.19.61.3221
5734420792816611844161600
215.324.52.72.132.41.73
'8(5)
6973279267500000000000000
214.35.516.7.132.31.313
2
2
°9(5)
6973219267500000000000000
214.35.5'6.7"32.3'.3'3
2
2
A25
1755605021665492992000000
22'.3'0.56.73.112.13.17"9.23
2
2
"5(11)
97750620209947436785'5200
211.35,52.1110.37.61.13421
2
8
-4154781 481226426191177580544000000
241.313.56.72.11.13.17.19.23.31.41
2
E (2) 7
7997476042075 799759100487262680802918400
2 63 .3" •52.7 3.11. 13. 17. 19-31. 43. 73. '27
,
M
8080174247945'2875886459904
246.320.59.76.112.133.17.19.23.29.31.
961710757005154368000000000
41.47.59.11
E8 (2)
[242]
Order
331804153143634806261
3881906'4085595079991692242 46765'576160959909068800000
2120.313.55.14.112.132.112.19.312.41. .43.13. 121. 151. 241. 331
Bibliography Our main bibliography refers only to the sporadic groups. We add here a few works chosen because they deal with most of the major families of simple groups. Many of them contain extensive bibliographies.
E.Artin, Geometric algebra, Wiley-Interscience, London and New York, 1957 R.W.Carter, Simple groups of Lie type, Wiley-Interscience, London and New York, 1972 R.W.Carter, Finite groups of Lie type, Wiley-Interscience, London and New York, 1985 C.Chevalley, Sur certains groupes simples, Tohoku Math. J. (2) 7 (1955) 14-66 H.S.M.Coxeter & W.O.J.Moser, Generators and relations for discrete groups, 2nd ed., Springer, Berlin, 1965 C.Davis, A bibliographical survey of simple groups of finite order, 1900-1965, Courant Inst. of Math. Sci., New York, 1969 L.E.Dickson, Linear groups with an exposition of the Galois field theory, 2nd ed., Dover, 1958 J.Dieudonne, La geometrie des groupes classiques, 2nd ed., Springer, Berlin, 1963 D.Gorenstein (ed.), Reviews on finite groups, Amer. Math. Soc., Providence, Rhode Island, 1974 D.Gorenstein, Finite simple groups: an introduction to their classification, Plenum Press, London and New York, 1982 B.Srinavasan, Representations of finite Chevalley groups, Springer, Berlin, 1979 R.Steinberg, Variations on a theme of Chevalley, Pacific J. Math. 9 (1959) 8'(5-891
[243]
Mathieu group M11
D.R.Hughes, A combinatorial construction of the small Mathieu designs and groups, Ann. Discrete Math. 15 (1982) 259-264 G.Keller, A characterization of A6 and M11 , J. Algebra 13 (1969) 409-421 H.Kimura, A characterization of A1 and M11 , I, 11, Ill, Hokkaido Math. J. 3 (1914) 213-217; 4 (1975) 39-44; 4 (1915) 213-211 W.O.J.Moser, Abstract definitions for M11 and M12 , Canad. Math. Bull. 2 (1959) 9-13 t.W.Norman, A characterization of the Mathieu group M11 , Math. Z. 106 (1968) 162-166 D.Parrott, On the Mathieu groups M22 and M11 , Bull. Austral. Math. Soc. 3 (1910) 141-142 D.Parrott, On the Mathieu groups M11 and M12 , J. Austral. Math. Soc. 11 (1910) 68-81 G.J.A.Schneider, The Mathieu group M11 , M.Sc. thesis, Oxford, 1919 K.C.Ts'eng and C.S.Li, On the commutators of the simple Mathieu groups, J. China Univ. ScL Tech. 1 (1965) 43-48 H.N.Ward, A form for M11 , J. Algebra 31 (1915) 340-351
Note See also M12 and M24
Mathieu group M12
K.Akiyama, A note on the Mathieu groups M12 and M23 , Bull. Centre Res. Inst. Fukuoka Univ. 66 (1983) 1-5 R.Brauer and P.Fong, A characterization of the Mathieu group M12 , Trans. Amer. Math. Soc. 122 (1966) 18-41 F.Buekenhout, Geometries for the Mathieu group M12 , in "Proceedings of the Conference on Combinatorics", (D.Jungnickel and K.Vedder, eds.), pp. 14-85, Sprj"ger Lecture Notes 969 (1982) J.H.Conway, Hexacode and 1 tracode
MOG and MINIMOG, in "Computational Group Theoryll, Academic Press, London, 1984
J.H.Conway, Three lectures on excel ional groups, in "Finite Simple Groups" (Powel! and Higman. eds.) pp. 215-247, Academic Press, 1971
H.S.M.Coxeter, Twelve points in PG(5,3) with
9~
40 self-transformations, Proc. Roy. Soc. London A 247 (1958) 279-293
R.T.Curtis, The Steiner system S(5.6,12). the Mathieu group M12 and the IIKitten", in "Computational Group Theory" (M.Atkinson. ed.), Academic Press, 1984 G.Frobenius, Uber die Charaktere der mehrfach transitiven Gruppen, Berliner Berichte (1904) 558-571 M.Hall, Note on the Mathieu group M12 , Arch. Math. 13 (1962) 334-340 D.R.Hughes, A combinatorial construction of the small Mathieu designs and groups, Ann. Discrete Math. 15 (1982) 259-264 J.F.Humphreys. The projective characters of the Mathieu group M12 and of its automorphism group, Math. Proc. Cambridge Philos. Soc. 87 (1980) 401-412 B.H.Matzat, Konstruktion von Zahlkorpern mit der Galoisgruppe M12 uber Q(/-5), Arch. Math. 40 (1983) 245-254 W.O.J.Moser, Abstract definitions for M11 and M12 , Canad. Math. Bull. 2 (1959) 9-13 D.Parrott, On toe Mathieu groups M1 I and M12 , J. Austral. Math. Soc. 11 (1970) 68-81 G.J.A.Schneider, On the 2-modular r"present,·' ions of M12 , in "Representations of Algebras ll (Auslander and Lluis, eds.), pp. 302-314, Springer Lecture Notes 90 G.J.A.Schneider. The vertices
(1981) the simple modules of M12 over a field of characteristic 2, J. Algebra 83 (1983) 189-200
R.G.Stanton, The Mathieu groUpJ, Canad. J. Math. 3 (1951) 164-174 G.N.Thwaites, A characterization of M12 by centralizer of involution, Quart. J. Math. Oxford (2) 24 (1973) 537-551 J.A.Todd. On representations of the Mathieu groups as collineation groups, J. London Math. Soc. 34 (1959) 406-416 J.A.Todd, Abstract definitions for the Mathieu groups, Quart. J. Math. Oxford (2) 21 (1910) 421-424 T.A.Whitelaw, On the Mathieu group of degree twelve, Proc. Cambridge Philos. Soc. 62 (1966) 351-364 E.Witt, Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Hamburg 12 (1938) 256-264 W.J.Wong. A characterization of the Mathieu group M12 , Math. Z. 84 (1964) 378-388
Note See also M24
Janko group J 1
P.J.Cameron, Another characterization of the small Janko group, J. Math. Soc. Japan 25 (1913) 591-595 G. R. Chapman, Generators and relations for the cohomology ring of Janko's first group in the first twenty-one dimensions, in "Groups - St. Andrews 1981" (Campbell and Robertson, eds.) Cambridge Univ. Press, 1982 J. H. Conway, Three lectures on exceptional groups, in "Finite Simple Groupsll (Powel! and Higman, eds.) pp. 205-214, Academic Press, 1971
P.Fong, On the decomposition numbers of J 1 and R(q), Symp. Math. 13 (1972) 415-422 T.M. Gagen, On groups with Abelian 2-Sylow subgroups, in liThe Theory of Groups" (Kovacs and Neumann, eds.), pp. 99-100, Gardon and Breach, London and New York, 1961 T.M.Gagen, A characterization of Janko's simple group, Proc. Amer. Math. Soc. 19 (1968)
1~93-1395
G. Higman. Construction of simple groups from character tables, in "Finite Simple Groups" (Powell and Higman, eds.) pp. 205-21-4, Academic Press, 1911
[244]
Z.Janko, A new finite simple group with Abelian Sylow 2-subgroups, Proc. Nat. Acad. Sei. USA 53 (1965) 657-658 Z.Janko, A new finite simple group with Abelian Sylow 2-subgroups, and its characterization, J. Algebra 3 (1966) 147-186 Z.Janko, A characterization of a new simple group, in liThe Theory of GrOUpSIl (Kovacs and Neumann, eds.), pp. 205-208, Q:>rdon and Breach, London and New York, 1967 P.Landrock and G.O.Michler, Block structure of the smallest Janko group, Math. Ann. 232 (1979) 205-238 C.S.Li, The commutators of the small Janko group J 1 , J. Math. (Wuhan) 1 (198) 175-179 D.Livingstone, On a permutation representation of the Janko group, J. Algebra 6 (1967) 43-55 R.P.Martineau, A characterization of Janko's simple group of order 175,560, Proc. London Math. Soc. 19 (1969) 709-729 M.Perkel, A characterization of J 1 in terms of its geometry, Geom. Ded. 9 (1980) 291-298 E.E.Shult, A note on Janko's group of order 175,560, Proc. Amer. Math. ·Soc. 35 (1972) 342-348 T.A.Whitelaw, Jankots group as a collineation group in PG(6,10), Proc. Cambrige Philos. Soc. 63 (1967) 663-677 H.Yamaki, On the Janko's simple group of order 175,560, Osaka J. Math. 9 (1972) 111-112
Mathieu group M22
S.M.Gagola and S.C.Garrison, Real characters, double covers and the multiplier, J. Algebra 74 (1982) 20-51 R.L.Griess, The covering group of M22 and associated component problems, Abstracts Amer. Math. Soc. 1 (1980) 213 D.Held, Eine Kennzeichnunug der Mathieu-Gruppe M22 and der alterniernden Gruppe A10 , J. Algebra 8 (1968) 436-439 J.F.Humphreys, The projective characters of the Mathieu group M22 , J. Algebra 76 (1982) 1-24 Z.Janko, A characterization of the Mathieu simple groups. I, J. Algebra 9 (1968) 1-19 W.Jonsson and J.McKay, More about the Mathieu group M22 , Canad. J. Math. 28 (1976) 929-937 P.Mazet, Sur le multiplicateur de Sehur du groupe de Mathieu M22 , C. R. Acad. Sei. Paris 289 (1979) 659-661 D.Parrott, On the Mathieu groups M22 and M11 , Bull. Austral. Math. Soc. 3 (1970) 141-142 J. Tits, Sur les systemes de Steiner associes aux trois llgrands" groupes de Mathieu, Rend. Math. e AppL (5) 23 (1964) 166-184 K.C.Ts'eng and C.S.Li, On the commutators of the simple Mathieu groups, J. China Univ. Sei. Tech. 1 (1965) 43-48
Note See also M24
Hall-Janko group J 2
A.M.Cohen, Finite quaternionic reflection groups, J. Algebra 64 (1980) 293-324 L.Finkelstein and A.Rudvalis, Maximal subgroups of the Hall-Janko-Wales group, J. Algebra 24 (1973) 486-493 S.M.Gagola and S.C.Garrison, Real characters, double covers and the multiplier, J. Algebra 74 (1982) 20-51 D.Q:>renstein and K.Harada, A characterization of Janko's two new simple groups, J. Fac. Sei. Univ. Tokyo 16 (1970) 331-406 M.Hall and D.B.Wales, The simple group of order 604,800, J. Algebra 9 (1968) 417-450, and in liThe Theory of Finite Groups" (Brauer and Sah, eds.), pp. 79-90, Benjamin, 1969 A.P.ll'inyh, A characterization of the Hall-Janko finite simple group, Mat. Zametki 14 (1973) 535-542 Z.Janko, Some new simple groups of finite order, in liThe Theory of Finite Groups" (Brauer and Sah, eds.), pp. 63-64, Benjamin, 1969 J.H.Lindsey, On a projective representation of the Hall-Janko group, Bull. Amer. Math. Soc. 74 (1968) 1094 J.H.Lindsey, Linear groups of degree 6 and the Hall-Janko group, in "The Theory of Finite Groupsll (Brauer and Sah, eds.), pp. 97-100, Benjamin, 1969 J.H.Lindsey, On a 6-dimensional projective representation of the Hall-Janko group, Pacific J. Math. 35 (1970) 175-186 J.McKay and D.B.Wales, The mUltipliers of the simple groups of order 604,800 and 50,232,960, J. Algebra 17 (1971) 262-272 F.L.Smith, A general characterization of the Janko simple group J 2 , Arch. Math. (Basel) 25 (1974) 17-22 J.Tits, Le groupe de Janko d'ordre 604,800, in "The Theory of Finite Groups" (Brauer and Sah, eds.), pp. 91-95, Benjamin, 1969 D.B.Wales, The uniqueness of the simple group of order 604,800 as a subgroup of SL6 (4), J. Algebra 11 (1969) 455-460 D.S.Wales, Generators of the Hall-Janko group as a subgroup of G2 (4), J. Algebra·13 (1969) 513-516 R.A.Wilson, The geometry of the Hall-Janko group as a quaternionic reflection group, Preprint, Cambridge, 1984
Mathieu group M23
K.Akiyama, A note on the Mathieu groups M12 and M23 , Bull. Centr. Res. Inst. Fukuoka Univ. 66 (1983) 1-5 N.8ryce, On the Mathieu group M23 , J. Austral. Math. Soc. 12 (1971) 385-392 U.Dempwolff, Eine Kennzeichnung der Gruppen A5 und M23 , J. Algebra 23 (1972) 590-601 Z.Janko, A characterization of the Mathieu simple groups. 11, J. Algebra 9 (1968) 20-41 L.J.Paige, A note on the Mathieu groups, Canad. J. Math. 9 (1957) 15-18 J. Tits, Sur les systemes de Steiner associes aux trois IIgrands ll groupes de Mathieu, Rend. Math. e AppL (5) 23 (1964) 166-184
Note See also M24
[245]
Higman-Sims group HS
A.E.8rouwer, Folarities of G.Higman's symmetric design and a strongly regular graph on 176 vertices, Aequationes Math. 25 (1982) 77-82
A.R.Calderbank and D.B.Wales, A global code invariant under the Higman-Sims group. J. Algebra 75 (1982) 233-260 J.S.Frame. Computation of the characters of the Higman-Sims group and its automorphism grou, J. Algebra 20 (1972) 320-349 D.Go,renstein and M.E.Harris. A characterization of he Higman-Sims simple group, J. Algebra 24 (1973) 565-590 D.G.Higman and C.C.Sims, A simpl" group of order 44,"::52,000, Math. Z. 105 (1968) 110-113 G.Higman, On the simple group of D.G.Higman and C.C.Sims, Ill. J. Math. 13 (1969) 74-80 J.F.Humphreys, The modular characters of the Higman-Sims simple group, Proc. Roy. Soc. Edinburgh A 92 (1982) 319-335 Z.Janko and S.K.Wong, A characterization of the Higman-3ims simple group, J. Algebra 13 (1969) 517-534 H.Kimura. On the Higman-Sims simple group of order 44,352.000. J. Algebra 52 (1978) 88-93 S.S.Magliveras. The maximal subgroups of the Higman-Sims group. Ph.D. thesis, Birmingham. 1970 S.S.Magliveras. The subgroup structure of the Higman-Sims simple group. Bull. Amer. Math. Soc. 77 (1971) 535-539 J.McKay and D.B.Wales, The multiplier of the Higman-3ims simple group. Bull. London Math. Soc. 3 (1971) 283-285 D.Parrott and S.K.Wong. On the Higman-3ims simple group of order 44,352.000. Pacific J. Math. 32 (1970) 501-516 A.Rudvalis. Characters of the covering group of the Higman-Sims simple group, J. Algebra 33'(1975) 135-143 C.C.3ims, One isomorphism between two groups of order 44.352.000, in liThe Theory of Finite Groups" (Brauer and 3ah. ed.), pp. 101-108. Benjamin, 1969 H.S.Smith, On rank 3 permutation groups, J. Algebra 33 (1975) 22-42 M.S.Smith. On the isomorphism of two simple groups of order 44,352,000, J. Algebra 41 (1976) 172-174 M.S.Smith, A combinatorial configuration associated with the Higman-Sims group. J. Algebra 41 (1976) 175-195 D.B.Wales. Uniqueness of the graph of a rank three group, Pacific J. Math. 30 (1969) 271-276 R.A.Wilson, On maximal subgroups of automorphism groups of simple groups. Preprint, Cambridge, 1984
Janko group J
3
J.H.Conway and D.B.Wales. Matrix generators for J , J. Algebra 29 (1974) 474-476 3 L.Finkelstein and ARudvalis, The maximal sUbgroups of Janko's simple group of order 50,232,960. J. Algebra 30 (1974) 122-143 D.Frohardt, A trilinear form for the third Janko group. J. Alg$bra 83 (1983) 349-379 D.Gorenstein and K.Harada. A characterization of Janko's two new simple groups, J. Fac. Sei. Univ. Tokyo 16 (1970) 331-406 G.Higman and J.McKay, On Janko's simple group of order 50,232.960, Bull. London Math. Soc. 1 (1969) 89-94. 219, and in lithe Theory of Finite Groups" (Brauer and 3ah. eds.), pp. 65-77, Benjamin, 1969 Z.Janko. Some new simple groups of finite order, Symp. Math. 1 (1968) 25-64, and in "The Theory of Finite Groups" (Brauer and 3ah, eds.), pp. 63-64. Benjamin, 1969 J.McKay and D.B.WaleG. The multipliers of the simple groups of order 604,800 and 50,232,960. J. Algebra 17 (1971) 262-212 R.M.Weiss. A geometric construction of Janko's group J , Math. z. 179 (1982) 91-95 3 R.M.Weiss. On the geometry of Janko·s group J 3 , Arch. Math. (Basel) 38 (1982) 410-419 S.K.Wong. On a new finite non-abelian simple group of Janko, Bull. Austral. Math. Soc. 1 (1969) 59-79
Mathieu group M24
E.F.Assmus and H.F.Mattson, Perfect codes and the Mathieu groups, Arch. Math. (Basel) 17 (1966) 121-13S N.8urgoyne and P.Fong, The Sehur mUltipiers of the Mathieu groups, Nagoya Math. J. 27 (1966)
733-74~,
and 31 (1968) 297-304
Chang Choi, On subgroups of M24 • I. Stabilizers of subsets, Trans. Amer. Math. Soc. 167 (1972) 1-27 Chang Choi, On subgroups of M24 • 11. The maximal subgroups of M24 • Trans. Amer. Math. Soc. 167 (1972) 29-47 J.H.Conway, The Miracle Oct<:ld Generator. in "Topics in group theory and computation, Proceedings of the Summer Sehool, Galway, 1973 11 , pp. 62-68, Academic Press, 1977 J.H.Conway, Hexacode and tetracode - MOG and MINIMOG, in "Computational group theory", Academic Press, 1984 J.H.Conway. Three lectures on exceptional groups, in "Finite Simple Groups" (Powell and Higman, eds.), pp. 215-247. Academic Press, 1971
R.T.Curtis. On the Mathieu group M24 and related topics, Ph.D. thesis. Cambridge 1972 R.T.Curtis, A new combinatorial approach to M24 • Math. Proc. Cambridge Philos. Soc. 79 (1976) 25-42 R.T.Curtis, The maximal subgroups of M24 , Math. Proc. Cambridge Philos. Soc. 81 (1977) 185-192 G.Frobenius. Uber die Charaktere der mehrfach transitiven Gruppen, Berliner Berichte (1904) 558-571 D.Garbe and J.Mennicke. Some remarks on the Mathieu groups, Canad. Math. Bull. 7 (1964) 201-211, and 15 (1912) 141 P.J.Greenberg. Mathieu groups. Courant Inst. of Math. SeL, New York. 1973 D.Held, The simple groups related to M24 , J. Algebra 13 (1969) 253-296 G.D.James, The modular characters of the Mathieu groups, J. Algebra 27 (1973) 57-111 M.Koike, Automorphic forms and Mathieu groups, in "Topics in Finite Group Theoryl1, pp. 47-56, Kyoto Univ., 1982 E.Kovac Striko, A characterization of the finite simple groups M24 , He and L5 (2), J. Algebra 43 (1976) 351-397 R.J.List. On the maximal subgroups of the Mathieu groups. I. M24 • Atti Accad. Naz. Lincei Rend. Cl. So1. Fis. Mat. Natur. (8) 62
[246]
(1977) 432-438
H.Luneburg, Uber die Gruppen von Mathieu, J. Algebra 10 (1968) 194-210 D.R.Mason, On the construction of the Steiner system S(5,8,24), J. Algebra 47 (1977) 77-79 E.Mathieu, Memoire sur 1 'etude des fonctions de plusieurs quantites, J. Math. Pures Appl. 6 (1861) 241-243 E.Mathieu, Sur les fonctions cinq fois transitives de 24 quantites, J. Math. Pures AppL 18 (1873) 25-46 P.Mazet, Sur les mUltiplicateurs de Schur des groupes de Mathieu, J. Algebra 77 (1982) 552-576 G.A.Miller, Sur plusieurs groupes simples, Bull. Soc. Math. de France 28 (1900) 266-267 V.Pless, On the uniqueness of the Golay code, J. Combinatorial Theory 5 (1968) 215-228 R.Rasala, Split codes and the Mathieu groups, J. Algebra 42 (1976) 422-471 M.Ronan, Locally truncated buildings and M24 , Math. Z. 180 (1982) 489-501 U.Schoenwaelder, Finite groups with a Sylow 2-subgroup of type M24 , J. Algebra 28 (1974) 20-45 and 46-56 J. de Seguier, Sur les equations de certains groupes, C. R. Acad. Sei. Paris 132 (1901) 1030-1033 J. de Seguier, Sur certains groupes de Mathieu, Bull. Soc. Math. de France 32 (1904) 116-124 R.G.Stanton, The Mathieu groups, Canad. J. Math. 3 (1951) 164-174 J.Tits, Sur les systemes de Steiner associes aux trois "grands" groupes de Mathieu, Rend. Math. e AppL (5) 23 (1964) 166-184 J.A.Todd, On representations of the Mathieu groups as collineation groups, J. London Math. Soc. 34 (1959) 406-416 J.A.Todd, Representation of the Mathieu group M24 as a collineation group, Ann. di Math. Pure ed Appl. (4) 71 (1966) 199-238, and Rend. Mat. e Appl. 25 (1967) 29-32 J.A.Todd, Abstract definitions for the Mathieu groups, Quart. J. Math. Oxford (2) 21 (1970) 421-424 E.Witt, Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Hamburg 12 (1938) 256-264 E.Witt, Uber Steinersche Systeme, Abh, Math. Sem. Hamburg 12 (1938) 265-274
McLaughlin group MCL
O.Diawara, Sur le groupe :Slmple de J.McLaughlin, Fh.D. thesis, Bruxelles, 1984 L.Finkelstein, The maximal subgroups of Conway's group C and McLaughlin's group, J. Algebra 25 (1973) 58-89 3 Z.Janko and S.K.Wong, A characterization of McLaughlin1s simple group, J. Algebra 20 (1972) 203-225 J.McLaughlin, A simple group of order 898,128,000, in "The Theory of Finite Groupsll (Brauer and Sah, eds.), pp. 109-111, Benjamin, 1969
H.S.Smith, On rank 3 permutation groups, J. Algebra 33 (1975) 22-42
He Id group He
A.Borovik, 3-local characterization of the Held group, Algebra i Logika 19 (1980) 387-404, 503 G. Butler , The maximal subgroups of the sporadic simple group of Held, J. Algebra 69 (1981) 67-81 J.J.Cannon and G.Havas, Defining relations for the Held-Higman-Thompson simple group, Bull. Austral. Math. Soc. 11 (1974) 43-46 M.Deckers, On groups related to Held's simple group, Arch. Math. (Basel) 25 (1974) 23-28 I.S.Guloglu, A-characterization of the simple group He, J. Algebra 60 (1979) 261-281 D.Held, Some simple groups related to M24 , in "The Theory of Finite Groupsl1 (Brauer and Sah, eds.), PP. 121-124, Benjamin, 1969 D.Held, The simple groups related to M24 , J. Algebra 13 (1969) 253-296, and J. Austral. Math. Soc. 16 (1973) 24-28 E.Kovac Striko, A characterization of the finite simple groups M24 , He and L5 (2), J. Algebra 43 (1976) 357-397 G.Mason and S.D.Smith, Minimal 2-local geometries for the Held and Rudvalis sporadic groups, J. Algebra 79 (1982) 286-3 06 J.McKay, Computing with finite simple groups, in uProceedings of the Second International Conference on the Theory of Groups" U.Schoenwaelder, Finite groups with a Sylow 2-subgroup of type M24 , J. Algebra 28 (1974) 20-45 and 46-56 R.A.Wilson, Maximal subgroups of automorphism groups of simple groups, Preprint, Cambridge, 1984
Rudvalis group Ru
S.B.Assa, A characterization of 2F4 (2)' and the Rudvalis group, J. Algebra 41 (1976) 473-495 J.Bierbrauer, A 2-local characterization of the Rudvalis simple group, J. Algebra 58 (1979) 563-571 J.H.Conway, A quaternionic construction for the Rudvalis group, in "Topics in groups theory and computation, Proceedings of the Summer School, Galway, 1973", pp. 69-81, Academic Press, 1977 J.H.Conway and D.B.Wales, The construction of the Rudvalis simple group of order 145,926,144,000, J. Algebra 27 (1973)
538-5~8
U.Dempwolff, A characterization of the Rudvalis simple group of order 2 14 .3 3 .5 3 .7.13.29 by the centralizers of non-central inVOlutions, J. Algebra 32 (1974) 53-88 M.Hall, A representation of the Rudvalis group, Notices Amer. Math. Soc. 20 (1973)
A~88
G.Mason and S.D.Smith, Minimal 2-local geometries for the Held and Rudvalis sporadic groups. J. Algebra 79 (1982) 286-306 V.D.Mazurov. Characterization of the Rudvalis group, Mat. Zametki 31 (1982) 321-J38, 473 T.Okuyama and T.Yoshida. A characterization of the Rudvalis group, Corom. Algebra 6 (1918) 463-474 M.E.O'Nan, A characterization of the Rudvalis group, Comm. Alg. 6 (1978)
101~141
D.Parrott, A characterization of the Rudvalis simple group, Proc. London Math. Soc. 32 (1976)
2~-51
A.Rudvalis, A new simple group of order 2 14 .3 3 .5 3 .7.13.29, Notices Amer. Math. Soc. 20 (1973) A-95
[247 J
A.Rudvalis, The graph for a new group of order 2 14 .33 .53 .7.13.29, Preprint. Michigan, 1972 A.Rudvalis. A rank 3 simple group of order 2 ,4 .33 .5 3.7.13.29. I, J. Algebra 86 (1984) 181-218 A.Rudvalis, A rank 3 simple group of order 2'4 .33 .5 3.7.13.29. 11. Characters of G and G, J. Algebra 86 (1984) 219-258 R.A.Wilson, The geometry amd maximal subgroups of the simple groups of A.Rudvalis and J.Tits. Proc. London Math. Soc. 48 (1984)
533-563 S.Yoshiara, The maximal subgroups of the sporadic simple group of Rudvalis, Preprint, Tokyo. 1984 K-e~Young.
Some simple subgroups of the Rudvalis simple group, Notices Amer. Math. Soc. 21 (1974) A-481
SUzuki group Suz
J.H.Lindsey, A correlation between PSU 4 (3), the Suzuki group. and the Conway group, Trans. Amer. Math. Soc. 157 (1971) 189-204 J.H.Llndsey. On the Suzuki and Conway groups, Bull. Amer. Math. Soc. 76 (1976) 1088-1090; and in "Representation Theory of Finite Groups and Related Topics ll (I.Reiner, ed.), Amer. Math. Soc., 1971 N.J.Patterson and S.K.Wong, A characterization of the Suzuki sporadic simple group of order 448,345,497,600, J. Algebra 39 (1976)
277-286 A.Reifart, A characterization of Sz by the Sylow 2-subgroup. J. Algebra 36 (1975) 348-363 A.Reifart, A characterization of the sporadic simple group of Suzuki, J. Algebra 33 (1975) 288-305 L.H.Soicher. A natural series of presentations for the Suzuki chain of groups, Preprint. Cambridge. 1984 M.Suzuki, A finite simple group of order 448,345,497.600. in liThe Theory of Finite Groups" (Brauer and Sah, eds.), pp. 113-119. Benjamin, 1969 R.A.Wilson, The complex Leech lattice and maximal subgroups of the Suzuki group, J. Algebra 84 (1983) 151-188 O.Wright, Irreducible characters of the Suzuki group. J. Algebra 29 (1974) 303-323 H.Yamaki. A characterization of the SUzuki simple group of order 448.345,497.600. J. Algebra 40 (1976) 229-244 H.Yamaki. Characterizing the sporadic simple group of Suzuki by a 2-10cal subgroup, Math. Z. 151 (1976) 239-242 S. Yoshiara, The complex Leech lattice and sporadic Suzuki group, in "Topics in Finite Group Theory". pp. 26-46. Kyoto Univ., 1982
O'Nan group O'N
S.Andrilli, On the uniqueness of O'Nanls sporadic simple group. Thesis. Rutgers. 1980 I.S.Guloglu, A characterization of the simple group ON. Osaka J. Math. 18 (1981) 25-31 A~P.Illinyh,
Characterization of the simple O'Nan-Sims group by the centralizer of an element of order 3, Mat. Zametki 24 (1978)
487-497, 589 M.E.O'Nan. Some evidence for the existence of a new simple group, Proc. London Math. Soc. 32 (1976) 421-479 A.J.E.Ryba, The existence of a 45-dimensional 7-modular representation of 3·0 ' N, Preprint, Cambridge, 1984 L.H.Soicher, Presentations of some finite groups with applications to the O'Nan simple group, Preprint, Cambridge. 1984 S.A.Syskin, 3-characterization of the O'Nan-Sims group, Mat. Sb. 114 (1981) 471-478. 480 R.A.Wilson, The maximal subgroups of the QINan group, to appear in J. Algebra S.Yoshiara, The maximal subgroups of the O'Nan group, Preprint, Tokyo, 1984
Conway group Co 3
D.Fendel, A characterization of Conway's group '3, Thesis, Yale, 1970, and Bull. Amer. Math. Soc. 76 (1970) 1024-1025. and J. Algebra 24 (1973) 159-196 L.Finkelstein, The maximal subgroups of Conway's group C3 and McLaughlin's group, J. Algebra 25 (1973) 58-89 B.Mortimer, The modular permutation representations of Conway's third group, Carleton Math. Ser. 172 (1981) M.F.WarbQYs, Generators for the sporadic group C0
3
as a (2,3,7)-group. Proc. Edinburgh Math. Soc. (2) 25 (1982) 65-68
T. Yoshida, A characterization of Conway's group 'C 3 • Hokkaido Math. J. 3 (974) 232-242
Note See also COl
Conway group Co 2
F.L.Smith. A characterization of the '2 Conway simple group, J. Algebra 31 (1974) 91-116 R.A.Wilson, The'maximal SUbgroups of Conwayts group '2. J. Algebra 84 (1983) 107-114 T.Yoshida. A characterization of the '2 Conway simple group, J. Algebra 46 (1977) 405-414
Note See also COl
[248]
Fischer group Fi 22
S.B.Assa, A characterization of M(22), J. Algebra 69 (1981) 455-466 J. H. Conway, A construction for the smallest Fischer group, in "Finite groups '12" (Gagen, Hale and Shult, eds.), pp. 27-35,
North-Holland, Amsterdam, 1913 G.M.Enright, The structure and subgroups of the Fischer groups F22 and F23 , Ph.D. thesis, Cambridge, 1916 G.M.Enright, A description of the Fischer group
F~2' J.
Algebra 46 (1911) 334-343
G.M.Enright, Subgroups generated by transpositions in F22 and F23 , Comm. Algebra 6 (1978) 823-831 B.Fischer, Finite groups generated by 3-transpositions, Preprint, Warwick D.Flaass, 2-10cal subgroups of Fischer's
group~
F22 and F23 , Mat. Zametki 35 (1984) 333-342
D.C.Hunt, A sporadic simple group of B.rischer of order 64,561,751,654,400, Ph.D. thesis, Warwick, 1970 D. C. Hunt , Character tables of certain finite simple groups, Bull. Austral. Math. Soc. 5 (1911) 1-42 D.C.Hunt, A characterization of the finite simple group M(22), J. Algebra 21 (1912) 103-112 J.Moori, On certain groups associated with the smallest Fischer group, J. London Math. Soc. 23 (1981) 61-67 D.Parrott, Characterization of the Fischer groups, !rans. Amer. Math. Soc. 265 (1981) 303-341 R.A.Wilson, On maximal sUbgroups of the Fischer group Fi 22 , Math. Proc. Cambridge Philos. Soc. 95 (1984) 191-222
Harada-Norton group HN
B.Beisiegel, A note on Harada's simple group F, J. Algebra 48 (1911) 142-149 K.Harada, On the simple group r of order 2 14 .3 6.5 6.7.11.19, in "Proceedings of the Conference on Finite Groups (Utah 1915)" (W.R.Scott and F.Gross,
".I:;.
>,
pp. 119-216, Academic Press, 1916
K.Harada, The automorphism group and the Schur multiplier of the simple group of order 2 14.3 6.5 6.7.11.19, Osaka J. Math. 15 (1918)
633-635 S.P.Norton, F and other simple groups, Ph.D. thesis, Cambridge, 1915 S.P.Norton and R.A.Wilson, Maximal subgroups of the Harada-Norton group, Preprint, Cambridge, 1984 P.E.Smith, On certain finite simple groups, Ph.D. thesis, Cambridge, 1915
Lyons group Ly
R.Lyons, Evidence for a new finite simple group, J. Algebra 20 (1972) 540-569, and 34 (1915) 188-189 W.Meyer and W.Neutsch, Uber 5-Darstellungen der Lyonsgruppe, Math. Ann., to appear W.Meyer, W.Neutsch and R.A.Parker, The minimal 5-representation of Lyons' sporadic group, Preprint C.C.Sims, The existence and uniqueness of Lyons' group, in "Finite groups '12" (Gagen, Hale and Shult, eds.), pp. 138-141, North-Holland, Amsterdam, 1913 R.A.Wilson, The subgroup structure of the Lyons group, Math. Proc. Cambridge Philos. Soc. 95 (1984) 403-409 R.A.Wilson, The maximal subgroups of the Lyons group, Math. Proc. Cambridge Philos. Soc., to appear
Thompson group Tb
R.Lyons, The Schur multiplier of F3 is triVial, Comm. Algebra 12 (1984) 1889-1898 R.Markot, A 2-10cal characterization of the simple group E, J. Algebra 40 (1916) 585-595 D.Parrott, On Thompson's simple group, J. Algebra 46 (1971) 389-404 A.Reifart, A characterization of Thompson's sporadic simple group, J. Algebra 38 (1916) 192-200 P.E.Smith, On certain finite simple groups, Ph.D. thesis, Cambridge, 1915 P.E.Smith, A simple sUbgroup of M? and E8 (3), Bull. London Math. Soc. 8 (1976) 161-165 J.G.Thompson, A simple subgroup of E8 (3), in "Finite Groups" (N.lwahori, ed.), pp. 113-116, Japan Soc. for the Promotion of Science, Tokyo, 1916
Fischer group Fi 23
F.Buekenhout, Diagrams for geometries and groups, J. Combinatorial Theory 21 (1979) 121-151 G.M.Enright, The structure and subgroups of the Fischer groups F22 and F23 , Ph.D. thesis, Cambridge, 1976 G.M.Enright, A description of the Fischer group F23 , .J. Algebra 46 (911) 344-354 G.M.Enright, SUbgroups generated by transpositions in F22 and F23 , Comm. Algebra 6 (1978) 823-831 B.Fischer, Finite groups generated by 3_transpositions, Preprint, Warwick D. C. Hunt , A characterization of the finite simple group M(23), J. Algebra 26 (1912) 431-439 D.C.Hunt, The character table of Fischer's simple group M(23), Math. Comp. 28 (1914) 660-661 D.Parrott, Characterization of the Fischer groups, Trans. Amer. Math. Soc. 265 (1981) 303-341 S.K.Wong, A characterization of the Fischer group M(23) bya 2-10ca1 subgroup, J. Algebra 4 (1917) 143-151
[249]
Conway group COl
J.H.Conway. A perfect group of order 8.315.553,613,086.720,000 and the sporadic simple groups, Proc. Nat. Acad. Sei. USA 61 (198) 398-400
J.H.Conway, A group of order 8,315,553,613,086,70,000, Bull. London Math. Soc. 1 (1969) 79-88 J.H.Conway, A characterization of the Leech lattice, Invent. Math. 7 (1969) 137-142 J.H.Conway. Three lectures on exceptional groups, in "Finite Simple Groups" (Powell and Higman, eds.), pp. 215-247, Academic Press, 1971
J.H.Conway, Groups, lattices and quadratic forms, in "Computers in algebra and number theory", pp. 135-139, Amer. Math. Soc. 1971 J.H.Conway, The automorphism group of the
26-dimensio~al
even unimodular Lorentzian lattice, J. Algebra 80 (1983) 159-163
J.H.Conway, R.A.Parker and N.J.A.Sloane, The covering radius of the Leech lattice, Proc. Roy. Soc. London A 380 (1982) 261-290 J.H.Conway and N.J.A.Sloane. 23 constructions for the Leech lattice, Proc. Roy. Soc. London A 381 (1982) 215-283 J.H.Conwayand N.J.A.Sloane, Lorentzian forms for the Leech lattice, Bull. AIDer. Math. Soc. 6 (1982) 215-211 R.T.Curtis, On the Mathieu group M24 and related topics. Ph.D. thesis, Cambridge, 1972 R.T.Curtis, On subgroups of '0. I. Lattice stabilizers. J. Algebra 21 (1973) 549-513 R.T.Curtis, On SUbgroups of '0. 11. Local structure, J. Algebra 63 (1980) 413-434 J.Lepowsky and A.Meurman, An E8-approach to the Leech lattice and the Conway group, J. Algebra 71 (1982) 484-504 S.P.Norton, A bound for the covering radius of the Leech lattice. Proc. Roy. Soc. London A 380 (1982) 259-260 N.J.Patterson, On Conway's group ·0 and some subgroups. Ph.D. thesis, Cambridge, 1972 A.Reifart, A remark on the Conway group '1, Arch. Math. 29 (1977) 389-391 A.Reifart, A 2-local characterization of the simple groups M(24)', ·1 and J 4 • J. Algebra 50 (1978) 213-227 J.G.Thompson, Finite groups and even lattices. J. Algebra 38 (1916) 1-1 J.Tits, Four presentations of Leech's lattice, in "Finite Simple Groups lP' (M.J.Collins, ed.). pp. 303-307, Academic Press, 1980 R.A.Wilson, The maximal subgroups of Conway's group Col' J. Algebra 85 (1983) 144-165
Janko group J 4
D.J.Benson, The simple group J 4 , Ph.D. thesis, Cambridge, 1980 1.S.Guloglu, A characterization of the simple group J 4• Osaka J. Math. 18 (1981) 13-24 Z.Janko, A new finite simple group of order 86,115,510.046,071,562.880, which possesses M24 and the full covering group of M22 as subgroups. J. Algebra 42 (1916) 564-596 W.Lempken, The Schur multiplier of J 4 is trivial, Arch. Math. 30 (1978) 267-270 W.Lempken, A 2-local characterization of Janko's simple group J 4 , J. Algebra 55 (1918) 403-445 G.Mason, Some remarks on groups of type J 4 , Arch. Math. 29 (1911) 514-582 S.P.Norton, The construction of J 4, in "The Santa Cruz Conference on Finite Groups" (Cooperstein and Mason, eds.), pp. 211-278, Amer. Math. Soc., 1980 A.Reifart. Some simple groups related to M24 , J. Algebra 45 (1977) 199-209 A.Reifart, Another characterization of Janko's new simple group J 4 • J. Algebra 49 (1971) 621-627 A.Reifart. A 2-10cal characterization of the simple groups M(24)', ·1 and J 4 • J. Algebra 50 (1918) 213-227 R.M.Stafford, A characterization of Janko's new simple %roup J 4, Notices Amer. Math. Soc. 25 (1918) A-423 R.M.Stafford, A characterization of Janko's new simple group J 4 by centralizer.s of elements of order three, J. Algebra 57 (1919) 555-566
G.Stroth, An odd characterization of J 4, Israel J. Math. 31 (1978) 189-192
Fischer group Fi 24
S.L.Davis and R.Solomon, Some sporadic characterizations. Comm. Algebra 9 (1981) 1725-1142 B.Fischer. Finite groups generated by 3-transpositions, Preprint, Warwick S.P.Norton, F and other simple groups, Ph.D. thesis, Cambridge, 1915 S.P.Norton, Transposition algebras and the group F24 , Preprint, Cambridge D.Parrott, Characterizations of the Fischer groups, Trans. AIDer. Math. Soc. 265 (1981) 303-341 A.Reifart, Some simple groups related to M24 , J. Algebra 45 (1911) 199-209 A.Reifart, A 2-10ca1 characterization of the simple groups M(24)', ·1 and J 4 , J. Algebra 50 (1978) 213-221
[250]
Baby monster group B
J.Bierbrauer, A characterization of the "Baby monster ll group F2 • including a note on 2E6 (2), J. Algebra 56 (1979) 384-395 D.G.Higman, A monom1al character of Fischer's Baby Monster. in lIProceeding of the Conference on Finite Groups" (W.R.Seott and F.Gross, eds.) pp. 277-284, Academic Press, 1976 O.Kroll and P.Landrock, The characters of some 2-blocks of the Baby Monster, its covering group. and the Monster, Comm. Algebra 6 (1978) 1893-1921
J.S.Leon, On the irreducible characters of a simple group of order 241.313.56.72.11.13.17.19.23.31.47, in lIProceedings of the Conference on Finite Groups" (W.R.SCott and F.Gross, eds.), pp. 285-299, Academic Press, 1976 J.S.Leon and C.C.Sims, The existence and uniqueness of a simple group generated by {3,4}-transpositions, Bull. Amer. Math. Soc. 83 (1977) 1039-1040
C.C.Sims, How to construct a Baby Monster, in "Finite Simple Groups II" (M.J.Collins, ed.), pp. 339-345. Academic Press, 1980 G.Stroth, A characterization of Fischer's sporadic group of order 241.313.56.72.11.13.17.19.23.31.47, J. Algebra 40 (1976) 499-531
Monster group M
J.H.Conway, Monsters and moonshine, Math. Intellingencer 2 (1979/80) 165-171 J.H.Conway, A simplified construction for the Fischer-Griess Monster group, Invent. Math., to appear J.H.Conway and S.P.Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979) 308-339 S.L.Davis and R. Solomon , Some sporadic characterizations, Comm. Algebra 9 (1981) 1725-1742 P.Fong, Characters arising in the Monster-modular connection, in "The Santa Cruz conference on finite groups" (Cooperstein and Mason, eds.), pp. 557-559, Amer. Math. Soc., 1980 I.Frenkel, J.Lepowsky and A.Meurman, A natural representation of the Fischer-Griess Monster with the modular function J as character, Preprint, Berkeley, 1984 R. L. Griess, The structure of the "Monster" simple group, in "Proceedings of the Conference on Finite Groups" (W .R. Seott and F. Gross, eds.), pp. 113-118, Academic Press, 1976 R.L.Griess, A construction of F1 as automorphisms of a 196,883-dimensional algebra, Proc. Nat. Acad. Sei. USA 78 (1981) 689-691 R.L.Griess, The Friendly Giant, Invent. Math. 69 (1982) 1-102 R.L.Griess, The monster and its non-associative algebra, in "Proceedings of the Montreal Conference on Group Theory (1982)", (J.McKay, ed.) V.G.Kac, A remark on the Conway-Norton conjecture about the "Monster" simple group, Proc. Nat. Acad. Set. USA 77 (1980) 5048-5049 O.Kroll, The characters of a non-principal 2-block of the Monster F1 (?), Preprint Ser. Math. Inst. Aarhus Univ. 31 (1977) O.Kroll and P.Landrock, The characters of some 2-blocks of the Baby Monster, its covering group, and the Monster, Comm. Algebra 6 (1978) 1893-1921
S. P. Norton, The uniqueness of the Fischer-Griess Monster, in "Proceedings of the Montreal Conference on Finite Group Theory (1982 )11, (J.McKay, ed.) J.G.Tbompson, Uniqueness of the Fischer-Griess Monster, Bull. London Math. Soc. 11 (1979) 340-346 J.G.Thompson, Finite groups and modular functions, Bull. London Math. Soc. 11 (1979) 347-351 J.G.Thompson, Some numerology between the Fischer-Griess Monster and the elliptic modular function, Bull. London Math. Soc. 11 (1979) 352-353
J.Tits, Le Monstre. Seminaire Bourbaki (1983/84), No. 620 J. Tits, On R. Griess I "Friendly Giant", Invent. Math., to appear T. van Trung, On the "Monster" simple group, J. Algebra 60 (1979) 559-562
[251]
Index of groups The first column of page numbers refers to the text; the second to the character table 190
188-189
48
49
A"
75
76
Ly, LyS
174
174-175
A'2
91
92-93
L (11 ) 2
7
7
Rut Ruv, Rv
126
127
A
104
102-103
L2 (13)
8
8
R(27)
123
122
AS
2
2
L 2 (16)
12
12
R(2)'
74
75
A6
4
5
L 2 ( 17)
9
9
R(3)'
6
6
A7
10
10
L 2 (19)
11
11
A8
22
22
L 2 (23)
15
15
3~ (q), see ~ (q)
A9
37
37
L2 (25)
16
17
~,
L 2 (27)
18
19
SOn(q), see 0n(q)
2 (29)
20
20
SPn(q), see Sn(q)
L (31) 2
21
21
SUn(q), $ee Un(q)
L 2 (32)
29
29
Suz, Sz
131
128-131
L 2 (4), L 2 (5)
2
2
3z(32)
77
77
28
28
'3
216-217
B
208-219
Cn(q), see S2n(q)
PSPn(q), see Sn(q)
L
see
~
Co" Cl
180-183
184-187
L2 (7)
3
3
3z(8)
Co 2 , C2
154
154-155
L2 (8)
6
6
S2(Q), see L 2 (q)
Co , C 3 3
134
135
L2 (9)
4
5
S4(2)'
4
5
L (11 ) 3
91
3 4 (3)
26
27
L3 (2)
3
3
3 4 (4)
44
45
L (3) 3
13
13
3 4 (5)
61
62-63
L3 ("J
23
24-25
36 (2)
46
47
E (q). see G (q) 2 2
L ( 5) 3
38
38
3 6 (3)
112-113
110-113
E4 (q), see F4 (q)
L 3(1)
50
51
3 8 (2)
123
124-125
E
177
176
E6 (2)
191
L3 (8)
74
74
E7 (2)
219
L (9) 3
78
78
Th
177
176
E8 (2)
235
L (2) 4
22
22
Tits
74
75
L 4 (3)
68-69
68-69
L5 (2)
70
70
U3 (11) U3 (3)
84
84
14
14
F
166
164-165
FG
228-232
220-227
Fi 21 • F 21
115
116-121
Fi 22 , F22
162-163
156-163
Fi 23 , F23
177
178-179
M
Mlo
U2 (q), see L (q) 2
228-234
220-227
100
101
U (4) 3
30
30
4
5
34
35
18
U3 (5) U3 (7)
66
67
Fi 24 , F24
206-207
200-207
18
F,
228-232
220-227
31-33
33
U (8) 3
66
64-65
F2 , F2 +
216-217
208-219
M
21
23
24-25
U (9) 3
79
79
F3 , F 313
177
176
M22
39
40-41
U4 (2)
26
27
71
71
U4 (3)
52-53
54-59
U5 (2) U6 (2)
72-73
72-73
115
116-121
W(E 6 )
26
27
W(E 7 )
46
47
W(E 8 )
85
86-87
F3 +
206-207
200-207
M
F _ 3
131
128-131
M24
94-96
96
F 4 (2)
170
167-173
M(22)
162-163
156-163
164-165
M(23)
177
178-179
43
M(2Ji)'
206-207
200-207
23
105 ON, QIN, D'S G~(q),
132
133
m ffi 02n+1 (2 ), see S.zn(2 )
see Ln(q)
GUn(q), see Un(q)
[252J
POn(q),t PSOn(q), see 0n(q)
0;0(2)
146
142-145
147
148-153
W(~), see ~+1
2An(q), see U + (q) n 1
G (2)' 2
14
14
010 (2)
G2 (3)
60-61
60
03(Q). see L (q) 2
2B2 (2 2m + 1 ), 2 C2 (2 2m+ 1 ), see SZ(2 2m+ 1 )
G (4) 2
97
98-99
04(Q). see L (q2)
2Dn (q), see 02n (q)
G2 (5)
114
114
05(Q),
2
see S4(Q)
2E6 (2)
191
192-199
06"(q), see L4 (q)
2F4 (2)'
74
75
2G2 (27)
123
122
Ht He. HHM
104
105
06'(q), see U4 (q)
HaN, Ha No • HN
166
164-165
0 (3) 7
HiS, HS
80
81
HJ, HaJ
42
43
8(2) °8 m
HJM
82
83
0
°ii(2) °ii m
108-109
106-109
2G2 (3)'
6
6
85
86-87
3D4 (2)
89
90
140-141
136-139
"1
180-183
184-187
89
88
"2
154
154-155
"223
100
101
"233
80
81
"3
134
135
141
36
36
42
43
PGLn(q),
82
83
PGUn(q). psUn(q), see Un(q)
P3~(q),
see
~(q)