Atlas
of plutonic rocks and orthogneisses in the Bohemian Massif bohemicum Josef Klomínský Tomáš Jarchovský Govind S. Rajpoot
Czech Geological Survey Prague 2010
CZECH GEOLOGICAL SURVEY
ATLAS of plutonic rocks and orthogneisses in the Bohemian Massif
1. BOHEMICUM Compiled by Josef KlS. Rajpoot Compiled by Josef Klomínský Tomáš Jarchovský Govind S. Rajpoot The Bohemicum volume is a part of the Atlas of plutonic rocks and orthogneisses in the Bohemian Massif which consists of six chapters: INTRODUCTION 1. BOHEMICUM 2. MOLDANUBICUM 3. SAXOTHURINGICUM 4. LUGICUM 5. BRUNOVISTULICUM AND MORAVOSILESICUM In the Introduction volume are summarized general characteristics of the plutonic rocks and orthogneisses from a point of view of their composition, age, 3-D shape, zonation, metallogeny and spatial distribution. The territorial chapters 1–5 comprise structured geological parameters of the plutonic rocks and orthogneisses located within boundaries of the principal geological zones in the Bohemian Massif. The compilation work was supported by the Radioactive Waste Repository Authority of the Czech Republic (RAWRA) and by the Czech Geological Survey.
Acknowledgements We would like to thank the following colleagues who have helped in the compilation and correction of this review: A. Dudek, F. Fediuk, M. Chlupáčová, V. Janoušek J. Kotková, M. René, Z. Vejnar, P. Vlašímský, P. Schovánek and S. Vrána. We are grateful for technical assistance to P. Kopecký, M. Toužimský, J. Holeček, M. Fifernová, J. Kušková, J. Karenová, V. Čechová, and L. Richtrová. In spite of the negative view on our work and unrealistic comments we thank also to M. Štemprok and F. V. Holub for their criticism which helped us to improve the original manuscript. * Corresponding author Josef Klomínský, Czech Geological Survey, Klárov 131/3, Prague 1, Czech Republic. Fax (+420) 257 531 376. E-mail address:
[email protected]
© J. Klomínský, T. Jarchovský, G. S. Rajpoot, 2010 ISBN 978-80-7075-751-2
THE ATLAS OF PLUTONIC ROCKS AND ORTHOGNEISSES IN THE BOHEMIAN MASSIF
1. BOHEMICUM Josef Klomínský a*, Tomáš Jarchovský a, Govind S. Rajpoot b a
Czech Geological Survey, Klárov 131/3, Praha 1, b Náchodská 2030, Praha 9, Czech Republic
Contents FOREWORD ………………………………………………………………………………………………. 3 1. CENTRAL BOHEMIAN COMPOSITE BATHOLITH (CBCB) …………………………………… 3 1.01. CENTRAL BOHEMIAN PLUTON (CBP) ……………………………………………………...16 1.01.1. KLATOVY MASSIF................................................................................................................ 25 1.02. SATELITE STOCKS AND DYKE SWARMS ………………………………………………….28 1.02.1. BOHUTÍN STOCK .................................................................................................................. 28 1.02.2. PADRŤ STOCK ...................................................................................................................... 31 1.02.3. LEŠETICE STOCK .................................................................................................................. 32 1.02.4. OBOŘIŠTĚ STOCK ................................................................................................................. 33 1.02.5. BROD STOCK ........................................................................................................................ 33 1.02.6. ROŽMITÁL STOCK (RS)........................................................................................................ 34 1.02.7. PŘÍBRAM DYKE SWARM ...................................................................................................... 35 1.3. IGNEOUS ROCKS IN THE ROOF OF THE CENTRAL BOHEMIAN PLUTON …………… 36 1.03.1. JÍLOVÉ VOLCANIC BELT (JVB)........................................................................................... 36 1.03.2. ONDŘEJOV METATONALITE................................................................................................. 38 1.03.3. MIROTICE ORTHOGNEISS ..................................................................................................... 39 1.03.4. STARÉ SEDLO ORTHOGNEISS ............................................................................................... 39 (2.2.) ULTRAPOTASSIC PLUTONITES (D U R B A C H I T E S) ………………………………….40 1.4. BOR MASSIF …………………………………………………………………………………… 41 1.5. MARIÁNSKÉ LÁZNĚ STOCK (MLS) …………………………………………………………44 1.6. KLADRUBY COMPOSITE MASSIF (KCM) …………………………………………………..46 1.06.1. KLADRUBY MASSIF ............................................................................................................. 46 1.06.2. SEDMIHOŘÍ STOCK ............................................................................................................... 49 1.7. ŠTĚNOVICE STOCK …………………………………………………………………………... 50 1.8. BABYLON STOCK …………………………………………………………………………….. 52 1.9. SKALKA (MLÝNEČEK) STOCK ……………………………………………………………... 54 1.10. KDYNĚ-NEUKIRCHEN COMPOSITE MASSIF (KNCM) ……………………………………54 1.11. STOD MASSIF …………………………………………………………………………………..57 1.12. POBĚŽOVICE MASSIF ………………………………………………………………………... 60 1
1.13. MRAČNICE-JENÍKOVICE MASSIF ………………………………………………………….. 63 1.14. ČISTÁ-JESENICE COMPOSITE PLUTON …………………………………………………… 65 1.14.1. ČISTÁ MASSIF ...................................................................................................................... 68 1.15. BECHLÍN MASSIF ……………………………………………………………………………... 70 1.16. PETROVICE STOCK ……………………………………………………………………………71 1.17. KOSOBODY STOCK …………………………………………………………………………... 72 1.18. KOŽLANY COMPOSITE STOCK …………………………………………………………….. 72 1.19. CHOCENICKÝ ÚJEZD STOCK ………………………………………………………………. 74 1.20. MLADOTICE STOCK …………………………………………………………………………. 74 1.21. VITÍNKA (KOKOTSKO) STOCK ……………………………………………………………... 76 1.22. LOWER VLTAVA COMPOSITE MASSIF …………………………………………………… 77 1.22.1. NERATOVICE MASSIF .......................................................................................................... 79 1.22.2. HOŠTICE STOCK ................................................................................................................... 81 1.23. CHOTĚLICE MASSIF ………………………………………………………………………….. 81 1.24. CHVALETICE MASSIF ……………………………………………………………………….. 83 1.25. NASAVRKY COMPOSITE MASSIF (NCM) …………………………………………………. 85 1.26. RANSKO COMPOSITE STOCK ………………………………………………………………. 91 1.27. METAMORPHOSED GRANITIC INTRUSIONS IN THE BOHEMICUM ………………….. 95 1.27.1. LESTKOV MASSIF................................................................................................................. 95 1.27.2. POLOM MASSIF .................................................................................................................... 97 1.27.3. HANOV ORTHOGNEISS ......................................................................................................... 97 1.27.4. TELECÍ POTOK ORTHOGNEISS ............................................................................................. 99 1.27.5. TEPLÁ ORTHOGNEISS........................................................................................................... 99 The locality map of the plutonic rocks and orthogneisses in the Bohemian Massif (folded)
2
FOREWORD One of the principal characteristics of the Bohemicum (Teplá-Barrandian Unit) is the relative scarcity of plutonic rocks, which are so frequent in the Moldanubicum and Saxothuringicum. The overall positive gravity field of the whole area indicates that plutonites are missing also in deeper crustal level (Dudek 1995). According to Dudek (1995) the individual plutonites may be divided into two groups: (a) basic massifs with acidic differentiates, and (b) granitoid massifs. The presence of pre-Variscan (Cadomian) and Variscan members is taken for granted in both groups. According to Holub et al. (1995), the Central Bohemian Composite Batholith (Central Bohemian Plutonic Complex) is considered to be part of one of the principal magmatic complexes not only in the Bohemicum but also in the Bohemian Massif. References DUDEK, A. (1995): Teplá-Barrandian Zone (Bohemicum) – Igneous Activity. In: Dallmeyer, R. D. – Franke, W. – Weber, K. Eds: Pre-Permian Geology of Central and Eastern Europe, 398–402. – Springer Verlag, Berlin, Heidelberg.Verlag, Berlin, Heidelberg. HOLUB. F. V. – KLEČKA, M. – MATĚJKA, D. (1995): The Moldanubian Zone – Igneous activity. In: Dallmeyer, R. D. – Franke, W. – Weber, K. Eds: Pre-Permian Geology of Central and Eastern Europe, 444–455. – Springer Verlag, Berlin, Heidelberg. FUSÁN, O. – KODYM, O. – MATĚJKA, A. Eds (1967): Geological map of Czechoslovakia 1 : 500,000. – Czech Geol. Survey, Prague.
1. CENTRAL BOHEMIAN COMPOSITE BATHOLITH (CBCB) 1.01. Central Bohemian Pluton (CBP) 1.02. Satellite Stocks and Dyke Swarms 1.03. Igneous Rocks in the Roof of the Central Bohemian Pluton (2.2.) Ultrapotassic Plutonites (see the Moldanubicum section) Regional position: CBCB intruded along the Central Bohemian Suture between the Moldanubian Zone and Teplá-Barrandian Unit (Bohemian Zone). Its members, the Říčany Massif, Durbachite Plutons (the Milevsko and Tábor Massifs), Benešov Massif and SW part of the Blatná and Červená Granodiorites intruded the Moldanubian Zone. The typological classifications of CBCB rock types (see references) are based on their petrographic, chemical, and mineralogical composition (e.g. Palivcová 1965, Steinocher 1969, Vejnar 1974, Holub et al. 1997, Janoušek et al. 2000b). The CBCB comprises according to Janoušek et al. (2000b) five granitoid suites: Sázava suite (Sázava, Marginal and Požáry intrusions), Blatná suite (the Blatná with the Červená facies, Těchnice and Kozárovice facies), Čertovo břemeno suite (Sedlčany, Čertovo břemeno and Tábor intrusions), Říčany suite (Říčany intrusion) and Maršovice suite (Maršovice, Kozlovice and Kosova Hora intrusions). According to Holub et al. (1997) the CBCB consists of seven geochemically distinctive granitoid groups: GA group – the calc-alkaline group (hornblende gabbro to biotite-hornblende granodiorite CaG group – Ca-rich and K-poor acid granitoids (biotite granodiorite to trondhjemite) HK group – high-K calc-alkaline to shoshonitic group (scarce monzonitic rocks and voluminous amphibole-biotite granodiorite to monzogranite UK group – the ultrapotassic group comprising amphibole-biotite to pyroxene-biotite melasyenitic to melagranitic rocks KMgG group – more acid high-K, high-Mg granites closely related to UK LG group – dykes of leucogranites. Eight groups in this review have been distinguished: 1. Central Bohemian Pluton (CBP) – calcalkaline and high-K calc-alkaline suites. I and S types. 2. Klatovy Massif (KM) – a member of the Central Bohemian Composite Batholith (an apophysis of CBP).
3. Satellite Stocks (SS) – isolated bodies of the calc-alkaline suite in the periphery of CBP. 4. Dyke Swarms (DS) are represented by the Přibram Dyke Swarm spatially related to the Central Bohemian Pluton and the Milevsko Dyke Swarm showing in general more complex origin and relationship to the Central Bohemian 3
shape (e.g. sheet-like or tabular massifs and vertical stocks). Relicts of country rocks (metamorphic roof) overlying the CBCB are referred to as roof pendants (the islet zone represents the roof of volcano-sedimentary rocks of Neoproterozoic to Devonian age). Central Bohemian Pluton ~ 2,000 km2, long elliptical shape in the erosion level is the asymmetric ethmolith with reverse subvertical deep seated root in the northwest and rather subhorizontal complex contact with Moldanubian gneisses in the southeast. The Červená Granodiorite (the marginal facies of Blatná Granodiorite) makes finger-like apophyses into Moldanubian gneisses. Satellite Stocks at the NW periphery of the CBP (its satellite plutonic bodies) have a typical vertical pipe-like shape in diameter of up to several km (e.g. the Padrť Stock and Bohitín Stock). Ultrapotassic (durbachite) plutonites 400 km2 in outcrop size are sheet-like intrusions (Tábor amd Milevsko Massif). The Říčany Massif (15 × 10 km) is a circular (zoned) intrusion in the surface section (see its detailed description in the Moldanubicum).
Composite Batholith (see the Moldanubicum section). 5. Říčany Massif (ŘM) – (Říčany suite) see the Moldanubicum section. 6. Durbachite Plutonites (Čertovo břemeno Suite) – high-to ultrapotassic suite including the Milevsko Massif and Tábor Massif (see the ultrapotassic magmatites in the Moldanubicum section) 7. Metagranitoids (MG) – miscellaneous group of magmatites contrasting in origin, composition and age. The Mirotice and Staré Sedlo Orthogneiss, Jílové Alaskite to Metatonalite, and Ondřejov Metatonalite occurs in the roof of the CBP. The Benešov Massif is described in the Moldanubicum section. 8. Unclassified granitoids (mostly peraluminous granitoids): Zbonín Granite (lateorogenic) porphyritic biotite ± muscovite monzogranite; Kšely Granite (probably deformed equivalent of the Říčany Granite), Chleby Quartz Diorite (small bodies). Size and shape (in erosion level): The CBCB outcrop has approximately a triangular shape (150 x l00 km) with surface area of 3,200 km2 including rocks in the cover of the CBCB (2,830 km2 of granitoid area). It is an agglomerate of several groups of intrusions of different size and
4
Fig. 1.1. Central Bohemian Composite Batholith hierarchical scheme. A – classification used in this review, B – classification after Holub et al. (1997), C – classification after Janoušek et al. (2000). CA – CaG – Ca-rich granitoids, LG – leucogranites, AIG – peraluminous granitoids, KMgG – K-Mg-rich granites, CA – calc-alkaline gabbroic and granitoids of the Sázava type. T – tonalite, Gd – granodiorite, Tr – trondhjemite, Ms – melasyenite, G – granite, Mg – melagranite.
5
Fig. 1.2. Central Bohemian Composite Batholith geological sketch-map (adapted after Cháb et al. 2008). 1 – gabbrogabbrodiorite, 2 – Sázava Tonalite-diorite-granodiorite, 3 – Kozárovice Granodiorite, 4 – Těchnice Granodiorite, 5 – Požáry Trondhjemite, 6 – Blatná Granodiorite (N – Něčín Granodiorite), 7 – Marginal Granite, 8 – Červená (Č) and Dehetník (D) Granodiorite, 9 – Kozlovice and Maršovice Granodiorite, 10 – Sedlčany Granodiorite, 11 –Čertovo břemeno Metagranite, 12 – Tábor Melasyenite, 13 – Říčany Granite, 14 – Benešov Granodiorite, 15 – Orthogneisses (MO – Mirotice Orthogneiss, SSO – Staré Sedlo Orthogneiss), 16 – Jílové Alaskite, 17 – leucogranites, 18 – boundary of the tectonostratigraphic units, 19 – faults, Pe – Pecerady Gabbro, Z – Zálužany Quartz monzonite, Zb – Zbonín Granite, KH – Kosova Hora Granodiorite, Ny – Nýrsko Granite, Mč – Mrač Granodiorite, Br – Brod Stock, L – Lešetice Stock,Ob – Obořiště Stock.
emplacement during a short time span of about 10 Ma. Milevsko Dyke Swarm – Upper Carboniferous (Namurian). Mirotice and Staré Sedlo Orthogneisses – Middle-Upper Devonian (Frasnian–Famennian). Jílové Alaskite – Metatrondhjemite – Neoproterozoic age. Central Bohemian Pluton – K-Ar analyses on biotite and hornblende from a variety of granitoids yielded ages in the range of 360 to 324 Ma. Sázava Tonalite – 349 ± 12 Ma (Pb-Pb zircon), 354.1 ± 3.5 Ma (U-Pb zircon), Blatná Granodiorite 331 ± 9 Ma (Rb-Sr whole rock), 346 ± 10 Ma (Pb-Pb zircon),346.7 ± 1.6 Ma (SHRIMP zircon), Požáry Trondhjemite 351 ± 11 Ma (Pb-Pb zircon), Vrančice Quartz diorite 342 ± 4 Ma (Ar-Ar hornblende), Klatovy Granodiorite 349 ± 6/-4 Ma
Metagranitoids (e.g. the Mirotice and Staré Sedlo Orthogneisses) are scattered elliptical bodies up to 15 × 10 km and 20 × 1 km respectively. Dyke Swarms are clusters of numerous dykelike and sheet-like bodies within the exocontact of CBCB and its interior. The Příbram Dyke Swarm occurs within the NW exocontact of the Central Bohemian Pluton and its interior. Individual dyke clusters are older and subsequent to the Central Bohemian Pluton. The Milevsko Dyke Swarm occupying the area of 8 km in diameter indicates existence of the large, hidden intrusion of unknown age and provenience. Age and isotopic data: granitic intrusions of the CBCB single-zircon dating indicates Lower Carboniferous (Tournaisian–Viséan) ages and their
6
Geological environment: Neoproterozoic up to Lower Devonian pellites, greywackes, metabasalts, keratophyres and the Varied Group of the Moldanubicum (migmatites, gneisses with intercalations of calcareous rocks, amphibolites, greywackes). Contact aureole: distinct and intense contact metamorphism at the NW exocontact (in TepláBarrandian Unit) and in roof pendants, producing silicification of country rocks. The thermal contact aureole is almost 800 m wide. Extensive migmatization at the SE exocontact (in the Moldanubian high-grade gneisses). Zoning: Regional scale: CBCP – distinct compositional zoning trending E-W and SE-NW. Interlayer of the mafic and granitic rocks that represent original boundaries and interfaces indicates stratification of the magma chamber. Gently dipping to sub-horizontal mafic layers are chilled against and separated by much thinner layers of granitoids, which often display textures typical for cumulate rocks. Milevsko Massif – show compositional zoning from SE to NW or N, respectively. Local scale: Tábor Massif – concentric zonation (pyroxene > biotite in the centre and biotite > pyroxene at the margin). Benešov Massif – weak compositional zoning, the central granodiorite is surrounded by a narrow rim of the hybrid biotite-amphibole granodiorite along the endocontact. Mineralization: Au + Sb, Au, Ag-Pb-Zn-Cu ore veins within plutonites and country rocks and roof pendants, uranium in the NW exocontact of Central Bohemian Pluton (in the TepláBarrandian Unit) only.
(U-Pb zircon), 339 ± 10 Ma (K-Ar biotite), Nýrsko Granite 341 ± 2 Ma (U-Pb zircon), 342 ± 8 Ma (KAr biotite), Kozlovice Granodiorite 345 ± 6/-4 Ma (U-Pb zircon), 346.1 ± 1.6 Ma (U-Pb zircon). Gabbrodiorite enclave in the Bohutín Tonalite 348.5 ± 0.5 Ma (Ar-Ar biotite). Říčany Granite 330 (K-Ar whole rock), 335 Ma (Rb-Sr whole rock). Durbachites less than 331 ± 4 Ma (Rb-Sr whole rock), Čertovo břemeno Melagranite 345 ± 5 Ma (Pb-Pb zircon), 343± 6 Ma (U-Pb zircon),336.6 ± 1.0 Ma (U-Pb zircon), 336 Ma (Ar-Ar biotite). Tábor Melasyenite 336.3 ± 0.8 Ma (rutile). Jílové Volcanic Zone is of Neoproterozoic age (~ 650 Ma), Mirotice and Staré Sedlo Orthogneisses 373 ± 5 Ma (U-Pb zircon), crystallization age in the range of 380–365 Ma. Leucogranites – 332 Ma (Rb-Sr), Milevsko Dyke Swarm – the youngest intrusions in the CBCB, possibly near to 319 Ma. Příbram Dyke Swarm – youngest minete dyke 338 Ma (Ar-Ar biotite). Temporal relations (from older to younger types): Metagranitoids → Sázava Tonalite → Požáry Trondhjemite, Blatná Granodiorite → Marginal Granite → Kozlovice Granodiorite → Maršovice Granodiorite → Čertovo břemeno Melagranite, Sedlčany Granodiorite, Tábor Melasyenite → Zbonín Granite, Kosova Hora Granite → Říčany Granite → Stephanian C → Autunian sedimentary cover. Čertovo břemeno Melagranite intrudes the Upper Devonian strata and the Blatná Granodiorite intrudes the Lower Devonian sediments. Xenoliths of coarse-grained granite, similar to the Marginal type, have been recorded in the Klatovy granodiorite (Kodym and Suk 1960) that was intruded 349 Ma ago (conventional U-Pb zircon dating of Dörr et al. 1998). An age of the CBP cooling to 500 °C (Ar-Ar amphibole) is 348–342 Ma and under 300 °C is 338 Ma (Ar-Ar biotite).
7
Fig. 1.3. Classification of the Central Bohemian Composite Batholith according to petrographical (A – Svoboda et al. 1964), petrochemical (B – Tauson et al. 1979, C – Steinocher 1969, D – Sattran and Klomínský 1970, E – Vejnar 1974) and mineralogical criteria (F – Kodymová and Vejnar 1974). 1 – Sázava Tonalite, 2 – Blatná Granodiorite, 3 – Červená Granodiorite, 4 – Sedlčany Granodiorite, 5 – Čertovo břemeno Melagranite, 6 – Tábor Melasyenite, 7 – Marginal Granite, 8 – Požáry Trondhjemite, 9 – Říčany Granite, 10a – Benešov Granodiorite, 10b– Benešov Melagranodiorite, 11 – Těchnice Granodiorite, 12 – Klatovy Granodiorite, 13 – Bohutín Tonalite, 14 – Kozlovice Granodiorite, 15 – Maršovice Granodiorite, 16 – Basic rocks, 17 – Sedlec Granodiorite, 18 – Kosova Hora Granodiorite, 19 – Dehetník Granodiorite, 20 – Nýrsko Granite, 21 – Něčín Granodiorite. A – Petrographical classification (Svoboda et al. 1964) 1 – Sázava Tonalite, Bohutín Quartz diorite, Těchnice Granodiorite. 2 – Blatná, Červená, Sedlčany, Klatovy, Něčín Granodiorite, Požáry Trondhjemite, Marginal Granite, Nýrsko Granite, 3 – Tábor Syenite and Čertovo břemeno Melagranite, 4 – Benešov Granodiorite and Kšely Granite, 5 – Říčany Granite, 6 – Kozlovice, Kosova Hora and Maršovice Granodiorites, 7 – Basic rocks. B – Petrochemical classification (Tauson et al. 1979) 1 – Gabbro-tonalite-granodiorite group, 2 – Granodiorite-granite group, 3 – Durbachite (monzonite-syenite) group, 4 – group of contaminated fine-grained granitoids.
8
C – Petrochemical Classification (Steinocher 1969) 1 – Sázava and Vltava Granodiorites, basic rocks, Požáry Trondhjemite, Blatná Granodiorite and Něčín Quartz diorite, 2 – Tábor Melasyenite, Čertovo břemeno Melagranite, Sedlčany Granodiorite, 3 – Benešov, Sedlec, Klatovy, Maršovice, Těchnice, Kosova Hora, Kozlovice Granodiorites, Nýrsko Granite, Říčany Granite, Marginal Granite, Brdo Leucogranite, Černíkov Quartz monzonite, leucogranites. 4 – Červená, Sedlec and Dehetník Granodiorites. D – Metallogenic classification (Sattran and Klomínský 1970) 1 – Petrometallogenic Au-series, 2 – Petrometallogenic syenite series, 3 – Petrometallogenic Mo-W-series, 4 – not classified igneous rocks, 5 – basic rocks. E – Geochemical Classification (Vejnar 1974) 1a – Benešov Melagranodiorite, Červená and Sedlčany Granodiorite (10b + 3 + 4), 1b – Sázava Tonalite, Blatná, Klatovy, Sedlec, Granodiorite (1 + 2 + 12 + 17), 2 – Čertovo břemeno Melagranite and Tábor Melasyenite (5 + 6), 3a – Marginal Granite, Říčany and Jevany Granites and leucogranites (7 + 9), 3b – Benešov, Kosova Hora, Těchnice, Něčín Granodiorite and Požáry Trondhjemite (10a + 18 + 11 + 21 + 8). F – Mineralogical (according to accessory late magmatic minerals) classification (Kodymová and Vejnar 1974) 1 – titanite-ilmenite (basic rocks), 2 – titanite-orthite-ilmenite (types Čertovo břemeno, Blatná, Červená, Klatovy, Marginal, Sázava and Dehetník), 3 – titanite-orthite/or monazite-fluorite-ilmenite (types Benešov, Požáry, Sedlčany, Sedlec and leucogranites, 4 – monazite-fluorite-titanite (types Říčany, Těchnice and Kosova Hora.
Fig. 1.4. Diagrammatic scheme of field relationship among rock groups and rock types of the Central Bohemian Batholith (adapted after Holub et al. 1997). Central Bohemian Pluton: 1 – gabbroic rocks (CA Group), 2 – tonalite rocks (CA Group), 3 – granodiorite rocks (HKCA Group), 4 – granite-granodiorite rocks (HKCA Group), 5 – trondhjemite rocks (CaG Group), 6 – hybrid rocks (AIG Group) 7 – Říčany Massif (KMgG Group), 8 – Leucogranites (LG Groups), 9 and 10 – Milevsko and Tábor Massif (UK and KMgG Group). 11 – faults, 12 – Proterozoic and Palaeozoic rocks, 13 – rock dykes.
9
References AFANASYEF, G. D. – ARAKELJANC, M. M. – BOGATIKOV, O. A. – BORSUK, A. M. – PALIVCOVÁ, M. (1977): Granitoidy sredněčešskogo plutona. In: G. D. Afanasjev: Opyt korreljacii magmatičeskich, metamorfičeskich porod Čechoslovakii i nekotorych rajonov SSSR, 131–144. – Nauka. Moskva. BENDL, J. – VOKURKA, K. (1988): The Origin of Blatná Granodiorite. In: Kukal, Z. Ed.: Proceedings of the 1st International Conference on the Bohemian Massif, 13–14. – Czech Geol. Survey, Prague. BENEŠ, K. – HANUŠ, V. – KNOTEK, M. (1980): Relict fabric of the NW part of the Central Bohemian Pluton. – Krystalinikum 15, 125–140. BOUŠKA, V. – JELÍNEK. E. – PAČESOVÁ, M. – ŘANDA, Z. (1984): Rare earth elements and other trace elements in the rocks of the Central Bohemian Pluton. – Geol. Zbor. Geol. carpath. 35, 355–376. VAN BREEMEN, O. – AFTALION, M. – BOWES, D. R. – DUDEK, A. – MÍSAŘ, Z. – POVONDRA, P. – VRÁNA, S. (1982): Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe. – Trans. Roy. Soc. Edinburgh, Earth Sci. 73, 89–108. BREITER, K. – SOKOL, A. (1997): Chemistry of Bohemian granitoids: Geotectonic and metallogenic implications. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 75–96. ČECH, V. (1933): Petrografie vyvřelin a krystalických břidlic v okolí Tábora. – Publ. Fac. Sci. Univ. Charles, 123, 27 pp. (English summary) ČECH, V. (1964): Příspěvek ke geologii a petrografii táborského syenitového masívu. – Čas. Mineral. Geol. 9, 3, 291–299. ČEPEK, L. – ZOUBEK, V. (1961): Vysvětlivky k přehledné mapě ČSSR 1 : 200 000, Plzeň. – 214 pp. Ústř. úst. geol. Praha. (In Czech) CHÁB, J. – STRÁNÍK, Z. – ELIÁŠ, M. Eds (2007): The geological map of the Czech Republic 1 : 500 000. – Czech Geol. Survey, Prague. DOBEŠ, M. – POKORNÝ, L. (1988): Gravimetry applied to the interpretation of the morphology of the Čertovo břemeno durbachite body in the Central Bohemian Pluton. – Věst. Ústř. Úst. geol. 63, 129–135. (English abstract) DOMEČKA, K. – SOKOL, A. – BREITER, K. (1998): Petrological characteristics of plutonites of the Přibram underground gas reservoir. – Zpráv. geol. Výzk. v Roce 1997, 131–140. DÖRR, W. – FIALA, J. – FRANKE, W. – HAACK, U. – PHILIPPE, S. – SCHASTOK, J. – SCHEUVENS, D. – VEJNAR, Z. – ZULAUF, G. (1998): Cambrian vs. Variscan tectonothermal evolution within the Teplá-Barrandian: evidence from U-Pb zircon ages of syn-tectonic plutons (Bohemian Massif, Czech Republic). – Acta Univ. Carol., Geol. 42, 229–230. DUDEK, A. – FEDIUK, F. (1957): Basic inclusions and fluidal phenomena in the granodiorite at the border of the Central Bohemian Pluton near Teletín. Sbor. k osmdesátinám akad. F.Slavíka, 97–112. – Czech Geol. Survey, Prague. (English summary) DUDEK, A. – FROLÍKOVÁ, I. – NEKOVAŘÍK, Č. (1991): The depth of intrusion of Hercynian granitoid plutons in the Bohemian Massif. – Acta Univ. Carol. Geol., Kettner Vol. 3–4, 249–256. (In Czech) DUDEK, A. – SUK, M. (1965): The depth relief of the granitoid plutons of the Moldanubicum. – Neu. Jb. Geol. Paläont., Abh. 123, 1, 1–19. DUDEK, A. – ZÁRUBA, Q. (1967): The contact zone of the Central Bohemian Pluton exposed at quarry for aggregate, Slapy dam (Czechoslovakia). – Engng. Geol. 2, 267–275. FATKOVÁ, J. (1967): Uran v horninách středočeského plutonu. Sbor. Kongr. geol., 14–30. – Příbram. FEDIUK, F. (2004): Alaskites and related rocks in the Proterozoic Jílové Belt of Central Bohemia. – Krystalinikum 30, 27–50. FEDIUKOVÁ, E. – FEDIUK, F. (2000): Assemblages and chemical composition of amphiboles in rocks of the Jílové Belt, Central Bohemia. – J. Czech Geol. Soc. 45/1–2, 119–128. FIALA, F. – CHLUPÁČ, I. (1973): Minetová žíla v barrandienském devonu a její význam. – Čas. Mineral. Geol. 18, 47–55. FIALA, J. – VEJNAR, Z. – KUČEROVÁ, D. (1976): Composition of the biotites and the coexisting biotitehornblende pairs in granitic rocks of the Central Bohemian Pluton. – Krystalinikum 12, 79–111. HANUŠ, V. – PALIVCOVÁ, M. (1969): Quartz-gabbros recrystallized from olivine-bearing volcanics. – Lithos 2, 147–166. HANUŠ, V. – PALIVCOVÁ, M. (1971a): Presence and significance of amygdules in hornblende gabbros. – Krystalinikum 8, 27–43.
10
HANUŠ, V. – PALIVCOVÁ, M. (1971b): Ocellar texture of Pecerady gabbro in Central Bohemian Pluton. – Acta Univ. Carol., Geol. 1, 187. HAVLÍČEK, V. (1977): The Palaeozoic (Cambrian-Devonian) in the Rožmitál area. – Věst. Ústř. Úst. geol. 52, 81–94. HEJTMAN, B. (1949): Uzavřeniny granodioritu u Kozárovic na Mirovicku. – Rozpr. Čes. Akad. Věd Umění, Tř. II 59, 27, 1–25. HOLUB, F. V. (1977): Petrology of inclusions as a key to petrogenesis of the durbachitic rocks from Czechoslovakia. – Tschermaks mineral. petrogr. Mitt. 24, 3, 133-150. HOLUB, F. (1991): Příspěvek k petrochemii středočeského plutonu. In: Souček, J. Ed.: Horniny ve vědách o Zemi, 117–140. Charles Univ. Prague. (Abstract in English) HOLUB, F. V. (1997): Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: Petrology, geochemistry and petrogenetic interpretation. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 5– 26. Praha. HOLUB, F. V. (2007): Žilné roje v oblasti středočeského plutonického komplexu: látkové variace a vztahy k plutonitům. In: Breiter, K. Ed.: 3. sjezd České geologické společnosti, Volary 19.–22. září 2007, 28. – Czech Geol. Soc. Prague. HOLUB, F. V. – COCHERIE, A. – ROSSI, P. H. (1997): Radiometric dating of calc-alkaline to ultrapotassic plutonic rocks from the Central Bohemian Plutonic Complex, Czech Republic: constrains on the thermotectonic chronology along the Moldanubian-Barrandian suture. – C. R. Acad.Sci Paris, Earth Planet Sci. 325, 19–26. HOLUB, F. V. – MACHART, J. – MANOVÁ, M. (1997): The Central Bohemian Plutonic Complex: Geology, chemical composition and genetic interpretation. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 27–50. HOLUB, F. V. – ŽEŽULKOVÁ, V. (1978): Relative ages of intrusives of the Central Bohemian Pluton near Zvíkov. – Věst. Ústř. Úst. geol. 53, 289–297. (English summary) JANOUŠEK, V. (2000): Geology of the Central Bohemian Pluton. Excursion guide. 1–9. JANOUŠEK, V. – BOWES, D. R. – BRAITHWAITE, C. J. R. – ROGERS, G. (2000): Microstructural and mineralogical evidence for limited involvemant of magma mixing in the petrogenesis of a Hercynian high-K calc-alkaline intrusion: the Kozárovice granodiorite, Central Bohemian Pluton, Czech Republic. – Trans. Roy. Soc. Edinburgh Earth Sci. 91, 15–26. JANOUŠEK, V. – BOWES, D. – ROGERS, G. – FARROW, C. M. – JELÍNEK, E. (2000): Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. – J. Petrology 41, 511–543. JANOUŠEK, V. – BRAITHWAITE, C. J. R. – BOWES, D. R. – GERDES, A. (2004): Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. – Lithos 78, 67–99. JANOUŠEK, V. – GERDES, A. (2003): Timing the magmatic activity within the Central Bohemian Pluton, Czech Republic: Conventional U-Pb ages for the Sázava and Tábor intrusions and their geotectonic significance. – J. Czech Geol. Soc. 48, 70–71. JANOUŠEK, V. – HOLUB, F. V. (2007): The causal link between HP-HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. – Proc. Geol. Assoc. 118, 75–86. JANOUŠEK, V. – ROGERS, G. – BOWES, D. R. (1995): Sr-Nd isotopic constraints on the petrogenesis of the Central Bohemian Pluton, Czech Republic. – Geol. Rdsch. 84, 520–534. JANOUŠEK, V. – WIEGAND, B. – ŽÁK, J. – ERBAN, V (2007a): Age, geotectonic setting and petrogenesis of Variscan calc-alkaline plutonism in Central Europe – examples from the Central Bohemian Plutonic Complex, Czech Republic. – Géol. France 2, 110. JANOUŠEK, V. – WIEGAND, B. – ŽÁK, J. – ERBAN, V. (2007b): SHRIMP U-Pb zircon dating of the high-K calc-alkaline Blatná suite (Central Bohemian Plutonic Complex, Czech Republic) and its geotectonic significance. In: Németh, Z. – Plašienka, D.: SlovTec 08, 6th Meeting of the Central European Tectonic Studies Group (CETeG) and 13th Meeting of the Czech Tectonic Studies Group, Upohlav, Slovakia, 23–26 April 2008, 53–55. – St. Geol. Inst. Dionýz Štúr. Bratislava. JELÍNEK, J. (1935): Příspěvek k otázce diferenciace ve středočeském žulovém masívu (Mračské lomy u Benešova). – Rozpr. Čes. Akad. Věd Umění, Tř. II 44, 1–12. KAŠPAR, J. (1936): Stručný nástin mineralogie a geochemie říčanské žuly. – Věda přír. 17, 168–171.
11
KETTNER, R. (1930): Geologie středočeského žulového masivu. – Příroda, 23. KETTNER, R. (1933): Geologické poměry krajiny meziSedlčany, Neveklovem a Vltavou. – Věst. Král. Čes. Společ. Nauk, Tř. mat.-přírodověd., 1–21. KETTNEROVÁ, M. (1920): Kontakt středočeské žuly u Žampachu na Sázavě. – Čas. Mus. Král. čes., 19– 28. KNOTEK, M. (1975): Geology and petrography of the Pecerady gabbro (English summary). In: Palivcová, M. et al.: Peceradské gabro – příklad tělesa appinitické série ve středočeském plutonu. – Stud. ČSAV 12, 9–33. KODYM, O. jun. (1951): Geologické a petrografické poměry v území jihovýchodně od Nepomuku. – Sbor. Ústř. Úst. geol., Odd. geol. 18, 1–48. KODYM, O. (1953): Geologie Českého masivu. I. – 232 pp. St. pedag. nakl. Praha. KODYM, O. (1963): Geologie Československa. In: Bouček, B. – Kodym, O.: Geologie II, 299–621. – Nakl. Čs. akad. věd, Praha. KODYM, O. et al. (1961): Vysvětlivky k přehledné geologické mapě ČSSR 1 : 200 000, M-33-XXVI Strakonice. – Ústř. úst. geol. Praha. KODYM, O. jun. – SUK, M. (1958): Přehled geologických a petrografických poměrů Blatenska a Strakonicka. – Geol. Práce 50, 31–121. KODYM, O. jun. – SUK, M. (1960): Přehled geologie západní části středočeského plutonu. – Věst. Čes. geol. Úst., 35, 269–277. KODYMOVÁ, A. – VEJNAR, Z. (1974): Accessory heavy minerals of the Central Bohemian Pluton. – Sbor. geol. Věd, ložisk. Geol. Mineral. 16, 89–128. (English summary) KOŠLER, J. – AFTALION, M. – BOWES, D. R. (1993): Mid-late Devonian plutonic activity in the Bohemian Massif: U-Pb zircon isotopic evidence from the Staré Sedlo and Mirotice gneiss complexes, Czech Republic. – Neu. Jb. Mineral., Mh. 9, 417–431. KOŠLER, J. – BOWES, D. R. – FARROW, C. M. – HOPGOOD,A. M. – RIEDER. M. – ROGERS, G. (1997): Contraints on the timing of events in the multiepisodic history of the Teplá-Barrandian complex, western Bohemia, from integration of deformational sequence and Rb-Sr isotopic data. – Neu. Jb. Mineral., Mh. 5, 203–220. KOŠLER, J. – FARROW, C. M. (1994): Mid-late Devonian arc-type magmatism in the Bohemian massif: Sr and Nd isotope and trace element evidence from the Staré Sedlo and Mirotice gneiss complexes, Czech Republic. – J. Czech geol. Soc. 39, 55–57. KOŠLER, J. – ROGERS, G. – RODDINK, J. C. – BOWES, D. R. (1995): Temporal association of ductile deformation and granitic plutonism: Rb-Sr and 40Ar-39Ar isotopic evidence from roof pendants above the Central Bohemian pluton, Czech Republic. – J. Geol. (Chicago) 103, 711–717. KOUTEK, J. (1925): Nástin geologických poměrů území mezi Benešovem a Neveklovem ve Středních Čechách. – Sbor. St. geol. Úst. Čs. Republ. 5, 197–254. LANG, M. – CIMBÁLNÍKOVÁ, A. – KAŠPAR, P. – PALIVCOVÁ, M. – PIVEC, E. – ULRYCH, J. (1978): Horniny teletínských lomů. Petrologie intruzivního kontaktu tonalitu u Teletína. – Stud. ČSAV 3, 1–110. LEDVINKOVÁ, V. (1985): Gabbroids in the Mirovice metamorphic islet. – Sbor. geol. Věd, Geol. 40, 35– 61. (In Czech) LEDVINKOVÁ, V. – WALDHAUSROVÁ, J. – PALIVCOVÁ, M. (1999): Recrystallized members of Upper Proterozoic ultramafic magmatism in the Variscan felsic/mafic stratified plutonic series in the Teletín quarries (Central Bohemian Pluton, Bohemian Massif). – Krystalinikum 25, 49–82. MÁCHA, J. et al. (1972): Želivka tunelem do Prahy. – 196 pp. Podzem. inž. stavby, Praha. MACHART, J. (1991): Chemical types of granitoids in the southern part of the Central Bohemian Pluton (English summary). In: Souček J. Ed.: Horniny ve vědách o Zemi, 107–116. – Charles Univ. Prague. MAREK, F. – PALIVCOVÁ, M. (1968): Deeper structure of the Central Bohemian Pluton on the basis of density measurements and gravity anomalies. – Čas. Mineral. Geol. 13, 333–346. (English summary) MATTE, PH. – MALUSKI, H. – RAJLICH, P. – FRANKE, W. (1990): Terrane boundaries in the Bohemian Massif: Results of large-scale Variscan shearing. – Tectonophysics 177, 151–170. MENČÍK, E. (1951): Geologicko-petrografické poměry na území mezi Plánicí a Nepomukem. – Sbor. Ústř. Úst. geol., Odd. geol. 18, 49–88.
12
MINAŘÍK, L. – PALIVCOVÁ, M. – HEJL, V. – CIMBÁLNÍKOVÁ, A. (1979): Stopové prvky – indikátory ve středočeském plutonu. In: Sympózium o petrogenéze a geochémii geologických procesov, 73–83. – Bratislava. MOTTLOVÁ, L. (1971): Hlubší stavba kutnohorského krystalinika s.s. na základě interpretace regionálního tíhového pole. – Čas. Mineral. gGeol. 16, 247–254. (In Czech) ORLOV, A. (1935a): Zur Kenntnis der Petrochemie des mittelböhmischen Plutons. – Mineral. petrogr. Mitt., N.F. 46, 416–446. ORLOV, A. (1935b): Problémy středočeského plutonu. – Věda přír. 16, 43–48. PALIVCOVÁ, M. (1965): The Central Bohemian Pluton – a petrographic review and an attempt at a new genetic interpretation. – Krystalinikum 3, 99–131. PALIVCOVÁ, M. (1984): Basic series of an “Andinotype batholithic association” in the Variscan Central Bohemian Pluton. – Geol. carpath. 29, 39–60. PALIVCOVÁ, M. – BENEŠ, K. – ZOUBEK, V. (1968): Genesis of granitoids in the Bohemian Massif. – Academia. Praha. PALIVCOVÁ, M. – KNOTEK, M. – LANG, M. – MINAŘÍK, L. – PIVEC, E. – ULRYCH, J. (1975): Peceradské gabro – příklad tělesa appinitické série ve středočeském plutonu. – Stud. ČSAV 12. PALIVCOVÁ, M. – CIMBÁLNÍKOVÁ, A. – HEJL, V. (1978): Problemy formacionogo analiza granitoidov Češskogo masiva. – Geol. Zbor. Geol. carpath. 29, 1, 43–66. Bratislava. (In Russian) PALIVCOVÁ, M. –– JILEMNICKÁ, L. – LEDVINKOVÁ, V. – WALDHAUSROVÁ, J. (1998):Geology and geochemistry of stratified mafic/felsic (calc-alkaline) series in the Central Bohemian Pluton (Teletín quarries): implication for its origin. – Acta Univ. Carol., Geol., 41, 2, 316–317. PALIVCOVÁ, M. – LEDVINKOVÁ, V. – WALDHAUSROVÁ, J. (1996): Ocellar mafic rocks of I-type and A-type plutonic series (Adamello, Britany, Central Bohemian Pluton). – Jb. Geol. Bundesanst. 139, 71–91. PALIVCOVÁ, M. – WALDHAUSROVÁ, J. – LEDVINKOVÁ, V. (1989): Precursors lithology and the origin of the Central Bohemian Pluton (Bohemian Massif). – Geol. Zbor. Geol. carpath. 40, 521–546. PALIVCOVÁ, M. – WALDHAUSROVÁ, J. – LEDVINKOVÁ, V. – FATKOVÁ, J. (1992): Říčany granite (Central Bohemian Pluton) and its ocelli- and ovoids-bearing mafic enclaves. – Krystalinikum 21, 33–66. PALIVCOVÁ, M. – WALDHAUSROVÁ, J. – LEDVINKOVÁ, V. (2001): Granitologie – věda o granitech na konci druhého tisíciletí. – Miner. slov. 33, 389–402. PITRA, P. – BURG, J. P. – GUERAUD, M. (1999): Late Variscan strike-slip tectonics between the TepláBarrandian and Moldanubian terranes (Czech Bohemian Massif). – J. Geol. Soc. (London) 156, 10031020. PIVEC, E. (1970): On the origin of phenocrysts of potassium feldspars in some granitic rocks of the Central Bohemian Pluton. – Acta Univ. Carol., Geol. 1, 11–25. PIVEC, E. (1982): Dvojživcová geotermometrie aplikovaná na intruzi granitoidů „okrajového“ typu na Příbramsku. – Čas. Mineral. Geol. 27, 4, 421–428. (In Czech) PIVEC, E. – PIVEC, E. jun. (1996): The Kšely Granite, Lesser Known Granite Type of the Bohemian Massif. – Acta Univ Carol., Geol. 40, 23–32. POUBOVÁ, M. (1974): Composition of amphiboles and rock type subdivisions in the Central Bohemian Pluton. – Krystalinikum 10, 149–169. RAJLICH, P. (1988): Tectonics of the NW border of the Central Bohemian Pluton and the Variscan transpression of the Bohemicum block structure. – Sbor. geol. Věd, Geol. 43, 9–81. (English summary) RAJLICH, P. – VLAŠÍMSKÝ, P. (1983): Regional geochemical trends in the Central Bohemian Pluton. – Acta Univ. Carol., Geol. 3, 193–213. (English summary) RENÉ, M. (1998): Petrogenesis of granitoids in the Blatná area. – Acta montana, A12, 141–142. RENÉ, M. (1999): Petrogenesis of the granitoids of the Červená type (Central Bohemian Plutonic Complex). – Acta montana 14 (114), 81–97. RENÉ, M. (2000): Aplity, aplitické granity a pegmatity z jihozápadního okraje středočeského plutonu. – Bull. mineral.-petrol. Odd. Nár. Muz. 8, 222–225. RENÉ, M. (2005): Petrogeneze magmatitů sázavského typu středočeského plutonického komplexu. – Bull. mineral.-petrol. Odd. Nár. Muz., 13, 199–203. (In Czech) RÖHLICH, P. (1972): Petrografické poměry v severní části jílovského pásma. – Sbor. geol. Věd, Geol. 22, 7–64.
13
RÖHLICHOVÁ, M. (1962): O uzavřeninách a krách v Podolském komplexu ve východním okolí Písku. – Čas. Mineral. Geol. 7, 301–306. RÖHLICHOVÁ, M. (1964): To the genesis of granitic rocks on the southern margin of the Central Bohemian Pluton. – Čas. Mineral. Geol. 9, 1–8. (English summary) SCHEUVENS, D. – ZULAUF, G. (2000): Exhumation, strain localization, and emplacement of granitoids along the western part of the Central Bohemian shear zone (Bohemian Massif). – Int. J. Earth Sci. 89, 617–630. SLAVÍK, J. (1952): Těžké minerály ze zvětralin východní části středočeského plutonu. – Sbor. Ústř. Úst. geol., Odd. geol. 19, 337–420. SOKOL, A. – DOMEČKA, K. – BREITER, K. – JANOUŠEK, V. (1998): Geochemical evaluation of rock complexes in the recently exposed part of the CentralBohemian Pluton. – Zpr. geol. Výzk. v Roce 1997, 143–146. SOKOL, A. – DOMEČKA, K. – BREITER, K. – JANOUŠEK, V. (2000): The underground gas storage near Příbram – a source of new information about granitoids of the Central Bohemian Pluton. – Věst. Čes. geol. Úst. 75, 2, 89–104. SOUČEK, J. (1971): Basic inclusions in the Červená granodiorite in the area of Písek. – Acta Univ. Carol., Geol., Hejtman Vol. 1–2, 153–166. SOUČEK, J. (1974): Styk červenského granodioritu s moldanubikem. – Čas. Mineral. Geol. 19, 47–60. (In Czech) STEINOCHER, V. (1969): Composition and petrology of the Central Bohemian Pluton. (German summary.) – Rozpr. Čs. Akad. Věd, Ř. mat. přír. Věd 79, 100 pp. STOČES, B. (1918): Problémy středočeského žulového masivu. – Sbor. Čes. Společ. zeměvěd. 24. SUK, M. (1973): Reconstruction of the mantle of the Central Bohemian pluton. – Čas. Mineral. Geol. 18, 345–364. SVOBODA, J. et al. (1964): Regionální geologie ČSSR, díl I. Český masív, Krystalinikum 1. – 380 pp. Czech Geol. Survey, Prague. ŠMEJKAL, V. (1964): The absolute age of some plutonic and metamorphic rocks of the Bohemian Massif determinated by K/Ar method (part II). – Sbor. geol. Věd, Geol. 4, 121–136. (English summary) ŠMÍD, J. – HOLUB, F. V. – JANOUŠEK,V. – PUDILOVÁ, M. – ŽÁK, K. (2000): Geochemistry and petrogenesis of the Klatovy and Kozárovice granodiorites, SW part of the Central Bohemian Plutonic Complex. – Zpr. geol. Výzk. v Roce 1999, 79–80. ŠTĚPÁNEK, J. (1929): La diorite quartzifer pyroxene de Chleby dans la region de Benešov. – Věst. St. geol. Úst. Čs. Republ. 5, 116–125. (French summary) TAUSON, L. V. – KOZLOV, V. D. – PALIVCOVÁ, M. – CIMBÁLNÍKOVÁ, A. (1977): Geochimičeskije osobenosti granitoidov sredněčešskogo plutona i nekotoryje voprosy ich genezisa. Sbor. Opyt korelacii magmatičeskich i metamorfičeskich parod Čechoslovakii i nekotorych rajonov SSSR, 145–161. – Nauka, Moskva. (In Russian) TOMEK, Č. (1974): The inverse gravimetric task and its application on morphology of the Central Bohemian Pluton. – Čas. Mineral. Geol. 19, 217–220. TOMEK, Č. (1975): Hlubší stavba a petrogeneze středočeského plutonu. In: Výzkum hlubinné stavby Československa. Sbor. referátů Loučná 1974, 187–194. – Geofyzika, Brno. TOMEK, Č. (1976): Deep structure, petrogenesis and emplacement of the Central Bohemian Pluton. In: Nagy, M. Ed.: Proc. 20th Geophysical Symposium, 123–134. – OMKDK-Technoinform Budapest. TURNOVEC, I. (2007): Žilná hornina starší než okolní granodiorit (Sedlčanský felzit). In: Breiter, K. Ed.: 3. sjezd Čes. geol. společ., Volary 19.–22. září 2007, 80. – Czech Geol. Soc. Prague. ULRYCH, J. 1972): Leukokratní granitoidy ze styku středočeského plutonu s moldanubikem. – Čas. Mineral. Geol. 17, 71–84. VACHTL, J. (1932): Geologicko-petrografické poměry okolí Smolotel jv. Příbrami. – Věst. St. geol. Úst. Čs. Reoubl. 8, 3. VACHTL, J. (1935): Geologicko-petrografické poměry území mezi Březnicí a Milínem jižně Příbrami. – Věst. Král. Čes. Společ. Nauk 2, 1–24. VEJNAR, Z. (1954): Geologicko-petrografické poměry kolineckého výběžku středočeského plutonu a krystalinických břidlic v jeho okolí. – Sbor. Ústř. Úst. geol., Odd. geol. 21, 7–56. (In Czech) VEJNAR, Z. (1972): Petrology of the Tužinka gabbro, Central Bohemian Pluton. – Acta Univ. Carol., Geol., 253–262.
14
VEJNAR, Z. (1973): Petrochemistry of the Central Bohemian Pluton. – Geochem. Methods Data 2, 116 pp. VEJNAR, Z. (1974): Trace elements in rocks of the Central Bohemian Pluton. – Věst. Ústř. Úst. geol. 49, 29–34. VEJNAR, Z. (1991): Styk moldanubika se středočeským plutonem v opěrném vrtu Milčice, jihozápadní Čechy. – Věst. Čes. geol. Úst. 66, 113–117. VEJNAR, Z. – NEUŽILOVÁ, M. (1970): Application of Streckeisen’s classification to plutonic rocks of the Bohemian Massif. – Věst. Ústř. Úst. geol. 45, 129–136. VEJNAR, Z. – ŽEŽULKOVÁ, V. – TOMAS, J. (1975): Granitoids from the water-supply gallery of the Želivka water-work, Central Bohemian Pluton (in Czech). – J. Geol. Sci., Geol. 27, 31–54. VLAŠÍMSKÝ, P. (1973): Stocks of basic and tonalitic rocks in the exocontact zone of the Central Bohemian Pluton in the Příbram area (English summary). – Acta Univ. Carol., Geol. 1, 179–195. VLAŠÍMSKÝ, P. (1975a): The geochemistry of the plutonic rocks of the Central Bohemian Pluton in the Příbram area. – Acta Univ. Carol., Geol. 3, 115–137. VLAŠÍMSKÝ, P. (1975b): Přehled intruzivního magmatismu v příbramské rudní oblasti. – Sbor. Horn. Příbram, Geol. nerost. Sur., 155–182. VLAŠÍMSKÝ, P. (1976): Development of dyke rocks in the Příbram area. – Acta Univ. Carol., Geol. 4, 377–401. VLAŠÍMSKÝ, P. (1982): The Příbram ore District: rock geochemistry and potential sources of hydrothermal mineralization (English summary). – Sbor. geol. Věd, ložisk. Geol. Mineral. 24, 49–99. VLAŠÍMSKÝ, P. (1984): Chemické složení hornin příbramské rudní oblasti. – Vlastivěd. Sbor. Podbrdska 26, 35–72. VLAŠÍMSKÝ, P. (1986): Stavba středočeského plutonu v důlních dílech v okolí Milína. – Zpr. geol. Výzk. v Roce 1984, 220–222. VLAŠÍMSKÝ, P. (1993): Některé poznatky z geologického výzkumu v důlních dílech v sz. části středočeského plutonu na Příbramsku. – Geol. Průzk. 35, 342–347. VLAŠÍMSKÝ, P. – LEDVINKOVÁ, V. – PALIVCOVÁ, M. – WALDHAUSROVÁ, J. (1992): Relict stratigraphy and the origin of the Central Bohemian Pluton (English summary). – Čas. Mineral. Geol. 37, 31–44. VRÁNA, S. (1999): Dyke swarm of highly evolved felsitic alkali-feldspar granite porphyry near Milevsko, Central Bohemian Pluton. – Věst. Čes. geol. Úst. 74, 1, 67–74. VRÁNA, S. – CHÁB, J. (1981): Metatonalite-metaconglomerate relation: the problem of the Upper Proterozoic sequence and its basement in the NE part of the Central Bohemian Pluton. – J. Geol. Sci., Geol. 35, 145–187. WALDHAUSROVÁ, J. (1984): Proterozoic volcanic and intrusive rocks of the Jílové Zone in Central Bohemia. – Krystalinikum 17, 77–97. WALDHAUSROVÁ, J. – LEDVINKOVÁ, V. (2004): Petrogenesis of Variscan granitoids in the Central Bohemian Pluton in the Příbram area. – Krystalinikum 30, 93–120. YAZDI, M. – KOŠLER, J. – PERTOLD, Z. (1997): U-Pb isotope geochronology and geochemical characteristics of the rocks from Voltuš area in the Rožmitál block, Czech Republic. – J. Czech. Geol. Soc. 43, 77. ZOUBEK, V. (1953): Geologické podklady k projektu údolní přehrady na Vltavě u Zlákovic. – Geotechnica 15, 1–123. ŽÁK, J. – HOLUB, J. V. – KACHLÍK, V. (2006): Magmatic stoping as an important emplacement mechanism of Variscan plutons: evidence from roof pendants in the Central Bohemian Plutonic Complex (Bohemian Massif). – Int. J. Earth Sci. (Geol. Rdsch.) 95, 771–790. ŽÁK, J. – HOLUB, J. V. – VERNER, K. (2005): Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of mid-crustal orogenic root recorded by episodically emplaced putons: the Central Bohemian Plutonic Complex (Bohemian Massif). – Int. J. Earth Sci. (Geol. Rdsch.) 94, 385–400. ŽÁK, J. – SCHULMANN, K. – HROUDA, F. (2001): Syn-tectonic emplacement of island-arc calc-alkaline magmas during oblique transpression: SE margin of the Teplá-Barrandian Zone (Bohemian Massif). – Geolines 13, 127–128. ŽÁK, J. – SCHULMANN, K. – HROUDA, F. (2005): Multiple magmatic fabrics in the Sázava pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. – J. Struct. Geol. 27, 805–822.
15
ŽÁK, K. – VLAŠÍMSKÝ, P. – SNEE, L. W. (1998): Datování vybraných hornin příbramské rudní oblasti metodou 40Ar/39Ar a otázka stáří polymetalické hydrotermální mineralizace. – Zpr. geol. Výzk. v Roce 1997, 172–173. ŽEŽULKOVÁ, V. (1970): Ke genezi benešovského granodioritu. – Sbor. geol. Věd, Geol. 21, 37–81. ŽEŽULKOVÁ, V. (1982): Dyke rocks in the southern part of the Central Bohemian Pluton. – Sbor. geol. Věd, Geol. 37, 71–102. (In Czech) ŽEŽULKOVÁ, V. (1982): Granitoids of the so-called Dehetník type in the Central Bohemian Pluton. – Věst. Ústř. Úst. geol. 57, 205–212. (English summary) ŽEŽULKOVÁ, V. – RUS, V. – TURNOVEC, I. (1977): Žilné horniny krásnohorsko-sedlčanské oblasti a jejich vztah k Sb-Au zrudnění. – Sbor. geol. Věd, Geol. 29, 33–60. 1.01. CENTRAL BOHEMIAN PLUTON (CBP) 8. Mrač Granodiorite (~ 1 km2): biotite granodiorite. Oval intrusion in the Sazava Tonalite. 9. Zálužany Quartz monzonite (~ 1 km2 circular intrusion): intrusion in the Kozárovice Granodiorite. 10. Kozárovice Granodiorite (~ 230 km2): hornblende-biotite granodiorite to quartz monzonite. 11. Těchnice Granodiorite (~ 70 km2): porphyritic biotite/hornblende granodiorite, porphyritic facies of the Kozárovice Granodiorite (transition into the Kozárovice Granodiorite and Sázava Tonalite). 12. Dehetník Granodiorite (~ 50 km2): biotitehornblende granodiorite (a member of the Blatná Suite). 13. Zavlekov Granodiorite: biotite-hornblende granodiorite (intrusion in the Kozárovice Granodiorite). 14. Maršovice Granodiorite (~ 45 km2): biotite ± muscovite granodiorite. 15. Zbonín Granite (late-orogenic): porphyritic biotite ± muscovite monzogranite. 16. Kosova Hora Granodiorite (~ 5 km2): biotite ± muscovite porphyritic granodiorite to monzogranite. 17. Chleby Quartz diorite (small bodies). Local facies and/or variants: Slapy, Orlík, Vltava, Granodiorite, Milín Granodiorite, Bělčice Granite, Červená Granodiorite, Vitín Granodiorite (older than the Těchnice Granodiorite), Zvíkov Granodiorite, and Hudčice Granodiorite. Size and shape (in erosion level): triangular outcrop of the asymmetric ethmolith (~ 1,500 km2) and several satellite stocks at the NW exocontact (Padrť, Bohutín and Petráčkova Hora (Rožmitál) Stocks). Sharp sub-vertical (50–80° SE) contact plane in NW. The depth of magma solidification of the CBP is about 5–7 km (Dudek et al. 1991).
Regional position: the CBP is associated with crustal-scale Variscan shear zone at the boundary of the Barrandian Zone (the Teplá-Barrandian Unit) and the Moldanubian Zone. Geochemically corresponds to volcanic-arc granitoids. The CBP s.s. is represented in this review by three principal magmatic suites of (Janoušek et al. 2000b):The Sazava Suite represented by the Sázava Tonalite with associated mafic bodies and the Požáry Trondhjemite is a dominant rock association of CBP (GA group according to Holub et al. 1997). The Blatná Suite comprises the Blatná Granodiorite and Kozárovice Granodiorite with associated granitic types and facies (HK group according to Holub et al. 1997). The Maršovice Suite consists of the Maršovice and Kozlovice Granodiorite (AIG group according to Holub et al. 1997). Rock types: 1. Gabbroids (~ 40 km2): pyroxene-hornblende gabbro, gabbrodiorite to diorite. Main bodies are Pecerady, Todice, Lešetice, Lučkovice (melamonzonite) and Tužinka Gabbros. 2. Sázava Tonalite (~ 250 km2): hornblendebiotite tonalite, quartz diorite and granodiorite. 3. Blatná Granodiorite (~ 630 km2): biotitehornblende granodiorite. 4. Červená Granodiorite (~ 185 km2): biotitehornblende granodiorite. Marginal (mafic) facies of the Blatná Granodiorite, finger-like apophyses into moldanubian gneisses. 5. Požáry Trondhjemite (~ 60 km2): quartz diorite, biotite granodiorite to trondhjemite (isometric intrusion at NW contact of the CBP). 6. Něčín Granodiorite (~ 3 km2): leucocratic granodiorite with biotite., 7. Marginal Granite (~ 35 km2): porphyritic coarse-grained biotite ± hornblende granodiorite to granite (marginal facies = biotite granite).
16
Geological environment: the adjacent part of the Barrandian Unit comprises the Neoproterozoic slates, mudstones, greywackes, conglomerates, metabasalts and metarhyolites and Lower Palaeozoic, mainly Cambrian greywackes, sandstones and conglomerates, locally also Ordovician to Lower Devonian sediments. Zoning: Regional scale: CBP – distinct compositional zoning trending E-W and SE-NW. Stratification of the magma chamber is indicated by interlayers of the mafic and granitoid rocks with preserved original boundaries and interfaces. Gently dipping to subhorizontal mafic layers are chilled against and separated by much thinner layers of granitoid, which often displays textures typical for cumulate rocks. Local scale: The Sázava Tonalite (in the Slapy Promontory) shows the compositional zoning (more slightly mafic towards the periphery). Compositional zonation of the Blatná intrusion – amphibole-biotite common mainly at the margins to biotite commonly in the centre. Mineralization: Au, Au –Sb, Ag-Pb-Zn, U, mostly vein-type economic deposits (e.g. the Příbram, Krásná Hora and Jílové historical mining districts). Heat production (μWm-3): Blatná Granodiorite 3.1, 3.94, Sázava Tonalite 2.9, Požáry Trondhjemite 1.7, 2.17, Červená Granodiorite 3.3, Marginal Granite 3.5–7.0, Těchnice Granodiorite 4.6.
Age and isotopic data: K-Ar analyses on biotites and hornblendes from a variety of granitoids yielded ages in the range 360 to 324 Ma. Sázava Tonalite 349 ± 12 Ma (Pb-Pb zircon), 354 ± 3.5 Ma (U-Pb zircon), Kozárovice Granodiorite 346.1 ± 1.6 Ma (SHRIMP U-Pb zircon), Blatná Granodiorite 331 ± 9 Ma (Rb-Sr whole rock), 346 ± 10 Ma (Pb-Pb zircon), 346.7 ± 1.6 Ma (SHRIMP U-Pb zircon), Kozárovice Granodiorite 346.1 ± 1.6 Ma (U-Pb zircon), Požáry Trondhjemite 351 ± 11 Ma (Pb-Pb zircon), Vrančice Quartz Diorite 342 ± 4 Ma (Ar-Ar hornblende), Hornblendite enclave in the Vrančice Quartz Diorite 342–352 Ma (Ar-Ar biotite), 342 ± 4 Ma (Ar-Ar amphibole), Gabbrodiorite enclaves in the Bohutín Tonalite 348.5 ± 0.5 Ma (Ar-Ar biotite). Chronologic succession (from older to younger rock type): Gabbroids → Sázava Tonalite → Blatná Granodiorite → Požáry Trondhjemite – Něčín Granodiorite → Marginal Granite. An age of the CBP cooling to 500 °C (Ar-Ar amphibole) is 348–342 Ma and under 300 °C is 338 Ma (Ar-Ar biotite). Contact aureole: a thermal aureole is developed in a total width ranging from about 100 m to more than 1 km. Maximum temperatures of contact metamorphism correspond to the amphibolehornfels facies. Relicts of Neoproterozoic to Devonian sediments and volcanic rocks form large thermally metamorphosed pendants at the roof of the CBP plutonic rocks.
Fig. 1.5. Central Bohemian Pluton ABQ and TAS diagrams: 1 – Sázava Tonalite, 2 – Požáry Trondhjemite, 3 – Gabbroids, 4 – Kozárovice Granodiorite,5 – Local facies of the Sázava Tonalite (e.g. Vltava Granodiorite).
References DUDEK, A. – FROLÍKOVÁ, I. – NEKOVAŘÍK, Č. (1991): The depth of intrusion of Hercynian granitoid plutons in the Bohemian Massif. – Acta Univ. Carol. Geol., Kettner Vol. 3–4, 249–256. (In Czech)
17
FATKOVÁ, J. (1967): Uran v horninách středočeského plutonu. Sbor. Kongr. geol., 14–30. – Příbram. FIALA, F. – CHLUPÁČ, I. (1973): Minetová žíla v barrandienském devonu a její význam. – Čas. Mineral. Geol. 18, 47–55. FIALA, J. – VEJNAR, Z. – KUČEROVÁ, D. (1976): Composition of the biotites and the coexisting biotitehornblende pairs in granitic rocks of the Central Bohemian Pluton. – Krystalinikum 12, 79–111. HANUŠ, V. – PALIVCOVÁ, M. (1969): Quartz-gabbros recrystallized from olivine-bearing volcanics. – Lithos 2, 147–166. HANUŠ, V. – PALIVCOVÁ, M. (1971a): Presence and significance of amygdules in hornblende gabbros. – Krystalinikum 8, 27–43. HANUŠ, V. – PALIVCOVÁ, M. (1971b): Ocellar texture of Pecerady gabbro in Central Bohemian Pluton. – Acta Univ. Carol., Geol. 1, 187. HEJTMAN, B. (1949): Uzavřeniny granodioritu u Kozárovic na Mirovicku. – Rozpr. Čes. akad. Věd Umění, Tř. II. 59, 27, 1–25. HOLUB, F. V. (1977): Petrology of inclusions as a key to petrogenesis of the durbachitic rocks from Czechoslovakia. – Tschermaks mineral. petrogr. Mitt. 24, 3, 133–150. HOLUB, F. V. (1992): Příspěvek k petrochemii středočeského plutonu. In: Souček, J. Ed.: Horniny ve vědách o Zemi, 117–140. – Přírodověd. fak. Univ. Karl. Praha. HOLUB, F. V. (1996): Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: Petrology, geochemistry and petrogenetic interpretation. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 5– 26. HOLUB, F. V. (2007): Žilné roje v oblasti středočeského plutonického komplexu: látkové variace a vztahy k plutonitům. In: Breiter, K. Ed.: 3. sjezd Čes. geol. společ., Volary 19.–22. září 2007, p. 28. – Czech Geol. Soc. Prague. HOLUB, F. V. – MACHART, J. – MANOVÁ, M. (1997): The Central Bohemian Plutonic Complex: Geology, chemical composition and genetic interpretation. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 27–50. JANOUŠEK, V. (2000): Geology of the Central Bohemian Pluton. Excursion guide. JANOUŠEK, V. – BOWES, D. R. – ROGERS, G. et al. (1997): Microtextural and geochemical evidence for magma hybridisation in the genesis of calc-alkaline granitoids. – J. Czech Geol. Soc. 43, 59. JANOUŠEK, V. – BRAITHWAITE, C. J. R. – BOWES, D. R. – GERDES, A. (2004): Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. – Lithos 78, 67–99. JANOUŠEK, V. – GERDES, A. (2003): Timing the magmatic activity within the Central Bohemian Pluton, Czech Republic: Conventional U-Pb ages for the Sázava and Tábor intrusions and their tectonic significance. – J. Czech Geol. Soc. 48, 1–2, 70–71. JANOUŠEK, V. – WIEGAND, B. – ŽÁK, J. – ERBAN, V. (2007): SHRIMP U-Pb zircon dating of the high-K calc-alkaline Blatná suite (Central Bohemian Plutonic Complex, Czech Republic) and its geotectonic significance. In: Németh, Z. – Plašienka, D.: SlovTec 08, 6th Meeting of the Central European Tectonic Studies Group (CETeG) and 13th Meeting of the Czech Tectonic Studies Group, Upohlav, Slovakia, 23–26 April 2008, 53–55. – St. Geol. Inst. Dionýz Štúr. Bratislava. KETTNER, R. (1930): O postavení metamorfovaných ostrovů v oblasti středočeského žulového masívu. – Sbor. St. geol. Úst. Čs. Republ. 9, 302–308. KETTNEROVÁ, M. (1920): Kontakt středočeské žuly u Žampachu na Sázavě. – Čas. Mus. Král. čes., 1928. Praha. KODYM, O. jun. – SUK, M. (1958): Přehled geologických a petrografických poměrů Blatenska a Strakonicka. – Geol. Práce 50, 31–121. KODYM, O. jun. – SUK, M. (1960): Přehled geologie západní části středočeského plutonu. – Věst. Čes. geol. Úst., 35, 269–277. LEDVINKOVÁ, V. (1985): Gabbroids in the Mirovice metamorphic islet – Sbor. geol. Věd, Geol. 40, 35– 61. (In Czech) LEDVINKOVÁ, V. – WALDHAUSROVÁ, J. – PALIVCOVÁ, M. (1999): Recrystallized members of Upper Proterozoic ultramafic magmatism in the Variscan felsic/mafic stratified plutonic series in the Teletín quarries (Central Bohemian Pluton, Bohemian Massif). – Krystalinikum 25, 49–82. MATTE, PH. – MALUSKI, H. – RAJLICH, P. – FRANKE, W. (1990): Terrane boundaries in the Bohemiam Massif: Results of large-scale Variscan shearing. – Tectonophysics 177, 151–170.
18
ORLOV, A. (1935a): Zur Kenntnis der Petrochemie des mittelböhmischen Plutons. – Mineral. petrogr. Mitt., N.F. 46, 416–446. ORLOV, A. (1935b): Problémy středočeského plutonu. – Věda přír. 16, 43–48. PALIVCOVÁ, M. (1958): Zpráva o geologicko-petrografickém výzkumu slapského výběžku středočeského plutonu. – Zpr. geol. Výzk. v Roce 1957, 172–175. PALIVCOVÁ, M. – WALDHAUSROVÁ, J. – LEDVINKOVÁ, V. (1989): Precursors lithology and the origin of the Central Bohemian Pluton (Bohemian Massif). – Geol. Zbor. Geol. carpath. 40, 521–546. PIVEC, E. – PIVEC, E. Jun. (1996): The Kšely Granite, Lesser Known Granite Type of the Bohemian Massif. – Acta Univ Carol., Geol. 40, 23–32. RENÉ, M. (1998): Petrogenesis of granitoids in the Blatná area. – Acta montana, A12, 141–142. RENÉ, M. (1999): Petrogenesis of the granitoids of the Červená type (Central Bohemian Plutonic Complex). – Acta montana, A 14, 81–97. RENÉ, M. (2005): Petrogeneze magmatitů sázavského typu středočeského plutonického komplexu. – Bull. mineral.-petrolog. Odd. Nár. Muz., 13, 199–203. SOUČEK, J. (1971): Basic inclusions in the Červená granodiorite in the area of Písek. – Acta Univ. Carol., Geol., Hejtman Vol. 1–2, 153–166. SOUČEK, J. (1974): Styk červenského granodioritu s moldanubikem. – Čas. Mineral. Geol. 19, 47-60. (in Czech). STEINOCHER, V. (1969): Composition and petrology of the Central Bohemian Pluton. – Rozpr. Čs. Akad. Věd, Ř. mat. přír. Věd 79, 100 pp. (German summary) SUK, M. (1973): Reconstruction of the mantle of the Central Bohemian pluton. – Čas. Mineral. Geol. 18, 345–364. SVOBODA, J. et al. (1964): Regionální geologie ČSSR I, Český masiv, Krystalinikum. – 380 pp. Czech Geol. Survey, Prague. VEJNAR, Z. (1954): Geologicko-petrografické poměry kolineckého výběžku středočeského plutonu a krystalinických břidlic v jeho okolí. – Sbor. Ústř. Úst. geol., Odd. geol. 21, 7–56. VEJNAR, Z. (1972): Petrology of the Tužinka gabbro, Central Bohemian Pluton. – Acta Univ. Carol., Geol. 253–262. VEJNAR, Z. (1973): Petrochemistry of the Central Bohemian Pluton. – Geochem. Methods Data 2, 116. VEJNAR, Z. (1974a): Trace elements in rocks of the Central Bohemian Pluton. – Věst. Ústř. Úst. geol. (Bull. Geol. Survey Prague) 49, 29–34. VEJNAR, Z. (1974b): Application of cluster analysis in the multivariate petrochemical classification of the rocks of the Central Bohemian Pluton (English summary). – Věst. Ústř. Úst. geol. (Bull. Geol. Survey Prague) 49, 29–34. VEJNAR, Z. – NEUŽILOVÁ, M. (1970): Application of Streckeisen’s classification to plutonic rocks of the Bohemian Massif. – Věst. Ústř. Úst. geol. (Bull. Geol. Survey Prague) 45, 129–136. VLAŠÍMSKÝ, P. (1975a): Přehled intruzivního magmatismu v příbramské rudní oblasti. – Sbor. Horn. Příbram, Geol. nerost. Sur., 155–182. VLAŠÍMSKÝ, P. (1975b): The geochemistry of the plutonic rocks of the Cenral Bohemian Pluton in the Příbram area. – Acta Univ. Carol., Geol., 115–137. ŽÁK, J. – SCHULMANN, K. – HROUDA, F. (2005): Multiple magmatic fabrics in the Sázava pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. – J. Struct. Geol. 27, 805–822. ŽÁK, K. – VLAŠÍMSKÝ, P. – SNEE, L. W. (1998): Datování vybraných hornin příbramské rudní oblasti metodou 40Ar/39Ar a otázka stáří polymetalické hydrotermální mineralizace. – Zpr. geol. Výzk. v Roce 1997, 172–173. ŽEŽULKOVÁ, V. – RUS, V. – TURNOVEC, I. (1977): Žilné horniny krásnohorsko-sedlčanské oblasti a jejich vztah k Sb-Au zrudnění. – Sbor. geol. Věd, Geol. 29, 33–60.
19
Marginal Granite Large range in composition. Quartz-normal, sodic, weakly peraluminous, mesocratic, I-type, I- and M-series, granite N = 21 Median Min Max QU1 QU3 SiO2 71.28 67.60 73.67 69.20 72.51 TiO2 0.25 0.15 0.47 0.21 0.35 Al2O3 13.99 11.18 15.74 13.00 14.60 Fe2O3 1.20 0.27 2.58 0.66 1.45 FeO 2.08 1.03 3.62 1.56 2.62 MnO 0.07 0.04 0.23 0.05 0.08 MgO 0.83 0.31 2.95 0.56 1.12 CaO 2.18 0.56 3.19 1.61 2.79 Na2O 3.45 2.90 4.30 3.28 3.67 K2O 3.89 2.88 4.90 3.50 4.34 P2O5 0.13 0.03 0.57 0.08 0.14 Mg/(Mg + Fe) 0.33 0.20 0.56 0.26 0.37 K/(K + Na) 0.43 0.35 0.48 0.41 0.45 Nor.Or 24.36 17.73 30.58 21.85 27.04 Nor.Ab 32.66 27.23 38.03 30.65 33.80 Nor.An 10.70 0.00 14.84 6.37 13.29 Nor.Q 28.96 22.77 32.54 25.45 30.58 Na + K 191.42 165.35 242.80 183.52 203.48 *Si 172.90 143.14 209.60 153.21 187.81 K-(Na + Ca) -66.89 -102.62 -33.22 -81.25 -55.24 Fe+Mg + Ti 65.39 36.57 134.53 57.95 75.84 Al-(Na + K + 2Ca) 2.59 -61.06 24.78 -3.76 13.03 (Na + K)/Ca 4.76 3.06 18.38 3.94 8.07 Nor.Q 28.96 22.77 32.54 25.45 30.58 A/CNK 1.02 0.79 1.11 1.00 1.06 Trace elements (in ppm): Marginal Granite – B 8, Ba 1170, Be 3, Co 5, Cr 15, Cs 20, Cu 5, Ga 15, Li 20, Ni 10, Pb 40, Rb 62, Sn 3, Sr 250, V 46, Zn 40, Zr 80 (Vejnar 1974a). Blatná Granodiorite Quartz-normal, sodic, metaluminous, mesocratic, I-type, I- and M- series, granodiorite N = 21 Median Min Max QU1 QU3 SiO2 65.95 61.84 68.85 63.9 66.46 TiO2 0.53 0.25 0.91 0.47 0.67 Al2O3 15.43 14.09 16.73 15 15.95 Fe2O3 0.81 0.25 2.47 0.5 1.18 FeO 3.16 1.96 4.38 2.68 3.71 MnO 0.07 0.04 0.15 0.05 0.08 MgO 1.81 0.98 2.96 1.45 2.53 CaO 3.34 2.52 4.42 3.16 3.66 Na2O 3.51 2.9 4.78 3.31 3.7 K2O 4.06 1.92 4.57 3.7 4.23 P2O5 0.22 0.08 0.32 0.17 0.26 Mg/(Mg + Fe) 0.46 0.32 0.55 0.43 0.51 K/(K + Na) 0.43 0.21 0.51 0.41 0.44 Nor.Or 25.51 12.03 29.04 23.29 26.47 Nor.Ab 33.75 28.01 45.52 31.56 35.4
20
Nor.An 15.84 12.08 22.08 14.51 17.95 Nor.Q 17.72 11.08 28.23 14.41 21.05 Na + K 198.63 169.45 221.74 190.61 203.5 *Si 124.69 93.91 170.11 107.15 135.81 K-(Na + Ca) -89.98 -191.41 -56.29 -100.4 -78.81 Fe + Mg + Ti 102.87 76.1 149.57 89.32 134.02 Al-(Na + K + 2Ca) -9.76 -51.58 11.98 -23.73 -1.97 (Na + K)/Ca 3.32 2.26 4.42 2.87 3.75 A/CNK 0.98 0.86 1.05 0.94 1.02 Trace elements (in ppm): Blatná Granodiorite – Ba 1081, Cs 9.5, Ga 16, Hf 4.9, Li 33, Nb 14, Pb 36, Rb 171, Sc 14.6, Sr 313, Th 20.6, U 8.1, Y 16, Zn 63, Zr 156, La 37, Ce 73, Sm 5.8, Eu 1.5, Yb 1.29, Lu 0.28 (Breiter and Sokol 1997). Trace elements (in ppm): Blatná Granodiorite – B 13, Ba 1340, Be 4, Co 5, Cr 40, Cs 20, Cu 6, Ga 9, Li 30, Ni 13, Pb 30, Rb 120, Sn 3, Sr 330, V 70, Zn 73, Zr 120 (Vejnar 1974a).
Fig. 1.6. Central Bohemian Pluton ABQ and TAS diagrams. 1 – Blatná Granodiorite, 2 – Červená Granodiorite.
Červená Granodiorite Large variation in composition. Quartz-normal, sodic, metaluminous, mesocratic, Itype, I- and M-series, granodiorite N = 12 Median Min Max QU1 QU3 SiO2 62.67 61.12 67.44 61.73 64.62 TiO2 0.63 0.26 0.97 0.50 0.72 Al2O3 15.69 14.34 16.97 15.35 15.96 Fe2O3 0.70 0.15 1.23 0.57 0.96 FeO 3.82 2.47 4.53 3.12 3.96 MnO 0.07 0.05 0.50 0.06 0.07 MgO 2.71 1.81 3.67 2.14 2.93 CaO 3.91 3.08 4.51 3.20 4.32 Na2O 3.37 3.15 3.66 3.25 3.50 K2O 3.87 3.00 4.12 3.52 4.00 P2O5 0.29 0.18 0.33 0.20 0.30 Mg/(Mg + Fe) 0.52 0.47 0.58 0.50 0.53 K/(K + Na) 0.43 0.39 0.46 0.39 0.43 Nor.Or 24.98 19.13 26.59 22.25 25.70 Nor.Ab 33.23 30.53 35.28 31.74 33.97 Nor.An 19.01 14.97 22.19 15.72 21.03
21
Nor.Q 13.92 11.50 22.09 12.28 16.57 Na + K 190.23 165.35 198.30 186.58 193.69 *Si 108.52 99.45 144.17 102.74 123.59 K-(Na + Ca) 104.32 -121.52 -73.25 -110.22 -92.38 Fe + Mg + Ti 143.47 89.71 178.48 120.23 148.70 Al-(Na + K + 2Ca) -22.06 -43.15 13.84 -34.59 -11.25 (Na + K)/Ca 2.71 2.15 3.61 2.39 2.90 A/CNK 0.95 0.89 1.06 0.92 0.99 Trace elements (in ppm): Červená Granodiorite – B 7, Ba 1760, Be 5, Co 5, Cr 100, Cs 15, Cu 7, Ga 15, Li 30, Ni 23, Pb 40, Rb 140, Sn 2, Sr 360, Th 14.7, U 6.3, V 80, Zn 27, Zr 150 (Vejnar 1974a).
Fig. 1.7. Central Bohemian Pluton ABQ and TAS diagrams. 1 – Marginal Granite, 2 – Těchnice Granodiorite.
Požáry Trondhjemite Large range of variation in composition. Quartz-rich, sodic, weakly peraluminous, mesocratic to leucocratic, I-type, granodiorite N=8 Median Min Max QU1 QU3 SiO2 71.40 70.95 73.72 71.14 72.10 TiO2 0.24 0.16 0.30 0.22 0.25 Al2O3 14.25 13.42 15.07 13.74 14.58 Fe2O3 0.76 0.65 1.26 0.68 0.83 FeO 1.91 1.43 2.89 1.45 2.00 MnO 0.06 0.03 0.20 0.04 0.07 MgO 0.60 0.47 1.38 0.58 0.83 CaO 3.21 2.00 3.98 2.22 3.39 Na2O 3.80 2.40 3.93 3.35 3.83 K2O 1.90 1.45 3.38 1.68 3.25 P2O5 0.09 0.07 0.34 0.07 0.24 Mg/(Mg + Fe) 0.31 0.23 0.38 0.27 0.36 K/(K + Na) 0.24 0.20 0.48 0.23 0.37 Nor.Or 11.63 8.94 20.96 10.35 19.83 Nor.Ab 35.57 22.89 36.55 31.11 35.95 Nor.An 14.60 8.63 18.53 10.90 17.05 Nor.Q 31.86 30.70 34.44 31.38 33.57 Na + K 160.95 148.36 188.40 154.38 169.15 *Si 192.36 186.75 209.31 189.06 205.34 K-(Na + Ca) -145.39 -157.93 -63.77 -152.54 -89.98 Fe + Mg + Ti 59.51 44.73 93.41 47.48 61.46 22
Al-(Na + K + 2Ca) 2.18 -13.92 20.98 -2.01 9.46 (Na + K)/Ca 2.64 2.23 5.04 2.58 3.26 A/CNK 1.01 0.98 1.11 1.00 1.04 Trace elements (in ppm): Požáry Trondhjemite – Ba 1313, Cs 3.5, Ga 13, Hf 3.5, Li 21, Nb 10, Pb 23, Rb 69, Sc 20.7, Sr 330, Th 9.5, U 4, Y 18, Zn 67, Zr 144, La 33, Ce 59, Sm 4.77, Eu 1.3, Yb 1.9, Lu 0.37 (Breiter and Sokol 1997). Trace elements (in ppm): Požáry Trondhjemite – B 6, Ba 1020, Be 1, Co 5, Cr 13, Cs 10, Cu 5, Ga 9, Li 23, Ni 10, Pb 31, Rb 98, Sn 2, Sr 190, V 13, Zn 39, Zr 120 (Vejnar 1974a). Sázava Tonalite Large range of variation in composition. Quartz-normal, sodic, metaluminous, Itype, M-series granodiorite n = 33 Median Min Max QU1 QU3 SiO2 63.55 60.22 67.15 62.14 65.57 TiO2 0.52 0.24 0.71 0.44 0.60 Al2O3 15.46 13.28 17.68 15.25 15.81 Fe2O3 1.29 0.01 3.20 1.13 1.71 FeO 3.50 2.55 4.88 3.14 4.14 MnO 0.10 0.05 0.14 0.08 0.11 MgO 2.37 0.62 3.68 2.04 2.92 CaO 4.66 3.18 5.91 4.25 4.99 Na2O 3.26 2.60 4.90 3.03 3.66 K2O 3.71 1.58 4.40 2.60 4.05 P2O5 0.20 0.07 0.67 0.13 0.32 Mg/(Mg + Fe) 0.45 0.20 0.55 0.43 0.51 K/(K + Na) 0.40 0.20 0.52 0.34 0.45 Nor.Or 23.01 9.98 28.39 16.73 25.74 Nor.Ab 31.23 26.06 48.76 29.58 35.16 Nor.An 23.08 12.45 30.59 21.30 25.10 Nor.Q 15.07 7.10 26.90 11.59 20.01 Na + K 182.15 136.61 216.56 169.08 192.95 *Si 117.17 68.27 175.75 96.87 139.21 K-(Na + Ca) -111.35 -207.37 -81.26 -139.60 -99.15 Fe + Mg + Ti 132.37 85.08 174.72 120.58 148.76 Al-(Na + K + 2Ca) -36.39 -79.56 16.99 -60.52 -21.80 (Na + K)/Ca 2.15 1.60 3.66 2.00 2.49 A/CNK 0.91 0.79 1.11 0.84 0.94 Trace elements (in ppm): Sázava Tonalite – Ba 1163, Cs 6.5, Ga 17, Hf 4.3, Li 23, Nb 12, Pb 28, Rb 121, Sc 24.3, Sr 411, Th 14.6, U 5.5, Y 18, Zn 63, Zr 118, La 35, Ce 67, Sm 5.76, Eu 1.5, Yb 2.17, Lu 0.36 (Breiter and Sokol 1997). Trace elements (in ppm): Sázava Tonalite – B 15 , Ba 1420, Be 3, Co 9, Cr 50, Cs 10, Cu 17, Ga 26, Li 25, Ni 25, Pb 21, Rb 117, Sn 2, Sr 260, V 110, Zn 72, Zr 120 (Vejnar,1974a). Těchnice Granodiorite Large range of variation in composition. Quartz-normal, sodic, metaluminous, mesocratic, I-type, I- and M-series, granodiorite n=9 Median Min Max QU1 QU3 SiO2 65.26 63.06 68.43 64.00 66.56 TiO2 0.50 0.32 0.69 0.44 0.51 Al2O3 15.13 14.22 16.65 14.92 15.48 Fe2O3 0.85 0.22 3.81 0.73 1.36 FeO 3.09 2.29 3.52 2.92 3.11 23
MnO 0.07 0.04 0.09 0.07 0.08 MgO 1.88 0.16 2.53 1.12 2.32 CaO 3.46 2.96 5.39 3.15 3.79 Na2O 3.26 2.88 3.50 3.17 3.28 K2O 4.14 3.86 4.69 3.93 4.58 P2O5 0.21 0.17 0.54 0.19 0.25 Mg/(Mg + Fe) 0.50 0.06 0.53 0.33 0.52 K/(K + Na) 0.47 0.43 0.50 0.44 0.48 Nor.Or 26.51 23.92 29.23 25.13 26.91 Nor.Ab 30.79 27.12 34.06 29.33 31.68 Nor.An 16.40 13.42 23.66 15.38 17.15 Nor.Q 19.16 14.81 26.62 17.34 21.00 Na + K 191.26 180.63 205.42 188.64 200.85 *Si 128.62 86.89 157.44 125.74 132.89 K-(Na + Ca) -79.90 -102.38 -62.75 -80.96 -73.54 Fe + Mg + Ti 94.88 63.16 145.84 88.61 126.38 Al-(Na + K + 2Ca) -20.25 -104.66 9.75 -26.56 2.75 (Na + K)/Ca 3.19 2.14 3.62 2.83 3.34 A/CNK 0.95 0.74 1.07 0.93 1.04 Trace elements (in ppm): Těchnice Granodiorite – B 6, Ba 1200, Be 4, Co 5, Cr 60, Cs 10, Cu 20, Ga 17, Li 34, Ni 38, Pb 30, Rb 120, Sn 2, Sr 310, V 90, Zn 81, Zr 200 (Vejnar 1974a). Pecerady Gabbro Quartz-defficient, sodic, metaluminous, calc-alkaline to tholeiitic, melanocratic, gabbro n = 12 Median Min Max QU1 QU3 SiO2 50.99 48.93 53.30 49.80 51.84 TiO2 1.02 0.79 1.29 0.87 1.11 Al2O3 13.93 11.90 14.94 12.95 14.36 Fe2O3 2.74 2.29 3.33 2.48 2.97 FeO 5.88 5.63 6.48 5.77 6.07 MnO 0.14 0.11 0.19 0.12 0.17 MgO 7.96 6.03 9.48 7.46 8.75 CaO 12.58 10.68 14.02 12.21 13.27 Na2O 1.89 1.39 2.26 1.82 2.04 K2O 1.08 0.51 1.37 0.69 1.23 P2O5 0.28 0.14 0.36 0.16 0.33 Mg/(Mg + Fe) 0.55 0.67 0.60 0.63 0.65 K/(K + Na) 0.15 0.38 0.19 0.27 0.31 Nor.Or 3.00 9.02 4.45 6.20 7.65 Nor.Ab 12.77 20.90 16.78 18.52 19.94 Nor.An 43.14 59.35 50.98 54.25 55.96 Nor.Q 0.00 6.00 0.00 0.22 3.59 Na + K 71.50 96.14 75.64 79.63 92.25 *Si 27.08 74.14 31.04 42.68 60.75 K-(Na + Ca) -295.10 -226.86 -278.62 -268.15 -265.24 Fe + Mg + Ti 278.61 366.74 320.15 335.91 345.33 Al-(Na + K + 2Ca) -318.84 -233.20 -304.12 -274.49 -241.80 (Na + K)/Ca 0.30 0.50 0.31 0.37 0.40 A/CNK 0.45 0.56 0.46 0.50 0.54 Trace elements (in ppm): basic rocks – B 9, Ba 1010, Be 2, Co34, Cr 60, Cs 10, Cu 30, Ga 15, Li 15, Ni 31, Pb 20, Rb 41, Sn 1, Sr 350, V 220, Zn 96, Zr 50 (Vejnar 1974a).
24
Fig. 1.8. Klatovy Massif ABQ and TAS diagrams. 1 – Klatovy Granodiorite, 2 – Kozlovice Granodiorite, 3 – Nýrsko Granite.
1.01.1. KLATOVY MASSIF movements between the deeply buried Moldanubian Zone and the supracrustal TepláBarrandian Zone). Age and isotopic data: Klatovy Granodiorite 349 ± 6/-4 Ma (U-Pb zircon), 339 ± 10 Ma (K-Ar biotite), Nýrsko Granite 341 ± 2 Ma (U-Pb zircon), 342 ± 8 Ma (K-Ar biotite), Kozlovice Granodiorite 345 ± 6/-4 Ma (U-Pb zircon). The Kozlovice Granodiorite intruded the Klatovy Granodiorite. The youngest, Marginal Granite mainly intruded as stocks or dykes into the Klatovy and Kozlovice Granodiorites. Contact aureole: the Teplá-Barrandian wall rocks form a syntectonic contact aureole. The Kozlovice Granodiorite shows gradational transition into diatexites of the Moldanubicum (a product of the anatexis of paragneisses). Geological environment: high-grade metamorphic migmatites and paragneisses at the southern exocontact and Neoproterozoic volcanosedimentary strata metamorphosed below the garnet isograd in northern exocontact. The temperature difference between the Moldanubian and the Teplá-Barrandian Units of up to 400oC have existed in Carboniferous time. TepláBarrandian roof pendants of the Central Bohemian Composite Batholith show the hanging-wall position with respect to Moldanubian crust. Gravitational collapse and uplift the Moldanubicum relative to the Bohemicum along the Central Bohemian Suture Zone predates the intrusion of the Klatovy Massif by ca. 20 Ma. Mineralization: vein-type uranium mineralization at the exocontact.
Regional position: a member of the Central Bohemian Pluton (an apophysis of the Central Bohemian Pluton). A member of the HKCA (high-K calc-alkaline) group (Janoušek et al. 1995). Syntectonic intrusion associated with crustal-scale Variscan shear zone and the Central Bohemian Pluton at the boundary of the TepláBarrandian unit (Bohemian and the Moldanubian Zone). Rock types 1. Klatovy Granodiorite (ca. 60 km2) – highly variable (syn-kinematic) medium-grained biotite granodiorite (with amphibole), subordinate granite, quartz monzonite and quartz monzodiorite facies: – fine-grained porphyritic amphibole-biotite granodiorite with clinopyroxene, – medium-grained light porphyritic biotite granodiorite (with amphibole) to monzogranite, – more mafic rocks and mafic enclaves. 2. Nýrsko Granite ~ 10 km2 (1.5 × 8 km) – medium-grained biotite granite with rare hornblende, similar to the Marginal Granite (synkinematic and shallow emplacement). 3. Kozlovice Granodiorite (~ 25 km2) – cordierite-biotite (with muscovite) finegrained granodiorite with S-type affinities. 4. Marginal Granite (~ 22 km2) – coarsegrained biotite granite. Size and shape (in erosion level): syntectonic sheet-like body, 120 km2 (40 × 4 km) intruded into a pre-existing crustal-scale, steeply dipping (to NW) long-lived Central Bohemian shear zone (associated with subvertical and horizontal block
25
References DÖRR, W. – FIALA, J. – FRANKE, W. – HAACK, U. – PHILIPPE, S. – SCHASTOK, J. – SCHEUVENS, D. – VEJNAR, Z. – ZULAUF, G. (1998): Cambrian vs. Variscan tectonothermal evolution within the Teplá-Barrandian: evidence from U-Pb zircon ages of syn-tectonic plutons (Bohemian Massif, Czech Republic). – Acta Univ. Carol., Geol. 42, 2, 229–230. KODYM, O. jun. (1951): Geologické a petrografické poměry v území jihiovýchodně od Nepomuku. – Sbor. Ústř. Úst. geol., Odd. geol. 18, 1–48. MENČÍK, E. (1951): Geologicko-petrografické poměry na území mezi Plánicí a Nepomukem. – Sbor. Ústř. Úst. geol., Odd. geol. 18, 49–88. POLANSKÝ, J. – DOBEŠ, M. – MRLINA, J. (1982): The Klatovy apophysis. – MS Geofyzika, Brno. (In Czech) SCHEUVENS, D. – ZULAUF, G. (2000): Exhumation, strain localization, and emplacement of granitoids along the western part of the Central Bohemian shear zone (Bohemian Massif). – Int. J. Earth Sci. 89, 617–630. ŠMÍD, J. – HOLUB, F, – JANOUŠEK, V. – PUDILOVÁ, M. – ŽÁK, J. (2000): Geochemistry and petrogenesis of the Klatovy Granodiorite, SW part of the Central Bohemian Pluton. – Geolines 10, 65–66. VEJNAR, Z. (1974): Trace elements in rocks of the Central Bohemian Pluton. – Věst. Ústř. Úst. geol. (Bull. Geol. Survey Prague) 49, 29–34. Klatovy Granodiorite Large range of variation in composition. Quartz-poor, sodic, metaluminous, mesocratic, I-type, M-series, granodiorite n=9 Median Min Max QU1 QU3 SiO2 64.97 62.90 69.87 64.33 67.64 TiO2 0.58 0.46 0.81 0.51 0.63 Al2O3 14.07 12.96 16.14 14.00 14.64 Fe2O3 1.36 0.60 1.96 1.27 1.85 FeO 3.88 1.52 4.33 2.99 4.10 MnO 0.07 0.02 0.10 0.06 0.08 MgO 2.13 0.83 2.55 1.65 2.42 CaO 3.25 1.05 3.86 3.08 3.43 Na2O 3.95 3.37 6.00 3.70 5.00 K2O 3.62 3.13 4.22 3.50 3.64 P2O5 0.16 0.13 0.21 0.14 0.20 Mg/(Mg + Fe) 0.40 0.35 0.49 0.39 0.45 K/(K + Na) 0.38 0.26 0.43 0.32 0.41 Nor.Or 22.89 19.56 25.69 22.01 23.26 Nor.Ab 38.22 32.84 56.99 34.96 47.79 Nor.An 15.73 4.63 19.22 7.45 17.21 Nor.Q 15.82 9.12 23.25 14.19 17.61 Na K 205.94 184.55 260.07 204.33 235.66 *Si 118.88 58.54 146.33 110.23 127.11 K-(Na + Ca) -105.76 -184.58 -75.70 -119.44 -98.44 Fe + Mg + Ti 123.36 64.31 151.01 119.85 140.19 Al-(Na + K + 2Ca) -40.77 -91.93 4.38 -69.41 -10.57 (Na + K)/Ca 3.61 2.70 12.59 3.25 4.55 A/CNK 0.88 0.76 1.03 0.81 0.97 Trace elements (in ppm): Klatovy Granodiorite – B 3, Ba 1180, Be 4, Co 5, Cr 20, Cs 10, Cu 15, Ga 20, Hf 3.5, Li 17, Ni 20, Pb 29, Rb 110, Sn 2, Sr 230, V 76, Zn 60, Zr 100 (Vejnar 1974a).
26
Kozlovice Granodiorite Quartz-normal, sodic, peraluminous (very slightly), mesocratic, I-type, I-series, granodiorite 1825KO 1826KO SiO2 69.67 66.06 TiO2 0.40 0.56 Al2O3 15.48 15.70 Fe2O3 0.54 0.91 FeO 2.00 3.60 MnO 0.04 0.96 MgO 0.81 1.70 CaO 3.01 3.21 Na2O 3.79 2.95 K2O 4.17 3.51 P2O5 0.13 0.12 Mg/(Mg + Fe) 0.36 0.36 K/(K + Na) 0.42 0.44 Nor.Or 25.30 22.35 Nor.Ab 34.94 28.54 Nor.An 14.45 16.31 Nor.Q 22.04 23.29 Na + K 210.84 169.72 *Si 139.89 158.61 K-(Na + Ca) -87.44 -77.91 Fe + Mg + Ti 59.73 110.73 Al-(Na + K + 2Ca) -14.19 24.11 (Na + K)/Ca 3.93 2.97 A/CNK 0.96 1.09
27
1.02. SATELITE STOCKS AND DYKE SWARMS The Neoproterozoic flyschoid sediments in the broad exocontact zone of the Central Bohemian Pluton are penetrated by several small subvertical intrusions of gabbroic and tonalite rocks (e.g. the Bohutín Stock). Some of them have been encountered in uranium and Pb-Zn mines. The satellite stocks represent an early and relatively basic part of the Central Bohemian Pluton rock series. Rock dykes are very abundant within the CBP and show a large range of variation in composition and age complexity. They are often grouped into series of dyke swarms (e.g. the Přibram Dyke Swarm) which may indicate deeply eroded paleo-volcanic centres. 1.02.1. BOHUTÍN STOCK 3. Bohutín Gabbrodiorite – medium-grained biotite-hornblende gabbrodiorite (enclaves). 4. Hybrid Quartz diorite – medium-grained hybrid biotite-hornblende quartz diorite. Size and shape (in erosion level): elliptical shape, 3 km2 (3.5 × 1.5 km), elongated in NE-SW direction, vertical column (documented up to the depth of 1400 m). Age and isotopic data: 335 ± 35 Ma (K-Ar biotite), 400 ± 40 Ma (K-Ar hornblende), gabbrodiorite enclave in the Bohutín Tonalite 348.5 ± 0.5 Ma (Ar-Ar biotite). Contact aureole: a broad thermal aureole is represented by the contact hornfels and spotted schists. Geological environment: Neoproterozoic greywackes and Lower-Cambrian conglomerates, sandstones, slates and greywackes. The Bohutín Tonalite is hydrothermally altered by ore veins (e.g. the Klement vein, 1 metre thick is rimed by 2 metres wide zones of hydrothermal alteration). Zoning: asymmetric compositional vertically arranged zonation, increase in acidity towards the margin (apical facies) from quartz diorite in SW to trondhjemite and granodiorite in NE. Mineralization: Pb-Zn-Ag sulphide vein type deposits, indices of Au and W (scheelite) in quartz veins (e.g. the Bohutín mine in the Příbram mining district).
Fig. 1.9. Bohutín Stock geological sketch-map (Klomínský personal com.). 1 – Bohutín Trondhjemite, 2 – Hybrid Quartz diorite, 3 – Bohutín Tonalite, 4 –Bohutín Gabbrodiorite, 5 – faults.
Regional position: the largest satellite intrusion of the Central Bohemian Pluton. Rock types: 1. Bohutín Tonalite – medium-grained biotitehornblende tonalite – quartz diorite (main type). 2. Bohutín Trondhjemite – medium-grained biotite leuco-granodiorite – trondhjemite (apical and/or marginal facies of the main type).
References DUDEK, A. – FEDIUK, F. (1956): Bohutínský křemenný diorit. – Acta Univ. Carol., Geol. 2, 2, 149–169. HOLUB, F. V. (2007): Žilné roje v oblasti středočeského plutonického komplexu: látkové variace a vztahy k plutonitům. In: Breiter, K. Ed.: 3. sjezd Čes. geol. společ., Volary 19.–22. září 2007, p. 28. – Czech Geol. Soc. Prague. ŽÁK, K. – VLAŠÍMSKÝ, P. – SNEE, L.W. (1998): 40Ar/ 39Ar cooling ages of selected rocks of the Příbram ore region and the question of timing of sulphidic hydrothermal mineralization. – Zpr. geol. Výzk. v Roce 1997, 172–173. 28
Bohutín Gabbrodiorite Quartz-normal, sodic, weakly peraluminous, melanocratic, I-type gabbrodiorite n = 13 Median Min Max QU1 QU3 SiO2 53.05 51.90 59.45 52.74 54.07 TiO2 1.20 0.84 1.22 1.12 1.21 Al2O3 17.64 16.00 17.97 17.45 17.84 Fe2O3 1.33 0.81 1.64 1.29 1.37 FeO 6.97 5.00 7.33 6.72 7.18 MnO 0.19 0.15 0.21 0.19 0.20 MgO 4.54 3.29 4.84 4.31 4.56 CaO 7.94 6.08 8.24 7.58 7.99 Na2O 3.01 2.58 3.28 2.94 3.09 K2O 0.88 0.63 1.95 0.80 0.97 P2O5 0.19 0.17 0.23 0.18 0.20 Mg/(Mg + Fe) 0.49 0.47 0.50 0.49 0.49 K/(K + Na) 0.16 0.12 0.32 0.15 0.17 Nor.Or 6.04 4.38 12.91 5.50 6.66 Nor.Ab 31.40 26.73 33.84 30.71 32.32 Nor.An 44.43 32.71 46.08 42.02 44.84 Nor.Q 16.81 15.65 26.69 16.54 17.79 Na + K 115.82 108.57 130.14 114.30 120.95 *Si 83.36 77.32 136.40 83.07 88.86 K-(Na + Ca) -220.48 -231.26 -160.04 -224.30 -210.83 Fe + Mg + Ti 242.28 181.61 252.13 231.22 244.96 Al-(Na + K + 2Ca) -49.68 -65.53 -23.76 -51.72 -45.87 (Na + K)/Ca 0.82 0.76 1.15 0.80 0.92 A/CNK 0.88 0.85 0.94 0.88 0.89 Bohutín Trondhjemite Quartz-normal, sodic, peraluminous, mesocratic, I-type granodiorite n=9 Median Min Max QU1 SiO2 67.29 57.22 71.03 64.79 TiO2 0.46 0.33 0.91 0.39 Al2O3 15.44 15.12 17.26 15.33 Fe2O3 1.24 0.92 3.99 1.12 FeO 1.75 0.85 5.26 1.41 MnO 0.06 0.04 0.16 0.05 MgO 1.51 0.88 3.61 1.16 CaO 3.12 1.53 6.62 2.92 Na2O 3.25 2.66 3.72 3.19 K2O 2.75 1.91 3.22 2.57 P2O5 0.14 0.10 0.28 0.13 Mg/(Mg + Fe) 0.43 0.41 0.48 0.42 K/(K + Na) 0.36 0.32 0.37 0.34 Nor.Or 17.31 12.72 19.81 16.46 Nor.Ab 31.09 26.93 34.78 30.17 Nor.An 15.37 7.01 35.48 13.86 Nor.Q 31.52 21.78 32.95 29.29 Na + K 164.51 126.39 188.41 152.62 *Si 169.17 112.36 187.46 162.62 K-(Na + Ca) -98.43 -163.33 -78.96 -115.14 Fe + Mg + Ti 89.71 57.13 195.65 72.45
29
QU3 68.83 0.61 15.85 1.71 2.71 0.07 1.77 3.85 3.44 2.98 0.20 0.44 0.36 18.41 32.75 19.44 31.97 175.98 179.64 -96.63 113.52
Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
24.57 2.88 1.10
-23.54 1.07 0.95
55.36 6.91 1.25
4.41 2.38 1.02
31.31 3.38 1.13
Fig. 1. 10. Bohutín Stock ABQ and TAS diagrams: 1 - Bohutín Tonalite and Quartz diorite, 2 – Bohutín Trondhjemite, 3 – Bohutín Gabbrodiorite (enclaves).
Bohutín Tonalite Quartz-normal, sodic, metaluminous, melanocratic, I-type, quartz diorite n = 23 Median Min Max QU1 SiO2 57.95 54.62 59.94 56.86 TiO2 0.84 0.69 1.03 0.80 Al2O3 16.38 15.91 17.71 16.06 Fe2O3 1.09 0.33 2.28 0.61 FeO 5.64 4.98 6.70 5.40 MnO 0.15 0.12 0.19 0.14 MgO 3.80 3.20 4.50 3.56 CaO 6.43 5.41 7.40 6.13 Na2O 2.64 2.18 3.09 2.52 K2O 1.79 1.46 2.43 1.59 P2O5 0.16 0.14 0.22 0.15 Mg/(Mg + Fe) 0.50 0.45 0.54 0.47 K/(K + Na) 0.31 0.24 0.38 0.29 Nor.Or 11.93 9.89 16.32 10.93 Nor.Ab 27.18 22.91 31.80 25.97 Nor.An 35.41 29.40 40.80 33.92 Nor.Q 13.66 7.86 18.09 12.23 Na + K 123.39 103.89 144.53 117.77 *Si 122.97 92.83 141.81 114.57 K-(Na + Ca) -160.28 -200.67 -137.81 -171.02 Fe + Mg + Ti 197.42 176.09 229.60 187.10 Al-(Na + K + 2Ca) -26.36 -54.50 3.13 -36.02 (Na + K)/Ca 1.05 0.83 1.50 1.02 A/CNK 0.93 0.87 1.02 0.91 Trace elements (in ppm): Bohutín Tonalite – Sc 17, Pb 20, Sn 12, Cu 25, 21, Mo 6.4, V 127, Co 30.
30
QU3 59.10 0.87 16.75 1.28 5.92 0.16 3.98 6.75 2.74 1.94 0.17 0.52 0.32 12.98 28.38 36.97 14.77 128.68 125.03 -157.76 203.40 -23.68 1.15 0.94 Ag 0.1, Zn 194, Cr 189, Ni
1.02.2. PADRŤ STOCK Regional position: a satellite intrusion of the Central Bohemian Pluton. Rock types: Padrť Tonalite – hornblende-biotite tonalite – granodiorite. Size and shape (in erosion level): 12 km2, oval shape 4 km in diameter. Age and isotopic data: Lower Palaeozoic, similar to the Bohutín Stock. No isotopic data. Contact aureole: a broad thermal aureole represented by the contact hornfels and spotted schists. Geological environment: Neoproterozoic greywackes, siltstones and slates (the Kralupy Group. Zoning: concentric zonation indicated. Mineralization: not reported.
Fig. 1.11. Padrť Stock geological sketch-map (adapted after CGS geological map 1 : 25,000, sheet Příbram). 1 – Padrť Tonalite, 2 – water ponds, 3 – faults.
References FEDIUK, F. (2008): Granitoids and metamorphosed Proterozoic in the Padrť-ponds area, SW Brdy Highland. – Zpr. geol. Výzk. v Roce 2007, 21–22. VLAŠÍMSKÝ, P. (1971): Žilné horniny v příbramské rudní oblasti. – Sbor. geol. Věd, Geol. 21, 83–104. Padrť Tonalite Quartz-normal, sodic, metaluminous, melanocratic, I-type, quartz diorite 1754PA 1755PA SiO2 55.82 59.58 TiO2 1.02 0.73 Al2O3 17.73 16.94 Fe2O3 1.09 1.16 FeO 6.85 4.90 MnO 0.15 0.11 MgO 4.06 3.10 CaO 6.95 5.49 Li2O n.d. n.d. Na2O 2.65 3.13 K2O 1.75 2.29 P2O5 0.18 0.13 Mg/(Mg + Fe) 0.48 0.48 K/(K + Na) 0.30 0.32 Nor.Or 11.82 15.07 Nor.Ab 27.19 31.29 Nor.An 38.05 29.38 Nor.Q 9.10 13.81 Na + K 122.67 149.63 *Si 104.39 115.65 K-(Na + Ca) -172.29 -150.28 Fe + Mg + Ti 222.57 168.84 Al(Na + K + 2Ca) -22.36 -12.76 31
(Na + K)/Ca A/CNK
0.99 0.95
1.53 0.97
1.02.3. LEŠETICE STOCK Age and isotopic data: older then the Marginal Granite. No isotopic data. Contact aureole: a broad thermal aureole represented by the contact hornfels and spotted schists. Geological environment: Neoproterozoic greywackes and flysch sediments. Zoning: normal symmetric compositional concentric zonation, increase of acidity towards the margin (apical facies). Mineralization: economic vein-type uranium mineralization in the exocontact.
Regional position: a satellite intrusion at the exocontact of the Central Bohemian Pluton. Rock types: 1. Lešetice Gabbrodiorite – gabbrodiorite to gabbro (central part) 2. Lešetice Granodiorite – melanocratic quartz diorite to granodiorite (apical part). Size and shape: hidden subvertical body of the asymetric shape (330 × 120 m in map section), elongated in N-S direction.
Fig. 1.12. Lešetice and Padrť Stocks ABQ and TAS diagrams. 1 – Lešetice Gabbro, 2 – Lešetice Gabbrodiorite, 3 – Lešetice Granodiorite, 4 – Padrť Tonalite.
References SOKOL, A. – DOMEČKA, K. – BREITER, K. – JANOUŠEK, V. (2000): Underground gas storage near Příbram – a source of new information. – Bull. Czech Geol. Surv. 75, 2, 89–104. VLAŠÍMSKÝ, P. (1973): Pně basických a tonalitových hornin v exokontaktní zóně středočeského plutonu na Příbramsku. – Acta Univ. Carol., Geol. 3, 179–195. (English summary) VLAŠÍMSKÝ, P. (1975): Přehled intruzivního magmatismu v příbramské rudní oblasti. – Sbor. Horn. Příbram, Geol. nerost. Sur., 155–182. VLAŠÍMSKÝ, P. (1993): Některé poznatky z geologického výzkumu v důlních dílech v sz. části středočeského plutonu na Příbramsku. – Geol. Průzk. 11–12, 342–347. Lešetice Gabbrodiorite Large variation in composition. Quartz-normal, sodic, metaluminous, melanocratic, gabbrodiorite to quartz diorite n = 10 Median Min Max QU1 QU3 SiO2 55.82 49.33 63.26 53.39 60.01 TiO2 0.75 0.47 1.20 0.63 1.02 Al2O3 16.68 13.46 17.89 16.47 17.21 Fe2O3 1.09 0.25 1.85 0.41 1.60 FeO 5.43 3.52 8.46 4.90 6.88
32
MnO MgO CaO Na2O K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
0.15 3.10 5.65 2.65 2.07 0.15 0.46 0.30 13.72 27.45 32.21 9.10 128.50 104.39 -170.06 168.84 -22.36 1.13 0.95
0.11 1.41 3.49 1.93 1.30 0.06 0.35 0.25 8.94 20.80 17.84 0.00 91.82 70.82 -203.17 104.31 -160.59 0.55 0.62
0.27 11.34 9.34 4.27 2.94 0.20 0.69 0.39 18.90 41.02 53.48 21.08 183.86 138.62 -108.24 411.62 22.93 2.75 1.09
0.14 1.89 5.32 2.13 1.70 0.13 0.37 0.28 11.66 22.95 27.60 7.36 113.53 99.61 -172.29 133.68 -33.15 0.99 0.92
0.21 4.35 6.50 3.13 2.17 0.16 0.48 0.34 14.86 31.29 36.09 13.58 149.63 114.05 -156.50 241.46 -12.76 1.53 0.97
1.02.4. OBOŘIŠTĚ STOCK Regional position: the satellite intrusion at the exocontact of the Central Bohemian Pluton. Rock types: 1. Obořiště Gabbrodiorite – amphibole to pyroxene-amphibole gabbrodiorite to gabbro (central part). 2. Obořiště Quartz diorite – biotite-horblende quartz diorite (marginal facies). Size and shape: hidden subvertical body of the asymetric shape (400 × 250 m in map section), elongated in N-S direction. The size of the intrusion is increasing to the depth.
Age and isotopic data: Obořiště Quartz diorite 370 Ma (K-Ar amphibole), older then the Marginal Granite. Contact aureole: a broad thermal aureole represented by the contact hornfels and spotted schists. Geological environment: Neoproterozoic flysch sediments and the Marginal Granite. Zoning: symmetric compositional concentric zonation, increase of acidity towards the margin of the Obořiště Stock. Mineralization: economic uranium mineralization (uraninite-carbonate veins) in the exocontact.
References MALÍK, P. – VLAŠÍMSKÝ,P. (1970): Bazické těleso při severozápadním okraji středočeského plutonu u Libice na Příbramsku. – Věst. Ústř. Úst. geol. 45, 347–354. VLAŠÍMSKÝ, P. (1973): Pně basických a tonalitových hornin v exokontaktní zóně středočeského plutonu na Příbramsku. – Acta Univ. Carol., Geol. 3, 179–195. (English summary) VLAŠÍMSKÝ, P. (1975): Přehled intruzivního magmatismu v příbramské rudní oblasti. – Sbor. Horn. Příbram, Geol. nerost. Sur., 155–182. VLAŠÍMSKÝ, P. (1993): Některé poznatky z geologického výzkumu v důlních dílech v sz. části středočeského plutonu na Příbramsku. – Geol. Průzk. 11–12, 342–347. 1.02.5. BROD STOCK Size and shape: hidden subvertical body of the asymetric shape (750 × 250 m in map section), elongated in N-S direction. The body is known down to the depth of 1,150 m, segmented by the Dědov fault.
Regional position: a satellite intrusion at the northern exocontact of the Central Bohemian Pluton. Rock types: Brod Gabbrodiorite – fine-grained pyroxene-amphibole gabbrodiorite to gabbro.
33
Geological environment: Neoproterozoic flysch sediments. Zoning: uniform interior with no facial changes. Mineralization: uranium mineralization (uraninite-carbonate veins) at the exocontact.
Age and isotopic data: Variscan, no isotopic data. Contact aureole: a broad thermal aureole represented by the contact hornfels and spotted schists.
Reference VLAŠÍMSKÝ, P. (1973): Pně basických a tonalitových hornin v exokontaktní zóně středočeského plutonu na Příbramsku. – Acta Univ. Carol., Geol. 3, 179–195. (English summary) VLAŠÍMSKÝ, P. (1975): Přehled intruzivního magmatismu v příbramské rudní oblasti. – Sbor. Horn. Příbram, Geol. nerost. Sur., 155–182. VLAŠÍMSKÝ, P. (1993): Některé poznatky z geologického výzkumu v důlních dílech v sz. části středočeského plutonu na Příbramsku. – Geol. Průzk. 11–12, 342–347. 1.02.6. ROŽMITÁL STOCK (RS)
Fig. 1.13. Rožmitál Stock geological sketch-map (adapted after Zachariáš 2008).
Regional position: a satellite intrusion at the northern exocontact of the Central Bohemian Pluton in southern part of the Rožmitál tectonic block (the Teplá-Barrandian Unit). Rock types: Petráčkova hora Granodiorite (PHG) – medium to fine-grained hornblendebiotite granodiorite (porphyritic granite of the Bělčice type). RS consists of the central (younger) and the peripheral (older) magmatic facies. The central granodiorite is similar to the Blatná Granodiorite. Frequent subvertical dykes of two subgroups of granodiorite porphyry are older than PHG. Size and shape: three separate stock-like outcrops of an irregular shape – Petráčkova hora, Trepanda and Voltuš in the total size about 1.5 km2.
Age and isotopic data: Variscan, RS is geochemically similar to the Blatná Granodiorite (346.7 ± 1.6 Ma (SHRIMP U-Pb zircon). 344.4 ± 2.8 Ma (Re-Os molybdenite). Contact aureole: a thermal aureole represented by the contact hornfels. Geological environment: Lower Cambrian siliciclastic metasediments and Devonian to Ordovician shales/sandstones. Zoning: PHG consists of the central (younger) and peripheral (older) facies. Mineralization: porphyry-style gold mineralization (gold-bearing quartz veins) within the RS or in its closest vicinity (the Petráčkova hora deposit).
References DROZEN, J. – RÖHLICH, P. – STUDNIČNÁ, B. – STUDNIČNÝ, I. (1986): Vulkanogenní vývoj spodního kambria v rožmitálské kře a jeho zrudnění. – Věst. Ústř. Úst. geol. 61, 5, 265–272. 34
KETTNER, R. (1952): Geology of Třemšín unit and its surroundings. – Věst. Král. Čes. Společ. Nauk, T. mat-přírodověd. 14, 1–21. (Czech) ZACHARIÁŠ, J. (2008): Compositional trends in magmatic and hydrothermal silicates of the Petráčkova hora intrusive complex, Bohemian Massif – link between the magmatic processes and intrusion-related gold mineralization. – J. Geosci. 53, 105–117. ZACHARIÁŠ, J. – PERTOLD, Z. – PUDILOVÁ, M. – ŽÁK, K. – PERTOLDOVÁ, J. – STEIN, H. – MARKEY, R. (2001): Geology and genesis of Variscan porphyry-style gold mineralization Petráčkova hora deposit, Bohemian Massif, Czech Republic. – Mineralium Depos. 36, 517–541. 1.02.7.
PŘÍBRAM DYKE SWARM maximum length of 1.5 to 2 km as measured in the mines. Age and isotopic data: Palaeozoic age (Cambrian up to Variscan base metal mineralization). Lampropfyre dyke (minete frm Lešetice Uranium mine) 338 ± 0.5 Ma (Ar-Ar biotite). Geological environment: the Central Bohemian Pluton and its country rocks. Contact aureole: dykes of the tholeiite series are affected by the contact metamorphism of the Central Bohemian Pluton. Mineralization: base-metal mineralization spatially bound with dykes of the tholeiite series (e.g. the Příbram historical mining district).
Regional position: within the NW exocontact of the CBP and its interior. Clusters of dykes indicate deeply eroded paleo-volcanic centres. Rock types: (a) Dykes of the tholeiite series (diabase, metaporphyry, lamprophyre) older than the Central Bohemian Pluton. (b) Dykes of the tholeiite series (diabase, diabase porphyry, biotite lamprophyre) posterior to the Central Bohemian Pluton. (c) Dykes of the calc-alkaline series (aplite, pegmatite, dyke microgranite, basic–intermediate (meta) porphyry and hornblende lamprophyre) linked up with formation of the Central Bohemian Pluton. Size and shape (in erosion level): the maximum width of dykes varies between 30–35 m with
References HOLUB, F. V. (2007): Žilné roje v oblasti středočeského plutonického komplexu: látkové variace a vztahy k plutonitům. In: Breiter, K. Ed.: 3. sjezd Čes. geol. společ., Volary 19.–22. září 2007, p. 28. – Czech Geol. Soc. Prague. VLAŠÍMSKÝ, P. (1976): Development of dyke rocks in the Příbram area. – Acta Univ. Carol., Geol. 4, 377–401. ŽÁK, K. – VLAŠÍMSKÝ, P. – SNEE, L. W. (1998): Datování vybraných hornin příbramské rudní oblasti metodou 40Ar/39Ar a otázka stáří polymetalické hydrotermální mineralizace. – Zpr. geol. Výzk. v Roce 1997, 172–173. ŽEŽULKOVÁ, V. (1982): Dyke rocks in the southern part of the Central Bohemian Pluton. – Sbor. geol. Věd, Geol. 37, 71–102. (In Czech) ŽEŽULKOVÁ, V. – RUS, V. – TURNOVEC, I. (1977): Žilné horniny krásnohorsko-sedlčanské oblasti a jejich vztah k Sb-Au zrudnění. – Sbor. geol. Věd, Geol. 29, 33–60.
35
1.3.
IGNEOUS ROCKS IN THE ROOF OF THE CENTRAL BOHEMIAN PLUTON
1.03.1. JÍLOVÉ VOLCANIC BELT (JVB) affected by Variscan contact metamorphism associated with the Central Bohemian pluton. Rock types: 1. Jílové Alaskite – alkali-feldspar (albite) granite, (former trondhjemite), metatonalite (comagmatic with rhyolites). 2. Orthogneiss – leucocratic biotite to amphibole orthogneiss. 3. Jílové Metavolcanites – metabasalts, metaandesites, metatrachyandesites, metadacites, metarhyolites, and their tuffs and pyroclastics. Size and shape (in erosion level): JVB ~ 120 km2 and about ~ 65 km long belt in NE-SW direction through the borderland between the Proterozoic of the Bohemicum and the Central Bohemian Pluton. Subvolcanic intrusions are dyke-like stocks and lacoliths of the cedar-like shape. Age and isotopic data: Neoproterozoic (750– 570 Ma, comparable to the French Brioverian). No isotopic data. Geological environment: 1. Neoproterozoic Štěchovice Group (The Lečice Member is conformably overlain by the Štěchovice Group). 2. Lower Palaeozoic (Ordovician to Devonian?) metasediments. 3. Central Bohemian Pluton (mostly Sázava Tonalite, Blatná Granodiorite and the Marginal Granite. Contact aureole: Variscan contact metamorphism (the Central Bohemian Pluton). Mineralization: 1. stratiform mineralization connected with the volcanic members (pyrite and Cu, Zn sulphides, 2. vein and stockwork style of the Au-quartz, scheelite and Ag-polymetallic and barite mineralization.
Fig. 1.14.. Jílové Volcanic Belt geological sketchmap (adapted after Morávek et al. 1994). 1 – Jílové Alaskite (Albite Granite), Trondhjemite, Metatonalite, 2 – Jílové Orthogneiss, 3 – Jílové Metavolcanites, 4 – Variscan biotite granite, 5 – faults.
Geological position: the Jílové Volcanic Belt (member of the Kralupy-Zbraslav Group) is a regionally metamorphosed (greenschist to amphibolite facies) complex of volcanic and intrusive rocks of Neoproterozoic age. The volcanics include the metabasalts, metaboninites, metaandesites, metadacites and meta-Narhyolites. They are grouped into an earlier tholeiitic and later calc-alkaline series. The intrusive rocks are represented by granites, tonalites and gabbroid rocks. The Jílové zone is Jílové Alaskite
Quartz-rich, sodic, weakly peraluminous, mesocratic, S-type, I-series, granite n = 24 Median Min Max QU1 QU3 SiO2 74.76 72.35 78.17 73.61 75.80 TiO2 0.26 0.17 0.55 0.22 0.33 Al2O3 12.55 11.34 13.60 12.15 12.82 Fe2O3 1.22 0.00 2.91 0.66 1.70 FeO 1.31 0.00 2.16 0.84 1.44
36
MnO MgO CaO Na2O K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
0.04 0.62 1.29 5.60 0.36 0.04 0.33 0.04 2.19 52.35 6.31 34.25 188.96 206.81 -200.99 56.15 10.53 8.07 1.04
0.02 0.23 0.56 4.08 0.04 0.01 0.21 0.00 0.24 38.42 1.67 31.76 148.65 189.02 -236.05 17.36 -17.96 2.81 0.93
0.10 1.85 2.97 7.05 1.39 0.10 0.57 0.18 8.58 63.90 15.32 43.13 230.90 252.65 -128.57 85.55 35.48 21.09 1.18
0.03 0.45 0.79 5.36 0.30 0.02 0.26 0.03 1.85 49.54 3.66 33.59 180.12 201.66 -203.40 44.34 -4.22 5.95 0.99
Jílové Metatonalite Quartz-normal, sodic, metaluminous, melanocratic, S-type, M-series, granodiorite to quartz diorite 1877Jil 1878Jil 1879Jil 1880Jil SiO2 62.28 68.58 64.39 66.68 TiO2 0.30 0.44 0.70 0.36 Al2O3 13.77 14.21 14.59 13.40 Fe2O3 1.84 3.08 1.85 3.47 FeO 3.93 2.01 3.84 3.43 MnO 0.10 0.04 0.10 0.12 MgO 5.08 2.03 3.15 2.34 CaO 5.01 2.50 2.37 2.50 Na2O 3.81 5.30 5.94 6.55 K2O 0.26 0.45 0.80 0.10 P2O5 0.05 0.11 0.10 0.08 Mg/(Mg + Fe) 0.61 0.43 0.50 0.38 K/(K + Na) 0.04 0.05 0.08 0.01 Nor.Or 1.76 2.80 5.10 0.62 Nor.Ab 39.22 50.06 57.61 61.93 Nor.An 28.12 12.28 11.99 12.51 Nor.Q 19.64 27.24 15.22 17.74 Na + K 128.47 180.58 208.67 213.49 *Si 157.49 170.16 120.38 126.72 K-(Na + Ca) -206.76 -206.05 -216.96 -253.82 Fe + Mg + Ti 207.59 122.46 163.58 153.81 Al-(Na + K + 2Ca) -36.73 9.31 -6.67 -39.50 (Na + K)/Ca 1.44 4.05 4.94 4.79 A/CNK 0.88 1.04 0.98 0.87
37
0.05 0.88 1.62 5.97 0.61 0.07 0.39 0.06 3.68 54.98 8.30 35.98 201.06 215.72 -191.16 67.08 18.83 12.04 1.08
Fig. 1. 15. Jílové Volcanic Belt ABQ and TAS diagrams: 1 – Jílové Alaskite (trondhjemite), 2 – Jílové Metatonalite, 3 – Jílové Orthogneiss.
References FEDIUK, F. (2004): Alaskites and related rocks in the Proterozoic Jílové Belt of Central Bohemia. – Krystalinikum 30, 27–50. FEDIUK, F. – SCHULMANN, K. – HOLUB, F. V. (1990): Jílovské pásmo. Strukturně-petrografická studie. – MS Czech Geol. Survey – Geofond, Prague. FEDIUKOVÁ, E. – FEDIUK, F. (2000): Assemblages and chemical composition of amphiboles in rocks of the Jílové Belt, Central Bohemia. – J. Czech Geol. Soc. 45, 1–2, 119–128. HEJTMAN, B. (1966): A contribution to the petrography and petrochemistry of the Jílové zone (Central Bohemia. – Paleovolcanites of the Bohemian Massif, 37–49. Charles Univ. Prague. MORÁVEK, P. – FEDIUK, F. – RÖHLICH, P. – VÁŇA, T (1994): Jílovské pásmo. Geologická mapa 1 : 25 000 a vysvětlivky. – Gabriel Publ. House, Praha. RÖHLICH, P. (1972): Petrografické poměry v severní části jílovského pásma. – Sbor. geol. Věd, Geol. 22, 7–64. RÖHLICH, P. (1998): The Jílové Belt: A Neoproterozoic volcanic rift zone in Central Bohemia. – Acta Univ. Carol., Geol. 42, 3–4, 489–493. WALDHAUSROVÁ, J. (1984): Proterozoic volcanites and intrusive rocks of the Jílové Zone in Central Bohemia. – Krystalinikum 17, 77–97. 1.03.2. ONDŘEJOV METATONALITE Age and isotopic data: Proterozoic age according to the geological evidence. No isotopic data. Contact aureole: no thermal metamorphism of the Neoproterozoic metaconglomerate. Geological environment: transgressive position of the Neoproterozoic metaconglomerate on the metatonalite. Zoning: not reported. Mineralization: not reported.
Regional position: a member of the Proterozoic basement in the belt between the Ondřejov and Chocerady roof pendants of the CBP. Rock types: Ondřejov Metatonalite – sheared or foliated biotite metatonalite and hornblendebiotite metatonalite (two facies). Size and shape (in erosion level): outcrop of 400 × 200 m in size.
References VAJNER, V. (1963): Geologie metamorfovaného ostrova ondřejovského. – Sbor. geol. Věd, Geol. 1, 21–41. VRÁNA, S. – CHÁB, J.(1981): Metatonalite-metaconglomerate relation: the problem of the Upper Proterozoic sequence and its basement in the NE part of the Central Bohemian Pluton. – J. Geol. Sci., Geol. 35, 145–187.
38
1.03.3. MIROTICE ORTHOGNEISS Composite Batholith. A roof pendant of the Central Bohemian Pluton. Rock types: 1. Mirotice I Orthogneiss – biotite to biotitemuscovite orthogneiss (dominant facies). 2. Mirotice II Orthogneiss – amphibole-biotite orthogneiss (core facies). Size and shape (in erosion level): 55 km2, elliptic domal shape (23 × 8 km). Age and isotopic data: mid-late Devonian (380–365 Ma) age extrapolated from the Staré Sedlo Orthogneiss data. No isotopic data. Geological environment: the Blatná and Kozárovice Granodiorites, contact metamorphosed schists, hornfels, leptinite (the Mirovice Islet). Contact aureole: the Mirotice Gneiss is intruded by the Kozárovice and Blatná Granodiorites. Zoning: the reverse zonation (amphibole-biotite orthogneiss in the core of the domal structure). Mineralization: no information.
Fig. 1.16. Mirotice Orthogneiss geological sketchmap (adapted after CGS geological map 1 : 50,000). 1 – Kozárovice Granodiorite, 2 – Mirotice I Orthogneiss, 3 – Mirotice II Orthogneiss, 4 – faults.
Regional position: a member of the metagranitoids of the Central Bohemian References KOŠLER, J. – AFTALION, M. – BOWES, D. R. (1993): Mid-late Devonian plutonic activity in the Bohemian Massif: U-Pb zircon isotopic evidence from the Staré Sedlo and Mirotice gneiss complexes, Czech Republic. – Neu. Jb. Mineral., Mh. 9, 417–431. KOŠLER, J. – FARROW, C. M. (1994): Mid-late Devonian arc-type magmatism in the Bohemian Massif: Sr and Nd isotope and trace element evidence from the Staré Sedlo and Mirotice gneiss complexes, Czech Republic. – J. Czech Geol. Soc. 39, 56–58. 1.03.4. STARÉ SEDLO ORTHOGNEISS Regional position: a member of the metagranitoids of the Central Bohemian Composite Batholith. A roof pendant of the Central Bohemian Pluton. Rock types: 1. Staré Sedlo 1 Orthogneiss – biotite to biotitemuscovite orthogneiss. 2. Staré Sedlo 2 Orthogneiss – amphibolebiotite orthogneiss. Size and shape (in erosion level): 24 km2, elliptical shape (11 × 3.5 km). Age and isotopic data: Staré Sedlo Orthogneiss 338 ± 2.5 Ma, 335 ± 2 Ma, 331 ± 2.5 Ma ( Rb-Sr biotite, whole rock and biotite-plagioclase
respectively), 340, 330 Ma biotite cooling ages, 332.3 ± 3 Ma, 332.2 ± 3.1 Ma and 331.7 ± 3 Ma (Ar-Ar hornblende), 370 Ma (U-Pb zircon). The Staré Sedlo Orthogneiss is intruded by the Kozárovice Granodiorite. Geological enviroment: the Kozárovice (Těchnice) Granodiorite, Čertovo břemeno Melagranite. Contact aureole: frequent enclaves of the contact metamorphosed paragneisses. Zoning: no information. Mineralization: no information.
39
References KOŠLER, J. – AFTALION, M. – BOWES, D.R. (1993): Mid-late Devonian plutonic activity in the Bohemian Massif: U-Pb zircon isotopic evidence from the Staré Sedlo and Mirotice gneiss complexes, Czech Republic. – Neu. Jb. Mineral., Mh. 9, 417–431. KOŠLER, J. – FARROW, C. M. (1994): Mid-late Devonian arc-type magmatism in the Bohemian Massif: U-Pb, Sr and Nd isotope and trace element evidence from the Staré Sedlo and Mirotice gneiss complexes, Czech Republic. – J. Czech Geol. Soc. 39, 56–58. KOŠLER, J. – ROGERS, G. – RODDINK, J. C. – BOWES, D. R. (1995): Temporal Association of Ductile Deformation and Granitic Plutonism: Rb-Sr and 40Ar-39Ar Isotopic Evidence from Roof Pendants above the Central Bohemian Pluton, Czech Republic. – J. Geol. 103, 711–717.
Fig. 1.17. Staré Sedlo Orthogneiss geological sketch-map (adapted after CGS geological map 1 : 50,000). 1 – Kozárovice Granodiorite, 2 – Staré Sedlo I Orthogneiss, 3 – Staré Sedlo II Orthogneiss, 4 – faults.
(2.2.) ULTRAPOTASSIC PLUTONITES (D U R B A C H I T E S) –
see description in the Moldanubicum section 2.2.
The High to Ultrapotassic Suite (group) of the Central Bohemian Composite Batholith includes the Milevsko Massif and Tábor Massif. Rock types: Tábor Massif 1. Tábor Syenite – biotite- pyroxene syenite to quartz monzonite with marginal biotite facies. Milevsko Massif 1. Čertovo břemeno Melagranite – porphyritic biotite-amphibole melagranite, granodiorite and syenodiorite with central (light) and marginal (dark) facies. 2. Sedlčany Granodiorite – porphyritic amphibole-biotite granite, resembling the most acidic variety of the Čertovo břemeno Melagranite.
40
1.4.
BOR MASSIF 4. Bor II Granite – two-mica granite – mainly as dykes in the porphyritic granodiorite. Size and shape (in erosion level): scar-like (NS) intrusion, ~ 210 km2 (46 × 6 km), frequent aplite and microgranite dykes are usually 2–15 m thick and several hundreds of metres to first kilometres long. The Bor Massif is divided by faults into northern, central, and southern segments: Bor Redwitzite (~ 85 km2), Bor I Granite (~ 180 km2), Bor II Granite (~ 12 km2). The depth of magma solidification of the Bor Massif is about 5–7 km (Dudek et al. 1991). Age and isotopic data: Bor Redwitzite – 317.4 ± 0.9 Ma (K-Ar biotite), Bor I Granite – 332 Ma (U-Pb zircon), 337 ± 7 Ma (Rb-Sr WR), 317 ± 0.7 Ma (K-Ar biotite), Bor II Granite – 319.9 ± 1.3 Ma (K-Ar muscovite), 305 ± 1.3 Ma (K-Ar biotite). Geological environment: metabasites, muscovite-biotite paragneisses, amphibolites. Contact aureole: the Bor Massif is mainly outlined by faults within the area of the West Bohemian shear zone. Zoning: no sharp contacts between rock type 2, 3, and 4. Marginal facies of the two-mica granite (Bor II Granite) with plan-parallel texture and gradational relation to the central porphyritic granodiorite (Bor I Granite). Mineralization: hydrothermal U mineralization (uraninite-carbonate veins) within the endocontact and exocontact (the Vítkov uranium deposit). Heat production (μWm-3): Bor Granodiorite 4.6, Bor Redwitzite 2.2, Bor II Granite 4.4, and Bor I Granite 3.3, average of 15 analyses 1.9–6.1.
Fig. 1.18. Bor Massif geological sketch-map (adapted after Vejnar et al. 1969). 1 – Bor Redwitzite, 2 – Bor I Granite, 3 – Bor Granodiorite, 4 – Bor II Granite, 5 –faults.
Regional position: at the boundary between the Teplá- Barrandian Unit (Bohemian Zone) and the Moldanubian Zone (Bohemian Forest unit). Rock types: 1. Bor Redwitzite – quartz diorite. 2. Bor I Granite – porphyritic coarse-grained biotite granite-granodiorite. 3. Bor Granodiorite (~ 3 km2) – biotite granodiorite
References BREITER, K. – SOKOL, A. (1997): Chemistry of Bohemian granitoids: Geotectonic and metallogenic implications. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 75–96. DÖRR, W. – FIALA, J. – FRANKE, W. – HAACK, U. – PHILIPPE, S. – SCHASTOK, J. – SCHEUVENS, D. – VEJNAR, Z. – ZULAUF, G. (1998): Cambrian vs. Variscan tectonothermal evolution within the Teplá-Barrandian: evidence from U-Pb zircon ages of syn-tectonic plutons (Bohemian Massif, Czech Republic). – Acta Univ. Carol., Geol. 42, 2, 229–230. DÖRR, W. – ZULAUF, G. – SCHASTOK, J. – SCHEUVENS, D. – VEJNAR, Z. – WEMMER, K. – AHRENDT, H. (1996): The Teplá-Barrandian/Moldanubian Stratigraphic Boundary: Preliminary geochronological results from fault-related plutons. – Terra Nostra 12, 34–38. FIALA, V. (1980): Die hydrothermale Verwandlung des Bor Granits I. – Fol. Mus. Rer. Natur. Bohem. Occid., Geol. 16, 1–28. HEJTMAN, B. (1984): Petrografie vyvřelých hornin Českého masívu. Část I, Intruzivní vyvřelé horniny západních a severozápadních Čech. – 186 pp. Univ. Karl. Praha.
41
RENÉ, M.(1992): Uranium mineralization in the western part of the Bohemian Massif. In Kukal, Z. Ed.: Proc. 1st. Confer. on the Bohemian Massif, Sept. 2–Oct. 3, 1988, Prague, 226–228. – Czech Geol. Survey, Prague. RENÉ, M. (1994): Geology and petrography of the Bor Massif. In: Breiter, K. – Trzebski, R. Eds: Excursion Guide, Field Meeting: Granitoids of Western Bohemia and Oberpfalz. Ostrůvek 1994. 5 p. RENÉ, M.(1997): Petrogenesis of aplites of the Bor Pluton. – Acta montana, A11, 65–72. RENÉ, M. (2000): Petrogenesis of the Variscan granitoids in the western part of the Bohemian Massif. – Acta montana, A15, 67–83. SIEBEL, W. – BREITER, K. – WENT, I. – HÖHNDORF, A. – HENJES-KUNST, F. – RENÉ, M. (1999): Petrogenesis of contrasting granitoid plutons in Western Bohemia (Czech Republic). – Mineral. Petrol. 65, 207–235. SIEBEL, W. – TRZEBSKI, R. – STETTNER, G. – HECHT, L. – CASTEN, U. – HÖHNDORF, A. – MÜLLER, P. (1997): Granitoid magmatism of the NW Bohemian Massif revealed: gravity data, composition, age relations and phase concept. – Geol. Rdsch. 86, Suppl., 45–63. VEJNAR, Z. (1974): Aplikace sdružovací analýzy při multivariační chemické klasifikaci hornin středočeského plutonu. – Věst. Ústř. Úst. geol. 49, 1, 29–34. VEJNAR, Z. – NEUŽILOVÁ, M. – SYKA, J. (1969): Geology and petrography of the Bor massif. – Věst. Ústř. Úst. geol. 44, 247–256. Bor Redwitzite Quartz-poor, sodic, metalumious, melanocratic, I-type, I- and M- series, monzodiorite to monzonite n = 12 Median Min Max QU1 QU3 SiO2 55.29 52.04 58.25 53.29 56.4 TiO2 1.12 0.62 1.25 0.95 1.15 Al2O3 17.54 15.46 22.35 16.57 17.85 Fe2O3 .81 0.33 2.5 0.36 1.27 FeO 5.71 4.01 9.56 4.88 6.32 MnO 0.1 0.05 0.25 0.07 0.11 MgO 3.59 0.12 6.67 2.4 4.9 CaO 4.76 1.29 8.89 4.25 6.21 Na2O 4.17 1.66 4.71 2.98 4.4 K2O 3.75 2.55 7.75 3.45 3.96 P2O5 0.37 0.11 0.62 0.25 0.52 Mg/(Mg + Fe) 0.47 0.03 0.59 0.35 0.57 K/(K + Na) 0.36 0.34 0.56 0.36 0.46 Nor.Or 23.79 16.75 43.87 23.07 25.3 Nor.Ab 38.12 17.95 43.28 30.23 42.23 Nor.An 21.82 6.77 36.91 19.49 31.22 Nor.Q 0.00 0.00 16.96 0.00 2.42 Na + K 213.23 125.23 316.86 156.97 223.41 *Si 40.1 -30.27 148.07 27.76 64.72 K-(Na + Ca) -135.85 -219.91 -5.74 -155.16 -119.37 Fe + Mg + Ti 200.88 99.6 289.62 149.3 225.74 Al-(Na + K + 2Ca) -61.75 -196.19 267.31 -84.86 -33.82 (Na + K)/Ca 2.16 1.24 7.05 1.4 2.77 A/CNK 0.87 0.64 2.59 0.81 0.93
42
Fig. 1.19. Bor Massif ABQ and TAS diagrams. 1 – Bor Redwitzite, 2 – Bor I Granite, 3 – Bor II Granite.
Bor I Granite Quartz-normal, sodic/potassic, weakly peraluminous, mesocratic, S-type, I- and M-series, granite to granodiorite 46BORb 32BORb 33BORb 54BORb 52BORb 29BORb SiO2 67.08 67.95 70.33 69.04 71.83 71.07 TiO2 0.52 0.46 0.30 0.12 0.15 0.32 Al2O3 14.84 15.26 14.09 15.82 14.41 14.24 Fe2O3 1.28 1.06 0.54 0.22 0.85 0.38 FeO 3.21 2.67 2.29 1.59 1.13 2.20 MnO 0.07 0.04 0.03 0.02 0.03 0.04 MgO 0.79 0.04 0.40 0.13 0.19 0.81 CaO 1.92 2.60 1.30 1.03 0.66 1.54 Na2O 3.30 3.13 3.50 3.22 3.89 2.72 K2O 4.98 4.87 5.91 7.28 4.86 5.50 P2O5 0.26 0.29 0.28 0.31 0.35 0.19 Mg/(Mg + Fe) 0.24 0.02 0.20 0.11 0.15 0.36 K/(K + Na) 0.50 0.51 0.53 0.60 0.45 0.57 Nor.Or 31.19 30.11 36.26 44.21 29.59 34.10 Nor.Ab 31.41 29.41 32.63 29.72 36.00 25.63 Nor.An 8.28 11.50 4.78 3.15 1.00 6.70 Nor.Q 22.00 24.02 22.37 18.81 28.03 27.94 Na + K 212.23 204.40 238.43 258.48 228.72 204.55 *Si 137.09 141.66 136.30 112.30 161.93 171.42 K-(Na + Ca) -34.99 43.97 -10.64 32.30 -34.11 1.54 Fe + Mg + Ti 86.86 57.22 52.34 29.63 32.98 59.51 Al-(Na + K + 2Ca) 10.72 2.54 -8.09 15.46 30.73 20.17 (Na + K)/Ca 6.20 4.41 10.29 14.07 19.43 7.45 A/CNK 1.06 1.03 0.99 1.08 1.16 1.10 Trace elements (in ppm): Bor I Granite – Ba 1270, Cs 6, Ga 18, Hf 7, Li 41, Nb 9, Pb 44, Rb 166, Sc 7.8, Sr 233, Th 36, U 6, Y 167, Zn 60, Zr 204, La 56, Ce 96, Sm 6.4, Eu 1.3, Yb 1.8, Lu 0.3 (Breiter and Sokol 1997).
43
Bor II Granite Quartz-normal, sodic, moderately peraluminous, leucocratic, S-type, I- and M-series, granite n=7 Median Min Max QU1 QU3 SiO2 73.73 72.85 74.67 73.12 74.18 TiO2 0.13 0.04 0.21 0.08 0.14 Al2O3 13.84 13.45 14.47 13.47 14.33 Fe2O3 0.68 0.13 0.99 0.29 0.88 FeO 0.79 0.55 1.43 0.57 1.00 MnO 0.03 0.02 0.05 0.02 0.03 MgO 0.20 0.02 0.70 0.18 0.24 CaO 0.77 0.33 1.06 0.42 0.80 Na2O 3.76 2.86 4.06 3.50 3.89 K2O 4.95 4.15 5.56 4.65 5.06 P2O5 0.20 0.10 0.33 0.16 0.21 Mg/(Mg + Fe) 0.29 0.02 0.36 0.16 0.32 K/(K + Na) 0.46 0.42 0.56 0.44 0.47 Nor.Or 29.81 25.09 34.03 28.12 30.50 Nor.Ab 34.44 26.61 37.16 32.24 35.76 Nor.An 2.64 -0.48 0.77 0.78 2.65 Nor.Q 30.24 27.28 34.80 28.18 30.54 Na + K 224.26 208.80 242.05 210.34 228.77 *Si 179.82 158.89 198.81 167.21 183.32 K-(Na + Ca) -27.45 -41.06 -46.86 -39.64 -26.93 Fe + Mg + Ti 24.99 15.03 50.19 21.56 29.54 Al-(Na + K + 2Ca) 17.84 11.34 63.59 14.76 25.17 (Na + K)/Ca 16.88 11.13 35.48 13.68 17.20 A/CNK 1.10 1.06 1.33 1.08 1.12 Trace elements (in ppm): Bor II Granite – Ba 263, Ce 34, Cr 16, Cs 14, Ga 18, La 24, Nb 11, Pb 39, Rb 206, Sc 11, U 9, Y 10, Zn 42, Zr 49 (Siebel et al. 1997). 1.5.
MARIÁNSKÉ LÁZNĚ STOCK (MLS) Regional position: Intrusion near the SW boundary of the Teplá-Barrandian Unit in contact with the Marianské Lázně Fault. Rock types: Mariánské Lázně Granite – porphyritic coarsegrained biotite monzogranite (similar to OIC in the Saxothuringicum), Fine-grained muscovite-biotite granite, Fine-grained biotite-granite-granodiorite, Hybrid biotite-granodiorite, Mariánské Lázně Redwitzite – fine-grained biotite-hornblende diorite to tonalite and hybrid biotite granodiorite. Three main petrographic varieties have been described: 1. weakly porphyritic coarse-grained monzogabbro to monzodiorite, 2. fine- to medium-grained amphibolebiotite monzodiorite to granodiorite, 3. redwitzite dykes.
Fig. 1.20. Mariánské Lázně Stock geological sketchmap (adapted after René 2000). 1 – Mariánské Lázně Granite, 2 – fine-grained mu-bi-granite, 3 – finegrained bi-granite-granodiorite, 4 – hybrid bigranodiorite (redwitzite), 5 – Mariánské Lázně Redwitzite, 6 – faults.
44
Geological environment: amphibolites (the Kladská Unit), mica-schists to sillimanite-biotite paragneiss. Contact aureole: locally hornfels, especially at the S and SW limits of the body. Mineralization: no ore mineral indications.
Size and shape (in erosion level): oval intrusion, 5 km2 (2 × 3.5 km) controlled by the West Bohemian shear zone (the Mariánské Lázně Fault). Younger brittle-ductile tectonic movements affected MLS. Age and isotopic data: similar to the Bor Massif according to geologic criteria. Between 322.4 ± 2.9 and 324.8 ± 3.0 Ma (Pb-Pb zircon).
Fig. 1.21. Mariánské Lázně Stock ABQ and TAS diagrams. 1 – Mariánské Lázně Granite, 2 – hybrid granodiorite, 3 – Mariánské Lázně Redwitzite.
References HEJTMAN, B. (1984): Petrografie vyvřelých hornin Českého masívu. Část I, Intruzivní vyvřelé horniny západních a severozápadních Čech. – 186 pp. Univ. Karl. Praha. JANČUŠKOVÁ, J. (1988): Mariánské Lázně granite, their petrology and structural position. Unpubl. MSc. thesis, 99 pp. – Fac. Sci. Charles Univ., Prague. (In Czech) JELÍNEK, E. – SIEBEL, W. – KACHLÍK, V. – ŠTEMPROK, M. – HOLUB, F. V. – KOVAŘÍKOVÁ, P. (2004): Petrologie a geochemie mafických intruzí v západokrušnohorském granitovém plutonu v okolí Abertam a Mariánských Lázní. – Zpr. geol. Výzk. v Roce 2003, 109–112. KACHLÍK, V. (1993): The evidence for Late Variscan nappe thrusting of the Mariánské Lázně complex over the Saxothuringian terrane (West Bohemia). – J. Czech Geol. Soc. 38, 43–54. PIVEC, E. – NOVÁK, J. K. (1996): The Mariánské Lázně granite: petrology and geochemistry, western Bohemia. – J. Czech Geol. Soc. 41, 15–22. RENÉ, M. (2000): Petrogenesis of the Variscan granites in the western part of the Bohemian Massif. – Acta montana, A15 (116), 67–83. Mariánské Lázně Granite and Redwitzite Mariánské Lázně Granite – large range of variation in composition. Quartz-normal, sodic-potassic, weakly peraluminous, mesocratic, S-type (low), granite to granodiorite Mariánské Lázně Redwitzite – Quartz-poor, sodic, metaluminous, mesocratic, S-I type, monzonite to monzogabbrodiorite bimoMar 1monzgr 2monzgr 5hybrid tonalMa monzogranite granodiorite tonalite SiO2 70.13 69.27 67.53 62.53 58.47 TiO2 0.48 0.50 0.63 0.92 1.37 Al2O3 14.64 15.77 16.27 17.46 17.29 Fe2O3 0.69 1.23 0.67 0.89 1.67
45
FeO MnO MgO CaO Na2O K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK 1.6.
2.06 0.06 1.14 1.75 3.88 4.97 0.20 0.43 0.46 30.23 35.87 7.57 21.51 230.62 137.66 -50.90 71.59 -5.61 7.39 1.00
1.67 0.05 1.22 1.73 3.06 5.27 0.20 0.43 0.53 32.12 28.33 7.48 24.57 210.73 152.97 -17.70 75.40 37.12 6.81 1.16
2.12 0.08 0.91 2.16 3.78 5.59 0.24 0.36 0.49 33.85 34.79 9.36 16.78 240.88 108.04 -41.88 68.43 1.49 6.24 1.02
5.89 0.14 2.62 3.64 3.78 1.90 0.23 0.41 0.25 12.17 36.88 17.98 18.32 162.22 141.39 -146.67 169.80 50.91 2.50 1.20
4.55 0.12 2.86 5.29 3.47 4.43 0.48 0.45 0.46 27.93 33.25 24.62 4.74 206.26 55.18 -112.33 172.33 -55.51 2.19 0.88
KLADRUBY COMPOSITE MASSIF (KCM) 3. Marginal (Kladruby) Granite (~ 3 km2) – muscovite-biotite granodiorite to monzogranite. 4. Benešovice Granite (~ 2 km2) – (albitized) biotite-muscovite monzogranite. 5. Porphyry Dykes – quartz porphyry dykes at the northern exocontact. Size and shape (in erosion level): elongated (in N-S direction), elliptical in shape (wedge-like shape) with gentle dipping to the north under Proterozoic hornfelses – 120 km2 (24 × 8 km). The depth of magma solidification of the Kladruby Massif is about 5–7 km (Dudek et al. 1991). Age and isotopic data: 375 (Rb-Sr mineral – whole rock isochron), 360 Ma (K-Ar hornblende), 330 Ma (K-Ar biotite), 464 ± 36 Ma (Rb-Sr whole rock), 315-337 Ma (U-Pb zircon). Geological environment: Neoproterozoic schists and phyllites, mica schists, also metavolcanites in N-NW. The Mariánské Lázně fault separates the Kladruby Massif in the E from the Sedmihoří stock in the W. Contact aureole: wide (up to 1 km), pronounced, two-mica hornfelses with cordierite and sillimanite represent high-grade products. The contact aureole of the assymetric shape is superimposed on zones of regional metamorphism and merges together with the contact aureole of the Poběžovice Massif. The Sedmihoří Stock is cutting staurolite-garnet and biotite isograds.
Fig. 1.22. Kladruby Composite Massif hierarchical scheme according to intrusive bodies and rock types.
1.06.1. KLADRUBY MASSIF Regional position: intrusion into the Precambrian Teplá-Barrandian Unit (Bohemicum), chlorite and biotite zones (KCM) and biotite to garnet zones (the Sedmihoří Stock) WSW of Plzeň. Rock types: 1. Prostiboř Granodiorite (~ 100 km2) – porphyritic biotite granodiorite to monzogranite (main type). 2. Milevo Granodiorite (~ 14 km2) – biotite granodiorite (central type).
46
Zoning: nested massif with reverse concentric zonation. The structural and compositional reverse zoning (the Milevo Granodiorite → the Prostiboř Granodiorite → Marginal (Kladruby) Granite → Benešovice Granite and Porphyry Dyke Swarm at the northern exocontact). Mineralization: spatial relationship of Pb-ZnAg veins in exocontact (Stříbro historical mining district), uranium vein-type mineralization. Heat Production (μWm-3): 2.1 (average of 22 analyses). Fig. 1.23. Kladruby Composite Massif geological sketch-map (adapted after Neužilová and Vejnar 1969). Sedmihoří Stock: 1 – leuco-monzogranite (inner zone), 2 – bi-mu-monzogranite (middle zone), 3 – porphyritic bi-monzogranite (marginal zone), Kladruby Massif: 4 – Prostiboř Granodiorite, 5 – Milevo Granodiorite, 6 – Benešovice Granite, 7 – faults.
Fig. 1.24. Kladruby Composite Massif ABQ and TAS diagrams. 1 – Kladruby Massif granitoids, 2 – Sedmihoří Stock granites.
47
References ČEPEK, L. (1936): Geologie okolí Kladrub u Stříbra. – Věst. St. geol. Úst. Čs. Republ. 12, 183–201. DÖRR, W. – ZULAUF, G – FIALA, J. – FRANKE, W. – HAACK, U. – PHILIPPE, S. – SCHASTOK, J. – SCHEUVENS, D. – VEJNAR, Z. – WULF, S. (1998): Cambrian transtensional and Variscan normal fault related plutons: Tectonothermal evolution within the Teplá-Barrandian (Bohemian Massif, Czech Republic). – Terra Nostra 98, 2, 42–46. DUDEK, A. – FROLÍKOVÁ, I. – NEKOVAŘÍK, Č. (1991): The depth of intrusion of Hercynian granitoid plutons in the Bohemian Massif. – Acta Univ. Carol. Geol., Kettner Vol. 3–4, 249–256. (In Czech) FEDIUK, F. – RENÉ, M. (1996): Příspěvek ke koncentrické zonálnosti kladrubského masívu. – Zpr. geol. Výzk. v Roce 1995, 66–68. GNOJEK, I. – ŠŤOVÍČKOVÁ, N. (1974): The ring structure of the Sedmihoří granite stock. – Sbor. geol. Věd, užitá Geofyz. 12, 113–130. HEJTMAN, B. (1984): Petrografie vyvřelých hornin Českého masívu. Část I, Intruzivní vyvřelé horniny západních a severozápadních Čech. – 186 pp. Univ. Karl. Praha. NEUŽILOVÁ, M. (1968): Accesory heavy minerals of some West-Bohemian granitoid rocks. – Věst. Ústř. Úst. geol. 43, 183–188. NEUŽILOVÁ, M. (1982): Alkalické živce hornin Kladrubského masívu. – Sbor. geol. Věd, Geol. 36, 9–25. NEUŽILOVÁ, M. – VEJNAR, Z. (1966): Geologie a petrografie hornin Kladrubského masívu. – Sbor. geol. Věd, Geol. 11, 7–31. ŠMEJKAL, V. – VEJNAR, Z. (1965): Zur Frage des prävariszischen Alters einiger Granitoide des Böhmischen Massivs. In: Geochemie v Československu, Sbor. prací 1. geochem. konfer. v Ostravě, 123– 128. – Ostrava. VOVES, J. – BENDL, J. – JELÍNEK, E. – MOHAMED WAHBY ALI BIK (1993): Granitoids of the Kladruby pluton and Sedmihoří stock (Western Bohemia): Geochemistry and Geochronology. – Acta Univ. Carol., Geol. 41, 2, 81–89. Kladruby granitoids (1-4) Quartz-rich, sodic, peraluminous, leucocratic, S/I-type, M-series, granite 17Kladr 19Kladr 20Kladr 21Kladr SiO2 75.12 72.42 72.07 75.53 TiO2 0.20 0.22 0.25 0.08 Al2O3 12.87 13.80 13.87 13.03 Fe2O3 0.97 0.95 0.98 1.48 FeO 0.93 1.76 2.01 0.80 MnO 0.04 0.04 0.04 0.03 MgO 0.38 0.53 0.66 0.13 CaO 0.86 2.03 2.59 0.37 Na2O 3.42 3.57 3.48 3.41 K2O 4.40 2.94 2.54 4.22 P2O5 0.10 0.12 0.09 0.11 Mg/(Mg + Fe) 0.27 0.26 0.29 0.10 K/(K + Na) 0.46 0.35 0.32 0.45 Nor.Or 26.75 18.20 15.77 25.65 Nor.Ab 31.60 33.58 32.83 31.50 Nor.An 3.71 9.72 12.88 1.14 Nor.Q 34.56 33.59 33.74 37.04 Na + K 203.78 177.63 166.23 199.64 *Si 202.74 200.01 202.81 214.99 K-(Na + Ca) -32.28 -88.98 -104.55 -27.04 Fe + Mg + Ti 37.04 52.32 59.78 33.91 Al-(Na + K + 2Ca) 18.28 20.98 13.78 43.05 (Na + K)/Ca 13.29 4.91 3.60 30.26 A/CNK 1.09 1.10 1.06 1.22 48
22Kladr 74.24 0.16 13.27 0.36 1.65 0.05 0.38 1.85 4.03 2.63 0.05 0.25 0.30 16.17 37.65 9.21 33.90 185.89 203.99 -107.19 38.92 8.73 5.63 1.04
Trace elements (in ppm): Prostiboř Granodiorite – Sn 7, Rb 116, Mo 14, Ba 629, Zr 108, V 19. Milevo Granodiorite – Sn 1, Rb 81, Ba 791, Zr 187, V 25, Marginal Granite – Sn 11, Rb 130. Benešovice Granite – Sn 12, Rb 198, Mo 4, Ba 164, Zr 65, V 9 (Fediuk and René 1996). 1.06.2. SEDMIHOŘÍ STOCK Age and isotopic data: 290 Ma (K-Ar muscovite), 305 Ma (K-Ar whole rock), 313 ± 50 Ma (Rb-Sr whole rock). Geological environment: Neoproterozoic micaschists, the Kladruby Granodiorite, gabbrodiorite. Contact aureole: weak, not well defined. Zoning: distinct structural and compositional normal concentric zoning [tourmaline granite (SG III) is in centre, internal zone consists of the muscovite-biotite granite (SG II) and marginal biotite granite (SG I). Mineralization: indicies of fluorite, tin and tungsten mineralization. Heat production (μWm-3): Sedmihoří Granites 5.0.
Regional position: a parasitic intrusion of the Kladruby Composite Massif within the Domažlice crystalline unit (the Teplá-Barrandian unit). Rock types: 1. Sedmihoří I Granite (SG I) – porphyritic biotite monzogranite – marginal zone ( ~ 12 km2). 2. Sedmihoří II Granite (SG II) – biotitemuscovite monzogranite – middle zone (~ 4 km2). 3. Sedmihoří III Granite (SG III) – leucomonzogranite (with tourmaline and muscovite) – inner zone (~ 0.5 km2). Size and shape (in erosion level): circular body of about ~ 16 km2 area (in diameter of 4 km). The depth of magma solidification of the Sedmihoří Stock is about 2.5 km (Dudek et al. 1991). Sedmihoří Granite (1-3)
Quartz-rich, sodic/potassic, peraluminous (moderately), leucocratic, S-type, Mseries, monzogranite 24SEDMI 25SEDMI 26SEDMI 27SEDMI 28SEDMI SiO2 73.24 72.16 73.21 72.52 73.57 TiO2 0.12 0.20 0.09 0.17 0.20 Al2O3 14.15 13.78 14.29 13.88 13.50 Fe2O3 0.89 1.30 0.97 0.82 0.73 FeO 0.86 1.29 0.65 1.29 1.29 MnO 0.02 0.03 0.03 0.04 0.02 MgO 0.33 0.64 0.33 0.23 0.33 CaO 0.92 1.14 0.37 1.24 0.92 Na2O 3.73 3.80 3.72 3.42 3.06 K2O 4.62 5.49 4.10 5.11 5.00 P2O5 0.20 0.06 0.34 0.06 0.09 Mg/(Mg + Fe) 0.26 0.31 0.27 0.17 0.23 K/(K + Na) 0.45 0.49 0.42 0.50 0.52 Nor.Or 27.96 33.09 25.07 31.15 30.67 Nor.Ab 34.31 34.81 34.57 31.69 28.52 Nor.An 3.33 5.37 -0.42 5.94 4.12 Nor.Q 30.33 24.40 34.09 28.26 32.46 Na + K 218.46 239.19 207.10 218.86 204.91 *Si 176.92 147.59 194.66 168.73 192.31 K-(Na + Ca) -38.68 -26.39 -39.59 -23.98 -8.99 Fe + Mg + Ti 32.82 52.64 30.52 36.08 37.81 Al-(Na + K + 2Ca) 26.61 -9.24 60.33 9.49 27.39 (Na + K)/Ca 13.32 11.77 31.39 9.90 12.49 A/CNK 0.13 0.97 1.32 1.04 1.12
49
Trace elements (in ppm): Sedmihoří I Granite – Ba 260, Cs 12, Ga 28, Hf 11, Li 65, Nb 18, Pb 75, Rb 250, Sc 7.9, Sr 50, Th 57, U 5.2, Y 45, Zn 50, Zr 265, La 118, Ce 215, Sm 15, Eu 0.6, Yb 4.3, Lu 0.6 (Breiter and Sokol 1997). Sedmihoří II Granite – Ba 160, Cs 33, Ga 27, Hf 2.9, Li 200, Nb 13, Pb 35, Rb 380, Sc 73.6, Sr 37, Th 10, U 7.5, Y 35, Zn 38, Zr 45, La 15, Ce 31, Sm 3.4, Eu 0.26, Yb 0.15, Lu 0.2 (Breiter and Sokol 1997). Sedmihoří III Granite – Ba 25, Cs 50, Ga 28, Hf 1.7, Li 376, Nb 20, Pb 15, Rb 604, Sc 3.3, Sr 19, Th 4.1, U 1.5, Y 30, Zn 26, Zr 26, La 6, Ce 11, Sm 1.5, Eu 0.11, Yb 1.3, Lu 0.1 (Breiter and Sokol 1997). References BREITER, K. – SOKOL, A. (1997): Chemistry of Bohemian granitoids: Geotectonic and metallogenic implications. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 75–96. DUDEK, A. (1957): The geomorphologic features of the Sedmihoří Stock. – Čas. Čs. Společ. zeměp. 62, 206–209. (English summary) FEDIUK, F. – RENÉ, M. (1996): Contribution to the concentric zonality of the Kladruby Massif (WBohemia). – Zpr. geol. Výzk. v Roce 1995, 66–68. GNOJEK, I. – ŠŤOVÍČKOVÁ, N. (1974): The ring structure of the Sedmihoří granite stock. – Sbor. geol. Věd, užitá Geofyz. 12, 113–130. GNOJEK, I. – ŠŤOVÍČKOVÁ, N. (1975): Ringová struktura sedmihorského pně. Průvodce do obl. západočes. ringových intruzí. – 20 pp. Obor. skup. vulkanol. Čs. společ. mineral. geol. Praha. NEUŽILOVÁ, M. – VEJNAR, Z. (1966): Geologie a petrografie hornin Kladrubského masivu. – Sbor. geol. Věd, Geol. 11, 7–31. VEJNAR, Z. (1967): Petrogenetická korelace a metalogeneze některých západočeských granitoidních těles. – Věst. Ústř. Úst. geol. 41, 99–104. VOVES, J. – BENDL, J. – JELÍNEK, E. – MOHAMED WAHBY ALI BIK (1993): Granitoids of the Kladruby pluton and Sedmihoří stock (Western Bohemia): Geochemistry and Geochronology. – Acta Univ. Carol., Geol., 41, 2, 81–89. 1.7.
ŠTĚNOVICE STOCK Size and shape (in erosion level): ~ 27 km2 (5.5 × 5 km). According to gravity data, the NE-SW elongated stock is steep and preserves its form to a great depth. Age and isotopic data: Štěnovice Granodiorite 385 Ma (K-Ar hornblende), 358, 332 ± 12, 337 Ma (K-Ar biotite). Geological environment: Neoproterozoic Kralupy-Zbraslav Group – anchimetamorphosed phyllitic schists, spilites and silicites (the Blovice formation). Contact aureole: narrow, weakly developed, amphibole hornfels. Zoning: normal compositional zonation, more acid granodiorite in core (plagioclase/K-feldspar ratio 3.5) and more mafic granodiorite in the periphery (plagioclase/K-feldspar ratio 8.0). Basicity increases toward the margin. Mineralization: vein-type hydrothermal mineralization of Mo-Pb-Zn-Sb-Ag within the Štěnovice Granodiorite. Heat Production (μWm-3): Štěnovice Granodiorite 3.27.
Fig. 1.25. Štěnovice Stock geological sketch-map (adapted after Klomínský 1965). 1 – Štěnovice II Granodiorite: 2 – biotite granodiorite (transitional facies), 3 – Štěnovice I Granodiorite, 4 – faults.
Regional setting: isolated intrusion in the Barrandian-Železné hory Mts. (Bohemicum) Zone. Rock type: 1. Štěnovice II Granodiorite – biotite-amphibole and biotite granodiorite (central facies). 2. Štěnovice I Granodiorite – medium-grained hornblende-biotite granodiorite (marginal facies).
50
Fig. 1.26. Štěnovice Stock ABQ and TAS diagrams. Štěnovice Granodiorite.
References BARTOŠEK, J. – CHLUPÁČOVÁ, M. – ŠŤOVÍČKOVÁ, N. (1969): Petrogenesis and structural position of small granitoid intrusion in aspect of petrophysical data. – Sbor. geol. Věd, užitá Geofyz. 8, 37–68. BREITER, K. – SOKOL, A. (1997): Chemistry of Bohemian granitoids: Geotectonic and metallogenic implications. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 75–96. GNOJEK, I. – DĚDÁČEK, K. (1977): A technical report on the airborne geophysical investigation of the Štěnovice stock area in 1977. – MS Czech Geol. Survey – Geofond. Prague. (In Czech) HEJTMAN, B. (1984): Petrografie vyvřelých hornin Českého masívu. Část I, Intruzivní vyvřelé horniny západních a severozápadních Čech. – 186 pp. Univ. Karl. Praha. KLOMÍNSKÝ, J. (1965): The Štěnovice granodiorite massif. (English summary.) – Sbor. geol. Věd, Geol. 8, 75–99. Štěnovice Granodiorite Quartz-normal, sodic, metaluminous, mesocratic, I-type, M-series, granodiorite 5Steno 6Steno 7Steno 8Steno 9Steno SiO2 68.72 69.21 67.36 69.74 67.02 TiO2 0.40 0.38 0.17 0.22 0.45 Al2O3 15.79 15.47 16.75 15.80 16.22 Fe2O3 0.49 0.34 1.29 0.56 1.58 FeO 1.35 1.46 1.02 1.26 2.03 MnO 0.03 0.04 0.04 0.03 0.06 MgO 0.65 0.56 1.05 0.77 1.43 CaO 3.24 3.01 2.84 2.45 3.35 Na2O 4.95 5.03 5.44 4.80 4.97 K2O 2.64 2.74 3.00 2.76 2.22 P2O5 0.14 0.13 0.16 0.12 0.21 Mg/(Mg + Fe) 0.39 0.36 0.46 0.43 0.42 K/(K + Na) 0.26 0.26 0.27 0.27 0.23 Nor.Or 16.03 16.64 18.00 16.78 13.50 Nor.Ab 45.68 46.44 49.62 44.35 45.95 Nor.An 15.57 14.48 13.24 11.70 15.69 Nor.Q 20.60 20.68 16.03 23.35 19.16 Na + K 215.79 220.49 239.24 213.49 207.52 *Si 126.94 127.69 100.69 144.28 124.47 K-(Na + Ca) -161.46 -157.81 -162.49 -139.98 -172.98 Fe + Mg + Ti 46.08 43.25 58.55 46.43 89.19
51
10Steno 69.35 0.84 15.60 1.00 1.22 0.04 1.20 3.08 4.69 2.09 0.16 0.50 0.23 12.67 43.23 14.60 24.85 195.72 152.40 -161.89 69.82
Al-(Na + K + 2Ca) -21.26 -24.04 -11.59 9.41 -8.46 0.79 (Na + K)/Ca 3.73 4.11 4.72 4.89 3.47 3.56 A/CNK 0.94 0.93 0.98 1.04 0.99 1.01 Trace elements (in ppm): Štěnovice Granodiorite – Ba 260, 160, 25, Cs 12, 33, 50, Ga 28, 27, 28, Hf 11, 2.9, 1.7, Li 65, 200, 376, Nb 18, 13, 20, Pb 75, 35, 15, Rb 250, 380, 604, Sc 7.9, 3.6, 3.3, Sr 50, 37, 19, Th 57, 10, 4.1, U 5.2, 7.5, 1.5, Y 45, 35, 30, Zn 50, 38, 26, Zr 265, 45, 26, La 118, 15, 6, Ce 215, 31, 11, Sm 15, 3.4, 1.5, Eu 0.6, 0.26, 0.11, Yb 4.3, 1.5, 1.3, Lu 0.6, 0.2, 0.1 (Breiter and Sokol 1997). 1.8.
BABYLON STOCK intruded at < 12 km depth as indicated by phengite barometry. Rock types: 1. Babylon I Granite – porphyritic biotite granite (internal facies). 2. Babylon II Granite – biotite-muscovite granite (marginal facies). Size and shape (in erosion level): irregular oval shape – 15 km2 (2.5 x 6 km) Age and isotopic data: Babylon I Granite – 340 Ma (K-Ar muscovite), 328 (K-Ar biotite), 342– 320 Ma (U-Pb zircon). Geological environment: the Teplá-Barrandian Unit – Precambrian high-grade schists, migmatites, and mylonites of the West Bohemian Shear Zone that separates the stock from the Moldanubian paragneisses and migmatites. Contact aureole: pronounced wide zone of andalusite ± cordierite hornfelses around the intrusion. Zoning: normal compositional zoning, varying from biotite granite in centre to biotite-muscovite granite in the margin. Mineralization: not reported. Heat Production (μWm-3): Babylon Granite I – 2.1–3.7 (median 3.0), average of 5 analyses.
Fig. 1.27. Babylon Stock geological sketch-map (adapted after Vejnar 1977). 1 – Babylon I Granite, 2 – Babylon II Granite, 3 – faults.
Regional position: the intrusion near the SW boundary of the Teplá-Barrandian Unit in contact with the West Bohemian Shear Zone, in the sillimanite and kyanite zones. The Babylon Stock
References BREITER, K. – SOKOL, A. (1997): Chemistry of Bohemian granitoids: Geotectonic and metallogenic implications. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 75–96. DALLMEYER, R.D. – URBAN, M. (1998): Variscan vs. Cadomian tectonothermal activity in northwestern sectors of the Teplá-Barrandian zone, Czech Republic: constraints from 40Ar/39Ar ages. – Geol. Rdsch. 87, 94–106. DÖRR, W. – FIALA, J. – FRANKE, W. – HAACK, U. – PHILIPPE, S. – SCHASTOK, J. – SCHEUVENS, D. – VEJNAR, Z. – ZULAUF, G. (1998): Cambrian vs. Variscan tectonothermal evolution within the Teplá-Barrandian: evidence from U-Pb zircon ages of syn-tectonic plutons (Bohemian Massif, Czech Republic). – Acta Univ. Carol., Geol. 42, 2, 229–230. RENÉ, M. (2000): Petrogenesis of the Variscan granitoids in the western part of the Bohemian Massif. – Acta montana, A15, 67–83. SIEBEL, W. – BREITER, K. – WENDT, I. – HÖHNDORF, A. – HENJES-KUNST, F. – RENÉ, M. (1999): Petrogenesis of contrasting granitoid plutons in Western Bohemia (Czech Republic). – Mineral. Petrol. 65, 207–235. VEJNAR, Z. (1977): The Babylon granite massif and its contact aureole, South-West Bohemia. – Věst. Ústř. Úst. geol. 52, 205–214. 52
ZULAUF, G. – AHRENDT, H. – DÖRR, W. – FIALA, J. – VEJNAR, Z. – WEMMER, K. (1995): Der Westrand des Teplá-Barrandiums: Cadomisches Basement Variszisch überprägt. In: Geologisches Untersuchungen im Umfeld der Kontinentalen Tiefbohrung. – Bayerisches Geol. Landesamt. München.
Fig. 1.28. Babylon Stock ABQ and TAS diagrams. Babylon Granite.
Babylon I Granite Quartz-normal, sodic-potassic, metalumious, leucocratic to mesocratic, I-type, Iseries, granite 55Baby 56Baby 57Baby 58Baby 59Baby SiO2 69.98 71.32 72.75 73.68 73.83 TiO2 0.38 0.04 0.09 0.01 0.16 Al2O3 14.58 15.21 13.12 13.38 12.68 Fe2O3 0.46 1.20 0.98 0.93 1.07 FeO 2.14 0.78 1.27 0.85 1.58 MnO 0.04 0.02 0.04 0.03 0.04 MgO 0.71 0.53 0.22 0.15 0.30 CaO 1.57 2.51 0.64 0.43 1.11 Na2O 3.76 5.79 3.94 4.05 3.19 K2O 4.73 0.92 4.60 4.33 5.59 P2O5 0.14 0.12 0.14 0.15 0.09 Mg/(Mg + Fe) 0.33 0.33 0.15 0.13 0.17 K/(K + Na) 0.45 0.09 0.43 0.41 0.54 Nor.Or 29.18 5.55 28.27 26.43 34.02 Nor.Ab 35.25 53.08 36.80 37.57 29.50 Nor.An 7.17 11.91 2.34 1.18 5.06 Nor.Q 23.81 26.76 29.16 31.06 29.08 Na + K 221.76 206.37 224.81 222.63 221.63 *Si 147.81 159.46 171.18 181.02 174.77 K-(Na + Ca) -48.90 -212.07 -40.89 -46.42 -4.04 Fe + Mg + Ti 57.94 39.55 36.55 27.34 44.86 Al-(Na + K + 2Ca) 8.57 2.80 10.01 24.79 -12.21 (Na + K)/Ca 7.92 4.61 19.70 29.03 11.20 A/CNK 1.04 1.02 1.05 1.12 0.96 Trace elements (in ppm): Babylon I Granite – Ba 1095, Cs 6, Ga 12, Hf 4.9, Li 20, Nb 8, Pb 34, Rb 72, Sc 5.8, Sr 754, Th 15, U 7.5, Y 7, Zn 46, Zr 110, La 38, Ce 56, Sm 3.6, Eu 1.2, Yb 1, Lu 0.18 (Breiter and Sokol 1997).
53
1.9.
SKALKA (MLÝNEČEK) STOCK Age and isotopic data: no data. Geological environment: within the KlíčovLštění metabazite zone amphibolite with scare small leptynite interlayers. Contact aureole: contact migmatitization and recrystallization demonstrate high contents of fluids. Mineralization: no ore mineral indications.
Regional position: intrusion near the SW boundary of the Teplá-Barrandian Unit in contact with the West Bohemian Shear Zone (8 km S of Domažlice). Rock types: Skalka Quartz syenite – ± foliated fine-grained riebeckite-aegirine-augite alkalifeldspar quartz syenite (derivates of the alkali basaltic magmas). Size and shape (in erosion level): four small (up to 10 × 50 m) lens-shaped plugs.
References VEJNAR, Z. (1979): The aegirine-augite-riebeckite syenite from the Domažlice crystalline area, West Bohemia. – Věst. Ústř. Úst. geol. 54, 4, 199–205. 1.10. KDYNĚ-NEUKIRCHEN COMPOSITE MASSIF (KNCM) Massif: 1 – Merklín Granodiorite, 2 – Drnovka Granite. Kdyně-Neukirchen Composite Massif: 3 – metatrondhjemite – metatonalite, 4 – metaquartz diorite, 5 pyroxene metadiorite, 6 –, olivine gabbro, gabbronorite, 7 – Palaeozoic granite to diorite, 8 – faults.
Regional position: KNCM is situated on the intersection of the West and Middle Bohemian deep faults. It is a tectonically modified late Cadomian basic layered intrusion at the boundary between the Moldanubian Zone, the Domažlice crystalline Unit, and Teplá-Barrandian Unit. Rock types: A. Mafic rocks of the “lower floor” 1. Orlovice layered intrusion: olivine gabbro of the lower layer (~ 0.8 km2), olivine gabbronorite of the middle layer (~ 2 km2), ferrodiorite of the upper layer (~ 1.6 km2). 2. Všeruby Intrusion: olivine gabbro (~ 6 km2). 3. Neukirchen Intrusion: olivine gabbro, gabbro, gabbronorite. B. Mafic rocks of the “middle floor” 4. Pyroxene – hornblende diorite (~ 25 km2). C. Mafic rocks of the “upper floor” 5. Kdyně Quartz Diorite – diorite – quartz diorite-tonalite. 6. Smržovice Tonalite – quartz diorite, tonalite and gabbro. 7. Všepadly Granodiorite – biotite-hornblende granodiorite (~ 2.5 km2). D. Palaeozoic Intrusions: 8. Čertův kámen (Teufelsberg) Diorite – pyroxene diorite (~ 2 km2). 9. Granite.
Fig. 1.29. Stod Massif and the Kdyně-Neukirchen Composite Massif geological sketch-map (adapted after Vejnar 1986 and Bues and Troll 1991). Stod
54
kyanite?) zones. KNCM is outlined by broad mylonitic shear zones along its margins. Contact aureole: high-temperature contact metamorphism superimposed onto the older metamorphic structures, textures, and mineral assemblages. The maximum intensity of the metamorphism corresponds to the pyroxene hornfels facies. The contact aureole is up to 2–4 km wide and shows an asymmetric zonal structure (spotted schists and hornfelses). Zoning: complex zonation, predominantly layered intrusion with upward zoning from gabbros through diorites, quartz diorites to tonalite. Mineralization: magmatic cumulates of ilmenite, apatite, and pyrrhotite.
Size and shape (in erosion level): ca. ~ 200 km2, discordant irregular to tongue-like shape. Age and isotopic data: Kdyně Quartz Diorite 504 ± 30 Ma (Rb-Sr whole-rock), 545 Ma (U-Pb zircon), Všepadly Granodiorite 524 ± 3 Ma (U-Pb zircon), 516 ± 1.3 Ma (U-Pb zircon), 515 ± 1.3 Ma (Ar-Ar hornblende), Orlovice Gabbro 734 ± 102 Ma (Rb-Sr whole-rock), 524 ± 0.8 Ma (U-Pb zircon), Smržovice Tonalite 522 ± 6, 523 ± 3 Ma (U-Pb zircon) 547 ± 7, 549 ± 7 Ma (K-Ar hornblende), 495 ± 6 Ma (K-Ar biotite), Smržovice Gabbro 523 ± 1 Ma (U-Pb zircon), Čertův Kámen (Teufelsberg) Diorite 359 ± 2 (UPb zircon), 342 ± 4 Ma (K-Ar biotite). Geological environment: subduction-related Neoproterozoic mafic meta-volcanites (amphibolites), schists, and gneisses of the TepláBarrandian Zone of the garnet to sillimanite (±
Fig. 1.30. Kdyně-Neukirchen Composite Massif ABQ and TAS diagrams. 1 – gabbro (lower floor), 2 – ferrodiorite (upper floor), 3 – diorite (middle floor), 4 – quartz diorite (upper floor), 5 – younger (Palaeozoic) granitoids.
References BABŮREK, J. (1999): Basic and ultrabasic rocks at the Bohemicum/Moldanubicum boundary along the Central Bohemian Fault. – Krystalinikum 25, 9–35. BUES, C. – TROLL, G. (1991): Geologie und Petrographie der Intrusiv- und Rahmengesteine der Gabbroamphibolitmasse von Neukirchen b. Hl. Blut (Nordostbayern). – Geologica bavar. 96, 29–50. BUES, C. – DÖRR, W. – FIALA, J. – VEJNAR, Z. – ZULAUF, G. (2002): Emplacement depths and radiometric ages of Paleaozoic plutons of the Neukirchen-Kdyně massif: differential uplift and exhumation of Cadomian basement due to Carboniferous orogenic collapse. – Tectonophysics 352, 225– 243. DÖRR, W. – FIALA, J. – FRANKE, W. – HAACK, U. – PHILIPPE, S. – SCHASTOK, J. – SCHEUVENS, D. –VEJNAR, Z. – ZULAUF, G. (1998): Cambrian vs. Variscan tectonothermal evolution within the Teplá-Barrandian: evidence from U-Pb zircon ages of syn-tectonic plutons (Bohemian Massif, Czech Republic). – Acta Univ. Carol., Geol. 42, 2, 229–230. DÖRR, W – ZULAUF, G. – FIALA, J. – FRANKE, W. – VEJNAR, Z. (2002): Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá-Barrandian unit – a correlation of U-Pb isotopicdilution-TIMS ages (Bohemia, Czech Republic). – Tectonophysics 352, 65–85. KÖHLER, H. – MASCH, L. – MIETHIG, A. – PFEIFFER, T. – PROPACH, G. – WEGER, M. (1993): Gabbroamphibolit-Masse von Neukirchen, Kdyně und ihr Rahmen. – Bh. Eur. J. Mineral. 2, 5, 35–80.
55
MIETHIG, V. – VON DRACH, V. – KÖHLER, H. (1997): Sr and Nd systematics of rocks from the Gabbroamphibolite massif of Neukirchen-Kdyně (NE Bavaria – Czech Republic). – J. Czech geol. Soc. 42, 3, 65. MIETHIG, V. – VON DRACH, V. – KÖHLER, H. (1997): Sr- und Nd-Isotopensystematik an Gesteinen der Gabbroamphibolitmasse von Neukirchen b. Hl. Blut (Nordostbayern) – Kdyne (Tschechische Republik) – Ansätze zur Klärung der Altersstellung und Herkunft der basischen intermediären Plutonite. – Geologica bavar. 110, Umwelt Spezial, 129–203. ŠMEJKAL, V. (1958): Petrografie a petrochemie některých basických hornin z okolí Orlovic. – Sbor. Vys. Šk. chem.-technol. 323–384. VEJNAR, Z. (1984): The Čertův kámen diorite body in the Kdyně massif. – Věst. Ústř. Úst. geol. 66, 129– 139. VEJNAR, Z. (1986): The Kdyně massif, south-west Bohemia – a tectonically modified basic layered intrusion. – Sbor. geol. Věd, Geol. 41, 9–67. VEJNAR, Z. (1990): The contact aureole around the Kdyně pluton in SW Bohemia. – Sbor. geol. Věd, Geol. 45, 9–35. (English summary) Kdyně Gabbronorite (lower floor) Quartz-defficient, sodic, metaluminous, melanocratic gabbro n= 12 Median Min Max SiO2 48.41 47.22 50.26 TiO2 0.64 0.15 4.46 Al2O3 18.23 13.06 20.75 Fe2O3 0.82 0.40 3.36 FeO 6.67 4.62 11.34 MnO 0.14 0.08 0.18 MgO 9.00 3.36 12.44 CaO 9.96 8.20 12.60 Na2O 2.76 2.15 4.61 K2O 0.20 0.10 0.66 P2O5 0.06 0.02 1.08 Mg/(Mg + Fe) 0.70 0.33 0.73 K/(K + Na) 0.04 0.02 0.11 Nor.Or 1.25 0.63 3.89 Nor.Ab 28.13 22.25 44.70 Nor.An 53.80 36.25 66.24 Nor.Q 0.00 0.00 0.00 Na + K 93.31 74.26 155.34 *Si 35.47 9.60 73.22 K-(Na + Ca) -288.40 -306.46 -240.08 Fe + Mg + Ti 334.73 259.40 449.90 Al-(Na + K + 2Ca) -129.08 -269.80 14.56 (Na + K)/Ca 0.49 0.38 1.06 A/CNK 0.76 0.49 1.04
QU1 47.64 0.38 16.09 0.64 5.67 0.10 6.17 9.14 2.64 0.12 0.04 0.49 0.03 0.77 25.53 47.94 0.00 88.59 31.06 -302.80 279.26 -170.16 0.43 0.65
QU3 48.90 0.88 19.62 0.96 7.73 0.15 10.09 11.6 3.26 0.25 0.07 0.72 0.05 1.60 30.29 57.43 0.00 114.33 55.48 -269.22 356.02 -94.17 0.65 0.81
Kdyně Ferrodiorite (upper floor) Quartz-defficient, sodic, metaluminous, melanocratic gabbro fed23 fed24 fed25 SiO2 48.69 50.33 53.07 TiO2 2.43 1.18 1.27 Al2O3 14.20 15.65 18.34 Fe2O3 3.42 2.05 1.40 FeO 14.45 13.35 10.75 MnO 0.33 0.33 0.24
56
fed26 45.42 2.88 15.60 0.50 16.71 0.28
fed27 35.57 8.00 8.66 6.85 13.69 0.47
fed28 46.41 3.65 12.62 1.94 14.67 0.30
MgO CaO Na2O K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
1.43 7.75 3.77 0.40 0.82 0.12 0.07 2.83 40.51 39.55 0.00 130.15 47.84 -251.36 310.02 -127.69 0.94 0.72
2.15 7.47 4.91 0.30 0.80 0.20 0.04 1.96 48.78 35.17 0.00 164.81 25.60 -285.28 279.73 -123.89 1.24 0.74
1.08 6.27 6.09 0.38 0.15 0.14 0.04 2.34 57.05 31.43 0.00 204.59 15.29 -300.26 209.96 -68.04 1.83 0.85
3.96 7.50 3.61 0.24 1.60 0.29 0.04 1.68 38.37 31.56 0.00 121.59 41.23 -245.14 373.31 -82.72 0.91 0.87
4.20 12.45 2.45 0.09 5.12 0.27 0.02 0.61 25.07 28.25 2.89 80.97 -31.64 -299.16 480.93 -354.92 0.36 0.42
4.16 10.22 3.73 0.39 0.84 0.31 0.06 2.51 36.41 36.06 0.00 128.65 7.33 -294.33 377.56 -245.30 0.71 0.52
Kdyně Diorite (middle floor) Quartz-defficient, sodic, metaluminous, melanocratic gabbrodiorite n = 16 Median Min Max QU1 SiO2 51.05 48.51 54.39 49.59 TiO2 1.84 0.84 4.71 1.56 Al2O3 16.25 3.41 19.87 15.03 Fe2O3 0.82 0.10 2.63 0.48 FeO 8.95 7.08 12.38 7.53 MnO 0.17 0.12 0.32 0.16 MgO 5.08 2.26 14.26 3.91 CaO 8.58 6.52 11.36 7.35 Na2O 3.23 0.59 5.13 2.85 K2O 0.36 0.16 1.37 0.25 P2O5 0.34 0.05 0.66 0.14 Mg/(Mg + Fe) 0.48 0.30 0.64 0.42 K/(K + Na) 0.08 0.03 0.23 0.04 Nor.Or 2.86 1.01 8.93 1.66 Nor.Ab 34.41 9.50 50.49 30.49 Nor.An 43.09 21.05 53.51 37.74 Nor.Q 0.00 0.00 5.26 0.00 Na + K 116.55 24.77 171.28 102.84 *Si 60.76 29.88 112.55 44.04 K-(Na + Ca) -251.49 -292.92 -197.65 -266.86 Fe + Mg + Ti 287.90 206.15 608.66 237.67 Al-(Na + K + 2Ca) -107.46 -362.95 -39.42 -121.52 (Na + K)/Ca 0.78 0.12 1.39 0.62 A/CNK 0.76 0.16 0.92 0.72
QU3 53.24 2.39 16.92 1.18 10.09 0.20 6.37 8.92 4.12 0.66 0.48 0.57 0.11 4.40 40.82 49.42 0.51 154.05 72.42 -241.53 326.74 -80.78 1.18 0.83
1.11. STOD MASSIF Regional position: an intrusion at the boundary between the Moldanubian Zone and the Domažlice crystalline Unit, and the TepláBarrandian Unit (see Fig. 1.28).
Rock types: 1. Merklín Granodiorite – biotite-amphibole granodiorite to diorites (~ 45 km2).
57
Contact aureole: thermal metamorphism superimposed on regional metamorphism, its intensity increases through rocks containing andalusite-cordierite bearing rocks to pyroxenehornfelses in the exocontact. Geological environment: Neoproterozoic chlorite-sericite phyllite of the Teplá-Barrandian Unit and Upper Carboniferous cover (sediments). The massif is related to the Lower Palaeozoic volcanics of the Barrandian area. Zoning: Drnovka Granite intrudes the older Merklín Granodiorite as a swarm of sheet-like bodies. Mineralization: hydrothermal base metals PbZn ores near Merklín. Heat production (μWm-3): The Stod Massif 2.1, (average of 18 analyses 0.6–4.0).
2. Drnovka Granite – leucocratic biotite granite (~ 45 km2). 3. Těšovice Granite (not shown in the Fig. 1.28). Size and shape (in erosion level): N-S elongated, partly tongue-like body, adjacent to the Kdyně-Neukirchen Composite Massif, therefore considered being its continuation. Length about 25 km, width between 3 to 6 km, total area about ~ 90 km2, shared evenly by the three major rock types. Age and isotopic data: Merklín Granodiorite – 510 530 Ma, (K-Ar biotite), 518 Ma (Ar-Ar biotite), 483 Ma, (U-Pb zircon), Drnovka Granite – 455 Ma (K-Ar biotite), Těšovice Granite 521.5 ± 2 Ma (U-Pb zircon), 518 ± 8 Ma (Ar-Ar biotite).
References DÖRR, W. – FIALA, J. – FRANKE, W. – HAACK, U. – PHILIPPE, S. – SCHASTOK, J. – SCHEUVENS, D. – VEJNAR, Z. – ZULAUF, G. (1998): Cambrian vs. Variscan tectonothermal evolution within the Teplá-Barrandian: evidence from U-Pb zircon ages of syn-tectonic plutons (Bohemian Massif, Czech Republic). – Acta Univ. Carol., Geol. 42, 2, 229–230. HEJTMAN, B. (1984): Petrografie vyvřelých hornin Českého masívu. Část I, Intruzivní vyvřelé horniny západních a severozápadních Čech. – 186 pp. Univ. Karl. Praha. KREUZER, H. – MÜLLER, P. – OKRUSCH, M. – PATZAK, M. – SCHÜSSLER, U. – SEIDEL, E. – ŠMEJKAL, V. – VEJNAR, Z. (1991): Ar-Ar confirmation of Cambrian, early Devonian, and MidCarboniferous events in tectonic units at the western margin of the Bohemian Massif. – Zbl. Geol. Paläont. H. 5, 6. Rundgespräch “Geodynamik des europäischen Variszikums”. RÜGER, L. (1926): Beiträge zur Geologie der Umgebung von Výtoň – Merklín. – Sbor. St. geol. Úst. Čs. Republ. 9, 89–132. Praha. (In Czech) ŠMEJKAL, V. – VEJNAR, Z. (1965): Zur Frage des prävariszischen Alters einiger Granitoide des Böhmischen Massivs. In: Geochemie v Československu, sbor. Prací 1. geochem. konfer. v Ostravě, 123– 128. – Ostrava. TONIKA, J. – VEJNAR, Z. (1966): Geology and petrography of the Stod pluton.– Čas. Mineral. Geol. 11, 129–137. (German summary) ZULAUF, G. – DÖRR, W. – FIALA, J. – VEJNAR, Z. (1997): Late Cadomian crustal tilting and Cambrian transtention in the Teplá-Barrandian unit (Bohemian Massif, Central European Variscides). – Geol. Rdsch. 86, 571–584.
Fig. 1.31. Stod Massif ABQ and TAS diagrams. 1 – Merklín Granodiorite, 2 – Drnovka Granite.
58
Merklín Granodiorite Quartz-normal, sodic, metaluminous, tholeiitic, melanocratic, Itype M-series, granodiorite 11STODa 12STODa 13STODa SiO2 54.27 61.14 63.82 TiO2 2.90 0.85 0.59 Al2O3 14.41 16.35 16.02 Fe2O3 1.55 1.86 1.53 FeO 8.41 4.89 4.74 MnO 0.16 0.10 0.08 MgO 3.73 0.44 0.99 CaO 5.55 4.99 3.92 Na2O 3.54 4.82 4.56 K2O 2.00 2.22 2.28 P2O5 0.30 0.22 0.18 Mg/(Mg + Fe) 0.40 0.11 0.22 K/(K + Na) 0.27 0.23 0.25 Nor.Or 13.72 13.95 14.34 Nor.Ab 36.90 46.03 43.58 Nor.An 29.67 24.79 19.44 Nor.Q 5.40 10.88 15.96 Na + K 156.70 202.67 195.56 *Si 78.40 77.20 111.90 K-(Na + Ca) -170.74 -197.38 -168.64 Fe + Mg + Ti 265.42 112.97 117.14 Al-(Na + K + 2Ca) -71.65 -59.56 -20.76 (Na + K)/Ca 1.58 2.28 2.80 A/CNK 0.81 0.85 0.95 Drnovka Granite Quartz-rich, sodic, weakly peraluminous, I-type, I-series, granite 14STODb 15STODb 16STODb SiO2 74.65 74.23 77.23 TiO2 0.08 0.32 0.05 Al2O3 13.46 13.13 12.61 Fe2O3 1.30 0.67 1.10 FeO 0.95 1.15 0.54 MnO 0.02 n.d. n.d. MgO 0.07 0.40 0.07 CaO 2.24 0.83 0.56 Na2O 4.11 4.18 3.80 K2O 1.95 4.22 4.25 P2O5 0.04 0.03 0.02 Mg/(Mg + Fe) 0.06 0.29 0.08 K/(K + Na) 0.24 0.40 0.42 Nor.Or 11.86 25.54 25.42 Nor.Ab 37.98 38.46 34.55 Nor.An 11.17 4.02 2.68 Na + K 174.03 224.49 212.86 *Si 213.48 177.46 208.94 K-(Na + Ca) -131.17 -60.09 -42.37 Fe + Mg + Ti 32.26 38.34 23.67
59
Al-(Na + K + 2Ca) (Na + K)/Ca Nor.Q A/CNK
10.41 4.36 36.69 1.04
3.76 15.17 29.43 1.02
14.80 21.32 35.28 1.06
1.12. POBĚŽOVICE MASSIF 2. Poběžovice Gabbrodiorite (internal zone) – hornblende-pyroxene gabbrodiorite 3. Poběžovice Diorite (external zone) – hornblende diorite. 4. Poběžovice Quartz diorite (Younger Intrusives) – quartz diorite, trondhjemite and pegmatite dyke swarm. Size and shape (in erosion level): ca 84 km2, oval body (14 × 6 km), elongated SW-NE, obliquely cut off by the West Bohemian Shear Zone in the SW. Age and isotopic data: Cadomian (Lower Cambrian). No isotopic data (a pre-Variscan age of penetrating pegmatite is indicated by K-Ar dating). Geological environment: Neoproterozoic mafic metavolcanics and metasediments of the TepláBarrandian Unit. Contact aureole: narrow (up to 150 m) hightemperature contact aureole superimposed on regional metamorphism (garnet-cordierite and hypersthene-cordierite hornfelses). Zoning: distinct compositional zoning from the centre to the endocontact (olivine-uralite gabbro in the centre, gabbrodiorite in the intermediate zone and hornblende diorite in the endocontact zone). Mineralization: K-feldspar in pegmatite.
Fig. 1.32. Poběžovice Massif geological sketch-map (adapted after Vejnar 1973a). 1 – Poběžovice Gabbro (central zone), 2 – Poběžovice Gabbrodiorite (internal zone), 3 – Poběžovice Diorite (external zone), 4 – Poběžovice Quartz diorite, 5 – faults.
Regional position: western margin of the TepláBarrandian Unit near the West Bohemian Shear Zone. Rock types: 1. Poběžovice Gabbro (central zone) – hornblende gabbro (A1), with lenses of peridotite and troctolite (A2).
References VEJNAR, Z. (1965): Pegmatites of the Poběžovice-Domažlice area. – Sbor. geol. Věd, ložisk. Geol. Mineral. 4, 7–84. VEJNAR, Z. (1973a): The Poběžovice pluton and distribution of Mg, Fe in its minerals. – Sbor. geol. Věd, Geol. 25, 85–143. (English summary) VEJNAR, Z. (1973b): Trace elements in rocks of the Poběžovice basic pluton. – Čas. Mineral. Geol., 18, 75– 79. (English summary) VEJNAR, Z. (1980): Contact metamorphism associated with the Poběžovice basic massif, South-West Bohemia. – Věst. Ústř. Úst. geol. 55, 321–330. VOJTĚCH, V. (1936): Žulové pegmatity u Domažlic a Poběžovic a jejich hospodářský význam. – Sbor. St. geol. Úst. 11, 145–227.
60
Fig. 1.33. Poběžovice Massif ABQ and TAS diagrams. 1 – Poběžovice Gabbro, 2 – Poběžovice Gabbrodiorite, 3 – Poběžovice Diorite.
1. Poběžovice Gabbro to Peridotite Quartz-deficient, sodic, metaluminous, melanocratic, I-type gabbro a1756Po 1757Po 1758Po 1759Po SiO2 46.97 50.45 52.45 42.84 TiO2 0.75 0.47 0.52 0.55 Al2O3 7.18 11.26 3.30 7.31 Fe2O3 2.14 1.64 4.85 1.52 FeO 10.66 7.82 10.17 9.95 MnO 0.10 0.18 0.28 0.16 MgO 16.73 13.52 24.35 29.15 CaO 8.63 10.15 2.26 4.85 Na2O 0.40 1.21 0.36 1.29 K2O 0.04 0.20 0.04 0.16 P2O5 0.94 0.04 0.03 0.10 Mg/(Mg + Fe) 0.70 0.72 0.75 0.82 K/(K + Na) 0.06 0.10 0.07 0.08 Nor.Or 0.32 1.33 0.39 1.16 Nor.Ab 4.80 12.27 5.30 14.16 Nor.An 47.31 55.90 18.08 28.61 Nor.Q 0.23 0.63 3.97 0.00 Na + K 13.76 43.29 12.47 45.02 *Si 144.23 115.93 251.65 134.99 K-(Na + Ca) -165.95 -215.79 -51.07 -124.72 Fe + Mg + Ti 599.76 470.79 813.07 887.76 Al-(Na + K + 2Ca) -180.54 -184.16 -28.26 -74.44 (Na + K)/Ca 0.09 0.24 0.31 0.52 A/CNK 0.47 0.55 0.70 0.67 2. Poběžovice Gabbrodiorite Quartz-poor, sodic, metaluminous, mesocratic, I-type gabbro n=7 Med. Min Max SiO2 47.97 46.37 49.02 TiO2 2.16 1.22 2.85 Al2O3 15.67 14.52 17.14 Fe2O3 2.20 0.58 4.00 FeO 8.72 6.18 12.75
61
QU1 47.28 1.49 15.29 1.58 8.04
1760Po 42.30 0.67 5.63 2.67 10.08 0.18 30.54 3.51 1.40 0.30 0.07 0.81 0.12 2.13 15.13 19.76 0.00 51.55 141.40 -101.40 939.97 -66.17 0.82 0.63
QU3 47.98 2.25 15.88 2.55 8.72
MnO MgO CaO Na2O K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
0.19 6.49 9.80 3.02 0.54 0.27 0.50 0.11 3.41 29.40 50.86 0.00 106.41 43.44 262.97 347.37 -145.41 0.63 0.68
0.16 5.43 6.56 2.29 0.30 0.13 0.42 0.06 1.94 26.26 39.30 0.00 83.03 6.19 -280.12 299.91 -184.64 0.57 0.64
0.25 8.54 10.37 3.91 0.98 0.46 0.60 0.14 5.57 33.79 5.08 0.00 146.98 105.17 -181.75 387.38 -10.24 0.84 0.99
0.18 5.70 9.06 2.69 0.43 0.21 0.49 0.09 3.23 28.05 44.15 0.00 101.24 32.02 -269.85 324.82 -156.35 0.60 0.68
0.21 7.73 9.88 3.06 0.64 0.28 0.54 0.13 4.16 30.45 51.61 0.00 107.43 50.16 -249.03 355.26 -133.82 0.66 0.72
3. Poběžovice Diorite Quartz-deficient, sodic, metaluminous, mesocratic, I-type diorite n=8 Med. Min Max QU1 SiO2 61.23 58.53 66.58 60.83 TiO2 1.00 0.75 1.50 0.79 Al2O3 14.87 13.23 17.56 14.57 FeO3 1.00 0.53 2.28 0.66 FeO 5.13 3.57 7.22 3.88 MnO 0.10 0.05 0.12 0.07 MgO 2.23 0.99 2.66 1.57 CaO 4.33 3.58 6.23 3.59 Na2O 4.23 3.41 4.93 3.98 K2O 0.90 0.62 1.42 0.78 P2O5 0.19 0.03 0.91 0.09 Mg/(Mg + Fe) 0.34 0.29 0.52 0.31 K/(K + Na) 0.13 0.08 0.19 0.09 Nor.Or 5.95 3.93 9.16 4.90 Nor.Ab 42.59 34.28 48.40 39.04 Nor.An 22.09 18.54 26.47 19.72 Nor.Q 16.82 8.62 31.22 12.01 Na + K 158.58 129.15 181.05 152.06 *Si 132.39 88.62 197.55 89.59 K-(Na + Ca) -199.44 -253.62 -154.95 -217.75 Fe + Mg + Ti 148.90 94.45 206.40 135.21 Al-(Na + K + 2Ca) -18.98 -53.00 4.38 -33.43 (Na + K)/Ca 2.01 1.58 2.48 1.91 A/CNK 0.96 0.90 1.02 0.92
QU3 64.60 1.09 15.68 1.60 6.28 0.11 2.56 4.46 4.61 1.08 0.23 0.35 0.13 7.02 45.85 23.38 23.28 171.91 155.07 -193.37 180.13 -3.20 2.19 1.00
62
1.13. MRAČNICE-JENÍKOVICE MASSIF Unit, near the SE edge of the Poběžovice composite massif. Rock types: Mračnice-Jeníkovice Trondhjemite – two-mica trondhjemite. Size and shape (in erosion level): a group of lens-like bodies, representing mutually interconnected, tilted and deeply eroded laccolith (total 160 km2). The largest body has 2 x 4 km in size. Age and isotopic data: Mračnice-Jeníkovice Trondhjemite 523 ± 5 Ma (U-Pb zircon). Geological environment: the Teplá-Barrandian Unit Precambrian metasediments of the Rakovník-Kralupy Belt. Contact aureole: indistinct, scarce andalusite locally occurs in metasediments near the exocontact of trondhjemite. Zoning: not observed. Mineralization: not reported.
Fig. 1.34. Mračnice-Jeníkovice Massif geological sketch-map (adapted after Vejnar et al. 1984). 1 – Mračnice-Jeníkovice Trondhjemite, 2 – faults.
Regional position: within the staurolite to kyanite-sillimanite zones of the Teplá-Barrandian References DÖRR, W. – FIALA, J. – FRANKE, W. – HAACK, U. – PHILIPPE, S. – SCHASTOK, J. – SCHEUVENS, D. –VEJNAR, Z. – ZULAUF, G. (1998): Cambrian vs. Variscan tectonothermal evolution within the Teplá-Barrandian: evidence from U-Pb zircon ages of syn-tectonic plutons (Bohemian Massif, Czech Republic). – Acta Univ. Carol., Geol. 42, 2, 229–230. SIEBEL, W. – TRZEBSKI, R. – STETTNER, G. – HECHT, L. – CASTEN, U, – HÖHNDORF, A. – MÜLLER, P. (1997): Granitoid magmatism of the NW Bohemian Massif revealed: gravity data, composition, age relations and phase concept. – Geol. Rdsch. 86, Suppl., 45–63. VEJNAR, Z. et al. (1984): Geologie domažlické oblasti. Oblastní regionální geologie ČSR. – 234 pp. Czech Geol. Survey, Prague. ZULAUF, G. – AHRENDT, H. – DÖRR, W. – FIALA, J. – VEJNAR, Z. – WEMMER, K. (1995): Der Westrand des Teplá-Barrandiums: Cadomisches basement variszisch überprägt. In: Geologische Untersuchungen im Umfeld der Kontinentalen Tiefbohrung. – Bayerisches Geol. Landesamt. München. ZULAUF, G. – DÖRR, W. – FIALA, J. – VEJNAR, Z. (1997): Late Cadomian crustal tilting and Cambrian transtension in the Teplá-Barrandian unit (Bohemian Massif, Central European Variscides). – Geol. Rdsch. 86, 571–584. ŽÁČEK, V. – SLABÝ, J. – CHÁB, J. (1993): Metamorphism in the Teplá Upland, Bohemian Massif, Czech Republic. (Preliminary report). – Věst. Čes. geol. Úst. 68, 33–37.
63
Mračnice Trondhjemite Quartz-normal, sodic, metaluminous,leucocratic I-type, granite n = 10 Median Min Max SiO2 73.07 69.13 74.75 TiO2 0.06 0.03 0.46 Al2O3 15.21 13.86 16.46 Fe2O3 0.82 0.32 1.20 FeO 0.33 n.d. 3.02 MnO 0.02 0.00 0.08 MgO 0.19 0.02 1.00 CaO 2.29 2.24 3.79 Na2O 5.79 4.60 6.28 K2O 0.80 0.30 1.23 P2O5 0.03 0.00 0.15 Mg/(Mg + Fe) 0.27 0.04 0.34 K/(K + Na) 0.08 0.03 0.14 Nor.Or 4.71 1.80 7.49 Nor.Ab 53.08 43.40 56.33 Nor.An 11.22 10.82 18.74 Nor.Q 27.89 26.43 37.34 Na + K 197.41 162.45 219.64 *Si 163.70 158.51 216.02 K-(Na + Ca) -226.50 -234.60 -171.23 Fe + Mg + Ti 22.22 5.87 84.16 Al-(Na + K + 2Ca) 6.44 -0.69 25.98 (Na + K)/Ca 4.61 2.40 5.38 A/CNK 1.03 1.01 1.09
QU1 71.32 0.06 14.62 0.54 0.17 0.02 0.19 2.29 4.95 0.66 0.02 0.22 0.08 4.10 45.47 11.19 26.49 175.34 158.51 -226.50 17.62 4.85 3.95 1.02
QU3 73.64 0.15 15.59 0.97 0.96 0.02 0.42 2.51 6.18 0.80 0.09 0.28 0.09 4.72 55.52 11.91 31.32 207.49 176.01 -202.01 39.55 13.69 4.91 1.05
Fig. 1.35. Mračnice-Jeníkovice Massif ABQ and TAS diagrams:. Mračnice-Jeníkovice Trondhjemite.
64
1.14. ČISTÁ-JESENICE COMPOSITE PLUTON 2. Petrohrad Granodiorite (a facies of the Tis Granite) – porphyritic medium-grained biotite granodiorite. 3. Čistá Granodiorite – biotite granodiorite and biotite-hornblende granodiorite. 4. Černá Kočka Granite – two-mica granite (± tourmaline). 5. Hůrky Fenite – cancrinite biotite-alkali syenite (± nepheline), and several stages of fenitisation of the Tis Granite. 6. Hůrky Porphyry – fine-grained biotitehornblende granodiorite porphyry. Size and shape: Tis Granite – a large oval homogeneous intrusion (in area ~ 700 km2), with flat dipping contacts of the intercalated sheet-like granite (laccolith) in phyllites. Čistá Granodiorite (~ 38 km2) – the oval-shaped stock within the Tis Granite.
Fig. 1.36. Čistá-Jesenice Composite Pluton hierarchical scheme according to rock groups and rock types.
Regional position: Within the chlorite and biotite (garnet?) zones of the Teplá-Barrandian Unit (Bohemicum) which has been mostly covered by Permian-Carboniferous and Cretaceous sediments. Rock types: 1. Tis Granite – biotite granite passing to granodiorite at the N-NW margin.
Fig. 1.37. Čistá-Jesenice Composite Pluton geological sketch-map (adapted after Kopecký et al. 1997). 1 – Tis Granite, 2 – Bechlín Diorite, 3 – Čistá Granodiorite, 4 – Černá Kočka Granite, 5 – Hůrky Fenite, 6 – faults. ML – Mladotice Stock, KZ – Kožlany Composite Stock, KO – Kosobody Stock, HV – Holý vrch Stock, Pl – Plasy Stock, PE – Petrovice Stock.
65
Contact aureole: shearing in the Tis Granite, magmatic foliation in marginal facies and lineation in the central facies of the Čistá Granodiorite. Low-pressure thermal aureole superimposed on earlier regional metamorphic zones. Zoning: Tis Granite – very weak sub-horizontal zonation from more mafic northern margin (bigranodiorite) through bi-granite into two-mica granite in southern endocontact. Čistá Granodiorite – pronounced compositional and textural gradational normal concentric zoning (marginal hornblende-biotite granodiorite and central biotite-granodiorite) Hůrky Fenite – asymmetric zonation in the Tis Granite. Intensity of alkaline metasomatism is decreasing outwards of the Čistá Granodiorite/Tis Granite contact. Mineralization: Tis Granite – U. Mo, Pb-Zn-Ag (Au) in albitized Tis Granite and Čistá Granodiorite. Zr and Th (in disseminated zircon) in Hůrky Fenite (alkaline syenite). Heat production (µWm-3): Tis Granite 1.9, Čistá Granodiorite 2.5–4.
Age and isotopic data: Tis Granite up to 450 Ma (K-Ar biotite), 504.8 ± 1.1 Ma (Pb-Pb zircon), Hůrky Fenite (alkaline syenite) 289-300 Ma (KAr whole rock). Čistá Granodiorite 311–423 Ma and 328 Ma (K-Ar biotite) and 450 Ma (hornblende), 373.1 ± 1.1 Ma (Pb-Pb zircon), Černá Kočka Granite 290–300 Ma (K-Ar whole rock) intersects fenite and contains xenoliths of metasomatites s.l., Hůrky Porphyry 290 Ma (KAr whole rock). Temporal relations: (sequence of intrusions) Bechlín Diorite → Tis Granite and Petrohrad Granodiorite → Hůrky Fenite → Čistá Granodiorite. Čistá Granodiorite intruded the older Tis Granite and (only marginally) Neoproterozoic rocks. The fenitization influenced the Tis Granite at the exocontact of the Čistá Granodiorite. Geological environment: Tis Granite – Neoproterozoic schists, metabasalts, Bechlín Diorite, Upper Carboniferous cover. Čistá Granodiorite – Neoproterozoic schists and metabasalts, the Tis Granite, the Hůrky Fenite. Hůrky Fenite – Tis Granite, Čistá Granodiorite.
References BARTOŠEK, J. – CHLUPÁČOVÁ, M. – ŠŤOVÍČKOVÁ, N. (1969): Petrogenesis and structural position of small granitoid intrusions in the aspect of petrophysical data. – Sbor. geol. Věd, užitá Geofyz. 8, 37–68. BREITER, K. (2004): Granitoids of the Tis massif. – Zpr. geol. Výzk. v Roce 2003, 13–16. (In Czech) DOLEJŠ, D. (1994): A granodiorite intrusion near Lubná SW of Rakovník. – Zpr. Geol. Výzk. v Roce 1993, 20–21. Praha. (In Czech) DOLEJŠ, D. (1995): Intermediate intrusions in the Proterozoic between Rakovník and Plasy. – Zpr. geol. Výzk. v Roce 1994, 40–42. Praha. (In Czech) DUDEK, A. – FROLÍKOVÁ, I. – NEKOVAŘÍK, Č. (1991): The depth of intrusion of Hercynian granitoid plutons in the Bohemian Massif. – Acta Univ. Carol., Geol., Kettner Vol., 3–4, 249–256. (In Czech) FEDIUK, F. (2008): The age of fenites from Hůrky in the Čistá massif in the light of compositions of detrital rocks in their foreground, W-Bohemia. – Zpr. geol. Výzk. v Roce 2007, 23–24. (In Czech) FEDIUK, F. – FEDIUKOVÁ, E. (1978): Gabbro from Kosobody near Rakovník. – Acta Univ. Carol., Geol. 8, 365–389. (English summary) FEDIUK, F. – FEDIUKOVÁ, E. (1988): A composite intrusive stock, Kožlany near Rakovník. (English summary.) – Acta Univ. Carol., Geol. 4, 437–479. HEJTMAN, B. (1984): Petrografie vyvřelých hornin Českého masívu. Část I, Intruzivní vyvřelé horniny západních a severozápadních Čech. – 186 pp. Univ. Karl. Praha. CHÁB, J. (1975): Intruzivní horniny strukturního vrtu Bechlín u Roudnice. – Sbor. geol. Věd, Geol. 27, 55– 82. CHLUPÁČOVÁ, M. – HROUDA, F. – JANÁK, J. – REJL, L. (1975): The fabric, genesis and relative age relations of the granitic rocks of the Čistá-Jesenice Massif (Czechoslovakia). – Gerlands Beitr. Geophys. 84, 487–500. KLOMÍNSKÝ, J. (1963): Geology of the Čistá Massif. (English summary.) – Sbor. geol. Věd, Geol. 3, 75– 99. KOPECKÝ, L. (1987): The Čistá ring structure, Czechoslovakia. In: Proc. 1st Seminar on carbonatites and alkaline rocks of the Bohemian Massif and ambient regions, 23–58. – Czech Geol. Survey, Prague. KOPECKÝ, L. jun. – CHLUPÁČOVÁ, M, – KLOMÍNSKÝ, J. – SOKOL, A. (1997): The Čistá-Jesenice Pluton in Western Bohemia: Geochemistry, Geology, Petrophysics and Ore Potential. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 97–126.
66
KOPECKÝ, L. – DOBEŠ, M. – FIALA, J. – ŠŤOVÍČKOVÁ, N. (1970): Fenites of the Bohemian Massif and the relations between fenitization, alkaline volcanism and deep fault tectonics. – Sbor. geol. Věd, Geol. 16, 51–107. ORLOV, A. (1932): Petrography of the Čistá-Jesenice granite massif. – Věst. Čes. společ. Nauk 2, 2–29. SATTRAN, V. – KLOMÍNSKÝ, J. (1965): The Carboniferous basement in the vicinity W of Labe river. – Sbor. geol. Věd, Geol. 9, 109–117. (In Czech) SCHULMANN, K. – VENERA, Z. (1992): Structural study of the Čistá massif. – Proc. Ann. Rep. Inv. Struct. Basement Bohemian Massif. – Prague. SMETANA, V. (1927): Zpráva o mapování listu Podbořany-Rakovník v Roce 1927 – okolí Žihle. – Sbor. St. geol. Úst. Čs. Republ. 7, 429–452. (French abstract) VENERA, Z. – SCHULMANN, K. – KRÖNER, A. (2000): Intrusion within a transtensional tectonic domain: the Čistá granodiorite (Bohemian Massif) – structure and rheological modelling. – J. struct. Geol. 22, 1437–1454.
Fig. 1.38. Čistá-Jesenice Composite Pluton ABQ and TAS diagrams. 1 – Tis Granite, 2 – Černá Kočka Granite, 3 – Petrohrad Granodiorite, 4 – Petrohrad Granite, 5 – granite porphyry.
Tis Granite Quartz-rich, sodic, peraluminous (moderately), mesocratic, I-type, I-series, granite n=9 Median Min Max Q1 Q3 SiO2 72.60 69.61 74.61 72.27 73.85 TiO2 0.23 0.05 0.65 0.22 0.30 Al2O3 13.66 12.43 14.65 13.38 13.82 Fe2O3 0.67 0.10 1.11 0.42 0.92 FeO 1.74 1.27 2.81 1.45 2.63 MnO 0.05 0.02 0.06 0.03 0.05 MgO 0.42 0.00 1.72 0.18 0.95 CaO 0.98 0.69 1.55 0.93 1.00 Na2O 3.60 3.38 3.83 3.39 3.81 K2O 4.34 3.73 4.96 4.17 4.55 P2O5 0.12 0.04 0.15 0.08 0.13 Mg/(Mg + Fe) 0.23 0.00 0.15 0.39 0.15 K/(K + Na) 0.44 0.41 0.49 0.43 0.45 Nor.Or 26.80 23.31 30.02 26.36 27.64 Nor.Ab 34.25 31.09 36.39 32.10 35.52 Nor.An 4.08 3.24 7.23 3.94 4.88 Nor.Q 29.44 26.04 33.08 29.05 30.87 Na + K 209.93 188.27 225.93 206.00 214.03 *Si 181.42 163.12 195.14 175.53 187.74
67
K-(Na + Ca) -42.75 57.51 6.06 49.39 36.53 Fe + Mg + Ti 47.82 29.77 97.85 1.69 69.69 Al(Na + K + 2Ca) 19.27 0.10 44.81 14.54 32.40 (Na + K)/Ca 12.26 6.81 17.42 11.96 12.67 A/CNK 1.09 1.00 1.19 1.07 1.14 Trace elements (in ppm): Tis Granite – B 36, Ba 369, Cr 18, Cu 53, Ga 19, Li 49, Mo 5, Nb 3, Ni 45, Pb 19, Rb 133, Sn 4, Sr 19, Ta 0.2, Th 9, U 4.3, Y 28, Zn 52, Zr 99, La 13, Ce 22, Sm 2.8, Eu 0.28, Tb 0.26, Yb 0.23, Lu 0.3 (Kopecký et al. 1997). Trace elements (in ppm): Černá Kočka Granite – Cr 16, Cs 2, Cu 4, Li 10, Mo 3, Nb 4, Ni 2, Pb 24, Rb 130, Sr 28, Sn 24, U 6, Y 15, Zn 4, Zr 21, La 2.4, Ce 4.4, Sm 1.0, Eu 0.1, Tb 0.4, Yb 0.85, Lu 0.04 (Kopecký et al. 1997). 1.14.1. ČISTÁ MASSIF
Fig. 1.39. Čistá Massif hierarchical according to rock groups rock types.
scheme
Regional position: a member of the ČistáJesenice Composite Pluton, in the TepláBarrandian Unit (Bohemicum). Rock types: Čistá Granodiorite principal facies: 1. Čistá I Granodiorite – foliated hornblendebiotite medium-grained granodiorite 2 (marginal facies) – (~ 13 km ). 2. Čistá II Granodiorite – equigranular medium -grained biotite granodiorite (core facies) – (~ 25 km2). Magnetite is the most common accessory mineral in both facies. 3. Hůrky Porphyry (dykes) – fine-grained biotite-hornblende granodiorite porphyry. 4. Hůrky Fenite (alkalisyenite) – nephelinemagnetite-cancrinite-nepheline-biotitealkalisyenite and fenite.
Fig. 1.40. Čistá Massif geological sketch-map (adapted after Kopecký et al. 1997). 1 – Hůrky Fenite, 2 – Čistá II Granodiorite (core facies), 3 – Čistá I Granodiorite with magmatic foliation (marginal facies), 4 – faults.
xenoliths of metasomatites s.l., Hůrky granodiorite porphyry 290 Ma (K-Ar whole rock). Geological environment: mylonitic Tis Granite, Hůrky Fenite (alkalisyenite and fenite) and Neoproterozoic phyllites and spillites (metabasalts). Contact aureole: mylonitization of the Tis Granite in the exocontact up to 500 meters. Zoning: Distinct compositional and textural (gradational) normal concentric zonation. Mineralization: disseminated molybdenite mineralization is spatially related to the zone of alkaline metasomatism (fenitization) within the Tis Granite. Gold bearing quartz veins with Bi-
Size and shape (in erosion level): elliptical form (9 × 6 km) of the outcrop covering an area of 38 km2. Contacts dip periclinally from 30 NE to 90 E. Stock-shaped body with a root at depth of about 10 km (according to gravity data). The depth of magma solidification of the Čistá Massif is about 2.5 km (Dudek et al. 1991). Age and isotopic data: the body intrudes the Hůrky Fenites, Tis Granite and Neoproterozoic phyllites. Čistá Granodiorite 311–423 Ma and 328 Ma (K-Ar biotite) and 450 Ma (K-Ar hornblende), 373.1 ± 1.1 Ma (Pb-Pb zircon), Hůrky Fenite (alkalisyenite) 289-300 Ma (K-Ar whole rock), Černá Kočka Granite 290–300 Ma (K-Ar whole rock) intersects fenite and contains
68
Heat production (µWm-3): Čistá Granodiorite 2.5–4.4.
Pb-Ag sulphides are genetically related to the Čistá Granodiorite Massif.
References BREITER, K. – SOKOL, A. (1997): Chemistry of Bohemian granitoids: Geotectonic and metallogenic implications. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 75–96. CHLUPÁČOVÁ, M. – HROUDA, F. – JANÁK, J. – REJL, L. (1975): The fabric, genesis and relative age relations of the granitic rocks of the Čistá-Jesenice Massif (Czechoslovakia). – Gerlands Beitr. Geophys. 84, 487–500. DUDEK, A. – FROLÍKOVÁ, I. – NEKOVAŘÍK, Č. (1991): The depth of intrusion of Hercynian granitoid plutons in the Bohemian Massif. – Acta Univ. Carol., Geol., Kettner Vol. 3–4, 249–256. (In Czech) KLOMÍNSKÝ, J. (1961): The finding of alkali-syenite rock with cancrinite in the Čistá Massif. – Věst. Ústř. Úst. geol. 36, 335–356. (In Czech) KLOMÍNSKÝ, J. (1963a): Cancrinit-führende Alkalisyenite aus dem Čistá Massiv, Westböhmen, Tschechoslowakei. – Neu. Jb. Mineral. Abh. 99, 295–306. KLOMÍNSKÝ, J. (1963b): Geology of the Čistá Massif. (English summary.) – Sbor. geol. Věd, Geol. 3, 75– 99. KLOMÍNSKÝ, J. – RIEDER, M. – KIEFT, C. – MRÁZ, L. (1971): Heyrovskýite, 6(Pb0.86Bi0.08(Ag,Cu)0.04)S.Bi2S3 from Hůrky, Czechoslovakia, a new mineral of genetic interest. – Mineralium Depos. 6, 133–147. KOPECKÝ, L. – CHLUPÁČOVÁ, M, – KLOMÍNSKÝ, J. – SOKOL, A. (1997): The Čistá-Jesenice Pluton in Western Bohemia: geochemistry, geology, petrophysics and ore potential. – Sbor. geol. Věd., ložisk. Geol. Mineral. 31, 97–127. KOPECKÝ, L. – ŠMEJKAL, V. – HLADÍKOVÁ, J. (1987): Isotopic composition and origin of carbonatites in alkaline-metasomatic and cognate rocks of the Bohemian Massif, Czechoslovakia. In: Kopecký, L. Ed.: Proc. of the first seminar on carbonatites and alkaline rocks of the Bohemian Massif and ambient regions, 177–196. – Czech Geol. Survey, Prague. VENERA, Z. – SCHULMANN, K. – KRÖNER, A. (2000): Intrusion within a transtensional tectonic domain: the Čistá granodiorite (Bohemian Massif) – structure and rheological modelling. – J. struct. Geol. 22, 1437–1454.
Fig. 1.41. Čistá Massif ABQ and TAS diagrams. 1 – Čistá Granodiorite, 2 – Hůrky Fenite (alkalisyenite).
Čistá Granodiorite (I + II) Quartz-normal, sodic, metaluminous, meso-leucocratic, I-type, M-serie granodiorite grd1CIS 2Cista 3Cista 4Fenite SiO2 68.50 71.48 71.40 60.36 TiO2 0.33 0.27 n.d. 0.01
69
16.60 15.07 15.19 21.07 Al2O3 Fe2O3 1.29 0.90 0.18 0.86 FeO 0.63 0.42 0.76 2.04 MnO 0.07 0.02 0.03 0.13 MgO 0.56 0.42 0.46 0.15 CaO 3.17 2.00 2.11 1.13 Na2O 5.69 5.05 5.39 5.88 K2O 2.02 3.10 2.88 5.68 P2O5 0.13 0.07 0.08 0.02 Mg/(Mg + Fe) 0.35 0.37 0.46 0.08 K/(K + Na) 0.19 0.29 0.26 0.39 Nor.Or 12.06 18.59 17.33 34.15 Nor.Ab 51.63 46.02 49.29 53.74 Nor.An 15.03 9.60 10.13 5.57 Nor.Q 19.11 24.00 22.12 0.33 Na + K 226.50 228.78 235.08 310.34 *Si 115.84 144.00 135.95 11.09 K-(Na + Ca) -197.25 -132.80 -150.41 -88.30 Fe + Mg + Ti 42.97 30.93 24.25 73.03 Al-(Na + K + 2Ca) -13.57 -4.17 -12.03 63.13 (Na + K)/Ca 4.01 6.41 6.25 15.40 A/CNK 0.97 0.99 0.97 1.18 Trace elements (in ppm): Čistá Granodiorite – Ba 821, Cs 2, Ga 15, Hf 4.6, Li 18, Nb 8, Pb 23, Rb 38, Sc 3.3, Sr 810, Th 10, U 5, Y 8, Zn 38, Zr 103, La 24, Ce 40, Sm 2.2, Eu 1.1, Yb 1, Lu 0.15 (Breiter and Sokol 1997). Trace elements (in ppm): Čistá Granodiorite – B 27, Ba 939, Cr 26, Cs –, Cu 8, Li 19, Mo 3, Nb 10, Ni 34, Pb 25, Rb 46, Sn 1.5, Sr 749, Ta 1.3, Th 13, U 6, Y 3, Zn 34, Zr , La 25, Ce 38, Sm 2.9, Eu 1.02, Yb 0.85, Lu 0.1 (Kopecký et al. 1997). Trace elements (in ppm): Hůrky Fenite (alkali-syenite) – Cr 296, Cu 8, Li 1234, Mo 150, Nb 176, Ni 235, Pb 15, Rb 448, Sn 74, Sr 327, U 11, Y 167, Zn 1589, La 265, Ce 450, Sm 26, Eu 2.45, Yb 0.85, Lu 0.1 (Kopecký et al. 1997). 1.15. BECHLÍN MASSIF Age and isotopic data: Bechlín Diorite 550 Ma (K-Ar hornblende). The Tis Granite intrudes the Bechlín Diorite. Geological environment: Neoproterozoic metasediments and metavolcanites of the Kralupy-Zbraslav Group. Contact aureole: at the exocontact of the Tis Granite sill, the Bechlín Diorite is altered by intense silica and alkali metasomatism. Mineralization: no indications.
Regional position: within the Bohemicum, hidden intrusion under the Upper Carboniferous and Cretaceous cover. Rock types: 1. Bechlín Diorite – ± porphyritic biotite – hornblende diorite with pyroxene to hornblende-pyroxene diorite. 2. Tis Granite – porphyritic biotite granite – 60 m thick sill penetrates the Bechlín Diorite. Size and shape: circular intrusion, 100 km2, 10 km in diameter (the shape is indicated by magnetic anomaly).
References CHÁB, J. (1975): Intruzivní horniny strukturního vrtu Bechlín u Roudnice. – Sbor. geol. Věd, Geol. 27, 55– 82.
70
Bechlín Diorite Quartz-defficient, sodic, metaluminous, melanocratic, I type, monzodiorite to monzogabbro n=7 Med. Min Max QU1 QU3 SiO2 50.95 50.15 55.16 50.52 51.62 TiO2 1.87 0.33 2.47 1.35 1.90 Al2O3 16.59 15.16 18.87 15.52 16.98 Fe2O3 1.63 1.48 3.55 1.49 1.84 FeO 8.40 5.16 10.38 7.28 8.65 MnO 0.17 0.16 0.26 0.16 0.18 MgO 4.08 2.05 6.27 3.43 4.86 CaO 7.56 5.48 9.56 6.84 7.56 Na2O 4.20 3.72 5.36 3.78 4.36 K2O 0.86 0.47 1.06 0.77 0.86 P2O5 0.55 0.18 1.08 0.25 0.64 Mg/(Mg + Fe) 0.41 0.30 0.56 0.35 0.46 K/(K + Na) 0.12 0.07 0.13 0.10 0.12 Nor.Or 5.20 3.16 6.80 5.08 5.49 Nor.Ab 42.96 33.37 52.05 36.44 43.88 Nor.An 37.43 24.84 49.16 31.36 37.80 Nor.Q 0.00 0.00 4.85 0.00 0.00 Na + K 151.88 138.30 191.22 139.39 160.65 *Si 38.01 20.63 63.67 28.32 49.65 K-(Na + Ca) -257.52 -275.04 -241.15 -272.26 -252.42 Fe + Mg + Ti 277.84 171.34 300.05 249.37 285.80 Al-(Na + K + 2Ca) -84.51 -181.54 -16.10 -168.09 -77.50 (Na + K)/Ca 1.24 0.81 1.96 0.82 1.25 A/CNK 0.85 0.63 1.00 0.66 0.85
Fig. 1.42. Bechlín Massif ABQ and TAS diagrams. Bechlín Diorite.
1.16. PETROVICE STOCK Size and Shape (in erosion level): (350 × 100 m) slightly curved rectangular body. Age and isotopic data: Petrovice Gabbro 380 Ma (K-Ar kaersutite).
Regional position: the Kožlany intrusive zone within the Bohemicum – (Kralupy-Zbraslav Group). Rock type: Petrovice Gabbro – hornblendepyroxene melagabbro.
71
Zoning: compositional layering formed by an alternation of metre-sized texturally homogeneous and inhomogeneous layers. Mineralization: traces of Cu (chalcopyrite).
Geological environment: Teplá-Barrandian Unit – Neoproterozoic metasediments of the chlorite zone, slightly contact metamorphosed. Contact aureole: the mode of the contact aureole is not described; the body is limited by faults.
References ULRYCH, J. – CIMBÁLNÍKOVÁ, A. – FIALA, J. – KAŠPAR, P. – LANG, M. – MINAŘÍK, L. – PALIVCOVÁ, M. – PIVEC, E. (1976): Petrology of the Petrovice melagabbro. – Rozpr. Čs. Akad. Věd 86, 9, 55 pp. 1.17. KOSOBODY STOCK Geological environment: Neoproterozoic slates, aleurolites and greywackes of the chlorite zone, in a marginal part of the contact aureole of the Čistá Stock. Contact aureole: the Kosobody Gabbro shows no imprints of regional metamorphism of the surrounding Neoproterozoic schists. Zoning: not observed. Mineralization: not reported.
Regional positon: the Kožlany intrusive zone within the Bohemicum – (Kralupy-Zbraslav Group – Blovice Formation.). Rock type: Kosobody Gabbro – mediumgrained biotite – hornblende melagabbro with clinopyroxene (tholeiitic composition). Size and shape (in erosion level): (70 × 50 m) intrusive stock. Age and isotopic data: likely a product of Variscan plutonic activity, apparently younger than the Tis Granite. No isotopic data.
References FEDIUKOVÁ, E. – FEDIUK, F. (1978): Gabro od Kosobod na Rakovnicku. – Acta Univ. Carol., Geol., Kratochvíl Vol. 3–4, 365–392. 1.18. KOŽLANY COMPOSITE STOCK Regional position: The intrusive zone within the Kralupy-Zbraslav Group. Rock types: 1. Kožlany Quartz diorite – hornblende (± pyroxene), biotite quartz diorite – granodiorite. 2. Kožlany Gabbro and Pyroxenite. 3. Dyke Swarm (lamprophyre and granodiorite porphyry). 4. Kožlany Pyroxenite. 5. Kožlany Anorthosite.
Fig. 1.43. Kožlany Composite Stock hierarchical scheme according to rock types.
72
internal differentiation, lens-like intrusion emplaced along an extensional fault. Age and isotopic data: older than the ČistáJesenice Composite Pluton? No isotopic data. Geological environment: Neoproterozoic metasediments of the chlorite zone, slightly contact metamorphosed (phyllite). Contact aureole: weak contact metamorphism of phyllites up to 35 m at the exocontact. Zoning: strong lateral asymmetric zonation with pyroxene core at the southern margin of the quartz diorite. Gabbro only shows a zonal structure with the most mafic types (melagabbro, pyroxenite) in the centre of the body. Small anorthositic schlieren occur in the gabbro. Mineralization: not reported.
Fig. 1.44. Kožlany Composite Stock geological sketch-map (adapted after Fediuk and Fediuková 1988). 1 – Kožlany Quartz diorite, 2 – granodiorite, 3 – Kožlany Gabbro, 4 – Kožlany Pyroxenite.
Size and shape (in erosion level): (650 × 250 m) four generations of rock dykes, high degree of Kožlany Quartz diorite and Gabbro
(Quartz diorite: Quartz-normal, sodic, metaluminous, mesocratic, I-type monzodiorite to diorite Gabbro: Quartz-deficient, sodic, metaluminous, mesocratic, I-type, gabbro quartz diorite gabbro SiO2 60.27 63.10 47.11 47.28 TiO2 1.08 1.03 2.07 2.25 Al2O3 15.97 16.10 14.27 14.56 Fe2O3 2.05 1.51 2.80 3.11 FeO 3.67 4.22 9.11 8.56 MnO 0.10 0.10 0.17 0.16 MgO 2.14 2.19 5.50 4.97 CaO 5.08 3.55 8.88 8.75 Na2O 3.89 3.95 3.23 3.31 K2O 3.03 2.73 1.86 1.55 P2O5 0.11 0.19 0.41 0.39 Mg/(Mg + Fe) 0.40 0.41 0.45 0.43 K/(K + Na) 0.34 0.31 0.27 0.24 Nor.Or 19.33 17.33 11.32 9.37 Nor.Ab 37.71 38.12 29.88 30.41 Nor.An 26.43 17.58 39.13 41.62 Nor.Q 10.72 17.00 0.00 0.00 Na + K 189.86 185.43 143.72 139.72 *Si 84.11 122.43 12.07 18.56 K-(Na + Ca) -151.78 -132.80 -223.09 -229.93 Fe + Mg + Ti 143.42 144.93 324.35 309.68 Al-(Na + K + 2Ca) -57.42 4.13 -180.19 -165.85 (Na + K)/Ca 2.10 2.93 0.91 0.90 A/CNK 0.85 1.03 0.62 0.65 References DOLEJŠ, D. (2008): Intrusive rocks in the Barrandian Proterozoic and their chemical composition. – Zpr. geol. Výzk. v Roce 2007, 17–21. FEDIUK, F. – FEDIUKOVÁ, E. (1988): A composite intrusive stock, Kožlany near Rakovník. – Acta Univ. Carol., Geol. 4, 437–479. (English summary)
73
Fig. 1.45. Kožlany Composite Stock ABQ and TAS diagrams. 1 – Kožlany Quartz diorite, 2 – Kožlany Gabbro, 3 – Kožlany Pyroxenite, 4 – kersantite dyke, 5 – minette dyke, 6 – bi-granodiorite porphyry.
1.19. CHOCENICKÝ ÚJEZD STOCK Neoproterozoic subvolcanic intrusion. Variscan age is doubtful. No isotopic data. Geological environment: phyllitized greywacke, siltstones and shales. Contact aureole: not known. Zoning: not observed. Mineralization: not reported.
Regional position: Teplá-Barrandian Unit (Blovice Formation of the Kralupy-Zbraslav Group Rock types: Chocenický Újezd Monzodiorite – clinopyroxene monzodiorite. Size and shape (in erosion level): circular body with ca100 m in diameter. Age and isotopic data: probably
References FEDIUK, F. – MATĚJKA, D. (2001): Pyroxene diorite to gabbrodiorite at Chocenický Újezd village in the Blovice area, SW Bohemia. – Folia Mus. Rer. Natur. Bohem. Occid., Geol. 44, 1–8. 1.20. MLADOTICE STOCK Geological position: the Kožlany intrusive zone within the Teplá-Barrandian Unit – (the KralupyZbraslav Group). Rock types: 1. Mladotice Gabbro – olivine ± hornblende norite to gabbronorite, gabbro to leucogabbro. 2. Mladotice Quartz diorite – biotitehornblende quartz diorite to tonalite. 3. Granite Porphyry and microgranite Dykes. 4. Alkali-feldspar Granite (with garnet). Size and shape (in erosion level): ~ 1.5 km2 (1.5 × 1 km) oval cluster of small stocks and dykes connected in a shallow depth into the larger plug. An example of the balloon-like shape of the satellite stock (uncovered at the local quarry). Age and isotopic data: Related to Proterozoic volcanic metabasites. No isotopic data.
Fig. 1.46. Mladotice Stock geological sketch-map (adapted after Dolejš and Cháb 1988). 1 – contact hornfels (inner zone), 2 – contact hornfels (external zone), 3 – Mladotice Gabbro, 4 – faults.
74
two pyroxene hornfelses (maximum temperature 830 oC) with abundant metatexites and diatexites. Zoning: not reported. Mineralization: not reported.
Geological environment: Precambrian metasediments and metavolcanics of the TepláBarrandian Unit (Kralupy-Zbraslav Group). Contact aureole: well-defined wide zonal contact aureole (4 × 4.5 km) of spotted schists to
Fig. 1.47. Mladotice Stock ABQ and TAS diagrams. 1 – Mladotice gabbro, 2 – Mladotice Quartz diorite, 3 – Mladotice Tonalite, 4 – microgranite (granophyre) dykes, 5 – granite porphyry.
Mladotice Quartz diorite Quartz normal, sodic, metaluminous, meladiorite to gabbrodiorite n=6 Med Min Max QU1 SiO2 56.68 52.87 58.46 54.66 TiO2 1.87 1.36 2.11 1.65 Al2O3 15.72 15.63 16.69 15.68 Fe2O3 2.05 1.71 2.90 1.76 FeO 6.32 5.02 7.12 6.21 MnO 0.13 0.12 0.16 0.13 MgO 3.53 3.14 5.85 3.37 CaO 5.48 5.13 7.27 5.41 Na2O 3.08 2.76 3.70 3.05 K2O 1.30 1.10 1.92 1.11 P2O5 0.47 0.27 0.68 0.46 Mg/(Mg + Fe) 0.42 0.40 0.53 0.42 K/(K + Na) 0.21 0.19 0.29 0.19 Nor.Or 8.51 7.54 12.74 7.67 Nor.Ab 31.10 28.98 36.79 31.06 Nor.An 27.15 23.93 39.81 26.96 Nor.Q 13.47 4.31 16.22 11.45 Na + K 135.15 112.63 147.00 123.07 *Si 114.09 83.82 119.96 110.04 K-(Na + Ca) -178.55 -206.00 -150.10 -192.72 Fe + Mg + Ti 217.42 206.43 298.67 216.46 Al-(Na + K + 2Ca) -27.58 -74.42 -5.06 -30.03 (Na + K)/Ca 1.40 0.95 1.53 1.00 A/CNK 0.96 0.82 1.02 0.95
75
QU3 57.07 1.95 16.08 2.09 6.66 0.15 3.76 5.66 3.09 1.47 0.49 0.49 0.23 9.76 32.21 27.53 13.77 137.38 114.98 -172.67 232.24 -16.17 1.41 0.99
Mladotice Gabbro Quartz-deficient, sodic, metaluminous, melanocratic, I-type gabbro 0mlad 1mlad 2mlad 3mlad SiO2 47.90 47.86 47.94 49.13 TiO2 2.36 2.41 2.26 0.89 Al2O3 14.71 14.13 15.28 21.98 Fe2O3 3.35 4.08 2.61 1.68 FeO 8.94 9.75 8.12 3.42 MnO 0.20 0.18 0.21 0.12 MgO 7.89 6.30 9.47 4.02 CaO 8.78 8.26 9.30 8.87 Na2O 3.06 3.46 2.66 3.18 K2O 0.55 0.50 0.59 0.76 P2O5 0.28 0.29 0.26 1.05 Mg/(Mg + Fe) 0.54 0.45 0.61 0.59 K/(K + Na) 0.11 0.09 0.13 0.14 Nor.Or 3.68 3.37 3.93 5.06 Nor.Ab 31.14 35.45 26.92 32.17 Nor.An 47.28 44.59 50.07 41.78 Nor.Q 0.00 0.00 0.00 4.23 Na + K 110.42 122.27 98.36 118.75 *Si 50.94 45.05 57.04 48.36 K-(Na + Ca) -243.63 -248.33 -239.15 -244.65 Fe + Mg + Ti 391.81 373.41 409.07 179.57 Al-(Na + K + 2Ca) -134.68 -139.37 -129.97 -3.45 (Na + K)/Ca 0.71 0.83 0.59 0.75 A/CNK 0.69 0.68 0.71 1.05
4mlad 49.57 1.24 15.20 2.30 6.40 0.14 7.93 8.68 2.81 0.88 0.24 0.62 0.17 6.13 29.74 48.90 0.00 109.36 62.45 -226.77 330.24 -120.43 0.71 0.72
References DOLEJŠ, D. (1996): Geology of the surroundings of Mladotice, NNW of Plzeň. – Zpr. geol. Výzk. v Roce 1995, 45–47. DOLEJŠ, D. (2008): Intrusive rocks in the Barrandian Proterozoic and their chemical composition. – Zpr. geol. Výzk. v Roce 2007, 17–21. DOLEJŠ, D. – CHÁB, J.(1998): Petrologie a geochemie mladotického komplexu. – Unpubl. report, 97 pp. Czech Geol. Survey, Prague. FEDIUK, F. – FEDIUKOVÁ, E. (1996): Contribution to the petrography and mineralogy of main types of the gabbronoritic to quartz dioritic plutonites of the Mladotice intrusive cluster, W-Bohemia. – Erica, 5, 3–19. (In Czech) FEDIUKOVÁ, E. – FEDIUK, F. (1996): Petrographic-mineralogical study of the Mladotice intrusive cluster. – Zpr. geol. Výzk. v Roce 1995, 68–70. HEJTMAN, B. (1984): Petrografie vyvřelých hornin Českého masívu. Část I, Intruzivní vyvřelé horniny západních a severozápadních Čech. – 186 pp. Univ. Karl. Praha. PAUK, F. (1930): – Preliminary report on intrusive rocks near Plasy. – Sbor. St. geol. Úst. Čs. Republ., 9, 369–390, 410–411. 1.21. VITÍNKA (KOKOTSKO) STOCK Size and shape (in erosion level): three dykelike stocks (size two of them 1,250 m × 200 m and 1,000 m × 120 m, respectively) representing larger intrusion at depth. Age and isotopic data: Variscan? No isotopic data.
Regional position: in the Teplá-Barrandian Unit (Bohemicum) (East of Plzeň). Rock types: Vitínka Granodiorite – ± porphyritic granodiorite (correlated with the Štěnovice Granodiorite).
76
Geological environment: sediments and volcanics.
Neoproterozoic
Contact aureole: distinct narrow thermal aureole. Mineralization: not reported.
References KETTNER, R. – KETTNEROVÁ, M. (1918): O granodioritových a porfyrových intruzích na Rokycansku. – Rozpr. Čes. Akad. Vědy Slovesn. Umění. 26/2, 49, 1–19. 1.22. LOWER VLTAVA COMPOSITE MASSIF 8. Neratovice Granodiorite – fine-grained hornblende granodiorite to diorite (marginal facies). Size and shape: mostly hidden granitic massif is associated with a swarm of granite porphyry dykes and small bodies of abyssal rocks of granite, granodiorite, syenite, tonalite and gabbro composition, cutting the volcanosedimentary Neoproterozoic sequences. The massif extent at depth of – 500 m is over 70 km2 and at depth of – 1,000 m over 200 km2 (defined according to zones of thermal metamorphism). Dispersed outcrops of irregular Size and shape are scattered over a territory of ca. 10 × 15 km. Magmatic centre is around Odolena Voda. Age and isotopic data: the Cambrian age. Older than Ordovician sediments (not affected by contact metamorphism). No isotopic data. Contact aureole: a broad thermal aureole, (cordierite-amphibole-pyroxene) hornfelses and chiastolite schists. Geological environment: Neoproterozoic sediments and volcanics of the Zbraslav-Kralupy Group. Mineralization: Cu occurrences in the Neoproterozoic greywackes.
Regional position: in the Teplá-Barrandian Unit (Bohemicum), cutting the Neoproterozoic volcanosedimentary sequences (the ZbraslavKralupy Group). The massif is partly covered by Cretaceous, Tertiary and Quaternary sediments. The Neratovice Massif, the Hoštice, Odolena Voda, Dolní Chabry and Klecany Stocks represent its outcrops. Calc-alkaline, meta- to peraluminous, medium to high-K, post-orogenic setting. Rock types: 1. Microgranit e(granite porphyry) to diabase Dyke Swarm – basic (~ 7 %), intermediate (~ 43 %), and acid (~ 48 %). 2. Neratovice Gabbro and Gabbrodiorite – hornblende-pyroxene gabbro. 3. Hoštice Granodiorite - medium-grained hornblende-biotite ± pyroxene granodiorite to tonalite. 4. Klecany Granite – alkali-feldspar leucogranite. 5. Dolní Chabry Syenite – quartz-bearing alkali-feldspar syenite. 6. Neratovice Trondhjemite – ± porphyritic hybrid biotite-hornblende trondhjemite. 7. Netřeba Gabbro – coarse-grained hornblende ± pyroxene gabbrodiorite and gabbro.
Fig. 1.48. Lower Vltava Composite Massif geological sketch-map (adapted after Fediuk 2006). 1 – outcrops of the massifs and stocks, 2 – Chiastolite zone (subsurface presence of the Lower Vltava Composite Massif), 3 – outline of the Lower Vltava Composite Massif at depth –500 m (brown biotite zone), 4 – outline of the Lower Vltava Composite Massif at depth –1000 m (khaki biotite).
77
Fig. 1.49. Lower Vltava Composite Massif ABQ and TAS diagrams. 1 – Felsic granite porphyry, 2 – Neratovice Trondhjemite and Granodiorite, 3 – Dolní Chabry Syenite, 4 – Netřeba Gabbro.
Granite Porphyry Quartz normal, sodic, peraluminous, leucogranite 1fgporf 2fgporf SiO2 76.46 75.35 TiO2 0.06 0.03 Al2O3 13.16 13.26 Fe2O3 0.37 0.61 FeO 0.18 0.25 MnO 0.01 0.03 MgO 0.21 0.29 CaO 0.50 0.56 Na2O 4.16 4.15 K2O 3.17 4.61 P2O5 0.03 0.03 Mg/(Mg + Fe) 0.42 0.38 K/(K + Na) 0.33 0.42 Nor.Or 19.24 27.70 Nor.Ab 38.38 37.90 Nor.An 2.35 2.62 Nor.Q 36.95 30.16 Na + K 201.55 231.80 *Si 216.69 179.57 K-(Na + Ca) -75.85 -46.02 Fe + Mg + Ti 13.10 18.70 Al-(Na + K + 2Ca) 39.05 8.63 (Na + K)/Ca 22.61 23.21 A/CNK 1.18 1.04
3fporf 75.14 0.03 13.47 1.13 0.25 0.02 0.29 0.41 4.10 4.31 0.09 0.29 0.41 25.94 37.50 1.47 31.83 223.82 188.17 -48.10 25.21 26.08 30.61 1.12
4gporf 74.36 0.05 13.32 0.41 0.74 0.03 0.15 0.92 4.75 3.41 0.03 0.19 0.32 20.67 43.76 4.48 29.57 225.68 175.91 -97.28 19.79 3.08 13.76 1.01
6gporf 71.76 0.25 13.76 1.11 0.85 0.03 0.35 2.59 4.19 2.59 0.06 0.25 0.29 15.93 39.16 12.96 30.44 190.20 177.12 -126.40 37.56 -12.35 4.12 0.96
Neratovice Trondhjemite and Dolní Chabry Syenite Neratovice Trondhjemite – Quartz-normal, sodic, metaluminous, mesocratic quartz diorite Dolní Chabry Syenite – Quartz-poor, sodic, metaluminous, mesocratic syenite 7tonali 9tonali 7bigrdD 8alkfsy
78
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
64.64 0.73 16.55 0.39 4.81 0.02 1.42 3.85 4.27 1.40 0.32 0.33 0.18 8.91 41.33 18.32 21.61 167.52 145.32 -176.72 116.25 20.18 2.44 1.09
62.92 0.82 16.34 0.56 4.91 0.06 1.76 4.31 4.42 1.20 0.28 0.36 0.15 7.73 43.27 21.30 18.40 168.11 129.72 -194.01 129.34 -0.94 2.19 1.02
62.34 0.75 16.22 2.13 3.37 0.08 1.42 3.91 5.16 1.66 0.18 0.32 0.17 10.43 49.29 19.38 14.26 201.76 97.61 -200.99 118.25 -22.68 2.89 0.94
64.24 0.47 14.57 1.06 2.87 0.07 1.76 2.10 9.04 0.58 0.05 0.45 0.04 3.76 83.58 0.00 6.25 304.03 27.39 -316.85 102.81 -92.80 8.12 0.76
References CINIBURK, M. (1961): Granodioritový peň mezi Vodochody a Hošticemi. – Věst. Ústř. Úst. geol. 36, 73– 74. CINIBURK, M. (1966): Geochemie a petrografie západní části neratovického komplexu a přilehlého okolí. – Čas. Mineral. Geol., 11, 27–35. FEDIUK, F. (1993): Žula v dolnovltavském údolí u Klecan. – Zpr. geol. Výzk. v Roce 1992, 24–25. FEDIUK, F. (1994): Pokračování Neratovického komplexu do území Prahy. – Zpr. geol. Výzk. v Roce 1993, 24–26. FEDIUK, F. (1996): Poloskrytý dolnovltavský pluton. – Uhlí, Rudy, geol. Průzk. 3, 91. FEDIUK, F. (2006): The Lower Vltava River Pluton: a semi-hidden intrusive complex in Neoproterozoic at the northern outskirt of Prague, Central Bohemia. – Bull. Czech Mineral. Geol. Soc. 50, 71–79. RÖHLICH, P. (1960): Objev granodioritového pně v algonkiu sev. od Prahy. – Věst. Ústř. Úst. geol. 35, 73– 76. (German summary) 1.22.1. NERATOVICE MASSIF 2. Netřeba Gabbro – coarse-grained hornblende ± pyroxene gabbrodiorite and gabbro. 3. Neratovice Granodiorite – fine-grained hornblende granodiorite to diorite (marginal facies). Size and shape: partly tectonically outlined composite intrusion (max. 16 × 7 km) and mostly hidden under Cretaceous and Permian-Upper Carboniferous sediments. The Netřeba Gabbro ~ 800 m2 in size. Age and isotopic data: Cambrian. No isotopic data.
Regional position: in the Teplá-Barrandian Unit (Bohemicum – Zbraslav-Kralupy Group). A member of the Lower Vltava Massif (in literature known as the Neratovice Complex). Rock types: 1. Neratovice Trondhjemite: a. fine-grained biotite-hornblende trondhjemite, b. fine-grained ± porphyritic hybrid biotitehornblende trondhjemite, c. medium-grained hornblende to biotitehornblende trondhjemite to granodiorite.
79
Geological environment: Neoproterozoic sediments and volcanics of the Zbraslav-Kralupy Group. Mineralization: Cu occurrences in the Neoproterozoic greywacke.
Contact aureole: narrow contact aureole at the southern margin. An interference with the Hoštice Stock contact aureole.
References CINIBURK, M. (1966): Geologie a petrografie západní části neratovického komplexu a přilehlého okolí. – Čas. Mineral. Geol. 11, 27–35. FEDIUK, F. (1994a): Žula v dolnovltavském údolí u Klecan. – Zpr. geol. Výzk. v Roce 1992, 24–24. FEDIUK, F. (1994b): Pokračování Neratovického komplexu do území Prahy. – Zpr. geol. Výzk. v Roce 1993, 24–26. FEDIUK, F. (1996): Poloskrytý dolnovltavský pluton. – Uhlí, Rudy, Geol. Průzk. 3, 91. FEDIUK, F. (2005): The Lower Vltava River Pluton: a semi-hidden intrusive complex in Neoproterozoic at the northern outskirt of Prague, Central Bohemia. – Bull. Mineral. Geol. Soc. 50, 71–79. FEDIUK, F. – ICHINKHORLOO, B. – CINIBURK, M. (1966): The Neratovice complex – a product of metasomatic transformation of volcanites into rocks of plutonic appearance. Paleovolcanites of the Bohemian Massif, 51–60. – Charles Univ. Prague. MATĚJKA, A. (1921): O geologických poměrech severního Povltaví. – Sbor. St. geol. Úst. Čs. Republ. 1, 49–81. RÖHLICH, P. (1960): Objev granodioritového pně v algonkiu sev. od Prahy. – Věst. Ústř. Úst. geol. 35, 73– 76. (German summary) ZOUBEK, J. (1988): Proterozoikum. In: Straka, J. et al.: Vysvětlivky k základní geologické mapě ČSFR 1 : 25 000, sheet 12-241 Roztoky. – Ústř. úst. geol. Praha. ZOUBEK, J. (1990): Proterozoikum. In: Straka, J. et al.: Vysvětlivky k základní geologické mapě ČSFR 1 : 25 000, sheet 12-223 Odolena Voda. – Ústř. úst. geol. Praha. Netřeba Gabbro Quartz-defficient, sodic, metaluminous, I-type gabbro to gabbrodiorite 1445gab 4gabori 5biamfp 6biamft SiO2 48.65 51.14 52.07 55.21 TiO2 0.85 0.66 0.76 0.70 Al2O3 16.84 15.47 15.69 17.29 Fe2O3 1.94 1.58 3.13 2.69 FeO 5.92 5.31 6.53 4.27 MnO 0.12 0.18 0.14 0.09 MgO 7.28 7.30 6.50 4.19 CaO 11.02 11.24 8.47 6.10 Na2O 3.08 2.52 2.70 4.89 K2O 0.28 0.53 0.43 1.17 P2O5 0.11 0.12 0.11 0.17 Mg/(Mg + Fe) 0.62 0.65 0.55 0.52 K/(K + Na) 0.06 0.12 0.09 0.14 Nor.Or 1.82 3.61 3.04 7.67 Nor.Ab 30.35 26.11 29.01 48.69 Nor.An 59.20 63.45 49.43 32.32 Nor.Q 0.00 0.00 3.73 1.38 Na + K 105.34 92.57 96.26 182.64 *Si 33.56 57.52 91.92 51.14 K-(Na + Ca) -289.95 -270.50 -229.03 -241.73 Fe + Mg + Ti 298.03 283.14 300.95 205.90 Al-(Na + K + 2Ca) -167.65 -189.64 -90.21 -60.65 (Na + K)/Ca 0.54 0.46 0.64 1.68 A/CNK 0.67 0.62 0.78 0.86 80
1.22.2. HOŠTICE STOCK metasediments indicate the presence of the Hoštice Stock at a shallow depth. Age and isotopic data: Cadomian? No isotopic data. Contact aureole: a wide thermal aureole (hornfelses and chiastolite schists). Geological environment: Neoproterozoic sediments and volcanics of the Zbraslav-Kralupy Group. Mineralization: Cu sulphides in Neoproterozoic greywackes.
Regional position: in Teplá-Barrandian Unit Bohemicum), the Zbraslav-Kralupy Group. Rock types: Hoštice Granodiorite – mediumgrained hornblende-biotite ± pyroxene granodiorite to tonalite. Size and shape: irregular shape of outcrop in size of 1,200 × 900 m and a set of small outcrops, partly covered by Cretaceous sediments (see Fig. 1.47). A member of the Lower Vltava Massif located on the present surface between Odolena Voda, Drasty-Hoštice and Suchdol near Prague. Numerous rock dykes and extent of the contact metamorphism of the Neoproterozoic
References CINIBURK, M. (1961): Granodioritový peň mezi Vodochody a Hošticemi. – Věst. Ústř. Úst. geol. 36, 73– 74. CINIBURK, M. (1966): Geochemie a petrografie západní části neratovického komplexu a přilehlého okolí. – Čas. Mineral. Geol., 11, 27–35. FEDIUK, F. (1994a): Žula v dolnovltavském údolí u Klecan. – Zpr. geol. Výzk. v Roce 1992, 24–24. FEDIUK, F. (1994b): Pokračování Neratovického komplexu do území Prahy. – Zpr. geol. Výzk. v Roce 1993, 24–26. FEDIUK, F. (1996): Poloskrytý dolnovltavský pluton. – Uhlí, Rudy, Geol. Průzk. 3, 91. FEDIUK, F. (2005): The Lower Vltava River Pluton: a semi-hidden intrusive complex in Neoproterozoic at the northern outskirt of Prague, Central Bohemia. – Bull. Mineral. Geol. Soc. 50, 71–79. RÖHLICH, P. (1960): Objev granodioritového pně v algonkiu sev. od Prahy. – Věst. Ústř. Úst. geol. 35, 73– 76. (German summary) 1.23. CHOTĚLICE MASSIF Regional position: hidden alkaline mafic intrusion within the Bohemicum under Cretaceous and Permian-Upper Carboniferous cover in depth over 400 m (near Nový Bydžov). Rock types: Chotělice Syenogabbro – pyroxene – biotite syenite, syenogabbro to biotite clinopyroxenite and Fe-Ti gabbro. Some similarities to the ultrapotassic plutonites of the Central Bohemian Composite Batholith. Size and shape (in erosion level): oval in shape ~ 60 km2 (12 × 5 km).
Age and isotopic data: 330-340 Ma (Rb-Sr whole rock). Contact aureole: not reported (intrusion into Neoproterozoic metasediments). Geological environment: Neoproterozoic sediments (schists, silicites, and greywackes) and volcanics (metabasalts). Zonation: not reported. Mineralization: not reported.
References HOLUB, F. V. (2009): Ultradraselný intruzivní complex v podloží české křídové pánve s. od Nového Bydžova: Geochemie, srovnání s ultradraselnými plutonity moldanubika a petrogeneze. In: Kohút, M. – Šimon, L. Eds: Spoločný kongres Slovenskej a Českej geologickej spoločnosti, Zborník abstraktov a exkurzný sprievodca. – Št. Geol. Úst. D. Štúra, Bratislava, pp. 74–75. (In Czech) VODIČKA, J. (1970): Plutonické horniny v podloží křídy na Královéhradecku. – Věst. Ústř. Úst. geol. 45, 157–162. (German abstract).
81
Chotělice Syenogabbro Wide range in composition. Quartz-deficient, metaluminious, melanocratic, I type syenogabbro 522Chot 523Chot SiO2 52.06 42.99 TiO2 1.05 1.77 Al2O3 12.58 8.05 Fe2O3 3.01 2.80 FeO 4.63 5.82 MnO 0.15 0.02 MgO 6.30 14.00 CaO 8.69 15.73 Na2O 2.16 0.78 K2O 6.90 2.96 P2O5 1.00 1.98 Mg/(Mg + Fe) 0.60 0.75 K/(K + Na) 0.68 0.71 Nor.Or 47.36 23.25 Nor.Ab 22.53 9.31 Nor.An 9.97 25.93 Nor.Q 0.00 0.00 Na + K 216.21 88.02 *Si -30.69 -36.52 K-(Na + Ca) -78.16 -242.82 Fe + Mg + Ti 271.66 485.67 Al-(Na + K + 2Ca) -279.08 -490.93 (Na + K)/Ca 1.40 0.31 A/CNK 0.49 0.26
potassic, 524Chot 47.37 1.29 12.44 5.55 4.61 0.02 8.08 12.04 1.17 4.42 1.31 0.60 0.71 29.37 11.82 35.27 0.00 131.60 -11.93 -158.61 350.38 -316.70 0.61 0.46
Fig. 1.50. Chotělice Massif ABQ and TAS diagrams. Chotělice Syenogabbro.
82
1.24. CHVALETICE MASSIF
Fig. .51. Chvaletice Massif hierarchical scheme according to rock types.
2. Chvaletice Granite – ± cataclastic medium- to coarse-grained biotite granite to metagranite. 3. Metagabbro stocks and dykes (generally older than the Chvaletice Granite) – hornblendepyroxene metagabbro. 4. Leucogranite – mylonitic leucogranite. Size and shape (in erosion level): tectonically outlined lenticular (15 × 2 km) etmolith, ~ 10 km2. Age and isotopic data: Chvaletice Granite 408 Ma (Rb-Sr whole rock), Cambro-Ordovician intrusion into the Upper-Cambrian and Neoproterozoic sediments. Contact aureole: weak thermal aureole. Geological environment: within the tectonic zone between weekly metamorphosed Neoproterozoic rocks and the Podhořany crystalline unit. Mineralization: traces of fluorite. Heat production (µWm-3): Chvaletice Granite 3.20.
Fig. 1.52. Chvaletice Massif geological sketch-map (adapted after geological map 1 : 50,000). 1 – Semtěš Granite, 2 – Chvaletice Granite, 3 – Metagabbro, 4 – Leucogranite 5 – faults.
Regional position: at the tectonic margin of the Bohemicum. Rock types: 1. Semtěš Granite – two-mica medium-grained granite.
References BENDL, J. – VOKURKA, K. (1993): Sr and Nd isotope study of some volcanic and plutonic rocks from Bohemia and Moravia. In: Vrána, S. – Štědrá, V. Eds: Geological model of Western Bohemia in relation to the deep borehole KTB in the FRG. Abstracts, 70–71. – Czech Geol. Survey, Prague. FIALA, F. (1979): Petrografie a chemismus některých intruzivních bazických vyvřelin sz. části Železných hor. – Čas. Mineral. Geol., 24, 24–38. KAŠPAROVÁ, J. (1931): Žulové horniny z okolí Chvaletic. – Věst. Král.čes. Společ. Nauk, Tř. II 31, 1–39. MINAŘÍK, L. – VACHTL, J. – KNOTEK, M. (1983): Geochemie nasavrckého masívu. – Stud. ČSAV 7, 61.
83
Fig. 1.53. Chvaletice Massif ABQ and TAS diagrams. Chvaletice Granite.
Chvaletice Granite Quartz-rich, sodic-potassic, weakly peraluminous, mesocratic, I-type , I-series, granite chval1 chval2 chval3 chval4 chval5 SiO2 74.01 75.89 74.75 75.46 75.00 TiO2 0.20 0.19 0.18 0.16 0.13 Al2O3 12.75 13.02 12.82 12.26 12.85 Fe2O3 2.14 1.18 0.75 1.33 0.91 FeO 0.73 1.14 1.08 1.04 0.78 MnO 0.06 0.02 0.02 0.05 0.03 MgO 0.48 0.86 0.61 0.43 0.43 CaO 1.35 1.11 1.03 0.94 1.11 Na2O 3.46 2.56 3.81 4.10 3.88 K2O 4.49 3.13 3.94 3.40 4.04 P2O5 0.05 0.05 0.05 0.05 0.04 Mg/(Mg + Fe) 0.24 0.41 0.38 0.25 0.32 K/(K + Na) 0.46 0.45 0.40 0.35 0.41 Nor.Or 27.24 19.38 24.04 20.67 24.49 Nor.Ab 31.90 24.09 35.33 37.89 35.74 Nor.An 6.54 5.43 4.94 4.46 5.38 Nor.Q 31.61 44.16 32.55 34.40 32.37 Na + K 206.99 149.07 206.60 204.49 210.98 *Si 187.56 258.76 195.85 202.97 191.90 K-(Na + Ca) -40.39 -35.95 -57.66 -76.88 -59.22 Fe + Mg + Ti 51.40 54.38 41.83 43.82 34.56 Al-(Na + K + 2Ca) -4.75 67.03 8.42 2.74 1.78 (Na + K)/Ca 8.60 7.53 11.25 12.20 10.66 A/CNK 0.99 1.36 1.04 1.02 1.01 Trace elements (in ppm): Chvaletice Granite – Ba 830, Cr 25, Cu 20, Li 40, Ni 8, Nb 20, Pb 20, Rb 200, Sn 3, Sr 300, V 40, Y 34, Zn 60 (Minařík et al. 1983).
84
1.25. NASAVRKY COMPOSITE MASSIF (NCM) 16. Kvítek Granite – porphyritic leucocratic granite. 17. Hlinsko Granite – cataclastic aplitic muscovite-biotite granite (similar to the Žumberk Granite). 18. Seč Granite – medium-grained leucocratic two-mica biotite granite. 19. Petříkov-Lukavice Porphyroids (Metarhyolite). Size and shape (in erosion level): triangular surface area of the Massif is about ~ 600 km2; Cretaceous platform sediments cover to the north. According to gravity survey the massif is expected under the Hlinsko Lower Palaeozoic. The Křižanovice Tonalite is an elliptical body ( ~ 14 km × 3 km), elongated in the E-W direction. Small bodies of the Křižanovice Granite intrude the Křižanovice Tonalite and contains its xenoliths. The size of enclaves varies from centimetres to several kilometres, but the shape is mostly oval or strongly elongated, lenticular to tabular. Všeradov Suite constitutes a subvolcanic intrusion exposed over an area of about ~ 16 km2. The Benátky Porphyry forms dykes, sills and/or marginal facies of the Všeradov Granite. Numerous gabbro bodies are mostly concentrated along the southern margin of the Granodiorite – Tonalite Suite (Central belt). The largest are the Horní Bradlo Gabbro (~ 3 × 0.75 km), Hluboká Gabbro (~ 2 × 0.35 km) and Polom Gabbro (~ 1.75 × 0.35 km). The Skuteč Granodiorite forms a few larger and several smaller bodies within the migmatites and granodioritic gneisses of the Proterozoic age. The depth of magma solidification of the NCM is about 5–7 km (Dudek et al. 1991). Age and isotopic data: Křižanovice Tonalite 483 ± 91 Ma (Rb-Sr whole-rock), Skuteč Granodiorite 332-336 Ma (K-Ar), Křižanovice Granite 320 ± 4 Ma (Rb-Sr whole-rock), Švihov Quartz diorite (facies of the Skuteč Granodiorite) 340.1 ± 1.1 Ma (Pb-Pb zircon), Křižanovice Granite 332 ± 1.2 Ma (U-Pb zircon). The Křižanovice Granite intrudes into the Křižanovice Tonalite and Lukavice volcanites (probably of Ordovician age). The Všeradov Granite is a Cadomian member of the Nasavrky Composite Massif. Contact aureole: extensive and intensive granitization and migmatitization of the Podhořany-Oheb Proterozoic Crystalline (Kutná Hora-Svratka Region).
Regional position: in the Bohemicum, (between the Moldanubicum and Lugicum). Rock types: NCM consists of five large, mostly W-E oriented magmatic suites: A. Všeradov Suite B. Gabbro Suite (southern belt) C. Anatexite Suite D. Granodiorite-Tonalite Suite (central belt) E. Granite Suite (northern belt). A. Všeradov Suite: 1. Všeradov Granite – foliated porphyritic finegrained biotite alkali-feldspar granite, comagmatic with the Vítanov series. 2. Albite porphyry and dacite (the Vítanov series). 3. Benátky-Babákov Porphyry. 4. Lukavice Metavolcanites. B. Gabbro Suite: 5. Horní Bradlo, Polom, Hluboká, Kraskov, Ochoz, Švihov, Srní and Vrbatův Kostelec Gabbros – numerous large bodies and/or xenoliths of hornblende ± pyroxene ± olivine gabbro, diorite, metagabbro to amphibolite. C. Anatexite Suite: 6. Tonalite to Granodiorite Orthogneiss and Migmatite. 7. Tábor Metagranite. 8. Petrkov Metagranite. D. Granodiorite-Tonalite Suite: 9. Skuteč Granodiorite to Quartz diorite – fineto medium-grained hornblende-biotite to biotite granodiorite to quartz diorite with abundant mafic enclaves. 10. Švihov Quartz diorite (facies of the Skuteč Granodiorite) – foliated coarse-grained quartz diorite. 11. Srní Granodiorite – fine-grained biotite granodiorite. 12. Křižanovice Tonalite – ± porphyritic medium- to coarse-grained hornblende-biotite tonalite. E. Granite Suite: 13. Křižanovice Granite – fine-grained leucocratic biotite granite. 14. Žumberk Granite (a variety of the Křižanovice granite and equivalent of the the Kvítek Granite) – porphyritic leucocratic granite. 15. Kvasín Granite (a variety of the Křižanovice granite) – fine to medium-grained biotite granite.
85
Lukavice belt, scheelite mineralization with Fe, As, Cu sulphides typical of granitoid magmatism in quartz veins and greisens. Heat production (µWm-3): Všeradov Granite 1.08, Křižanovice Granite 3.25, Skuteč Granodiorite 2.9.
Geological environment: Silurian phyllite, migmatites and granitized two-mica, biotite migmatites (ophthalmite, stromatite and nebulite) and orthogneisses (tonalite-diorite-granodioritic composition), in SE elongated bodies of coarsegrained metagranite of leucotonalite composition (Tábor Metagranite, Petrkov Metagranite). Mineralization: Cu-Zn-Pb sulphides, located in zones of metamorphosed acid volcanites of the
References BENEŠ, K. (1962): Drobně tektonická analýza Železných hor. – Sbor. geol. Věd, Geol. 43–75. BREITER, K. – SOKOL, A. (1997): Chemistry of Bohemian granitoids: Geotectonic and metallogenic implications. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 75–96. CHMELAŘ, J. – VESELÝ, V. (1968): Geologické poměry nasavrckého masivu. – Věst. Ústř. Úst. geol. 43, 431–440. DUDEK, A. – FROLÍKOVÁ, I. – NEKOVAŘÍK, Č. (1991): The depth of intrusion of Hercynian granitoid plutons in the Bohemian Massif. – Acta Univ. Carol., Geol., Kettner Vol. 3–4, 249–256. (In Czech) GOROCHOV, I. M. – LOSERT, J. – VARSCHAVSKAJA, E. S. – KUTJAVIN, E. P. – MELNIKOV, N. N. – CCHEKULAEV, V. P. (1979): Rb-Sr geochronology of metamorphics of the eastern part of the Czech massif (Železné hory area and neighbouring parts of Českomoravská Vrchovina Mountains). In: Correlation of magmatic and metamorphic rocks from Czechoslovakia with some areas in the USSR, 81– 100. – Nauka, Moscow. (In Russian) HÁJEK, J. – ŠPAČEK, J. – DROZEN, J. (1997): The Železné Hory pluton and its mantle rocks. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 51–66. HINTERLECHNER, K. – JOHN, C. (1909): Über Eruptivgesteine aus dem Eisengebirge in Böhmen. – Jb. Geol. Reichsanst. 59, 127–244. HROUDA, F. – CHLUPÁČOVÁ, M. (1980): The Magnetic Fabric in the Nasavrky Massif. – Čas. Mineral. Geol. 25, 17–27. HROUDA, F. – TÁBORSKÁ, Š. – SCHULMANN, K. – JEŽEK, J. – DOLEJŠ, D. (1999): Magnetic fabric and rheology of co-mingled magmas in the Nasavrky Plutonic Complex (E. Bohemia): implications for intrusive strain regime and emplacement mechanism. – Tectonophysics 307, 93–111. KNOTEK, M. (1976a): Petrologie nasavrckého masivu. – Acta Univ. Carol., Geol. 1, 1–27. KNOTEK, M. (1976b): Geology and petrography of basic rocks from the vicinity of Vrbatův Kostelec in Železné Hory Mts. – Acta Univ. Carol., Geol. 2, 147–166. MINAŘÍK, L. – VACHTL, J. – KNOTEK, M. (1982): Geochemistry of the Železné hory Pluton (eastern Bohemia). – Geol. Zbor. Geol. carpath. 33, 177–181. MINAŘÍK, L. – VACHTL, J. – KNOTEK, M. (1983): Geochemie nasavrckého masívu. – Stud. ČSAV 7, 61. MÍSAŘ, Z. (1974): Feeding channels of pre-Triassic ultrabasic-basic rocks in the Bohemian Massif. – Krystalinikum 10, 133–147. OPLETAL, M. (1967): Zpráva o geologickém mapování a petrografickém výzkumu mezi Trhovou Kamenicí a Horním Bradlem v Železných horách. – Zpr. geol. Výzk. v Roce 1966, 30–31. SACHSELL, E. (1933): Beiträge zur Kenntnis der Geologie und Petrographie des Eisengebirges in den angrenzenden Gebieten. – Mitt. Geol. Gesell. 25, 195–245. SCHARBERT, S. (1987): Rb-Sr Analysen des Tonalits und Granits von der Lokalität Křižanovice (Železné Hory). – Čas. Mineral. Geol. 32, 7, 411–412. SCHULMANN, K. – KRÖNER, A. – HEGNER, E. – WENDT, I. – KONOPÁSEK, J. – LEXA, O. – ŠTÍPSKÁ, P. (2005): Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic. – Am. J. Sci. 305, 407–448. VACHTL, J. (1971): Acid Volcanic Rocks of the Vítanov Group (Železné Hory Mountains). – Acta Univ. Carol., Geol., Hejtman Vol., 167–174. VACHTL, J. (1972): Subvulkanity hlinecké zóny v jv. části Železných hor. – Čas. Mineral. Geol. 17, 247– 255.
86
VACHTL, J. (1975): Comparison of two volcano-plutonic granite formations of the Nasavrky Massif, Czechoslovakia. – Acta Univ. Carol., Geol. 3, 199–220. VACHTL, J. (1979): Geostrukturní poměry nasavrckého masívu (Železné Hory). – Věst. Ústř. Úst. geol. 54, 1–10. VACHTL, J. – KNOTEK, M. (1979): Magmatity křižanovické štoly (Železné hory). – Sbor. geol. Věd, Geol. 33, 123–152. VODIČKA, J. (1950): Petrografické poměry v okolí Lukavice a Žumberka v Železných horách. – Sbor. St. geol. Úst. Čs. Republ. 17, 185–240. (In Czech) VODIČKA, J. (1963): Geologie, petrografie a ložiska nasavrckého plutonu, zvláště jeho východní části. – MS Czech Geol. Survey – Geofond, Prague. ŽEŽULKOVÁ, V. et al. (1988): Vysvětlivky k základní geologické mapě ČSR 1 : 25 000, list 13-441 Nasavrky. – 101 pp. Czech Geol. Survey, Prague.
Fig. 1.54. Nasavrky Composite Massif hierarchic scheme according to rock groups and rock types.
Fig. 1.55. Nasavrky Composite Massif geological sketch-map (adapted after Hájek et al. 1997). 1 – Lukavice Metavolcanites, 2 – Anatexite (periplutonic migmatitized and granitized pre-Variscan crystalline complex), 3 – basites and metabasites, 4 – subvolcanites of rhyolite to dacite composition in Lukavice and Benátky belts (e.g. Petříkov-Lukavice Metarhyolite), 5 – Křižanovice and Žumberk Granites, 6 – Křižanovice Tonalite, 7 – Hlinsko Granite, 8 – Skuteč Granodiorite and Quartz diorite, 9 – Všeradov Granite, 10 – faults.
87
Fig. 1.56. Nasavrky Composite Massif ABQ and TAS diagrams. 1 – Všeradov Granite, 2 – Gabbros and diorites, 3 – Křižanovice Tonalite, 4 – Skuteč Granodiorite and Švihov Quartz diorite, 5 – Srní Granodiorite, 6 – Křižanovice Granite, Žumberk and Kvasín Granites, Hlinsko Granite.
Všeradov Granite Quartz-rich, sodic, peraluminous, leucocratic, S-type, I- and M-series, granite 1315VSE 1316VSE 1317VSE SiO2 76.40 76.90 77.90 TiO2 0.26 0.25 0.12 Al2O3 12.94 12.63 11.61 Fe2O3 1.58 1.53 0.97 FeO 0.40 0.36 0.27 MnO 0.01 0.01 0.01 MgO 0.28 0.24 0.14 CaO 0.17 0.17 0.88 Na2O 5.67 5.13 5.82 K2O 0.31 0.33 0.67 P2O5 0.04 0.04 0.03 Mg/(Mg + Fe) 0.21 0.20 0.18 K/(K + Na) 0.03 0.04 0.07 Nor.Or 1.88 2.02 4.04 Nor.Ab 52.39 47.83 53.38 Nor.An 0.60 0.60 4.26 Nor.Q 39.61 43.46 37.35 Na + K 189.55 172.55 202.03 *Si 232.28 252.05 219.68 K-(Na + Ca) -179.42 -161.57 -189.28 Fe + Mg + Ti 35.57 33.27 20.89 Al-(Na + K + 2Ca) 58.50 69.41 -5.42 (Na + K)/Ca 62.53 56.92 12.87 A/CNK 1.30 1.39 0.98 Trace elements (in ppm): Všeradov Granite – Ba 480, Cr 14, Cu 6, Li 11, Ni 5, Rb 182, Sr 249, V 11 (Minařík et al. 1983).
88
Nasavrky Gabbro Quartz-poor to -defficient, sodic, metaluminous, calc-alkaline to tholeiitic, melanocratic, gabbro to diorite n=7 Med. Min Max QU1 QU3 SiO2 51.24 49.87 54.85 50.38 53.46 TiO2 1.12 0.45 1.51 1.05 1.18 Al2O3 17.25 16.68 17.90 16.83 17.65 Fe2O3 3.38 2.55 6.00 2.91 4.80 FeO 5.67 4.32 6.25 4.60 5.87 MnO 0.18 0.15 0.25 0.16 0.21 MgO 5.08 3.02 6.47 3.43 5.73 CaO 8.87 7.20 13.20 7.34 9.34 Na2O 3.22 2.58 4.04 3.10 3.38 K2O 0.69 0.54 1.39 0.60 0.98 P2O5 0.22 0.09 0.32 0.14 0.26 Mg/(Mg + Fe) 0.49 0.37 0.61 0.39 0.54 K/(K + Na) 0.13 0.10 0.22 0.11 0.14 Nor.Or 4.64 3.51 9.16 3.76 6.27 Nor.Ab 32.04 24.58 39.49 31.67 34.14 Nor.An 47.45 36.42 68.86 37.64 50.20 Nor.Q 1.31 0.00 9.31 0.00 5.66 Na + K 122.24 95.99 158.40 114.69 132.78 *Si 46.08 28.58 86.20 43.40 55.09 K-(Na + Ca) -234.08 -305.90 -228.93 -269.51 -233.23 Fe + Mg + Ti 272.72 214.78 300.76 227.85 273.53 Al-(Na + K + 2Ca) -111.54 -215.24 -57.48 -127.78 -81.42 (Na + K)/Ca 0.80 0.41 1.21 0.65 0.84 A/CNK 0.76 0.62 0.87 0.73 0.82 Trace elements (in ppm): Gabbro (average of different bodies) – Ba 300, Cr 200, Cu 100, Li 17, Ni 160, Nb 20, Pb 8, Rb 45, Sn 1.5, Sr 440, V 200, Y 20, Zn 130 (Minařík et al. 1983). Nasavrky Gabbro – Peridotites n = 13 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO 4Na2O K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si
Median 47.41 1.10 17.85 5.69 6.27 0.22 6.03 11.64 2.86 0.54 0.26 0.48 0.11 3.46 25.68 56.81 0.00 99.43 40.93
Min 40.50 0.15 15.67 2.01 3.61 0.05 4.59 8.42 0.59 0.06 0.02 0.41 0.02 0.40 5.91 41.47 0.00 20.53 -6.06
Max 51.97 1.85 22.97 7.56 9.55 0.41 7.80 15.00 3.94 2.22 0.87 0.70 0.30 14.21 34.73 82.83 2.32 160.40 65.84
89
QU1 44.76 0.60 17.24 3.23 5.72 0.20 5.28 10.08 1.50 0.10 0.07 0.45 0.07 0.68 15.35 51.65 0.00 60.33 12.72
QU3 48.62 1.25 18.48 6.45 6.73 0.28 7.38 12.2 3.04 0.92 0.36 0.55 0.22 6.21 29.82 68.55 0.00 122.76 49.47
K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
-273.05 300.67 -140.48 0.53 0.72
-317.72 238.10 -251.53 0.08 0.55
-216.28 434.01 -77.02 1.07 0.85
-276.32 285.68 -153.24 0.28 0.68
-249.75 343.90 -104.40 0.58 0.79
Křižanovice Granite Wide range in composition. Quartz-normal, sodic and potassic/sodic, peraluminous (weakly), leucocratic, S-type (weakly), M-series, granite n=9 Median Min Max QU1 QU3 SiO2 73.39 65.92 76.78 71.69 75.23 TiO2 0.16 0.01 0.56 0.10 0.26 Al2O3 13.09 11.67 16.18 12.90 13.43 Fe2O3 1.45 0.91 3.42 1.26 1.86 FeO 1.01 0.12 3.37 0.58 1.54 MnO 0.05 0.00 0.91 0.03 0.12 MgO 0.28 0.02 1.60 0.20 0.41 CaO 1.37 0.51 2.07 0.90 1.61 Na2O 3.18 2.28 4.54 2.59 4.39 K2O 4.35 3.25 5.20 3.66 4.57 P2O5 0.04 n.d. 0.15 0.02 0.06 Mg/(Mg + Fe) 0.23 0.01 0.34 0.13 0.26 K/(K + Na) 0.46 0.32 0.59 0.39 0.53 Nor.Or 26.87 19.57 33.03 22.24 27.97 Nor.Ab 29.42 21.42 41.36 24.26 40.53 Nor.An 6.80 2.43 10.37 4.40 7.92 Nor.Q 29.28 24.21 41.86 26.84 38.82 Na + K 194.31 154.92 242.05 177.40 214.22 *Si 176.73 155.11 241.90 159.56 227.46 K-(Na + Ca) -40.95 -106.34 20.27 -60.05 -12.96 Fe + Mg + Ti 43.39 26.41 120.71 37.50 47.61 Al-(Na + K + 2Ca) 23.45 -26.61 105.40 -17.43 45.36 (Na + K)/Ca 7.79 5.40 26.62 7.11 11.29 A/CNK 1.11 0.91 1.51 0.94 1.22 Trace elements (in ppm): Křižanovice Granite – Ba 1850, Cs 2, Ga 4, Hf 4.5, Li 7, Nb 5, Pb 6, Rb 105, Sc 4.5, Sr 130, Th 21, U 6, Y 17, Zn 22, Zr 146, La 30, Ce 49, Sm 3.1, Eu 0.79, Yb 1.8, Lu 0.24 (Breiter and Sokol 1997). Trace elements (in ppm): Žumberk Granite – Ba 1816, Co 3, Cs 2, Ga 10, Hf 5, Li 30, Rb 124, Sc 7, Sr 749, Th 23, U 5, Zr 50, La 43, Ce 80, Sm 4, Eu 1, Yb 2, Lu 0.3 (Hájek et al. 1997). Skuteč Granodiorite Quartz-normal, sodic, peraluminous, mesocratic, I-type, I- and M-series, granodiorite n=8 Median Min Max QU1 QU3 SiO2 64.06 58.77 65.98 62.78 65.13 TiO2 0.60 0.40 0.90 0.55 0.74 Al2O3 16.51 15.31 17.25 16.15 16.83 Fe2O3 1.47 0.95 1.97 0.99 1.69 FeO 2.94 2.56 4.95 2.86 3.34 MnO 0.08 0.02 0.11 0.07 0.09 MgO 2.38 1.42 3.53 1.57 2.55 CaO 3.38 1.95 5.36 2.81 3.60
90
Nor.Q 4.76 24.67 16.92 17.61 19.22 Na2O 3.52 2.64 4.20 3.16 3.96 K2O 3.30 2.84 3.90 3.18 3.78 P2O5 0.18 0.12 0.26 0.14 0.22 Mg/(Mg + Fe) 0.47 0.42 0.51 0.42 0.50 K/(K + Na) 0.39 0.31 0.45 0.37 0.41 Nor.Or 21.72 18.12 24.24 19.99 23.66 Nor.Ab 33.63 26.41 40.73 30.47 37.67 Nor.An 15.98 9.90 26.87 13.51 17.62 Na + K 183.38 155.26 214.15 169.92 202.85 *Si 119.88 66.49 169.85 116.11 132.91 K-(Na + Ca) -103.49 -170.81 -49.90 -108.13 -97.64 Fe + Mg + Ti 127.74 88.30 182.89 98.69 143.74 Al-(Na + K + 2Ca) 7.43 -48.24 99.42 -31.08 26.27 (Na + K)/Ca 2.92 2.05 4.46 2.47 3.99 A/CNK 1.03 0.89 1.46 0.92 1.10 Trace elements (in ppm): Skuteč Granodiorite – Ba 1353, Cs 10.7, Ga 10, Hf 5.3, Li 36, Nb 8, Pb 19, Rb 154, Sc 12.6, Sr 459, Th 19, U 8, Y 24, Zn 61, Zr 122, La 31, Ce 56, Sm 5.2, Eu 1.4, Yb 1.7, Lu 0.18 (Breiter and Sokol 1997). Trace elements (in ppm): Křižanovice Tonalite – Ba 1570, Co 13, Cs 3, Cu 52, Ga 10, Hf 6, Li 9, Nb 7, Ni 39, Pb 20, Rb 28, Sb 14,Sc 17, Sr 458, Th 11, Zn 57, Zr 217, La 37, Ce 76, Sm 5, Eu 1, Yb 3, Lu 0.3 (Hájek et al. 1997). 1.26. RANSKO COMPOSITE STOCK Fig. 1.57. Ransko Composite Stock geological sketch-map (adapted after Holub et al. 1992). 1 – Ransko Dolerite, 2 – Jezírka ore body, 3 – Granite porphyry dykes, 4 – Ransko pyroxene-poor Gabbro, 5 – Ransko pyroxene-rich Gabbro, 6 – Gabbro Troctolite, 7 – Ransko Peridotite, 8 – mixed gabbro zone, 9 – faults.
Regional position: discordant isolated gabbroperidotite body between the mesozonal and epizonal crystalline complexes of the Kutná Hora and Vítanov Group of the Hlinsko Zone.The Ransko Composite Stock consists of two groups of intrusive bodies: ultrabasic peridotite and gabbroid intrusions. (Northern ultrabasite body, Northern gabbro body, Central ultrabasite body, Southern gabbro body and Southern ultrabasite body). Rock types: 1. Ransko Peridotite. 2. Ransko Troctolite. 3. Ransko Gabbro – Hybrid olivine gabbro. Pyroxene and hornblende-pyroxene gabbro. 4. Ransko Dolerite. 5. Dykes of gabbro-pegmatite. 6. Quartz diorite, granite porphyry, aplite.
91
Contact aureole: thermal contact metamorphism – distinct, pyroxene and hornblende hornfelses. Zoning: concentric zoning in central ultrabasic body (the central peridotite plug is surrounded by plagioclase peridotite and troctolite). Distinct compositional zoning in the younger gabbro suite with decreasing basicity towards the periphery (pyroxene rich gabbro in the centre, intermediate zone of pyroxene poor olivine gabbro and pyroxene gabbrodiorite at the periphery). Younger intrusives of quartz diorite and porphyries occur at southern margin of the intrusion. Whole intrusion is tilted towards west. There is a general displacement of the intrusive centre towards the southeast. Mineralization: syngenetic Ni-Cu sulphides (Řeka deposit) and epigenetic massive sulphide Zn-Cu mineralization (Obrázek deposit).
Fig. 1.58. Ransko Composite Stock hierarchic scheme according to rock groups and intrusion segments.
Size and shape (in erosion level): 7 km2 (3 km in diameter), circular and conical (into depth). Age and isotopic data: probably Neoproterozoic to Early Palaeozoic (paleomagnetic data for the gabbro-peridotite association show Lower Cambrian age). Q-diorite = Silurian, Porphyries = Upper Carboniferous. No isotopic data. Geological environment: gneisses of the main group, gabbro, amphibolite, migmatites, porphyroids of the Vítanov group.
References BOUŠKA, V. – JELÍNEK, E. – MÍSAŘ, Z. – PAČESOVÁ, M. (1977): Geochemistry of the concentric Ransko gabbro-peridotite massif (Czechoslovakia). – Krystalinikum 13, 7–30. HOLUB, M. – JELÍNEK, E. – KOMÍNEK, E. – PLUSKAL, O. (1992): Genetic model of sulphide mineralization of the Ransko gabbro-peridotite massif (Bohemia, Czechoslovakia). – Sbor. geol. Věd, ložisk. Geol. Mineral. 30, 7–42. MAREK, F. (1970): Odhad stáří ranského bazického masivu podle paleomagnetických dat. – Věst. Ústř. Úst. geol. 45, 99–102. MÍSAŘ, Z. – DUDA, J. – HOLUB, M. – POKORNÝ, J. – WEISS, J. (1974): The Ransko gabbro-peridotite massif and its mineralization (Czechoslovakia). – 215 pp. Charles Univ. Prague. WEISS, J. (1962): Geologicko-petrografické poměry ranského masivu. – Sbor. Ústř. Úst. geol. 27, 87–137. (In Czech) Ransko Peridotite Quartz-defficient, sodic, metaluminous, melanocratic, gabbroid n = 23 Median Min Max QU1 SiO2 36.27 34.41 40.24 35.50 TiO2 0.16 <0.01 0.31 0.07 Al2O3 3.94 1.86 6.55 2.43 Fe2O3 6.18 4.54 12.90 5.28 FeO 6.27 3.26 8.16 5.50 MnO 0.13 <0.01 0.21 0.05 MgO 32.66 27.50 36.65 31.05 CaO 2.83 0.10 5.21 1.44 Na2O 0.21 0.07 0.45 0.12 K2O 0.07 0.01 0.21 0.04 P2O5 0.00 0.00 0.06 0.00 Mg/(Mg + Fe) 0.83 0.75 0.84 0.82 K/(K + Na) 0.18 0.00 0.32 0.14 Nor.Or 0.56 0.00 1.66 0.35
92
QU3 36.74 0.20 4.80 7.70 7.24 0.16 33.71 3.17 0.33 0.11 0.00 0.83 0.20 0.91
Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
2.65 18.92 0.00 8.05 162.05 -56.10 976.95 -18.87 0.19 0.78
1.01 0.80 0.00 2.26 124.44 -105.94 855.56 -126.80 0.07 0.37
5.52 32.77 0.00 17.04 194.11 -4.04 1081.44 63.69 1.27 11.92
1.63 10.67 0.00 5.25 149.21 -66.15 949.49 -39.52 0.13 0.66
4.22 22.28 0.00 12.87 171.75 -29.95 1007.37 -9.35 0.27 0.86
Fig. 1.59. Ransko Composite Stock ABQ and TAS diagrams. 1 – Ransko pyroxene Gabbro, 2 – Ransko olivine Gabbro, 3 – Ransko Troctolite, 4 – Ransko Peridotite.
Ransko Troctolite Quartz-deficient, sodic, metaluminous, melanocratic, gabbroid n = 13 Med. Min Max QU1 SiO2 38.07 34.97 40.85 36.26 TiO2 0.25 0.11 0.29 0.18 Al2O3 7.24 3.41 15.84 5.58 Fe2O3 4.34 1.69 5.49 3.29 FeO 7.76 5.97 15.64 7.54 MnO 0.00 0.00 0.21 0.00 MgO 25.67 12.82 27.80 25.09 CaO 5.04 2.80 11.74 4.82 Na2O 0.32 0.11 0.87 0.23 K2O 0.07 0.04 0.24 0.06 P2O5 0.00 0.00 0.05 0.00 Mg/(Mg + Fe) 0.79 0.61 0.84 0.76 K/(K + Na) 0.11 0.06 0.30 0.10 Nor.Or 0.60 0.31 1.87 0.49 Nor.Ab 3.83 1.43 10.32 2.95 Nor.An 33.42 19.69 65.92 32.20 Nor.Q 0.00 0.00 0.00 0.00 Na + K 11.82 5.04 33.17 9.34 *Si 125.33 31.09 169.05 118.99 K-(Na + Ca) -112.85 -234.34 -51.99 -137.87
93
QU3 39.08 0.26 8.69 5.19 9.40 0.14 26.97 7.4 0.44 0.12 0.00 0.80 0.20 0.87 5.22 36.77 0.00 15.57 129.73 -94.71
Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
828.05 -74.14 0.13 0.67
524.78 -209.23 0.04 0.24
872.61 95.61 0.37 1.93
799.38 -138.14 0.10 0.57
863.28 -39.24 0.15 0.78
Quartz-defficient, sodic, metaluminous, melanocratic, I-type gabbro n = 18 Median Min Max QU1 SiO2 42.61 40.19 45.41 41.34 TiO2 0.16 0.00 0.33 0.10 Al2O3 19.46 8.76 27.97 16.93 Fe2O3 1.55 0.40 8.55 1.39 FeO 4.01 1.98 9.67 3.50 MnO 0.08 0.00 0.25 0.05 MgO 10.66 5.27 21.31 8.43 CaO 13.96 6.70 15.90 11.52 Na2O 0.82 0.28 2.50 0.71 K2O 0.11 0.06 0.77 0.07 P2O5 0.00 0.00 0.02 0.00 Mg/(Mg + Fe) 0.75 0.66 0.82 0.70 K/(K + Na) 0.09 0.04 0.42 0.07 Nor.Or 0.75 0.40 4.96 0.55 Nor.Ab 8.25 2.83 21.24 6.96 Nor.An 72.93 46.13 84.59 64.43 Nor.Q 0.00 0.00 0.00 0.00 Na + K 29.95 10.31 92.78 24.19 *Si 45.38 -25.88 156.59 24.46 K-(Na + Ca) -274.88 -346.04 -132.19 -304.56 Fe + Mg + Ti 337.61 188.06 699.11 282.34 Al-(Na + K + 2Ca) -83.56 -252.40 -10.78 -180.79 (Na + K)/Ca 0.14 0.04 0.33 0.12 A/CNK 0.76 0.48 0.98 0.67
QU3 44.38 0.17 23.14 2.33 6.24 0.11 13.88 14.87 1.08 0.19 0.00 0.79 0.13 1.27 10.12 75.57 0.00 38.69 59.76 -241.57 460.52 -52.00 0.15 0.89
Ransko olivine Gabbro
Ransko pyroxene (± hornblende) Gabbro Quartz-defficient, sodic, metaluminous, melanocratic, I-type gabbro n = 14 Median Min Max QU1 SiO2 41.34 38.76 45.41 40.57 TiO2 0.17 0.00 0.33 0.15 Al2O3 18.63 13.41 27.97 15.53 Fe2O3 1.91 0.40 8.55 1.20 FeO 5.86 3.18 9.67 3.60 MnO 0.08 0.00 0.25 0.05 MgO 12.83 5.27 25.64 10.66 CaO 11.52 6.70 15.63 10.51 Na2O 0.71 0.12 1.08 0.53 K2O 0.08 0.06 0.77 0.06 Mg/(Mg + Fe) 0.75 0.64 0.82 0.70 K/(K + Na) 0.09 0.04 0.42 0.06 Nor.Or 0.57 0.40 4.96 0.42 Nor.Ab 6.96 1.65 10.12 5.90 Nor.An 64.70 26.38 83.66 58.96 Nor.Q 0.00 0.00 0.00 0.00
94
QU3 42.61 0.25 20.83 3.12 6.34 0.15 15.21 12.61 0.82 0.10 0.77 0.09 0.66 8.25 71.59 0.00
Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
24.19 59.76 -241.57 460.52 -61.23 0.13 0.83
5.15 22.15 -311.44 188.06 -240.21 0.04 0.24
39.26 156.59 -132.19 837.24 -8.73 0.16 0.98
18.80 49.44 -255.50 337.61 -150.18 0.10 0.67
29.65 72.56 -214.99 497.72 -47.34 0.14 0.90
1.27. METAMORPHOSED GRANITIC INTRUSIONS IN THE BOHEMICUM Middle Cambrian plutonismus is the characteristic feature of the Teplá-Barrandian Unit (Dörr et al. 1998). References DÖRR, W. – FIALA, J. – VEJNAR, Z. – ZULAUF, G. (1998): U-Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex: evidence for pervasive Cambrian plutonism within the Bohemian massif (Czech Republic). – Geol. Rdsch. 87, 135–149. TIMMERMANN, H. – DÖRR, W. – KRENN, E. – FINGER, F. – ZULAUF, G. (2006): Conventional and in situ geochronology of the Teplá Crystalline unit, Bohemian Massif: implications for the processes involving monazite formation. – Int. J. Earth Sci. (Geol. Rdsch.) 95, 629–647. 1.27.1. LESTKOV MASSIF 3. Hornblende metadiorite. 4. Hornblende and hornblende-pyroxene metagabbro. Deformation of rocks is moderate in the E, often strong in the W, showing subhorizontal dextral shearing; gabbroic rocks are largely undeformed. Size and shape (in erosion level): an oval approximately 30 km2 (2.5 × 15 km) in size, separated by a fault from 7.5 km long western part which splits in numerous apophyses toward the WSW, divided by tongues of metasediments and bodies of gabbroic rocks. The maximum width of this part is about 6 km. Age and isotopic data: 511 ± 10 to 517 ± 10 Ma (Pb-Pb zircon) age of emplacement, 428 ± 14 Ma (K-Ar muscovite), 426 ± 10 Ma, 428 ± 7 Ma, 445 ± 20 Ma, 447 ± 20 Ma (K-Ar biotite). Geological environment: within biotite, garnet and staurolite zone of Neoproterozoic metasediments of theTeplá-Barrandian Unit. Contact aureole: less distinct around the E part, very distinct in the W-SW, especially around gabbroic intrusions (cordierite hornfelses, locally garnetiferous), some contacts are sheared and free of contact metamorphism. Width of the contact aureole is several 0,X m up to several hundreds meters and is increasing from NE to SW. The contact metamorphism postdates the main regional metamorphism of the country rocks. Zoning: not reported. Mineralization: not reported.
Fig. 1.60. Metamorphosed Cadomian intrusions in the Bohemian Zone geological sketch-map (adapted after Žáček and Cháb 1993). 1 – biotite metagranite and orthogneiss, 2 – metagranite, metagranodiorite, metatonalite, metadiorite, metagabbro.
Regional position: near the W boundary of the Teplá-Barrandian Unit (Bohemicum) west of Plzeň Rock types: 1. Lestkov Metagranite – biotite metagranite and metagranodiorite. 2. Garnet-bearing leucogranite (a small local occurrence).
95
Heat production (µWm-3): Lestkov Metagranite (average of 30 analyses) 0.4–2.6. Lestkov Metagranite Quartz-rich, sodic, peraluminous, leucocratic, S-type, granite to granodiorite n=8 Median Min Max QU1 QU3 SiO2 73.36 63.61 75.15 66.47 74.32 TiO2 0.16 0.01 1.13 0.02 0.60 Al2O3 14.08 12.17 15.29 13.03 14.59 Fe2O3 1.18 0.43 6.49 0.78 1.86 FeO 0.00 0.00 5.49 0.00 1.76 MnO 0.08 0.03 0.13 0.05 0.10 MgO 0.20 0.03 1.87 0.17 1.18 CaO 1.26 0.34 2.40 0.65 1.91 Na2O 3.56 3.18 4.55 3.48 3.72 K2O 3.46 2.03 4.87 2.62 4.10 P2O5 0.11 0.06 0.24 0.07 0.15 Mg/(Mg + Fe) 0.17 0.04 0.34 0.12 0.30 K/(K + Na) 0.39 0.23 0.48 0.30 0.45 Nor.Or 21.98 12.33 29.27 16.96 25.14 Nor.Ab 33.80 29.91 42.00 31.79 34.12 Nor.An 5.73 1.11 11.34 2.82 8.99 Nor.Q 32.21 25.83 36.64 30.24 34.96 Na + K 188.40 172.42 216.86 186.41 201.93 *Si 187.72 137.08 208.55 166.39 200.36 K-(Na + Ca) -75.32 -126.37 -14.96 -118.83 -39.31 Fe + Mg + Ti 39.25 16.78 147.04 30.27 104.50 Al-(Na + K + 2Ca) 27.38 -6.81 58.69 21.36 41.28 (Na + K)/Ca 8.38 4.38 35.58 5.06 9.21 A/CNK 1.12 0.99 1.27 1.09 1.19 Trace elements (in ppm): Lestkov Metagranite – Ba 324, Nb 12, Ni 23, Rb 128, Sr 57, Ta 0.5, Y 35, Zr 124, Li 41, Sc 5, V 32, Cr 154, Cu 10, Zn 40, Ga 21, Hf 4.2, Pb 10, Th 7, U 5. References DÖRR, W. – FIALA, J. – VEJNAR, Z. – ZULAUF, G. (1998): U-Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex: evidence for pervasive Cambrian plutonism within the Bohemian Massif (Czech Republic). – Geol. Rdsch. 87, 135–149. GOTTSTEIN, O. (1970): K-Ar ages of granitic and ectinitic rocks of the Teplá anticlinorium. – Věst. Ústř. Úst. geol. 45, 201–205. KACHLÍK, V. (1997): Kontaktní horniny pláště lestkovského masivu. – Zpr. geol. Výzk. v Roce 1996, 81– 82. KRATOCHVÍL, F. – VACHTL, J. – ZOUBEK, V. (1951): Geologické poměry křiženecko-nezdického pegmatitového pásma tepelské vysočiny. – Sbor. Ústř. Úst. geol., Odd. geol. 18, 201–232. KREUZER, H. – VEJNAR, Z. – SCHŰSSLER, U. – OKRUSH, M. – SEIDEL, E. (1992): K-Ar dating in the Teplá-Domažlice Zone at the western margin of the Bohemian Massif. In: Kukal, Z. Ed.: Proceedings of the 1st International Conference on the Bohemian Massif, Prague, Czechoslovakia, 168–175. – Czech Geol. Survey, Prague. ZULAUF, G. – AHRENDT, H. – DÖRR, W. – FIALA, J. – VEJNAR, Z. – WEMMER, K. (1995): Der Westrand des Teplá-Barrandiums: Cadomisches basement variszisch überprägt. In: Geologische Untersuchungen im Umfeld der Kontinentalen Tiefbohrung. – Bayerisches Geol. Landesamt. München. ŽÁČEK, V. – CHÁB, J. (1993): Metamorphism in the Teplá Upland, Bohemian Massif, Czech Republic (Preliminary report). – Věst. Čes. geol. Úst. 68, 33–37.
96
Fig. 1.61. Metamorphosed Cadomian intrusions in the Bohemian Zone ABQ and TAS diagrams. 1 – Hanov Orthogneiss, 2 – Teplá Orthogneiss, 3 – Lestkov Metagranite, 4 – Polom Metagranodiorite.
1.27.2. POLOM MASSIF rocks – in the length of about 10 km and the width of about 2 to 4 km. Age and isotopic data: temporal relations of the intrusion, pre-contact and contact metamorphism, and polyphase deformation indicate an age similar to the age of granitoids of the Lestkov Massif. No isotopic data. Geological environment: mostly cordierite (± garnet) hornfelses high-T, superimposed on regional metamorphism; some contacts are sheared and devoid contact metamorphism. Zoning: not reported. Mineralization: not reported. Heat production (µWm-3): average of 8 analyses 1.1–2.2.
Regional position: Neoproterozoic metasediments of theTeplá-Barrandian Unit (NW marginal part of the Bohemicum) in garnet to kyanite zones. Rock types: biotite metagranodiorite, metagranodiorite, orthogneiss, biotite-hornblende or hornblende metatonalite, tonalitic gneiss, quartz metadiorite, quartz metagabbro, quartz amphibolite with minor to substantial content of biotite. Overall shear deformation connected with synkinematic crystallization-recrystallization increasing in accordance with the increasing intensity of regional metamorphism in the neighbouring Precambrian rocks. Size and shape (in erosion level): tongue-like bodies penetrating irregularly the Neoproterozoic
References ŽÁČEK, V. – CHÁB, J. (1993): Metamorphism in the Teplá Upland, Bohemian Massif, Czech Republic (Preliminary report). – Věst. Čes. geol. Úst. 68, 33–37. 1.27.3. HANOV ORTHOGNEISS twinning and oscillatory zoning; mylonitic deformation is most pronounced in the westernmost, detached granodioritic body. Size and shape (in erosion level): narrow, SWNE elongated body – 10 km2 (up to 1 km wide and 20 km long). Age and isotopic data: Hanov Orthogneiss 516 ± 10 Ma (Pb-Pb zircon), 415 ± 15 Ma, 400 ± 20 Ma (K-Ar muscovite).
Regional position: Precambrian metasediments of the Teplá-Barrandian Unit (NW marginal part of the Bohemicum) in kyanite zone. Rock types: Hanov Orthogneiss – biotite tonalite (quartz diorite) orthogneiss, biotite granodiorite orthogneiss, leucocratic garnetbearing orthogneiss (granite). Almost massive to distinctly schistose rock with biotite-rich matrix carrying oval plagioclase porphyroclasts, often with preserved complex
97
Mineralization: a pegmatite dyke swarm is closely associated with the orthogneiss (thickness of the pegmatite bodies up to 15 m and lengths rarely more than 100 m). Heat production (µWm-3): Hanov Orthogneiss (average of 8 analyses) 0.4–2.0.
Geological enivronment: Neoproterozoic metasediments of the Teplá-Barrandian Unit (NW marginal part) in kyanite zone. Contact aureole: not observed. Zoning: not reported. Hanov Orthogneiss
Quartz-rich, sodic, peraluminous, mesocratic to leucocratic, I type (weakly), granite to granodiorite Hz158 z157 z92 z59 go14 SiO2 72.56 66.13 76.11 68.85 75.06 TiO2 0.25 0.58 0.01 0.55 0.01 Al2O3 14.72 17.12 13.80 15.40 13.64 Fe2O3 tot 1.82 3.91 0.52 3.75 0.34 FeO n.d. n.d. n.d. n.d. 0.88 MnO 0.02 0.03 0.05 0.06 0.07 MgO 0.89 1.88 n.d. 1.70 0.03 CaO 1.99 3.40 0.68 2.65 1.72 Na2O 4.23 4.12 4.33 3.90 4.20 K2O 2.79 1.80 3.89 1.96 3.67 P2O5 0.05 0.07 0.02 0.13 0.05 Mg/(Mg + Fe) 0.49 0.49 0.00 0.47 0.04 K/(K + Na) 0.30 0.22 0.37 0.25 0.37 Nor.Or 16.91 11.11 23.21 12.14 22.00 Nor.Ab 38.96 38.66 39.26 36.72 38.26 Nor.An 9.79 17.15 3.27 12.89 8.32 Nor.Q 31.50 27.29 32.39 32.40 31.05 Na + K 195.74 171.17 222.32 167.47 213.45 *Si 183.15 155.29 191.84 183.00 182.52 K-(Na + Ca) -112.75 -155.36 -69.26 -131.49 -88.28 Fe + Mg + Ti 48.02 102.90 6.64 96.06 17.38 Al-(Na + K + 2Ca) 22.36 43.77 24.43 40.45 -6.94 (Na + K)/Ca 5.52 2.82 18.33 3.54 6.96 A/CNK 1.09 1.16 1.10 1.17 0.98 Trace elements (in ppm): Hanov Orthogneiss – Ba 483, Nb 10, Ni 22, Rb 81, Sr 318, Ta 0.1, Y 8, Zr 100. References DÖRR, W. – FIALA, J. – VEJNAR, Z. – ZULAUF, G. (1998): U-Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex: evidence for pervasive Cambrian plutonism within the Bohemian Massif (Czech Republic). – Geol. Rdsch. 87, 135–149. GOTTSTEIN, O. (1970): K-Ar ages of granitic and ectinitic rocks of the Teplá anticlinorium. – Věst. Ústř. Úst. geol. 45, 201–205. KRATOCHVÍL, F. – VACHTL, J. – ZOUBEK, V. (1951): Geologické poměry křiženecko-nezdického pegmatitového pásma tepelské vysočiny. – Sbor. Ústř. Úst. geol. 18, 201–232. ZULAUF, G. – AHRENDT, H. – DÖRR, W. – FIALA, J. – VEJNAR, Z. – WEMMER, K. (1995): Der Westrand des Teplá-Barrandiums: Cadomisches basement variszisch überprägt. In: Geologische Untersuchungen im Umfeld der Kontinentalen Tiefbohrung. – Bayerisches Geol. Landesamt. München. ŽÁČEK, V. – CHÁB, J. (1993): Metamorphism in the Teplá Upland, Bohemian Massif, Czech Republic (Preliminary report). – Věst. Čes. geol. Úst. 68, 33–37.
98
1.27.4. TELECÍ POTOK ORTHOGNEISS Age and isotopic data: Cadomian? No isotopic data. Geological environment: Neoproterozoic metase-diments of the staurolite in the E and kyanite zone. Contact aureole: not observed. Zoning: lacking. Mineralization: no indications.
Regional position: Teplá-Barrandian Unit (Bohemicum) – Precambrian metasediments in the staurolite and kyanite zone (see the map). Rock types: Telecí Potok Orthogneiss – biotite orthogneiss. Size and shape (in erosion level): a small SSWNNE elongated body 100 to 200 m wide and about 1 km long.
References ŽÁČEK, V. – CHÁB, J. (1993): Metamorphism in the Teplá Upland, Bohemian Massif, Czech Republic (Preliminary report). – Věst. Čes. geol. Úst. 68, 33–37. 1.27.5. TEPLÁ ORTHOGNEISS Size and shape (in erosion level): an oval shape, SW-NE elongated body ~ 8 km2 (8 × 1 km). Age and isotopic data: Teplá Orthogneiss 513 +7/-6 Ma (U-Pb zircon upper intercept), 407 ± 10 Ma, 388 ± 10 Ma (K-Ar biotite), and 337 ± 15 Ma (K-Ar K-feldspar). Metagabbro 503–513 Ma (PbPb zircon). Geological environment: Teplá-Barrandian Neoproterozoic sediments, garnetiferous amphibolites and eclogites. Contact aureole: migmatites, minimum 500 m. Zoning: not reported. Mineralization: alkali-feldspar pegmatites. Heat production (µWm-3): Teplá Orthogneiss (average of 7 analyses) 1.1–2.9.
Regional position: Teplá-Barrandian Unit – Neoproterozoic metasediments inner part of the kyanite zone within tectonic slice comprising metagabbros, garnetiferous amphibolites, and eclogites. Rock types: Teplá Orthogneiss – porphyroclastic biotite granite gneiss, coarsegrained metagranite, biotite to biotite-hornblende granodioritic orthogneiss, muscovite granitic orthogneiss. Metagabbro – medium to coarse-grained coronitic metagabbro Strong shear deformation and synkinematic (?) recrystallization.
Teplá Orthogneiss Quartz-normal, sodic, peraluminous, mesocratic, I-type, granite Tto1 ve265 go9 go11 SiO2 71.84 70.83 71.20 71.37 TiO2 0.34 0.39 0.41 0.34 Al2O3 14.16 13.76 12.99 13.37 Fe2O3 2.84 0.78 1.19 1.11 FeO n.d. 2.40 3.24 3.09 MnO 0.04 0.08 0.07 0.07 MgO 0.53 0.63 0.56 0.49 CaO 1.44 1.45 2.21 1.91 Na2O 3.47 3.90 4.02 3.32 K2O 4.61 4.22 2.78 3.50 P2O5 0.10 0.15 0.90 0.06 Mg/(Mg + Fe) 0.27 0.26 0.19 0.17 K/(K + Na) 0.47 0.42 0.31 0.41 Nor.Or 28.01 26.06 17.22 21.91 Nor.Ab 32.04 36.61 37.85 31.58 Nor.An 6.67 6.49 5.28 9.62 Nor.Q 29.73 28.38 34.00 34.09 99
z11 70.75 0.43 13.63 1.53 1.42 0.40 0.44 1.18 3.41 6.71 0.12 0.20 0.56 39.84 30.77 4.24 22.05
Lve66 71.74 0.37 14.28 0.32 1.96 0.09 0.66 1.97 4.48 2.97 0.13 0.33 0.30 18.18 41.68 9.24 29.23
Na + K 209.86 215.45 188.75 181.45 252.51 207.63 *Si 171.58 160.26 179.98 191.79 125.97 166.95 K-(Na + Ca) -39.77 -62.11 -110.11 -66.88 11.39 -116.64 Fe + Mg + Ti 52.99 63.71 79.06 73.36 55.25 52.32 Al-(Na + K + 2Ca) 16.86 3.05 -12.47 12.99 -26.93 2.54 (Na + K)/Ca 8.17 8.33 4.79 5.33 12.00 5.91 A/CNK 1.07 1.02 1.03 1.06 0.92 1.02 Trace elements (in ppm): Teplá Orthogneiss – Ba 559, Nb 8, Ni 15, Rb 130, Sr 81, Ta 0.7, Y 32, Zr 197, Li 22, B 10, Sc 5, V 32, Cr 66, Cu 5, Zn 38, Ga 20, Hf 4.2, Pb 17, Th 11, U 6. References DÖRR, W. – FIALA, J. – VEJNAR, Z. – ZULAUF, G. (1998): U-Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex: evidence for pervasive Cambrian plutonism within the Bohemian massif (Czech Republic). – Geol. Rdsch. 87, 135–149. GOTTSTEIN, O. (1970): K-Ar ages of granitic and ectinic rocks of the Teplá anticlinorium. – Věst. Ústř. Úst. geol. 45, 201–205. KRATOCHVÍL, F. – VACHTL, J. – ZOUBEK, V. (1951): Geologické poměry křiženecko-nezdického pegmatitového pásma tepelské vysočiny. – Sbor. Ústř. Úst. geol. 18, 201–232. TIMMERMANN, H. – DÖRR, W. – KRENN, E. – FINGER, F. – ZULAUF, G. (2006): Conventional and in situ geochronology of the Teplá Crystalline unit, Bohemian Massif: implications for the processes involving monazite formation. – Int. J. Earth Sci. (Geol. Rdsch.) 95, 629–647. WIEGAND, B.(1997): Isotopengeologische und geochemische Untersuchungen zur prävariskischen magmatischen und sedimentären Entwicklung im saxothuringisch-moldanubischen Übergangbereich (Grenzgebiet BRD/CR). – Geotekt. Forsch. 88, 1–177. ZULAUF, G. – AHRENDT, H. – DÖRR, W. – FIALA, J. – VEJNAR, Z. – WEMMER, K. (1995): Der Westrand des Teplá-Barrandiums: Cadomisches basement variszisch überprägt. In: Geologische Untersuchungen im Umfeld der Kontinentalen Tiefbohrung. – Bayerisches Geol. Landesamt. München. ŽÁČEK, V. – CHÁB, J. (1993): Metamorphism in the Teplá Upland, Bohemian Massif, Czech Republic (Preliminary report). – Věst. Čes. geol. Úst. 68, 33–37.
100
Atlas of plutonic rocks and orthogneisses in the Bohemian Massif 1. Bohemicum
J. Klomínský, T. Jarchovský, G. S. Rajpoot Published by the Czech Geological Survey Prague 2010 First edition Printed in the Czech Republic 03/9 446-412-10 ISBN 978-80-7075-751-2
Správa úložišť radioaktivních odpadů Dlážděná 6, 110 00 Praha 1 Tel.: 221 421 511 E-mail:
[email protected] www.surao.cz
Atlas
of plutonic rocks and orthogneisses in the Bohemian Massif moldanubicum Josef Klomínský Tomáš Jarchovský Govind S. Rajpoot
Czech Geological Survey Prague 2010
CZECH GEOLOGICAL SURVEY
ATLAS of plutonic rocks and orthogneisses in the Bohemian Massif
2. MOLDANUBICUM Compiled by Josef KlS. Rajpoot Compiled by Josef Klomínský Tomáš Jarchovský Govind S. Rajpoot The Moldanubicum volume is a part of the Atlas of plutonic rocks and orthogneisses in the Bohemian Massif which consists of six chapters: INTRODUCTION 1. BOHEMICUM 2. MOLDANUBICUM 3. SAXOTHURINGICUM 4. LUGICUM 5. BRUNOVISTULICUM AND MORAVOSILESICUM In the Introduction volume are summarized general characteristics of the plutonic rocks and orthogneisses from a point of view of their composition, age, 3-D shape, zonation, metallogeny and spatial distribution. The territorial sections 1–5 comprise structured geological parameters of the plutonic rocks and orthogneisses located within boundaries of the principal geological zones in the Bohemian Massif. The compilation work was supported by the Radioactive Waste Repository Authority of the Czech Republic (RAWRA) and by the Czech Geological Survey.
Acknowledgements We would like to thank the following colleagues who have helped in the compilation and correction of this review: A. Dudek, F. Fediuk, M. Chlupáčová, V. Janoušek J. Kotková, M. René, Z. Vejnar, P. Vlašímský, P. Schovánek and S. Vrána. We are grateful for technical assistance to P. Kopecký, M. Toužimský, J. Holeček, M. Fifernová, J. Kušková, J. Karenová, V. Čechová and L. Richtrová. In spite of the negative view on our work and unrealistic comments we thank also to M. Štemprok and F. V. Holub for their criticism which helped us to improve the original manuscript. * Corresponding author. Josef Klomínský, Czech Geological Survey, Klárov 131/3, Prague 1, Czech Republic. Fax (+420) 257 531 376. E-mail address:
[email protected]
© J. Klomínský, T. Jarchovský, G. S. Rajpoot, 2010 ISBN 978-80-7075-751-2
THE ATLAS OF PLUTONIC ROCKS AND ORTHOGNEISSES IN THE BOHEMIAN MASSIF
2. MOLDANUBICUM Josef Klomínský a*, Tomáš Jarchovský a, Govind S. Rajpoot b a
Czech Geological Survey, Klárov 131/3, Praha 1, b Náchodská 2030, Praha 9, Czech Republic
Contents FOREWORD............................................................................................................................ 5 MOLDANUBIAN (SOUTH BOHEMIAN) COMPOSITE BATHOLITH (MCB)............ 5 I. Eastern plutons of the Moldanubian Composite Batholith..................................... 18 2.1.1. EISGARN COMPOSITE PLUTON ................................................................................ 18 2.1.1.01. KLENOV MASSIF .................................................................................................. 25 2.1.1.02. ŠEVĚTÍN MASSIF .................................................................................................. 27 2.1.1.03. MELECHOV MASSIF.............................................................................................. 29 2.1.1.04 ČEŘÍNEK STOCK .................................................................................................... 33 2.1.1.05. ZVŮLE (LANDŠTEIN) STOCK ................................................................................ 35 2.1.1.06. EISGARN MASSIF .................................................................................................. 37 2.1.1.07. GALTHOF STOCK .................................................................................................. 39 2.1.1.08. HOMOLKA STOCK ................................................................................................ 40 2.1.1.09. KOZÍ HORA/HIRSCHENSCHLAG STOCK ................................................................ 42 2.1.2. WEINSBERG COMPOSITE PLUTON .......................................................................... 43 2.1.2.01. NEBELSTEIN STOCK ............................................................................................. 54 2.1.2.02. PYHRABRUCK-NAKOLICE STOCK ........................................................................ 56 2.1.2.03. UNTERLEMBACH STOCK AND OBERLEMBACH GRANITE DYKES ....... 58
II. a.
Western plutons of the Moldanubian Composite Batholith.................................... 60 Allochthonous plutons................................................................................................. 62
PLUTONS IN THE OSTRONG TERRANE ......................................................... 62 2.1.3. ROZVADOV (-WAIDHAUS) COMPOSITE MASSIF.................................................. 62 2.1.4. OBERPFALZ (TIRSCHENREUTH) COMPOSITE MASSIF (OCM) ........................... 65 2.1.5. NEUNBURG COMPOSITE MASSIF............................................................................. 72 2.1.6. OBERVIECHTACH STOCK .......................................................................................... 74 2.1.7. KÜRNBERG STOCK...................................................................................................... 76 2.1.8. MILTACH STOCK.......................................................................................................... 76 2.1.9. ARNBRUCK MASSIF (AM) .......................................................................................... 77 2.1.10. PRÁŠILY MASSIF........................................................................................................ 78 2.1.11. VYDRA MASSIF .......................................................................................................... 79
1
2.1.12. RINCHNACH STOCK .................................................................................................. 81 2.1.13. STRÁŽNÝ-FINSTERAU MASSIF............................................................................... 83 2.1.14. HAIDEL MASSIF.......................................................................................................... 84 2.1.15. PLECHÝ (DREISESSEL-PLÖCKENSTEIN) MASSIF ............................................... 85 2.1.16. AIGEN MASSIF ............................................................................................................ 89 2.1.17. VÍTKŮV KÁMEN STOCK........................................................................................... 90 2.1.18. LIPNO MASSIF............................................................................................................. 91 PLUTONS IN THE BAVARIAN TERRANE....................................................... 93 2.1.19. REGENSBURG FOREST MASSIF .............................................................................. 93 2.1.20. StALLWANG STOCK .................................................................................................. 96 2.1.21. SATTELPEILNSTEIN COMPOSITE MASSIF ........................................................... 98 2.1.22. QUARTZ DIORITE STOCKS ...................................................................................... 99 2.1.23. PATERSDORF STOCK ................................................................................................ 99 2.1.24. METTEN MASSIF ...................................................................................................... 101 2.1.25. LALLING STOCK....................................................................................................... 102 2.1.26. FÜRSTENSTEIN COMPOSITE MASSIF (FCM)...................................................... 103 2.1.27. HAUZENBERG COMPOSITE MASSIF.................................................................... 106 2.1.28. NEUSTIFT MASSIF.................................................................................................... 108
b.
Autochthonous plutons ............................................................................................. 111 2.1.29. PALITE MASSIF......................................................................................................... 112 2.1.30. PARAGRANODIORITE MASSIF.............................................................................. 117 2.1.31. FLASER MASSIF........................................................................................................ 118
III.
Dyke Swarms ............................................................................................................. 120 2.1.32.1. PELHŘIMOV DYKE SWARM ................................................................................... 120 2.1.32.2. ŠEVĚTÍN DYKE SWARM (ŠDS) .............................................................................. 121 2.1.32.3. KAPLICE DYKE SWARM (KDS) ............................................................................. 123 2.1.32.4. BLANICE GRABEN DYKE SWARM.......................................................................... 124 2.1.32.5. PASSAU FOREST DYKE SWARM ............................................................................. 126 2.1.32.6. KVILDA DYKE SWARM .......................................................................................... 127 2.1.32.7. SUŠICE DYKE SWARM ........................................................................................... 129 2.1.32.8. ŠEJBY DYKE SWARM ............................................................................................. 130 2.1.32.9. LITSCHAU DYKE SWARM (LDS) ........................................................................... 132
High-potassic plutonites in the Moldanubicum................................................................. 133 2.2.1. MILEVSKO MASSIF.................................................................................................... 136 2.2.2. TÁBOR MASSIF (TM) ................................................................................................. 139 2.2.3. MEHELNÍK MASSIF (MM)......................................................................................... 141 2.2.4. NETOLICE MASSIF (NM)........................................................................................... 142 2.2.5. TŘEBÍČ MASSIF (TM)................................................................................................. 143 2.2.5.01. OŘECHOV STOCKS ................................................................................................. 145 2.2.6. RADŇOVICE STOCK .................................................................................................. 147 2.2.7. NOVÉ MĚSTO STOCK ................................................................................................ 148 2.2.8. BOBROVÁ STOCK (BS).............................................................................................. 149 2.2.9. DRAHONÍN MASSIF (DM) ......................................................................................... 149 2.2.10. JIHLAVA MASSIF (JM)............................................................................................. 150 2.2.11. RASTENBERG MASSIF (RM) .................................................................................. 153 2.2.12. HENGSTBERG DYKE (SHEET) ............................................................................... 155 2.2.13. ŽELNAVA (Knížecí Stolec) MASSIF (ŽM) ............................................................... 156 2.2.14. NEZDICE DYKE SWARM (NDS) ............................................................................. 158
Members of the Central Bohemian Composite Batholith ................................................ 160 in the Moldanubicum ........................................................................................................... 160 2.3.1. ŘÍČANY MASSIF (ŘM) ............................................................................................... 160 2.3.2. BENEŠOV MASSIF (BM) ............................................................................................ 164 2.3.3. MILEVSKO DYKE SWARM ....................................................................................... 167
Isolated mafic stocks in the Western Bohemia .................................................................. 169
2
2.4.1. DRAHOTÍN STOCK ..................................................................................................... 169 2.4.2. MUTĚNÍN STOCK ....................................................................................................... 172
Pre-Variscan orthogneisses of the Moldanubian Zone ..................................................... 175 2.5.1. DOBRA ORTHOGNEISS ............................................................................................. 179 2.5.2. SPITZ ORTHOGNEISS................................................................................................. 179 2.5.3. GFÖHL ORTHOGNEISS.............................................................................................. 179 2.5.4. STRÁŽ ORTHOGNEISS............................................................................................... 181 2.5.5. HLUBOKÁ ORTHOGNEISS........................................................................................ 181 2.5.6. RADONICE ORTHOGNEISS....................................................................................... 183 2.5.7. BECHYNĚ ORTHOGNEISS ........................................................................................ 184 2.5.8. NOVÉ HRADY ORTHOGNEISS ................................................................................. 186 2.5.9. SVĚTLÍK ORTHOGNEISS........................................................................................... 187 2.5.10. Blaník ORTHOGNEISS............................................................................................... 190 2.5.11. CHOUSTNÍK ORTHOGNEISS .................................................................................. 191 2.5.12. PACOV ORTHOGNEISS............................................................................................ 192 2.5.13. PŘIBYSLAVICE ORTHOGNEISS............................................................................. 193 2.5.14. KOUŘIM ORTHOGNEISS ......................................................................................... 195 2.5.15. PODOLSKO ORTHOGNEISS (COMPLEX) ............................................................. 195 2.5.16. POPOVICE METAGRANITE (COMPLEX).............................................................. 197 2.5.17. WOLFSHOF ORTHOGNEISS.................................................................................... 198 2.5.18. TACHOV ORTHOGNEISS......................................................................................... 198 The locality map of the plutonic rocks and orthogneisses in the Bohemian Massif (folded)
3
4
FOREWORD The Moldanubicum (Moldanubian Zone) is characterized by an abundance of the Late Variscan plutonic rocks of predominantly granitic composition (Holub et al. 1995). They are accompanied by a series of multiply deformed gneisses of granitic composition showing a broad span of geological ages. Five principal groups have been recognized within the Moldanubian Zone: 2.1. Variscan intrusive rocks of the Late Palaeozoic age The Moldanubian Composite Batholith 2.2. Ultrapotassic (high K-Mg) plutons (durbachites), some of them spatially related to the Central Bohemian Composite Batholith (see the Bohemicum) 2.3. Granitic intrusions of the Central Bohemian Composite Batholith (see the Bohemicum section) 2.4. Isolated mafic stocks in the Western Bohemia in the Moldanubicum 2.5. Pre-Variscan orthogneisses (metagranites) in the Moldanubicum 2.1.VARISCAN INTRUSIVE ROCKS OF THE LATE PALAEOZOIC AGE
MOLDANUBIAN (SOUTH BOHEMIAN) COMPOSITE BATHOLITH (MCB) The Moldanubian Composite Batholith (MCB) with nearly 10,000 km2 surface area and estimated volume of > 80,000 km3 represents one of the largest batholiths in the Bohemian Massif. MCB consists of the western and eastern group of mostly allochthonous plutons. Only a few granitic massifs in the western group of plutons show autochthonous features (e.g. the Palite Massif and Paragranodiorite Massif). Estimates of the intrusion depths range from 18–20 km in the SW to 7–9 km in the E. The Batholith appears in the core of an anticline and at its western and eastern boundaries plunges below the crystalline schists. According to Klötzli et al. (1999) the evolution of the Moldanubian (South Bohemian) Composite Batholith begins with the partial melting of the Cadomian basement domain at 360 to 350 Ma and the formation of large masses of geochemically diverse granitoids (e.g. the Weinsberg Granite-Granodiorite) between 350 and 320 Ma. Subsequent intrusion of small amounts of I-type granites and a large volume of S-type granites follows (Mauthausen, Schrems, and Eisgarn type granites) between 330 and 310 Ma. U-Pb data indicate magmatic activity of the MCB over a period of 30 Ma. Each intrusion marks a relatively short-lived magmatic pulses within two main magmatic events. About 80 % of the MCB were formed at 331–323 Ma. According to Koller (1994) the Moldanubian Composite Batholith can be divided mainly by textural reason into the following groups: Group (Suite) of older syn-orogenic granitoids (~350–335 Ma) A1) Minor gabbros and diorite, quartz monzonites, A2) The coarse-grained Weinsberg-type granite, including the isolated Rastenberg Massif and two pyroxene-bearing Sarleisbach complex. Group (Suite) of younger, mainly post-orogenic granitoids (333–315 Ma) B1) Medium to fine-grained biotite granites including different varieties (Mauthausen- and Schrems Granite, Freistadt Granodiorite and others) forming dykes, sills, and stocks mainly within the Weinsberg Granite-Granodiorite, B2) The two-mica or muscovite Eisgarn Granite s.l. including different subtypes (e.g. Mrákotín, Číměř and Zvůle (Landštejn) Granites), B3) Small intrusions of slightly mineralised granites (Nebelstein, Hirschenschlag-Kozí hora, Homolka Granites and others), B4) Pegmatites and aplite, late dykes. According to Gerdes et al. (2003) in the MCB, four major magma types are defined based on age, trace elements, and radiogenic isotopes: MagmaType 1 (335–325 Ma age ) are represented by durbachites in the east (Rastenberg and Třebíč Massifs).
5
Finger et al. (2009) present the theory that the so-called “Palites” of the Bavarian Forest in the west belong to the Durbachite intrusions. Magma Type 2 (315–330 Ma age) is mostly comprised by the Weinsberg Granite-Granodiorite. Magma Type 3 is mainly comprised by the Eisgarn Granite. Magma Type 4 (ca 300 Ma age) is represented by small bodies along major faults (e.g. the Pfahl granitoids). According to Breiter et al. (1998) the interier of the eastern part of the MCB consists of the Weinsberg Suite, Eisgarn s.l. Suite and Freistadt-Mauthausen Suite. The Eisgarn s.l Suite comprises of the Číměř Granite Unit, Eisgarn Granite s.s. Unit and Homolka Granite Unit. Regional position: Moldanubian Zone. Rock types: Two main plutonic suites of the Moldanubian Composite Batholith are dominant (this review): UPPER CARBONIFEROUS TO LOWER PERMIAN PLUTONIC SUITE and LOWER CARBONIFEROUS (VISÉAN) PLUTONIC SUITE Upper Carboniferous to Lower Permian Plutonic Suite 1. Eisgarn Granite s.l. - (~ 5000 km2) consists of large pluton and a series of isolated massifs and stocks of ± porphyritic muscovite-biotite granite (adamellite). The main phase of granite is represented by several rock types – facies representing interfaces of the differentiation, and/or separate intrusions (e.g. Mrákotín-Bílý Kámen, Číměř–Řásná, Lipnice, KoutySvětlá, Altenberg, Lásenice-Deštná, Jiřín, Boršov, Kristallgranite II, Heibach, Mandelstein, Žofín (Reinpolz) and Eitzendorf Granites). In the western plutons of the Moldanubian Composite Batholith the Eisgarn Granite s.l., Falkenberg, Leuchtenberg, Steinwald, Rozvadov, Dreisesselberg, Steinberg, Theresienreut, Haidmühle, Heidel, Kötzting and Arnbruck Granites belong to the Eisgarn Granite Suite. 2. Freistadt Granodiorite (~ 400 km2) – biotite-hornblende granodiorite and quartz diorite marginal, core and fine-grained facies. Karlstift Granite is a mediumgrained variety of Freistadt Granodiorite intruded as a separate phase (result of mixing with the Mauthausen Granite). The Pavlov Granite shows geochemical and isotopic characteristics similar to the Freistadt intrusion. The Reinpolz Žofín) Granite forms small bodies within the Eisgarn Granite s.l. (Mandelstein Granite) and is similar to the Freistadt Granodiorite. 3. Mauthausen Granite (~ 375 km2) – biotite granite. The Mauthausen Granite includes several bodies (Karlstein,
Plöcking, Schrems Granites) with similar textural characteristics, which can have different intrusive histories. In the western plutons of the Moldanubian Composite Batholith the Viechtach, Patersdorf, Richnach, Metten and Lalling Granites and Hauzenberg Massif are members of the Mauthausen Group (Suite). 4. Landštejn Granite (~ 400 km2) – equivalent of the Eisgarn Granite s.s. includes number of small circular stocks and bosses (3–10 km in diameter) of the coarse to medium-grained two-mica granite (e.g. the Zvůle, Čeřínek, Melechov, Bürgelwald, Flossenbürg, Eisgarn s.s., Plechý and Strážný Granites). 5. Homolka Granite (~ 6 km2), includes small stocks within the Eisgarn, Číměř, and Landštejn Granites (e.g. the Stvořidla Granite, Šejby Dyke Granite, Homolka Granite, Křížový kámen Granite, Rubitzko Granite, Lagerberg Granite, Unterlembach Granite, Pyhrabruck-Nakolice Granite and Galthof Granites). 6. Dyke Swarms – Pelhřimov Granite porphyry (Pehřimov Dyke Swarm), Ševětín Microgranodiorite (Ševětín Dyke Swarm), Kaplice Porphyry (Kaplice Dyke Swarm), Štěpánovice Q-monzonite (Blanice Graben Dyke Swarm), Passau Forest Porphyry (Passau Dyke Swarm), Kvilda Dyke Granite (Kvilda Dyke Swarm), Sušice Quartz micro-monzodiorite (Sušice Dyke Swarm), Šejby Dyke Granite (Šejby Dyke Swarm), Josefsthal Granite (Litschau Dyke Swarm).
6
Fig. 2.1. Moldanubian Composite Batholith hierarchical scheme according to plutons, massifs, stocks and dyke swarms.
Lower Carboniferous (Viséan) Plutonic Suite 3. Diorite II – younger intrusions within the Weinsberg Composite Pluton. 4. Palite – granitoids (magmatic products possibly foliated and mylonitized) (5 × 45 km) in the western part of MCB. 5. Paragranodiorite – magmatic products (possibly foliated and mylonitized) (3.5 × 43 km) in the western part of MCB (Schlieren Granite). 6. Flaser Granite – biotite granite (possibly foliated and mylonitized) magmatic product (a set of oval bodies) in the western part of MCB.
1. Weinsberg Granite-GranodioriteGranodiorite – porphyritic biotite granodiorite including Kristallgranite I, Plöchwald Granite, Plessberg Granite, and Srní Granite. 2. Diorite I – Gebharts Diorite – several small older bodies (~ 1–4 km2) of the quartz diorite – diorite – (Kleinzwettl) gabbro located within the Weinsberg Granite-Granodiorite and in the Kristallgranite I along the NE-SW discrete zone in the eastern and western part of MCB.
7
Fig. 2.2. Moldanubian Composite Batholith geological sketch-map (adapted after Zitzmann et al. 1999, 1994, 1981). 1 – Eisgarn Composite Pluton, 2 – Weinsberg Composite Pluton, Western Plutons: 3 – allochthonous granitic massifs, 4–6 – autochthonous granitic massifs (4 – Paragranodiorite Massif, 5 – Flasser Massif, 6 – Palite Massif), 7 – allochthonous quartz diorite stocks, 8 – boundaries of principal tectonostratigraphic units, 9 – faults, 10 – state border.
8
Fig. 2.3. Moldanubian Composite Batholith hierarchical scheme according to rock groups and rock types.
Volume of the Moldanubian Composite Batholith was estimated at about 80 000 km3 from its average thickness of ca. 8 km. Dyke Swarms represent late (StephanianAutunian) subvolcanic basic-intermediate to acid magmas spatially related to MCB and indicate the presence of the subsurface granite intrusion (e.g. the Pelhřimov circular structure). A cluster of more than 30 dykes of granite porphyries and rhyolites forms a distinct N-S trending zone about 20 km long and 5 km wide (between Lásenice and Litschau). The Ševětín and Sušice Dyke Swarms have mineralogical, chemical and isotopic indications of a possible impact melt origin. Age and isotopic data: Granitic intrusions at 330–320 Ma occurred shortly after the thermal peak of the regional metamorphism (ca. 335 Ma) into hot high-grade country rocks. U-Pb
Size and shape (in erosion level): The Moldanubian Composite Batholith consists of two plutons and numerous granite massifs with high variation in size, composition, and shape. They are arranged into the horseshoe shape with opening toward the north. The total length of this semi-circular structure is over 400 km with average width of 50 km. The eastern wing of the Batholith (central part of Moldanubian Composite Batholith, e.g. Eisgarn Composite Pluton) is an almost compact set of outcrops in contrast to the western wing composed of archipelago of separate stocks and massifs of different size, shape, composition and age, some of which have features of the autonomous intrusions. Mauthausen Granite occurs mostly as discrete stocks and elongated bodies in and around the large Weinsberg Composite Pluton.
9
Granite 322 ± 2, 323.4 ± 1.6 Ma (Pb-Pb zircon), Richnach Granodiorite 329.2 ± 2.1, 320.4 ± 6.5 Ma (Pb-Pb zircon), Oberviechtach Granite 320 Ma (U-Pb zircon),
data indicate that the formation of the Moldanubian Composite Batholith lasted ca. 30 Ma (330–300 Ma). An inherited U-Pb zircon age spectrum shows peaks at around 500–530, 560–580, 650–670, 2000–2400 Ma.
EISGARN GROUP Eisgarn Granite – Dreisessel (Třístoličník) Granite 311 ± 4 Ma (K-Ar muscovite), 337 ± 6 Ma (U-Th-Pb monazite), Eisgarn Granite 316 ± 7, 303 ± 6 Ma (Rb-Sr whole rock), 328 Ma (Ar-Ar muscovite), 327 ± 4 Ma (Pb-Pb monazite), Eisgarn Granite (from the type locality) 327–328 Ma (U-Pb zircon), Kouty Granite 313 ± 15 Ma (Th, U, Pb monazite), Lipnice Granite 313 ± 15, 315 ± 23, 308 ± 13 Ma (Th, U, Pb). Číměř Granite 330 ± 6.5 Ma (Rb-Sr whole rock), Altenberg Granite 310 Ma (U-Pb zircon, monazite), 316 ± 1 Ma (U-Pb monazite), Kristallgranite II 315 ± 4 Ma (U-Pb zircon), 325 ± 5 Ma, 306 ± 4 Ma (K-Ar biotite), Žofín Granite 324 ± 14 Ma (Rb-Sr whole rock), 313–303 ± 2–3 Ma (Ar-Ar muscovite), Mandelstein Granite 314–307 ± 2 Ma (Ar-Ar muscovite), Weitra Granite 305 ± 2, 311 ± 3 Ma (Ar-Ar muscovite), Steinwald Granite 312 ± 0.4 Ma (Pb-Pb zircon), Falkenberg Granite 316 ± 9, 303, 320, 315.7 ± 0.6 Ma (Pb-Pb zircon), Rozvadov Granite 314 Ma (K-Ar biotite), Leuchtenberg Granite 333 ± 5 Ma, 342 ± 5 Ma (U-Pb zircon), 322.7 ± 0.7 Ma (Pb-Pb zircon), 321 ± 8 Ma (Rb-Sr whole rock), 325 (K-Ar micas),
BASIC INTRUSIONS Gebharts Diorite 327.4 ± 0.8 Ma (U-Pb zircon). WEINSBERG GROUP Weinsberg Granite-Granodiorite 328 ± 6 Ma (U-Pb zircon), 323-328 Ma (Pb-Pb monazite), 357 ± 9–321 ± 12 Ma (U-Pb zircon), 349 ± 4 Ma (Rb-Sr, whole rock) 314.4 ± 2 Ma (Ar-Ar mica). ), Kristallgranite I, 327 ± 35, 316-317 Ma (U-Th-Pb monazite) 315 ± 4, 313-325, Ma (U-Pb zircon), Saunstein Granodiorite 315 ± 3.3, 311 ± 4.9 (U-Pb titanite), 335-324 Ma (UPb zircon), Sauwald Diatexite 316 ± 1 Ma (UPb zircon), Finsterau I Granite 325.9 ± 1.9 Ma (Pb/Pb zircon), PALITE GROUP Palite rocks emplaced in the shear zone (the Pfahl zone) at 334 ± 3, 334 ± 1.1 Ma (Pb-Pb zircon), 327–342 Ma (U-Pb zircon), 474 ± 18 Ma (Rb-Sr whole rock), 310 ± 7 Ma (Rb-Sr biotite and apatite – cooling age), Saunstein Granodiorite 315 ± 3.3 and 311.0 ± 4.9 Ma (U-Pb titanite), 335–324 Ma (U-Pb zircon). Individual K-feldspar crystals from the Saunstein Granodiorite yield PermoCarboniferous ages 15 to 30 Ma younger than the crystallisation are of the host rock. Ödwies Granodiorite: 318-320 Ma (U-Pb zircon), 326 ± 2, 329 ± 6 Ma (U-Pb zircon), 331 ± 9 Ma (Rb-Sr whole rock), Kollnberg Granodiorite 320 Ma (U-Pb zircon). The coarse-grained Paragranodiorite facies intruded the fine-grained facies. The Patersdorf Granite intrudes the Paragranodiorite within a short time interval 325 ± 3 Ma and 326 ± 3 Ma (PbU zircon).
LANDŠTEJN GROUP Melechov Granite 318 ± 7, 317 ±17 Ma (Th, U, Pb monazite), Landštejn (Zvůle) Granite: 303 ± 3 Ma, 320 ± 2.7 Ma (Rb-Sr whole rock), Flossenbürg and Bärnau Granites 310.6 ± 0.3, 313 ± 2 Ma (Pb-Pb zircon), Plechý Granite 317.8 ± 9.3 Ma (U-Th-Pb monazite), HOMOLKA GROUP Nebelstein Granite 310 ± 1.9, 310.9 ± 2.0 Ma (Rb-Sr biotite), 307.8 ± 1.9, 306.1 ± 1.7 Ma (Rb-Sr muscovite), 312-308 Ma (Ar-Ar muscovite), Pyhrabruck-Nakolice Granite 314 ± 6 Ma (Rb-Sr whole rock), 314–312 Ma (ArAr muscovite), Lagerberg Granite 313 ± 7 Ma (Rb-Sr whole rock), Homolka Granite 317 ± 2, 315 ± 3, Ma (Rb-Sr muscovite), 320 ± 4 Ma (Rb-Sr whole rock), Gasthof Granite 317 ± 8, 306 ± 7 Ma (Rb-Sr whole rock), DYKE SWARMS subvolcanic felsic dykes 295 ± 5 Ma (Rb-Sr whole rock), Josefsthal Granite 318±3 Ma
MAUTHAUSEN GROUP Freistadt Granodiorite 302 ± 2 Ma (Pb-Pb monazite), 329 ± 7 Ma (Rb-Sr muscovite), Mauthausen Granite: 300 Ma (U-Pb monazite), 317.5 ± 1 Ma (U-Pb monazite), 365 ± 8 Ma (Rb-Sr whole rock), 324 ± 4 Ma (RbSr muscovite), Karlstift Granite 376 ± 9 Ma (Rb-Sr whole rock), Hauzenberg Granite II 320 ± 3, 317 ± 2 Ma (U-Pb zircon, 318,320, 329 ± 7 Ma (U-Th-Pb monazite), Patersdorf
10
cordierite-sillimanite-K-feldspar-biotite gneisses of the Monotonous Group of the Ostrong Unit are probably in a parautochthonous position. Far to the northwest, the Steinwald Granite in the Oberpfalz Composite Massif (the Western Plutons of MCB) intruded the Saxothuringian Zone (Cambrian to Ordovician phyllites and micaschists and orthogneisses). Contact aureole: the contacts are complex and cut discordantly the country rocks. Contact zone has a very complicated fabric and definite granite-gneiss boundary is not well-defined. A broad aureole of the periplutonic metamorphism (migmatitization and pearl gneisses) is in the exocontact. Cordierite formed during low pressure metamorphism is a typical mineral of many of these rocks. In general, the granites in the northern part of the Moldanubian Composite Batholith are peraluminous, containing andalusite, often sillimanite and in places cordierite. These minerals are less abundant and/or lacking farther to the south. The temperature of the Moldanubian upper crust was lower than 200 oC by ca. 270 Ma (time of the granodiorite dyke intrusion), but sediments of the Lhotice basin of the Stephanian C age cover the Ševětín Massif. Zoning: the Moldanubian Composite Batholith possesses a zonal structure. It is represented by two-mica and biotite granites along the norther margin (Eisgarn Granite) and mostly biotite granites and granodiorites (Weinsberg Granite-GranodioriteGranodiorite) futher to the south. Regional scale: Compositional gradients (zonation) in the multiple composite intrusion of two plutonic suites. This zonation indicates the gradual emplacement of the batholith from south to the north and also its rising to higher crustal level. The youngest members of MCB are subvolcanic high-level intrusions (e.g. Homolka Granite). According to Siebel et al. (2008) there exists some kind of source-related chemical zonation within southwestern part of the Moldanubian Composite Batholith with low Ca-Sr-Y granites (S-type granites) being more abundant in the north, whereas high Ca-Sr-Y granites (Itype granites) dominate in the region between the Pfahl and Danube faults. The crustal block south of the Pfahl fault was uplifted for several kilometres relative to the northern block at
(Rb-Sr whole rock), Kaplice Dyke Swarm 301 ± 4 Ma, 270 ± 2 Ma (Ar-Ar hornblende), Pelhřimov Dyke Swarm 228 Ma (K-Ar whole rock). , Ševětín Microgranodiorite ca. 270 Ma (Ar-Ar hornblende), UNCLASSIFIED GRANITES Trasching Granite 321 ± 3 Ma (U-Pb monazite), Peuerbach and Schärding Granites 316-319 Ma (U-Pb monazite), Sulzberg Granite 327 Ma (U-Pb monazite), Friedenfels Granite 311.5 ± 0.4 Ma (Pb-Pb zircon), Mitterteich Granite 309.4 ± 1.4 Ma (Pb-Pb zircon), Liebenstein Granite 314.4 Ma (Pb-Pb zircon), Tittling Granite 335 ± 25 Ma (Pb-Pb, zircon), Eberhardsreuth Granite 316–312 Ma (Pb-Pb zircon), 318–312 Ma (U-Pb zircon), Saldenburg Granite 318–312 Ma (Pb-Pb zircon), Fürstenstein Diorite 334–332 Ma (PbPb zircon), 321 Ma (U-Pb titanite), Neunburg Granite 319 ± 2 Ma (U-Pb zircon), Schärding Granite 316–319 Ma (U-Th-Pb monazite), The major phase of the Weinsberg GraniteGranodiorite is intruded by Freistadt Granodiorite, Mauthausen Granite, dykes of Kristallgranite II (Eisgarn Granite s.l.) and the Plessberg Granite. Dykes of the Schrems and Eisgarn Granite cut across the Gebharts Quartz diorite (existence of the older and younger diorites). Xenoliths of the Eisgarn Granite and granite porphyry were found in the central part of the Homolka Stock. Temporal (field) relations (from the older type to the younger type): Gebharts Diorite → Weinsberg Granite-Granodiorite (Kristallgranite I) → Freistadt Granodiorite Karlstift Granite–Reinpolz Granite → Mauthausen Granite → Eisgarn Granites (Kristallgranite II)→ Landštejn Granites → Homolka Granite Felsic Dyke Swarms. Geological environment: Moldanubian Composite Batholith intruded a polymetamorphic terrain of the Moldanubian Zone consisting of three Units (two of which are in a tectonically inverted position) from the present bottom to top: the Ostrong, Drosendorf, and Gföhl Units. The Gföhl nappe contains the highest-grade rocks: various migmatites, mainly leucocratic migmatized gneisses with some felsic retrogressed granulites are also present. The Varied Group of the Drosendorf Unit is characterised by garnet-bearing ortho- and paragneisses, pelitic schists, marbles and amphibolites. The 11
Mineralization: greisenization and Kfeldspatization of the Eisgarn granites is associated with sub-economic Mo, Sn-W-NbTa mineralization, and U in shear zones. Stratabound mineralization and quartz veins with Ag-Pb-Zn + Au, F, W (scheelite) at the exocontact of the granite. Heat production (Wm-3): Číměř Granite 3.7, Mrákotín Granite 2.83, Weinsberg Granite-Granodiorite 3.5–5.0, Mauthausen Granite 2.5–6.5, Schrems Granite 5.41, Eisgarn Granite 7.07.
time when I-type granite production was most intensive (Finger and René 2009). Local scale: Flossenbürg and Bürgerwald Granites show gradational zonation from SW to NE (trend of differentiation). Zvůle and Čeřínek Granites – reverse zonation with the most evolved facies along the endocontact. Eisgarn Granite s.s., Melechov and Stvořidla Granites show structural and compositional normal concentric zoning (ring intrusions).
References BAUBERGER, W. (1981): Zur Geologie des Nationalparks Bayerischer Wald. – Sonderband (Bayer. Wald) 31, 15–32, Heidelberg. BENDL, J. – KLEČKA, M. – MONEIM, M. – SVOBODOVÁ, J. (1994): Rb-Sr dating of the topazbearing muscovite granite stock Homolka, Moldanubian Composite Batholith. – Mitt. Österr. mineral. Gesell. 139, 273–275. BREITER, K. (1998): Variszisches Granitmagma und die zugehörigen Mineralisationen in westlicher Umgebung. – Jber. Mitt. Oberrhein. geol. Ver., N.F., B. 80, 145–166. BREITER, K. (2007): Nové poznámky o geologické stavbě melechovského masivu. – Zpr. geol. Výzk. v Roce 2006, 202–205. BREITER, K. – GNOJEK, I. – CHLUPÁČOVÁ, M. (1998): Radioctivity pattern – constraints for the magmatic evolution of the two-micagranites in the Central Moldanubian Pluton. – Věst. Čes. geol. Úst. 73, 301–311. BREITER, K. – HRUBEŠ, M. – MLČOCH, B. – ŠTĚPÁNEK, P. – TÁBORSKÝ, Z. (2001): Results of new geologic-petrological studies in the Melechov massif area. In: Procházka, J. Ed.: Geological investigation of the testing locality Melechov Massif. – MS Czech Geol. Survey, Prague. (In Czech) BREITER, K. – KOLLER, F. (1999a): Contrasting styles of magmatic zoning in the Central Moldanubian Pluton. – Geolines 8, 10–11. BREITER, K. – KOLLER, F. (1999b): Two-mica granites in the central part of the South Bohemian Pluton. – Abh. Geol. Bundesanst. 56, 201–212. BREITER, K. – SCHARBERT, S. (1998): Latest intrusions of the Eisgarn Composite Pluton /South Bohemia – Northern Waldviertel. – Jb. Geol. 141, 25–37. BREITER, K. – SCHARBERT, S. (2001): Geological mapping of the two-mica granites in the Weitra – Nové Hrady area. – Mitt. Österr. Mineral. Gesell. 146, 40–41. BREITER, K. – SCHARBERT, S. (2006): Two-mica and biotite granites in the Weitra-Nové Hrady area, Austria – Czech Republic. – J. Czech Geol. Soc. 51, 3–4, 217–229. BREITER, K. – SULOVSKÝ, P. (2005): Stáří granitů melechovského masivu. – Zpr. geol. Výzk. v Roce 2004, 16–19. BURIÁNEK, D. – NOVÁK, M. (2001): Tourmaline-bearing leucogranites from the Moldanubicum. – Mitt. Österr. mineral. Gesell. 146, 51–53. ČECH, V. et al. (1962): Vysvětlivky k přehledné geologické mapě ČSSR 1 : 200 000, M-33-XXXIII Vyšší Brod. – Ústř. úst. geol. Praha. DALLMEYER, R. D. – NEUBAUER, F. – HÖCK, V. (1990): 40Ar/39Ar mineral age controls on the chronology of late Palaeozoic tectonothermal activity in the southwestern Bohemian Massif, Austria (Moldanubian and Moravo-Silesian zones). Abstract, Int. Confer. Palaeozoic Orogens in Central Europe, 2 p. – Göttingen. DOLLINGER, U. – DÜRR, S. – GRAUERT, B. – LIST, F. K. – MADEL, J. – SCHREYER, W. – TROLL, G. – WINTER, H. (1967): Führer zu geologisch-petrographischen Exkursionen im Bayerischen Wald. TeilI: Aufschlüsse im Mittel- und Ostteil. – Geologica bavar. 58, 188 pp. DUDEK, A. – SUK, M. (1965): The depth relief of the granitoid plutons of the Moldanubicum. – Neu. Jb. Geol. Paläont., Abh. 123, 1, 1–19. 12
FINGER, F. – CLEMENS, J. D. (1995): Migmatization and “secondary” granitic magmas: effects of emplacement and crystallization of “primary” granitoids in Southern Bohemia, Austria. – Contr. Mineral. Petrology 120, 311–326. FINGER, F. – FRASL, G. – FRIEDL, G. – HÖCK, V. (1992) Geology and petrology of the Late Palaeozoic granitoid complex in the Southern Bohemian Massif (Austria). In: Kukal, Z. Ed.: Proc. of the 1st Int. Confer. on the Bohemian Massif, 70–72. – Czech Geol. Survey, Prague. FINGER, F. – GERDES, A. – JANOUŠEK, V. – RENÉ, M. – RIEGLER, G. (2007): Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and Moravo-Moldanubian tectonometamorphic phases. – J. Geosci. 52, 9–28. FINGER, F. – GERDES, A. – RENÉ, M. – RIEGLER, G. (2009): The Saxo-Danubian Granite Belt: magmatic response to post-collisional delamination of mantle lithosphere below the south-western sector of the Bohemian Massif (Variscan orogen). – Geol. carpath. 60, 3, 205–212. FINGER, F. – HAUNSCHMID, B. – SCHERMAIER, A. (1994): Southern Bohemian Batholith. European Network of Laboratories-Granites, Field-Meeting 29.8.–31.8.1994, 1–16. – Salzburg. FINGER, F. – RENÉ, M. (2009): A comment on “Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement constraints from geochemistry and zircon 207Pb/206Pb chronology” by Siebel et al. – J. Petrology 49, 1853–1872. FINGER, F. – ROBERTS, M. P. – HAUNSCHMID, B. – SCHERMAIER, A. – STEYRER, H.P. (1997): Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. – Mineral. Petrology 61, 67–96. FRANK, W. (1994): Geochronology and evolution of the South Bohemian Massif: Review. – Mitt. Österr. mineral. Gesell. 139, 41-43. FRANK, W. – SCHARBERT, S. (1993): K/Ar und 40Ar/39Ar-daten von Glimmern der Böhmischen Masse. – Mitt. Österr. mineral. Gesell. 138, 119–121. FRASL, G. – FINGER, F. (1991): Geologisch-petrographische Exkursion in den österrechischen Teil des südböhmischen Batholiths. – Beihefte Eur. J. Mineral. 3, 2 23–40. FRIEDL, G. – FINGER, F. (1994): Zur Intrusionsfolge im südböhmischen Batholith: neue Aspekte bezüglich der Stellung des Eisgarner Granits. – Mitt. Österr. mineral. Gesell. 139, 298–299. FRIEDL, G. – FINGER, F. – PAQUETTE, J. L. – von QUADT, A. – McNAUGHTON, N. J. – FLETCHER, I. R. (2004): Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U-Pb zircon ages. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 802–823. FRIEDL, G. – VON QUADT, A. – OCHSNER, A. – FINGER, F. (1993): Timing of the Variscan Orogeny in the Southern Bohemian Massif (NE Austria) deduced from new U-Pb zircon and monazite dating. EUG 5 Strasbourg, – Terra Nova 5, 235. GERDES, A. (1997): Geochemische und thermische Modelle zur Frage der spätiorogenen Granitgenese am Beispiel des Südböhmischen Batholits“ Basaltisches Underplating oder Krustenstapelung? – 113 pp. Diss. Univ. Göttingen. GERDES, A. – FRIEDL, G. – PARRISH, R. R. – FINGER, F. (2003): High-resolution geochronology of Variscan granite emplacement – the South Bohemian Batholith. – J. Czech Geol. Soc. 48, 53– 54. GERDES, A. – WÖRNER, G. – FINGER, F. (1998a): Late-orogenic magmatism in South Bohemia – geochemical and isotopic constraints on possible sources and magma evolution. – Acta Univ. Carol., Geol. 42, 41–45. GERDES, A. – WÖRNER, G. – HENK, A. (1998b): Thermal and geochemical evidence for granite generation and HT-LP metamorphism by crustal stacking and radiogenic heating (the Variscan Southern Bohemian Massif). – Acta Univ. Carol., Geol. 42, 234. GNOJEK, I. – BREITER, K. (1998): The Reingers Magnetic Anomaly in the Central Moldanubian Pluton (Southern Bohemia – Lower Austria). – Věst. Čes. geol. Úst. 73, 99–106. GNOJEK, I. – PŘICHYSTAL, A. (1997): Ground Geophysical and Geological Mapping in the Central Part of the Moldanubian Pluton. – Jb. Geol. Bundesanst. 140, 2, 193–250. GÖD, R. (1989): A contribution to the mineral potential of the southern Bohemian Massif. – Arch. Lagerstättenforsch. Geol. B.-A. 11, 147–153. HARLOV, D. E. – PROCHÁZKA, V. – FÖRSTER, H-J. – MATĚJKA, D. (2008): Origin of monzonite-xenotime-zircon-fluorapatite assemblages in the peraluminous Melechov granite massif, Czech Republic. – Mineral. Petrology 94, 9–26.
13
HEŘMÁNEK, R. – MATĚJKA, D. (1998): Granites of the Novohradské Hory Mts. and surrounding area. – Acta Univ. Carol., Geol. 42, 262–263. HOLUB, F.V. – KLEČKA, M. – MATĚJKA, D. (1995): Igneous activity of the Moldanubian Zone. In: Dallmeyer, R. D. – Franke, W. – Weber, K. Eds: Tectonostratigraphic evolution of the Central and East European Orogens, 444–452. – Springer Verlag, Berlin. HOLUB, F. V – MATĚJKA, D. – KOLLER, F. (2003): Dioritické horniny v moldanubickém (jihočeském) batolitu. – Zpr. geol. Výzk. v Roce 2002, 19–20. JÄGER, E. – GRÜNENFELDER, M. – GRÖGLER, N. – SCHROLL, E. (1965): Mineralalter granitischer Gesteine aus dem Österreichischen Moldanubikum. – Tschermaks mineral. petrogr. Mitt. 10, 528–534. KLEČKA, M. – BENDL, J. – MATĚJKA, D. (1994): Rb-Sr dating of acid subvolcanic dyke rocks – final magmatic products of the Moldanubian Composite Batholith. – Mitt. Österr. mineral. Gesell. 139, 66–68. KLEČKA, M. – MATĚJKA, D. (1993): Korelace českých a rakouských typologických studií granitoidů moldanubického plutonu. – Zpr. geol. Výzk. v Roce 1991, 79–80. KLEČKA, M. – MATĚJKA, D. (1995): Moldanubian Composite Batholith – an example of the evolution of the Late Palaeozoic granitoid magmatism in the Moldanubian Zone, Bohemian Massif (Central Europe). In: Srivastava, R. K. – Chandra, R. Eds: Magmatism in relation to diverse tectonic settings. 353–373. – Oxford and IBH Publishing, New Delhi. KLEČKA, M. – MATĚJKA, D. – JALOVEC, J. – VAŇKOVÁ, V. (1999): Geochemical investigation of the group granitoids of the Eisgarn type in the southern part of the Central massif of the Moldanubian Composite Batholith. – Zpr. geol. Výzk. v Roce 1998, 109–111. KLEIN, T. – KIEHM, S. – SIEBEL, W. – SHANG, C.K. – ROHRMÜLLER, J. – DÖRR, W. – ZULAUF, G. (2008): Age and emplacement of late-Variscan granites of the western Bohemian Massif with main focus on the Hauzenberg granitoids (European Variscides, Germany). – Lithos 102, 478–507. KLÖTZLI, U. S. (1994): Crustal reworking, magma generation, and intrusion history of Variscan granitoids of the South Bohemian Pluton (Bohemian Massif, Austria): a zircon Pb-Pb and U-Pb study. – Mitt. Österr. mineral. Gesell. 139, 320–322. KLÖTZLI, U. S. – FRANK, W. – SCHARBERT, S. – THÖNI, M. (1999): Evolution of the SE Bohemian Massif based on geochronological data – a review. – Jb. Geol. Bundesanst. 141, 4, 377– 394. KLÖTZLI, U. S. – KOLLER, F. – HÖCK, V. (1995): Pre-Variscan remnant lower crustal rocks in Variscan granitoids of the South Bohemian Pluton (Bohemian Massif, Austria). EUG 8. – Terra Nova 7, 141. KNOB, H. (1970): Über das Vorkommen eines porphyrischen Granites im Raume Sandl-KarlstiftLiebenau bei Freistadt im oberösterreichischen Mühlviertel (Granit vom Typ Karlstift). – Tschermaks mineral. petrogr. Mitt. 14, 311–323. KNOB, H. (1971): Der Freistädter Granodiorite im österreichischen Moldanubikum. – Verh. Geol. Bundesanst. 1, 98–142. KNOP, E. – FINGER, F. (2009): Zur Verbreitung des Eisgarner Granittyps im Bayerischen Wald. – SDGG, Heft 63 – GeoDresden 2009, p. 141. KOLLER, F. (1994): The South Bohemian Pluton – A complex batholith with a multiple intrusion history. – Mitt. Österr. mineral. Gesell. 139, 28, 258–313. KOLLER, F. – GÖD, R. (1990): Neue Beobachtungen an den Granitkomplexen des nördlichen Waldviertels (Moldanubikum). – Österr. Beitr. Met. Geophys. 3, 169–183. KOLLER, F. – SCHARBERT, S. – HÖCK, V. (1993): Neue Untersuchungsergebnisse zur Genese einiger Granite des Südböhmischen Plutons. Projekte S4709, S4702 und S4704. – Mitt. Österr. mineral. Gesell. 138, 179–196. KOŠLER, J. – KELLEY, S. P. – VRÁNA. S. (2001): 40Ar/39Ar hornblende dating of a microgranodiorite dyke: implications for early Permian extension in the Moldanubian Zone of the Bohemian Massif. – Int. J. Earth Sci. (Geol. Rdsch.) 90, 379–385. KÖHLER, H. – FRANK, Ch. – KÖNIGSBERGER, T. – SCHÖN, B. (2008): Isotopische (Sr, Nd) Charakterisierung und Datierung Varistischer Granitoide der Moldanubischen Kruste Nordostbayerns. In: Geochronologische, geochemische, petrographische ind mineralogische
14
Untersuchungen im Grundgebirge Bayerns sowie kritische Betrachtungen zu Sr-Isotopenstandarts. – Geologica bavar. 110, Umwelt Spez., 170–203. KÖHLER, H. – MÜLLER-SOHNIUS, D. (1986): Rb-Sr Altersbestimmungen und Sr-Isotopen systematik an Gesteinen des Regensburger Waldes (Moldanubikum NE Bayern). Teil 2: Intrusivgesteine. – Neu. Jb. Mineral., Abh. 155, 3, 219–241. KOUTEK, J. (1925): About granite from Mrákotín. – Rozpr. Čes. Akad. Věd, Tř. II, 34/18, 1–18. (In Czech) KRUPIČKA, J. (1968): The contact zone in the north of the Moldanubian Pluton. – Krystalinikum, 6, 7–39. LENZ, B. – MAURITSCH, H. J. – REISINGER, J. R. (1996): Petrophysical investigations in the Southern Bohemian Massif (Austria): data-acquisition, -organisation and -interpretation. – Contr. Mineral. Petrology 58, 279–300. LIEW, T. C. – FINGER, F. – HÖCK, V. (1989): The Moldanubian granitoid plutons of Austria: Chemical and isotopic studies bearing on their environmental setting. – Chem. Geol. 76, 41–55. MATĚJKA, D. (1997): Chemismus hlavních typů granitů v severní části moldanubického plutonu. – Zpr. geol. Výzk. v Roce 1996, 47–48. MATĚJKA, D. – HEŘMÁNEK, R. (1995): Moldanubian Composite Batholith. In: European Network of Laboratories – Granites-Guide Book, Field Meeting in the Bohemian Massif (Czech Republic). MATĚJKA, D. – JANOUŠEK, V. (1998): Whole rock geochemistry and petrogenesis of granites from the northern part of the Moldanubian Composite Batholith (Czech Republic). – Acta Univ. Carol., Geol. 42, 73–79. MATĚJKA, D. – NOSEK, T. – RENÉ, M. (2002): Vývoj dvojslídných granitů subtypu Číměř v centrálním moldanubickém plutonu. – Bull. Mineral.-petrolog. Odd. Nár. Muz., 10, 241–247. MEYER, R. – MIELKE, H. – SCHMIDT-KALER, H. – UNGER, H.J. (1994): Geologische Übersichtskarte 1 : 200 000 CC7134 Regensburg. – Stuttgart. MITRENGA, P. – REJL, L. – WEISS, J. (1979): Geologie širšího okolí Humpolce. Sbor. příspěvků ke geol. výzk. jz. části Českomoravské vrchoviny. – Jihočes. muz. České Budějovice. MOTTLOVÁ, L. – SUK, M. (1970): Distribution of granitoid rocks in the subsurface structure of the Moldanubian Zone (English summary). – Čas. Mineral. Geol. 15, 383–392. NOVÁK, M. – KLEČKA, M. – ŠREJN, V. (1994): Compositional evolution of Nb, Ta-oxide minerals from alkalifeldspar muscovite granites Homolka and Šejby, southern Bohemia, and its comparison with other rare-element granites. – Mitt. Österr. mineral. Gesell. 139, 353–354. PROPACH, G. – BAUMANN, A. – SCHULZ-SCHALSCHLÄGER, M. – GRAUERT, B. (2000): Zircon and monazite U-Pb ages of Variscan granitoid rocks and gneisses in the Moldanubian Zone of eastern Bavaria, Germany. – Neu. Jb. Geol. Paläont. Mh. 6, 345–377. PROPACH, G. – BAYER, B. – CHEN, F. – FRANK, Ch. – HÖLZL, S. – HOFMANN, B. – KÖHLER, H. – SIEBEL, W. – TROLL, G. (2008): Geochemistry and petrology of late Variscan magmatic dykes of the Bavarian Forest, Germany. In: Geochronologische, geochemische, petrographische ind mineralogische Untersuchungen im Grundgebirge Bayerns sowie kritische Betrachtungen zu Sr-Isotopenstandarts. – Geologica bavar. 110, Umwelt Spezial, 170–203. PROPACH, G. – SPIEGEL, W. – SCHULZ-SCHALSCHLÄGER, M. – WÜNSCH, W. – HECHT, L. (1991): Die Genese des Ödwieser Granodiorits. – Geologica Bavar. 96, 119–138. PŘICHYSTAL, A. 1994): Magmatic rocks with anomalous magnetic susceptibilities and subvolcanics from the Austrian part of the Moldanubian Pluton. – Mitt. Österr. mineral. Gesell. 139, 362–363. RENÉ, M. (1994a): Geology and petrography of the Bor massif. In: Breiter, K. Ed.: Granitoids of Western Bohemia and Oberpfalz. 5–10. – Czech Geol. Survey, Prague. RENÉ M. (1994b): Genetic classification of the Moldanubian granitoids in the SW part of the Bohemian massif. – Mitt. Österr. mineral. Gessel. 139, 363–365. RENÉ, M. (1996): Geochemistry of Czech part of the South Bohemian Pluton. – Mitt. Österr. mineral. Gesell. 141, 191–192. RENÉ, M. (1999a): Petrografie a chemismus granitů subtypu Číměř z okolí Okrouhlé Radouně (23-32 Kamenice nad Lipou). – Zpr. geol. Výzk. v Roce 1998, 65–67. RENÉ, M. (1999b): Radioelement distribution and Heat production of two-mica monzogranites from the Moldanubian Composite Batholith of the Bohemian Massif (Czech Republic). – Acta montana, A14 (114), 55–66.
15
RENÉ, M. (2000a): Constrains on classification of two-mica granites in the Moldanubian Composite Batholith. – Scripta Fac. Sci. Natur. Univ. Masaryk. Brun., Geol. 27, 31–40. RENÉ M. (2000b): Petrogenesis of the Variscan granites in the western part of the Bohemian Massif. – Acta montana, A15 (116), 67–83. RENÉ, M. (2000c): Two-mica granites of the southwestern part of the South Bohemian Batholith. – Mitt. Österr. mineral. Gesell. 145, 21–28. RENÉ M. (2001a): Evolution of two-mica granites in the South Bohemian Batholith. – Mitt. Österr. mineral. Gesell. 146, 258–259. RENÉ, M. (2001b): Vývoj dvojslídných granitů v oblasti mezi Mrákotínem a Řásnou. – Geol. Výzk. Mor. Slez. v Roce 2000, 82–84. RENÉ, M. (2002): Origin of two-mica granites of the Moldanubian batholith. – Erlanger Geol. Abh., Sonderband 3, 78–79. SCHARBERT, S. (1987): Rb-Sr Untersuchungen Granitoider Gesteine des Moldanubikums in Österreich. – Mitt. Österr. mineral. Gesell., 132, 21–37. SCHARBERT, S. (1988): Rubidium-strontium systematics of granitoid rocks of the South Bohemian Pluton. In: Kukal, Z. Ed.: Proc. of the 1st International Conference on the Bohemian Massif, 229– 232. – Czech Geol. Survey, Prague. SCHARBERT, S. (1998): Some geochronological data from the South Bohemian Pluton in Austria – a critical review. – Acta Univ. Carol., Geol. 42, 114–118. SCHARBERT, S – BREITER, K. – FRANK, W. (1997): The cooling history of the southern Bohemian Massif. – J. Czech Geol. Surv., 42, 24. SCHARBERT, S. – VESELÁ, M. (1990): Rb-Sr systematics of intrusive rocks from the Moldanubicum around Jihlava. In: Minaříková, D. – Lobitzer, H. Eds: Thirty years of geological cooperation between Austria and Czechoslovakia, 262–272. – Czech Geol. Survey, Prague. SCHITTER, F. – GERDES, A. – ROBERTS, M. P. – FINGER, F. (1998): Phosphorus whole-rock systematics and phosphorus carrier minerals in the granites of the South Bohemian Batholith. – Acta Univ. Carol., Geol. 42, 122–124. SCHNABEL, W. et al. (2002): Niederősterreich, geologische Karte 1:200 000. Legende und kurze Erläuterung. – 46 pp. Geol. Bundesanst. Wien. SIEBEL, W. – BLAHA, U. – CHEN, F. (2005): Geochronology and geochemistry of a dyke-host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif. – Int. J. Earth Sci (Geol. Rdsch.) 94, 8–23. SIEBEL, W. – HÖHNDORF, A. – WENDT, I. (1997): Origin of late Variscan granitoids from NE Bavaria, Germany, exemplified by REE and Nd isotope systematics. – Chem. Geol. (Isotope Geosci. Section) 125, 249–270. SIEBEL, W. – TRZEBSKI, R. – STETTNER, G. – HECHT, L. – CASTEN, U. – HÖHNDORF, A. – MÜLLER, P. (1997): Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept. – Geol Rdsch., Suppl. 86, 45–63. SIEBEL, W. – SHANG, C. K. – RITTER, E. – ROHRMÜLLER, J. – BREITER, K. (2008): Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement constraints from geochemistry and zircon 207Pb/206Pb chronology. – J. Petrology 49, 1853–1872. SPIEGEL, W. – PROPACH, G. – SCHULZ-SCHALSCHLÄGER, M. (1991): Die Genese basischer und intermediärer Intrusivgesteine im Westteil des oberen Bayerischen Waldes. – Geologica bavar. 96, 139–178. STETTNER, G. (1992): Geologie im Umfeld der Kontinentalen Tiefbohrung Oberpfalz. Einführung und -Exkursionen. – 240 pp. Bayer. Geol. Landesamt. München. SUK, M. – WEISS, J. (1975): Interpretation of subsurface structure of plutons in the Moldanubian Zone. In: Deep geological structure of Czechoslovakia (Loučná, 1974), 195–206. – Brno. (In Czech) TEIPEL, U. – GALADI-ENRIQUEZ, E. – GLASER, S. – KROENER, E. – ROHRMÜLLER, J. – GRASSMANN, E. – RICHTMANN, T. (2008): Erdgeschichte des Bayerischen Waldes. Geologische Karte des Bayerischen Waldes 1 : 150 000. – Bayer. Landesamt für Umwelt. THIELE, O. (1969): Physikalische Altersbestimmungen an Gesteinen des Mühlviertels. – Geol. Paläont. Linzer Raumes (Kataloge d. Oö. Landesmuseums 64), 23–33.
16
TROLL, G. (1967): Geologische Übersichtskarte des Bayerischen Waldes 1 : 100 000. In: Fűhrer zu geologisch-petrografischen Exkursionen im Bayerischen Wald. – Geologica bavar. 58. TRZEBSKI, R. – BEHR, H. J. – CONRAD, W. (1997): Subsurface distribution and tectonic setting of the late Variscan granites in the northwestern Bohemian Massif. – Geol. Rdsch. 86, Suppl. S64– S78. VEJNAR, Z. (1962): Zum Problem des Alters der krystallinen Schiefer und der Intrusiva des westböhmischen Kristallins. – Krystalinikum 1, 149–159. VELLMER, C. – WEDEPOHL, K. H. (1994): Geochemical characterization and origin of granitoids from the Southern Bohemian batholith in Lower Austria. – Contr. Mineral. Petrology 118, 13–32. VESELÁ, M. (1976): Jihlavská brázda ve vývoji geologické stavby okolí Jihlavy. – Sbor. geol. Věd, Geol. 28, 181–205. ZITZMANN, A. et al. (1981): Geologische Übersichtskarte 1 : 200 000, CC 6334 Bayreuth. – BGR Hannover. ZITZMANN, A. et al. (1994): Geologische Übersichtskarte 1 : 200 000, CC7134 Regensburg. – BGR Hannover. ZITZMANN, A. et al. (1994): Geologische Übersichtskarte 1 : 200 000, CC 7142 Deggendorf. – BGR Hannover. ZITZMANN, A. et al. (1999): Geologische Übersichtskarte 1 : 200 000, CC 7942 Passau. – BGR Hannover.
17
I. Eastern plutons of the Moldanubian Composite Batholith 2.1.1. EISGARN COMPOSITE PLUTON 4. Stvořidla Granite – medium to finegrained muscovite (± biotite) alkalifeldspar granite.
Regional position: northern part of the Moldanubian Composite Batholith in the Moldanubian Zone (a group of eastern plutons). The major part of the pluton is interconnected in shallow depth with the Melechov and Klenov Massifs. According to René (2000) the Eisgarn Composite Pluton mostly represented by the Eisgarn Granite s.l. consists of three magmatic episodes: 1. Lásenice-Deštná Granite subtype, 2. Číměř and Mrákotín Granite subtypes, 3. Eisgarn Granite s.s. Rock types: A. Eisgarn Granites (s.l.) 1. Mrákotín Granite – two-mica ± porphyritic granite (marginal facies of the Číměř Granite) Kouty and Světlá Granite are facies of the Mrákotín Granite. 2. Číměř (Řásná) Granite – porphyritic two-mica granite 3. Lipnice Granite – medium-grained twomica granite 4. Bílý Kámen Granite – ± porphyritic finegrained two-mica granite. 5. Lásenice-Deštná Granite – medium to fine-grained biotite ( + muscovite) 6. Boršov Granite – fine-grained muscovite-biotite granite 7. Pavlov Granite – fine-grained muscovite-biotite granite 8. Jiřín Granite – fine-grained two-mica granite B. Landštejn Granites 1. Zvůle (Landštejn) Granite – coarse to medium-grained two-mica alkalifeldspar granite 2. Čeřínek Granite – ± porphyritic coarsegrained two-mica granite 3. Melechov Granite – coarse to mediumgrained two-mica alkali-feldspar granite 4. Eisgarn Granite (s.s.) – porphyritic biotite-muscovite granite C. Homolka Granites 1. Homolka Granite – medium-grained muscovite topaz-bearing alkali-feldspar granite 2. Kozí hora–Hirschenschlag Granite– biotite magnetite-bearing granite 3. Galthof Granite – porphyritic mediumgrained muscovite alkali-feldspar granite
D. Porphyry Dyke Swarms PELHŘIMOV DYKE SWARM 1. Felsite Rhyolite – partly with fluidal fabric 2. Pelhřimov Granite Porphyry – felsic alkali-feldspar granite porphyry. ŠEVĚTÍN DYKE SWARM Ševětín Microgranodiorite – amphibole granodiorite and quartz monzonite. KAPLICE DYKE SWARM Kaplice Granodiorite Porphyry – biotite granodiorite porphyry, hornblende quartz diorite porphyry. BLANICE GRABEN DYKE SWARM Štěpánovice Quartz Micromonzodiorite – sub-ophitic pyroxene-biotite finegrained or locally medium-grained quartz monzodiorite. SUŠICE DYKE SWARM Sušice Quartz monzonite – augite quartz micromonzonite. LITSCHAU DYKE SWARM Josefsthal Granite – fine-grained alkalifeldspar leucogranite.
18
Fig. 2.4. Eisgarn Composite Pluton hierarchic scheme according to rock groups and rock types.
Fig. 2.5. Eisgarn Composite Pluton geological sketch-map (adapted after Breiter et al. 1998). Eisgarn Group: 1 – Mrákotín Granite, 2 – Číměř Granite, 3 – Lásenice-Deštná Granite, 4 – Lipnice Granite, 5 – Eisgarn Granite s.s., 6 – Eisgarn Granite s.l., Landštejn Group: 7 – Zvůle Granite, 8 – Čeřínek Granite, Homolka Group: 9 – Melechov Granite, 10 – Homolka Granite, 11 – Stvořidla Granite, 12 – Galthof Granite, 13 – Kozí hora-Hirschenschlag Stock, Porphyry Dyke Swarms: 14 – Litschau Dyke Swarm.
19
Eisgarn Granite s.l. including Zvůle (Landštejn) Granite Quarz-rich, potassic, strongly peraluminous, leucocratic, S-type, I & M-series, granite n = 80 Med. Min Max QU1 QU3 SiO2 72.60 68.15 75.88 72.16 73.40 TiO2 0.23 0.06 0.52 0.14 0.28 Al2O3 14.46 12.93 15.76 14.21 14.94 Fe2O3 0.38 0.04 1.44 0.25 0.52 FeO 0.97 0.12 2.33 0.74 1.29 MnO 0.04 0.01 0.70 0.03 0.27 MgO 0.29 0.01 1.23 0.05 0.41 CaO 0.93 0.40 2.43 0.76 1.10 Na2O 3.10 2.12 4.60 2.85 3.32 K2O 5.01 3.13 5.98 4.76 5.20 P2O5 0.26 0.04 0.65 0.20 0.30 Mg/(Mg + Fe) 0.26 0.01 0.54 0.05 0.34 K/(K + Na) 0.52 0.31 0.63 0.49 0.54 Nor.Or 30.67 18.73 36.27 29.08 31.75 Nor.Ab 28.90 19.89 42.07 26.76 30.76 Nor.An 2.81 0.47 11.23 1.70 3.96 Nor.Q 31.82 22.29 39.43 30.34 33.18 Na + K 205.86 170.44 248.32 200.96 209.42 *Si 186.20 133.01 224.52 180.10 193.79 K-(Na + Ca) -9.18 -94.93 32.19 -20.46 1.36 Fe + Mg + Ti 27.50 9.34 69.27 21.94 37.85 Al-(Na + K + 2Ca) 47.24 1.56 92.34 32.32 55.00 (Na + K)/Ca 12.03 4.99 29.22 10.16 15.90 A/CNK 1.22 1.02 1.51 1.16 1.27 Trace elements (mean values in ppm): Eisgarn Granite – Ba 67, Cs 30, Ga 24, Hf 2, Li 154, Nb 16, Pb 22, Rb 368, Sc 3.3, Sr 40, Th 11, U 12, Y 18, Zn 84, Zr 54, La 14, Ce 31, Sm 1.6, Eu 0.29, Yb 1, Lu 0.1 (Breiter and Sokol 1997).
Fig. 2.6. Eisgarn Granite (s.l). ABQ and TAS diagrams.
evidence that only the apical part of the Eisgarn Composite Pluton was laid bare. The average dips both of the contact and of the Moldanubian paragneisses fluctuates around 20°. It can be calculated that the real thickness of the roof of the pluton corresponds to a value
Size and shape (in erosion level): The Eisgarn Composite Pluton is an elongated body with the area of ca 1600 km2 (100 × 15 km). A number of preserved islets and blocks of crystalline schists are found that together with the shape and position of the intrusion bring
20
Homolka Stock and in the Weinsberg GraniteGranodiorite (Besednice). Geological environment: Large amount of roof pendants (paragneisses and migmatites) in the north indicate much shallower erosion level compared to the southern part of the CMB. Contact aureole: due to the gentle dip of the contact surface the width of the exomorphic contact zone expressed in the order of kilometres is only an apparent one and in reality does not exceed several hundred meters. The contact metamorphism especially in the northern part is characterized by mass formation of cordierite. Zoning: Eisgarn Granite s.s. shows distinct normal concentric zoning. Zvůle and Čeřínek Granites – ring-shaped reverse zoning with the most evolved facies along the endocontact. Melechov and Stvořidla Granites show distinct structural and compositional normal concentric zonation. Mineralization: greisenization and Kfeldspatization of the Eisgarn granites is incompanied by sub-economic Mo, Sn-W-NbTa mineralization (e.g. Homolka Granite), and U in shear zones; stratabound mineralization and quartz veins with Ag-Pb-Zn + Au, F, W (scheelite) at the exocontact of the granite. Heat production (μWm-3): Číměř Granite 3.7, Mrákotín Granite 2.83, Lásenice Granite 2.01, Eisgarn Granite s.s. 4.31–7.07, Homolka Granite 1.52.
of about 2000 m (Dudek and Suk 1965). The Zvůle Granite – a circular stock (5 km in diameter) within the Číměř Granite. Melechov Granite – a circular stock (3 × 6 km) within the Kouty (Světlá) Granite, Čeřínek Granite – circular stock (3 km in diameter) within the Bílý Kámen Granite. The Eisgarn s.s. – elliptical massif (20 × 15 km) within the Mrákotín Granite. The Galthof Granite – irregular body (1.5 km2) and two outcrops (< 0.1 km2) intrude the Eisgarn Massif. Homolka Granite is elongated circular stock (6 km2)in the Číměř Granite, Josefsthal Granite – a granite dyke in the Eiagarn Massif, Kozí horaHirschenschlag Granite – ring-shaped structure of small stocks, dykes and zones of metasomatism in the Číměř Granite, with occurrence of molybdenite-magnetite greisens. Age and isotopic data: EISGARN GROUP Eisgarn granites 327 ± 4 Ma (Pb-Pb monazite), 316 ± 7, 303 ± 6 Ma (Rb-Sr whole rock) (0.7147), 328 Ma (Ar-Ar muscovite), Číměř Granite 330 ± 6.5 Ma (Rb-Sr whole rock), Kouty Granite 313 ± 15 Ma (Th, U, Pb monazite), Lipnice Granite 313 ± 15, 315 ± 23, 308 ± 13 Ma (Th, U, Pb). LANDŠTEJN GROUP Landštejn Granite 303 ± 3 Ma (Rb-Sr whole rock), Zvůle Granite 320 ± 2.7 Ma (Rb-Sr whole rock), Melechov Granite 318 ± 7, 317 ±17 Ma (Th, U, Pb monazite). HOMOLKA GROUP Galthof Granite 317 ± 8 and 306 ± 7 Ma (Rb-Sr whole rock), Homolka Granite 317 ± 2, 315 ± 3, Ma (Rb-Sr muscovite), 320 ± 4 Ma (Rb-Sr whole rock), 300 ± 41 Ma (Rb-Sr whole rock). DYKE SWARMS Subvolcanic felsic dykes: 295 ± 5 Ma (RbSr whole rock), Josefsthal Granite 318 ± 3 Ma (Rb-Sr whole rock) Temporal (field) relations: The Stvořidla Leucogranite intrudes the Melechov Granite at the Melechov Massif. The Lásenice Granite is older than all two-mica granites. The Eisgarn granites s.l. are intruded by Landštejn (Zvůle) Granite. Xenoliths of Eisgarn Granite and granite porphyry were found in the central part of the
21
Fig. 2.7. Mrákotín Granite ABQ and TAS diagrams.
Fig. 2.8. Číměř Granite ABQ and TAS diagrams.
Mrákotín Granite Quartz-rich, potassic, peraluminous, leucocratic, S-type, granite n = 20 Median Min Max SiO2 72.90 72.07 73.99 TiO2 0.21 0.15 0.37 Al2O3 14.38 13.96 14.75 Fe2O3 0.47 0.08 0.96 FeO 0.76 0.26 1.47 MnO 0.02 0.02 0.03 MgO 0.32 0.23 0.56 CaO 0.82 0.50 1.01 Na2O 2.99 2.76 3.24 K2O 5.29 4.81 5.65 P2O5 0.24 0.20 0.31 Li2O 0.016 0.010 0.022 Mg/(Mg + Fe) 0.31 0.28 0.38 K/(K + Na) 0.53 0.51 0.56 Nor.Or 32.10 29.39 34.52 Nor.Ab 27.79 25.76 29.91 Nor.An 2.58 0.88 3.31 Nor.Q 31.73 29.38 34.98 22
QU1 72.50 0.17 14.16 0.25 0.50 0.02 0.29 0.71 2.92 5.17 0.23 0.014 0.30 0.53 31.53 27.11 1.90 31.20
QU3 73.61 0.23 14.48 0.75 0.92 0.02 0.33 0.86 3.10 5.48 0.25 0.017 0.33 0.54 33.13 28.57 2.81 32.51
Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
210.32 185.92 0.48 27.24 42.68 14.34 1.21
196.35 169.99 -11.67 22.23 32.43 11.72 1.15
222.60 201.36 11.90 41.26 56.74 23.04 1.28
206.47 180.15 -1.68 25.65 37.75 13.39 1.18
213.22 188.50 6.08 28.34 50.76 16.11 1.24
QU1 72.58 0.18 14.10 0.38 0.47 0.02 0.29 0.63 2.94 4.75 0.22 0.013 0.30 0.50 29.35 27.27 1.48 31.56 200.10 182.94 -10.65 25.54 43.03 13.90 1.21
QU3 73.89 0.29 14.59 0.72 0.96 0.03 0.43 0.81 3.12 5.22 0.25 0.018 0.34 0.54 32.02 28.82 2.60 34.54 209.85 199.70 4.19 32.42 56.25 18.39 1.29
Číměř Granite Quartz-rich, potassic, peraluminous, leucocratic, S-type, granite n = 37 Median Min Max SiO2 73.26 70.98 78.90 TiO2 0.24 0.10 0.40 Al2O3 14.36 12.08 15.41 Fe2O3 0.50 0.05 2.22 FeO 0.75 0.00 1.69 MnO 0.02 0.01 0.06 MgO 0.33 0.13 0.71 CaO 0.73 0.29 1.96 Na2O 3.01 2.50 3.98 K2O 5.08 3.31 6.07 P2O5 0.23 0.08 0.31 Li2O 0.015 0.006 0.034 Mg/(Mg + Fe) 0.32 0.20 0.41 K/(K + Na) 0.53 0.35 0.58 Nor.Or 30.95 20.17 36.63 Nor.Ab 28.00 23.40 36.86 Nor.An 2.13 -0.06 9.26 Nor.Q 33.30 27.70 38.66 Na + K 205.30 188.08 229.88 *Si 193.20 163.32 224.93 K-(Na + Ca) -1.29 -93.10 18.87 Fe + Mg + Ti 28.84 12.08 50.05 Al-(Na + K + 2Ca) 51.63 10.24 73.28 (Na + K)/Ca 16.05 5.69 41.34 A/CNK 1.24 1.05 1.35
References BENDL, J. – HEŘMÁNEK, R. – KLEČKA, M. – MATĚJKA, D. – ČEKAL, F. (1994): Highly evolved granites (Šejby and Nákolice stocks) in the Nové Hrady Mts., Moldanubian Composite Batholith: geochemistry and Rb-Sr dating. – Mitt. Österr. mineral. Gesell. 139, 271–273. BENDL, J. – KLEČKA, M. – MONEIM, M. – SVOBODOVÁ, J. (1994): Rb-Sr dating of the topazbearing muscovite granite stock Homolka, Moldanubian Composite Batholith. – Mitt. Österr. mineral. Gesell. 139, 273–275. BREITER, K. (1994): The youngest Variscan magmatic rocks in the southern part of the Bohemian Massif – example “Homolka” Granite. – Mitt. Österr. mineral. Gesell. 139, 30–32. BREITER, K. – FRÝDA, J (1994): Phosphorus-rich alkali feldspars and their geological interpretation – example of the Homolka magmatic centre. – Mitt. Österr. mineral. Gesell. 139, 279–281. BREITER, K. – GNOJEK, I. (1996): Radioactivity of the highly fractionated Homolka granite in the Moldanubian pluton, southern Bohemia. – Bull. Czech Geol. Surv. 71, 173–176. BREITER, K. – GNOJEK, I. – CHLUPÁČOVÁ, M. (1998): Radioactivity patterns – constraints for the magmatic evolution of the two-mica granites in the Central Moldanubian Pluton. – Věst. Čes. geol. Úst. 73, 301–311.
23
BREITER, K. – GÖD, R. – KOLLER, F. – SLAPANSKY, P. – KOPECKÝ, L. (1994): Excursion D: Mineralisierte Granite im Südböhmischen Pluton. – Mitt. Österr. mineral. Gesell. 139, 429–456. BREITER, K. – KOLLER, F. (1999a): Two-mica granites in the central part of the South Bohemian Pluton. – Abh. Geol. Bundesanst. 56, 1, 201–212. BREITER, K. – KOLLER, F. (1999b): Contrasting styles of magmatic zoning in the Central Moldanubian Pluton. 4th Meeting of the Czech Tectonic Studies Group – Abstracts. – Geolines, 8, 10–11. BREITER, K. – SCHARBERT, S. (1995): The Homolka magmatic centre – an example of late Variscan ore bearing Magmatism in the South Bohemian Batholith (southern Bohemia, northern Austria). – Jb. Geol. Bundesanst. 138, 1, 9–25. BREITER, K. – SCHARBERT, S. (1996): The Eisgarn Granite and its successors in the South Bohemian Batholith. – Mitt. Österr. mineral. Gesell. 141, 75–76. BREITER, K. – SCHARBERT, S. (1998): Latest Intrusions of the Eisgarn Composite Pluton (South Bohemia-Northern Waldviertel). – Jb. Geol. Bundesanst. 141, 25–37. BREITER, K. – SCHARBERT, S. (2000):Geochronologie a geologie granitu Zvůle. – Zpr. geol. Výzk. v Roce 1999, 160–162. BREITER, K. – SCHARBERT, S. (2001): Geological mapping of the two-mica granites in the Weitra – Nové Hrady area. – Mitt. Österr. mineral. Gesell. 146, 40–41. D´AMICO, C. – ROTTURA, A. – BARGOSSI, G. M. – NANNETTI, M. C. (1981): Magmatic genesis of andalusite in peraluminous granites, examples from Eigarn type granites in Moldanubicum. – Rend. Soc. Ital. Mineral. Petrogr. 38, 1, 15–25. DUDEK, A. – SUK, M. (1965): The depth relief of the granitoid plutons of the Moldanubicum. – Neu. Jb. Geol. Paläont., Abh. 123, 1, 1–19. FRIEDL, G. – FINGER, F. (1994): Zur Intrusionsfolge im südböhmischen Batholith: neue Aspecte bezüglich der Stellung des eisgarner Granits. – Mitt. Österr. mineral. Gesell. 139, 298–299. GERDES, A. – FRIEDL, G. – PARRISH, R. R. – FINGER, F. (2003): High-resolution geochronology of Variscan granite emplacement – the South Bohemian Batholith. – J. Czech Geol. Soc. 48, 53– 54. HARLOV, D. E. – PROCHÁZKA, V. – FÖRSTER, H-J. – MATĚJKA, D. (2008): Origin of monzonite-xenotime-zircon-fluorapatite assemblages in the peraluminous Melechov granite massif, Czech Republic. – Miner. Petrol. 94, 9–26. HOLUB, F. V. – KLEČKA, M. – MATĚJKA, D. (1995): The Moldanubian Zone – Igneous activity. In: Dallmeyer, R. D. – Franke, W. – Weber, K. Eds: Pre-Permian Geology of Central and Eastern Europe, 444–455. – Springer Verlag, Berlin. JANOUŠEK, V. – MATĚJKA, D. (1998): Sr-Nd isotopic composition of granites from the northern part of the Moldanubian Pluton and its significance for genetic classifications. – Geolines 6, 31–32. KLEČKA, M. (1984): Felzitické a sklovité žilné horniny z okolí Lásenice u Jindřichova Hradce. – Čas. Mineral. Geol. 29, 293–298. KLEČKA, M. – BENDL, J. – MATĚJKA, D. (1994): Rb-Sr dating of acid subvolcanic dyke rocks – final magmatic products of the Moldanubian Composite Batholith. – Mitt. Österr. mineral. Gesell. 139, 66–70. KLEČKA, M. – MATĚJKA, D. (1995): Moldanubian Composite Batholith – an example of the evolution of the Late Palaeozoic Granitoid magmatism in the Moldanubian Zone, Bohemian Massif (Central Europe). In: Srivastava, R. K. – Chandra, R. Eds: Magmatism in relation to diverse tectonic settings, 353–373. – Oxford and IBH Publishing, New Delhi. KLEČKA, M. – MATĚJKA, D. – JALOVEC, J. – VAŇKOVÁ, V. (1991): Geochemical investigation of the group granitoids of the Eisgarn type in the southern part of the Central massif of the Moldanubian Composite Batholith. – Zpr. geol. Výzk. v Roce 1989, 109–111. (In Czech) KLEČKA, M. – VAŇKOVÁ, V. (1988): Geochemistry of felsitic dykes from the vicinity of Lásenice near Jindřichův Hradec (South Bohemia) and their relation to Sn-W mineralization. – Čas. Mineral. Geol. 33, 225–249. KOLLER, F. – GÖD, R. – HÖGELSBERGER, H. – KOEBERL, C. (1994): Molybdenite mineralization related to granites of the Austrian part of the South Bohemian Pluton (Moldanubicum) – a comparison. In: Seltmann, R. – Kämpf, H. – Möller, P. Eds: Metallogeny of Collisional Orogens, 318–326. – Czech Geol. Survey, Prague.
24
LOCHMANN, V. – BREITER, K. – KLEČKA, M. – ŠREIN, V. (1991): Muscovite granite with topaz (Homolka type) – an extreme differentiate in the SW part of Moldanubian Pluton (22-33 Veselí n. Lužnicí). – Zpr. geol. Výzk. v Roce 1990, 95–96. MATĚJKA, D. (1997): Chemismus hlavních typů granitu v severní části moldanubického plutonu. – Zpr. geol. Výzk. v Roce 1996, 47–48. MATĚJKA, D. – JANOUŠEK, V. (1998): Whole rock geochemistry and petrogenesis of granites from the northern part of the Moldanubian Composite Batholith (Czech Republic). – Acta Univ. Carol., Geol. 42, 73–79. MATĚJKA, D. – NOSEK, T. – RENÉ, M. (2002): Evolution of two-mica granites of the type Číměř in the Central Moldanubian pluton. – Bull. Mineral.-petrolog. Odd. Nár. Muz. Praha 10, 241–247. RENÉ, M. (2000): Two-mica granites of the southwestern part of the South Bohemian Batholith. – Mitt. Österr. mineral. Gesell. 145, 21–28. RENÉ, M. (2001): Vývoj dvojslídných granitů v oblasti mezi Mrákotínem a Řásnou. – Geol. Výzk. Mor. Slez. v Roce 2000, 82–84. RENÉ, M. (2002): Origin of two-mica granites of the Moldanubian batholith. – Erlanger geol. Abh., Sonderband 3, 78–79. SCHARBERT, S. – BREITER, K.(2000): Geochronologie a geologie granitu Zvůle. – Zpr. geol. Výzk. v Roce 1999, 160–162. UHER, P. (1998): Composition of Nb, Ta, Ti, Sn-bearing oxide minerals from the Homolka phosphorus-rich granite, Czech Republic. – Acta Univ. Carol., Geol. 42, 169–172. VRÁNA, S. (1990): The Pelhřimov volcanotectonic circular structure. – Věst. Ústř. Úst. geol. 65, 3, 143–156. 2.1.1.01. KLENOV MASSIF Rock types: 1. Číměř Granite – porphyritic two-mica granite (xenolites in the Lásenice-Deštná Granite). 2. Lásenice-Deštná Granite – ± porphyritic two-mica granite (the main rock type). 3. Aplite Granite – fine-grained two-mica granite forming minor bodies (not shown in map). Size and shape (in erosion level): long oval shape – 140 km2 (30 × 6 km). Age and isotopic data: Uranium mineralization (cutting the Lásenice-Deštná Granite) 255 ± 3 Ma (U-Pb, pitchblende), granodiorite porphyry 263–222 Ma (Ar-Ar mica), xenoliths of the Číměř Granite in the Deštná Granite and Aplite Granite. Geological environment: sillimanite-biotite paragneisess. Contact aureole: periplutonic migmatitization of the Moldanubian paragneisses. Zoning: unknown. Mineralization: Okrouhlá Radouň uranium deposit in the endocontact of the massif. Heat production (μWm-3): Číměř Granite 3.7, 2.83, Lásenice-Deštná Granite 1.96, 2.01.
Fig. 2.9. Klenov massif geological sketch-map (after Krešl et al. 1993). 1 – Lásenice-Deštná Granite, 2 – faults.
Regional position: an independent massif or an integral part of the South Bohemian Batholith (Eisgarn Composite Pluton) within the Moldanubian Zone. Homogenous intrusion of the Eisgarn Granite s.l.
25
Lásenice-Deštná Granite Quartz-normal, sodic/potassic, peraluminous, leucocratic, S-type, granite n = 17 Median Min Max QU1 QU3 SiO2 73.89 72.64 75.22 73.18 74.55 TiO2 0.11 0.07 0.35 0.10 0.15 Al2O3 14.52 13.75 14.90 14.22 14.62 Fe2O3 0.47 0.17 0.97 0.30 0.57 FeO 0.50 0.15 0.93 0.28 0.74 MnO 0.03 0.01 0.05 0.03 0.04 MgO 0.22 0.11 0.34 0.19 0.24 CaO 0.66 0.44 0.89 0.54 0.75 Na2O 3.53 2.88 3.91 3.35 3.79 K2O 4.79 4.24 5.82 4.35 4.90 P2O5 0.24 0.16 0.35 0.21 0.28 Li2O 0.013 0.004 0.034 0.010 0.024 Mg/(Mg + Fe) 0.28 0.20 0.33 0.27 0.29 K/(K + Na) 0.47 0.42 0.57 0.45 0.49 Nor.Or 29.04 25.81 35.35 26.42 29.46 Nor.Ab 32.46 26.59 35.75 30.68 34.58 Nor.An 1.48 -0.06 3.47 1.20 2.12 Nor.Q 32.01 28.47 37.13 30.69 33.61 Na + K 213.60 197.69 230.21 210.13 216.51 *Si 185.05 169.48 213.83 179.92 194.53 K-(Na + Ca) -24.67 -46.55 19.05 -35.07 -19.18 Fe + Mg + Ti 19.74 10.96 30.13 18.22 23.35 Al-(Na + K + 2Ca) 47.22 24.43 60.10 37.85 54.00 (Na + K)/Ca 17.85 13.29 25.74 16.36 21.98 A/CNK 1.23 1.12 1.31 1.17 1.27 Trace elements (mean values in ppm): Lásenice-Deštná Granite – Ba 256, Cs 12.1, Ga 15, Hf 1, Li 33, Nb 7, Pb 37, Rb 175, Sc 2.75, Sr 83, Th 6, U 5.7, Y 14.5, Zn 33, Zr 23, La 5.3, Ce 11, Sm 0.7, Eu 0.45, Yb 1, Lu 0.11 (Breiter and Sokol 1997). Číměř Granite – Ba 317, Cs 13.7, Ga 22, Hf 3.4, Li 79, Nb 10, Pb 24, Rb 271, Sc 3.1, Sr 100, Th 17.4, U 7.7, Y 16, Zn 79, Zr 93, La 26, Ce 61, Sm 5.7, Eu 0.57, Yb 1, Lu 0.1 (Breiter and Sokol 1997).
Fig. 2.10. Lásenice–Deštná Granite ABQ and TAS diagrams 1 – Deštná Granite, 2 – Aplite Granite.
26
References KREŠL, M. – KLEČKA, M. – VAŇKOVÁ, V. (1993): Radon in soils overlaying several tectonic zones of the South Bohemian Moldanubicum. – Jb. Geol. Bundesanst. 136, 799–808. MATĚJKA, D. – NOSEK, T. – RENÉ, M. (2002): Evolution of two-mica granites of the type Číměř in the Central Moldanubian pluton. – Bull. Mineral.-petrolog. Odd. Nár. Muz. Praha 10, 241–247. (In Czech) RENÉ, M. (1997): Petrogeneze aplitů a pegmatitů klenovského masívu. – Bull. Mineral.-petrolog. Odd. Nár. Muz. 4–5, 181–183. RENÉ, M. (1999): Petrografie a chemismus granitů subtypu Číměř z okolí Okrouhlé Radouně (23-32 Kamenice nad Lipou). – Zpr. geol. Výzk. v Roce 1998, 65–67. RENÉ, M. – MATĚJKA, D. – KLEČKA, M. (1999): Petrogenesis of granites of the Klenov massif. – Acta montana, AB7 113, 107–134. 2.1.1.02. ŠEVĚTÍN MASSIF 2. Ševětín 1 Granite (light facies) – fine to coarse-grained biotite–muscovite granodiorite to granite. 3. Ševětín 2 Granite (dark facies) – finegrained biotite granite forming minor bodies. Both varieties are comparable with the Mauthausen Granite. Size and shape (in erosion level): L-shaped shallow intrusion with two perpendicular branches (12 km2). The Deštná Granite (ca. 7 km2) is largely covered by sediments of the Stephanian C. The Ševětín 1 Granite (light facies) occupies ca 4 km2. The Ševětín 2 Granite (dark facies) is confined to the area of approximately 100 by 200 m. Age and isotopic data: the dark variety of the Ševětín Granite forms blocks enclosed at the light-coloured Deštná Granite. The age of Ševětín Granites is comparable with Mauthausen Granite in Austria (~ 315 Ma). Ševětín Granite (two-mica granite) is intruded by a dyke of microgranodiorite cooling age of which has been dated at 274 Ma (Ar-Ar amphibole). Geological environment: Moldanubian paragneisses and Upper Cretaceous cover (tectonically outlined). Contact aureole: not described. Zoning: not described. Mineralization: unknown.
Fig. 2.11. Ševětín Composite Massif geological sketch-map (adapted after Janoušek et al. 2002). 1 – Ševětín Granite, 2 – Deštná Granite (Eisgarn Granite s.l.), 3 – faults.
Regional position: Moldanubian Zone. A member of the Eisgarn Composite Pluton. Rock types: 1. Deštná Granite – two-mica granite with cordierite ± andalusite.
References JANOUŠEK. V. – VRÁNA, S. – ERBAN, V. (2002): Petrology, geochemical character and petrogenesis of a Variscan post-orogenic granite: case study from the Ševětín Massif, Moldanubian Composite Batholith, South Bohemia. – J. Czech Geol. Soc. 47, 1–22. RENÉ, M. – MATĚJKA, D. – KLEČKA, M. (1999): Petrogenesis of granites of the Klenov massif. Acta montana, AB7 113, 107–134.
27
Ševětín 1 Granite Quartz-normal, sodic, peraluminous, mesocratic, S-type, granite n=9 Median Min Max SiO2 72.18 70.65 73.09 TiO2 0.23 0.13 0.29 Al2O3 14.64 13.96 15.12 Fe2O3 0.43 0.05 0.73 FeO 1.02 0.83 1.55 MnO 0.05 0.04 0.09 MgO 0.51 0.32 0.64 CaO 1.29 0.76 1.64 Na2O 3.59 3.49 4.28 K2O 4.59 4.10 4.75 P2O5 0.15 0.13 0.22 Li2O 0.014 0.006 0.055 Mg/(Mg + Fe) 0.37 0.30 0.40 K/(K + Na) 0.46 0.41 0.46 Nor.Or 28.02 25.15 28.94 Nor.Ab 33.33 32.61 39.64 Nor.An 5.19 2.81 7.37 Nor.Q 28.70 22.31 32.40 Na + K 213.30 205.00 238.97 *Si 172.15 133.49 190.50 K-(Na + Ca) -41.39 -66.50 -28.93 Fe + Mg + Ti 35.65 27.28 42.07 Al-(Na + K + 2Ca) 34.67 -18.79 52.74 (Na + K)/Ca 9.27 8.17 15.49 A/CNK 1.16 0.95 1.25
QU1 71.90 0.22 14.19 0.17 0.98 0.04 0.48 0.84 3.53 4.50 0.14 0.010 0.35 0.44 27.65 32.81 3.32 28.09 209.86 168.67 -48.33 33.61 27.29 8.47 1.12
QU3 72.29 0.26 14.89 0.63 1.31 0.05 0.57 1.38 3.70 4.60 0.20 0.018 0.40 0.46 28.16 34.03 6.24 29.66 215.77 176.38 -38.77 41.41 37.41 13.69 1.17
Fig. 2.12. Ševětín Granite ABQ and TAS diagrams. 1 – Ševětín 1 Granite (light facies), 2 – Ševětín 2 Granite (dark facies).
Ševětín 2 Granite Quartz-normal, sodic/potassic, peraluminous, mesocratic, S-type, granite n=7 Median Min Max QU1 SiO2 70.90 69.81 71.60 70.48 TiO2 0.33 0.25 0.37 0.28 Al2O3 14.96 14.84 15.21 14.84
28
QU3 70.91 0.34 15.10
Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 Li2O Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK 2.1.1.03.
0.44 1.89 0.05 0.83 1.63 3.35 4.40 0.13 0.010 0.40 0.46 27.38 31.56 7.33 28.26 202.49 170.80 -43.40 55.03 31.70 6.97 1.13
0.08 0.37 0.04 0.61 1.41 3.10 4.22 0.12 0.000 0.38 0.44 25.99 29.10 6.48 26.85 194.52 165.64 -54.80 39.69 27.36 6.20 1.11
1.18 2.10 0.05 0.88 1.81 3.53 4.52 0.16 0.018 0.45 0.49 27.83 33.05 8.60 30.01 208.59 184.02 -32.30 57.56 51.69 7.80 1.22
0.08 1.28 0.04 0.67 1.50 3.18 4.33 0.12 0.000 0.39 0.46 26.72 29.83 6.71 27.14 194.55 167.17 -46.41 41.98 27.53 6.67 1.12
0.45 1.95 0.05 0.84 1.70 3.38 4.45 0.14 0.015 0.41 0.47 27.49 31.61 7.88 28.79 203.44 171.52 -43.08 56.34 34.00 7.27 1.14
MELECHOV MASSIF 3. Melechov (Landštejn type) Granite – medium-grained alkali-feldspar twomica granite. 4. Stvořidla (Homolka type) Granite – finegrained two-mica alkali-feldspar leucogranite. Size and shape (in erosion level): – 120 km2, oval shape (10 × 15 km) with numerous apophyses at the contact. Age and isotopic data: Melechov Granite 318 ± 7, 317 ±17 Ma (Th, U, Pb monazite), Kouty Granite 313 ± 15 Ma (Th, U, Pb monazite), Lipnice Granite 313 ± 15, 14, 315 ± 23, 308 ± 13 Ma (Th, U, Pb monazite). The Eisgarn group of granites (Mrákotín, Číměř, Kouty, Světlá granites) are intruded by the Melechov Granite and this granite is intruded by the Svořidla Granite. Geological environment: High-grade metamorphic rocks (migmatites and sillimanite-cordierite paragneisses). Contact aureole: Periplutonic migmatitization of the Moldanubian paragneisses. Zoning: Structural and compositional normal concentric zoning with ring intrusion of the Melechov Granite with the Stvořidla Granite in the centre. Cryptic zoning is interpreted based on variation of trace-element patterns. Mineralization: unknown.
Fig. 2.13. Melechov Massif geological sketchmap (adapted after Veselá 1991, Matějka, 1997). 1 –Stvořidla Granite, 2 – Melechov Granite, 3 – Světlá Granite and Kouty Granite, 4 – Lipnice Granite, 5 – faults.
Regional position: The Varied Group of the Moldanubian Zone (Drosendorf Unit). Integral part of the Eisgarn Composite Pluton. Rock types: 1. Lipnice Granite – fine-grained two-mica monzogranite. 2. Světlá and Kouty Granite – mediumgrained biotite-muscovite alkali-feldspar granite (gradational contact with the Lipnice Granite).
29
Heat production (Wm-3): Lipnice Granite
4.35.
Fig. 2.14. Melechov Massif ABQ and TAS diagrams. 1 – Lipnice Granite, 2 – Kouty and Světlá Granites, 3 – Melechov Granite, 4 – Stvořidla Granite.
References BREITER, K. (2007): Nové poznámky o geologické stavbě melechovského masivu. – Zpr. geol. Výzk. v Roce 2006, 202–205. BREITER, K. – HRUBEŠ, M. – MLČOCH, B. – ŠTĚPÁNEK, P. – TÁBORSKÝ, Z. (2001): Results of new geologic-petrological studies in the Melechov massif area. In: Procházka J. Ed.: Geological investigation of the testing locality Melechov Massif. – MS Czech Geol. Survey, Prague. BREITER, K. – SULOVSKÝ, P. (2005): Stáří granitů melechovského masivu. – Zpr. geol. Výzk. v Roce 2004, 16–19. HANÁK, J. – CHLUPÁČOVÁ, M. (2007): Petrofyzikální a geomechanické vlastnosti vzorků hornin melechovského masivu. – Zpr. geol. Výzk. v Roce 2006, 208-210. HARLOV, D. E. – PROCHÁZKA, V. – FÖRSTER, H-J. – MATĚJKA, D. (2008): Origin of monazite-xenotime-zircon-fluorapatite assemblages in the peraluminous Melechov granite massif, Czech Republic. – Contr. Mineral. Petrology 94, 9–26. NOVOTNÝ, P. (1980): Geologie a petrografie centrálního moldanubického plutonu mezi Melechovem a Světlou nad Sázavou. – MS Czech Geol. Survey, Prague. 11 pp. NOVOTNÝ, P. (1986): Peraluminické granity melechovského masívu. – Zpr. geol. Výzk. v Roce 1984, 149–150. MATĚJKA, D. (1997): Chemismus hlavních typů granitů v severní části moldanubického plutonu. – Zpr. geol. Výzk. v Roce 1996, 47–48. MATĚJKA, D. – JANOUŠEK, V. (1998): Whole-rock geochemistry and petrogenesis of granites from the northern part of the Moldanubian Batholith (Czech Republic). – Acta Univ. Carol., Geol. 42, 73–79. MLČOCH, B. – BREITER, K. – SCHULMANNOVÁ, B. (2000): Výzkum melechovského masívu. – Zpr. geol. Výzk. v Roce 1999, 91–93. MLČOCH, B. – ŠTĚPÁNEK, P. – BREITER, K. (1995): Brief petrological and petrochemical characteristics of main types of the Melechov massif. – MS Czech Geol. Survey, Praha. PROCHÁZKA, V. (2005): Interpretation of chemistry of so-called Kouty type granite. – Zpr. geol. Výzk. v Roce 2004, 111–112. PROCHÁZKA, V. – MATĚJKA, D. (2004): Rock-forming accessory minerals in the granites of the Melechov Massif (Moldanubian Composite Batholith, Bohemian Massif). – Acta Univ. Carol., Geol. 1–4, 71–79. PROCHÁZKA, J. – MLČOCH, B. (1998): Komplexní geologický výzkum melechovského masivu. – Zpr. geol. Výzk. v Roce 1997, 31–37. VESELÁ, M. (1991): Geological map of the Czech Republic 1 : 50,000, sheet 23-23 Jihlava. – Czech Geol. Survey, Prague.
30
Lipnice Granite Quartz-rich, potassic, strongly peraluminous, leucocratic, S-type, granite n = 13 Med. Min Max QU1 QU3 SiO2 70.61 68.91 72.49 69.88 70.85 TiO2 0.48 0.25 0.61 0.47 0.51 Al2O3 14.62 14.40 15.05 14.58 14.67 Fe2O3 0.44 0.08 1.06 0.22 0.60 FeO 1.59 1.01 2.00 1.27 1.89 MnO 0.04 0.03 0.06 0.03 0.04 MgO 0.72 0.40 0.85 0.69 0.80 CaO 1.03 0.65 1.25 1.01 1.17 Na2O 2.97 2.84 3.43 2.95 3.05 K2O 5.09 4.77 5.33 5.05 5.24 P2O5 0.27 0.26 0.36 0.27 0.28 Li2O 0.02 0.01 0.03 0.02 0.02 Mg/(Mg + Fe) 0.38 0.32 0.40 0.37 0.39 K/(K + Na) 0.53 0.48 0.55 0.53 0.54 Nor.Or 31.66 29.22 32.90 31.59 32.53 Nor.Ab 28.26 26.64 31.93 27.88 28.86 Nor.An 3.50 0.88 4.37 3.40 4.21 Nor.Q 29.44 27.02 31.42 28.37 29.87 Na + K 204.86 202.85 211.96 204.21 207.58 *Si 171.13 160.02 184.95 168.43 178.00 K-(Na + Ca) -5.35 -21.00 3.16 -9.63 -4.43 Fe + Mg + Ti 52.76 32.12 60.39 50.06 56.60 Al-(Na + K + 2Ca) 44.77 36.95 52.11 39.20 48.22 (Na + K)/Ca 11.15 9.37 18.29 9.73 11.27 A/CNK 1.22 1.18 1.25 1.19 1.23 Trace elements (mean values in ppm): Lipnice Granite – Co 5, Cr 27, Cu 6, Ga 11, Ni 8, Pb 11, Rb 300, Sn 6, Sr 101, V 22, Zn 86, Zr 220 Kouty Granite Quartz-rich, potassic, strongly peraluminous, leucocratic, S-type, granite n = 20 Med. Min Max QU1 SiO2 72.54 71.09 73.63 72.08 TiO2 0.25 0.11 0.58 0.23 Al2O3 14.56 14.15 15.03 14.41 Fe2O3 0.32 0.04 1.25 0.19 FeO 0.98 0.16 1.87 0.46 MnO 0.03 0.02 0.04 0.02 MgO 0.41 0.23 0.79 0.37 CaO 0.77 0.68 1.04 0.70 Li2O 0.02 0.01 0.05 0.02 7Na2O 3.16 2.91 3.54 3.09 K2O 4.89 4.37 5.39 4.78 P2O5 0.28 0.26 0.39 0.27 Mg/(Mg + Fe) 0.34 0.29 0.39 0.32 K/(K + Na) 0.51 0.45 0.54 0.49 Nor.Or 30.10 26.58 32.95 29.29 Nor.Ab 29.57 27.14 32.69 28.71 Nor.An 1.84 1.01 3.03 1.58 Nor.Q 31.82 28.38 34.50 31.01
31
QU3 72.79 0.30 14.68 0.82 1.29 0.04 0.47 0.8 0.03 3.27 5.09 0.33 0.36 0.52 31.02 30.46 2.29 32.37
Na + K 207.01 194.97 214.85 205.03 211.69 *Si 186.25 170.34 199.70 181.48 187.82 K-(Na + Ca) -11.07 -36.89 2.60 -16.94 -6.57 Fe + Mg + Ti 34.40 20.69 56.92 30.46 35.24 Al-(Na + K + 2Ca) 47.52 39.01 64.28 44.72 52.67 (Na + K)/Ca 14.99 11.41 17.66 12.89 16.39 A/CNK 1.24 1.20 1.34 1.22 1.26 Trace elements (mean values in ppm): Kouty Granite – Ba 628, Cs 7, Ga 26, Hf 5, Li 75, Nb 7, Pb 10, Rb 305, Sc 5, Sr 116, Th 46, U 6, Y 14, Zn 91, Zr 226, La 60, Ce 157, Sm 10.5, Eu 0.76, Yb 1.15, Lu 0.16 (Breiter and Sokol 1997). Melechov Granite Quartz-rich, sodic, peraluminous, leucocratic, S-type, granite n=8 Med. Min Max QU1 QU3 SiO2 72.36 70.78 73.60 71.87 72.80 TiO2 0.10 0.08 0.14 0.09 0.13 Al2O3 14.96 14.44 15.86 14.71 15.47 Fe2O3 0.25 0.18 0.74 0.20 0.34 FeO 0.66 0.16 0.93 0.33 0.86 MnO 0.03 0.02 0.04 0.03 0.04 MgO 0.23 0.15 0.28 0.16 0.26 CaO 0.68 0.65 0.78 0.65 0.7 Li2O 0.04 0.02 0.04 0.03 0.043 Na2O 3.69 3.46 4.19 3.58 3.89 K2O 4.30 4.19 4.50 4.20 4.40 P2O5 0.39 0.37 0.44 0.37 0.44 Mg/(Mg + Fe) 0.29 0.27 0.38 0.27 0.30 K/(K + Na) 0.43 0.40 0.45 0.41 0.44 Nor.Or 26.36 25.42 27.29 25.60 26.74 Nor.Ab 34.14 32.24 38.70 33.27 36.01 Nor.An 0.69 0.38 1.41 0.47 0.97 Nor.Q 31.29 27.23 33.89 29.34 32.92 Na + K 212.07 202.95 228.63 206.31 220.65 *Si 178.89 155.48 195.45 168.92 187.57 K-(Na + Ca) -42.68 -54.63 -32.48 -53.64 -37.85 Fe + Mg + Ti 20.79 10.71 24.79 15.46 22.07 Al-(Na + K + 2Ca) 57.15 42.09 68.19 51.96 63.19 (Na + K)/Ca 16.96 14.83 18.98 16.07 17.81 A/CNK 1.30 1.21 1.35 1.26 1.31 Trace elements (mean values in ppm): Melechov Granite – Co 2, Cr 8, Cu 6, Ga 7, Nb 13, Ni 5, Pb 18, Rb 186, Sn 21, Sr 59, V 4, Zn 49, Zr 28. Stvořidla Granite Quartz-rich, sodic/potassic, peraluminous, leucocratic, S-type, granite 5st25 5st11 5st12 5st27 SiO2 73.74 73.32 73.79 73.78 TiO2 0.06 0.08 0.10 0.06 Al2O3 14.43 14.59 14.50 14.54 Fe2O3 0.77 0.29 0.11 0.76 FeO 0.23 0.70 0.86 0.32 MnO 0.04 0.04 0.04 0.04 MgO 0.17 0.17 0.20 0.19
32
5st40 73.24 0.10 14.99 0.28 0.09 0.03 0.10
CaO 0.69 0.60 0.61 0.72 0.42 Na2O 3.48 3.47 3.58 3.50 3.95 K2O 4.46 4.58 4.09 4.70 3.75 P2O5 0.41 0.40 0.38 0.42 0.42 Li2O 0.03 0.02 0.04 0.03 0.01 Mg/(Mg + Fe) 0.24 0.23 0.26 0.24 0.32 K/(K + Na) 0.46 0.46 0.43 0.47 0.38 Nor.Or 27.08 27.94 25.01 28.38 22.88 Nor.Ab 32.11 32.17 33.27 32.12 36.63 Nor.An 0.74 0.35 0.54 0.82 -0.71 Nor.Q 34.14 33.24 34.66 32.95 34.49 Na + K 206.99 209.22 202.37 212.74 207.09 *Si 193.90 190.41 199.75 188.02 194.24 K-(Na + Ca) -29.91 -25.43 -39.56 -25.99 -55.33 Fe + Mg + Ti 17.82 18.60 19.57 19.44 8.50 Al-(Na + K + 2Ca) 51.77 55.90 60.63 47.12 72.31 (Na + K)/Ca 16.82 19.55 18.60 16.57 27.65 A/CNK 1.28 1.29 1.32 1.25 1.39 Trace elements (mean values in ppm): Stvořidla Granite – Co 1, Cr 7, Cu 3, Ga 5, Nb 15, Ni 4, Pb 16, Rb 279, Sn 41, Sr 41, V 2, Zn 48, Zr 36. 2.1.1.04
ČEŘÍNEK STOCK
Regional position: Moldanubian Zone. A member of the Eisgarn Composite Pluton. The stock is intruded into the Mrákotín Granite. Rock types: 1. Čeřínek Granite (central facies) – porphyritic coarse-grained two-mica granite. 2. Čeřínek Granite (marginal facies) – ± porphyritic medium-grained biotite-muscovite granite. Size and shape (in erosion level): 35 km2 (8.5 × 5,5 km), E-W trending stock. Age and isotopic data: no isotopic data. Temporal (field) relations: Mrákotín Granite (Bílý Kámen Granite – regional facies) → Čeřínek Granite. Geological environment: the Mrákotín (Bílý Kámen) Granite, paragneiss. Contact aureole: not described. Zoning: concentric reverse zonation with transitional porphyritic marginal facies. Mineralization: not reported.
Fig. 2.15. Čeřínek Stock geological sketch-map (adapted after the geological map 1 : 50,000, Veselá 1989 and 1992). 1 – Čeřínek Granite (central facies), 2 – Čeřínek Granite (marginal facies), 3 – faults.
References BREITER, K. (1994): The youngest Variscan magmatic rocks in the southern part of the Bohemian Massif – example “Homolka” Granite. – Mitt. Österr. mineral. Gesell. 139, 30–32. BREITER, K. (1998): P-rich muscovite granites – latest product of two-mica granites fractionation in the South Bohemian Pluton. In: Breiter K. Ed.: Genetic significance of phosphorus in fractionated granites. Project 373 – Correlation, anatomy and magmatic-hydrothermal evolution of ore-bearing felsic igneous systems. Int. Confer., Czech Republic, Peršlák, September 21–24, 1998. Excursion guide, 107–122. – Czech. Geol. Soc. Prague.
33
BREITER, K. – GNOJEK, I. – CHLUPÁČOVÁ, M. (1998): Radioctivity pattern – constraints for the magmatic evolution of the two-mica granites in the Central Moldanubian Pluton. – Věst. Čes. geol. Úst. 73, 301–311. ZAVŘELOVÁ, A. – VERNER, K. – MELICHAR, R. (2009): Magnetické stavby amechanismy vmístění granitoidů pně Čeřínku (Moldanubický plutonický complex). – Geol. Výzk. Mor. Slez., Brno. 121–124. Čeřínek Granite Quartz-rich, sodic/potassic, peraluminous, leucocratic, S-type, granite Ce8068J 8067JAN 8066CEJ 8065ČEŘ SiO2 73.28 74.15 72.37 73.12 TiO2 0.20 0.11 0.22 0.15 Al2O3 14.31 14.43 14.33 14.48 Fe2O3 0.65 0.69 0.90 0.69 FeO 0.66 0.51 0.46 0.61 MnO 0.03 0.03 0.02 0.03 MgO 0.35 0.26 0.38 0.35 CaO 0.88 0.98 0.87 0.78 Na2O 3.06 3.71 3.07 3.34 K2O 5.59 4.27 5.43 4.76 P2O5 0.19 0.17 0.22 0.28 Li2O 0.01 0.01 0.01 0.03 Mg/(Mg + Fe) 0.33 0.29 0.34 0.33 K/(K + Na) 0.55 0.43 0.54 0.48 Nor.Or 33.85 25.72 33.17 28.98 Nor.Ab 28.16 33.97 28.51 30.90 Nor.An 3.20 3.80 2.94 2.10 Nor.Q 30.58 32.33 30.59 32.52 Na + K 217.43 210.38 214.36 208.85 *Si 178.65 189.34 176.79 187.54 K-(Na + Ca) 4.25 -46.53 0.71 -20.62 Fe + Mg + Ti 28.53 23.58 29.87 27.70 Al-(Na + K + 2Ca) 32.20 38.04 36.02 47.69 (Na + K)/Ca 13.86 12.04 13.82 15.02 A/CNK 1.15 1.17 1.17 1.23
Fig. 2.16. Čeřínek Granite ABQ and TAS diagrams.
34
8064BOR 74.38 0.15 13.83 0.44 0.81 0.03 0.24 1.01 3.28 4.75 0.12 0.01 0.26 0.49 28.85 30.28 4.37 32.85 206.70 193.94 -23.00 24.63 28.87 11.48 1.13
8163ČEŘ 73.22 0.21 14.43 1.03 0.37 0.03 0.33 0.71 3.25 4.69 0.28 0.03 0.31 0.49 28.57 30.09 1.74 33.57 204.46 193.31 -17.96 28.88 53.60 16.15 1.27
2.1.1.05. ZVŮLE (LANDŠTEIN) STOCK Regional position: Moldanubian Zone. A member of the Eisgarn Composite Pluton. The Číměř Granite is intruded by the Zvůle Stock. Rock types: Zvůle Granite – medium- to coarse-grained slightly porphyritic two-mica granite. Size and shape (in erosion level): circular shape in the diameter of ca. 5 km (20 km2). Age and isotopic data: 320.5 ± 2.7 Ma (RbSr whole rock). Temporal (field) relations: Eisgarn Granite s.l. → Zvůle (Landštejn) Granite → Homolka Granite → Felsic Dyke Swarm. Geological environment: Číměř Granite, and paragneisses. Contact aureole: not described. Zoning: reverse zonation with the most evolved facies along the endocontact. Mineralization: not reported. Heat production (μWm/3): Zvůle Granite 1.56.
Fig. 2.17. Zvůle Stock geological map (adapted after Breiter 1998). 1 – Zvůle Granite, 2 – faults.
References BREITER, K. (1994): The youngest Variscan magmatic rocks in the southern part of the Bohemian Massif – example “Homolka” Granite. – Mitt. Österr. mineral. Gesell. 139, 30–32. BREITER, K. (1998a): Geochemical evaluation of P-rich granite suites: Evidence from Bohemian Massif. – Acta Univ. Carol., Geol. 42, 7–19. BREITER, K. (1998b): P-rich muscovite granites – latest product of two-mica granites fractionation in the South Bohemian Pluton. In: Breiter K. Ed.: Genetic significance of phosphorus in fractionated granites. Project 373 – Correlation, anatomy and magmatic-hydrothermal evolution of ore-bearing felsic igneous systems. Int. Confer., Czech Republic, Peršlák, September 21–24, 1998. Excursion guide, 107–122. – Czech. Geol. Soc. Prague. BREITER, K. – FRÝDA, J (1994): Phosphorus-rich alkali feldspars and their geological interpretation – example of the Homolka magmatic centre. – Mitt. Österr. mineral. Gesell. 139, 279–281. BREITER, K. – GNOJEK, I. (1996): Radioactivity of the highly fractionated Homolka granite in the Moldanubian pluton, southern Bohemia. – Bull. Czech Geol. Surv. 71, 173–176. BREITER, K. – GNOJEK, I. – CHLUPÁČOVÁ, M. (1998): Radioctivity pattern – constraints for the magmatic evolution of the two-mica granites in the Central Moldanubian Pluton. – Věst. Čes. geol. Úst. 73, 301–311. BREITER, K. – KOLLER, F. (2000): Contrasting styles of magmatic zoning in the Central Moldanubian Pluton. – GeoLines 8, 10–11. BREITER, K. – SCHARBERT, S. (1995): The Homolka magmatic centre – an example of late Variscan ore bearing Magmatism in the South Bohemian Batholith (southern Bohemia, northern Austria). – Jb. Geol. Bundesanst. 138, 1, 9–25. BREITER, K. – SCHARBERT, S. (2000):Geochronologie a geologie granitu Zvůle. – Zpr. geol. Výzk. v Roce 1999, 160–162. Zvůle Granite Quartz-rich, potassic, peraluminous, leucocratic, S-type, granite Zv8141M 8140HEŘ 8139VAL 8138ZVŮ SiO2 72.18 72.96 73.62 72.88 TiO2 0.38 0.27 0.15 0.20
35
14.34 14.33 14.36 14.40 Al2O3 Fe2O3 0.70 0.85 0.91 0.76 FeO 1.17 0.48 0.21 0.57 MnO 0.03 0.01 0.02 0.03 MgO 0.60 0.37 0.31 0.36 CaO 0.83 0.74 0.74 0.87 Na2O 2.67 2.70 3.20 3.22 K2O 5.33 5.63 4.81 4.66 P2O5 0.28 0.21 0.27 0.28 Li2O 0.01 0.01 0.02 0.02 Mg/(Mg + Fe) 0.37 0.34 0.34 0.33 K/(K + Na) 0.57 0.58 0.50 0.49 Nor.Or 32.82 34.40 29.25 28.51 Nor.Ab 24.98 25.07 29.58 29.94 Nor.An 2.35 2.37 1.96 2.59 Nor.Q 32.75 32.72 33.67 33.28 Na + K 199.33 206.67 205.39 202.85 *Si 191.24 189.30 194.24 191.13 K-(Na + Ca) 12.21 19.21 -14.33 -20.48 Fe + Mg + Ti 44.71 29.90 23.90 28.90 Al-(Na + K + 52.68 48.35 50.22 48.91 2Ca) (Na + K)/Ca 13.47 15.66 15.56 13.08 A/CNK 1.27 1.23 1.25 1.24 Trace elements (ppm): Rb 349, Sr 66, Zr 55, Zn 75, Nb 14, Pb 22, Ga 31, V 6, Th 8.7, U 6.
Fig. 2.18. Zvůle Granite ABQ and TAS diagrams.
36
2.1.1.06.
EISGARN MASSIF 2. Eisgarn Granite s.s. (central facies) – non-porphyritic medium-grained twomica granite (petrographically resembles the Číměř Granite). 3. Eisgarn Granite s.s. – fine-grained twomica granite. Several oval or long shape (up to 9 × 3 km) bodies inside of the Eisgarn Massif and along its margin. 4. Galthof Granite (Homolka – type Granite) – fine-grained muscovite alkalifeldspar granite forming a small stock) 1.5 km2 and larger irregular bodies in the centre of the Eisgarn Massif (see 2.1.1.7. Galthof Stock). Three textural varieties: a mediumgrained porphyritic, a medium-grained equigranular, and fine-grained one. 5. Josefthal Granite – fine-grained granite (a member of the Litschau Dyke Swarm) Size and shape (in erosion level): long oval (elliptical) shape 110 km2 (16 × 10 km). Age and isotopic data: Galthof Granite 317 ± 8 Ma and 306 ± 7 Ma (Rb-Sr whole rock), the Eisgarn Granite s.s. intrudes the Číměř Granite. Geological environment: sillimanite-biotite paragneisess, the Číměř Granite and the Lásenice Granite. Contact aureole: periplutonic migmatitization of the Moldanubian paragneisses. Zoning: petrographically and chemically well zoned body with normal concentric zonation. Mineralization: not reported. Heat production (μWm-3): 4.31–7.07.
Fig. 2.19. Eisgarn Massif geological sketch-map (after Breiter 1998). 1 – Litschau Dyke Swarm, 2 – Galthof Granite, 3 – Eisgarn Granite (finegrained variety) 4 – Eisgarn Granite (central facies), 5 – Eisgarn Granite (marginal facies), 6 – state border.
Regional position: an internal massif in the Eisgarn Composite Pluton (an integral part of the South Bohemian Batholith) within the Moldanubian Zone. Rock types: 1. Eisgarn Granite s.s.(marginal facies) – locally porphyritic coarse-grained two-mica granite (petrographically resembles the Lanštejn type granite). Eisgarn Granite s.s.
Quartz-rich, sodic/potassic, peraluminous, leucocratic, S-type, granite n=8 Median Min Max QU1 SiO2 73.87 72.64 75.43 73.67 TiO2 0.12 0.03 0.27 0.07 Al2O3 14.15 12.96 14.81 13.13 Fe2O3 0.25 0.12 0.42 0.12 FeO 0.53 0.24 1.34 0.36 MnO 0.01 0.01 0.05 0.01 MgO 0.12 0.01 0.44 0.02 CaO 0.42 0.14 0.83 0.38 Na2O 3.35 2.79 4.33 2.98
37
QU3 74.49 0.13 14.50 0.32 0.70 0.03 0.13 0.45 3.46
K2O P2O5 Li2O Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
4.82 0.27 0.020 0.20 0.49 29.23 30.74 0.24 34.48 207.20 196.87 -13.18 15.01 49.30 26.93 1.27
3.78 0.22 0.005 0.04 0.36 22.83 26.07 -3.25 31.60 192.37 182.02 -67.49 5.47 18.41 14.18 1.10
5.38 0.82 0.045 0.32 0.54 32.82 39.75 2.03 37.02 225.88 211.85 1.87 36.72 80.01 80.01 1.43
4.12 0.25 0.011 0.04 0.42 25.10 27.78 -0.78 31.61 199.74 183.25 -39.20 13.37 37.84 15.63 1.20
4.97 0.33 0.024 0.25 0.52 30.48 32.08 0.41 35.65 210.87 209.02 0.00 16.85 60.11 29.79 1.32
Fig. 2.20. Eisgarn Granite s.s. ABQ and TAS diagrams.
References BREITER, K. (1998): Geochemical evaluation of P-rich granite suites: Evidence from Bohemian Massif. – Acta Univ. Carol., Geol. 42, 7–19. BREITER, K. – GNOJEK, I. – CHLUPÁČOVÁ, M. (1998): Radioactivity pattern – constraints for the magmatic evolution of the two-mica granites in the Central Moldanubian Pluton. – Věst. Čes. Geol. Úst. 73, 301–311. BREITER, K. – KOLLER, F. (2000): Contrasting styles of magmatic zoning in the Central Moldanubian Pluton. – GeoLines 8, 10–11. BREITER, K. – SCHARBERT, S. (1998): Latest intrusions of the Eisgarn Composite Pluton /South Bohemia – Northern Waldviertel. – Jb. Geol. Bundesanst. 141, 25–37. KREŠL, M. – KLEČKA, M. – VAŇKOVÁ, V. (1993): Radon in soils overlaying several tectonic zones of the South Bohemian Moldanubicum. – Jb. Geol. Bundesanst. 136, 799–808. MATĚJKA, D. – NOSEK, T. – RENÉ, M. (2002): Evolution of two-mica granites of the type Číměř in the Central Moldanubian pluton. – Bull. Mineral.-petrolog. Odd. Nár. Muz. Praha 10, 241–247. (In Czech).
38
2.1.1.07. GALTHOF STOCK Size and shape (in erosion level): oval shape of the stock in diameter of 1.2 km (1.5 km2), and two small outcrops (< 0.1 km2). Age and isotopic data: 319 ± 2.4 Ma (Rb-Sr whole rock), 306.4–313 Ma (Ar-Ar muscovite), The Hoher Berg Granite 317 ± 8 Ma (Rb-Sr whole rock). The Lunkowitzwald Granite 306 ± 7 Ma ( Rb-Sr whole rock). The Galthof Granite is one of the youngest members of MCB (subvolcanic highlevel intrusion). Geological environment: Eisgarn Granite s.s. Contact aureole: not reported. Zoning: not reported. Mineralization: not reported.
Geological position: Moldanubian Zone. A member of the Homolka Group in Eisgarn Massif (the Eisgarn Composite Pluton). Rock types: Galthof Granite – mediumgrained muscovite granite. Three textural varieries: a medium-grained porphyritic, a medium-grained equigranular, and a finegrained ones. The Galthof Granite subtype is the Hoher Berg Granite. The subtype Lunkowitzwald Granite can be distinguished from the main Galthof intrusion by geochemistry. Porphyry dykes are associated to the Galthof Granite.
References BREITER, K. (1998): P-rich muscovite granites – latest product of two-mica granites fractionation in the South Bohemian Pluton. In: Breiter, K. Ed.: Genetic significance of phosphorus in fractionated granites. C. Post-conference excursion. 107–122. Excursion Guide. 129–136. Czech Republic, Peršlák, September 21–24, 1998. – Czech Geol. Soc. Prague. BREITER, K. – SCHARBERT, S. (1998): Latest intrusions of the Eisgarn Composite Pluton /South Bohemia – Northern Waldviertel. – Jb. Geol. Bundesanst. 141, 25–37. Galthof Granite Quartz-normal, sodic, peraluminous, leucocratic, S-type, granite Galt2631 Galt2628 SiO2 71.96 74.72 TiO2 0.07 0.07 Al2O3 15.62 14.62 Fe2O3 0.32 0.42 FeO 0.45 0.40 MnO 0.03 0.03 MgO 0.06 0.10 CaO 0.46 0.51 Na2O 4.70 3.80 K2O 3.99 4.09 P2O5 0.46 0.45 Mg/(Mg+Fe) 0.12 0.18 K/(K+Na) 0.36 0.41 Nor.Q 27.70 34.89 Nor.Or 24.02 24.60 Nor.Ab 43.01 34.73 Nor.An -0.74 -0.44 Na+K 236.38 209.46 *Si 157.37 199.00 K-(Na+Ca) -75.15 -44.88 Fe+Mg+Ti 12.64 14.19
39
Al-(Na+K+2Ca) 53.95 59.45 (Na+K)/Ca 28.82 23.03 A/CNK 1.27 1.32 Trace elements (mean values in ppm): Galthof Granite – Nb 31, Rb 654, Sn 22, Sr <7, Zn 70, Zr 19. 2.1.1.08. HOMOLKA STOCK 6 – Granite porphyry, 7 – Josefsthal Dyke Granite, 8 – fault, 9 – state border.
Regional position: Moldanubian Zone. A member of the Eisgarn Composite Pluton. The stock is intruded along the contact between the Lásenice and Číměř Granites. omolka Stock is of the youngest members of MCB (subvolcanic high-level intrusions).
Rock types: 1. Homolka Granite – equigranular medium-grained topaz-bearing leucocratic (muscovite) alkali-feldspar granite. A porphyritic variety is developed in the W part of the body. 2. Marginal Pegmatite (stockscheider) – megacrystic K-feldspar fine-grained granite in some parts at the S and W contacts of the stock. Size and shape (in erosion level): 6 km2 (3.5 × 2 km), NNE-SSW trending stock. Age and isotopic data: Homolka Granite 317 ± 2, 315 ± 3, Ma (Rb-Sr muscovite), 320 ± 4 Ma (Rb-Sr whole rock). Temporal (field) relations: Eisgarn granites → Landštejn granites → Homolka Granite → Felsic Dyke Swarm. Geological environment: the Lásenice and Číměř Granites, granite porphyries. Contact aureole: not described. Zoning: xenoliths of Eisgarn type granite, and granite porphyries in the central part of the body. Mineralization: greisenization and subeconomic dissemination of cassiterite, ferrocolumbite, ferro-tantalite, and U-micas. Heat production (μWm-3): Homolka Granite 1.52.
Fig. 2.21. Homolka Stock and Litschau Dyke Swarm geological map (adapted after Breiter 1998.) 1 – gneiss, 2 – Homolka Granite, 3 – Číměř Granite, 4 – Lásenice Granite, 5 – Eisgarn Granite,
40
References BENDL, J. – KLEČKA, M. – MONEIM, M. – SVOBODOVÁ, J. (1994): Rb-Sr dating of the topazbearing muscovite granite stock Homolka, Moldanubian Composite Batholith. – Mitt. Österr. mineral. Gesell. 139, 273–275. BREITER, K. (1994): The youngest Variscan magmatic rocks in the southern part of the Bohemian Massif – example “Homolka” Granite. – Mitt. Österr. mineral. Gesell. 139, 30–32. BREITER, K. (1998): P-rich muscovite granites – latest product of two-mica granites fractionation in the South Bohemian Pluton. In: Breiter, K. Ed.: Genetic significance of phosphorus in fractionated granites. Project 373 – Correlation, anatomy and magmatic-hydrothermal evolution of ore-bearing felsic igneous systems. Int. Confer., Czech Republic, Peršlák, September 21–24, 1998. Excursion guide, 107–122. – Czech. Geol. Soc. Prague. BREITER, K. – FRÝDA, J. (1994): Phosphorus-rich alkali feldspars and their geological interpretation – example of the Homolka magmatic centre. – Mitt. Österr. mineral. Gesell. 139, 279–281. BREITER, K. – GNOJEK, I. (1996): Radioactivity of the highly fractionated Homolka granite in the Moldanubian pluton, southern Bohemia. – Bull. Czech Geol. Surv. 71, 2, 173–176. BREITER, K. – GNOJEK, I. – CHLUPÁČOVÁ, M. (1998): Radioctivity pattern – constraints for the magmatic evolution of the two-mica granites in the Central Moldanubian Pluton. – Věst. Čes. geol. Úst., 73, 301–311. BREITER, K. – SCHARBERT, S. (1995): The Homolka magmatic centre – an example of late Variscan ore bearing Magmatism in the South Bohemian Batholith (southern Bohemia, northern Austria). – Jb. Geol. Bundesanst. 138, 9–25. BREITER, K. – SCHARBERT, S. (1998): Latest intrusions of the Eisgarn Composite Pluton /South Bohemia – Northern Waldviertel. – Jb. Geol. Bundesanst. 141, 25–37. LOCHMAN, V. – BREITER, K. – KLEČKA, M. – ŠREIN, V. (1991): Muscovite granite with topaz (Homolka type) – an extreme differentiate in the SW part of Moldanubian Pluton (22-33 Veselí n. Lužnicí). – Zpr. geol. Výzk. v Roce 1990, 95–96. (In Czech) UHER, P. (1998): Composition of Nb, Ta, Ti, Sn-bearing oxide minerals from the Homolka phosphorus-rich granite, Czech Republic. – Acta Univ. Carol., Geol. 42, 169–172. Homolka Granite Quartz-normal, sodic, peraluminous, leucocratic, S-type, alkali-feldspar granite Ho2511 Ho2444 Ho2457 Ho2458 SiO2 73.63 72.33 73.11 73.37 TiO2 0.05 0.02 0.01 0.03 Al2O3 14.77 15.36 14.94 15.08 Fe2O3 0.07 0.80 0.62 0.41 FeO 0.67 n.d. n.d. n.d. MnO 0.04 0.03 0.20 0.04 MgO 0.07 0.04 0.04 0.04 CaO 0.46 0.42 0.63 0.58 Na2O 3.99 4.44 4.50 5.01 K2O 3.83 3.72 3.69 3.64 P2O5 0.54 0.43 0.93 0.78 Mg/(Mg + Fe) 0.14 0.09 0.09 0.15 K/(K + Na) 0.39 0.36 0.35 0.32 Nor.Or 23.31 22.54 22.16 21.67 Nor.Ab 36.91 40.89 41.08 45.32 Nor.An 0.02 0.07 0.06 0.02 Nor.Q 34.05 30.91 32.06 29.13 Na + K 210.08 222.26 223.56 238.96 *Si 192.94 174.02 174.55 161.19
41
K-(Na + Ca) -55.64 -71.78 -78.10 -94.73 Fe + Mg + Ti 12.57 11.27 8.89 6.51 Al-(Na + K + 2Ca) 63.57 64.40 47.36 36.50 (Na + K)/Ca 25.61 29.68 19.90 23.10 A/CNK 1.36 1.33 1.31 1.23 Trace elements (mean values in ppm): Homolka Granite – Ba 35, Cs 75, Ga 35, Hf 1.3, Li 500, Nb 51, Pb 6, Rb 1145, Sr 0.8, Th 0.8, U 4.2, Y 3, Zn 93, Zr 13, La 26, Ce 61, Sm 5.7, Eu 0.57, Yb 1, Lu 0.1 (Breiter and Sokol 1997).
Fig. 2.22. Homolka and Kozí hora/Hirschenschlag Granites ABQ and TAS diagrams. 1 – Homolka Granite, 2 – Kozí hora Granite.
2.1.1.09. KOZÍ HORA/HIRSCHENSCHLAG STOCK Age and isotopic data: 316 ± 1.6 Ma (Ar-Ar muscovite). One of the youngest members of MCB are subvolcanic high-level intrusions. Geological environment: Číměř Granite. Contact aureole: greisenization and Kfeldspatization of the Číměř Granite. Zoning: circular arrangement of porphyry dykes, dykes of feldspatites, greisens, and quartz veins around the granite outcrop. Mineralization: quartz veins and greisens with pyrite, magnetite, molybdenite, fluorite, and beryl.
Geological position: Moldanubian Zone. A member of the Eisgarn Composite Pluton. Rock types: Kozí hora-Hirschenschlag Granite – biotite magnetite-bearing leucogranite Porphyry dykes are associated to the LateVariscan Kozí hora/Hirschenschlag Granite. Size and shape (in erosion level): ringshaped structure of small stocks, porphyry dykes and zones of greisenisation and metasomatic potash-feldspatization in diameter of 5 km.
42
2.1.2. WEINSBERG COMPOSITE PLUTON Regional position: southern part of the Moldanubian Composite Batholith (a group of eastern plutons). Rock types: A. Basic Intrusions 1. Gebharts (Quartz) Diorite – several small bodies (up to 20 km2 but usually 1–4 km2). 2. Kleinzwettl Gabbro – quartz diorite to diorite – located within the Weinsberg Granite-Granodiorite along the NE-SW discrete zone in the northeastern part of the pluton. B. Weinsberg Group Weinsberg Granite-Granodiorite – porphyritic (megacrystic) biotite granodiorite – facies (see Fig. 2.23. 2.24.): Weinsberg 1 Granite – very coarsegrained biotite ± quartz-poor granite to quartz monzodiorite. Weinsberg 2 Granite – very coarsegrained biotite ± garnet ± cordierite granite. Srní Granite – porphyritic biotite granite Sarleinsbach Quartz Monzonite (mafic variety of the Weinsberg GraniteGranodiorite) – porphyritic coarsegrained pyroxene-bearing biotite quartz monzonite. “Schlieren Granite” – coarse-grained biotite ± hornblende granitegranodiorite (in situ melt) Migma Granite – (completely melted granite from Peuerbach and Schärding Granites) Sauwald Diatexite – medium-grained biotite ± cordierite granite to tonalite. Orbicular Granite (a small body in the Weinsberg Granite-Granodiorite) – biotite-cordierite granodiorite (plagioclase, biotite, cordierite and quartz). The orbicules develop around nuclei of cordierite-biotite gneisses and sillimanite-biotite schists. Autochthonous S-type granitoids: Plöchwald Granite – coarse-grained two-mica granite Plessberg Granite – fine-grained hornblende-bearing biotite granite.
C. Mauthausen Group Freistadt Granodiorite (~ 400 km2) – biotite ± hornblende granodiorite and quartz diorite. “Marginal type – coarse-grained granodiorite, “Central type” – medium-grained quartz diorite) Fine-grained type – fine-grained variety of Freistadt Granodiorite intruded as a separate phase (mixing member with the Mauthausen Granite?) – medium-grained biotite granite with porphyritic marginal facies. The fine-grained granite is similar in age and composition to the Mauthausen Granite. Weitra Granite – fine-grained biotite granite (main type, western subtype and Schützenberg type), magnetic and non-magnetic varieties. Reinpolz Granite – fine-grained biotite granite that forms small bodies NW of Weitra. Karlstift Granite – fine- to mediumgrained biotite granite (fine-grained and porphyritic facies). Reaction product of the Freistadt and Weinsberg Granite-Granodiorites. Engerwitzdorf Granite – porphytitic biotite granite (equivalent of the Karlstift Granite). Plöcking Granite – fine-mediumgrained biotite granite (isolated oval stock). Mauthausen Granite (~ 375 km2) – fine-medium-grained biotite granite. The name of the Mauthausen Granite is applied to several intrusive bodies with similar textural characteristics, which can have different intrusion histories (the Karlstein, Plöcking, Schrems Granites). Some of them are intruding the Weinsberg GraniteGranodiorite (e.g. the Schrems Granite is an isolated body (5 x 2 km in size) located at the northern Weinsberg Granite-Granodiorite margin. D. Eisgarn Group (also a member of the Eisgarn Composite Pluton) Eisgarn Granite s.l.:
43
Weinsberg Granite-Granodiorite 328 ± 6 Ma (U-Pb zircon), 322 ± 4 Ma (SHRIMP U-Pb zircon), 323–328 Ma (Pb-Pb monazite), 357 ± 9–321 ± 12 Ma (U-Pb zircon), 349 ± 4 Ma (Rb-Sr, whole rock) 314.4 ± 2 Ma (Ar-Ar mica). Sarleinsbach Quartz Monzonite 355 ± 9 Ma, 345 ± 5 Ma (U-Pb zircon), 322 ± 4 Ma (SHRIMP zircon), 323 Ma (U-Pb zircon), Sauwald Diatexite 316 ± 1 Ma (U-Pb zircon). MAUTHAUSEN GROUP Freistadt Granodiorite 302 ± 2 Ma (Pb-Pb monazite), 329 ± 7 Ma (Rb-Sr muscovite). Mauthausen Granite 365 ± 8 Ma (Rb-Sr whole rock), 324 ± 4 Ma (Rb-Sr muscovite), 316 ± 1 Ma (U-Pb zircon). Karlstift Granite 376 ± 9 Ma (Rb-Sr whole rock). EISGARN GROUP Altenberg Granite 310 Ma (U-Pb zircon, monazite), 293.4 ± 1.5 Ma (Ar-Ar mica). Sulzberg Granite 326 Ma (U-Pb zircon), Žofín Granite 324 ± 14 Ma (Rb-Sr erochron, whole rock), Mandelstein Granite 314-–307 ± 2 Ma (Ar-Ar muscovite), Weitra Granite 305 ± 2, 311 ± 3 Ma (Ar-Ar muscovite), Žofín Granite 313–303 ± 2–3 Ma (Ar-Ar muscovite). HOMOLKA GROUP Pyhrabruck Granite 314 ± 6 Ma (Rb-Sr whole rock), Lagerberg Granite 313 ± 7 Ma (Rb-Sr whole rock), microgranodiorite dyke ca. 270 Ma (Ar-Ar hornblende), Nakolice Granite 296 ± 31 Ma (Rb-Sr whole rock), PyhrabruckNakolice 314–312 Ma (Ar-Ar muscovite), Šejby Granite 301 ± 41 Ma (Rb-Sr whole rock). Nebelstein Granite 311.6 ± 1.4 Ma (RbSr whole rock), 312–308 Ma (Ar-Ar muscovite),310 ± 1.9, 310.9 ± 2.0 Ma (Rb-Sr biotite), 307.8 ± 1.9, 306.1 ± 1.7 Ma (Rb-Sr muscovite).
Altenberg Granite – fine-grained biotite-muscovite) granite. Haibach Granite – fine- to mediumgrained two-mica granite. Žofín Granite (Aussengranite) – equigranular ± porphyritic mediumgrained muscovite-biotite granite (resembles the Mrákotín Granite). Mandelstein Granite – coarse-grained two-mica granite (core and rim facies). E. Homolka Group (also a member of the Eisgarn Composite Pluton) Unterlembach Granite – leucocratic, medium-grained muscovite alkalifeldspar granite. Pyhrabruck-Nakolice Granite – leucocratic, medium-grained muscovite topaz-bearing alkalifeldspar granite. Windhang Granite. Nebelstein Granite – muscovite – twomica to biotite (at depth) alkalifeldspar granite. Šejby Dyke-Granite – aplitic to pegmatitic muscovite alkali-feldspar granite Lagerberg Granite – (marginal facies of the Pyhrabruck-Nakolice Granite) – non-porphyritic medium-grained twomica alkali-feldspar granite. Size and shape (in erosion level): ~ 3200 km2, a triangular shape, the dominant Weinsberg Granite-Granodiorite is intruded by a set of massifs and stocks of younger granites (e.g. the Nebelstein Stock). The Weinsberg Granite-Granodiorite plunges towards the S beneath “perlgneiss”. Perldiatexite – elongated body several km wide and up to several tens km long in the Danube Valley (Mühlviertel Zone and Sauwald Zone). Pyhrabruck-Nakolice Granite forms small stock (5 km2) in the Mandelstein Granite. The Unterlembach Granite forms two systems of dykes (5–20 m) and three stocks cutting the Eisgarn Granite s.s. The Šejby Dyke Granite consists of several N-S trending dykes in the Weinsberg Granite-Granodiorite. Age and isotopic data: BASIC INTRUSIONS Gebharts Diorite 327.4 ± 0.8 Ma (U-Pb zircon). WEINSBERG GROUP
Temporal (field) sequence: Gebharts Diorites → Weinsberg Granite-Granodiorite → Freistadt Granodiorite – Karlstift Granite ? Reinpolz Granite – Weitra Granite → Mauthausen Granite → Altenberg Granite → Žofín Granite → Mandelstein Granite → muscovite granites of Unterlembach, Oberlembach and Pyhrabruck-Nakolice bodies. The Mandelstein Granite is intruded by the Pyhrabruck-Nakolice Granite. Roof pendants and giant xenoliths of fine-grained porphyritic biotite-muscovite granite within the Mandelstein Granite (probably the Žofín Granite). Dykes of the Schrems and Eisgarn Granites intrude the Gebharts Diorite. The Schrems
44
P, and U. Structural zonation in the Karlstift Granite is indicated by the porphyritic facies at the pericontact and the equigranular facies in the inner part of the body. The Mandelstein Granite consists of the core facies and the rim facies (coarse-grained two-mica granites). Mineralization: greisenization and Kfeldspatization of the Eisgarn granites s.l. is associated with sub-economic Mo, U, Sn-WNb-Ta mineralization. Heat production (μWm-3): Weinsberg Granite-Granodiorite 3.5–5.0, Freistadt Granodiorite 2.69, Mauthausen Granite 4.03, 5.41, Schrems Granite 5.41, Gebharts Diorite 3.01.
Granite encloses Weinsberg GraniteGranodiorite xenoliths. The Plessberg Granite is younger than the Weinsberg and Plöchwald Granites. Geological environment: Proterozoic gneisses. Contact aureole: Periplutonic migmatization of the Moldanubian paragneisses (older than granites). Transition zone between the Weinsberg Granite-Granodiorite and paragneiss (pearl gneiss). Zoning: the Weinsberg Granite-Granodiorite is chemically homogeneous intrusion. The Mandelstein body is chemically concentric zoned with the core enriched in Na, Rb, Li, F,
Fig. 2.23. Weinsberg Composite Pluton hierarchic scheme according to rock groups and rock types.
45
Fig. 2.24. Weinsberg Composite Pluton geological-sketch-map (adapted after Vellmer and Wedepohl 1994, Gerdes et al. 1998, Breiter and Scharbert 2006). 1 – basic intrusions, 2 – Sarleinsbach Q-Monzonite, 3 – Schlieren Granite, 4 – Weinsberg 1 Granite-Granodiorite, 5 – Weinsberg 2 Granite, 6 – Freistadt Granodiorite,7 – Karlstift Granite, 8 – Engerwitzdorf Granite, 9 – Weitra Granite, 10 – Mauthausen Granite, 11 – Plöcking Granite, 12 – Schrems Granite, 13 – Wolfsegg Granite, 14 – Žofín Granite, 15 – Mandelstein Granite, 16 – Altenberg Granite, 17 – Haibach Granite, 18 – Pyhrabruck-Nakolice and Nebelstein Granites, 19 – Young granite stocks and aplite, 20 – faults.
46
References BENDL, J. – HEŘMÁNEK, R. – KLEČKA, M. – MATĚJKA, D. – ČEKAL, F. (1994): Highly evolved granites (Šejby and Nakolice stocks) in the Nové Hrady Mts., Moldanubian Composite Batholith: geochemistry and Rb-Sr dating. – Mitt. Österr. mineral. Gesell. 139, 271–273. BREITER, K. – FRÝDA, J. – LEICHMANN, J. (2002): Phosphorus and rubidium in alkali feldspars: case studies and possible genetic interpretation. – Bull. Czech. Geol. Surv. 77, 93–140. BREITER, K. – KOLLER, F. (2000): Contrasting styles of magmatic zoning in the Central Moldanubian Pluton. – GeoLines 8, 10–11. BREITER, K. – SCHARBERT, S. (1998): Latest intrusions of the Eisgarn Pluton (South Bohemia – Northern Waldviertel). – Jb. Geol. B.-A. Band, Hf. 1, 25-37. BREITER, K. – SCHARBERT, S. (2001): Geological mapping of the two-mica granites in the Weitra – Nové Hrady area. – Mitt. Österr. Mineral. Gesell. 146, 40–41. BREITER, K. – SCHARBERT, S. (2006): Two-mica and biotite granites in the Weitra-Nové Hrady area, Austria – Czech Republic. – J. Czech Geol. Soc. 51, 217–229. DALLMEYER, R. D. – FALLICK, A. E. – KOLLER, F. – SLAPANSKY, P. (1995): The Nebelstein complex: a Variscan mineralized granite intrusion in the Bohemian Massif (Austria). – Eur. J. Mineral. 7, Beiheft 1, 52. FINGER, F, (1986): Die synorogenen Granitoide und Gneisse des Moldanubikums in Gebiet der Donauschlingen bei Obermühl (Öberrösterreich). – Jb. Geol. Bundesanst. 128, 383–402. FINGER, F. – CLEMENS, J. D. (1995): Migmatitization and „secondary“ granitic magmas: effects of emplacement and crystallization of “primary” granitoids in Southern Bohemia, Austria. – Contr. Mineral. Petrology 120, 311–326. FINGER, F. – DOBLMAYER, P. – FRIEDL, G. – GERDES, A. – KRENN, E. – VON QUADT, A. (2003): Petrology of the Weinsberg Granite-Granodiorite in the South Bohemian Batholith: New data from the mafic end members. – J. Czech Geol. Soc. 48, 48–49. FINGER, F. – HÖCK, V. (1986): Zur magmatischen Entwicklung des Moldanubikums in Öberrösterreich. Vortragszusammenfassung. – Jb. Geol. Bundesanst. 128, 641–642. FRASL, G. – FINGER, F. (1988): Führer zur Exkursion der Österreichischen Geologischen Gesellschaft ins Mühlviertel und in den Sauwald. – Reihe Exkursionsführer Österr. Geol. Gesell. Vienna. FRIEDL, G. – FINGER, F. (1994): Zur Intrusionsfolge im südböhmischen Batholith: neue Aspecte bezüglich der Stellung des eisgarner Granits. – Mitt. Österr. mineral. Gesell. 139, 298–299. FRIEDL, G. – FINGER, F. – PAQUETTE, J. L. – von QUADT, A. – McNAUGHTON, N. J. – FLETCHER, I. R. (2004): Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U-Pb zircon ages. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 802–823. GERDES, A. – WÖRNER, G. – FINGER, F. (1998a): Late-orogenic magmatism in South Bohemia – geochemical and isotopic constraints on possible sources and magma evolution. – Acta Univ. Carol., Geol. 42, 41–45. GÖD, R. (1989): A contribution to the mineral potential of the southern Bohemian Massif. – Arch. Lagerstättenforsch. 11, 147–153. GÖD, R. – OBERLERCHER, G. – BRANDSTÄTTER, F. (1996): Zur Mineralogie und Geochemie eines Thorium-reichen Granit Körpers im südböhmischen Pluton (Gutau, Oberösterreich). – Mitt. Österr. mineral. Gesell. 141, 95–96. HAUNSCHMID, B. (1992): Zur Gliederung und Intrusionfolge der Granitoide des Südböhmischen Batholiths im nordöstlichen Mühlviertel. – Mitt. Österr. mineral. Gesell. 137. HAUNSCHMID, B. – FINGER, F. (1994): Der Quarzmonzonit von Sarleinsbach: eine Kummulatvariante des Weinsberger Granits. – Mitt. Österr. mineral. Gesell. 139, 310–312. HEJTMAN, B. (1984): Petrografie vyvřelých hornin Českého masívu. Část I. Intruzivní vyvřelé horniny z. a sz. Čech. – 186 pp., Univ. Karl. Praha. HOLUB, F. V. – MATĚJKA, D. – KOLLER, F. (2003): Dioritické horniny v moldanubickém (jihočeském) batolitu. – Zpr. geol. Výzk. v Roce 2002, 19–20. HUMER, B. – FINGER, F. (2002): Der Eisgarner Granit im Raum Weitra, Niederösterreich. – PANGEO Austria, Programm und Kurzfassungen, 84, Salzburg.
47
HUMER, B. – GERDES, A. – FINGER, F. (2003): Der Weitraer Granit im nordwestlichen Niederösterreich – eine späte hochplutonische I-Typ Granitintrusion mit Greisenbildung im variszischen Südböhmischen Batholit. – Zbl. Geol. Paläont., Tl I, 2002, 213–235. KLEČKA, M. – MATĚJKA, D. (1993): Korelace českých a rakouských typologických studií granitoidů moldanubického plutonu. – Zpr. geol. Výzk. v Roce 1991, 79–80. KLEČKA, M. – MATĚJKA, D. – JALOVEC, J. – VAŇKOVÁ, V. (1991): Geochemický výzkum skupiny granitoidů typu Eisgarn v j. části centrálního masivu moldanubického plutonu. – Zpr. geol. Výzk. v Roce 1989, 109–111. KLÖTZLI, U. S. – KOLLER, F. – SCHARBERT, S. – HÖCK, V. (2001): Cadomian Lower-Crustal Contributions to Variscan Granite Petrogenesis (South Bohemian Pluton, Austria): Constraints from Zircon Typology and Geochronology, Whole rock, and Feldspar Pb-Sr Isotope Systematics. – J. Petrology 42, 9, 1621-–1642. KNOB, H. (1970): Über das Vorkommen eines porphyrischen Granites im Raume Sandl-KarlstiftLiebenau bei Freistadt im oö. Mühlviertel (Granit vom Typ „ Karlstift“). – Tschermaks mineral. petrogr. Mitt. 14, 311–323. KNOB, H. (1971): Der Freistädter Granodiorite im österreichischen Moldanubikum. – Verh. Geol. Bundesanst. 1, 98–142. MOLLER, F. – NIEDERMAYR, G (1981): Die Petrologie der Diorite im nödlichen Niederösterreich. – Tschermaks mineral. petrogr. Mitt. 28, 285–313. KOLLER, F. – SCHARBERT, S. – HÖCK, V. (1993): Neue Untersuchungsergebnisse zur Genese einiger Granite des Südböhmischen Plutons. – Mitt. Österr. Mineral. Gesell. 138, 178-196. KURAT, G. (1965): Der Weinsberger Granit im südlichen österreichischen Moldanubikum. – Tschermaks mineral. petrogr. Mitt. 11, 388–412. MATĚJKA, D. – RENÉ, M. (2002): Granitoids of the Freistadt and Mauthausen type in the Czech part of the Moldanubian Composite Batholith. – Pangeo I, 117–118. NOVÁK, J. K. – PIVEC, E. – ŠTEMPROK, M. (1996): Hydrated iron phosphates in muscovite-albite granite from Waidhaus (Oberpfalz, Germany). – J. Czech Geol. Soc. 41, 201–207. RICHTER, W. (1965): Petrographische Untersuchungen am Mauthausener Granit im östereichischen Moldanubikum. – Tschermaks mineral. petrogr. Mitt. 3, 265–296. SCHARBERT, H. G. (1956): Der Granit von Plöcking (Typus Mauthausen) aus dem OÖ. Mühlviertel. – Tschermaks mineral. petrogr. Mitt. 3/5, 153–161. THIELE, O. (1971): Ein Cordierit-Kugeldiorit aus dem westerlichen Wardviertel (Nieder Österreich). – Verh. Geol. Bundesanst. 3, 409–423. VELLMER, C. – WEDEPOHL, K. H. (1994): Geochemical characterization and origin of granitoids from the Southern Bohemian batholith in Lower Austria. – Contr. Mineral. Petrology 118, 13–32. VON QUADT, A. – FINGER, F. (1991): Geochronologische Untersuchungen im österreichischen Teil des Südböhmischen Batholiths: U-Pb Datierungen an Zirkonen, Monaziten und Xenotimen des Weinsberger Granits. – Eur. J. Mineral. 3, Beih. 1, 281. Weinsberg Granite to Granodiorite Large variation in composition. Quartz-poor to quartz normal, potassic, peraluminous, mesocratic, S-type, I-& M- series, granodiorite to quartz monzonite n = 22 Med. Min Max QU1 QU3 SiO2 67.22 61.07 71.10 65.42 69.02 TiO2 0.64 0.30 1.05 0.53 0.78 Al2O3 15.25 12.17 17.71 14.30 15.97 Fe2O3 0.82 0.18 3.28 0.45 1.12 FeO 2.65 2.02 4.88 2.45 3.33 MnO 0.04 0.00 0.12 0.02 0.05 MgO 0.94 0.47 2.17 0.87 1.12 CaO 2.05 1.16 3.11 1.56 2.36 Na2O 3.09 2.82 4.00 2.95 3.28 K2O 5.33 2.58 7.16 4.51 5.60 P2O5 0.26 0.15 0.69 0.19 0.32
48
Mg/(Mg + Fe) 0.32 0.14 0.43 0.28 0.36 K/(K + Na) 0.51 0.33 0.61 0.49 0.54 Nor.Or 32.85 16.31 44.16 28.29 35.01 Nor.Ab 29.74 26.65 37.13 27.76 31.33 Nor.An 8.52 4.73 15.02 6.40 10.15 Nor.Q 18.68 7.11 31.69 17.53 26.77 Na + K 212.88 166.11 249.80 196.37 228.12 *Si 120.59 66.17 186.78 112.80 154.25 K-(Na + Ca) -27.43 -97.92 12.16 -39.06 -16.79 Fe + Mg + Ti 89.20 50.04 138.69 72.86 95.02 Al-(Na + K + 2Ca) 1.21 -23.27 55.23 -5.82 25.85 (Na + K)/Ca 5.94 3.56 10.27 4.69 7.08 A/CNK 1.02 0.94 1.25 1.00 1.11 Trace elements (mean values in ppm): Weinsberg Granodiorite – Ba 950, Li 30, Nb 8, Pb 35, Rb 170, Sr 160, Zn 6, Zr 200. (Breiter and Sokol 1997).
Fig. 2.25. Weinsberg Granite to Granodiorite ABQ and TAS diagrams.
Mauthausen Granite Quartz-normal, sodic/potassic, moderately peraluminous, S-type, I-series, mesocratic, granite 1161M 1162M 1163M 1164M 1165M 1166M SiO2 69.50 72.22 69.72 69.24 69.14 72.13 TiO2 0.48 0.36 0.47 0.22 0.42 0.34 Al2O3 15.19 14.65 14.93 17.37 15.42 14.64 Fe2O3 0.30 0.32 0.23 0.26 0.65 0.30 FeO 2.28 1.81 2.58 2.51 2.05 1.35 MnO 0.04 0.04 0.04 n.d. 0.04 0.03 MgO 1.05 0.77 1.14 0.78 1.16 0.54 CaO 1.98 1.30 1.60 1.94 2.28 1.50 Na2O 3.25 3.36 2.68 3.39 3.33 3.62 K2O 4.98 4.45 5.35 4.05 4.28 4.56 P2O5 0.17 0.15 0.23 0.08 0.24 0.16 Mg/(Mg + Fe) 0.42 0.39 0.42 0.34 0.44 0.37 K/(K + Na) 0.50 0.47 0.57 0.44 0.46 0.45 Nor.Or 30.72 27.26 33.38 24.78 26.44 27.75 Nor.Ab 30.47 31.28 25.41 31.53 31.26 33.48
49
Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
9.09 23.93 210.61 151.42 -34.45 67.58 17.07 5.97 1.08
5.66 29.76 202.91 182.30 -37.12 52.83 38.42 8.75 1.17
6.78 26.83 200.08 167.70 -1.42 72.99 36.06 7.01 1.16
9.42 25.99 195.38 165.68 -58.00 60.32 76.54 5.65 1.30
10.17 25.44 198.33 158.14 -57.24 70.74 23.17 4.88 1.10
6.58 27.92 213.64 168.69 -46.74 40.22 20.37 7.99 1.09
Fig. 2.26. Mauthausen Granite ABQ and TAS diagrams.
Freistadt Granodiorite Quartz-normal, sodic, low peraluminous, mesocratic, S-type, I- and M-series, granodiorite 1189F 1190F 1191F 1192F 1193F 1194F SiO2 66.44 70.78 70.95 68.15 71.38 71.38 TiO2 0.54 0.31 0.22 0.52 0.34 0.36 Al2O3 16.39 14.93 14.71 15.76 15.23 15.23 Fe2O3 1.58 0.57 0.25 1.07 0.47 0.30 FeO 1.78 1.65 1.49 1.75 2.04 1.65 MnO 0.03 0.02 0.04 0.04 0.05 0.03 MgO 1.21 0.73 0.55 1.23 0.68 0.62 CaO 3.28 1.98 1.57 2.43 1.34 1.85 Na2O 4.18 3.84 3.51 3.62 3.92 3.82 K2O 2.80 3.73 4.84 4.68 3.47 3.42 P2O5 0.16 0.09 0.06 0.05 0.12 0.15 Mg/(Mg + Fe) 0.40 0.37 0.36 0.44 0.33 0.36 K/(K + Na) 0.31 0.39 0.48 0.46 0.37 0.37 Nor.Or 17.23 22.90 29.79 28.60 21.29 20.95 Nor.Ab 39.09 35.82 32.83 33.62 36.56 35.57 Nor.An 15.85 9.59 7.70 12.13 6.08 8.49 Nor.Q 22.22 27.08 26.03 20.68 29.28 29.38 Na + K 194.34 203.11 216.03 216.18 200.17 195.88 *Si 135.27 166.02 158.92 133.01 179.90 178.12 K-(Na + Ca) -133.92 -80.03 -38.50 -60.78 -76.72 -83.64 Fe + Mg + Ti 81.37 52.12 40.29 74.81 55.43 46.63 Al-(Na + K + 2Ca) 10.55 19.47 16.85 6.65 51.12 37.22 50
(Na + K)/Ca 3.32 5.75 7.72 4.99 8.38 5.94 A/CNK 1.05 1.08 1.07 1.03 1.22 1.16 Trace elements (mean values in ppm): Freistadt Granodiorite – Ba 1366, Cs 4, Ga 20, Hf 5, Li 30, Nb 12, Pb 27, Rb 140, Sc 6.5, Sr 290, Th 20, U 3.4, Y 22, Zn 59, Zr 170, La 5.3, Ce 37, Sm 5.5, Eu 1.2, Yb 0.3, Lu 0.2 (Breiter and Sokol 1997).
Fig. 2.27. Freistadt Granodiorite ABQ and TAS diagrams. 1 – fine-grained type, 2 – Marginal type, 3 – Central type.
Žofín and Mandelstein Granite Quartz-rich, potassic, peraluminous, leucocratic, S-type, granite Z3131 Z3349 Z3320 M3120 M3121 M3122 Žofín Granite Mandelstein Granite SiO2 71.21 72.56 72.76 73.20 72.65 72.60 TiO2 0.29 0.34 0.28 0.12 0.26 0.32 Al2O3 14.91 14.06 14.21 14.89 14.16 14.45 Fe2O3 0.70 0.80 0.90 0.54 0.73 0.66 FeO 0.85 0.96 0.52 0.55 1.05 0.99 MnO 0.03 0.03 0.02 0.03 0.04 0.03 MgO 0.45 0.45 0.28 0.19 0.33 0.32 CaO 0.67 0.74 0.51 0.50 0.70 0.67 Na2O 2.96 2.78 2.69 2.86 3.21 3.20 K2O 5.45 5.53 5.58 5.42 4.74 5.00 P2O5 0.33 0.18 0.21 0.38 0.27 0.23 Mg/(Mg + Fe) 0.35 0.32 0.27 0.24 0.25 0.26 K/(K + Na) 0.55 0.57 0.58 0.55 0.49 0.51 Nor.Or 33.52 33.93 34.29 32.97 29.12 30.56 Nor.Ab 27.67 25.93 25.12 26.44 29.97 29.72 Nor.An 1.17 2.55 1.22 -0.04 1.77 1.87 Nor.Q 30.83 32.22 33.56 33.90 32.91 31.83 Na + K 211.23 207.12 205.28 207.37 204.23 209.42 *Si 175.86 186.63 192.31 192.78 190.50 185.38 K-(Na + Ca) 8.25 14.51 22.58 13.87 -15.43 -9.05 Fe + Mg + Ti 35.47 38.86 29.00 20.63 35.25 34.01 Al-(Na + K + 2Ca) 57.67 42.59 55.58 67.21 48.88 50.45 (Na + K)/Ca 17.68 15.70 22.57 23.26 16.36 17.53 A/CNK 1.29 1.20 1.28 1.35 1.25 1.24
51
Trace elements (mean values in ppm): Žofín Granite – Sn 9, Zn 73, As 5, Nb 16, Cu 4, Rb 326, Zr 129, Pb 22, Sr 64, Th 32, U 8, Y 13. Mandelstein Granite – Sn 4, Zn 64, Nb 24, Nb 4, Cu 4, Rb 308, Zr 118, Pb 14, Sr 93 , Th 18, U 7.5 , Y 17.
Fig. 2.28. Žofín and Mandelstein Granites ABQ and TAS diagrams. 1 – Žofín Granite, 2 – Mandelstein Granite.
Weitra Granite Quartz-normal, potassic, peraluminous, mesocratic, S-type, granite Wm3225 Wm3422 Wm3223 Wn2493 Wn3347 Wn3348 Magnetic facies Nonmagnetic facies SiO2 70.85 70.87 71.90 73.09 69.26 69.41 TiO2 0.44 0.50 0.41 0.41 0.50 0.53 Al2O3 14.36 14.16 13.92 13.34 14.69 14.66 Fe2O3 0.65 1.26 0.91 0.60 1.02 0.97 FeO 1.50 1.63 1.08 1.65 1.65 1.71 MnO 0.05 0.05 0.04 0.04 0.05 0.05 MgO 0.69 0.80 0.67 0.73 0.82 0.86 CaO 1.50 2.06 1.30 1.58 2.03 1.88 Na2O 2.94 2.91 2.98 2.84 3.38 3.39 K2O 4.90 5.01 4.77 4.34 4.51 4.49 P2O5 0.16 0.20 0.15 0.19 0.19 0.20 Mg/(Mg + Fe) 0.37 0.34 0.38 0.37 0.36 0.37 K/(K + Na) 0.52 0.53 0.51 0.50 0.47 0.47 Nor.Or 30.38 30.68 29.45 26.87 27.89 27.78 Nor.Ab 27.70 27.08 27.96 26.72 31.77 31.88 Nor.An 6.68 9.21 5.70 6.90 9.23 8.40 Nor.Q 29.65 28.02 31.90 34.12 25.83 26.24 Na + K 198.91 200.28 197.44 183.79 204.83 204.73 *Si 176.32 168.40 185.99 202.91 155.28 158.00 K-(Na + Ca) -17.58 -24.26 -18.07 -27.67 -49.51 -47.58 Fe + Mg + Ti 51.70 64.60 48.20 53.75 62.37 63.95 Al-(Na + K + 2Ca) 29.59 4.33 29.55 21.83 11.25 16.12 (Na + K)/Ca 7.44 5.45 8.52 6.52 5.66 6.11 A/CNK 1.13 1.03 1.14 1.11 1.06 1.08
52
Fig. 2.29. Weitra Granite ABQ and TAS diagrams. 1 – Weitra Granite – magnetic facies, 2 – Weitra Granite – non-magnetic facies , 3 –Karlstift Granite, 4 – Weitra Mu-granite.
Karlstift Granite Quartz-normal, sodic, peraluminous, I/S-type, granodiorite Kar3355 Kar3395 SiO2 69.84 66.00 TiO2 0.52 0.67 Al2O3 14.67 15.10 Fe2O3 0.64 1.50 FeO 1.78 2.15 MnO 0.05 0.08 MgO 0.80 1.30 CaO 2.21 2.93 Na2O 3.25 3.31 K2O 4.26 3.83 P2O5 0.18 0.36 Mg/(Mg + Fe) 0.37 0.39 K/(K + Na) 0.46 0.43 Nor.Or 26.40 24.12 Nor.Ab 30.61 31.69 Nor.An 10.24 12.97 Nor.Q 27.53 23.80 Na + K 195.33 188.13 *Si 165.86 143.19 K-(Na + Ca) -53.83 -77.74 Fe + Mg + Ti 59.20 89.39 Al-(Na + K + 2Ca) 13.94 3.90 (Na + K)/Ca 4.96 3.60 A/CNK 1.07 1.04
53
2.1.2.01. NEBELSTEIN STOCK biotite alkali-feldspar granite. A porphyritic variety is developed in the W part of the body. 2. Biotite Granite – medium-grained granite in sub-surface parts of the stock. 3. Greisen. Size and shape (in erosion level): 5 km2 (3 × 2 km), NE-SW (N-S) trending stock. Age and isotopic data: Nebelstein Granite 311.6 ± 1.4 Ma (Rb-Sr whole rock), 312–308 Ma (Ar-Ar muscovite). Temporal (field) relations: Weinsberg Granite-Granodiorite → Eisgarn Granite Mauthausen Granite → Nebelstein Granite → Greisen. Geological environment: the Weinsberg, Mauthausen and Eisgarn Granites. Contact aureole: not described. Zoning: normal concentric zonation (Nebelstein Granite in the upper part of the stock and Biotite Granite in the lower part of the intrusion). Mineralization: greisenization and subeconomic dissemination of molybdenite and chalcopyrite. Presence of magnetite, pyrite and pyrrhotite. Heat production (μWm-3): Nebelstein Granite 1.52.
Regional position: Moldanubian Zone. A member of the Homolka Group in the Weinsberg Composite Pluton. The stock is intruded along the contact between the Weinsberg Granite-Granodiorite, Mauthausen and Eisgarn Granites. One of the youngest members of MCB subvolcanic high-level intrusions (e.g. the Pyhrabruck-Nakolice Granite).
Fig. 2.30. Nebelstein Stock geological map (after Göd and Koller 1989). 1 – Weinsberg GraniteGranodiorite, 2 – Mauthausen Granite, 3 – Eisgarn Granite s.l., 4 – Nebelstein Granite, 5 – faults.
Rock types: 1. Nebelstein Granite – highly altered medium- to coarse-grained muscovite-±
Fig. 2.31. Nebelstein Granite ABQ and TAS diagrams.1 – Biotite Granite, 2 – Nebelstein Granite, 3 – greisen.
54
Nebelstein Granite (biotite granite, two-mica granite, muscovite granite) Quartz-rich, potassic, peraluminous, leucocratic, S-type, granite NebBio Neb2Mic NebMu NebMusc SiO2 73.60 75.54 75.15 74.99 TiO2 0.26 0.09 0.08 0.10 Al2O3 14.08 13.78 13.62 13.21 Fe2O3 1.83 0.96 1.71 2.52 MnO 0.04 0.03 0.01 0.02 MgO 0.44 0.14 0.09 0.12 CaO 1.08 0.59 0.46 0.42 Na2O 2.75 3.15 2.82 1.91 K2O 4.89 4.72 4.87 4.52 P2O5 0.17 0.10 0.11 0.15 Mg/(Mg + Fe) 0.32 0.22 0.09 0.09 K/(K + Na) 0.54 0.50 0.53 0.61 Nor.Or 29.84 28.56 29.64 28.11 Nor.Ab 25.50 28.97 26.09 18.06 Nor.An 4.38 2.32 1.60 1.15 Nor.Q 34.83 36.01 37.51 44.79 Na + K 192.57 201.87 194.40 157.60 *Si 202.91 210.20 217.05 253.43 K-(Na + Ca) -4.17 -11.95 4.20 26.85 Fe + Mg + Ti 37.10 16.63 24.66 35.80 Al-(Na + K + 2Ca) 45.42 47.70 56.66 86.83 (Na + K)/Ca 10.00 19.19 23.70 21.04 A/CNK 1.22 1.23 1.28 1.53
References BREITER, K. – SCHARBERT, S. (1998): Latest intrusions of the Eisgarn Composite Pluton /South Bohemia – Northern Waldviertel. – Jb. Geol. Bundesanst. 141, 25–37. GÖD, R. (1989): A contribution to the mineral potential of the southern Bohemian Massif. – Arch. Lagerstättenforsch. Geol. B.-A. 11, 147–153. GÖD, R. – KOLLER, F. (1987): Molybdän-führende Greisen in der südlichen Böhmischen Masse. – Mitt. Österr. mineral. Gesell. 132, 87–101. GÖD, R. – KOLLER, F. (1989a): Molybdän-führende Greisen im nördlichen Waldviertel. – Mitt. Österr. mineral. Gesell. 134, 114. GÖD, R. – KOLLER, F. (1989b): Molybdenite bearing greisens associated with peraluminous leucogranites, Nebelstein, Bohemian Massif (Austria). – Chemie Erde 49, 185–200. KOLLER, F. – GÖD, R. – HÖGELSBERGER, H. – KOEBERL, C. (1994): Molybdenite mineralization related to granites of the Austrian part of the South Bohemian Pluton (Moldanubicum) – a comparison. In: Seltmann, R. – Kämpf, H. – Möller, P. Eds: Metallogeny of Collisional Orogens, 318–326. – Czech Geol. Survey, Prague. KOLLER, F. – GÖD, R. – SLAPANSKY, P. – SCHARBERT, S. (1998): 13. Nebelstein granite suite. In: Breiter K. Ed: Genetic significance of phosphorus in fractionated granites. International conference. Excursion Guide, 129–136. Czech Republic, Peršlák, September 21–24, 1998. – Czech Geol. Soc. Prague. KOLLER, F. – HÖGELSBERGER, H. – KOEBERL, C. (1992): Fluid-rock interaction in the Mobearing greisen complex Nebelstein, Bohemian Massif (Austria). – Mineral. Petrology 45, 261– 276.
55
2.1.2.02. PYHRABRUCK-NAKOLICE STOCK Regional position: Moldanubian Zone. A member of the Homolka Group in the Weinsberg Composite Pluton. Rock types: 1. Pyhrabruck-Nakolice Granite – mediumgrained muscovite leucocratic topaz-bearing alkali-feldspar granite. 2. Lagerberg Granite (marginal facies of the Pyhrabruck-Nakolice Granite) – nonporphyritic medium-grained two-mica alkalifeldspar granite Size and shape (in erosion level): 4 km2 (1.5 × 3.5 km) in size W-E trending oval body.
Age and isotopic data: Nakolice-Pyhrabruck Granite 316 ± 3 Ma ( Rb-Sr whole rock), 313.7 ± 2.1 Ma (Ar-Ar muscovite). Lagerberg Granite 313 ± 7 Ma (Rb-Sr whole rock). Geological environment: paragneiss and the Mandelstein (Eisgarn) Granite. Contact aureole: not reported Zoning: non-porphyritic medium-grained two-mica alkali-feldspar granite (Lagerberg Granite) along the southern contact of the muscovite granite (Pyhrabruck-Nakolice Granite). Mineralization: accessory cassiterite and columbite.
Fig. 2.32. Pyhrabruck-Nakolice, Nebelstein and Unterlembach Stocks and Šejby and Oberlembach Dyke Swarms geological sketch-map (adapted after Breiter and Scharbert 2006). 1 – Pyhrabruck-Nakolice Granite, 2 – Lagerberg Granite, 3 – Mandelstein Granite (rim facies), 4 – Mandelstein Granite (core facies), 5 – Žofín (Reinpolz) Granite, 6 – Weitra Granite, 7 – Unterlembach Granite, 8 – Oberlembach Granite, 9 – Šejby Dyke Swarm, 10 – Nebelstein Stock, 11 – Basic intrusive rocks, 12 – faults, 13 – state border.
56
References BENDL, J. – HEŘMÁNEK, R. – KLEČKA, M. – MATĚJKA, D. – ČEKAL, F. (1994): Highly evolved granites (Šejby and Nakolice stocks) in the Nové Hrady Mts., Moldanubian Composite Batholith: geochemistry and Rb-Sr dating. – Mitt. Österr. mineral. Gesell. 139, 271–273. BREITER, K. – SCHARBERT, S. (1998): Latest intrusions of the Eisgarn Composite Pluton /South Bohemia – Northern Waldviertel. – Jb. Geol. Bundesanst. 141, 25–37. BREITER, K. – SCHARBERT, S. (2006): Two-mica and biotite granites in the Weitra-Nové Hrady area, Austria – Czech Republic. – J. Czech Geol. Soc. 51, 217–229. HEŘMÁNEK, R. – MATĚJKA, D. – KLEČKA, M. (1998): Šejby and Nakolice stocks – examples of the phosphorus-rich mineralised granites (a review). – Acta Univ. Carol., Geol. 42, 46–49. SCHARBERT, S. (1987): Rb-Sr Untersuchungen Granitoider Gesteine des Moldanubikums in Österreich. – Mitt. Österr. mineral. Gesell. 132, 21–37. SCHARBERT, S. (1988): Rubidium-strontium systematics of granitoid rocks of the South Bohemian Pluton. In: Kukal, Z. Ed.: Proc. of the 1st International Conference on the Bohemian Massif, 229– 232. – Czech Geol. Survey, Prague. SCHARBERT, S. (1998): Some geochronological data from the South Bohemian Pluton in Austria – a critical review. – Acta Univ. Carol., Geol. 42, 114–118. Pyhrabruck-Nakolice Granite Quartz-rich, sodic, peraluminous, leucocratic, S-type, granite NAG-1 NAG-2 MPZ-7 Nak2478 NAG-3 Py2477 SiO2 72.22 73.32 72.16 74.55 73.37 74.33 TiO2 0.02 0.02 0.02 0.04 0.03 0.03 Al2O3 15.74 14.74 16.02 14.87 14.84 14.43 Fe2O3 0.55 0.47 0.40 0.97 0.56 0.77 FeO 0.51 0.53 0.57 n.d. 0.42 n.d. MnO 0.02 0.02 0.02 0.02 0.02 0.03 MgO 0.07 0.07 0.11 0.04 0.08 0.04 CaO 0.35 0.31 0.50 0.30 0.34 0.43 Na2O 4.30 4.56 4.19 3.53 4.60 3.79 K2O 3.89 4.13 3.64 3.81 4.01 3.87 P2O5 0.43 0.42 0.46 0.33 0.37 0.45 Li2O 0.05 0.05 0.05 0.05 0.04 0.04 Mg/(Mg+Fe) 0.11 0.11 0.17 0.07 0.13 0.09 K/(K+Na) 0.37 0.37 0.36 0.42 0.36 0.40 Nor.Q 30.78 29.37 31.93 37.72 29.63 35.94 Nor.Or 23.52 24.84 22.06 23.11 24.08 23.48 Nor.Ab 39.52 41.68 38.60 32.54 41.98 34.96 Nor.An -1.12 -1.25 -0.57 -0.71 -0.76 -0.86 Na+K 221.35 234.84 212.49 194.81 233.58 204.47 *Si 175.15 168.24 181.89 215.21 169.42 202.78 K-(Na+Ca) -62.41 -64.99 -66.84 -38.37 -69.36 -47.80 Fe+Mg+Ti 15.98 15.26 15.93 13.65 15.23 11.02 Al-(Na+K+2Ca) 75.27 43.57 84.27 86.51 45.72 63.57 (Na+K)/Ca 35.47 42.48 23.83 36.42 38.53 26.67 A/CNK 1.38 1.23 1.43 1.48 1.23 1.35 Trace element (average content in ppm): Nakolice Granite – Rb 768, Cs 15.4, Ba 5.8, Sr 10.8, Zr 31.5, Hf 1.72, Sn 25, Nb 40, Zn 64, Pb 6.7, Th 2.5, U 5.56, Y 7.3.
57
Fig. 2.33. Pyhrabruck-Nakolice Stock ABQ and TAS diagrams. 1 – Pyhrabruck-Nakolice Granite, 2 – Lagerberg Granite.
2.1.2.03. UNTERLEMBACH STOCK AND OBERLEMBACH GRANITE DYKES Regional position: Moldanubian Zone. Members of the Homolka Group in the Weinsberg Composite Pluton. Rock types: Unterlembach Granite – slightly porphyritic medium-grained two-mica alkali-feldspar granite ( up to 20 ppm U). Along the contact absence of biotite. Oberlembach Granite – fine-grained alkalifeldspar muscovite granite. Two textural varieties have been distinguished: fine-grained and medium-grained ones. Fine-grained variety contains schlieren and xenoliths of the medium to coarse-grained one.
Size and shape (in erosion level): Oberlembach Granite – two systems of steeply inclined dykes cutting the Mandelstein (Eisgarn) Granite. Unterlembach Granite – three small outcrops max. 300 m in diameter. Age and isotopic data: no data. Geological environment: Mandelstein (Eisgarn) Granite. Contact aureole: not reported. Zoning: No reported. Mineralization: sub-economic exogenous uranium.
Ober/Unterlembach Granite Quartz rich, sodic/potassic, peraluminous, leucocratic, S-type granite O-Lembach OL2487 OL2488 UL2482 UL2483 UL2289 SiO2 72.30 76.01 75.63 75.31 76.35 75.97 TiO2 0.27 0.06 0.07 0.03 0.04 0.05 Al2O3 14.50 13.78 14.23 14.10 13.87 13.86 Fe2O3 1.30 0.20 0.22 0.23 0.25 0.59 FeO 0.80 0.26 0.20 0.58 0.50 n.d. MnO 0.02 0.02 0.01 0.02 0.02 0.02 MgO 0.37 0.08 0.10 0.05 0.04 0.06 CaO 0.87 0.42 0.41 0.30 0.31 0.28 Na2O 3.20 3.58 3.99 3.72 3.23 3.41 K2O 5.40 4.37 3.75 3.83 4.21 3.92 P2O5 0.26 0.16 0.13 0.33 0.27 0.25 Li2O 0.01 0.01 0.01 0.04 0.01 n.d. Mg/(Mg+Fe) 0.25 0.24 0.30 0.10 0.09 0.16 K/(K+Na) 0.53 0.45 0.38 0.40 0.46 0.43 Nor.Q 29.77 35.74 35.35 37.01 39.13 39.22 Nor.Or 32.72 26.37 22.60 23.28 25.51 23.83 Nor.Ab 29.47 32.83 36.55 34.36 29.75 31.51 58
Nor.An 2.67 1.05 1.20 -0.71 -0.25 -0.27 Na+K 217.92 208.31 208.38 201.36 193.62 193.27 *Si 172.85 208.38 206.33 212.88 226.27 224.87 K-(Na+Ca) -4.12 -30.23 -56.45 -44.07 -20.37 -31.80 Fe+Mg+Ti 39.99 8.86 8.90 12.58 11.59 9.51 Al-(Na+K+2Ca) 35.80 47.32 56.45 64.83 67.70 68.93 (Na+K)/Ca 14.05 27.81 28.50 37.64 35.03 38.71 A/CNK 1.17 1.23 1.27 1.35 1.37 1.38 Trace elements (mean contents in ppm): Oberlembach Granite – Rb 311, Cs 12.5, Ba 48.7, Sr 23.8, Zr 21.4, Hf 1.07, Sn 10, Nb 23.5, Zn 21.5, Pb 18.8, Th 2.70, U 6.8, Y 12. Unterlembach Granite – Rb 522, Cs 13, Ba 14.3, Sr 4.2, Zr 11.2, Hf 1.05, Sn 12, Nb 38.5, Zn 52.5, Pb 8.5, Th 1.94, U 20.4.
Fig. 2.34. Oberlembach Stock und Unterlembach Granite Dykes ABQ and TAS diagrams.
References BREITER, K. – SCHARBERT, S. (2006): Two-mica and biotite granites in the Weitra-Nové Hrady area, Austria – Czech Republic. – J. Czech Geol. Soc. 51, 217–229. BREITER, K. – SCHARBERT, S. (1998): Latest intrusions of the Eisgarn Composite Pluton /South Bohemia – Northern Waldviertel. – Jb. Geol. Bundesanst. 141, 25–37.
59
II.
Western plutons of the Moldanubian Composite Batholith
The western wing of the Moldanubian Composite Batholith in the Bavarian Forest consists of an archipelago of more or less independent massifs. Some of them are segmented and tectonized by the Bavarian “Pfahl” Zone. The southern part of the Bavarian Forest (Passau Forest) was uplifted along this deep seated tectonic zone relative to the northern part, so that exposed massifs are frequently surrounded by a broad aureole of anatexites (in situ generated granitoids, e.g. the Palite Massif). Their age and composition are similar to the eastern plutons. According to Siebel et al. (2008) in the western wing of the Moldanubian Composite Batholith granites in the Bavarian Terrane (high Ca-Sr-Y granites) and the Ostrong Terrane (low Ca-Sr-Y granites) define two distinct granite types, which formed at about the same time but from different source materials in two compositionally distinct Variscan basement units separated by the Pfahl Shear Zone. According to Knop and Finger (2009) in the western plutons of the Moldanubian Composite Batholith Eisgarn Suite: the Dreisesselberg, Steiberg, Theresienreut and Haidmühle, Heidel, Kötzting and Arnbruck Granites belong to the Eisgarn s.l. Suite and the Viechtach, Patersdorf, Richnach, Metten and Lalling Granites and Hauzenberg Massif are members of the Mauthausen Suite.
References FINGER, F. – GERDES, A. – RENÉ, M. – RIEGLER, G. (2009): The Saxo-Danubian Granite Belt: magmatic response to post-collisional delamination of mantle lithosphere below the south-western sector of the Bohemian Massif (Variscan orogen). – Geol. carpath. 60, 3, 205–212. HOLUB, F. V. – KLEČKA, M. – MATĚJKA, D. (1995): The Moldanubian Zone – Igneous activity. In: Dallmeyer, R. D. – Franke, W. – Weber, K. Eds: Pre-Permian Geology of Central and Eastern Europe, 444–455. – Springer Verlag, Berlin. KÖHLER, H. – FRANK, Ch. – KÖNIGSBERGER, T. – SCHÖN, B. (2008): Isotopische (Sr, Nd) Charakterisierung und Datierung Varistischer Granitoide der Moldanubischen Kruste Nordostbayerns. In: Geochronologische, geochemische, petrographische ind mineralogische Untersuchungen im Grundgebirge Bayerns sowie kritische Betrachtungen zu Sr-Isotopenstandarts. – Geologica bavar. 110, Umwelt Spezial, 170–203. KNOP, E. – FINGER, F. (2009): Zur Verbreitung des Eisgarner Granittyps im Bayerischen Wald. – SDGG, Heft 63 – GeoDresden 2009, p. 141. SIEBEL, W. – SHANG, C. K. – RITTER, E. – ROHRMÜLLER, J. – BREITER, K. (2008): Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement constraints from geochemistry and zircon 207Pb/206Pb chronology. – J. Petrology 49, 1853-1872. TEIPEL, U. – GALADI-ENRIQUEZ, E. – GLASER, S. – KROENER, E. – ROHRMÜLLER, J. – GRASSMANN, E. – RICHTMANN, T. (2008): Erdgeschichte des Bayerischen Waldes. Geologische Karte des Bayerischen Waldes 1 : 150 000. – Bayer. Landesamt für Umwelt.
60
Fig. 2.35. Western plutons of the Moldanubian Composite Batholith geological sketch-map (adapted after Teipel et al. 2008). 1 – Allochthonous Plutons, 2–4 – Autochthonous Plutons: (2 – Flasser Massif, 3 – Palite Massif, 4 – Paragranodiorite Massif), 5 – Q-diorite Stocks, 6 – Faults, 7 – state border.
61
a.
Allochthonous plutons
PLUTONS IN THE OSTRONG TERRANE 2.1.3. ROZVADOV (-WAIDHAUS) COMPOSITE MASSIF
Fig. 2.36. Rozvadov Composite Massif geological sketch-map (adapted after Breiter and Siebel 1995). 1 – Cordierite Granite, 2 – Redwitzite, 3 – Rozvadov Granite, 4 – Bärnau Granite, 5 – Křížový kámen(Kreuzstein) Granite, 6 – faults.
5. Křížový kámen (Kreuzstein) Granite (2 km2) – fine- to medium-grained zinnwaldite (muscovite) alkali-feldspar granite with topaz and high P content (comparable with the stanniferous Limica granites of the Krušné hory Mts.Erzgebirge Batholith). 6. Waidhaus Granite – muscovite-albite granite (not shown in the skech-map). Shape and size: 100 km2 (30 × 7 km), elongated, and protuberant in map section parallel to metamorphic schistosity, elliptical with several smaller satellite outcrops and stocks in the periphery (the Bärnau, Rozvadov and Waidhaus body). Circular body of the Bärnau Granite. Age and isotopic data: Cordierite Granite 303 Ma (K-Ar muscovite), Rozvadov Granite 314 Ma (K-Ar biotite), Bärnau Granite 313 ± 4 Ma (Rb-Sr whole rock).
Regional position: satellite massif of the MCB in Proterozoic H-T metamorphic rocks of the Moldanubian Zone. The massif is the most north-westerly situated manifestation of the Moldanubian-type (synchronous) magmatism. Rock types: 1. Cordierite Granite – biotite-cordierite granite (Kolerova Huť) 2. “Redwitzite” – cordierite rich tonalite (~ 5 km2). 3. Rozvadov Granite (50 km2) – finemedium-grained two-mica granite. 4. Bärnau Granite (15 km2) – coarsemedium grained two-mica granite (similar to the Flossenbürg Granite and to the group of two-mica granites widespread throughout the Moldanubian Zone).
62
Zoning: weak compositional zoning indicative of several intrusive phases. Circular and coherent Bärnau Granite is deeply rooted intrusion (according to gravity data), with porphyritic variety in the western contact. Parallel magnetic mineral orientation. Mineralization: Křížový kámen Granite is enriched in Nb (up to 52 ppm) and Ta (up to 34 ppm) more than in Sn (22 ppm) and W (4 ppm). Heat production (Wm-3): Rozvadov Granite 1.54, Křížový kámen Granite 1.91.
Temporal (field) relations: Redwitzite → Cordierite Granite → Rozvadov Granite → Bärnau Granite → Křížový kámen Granite (dykes of the Rozvadov Granite are cut by the Bärnau Granite). Contact aureole: semi-concordant and discordant endo-exocontacts of the massif and its rock types. Broad periplutonic contact aureole consisting of intense intercalation of gneisses and granite. Geological environment: paragneisses of the Moldanubian Zone. Rozvadov Granite
Quartz-normal, potassic, peraluminous, leucocratic, S-type, granite 495R 496R 497R 2379R SiO2 70.16 63.22 73.66 74.27 TiO2 0.06 0.28 0.12 0.12 Al2O3 15.54 19.54 14.13 14.34 Fe2O3 0.08 0.84 0.57 0.49 FeO 1.50 2.41 0.57 0.48 MnO 0.06 0.04 0.03 0.02 MgO 0.41 1.45 0.23 0.19 CaO 0.58 1.42 0.82 0.59 Na2O 2.56 3.08 3.47 2.86 K2O 6.83 5.64 4.99 4.70 P2O5 0.19 0.20 0.20 0.18 Mg/(Mg + Fe) 0.31 0.45 0.27 0.26 K/(K + Na) 0.64 0.55 0.49 0.52 Nor.Or 42.24 35.10 30.23 28.76 Nor.Ab 24.06 29.13 31.95 26.60 Nor.An 1.70 6.03 2.82 1.80 Nor.Q 25.78 17.13 31.20 37.05 Na + K 227.63 219.14 217.92 192.08 *Si 154.71 114.71 180.98 212.94 K-(Na + Ca) 52.06 -4.96 -20.65 -3.02 Fe + Mg + Ti 32.82 83.57 22.29 19.04 Al-(Na + K + 2Ca) 56.86 113.94 30.31 68.48 (Na + K)/Ca 22.01 8.65 14.90 18.26 A/CNK 1.25 1.45 1.14 1.35 Trace elements (mean values in ppm): Rozvadov Granite – Ba 250, Li 45, Nb 7, Pb 33, Rb 233, Sr 181, Th 3, U 3.5, Y 10, Zn 52, Zr 94, La 33, Ce 68, Sm 6.1, Eu 0.57, Yb 0.71, Lu 0.31 (Breiter and Sokol 1997). Bärnau Granite – Ba 250, Li 45, Nb 7, Pb 33, Rb 233, Sr 181, Th 3, U 3.5, Y 10, Zn 52, Zr 94, La 33, Ce 68, Sm 6.1, Eu 0.57, Yb 0.71, Lu 0.31 (Breiter and Sokol 1997). Křížový kámen Granite – Ba 5, Cs 35, Hf 1.5, Li 600, Nb 37, Pb 5, Rb 1010, Sr 7, Th 2, U 5.5, Y 1.6, Zn 98, Zr 18, La 0.65, Ce 1.1, Sm 0.14, Eu 0.02, Yb 0.27, Lu 0.03 (Breiter and Sokol 1997). Rb 989, Cs 51.5, Sr <7, Ba 5.1, Zn 112, Sn 35, Pb 4.8, Zr 20.9, Hf 1.6, Nb 36, U 9.7, Th 2.4 (Breiter 1998).
63
Fig. 2.37. Rozvadov Massif ABQ and TAS diagrams. 1 – Rozvadov Granite, 2 – Bärnau Granite, 3 – Cordierite Granitoids (granite to tonalite), 4 – Křížový kámen (Kreuzstein) Granite.
Bärnau Granite Quartz-rich, sodic, peraluminous, leucocratic, S-type, granite Křížový kámen (Kreuzstein) Granite Quartz-rich, sodic, peraluminous, leucocratic, S-type, granite Bärnau Granite SiO2 TiO2 Al2O2 Fe2O2 FeO MnO MgO CaO Na2O K2O P2O2 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
twdtBär. 2169Bärn 73.19 75.34 0.13 0.09 14.55 13.30 1.17 0.47 n.d. 0.48 0.03 0.03 0.24 0.14 0.47 0.48 3.68 3.23 4.40 3.56 0.35 0.33 0.28 0.21 0.44 0.42 26.77 21.97 34.03 30.30 0.02 0.21 32.98 41.07 212.17 179.82 188.28 232.45 -33.71 -37.20 22.24 17.17 56.79 64.25 25.32 21.01 1.29 1.38
Křížový kámen /Kreuzstein Granite Kreuzst. 2375Kreuz. 73.42 73.76 0.01 0.01 15.18 14.56 0.66 0.26 n.d. 0.43 0.09 0.05 0.02 0.02 0.22 0.20 4.68 4.51 3.56 3.39 0.51 0.43 0.05 0.05 0.33 0.33 21.39 20.61 42.74 41.67 -2.31 -1.90 31.58 33.38 226.61 217.51 178.09 189.31 -79.36 -77.12 8.89 9.87 63.65 61.28 57.76 60.99 1.34 1.33
64
Redwitzite Cord.Bi 2357Cord 55.51 66.67 0.32 0.28 25.33 17.43 6.02 0.69 n.d. 0.92 0.08 0.02 4.65 0.69 1.34 0.79 1.91 2.84 1.83 6.95 0.38 0.34 0.60 0.44 0.39 0.62 11.93 42.54 18.92 26.42 4.57 1.74 29.30 20.61 100.49 239.21 191.54 121.27 -46.67 41.83 194.81 42.09 349.15 74.90 4.21 16.98 3.57 1.32
References BREITER, K. – FRÝDA, J. – LEICHMANN, J. (2002): Phosphorus and rubidium in alkali feldspars: case studies and possible genetic interpretation. – Bull. Czech. Geol. Surv. 77, 2, 93–140. BREITER, K. – SIEBEL, W. (1995): Granitoids in the Rozvadov Pluton, Western Bohemia and Oberpfalz. – Geol. Rdsch. 84, 506–519. HEJTMAN, B. (1984): Petrografie vyvřelých hornin Českého masívu. Část I, Intruzivní vyvřelé horniny západních a severozápadních Čech. – 186 pp. Univ. Karl. Praha. NOVÁK, J. K. – PIVEC, E. – ŠTEMPROK, M. (1996): Hydrated iron phosphates in muscovite-albite granite from Waidhaus (Oberpfalz, Germany). – J. Czech Geol. Soc. 41, 201–207. SIEBEL, W. – BREITER, K. – WENDT, I. – HÖHNDORF, A. – HENJES-KUNST, F. – RENÉ, M. (1999): Petrogenesis of contrasting granitoid plutons in western Bohemia (Czech Republic). – Mineral. Petrology. 65, 207–235. TOMAS, J. (1971): Geology and petrography of the Rozvadov pluton in western Bohemia. – Sbor. geol. Věd, Geol. 19, 99–117. (English summary) 2.1.4. OBERPFALZ (TIRSCHENREUTH) COMPOSITE MASSIF (OCM) Rock types: A. YOUNGER GRANITES (316–300 Ma) Blasenberg Granite – aplite granite – finegrained granite (dyke-like granite within the Friedenfels Granite). Steinwald 1 Granite – roof facies – porphyritic muscovite-biotite monzogranite. Steinwald 2 Granite – medium-grained muscovite (biotite) monzogranite Friedenfels Granite – medium-grained muscovite-biotite granite. Liebenstein Granite – leucocratic facies of the Falkenberg Granite. Flossenbürg Granite – medium-grained muscovite-biotite granite, a more acid fractionated portion of the Falkenberg Granite. Bürgelwald Granite – coarse-grained two-mica granite represents the upper part of the Flossenbürg Granite.grained two-mica granite. Falkenberg Granite – porphyritic coarseMitterteich Granite – medium-grained muscovite-biotite granite Zainhammer Granite – a small granite body in the Steinwald Granite. Stock Granite – fine-grained, aplitic granites in the central part of the Falkenberg Granite.
Fig. 2.38. Oberpfalz Composite Massif geological sketch-map (adapted after Siebel et al. 2003). 1 – Liebenstein Granite, 2 – Steinwald Granite, 3 – Friedenfels Granite, 4 – Falkenberg Granite, 5 – Redwitzite, 6 – Mitterteich Granite, 7 – Leuchtenberg Granite, 8 – Flossenbürg Granite, 9 – faults.
B. OLDER GRANITES (342–321 Ma) Leuchtenberg Granite – porphyritic mediumgrained granite. “Redwitzite“ – heterogeneous cordieritebearing melanocratic hornblende-biotite tonalite (Reuth-Erbendorf, TirschenreuthMähring, Wurz-Ilsenbach Redwitzite).
Regional position: OCM is located in the border zone between the Moldanubicum and Saxothuringicum. It incorporates the Steinwald Granite and Falkenberg Granite. Falkenberg Granite crosses the Erbendorf Line – the boundary between the Moldanubian and the Saxothuringian Zone.
65
Size and shape (in erosion level): 450 km2 – several laccolithic intrusions with average thickness of 4–5 km (the SteinwaldFriedenfels, Falkenberg, Leuchtenberg and Flossenbürg intrusions). The Flossenbürg Granite (oval intrusion 62 km2) represents a coherent intrusion dipping to the NE, Falkenberg Granite (146 km2) – a sheet-like intrusion (thickness of < 4 km), Steinwald Granite – concentric reverse zoning, depth of the intrusion between 2 and 4 km, Leuchtenberg Granite (70 km2 ) – an elongated, plate-like (tabular), and near vertically dipping intrusion. Redwitzites form four separate intrusive centres (the largest intrusive body covers the area of 7 × 4 km. The body of the redwitzite in the Leuchtenberg Granite is 8 km long and 1–1.5 km wide. The Flossenbürg Granite is a NW-SE trending laccolith of more than 500 m thickness, having a rather steep contact at its SW margin, and gently dipping towards the NW underneath the Falkenberg Granite. The Leuchtenberg Granite most probably has the shape of a nearly vertical sheet with an approximate width of some 3 km. The shape of the Falkenberg Granite is approximately that of a horizontal plate which has solidified at a depth of approximately 9–12 km with an assumed original thickness of about 9 km, 3 km of which having now been removed by erosion. The Falkenberg Granite cooling rate to 400 and 350 °C lasted over approximately 6 and 15 Ma, respectively. Age and isotopic data: Phase I (342–321) – Redwitzite ~ 321.7 ± 1.3, 323.8 ± 1.2, 323.2 ± 1.3, 322.8 ± 1.3 Ma (Pb-Pb zircon), 322 ± 4.5 Ma (U-Pb titanite), 545 ± 16 Ma , 470 ± 33 Ma, 468 ± 9 Ma, 415 ± 20 Ma (Rb-Sr whole rock), 344 Ma (K-Ar amphibole), 350–325 Ma, 350 Ma (K-Ar biotite), 342–346 Ma (Ar-Ar amphibole), Phase Ib (330–325 Ma) – Leuchtenberg Granite 333 ± 5 Ma, 342 ± 5 Ma (U-Pb zircon), 322.7 ± 0.7 Ma (Pb-Pb zircon), 321 ± 8 Ma (Rb-Sr whole rock), 325 (K-Ar micas), Zainhammer Granite 321.1 ± 0.6 Ma (Pb-Pb zircon), Phase II (316 – 300 Ma) - Flossenbürg and Bärnau Granites 310.6 ± 0.3 Ma, 313 ± 2 Ma (Pb-Pb zircon), 311.9 ± 2,7 Ma, 313,2 ± 2,0 Ma (Rb-Sr whole - rock), Falkenberg Granite 316 ± 9 Ma ,315.7 ± 0.6 Ma (Pb-Pb zircon), 303 Ma (U-Pb zircon ), 320 Ma (U-
Pb zircon), (Pb-Pb zircon), 311 ± 4 Ma (RbSr whole rock), 307 ± 22 Ma (Rb-Sr muscovite), 300 ± 1 Ma (Rb-Sr biotite), Friedenfels Granite 311.5 ± 0.4 Ma (Pb-Pb zircon), 301 ± 8 Ma (Rb-Sr whole rock), 314 ± 2.3 Ma, Steinwald Granite 312.2 ± 0.4 Ma (Pb-Pb zircon), 310 ± 5 Ma (Rb-Sr whole rock), Mitterteich Granite 309.4 ± 1.4 Ma (Pb-Pb zircon), Liebenstein Granite 314.4 ± (Pb-Pb zircon. Temporal sequence: Redwitzite (325–321 Ma) → Falkenberg /Liebenstein Granite (316– 314 Ma) → Mitterteich, Friedenfels Granite → Steinwald/ Flossenbürg Granite (312– 309 Ma). Intrusive sequence: 1. Leuchtenberg Granite, 2. Falkenberg Granite, 3. Flossenbürg Granite, 4. some fine-to medium grained granites. Contact aureole: Surrounding gneisses and schists are altered into hornfelses at the Leuchtenberg Granite exocontact. Several new minerals as andalusite, sillimanite, cordierite, biotite and garnet. Contact metamorphic assemblages around the southern part of the Leuchtenberg Granite favour magma emplacement at a depth of approximately 10 km. Geological environment: Zoning: Flossenbürg Granite – subhorizontally stratified intrusion (asymmetric zoning), geochemical gradation from SW to NE, dipping to the NE, Falkenberg Granite – compositional asymmetric normal zoning. Mineralization: greisenization and albitization is associated with the Steinwald granites (the tin-bearing and tungsten-bearing granites). U and base metal mineralization (post-granitic faulting and alteration). The roof between Flossenbürg Granite and Bürgerwald Granite show topaz mineralization Heat production (μWm-3): Steinwald Granite 4.1.
66
References ACKERMANN, H. (1984): Geochemie des Flossenbürger Granits und Zusatzprogramm Granite, Form und räumliche Lage im metamorphen Grundgebirge. – DFG-Ber., II C6-Ac 2. Regensburg. BAUBERGER, W. (1993): Geologische Karte von Bayern 1:25,000. Erläuterungen zum Blatt Nr. 6439 Tännesberg. – 104 pp. München. CARL, C. – WENDT, I. – WENDT, J. I. (1989): U-Pb whole rock and mineral dating of the Falkenberg granite in northeast Bavaria. – Earth planet. Sci. Lett. 94, 236–244. CASTEN, U. – GÖTZE, H. J. – PLAUMANN, S. – SOFFEL, H.C. (1997): Gravity anomalies in the KTB area and their structural interpretation with special regard to the granites of the northern Oberpfalz (Germany). – Geol. Rdsch. 86, Suppl., 79–86. DILL, H. (1985): Granite-related and granite-induced ore mineralization on the western edge of the Bohemian Massif, 55–70. – IMMA, London. HOLL, P. K. – DRACH, V. – MÜLLER-SOHNIUS, D. – KÖHLER, H. (1989): Caledonian ages in Variscan rocks: Rb-Sr and Sm-Nd isotopic variations in dioritic intrusives from the northwestern Bohemia Massif, West Germany. In: Meissner, R. – Gebauer, D. Eds: The evolution of the European Continental Crust: Deep drilling, geophysics, geology and geochemistry. – Tectonophysics 157, 179–194. HÖLZL, S. – KÖHLER, H. (1994): Zirkondatierungen am Leuchtenberger Granit, NE Bayern. – KTB Report 94-2, B35. KAPPELMEYER, O. – RUMMEL, F. (1987): Terrestrial heat from impervious rocks – Investigations in the Falkenberg Granite Massif. – Geol. J., Reihe E, 39, 252 pp. KÖHLER, H. – HÖLZL, S. (1996): The age of the Leuchtenberg granite (NE Bavaria, Germany): a revision on account of new U-Pb zircon ages. – Neu. Jb. Mineral Mh., 212–222. KUHLMANN, J. – HELMKAMPF, K. – MADEL, J. – SCHMID, K. (1985): Geologic setting of uranium mineralization in the Oberpfalz basement, Northeast Bavaria/F.R.G. – Fortschr. Mineral. 63, Bh. 1, 130. MADEL, J. (1975): Geochemical structures in a multiple intrusion granite massif. – Neu. Jb. Mineral. Abh. 124, 2, 103–127. OKRUSCH, M. (1971): Garnet-cordierite-biotite equilibria in the Steinbach aureole, Bavaria. – Contr. Mineral. Petrology 32, 1–23. RICHTER, P. (1984): Wolfram in Graniten Ostbayerns – Versuch einer metallogenischen Gliederung. – Geol. Jb. D 63, 3–22. RICHTER, P. – STETTNER, G. (1987): Die Granite des Steinwaldes (Nordost-Bayern) – ihre petrographische und geochemische Differenzierung. – Geol. Jb. D 86, 3–31. SIEBEL,W. (1993): Constraints on Variscan granite emplacement in NE Bavaria, Germany: further clues from a petrogenetic study of the Mitterteich granite. – Geol. Rdsch. 84, 384–398. SIEBEL, W. (1995): Anticorrelated Rb-Sr and K-Ar age discordances, Leuchtenberg granite, NE Bavaria, Germany. – Contr. Mineral. Petrology 120, 197–211. SIEBEL,W. – CHEN, F. – SATIR, M. (2003): Late-Variscan magmatism revisited: Implications from Pb-evaporation zircon ages on the commencement and timing of Late-Variscan magmatism in NE Bavaria. – Int. J. Earth Sci. 92, 36–53. SIEBEL,W. – HÖHNDORF, A. – WENDT, I. (1997): Origin of Late Variscan granitoids from NE Bavaria, Germany, exemplified by Nd isotope systematics. – Chem. Geol. 125, 249–270. TOMAS, J. (1971): Geology and petrography of the Rozvadov Massif in the West Bohemia. – Sbor. geol. Věd, Geol. 19, 99–117. TRZEBSKI, R. (1997): Morphogenesis, tectonic setting and intrusion dynamics of the late-Variscan granites in the northwestern Bohemian Massif. – Göttinger Arb. Geol. Paläont. 69, 1–69. TRZEBSKI, R. – BEHR, H. J. – CONRAD, W. (1997): Subsurface distribution and tectonic setting of the late Variscan granites in the northwestern Bohemian Massif. – Geol. Rdsch. 86, Suppl. S64– S78. WENDT, I. – ACKERMANN, H. – CARL, C. – KREUZER, H. – MÜLLER, P. – STETTNER, G. (1994): Rb/Sr-Gesamtgesteinens- und K/Ar-Glimmerdatierungen der Granite von Flossenbűrg und Bärnau. – Geol. Jb. E 51, 3–29.
67
WENDT, I. – CARL, C. – KREUZER, H. – MÜLLER, P. – ACKERMANN, H. – STETTNER, G. (1990): Datierung des Flossenbürger- und des Bärnauer Granits/Oberpf. – KTB Report 90–4. WENDT, I. – HÖHNDORF, A. – KREUZER, H. – MÜLLER, P. – STETTNER, G. (1988): Gesamtgesteins- und Mineraldatierungen der Steinwaldgranite NE-Bayern. – Geol. Jb. E 42, 167– 194. WENDT, I. – KREUZER, H. – MÜLLER, P. – SCHMID, H. (1986): Gesamtgesteins- und Mineraldatierungen des Falkenberger Granits. – Geol. Jb. E 34, 5–66. ZULAUF, G. – MAIER, M. – STÖCKHERT, B. (1997): Depth of intrusion and thermal modelling of the Falkenberg granite (Oberpfalz, Germany). – Geol. Rdsch. 86, Suppl. 87–92.
Fig. 2.39. Oberpfalz Composite Massif ABQ and TAS diagrams. 1 – Blasenberg Granite, 2 – Steinwald Granite, 3 – Friedenfels Granite, 4 – Flossenbürg Granite, 5 – Mitterteich Granite, 6 – Liebenstein Granite.
Steinwald Granite Quartz-rich, sodic, peraluminous, leucocratic, S-type, granite n = 19 Med. Min Max QU1 SiO2 74.20 73.10 75.70 73.80 TiO2 0.09 0.02 0.18 0.04 Al2O3 14.70 13.40 15.40 14.00 Fe2O3 0.42 0.06 0.96 0.27 FeO 0.60 0.07 1.20 0.40 MnO 0.03 0.02 0.08 0.02 MgO 0.13 0.02 0.29 0.08 CaO 0.45 0.23 0.63 0.28 Na2O 4.10 3.20 4.90 3.67 K2O 4.03 3.52 4.78 3.82 P2O5 0.36 0.19 0.48 0.30 Mg/(Mg + Fe) 0.17 0.04 0.34 0.10 K/(K + Na) 0.39 0.32 0.48 0.37 Nor.Or 24.12 21.01 28.95 23.03 Nor.Ab 37.71 29.57 44.45 33.68 Nor.An -0.09 -1.91 1.67 -1.20 Nor.Q 32.54 28.47 37.75 31.48 Na + K 217.36 193.71 232.86 212.39 *Si 189.87 169.20 218.88 179.86 K-(Na + Ca) -55.30 -94.44 -20.73 -65.51 Fe + Mg + Ti 20.51 11.44 27.32 13.10
68
QU3 74.60 0.12 15.00 0.49 1.00 0.05 0.16 0.54 4.30 4.31 0.38 0.21 0.44 26.04 39.27 0.72 33.11 223.09 194.85 -36.74 24.16
Al-(Na + K + 2Ca) 52.36 35.63 87.09 46.90 56.15 (Na + K)/Ca 27.09 17.52 56.61 21.06 39.76 A/CNK 1.27 1.18 1.48 1.24 1.29 Trace elements (mean values in ppm): Steinwald Granite – Ba 5, Be 2.7, Cr 5, Cs 65, Cu 5, Ga 40, F 1840, Li 260, Ni 14, Nb 35, Pb 57, Rb 731, Sn 39, Sr 6, Th 2, U 10, V 6, Y 10, Zn 81, Zr 34, W 9.07, Mo 0.05–0.80, As 2–100, Sb 0.23–0.39, Au 0.6–6.8 ppb (Richter and Stettner 1987). Steinwald Granite (roof facies) – Ba 2, Be 4.2, Cr 3, Cs 158, Cu 3, Ga 51, F 3300, Li 530, Ni 1, Nb 52, Pb 15, Rb 1195, Sn 65, Sr 4, Th 2, U 17, V 3, Y 10, Zn 90, Zr 29, W 13.7, La 8, Ce 20, Mo 0.05–0.10, As 2–60, Sb 0.23–0.39, Au 1.1–16.3 ppb (Richter and Stettner 1987). Friedenfels Granite – Ba 88, Be 3.4, Cr 5, Cs 25, Ga 26, F 674, Li 137, Nb 21, Pb 26, Rb 406, Sn 22, Sr 31, Th 6, U 15, V 7, Y 13, Zn 58, Zr 66, W 5.14, Mo 0.05–0.85, As 2–4, Sb 0.2–0.28, Au 0.6–5.3 ppb (Richter and Stettner 1987). Falkenberg Granite Quartz-normal, potassic, peraluminous, S-type, I-series, granite n = 15 Med. Min Max QU1 QU3 SiO2 71.40 65.50 76.20 70.00 74.50 TiO2 0.48 0.05 0.66 0.10 0.50 Al2O3 14.40 13.90 16.90 14.30 14.90 Fe2O3 0.80 0.08 2.07 0.25 0.96 FeO 1.70 0.20 2.20 0.50 1.90 MnO 0.03 0.01 0.05 0.02 0.04 MgO 0.40 0.08 1.18 0.20 0.55 CaO 1.13 0.28 2.86 0.38 1.27 Na2O 3.00 2.60 3.50 2.90 3.20 K2O 5.50 4.44 6.32 5.22 5.69 P2O5 0.26 0.16 0.32 0.23 0.29 Mg/(Mg + Fe) 0.29 0.06 0.51 0.17 0.32 K/(K + Na) 0.53 0.45 0.60 0.51 0.56 Nor.Or 33.27 27.21 37.76 32.11 34.43 Nor.Ab 27.90 23.74 32.60 26.34 29.84 Nor.An 4.03 0.73 13.08 0.59 4.70 Nor.Q 27.67 20.13 35.98 25.71 32.75 Na + K 218.89 194.65 227.65 207.21 222.26 *Si 164.41 122.17 209.63 152.26 192.48 K-(Na + Ca) -8.95 -69.67 40.28 -17.71 18.63 Fe + Mg + Ti 49.10 12.58 82.98 15.62 57.10 Al-(Na + K + 2Ca) 36.59 7.23 63.72 22.67 53.44 (Na + K)/Ca 11.30 4.06 43.84 9.23 24.24 A/CNK 1.19 1.05 1.32 1.11 1.25 Trace elements (mean values in ppm): Falkenberg Granite – Li 98, Rb 362, Sr 109, Ba 465, Ti 2140, Zr 160.
69
Fig. 2.40. Oberpfalz Composite Massif ABQ and TAS diagrams. 1 – Leuchtenberg Granite, 2 – Falkenberg Granite.
Flossenbürg Granite Quartz-normal, sodic, peraluminous, leucocratic, S-type, I-series, granite n=8 Med. Min Max QU1 QU3 SiO2 72.70 70.80 74.00 72.40 73.60 TiO2 0.17 0.04 0.39 0.09 0.17 Al2O3 14.80 14.20 16.00 14.60 14.80 Fe2O3 0.30 0.12 1.35 0.16 0.60 FeO 0.80 0.40 1.20 0.60 0.91 MnO 0.03 0.01 0.04 0.02 0.03 MgO 0.30 0.02 0.81 0.23 0.35 CaO 0.73 0.49 1.35 0.65 0.80 Na2O 3.12 2.90 4.90 2.95 3.90 K2O 4.79 4.09 5.76 4.62 4.96 P2O5 0.24 0.10 0.37 0.21 0.28 Mg/(Mg + Fe) 0.33 0.03 0.37 0.29 0.35 K/(K + Na) 0.45 0.39 0.57 0.41 0.51 Nor.Or 29.14 24.65 35.11 28.08 30.24 Nor.Ab 28.74 26.86 44.01 27.25 35.78 Nor.An 1.90 0.01 5.32 1.51 2.60 Nor.Q 30.38 23.00 35.81 27.46 31.79 Na + K 211.40 193.29 259.82 197.45 228.40 *Si 177.93 136.01 208.01 161.71 187.96 K-(Na + Ca) -33.74 -65.16 14.45 -54.48 -10.12 Fe + Mg + Ti 26.59 15.03 58.61 16.16 27.22 Al-(Na + K + 2Ca) 42.30 22.90 71.32 36.91 47.68 (Na + K)/Ca 15.13 8.20 29.74 12.61 19.12 A/CNK 1.20 1.11 1.36 1.17 1.21 Trace elements (mean values in ppm): Flossenbürg Granite – Li 152, Rb 454, Sr 39, Ba 215, Zr 69.
70
Leuchtenberg Granite Quartz-rich, sodic, low peraluminous, I/S-type, I-series, granite L292Leu 308Leuc 271Leuc SiO2 72.00 74.20 74.90 TiO2 0.40 0.05 0.08 Al2O3 13.80 14.40 13.00 Fe2O3 1.00 0.32 0.28 FeO 1.60 1.00 0.48 MnO 0.05 0.09 0.02 MgO 0.87 0.17 0.26 CaO 1.70 0.44 0.38 Na2O 3.30 4.06 2.59 K2O 4.26 4.30 5.33 P2O5 0.18 0.15 0.01 Mg/(Mg + Fe) 0.38 0.18 0.38 K/(K + Na) 0.46 0.41 0.58 Nor.Or 26.17 25.98 33.04 Nor.Ab 30.81 37.28 24.40 Nor.An 7.54 1.22 1.91 Nor.Q 30.22 30.88 36.93 Na + K 196.94 222.31 196.75 *Si 182.29 184.10 214.27 K-(Na + Ca) -46.35 -47.56 22.81 Fe + Mg + Ti 61.41 22.78 17.65 Al-(Na + K + 2Ca) 13.43 44.78 44.99 (Na + K)/Ca 6.50 28.33 29.04 A/CNK 1.07 1.20 1.21 Trace elements (mean values in ppm): Leuchtenberg Granite – Li 74, Rb 244, Sr 178, Ba 620, Ti 2270, Zr 191.
71
2.1.5. NEUNBURG COMPOSITE MASSIF
Fig. 2.41. Neunburg Composite Massif and Oberviechtach Stock geological sketch-map (after Bauberger 1969, Wiegand 1995). 1 – Neunburg Granite (roof facies), 2 – Neunburg Granite (normal facies), 3 – Neunburg Granite (central facies), 4 – Neunburg Granite (marginal facies), 5 – Penting Granite, 6 – Thanstein Granite, 7 – Neunburg Granite undivided, 8 – Oberviechtach type Granite, 9 – Winz (Orthogneiss) Granite, 10 – Oberviechtach Stock, 11 – faults.
Size and shape (in erosion level): 530 km2, elongated intrusion, segmented and outlined by marginal faults of the Bohemian Massif. Age and isotopic data: Neunburg Granite: 320, 319 ± 3.6 Ma (U-Pb zircon), 300 ± 6 and 318 ± 29 Ma (Rb-Sr whole rock), 324 ± 6 to 319 ± 6 Ma (K-Ar muscovite), 323 ± 5 to 320 ± 5 Ma (K-Ar biotite), 300 ± 6 Ma (K-Ar biotite), 310 ± 6 (Rb-Sr biotite), 315 ± 8 Ma (Rb-Sr muscovite), Oberviechtach Granite 320 to 310 Ma (U-Pb zircon), 354 ± 35 (Rb-Sr whole rock), 320 ± 8 Ma (Rb-Sr biotite) and 318 ± 8 Ma (Rb-Sr muscovite). Temporal relationship: Thanstein Granite (the oldest) → Penting Granite → Neunburg Granite (the latest).
Geological position: Ostrong Terrane of the Moldanubian Zone. Rock types: 1. Neunburg Granite (70 km2) – medium to coarse-grained muscovite-biotite granite (Central, Normal, Marginal and Roof Facies). 2. Thanstein Granite – fine to medium grained muscovite-biotite granite. 3. Penting Granite – porphyritic medium- to coarse-grained biotite granite. 4. Oberviechtach Granite – fine-grained muscovite-biotite granite (equivalent to the Mauthausen Granite). 5. Winz Granite (Winz Orthogneiss) – porphyroclastic coarse-grained chlorite metagranite.
72
Contact aureole: a broad anatectic and diatectic aureole. Zoning: zoned fractional crystallization. Mineralization: Ba-F veins, pegmatite. Heat production (μWm-3): Thanstein Granite 1.92, 8.55, Penting Granite 5.04, Neunburg Granite 3.29.
S-type magmatism in the western wing of the Moldanubian Composite Batholith started 5– 10 Ma earlier than in the Oberpfalz Massif. Geological environment: metatectic cordierite-sillimanite K-feldspar gneiss, biotite-plagioclase gneiss and diatectic gneiss. Contact with the gneisses and diatexites.
References ACKERMANN, W. (1973): Rb-Sr-Datierung einiger Granite des ostbayerischen Kristallins durch Gesamtgesteins- und Biotit-analysen. – Geologica bavar. 68, 155–162. BAUBERGER, W. (1969): Geologischer Structurplan der Oberpfalz. – Geologica bavar. 62, 45–51. BAUBERGER, W. – STREIT, R. (1982): Geologische Karte von Bayern 1:25,000, Erläuterungen, Blatt Nr. 6538 Schmidgaden. – 186 pp. München. CHEN, F. – SIEBEL, W. – SATIR, M. (2003): Geochemical and isotopic composition and inherited zircon ages as evidence for lower crustal origin of two Variscan S-type granites in the NW Bohemian Massif. – Int. J. Earth Sci. (Geol. Rdsch.) 92, 173–184. KÖHLER, H. – FRANK, CH. – KÖNIGSBERGER, T. – SCHÖN, B. (2008): Isotopische (Sr, Nd) Charakterisierung und Datierung Varistischer Granitoide der Moldanubischen Kruste Nordostbayerns. In: Geochronologische, geochemische, petrographische und mineralogische Untersuchungen im Grundgebirge Bayerns sowie kritische Betrachtungen zu Sr-Isotopenstandarts. – Geologica bavar. 110, Umwelt Spezial, 170–203. MEYER, R. K. F. – MIELKE, H. (1993): Geologische Karte von Bayern 1:25.000. Erläuterungen zum Blatt Nr. 6639 Wackersdorf. – 194 pp. München. TROLL, G. (1967): Geologische Übersichtskarte des Bayerischen Waldes 1 : 100 000. In: Fűhrer zu geologisch-petrografischen Exkursionen im Bayerischen Wald. – Geologica bavar. 58, 108–113. WIEGAND, J. (1995): Petrologie und Geochemie der Granite des Neunburg-Thansteiner Massif (Oberpfalz). – Neu. Jb. Geol. Paläont., Abh. 197, 1–35. Neunburg Composite Massif Thanstein Granite Quartz-normal, potassic, peraluminous, mesocratic, S-type, granite Penting Granite Quartz-normal, potassic, peraluminous, mesocratic, S-type, granite Neunburg Granite Quartz-normal, potassic, peraluminous, mesocratic, S-type, granite Neunburg Granite Thanstein Penting Granite Granite ZentralNormalDach- Randfazies number of samples 35 38 10 45 9 21 SiO2 74.71 71.63 71.07 72.45 74.19 73.09 TiO2 0.47 0.37 0.26 0.30 0.22 0.26 Al2O3 14.94 14.90 15.63 15.00 14.63 14.75 Fe2O3 2.25 2.11 1.83 1.84 1.41 1.60 MnO 0.03 0.03 0.03 0.03 0.02 0.03 MgO 0.53 0.48 0.46 0.40 0.25 0.33 CaO 0.44 0.48 0.38 0.38 0.20 0.41 Na2O 2.75 2.72 2.89 3.07 3.35 3.28 K2O 5.89 5.86 6.36 5.68 5.43 5.22 P2O5 0.29 0.28 0.26 0.26 0.28 0.24 Mg/(Mg + Fe) 0.31 0.31 0.33 0.30 0.26 0.29 K/(K + Na) 0.58 0.59 0.59 0.55 0.52 0.51 Nor.Or 34.90 35.82 38.53 34.37 32.55 31.59 Nor.Ab 24.77 25.27 26.61 28.23 30.52 30.17 Nor.An 0.27 0.55 0.18 0.18 -0.87 0.46 Nor.Q 32.76 31.08 27.70 30.53 31.87 31.63 Na + K 213.80 212.19 228.30 219.67 223.39 216.68
73
*Si 195.45 179.49 161.47 177.75 185.82 183.94 K-(Na + Ca) 28.47 28.09 35.00 14.76 3.62 -2.32 Fe + Mg + Ti 47.23 42.98 37.60 36.74 26.63 31.49 Al-(Na + K + 2Ca) 63.90 63.29 65.09 61.35 56.77 58.36 (Na + K)/Ca 27.25 24.79 33.69 32.42 62.64 29.64 A/CNK 1.32 1.31 1.30 1.30 1.28 1.28 Trace elements (ppm): Thanstein Granite – Be 9, Sc 6, V 21, Cr 29, Ni 15, Cu 9, Zn 80, Ga 22, Rb 256, Sr 92, Y 45, Zr 153, Nb 12, Sn 7, Cs 11, Ba 320, Th 16, U 3 (Bauberger – Streit 1982). Thanstein Granite – Ba 459, Cr 16, Co 70, Ga 25, Nb 10, Pb 32, Rb 389, Sr 80, Th 83, U 8, V 25, Y 17, Zn 90, Zr 213, Mo 5.5(Wiegand 1995). Neunburg Granite – Ba 393, Cr 15, Co 69, Ga 20, Nb 13, Pb 34, Rb 307, Sr 79, Th 19, U 5.6, V 16, Y 16, Zn 56, Zr 107, Mo 4.3 (Wiegand 1995). Penting Granite – Ba 541, Cr 17, Co 63, Ga 24, Nb 13, Pb 36, Rb 292, Sr 94, Th 41, U 6.2, V 20, Y 17, Zn 77, Zr 161, Mo 4.2 (Wiegand 1995).
Fig. 2.42. Neunburg Composite Massif ABQ and TAS diagrams. 1 – Thanstein Granite, 2 – Neunburg Granite, 3 – Penting Granite.
2.1.6. OBERVIECHTACH STOCK Age and isotopic data: Oberviechtach Granite 320 to 310 Ma (U-Pb zircon), 354 ± 35 (Rb-Sr whole rock), 320 ± 8 Ma (Rb-Sr biotite).and 318 ± 8 Ma (Rb-Sr muscovite). S-type magmatism in the western wing of the Moldanubian Composite Batholith started 5– 10 Ma earlier than in the Oberpfalz Massif. Geological environment: metatectic cordierite-sillimanite K-feldspar gneiss, biotite-plagioclase gneiss and diatectic gneiss. Sharp contact with the high-grade gneisses.
Geological position: Ostrong Terrane of the Moldanubian Zone, a member of the Neunburg Composite Massif. Rock types: 1. Oberviechtach Granite – finegrained muscovite-biotite granite (equivalent to the Mauthausen Granite). Size and shape (in erosion level): oval intrusion – 17 km2 (6 × 4 km) at the eastern margin of archipelago of the irregular outcrops of the fine-grained two-mica granite over the area of 20 × 40 km.
74
Fig. 2.43. Oberviechtach Stock geological sketchmap (after Düsing and Brunnacker 1958).
References CHEN, F. – SIEBEL, W. – SATIR, M. (2003): Geochemical and isotopic composition and inherited zircon ages as evidence for lower crustal origin of two Variscan S-type granites in the NW Bohemian massif. – Int. J. Earth Sci. (Geol. Rdsch.) 92, 173–184. DÜSING, C. – BRUNNACKER, K. (1958): Geologische Karte von Bayern 1:25,000, Erläuterungen, Blatt Nr. 6540 Oberviechtach. – 186 pp. München. KÖHLER, H. – FRANK, CH. – KÖNIGSBERGER, T. – SCHÖN, B. (2008): Isotopische (Sr, Nd) Charakterisierung und Datierung Varistischer Granitoide der Moldanubischen Kruste Nordostbayerns. In: Geochronologische, geochemische, petrographische ind mineralogische Untersuchungen im Grundgebirge Bayerns sowie kritische Betrachtungen zu Sr-Isotopenstandarts. – Geologica bavar. 110, Umwelt Spezial, 170–203. KNOP, E. – FINGER, F. (2009): Zur Verbreitung des Eisgarner Granittyps im Bayerischen Wald. – SDGG, Heft 63 – GeoDresden 2009, p. 141.
Fig. 2.44. Oberviechtach Stock ABQ and TAS diagrams. Oberviechtach Granite.
75
2.1.7. KÜRNBERG STOCK Geological position: Ostrong Terrane of the Moldanubian Zone. Rock types: Kürnberg Granite – fine- to medium-grained two-mica leucogranite. Size and shape (in erosion level): elliptical shape (3 4 km). Age and isotopic data: no isotopic data. Geological environment: metatectic cordierite-sillimanite-K-feldspar gneiss, diatectic gneiss. Contact aureole: not described. Mineralization: not reported.
Fig. 2.45. Kürnberg Stock geological sketch-map (adapted after Teipel et al. 2008). 1 – Kürnberg Granite, 2 – Faults.
References SIEBEL, W. – SHANG, C. K. – RITTER, E. – ROHRMÜLLER, J. – BREITER, K. (2008): Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement constraints from geochemistry and zircon 207Pb/206Pb chronology. – J. Petrology 49, 1853–1872. TEIPEL, U. – GALADI-ENRIQUEZ, E. – GLASER, S. – KROENER, E. – ROHRMÜLLER, J. – GRASSMANN, E. – RICHTMANN, T. (2008): Erdgeschichte des Bayerischen Waldes. Geologische Karte des Bayerischen Waldes 1 : 150 000. – Bayer. Landesamt für Umwelt. 2.1.8. MILTACH STOCK Age and isotopic data: 321.8 ± 3.7 Ma (Pb/Pb zircon). Geological environment: metatectic cordierite-sillimanite-K-feldspar gneiss, diatectic gneiss. Contact aureole: not described. Mineralization: not reported.
Geological Position: Ostrong Terrane of the Moldanubian Zone. Rock types: Miltach Granite – fine- to medium-grained two-mica leucogranite. Size and shape (in erosion level): longated shape (~16 km2)
Fig. 2.46. Miltach Stock geological sketch-map (adapted after Teipel et al. 2008). 1 – Miltach Granite, 2 – Faults.
Fig.2.47. Miltach granite ABQ and TAS diagrams.
76
References SIEBEL, W. – SHANG, C. K. – RITTER, E. – ROHRMÜLLER, J. – BREITER, K. (2008): Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement constraints from geochemistry and zircon 207Pb/206Pb chronology. – J. Petrology 49, 1853–1872. TEIPEL, U. – GALADI-ENRIQUEZ, E. – GLASER, S. – KROENER, E. – ROHRMÜLLER, J. – GRASSMANN, E. – RICHTMANN, T. (2008): Erdgeschichte des Bayerischen Waldes. Geologische Karte des Bayerischen Waldes 1 : 150 000. – Bayer. Landesamt für Umwelt. 2.1.9. ARNBRUCK MASSIF (AM) Geological position: Ostrong Terrane of the Moldanubian Zone. AM is cut by the Runding Fault.
Rock types: Arnbruck Granite – fine- to medium grained two-mica leucogranite. Equivalent to the Eisgarn Granite. Size and shape (in erosion level): elliptical shape 35 km2 (5 × 12 km). Age and isotopic data: 325.3 ± 2.1 Ma (Pb/Pb zircon). Geological environment: cordieritesillimanite-K-feldspar gneiss and diatectite gneiss. Contact aureole: not described. Mineralization: not reported.
Fig. 2.48. Arnbruck Stock geological sketch-map (adapted after Teipel et al. 2008). 1 – Arnbruck Granite, 2 – faults.
Fig. 2.49. Arnbruck Granite ABQ and TAS diagrams
References KNOP, E. – FINGER, F. (2009): Zur Verbreitung des Eisgarner Granittyps im Bayerischen Wald. – SDGG, Heft 63 – GeoDresden 2009, p. 141. SIEBEL, W. – SHANG, C. K. – RITTER, E. – ROHRMÜLLER, J. – BREITER, K. (2008): Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement constraints from geochemistry and zircon 207Pb/206Pb chronology. – J. Petrology 49, 1853–1872. TEIPEL, U. – GALADI-ENRIQUEZ, E. – GLASER, S. – KROENER, E. – ROHRMÜLLER, J. – GRASSMANN, E. – RICHTMANN, T. (2008): Erdgeschichte des Bayerischen Waldes. Geologische Karte des Bayerischen Waldes 1 : 150 000. – Bayer. Landesamt für Umwelt.
77
2.1.10. PRÁŠILY MASSIF Size and shape (in erosion level): oval shape 6 × 14 km. Age and isotopic data: Late-Variscan. No isotopic data. Geological environment: paragneisses and migmatites. Contact aureole: narrow aureole, local presence of cordierite. Zoning: zonation is indicated by Th distribution. Mineralization: unknown. Heat production (μWm-3): Kristallgranite I 3.56, Kristallgranite II 3.61.
Geological position: Ostrong Terrane of the Moldanubian Zone. Rock types: 1. Kristallgranite I (Weinsberg GraniteGranodiorite) – coarse-porphyritic biotite granite 2. Kristallgranite II (Eisgarn Granite) – medium- to coarse-grained muscovite granite 3. Dyke Granite – fine-grained muscovite granite at the northern contact 4. Eisgarn Granite s.l. – medium-grained muscovite-biotite granite along the northern and eastern margin).
References BABŮREK, J. – PELC, Z. – OTT, W.-D. et al. (1999): Geologische Übersichtskarte 1 : 200 000, Deggendorf CC 7142. – Bundesanst. für Geowiss. u. Rohstoffe, Hannover. TROLL, G. (1964): Geologische Übersichtskarte des Bayerischen Waldes 1 : 100000. – Geologica bavar. 58, 108–113. ZOUBEK, V. et al. (1988): Precambrian in younger fold belts. European Variscides, the Carpathians and Balkans. – 885 pp. John Willey & Sons, Chichester. ŽÁČEK, V. – BABŮREK, J. (2007): Radioaktivita a facie vyderského a prášilského granitového plutonu na Šumavě. In: Breiter, K. Ed.: 3. sjezd České geologické společnosti, Volary 19.–22. září 2007, 89–90. – Czech Geol. Soc. Prague.
Fig. 2.50. Prášily and Vydra Massifs geological sketch-map (adapted after Unger et al. 1999 and Žáček and Babůrek 2007). 1 – Dyke Granite, 2 – Kristallgranite I, 3 – Kristallgranite II, 4 – Eisgarn Granite s.l.
78
2.1.11. VYDRA MASSIF 5. unclassified leucogranite apophyses at the western exocontact. Size and shape (in erosion level): an apical part of the larger granite body. Half-moon shape 20 × 7 km, elongated in the E-W direction (a half of the intrusion is hidden under about 100 m thick cover of the crystalline rocks). Age and isotopic data: Kristallgranite I: 327 ± 35 Ma (U-Th monazite). Geological environment: sillimanite – biotite ± cordierite migmatites, gneisses and orthogneisses. Zoning: concentric zonation highlighted by the magnetic circular anomaly and Th distribution. Contact aureole: extensive periplutonic migmatization. Mineralization: not reported. Heat production (μWm-3): Granodiorite to Q-diorite 5.91, Kristallgranite I 3.56, Kristallgranite II 3.61, leucogranite dykes 2.03.
Geological position: Monotonous part (Ostrong Terrane) of the Moldanubian Zone. Rock types: The central part of the massif is formed by porphyritic granite (Kristallgranite I). Twomica Kristallgranite II rims in the eastern margin of the Vydra Massif. 1. Granodiorite to Quartz diorite – coarsegrained non-porphyritic biotite granodiorite to quartz diorite (isometric body). 2. Kristallgranite I (Weinsberg type) – porphyritic coarse-grained biotite granite to granodiorite (in the southern part of the body). 3. Srní Granite (Kristallgranite I – Weinsberg type) – even-grained biotite granite to granodiorite 4. Kristallgranite II (Eisgarn Granite s.s.) – medium-grained muscovite-biotite, locally slightly cataclastic granite (along the northern and eastern margin).
Fig. 2.51. Vydra Massif ABQ and TAS diagrams. 1 – Kristallgranite I, 2 – Kristallgranite II, 3 – Kvilda Dyke Swarm.
Vydra Granite Quartz-normal, potassic, peraluminous, mesocratic, S-type granite 51bi-granite SiO2 68.90 TiO2 0.43 Al2O3 15.59 Fe2O3 0.75 FeO 2.39 MnO 0.82 MgO 0.06
79
CaO Na2O K2O P2O5 Li2O Mg/(Mg+Fe) K/(K+Na) Nor.Q Nor.Or Nor.Ab Nor.An Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
1.81 2.75 5.09 0.24 0.01 0.03 0.55 27.29 31.60 25.94 7.77 196.81 163.91 -12.94 49.63 44.79 6.10 1.20
References BAUBERGER, W. et al. (1976): Abgedeckte geologische Karte 1 : 50 000, Nationalpark Bayerischer Wald. – Bayer. Geol. Landesamt. München. BAUBERGER, W. (1977): Geologische Karte von Bayern 1 : 25 000, Nationalpark Bayerischer Wald. – Bayer. Geol. Landesamt. München. SEDLÁK, J. – GNOJEK, I. – ZABADAL, S. – PERTOLDOVÁ, J. – VERNER, K. – ŠRÁMEK, J. – ŽÁK, J. (2007): Nové geofyzikální poznatky z centrální části Šumavy. In: Breiter, K. Ed.: 3. sjezd České geologické společnosti, Volary 19.–22. září 2007, p.70. – Czech Geol. Soc. Prague. TROLL, G. (1964): Geologische Übersichtskarte des Bayerischen Waldes 1:100 000. – Geologica bavar. 58, 108–113. ŽÁČEK, V. – BABŮREK, J. (2007): Radioaktivita a facie vyderského a prášilského granitového plutonu na Šumavě. In: Breiter, K. Ed.: 3. sjezd České geologické společnosti, Volary 19.–22. září 2007, 89–90. – Czech Geol. Soc. Prague. ŽÁČEK, V. – SULOVSKÝ, P. (2005): The dyke swarm of fractionated tourmaline-bearing leucogranite and its link to the Vydra Pluton (Moldanubian Composite Batholith), Šumava Mts., Czech Republic. – J. Czech Geol. Soc. 50, 107–118.
80
Vydra Granites Quartz-rich, potassic, peraluminous, leucocratic, S-type granite biotite two-mica two-mica two-mica granite 5 granite 45 granite 46 granite 19 SiO2 68.90 72.46 73.28 73.80 TiO2 0.43 0.20 0.17 0.09 Al2O3 15.59 15.17 14.17 14.66 Fe2O3 0.75 0.50 0.84 0.51 FeO 2.39 0.79 0.92 0.71 MnO 0.82 0.38 0.29 0.22 MgO 0.06 0.03 0.03 0.06 CaO 1.81 0.60 0.66 0.70 Na2O 2.75 3.01 2.95 3.53 K2O 5.09 4.96 4.87 4.26 P2O5 0.24 0.31 0.09 0.17 Li2O 0.01 0.02 0.02 0.03 Mg/(Mg + Fe) 0.03 0.03 0.03 0.07 K/(K + Na) 0.55 0.52 0.52 0.44 Nor.Or 31.60 30.34 29.89 25.88 Nor.Ab 25.94 27.98 27.52 32.60 Nor.An 7.77 0.98 2.81 2.43 Na + K 196.81 202.44 198.60 204.36 *Si 163.91 192.42 200.10 196.74 K-(Na + Ca) -12.94 -2.52 -3.56 -35.94 Fe + Mg + Ti 49.63 20.47 26.24 18.92 Al-(Na + K + 2Ca) 44.79 74.06 56.13 58.57 (Na + K)/Ca 6.10 18.92 16.87 16.37 Nor.Q 27.29 33.44 34.35 33.66 A/CNK 1.20 1.37 1.26 1.28 5 – Kristallgranite I, 45, 46, 19 – Kristallgranite II. Trace elements (mean values in ppm): Kristallgranite I – V 21, Co 7, Cr 17, Ni 12, Cu 10, Zn 63, Rb 183, Sr 237, Y 31, Zr 302, Nb 13, Pb 39, U 4 (Žáček – Sulovský 2005). Kristallgranite II – V 10, Cr 5, Ni 9, Cu 6, Zn 60, As 4, Rb 280, Sr 70, Y 10, Zr 87, Nb 12, Sn 10, Pb 34, U 9 (Žáček – Sulovský 2005). Leucogranite – Cr 4, Ni 4, Co 25, Zn 52, As 18, Rb 217, Sr 30, Y 6, Zr 17, Nb 10, Sn 34, Pb 33, U 4 (Žáček – Sulovský 2005). 2.1.12. RINCHNACH STOCK Fig. 2.52. Rinchnach Stock geological sketch-map (adapted after Teipel et al. 2008). 1 – Kristallgranite I, 2 – Rinchnach GranodioriteGranite, 3 – Bavarian Fault Zone.
Geological position: Ostrong Terrane of the Moldanubian Zone closely bounded to the northeast side of the Pfahl zone.
Rock types: Rinchnach GranodioriteGranite – fine-grained biotite granodiorite to granite (equivalent to the Mauthausen Granite). Size and shape (in erosion level): oval shape 6 × 2.5 km (12 km2). Age and isotopic data: Rinchnach Granodiorite 329.2 ± 2.1 Ma (Pb-Pb zircon), 320.4 ± 6.5 Ma (Pb-Pb zircon). Geological environment: metatectic cordierite-sillimanite K-feldspar gneiss, 81
biotite-plagioclase gneiss, diatectic gneiss and pearl gneisses.
Contact aureole: not described. Mineralization: not reported.
References KNOP, E. – FINGER, F. (2009): Zur Verbreitung des Eisgarner Granittyps im Bayerischen Wald. – SDGG, Heft 63 – GeoDresden 2009, p. 141. SIEBEL, W. – THIEL, M. – CHEN, F. (2006): Zircon geochronology and compositional record of late- to post-kinematic granitoids associated with the Bavarian Pfahl zone (Bavarian Forest). – Mineral. Petrology 86, 45–62. TEIPEL, U. – GALADI-ENRIQUEZ, E. – GLASER, S. – KROENER, E. – ROHRMÜLLER, J. – GRASSMANN, E. – RICHTMANN, T. (2008): Erdgeschichte des Bayerischen Waldes. Geologische Karte des Bayerischen Waldes 1 : 150 000. – Bayer. Landesamt für Umwelt.
Fig. 2.53. Rinchnach Stock ABQ and TAS diagrams. Rinchnach Granodiorite-Granite
Rinchnach Granodiorite-Granite Quartz-normal, sodic, very weakly peraluminous, mesocratic, I-type, granodiorite Ri1 Ri2 Ri3 monzogranite granodiorite SiO2 67.12 70.01 68.32 TiO2 0.58 0.48 0.48 Al2O3 16.46 15.00 15.09 Fe2O3tot. 3.57 2.90 2.80 MnO 0.06 0.05 0.05 MgO 1.32 1.00 0.96 CaO 3.39 2.40 2.34 Na2O 3.88 3.53 3.59 K2O 3.20 4.37 4.45 P2O5 0.20 0.17 0.19 Mg/(Mg + Fe) 0.42 0.40 0.40 K/(K + Na) 0.35 0.45 0.45 Nor.Or 19.49 26.52 27.39 Nor.Ab 35.91 32.56 33.59 Nor.An 15.98 11.08 10.79 Nor.Q 22.57 25.31 23.65 Na + K 193.15 206.70 210.33 *Si 138.92 153.17 140.88 K-(Na + Ca) -117.71 -63.92 -63.09
82
Fe + Mg + Ti 84.75 67.16 Al-(Na + K + 2Ca) 9.19 2.28 (Na + K)/Ca 3.20 4.83 A/CNK 1.04 1.02 Trace elements in ppm: Rinchnach Granodiorite-Granite 35, Ce 77.
64.92 2.55 5.04 1.02 – Ba 783, Rb 186, Sr 270, Zr 220, Y
2.1.13. STRÁŽNÝ-FINSTERAU MASSIF intrusion in the northern margin of the StrážnýFinsterau Massif. 5. Dyke Granite Age and isotopic data: Weinsberg GraniteGranodiorite: 349 ± 4 Ma (Rb-Sr whole rock), Kristallgranite II: 316 ± 7 Ma (Rb-Sr whole rock), Finsterau I Granite 325.9 ± 1.9 Ma (Pb/Pb zircon), Finsterau II Granite (Kristall II Granite) 324.1 ± 1.8 Ma (Pb/Pb zircon), Lusen Granite 324.9 3.5 Ma (Pb/Pb zircon). Geological environment: gneisses, migmatite. Contact aureole: not described. Mineralization: not reported.
Geological position: Ostrong Terrane of the Moldanubian Zone. Rock types: 1. gabbro (minor bodies). 2. Finsterau I Granite (Weinsberg – Kristallgranite I type) – coarse-grained porphyritic (megacrystic) biotite granite 3. Finsterau II Granite (Kristallgranite II – Eisgarn type) – weakly porphyritic muscovite granite. 4. Lusen Granite medium-grained twomica granite cuts the Finsterau granites in several locations. 5. Size and shape (in erosion level): 30 km × 10 km. Lusen Granite forms a separate
Fig. 2.54. Strážný-Finsterau Massif geological sketch-map (adapted after Unger et al. 1999). 1 – Finsterau I Granite (Kristallgranite I), 2 – Finsterau II Granite (Kristallgranite II), 3 – Dyke Granite, 4 – Gabbro, 5 – faults.
References BAUBERGER, W. et al. (1976): Abgedeckte geologische Karte 1:50 000, Nationalpark Bayerischer Wald. – Bayer. Geol. Landesamt, München. BAUBERGER, W. (1977): Geologische Karte von Bayern 1:25 000, Nationalpark Bayerischer Wald. – Bayer. Geol. Landesamt, München. OTT, W.-D. (1988): Geologische Karte von Bayern 1:25 000. Erläuterungen zum Blatt Nr. 7147 Freyung und zum Blatt Nr. 7148 Bischofsreut, 137 pp. – Bayer. Geol. Landesamt, München. SCHARBERT, S. (1987): Rb-Sr Untersuchungen granitoider Gesteine des Moldanubikums in Österreich. – Mitt. Österr. mineral. Gesell. 132, 21–37.
83
SIEBEL, W. – SHANG, C. K. – RITTER, E. – ROHRMÜLLER, J. – BREITER, K. (2008): Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement constraints from geochemistry and zircon 207Pb/206Pb chronology. – J. Petrology 49, 1853–1872. UNGER, H. J. et al. (1999): Geologische Übersichtskarte 1:200 000, Passau CC 7942. – Bundesanst. für Geowiss. u. Rohstoffe, Hannover. 2.1.14. HAIDEL MASSIF
Fig. 2.55. Haidel Massif geological sketch-map (adapted after Teipel et al. 2008). 1 – Haidel Granite, 2 – Dreisessel Granite, 3 – Kristallgranite I, 4 – Bavarian Fault Zone.
Size and shape (in erosion level): long elliptical shape 25 × 3 km (55 km2). Age and isotopic data: 323.4 ± 2.6 Ma (Pb/Pb zircon). Geological environment: cordieritesillimanite-K-feldspar gneiss and granites of the Plechý (Dreisessel-Plöckenstein) Massif. Contact aureole: not described. Mineralization: not reported.
Geological position: Ostrong Terrane of the Moldanubian Zone. Rock types: Haidel Granite – medium grained biotite granite mostly with occasional K-feldspar phenocrysts (up to 8 cm in length) – equivalent to the Eisgarn Granite s.l. Dreisessel Granite – medium-grained, strongly porphyritic muscovite-biotite granite (equivalent of the Eisgarn Granite s.l.).
References KNOP, E. – FINGER, F. (2009): Zur Verbreitung des Eisgarner Granittyps im Bayerischen Wald. – SDGG, Heft 63 – GeoDresden 2009, p. 141. SIEBEL, W. – SHANG, C.K. – RITTER, E. – ROHRMÜLLER, J. – BREITER, K. (2008): Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement constraints from geochemistry and zircon 207Pb/206Pb chronology. – J. Petrology 49, 1853–1872. TEIPEL, U. – GALADI-ENRIQUEZ, E. – GLASER, S. – KROENER, E. – ROHRMÜLLER, J. – GRASSMANN, E. – RICHTMANN, T. (2008): Erdgeschichte des Bayerischen Waldes. Geologische Karte des Bayerischen Waldes 1 : 150 000. – Bayer. Landesamt für Umwelt.
84
2.1.15. PLECHÝ (DREISESSEL-PLÖCKENSTEIN) MASSIF The Plechý massif extends to depth of at least ~ 8 km below the present-day erosion level.
Geological position: Ostrong Terrane of the Moldanubian Zone. The Plechý and Haidmühle Granites were emplaced as a deeply rooted ~ NE-SW elongated intrusion.
Fig. 2.56. Plechý (Dreisessel-Plöckenstein) Massif hierarchic scheme according to rock types.
has been interpreted as the roof facies of the Plechý Granite. 9. Dreiländerecke Granite – two-mica granite with extremely high Th content (50–99 ppm). It is a variety of the Třístoličník Granite (Steinberg Granite). Size and shape (in erosion level): 26 21 km, elliptic shape, elongated to the southwest and extended to the depth of 5.5 km and 8 km respectively (based on the geophysical model). Age and isotopic data: Upper Palaeozoic according to geological indications and isotopic data (~ 328 to ~ 321 Ma). Třístoličník (Dreisessel) Granite: 337 ± 6.5 Ma (U-Th-Pb monazite), 322 ± 19 Ma (Rb-Sr whole rock), 318 ± 10 amd 316 ± 8 Ma (Rb-Sr muscovite), 327.1 ± 1.9 Ma (Pb/Pb zircon), Plechý (Plöckenstein) Granite: 347.8 ± 9.3 Ma (U-ThPb monazite), 324.8 ± 3.4 Ma (Pb/Pb zircon), Haidmühle Granite: 320.7 ± 1.6 Ma (Pb/Pb zircon), Steinberg Granite: 328 ± 2 Ma (Pb/Pb zircon). Field relationship (from older to younger): Plechý Granite – Haidmühle Granite → Třístoličník (Dreisessel) Granite → Marginal Granite. Geological environment: migmatized cordierite-sillimanite gneiss and retrogressed granulites. The southwestern margin of the massif is crosscut by the NW-SE Pfahl shear zone. To the north the massif is in intrusive contact with fine-grained, equigranular muscovite-biotite granite. To the northeast the
Rock types: 1. Kristallgranite II (the Eisgarn s.s. type) – biotite-muscovite granite (equivalent of the Plechý Granite). 2. Steinberg Granite – porphyritic (strong alignment of K-feldspar phenocrysts) medium- to coarse-grained biotite-rich granite, equivalent ob the Eisgarn Granite s.l. (variety of the Třístoličník Granite). 3. Theresienreut Granite – medium grained two-mica granite (not shown in the map) – equivalent of the Eisgarn Granite s.l. 4. Marginal Granite – equigranular, fine to medium-grained biotite-muscovite, garnetbearing granite. 5. Plechý (Plöckenstein) Granite – coarsegrained, weakly porphyritic biotitemuscovite granite (similar to the Eisgarn Granite s.s.). 6. Haidmühle 1 Granite – coarse-grained biotite granite (variety of the Plechý Granite) – equivalent of the Eisgarn Granite s.l. 7. Haidmühle 2 Granite – medium-grained biotite granite (equivalent of the Eisgarn Granite s.l.), numerous cordierite sillimanite metatectic enclaves. 8. Třístoličník (Dreisessel) Granite – medium-grained, strongly porphyritic muscovite-biotite granite (equivalent of the Eisgarn Granite s.l.). The granite comprises two granite varieties: the Steinberg and Dreisessel Granite. The later
85
Třístoločník Granite is characterized by steep margin-parallel magmatic foliation. Mineralization: not reported. Heat production (μWm-3): Plechý Granite 3.31, Třístoličník Granite 4.90.
massif is juxtaposed against the older ~ 340 Ma melagranite to melasyenite of the Želnava (Knížecí Stolec) Massif. Contact aureole: not described. Zoning: sub-vertical magmatic fabric indicating concentring zonation. The
Fig. 2.57. Plechý (Dreisessel-Plöckenstein) Massif geological sketch-map (adapted after Verner et al. 2008). 1 – Marginal Granite, 2 – Plechý Granite, 3 – Třístoličník Granite, 4 – Haidmühle Granite, 5 – faults, 6 – state border.
Plechý Granite Quartz-rich, potassic, peraluminous, mesocratic, S-type, I-series, granite n = 30 Median Min Max QU1 QU3 SiO2 73.19 71.85 74.65 73.02 73.60 TiO2 0.17 0.04 0.25 0.16 0.20 Al2O3 14.53 13.64 15.29 14.27 14.72 Fe2O3 0.53 0.13 0.96 0.44 0.60 FeO 0.72 0.09 1.10 0.57 0.84 MnO 0.03 0.01 0.05 0.02 0.03 MgO 0.27 0.03 0.41 0.24 0.31 CaO 0.57 0.25 0.76 0.53 0.63 Na2O 3.19 2.68 3.99 3.11 3.40 K2O 5.09 4.45 5.69 4.85 5.27 P2O5 0.31 0.24 0.38 0.28 0.32 Li2O 0.026 0.000 0.044 0.021 0.033 Mg/(Mg + Fe) 0.28 0.09 0.33 0.24 0.30 K/(K + Na) 0.51 0.45 0.56 0.48 0.52 Nor.Or 31.04 27.02 34.52 29.38 31.96 Nor.Ab 29.57 25.04 36.54 28.70 31.57 Nor.An 0.79 -0.69 2.13 0.58 1.14 Nor.Q 31.85 27.72 37.80 31.10 33.35 Na + K 213.22 185.42 233.01 209.04 219.56 *Si 185.68 160.49 217.01 180.46 191.61 K-(Na + Ca) -5.55 -34.67 17.61 -19.79 0.40 Fe + Mg + Ti 26.05 8.64 33.87 24.01 28.37 Al-(Na + K + 2Ca) 49.68 34.54 79.75 45.92 54.85
86
(Na + K)/Ca 20.97 15.46 49.25 18.57 22.54 A/CNK 1.25 1.18 1.43 1.22 1.28 Trace elements (mean values in ppm): Plechý Granite – Ag 7, Cu 4, Cr 16, Nb 15, Ni 9, Pb 25, Rb 340, Sn 11, Sr 57, Th 16, U 9, Zr 80 a 193 (Breiter 2007). Třístoličník (Dreisessel) Granite Quartz-rich, potassic, peraluminous, leucocratic, S-type, granite n=9 Median Min Max QU1 QU3 SiO2 72.57 71.40 74.30 71.77 73.22 TiO2 0.26 0.17 0.49 0.22 0.35 Al2O3 14.10 13.73 14.38 14.00 14.30 Fe2O3 0.58 0.00 0.70 0.28 0.65 FeO 1.14 0.77 2.15 0.86 1.49 MnO 0.04 0.03 0.61 0.03 0.47 MgO 0.23 0.02 0.37 0.03 0.29 CaO 0.69 0.53 0.85 0.62 0.79 Na2O 2.91 2.56 3.40 2.77 3.10 K2O 5.32 4.88 5.68 5.19 5.53 P2O5 0.33 0.23 0.42 0.29 0.39 Li2O 0.025 0.000 0.037 0.000 0.034 Mg/(Mg + Fe) 0.23 0.02 0.26 0.02 0.24 K/(K + Na) 0.53 0.49 0.58 0.52 0.57 Nor.Or 32.42 29.89 35.16 31.92 34.38 Nor.Ab 27.09 23.98 31.57 25.87 28.98 Nor.An 1.39 0.63 2.55 0.75 1.57 Nor.Q 31.15 30.37 36.25 30.70 31.63 Na + K 209.99 194.29 222.34 206.80 212.67 *Si 181.97 176.66 208.10 179.02 185.14 K-(Na + Ca) 1.30 -17.85 18.91 -3.21 16.70 Fe + Mg + Ti 30.79 18.11 38.38 28.51 36.93 Al-(Na + K + 2Ca) 41.74 33.87 58.13 37.18 46.23 (Na + K)/Ca 17.07 13.64 21.50 15.31 17.80 A/CNK 1.21 1.16 1.32 1.20 1.24 Trace elements (mean values in ppm): Třístoličník Granite – Cr 6.2, Ni 9.6, Cu 2.2, Zn 92, As 1.5, Rb 432, Sr 27, Y 8.6, Zr 113, Nb 17.4, Sn 9.8, Pb 18.4, Th 32.4, U 11 (Breiter 2007).
Fig. 2. 58. Plechý (Dreisessel-Plöckenstein) Massif ABQ and TAS diagrams: 1 - Plechý (Plöckenstein) Granite, 2 –Třístoličník (Dreisessel) Granite 3 – .Haidmühle Granite, (K. Breiter personal communication).
87
References BAUBERGER, W. (1977): Geologische Karte von Bayern 1 : 25 000, Nationalpark Bayerischer Wald. – Bayer. Geol. Landesamt, München. BREITER, K. (2005): Short note on a thorium-rich granite in the three corner area (Dreiländereck) of Austria, the Czech Republic and Germany. – Jb. Geol. Bundesanst. 145, 2, 141–143. BREITER, K. (2007): Dvojslídné granity plutonu Plechého na Trojmezí České republiky, Německa a Rakouska. In: Breiter K. Ed.: 3. sjezd České geologické společnosti, Volary 19.-–22. září 2007. 104–111. – Czech Geol. Soc. Prague. BREITER, K. – KOLLER, F. – SCHARBERT, S. – SIEBEL, W. – ŠKODA, R. – FRANK, W. (2007): Two-mica Granites of the Plechý (Plöckenstein) Pluton in the Triple-Point Area (Trojmezí, Dreiländereck) of Austria, the Czech Republic, and Germany. – Jb. Geol. Bundesanst. 147, 527– 544. BREITER, K. – PERTOLDOVÁ, J. (2004): Interesting granitoids in the border area of the Czech Republic and Bavaria. – Poster Czech Geol. Surv. Prague. KÖHLER, H. – FRANK, CH. – KÖNIGSBERGER, T. – SCHÖN, B. (2008): Isotopische (Sr, Nd) Charakterisierung und Datierung Varistischer Granitoide der Moldanubischen Kruste Nordostbayerns. In: Geochronologische, geochemische, petrographische und mineralogische Untersuchungen im Grundgebirge Bayerns sowie kritische Betrachtungen zu Sr-Isotopenstandarts. – Geologica bavar. 110, Umwelt Spezial, 170–203. KNOP, E. – FINGER, F. (2009): Zur Verbreitung des Eisgarner Granittyps im Bayerischen Wald. – SDGG, Heft 63 – GeoDresden 2009, p. 141. OTT, W.-D. (1988): Geologische Karte von Bayern 1:25.000. Erläuterungen zum Blatt Nr. 7147 Freyung und zum Blatt Nr. 7148 Bischofsreut, 137 pp. – Bayer. Geol. Landesamt, München. OTT, W. D. (1992): Geologische Karte von Bayern 1:25.000. Erläuterungen zum Blatt Nr.7248/49 Jandelsbrunn, 72 p. – Bayer. Geol. Landesamt, München. PERTOLDOVÁ, J. – VERNER K. – BREITER, K. – SULOVSKÝ, P. (2004): Petrostrukturní vztahy metamorfovaných a magmatických hornin v oblasti Nové Pece a Trojmezí (moldanubikum, Šumava). – Aktuality Šumav. Výzk. II, 25–31. SCHILLER, D. – KNOP, E. – RENÉ, M. – DOBLMAYER, P. – FINGER, F. (in print): Subtypen von Eisgarner Granit im Böhmerwald im Bereich des Dreiländerecks Östereich-Bayern-Tschechien: Auf der Suche nach einer grenzübergreifeld konsistenten Gliederung und Namensgebung. – PANGEO 2008, Wien. SEDLÁK, J. –GNOJEK, I. – ZABADAL, S. – PERTOLDOVÁ, J. – VERNER, K. – ŠRÁMEK, J. – ŽÁK, J. (2007): Nové geofyzikální poznatky z centrální části Šumavy. In: Breiter, K Ed.: 3. sjezd Čes. geol. společ., Volary 19.–22. září 2007. pp.70. – Czech Geol. Soc. Prague. SIEBEL, W. – SHANG, C. K. – RITTER, E. – ROHRMÜLLER, J. – BREITER, K. (2008): Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement constraints from geochemistry and zircon 207Pb/206Pb chronology. – J. Petrology 49, 1853–1872. TROLL, G. (1964): Geologische Übersichtkarte des Bayerischen Waldes 1 : 100 000. – Geologica bavar. 58, 108–113. UNGER, H. J. et al. (1999): Geologische Übersichtskarte 1 : 200 000, Passau CC 7942. – Bundesanst. für Geowiss. u. Rohstoffe, Hannover. VERNER, K. – ŽÁK, J. – PERTOLDOVÁ, J. – ŠRÁMEK, J. – SEDLÁK, J. – TRUBAČ, J. – TÝCOVÁ, P. (in print): Magmatic history and geophysical signature of a post-collisional intrusive centre emplaced near a crustal-scale shear zone: the Plechý granite pluton (Moldanubian Composite Batholith, Bohemian Massif). – Int. J. Earth Sci. (Geol. Rdsch.).
88
2.1.16. AIGEN MASSIF Fig. 2.59. Aigen Massif sketch-map (adapted after Zitzmann 1999). 1 – Kristallgranite I (Weinsberg type), 2 – Kristallgranite II (Eisgarn Granite s.s.), 3 – Sulzberg Granite, 4 – fault.
Geological position: Ostrong Terrane of the Moldanubian Zone, cut by the Bavarian Quartz “Pfahl”zone. Rock types: 1. Kristallgranite I (Weinsberg type) – porphyritic, coarse-grained biotite granite. 2. Sulzberg Granite – fine-grained twomica granite. 3. Kristallgranite II (Eisgarn Granite s.s.) – coarse-grained two-mica granite.
Size and shape (in erosion level): oval shape (8 × 7 km). Age and isotopic data: Upper Palaeozoic according to geological indications. Sulzberg Granite 326 ± 1 Ma (U-Pb zircon). Geological environment: gneisses and migmatites. Contact aureole: not described. Mineralization: not reported.
References FUCHS, G. – MATURA, A. (1976): Zur Geologie des Kristallins der südlichen Böhmischen Masse. – Jb. Geol. Bundesanst. 119, 1–43. TROLL, G. (1964): Geologische Übersichtkarte des Bayerischen Waldes 1:100 000. – Geologica bavar. 58. UNGER, H.-J. et al. (1999): Geologische Übersichtskarte 1:200.000, Passau CC 7942. – Bundesanst. für Geowiss. u. Rohstoffe, Hannover. ZITZMANN, A. et al. (1999): Geologische Übersichtskarte 1 : 200 000, CC 7942 Passau. – BGR Hannover.
89
2.1.17. VÍTKŮV KÁMEN STOCK contact with the country rocks (parallel to foliation of the country rocks). Age and isotopic data: The Číměř Granite (Eisgarn Granite s.l.) is younger than the Weinsberg Granite-Granodiorite. No isotopic data. Geological environment: the Weinsberg Granite-Granodiorite, sillimanite-biotite paragneiss, biotite hornfels, and muscovitebiotite cordierite-bearing paragneiss. Contact aureole: in the paragneisses up to 200 m wide. Mineralization: not reported.
Geological position: Moldanubian Zone Rock types: Číměř Granite – mediumgrained porphyritic muscovite-biotite granite (alternatively porphyritic facies of the Eisgarn Granite – the Vítkův kámen facies). Weinsberg Granite-Granodiorite – mediumgrained porphyritic granite with abundant penetrations of the Číměř Granite. Size and shape (in erosion level): elliptical stock outcrop (in west and east tectonic). Tabular shape of intrusion, ~ 22 km2 (34 × 5 km) with moderate dipping to the south and
References PELC, Z. (1988): Vysvětlivky k základní geologické mapě ČSSR 1 : 25,000, list 32-411, 32-413 Přední Výtoň. – 56 pp. MS Czech Geol. Survey, Prague.
Fig. 2.60. Vítkův kámen Stock and Lipno Massif geological sketch-map (after Slabý and Vrána 1991, 1993). 1 – Číměř Granite, 2 – Weinsberg Granite-Granodiorite, 3 – Lipno Granite, 4 – 5 – faults.
Fig.2. 61. Vítkův kámen Stock ABQ and TAS diagrams. 1 – Weinsberg type granite, 2 – Číměř type Granite.
90
Vítkův kámen Stock Weinsberg Granite: Quartz normal, potassic, moderately peraluminous, mesocratic, Stype granite Číměř Granite: Quartz rich, potassic, peraluminous, mesocratic, S-type granite 2 3 5 6 7 8 Weinsberg Granite Číměř Granite SiO2 71.52 71.21 71.59 68.77 71.38 74.78 TiO2 0.53 0.46 0.46 0.44 0.28 0.22 Al2O3 14.11 14.54 14.26 16.29 14.56 13.92 Fe2O3 0.47 0.51 0.44 0.59 0.45 0.34 FeO 2.35 1.96 2.10 2.10 1.42 1.06 MnO 0.04 0.03 0.03 0.05 0.03 0.02 MgO 0.72 0.62 0.65 0.80 0.54 0.33 CaO 1.59 1.13 1.20 0.84 0.58 0.69 Na2O 3.02 3.06 2.87 2.88 2.84 2.61 K2O 4.85 5.52 5.44 5.74 5.15 5.26 P2O5 0.25 0.28 0.27 0.29 0.26 0.18 Li2O 0.01 0.01 0.01 0.01 0.02 0.00 Mg/(Mg + Fe) 0.31 0.31 0.31 0.35 0.34 0.30 K/(K + Na) 0.51 0.54 0.55 0.57 0.54 0.57 Nor.Or 29.90 33.84 33.49 35.42 32.08 32.08 Nor.Ab 28.30 28.51 26.85 27.01 26.88 24.19 Nor.An 6.51 3.90 4.35 2.36 1.23 2.31 Nor.Q 29.19 27.49 28.98 25.77 32.24 35.76 Na + K 200.43 215.95 208.12 214.81 200.99 195.91 *Si 177.45 165.68 174.78 156.73 188.11 210.76 K-(Na + Ca) -22.83 -1.69 1.49 13.96 7.36 15.15 Fe + Mg + Ti 63.12 54.83 56.65 62.00 42.32 29.97 Al-(Na + K + 2Ca) 19.95 29.29 29.12 75.13 64.25 52.85 (Na + K)/Ca 7.07 10.72 9.73 14.34 19.43 15.92 A/CNK 1.10 1.14 1.14 1.34 1.33 1.26 2.1.18. LIPNO MASSIF Age and isotopic data: Lipno Granite 349 Ma (K-Ar mica). The Lipno (Mrákotín) Granite is younger than the Weinsberg Granite-Granodiorite. Geological environment: the Weinsberg Granite-Granodiorite, sillimanite-biotite paragneiss, biotite hornfels, and muscovitebiotite cordierite-bearing paragneiss. Contact aureole: up to 200 m wide. Mineralization: not reported.
Geological position: Moldanubian Zone. Rock types: Lipno Granite – medium-to finegrained muscovite-biotite granite, locally porphyritic facies (equivalent of the Mrákotín Granite). Weinsberg Granite-Granodiorite – mediumgrained porphyritic granite (enclaves in the Lipno Granite). Size and shape (in erosion level): tabular shape in W-E direction, ~ 50 km2 (12 × 3–4 km, intrusive contact parallel to foliation of the country rocks.
References SLABÝ, J. (1987): Vysvětlivky k základní geologické mapě ČSSR 1 : 25,000, list 32-412 Vyšší Brod – 45 pp. MS Czech Geol. Survey, Prague. VRÁNA, S. (1984): Vysvětlivky k základní geologické mapě ČSSR 1: 25,000, list 32-421 Rožmberk nad Vltavou. – 54 pp. MS Czech Geol. Survey, Prague.
91
ŠMEJKAL, V. (1960): Absolutní stáří některých granitoidů a metamorfitů Českého masívu stanovené kalium-argonovou metodou. – Věst. Čes. geol. Úst. 35, 441–449.
Fig. 2.62. Lipno (Číměř) Granite ABQ and TAS diagrams.
Lipno Granite Quartz-rich, potassic, peraluminous, leuco-mesocratic, S-type granite mu-biGr mu-biGr SiO2 72.94 74.45 TiO2 0.17 0.25 Al2O3 13.52 13.11 Fe2O3 0.51 0.25 FeO 1.88 1.05 MnO 0.04 0.11 MgO 0.39 0.21 CaO 0.69 0.48 Na2O 3.03 3.62 K2O 4.99 5.20 P2O5 0.24 0.30 Li2O n.d. 0.03 Mg/(Mg + Fe) 0.23 0.21 K/(K + Na) 0.52 0.49 Nor.Or 30.93 31.59 Nor.Ab 28.54 33.42 Nor.An 1.93 0.41 Nor.Q 32.61 30.78 Na + K 203.73 227.22 *Si 192.73 180.10 K-(Na + Ca) -4.13 -14.97 Fe + Mg + Ti 44.38 26.10 Al-(Na + K + 2Ca) 37.17 13.11 (Na + K)/Ca 16.56 26.55 A/CNK 1.19 1.08
92
PLUTONS IN THE BAVARIAN TERRANE 2.1.19. REGENSBURG FOREST MASSIF
Fig. 2.63. Regensburg Forest Massif and the Stallwang Stock geological sketch-map (adapted after Bauberger 1981 and Hann 2005). 1 – Diorite, 2 – Regensburg Forest Granite (Kristallgranite I), 3 – Trasching Granite (Kristallgranite II), 4 – Stallwang Stock, 5 – porphyry, 6 – faults.
320 ± 6 Ma (K-Ar biotite), 314 ± 6 Ma (K-Ar muscovite), 313 – 325 Ma (U-Pb zircon), 316317 Ma (U-Pb monazite), 326 ± 6 (Rb-Sr biotite), 349 ± 11 Ma (Rb-Sr whole rock), Diorite 320 ± 8 Ma (K-Ar biotite), 335 ± 12 Ma (Rb-Sr whole rock), Kristallgranite II 319 ± 12 Ma (Rb-Sr whole rock), 315 ± 8 Ma (RbSr biotite), Trasching Granite 321 ±3 Ma (UPb monazite). Kristallgranite I is intruded by the Kristallgranite II, Breitenberg Granodiorite 308 ± 68 Ma (Rb-Sr whole rock). Geological environment: anatexite– metatexite and homogenous diatexite (Lower Cambrian pelites). Contact aureole: the gradual transition into the pre-granitic anatexite. Zoning: not observed. Mineralization: unknown.
Regional position: Bavarian Terrane of the Moldanubian Zone. Rock types: 1. Diorite – fine-grained quartz diorite to granodiorite. 2. Regensburg Forest (Kristallgranite I) – coarse-grained porphyritic biotite granite to granodiorite (similar to Finsterau I Granite and Breitenberg Granodiorite). 3. Trasching (Kristallgranite II) – porphyritic medium-grained granite. 4. Lusengipfel Granite. Size and shape (in erosion level): 350 km2, two rounded outcrop areas. The area between two parts of the massif is underlain by unexposed granite (37 × 20 km area). The massif extends westward below the Mesozoic cover. Trasching Granite 0.5 × 1.5 km stock within the Kristallgranite I. Age and isotopic data: Anatexite 325 ± 6, 316 ± 6 Ma (K-Ar biotite), 314 ± 12 Ma (muscovite), 453 ± 10 Ma (Rb-Sr whole rock), Kristallgranite I – 315 ± 4 Ma (U-Pb zircon),
93
Regensburg Forest Granite Quartz-normal, potassic, peraluminous, mesocratic, granodiorite n=7 Median Min Max QU1 QU3 SiO2 67.50 64.60 69.90 65.80 69.20 TiO2 0.68 0.47 0.91 0.49 0.73 Al2O3 14.80 14.10 16.30 14.50 15.00 Fe2O3 0.93 0.65 1.23 0.74 0.98 FeO 2.76 2.08 4.34 2.14 3.14 MnO 0.04 0.04 0.05 0.04 0.04 MgO 1.15 0.73 1.43 0.99 1.25 CaO 1.88 1.38 2.82 1.45 2.26 Na2O 2.89 2.55 3.65 2.73 2.90 K2O 5.20 4.37 6.34 4.38 5.22 P2O5 0.25 0.21 0.60 0.23 0.25 Mg/(Mg + Fe) 0.34 0.31 0.38 0.32 0.36 K/(K + Na) 0.53 0.50 0.57 0.51 0.55 Nor.Or 32.45 27.57 38.44 27.72 32.95 Nor.Ab 27.05 24.56 33.64 26.12 27.95 Nor.An 8.32 5.47 12.33 6.06 8.79 Nor.Q 23.91 14.93 29.70 21.15 24.16 Na + K 197.14 181.09 252.40 186.37 207.64 *Si 147.50 97.91 180.46 138.50 150.47 K-(Na + Ca) -15.57 -51.08 6.79 -28.62 -15.27 Fe + Mg + Ti 90.90 64.62 120.93 69.23 95.54 Al-(Na + K + 2Ca) 23.69 3.51 29.23 7.01 27.89 (Na + K)/Ca 5.40 3.71 8.48 4.41 7.86 A/CNK 1.11 1.03 1.14 1.05 1.13
Fig. 2. 64. Regensburg Forest Massif ABQ and TAS diagrams: 1-Regensburg Forest (Kristall 1) Granite, 2 Kristall II Granite, 3 - Lusengipfel Granite, 4 – Breitenberg Granodiorite.
94
Lusengipfel Granite: Quartz-normal, mostly potassic, low peraluminous, mesocratic, I/S type granite Finsterau Granite: Quartz-normal, mostly potassic, low peraluminous, mesocratic, I/S type granite Breitenberg Granodiorite: Quartz-normal, sodic-potassic, peraluminous, meso- to melanocratic, I-type, granodiorite gfm335 FKG333 FKG334 bg261 bg320 Lusengipfel Finsterau Granite Breitenberg Granodiorite Granite (Kristallgranite I) (Kristallgranite I) SiO2 71.00 67.00 71.60 60.10 65.40 TiO2 0.21 0.56 0.23 1.11 0.78 Al2O3 14.90 16.30 15.10 17.30 15.90 Fe2O3 0.73 0.74 0.54 1.91 1.44 FeO 0.54 2.14 0.88 3.78 2.80 MnO 0.03 0.04 0.02 0.08 0.07 MgO 0.33 0.99 0.37 2.90 2.02 CaO 0.90 1.80 0.78 4.50 3.20 Na2O 2.54 3.65 3.17 3.02 2.82 K2O 8.20 6.34 6.16 3.58 4.36 P2O5 0.50 0.23 0.24 0.38 0.29 Mg/(Mg + Fe) 0.32 0.38 0.32 0.48 0.46 K/(K + Na) 0.68 0.53 0.56 0.44 0.50 Nor.Or 49.17 38.44 37.27 22.86 27.36 Nor.Ab 23.15 33.63 29.15 29.30 26.89 Nor.An 1.19 7.61 2.34 21.42 14.83 Nor.Q 22.42 14.92 26.25 14.29 21.63 Na + K 256.07 252.40 233.09 173.47 183.57 *Si 127.12 97.91 154.86 106.46 141.21 K-(Na + Ca) 76.09 -15.27 14.59 101.69 -55.49 Fe + Mg + Ti 27.49 70.65 31.08 162.43 116.93 Al-(Na + K + 2Ca) 4.44 3.51 35.63 5.78 14.54 (Na + K)/Ca 15.96 7.86 16.76 2.16 3.22 A/CNK 1.06 1.03 1.16 1.04 1.07 References ANDRITZKY, G. (1962): Die Anatexis im Regensburger Wald. – Neu. Jb. Mineral., Abh. 99, 79–112. FISCHER, G. (1959): Der Bau des Vorderen Bayerischen Waldes. – Jber. Mitt. Oberrhein. geol. Ver. 41, 1–22. HANN, H. P. (2005): Geological Map of Bavaria 1 : 25 000 map sheet 6941 Stallwang. – Bayer. Geol. Landesamt, München HERGET, G. – KÖHLER, H. (1976): Geologischen Karte von Bayern 1: 25,000, Erläuterungen zum Blatt Nr. 6940 Wörth a. d. Donau. – 92 pp. Berlin. KÖHLER, H. – FRANK, CH. – KÖNIGSBERGER, T. – SCHÖN, B. (2008): Isotopische (Sr, Nd) Charakterisierung und Datierung Variszischer Granitoide der Moldanubischen Kruste Nordostbayerns. In: Geochronologische, geochemische, petrographische ind mineralogische Untersuchungen im Grundgebirge Bayerns sowie kritische Betrachtungen zu Sr-Isotopenstandarts. – Geol. bavar. 110, Umwelt Spezial, 170–203. KÖHLER, H. – MÜLLER-SOHNIUS, D. (1986): Rb-Sr Alterbestimmungen und SrIsotopensystematik an Gesteinen des Regensburger Waldes (Moldanubikum NE Bayern). Teil 2: Intrusivgesteine. – Neu. Jb. Mineral., Abh. 155, 3, 219–241. KRAUS, G. (1962): Gefüge, Kristallgrössen und Genese des Kristallgranites I im Vorderen Bayerischen Wald. – Neu. Jb. Mineral., Abh. 97, 357–434. PROPACH, G. (1977): Variscan granitization in the Regesburger Wald, West Germany. – Neu. Jb. Mineral., Mh. 1977, 97–111. 95
PROPACH, G. (1989): The origin of a conformable Variscan granite in Bavaria – results of geochemical and geochronological investigations. In: Bonin, B. et al. Eds: Magma-crust interactions and evolution (geochemical and geophysical aspects of the interactions and evolution of magmas and rocks of the crust). – Theophrast. Publ. 193–209, S.A. Zographou, Athens. PROPACH, G. – BAUMANN, A. – SCHULZ-SCHMALSCHLÄGER, M. – GRAUERT, B. (2000): Zircon and monazite U-Pb ages of Variscan granitoid rocks and gneisses in the Moldanubian zone of eastern Bavaria, Germany. – Neu. Jb. Geol. Paläont., Mh. 6, 345–377. 2.1.20. STALLWANG STOCK Geological position: monotonous series (Bavarian Terrane) of the Moldanubian Zone at the SE periphery of the Regensburg Forest Massif. Rock types: 1. Stallwang Granodiorite – porphyritic biotite granodiorite. 2. Stallwang Granite – medium to finegrained two-mica granite. 3. Granite Porphyry. Size and shape (in erosion level): Stallwang Granodiorite forms several bodies elongated in a NW-SE direction. The largest body has a dimension of 2 km × 350 m. Two-mica granite forms several lenses and the largest body is 2 km wide and 3 km long. Granite Porphyry forms a local dyke swarm consisting of about ten dykes (width of up to 100 m and 600 m along strike).
Age and isotopic data: Stallwang Granodiorite 333 Ma (U-Pb zircon), 324 ± 2 Ma (Pb-Pb zircon), Two-mica Granite 323 ± 4 Ma (U-Th-Pb monazite), 285.6 ± 2.9 (Rb-Sr biotite), 328.8 ± 3.4 Ma (Rb-Sr whole rock), Granite Porphyry 323 ±2 Ma ((Pb-Pb zircon). Granite Porphyry dykes intersect diatexites and also cut the two-mica Granite. Geological environment: contact with the gneisses and homogenous diatexites with Kfeldspar megacrysts and/or with numerous metamorphic relics. Contact aureole: a broad anatectic and diatectic aureole. Zoning: not reported. Mineralization: not reported.
References ENDLICHER, G. M. (1968): Geologisch-petrographische Untersuchungen auf dem Südwestviertel des Gradabteilungsblattes Stallwang Nr. 6941. – Dipl. Thesis, Munich, 65 pp. GRIEBEL, J. (1970): Die Granodiorite von Stallwang und ihre Einschlüsse. – PhD Thesis, Munich, 173 pp. HANN, H. P. (2005): Geological Map of Bavaria 1 : 25 000 map, sheet 6941 Stallwang. – Bayer. Geol. Landesamt, München. PROPACH, G. – BAUMANN, A. – SCHULZ-SCHMALSCHLÄGER, M. – GRAUERT, B. (2000): Zircon and monazite U-Pb ages of Variscan granitoid rocks and gneisses in the Moldanubian zone of eastern Bavaria, Germany. – Neu. Jb. Geol. Paläont., Mh. 6, 345–377. SIEBEL, W. – HANN, H. P. – SHANG, C. K. (2006): Coeval late-Variscan emplacement of granitic rocks: an example from the Regensburg Forest, NE Bavaria. – Neu. Jb. Mineral., Abh. 13–25. TEIPEL, U. – GALADI-ENRIQUEZ, E. – GLASER, S. – KROENER, E. – ROHRMÜLLER, J. – GRASSMANN, E. – RICHTMANN, T. (2008): Erdgeschichte des Bayerischen Waldes. Geologische Karte des Bayerischen Waldes 1 : 150 000. – Bayer. Landesamt für Umwelt.
96
Fig. 2.65. Stallwang Stock ABQ and TAS diagrams. 1 – Stallwang Granodiorite, 2 – Stallwang Granite, 3 – Granite Porphyry.
Stallwang Granodiorite: Quartz-normal, sodic, peraluminous, mesocratic, I/S type, granodiorite Stallwang Granite: Quartz-normal, potassic, peraluminous, leuco- to mesocratic, S type, granite GrdST19 ST198 TMST85 ST51 ST278b ST278b Granodiorite Two-mica granite SiO2 64.90 65.39 71.46 71.65 71.93 73.38 TiO2 1.21 1.10 0.21 0.40 0.21 0.22 Al2O3 15.32 14.99 14.16 14.55 14.34 13.98 Fe2O3tot 5.74 5.41 1.42 2.56 1.53 2.57 MnO 0.08 0.08 0.01 0.03 0.03 0.04 MgO 1.84 1.55 0.37 0.75 0.38 0.37 CaO 2.67 2.59 0.56 0.97 0.57 0.55 Na2O 3.07 3.30 3.02 3.02 2.96 2.93 K2O 4.10 4.25 5.36 5.01 6.02 5.98 P2O5 0.53 0.52 0.36 0.28 0.30 0.30 Mg/(Mg + Fe) 0.38 0.36 0.34 0.36 0.32 0.22 K/(K + Na) 0.47 0.46 0.54 0.52 0.57 0.57 Nor.Or 25.66 26.49 33.24 30.63 36.80 35.97 Nor.Ab 29.20 31.26 28.46 28.06 27.50 26.79 Nor.An 10.32 9.94 0.45 3.06 0.88 0.76 Nor.Q 23.94 23.01 31.74 31.17 29.46 30.72 Na + K 186.12 196.73 211.26 203.83 223.34 221.52 *Si 142.19 135.25 178.53 182.14 168.94 179.04 K-(Na + Ca) -59.63 -62.44 6.37 -8.38 22.14 22.61 Fe + Mg + Ti 132.73 120.03 29.60 55.70 31.23 44.14 Al-(Na + K + 2Ca) 19.51 5.28 46.84 47.31 37.94 33.40 (Na + K)/Ca 3.91 4.26 21.16 11.78 21.97 22.59 A/CNK 1.12 1.06 1.25 1.23 1.19 1.17 Trace elements (mean values in ppm): Stallwang Granodiorite – Ba 1080, Rb 170, Sr 238, V 69, Y 58, Zn 99, Zr 453, Ce 136, Eu 1.2, La 77, Nb 37, Nd 73, Pb 30, Sm 11, Th 16, Yb 4.8 (Siebel et al. 2006). Stallwang Granite – Ba 318, Rb 290, Sr 68, V 14, Y 12, Zn 14, Zr 127, Ce 48, Eu 0.3, La 26, Nb 16, Nd 24, Pb 27, Sm 5.2, Th 13, Yb 1.1 (Siebel et al. 2006).
97
Granite Porphyry – Ba 797, Rb 251, Sr 149, V 41, Y 43, Zn 62, Zr 381, Ce 146, Eu 0.9, La 68, Nb 27, Nd 66, Pb 37, Sm 10, Th 36, Yb 3.5 (Siebel et al. 2006). 2.1.21. SATTELPEILNSTEIN COMPOSITE MASSIF
Fig. 2.66. Sattelpeilnstein Composite massif geological sketch-map (adapted after Teipel et al. 2008). 1 – Sattelpeilnstein Granite, 2 – Kristallgranite 1, 3 – Traitsching Granodiorite, 4 – Bavarian Tectonic Zone.
Size and shape (in erosion level): strongly elongated intrusions along the Bavarian Pfahl. Size of 66 km2 (25 × 4 km) Age and isotopic data: 322.3 ± 3.4 Ma (Pb/Pb zircon). Geological environment: homogenous diatexite, diatexite-gneiss and diatectic gneiss. Contact aureole: not described. Mineralization: not reported.
Geological position: Bavarian Terrane of the Moldanubian Zone. Rock types: Sattelpeilnstein Granite – fine- to mediumgrained biotite granite. Kristallgranite I (Weinsberg GraniteGranodiorite type). Traitsching Granodiorite – medium- to coarse-grained granodiorite to tonalite.
References SIEBEL, W. – SHANG, C. K. – RITTER, E. – ROHRMÜLLER, J. – BREITER, K. (2008): Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement constraints from geochemistry and zircon 207Pb/206Pb chronology. – J. Petrology 49, 1853–1872. TEIPEL, U. – GALADI-ENRIQUEZ, E. – GLASER, S. – KROENER, E. – ROHRMÜLLER, J. – GRASSMANN, E. – RICHTMANN, T. (2008): Erdgeschichte des Bayerischen Waldes. Geologische Karte des Bayerischen Waldes 1 : 150 000. – Bayer. Landesamt für Umwelt.
98
2.1.22. QUARTZ DIORITE STOCKS Age and isotopic data: Quartz diorite – 314 ± 6 Ma (age of the deformation event). Geological environment: the Bavarian Pfahl Zone separates anatectic pearl gneisses and sillimanite gneisses on its southwestern side from migmatitic cordierite-sillimanite gneisses to the northeast. Contact aureole: not described Mineralization: not reported.
Geological position: western part of the MCB. In the Drosendorf Monotonous Series (Moldanubian Zone), along the Bavarian Quartz “Pfahl”. Size and shape (in erosion level): several stocks up to 2 km in diameter and dykes 2–20 meters thick, up to 200 m in length, concordant with gneiss.
References LIST, F. K. (1967): Geologische Exkursionen im Gebiet nördlich und östlich Deggendorf an der Donau. In: Führer zu geologisch-petrographischen Exkursionen im Bayerischen Wald. Teil I: Aufschlüsse im Mittel- und Ostteil. – Geologica bavar. 58, 86–93. 2.1.23. PATERSDORF STOCK Geological position: On the boundary between the Ostrong and Bavarian Terrane of the Moldanubian Zone (Patersdorf Stock is segmented by the Bavarian Pfahl zone).
Rock types: 1. Patersdorf Granite – fine-grained biotite granite (equivalent of the Mauthausen Granite). 2. Patersdorf Granodiorite – two dark facies of biotite granodiorite, a fine- to mediumgrained variety and a coarse-grained porphyritic variety. Size and shape (in erosion level): semicircular multiple intrusion in diameter of about 7 km (30 km2). The granodiorites are part of a larger body that can be traced for several km towards northwest. Age and isotopic data: 322 ± 2 Ma (Pb-Pb zircon), 323.4 ± 1.6 Ma (Pb-Pb zircon), 308 ± 5 Ma (Rb-Sr K-feldspar). Large quartz dyke 247 ± 21 Ma (Rb-Sr). 308 ± 5 Ma. (Rb-Sr Kfeldspar). The Patersdorf Granodiorite predates the Patersdorf Granite. Geological environment: Pearl gneisses and the Paragranodiorite Massif. Contact aureole: not described. Mineralization: not reported.
Fig. 2.67. Patersdorf Stock geological sketch-map (adapted after Teipel et al. 2008). 1 – Patersdorf Granite and Granodiorite, 2 – Bavarian Tectonic Zone.
99
Fig. 2. 68. Patersdorf Stock ABQ and TAS diagrams. 1 -Patersdorf Granite, 2 – Patersdorf Granodiorite, 3 – Sattelpeilnstein Granite.
Patersdorf Granite Quartz-normal, sodic/potassic, moderately peraluminous, mesocratic, I-type, I-series, granodiorite Sattelpeilstein Granite Quartz-normal, potassic, peraluminous, mesocratic, S-type granite n = 13
Median
Min
Max
QU1
QU3
Sattelpeilstein Granite 70.74 0.44 14.80 2.63 0.04 0.70 1.00 3.09 5.48 0.30 0.34 0.54 28.18 33.43 28.65 3.08 216.07 164.50 -1.19 55.83 38.91 12.12 1.19
SiO2 68.78 67.52 70.52 68.50 69.72 TiO2 0.51 0.42 0.54 0.47 0.52 Al2O3 15.41 14.94 15.98 15.13 15.56 Fe2O3 2.70 0.58 3.12 0.76 3.04 FeO 0.00 0.00 2.68 0.00 2.53 MnO 0.05 0.00 0.10 0.05 0.08 MgO 1.08 0.88 1.17 1.02 1.10 CaO 2.50 2.18 2.90 2.38 2.69 Na2O 3.55 1.50 3.79 2.77 3.67 K2O 4.39 4.03 4.70 4.29 4.60 P2O5 0.19 0.16 0.25 0.18 0.23 Mg/(Mg + Fe) 0.40 0.35 0.42 0.37 0.41 K/(K + Na) 0.45 0.41 0.67 0.43 0.52 Nor.Or 26.97 24.59 29.11 26.18 28.64 Nor.Ab 32.85 14.31 35.43 26.11 34.17 Nor.An 11.78 9.85 13.38 11.05 12.47 Nor.Q 24.95 22.35 35.47 23.61 25.33 Na + K 206.03 146.29 214.71 186.84 207.87 *Si 149.31 134.04 213.96 144.13 158.72 K-(Na + Ca) -63.79 -82.73 6.50 -73.88 -38.33 Fe + Mg + Ti 72.27 62.30 85.90 68.53 76.82 Al-(Na + K + 2Ca) 6.66 -2.53 74.51 3.49 18.88 (Na + K)/Ca 4.41 3.23 5.52 3.92 4.66 A/CNK 1.04 1.01 1.35 1.03 1.09 Trace elements (ppm): Patersdorf Granite – Ba 940, Ce 92, Co 5, Cr 30, Nd 35, Ni 90, Pb 25, Rb 170, Sm 6, Sr 310, Y 41, Zn 15, Zr 273.
100
References BADER, H. (1959): Erläuterungen zur geologischen Karte von Bayern 1 : 25 000, Blatt Nr. 6640 Neunburg vorm Wald, 132 pp. – München. KNOP, E. – FINGER, F. (2009): Zur Verbreitung des Eisgarner Granittyps im Bayerischen Wald. – SDGG, Heft 63 – GeoDresden 2009, p. 141. LIST, F. K. – OTT, W. D. (1982): Erläuterungen zur geologischen Karte von Bayern 1 : 25,000, Blatt Nr. 7043 Ruhmannsfelden, 55 pp. – München. OTT, W. D. (1983): Erläuterungen zur geologischen Karte von Bayern 1 : 25,000, Blatt 6943 Viechtach, 71 pp. – München. SIEBEL, W. – THIEL, M. – CHEN, F. (2006): Zircon geochronology and compositional record of late- to post-kinematic granitoids associated with the Bavarian Pfahl zone (Bavarian Forest). – Mineral. Petrol. 86, 45–62. TEIPEL, U. – GALADI-ENRIQUEZ, E. –GLASER, S. – KROENER, E. – ROHRMÜLLER, J. – GRASSMANN, E. – RICHTMANN, T. (2008): Erdgeschichte des Bayerischen Waldes. Geologische Karte des Bayerischen Waldes 1 : 150 000. – Bayer. Landesamt für Umwelt. 2.1.24. METTEN MASSIF
Fig. 2.69. Metten Massif geological sketch-map (after Schreyer 1967). 1 – Luhhof Granite, 2 – Edenstetten Granite, 3 – Metten Granite, 4 – Central 1 Granite, 5 – Central 2 Granite, 6 – faults.
Age and isotopic data: Luhof Granite 321.6 3.8 Ma (Pb/Pb zircon), Metten Granite : 310 ± 5 Ma (K-Ar muscovite), 321.0 ± 3.8 Ma (Pb/Pb zircon) 324.2 ± 5.0 Ma (Pb/Pb zircon). Size and shape (in erosion level): oval shape cut-off by the fault (16 × 6 km). Geological environment: pearl gneisses and the Paragranodiorite Massif. Contact aureole: not described. Zoning: asymmetric compositional zoning of the internal structure. Mineralization: unknown.
Geological position: Bavarian Terrane of the Moldanubian Zone. Rock types: 1. Luhhof Granite (dark facies) – granoblastic fine-grained biotitemuscovite granite. 2. Edenstetten Granite (light facies). 3. Metten Granite medium-grained twomica granite (equivalent of the Mauthausen Granite). Central 1 Granite – medium-grained biotite granite. Central 2 Granite – coarse-grained biotite granite.
References KNOP, E. – FINGER, F. (2009): Zur Verbreitung des Eisgarner Granittyps im Bayerischen Wald. – SDGG, Heft 63 – GeoDresden 2009, p. 141. LIST, F. K. – OTT, W. D. (1982): Erläuterungen zur geologischen Karte von Bayern 1 : 25,000, Blatt Nr. 7043 Ruhmannsfelden, 55 pp. – München.
101
SCHREYER, W. (1967): Das Grundgebirge in der Umgebung von Deggendorf an der Donau. In: Führer zu geologisch-petrografischen Exkursionen. – Geologica bavar. 58, 77–85. SIEBEL, W. – SHANG, C. K. – RITTER, E. – ROHRMÜLLER, J. – BREITER, K. (2008): Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement constraints from geochemistry and zircon 207Pb/206Pb chronology. – J. Petrology 49, 1853-–1872.
Fig. 2.70. Metten Massif and Lallig Stock ABQ and TAS diagrams:1 – Metten Granite, 2 – Lalling Granite.
2.1.25. LALLING STOCK Geological position: Bavarian Terrane of the Moldanubian Zone. A member of the Mauthausen Group of the MCB. Rock types: Kaussing (Lalling) Granite – fine- to medium-grained biotite granite (equivalent of the Mauthausen Granite) associated with small volumes of dioritic or tonalitic intrusions. Size and shape (in erosion level): elliptical shape (3 × 6 km) with characteristic dyke-like contact with the country rocks (parallel to foliation of the country rocks). Age and isotopic data: 321.6 ± 5.6 Ma (Pb/Pb zircon), younger than Flaser Granite. Geological environment: diatexites and gneisses, pearl gneisses and Paragranodiorite Massif. Contact aureole: not described. Mineralization: not reported.
Fig. 2.71. Lalling Stock geological sketch-map (after Dürr and List 1969).
References DÜRR, S. – LIST, F. K. (1969): Erläuterungen zur geologischen Karte von Bayern 1 : 25,000, Blatt 7144 Lalling, 95 pp. – München. DÜRR, S. (1967): Exkursionsziele im Lallinger Winkel, Bayerischer Wald. – Geologica bavar. 58, 94–107. KNOP, E. – FINGER, F. (2009): Zur Verbreitung des Eisgarner Granittyps im Bayerischen Wald. – SDGG, Heft 63 – GeoDresden 2009, p. 141. SIEBEL, W. – SHANG, C. K. – RITTER, E. – ROHRMÜLLER, J. – BREITER, K. (2008): Two distinctive granite suites in the SW Bohemian Massif and their record of emplacement constraints from geochemistry and zircon 207Pb/206Pb chronology. – J. Petrology 49, 1853–1872.
102
2.1.26. FÜRSTENSTEIN COMPOSITE MASSIF (FCM) Contact aureole: contact interactions between gneiss and granitoids are generally insignificant. On the other hand granites cause feldspatization with sharp contact and hybridization of diorites. Zoning: Saldenburg Granite is slightly enriched in quartz and secondary muscovite along its margin. Mineralization: not reported.
Regional position: Bavarian Terrane of the Moldanubian Zone. The largest intrusive body of the Passau Forest area penetrating the Moldanubian series of migmatitic paragneisses. The massif comprises multiple intrusions of three distinct late-Variscan magmatic events (at 334–331, 322–321, and 318–312 Ma). Rock types: 1. Fürstenstein Diorite – quartz diorite and granodiorite (redwitzite?) – several varieties in the southern part of the massif – smaller bodies and blocks enclosed in surrounding granites. 2. Tittling Granite – medium-grained biotite granite to granodiorite. 3. Eberhardsreuth Granite – mediumgrained biotite granite, a small body in the northern part of the massif, rather similar to the previous type, with exception of presence of red-brown biotite and monazite. 4. Saldenburg Granite (105 km2 ) – porphyritic coarse-grained biotite granite (Kristallgranite I) comparable to the Weinsberg Granite-Granodiorite). 5. Hybrid Granite – rather heterogeneous rock, biotite partly altered to secondary muscovite. Size and shape (in erosion level): semicircular, 17 × 10 km (150 km2), more than half of the whole surface occupies the Saldenburg Granite (105 km2). Age and isotopic data: Fürstenstein Massif (10 samples, 316 ±14 Ma (Rb-Sr whole rock) Tittling Granite 324–321 Ma (Pb-Pb zircon), 335 ± 25 Ma (Pb-Pb zircon), 330 Ma (Rb-Sr biotite), corresponding to an early phase of Variscan orogeny. Saldenburg Granite (intrudes the Tittling Granite) and Eberhardsreuth Granite 316–312 Ma (Pb-Pb zircon), 318–312 Ma (U-Pb zircon). Saldenburg Granite 318–312 Ma (Pb-Pb zircon), 312 ± 5 Ma (K-Ar muscovite), 305 ± 18 Ma (Rb-Sr whole rock), Fürstenstein Diorite 334–332 Ma (Pb-Pb zircon), 321 Ma (U-Pb titanite), 300 ± 5 Ma (K-Ar biotite), Temporal (field) sequence: Fürstenstein Diorite → Tittling Granite → Eberhardsreuth Granite → Saldenburg Granite. Geological environment: biotite plagioclase gneiss (“Pearl gneiss”) at the western contact, migmatitic diatexites at the eastern contact.
Fig. 2.72. Fürstenstein Composite Massif geological sketch-map (adapted after Troll 1964). 1 – Fürstenstein Diorite, 2 – Saldenburg Granite, 3 –Two-mica Granite, 4 – Tittling and Eberhardsreuth Granites, 5 – faults.
103
References CHEN, F. – SIEBEL, W. (2004): Zircon and titanite geochronology of the Fürstenstein granite massif, Bavarian Forest, NW Bohemian Massif: Pulses of the late Variscan magmatic activity. – Eur. J. Mineral. 16, 777–788. DAVIS, G. L. et al. (1961): The ages of rocks and minerals, ages from the Moldanubian region of Bavaria. – Ann. Rep. Geophys. Labor. 1363, 1960–1961, Carnegie Institution, 197–199, Washington. KÖHLER, H. – FRANK, CH. – KÖNIGSBERGER, T. – SCHÖN, B. (2008): Isotopische (Sr, Nd) Charakterisierung und Datierung Varistischer Granitoide der Moldanubischen Kruste Nordostbayerns. In: Geochronologische, geochemische, petrographische ind mineralogische Untersuchungen im Grundgebirge Bayerns sowie kritische Betrachtungen zu Sr-Isotopenstandarts. – Geologica bavar. 110, Umwelt Spezial, 170–203. PROPACH, G. – BAUMANN, A. – SCHULZ-SCHMALSCHLÄGER, M. – GRAUERT, B. (2000): Zircon and monazite U-Pb ages of Variscan granitoid rocks and gneisses in the Moldanubian zone of eastern Bavaria, Germany. – Neu. Jb. Geol. Paläont., Mh. 6, 345–377. TROLL, G. (1964): Das Intrusivgebiet von Fürstenstein (Bayerischer Wald). – Geologica bavar. 52, 140 pp. TROLL, G. (1967): Steinbrüche im Intrusivgebiet von Fürstenstein. Führer zu geologischpetrographischen Exkursionen im Bayerischen Wald. – Geologica bavar. 58, 133–144. Fürstenstein Diorite Quartz-normal, sodic, peraluminous, mesocratic, S-type diorite 1361F 1362F 1363F 1364Fr 1365F SiO2 65.21 65.31 63.96 60.23 62.71 TiO2 1.02 0.75 0.45 0.94 0.64 Al2O3 15.40 16.48 18.85 18.02 17.62 Fe2O3 1.46 0.96 1.36 1.77 1.50 FeO 3.53 3.16 3.20 4.04 3.59 MnO 0.04 0.08 0.06 0.09 0.08 MgO 1.62 1.42 0.08 2.43 1.63 CaO 3.09 3.48 3.43 5.24 4.48 Na2O 3.29 3.55 3.82 3.26 3.73 K2O 3.98 3.23 3.48 2.59 2.44 P2O5 0.29 0.32 0.46 0.33 0.38 Mg/(Mg + Fe) 0.37 0.38 0.03 0.43 0.37 K/(K + Na) 0.44 0.37 0.37 0.34 0.30 Nor.Or 24.99 20.20 21.28 16.45 15.31 Nor.Ab 31.40 33.75 35.50 31.47 35.58 Nor.An 14.26 16.05 14.47 25.61 20.95 Nor.Q 20.63 21.43 19.54 15.30 18.40 Na + K 190.67 183.14 197.16 160.19 172.17 *Si 134.37 137.82 116.90 111.66 122.47 K-(Na + Ca) -76.76 -108.03 -110.54 -143.65 -148.45 Fe + Mg + Ti 120.43 100.67 69.23 150.51 117.25 Al-(Na + K + 2Ca) 1.55 16.38 50.69 6.80 14.07 (Na + K)/Ca 3.46 2.95 3.22 1.71 2.16 A/CNK 1.03 1.08 1.20 1.04 1.07
104
1366F 63.76 0.79 15.28 1.77 4.08 0.10 2.36 3.51 2.99 4.21 0.22 0.42 0.48 26.83 28.96 17.22 17.59 185.87 126.13 -69.69 147.45 -10.99 2.97 0.98
Fig. 2.73. Fürstenstein Composite Massif ABQ and TAS diagrams. 1 – Fürstenstein Diorite, 2 – Saldenburg Granite, 3 – Eberhardsreuth Granite, 4 – Tittling Granite, 5 – Hybrid Granite.
Tittling Granite: Quartz-normal, sodic, peraluminous, mesocratic, S-type, granite Eberhardsreuth Granite: Quartz-normal, sodic, peraluminous, mesocratic, I-type, granite Saldenburg Granite: Quartz-normal to -rich, sodic, peraluminous, leucocratic, S-type, granite
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
Tittling Eberhardsr. Saldenburg grTittl grTittl grEberh 1359Sal 1360Sal GW17Sal 68.42 70.63 69.17 71.91 74.53 70.64 0.52 0.25 0.46 0.38 0.22 0.41 16.30 15.64 16.01 14.43 14.08 14.57 1.10 0.72 0.49 0.48 0.79 0.57 2.13 1.82 2.31 1.88 1.32 1.88 0.07 0.05 0.06 0.05 0.03 n.d. 1.20 0.44 0.68 0.10 0.11 0.52 2.32 2.36 2.26 1.04 0.77 1.46 3.40 3.59 4.02 3.17 3.29 3.79 3.91 3.62 4.38 5.52 4.64 5.21 0.51 0.15 0.11 0.19 0.08 0.20 0.40 0.24 0.30 0.07 0.09 0.28 0.43 0.40 0.42 0.53 0.48 0.47 23.94 22.09 26.56 33.69 28.04 31.70 31.64 33.30 37.04 29.40 30.22 35.05 8.44 11.08 10.76 4.04 3.37 6.10 26.24 28.23 20.94 28.09 33.52 23.15 192.73 192.71 222.72 219.50 204.68 232.92 159.26 171.08 134.15 167.08 199.64 141.62 -68.07 -81.07 -77.03 -3.64 -21.38 -37.72 79.73 48.42 60.94 39.44 33.77 51.36 44.62 30.26 11.08 26.79 44.36 1.13 4.66 4.58 5.53 11.84 14.91 8.95 1.21 1.12 1.04 1.12 1.20 1.02
105
2.1.27. HAUZENBERG COMPOSITE MASSIF
Fig. 2.74. Hauzenberg Composite Massif geological sketch-map (adapted after Teipel et al. 2008). 1 – Hauzenberg Granite II, 2 – Hauzenberg Granodiorite, 3 – Hauzenberg Granite I, 4 – Mica Quartz Diorite, 5 – faults.
km thick. An estimation of the emplacement depth is 16 ± 2 km. Age and isotopic data: Hauzenberg Granite 1 300 ± 6 Ma, 290 ± 7 Ma (K-Ar biotite), 289 ± 5, Ma (K-Ar muscovite), 284 ± 3 and 313 ±3 Ma for muscovite and 293 ± 3 Ma (K-Ar biotite), 310 ± 3 and 308 ± 8 Ma (Rb-Sr biotite), 334 ± 13 Ma (Rb-Sr whole rock), Hauzenberg Granite II 312 ± 6 Ma (Rb-Sr biotite isochron), 320 ± 3 Ma (U-Pb zircon), 318, 320 and 329 ± 7 Ma (U-Pb monazite), Hauzenberg Granodiorite (younger intrusion) 284 ± 4, 294 ± 5 Ma (K-Ar biotite), 302 ± 13 Ma (Rb-Sr biotite), 317 ± 2, 318.6 ± 4.1 Ma (Pb-Pb zircon). Geological environment: biotite-plagioclase gneiss, migmatitic diatexites. Anatectic gneisses with intercalations of migmatitic amphibolites, calc-silicate rocks and granulites (Variegated group) of the Moldanubian Unit. Contact aureole: not studied (lack of outcrops). Zoning: Hauzenberg Granite II in the centre is surrounded by medium-grained granodiorite along the margin. Hauzenberg Granite I forms irregular bodies cut by the Hauzenberg Granite II. Mineralization: younger mineralization in the Hauzenberg Granodiorite and their pegmatites differs from those in the Hauzenberg Granite I and II by presence of quartz-pyrite-molybdenite and apatite-beryl mineral assemblages in vein cavities.
Regional position: Bavarian Terrane of the Moldanubian Zone. Located in Passau Forest, the largest granitoid body beside the Fürstenstein Composite Massif. Rock types: 1. Hauzenberg Granite I – fine- and medium-grained biotite granite (18 % of the body surface) forms the roof of the massif. Contacts towards the Hauzenberg Granite II are often subhorizontal. 2. Hauzenberg Granite II – medium- to coarse-grained two-mica granite (over 50 % of the surface area), main volume of the massif. Sporadic K-feldspar phenocrysts up to 5 cm in length. Halfgreisen’ Granite (a subtype developed from Hauzenberg Granite II) – phenocrystic fine-grained biotite – muscovite granite. Hausenberg Granite is an equivalent of the Mauthausen Granite. 3. Hauzenberg Granodiorite – medium-grained biotite granite to granodiorite forms an envelope on the east and south of the main oval body. 4. Mica Quartz Diorite – fine-grained biotite-hornblende quartz diorite forms irregular, elongated lenses (about 1 km long, dipping moderately to the N) in gneiss anatexites near the northern exocontact. Size and shape (in erosion level): Oval main body (80 km2) and several apophyses up to one
106
References BERGER, F. – KIEHM, S. – KLEIN, T. – ZULAUF, G. – DÖRR, W. (2002): Alter und Intrusionstiefe des Hauzenberger Granits (Passauer Wald, Böhmische Masse). – Erlanger geol. Abh., Sonderband 3, 9–10. CHRISTINAS, P. – KÖHLER, H. – MÜLLER-SOHNIUS, D. (1991): Rb-Sr – Altersbestimmungen an Intrusiva des Hauzenberger Massivs, Nordostbayern. – Geologica bavar. 96, 109–118. DOLLINGER, U. (1967): Das Hauzenberger Granitmassiv und seine Umrahmung. Führer zu geologisch-petrographischen Exkursionen im Bayerischen Wald. – Geologica bavar. 58, 145–168. DÖRR, W. – KIEHM, T. – ZULAUF, G. (2003): Age and emplacement depth of the Hauzenberg Pluton (Variscides, Germany). – J. Czech Geol. Soc. 48, 42. KLEIN, T. – KIEHM, S. – SIEBEL, W. – SHANG, C.K. – ROHRMÜLLER, J. – DÖRR, W. – ZULAUF, G. (2008): Age and emplacement of late-Variscan granites of the western Bohemian Massif with main focus on the Hauzenberg granitoids (European Variscides, Germany). – Lithos 102, 478–507. KNOP, E. – FINGER, F. (2009): Zur Verbreitung des Eisgarner Granittyps im Bayerischen Wald. – SDGG, Heft 63 – GeoDresden 2009, p. 141. KÖHLER, H. – FRANK, Ch. – KÖNIGSBERGER, T. – SCHÖN, B. (2008): Isotopische (Sr, Nd) Charakterisierung und Datierung Variszischer Granitoide der Moldanubischen Kruste Nordostbayerns. In: Geochronologische, geochemische, petrographische ind mineralogische Untersuchungen im Grundgebirge Bayerns sowie kritische Betrachtungen zu Sr-Isotopenstandarts. – Geologica bavar. 110, Umwelt Spezial, 170–203. OTT, W.-D. (1992): Geologische Karte von Bayern 1:25.000. Erläuterungen zum Blatt Nr. 7248/49 Jandelsbrunn, 72 pp. – München. TEIPEL, U. – GALADI-ENRIQUEZ, E. –GLASER, S. – KROENER, E. – ROHRMÜLLER, J. – GRASSMANN, E. – RICHTMANN, T. (2008): Erdgeschichte des Bayerischen Waldes. Geologische Karte des Bayerischen Waldes 1 : 150 000. – Bayer. Landesamt für Umwelt. Hauzenberg I and II Granites Quartz-normal, potassic, peraluminous, leucocratic, S-type, granite Hauzenberg Granite I Hauzenberg Granite II 258grha 242grha 241grha 259grha 260grha 262grha SiO2 73.70 74.50 73.10 73.80 72.30 71.80 TiO2 0.23 0.21 0.18 0.20 0.27 0.35 Al2O3 14.30 13.90 15.10 14.40 14.10 14.20 Fe2O3 0.26 0.34 0.05 0.38 0.44 0.46 FeO 0.97 0.94 1.14 1.00 1.26 1.71 MnO 0.01 0.02 0.02 0.03 0.02 0.03 MgO 0.35 0.32 0.37 0.36 0.52 0.75 CaO 0.79 0.68 0.84 0.85 0.86 1.69 Na2O 3.40 3.33 3.59 3.45 2.68 3.12 K2O 5.47 5.40 5.40 5.20 5.60 4.71 P2O5 0.18 0.15 0.21 0.15 0.24 0.13 Mg/(Mg + Fe) 0.34 0.31 0.35 0.32 0.36 0.38 K/(K + Na) 0.51 0.52 0.50 0.50 0.58 0.50 Nor.Or 32.98 32.56 32.44 31.33 34.58 29.00 Nor.Ab 31.16 30.51 32.78 31.59 25.15 29.20 Nor.An 2.79 2.43 2.83 3.29 2.81 7.85 Nor.Q 29.06 30.66 27.30 29.59 31.60 29.19 Na + K 225.86 222.11 230.50 221.74 205.38 200.69 *Si 173.62 183.11 165.06 177.58 185.50 177.56 K-(Na + Ca) -7.66 -4.93 -16.17 -16.08 17.08 -30.81 Fe + Mg + Ti 28.33 27.92 27.94 30.13 39.35 52.57
107
Al-Na + K + 2Ca) (Na + K)/Ca A/CNK
26.79 16.03 1.12
26.60 18.32 1.12
36.07 15.39 1.16
30.73 14.63 1.14
40.84 13.39 1.20
17.90 6.66 1.08
Fig. 2.75. Hauzenberg Massif ABQ and TAS diagrams. 1 – Hauzenberg Granite I, 2 – Hauzenberg Granite II, 3 – Hauzenberg Granodiorite
2.1.28. NEUSTIFT MASSIF
Fig. 2.76. Neustift Massif geological sketch-map (after Troll 1964). 1 – Schärding Granite-Granodiorite, 2 – Platte-Gurlarn Granodiorite, 3 – Neustift Granite.
granodiorite (without cordierite and muscovite). 5. “Saure” Dyke Granite – fine-grained cordierite granite (not shown in the map). Size and shape (in erosion level): a set of large outcrops arranged in NW-SE direction over the area of 70 km × 10 km (100 km2) SW of Danube river. Age and isotopic data: Peuerbach and Schärding Granites: 316–319 Ma (U-Pb monazite). Platte-Gurlarn Granite: 311 ± 2 Ma (Pb-U monazite). Schärding and Neustift Granites are younger than the Platte-Gurlarn Granite.
Geological position: Moldanubian Zone (Bavarian Terrane). Rock types: 1. Platte-Gurlarn Granodiorite – mediumto coarse-grained biotite-cordierite granodiorite. 2. Neustift Granite – fine- to mediumgrained biotite-muscovite granite. 3. Schärding Granite-Granodiorite – fineto medium-grained biotite granite with cordierite and muscovite. 4. Peuerbach Granite (coarse-grained variety of the Schärding Granite) – foliated coarse-grained biotite granite to
108
Zoning: not reported. Mineralization: unknown.
Geological environment: transitional contacts to the homogeneous granodioritic cordierite pearl gneiss or nebulitic cordieritebearing migmatite.
Fig. 2.77. Neustift Massif ABQ and TAS diagrams. 1 – Platte-Gurlarn Granodiorite, 2 – Neustift Granite, 3 – Schärding Granite-Granodiorite, 4 – dyke granite.
Neustift Granite Quartz-normal to -rich, potassic, peraluminous, mesocratic, S-type, granite Plate-Gurlarn Granodiorite Quartz-normal to rich, sodic, peraluminous, mesocratic, S-type, granodiorite Schärding Granite-Granodiorite Quartz-normal to -rich, sodic, peraluminous, mesocratic, S-type, granodiorite 1grNeustift 2grNeustift 3Plate/Gurlarn 4Plate/Gurlarn 5grSchärding granite granodiorite SiO2 72.80 72.00 65.58 66.19 67.02 TiO2 0.35 0.25 0.80 0.34 0.86 Al2O3 12.82 14.87 15.63 16.98 15.72 Fe2O3 2.49 0.38 0.70 1.35 0.59 FeO 1.34 1.31 4.54 3.55 5.04 MnO 0.02 0.07 0.08 0.08 0.10 MgO 0.65 0.73 1.87 1.84 1.96 CaO 0.66 0.76 1.86 2.02 1.40 Na2O 2.79 3.18 3.02 5.90 2.55 K2O 5.36 5.51 2.99 0.70 3.97 P2O5 0.25 0.19 0.17 0.34 0.10 Mg/(Mg + Fe) 0.24 0.43 0.39 0.40 0.38 K/(K + Na) 0.56 0.53 0.39 0.07 0.51 Nor.Or 32.90 33.61 19.50 4.33 25.53 Nor.Ab 26.02 29.48 29.89 55.51 24.96 Nor.An 1.69 2.60 8.94 8.17 6.85 Nor.Q 33.09 28.13 27.90 20.20 28.18 Na + K 203.84 219.61 160.83 205.22 166.58 *Si 192.20 170.80 180.91 138.04 188.56 K-(Na + Ca) 12.00 0.82 -66.95 -211.46 -23.16 Fe + Mg + Ti 70.37 44.25 128.53 116.17 136.93 Al-(Na + K + 2Ca) 24.38 45.30 79.79 56.20 91.96 109
(Na + K)/Ca 17.32 16.20 4.85 5.71 6.65 A/CNK 1.14 1.20 1.37 1.24 1.44 Trace elements (ppm): Platte-Gurlarn Granodiorite – Ba 542 and 967, Co 16, Cr 36, Cu 32, Ga 21, Ni 52, Pb 34, Rb 123 and 217, Sc 17, Sr 291, V 112, Y 39, Zn 63, Zr 197 and 302, Neustift Granite – Ba 696, Cu 19, Ga 20, Ni 15, Rb 388, Sr 162, V 4, Y 56, Zn 121, Zr 168, Schärding Granite-Granodiorite – Ba 1012, Co 12, Cr 170, Cu 52, Ga 24, Ni 50, Rb 158, Sr 216, V 78, Y 78, Zn 68, Zr 250.
References BAUBERGER, W. – UNGER, H.J. (1984): Erläuterungen zur geologischen Karte von Bayern 1 : 25,000, Blatt Nr. 7446 Passau, 175 pp. – München. FUCHS, G. – MATURA, A. (1976): Zur Geologie des Kristallins der südlichen Böhmischen Masse. – Jb. Geol. Bundesanst. 119, 1–43. HORNINGER, G. (1936): Der Schärdinger Granit. – Tschermaks mineral. petrogr. Mitt. 10, 528–534. PROPACH, G. – BAUMANN, A. – SCHULZ-SCHMALSCHLÄGER, M. – GRAUERT, B. (2000): Zircon and monazite U-Pb ages of Variscan granitoid rocks and gneisses in the Moldanubian zone of eastern Bavaria, Germany. – Neu. Jb. Geol. Paläont., Mh. 6, 345–377. SCHREYER, W. (1967): Geologie und Petrographie der Umgebung von Vilshofen/Niederbayern. In: Fűhrer zu geologisch-petrografischen Exkursionen im Bayerischen Wald. – Geologica bavar. 58, 114–132. TROLL, G. (1967): Geologische Übersichtskarte des Bayerischen Waldes 1:100 000. In: Führer zu geologisch-petrografischen Exkursionen im Bayerischen Wald. – Geologica bavar. 58, 108–113.
110
b. Autochthonous plutons Diatexite migmatites form a major rock formation in the Regensburg Forest part of the Moldanubicum, in the Monotonous series (Siebel et al. 2006). These rocks were derived from metasedimentary precursors of mainly greywacke composition. Within the diatexites numerous discrete, kilometre-scale bodies of granitoids (granodiorites, biotite granites, two-mica granites) and oblong bodies of augengneisses, dominantly of granodioritic composition, often characterized by large potash feldspars, occur on both sides of the tectonic line of the “Pfahl “ zone in the western part of the Moldanubicum. The main mafic mineral north of this line is biotite. Gneisses in the south also contain pyroxene of diopside composition, cummingtonite, and green hornblende. Although several processes (magmatic, metamorphic and metasomatic) seem to have contributed to the formation of these rocks, they are generally considered by most authors to be dominantly of magmatic origin (e.g. Siebel et al. 2005). U-Pb and Pb-Pb geochronologic data (zircon, monazite) show that all these granitoids were formed at 322–325 Ma, i. e. when peak metamorphic conditions prevailed which lead to the formation of the diatexites (Siebel et al. 2006). The Pfahl zone played a major role in localizing multiple granitoid intrusions. The intrusion of palites (327–342 Ma) is followed by sheared granitic dykes (326–331 Ma) and emplacement of granodiorites and undeformed granites (321–329 Ma). The composition of the diatexites overlaps with the field of the biotite granite and two-mica granites. Textural observations show that the homogenous diatexites represent highly granitized rocks that did not segregate from the source. This observation might suggest that these granitoids can be interpreted as an intrusive equivalent of the diatexites. Textural and isotopic comparison supports a genetic granite-diatexite link (Siebel et al. 2006). Finger et al. (2007) present the theory that the so-called “Palites” of the Bavarian Forest belong to the Durbachite intrusions. References BÜTTNER, S. H. (1999): The geometric evolution of structures in granite during continuous deformation from magmatic to solid-state conditions: An example from the central European Variscan Belt. – Amer. Mineralogist 84, 1781–1792. FINGER, F. – GERDES, A. – JANOUŠEK, V. – RENÉ, M. – RIEGLER, G. (2007): Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and Moravo-Moldanubian tectonometamorphic phases. – J. Geosci. 52, 9–28. FINGER, F. – GERDES, A. – RENÉ, M. – RIEGLER, G. (2009): The Saxo-Danubian Granite Belt: magmatic response to post-collisional delamination of mantle lithosphere below the south-western sector of the Bohemian Massif (Variscan orogen). – Geol. carpath. 60, 3, 205–212. KÖHLER, H. – PROPACH, G. – TROLL, G. (1989): Exkursion zur Geologie, Petrographie und Geochronologie des NE-Bayerischen Grundgebirges. – Ber. Dtsch. Mineral. Gesell. 1, 1–84. PROPACH, G. – BAUMANN, A. – SCHULZ-SCHMALSCHLÄGER, M. – GRAUERT, B. (2000): Zircon and monazite U-Pb ages of Variscan granitoid rocks and gneisses in the Moldanubian zone of eastern Bavaria, Germany. – Neu. Jb. Geol. Paläont., Mh. 6, 345–377. PROPACH, G. – KLING, M. – LINHARDT, E. – ROHRMÜLLER, J. (2008): Reste eines Inselbogens in der Moldanubischen Zone. In: Geochronologische, geochemische, petrographische ind mineralogische Untersuchungen im Grundgebirge Bayerns sowie kritische Betrachtungen zu Sr-Isotopenstandarts. – Geologica bavar. 110, Umwelt Spezial, 343–377. SIEBEL, W. – REITTER, E. – WENZEL, T – BLAHA, U. (2005): Sr isotope systematics of Kfeldspars in plutonic rocks revealed by the Rb-Sr microdrilling technique. – Chem. Geol. 22, 183– 199. SIEBEL, W. – THIEL, M. – CHEN, F. (2006): Zircon geochronology and compositional record of late- to post-kinematic granitoids associated with the Bavarian Pfahl zone (Bavarian Forest). – Mineral. Petrology 86, 45–62. STEINER, L. (1972): Alkalisierung im Grundgebirge des Bayerischen Waldes. – Neu. Jb. Mineral., Abh. 116, 132–166. TROLL, G. (1967): Die blastokataklastischen Kristallingesteine der Stallwanger Furche, Bayerischer Wald. – Geologica bavar. 58, 22–33.
111
Fig. 2.78. Autochthonous granitoid massifs of the Moldanubian Composite Batholith sketch-map. 1 – Allochthonous (intrusive) granitoids (Upper Carboniferous), Autochthonous granitoids: 2 – Flaser Massif, 3 – Paragranodiorite Massif, 4 – Palite Massif, 5 – Quartz diorite Stocks, 6 – faults.
2.1.29. PALITE MASSIF
Fig. 2.79. Palite Massif geological sketch-map (after Steiner 1972). 1 – “Footwall Stockwork” – hypersthene gneiss, 2 – “Hangingwall Stockwork” – metagranodiorite to “augengneiss”, 3 – Diatexites, 4 – locality of rock dykes, 5 – major faults.
The intrusion is divided into two parts – “hangingwall stockwork” consisting of Palite – Saunstein Granodiorite (amphibole-bearing gneiss) and “footwall stockwork” comprised by Palite II – (hypersthene gneiss), porphyritic granite and Core Gneiss. Rock types:
Geological position: Monotonous Group (Bavarian Terrane of the Moldanubian Zone), along the Bavarian Quartz “Pfahl”. These granitoids are supposed to be a product of anatexis of Variscan age. Finger et al. (2007) present the theory that the so-called „Palites“ of the Bavarian Forest belong to the Durbachite intrusions.
112
and basalts from an island arc. These volcanics belong to the same magmatic event which produced the precursors of the palites immediately to the north). Age and isotopic data: Palite rocks emplaced in the shear zone (the Pfahl zone) at 334 ± 3, 334 ± 1.1 Ma (Pb-Pb zircon), 327–342 Ma (UPb zircon), 474 ± 18 Ma (Rb-Sr whole rock), 310 ± 7 Ma (Rb-Sr biotite and apatite – cooling age), Saunstein Granodiorite 315 ± 3.3 and 311.0 ± 4.9 Ma (U-Pb titanite), 335–324 Ma (U-Pb zircon). Individual K-feldspar crystals from the Saunstein Granodiorite yield Permo-Carboniferous ages 15 to 30 Ma younger than the crystallisation are of the host rock. Rock dykes 322 ± 5 to 331 ± 9 Ma (U-Pb zircon). Geological environment: The Pfahl zone separates anatectic Pearl gneisses and sillimanite gneisses on its southwestern side from migmatitic cordierite-sillimanite gneisses to the northeast. Contact aureole: not described. Mineralization: not reported.
1. Palite Metagabbro – feldspatic hornblende-diopside gabbro (small lenslike bodies in Palite I and II). 2. Palite I – Saunstein Granodiorite ± porphyritic (megacrystic) ± cataclastic and blastomylonitic coarse-grained biotite-hornblende granodiorite to “augengneiss”. 3. Kirchdorf im Wald Syenite – porphyritic (megacrystic) coarse-grained biotite syenite ( the rock type belongs to the same rock unit as the Saunstein Granodiorite). 4. Palite II Gneiss – hypersthene gneiss. 5. Diatexite – medium-grained hornblende – bearing quartzdiorite, quartzmonzonite to granodiorite. 6. Rock dykes (3–15 m wide) – intermediate to felsic composition (monzogranite). Size and shape (in erosion level): 5–7 km wide and 45 km long intrusion along the southwestern part of the Pfahl zone. A zone of amphibole-bearing diatexites measures 15 by 30 km (a series of former dacites, andesites
References BÜTTNER, S. H. (1999): The geometric evolution of structures in granite during continuous deformation from magmatic to solid-state conditions: An example from the central European Variscan Belt. – Amer. Mineralogist 84, 1781–1792. CHRISTINAS, P. – KÖHLER, H. – MÜLLER-SOHNIUS, D. (1991): Altersstellung und Genese der Palite des Vorderen Bayerischen Waldes (Nordostbayern). – Geologica bavar. 96, 87–107. FINGER, F. – GERDES, A. – JANOUŠEK, V. – RENÉ, M. – RIEGLER, G. (2007): Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and Moravo-Moldanubian tectonometamorphic phases. – J. Geosci. 52, 9–28. FISCHER, G. – TROLL, G. (1973): Bauplan und Gefügeentwicklung metamorpher und magmatischer Gesteine des Bayerischen Waldes. – Geologica bavar. 68, 7–44. KÖHLER, H. – FRANK, CH. – KÖNIGSBERGER, T. – SCHÖN, B. (2008): Isotopische (Sr, Nd) Charakterisierung und Datierung Varistischer Granitoide der Moldanubischen Kruste Nordostbayerns. In: Geochronologische, geochemische, petrographische ind mineralogische Untersuchungen im Grundgebirge Bayerns sowie kritische Betrachtungen zu Sr-Isotopenstandarts. – Geologica bavar. 110, Umwelt Spezial, 170–203. KÖHLER, H. – PROPACH, G. – TROLL, G. (1989): Exkursion zur Geologie, Petrographie und Geochronologie des NE-bayrischen Grundgebirges. – Ber. Dtsch. Mineral. Gesell. 1, 1–84. OTT, W. D. (1983): Erläuterungen zur geologischen Karte von Bayern 1 : 25,000, Blatt 6943 Viechtach, 71 pp. – München. PROPACH, G. – BAUMANN, A. – SCHULZ-SCHMALSCHLÄGER, M. – GRAUERT, B. (2000): Zircon and monazite U-Pb ages of Variscan granitoid rocks and gneisses in the Moldanubian zone of eastern Bavaria, Germany. – Neu. Jb. Geol. Paläont., Mh. 6, 345–377. PROPACH, G. – KLING, M. – LINHARDT, E. – ROHRMÜLLER, J. (2008): Reste eines Inselbogens in der Moldanubischen Zone. In: Geochronologische, geochemische, petrographische ind mineralogische Untersuchungen im Grundgebirge Bayerns sowie kritische Betrachtungen zu Sr-Isotopenstandarts. – Geologica bavar. 110, Umwelt Spezial, 343–377.
113
SIEBEL, W. – BLAHA, U. – CHEN, F. – ROHRMÜLLER, J. (2005): Geochronology and geochemistry of a dyke-host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif. – Int. J. Earth Sci. 94, 8–23. SIEBEL, W. – REITTER, E. – WENZEL, T – BLAHA, U. (2005): Sr isotope systematics of Kfeldspars in plutonic rocks revealed by the Rb-Sr microdrilling technique. – Chem. Geol. 22,183– 199. SIEBEL, W. – THIEL, M. – CHEN, F. (2006): Zircon geochronology and compositional record of late- to post-kinematic granitoids associated with the Bavarian Pfahl zone (Bavarian Forest). – Mineral. Petrology 86, 45–62. STEINER, L. (1969): Kalifeldspatisierung in den Palitgesteinen des Pfahlgebietes. – Geologica bavar. 60, 163–166. STEINER, L. (1972): Alkalisierung im Grundgebirge des Bayerischen Waldes. – Neu. Jb. Mineral., Abh. 116, 132–166. TEIPEL, U. (2003): Obervendischer und unterordovizischer Magmatismus im Bayerischen Wald. – Münchner Geol. Hefte A 33, 1-98. TROLL, G. (1967): Die blastokataklastischen Kristallingesteine der Stallwanger Furche, Bayerischer Wald. – Geologica bavar. 58, 22–33.
Fig. 2.80. Palite Massif ABQ and TAS diagrams. 1 –Palite Metagabbro, 2 – Palite I – augen gneiss and amphibole gneiss, 3 – Palite II - hypersthene gneiss, 4 – granitic dykes.
Palite Metagabbro Quartz-poor, sodic/potassic, metaluminous, melanocratic, I-type, gabbro n=7 Median Min Max QU1 SiO2 46.84 42.98 49.60 43.50 TiO2 1.98 1.20 4.71 1.68 Al2O3 17.03 14.05 18.63 16.15 Fe2O3 1.75 0.48 3.60 1.55 FeO 7.40 6.89 7.79 7.10 MnO 0.15 0.07 0.20 0.14 MgO 8.27 5.68 10.74 7.50 CaO 9.46 5.89 14.36 6.38 Na2O 2.60 1.40 4.65 1.84 K2O 3.67 0.60 4.32 1.20 P2O5 0.68 0.27 2.29 0.30 Mg/(Mg + Fe) 0.62 0.55 0.69 0.56 K/(K + Na) 0.46 0.18 0.67 0.23 Nor.Or 23.26 3.76 26.65 7.92 Nor.Ab 26.09 13.13 41.64 17.53
114
QU3 47.26 2.38 17.59 1.76 7.50 0.16 8.87 9.55 2.85 4.00 0.95 0.62 0.47 24.38 27.14
Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
27.24 0.00 163.70 10.36 -127.81 365.12 -132.82 1.14 0.79
21.31 0.00 72.12 -66.20 -302.70 281.21 -271.27 0.28 0.51
72.95 0.00 199.10 52.26 -114.65 413.01 -25.26 1.71 0.97
25.52 0.00 109.38 -18.31 -275.05 337.99 -218.40 0.64 0.64
33.25 0.00 169.89 19.36 -126.71 371.73 -128.66 1.14 0.81
Palite I –Saunstein Granodiorite Quartz-normal, sodic/potassic, mostly peraluminous, mesocratic, I/S type, granodiorite Aug Aug2 Aug3 Aug Aug5 SiO2 65.50 64.50 63.12 54.90 64.00 TiO2 0.65 0.76 0.78 1.24 0.93 Al2O3 16.50 17.32 17.32 18.98 17.11 Fe2O3 0.24 0.49 0.74 1.60 0.18 FeO 3.25 3.20 3.10 3.90 4.60 MnO 0.05 0.05 0.04 0.08 0.05 MgO 1.31 1.51 1.94 2.71 0.93 CaO 3.36 3.36 3.37 4.13 3.40 Na2O 3.16 3.12 3.00 4.00 3.09 K2O 4.73 4.15 4.77 5.93 4.15 P2O5 0.07 0.28 0.22 0.75 0.37 Mg/(Mg + Fe) 0.40 0.42 0.48 0.47 0.26 K/(K + Na) 0.50 0.47 0.51 0.49 0.47 Nor.Or 29.57 26.00 30.05 36.04 26.20 Nor.Ab 30.02 29.71 28.72 36.94 29.65 Nor.An 17.15 15.72 16.28 15.99 15.42 Nor.Q 17.52 19.50 15.96 0.00 19.20 Na + K 202.40 188.80 198.09 254.99 187.83 *Si 121.04 129.09 112.03 0.49 126.81 K-(Na + Ca) -61.46 -72.48 -55.62 -76.82 -72.23 Fe + Mg + Ti 88.92 97.69 110.35 157.14 101.04 Al-(Na + K + 2Ca) 1.79 31.50 21.85 -29.55 26.92 (Na + K)/Ca 3.38 3.15 3.30 3.46 3.10 A/CNK 1.01 1.13 1.09 0.97 1.12 Palite I – Saunstein Granodiorite - Ba 1927, Cr 102, Ga 23, Ni 36, Nb 19, Pb 32, Rb 216, Sr 757, Th 5, U 1, V 114, Y 39, Zn 81, Zr 412, Cl 452, Sc 25, Co 13, La 73, Ce 162, Nd 77, (Finger et al. 2007). Palite Massif – dykes Quartz-normal, mostly potassic, peraluminous, mesocratic, I/S type, granodiorite K-gr1 Kgr2 Kgr3 Kgr4 Kgr5 SiO2 66.06 67.90 67.36 67.48 60.40 TiO2 0.70 0.66 0.57 0.26 0.81 Al2O3 16.23 15.76 16.06 16.28 18.64 Fe2O3 0.11 n.d. n.d. 0.01 0.53 FeO 2.99 2.71 2.76 2.20 4.78 MnO 0.02 0.01 0.01 0.01 0.10 MgO 0.86 0.66 0.60 0.42 2.57
115
Kgr6 59.06 1.21 18.64 0.47 6.00 0.11 1.21
CaO Na2O K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
2.17 3.00 5.93 0.30 0.33 0.57 36.96 28.42 9.27 18.45 222.72 117.97 -9.60 73.13 18.62 5.76 1.09
2.03 3.00 5.79 0.22 0.30 0.56 35.84 28.22 9.03 21.16 219.74 132.82 -10.07 62.39 17.35 6.07 1.08
2.24 3.09 5.79 0.26 0.28 0.55 35.80 29.04 9.84 19.76 222.65 124.42 -16.72 60.47 12.85 5.57 1.06
2.30 3.08 6.17 0.16 0.25 0.57 38.01 28.84 10.80 18.55 230.39 116.63 -9.40 44.44 7.28 5.62 1.03
3.86 3.94 2.76 0.39 0.46 0.32 17.63 38.26 17.93 12.67 185.74 103.46 -137.37 147.12 42.64 2.70 1.16
Fig. 2.81. Palite Massif ABQ and TAS diagrams. 1 – diatexites.
Diatexites n=9
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or
Median 59.52 0.86 16.90 7.02 0.00 0.09 3.01 4.78 3.65 2.88 0.24 0.49 0.37 18.30
Min 55.24 0.47 15.71 4.76 0.00 0.06 2.42 2.74 2.98 1.47 0.05 0.44 0.16 9.07
Max 64.68 1.61 20.77 9.73 0.00 0.24 4.05 5.55 5.21 3.91 0.62 0.52 0.44 24.48
116
QU1 56.74 0.79 16.62 5.19 0.00 0.08 2.92 3.77 3.61 2.30 0.23 0.45 0.28 14.27
QU3 62.82 1.00 18.26 7.59 0.00 0.13 3.51 4.87 4.00 3.60 0.30 0.51 0.40 22.85
3.22 3.17 4.77 0.36 0.25 0.50 30.61 30.92 14.78 10.73 203.57 85.80 -58.44 134.63 47.64 3.55 1.18
Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
34.73 21.97 12.22 187.04 86.97 -121.61 182.06 -2.81 2.18 0.99
28.77 14.19 2.75 157.31 41.15 -235.88 125.57 -20.59 1.93 0.94
48.86 27.18 24.85 202.95 162.34 -83.87 234.93 53.48 3.28 1.21
34.25 17.63 10.64 174.54 77.87 -157.06 148.00 -7.99 2.01 0.98
38.23 23.77 15.75 199.34 108.96 -106.90 185.53 0.66 2.90 1.00
2.1.30. PARAGRANODIORITE MASSIF ± 2, 329 ± 6 Ma (U-Pb zircon), 331 ± 9 Ma (Rb-Sr whole rock), Kollnberg Granodiorite 320 Ma (U-Pb zircon). The coarse-grained Paragranodiorite facies intruded the finegrained facies. The Patersdorf Granite intrudes the Paragranodiorite within a short time interval 325 ± 3 Ma and 326 ± 3 Ma (Pb-U zircon) is best estimate for the time of emplacement and crystallization of Paragranodiorite. Geological environment: the Pfahl zone separates anatectic pearl gneisses and sillimanite gneisses on its southwestern side from migmatitic cordierite-sillimanite gneisses to the northeast. Contact aureole: transitions to the Pearl gneisses and the Palite are described. Mineralization: not reported.
Geological position: Monotonous Group (Bavarian Terrane of the Moldanubian Zone), along the Bavarian Quartz “Pfahl”. These granitoids are supposed to be magmatic products of in situ anatexis of metapelites during the Variscan high-grade metamorphism. Rock types: 1. Paragranodiorite s.s. (“Granodiorite”) – mediumto fine-grained biotite granodiorite 2. Ödwies Granodiorite – medium-grained biotite granodiorite 3. Kollnburg Granodiorite – mediumgrained biotite granodiorite Size and shape (in erosion level): up to 3.5 km wide and 43 km long belt of oval bodies in the southwestern part of the Pfahl zone. Age and isotopic data: Ödwies Granodiorite: 318–320 Ma (U-Pb zircon), 326 Paragranodiorite
Quartz- normal, potassic, very strongly peraluminous, mesocratic, S-type, granite (locality Bernhardsberg) 4-paragranodiorite 65.82 SiO2 0.94 TiO2 15.71 Al2O3 5.87 Fe2O3tot n.d. FeO 0.08 MnO 1.86 MgO 2.18 CaO 2.39 Na2O 4.10 K2O 0.64 P2O5 Mg/(Mg + Fe) 0.38 K/(K + Na) 0.53 Nor.Or 25.73 Nor.Ab 22.79 Nor.An 7.01 Nor.Q 30.11
117
Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
164.18 175.06 -28.95 131.48 66.59 4.22 1.36
References BÜTTNER, S. H. (1999): The geometric evolution of structures in granite during continuous deformation from magmatic to solid-state conditions: An example from the central European Variscan Belt. – Amer. Mineralogist 84, 1781–1792. DÜRR, S. – LIST, F. K. (1969): Erläuterungen zur geologischen Karte von Bayern 1:25,000, Blatt Nr. 7144 Lalling, 95 pp. – München. LIST, F. K. (1969): Ausbildung und Entstehung des Paragranodiorits nödlich von Deggendorf (südlicher Bayerischer Wald). In: Arbeiten aus dem ostbayerischen Grundgebirge. – Geologica bavar. 60, 95–132. LIST, F. K. – OTT, W. D. (1982): Erläuterungen zur geologischen Karte von Bayern 1:25,000, Blatt Nr. 7043 Ruhmannsfelden, 55 pp. – München. OTT, W. D. (1983): Erläuterungen zur geologischen Karte von Bayern 1:25,000, Blatt Nr. 6943 Viechtach, 71 pp. – München. OTT, W. D. (1979): Erläuterungen zur geologischen Karte von Bayern 1:25,000, Blatt Nr. 6942 St. Englmar, 65 pp. – München. PROPACH, G. – BAUMANN, A. – SCHULZ-SCHMALSCHLÄGER, M. – GRAUERT, B. (2000): Zircon and monazite U-Pb ages of Variscan granitoid rocks and gneisses in the Moldanubian zone of eastern Bavaria, Germany. – Neu. Jb. Geol. Paläont., Mh. 6, 345–377. PROPACH, G. – SPIEGEL, W. – SCHULZ-SCHALSCHLÄGER, M. – WÜNSCH, W. – HECHT, L. (1991): Die Genese des Ödwieser Granodiorits. – Geologica bavar. 96, 119–138. SCHREYER, W. (1967): Geologie und Petrographie der Umgebung von Vilshofen/Niederbayern. In: Führer zu geologisch-petrografischen Exkursionen im Bayerischen Wald. – Geologica bavar. 58, 114–132. SIEBEL, W. – THIEL, M. – CHEN, F. (2006): Zircon geochronology and compositional record of late- to post-kinematic granitoids associated with the Bavarian Pfahl zone (Bavarian Forest). – Mineral. Petrology 86, 45–62. 2.1.31. FLASER MASSIF Age and isotopic data: the Flaser Granite is younger than the Palite (xenoliths of Palite within the Flaser Granite). Flaser Granite – 316 ± 6 Ma (Rb-Sr whole rock). Geological environment: the Pfahl zone separates anatectic pearl gneisses and sillimanite gneisses on its southwestern side from migmatitic cordierite-sillimanite gneisses to the northeast. Contact aureole: Flaser Granite passes into the Pearl gneiss. Mineralization: not reported.
Geological position: Monotonous Group (Moldanubian Zone), along the Bavarian Quartz “Pfahl”. These granitoids are supposed to be a product of in situ anatexis of Variscan age. 1. Flaser Granite – medium-grained ± foliated biotite granite. 2. Winz Granite – diaphtoretic mylonitized porphyroblastic biotite granite (Danube valley). Size and shape (in erosion level): up to 3.5 km wide and 43 km long belt of oval bodies in the southwestern part of the Pfahl zone.
118
References BÜTTNER, S. H. (1999): The geometric evolution of structures in granite during continuous deformation from magmatic to solid-state conditions: An example from the central European Variscan Belt. – Amer. Mineralogist 84, 1781–1792. CHRISTINAS, P. – KÖHLER, H. – MÜLLER, D. (1991): Altersstellung und Genese der Palite des Vorderen Bayerischen Waldes (Nordostbayern). – Geologica bavar. 96, 87–107. DÜRR, S. (1967): Exkursionziele im Lallinger Winkel, Bayerischer Wald. Rock types. In: Führer zu geologisch-petrografischen Exkursionen im Bayerischen Wald. – Geologica bavar. 58, 94–107. LIST, F. K. – OTT, W. D. (1982): Erläuterungen zur geologischen Karte von Bayern 1:25,000, Blatt Nr. 7043 Ruhmannsfelden, 55 pp. – München. PROPACH, G. – BAUMANN, A. – SCHULZ-SCHMALSCHLÄGER, M. – GRAUERT, B. (2000): Zircon and monazite U-Pb ages of Variscan granitoid rocks and gneisses in the Moldanubian zone of eastern Bavaria, Germany. – Neu. Jb. Geol. Paläont., Mh. 6, 345–377. SCHREYER, W. (1967): Das Grundgebirge in der Umgebung von Deggendorf an der Donau. In: Führer zu geologisch-petrografischen Exkursionen im Bayerischen Wald. – Geologica bavar. 58, 77–93. TROLL, G. (1967): Die Winzergesteine am Donauer Anbruch. In: Führer zu geologischpetrografischen Exkursionen im Bayerischen Wald. – Geologica bavar. 58, 108–114.
119
III. Dyke Swarms The most of the dyke swarms in the periphery or within the Moldanubian Composite Batholith are reported as its subvolcanic satellite suite mostly of Permian age. They composition vary in a large range from leucogranite to diorite. The Pelhřimov Dyke Swarm within the Pelhřimov circular structure is interpreted as an explosive volcanotectonic structure indicating of a subsurface intrusive body. According to Vrána (1993 and 2004) the Ševětín and Sušice dyke Swarms have mineralogical, chemical and isotopic indications of a possible impact melt origin. Main dyke swarms of the Moldanubian Composite Batholith are: 1. Pelhřimov Dyke Swarm 2. Ševětín Dyke Swarm 3. Kaplice Dyke Swarm 4. Blanice Graben Dyke Swarm 5. Passau Forest Dyke Swarm 6. Kvilda Dyke Swarn 7. Sušice Dyke Swarm 8. Šejby Dyke Swarm 9. Litschau Dyke Swarm 2.1.32.1. PELHŘIMOV DYKE SWARM dyke swarm of granite porphyry indicating of a subsurface intrusive body. Age and isotopic data: probably Upper Permian in age, 228 Ma (K-Ar whole rock). Geological environment: migmatized gneiss and biotite-sillimanite gneiss. Contact aureole: albitization, chloritization and muscovitization. Mineralization: fluorite sub-economic mineralization.
Geological position: the Moldanubian Zone. Rock types: Pelhřimov Granite Porphyry – felsic alkali-feldspar granite porphyry (corresponds to composition of tin-bearing granite). Size and shape (in erosion level): the Pelhřimov circular structure (of 9.6 km in diameter) is interpreted as explosive volcanotectonic structure associated with a Pelhřimov Granite Porphyry Quartz rich, sodic, peraluminous, leucocratic, S-type, granite Pelhřim1 SiO2 73.72 TiO2 0.04 Al2O3 15.15 Fe2O3 0.31 FeO 0.55 MnO 0.04 MgO 0.14 CaO 0.45 Na2O 3.82 K2O 4.21 P2O5 0.36 Li2O 0.03 Mg/(Mg + Fe) 0.22 K/(K + Na) 0.42 Nor.Or 25.44 Nor.Ab 35.08 Nor.An -0.14 Nor.Q 33.05
120
Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
212.66 190.98 -41.91 15.52 68.81 26.50 1.35
Fig. 2.82. Pelhřimov Granite Porphyry ABQ and TAS diagrams.
References BREITER, K. (1998): P-rich muscovite granites – latest product of two-mica granites fractionation in the South Bohemian Pluton. In: Breiter, K. Ed.: Genetic significance of phosphorus in fractionated granites. Project 373 – Correlation, anatomy and magmatic-hydrothermal evolution of ore-bearing felsic igneous systems. International conference, Czech Republic, Peršlák, September 21–24, 1998. Excursion guide, 107–122. – Czech Geol. Soc. Prague. VRÁNA, S. (1990): The Pelhřimov volcanotectonic circular structure. – Věst. Ústř. Úst. geol. 65, 143–156. 2.1.32.2. ŠEVĚTÍN DYKE SWARM (ŠDS) Geological environment: migmatitic sillimanite-biotite (cordierite) gneiss. ŠDS in association with rare monomict breccia dykes. Contact aureole: chilled margin up to 30 cm wide. Zoning: dykes show a centroradial trend. Mineralization: not reported. Heat production (μWm-3): Ševětín Microgranodiorite 2.48.
Geological position: Moldanubian Zone (Varied Group). ŠDS is located within the perimeter of the Ševětín impact structure (Varied Group). Rock types: Ševětín Microgranodiorite – amphibole granodiorite to quartz monzonite. Size and shape (in erosion level): almost vertical dykes, one to ten meters thick and up to 70 meters long. Age and isotopic data: Autunian age, 270 ± 2 Ma (Ar/Ar hornblende). One dyke cuts across the late-Variscan Ševětín Granite. Ševětín Microgranodiorite
Quartz-normal, sodic, weakly peraluminous, melanocratic diorite n=9 Median Min Max QU1 SiO2 57.41 54.89 60.46 57.13 TiO2 0.81 0.73 1.05 0.75
121
QU3 58.14 0.85
15.68 15.38 16.28 15.62 16.03 Al2O3 Fe2O3 0.97 0.72 1.34 0.85 1.09 FeO 4.53 4.09 5.56 4.30 5.07 MnO 0.10 0.08 0.12 0.09 0.11 MgO 4.84 3.90 6.20 4.74 5.35 CaO 3.76 3.55 5.69 3.62 5.01 Na2O 2.96 2.68 3.45 2.75 3.28 K2O 2.99 2.27 3.30 2.50 3.16 P2O5 0.23 0.21 0.34 0.23 0.32 Mg/(Mg + Fe) 0.62 0.57 0.63 0.60 0.62 K/(K + Na) 0.38 0.31 0.43 0.37 0.40 Nor.Or 19.94 15.46 22.72 17.20 21.38 Nor.Ab 30.28 28.02 36.59 28.47 34.11 Nor.An 19.35 18.07 30.96 18.74 27.26 Nor.Q 10.80 5.94 16.27 9.95 12.51 Na + K 161.65 136.94 175.91 143.54 166.10 *Si 109.68 96.79 129.77 105.14 117.82 K-(Na + Ca) -106.18 -142.01 -92.98 -126.81 -100.68 Fe + Mg + Ti 204.62 176.44 258.20 200.34 224.16 Al-(Na + K + 2Ca) 4.34 -29.38 14.79 -3.44 13.89 (Na + K)/Ca 2.46 1.35 2.78 1.56 2.52 A/CNK 1.03 0.93 1.08 1.00 1.07 Trace elements (mean values in ppm): Ševětín Microgranodiorite – Li 102, Be 3, Sc 18, V 72, Cr 170, Co 18, Ni 59, Cu 9, Zn 70, Ga 17, As 7, Rb 110, Sr 387, Y 22, Zr 189, Nb 17, Sn 5, Cs 6.8, Ba 890, Th 10.7, U 3.2, (Vrána et al. 1993).
Fig. 2.83. Ševětín Microgranodiorite ABQ and TAS diagrams.
References VRÁNA, S. (1987): The Ševětín astrobleme, southern Bohemia, Czechoslovakia. – Geol. Rdsch. 76, 505–528. VRÁNA, S. – BENDL, J. – BUZEK, F. (1993): Pyroxene microgranodiorite dykes from Ševětín structure, Czech Republic: mineralogical, chemical, and isotopic indication of a possible impact melt origin. – J. Czech Geol. Soc. 38, 129–148. KOŠLER, J. – KELLEY, S. P. – VRÁNA, S. (2001): 40Ar/39Ar hornblende dating of a microgranodiorite dyke: implications for early Permian extension in the Moldanubian Zone of the Bohemian Massif. – Int. J. Earth Sci. (Geol. Rdsch.) 90, 379–385.
122
2.1.32.3. KAPLICE DYKE SWARM (KDS) Size and shape (in erosion level): two linear clusters of dykes up to 15 m wide near Kaplice (35 km long) and Trhové Sviny (20 km long). Age and isotopic data: 305 ± 5 Ma, 301 ± 4 Ma, 270 ± 2 Ma (Ar-Ar hornblende). Geological environment: gneisses and migmatites, granulites (Kaplice Unit, Monotonous Group), Weinsberg and Eisgarn granites. Contact aureole: not described. Mineralization: not reported.
Geological position: KDS is associated with the Kaplice fault zone in the Moldanubian Zone. The dyke swarm strongly indicates the presence of the Freistadt Granodiorite at a subsurface level, covered by metamorphic rocks and older Variscan granitoids (Weinsberg and Eisgarn Granite). Rock types: Kaplice Porphyry – 1. Biotite granodiorite porphyry 2. Hornblende quartz diorite porphyry.
References VRÁNA, S. – SLABÝ, J. – BENDL, J. (2005): The Kaplice dyke swarm of biotite granodiorite porphyry and its relationship to the Freistadt granodiorite, Moldanubian Composite Batholith. – J. Czech Geol. Soc. 50, 9–17.
Fig. 2.84. Kaplice Dyke Swarm ABQ and TAS diagram: 1 – Kaplice Granodiorite Porphyry, 2 – Kaplice Quartz Diorite Porphyry.
Kaplice Granodiorite Porphyry Quartz-normal, sodic, peraluminous, mesocratic,S-type granodiorite n=14 Median Min Max QU1 SiO2 65.98 62.24 70.40 63.92 TiO2 0.49 0.29 0.62 0.42 Al2O3 16.31 15.29 17.25 16.16 Fe2O3 0.98 0.31 1.59 0.73 FeO 2.43 1.27 2.94 2.20 MnO 0.07 0.04 0.42 0.05 MgO 1.56 0.75 2.52 1.18 CaO 3.22 1.26 4.89 2.53 Na2O 3.62 3.46 4.69 3.54 K2O 2.33 2.02 3.38 2.23 P2O5 0.17 0.10 0.19 0.15 Mg/(Mg+Fe) 0.46 0.34 0.52 0.41 K/(K+Na) 0.30 0.24 0.35 0.27 Nor.Q 23.96 16.92 28.21 22.74 123
QU3 66.54 0.53 16.48 1.09 2.52 0.07 1.87 3.46 3.82 2.80 0.17 0.47 0.33 25.20
Nor.Or Nor.Ab Nor.An Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
14.68 35.00 15.76 172.74 150.55 -128.63 87.77 33.12 2.93 1.13
12.87 33.77 5.31 161.55 119.52 -166.09 48.34 -3.29 1.92 1.00
20.95 43.55 24.65 202.78 175.75 -81.72 127.97 55.37 9.03 1.23
13.85 34.22 11.88 165.51 148.06 -137.38 78.03 22.65 2.42 1.09
17.78 36.75 17.81 179.77 157.33 -110.64 101.55 48.41 3.56 1.18
Kaplice Quartz diorite Porphyry quartz-normal, sodic, metaluminous, melanocratic, I-type quartz diorite KC4 KC10 SiO2 55.91 54.46 TiO2 0.87 0.89 Al2O3 18.01 18.29 Fe2O3 1.83 2.16 FeO 4.40 3.61 MnO 0.09 0.09 MgO 3.77 5.06 CaO 7.40 7.46 Na2O 3.33 3.26 K2O 1.19 1.37 P2O5 0.20 0.26 Mg/(Mg+Fe) 0.52 0.61 K/(K+Na) 0.19 0.22 Nor.Q 8.97 6.09 Nor.Or 7.86 9.09 Nor.Ab 33.42 32.89 Nor.An 39.56 39.66 Na+K 132.72 134.29 *Si 89.48 79.16 K-(Na+Ca) -214.15 -209.14 Fe+Mg+Ti 188.65 214.04 Al-(Na+K+2Ca) -42.96 -41.16 (Na+K)/Ca 1.01 1.01 A/CNK 0.90 0.91 2.1.32.4. BLANICE GRABEN DYKE SWARM Geological position: associated with the late Variscan Blanice Graben in the Moldanubian Zone. Rock types: Štěpánovice Quartz monzodiorite – sub-ophitic pyroxene-biotite fine-grained or locally medium-grained quartz monzodiorite. Size and shape (in erosion level): several dykes up to 3 km long and 20–50 m wide. Shallow (subvolcanic) intrusion.
Age and isotopic data: likely StephanianViséan age. No isotopic data. Geological environment: mafic granulites and silimanite-cordierite-biotite migmatite. Contact aureole: abundant xenoliths of hydrothermal quartz, and scarce igneous enclaves. Zoning: not reported. Mineralization: not reported.
124
Štěpánovice Quartz monzodiorite Quartz-normal, sodic, metaluminous, melanocratic, I-type, gabbrodiorite n=8 Median Min Max QU1 SiO2 51.50 50.54 52.60 51.06 TiO2 1.49 1.46 1.59 1.48 Al2O3 15.78 15.64 16.04 15.69 Fe2O3 0.98 0.67 1.03 0.75 FeO 7.46 6.85 7.78 6.92 MnO 0.14 0.12 0.15 0.13 MgO 6.46 5.71 7.61 6.19 CaO 6.83 6.37 7.35 6.81 Na2O 2.55 2.39 2.78 2.42 K2O 2.39 2.28 2.85 2.35 P2O5 0.39 0.34 0.49 0.36 Li2O 0.005 0.004 0.009 0.004 Mg/(Mg + Fe) 0.58 0.56 0.61 0.57 K/(K + Na) 0.38 0.35 0.44 0.36 Nor.Or 16.92 15.96 20.10 16.13 Nor.Ab 27.26 25.86 29.05 25.94 Nor.An 37.04 34.96 39.48 36.86 Nor.Q 0.00 0.00 1.44 0.00 Na + K 136.51 130.63 139.61 132.06 *Si 66.71 55.81 78.23 59.70 K-(Na + Ca) -154.68 -166.60 -140.09 -162.96 Fe + Mg + Ti 296.70 268.99 323.90 283.35 Al-(Na + K + 2Ca) -71.62 -84.34 -51.92 -83.29 (Na + K)/Ca 1.10 1.05 1.17 1.06 A/CNK 0.83 0.80 0.88 0.81
QU3 51.77 1.57 15.93 1.03 7.66 0.14 6.80 6.96 2.62 2.52 0.44 0.006 0.59 0.41 17.94 27.72 37.90 0.00 138.34 72.28 -146.20 306.58 -69.21 1.13 0.84
Fig. 2.85. Blanice Graben Dyke Swarm ABQ and TAS diagrams. Stěpánovice Quartz monzodiorite.
References VRÁNA, S. – JANOUŠEK, V. (2006): Late-orogenic Variscan magmatism: the case of quartz monzodiorite dykes from the Blanice Graben, southern Bohemia. – J. Czech Geol. Soc. 51, 231– 248.
125
2.1.32.5. PASSAU FOREST DYKE SWARM Size and shape (in erosion level): undefined number of steep dykes is arranged into a zone more than 10 km long and about 5 km wide between Waldkirchen and Linz. Their width varies from dm up to maximum 30 meters, and up to 2 km length (vertical dip and strike between 120° and 140°). Age and isotopic data: cooling age 297 ± 7 Ma (Rb-Sr biotite). Dykes penetrate the Hauzenberg Granite with sharp contacts. Dacite 302 ± 7 Ma (Rb-Sr apatite-biotite), Time of intrusion of the dykes ca. 300 Ma. Geological environment: gneisses and the Hauzenberg Granite. Contact aureole: not defined. Mineralization: not known.
Geological position: Late Variscan calcalkaline dykes are associated to the LateVariscan granitoid massifs and anatectic gneisses between the Bavarian Quartz “Pfahl“ and the Donau River; the dykes are not affected by deformation along the Phahl Shear Zone. Rock types: Bavarian Forest Dykes – basaltic trachyandesite-dacite series and rhyolites. Passau Forest Porphyry – biotite granodiorites, amphibole granodiorite and diorite porphyry – most common types with phenocrysts of biotite, plagioclase, quartz and ± amphibole. Rare granodiorite porphyry contains K-feldspar in the matrix.
References OHST, E. – TROLL, G. (1981): Porphyrite in der Umgebung von Waldkirchen, Bayerischer Wald. – Aufschluss, Sonderband 31, 125–151. PROPACH, G. – BAYER, B. – CHEN, F. – FRANK, CH. – HÖLZL, S. – HOFMANN, B. – KÖHLER, H. – SIEBEL, W. – TROLL, G. (2008): Geochemistry and petrology of late Variscan magmatic dykes of the Bavarian Forest, Germany. In: Geochronologische, geochemische, petrographische ind mineralogische Untersuchungen im Grundgebirge Bayerns sowie kritische Betrachtungen zu Sr-Isotopenstandarts. – Geologica bavar. 110, 304–342. Passau Forest Porphyry Quartz-normal, sodic, moderately peraluminous, mesocratic, quartz diorite to diorite porphyry n=6 Median Min Max QU1 QU3 SiO2 65.59 62.51 66.96 64.78 66.64 TiO2 0.68 0.39 1.85 0.44 0.88 Al2O3 16.64 14.81 17.45 16.55 17.02 Fe2O3 1.33 0.67 1.68 1.32 1.53 FeO 2.35 1.84 2.97 1.98 2.36 MnO 0.06 0.01 0.64 0.03 0.06 MgO 1.47 1.32 3.12 1.33 2.04 CaO 3.49 3.19 5.04 3.36 3.55 Na2O 3.76 3.12 4.03 3.49 3.88 K2O 2.06 1.83 3.13 2.03 2.92 P2O5 0.28 0.00 1.15 0.06 0.51 Mg/(Mg + Fe) 0.44 0.40 0.56 0.42 0.49 K/(K + Na) 0.28 0.26 0.35 0.28 0.32 Nor.Or 12.97 11.51 19.10 12.78 17.90 Nor.Ab 34.88 29.81 37.54 33.88 36.59 Nor.An 16.02 9.35 23.40 12.93 18.08 Nor.Q 23.42 19.47 26.87 20.47 23.52 Na + K 168.94 139.54 192.04 155.72 187.79 *Si 143.10 130.35 171.47 131.15 143.75 K-(Na + Ca) -134.40 -159.39 -114.79 -144.77 -130.28
126
Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
90.92 23.62 2.67 1.12
82.50 -44.63 1.73 0.90
163.00 57.99 3.33 1.20
86.78 17.39 1.92 1.10
110.51 23.65 3.09 1.14
Fig. 2.86. Passau Forest Dyke Swarm ABQ and TAS diagrams. Passau Forest Porphyry.
Fig. 2.87. Bavarian Forest Dykes ABQ and TAS diagrams. -1 - basaltic trachyandesite,2 - andesite, 3 dacite,4 - rhyolite.
2.1.32.6. KVILDA DYKE SWARM Geological position: Monotonous Group of the Moldanubian Zone. Rock types: Kvilda Dyke Granite – ± porphyritic medium-grained muscovite ± biotite tourmaline-bearing alkali-feldspar leucogranite. Size and shape (in erosion level): NW-SE trending zone 1–3 km wide and more than 10 km long with abundant leucogranite dykes (more than 50). The width of individual dykes
is less than 10 m, mostly ~ 40 cm to several metres. According to the geophysical indications the dyke swarm is rimming subsurface extension of the Vydra Massif. Age and isotopic data: 326 ± 6.9 Ma (U-Th monazite). Geological environment: sillimanite – biotite ± cordierite migmatites, gneisses and orthogneisses. Contact aureole: not described. Mineralization: not reported.
127
References ŽÁČEK, V. – SULOVSKÝ, P. (2005): The dyke swarm of fractionated tourmaline-bearing leucogranite and its link to the Vydra Pluton (Moldanubian Composite Batholith), Šumava Mts., Czech Republic. – J. Czech Geol. Soc. 50, 107–118. Kvilda Dyke Granite Quartz-rich, sodic, peraluminous, leucocratic, S-type, granite leukoG3 leukoG2 leukoG6 SiO2 72.37 74.86 75.24 TiO2 0.14 0.05 0.02 Al2O3 15.15 14.29 14.59 Fe2O3 0.41 0.32 0.51 FeO 1.05 0.30 0.28 MnO 0.35 0.10 0.08 MgO 0.05 0.03 0.04 CaO 0.53 0.53 0.36 Na2O 4.31 3.78 4.47 K2O 3.85 4.30 2.49 P2O5 0.27 0.24 0.37 Li2O 0.03 0.01 0.00 Mg/(Mg + Fe) 0.04 0.06 0.07 K/(K + Na) 0.37 0.43 0.27 Nor.Or 23.39 25.94 15.05 Nor.Ab 39.80 34.65 41.05 Nor.An 0.86 1.07 0.68 Na + K 220.83 213.28 197.11 *Si 174.37 195.73 216.02 K-(Na + Ca) -66.79 -40.13 -97.80 Fe + Mg + Ti 22.66 9.43 11.41 Al-(Na + K + 2Ca) 57.79 48.45 76.56 (Na + K)/Ca 23.37 22.57 30.71 Nor.Q 29.74 33.81 37.84 A/CNK 1.27 1.24 1.42 Trace elements (ppm): Kvilda Leucogranite – Cr 4, Ni 4, Co 25, Zn 52, As 18, Rb 217, Sr 30, Y 6, Zr 17, Nb 10, Sn 34, Pb 33, U 4 (Žáček – Sulovský 2005).
Fig. 2.88. Kvilda Dyke Swarm ABQ and TAS diagrams.
128
2.1.32.7. SUŠICE DYKE SWARM subsidence is triggered by the evacuation of a magma chamber. Age and isotopic data: The Sušice dykes are related to the Permian volcanic activity in the Moldanubian zone. No isotopic data. Geological environment: migmatite, orthogneiss and sillimanite-biotite gneiss. Contact aureole: not reported. Mineralization: not reported.
Geological position: the Moldanubian Zone. Rock types: Sušice Quartz monzonite – augite quartz micro-monzodiorite (similar to the Ševětín dykes). Size and shape (in erosion level): NW-SE trending dykes of several meters wide coincide with the Sušice circular structure about 18 km in diameter. Nearly circular cauldron-like
References VRÁNA, S. (2004): Late Variscan Sušice dyke swarm (Moldanubian Zone): quartz micromonzonite dykes and their pyroxene gabbro xenoliths. – Bull. Geosci., 79, 221–229. Sušice Quartz micro-monzonite Quartz-normal, sodic, metaluminous, melanocratic, I-type, monzodiorite SN15 SN16 SN18 SN24 SiO2 54.74 55.09 56.44 55.95 TiO2 1.55 1.59 1.27 1.28 Al2O3 15.55 15.66 16.57 16.49 Fe2O3 1.81 1.81 1.22 1.37 FeO 6.29 6.37 4.99 4.99 MnO 0.13 0.14 0.10 0.10 MgO 4.13 4.06 3.99 3.89 CaO 6.20 6.11 6.66 5.93 Na2O 2.58 2.76 2.54 3.07 K2O 3.14 3.18 2.52 2.83 P2O5 0.25 0.25 0.25 0.26 Li2O 0.01 0.01 0.00 0.00 Mg/(Mg + Fe) 0.48 0.47 0.53 0.52 K/(K + Na) 0.44 0.43 0.39 0.38 Nor.Or 21.46 21.54 16.96 19.00 Nor.Ab 26.80 28.41 25.98 31.32 Nor.An 33.68 32.87 35.77 31.49 Nor.Q 5.85 5.17 10.20 7.07 Na + K 149.92 156.58 135.47 159.15 *Si 80.06 76.41 98.47 80.75 K-(Na + Ca) -127.14 -130.50 -147.22 -144.72 Fe + Mg + Ti 232.17 232.05 199.69 199.21 Al-(Na + K + 2Ca) -65.67 -66.96 -47.59 -46.81 (Na + K)/Ca 1.36 1.44 1.14 1.51 A/CNK 0.84 0.83 0.89 0.89
129
SN28 58.08 1.25 16.55 1.44 5.21 0.10 4.29 6.44 2.88 2.63 0.27 0.01 0.54 0.38 17.26 28.73 33.52 9.13 148.78 96.88 -151.93 212.70 -53.45 1.30 0.87
Fig. 2.89. Sušice Dyke Swarm ABQ and TAS diagrams. Sušice Quartz micro-monzodiorite.
2.1.32.8. ŠEJBY DYKE SWARM Age and isotopic data: One of the youngest members of MCB are subvolcanic high-level intrusions. Šejby Dyke Granite 308 ± 2 Ma. Geological environment: paragneisses, and the Weinsberg Granite-Granodiorite. Contact aureole: not reported. Mineralization: greisenization and subeconomic dissemination of cassiterite, ferrocolumbite, ferro-tantalite.
Geological position: Moldanubian Zone. A member of the Homolka Group in the Weinsberg Composite Pluton. Several dykes cutting theWeinsberg Granite-Granodiorite. Rock types: Šejby Dyke-granite – aplitic to pegmatitic muscovite alkali-feldspar granite. Size and shape (in erosion level): N-S and NE-SW trending dykes of several meters wide.
References BENDL, J. – HEŘMÁNEK, R. – KLEČKA, M. – MATĚJKA, D. – ČEKAL, F. (1994): Highly evolved granites (Šejby and Nákolice stocks) in the Nové Hrady Mts., Moldanubian Composite Batholith: geochemistry and Rb-Sr dating. – Mitt. Österr. mineral. Gesell. 139, 271–273. HEŘMÁNEK, R. – MATĚJKA, D. – KLEČKA, M. (1998): Šejby and Nákolice stocks – examples of the phosphorus-rich mineralised granites (a review). – Acta Univ. Carol., Geol. 42, 46–49. NOVÁK, M. – KLEČKA, M. – ŠREJN, V. (1994): Compositional evolution of Nb, Ta-oxide minerals from alkalifeldspar muscovite granites Homolka and Šejby, southern Bohemia, and its comparison with other rare-element granites. – Mitt. Österr. mineral. Gesell. 139, 353–354. Šejby Dyke Granite Quartz normal, sodic, peraluminous, leucocratic, S-type granite SEG-5 SEG-3 SEG-4 S2476 S2494 SiO2 72.98 73.24 71.12 73.38 73.89 TiO2 0.01 0.03 0.03 0.03 0.02 Al2O3 15.09 14.70 15.89 14.31 15.05 Fe2O3 0.44 0.46 0.36 0.41 0.21 FeO 0.05 0.40 0.31 n.d. 0.54 MnO 0.06 0.02 0.04 0.04 0.04 MgO 0.07 0.11 0.09 0.01 0.06 CaO 0.78 0.38 0.65 0.54 0.50 Na2O 5.55 4.68 5.33 5.54 3.55 K2O 3.00 3.97 4.15 2.39 3.89 P2O5 0.80 0.48 0.73 0.65 0.51 Mg/(Mg+Fe) 0.20 0.19 0.19 0.04 0.12 K/(K+Na) 0.26 0.36 0.34 0.22 0.42 130
S2613 73.42 0.04 15.52 n.d. 0.85 0.03 0.05 0.40 6.17 1.99 0.40 0.09 0.18
Nor.Q Nor.Or Nor.Ab Nor.An Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
27.70 17.84 50.15 -1.41 242.79 152.81 -129.31 8.07 25.72 17.46 1.18
29.42 23.87 42.76 -1.30 235.31 166.49 -73.51 14.44 39.81 34.73 1.21
23.11 24.68 48.17 -1.60 260.11 126.72 -95.47 11.44 28.75 22.44 1.17
30.97 14.44 50.88 -1.64 229.52 171.16 -137.66 5.76 32.24 23.84 1.20
Fig. 2.90. Šejby Dyke Granite ABQ and TAS diagrams.
131
36.52 23.69 32.86 -0.91 197.15 206.83 -40.88 11.89 80.57 22.11 1.45
27.48 11.86 55.87 -0.66 241.36 161.21 -163.98 13.58 49.16 33.84 1.24
2.1.32.9. LITSCHAU DYKE SWARM (LDS) to the north of Pelhřimov, the Homolka and Galthof Stocks. Individual dykes are 2–20 m thick and up to 1.5 km long. Age and isotopic data: One of the youngest members of MCB are subvolcanic high-level intrusions. LDS is older than the Homolka Stock. Josefsthal Dyke Granite 314 ± 3.5 Ma (Rb-Sr). Geological environment: the Číměř Granite, Eisgarn Granite, Lásenice Granite and gneisses. Contact aureole: subvertical sharp contacts, without, or with only very weak alteration of the country rocks. Zoning: the structure of some thicker dykes is zoned, the fluidal rhyolite at the contact passes gradually into granite porphyry in the centre (e.g. the Josefsthal Dyke). Mineralization: traces of wolframite and cassiterite mineralization.
Geological position: Moldanubian Zone. A member of the Eisgarn Composite Pluton. Several dykes and small stocks cutting the Eisgarn s.s. Granite, Lásenice Granite, Číměř Granite and paragneisses. One of the youngest members of MCB are subvolcanic high-level intrusions. Rock types: 1. Litschau Rhyolite – felsitic dyke rhyolites, partly with fluidal fabric. 2. Granite porphyry. 3. Josefsthal Dyke Granite – fine-grained leucocratic muscovite granite. Size and shape (in erosion level): a swarm of more than 30 dykes of rhyolites, granite porphyries and dyke granites forms a N-S trending zone, about 30 km long and 5 km wide, between Lásenice and Schrems. This zone is part of longer, but not continuous “zone of volcano-tectonic activity” extending
References BREITER, K. – SCHARBERT, S. (1995): The Homolka magmatic centre – an example of late Variscan ore bearing Magmatism in the South Bohemian Batholith (southern Bohemia, northern Austria). – Jb. Geol. Bundesanst. 138, 1, 9–25. KLEČKA, M. (1984): Felzitické a sklovité žilné horniny z okolí Lásenice u Jindřichova Hradce. – Čas. Mineral. Geol. 29, 3, 293–298. KLEČKA, M. – BENDL, J. – MATĚJKA, D. (1994): Rb-Sr dating of acid subvolcanic dyke rocks – final magmatic products of the Moldanubian Composite Batholith. – Mitt. Österr. mineral. Gesell. 139, 66–70. KLEČKA, M. – VAŇKOVÁ, V. (1988): Geochemistry of felsitic dykes from the vicinity of Lasenice near Jindřichův Hradec (South Bohemia) and their relation to Sn-W mineralization. – Čas. Mineral. Geol. 33, 225–249. VRÁNA, S. (1990): The Pelhřimov volcanotectonic circular structure. – Věst. Ústř. Úst. geol. 65, 143–156. WALDMANN, L. (1950): Geologische Spezialkarte der Republik Őstereich 1:75 000, Blatt LitschauGmünd (4454). – Geol. Bundesanst. Wien.
132
High-potassic plutonites in the Moldanubicum High-potassic (high K-Mg) plutonites (Durbachites) within the Moldanubian Zone are represented by the Melagranite Group comprising porphyritic amphibole-biotite melagranite, and the Melasyenite Group consisting of two-pyroxene melasyenite, quartz biotite-hornblende monzonite and melagranite. This rock group is highly typical for some parts of the hercynian orogenic belt of central to western Europe and ie associated with exhumed lower-crustal metamorphic rocks of the former orogenic root (Holub 2005). Durbachite suite of 342–332 Ma old rocks follows a curved line from Corsica – Massif Central – Vosges – Schwarzwald, to the Bohemian Massif. Typical durbachite in the Bohemian Massif is usually referred to as the Čertovo břemeno type. According to Bernard and Dudek (1967), Klomínský and Dudek (1978), Janoušek and Holub (2007) and Finger et al. (2007) two groups of durbachite massifs intruded into the Moldanubian Zone and granitoids of the Central Bohemian Pluton (Blatná a Červená granodiorites). Western group consists of the Milevsko, Tábor, Mehelník, Netolice, Želnava (Knížecí stolec) Massifs and numerous small bodies in the vicinity of Písek, Vodňany and Prachatice. These intrusive bodies are concentrated within a zone of NNE-SSW direction, which is about 130 km long and up to 25 km wide. The eastern group comprises the Rastenberg, Hengstberg Sheet, Jihlava and Třebíč Massifs with small satellite bodies in the vicinity of Nové Město na Moravě (Radoňovice and Nové Město stocks). Most of these plutons are formed by porphyritic amphibolebiotite melagranite and granodiorite. Only the Tábor and Jihlava Massifs consist of non-porphyritic two-pyroxene melasyenite, which represents independent intrusion. In the Bohemian Massif, also the Złoty Stok Massif and the Meissen Composite Massif in the Lugicum resemble the durbachites from the Moldanubian Zone. According to Finger et al. (2007) the so-called „Palites“ of the Bavarian Forest belong also to the Durbachite intrusions. The durbachite suite has been produced by the progressive hybridization of ultrapotassic mantle magma and a felsic crustal melt (e.g. Holub et al. 1997). According to Finger et al. (2007) apart from their similar ages (335–338 Ma) the durbachite plutons are defined by a special geochemical signature, unique among the Variscan granitoids of the Bohemian Massif. This includes a strong (to extreme) enrichment of the LIL elements K, Th, U, Rb, Cs, Ba (often > 2000 ppm), Sr (often > 1000 ppm) in combination with relatively high content of MgO (mostly > 3 wt. %, Fe2O3 total / MgO mostly > 2), Cr (often > 100 ppm) and Ni (often > 10 ppm). The least folic types of the durbachite plutons (durbachites sensu stricto according to Janoušek and Holub 2007) have extremely K2O-rich (ultrapotassic-syenitic) composition and intermediate Si2O contents, while others are comparably less (but still strongly) K2O enriched and shoshonitic-granodioritic (e. g., Rastenberg pluton). The causal link between HP-HT metamorphism and ultrapotassic magmatism in the collisional orogens on the example of the Moldanubian Zone has been described by Janoušek and Holub (2007).
133
Fig. 2.91. Ultrapotassic plutonites hierarchic scheme according to rock groups and rock types.
Fig. 2.92. Ultrapotassic plutonites geological sketch-map (adapted after Fiala et al. 1983). 1 – porphyritic hornblende-biotite melagranite and granodiorite (Melagranite group), 2 – two-pyroxene melasyenite and melagranite (Melasyenite group), 3 – faults.
134
References BOWES, D. R. – KOŠLER, J. (1993): Geochemical comparison of the subvolcanic appinite suite of the British Caledonides and the durbachite suite of the Central European Hercynides: evidence for associated shoshonitic and granitic magmatism. – Mineral. Petrology. 48, 47–63. BURIÁNEK, D. – NOVÁK, M. (2001): Tourmaline-bearing leucogranites from the Moldanubicum. – Mitt. Österr. mineral. Gesell. 146, 51–53. ČECH, V. (1964): Příspěvek ke geologii a petrografii táborského syenitového masívu. – Čas. Mineral. Geol. 9, 291–299. DOBEŠ, M. – POKORNÝ, L. (1988): Gravimetry applied to the interpretation of the morphology of the Čertovo břemeno durbachite body in the Central Bohemian Pluton. – Věst. Ústř. Úst. geol. 63, 129–135. (English abstract) DOSBABA, M. – SULOVSKÝ, P. (2006): Geologická posice, petrologie a geochemie hornin durbachitové série v okolí Nového Města na Moravě. – Acta Mus. Morav., Sci. Geol. 91, 177–190. FIALA, J. – VAŇKOVÁ, V. – WENZLOVÁ, M. (1983): Radioactivity of selected durbachites and syenites of the Bohemian Massif. – Čas. Mineral. Geol. 28, 1–16. FINGER, F. – GERDES, A. – JANOUŠEK, V. – RENÉ, M. – RIEGLER, G. (2007): Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and Moravo-Moldanubian tectonometamorphic phases. – J. Geosci. 52, 9–28. FUCHS, G. (2005): Der geologische Bau der Böhmischen Masse im Bereich des Strudengaus (Niederöstereich). – Jb. Geol. Bundesanst. 145, 283–291. HEJTMAN, B. (1949): The syenitic rocks of the vicinity of Vodňany and Protivín. – Věst. St. geol. Úst. Čs. Republ. 24, 232–248. (In Czech) HOLUB, F. V. (1977): Petrology of inclusions as a key to petrogenesis of the durbachitic rocks from Czechoslovakia. – Tschermaks mineral. petrogr. Mitt. 24, 133–150. HOLUB, F. V. (1978): Contribution to the geochemistry of durbachitic rocks. – Acta Univ. Carol., Geol., 351–364. (English summary) HOLUB, F. V. (1997): Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: Petrology, geochemistry and petrogenetic interpretation. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 5–26. HOLUB, F. V. (2005): Výsledky srovnávacího studia durbachitických plutonitů Českého masivu, Vogéz a Schwarzwaldu. – Zpr. geol. Výzk. v Roce 2004, 101–102. HOLUB, F. V. (2009): Ultradraselné melasyenitové a melagranitové porphyry žilných rojů ve středočeském plutonickém komplexu a šumavském moldanubiku: látkové vztahy k plutonitům. In: Kohút, M. – Šimon, L. Eds. Spoločný kongres Slovenskej a Českej geologickej spoločnosti, Zborník abstraktov a exkurzný sprievodca. – Štát. Geol. Úst. Dionýza Štúra, Bratislava, p 76–77 (In Czech). HOLUB, F. V. – COCHERIE, A. – ROSSI, PH. (1997): Radiometric dating of calc-alkaline to ultrapotassic plutonic rocks from the Central Bohemian Plutonic Complex, Czech Republic: constraints on the thermotectonic chronology along the Moldanubian-Barrandian suture. – C. R. Acad. Sci., Earth Planet. Sci. 325, 19–26. HOLUB, F. V. – MATĚJKA, D. – KOLLER, F. (2003): Dioritické horniny v moldanubickém (jihočeském) batolitu. – Zpr. geol. Výzk. v Roce 2002, 19–20. HOLUB, F. V. – ŽEŽULKOVÁ, V. (1978): Relative ages of intrusives of the Central Bohemian Pluton near Zvíkov. – Věst. Ústř. Úst. geol. 53, 289–297. (English summary) JANOUŠEK, V. – HOLUB, F. V. (2007): The causal link between HP-HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. – Proc. Geol. Assoc. 118, 75–86. KLOMÍNSKÝ, J. – DUDEK, A. (1978b): The plutonic geology of the Bohemian Massif and its problems. – Sbor. geol. Věd, Geol. 31, 47–66. MATTE, PH. – MALUCKI, H. – RAJLICH, P. – FRANKE, W. (1990): Terrane boundaries in the Bohemiam Massif: Results of large-scale Variscan shearing. – Tectonophysics 177, 151–170. SULOVSKÝ, P. (2000): Srovnání chemismu třebíčského durbachitu a jiných durbachitů. – Geol. Výzk. Mor. Slez. 1999, 135–140.
135
2.2.1. MILEVSKO MASSIF
Fig. 2.93. Milevsko Massif geological sketch-map (adapted after Fusán et al. 1967). 1 – Čertovo břemeno Melagranite, 2 – Sedlčany Granodiorite, 3 – Kosova Hora Granodiorite, 4 – Leucogranite, 5 – Milevsko Dyke Swarm, 6 – faults.
břemeno Melagranite is younger (according to the field evidence) than the Blatná and Červená Granodiorites. Tábor Syenite is younger than the Čertovo břemeno Melagranite. Cooling age of the Čertovo břemeno Melagranite less than 300 °C is 336 Ma (Ar-Ar biotite). Geological environment: granitoids of the Central Bohemian Pluton, Tábor Massif, Varied Group of the Moldanubian Zone. Zoning: subhorizontal stratification – dark facies in hanging-wall of the light facies. Mineralization: small U-mineralization occurrences in shear zones (e.g. Velká uranium deposit near Milevsko). Heat production (μWm-3): Čertovo břemeno Melagranite 5.6, Sedlčany Granodiorite 5.79.
Regional position: a member of the Durbachite Suite in the Moldanubian Zone (Drosendorf Unit) on the southern periphery of the Central Bohemian Pluton. Rock types: 1. Čertovo břemeno Melagranite (220 km2) – porphyritic biotite-amphibole melagranite (durbachite), granodiorite, quartz melagranite to mela-monzogranite and syenodiorite with dark- normal (syenitic) and lightleucocratic (granodioritic) facies. 2. Sedlčany Granodiorite (120 km2) – porphyritic amphibole-biotite granite represents the most acidic variety of the Čertovo břemeno Melagranite. 3. Kosova Hora Granodiorite (5 km2) – porphyritic biotite ± cordieritemuscovite granodiorite-monzogranite (a member of the Maršovice Suite of the Central Bohemian Pluton). 4. Leucogranite – leucocratic microgranite dykes and sills – Milevsko Dyke Swarm (LG – Leucogranite group of the Central Bohemian Pluton). Size and shape (in erosion level): 340 km2, subhorizontal, relatively thin tabular body with maximum thickness of about 2–3 km. Age and isotopic data: 343–346 Ma (Pb-Pb zircon) 336 Ma (Ar-Ar biotite). Čertovo
Fig. 2.94. Milevsko Massif hierarchic scheme according to rock groups and rock type.s
136
References BREITER, K. – SOKOL, A. (1997): Chemistry of Bohemian granitoids: Geotectonic and metallogenic implications. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 75–96. DOBEŠ, M. – POKORNÝ, L. (1988): Gravimetry applied to the interpretation of the morphology of the Čertovo Břemeno durbachite body in the Central Bohemian Pluton. – Věst. Ústř. Úst. geol. 63, 129–135. HOLUB, F. V. (1977): Petrology of inclusions as a key to petrogenesis of the durbachitic rocks from Czechoslovakia. – Tschermaks mineral. petrogr. Mitt. 24, 133–150. HOLUB, F. V. (1978): Contribution to the geochemistry of durbachitic rocks. – Acta Univ. Carol., Geol. 351–364. (English summary) HOLUB, F. V. (1997): Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: Petrology, geochemistry and petrogenetic interpretation. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 5–26. HOLUB, F. V. – MACHART, J. – MANOVÁ, M. (1997): The Central Bohemian plutonic complex: Geology, chemical position and genetic interpretation. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 27–50. HOLUB, F. V. – ŽEŽULKOVÁ, V. (1978): Relative ages of intrusives of the Central Bohemian Pluton near Zvíkov. – Věst. Ústř. Úst. geol. 53, 289–297. (English summary). KOTKOVÁ, J. – LEICHMANN, J. – SCHALTEGGER, U. (2008): Two types of ultrapotassic magmatic rocks in the Bohemian Massif – coeval intrusions at different crustal levels. – Mineralogia – Special Papers 32, 99. MATTE, PH. – MALUCKI, H. – RAJLICH, P. – FRANKE, W. (1990): Terrane boundaries in the Bohemiam Massif: Results of large-scale Variscan shearing. – Tectonophysics 177, 151–170. NEUŽILOVÁ, M. (1978): Vyrostlice alkalických živců hornin Čertova břemene a sedlčanského granodioritu. – Sbor. geol. Věd, Geol. 32, 129–150. PIVEC, E. (1970): On origin of phenocryst of the potassium feldspars in some granitic rocks of the Central Bohemian pluton. – Acta Univ. Carol., Geol. 1, 11–25. VEJNAR, Z. (1974): Trace elements in rocks of the Central Bohemian Pluton. – Věst. Ústř. Úst. geol. 49, 29–34. ŽÁK, J. – HOLUB, F. V. – VERNER, K. (2005): Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of mid-crustal orogenic root recorded by episodically emplaced plutons: the Central Bohemian Plutonic Complex (Bohemian Massif). – Int. J. Earth Sci. (Geol. Rdsch.) 94, 385–400. Čertovo břemeno Melagranite Large variation in composition. Quartz deficient, potassic, I-type, I & M series, granodiorite to monzonite n = 47 Med. Min Max SiO2 61.75 55.49 68.67 TiO2 0.77 0.28 1.51 Al2O3 13.80 12.66 17.17 Fe2O3 1.04 0.00 3.30 FeO 3.68 0.49 6.51 MnO 0.08 0.05 0.54 MgO 4.34 2.43 7.76 CaO 2.97 1.26 4.73 Na2O 2.32 1.60 4.45 K2O 6.29 3.12 7.80 P2O5 0.66 0.09 5.57 Mg/(Mg + Fe) 0.64 0.49 0.82 K/(K + Na) 0.63 0.32 0.75 Nor.Or 41.07 20.66 52.16 Nor.Ab 23.19 16.52 44.78
137
metaluminous, melanocratic, QU1 58.67 0.64 13.26 0.87 3.00 0.07 3.89 2.68 2.14 5.97 0.51 0.61 0.60 38.74 21.67
QU3 64.11 0.86 14.06 1.30 4.28 0.10 5.91 3.48 2.60 6.58 0.80 0.66 0.66 43.90 25.83
Nor.An 11.38 -23.82 21.18 8.83 13.30 Nor.Q 10.20 0.00 25.43 5.71 14.96 Na + K 209.84 172.54 251.79 202.36 218.71 *Si 97.43 44.99 148.70 76.37 108.93 K-(Na + Ca) 2.42 -134.42 44.12 -9.32 13.57 Fe + Mg + Ti 175.74 115.16 290.16 154.41 232.27 Al-(Na + K + 2Ca) -44.01 -118.10 15.30 -68.33 -28.49 (Na + K)/Ca 4.07 2.09 9.67 3.22 4.57 A/CNK 0.90 0.70 1.63 0.84 0.95 Trace elements (ppm): Čertovo břemeno Melagranite – Ba 1491, Cs 23.5, Ga 21, Hf 8.4, Li 35, Nb 25, Pb 49, Rb 314, Sc 13.1, Sr 376, Th 30.3, U 11.3, Y 17, Zn 70, Zr 320, La 41, Ce 91, Sm 10.7, Eu 1.85, Yb 1.37, Lu 0.27 (Breiter and Sokol 1997).
Fig. 2.95. Milevsko Massif ABQ and TAS diagrams. 1 – Čertovo břemeno Melagranite, 2 – Sedlčany Granodiorite.
Sedlčany Granodiorite Quartz-normal, potassic, metaluminous, mesocratic, I-S-type, quartz granodiorite n = 13 Med. Min Max QU1 SiO2 66.54 63.80 67.94 65.76 TiO2 0.48 0.05 0.83 0.45 Al2O3 14.57 13.25 15.20 14.35 Fe2O3 0.89 0.69 1.60 0.80 FeO 2.60 2.12 3.25 2.25 MnO 0.07 0.04 0.14 0.06 MgO 2.55 1.60 2.93 2.35 CaO 2.42 1.94 2.97 2.31 Na2O 2.88 2.50 3.18 2.80 K2O 5.76 5.38 6.25 5.50 P2O5 0.35 0.27 0.51 0.31 Mg/(Mg + Fe) 0.55 0.47 0.59 0.53 K/(K + Na) 0.57 0.53 0.62 0.55 Nor.Or 36.09 33.92 39.47 34.74 Nor.Ab 27.37 24.00 30.23 26.35 Nor.An 10.27 8.05 13.51 9.72 Nor.Q 18.00 14.32 21.05 17.20 Na + K 214.99 207.05 226.33 210.50
138
monzonite to QU3 66.83 0.53 14.69 1.23 2.69 0.07 2.67 2.77 2.97 5.87 0.42 0.59 0.58 37.12 28.70 11.61 18.50 216.71
*Si 124.90 108.37 139.70 115.68 128.29 K-(Na + Ca) -17.10 -29.42 14.76 -22.44 -12.98 Fe + Mg + Ti 121.25 94.09 141.40 103.88 126.42 Al-(Na + K + 2Ca) -19.15 -63.18 11.15 -29.44 -7.96 (Na + K)/Ca 4.94 3.99 6.08 4.41 5.24 A/CNK 0.96 0.83 1.07 0.93 1.01 Trace elements (mean values in ppm): Sedlčany Granodiorite – B 17, Ba 1460, Be 7, Co 5, Cr 80, Cs 50, Cu 8, Ga 19, Li 50, Ni 22, Pb 50, Rb 370, Sn 5, Sr 230, V 49, Zn 62, Zr 190 (Vejnar 1974). 2.2.2. TÁBOR MASSIF (TM) Fig. 2.96. Tábor Massif geological sketch-map (adapted after Jakeš 1968). 1 – Dražice Quartz Syenite, 2 – Třemešná Melagranite, 3 – Klokoty Melagranite, 4 – Náchod-Košín Granite, 5 –Marginal Granite, 6 – faults.
Regional position: a member of the Durbachite Suite in the Moldanubian Zone (Drosendorf Unit) on the southeastern periphery of the Central Bohemian Composite Batholith. Rock types: Tábor Syenite (subtypes): 1. Dražice Quartz Syenite – fine-grained biotite- two pyroxene melasyenite. 2. Náchod-Košín Granite – fine-grained pyroxene-biotite melagranite. 3. Klokoty Melagranite – fine-grained hornblende-pyroxene-biotite melagranite 4. Třemešná Melagranite – mediumgrained hornblende-pyroxene-biotite melasyenite to melagranite. 5. Marginal Granite (a facies of the Třemešná Melagranite) – rich in biotite with plan-parallel structure. Size and shape: 60 km2, oval ethmolith and two satellite bodies: Malšice body – 10 km2 and Maršov body – 3 km2.
Age and isotopic data: 343 Ma (K-Ar), 336.6 ± 1.0 Ma (U-Pb zircon), 336.3 ± 0.8 Ma (U-Pb rutile). Dražice Syenite is younger than the Čertovo břemeno Melagranite. Contact aureole: intrusive, steeply discordant contact against high-grade metamorphic rocks and tectonic contact with the Milevsko Massif. Geological environment: migmatites and paragneisses of the Varied and Monotonous Groups of the Moldanubian Zone, Čertovo břemeno Melagranite and Dehetník Granodiorite. Zoning: concentric reverse zonation (pyroxene > biotite in the centre and biotite > pyroxene at the margin). Mineralization: unknown. Heat production (μWm-3): Dražice Quartz Syenite 1,59, Klokoty Granite 3.07.
References ČECH, V. (1964): Příspěvek ke geologii a petrografii táborského syenitového masívu. – Čas. Mineral. Geol. 9, 291–299.
139
FREJVALD, M. (1971): Structural characteristics of charnockite granitoids of the Tábor Massif and adjacent Moldanubicum (southeastern part of the Central Bohemian Pluton). – Čas. Mineral. Geol. 16, 389–396. JAKEŠ, P. (1968): Variace chemického a modálního složení táborského syenitu. – Čas. Mineral. Geol. 13, 63–73. JANOUŠEK, V. – GERDES, A. (2003): Timing the magmatic activity within the Central Bohemian Pluton, Czech Republic: Conventional U-Pb ages for the Sázava and Tábor intrusions and their geotectonic significance. – J. Czech Geol. Soc. 48, 70–71. JANOUŠEK, V. – HOLUB, F. V. – GERDES, A. (2003): K-rich magmatism in the Moldanubian Unit, Bohemian Massif – a complex story featuring variably enriched lithospheric mantle melts and their interaction with the crust. – Geolines 16, 48–49. VEJNAR, Z. (1974): Trace elements in rocks of the Central Bohemian Pluton. – Věst. Ústř. Úst. geol. 49, 29–34. Tábor Syenite Quartz-deficient, potassic, metaluminous, melanocratic, syenite, monzonite to monzogabbro n = 43 Med. Min Max QU1 QU3 SiO2 58.38 53.00 61.35 56.86 59.14 TiO2 0.87 0.58 1.60 0.82 0.99 Al2O3 13.29 11.50 16.79 12.79 13.75 Fe2O3 1.17 0.00 2.75 0.72 1.85 FeO 4.68 3.74 7.46 4.49 5.16 MnO 0.10 0.03 0.21 0.05 0.14 MgO 6.12 3.65 9.46 5.37 7.22 CaO 4.24 2.73 6.07 3.90 4.60 Na2O 2.44 1.56 3.57 2.06 2.89 K2O 6.32 3.86 7.43 5.95 6.60 P2O5 0.67 0.00 1.84 0.25 0.93 Mg/(Mg + Fe) 0.66 0.49 0.70 0.60 0.68 K/(K + Na) 0.62 0.47 0.72 0.58 0.67 Nor.Or 43.02 25.53 48.22 39.36 44.62 Nor.Ab 24.38 16.52 37.45 21.46 29.05 Nor.An 13.66 1.56 29.89 9.84 16.75 Nor.Q 1.66 0.00 10.89 0.00 4.22 Na + K 207.46 175.22 251.81 198.09 225.90 *Si 56.99 23.78 96.13 41.81 71.58 K-(Na + Ca) -23.99 -107.24 28.84 -43.97 -2.68 Fe + Mg + Ti 242.25 192.60 364.31 223.34 273.34 Al-(Na + K + 2Ca) -108.78 -178.25 -24.88 -119.26 -84.27 (Na + K)/Ca 2.87 1.82 4.19 2.34 3.16 A/CNK 0.74 0.58 0.97 0.69 0.81 Trace elements (mean values in ppm): Tábor Syenite – B 6, Ba 6400, Be 5, Co 8, Cr 280, Cs 40, Cu 8, Ga 11, Li 62, Ni 130, Pb 47, Rb 350, Sn 1, Sr 430, V 120, Zn 80, Zr 290 (Vejnar 1974).
140
Fig. 2.97. Tábor Massif ABQ and TAS diagrams. 1 – Tábor Syenite.
2.2.3. MEHELNÍK MASSIF (MM) Fig. 2.98. Mehelník Massif geological sketch-map (adapted after the geological map 1 : 50,000 CGS 1991). 1 – Mehelník Melagranite, 2 – leucogranite dykes, 3 – faults.
Age and isotopic data: Variscan age is expected. No isotopic data. Similar in age to the Čertovo břemeno Melagranite – 343–346 Ma (Pb-Pb zircon) 336 Ma (Ar-Ar biotite). Contact aureole: not defined. Geological environment: felsic granulites and high-grade migmatitic paragneisses of the Gföhl Unit. Zoning: not defined. Mineralization: unknown. Heat production: no data.
Regional position: MM belongs to intrusive suite of Variscan ultrapotassic magmatic rocks (referred as the Durbachite Suite). DM intruded western segment of the Gföhl Unit in the Moldanubian Zone. Rock types: Mehelník Melagranite – porphyritic amphibole-biotite melagranite to melasyenite. Size and shape (in erosion level): ~ 70 km²; sheet-like tectonically segmented intrusive body with steep and partly discordant contacts in relation to the regional metamorphic fabric.
141
References FINGER, F. – GERDES, A. – JANOUŠEK, V. – RENÉ, M. – RIEGLER, G. (2007): Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and Moravo-Moldanubian tectonometamorphic phases. – J. Geosci. 52, 9–28. HEJTMAN, B. (1949): The syenitic rocks of the vicinity of Vodňany and Protivín. – Věst. St. geol. Úst. Čs. Republ. 24, 232–248. (In Czech) 2.2.4. NETOLICE MASSIF (NM) intruded western segment of the Gföhl Unit in the Moldanubian Zone. Rock types: Netolice Melagranite – porphyritic amphibole-biotite melagranite to melasyenite. Size and shape (in erosion level): ~ 30 km²; several outcrops¨of the sheet-like intrusive body with steep (tectonically outlined) and partly discordant contacts in relation to the regional metamorphic fabric. Age and isotopic data: Variscan age is expected. No isotopic data. Similar in age to the Čertovo břemeno Melagranite – 343–346 Ma (Pb-Pb zircon) 336 Ma (Ar-Ar biotite). Contact aureole: not defined. Geological environment: felsic granulites and high-grade migmatitic paragneisses of the Gföhl Unit. Zoning: not defined. Mineralization: unknown. Heat production: no data.
Fig. 2.99. Netolice Massif geological sketch-map (adapted after Geological map 1 : 50,000 CGS 1998). 1 – Netolice Melagranite, 2 – leucogranite dykes, 3 – faults.
Regional position: NM belongs to intrusive suite of Variscan ultrapotassic magmatic rocks (referred as the Durbachite Suite). NM References FINGER, F. – GERDES, A. – JANOUŠEK, V. – RENÉ, M. – RIEGLER, G. (2007): Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and Moravo-Moldanubian tectonometamorphic phases. – J. Geosci. 52, 9–28. HEJTMAN, B. (1949): The syenitic rocks of the vicinity of Vodňany and Protivín. – Věst. St. geol. Úst. Čs. Republ. 24, 232–248. (In Czech)
142
2.2.5. TŘEBÍČ MASSIF (TM) almost continuous aplite some tens meters to one km in width. Several small satellite bodies of similar plutonic rocks crop out North of the TM (the Ořechov Stocks). Age and isotopic data: porphyritic hornblende-biotite melagranite 340 ± 8 Ma (UPb zircon), 338 and 332 Ma (U-Pb zircon), pegmatite 336 Ma (U-Pb monazite). Contact aureole: not well defined. Geological environment: high-grade migmatitic paragneisses of the Moldanubian (Drosendorf Unit). Zoning: concentric normal (subhorizontal stratification) zonation (acidity of rocks is decreasinig from the centre to the margin). Mineralization: spatially related rare-element pegmatites, Pb-Zn-Ag-Cu, F, W, U, Th. Heat production (μWm-3): Třebíč Melagranite 5.8–3.2. Fig. 2.100. Třebíč Massif geological sketch-map (adapted after Bubeníček 1968). 1 – Třebíč 1 Melagranite, 2 – Třebíč 2 Melagranite, 3 – Leucogranite (Rand Aplite), 4 – Tourmaline Granite, 5 – faults.
Regional position: a member of the Melagranite Suite in the Moldanubian Zone (Drosendorf Unit). TM was intruded at the boundary between the Gföhl Unit and the Drosendorf Unit. Rock types: 1. Třebíč 1 Melagranite – porphyritic hornblende – biotite melagranite (finegrained marginal facies). 2. Třebíč 2 Melagranite – biotite melagranite. 3. Amphibole syenite – a small stock. 4. Tourmaline Granite. 5. Leucogranite – two-mica leucogranite. 6. Aplite and pegmatite dyke swarm (small bodies), and marginal (rand) aplite. 7. Alkali-feldspar Syenite of nordmarkite type (a stock at the exocontact of the Třebíč Massif – not shown in the map). Size and shape (in erosion level): 600 km2, triangular sheet-like shape ethmolith, segmented by faults. Several windows of underlying metamorphic rocks of Drosendorf (Varied) and Gföhl Units within the Třebíč Massif. Very expressive planar flow structure of potassium-feldspars, marginal aplite –
143
References ABRAHAM, J. et al. (2003): Regionální šlichová prospekce České republiky. Interpretace map radioaktivity šlichových koncentrátů 1 : 200 000. – MS Geomin Jihlava, Exploranium CZ Brno, Min. život. prostř. Praha. BREITER, K. (2008): Durbachites of the Třebíč pluton – genetic implications, – Zpr. geol. Výzk. v Roce 2007, 143–147. (In Czech) BUBENÍČEK, J. (1968a): Geology and petrography of the Třebíč Massif. – Sbor. geol. Věd, Geol. 13, 133–164. (English summary) BUBENÍČEK, J. (1968b): Distribution of some trace elements in the Třebíč Massif (English summary). – Čas. Mineral. Geol. 13, 285–299. BURIÁNEK, D. – NOVÁK, M. (2001): Tourmaline-bearing leucogranites from the Moldanubicum. – Mitt. Österr. mineral. Gesell. 146, 51–53. GOLIÁŠ, V. (1995): Radioaktivní akcesorické minerály třebíčského masívu. – Bull. Mineral.petrolog. Odd. Nár. Muz. v Praze 3, 56–60. HOLUB, F. V. – COCHERIE, A. – ROSSI, PH. (1997): Radiometric dating of calc-alkaline to ultrapotassic plutonic rocks from the Central Bohemian Plutonic Complex, Czech Republic: constraints on the thermotectonic chronology along the Moldanubian-Barrandian suture. – C. R. Acad. Sci., Earth Planet. Sci 325, 19–26. HOUZAR, S. – NOVÁK, M. (1998): Fluorine-enriched rocks on exocontact of the Třebíč durbachite massif: evidence from underlying chondrodite marbles. – Acta Univ. Carol., Geol. 42, 267. JANOUŠEK, V. – HOLUB, F. V. – GERDES, A. (2003): K-rich magmatism in the Moldanubian Unit, Bohemian Massif – a complex story featuring variably enriched lithospheric mantle melts and their interaction with the crust. – Geolines 16, 48–49. KOTKOVÁ, J. – SCHALTEGGER, U. – LEICHMANN, J. (2003): 338–335 Ma old intrusions in the E Bohemian Massif – a relic of the orogen-wide durbachitic magmatism in European Variscides. – J. Czech Geol. Soc. 48, 80–81. KRUPIČKA, J. (1968): The contact zone in the north of the Moldanubian Pluton. – Krystalinikum 6, 7–39. LEICHMANN, J. – ŠTELCL, J. – ZACHOVALOVÁ, K. (1997): A highly radioactive syenite from the Moldanubian Zone (Western Moravia). – J. Czech Geol. Soc. 42, 63. NĚMEC, D. (1982): Randaplite des Massifs Třebíč-Meziříčí (Westmähren). – Chem. Erde 41, 7–17. SCHULMANN, K. – MELKA, R. – HOLUB, F. – VENERA, Z. (1994): The mechanism of emplacement of Třebíč Durbachite Massif based on petrofabric study. – Mitt. Österr. mineral. Gesell. 139, 111–112. SULOVSKÝ, P. (2000): Srovnání chemismu třebíčského durbachitu a jiných durbachitů. – Geol. Výzk. Mor. Slez. v Roce 1999, 135–140. SULOVSKÝ, P. (2001): Accessory minerals of the Třebíč durbachite massif (SSW Moravia). – Miner. slov. 33, 467–472. SULOVSKÝ, P. – HLISNIKOVSKÝ, K. (2001): Thorium mineralization in alkali-feldspar syenite of the nordmarkite-type dyke in the Třebíč pluton (Czech Republic). – Mitt. Österr. mineral. Gesell. 146, 280–282. ZACHOVALOVÁ, K. – LEICHMANN, J. – ŠTELCL, J. (1999): Petrology, geochemistry and radioactivity of durbachites from Třebíč Massif along the Třebíč Fault. – Acta Mus. Morav., Sci. geol. 84, 71–88. (In Czech) Třebíč Melagranite (durbachite) Quartz-deficient, potassic, metaluminous, melanocratic, quartz monzonite, diorite to granodiorite (shoshonitic affinities) n = 19 Median Min Max QU1 QU3 SiO2 59.40 53.64 69.96 57.35 64.09 TiO2 0.92 0.00 1.41 0.65 1.04 Al2O3 13.98 12.20 16.70 12.81 15.51 Fe2O3 1.10 0.10 2.96 0.90 1.23
144
FeO 4.32 1.31 5.36 2.30 4.55 MnO 0.08 0.02 0.18 0.06 0.09 MgO 5.94 0.68 7.55 2.03 6.13 CaO 3.41 1.69 5.19 2.70 3.73 Na2O 2.32 1.56 3.97 2.06 2.90 K2O 6.20 4.55 7.42 5.46 6.81 P2O5 0.59 0.24 1.07 0.40 0.76 Mg/(Mg + Fe) 0.65 0.36 0.71 0.55 0.66 K/(K + Na) 0.64 0.44 0.75 0.54 0.66 Nor.Or 42.06 28.11 50.30 33.81 44.25 Nor.Ab 22.79 15.95 36.51 21.56 29.10 Nor.An 13.29 1.95 22.82 9.70 14.59 Nor.Q 7.07 0.00 23.46 1.63 11.51 Na + K 210.33 167.05 244.76 198.16 225.02 *Si 80.41 37.64 143.63 52.83 90.99 K-(Na + Ca) -6.71 -79.24 49.71 -47.59 2.70 Fe + Mg + Ti 235.90 53.66 301.24 100.16 246.50 Al-(Na + K + 2Ca) -58.44 %-149.71 31.41 -88.42 -17.69 (Na + K)/Ca 3.57 2.00 7.65 2.96 4.23 A/CNK 0.84 0.64 1.15 0.79 0.96 Trace elements (mean values in ppm): Třebíč Melagranite – B 350, Be 120, Co 86, Cu 396, Pb 730, U 60, Zr 2120 (Bubeníček 1987), Ba 1310–2000, Co 22-30, Cr 198–349, Nb 37–71, Ni 63– 97, Sr 348–461, V 59–96, Zr 359–476, Th 13–17, U 6.3 (Zachovalová 1999),Th 36, U 10.7 (Sulovský 2000). Rand Aplite – B 699, Be 75, Cu 98, Pb 256, U 29, Zr 457 (Bubeníček 1987). Aplite – B 4166, Be 225, Cu 226, Pb 677, U 31, Zr 797 (Bubeníček 1987), Th 12.8, U 5.2 (Sulovský 2000), U 14, Th 42 (Zachovalová et al. 1999).
Fig. 2. 101. Třebíč Massif ABQ and TAS diagrams. 1 – Třebíč Melagranite, 2 – Třebíč muscovite aplite, 3 – Ořechov Granite.
2.2.5.01. OŘECHOV STOCKS Regional position: within biotite orthogneisses of the Strážec Unit of the Moldanubian Zone (eastern part) (Drosendorf Unit). Ořechov Stocks are equivalwnts of the leucogranite from the Třebíč Massif.
Rock types: Ořechov Granite – two-mica tourmaline-bearing leucogranite (similar to the tourmaline granite and two-mica leucogranite from the Třebíč Massif). Size and shape (in erosion level): eight small granite stocks up to 1.5 km in diameter,
145
Geological environment: high-grade migmatitic paragneisses of the Moldanubian (Drosendorf Unit). Zoning: not defined. Mineralization: uranium spatially related to the Rožná-Olší uranium deposit. Heat production (μWm-3): Ořechov Granite 2.83.
circular and/or oval shape, located along the NE-SW fault in the NE extension of the Třebíč Massif. Age and isotopic data: Variscan age is expected. No isotopic data. Contact aureole: not defined.
Ořechov Granite Quartz rich, sodic, peraluminous, leucocratic, S-type granite 1321ORE re906 re907 re908 SiO2 73.36 73.73 74.65 73.81 TiO2 0.15 0.08 0.09 0.08 Al2O3 15.56 14.09 14.01 14.25 Fe2O3 0.40 0.26 0.14 0.15 FeO 0.72 0.39 0.60 0.55 MnO 0.01 0.02 0.02 0.02 MgO 0.16 0.16 0.32 0.25 CaO 0.98 0.54 0.69 0.65 Na2O 3.60 4.23 3.36 3.98 K2O 3.82 4.86 4.65 4.75 P2O5 0.14 0.12 0.11 0.10 Mg/(Mg + Fe) 0.21 0.31 0.43 0.39 K/(K + Na) 0.41 0.43 0.48 0.44 Nor.Or 23.11 29.29 28.31 28.73 Nor.Ab 33.11 38.74 31.10 36.58 Nor.An 4.03 1.93 2.78 2.63 Nor.Q 33.69 27.67 33.67 29.05 Na + K 197.28 239.69 207.16 229.29 *Si 198.06 162.93 198.78 172.47 K-(Na + Ca) -52.54 -42.94 -22.00 -39.17 Fe + Mg + Ti 20.89 13.66 19.18 16.74 Al-(Na + K + 2Ca) 73.34 17.75 43.36 27.37 (Na + K)/Ca 11.29 24.89 16.84 19.78 A/CNK 1.33 1.08 1.20 1.12 Trace elements (mean values in ppm): Ba 490, Sr 123, Rb 267, Zr 54, U 6.5, Th 11, La 16.6, Ce 32.8, Pr 3.62, Nd 12.8, Sm 2.83, Eu 0.505, Gd 2.14, Tb 0.38, Dy 1.99, Ho 0.36, Er 1.01, Tm 0.156, Yb 0.93, Lu 0.123. References BURIÁNEK, D. – NOVÁK, M. (2001): Tourmaline-bearing leucogranites from the Moldanubicum. – Mitt. Österr. mineral. Gesell. 146, 51–53. KALÁŠEK, J. (1954): O turmalinických horninách na Třebíčsku. – Sbor. Přírodověd. Klubu při Domě osvěty v Třebíči 6, 3–16. Třebíč. RENÉ, M. (2003): Dvojslídné granity z okolí Ořechova. – Geol. Výzk. Mor. Slez. v Roce 2002, 79– 82.
146
Fig. 2.102. Radňovice and Nové Město Stocks geological sketch-map (adapted after Dosbaba and Sulovský 2006). 1 – Radňovice and Nové Město Melagranite, 2 – faults.
2.2.6. RADŇOVICE STOCK Regional position: Moldanubian Zone (Gföhl Unit). Rock types: Radňovice Melagranite – strongly deformed porphyritic biotitehornblende melagranite to quartz monzonite. Size and shape (in erosion level): NW-SE trending oval shape intrusion in the diameter of 1 km (over 1 km2). Intrusive contact plane dipping 30° to NW.
Age and isotopic data: Variscan age is expected. No isotopic data. Contact aureole: not defined. Geological environment: migmatitic gneisses and migmatites. Zoning: not defined. Mineralization: uranium related to the tectonic contact. Heat production: No data.
Radňovice and Nové Město Stocks Radňovice Melagranite: Quartz-normal, potassic, metaluminous, melanocratic, I-type, melagranite Nové Město Melagranite: Quartz-normal, potassic, metaluminous, melanocratic, I-type, melagranite Hengstberg Melagranite: Quartz-normal, sodic/potassic, metaluminous, mesocratic, Itype, melagranite 2Radnov 10Radno 4NoveMe 9NoveMe 44HengstB SiO2 65.24 64.60 65.36 65.38 59.92 TiO2 0.87 0.86 0.76 0.76 0.82 Al2O3 12.94 12.98 13.05 13.06 16.29 Fe2O3 0.17 0.40 0.56 0.50 5.17 FeO 3.48 3.58 3.16 3.01 n.d. MnO 0.07 0.07 0.06 0.06 0.08 MgO 4.48 4.82 4.44 3.87 3.00 CaO 3.08 3.03 2.86 3.34 3.96 Na2O 2.37 2.25 2.43 2.29 3.18 K2O 5.20 5.79 5.39 5.14 4.77 P2O5 0.79 0.64 0.66 0.70 0.43 Mg/(Mg + Fe) 0.68 0.68 0.68 0.66 0.53 K/(K + Na) 0.59 0.63 0.59 0.60 0.50 Nor.Or 34.12 38.00 35.17 33.57 30.42 Nor.Ab 23.64 22.44 24.10 22.73 30.82 Nor.An 11.19 12.01 10.87 13.22 18.15 Nor.Q 18.80 15.68 18.23 20.11 11.43 Na + K 186.89 195.54 192.86 183.03 203.90 *Si 138.44 126.82 135.75 139.98 81.45 K-(Na + Ca) -20.99 -3.70 -14.97 -24.32 -71.95 Fe + Mg + Ti 172.65 185.23 170.71 153.73 149.49
147
Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
-42.62 3.40 0.91
-48.70 3.62 0.88
-38.58 3.78 0.92
-45.68 3.07 0.90
-25.22 2.89 0.95
Fig. 2.103. Radňovice and Nové Město Stocks ABQ and TAS diagrams. 1 – Radňovice Melagranite, 2 – Nové Město Melagranite, 3 – Hengstberg Melagranite.
Trace elements (mean values in ppm): Radňovice and Nové Město Stocks – Ba 1288, Co 16.9, Cr 376, Ni 62, Rb 392, Sr 328, U 25, Nb 25, Y 23, Zr 339, Cs 43, Th 49, Ta 2.2, Hf 10.3, Tl 2.3 References DOSBABA, M. – SULOVSKÝ, P. (2006): Geologická posice, petrologie a geochemie hornin durbachitové série v okolí Nového Města na Moravě. – Acta Mus. Morav., Sci. Geol. 91, 177–190. 2.2.7. NOVÉ MĚSTO STOCK Age and isotopic data: Variscan age is expected. No isotopic data. Contact aureole: not defined. Geological environment: migmatitic gneisses and migmatites. Zoning: not defined. Mineralization: uranium spatially related the tectonic contact. Heat production (μWm-3): no data.
Regional position: Moldanubian Zone (Gföhl Unit). Rock types: Nové Město Melagranite – strongly deformed porphyritic biotitehornblende melagranite to quartz monzonite. Size and shape (in erosion level): N-S trending oval shape intrusion in the diameter of 1 km (over 1 km2).
References DOSBABA, M. – SULOVSKÝ, P. (2006): Geologická posice, petrologie a geochemie hornin durbachitové série v okolí Nového Města na Moravě. – Acta Mus. Morav., Sci. Geol. 91, 177–190.
148
Fig. 2.104. Bobrová Stock geological sketch-map. 1 – Bobrová Granite, 2 – Bobrová Melagranite, 3 – faults.
2.2.8. BOBROVÁ STOCK (BS) Size and shape (in erosion level): NW-E trending long oval shape intrusion 2 × 0.6 km (over 1 km2). Age and isotopic data: Variscan age is expected. No isotopic data. Contact aureole: not defined. Geological environment: biotite and biotitesillimanite paragneisses with cordierite. Zoning: not defined. Mineralization: unknown. Heat production (μWm-3): no data.
Regional position: MS belongs to intrusive suite of Variscan ultrapotassic magmatic rocks (referred as durbachite). Moldanubian Zone (Gföhl Unit). Rock types: Bobrová Granite – medium grained muscovite-biotite granite Bobrová Melagranite – strongly deformed porphyritic biotite-hornblende melagranite to quartz monzonite. 2.2.9. DRAHONÍN MASSIF (DM)
Age and isotopic data: 339 ± 2Ma (U-Pb zircon); 323.5 ± 1.1Ma (Pb-Pb zircon). Contact aureole: not defined. Geological environment: felsic granulites and high-grade migmatitic paragneisses of the Gföhl Unit. Zoning: not defined. Mineralization: unknown. Heat production: no data.
Regional position: DM belongs to intrusive suite of Variscan ultrapotassic magmatic rocks (referred as durbachite). DM intruded NE flank of the Moldanubian Zone (Gföhl Unit). Rock types: Drahonín Melagranite – porphyritic amphibole-biotite melagranite to melasyenite. Size and shape (in erosion level): ~ 80 km², sheet-like intrusive body with steep and partly discordant contacts in relation to the regional metamorphic fabric.
149
Fig. 2.105. Drahonín Massif geological sketch-map. 1 – Drahonín Melagranite, 2 – faults.
References SCHULMANN, K. – KRÖNER, A. – HEGNER, E. – WENDT, I. – KONOPÁSEK, J. – LEXA, O. – ŠTÍPSKÁ, P. (2005): Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic. – Amer. J. Sci. 305, 407–448. VERNER, K. – BURIÁNEK, D. – SOEJONO, I. – VONDROVIC, L. – ZAVŘELOVÁ, A. – MELICHAR, R. (2007): The record of the structural evolution of NE part of the Moldanubian Zone, Svratka and Polička Crystalline Complex. In: Breiter, K. Ed.: Sbor. abstraktů sjezdu Čes. geol. společ., Volary 2007, 115–116. – Czech Geol. Soc. Prague. (In Czech). 2.2.10. JIHLAVA MASSIF (JM) Fig. 2.106. Jihlava Massif geological sketchmap (adapted after Verner et al. 2006). 1 – Jihlava Melasyenite, 2 – Jihlava Melagranite, 3 – coarse-grained quartz syenite, 4 – porphyritic quartz syenite, 5 – migmatite (relict of the country rock), 6 – faults.
150
Age and isotopic data: 330 (K-Ar biotite), 325 and 337 Ma (Rb-Sr whole rock), 335.2 ± 0.54 Ma (U-Pb zircon). Geological environment: high-grade migmatitic cordierite-bearing paragneisses of the Monotonous Group of the Drosendorf Unit. Contact aureole: contact aureole is rather narrow. Zone of migmatization in the western exocontact is more intense than in the eastern side of the massif. The western contact is sheeted, i.e. consists of multiple monzonitic and more leucocratic sheets up to several meters thick alternating with host-rock rafts or stopped blocks. In contrast the eastern margin, there is no evidence for either sheeting or sharp discordant contact. Zoning: JM is divided into the western and eastern part by a zone of enclaves of the country rocks. Inverse asymmetric concentric zonation (decreasing colour index from southwest to northeast). More mafic ± porphyritic pyroxene monzonite in the core and pyroxene-hornblende quartz monzonite in the eastern endocontact of the massif. Mineralization: pegmatites at the eastern endocontact. Heat production (μWm-3): Jihlava Melasyenite 4.01.
Regional position: a member of the high-K plutonites (Metasyenite Suite) in the Moldanubian Zone. Rock types: 1. Jihlava Syenite (in the centre) – mediumgrained biotite – pyroxene quartz melasyenite to melagranite, quartz monzonite – biotite-pyroxenehornblende quartz monzonite (light and dark variety) to ± porphyritic pyroxene monzonite (amount of quartz is highly variable). 2. Jihlava Melagranite (at margins) – medium grained amphibole-biotite quartz syenite to melagranite. 3. Porphyritic quartz syenite. 4. Coarse-grained quartz syenite. 5. Gabbro to monzodiorite (enclaves) – e.g. 2 km long body in the northern part of the massif. Shape and size: 46 km2 (15 × 3 km), elliptical moderately elongated, sigmoidal shape with steep (70°) and sharp contacts, mostly parallel to the foliation pattern of the host-rock foliations. Steep S- to SE-dipping magmatic foliation is defined by orientation of feldspars and biotite. Deeper level of the massif crops out in its southern parts.
References KOTKOVÁ, J. (2009): Odraz procesů vzniku ultrapotasických plutonických hornin Českého masivu ve vnitřní stavbě a složení vyrostlic K-živce (jihlavský pluton). In: Kohút, M. – Šimon, L. Eds. Spoločný kongres Slovenskej a Českej geologickej spoločnosti, Zborník abstraktov a exkurzný sprievodca. p. 103–104.Štát. Geol. ústav Dionýza Štúra, Bratislava. KOTKOVÁ, J. – SCHALTEGGER, U. – LEICHMANN, J. (2003): 338-335 Ma old intrusions in the E Bohemian Massif – a relic of the orogen-wide durbachitic magmatism in European Variscides. – J. Czech Geol. Soc. 48, 80–81. LEICHMANN, J. – ZACHOVALOVÁ, K. (2001): Gabbros related to the durbachites (Jihlava Massif, Moldanubian Zone). – Mitt. Österr. mineral. Gesell. 146, 171–172. LEICHMANN, J. – KOLLER, F. – ŠVANCARA, J. – ZACHOVALOVÁ, K. (2001): High-K Gabbros repated to the durbachites (Jihlava Massif, Moldanubian Zone). – J. Czech Geol. Soc. 48/1-2, 89. SCHARBERT, S. – VESELÁ, M. (1990): Rb-Sr systematics of intrusive rocks from the Moldanubicum around Jihlava. In: Minaříková, D. – Lobitzer, H. Eds: Thirty years of geological cooperation between Austria and Czechoslovakia, 262–272. – Czech Geol. Survey, Prague. ŠTĚPÁNEK, J. (1930): Biotitický a pyroxenický syenit jihlavský. – Zpr. Kom. přírodověd. Výzk. Mor. Slez., Odd. mineral. 5, 38 pp. TONIKA, J. (1970): Geology and petrology of the rocks of the Jihlava Massif. – Sbor. geol. Věd, Geol. 17, 105–123. (English summary) VERNER, K. – SCHULMANN, K. – HROUDA, F. (2003): Relationship of emplacement of the Jihlava pluton to the structural evolution and tectonics of the eastern part of the Moldanubian Zone (Bohemian Massif). – Geolines 16, 107–108.
151
VERNER, K. – ŽÁK, J. – HROUDA, F. – HOLUB, F.V. (2006): Magma emplacement during exhumation of the lower- to mid-crustal orogenic root: The Jihlava syenitoid pluton, Moldanubian Unit, Bohemian Massif. – J. Struct. Geol. 1–15. Jihlava Syenite Quartz-deficient, sodic/potassic, metaluminous, melanocratic, monzonite to monzogabbro 1156J 1157J 1158J 1159J 1160J SiO2 58.56 58.97 58.25 59.82 57.00 TiO2 0.90 0.33 0.77 0.81 0.05 Al2O3 14.25 14.07 12.78 13.17 14.33 Fe2O3 1.73 2.65 1.43 3.39 0.74 FeO 4.37 5.31 5.70 2.98 5.25 MnO 0.08 0.67 n.d. n.d. 0.11 MgO 5.08 5.43 5.72 5.80 5.81 CaO 3.79 4.58 4.56 3.90 4.72 Na2O 2.69 3.81 4.32 2.22 2.45 K2O 5.75 4.46 5.52 5.39 5.76 P2O5 0.78 0.12 0.42 0.77 0.88 Mg/(Mg + Fe) 0.60 0.54 0.59 0.63 0.63 K/(K + Na) 0.58 0.44 0.46 0.62 0.61 Nor.Or 38.22 28.47 38.57 35.78 39.61 Nor.Ab 27.18 36.97 44.02 22.40 25.60 Nor.An 15.37 17.64 0.00 16.04 20.50 Nor.Q 5.25 1.38 0.00 11.93 0.29 Na + K 208.89 217.64 256.61 186.08 201.36 *Si 70.93 55.06 12.34 99.43 58.75 K-(Na + Ca) -32.30 -109.92 -103.52 -26.74 -40.93 Fe + Mg + Ti 219.85 246.01 248.87 238.03 227.17 Al-(Na + K + 2Ca) -64.22 -104.68 -168.26 -66.54 -88.28 (Na + K)/Ca 3.09 2.66 3.16 2.68 2.39 A/CNK 0.86 0.73 0.61 0.84 0.81
Fig. 2.107. Jihlava Massif ABQ and TAS diagrams. 1 – Jihlava Melasyenite.
152
Pb zircon), 353 ± 9 Ma (U-Pb zircon), 323 ± 1 Ma (U-Pb monazite). The Loschberg Quartz monzonite is the youngest member of the Rastenberg massif. Contact aureole: partly discordant contacts, the growth of K-feldspars to a distance of 30 m from the contact. Geological environment: high-grade metamorphic gneisses (Drosendorf Unit) of the Moldanubian Zone. Zoning: asymmetric compositional and textural zonation (e.g. the Rastenberg Melagranite and its marginal facies). The Rastenberg Melagranite (main facies) and the Eschenbach Quartz Monzonite show a continuous compositional range. Mineralization: unknown. Heat production (μWm-3): Rastenberg Melagranite 6.08.
2.2.11. RASTENBERG MASSIF (RM)
Fig. 2.108. Rastenberg Massif geological-sketchmap (adapted after Gerdes et al. 2000). 1 – Rastenberg Melagranite (main type), 2 – Rastenberg Melagranite (marginal type), 3 – Kleehof Granodiorite, 4 – Eschenbach Quartz Monzonite, 5 – Loschberg Quartz Monzodiorite, 6 – faults.
Regional position: a member of the Durbachite (high-K) Suite, located at the eastern border of the Moldanubian Composite Batholith. RM was intruded at the boundary between the Gföhl Unit and the Drosendorf Unit. Rock types: 1. Rastenberg Melagranite (main type) – porphyritic hornblende-biotite melagranite (quartz monzonite) with very common mafic enclaves 2. Rastenberg Melagranite (marginal type) – medium-grained melagranite. 3. Eschenbach Quartz Monzonite – porphyritic hornblende-biotite quartz monzonite – with very common mafic enclaves. 4. Kleehof Granodiorite – porphyritic biotite granodiorite (the most quartz-rich variety). 5. Loschberg Quartz Monzonite – pyroxene-hornblende quartz monzodiorite (isolated bodies > 500 m in diameter). Size and shape (in erosion level): 400 km2 (33 ×12 km), pear-like (oval) shape. Age and isotopic data: 338 ± 2 Ma (U-Pb zircon – emplacement age), 328 ± 10 Ma (U153
References EXNER, C. (1969): Zur Rastenberger Granittektonik im Bereich der Kampkraftwerke (Südliche Böhmische Masse). – Mitt. Geol. Gesell. Wien 61, 6–39. FRIEDL, G. – VON QUADT, A. – FINGER, F. (1992): Erste Ergebnisse von U/Pb Altersdatierungbearbeiten am Rastenberger Granodiorit im Niederösterreichischen Waldviertel. – Mitt. Öster. mineral. Gesell. 137, 131–143. GERDES, A. – WÖRNER, G. – FINGER, F. (2000): Hybrid magma and enriched mantle melts in post-collisional Variscan granitoids: the Rastenberg Pluton, Austria. In: Franke, W. – Haak, V. – Oncken, O. Tanner, D. Eds: Orogenic Processes – Quantification and Modeling in the Variscan Belt. – Geol. Soc. London Spec. Publ. 179, 414–431. KLÖTZLI, U. S. – PARRISH, R. R. (1996): Zircon U-Pb and Pb-Pb geochronology of the Rastenberg granodiorite, South Bohemian Massif, Austria. – Mineral. Petrology. 58, 197–214. Rastenberg Melagranite Large variation in composition. Quartz-deficient, potassic, metaluminous, melanocratic, I-type, I-series, monzonite 1151 1152 1153 1154 1155 SiO2 60.04 60.98 55.65 63.79 54.54 TiO2 1.02 0.99 1.38 0.74 1.36 Al2O3 14.64 15.18 13.59 13.86 13.09 Fe2O3 0.96 0.48 0.69 0.62 0.78 FeO 4.09 3.83 5.40 3.13 6.45 MnO 0.97 0.07 0.10 0.07 0.13 MgO 4.58 3.93 6.60 3.73 9.04 CaO 3.39 3.55 3.61 2.92 4.50 Na2O 2.14 3.20 1.65 2.40 2.32 K2O 7.52 5.55 7.94 6.32 4.82 P2O5 0.65 0.64 0.81 0.44 1.15 Mg/(Mg + Fe) 0.58 0.62 0.66 0.64 0.69 K/(K + Na) 0.70 0.53 0.76 0.63 0.58 Nor.Or 49.02 35.92 51.71 41.06 33.86 Nor.Ab 21.20 31.48 16.33 23.70 24.77 Nor.An 13.83 14.67 13.82 12.74 17.53 Nor.Q 3.53 7.25 0.00 13.43 0.00 Na + K 228.72 221.10 221.83 211.64 177.21 *Si 64.07 75.00 43.99 107.55 71.88 K-(Na + Ca) 30.16 -48.73 50.97 4.67 -52.77 Fe + Mg + Ti 195.40 169.27 264.89 153.18 340.93 Al-(Na + K + 2Ca) -62.13 -49.61 -83.70 -43.59 -80.63 (Na + K)/Ca 3.78 3.49 3.45 4.06 2.21 A/CNK 0.86 0.90 0.80 0.89 0.83
154
Fig. 2.109. Rastenberg Massif ABQ and TAS diagrams. 1– Rastenberg Melagranite.
2.2.12. HENGSTBERG DYKE (SHEET) Regional position: Moldanubian Zone (Gföhl Unit). Rock types: Hengstberg Melagranite – strongly deformed porphyritic biotitehornblende melagranite of the Rastenberg type. Size and shape (in erosion level): about 3 km2, N-S trending sheet-like intrusion 100–500 m thick can be followed over a distance of 11 km. Age and isotopic data: Variscan age is expected. No isotopic data. Contact aureole: intrusive contact to granulites and to the overlying migmatites. Geological environment: granulite, granulite gneiss and migmatite. Zoning: not defined. Mineralization: unknown. Heat production (μWm-3): no data. Fig. 2.110. Hengstberg Sheet geological sketchmap (adapted after Fuchs 2005). Hengstberg Melagranite.
References FINGER, F. – GERDES, A. – JANOUŠEK, V. – RENÉ, M. – RIEGLER, G. (2007): Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and Moravo-Moldanubian tectonometamorphic phases. – J. Geosci. 52, 9–28. FUCHS, G. (2005): Der geologische Bau der Böhmischen Masse im Bereich des Strudengaus (Niederöstereich). – Jb. Geol. Bundesanst. 145, 283–291.
155
2.2.13. ŽELNAVA (KNÍŽECÍ STOLEC) MASSIF (ŽM) apophyses and enclosed blocks of the host rocks. Magmatic fabric in the massif is relatively strong. It is defined by the alignment of large tabular K-feldspar phenocrysts (2 to 4 cm in length) and biotite aggregates. Older, steeply to moderately NW- dipping magmatic foliation corresponds to the regional metamorphic foliation in the granulite gneisses. Younger, subhorizontal to moderately SE to NW foliation dipping bears subhorizontal magmatic lineation plunging from the W to the N. The above described magmatic structures grade into narrow zones of high-temperature subsolidus deformation along massif margins that are associated predominantly with dextral kinematics. Age and isotopic data: 340.9 ± 8.4 Ma (UTh-Pb monazite and uraninite). Relative age of the emplacement of the Želnava Massif (in magmatic stage) matches retrograde metamorphism in the granulite gneisses. Geological environment: granulite gneisses of the Křišťanov Granulite Massif to the E and N, fine-grained leucocratic granites in the variable degree of deformation. Contact aureole: narrow (max. 0.5 m), intrusive contact. The presence of numerous durbachite cone-sheets inward-dipping around the massif. These sheets are predominantly discordant to the steep foliation in the host granulite. Zoning: several textural and compositional rock varieties may represent several magma pulses of the deep-seated ring complex. Mineralization: unknown.
Fig. 2.111. Želnava Massif geological sketch-map (after Verner and Pertoldová 2004). 1 – Želnava Quartz syenite (Rastenberg Melagranite).
Geological position: Moldanubian Zone at the Bavarian Quartz “Pfahl”, in the southwestern part of the Moldanubian Composite Batholith. The Želnava Massif is a member of the durbachite suite of the Moldanubicum. ŽM is surrounded by retrogressed granulitic gneisses of the Křišťanov Granulite Massif. Rock types: Želnava Quartz syenite – porphyritic amphibole-biotite melaquartz syenite to melaquartz monzonite (durbachite) with microgranular mafic enclaves, finegrained granodiorite to quartz syenite, dykes of the fine-grained leucocratic granite. Želnava Quartz syenite is the product of mingling of potassium-enriched mantle and crust melts. Size and shape (in erosion level): about 55 km2 in the area 10 × 5.5 km, ethmolith of approximately oval shape, numerous Želnava Quartz syenite
Quartz normal/poor, potassic, metaluminous, melanocratic, I-type monzonite to monzogabbro durb388 durb414 durb389 SiO2 47.58 48.60 56.35 TiO2 1.14 1.47 1.30 Al2O3 11.51 13.30 13.06 Fe2O3 1.40 n.d. 1.31 FeO 7.18 7.96 4.79 MnO 0.17 0.14 0.10 MgO 13.70 9.44 7.11 CaO 6.73 6.14 4.10 Na2O 1.05 1.23 1.76 K2O 4.70 7.43 6.37
156
P2O5 Li2O Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
0.81 0.03 0.74 0.75 30.52 10.36 28.24 0.00 133.67 50.28 -54.10 471.73 -147.66 1.11 0.64
1.12 0.01 0.67 0.80 46.03 11.58 18.60 0.00 197.45 -0.82 8.58 363.49 -155.24 1.80 0.67
0.89 0.02 0.68 0.70 44.22 18.57 16.99 2.47 192.04 71.83 5.34 275.82 -81.80 2.63 0.81
References BAUBERGER, W. (1977): Geologische Karte von Bayern 1:25,000, Nationalpark Bayerischer Wald. – Bayer. Geol. Landesamt. München. HOLUB, F. V. (1997): Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: Petrology, geochemistry and petrogenetic interpretation. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 5–26. PERTOLDOVÁ, J. – VERNER, K. (2004): Petrostructural relations between granitic rocks near Nová Pec (Moldanubian Zone, Bohemian Forest). – Zpr. geol. Výzk. v Roce 2003, 34–37. (In Czech) VERNER, K. – HOLUB, F. V. – ŽÁK, J. (2006): Structural evolution and emplacement of the durbachitic Knížecí Stolec pluton, South Bohemian (Moldanubian) Batholith. – Geolines 17, 97– 98. VERNER, K. – PERTOLDOVÁ, J. (2004): Structural and petrological relations among granitoids near Nová Pec (Moldanubian Zone, Šumava – Bohemian Forest). – Geolines 17, 98–99. VERNER, K. – ŽÁK, J. – NAHODILOVÁ, R. – HOLUB, F. V. (2008): Magmatic fabric and emplacement of the cone-sheet-bearing Knížecí Stolec durbachitic pluton (Moldanubian Unit, Bohemian Massif): implication for mid-crustal reworking of granulitic lower crust in the Central European Variscides. – Int. J. Earth Sci. (Geol. Rdsch.) 97, 1, 19–33. WENDT, I. et al. (1992): U-Pb zircon ages and Nd – whole rock systematics for moldanubian rocks of the Bohemian Massif, Czechoslovakia. In: Kukal, Z. Ed.: Proc. of the 1st International Conference on the Bohemian Massif, 346– 350. – Czech Geol. Survey, Prague.
Fig. 2.112. Želnava Massif ABQ and TAS diagrams. 1 – Želnava Melaquartz syenite (melamonzonite).
157
2.2.14. NEZDICE DYKE SWARM (NDS) grained matrix of potassium feldspar, oligoclase, Mg-biotite (phlogopite), actinolite and minor quartz. Size and shape (in erosion level): The dyke swarms strike generally E-W of ENE-WSW. The width of the dykes varies from 1–2 m to 10–20 m; the length some of them exceeds 1–2 km. Age and isotopic data: no data. Geological enviroment: NDS cut metamorphic rocks, mainly migmatites, gneisses and the pre-Variscan orthogneisses. Contact aureole: not reported. Mineralization: not reported.
Geological position: the Moldanubian Zone. The melasyenite porphyry dykes occupy a large zone of an approximately triangular shape and a length of about 115 km (NE-SW) at a width of ca. 50 km. NDS corresponds in terms of its texture, structure and chemical composition to melasyenites – durbachites, typical of many parts of the high-potassic plutonites in the Moldanubicum. NDS consists of two clusters of dykes of a “durbachitic” appearance, northern one in the vicinity of Kašperské Hory and Nezdice and southern one, between Svojše and Stachy. Rock types: Melasyenite porphyry – Kfeldspar phenocrysts in fine- to medium-
Fig. 2.113. Nezdice Melasyenite porphyry ABQ and TAS diagrams.
158
References HEJTMAN, B. (1949): The syenitic rocks of the vicinity of Vodňany and Protivín. – Věst. St. geol. Úst. Čs. Republ. 24, 232–248. (In Czech) HOLUB, F. V. (1997): Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: Petrology, geochemistry and petrogenetic interpretation. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 5–26. HOLUB, F. V. (2009): Ultradraselné melasyenitové a melagranitové porphyry žilných rojů ve středočeském plutonickém komplexu a šumavském moldanubiku: látkové vztahy k plutonitům. In: Kohút, M. – Šimon, L. Eds. Spoločný kongres Slovenskej a Českej geologickej spoločnosti, Zborník abstraktov a exkurzný sprievodca. Štátny geologický ústav Dionýza Štúra, Bratislava, pp 76–77 (in Czech). ŽÁČEK, V. – ŠKODA, R. – SULOVSKÝ, P. (2009): U-Th-rich zircon, thorite and allanite-(Ce) as main carriers of radioactivity in the highly radioactive ultrapotassic melasyenite porphyry from the Šumava Mts., Moldanubian Zone, Czech Republic. – J. Geosci. 54, 343–354. Nezdice Melasyenite porphyry Quartz normal, highly potassic, metaluminous, melanocratic, I type granite Kvilda100 ČkyněSZ110 KašpH11 KašpHAv4 BavorovAv3 SiO2 64.13 63.33 64.62 63.64 64.39 TiO2 0.75 0.71 0.84 0.72 0.75 Al2O3 13.38 13.10 13.47 13.24 13.46 Fe2O3 1.40 0.95 4.21 1.15 4.13 FeO 2.75 0.00 2.91 0.00 2.84 MnO 0.07 0.07 0.08 0.07 0.08 MgO 4.23 4.08 4.46 4.15 4.28 CaO 2.52 2.12 2.82 2.46 2.65 Na2O 2.43 2.34 2.61 2.39 2.47 K2O 6.31 6.21 6.38 6.23 6.32 P2O5 0.61 0.55 0.65 0.56 0.62 Li2O 0.01 0.00 0.01 0.00 0.01 Mg/(Mg + Fe) 0.66 0.65 0.67 0.65 0.66 K/(K + Na) 0.63 0.61 0.64 0.62 0.64 Nor.Q 14.88 13.45 16.35 14.53 16.17 Nor.Or 40.61 40.46 41.33 40.53 40.70 Nor.Ab 23.99 23.17 25.49 23.30 24.50 Nor.An 9.57 7.18 11.40 9.00 9.58 Na+K 211.56 209.49 218.41 210.69 212.59 *Si 114.33 107.13 120.46 107.41 114.41 K-(Na + Ca) 11.08 3.58 14.60 5.03 14.34 Fe + Mg + Ti 167.10 162.96 173.81 163.61 172.49 Al-(Na + K + 2Ca) -42.57 -48.28 -29.91 -46.94 -34.47 (Na + K)/Ca 4.78 4.19 5.60 4.50 4.86 A/CNK 0.91 0.88 0.94 0.89 0.93 Trace elements (in ppm): Kvilda Melagranite porphyry – V 59,Co 15, Cr 237, Ni 78, Cu 21, Zn 68, As 9, Rb 353, Sr 312, Y 19, Zr 346, Nb 26, Sn 14, Pb 44, Th38, U 18.
159
Members of the Central Bohemian Composite Batholith in the Moldanubicum 2.3.1. ŘÍČANY MASSIF (ŘM) 3. Žernovka Granite – biotite rich enclaves. 4. Marginal Aplite (along the southern contact and containing Sn mineralization). 5. Kšely Granite (probably deformed equivalent of the Říčany Granite). Shape and size: oval shape – 72 km2 (10 × 13 km). The outcrop of the hypotetic hidden Říčany-Kutná Hora Batholith (48 × 24 km). Age and isotopic data: 330 (K-Ar), 335 Ma (Rb-Sr), 336 ± 3.5 Ma (Ar-Ar biotite). Contact aureole: contact metamorphosed Palaeozoic sediments (the Tehov “Islet”). Geological environment: Sázava Tonalite, Tehov metasediments, Permian Cover. Zoning: Compositional concentric zonation (tectonically outlined in the E, increase of acidity towards the centre (Jevany Granite), cryptic zoning is interpreted based on variation of trace-element patterns. The outer part consists of the porphyritic facies of the Říčany Granite, whereas the central part is made up by non-porphyritic facies. The eastern part of the intrusion is cut-off by subvertical fault. The origin of the reverse zoning is explained by high-level emplacement as a single batch of magma from deeper level vertically graded magma chamber. Mineralization: Sn (cassiterite). Heat production (μWm-3): Říčany Granite 3.4, 4.6, Jevany Granite 5.69.
Fig. 2.114. Říčany Massif geological sketch-map (adapted after Janoušek et al. 1997). 1 – Říčany Granite (outer zone), 2 – Říčany Granite (central zone), 3 – Jevany Granite, 4 – faults.
Regional position: a member of the Central Bohemian Composite Batholith. Rock types: 1. Říčany Granite (70 km2) – porphyritic biotite (± muscovite) granite (outer zone) and equigranular biotite granite (central zone). 2. Jevany Granite (3 km2) – muscovitebiotite leucogranite with tourmaline.
References BENDL, J. – VOKURKA, K. (1993): Sr and Nd isotope study of some volcanic and plutonic rocks from Bohemia and Moravia. – Sbor. geol. Věd, Geol. 47, 70–71. CIMBÁLNÍKOVÁ, A. – PALIVCOVÁ, M. – HEJL, V. – ARAKELJANC, M. M. (1977): Biotit iz ržičanskogo granita i ego bogatych biotitom ksenolitov (ČSSR, Sredněčešskij pluton). In: Afanasjev, G. D. Ed.: Opyt korrelacii magmatičeskych i metamorfičeskych porod Čechoslovakiji i někotorych rajonov SSSR, 178–187. – Nauka, Moskva. HOLEČKOVÁ, H. – ŠMEJKALOVÁ, M. (1958): Petrochemie říčanské žuly. – Sbor. Vys. Šk. chem.technol., Odd. anorg. Technol. 302–321. JANOUŠEK, V. (1991): Izotopy stroncia v říčanské žule. – 87 pp. Unpubl. MSc. thesis, Charles Univ. Prague. JANOUŠEK, V. (2000): Geology of the Central Bohemian Pluton. Excursion guide. – Czech Geol. Soc. Prague.
160
JANOUŠEK, V. – ROGERS, G. – BOWES, D. R. – VAŇKOVÁ, V. (1997): Cryptic trace-element variation as an indicator of reverse zoning in a granitic pluton: the Říčany granite, Czech Republic. – J. Geol. Soc., London 154, 807–815. KAŠPAR, J. V. (1936): Stručný nástin mineralogie a geochemie říčanské žuly. – Věda přír. 17, 168– 171. KATZER, F. (1888): Geologische Beschreibung der Umgebung von Říčan. – Jb. Geol. Reichsanst. 38, 355–417. KODYM, O. (1925): Poznámka ke geologii říčanské žuly. – Věst. St. geol. Úst. Čs. Republ. 1, 77–83. MOTTLOVÁ, L. (1971): Hlubší stavba kutnohorského krystalinika s.s. na základě interpretace regionálního tíhového pole. – Čas. Mineral. Geol. 16, 247–254. NĚMEC, D. (1998): Genesis of aplite in the Říčany massif, Central Bohemia. – Neu. Jb. Mineral., Abh. 132, 322–339. OREL, P. (1975): Metalogenetické a prognózní důsledky vymezení říčansko-kutnohorského batolitu. – Sbor. Nerost. sur. Zdroje, věd. konfer., sekce 2 Geol., VŠB Ostrava. 118 pp. PALIVCOVÁ, M. – WALDHAUSROVÁ, J. – LEDVINKOVÁ, V. – FATKOVÁ, J. (1992): Říčany granite (Central Bohemian Pluton) and its ocelli- and ovoids-bearing mafic enclaves. – Krystalinikum 21, 33–66. PIVEC, E. (1970): On the origin of phenocrysts of potassium feldspars in some granitic rocks of the Central Bohemian Pluton. – Acta Univ. Carol. Geol. 1, 11–25. PTÁK, J. (1960): Granittektonický výzkum východního okraje říčanského adamellitového tělesa. – Zpr. geol. Výzk. v Roce 1960, 49–52. ŠMEJKALOVÁ, M. (1960): Petrochemie jevanské žuly. – Sbor. Vys. Šk. chem.-technol., Odd. anorg. Technol., 383–390. TOMEK, Č. (1974): The inverse gravimetric task and its application on morphology of the Central Bohemian Pluton. – J. Min. Geol. 19, p. 217. TOMEK, Č. (1975): Hlubší stavba a petrogeneze středočeského plutonu. In: Výzkum hlubinné stavby Československa. Sbor. referátů Loučná 1974, 187–194. – Brno. TRUBAČ, J. (2008): Magnetic fabric of the Říčany granite, Bohemian Massif: a record of helicoidal magmatic flow? – 84 pp. MS thesis Charles Univ. Prague. (In Czech) TRUBAČ, J. – ŽÁK, J. – CHLUPÁČOVÁ, M. – JANOUŠEK, V. (2009): Magnetic fabric of the Říčany granite, Bohemian Massif: A record of helicoidal magmatic flow? – Volcan. Geotherm. Res. 181, 25–34. VEJNAR, Z. (1973): Petrochemistry of the Central Bohemian Pluton. – Geochem. Methods and Data 2, 116 pp. VEJNAR, Z. – ŽEŽULKOVÁ, V. – TOMAS, J. (1975): Granitoids from the water-supply gallery of the Želivka water-work, Central Bohemian Pluton. – J. Geol. Sci. 27, 31–54. (In Czech)
161
Říčany Granite Large variation in composition. Quartz-poor, sodic, peraluminous (weakly), mesocratic, S-type, I- & M-series, granite n = 17 Med. Min Max QU1 QU3 SiO2 69.66 67.38 71.63 68.82 70.54 TiO2 0.35 0.22 0.44 0.31 0.40 Al2O3 15.25 14.25 16.18 14.71 15.62 Fe2O3 0.63 0.08 2.08 0.31 1.14 FeO 1.47 0.60 2.22 1.14 1.58 MnO 0.04 0.01 0.08 0.03 0.07 MgO 1.19 0.46 2.38 1.08 1.30 CaO 1.41 0.99 1.83 1.28 1.61 Na2O 3.48 3.20 3.94 3.33 3.60 K2O 5.43 4.72 6.35 5.06 5.67 P2O5 0.39 0.14 0.51 0.21 0.44 Mg/(Mg + Fe) 0.53 0.35 0.65 0.43 0.57 K/(K + Na) 0.50 0.46 0.55 0.49 0.52 Nor.Or 32.90 28.79 38.86 30.95 34.65 Nor.Ab 32.36 30.03 36.39 30.82 33.48 Nor.An 5.12 3.21 7.63 3.89 5.91 Nor.Q 23.75 16.36 28.60 20.67 24.92 Na + K 228.49 204.77 255.69 221.69 235.91 *Si 142.81 109.90 175.07 128.87 150.20 K-(Na + Ca) -24.12 -38.61 -2.62 -27.80 -19.94 Fe + Mg + Ti 58.94 31.67 104.42 56.40 68.82 Al-(Na + K + 2Ca) 16.19 -13.97 53.04 2.86 40.09 (Na + K)/Ca 9.36 7.00 14.20 8.18 9.83 A/CNK 1.10 0.98 1.25 1.02 1.19 Trace elements (mean values in ppm): Říčany Granite – B 30, Ba 1020, Be 12, Co 5, Cr 30, Cs 26, Cu 4, Ga 20, F 1500, Hf 5.5, Li 84, Ni 10, Pb 40, Rb 250, Sn 17–30, Sr 250, Th 27, U 8, V 48, Zn 25, Zr 160 (Vejnar 1974). W 1.2, La 24.3, Ce 61, Sm 4.3, Eu 0.92, Tb 0.35, Yb 0.3, Lu 0.07 (Palivcová et al. 1992).
Fig. 2.115. Říčany Massif ABQ and TAS diagrams. 1 – Jevany Granite, 2 – Říčany Granite, 3 – Žernovka Granite.
162
Jevany Granite Quartz-rich, sodic, peraluminous (very weakly), leucocratic, S-type, I- and M-series, granite n = 15 Median Min Max QU1 QU3 SiO2 72.04 70.05 75.15 70.52 73.59 TiO2 0.20 0.13 0.30 0.15 0.24 Al2O3 14.17 12.96 15.98 13.67 14.46 Fe2O3 0.36 0.08 1.46 0.21 0.61 FeO 0.92 0.39 1.52 0.60 1.09 MnO 0.03 0.02 0.05 0.02 0.03 MgO 0.61 0.30 0.95 0.39 0.70 CaO 1.12 0.72 1.93 0.84 1.15 Na2O 4.22 3.45 5.50 3.74 4.46 K2O 4.67 4.07 5.70 4.35 4.70 P2O5 0.08 0.05 0.24 0.06 0.13 Mg/(Mg + Fe) 0.45 0.32 0.56 0.37 0.49 K/(K + Na) 0.43 0.33 0.50 0.39 0.45 Nor.Or 28.16 24.59 34.59 26.17 28.56 Nor.Ab 38.61 31.61 50.78 34.41 41.01 Nor.An 5.19 0.00 8.87 2.43 5.45 Nor.Q 25.26 20.14 33.43 20.56 26.7 Na + K 240.71 210.48 273.62 217.93 241.78 *Si 151.92 113.07 196.60 128.53 161.60 K-(Na + Ca) -61.23 -103.29 -25.01 -74.19 -45.20 Fe + Mg + Ti 37.67 18.35 50.60 24.05 42.99 Al-(Na + K + 2Ca) -1.04 -34.77 42.11 -24.72 11.06 (Na + K)/Ca 12.11 6.95 18.49 7.43 13.037 A/CNK 1.00 0.89 1.20 0.92 1.05 Trace elements (mean values in ppm): Jevany Granite – B 19, Ba 1200, Be 5, Co 3, Cs 9.1, F 700, Hf 4.4, Li 94, Pb 68, Rb 170, Sc 2.4, Sn 3.6, Sr 540, Th 32.1, U 11.7, V 48, Zn 25, Zr 160,W 1.1, La 17.5, Ce 50, Sm 4.1, Eu 0.55, Tb 0.25, Yb 0.8, Lu 0.03 (Palivcová et al. 1992). Žernovka Granite (enclaves) Quartz-normal, potassic, peraluminous, mesocratic, I-type, granite to granodiorite 6zernov 7zer 8zer 9zer 10zer 11zer SiO2 68.62 68.35 67.38 66.85 68.82 69.07 TiO2 0.40 0.40 0.27 0.47 0.22 0.37 Al2O3 15.83 15.49 15.62 14.14 14.59 15.19 Fe2O3 0.36 0.64 1.29 1.42 1.30 0.63 FeO 1.58 1.91 2.22 2.15 1.89 0.99 MnO 0.07 0.07 0.08 0.12 0.08 0.03 MgO 1.21 1.27 1.43 3.83 2.38 1.30 CaO 1.83 1.70 1.41 1.80 1.75 1.48 Na2O 3.35 3.58 3.48 3.37 3.20 3.91 K2O 5.67 5.67 6.35 4.99 5.60 6.10 P2O5 0.51 0.51 0.23 0.38 0.21 0.21 Li2O 0.21 0.21 n.d. n.d. n.d. n.d. Mg/(Mg + Fe) 0.52 0.47 0.42 0.66 0.57 0.59 K/(K + Na) 0.53 0.51 0.55 0.49 0.54 0.51 Nor.Or 34.63 34.65 38.86 31.52 34.60 36.92 Nor.Ab 31.10 33.25 32.37 32.35 30.05 35.97
163
Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
5.91 21.27 228.49 130.44 -20.35 61.55 17.11 7.00 1.10
5.25 19.76 235.91 123.07 -25.45 71.14 7.65 7.78 1.07
5.68 16.41 247.12 109.92 -2.62 85.94 9.33 9.83 1.05
6.87 18.47 214.70 134.77 -34.90 148.65 -1.21 6.69 1.03
7.63 20.42 222.16 138.83 -15.57 104.42 1.94 7.12 1.02
6.10 17.20 255.69 109.90 -23.05 58.57 -10.17 9.69 0.98
2.3.2. BENEŠOV MASSIF (BM)
Fig. 2.116. Benešov Massif geological sketch-map (adapted after Fusán et al. 1967). 1 – Benešov Granodiorite, 2 – Benešov Granite, 3 – Benešov Hybrid Granodiorite, 4 – Maršovice Granodiorite, 5 – Sázava Tonalite, 6 – faults.
2. Benešov Granodiorite – cataclastic ± porphyritic medium-grained biotite ± amphibole melanocratic granodiorite. 3. Benešov Granite – cataclastic finegrained muscovite-biotite granodiorite to granite. 4. Maršovice Granodiorite – contaminated (hybrid) fine-grained muscovite-biotite granite to granodiorite with cordierite (the facies of the Benešov Granodiorite). 5. Sázava Tonalite – a small stock within the Benešov Granodiorite. Size and shape (in erosion level): Benešov granitoids – 200 km2, crescent-like shape in the map section (37 × 10 km). Maršovice Granodiorite – 40 km2.
Regional position: a member of the Metagranitoids of the Central Bohemian Composite Batholith.
Fig. 2.117. Benešov Massif hierarchic scheme according to rock groups and rock types (Colours represent the mutual relations).
Rock types: 1. Benešov Hybrid Granodiorite – cataclastic medium-grained hornblende-biotite melanocratic granodiorite to syenodiorite.
164
Contact aureole: not described. Zoning: normal compositional zoning (the Benešov Granite in the centre of the Benešov Granodiorite and a narrow rim of the Benešov Hybrid Granodiorite along the BM margin). Mineralization: no data. Heat production (μWm-3): Benešov Granodiorite 3.5.
Age and isotopic data: the Sázava Tonalite intrudes the Benešov Granodiorite. The Benešov Granodiorite is older than the Benešov Granite. No isotopic data. Geological environment: The Popovice Complex, the Sázava Tonalite, Moldanubian bi-mu and bi paragneisses and Neo-Proterozoic phyllites.
References KOUTEK, J. – URBAN, K. (1929): O žulovém území na východ od Benešova ve středních Čechách. – Věst. St. geol. Úst. Čs. Republ. 15, 131–137. VEJNAR, Z. (1973): Petrochemistry of the Central Bohemian Pluton. – Geochem. Methods and Data 2, 116 pp. VEJNAR, Z. – ŽEŽULKOVÁ, V. – TOMAS, J. (1975): Granitoids from the water-supply gallery of the Želivka water-work, Central Bohemian Pluton. – J. Geol. Sci. 27, 31–54. (In Czech) ŽEŽULKOVÁ, V. (1971): On genesis of the Benešov granodiorite. – Sbor. geol. Věd, Geol. 21, 37– 81. (In Czech). Benešov Hybrid Granodiorite Quartz-deficient, sodic, metaluminous, mesocratic, I-type, monzonite to granodiorite n=9 Med. Min Max QU1 QU3 SiO2 62.45 59.74 65.64 62.08 64.43 TiO2 0.55 0.45 0.82 0.51 0.61 Al2O3 15.05 13.61 15.82 14.88 15.67 Fe2O3 1.04 0.85 1.81 1.04 1.18 FeO 3.85 3.59 4.50 3.70 3.98 MnO 0.08 0.05 0.14 0.06 0.09 MgO 2.88 1.63 5.89 2.69 3.72 CaO 4.12 2.25 4.67 3.38 4.38 Na2O 3.21 2.54 4.30 2.82 3.22 K2O 4.08 1.74 5.44 3.70 5.06 P2O5 0.26 0.10 0.61 0.17 0.48 Mg/(Mg + Fe) 0.49 0.35 0.69 0.48 0.57 K/(K + Na) 0.46 0.21 0.56 0.41 0.55 Nor.Or 26.13 11.08 35.50 23.73 33.72 Nor.Ab 31.09 25.52 41.62 28.09 31.25 Nor.An 20.22 8.95 23.26 14.44 22.18 Nor.Q 14.92 5.84 20.21 12.34 18.02 Na + K 190.21 175.70 206.50 186.22 195.85 *Si 112.21 83.50 138.66 100.73 130.66 K-(Na + Ca) -96.26 -178.85 -17.84 -100.23 -35.77 Fe + Mg + Ti 143.25 114.22 216.13 142.09 170.97 Al-(Na + K + 2Ca) -28.69 -84.79 29.09 -49.04 -19.10 (Na + K)/Ca 2.51 2.28 4.76 2.28 3.43 A/CNK 0.93 0.79 1.16 0.88 0.95 Trace elements (mean values in ppm): Benešov Hybrid Granodiorite – B 36, Ba 3500, Be 10, Co 10, Cr 200, Cs 40, Cu 4, Ga 24, Li 70, Ni 35, Pb 47, Rb 240, Sn 2, Sr 370, V 145, Zn 86, Zr 170. (Vejnar 1974).
165
Fig. 2.118. Benešov Massif ABQ and TAS diagrams. 1 – Benešov Granite, 2 – Benešov Granodiorite, 3 – Benešov Hybrid Granodiorite.
Benešov Granodiorite Quartz-normal, potassic, metaluminous, mesocratic, quartz monzonite n=9 Med. Min Max QU1 QU3 SiO2 66.90 64.48 68.76 65.22 67.39 TiO2 0.50 0.25 0.70 0.43 0.58 Al2O3 15.18 13.90 17.35 14.06 15.59 Fe2O3 0.85 0.11 0.93 0.66 0.88 FeO 2.33 1.72 4.50 2.02 2.87 MnO 0.08 0.04 0.14 0.06 0.08 MgO 1.47 1.10 2.46 1.47 1.63 CaO 2.47 1.42 4.32 1.86 3.08 Na2O 3.50 2.94 4.30 3.16 3.86 K2O 4.80 1.74 6.29 3.82 5.86 P2O5 0.20 0.13 0.30 0.18 0.26 Mg/(Mg + Fe) 0.45 0.35 0.59 0.44 0.49 K/(K + Na) 0.51 0.21 0.57 0.39 0.54 Nor.Or 30.25 11.08 38.93 24.41 36.54 Nor.Ab 32.93 27.86 41.62 29.81 37.49 Nor.An 10.85 6.16 22.18 7.87 15.28 Nor.Q 18.28 14.75 23.31 15.88 21.40 Na + K 219.29 175.11 46.49 198.72 223.05 *Si 128.43 105.26 155.09 110.56 139.14 K-(Na + Ca) -44.82 -178.85 -6.69 -99.24 -12.56 Fe + Mg + Ti 88.72 68.29 120.03 84.76 105.16 Al-(Na + K + 2Ca) -0.48 -60.73 33.33 36.72 14.09 (Na + K)/Ca 4.98 2.28 8.79 3.21 7.43 A/CNK 1.01 0.83 1.13 0.90 1.07 Trace elements (mean values in ppm): Benešov Granodiorite – B 17, Ba 1460, Be 7, Co 5, Cr 80, Cs 50, Cu 8, Ga 19, Li 50, Ni 22, Pb 50, Rb 370, Sn 5, Sr 230, V 49, Zn 62, Zr 190 (Vejnar 1974).
166
Benešov Granite (acid granitoids) Quartz-normal, sodic, low peraluminous, leucocratic, I-type, granite n = 15 Median Min Max QU1 QU3 SiO2 71.27 69.70 73.47 70.88 71.62 TiO2 0.22 0.00 0.26 0.16 0.24 Al2O3 14.66 13.91 15.26 14.36 14.84 Fe2O3 0.45 0.31 1.59 0.39 0.66 FeO 1.33 0.55 2.24 1.02 1.52 MnO 0.04 0.03 0.08 0.03 0.05 MgO 0.55 0.25 0.88 0.40 0.75 CaO 1.66 1.21 2.23 1.49 1.88 Na2O 3.90 3.17 4.55 3.74 4.02 K2O 3.86 3.37 5.70 3.75 4.02 P2O5 0.10 0.03 0.15 0.08 0.12 Mg/(Mg + Fe) 0.34 0.17 0.51 0.25 0.42 K/(K + Na) 0.40 0.38 0.52 0.39 0.41 Nor.Or 24.11 20.65 34.65 22.92 24.62 Nor.Ab 35.97 29.53 41.85 34.86 37.24 Nor.An 7.99 5.25 10.78 6.86 8.97 Nor.Q 27.14 20.68 35.14 24.41 28.46 Na + K 211.21 173.85 243.80 201.51 212.72 *Si 165.61 130.85 205.81 147.61 174.14 K-(Na + Ca) -71.50 -87.55 -15.64 -82.06 -66.37 Fe + Mg + Ti 41.80 31.85 56.51 37.33 49.03 Al-(Na + K + 2Ca) 15.24 -21.24 37.02 7.67 20.10 (Na + K)/Ca 7.19 4.87 11.30 6.01 7.84 A/CNK 1.06 0.94 1.15 1.04 1.08 2.3.3. MILEVSKO DYKE SWARM Benešov Massif and the Milevsko Massif. Size and shape (in erosion level): 40 km2 (surface area in the diameter of 8 km), dykes and sills. Age: the Milevsko Dyke Swarm (dykes and sills) is younger than the Benešov and Milevsko Massifs. No isotopic data.
Regional position: a member of Central Bohemian Composite Batholith Rock types: 1. Felsic alkali-feldspar granite porphyry, two-mica leucogranite and granite with cordierite and tourmaline. 2. Leucocratic cataclastic muscovite-biotite granites and granodiorites in the
References ULRYCH, J. (1972): Leukokratní granitoidy ze styku středočeského plutonu s moldanubikem. – Čas. Mineral. Geol. 17, 71–84. VRÁNA, S. (1999): Dyke swarm of highly evolved felsitic alkali-feldspar granite porphyry near Milevsko, Central Bohemian Pluton. – Věst. Čes. geol. Úst. 74, 67–74.
167
Fig. 2.119. Milevsko Dyke Swarm ABQ and TAS diagrams.
Milevsko Dyke Leucogranite Quartz-rich, sodic-potassic, peraluminous (weakly), leucocratic, S-type, M-series, granite N = 27 Median Min Max QU1 QU3 SiO2 73.76 71.26 77.52 72.83 74.08 TiO2 0.15 0.00 0.29 0.10 0.21 Al2O3 13.97 11.03 15.76 13.00 14.24 Fe2O3 0.62 0.22 1.73 0.46 0.86 FeO 0.66 0.21 1.64 0.45 0.89 MnO 0.03 0.01 0.09 0.02 0.05 MgO 0.36 0.05 1.01 0.20 0.43 CaO 0.91 0.54 3.27 0.65 1.08 Na2O 3.41 2.25 4.68 3.15 3.65 K2O 4.83 3.24 6.68 4.40 5.40 P2O5 0.12 0.02 0.50 0.05 0.17 Mg/(Mg + Fe) 0.29 0.05 0.54 0.21 0.32 K/(K + Na) 0.47 0.39 0.65 0.44 0.55 Nor.Or 29.62 19.59 39.26 26.65 33.15 Nor.Ab 31.36 21.01 42.13 28.94 34.02 Nor.An 3.33 0.09 16.27 2.65 4.21 Nor.Q 31.18 23.39 38.84 26.51 32.15 Na + K 219.10 171.41 258.24 200.93 234.12 *Si 181.85 138.19 226.62 159.13 190.30 K-(Na + Ca) -29.48 -92.13 52.23 -39.99 6.69 Fe + Mg + Ti 30.26 17.26 53.09 23.55 37.36 Al-(Na + K + 2Ca) 13.24 -28.23 66.20 4.05 25.52 (Na + K)/Ca 13.06 2.94 24.38 11.04 17.82 A/CNK 1.06 0.89 1.33 1.03 1.11
168
Isolated mafic stocks in the Western Bohemia 2.4.1. DRAHOTÍN STOCK Regional position: isolated body in the West Bohemian Shear Zone, confined to the Bohemian quartz lode. Rock types: 1. Drahotín Basal zone – phlogopiteolivine gabbronorite + wehrlite 2. Drahotín Main zone – olivine-free gabbronorite 3. Drahotín Upper zone – biotite norite 4. Drahotín Quartz diorite – biotitehornblende quartz diorite. Size and shape (in erosion level): 5 km2 (4.5 × 1.6 km, elliptical in shape Age and isotopic data: 332 Ma (U-Pb zircon). Geological environment: thermally recrystallized Moldanubian gneisses with scarce amphibolite interlayers. Contact aureole: pyroxene-hornblende hornfelses, serpentinite.
Fig. 2.120. Drahotín Stock geological sketchmap (adapted after Vejnar 1980). 1 – olivine-free gabbronorite, 2 – biotite norite, 3 – Drahotín Quartz diorite, 4 – phlogopiteolivine gabbronorite + wehrlite, 5 – faults.
indicated by gradual succession of the olivine gabbro norite in the centre into intermediate zone of gabbronorite and marginal zone (Upper zone) of biotite norite. Mineralization: not reported.
Zoning: compositional zoning, related to a single period of crystal accumulation, marked layering (layered intrusion of tholeiitic magma). Layering dips 40–60° to NE or SE in the central area and up to 80° at the western margin. Asymmetrical pattern of zonation
References DÖRR, W. – ZULAUF, G. – FIALA, J. – FRANKE, W. – HAACK, U. – PHILIPPE, S. – SCHASTOK, J. – SCHEUVENS, D. – VEJNAR, Z. – WULF, S. (1998): Cambrian transtensional and Variscan normal fault related plutons: Tectonothermal evolution within the Teplá-Barrandian (Bohemian Massif, Czech Republic). – Terra Nostra 98, 42–46. KRATOCHVÍL, F. (1942): Příspěvek k petrochemii hvožďansko-drahotínského gabrového pně západně od Poběžovic. – Zpr. geol. Úst. Čechy Mor. 17, 132–157. VEJNAR, Z. (1980): The spinel- and corundum-bearing basic intrusion of Drahotín, South-West Bohemia. – Krystalinikum 15, 33–54. ZULAUF, G. – AHRENDT, H. – DÖRR, W. – FIALA, J. – VEJNAR, Z. – WEMMER, K. (1995): Der Westrand des Teplá-Barrandiums: Cadomisches basement variszisch überprägt. In: Geologische Untersuchungen im Umfeld der Kontinentalen Tiefbohrung. – Bayer. Geol. Landesamt. München. 1 – Drahotín Basal zone – phlogopite-olivine gabbronorite + wehrlite wehrlite 2a SiO2
45.71
ol gabbronorite 2 46.18
169
ol gabbronorite 3 47.98
TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
0.75 6.88 0.93 8.94 0.17 20.14 15.71 0.39 0.24 0.16 0.78 0.29 1.91 4.68 44.24 0.00 17.51 49.33 -287.44 645.26 -442.58 0.06 0.24
0.95 9.25 0.62 8.39 0.16 21.86 10.52 1.08 0.85 0.13 0.81 0.34 5.67 10.91 40.38 0.00 52.87 78.26 -204.31 678.95 -246.48 0.28 0.43
0.76 7.52 1.00 10.54 0.18 20.03 10.66 0.68 0.56 0.08 0.75 0.35 4.21 7.80 40.35 0.00 33.88 105.55 -200.25 665.88 -266.49 0.18 0.36
Fig. 2.121. Drahotín Stock ABQ and TAS diagrams. 1 – olivine gabbronorite and wehrlite, 2 – gabbronorite, 3 –biotite-norite, 4 – biotite-hornblende quartz diorite.
2 – Drahotín Main zone – olivine-free gabbronorite n = 13 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O
Med. 51.70 0.45 18.33 0.44 6.87 0.13 9.47 10.90 1.59
Min 43.38 0.15 5.98 0.00 4.57 0.09 5.98 3.59 0.74
Max 52.96 0.50 20.57 10.19 18.04 0.27 21.48 17.03 2.29
170
QU1 51.31 0.33 11.71 0.25 5.79 0.12 7.45 8.01 1.11
QU3 52.52 0.46 18.88 0.89 10.16 0.21 16.03 12.07 1.87
K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
0.49 0.07 0.73 0.19 3.26 16.64 60.11 0.00 63.57 89.88 -237.08 323.86 -108.29 0.37 0.75
0.35 0.04 0.50 0.12 2.45 10.02 24.36 0.00 31.14 41.08 -328.52 250.84 -421.92 0.15 0.36
0.88 0.14 0.76 0.24 5.82 23.05 80.88 3.41 92.52 213.87 -88.26 783.09 10.05 0.65 1.03
0.40 0.05 0.62 0.15 3.11 13.23 48.56 0.00 46.63 71.66 -264.99 297.07 -145.08 0.31 0.68
0.52 0.11 0.75 0.20 3.74 19.06 63.37 0.00 73.55 146.22 -175.06 555.28 -41.83 0.45 0.81
3 - Drahotín Upper zone – biotite norite SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
bi norite 18 bi norite 19 bi norite 20 bi norite 21 54.54 54.88 53.92 52.26 0.55 0.28 0.72 1.07 4.84 18.85 11.27 17.65 0.61 1.00 1.05 0.91 13.73 6.69 9.25 7.01 0.22 0.14 0.20 0.15 21.44 7.61 14.36 8.00 2.44 7.58 6.75 9.15 0.70 2.11 1.30 2.32 0.58 0.77 0.99 1.09 0.35 0.08 0.20 0.38 0.72 0.64 0.71 0.64 0.36 0.19 0.34 0.24 5.58 5.37 7.85 7.53 10.11 22.29 15.58 24.30 15.85 43.52 43.09 50.09 1.56 7.76 0.37 0.00 34.89 84.63 62.90 97.92 238.72 129.72 155.97 83.23 -53.57 -186.94 -141.14 -214.80 737.73 298.03 507.25 320.99 -26.88 15.23 -82.44 -77.71 0.80 0.63 0.52 0.60 0.83 1.05 0.74 0.83
171
2.4.2. MUTĚNÍN STOCK
Fig. 2.122. Mutěnín Stock geological sketch-map (adapted after Tonika 1978). 1 – Mutěnín Diorite, 2 – Mutěnín Quartz diorite, 3 – Mutěnín Ferrodiorite, 4 – Mutěnín Granite, 5 – faults.
Age and isotopic data: 358 Ma (K-Ar biotite), 325 ± 6 Ma, 327 ± 7 Ma (K-Ar amphibole), gabbro 342 ± 2 Ma (U-Pb zircon). Geological environment: thermally recrystallized Moldanubian paragneisses. Contact aureole: pyroxene-hornblende hornfelses. The Mutěnín Stock intruded into the Moldanubicum at a depth of 23 ± 4 km as derived by using Al-in hornblende barometry. Zoning: concentric compositional reverse zoning, ferrodiorite in the centre, biotite hornblende diorite in the intermediate zone and quartz-diorite in the outer zone. Ring-like pattern of the intrusion. Mineralization: not reported.
Regional position: isolated body within Moldanubian gneisses of the Bohemian Forest. Rock types: 1. Mutěnín Diorite – biotite – hornblende diorite to monzogabbro. 2. Mutěnín Quartz diorite – hornblende – biotite quartz diorite. 3. Mutěnín Syenite – hornblende-biotite ferro-syenite. 4. Mutěnín Ferrodiorite – fayalitic ferrodiorite. 5. Mutěnín Granite – leucocratic granite. Size and shape (in erosion level): 7 km2 (2.5 × 3 km) approximately circular shape.
Fig. 2.123. Mutěnín Stock ABQ and TAS diagrams. 1 – Mutěnín Diorite, 2–- Mutěnín Quartz Diorite, 3 – Mutěnín Syenite, 4 – Mutěnín Ferrodiorite.
172
References DÖRR, W. – ZULAUF, G. – FIALA, J. – FRANKE, W. – HAACK, U. – PHILIPPE, S. – SCHASTOK, J. – SCHEUVENS, D. – VEJNAR, Z. – WULF, S. (1998): Cambrian transtensional and Variscan normal fault related plutons: Tectonothermal evolution within the Teplá-Barrandian (Bohemian Massif, Czech Republic). – Terra Nostra 98, 42–46. TONIKA, J. (1978): The Mutěnín ferrodiorite ring intrusion, West Bohemia. – Krystalinikum 14, 195–208. VEJNAR, Z. (1975): Highly ferrous silicates from the Mutěnín ferrodiorite ring intrusion, West Bohemia. – Věst. Ústř. Úst. geol. 54, 265–273. ZULAUF, G. – AHRENDT, H. – DÖRR, W. – FIALA, J. – VEJNAR, Z. – WEMMER, K. (1995): Der Westrand des Teplá-Barrandiums: Cadomisches basement variszisch überprägt. In: Geologische Untersuchungen im Umfeld der Kontinentalen Tiefbohrung, 4 pp. –Bayer. Geol. Landesamt. München. 1-2 Mutěnín Diorite SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
mut.-10 50.25 0.94 18.39 2.11 12.97 0.30 2.63 5.77 4.13 1.81 0.68 0.24 0.22 11.87 41.09 26.74 0.00 171.95 38.21 -197.85 284.10 -16.65 1.67 1.00
mut.-11 59.45 2.00 18.93 0.94 2.19 0.14 1.90 6.82 3.70 2.85 1.08 0.52 0.34 17.33 34.24 27.51 12.09 179.81 68.92 -180.56 114.63 -51.36 1.48 0.93
mut.-12 58.39 1.27 17.35 1.63 5.82 0.13 2.56 5.06 3.58 3.76 0.45 0.38 0.41 23.97 34.66 23.86 6.35 195.49 68.32 -125.81 180.99 -35.17 2.17 0.93
3 – Mutěnín Ferrodiorite n=9 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O
Med. 51.29 2.31 20.05 2.36 3.06 0.18 3.91 7.79 3.92
Min 48.25 1.33 18.27 1.27 0.01 0.00 2.45 6.36 3.51
Max 53.02 3.00 26.41 5.21 10.77 0.22 5.03 9.66 4.16
173
QU1 49.06 1.85 19.54 1.70 0.35 0.14 3.60 7.48 3.79
QU3 52.71 2.58 21.33 3.16 8.89 0.22 4.02 8.22 4.09
K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
2.89 1.02 0.57 0.32 17.53 36.27 32.89 0.00 188.19 4.33 -199.36 198.56 -69.72 1.38 0.89
0.69 0.07 0.32 0.11 4.24 32.29 27.03 0.00 136.82 -11.61 -257.38 156.90 %-102.66 0.98 0.83
mut-13 60.78 1.34 17.07 0.71 6.44 0.11 2.18 4.04 3.57 3.15 0.61 0.35 0.37 20.19 34.75 17.35 13.67 181.99 107.21 -120.22 169.50 9.33 2.53 1.08
mut-14 57.57 0.59 17.68 2.33 6.52 0.17 0.65 4.11 3.80 6.42 0.14 0.12 0.53 39.08 35.16 20.03 0.00 259.04 11.50 -59.62 143.49 -58.35 3.53 0.86
3.83 1.43 0.78 0.40 23.12 38.61 40.34 3.34 202.86 38.26 -175.67 281.40 104.06 1.66 1.25
4 – Mutěnín Syenite SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
mut-15 61.30 0.41 18.94 1.29 3.69 0.09 0.72 1.56 3.87 8.00 0.13 0.21 0.58 48.49 35.63 7.07 1.69 294.58 26.87 17.16 90.46 21.59 10.56 1.07
174
2.47 0.86 0.38 0.28 15.08 35.52 31.10 0.00 184.39 -1.41 -228.68 175.86 -92.47 1.27 0.87
3.17 1.26 0.64 0.35 19.49 37.73 35.33 0.00 193.45 9.64 -188.94 264.10 -61.49 1.39 0.92
Pre-Variscan orthogneisses of the Moldanubian Zone Moldanubian orthogneisses show a large compositional variation and chronological lag. Small granitic bodies located along shear zone boundary reveal transition from deformed granites with S-C fabric, through S-C orthogneiss and banded orthogneiss to ultramylonite. The oldest preserved granitoids found so far in the Bohemian Massif are quartz-dioritic, tonalitic and granitic orthogneisses in the Moldanubian Zone. Dating points to intrusion ages of 2,060 ± 12 Ma to 2,104 ± Ma for these rocks (the Světlík Gneiss). The Dobra Gneiss, exhibits an emplacement age of 1,377 ± 10 Ma and the protolith of the Gföhl Gneiss has been dated at 480 Ma. Lower Ordovician metagranites (~ 485–475 Ma) was recognized by Teipel et al. (2004) in the NW part of the Moldanubian Zone (the Bayerischer Wald). According to Breiter et al. (2005) two principal types of lower Palaeozoic orthogneisses can be distinguished in the northeastern part of the Moldanubicum: Biotite orthogneisses are distributed in the other part of the area (e.g. the Pacov, Želiv, Kácov, Vlastějovice, Římovice Orthogneisses), whereas leucocratic two-mica and muscovite-tourmaline orthogneisses (e.g. Choustník, Mladá Vožice, Blaník, Keblov, Přibyslavice, Leština Orthogneisses) form a SW-NE trending belt penetrating the entire area. The composition of their protolith fluctuates from highly fractionated alkali-feldspar granite to quartz diorite. Moldanubian orthogneissess differ in their shapes and sizes and often crop out in the vicinity of the major tectono-stratigrafic boundaries. They are named according to their localities: e.g. Popovice Gneiss, Uhelná Příbram Gneiss, Bílec Gneiss, Kollmitz Gneiss, Dobra Gneiss, Weiterndorf Gneiss (metagranite), Streiwiesen Gneiss (metagranite), Čavyně Orthogneiss. Moldanubian orthogneisses typology (according to Suk 1969): 1. Biotite-hornblende orthogneisses (Světlík type). 2. Migmatitic orthogneisses – migmatites of the orthogneiss habit. They are represented by the Gföhl, Nové Hrady, Podolsko, and Popovice Gneisses. 3. Biotite ± amphibole orthogneisses with garnet and sillimanite represented by the Bechyně, Stráž, and the Pacov Orthogneisses. 4. Muscovite-biotite orthogneisses and granite-gneisses (Blaník type) represented by the Blaník, Choustník, Přibyslavice, Vlastějovice, Hluboká, and Radonice Orthogneisses. 5. Dyke-like granites with orthogneissic fabric are described from the eastern exocontact of the Central Bohemian Pluton and apophyses of the Moldanubian Composite Batholith.
175
Fig. 2.124. Metamorphosed granitoids (orthogneisses) in the Moldanubian Zone (adapted after Suk 1969). 1 – Gföhl Orthogneiss, 2 – biotite-hornblende and muscovite-biotite orthogneisses.
References AMBROŽ, V. (1935): Studie o krystaliniku mezi Hlubokou a Týnem n. Vltavou. – Spisy přírodověd. Fak. Karl. Univ. 138, 1–44. BREEMEN, O. VAN – AFTALION, M. – BOWES, D. R. – DUDEK, A. – MÍSAŘ, Z. – POVONDRA, P. – VRÁNA, S. (1982): Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of the Central Europe. – Trans. Roy. Soc. Edinburgh, Earth Sci. 73, 89–108. BREITER, K. – ČOPJAKOVÁ, R. – GABAŠOVÁ, A. – ŠKODA, R. (2005): Chemistry and mineralogy of orthogneisses in the northeastern part of the Moldanubicum. – J. Czech Geol. Soc. 50, 81–94. CHÁB, M. – SCHULMANN, K. – HOLUB, F. V. (1994): Petrological study of evolution of stromatitic layering – an example from the Czech part of the Gföhl gneisses. – Mitt. Österr. mineral. Gesell. 139, 34–35. DUDEK, A. (1979): Prevariské plutonity Českého masívu. In: Mahel, M. Ed.: Vážnejšie problémy geologického vývoja a stavby Československa. Klúčové územia a metody riešenia IB. Geológia rudných ložísk, Sekcia A, 221–234. – Geol. úst. D. Štúra, Bratislava. DUDEK, A. – MATĚJOVSKÁ, O. – SUK, M. (1974): Gföhl orthogneiss in the Moldanubicum of Bohemia and Moravia. – Krystalinikum 10, 67–78. FEDIUK, F. (1976): The Bechyně “orthogneiss“. Anatectic type of Moldanubian orthogneissoids. – Acta Univ. Carol., Geol. 3, 187–207. FIALA, J. – WENDT, J. I. (1995): Moldanubian Geochronology. In: DALLMEYER, R. D. – FRANKE, W. – WEBER, K. Eds: Pre-Permian Geology of Central and Eastern Europe, 418–422. – Springer Verlag, Berlin.
176
FINGER, F. – STEYRER, H. P. (1995): A tectonic model for the eastern Variscides: indications from a chemical study of amphibolites in the south-eastern Bohemian Massif. – Geol. carpath. 46, 137– 150. FRANKE, W. (2000): The mid-European segment of the Variscides: tectonostgratigraphic Units, terrane boundaries and plate tectonic evolution. In: Orogenic Processes: Quantification and modelling in in the Variscan Belt. – Geol. Soc. London, Spec. Publ. 179, 35–61. FRIEDL, G. – FINGER, F. – PAQUETTE, J. L. – von QUADT, A. – McNAUGHTON, N. J. – FLETCHER, I. R. (2004): Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U-Pb zircon ages. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 802–823. FRIEDL, G. – von QUADT, A. – FINGER F. (1998): U-Pb-Monazitalter aus dem niederösterreichischen Moldanubikum und ihre geologische Bedeutung. – Terra Nostra 3, 43–46. FRIEDL, G. – McNAUGHTON, N. – FLETCHER, I. R. – FINGER, F. (1998): New SHRIMP-zircon ages for orthogneisses from the south-eastern part of the Bohemian Massif (Lower Austria). – Acta Univ. Carol., Geol. 42, 251–252. FUCHS, G. – MATURA, A. (1976): Zur Geologie des Kristallins der südlichen Böhmischen Masse. – Jb. Geol. Bundesanst. 119, 1–43. GEBAUER, D. – FRIEDL, G. (1994): A 1.38 Ga protolith age for the Dobra Orthogneiss (Moldanubian Zone of southern Bohemian Massif, NE Austria): evidence from ion-microprobe (SHRIMP) dating of zircon. – J. Czech Geol. Soc. 39, 34–35. GRAUERT, B. – GROSSE-WESTERMANN, U. – ALBAT, F. (1990): Interpretation von U-Pb Monazitaltern moldanubischer Gneise. – KTB-Report 90, 548. HASALOVÁ, P. – JANOUŠEK, V. – SCHULMANN, K. – ŠTÍPSKÁ, P. – ERBAN, V. (2008): From orthogneiss to migmatite: Geochemical assessment of the melt infiltration model in the Gföhl Unit (Moldanubian Zone, Bohemian Massif). – Lithos 102, 508–537. HASALOVÁ, P. – SCHULMANN, K. – LEXA, O. – ŠTÍPSKÁ, P. – HROUDA, F. – ULRICH, S. – HALODA, J. – TÝCOVÁ, P. (2008): Origin of migmatites by deformation-enhanced melt infiltration of orthogneiss: A new model based on quantitative microstructural analysis. – J. Metamorph. Geol. 26, 29–53. HASALOVÁ, P. – ŠTÍPSKÁ, P. – POWELL. R. – SCHULMANN, K. – JANOUŠEK, V. – LEXA, O. (2008): Transforming mylonitic metagranite by open-system interactions during melt flow. – J. Metamorph. Geol. 26, 55–80. JANOUŠEK, V. – GERDES, A. – VRÁNA, S. – FINGER, F. – ERBAN, V. – FRIEDL, G. – BRAITHWAITE, C. J. R. (2006) Low-pressure granulites of the Lišov Massif, Southern Bohemia: Viséan metamorphism of Late Devonian plutonic arc rocks. – J. Petrology 47, 705–744. KALT, A. – CORFU, F. – WIJBRANS, J. (2000): Time calibration of a P-T path from a Variscan high-temperature low-pressure metamorphic complex (Bayerische Wald, Germany), and the detection of inherited monazite. – Contr. Mineral. Petrology 138, 143–163. KODYM, O. et al. (1961): Vysvětlivky ke geologické mapě ČSSR 1 : 200 000, list Strakonice. – Ústř. úst. geol. Prague. KOŠLER, J. – AFTALION, M. – VOKURKA, K. – KLEČKA, M. – SVOJTKA, M. (1996): Raně kambrický granitoidní magmatismus v moldanubiku: Důkaz U-Pb izotopického stáří strážské ortoruly. – Zpr. geol. Výzk. v Roce 1995, 109–110. KRUPIČKA, J. (1948): Petrologické studie ze severovýchodní části středočeského plutonu. – Sbor. St. geol. Úst. Čs. Republ. 15, 259–338. KRUPIČKA, J. (1968): Sharp boundaries in crystalline rocks and their intepretation. – Int. geol. Congr., 23rd Sess., Sect. 4, 43–59. LIEW, T. C. – HOFMANN, A. W. (1988): Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr isotopic study. – Contr. Mineral. Petrology 98, 129–138. LOBKOWICZ, M. – ŠTĚDRÁ, V. – SCHULMANN, K. (1996): Late-Variscan Extensional collapse of the thickened Moldanubian crust in the southern Bohemia. – J. Czech Geol. Soc. 41, 123–138. LOBKOWICZ, M. – ŠTĚDRÁ, V. – ŠOLC, M. (1992): Late-Variscan extensional collapse in South Bohemian Moldanubian zone. In: Styles of superposed nappe tectonics (Case study of the external Moldanubian). Abstracts. 20 pp. – Geol. úst. Čs. akad. věd, Praha.
177
LOSERT, J. (1971): On the volcanogenous origin of some Moldanubian leptynites. – Krystalinikum 7, 61–84. NEUBAUER, F. (1994): Geodynamic significance of Moldanubian orthogneisses within the southeastern Bohemian Massif, Austria. – Mitt. Österr. mineral. Gesell. 139, 91–93. PALIVCOVÁ, M. (1966): Dioritization of metabasites of the spilite-keratophyre association at the contact of the Central Bohemian pluton, the “islets” zone and the Moldanubicum. In: Paleovolcanites of the Bohemian Massif, 64–74. – Praha. POVONDRA, P. – VRÁNA, S. (1993): Crystal chemistry of apatite in tourmaline-bearing alkalifeldspar orthogneisses near Hluboká nad Vltavou, southern Bohemia. – J. Czech Geol. Soc. 38, 165–170. POVONDRA, P. – VRÁNA, S. (1996): Tourmaline and associated minerals in alkali-feldspar orthogneiss near Hluboká nad Vltavou, southern Bohemia. – J. Czech Geol. Soc. 41, 191–200. RAJLICH, P. – PEUCAT, J. J. – KANTOR, J. – RYCHTÁR, J. (1992): Variscan shearing in the Moldanubian of the Bohemian Massif: Deformation, gravity, K-Ar and Rb-Sr data for the Choustník Pre-variscan orthogneiss. – Jb. Geol. Bundesanst. 135, 579–595. RENÉ, M. (2002a): Ortoruly mondanubika v oblasti mezi Voticemi a Humpolcem. – Bull. Mineral.petrolog. Odd. Nár. Muz. 10, 267–269. RENÉ, M. (2002b): Petrologie migmatitů v oblasti mezi Humpolcem a Jihlavou. – Zpr. geol. Výzk. v Roce 2001, 158–87. RENÉ, M. (2008): Tourmaline-muscovite orthogneiss from Budislav, near the Soběslav. – Zpr. geol. Výzk. v Roce 2007, 187–189. (In Czech) SLABÝ, J. (1991): Petrology and geochemistry of orthogneisses in the Moldanubian Zone of southern Bohemia. 232 pp. – MS Postgradual thesis, Czech Geol. Survey, Prague. (In Czech) SUK, M. (1969): Genetische Beziehungen der Gesteine vom Orthogneisstyp im Moldanubikum. – Čas. Mineral. Geol. 14, 189–198. SUK, M. et al. (1974): Nové poznatky o geologické stavbě západní části Českomoravské vysočiny. – Výzk. Práce Ústř. Úst. geol., 5–21. TANNER, D. C. – BEHRMANN, J. H. (1995): The Variscan tectonics of the Moldanubian gneisses, Oberpfälzer Wald: A comparative study. – Neu. Jb. Geol. Paläont., Abh. 197, 331–335. TEIPEL, U. (2003): Obervendischer und Unterordovizischer Magmatismus im Bayerischen Wald. – Münchner. Geol. Hefte, A 33, 98 pp. TEIPEL, U. – EICHHORN, R. – LOTH, G. – ROHRMÜLLER, J. – HÖLL, R. – KENNEDY, A. (2004): U-Pb SHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): Implications for Upper Vendian and Lower Ordovician magmatism. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 782–801. ULRYCH, J. (1972): Leukokratní granitoidy ze styku středočeského plutonu s moldanubikem. – Čas. Mineral. Geol. 17, 71–84. URBAN, K. (1930): Geologické poměry území na soutoku Vltavy a Otavy. – Sbor. St. geol. Úst. Čs. Republ. 9, 109–164. VRÁNA, S. (1989): Perpotassic granulites from southern Bohemia. A new rock-type derived from partial melting of crustal rocks under upper mantle conditions. – Contr. Mineral. Petrology 103, 510–522. VRÁNA, S. – JAKEŠ, P. (1982): Orthopyroxene and two-pyroxene granulites from a segment of charnockitic crust in southern Bohemia. – Bull. Geol. Surv. 57, 129–143. WENDT, J. I. – KRÖNER, A. – FIALA, J. – TODT, W. (1993): Evidence from zircon dating for existence of approximatelly 2.1 Ga old crystalline basement in southern Bohemia, Czech Republic. – Geol. Rdsch. 82, 42–50. ZIKMUND, J. (1983): Reliktní granity a geneze blanických ortorul. – Čas. Mineral. Geol. 28, 81–87. ZOUBEK, V. (1951): Předběžná zpráva o geologické a petrografické situaci v okolí Netolic. – Věst. Ústř. Úst. geol. 26, 155–162.
178
2.5.1. DOBRA ORTHOGNEISS concordant sills, the Braunegg Gneiss forms discordant stocks within the melanocratic Dobra Gneiss. Age and isotopic data: Dobra Gneiss: 1,377 ± 10 Ma (U-Pb zircon), 480 Ma (Sm-Nd). The Dobra Gneiss originated from a granitic protolith with an age of ca. 1.38 Ga, which experienced high-grade metamorphism/anatexis at ca 600 Ma. Geological environment: located at the tectonic boundary between the Drosendorf and Ostrong Unit.
Regional position: the base of the Varied or Drosendorf Unit of the Moldanubian Zone. Rock types: 1. Braunegg Orthogneiss – homogenous fine- to coarse-grained leucocratic biotite granitic orthogneiss. 2. Dobra Orthogneiss – homogenous fineto coarse-grained melanocratic biotite granodiorite-tonalite orthogneiss (Itype). Size and shape (in erosion level): 350 km2 (60 × 6 km), a series of concordant and semi-
References FRIEDL, G. – FINGER, F. – PAQUETTE, J. L. – von QUADT, A. – McNAUGHTON, N. J. – FLETCHER, I. R. (2004): Pre-Varscan geological events in the Austrian part of the Bohemian Massif deduced from U-Pb zircon ages. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 802–823. GEBAUER, D. – FRIEDL, G. (1994): A 1.38 Ga protolith age for the Dobra Orthogneiss (Moldanubian Zone of the southern Bohemian Massif, NE-Austria): Evidence from ion-microprobe (SHRIMP) dating of zircon. – J. Czech Geol. Soc. 39, 34–35. NEGA, M. – KRUHL, J.H. – BÜTTNER, S. (1994): The structural and metamorphic evolution of Dobra Gneiss and Rastenberger Granodiorite at the eastern margin of the South-Bohemian Massif. – Mitt. Österr. mineral. Gesell. 139, 90–91. NEUBAUER, F. (1994): Geodynamic significance of Moldanubian orthogneisses within the southeastern Bohemian Massif, Austria. – Mitt. Österr. mineral. Gesell. 139, 91–93. 2.5.2. SPITZ ORTHOGNEISS Regional position: Proterozoic basement within the Moldanubian nappe complex. Rock types: Spitz Orthogneiss – leucocratic, fine- to medium-grained ± amphibole-biotite granodiorite to quartz diorite orthogneiss. Size and shape (in erosion level): 120 km2 – two long concordant strongly deformed sills.
Age and isotopic data: 620 Ma (Pb-Pb zircon), 614 ± 10 Ma (U-Pb zircon), 651 ± 16 Ma (U-Pb zircon), 620 Ma (SHRIMP U-Pb zircon). Geological environment: structurally conformable or semi-conformable in sillimanite-biotite paragneisses of the Monotonous Group.
References FRIEDL, G. – FINGER, F. – PAQUETTE, J. L. – von QUADT, A. – MC NAUGHTON, N. J. – FLETCHER, I. R. (2004): Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U-Pb zircon ages. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 802–823. FRIEDL, G. – Mc NAUGHTON, N. – FLETCHER, I. R. – FINGER, F. (1998): New SHRIMP-zircon ages for orthogneisses from the south-eastern part of the Bohemian Massif (Lower Austria). – Acta Univ. Carol., Geol. 42, 251–252. KHAFFAGY, M. (1971): Zur Geochemie der Spitzer Gneise und der Paragesteinsserie des Kamptales, Niederösterreich. – Jb. Geol. Bundesanst. 17, 171–192. 2.5.3. GFÖHL ORTHOGNEISS migmatitic complex, and Jindřichův Hradec area. They originated from different source rocks and by different ways: a) by migmatitization of paragneisses, connected with import of granitic components, b) by migmatic mobilization of
Regional position: a part of the Gföhl Unit forms several concordant strongly deformed sheets in the southeastern part of the Moldanubian Zone. Similar types of orthogneisses are reported from the Podolsko Complex, Popovice Complex, Rokytná
179
Size and shape (in erosion level): 1,500 km2, a set of the concordant and semiconcordant sheets located along the eastern margin of the Moldanubicum over the distance of 180 km. Age and isotopic data: 480 Ma (Pb-Pb zircon), 340 Ma (Sm-Nd), 482 ± 6 Ma (SHRIMP U-Pb zircon), 480–600 Ma (Pb-Pb zircon). Geological environment: structurally conformable or semi-conformable sheets in tectonic contacts with granulites and sillimanite-biotite paragneisses. of the Monotonous and Varied Groups.
rocks – granulites, orthogneisses and feldsparrich sediments (mostly tuffites), and/or texturally modified by local mylonitization during the consolidation of late tectonic (Variscan) granitoids. Some of the Gföhl Gneisses have a distinct tectonostratigraphic position. Rock types: Gföhl Orthogneiss – several varieties of polyphase, migmatitic to anatectic (hybrid), mostly leucocratic S-type granitegneiss showing stromatitic layering. Central Gneiss – hybrid medium-grained biotite orthogneiss.
Fig. 2.125. Gföhl Orthogneiss ABQ and TAS diagrams.
References BREEMEN, O. VAN – AFTALION, M. – BOWES, D. R. – DUDEK, A. – MÍSAŘ, Z. – POVONDRA, P. – VRÁNA, S. (1982) Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe. – Trans. Roy. Soc. Edinb., Earth Sci. 73, 89–108. DUDEK, A. – MATĚJOVSKÁ, O. – SUK, M. (1974): Gföhl Orthogneiss in the Moldanubicum of Bohemia and Moravia. – Krystalinikum 10, 67–78. FRIEDL, G. – FINGER, F. – PAQUETTE, J. L. – von QUADT, A. – McNAUGHTON, N. J. – FLETCHER, I. R. (2004): Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U-Pb zircon ages. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 802–823. FRIEDL, G. – McNAUGHTON, N. – FLETCHER, I. R. – FINGER, F. (1998): New SHRIMP-zircon ages for orthogneisses from the south-eastern part of the Bohemian Massif (Lower Austria). – Acta Univ. Carol., Geol. 42, 251–252. HASALOVÁ, P. – JANOUŠEK, V. – SCHULMANN, K. – ŠTÍPSKÁ, P. – ERBAN, V. (2008): From orthogneiss to migmatite: Geochemical assessment of the melt infiltration model in the Gföhl Unit (Moldanubian Zone, Bohemian Massif). – Lithos 102, 508–537. HASALOVÁ, P. – SCHULMANN, K. – LEXA, O. – ŠTÍPSKÁ, P. – HROUDA, F. – ULRICH, S. – HALODA, J. – TÝCOVÁ, P. (2008): Origin of migmatites by deformation-enhanced melt infiltration of orthogneiss: A new model based on quantitative microstructural analysis. – J. Metamorph. Geol. 26, 29–53. HASALOVÁ, P. – ŠTÍPSKÁ, P. – POWELL. R. – SCHULMANN, K. – JANOUŠEK, V. – LEXA, O. (2008): Transforming mylonitic metagranite by open-system interactions during melt flow. – J. Metamorph. Geol. 26, 55–80.
180
LIEW, T. C. – HOFMANN, A. W. (1988): Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr isotopic study. – Contr. Mineral. Petrology 98, 129–138. LOBKOWICZ, M. – ŠTĚDRÁ, V. – SCHULMANN, K. (1996): Late-Variscan Extensional collapse of the thickened Moldanubian crust in the southern Bohemia. – J. Czech Geol. Soc. 41, 123–138. SCHULMANN, K. – KRÖNER, A. – HEGNER, E,. –WENDT, I. – KONOPÁSEK, J. – LEXA, O. – ŠTÍPSKÁ, P. (2005): Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan Orogen, Bohemian Massif, Czech Republic. – Amer. J. Sci. 305, 407–448. SCHULMANN, K. – SCHALTEGGER, U. – JEŽEK, J. – THOMPSON, A. B. – EDEL, J. B. (2002): Rapid burial and exhumation during orogeny; thickening and synconvergent exhumation of thermally weakened and thinned crust (Variscan Orogen in Western Europe). – Amer. J. Sci. 302, 856–879. 2.5.4. STRÁŽ ORTHOGNEISS Regional position: discontinuous belt of isolated bodies in the Monotonous Group of the Moldanubian Zone. Rock types: Stráž Orthogneiss – mediumgrained biotite to amphibole-biotite orthogneiss (similar to the Mirotice Orthogneiss). Size and shape (in erosion level): 85 km2 (17 5 km), elongated body. Age and isotopic data: 552 ± 11 Ma (Pb-Pb zircon).
Geological environment: structurally conformable or semi-conformable in sillimanite-biotite paragneisses of the Monotonous Group. Contact aureole: intensive migmatitization of paragneisses at the exocontact (max. several tens of meters). Zoning: compositional and textural zonation – fine-grained tonalitic orthogneiss in the marginal zone and porphyroclastic coarsegrained orthogneiss to metagranodiorite in the centre.
References KLEČKA, M. (1988): Petrografický a strukturní výzkum ortorul strážského typu v moldanubiku. – Zpr. geol. Výzk. v Roce 1987, 68–70. KOŠLER, J. – AFTALION, M. – VOKURKA, K. – KLEČKA, M. – SVOJTKA, M. (1996): Kambrický granitoidní magmatismus v Moldanubiku: datování zirkonů ze strážské ortoruly metodou U-Pb. – Zpr. geol. Výzk. v Roce 1995, 109–110. 2.5.5. HLUBOKÁ ORTHOGNEISS Regional position: Monotonous Group of the Moldanubian Zone. Rock types: 1. Hluboká Orthogneiss – tourmalinebearing muscovite-biotite alkali-feldspar orthogneiss (granite) – similar to the Blaník Orthogneiss and Přibyslavice Granite. 2. Dykes of muscovite-tourmaline granite. Size and shape (in erosion level): 15 km2 (7 × 2 km) in outcrop size, two sheet-like bodies. Age and isotopic data: 508 ± 7 Ma (Pb-Pb zircon).
Geological environment: structurally conformable or semi-conformable in sillimanite-biotite paragneisses of the Monotonous Group. Contact aureole: partly discordant contact, metamorphosed and deformed along with the country paragneisses. Mineralization: with Rb contents ranging from 300 to 500 ppm, Sr from 10 to 40, and Sn from 10–40 ppm the rock is comparable with tin-bearing granites.
References POVONDRA, P. – VRÁNA, S. (1996): Tourmaline and associated minerals in alkali-feldspar orthogneiss near Hluboká nad Vltavou, southern Bohemia. – J. Czech Geol. Soc. 41, 191–200.
181
VRÁNA, S. – KRÖNER, A. (1995): Pb-Pb zircon ages for tourmaline alkali-feldspar orthogneiss from Hluboká nad Vltavou in southern Bohemia. – J. Czech Geol. Soc. 40, 127–130. Hluboká Orthogneiss Quartz-rich, sodic, peraluminous, leucocratic granite 1HL 2HL 3HL 4HL SiO2 74.23 74.05 72.93 71.98 TiO2 0.07 0.15 0.23 0.16 Al2O3 14.18 13.94 14.21 15.04 Fe2O3 0.15 0.35 0.55 0.16 FeO 1.03 0.58 0.97 1.33 MnO 0.02 0.34 0.44 0.02 MgO 0.06 0.12 0.32 0.27 CaO 0.29 0.43 0.51 0.51 Na2O 3.96 3.81 3.49 3.73 K2O 3.83 4.41 4.48 4.97 P2O5 0.54 0.48 0.42 0.48 Li2O 0.04 0.03 0.02 0.02 Mg/(Mg + Fe) 0.08 0.15 0.23 0.24 K/(K + Na) 0.39 0.43 0.46 0.47 Nor.Or 23.36 26.79 27.46 30.29 Nor.Ab 36.71 35.18 32.52 34.55 Nor.An -2.19 -1.06 -0.25 -0.65 Nor.Q 35.00 33.09 32.97 28.84 Na + K 209.11 216.58 207.74 225.89 *Si 199.26 189.12 190.80 167.38 K-(Na + Ca) -51.64 -36.98 -26.59 -23.93 Fe + Mg + Ti 18.59 17.32 31.22 29.23 Al-(Na + K + 2Ca) 59.02 41.84 53.12 51.28 (Na + K)/Ca 40.44 28.25 22.84 24.84 A/CNK 1.35 1.24 1.29 1.27 Stráž Orthogneiss Quartz-normal, sodic, peraluminous, mesocratic granodiorite Stráž X SiO2 66.65 TiO2 0.51 Al2O3 16.05 Fe2O3 n.d. FeO 4.25 MnO 0.06 MgO 1.70 CaO 3.41 Na2O 3.36 K2O 2.64 P2O5 0.05 Mg/(Mg + Fe) 0.41 K/(K + Na) 0.34 Nor.Or 16.85 Nor.Ab 32.60 Nor.An 17.95
182
5HL 76.40 0.09 12.40 0.05 1.75 0.03 0.10 0.31 2.85 4.85 0.23 0.01 0.09 0.53 29.90 26.70 0.02 38.37 194.94 225.22 5.48 28.61 37.51 35.27 1.21
6HL 75.33 0.08 14.33 0.68 0.02 0.04 0.10 0.37 4.23 3.87 0.33 0.02 0.21 0.38 23.14 38.44 -0.34 33.67 218.67 194.85 -60.93 12.28 49.55 33.14 1.25
Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca Nor.Q A/CNK
164.48 164.74 -113.18 107.76 29.09 2.70 24.09 1.10
Fig. 2.126. Moldanubian orthogneisses ABQ and TAS diagrams. 1 – Stráž Orthogneiss, 2 – Hluboká Orthogneiss, 3 – Radonice Orthogneiss.
2.5.6. RADONICE ORTHOGNEISS Geological environment: structurally conformable or semi-conformable in sillimanite-biotite paragneisses of the Monotonous Group. Contact aureole: contact orthogneiss is enriched by biotite and sillimanite at the endocontact (in width of several tens of meters).
Regional position: Monotonous Group of the Moldanubian Zone. Rock types: Radonice Orthogneiss – tourmaline-bearing muscovite-biotite alkalifeldspar orthogneiss (granite). Size and shape (in erosion level): 7–8 km2, oval shape. Radonice Orthogneiss Quartz-rich, sodic, peraluminous, mesocratic granite 1RadA SiO2 74.11 TiO2 0.10 Al2O3 14.38 Fe2O3 1.31 FeO 0.29 MnO 0.03 MgO 0.33 CaO 0.74 Na2O 3.54 K2O 4.19 P2O5 0.40 Mg/(Mg+Fe) 0.28 183
K/(K+Na) Nor.Or Nor.Ab Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
0.44 25.30 32.48 1.06 34.59 203.20 199.15 -38.47 29.89 52.80 15.40 1.28
2.5.7. BECHYNĚ ORTHOGNEISS Age and isotopic data: 550 Ma (Rb-Sr whole rock), 383–641 Ma (U-Pb zircon), 331 ± 5 Ma (Rb-Sr muscovite). Geological environment: structurally conformable or semi-conformable in sillimanite-biotite paragneisses of the Monotonous Group. Contact aureole: sharp western contact, and transitional eastern contact. Sharp intrusive contact of the leucogranite and orthogneiss (diatexite).
Regional position: Monotonous Group of the Moldanubian Zone Rock types: Bechyně Orthogneiss – 1. relict two-mica alkali-feldspar leucogranite (mobilisate), 2. muscovite-biotite orthogneiss (diatexite), 3. biotite orthogneiss (metatexite). Size and shape (in erosion level): 20 km2 (10 × 2 km), elongated slab – with thickness of about 1 km. Dipping under shallow angle toward the west.
Fig. 2.127. Bechyně Orthogneiss geological sketch - map (adapted after Fediuk 1976). 1 – alkali-feldspar granite (mobilisate), 2 – muscovite-biotite orthogneiss (diatexite), 3 – biotite orthogneiss (metatexite), 4 – faults.
References BREEMEN, O. VAN – AFTALION, M. – BOWES, D. R. – DUDEK, A. – MÍSAŘ, Z. – POVONDRA, P. – VRÁNA, S. (1982) Geochronological studies of the Bohemian Massif,
184
Czechoslovakia, and their significance in the evolution of Central Europe. – Trans. Roy. Soc. Edinburgh, Earth Sci. 73, 89–108. FEDIUK, F. (1976): The Bechyně “orthogneiss”: An anatectic type of Moldanubian orthogneissoids. – Acta Univ. Carol., Geol. 3, 187–207. Bechyně Orthogneiss Quartz-normal, sodic, peraluminous, leucocratic granite n=9 Med. Min Max QU1 SiO2 72.40 69.92 74.65 71.74 TiO2 0.16 0.09 0.38 0.15 Al2O3 14.56 13.32 15.69 13.71 Fe2O3 0.27 0.21 0.72 0.23 FeO 1.36 0.58 2.16 1.12 MnO 0.04 0.02 0.07 0.03 MgO 0.35 0.21 1.20 0.33 CaO 1.37 0.65 1.82 0.86 Na2O n.d. 0.00 0.01 0.00 K2O 3.73 3.11 4.33 3.39 P2O5 4.08 3.64 4.82 3.99 SiO2 0.15 0.07 0.35 0.11 Mg/(Mg + Fe) 0.28 0.24 0.43 0.28 K/(K + Na) 0.43 0.38 0.45 0.41 Nor.Or 25.24 22.58 29.18 24.23 Nor.Ab 34.67 29.32 39.95 31.85 Nor.An 6.35 0.95 7.82 3.36 Nor.Q 30.15 24.16 37.60 29.00 Na + K 208.31 177.64 226.14 196.02 *Si 180.62 148.49 215.44 175.51 K-(Na + Ca) -54.13 -81.31 -36.14 -64.55 Fe + Mg + Ti 32.52 19.11 73.64 32.00 Al-(Na + K + 2Ca) 35.69 -12.26 65.57 6.99 (Na + K)/Ca 8.13 5.47 16.41 8.08 A/CNK 1.14 0.97 1.35 1.04
Fig. 2.128. Bechyně Orthogneiss ABQ and TAS diagrams.
185
QU3 73.61 0.18 14.86 0.46 1.44 0.05 0.48 1.57 0.01 3.83 4.22 0.25 0.35 0.44 25.97 35.34 7.26 32.05 218.37 193.41 -42.12 37.75 63.71 14.66 1.30
2.5.8. NOVÉ HRADY ORTHOGNEISS
Fig. 2.129. Nové Hrady Orthogneiss geological sketch-map (adapted after the geological map 1 : 50,000). 1 – biotite metagranite, 2 – faults.
Size and shape (in erosion level): 30 km2 (22 × 1 km), a thin and elongated tectonized slab. Age and isotopic data: 459 ± 10 Ma (Rb-Sr whole rock). Geological environment: structurally conformable or semi-conformable in sillimanite-biotite paragneisses of the Drosendorf Unit.
Regional position: the Drosendorf Unit of the Moldanubian Zone Rock types: 1. Nové Hrady Orthogneiss – ± porphyroblastic fine-grained biotite orthogneiss with muscovite (originally biotite granite to quartz diorite). 2. Nové Hrady Metagranite – porphyroblastic medium-grained muscovitebiotite relict metagranite.
References SLABÝ, J. (1991): Petrologie a geochemie ortorul moldanubika jižních Čech. PhD thesis. – MS Czech Geol. Survey, Prague. STANÍK, E. et al. (1991): Vysvětlivky k základní geologické mapě 1 : 25,000, 33-131 Nové Hrady. – 43 pp. Ústř. úst. geol.Praha, VRÁNA, S. et al. (1988): Vysvětlivky k základní geologické mapě 1 : 25,000, 32-244 Benešov nad Černou. – 44 pp. Ústř. úst. geol. Praha. Nové Hrady Orthogneiss Quartz-rich, sodic, peraluminous, mesocratic granite to granodiorite 1911N 2NHA 4NHA 10NH SiO2 70.58 72.61 72.11 65.44 TiO2 0.33 0.19 0.18 0.58 Al2O3 14.32 15.26 15.29 16.68 Fe2O3 0.83 0.66 0.52 0.43 FeO 2.48 1.28 1.51 3.79 MnO 0.03 0.04 0.03 0.08 MgO 0.69 0.47 0.48 1.59 CaO 2.33 1.72 1.67 3.80 Na2O 3.62 3.52 3.48 3.52 K2O 3.32 4.09 4.20 2.20 P2O5 0.13 0.11 0.15 0.15 Li2O n.d. 0.01 0.01 0.01 Mg/(Mg + Fe) 0.27 0.30 0.30 0.40 K/(K + Na) 0.38 0.43 0.44 0.29 Nor.Or 20.61 24.70 25.51 13.99 Nor.Ab 34.15 32.31 32.12 34.02 Nor.An 11.24 7.98 7.50 19.23 Nor.Q 28.83 30.01 29.49 23.74 Na + K 187.31 200.43 201.47 160.30 *Si 176.56 181.95 178.72 157.57 K-(Na + Ca) -87.87 -57.42 -52.90 %-134.64 Fe + Mg + Ti 66.19 40.14 41.71 104.89
186
Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
10.81 4.51 1.05
37.90 6.53 1.16
39.23 6.77 1.17
31.74 2.37 1.12
Fig. 2.130. Nové Hrady Orthogneiss ABQ and TAS diagrams. 1 –two-mica metagranites, 2 – biotite orthogneiss.
2.5.9. SVĚTLÍK ORTHOGNEISS Size and shape (in erosion level): 20 km2 (10 × 2 km), lens-shaped body. Age and isotopic data: 2,110 ± 58 Ma, 2,104 ± 1 Ma (U-Pb zircon). Geological environment: located at the tectonic boundary between the Drosendorf and Ostrong Unit. Structurally conformable or semi-conformable in sillimanite-biotite paragneisses of the Varied Group.
Regional position: The Drosendorf Unit of the Moldanubian Zone. Rock types: Světlík Orthogneiss: 1. medium-grained biotite to hornblendebiotite orthogneiss to metagranite, 2. fine-grained amphibole-biotite quartz dioritic orthogneiss (metadacite), 3. foliated garnet-tourmaline alkali-feldspar granite to pegmatite.
References CÍLEK, V. – SYNEK, J. – RAJLICH, P. (1986): Orbikulární horniny z Muckova v Pošumaví. – Sbor. Jihočes. Muz. v Čes. Budějovicích, 26, 101–106. PATOČKA, F. – KACHLÍK, V. – DOSTAL, J. – FRÁNA, J. (2003): Granitoid gneisses with relict orbicular metagranitoids from the Varied Group of the southern Bohemian Massif, Moldanubicum: protolith derived from melting of Archean crust? – J. Czech Geol. Soc. 48, 100–101. THIELE, O. (1971): Ein Cordierit-Kugeldiorit aus dem westerlichen Wardviertel (Nieder Österreich). – Verh. Geol. Bundesanst. 3, 409–423. WENDT, J. I. – KRÖNER, A. – FIALA, J. – TODT, W. (1993): Evidence from zircon dating for existence of approximately 2.1 Ga old crystalline basement in southern Bohemia, Czech Republic. – Geol. Rdsch. 82, 42–50. Světlík Orthogneiss Quartz-normal, sodic, peraluminous, leucocratic granite 1svA 2sv 3svB 4svB SiO2 76.02 74.48 74.15 74.11 TiO2 0.16 0.02 0.03 0.05 Al2O3 12.96 14.09 14.29 14.15 Fe2O3 0.32 0.02 0.14 0.26 FeO 0.49 0.57 0.32 0.24
187
5svA 73.91 0.09 14.91 0.04 0.39
6svC 73.69 0.00 14.85 0.00 0.48
MnO MgO CaO Li2O Na2O K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
0.03 0.22 1.09 n.d. 3.22 4.36 0.04 0.33 0.47 26.51 29.75 5.29 36.09 196.48 212.30 -30.77 18.30 19.15 10.11 1.08
0.33 0.05 0.23 n.d. 4.71 4.26 0.25 0.09 0.37 25.59 43.00 -0.52 28.43 242.44 168.03 -65.64 9.68 26.06 59.11 1.13
0.14 0.06 0.32 n.d. 4.59 4.40 0.59 0.15 0.39 26.34 41.75 -2.33 29.28 241.54 166.03 -60.40 8.08 27.67 42.33 1.17
0.03 0.02 0.10 0.15 0.39 1.08 n.d. n.d. 4.40 4.79 4.79 3.69 0.33 0.13 0.26 0.37 0.42 0.34 28.69 22.01 40.05 43.42 -0.24 4.54 28.30 27.58 243.69 232.92 162.82 164.28 -47.24 -95.48 9.71 10.78 20.28 21.37 35.04 12.09 1.11 1.09
0.08 0.04 1.12 0.01 4.80 4.10 0.01 0.11 0.36 24.45 43.50 5.54 25.41 241.95 153.56 -87.81 7.80 9.73 12.11 1.03
Fig. 2.131. Moldanubian orthogneisses ABQ and TAS diagrams. 1 – Světlík Orthogneiss.
188
Fig. 2.132. Moldanubian orthogneisses ABQ and TAS diagrams – Světlík Foliated Gneisses: 1 – Světlík Metatonalite, 2 – metagranodiorite, 3 – metaquartz diorite.
Světlík Foliated Orthogneiss
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 Mg/(Mg + Fe) K/(K + Na) Nor.Or Nor.Ab Nor.An Nor.Q Na + K *Si K-(Na + Ca) Fe + Mg + Ti Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
AA-2 metatonalite 64.83 0.62 15.91 1.79 2.89 0.11 2.51 5.00 4.50 1.63 0.23 0.49 0.19 10.10 42.39 24.44 16.76 179.82 120.40 -199.76 132.72 -45.70 2.02 0.88
AA-17 metagranodiorite 69.09 0.37 14.62 1.33 1.61 0.06 1.53 3.06 4.20 3.27 0.19 0.49 0.34 20.03 39.09 14.44 22.30 204.96 141.96 -120.67 81.68 -26.99 3.76 0.93
189
AA-20 quartz metadiorite 53.10 1.07 17.37 8.33 n.d. 0.13 4.61 7.08 4.98 1.28 0.46 0.52 0.14 8.10 47.87 34.36 0.00 187.88 22.54 -259.78 232.16 -99.27 1.49 0.79
2.5.10. BLANÍK ORTHOGNEISS Geological environment: structurally conformable or semi-conformable in sillimanite-biotite paragneisses of the Drosendorf Unit. Contact aureole: tourmalinization at the endo-contact. Mineralization: weak greisenization with Sn indices, pegmatite, uranium micas.
Regional position: The Drosendorf Unit of the Moldanubian Zone. Rock types: Blaník Orthogneiss – leucocratic tourmaline-bearing two-mica alkali feldspar orthogneiss passing into metagranite. Size and shape (in erosion level): 8 km2, a slab 20 km long and about 100 to 1,000 m thick. Age and isotopic data: 470 Ma (Rb-Sr whole rock).
References BREEMEN, O. VAN – AFTALION, M. – BOWES, D. R. – DUDEK, A. – MÍSAŘ, Z. – POVONDRA, P. – VRÁNA, S. (1982) Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe. – Trans. Roy. Soc. Edinburgh, Earth Sci. 73, 89–108. BREITER, K. – ČOPJAKOVÁ, R. – GABAŠOVÁ, A. – ŠKODA, R. (2005): Chemistry and mineralogy of orthogneisses in the northeastern part of the Moldanubicum. – J. Czech Geol. Soc. 50, 81–94. KLEČKA, M. – MACHART, J. – MELÍN, M. – LANG, M. – PIVEC, E.(1992): Geochemický a petrologický výzkum tělesa blanické ortoruly. – Zpr. geol. Výzk. v Roce 1991, 76–78. KLEČKA, M. – MACHART, J. – PIVEC, E. (1992): Křížová hora quarry near Vlašim, a Pre-Variscan tourmaline-bearing two-mica orthogneiss (Blaník type), Locality No. 10. In: Novák, M. – Černý, P. Eds: Lepidolite 2000, Field-trip guidebook. – Masaryk Univ. – Mor. Mus., Brno. ORLOV, A. (1936): K charakteristice blanické žuly. – Čas. Nár. Mus. 110, 45–48. ZIKMUND, J. (1983): Reliktní granity a geneze blanických ortorul. – Čas. Mineral. Geol. 28, 81–87. Blaník Orthogneiss Quartz-poor, sodic, peraluminous, leucocratic granite 1 805BLA 1806BLA SiO2 72.23 72.60 TiO2 n.d. 0.22 Al2O3 15.87 14.13 Fe2O3 0.68 0.41 FeO 0.87 0.96 MnO 0.06 0.11 MgO 0.75 0.88 CaO 1.14 0.72 Na2O 3.98 4.38 K2O 4.22 5.06 P2O5 0.18 n.d. Mg/(Mg + Fe) 0.46 0.52 K/(K + Na) 0.41 0.43 Nor.Or 25.35 30.51 Nor.Ab 36.33 40.14 Nor.An 4.54 3.65 Nor.Q 27.64 23.00 Na + K 218.03 248.78 *Si 169.13 145.43 K-(Na + Ca) -59.16 -46.74 Fe + Mg + Ti 39.24 43.10
190
Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
52.96 10.73 1.22
3.03 19.38 1.01
2.5.11. CHOUSTNÍK ORTHOGNEISS 2. Relict Metagranite – coarse-grained biotite-muscovite (leucocratic to normal) alkali-feldspar metagranite. Size and shape (in erosion level): 18 km2 (6 × 3 km), several concordant lens-shaped, tectonized bodies and sills with sharp contact (up to 90 m thick).The Choustnik orthogneiss body has an approximately plate flat “undulated shape and dips gently to NW-N with an approximate angle of 15o in concert with its interpretation as a klippe of the tectonically dismembered original batholith emplaced during thrust tectonics. The original thickness should be at least several kilometers. Age and isotopic data: 459 ± 10 Ma (Rb-Sr whole rock). Geological environment: structurally conformable or semi-conformable in sillimanite-biotite paragneisses of the Monotonous Group.
Fig. 2.133. Choustník Orthogneiss geological sketch-map (adapted after Zikmund 1983). 1 – porphyroblastic two-mica orthogneiss, 2 –Relict metagranite, 3 – faults.
Regional position: The Blaník type of orthogneiss within the Monotonous Group of the Moldanubian Zone. Rock types: 1. Choustník Orthogneiss – porphyroblastic muscovite-biotite orthogneiss with tourmaline (Blaník type). Choustník Orthogneiss
Quartz-rich, sodic-potassic, peraluminous, leucocratic granite n=8 Med. Min Max QU1 SiO2 74.03 73.01 78.17 73.53 TiO2 0.23 0.09 0.34 0.13 Al2O3 12.88 11.22 13.64 11.25 Fe2O3 0.24 0.09 0.48 0.12 FeO 1.33 1.15 1.65 1.19 MnO 0.03 0.03 0.04 0.03 MgO 0.38 0.18 0.59 0.24 CaO 0.56 0.36 0.68 0.40 Na2O 2.70 2.42 3.26 2.44 K2O 4.38 3.85 5.32 3.99 P2O5 0.26 0.15 0.33 0.17 Li2O 0.01 0.00 0.02 0.01 Mg/(Mg + Fe) 0.30 0.20 0.36 0.22 K/(K + Na) 0.49 0.45 0.56 0.48 Nor.Or 27.33 24.09 33.05 24.61 Nor.Ab 25.49 22.88 30.70 23.14 Nor.An 1.07 0.01 2.02 0.64 Nor.Q 35.91 33.77 44.78 33.94 Na + K 189.92 165.32 203.28 168.75 *Si 209.80 197.95 259.80 199.95 K-(Na + Ca) -12.24 -31.72 15.31 -20.08 Fe + Mg + Ti 34.59 23.29 45.69 27.73
191
QU3 75.38 0.28 13.60 0.46 1.44 0.04 0.53 0.63 3.24 4.58 0.29 0.01 0.33 0.54 28.37 30.16 1.30 43.29 200.08 246.21 4.90 42.64
Al-(Na + K + 2Ca) (Na + K)/Ca A/CNK
46.60 17.02 1.25
26.24 16.56 1.14
61.55 31.67 1.39
34.34 16.70 1.21
47.81 22.01 1.26
References KLEČKA, M. – RAJLICH, P. – MELKA, R. (1986): Ductile shear zones and origin of orthogneisses in the thrust sheet of Choustník. – Acta montana 72, 35–62. RAJLICH, P. – PEUCAT, J. J. – KANTOR, J. – RYCHTÁR, J. (1992): Variscan shearing in the Moldanubian of the Bohemian Massif: Deformation, gravity, K-Ar and Rb-Sr data for the Choustník Prevariscan orthogneiss. – Jb. Geol. Bundesanst. 134, 579–595. ZIKMUND, J. (1983): Reliktní granity a problem geneze ortorul typu Blaník. – Čas. Mineral. Geol. 28, 81–87.
Fig. 2.134. Moldanubian orthogneisses ABQ and TAS diagrams. 1 – Choustník Orthogneiss, 2 – Blaník Orthogneiss, 3 – Pacov Orthogneiss.
2.5.12. PACOV ORTHOGNEISS Rock types: Pacov Orthogneiss – 1. muscovite-biotite orthogneiss, 2. biotite orthogneiss with sillimanite, 3. porphyroblastic orthogneiss. Size and shape (in erosion level): (7 × 3 km) folded and tectonically segmented lenses-like body with antiform structure. Age and isotopic data: Cadomian? Geological environment: structurally conformable or semi-conformable (transitional) in sillimanite-biotite paragneisses of the Monotonous Group. Zoning: concentric metamorphic antiform structure Mineralization: spatially associated with metamorphosed greisens.
Fig. 2.135. Pacov Orthogneiss geological sketchmap. 1 – muscovite-biotite orthogneiss, 2 – biotite orthogneiss with sillimanite, 3 – porphyroblastic orthogneiss, 4 – faults.
Regional position: at the boundary between the Monotonous and Varied Groups of the Moldanubian Zone.
192
References BREITER, K. (2004): Chemical composition of orthogneisses and their garnets in the NE part of the Moldanubicum. – Zpr. geol. Výzk. v Roce 2003, 102–104. NĚMEC, D. (1979): Die Metakonglomerate aus den moldanubischen Gneisen bei Těchobuz (unweit von Pacov), Südostböhmen. In: Sborník příspěvků ke geologickému výzkumu jižní části Českomoravské Vysočiny, 57–64. – České Budějovice. SUK, M. (1969): Genetische Beziehungen der Gesteine vom Orthogneisstyp im Moldanubikum. – Čas. Mineral. Geol. 14, 189–198. Pacov Orthogneiss Quartz-normal, sodic, peraluminous, mesocratic granite 1807PAC 1808PAC 1810PAC SiO2 71.33 73.50 71.45 TiO2 0.26 0.26 0.14 Al2O3 16.01 13.37 14.75 Fe2O3 0.57 0.85 0.46 FeO 1.50 1.05 2.13 MnO 0.01 n.d. 0.07 MgO 0.54 0.25 0.55 CaO 1.76 0.90 1.32 Na2O 4.30 3.39 3.20 K2O 3.20 5.50 4.23 P2O5 0.21 0.20 0.22 Mg/(Mg + Fe) 0.32 0.20 0.27 K/(K + Na) 0.33 0.52 0.47 Nor.Or 19.30 33.30 26.25 Nor.Ab 39.42 31.19 30.18 Nor.An 7.50 3.22 5.36 Nor.Q 27.65 29.08 31.19 Na + K 206.70 226.17 193.08 *Si 168.10 170.89 187.62 K-(Na + Ca) -102.20 -8.66 -36.99 Fe + Mg + Ti 44.69 34.73 50.83 Al-(Na + K + 2Ca) 44.93 4.29 49.51 (Na + K)/Ca 6.59 14.09 8.20 A/CNK 1.19 1.03 1.23 2.5.13. PŘIBYSLAVICE ORTHOGNEISS Regional position: the orthogneiss-granitepegmatite complex at the Drosendorf Unit of the Moldanubian Zone. Rock types: 1. Přibyslavice Orthogneiss (metagranite) – tourmaline-muscovite and two-micatourmaline orthogneiss. 2. Přibyslavice Granite – muscovitetourmaline alkali-feldspar granite. 3. Pegmatite – aplite-pegmatite dyke. Size and shape (in erosion level): E-W elongated outcrop (~ 3 km2), tectonically divided into three segments by two NNE-SSW trending faults.
Age and isotopic data: pre-Variscan (?) intrusion of the leucocratic muscovitetourmaline granite later metamorphosed into the metagranite and orthogneiss. This rock is intruded by a stock of the muscovite granite (~ 50 m in diameter) and cut by highly evolved Li-bearing pegmatite. No isotopic data. Geological environment: structurally conformable or semi-conformable in sillimanite-biotite and two-mica paragneisses of the Monotonous Group. Contact aureole: A sharp zone (a few meters thick) showing gradual decrease of dark minerals (particularly biotite) and an increase 193
expressed by development of the foliation increases towards the contacts with the country rock. Mineralization: cassiterite mineralization.
of felsic minerals (feldspathization and migmatitization) closer to the granite body. Zoning: The percentage of tourmaline decreases and the intensity of deformation
References BREITER, K. – BERAN, K. – BURIÁNEK, D. – CEMPÍREK, J. – DUTROW, B. – HENRY, D. – NOVÁK, M. – POVONDRA, P. – RAIMBAULT, L. (2003): Přibyslavice near Čáslav, tourmalinemuscovite orthogneiss, muscovite granite, pegmatite. In: Novák, M. Ed.: LERM 2003, International Symposium on Light Elements in Rock-forming Minerals. Field trip guidebook, 77– 78. – Masaryk univ. Brno. BREITER, K. – ŠKODA, R. – STARÝ, J. (2006): Tin, niobium and tantalum mineralization at Přibyslavice near Čáslav. – Zpr. geol. Výzk. v Roce 2005, 102–107. POVONDRA, P. – PIVEC, E. – ČECH, F. – LANG, M. – NOVÁK, F. – PRACHAŘ, I. – ULRYCH, J. (1987): Přibyslavice peraluminous granite. – Acta Univ. Carol., Geol. 41, 183–283. Přibyslavice Orthogneiss (Metagranite) Quartz-rich, sodic, (strongly) peraluminous leucocratic, S-type, granite n = 14 Med. Min Max QU1 QU3 SiO2 72.80 67.05 75.27 71.95 73.20 TiO2 0.03 0.02 0.26 0.02 0.04 Al2O3 14.85 13.55 16.03 14.70 15.13 Fe2O3 0.21 0.00 1.69 0.01 0.32 FeO 0.66 0.37 1.29 0.51 0.75 MnO 0.04 0.02 0.23 0.03 0.06 MgO 0.01 0.00 0.06 0.00 0.03 CaO 0.32 0.23 2.26 0.26 0.50 Na2O 4.14 2.75 4.51 3.80 4.21 K2O 4.00 2.81 4.40 3.91 4.05 P2O5 0.50 0.04 1.23 0.47 0.76 Mg/(Mg + Fe) 0.02 0.00 0.09 0.00 0.05 K/(K + Na) 0.39 0.31 0.48 0.38 0.41 Nor.Or 24.41 17.53 26.70 23.60 24.76 Nor.Ab 38.20 26.36 41.76 35.74 38.87 Nor.An -1.68 -4.38 3.31 -2.26 -1.48 Nor.Q 32.43 27.84 38.81 30.81 34.88 Na + K 216.52 171.76 233.84 199.49 221.85 *Si 182.16 157.97 217.01 171.29 193.73 K-(Na + Ca) -57.05 -86.59 -32.31 -64.10 -52.40 Fe + Mg + Ti 13.35 6.24 43.14 9.34 14.21 Al-(Na + K + 2Ca) 57.21 38.02 98.23 49.67 70.25 (Na + K)/Ca 36.07 4.26 54.23 22.37 40.98 A/CNK 1.35 1.26 1.58 1.28 1.38 Muscovite Granite – Au 0.05, B 94, Ba 10, Co 1.0, Cs 23, Cu 22, Hf 1.9, Li 175, Rb 589, Ni 9.5, Sc 14, Sr 317, Ta 10, Th 1.0, U 20, Zn 51, Zr 18, La 2.1, Ce 4.2, Sm 1.2, Eu 0.1, Tb 1.0, Yb 1, Lu 0.2 (Povondra et al. 1987). Tourmaline-muscovite Metagranite – Au 0.07, B 1257, Ba 10, Co 1.0, Cs 19, Cu 6, Hf 1.2, Li 257, Rb 469, Ni 12, Sc 15, Sr 38, Ta 2.4, Th 1.0, U 17.8, Zn 50, Zr 47, La 1.9, Ce 5.7, Sm 1.0, Eu 0.1, Tb 1.0, Yb 1, Lu 0.2 (Povondra et al. 1987).
194
Fig. 2.136. Přibyslavice Orthogneiss ABQ and TAS diagrams. 1 – muscovite-tourmaline metagranite, 2 – tourmaline muscovite orthogneiss, 3 – two-mica-tourmaline orthogneiss.
2.5.14. KOUŘIM ORTHOGNEISS total thickness of 1 to 1.5 km – 400 km2 (25 × 15 km). Age and isotopic data: Cadomian? No isotopic data. Geological environment: Varied group of the Moldanubian Zone – numerous folded sills of hybrid orthogneisses in two-mica schists and gneisses.
Regional position: within the Kutná Hora Crystalline Complex. Rock types: Kouřim (Kaňk) Orthogneiss – hybrid two-mica porphyroblastic orthogneiss (metamorphosed granites to volcanics). Size and shape (in erosion level): a series of parallel sheets (tabular tectonized bodies) of
References HOLUB, M. (1985): Příspěvek k poznání geneze ortorul v kutnohorském revíru. – Čas. Mineral. Geol. 3, 65–74. STANÍK, E. (1976): Nové poznatky o stratigrafii moldanubika a kutnohorského krystalinika. Nové výzkumy z Českomoravské vysočiny. – Výzk. Práce Ústř. Úst. geol. 11, 7–15. SYNEK, J. – OLIVEROVÁ, D.(1992): Styles of Superposed Variscan nappe tectonics. Excursion Guide. – 30 pp. Kutná Hora. 2.5.15. PODOLSKO ORTHOGNEISS (COMPLEX) 3. Garnetite – pyrope, orthopyroxene and quartz – very high-pressure relic assemblage. 4. Písek Granite – leucocratic micrometagranite dyke swarm – vertical dykes with gneissic texture. Size and shape (in erosion level): 600 km2. Age and isotopic data: garnetite 360 ± 10 Ma (U-Pb zircon), 355 ± 78 Ma (U-Pb zircon). Geological environment: structurally conformable or semi-conformable in sillimanite-biotite paragneisses of the Drosendorf Unit. Heat production (μWm-3): Podolsko Metagranite 3.8.
Regional position: the Drosendorf Unit of the Moldanubian Zone. Lithological and structural melange of granitized sediments and metamorphosed igneous rocks (the Podolsko Complex) near the contact of the Central Bohemian Pluton (CBCP), similar to the Gföhl Gneiss – migmatite of the orthogneiss habit. Rock types: 1. Semice Orthogneiss – leucocratic ± migmatitic biotite and two-mica granitic orthogneiss. 2. Podolsko Orthogneiss – hornblendebiotite orthogneiss (metagraite).
195
References FEDIUKOVÁ, E. – FEDIUK, F. (1971): Moldanubian granulites of the Písek-Týn area. – Acta Univ. Carol., Geol. 1, 25–47. FINGER, F. – KRENN, E. (2007): Three metamorphic monazite generations in a high-pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. – Lithos 95, 103–115. FIŠERA, M. – VRÁNA, S. – KOTRBA, Z. (1982): Orthopyroxene-garnet granulites in the Podolsko Complex. – Věst. Ústř. Úst. geol. 57, 321–328. KOŠLER, J. – WENDT, J. I. – KLEČKA, M. – FIALA, J. (1994): Early Palaeozoic arc-type magmatism in the Bohemian Massif as revealed by U-Pb zircon internal dating, zircon internal fabric and whole-rock geochemistry. – Mitt. Österr. mineral. Gesell. 139, 328–330. KOTKOVÁ, J. – DÖRR, W. – FINGER, F. (1998): New geochemical and geochronological data on the very -high-pressure garnetite from the Podolsko Complex, Moldanubian Zone, Bohemian Massif. – Acta Univ. Carol., Geol. 42, 281–282. KOTKOVÁ, J. – HARLEY, S. L. – FIŠERA, M. (1997): A very high-pressure (ca 28 kbar) metamorphism in the Variscan Bohemian Massif, Czech Republic. – Eur. J. Mineral. 9, 1017– 1033. KRENN, E. – FINGER, F. (2004): Metamorphic formation of Sr-apatite and Sr-bearing monazite in a high-pressure rock from the Bohemian Massif. – Amer. Mineralogist 89, 1323–1329. RÖHLICHOVÁ, M. (1963): Migmatity podolského komplexu v okolí Písku (Jižní Čechy). – Acta Univ. Carol., Geol. 3, 197–210. Podolsko Orthogneiss Quartz-rich, sodic, peraluminous (moderately), leucocratic, S-type, M-series, granite n = 12 Med. Min Max QU1 QU3 SiO2 73.23 70.13 77.03 71.68 75.73 TiO2 0.13 0.00 0.32 0.01 0.21 Al2O3 13.50 11.85 15.87 12.45 14.40 Fe2O3 0.41 0.13 1.47 0.30 0.64 FeO 0.87 0.45 1.82 0.75 1.22 MnO 0.04 0.01 0.50 0.01 0.06 MgO 0.35 0.06 1.13 0.20 0.66 CaO 0.66 0.28 2.94 0.56 1.14 Li2O n.d. n.d. 0.01 0.00 0.00 Na2O 3.15 1.70 4.00 2.86 3.91 K2O 4.25 2.98 7.23 4.19 5.00 P2O5 0.11 0.01 0.38 0.08 0.19 Mg/(Mg + Fe) 0.33 0.07 0.52 0.27 0.39 K/(K + Na) 0.48 0.33 0.74 0.41 0.54 Nor.Or 26.08 18.21 44.81 25.11 30.58 Nor.Ab 29.14 16.01 37.16 26.59 35.79 Nor.An 2.10 0.68 13.11 1.37 4.50 Nor.Q 32.08 23.98 42.14 26.51 36.08 Na + K 198.45 176.45 250.95 192.35 215.14 *Si 193.41 143.38 242.24 161.77 212.66 K-(Na + Ca) -23.21 -118.23 93.30 -59.16 2.53 Fe + Mg + Ti 30.44 20.01 67.58 20.80 39.24 Al-(Na + K + 2Ca) 22.87 -7.80 52.96 14.37 34.07 (Na + K)/Ca 15.87 3.67 50.26 7.56 17.67 A/CNK 1.12 0.98 1.24 1.06 1.15
196
2.5.16. POPOVICE METAGRANITE (COMPLEX) Regional position: lithological and structural mélange of in-situ granitized sediments and metamorphosed igneous rocks (the Popovice hybrid Complex) at the contact of the Moldanubian Zone and the Central Bohemian Pluton (CBCP). Rock types: Popovice Metagranite – 1. hybrid fine-grained aplitic metagranite (migmatite of the orthogneiss habit),
2. hybrid biotite metagranite (similar to the Gföhl Gneiss). Size and shape (in erosion level): 100 km2 (7 × 14 km), semi-circular structure. Resistant hybrid metagranites at the periphery of the Popovice depression. Age and isotopic data: older than the Central Bohemian Pluton. This Pluton is expected at the basement of the Popovice Gneiss. No isotopic data.
References KRUPIČKA, J. (1950): Předběžná zpráva o petrografickém výzkumu popovického hybridního komplexu a přilehlých částí středočeského plutonu (Votice-Vlašim). – Věst. Ústř. Úst. geol. 25, 134–137. ŽEŽULKOVÁ, V. (1970): Ke genezi benešovského granodioritu. – Sbor. geol. Věd, Geol. 21, 37–81. Popovice Metagranite Quartz-rich, sodic, peraluminous, leucocratic S-type granite 1915P 1916P 1917P 1918P SiO2 77.03 75.27 73.23 72.17 TiO2 0.20 0.13 n.d. 0.21 Al2O3 11.85 13.50 15.87 14.13 Fe2O3 0.13 0.41 0.68 0.64 FeO 0.84 0.47 0.87 0.81 MnO 0.01 0.01 0.06 0.02 MgO 0.20 0.27 0.75 0.33 CaO 0.57 0.76 1.14 0.86 Na2O 3.01 3.91 3.98 3.15 K2O 4.23 4.19 4.22 6.16 P2O5 0.23 0.38 0.18 0.05 Mg/(Mg + Fe) 0.27 0.36 0.46 0.29 K/(K + Na) 0.48 0.41 0.41 0.56 Nor.Or 26.07 25.23 25.11 37.49 Nor.Ab 28.19 35.79 35.99 29.14 Nor.An 1.37 1.29 4.50 4.06 Nor.Q 40.54 33.56 28.32 26.51 Na + K 186.94 215.14 218.03 232.44 *Si 233.63 193.41 174.68 157.72 K-(Na + Ca) -17.48 -50.76 -59.16 13.81 Fe + Mg + Ti 20.80 20.01 39.24 30.12 Al-(Na + K + 2Ca) 25.44 22.87 52.96 14.37 (Na + K)/Ca 18.39 15.87 10.73 15.16 A/CNK 1.15 1.14 1.22 1.06
197
Fig. 2.137. Moldanubian orthogneisses ABQ and TAS diagrams. 1 – Popovice Metagranite, 2 – Podolsko Orthogneiss, 3 – Votice Orthogneiss.
2.5.17. WOLFSHOF ORTHOGNEISS Age and isotopic data: 338 ± 6 Ma (U-Pb zircon) Geological environment: structurally conformable or semi-conformable in sillimanite-biotite paragneisses of the Monotonous Group.
Regional position: Moldanubian Zone. Rock types: Wolfshof Orthogneiss – homogenous fine- to medium-grained alkali feldspar syenitic (K-rich) orthogneiss. Size and shape (in erosion level): 30 km2 (9 × 3 km), oval shape of the strongly deformed concordant sills near the Gföhl Gneiss.
References JANOUŠEK, V. – HOLUB, F. V. (2007): The causal link between HP–HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. – Proc. Geol. Assoc. 118, 75–86. FRIEDL, G. – von QUADT, A, – OCHSNER, A. – FINGER, F. (1993): Timing of the Variscan Orogeny in the southern Bohemian Massif (NE Austria) deduced fřrom new U-Pb zircon and monazite dating – Terra Abstracts, 5, 235-236. FRIEDL, G. – von QUADT, A, – FINGER, F. (1994): 340 Ma U/Pb-Monazialter aus dem niederösterreichischen Moldanubikum und ihre geologische Bedeutung. – Terra Nostra, 94, 43–46. 2.5.18. TACHOV ORTHOGNEISS Regional position: Moldanubian Zone. Rock types: 1. Tachov Orthogneiss – medium-grained foliated two-mica orthogneiss. 2. Sillgranite – sheet-like granite Size and shape (in erosion level): 7.5 km2 (4.5 × 3 km) oval shape, smaller bodies of the Tachov Gneiss are cropping out in the western exocontact of the Bor Composite Massif. Age and isotopic data: 449 ± 4 Ma (U-Pb zircon), 523 ± 15 Ma (Rb-Sr whole rock). Geological environment: cordierite-biotite and sillimanite – biotite migmatized paragneiss. Fig. 2.138. Tachov Orthogneiss geologicalsketch-map. 1 – Tachov Orthogneiss, 2 – fault.
198
References WIEGAND, B. (1997): Isotopengeologische und geochemische Untersuchungen zur prävariskischen magmatischen und sedimentären Entwicklung im saxothuringisch-moldanubischen Übergangbereich (Grenzgebiet BRD/CR). – Geotekt. Forsch. 88, 1–177. Tachov Orthogneiss Quartz-rich, sodic, peraluminous, leucocratic granite Tach1 Tach2 Tach3 SiO2 75.80 75.00 76.20 TiO2 0.14 0.13 0.14 Al2O3 13.97 13.70 14.40 Fe2O3tot 1.35 1.27 1.42 FeO n.d. n.d. n.d. MnO 0.03 0.02 0.03 MgO 0.27 0.25 0.28 CaO 0.53 0.50 0.58 Na2O 3.47 3.43 3.51 K2O 3.99 3.65 4.54 P2O5 0.32 0.28 0.34 Mg/(Mg + Fe) 0.28 0.28 0.28 K/(K + Na) 0.43 0.41 0.46 Nor.Or 24.07 22.39 26.93 Nor.Ab 31.81 31.97 31.64 Nor.An 2.69 2.58 2.89 Nor.Q 36.70 38.11 34.17 Na + K 196.69 188.18 209.66 *Si 217.53 221.96 206.19 K-(Na + Ca) -36.71 -42.10 -27.21 Fe + Mg + Ti 25.37 23.74 26.49 Al-(Na + K + 2Ca) 58.75 63.02 52.44 (Na + K)/Ca 20.81 21.11 20.27 A/CNK 1.27 1.30 1.23
Fig. 2.139. Tachov Orthogneiss ABQ and TAS diagrams. 1 – Tachov Orthogneiss, 2 – Sillgranite.
199
Atlas of plutonic rocks and orthogneisses in the Bohemian Massif 2. Moldanubicum
J. Klomínský, T. Jarchovský, G. S. Rajpoot Published by the Czech Geological Survey Prague 2010 First edition Printed in the Czech Republic 03/9 446-412-10 ISBN 978-80-7075-751-2
Správa úložišť radioaktivních odpadů Dlážděná 6, 110 00 Praha 1 Tel.: 221 421 511 E-mail:
[email protected] www.surao.cz
Atlas
of plutonic rocks and orthogneisses in the Bohemian Massif saxothurigicum Josef Klomínský Tomáš Jarchovský Govind S. Rajpoot
Czech Geological Survey Prague 2010
CZECH GEOLOGICAL SURVEY
ATLAS of plutonic rocks and orthogneisses in the Bohemian Massif
3. SAXOTHURINGICUM Compiled by Josef KlS. Rajpoot Compiled by Josef Klomínský Tomáš Jarchovský Govind S. Rajpoot The Saxothuringicum is a part of the Atlas of plutonic rocks and orthogneisses in the Bohemian Massif which consists of six chapters: INTRODUCTION 1. BOHEMICUM 2. MOLDANUBICUM 3. SAXOTHORINGICUM 4. LUGICUM 5. BRUNOVISTULICUM AND MORAVOSILESICUM In the Introduction volume are summarized general characteristics of the plutonic rocks and orthogneisses from point of view of their composition, age, 3-D shape, zonation, metallogeny and spatial distribution. The territorial sections 1–5 comprise structured geological parameters of the plutonic rocks and orthogneisses located within boundaries of the principal geological zones in the Bohemian Massif. The compilation work was supported by the Radioactive Waste Repository Authority of the Czech Republic (RAWRA) and by the Czech Geological Survey.
Acknowledgements We would like to thank the following colleagues who have helped in the compilation and correction of this review: A. Dudek, F. Fediuk, M. Chlupáčová, V. Janoušek J. Kotková, M. René, Z. Vejnar, P. Vlašímský, P. Schovánek and S. Vrána. We are grateful for technical assistance to P. Kopecký, M. Toužimský, J. Holeček, M. Fifernová, J. Kušková, J. Karenová, V. Čechová, and L. Richtrová. In spite of the negative view on our work and unrealistic comments we thank also to M. Štemprok and F. V. Holub for their criticism which helped us to improve the original manuscript. * Corresponding author Josef Klomínský, Czech Geological Survey, Klárov 131/3, Prague 1, Czech Republic. Fax (+420) 257 531 376. E-mail address:
[email protected]
© J. Klomínský, T. Jarchovský, G. S. Rajpoot, 2010 ISBN 978-80-7075-751-2
THE ATLAS OF PLUTONIC ROCKS AND ORTHOGNEISSES IN THE BOHEMIAN MASSIF
3. SAXOTHURINGICUM Josef Klomínský a*, Tomáš Jarchovský a, Govind S. Rajpoot b a
Czech Geological Survey, Klárov 131/3, Praha 1, b Náchodská 2030, Praha 9, Czech Republic
Contents FOREWORD ................................................................................................................................................ 3 3.1. SMRČINY-KRUŠNÉ HORY MTS. (FICHTELGEBIRGE-ERZGEBIRGE) BATHOLITH ....... 3 3.1.1. SMRČINY (FICHTELGEBIRGE) COMPOSITE MASSIF (SCM)........................................ 11 3.1.1.1. MARKTREDWITZ MASSIF ................................................................................................ 17 3.1.2. WESTERN KRUŠNÉ HORY MTS. COMPOSITE PLUTON................................................ 19 3.1.2.1. KARLOVY VARY-EIBENSTOCK COMPOSITE MASSIF ...................................................... 24 3.1.2.2. BERGEN MASSIF .............................................................................................................. 31 3.1.2.3. KIRCHBERG MASSIF ........................................................................................................ 33 3.1.2.4. JÁCHYMOV DYKE SWARM (JDS) .................................................................................... 35 3.1.2.5. BLATNÁ STOCK ............................................................................................................... 39 3.1.2.6. PODLESÍ STOCK ............................................................................................................... 40 3.1.2.7. KRUDUM MASSIF ............................................................................................................ 42 3.1.2.8. LESNÝ-LYSINA-KYNŽVART COMPOSITE MASSIF ........................................................... 45 3.1.2.9. AUE-SCHWARZENBERG STOCKS (ASS) .......................................................................... 48 3.1.3. MIDDLE KRUŠNÉ HORY MTS. COMPOSITE PLUTON ................................................... 51 3.1.4. EASTERN KRUŠNÉ HORY MTS. COMPOSITE PLUTON ................................................ 54 3.1.4.1. FLÁJE COMPOSITE MASSIF .............................................................................................. 57 3.1.4.2. TELNICE STOCK............................................................................................................... 59 3.1.4.3. NIEDERBOBRITZSCH MASSIF .......................................................................................... 61 3.1.4.4. ALTENBERG-FRAUENSTEIN RING DYKE (AFRD)........................................................... 63 3.1.4.5. ALTENBERG-TEPLICE VOLCANIC CALDERA ................................................................... 64 3.1.4.6. CÍNOVEC (ZINNWALD)-KRUPKA COMPOSITE MASSIF (CKCM)..................................... 65 3.1.4.7. SCHELLERHAU STOCK..................................................................................................... 69 3.1.4.8. SADISDORF STOCK .......................................................................................................... 71 3.1.4.9. MARKERSBACH STOCK ................................................................................................... 73 3.2. FICHTELGEBIRGE AND KRUŠNÉ HORY MTS. (ERZGEBIRGE) ORTHOGNEISSES ...... 75 3.2.1. RED ORTHOGNEISSES......................................................................................................... 76 3.2.1.1. SELB ORTHOGNEISS ........................................................................................................ 78 3.2.1.2. WALDERSHOF ORTHOGNEISS.......................................................................................... 79 3.2.1.3. WUNSIEDEL ORTHOGNEISS ............................................................................................. 80
1
3.2.1.4. SAYDA ORTHOGNEISS ..................................................................................................... 82 3.2.1.5. CATHARINE-REITZENHAIN ORTHOGNEISS ...................................................................... 82 3.2.1.6. SCHWARZENBERG ORTHOGNEISS ................................................................................... 84 3.2.1.7. OBERSCHÖNA-OEDERAN ORTHOGNEISS ........................................................................ 84 3.2.1.8. MOBENDORF-CUNNERSDORF ORTHOGNEISS .................................................................. 84 3.2.1.9. FRANKENBERG-SACHSENBURG ORTHOGNEISS .............................................................. 85 3.2.1.10. BIEBERSTEIN-DITTMANNSDORF ORTHOGNEISS ........................................................... 85 3.2.2. GREY (INNER) ORTHOGNEISSES ...................................................................................... 86 3.2.2.1. FREIBERG (INNER) ORTHOGNEISS ................................................................................ 86 3.2.2.2. FÜRSTENWALD-LAUENSTEIN-PETROVICE (INNER) ORTHOGNEISS .............................. 87 The locality map of the plutonic rocks and orthogneisses in the Bohemian Massif (folded)
2
FOREWORD Saxothuringicum comprises the Proterozoic and Palaeozoic phyllite to mica schist to gneiss sequences within which three principal groups of granitic intrusions have been recognized by Tischendorf et al. (1995): 3.1. Late Carboniferous-Early Permian silicic plutonic rocks of the Smrčiny-Krušné hory Mts. (Fichtelgebirge-Erzgebirge) Batholith. 3.2. Cadomian orthogneisses (metamorphosed granitoids) Cambrian-Early Ordovician (meta)granodiorites – (meta)monzogranites represented by small, high-level, epizonally altered S-type granites, sometimes sheet-like, within the Berga anticlinal zone at the southwestern margin of the Elbe Lineament. Neo-Proterozoic to Ordovician orthogneisses (e.g. Grey Orthogneiss, Red Orthogneiss, Selb Orthogneiss). Cadomian gneisses and metagranitoids (the Grey and Red Orthogneisses) were intruded by the SmrčinyKrušné hory Mts. (Fichtelgebirge-Erzgebirge Mts.) postkinematic Batholith of the Variscan age.
3.1. SMRČINY-KRUŠNÉ HORY MTS. (FICHTELGEBIRGE-ERZGEBIRGE) BATHOLITH
Fig. 3.1. Smrčiny-Krušné hory Mts. (Fichtelgebirge-Erzgebirge) Batholith hierarchical scheme according to plutons, massifs, stocks and dyke swarms.
3
Fig. 3.2. Topography of the Smrčiny-Krušné hory Mts. (Fichtelgebirge-Erzgebirge) Batholith (adapted after Rajpoot and Klomínský 1994). 1 – Older Igneous Complex (OIC) 2 – Younger Igneous Complex (YIC) and Transitional Granite Group (TGG), 3 – areal extent at depth 0 m, 4 – areal extent at depth of –1000 m, 5 – faults.
4
low-P Li-mica granite and a high-F, low-P biotite granite subtypes. Size and shape (on erosion level): The area of exposed granites is about 1,883 km2. The total subsurface area of the batholith is estimated at about 7,500 km2 at depth of 0 m a.s.l. The total volume of the batholith is estimated at about 40,000 km3 to a depth of 6 km. Wedge-like shape of the batholith (up to 15 km thick on south) is thinning towards the NW (Polanský 1993). The roof of the batholith forms several large domes corresponding to the individual composite massifs and plutons. Each dome shows complicated morphology consisting of a series of local cupolas (stocks) and depressions. The batholith is NE-SW trending ridge where the present surface almost copies the original roof of the batholith. The depth of OIC magma solidification is about 5–7 km and 2.5 km of the YIC (Dudek et al. 1991). The extent of post-Carboniferous denudation of the Krušné hory (Erzgebirge) Batholith was estimated by Sattran (1957) according to the material removal in the Krušné hory crystalline complex at the maximum of 1,500 m. The laccolitic shape is the most probable form of Variscan granites in the Erzgebirge. Age and isotopic data: The Smrčiny-Krušné hory Mts. (Fichtelgebirge-Erzgebirge) Batholith originated from repeated melting events encompassing a time span of about 40 Ma. Biotite granites (OIC) are of Upper Visean – Lower Namurian age, from about 330 Ma down to 320 Ma. Two-mica granites (Transitional Group) are of the Westphalian age (~ 315 Ma). Li-mica granites (YIC) are of the Upper Westphalian-Stephanian age (295 Ma), from 315 Ma to 290 Ma. G1 and G2 Granites 325 ± 11 and 318 ± 5 Ma, 324 ±12, 317± 4 Ma (Rb-Sr whole rock), G2 Granite in Smrčiny Massif 290 to 280 Ma (Rb-Sr whole rock), G3 Granite – 288 to 275 Ma (Rb-Sr whole rock), G4 Granite and G5 Granite 285 to 268 Ma, 321 ± 12 Ma, 313 ± 5 Ma, 318 ± 4 Ma, 305 ± 4 Ma (Rb-Sr whole rock), lamprophyre 305 ± 4 Ma (K-Ar), 286 ± 7 to 260 ± 7 (K-Ar) Ma.
Regional position: The batholith consists of four plutonic units: Smrčiny-Fichtelgebirge Composite Massif, Western Krušné hory Mts. Composite Pluton, Middle Krušné hory Mts.Composite Pluton, Eastern Krušné hory Mts. Composite Pluton. Drilling as well as gravity measurements proves the subsurface continuity of the individual granitic intrusions. They are outlined and segmented by the NW-SE trending post-emplacement faults. Rock types: Biotite granites (formerly the Older Intrusive Complex – OIC and/or Gebirgs Granites) Two-mica granites (corresponding to the Transitional Group) Li-mica granites (formerly the Younger Intrusive Complex – YIC and/or Erzgebirges Granites) Detailed typology of the Smrčiny-Krušné hory Mts. (Fichtelgebirge-Erzgebirge Batholith) after Rajpoot and Klomínský (1994): Group 1 (G1) granites – porphyritic biotite, coarse-grained, undifferentiated, late-orogenic, tin-barren, peraluminous monzogranite (e.g. Loket Granite, Fláje Granite, Weissenstadt Granite). Group 2 (G2) granites – two-mica or biotite ± muscovite, coarse- to medium-grained, poorly differentiated, post-tectonic, tin-barren, peraluminous monzo-syenogranite (e.g. Nejdek Granite, Waldstein Granite, Telnice Granite). Group 3 (G3) granites – two-mica coarse- or medium-grained, moderately differentiated, postorogenic, stanniferous, highly peraluminous, alkali-feldspar syenogranite (e.g. Eibenstock Granite, Kornberg Granite, Rand- and Kerngranite, Kynžvart Granite). Group 4 (G4) granites – generally two-mica medium- or fine-grained, strongly differentiated, post-orogenic, stanniferous, highly peraluminous, syenogranite (Blauenthal Granite, Cínovec Granite, Milíře Granite). Group 5 (G5) granites – Li-mica and topazbearing leucocratic, medium- or fine-grained, alkali-rich, moderate to strongly differentiated, post-orogenic, stanniferous, highly peraluminous, alkali-feldspar syeno-monzogranite (e.g. Čistá Granite, Tin Granite-Zinngranite, Lithium Granite, Pila Granite). A classification of Erzgebirge granitic bodies (Förster et al. 1999) is based on petrologic interpretation of geochemical and mineralogical relationships (micas, F- and P- whole rock contents). The subdivision of German massifs involves low-F biotite granites, low-F two-mica granites, high-F, high-P Li-mica granite, high-F,
5
Zoning: OIC is intruded by YIC after the time age maximum of 50 Ma. With a few exceptions, YIC is emplaced in the internal part of the batholith. OIC is eroded to a deeper level and the YIC is not yet fully exposed. YIC granites are intruded into their own volcanic ejecta (Teplice Volcanic Caldera). Origin of granites: 20–25 km depth for magma formation. Base of older granites at the depth of 4–6 km. Base of younger granites lying at the depth of 14–15 km. The intrusion level of about 7 km for older granites and about 3 km for the younger granites is suggested (Tischendorf 1989). Mineralization: boron-poor and fluorine-rich metallogenic province of Sn-W, U-Ag-Ni-Co-Bi, Pb-Zn-Cu-Fe, F-Ba associations. Genetic relationship to Sn-W mineralization (greisens, quartz veins and skarns). Style of mineralization: breccias, stockworks, vein and strata bound systems. Major economic ore Deposits: Jáchymov, Cínovec, Krupka, Freiberg, Horní Slavkov, Altenberg, Ehrenfriedersdorf, Aue-Oberschlema. Heat production (μWm-3): The average heat production of the batholith is 3.5. The younger granites appear to have higher heat production than the older granites. The highest heat production of 6.0 show the Zinngranite (Smrčiny Composite Massif), Eibenstock Granite (Karlovy Vary Massif) and Cínovec Granite (Eastern Krušné hory Mts. Pluton). Smrčiny Composite Massif 2.82–5.32, Kirchberg Massif 5.7–7.3, Loket Granite 3.74, Nejdek Granite 3.25, Kynžvart and Kfely Granites 3.3–4.39, Karlovy Vary Massif 0.4–9.6, Eibenstock Granite 5.36, Čistá Granite 3.76, Fláje Granite 2.5–4.8.
Fig. 3.3. Smrčiny-Krušné hory Mts. (FichtelgebirgeErzgebirge) Batholith geological (after Hoth, Tischendorf, Berger 1995). 1 – areal extent at depth of –1000 m, 2 – Older Igneous Complex, 3 – Younger Igneous Complex, 4 – faults.
Geological environment: Proterozoic monotonous group, paragneisses, quartzites and metabasites and orthogneisses (the Red and Grey Orthogneisses). Cambrian metagreywackes, graphitic mica-schists, paragneisses, quartzites and metabasites. Ordovician and Silurian quartzite, phyllite and graphitic schists. Devonian volcano-sedimentary units and diabase. Contact aureole: the contact aureole discordant to isograds of the regional metamorphism. Broad aureole in the Devonian, Silurian and Ordovician strata, narrow aureole in the Upper Proterozoic strata. The thermal aureole and interaction within the OIC produced by YIC granites. Ghost stratigraphy within the granite outcrops as an effect of the partial melting of the country rocks. Hydrothermal alterations: tourmalinization, greisenization, skarnization, chloritization, sericitization, argillitization, kaolinization.
6
Fig. 3.4. Smrčiny-Krušné hory Mts. (Fichtelgebirge-Erzgebirge) Batholith (the Krušné hory Mts.-Erzgebirge part) 3D morphology (according to the Bouguer gravity field).
References BANKWITZ, P. – BANKWITZ, E. (1994): Crustal structure of the Erzgebirge. In: Seltmann, R. – Kämpf, H. – Möller, P. Eds: Metallogeny of Collisional Orogens, 91–95. – Czech Geol. Survey, Prague. BAUMANN, L. – ŠTEMPROK, M. – TISCHENDORF, G. – ZOUBEK, V. (1974): Metallogeny of tin and tungsten in the Krušné hory-Erzgebirge. Excursion guide IGCP Project MAWAM, 5–66. – Czech Geol. Survey, Prague. BAUMANN, L. – TISCHENDORF, G. (1978): The metallogeny of tin in the Erzgebirge. MAWAM 3, 17– 28. – Czech Geol. Survey, Prague. BENEK, R. – KATZUNG, G. – RÖLLIG, G. (1976): Variszischer subsequenter Vulkanismus und tektogene Entwicklung im Gebiet der DDR. – Jb. Geol. (Berlin) 197/8, 17–31. BENEK, R. – RÖLLIG, G. – EIGENFELD, F. – SCHWAB, M. (1973): Zur strukturellen Stellung des Magmatismus der Subsequenzperiode im DDR-Anteil der mitteleuropäischen Varisziden. – Veröff. Zent.Inst. Phys. Erde (Potsdam) 14, 203–244. BINDE, G. (1986): Beitrag zur Mineralogie, Geochemie und Genese des Kassiterits. – Freiberg. Forsch.-H., R. C 411, 1–60. BLECHA, V – ŠTEMPROK, M. – FISCHER, T. (2009): Geological interpretation of gravity profiles through the Karlovy Vary Granite Massif (Czech Republic). – Stud. Geophys. Geod., 53 (2009), 295-314. BRÄUER, H. (1970): Spurenelementgehalte in granitischen Gesteinen des Thüringer Waldes und des Erzgebirges. – Freiberg. Forsch.-H., R. C 259, 85–139. BREITER, K. (1994): Variscan rare metal-bearing granitoids of the Bohemian Massif. In: Seltmann, R. – Kämpf, H. – Möller, P. Eds: Metallogeny of Collisional Orogens, 91–95. – Czech Geol. Survey, Prague.
7
BREITER, K. (1995): Petrology and geochemistry of granites as precursors of dominant ore Depositions in the Krušné hory-Erzgebirge region. In: Breiter, K. – Seltmann, R. Eds: Ore mineralization of the Krušné hory Mts. (Erzgebirge). Excursion guide of Third Biennial SGA Meeting, Prague. – Czech Geol. Survey, Prague. BREITER, K. – FÖRSTER, H. J. – SELTMANN, R. (1999): Variscan silicic magmatism and related tintungsten mineralization in the Erzgebirge-Slavkovský les metallogenic province. – Mineralium Depos. 34, 505–521. BREITER, K. – SOKOL, A. (1997): Chemistry of the Bohemian granitoids: Geotectonic and metallogenic implications. – Sbor. geol. Věd, ložisk. Geol. Mineral. 31, 75–96. BREITER, K. – SOKOLOVÁ, M. – SOKOL, A. (1991): Geochemical specialization of the tin-bearing granitoid massifs in NW Bohemia. – Mineralium Depos. 26, 298–306. DUDEK, A. – FROLÍKOVÁ, I. – NEKOVAŘÍK, Č. (1991): The depth of intrusion of Hercynian granitoid plutons in the Bohemian Massif. – Acta Univ. Carol., Geol., Kettner Vol. 3–4, 249–256. (In Czech) FIALA, F. (1968): Granitoids of the Slavkovský les Mountains. – Sbor. geol. Věd, Geol. 14, 93–159. FINGER, F. – GERDES, A. – RENÉ, M. – RIEGLER, G. (2009): The Saxo-Danubian Granite Belt: magmatic response to post-collisional delamination of mantle lithosphere below the south-western sector of the Bohemian Massif (Variscan orogen). – Geol. carpath. 60, 3, 205–212. FÖRSTER, H. J. – SELTMANN, R. – TISCHENDORF, G. (1995): High-fluorine, low-phosphorus A-type (post-collision) silicic magmatism in the Erzgebirge. – Terra Nostra 7, 32–35. FÖRSTER, H. J. – TISCHENDORF, G. (1994): The Western Erzgebirge-Vogtland Granites: Implications to the Hercynian Magmatism in the Erzgebirge-Fichtelgebirge Anticlinorium. In: Seltmann, R. – Kämpf, H. – Möller, P. Eds: Metallogeny of Collisional Orogens, 35–48. – Czech Geol. Survey, Prague. FÖRSTER, H. J. – TISCHENDORF, G. – TRUMBULL, R. B. – GOTTESMANN, B. (1999): Late collisional granites in the Variscan Erzgebirge, Germany. – J. Petrology 40, 1613–1645. FRITZSCHE, E. (1928): Beitrag zur petrochemischen Kenntnis der erzgebirgischen Granitmassive. – Neu. Jb. Mineral., Abh. 58, 253–302. GERSTENBERGER, H. – HAASE, G. – TISCHENDORF, G. – WETZEL, K. (1984): Zur Genese der variszisch-postkinematischen Granite des Erzgebirges. – Chem. Erde 43, 263–272. GERSTENBERGER, H. – KAEMMEL, TH. – HAASE, G. – GEISLER, M. (1984): Zur Charakterisierung der Granite im Westerzgebirge: Rb/Sr-radio-geochronologische Untersuchungen und Spurenelementkonzentrationen. – Freiberg. Forsch.-H., R. C 389, 220–246. HAAKE, R. (1972): Zur Alterstellung granitoider Gesteine im Erzgebirge. – Geologie 21/6, 641–676. HECHT, A. – VIGNERESSE, J. L. – MORTEANI, G. (1997): Constraints on the origin of zonation of the granite complexes in the Fichtelgebirge (Germany and Czech Republic): evidence from a gravity and geochemical study. – Geol. Rdsch. 86, 93–109. HEJTMAN, B. (1984): Petrografie vyvřelých hornin Českého masívu. Část I. Intruzivní vyvřelé horniny západních a severozápadních Čech. – 186 pp. Univ. Karl. Praha. HIRSCHMANN, G. (1994): Bemerkungen zur Ausgangssituation und den Stadien der spätvariszischen Entwicklung aus regionaler Sicht. KTB Report 94-3.In: Hirschmann, G. – Harms, U. Eds: Beiträge zur Geologie und Petrologie der KTB-Lokation und ihres Umfeldes, 149–155. – Hannover. HOFMANN, Y. – JAHR, T. – JENTZSCH, G. (2003): Three-dimensional gravimetric modelling to detect the deep structure of the region Vogtland/NW-Bohemia. – J. Geodynamics 35, 1–2, 209–220. HOTH, J. – TISCHENDORF, G. – BERGER, H.-J. Eds (1995): Geologische Karte Erzgebirge/Vogtland 1:100,000 Westblatt, Ostblatt. – Landesamt für Umwelt und Geol. Freiberg. JELÍNEK, E. – SIEBEL, W. – KACHLÍK, V. – ŠTEMPROK, M. – HOLUB, F. V. – KOVAŘÍKOVÁ, P. (2004): Petrologie a geochemie mafických intruzí v západokrušnohorském granitovém plutonu v okolí Abertam a Mariánských Lázní. – Zpr. geol. Výzk. v Roce 2003, 109–112. JUST, G. (1985): Trace elements studies in granitic rock sequences, southern part of the GDR. – Gerlands Beitr. Geophys. 94, 4–6, 381–408. JUST, G. (1990): Untersuchungen zur Radioaktivität und Spurenelementverteilung in wichtigen Gesteinen und Bodenbildungen Sachsens. – Nachrichten (Dtsch. geol. Gesell. Hannover) 43, 49 pp. JUST, G. (1991): The radioactivity of rocks and the radioactive heat production in the former GDR. – Geophys. Geol. (Univ. Leipzig) 4, 2, 65–89. KÄMPF, H. – SELTMANN, R. – WENZEL, H. U. – KUMANN, R. (1992): Metallogenetical aspects of Late-Variscan tin and fluorspar Deposits at the northwestern border of the Bohemian Massif (Erzgebirge,
8
Vogtland). In: Kukal, Z. Ed.: Proceedings of the 1st International Conference on the Bohemian Massif, 150–156. – Czech Geol. Survey, Prague. KEMPE, U. – BOMBACH, K. – MATUKOV, D. – SCHLOTHAUER, T. – HUTSCHENREUTER, J. – WOLF, D. – SERGEEV, S. (2004): Pb/Pb and U/Pb zircon dating of subvocanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralisation in the Eibenstock granite, Erzgebirge, Germany: Considering effects of zircon alteration. – Mineralium Depos. 39, 646–669. KOPECKÝ, A. – KOPECKÝ, L. – SATTRAN, V. – ŠANTRŮČEK, P. (1974): Krušné hory – západní část 1 : 50 000. Soubor oblastních geologických map. – Czech Geol. Survey, Prague. KOVAŘÍKOVÁ, P. – JELÍNEK, E. – ŠTEMPROK, M. – KACHLÍK, V. – HOLUB, F. V. – BLECHA, V. (2005): Petrochemické srovnání redwitzitů severozápadní části Českého masivu. – Zpr. geol. Výzk. v Roce 2004, 103–106. KOVAŘÍKOVÁ, P. – SIEBEL, W. – JELÍNEK, E. – ŠTEMPROK, M. – KACHLÍK, V. – HOLUB, F. V. (2006): Mafic intrusions (redwitzites) of the Slavkovský Les (Kaiserwald). – Zpr. geol. Výzk. v Roce 2005, 111–113. (In Czech) KRAMER, W. (1976): Genese der Lamprophyre im Bereich der Fichtelgebirgisch-Erzgebirgischen Antiklinalzone. – Chem. Erde 35, 1, 1–49. LANGE, H. – TISCHENDORF, G. – PÄLCHEN, W. – KLEMM, I. – OSSENKOPF, W. (1972): Zur Petrographie und Geochemie der Granite des Erzgebirges. – Geologie 21, 457–493. LAUBE, G. (1876): Geologie des böhmischen Erzgebirges I. – Verl. F. Řivnáč, 208, II (1887), 259. Prag LINNEMANN, U. – McNAUGHTON, N. J. – ROMER, R. L. – GEHMLICH, M. – DROST, K. – TONK, C. (2004): West African provenance for Saxo-Thuringia (Bohemian Massif): Did Armorica. ever leave pre-Pangean Gondwana? – U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 683–705. LORENZ, W. (1989): Geological outline of the Erzgebirge Anticlinorium. In: Tischendorf, G. Ed.: Silicic magmatism and metalogenesis of the Erzgebirge. – Veröff. Zentr. Phys. Erde, 107, 6–35. LORENZ, W. – HOTH, K. (1990): Lithostratigraphie im Erzgebirge – Konzeption, Entwicklung, Probleme und Perspektiven. – Abh. Staatl. Mus. Mineral. Geol. Dresden 37, 7–35. NASDALA, L. – GÖTZE, L. – PIDGEON, R. T. – KEMPE, U. – SEIFERT, T. (1998): Constraining a SHRIMP U-Pb age: micro-scale characterization of zircons from Saxonian Rotliegend rhyolites. – Contr. Mineral. Petrology 132, 300–306. NOVÁK, J. K. – CHRT, J. – MALÁSEK, F. (1988): The hidden granite relief and its significance for projection (an example of the Eastern part of the Krušné hory. Mts.). In: Kukal, Z. Ed.: Proceedings of the 1st International Conference on the Bohemian Massif, 205–207. – Czech Geol. Survey, Prague. PÄLCHEN, W. – RANK, G. – LANGE, H. – TISCHENDORF, G. (1987): Regionale Clarkewerte – Möglichkeiten und Grenzen ihrer Anwendung am Beispiel des Erzgebirges (DDR). – Chem. Erde 47, 1– 17. PÄLCHEN, W. – TISCHENDORF, G. (1978): Some special problems of petrology and geochemistry of the Variscan granites of the Erzgebirge, GDR. MAWAM 3, 257–266. – Czech Geol. Survey, Prague, PFEIFFER, L. – KAISER, G. – PILOT, J. (1984): K/Ar Datierung von jungen Vulkaniten im Süden der DDR. – Freiberg. Forsch.-H., R. C 389, 93–97. POLANSKÝ, J. (1970): Granitoid plutons in the subsurface structure of the Krušné hory Mts. crystalline complex. In: Deep geological structure in Czechoslovakia (Loučná), 88–92. – Brno. (In Czech) POLANSKÝ, J. (1971): Kvantitativní interpretace granitoidů Krušných hor z výsledků gravimetrie. In: Výzk. hlubinné geol. stavby Československa, Loučná 1971, 139–155. – Úst. užité geofyz. Brno. RAJPOOT, G. S. – KLOMÍNSKÝ, J. (1993): Granites in tin fields of Europe and in the Himalayas – a comparative study. – Czech Geol. Surv. Spec. Pap. 1, 56 pp. RAJPOOT, G. S. – KLOMÍNSKÝ, J. (1994): Typology and origin of granite in the Cornubian and the Krušné hory-Smrčiny batholiths. – Věst. Ústř. Úst. geol. 69, 63–74. RENÉ, M. (1995): The older intrusive complex of the Saxothuringian region. – Terra Nostra 7, 106–108. RENÉ, M. (2002): Geochemical comparison between topaz-bearing granites of the Central and Western Krušné hory Mts. – Acta montana, A 21, 111–126. RICHTER, P. – STETTNER, G. (1979): Geochemische und petrographische Untersuchungen der Fichtelgebirgsgranite. – Geologica bavar. 78, 144 pp.
9
ROMER, R. L. – LINNEMANN, U. – GEHMLICH, M. (2004): Geochronologische und isotopengeochemische Randbedingungen für die cadomische und variszische Orogenese im Saxothuringikum. In: Linnemann, U. Ed.: Das Saxothuringikum. – Geologica saxon. 48/49, 111–120. ROMER, R. L. – THOMAS, R. – STEIN, H. J. – RHEDE, D. (2007): Dating multiply overprinted Snmineralized granites – examples from the Erzgebirge, Germany. – Mineralium Depos. 42, 337–359. SATTRAN, V. (1957): Odnos krystalinika v prostoru východních Krušných hor. – Věst. Ústř. Úst. geol. 32, 316–322. SATTRAN, V. (1963): The chemistry of the Krušné hory metamorphites and Pre-Tertiary magmatites and their relation to the metallogenesis. – Rozpr. Čs Akad. Věd, Ř. mat. přír. Věd 73, se11, 56 pp. (In Czech) SCHÖDLBAUER, S. – HECHT, L. – HÖHNDORF – MORTEANI, G. (1997): Enclaves in the S-type granites of the Kösseine massif (Fichtelgebirge, Germany: implications for the origin of granites. – Geol. Rdsch. 86, Suppl. 125–140. SCHUST, F. (1965): Zu den Granitvarietäten des Eibenstocker Zinnreviers im Westerzgebirge. – Zeitsch. Angew. Geol. 11, 4–11. SENCKENDORF, V. – TIMMERMANN, M. J. – KRAMER, W. – WROBEL, P. (2004): New 40Ar/39Ar ages and geochemistry of Late Carboniferous-Early Permian lamprophyres and related volcanic rocks in the Saxothuringian Zone of the Variscan orogen, Germany. In: Wilson, M. – Neumann, E.-R. – Davies, G. R. Eds: Permo-Carboniferous magmatism in rifting in Europe. – Geol. Soc. Spec. Publ. 223, 335–359. SELTMANN, R. – BANKWITZ, P. (1991): Struktur-Stoff-Modelle der Bildungs- und Intrusionsmechanismen von metallogenetisch bedeutenden Granitkőrpern im Erzgebirge. In: Geodynamik des europäischen Variszikums. 7. Rundgespräch, Kurzfassungen, Freiberg/Sa., p. 20. – Freiberg/Sachsen. ŠKVOR, V. (1986): The granite pluton of the Krušné hory and its interpretation. – Věst. Ústř. Úst. geol. 61, 65–71. (In Czech) ŠTEMPROK, M. (1986): Petrology and geochemistry of the Czechoslovak part of the Krušné hory Mts. pluton. – Sbor. geol. Věd, ložisk. Geol. Mineral. 27, 111–156. ŠTEMPROK, M. (1991): The geochemistry of the Czechoslovak part of the Smrčiny (Fichtelgebirge) granite pluton. – Čas. Mineral. Geol. 37, 1–19. ŠTEMPROK, M. – SELTMANN, R. (1994): The metallogeny of the Erzgebirge (Krušné hory). In: Seltmann, R. – Kämpf, H. – Möller, P. Eds: Metallogeny of Collisional Orogens, 61–69. – Czech Geol. Survey, Prague. ŠTEMPROK, M. – ŠKVOR (1974): Composition of tin-bearing granites from the Krušné hory metallogenic province of Czechoslovakia. – Sbor. geol. Věd, ložisk. Geol. Mineral. 16, 7–87. TISCHENDORF, G. (1986): Variscan ensialic magmatism and metallogenesis in the Ore Mountains – Modelling of the Process. – Chem. Erde 45, 75–104. TISCHENDORF, G. (1988): On the genesis of tin deposits related to granites: The example Erzgebirge. – Z. geol. Wiss. 16, 407–420. TISCHENDORF, G. (1989): Silicic magmatism and metalogenesis of the Erzgebirge. – Veröff. Zent.-Inst. Phys. Erde 107, 316 pp. TISCHENDORF, G. – FÖRSTER, H. J. – FRISCHBUTTER, A. – KRAMER, W. – SCHMIDT, W. – WERNER, C. D. (1995): Saxothuringian Basin. Igneous Activity. In: Dallmeyer, R. D. et al. Eds: PrePermian Geology of Central and Eastern Europe, 249–259. – Springer Verlag, Berlin. TISCHENDORF, G. – PÄLCHEN, W. – RÖLLIG G. – LANGE, H. (1987): Formationelle Gliederung, petrographisch-geochemische Charakteristik und Genese der Granitoide der Deutschen Demokratischen Republik. – Chem. Erde 46, 7–23. VAŇKOVÁ, V. – BARTOŠEK, J. – CHLUPÁČOVÁ, M. – MATOLÍN, M. (1979): Radioactivity and heat production of rocks from the Bohemian Massif and the West Carpathians. In: Geodynamic Investigations in Czechoslovakia, 257–263. – Veda, Bratislava. VIGNERESSE, J. L. – CUNEY, M. – JOLIVET, J. – BIENFAIT, G. (1989): Selective heat-producing element enrichment in a crustal segment of the Mid-European Variscan chain. – Tectonophysics 159, 47– 60. WATZNAUER, A. (1954): Die erzgebirgischen Granitintrusionen. – Geologie 3, 688–706. WEBER, K. – VOLLBRECHT, A. (1986): Ergebnisse der Vorerkundungsarbeiter LokationOberpfalz. – Kontinentales Tiefborprogramm der Bundesrepublik Deutschland. 2. KTD Kolloquium SseeheimOdenwald.
10
WIEGAND, B. (1997): Isotopengeologische und geochemische Untersuchungen zur prävariskischen magmatischen und sedimentären Entwicklung im saxothuringisch-moldanubischen Übergangbereich (Grenzgebiet BRD/CR). – Geotekt. Forsch. 88, 1–177. ZOUBEK, V. (1978): Tectonic control and structural evidence of the development of the Krušné hory (Erzgebirge) tin-bearing pluton. In: Metallization assoc. with acid magmatism. MAWAM 3, 57–76. – Czech Geol. Survey, Prague.
3.1.1. SMRČINY (FICHTELGEBIRGE) COMPOSITE MASSIF (SCM)
Fig. 3.5. Smrčiny (Fichtelgebirge) Composite Massif hierarchic scheme according to rock types.
Regional position: member of the the SmrčinyKrušné hory Mts. (Erzgebirge) Batholith. The SCM consists of the Weissenstadt-Markleuthen Massif, Central Massif, Kösseine Stock and in the periphery is accompanied by the Kleiner Kornberg Stock, the Waldstein Stock, the Grosser Kornberg Stock and the Marktredwitz Massif (see Figs. 3.1. and 3.2.). Rock types: A. OLDER INTRUSIVE COMPLEX (OIC): 1. Weissenstadt-Marktleuthen Granite (G1W) – porphyritic biotite-muscovite granodiorite. 2. Reut Granite (G1R) – biotite-muscovite granite. 3. Selb Granite (G1S) – porphyritic biotitemuscovite granodiorite (close to transitional granites G2). 4. Holzmühl Granite (G1H) 5. Marktredwitz Granite (G1) – porphyritic biotite granite 6. Hybrid Redwitzite – amphibole-biotite and biotite granodiorites (contain subordinate Kfeldspar and quartz). Both types (1 and 2) are intruded by the Marktredwitz Granite. 7. Marktredwitz Redwitzite comprises basic (noritic) biotite-hornblende variety of redwitzite – medium- to coarse-grained quartzdiorite with typical skeletal-biotite structure.
B. YOUNGER INTRUSIVE COMPLEX (YIC): 8. Marginal (Randgranit) Granite (G2) – porphyritic fine-grained muscovite-biotite granite (also in the Kornberg and Waldstein Stocks. 9. Core (Kerngranit) Granite (G3) – medium to coarse-grained muscovite-biotite granite (also in the Kornberg and Waldstein Stocks). 10. Kösseine Granite (Kerngranit G2K) – (Kösseine Stock) (a) medium- and equigranular facies (G2Ke), (b) fine- to medium-grained porphyritic facies (G2Kp-enclaves). 11. Kösseine Granite (Randgranit G3K) – medium- to coarse-grained muscovite-biotite granite (Kösseine Stock). 12. Tin (Zinngranit) Granite (G4) – mediumgrained polymica (biotite-protolithionitezinnwaldite) alkali-feldspar granite, local variable deuteric alteration. The Selb, Rand and Kern granites are comparable to Erzgebirge Transition Granite Group. The Kösseine Granite represents an independent intrusion (stock) among the Fichtelgebirge granites formed by a combination of incomplete restite unmixing, assimilation and probably fractional crystallization in the course of magma formation, ascent and emplacement. Size and Shape (on erosion level): ca. 460 km2 (volume estimate of 3,000 km3), SCM has a cone shape (Vigneresse et al. 1989). Intersection of the two intrusive suites (OIC and YIC) OIC – 53 × 8 km, long elliptical YIC – 38 × 3.5 km semi-circular. The Grosser Kornberg Stock (10 km2), the Kleiner Kornberg Stock (2 km2), the Waldstein Stock (15 km2). Intrusion depth estimates suggest a crustal uplift of 6–8 km between early and late intrusive pulses. The OIC unit (Wiessenstadt-Marktleuthen Granite) is thin, except on its eastern site (6 km). The average depth of the floor is approximately 2–3 km. In YIC, (the Central Massif) presents a great thickness averaging 6–7 km. The satellite stocks of
11
the YIC (the Waldstein and Kornberg Stocks) have a restricted thickness of less than 2 km. The Kösseine granites represent an independent intrusion among the Fichtelgebirge granites formed by a combination of incomplete restite unmixing, assimilation and probably fractional crystallization. Age and isotopic data: Three distinct episodes of granite emplacement have been discriminated (Förster and Tischendorf 1994): 326 ± 4 Ma (G1W, G1S), 305 ± 4 Ma (G2, G3), and 289 ± 2 Ma (G4). OIC 310 ± 14 Ma (Rb-Sr whole-rock), YIC 285 ± 6 Ma (Rb-Sr whole-rock) (Richter and Stettner 1979). Geological environment: Cambrian to Ordovician phyllite, micaschists and orthogneisses, and Upper Proterozoic micaschists and Upper Proterozoic or Lower Palaeozoic orthogneisses. Contact aureole: Broad contact aureole at northern granite contact. Zoning: OIC – normal compositional zoning from SW to NE (from biotite granite to two-mica
granites), YIC – reverse and normal zoning, semi-circular arrangement of the individual granite phases. The general zonation pattern of the OIC and the YIC is the result of a combination of multiple injections of single magma batches and in situ differentiation during magma emplacement. According to Hecht et al. (1997) the internal zonation patterns of the OIC and YIC are asymmetrical and cannot be simply classified as normal or reverse with respect to the exposed granite outline. Mineralization: Tin and uranium mineralization within the Zinn Granite. Heat production (μWm-3): Selb Granite 2.82, Weissenstadt Granite 3.86, Reut Granite 3.98, Rand Granite 3.51, Kern Granite 3.98, Tin Granite (Zinngranite) 5.32. Smrčiny Composite Massif 0.9– 6.3 (Vaňková et al. 1979).
Fig. 3.6. Smrčiny (Fichtelgebirge) Composite Massif geological sketch-map (altered after Weber and Vollbrecht, 1986). 1 – Selb Granite, 2 – Weissenstadt-Marktleuthen Granite, 3 – Holzmühl Granite, 4 – Marginal (Randgranit) Granite, 5 – Core (Kerngranit) and Kösseine Granites, 6 – Tin (Zinngranit) Granite, 7 – Reut Granite (G1), 8 – Redwitzite, 9 – Marktredwitz Granite, 10 – faults, 11 – state border.
12
Weissenstadt-Marktleuthen Granite (G1W) Quartz normal, sodic-potassic, peraluminous, mesocratic, S-type, I-M-series, granodiorite to granite n=9 Med. Min Max QU1 QU3 SiO2 67.70 66.80 69.80 67.50 68.40 TiO2 0.68 0.56 0.75 0.68 0.73 Al2O3 14.90 14.60 15.70 14.70 15.20 Fe2O3 0.70 0.39 1.28 0.55 0.75 FeO 2.90 2.50 3.20 2.70 3.10 MnO 0.06 0.05 0.07 0.06 0.07 MgO 1.32 1.15 1.35 1.23 1.32 CaO 2.21 1.81 2.75 2.09 2.41 Li2O 0.01 n.d. 0.03 0.00 0.02 Na2O 3.20 3.00 3.60 3.10 3.20 K2O 4.45 4.01 4.89 4.29 4.63 P2O5 0.31 0.27 0.38 0.29 0.36 Mg/(Mg+Fe) 0.39 0.36 0.41 0.38 0.40 K/(K+Na) 0.48 0.42 0.51 0.46 0.49 Nor.Or 27.67 25.09 30.55 26.88 28.69 Nor.Ab 30.13 28.78 34.15 29.29 30.29 Nor.An 9.08 7.02 12.40 8.75 10.33 Nor.Q 24.00 22.43 26.56 23.38 25.15 Na+K 200.72 185.18 203.86 197.75 201.52 *Si 150.52 143.36 164.15 147.37 156.48 K-(Na+Ca) -47.89 -70.22 -26.68 -61.60 -37.23 Fe+Mg+Ti 90.81 76.64 94.96 88.24 92.68 Al-(Na+K+2Ca) 15.57 6.37 26.48 13.49 21.87 (Na+K)/Ca 5.11 3.78 6.25 4.67 5.42 A/CNK 1.08 1.05 1.13 1.07 1.11 Trace elements (mean values in ppm): Weissenstadt-Marktleuthen Granite – Ba 930, Be 4.6, Cs 99, Ga 20, F 602, Li 60, Nb 15, Pb 35, Rb 211, Sn 8, Sr 251, Th 34, U 4, Y 18, Zn 62, Zr 267, W 1.29, Ce 99 (Richter and Stettner 1979). Selb Granite – Ba 344, Be 9,1, Cs 19, Ga 23, F 480, Li 123, Nb 9, Pb 35, Rb 321, Sn 14, Sr 74, Th 12, U 6, Y 11, Zn 47, Zr 87, W 2.61, Ce 29 (Richter and Stettner 1979). Marginal (Randgranit) Granite (G2) Quartz-rich, potassic, peraluminous, leucocratic, S-type, I-series, leucocratic granite n = 14 Med. Min Max QU1 QU3 SiO2 73.90 72.50 75.70 73.30 74.50 TiO2 0.23 0.12 0.36 0.16 0.31 Al2O3 13.30 12.30 14.40 13.10 13.60 Fe2O3 0.24 0.05 0.36 0.20 0.27 FeO 1.70 1.20 2.30 1.40 1.90 MnO 0.04 0.02 0.04 0.03 0.04 MgO 0.30 0.00 0.48 0.20 0.35 CaO 0.64 0.47 1.12 0.58 0.87 Li2O 0.03 0.02 0.04 0.02 0.03 Na2O 2.90 2.40 3.50 2.80 3.00 K2O 5.43 4.85 6.36 5.18 5.47 P2O5 0.18 0.15 0.26 0.17 0.20 Mg/(Mg+Fe) 0.22 0.00 0.25 0.18 0.22
13
K/(K+Na) 0.55 0.49 0.60 0.54 0.55 Nor.Or 33.51 29.31 38.75 31.69 33.56 Nor.Ab 27.09 22.56 32.24 26.18 28.09 Nor.An 2.08 0.84 4.69 1.52 3.31 Nor.Q 31.99 27.34 37.47 30.24 34.11 Na+K 208.87 192.53 231.85 203.78 214.44 *Si 189.38 162.76 220.31 181.32 201.15 K-(Na+Ca) 5.39 -15.45 26.93 4.06 7.87 Fe+Mg+Ti 35.74 22.49 51.21 28.08 43.18 Al-(Na+K+2Ca) 27.62 8.98 46.54 15.04 31.32 (Na+K)/Ca 15.20 10.32 24.31 13.65 19.68 A/CNK 1.13 1.05 1.24 1.08 1.16 Trace elements (mean values in ppm): Rand Granite – B 7.7, Ba 270, Be 8.6, Cr 8, Cs 26, Cu 4, Ga 22, F 1644, Li 135, Ni 4, Nb 12, Pb 29, Rb 411, Sn 13, Sr 41, Th 24, U 6, Y 28, Zn 44, Zr 95, La 49, Ce 64 (Richter and Stettner 1979). Core (Kerngranit) Granite (G3) Quartz-rich, potassic, strongly peraluminous, mesocratic, S-type, I-series, granite n = 23 Med. Min Max QU1 QU3 SiO2 75.70 73.00 77.20 74.40 76.40 TiO2 0.16 0.08 0.27 0.15 0.19 Al2O3 13.00 12.00 14.80 12.80 13.50 Fe2O3 0.19 0.03 0.65 0.07 0.29 FeO 1.50 1.00 1.90 1.40 1.60 MnO 0.03 0.02 0.07 0.03 0.04 MgO 0.17 0.02 0.34 0.08 0.20 CaO 0.56 0.30 0.90 0.50 0.59 Li2O 0.03 0.01 0.06 0.03 0.04 Na2O 3.10 2.70 3.70 2.80 3.20 K2O 4.90 4.50 6.33 4.82 5.07 P2O5 0.19 0.13 0.27 0.16 0.21 Mg/(Mg+Fe) 0.17 0.02 0.21 0.07 0.18 K/(K+Na) 0.52 0.48 0.61 0.50 0.54 Nor.Or 29.91 27.63 38.54 29.35 30.96 Nor.Ab 28.76 24.98 33.85 26.02 29.51 Nor.An 1.55 -0.30 3.62 1.19 2.01 Nor.Q 35.64 26.61 39.03 33.63 36.08 Na+K 202.80 189.89 249.76 196.30 207.68 *Si 211.75 157.37 228.57 200.63 214.75 K-(Na+Ca) -2.37 -16.01 37.11 -10.82 5.22 Fe+Mg+Ti 30.12 20.78 41.79 26.73 31.85 Al-(Na+K+2Ca) 33.24 6.61 69.74 21.72 39.57 (Na+K)/Ca 20.61 13.17 46.69 17.44 22.44 A/CNK 1.17 1.05 1.34 1.11 1.20 Trace elements (mean values in ppm): Core Granite – B 17.5, Ba 134, Be 9.8, Cr 6, Cs 33, Cu 5, Ga 21, F 1244, Li 158, Ni 4, Nb 11, Pb 35, Rb 425, Sn 15, Sr 30, Th 12.5, U 10, Y 25, Zn 43, Zr 81, La 32, Ce 30 (Richter and Stettner 1979).
14
Tin (Zinngranit) Granite (G4) Quartz-rich, sodic to potassic, strongly peraluminous, leucocratic, S-type, I-series, granite n = 12 Med. Min Max QU1 QU3 SiO2 74.80 73.50 76.40 74.40 75.40 TiO2 0.05 0.02 0.40 0.03 0.08 Al2O3 13.90 12.80 15.20 13.50 14.50 Fe2O3 0.08 0.04 1.01 0.05 0.11 FeO 1.20 1.00 1.50 1.10 1.20 MnO 0.03 0.03 0.05 0.03 0.03 MgO 0.01 0.01 0.07 0.01 0.06 CaO 0.30 0.26 0.43 0.28 0.39 Li2O 0.06 0.03 0.10 0.05 0.08 Na2O 3.70 3.20 4.20 3.50 4.00 K2O 4.55 4.32 5.55 4.32 4.77 P2O5 0.26 0.19 0.31 0.20 0.29 Mg/(Mg+Fe) 0.02 0.01 0.08 0.01 0.05 K/(K+Na) 0.45 0.40 0.50 0.41 0.47 Nor.Or 27.33 25.87 33.07 26.06 28.91 Nor.Ab 34.08 29.63 38.44 31.68 36.53 Nor.An -0.34 -0.63 0.71 -0.40 0.47 Nor.Q 32.75 26.48 35.87 31.42 33.88 Na+K 216.68 206.66 246.92 212.99 224.03 *Si 190.60 157.40 212.55 184.15 199.17 K-(Na+Ca) -27.96 -49.16 -6.82 -45.57 -19.01 Fe+Mg+Ti 18.46 16.95 31.73 18.19 21.96 Al-(Na+K+2Ca) 40.92 25.00 60.37 40.04 44.87 (Na+K)/Ca 37.97 27.78 49.02 30.00 44.87 A/CNK 1.21 1.14 1.29 1.19 1.23 Trace elements (mean values in ppm): Zinn Granite – B 19, Ba 11, Be 16.9, Cr 6, Cs 63, Cu 4, Ga 42, F 2313, Li 324, Ni 3.6, Nb 16, Pb 20, Rb 830, Sn 25, Sr 5, Th 7, U 14, Y 14, Zn 47, Zr 26, La 42, Ce 20 (Richter and Stettner 1979). Kösseine Stock Kösseine Granite (Kerngranit G3K) – quartz-rich, potassic, granite Kösseine Granite (Randgranit G2K) – quartz-rich, potassic, granite Kösseine Granite-Kerngranit G3149 G335 G3237a SiO2 72.10 69.80 74.10 TiO2 0.46 0.52 0.65 Al2O3 13.90 14.30 11.40 Fe2O3 0.23 0.98 1.19 FeO 3.00 3.40 4.60 MnO 0.05 0.05 0.05 MgO 0.61 0.68 1.32 CaO 1.22 1.40 0.40 Na2O 2.90 2.70 1.06 K2O 5.58 5.00 4.26 P2O5 0.21 0.27 0.13
15
peraluminous, mesocratic, S-type peraluminous, leucocratic, S-type Kösseine Granite–Randgranit G2215 G2204 G2236 74.60 74.90 74.00 0.28 0.21 0.24 13.60 13.10 13.70 0.13 0.15 0.49 1.90 1.60 1.40 0.04 0.03 0.03 0.40 0.26 0.30 0.61 0.57 0.74 2.50 3.00 2.90 5.63 5.10 4.95 0.23 0.22 0.17
Li2O 0.02 0.02 0.03 0.03 0.03 0.03 Mg/(Mg+Fe) 0.25 0.22 0.29 0.26 0.21 0.22 K/(K+Na) 0.56 0.55 0.73 0.60 0.53 0.53 Nor.Or 34.33 31.30 27.76 34.50 31.29 30.37 Nor.Q 27.81 29.03 47.21 34.49 34.43 34.44 Nor.Ab 27.12 25.69 10.50 23.28 27.97 27.04 Nor.An 4.86 5.47 1.24 1.57 1.43 2.65 Na+K 212.06 193.29 124.66 200.21 205.09 198.68 *Si 173.43 177.30 281.68 206.40 203.66 203.06 K-(Na+Ca) 3.14 -5.93 49.11 27.99 1.31 -1.68 Fe+Mg+Ti 65.56 83.02 119.87 41.52 33.24 36.09 Al-(Na+K+2Ca) 17.40 37.60 84.95 45.11 31.83 43.97 (Na+K)/Ca 9.75 7.74 17.48 18.41 20.18 15.06 A/CNK 1.09 1.18 1.65 1.23 1.17 1.22 Trace elements (mean values in ppm): Kösseine Granite (Kerngranit G3K) – Ba 842, Ce 86,Cr 12, Cs 12,Ga 16, La 56, Nb 13, Ni 6, Pb 27, Rb 243, Sc 9, Sn 5, Sr 92, Th 19, U 3, V 31, Y 26, Zn 57, Zr 257. (Richter and Stettner 1979). Kösseine Granite (Randgranit G2K) – Ba 283, Ce 33,Cr 11, Cs 22,Ga 21,La 35,Nb 11, Ni 10, Nb 27, Rb 371, Sn 11, Sr 60, Th 11, U 5, V 13, Y 21, Zn 44, Zr 108. (Richter and Stettner 1979).
Fig. 3.7. Weissenstadt-Marktleuthen Granite ABQ and TAS diagrams: 1 – Weissenstadt-Marktleuthen Granite (G1W), 2 – Reut Granite (G1R), 3 – Selb Granite (G1S).
Fig. 3.8. Fichtelgebirge/Smrčiny Massif ABQ and TAS diagrams. Younger Granite: 1 – Marginal Granite (G2 + Kornberg and Waldstein Stocks), 2 – Core Granite (G3) + Kornberg and Waldstein Stocks, 3 – Zinngranite (G4).
16
Fig. 3.9. Fichtelgebirge/Smrčiny Massif ABQ and TAS diagrams. 1 – Kösseine (Kern) Granite (G3K), 2 – Kösseine (Rand) Granite (G2K).
3.1.1.1. MARKTREDWITZ MASSIF Size and shape (on erosion level): 23 km2, oval, and SW-NE oriented shape 7 × 4 km. Age and isotopic data: Marktredwitz Granite 324 ± 4.2 Ma (Pb-Pb zircon), Marktredwitz Redwitzite 316–323 Ma (U-Pb titanite), 545–415 (Rb-Sr whole rock), 318–325 Ma (Pb-Pb zircon). Contact aureole: andalusite in mica-schists. Geological environment: Saxothuringian micaschists of the Arzberg series. Zoning: complex mineral composition and structure partly altered by Post-Sudetic faulting. Mineralization: not reported.
Regional position: Saxothuringicum – basic to intermediate rocks belong to the basic precursor series of postmetamorphic granites. Rock types: Marktredwitz Granite (G1) – porphyritic biotite granite. Hybrid Redwitzite – amphibole-biotite and biotite (Marktredwitz) granodiorites (contain subordinate K- feldspar and quartz). Both types (1 and 2) are intruded by the Marktredwitz Granite. Marktredwitz Redwitzite – comprises basic (noritic) biotite-hornblende variety of redwitzite – medium- to coarse-grained redwitzites with typical skeletal biotite structure.
Fig. 3.10. Marktredwitz Massif geological (after Troll 1968). 1 – Marktredwitz Granite, 2 – Hybrid Redwitzite, 3 – Marktredwitz Redwitzite, 4 – Basic Redwitzite, 5 – faults.
17
Marktredwitz Redwitzite Quartz-normal, sodic, metaluminous, melanocratic monzodiorite baz5732 baz5864 re5654 re5875 basic redwitzite biotite redwitzite SiO2 48.66 48.62 54.68 53.94 TiO2 0.85 0.82 1.17 1.30 Al2O3 11.73 13.93 18.19 18.66 Fe2O3 2.17 2.64 1.69 1.55 FeO 6.98 5.77 5.25 5.30 MnO 0.14 0.11 0.13 0.12 MgO 16.23 13.26 5.34 3.68 CaO 6.59 8.20 6.45 7.29 Na2O 1.71 1.67 2.97 3.00 K2O 1.80 1.73 2.56 2.52 P2O5 0.33 0.33 0.47 0.55 Mg/(Mg+Fe) 0.76 0.74 0.58 0.49 K/(K+Na) 0.41 0.41 0.36 0.36 Nor.Or 12.87 12.10 16.98 16.58 Nor.Ab 18.58 17.75 29.95 29.99 Nor.An 36.93 45.59 32.46 36.23 Nor.Q 0.00 0.00 4.34 4.47 Na+K 93.40 90.62 150.20 150.31 *Si 98.21 81.63 76.48 62.27 K-(Na+Ca) -134.48 -163.38 -156.50 -173.30 Fe+Mg+Ti 537.74 452.71 241.44 200.83 Al-(Na+K+2Ca) -98.07 -109.51 -23.01 -43.86 (Na+K)/Ca 0.79 0.62 1.31 1.16 A/CNK 0.72 0.73 0.97 0.92
Fig. 3.11. Marktredwitz Massif ABQ and TAS diagrams: 1 – Marktredwitz Redwitzite, 2 – Hybrid Redwitzite, 3 – Marktredwitz Granodiorite.
References BESANG, C. – HARRE, W. – KREUZER, H. – LENZ, H. – MÜLLER, P. – WENDT, I. (1976): Radiometrische Datierung, geochemische und petrographische Untersuchung der Fichtelgebirgsgranite. – Geol. Jb., R. E. Geophys. 8, 3–71.
18
CARL, C. – WENDT, I. (1993): Radiometrische Datierung der Fichtelgebirgsgranite. – Z. Geol. Wiss. 21, 1–2, 49–72. FISCHER, G. (1966): Exkursionsführer zur Nachexkursion der Deutschen Mineralogischen Gesellschaft, 44. Jahrestagung in München. – Kristallin des Bayerischen Waldes und der Oberpfalz, 58 pp. München. HECHT, L. – VIGNERESSE, J. L. – MORTEANI, G. (1997): Constraints on the origin of zonation of the granite complexes in the Fichtelgebirge (Germany and Czech Republic): evidence from a gravity and geochemical study. – Geol. Rdsch. 86, 93–109. HOLL, P. – DRACH, V. – MÜLLER-SOHNIUS, D. – KÖHLER, H. (1989): Caledonian Age and isotopic data in Variscan rocks: Rb-Sr and Sm-Nd isotopic variations in dioritic intrusives from the northwestern Bohemian Massif, West Germany. – Tectonophysics 157, 179–194. KÖHLER, H. – PROPACH, G. – TROLL, G. (1989): Exkursion zur Geologie, Petrographie und Geochronologie des NE-bayerischen Grundgebirges. – Ber. Dtsch. mineralog. Gesell., Beih. Eur. J. Mineralogy 1, 1–84. LENZ, H. (1986): Rb/Sr-Gesamtgesteins-Altersbestimmungen am Weissenstadt-Marktleuthener Porphyrgranit des Fichtelgebirges. – Geol. Jb. E34, 67–76. RICHTER, P. – OKRUSCH, M. – BOHLENDER, F. (1988): Die Geothermie-Bohrung Neusorg im Fichtelgebirge: Petrographie und Geochemie des Kernmaterials. – Geol. Forsch. 38, 125–168. RICHTER, P. – STETTNER, G. (1979): Geochemische und petrographische Untersuchungen der Fichtelgebirgsgranite. – Geologica bavar. 78, 144 pp. SCHÖDLBAUER, S. – HECHT, L. – HÖHNDORF – MORTEANI, G. (1997): Enclaves in the S-type granites of the Kösseine massif (Fichtelgebirge, Germany): implications for the origin of granites. – Geol. Rundsch. 86, Suppl. 125–140. SIEBEL, W. – CHEN, F. – SATIR, M. (2003): Late-Variscan magmatism revisited: new implications from Pb-evaporation zircon Age and isotopic data on the emplacement of redwitzites and granites in NE Bavaria. – Int. J. Earth Sci. 92, 36–53. SIEBEL, W. – HÖHNDORF, A. – WENDT, I. (1995): Origin of late Variscan granitoids from NE Bavaria and Nd isotope systematics. – Chem. Geol. 125, 249–270. STETTNER, G. (1981): Grundgebirge. In: Erläuterungen zur Geologischen Karte von Bayern 1: 500 000, 7– 33. – Bayer. Geol. Landesamt, München. STETTNER, G. (1992): Einführung und Exkursionen. In: Geologie im Umfeld der Kontinentalen Tiefbohrung Oberpfalz, 26–47. – Bayer. Geol. Landesamt. München. ŠTEMPROK, M. – DOLEJŠ, D. – MÜLLER, A. – SELTMANN, R. (2008): Textural evidence of magma decompression, devolatilization and disequilibrium quenching: an example from Western Krušné hory Mts./Erzgebirge granite pluton. – Contr. Mineral. Petrology 155, 93–109. TROLL, G. (1968): Gliederung der redwitzitischen Gesteine Bayerns nach Stoff- und Gefügemerkmalen, Teil I: Die Typlokalität von Marktredwitz in Oberfranken. – Bayer. Akad. d. Wiss., math.-naturwiss. Klasse, Abh. 133, 86 pp. VOLLBRECHT, A. – SIEGESMUND, S. – FLAIG, CH. (1997): High-temperature deformation of a granitoid from the Zone of Erbendorf-Vohenstrauss (ZEV). – Geol. Rdsch. 86 S, 141–154. WEBER, K. – VOLLBRECHT, A. (1986): Ergebnisse der Vorerkundungsarbeiter LokationOberpfalz. – Kontinentales Tiefborprogramm der Bundesrepublik Deutschland. 2. KTD Kolloquium SseeheimOdenwald.
3.1.2. WESTERN KRUŠNÉ HORY MTS. COMPOSITE PLUTON Regional position: western part of the Krušné hory Mts.-Smrčiny Batholith in the Saxothuringian Zone. The pluton comprises the Eibenstock-Karlovy Vary Composite Massif, and following satellite intrusions and the dyke swarms: Kirchberg Massif, Bergen Massif, Eichigt Massif, Lesný-Lysina-Kynžvart Composite Massif, Aue-Schwarzenberg Stocks, the Blatná Stock, Podlesí Stock, Krudum Massif (Koník, Čistá, Výsoký Kámen, Hub and Schnöd
Stocks), Jáchymov Dyke Swarm and Subvolcanic Rhyolite Dykes. Rock types: A. OLDER INTRUSIVE COMPLEX (OIC) Redwitzites – enclaves of hybrid granodiorite, quartz diorite and gabbroids (mafics). Kirchberg Granite (G1) – biotite granite (the Kirchberg Massif). Loket Granite (G1) – porphyritic biotite granodiorite.
19
Bečov-Prameny Granite (G1) – medium-grained biotite granite. Nejdek Granite (G2) – porphyritic biotite monzogranite, also in the Kirchberg Massif. Burkersdorf Granite – medium- to coarse-grained, weakly porphyritic biotite granite. Bernbach Granite – medium-grained, weakly porphyritic biotite granite. Beierfeld Granite – fine-grained equigranular biotite granite. Aue Granite – medium to coarse-grained to weakly porphyritic seriate biotite granite. B. TRANSITIONAL GRANITES GROUP (TGG) Bergen Granite (G2) – two-mica granite. Kynžvart-Žandov Granite (G2) – two-mica granite Kfely Granite (G2) – two-mica granite. Ovčák Granite – occurs in three facies. Ovčák I Granite – porphyritic medium-grained biotite granite. Ovčák II Granite – medium-grained two-mica granite. Ovčák III Granite – porphyritic fine-grained biotite granite. Podlesí Granite Porphyry (autometamorphosed). Třídomí Granite – porphyritic fine-grained biotite granite and its facies Svárov-Polom Granite – porphyritic medium-grained biotite granite. Bílé Skály, Wallfischkopf and Krinitzberg Granites – porphyritic biotite granite represents small bodies (enclaves ?). Lauter Granite – medium- to fine-grained equigranular two-mica granite. Schwarzenberg Granite – medium- to coarsegrained equigranular two-mica granite. C. YOUNGER INTRUSIVE COMPLEX (YIC) Eibenstock (Karlovy Vary) Granite (G3) – porphyritic coarse-grained granite. Blauenthal Granite (G4) – medium-grained polymica (Li-micas) granite. Milíře Granite (G4) – medium-grained two-mica granite and its marginal facies “Na Jeleni” Granite (Krudum Massif). Čistá Granite (G5) – zinnwaldite-topaz-alkalifeldspar granite (Krudum, Lesný-Lysina Massifs).
Šibeník Granite (G5?) – fine-grained muscovite alkali-feldspar granite. Hřebečná Granite (G3) – coarse-grained, tourmaline-bearing ± topaz-biotite granite. Blatenský vrch Granite (G3) – coarse-grained, tourmaline-bearing ± topaz-biotite granite. Luhy Granite (G3) – coarse-grained, tourmalinebearing ± topaz biotite granite. Jelení vrch Granite (G4) – porphyritic finegrained biotite granite. Lithium Granite (G5) – Li-mica topaz-bearing medium-grained alkali-feldspar granite, similar to the Podlesí Stock and Pernink Stock). Lesný-Lysina Granite – lithionite-topaz alkalifeldspar granite. Jelení Granite – porphyritic alkali-feldspar granite. Kladská Granite – fine-grained muscovite granite. Hájek-Steinbruch Granite – small stock of partly greisenized alkali-feldspar granite. Stock Granite – albite-protolithionite-topaz granite (the Podlesí Stock). D. SUBVOLCANIC RHYOLITIC DYKES Group I Rhyolites: Jungfernsprung Rhyolite – porphyritic (quartz and feldspar) rhyolite. Mahnbrück Rhyolite – porphyritic (quartz and feldspar) rhyolite. Group II Rhyolites: (poor in phenocrysts, and different textures). Saupersdorf Rhyolite – crypto- to microcrystalline granular incompletely altered rhyolite. Weissbach Rhyolite – porphyritic crypto- to microcrystalline granular rhyolite. Burkerdorf Rhyolite – crypto- to microcrystalline granular rhyolite. Group III Rhyolites: Morgenröthe Rhyolite – strongly porphyritic microcrystalline rhyolite. Hahnewald Rhyolite – porphyritic cryptocrystalline rhyolite. Gottesberg Rhyolite – porphyritic biotite rhyolite and porphyritic microgranite.
20
Fig. 3.12. Western Krušné hory Mts. (Erzgebirge) Composite Pluton hierarchical scheme according to rock groups and rock types.
Size and shape (on erosion level): the Eibenstock-Karlovy Vary Composite Massif, 1,500 km2 (63 × 25 km), S-shape elongated oval tectonically outlined in the south with several semicircular massifs and stocks comprising two intrusive suites, OIC ~ 600 km2 and YIC 900 km2. The pluton root is at up to 8–15 km depths in the south. Satellite massifs and stocks: the Kirchberg Massif (140 km2), the Bergen Massif (33 km2), the Kynžvart Massif (the Lesný-Lysina-Kynžvart Composite Massif) 85 km2, the Schwarzenberg Stocks (12 km2), the Blatná Stock (7 km2), the Krudum Massif (Hub and Schnöd Stocks) 30 km2. Suite of the subvolcanic rhyolitic dykes forms dykes between a few and some tens of meters in width, though their thickness and length is difficult to determine precisely owing to poor exposure. Age and isotopic data: OIC and TGG: 332 ± 5, 323 ± 4 Ma (Rb-Sr whole rock), 324 ± 12, Bergen Granite 312.8 Ma ± 7 Ma (Rb-Sr whole rock), 323.6 ±2.6 Ma (K-Ar biotite), Kirchberg Granite 309.4 ± 3.8 Ma (Rb-Sr whole rock), 320.9 ± 2.9 Ma (K-Ar biotite), 307 ± 4, 315 ± 6 Ma (Rb-Sr whole rock). Redwitzite 322.8 ± 3.5 Ma, 323 ± 4.4 Ma (Pb-Pb zircon). YIC: 275 Ma (K-Ar biotite), 325 ± 7 Ma, (0.7025, Rb-Sr whole rock) 313 ± 5, 321 ± 12 Ma (Rb-Sr whole rock), 305 ± 2, 299 ± 3 Ma (Rb-Sr
whole rock), Eibenstock Granite 305 ± 4 Ma (RbSr whole rock), 303 ± 8 Ma (Rb-Sr biotite). Dyke Swarms: Gottesberg Rhyolite 290 ± 15 Ma (U-Th-Pb monazite), Jungfernsprung Rhyolite 295 ± 20 Ma (U-Th-Pb monazite), Mahnbrück Rhyolite 291 ±11 Ma (U-Th-Pb monazite), Gottesberg Microgranite 304 ± 2.5 Ma (K-Ar biotite cooling-age), Kersantite crossing the Kirchberg Massif 295 ± 6 Ma (Ar-Ar biotite). Suite of the subvolcanic rhyolitic dykes are probably intermediate in age between the oldest and youngest Variscan subvolcanic/volcanic activity related to the Western Krušné hory Mts. Composite Pluton Geological environment: Cambrian to Ordovician phyllite and the Upper Proterozoic mica-schists, orthogneisses, and Mariánské Lázně Metabasite Complex. One part of the suite subvolcanic rhyolitic dykes (Mahnbrück, Weissbach, Burkersdorf) is located in the granite exocontact (Bergen and Kirchberg Massifs). The Saupersdorf, Jungfernsprung, Morgenröthe, Hahnewald and Gottesberg are emplaced within and/or the endocontact of the Kirchberg and Eibenstock Massifs. Contact aureole: Broad aureole of YIC and OIC in the Ordovician sediments, narrow aureole of OIC in the Upper Proterozoic mica-schists.
21
Heat production (μWm3): (OIC): Kirchberg Granite 5.7–7.3, Loket Granite 3.74, Nejdek Granite 3.25, (TGG): Kynžvart and Kfely Granite 3.3–4.39, (YIC): Eibenstock Granite 5.36, Čistá Granite 3.76, (Vaňková et al. 1979).
Zoning: Complex zonation, weak and/or strong vertical compositional zoning in both plutonic suites. YIC is intruded into OIC. The pluton shows multistage emplacement, normal felsic inward concentric zoning (OIC – marginal, YIC – central part of the pluton with sharp contacts). In the Krudum Massif marginal greisen and feldspatites are located in apical parts of zinnwaldite granites (G5). Mineralization: Tin and tungsten greisen Deposits in endo- and exocontact (Sm-Nd 287 ± 28 Ma), quartz-wolframite veins (in the Kirchberg Granite), uranium, Ni-Co-Bi and Ag (e.g. Jáchymov and Aue-Oberschlema Deposits). References
ABSOLONOVÁ, E. – MATOULEK, M. (1978): Geochemická distribuce prvků v karlovarském masivu. – Sbor. geol. Věd, ložisk. Geol. Mineral. 17, 7–32. BLECHA, V – ŠTEMPROK, M. – FISCHER, T. (2009): Geological interpretation of gravity profiles through the Karlovy Vary Granite Massif (Czech Republic). – Stud. Geophys. Geod., 53 (2009), 295-314. BREITER, K. (1995): Petrology and geochemistry of granites as precursors of dominant ore depositions in the Krušné hory-Erzgebirge region. In: Breiter, K. – Seltmann, R. Eds: Ore mineralization of the Krušné hory Mts. (Erzgebirge). Excursion guide of Third Biennial SGA Meeting, Prague, 19–40. – Czech Geol. Survey, Prague. BREITER, K. (2002): From explosive breccia to unidirectional solidification textures: magmatic evolution of a phosphorus- and fluorine-rich granite system (Podlesí, Krušné hory Mts., Czech Republic). – Bull. Czech Geol. Surv. 77, 67–92. BREITER, K. – FRÝDA, J. – SELTMANN, R. – THOMAS, R. (1997): Mineralogical evidence for twomagmatic stages in the evolution of an extremely fractionated P-rich rare metal granite: the Podlesí stock, Krušné hory Mts., Czech Republic. – J. Petrology 37, 74–94. BREITER, K. – KNOTEK, P. – POKORNÝ, V. (1991): Nejdek Granite Massif. – Folia Mus. Rer. Natur. Bohem. occident. Geol. 33, 1–60. BREITER, K. – SOKOLOVÁ, M. – SOKOL, A. (1991): Geochemical specialization of the tin-bearing granitoid massifs of NW Bohemia. – Mineralium Depos. 26, 298–306. FIALA, F. (1958): Některé zjevy migmatitisace a granitizace spojené s „horskou žulou” Císařského lesa. Sbor. Ústř. Úst. geol., Odd. geol. 24, 1, 429–431. FIALA, F. (1968): Granitoids of the Slavkovský (Císařský) les Mountains. – Sbor. geol. Věd, Geol. 14, 93– 159. FÖRSTER, H.-J. – ROMER, R. L. – GOTTESMANN, B. – TISCHENDORF, G. – RHEDE, D. – SELTMANN, R. – WASTERNACK, J. (2007): Permo-Carboniferous subvolcanic rhyolitic dikes in the western Erzgebirge/Vogtland, Germany: a record of source heterogeneity of post-collisional felsic magmatism. – Neu. Jb. Mineral., Abh. 183, 123–147. FÖRSTER, H.-J. – ROMER, R. L – GOTTESMANN, B. – TISCHENDORF, G. – RHEDE, D. (2009): Are the granites of the Aue-Schwarzenberg (Erzgebirge, Germany) a major source metalliferous ore deposits ? A geochemical, Sr-Nd-Pb isotopic, and geochronological study. – Neu. Jb. Mineral., Abh. 186/2, 163– 184. FÖRSTER, H. J. – TISCHENDORF, G. (1994): The Western Erzgebirge-Vogtland Granites: Implications to the Hercynian Magmatism in the Erzgebirge-Fichtelgebirge Anticlinorium. In: Seltmann, R. – Kämpf, H. – Möller, P. Eds: Metallogeny of Collisional Orogens, 35–48. – Czech Geol. Survey, Prague. GERSTENBERGER, H. (1987): Beiträge zur Aufklärung der Genese der variszisch-postkinematischen Granite des Erzgebirges anhand radiogeochronologischer, isotopengeochemischer und elementgeochemischer Daten. – Diss. B, Zentralinst. Isotopen- u. Strahlenforsch. Leipzig.
22
GERSTENBERGER, H. – KAEMMEL, TH. – HAASE, G. – GEISLER, M. (1984): Zur Charakterisierung der Granite im Westerzgebirge: Rb/Sr-radio-geochronologische Untersuchungen und Spurenelementkonzentrationen. – Freiberg. Forsch.-H., R. C 389, 220–246. GOTTESMANN, B. – SELTMANN, R. – FÖRSTER, H.-J. (1995): Felsic subvolcanic intrusions within the Eibenstock granite pluton (Saxony, Erzgebirge): The Gottesberg volcano-plutonic system. – Terra Nostra 7, 238–240. HEJTMAN, B. (1984): Petrografie vyvřelých hornin Českého masívu. Část I. Intruzivní vyvřelé horniny západních a severozápadních Čech. – 186 pp. Univ. Karl. Praha. HÖSEL, G. (1972): Position, Aufbau sowie tektonische Strukturen des Erzgebirges. – Geologie 21, 347–456. JARCHOVSKÝ, T. (1994): Inner structure of tin-tungsten bearing cupolas near Krásno (Slavkovský les Mts.). In: Seltmann, R. – Kämpf, H. – Möller, P. Eds: Metallogeny of Collisional Orogens, 61–69. – Czech Geol. Survey, Prague. JARCHOVSKÝ, T. – ŠTEMPROK, M. (1979): Geochemistry of granites of the Slavkovský les Mts. – Sbor. geol. Věd, ložisk. Geol. Mineral. 20, 111–149. JELÍNEK, E. – SIEBEL, W. – KACHLÍK, V. – ŠTEMPROK, M. – HOLUB, F. V. – KOVAŘÍKOVÁ, P. (2004): Petrologie a geochemie mafických intruzí v západokrušnohorském granitovém plutonu v okolí Abertam a Mariánských Lázní. – Zpr. geol. Výzk. v Roce 2003, 109–112. JIRÁNEK, J. (1982): Studium vyrostlic alkalických živců nejdecké části karlovarského masívu. – Sbor. geol. Věd, Geol. 36, 139–162. JIRÁNEK, J. (1983): Geochemie alkalických živců karlovarského masívu. – Acta Univ. Carol., Geol. 3, 216–236. KEMPE, U. – BOMBACH, K. – MATUKOV, D. – SCHLOTHAUER, T. – HUTSCHENREUTER, J. – WOLF, D. – SERGEEV, S. (2004): Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralisation in the Eibenstock granite, Erzgebirge, Germany: considering effects of zircon alteration. – Mineralium Depos. 39, 646–669. KEMPE, U. – RENÉ, M. – WOLF, D. (2001): Distribution of REE and REE-minerals in topaz-bearing granites of the Karlovy Vary pluton (Czech Republic). – Mitt. Österr. mineral. Gesell. 146, 126–127. KLOMÍNSKÝ, J. – ABSOLONOVÁ, E. (1974): Geochemistry of the Karlovy Vary Granite Massif (Czechoslovakia). In: Štemprok, M. Ed.: Metallization Associated with Acid Magmatism 1, 189–196. – Czech Geol. Survey, Prague. KOPECKÝ, A. – KOPECKÝ, L. – SATTRAN, V. – ŠANTRŮČEK, P. (1974): Krušné hory – západní část 1: 50 000. Soubor oblastních geologických map. – Czech Geol. Survey, Prague. KOVAŘÍKOVÁ, P. – JELÍNEK, E. – ŠTEMPROK, M. – KACHLÍK, V. – HOLUB, F. V. – BLECHA, V. (2005): Petrochemické srovnání redwitzitů severozápadní části Českého masivu. – Zpr. geol. Výzk. v Roce 2004, 103–106. KOVAŘÍKOVÁ, P. – SIEBEL, W. – JELÍNEK, E. – ŠTEMPROK, M. – KACHLÍK, V. – HOLUB, F. V. 2006): Mafic intrusions (redwitzites) of the Slavkovský les (Kaiserwald), – Zpr. geol. Výzk. v Roce 2005, 111–113. (In Czech) LANGE, H. – TISCHENDORF, G. – PÄLCHEN, W. – KLEMM, I. – OSSENKOPF, W. (1972): Fortschritte der Metallogenie in Erzgebirge, B. Zur Petrographie und Geochemie der Granite des Erzgebirges. – Geologie 21, 457–493. NOVÁK, J. K. – TVRDÝ, J. (1997): Feldspathization in the Loket Monzogranite – possible influence of granites of the Younger Intrusive Complex (Karlovy Vary Intrusion). – J. Czech Geol. Soc. 43, 66. RENÉ, M. (1998): Development of topaz-bearing granites of the Krudum massif (Karlovy Vary pluton). – Acta Univ. Carol., Geol. 42, 103–109. RENÉ M. (2001): Cínonosné granity z okolí Horního Slavkova. – Rudy, Uhlí, Geol. průzk. 49, 3, 16–17. SCHUST, F. (1965): Zu den Granitvarietäten des Eibenstocker Zinnreviers im Westerzgebirge. – Zeitsch. Angew. Geol. 11, 4–11. TEUSCHER, E. O. (1936): Primäre Bildungen des granitischen Magmas und seiner Restlösungen im Massiv von Eibenstock-Neudek (im sächsischen Erzgebirge). – Mitt. Inst. Mineral. Petrogr. Univ. Leipzig 47, 211–263. TISCHENDORF, G. (1970): Zur geochemischen Spezialisierung der Granite des Westerzgebirgischen Teilplutons. – Geologie (Berlin) 19, 25–40. WATZNAUER, A. (1954): Die erzgebirgischen Granitintrusionen. – Geologie 3, 688–706.
23
3.1.2.1. KARLOVY VARY-EIBENSTOCK COMPOSITE MASSIF
Fig. 3.13. Western Krušné hory Mts. (Erzgebirge) Composite Pluton geological (adapted after Fusán et al. 1967). 1 – Eibenstock Massif (E), Blauenthal Granite (B), 2 – Karlovy Vary Massif: Nejdek Granite (N), Loket Granite (L), Kfely Granite (Kf), Granite Porphyry, 3 – Bernbach Stock (Be), Schwarzenberg Stock (S), Aue Stock (A), Beierfeld Stock (Be), Burkendorf Stock (Br) Lauter Stock (La), Kirchberg Massif (K), Bergen Massif (Bn), Kynžvart Massif (Ky), Krudum Massif (Kr), Blatná Stock (Ba), Podlesí Stock (P), Lesný-Lysina Massif (Ly), Hub and Schnöd Stocks (H + S), 4 – faults, 5 – state border.
Regional position: Central part of the Western Krušné hory (Erzgebirge) Composite Pluton. The Karlovy Vary-Eibenstock Composite Massif is surrounded by Kirchberg Massif, Bergen Massif, Lesný-Lysina-Kynžvart Composite Massif, Blatná Stock, Jáchymov Dyke Swarm, Krudum Massif and minute (mostly hidden) Podlesí, AueSchwarzenberg, Hub and Schnöd Stocks. Rock types: A. OLDER INTRUSIVE COMPLEX (OIC) Redwitzites – Enclaves of hybrid granodiorite, quartz diorite and gabbroids (mafics) – not shown in the map (the Abertamy body). Loket Granite (G1) – porphyritic biotite granodiorite. Bečov-Prameny Granite (G1) – medium-grained biotite granite – not shown in the map. Nejdek Granite (G2) – porphyritic biotite granite (monzogranite). B. TRANSITIONAL GRANITE GROUP (TGG)
Kfely Granite (G2) – two-mica granite. Bílé Skály, Wallfischkopf and Krinitzberg Granites are represented by small bodies of the porphyritic biotite granite. C. YOUNGER INTRUSIVE COMPLEX (YIC) Eibenstock (Karlovy Vary) Granite (G3) – porphyritic coarse-grained granite. Blauenthal Granite (G4) – medium-grained polymica (Li micas) granite. Size and shape (on erosion level): 1,500 km2 (63 × 25 km), elongated S shape oval (tectonically outlined in the south. The Abertamy Redwitzite is about 1000 m thick. The main granite is interpreted according to gravity profiles as a continuous desk whose floor is horizontal (or subhorizontal) and varies along its whole extention about a depth of 10 km (saw-like floor, interfingering pattern between the granite and gneiss). The near surface upper contact of the granite body is midly inclined, and outward dipping. Age and isotopic data: OIC: Rb/Sr 332 ± 5, 323 ± 4, 320 ± 6 Ma, 324 ± 12 Ma (Rb-Sr WR). 320 ± 9 Ma (Pb-Pb zircon). Redwitzite 322.8 ± 3.5 Ma (Pb-Pb zircon). YIC: Eibenstock 1 Granite 305 ± 4 Ma (Rb-Sr whole rock), 303 ± 8, Eibenstock 2 Granite 299 ± 6 (Rb-Sr biotite), 316 ± 3 Ma (U-Pb chemical monazite + xenotime + uraninite), 311 ± 5 Ma (ArAr muscovite, biotite), 305 ± 4, 325 ± 7, 323 ± 1 Ma (Rb-Sr whole rock), 303 ± 8 Ma (Rb-Sr biotite). Geological environment: Cambrian to Ordovician phyllite and Upper Proterozoic mica-schists, Contact aureole: Broad thermal aureole of YIC and OIC in the Ordovician sediments, narrow aureole of OIC in the Upper Proterozoic mica schists. Zoning: Complex zonation, weak and/or strong vertical compositional zoning in both plutonic suites. YIC is intruded into OIC. The pluton shows multistage emplacement, normal felsic inward concentric zoning (OIC – marginal, YIC – central part of the massif with sharp contacts). The YIC granites tend to higher positions and occur close to the centres of the OIC granites. Mineralization: Tin and tungsten greisen Deposits in endo- and exocontact quartz-wolframite veins and stock works (the Rotava Deposit), uranium, Ni-CoBi and Ag veins (Jáchymov District and AueOberschlema). Heat production (μWm-3): Loket Granite 3.74, Nejdek Granite 3.25, Eibenstock Granite 5.36.
24
References ABSOLONOVÁ, E. – MATOULEK, M. (1978): Geochemická distribuce prvků v karlovarském masivu. – Sbor. geol. Věd, ložisk. Geol. Mineral. 17, 7–32. BLECHA, V – ŠTEMPROK, M. – FISCHER, T. (2009): Geological interpretation of gravity profiles through the Karlovy Vary Granite Massif (Czech Republic). – Stud. Geophys. Geod., 53 (2009), 295-314. BREITER, K. – KNOTEK, P. – POKORNÝ, V. (1991): Nejdek Granite Massif. – Folia Mus. Rer. Natur. Bohem. occident., Geol. 33, 1–60. FIALA, F. (1958): Některé zjevy migmatitisace a granitizace spojené s „horskou žulou” Císařského lesa. – Sbor. Ústř. Úst. geol., Odd. geol. 24, 1, 429–431. FIALA, F. (1968): Granitoids of the Slavkovský (Císařský) les Mountains. – Sbor. geol. Věd, Geol. 14, 93– 159. FÖRSTER, H. J. – ROMER, R. L – GOTTESMANN, B. – TISCHENDORF, G. – RHEDE, D. (2009): Are the granites of the Aue-Schwarzenberg (Erzgebirge, Germany) a major source metalliferous ore deposits ? A geochemical, Sr-Nd-Pb isotopic, and geochronological study. – Neu. Jb. Mineral., Abh. 186/2, 163– 184. FÖRSTER, H. J. – TISCHENDORF, G. (1994): The Western Erzgebirge-Vogtland Granites: Implications to the Hercynian Magmatism in the Erzgebirge-Fichtelgebirge Anticlinorium. In: Seltmann, R. – Kämpf, H. – Möller, P. Eds: Metallogeny of Collisional Orogens, 35–48. – Czech Geol. Survey, Prague. HEJTMAN, B. (1984): Petrografie vyvřelých hornin Českého masívu. Část I. Intruzivní vyvřelé horniny západních a severozápadních Čech. – 186 pp. Univ. Karl. Praha. JARCHOVSKÝ, T. – ŠTEMPROK, M. (1979): Geochemistry of granites of the Slavkovský les Mts. – Sbor. geol. Věd, ložisk. Geol. Mineral. 20, 111–149. JELÍNEK, E. – SIEBEL, W. – KACHLÍK, V. – ŠTEMPROK, M. – HOLUB, F. V. – KOVAŘÍKOVÁ, P. (2004): Petrologie a geochemie mafických intruzí v západokrušnohorském granitovém plutonu v okolí Abertam a Mariánských Lázní. – Zpr. geol. Výzk. v Roce 2003, 109–112. JIRÁNEK, J. (1982): Studium vyrostlic alkalických živců nejdecké části karlovarského masívu. – Sbor. geol. Věd, Geol. 36, 139–162. JIRÁNEK, J. (1983): Geochemie alkalických živců karlovarského masívu. – Acta Univ. Carol., Geol. 3, 216–236. KLOMÍNSKÝ, J. – ABSOLONOVÁ, E. (1974): Geochemistry of the Karlovy Vary Granite Massif (Czechoslovakia). In: Štemprok, M. Ed.: Metallization Associated with Acid Magmatism 1, 189–196. – Czech Geol. Survey, Prague. KOVAŘÍKOVÁ, P. – JELÍNEK, E. – ŠTEMPROK, M. – KACHLÍK, V. – HOLUB, F. V. – BLECHA, V. (2005): Petrochemické srovnání redwitzitů severozápadní části Českého masivu. – Zpr. geol. Výzk. v Roce 2004, 103–106. NOVÁK, J. K. – TVRDÝ, J. (1997): Feldspathization in the Loket Monzogranite – possible influence of granites of the Younger Intrusive Complex (Karlovy Vary Intrusion). – J. Czech Geol. Soc. 43, 3, 66. ROMER, R. L. – THOMAS, R. – STEIN, H. J. – RHEDE, D. (2007): Dating multiply overprinted Snmineralized granites – examples from the Erzgebirge, Germany. – Mineralium Depos. 42, 337–359. SCHUST, F. (1965): Zu den Granitvarietäten des Eibenstocker Zinnreviers im Westerzgebirge. – Z. angew. Geol. 11, 1, 4–11. SCHUST, F. – WASTERNACK, J. (1972): Über das Auftreten von schlottförmigen Brekzienkörpern bei Gottesberg und Mühlleithen im Granitmassiv von Eibenstock/Erzgebirge. – Z. angew. Geol. 18, 337–346, 400–410. STONE, M. – KLOMÍNSKÝ, J. – RAJPOOT, G. S. (1997): Composition of trioctahedral micas in the Karlovy Vary pluton, Czech Republic and a comparison with those in the Cornubian batholith, SW England. – Mineral. Mag. 61, 791–807. ŠTEMPROK, M. – DOLEJŠ, D. – MÜLLER, A. – SELTMANN, R. (2008): Textural evidence of magma decompression, devolatilization and disequilibrium quenching: an example from Western Krušné hory Mts./Erzgebirge granite pluton. – Contr. Mineral. Petrology 155, 93–109. VELICHKIN, V. I. et al. (1994): Geotectonic position, petrochemical and geochronological features of the Younger Granite Complex in the Krušné hory (Erzgebirge) of the Bohemian Massif. – J. Czech Geol. Soc. 39, 116.
25
Fig. 3.14. Karlovy Vary-Eibenstock Composite Massif ABQ and TAS diagrams. 1 – OIC granites, 2 – mafic rocks (enclaves).
Nejdek Granite Quartz-normal, sodic to potassic, peraluminous, mesocratic, S-type, I- and M-series, granite to granodiorite n = 56 Median Min Max QU1 QU3 SiO2 70.84 67.60 74.12 69.38 71.90 TiO2 0.36 0.13 0.71 0.23 0.43 Al2O3 14.35 13.37 16.07 14.09 14.87 Fe2O3 0.65 0.10 1.19 0.54 0.73 FeO 1.86 0.12 3.48 1.36 2.22 MnO 0.00 0.00 0.08 0.00 0.00 MgO 0.78 0.19 2.43 0.56 0.94 CaO 1.14 0.10 2.05 0.84 1.51 Na2O 3.40 0.26 4.54 3.19 3.57 K2O 4.63 2.23 5.42 4.40 4.97 P2O5 0.18 0.01 0.36 0.14 0.21 Li2O 0.030 0.010 0.170 0.025 0.050 Mg/(Mg+Fe) 0.36 0.20 0.58 0.32 0.43 K/(K+Na) 0.47 0.32 0.93 0.45 0.49 Nor.Or 28.74 14.23 33.72 27.33 30.29 Nor.Ab 31.85 2.55 42.07 30.35 33.49 Nor.An 4.85 0.47 9.68 3.14 6.63 Nor.Q 28.17 14.03 50.64 25.96 30.05 Na+K 207.44 116.67 252.43 202.73 215.21 *Si 169.93 104.02 279.58 157.50 182.37 K-(Na+Ca) -31.68 -76.72 98.11 -48.97 -22.38 Fe+Mg+Ti 55.52 27.59 114.70 45.99 68.54 Al-(Na+K+2Ca) 33.93 -33.44 195.34 20.38 42.88 (Na+K)/Ca 9.86 5.64 65.43 7.88 14.25 A/CNK 1.16 0.91 2.63 1.09 1.20 Trace elements (mean values in ppm): Older granites (OIC) – Ba 472, Cs 20, Ga 20, Hf 4.9, Li 125, Nb 13, Pb 33, Rb 242, Sc 6.1, Sr 151, Th 25, U 4, Y 23, Zn 56, Zr 140, La 42, Ce 72, Sm 5.2, Eu 0.82, Yb 1.74, Lu 0.26 (Breiter, Sokolová and Sokol 1991).
26
Loket Granite – Ba 1281, Cs 9, Ga 33, Hf 10.7, Li 60, Nb 19, Pb 45, Rb 171, Sc 10.8, Sr 376, Th 32, U 4, Y 28, Zn 74, Zr 341, La 74, Ce 128, Sm 7.8, Eu 1.53, Yb 2.15, Lu 0.3 (Breiter, Sokolová and Sokol 1991). Younger granites (YIC) – Ba 52, Cs 67, Ga 29, Hf 2.9, Li 353, Nb 21, Pb 15, Rb 702, Sc 3.6, Sr 15, Th 11, U 16, Y 25, Zn 50, Zr 72, La 12, Ce 26, Sm 2.8, Eu 0.13, Yb 2.12, Lu 0.18 (Breiter, Sokolová and Sokol 1991). Li-mica granites – Ba 37, Cs 102, Ga 39, Hf 1.9, Li 943, Nb 37, Pb 7, Rb 1428, Sc 3.5, Sr 24, Th 4.8, U 11.8, Y 33, Zn 103, Zr 18, La 2, Ce 8, Sm 1.3, Eu 0.1, Yb 21.9, Lu 0.15 (Breiter, Sokolová and Sokol 1991).
Fig. 3.15. Karlovy Vary-Eibenstock Composite Massif ABQ and TAS diagrams. YIC-granites.
27
Fig. 3.16. Karlovy Vary-Eibenstock Massif ABQ and TAS diagrams: 1 – Bílé Skály (Wallfischkopf type) Granite, 2 – Eibenstock (Karlovy Vary) Granite, 3 – Blauenthal Granite.
28
Eibenstock (Karlovy Vary) Granite Quartz-rich, potassic, peraluminous, leucocratic, S-type, granite n = 30 Median Min Max QU1 QU3 SiO2 74.40 72.81 77.05 74.02 75.02 TiO2 0.11 0.06 0.17 0.09 0.13 Al2O3 13.59 12.00 14.62 12.95 13.82 Fe2O3 0.49 0.21 14.02 0.43 0.63 FeO 1.20 0.43 1.94 0.96 1.36 MnO 0.00 0.00 0.00 0.00 0.00 MgO 0.18 0.10 0.36 0.14 0.21 CaO 0.37 0.19 0.82 0.29 0.42 Na2O 2.83 1.75 3.36 2.70 3.04 K2O 4.71 3.19 5.22 4.46 4.90 P2O5 0.21 0.07 0.32 0.14 0.25 Li2O 0.065 0.030 0.110 0.058 0.075 Mg/(Mg+Fe) 0.16 0.03 0.24 0.14 0.18 K/(K+Na) 0.52 0.43 0.64 0.50 0.53 Nor.Or 29.08 19.88 32.30 27.34 30.18 Nor.Ab 26.67 16.76 31.25 25.49 28.40 Nor.An 0.39 -0.55 3.25 -0.01 0.84 Nor.Q 37.36 32.92 46.98 34.99 39.47 Na+K 190.23 144.17 215.86 184.55 199.24 *Si 218.11 189.80 268.20 201.75 227.83 K-(Na+Ca) 0.43 -37.43 42.02 -6.15 5.70 Fe+Mg+Ti 28.87 20.20 195.12 25.32 32.72 Al-(Na+K+2Ca) 54.67 32.29 119.02 50.32 70.83 (Na+K)/Ca 29.50 10.18 54.47 24.66 35.91 A/CNK 1.30 1.17 1.72 1.26 1.39 Trace elements (mean values in ppm): Eibenstock-Karlovy Vary Granite – Li 465, Rb 705, Ga 39, Sn 39, Be 15, Zr 52, Ba 50, Sr 24, V 5, U 12.7, Th 13.8 (Klomínský and Absolonová 1974). Bílé Skály (Wallfischkopf) Granite Quartz-rich, potassic, peraluminous, leucocratic, S-type, granite n=7 Median Min Max SiO2 73.91 70.13 74.76 TiO2 0.25 0.13 0.40 Al2O3 13.90 13.05 16.01 Fe2O3 0.86 0.52 1.32 FeO 1.01 0.47 1.98 MnO 0.00 0.00 0.00 MgO 0.24 0.18 0.40 CaO 0.52 0.11 0.80 Na2O 3.06 0.32 3.68 K2O 5.10 3.20 6.82 P2O5 0.19 0.07 0.30 Li2O 0.063 0.039 0.106 Mg/(Mg+Fe) 0.20 0.15 0.22 K/(K+Na) 0.52 0.36 0.93 Nor.Or 31.26 19.57 43.45 Nor.Ab 28.68 3.10 34.20 Nor.An 0.76 -0.26 3.15
29
QU1 73.40 0.16 13.41 0.61 0.64 0.00 0.20 0.11 0.37 4.75 0.12 0.043 0.17 0.49 29.06 3.53 0.09
QU3 73.92 0.25 14.75 0.98 1.06 0.00 0.25 0.56 3.18 5.52 0.21 0.065 0.20 0.59 33.33 29.62 1.59
Nor.Q 35.54 31.53 45.20 34.00 Na+K 198.20 152.07 210.90 155.13 *Si 205.66 188.82 255.32 197.25 K-(Na+Ca) -1.30 -65.07 132.52 -12.58 Fe+Mg+Ti 33.91 26.92 48.52 27.42 Al-(Na+K+2Ca) 50.12 30.12 155.35 33.70 (Na+K)/Ca 21.37 13.09 79.09 18.77 A/CNK 1.26 1.16 2.01 1.17 Trace elements (mean values in ppm): Bílé Skály Granite – Li 325, Rb 645, Zr 59, Ba 71, Sr 27, V 6, U 13.4, Th 12.7 (Klomínský and Absolonová 1974).
37.77 205.73 218.55 26.93 37.00 75.07 24.04 1.39 Ga 37, Sn 35, Be 14,
Blauenthal Granite Quartz–rich, potassic, peraluminous, leucocratic, S-type, granite n = 13 Median Min Max QU1 QU3 SiO2 74.60 72.24 75.95 74.17 75.06 TiO2 0.10 0.07 0.15 0.08 0.11 Al2O3 13.16 12.54 14.18 12.79 13.57 Fe2O3 0.56 0.19 0.91 0.45 0.69 FeO 1.29 0.94 2.81 1.19 1.44 MnO 0.00 0.00 0.00 0.00 0.00 MgO 0.18 0.10 0.31 0.14 0.26 CaO 0.42 0.15 0.97 0.32 0.48 Na2O 3.12 1.78 3.39 2.77 3.32 K2O 4.60 4.00 5.30 4.53 4.81 P2O5 0.17 0.08 0.29 0.11 0.26 Li2O 0.080 0.060 0.430 0.067 0.086 Mg/(Mg+Fe) 0.15 0.05 0.22 0.12 0.21 K/(K+Na) 0.51 0.44 0.62 0.48 0.52 Nor.Or 28.64 24.65 32.30 28.24 30.72 Nor.Ab 29.21 17.01 31.67 26.24 30.78 Nor.An 0.48 -0.23 4.20 0.30 1.84 Nor.Q 35.75 31.43 45.83 34.45 37.32 Na+K 196.81 151.71 220.96 188.02 207.06 *Si 209.17 189.75 261.69 200.09 217.48 K-(Na+Ca) -4.20 -41.44 31.30 -16.18 1.79 Fe+Mg+Ti 33.25 24.05 51.91 28.25 34.51 Al-(Na+K+2Ca) 50.45 13.09 100.58 34.26 59.28 (Na+K)/Ca 27.44 11.22 67.86 24.20 33.97 A/CNK 1.27 1.06 1.66 1.17 1.31 Trace elements (mean values in ppm): Blauenthal Granite – Li 465, Rb 793, Ga 43, Sn 44, Be 13, Zr 21, Ba 26, Sr 25, V 3, U 9.9, Th 8.9 (Klomínský and Absolonová 1974).
30
3.1.2.2. BERGEN MASSIF Rock types: 1. Kirchberg Granite (G1) – porphyritic coarsegrained biotite monzogranite. 2. Bergen Granite (G2) – porphyritic two-mica (transitional) monzogranite (low F), and aplitic marginal facies. Size and shape (on erosion level): smaller intrusion elongated in NE direction, 10 × 3 km (26 km2). Age and isotopic data: 312.8 Ma ± 7 Ma (Rb-Sr whole rock), 323.6 ± 2.6 Ma (K-Ar biotite), 318.2 ± 3.1 Ma (K-Ar muscovite), 330 Ma (SHRIMP UPb-Th zircon). Geological environment: Lower Ordovician phyllitic schists, Phycoden schists. Contact aureole: distinct contact metamorphic (thermal) phenomena. Zoning: not described. Mineralization: quartz-wolframite veins in the contact aureole. Heat production (μWm-3): Bergen Granite 5.46.
Fig. 3.17. Bergen Massif geological sketch-map (after Hoth, Tischendorf, and Berger 1995). 1 – Kirchberg Granite (G1), 2 – Bergen Granite (G2), 3 – faults.
Regional position: member of the Western Krušné hory (Erzgebirge) Composite Pluton. Isolated body in Vogtland area at the northern periphery of the Eibenstock-Karlovy Vary Composite Massif.
Fig. 3.18. Bergen Massif ABQ and TAS diagrams. 1 – Bergen Granite, 2 – Aplitic marginal facies.
Bergen Granite Quartz-rich, sodic/potassic, peraluminous, leucocratic, S-type, granite n = 13 Median Min Max QU1 SiO2 74.80 70.60 75.80 74.20 TiO2 0.09 0.04 0.37 0.06 Al2O3 14.10 13.50 14.60 14.00 Fe2O3 0.91 0.69 2.25 0.73 31
QU3 75.30 0.18 14.50 1.29
FeO 0.05 0.01 0.06 0.05 0.06 MnO 0.20 0.03 0.82 0.13 0.34 MgO 0.49 0.34 1.14 0.37 0.57 CaO 3.65 3.01 4.25 3.50 3.88 Na2O 4.36 3.80 5.47 4.17 4.49 K2O 0.20 0.15 0.50 0.18 0.24 P2O5 0.030 0.000 0.083 0.019 0.040 Mg/(Mg+Fe) 0.31 0.05 0.41 0.25 0.36 K/(K+Na) 0.43 0.37 0.54 0.42 0.46 Nor.Or 26.49 22.83 33.41 25.26 27.00 Nor.Ab 33.49 27.95 38.80 32.28 35.54 Nor.An 1.00 -0.83 4.35 0.46 1.82 Nor.Q 34.17 26.88 36.41 31.98 35.28 Na+K 210.07 204.31 221.51 207.38 217.14 *Si 198.89 158.28 211.81 187.64 204.89 K-(Na+Ca) -34.25 -65.38 -0.61 -40.58 -29.90 Fe+Mg+Ti 16.10 10.70 53.17 12.94 26.85 Al-(Na+K+2Ca) 48.45 26.93 62.74 35.95 52.17 (Na+K)/Ca 25.35 10.53 34.21 20.28 30.97 A/CNK 1.24 1.13 1.32 1.17 1.26 Trace elements (mean values in ppm): Bergen Granite – Ba 204, Co 3.4, Cs 25, Ga 21, Li 144, Nb 18, Ni 4, Pb 30, Rb 365, Sc 3, Sn 13, Sr 49, Ta 4, Th 9, U 9. References FÖRSTER, H. J. – DAVIS, J. C. – TISCHENDORF, G. – SELTMANN, R. (1999): Multivariate analyses of Erzgebirge granite and rhyolite composition: implications for classification of granites and their genetic relations. – Comput. and Geosci. 25, 533–546. FÖRSTER, H. J. – TISCHENDORF, G. (1994): The Western Erzgebirge-Vogtland Granites: Implications to the Hercynian Magmatism in the Erzgebirge-Fichtelgebirge Anticlinorium. In: Seltmann, R. – Kämpf, H. – Möller, P. Eds: Metallogeny of Collisional Orogens, 35–48. – Czech Geol. Survey, Prague. GERSTENBERGER, H. – HAASE, G. – WEMMER, K. (1995): Isotope systematics of the Variscan postkinematic granites in the Erzgebirge (E. Germany). In: Extended Abstracts of the 2nd Symposium on Permocarboniferous Igneous Rocks, Potsdam, 27–29 October. – Terra Nostra 7, 36–41. HOTH, J. – TISCHENDORF, G. – BERGER, H.-J. Eds (1995): Geologische Karte Erzgebirge/Vogtland 1:100,000 Westblatt, Ostblatt. – Landesamt für Umwelt und Geol. Freiberg. LINNEMANN, U. – McNAUGHTON, N. J. – ROMER, R. L. – GEHMLICH, M. – DROST, K. – TONK, C. (2004): West African provenance for Saxo-Thuringia (Bohemian Massif): Did Armorica ever leave pre-Pangean Gondwana? – U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 683–705. ROMER, R. L. – THOMAS, R. – STEIN, H. J. – RHEDE, D. (2007): Dating multiply overprinted Snmineralized granites – examples from the Erzgebirge, Germany. – Mineralium Depos. 42, 337–359. SCHUST, F. (1972): Zur geologischen und strukturellen Charakterisierung der wolframführenden Mineralisationen des westerzgebirgischen Teilpluton. – Z. angew. Geol. 18, 56–61.
32
3.1.2.3. KIRCHBERG MASSIF Rock types: Kirchberg Granite (G1) – variable texture equigranular to porphyritic, low F, biotite monzogranite (OIC). Bergen Granite (G2) – coarse-grained biotite and muscovite-biotite monzo-syenogranite. Fine-grained Granite – biotite and muscovitebiotite monzo-syenogranite. Size and shape (on erosion level): oval shape, 14 9 km (110 km2). Age and isotopic data: Kirchberg and Bergen Granite: 307 ± 4, 315 ± 6, 309.4 ± 8, 323 ± 6, 323 ± 4, Ma (Rb-Sr whole rock), 316 ± 8 Ma (Rb-Sr dark mica), 328 ± 1 Ma (WR, feldspar, mica), 320.9 ± 2.9 Ma (K/Ar biotite), 318.1 ± 1.3 Ma (Ar-Ar biotite), 330 ± 5 Ma (U-Pb chemical uraninite), 322.7 ± 3.5 Ma (Th-U-total Pb uraninite). Geological environment: Lower Ordovician phyllitic schists. Contact aureole: distinct. Zoning: approximately concentric zoning, medium-grained and fine-grained granite facies around the centre. Mineralization: W-Mo vein mineralization within granite. Heat production (μWm-3): Kirchberg Granite 4.47.
Fig. 3.19. Geological of the Kirchberg Massif (after Hoth, Tischendorf and Berger 1995). 1 – Kirchberg Granite (G1), 2 – Bergen Granite (G2), 3 – finegrained monzo-syenogranite, 4 – faults.
Regional position: member of the Western Krušné hory (Erzgebirge) Composite Pluton. Isolated body at the northern margin of the Eibenstock-Karlovy Vary Composite Massif. A member of the Western
Fig. 3.20. Kirchberg assif ABQ and TAS diagrams. 1 – Kirchberg Granite, 2 – Aplitic facies.
33
Kirchberg Granite Quartz-rich, sodic/potassic, peraluminous, leucocratic, S-type, granite n = 10 Median Min Max QU1 QU3 SiO2 76.19 70.80 77.10 73.60 76.80 TiO2 0.13 0.05 0.48 0.05 0.20 Al2O3 12.82 12.60 14.10 12.80 13.00 Fe2O3tot 1.07 0.43 2.77 0.59 1.40 FeO 0.04 0.01 0.08 0.02 0.04 MnO 0.28 0.04 0.88 0.07 0.36 MgO 0.49 0.36 1.62 0.37 0.67 CaO 3.41 3.14 3.65 3.31 3.53 Na2O 4.71 4.49 5.34 4.60 4.82 K2O 0.05 0.02 0.21 0.02 0.08 P2O5 0.006 0.000 0.041 0.000 0.016 Mg/(Mg+Fe) 0.33 0.12 0.38 0.18 0.34 K/(K+Na) 0.48 0.45 0.50 0.47 0.48 Nor.Or 28.60 27.45 31.92 27.82 29.09 Nor.Ab 31.40 29.18 33.34 30.88 32.66 Nor.An 2.16 1.46 6.91 1.70 3.07 Nor.Q 33.81 28.41 35.52 32.35 34.55 Na+K 210.94 196.66 230.20 207.76 215.45 *Si 198.93 167.77 210.03 191.76 203.22 K-(Na+Ca) -20.76 -36.76 -5.33 -27.60 -18.68 Fe+Mg+Ti 22.11 7.13 62.56 9.76 28.98 Al-(Na+K+2Ca) 16.50 8.72 47.17 13.36 20.02 (Na+K)/Ca 17.92 7.12 35.86 12.97 28.77 A/CNK 1.08 1.04 1.22 1.07 1.09 Trace elements (mean values in ppm): Kirchberg Granite – Ba 255, Be 8.7, Bi 0.10, Co 5.0, Cs 23.8, Ga 19, Hf 5.3, Li 113, Mo 0.64, Ni 4.8, Nb 26, Pb 41, Rb 334, Sb 0.16, Sc 5, Sn 11.8, Sr 105, Ta 4.0, Th 34.4, Tl 1.9, U 17.1, W 3.7, Y 35.2, Zn 56, Zr 171, La 34.0, Ce 71.2, Pr 8.38, Nd 32.7, Sm 6.11, Eu 0.64, Gd 5.49, Tb 0.93, Dy 5.63, Ho 1.12, Er 3.47, Tm 0.55, Yb 3.84, Lu 0.55. References BOLDUAN, H. – SIPPEL, H. (1964): Die Wolframitvorkommen im Raum Stangengrün-Rőthenbach i. V. – Freiberg. Forsch.-H., R. C 181, 37–56. FÖRSTER, H.-J. – ROMER, R. L – GOTTESMANN, B. – TISCHENDORF, G. – RHEDE, D. (2009): Are the granites of the Aue-Schwarzenberg (Erzgebirge, Germany) a major source metalliferous ore deposits ? A geochemical, Sr-Nd-Pb isotopic, and geochronological study. – Neu. Jb. Mineral., Abh. 186/2, 163– 184. FÖRSTER, H. J. – TISCHENDORF, G. (1994): The Western Erzgebirge-Vogtland Granites: Implications to the Hercynian Magmatism in the Erzgebirge-Fichtelgebirge Anticlinorium. In: Seltmann, R. – Kämpf, H. – Möller, P. Eds: Metallogeny of Collisional Orogens, 35–48. – Czech Geol. Survey, Prague. GERSTENBERGER, H. – HAASE, G. – WEMMER, K. (1995): Isotope systematics of the Variscan postkinematic granites in the Erzgebirge (E. Germany). In: Extended Abstracts of the 2nd Symposium on Permocarboniferous Igneous Rocks, Potsdam, 27–29 October. – Terra Nostra 7, 36–41. HOTH, J. – TISCHENDORF, G. – BERGER, H. J. Eds (1995): Geologische Karte Erzgebirge/Vogtland 1:100,000 Westblatt, Ostblatt. – Landesamt für Umwelt und Geol. Freiberg. ROMER, R. L. – THOMAS, R. – STEIN, H. J. – RHEDE, D. (2007): Dating multiply overprinted Snmineralized granites – examples from the Erzgebirge, Germany. – Mineralium Depos. 42, 337–359. WERNER, O. – LIPPOLT, H.-J. (1998): Datierung von postkinematischen magmatischen Intrusionsphasen des Erzgebirges. In: Beitragszusammenfassungen des 7. Koll. im DFG-Schwerpunktprogramm Orogene Prozesse, Giessen, 16–17. April 1998. – Terra Nostra 2, 160–163.
34
3.1.2.4. JÁCHYMOV DYKE SWARM (JDS) Regional position: member of the Western Krušné hory (Erzgebirge) Composite Pluton. JDS is related to the Jáchymov – Gera deep-seated tectonic zone at the exocontact of the Eibenstock-Karlovy Vary Composite Massif. Rock types: Granite to granodiorite porphyries. Syenite to granite porphyries. Lamprophyres (spessartite, kersantite and minette). Aplites (some of them with topaz and Li-micas) not shown in the map. Alkali basalts of the Tertiary age. Size and shape (on erosion level): complex network of rock dykes (within the area of 15 × 5 km) of different composition, age and origin is developed along the exocontact of the Karlovy Vary Massif between Jáchymov and Johanngeorgenstadt. The largest granite porphyry dyke is over 8 km long and about 200 metres wide; the largest syenite dyke is over 8 km long and 20–50 metres wide.
Age and isotopic data: two generations of granite porphyries, lamprophyres and aplites (OIC and YIC), e.g. the younger granite porphyries cuts the older granite porphyries. Rhyolite dykes cutting the Eibenstock Granite 290 ± 5 Ma (Pb-Pb zircon evaporation), 297 ± 8 Ma (U-Pb zircon SHRIMP). The significant time gap of at least 20 Ma between granite intrusion (320 ± 8 Ma) and rhyolite formation (297 ± 8 Ma) in the endo- and exo-contact of the Eibenstock granite, the Eibenstock-Karlovy Vary Composite Massif, has been found by Kempe et al. (2004). According to Förster et al. (2007) a suite of rhyolite dykes (305–295 Ma) in the western Erzgebirge is about 10 Ma younger than the major granite magmatism (325–318 Ma). Geological environment: NE exocontact of the Eibenstock-Karlovy Vary Composite Massif. Precambrian mica-schists and gneisess. Zoning: composite granite porphyry dykes with rims of kersantite.
Fig. 3.21. Jáchymov Dyke Swarm geological (after Hoth, Tischendorf, Berger 1995). 1 – Eibenstock-Karlovy Vary Composite Massif, 2 – granite to granodiorite porphyry, 3 – granite porphyry and syenite porphyry, 4 – lamprophyre, 5 – Tertiary basaltoids, 6 – faults.
35
Fig. 3.22. Rhyolite ABQ and TAS diagrams: 1 –Rhyolite I, 2 – Rhyolite II, 3 – Rhyolite III.
References FÖRSTER, H.-J. – GOTTESMANN, B. – TISCHENDORF, G. – SIEBEL, W. – RHEDE, D. – SELTMANN, R. – WASTERNACK, J. (2007): Permo-Carboniferous subvolcanic rhyolitic dikes in the western Erzgebirge/Vogtland, Germany: a record of source heterogeneity of post-collisional felsic magmatism. – Neu. Jb. Mineral., Abh. 183, 123–147. KEMPE, U. – BOMBACH, K. – MATUKOV, D. – SCHLOTHAUER, T. – HUTSCHENREUTER, J. – WOLF, D. – SERGEEV, S. (2004): Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralisation in the Eibenstock granite, Erzgebirge, Germany: Considering effects of zircon alteration. – Mineralium Depos. 39, 646–669. KRAMER, W. (1976): Genese der Lamprophyre im Bereich der Fichtelgebirgisch-Erzgebirgischen Anticlinalzone. – Chem. Erde 35, 1–49. KRAMER, W. – GEISSER, E. – SARIKOUCH, K. (1978): Komagmatische Beziehungen variszischsubsequenter basischer bis intermediärer Magmatite im nördlichen Randbereich der Erzgebirgischen Antiklinalzone. – Z. geol. Wiss. 6, 1071–1079. ROMER, R. L. – THOMAS, R. – STEIN, H. J. – RHEDE, D. (2007): Dating multiply overprinted Snmineralized granites – examples from the Erzgebirge, Germany. – Mineralium Depos. 42, 337–359. SATTRAN, V. (1965): Variské vyvřeliny jáchymovského rudního okrsku. – Sbor. geol. Věd, Geol. 7, 7–31. ŠTEMPROK, M. – SEIFERT, T. – HOLUB, F. V. – CHLUPÁČOVÁ, M. – DOLEJŠ, D. – NOVÁK, J. K. – PIVEC, E. – LANG, M. (2008): Petrology nad geochemistry of Variscan dykes from the Jáchymov (Joachimsthal) ore district, Czech Republic. – J. Geosci. 53, 65–104. Jáchymov Porphyry Quartz-normal, sodic/potassic, mesocratic, I-S type granite porf12 Grd.porphyry SiO2 68.42 TiO2 0.42 Al2O3 14.07 Fe2O3 0.90 FeO 2.61 MnO 0.11 MgO 1.09 CaO 0.93 Na2O 4.00 K2O 5.70
metaluminous/peraluminous, porf13 porf14 Alk.-felds.granite porphyry 73.55 73.15 0.06 0.06 15.79 14.78 0.70 0.60 0.94 1.60 0.04 0.03 0.50 0.52 0.42 0.37 4.02 3.24 2.58 4.77
36
P2O5 Li2O Mg/(Mg+Fe) K/(K+Na) Nor.Or Nor.Ab Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
0.20 0.02 0.35 0.48 35.35 37.70 3.46 18.15 250.10 118.42 -24.64 79.93 -6.96 15.08 0.99
0.22 n.d. 0.36 0.30 15.71 37.19 0.65 36.99 184.50 218.54 -82.43 35.02 110.60 24.64 1.59
0.12 n.d. 0.30 0.49 29.19 30.14 1.08 32.36 205.83 195.59 -9.87 43.45 71.20 31.20 1.34
Rhyolite I Quartz-rich, strongly potassic, peraluminous, leuco/mesocratic, S-type rhyolite MAH1228 JFS1208 JFS1209 SiO2 77.10 74.60 73.20 TiO2 0.17 0.33 0.35 Al2O3 11.90 12.70 12.90 Fe2O3tot 0.83 3.36 2.80 MnO 0.01 0.01 n.d. MgO 0.23 0.25 0.23 CaO 0.06 0.10 0.12 Na2O 0.05 0.05 0.05 K2O 6.94 5.48 7.85 P2O5 0.03 0.12 0.11 Mg/(Mg+Fe) 0.35 0.13 0.14 K/(K+Na) 0.99 0.99 0.99 Nor.Q 49.46 53.40 42.22 Nor.Or 43.91 35.16 49.64 Nor.Ab 0.48 0.49 0.48 Nor.An 0.11 -0.32 -0.14 Na+K 148.97 117.97 168.29 *Si 278.06 294.71 236.38 K-(Na+Ca) 144.67 112.96 162.92 Fe+Mg+Ti 18.24 52.44 45.17 Al-(Na+K+2Ca) 82.59 127.87 80.76 (Na+K)/Ca 139.23 66.15 78.64 A/CNK 1.55 2.05 1.47 Trace elements (in ppm): Rhyolite I – Li 30, Be 4, Sc 4, Ni 1.6, Cu 3.2, Zn 32, Ga 18, Rb 473, Sr 27, Y 36, Zr 16.6, Nb 17, Sn 14, Cs 29, Ba 360, Ta 2.2, W 16, Pb 12, Th 2.7, U 7.3. Rhyolite II Quartz-rich, strongly potassic, peraluminous, leucocratic, S-type rhyolite SAU1210 SAU1211 WEI1212 WEI1213 SiO2 74.30 74.50 75.40 76.90 TiO2 0.05 0.05 0.06 0.05
37
BUR988 72.90 0.15
Al2O3 14.30 14.90 15.20 14.10 14.50 Fe2O3tot 1.00 1.14 1.41 1.35 1.12 MnO 0.06 0.07 0.02 0.02 0.06 MgO 0.22 0.24 0.14 0.13 0.54 CaO 0.26 0.62 0.17 0.22 0.82 Na2O 0.05 0.05 0.05 0.05 2.82 K2O 6.86 4.71 3.58 3.64 4.54 P2O5 0.20 0.49 0.17 0.23 0.36 Mg/(Mg+Fe) 0.29 0.28 0.16 0.16 0.47 K/(K+Na) 0.99 0.98 0.98 0.98 0.51 Nor.Q 46.83 55.77 61.68 62.82 36.35 Nor.Or 43.19 29.98 22.97 23.27 28.01 Nor.Ab 0.48 0.48 0.49 0.49 26.44 Nor.An -0.03 -0.17 -0.30 -0.46 1.77 Na+K 147.27 101.62 77.63 78.90 187.39 *Si 261.84 304.32 338.66 345.11 207.29 K-(Na+Ca) 139.40 87.33 71.37 71.75 -9.23 Fe+Mg+Ti 18.61 20.86 21.89 20.77 29.31 Al-(Na+K+2Ca) 124.28 168.87 214.81 190.15 68.11 (Na+K)/Ca 31.76 9.19 25.61 20.11 12.82 A/CNK 1.79 2.36 3.56 3.19 1.31 Trace elements (in ppm): Rhyolite II – Li 90, Be 3.9, Sc 4.5, Ni 0.8, Cu 2.5, Zn 40, Ga 2.8, Rb 600, Sr 51, Y 7.6, Zr 32, Nb 44, Sn 38, Cs 32, Ba 61, Ta 9, W 16, Pb 7, Th 1.5, U 9. Rhyolite III Quartz-rich, potassic, peraluminous, leucocratic, S-type rhyolite n=10 Median Min Max QU1 QU3 SiO2 75.60 72.70 78.90 74.50 76.40 TiO2 0.07 0.03 0.19 0.03 0.08 Al2O3 12.60 11.90 15.40 12.50 13.30 Fe2O3tot 1.55 0.41 2.52 1.31 1.62 MnO 0.09 0.02 0.29 0.04 0.09 MgO 0.17 0.09 0.29 0.14 0.23 CaO 0.04 0.03 0.77 0.03 0.51 Na2O 0.05 0.05 3.93 0.05 2.69 K2O 4.81 3.74 5.93 3.88 5.08 P2O5 0.04 0.02 0.12 0.02 0.04 Mg/(Mg+Fe) 0.16 0.07 0.51 0.14 0.21 K/(K+Na) 0.98 0.46 0.99 0.48 0.98 Nor.Q 51.12 27.80 64.10 34.18 54.81 Nor.Or 29.22 23.94 37.52 24.93 31.31 Nor.Ab 0.49 0.48 36.05 0.48 25.28 Nor.An 0.07 -0.12 3.50 -0.12 2.19 Na+K 119.67 81.02 234.68 83.99 199.76 *Si 287.10 163.37 355.49 199.25 306.55 K-(Na+Ca) 77.26 -32.69 123.76 -18.94 80.23 Fe+Mg+Ti 24.26 11.85 41.15 22.74 26.88 Al-(Na+K+2Ca) 140.09 8.89 194.71 13.18 152.55 (Na+K)/Ca 149.01 17.09 238.38 17.51 153.04 A/CNK 2.15 1.04 3.01 1.06 2.79 Trace elements (in ppm): Rhyolite III – Li 121, Be 7.6, Sc 2.5, Ni 1.3, Cu 6.4, Zn 52, Ga 30, Rb 681, Sr 15, Y 50, Zr 125, Nb 57, Sn 56, Cs 40, Ba 53, Ta 15, W 9, Pb 32, Th 44.8, U 59.2. 38
3.1.2.5. BLATNÁ STOCK Rock types: 1. Hřebečná Granite (G3) – coarse-grained, tourmaline-bearing ± topaz-biotite granite (prevailing rock type). 2. Blatenský vrch Granite (G3) – coarsegrained, tourmaline-bearing ± topaz-biotite granite. 3. Luhy Granite (G3) – coarse-grained, tourmaline-bearing ± topaz-biotite granite. 4. Jelení vrch Granite (G4) – porphyritic finegrained biotite granite. 5. Lithium Granite (G5) – Li-mica topazbearing medium-grained alkali-feldspar granite (Podlesí Stock and Pernink Stock). Size and shape (on erosion level): outcrop about 12 km2, irregular shape 6 × 2.5 km. Age and isotopic data: corresponds to the age of YIC granites, (for an age dating of the closest body see the Podlesí Stock). The Lithium Granite (G5) is an independent intrusion, younger than 1– 3 types (G3), Blatenský vrch Granite 313.2 ± 2 Ma (Ar-Ar mica). Geological environment: Early Palaeozoic phyllites and phyllitic schists. Contact aureole: tourmalinization of phyllites at the exocontact. Zoning: not defined. Mineralization: greisen zones carrying subeconomic Sn-mineralization.
Fig. 3.23. Blatná, Podlesí and Pernink Stocks geological (after Breiter 2001. 1 – Hřebečná and Luhy Granites, 2 – Jelení vrch Granite, 3 – Lithium Granite, 4 – Blatenský vrch Granite, 5 – faults.
Regional position: member of the Western Krušné hory (Erzgebirge) Composite Pluton. A satellite body at the eastern contact of the Karlovy Vary-Eibenstock Composite Massif, separated by faults.
Fig. 3.24. Blatná Stock ABQ and TAS diagrams: 1 – Hřebečná Granite, 2 – Blatenský vrch and Luhy Granite, 3 – Jelení vrch Granite, 4 – Lithium Granite.
39
References BREITER, K. (2001): The Horní Blatná granite body and related tin mineralization. In: Breiter, K. Ed.: Phosphorus- and fluorine-rich fractionated granites. International Workshop, October 16–19, 2001, Podlesí, Czech Republic. Abstracts, Excursion Guide and Programme. – Czech Geol. Survey, Prague. BREITER, K. – HAKOVÁ, M. – SOKOL, A. (1987): Geochemical types of granites in the Blatná Massif in the Krušné hory Mts. – Věst. Ústř. Úst. geol. 62, 333–349. (In Czech) KLOMÍNSKÝ, J. – ABSOLONOVÁ, E. (1974): Geochemistry of the Karlovy Vary Granite Massif (Czechoslovakia). In: Štemprok, M. Ed.: Metallization Associated with Acid Magmatism 1, 189–196. – Czech Geol. Survey, Prague. KOPECKÝ, A. – KOPECKÝ, L. – SATTRAN, V. – ŠANTRŮČEK, P. (1974): Krušné hory – západní část, 1 : 50 000. Soubor oblastních geologických map. – Czech Geol. Survey, Prague. Blatná Stock ( Hřebečná and Luhy Granite, Jelení vrch Granite, Lithium Granite and Blatenský vrch Granite) Quartz-rich, potassic, strongly peraluminous, leucocratic, S-type, alkali-feldspar granite n=8 Median Min Max QU1 QU3 SiO2 74.25 71.90 75.18 73.10 74.78 TiO2 0.06 0.04 0.15 0.04 0.08 Al2O3 13.81 12.60 15.57 13.10 14.60 Fe2O3 0.34 0.04 0.63 0.15 0.42 FeO 0.97 0.66 1.12 0.82 0.99 MnO 0.03 0.02 0.04 0.02 0.03 MgO 0.07 0.05 0.25 0.05 0.11 CaO 0.23 0.20 0.44 0.20 0.31 Na2O 3.20 2.63 4.00 2.65 3.70 K2O 4.53 3.97 5.02 4.12 4.89 P2O5 0.26 0.22 0.45 0.24 0.43 Li2O 0.098 0.044 0.280 0.046 0.120 Mg/(Mg+Fe) 0.10 0.07 0.22 0.09 0.12 K/(K+Na) 0.47 0.40 0.55 0.41 0.55 Nor.Or 27.67 24.23 31.11 25.26 30.31 Nor.Ab 29.70 24.75 37.28 24.77 34.35 Nor.An -1.02 -1.90 0.48 -1.54 -0.62 Nor.Q 34.73 31.63 39.37 32.43 38.04 Na+K 202.25 188.07 216.56 188.69 209.85 *Si 197.70 179.60 226.52 185.45 218.00 K-(Na+Ca) -14.30 -45.70 15.39 -43.47 13.29 Fe+Mg+Ti 19.27 12.81 29.48 13.66 23.46 Al-(Na+K+2Ca) 61.43 43.20 81.00 44.68 75.64 (Na+K)/Ca 43.04 26.75 56.71 31.81 52.80 A/CNK 1.35 1.23 1.43 1.24 1.42 3.1.2.6. PODLESÍ STOCK Regional position: member of the Western Krušné hory (Erzgebirge) Composite Pluton. The largest outcrop of phosphorus-rich Li-mica granite at the eastern exocontact of the EibenstockKarlovy Vary Composite Massif, satellite stock of the Blatná Stock.
Rock types: 1. Podlesí Granite (Stock Granite) – albiteprotolithionite (lithium)-topaz alkali-feldspar granite. a. “Upper facies” – fine-grained porphyritic granite (the uppermost 30–40 m of the stock).
40
Geological environment: contact metamorphosed Lower Palaeozoic phyllites. Contact aureole: phyllites are strongly altered into protolithionite-topaz hornfelses. This alteration is accompanied by tourmalinization. Zoning: prominent manifestation of layering. A steep AMS foliations and subhorizontal magnetic lineation. Mineralization: greisen zones carrying subeconomic Sn-mineralization. Heat production (μWm-3): Podlesí Granite 9.68, the Podlesí Stock is one of the most radioactive bodies in the Bohemian Massif (34 ppm U and 6.4 ppm Th in the Stock Granite).
b. “Lower facies” – medium-grained, nonporphyritic alkali-feldspar granite (main part of the stock). 2. Podlesí Dyke Granite – fine-grained topaz – zinnwaldite alkali-feldspar granite. 3. Biotite Granite. Size and shape (on erosion level): tongue-like, steep dipping granite layer about 250–150 m thick. Age and isotopic data: Podlesí Granite 312 ± 1.8 Ma (Ar-Ar mica), 315 ± 2 Ma (Rb-Sr whole rock), 321.5 ± 2.7 Ma (U-Pb, uraninite), 316.5 ± 8.4 Ma (U-Pb, monazite), Dyke Granite 311.2 ± 1.8 Ma (Ar-Ar mica). References
BREITER, K. (2001): Phosphorus- and fluorine-rich granite system at Podlesí. In: Breiter, K. Ed.: Phosphorus- and fluorine-rich granites, Podlesí, Czech Republic. International Workshop, October 2001, 52–78. – Czech Geol. Survey, Prague. BREITER, K. – FRÝDA, J. – SELTMANN, R. – THOMAS, R. (1997): Mineralogical evidence for two magmatic stages in the evolution of an extremely fractionated P-rich rare-metal granite: the Podlesí Stock, Krušné hory, Czech Republic. – J. Petrology 38, 1723–1739. BREITER, K. – KRONZ, A. (2004): Phosphorus-rich topaz from fractionated granites (Podlesí, Czech Republic). – Mineral. Petrology 81, 235–247. CHLUPÁČOVÁ, M. – BREITER, K. (1998): Physical properties of extremely fractionated P-rich rare metal granite: the borehole PTP-1, the Podlesí Stock, Krušné hory Mts., Czech Republic. – Acta Univ. Carol. Geol. 42, 28–31. FÖRSTER, H.-J. (2001): The radioactive accessory-mineral assemblage of the Podlesí granite-pegmatite system, Western Krušné hory, Czech Republic: Implication to intrusion age and magmatic/hydrothermal fluid-rock interaction. In: Breiter, K. Ed.: Phosphorus- and fluorine-rich granites, Podlesí, Czech Republic. International Workshop, October 2001, 14–15. – Czech Geol. Survey, Prague. KOSTITSYN, Y. – BREITER, K. (2001): Rb-Sr isotopic dating of the Podlesí granites. In: Breiter, K. Ed.: Phosphorus- and fluorine-rich granites, Podlesí, Czech Republic. International Workshop, October 2001, p. 22. – Czech Geol. Survey, Prague. TÁBORSKÁ, Š. – BREITER, K. (1998): Magnetic anisotropy of an extremely fractionated granite: Podlesí stock, Krušné hory Mts., Czech Republic. – Acta Univ. Carol., Geol. 42, 147–149. Podlesí Granite (upper and lower facies) Quartz-rich, sodic, strongly peraluminous, leucocratic, S-type, I-series, alkali-feldspar granite n = 29 Med. Min Max QU1 QU3 SiO2 73.08 71.52 74.78 72.55 73.78 TiO2 0.04 0.02 0.07 0.04 0.05 Al2O3 14.59 13.79 15.57 14.21 14.84 Fe2O3 0.23 0.12 0.66 0.20 0.30 FeO 0.69 0.45 0.92 0.65 0.82 MnO 0.03 0.01 0.07 0.03 0.04 MgO 0.05 0.02 0.14 0.04 0.05 CaO 0.44 0.32 0.82 0.39 0.52 Na2O 3.84 3.19 4.17 3.54 3.96 K2O 4.29 3.88 4.46 4.20 4.36 P2O5 0.50 0.38 0.70 0.44 0.54 Li2O 0.190 0.033 0.264 0.163 0.209
41
Mg/(Mg+Fe) 0.08 0.04 0.17 0.06 0.09 K/(K+Na) 0.43 0.39 0.48 0.41 0.45 Nor.Or 26.33 23.63 27.54 25.56 26.72 Nor.Ab 35.61 29.72 38.68 32.83 36.67 Nor.An -0.96 -1.93 -0.07 -1.24 -0.63 Nor.Q 33.22 31.29 36.29 32.29 34.31 Na+K 213.50 197.36 221.83 205.83 217.14 *Si 186.46 174.31 207.15 182.11 192.10 K-(Na+Ca) -38.61 -59.39 -15.20 -45.08 -34.00 Fe+Mg+Ti 14.53 11.39 20.53 13.15 16.65 Al-(Na+K+2Ca) 60.40 33.09 85.66 49.68 65.51 (Na+K)/Ca 26.23 13.56 37.11 22.62 29.67 A/CNK 1.33 1.18 1.49 1.28 1.36 Trace elements (mean values in ppm): Podlesí Granite – Ba 7, Cs 124.5, Nb 35, Rb 1357, Sn 37, Sr 22, Ta 13.8, Th 6.48, U 37.3, W 40, Zr 52, Y 8.8, Pb 4.4, Zn 39.5. Podlesí Dyke Granite – Ba 19, Cs 121, Nb 69, Rb1798, Sn 16.7, Sr 16.3, Ta 39.6, Th 5.3, U 25.4, W 50, Zr 21, Y 2.7, Pb 2.5, Zn 72.
Fig. 3.25. Podlesí Stock ABQ and TAS diagrams. 1 – Podlesí Dyke Granite, 2 – Podlesí Granite, 3 – Biotite Granite.
3.1.2.7. KRUDUM MASSIF 3. Milíře Granite – two-mica granite and its marginal facies “Na Jeleni”Granite. C. YOUNGER IGNEOUS COMPLEX 4. Čistá Granite – fine-grained Li-mica topaz bearing alkali-feldspar granite. 5. Šibeník Granite – fine-grained muscovite alkali-feldspar granite. 6. Li-mica topaz-bearing Granite. 7. Granite Porphyry. Size and shape (on erosion level): an approximately triangular shape – 34 km2 (6 × 6 km). Its eastern and southeastern continuation is hidden under gneiss roof, forming several partly mineralised cupolas (e.g. Koník, Čistá, Vysoký Kámen, Hub and Schnöd Stocks). Redwitzite rafts up to 500 × 250 m in size.
Regional position: member of the Western Krušné hory (Erzgebirge) Composite Pluton. Independent magmatic body in the SW margin the Eibenstock-Karlovy Vary Composite Massif. Rock types: A. OLDER IGNEOUS COMPLEX 1. Gabbrodiorite and diorite (redwitzite) – medium-to coarse-grained amphibole biotite diorite to pyroxene-biotite gabbrodiorite. Gravity measurement outlined extent of mafic rocks in the depth. B. TRANSITIONAL GRANITE GROUP 2. Třídomí Granite – porphyritic fine-grained biotite granite and its facies of the SvárovPolom Granite – porphyritic mediumgrained biotite granite.
42
Contact aureole: extensive greisenization at the exocontact. Zoning: Třídomí Granite in the core, the youngest Čistá Granite at the margin. Mineralization: Sn-W accumulated mainly at the top of hidden stocks (near-contact greisens) and U mineralization in gneisses. Heat production (μWm-3): Milíře Granite 4.78, Čistá Granite 3.14.
Age and isotopic data: Třídomí Granite 313 Ma, Milíře Granite 343 Ma, Čistá Granite 269 Ma, Šibeník Granite 291 Ma (K/Ar whole rock), Redwitzite 323 ± 4.4 Ma (Pb-Pb zircon). Geological environment: Biotite-gneisses of the Slavkov gneiss block, and biotite-granites (OIC) of the Eibenstock-Karlovy Vary Composite Massif.
Fig. 3.26. Krudum Massif geological (adapted after the geological map 1 : 50,000). 1 – Třídomí Granite, 2 – Milíře Granite, 3 – Čistá Granite, 4 – Svárov-Polom Granite, 5 – Granite porphyry, 6 – “Na Jelení” Granite, 7 – Li-mica topaz-bearing Granite, 8 – gabbrodiorite and diorite, 9 – Šibeník Granite, 10 – greisen, 11 – faults.
Třídomí, Milíře and Čistá Granites Quartz rich, sodic/potassic, moderate peraluminous, leucocratic, S-type, I-series, Třídomí (1), and Milíře Granites (2–4) – potassic granites, Čistá Granite (5) – sodicpotassic granite (1)Tri (2)Mil (3)Mil (4)Mil (5)Ct SiO2 72.96 74.32 73.51 71.99 73.26 TiO2 0.26 0.14 0.09 0.09 0.03 Al2O3 13.50 13.57 14.58 15.71 14.67 Fe2O3 0.20 0.25 0.28 0.24 0.24 FeO 1.80 1.26 1.04 1.14 0.83 MnO 0.06 0.06 0.05 0.05 0.07 MgO 0.25 0.19 0.17 0.19 0.10 CaO 0.79 0.59 0.39 0.42 0.38 Na2O 0.04 0.06 0.09 0.11 0.20 K2O 2.96 3.18 3.78 3.74 3.13 P2O5 5.02 4.68 4.27 4.83 4.69 Li2O 0.17 0.21 0.29 0.30 0.33
43
Mg/(Mg+Fe) 0.18 0.18 0.18 0.19 0.14 K/(K+Na) 0.53 0.49 0.43 0.46 0.50 Nor.Or 31.20 28.77 26.04 29.33 28.87 Nor.Ab 27.96 29.71 35.03 34.51 29.28 Nor.An 2.94 1.61 0.02 0.11 -0.30 Nor.Q 32.80 34.75 32.67 29.11 35.17 Na+K 202.10 201.98 212.64 223.24 200.58 *Si 193.27 203.31 190.54 171.15 201.33 K-(Na+Ca) -3.02 -13.77 -38.27 -25.63 -8.20 Fe+Mg+Ti 37.03 27.15 23.34 24.73 17.42 Al-(Na+K+2Ca) 34.83 43.46 59.77 70.29 73.95 (Na+K)/Ca 14.35 19.20 30.58 29.81 29.60 A/CNK 1.17 1.22 1.30 1.33 1.39 Trace elements (mean values in ppm): Třídomí Granite – Ba 328, Cs 26.9, Ga 33, Hf 4.3, Nb 20, Pb 44, Rb 467, Sc 4.1, Sn 13, Sr 49, Th 26, U 9.9, Y 19, Zn 46, Zr 164 (Breiter, Sokolová and Sokol 1991). Milíře Granite – U 11.9, Th 17.9, Ba 334, Rb 408, Sr 57, Zr 130. Čistá Granite – U 9.0, Th 6.5, Ba 45, Rb 1004, Sr 75, Zr 98.
Fig. 3.27. Krudum Massif ABQ and TAS diagrams. 1 – Třídomí Granite, 2 - Milíře Granite, 3 - Čistá Granite.
References BLECHA, V. – KACHLÍK, V. – ŠTEMPROK, M. – GAŽDOVÁ, R. (2004): Magnetometrický a gravimetrický průzkum tělesa amfibol-biotitického dioritu na Uhlířském vrchu u Sokolova (karlovarský pluton, Slavkovský les). – Zpr. geol. Výzk. v Roce 2003, 126–128. BLECHA, V – ŠTEMPROK, M. – FISCHER, T. (2009): Geological interpretation of gravity profiles through the Karlovy Vary Granite Massif (Czech Republic). – Stud. Geophys. geod. 53, 295–314. FIALA, F. (1968): Granitoids of the Slavkovský (Císařský) les Mts. – Sbor. geol. Věd, Geol. 14, 93–159. JARCHOVSKÝ, T. (2006): The nature and genesis of greisen stocks at Krásno, Slavkovský les area – western Bohemia, Czech Republic. – J. Czech Geol. Soc. 51, 201–216. JARCHOVSKÝ, T. et al. (1994): Li-F granite cupolas and Sn-W mineralization in the Slavkovský les Mts., Czech Republic. – Monograph Series on Mineral Deposits 31, 131–148. Berlin-Stuttgart. KOVAŘÍKOVÁ, P. – JELÍNEK, E. – ŠTEMPROK, M. – KACHLÍK, V. – HOLUB, F. V. – BLECHA, V. (2005): Petrochemické srovnání redwitzitů severozápadní části Českého masivu. – Zpr. geol. Výzk. v Roce 2004, 103–106. KOVAŘÍKOVÁ, P. – SIEBEL, W. – JELÍNEK, E. – ŠTEMPROK, M. – KACHLÍK, V. – HOLUB, F. V. (2006): Mafic intrusions (redwitzites) of the Slavkovský Les (Kaiserwald). – Zpr. geol. Výzk. v Roce 2005, 111–113. (In Czech)
44
RENÉ, M. (1998): Development of topaz-bearing granites of the Krudum massif (Karlovy Vary pluton). – Acta Univ. Carol., Geol. 42, 103–109. 3.1.2.8. LESNÝ-LYSINA-KYNŽVART COMPOSITE MASSIF a. Ovčák I facies – porphyritic mediumgrained biotite granite, b. Ovčák II facies – medium-grained two-mica granite, c. Ovčák III facies – porphyritic finegrained biotite granite. YOUNGER IGNEOUS COMPLEX 3. Granite Porphyry (autometamorphosed). 4. Lesný-Lysina Granite – lithionite-topaz alkali-feldspar granite (main type). 5. Jelení Granite – porphyritic alkali-feldspar granite (not shown in the map). 6. Kladská Granite – fine-grained muscovite alkali-feldspar granite. 7. Hájek-Steinbruch Granite – small stock of partly greisenized alkali-feldspar granite. Size and shape (on erosion level): Elliptical shape in size of 75 km2 (9 × 13 km). The LesnýLysina is 3–4 km thick (according to gravity profiles). Age and isotopic data: Corresponds to the isotopic data of YIC granites. Geological environment: migmatitized gneisses and tectonic boundary to the Kynžvart Massif. Contact aureole: Not observed. Zoning: not defined. Mineralization: scarce greisen veins with subeconomic mineralization. Heat production (μWm-3): Milíře Granite 4.78, Čistá Granite 3.19.
Fig. 3.28. Lesný-Lysina-Kynžvart Composite Massif geological sketch-map (adapted after geological map 1 : 50,000, CGS). Transitional Granite Group: 1 – Kynžvart-Žandov Granite, 2 – Ovčák Granite, 3 – Granite Porphyry. Younger Intrusive Complex: 4 – Lesný-Lysina Granite, 5 – Kladská Granite, 6 – faults.
Regional position: member of the Western Krušné hory (Erzgebirge) Composite Pluton. Independent magmatic body in the SW periphery the Eibenstock-Karlovy Vary Composite Massif. The Lesný-Lysina-Kynžvart Composite Massif consists of the Kynžvart Massif and the LesnýLysina Massif. Both intrusions are separated by regional fault zone. Rock types: TRANSITIONAL GRANITE GROUP 1. Kynžvart-Žandov Granite – porphyritic twomica granite. 2. Ovčák Granite – occurs in three facies: References
BLECHA, V – ŠTEMPROK, M. – FISCHER, T. (2009): Geological interpretation of gravity profiles through the Karlovy Vary Granite Massif (Czech Republic). – Stud. Geophys. geod. 53 , 295–314. FIALA, F. (1968): Granitoids of the Slavkovský (Císařský) les Mountains. – Sbor. geol. Věd, Geol. 14, 93– 159. JARCHOVSKÝ, T. – ŠTEMPROK, M. (1979): Geochemistry of granites of the Slavkovský les Mts. – Sbor. geol. Věd., ložisk. Geol. Mineral. 20, 111–149.
45
Fig. 3.29. Lesný-Lysina Massif ABQ and TAS diagrams. 1 – Ovčák Granite, 2 – Lesný-Lysina Granite, 3 – KynžvartŽandov Granite.
Lesný-Lysina Granite Quartz normal to quartz-rich, sodic, peraluminous, leucocratic, S-type, syenogranite to alkali-feldspar granite Les55-5 Les56-3 Les57-5 Lys58-3 SiO2 73.15 72.56 72.19 73.80 TiO2 n.d. n.d. n.d. n.d. Al2O3 14.20 14.49 14.45 12.16 Fe2O3 0.24 0.52 0.79 0.60 FeO 1.04 1.50 1.05 1.00 MnO 0.06 0.08 0.03 0.09 MgO 0.05 0.03 0.10 0.23 CaO 1.31 0.28 0.67 0.42 Na2O 4.02 3.83 3.52 4.12 K2O 4.60 4.24 4.33 4.06 P2O5 0.39 0.28 0.39 0.39 Li2O 0.14 0.19 0.03 0.23 Mg/(Mg+Fe) 0.06 0.03 0.09 0.20 K/(K+Na) 0.43 0.42 0.45 0.39 Nor.Or 27.79 26.10 26.68 25.20 Nor.Ab 36.91 35.83 32.96 38.86 Nor.An 4.02 -0.48 0.79 -0.51 Nor.Q 28.00 31.93 32.90 32.57 Na+K 227.39 213.62 205.52 219.15 *Si 162.86 185.60 187.01 185.28 K-(Na+Ca) -55.41 -38.56 -33.60 -54.24 Fe+Mg+Ti 18.73 28.15 27.00 27.15 Al-(Na+K+2Ca) 4.75 60.95 54.35 4.66 (Na+K)/Ca 9.73 42.78 17.20 29.26 A/CNK 1.05 1.31 1.29 1.06
46
Ovčák Granite Ouartz-rich, potassic, peraluminous, mesocratic, S-type granite 113Ovčák 3829Ovčák SiO2 72.03 71.98 TiO2 0.25 0.05 Al2O3 13.75 14.03 Fe2O3 0.12 0.77 FeO 2.49 1.50 MnO 0.05 0.08 MgO 0.41 0.33 CaO 0.65 0.70 Na2O 2.99 3.18 K2O 5.56 5.00 P2O5 0.25 0.23 Li2O 0.04 0.05 Mg/(Mg+Fe) 0.22 0.21 K/(K+Na) 0.55 0.51 Nor.Q 29.42 31.09 Nor.Or 34.58 30.97 Nor.Ab 28.26 29.94 Nor.An 1.66 2.05 Na+K 214.54 208.78 *Si 177.34 182.23 K-(Na+Ca) 9.98 -8.94 Fe+Mg+Ti 49.49 39.35 Al-(Na+K+2Ca) 32.30 41.78 (Na+K)/Ca 18.51 16.73 A/CNK 1.16 1.21 Kynžvart-Žandov Granite Quartz-rich, sodic/potassic, peraluminous, leucocratic, Stype granite Kyn25-5 Kyn26-5 Kyn27-7 SiO2 72.81 75.08 75.41 TiO2 0.23 0.11 0.21 Al2O3 13.35 13.23 13.34 Fe2O3 1.13 0.33 0.51 FeO 1.28 0.79 1.15 MnO 0.03 0.01 0.02 MgO 0.17 n.d. 0.05 CaO 1.08 0.67 0.69 Na2O 2.96 3.67 2.97 K2O 5.75 5.05 5.17 P2O5 0.1 0.11 0.11 Li2O 0.01 0.01 0 Mg/(Mg+Fe) 0.11 0 0.05 K/(K+Na) 0.56 0.47 0.53 Nor.Or 35.08 30.49 31.32 Nor.Ab 27.44 33.68 27.34
47
Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
4.78 29.49 217.6 173.54 7.3 39.47 6.04 11.29 1.03
2.58 31.09 225.65 182.91 -23.16 16.64 10.45 18.88 1.05
2.75 34.65 205.61 204.48 1.44 26.66 31.39 16.47 1.14
3.1.2.9. AUE-SCHWARZENBERG STOCKS (ASS) Schwarzenberg Granite – medium- to coarsegrained equigranular two-mica granite. Size and shape (on erosion level): small size apical outcrops of the shallow multistage intrusion forming large subsurface NE extention (200–300 km2) of the Western Krušné hory Mts. (Erzgebirge) Composite Pluton. Age and isotopic data: Aue Granite (suite) 324.3 ± 3.1 Ma (Th-U-total U uraninite), Beierfeld Granite 323.7 ± 3.1 Ma (Th-U-total U uraninite), Bernsbach Granite 320.7 ± 2.9 Ma (Th-U-total U uraninite), Schwarzenberg Granite 323.3 ± 2.4 Ma (Th-U-total U uraninite). Geological environment: low-grade garnet phyllites and medium-grade mica schists formed during an amphibolite-facies of the Barrow-type metamorphism. The Aue-Schwarzenberg Granite Zone is associated with the Gera-Jáchymov lineament zone and lamprophyric dykes. Contact aureole: not reported. Mineralization: spatially associated ore deposits (Sn, W, Mo, Pb, Zn, Bi, Co, Ni) In particular Aue Granite suite should served as major source for U accumulated in important post-granitic deposits of Schneeberg and Schlema-Alberoda. Heat production (μWm-3): Aue Granite 2.8–8.8, Burkerdorf Granite 4.9–7.5, Beierfeld Granite 9.5, Lauter Granite 1.4–2.6, Bernbach Granite 5.7-6.5, Schwarzenberg Granite 3.0–6.8.
Regional position: members of the Western Krušné hory (Erzgebirge) Composite Pluton. ASS consists of the Aue-Schwarzenberg Granite Zone (Aue Suite and Schwarzenberg Suite )as a part of the Western Krušné hory Mts. (Erzgebirge) Composite Pluton. Aue-Schwarzenberg Stocks are located within the deep-reaching Gera-Jachymov fault zone, intruded early-Variscan metamorphosed sediments of Palaezoic age. ASS forms a cluster of smaller sized, shallowly intruded (partly buried) satellite stocks od the periphery of the Eibenstock-Karlovy Vary Composite Massif. The Aue suite consists of the Gleesberg Stock, Auerhammer Stock and Aue Stock. The Schwarzenberg Suite comprises the Lauter Stock, Neuwelt Stock, Schwarzenberg Stock and Erla Stock. Rock types: Biotite granite group (OIC – Older Igneous Complex): Burkersdorf Granite – medium- to coarse-grained, weakly porphyritic biotite granite. Bernbach Granite – medium-grained, weakly porphyritic biotite granite. Beierfeld Granite – fine-grained equigranular biotite granite. Aue Granite – medium to coarse-grained to weakly porphyritic seriate biotite granite. Two-mica granite group (TGG – Transitional Granite Group): Lauter Granite – medium- to fine-grained equigranular two-mica granite.
48
Fig. 3.30. Aue-Schwarzenberg Stocks. Aue Suite:1 – Aue Granite, 2 – Burhersdorf Granite, 3 – Bernbach Granite, 4 – Beierfeld Granite, Two-mica Suite: 5 – Lauter Granite, 6 – Schwarzenberg Granite.
Aue Granite Quartz-normal, sodic/potassic, peraluminous, mesocratic, S-type granite n=8 Median Min Max QU1 SiO2 71.70 70.10 76.20 70.50 TiO2 0.28 0.09 0.49 0.16 Al2O3 14.30 13.30 14.90 13.40 Fe2O3tot 1.83 0.53 2.84 1.08 MnO 0.04 0.03 0.06 0.04 MgO 0.56 0.16 0.93 0.26 CaO 1.09 0.37 1.72 0.73 Na2O 3.46 1.73 3.65 3.33 K2O 4.75 4.33 5.08 4.72 P2O5 0.21 0.11 0.31 0.14 Mg/(Mg+Fe) 0.36 0.32 0.39 0.36 K/(K+Na) 0.47 0.46 0.64 0.46 Nor.Q 29.15 26.81 40.40 28.42 Nor.Or 29.18 26.66 30.62 28.72 Nor.Ab 31.93 16.64 33.83 30.69 Nor.An 4.15 1.13 7.04 2.54 Na+K 214.65 156.47 220.60 199.39 *Si 169.13 157.07 227.76 166.14 K-(Na+Ca) -29.41 -46.19 24.49 -41.64 Fe+Mg+Ti 41.20 11.74 64.80 21.99 Al-(Na+K+2Ca) 25.98 23.96 83.70 24.88 (Na+K)/Ca 9.56 6.50 32.73 7.70 A/CNK 1.12 1.11 1.46 1.12
49
QU3 72.20 0.31 14.60 2.07 0.04 0.60 1.27 3.50 4.94 0.26 0.38 0.49 33.30 30.00 32.40 4.72 216.54 194.81 -22.80 44.33 31.70 13.59 1.15
Aue-Schwarzenberg Stocks Burkersdorf Granite – quartz-normal, potassic, peraluminous, mesocratic, S-type granite Lauter Granite – quartz-rich, sodic/potassic, peraluminous, leucocratic, S-type granite Schwarzenberg Granite – quartz-rich, sodic, strongly peraluminous, leucocratic, S-type granite BurkersdorfGranite LauterGranite SchwarzenbergGranite BUR991 BUR996 LAU806 LAU806a SGS8002 SGS803 SiO2 69.10 71.60 76.00 74.80 73.70 76.00 TiO2 0.46 0.39 0.09 0.06 0.13 0.06 Al2O3 14.90 14.20 13.50 14.10 14.40 13.90 Fe2O3tot 2.54 2.05 0.50 0.54 1.12 0.59 MnO 0.06 0.04 0.02 0.03 0.03 0.03 MgO 0.96 0.74 0.13 0.10 0.30 0.07 CaO 1.46 1.37 0.27 0.34 0.51 0.28 Na2O 3.18 3.16 3.72 3.37 3.46 4.06 K2O 5.16 4.98 4.57 4.90 4.72 3.80 P2O5 0.22 0.17 0.09 0.20 0.26 0.18 Mg/(Mg+Fe) 0.42 0.41 0.33 0.26 0.34 0.18 K/(K+Na) 0.52 0.51 0.45 0.49 0.47 0.38 Nor.Q 26.09 29.41 34.38 34.35 33.03 35.50 Nor.Or 31.89 30.53 27.57 29.71 28.65 22.85 Nor.Ab 29.87 29.44 34.11 31.05 31.92 37.11 Nor.An 6.06 5.89 0.76 0.38 0.84 0.21 Na+K 212.18 207.71 217.07 212.79 211.87 211.70 *Si 153.82 173.23 201.35 198.15 190.94 206.61 K-(Na+Ca) -19.09 -20.66 -27.83 -10.77 -20.53 -55.32 Fe+Mg+Ti 61.41 48.93 10.62 10.00 23.11 9.88 Al-(Na+K+2Ca) 28.36 22.29 38.41 51.98 52.73 51.28 (Na+K)/Ca 8.15 8.50 45.09 35.10 23.30 42.40 A/CNK 1.13 1.10 1.18 1.26 1.26 1.25 Trace elements (in ppm): Aue Granite – Li 94, Be 8.9, Sc 3.7, Co 2.3, Ni 2.2, Zn 45, Ga 19, Rb 279, Sr 129, Y 15, Zr 134, Nb 16, Mo 0.4, Sn 8.6, Cs 18, Ba 352, Hf 11, Ta 2.5, W 2, Pb 34, Th 18, U 16 (Förster et al. 2009). Burkersdorf Granite – Li 74, Be 4.9, Sc 5.8, Co 3.2, Ni 4, Zn 32, Ga 17, Rb 255, Sr 147, Y 21, Zr 189, Nb 19, Mo 6.3, Sn 6.8, Cs 17.9, Ba 453, Hf 5.2, Ta 2.1, W 2, Pb 37, Th 23, U 14 (Förster et al. 2009). Lauter Granite – Li 75, Be 12, Sc 33, Co 0.5, Ni 1.5, Zn 27, Ga 22, Rb 507, Sr 11, Y 11, Zr 31, Nb 22, Mo 0.26, Sn 27, Cs 28, Ba 40, Hf 1.85, Ta 5.2, W 6.7, Pb 19, Th 5.5, U 4.7 (Förster et al. 2009). Schwarzenberg Granite – Li 68, Be 13, Sc 3.1, Co 1.2, Ni 1.9, Zn 33, Ga 21, Rb 405, Sr 35, Y 10, Zr 51, Nb 18, Mo 0.7, Sn 16, Cs 29, Ba 123, Hf 1.9, Ta 4, W 6.3, Pb 17, Th 5.4, U 9.4 (Förster et al. 2009) References FÖRSTER, H.-J. – ROMER, R. L – GOTTESMANN, B. – TISCHENDORF, G. – RHEDE, D. (2009): Are the granites of the Aue-Schwarzenberg (Erzgebirge, Germany) a major source metalliferous ore deposits ? A geochemical, Sr-Nd-Pb isotopic, and geochronological study. – Neu. Jb. Mineral., Abh. 186/2, 163– 184.
50
3.1.3. MIDDLE KRUŠNÉ HORY MTS. COMPOSITE PLUTON Regional position: Central section of the Krušné hory Mts.-Smrčiny Batholith in the Saxothuringian Zone. Mostly hidden polyphase granite pluton with numerous small stocks in its roof. Several mineralised cupolas and their exocontacts have been explored and mined for tin and tungsten mainly in ore district Ehrenfriedersdorf (e.g Sauberg, Vierung) and Pobershau-Seiffen Stocks. Only a small number of stocks crops out in crystalline rocks: partly mineralised Geyer, Ziegelberg and Greifensteine stocks and barren (unexplored) Stauweiher, Pflanzgarten, Wiesenbad, Buchholz, NW-Field, Neudorf and Svatá Kateřina stocks. Rock types: Four granite phases of the Ehrenfriedersdorf Granite (YIC): A – fine-grained porphyritic granite, B – medium-grained porphyritic granite, C–D – mostly medium-grained Li-mica alkalifeldspar granites). Zinwaldite alkali-feldspar granite – single outcrop and a small outcrop of YIC biotite granite near Hora Sv. Kateřiny (Lesná Stock, 0.35 km2). Prevailing granite phase C (called “Normal granite”) is fine- to medium-grained monzogranite.
Size and shape: approx. 1,000 km2 (50 × 20 km) in depth of – 1,000 m a large oval shape, W-E oriented pluton with a series of hidden stocks (about or less than 1km2, 6 km2 total area of outcrops) in the roof of the Pobershau-Seiffen hidden granite ridge, 75 km2 in depth of –500 m a.s.l. (contains mineralised greisen bodies). Age and isotopic data: Westphalian-Permian. YIC granite 328–326 Ma (Rb-Sr whole rock), two maxima 354–336 Ma and 311–300 Ma (K-Ar Limica), Ehrenfriedersdorf Granite 316 ± 10, 327 ± 5. 317.2 ± 4.2, 291.3 ± 2.3 Ma (Rb-Sr whole rock), 323.9 ± 3.5, 320.6 ± 1.9, 319.7 ± 3.4 Ma (U-Pb uraninite). Seiffen Granite 302 ± 4 Ma (U-Pb chemical monazite), 301 ± 5 Ma (K-Ar biotite). Geological environment: gneisses and orthogneisses of the Annaberg-Marienberg anticline. Contact aureole: poorly defined by mineralised quartz-vein stockworks. Mineralization: Sn-greisen and quartz-vein stockworks at the endo- and exo-contacts of the granite stocks, U and Fe-Zn-Pb mineralization in exocontact of calc-silicate rocks.
Fig. 3.31. Middle Krušné hory Mts. Composite Pluton geological sketch-map (after Hoth, Tischendorf and Berger 1995). 1 – Granite stocks (contours and/or sub outcrops), 2 – 500 m a.s.l. isohyps, 3 – ± 0 m a.s.l. isohyps, 4 – –500 m a.s.l. isohyps, 5 – faults.
51
Ehrenfriedersdorf Granite (C-phase) Quartz-normal, sodic, moderately peraluminous, leucocratic, S-type, I-series, alkalifeldspar granite n = 10 Med. Min Max QU1 QU3 SiO2 73.70 67.14 74.81 72.60 74.20 TiO2 0.03 0.01 0.12 0.01 0.04 Al2O3 15.03 13.15 18.73 14.60 15.40 Fe2O3tot 0.90 0.01 1.35 0.45 0.98 FeO n.d. n.d. 1.04 n.d. n.d. MnO 0.03 0.02 0.05 0.03 0.03 MgO 0.08 0.04 0.28 0.05 0.11 CaO 0.51 0.27 0.72 0.43 0.59 Na2O 3.80 1.78 5.68 3.70 3.97 K2O 3.96 3.18 5.37 3.54 4.26 P2O5 0.51 0.27 0.76 0.41 0.56 Mg/(Mg+Fe) 0.10 0.06 0.26 0.10 0.18 K/(K+Na) 0.40 0.32 0.65 0.38 0.41 Nor.Or 23.93 19.24 31.40 21.29 25.80 Nor.Ab 34.74 17.00 50.47 33.88 36.54 Nor.An -0.53 -3.11 0.38 -1.80 -0.26 Nor.Q 33.15 13.16 43.61 32.74 34.59 Na+K 209.85 162.75 297.31 200.52 212.62 *Si 189.07 68.04 247.17 182.99 198.90 K-(Na+Ca) -55.90 -84.99 40.20 -79.97 -44.61 Fe+Mg+Ti 15.24 12.62 28.57 14.39 17.16 Al-(Na+K+2Ca) 65.52 49.11 82.16 61.94 69.95 (Na+K)/Ca 21.75 16.45 45.38 19.91 26.75 A/CNK 1.35 1.22 1.50 1.32 1.38
Fig. 3.32. Middle Krušné hory Mts. Composite Pluton YIC Granites ABQ and TAS diagrams. 1 – fine-grained porphyritic granite (A-phase), 2 – medium-grained granite (B-phase), 3 – medium-grained granite (C-phase is prevailing granite), 4 – medium-grained granite (D-phase).
52
Svatá Kateřina (Lesná) Stock Quartz-rich, sodic, weakly peraluminous, leucocratic, I-type, granite 1389 1390 3644 4554 SiO2 76.11 75.83 76.03 75.50 TiO2 0.03 0.01 0.02 0.01 Al2O3 12.78 12.63 12.84 12.61 Fe2O3 0.35 0.07 0.34 1.02 FeO 0.82 0.81 0.63 n.d. MnO 0.04 0.03 0.04 0.04 MgO n.d. n.d. 0.02 0.04 CaO 0.41 0.23 0.35 0.20 Na2O 4.00 4.58 4.15 4.42 K2O 4.36 3.98 4.29 4.36 P2O5 0.02 0.01 0.02 0.09 Li2O 0.11 0.14 n.d. 0.15 Mg/(Mg+Fe) 0.00 0.00 0.04 0.07 K/(K+Na) 0.42 0.36 0.40 0.39 Nor.Or 26.38 24.17 25.94 26.34 Nor.Ab 36.79 42.27 38.13 40.58 Nor.An 1.95 1.11 1.66 0.40 Nor.Q 32.99 31.25 32.54 31.13 Na+K 221.65 232.30 225.01 235.20 *Si 195.72 185.66 192.64 181.28 K-(Na+Ca) -43.82 -67.39 -49.06 -53.62 Fe+Mg+Ti 16.18 12.28 13.79 13.90 Al-(Na+K+2Ca) 14.70 7.52 14.70 5.30 (Na+K)/Ca 30.32 56.64 36.15 65.95 A/CNK 1.06 1.03 1.06 1.03
4475 82.71 0.02 9.16 0.56 n.d. 0.02 0.03 0.10 2.75 3.90 0.10 0.01 0.09 0.48 23.81 25.52 -0.14 49.59 171.55 286.12 -7.72 8.01 4.77 96.20 1.04
Fig. 3.33. Lesná Stock ABQ and TAS diagrams. Lesná Granite.
References BREITER, K. – KVIČINSKÝ, Z. – MLČOCH, B. (1989): Výsledky vrtu HSŠ-1 Hora Sv. Šebastiána. – Zpr. geol. Výzk. v Roce 1986, 15, p. 15.
53
FÖRSTER, H.-J. – RHEDE, D. (2006): The Ba-Ta-rich granite of Seiffen (eastern Erzgebirge, Germany): accessory-mineral chemistry, composition, and age of a late-Variscan Li-F granite of A-type affinity. – Neu. Jb. Mineral., Abh. 182, 307–321. GERSTENBERGER, H. – HAASE, G. – HABEDANK, M. (1983): Rb/Sr-Datierungen der jüngeren Granite in Ehrenfriedersdorf. – ZfI-Mitt. 76, 125–133. GERSTENBERGER, H. – HAASE, G. – WEMMER, K. (1995): Isotope systematics of the Variscan postkinematic granites in the Erzgebirge (E Germany). In: Extended Abstracts of the 2nd Symposium on Permocarboniferous Igneous Rocks, Potsdam, 27–29 October. – Terra Nostra 7, 36–41. HÖSEL, G. – FRITSCH, E. – JOSIGER, U. – WOLF, P. (1996): Das Lagerstättengebiet Geyer. – Bergbau in Sachsen 4, 112 pp. HÖSEL, G. – HOTH, K. – JUNG, D. – LEONHARD, D. et al. (1994): Das Zinnerz-lagerstättengebiet Ehrenfriedersdorf (Erzgebirge). – Bergbau in Sachsen 1, 196 pp. HOTH, K. – OSSENKOPF, W. – HÖSEL, G. et al. (1999): Die Granite im Westteil des Mittelerzgebirgischen Teilplutons und ihr Rahmen. – Geoprofil 3, 3–13. OELSNER, O. W. (1952): Die Abhängigkeit der Paragenesen der erzgebirgischen Lagerstättenbezirke vom Intrusionsalter der zugehörigen Granite. – Freiberg. Forsch.-H., R. C 3, 24–34. RENÉ, M. (2002): Geochemical comparison between topaz-bearing granites of the Central and Western Krušné hory Mts. – Acta montana, A 21, 111–126. ROMER, R. L. – THOMAS, R. – STEIN, H. J. – RHEDE, D. (2007): Dating multiply overprinted Snmineralized granites – examples from the Erzgebirge, Germany. – Mineralium Depos. 42, 337–359.
3.1.4. EASTERN KRUŠNÉ HORY MTS. COMPOSITE PLUTON
Fig. 3.34. Eastern Krušné hory Mts. (Erzgebirge) Composite Pluton hierarchical scheme according to rock groups, rock types, massifs, stocks and ring dyke.
54
Fig. 3.35. Eastern Krušné hory Mts. (Erzgebirge) Composite Pluton geological sketch-map (after Hoth, Tischendorf, and Berger 1995, adapted according to Müller and Seltmann 2002). 1 – Teplice Rhyolite and Tharandt Volcanic Complex, 2 – OIC: Niederbobritzsch, Fláje, Telnice granites, 3 – Loučná-Frauenstein and Altenberg Granite Porphyry (Altenberg-Frauenstein Ring Dyke), 4 – YIC: Schellerhau-Altenberg, Zinnwald-Cínovec, Krupka (Preisselberg), Markersbach granites, 5 – Rhyolite Dykes, 6 – outline of the cauldron subsidence, 7 – faults, 8 – subsurface outline of granite intrusions, 9 – state border.
Regional position: Eastern section of the Krušné hory-Smrčiny Batholith in the Saxothuringian Zone. Partly hidden polyphase granite pluton comprising the Volcanic-Subvolcanic Group and Plutonic Group of igneous rocks. The Volcanic-Subvolcanic Group consists of the Altenberg-Teplice Volcanic Caldera and Altenberg-Frauenstein Ring Dyke. The Plutonic Group is represented by the Fláje Composite Massif, the Telnice Stock, the Niederbobritzsch Massif, the Markersbach Stock, including the Schellerhau Stock, Cínovec (Zinnwald)-Krupka Composite Massif and several
five mini-satellite stocks (the Sadisdorf Stock, the Sachsenhöhe Stock, the Altenberg Stock, the Hegelshöhe Stock, the Schenkenshöhe Stock). Presence of volcanic suites in the roof of the Plutonic Group intrusions. OIC granites occur in the marginal parts of the area, the YIC granites occupy its centre. Rock types: VOLCANIC-SUBVOLCANIC GROUP Altenberg-Teplice Volcanic Caldera Schönfeld Unit Teplice Rhyolite
55
Altenberg-Frauenstein Ring Dyke Loučná Granite Porphyry. PLUTONIC GROUP A. OLDER IGNEOUS COMPLEX (OIC): Niederbobritzsch Granite, Fláje Granite, Telnice Granite. B. YOUNGER IGNEOUS COMPLEX (YIC): Sadisdorf Granite, Schellerhau Granite, Altenberg Granite, Zinnwald-Cínovec Granite, Krupka (Preisselberg) Granite, Knötel Granite, Markersbach Granite. Size and shape: 2400 km2 in depth of –1000 a. s. l., a large subsurface elliptical NW-SE oriented
pluton of a domal shape (YIC ~ 20 × 10 km) with local protuberances in its roof. The Teplice subsidence volcanic caldera (approx. 50 km in diameter) is intruded by the Schellerhau Stock and Cínovec (Zinnwald)-Krupka Composite Massif. Age and isotopic data: Viséan-Permian, OIC granites (311 ± 2 Ma) are clearly older then Westphalian B/C. Niederbobritzsch Granite 315 ± 6 Ma, 320 ± 6 (Pb-Pb zircon), YIC granites are younger than the Teplice Rhyolite, which extruded during Westphalian C/D (311 ± 2 Ma), Altenberg Granite 293 Ma (Rb-Sr whole rock), 290 ± 5 Ma (Pb-Pb zircon evaporation), 297 ± 13 Ma (K-Ar amphibole). Geological environment: Neoproterozoic orthogneisses, migmatites and paragneisses.
References BREITER, K. (1997): The Teplice rhyolite (Krušné hory Mts., Czech Republic) – chemical evidence of a multiply exhausted stratified magma chamber. – Věst. Čes. geol. Úst. 72, 205–213. BREITER, K. – NOVÁK, J. K. – CHLUPÁČOVÁ, M. (2001): Chemical evolution of volcanic rocks in the Altenberg-Teplice Caldera (Eastern Krušné hory Mts., Czech Republic, Germany). – Geolines 13, 17–22. BREITER, K. – SOKOLOVÁ, M. – SOKOL, A. (1991): Geochemical specialization of the tin-bearing granitoid massifs of NW Bohemia. – Mineralium Depos. 26, 298–306. CHRT, J. – MALÁSEK, F. (1984): Skrytý relief rudohorských žul mezi Cínovcem a Krupkou (The hidden relief of the Erzgebirge granites between Cínovec and Krupka). – Geol. Průzk. 26, 11, 305–309. HAAKE, R. (1972): Zur Altenstellung granitoider Gesteine im Erzgebirge. – Geologie 21, 6, 641–676. JIRÁNEK, J. – SCHOVÁNKOVÁ, D. – SCHULMANN, K. (1988): Stavba tělesa teplického ryolitu. – Sbor. Západočes. Muz. Plzeň, Přír. 67, 56–62. JUST, G. – SELTMANN, R. – SCHILKA, W. (1992): Zur Geochemie der Zinngranite von Altenberg, Sadisdorf und Zinnwald. – Geophys. Veröff. Univ. Leipzig, Bd IV, 4, 65–77. MENNING, M. (1987): Vergleich numerischer Zeitskalen. Vorschlag einer synthetischen Zeitskala, Zeitanalyse im Jungpaläozoikum sowie zur Dauer der „Saalischen Phase“. – Ber. Zentralinst. Physik Erde, Potsdam. MÜLLER, A. – BREITER, K. – SELTMANN, R. – PECSKAY, Z. (2005): Quartz and feldspar zoning in the eastern Erzgebirge volcano-plutonic complex (Germany, Czech Republic): evidence of multiple magma mixing. – Lithos 80, 201–227. RÖLLIG, G. – SCHIRMER, B. (1979): On the petrological evolution and formational division of the Variscan subsequent volcanism in the southern part of the GDR. – Veröff. Zentralinst. Phys. Erde 58, 229–239. ROMER, R. L. – THOMAS, R. – STEIN, H. J. – RHEDE, D. (2007): Dating multiply overprinted Snmineralized granites – examples from the Erzgebirge, Germany. – Mineralium Depos. 42, 337–359. SATTRAN, V. (1957): Odnos krystalinika v prostoru východních Krušných hor. – Věst. Ústř. Úst. geol. 32, 316–322. ŠTEMPROK, M. – HOLUB, F. V. – NOVÁK, J. K. (2003): Multiple magmatic pulses of the Eastern Volcano-Plutonic Complex, Krušné hory/Erzgebirge batholith, and their phosphorus contents. – Bull. Geosci. 78, 3, 277–296.
56
3.1.4.1. FLÁJE COMPOSITE MASSIF Regional position: member of the OIC Plutonic Group in the Eastern Erzgebirge-Krušné hory Mts. Composite Pluton.
Fig. 3.36. Fláje Massif geological (after Hoth, Tischendorf and Berger 1995). 1 – Loučná-Frauenstein Granite Porphyry (Frauenstein Porphyritic Microgranite), 2 – Fláje Granite – a facies, 3 – Fláje Granite – b facies, 4 – Fláje Granite – c facies, 5 – Fláje Granite – d facies, 6 – faults.
Rock types: 1. Fláje Granite: four facies a. porphyritic coarse-grained monzogranite, b. porphyritic medium-grained monzogranite,
biotite
c. porphyritic fine-grained muscovite-biotite monzogranite (transitional relationship between a–d facies), d. porphyritic fine-grained biotite monzogranite. 2. Loučná (Fláje-Frauenstein) Granite Porphyry (Frauenstein porphyritic Microgranite): three facies – a. hornblende-biotite granodiorite porphyry, b. biotite granodiorite porphyry, c. biotite granite porphyry. 3. Moldava Granite – leucocratic biotite granite (YIC?) intruding the Fláje Granite and the Loučná Granite Porphyry at depth of less than 1 km. Size and shape (on erosion level): 50 km2, elliptical (Fláje Granite), Loučná Granite Porphyry – up to 1 km thick and 60 km long dyke (ca. 30 km2). Age and isotopic data: Upper Carboniferous. No isotopic data. Geological environment: Migmatized two mica and biotitic paragneisses, mica-schists and orthogneisses. Contact aureole: narrow zone. Zoning: The Fláje Granite shows distinct compositional asymmetric zoning with decrease of basicity and biotite content from south to north. Anomalous magnetization of the intrusion. Loučná Porphyry – compositional zoning – decrease of basicity towards north (from granodiorite porphyry to granite porphyry). Mineralization: Fluorite-barite hydrothermal Deposits (Moldava Deposit), greisen indices. Heat production (μWm-3): Fláje Granite 2.5, 4.8
biotite
Fláje Granite (a–c facies) Quartz-normal to quartz-rich, sodic, weakly peraluminous, mesocratic, S-type, M-series, biotite granodiorite, the Fláje Granite – facies (Fl-4, Fl-5) are more evolved variety, quartz-rich, potassic, weakly peraluminous, leucocratic granite 477Fl Fl-2 Fl-1 478Fl Fl-4 Fl-5 SiO2 67.07 66.54 68.34 68.21 73.85 73.54 TiO2 0.58 0.54 0.47 0.35 0.20 0.18 Al2O3 16.45 15.10 14.94 13.89 12.82 14.10 Fe2O3 0.78 1.11 1.32 3.81 0.13 0.66 FeO 2.02 1.96 1.39 1.16 0.55 0.48 MnO 0.05 0.04 0.05 n.d. 0.02 0.02 MgO 1.41 1.82 1.49 0.54 0.27 0.45
57
CaO 2.50 2.22 2.49 2.90 0.94 0.74 Na2O 3.52 3.39 3.60 3.38 3.08 3.59 K2O 3.70 3.95 3.96 3.68 5.12 4.52 P2O5 0.24 0.25 0.21 0.80 0.22 0.10 Mg/(Mg+Fe) 0.48 0.52 0.50 0.17 0.41 0.42 K/(K+Na) 0.41 0.43 0.42 0.42 0.52 0.45 Nor.Or 22.99 25.04 24.53 22.71 31.63 27.54 Nor.Ab 33.24 32.66 33.89 31.69 28.92 33.24 Nor.An 11.38 10.05 11.50 9.52 3.36 3.11 Nor.Q 24.02 23.94 24.56 28.75 33.20 31.89 Na+K 192.15 193.26 200.25 187.21 208.10 211.82 *Si 150.22 149.50 149.28 156.73 190.43 187.37 K-(Na+Ca) -79.61 -65.11 -76.49 -82.65 -7.44 -33.07 Fe+Mg+Ti 80.16 93.13 78.75 81.68 18.49 28.37 Al-(Na+K+2Ca) 41.73 24.10 4.34 -17.86 10.13 38.69 (Na+K)/Ca 4.31 4.88 4.51 3.62 12.41 16.05 A/CNK 1.17 1.11 1.03 1.00 1.06 1.17 Trace elements (mean values in ppm): Fláje Granite – Ba 704, Cs 12.2, Ga 20, Hf 5.5, Li 125, Nb 12, Pb 40, Rb 162, Sc 7.3, Sn 5, Sr 292, Th 17.9, U 3, Y 29, Zn 54, Zr 126, (Breiter, Sokolová and Sokol 1991).
Fig. 3.37. Fláje Composite Massif ABQ and TAS diagrams. 1 – Fláje Granite, 2 – Moldava Granite.
Moldava Granite Quartz-normal, sodic/potassic, peraluminous, meso - leucocratic, S-type granite fmo475F MOp2 Fl4 Fl5 Fl6 SiO2 70.63 71.94 73.84 73.54 72.77 TiO2 0.37 0.23 0.2 0.18 0.18 Al2O3 14.05 14.48 12.81 14.1 13.92 Fe2O3 0.47 0.46 0.12 0.66 0.63 FeO 1.51 0.72 0.55 0.47 0.18 MnO 0.03 0.03 0.01 0.02 0.02 MgO 0.98 0.37 0.27 0.44 0.3 CaO 1.47 0.47 0.93 0.74 0.56 Na2O 3.29 2.92 3.07 3.58 2.39 K2O 4.36 5.59 5.11 4.51 6.23 58
P2O5 Mg/(Mg+Fe) K/(K+Na) Nor.Or Nor.Ab Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
0.18 0.46 0.46 27.31 31.35 6.46 29.18 199.27 175.14 -39.92 56.25 24.21 7.6 1.11
0.25 0.35 0.55 34.47 27.36 .69 31.35 212.91 180.48 15.9 27.85 54.51 24.87 1.26
0.21 0.41 0.52 31.66 28.95 3.36 33.23 208.09 190.42 -7.45 18.49 10.13 12.41 1.06
0.1 0.42 0.45 27.53 33.24 3.1 31.89 211.81 187.36 -33.08 28.37 38.68 16.05 1.17
0.38 0.4 0.63 38.44 22.38 0.26 33.26 209.61 187.37 45.2 20.34 43.41 20.62 1.23
References BREITER, K. – SOKOLOVÁ, M. – SOKOL, A. (1991): Geochemical specialization of the tin-bearing granitoid massifs of NW Bohemia. – Mineralium Depos. 26, 298–306. FRITZSCHE, E. (1928): Beitrag zur geochemischen Kenntniss der erzgebirgischen Granitmassive. – Neu. Jb. Mineral., Abh. A 58, 253–302. HEJTMAN, B. (1984): Petrografie vyvřelých hornin Českého masívu. Část I. Intruzivní vyvřelé horniny západních a severozápadních Čech. – 186 pp. Univ. Karl. Praha. NOVÁK, J. K. – REICHMANN, F. – SATTRAN, V. (1981): Charakter žul krušnohorského plutonu mezi Flájemi, Moldavou a Vápenicí ve východních Krušných horách. – Čas. Mineral. Geol. 26, 1, 7–19. SATTRAN, V. (1960): Flájská žula a loučensko-flajský žulový porfyr. – Sbor. Ústř. Úst. geol., Odd. geol., 26, 1, 75–99. ŠTEMPROK, M. – HOLUB, F. V. – NOVÁK, J. K. (2003): Multiple magmatic pulses of the Eastern Volcano-Plutonic Complex, Krušné hory/Erzgebirge batholith, and their phosphorus contents. – Bull. Geosci. 78, 3, 277–296. 3.1.4.2. TELNICE STOCK
Fig. 3.38. Telnice Stock geological (after Chrt and Klomínský 1964). 1 – leucocratic granite /marginal facies), 2 – Telnice Granite, 3 – faults.
Regional position: member of the OIC Plutonic Group in the Eastern Erzgebirge-Krušné hory Mts. Composite Pluton. Rock types:
Telnice Granite (OIC) – porphyritic biotite syenogranite to monzogranite. A narrow leucocratic marginal facies is enriched in muscovite. Size and shape (on erosion level): ca. 1 km2 (1.5 × 0.9 km). A small elliptical stock with moderately dipping contacts. Age and isotopic data: Upper Carboniferous, 338 Ma (K-Ar biotite). Geological environment: biotite to two mica Grey Gneiss (Fürstenwald-Lauenstein Gneiss) and migmatites. Contact aureole: The wall rock is deformed by discordant intrusion. Zoning: A weak textural and compositional concentric zonation. Central granite is surrounded by narrow zone of the marginal leucocratic granite. Mineralization: Mo (within the granite intrusion), Bi-Ag, Ba veins (in exocontact).
59
References BRAUN, F. J. (1941): Die Granitvorkommnisse um Telnitz im Erzgebirge. – Tschermaks mineral. petrogr. Mitt. 53, 93–117. CHRT, J. – KLOMÍNSKÝ, J. (1964): Mineralizace telnického granodioritového tělesa v Krušných horách. – Věst. Ústř. Úst. geol. 39, 117–126. ŠTEMPROK, M. – HOLUB, F. V. – NOVÁK, J. K. (2003): Multiple magmatic pulses of the Eastern Volcano-Plutonic Complex, Krušné hory/Erzgebirge batholith, and their phosphorus contents. – Bull. Geosci. 78, 3, 277–296.
Fig. 3.39. Telnice Stock ABQ and TAS diagrams. 1 - Telnice Granite, 2 – leucocratic marginal facies.
Telnice Granite Porphyritic biotite monzogranite – (more evolved variety 2–3), quartz-normal, sodic, weakly peraluminous to metaluminous, mesocratic, I-type, I-series granite 1 2 3 479TELN Te-1 Te-2 SiO2 69.93 71.54 71.49 TiO2 0.37 0.32 0.37 Al2O3 14.26 13.49 13.53 Fe2O3 0.77 1.21 0.59 FeO 1.94 0.77 1.26 MnO 0.04 0.03 0.04 MgO 1.26 0.85 0.71 CaO 1.91 1.64 1.59 Na2O 3.60 3.32 3.78 K2O 4.22 4.63 4.38 P2O5 0.15 0.14 0.15 Mg/(Mg+Fe) 0.46 0.44 0.41 K/(K+Na) 0.44 0.48 0.43 Nor.Or 26.21 28.59 27.01 Nor.Ab 33.98 31.16 35.42 Nor.An 8.92 7.54 7.20 Nor.Q 25.51 29.17 27.18 Na+K 205.77 205.44 214.98 *Si 159.48 171.95 162.73
60
K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
-60.63 72.56 6.15 6.04 1.03
-38.07 50.98 0.99 7.02 1.02
-57.33 47.19 -5.98 7.58 0.99
3.1.4.3. NIEDERBOBRITZSCH MASSIF Regional position: member of the OIC Plutonic Group of the Eastern Erzgebirge-Krušné hory Mts. Composite Pluton. Rock types: Niederbobritzsch Normal Granite – fine- to medium-grained biotite monzogranite to granodiorite, least evolved member of the OIC granites. Presence of numerous mafic xenoliths, poorly defined three granitic facies. Low-F biotite granite corresponds to Fláje and Telnice intrusions. Niederbobritzsch-Sohra Hybrid Granite – granodiorite, hybrid facies (75 % of the outcrop surface) assimilating numerous syenodioritic xenoliths.
Size and shape (on erosion level): 20 km2 (7.5 × 3 km) an oval body. Age and isotopic data: 314 ± 5, 325 ± 9 (Rb-Sr whole rock), 309.4 ± 5.2 Ma (Rb-Sr isochrone), 315 ± 6 Ma (K-Ar biotite), 320 ± 6 Ma (Pb-Pb monazite), 324 ± 4 Ma (U-Pb chemical monazite + xenotime + uraninite), 320 ± 6 Ma (Pb-Pb zircon evaporation), Geological environment: The Freiberg Ortogneiss (Grey Gneiss). Contact aureole: not observed. Zoning: not observed. Mineralization: Molybdenite, sphalerite-pyrite and baryte-fluorite veinlets.
References FÖRSTER, H.-J. (2000): Cerite (Ce) and thorian synchysite- (Ce) from Niederbobritzsch granite, Erzgebirge, Germany: implication for the differential mobility of the LREE and Th during alteration. – Canad. Mineralogist 38, 1, 67–80. FÖRSTER, H.-J. – DAVIS, J. C. – TISCHENDORF, G. – SELTMANN, R. (1999): Multivariate analyses of Erzgebirge granite and rhyolite composition: implications for classification of granites and their genetic relations. – Comp. Geosci. 25, 533–546. FRITZSCHE, E. (1928): Beitrag zur geochemischen Kenntniss der erzgebirgischen Granitmassive. – Neu. Jb. Mineral., Abh. A 58, 253–302. GERSTENBERGER, H. (1989): Autometasomatic Rb enrichment in slightly evolved granites causing lowered Rb-Sr isochron intercepts. – Earth Planet. Sci. Lett. 93, 65–75. ROMER, R. L. – THOMAS, R. – STEIN, H. J. – RHEDE, D. (2007): Dating multiply overprinted Snmineralized granites – examples from the Erzgebirge, Germany. – Mineralium Depos. 42, 337–359. RÖSSLER, H.-J. – BOTHE, M. (1990): Bemerkungen zur Petrologie des Granits von Niederbobritzsch bei Freiberg und zur Bildung der Allanite. – Abh. Staatl. Mus. Mineral. Geol. Dresden 37, 73–101. RÖSSLER, H.-J. – BUDZINSKI, H. (1994): Das Bauprinzip des Granits von Niederbobritzsch bei Freiberg (Sa.) auf Grund seiner geochemischen Analyse. – Z. geol. Wiss. 22, 307–324. RÖSSLER, H.-J. – PILOT, J. – STARKE, R. – SCHREITER, E. (1990): Die Vererzungen im Granit von Niederbobritzsch bei Freiberg. – Abh. Staatl. Mus. Mineral. Geol. Dresden 37, 103–123. SCHLICHTING. M. – PILOT, J. – RÖSLER, H.-J. (1985): Strontium-Isotopenuntersuchungen am Niederbobritzscher Granit. – Freiberg. Forsch.-H., R. C 383, 107–114. SELTMANN, R. – MÜLLER, A. (2002): The eastern Erzgebirge granite pluton: from mantled feldspar to snowball quartzes. – Miner. Soc. Poland, 20, p. 41. TICHOMIROWA, (1997): 207Pb/206Pb-Einzelzirkondatierungen zur Bestimmung des Intrusionalters des Niederbobritzschen Granites. – Terra Nostra 8, 183–184.
61
Niederbobritzsch Normal Granite Quartz-normal, sodic-potassic, metaluminous, mesocratic, S-type, M-series, granite to granodiorite n=8 Med. Min Max Q1 Q3 SiO2 71.42 66.80 76.20 68.74 74.20 TiO2 0.33 0.12 0.94 0.25 0.59 Al2O3 13.10 11.30 15.61 12.52 14.20 Fe2O3 1.51 0.00 3.54 0.61 1.86 FeO 0.00 0.00 4.23 0.00 0.48 MnO 0.00 0.00 0.06 0.00 0.03 MgO 0.45 0.15 1.40 0.30 0.71 CaO 1.24 0.51 3.02 0.65 1.54 Na2O 3.28 2.89 3.86 3.05 3.57 K2O 4.88 3.54 5.68 4.39 5.07 P2O5 0.18 0.00 0.48 0.03 0.23 Mg/(Mg+Fe) 0.31 0.25 0.43 0.26 0.35 K/(K+Na) 0.48 0.43 0.55 0.45 0.51 Nor.Or 29.33 21.62 34.63 26.98 30.97 Nor.Ab 30.23 26.83 35.50 28.26 33.08 Nor.An 4.18 2.19 15.39 2.39 6.46 Nor.Q 30.00 20.42 34.32 23.62 30.81 Na+K 215.83 168.42 224.78 211.56 219.02 *Si 175.06 125.51 201.06 144.03 191.90 K-(Na+Ca) -32.73 -73.28 -5.17 -71.95 -7.85 Fe+Mg+Ti 44.05 12.87 97.23 32.73 71.38 Al-(Na+K+2Ca) 4.02 -54.22 32.60 -17.07 15.60 (Na+K)/Ca 9.63 3.13 23.71 4.92 11.78 A/CNK 1.04 0.80 1.14 0.98 1.07 Trace elements (mean values in ppm): Niederbobritzsch Normal Granite – Ba 655, Be 3.5, Bi 0.81, Co 3.3, Cs 5.94, Ga 20, Hf 5.21, Li 58, Mo 0.66, Ni 5.6, Nb 13, Pb 32.8, Rb 231, Sb 0.09, Sc 5.0, Sn 9, Sr 216, Ta 1.9, Th 20.2, Tl 1.52, U 11.4, W 3.7, Y 18.5, Zn 50, Zr 160, La 36.9, Ce 72.0, Pr 8.59, Nd 28.9, Sm 5.32, Eu 0.91, Gd 4.37, Tb 0.65, Dy 3.56, Ho 0.67, Er 1.87, Tm 0.29, Yb 1.85, Lu 0.29. Niederbobritzsch-Sohra hybrid granite Quartz-normal, sodic/potassic, mesocratic, S-type hybrid granite 517Sohra SiO2 68.74 TiO2 0.82 Al2O3 15.61 Fe2O3 1.07 FeO 2.16 MnO n.d. MgO 0.71 CaO 1.54 Na2O 3.05 K2O 5.68 P2O5 0.21 Mg/(Mg+Fe) 0.29 K/(K+Na) 0.55 Nor.Q 23.63
peraluminous, NBZ1Sohra 66.80 0.59 15.60 3.54 n.d. 0.06 1.40 2.46 3.80 4.39 0.23 0.43 0.43 20.42 62
Nor.Or Nor.Ab Nor.An Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
34.64 28.27 6.46 219.02 144.03 -5.28 71.38 32.60 7.98 1.14
26.98 35.50 11.12 215.83 125.51 -73.28 86.48 2.78 4.92 1.03
Fig. 3.40. Niederbobritzsch Massif ABQ and TAS diagrams. 1 – Niederbobritzsch Normal Granite, 2 – Niederbobritzsch Hybrid Granite.
3.1.4.4. ALTENBERG-FRAUENSTEIN RING DYKE (AFRD) Regional position: member of the VolcanicSubvolcanic Group of the Eastern ErzgebirgeKrušné hory Mts. Composite Pluton in the Altenberg-Teplice Caldera (volcanotectonic depression). The Ring Dyke involves two subvolcanic intrusive stages evolving from acid, more fractionated, to less fractionated rocks. Rock types: Granite Porphyry (GPI) – porphyritic biotite microgranite (dominant rock type). Granite Porphyry (GPII) – porphyritic (granophyric) hornblende microgranite.
In the Fláje Massif the Loučná (Fláje-Frauenstein) Granite Porphyry (Altenberg-Frauenstein RingDyke) consists of three facies: hornblende-biotite granodiorite porphyry, biotite granodiorite porphyry, c. biotite granite porphyry. Size and shape (on erosion level): N-S elongated, pear-shaped ring dyke, in elliptical radius of 13 × 30 km. Age and isotopic data: Teplice Rhyolite – explosive phase (Westphalian C/D, ca. 308 Ma) was intruded by AFRD, dated at 305 Ma (Pb-Pb zircon). Mineralization: not studied.
Altenberg -Frauenstein Granite Porphyry Quartz-normal, potassic, peraluminous, mesocratic, S-type granite E10-339 JE97-12 Le127-3 SiO2 66.96 66.93 70.94 TiO2 0.68 0.51 0.32 Al2O3 14.48 14.91 13.82
63
Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 Mg/(Mg+Fe) K/(K+Na) Nor.Or Nor.Ab Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
2.17 2.15 0.09 0.87 0.98 2.17 6.13 0.28 0.27 0.65 38.83 20.89 3.23 28.08 200.18 159.65 42.65 87.24 49.23 11.45 1.24
1.80 1.50 0.04 0.28 0.77 1.86 6.76 0.15 0.14 0.71 43.00 17.98 3.05 28.52 203.55 158.61 69.78 56.78 61.79 14.82 1.29
1.95 0.97 0.02 0.27 0.33 0.80 7.64 0.09 0.15 0.86 48.15 7.66 1.11 35.76 188.03 201.61 130.51 48.65 71.60 31.95 1.37
References FIALA, F. (1959): The Teplice rhyolite between Krupka, Cínovec, Dubí and Mikulov and its surrounding rocks. – Věst. Ústř. Úst. geol. 34, 445–494. KEMPE, U. – WOLF, D. – EBERMANN, U. – BOMBACH, K. (1999): 330 Ma Pb/Pb single zircon evaporation age and isotopic data for the Altenberg granite porphyry, Eastern Erzgebirge (Germany): implications for Hercynian granite magmatism and tin mineralization. – Z. geol. Wiss. 27, 385–400. MÜLLER, A. – SELTMANN, R. (2002): Plagioclase-mantled K-feldspar in the Carboniferous porphyritic microgranite of Altenberg-Frauenstein, eastern Erzgebirge/Krušné hory. – Bull. Geol. Soc. Finland 74, 53–78. 3.1.4.5. ALTENBERG-TEPLICE VOLCANIC CALDERA Regional position: member of the VolcanicSubvolcanic Group of the Eastern ErzgebirgeKrušné hory Mts. Composite Pluton. Relicts of volcanic and subvolcanic rocks in the volcanotectonic depression (caldera) in the Eastern Erzgebirge-Krušné hory Mts. Composite Pluton. The Altenberg-Teplice Caldera is the largest outcrop of the Carboniferous volcanic and subvolcanic suite in the Bohemian Massif covering an area of 650 km2. Rock types: Altenberg-Teplice Volcanic Caldera has been divided into following main phases: volcano-sedimentary phase 1. The 1st (Schönfeld unit) – basal rhyolite tuffs and dacite lava flows. At its base, the unit contains arkoses, sandstones, shales and coal of Westphalian B/C (311 ± 2 Ma) age. 2. The 2nd volcanic phase (Teplice Rhyolite – TR) comprises:
a) An explosive phase (TR1) at the base – rhyolite tuffs and ignimbrites. Plant remains in the sedimentary intercalations were dated as Westphalian C/D (308 Ma), b) An explosive-effusive phase (TR2) – lava flows, tuffs and ignimbrites, c) An explosive-intrusive phase (TR3) – rhyolitic to rhyodacitic ignimbrites and granite porphyries, d) Dyke phase – Altenberg-Frauenstein Granite Porphyry. Size and shape (on erosion level): The total thickness of the volcanic sequence is nearly 2 km. The preserved volcanic rocks represent more than 250 km3 of magma. The eruption of this enormous volume from the magma chamber led to the collapse of the Altenberg-Teplice Caldera along the N-S elongated pear-shaped ring fractures, later intruded by YIC granites (the Schellerhau Stock 64
Ring Dyke 305 Ma (Pb-Pb zircon), Granite Porphyry 307–309 Ma (Ar-Ar mica). Zoning: volcano-sedimentary sequence in normal stratigraphic position. Mineralization: disseminated Sn-greisen stockworks (Komáří Vížka open pit).
and Cínovec (Zinnwald)-Krupka Composite Massif). Age and isotopic data: Teplice Rhyolite 311 ± 2 to 308 Ma (according to the plant fossils of the sedimentary interlayers), Altenberg-Frauenstein References
BENEK, R. (1991): Aspects of volume calculation of paleovolcanic eruptive products – the example of the Teplice rhyolite (east Germany). – Z. geol. Wiss. 19, 379–389. BREITER, K. (1997): The Teplice rhyolite (Krušné hory Mts., Czech Republic) – chemical evidence of a multiply exhausted stratified magma chamber. – Věst. Čes. geol. Úst. 72, 205–213. BREITER, K. (2009): Two contrasting granite magma types in late-Variscan Erzgebirge: areal distribution and chemical and mineralogical characteristic. – SDGG, Heft 63 – GeoDresden 2009, p. 137. BREITER, K. – NOVÁK, J. K. – CHLUPÁČOVÁ, M. (2001): Chemical evolution of volcanic rocks in the Altenberg-Teplice Caldera (Eastern Krušné hory Mts., Czech Republic, Germany). – Geolines 13, 17–22. BREITER, K. – SOKOLOVÁ, M. – SOKOL, A. (1991): Geochemical specialization of the tin-bearing granitoid massifs of NW Bohemia. – Mineralium Depos. 26, 298–306. SELTMANN, R. (1994): Sub-volcanic minor intrusions in the Altenberg caldera and their mineralization. – In: Seltmann, R. – Kämpf, H. – Möller, P. Eds: Metallogeny of Collisional Orogens, Prague 1994, 198– 206. – Czech Geol. Survey, Prague. SELTMANN, R. – BREITER, K. (1995): Late-Variscan crustal evolution and related tin-tungsten mineralization in the Altenberg-Teplice caldera. In: Breiter, K. – Seltmann, R. Eds: Ore mineralization of the Krušné hory Mts. (Erzgebirge). Third Biennial SGA Meeting Praha, Excursion Guide, 65–76. – Czech Geol. Survey, Prague. SELTMANN, R. – MÜLLER, A. – SCHILKA, W. (2001): Geochemical characteristics of the rapakivitextured porphyritic microgranites in the Altenberg-Teplice caldera. In: Piestrzynski, A. et al. Eds: Mineral Deposits at the Beginning of the 21st Century. Proceedings of the Joint Sixth Biennial SGA-SEG Meeting Krakow, 481–484. – Swets and Zeitlinger Publishers. Lisse. SELTMANN, R. – SCHILKA, W. (1995): Late-Variscan crustal evolution in the Altenberg-Teplice caldera. Evidence from new geochemical and geochronological data. – Terra Nostra 7, 120–124. 3.1.4.6. CÍNOVEC (ZINNWALD)-KRUPKA COMPOSITE MASSIF (CKCM) Regional position: member of the YIC Plutonic Group of the Eastern Erzgebirge-Krušné hory Mts. Composite Pluton. Predominantly hidden granite massif intrudes the Teplice Ignimbrite (rhyolite) within the Altenberg-Teplice Volcanic Caldera. The massif consists of four interconnected stocks (Cínovec-Zinnwald, Loupežný, Preisselberg, and Knötel Stocks). Rock types: 1. Preisselberg Granite – (in the Preisselberg Stock) porphyritic biotite syenogranite with the marginal facies (fine-grained marginal granite). 2. Knötel Granite – fine-grained biotite granite Limica alkali-feldspar granite (in the Knötel Stock) and in the deeper parts of the Preisselberg Stock. 3. Cínovec(Zinnwald) Granite – zinnwaldite-albite granite (upper part of the Cínovec-Zinnwald Stock) and porphyritic medium-grained protolithionite granite (lower part of the Cínovec-Zinnwald Stock)
with horizontal zones of fine-grained porphyritic granite. Size and shape: total area at depth of 300 m is about 30 km2 (11 × 2.5 km, (mostly hidden), individual stocks crop out in the area of an less than 1 km2. Two main domal structures (Krupka and Cínovec) are elliptical shape (0.5 km2 and 0.4 km2 in outcrops, respectively). The Krupka dome consists of the Loupežný and Knötel Stocks). The Preisselberg Stock ca. 3 km2 of the subsurface area. Age and isotopic data: 307–270 and 281–286 Ma (K-Ar whole rock), 306–312 Ma (K-Ar mica). Geological environment: Teplice Ignimbrite (rhyolite), gneiss complex (Grey Gneiss). Contact aureole: Intense greisenization at the endo- and exocontact of the Cínovec Granite.
65
Fig. 3.41. Preisselberg Stock geological subsurface (adapted according to Štemprok et al. 2003). 1 – granite porphyry, 2 – Preisselberg Granite, 3 – Knötel Granite, 4 – entrances of exploration adits.
Zoning: Superposition of two granite phases of the YIC. Much larger portion of Li-mica albite granite, representing main volume of the massif, intrudes older biotite monzogranite. Distinct vertical compositional zoning of the albite granite in the Cínovec-Zinnwald Stock. The compositional zoning subparallel to domal shape of the Preisselberg Stock. The Knötel Granite in the deeper part of the Preisselberg Stock intrudes the Preisselberg Granite. Mineralization: Sn-W, Li, Mo mineralization with Bi, As, Cu, Pb, Zn and fluorite. Greisen type tin Deposits are associated with Li-mica granite stocks along the inclined contacts. Heat Production (μWm-3): Preisselberg Granite 6.68, Cínovec Granite up to 13.7.
References BREITER, K. (1995): Geology and geochemistry of the Bohemian part of the Teplice rhyolite and adjacent post-rhyolite granites. – Terra Nostra 7, 20–24. BREITER, K. – NOVÁK, J. K. – CHLUPÁČOVÁ, M. (2001): Chemical evolution of volcanic rocks in the Altenberg-Teplice Caldera (Eastern Krušné hory Mts., Czech Republic, Germany). – Geolines 13, 17–22. BREITER, K. – SOKOLOVÁ, M. – SOKOL, A. (1991): Geochemical specialization of the tin-bearing granitoid massifs in NW Bohemia. – Mineralium Depos. 26, 298–306. CHRT, J. – MALÁSEK, F. (1984): Skrytý relief rudohorských žul mezi Cínovcem a Krupkou (The hidden relief of the Erzgebirge granites between Cínovec and Krupka). – Geol. Průzk. 26, 11, 305–309. DOLEJŠ, D. – ŠTEMPROK, M. (2001): Magmatic and hydrothermal evolution of Li-F granites: Cínovec and Krásno intrusions, Krušné hory batholith, Czech Republic. – Bull. Czech Geol. Surv. 76, 77–99. JANEČKA, J. – ŠTEMPROK, M. (1967): Nové ložiskové a petrografické poznatky ze západní části krupského revíru (New data on ore Deposits and petrography from the western part of the Krupka district). – Věst. Ústř. Úst. geol. 42, 133–136. (In Czech) JOHAN, Z. – JOHAN, V. (2005): Accessory minerals of the Cínovec (Zinnwald) granite cupola, Czech Republic: indicators of petrogenetic evolution. – Mineral. Petrology 83, 113–150. JUST, G. – SELTMANN, R. – SCHILKA, W. (1992): Zur Geochemie der Zinngranite von Altenberg, Sadisdorf und Zinnwald. – Geophys. Veröff. Univ. Leipzig 4, 4, 65–77. NOVÁK, J. K. (1994): Mineral associations of the Krupka (Graupen) greisenized stock. In: Seltmann, R. – Kämpf, H. – Möller, P. Eds: Metallogeny of Collisional Orogens, Prague 1994, 181–186. – Czech Geol. Survey, Prague. NOVÁK, J. K. – CHRT, J. – MALÁSEK, F. (1988): The hidden granite relief and its significance for projection (an example of the Eastern part of the Krušné hory. Mts.). In: Kukal, Z. Ed.: Proceedings of the 1st International Conference on the Bohemian Massif, 205–207. – Czech Geol. Survey, Prague. RUB, A. K. – ŠTEMPROK, M. – RUB, M. G. (1998): Tantalum mineralization in the apical parts of the Cínovec (Zinnwald) granite stock. – Mineral. Petrology 63, 199–222. SEIFERT, TH. – KEMPE, U. (1994): Sn-W Lagerstätten und spätvariszische Magmatite des Erzgebirges. – Eur. J. Mineralogy 6, 125–172. SELTMANN, R. – FÖRSTER, H.-J. – GOTTESMANN, B. – SAULA, M. – WOLF, D. – ŠTEMPROK, M. (1998): The Zinnwald greisen Deposit related to post-collisional A-type silicic magmatism in the Variscan Eastern Erzgebirge/Krušné hory. In: Breiter, K. Ed.: Genetic significance of phosphorus in fractionated granites. IGCP project 373, Excursion Guide, p. 172. – Czech Geol. Survey, Prague.
66
ŠTEMPROK, M. (1989): Rare earth elements in the rocks of the Cínovec cupola (Czechoslovakia). – Věst. Ústř. Úst. geol. 64, 1–16. ŠTEMPROK, M. – ĎURIŠOVÁ, J. – HALLS, C. (1994): Observations on a molybdenite bearing vein-dyke from the Krupka Sn-W-Mo district in the Eastern Krušné hory (Erzgebirge), Czech Republic. In: Seltmann, R. – Kämpf, H. – Möller, P. Eds: Metallogeny of Collisional Orogens, Prague 1994, 207–217. – Czech Geol. Survey, Prague. ŠTEMPROK, M. – HOLUB, F. V. – NOVÁK, J. K. (2003): Multiple magmatic pulses of the Eastern Volcano-Plutonic Complex, Krušné hory/Erzgebirge batholith, and their phosphorus contents. – Bull. Geosci. 78, 3, 277–296. ŠTEMPROK, M. – NOVÁK, J. K. – DAVID, J. (1994): The association between granites and tin-tungsten mineralization in the eastern Krušné hory (Erzgebirge) Mts., Czech Republic. – Monogr. Ser. Miner. Deposits 31, 97–129. TISCHENDORF, G. – JUST, G. – GOTTESMANN, B. (1988): Distribution of elements at a contact albite granite/rhyolite, Zinnwald, Erzgebirge (GDR). – Chem. Erde 48, 155–162.
Fig. 3.42. Preisselberg Stock ABQ and TAS diagrams. 1 – Preisselberg Granite, 2 – Knöttel Granite.
Fig. 3.43. Cínovec (Zinnwald) Stock ABQ and TAS diagrams. 1 –Cínovec (zinnwaldite) Granite (upper part), 2 – Cínovec (protolithionite) Granite (lower part).
67
Cínovec Granite Quartz-rich, sodic-potassic, weakly peraluminous, leucocratic, S-type, I- and Mseries, Li-mica alkali-feldspar granite DrillholeCS-1 Upper part Lower part Cínovec zinnwaldite granite protolithionite granite Cs126m Cs410m Cs668m Cs1110m Cs1569m SiO2 74.14 76.41 73.87 77.61 77.14 TiO2 0.20 0.06 0.04 0.08 0.07 Al2O3 12.81 12.31 12.66 11.81 12.46 Fe2O3 0.65 0.27 0.19 0.30 0.20 FeO 0.36 0.53 1.12 0.71 0.55 MnO 0.11 0.04 0.08 0.03 0.03 MgO 0.04 0.02 0.03 0.08 0.03 CaO 0.50 0.38 0.42 0.67 0.53 Na2O 3.80 4.13 3.30 3.28 3.55 K2O 3.78 4.54 4.92 4.88 4.90 P2O5 0.02 0.02 0.02 0.02 0.02 Li2O 0.32 0.13 0.26 0.06 0.05 Mg/(Mg+Fe) 0.06 0.04 0.04 0.12 0.07 K/(K+Na) 0.40 0.42 0.50 0.49 0.48 Nor.Or 23.43 27.43 30.70 29.55 29.52 Nor.Ab 35.80 37.93 31.30 30.19 32.50 Nor.An 2.46 1.79 2.06 3.27 2.55 Na+K 202.88 229.67 210.95 209.4 218.6 *Si 202.49 189.72 193.87 213.1 203.0 K-(Na+Ca) -51.28 -43.65 -9.52 -14.18 -19.97 Fe+Mg+Ti 16.66 12.01 19.22 16.63 11.79 Al-(Na+K+2Ca) 30.85 -1.48 22.68 -1.43 7.19 (Na+K)/Ca 22.75 33.89 28.17 17.53 23.13 Nor.Q 35.46 32.11 33.31 35.99 34.24 A/CNK 1.14 0.99 1.10 0.99 1.03 Trace elements (mean values in ppm): Cínovec Granite – Ba 50, Cs 31, Ga 35, Hf 7.6, Li 822, Nb 68, Pb 34, Rb 1127, Sc 6, Sr 9, Th 68, U 32, Y 53, Zn 29, Zr 100, La 30, Ce 70, Sm 8, Eu 0.1, Yb 15.2, Lu 1.97 (Breiter, Sokolová and Sokol 1991). Preisselberg Granite Quartz-rich, sodic-potassic, strongly peraluminous, leucocratic S-type, I- and Mseries, granite biotite granite Li-micagranite Pr2 Pr3 Pr4 PrLi8 PrLi9 PrLi10 SiO2 73.73 74.89 74.98 71.17 72.68 71.26 TiO2 0.06 0.13 0.15 n.d. 0.05 0.07 Al2O3 13.48 12.59 12.51 15.56 14.09 14.91 Fe2O3 1.28 0.81 0.86 0.27 0.01 0.23 FeO 1.16 0.65 0.43 0.95 2.47 2.54 MnO 0.03 0.02 0.02 0.08 0.06 0.10 MgO 0.20 0.02 0.18 0.14 0.06 0.13 CaO 0.20 0.59 0.80 0.67 0.56 0.97 Li2O n.d. 0.03 0.03 0.32 0.19 0.35 Na2O 2.70 3.06 2.39 4.52 3.95 2.96 K2O 5.46 5.09 5.54 4.30 4.00 3.76 P2O5 0.07 0.04 0.05 0.02 0.02 0.01
68
Mg/(Mg+Fe) 0.13 0.02 0.21 0.16 0.04 0.08 K/(K+Na) 0.57 0.52 0.60 0.38 0.40 0.46 Nor.Or 33.60 31.26 34.19 26.16 24.83 23.79 Nor.Ab 25.26 28.56 22.42 41.80 37.26 28.47 Nor.An 0.55 2.77 3.80 3.29 2.78 5.08 Nor.Q 35.32 35.07 36.80 24.87 30.25 35.06 Na+K 203.06 206.82 194.75 237.16 212.39 175.35 *Si 203.60 201.64 211.71 149.71 184.16 208.45 K-(Na+Ca) 25.23 -1.19 26.24 -66.51 -52.52 -32.98 Fe+Mg+Ti 37.91 21.33 23.11 20.09 36.64 42.36 Al-(Na+K+2Ca) 54.53 19.38 22.39 44.51 44.33 82.86 (Na+K)/Ca 56.94 19.66 13.65 19.85 21.27 10.14 A/CNK 1.27 1.09 1.11 1.17 1.19 1.39 Trace elements (mean values in ppm): Preisselberg Granite – Ba 63, Cs 19, Ga 24, Hf 7.7, Li 121, Nb 35, Pb 33, Rb 514, Sc 3, Sr 13, Th 43, U 12, Y 51, Zn 57, Zr 118, La 30, Ce 70, Sm 9.6, Eu 0.12, Yb 9.05, Lu 1.25 (Breiter, Sokolová and Sokol 1991). 3.1.4.7. SCHELLERHAU STOCK Regional position: member of the YIC Plutonic Group in the Eastern Erzgebirge-Krušné hory Mts. Composite Pluton. The cupola developed on hidden NW-SE striking granite ridge (Sadisdorf – Schellerhau – ZinnwaldCínovec – Krupka). The largest outcrop of YIC granites in the Eastern Krušné hory Mts.(Erzgebirge) Composite Pluton. Rock types: 1. Schellerhau SG1 Granite – porphyritic finegrained biotite syenogranite (“intermediate granite” type). 2. Schellerhau SG2 Granite – medium-grained protolithionite topaz-bearing alkali-feldspar monzogranite.
3. Schellerhau SG3 Granite – Li-mica alkalifeldspar granite (at depth). Size and shape: 15 km2 (7 × 2.5 km), NW-SE elongated outcrop. Age: Highly evolved Li-F granites, YIC. Granite SG1 found as enclosed blocks in SG2. Geological environment: Teplice rhyolite in the East and South, gneiss and Schönfeld rhyodacite and tuffs in the West. Contact aureole: narrow, prevailing magmatic contacts, locally (SE) tectonic margins. Zoning: not observed. Mineralization: local greisen zones, Sn-W- and Sn-As mineralization.
References MÜLLER, A. – SELTMANN, R. – BEHR H.-J. (2000): Application of cathodoluminiscence to magmatic quartz in tin granite – case study from the Schellerhau granite complex, Eastern Erzgebirge, Germany. – Mineralium Depos. 35, 169–189. SCHILKA, W. – BAUMANN, L. (1996): Metasomatische Prozesse im Schellerhauer Granitmassiv (Osterzgebirge). – Freiberg. Forsch.-H., R. C 467, 151–175. SEIM, R. – EIDAM, J. – KORICH, D. (1982): Zur Elementverteilung in einem Zinngranit (Schellerhauer Masiv/Osterzgebirge). – Chem. Erde 41, 219–235. SELTMANN, R. – MÜLLER, A. (2002): The eastern Erzgebirge granite pluton: from mantled feldspar to snowball quartzes. – Miner. Soc. Poland 20, p. 41.
69
Schellerhau Granite Quartz-rich to -normal, sodic/potassic, metaluminous/peraluminous, leucocratic, Stype granite 521SG1 SG2 SG2 SG3 SG1 SiO2 73.22 75.13 72.93 71.91 69.29 TiO2 0.08 0.06 0.09 0.07 0.02 Al2O3 13.32 12.60 13.84 14.64 16.97 Fe2O3 0.75 0.89 1.69 1.25 0.74 FeO 0.72 n.d. n.d. n.d. 0.09 MnO n.d. 0.02 0.05 0.03 0.02 MgO 0.09 0.06 0.17 0.07 0.02 CaO 1.41 0.50 0.71 0.92 0.11 Na2O 3.86 3.31 3.47 3.91 6.96 K2O 4.12 5.33 5.09 4.64 4.09 P2O5 1.08 0.02 0.04 0.04 0.03 Li2O n.d. n.d. 0.21 n.d. 0.06 Mg/(Mg+Fe) 0.10 0.12 0.16 0.10 0.04 K/(K+Na) 0.41 0.51 0.49 0.44 0.28 Nor.Q 33.24 32.90 30.21 28.13 11.92 Nor.Or 25.01 32.54 31.03 28.27 23.98 Nor.Ab 35.62 30.72 32.15 36.20 62.02 Nor.An -0.13 2.43 3.36 4.44 0.35 Na+K 212.04 219.98 220.05 224.69 311.44 *Si 177.41 190.88 176.11 163.31 71.66 K-(Na+Ca) -62.23 -2.56 -16.56 -44.06 -139.72 Fe+Mg+Ti 22.66 13.39 26.52 18.28 11.27 Al-(Na+K+2Ca) -0.75 9.62 26.42 30.00 17.90 (Na+K)/Ca 8.43 24.67 17.38 13.70 158.77 A/CNK 1.10 1.04 1.11 1.12 1.06
Fig. 3.44. Schellerhau Stock geological sketch-map (after Hoth, Tischendorf and Berger 1995). 1 – Schellerhau SG2 Granite, 2 – Schellerhau SG1 Granite, 3 – faults.
70
Fig. 3.45. Schellerhau Massif ABQ and TAS diagrams: Schellerhau Granite (G1 - G3).
3.1.4.8. SADISDORF STOCK Regional position: member of the YIC Plutonic Group in the Eastern Erzgebirge-Krušné hory Mts. Composite Pluton. The stock developed on hidden NW-SE striking granite ridge (Sadisdorf – Schellerhau – Cínovec – Krupka). Rock types: Schellerhau Granite (G1) – biotite granite to Li-mica granite (G4). Size and shape (on erosion level): 15 km2 (7 × 2.5 km), NW-SE – elongated outcrop.
Age and isotopic data: Highly evolved Li-F granites, YIC Granite SG1 found as enclosed blocks in SG2 Granite. No isotopic data. Geological environment: Teplice rhyolite in the East and South, gneiss and Schönfeld rhyodacite and tuffs in the West. Contact aureole: narrow, prevailing magmatic contacts, locally (SE) tectonic margins. Zoning: not observed. Mineralization: local greisen zones, Sn-W and Sn-As mineralizations.
Fig. 3.46. Altenberg Stock and Sadisdorf Stock ABQ and TAS diagrams: 1 – Altenberg Granite, 2 – Sadisdorf Granite.
71
Altenberg Granite Quartz-rich, sodic/potassic, metaluminous to leucocratic, I/S-type granite G1 G2 outergranite SiO2 72.60 73.20 TiO2 0.40 0.13 Al2O3 13.00 14.00 Fe2O3tot 1.90 1.70 FeO n.d. n.d. MnO n.d. n.d. MgO 0.30 0.30 CaO 1.60 1.20 Na2O 3.30 3.30 K2O 4.70 4.20 P2O5 n.d. n.d. Li2O 0.24 0.16 Mg/(Mg+Fe) 0.24 0.26 K/(K+Na) 0.48 0.46 Nor.Q 30.48 33.56 Nor.Or 28.97 25.75 Nor.Ab 30.92 30.75 Nor.An 8.28 6.18 Na+K 206.28 195.67 *Si 177.47 196.17 K-(Na+Ca) -35.23 -38.71 Fe+Mg+Ti 36.26 30.37 Al-(Na+K+2Ca) -8.05 36.47 (Na+K)/Ca 7.23 9.14 A/CNK 0.97 1.15
peraluminous, G3 innergranite 72.00 0.14 15.20 1.50 n.d. n.d. 0.10 0.40 4.10 3.60 n.d. 0.32 0.12 0.37 32.07 22.07 38.21 2.06 208.74 185.94 -63.00 23.03 75.49 29.27 1.34
Sadisdorf Granite Quartz-rich, sodic/potassic, peraluminous, leucocratic, S-type granite 521(G1) Se47(G1) Se4(G2) Se8(G3) SP16(G4) SPO7(G4) SiO2 73.30 72.10 72.40 72.70 72.90 75.30 TiO2 0.18 0.21 0.05 0.05 0.05 0.04 Al2O3 13.90 14.80 15.00 15.20 15.00 13.80 Fe2O3 0.93 1.46 1.57 1.28 1.21 0.40 FeO n.d. n.d. n.d. n.d. n.d. n.d. MnO 0.03 0.02 0.08 0.06 0.05 0.04 MgO 0.28 0.42 0.14 0.09 0.09 0.06 CaO 0.83 0.77 0.72 0.57 1.00 0.62 Na2O 3.83 2.18 3.21 4.11 4.10 4.31 K2O 4.99 5.77 4.21 3.93 3.56 3.44 P2O5 0.15 0.17 0.04 0.05 0.04 0.03 Li2O 0.06 n.d. 0.80 0.56 n.d. 0.22 Mg/(Mg+Fe) 0.37 0.36 0.14 0.12 0.12 0.21 K/(K+Na) 0.46 0.64 0.46 0.39 0.36 0.34 Nor.Q 28.65 34.43 34.67 30.90 31.62 33.91 Nor.Or 30.24 35.65 25.88 23.80 21.59 20.82 Nor.Ab 35.27 20.47 29.99 37.83 37.79 39.65
72
Nor.An Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
3.21 229.54 167.24 -32.44 20.86 13.82 15.51 1.07
2.82 192.86 197.98 38.43 31.35 70.32 14.05 1.34
3.44 192.97 200.13 -27.04 23.77 75.92 15.03 1.35
2.56 216.07 180.48 -59.35 18.90 62.10 21.26 1.27
4.82 207.89 184.65 -74.55 18.02 51.01 11.66 1.21
2.95 212.12 198.26 -77.10 7.00 36.77 19.19 1.16
3.1.4.9. MARKERSBACH STOCK Regional position: member of the YIC Plutonic Group in the Eastern Erzgebirge-Krušné hory Mts. Composite Pluton. An independent intrusion in the SE part of the Elbtalschiefergebirge, the youngest Variscan intrusion in the Elbe zone. Rock types: Markersbach Granite – occasionally porphyritic, medium-grained biotite granite. Presence of topaz greisens shows its close relation to YIC granites.
Size and shape (on erosion level): 5 km2, an approximately oval outcrop. Age and isotopic data: Upper Westphalian – Stephanian. No isotopic data. Geological environment: Lower Ordovician phyllites and slates (Elbe zone) in the South, Turonian sedimentary cover in the North. Contact aureole: Phyllitic schists are altered to andalusite-mica hornfelses and calc-silicates. Zoning: not observed. Mineralization: Sn-greisen.
Fig. 3.47. Markersbach Stock ABQ and TAS diagrams: Markersbach Granite.
Markersbach Granite Quartz-normal to -rich, sodic/potassic, peraluminous, leucocratic, I-type granite 519 520 SiO2 74.59 76.40 TiO2 n.d. 0.04 Al2O3 12.98 12.90 Fe2O3 2.81 1.03 FeO 0.18 n.d. MnO n.d. 0.03 MgO 0.09 0.02 CaO 1.52 0.40
73
Na2O K2O P2O5 Mg/(Mg+Fe) K/(K+Na) Nor.Q Nor.Or Nor.Ab Nor.An Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
3.77 5.25 0.25 0.06 0.48 27.69 31.02 33.86 5.89 233.13 162.61 -37.29 39.95 -32.44 8.60 0.90
3.87 4.68 0.01 0.04 0.44 33.02 28.07 35.27 1.95 224.25 194.85 -32.65 13.90 14.81 31.44 1.06
Reference BEHR, H.-J. (1968): Zur tektonischen Analyse magmatischer Körper unter besonderer Berücksichtigung des Quarzkorngefüges II. – Freiberg. Forsch.-H., R. C 219, 33–97. FÖRSTER, H.-J. (2001): Synchisite (Y)-synchisite (Ce) solid solutions from Markersbach, Erzgebirge, Germany: REE and the mobility during high-T alteration of highly fractionated aluminous A-type granites. – Mineral. Petrology 72, 259–280. FRITZSCHE, E. (1928): Beitrag zur petrochemischen Kenntnis der erzgebirgischen Granitmassive. – Neu. Jb. Mineral., Abh. 58, 253–302. KOZDRÓJ, W. et al. (2001): Comments on the Geological Map Lausitz-Jizera-Karkonosze 1 : 100,000. – Sächs. Landesamt für Umwelt und Geol. Freiberg – Czech Geol. Survey, Prague – Pan. Inst. Geol. Warszawa. TISCHENDORF, G. – FÖRSTER, H. J. – FRISCHBUTTER, A. – KRAMER, W. – SCHMIDT, W. – WERNER, C. D. (1995): Saxothuringian Basin. Igneous Activity. In: Dallmeyer, R. D. et al. Eds: PrePermian Geology of Central and Eastern Europe, 249–259. – Springer Verlag, Berlin.
74
3.2. FICHTELGEBIRGE AND KRUŠNÉ HORY MTS. (ERZGEBIRGE) ORTHOGNEISSES In the Saxothuringicum the Cadomian basement consists of volcanosedimentary complexes with maximum ages of sedimentation around ca. 570 Ma. These complexes were intruded by post-kinemetic plutons at ca. 540–530 Ma (Linneman et al. 2008). These multiply deformed plutons of granitic composition are a characteristic feature of the crust at the northern margin of the Bohemian Massif . Relict features of contact metamorphism in their metasedimentary country rocks mostly prove their magmatic origin. Neo-Proterozoic to Cambrian/Ordovician granitic intrusions were transformed during the Variscan orogeny into orthogneisses in form of strongly deformed sheet-like bodies, predominantly within the cores of the domal structures (the lowermost tectonic units) in the Saxo-Thuringian Zone. They consist of two orthogneiss units, the “Grey Gneiss” and “Red Gneiss”. Both types are contemporaneous and of the late Cadomian age . The Grey Gneiss has been derived from almost undifferentiated granitic intrusions into a lower crustal level, whereas the weakly differentiated Red Gneiss precursors were emplaced at higher crustal levels. The Red Gneiss has been classified into the allochthonous Red Gneiss of the Early Cambrian age (524 ± 10 Ma) and the autochthonous Red Gneiss (the Catharine-Reitzenhain Gneiss) of the Early Ordovician age (480 ± 10 Ma). Depending on mineralogical composition and texture the Red Gneiss group comprises at least three types, namely granite gneiss, augengneiss and muscovite gneiss (Pietzsch 1962). According to Linnemann et al.(2008) Cadomian metagranitoids are essential part of the basal mid-pressure– mod-temperature unit. They comprise the Inner Freiberg Orthogneiss (Grey Gneiss) including the adjacent gneisses and migmatites of the eastmost Erzgebirge as well as the periclinal Wolkenstein-Bärenstein Augengneiss belt and augen gneisses in the cores of the Měděnec Structure and the Klínovec Antiform in the central Erzgebirge. U–Pb and Pb/Pb zircon ages of between ca 540 and 525 Ma (Early Cambrian) are interpreted as representing the intrusion ages of the igneous protholiths of these rocks (Košler 2004). References HOFMANN, J. (1974): Petrographische und lithostratigraphische Stellung der Gneise des Osterzgebirges. – Freiberg. Forsch.-H., R. C 292, 63 pp. HOTH, J. – TISCHENDORF, G. – BERGER, H.-J. Eds (1995): Geologische Karte Erzgebirge/Vogtland 1:100,000 Westblatt, Ostblatt. – Landesamt für Umwelt und Geol. Freiberg. KOŠLER, J. – BOWES, D. R. – KONOPÁSEK, J. – MÍKOVÁ, J. (2004): Laser ablation ICPMS dating of zircons in Erzgebirge orthogneisses: evidence for Early Cambrian and Early Ordovician granitic plutonism in the western Bohemian Massif. – Eur. J. Mineralogy 16, 15–22. KRÖNER, A. – WILLNER, A.P. – HEGNER, E. – FRISCHBUTTER, A. – HOFMANN, J. – BERGER, R. (1995): Latest Precambrian (Cadomian) zircon Nd isotopic systematics and P-T evolution of granitoid orthogneisses of the Erzgebirge, Saxony and Czech Republic. – Geol. Rdsch. 84, 437–356. MINGRAM, B. – KRÖNER, A. – HEGNER, E. – KRENTZ, O. (2004): Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 706–727. PIETZSCH, K. (1962): Die Geologie von Sachsen. – 870 pp. VEB Dtsch. Verl. Wiss. Berlin. SIEBEL, W. – RASCHKA. H. – IRBER, W. – KREUTZER, H. – LENZ, K. L. – HÖHNDORF, F. – WENDT, I. (1997): Early Palaeozoic acid magmatism in the Saxothuringian Belt: new insights from a geochemical and isotopic study of orthogneisses and metavolcanic rocks from the Fichtelgebirge, SE Germany. – J. Petrology 38, 203–230. TICHOMIROWA, M. – BERGER, H.-J. – KOCH, E. A. – BELYATSKI, B. V. – GÖTZE, J. – KEMPE, U. – NASDALA, L. – SCHALTEGGER, U. (2001): Zircon ages of high-grade gneisses in the Eastern Erzgebirge (Central European Variscides) – constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan fold belt. – Lithos 56, 303–332.
75
Fig. 3.48. Krušné hory (Erzgebirge) Mts. Orthogneisses geological sketch-map (after Hoth, Tischendorf and Berger 1995). 1 – Granite Gneiss (relict granite), 2 – Red Orthogneisses, 3 – Grey (Inner) Orthogneisses, 4 – faults.
3.2.1. RED ORTHOGNEISSES Depending on mineralogical composition and texture the Red (Inner) Orthogneiss group in the Erzgebirge comprises at least three types, namely granite gneiss, augengneiss and muscovite gneiss. 1. Granite gneiss (Reitzenhain Metagranite) – porphyritic coarse-grained, sheared granite with mylonitic textures (Riesenstein Metagranite). 2. Augengneiss – porphyritic biotite-muscovite gneiss (e.g. Reitzenhain Augengneiss Bärenstein Augengneiss and Sfinx Augengneiss). 3. Muscovite Gneiss – fine-grained biotite orthogneiss (HT mylonite to augengneiss). Age and isotopic data: Granite Gneiss 560–550 Ma (Pb-Pb zircon), Reitzenhain Augengneiss (Metagranite) 551 ± 6, 551 ± 9, 492 ± 14, 492 ± 14 Ma (Pb-Pb zircon), Schwarzenberg Orthogneiss 480 ± 12 Ma (Pb-Pb zircon), Bärenstein Augengneiss 536 ± 4 Ma (Pb/Pb evaporation zircon), Sfinx Augengneiss 524 ± 10 Ma (U-Pb zircon). 3. Muscovite Gneiss 479 ± 1, 492 ± 4, 485 ± 12 Ma (Pb-Pb zircon).
Regional position: A number of the sheet-like bodies resulted mostly from the ductile deformation predominantly within the cores of antiforms and synforms in the Fichtelgebirge and Erzgebirge (Inner and Outher Red Orthogneisses). Allochthonous Early Cambrian Lower Crystalline intrusions (nappe units – the Oberwiesenthal Synform, Měděnec Synform, Klínovec Synform and Jöhstadt Synform) and autochthonous Early Ordovician granitic intrusions (e.g. the CatharineReitzenhain Dome). Rock types: 1. Selb Orthogneiss 2. Waldersdorf Orthogneiss 3. Wunsiedel Orthogneiss 4. Sayda Orthogneiss 5. Catharine-Reitzenhain Orthogneiss 6. Schwarzenberg Orthogneiss 7. Oberschöna-Oederan Orthogneiss 8. Mobendorf-Cunnersdorf Orthogneiss 9. Frankenberg-Sachsenburg Orthogneiss 10. Bieberstein-Dittmannsdorf Orthogneiss 11. Wolkenstein-Bärenstein Augengneiss 12. Sfinx Orthogneiss 13. Reisenstein Metagranite (relict granite).
76
Fig. 3.49. Krušné hory (Erzgebirge) Mts. Orthogneisses geological sketch-map (adapted after Cháb et al. 2007). 1 – Krušné hory (Erzgebirge) Mts. Orthogneisses, 2 – Late Variscan granite porphyry, 3 – faults, 4 – state border.
References CHÁB, J. – STRÁNÍK, Z. – ELIÁŠ, M. Eds (2007): The geological map of the Czech Republic 1 : 500 000. – Czech Geol. Survey, Prague. FRISCHBUTTER, A. – FELDMAN, K. – HÄNISCH, M. – THOMAS, R. (1992): Pre-Hercynian granitic magmatism on the northern border of the Bohemian Massif. In: Kukal, Z. Ed.: Proceedings of the 1st International Conference on the Bohemian Massif, 82–88. – Czech Geol. Survey, Prague. KOŠLER, J. – BOWES, D. R. – KONOPÁSEK, J. – MÍKOVÁ, J. (2004): Laser ablation ICPMS dating of zircons in Erzgebirge orthogneisses: evidence for Early Cambrian and Early Ordovician granitic plutonism in the western Bohemian Massif. – Eur. J. Mineralogy 16, 15–22. KRÖNER, A. – WILLNER, A. P. – HEGNER, E. – FRISCHBUTTER, A. – HOFMANN, J. – BERGER, R. (1995): Latest Precambrian (Cadomian) zircon Age and isotopic data, Nd isotopic systematics and P-T evolution of granitoid orthogneisses of the Erzgebirge, Saxony and Czech Republic. – Geol. Rdsch. 84, 437–356. MINGRAM, B. – KRÖNER, A. – HEGNER, E. – KRENTZ, O. (2004): Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 706–727. SCHEUMANN, K. H. (1938): Über die petrographische und chemische Substanzbestimmung der Gesteinsgruppen der Roten Gneise des sächsischen Erzgebirges und der angrenzenden Räume. – Z. Kristallogr. Mineral. Petrogr. 50, 391–440. SIEBEL, W. – RASCHKA, H. – IZBER, W. – KREUZER, H. – LENZ, K. L. – HÖHNDORF, F. – WENDT, I (1997): Early Paleozoic acid magmatism in the Saxothuringian belt: New insight from geochemical and isotope study of orthogneisses and metavolcanic rocks from the Fichtelgebirge, SE Germany. – J. Petrology 38, 203–230. WALTHER, K. H. (1972): Die mineralfazielle und tektonische Entwicklung der Annaberger und Marienberger Gneise. – Freiberg. Forsch.-H., R. C 269, 101 pp.
77
3.2.1.1. SELB ORTHOGNEISS Regional position: The Fichtelgebirge section of the Saxothuringicum. The sheet-like intrusion within the core of the antidomal structure in the Smrčiny Mts. (Fichtelgebirge). Rock types: 1. Selb Orthogneiss – medium-grained two-mica gneiss with millimetre to 2 cm long feldspar phenocrysts. 2. Hohendorf Orthogneiss.
Size and shape (on erosion level): 15 × 1–2 km, three sheet-like slabs at the exocontact of the Smrčiny Mts. (Fichtelgebirge) Composite Massif. Age and isotopic data: Early Cambrian 470 ± 20 Ma (Pb-Pb zircon). Geological environment: a body between Variscan granite and Palaeozoic mica schists. Contact aureole: relicts of the contact metamorphism in mica schists. Heat production (μWm-3): Selb Orthogneiss 3.25.
References EMMERT, U. – STETTNER, G. (1995): Erläuterungen zur Geologischen Karte von Bayern 1 : 25 000, Map sheet No. 036 Weidenberg, 1–239. – Bayer. Geol. Landesamt, München. MIELKE, H. – STETTNER, G. (1984): Geological map of Bavaria 1 : 25 000, Sheet No. 5838/5839 Selb/Schönberg. – Bayer. Geol. Landesamt, München. SIEBEL, W. – RASCHKA, H. – IZBER, W. – KREUZER, H. – LENZ, K. L. – HÖHNDORF, F. – WENDT, I (1997): Early Paleozoic acid magmatism in the Saxothuringian belt: New insight from geochemical and isotope study of orthogneisses and metavolcanic rocks from the Fichtelgebirge, SE Germany. – J. Petrology 38, 203–230. STETTNER, G. (1958): Erläuterungen zur Geologischen Karte von Bayern 1:25 000, Map sheet No. 5937 Fichtelberg, 1–116. – Bayer. Geol. Landesamt, München. STETTNER, G. (1969): Zum geologischen Aufbau des Fichtelgebirges. – Aufschluss 31, 391–403. ŠKVOR, V. (1962): Einige Probleme aus dem Kristallin des Gebietes von Aš in Böhmen. – Krystalinikum 1, 133–148.
Fig. 3.50. Fichtelgebirge Orthogneisses ABQ and TAS diagrams: 1 - Wunsiedel Orthogneiss, 2 – Selb Orthogneiss, 3 – Waldershof Orthogneiss.
Selb Orthogneiss Quartz-rich, sodic/potassic, peraluminous, leucocratic, S-type, granite n=6 Median Min Max QU1 SiO2 72.08 69.32 75.68 70.06 TiO2 0.16 0.11 0.47 0.13 Al2O3 13.94 13.63 14.53 13.88 Fe2O3tot 1.73 1.40 3.83 1.42
78
QU3 73.97 0.32 14.07 2.59
FeO 0.03 0.03 0.04 0.03 0.03 MnO 0.25 0.17 0.92 0.20 0.62 MgO 0.58 0.44 1.24 0.47 0.84 CaO 3.27 3.11 4.46 3.13 3.35 Na2O 4.61 1.71 5.13 4.44 4.67 K2O 0.17 0.14 0.22 0.17 0.18 Mg/(Mg+Fe) 0.26 0.18 0.32 0.19 0.32 K/(K+Na) 0.47 0.20 0.52 0.46 0.50 Nor.Or 28.36 10.41 31.16 27.35 28.47 Nor.Ab 30.19 28.82 41.25 29.10 31.37 Nor.An 1.81 0.76 5.25 1.11 3.36 Nor.Q 30.76 26.32 40.13 29.10 32.95 Na+K 202.37 180.23 214.70 199.51 209.08 *Si 180.82 156.20 232.73 171.56 190.34 K-(Na+Ca) -35.94 -117.96 -4.98 -39.44 -9.05 Fe+Mg+Ti 28.22 23.34 76.73 25.79 51.82 Al-(Na+K+2Ca) 37.76 29.63 72.84 37.27 41.37 (Na+K)/Ca 13.96 9.15 25.59 10.47 17.43 A/CNK 1.15 1.11 1.36 1.15 1.18 Trace elements (mean values in ppm): Selb Orthogneiss – Ba 210, Co 17, Cr 9, Ga 11, Ni 12, Nb 6, Pb 26, Rb 266, Sr 54, Th 11, U 8, Y 37, Zn 46, Zr 98, La 22, Ce 39, Sc 8 (Siebel et al. 1997).
Fig. 3.51. Fichtelgebirge Orthogneisses geological sketch-map. 1 – Fichtelgebirge-Smrčiny Composite Massif, 2 – Fichtelgebirge Orthogneisses.
3.2.1.2. WALDERSHOF ORTHOGNEISS Regional position: The Fichtelgebirge section of the Saxothuringicum. Rock types: Waldershof Orthogneiss – porphyritic (rounded phenocrysts) biotite orthogneiss (granodiorite). Size and shape (on erosion level): an elongate north-south-trending body 10 km2, 5 km long and 1–
2 km wide. The gneiss precursor was emplaced as a clearly discordant body at a shallow crustal level. Age and isotopic data: Waldershof Orthogneiss 460 Ma (U-Pb zircon). Geological environment: the low-grade metamorphism within the surrounding rocks of the Arzberg Series. 79
Contact aureole: contact metamorphism caused by the Variscan Mitterteich Granite.
Heat production Orthogneiss 3.08.
(μWm-3):
Waldershof
References EMMERT, U. – STETTNER, G. (1995): Erläuterungen zur Geologischen Karte von Bayern 1 : 25 000, Map sheet No. 036 Weidenberg, 1–239. – Bayer. Geol. Landesamt, München. MIELKE, H. – STETTNER, G. (1984): Geological map of Bavaria 1 : 25 000, Sheet No. 5838/5839 Selb/Schönberg. – Bayer. Geol. Landesamt, München. SIEBEL, W. – RASCHKA. H. – IRBER, W. – KREUTZER, H. – LENZ, K. L. – HÖHNDORF, F. – WENDT, I. (1997): Early Palaeozoic acid magmatism in the Saxothuringian Belt: new insights from a geochemical and isotopic study of orthogneisses and metavolcanic rocks from the Fichtelgebirge, SE Germany. – J. Petrology 38, 203–230. STETTNER, G. (1958): Erläuterungen zur Geologischen Karte von Bayern 1:25 000, Map sheet No. 5937 Fichtelberg, 1–116. – Bayer. Geol. Landesamt, München. STETTNER, G. (1969): Zum geologischen Aufbau des Fichtelgebirges. – Aufschluss 31, 391–403. Waldershof Orthogneiss Quartz-rich, sodic, peraluminous, mesocratic, S-type, granodiorite n = 13 Median Min Max QU1 QU3 SiO2 69.76 67.68 71.06 69.39 70.21 TiO2 0.52 0.40 0.56 0.51 0.54 Al2O3 15.01 14.50 15.54 14.77 15.25 Fe2O3tot 3.36 3.10 3.87 3.28 3.45 FeO 0.04 0.03 0.06 0.04 0.04 MnO 0.98 0.74 1.23 0.92 1.01 MgO 1.04 0.70 1.61 0.83 1.13 CaO 2.98 2.53 3.44 2.87 3.16 Na2O 4.44 3.54 4.77 4.18 4.60 K2O 0.17 0.16 0.20 0.17 0.18 Mg/(Mg+Fe) 0.37 0.30 0.38 0.35 0.37 K/(K+Na) 0.49 0.40 0.55 0.47 0.51 Nor.Or 27.67 21.95 29.74 26.01 28.62 Nor.Ab 28.15 23.98 32.41 27.23 29.79 Nor.An 4.24 2.47 7.16 3.15 4.72 Nor.Q 31.55 27.51 34.78 30.73 32.56 Na+K 186.89 174.24 201.10 185.28 194.68 *Si 184.63 163.56 201.60 180.41 191.53 K-(Na+Ca) -26.26 -54.39 6.62 -32.61 -12.79 Fe+Mg+Ti 71.80 65.45 86.05 71.45 74.99 Al-(Na+K+2Ca) 67.97 53.58 86.20 65.31 74.00 (Na+K)/Ca 10.12 6.35 15.04 9.41 13.15 A/CNK 1.30 1.23 1.41 1.28 1.33 Trace elements (mean values in ppm): Waldersdorf Orthogneiss – Ba 952, Co 24, Cr 27, Ga 17, Ni 19, Nb 8, Pb 28, Rb 154, Sr 126, Th 16, U 6, Y 38, Zn 59, Zr 173, La 57, Ce 77, Sc 10, V 42 (Siebel et al. 1997). 3.2.1.3. WUNSIEDEL ORTHOGNEISS Regional position: The Fichtelgebirge section of the Saxothuringicum. Within the core of the antidomal structure in the Smrčiny Mts. (Fichtelgebirge) Massif. Rock types:
Wunsiedel Orthogneiss – porphyritic (K-feldspars up to 10 cm in length) biotite orthogneiss (augenand flaser-texture).
80
Size and shape (on erosion level): oval shape, the largest of the Fichelgebirge orthogneiss bodies (~ 30 km2). Age and isotopic data: Wunsiedel Orthogneiss 480 ± 4 Ma (Rb-Sr whole rock). Geological environment: the Wunsiedel Orthogneiss is intruded into marbles and calcsilicate rocks of the Lower Arzberg Series.
Contact aureole: contact metamorphism associated with the Fichtelgebirge-Smrčiny Massif include the development of andalusite- and sillimanite-bearing hornfels. Heat production (μWm-3): Wunsiedel Orthogneiss 3.14.
References EMMERT, U. – STETTNER, G. (1995): Erläuterungen zur Geologischen Karte von Bayern 1 : 25 000, Map sheet No. 036 Weidenberg, 1–239. – Bayer. Geol. Landesamt, München. MIELKE, H. – STETTNER, G. (1984): Geological map of Bavaria 1 : 25 000, Sheet No. 5838/5839 Selb/Schönberg. – Bayer. Geol. Landesamt, München. SIEBEL, W. – RASCHKA, H. – IZBER, W. – KREUZER, H. – LENZ, K. L. – HÖHNDORF, F. – WENDT, I. (1997): Early Paleozoic acid magmatism in the Saxothuringian belt: New insight from geochemical and isotope study of orthogneisses and metavolcanic rocks from the Fichtelgebirge, SE Germany. – J. Petrology 38, 203–230. STETTNER, G. (1958): Erläuterungen zur Geologischen Karte von Bayern 1:25 000, Map sheet No. 5937 Fichtelberg, 1–116. – Bayer. Geol. Landesamt, München. STETTNER, G. (1969): Zum geologischen Aufbau des Fichtelgebirges. – Aufschluss 31, 391–403. Wunsiedel Orthogneiss Quartz-rich, potassic, peraluminous, leucocratic, S-type, granite n = 16 Median Min Max QU1 SiO2 75.20 70.12 77.03 73.81 TiO2 0.09 0.04 0.53 0.07 Al2O3 13.01 12.35 14.84 12.76 Fe2O3tot 1.55 0.78 3.64 0.98 FeO 0.02 0.01 0.03 0.02 MnO 0.15 0.03 1.00 0.08 MgO 0.40 0.30 1.32 0.33 CaO 2.98 1.95 3.32 2.62 Na2O 4.93 4.11 6.17 4.56 K2O 0.18 0.15 0.24 0.17 Mg/(Mg+Fe) 0.16 0.07 0.35 0.12 K/(K+Na) 0.51 0.47 0.66 0.50 Nor.Or 29.99 25.47 37.55 27.93 Nor.Ab 27.84 18.26 30.75 24.24 Nor.An 0.74 0.16 5.83 0.38 Nor.Q 35.37 31.85 40.75 32.99 Na+K 198.23 183.95 216.91 189.56 *Si 203.24 186.65 233.03 190.43 K-(Na+Ca) -3.60 -31.30 49.90 -12.14 Fe+Mg+Ti 24.32 11.90 77.08 15.03 Al-(Na+K+2Ca) 40.53 24.89 63.84 38.33 (Na+K)/Ca 26.58 7.92 39.63 17.43 A/CNK 1.19 1.11 1.28 1.17
QU3 75.67 0.15 13.63 1.76 0.03 0.21 0.57 3.09 5.20 0.19 0.24 0.53 31.69 28.53 1.70 37.88 210.45 218.07 6.96 27.33 49.39 34.75 1.23
Trace elements (mean values in ppm): Wunsiedel Orthogneiss – Ba 199, Co 18, Cr 13, Ga 11, Ni 10, Nb 7, Pb 27, Rb 264, Sr 31, Th 9, U 8, Y 28, Zn 35, Zr 80, La 25, Ce 34, Sc 6, V 15 (Siebel et al. 1997).
81
3.2.1.4. SAYDA ORTHOGNEISS Regional position: A sheet-like tectonically segmented bodies within the core of the Sayda Dome in the central Erzgebirge. Rock types: 1. Inner Red Orthogneiss – Sayda Gneiss (Stengelgneiss) – two-mica augen gneiss. Size and shape (on erosion level): ~ 60 km2, a series of isolated and tectonized sills in the core of the Sayda Dome.
Age and isotopic data: Sayda Orthogneiss 554 Ma (U-Pb zircon). Geological environment: Upper Proterozoic paragneisses, metatectites, two-mica schists. Contact aureole: the Sayda Gneiss shows both features of dynamic and thermal metamorphism in the broad contact aureole (hybrid orthogneiss with andalusite/cordierite).
References KEMNITZ, H. (1988): Beitrag zur Lithologie, Deformation und Metamorphose der Saydaer Structur (Ostergebirge). – Publ. Zentralinst. Physik d. Erde, Potsdam 91, 89 pp. MINGRAM, B. – KRÖNER, A. – HEGNER, E. – KRENTZ, O. (2004): Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 706–727. 3.2.1.5. CATHARINE-REITZENHAIN ORTHOGNEISS Regional position: Sheet-like tectonically segmented bodies with a polyphase tectonometamorphic history within the core of the Catharine Dome in the central Erzgebirge Rock types: Group I (Outer Red Orthogneiss): 1. banded partly anatectic orthogneiss (injection gneiss), 2. porphyroblastic muscovite-biotite orthogneiss, 3. fine-to medium-grained muscovite to biotitemuscovite partly leucocratic orthogneiss. Group II (Inner Red Orthogneiss): 1. porphyritic deformed coarse-grained granite (metagranite), porphyroclastic orthogneiss and banded mylonitic orthogneiss,
2. ± porphyroblastic medium to coarse-grained granite, 3. fine- to medium-grained granite to granodiorite (Relict Granite). Size and shape (on erosion level): 450 km2, a series of the flat sheet-like sills (laccolithic intrusions) in the core of the Catharine-Reitzenhain Dome. Age and isotopic data: Catharine-Reitzenhain Orthogneiss 551 Ma (U-Pb zircon), 480 ± 10 Ma, U-Pb zircon). Geological environment: Upper Proterozoic paragneiss and mica-schist, spotted metagreywackes. Heat Production (μWm-3): Inner Red Orthogneiss 2.0, Outer Red Orthogneiss 3.2.
Fig. 3.52. Catharine-Reitzenhain Orthogneiss ABQ and TAS diagrams. 1 – Catharine-Reitzenhain Orthogneiss, 2 – Erzgebirge Orthogneisses.
82
Catharine-Reitzenhain Orthogneiss Quartz-rich, sodic-potassic, strongly peraluminous, mesocratic, S-type, Iseries, alkali-feldspar granite to granodiorite n = 68 Med. Min Max QU1 QU3 SiO2 70.42 62.20 77.47 68.21 73.03 TiO2 0.43 0.04 0.90 0.24 0.63 Al2O3 14.65 12.29 18.66 13.85 15.11 Fe2O3 0.56 0.00 2.43 0.37 0.80 FeO 1.92 0.16 4.41 1.02 2.80 MnO 0.04 0.01 3.95 0.03 0.06 MgO 0.94 0.01 2.48 0.43 1.41 CaO 1.07 0.23 2.54 0.76 1.33 Na2O 2.91 1.49 5.29 2.71 3.19 K2O 4.42 1.80 8.81 3.82 4.75 P2O5 0.17 0.05 0.36 0.15 0.21 Li2O 0.008 0.000 0.023 0.000 0.012 Mg/(Mg+Fe) 0.38 0.01 0.56 0.32 0.43 K/(K+Na) 0.50 0.18 0.80 0.45 0.53 Nor.Or 27.14 11.02 54.20 24.46 29.61 Nor.Ab 27.91 13.93 49.24 25.95 30.24 Nor.An 4.42 -0.55 11.94 3.01 5.59 Nor.Q 31.44 8.23 42.77 28.83 34.74 176.23 Na+K 186.26 139.94 267.22 198.15 *Si 190.90 63.47 248.07 179.39 204.31 K-(Na+Ca) -18.98 %-147.82 132.38 -38.64 -7.72 Fe+Mg+Ti 63.52 6.91 153.02 35.09 95.04 Al-(Na+K+2Ca) 55.43 13.99 134.42 43.09 70.68 (Na+K)/Ca 9.76 3.88 48.63 7.87 14.04 A/CNK 1.27 1.07 1.78 1.21 1.36 Trace elements (mean values in ppm): Catharine-Reitzenhain Orthogneiss – Ba 887, 880, 702, Co 78, 105, 104, Cr 42, 74 56, Cu 28, 19, 10, Ga 20, 18, 19, Nb 14, 11, 9, Rb 155, 167, 214, Sr 173, 118, 79, V 95, 65, 31, Y 30, 29, 32, Zn 78, 67, 44, Zr 232, 137 (Kröner et al. 1995). References FRISCHBUTTER, A. (1985): Zur geologischen Entwicklung der Reitzenhainer Rotgneisstruktur. – Freiberg. Forsch.-H., R. C 390, 29–44. FRISCHBUTTER, A. – JUST, G. (1988): Zur stofflichen Entwicklung der Reitzenhainer Rotgneisstruktur auf der Grundlage and isotopic data aktivierungsanalytischer Bestimmungen seltene Elemente. – Geophys. Geol. 4, 1, 75–92. KOŠLER, J. – BOWES, D. R. – KONOPÁSEK, J. – MÍKOVÁ, J. (2004): Laser ablation ICPMS dating of zircons in Erzgebirge orthogneisses: evidence for Early Cambrian and Early Ordovician granitic plutonism in the western Bohemian Massif. – Eur. J. Mineralogy 16, 15–22. KRÖNER, A. – WILLNER, A.P. – HEGNER, E. – FRISCHBUTTER, A. – HOFMANN, J. – BERGER, R. (1995): Latest Precambrian (Cadomian) zircon Nd isotopic systematics and P-T evolution of granitoid orthogneisses of the Erzgebirge, Saxony and Czech Republic. – Geol. Rdsch. 84, 437–356. MINGRAM, B. – KRÖNER, A. – HEGNER, E. – KRENTZ, O. (2004): Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 706–727. MLČOCH, B. – SCHULMANN, K. (1992): Superposition of Variscan ductile shear deformation on preVariscan mantled gneiss structure (Catherine dome, Erzgebirge, Bohemian Massif). – Geol. Rdsch. 81, 501–513.
83
3.2.1.6. SCHWARZENBERG ORTHOGNEISS Regional position: At the eastern limb of Karlovy Vary-Eibenstock Composite Massif. Rock types: Schwarzenberg Orthogneiss: Augengneiss, twomica orthogneiss. Size and shape (on erosion level): 6 km2, 2 × 4 km, a flat sill in the core of the Schwarzenberg Dome. Age and isotopic data: Schwarzenberg Augengneiss 480 ± 12 Ma (Pb-Pb zircon).
Geological environment: Cambrian two-mica schists, Schwarzenberg Granite (YIC?). Contact aureole: not observed. Zoning: an example of prograde zonation from mica schists to the augengneiss in the core of domal structure. Gradual increase of feldspars and decrease of muscovite content across lithostratigraphic boundaries. Magmatic origin is doubtful.
References FRISCHBUTTER, A. (1990): Prävariszische Granitoide der Fichtelgebirgisch-Erzgebirgischen antiklinalzone und ihre Bedeutung für die Krustenentwicklung am Nordrand des Böhmischen Massivs. – Veröff. Zent.-Inst. Phys. Erde Potsdam. 69, 153 pp. MINGRAM, B. – KRÖNER, A. – HEGNER, E. – KRENTZ, O. (2004): Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 706–727. 3.2.1.7. OBERSCHÖNA-OEDERAN ORTHOGNEISS Regional position: a metagranitic body along the contact between the Neoproterozoic paragneiss series and Pre-Sudetic Palaeozoic mica-schists. Rock types: Oberschöna-Oederan Orthogneiss – Two phases are described: Flaser Augengneiss – comparable with „Outer Red Orthogneiss“ of the Middle Erzgebirge Mts. In the body cores are developed as coarse-grained „basal granitoids“. Muscovite Gneiss – closer to the contact with surrounding mica-schists. This type is similar to the
Red Orthogneiss, known from Sayda and CatharinaReitzenhain Domes. Size and shape (on erosion level): 10 km2, 13 × 1 km, tabular body. Age and isotopic data: Neoproterozoic– Cadomian. No isotopic data. Geological environment: mica-schists. Contact aureole: injections of microgranitic character into paraseries (mm to cm layering in the former pelitic country rocks) identical with the contact phenomena observed at contacts of Sayda and Reitzenhain Orthogneisses (hybrid gneisses).
References FRISCHBUTTER, A. (1990): Prävariszische Granitoide der Fichtelgebirgisch-Erzgebirgischen antiklinalzone und ihre Bedeutung für die Krustenentwicklung am Nordrand des Böhmischen Massivs. – Veröff. Zent.-Inst. Phys. Erde Potsdam. 69, 153 pp. MINGRAM, B. – KRÖNER, A. – HEGNER, E. – KRENTZ, O. (2004): Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 706–727. 3.2.1.8. MOBENDORF-CUNNERSDORF ORTHOGNEISS Regional position: A series of NE-SW elongated bodies in the area of the Central Saxonian lineament belongs to the western most area of the Frankenberg Augengneiss complex developed in the WestSaxonian synclinorium between Granulitgebirge and Erzgebirge anticlinal zone. Rock types: Mobendorf-Cunnersdorf Orthogneiss:
Augengneiss – consists of muscovite, green (epizonal) biotite, garnet and albite. Medium-grained gneiss – arises from the previous type by K-feldspar deformation (mica-schists). Blastomylonites – result of the high-intensity cataclastic deformation of augengneisses. Size and shape (on erosion level): intensively isoclinal folded lenses of km length.
84
Age and isotopic data: Neoproterozoic– Cadomian. No isotopic data. Geological environment: An envelope of the Palaeozoic schists (Bavarian facies).
Contact aureole: missing, due to tectonic margins.
References FRISCHBUTTER, A. (1990): Prävariszische Granitoide der Fichtelgebirgisch-Erzgebirgischen antiklinalzone und ihre Bedeutung für die Krustenentwicklung am Nordrand des Böhmischen Massivs. – Veröff. Zent.-Inst. Phys. Erde Potsdam. 69, 153 pp. MINGRAM, B. – KRÖNER, A. – HEGNER, E. – KRENTZ, O. (2004): Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 706–727. 3.2.1.9. FRANKENBERG-SACHSENBURG ORTHOGNEISS Regional position: SW continuation of Mobendorf-Cunnersdorf structure. Rock types: Frankenberg-Sachsenburg Orthogneiss – Kfeldspar two-mica augengneiss, in NE transformed into mylonitic gneiss, mica schists and gneiss mylonites. Their development is comparable with the Schwarzenberg Orthogneiss (missing contact
metamorphism, link to deformation texture masked by syn- to postkinematic K-metasomatism). Size and shape (on erosion level): a series of lenses and sills about 1 km long. Age and isotopic data: Neoproterozoic– Cadomian. No isotopic data. Geological environment: Neoproterozoic twomica schists.
References FRISCHBUTTER, A. (1990): Prävariszische Granitoide der Fichtelgebirgisch-Erzgebirgischen antiklinalzone und ihre Bedeutung für die Krustenentwicklung am Nordrand des Böhmischen Massivs. – Veröff. Zent.-Inst. Phys. Erde Potsdam. 69, 153 pp. MINGRAM, B. – KRÖNER, A. – HEGNER, E. – KRENTZ, O. (2004): Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 706–727. 3.2.1.10. BIEBERSTEIN-DITTMANNSDORF ORTHOGNEISS structure is similar to dyke and sill gneiss types of the Central Erzgebirge (Schwarzenberg type). Size and shape (on erosion level): maximum 1 km thick tabular bodies. Age and isotopic data: Neoproterozoic – Cadomian. No isotopic data. Geological environment: Upper Proterozoic two-mica schists, Siebenlehn Metagabbro. Contact aureole: absence of contact phenomena.
Regional position: a heterogeneous augengneiss structure in the Upper Proterozoic Niederschlag series, elongated parallel to the Central Saxonian lineament. Rock types: Bieberstein-Dittmannsdorf Orthogneiss – alternating fine-grained biotite- to two-mica gneiss and red medium-grained augengneiss. Kfeldspar rich parts located mainly in centres of augengneiss zones. Mineral composition and References
FRISCHBUTTER, A. (1990): Prävariszische Granitoide der Fichtelgebirgisch-Erzgebirgischen antiklinalzone und ihre Bedeutung für die Krustenentwicklung am Nordrand des Böhmischen Massivs. – Veröff. Zent.-Inst. Phys. Erde Potsdam. 69, 153 pp. MINGRAM, B. – KRÖNER, A. – HEGNER, E. – KRENTZ, O. (2004): Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 706–727.
85
3.2.2. GREY (INNER) ORTHOGNEISSES Regional position: Eastern part of the Saxothuringian Zone. Rock types: 1. Freiberg Orthogneiss, 2. Fürstenwald-Lauenstein-Petrovice Orthogneiss References FRISCHBUTTER, A. (1990): Prävariszische Granitoide der Fichtelgebirgisch-Erzgebirgischen antiklinalzone und ihre Bedeutung für die Krustenentwicklung am Nordrand des Böhmischen Massivs. – Veröff. Zent.-Inst. Phys. Erde Potsdam. 69, 153 pp. GOTTE, W. – SCHUST, F. (1988): Zur Genese erzgebirgischer „Grauer Gneise“. – Z. geol. Wiss. Berlin 16, 765–778. MINGRAM, B. – KRÖNER, A. – HEGNER, E. – KRENTZ, O. (2004): Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 706–727. SCHÜTZEL, H. – KUTSCHKE, D. – WILDNER, G. (1963): Zur Problematik der Genese der „Grauen Gneise“ des sächsischen Erzgebirges (Zirkonstatistische Untersuchungen). – Freiberg. Forsch.-H., R. C 150, 65 pp. TICHOMIROWA, M. – BELYATSKI, B. V. – BERGER, H.J. – KOCH, E.A. – BOMBACH, K. (1996): New Cadomian ages of magmatic zircons (U/Pb, Pb/Pb) of grey gneisses from the eastern Erzgebirge. – Terra Nostra 96, 183-186. TICHOMIROWA, M. – BERGER, H.-J. – KOCH, E. A. (1997): The origin of grey gneisses in the Eastern Erzgebirge (Germany): implications from geological, geochemical and geochronological data. – J. Czech Geol. Soc. 42, 27. TICHOMIROWA, M. – BERGER, H.-J. – KOCH, E. A. – BELYATSKI, B. V. – GÖTZE, J. – KEMPE, U. – NASDALA, L. – SCHALTEGGER, U. (2001): Zircon ages of high-grade gneisses in the Eastern Erzgebirge (Central European Variscides) – constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan fold belt. – Lithos 56, 303–332. 3.2.2.1. FREIBERG (INNER) ORTHOGNEISS Regional position: Several sheet-like intrusions Age and isotopic data: Freiberg Inner predominantly within the cores of the antidomal Orthogneiss 550 ± 7 Ma (U-Pb zircon), 541 ± 67 structure in the central Erzgebirge. Ma (Pb-Pb zircon), 528 ± 6 Ma (U-Pb SHRIMP zircon). 534 ± 6 Ma (U-Pb SHRIMP zircon), 540 Rock types: Freiberg Inner (Lower) Orthogneiss – strongly ± „ Ma (Pb/Pb evaporation zircon). foliated porphyroclastic muscovite-biotite Geological environment: the Eastern orthogneiss with accessory garnet and sillimanite Erzgebirge series and Pressnitz series of the (S-type, granitic protolith). Neoproterozoic ages. Size and shape (on erosion level): 265 km2, flat domal sills with numerous parallel offsets. Trace elements (mean values in ppm): Freiberg (Inner) Orthogneiss – Ba 669, Co 17, Cr 42, Cu 11, Ga 18, Nb 11, Rb 148, Sr 124, V 55, Y 31, Zn 112, Zr 207 (Kröner et al. 1995). References BOMBACH, K. – HENGST, M. – PILOT, J. (1989): 287Pb-286Pb age determinations on single zircons from the GDR by thermal ion mass spectroscopy. – Proc. 5th Work. Meeting, Isotop. Nature 25, 53–67. GOTTE, W. – SCHUST, F. (1988): Zur Genese erzgebirgischer „Grauer Gneise“. – Z. geol. Wiss. 16, 756– 778. HOFMANN, J. (1974): Petrographische und lithostratigraphische Stellung der Gneise des Osterzgebirges. – Freiberg. Forsch.-H., R. C 292, 63 pp. KRÖNER, A. – WILLNER, A. P. – HEGNER, E. – FRISCHBUTTER, A. – HOFMANN, J. – BERGER, R. (1995): Latest Precambrian (Cadomian) zircon Nd isotopic systematics and P-T evolution of granitoid orthogneisses of the Erzgebirge, Saxony and Czech Republic. – Geol. Rdsch. 84, 437–356. 86
MINGRAM, B. – KRÖNER, A. – HEGNER, E. – KRENTZ, O. (2004): Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 706–727. TICHOMIROWA, M. – BELYATSKI, B. V. – BERGER, H. J. – KOCH, E. A. – BOMBACH, K. (1996): New Cadomian ages of magmatic zircons (U/Pb, Pb/Pb) of grey gneisses from the eastern Erzgebirge. – Terra Nostra 96, 183–186. TICHOMIROWA, M. – BERGER, H.-J. – KOCH, E. A. – BELYATSKI, B. V. – GÖTZE, J. – KEMPE, U. – NASDALA, L. – SCHALTEGGER, U. (2001): Zircon ages of high-grade gneisses in the Eastern Erzgebirge (Central European Variscides) – constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan fold belt. – Lithos 56, 303–332. 3.2.2.2. FÜRSTENWALD-LAUENSTEIN-PETROVICE (INNER) ORTHOGNEISS Regional position: several sheet-like bodies predominantly within the cores of the antidomal structure in the eastern Erzgebirge (FürstenwaldLauenstein-Petrovice Dome). Rock types: Fürstenwald-Lauenstein – Petrovice Inner (Lower) Orthogneiss – ± porphyritic, weakly foliated, medium-grained metagranodiorite to quartz metamonzonite.
Size and shape (on erosion level): 180 km2, sheetlike bodies. Age and isotopic data: Fürstenwald-Lauenstein – Petrovice Orthogneiss 555 ± 7 Ma (U-Pb zircon). Geological environment: the Eastern Erzgebirge series and Pressnitz (Přísečnice) series of the Neoproterozoic age.
Fig. 3.53. Fürstenwald-Lauenstein-Petrovice Orthogneiss ABQ and TAS diagrams.
Fürstenwald-Lauenstein-Petrovice Orthogneiss Quartz-normal, sodic-potassic to potassic, strongly peraluminous, mesocratic, S-type, I-series, granodiorite to granite n = 14 Med. Min Max QU1 QU3 SiO2 67.92 65.53 74.57 67.70 69.34 TiO2 0.58 0.16 0.85 0.49 0.66 Al2O3 14.82 13.31 15.52 14.49 15.22 Fe2O3 0.68 0.27 0.96 0.36 0.75 FeO 3.14 1.39 4.03 2.68 3.47 MnO 0.05 0.03 0.08 0.03 0.06 MgO 1.51 0.43 2.19 1.11 1.69 CaO 1.12 0.86 2.54 1.07 1.56 Na2O 3.03 2.72 3.58 2.91 3.19 K2O 3.87 3.01 5.04 3.81 4.43 87
P2O5 0.20 0.11 0.30 0.18 0.23 Li2O 0.010 0.000 0.019 0.008 0.013 Mg/(Mg+Fe) 0.41 0.30 0.44 0.40 0.43 K/(K+Na) 0.45 0.36 0.55 0.44 0.51 Nor.Or 24.51 19.26 31.33 23.67 28.17 Nor.Ab 29.47 26.07 34.53 28.29 30.51 Nor.An 4.62 3.41 11.94 4.31 7.13 Nor.Q 28.50 22.24 37.19 26.17 30.34 Na+K 185.06 167.33 198.21 178.35 188.34 *Si 177.88 150.34 219.43 168.22 186.27 K-(Na+Ca) -37.42 -93.36 -1.13 -55.03 -18.98 Fe+Mg+Ti 100.23 37.34 133.14 75.01 105.17 Al-(Na+K+2Ca) 49.48 31.11 83.27 45.80 61.25 (Na+K)/Ca 8.55 3.88 12.00 6.07 9.97 A/CNK 1.24 1.14 1.42 1.22 1.28 Trace elements (mean values in ppm): Fürstenwald-Lauenstein-Petrovice Orthogneiss – Ba 578, 790, Co 152, 143, Cr 19, 44, Cu 2, 9, Ga 15,18, Nb 7,12, Rb 160, 175, Sr 69, 112, V 16, 55, Y 24, 29, Zn 49, 63, Zr 108, 193 (Kröner et al. 1995). References BOMBACH, K. – HENGST, M. – PILOT, J. (1989): 287Pb-286Pb age determinations on single zircons from the GDR by thermal ion mass spectroscopy. – Proc. 5th Work. Meeting, Isotop. Nature 25, 53–67. GOTTE, W. (1990): Neue Befunde zur Genese der grauen Gneise im östlichen Erzgebirge. – Abh. Staatl. Mus. Mineral. Geol. Dresden 37, 37–53. GOTTE, W. – SCHUST, F. (1988): Zur Genese erzgebirgischer „Grauer Gneise“. – Z. geol. Wiss. 16, 756– 778. KRÖNER, A. – WILLNER, A. P. – HEGNER, E. – FRISCHBUTTER, A. – HOFMANN, J. – BERGER, R. (1995): Latest Precambrian (Cadomian) zircon Nd isotopic systematics and P-T evolution of granitoid orthogneisses of the Erzgebirge, Saxony and Czech Republic. – Geol. Rdsch. 84, 437–356. MINGRAM, B. – KRÖNER, A. – HEGNER, E. – KRENTZ, O. (2004): Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany), and geodynamic interpretation. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 706–727. TICHOMIROWA, M. – BELYATSKI, B. V. – BERGER, H. J. – KOCH, E. A. – BOMBACH, K. (1996): New Cadomian ages of magmatic zircons (U/Pb, Pb/Pb) of grey gneisses from the eastern Erzgebirge. – Terra Nostra 96, 183–186. TICHOMIROWA, M. – BERGER, H.-J. – KOCH, E. A. (1997): The origin of grey gneisses in the Eastern Erzgebirge (Germany): implications from geological, geochemical and geochronological data. – J. Czech Geol. Soc. 42, 27. TICHOMIROWA, M. – BERGER, H.-J. – KOCH, E. A. – BELYATSKI, B. V. – GÖTZE, J. – KEMPE, U. – NASDALA, L. – SCHALTEGGER, U. (2001): Zircon ages of high-grade gneisses in the Eastern Erzgebirge (Central European Variscides) – constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan fold belt. – Lithos 56, 303–332.
88
Atlas of plutonic rocks and orthogneisses in the Bohemian Massif 3. Saxothuringicum
J. Klomínský, T. Jarchovský, G. S. Rajpoot Published by the Czech Geological Survey Prague 2010 First edition Printed in the Czech Republic 03/9 446-412-10 ISBN 978-80-7075-751-2
Správa úložišť radioaktivních odpadů Dlážděná 6, 110 00 Praha 1 Tel.: 221 421 511 E-mail:
[email protected] www.surao.cz
Atlas
of plutonic rocks and orthogneisses in the Bohemian Massif
lugicum Josef Klomínský Tomáš Jarchovský Govind S. Rajpoot
Czech Geological Survey Prague 2010
CZECH GEOLOGICAL SURVEY
ATLAS of plutonic rocks and orthogneisses in the Bohemian Massif
4. LUGICUM Compiled by Josef KlS. Rajpoot Compiled by Josef Klomínský Tomáš Jarchovský Govind S. Rajpoot The Lugicum volume is a part of the Atlas of plutonic rocks and orthogneisses in the Bohemian Massif which consists of six chapters: INTRODUCTION 1. BOHEMICUM 2. MOLDANUBICUM 3. SAXOTHURINGICUM 4. LUGICUM 5. BRUNOVISTULICUM AND MORAVOSILESICUM In the Introduction volume are summarized general characteristics of the plutonic rocks and orthogneisses from a point of view of their composition, age, 3-D shape, zonation, metallogeny and spatial distribution. The territorial sections 1–5 comprise structured geological parameters of the plutonic rocks and orthogneisses located within boundaries of the principal geological zones in the Bohemian Massif. The compilation work was supported by the Radioactive Waste Repository Authority of the Czech Republic (RAWRA) and by the Czech Geological Survey.
Acknowledgements We would like to thank the following colleagues who have helped in the compilation and correction of this review: A. Dudek, F. Fediuk, M. Chlupáčová, V. Janoušek J. Kotková, M. René, Z. Vejnar, P. Vlašímský, P. Schovánek and S. Vrána. We are grateful for technical assistance to P. Kopecký, M. Toužimský, J. Holeček, M. Fifernová, J. Kušková, J. Karenová, V. Čechová, and L. Richtrová. In spite of the negative view on our work and unrealistic comments we thank also to M. Štemprok and F. V. Holub for their criticism which helped us to improve the original manuscript. * Corresponding author Josef Klominsky, Czech Geological Survey, Klárov 131/3, Prague 1, Czech Republic. Fax (+420) 257 531 376. E-mail address:
[email protected]
© J. Klomínský, T. Jarchovský, G. S. Rajpoot, 2010 ISBN 978-80-7075-751-2
THE ATLAS OF PLUTONIC ROCKS AND ORTHOGNEISSES IN THE BOHEMIAN MASSIF
4. LUGICUM Josef Klomínský a*, Tomáš Jarchovský a, Govind S. Rajpoot b a
Czech Geological Survey, Klárov 131/3, Praha 1, b Náchodská 2030, Praha 9, Czech Republic
Contents FOREWORD ................................................................................................................................................... 3 A. Lusatia .................................................................................................................................................. 3 4.1. LUSATIAN COMPOSITE BATHOLITH (LCB) ................................................................................. 4 4.1.01. STOLPEN STOCK .......................................................................................................................... 14 4.1.02. KÖNIGSHAIN STOCK .................................................................................................................... 15 4.1.03. DOHNA COMPOSITE STOCK ......................................................................................................... 17 4.1.04. BROSSNITZ STOCK ....................................................................................................................... 18 4.1.05. SCHWARZKOLLM STOCK ............................................................................................................. 18 B. Elbe Zone............................................................................................................................................ 19 4.2. MEISSEN COMPOSITE MASSIF ...................................................................................................... 19 C. The Middle-German Crystalline Zone ............................................................................................ 24 4.3. DELITZSCH MASSIF ......................................................................................................................... 24 4.4. PRETZSCH MASSIF........................................................................................................................... 25 4.5. DESSAU STOCK ................................................................................................................................ 27 4.6. PRETTIN MASSIF .............................................................................................................................. 27 4.7. SCHÖNEWALDE STOCK.................................................................................................................. 29 4.8. DAHLEN-LASSE MASSIF................................................................................................................. 30 4.9. SCHLIDAU STOCK............................................................................................................................ 30 4.10. LEIPZIG-EILENBURG MASSIF...................................................................................................... 31 D. Krkonoše-Jizera Region.................................................................................................................... 32 4.11. JIZERA-KRKONOŠE–KOWARY ORTHOGNEISSES .................................................................. 32 4.12. BÍTOUCHOV METAGRANITE....................................................................................................... 35 4.13. PACZYN ORTHOGNEISS ............................................................................................................... 35 4.14. KRKONOŠE-JIZERA COMPOSITE MASSIF (KJCM) .................................................................. 36 E. Kaczawa Region (including the Fore-Sudetic Block) ..................................................................... 45 4.15. ŻELEŻNIAK (BUKOWINKA) STOCK ........................................................................................... 46 4.16. STRZEGOM-SOBÓTKA COMPOSITE MASSIF ........................................................................... 48 4.17. LIPOWE HILLS STOCK................................................................................................................... 52
1
4.18. OLEŠNICE-KUDOWA MASSIF...................................................................................................... 52 4.19. NOVÝ HRÁDEK STOCK................................................................................................................. 55 4.20. ODRA FAULT INTRUSIONS .......................................................................................................... 57 4.21. ORLICA-SNĚŽNÍK ORTHOGNEISS .............................................................................................. 59 F. Góry Sowie Block .................................................................................................................................. 62 4.22. NIEMCZA STOCKS.......................................................................................................................... 62 4.23. GÓRY SOWIE (OWL Mts.) ORTHOGNEISS.................................................................................. 64 4.24. KŁODZKO-ZŁOTY STOK MASSIF................................................................................................ 66 G. East Bohemian Plutons ..................................................................................................................... 70 4.25. GREAT TONALITE DYKE (Zábřeh Massif) ................................................................................... 70 4.26. POLIČKA COMPOSITE MASSIF (PCM)........................................................................................ 73 4.27. LITICE MASSIF (LM) ...................................................................................................................... 75 4.28. JAVORNÍK MASSIF......................................................................................................................... 77
The locality map of the plutonic rocks and orthogneisses in the Bohemian Massif (folded)
2
FOREWORD The Lugicum (Lusatian Zone) comprises several plutonic series and suites grouped into the Neoproterozoic, Cadomian (Early Palaeozoic) and Variscan intrusions (e.g. Lusatian Composite Batholith, Jizera-Krkonoše Orthogneisses, Strzegom Massif). They are briefly summarized by Kryza (1995) and Wiszniewska et al. (2007). Intrusions are located within several independent regions (e.g. the Elbe Zone, the Lusatian Region, the Krkonoše-Jizera Region, Kaczawa Region, Fore-Sudetic Jizera Composite Massif, Olešnice-Kudowa Massif, Orlice-Sněžník Orthogneiss, Krkonoše-Kowary Block, and the Góry Sowie/Owl Mts. Block). References BIELICKI, K. H. – HAASE, G. – EIDAM, J. et al. (1989): Pb-Pb and Rb-Sr dating of granitoids from the Lusatian Block. In: Wand, U. – Strauch, G. Eds: Proceedings of the Fifth Working Meeting “Isotopes in Nature”, 23–45. – Inst. Isotope and Radiation Res., Leipzig. KRÖNER, A. – JAECKEL, P. – HEGNER, E. – OPLETAL, M. (2001): Single zircon ages and whole rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše Mountains and Orlice-Sněžník Complex). – Int. J. Earth Sci. (Geol. Rdsch.) 90, 304–324. KRYZA, R. (1995): Igneous activity in the Lugicum. In: Dallmeyer, R. D. et al. Eds: Pre-Permian Geology of Central and Eastern Europe, 341–349. – Springer-Verlag, Berlin, Heidelberg. LINNEMANN, U. – McNAUGHTON, N. J. – ROMER, R. L. – GEHMLICH, M. – DROST, K. – TONK, CH. (2004): West African provenance for Saxo-Thuringia (Bohemian Massif): Did Armorica ever leave pre-Pangean Gondwana ? – U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 683–705. MAZUR, S. – ALEKSANDROWSKI, P. – TURNIAK, K. – AWDANKIEWICZ, M. (2007): Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes – an overview. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. Mineral. Monogr. 1, 59–87. SEDLÁK, J. – GNOJEK, I. – ZABADAL, S. – FARBISZ, J. – CWOJDZINSKI, S. – SCHEIBE, R. (2007): Geological interpretation of a gravity low in the central of the Lugican unit (Czech Republic, Germany and Poland). – J. Geosci. 52, 181–198. WISZNIEWSKA, J. – KRZEMIŃSKA, E. – MAZUR, S. – GAWĘDA, A. – KOZŁOWSKI, A. (2007): Foreword – brief outline of geology of Poland. In: Kozlowski A., Wiszniewska J. Eds: Granitoids in Poland. – Arch. Mineral. Monogr. 1, 5–7.
A. LUSATIA The Lusatian region is an equivalent of the Lusatian Anticlinorium, comprising the Lusatian Greywackes and the Lusatian Composite Batholith.
Fig. 4.1. Lusatian Composite Batholith hierarchical scheme according to rock series and rock types (G - granodiorite).
3
4.1. LUSATIAN COMPOSITE BATHOLITH (LCB) shape of the Rumburk Granite (thickness of 5 to 10 km). Age and isotopic data: (Compilation of age data up to 1992 is given by Kröner et al. 1994). Neoproterozoic – Cadomian (Cambrian-Ordovician) to Variscan (Upper Carboniferous) plutonic complex. Two generations of pre-Variscan granitic rocks can be distinguished – the Lusatian granodiorites, displaying ages around 540–580 Ma and the West Sudetes orthogneisses with ages around 450–500 Ma (Jizera Orthogneiss, Rumburk Granite, Kowary Orthogneiss, Snieznik and Gieraltow Orthogneiss). Neoproterozoic-Lower Cambrian plutonic series Pulsnitz Granodiorite 542 ± 9 Ma (Pb-Pb zircon), 585 ± 11 Ma (Pb-Pb zircon), 584 ± 16 Ma (Pb-Pb zircon), 563 ± 18 Ma (Pb-Pb zircon), Zawidów Granodiorite 540 ± 7 Ma (U-Pb), 323 ± 6 Ma (ArAr micas), Pleterówka (Zawidow Granodiorite or Leśna Gneiss) Granodiorite 533 ± 9 Ma (U-Pb zircon), Demitz Granodiorite 552–556 ± 18 Ma (PbPb zircon), Kamentz Granodiorite 576 ± 16 Ma (PbPb zircon), Kindisch Granodiorite 564 ± 15, 536 Ma, (Pb-Pb zircon), 540 Ma (SHRIMP U-Pb-Th zircon), Radeberg Granodiorite 540 Ma (SHRIMP U-Pb zircon), Bernstadt Granodiorite 587 ± 17 Ma (Pb-Pb zircon), various Lusatian granitoids between 589 and 563 (Pb-Pb K-feldspar). Cambrian/Ordovician plutonic series Rumburk Granite 501 ± 32 Ma (Rb-Sr whole rock), 410 Ma (K-Ar biotite), 571 ± 16 Ma (Pb-Pb zircon), 494 ± 12 Ma and 480 ± 12 Ma (Pb-Pb zircon), 505 ± 1.2 Ma (Pb-Pb zircon), 490 ± 3 Ma (Pb-Pb zircon), 494 ± 12 Ma (Pb-Pb zircon) 493 ± 4 Ma (U-Pb zircon), 480 Ma (SHRIMP U-Pb zircon). Jizera Orthogneiss (derivate of the Rumburk Granite) 504.6 ± 1.2 Ma (Pb-Pb zircon), Krkonoše Orthogneiss 501.5 ± 1.1 Ma (Pb-Pb zircon). Dolerite Dyke Swarm Dolerite (older sequence) 400 Ma (K-Ar whole rock), Alkali-dolerite (younger sequence) 260 ± 25 Ma (K-Ar whole rock). Upper Carboniferous plutonic series Wiesa Granite 304± 14 Ma (Pb-Pb zircon), Kleinschweidnitz Tonalite 304 ± 10 Ma (Pb-Pb zircon), 312 ± 10 Ma (Pb-Pb zircon), Königshain Granite 315 ± 6 Ma (Pb-Pb zircon), Lamprophyre 130 Ma (K-Ar phlogopite). Temporal relations: Lusatian (Pulsnitz) Hybrid Granodiorite → Demitz Granodiorite → Zawidów Granodiorite → Rumburk Granite → Jizera Orthogneiss → dolerite Dykes → Upper Carboniferous stocks.
Regional position: The Batholith is located in the SE part of the Lusatian Anticlinorium. About 30 rock types have been recognised. The Batholith consists of three plutonic series belonging to the Cadomian and Variscan orogens. Rock types: A. Neoproterozoic-Lower Cambrian plutonic series Pulsnitz Complex 1. Pulsnitz Granodiorite – muscovite-biotite hybrid granodiorite (anatexite) with several episodes of granodiorite emplacement (Neoproterozoic). Radeberg-Löbau Complex 1. West Lusatian Granodiorite (local facies: Demitz-Thumitz, Oberkaina, Kubschütz, Plieskowitz, Kindisch, Kamenz, Königsbrück, Herrnhut, Löbau, Bernstadt) – biotite ± hornblende granodiorite to tonalite (Late Cadomian and pre-Late Ordovician). The East-Lusatian Granodiorite intruded this granodiorite. 2. East Lusatian Granodiorite (local facies: Zawidów/Seidenberg, Rožany, Lesná) ± porphyritic medium-grained biotite granodiorite. B. Cambrian/Ordovician plutonic series 1. Rumburk Granite and Izera Orthogneiss (see the Chapter 4.11. the Jizera-Krkonoše Orthogneisses) – porphyritic muscovitebiotite granite. 2. Václavice Granite – biotite monzogranite to granodiorite. 3. Brtníky (Zeidler) Granite – biotite monzogranite. C. Dolerite dyke swarm Up to 2000 mafic dykes of older dolerites and younger alkali-dolerites (lamprophyres) up to 100 m thick. They postdate the Lusatian granodiorites, but are older than late Variscan stock granites. D. Upper Carboniferous plutonic series 1. Königshain Granite – porphyritic biotite granite. 2. Stolpen Granite – porphyritic biotite granite. 3. Arnsdorf Granite. 4. Wiesa Granodiorite – hornblende granodiorite. 5. Kleinschweidnitz Tonalite – hornblendebearing biotite quartz diorite to monzogranite. Size and shape (on erosion level): 3600 km2 (70 × 35 km), oval in shape. The Variscan stocks (Stolpen, Arnsdorf and Königshain) occupy only small area between 6 to 30 km2. A flat sheet-like
4
part of the same plutonic body however, at different level of erosion. The central LCB is mainly made up of biotite- and K-feldspar-rich two mica granodiorites and muscovite-bearing biotite quartz diorites (the Pulsnitz Complex), whereas the biotite granodiorites (the West and East Granodiorites) in the marginal domains contain less biotite and K-feldspar. Mineralization: Cu-Ni-Co sulphide mineralization. Heat production (μWm-3): Zawidów Granodiorite 1.8, Rumburk Granite 3.46–2.19, West Lusatian Granodiorite 2.32, 5.36, 2.24, 2.23, 4.56, 3.70, Pulsnitz Granodiorite 1.86.
Geological environment: Neoproterozoic greywackes. Zoning: subhorizontal layering (stratification) – Lusatian Hybrid Granodiorite (the Pulsnitz Complex) in the roof of the West Lusatian Granodiorite. Compositional zoning – from NW to SE, increasing of the acidity in sequence West Lusatian Granodiorite → Zawidow Granodiorite → Rumburk Granite. Vertical zoning within the Lusatian Granodiorite (Radeberg-Löbau Complex) – increase of Kfeldspar and decrease of biotite contents with depth. West-Lusatian and East-Lusatian granodiorites are
Fig. 4.2. Lusatian Composite Batholith geological sketch-map (after Kozdrój et al. 2001). Upper Carboniferous stocks: 1 – biotite monzogranite (Stolpen, Kőnigshain and Arnsdorf Stocks), 2 – biotite monzogranite to quartz diorite (Wiesa and Kleinschweidnitz). Upper Cambrian-Lower Ordovician Granites: 3 – biotite monzogranite (Rumburk), 4 – biotite monzogranite (Václavice), 5 – biotite monzogranite to granodiorite (Brtníky). Neoproterozoic-Lower Cambrian Granitoids: Pulsnitz Complex: 6 – two-mica granodiorite (anatexite); Radeberg-Lőbau Complex: 7 – porphyritic biotite granodiorite (Kamenz), 8 – biotite granodiorite (Königsbrück), 9 – biotite ( muscovite) granodiorite (Herrnhut), 10 – biotite ( muscovite) granodiorite (Löbau) 11 – biotite granodiorite (Demitz-Thumitz, Oberkaina, Plieskowitz, Kindisch), 12 – biotite granodiorite (Bernstadt), East Lusatian Granodiorite: 13 – biotite granodiorite (Zawidów), 14 – biotite-muscovite granodiorite (Rožany), 15 – granodiorite undivided, 16 – “Islands” of Proterozoic country rocks, 17 – Dohna Composite Stock, 18 – faults.
5
References ADAMOVÁ, M. – OPLETAL, M. (2001): New geological mapping in the Czech part of the Lusatian Massif and its tectonic and geochemical implications. – Z. geol. Wiss. Berlin 29, 445–453. BIAŁEK, D. (1998): Aspects of geochemistry of the Zawidow granodiorite and the Jizera granite-arc to rift transition. – Geolines 6, 11. BIAŁEK, D. (1999): Chemical changes associated with deformation of granites under greenschist facies conditions: example of the Zawidów granodiorite (SE Lusatian granodiorite complex, Poland). – Tectonophysics 303, 251–261. BIAŁEK, D. (2007): Zawidów granodiorite from the Lusatian massif in SW Poland. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 89–99. BIELICKI, K. H. – HAASE, G. – EIDAM, J. et al. (1989): Pb-Pb and Rb-Sr dating of granitoids from the Lusatian Block. In: Wand, U. – Strauch, G. Eds: Proceedings of the Fifth Working Meeting “Isotopes in Nature”, 23–45. – Inst. Isotope and Radiation Res., Leipzig. BORKOWSKA, M. – HAMEURT, J. – VIDAL, P. (1980): Origin and age of Izera gneisses and Rumburk granites in the Western Sudetes. – Acta Geol. Pol. 30, 121–145. BRAUSE, H. – SCHUBERT, G. – HORTENBACH, R. (1981): Beitrag zur präkambrischen und pleistozenen Tektonik im Gebiet von Kamenz. – Veröff. Mus. Westlausitz 9, 9–27. BRAUSE, H. – STEDING, D. – SCHUBERT, G. (1964): Tektonische Beziehungen zwischen Prätertiär, Tertiär und Quartär in der nördlichen Oberlausitz. – Geologie 13, 731–744. DOMEČKA, K. (1970): Předvariské granitoidy Západních Sudet. – Sbor. geol. Věd, Geol. 18, 161–191. DUTHOU, J. L. – COUTERIE, J. P. – MIERZEJEWSKI, M. P. – PIN, C. (1991): Next dating of granite samples from the Karkonosze Mountains using Rb-Sr total rock isochrone method. – Przegl. Geol. 39, 75–79. EIDAM, J. (1988): Zur anatektischen und magmatischen Entwicklung der granitoiden Gesteine der Lausitz Anticlinalzone. – Z. geol. Wiss. 16, 5, 393–406. EIDAM, J. – HAMMER, J. – KORICH, D. – BIELICKI, K. H. (1995): Amphibole-bearing granites in the Lusatian Anticlinal Zone: Variscan I-type magmatism at the northern margin of the Bohemian Massif. – Neu. Jb. Mineral., Abh. 168, 3, 259–281. EIDAM, J. – HAMMER, J. – KORICH, D. – KRAUSS, M. (1992): Zur Abgrenzung altersverschiedener Granitoide innerhalb des Lausitzer Granodiorite-Massivs. – Z. geol. Wiss. 20, 3, 289–294. HAAKE, R. – HERRMANN, G. – PÄLCHEN, W. – PILOT, J. (1973): Zur Altersstellung der Granodiorite der westlichen Lausitz und angrenzender Gebiete. – Z. geol. Wiss. 12, 1669–1671. HAMMER, J. (1996): Geochemie und Petrogenese der cadomischen und spätvariszischen Granitoide der Lausitz. – Freiberg. Forsch.-H., R. C 463, 107 pp. HAMMER, J. – BRÖCKER, M. – KRAUSS, M. (1997): Alter und geologische Signifikanz von Deformationszonen im östlichen Teil des Lausitzer Granitoidkomplexes. – Terra Nostra 97, 62–63. HAMMER, J. – EIDAM, J. – RÖBER, B. – EHLING, B. D. (1999): Prävariszischer und variszischer granitoider Magmatismus am NE-Rand des Böhmischen Massivs. Geochemie und Petrogenese. – Z. geol. Wiss. 27, 401–415. HECHT, L. – THURO, K. – PLINNINGER, R. – CUNEY, M. (1999): Mineralogical and geochemical characteristics of hydrothermal alteration and episyenitization in the Könighain granites, northern Bohemian Massif, Germany. – Int. J. Earth Sci. 88, 236–252. HIRSCHMANN, G. (1962): Zur Frage des Seidenberger Granodiorits. – Geologie 11, 620–621. HIRSCHMANN, G. (1966): Zum Alter des Lausitzer Granodiorit-Massivs. – Geologie 15, 2, 141–148. JELIŃSKI, A. (1965): Geochemistry of the uranium in the Karkonosze Granite Massif and other granitoids massifs of Lower Silesia. – Biul. Inst. Geol. 193, 5, 5–110. (In Polish) KORYTOWSKI, A. – DÖRR, W. – ŻELAŻNIEWICZ, A. (1993): U-Pb dating of (meta) granitoids in the NW Sudetes (Poland) and their bearing on the tectonostratigraphic correlation. – Terra Nova 5, 331–332. KOZDRÓJ, W. – KRENTZ, O. – OPLETAL, M. Eds (2001): Comments on the Geological Map LausitzJizera-Karkonosze 1 : 100,000. – Sächs. Landesamt für Umwelt und Geol. Freiberg – Czech Geol. Survey, Prague – Pan. Inst. Geol. Warszawa. KOZŁOWSKA-KOCH, M. (1974): The granite-gneisses in Izera Highlands. – Arch. mineral. 25, 123–260. (English summary) KOZŁOWSKI, K. (1974): Crystalline schists and leucogranites of the Stara Kamenieca-Świeradów Zdrój belt. – Geol. sudet. 9, 7–100. (English summary) 6
KRAMER, W. (1976): Zur Petrologie und metallogenetischen Bedeutung der Dolerite (Lamprophyre) des Lausitzer Massifs. – Z. geol. Wiss. 4, 975–994. KRAUSS, M. – EIDAM, J. – HANNER, J. et al. (1992): Die cadomisch-variszische Entwicklung des Lausitzer Granodiorit-Komplexes. – Zbl. Geol. Paläont., Tl I, 71–85. KRÖNER, A. – HEGNER, E. – HAMMER, J. – HAASE, G. – BIELICKI, K. H. – KRAUSS, M. – EIDAM, J. (1994): Geochronology and Nd-Sr systematics of Lusatian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. – Geol. Rdsch. 83, 357–376. KRÖNER, A. – JAECKEL, P. – HEGNER, E. – OPLETAL, M. (2001): Single zircon ages and whole rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše Mountains and Orlice-Sněžník Complex). – Int. J. Earth Sci. (Geol. Rdsch.) 90, 304–324. KRÖNER, A. – JAECKEL, P. – OPLETAL, M. (1994): Pb-Pb and U-Pb zircon ages for orthogneisses from Eastern Bohemia: further evidence for a major Cambro-Ordovician magmatic event. – J. Czech Geol. Soc. 39, 61. LINNEMANN, U. – Mc NAUGHTON, N. J. – ROMER, R. L. – GEHMLICH, M. – DROST, K. – TONK, C. (2004): West African provenance for Saxo-Thuringia (Bohemian Massif): Did Armorica ever leave pre-Pangean Gondwana? – U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 683–705. MARHEINE, D. – KACHLÍK, V. – MALUSKI, H. et al. (2002): The 40Ar/39Ar ages from the West Sudetes (NE Bohemian Massif): constraints on the Variscan polyphase tectonothermal development. In: Winchester, J. A. – Pharaoh, T. C. – Verniers, J. Eds: Palaeozoic Amalgamation of Central Europe. – Geol. Soc. London Spec. Publ. 201, 133–155. MAZUR, S. – ALEKSANDROWSKI, P. (2001): The Teplá(?)/Saxothuringian suture in Karkonosze-Izera massif, Western Sudetes, Central European Variscides. – Int. J. Earth Sci. (Geol. Rdsch.) 90, 341–360. MÖBUS, G. (1962): Der Hornblendegranodiorit von Wiesa bei Görlitz, eine randliche Ausbildung des Lausitzer Granodioritmassivs. – Geologie 11, 509–528. MÖBUS, G. (1964): Beobachtungen im Grenzbereich Rumburger Granit – Lausitzer Granodiorit. – Mber. Dtsch. Akad. Wiss. Berlin 6, 10, 759–764. MÖBUS, G. (1967): Der Lausitzer Granodiorit von Demitz-Thumitz bei Bischofswerda (Oberlausitz). – Geol. Jb. 13, 793–865. OBERC-DZIEDZIC, T. (2007): Early Palaezoic Izera (Rumburk) granites from West Sudetes, Poland. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. 1, 101–110. OBERC-DZIEDZIC, T. – PIN, C. – KRYZA, R. (2005): Early Palaeozoic crustal melting in an extensional setting: petrological and Sm-Nd evidence from the Izera granite-gneisses, Polish Sudetes. – Int. J. Earth Sci. (Geol. Rdsch.) 94, 354–368. OLIVER, G. J. H. – CORFU, F. – KROGH, T. E. (1993): U-Pb ages from SW-Poland: Evidence for Caledonian suture zone between Baltica and Gondwana. – Jb. Geol. Soc. London 150, 355–369. OPLETAL, M. – DOMEČKA, K. – VAVŘÍN, I. (1983): Granitoidy lužického masivu v jižní časti Šluknovského výběžku a jejich nové petrologické zařazení. – Sbor. geol. Věd., Geol. 38, 141–175. PIN, C. – KRYZA, R. – OBERC-DZIEDZIC, T. – MAZUR, S. – TURNIAK, K. – WALDHAUSROVÁ, J. (2007): The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian massif: a review based on Sm-Nd isotope and geochemical data. In: Linnemann, U. – Nance, R. D. – Kraft, P. – Zulauf, G. Eds: The Geology of PeriGondwana: Avalonian-Cadomian terranes, adjoining cratons, and the Rheic Ocean. – Geol. Soc. Amer. Spec. Publ. 423, 209–229. RÖBER, B. – HAMMER, J. – EIDAM, J. EHLING, B. C. (1996): Petrographie und Geochemie von Gesteinen des Pretzsch-Prettiner Intrusivkomplexes (östlichen Teil der Mitteldeutschen Schwelle). – Terra Nostra 97, 140–142. RÖBER, B. – HAMMER, J. – EIDAM, J. – EHLING, B. C. (1998): Mineralogisch-geochemische Untersuchungen von cadomischen und spätvariszischen Plutonkomplexen im Ostteil der Mitteldeutschen Schwelle. – Terra Nostra 98, 126–129. SCHUST, F. (2000): Zum magmengeologischen Bau und zur Alterdatierung Lausitzer prävariszischen Granitoidkomplexen. – Z. geol. Wiss. 28, 111–132.
7
SCHUST, F. – WASTERNACK, J. (2002): Granitoid-Typen in postkinematischen Granitoidplutonen: Abbilder von autonomen Intrusionsschüben – Beispiele vom Nordrand des Böhmischen Massivs (Erzgebirge – Harz – Flechtinger Scholle – Lausitz). – Z. geol. Wiss. 30, 77–117.
SEDLÁK, J. – GNOJEK, I. – ZABADAL, S. – FARBISZ, J. – CWOJDZINSKI, S. – SCHEIBE, R. (2007): Geological interpretation of gravity low in the central of the Lugian unit (Czech Republic, Germany and Poland). – J. Geosci. 52, 181–198. STANEK, K. – RENNO, A. D. – LOBST, R. – PUSHKAREV, Y. (2001): The Lusatian basic dyke swarms. In: Tectonic and Magma 2001 IGCP Project 373, Abstract, 23–26, 92–93. – Berlin. TICHOMIROWA, M. (2002): Zircon inheritance in diatexite granodiorites and its consequence on geochronology – a case study in Lusatia and Erzgebirge (Saxo-Thuringia, eastern Germany). – Chem. Geol. 191, 209–224. TICHOMIROWA, M. – LINNEMANN, U. – GEHMLICH, M. (1997): Zircon ages as magmatic time marks. Comparison of the crustal evolution in different units of the Saxothuringian zone. – Terra Nostra 97, 137– 141. ŻELAŻNIEWICZ, A. – DÖRR, W. – BYLINA, P. – FRANKE, W. – HAAK, U. – HEINISCH, H. – SCHASTOK, J. – GRANDMOUNTAGNE, K. – KULICKI, C. (2004) The eastern continuation of the Cadomian orogen: U-Pb zircon evidence from Saxo-Thuringian granitoids in south-western Poland and northern Czech Republic. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 773–781. A. Neoproterozoic-Lower Cambrian plutonic series Pulsnitz Granodiorite Quartz-normal, sodic, peraluminous, (strongly), mesocratic, S-type, I- & Mseries, granodiorite n = 14 Median Min Max QU1 QU3 SiO2 66.20 64.80 68.50 65.60 66.70 TiO2 0.72 0.57 0.77 0.68 0.74 Al2O3 15.70 15.20 16.70 15.60 15.80 Fe2O3tot 5.23 4.69 6.06 5.09 5.43 FeO 0.00 0.00 0.00 0.00 0.00 MnO 0.06 0.05 0.08 0.06 0.07 MgO 2.07 1.54 2.22 1.74 2.16 CaO 1.49 1.20 2.50 1.32 2.01 Na2O 3.13 2.92 3.52 2.99 3.29 K2O 3.30 3.06 3.88 3.20 3.49 P2O5 0.16 0.11 0.22 0.14 0.18 Mg/(Mg+Fe) 0.42 0.38 0.45 0.41 0.44 K/(K+Na) 0.41 0.37 0.46 0.39 0.42 Nor.Or 20.94 18.90 24.16 19.95 21.90 Nor.Ab 29.75 28.01 33.26 28.83 31.57 Nor.An 6.80 5.22 11.85 6.01 9.29 Nor.Q 28.60 24.64 30.94 26.67 29.33 Na+K 173.26 167.46 185.42 168.34 177.58 *Si 174.41 152.72 187.38 163.76 179.00 K-(Na+Ca) -62.54 -90.62 -35.25 -76.70 -51.57 Fe+Mg+Ti 125.41 108.00 138.30 118.48 130.27 Al-(Na+K+2Ca) 80.30 35.52 103.45 61.77 86.84 (Na+K)/Ca 5.98 3.95 8.15 4.60 6.96 A/CNK 1.38 1.14 1.50 1.26 1.42 Trace elements (mean values in ppm): Pulsnitz Granodiorite – B 31, Ba 868, Be 2, Co 13.3, Cr 81, Cs 7.5, Cu 23, Ga 20, Hf 6.1, Li 50, Ni 36, Nb 12, Pb 23, Rb 125, Sc 12.4, Sn -, Sr 202, Ta 1.02, Th 11.3,
8
U 3.0, V 93, Y 30, Zn 81, Zr 214, La 38, Ce 77, Nd 39, Sm 5.9, Eu 1.38, Tb 0.91, Yb 2.9, Lu 0.46 (Hammer et al. 1999).
Fig. 4.3. Lusatian Composite Batholith – Pulsnitz Granodiorite ABQ and TAS diagrams.
West Lusatian Granodiorite Quartz-poor, sodic, peraluminous, melanocratic, S-type, I- & M-series, granodiorite n = 26 Median Min Max QU1 QU3 SiO2 66.60 64.80 69.70 66.00 68.30 TiO2 0.72 0.51 0.88 0.67 0.76 Al2O3 15.60 14.60 16.70 15.30 15.70 Fe2O3 5.06 3.36 6.06 4.68 5.39 FeO 0.00 0.00 0.00 0.00 0.00 MnO 0.06 0.05 0.08 0.06 0.07 MgO 1.72 1.03 2.22 1.54 2.07 CaO 1.88 1.20 3.30 1.41 2.45 Na2O 3.38 2.92 3.88 3.13 3.49 K2O 3.30 3.04 4.12 3.20 3.50 P2O5 0.18 0.11 0.26 0.15 0.20 Mg/(Mg+Fe) 0.41 0.37 0.45 0.39 0.43 K/(K+Na) 0.40 0.35 0.46 0.38 0.43 Nor.Or 20.94 18.65 25.24 19.95 22.20 Nor.Ab 31.57 28.01 36.00 29.75 32.76 Nor.An 8.55 5.22 15.23 6.25 11.45 Na+K 177.90 167.46 200.10 173.26 186.24 Nor.Q 27.19 24.18 30.94 25.94 29.05 *Si 165.22 148.36 187.38 159.08 177.81 K-(Na+Ca) -71.75 -103.37 -35.25 -90.23 -53.50 Fe+Mg+Ti 117.46 74.05 138.30 105.64 126.89 Al-(Na+K+2Ca) 45.14 11.35 103.45 29.73 80.30 (Na+K)/Ca 5.17 2.95 8.65 4.24 6.96 A/CNK 1.19 1.05 1.50 1.13 1.38 Trace elements (mean values in ppm): West Lusatian Granodiorite – B 20, Ba 754, Be 2, Co 7.1, Cr 27, Cs 7.1, Cu 9, Ga 20, Hf 5.7, Li 45, Ni 12, Nb 9, Pb 23, Rb 145, Sc 9.3, Sr 123, Ta 0.97, Th 10.4, U 4.8, V 40, Y 32, Zn 51, Zr 207, La 30, Ce 63, Nd 36, Sm 5.6, Eu 1.01, Tb 0.69, Yb 3.1, Lu 0.49 (Hammer et al. 1999).
9
Fig. 4.4. Lusatian Composite Batholith – West Lusatian Granodiorite ABQ and TAS diagrams. 1 – amphibole-biotite granodiorite, 2 – biotite granodiorite, 3 – biotite monzogranite, 4 – Herrnhut Granodiorite.
Zawidów Granodiorite Quartz-poor, sodic, peraluminous, mesocratic, S-type, I- & M-series, granodiorite n = 16 Median Min Max QU1 QU3 SiO2 65.98 63.40 70.53 64.25 67.60 TiO2 0.63 0.00 0.91 0.00 0.75 Al2O3 15.78 13.33 18.38 15.14 16.46 Fe2O3 1.22 0.58 3.04 0.72 1.78 FeO 2.96 1.70 5.27 2.27 3.66 MnO 0.02 0.00 0.09 0.00 0.05 MgO 1.46 0.85 2.33 1.27 1.86 CaO 1.77 0.77 3.42 1.29 2.09 Na2O 3.26 2.19 4.02 3.02 3.49 K2O 3.74 3.33 4.56 3.59 4.03 P2O5 0.17 0.00 0.32 0.07 0.21 Mg/(Mg+Fe) 0.37 0.22 0.50 0.34 0.45 K/(K+Na) 0.43 0.37 0.58 0.41 0.44 Nor.Or 24.02 21.02 28.32 22.84 25.07 Nor.Ab 31.41 20.67 37.89 28.83 33.53 Nor.An 8.50 3.06 16.94 5.50 11.02 Nor.Q 24.95 14.33 32.30 21.96 27.03 Na+K 188.85 167.49 213.38 173.68 193.59 *Si 156.33 104.78 199.80 139.71 167.52 K-(Na+Ca) -61.83 -109.68 -8.27 -73.22 -47.71 Fe+Mg+Ti 103.63 64.33 134.31 95.77 123.81 Al-(Na+K+2Ca) 45.46 -0.95 94.49 23.89 82.88 (Na+K)/Ca 6.07 2.99 12.54 3.94 7.41 A/CNK 1.21 1.01 1.50 1.12 1.35 Th – 15, U – 11 (ppm).
10
Fig. 4.5. Lusatian Composite Batholith – East Lusatian Granodiorite ABQ and TAS diagrams. Zawidow Granodiorite.
B. Cambrian/Ordovician plutonic series
Fig. 4.6. Lusatian Composite Batholith – Cambrian/Ordovician plutonic series ABQ and TAS diagrams. 1 – Rumburk Granite, 2 – Václavice Granite, 3 – Brtníky Granite, 4 – Dolerite Dyke Swarm.
Rumburk Granite Quartz-rich, sodic-potassic, peraluminous, leucocratic, S-type, I-series, granite n = 12 Median Min Max QU1 QU3 SiO2 75.27 72.52 76.82 74.34 75.65 TiO2 0.11 n.d. 0.23 0.08 0.15 Al2O3 13.02 12.43 14.00 12.46 13.17 Fe2O3 0.51 0.28 0.86 0.40 0.60 FeO 0.95 0.33 1.78 0.58 1.40 MnO 0.00 0.00 0.04 0.00 0.02 MgO 0.25 0.13 0.60 0.18 0.40 CaO 0.45 0.29 1.17 0.30 0.54 Na2O 3.01 2.54 4.37 2.73 3.25 K2O 4.52 3.88 5.37 4.32 4.96 P2O5 0.20 n.d. 0.53 0.17 0.32
11
Mg/(Mg+Fe) 0.23 0.15 0.34 0.19 0.32 K/(K+Na) 0.49 0.37 0.56 0.45 0.54 Nor.Or 27.72 23.43 32.73 26.46 30.50 Nor.Ab 28.01 23.75 40.33 25.49 30.30 Nor.An 0.83 0.13 4.26 0.18 1.59 Na+K 200.85 187.28 225.10 191.38 206.23 Nor.Q 36.24 31.12 40.55 33.40 37.05 *Si 210.99 182.46 231.52 198.91 215.69 K-(Na+Ca) -15.84 -64.96 20.75 -43.37 7.67 Fe+Mg+Ti 29.54 18.85 49.82 21.07 35.84 Al-(Na+K+2Ca) 31.64 8.65 55.51 22.26 44.03 (Na+K)/Ca 22.26 9.87 39.08 13.68 29.17 A/CNK 1.17 1.07 1.27 1.14 1.23 Trace elements (mean values in ppm): Rumburk Granite – Ba 180, Co 2.0, Cr 15, Cs 8.6,Cu 5, Ga 20, Hf 3.1, Ni 9, Nb 8, Pb 18, Rb 288, Sc 16.0, Sr 40, Ta 1.40, Th 11.0, U 4.0, V 13, Y 29, Zn 23, Zr 94, La 14, Ce 29, Nd 16, Sm 3.5, Euro 0.32, Tb 0.69, By 2.7, Lu 0.42 (Hammer et al. 1999). Rumburk Granite – As 5, Ba 143, Cr 295, F 853, Cu 10, Ni 11, Nb 5, Pb 11, Rb 296, Sn 11, Sr 22, V 7, Y 35, Zn 20, Th 28, U 6 (Opletal et al. 1983). Václavice Granodiorite Quartz-normal, sodic, peraluminous, mesocratic, S-type, granite n=7 Median Min Max QU1 QU3 SiO2 69.11 68.93 69.89 69.00 69.34 TiO2 0.51 0.45 0.63 0.45 0.58 Al2O3 14.72 14.20 14.76 14.21 14.72 Fe2O3 0.91 0.40 1.86 0.65 1.77 FeO 2.33 1.66 2.95 1.66 2.76 MnO 0.05 0.02 0.20 0.05 0.05 MgO 1.35 1.01 1.53 1.25 1.44 CaO 0.76 0.48 1.69 0.55 1.30 Na2O 3.26 3.20 3.77 3.25 3.45 K2O 4.20 2.91 4.45 3.41 4.30 P2O5 0.20 0.16 0.24 0.19 0.20 Li2O 0.003 0.000 0.005 0.000 0.004 Mg/(Mg+Fe) 0.43 0.35 0.43 0.40 0.43 K/(K+Na) 0.45 0.35 0.47 0.37 0.46 Nor.Or 26.47 18.41 27.87 21.60 26.99 Nor.Ab 31.22 30.65 36.30 30.94 32.92 Nor.An 2.61 0.85 7.67 1.50 5.29 Nor.Q 30.15 27.62 31.37 28.94 30.15 Na+K 194.06 177.31 202.63 186.52 199.36 *Si 177.51 173.28 187.28 176.07 183.95 K-(Na+Ca) -33.58 -83.87 -20.20 -72.44 -22.65 Fe+Mg+Ti 84.26 75.30 95.22 83.08 88.03 Al-(Na+K+2Ca) 55.19 38.63 80.10 44.81 70.09 (Na+K)/Ca 14.95 5.88 22.48 7.75 20.33 A/CNK 1.25 1.19 1.42 1.21 1.35 Trace elements (mean values in ppm): Václavice Granite – As 18, Ba 784, Cr 133, F 674, Cu 17, Ni 23, Nb 5, Pb 16, Rb 119, Sn 9, Sr 213, V 59, Y 35, Zn 77 (Opletal et al. 1983).
12
Brtníky Granite Quartz-rich, sodic, peraluminous, mostly leucocratic, S-type, granite 9brtgr 10brtgr 11brtgr 12brtgr 13brtgr SiO2 75.01 71.92 71.83 72.17 71.72 TiO2 0.19 0.26 0.27 0.21 0.30 Al2O3 14.22 19.59 14.36 14.52 14.19 Fe2O3 0.21 1.14 1.00 0.78 0.70 FeO 0.07 0.82 1.31 0.94 1.56 MnO 0.01 0.04 0.06 0.04 0.05 MgO 0.08 0.39 0.53 0.37 0.67 CaO 0.30 0.25 0.59 0.59 1.43 Na2O 3.71 4.03 4.09 4.11 3.73 K2O 4.38 4.44 3.53 4.32 3.78 P2O5 0.05 0.06 0.09 0.07 0.12 Mg/(Mg+Fe) 0.34 0.27 0.29 0.28 0.35 K/(K+Na) 0.44 0.42 0.36 0.41 0.40 Nor.Or 26.55 25.67 21.76 26.32 23.32 Nor.Ab 34.18 35.41 38.32 38.06 34.97 Nor.An 1.20 0.81 2.44 2.52 6.61 Nor.Q 34.25 27.68 31.09 28.43 29.95 Na+K 212.72 224.32 206.93 224.35 200.62 *Si 199.86 171.71 184.55 169.02 180.26 K-(Na+Ca) -32.07 -40.23 -67.55 -51.42 -65.61 Fe+Mg+Ti 8.00 38.65 47.31 34.74 50.93 Al-(Na+K+2Ca) 55.83 151.47 54.03 39.75 27.04 (Na+K)/Ca 39.76 50.32 19.67 21.32 7.87 A/CNK 1.26 1.66 1.25 1.17 1.12 Trace elements (mean values in ppm): Brtníky Granite – As 5, Ba 300, Cr 310, F 540, Cu 20, Ni 14, Nb 5, Pb 10, Rb 223, Sn 8, Sr 43, V 12, Y 36, Zn 20 (Opletal et al. 1983). C. Dolerite Dyke Swarm Dolerite Quartz-poor, sodic, metaluminous, gabbro n=7 Median Min SiO2 51.19 48.67 TiO2 1.37 0.98 Al2O3 14.97 12.51 Fe2O3 2.37 1.34 FeO 7.81 5.22 MnO 0.15 0.11 MgO 5.55 2.78 CaO 8.58 6.70 Li2O 0.00 0.00 Na2O 2.81 2.14 K2O 1.03 0.44 P2O5 0.19 0.12 Mg/(Mg+Fe) 0.54 0.33 K/(K+Na) 0.19 0.11 Nor.Or 7.09 2.84
Max 52.25 2.79 18.49 2.98 10.50 0.18 9.22 10.60 0.01 3.37 2.45 0.28 0.68 0.38 17.18
13
QU1 49.92 1.06 13.43 1.75 6.09 0.12 3.80 8.15 0.00 2.44 0.62 0.12 0.35 0.13 4.11
QU3 51.81 1.72 16.17 2.86 8.74 0.16 7.74 9.51 0.00 2.93 1.17 0.22 0.56 0.19 8.17
Nor.Ab Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
28.35 47.84 0.61 116.42 65.57 -227.69 301.14 -118.78 0.76 0.76
22.81 37.23 0.00 82.86 52.53 -266.53 228.01 -181.57 0.48 0.58
34.65 23.90 58.21 44.29 2.94 0.00 137.86 88.08 88.07 58.55 -153.29 -238.98 403.48 256.72 -94.80 %-163.99 1.15 0.52 0.78 0.62
30.67 48.13 1.75 119.71 69.93 -225.68 329.77 -104.87 0.81 0.76
D. Upper Carboniferous plutonic series 4.1.01. STOLPEN STOCK
Regional position: a member of the Lusatian Composite Batholith. Rock types: Stolpen Granite – porphyritic biotite granite. Size and shape (on erosion level): 6 × 2 km, E-W elongated body. Contact aureole: indistinct.
Geological environment: Pulsnitz Complex. Age and isotopic data: Variscan – the Stolpen Stock intruded into the two-mica granodiorite (anatexite) of the RadebergLöbau Complex. Zoning: not described. Mineralization: not known.
References EIDAM, J. – HAMMER, J. – KORICH, D. – BIELICKI, K. H. (1995): Amphibole-bearing granites in the Lusatian Anticlinal Zone: Variscan I-type magmatism at the northern margin of the Bohemian Massif. – Neu. Jb. Mineral., Abh. 168, 3, 259–281. HAAKE, R. – HERRMANN, G. – PÄLCHEN, W. – PILOT, J. (1973): Zur Altersstellung der Granodiorite der westlichen Lausitz und angrenzender Gebiete. – Z. geol. Wiss. 12, 1669–1671. HAMMER, J. (1996): Geochemie und Petrogenese der cadomischen und spätvariszischen Granitoide der Lausitz. – Freiberg. Forsch.-H., R. C 463, 107 pp. HAMMER, J. – EIDAM, J. – RÖBER, B. – EHLING, B. D. (1999): Prävariszischer und variszischer granitoider Magmatismus am NE-Rand des Böhmischen Massivs. Geochemie und Petrogenese. – Z. geol. Wiss. 27, 401–415. KOZDRÓJ, W. – KRENTZ, O. – OPLETAL, M. Eds (2001): Comments on the Geological Map LausitzJizera-Karkonosze 1 : 100,000. – Sächs. Landesamt für Umwelt und Geol. Freiberg – Czech Geol. Survey, Prague – Pan. Inst. Geol. Warszawa. KRÖNER, A. – HEGNER, E. – HAMMER, J. – HAASE, G. – BIELICKI, K. H. – KRAUSS, M. – EIDAM, J. (1994): Geochronology and Nd-Sr systematics of Lusatian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. – Geol. Rdsch. 83, 357–376.
14
4.1.02. KÖNIGSHAIN STOCK Three rock facies: Equigranular biotite granite (main type), Porphyritic biotite granite (roof facies?), Fine-grained biotite granite (marginal facies). 1. Wiesa Granodiorite – ± hornblende biotite granodiorite. 2. Schlieren Granite. 3. Aplite Granite.
Size and shape (on erosion level): outcrop divided in to two separated parts of 30 and 7.5 km2 respectively. The depth of magma solidification is about 5–7 km (Dudek et al. 1991). Contact aureole: up to 3 km zones in Görlitz greywackes, recrystallized mylonites at the contact with Lusatian granodiorite. Geological environment: southern contact – Zawidów Granodiorite, on NW and SE Precambrian greywacke-pelite sequence, on NE Palaeozoic schists. Northern margin is of tectonic nature. Age and isotopic data: Late Variscan, postkinematic, intruded into the Lower Carboniferous sediments. Zoning: reverse concentric zonation (according to modal composition). Mineralization: accessory minerals of Y-Nb, YSi-U and Nb-Si-Th-U.
Fig. 4.7. Königshain Stock geological sketch-map (after Kozdrój et al. 2001). 1 – Wiesa Granodiorite, Königshain Granite: 2 – fine-grained granite, 3 – porphyritic granite, 4 – equigranular granite, 5 – faults.
Regional position: a member of the Lusatian Composite Batholith. The Königshain Stock was emplaced at the northeastern margin of the Lusatian Composite Batholith. Rock types: Königshain Granite – porphyritic medium-to fine-grained or equigranular biotite monzogranite.
References DUDEK, A. – FROLÍKOVÁ, I. – NEKOVAŘÍK, Č. (1991): The depth of intrusion of Hercynian granitoid plutons in the Bohemian Massif. – Acta Univ. Carol., Geol., Kettner Vol. 3–4, 249–256. (In Czech) EIDAM, J. – GÖTZE, J. (1991): The granitic massif of Königshain-Arnsdorf (Lusatian Anticlinal Zone): an example of a reversely zoned pluton. – Chem. Erde 51, 55–71. EIDAM, J. – HAMMER, J. – KORICH, D. – BIELICKI, K. H. (1995): Amphibole-bearing granites in the Lusatian Anticlinal Zone: Variscan I-type magmatism at the northern margin of the Bohemian Massif. – Neu. Jb. Mineral., Abh. 168, 3, 259–281. HAMMER, J. (1996): Geochemie und Petrogenese der cadomischen und spätvariszischen Granitoide der Lausitz. – Freiberg. Forsch.-H., R. C 463, 107 pp. HECHT, L. – THURO, K. – PLINNINGER, R. – CUNEY, M. (1999): Mineralogical and geochemical characteristics of hydrothermal alteration and episyenitization in the Könighain granites, northern Bohemian Massif, Germany. – Int. J. Earth Sci. 88, 236–252. MÖBUS, G. (1970): Anteile aus zwei Orogenen im homogenen Lausitzer Granodiorit. – Ber. Dtsch. Gesell. geol. Wiss., R. A15, 289–304. MÖBUS, G. – LINDERT, W. (1967): Das Granitmassiv von Königshain bei Görlitz (Oberlausitz). – Abh. Dtsch. Akad. Wiss. Berl., Kl. Bergb. Hüttenwes. Montageol. 1, 81–160. PÄLCHEN, W. – THIERGÄRTNER, H. (1970): Anwendung der Trendanalyse zum Studium des Aufbaus von Granitkörpern am Beispiel des Granitmassivs von Königshain, Oberlausitz. – Geologie 19, 55–71.
15
Stolpen & Königshain Granites Quartz-rich, sodic-potassic, weakly peraluminous, leucocratic, S-type, M-series, granite 1319Stolp 1320König SiO2 75.70 76.98 TiO2 0.09 0.07 Al2O3 13.17 12.20 Fe2O3 0.43 0.38 FeO 0.74 0.70 MgO 0.15 0.11 CaO 0.92 0.64 Na2O 3.59 3.46 K2O 4.77 4.78 P2O5 n.d. n.d. Mg/(Mg+Fe) 0.19 0.16 K/(K+Na) 0.47 0.48 Nor.Or 28.73 28.93 Nor.Ab 32.87 31.82 Nor.An 4.65 3.25 Nor.Q 32.09 34.76 Na+K 217.13 213.14 *Si 191.90 206.32 K-(Na+Ca) -30.97 -21.57 Fe+Mg+Ti 20.54 18.12 Al-(Na+K+2Ca) 8.69 3.61 (Na+K)/Ca 13.23 18.68 A/CNK 1.03 1.01 Trace elements (mean values in ppm): Königshain Granite – equigranular granite – Ga 21, Nb 29, Pb 57, Rb 347, Th 33, U 12, Y 58, Zn 21, Zr 145, La 8, Ce 21, Pr 3.5, Nd 15, Eu 0.56, Gd 4.74, Tb 0.75, Dy 4.97, Ho 0.9, Er 2.48, Tm 0.44, Yb 2.93, Lu 0.44 (Hecht et al. 1999). Königshain Granite – porphyritic granite – Ba 481,Cr 10, Ga 20, Nb 23, Pb 37, Rb 237, Sr 98, Th 28, U 13, V 6, Y 28, Zn 28, Zr 77, La 38, Ce 74, Pr 8, Nd 27, Sm 6.5, Eu 0.05, Gd 7.20, Tb 1.41, Dy 9.67, Ho 2.11, Er 5.80, Tm 1.10, Yb 7.03, Lu 1.05 (Hecht et al. 1999). Kleinschweidnitz Granodiorite – B 12, Ba 817, Be 2.0, Co 10, Cr 28, Cs 3.4, Cu 10, Ga 19, Hf 5.53, Li 13, Ni 12, Nb 9, Pb 16, Rb 100, Sc 11.4, Sr 448, Ta 1.04, Th 13.8, U 3.8, V 65, Y 23, Zn 58, Zr 206, La 37, Ce 68, Nd 23, Sm 5.3, Eu 1.18, Tb 0.72, Yb 2.1, Lu 0.38 (Eidam et al. 1995). Wiesa Granodiorite – B 15, Ba 1240, Be 1.5, Co 10, Cr 60, Cs 4.9,Cu 12, Ga 22, Hf 6.8, Li 29, Ni 22, Nb 12, Pb 23, Rb 176, Sc 9.0, Sr 457, Ta 1.50, Th 31.4, U 10.5, V 83, Y 26, Zn 46, Zr 350, La 61, Ce 108, Nd 35, Sm 7.2, Eu 1.38, Tb 0.87, Yb 2.1, Lu 0.47 (Eidam et al. 1995).
16
Fig. 4.8. Lusatian Composite Batholith – Upper Carboniferous plutonic series ABQ and TAS diagrams. 1 – amphibole granodiorite to monzogranite (Wiesa Granodiorite), 2 – biotite granodiorite to biotite granite, 3 – Königshain and Stolpen Granites.
4.1.03. DOHNA COMPOSITE STOCK Size and shape (on erosion level): outcrop 3 × 1 km in the Labe (Elbe) valley, large part of the body under the younger sedimentary cover. Age and isotopic data: Dohna Granodiorites (DO 1–3) 300–370 Ma (K-Ar), 538 to 600 Ma (Pb-Pb zircon). Granitoid polyphase body consists of several types of Neoproterozoic granodiorites (D01-DO3, PU, SÜ), Rumburk Granite, subvolcanic tourmaline granite (486 ± 4 Ma, 486 ± 6 Ma, (Pb-Pb zircon). Geological environment: Neoproterozoic graywackes and hornfelses with knotted schist interlayers. Contact aureole: narrow aureole in Neoproterozoic rocks, prevailing contacts are faults and mylonitic zones. Granitoids are in the contact aureole of the Meissen Composite Massif. Zoning: not observed. Mineralization: not observed. Heat production (μWm-3): Dohna Granodiorite 1.38.
Regional position: in the Elbe zone, a part of the Lusatian Composite Batholith (Fig. 4.12.). Rock types: 1. Pulsnitz Granodiorite – muscovite-biotite granodiorite (anatexite and restite rich) – main type (equivalent of the Pulsnitz Granodiorite of the Lusatian Composite Batholith). 2. Dohna Granodiorite (Type DO1) – biotite granodiorite (in contact with DO2). 3. Dohna Granodiorite (Type DO2) – biotite granodiorite to tonalite (in contact with graywackes). 4. Dohna Granodiorite (Type DO3) – porphyritic biotite granodiorite to tonalite (muscovite- bearing). 5. Sürssen Granodiorite (SÜ) – biotite granodiorite to monzogranite. 6. Rumburk Granite (RU) – muscovitebearing biotite monzogranite (equivalent of the Rumburk Granite of the Lusatian Composite Batholith).
Trace elements (mean values in ppm): Dohna Granodiorite – Ba 784, Co 10.3, Cr 43, Cs 6.4, Cu 9, Ga 18, Hf 6.3, Ni 17, Nb 10, Pb 22, Rb 138, Sc 11.5, Sr 196, Ta 0.83, Th 10.8, U 2.4, V 52, Y 35, Zn 64, Zr 204, La 32, Ce 68, Nd 45, Sm 4.8, Eu 1.28, Tb 0.96, Yb 3.2, Lu 0.47 (Hammer et al. 1999). References GEHMLICH, M. – LINNEMANN, U. – TICHOMIROVA, M. – TODT, W. (2000): U-Pb und Pb-PbZirkondatierungen an Orthosteinen der Elbezone: Konsequenzen für variszische Deckenüberschiebungen im Saxothuringikum. – Z. Dtsch. geol. Gesell. 151/3, 209–230.
17
HAMMER, J. – EIDAM, J. – RÖBER, B. – EHLING, B. D. (1999): Prävariszischer und variszischer granitoider Magmatismus am NE-Rand des Bömischen Massivs. Geochemie und Petrogenese. – Z. geol. Wiss. 27, 401–415. SCHUST, F. (2000): Das Dohnaer Massif in der südöstlichen Elbezone. – Geoprofil 10, 39–54, Freiberg. SCHMIDT, K. (1955): Die Granodiorite des Elbtales. – Abh. Dtsch. Akad. Wiss. Berlin, Kl. Chem., Geol., Biol. 4, 8, 45 pp. WENZEL, T. – SCHMIDT, W. – HENGST, M. – WOLF, D. – PILOT, J. (1989): Geochronological study of some types of granitoids from the Elbe Valley zone. In: Wand, U. – Strauch, G. Eds: Proceedings of the Fifth Working Meeting “Isotopes in Nature”, 203–216. – Inst. Isotope and Radiation Res., Leipzig. 4.1.04. BROSSNITZ STOCK Size and shape (on erosion level): three small stocks (max. size 2 × 2 km). Age and isotopic data: Neoproterozoic. No isotopic data. Mineralization: not known.
Regional position: separate subsurface satellite stock of the Lusatian Composite Batholith. A member of the Radeberg-Löbau Complex (Fig. 4.12.). Rock types: Brossnitz Monzogranite – biotite granite.
References HAMMER, J. – EIDAM, J. – RÖBER, B. – EHLING, B. D. (1999): Prävariszischer und variszischer granitoider Magmatismus am NE-Rand des Böhmischen Massivs. Geochemie und Petrogenese. – Z. geol. Wiss. 27, 401–415. RÖLLIG, G. – BRÄUER, H. – VIEHWEG, M. et al. (1990): Altersstellung und petrographische Charakteristik der Plutonite im Gebiet des Zentralteils der Mitteldeutschen Schwelle. – Z. angew. Geol. 36, 208–212. 4.1.05. SCHWARZKOLLM STOCK Size and shape (on erosion level): tectonically segmented oval stock (7 × 4 km). Age and isotopic data: 530 ± 6 Ma (Pb-Pb zircon). Mineralization: not known.
Regional position: separate subsurface satellite stock of the Lusatian Composite Batholith. A member of the Radeberg-Löbau Complex (Fig. 4.12.). Rock types: Schwarzkollm Granodiorite – biotite granodiorite.
References HAMMER, J. – EIDAM, J. – RÖBER, B. – EHLING, B. D. (1999): Prävariszischer und variszischer granitoider Magmatismus am NE-Rand des Böhmischen Massivs. Geochemie und Petrogenese. – Z. geol. Wiss. 27, 401–415. RÖLLIG, G. – BRÄUER, H. – VIEHWEG, M. et al. (1990): Altersstellung und petrographische Charakteristik der Plutonite im Gebiet des Zentralteils der Mitteldeutschen Schwelle. – Z. angew. Geol. 36, 208–212.
18
B. ELBE ZONE The elbe zone within the elbe lineament represents a nw-se elongated segment, which separates the Saxothuringian Zone from the Lugicum s.s. in the NE. The Elbe Zone reaches a width of about 25–30 km and can be traced over a distance of 300 km. In the Elbe zone, several differently metamorphosed sedimentary units of Early Palaeozoic and Proterozoic are present. all these units are very often thermally influenced by Cadomian intrusions of the Dohna Composite Stock, the Lass Granodiorite, Variscan intrusions of the Meissen Composite Massif and Markersbach Massif (see the Saxothuringicum volume). The last one belongs to the Smrčiny-Krušné hory (Fichtelgebirge-Erzgebirge) Batholith. 4.2. MEISSEN COMPOSITE MASSIF Granite in the centre of the Meissen Composite Massif. The Coswig Granite (480 Ma), partly deformed to orthogneiss, forms small isolated lenses in the centre of the Meissen Composite Massif (not shown in the map).
Fig. 4.9. Meissen Composite Massif hierarchical scheme according to rock types.
Regional position: Isolated Variscan intrusion within the Elbe zone. Rock types: 1. Plauenscher Grund Syenodiorite (265 km2) – porphyritic hornblende syenodiorite (monzonite). 2. Zadel Granodiorite (Hauptgranit) (220 km2) – biotite granodiorite. 3. Gasern Granodiorite (50 km2) – biotitehornblende granodiorite. 4. Riesenstein (Meissen) Granite – biotite granite. 5. Gröba Syenodiorite – augite syenodiorite. 6. Strehla Granodiorite – hornblende granodiorite. 7. Coswig Complex consists of a group of the Coswig Gneiss and strongly deformed Coswig biotite Granite. Size and shape (on erosion level): 600 km2 (max length of 70 km and max. width of 20 km). Age and isotopic data: Younger than Lower Carboniferous sediments. The monzonites were intruded by several granodiorites and monzogranites termed the Zadel Granite and the Riesenstein
Fig. 4.10. Meissen Composite Massif geological sketchmap (after Kozdrój et al. 2001). 1 – Upper Carboniferous cover (volcanics), 2 – Gasern Granodiorite, 3 – Riesenstein (Meissen) Granite, 4 – Strehla Granodiorite, 5 – Zadel Granodiorite (Hauptgranit), 6 – Gröba Syenodiorite, 7 – Plauenscher Grund Syenodiorite, 8 – faults.
Zadel Granodiorite 323 Ma, 300 ± 50 Ma (K-Ar), 355 ± 12 Ma (Pb/Pb zircon), 326.8 ± 3.6 Ma (Ar-Ar biotite), Gröba Syenodiorite 326 ± 6 Ma (K-Ar biotite) 323.5± 1 Ma (Ar-Ar white mica), Plauenscher Grund Syenodiorite 325 ± 6 Ma (U-Pb zircon), 32.1 ± 2,8 Ma to 330.4 ± 2.8 Ma (Ar-Ar amphibole), Coswig Granite 480 Ma. Geological environment: Early Palaeozoic (Ordovician, Upper Devonian and Lower Carboniferous) slates, phyllites, mafic rocks, carbonates, graphite schists, quartzite and 19
of the Meissen Massif consists of K-rich gabbros and diorites that grade within some tens of meters into monzodiorites and monzonites. Mineralization: Fluorite.
Neoproterozoic assimilates – gneisses, amphibolites and the cover of basic and acid volcanics of the Stephanian age. Contact aureole: 2–4 km wide zone of pyroxene hornfelses. Zoning: Strong compositional zoning from SE to NW (syenodiorite – granodiorite – granite). The rim
Heat production (μWm-3): 6.67.
References BOMBACH, K. – HENGST, M. – PILOT, J. (1989): Pb-Pb age determinations on single zircons from the GDR by thermal ion mass spectrometry. In: Wand, U. – Strauch, G. Eds: Proceedings of the Fifth Working Meeting “Isotopes in Nature”, 53–67. – Inst. Isotope and Radiation Res., Leipzig. MOHNICKE, M. – KURZE, M. – TICHOMIROVA, M. (2001): Petrogenese und Alterstellung der Gesteine des Coswiger Komplexes. In: Tectonics and Magma 2001 Meeting, Bautzen, 75–77. – Berlin. NASDALA, L. – WENZEL, T. – PIDGEON, R. T. – KRONZ, A. (1999): Internal structures and dating of complex zircons from Meissen Massif monzonites, Saxony. – Chem. Geol. 156, 331–341. PFEIFFER, L. (1964): Beiträge zur Petrologie des Meissener Massivs. – Freiberg. Forsch.-H., R. C 179, 1– 22. SHARP, W. P. – WENZEL, T. – NASDALA, L. – MERTZ, D. F. – BECKTER, T. (1997): Geochronology of Hercynian Meissen Massif magmatic rocks based on 40Ar/39Ar (amphibole, mica) 206Pb/238U SHRIMP (zircon) data (P). 149. – Hauptversamml. dtsch. geol. Gesell. WENZEL, T. – HENGST, M. – PILOT, J. (1993): The plutonic rocks of the Elbe valley zone (Germany): evidence for the magmatic development from single-zircon evaporation and K-Ar age determinations. – Chem. Geol. 104, 75–92. WENZEL, T. – MERTZ, D. F. – OBERHÄNSLI, R. – BECKER, T. – RENNE, P. R. (1997): Age, geodynamic setting, and mantle enrichment processes of a K-rich intrusion from the Meissen massif (northern Bohemian Massif) and implications for related occurrences from the mid-European Hercynian. – Geol. Rdsch. 86, 556–570. WENZEL, T. – OBERHÄNSLI, R. – MEZGER, K. (1994a): Basische und intermediäre Gesteine des Meissener Massifs (Elbe Zone): Magmenquellen und geotektonische Stellung. – Ber. Dtsch. mineral. Gesell. 1, 307. WENZEL, T. – OBERHÄNSLI, R. – MEZGER, K. (1994b): K-rich plutonic rocks and lamprophyres from the Meissen Massif (northern Bohemian Massif): Geochemical evidence for variably enriched lithospheric mantle sources. – Neu. Jb. Mineral., Abh. 175, 249–293. WENZEL, T. – SCHMIDT, W. – HENGST, M. – WOLF, D. – PILOT, J. (1989): Geochronological study of some types of granitoids from the Elbe Valley zone. In: Wand, U. – Strauch, G. Eds: Proceedings of the Fifth Working Meeting “Isotopes in Nature”, 203–216. – Inst. Isotope and Radiation Res., Leipzig. Plauenscher Grund (Spitzgrund) Syenodiorite Quartz-poor, sodic, metaluminous, mesocratic, monzonite – quartz syenite Spgr1 Spgr3 Spgr4 Hei1 Leuben4 SiO2 61.70 63.50 59.90 60.00 52.30 TiO2 0.09 0.13 0.13 0.20 0.34 Al2O3 14.85 16.12 15.92 16.37 17.27 Fe2O3 2.02 1.13 2.08 2.38 3.07 FeO 2.37 2.46 2.51 1.71 4.71 MnO 0.10 0.09 0.12 0.10 0.14 MgO 2.43 2.14 2.90 2.30 3.99 CaO 4.99 4.58 4.84 4.85 6.95 Na2O 4.79 4.80 4.65 4.69 4.02 K2O 4.31 4.46 5.54 5.05 5.01 P2O5 0.56 0.49 0.58 0.49 0.82 Mg/(Mg+Fe) 0.50 0.52 0.53 0.51 0.48 K/(K+Na) 0.37 0.38 0.44 0.41 0.45
20
Leuben1 53.40 0.35 17.01 2.81 4.57 0.14 3.76 7.06 4.05 5.13 0.83 0.48 0.45
Nor.Or Nor.Ab Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
26.76 45.20 13.32 6.39 246.08 36.90 -152.04 119.73 -132.42 2.77 0.71
25.87 42.31 18.29 6.81 249.59 48.25 -141.87 103.14 -96.37 3.06 0.79
34.07 43.46 13.02 0.28 267.68 7.09 -118.73 134.60 -127.66 3.10 0.73
29.97 42.31 17.58 3.33 258.57 16.64 -130.61 113.21 -110.07 2.99 0.76
27.47 33.50 26.61 0.00 236.10 -28.57 -147.28 207.32 -144.82 1.91 0.73
28.66 34.39 24.85 0.00 239.61 -27.29 -147.66 196.53 -157.36 1.90 0.71
Trace elements (mean values in ppm): Plauenscher Grund Syenodiorite – Ba 1848, Cr 52, Cu 53, Ga 19.7, Ni 19, Nb 24, Pb 34, Rb 158, Sr 1431, Th 45, U 12, V 132, Y 26, Zn 78, Zr 297, La 106, Ce 179, Nd 68, Sm 10.8, Eu 12.51, Tb 0.99, Yb 2.21, Lu 0.25 (Wenzel et al. 1989).
Fig. 4.11. Meissen Composite Massif ABQ and TAS diagrams. 1 – Reissenstein (Meissen) Granite, 2 – Plauenscher Grund Syenodiorite, 3 – Zadel Granodiorite, 4 – Gröba Syenodiorite, 5 – Strehla Granodiorite, 6 – Freital Granitoids, 7 – Leuben Granitoids.
Zadel Granodiorite (Hauptgranit) Quartz-normal, sodic, metaluminous, mesocratic, granite-granodiorite KleinKleinKleinKlein- BöseBrüder 6 Zadel 1 Zadel 3 Zadel 4 Zadel 6 SiO2 69.50 71.69 72.20 69.45 71.74 TiO2 n.d. 0.22 0.21 0.29 0.22 Al2O3 15.85 14.80 14.95 15.94 14.88 Fe2O3 0.25 1.67 1.60 2.40 1.72 FeO 1.34 n.d. n.d. n.d. n.d. MnO 0.05 0.04 0.05 0.05 0.07 MgO 1.03 0.82 0.83 0.90 0.61 CaO 2.03 1.30 1.19 1.88 1.79 Na2O 4.52 4.70 4.99 5.17 4.91 K2O 4.67 4.34 4.43 4.45 4.38 P2O5 0.27 0.11 0.11 0.16 0.12 Mg/(Mg+Fe) 0.53 0.49 0.50 0.42 0.40 K/(K+Na) 0.40 0.38 0.37 0.36 0.37 Nor.Or 28.21 25.97 26.21 26.28 25.91 Nor.Ab 41.49 42.74 44.86 46.41 44.14
21
Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
8.48 18.13 245.01 116.43 -82.90 47.35 -6.15 6.77 1.00
5.80 22.56 243.82 138.45 -82.70 44.03 0.46 10.52 1.01
5.19 21.10 255.08 131.32 -88.19 43.27 -3.94 12.02 0.99
8.27 16.14 261.32 101.63 -105.87 56.03 -15.34 7.79 0.96
8.10 20.41 251.44 125.28 -97.36 39.44 -23.07 7.88 0.93
Riesenstein (Meissen) Granite Quartz-normal, sodic, metaluminous, leuco/mesocratic, I-type granite Meissen Meissen Meissen GP1 SiO2 74.92 74.34 75.81 70.03 TiO2 0.19 0.21 0.15 0.44 Al2O3 13.21 13.55 13.18 14.79 Fe2O3tot 1.35 1.49 1.12 2.94 MnO 0.03 0.03 0.02 0.04 MgO 0.24 0.33 0.13 1.25 CaO 0.79 0.87 0.46 1.03 Na2O 4.59 5.04 4.24 5.04 K2O 4.88 4.94 5.62 5.01 P2O5 0.05 0.07 0.03 0.13 Mg/(Mg+Fe) 0.26 0.30 0.18 0.45 K/(K+Na) 0.41 0.39 0.47 0.40 Nor.Or 28.87 29.41 33.20 29.82 Nor.Ab 41.27 45.20 38.06 45.60 Nor.An 2.14 0.00 0.75 4.29 Nor.Q 26.13 23.38 26.78 16.65 Na+K 251.73 267.53 256.15 269.01 *Si 154.52 134.55 158.96 107.25 K-(Na+Ca) -58.59 -73.26 -25.70 -74.63 Fe+Mg+Ti 25.25 29.49 19.14 73.36 Al-(Na+K+2Ca) -20.49 -32.46 -13.73 -15.30 (Na+K)/Ca 17.87 17.24 31.23 14.65 A/CNK 0.93 0.90 0.95 0.96 Strehla Granodiorite Quartz-poor, sodic-potassic, metaluminous, melanocratic, I-type monzonite Strehla1 Strehla2 Strehla3 SiO2 61.86 59.59 58.81 TiO2 0.83 0.81 0.82 Al2O3 15.35 16.67 16.65 Fe2O3 1.63 3.28 1.71 FeO 4.31 4.03 4.48 MnO n.d. n.d. 0.12 MgO 3.50 2.31 2.63 CaO 4.88 5.83 4.86 Li2O n.d. n.d. n.d. Na2O 3.06 2.88 3.53
22
GP2 69.40 0.42 15.39 2.68 0.04 1.25 1.40 5.81 4.03 0.14 0.48 0.31 23.87 52.31 6.04 14.60 273.05 95.32 -126.88 69.86 -20.75 10.94 0.94
K2O P2O5 Mg/(Mg+Fe) K/(K+Na) Nor.Or Nor.Ab Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
3.18 0.63 0.52 0.41 20.53 30.02 21.92 15.83 166.26 118.91 -118.25 177.69 -38.86 1.91 0.93
3.20 0.92 0.37 0.42 20.23 27.68 24.47 15.61 160.88 100.41 -128.95 164.68 -41.44 1.55 0.94
4.38 0.31 0.43 0.45 28.07 34.39 23.94 5.50 206.91 61.58 -107.58 159.34 -53.27 2.39 0.88
Freital Monzodiorite quartz-poor, sodic, metaluminous, melanocratic, I-type monzodiorite Frei14 Frei15 Frei9 SiO2 41.93 44.19 46.75 TiO2 1.52 1.26 1.18 Al2O3 11.86 15.83 16.87 Fe2O3tot 14.27 12.48 10.45 FeO n. d. n. d. n. d. MnO 0.24 0.19 0.17 MgO 8.92 6.82 5.76 CaO 13.31 12.00 8.95 Na2O 1.81 2.46 3.25 K2O 2.01 1.85 2.33 P2O5 1.49 1.12 0.88 Mg/(Mg+Fe) 0.55 0.52 0.52 K/(K+Na) 0.42 0.33 0.32 Nor.Q 0.00 0.00 0.00 Nor.Or 13.11 11.41 14.75 Nor.Ab 17.94 23.06 31.27 Nor.An 40.49 54.45 41.37 Na+K 101.08 118.66 154.35 *Si -26.70 -16.16 -1.39 K-(Na+Ca) -253.07 -254.09 -215.00 Fe+Mg+Ti 419.16 341.37 288.63 Al-(Na+K+2Ca) -342.87 -235.76 -142.25 (Na+K)/Ca 0.43 0.55 0.97 A/CNK 0.43 0.60 0.73
23
C. THE MIDDLE-GERMAN CRYSTALLINE ZONE
Fig. 4.12. Granitoid plutonites in the NE margin of the Bohemian Massif – geological sketch-map (after Kozdrój et al. 2001). 1 – Variscan (Carboniferous) Plutons, 2 – Pre-Cadomian and Cadomian (Upper Proterozoic-CambrianOrdovician) Plutons, 3 – faults.
4.3. DELITZSCH MASSIF Age and isotopic data: Delitzsch Diorite 311 ± 11 Ma 300.3 ± 1.1 Ma (Pb-Pb zircon), 292 ± 10 Ma (Rb-Sr whole rock), Delitzsch Granodiorite 237 ± 10 Ma (Rb-Sr whole rock), Delitzsch Monzogranite 218 ± 5 Ma (Rb-Sr whole rock).
Regional position: Mid-German Crystalline Rise. A member of the hidden Delitzsch Complex (under a sedimentary cover). Rock types: 1. Delitzsch Diorite. 2. Delitzsch Granodiorite. 3. Delitzsch Monzogranite. Size and shape: tectonically segmented hidden massif, oval in shape 100 km2.
Mineralization: not known.
References ANTHES, G. – REISCHMANN, T. (2001): Timing of granitoid magmatism in the eastern mid-German crystalline rise. – J. Geodynamics 31, 119–143. HAASE, G. – BIELICKI, K.-H. – RÖLLIG, G. – GERSTENBERGER, H. – HABEDANK, M, – HILLER, H. (1989): Rb-Sr and Pb-Pb geochronology of plutonic rocks from the central German crystalline zone and adjacent regions. In: Wand, U. – Strauch, G. Eds: Proceedings of the Fifth Working Meeting “Isotopes in Nature”, 131–142. – Inst. Isotope and Radiation Res., Leipzig. HAMMER, J. – EIDAM, J. – RÖBER, B. – EHLING, B. D. (1999): Prävariszischer und variszischer granitoider Magmatismus am NE-Rand des Böhmischen Massivs. Geochemie und Petrogenese. – Z. geol. Wiss. 27, 401–415. KOPP, J. – NAUMANN, R. – NIETZSCHE, H. (2001): Die Mitteldeutsche Kristallinzone (MKZ) zwischen Saale und Neisse: Petrologische Aspecte zur Plutonitgenese. In: Tectonic and Magma 2001 IGCP Project 373, Abstract Vol., 23–26. – Berlin.
24
4.4. PRETZSCH MASSIF Regional position: Mid-German Crystalline Rise. A member of the hidden Delitzsch Complex (under a sedimentary cover). Rock types: 1. Pretzsch Granite – biotite granite to granodiorite. 2. Pretzsch Tonalite – tonalite to quartz diorite. 3. Pretzsch Quartz monzonite – quartz monzonite to quartz monzodiorite. 4. Pretzsch Diorite. Size and shape: two separate tectonically segmented subsurface intrusions (more than 400 km2). Age and isotopic data: Pretzsch Monzogranite 344 ± 16 Ma (Pb-Pb zircon), Pretzsch Quartz monzonite 327 ± 5 Ma (Pb-Pb zircon), Pretzsch Granodiorite 333 ± 4 Ma (Pb-Pb zircon), Pretzsch Tonalite 331 ± 4, 330 ± 5 Ma (Pb-Pb zircon).
Zoning:
Lower Carboniferous PretzschSchönewalde plutonic complex is characterized by normal concentric zoning. The trend in increasing SiO2 content towards the centre of the complex is displayed by the following petrological sequence: quartz monzodiorite-quartz monzonite amphibole-bearing granodiorite-monzogranite amphibole-free biotite monzogranite. The biotite monzogranite of the inner zone is the most abundant rock in the granitoid complex. The quartzmonzodiorite and quartz monzonite are exposed only in the SW- and SE part of the outer zone. These K-rich rocks show chemical characteristics of shoshonitic series (SiO2 = 49.5 – 63.3 %, K2O = 2.0 – 7.2 %).Similar to the Meissen Composite Massif. Mineralization: not known.
References ANTHES, G. – REISCHMANN, T. (2001): Timing of granitoid magmatism in the eastern mid-German crystalline rise. – J. Geodynamics 31, 119–143. EIDAM, J. – EHLING, B. C. – HAMMER, J. – KORICH, D. – RAPPSIBER, I. (2009): The plutonite complex of Pretzsch-Schönewalde – compositional normal zoned complex with high-K to shoshonitic granitoid rocks. – GeoDresden 2009, p. 271. GOTTESMANN, B. – KNOTH, W. (1966): Petrographie und regionalgeologische Stellung des Granodiorites von Pretzsch (Elbe). – Geologie 15, 1023–1032. HAASE, G. – BIELICKI, K.-H. – RÖLLIG, G. – GERSTENBERGER, H. – HABEDANK, M, – HILLER, H. (1989): Rb-Sr and Pb-Pb geochronology of plutonic rocks from the central German crystalline zone and adjacent regions. In: Wand, U. – Strauch, G. Eds: Proceedings of the Fifth Working Meeting “Isotopes in Nature”, 131–142. – Inst. Isotope and Radiation Res., Leipzig. HAMMER, J. – EIDAM, J. – RÖBER, B. – EHLING, B. D. (1999): Prävariszischer und variszischer granitoider Magmatismus am NE-Rand des Böhmischen Massivs. Geochemie und Petrogenese. – Z. geol. Wiss. 27, 401–415. KRAMER, W. (1981): Geochemisch-petrologische Untersuchungen an variszischen Magmatiten tief- bis subkrustalen Ursprungs und deren geotektonische Bedeutung im Vorfeld der Osteuropäischen Tafel. – Z. geol. Wiss. 9, 1325–1332. KOPP, J. – NAUMANN, R. – NIETZSCHE, H. (2001): Die Mitteldeutsche Kristallinzone (MKZ) zwischen Saale und Neisse: Petrologische Aspecte zur Plutonitgenese. In: Tectonic and Magma 2001 IGCP Project 373, Abstract Vol., 23–26. – Berlin. KOPP, J. – RÖLLIG, G. (1996): Probleme des basischen und intermediären Magmatismus im Plutonitmassiv von Pretzsch-Prettin-Schönewalde (Zentralteil der Mitteldeutschen Kristallinzone). – Z. geol. Wiss. 24, 551–568. RÖLLIG, G. – BRÄUER, H. – VIEHWEG, M. et al. (1990): Altersstellung und petrographische Charakteristik der Plutonite im Gebiet des Zentralteils der Mitteldeutschen Schwelle. – Z. angew. Geol. 36, 208–212.
25
Pretzsch Massif Pretzsch Granite – quartz-normal, sodic, peraluminous, mesocratic granite Pretzsch Granodiorite – quartz-normal, sodic, peraluminous, mesocratic granodiorite Pretzsch Quartz Monzonite – quartz-normal, sodic, peraluminous, melanocratic quartz monzonite Pretzsch Tonalite – quartz-normal, sodic, peraluminous, melanocratic tonalite Pretzsch Diorite – quartz-poor, sodic, metaluminous, melanocratic diorite Monzogranite Granodiorite Quartz Tonalite Diorite monzonite SiO2 68.20 64.60 56.30 56.70 53.90 TiO2 0.36 0.49 1.07 0.90 1.18 Al2O3 14.90 14.90 15.90 17.80 17.90 Fe2O3 3.23 1.42 1.64 1.62 1.56 FeO n.d. 2.29 5.80 5.50 6.50 MnO 0.06 0.07 0.16 0.16 0.36 MgO 1.10 1.66 4.00 3.70 3.70 CaO 1.28 2.84 1.82 5.95 4.98 Na2O 3.90 3.00 3.20 2.50 3.20 K2O 4.60 4.02 3.37 2.16 3.72 P2O5 0.11 0.25 0.28 0.24 0.30 Mg/(Mg+Fe) 0.40 0.45 0.49 0.48 0.44 K/(K+Na) 0.44 0.47 0.41 0.36 0.43 Nor.Q 23.10 23.11 13.33 13.53 1.52 Nor.Or 28.43 25.94 23.56 14.49 24.95 Nor.Ab 36.63 29.42 34.01 25.49 32.62 Nor.An 5.89 13.59 8.50 31.73 25.81 Na+K 223.52 182.16 174.82 126.54 182.25 *Si 139.62 142.46 115.89 117.29 57.58 K-(Na+Ca) -51.01 -62.10 -64.16 -140.91 -113.08 Fe+Mg+Ti 72.27 97.01 213.97 199.97 216.66 Al-(Na+K+2Ca) 23.43 9.16 72.52 10.82 -8.34 (Na+K)/Ca 9.79 3.60 5.39 1.19 2.05 A/CNK 1.10 1.05 1.34 1.05 1.00 Trace elements (mean values in ppm): Pretzsch-Prettin-Schönewalde plutonites: Biotite monzogranite-granodiorite – Ba 340, Co 6, Cr 12 ,Cu 3, Ga 21, Hf 10.8, Ni 9, Nb 22, Pb 7, Rb 133, Sr 786, Ta 0.9, Th 10.1, U 3.6, V 26, Y 24, Zn 44, Zr 124, W 4.2, La 76, Ce 157, Nd 76, Sm 14.7, Eu 1.72, Tb 1.89, Yb 4.0, Lu 0.96 (Kopp et al. 2001). Amphibole monzogranite-granodiorite – Ba 1199, Co 3, Cr 5,Cu 25, Ga 16, Hf 7.1, Ni 49, Nb 13, Pb 13, Rb 97, Sr 320, Ta 0.9, Th 10.4, U 4.6, V 173, Y 16, Zn 49, Zr 190, W 17.6, La 26.9, Ce 60, Nd 29, Sm 5.9, Eu 0.91, Tb 0.88, Yb 2.7, Lu 0.62 (Kopp et al. 2001). Tonalite-quartz diorite – Ba 789, Co 16, Cr 9, Cu 16, Ga 20, Hf 13.5, Ni 12, Nb 16,Pb 7, Rb 84, Sr 449, Ta 1.1, Th 4.1, U 2.3, V 92, Y 16, Zn 124, Zr 190, W 3.4, La 30, Ce 75, Nd 46, Sm 10.1, Eu 1.38, Tb 1.57, Yb 3.9, Lu 0.95 (Kopp et al. 2001.) Quartz monzonite-quartz monzodiorite – Ba 997, Co 3, Cr 8, Cu 34, Ga 14, Hf 3.9, Ni 22, Nb 11, Pb 53, Rb 128, Sr 317, Ta 1.6, Th 10.7, U 3.6, V 74, Y 30, Zn 31, Zr 187, W 5.1, La 26, Ce 72, Nd 22, Sm 3.6, Eu 0.83, Tb 0.40, Yb 0.97, Lu 0.16 (Kopp et al. 2001). Quartz syenite – Ba 460, Co 8, Cr 20, Cu 8, Ga 17, Hf 4.6, Ni 9, Nb 15, Pb 10, Rb 162, Sr 83, Ta 0.8, Th 9.9, U 3.2, V 73, Y 27, Zn 43, Zr 150, W 15, La 33, Ce 66, Nd 27, Sm 4.1, Eu 1.01, Tb 0.35, Yb 1.10, Lu 0.20 (Kopp et al. 2001.) Amphibole quartz syenite – Ba 420, Co 5, Cu 3, Pb 6, Sr 78, Th 9.8, U 11.5, V 69, Zn 42, Zr 133, W 12, (Kopp et al. 2001). Diorite – Ba 449, Co 52, Cr 9, Cu 18, Ga 17.5, Hf 4.5, Ni 31, Nb 12, Pb 18, Rb 110, Sr 575, Ta 0.6, Th 4.1, U 2.3, V 185, Y 43.6, Zn 142, Zr 212, W 10.5, La 29, Ce 65, Nd 37, Sm 6.9, Eu 17, Tb 0.4, Yb 2.9, Lu 0.4 (Kopp et al. 2001).
26
Gabbro – Ba 273, Co 37, Cr 29, Cu 32, Ga 22, Hf 5.4, Ni 12, Nb 0.5, Pb 4, Rb 8, Sr 558, Ta 0.1, Th 0.6, U 0.2, V 436, Y 37, Zn 101, Zr 61, W 1.2, La 8, Ce 20, Nd 14, Sm 2.8, Eu 1.09, Tb 0.5, Yb 2.7, Lu 0.4 (Kopp et al. 2001).
Fig. 4. 13. Pretzsch-Prettin-Schőnewalde intrusions ABQ and TAS diagrams. 1 – Pretzsch Massif, 2 – Prettin Massif, 3 – Schönewalde Stock.
4.5. DESSAU STOCK Size and shape (on erosion level): 13 km2 tectonically segmented irregular subsurface stock under a sedimentary cover. Age and isotopic data: Dessau Granite 328 ± 1 Ma (Pb-Pb zircon). Mineralization: not known.
Regional position: Mid-German Crystalline Rise. A member of the hidden Delitzsch Complex (under a sedimentary cover – see Fig. 4.12.). Rock types: Dessau Gabbro Dessau Granite – medium-grained porphyritic granite (I type).
References ANTHES, G. – REISCHMANN, T. (2001): Timing of granitoid magmatism in the eastern mid-German crystalline rise. – J. Geodynamics 31, 119–143. HAMMER, J. – EIDAM, J. – RÖBER, B. – EHLING, B. D. (1999): Prävariszischer und variszischer granitoider Magmatismus am NE-Rand des Böhmischen Massivs. Geochemie und Petrogenese. – Z. geol. Wiss. 27, 401–415. RÖLLIG, G. – BRÄUER, H. – VIEHWEG, M. ET AL. (1990): Altersstellung und petrographische Charakteristik der Plutonite im Gebiet des Zentralteils der mitteldeutschen Schwelle. – Z. angew. Geol. 36, 208–212.
4.6. PRETTIN MASSIF Ma (Rb-Sr whole rock), Prettin Diorite 495 ± 3 Ma (Rb-Sr whole rock). Mineralization: not known.
Regional position: Mid-German Crystalline Rise. A member of the hidden Delitzsch Complex (under a sedimentary cover – see Fig. 4.12.). Rock types: 1. Prettin Granite – granite to granodiorite. 2. Prettin Quartz monzonite – quartz monzonite to quartz monzodiorite. 3. Prettin Tonalite – tonalite to quartz diorite. 4. Prettin Diorite – diorite to gabbro. Size and shape: 20 km2, tectonically segmented circular massif under a sedimentary cover. Age and isotopic data: Prettin Granite 330 ± 3 Ma (Pb-Pb zircon), Prettin Granodiorite 536 ± 19
27
References HAASE, G. – BIELICKI, K.-H. – RÖLLIG, G. – GERSTENBERGER, H. – HABEDANK, M, – HILLER, H. (1989): Rb-Sr and Pb-Pb geochronology of plutonic rocks from the central German crystalline zone and adjacent regions. In: Wand, U. – Strauch, G. Eds: Proceedings of the Fifth Working Meeting “Isotopes in Nature”, 131–142. – Inst. Isotope and Radiation Res., Leipzig. HAMMER, J. – EIDAM, J. – RÖBER, B. – EHLING, B. D. (1999): Prävariszischer und variszischer granitoider Magmatismus am NE-Rand des Böhmischen Massivs. Geochemie und Petrogenese. – Z. geol. Wiss. 27, 401–415. KOPP, J. – NAUMANN, R. – NIETZSCHE, H. (2001): Die Mitteldeutsche Kristallinzone (MKZ) zwischen Saale und Neisse: Petrologische Aspecte zur Plutonitgenese. In: Tectonic and Magma 2001 IGCP Project 373, Abstract Vol., 23–26. – Berlin. KOPP, J. – RÖLLIG, G. (1996): Probleme des basischen und intermediären Magmatismus im Plutonitmassif von Pretzsch-Prettin-Schönewalde (Zentralteil der Mitteldeutschen Kristallinzone). – Z. geol. Wiss. 24, 551–568. RÖLLIG, G. – BRÄUER, H. – VIEHWEG, M. et al. (1990): Altersstellung und petrographische Charakteristik der Plutonite im Gebiet des Zentralteils der Mitteldeutschen Schwelle. – Z. angew. Geol. 36, 208–212. Prettin Massif Prettin Granodiorite – quartz-normal, sodic, metaluminous, mesocratic granodiorite Prettin Quartz Monzonite – quartz-normal, potassic, metaluminous, mesocratic quartz monzonite Prettin Quartz Monzonite – quartz-normal, sodic/potassic, metaluminous, melanocratic quartz monzonite Prettin Tonalite – quartz-normal, sodic, peraluminous, melanocratic tonalite Prettin Quartz Diorite – quartz-normal, sodic, peraluminous, melanocratic diorite Prettin Diorite – quartz-normal, potassic, peraluminous, melanocratic diorite Quartz Quartz Tonalite Quartz Granodiorite monzonite monzonite diorite SiO2 66.50 62.20 58.60 57.40 55.30 TiO2 0.44 0.61 0.70 0.83 1.10 Al2O3 15.20 14.60 14.80 17.20 16.60 Fe2O3 0.97 1.11 5.81 7.75 8.60 FeO 2.12 3.50 n.d. n.d. n.d. MnO 0.07 0.11 0.09 0.13 0.25 MgO 1.32 2.40 3.84 3.70 4.32 CaO 3.06 3.78 4.60 5.34 3.34 Na2O 4.40 2.60 3.00 2.90 3.80 K2O 2.97 4.74 4.20 2.10 3.60 P2O5 0.16 0.31 0.38 0.32 0.30 Mg/(Mg+Fe) 0.43 0.48 0.56 0.48 0.49 K/(K+Na) 0.31 0.55 0.48 0.32 0.38 Nor.Q 19.95 16.49 10.90 16.78 6.84 Nor.Or 18.59 31.17 27.61 13.66 23.53 Nor.Ab 41.85 25.98 29.98 28.67 37.75 Nor.An 14.97 18.60 22.61 26.85 16.15 Na+K 205.05 184.54 185.98 138.17 199.06 *Si 127.50 115.59 84.43 116.79 68.03 K-(Na+Ca) -133.49 -50.66 -89.66 -144.22 -105.75 Fe+Mg+Ti 79.94 129.84 176.84 199.31 228.72 Al-(Na+K+2Ca) -15.68 -32.64 -59.40 9.16 7.81
28
Diorite 52.90 1.07 16.30 0.93 7.10 0.21 5.60 5.96 2.10 3.74 0.37 0.55 0.54 1.49 26.41 22.54 32.43 147.17 75.45 -94.64 262.88 -39.63
(Na+K)/Ca A/CNK
3.76 0.96
2.74 0.92
2.27 0.85
1.45 1.05
3.34 1.05
1.38 0.91
Trace elements (mean values in ppm): Prettin Monzogranite – Ba 610, Co 6.0, Cs 4.8, Ga 18, Hf 7.3, Nb 11, Pb 23, Rb 180, Sc 7.1, Sr 246, Ta 1.4, Th 29.0, U 10.6, V 36, Y 17, Zn 55, Zr 249, La 58, Ce 105, Nd 40, Sm 7.0, Eu 1.41, Tb 0.8, Yb 1.9, Lu 0.28 (Hammer et al. 1999.) Prettin Quartz monzonite – Ba 1263, Co 18.0, Cs 5.6, Ga 17, Hf 5.4, Nb 13, Pb 20, Rb 178, Sc 20.0, Sr 338, Th 18.3, U 5.2, V 120, Y 23, Zn 67, Zr 179, La 36, Ce 67, Nd 33, Sm 7.3, Eu 1.48, Tb 0.83, Yb 2.4, Lu 0.36 (Hammer et al. 1999). Prettin Tonalite – Ba 630, Co 21.0, Cs 4.8, Ga 20, Hf 3.2, Nb 8, Pb 18, Rb 97, Sc 22.0, Sr 503, Th 8.0, U 2.5, V 161, Y 16, Zn 98, Zr 177, La 16, Ce 36, Nd 20, Sm 5.3, Eu 1.38, Tb 1, Yb 2.9, Lu 0.41 (Hammer et al. 1999). Prettin Quartz diorite – Ba 1428, Co 21.0, Ga 20, Hf 4.0, Nb 14, Pb 15, Rb 133, Sc 22.0, Sr 282, Th 61.0, U 2.0, V 152, Y 31, Zn 127, Zr 261, La 29, Ce 58, Nd 29, Sm 5.8, Eu 1.34, Tb 0.75, Yb 2.2, Lu 0.3 (Hammer et al. 1999).
4.7. SCHÖNEWALDE STOCK Regional position: Mid-German Crystalline Rise. A member of the hidden Delitzsch Complex (under a sedimentary cover – see Fig. 4.12.). Rock types: 1. Schönewalde Granite – granite to granodiorite. 2. Schönewalde Quartz monzonite – quartz monzonite to quartz monzodiorite.
3. Schönewalde Diorite – diorite. Size and shape: 13 km2, tectonically outlined rectangular subsurface stock. Age and isotopic data: Schönewalde Granite 336 ± 4 Ma (Pb-Pb zircon). Mineralization: not known.
References HAMMER, J. – EIDAM, J. – RÖBER, B. – EHLING, B. D. (1999): Prävariszischer und variszischer granitoider Magmatismus am NE-Rand des Böhmischen Massivs. Geochemie und Petrogenese. – Z. geol. Wiss. 27, 401–415. KOPP, J. – NAUMANN, R. – NIETZSCHE, H. (2001): Die Mitteldeutsche Kristallinzone (MKZ) zwischen Saale und Neisse: Petrologische Aspecte zur Plutonitgenese. In: Tectonic and Magma 2001 IGCP Project 373, Abstract Vol., 23–26. – Berlin. KOPP, J. – RÖLLIG, G. (1996): Probleme des basischen und intermediären Magmatismus im Plutonitmassiv von Pretzsch-Prettin-Schönewalde (Zentralteil der Mitteldeutschen Kristallinzone). – Z. geol. Wiss., 24, 551–568. RÖLLIG, G. – BRÄUER, H. – VIEHWEG, M. et al. (1990): Altersstellung und petrographische Charakteristik der Plutonite im Gebiet des Zentralteils der Mitteldeutschen Schwelle. – Z. angew. Geol. 36, 208–212. Schönewalde Stock Schönewalde Granodiorite – quartz-normal, sodic, metaluminous, mesocratic granodiorite Schönewalde Quartz Monzonite – quartz-normal, potassic, peraluminous, mesocratic quartz monzonite Schönewalde Diorite – quartz-normal, sodic, metaluminous, melanocratic diorite Granodiorite Quartz Diorite monzonite SiO2 66.40 62.00 50.70 TiO2 0.40 0.53 1.21 Al2O3 14.40 17.00 17.60 Fe2O3 1.86 2.28 1.31 FeO 1.50 1.70 7.30 MnO 0.07 0.08 0.14 29
MgO 1.20 0.70 5.80 CaO 3.15 1.51 8.69 Na2O 3.70 3.70 2.60 K2O 3.37 6.33 1.24 P2O5 0.13 0.14 0.34 Mg/(Mg+Fe) 0.40 0.25 0.55 K/(K+Na) 0.37 0.53 0.24 Nor.Q 23.61 12.12 0.00 Nor.Or 21.31 39.54 8.66 Nor.Ab 35.56 35.13 27.60 Nor.An 15.81 6.95 48.33 Na+K 190.95 253.80 110.23 *Si 139.98 72.21 67.74 K-(Na+Ca) -104.02 -11.92 -212.53 Fe+Mg+Ti 78.98 76.25 277.14 Al-(Na+K+2Ca) -20.51 26.19 -74.52 (Na+K)/Ca 3.40 9.43 0.71 A/CNK 0.94 1.10 0.84 Trace elements (mean values in ppm): Schönewalde Granite – B 36, Ba 619, Be 3, Co 7.2, Cr 18, Cu 20, Ga 14, Li 47, Ni 3.2, Nb 9.8, Pb 11, Rb 136, Sc 8, Sn 4.2, Sr 247, V 42, W 4.4, Y 22, Zn 69, Zr 170 (Kopp and Röllig 1996). Schönewalde Quartz monzonite – B 30, Ba 1217, Be 5.6, Co 9, Cr 17, Cu 31, Ga 15, Li 50, Ni 5.3, Nb 19, Pb 16, Rb 199, Sn 5, Sr 235, V 37, W 3.9, Y 44, Zn 59, Zr 577 (Kopp and Röllig 1996). Schönewalde Diorite – B 12, Ba 449, Be 2.9, Co 26, Cr 141, Cu 30, Ga 17, Li 36, Ni 32, Nb 5, Pb 7.4, Rb 45, Sn 6.8, Sr 547, V 198, W 1.5, Y 35, Zn 90, Zr 168 (Kopp and Röllig 1996).
4.8. DAHLEN-LASSE MASSIF Size and shape: 80 km2, tectonically outlined rectangular subsurface stock. Age and isotopic data: Dahlen-Lasse Granodiorite 530 ± 4 Ma (Pb-Pb zircon). Mineralization: not known.
Regional position: Mid-German Crystalline Rise. A member of the hidden Delitzsch Complex (under a sedimentary cover – see Fig. 4.12.). Rock types: Dahlen-Lasse Granodiorite – granodiorite.
References HAMMER, J. – EIDAM, J. – RÖBER, B. – EHLING, B. D. (1999): Prävariszischer und variszischer granitoider Magmatismus am NE-Rand des Böhmischen Massivs – Geochemie und Petrogenese. – Z. geol. Wiss. 27, 401–415. RÖLLIG, G. – BRÄUER, H. – VIEHWEG, M. et al. (1990): Altersstellung und petrographische Charakteristik der Plutonite im Gebiet des Zentralteils der Mitteldeutschen Schwelle. – Z. angew. Geol. 36, 208–212.
4.9. SCHLIDAU STOCK Size and shape (on erosion level): tectonically outlined subsurface oval stock, 21 km2. Age and isotopic data: Schlidau Granodiorite 550 ± 4 Ma (Pb-Pb zircon).
Regional position: North-Saxonian Anticlinorium (under a sedimentary cover – see Fig. 4.12.). Rock types: Schlidau Granodiorite – granodiorite.
Mineralization: not known.
References HAMMER, J. – EIDAM, J. – RÖBER, B. – EHLING, B. D. (1999): Prävariszischer und variszischer granitoider Magmatismus am NE-Rand des Böhmischen Massivs. Geochemie und Petrogenese. – Z. geol. Wiss. 27, 401–415.
30
4.10. LEIPZIG-EILENBURG MASSIF Regional position: North-Saxonian Anticlinorium (under a sedimentaray cover – see Fig. 4.12.). Rock types: Leipzig-Eilenburg Granodiorite.
Size and shape: seven separate, tectonically segmented subsurface stocks, 55 km2. Age and isotopic data: Leipzig-Eilenburg Granodiorite 555 ± 4 Ma (Pb-Pb zircon). Mineralization: not known.
References HAMMER, J. – EIDAM, J. – RÖBER, B. – EHLING, B. D. (1999): Prävariszischer und variszischer granitoider Magmatismus am NE-Rand des Böhmischen Massivs. Geochemie und Petrogenese. – Z. geol. Wiss. 27, 401–415. RÖLLIG, G. – BRÄUER, H. – VIEHWEG, M. et al. (1990): Altersstellung und petrographische Charakteristik der Plutonite im Gebiet des Zentralteils der Mitteldeutschen Schwelle. – Z. angew. Geol., 36, 208–212. Trace elements (mean values in ppm): Leipzig-Eilenburg Granodiorite – Ba 730, Co 9, Cr 28, Cs 5.8, Cu 25, Ga 19, Hf 5.4, Ni 57, Nb 13, Pb 25, Rb 135, Sc 9.9, Sr 131, Th 9.3, U 26, V 52, Y 42, Zn 78, Zr 211, La 34, Ce 67, Nd 30, Sm 6.2, Eu 1.07, Tb 0.7, Yb 2.1, Lu 0.31 (Hammer et al. 1999).
31
D. KRKONOŠE-JIZERA REGION Also termed, as the Krkonoše-Jizera Block comprises several plutonic series and suites grouped into several Cadomian metamorphosed intrusions and a large Variscan granite massif (e.g. Krkonoše-Kowary Orthogneiss, the Bítouchov Metagranite, Paczyn Gneisses, and Krkonoše-Jizera Composite Massif).
4.11. JIZERA-KRKONOŠE–KOWARY ORTHOGNEISSES
Fig. 4.14. Jizera-Krkonoše-Kowary Orthogneiss, Paczyn Gneiss and the Krkonoše-Jizera Composite Massif geological sketch-map (after Kozdrój et al. 2001). 1 – Krkonoše-Jizera Composite Massif, 2 – Lešná Orthogneiss, 3 – Bítouchov Metagranite, 4 – Paczyn Orthogneiss, 5 – Jizera-Krkonoše-Kowary Orthogneiss, 6 – faults.
334 ± 2 Ma (Ar-Ar micas), 504.6 ± 1.2 Ma (Pb-Pb zircon), 462 ± 15 Ma (Rb-Sr whole rock), JizeraKrkonoše Orthogneisses 481 Ma (U-Pb, Pb-Pb zircon), 509–490 Ma (Pb-Pb single zircon), 501.5 ± 1.1 Ma (Pb-Pb zircon), 503.2 ± 1.0 Ma (Pb-Pb zircon), 320-310 Ma ages (Rb-Sr micas) are probably products of isotopic resetting, Lešná Orthogneiss 540 ± 19–21 Ma (Pb-Pb zircon), Kowary Orthogneiss 492–481 Ma (U-Pb zircon), 487 ± 8 Ma (U-Pb SHRIMP zircon) – the best approximation of the protolith intrusive age, Leucogneiss 473 ± 16 Ma (Rb-Sr whole rock), Pleterówka (Zawidów Granodiorite or Leśná Orthogneiss) Granodiorite 533 ± 9 Ma (U-Pb zircon). Contact aureole: contacts of orthogneisses with the surrounding metapelitic lithologies are mostly tectonic in nature; however, primary intrusive contact cannot be excluded. Geological environment: both Proterozoic– Cambrian to Lower Ordovician metasedimentary sequences. The Jizera Gneiss is bordered by the lateVariscan Krkonoše-Jizera Composite Massif to the south. Mineralization: Sn greisens?
Regional position: Jizera-Krkonoše region of the Lugicum. A large metamorphosed intrusion (segment of the Lusatian Composite Batholith) separated by the Upper Carboniferous KrkonošeJizera Composite Massif into the Jizera Orthogneiss and Krkonoše Orthogneiss. These rocks are interpreted in terms of magmatic origin. The Jizera Orthogneiss derives from the Rumburk Granite and the Zawidów Granodiorite. Rock types: 1. Jizera-Krkonoše Orthogneiss – augen to laminated granitic orthogneiss. 2. Lešná Gneiss – granodiorite orthogneiss (Cadomian member of the Radeberg-Löbau Complex of the Lusatian Composite Batholith). 3. Kowary Orthogneiss. 4. Leucocratic Orthogneisses. Size and shape (on erosion level): 1500 km2, numerous elongated bodies of various size from tens metres to few kilometres thick (reaching the depth of 6 km). The Jizera Orthogneiss passes to the west into the Zawidow Granodiorite and the Rumburk Granite. Age and isotopic data: Jizera Orthogneiss (derivate of the Rumburk Granite) 335–328 Ma and 32
Jizera –Krkonoše and Kowary Orthogneisses Quartz-rich, sodic-potassic, weakly peraluminous, leucocratic, S–type, M-series, granite Median Min Max QU1 QU3 Kowary Orthogneiss n=8 K1 SiO2 75.06 70.22 77.95 73.15 76.99 SiO2 76.27 TiO2 0.10 0.07 0.47 0.08 0.13 TiO2 0.13 Al2O3 13.24 12.31 14.94 12.68 13.57 Al2O3 12.75 Fe2O3 0.84 0.35 2.32 0.47 0.92 Fe2O3t 1.26 FeO 0.70 0.60 1.12 0.62 0.79 MnO 0.02 MnO 0.03 n.d. 0.11 0.01 0.06 MgO 0.20 MgO 0.21 0.14 1.00 0.16 0.44 CaO 0.84 CaO 0.38 0.25 0.90 0.33 0.40 Na2O 3.33 Na2O 2.94 1.34 4.39 2.59 3.17 K2 O 4.20 K2O 4.65 2.54 5.11 3.62 4.98 P2 O5 0.26 P2O5 0.19 0.13 0.25 0.17 0.20 Mg/(Mg+Fe) 0.24 Mg/(Mg+Fe) 0.21 0.16 0.40 0.17 0.28 K/(K+Na) 0.45 K/(K+Na) 0.49 0.35 0.71 0.35 0.53 Nor.Q 37.51 Nor.Or 28.23 15.59 31.37 22.05 30.92 Nor.Or 25.46 Nor.Ab 27.32 12.83 40.64 24.05 29.58 Nor.Ab 30.68 Nor.An 0.53 -0.08 3.60 0.19 0.71 Nor.An 2.52 Nor.Q 38.28 26.64 47.55 31.79 40.43 Na+K 196.63 Na+K 191.01 148.98 218.52 156.22 203.37 *Si 216.51 *Si 220.65 160.34 272.30 187.63 234.18 K-(Na+Ca) -33.26 K-(Na+Ca) -7.38 -80.85 55.36 -54.25 7.74 Fe+Mg+Ti 22.38 Fe+Mg+Ti 27.67 17.96 70.77 21.80 32.80 Al-(Na+K+2Ca) 23.79 Al-(Na+K+2Ca) 44.87 38.04 98.53 39.71 61.21 (Na+K)/Ca 13.13 (Na+K)/Ca 26.55 13.24 44.95 13.62 28.06 A/CNK 1.13 A/CNK 1.23 1.19 1.65 1.21 1.34 Trace elements (mean values in ppm): Jizera Orthogneiss – Co 37, Sc 7,V 35,Cu 21, Pb 17, Zn 63, Sn 4, Ge 1.9, W 259, Rb 218, Cs 6.3, Ba 355, Sr 72, Be 3.9, Ga 20, Ta 1.5, Nb 12, Zr 109, Th 18.2, U 6.6 (Oberc-Dziedzic et al. 2005). Kowary Orthogneiss – Ni 3, Co 15, Cu 9, Pb 11, Zn 53, Rb 310, Ba 78, Sr 40, Ga 19, Ta 7.5, Nb 16.4, Hf 3.6, Zr 83, Y 32, Th 13.5, U 2.97.
Fig. 4.15. Jizera-Krkonoše Orthogneisses and Bítouchov Metagranite ABQ and TAS diagrams. 1 – Jizera-Krkonoše Orthogneisess, 2 – aplitic gneiss, 3 – Bítouchov Metagranite, 4 – Lešná Orthogneiss.
33
References BIAŁEK, D. (1998): Aspects of geochemistry of the Zawidow granodiorite and the Jizera granite-arc to rift transition. – Geolines 6, 11. BORKOWSKA, M. – HAMEURT, J. – VIDAL, P. (1980): Origin and age of Izera gneisses and Rumburk granites in the Western Sudetes. – Acta Geol. Pol. 30, 121–145. GRYGAR, R. – VAVRO, M. – KREML, P. (1993): Kinematika krkonošské střižné zóny ve vztahu k regionální deformaci krkonošského krystalinika. – Sbor. věd. Prací Vys. Šk. Báňské v Ostravě 39, 85–96. (In Czech) JECZMYK, M. – SUSKOWIAKOWA, M. (1989): Budowa geologiczna i charakterystyka geochemiczna skal krystalicznych okolia Bogatyni (Sudety zachodnyje). – Biul. Inst. Geol. 360, 5–38. KOZLOWSKA-KOCH, M. (1961): The granite gneisses of Izera Highland. – Arch. mineral. 25, 123–260. (In Polish) KRÖNER, A. – JAECKEL, P. – HEGNER, E. – OPLETAL, M. (2001): Single zircon ages and whole rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše Mountains and Orlice-Sněžník Complex). – Int. J. Earth Sci. (Geol. Rdsch.) 90, 304–324. KRÖNER, A. – JAECKEL, P. – OPLETAL, M. (1994): Pb-Pb and U-Pb zircon ages for orthogneisses from Eastern Bohemia: further evidence for a major Cambro-Ordovician magmatic event. – J. Czech Geol. Soc. 39, 61. MARHEINE, D. – KACHLÍK, V. – MALUSKI, H. et al. (2002): The 40Ar/39Ar ages from the West Sudetes (NE Bohemian Massif): constraints on the Variscan polyphase tectonothermal development. In: Winchester, J. A. – Pharaoh, T. C. – Verniers, J. Eds: Palaeozoic Amalgamation of Central Europe. – Geol. Soc. London Spec. Publ. 201, 133–155. OBERC-DZIEDZIC, T. (1988): The development of gneisses and granites in the eastern part of the Izera crystalline unit in the light of the textural investigation. – Acta Univ. wratislav. 997, Prace geol.-mineral. 13, 1–184. OBERC-DZIEDZIC, T. (2003): The Izera granites: an attempt of the reconstruction of predeformational history. In: Ciężkowski, W. – Wojewoda, J.– Żelaźniewicz, A. Eds: Sudety Zachodnie: od wendu do czwartorzędu, 41–52. – WIND, Wroclaw. (In Polish). OBERC-DZIEDZIC, T. – KRYZA, R. – MOCHNACKA, K. – LARIONOV, A. (2010): Ordovician passive continental margin magmatism in the Central-European Variscides: U-Pb zircon data from the SE part of the Karkonosze-Izera Massif, Sudetes, SW Poland. – Int. J. Earth Sci. (Geol. Rdsch.) 99, 27–46.. OBERC-DZIEDZIC, T. – PIN, C. – KRYZA, R. (2005): Early Palaeozoic crustal melting in an extensional setting: petrological and Sm-Nd evidence from the Izera granite-gneisses, Polish Sudetes. – Int. J. Earth Sci. (Geol. Rdsch.) 94, 354–368. OLIVER, G. J. H. – KELLEY, S. (1993): 40Ar- 39Ar fusion age and isotopic data from the Polish Sudetes: Variscan tectonothermal reworking of Caledonian protoliths. – Neu. Jb. Geol. Paläont., Mh. 321–344. PRZEWLOCKI, M. – THOMAS, H.-H. – FAUL, H. (1962): Age of some granitic rocks in Poland. – Geochim. cosmochim. Acta 26, 1069–1075. SEDLÁK, J. – GNOJEK, I. – ZABADAL, S. – FARBISZ, J. – CWOJDZINSKI, S. – SCHEIBE, R. (2007): Geological interpretation of gravity low in the central of the Lugian unit (Czech Republic, Germany and Poland). – J. Geosci. 52, 181–198. SMULIKOWSKI, K. (1958): Lupky mikowe i granitognejsy na polnocznych zboczach Pasma Kamenickiego w Sudetach zachodnich. – Biul. Paň. Inst. Geol. 127, 5–31. ŽABA, J. (1982): Klasyfikacja i nomenklatura gneisów i granitów bloku Izerskiego (Sudety Zachodnie) – propozicja. – Geologica sudet. 17, 141–154. ŽABA, J. (1982): Modes of plagioclase twinning in the polygenetic metamorphic complex of Izerski Stóg massif, Izera Block (Western Sudetes). – Acta Univ. Carol., Geol. 4, 273–287. ŻELAŻNIEWICZ, A. – DÖRR, W. – BYLINA, P. – FRANKE, W. – HAAK, U. – HEINISCH, H. – SCHASTOK, J. – GRANDMOUNTAGNE, K. – KULICKI, C. (2004) The eastern continuation of the Cadomian orogen: U-Pb zircon evidence from Saxo-Thuringian granitoids in south-western Poland and northern Czech Republic. – Int. J. Earth Sci. 93, 773–781.
34
4.12. BÍTOUCHOV METAGRANITE Size and shape (on erosion level): 2 × 1 km, strong dynamic deformation along the contact (a broad zone up to 200 m wide of the foliated metagranite). Age and isotopic data: synkinematic intrusion, similar to albite granites found as pebbles in the Upper-Ordovician metaconglo-merates 540 Ma (U-Pb zircon), mylonitized metagranite 352 ± 6 Ma (Ar-Ar muscovite). Geological environment: the Bítouchov Granite is intruding the Cambrian Železný Brod Volcanic Complex. Mineralization: not known.
Regional position: Jizera-Krkonoše region of the Lugicum. The intrusion in the Železný Brod Metavolcanic Complex. Rock types: 1. Bítouchov Metagranite – medium-grained (albite)-biotite granite (epizonally metamorphosed). 2. Bítouchov Metagranite – fine-grained hornblende (riebeckite?) albite granite. 3. Diorite – hornblende diorite – large lenticular enclave within the albite biotite granite.
References FEDIUK, F. (1953): Geologicko-petrografické poměry v údolí Jizery mezi Spálovem a Bítouchovem (Železnobrodsko). – Sbor. Ústř. Úst. geol. 20, 505–576. KETTNER, R. (1921): Geologie starého pohoří Železnobrodského v Podkrkonoší. – Sbor. St. geol. Úst. Čs. Republ. 1, 123–144. MARHEINE, D. – KACHLÍK, V. – MALUSKI, H. et al. (2002): The 40Ar/39Ar ages from the West Sudetes (NE Bohemian Massif): constraints on the Variscan polyphase tectonothermal development. In: Winchester, J. A. – Pharaoh, T. C. – Verniers, J. Eds: Palaeozoic Amalgamation of Central Europe. – Geol. Soc. London Spec. Publ. 201, 133–155. ŻELAŻNIEWICZ, A. – DÖRR, W. – BYLINA, P. – FRANKE, W. – HAACK, U. – HEINISCH, H. – SCHASTOK, J. – GRANDMONTAGE, K. – KULICKI, C. (2004): The eastern continuation of the Cadomian orogen: U-Pb zircon evidence from Saxo-Thuringian granitoids in south-western Poland and the northern Czech Republic. – Int. J. Sci. (Geol. Rdsch.) 93, 773–781.
4.13. PACZYN ORTHOGNEISS Size and shape (on erosion level): 20 km2, silllike intrusion. Age and isotopic data: Paczyn Orthogneiss 505 ± 5 Ma and 494 ± 2 (U-Pb zircon). Geological environment: in the East Krkonoše Metabasite Complex. Chemically close to both the oceanic plagiogranites and the anatectic magmatites related to a volcanic arc environment. Mineralization: not known.
Regional position: Jizera-Krkonoše Region of the Lugicum. Equivalent of the Krkonoše Orthogneiss. Rock types: 1. Paczyn Orthogneiss (felsic Orthogneisses) – Na-rich albite granodiorite and metagranite. 2. Paczyn Quartz-amphibolites (hornblende orthogneiss) – quartz-bearing gabbro, quartz-diorite and tonalite.
References KRYZA, R. – PIN, C. (1997): Cambrian/Ordovician magmatism in the Polish Sudetes: no evidence for subduction-related setting. – Terra Nova 9, Abstract Supl. 1, pp. 144. NAREBSKI, W. (1968): Geochemistry and the problem of origin of metabasic rocks of the Rudawy Janowickie Mts. (E. Karkonosze). – Bull. Acad. Pol. Sci., Sér. Sci. Géol. Géogr. 16, 1–7. NAREBSKI, W. – DOSTAL, J. – DUPUY, C. (1986): Geochemical characteristics of Lower Palaeozoic spilite-keratophyre series in West Sudetes (Poland): petrogenetic and tectonic implications. – Neu. Jb. Mineral., Abh. 155, 243–258. NAREBSKI, W. – TEISSEYRE, J. H. (1971): On petrogenesis of the Paczyn gneisses in the West Sudetes. – Bull. Acad. Pol. Sci., Sér. Sci. Géol. Géogr. 19, 193–203. OLIVER, G. J. H. – CORFU, F. – KROGH, T. E. (1993): U-Pb Ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. – Jb. Geol. Soc. London 150, 355–369.
35
PATOČKA, F. – SMULIKOWSKI, W. (1998): The geochemical correlation of the East Krkonoše Complex metabasites (West Sudetes, Czech Republic and Poland) – relation to the Cambrian-Ordovician northern Gondwana break-up: A review. – Acta Univ. Carol., Geol. 42, 485–488. SMULIKOWSKI, W. – ULICYN, L. – BACHLIŃSKI, R. (2002): Paczyn Gneisses (East Karkonosze Complex. West Sudetes). Two metamorphosed series: 1. Quartz-bearing gabbro to tonalite, 2. Leucotonalite; Petrography and major element chemistry. – Mineral. Soc. Pol. Spec. Pap. 20, 205–207. SZALAMACHA, M. – SZALAMACHA, M. (1991): Ofiolit Leszczyńca w Rudawach Janowickich. – Biul. Inst. Geol. 367, 61–84.
4.14. KRKONOŠE-JIZERA COMPOSITE MASSIF (KJCM)
Fig. 4.16. Krkonoše-Jizera Composite hierarchical scheme according to rock types.
Size and shape (on erosion level): over 1000 km2 (70 × 10–20 km), long elliptical shape. An inclined (from N to S) wedge-like (assymetric) ethmolith (in thickness of 4 to 10 km) has been interpreted from the gravity data for the Krkonoše-Jizera Composite Massif. The depth of magma solidification is about 5–7 km (Dudek et al. 1991).The shape of the Tanvald Granite can be modelled as steeply inclined slab in length of ca 25 km with approximate thickness of some 2–3 km (based on gravity data). Age and isotopic data: Jizera and Liberec Granite 304–293 Ma (K-Ar biotite), 328, 312 ± 6 Ma and 330–325 Ma (Rb-Sr whole rock), 304 ± 14 Ma (Pb-Pb zircon), 320 ± 2 Ma (Ar-Ar biotite), Krkonoše Granite 310 ± 5 Ma (Rb-Sr whole rock), Fojtka Hybrid Granodiorite 310 Ma (KAr biotite), Tanvald Granite is intruded by the Liberec Granite 312 ± 2 Ma (Ar-Ar muscovite), 321± 14 Ma (U-Th-Pb monazite). Micromonzodiorite dyke within the Krkonoše Granite in Polish part of the massif 318 (SHRIMP U-Pb zircon). Porphyritic (Radomierza) granite 318.5 ± 3.7 Ma (SHRIMP U-Pb zircon). Evengrained (Meidzianka) granite 314.9 ± 4.5 Ma (SHRIMP U-Pb zircon). Medium-grained (Fajka Hill) granite 314.1 ± 3.3 Ma (SHRIMP U-Pb zircon), 304 ± 2 Ma (SHRIMP U-Pb reequilibrated zircon from a microgranular enclave). Kusiak et al. (2008): medium-grained porphyritic granite – 313.0 ± 6.0 Ma (U-Pb zircon, SHRIMP). Coarse-grained porphyritic granite – 308.7 ± 4.7 Ma (U-Pb zircon, SHRIMP). Fine-grained granite 303.7 ± 6.6 Ma (U-Pb zircon, SHRIMP). Zoning: well defined subhorizontal compositional and structural reverse zoning (layering) – Jizera Granodiorite (upper layer) and the Liberec granite (lower layer). Younger (G3 and G4) phases are asymmetrically located along southern and eastern margins. N-S stratification and distinct asymmetric zoning of the Tanvald Granite. Transition of the porphyritic muscovite biotite granite at the northern endocontact with the
Massif
Regional position: Krkonoše-Jizera Crystalline Complex – Proterozoic-Lower Palaeozoic metasediments, metavolcanics and orthogneisses. Rock types: Composite Massif of three plutonic suites: Suite A: 1. Jizera Granite – porphyritic mediumgrained biotite granite to granodiorite (G1). 2. Liberec Granite – porphyritic coarsegrained biotite granite (G2). 3. Harrachov Granite – medium-grained biotite granite (G3). 4. Krkonoše Granite – fine-grained biotite granite (G4). Suite B: 1. Fojtka Hybrid Granodiorite – porphyritic medium to fine-grained hornblende-biotite granodiorites to quartz diorite (F). Suite C: 1. Tanvald Granite – medium-grained twomica alkali-feldspar granite (D). In Polish part of the KJCM four main granite facies predominate (Borkowska 1966): 1. Porphyritic coarse-grained granite, 2. Medium-grained granite, 3. Fine-to medium, equigranular granite 4. Granophyric granite.
36
(intrusive) sub-vertical southern contact plane of the Liberec Granite with the Tanvald Granite. Geological environment: Neoproterozoic twomica schists and amphibolites, CambrianOrdovician Jizera Orthogneiss and OrdovicianSilurian to Lower Devonian phyllites. Mineralization: W-Sn, Ba-F, U, Co, Cu, Ag. Heat production (μWm-3): Tanvald Granite 5.53, 2.81, Liberec Granite 3.95.
Liberec Granite into highly evolved (high Rb and F content) biotite-muscovite granite in the southern part of the Tanvald intrusion. Contact aureole: pronounced up to 1.5 km wide zone, – biotite (hornblende) hornfelses, spotted schists with cordierite and andalusite in contact with the Tanvald Granite and Proterozoic-Lower Palaeozoic metasediments. Almost sharp
Fig. 4.17. Krkonoše-Jizera Composite Massif geological sketch-map (adapted after Kozdrój et al. 2001). 1 – Jizera Granite, 2 – Fojtka Granodiorite, 3 – Liberec Granite, 4 – Harrachov Granite, 5 – Krkonoše Granite, 6 – Tanvald Granite, 7 – faults.
References AWDANKIEWICZ, M. – AWDANKIEWICZ, H. – KRYZA, R. (2005): Petrology of mafic and felsic dykes from the eastern part of the Karkonosze massif. – Pol. Tow. Mineralog. Prace Spec. 26, 111–114. BORKOWSKA, M. (1966): Petrografia granitów Karkonoszy. – Geologica sudet. 2, 7–108. CLOOS, H. (1925): Einführung in die tectonische Behandlung magmatisher Erscheinungen (Granittektonik). –194 pp. Berlin. CHALOUPSKÝ, J. (1963): Konglomeráty z krkonošského krystalinika. – Sbor. Ústř. Úst. geol., Odd. geol. 28, 143–190. CHALOUPSKÝ, J. et al. (1989): Geology of the Krkonoše and Jizerské hory Mts. – 288 pp. Czech Geol. Survey, Prague. DEPCIUCH, T. – LIS, J. (1971): Wiek bezwzgledny K-Ar granitoidów masywu Karkonoszy. – Kwart. Geol. 15, 856–861. DIOT, H. – MAZUR, S. – COUTERIE, J. P. (1994): Magmatic structures in the Karkonosze granite. In Kryza, F. Ed.: Magmatisme et evolution métamorphique des Sudetes, 36–39. – Uniw. Wrocł., Inst. Nauk Geol. Wrocław. DIOT, H. – MAZUR, S. – PIN, CH. (1995): Karkonosze Batholith (NE Bohemian Massif): the evidence for pluton emplacement during transtensional-extensional collapse. – J. Czech. Geol. Soc. 40, p. 62. DIOT, H. – MIERZEJEWSKI, M. (1994): The magnetic fabric in the Karkonosze granite. In: Kryza F. Ed.: Magmatisme et evolution metamorhique des Sudetes, 34–35. – Uniw. Wrocł., Inst. Nauk Geol. Wrocław. DOWGIALLO, J. (2000): Thermal water prospecting results at Jelenia Góra-Cieplice (Sudetes, Poland) versus geothermometric forecasts. – Environ. Geol. 39, 433–435. DUDEK, A. – FROLÍKOVÁ, I. – NEKOVAŘÍK, Č. (1991): The depth of intrusion of Hercynian granitoid plutons in the Bohemian Massif. – Acta Univ. Carol., Geol., Kettner Vol. 3–4, 249–256. (In Czech)
37
DUTHOU, J. L. – COUTERIE, J. P. – MIERZEJEWSKI, M. P. – PIN, C. (1991): Next dating of granite samples from the Karkonosze Mountains using Rb-Sr total rock isochrone method. – Przegl. Geol. 39, 75–79. EIDAM, J. (1994): Geochronology and Nd-Sr systematics of Lusatian granitoids: significance for evolution of the Variscan orogen in east-central Europe. – Geol. Rdsch. 83, 357–376. FEDIUKOVÁ, E. (1963): Těžké minerály v liberecké a železnobrodské žule. – Čas. Mineral. Geol. 8, 1, 12– 20. (In Czech) FEDIUKOVÁ, E. – KLOMÍNSKÝ, J. – SCHOVÁNEK, P. (2008): Almandine-Spesartine garnets from the alkali-feldspar Tanvald granite in northern Bohemia. – Zpr. geol. Výzk. v Roce 2007, 156–159. (In Czech) FISTEK, J. – DOWGIALLO, J. (2003): Thermal waters at Cieplice Slaskie Spa in the light of geological investigations carried out in the years 1969–1973 and 1997–1998. In: Ciezkowski, A. et al. Eds: Sudety Zachodnie: od wendu do czwartorzedu, 207–224. – WIND, Wroclav. GUNIA, P. – ZIOLKOWSKA-KOZDRÓJ, M. – KOZDRÓJ, W. (1998): New geochemistry data of ultrabasic rocks from eastern surroundings of the Karkonosze granite intrusion. – Bull. Pol. Acad. Sci., Earth Sci. 46, 93–108. JARMOLOWICZ-SZULC, K. (1984): Geochronologiczne studium czesci pólnocnej oslony granitu Karkonoszy za pomoca metod trakowych. – Arch. mineral. 39, 2, 140–183. JELIŃSKI, A. (1965): Geochemistry of the uranium in the Karkonosze Granite Massif and other granitoids massifs of Lower Silesia. – Biul. Inst. Geol. 193, 5, 5–110. (In Polish) KENNAN, P. S. – DZIEDZIC, H. – LORENC, M. W. – MIERZEJEWSKI, P. (1999): A review of Rb-Sr isotope patterns in the Carboniferous granitoids of the Sudetes in SW Poland. – Geologica sudet. 32, 49– 53. KLAR, A. (1986): Stochastic model of Karkonosze granitoid crystallization in area near Szklarska Poreba, Sudetes Mts., Southwestern Poland. – Prace Mineral. 76, 1–69. (In Polish) KLOMÍNSKÝ, J. (1969): Krkonošsko-jizerský granitoidní masiv. – Sbor. geol. Věd, Geol. 15, 7–133. KLOMÍNSKÝ, J. (2006): Geothermal field in the western part of the Krkonoše-Jizera granite massif – fiction or reality? – Zpr. geol. Výzk. v Roce 2005, 179–181. (In Czech) KLOMÍNSKÝ, J. – BĚLOHRADSKÝ, V. – FEDIUK, F. – SCHOVÁNEK, P. (2005): Vratislavický zlom – nový odkryv u Liberce v severních Čechách. – Zpr. geol. Výzk. v Roce 2004, 35–38. (In Czech) KLOMÍNSKÝ, J. – FEDIUK, F. – SCHOVÁNEK, P. – JARCHOVSKÝ. T. (2009): Tanvald Massif – relict of the magmatic body in the Krkonoše-Jizera Composite Massif. – Zpr. geol. Výzk. v Roce 2008. KLOMÍNSKÝ, J. – SCHOVÁNEK, P. – JARCHOVSKÝ, T. – SULOVSKÝ, P. – TOUŽIMSKÝ, M. (2007): Contact of the Tanvald and Liberec Granites near Jablonec nad Nisou. – Zpr. geol. Výzk. v Roce 2006, 24–29. (In Czech) KRÖNER, A. – HEGNER, E. – HAMMER, J. – HAASE, G. – BIELICKI, K. H. – KRAUSS, M. – EIDAM, J. (1994): Geochronology and Nd-Sr systematics of Lusatian granitoids – significance for the evolution of the Variscan orogen in East- and Central-Europe. – Geol. Rdsch. 83, 357–376. KUSIAK, M. A. – DUNKLEY, D. J. – SŁABY, E. – BUDZYŃ, B. – MARTIN, H. (2008a): Metasomatized zircon from the equigranular granite of the Karkonosze Pluton, NE Bohemian Massif. In: Proceedings MMET 2008 Conference: Mineral Equilibria, Metasomatism, and Mass Transport: Evolution and Stabilization of Rock on a Fluid-Rock World: Smolenice, Slovakia. 87–90. Geol. Inst. Slovak Acad. Sci. P. 87–90. KUSIAK, M. A. – DUNKLEY, D. J. – SŁABY, E. – BUDZYŃ, B. – MARTIN, H. (2008b): U-Pb chronology of zircon from granites of the Karkonosze Pluton, NE Bohemian Massif. – 4th SHRIMP Workshop June 29. July. Abstract Volume, 78–80: Sankt Peterburg, Russia, VSEGEI (Russian Geol. Res. Inst.). KUSIAK, M. A. – DUNKLEY, D. J. – SŁABY, E. – MARTIN, H. – BUDZYŃ, B. (2009): Sensitive highresolution ion microprobe analysis of zircon reequilibrated by late magmatic fluids in a hybridised pluton. – Geology, 37, 12, 1063–1066. KVIČÍNSKÝ, Z. (1986): Position of the Tanvald granite in relationship to the Krkonoše-Jizerské hory and Lužické hory Plutons. – Věst. Ústř. Úst. geol. 61, 361–365. LORENC, M. W. (1994): Role of basic magmas in the granitoid evolution (a comparative study of some Hercynian massifs). – Geologica sudet. 28, 3–121.
38
LORENC, M. – OLSZYNSKI, W. – WISZNIEWSKA, J. (1998): Distribution of phosphorus in granites and pegmatites of the Sudetes Mts. and rapakivi granites from Mazury Complex (NE Poland). – Acta Univ. Carol., Geol. 42, 69–72. MACHOWIAK, K. – AMSTRONG, R. (2007): SHRIMP U-Pb zircon age of the Karkonosze granite. – Mineral. Polonica, Spec. Pap., 31, 193-196.
MACHOWIAK, K. – AMSTRONG, R. – KRYZA R. – MUSZYŃSKI, A. – (2008): Late-orogenic magmatism in the Central Europea Variscides: SHRIMP U-Pb zircon age constraints from the Żeleżniak Intrusion, Kaczawa Mountains, West Sudetes. – Geologica sudet., 40, 1–18.
MALUSKI, H. – PATOČKA, F. (1997): Geochemistry and 40Ar/39Ar geochronology of the mafic metavolcanic rocks from the Rýchory Mountains complex (west Sudetes, Bohemian Massif): paleotectonic significance. – Geol. Mag. 134, 703–716. MARHEINE, D. – KACHLÍK, V. – MALUSKI, H. et al. (2002): The 40Ar/39Ar ages from the West Sudetes (NE Bohemian Massif): constraints on the Variscan polyphase tectonothermal development. In: Winchester, J. A. – Pharaoh, T. C. – Verniers, J. Eds: Palaeozoic Amalgamation of Central Europe. – Geol. Soc. London Spec. Publ. 201, 133–155. MÁŠKA, M. (1954): K tektonické analýze krystalinika (Drobná tektonika Krkonoš). – Knih. Ústř. Úst. geol. 27, 259 pp. MAZUR, S. (1998): Variscan Thrusting and Extensional Collapse in the Krkonosze-Izera Massif, West Sudetes: Tectonic, Sedimentary and Magmatic Record. – Geolines 6, 43–44. MAZUR, S. – ALEKSANDROWSKI, P. – TURNIAK, K. – AWDANKIEWICZ, M. (2007): Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes – an overview. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 59–87. MICHNIEWITZ, M. – BOBIŃSKI, W. – SIEMĄRKOWSKI, J. (2006): Mineralizacja cynowa w środkowej części pasma łupkowego Starej Kamienicy (Sudety zachodnie). – Prace Pań. Inst. Geol. 185, 136 pp. (In Polish) MIERZEJEWSKI, M. P. (1973): Rozwój i nastepstwo niektórych struktur w plutonie Karkonoszy. In: Oberc, J. Ed.: Przewodnik do konferencji terenowej Institutu Geologicznego Uniwersytetu Wroslawskiego, 7– 20. – Wroclaw. MIERZEJEWSKI, M. P. (2001): Understanding the Karkonosze Mts. Granite. In: Tectonic and Magma 2001 IGCP Project 373, Abstract Vol. 23–26, 70–74. – Berlin. MIERZEJEWSKI, M. P. (2003): The structures of the late stages of the granite magma emplacement in the Karkonosze Mts. pluton. In: Ciezkowski, A. et al. : Sudety Zachodnie: od wendu do czwartorzedu, 81–94. – WIND, Wroclaw. (In Polish) MIERZEJEWSKI, M. P. – OBERC-DZIEDZIC, T. (1990): The Izera-Karkonosze block and its tectonic development (Sudetes, Poland). – Neu. Jb. Geol. Paläont. 179, 197–222. MIERZEJEWSKI, M. P. – PIN, C. – DUTHOU, J. L. – COUTURIE, J. P. (1994): Sr-Nd isotopic study of the Karkonosze granite (Western Sudetes). In: Kryza, R. Ed.: Igneous activity and metamorphic evolution of the Sudetes area. Abstracts, 82 pp. – Wroclaw, MIERZEJEWSKI, M. P. – WOJNAR, B. (1985): Sekwencja dwóch cial granitowych i temperatury ich krystalizacji w endokontaktach. – Geologica sudet. 21, 321–352. MIKULSKI, S. Z. (2007): Metal ore potential of the parent magma of granite – the Karkonosze massif example. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 111–122. MIKULSKI, S. Z. – STEIN, H. J. (2007): Re-Os age for molybdenite from the West Sudetes, SW Poland. – In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. Mineral. Monogr. 1, 203–216. OBERC-DZIEDZIC, T. (1985): Wplyw granitu karkonoskiego na gneisy izerskie. – Kwart. Geol. 29, 571– 588. PIN, CH. – MIERZEJEWSKI, M. P. – DUTHOU, J. L. (1987): Isochronous age Rb-Sr of Karkonosze granite from quarry Sklarska Poreba Huta and significance of initial 87Sr/86Sr in this granite. – Przegl. Geol. 10, 512–517. (In Polish) PIN, CH. – MIERZEJEWSKI, M. P. – DUTHOU, J. L. - COUTURIE, J. (1987): Étude isotopique Rb-Sr du granite du Karkonosze. In: Lorenc, Majerovicz (ed.): Pétrologie et géologie du socle Varisque des Sudetes polonaises: resultats de la co-operation entre les Universités de Wrocław et Clermont-Ferrand, 43–47. – Uniw. Wrocł., Inst. Nauk Geol., Wrocław.
39
PRZEWŁOCKI, K. – MAGDA, W. – THOMAS, H. H. (1962): Age of some granitic rocks in Poland. – Geochim. cosmochim. Acta 26, 1069. SEDLÁK, J. – GNOJEK, I. – ZABADAL, S. – FARBISZ, J. – CWOJDZINSKI, S. – SCHEIBE, R. (2007): Geological interpretation of gravity low in the central of the Lugian unit (Czech Republic, Germany and Poland). – J. Geosci. 52, 181–198. SLABY, E. (2002): Porphyritic granite facies – Szklarska Poreba Huta. – Mineral. Soc. Pol. Spec. Pap. 20, 245–247. SLABY, E. – GALBARCZYK-GASIOROWSKA, L. – BASZKIEWICZ, A. (2002): Mantled alkali-feldspar megacrysts from the marginal part of the Karkonosze granitoid massif (SW Poland). – Acta Geol. pol. 52, 501–519. SLABY, E. – GALBARCZYK-GASIOROWSKA, L. – SELTMANN, R. – MÜLLER, A. (2007): Alkali feldspar megacryst growth: geochemical modelling. – Mineral. Petrology 89, 1–29. SLABY, E. – GÖTZE, J. (2004) Feldspar crystallization under magma-mixing conditions shown by cathodoluminescence and geochemical modelling–a case study from the Karkonosze pluton (SW Poland). – Mineral. Mag. 68, 561–577. SLABY, E. – MARTIN, H. (2008): Mafic and felsic magma interaction in granites: the Hercynian Karkonosze Pluton (Sudetes, Bohemian Massif). – J. Petrology, 49, 1–39. SLABY, E. – SELTMANN, R. – KOBER, B. – MÜLLER, A. – GALBARCZYK-GASIOROWSKA, L. – JEFFRIES, T. (2007): LREE distribution patterns in zoned alkali feldspar megacrysts from the Karkonosze pluton - implications for the parental magma composition. – Mineral. Mag. 71, 193–217. ŠRÁMEK, J. – TOMEK, Č. – RYCHTÁR, J. (1989): Detailní tíhový průzkum jižního okraje krkonošskojizerského plutonu a okolního krystalinika. – Čas. Mineral. Geol. 34, 181–194.
WATZNAUER A. (1930): Der südliche Kontakt des Riesengebirgsgranits und das angenzende Schiefergebiet. – Lotos 78, 112–164, Praha. WATZNAUER, A. (1935): Die Geologie des Bezirkes Gablonz. – Heimatkd. Bezirk. Gablonz 4, 1– 119. WILAMOWSKI, A. (1998): Geotectonic environment of the Karkonosze and Tatra granite intrusions based on geochemical data. – Arch. mineral. 51, 261–271. (In Polish) WINCHESTER, J. A. – FLOYD, P. A. – CROWLEY, Q. G. et al. (2002): Palaeozoic amalgamation of Central Europe: New results from recent geological and geophysical investigations. – Tectonophysics 360. WISZNIEWSKA, J. – KRZEMIŃSKA, E. – MAZUR, S. – GAWĘDA, A. – KOZŁOWSKI, A. (2007): Foreword – brief outline of geology of Poland. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 5–7. ŽÁK, J. – KLOMÍNSKÝ, J. (2007): Magmatic structures in the Krkonoše-Jizera Plutonic Complex: evidence for localized multiphase flow and small-scale thermal-mechanical instabilities in a granitic magma chamber. – J. volcanol. geotherm. Res. 164, 254–267. ŽÁK, J. – VERNER, K. – KLOMÍNSKY, J. – CHLUPÁČOVÁ, M. (2007): „Granite tectonics“ revised: insights from comparison of K-feldspar shape-fabric, anisotropy of magmatic susceptibility (AMS), brittle fractures in the Jizera granite, Bohemian Massif. – Int. J. Earth Sci. (Geol. Rundsch). ŽÁK, J. – VERNER, K. – TÝCOVÁ, P. (2008a): Grain-scale processes in actively deforming magma mushes: New insights from electron backscatter diffraction (EBSD) analysis of biotite schlieren in the Jizera granite, Bohemian Massif. – Lithos 106, 309–322. ŽÁK, J. – VERNER, K. – TÝCOVÁ, P. (2008b): Multiple magmatic fabrics in plutons: an overlooked tool for interactions between magmatic processes and regional deformation? – Geol. Mag. 145, 4, 537–551. ŽÁK, J. – VYHNÁLEK, B. – KABERLE, P. (2006): Is there a relationship between magmatic fabric and brittle fractures in plutons? A view based on structural analysis, anisotropy of magnetic susceptibility and thermo-mechanical modelling of the Tanvald pluton (Bohemian Massif). – Phys. Earth Planet. Int. 157, 286–310.
40
Krkonoše-Jizera Granites (G1–G4) Quartz-rich to quartz-normal, sodic to potassic, weakly peraluminous, mesocratic, S-type, I- and M-series granite n = 42 Median Min Max QU1 QU3 SiO2 71.61 68.91 77.11 70.21 72.86 TiO2 0.39 0.05 0.62 0.24 0.50 Al2O3 13.77 12.03 15.20 13.23 14.28 Fe2O3 0.59 0.00 1.39 0.49 0.95 FeO 1.72 0.32 2.55 1.18 1.87 MnO 0.06 0.01 0.08 0.04 0.06 MgO 0.69 0.00 1.20 0.47 0.85 CaO .75 0.59 2.58 1.29 1.98 Na2O 3.34 2.95 3.82 3.23 3.47 K2O 4.54 3.26 5.22 4.29 4.75 P2O5 0.11 0.00 0.66 0.08 0.14 Mg/(Mg+Fe) 0.35 0.00 0.48 0.28 0.38 K/(K+Na) 0.47 0.37 0.53 0.45 0.49 Nor.Or 28.05 20.18 31.88 26.22 29.07 Nor.Ab 31.03 27.37 35.35 30.34 32.37 Nor.An 8.13 -0.19 12.45 5.92 9.48 Nor.Q 29.05 22.30 37.06 26.00 31.44 Na+K 204.82 184.82 218.77 200.76 207.01 *Si 176.58 140.71 215.74 158.68 187.75 K-(Na+Ca) -41.32 -78.98 -4.23 -54.62 -27.91 Fe+Mg+Ti 53.12 12.60 79.51 40.14 62.65 Al-(Na+K+2Ca) 6.39 -11.94 33.75 -1.04 13.83 (Na+K)/Ca 6.49 4.66 20.12 5.86 8.92 A/CNK 1.03 0.97 1.24 1.00 1.06 Trace elements (mean values in ppm): Krkonoše-Jizera Granite – Ba 11, Ce 30, Cr 44, Cu 45, La 14, Nb 20, Ni 5, Pb 58, Rb 336, Sr 9, Ta 8, Th 38, U 7, Y 23, Zn 15, Zr 59 (Lorenc et al. 1998). Jizera Granite (G1) – Pb 50, Ga 18, Ni <10, V 33, Co <10, W 51, Sn 12, Zr 146, Rb 219, Sr 170, Nb 12, U 4.0 (Klomínský 1969). Liberec Granite (G2) – Pb 26, Ga 14, Ni <10, V 16, Co <10, W 22, Sn 15, Zr 125, Rb 239, Sr 112, Nb 11, U 5.1 (Klomínský 1969). Harrachov Granite (G3) – Pb 12, Ga 14, Ni <10, Co <10, W 15, Sn 14, Zr 100, Rb 246, Sr 186, Nb 12, U 3.8 (Klomínský 1969). Krkonoše Granite (G4) – Pb 23, Ga 15, Ni <10, Co <10, W 17, Sn 35, Zr 25, Rb 277, Sr 50 (Klomínský 1969). Tanvald Granite Quartz-rich, sodic, peraluminous, leucocratic, S-type, I and M series, granite n = 10 Median Min Max QU1 QU3 SiO2 74.43 73.77 75.15 74.18 74.65 TiO2 0.05 0.01 0.15 0.04 0.07 Al2O3 14.28 13.61 14.63 14.26 14.41 Fe2O3 0.31 0.01 0.49 0.21 0.32 FeO 0.68 0.43 0.97 0.60 0.73 MnO 0.07 0.04 0.09 0.05 0.08 MgO 0.07 0.02 0.20 0.05 0.07 CaO 0.27 0.19 0.88 0.21 0.46
41
Na2O K2O P2O5 Mg/(Mg+Fe) K/(K+Na) Nor.Or Nor.Ab Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
4.00 4.19 0.12 0.11 0.41 25.33 36.81 0.51 31.15 217.62 183.94 -43.86 15.65 46.22 32.51 1.21
3.53 4.07 0.07 0.04 0.38 24.56 32.42 0.09 29.58 211.38 174.12 -59.99 10.01 23.03 13.56 1.10
4.41 4.86 0.15 0.23 0.46 29.14 40.45 3.97 33.70 237.43 199.81 -30.66 23.26 59.21 70.08 1.28
3.89 4.17 0.10 0.09 0.40 25.14 35.75 0.31 30.35 213.34 178.69 -49.77 13.77 41.22 24.73 1.18
4.12 4.29 0.13 0.12 0.42 25.94 37.78 1.52 32.65 224.95 193.16 -43.16 18.22 50.38 55.77 1.23
Trace elements (mean values in ppm): Tanvald Granite – B 18, Ba 9, Be 4.5, Co 13, Cr 15, Cs 14.5,Cu 7, Ga 22, Hf 6.1, Ni 7, Nb 22, Pb 16, Rb 474, Sc 7, Sn 15, Sr 7, Y 16, Zn 43, Zr 18, Pb <10, Ga 22, Ni <10, Co <10, W 5, V 15, Sn 28, Zr 8, Rb 362, Sr 90, Nb 25, U 4.2 (Klomínský 1969). Fojtka Hybrid Granodiorite Quartz-poor, granodiorite
sodic,
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Li2O Na2O K2O P2O5 Mg/(Mg+Fe) K/(K+Na) Nor.Or Nor.Ab Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
metaluminous, 471FOJ 67.63 0.72 13.88 0.77 3.00 0.07 1.60 2.63 n.d. 3.38 4.29 0.18 0.43 0.46 27.10 32.46 12.69 22.09 200.16 143.77 -64.88 100.15 -21.38 4.27 0.94
melano-mesocratic,
472FOJ 60.36 1.30 14.97 1.09 5.30 0.11 3.14 5.39 n.d. 3.41 3.03 0.30 0.47 0.37 19.78 33.83 27.36 10.66 174.37 96.42 -141.82 181.66 -72.62 1.81 0.82
473FOJ 69.02 0.57 14.22 0.54 2.69 0.07 1.00 2.51 n.d. 3.29 4.40 0.15 0.35 0.47 27.50 31.25 12.13 24.42 199.59 153.48 -57.50 76.18 -9.85 4.46 0.98
I-type,
I-series,
474FOJ 62.26 0.98 15.78 1.13 4.31 0.12 1.76 4.02 n.d. 3.67 3.51 0.41 0.37 0.39 22.42 35.62 18.64 14.88 192.95 104.66 -115.59 130.13 -26.44 2.69 0.95
Trace elements (mean values in ppm): Fojtka Hybrid Granodiorite – Pb <10, Ga 11, Ni 17, Co 14, W <10, V 59, Sn 17, Zr 90, Rb 180, Sr 210, Nb 6 (Klomínský 1969).
42
Fig. 4.18. Krkonoše-Jizera Composite Massif ABQ and TAS diagrams. 1 – Jizera Granite, 2 – Liberec Granite, 3 – Harrachov Granite, 4 – Krkonoše Granite, 5 – Tanvald Granite, 6 – Fojtka Hybrid Granodiorite.
Polish part of the Krkonoše-Jizera Composite Massif Krkonoše Central Granite Quartz-rich, sodic/potassic, low peraluminous, mesocratic, S-type granite n=9 Median Min Max QU1 QU3 SiO2 72.22 69.57 75.93 70.22 72.31 TiO2 0.31 0.14 0.39 0.23 0.37 Al2O3 13.25 12.16 14.49 13.03 14.06 Fe2O3tot 2.22 1.43 2.69 1.68 2.47 MnO 0.05 0.02 0.06 0.04 0.05 MgO 0.77 0.29 0.93 0.65 0.85 CaO 1.24 0.33 1.69 0.68 1.41 Na2O 3.38 2.92 3.87 3.01 3.43 K2O 4.45 3.26 5.49 4.08 4.91 P2O5 0.10 0.04 0.15 0.06 0.12 Mg/(Mg+Fe) 0.40 0.28 0.49 0.38 0.41 K/(K+Na) 0.48 0.36 0.55 0.44 0.52 Nor.Or 27.03 20.22 33.87 25.50 30.34 Nor.Ab 31.67 27.43 36.49 28.64 32.50 Nor.An 5.63 1.34 8.38 3.06 6.37 Nor.Q 31.12 27.78 36.49 30.07 32.18 Na+K 198.48 188.01 213.37 194.96 208.07 *Si 183.86 162.99 212.73 174.24 187.20 K-(Na+Ca) -28.42 -85.80 13.87 -48.97 -12.44 Fe+Mg+Ti 52.46 26.87 59.31 41.03 55.90 Al-(Na+K+2Ca) 19.87 4.36 51.95 14.63 28.49 (Na+K)/Ca 9.58 6.44 36.26 7.75 15.50 A/CNK 1.09 1.03 1.24 1.07 1.13 Trace elements (mean values in ppm): Krkonoše Central Granite – Cu 11, Pb 26, Zn 37, As 6, W 11, Ni 4, Cr 15, V 19, Nb 14, Ba 351, Rb 262, Sr 16, Zr 140, Hf 4.5, Th 26, U 4.
43
Krkonoše Range Granite (equivalent to the Jizera Granite) Quartz-rich, sodic/potassic, peraluminous, mesocratic, S-type granite n=7 Median Min Max QU1 QU3 SiO2 74.20 69.22 78.85 70.10 74.76 TiO2 0.34 0.02 0.46 0.27 0.36 Al2O3 13.52 11.94 14.72 12.79 14.00 Fe2O3tot 2.17 0.21 3.04 1.86 2.20 MnO 0.05 0.01 0.07 0.04 0.05 MgO 0.80 0.12 1.14 0.67 0.85 CaO 1.29 0.40 1.83 0.90 1.44 Na2O 3.34 2.10 3.59 3.06 3.40 K2O 4.04 3.80 6.53 3.93 4.68 P2O5 0.12 0.03 0.18 0.11 0.15 Mg/(Mg+Fe) 0.41 0.40 0.52 0.41 0.43 K/(K+Na) 0.45 0.42 0.67 0.42 0.48 Nor.Or 25.26 23.06 39.31 23.91 28.24 Nor.Ab 30.64 19.21 33.51 28.25 32.00 Nor.An 5.53 1.83 8.53 3.79 6.32 Nor.Q 32.95 28.19 38.40 29.43 33.36 Na+K 199.17 184.66 207.15 192.66 199.29 *Si 196.91 168.81 226.27 173.19 199.16 K-(Na+Ca) -43.03 -63.92 63.75 -63.61 -24.46 Fe+Mg+Ti 51.67 5.86 70.28 43.31 52.79 Al-(Na+K+2Ca) 24.82 13.80 47.37 15.15 26.26 (Na+K)/Ca 8.50 5.90 28.94 6.39 9.97 A/CNK 1.11 1.06 1.22 1.08 1.12 Trace elements (mean values in ppm): Krkonoše Range Granite – Cu 8, Pb 20, Zn 40,As 4, W 8, Ni 6.4, Cr 23, Nb 14, Ba 340, Rb 221, Sr 135, Zr 141, Hf 4.4, Th 2.3, U 4.3. Krkonoše Granophyric Granite (equivalent to the Harrachov Granite) Quartz-rich, sodic/potassic, low peraluminous, leucocratic, S-type granite n=9 Median Min Max QU1 SiO2 76.37 73.32 76.68 75.22 TiO2 0.07 0.06 0.29 0.07 Al2O3 12.79 12.11 13.06 12.57 Fe2O3tot 0.78 0.68 1.94 0.74 MnO 0.03 0.02 0.17 0.02 MgO 0.02 0.00 0.72 0.00 CaO 0.64 0.62 1.34 0.63 Na2O 3.83 3.28 4.23 3.62 K2O 4.52 4.22 5.29 4.40 P2O5 0.01 0.01 0.09 0.01 Mg/(Mg+Fe) 0.05 0.01 0.42 0.01 K/(K+Na) 0.44 0.40 0.50 0.42 Nor.Or 27.12 25.70 31.73 26.45 Nor.Ab 34.76 30.89 38.61 33.91 Nor.An 3.19 3.04 6.36 3.08 Nor.Q 32.35 28.83 34.50 31.76 Na+K 226.54 195.44 228.69 224.62 *Si 190.96 165.48 199.46 188.07
44
QU3 76.45 0.08 12.99 0.81 0.05 0.06 0.67 4.05 4.94 0.02 0.13 0.46 29.53 36.82 3.28 32.39 227.37 191.37
K-(Na+Ca) -40.14 -67.74 -11.75 -45.78 -29.55 Fe+Mg+Ti 10.74 9.87 45.82 10.25 13.87 Al-(Na+K+2Ca) 3.80 -25.73 6.08 3.41 4.75 (Na+K)/Ca 19.09 8.18 20.69 18.42 20.17 A/CNK 1.02 0.91 1.02 1.01 1.02 Trace elements (mean values in ppm): Krkonoše Granophyric Granite – Cu 10, Pb 49, Zn 11, As 5, Sn 39, Cr 20, Nb 19, Ba 16, Rb 304, Sr 10, Zr 65, Hf 4.3, Th 30, U 20.
Fig. 4.19. Krkonoše-Jizera Composite Massif (Polish part) ABQ and TAS diagrams. 1 – Krkonoše Central Granite, 2 – Krkonoše Range Granite, 3 – Granophyric Granite.
E. KACZAWA REGION (INCLUDING THE FORE-SUDETIC BLOCK) The Kaczawa metamorphic complex and Fore-Sudetic Block comprise pre-Variscan gneisses of probable magmatic origin (Strzelin Porphyritic Gneiss, the Gościecice Augen Gneiss and Doboszowice Gneiss). The Wadroze Wielkie Gneiss (intrude a low-grade Palaeozoic complex) and intrusions of post-kinematic Variscan granitoids: the Żeleżniak (Bukowinka) Stock, the StrzegomSobótka Massif, and the Lipowe Hills Stock. References MAZUR, S. – ALEKSANDROWSKI, P. – TURNIAK, K. – AWDANKIEWICZ, M. (2007): Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes – an overview. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 59–87.
45
4.15. ŻELEŻNIAK (BUKOWINKA) STOCK 1. Żeleżniak Microgranite – fine-grained porphyritic monzogranite. 2. Żeleżniak Granodiorite – equigranular, coarse-grained biotite-hornblende granodiorite. 3. Bukowinka Granite – porphyritic biotitehornblende fine-to medium-grained monzogranite. 4. Kersantite. 5. Rhyolite, rhyodacite, dacite, trachyandesite. Size and shape (on erosion level): a fairly irregular star-like shape composed of its core, ca. 3 km2 large, and a number roughly radially arranged dykes, several hundreds of meters thick and up to 7 km long. The core 500 m in diameter. The presence of the diathermal breccias suggests they are remnants of a chimney pipe. The intrusion may represent a multi-pulse injection lava dome, from which short-lived volcanic venting of material to the surface. Age and isotopic data: Żeleżniak Microgranite 315 ± 1.8 Ma, 316 ± 1.2 Ma (U-Pb SHRIMP zircon), 2598.2 ± 4.6 Ma, 2063 ± 13 Ma (inherited zircon), Bukowinka Granite 307.2 ± 4.4 Ma (Pbevaporation zircon). Molybdenite 304 ± 1 Ma and 309 ± 1 Ma (Re-Os). Au-As-Cu mineralization at Stara Góra 317 ± 17 Ma, 316.6 ± 0.4 Ma (arsenopyrite). Geological environment: Lower Palaeozoic greenschist-facies metavolcanic rocks. Contact aureole: a broad thermal aureole NE of the stock indicates subsurface extension of the intrusion. Zoning: numerous radiating kersantite dykes cut the intrusion and extends outwards to a radius of 7 km. Mineralization: Au-As-Cu Stara Góra (Altenberg) deposit agenetically linked to the intrusion.
Fig. 4.20. Żeleżniak (Bukowinka) Stock geological sketch-map (adapted according to Mikulski 2005). 1 – Bukowinka Granite, 2 – Dacite porphyry, 3 – Quartzsulphide veins.
Regional position: Late-Carboniferous hypabyssal (high-level) volcano-plutonic intrusion in Lower Palaeozoic schists along a fault system bounding the Swierzawa and Bolkow tectonic units. Rock types: Group 1 – fine-grained subvolcanic facies (rhyolites, rhyodacites, dacites and trachyandesites). Group 2 – medium-grained hybabyssal facies (porphyritic microgranitoids).
46
Fig. 4.21. Żelezniak Hill Massif ABQ and TAS diagrams. 1 – Żeleżniak Granite, 2 – Żeleżniak Granodiorite.
References
MACHOWIAK, K. – AMSTRONG, R. – KRYZA R. – MUSZYŃSKI, A. – (2008): Late-orogenic magmatism in the Central Europea Variscides: SHRIMP U-Pb zircon age constraints from the Żeleżniak Intrusion, Kaczawa Mountains, West Sudetes. – Geologica sudet., 40, 1–18. MACHOWIAK, K. – MUSZYŃSKI, A. – AMSTRONG, R. (2004): High-level volcanic-granodioritic intrusions from Żeleżniak Hill (Kaczawa Mountains, Sudetes, SW Poland). In: Breitkreuz, C. – Petford, N. Eds: Physical geology of high-level magmatic systems. – Geol. Soc. London Spec. Publ. 234, 67–74. MACHOWIAK, K. – NIEMCZYK, W. (2005): Subvolcanic rocks of the Żeleżniak intrusion (Kaczawa Mountains) compared with the Karkonosze granite. – Przegl. Geol. 53, 51–52. MAJEROWICZ, A. – SKURZEWSKI, A. (1987): Granity z okolic Wojcieszowa w Górach Kaczawskich. – Acta Univ. Wratislav, Prace geol.-mineral. 10, 265–274. MIKULSKI, S. Z. (2005): Geological, mineralogical and geochemical characteristics of the Radzimowice Au-As-Cu deposit from the Kaczawa Mountains (Western Sudetes, Poland): an example of the transition of porphyry and epithermal style. – Mineralium Deposit., 39, 904–920. MUSZYŃSKI, A. – MACHOWIAK, K. (2000): Geochemistry of igneous rocks in the area of Żeleżniak Hill (The Kaczawa Mountains). – Pol. Tow. Mineral. Prace Spec. 17, 212–214. MUSZYŃSKI, A. – MACHOWIAK, K. – KRYZA, R. – AMSTRONG, R. (2002): SHRIMP U-Pb zircon geochronology of the Late-Variscan żelezniak rhyolite intrusion, Polish Sudetes. – Mineral. Soc. Pol. Spec. Pap. 20, 156–158. WISZNIEWSKA, J. – KRZEMIŃSKA, E. – MAZUR, S. – GAWĘDA, A. – KOZŁOWSKI, A. (2007): Foreword – brief outline of geology of Poland. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 5–7. Żelezniak Granite Quartz-normal, sodic, peraluminous, mesocratic, S-type granite n=8 Median Min Max QU1 SiO2 72.32 70.81 72.65 71.20 TiO2 0.26 0.20 0.32 0.24 Al2O3 14.54 13.09 15.71 13.48 Fe2O3tot 2.38 2.17 2.67 2.18 MnO 0.04 0.03 0.09 0.04 MgO 0.45 0.34 0.85 0.43 CaO 1.01 0.13 1.61 0.20 Na2O 3.48 2.34 4.14 3.02 K2O 4.04 3.65 4.67 3.91
47
QU3 72.49 0.28 14.85 2.46 0.05 0.58 1.41 3.52 4.58
0.11 0.08 0.13 0.09 0.11 P2O5 Mg/(Mg+Fe) 0.28 0.22 0.40 0.25 0.34 K/(K+Na) 0.44 0.37 0.56 0.41 0.47 Nor.Q 29.89 28.91 39.35 29.14 33.97 Nor.Or 24.81 22.40 28.47 23.82 28.20 Nor.Ab 32.42 21.99 38.62 28.45 32.62 Nor.An 4.45 -0.02 7.35 0.14 6.61 Na+K 197.44 172.33 212.10 193.88 211.09 *Si 175.00 169.74 227.34 173.30 198.74 K-(Na+Ca) -38.93 -74.11 18.99 -65.09 -27.49 Fe+Mg+Ti 44.71 41.39 56.42 42.36 45.09 Al-(Na+K+2Ca) 29.82 2.33 130.56 5.39 77.75 (Na+K)/Ca 8.65 7.05 74.34 7.14 38.18 A/CNK 1.13 1.02 1.76 1.03 1.39 Trace elements (in ppm): Żelezniak Granite – Sr 252, Y 15.5, Sc 5.05, Be 2, V 21, Co 89, Cu 23, Zn 118, Ga 21, Ge 1.6, As 17, Rb 136, Zr 162, Nb 12, Sn 2. Żelezniak Granodiorite – Sr 483, Y 17, Sc 6, Be 1.5, V 53, Co 55, Ga 22, Ge 2, As 10, Rb 91, Zr 166, Nb 11, Sn 3.
4.16. STRZEGOM-SOBÓTKA COMPOSITE MASSIF 3. Wierzbno Granite – two-mica granite (foliated texture). 4. Strzeblów (Chvałkow) Granodiorite – medium-grained biotite granodiorite. Łazany Tonalite is of the biotite granodiorite varieties. 5. Biotite granite.
Fig. 4.22. Strzegom-Sobótka Massif hierarchical scheme.
Petrographic and geochemical differences among granitoids suggest that they represent separate magma batches of different origin and crystallization history.
Regional position: Isolated intrusion in the Kaczawa region of the Lugicum. Rock types: 1. Paszowice Leucogranite – aplitic albitemuscovite leucogranite. 2. Strzegom Granite – biotite-hornblende granite – granodiorite (predominant type). The finegrained variety is so-called Zimnik Granite.
Size and shape: 280 km2 (45 × 8 km), elliptical, in SW outlined by NW-SE trending fault. The semihidden massif under younger sedimentary cover consists of several outcrops showing a different petrographic composition. Age and isotopic data: Upper Carboniferous to Lower Permian age. Strzegom Granite-Granodiorite 271–280 Ma (Rb-Sr whole rock), 278 ± 7 Ma and 281 ± 12 Ma (Rb-Sr whole rock) Paszowice Granite 326 Ma (Rb-Sr whole rock) and two-mica granite are older and have a weak foliation. The other facies show younger ages ~ 280 Ma (Rb-Sr whole rock). 324 ± 7 Ma (Rb-Sr biotite), 309.1 ± 0.8 Ma and 306.4 ± 0.8 Ma (U-Pb monazite and xenotime), Strzegom Granite 302.9 ± 2.2 Ma (Pb-evaporation zircon), K-Ar cooling ages: biotite granodiorite 308.8 ± 4.6 Ma and 305.5 ± 4.3 Ma, hornblendebiotite monzogranite 291.0 ± 4.4 Ma and 298.7 ± 5.2 Ma, biotite monzogranite 294.2 ± 4.3 Ma. Geological environment: Ślęża Cambrian ultramafics and mafics, Ordovician schists metamorphosed up to amphibolite facies
Fig. 4.23. Strzegom-SobótkaComposite Massif geological sketch-map (adapted after Puziewitz 1990). 1 – biotite granite, 2 – Wierzbno Granite, 3 – Strzegom Granite, 4 – Chvałkow Granodiorite, 5 – outline of the StrzegomSobótka Massif under the sedimentary cover.
48
Zoning: distinct compositional zonation. Marginal zone in eastern part consists of leucogranite and gradually changes into biotite granodiorites to the west. Mineralization: Sn.
(Devonian -Lower Carboniferous) phyllites, metaarkoses and quartzites. Contact aureole: strong thermal transformation of country rocks into amphibolite facies.
References BORKOWSKA, M. (1969): Skalenie jako wskažniki warunków krystalizacji niektórych granitoidow sudeckich. – Przegl. geol. 11, 558–560. DOMANSKA, J. – SŁABY, E. (2003): Enclaves from the Variscan Strzegom-Sóbotka hornblende-biotite granite. – Mineral. Soc. Pol. Spec. Pap. 23, 57–59. DOMANSKA-SIUDA, J. (2007): The granitoid Variscan Strzegom-Sobotka massif. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. Mineral. Monogr. 1, 179–191. JANECZEK, J. (2007): Intragranitic pegmatites of the Strzegom-Sobótka massif – an overview. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 193–201. JELIŃSKI, A. (1965): Geochemistry of the uranium in the Karkonosze Granite Massif and other granitoids massifs of Lower Silesia. – Biul. Inst. Geol. 193, 5, 5–110. (In Polish)
MACHOWIAK, K. – AMSTRONG, R. – KRYZA R. – MUSZYŃSKI, A. – (2008):Late-orogenic magmatism in the Central Europea Variscides: SHRIMP U-Pb zircon age constraints from the Żeleżniak Intrusion, Kaczawa Mountains, West Sudetes. – Geologica Sudetica, 2008, 40, 1-18. MAJEROWICZ, A. (1972): Masyw granitowy Strzegom-Sobótka. Studium petrologiczne. – Geologica sudet. 6, 7–26. MAJEROWICZ, A. (1986): Some selected problems concerning the tectonics of granitoids of the StrzegomSobótka massif (SW Poland. – Geol. Rdsch. 75, 3, 625–634. MIKULSKI, S. Z. – STEIN, H. J. (2007): Re-Os age for molybdenite from the West Sudetes, SW Poland. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 111– 122. OBERC-DZIEDZIC, T. (2007): Internal structure of the granite and tonalite intrusions in the Strzelin massif, Fore-Sudetic block, SW Poland. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 217– 229. PIN, C. – PUZIEWICZ, J. – DUTHOU, J. L. (1989): Age and origin of a composite granitic massif in the Variscan belt: a Rb-Sr study of the Strzegom-Sobotka Massif, W. Sudetes (Poland). – Neu. Jb. Mineral., Abh. 160, 71–82. PUZIEWICZ, J. (1990): Massyw granitowy Strzegom-Sobótka. Aktualny stav badań. – Arch. mineral. 45, 135–154. PUZIEWICZ, J. – OBERC-DZIEDZIC, T. (1995): Wiek i geneza granitoidów bloku przedsudeckiego. – Rocznik Pol. Tow. Geol., Przewodnik 66 Zjazdu PTG, 273–284. Wroclaw. TURNIAK, K. – BRÖCKNER, M. (2002): Age of the two-mica granite from the Strzegom-Sobótka massif. – New data from U/Pb monazite and xenotime study. – Pol. Tow. Mineral. Prace Spec. 20, 211–214. TURNIAK, K. – TICHOMIROWA, M. – BOMBACH, K. (2005): Zircon Pb-evaporation ages of granitoids from the Strezegom-Sobótka massif (SW Poland). – Pol. Tow. Mineral. Prace Spec. 25, 241–245. WISZNIEWSKA, J. – KRZEMIŃSKA, E. – MAZUR, S. – GAWĘDA, A. – KOZŁOWSKI, A. (2007): Foreword – brief outline of geology of Poland. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 5–7. Strzegom Granite Quartz-normal, sodic, metaluminous, mesocratic, I-type, I-series, granite n=9 Median Min Max QU1 SiO2 72.21 69.34 74.82 70.85 TiO2 0.26 0.15 0.47 0.21 Al2O3 13.60 13.05 15.09 13.16 Fe2O3 0.31 0.15 1.12 0.21 FeO 1.70 1.31 3.22 1.54 MnO 0.05 0.01 0.14 0.03 MgO 0.41 0.28 1.00 0.35
49
QU3 74.00 0.34 14.86 0.33 2.42 0.07 0.49
CaO Na2O K2O P2O5 Mg/(Mg+Fe) K/(K+Na) Nor.Or Nor.Ab Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK Th 12, U 7.5.
1.55 4.01 5.08 0.03 0.27 0.44 30.17 37.03 7.53 23.14 226.93 144.55 -53.02 47.86 -25.44 8.10 0.92
1.40 3.37 3.54 0.00 0.15 0.37 21.51 31.10 6.26 18.09 204.56 123.40 -111.16 32.94 -34.04 3.63 0.89
3.16 4.44 5.29 0.12 0.39 0.50 31.89 41.05 15.38 28.23 252.69 172.85 -29.22 68.37 -10.80 10.12 0.96
1.53 3.83 4.72 0.03 0.20 0.44 28.41 35.04 7.16 20.67 223.81 129.74 -55.82 37.25 -32.60 7.36 0.90
1.70 4.32 5.14 0.07 0.30 0.45 31.17 39.12 8.26 27.45 240.49 169.23 -51.02 63.39 -21.44 8.59 0.93
Wierzbno Granite Quartz-normal, sodic-potassic, moderately peraluminous, leucocratic, granite n=8 Median Min Max QU1 QU3 SiO2 73.86 72.48 74.40 73.30 74.20 TiO2 0.17 0.00 0.30 0.05 0.20 Al2O3 13.70 13.39 15.77 13.67 14.00 Fe2O3 0.47 0.14 1.45 0.40 0.82 FeO 0.92 0.00 1.15 0.71 1.01 MnO 0.02 0.00 0.05 0.00 0.03 MgO 0.29 0.21 0.53 0.27 0.37 CaO 0.86 0.44 2.23 0.70 1.10 Na2O 3.58 3.07 4.43 3.49 3.63 K2O 4.80 3.75 5.30 4.22 5.13 P2O5 0.07 0.02 0.41 0.03 0.11 Mg/(Mg+Fe) 0.24 0.21 0.80 0.22 0.33 K/(K+Na) 0.45 0.44 0.50 0.44 0.47 Nor.Or 28.91 22.92 31.80 25.49 31.09 Nor.Ab 32.85 28.52 40.49 32.04 33.32 Nor.An 3.86 2.05 10.84 3.07 5.40 Nor.Q 29.12 22.48 39.20 27.08 31.31 Na+K 217.44 178.69 254.85 202.22 227.09 *Si 174.33 138.93 228.84 162.70 186.62 K-(Na+Ca) -34.81 -53.38 -17.36 -51.73 -27.35 Fe+Mg+Ti 30.79 11.08 41.21 26.97 34.80 Al-(Na+K+2Ca) 8.81 -34.02 115.31 -1.74 17.17 (Na+K)/Ca 14.01 5.47 22.77 7.04 14.81 A/CNK 1.05 0.89 1.60 1.00 1.07
50
Strzeblow Granodiorite Quartz-normal, sodic, metaluminous,mesocratic, I-type, I-series, granodiorite grd1214 grd210S grd216S grd225S SiO2 69.75 68.80 66.75 63.96 TiO2 n.d. 0.45 0.23 0.76 Al2O3 14.94 15.80 13.44 15.88 Fe2O3 1.42 0.62 2.96 1.93 FeO 2.03 2.70 4.98 3.68 MnO n.d. 0.06 n.d. 0.02 MgO 0.63 0.40 1.10 1.42 CaO 1.55 2.81 1.77 4.80 Na2O 3.89 3.75 3.45 4.39 K2O 4.78 4.44 4.30 2.18 P2O5 n.d. n.d. 0.35 0.20 Mg/(Mg+Fe) 0.25 0.18 0.20 0.32 K/(K+Na) 0.45 0.44 0.45 0.25 Nor.Or 29.24 27.03 27.25 13.55 Nor.Ab 36.16 34.70 33.22 41.47 Nor.An 7.96 14.37 6.94 23.67 Nor.Q 22.44 20.65 22.76 16.03 Na+K 227.02 215.28 202.63 187.95 *Si 141.51 133.00 146.64 109.82 K-(Na+Ca) -51.68 -76.85 -51.59 -180.97 Fe+Mg+Ti 61.69 60.93 136.62 120.19 Al-(Na+K+2Ca) 11.09 -5.22 -1.82 -47.29 (Na+K)/Ca 8.21 4.30 6.42 2.20 A/CNK 1.04 0.98 1.02 0.88
Fig. 4.24. Strzegom-Sobótka Massif ABQ and TAS diagrams. 1 – Strzegom Granite, 2 – Strzeblow (Łazany) granodiorite to tonalite, 3 – Wierzbno Granite.
51
4.17. LIPOWE HILLS STOCK Age and isotopic data: 329 ± 11 Ma (Rb-Sr whole rock). Size and shape (on erosion level): small bodies of unknown shape (the largest outcrop 1 × 0.5 km). Geological environment: augen orthogneiss, sillimanite gneiss, migmatitic gneiss and mylonitic gneiss. Contact aureole: sharp and discordant contacts although transition zones can also be present. Mineralization: no indications.
Regional position: within the Fore-Sudetic Block, a part of the Niemcza crystalline complex, close spatial relationship to the Strzelin Massif. Rock types: Górka Sobotecka Granite – muscovite-biotite granite. Lipowe Hills Granodiorite – fine-grained granodiorite and medium-grained biotite tonalite (sills and dykes?).
Fig. 4.25. Lipowe Hills Stock ABQ and TAS diagrams. 1 – Górka Sobotecka Granite, 2 – Lipowe Hills Granodiorite.
References OBERC-DZIEDZIC, T. (2007): Internal structure of the granite and tonalite intrusions in the Strzelin massif, Fore-Sudetic block, SW Poland. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 217–229. OBERC-DZIEDZIC, T. – PIN, CH. (2000): The granitoids of the Lipowe Hills (Fore-Sudetic Block) and their relationship to the Strzelin granites. – Geologica sudet. 33, 17–22.
4.18. OLEŠNICE-KUDOWA MASSIF Size and shape (on erosion level): 120 km2, tectonic contact in the west, sheet-like body dipping to the east. Age and isotopic data: Olešnice Granodiorite 360 ± 18 Ma (K-Ar biotite). Kudowa Granodiorite 344 ± 17 Ma (K-Ar biotite). Olešnice-Kudowa Massif 331 ± 11 Ma (Rb-Sr whole rock). The granodiorite pebbles in Upper Carboniferous conglomerate. Geological environment: Stronie Unit of albite mica schists, partly feldspathized, greenschists, phyllites and the Nové Město Unit on the W (amphibolites). Zoning: Distinct concentric compositional zoning, in central parts more mafic Olešnice
Fig. 4.26. Hierarchic scheme of the Olešnice-Kudowa Massif according to rock types.
Regional position: composite intrusion between Nové Město and Stronie units (Lugicum Zone). Rock types: 1. Olešnice (Older) Granodiorite – porphyritic biotite granodiorite (older facies). 2. Kudowa (Younger) Granodiorite – leucocratic granodiorite to granite (younger facies).
52
Granodiorite and Kudowa Granodiorite at the periphery. Mineralization: no indications. Fig. 4.27. Olešnice-Kudowa Massif geological sketchmap (adapted after Opletal et al. 1980). 1 – Kudowa Granodiorite, 2 – Olešnice Granodiorite, 3 – faults, 4 – state border.
References BACHLINSKI, R. (2007): Kudowa-Olešnice granitoid massif. – Arch. mineral. Monogr. 1, 275–286. BORKOWSKA, M. (1969): Feldspars of the Kudowa granitoids as indicator of their crystallization temperatures. – Bull. Acad. Polon. Sci., Sér. geol. 17, 103–109. DOMEČKA, K. – OPLETAL, M. (1974): Granitoidy západní časti orlicko-kladské klenby. – Acta. Univ. Carol., Geol., 75–109. GIERWIELANIC, J. (1957): Geologia a petrografia granitu Kudowy i jego oslony. In: Przew. 30 zjazdu Pol. Tow. Geol. w Ziemi Klodzkiej, 100–119. – Wroclaw. JELIŃSKI, A. (1965): Geochemistry of the uranium in the Karkonosze Granite Massif and other granitoids massifs of Lower Silesia. – Biul. Inst. Geol. 193, 5, 5–110. (In Polish) OPLETAL, M. et al. (1980): Geologie Orlických hor. Oblastní regionální geologie ČSR. – 202 pp. Ústř. úst. geol. Praha. WISZNIEWSKA, J. – KRZEMIŃSKA, E. – MAZUR, S. – GAWĘDA, A. – KOZŁOWSKI, A. (2007): Foreword – brief outline of geology of Poland. In: Kozłowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 5–7. Olešnice Granodiorite Large variation of chemical composition. Quartz-poor, sodic, weakly peraluminous, mesocratic, S-type, M-series, granodiorite n = 12 Median Min Max QU1 QU3 SiO2 66.60 61.96 68.82 66.19 67.00 TiO2 0.43 n.d. 0.73 0.00 0.47 Al2O3 15.68 15.04 18.34 15.19 17.07 Fe2O3 0.81 0.40 2.48 0.62 1.80 FeO 2.00 1.62 4.09 1.79 2.18 MnO 0.00 0.00 0.05 0.00 0.04 MgO 1.89 1.08 4.43 1.58 2.56 CaO 2.24 0.97 3.24 1.40 2.60 Na2O 4.39 3.86 5.37 4.15 5.01 K2O 3.33 1.85 5.20 2.53 3.49
53
P2O5 Mg/(Mg+Fe) K/(K+Na) Nor.Or Nor.Ab Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK Th – 22, U – 8 (ppm).
0.13 0.55 0.31 20.45 40.98 10.72 16.90 213.41 119.50 -139.16 98.29 16.82 5.22 1.08
0.00 0.35 0.23 11.46 36.73 4.67 8.59 173.20 90.86 -162.99 78.05 -39.03 3.36 0.89
0.27 0.63 0.46 31.51 50.49 16.65 28.73 246.29 174.24 -44.93 207.09 94.33 12.21 1.39
0.06 0.46 0.25 15.55 39.05 5.50 12.43 209.26 96.05 -159.60 81.93 7.64 4.52 1.03
Kudowa Granodiorite to Granite Quartz-normal, sodic, metaluminous, leucocratic, S-type, M-series, granite n = 14 Median Min Max QU1 QU3 SiO2 72.06 70.01 75.13 70.79 73.56 TiO2 n.d. 0.00 0.19 0.00 0.00 Al2O3 14.16 13.51 16.97 13.71 14.61 Fe2O3 1.13 0.10 1.58 0.82 1.34 FeO 0.30 0.13 1.52 0.17 1.03 MnO 0.00 0.00 0.05 0.00 0.00 MgO 0.44 0.03 1.51 0.22 0.78 CaO 1.53 1.02 3.16 1.30 1.92 Na2O 4.45 3.56 5.55 4.04 4.93 K2O 3.90 1.11 5.11 3.71 4.12 P2O5 0.05 0.00 0.16 0.00 0.06 Mg/(Mg+Fe) 0.36 0.04 0.58 0.29 0.48 K/(K+Na) 0.35 0.12 0.47 0.33 0.40 Nor.Or 23.50 6.64 30.53 22.06 23.89 Nor.Ab 40.75 32.56 50.03 37.77 44.15 Nor.An 6.78 2.89 15.11 5.49 7.94 Nor.Q 24.05 20.56 31.43 22.81 25.76 Na+K 226.89 193.95 257.87 215.79 233.83 *Si 145.98 130.00 187.70 137.88 157.74 K-(Na+Ca) -97.14 -191.57 -37.24 -111.06 -77.01 Fe+Mg+Ti 27.72 16.57 73.47 21.77 53.93 Al-(Na+K+2Ca) -15.21 -58.24 56.55 -26.82 10.85 (Na+K)/Ca 8.30 3.83 14.18 4.90 9.13 A/CNK 0.95 0.82 1.20 0.91 1.04
54
0.15 0.59 0.34 21.76 47.68 12.14 19.58 223.50 134.48 -91.11 108.27 24.35 6.78 1.10
Fig. 4.28. Olešnice-Kudowa Massif ABQ and TAS diagrams. 1 – Olešnice Granodiorite, 2 – Kudowa Granodiorite to Granite.
4.19. NOVÝ HRÁDEK STOCK Regional position: Isolated body in the Orlické Hory-Kłodzko Dome area, northeast Bohemia (Lugicum). Rock types: Nový Hrádek Granite (Čermná Granite) leucocratic alkali-feldspar granite – three textural varieties with gradational relation. Narrow rim of the leucocratic Q-diorite in the endocontact. Age and isotopic data: Nový Hrádek Granite 360 ± 18 Ma ( K-Ar biotite), Upper Carboniferous cover. Size and shape (on erosion level): 12 km2 (6 × 2.5 km), elliptical shape. Geological environment: Nové Město unit of the Neoproterozoic age. It is represented by phyllites and metabasites affected by contact metamorphism. Contact aureole: 100–150 m wide, parallel with margin of the intrusion. Zoning: distinct textural and compositional concentric zoning (marginal massive variety and central foliated variety) with gradational relation. Increase of acidity towards the margin in SE direction. Mineralization: no indications.
Fig. 4.29. Nový Hrádek Stock geological sketch-map (adapted after Opletal et al. 1980). Nový Hrádek Granite: 1 – strongly foliated granite, 2 – moderately foliated granite, 3 – unfoliated granite, 4 – metamorphic country rocks, 5 – faults, 6 – state border.
References DOMEČKA, K. – OPLETAL, M. (1974): Granitoidy západní časti orlicko-kladské klenby. – Acta. Univ. Carol., Geol., 75–109. OPLETAL, M. et al. (1980): Geologie Orlických hor. Oblastní regionální geologie ČSR. – 202 pp. Ústř. úst. geol. Praha.
55
Nový Hrádek Granite Quartz-rich, sodic, strongly peraluminous, leucocratic, S-type, M-series, alkalifeldspar granite to granite 544Novh 545Novh 549Novh 546Novh 547Novh SiO2 75.10 76.41 72.40 75.28 75.55 TiO2 0.14 0.08 0.35 0.11 n.d. Al2O3 13.51 12.79 14.35 13.03 13.13 Fe2O3 0.75 0.94 1.81 0.80 1.31 FeO 0.70 0.46 1.32 0.44 0.17 MnO 0.11 0.10 0.02 0.10 n.d. MgO 0.07 0.02 0.62 0.05 0.04 CaO 0.07 0.05 0.37 0.10 0.41 Na2O 4.50 4.67 4.62 4.48 3.89 K2O 4.30 4.20 3.10 n.d. 5.12 P2O5 0.02 0.02 0.07 0.01 0.14 Mg/(Mg+Fe) 0.08 0.02 0.27 0.07 0.05 K/(K+Na) 0.39 0.37 0.31 0.00 0.46 Nor.Or 25.78 25.03 18.83 0.00 30.60 Nor.Ab 41.00 42.30 42.65 43.25 35.33 Nor.An 0.22 0.12 1.41 0.46 1.12 Nor.Q 30.06 30.92 30.61 48.76 30.72 Na+K 236.51 239.87 214.91 144.57 234.24 *Si 179.29 183.44 182.36 271.88 180.02 K-(Na+Ca) -55.16 -62.41 -89.86 -146.35 -24.13 Fe+Mg+Ti 22.64 19.68 60.83 18.77 19.77 Al-(Na+K+2Ca) 26.30 9.51 53.70 107.75 8.99 (Na+K)/Ca 189.48 269.04 32.57 81.07 32.04 A/CNK 1.11 1.04 1.24 1.73 1.05
Fig. 4.30. Nový Hrádek Stock ABQ and TAS diagrams. Nový Hrádek Granite.
56
548Novh 75.15 n.d. 14.32 2.18 0.30 n.d. 0.81 0.70 3.57 3.46 n.d. 0.39 0.39 20.84 32.68 3.54 36.29 188.67 219.93 -54.22 51.59 67.58 15.11 1.32
Fig. 4.31. Odra Fault Granitoids geological sketch-map in the basement of the sedimentary cover (after ObercDziedzic et al. (1999). 1 – Odra Fault Granitoids, 2 – faults.
4.20. ODRA FAULT INTRUSIONS Grodków Granite – biotite granite (resembles the Strzelin granites) to tonalite. Size and shape: several oval massifs and stocks on the area of 600 km2 (mostly under the sedimentary cover). Age and isotopic data: Szprotawa Granitoids (Leszno Dolne Granite) 344 ± 1 Ma (U-Pb zircon), Permian sedimentary deposits in the cover, Grodków Granitoids 332–338 Ma (Rb-Sr whole rock), Środa Sląska (Przedmoscie) Monzonite 344 ± 1 Ma (Pb-U zircon). Contact aureole: schistose hornfelses. Mineralization: traces of molybdenite.
Regional position: Several subsurface granitoid massifs and stocks (under a sedimentary cover) along the Odra Fault Zone (ca. 200 km long and up to 20 km wide), a Permian-Mesozoic horst outlining the northeastern edge of the Bohemian Massif. Rock types: Gubin Granodiorite – biotite granodiorite to granite. Szprotawa Granodiorite – medium-grained hornblende-biotite granodiorite to granite. Şroda Sląska Monzonite – hornblende-biotite quartz monzonite to quartz monzodiorite. Wrocław Monzonite – quartz monzonite to granite.
References DÖRR, W. – ŻELAŻNIEWICZ, A. – BYLINA, P. – SCHASTAK, J. – FRANKE, W. – HAAK, U. – KILICKU, C. (2006): Tournaisian age of granitoids from the Odra Fault Zone (southwestern Poland): equivalent of the Mid-German Crystalline High? – Int. J. Earth Sci. (Geol. Rdsch.) 95, 341–349. OBERC-DZIEDZIC, T. – ŹELAŹNIEWICZ, A. – CWOJDZIŃSKI, S. (1999): Granitoids of the Odra Fault Zone: late- to post-orogenic Variscan intrusions in the Saxothuringian Zone, SW Poland. – Geologica sudet. 32, 55–71. SACHANBIŇSKI, M. (1980): Granitoidy obszaru przedsudeckiego w swietle badaň geochemicznych. – Arch. mineral. 36, 135–242. WISZNIEWSKA, J. – KRZEMIŃSKA, E. – MAZUR, S. – GAWĘDA, A. – KOZŁOWSKI, A. (2007): Foreword – brief outline of geology of Poland. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 5–7.
57
Odra Fault Granitoids Gubin Granite – quartz-normal, sodic, metaluminous, mesocratic, I-type granite Szprotawa Granodiorite – quartz-normal, potassic, meta/per-aluminous, I-type granodiorite Wrocław Monzonite – quartz-normal, sodic/potassic, meta/peraluminous, I-type quartz monzonite Gubin Granite Szprotawa Wrocław Monzonite Granodiorite Sample Przyb1/1477 Zarkow2/993 Leszno268 Niegosl399 Chrzast Katna12667 SiO2 70.76 67.71 52.05 62.59 55.59 65.74 TiO2 0.22 0.48 0.10 0.10 0.80 0.58 Al2O3 13.80 14.37 14.52 16.44 14.49 14.22 Fe2O3 1.54 2.23 4.06 2.04 2.01 5.08 FeO 0.68 1.22 7.23 3.57 5.42 1.44 MnO 0.09 0.06 0.06 0.05 0.08 0.02 MgO 0.80 1.26 7.66 1.06 4.43 1.61 CaO 1.28 1.69 5.04 2.80 6.44 0.71 Na2O 4.34 4.00 1.55 2.30 2.75 2.80 K2O 5.03 4.60 3.40 4.51 2.75 5.40 P2O5 0.08 0.05 0.05 0.05 0.29 0.24 Mg/(Mg+Fe) 0.40 0.41 0.55 0.26 0.52 0.32 K/(K+Na) 0.43 0.43 0.59 0.56 0.40 0.56 Nor.Q 21.47 20.88 3.97 22.85 6.78 25.32 Nor.Or 30.54 28.51 25.00 29.44 19.04 34.14 Nor.Ab 40.05 37.69 17.32 22.82 28.93 26.90 Nor.An 5.99 8.45 30.71 14.99 35.20 2.08 Na+K 246.85 226.75 122.21 169.98 147.13 205.01 *Si 130.50 128.80 106.64 143.97 84.71 151.26 K-(Na+Ca) -56.08 -61.55 -67.70 -28.39 145.19 11.64 Fe+Mg+Ti 51.37 82.21 342.87 102.83 220.60 130.92 Al-(Na+K+2Ca) -21.50 -4.82 -16.81 53.01 -92.25 48.92 (Na+K)/Ca 10.81 7.52 1.36 3.40 1.28 16.19 A/CNK 0.93 0.99 0.95 1.20 0.77 1.24
Fig. 4. 32. Odra-Fault Granitoids ABQ and TAS diagrams. 1 – Gubin Granodiorite, 2 – Szprotawa Granodiorite, 3 – Wrocław Monzonite.
58
4.21. ORLICA-SNĚŽNÍK ORTHOGNEISS Regional position: the Orlica-Sněžník Orthogneiss represents a large metamorphosed intrusion in the easternmost termination of Lugicum. The granitic and migmatitic rocks forming a core of the Orlice-Sněžník Dome were affected by strong ductile deformation during the Variscan orogeny. The Sněžník Orthogneiss and the Gieraltów Orthogneiss represent granitic associations typically confined to late- to postcollision or within plate settings.
Size and shape (on erosion level): total map area of 1,500 km2, a series of sills within mica-schists of the Stroňa series arranged into three domal structures: Říčky Anticlinorium, Orel Anticlinorium, Spalona-Mládkov Anticlinorium. The Orlice-Sněžník Dome is the tectonically dismembered original batholith emplaced during thrust tectonics. The original thicknes should be at least several kilometres. Rock types: Sněžník Orthogneiss – augen coarse-grained orthogneiss (“Augengneiss”) derived from Caledonian porphyritic granite. Gieraltów Orthogneiss – layered to massive finegrained migmatitic gneiss (different products of migmatitic mobilization postdating the presumably Ordovician Sněžník Orthogneiss). Age and isotopic data: Gieraltów Orthogneiss: 464 ± 18 Ma (Rb-Sr whole rock) and 333 ± 7 Ma (Ar-Ar micas). Sněžník Orthogneiss: 395 ± 35 Ma, 320-340 Ma (Ar-Ar mica), 487 ± 11 Ma (Rb-Sr whole rock), 511 ± 1.1 Ma (Pb-Pb zircon), 507.1 ± 1.3 Ma (Pb-Pb zircon), 503.5 ± 1.1 Ma (Pb-Pb zircon), 540-530 Ma (U-Pb and Pb-Pb zircon cores), 488–504 Ma (U-Pb zircon), 490 Ma Sm-Nd). 329 Ma and 334 ± 3 Ma (Ar-Ar muscovite) – cooling age dating medium grade metamorphism and deformation during the Variscan orogeny. Geological environment: mica-schists of the Stronie series. Contact aureole: intrusion into the Stronie series of the Neoproterozoic age. Mineralization: no indications.
Fig. 4.33. Orlica-Sněžník Orthogneiss and Javorník Massif geological sketch-map (adapted after Opletal and Domečka 1983). 1 – Javorník Massif, 2 – Orlica-Sněžník Dome, 3 – faults.
References BORKOWSKA, M. – CHOUKROUNE, P. – HAMEURT, J. – MARTINEAU, F. (1990): A geochemical investigation of the age significance and structural evolution of the Caledonian-Variscan granite-gneisses of the Snieznik metamorphic area (Central Sudetes, Poland). – Geologica sudet. 25, 1–27. BORKOWSKA, M. – DÖRR, W. (1998): Some remarks on the age and mineral chemistry of orthogneisses from the Ladek-Snieznik Metamorhic Massif, Sudetes, Poland. – Terra Nostra 98, 2, 27–30. BORKOWSKA, M. – ORLOWSKI, R. (2001): Orthogneisses of the Ladek-Snieznik metamorphic complex: their petrological diversity and genetic relations. In: Tectonic and Magma 2001 IGCP Project 373, Abstract Vol. 23–26. – Berlin. ČECH, S. – GAWLIKOWSKA, E. (1999): Góry Stolowe Mts. Geological map for tourists 1 : 50,000. – Panst. Inst. Geol., Warzsawa – Czech Geol. Survey, Prague. DON, J. – DUMICZ, M. – WOJCIECHOWSKA, I. – ZELAZNIEWICZ, A. (1990): Lithology and tectonics of the Orlica-Snieznik Dome, Sudetes. Recent state of knowledge. – Neu. Jb. Geol. Paläont., Abh. 179, 159–188. GAWLIKOWSKA, E. – OPLETAL, M. (1997): Snieznik area. Geological map for tourists 1 : 50,000. – Panst. Inst. Geol., Warzsawa – Czech Geol. Survey, Prague.
59
GLASCOCK, J. M. – SCHNEIDER, D. A. – MANECKI, M. (2003): Exhumation history of the OrlicaSnieznik Dome (Bohemian Massif) revealed through Ar-Ar thermochronometry. – Geol. Soc. Amer. Abstracts with Programs 35, 6, 638. GROCHOLSKI, A. (1986): Proterozoic and Palaeozoic of southwestern Poland in a light of new data. – Biul. Inst. geol. 355, 8–29. GRZESKOWIAK, A. – ZELAZNIEWICZ, A. (2002): On the significance of gneissic enclaves in the 500 Ma metagranite the Ladek-Snieznik metamorphic unit, the West Sudetes. – Geolines 14, 28–29. KRÖNER, A. – HEGNER, E. – JAECKEL, P. (1997): Cambrian to Ordovician granitoid orthogneisses in the Polish and Czech West Sudetes Mts and their geodynamic significance. – Terra Nostra 97, 67–68. KRÖNER, A. – JAECKEL, P. – HEGNER, E. – OPLETAL, M. (2001): Single zircon ages and whole rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše Mountains and Orlice-Sněžník Complex). – Int. J. Earth Sci. (Geol. Rdsch.) 90, 304–324. LIEW, T. C. – HOFMANN, A. W. (1988): Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr isotopic study. – Contr. Mineral. Petrology 98, 129–138. MALUSKI, H. – RAJLICH, P. – SOUČEK, J. (1995): Pre-Variscan, Variscan and Early Alpine thermotectonic history of the northeastern Bohemian Massif: An Ar-Ar study. – Geol. Rdsch. 84, 345–358. MARHEINE, D. – KACHLÍK, V. – MALUSKI, H. et al. (2002): The 40Ar/39Ar ages from the West Sudetes (NE Bohemian Massif): constraints on the Variscan polyphase tectonothermal development. In: Winchester, J. A. – Pharaoh, T. C. – Verniers, J. Eds: Palaeozoic Amalgamation of Central Europe. – Geol. Soc. London Spec. Publ. 201, 133–155. OLIVER, G. J. H. – CORFU, F. – KROGH, T. E. (1993): U-Pb Ages from SW Poland: evidence for Caledonian suture zone between Baltica and Gondwana. – J. Geol. Soc. London 150, 355–369. OPLETAL, M. et al. (1980): Geologie Orlických hor. Oblastní regionální geologie ČSR. – 202 pp. Ústř. úst. geol. Praha. OPLETAL, M. – DOMEČKA, K. (1974): Granitoidy západní části orlicko-kladské klenby. – Acta Univ. Carol., Geol. 1, 75–109. OPLETAL, M. – DOMEČKA, K. (1983): Synoptic geological map of the Orlické hory Mts. 1 : 100,000. – Czech Geol. Survey, Prague. PŘIKRYL, R. – SCHULMANN, K. – MELKA, R. (1996): Perpendicular fabrics in the Orlické hory orthogneisses (western part of the Orlice-Sněžník Dome, Bohemian Massif) due to high temperature E-W deformational event and late lower temperature N-S overprint. – J. Czech Geol. Soc. 41, 156–166. TURNIAK, K. – MAZUR, S. – WYSOCZANSKI, R. (2000): SHRIMP zircon geochronology and geochemistry of the Orlica-Snieznik gneisses (Variscan belt of Central Europe) and their tectonic implications. – Geodyn. Acta 13, 293–312. ŻELAŻNIEWICZ, A. (1988): Orthogneisses due to irrotational extension, a case from the Sudetes, Bohemian massif. – Geol. Rdsch. 77, 3, 671–682.
Fig. 4.34. Orlica-Sněžník Orthogneiss ABQ and TAS diagrams. 1 – Sněžník Orthogneiss, 2 – Gieraltów Orthogneiss.
60
Sněžník Orthogneiss Quartz-normal to quartz-rich, sodic-potassic, peraluminous, mesocratic, S-type, I-series, alkali-feldspar granite n = 18 Median Min Max QU1 QU3 SiO2 71.50 70.42 77.44 70.55 73.92 TiO2 0.25 0.07 0.36 0.17 0.31 Al2O3 14.35 12.32 15.66 13.33 14.87 Fe2O3 1.16 0.56 1.96 0.97 1.30 FeO 0.99 0.58 2.04 0.71 1.13 MnO 0.03 0.00 0.11 0.03 0.04 MgO 0.55 0.20 0.93 0.37 0.62 CaO 1.36 0.25 2.13 0.60 1.55 Na2O 3.10 1.34 3.31 3.02 3.28 K2O 4.58 3.85 5.05 4.40 4.75 P2O5 0.14 0.02 0.21 0.07 0.17 Mg/(Mg+Fe) 0.29 0.19 0.38 0.26 0.31 K/(K+Na) 0.48 0.44 0.71 0.47 0.51 Nor.Or 27.88 24.04 31.36 27.07 28.89 Nor.Ab 29.19 12.83 30.96 27.97 30.60 Nor.An 6.13 0.12 10.19 1.70 7.29 Nor.Q 30.95 28.47 45.76 29.63 34.14 Na+K 195.78 148.98 207.67 190.52 200.42 *Si 180.67 170.34 260.74 174.95 198.28 K-(Na+Ca) -32.29 -60.81 55.36 -39.28 -6.17 Fe+Mg+Ti 45.51 24.13 64.64 36.51 52.31 Al-(Na+K+2Ca) 37.86 25.07 98.53 34.48 43.75 (Na+K)/Ca 8.13 4.97 43.92 6.79 17.52 A/CNK 1.17 1.11 1.65 1.15 1.20 Trace elements (mean values in ppm): Sněžník Orthogneiss – Co 5, Cr 42, Cu 7, Ni 7, Nb 10, Pb 7, Rb 220, Sn 7, U 11.3.
61
F. GÓRY SOWIE BLOCK The Góry Sowie Block comprises pre-Variscan granitoid orthogneisses as well as their migmatitic and anatectic derivates, tectonically interlayered with paragneisses and affected by several consecutive tectono-metamorphic events. The Złoty Stok Massif and small stocks east of the Sudetic Marginal Fault represent Variscan intrusions. References MAZUR, S. – ALEKSANDROWSKI, P. – TURNIAK, K. – AWDANKIEWICZ, M. (2007): Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes – an overview. In: Kozłowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 59–87.
4.22. NIEMCZA STOCKS Rock types: Kośmin Granodiorite – porphyritic mediumgrained amphibole-biotite granodiorite (predominant type). Przedborowa Diorite – fine-grained amphibolebiotite quartz monzodiorite, tonalite and quartz diorite. Kożmice Monzodiorite – biotite-pyroxene finegrained monzodiorite to syenite. Size and shape (on erosion level): several small sheet-like bodies of late-tectonic granitoids (parallel to the structural trend of the enclosing rocks) within the N-S trending, 20 km long and 5 km wide Niemcza shear zone. Age and isotopic data: Kożmice Syenite 338 ± 2.3 Ma (U-Pb zircon), syn-kinematic granodiorite 331.9 ± 1.7 Ma (Ar-Ar hornblende), Kośmin Granodiorite 338 Ma (Rb-Sr Whole rock). Cooling age: 300–277 Ma (K/Ar). Geological environment: mica-schist of the Niemcza-Kameniec Ząbkowicki unit, metamorphic rocks of the Niemcza zone, Góry Sowie orthogneisses. Contact aureole: not reported. Mineralization: not known.
Fig. 4.35. Niemcza Stocks geological sketch-map (adapted according to Lorenc 1998).
Regional position: Late-tectonic intrusive rocks of Variscan age within the Niemcza zone adjacent to the Góry Sowie Block.
62
References DEPCIUCH, T. (1972): Wiek bezwzględny K-Ar granitoidów Kłodzko-Złotostockich i strefy Niemczy. – Kwart. geol. 16, 103–111. DZIEDZIC, H. (1963): „Syenity“ strefy Niemczy. – Arch. mineral. 24, 5–126. KENNAN, P. S. – DZIEDZIC, H. – LORENC, M. W. – MIERZEJEWSKI, P. (1999): A review of Rb-Sr isotope patterns in the Carboniferous granitoids of the Sudetes in SW Poland. – Geologica sudet. 32, 49– 53. LORENC, M. W. (1998): Nadania izotopowe metodą Rb-Sr skał intruzyjnych strefy Niemczy (Dolny Śląsk). – Arch. mineral. 51, 153–164. LORENC, M. W. – KENNAN, P. S. (2007): Intrusive rocks from the Niemcza zone (Lower Silesia, Poland) in the light of petrologic and Rb-Sr isotope studies. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 253–259. OLIVER, G. J. H. – CORFU, F. – KROGH, T. E. (1993): U-Pb ages from SW-Poland: Evidence for Caledonian suture zone between Baltica and Gondwana. – J. Geol. Soc. London 150, 355–369. PUZIEWITZ, J. (1992): Origin of the Kożmice granodiorite (Niemcza zone, Lower Silesia). – Arch. mineral. 47, 95–146. (In Polish) WISZNIEWSKA, J. – KRZEMIŃSKA, E. – MAZUR, S. – GAWĘDA, A. – KOZŁOWSKI, A. (2007): Foreword – brief outline of geology of Poland. In: Kozłowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 5–7. Kośmin Granodiorite Quartz-normal, sodic/potassic, peraluminous, mesocratic, I-type granodiorite n=6 Median Min Max QU1 QU3 SiO2 58.81 56.26 65.60 58.78 62.31 TiO2 0.53 0.30 1.46 0.53 0.60 Al2O3 15.09 13.58 17.14 14.46 15.36 Fe2O3 2.02 0.06 3.70 1.10 2.15 FeO 4.35 2.12 6.19 3.98 4.57 MnO 0.03 0.00 0.18 0.00 0.03 MgO 3.22 2.33 5.43 3.01 3.85 CaO 4.91 3.70 7.14 4.55 6.52 Na2O 2.95 2.16 3.34 2.72 3.12 K2O 3.50 3.20 4.54 3.50 3.85 P2O5 0.28 0.12 0.50 0.16 0.31 Mg/(Mg+Fe) 0.50 0.45 0.57 0.49 0.50 K/(K+Na) 0.46 0.40 0.54 0.44 0.46 Nor.Or 22.39 20.66 28.49 21.83 23.07 Nor.Ab 28.68 19.67 32.47 25.78 29.75 Nor.An 24.17 17.43 32.53 23.59 25.68 Nor.Q 9.30 2.67 25.21 4.57 10.00 Na+K 169.51 151.45 201.20 162.09 169.59 *Si 89.77 51.68 157.86 63.95 90.39 K-(Na+Ca) -115.28 -151.57 -79.44 -120.55 -108.44 Fe+Mg+Ti 167.27 120.91 247.86 157.06 217.08 Al-(Na+K+2Ca) -68.74 -145.64 32.34 -139.40 -61.84 (Na+K)/Ca 1.70 1.19 2.48 1.44 1.94 A/CNK 0.84 0.67 1.13 0.67 0.85 Trace elements (mean values in ppm): Pb 26, Rb 174, Th 16.5, U 6, Nb 10.4, Sr 413, Zr 162
63
Fig.4.36. Niemcza Stocks ABQ and TAS diagrams. Kośmin Granodiorite.
4.23. GÓRY SOWIE (OWL MTS.) ORTHOGNEISS gneiss 381 ± 2 Ma and 383–379 Ma (U-Pb monazite), augengneiss: 384–380 Ma (U-Pb xenotime). Anatectic granite: 378 ± 2 Ma and pegmatite: 383–370 Ma (U-Pb monazite and xenotime) and 359 ± 3 Ma (Ar-Ar muscovite). Ścinawka Metagranite (the Kłodzko Metamorphic Complex) 503–513, 505.8 ± 3.1 Ma (Pb-Pb zircon). Góry Sowie Orthogneiss is intruded by posttectonic granitoid bodies (e.g. the Kożmice Granodiorite) providing identical age 334.0 ± 1.9, 332.1 ± 1.9 Ma, (Pb-Pb zircon).
Regional position: In the Góry Sowie Block, tectonically interlayered with paragneisses. Rock types: Góry Sowie Orthogneiss – strongly foliated biotite ± muscovite ± sillimanite gneisses of trondhjemite-granodiorite composition. Size and shape (on erosion level): a series of strongly deformed sills within the area of 700 km2 (mostly under the sedimentary cover). Age and isotopic data: Góry Sowie Orthogneiss: 463 ± 8 Ma ( U-Pb zircon), 473–488 Ma (Pb-Pb zircon), 487 ± 2 Ma and 482 ± 2 Ma (Pb-Pb single zircon). Migmatites: 375 ± 4 Ma to 362 ± 8 Ma and 372 ± 7 to 360 ± 7 (Rb-Sr whole rock), migmatitic
Fig. 4.37. Góry Sowie Orthogneiss geological sketchmap. 1 – Góry Sowie Orthogneiss, 2 – StrzegomSobótka Massif, 3 – faults.
64
Trace elements (mean values in ppm): Góry Sowie Orthogneiss – Ba 885, Co 58, Cr 50, Cu 13, Ga 18.2, Ni 13, Nb 10, Rb 92.5, Sr 224, V 63, Y 28, Zn 63, Zr 162, La 24.7, Ce 60, Pr 6.4, Nd 26.7, Sm 5.6, Eu 1.25, Gd 5.3, Tb 0.8, Dy 4.2, Ho 0.8, Er 2.2, Yb 1.9, Lu 0.28 (Kröner and Hegner 1998).
Fig. 4. 38. Góry Sowie Orthogneiss ABQ and TAS diagrams.
References BREEMEN, O. VAN – BOWES, D. R. – AFTALION, M. – ŻELAŻNIEWICZ, A. (1988): Devonian tectonothermal activity in the Sowie Góry Gneissic Block, Sudetes, southwestern Poland: Evidence from Rb-Sr and U-Pb isotopic studies. – Ann. Soc. Geol. Polon. 58, 3–19. BRÖCKER, M. – ŻELAŻNIEWICZ, A. – ENDERS, M. (1998): Rb-Sr and U-Pb geochronology of migmatitic gneisses from the Góry Sowie (West Sudetes, Poland): the importance of Mid-Late Devonian metamorphism. – J. Geol. Soc. London 155, 1025–1036. DZIEDZIC, H. (1985): Variscan rejuvenation of the Precambrian gneisses along the eastern margin of the Góry Sovie Massif of Fore-Sudetic Block. – Krystalinikum 18, 7–27. KRÖNER, A. – HEGNER, E. (1998): Geochemistry, single zircon ages and Sm-Nd systematics of granitoid rocks from the Góry Sowie (Owl Mts.) Polish West Sudetes: evidence for early Palaeozoic arc-related plutonism. – J. Geol. Soc. London 155, 711–724. KRYZA, R. (1981): Migmatitization of the northern part of the Sowie Góry. – Geologica sudet. 16, 7–100. MARHEINE, D. – KACHLÍK, V. – MALUSKI, H. et al. (2002): The 40Ar/39Ar ages from the West Sudetes (NE Bohemian Massif): constraints on the Variscan polyphase tectonothermal development. In: Winchester, J. A. – Pharaoh, T. C. – Verniers, J. Eds: Palaeozoic Amalgamation of Central Europe. – Geol. Soc. London Spec. Publ. 201, 133–155. MAZUR, S. – ALEKSANDROWSKI, P. – TURNIAK, K. – AWDANKIEWICZ, M. (2007): Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes – an overview. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 59–87. MAZUR, S. – TURNIAK, K. – BRÖCKER, M. (2004): Neoproterozoic and Cambro-Ordovician magmatism in the Variscan Kłodzko Metamorphic Complex (West Sudetes, Poland): new insights from U/Pb zircon dating. – Int. J. Earth Sci. (Geol. Rdsch.) 93, 758–772. TIMMERMANN, H. – PARRISH, R. R. – NOBLE, S. R. (2000): New U-Pb monazite and zircon data from the Sudetes Mountains in SW Poland: evidence from a single-cycle Variscan orogeny. – J. Geol. Soc. London 157, 265–268. ZAHNISER, S. J. – SCHNEIDER, D. A. – MANECKI, M. (2003): Exhumation of the Gory Sowie (Bohemian Massif) revealed through Ar-Ar thermochronometry. – Geol. Soc. Amer., 2003 Annual Meeting 35, 6, 638.
65
Góry Sowie Orthogneiss Quartz-rich/normal, metagranite SiO2 TiO2 Al2O3 Fe2O3tot MnO MgO CaO Na2O K2O P2O5 Mg/(Mg+Fe) K/(K+Na) Nor.Q Nor.Or Nor.Ab Nor.An Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
prevalent PL4 69.02 0.74 14.37 5.24 0.09 1.87 2.20 3.26 2.01 0.15 0.41 0.29 34.79 12.64 31.15 10.57 147.88 208.88 -101.75 121.32 55.86 3.77 1.27
sodic,peraluminous, PL6 69.18 0.73 14.21 5.22 0.09 2.06 1.92 3.64 2.10 0.14 0.43 0.28 32.55 13.14 34.62 9.11 162.05 198.92 -107.11 125.66 48.53 4.73 1.23
PL11 64.28 0.89 16.42 6.35 0.09 2.21 2.28 3.73 2.63 0.03 0.40 0.32 24.03 16.50 35.58 11.81 176.21 153.30 -105.18 145.55 64.93 4.33 1.25
mesocratic, PL15 70.20 0.27 16.53 1.67 0.02 0.62 0.68 3.27 5.27 0.15 0.42 0.51 27.70 32.04 30.22 2.45 217.42 163.96 -5.75 39.69 82.95 17.93 1.36
S-type
PL16 71.63 0.49 14.10 3.54 0.05 0.86 1.75 3.46 3.10 0.25 0.32 0.37 34.04 19.06 32.32 7.32 177.47 199.11 -77.04 71.83 37.01 5.69 1.18
PL17 71.41 0.27 15.13 1.86 0.04 0.45 1.09 2.87 5.88 0.25 0.32 0.57 28.45 35.66 26.45 3.86 217.46 165.75 12.80 37.85 40.79 11.19 1.19
4.24. KŁODZKO-ZŁOTY STOK MASSIF Size and shape (on erosion level): 87 km2 (12 × 6.5 km), elliptical. Age and isotopic data: Upper Carboniferous (intruding Lower Carboniferous sediments), Złoty Stok Tonalite 301–295 Ma (K-Ar mica), 331 ± 11 Ma (Rb-Sr whole rock). Geological environment: unmetamorphosed Upper Carboniferous mudstones (cover?), Lower Carboniferous mudstones and graywackes and Silurian up to Dinantian sediments. Precambrian mica schists, migmatites mylonites and cataclastics on the SE exocontact. The Haniak Gneiss (similar to the Gierałtów Orthogness) at the exo-contact (dislocation zone). Contact aureole: hornfels contacts with distinct zoning, internal contact zone up to 600 m and external zone up to 2.2 km from the intrusion, cordierite, wollastonite, andalusite and silimanite. Generally intrusive, discordant and sharp contacts. Zoning: weak compositional zoning. Northwestern peripheries of the massif are richer in dark minerals (higher colour index). Mineralization: hydrothermal As-Au-Sb veins.
Fig. 4.39 Kłodzko-Złoty Stok Massif hierarchical scheme according to rock types.
Regional position: Variscan isolated intrusion in the Central Sudetes (the Góry Sowie) resembles the durbachites from the Moldanubian Zone. Rock types: Złoty Stok Tonalite – medium to coarse-grained biotite-hornblende and pyroxene tonalite to melagranodiorite. Złoty Stok Diorite – hornblende pyroxene diorite – (granitized amphibolite enclaves). Złoty Stok Granodiorite – biotite granodiorite. Ołdrzychovice Quartz syenite. Granite Dykes – leucocratic granite.
66
Fig. 4.40. Kłodzko-Złoty Stok geological sketch-map (after Sawicki 1980). 1 – Złoty Stok Tonalite, 2 – Porphyritic granitoids, 3 – Złoty Stok Diorite, 4 – Ordovician and Cambrian metasediments (hornfelses), 5 – faults.
References BACHLINSKI, R. – BAGINSKI, B. (2007): Kłodzko-Złoty Stok granitoid massif. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 261–273. BACHLINSKI, R. – HAŁAS, S. (2002): K-Ar dating of biotite Kudowa Zdrój granitoids (Central Sudetes, SW Poland). – Bull. Pol. Acad. Sci., Earth Scie. 50, 113–116. BEDERKE, E. (1922): Die Intrusivmasse von Glatz-Reichestein. – Abh. Preuss. Geol. Landesanst., Neue Folge 89, 39–69. DEPCIUCH, T. (1972): Wiek bezwzględny K-Ar granitoidów Kłodzko-Złotostockich i strefy Niemczy. – Kwart. geol. 16, 103–111. GADOMSKI, M. (1968): Trace elements in micas of the granitization zone Zlóty Stok-Skrzynka in Sudetes. – Arch. mineral. 28, 113–241. (In Polish) JELIŃSKI, A. (1965): Geochemistry of the uranium in the Karkonosze Granite Massif and other granitoids massifs of Lower Silesia. – Biul. Inst. Geol. 193, 5, 5–110. (In Polish). KOZŁOWSKA-KOCH, M. (1971): The „Haniak Gneisses“near Złoty Stok in the Sudetes. – Bull. Pol. Acad. Sci., Earth Sci. 19, 4, 205–214. LEICHMANN, J. – GAWEDA, O. (2001): Kłodzko-Złóty Stok and Niemcza zone granitoids – a shallow level intrusion of durbachites in the Rhenohercynian zone? – Mitt. Österr. mineral. Gesell. 146, 169–170. LORENC, M. W. (1991): Remarks on genesis of the Kłodzko-Złóty Stok intrusion (comparative study based on enclaves). – Arch. mineral. 47, 79–98. LORENC, M. W. (1994): A role of mafic magmas in the evolution of granitic intrusions (a comparative study from selected Hercynian massifs). – Geologica sudet. 28, 1–130. MAZUR, S. – ALEKSANDROWSKI, P. – TURNIAK, K. – AWDANKIEWICZ, M. (2007): Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes – an overview. In: Kozłowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 59–87. VAN BREEMEN, O. – BOWES, D. R. – AFTALION, M. – ŻELAŻNIEWICZ, A. (1988): Devonian tectonothermal activity in the Sowie Góry Gneissic Block, Sudetes, southwestern Poland: Evidence from Rb-Sr and U-Pb isotopic studies. – Ann. Soc. Geol. Polon. 58, 3–19. WIERZCHOLOWSKI, B. (1969): Granitoids of Bardo in Sudetes. – Arch. mineral. 28, 107–132. (In Polish) WIERZCHOLOWSKI, B. (1976): Granitoidy Kłodzko-Złotostockie i jich kontaktowe oddziatywassie na skaly ostony. – Geologica sudet. 11, 1–147. WISZNIEWSKA, J. – KRZEMIŃSKA, E. – MAZUR, S. – GAWĘDA, A. – KOZŁOWSKI, A. (2007): Foreword – brief outline of geology of Poland. In: Kozłowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 5–7. WOJCIECHOWSKA, I. (2002): The geotectonic position of the Kłodzko-Złoty Stok granitoids. – Pol. Tow. Mineral. Prace Spec. 20, 231–233.
67
1 – Złoty Stok Tonalite Large variation in composition. Quartz-normal, melanocratic, I-type, M-series tonalite tonal1 tonal4 SiO2 64.37 61.90 TiO2 0.63 0.66 Al2O3 16.12 15.93 Fe2O3 1.16 1.07 FeO 3.38 4.67 MnO 0.07 0.14 MgO 2.22 4.03 CaO 3.63 4.42 Na2O 3.55 2.95 K2O 3.43 1.85 P2O5 0.21 0.32 Mg/(Mg+Fe) 0.47 0.55 K/(K+Na) 0.39 0.29 Nor.Or 21.67 12.29 Nor.Ab 34.08 29.79 Nor.An 17.78 22.30 Nor.Q 17.95 20.80 Na+K 187.38 134.47 *Si 126.57 156.39 K-(Na+Ca) -106.46 -134.73 Fe+Mg+Ti 124.58 186.70 Al-(Na+K+2Ca) -0.28 20.72 (Na+K)/Ca 2.89 1.71 A/CNK 1.01 1.10
sodic, metaluminous, meso- to tonal15 61.61 0.71 14.85 3.96 4.04 0.11 2.54 4.66 3.10 2.86 0.13 0.37 0.38 18.35 30.23 24.18 19.34 160.76 125.64 -122.41 177.80 -35.33 1.93 0.90
tonal16 63.66 0.66 15.34 1.66 1.24 0.11 3.81 7.04 4.45 0.97 0.28 0.70 0.13 6.07 42.31 35.03 13.82 164.19 105.29 -248.54 140.87 -114.02 1.31 0.74
tonal22 61.92 0.42 15.99 1.20 4.30 0.04 3.30 4.98 3.10 3.64 0.13 0.52 0.44 23.47 30.38 26.04 12.00 177.32 107.00 -111.55 162.06 -40.92 2.00 0.89
tonal23 64.18 0.52 15.76 0.66 4.44 0.04 2.31 4.61 3.33 2.85 0.15 0.45 0.36 18.28 32.46 23.76 18.00 167.97 133.28 -129.15 133.93 -22.89 2.04 0.94
Trace elements (mean values in ppm): Kłodzko-Złoty Stok Tonalite – Ba 991, Sr 433, Rb 130, Zr 238, Y 24, Nb 56, Ni 51, Co 23, Cr 168, Th 26, U 9. 2 – Złoty Stok Diorite Wide range in composition Quartz-normal, sodic, metaluminous, melanocratic, Itype, M-series diorite to quartz monzodiorite n=8 Median Min Max QU1 QU3 SiO2 56.86 55.36 62.66 56.19 59.65 TiO2 0.70 0.42 0.96 0.62 0.84 Al2O3 16.03 12.57 17.84 14.95 16.73 Fe2O3 1.29 0.40 2.64 0.82 2.23 FeO 5.01 3.46 6.73 4.02 5.33 MnO 0.12 0.07 0.17 0.10 0.14 MgO 3.74 2.29 7.03 2.80 5.29 CaO 5.23 4.33 7.83 4.94 6.65 Na2O 2.92 2.07 3.60 2.60 3.20 K2O 3.30 1.05 3.90 1.60 3.67 P2O5 0.14 0.11 0.46 0.13 0.22 Mg/(Mg+Fe) 0.52 0.41 0.62 0.48 0.57 K/(K+Na) 0.38 0.20 0.55 0.24 0.43 Nor.Or 21.50 7.20 26.42 10.68 23.71 Nor.Ab 29.40 20.42 34.59 26.77 31.43
68
Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
27.44 7.47 147.48 86.86 -132.25 201.74 -52.74 1.66 0.88
22.06 5.07 113.29 78.93 -208.33 143.50 -137.80 0.81 0.65
44.03 16.07 188.36 130.52 -100.24 288.75 -0.77 2.35 1.02
25.35 5.20 139.17 79.98 -203.18 144.60 -71.41 1.05 0.83
30.37 10.42 166.71 109.07 -104.70 235.25 -27.69 1.76 0.93
Trace elements (mean values in ppm): Kłodzko-Złoty Stok Diorite – Ba 980, Sr 400, Rb 120, Zr 180, Y 24, Nb 25, Ni 213, Co 50, Cr 800. 3 – Złoty Stok Granodiorite Quartz normal/rich, sodic, peraluminous, mesocratic, I/S type granodiorite grd9 grd24 grd25 grd26 grd27 SiO2 61.03 65.64 67.60 65.58 71.24 TiO2 0.69 0.37 0.43 0.51 0.38 Al2O3 16.27 15.43 13.12 15.43 13.34 Fe2O3 0.79 0.60 1.43 1.40 0.74 FeO 4.43 3.95 3.38 3.41 3.82 MnO 0.11 0.02 0.04 0.03 0.02 MgO 3.23 2.02 2.82 2.16 1.56 CaO 4.73 3.38 1.78 2.09 1.02 Na2O 2.87 3.30 2.80 3.96 2.75 K2O 3.60 3.37 2.24 3.76 3.17 P2O5 0.28 0.04 0.21 0.03 0.20 Mg/(Mg+Fe) 0.52 0.44 0.52 0.45 0.38 K/(K+Na) 0.45 0.40 0.34 0.38 0.43 Nor.Or 23.52 21.62 14.93 23.78 20.42 Nor.Ab 28.50 32.17 28.36 38.06 26.92 Nor.An 23.91 17.92 8.40 10.89 4.08 Nor.Q 13.75 20.71 34.81 18.41 36.88 Na+K 169.05 178.04 137.92 207.62 156.05 *Si 113.30 145.93 215.95 131.36 227.05 K-(Na+Ca) -100.52 -95.21 -74.54 -85.22 -39.62 Fe+Mg+Ti 160.38 117.28 140.34 125.01 105.94 Al-(Na+K+2Ca) -18.23 4.43 56.25 20.85 69.54 (Na+K)/Ca 2.00 2.95 4.35 5.57 8.58 A/CNK 0.96 1.02 1.31 1.08 1.39 Trace elements (mean values in ppm): Złoty Stok Granodiorite – Ba 900, Sr 380, Rb 150, Zr 255, Y 26, Nb 140,Ni 34, Co 19, Cr 90.
69
Fig. 4.41. Kłodzko-Złoty Stok Massif ABQ and TAS diagrams. 1 – Złoty Stok Tonalite, 2 – Złoty Stok Diorite, 3 – Złoty Stok Granodiorite.
G. EAST BOHEMIAN PLUTONS East Bohemian Plutonites between the low-grade or even unmetamorphosed Proterozoic and Palaeozoic sediments of the Barrandian-Železné hory Mts. (Bohemicum) unit in the north, high-grade metamorphic rocks of the Moldanubian unit in the south and the Lugicum in the east. They comprise the Litice Massif, Polička Massif, and the Great Tonalite Dyke (Zábřeh Massif). Majority of them are intruding the Lusatian crystalline rocks.
4.25. GREAT TONALITE DYKE (ZÁBŘEH MASSIF) In the hanging wall is a band of strongly sheeted gabbros and a banded amphibolite unit in the footwall. Rock types: Zábřeh Tonalite – composition varies between hornblende-biotite tonalite, granodiorite and granite. Rychnov Granodiorite – hornblende-biotite ± pyroxene granodiorite to granite. Size and shape (on erosion level): ca. 150 km2, series of tabular sills (sheets) of several tens up to several hundreds (280 m) meters thick and about 120 km long, arch-like structure, moderately dipping to the W and NE. Age and isotopic data: Zábřeh Tonalite 375 Ma (K-Ar hornblende), 335 Ma (K-Ar biotite), 339 ± 7 Ma (Pb-Pb zircon). Contact aureole: not clearly defined, tectonic and/or intrusive discordant contact. Thickness of the thermal aureole in the hanging wall is 1–3 m (gradational contact) and tectonic footwall contact. Geological environment: biotite paragneisses, amphibolite, and rocks in the footwall show granulite low-pressure facies metamorphism. Mineralization: unknown.
Fig. 4.42. Great Tonalite-Dyke (Zábřeh Massif) and Šumperk Massif geological sketch-map: 1 – Great Tonalite Dyke, 2 – Šumperk Massif.
Regional position: syntectonic tabular intrusion (sheet) situated between two continental plates represented by the Lugicum and Moravosilesicum (the Zábřeh and Nové Město Groups) at the northeastern margin of the Bohemian Massif.
70
References BURIÁNEK, D. – NĚMEČKOVÁ, M. – HANŽL, P. (2003): Petrology and geochemistry of plutonic rocks from the Polička and Zábřeh crystalline units (NE Bohemian Massif). – Bull. Czech Geol. Surv. 78, 9–22. GRYGAR, R. – KALENDOVÁ, J. (1987): Strukturně-geologická mapa ČSR, 1 : 200 000. List Šumperk. – Uran. Průzk. Liberec. MARTINEC, P. (1977): Geologické poměry. In: Roček, Z. et al: Příroda Orlických hor a Podorlicka, 105– 216. – Okres. mus. Orlických hor, Rychnov n. Kněžnou. NĚMEC, D. (1975a): Petrochemie und Genese der lamprophyrischen und lamproiden Ganggesteine im Nordostteil der Böhmischen Masse (ČSSR). – Z. geol. Wiss. 3, 37–52. NĚMEC, D. (1975b): Petrographie der lamprophyrischen und lamproiden Ganggesteine im Nordostteil der Böhmischen Masse (ČSSR). – Z. geol. Wiss. 3, 23–36. OPLETAL, M. et al. (1980): Geologie Orlických hor. Oblastní regionální geologie ČSR. – 202 pp. Ústř. úst. geol. Praha. OPLETAL, M. – DOMEČKA, K. (1974): Granitoidy západní části orlicko-kladské klemby. – Acta Univ. Carol., Geol. 1, 75–109. OPLETAL, M. – DOMEČKA, K. (1983): Synoptic geological map of the Orlické hory Mts. 1 : 100,000. – Czech Geol. Survey, Prague. PARRY, M. – ŠTÍPSKÁ, P. – SCHULMANN, K. – HROUDA, F. – JEŽEK, J. – KRÖNER, A. (1997): Tonalite sill emplacement at an oblique plate boundary: northeastern margin of the Bohemian Massif. – Tectonophysics 280, 61–81. RENÉ, M. (1998): Evolution of a tonalite suite in the northeastern part of the Bohemian Massif. – Geolines 6, 53. ŠTÍPSKÁ, P. – SCHULMANN, K. – KRÖNER, A. (2004): Vertical extrusion and middle crustal spreading of omphacite granulite: a model of syn-convergent exhumation (Bohemian Massif, Czech Republic). – J. metamorph. Geol. 22, 179–198. WIERZCHOLOWSKI, B. (1996): Bielice granitoids in Sudetes and their metamorphic mantle. – Arch. mineral. 26, 589–649. (In Polish) WISZNIEWSKA, J. – KRZEMIŃSKA, E. – MAZUR, S. – GAWĘDA, A. – KOZŁOWSKI, A. (2007): Foreword – brief outline of geology of Poland. In: Kozłowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 5–7. Zábřeh Tonalite Wide range in composition. Quartz-normal, sodic, metaluminous, melanocratic, I-type, I-series, granodiorite n = 11 Median Min Max QU1 QU3 SiO2 62.14 60.34 66.30 61.29 63.20 TiO2 0.91 0.62 1.64 0.71 1.22 Al2O3 15.23 12.78 15.69 14.60 15.59 Fe2O3tot 5.80 4.22 6.44 5.05 6.11 MnO 0.11 0.06 0.28 0.10 0.11 MgO 3.12 2.61 3.62 3.01 3.14 CaO 4.12 3.23 5.47 3.82 4.83 Na2O 3.04 1.90 4.60 2.44 3.43 K2O 3.29 2.01 4.05 2.82 3.55 P2O5 0.15 0.07 0.27 0.11 0.17 Mg/(Mg+Fe) 0.52 0.47 0.55 0.48 0.53 K/(K+Na) 0.40 0.33 0.47 0.37 0.43 Nor.Or 20.88 13.27 25.76 18.75 22.92 Nor.Ab 29.27 19.06 41.26 24.66 33.01 Nor.An 21.57 17.02 27.13 19.53 24.24 Nor.Q 16.53 6.31 37.21 14.11 19.22 Na+K 176.34 103.99 231.25 138.61 181.18 *Si 118.16 38.48 218.42 101.79 128.56 71
K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
-108.66 163.83 -42.14 2.12 0.89
-163.17 136.05 -118.21 1.50 0.73
-76.46 182.04 50.05 3.25 1.21
-125.79 149.36 -67.69 1.87 0.82
-93.33 166.49 -4.89 2.41 0.99
Trace elements (mean values in ppm): Zábřeh Tonalite – Ba 1643, Cr 101, Cu 64, Ni 42, Pb 43, Rb 91, Sr 476, Zn 113.
Fig. 4. 43 Great Tonalite Dyke (Zábřeh Massif) ABQ and TAS diagrams. Zábřeh Tonalite.
72
4.26. POLIČKA COMPOSITE MASSIF (PCM) Regional position: Lugicum (Polička crystalline complex). Size and shape (on erosion level): ca. 200 km2, concordant tongue-like bodies and a series of large elongated sills (sheets) – two sills (40 × 3 km) are mostly covered by Cretaceous sediments. Major outcrops: The Budislav Massif (the largest body 26 × 6 km), Jedlová Massif (4 × 5 km) and Miřetín Intrusion (sheet) are included in the Polička Massif. Rock types: 1. Polička Tonalite – ± porphyritic (meta)granodiorite to tonalite. 2. Zderaz Granite – muscovite-biotite granite to biotite granite/granodiorite. 3. Jedlová Tonalite – pyroxene-bearing amphibole-biotite tonalite. 4. Polička Diorite to Gabbro – amphibole gabbro to amphibole-biotite diorite. Age and isotopic data: 332 Ma ( K-Ar hornblende), 360 Ma (K-Ar biotite), Polička Tonalite 354 ± 4 Ma (U-Pb zircon). Geological environment: Neoproterozoic metamorphosed volcano-sedimentary sequence. Contact aureole: sharp intrusive contacts, no contact aureole. Mineralization: unknown.
Fig. 4.44. Polička Composite Massif and and Litice Massif geological sketch-map (modified after Buriánek et al. 2003). 1 – Granite to Granodiorite, 2 – Polička Granodiorite, 3 – Polička Tonalite, 4 – Diorite to Gabbro, 5 – faults.
Fig. 4.45. Budislav Massif geological sketch-map (modified after Vondrovic 2006). 1 – Zderaz Granite, 2 – Polička Granodiorite to Tonalite, 3 – faults.
73
References BURIÁNEK, D. – NĚMEČKOVÁ, M. – HANŽL, P. (2003): Petrology and geochemistry of plutonic rocks from the Polička and Zábřeh crystalline units (NE Bohemian Massif). – Bull. Czech Geol. Surv. 78, 9–22. FIALA, F. (1929): Petrografické poměry křídového podloží v jihovýchodním okolí Proseče. – Věst. Král. čes. Společ. Nauk, Tř. mat-přírodověd. 1, 1–87. GRYGAR, R. – KALENDOVÁ, J. (1987): Strukturně-geologická mapa ČSR, 1 : 200 000. List Šumperk. – Uran. Průzk. Liberec. OPLETAL, M. et al. (1980): Geologie Orlických hor. Oblastní regionální geologie ČSR. – 202 pp. Ústř. úst. geol. Praha. SVOBODA, J. (1956): Zpráva o mapování poličského krystalinika pro generální mapu Vysoké Mýto. – Zpr. geol. Výzk. v Roce 1955, 194–197. VONDROVIC, L. (2006): Aplikace metody anizotropie magmatické susceptibility (AMS) při strukturní analýze granitoidů: Záznam strukturního vývoje budislavského plutonu (poličské krystalinikum). BSc dissert, 37 pp. – Přírodověd. fak. Univ. Karl. v Praze. VONDROVIC, L. – VERNER, K. (2007): Záznam strukturního vývoje vápenato-alkalických intruzí poličského krystalinika. In: Breiter, K. Ed.: 3. sjezd České geologické společnosti, Volary 19.–22. září 2007, 85. – Czech Geol. Soc. Prague. VONDROVIC, L. – VERNER, K. – BURIÁNEK, D. (2009): Stavby a podmínky vmístění vápenatoalkalických intruzivních hornin: Implikace pro variský geodynamický vývoj východního okraje Českého masivu. In: Kohút, M. – Šimon, L. (eds) Spoločný kongres Slovenskej a Českej geologickej spoločnosti, Zborník abstraktov a exkurzný sprievodca. Štátny geologický ústav Dionýza Štúra, Bratislava, pp 198– 199 (in Czech). Zderaz Granite Quartz-normal, sodic, moderately peraluminous, mesocratic, S-type, M-series, granite 1323Zder 1324Zder 1325Zder SiO2 71.72 70.75 70.58 TiO2 0.16 0.38 0.81 Al2O3 15.07 16.00 12.41 Fe2O3 1.09 1.87 5.39 FeO 0.91 n.d. n.d. MnO 0.02 n.d. 0.21 MgO 0.54 0.46 2.54 CaO 1.82 2.14 2.57 Li2O n.d. n.d. n.d. Na2O 4.06 3.80 3.20 K2O 3.83 3.30 1.80 P2O5 0.07 n.d. n.d. Mg/(Mg+Fe) 0.33 0.33 0.47 K/(K+Na) 0.38 0.36 0.27 Nor.Or 23.12 20.06 11.38 Nor.Ab 37.25 35.12 30.75 Nor.An 8.76 10.93 13.65 Nor.Q 27.39 29.31 35.47 Na+K 212.33 192.69 141.48 *Si 163.92 174.37 219.53 K-(Na+Ca) -82.15 -90.72 -110.87 Fe+Mg+Ti 41.73 39.60 140.70 Al-(Na+K+2Ca) 18.70 45.19 10.57 (Na+K)/Ca 6.54 5.05 3.09 A/CNK 1.07 1.17 1.04
74
Fig. 4.46. Polička Massif ABQ and TAS diagrams. 1 – Zderaz Granite, 2 – Polička Tonalite, 3 – Polička Gabbro.
4.27. LITICE MASSIF (LM) respectively) mostly covered by Cretaceous sediments.
Regional position: Lugicum (Zábřeh crystalline complex). Rock types: Litice Granite – ± cataclastic biotite leucogranodiorite Rychnov Granodiorite – medium-grained amphibole-biotite granodiorite
Age and isotopic data: Carboniferous. No isotopic data. Contact aureole: not clearly defined. Geological environment: Neoproterozoic and Palaeozoic metasediments. Mineralization: unknown.
Size and shape: ca. 100 km2, two discordant elliptical bodies (14 × 6 and 12 × 3 km
References GRYGAR, R. – KALENDOVÁ, J. (1987): Strukturně-geologická mapa ČSR, 1 : 200 000. List Šumperk. – Uran. průzk. Liberec. OPLETAL, M. et al. (1980): Geologie Orlických hor. Oblastní regionální geologie ČSR. – 202 pp. Ústř. úst. geol. Praha. Litice Granite Quartz-normal, sodic, peraluminous/metaluminous, mesocratic, S-type, M-series, granodiorite 1355Lit 1356Lit 1357Lit 1358Lit SiO2 69.61 71.16 69.66 69.96 TiO2 n.d. 0.29 0.56 0.20 Al2O3 15.78 15.19 14.93 15.65 Fe2O3 1.98 0.67 1.61 1.52 FeO 1.98 1.55 0.75 1.52 MnO 0.05 0.01 0.08 0.02 MgO 0.89 0.62 0.32 0.83 CaO 1.66 1.55 2.32 1.45 Na2O 4.90 4.50 3.73 5.04 K2O 4.16 3.74 4.54 4.50 P2O5 0.23 0.12 0.10 n.d. Mg/(Mg+Fe) 0.29 0.34 0.20 0.34 K/(K+Na) 0.36 0.35 0.44 0.37 Nor.Or 24.74 22.60 27.56 26.70 75
Nor.Ab Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
44.29 6.77 18.65 246.45 120.00 -99.40 74.47 4.24 8.33 1.03
41.34 7.06 24.57 224.62 151.73 -93.44 49.00 18.40 8.13 1.08
34.42 11.15 24.20 216.76 142.12 -65.34 45.57 -6.31 5.24 0.99
45.45 7.23 17.75 258.18 112.70 -92.95 63.31 -2.56 9.99 0.99
Fig. 4.47. Litice Massif ABQ and TAS diagrams. 1 – Litice Granite, 2 – Rychnov Granodiorite.
Rychnov Granodiorite Quartz-normal, sodic, metaluminous, melanocratic, I- and S-type, M-series granodiorite 576Ryc 577Ryc 578Ryc 579Ryc 580Ryc SiO2 60.93 61.92 61.02 58.71 52.84 TiO2 1.00 0.92 1.02 0.90 1.48 Al2O3 15.09 16.86 14.87 15.21 16.15 Fe2O3 0.77 1.62 1.91 1.68 5.30 FeO 4.37 3.90 4.30 4.77 3.15 MnO 0.10 0.08 0.10 0.06 0.14 MgO 4.52 2.92 3.82 4.62 5.98 CaO 4.89 2.92 4.34 4.75 4.30 Na2O 2.95 3.72 2.80 2.96 4.15 K2O 3.62 2.81 3.68 3.95 1.25 P2O5 0.30 0.20 0.26 0.20 0.43 Mg/(Mg+Fe) 0.61 0.49 0.53 0.56 0.57 K/(K+Na) 0.45 0.33 0.46 0.47 0.17 Nor.Or 23.82 18.08 24.14 26.26 8.52 Nor.Ab 29.50 36.38 27.91 29.91 43.01 Nor.An 24.82 14.34 22.00 25.04 21.35 Nor.Q 11.20 17.61 14.60 7.45 7.50 Na+K 172.06 179.71 168.49 179.39 160.46 *Si 107.84 129.10 118.44 89.86 81.57
76
K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
-105.53 195.18 -50.12 1.97 0.87
-112.45 158.59 47.25 3.45 1.19
-89.61 191.37 -31.26 2.18 0.92
-96.35 213.38 -50.10 2.12 0.87
-184.06 277.19 3.34 2.09 1.04
4.28. JAVORNÍK MASSIF Regional position: The Javorník granitoids were emplaced into rocks of the Złoty Stok-Skrzynka shear zone (polymetamorphic metavolcanic and metapelitic rocks) in the Lugicum. Rock types: Javorník Granodiorite – a cataclastic medium- to fine-grained biotite-bearing leucogranodiorite, cut by several younger dykes in two phases (granodiorite porphyry and younger amphibole syenite aplites). Size and shape (on erosion level): 50 km2 up to 1 km thick dyke (sheet) and several smaller sheetlike bodies. Age and isotopic data: similar to the age of the Great Tonalite Dyke (Zábřeh Massif). Hornblende-biotite granite 351.1 ± 3.7 and 349.6 ± 3.8 Ma (Ar-Ar hornblende and biotite), biotitemuscovite granite 344.6 ± 3.8 Ma (Ar-Ar muscovite). Contact aureole: distinct thermal aureole with suite of dykes. Geological environment: phyllitic schists, mica schists, and paragneisses. Mineralization: Uranium hydrothermal veins in the country rocks.
Fig. 4.48. Javorník Massif geological sketch-map (adapted after Němec 1954 – see Fig. 4.33.).
References BIAŁEK, D. (2003): Petrography and geochemistry of the Jawornickie granitoids. West Sudetes. – Pol. Tow. Mineralog. Prace Spec. 22, 22–24. BIAŁEK, D. – WERNER, T. (2002): AMS and deformation patterns in the Jawornickie Granitoids, Rychlebské hory – preliminary data. – Geolines 14, 14–15. BIAŁEK, D. – WERNER, T. (2004): Geochemistry and geochronology of the Jawornik granodiorite and its geodynamic significance in the Eastern Variscan Belt. – Geolines 17, 22–23. BURCHART, J. (1958): O granitoidach jawornickich Sudetow Wschodnich. – Arch. mineral. 22, 237–248. JELIŃSKI, A. (1965): Geochemistry of the uranium in the Karkonosze Granite Massif and other granitoids massifs of Lower Silesia. – Biul. Inst. Geol. 193, 5, 5–110. (In Polish) NĚMEC, D. (1951): Petrografie javornického masivu a žilných hornin s ním sdružených I. – Přírodověd. Sbor. Ostrav. Kraje 12, 289–304. NĚMEC, D. (1954): Petrografie javornického masivu a žilných hornin s ním sdružených II. – Sbor. Ústř. Úst. geol., Geol. 21, 2, 7–65. WISZNIEWSKA, J. – KRZEMIŃSKA, E. – MAZUR, S. – GAWĘDA, A. – KOZŁOWSKI, A. (2007): Foreword – brief outline of geology of Poland. In: Kozłowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. Monogr. 1, 5–7.
77
Fig. 4.49. Javorník Granodiorite ABQ and TAS diagrams. 1 – Javorník Granodiorite, 2 – Porphyry and lamprophyre dykes.
Javorník Granodiorite Quartz-normal, sodic/potassic strongly peraluminous, mesocratic, S-type, monzogranite to quartz monzodiorite grmonz grdBi monzogranite biotite granodiorite SiO2 69.21 70.64 TiO2 0.28 0.26 Al2O3 15.84 16.49 Fe2O3 0.86 0.05 FeO 1.18 1.04 MnO 0.03 n.d. MgO 1.91 1.07 CaO 1.05 1.91 Na2O 3.05 4.15 K2O 5.18 3.83 P2O5 n.d. 0.08 Mg/(Mg+Fe) 0.63 0.64 K/(K+Na) 0.53 0.38 Nor.Or 32.10 23.14 Nor.Ab 28.72 38.10 Nor.An 5.46 9.15 Nor.Q 25.32 24.36 Na+K 208.41 215.24 *Si 163.07 153.95 K-(Na+Ca) -7.16 -86.66 Fe+Mg+Ti 78.11 44.92 Al-(Na+K+2Ca) 65.21 40.47 (Na+K)/Ca 11.13 6.32 A/CNK 1.26 1.15
78
Atlas of plutonic rocks and orthogneisses in the Bohemian Massif 4. Lugicum
J. Klomínský, T. Jarchovský, G. S. Rajpoot Published by the Czech Geological Survey Prague 2010 First edition Printed in the Czech Republic 03/9 446-412-10 ISBN 978-80-7075-751-2
Správa úložišť radioaktivních odpadů Dlážděná 6, 110 00 Praha 1 Tel.: 221 421 511 E-mail:
[email protected] www.surao.cz
Atlas
of plutonic rocks and orthogneisses in the Bohemian Massif brunovistulicum moravosilesicum Josef Klomínský Tomáš Jarchovský Govind S. Rajpoot
Czech Geological Survey Prague 2010
CZECH GEOLOGICAL SURVEY
ATLAS of plutonic rocks and orthogneisses in the Bohemian Massif
5. BRUNOVISTULICUM & MORAVOSILESICUM Compiled by Josef KlS. Rajpoot Compiled by Josef Klomínský Tomáš Jarchovský Govind S. Rajpoot The Brunovistulicum & Moravosilesicum volume is a part of the Atlas of plutonic rocks and orthogneisses in the Bohemian Massif which consists of six chapters: INTRODUCTION 1. BOHEMICUM 2. MOLDANUBICUM 3. SAXOTHURINGICUM 4. LUGICUM 5. BRUNOVISTULICUM AND MORAVOSILESICUM In the Introduction volume are summarized general characteristics of the plutonic rocks and orthogneisses from a point of view of their composition, age, 3-D shape, zonation, metallogeny and spatial distribution. The territorial sections 1–5 comprise structured geological parameters of the plutonic rocks and orthogneisses located within boundaries of the principal geological zones in the Bohemian Massif. The compilation work was supported by the Radioactive Waste Repository Authority of the Czech Republic (RAWRA) and by the Czech Geological Survey.
Acknowledgements We would like to thank the following colleagues who have helped in the compilation and correction of this review: A. Dudek, F. Fediuk, M. Chlupáčová, V. Janoušek J. Kotková, M. René, Z. Vejnar, P. Vlašímský, P. Schovánek and S. Vrána. We are grateful for technical assistance to P. Kopecký, M. Toužimský, J. Holeček, M. Fifernová, J. Kušková, J. Karenová, V. Čechová, and L. Richtrová. In spite of the negative view on our work and unrealistic comments we thank also to M. Štemprok and F. V. Holub for their criticism which helped us to improve the original manuscript. * Corresponding author Josef Klomínský, Czech Geological Survey, Klárov 131/3, Prague 1, Czech Republic. Fax (+420) 257 531 376. E-mail address:
[email protected]
© J. Klomínský, T. Jarchovský, G. S. Rajpoot, 2010 ISBN 978-80-7075-751-2
THE ATLAS OF PLUTONIC ROCKS AND ORTHOGNEISSES IN THE BOHEMIAN MASSIF
5. BRUNOVISTULICUM & MORAVOSILESICUM Josef Klomínský a*, Tomáš Jarchovský a, Govind S. Rajpoot b a
Czech Geological Survey, Klárov 131/3, Praha 1, b Náchodská 2030, Praha 9, Czech Republic
Contents FOREWORD .................................................................................................................................................. 3 5.1. BRNO COMPOSITE BATHOLITH................................................................................................... 4 5.1.1. BRNO COMPOSITE PLUTON .......................................................................................................... 9 5.1.2. SLAVKOV MASSIF ....................................................................................................................... 19 5.1.3. ŽDÁNICE MASSIF ........................................................................................................................ 20 5.1.4. LUBNÁ MASSIF ........................................................................................................................... 21 5.1.5. MIKULOV MASSIF ....................................................................................................................... 22 5.1.6. STUPAVA MASSIF ....................................................................................................................... 23 5.1.7. SVRATKA MASSIF ....................................................................................................................... 24 5.1.8. OLOMOUC (UPPER MORAVA BASIN) MASSIF ............................................................................ 26 BASIC INTRUSIONS ................................................................................................................ 27 5.1.9. VLKOŠ STOCK ............................................................................................................................ 27 5.1.10. RUSAVA MASSIF ....................................................................................................................... 27 5.1.11. JABLUNKOV MASSIF ................................................................................................................. 28 5.2. THAYA (DYJE) DOME .................................................................................................................. 28 5.2.1. THAYA COMPOSITE MASSIF ...................................................................................................... 29 5.2.2. PLEISSING ORTHOGNEISS .......................................................................................................... 31 5.2.3. BÍTEŠ ORTHOGNEISS .................................................................................................................. 32 5.3. KEPRNÍK ORTHOGNEISS ................................................................................................................. 34 5.4. DESNÁ ORTHOGNEISS..................................................................................................................... 36 5.5. STRZELIN ORTHOGNEISS................................................................................................................ 39 VARISCAN INTRUSIONS ............................................................................................................. 40 5.6. ŽULOVÁ-STRZELIN COMPOSITE MASSIF ...................................................................................... 40 5.7. ŠUMPERK MASSIF ............................................................................................................................ 46 5.8. RUDNÁ STOCK ................................................................................................................................. 48 The locality map of the plutonic rocks and orthogneisses in the Bohemian Massif (folded)
1
2
FOREWORD The Brunovistulicum and the Moravosilesian Zone (BMSZ) represent Precambrian lithosphere at the eastern termination of the Central European Variscides along the eastern margin of the Moldanubian Zone and the Lugicum. According to Dudek (1980) three principal structural blocks are distinguished into subunits along major faults: the South Moravian Block, the Central Moravian Block and the North Moravian Block. The southern part of the Central Moravian Block and the predominant part of the Southern Moravian Block are formed predominantly by granitic plutonites. The Brunovistulicum consists of the Slavkov Terrane (the island arc crust), the Brno-Břeclav Terrane (a late Proterozoic back arc basin) and the Thaya Terrane (older continental crust). The extraordinary abundance of plutonic basement rocks of Cadomian age represents one of the most specific lithological features of the BMSZ (Finger et al. 1995). Mainly amphibolite facies crystalline schists were formed by metamorphism of monotonous metasediments with minor amounts of volcano-sedimentary series containing metabasites. During Hercynian orogeny, western part of the Brunovistulicum was reworked and incorporated into the structure of the Hercynian fold belt. It is covered mainly by nappes of the outer Western Carpathian Foredeep (over 4,000 m thick at the Těšany borehole) as well as by overthrusted tectonic slices of the Hercynides. Formation and consolidation of the Brunovistulicum prior to Hercynian orogeny is documented by transgression of Cambrian and Middle to Upper Devonian sediments. Most of the Brunovistulian granitoids were formed during a major tectonothermal event at ca. 580–600 Ma. The large batholitic terrain in the south-western half of the Moravosilesian basement consists of two separate domains, the smaller Thaya (Dyje) Dome and the larger Brno Composite Batholith. Both these domains are today separated from each other by a major post-Variscan sinistral fault system. Although only to a minor part directly exposed at the surface, the plutonites are known from drillings and geophysical research to occupy at least one third of the entire basement. The size of the original coherent batholitic complex can be estimated at least at 10,000 km2. The BMSZ comprises of series of mostly Cadomian magmatic intrusions which are intruded and/or tectonically emplaced into all the above mentioned terranes. They are represented by the Brno Composite Pluton, Slavkov Massif, Ždánice Massif, Lubná Massif, Mikulov Massif, Nikolčice Massif, Svratka Massif, Thaya Composite Massif, Pleissing Orthogneiss, Bíteš Orthogneiss, Olomouc Massif, Vlkoš Stock, Rusava Massif, Jablunkov Massif, Keprník Orthogneiss, Strzelin Orthogneiss and the Desná Orthogneiss. These magmatites show a high compositional variation and a variable degree of deformation and much younger regional (Variscan) metamorphism. Only three rather small Variscan (Upper-Carboniferous) granitic massifs (the Žulová-Strzelin Composite Massif, Šumperk Massif and the Rudná Stock) are cropping out at the boundary between the Desná and Keprník Domes. References CHAB, J. – BREITER, K. – FATKA, O. – HLADIL, . – KALVODA, J. – ŠIMŮNEK, Z. – ŠTORCH, P. – VAŠÍČEK, Z. – ZAJÍC, J. – ZAPLETAL, J. (2008): Outline of the geology of the Bohemian Massif: The basement rocks and their Carboniferous and Permian cover. – Czech Geol. Survey Publishing House, Prague 296 p. CHÁB, J. – STRÁNÍK, Z. – ELIÁŠ, M. Eds (2007): The geological map of the Czech Republic 1 : 500 000. – Czech Geol. Survey, Prague. DUDEK, A. (1980): The Crystalline basement block of the Outer Carpathians in Moravia: Brunovistulicum. – Rozpr. Čs. Akad. Věd, Ř. mat. přír. Věd 90, 8, 3–83. DUDEK, A. – MELKOVÁ, J. (1975): Radiometric age and isotopic data determination in the crystalline basement of the Carpathian Foredeep and of the Moravian Flysch. – Věst. Ústř. Úst. geol. 50, 257–264. DUDEK, A. – ŠMEJKAL, V. (1968): Das Alter des Brunner Plutons. – Věst. Ústř. Úst. geol. 43, 45–51. FINGER, F. – FRASL, G. – DUDEK, A. – JELÍNEK, E. – THÖNI, M. (1995): Igneous Activity (Cadomian Plutonism in the Moravo-Silesian Basement). In: Dallmeyer, R. D. – Franke, W. – Weber, K. Eds: PrePermian Geology of Central and Eastern Europe, 495–507. – Springer Verlag, Berlin. FINGER, F. – HANŽL, P. – PIN, C. – VON QUADT, A. – STEYRER, H. P. (2000): The Brunovistulian: Avalonian Precambrian sequence at the eastern end of the Central European Variscides? – Geol. Soc. London, Spec. Publ. 179, 103–112.
3
FINGER, F. – SCHITTER, F. – RIEGLER, G. – KRENN, E. (1999): The history of the Brunovistulicum: total - Pb monazite ages from the metamorphic complex. – GeoLines 8, 21–23. FRIEDL, G. – FINGER, F. – McNAUGHTON, N. J. – FLETCHER, I. R. (1998): New SHRIMP-zircon ages for orthogneisses from the south-eastern part of the Bohemian Massif (Lower Austria). Proceedings of the Intern. Conference Palaeozoic orogenesis and crustal evolution of the European lithosphere. – Acta Univ. Carol., Geol. 42, 251–251. FRIEDL, G. – FINGER, F. – McNAUGHTON, N. J. – FLETCHER, I. R. (2002): The Precambrian history of the south-eastern Bohemian Massif. In: GEO 2002, Planet Earth, past, development, future. Program and abstracts. – Schr.-Reihe Dtsch. Geol. Gesell. 21, 124 pp. HÖCK, V – LEICHMANN, J. (1994): Excursion C: Das Moravicum der Thayakuppel. – Mitt. Österr. mineral. Gesell. 139, 407–427. JELÍNEK, E. – DUDEK, A. (1993): Geochemistry of subsurface Precambrian plutonic rocks from the Brunovistulian complex in the Bohemian Massif, Czechoslovakia. – Precambrian Res. 62, 103–125. KALVODA, J. – BÁBEK, O. – FATKA, O. – LEICHMANN, J. – MELICHAR, R. – NEHYBA, S. – ŠPAČEK, P. (2008): Brunovistulian Terrane (Bohemiqn Massif, Central Europe) from late Proterozoic to late Paleozoic: an overview. – Int. J. Earth Sci. 97, 497–518. KRÖNER, A. – ŠTÍPSKÁ, P. – SCHULMANN, K. – JAECKEL, P. (2000): Chronological constraints on the pre-Variscan evolution of the northeastern margin of the Bohemian Massif, Czech Republic. In: Franke, W. – Haak, V. – Oncken, O. – Tanner D. Eds: Orogenic Processes: Quantification and Modelling in the Variscan fold belt. – Geol. Soc. London, Spec. Publ. 179, 175–197. LEICHMANN, J. – HÖCK, V. (2008): The Brno Batholith: an insight into the magmatic and metamorphic evolution of the Cadomian Brunovistulian Unit, eastern margin of the Bohemian Massif. – J. Geosci. 53, 281–305. SCHULMANN, K. – KRÖNER, A. – HEGNER, E. – WENDT, I. – KONOPÁSEK, J. – LEXA, O. – ŠTÍPSKÁ, P. (2005): Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic. – Amer. J. Sci. 305, 407–448. SOUČEK, J. – JELÍNEK, E. – BOWES, D. R. (1992): Geochemistry of gneisses of the eastern margin of the Bohemian Massif. In: Kukal, Z. Ed.: Proceedings of the 1st International Conference on the Bohemian Massif, Prague, Czechoslovakia, Sept. 26-Oct. 3, 1988, 269–285. – Czech Geol. Survey, Prague. ŠTELC, J. – WEISS, J. et al. (1986): Brněnský masív. – 255 pp. Univ. J. E. Purkyně, Brno. SUK, M. – ĎURICA, D. – OBSTOVÁ, V. – STAŇKOVÁ, E. (1991): Deep boreholes in Bohemia and Moravia and their geological applications. – 174 pp. Nakladatelství Gabriel. Praha. (English abstract) VAN BREEMEN, O. – AFTALION, M. – BOWES, D. R. – DUDEK, A. – MÍSAŘ, Z. – POVONDRA, P. – VRÁNA, S. (1982): Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of the Central Europe. – Trans. Roy. Soc. Edinburgh, Earth Sci. 73, 89–108. ZACHOVALOVÁ, K. – LEICHMANN, J. – ŠVANCARA, J. (2002): Žulová Batholith: a post-orogenic, fractionated ilmenite-allanite I-type granite. – J. Czech Geol. Soc. 47, 35–44. ŻELAŻNIEWICZ, A. – BUŁA, Z. – JACHOWICZ, M. (2002): Neoproterozoic granites in the Upper Silesia massif of Brunovistulicum, S. Poland: U-Pb SHRIMP evidence. – Schr.-reihe Dtsch. geol. Gesell. 21, 361–362.
5.1. BRNO COMPOSITE BATHOLITH Massif, Ždánice Massif, Olomouc Massif,Rusava Massif ,Mušov Diorite, Dražovice Massif, Vlkoš Stock and Strachonín Massif. The suite of the Mikulov Granite-Granodiorite, Stupava Granodiorite and Slavkov Tonalite corresponds to the Blansko, Doubravice and Královo Pole Granodiorites (the Slavkov Tonalite), the Tetčice, Krumlovský les and Veverská Bítýška types can be correlated to the Mikulov Granite and the Stupava Granodiorite. The batholith to the northeast comprises separate
Regional position: the Brno Composite Batholith with its satellite massifs probably represents a Cadomian-consolidated margin of the Fennosarmatian platform. The Brno Composite Batholith consists of several large outcrops (e.g. the Brno Composite Pluton) and much larger subsurface area under younger sedimentary cover, where much information is available from boreholes and from geophysics. This area comprises the Lubná Massif, Mikulov Massif, Slavkov Massif, Stupava 4
plutonic bodies of the Olomouc Massif, and the group of basic bodies (e.g. the Vlkoš Stock, Rusava Massif, Jablunkov Massif). The Svratka Massif to the west is an equivalent of Western Granodiorites/Granites of the Brno Composite Pluton. Most of the Brunovistulian granitoids were formed during a major tectonothermal event at ca. 580–600 Ma. The exposed parts of the Brno Composite Batholith have been described by Štelcl and Weiss (1986) and Finger et al. (1989). Petrology and geochemistry of the covered portion has been studied by Jelínek and Dudek (1993) from the cores of bout 100 deep boreholes (Suk and Ďurica et al. 1991) drilled mainly by the Moravian Oil Concern, Hodonín.
According to Leichmann and Höck (2008) the Brno Batholith (the Brno Composite Pluton in this rewiew) consists of three genetically independent complexes: Western Granitoid Complex – WGC (part of the Thaya Terrane), Ophiolite Belt (Metabasite Zone or Central Basic Belt), and Eastern Granitoid Complex – EGC (part of the Slavkov Terrane). The EGC represents a relatively primitive Cadomian volcanic-arc enviroment. The OB is segment of an almost completely metamorphosed ophiolite sequence. The WGC comprises three main granite suites, with distinct S-type (the Tetčice Suite), I-type (Rena Suite), and A-type (Hlína Suite) affinities. Equivalents of all three suits were recognized in the northern part of the Dyje Batholith (Leichmann and Höck 2008).
Fig. 5.1. Brno Composite Batholith hierarchical scheme according to plutonic units – plutons, massifs (M) and stocks.
Boreholes into the Brno Composite Batholith in the basement of the Outer Carpathian (Suk and Ďurica et al. 1991) Lubná Massif Granite Granite Stupava Massif Granodiorite Granodiorite Granodiorite Granodiorite Nikolčice Massif Granite
Borehole
Subsurface depth in meters
Lubná 1, 2 Lubná 3–29
1352–1861
Roštín 1 Kožušice 1–8 Stupava 1 Osvětimany 1
1506 870–1303 2431 2518
Nikolčice 5
1364
5
Granodiorite Granodiorite Mikulov Massif Granite Granite Granite Granite Granite Granodiorite Granodiorite Granodiorite Slavkov Massif Tonalite Tonalite Tonalite Tonalite Ždánice Massif Tonalite Tonalite Mušov Massif Diorite Diorite Strachotín Massif Quartz diorite Granodiorite Dražovice Massif Diorite Vlkoš Stock Gabbro Jablunkov Massif Gabbro
Nikolčice 2A Nikolčice 4
2225 1506
Březí 1 Mikulov 1 Dunajovice 1 Staatz 3 Hagenberg 1 Drnholec 9 Hrušovany 1 Těšany
1701 2582 1803 3406 3180 393 742 4257
Slavkov 2 Bučovice 1 Marefy 1 Nitkovice 2
1320 1052 1041 1766
Žarošice 2 Ždánice 1–6
1620
Mušov 1 Mušov 2
1705 1910
Strachotín 2 Strachotín 1
3075 2448
Dražovice 2
1500
Vlkoš 1
615
Jablunkov 1
3200 Střelice Granodiorite – porphyritic hornblende – biotite granodiorite. Central Metabasite Zone (Ophiolite belt) Metadiorite Belt (in the west of the Central Basic Zone – CBZ – a part of the WGS) – metagabbro metadiorite and the Jundrov Granodiorite – biotite granodiorite (tectonic raft in the metabasite zone), Metabasalt Belt (in the east of the CBZ) – metabasalt and metarhyolite. Eastern Granodiorites (Eastern Granodiorite Suite – EGS): Doubravice Granodiorite – biotite granodiorite, Blansko Granodiorite – biotite to hornblendebiotite granodiorite to quartz diorite, Jundrov Granodiorite – chlorite trondhjemite, Královo Pole Granodiorite – biotite granodiorite to granite. Svratka Massif Svratka Metagranite – biotite metagranite, Svratka Metadiorite – amphibole-biotite metadiorite.
Rock types: the plutonic rocks range from an ultramafic composition through gabbronorites, gabbros, diorites, quartz diorites, leucotonalites, leucogranodiorites and granites to leucogranites. The Brno Composite Pluton Western Granodiorites (Western Granodiorite Suite – WGS) – Bobrava area:: Veverská Bítýška Granodiorite – biotitehornblende granodiorite, Černá hora Granodiorite – leucocratic granodiorite, Tetčice Granodiorite – biotite-hornblende granodiorite, Krumlovský les Granodiorite – biotite granodiorite, Vedrovice Granodiorite – biotite–hornblende leucogranodiorite, Réna Granodiorite – porphyritic biotite leucogranodiorite, Hlína Granite – biotite leucogranodiorite, Kounice Granodiorite – biotite-hornblende granodiorite, Leskoun Granodiorite – cataclastic granodiorite, 6
Strachotín Massif – biotite diorite, Dražovice Massif – biotite diorite, Rusava Massif – gabbro and gabbrodiorite, Jablunkov Massif – gabbro and gabbrodiorite, Vlkoš Stock – gabbro and gabbrodiorite, Ultramafics – (serpentinized dunites and enstatites in the Vlkoš Stock). Age and isotopic data: The geological and relative relationship: ultramafics → diorites and quartz diorites → leucotonalites and leucogranodiorites → leucogranites, biotite granites, leucogranodiorites and granodiorites grade into each other. Brno Composite Pluton – 555–585 Ma (U-Pb zircon), EGC 596.1 ± 2.1 Ma (Ar-Ar amphibole). Dražovice Diorite 1400 Ma (K-Ar amphibole), Slavkov Tonalite 547–576 Ma (K-Ar).
Subsurface members of the Brno Composite Batholith Slavkov Massif – hornblende-biotite leucogranodiorite to tonalite, Ždánice Massif – hornblende-biotite tonalite to quartz diorite, Lubná Massif – biotite leucogranite (independent intrusion in the covered part of the Brno Composite Batholith, Stupava Massif – leucogranodiorite to biotite granodiorite (an intrusion in the Brno Composite Pluton), Olomouc Massif – two-mica leucogranite, Mikulov Massif – muscovite-biotite granite grades into biotite granodiorite (western granodiorite), Nikolčice Massif – biotite granodiorite (western granodiorite). Basic Intrusions Mušov Stock– diorite to quartz diorite,
Fig. 5.2. Brno Composite Batholith geological sketch-map (adapted after Dudek 1980, Skácelová and Weiss 1978, Dvořák et al. 1984, Mitrenga and Rejl 1993). 1 – Doubravice Granodiorite, 2 – Královo Pole Granodiorite, 3 – Blansko Granodiorite, 4 – Veverská Bítýška Granodiorite, 5 – Tetčice Granodiorite, 6 – Hlína Granodiorite, 7 – Krumlovský les Granodiorite, 8 – Leskoun and Vedrovice Granodiorite, 9 – Diorite, gabbro, gabbronorite, 10 – Nikolčice Granite, 11 – Biotite Granite, 12 – Mikulov Granite, 13 – Slavkov Tonalite, 14 – Ždánice Quartz diorite, 15 – Stupava (+ Jundrov) Leucogranodiorite, 16 – Lubná Leucogranite, 17 – two-mica leucogranite (Olomouc Massif), 18 – Réna Granodiorite, 19 – faults, 20 – boundaryof the BCB investigated by drillings, 21 – state border.
7
Fig. 5.3. Brno Composite Pluton hierarchical scheme according to plutonic suites and rock types.
Fig. 5.4. Brno Composite Batholith ABQ and TAS diagrams. 1 – biotite granites, 2 – leucogranites (Stupava Massif), 3 – quartz diorites (Ždánice Massif), 4 – leucogranite (Lubná Massif), 5 – leucotonalites (Slavkov Massif).
8
5.1.1. BRNO COMPOSITE PLUTON (BCP)
Fig. 5.5. A. Brno Composite Pluton geological sketch-map (after Mitrenga and Rejl 1993). 1 – gneiss, migmatite, amphibolite, 2 – Central Basic Zone, 3 – Jundrov Granodiorite, 4 – diorite-gabbrodiorite-gabbro, 5 – Doubravice Granodiorite, 6 – Blansko Granodiorite, 7 – Královo Pole Granodiorite, 8 – Tetčice Granodiorite, 9 – Veverská Bítýška Granodiorite, 10 – Černá hora Granodiorite, 11 – Krumlovský les Granodiorite, 12 – Réna Granodiorite, 13 – Leskoun Granodiorite, 14 – Střelice Granodiorite, 15 – faults. B. Brno Composite Pluton geological sketch-map (after Leichmann and Höck 2008). 1 – Eastern Granitoid Complex (quartz diorites, tonalites, granodiorites), Metabasite Zone 2 – felsic volcanic rocks, 3 – trondhjemites, 4 – diorites and gabbros, 5 – ultramafic rocks. Western Granitoid Complex: Tetčice and Veverská Bítýška Suites 6 – red granites, 7 – transition zone between red and grey granites, 9 – diorites, Réna Suite 10 – amphibole-biotite granodiorites, 11 – biotite granites-granodiorites, Hlína Suite 12 – garnet-bearing leucogranites, 13 – faults.
9
The Brno Composite Pluton represents the major part of the Brno Composite Batholith. It consists of at least three units of different origin. All the units were tectonically juxtaposed, seemingly forming a single granitoid mass today. BCP is composed of the Western and Eastern Granodiorite areas, which are separated by the Central Metabasite zone (bimodal volcanic association) with the Metabasite Belt in the eastern part and the Diorite Belt in the West. The Eastern Granodiorite area (EGA) is occupied by granodiorites and tonalites (I-type) of a volcanic arc (Slavkov Terrane). The Western Granodiorite area (WGA) consists of granites, granodiorites and tonalites of a more evolved magmatic arc with affinity to S granites (Thaya Terrane). According to Leichmann and Höck (2008) the Brno Batholith (the Brno Composite Pluton in this rewiew) consists of three genetically independent complexes – Western Granitoid Complex – WGC (part of the Thaya Terrane), Ophiolite Belt – OB (Metabasite Zone or Central Basic Belt), and Eastern Granitoid Complex – EGC (part of the Slavkov Terrane). The EGC represents a relatively primitive Cadomian volcanic-arc enviroment. The OC is segment of an almost completely metamorphosed ophiolite sequence. The WGC comprises three main granite suites, with distinct S-type (the Tetčice Suite), I- type (Réna Suite), and A-type (Hlína Suite) affinities. Equivalents of all three suits were recognized in the northern part of the Dyje Batholith (Leichmann and Höck 2008). Rock types: Western Granodiorites (WGA) – Bobrava area: Veverská Bítýška Granodiorite – biotitehornblende granodiorite, Černá hora Granodiorite – leucocratic granodiorite, Tetčice Granodiorite – unhomogenous biotite granodiorite, Krumlovský les Granodiorite – biotite granodiorite, Vedrovice Granodiorite – biotite-hornblende leucogranodiorite, Réna Granodiorite – porphyritic biotite leucogranodiorite, Hlína Granite – biotite leucogranodiorite, Kounice Granodiorite – biotite-hornblende granodiorite, Mikulov Granite – muscovite-biotite granite, Nikolčice Granite – biotite granodiorite, Leskoun Granodiorite – cataclastic granodiorite, Střelice Granodiorite – porphyritic hornblendebiotite granodiorite,
Jundrov Granodiorite – biotite granodiorite (tectonic raft in the metabasite zone). Western Granitoid Complex (Leichmann and Höck 2008): Tetčice Suite: 1. Red granites – coarse-grained granite. 2. Grey granodiorites – fine-grained biotite granodiorite. 3. Transition zone between red and grey granitoids. 4. Diorites – amphibole- or biotiteamphibole-bearing medium- to coarsegrained diorite (xenoliths in the Red and Grey granites). Réna Suite: 1. Amphibole-biotite granodiorite. 2. Biotite granites-granodiorite. Hlína Suite: 1. Garnet-bearing leucogranite. Central Basic Zone (CBZ): (27 × 8 km) is divided in two sequences – plutonic (ultrabasic rocks, amphibole-bearing diorites, gabbros and trondhjemites) and volcanic (basalts and doleriterhyolites). Metadiorite Belt (in the west of CBZ – a part of the WGC) – metagabbro, metadiorite and the and the Jundrov Granodiorite – biotite granodiorite and chlorite trondhjemite (tectonic raft in the metabasite zone). Metabasalt Belt (in the east of CBZ) – metabasalt, metarhyolite. Eastern Granodiorites (EGA) – Svitava area: Doubravice Granodiorite – biotite granodiorite. Blansko Granodiorite – biotite to hornblendebiotite granodiorite to quartz diorite. Královo Pole Granodiorite – biotite granodiorite to granite. Size and shape (in erosion level): at least 5,000 km2 of total area (exposed and buried parts), triangular, 65 × 15 km, (exposed part – 650 km2). Age and isotopic data: The geological and relative relationship: ultramafics → diorites and quartz diorites → leucotonalites and leucogranodiorites → leucogranites, biotite granites, leucogranodiorites and granodiorites grade into each other. Brno Composite Pluton – 555–585 Ma (U-Pb zircon), EGC 596.1 ± 2.1 Ma (Ar-Ar amphibole), Veverská Bítýška Granodiorite 447 ± 12–407 ± 4 Ma (K-Ar),
10
Kounice Granodiorite 537 ± 12 Ma (K-Ar), 584 ± 5 Ma (Rb-Sr), Blansko Granodiorite 590 Ma, Mafics 600 ± 30 Ma, 1 065 ± 10 Ma, 1 270 ± 130 Ma, Dražovice Diorite 1 410 ± 140 Ma (K-Ar hornblende), WGC – diorites 584 ± 5 Ma (U-Pb zircon), 586.9 ± 0.5 Ma (Ar-Ar amphibole), Central Basic Belt – tholeiitic rhyolite 725 ± 15 Ma (Pb-Pb zircon), diorite 584 ± 5 Ma (U-Pb zircon), Basalt dyke penetrating the western metabasite belt 434 ± 8 Ma, 434 ± 16 Ma (K/Ar wholerock). The leucogranites intruded into the other plutonic types (the youngest intrusions are the Réna and Střelice Granodiorites). Biotite granites, leucogranodiorites and granodiorites grade into each other a set of contiguous, coeval, and consanguineous clustered intrusions. Contacts range from barely chilled to completely interdigitating and gradational contacts
representing coexisting liquids. Gabbronorites and gabbros form independent bodies. Geological environment: Neoproterozoic biotite paragneisses with abundant layers of metavolcanics (metabasalts and metaandesites), migmatites and amphibolites and Cambrium and Upper Devonian-Lower Carboniferous cover rocks (limestone, conglomerate and slates). Contact aureole: Contact rocks are often strongly sheared and mylonitized. Zoning: East-west chemical asymmetry and compositional zoning from tonalite-granodiorite to biotite granodiorite/granite. Mineralization: numerous occurrences of molybdenite, barite and fluorite, Cu sulphides. Heat Production (μWm-3): Brno Composite Pluton 1.54, Blansko Granodiorite 0.77, Veverská Bítýška Granodiorite 1.39, Krumlovský les Granodiorite 1.62, Réna Granodiorite 1.98, Western Granodiorites 1.46, Eastern Granodiorites 0.79.
References BREEMEN, O. VAN – AFTALION, M. – BOWES, D. R. – DUDEK, A. – MÍSAŘ, Z. – POVONDRA, P. – VRÁNA, S. (1982): Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of the Central Europe. – Trans. Roy. Soc. Edinburgh, Earth Sci. 73, 89–108. BUKOWY, S. (1972): Budowa podloza karbonu Gornoslaskiego Zaglebia Weglowego. – Prace Inst. Geol. 61, 23–59. DALLMEYER, D. R. – FRITZ, H. – NEUBAUER, F. – URBAN, M. (1994): 40Ar/39Ar mineral age controls on the tectonic evolution of the southeastern Bohemian Massif. In: Pre-alpine Crust in Austria, Excursion guide “Geology of the Moravian Zone”, 14–22. – Krems. DUDEK, A. (1980): The Crystalline basement block of the Outer Carpathians in Moravia: BrunoVistulicum. – Rozpr. Čs. Akad. Věd, Ř. mat. přír. Věd 90, 3–83. DUDEK, A. – MELKOVÁ, J. (1975): Radiometric age and isotopic data and determination in the crystalline basement of the Carpathian Foredeep and of the Moravian Flysch. – Věst. Ústř. Úst. geol. 50, 257–264. DUDEK, A. – ŠMEJKAL, V. (1968): Das Alter des Brunner Plutons. – Věst. Ústř. Úst. geol. 43, 45–51. DVOŘÁK, J. – FRIÁKOVÁ, O. – MITRENGA, P. – REJL, L. (1984): The influence of the structure in the eastern part of the Brno Massif upon the development of overlying sedimentary formations. – Věst. Ústř. Úst. geol. 59, 21–28. FINGER, F. – FRASL, G. – DUDEK, A. – JELÍNEK, E. – THÖNI, M. (1995): Cadomian plutonism in the Moravo-Silesian basement. In: Dallmeyer, R. D. – Franke, W. – Weber, K. P. Eds: Tectonostratigraphic Evolution of the Central and Eastern European Orogens, 495–507. – Springer Verlag, Berlin. FINGER, F. – FRASL, G. – HÖCK, V. – STEYRER, H. P. (1989): The granitoids of the Moravian Zone of Northeast Austria: products of a Cadomian Active Continental Margin? – Precambrian Res. 45, 234–245. FINGER, F. – HANŽL, P. – PIN, C. – VON QUADT, A. – STEYRER, H. P. (2000): The Brunovistulian: Avalonian Precambrian sequence at the eastern end of the Central European Variscides? – Geol. Soc. London, Spec. Publ. 179, 103–112. FINGER, F. – PIN, CH. (1997): Arc-type crustal zoning in the Brunovistulicum, eastern Czech Republic: A trace of the Late-Proterozoic Euro-Gondwana margin. MAEGS 10, Session 4. – J. Czech Geol. Soc. 42, 53. FINGER, F. – SCHITTER, F. – RIEGLER, G. – KRENN, E. (1999): The history of the Brunovistulian: total-Pb monazite ages from the metamorphic complex. – GeoLines 8, 21–23.
11
FINGER, F. – TICHOMIROWA, C. – PIN, C. – HANŽL, P. (2000): Relics of an early-Panafrican metabasite-metarhyolite formation in the Brno Massif, Moravia, Czech Republic. – Int. J. Earth Sci. 89, 328–335. FRIEDL, G. – FINGER, F. – McNAUGHTON, N. J. – FLETCHER, I. R. (1998): New SHRIMP-zircon ages for orthogneisses from the south-eastern part of the Bohemian Massif (Lower Austria). Proceedings of the Intern. Conference Palaeozoic orogenesis and crustal evolution of the European lithosphere. – Acta Univ. Carol., Geol. 42, 251–251. FRITZ, H. – DALLMEYER, R. D. – NEUBAUER, F. (1996): Thick-skinned versus thin-skinned thrusting: Rheology controlled thrust propagation in the Variscan collisional belt (the southeastern Bohemian Massif, Czech Republic – Austria). – Tectonics 15, 1389–1413. GREGEROVÁ, M. (1982): The ultramafic rocks of the Brno Massif. – Folia Fac. Sci. Nat. Univ. Purkyn. 21, 3–34. (In Russian) HANŽL, P. (1994): The correlation between Nectava gneisses and granodiorites of the northern part of the Brno Massif. – Bull. Czech Geol. Surv. 69, 73–80. HANŽL, P. (1997): Structural profile through the Brno Massif. – Explor. Geophys. Remote Sens. Environment. 4, 1, 29–38. HANŽL, P. et al. (1999): Geological map of Brno City and its surroundings, 1 : 50,000. – Czech Geol. Survey, Prague. HANŽL. P. – MELICHAR, R. (1997): The Brno Massif: Variscan reactivation of a Cadomian active continental margin. – J. Czech Geol. Soc. 42, 56. HANŽL, P. – MELICHAR, R. (1997): The Brno Massif: a section through the active continental margin or a composed terrane? – Krystalinikum 23, 33–58. HANŽL, P. – MELICHAR, R.(1998): The Brno Massif: A section through an active continental margin. – Geolines 6, 19. HANŽL, P. – PŘICHYSTAL, A. – MELICHAR, R. (1995): The Brno Massif: Volcanites of the northern part of the metabasite zone. – Acta Univ. Palack. Olomuc., Fac. Rér. Nat. Geol. 34, 75–82. HROUDA, F. (1999): Petrophysical properties of the Brno Massif and their tectonic implication. – Geolines 8, 30. JANOUŠEK, V. – HANŽL, P. (2000): Nd isotopic composition of metabasalts from the metabazite Zone, Brno Massif – geochronological and genetic implications. In: Abstracts of the Conference Moravskoslezské paleozoikum, February 3, 2000, 8. – Brno. (In Czech) JELÍNEK, E. – DUDEK, A. (1993): Geochemistry of subsurface Precambrian plutonic rocks from the Brunovistulian complex in the Bohemian Massif, Czechoslovakia. – Precambrian Res. 62, 103–125. KALVODA, J. – BÁBEK, O. – FATKA, O. – LEICHMANN, J. – MELICHAR, R. – NEHYBA, S. – ŠPAČEK, P. (2008): Brunovistulian Terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: an overview. – Int. J. Earth Sci. 97, 497–518. LEICHMANN, J. (1994): Trondhjemites of the Brno Massif. – Geol. Výzk. Mor. Slez. v Roce 1993, 82–85. (In Czech) LEICHMANN, J. – HÖCK, V. (2008): The Brno Batholith: an insight into the magmatic and metamorphic evolution of the Cadomian Brunovistulian Unit, eastern margin of the Bohemian Massif. – J. Geosci. 53, 281–305. LEICHMANN, J. – NOVÁK, M. – SULOVSKÝ, P. (1999): Peraluminous whole-rock chemistry versus peralkaline mineralogy of highly fractionated, garnet-bearing granites from the Brno Batholith. – Ber. Dtsch. mineral. Gesell. 1, 144. MELICHAR, R. – ROUPEC, P. (1994): Nové poznatky o geologii brněnského masívu jižně od Černé Hory. – Geol. Výzk. Mor. Slez. v Roce 1993, 90–91. MITRENGA, P. – WEISS, J. – REJL, L. (1976): New results about the geological structure of the southern part of the Brno Massif. – Výzk. Práce Ústř. Úst. geol. 13, 33–39. (In Czech) MITRENGA, P. – REJL, L. (1993): Brněnský masiv (The Brno massif). In: Přichystal, A. – Obstová, V. – Suk, M. Eds: Geologie Moravy a Slezska, 9–13. – Mor. zem. muz. – Sekce geol. věd Přírodověd. fak. Masaryk univ. Brno. PŘICHYSTAL, A. (1999): K-Ar age determination of a basaltic dike from Želešice ( Brno Massif). – Geol. výzk. Mor. Slez. v Roce 1998, 120. SEDLÁKOVÁ, I. – LEICHMANN, J. (2009): Thoriem bohaté granity západní části brněnského masivu. – Geol. Výzk. Mor. Slez., 118–120. 12
SKÁCELOVÁ, D. – WEISS, J. (1978): A model of the development of the Brno Massif based on geophysical data. – Čas. Mineral. Geol. 23, 409–415. (In Czech) ŠTELCL, J. (1963): Brněnský masív v geologické literatuře od roku 1801. – Folia Fac. Sci. Nat. Univ. Purk. Brun., Geol. 4, 5, 43–81. ŠTELC, J. – WEISS, J. et al. (1986): Brněnský masív. – 255 pp. Univ. J. E. Purkyně, Brno. Eastern Granodiorites Mostly quartz-normal, sodic, peraluminous/metaluminous, mesocratic, I-type granodiorite Doubravice Blansko(dark) Blansko(light) Královo Pole Tetčice Granodiorite Granodiorite Monzogranite Granodiorite Granodiorite SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 Mg/(Mg+Fe) K/(K+Na) Nor.Or Nor.Ab Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
68.29 0.41 15.92 1.51 0.87 0.06 1.00 1.40 4.53 3.30 0.02 0.44 0.32 20.32 42.40 7.10 24.02 216.25 145.97 -101.08 60.98 46.46 8.66 1.18
65.36 0.54 15.41 2.18 1.78 0.06 2.19 3.34 4.65 2.23 0.22 0.51 0.24 13.92 44.11 15.98 19.55 197.40 125.50 -162.26 113.21 -13.90 3.31 0.97
13
72.15 0.34 11.49 1.90 1.40 0.08 2.08 1.89 4.41 1.90 n.d. 0.54 0.22 11.98 42.27 10.01 31.71 182.65 195.15 -135.67 99.17 -24.42 5.42 0.90
67.32 0.51 14.85 1.65 0.97 0.09 1.05 3.25 4.99 2.53 0.11 0.42 0.25 15.58 46.70 16.05 19.69 214.74 120.10 -165.26 66.62 -39.03 3.71 0.89
70.67 0.32 14.39 1.43 1.09 0.06 0.86 2.00 3.69 3.30 0.09 0.39 0.37 20.41 34.68 9.77 30.31 189.14 179.15 -84.67 58.44 22.12 5.30 1.09
Fig. 5.6. Brno Composite Pluton ABQ and TAS diagrams – Eastern Granodiorites. 1 – Doubravice Granodiorite, 2 – Blansko Granodiorite, 3 – Královo Pole Granodiorite.
Western Granodiorites Mostly quartz-normal, sodic, mostly peraluminous, leuco- to mesocratic, S-type granodiorite to granite Kounice Kounice Vever. Bítýška (dark) (light) Granodiorite Granodiorite Monzogranite
SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 Mg/(Mg+Fe) K/(K+Na) Nor.Or Nor.Ab Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
64.65 0.45 16.82 1.24 3.06 0.08 1.44 2.90 4.49 2.61 0.30 0.38 0.28 16.32 42.68 13.14 18.84 200.31 123.88 -141.19 99.52 26.58 3.87 1.11
72.97 0.20 13.92 0.73 1.16 0.05 0.62 1.25 3.09 4.70 0.08 0.37 0.50 28.85 28.83 5.90 31.80 199.50 190.46 -22.21 43.19 29.27 8.95 1.13
71.81 0.40 13.95 0.67 0.93 0.05 0.54 2.34 4.23 4.07 0.04 0.38 0.39 24.59 38.85 11.61 24.30 222.92 147.65 -91.81 39.76 -32.42 5.34 0.90
Krumlovský les Granodiorite
70.06 0.30 15.06 1.47 1.13 0.07 0.93 1.48 3.26 4.38 0.11 0.40 0.47 27.03 30.57 6.91 29.11 198.20 172.89 -38.59 60.99 44.77 7.51 1.19
Vedrovice Olbramovice Granodiorite Granodiorite
70.11 0.22 15.39 0.98 1.57 0.07 0.90 2.60 3.67 3.38 0.08 0.39 0.38 20.73 34.21 12.84 27.21 190.19 167.85 -93.03 59.23 19.31 4.10 1.07
73.50 0.25 13.46 0.47 1.36 0.07 0.33 2.65 3.45 3.36 0.11 0.24 0.39 20.57 32.10 12.87 32.52 182.67 193.59 -87.24 36.15 -12.85 3.87 0.96
Trace elements(mean values in ppm): Veverská Bítýška Granodiorite – Co 9.5, Cr 81, Cu 9, Mo 8, Ni 80, Nb 15, Rb 130, V 37, Y 21, Zn 43, Zr 113, La 31.33, Ce 76.09, Pr 8.72, Nd 27.13, Sm 4.14, Eu 0.94, Gd 3.52, Tb 1.0, Dy 3.26, Ho 0.50, Er 1.95, Tm 0.37, Yb 2.12, Lu 0.21.
14
Krumlovský les Granodiorite – Co 24.5, Cr 71.5, Cu 26, Ni 5, Nb 33.5 Pb 15, Rb 37.5, V 205, Y 32.5, Zn 94.5, Zr 33.5, La 31.6, Ce 81.3, Pr 12.04, Nd 46.5, Sm 7.45, Eu 2.49, Gd 7.42, Tb 1.25, Dy 6.25, Ho 1.24, Er 3.71, Tm 0.37, Yb 3.29, Lu 0.47. Tetčice Granodiorite – Co 26, Cr 160, Cu 38, Ni 42, Nb 51, Pb 20, Rb 68, V 173, Y 27.8, Zn 79, Zr 75, La 41.7, Ce 89.4, Pr 10.3, Nd 43.1, Sm 6.87, Eu 2.26, Gd 6.81, Tb 1.0, Dy 5.33, Ho 1.08, Er 3.14, Tm 0.35, Yb 2.88, Lu 0.42. Blansko Granodiorite – Co 25, Cr 329, Cu 42, Mo 11, Ni 181, Nb 7, Pb 10, Rb 29, V 100, Y 15, Zn 100, Zr 136, La 22.14, Ce 58.52, Pr 9.46, Nd 28.19, Sm 5.12, Eu 1.47, Gd 4.42, Tb 1.0, Dy 3.03, Ho 0.59, Er 1.35, Tm 0.30, Yb 1.53, Lu 0.20. Královo Pole Granodiorite – Co 13, Cr 321, Cu 9, Mo 14, Ni 181, Nb 8, Pb 12.6, Rb 45, V 52, Zn 70, Zr 117, La 20.41, Ce 52.46, Pr 5.62, Nd 19.90, Sm 53.47, Eu 0.97, Gd 2.50, Tb 1.0, Dy 1,95, Ho 0.43, Er 1.23, Tm 0.34, Yb 0.98, Lu 0.16.
Fig. 5.7. Brno Composite Pluton ABQ and TAS diagrams – Western Granodiorites (Western Granitoid Complex) ABQ and TAS diagrams. 1 – Hlína Suite, 2 – Réna Suite, 3 – Tetčice Suite.
Fig.5.8. Brno Composite Pluton – Metadiorite Belt of the CentralBasic Zone (Ophiolite Belt) ABQ and TAS diagrams. 1 – gabbro, 2 – diorite, 3 – trondhjemite (Jundrov Granodiorite).
15
Tetčice Suite Tetčice Granodiorite – Quartz-normal, sodic, peraluminous,, mesocratic, S-type granodiorite Tetčice Red Granite – Quartz-rich, sodic-potassic, peraluminous, leucocratic, S-type, granite grdJ-5 grdJ-6 redGrJredGrJredGrJTetčice Granodiorite Tetčice Red Granite SiO2 72.19 73.43 72.33 74.04 73.46 74.21 TiO2 0.21 0.13 0.27 0.15 0.11 0.21 Al2O3 14.96 15.11 15.64 13.92 13.74 13.74 Fe2O3 n.d. n.d. n.d. n.d. n.d. n.d. FeOtot 1.81 1.24 2.09 1.25 1.41 1.57 MnO 0.04 n.d. n.d. n.d. n.d. n.d. MgO 0.67 0.53 0.40 0.36 0.23 0.51 CaO 1.41 1.84 1.56 1.24 1.35 0.62 Na2O 4.34 4.23 4.66 3.13 3.25 3.39 K2O 2.55 3.37 2.82 4.61 4.68 5.13 P2O5 0.05 n.d. 0.02 n.d. 0.07 0.07 Mg/(Mg+Fe) 0.39 0.43 0.25 0.34 0.23 0.37 K/(K+Na) 0.28 0.34 0.28 0.49 0.49 0.50 Nor.Or 15.73 20.29 17.05 28.28 28.81 31.29 Nor.Ab 40.70 38.71 42.82 29.19 30.41 31.42 Nor.An 6.96 9.31 7.79 6.39 6.50 2.70 Nor.Q 30.88 28.56 27.49 32.76 31.38 30.42 Na+K 194.19 208.05 210.25 198.88 204.24 218.32 *Si 189.54 177.45 172.48 197.13 187.25 186.02 K-(Na+Ca) -111.05 -97.76 -118.32 -25.23 -29.58 -11.53 Fe+Mg+Ti 44.46 32.05 42.41 28.22 26.72 37.15 Al-(Na+K+2Ca) 49.30 23.05 41.25 30.25 17.43 29.40 (Na+K)/Ca 7.72 6.34 7.56 8.99 8.48 19.75 A/CNK 1.21 1.08 1.16 1.12 1.08 1.13 Trace elements (in ppm): Tetčice Granodiorite – Nb 9, Zr 147, Y 16, Sr 384, Rb 87, Pb 16, Ga 16, Zn 38, Cu 7, Ni 8, Co 7, Ba 1284, Sc 2, Cr 4, V 8. Tetčice Red Granite – Nb 14 , Zr 155, Y 16, Sr 270, Rb 123, Pb 15, Ga 15, Zn 19, Cu 12, Ni 8, Co 5, Ba 779, Sc 1, Cr 2, V 5. Tetčice Suite Tetčice Diorite – Quartz-normal, sodic, metaluminous to peraluminous, I-type, diorite Tetčice Tonalite – Quartz-normal, sodic, peraluminous, I-type, tonalite diJ-1c diJ-14b toJ-15 Diorite Tonalite SiO2 51.67 51.42 64.55 TiO2 1.46 1.39 0.32 Al2O3 18.16 18.75 18.33 Fe2O3 n.d. n.d. n.d. FeOtot 8.80 9.04 2.80 MnO 0.13 0.15 0.09 MgO 4.62 4.56 0.95 CaO 7.79 8.08 4.25 Na2O 3.71 3.65 4.51 K2O 2.32 1.74 2.18 P2O5 0.64 0.44 0.10
16
Mg/(Mg+Fe) 0.48 0.47 0.37 K/(K+Na) 0.29 0.24 0.24 Nor.Or 14.61 11.11 13.52 Nor.Ab 35.52 35.41 42.52 Nor.An 36.71 40.18 21.45 Nor.Q 0.00 0.00 17.07 Na+K 168.98 154.73 191.82 *Si 25.07 34.48 115.76 K-(Na+Ca) -209.37 -224.92 -175.04 Fe+Mg+Ti 255.47 256.45 66.57 Al-(Na+K+2Ca) -90.18 -74.68 16.57 (Na+K)/Ca 1.22 1.07 2.53 A/CNK 0.83 0.85 1.05 Trace elements (in ppm): Tetčice Diorite – Nb 22, Zr 196, Y 33, Sr 808, Rb 64, Pb 18, Ga 22, Zn 95, Cu 20, Ni 20, Co 22, Ba 1006, Sc 26, Cr 116, V 174. Tetčice Tonalite – Nb 10, Zr 227, Y 10, Sr 684, Rb 57, Pb 16, Ga 20, Zn 42, Cu 13, Ni 9, Co 6, Ba 767, Sc 3, Cr 2, V 23. Réna Suite Réna Granodiorite – Quartz normal, sodic, moderately peraluminous, mesocratic, S-type granitegranodiorite RenaJ-8 grdJ-9 grdJ-10 grdJ-22 gr-grdJ gr-grdJ Réna GraniteRéna Granodiorite Granodiorite SiO2 71.97 73.35 69.43 70.14 71.86 71.86 TiO2 0.26 0.16 0.37 0.35 0.27 0.21 Al2O3 14.59 14.38 15.11 15.38 14.67 15.17 Fe2O3 n.d. n.d. n.d. n.d. n.d. n.d. FeOtot 2.05 1.46 2.83 2.54 2.04 1.55 MnO 0.01 0.07 0.43 0.09 0.10 0.04 MgO 0.74 0.46 1.25 0.97 0.54 0.38 CaO 2.22 1.95 2.73 2.69 2.05 2.29 Na2O 3.25 3.24 3.29 3.64 3.64 3.87 K2O 3.83 3.82 3.36 2.88 3.46 3.15 P2O5 0.05 n.d. 0.09 0.11 0.09 0.03 Mg/(Mg+Fe) 0.39 0.35 0.41 0.40 0.31 0.30 K/(K+Na) 0.44 0.44 0.40 0.34 0.38 0.35 Nor.Or 23.68 23.47 21.12 17.92 21.36 19.31 Nor.Ab 30.53 30.26 31.43 34.42 34.15 36.05 Nor.An 11.18 10.06 13.78 13.29 10.01 11.58 Nor.Q 30.20 32.62 27.12 28.39 29.92 29.53 Na+K 186.20 185.66 177.51 178.61 190.922 191.76 *Si 186.69 198.09 175.22 178.53 183.37 179.68 K-(Na+Ca) -63.14 -58.22 -83.51 -104.28 -80.55 -98.84 Fe+Mg+Ti 50.17 33.75 75.06 63.83 45.19 33.65 Al-(Na+K+2Ca) 21.15 27.19 21.86 27.48 24.05 24.47 (Na+K)/Ca 4.70 5.34 3.65 3.72 5.22 4.70 A/CNK 1.08 1.11 1.09 1.11 1.10 1.09 Trace elements (in ppm): Rena Granodiorite – Nb 11, Zr 106, Y 18, Sr 262, Rb 130, Pb 19, Ga 17, Zn 45, Cu 7, Ni 9, Co 5, Ba 476, Sc 3.5, Cr 5.5, V 16.
17
Hlína Suite Hlína Granite – Quartz-rich, sodic, peraluminous, leucocratic, I/S-type granite HlínaJJ-21c J-Re J-1v SiO2 75.79 75.86 74.92 75.46 TiO2 0.03 0.04 0.04 0.04 Al2O3 13.64 13.60 13.48 13.27 Fe2O3 n.d. n.d. n.d. n.d. FeOtot 0.90 0.71 0.79 0.84 MnO 0.10 0.09 0.04 0.90 MgO 0.03 0.03 0.03 0.02 CaO 0.96 1.02 1.16 0.61 Na2O 3.85 3.85 3.93 4.18 K2O 4.21 4.29 4.15 4.11 P2O5 0.02 0.01 0.01 0.01 Mg/(Mg+Fe) 0.05 0.06 0.06 0.02 K/(K+Na) 0.42 0.42 0.41 0.39 Nor.Or 25.38 25.81 25.20 24.92 Nor.Ab 35.27 35.21 36.27 38.52 Nor.An 4.73 5.09 5.85 3.04 Nor.Q 32.53 32.27 31.42 31.06 Na+K 213.63 215.32 214.93 222.15 *Si 195.43 193.41 186.92 189.23 K-(Na+Ca) -51.97 -51.34 -59.39 -58.50 Fe+Mg+Ti 13.65 11.13 12.25 12.70 Al-(Na+K+2Ca) 20.00 15.37 8.42 16.69 (Na+K)/Ca 12.48 11.84 10.39 20.42 A/CNK 1.08 1.06 1.03 1.07 Trace elements (in ppm): Hlína Granite – Nb 34, Zr 75, Y 35, Sr 22, Rb 174, Pb 9, Ga 21, Zn 10, Cu 3, Ni 0.5, Co 0.5, Ba 18, Sc 2, Cr 0.5, V 3.
Fig. 5.9. Brno Composite Pluton – Metadiorite Belt of the Central Metabasic Zone ABQ and TAS diagrams. Gabbros and diorites.
18
Metadiorite Belt of the Central Metabasic Zone Quartz-deficient, sodic, mostly metaluminous, melanocratic, diorite and gabbro n=7 Median Min Max QU1 QU3 SiO2 47.10 43.78 52.91 46.24 50.90 TiO2 0.76 0.21 1.25 0.36 0.84 Al2O3 18.17 14.02 21.84 15.38 20.18 Fe2O3 2.10 0.91 8.52 1.43 2.13 FeO 6.44 0.00 7.86 5.34 6.70 MnO 0.14 0.00 0.47 0.00 0.19 MgO 6.76 3.31 11.14 4.00 7.48 CaO 9.43 6.24 13.37 6.94 9.96 Na2O 3.16 1.65 4.70 2.74 3.92 K2O 1.10 0.90 1.80 1.09 1.37 P2O5 0.26 0.00 0.67 0.00 0.28 Mg/(Mg+Fe) 0.62 0.45 0.72 0.45 0.63 K/(K+Na) 0.19 0.14 0.39 0.15 0.20 Nor.Or 7.12 6.01 11.18 6.10 8.75 Nor.Ab 29.65 17.09 44.36 26.61 33.34 Nor.An 48.43 31.55 61.72 34.18 52.92 Nor.Q 0.00 0.00 0.47 0.00 0.00 Na+K 125.33 86.79 189.88 113.34 149.64 *Si 31.93 -41.39 56.94 -11.51 51.69 K-(Na+Ca) -237.20 -317.03 -201.76 -280.96 -230.11 Fe+Mg+Ti 296.89 193.74 395.58 234.90 301.86 Al-(Na+K+2Ca) -124.25 -205.86 41.22 -202.82 -80.57 (Na+K)/Ca 0.70 0.48 1.53 0.53 0.84 A/CNK 0.72 0.60 1.11 0.62 0.85 encountered in a great number of boreholes at 5.1.1. SLAVKOV MASSIF depth up to 1041 to 1766 m. Age and isotopic data: Slavkov Tonalite 565, Regional position: sub-surface member of the 560, 547–576 Ma (K/Ar). Brno Composite Batholith in its northern margin. Geological environment: the Stupava Rock types: Slavkov Tonalite – medium-grained Leucogranodiorite. biotite- hornblende leucogranodiorite to tonalite. Zoning: unknown. Relations to Blansko Granodiorite. Mineralization: unknown. 2 Size and shape: ~ 100 km , E-W trending elliptic intrusion. The massif has been References DUDEK, A. (1980): The Crystalline basement block of the Outer Carpathians in Moravia: BrunoVistulicum. – Rozpr. Čs. Akad. Věd, Ř. mat. přír. Věd 90, 8, 3–83. Slavkov Tonalite Quartz-normal, sodic, metaluminous to peraluminous, I-type, I-series, tonalite to quartz diorite Slav73 Slav108 Slav110 Slav10 SiO2 62.46 61.47 66.67 67.54 TiO2 0.65 0.80 0.40 0.61 Al2O3 17.53 17.38 16.43 15.08 Fe2O3 2.10 2.23 1.35 1.74 FeO 2.18 2.14 1.30 2.15 MnO 0.07 0.08 0.06 0.05
19
MgO 1.90 1.83 1.01 1.90 CaO 4.46 4.51 1.61 0.87 Na2O 4.56 4.84 6.10 3.76 K2O 2.14 1.96 2.16 3.60 P2O5 0.20 0.20 0.17 0.20 Mg/Mg+Fe 0.45 0.44 0.41 0.47 K/(K+Na) 0.24 0.21 0.19 0.39 Nor.Or 13.26 12.21 13.18 22.69 Nor.Ab 42.95 45.83 56.56 36.01 Nor.An 21.83 22.21 7.09 3.20 Nor.Q 15.47 13.67 17.65 26.71 Na+K 192.59 197.80 242.71 197.77 *Si 100.91 89.61 108.03 166.59 K-(Na+Ca) -181.24 -194.99 -179.69 -60.41 Fe+Mg+Ti 111.96 113.17 65.09 106.53 Al-(Na+K+2Ca) -7.40 -17.34 22.53 67.34 (Na+K)/Ca 2.42 2.46 8.45 12.75 A/CNK 0.99 0.96 1.09 1.32 Trace elements (mean values in ppm): Slavkov Tonalite – Rb 26, Sr 1030, Ba 984, Nb 11, Ga 20, Y 15, Zr 159, V 46, Co 4.5, Cr 80, Ni 6, Cu 4, Pb 10, Zn 56, As 6, Sc 5, Hf 4, Ta 0.52, Cs 0.5, Th 2.6, U 1.7. 5.1.2. ŽDÁNICE MASSIF
encountered in a number of boreholes at depth up to 1620 m. Age and isotopic data: Ždánice Tonalite 600 ± 30 Ma(K/Ar hornblende). Geological environment: Stupava Leucogranodiorite. Zoning: unknown. Mineralization: unknown.
Regional position: sub-surface member of the Brno Composite Batholith. Rock types: Ždánice Tonalite – mafic mediumgrained biotite- hornblende quartz diorite to tonalite. Size and shape: 90 km2 (18 × 6 km), E-W trending elliptic intrusion. The massif has been
References DUDEK, A. (1980): The Crystalline basement block of the Outer Carpathians in Moravia: BrunoVistulicum. – Rozpr. Čs. Akad. Věd, Ř. mat. přír. Věd, 90, 8, 3–83.
20
Ždánice Tonalite Quartz-normal, sodic, metaluminous, meso- to melanocratic, I-type, I-series, tonalite to quartz gabbro n = 12 Median Min Max QU1 SiO2 58.92 54.69 63.08 55.44 TiO2 1.26 0.30 1.76 0.70 Al2O3 16.08 15.09 18.41 15.80 Fe2O3 2.96 1.51 6.80 2.78 FeO 3.16 2.30 5.10 2.62 MnO 0.13 0.00 0.33 0.08 MgO 2.96 2.16 4.38 2.30 CaO 4.51 1.80 6.23 3.47 Na2O 3.66 3.07 4.24 3.24 K2O 2.36 1.47 3.10 1.54 P2O5 0.24 0.12 0.45 0.24 Mg/(Mg+Fe) 0.44 0.38 0.53 0.42 K/(K+Na) 0.30 0.20 0.37 0.21 Nor.Or 15.26 9.67 20.65 9.93 Nor.Ab 35.95 29.90 42.92 31.59 Nor.An 22.75 7.54 32.02 17.82 Nor.Q 15.43 8.08 24.09 9.61 Na+K 157.19 147.01 202.64 152.42 *Si 107.69 76.93 151.88 84.58 K-(Na+Ca) -152.76 -198.36 -103.10 -179.70 Fe+Mg+Ti 174.88 143.87 237.04 148.62 Al-(Na+K+2Ca) -16.16 -46.42 68.97 -35.57 (Na+K)/Ca 1.87 1.37 6.31 1.56 A/CNK 0.97 0.89 1.30 0.92 Trace elements (mean values in ppm): Ždánice Tonalite – Rb 44, Sr 497, Ba 745, Nb 10, Ga 17, Y 2, Zr 142, V 102, Co 18, Cr 52, Ni 15, Cu 84, Pb 16, Zn 95, As 9, Sc 15, Hf 4, Ta 0.5, Cs 1.1, Th 2.7, U 1.2. 5.1.3. LUBNÁ MASSIF
thrust northward over metamorphics of the northern part of the Central Moravian Block. Age and isotopic data: Cadomian. No isotopic data. Geological environment: muscovite-biotite paragneiss (migmatized), and the Stupava Leucogranodiorite. Zoning: unknown. Mineralization: unknown.
Regional position: sub-surface member of the Brno Composite Batholith. Rock types: Lubná Granite – medium to coarsegrained massive leucogranite. Size and shape: actual size and shape is unknown. The massif has been encountered in a great number of boreholes at depth up to 1861 m. The granite mass of small thickness had been
21
References DUDEK, A. (1980): The Crystalline basement block of the Outer Carpathians in Moravia: BrunoVistulicum. – Rozpr. Čs. Akad. Věd, Ř. mat. přír. Věd 90, 8, 3–83. Lubná Granite Quartz-normal, sodic, weakly peraluminous, I-type, I-series, monzogranite Lubná 17 Lubná 18 SiO2 71.23 72.01 TiO2 0.81 0.40 Al2O3 12.92 13.67 Fe2O3 1.10 1.32 FeO 1.82 1.13 MnO 0.13 0.10 MgO 1.00 0.50 CaO 1.10 0.99 Na2O 3.86 4.36 K2O 3.81 4.05 P2O5 0.14 0.43 Mg/(Mg+Fe) 0.38 0.27 K/(K+Na) 0.39 0.38 Nor.Or 23.69 24.57 Nor.Ab 36.48 40.20 Nor.An 4.77 2.13 Nor.Q 29.38 28.06 Na+K 205.46 226.69 *Si 176.64 161.04 K-(Na+Ca) -63.28 -72.36 Fe+Mg+Ti 74.09 49.69 Al-(Na+K+2Ca) 9.04 6.46 (Na+K)/Ca 10.47 12.84 A/CNK 1.05 1.06 Trace elements (mean values in ppm): Lubná Granite – Rb 100, Sr 170, Ba 930, Nb 16, Ga 16, Y 20, Zr 155, V 21, Co 4, Cr 30, Ni 16, Cu 124, Pb 29, Zn 20, As 18, Sc 3, Hf 4.8, Ta 1.2, Cs 3, Th 18, U 3.4. 5.1.4. MIKULOV MASSIF
The massif has a rectangular shape and size 9 × 12 km (the southern margin is not outlined). Age and isotopic data: Cadomian. No isotopic data. Geological environment: sub-surface equivalents of the Tetčice, Krumlovský Les and Leskoun Granodiorites, diorite-gabbrodiorite– gabbro intrusions. Zoning: unknown. Mineralization: unknown.
Regional position: surface and sub-surface member of the Brno Composite Batholith in its southern part. Rock types: 1. Mikulov Granite – muscovite– biotite granite grades into biotite-granodiorite 2. Mikulov Granodiorite – biotite-granodiorite (grades into granite). Size and shape (in erosion level): the massif has been encountered in a number of boreholes at depth up to of 2,582 m.
22
References DUDEK, A. (1980): The Crystalline basement block of the Outer Carpathians in Moravia: Brunovistulicum. – Rozpr. Čs. Akad. Věd, Ř. mat. přír. Věd 90, 8, 3–83. Mikulov Granite Quartz-normal, sodic, mostly peraluminous, I-type, I-series, granite n=7 Median Min Max QU1 QU3 SiO2 71.83 67.53 74.16 71.42 72.09 TiO2 0.51 0.19 0.65 0.36 0.54 Al2O3 13.94 11.37 15.00 13.67 14.68 Fe2O3 0.95 0.37 1.55 0.61 1.21 FeO 1.26 0.42 1.96 0.53 1.60 MnO 0.06 0.02 0.10 0.03 0.06 MgO 0.76 0.43 1.14 0.48 0.80 CaO 1.20 0.63 1.89 0.88 1.23 Na2O 4.16 3.40 5.38 3.89 4.40 K2O 3.34 2.68 4.42 3.11 3.46 P2O5 0.05 0.00 0.30 0.00 0.14 Mg/(Mg+Fe) 0.38 0.27 0.60 0.28 0.39 K/(K+Na) 0.35 0.25 0.45 0.31 0.36 Nor.Or 20.46 16.69 27.10 18.99 21.43 Nor.Ab 38.73 31.76 50.92 36.25 41.43 Nor.An 4.39 2.29 6.40 3.85 5.85 Nor.Q 30.45 20.30 32.29 27.17 30.76 Na+K 208.23 201.02 230.51 203.83 210.92 *Si 178.21 129.86 187.72 168.66 178.73 K-(Na+Ca) -87.40 -138.11 -29.65 -109.44 -78.84 Fe+Mg+Ti 48.71 39.97 77.01 42.35 51.01 Al-(Na+K+2Ca) 21.26 -52.35 67.16 15.15 26.05 (Na+K)/Ca 10.29 6.18 17.89 8.52 10.77 A/CNK 1.10 0.81 1.32 1.07 1.11 Trace elements (mean values in ppm): Mikulov Granite – Rb 67, Sr 300, Ba 900, Nb 14, Ga 16, Y 13, Zr 107, V 15, Co 2, Cr 45, Ni 5, Cu 67, Pb 23, Zn 41, As 5, Sc 2.4, Hf 3, Ta 0.6, Cs 1.6, Th 3.7, U 1.1. 5.1.5. STUPAVA MASSIF oriented in E-W direction and rough estimation of the size of the intrusion is 20 × 15 km. Age and isotopic data: Cadomian. No isotopic data. Geological environment: the Slavkov Tonalite, and the Ždánice Tonalite. Zoning: unknown. Mineralization: unknown.
Regional position: a sub-surface member of the Brno Composite Batholith Rock types: Stupava Granodiorite – mediumgrained biotite leucogranodiorite to leucotonalite. Size and shape (in erosion level): the massif has been encountered in a great number of boreholes at depth up to 2,518 m. The oval shape
References DUDEK, A. (1980): The Crystalline basement block of the Outer Carpathians in Moravia: BrunoVistulicum. – Rozpr. Čs. Akad. Věd, Ř. mat. přír. Věd 90, 8, 3–83.
23
Stupava Granodiorite Quartz-normal, sodic, low peraluminous, I-type, I-series, granodiorite to granite St104 St106 St168 St201 SiO2 68.36 74.08 70.48 72.01 TiO2 0.26 0.05 0.81 0.38 Al2O3 15.90 14.49 14.35 14.55 Fe2O3 0.92 n.d. 1.83 1.28 FeO 1.62 0.89* 1.13 1.03 MnO 0.07 0.04 0.16 0.06 MgO 0.78 0.23 0.79 0.72 CaO 2.44 0.98 1.29 1.44 Na2O 5.04 5.02 4.51 4.40 K2O 2.41 2.71 3.03 2.28 P2O5 0.12 0.05 0.14 n.d. Mg/(Mg+Fe) 0.36 0.31 0.32 0.36 K/(K+Na) 0.24 0.26 0.31 0.25 Nor.Or 14.77 16.38 18.52 13.98 Nor.Ab 46.93 46.11 41.90 41.01 Nor.An 11.73 4.64 5.67 7.42 Nor.Q 21.99 29.82 27.89 32.24 Na+K 213.81 219.53 209.87 190.0 *Si 136.43 179.80 165.80 191.8 K-(Na+Ca) -154.98 -121.93 -104.20 -119.25 Fe+Mg+Ti 56.70 18.73 68.42 53.01 Al-(Na+K+2Ca) 11.41 30.07 25.93 43.98 (Na+K)/Ca 4.91 12.56 9.12 7.41 A/CNK 1.05 1.12 1.11 1.18 * = tot FeO Trace elements (mean values in ppm): Stupava Granodiorite – Rb 50, Sr 600, Ba 935, Nb 10, Ga 17, Y 11, Zr 126, V 22, Co 2.5, Cr 90, Ni 3, Cu 6, Pb 14, Zn 34, As 6, Sc 3, Hf 2.8, Ta 0.5, Cs 1, Th 2.1, U 1.8. 5.1.6. SVRATKA MASSIF Svratka Metagranodiorite – amphibole-biotite metagranodiorite to metadiorite, sheet-like bodies in the Svratka Granite.
Fig. 5.10. Svratka M assif hierarchical scheme according to rock types.
Regional position: the core of the Svratka Dome in the Moravicum (western part of the Brunovistulicum) is a paraautochthonous equivalent of Western Granodiorites/Granites of the Brno Composite Pluton. Rock types: Svratka Metagranite – biotite metagranite,
Fig. 5.11. Svratka Massif geological sketch-map. 1 – Svratka Metagranite and Metagranodiorite, 2 – faults.
24
Orthogneiss constitutes the upper part of the Svratka Dome. Geological environment: Bílý Potok Group – phyllites, marbles, mica schists and greenschists. Contact aureole: contact is mostly tectonized.
Age and isotopic data: Cadomian. No isotopic data. Size and shape (in erosion level): Svratka Massif ~ 40 km2, cupola (domal shape). Bíteš
References HÖCK, V – LEICHMANN, J. (1994): Excursion C: Das Moravicum der Thayakuppel. – Mitt. Österr. mineral. Gesell. 139, 407–427. JAROŠ, J. (1992): The nappe structure in the Svratka Dome. In: Kukal, Z. Ed.: Proceedings of the 1st International Conference on the Bohemian Massif, Prague, Czechoslovalia, Sept. 26-Oct. 3, 1988, 137– 140. – Czech Geol. Survey, Prague. SOUČEK, J. (1992): Petrology of the Bíteš orthogneiss of the Svratka Dome. In: Styles of superposed Variscan nappe tectonics. (Case study of the external Moldanubian Zone). 7th Svratka Geological workshop, Kutná Hora, Abstracts, 56–57. – Geol. úst. Čs. akad. věd, Praha. SOUČEK, J. – JELÍNEK, E. – BOWES, D. R. (1992): Geochemistry of gneisses of the eastern margin of the Bohemian Massif. In: Kukal, Z. Ed.: Proceedings of the 1st International Conference on the Bohemian Massif, Prague, Czechoslovakia, Sept. 26-Oct. 3, 1988, 269–285. – Czech Geol. Survey, Prague.
Fig. 5. 12. Svratka Massif ABQ and TAS diagrams. 1 – Svratka Metagranite, 2 – Bíteš Orthogneiss
Svratka Metagranite Quartz-rich, potassic, strongly peraluminous, mesocratic, S-type, granite n=9 Median Min Max QU1 QU3 SiO2 75.54 74.31 77.49 75.18 75.87 TiO2 0.12 0.08 0.18 0.10 0.14 Al2O3 12.79 12.07 13.48 12.74 13.01 Fe2O3 0.24 0.08 0.39 0.20 0.30 FeO 1.21 0.38 1.47 1.14 1.32 MnO 0.02 0.01 0.03 0.01 0.02 MgO 0.26 0.01 0.45 0.17 0.28 CaO 0.70 0.55 1.43 0.56 0.85 Na2O 2.60 1.90 3.32 2.44 2.68 K2O 4.51 4.20 5.04 4.32 4.89 P2O5 0.28 0.24 0.35 0.27 0.29 Mg/(Mg+Fe) 0.24 0.01 0.36 0.23 0.26 K/(K+Na) 0.55 0.47 0.59 0.52 0.56 Nor.Or 28.12 26.18 30.99 26.57 30.23 25
Nor.Ab Nor.An Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
24.46 1.65 39.11 182.56 226.41 7.12 27.11 41.68 12.23 1.24
18.00 0.90 33.63 150.49 192.36 -36.88 13.16 10.83 7.96 1.07
30.75 5.28 47.71 202.89 271.21 15.56 32.56 61.93 19.73 1.42
22.92 1.12 38.40 172.85 222.70 -6.99 25.94 38.88 11.82 1.22
25.05 2.61 40.88 188.53 238.23 9.94 28.96 48.29 18.80 1.27
5.1.7. OLOMOUC (UPPER MORAVA BASIN) MASSIF abundant layers of metavolcanics (Metabasalts and meta-andesites). Contact aureole: two regional metamorphic phases overlapped by the younger phase of contact metamorphism. Zoning: unknown. Mineralization: pegmatite dykes.
Regional position: isolated intrusion in paragneisses of the Precambrian Brunovistulian Unit (Slavkov Terrane). A subsurface member of the Brno Composite Batholith. Rock types: Olomouc Granite – two-mica granite to granodiorite. Size and shape (in erosion level): the size and shape is mostly unknown (more than 300 km2). Age and isotopic data: Krčman pegmatite 540, 470 Ma (K/Ar). Geological environment: Neoproterozoic biotite paragneisses (retrograde sheared) with
References HLOBILOVÁ, J. (1963): Příspěvek k petrografii krystalinika v Hornomoravském úvalu I. – Acta Univ, Palack. Olomouc. 10, Geogr.-Geol. 1964, 4, 119–176. KOPEČNÝ, V. (1975): The dynamometamorphism of granitoids in the Baba Hill near Olomouc. – Čas. Slez. Muz., Sér. A 24, 49–53. (In Czech) Olomouc Granite Quartz-rich, potassic, mostly peraluminous, leucocratic, S-type granite 1667Hor 1668Hor 1669Hor 1670Hor SiO2 74.46 73.96 76.16 75.65 TiO2 0.11 n.d. n.d. n.d. Al2O3 12.94 12.73 15.24 13.51 Fe2O3 0.32 1.57 0.77 0.33 FeO 0.51 1.73 n.d. 0.69 MnO 0.01 n.d. n.d. n.d. MgO 0.31 0.46 0.27 0.38 CaO 0.68 1.89 0.60 0.38 Na2O 2.37 3.51 1.63 2.49 K2O 6.28 4.38 4.11 6.12 P2O5 0.51 0.11 n.d. n.d. Mg/(Mg+Fe) 0.41 0.21 0.41 0.41 K/(K+Na) 0.64 0.45 0.62 0.62 Nor.Or 38.51 26.54 25.26 37.00 Nor.Ab 22.09 32.33 15.23 22.88 Nor.An 0.01 8.87 3.10 4.11 Nor.Q 34.55 29.93 47.47 33.16
26
Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
209.82 195.19 44.73 20.18 20.04 17.30 1.14
206.26 181.58 -53.97 55.18 -23.68 6.12 0.92
139.86 275.52 23.97 16.35 138.02 13.07 1.85
210.29 199.77 35.15 23.17 26.13 14.56 1.11
BASIC INTRUSIONS 5.1.8. VLKOŠ STOCK layers of metavolcanics (metabasalts and metaandesites). Contact aureole: two regional metamorphic phases with younger phase of contact metamorphism. Zoning: unknown. Mineralization: unknown.
Regional position: isolated intrusion in paragneisses of the Precambrian Brunovistulian Unit (Slavkov Terrane). Size and shape: subsurface outcrop of the oval (1 × 2 km) body at depth of over 600 m under sedimentary cover. Rock types: Vlkoš Gabbro – pyroxene gabbro. Age and isotopic data: Cadomian. No isotopic data. Geological environment: Neoproterozoic biotite paragneisses (retrograde sheared) with abundant 5.1.9. RUSAVA MASSIF
Geological environment: Neoproterozoic biotite paragneisses (retrograde sheared) with abundant layers of metavolcanics (metabasalts and metaandesites). Contact aureole: two regional metamorphic phases with younger phase of contact metamorphism. Zoning: unknown. Mineralization: unknown.
Regional position: isolated intrusion in paragneisses of the Precambrian Brunovistulian (Slavkov Terrane). Rock types: Rusava Gabbrodiorite – hypersthene gabbronorite Size and shape): subsurface outcrop of the elongated, about 40 km2 body at the depth of over 2,000 m. Age and isotopic data: Cadomian. No isotopic data.
27
5.1.10. JABLUNKOV MASSIF abundant layers of metavolcanics (metabasalts and metaandesites). Contact aureole: two regional metamorphic phases with younger phase of contact metamorphism. Zoning: unknown. Mineralization: unknown.
Regional position: isolated intrusion in paragneisses of the Precambrian Brunovistulian Unit (Slavkov Terrane). Rock types: Jablunkov Gabbronorite. Size and shape): subsurface outcrop of the elongated, ~30 km2 body at the depth of over 3000 m. Age and isotopic data: 550 Ma (U/Pb monazite). Geological environment:: Neoproterozoic biotite paragneisses (retrograde sheared) with
5.2. THAYA (DYJE) DOME (TD)
Fig. 5. 14. Thaya Dome hierarchical scheme according to rock groups and rock types
Pleissing Nappe and the allochthonous Bíteš Gneiss Nappe. Equivalents of the Brno Composite Pluton (Western Granitoid Complex) with distinct S-type (the Tetčice Suite), I-type (Réna Suite), and Atype (Hlína Suite) affinities were recognized in the northern part of the Dyje Batholith (Leichmann and Höck 2008).
Regional position: In the Thaya Dome, three NS- elongated and generally west to northwestdipping tectonic units are usually distinguished, each consisting of a granitoid core and a schist mantle. These units are from the east to the west as follows: the autochthonous Thaya Composite Massif, the autochthonous (paraautochthonous?)
28
5.2.1. DYJE (THAYA) COMPOSITE MASSIF (DCM)
Fig. 5.15. Thaya Dome geological-sketch map. 1 – Dyje (Thaya) Composite Massif, 2 – Pleissing Orthogneiss, 3 – Bíteš Orthogneiss, 4 – faults.
3.
Pulkau/Zellerndorf Granodiorite to Granite (Hauptgranite) – biotite granite to granodiorite, 4. Eggenburg/ Maissau Granite – light grey to pink biotite granite ± amphibole and tourmaline, 5. Gumping Granodiorite – porphyritic biotite granodiorite (quartz monzodiorite), 6. Gauderndorf Granite – fine-grained biotite granite/granodiorite, 7. Passendorf Tonalite – fine- to mediumgrained biotite tonalite. Size and shape (in erosion level): elliptical, ~ 520 km2 . Age and isotopic data: Znojmo Q-diorite 630 ± 50 Ma (K/Ar hornblende), Tasovice Granite 550 ± 6 Ma (Rb/Sr), 580 Ma, Eggenburg Granite 583± 11 Ma (U-Pb zircon), Gumping Granodiorite 595 ± 1 Ma (Pb-Pb zircon). Contact aureole: two regional metamorphic phases with younger phase of contact metamorphism. Thaya Granodiorites are sheared with decreasing grade from west to east. Geological environment: granitoids of the Biteš Gneiss Nappe, Lukov Unit (phyllites, mica schists, marble, calc-silicate rock). Zoning: compositional and structural zoning from NW to SE (decreasing acidity and mylonitization). Mineralization: unknown. 1.8–2.3. Heat production (µWm-3):
Regional position: a part of the Precambrian lithosphere at the eastern termination of the Central European Variscides (Brunovistulian Unit). DCM belongs to the Thaya Terrane (older continental crust) as a lowermost sub-unit of the Thaya Dome. According to Leichmann and Höck (2008) the Brno Batholith (the Brno Composite Pluton in this rewiew) consists of three genetically independent complexes: Western Granitoid Complex – WGC (part of the Thaya Terrane), Ophiolite Belt – OB (Metabasite Zone or Central Basic Belt), and Eastern Granitoid Complex – EGC (part of the Slavkov Terrane). The EGC represents a relatively primitive Cadomian volcanic-arc enviroment. The OB is segment of an almost completely metamorphosed ophiolite sequence. The WGC comprises equivalents of the Brno Composite Pluton (Western Granitoid Complex) with distinct S-type (the Tetčice Suite), I-type (Réna Suite), and A-type (Hlína Suite) affinities were recognized in the northern part of the Dyje Batholith (Leichmann and Höck 2008). Rock types: predominant high K, I-types granites and granodiorites). 1. Znojmo Quartz diorite – biotite-amphibole quartz diorite (several small bodies), 2. Tasovice Granite – foliated fine-grained pink biotite granodiorite,
29
References BATÍK, P. (1999): Moravikum dyjské klenby – kadomské předpolí variského orogénu. – Věst. Čes. geol. Úst. 74, 363–370. FRASL, G. – FINGER, F. (1988): The “Cetic Massif” below the Eastern Alps characterized by its granitoids. – Schweiz. Mineral. Petrogr. Mitt. 68, 433–439. FINGER, F. – FRASL, G. (1989): The granitoids of the Moravian zone of northeast Austria: Product of Cadomian active continental margin? – Precambrian Res. 45, 235–245. FINGER, F. – FRASL, G. – DUDEK, A. – JELÍNEK, E. – THÖNI, M. (1995): Cadomian plutonism in the Moravo-Silesian basement. In: Dallmeyer, R. D. – Franke, W. – Weber, K. P. Eds: Tectonostratigraphic Evolution of the Central and Eastern European Orogens, 495–507. – Springer Verlag, Berlin. FINGER, F. – FRASL, G. – HÖCK, V. – STEYRER, H. P. (1989): The Granitoids of the Moravian Zone of Northeast Austria: products of a Cadomian active continental margin? – Precambrian Res. 45, 234–245. FINGER, F. – HANŽL, P. – PIN, C. – VON QUADT, A. – STEYRER, H. P. (2000): The Brunovistulian: Avalonian Precambrian sequence at the eastern end of the Central European Variscides? – Geol. Soc. London, Spec. Publ. 179, 103–112. FINGER, F. – RIEGLER, G. (1999): Der Thayabatholith und der kristalline Untergrund des Weinviertels. – Arbeitstagung Geol. Bundesanst. Wien 1999, 23–31. HÖCK, V. – LEICHMANN, J. (1994): Excursion C: Das Moravicum der Thayakuppel. – Mitt. Österr. mineral. Gesell. 139, 407–427. LEICHMANN, J. – HÖCK, V. (2008): The Brno Batholith: an insight into the magmatic and metamorphic evolution of the Cadomian Brunovistulian Unit, eastern margin of the Bohemian Massif. – J. Geosci. 53, 281–305. SCHARBERT, S. (1977): Neue Ergebnisse radiometrischer Altersdatierungen an Gesteinen des Waldviertels. – Arbeitstagung Geol. Bundesanst. Wien 1977, 11–15. SCHARBERT, S. – BATÍK, P. (1980): The age and isotopic data of the Thaya (Dyje) Pluton. – Verh. Geol. Bundesanst. (Wien) 3, 325–331. WIESENEDER, J. – FREILINGER, – G. KITTLER, G. – TSAMBOURAKIS, G. (1976): Der kristalline Untergrund der Nordalpen in Österreich. – Geol. Rdsch. 65, 512–526.
Fig. 5.16. Thaya (Dyje) Dome ABQ and TAS diagrams. 1 – Dyje (Thaya) Granodiorite, 2 – Dyje (Thaya) Diorite, 3 – Bíteš Orthogneiss, 4 – Pleissing Orthogneiss.
30
Dyje (Thaya) Granodiorite to Granite Quartz-normal, sodic, moderately peraluminous, leucocratic, S-type, granodiorite n=9 Median Min Max QU1 QU3 SiO2 72.30 71.37 73.50 71.50 73.03 TiO2 0.24 0.16 0.64 0.22 0.35 Al2O3 14.78 13.52 15.51 14.29 14.92 Fe2O3 0.54 0.10 0.98 0.52 0.59 FeO 1.46 0.92 2.05 1.12 1.59 MnO 0.05 0.02 0.07 0.04 0.06 MgO 0.97 0.37 2.14 0.75 1.14 CaO 1.25 0.22 2.27 0.95 1.86 Na2O 4.00 2.92 4.37 3.77 4.29 K2O 3.52 1.98 4.10 3.01 3.89 P2O5 0.05 0.03 0.18 0.04 0.05 Mg/(Mg+Fe) 0.51 0.33 0.65 0.35 0.54 K/(K+Na) 0.39 0.23 0.44 0.31 0.40 Nor.Or 21.86 12.21 24.99 18.24 23.98 Nor.Ab 37.31 27.79 40.30 35.69 39.87 Nor.An 6.02 0.87 11.23 4.62 8.74 Nor.Q 29.56 27.00 40.20 28.52 30.70 Na+K 203.40 168.33 215.16 201.53 211.24 *Si 179.35 168.10 234.22 178.14 190.65 K-(Na+Ca) -63.42 -129.56 -27.62 -98.11 -58.71 Fe+Mg+Ti 58.14 29.91 84.19 45.65 58.90 Al-(Na+K+2Ca) 35.07 22.10 82.20 26.82 44.81 (Na+K)/Ca 9.14 4.98 51.85 6.08 12.50 A/CNK 1.15 1.08 1.48 1.11 1.20 5.2.2. PLEISSING ORTHOGNEISS (PO) 2.
Buttendorf Orthogneiss – amphibole-biotite granodioritic and tonalitic gneiss. Size and shape (in erosion level): allochthonous (paraautochthonous?) sheet-like bodies (20 km2). Age and isotopic data: Cadomian. No isotopic data. Geological environment: the Lukov mica schists. Zoning: unknown. Mineralization: unknown.
Regional position: part of the Precambrian lithosphere at the eastern termination of the Central European Variscides (Brunovistulicum). PO (nappe sheet) belongs to the higher tectonic sub-unit of the Thaya Dome (Thaya Terrane – older continental crust). Rock types: Two strongly deformed granitoid sheets: 1. Weitersfeld Orthogneiss – leucocratic granitic orthogneiss (upper sheet),
References FINGER, F. – FRASL, G. – HÖCK, V. – STEYRER, H. P. (1989): The Granitoids of the Moravian Zone of Northeast Austria: products of a Cadomian active continental margin? – Precambrian Res. 45, 234–245.
31
5.2.3. BÍTEŠ ORTHOGNEISS (BO) like body in the Svratka Dome – 750 km2 (42 × 15 km). Age and isotopic data: 796 ± 11 Ma (Rb-Sr whole-rock), ~ 800 Ma, 570 ± 44 Ma (Rb-Sr whole-rock), 480 ± 50 Ma (Rb-Sr whole-rock), 480 Ma (Sm-Nd), 630 Ma (Pb-Pb zircon), 586 ± 7 Ma (SHRIMP U-Pb zircon), Geological environment: Neoproterozoic biotite paragneisses (retrograde sheared) with abundant strata of metavolcanics (metabasalts and metaandesites). Contact aureole: two regional metamorphic phases with younger phase of contact metamorphism, regional metamorphism is dated at 346 ± 7 Ma. Zoning: unknown. Mineralization: local tin-tourmaline mineralization at the western contact.
Regional position: part of the Precambrian lithosphere at the eastern termination of the Central European Variscides (Brunovistulicum). BO (nappe sheet) belongs to the higher tectonic sub-unit of the Thaya Dome (Thaya Terrane – older continental crust). Bíteš Orthogneiss constitutes the upper part of the Svratka Dome. Rock types: Bíteš Orthogneiss – severely sheared porphyroclastic leucocratic fine-grained muscovite- biotite granites and granodiorites to tonalite. The Bíteš Gneiss resemble the Pulkau/Zellerndorf Granodiorite/Granite (Hauptgranite) as well as the Weitersfeld Orthogneiss of the Pleissing Nappe. Bíteš Orthogneiss – severely sheared porphyroclastic leucocratic muscovite- biotite granites and granodiorites to tonalite (see also 5.2.3. Bíteš Orthogneiss). Size and shape (in erosion level): elongated intrusion of relatively small thickness (5 km), stretching ca. 120 km. and 240 km2 (the Thaya Dome). Biteš Orthogneiss forms the oval sheet-
References BATÍK, P. (1984): Geologická stavba moravika mezi bítešskou rulou a dyjským masívem. – Věst. Ústř. Úst. geol. 59, 322–330. FINGER, F. – FRASL, G. – HÖCK, V. – STEYRER, H.P. (1989): The Granitoids of the Moravian Zone of Northeast Austria: products of a Cadomian active continental margin? – Precambrian Res. 45, 234–245. FRIEDL, G. – FINGER, F. – McNAUGHTON, N. J. – FLETCHER, I. R. (1998): New SHRIMP-zircon ages for orthogneisses from the south-eastern part of the Bohemian Massif (Lower Austria). Proceedings of the Intern. Conference Palaeozoic orogenesis and crustal evolution of the European lithosphere. – Acta Univ. Carol., Geol. 42, 251–251. LIEW, T. C. – HOFMANN, A. W. (1988): Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr isotopic study. – Contr. Mineral. Petrology 98, 129–138. MORAUF, W. – JÄGER, E. (1982): Rb-Sr whole-rock ages for the Bites Gneiss, Moravicum, Austria. – Schweiz. Mineral. Petrogr. Mitt. 62, 327–334. NĚMEC, D. (1979): Zinnbringende Orthogneisse im Süden der Antiklinale von Svratka (nordwestlich Brno) und ihre Erzmineralisierung. – Z. geol. Wiss. 7, 1437–1447. PRECLIK, H. (1934): Zur Kenntniss der chemischen Zusammensetzung der moravischen Erstarrungsgesteine. – Mineral. petrogr. Mitt. 45, 269–332. SOUČEK, J. (1992): Petrology of the Bíteš orthogneiss of the Svratka Dome. In: Styles of superposed Variscan nappe tectonics. (Case study of the external Moldanubian Zone). 7th Svratka Geological workshop, Kutná Hora, Abstracts, 56–57. – Geol. úst. Čs. akad. věd, Praha. SOUČEK, J. – JELÍNEK, E. – BOWES, D. R. (1992): Geochemistry of gneisses of the eastern margin of the Bohemian Massif. In: Kukal, Z. Ed.: Proceedings of the 1st International Conference on the Bohemian Massif, Prague, Czechoslovakia, Sept. 26-Oct. 3, 1988, 269–285. – Czech Geol. Survey, Prague.
32
Bíteš Orthogneiss Quartz-rich, sodic-potassic, moderately peraluminous, S-type, leucocratic granite 1822Bit 1823Bit Hardegg SiO2 74.31 76.36 73.82 TiO2 0.16 0.04 0.13 Al2O3 12.70 13.02 14.62 Fe2O3 0.83 0.13 1.05 FeO 1.22 0.31 0.54 MnO 0.04 n.d. n.d. MgO 0.35 0.43 0.12 CaO 1.33 0.93 2.18 Na2O 2.99 3.09 3.85 K2O 4.83 4.12 3.20 P2O5 0.18 0.10 n.d. Mg/(Mg+Fe) 0.24 0.64 0.13 K/(K+Na) 0.52 0.47 0.35 Nor.Or 29.62 25.21 19.24 Nor.Ab 27.87 28.73 35.17 Nor.An 5.62 4.10 11.01 Nor.Q 33.60 38.45 32.35 Na+K 199.04 187.19 192.18 *Si 197.41 225.38 191.44 K-(Na+Ca) -17.65 -28.82 -95.17 Fe+Mg+Ti 38.08 17.12 25.28 Al-(Na+K+2Ca) 2.93 35.33 17.18 (Na+K)/Ca 8.39 11.29 4.94 A/CNK 1.03 1.17 1.06
33
5.3. KEPRNÍK ORTHOGNEISS
Regional position: the core of the Keprník Dome (nappe-sheet) within the MoravoSilesicum. Rock types: Keprník Orthogneiss 1. cataclastic fine-grained two-mica orthogneiss, 2. cataclastic medium-grained two-mica orthogneiss, 3. cataclastic fine-grained leucocratic orthogneiss, 4. banded medium-grained biotite orthogneiss, 5. coarse-grained biotite orthogneiss, 6. fine-grained cataclastic biotite granodiorite, 7. muscovite metapegmatite – up to several tens of meters thick and about 1 km long bodies. Size and shape (in erosion level): elongated domal tectonically deformed and outlined intrusion (50 × 10 km). Age and isotopic data: 546 + 6/-8 Ma (U/Pb zircon), 583 Ma (U/Pb zircon), 300–310 Ma (Ar/Ar mica). Geological environment: Pre-Devonian country rocks are represented by two-mica gneisses, mica schists with calc-silicate gneisses and marbles. Contact aureole: not observed. Mineralization: unknown.
Fig. 5.17. Keprník-Desná Dome geological sketchmap (adapted after Cháb et al. 2008). 1 – Keprník Orthogneiss, 2 – Desná Orthogneiss, 3 – Rudná Stock, 4 – Šumperk Massif, 5 – Oskava Stock, 6 – faults.
References BREEMEN, O. VAN – AFTALION, M. – BOWES, D. R. – DUDEK, A. – MÍSAŘ, Z. – POVONDRA, P. VRÁNA, S. (1982): Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of the Central Europe. – Trans. Roy. Soc. Edinburgh Earth Sci. 73, 89–108. HEGNER, E. – KRÖNER, A. (2000): Review of Nd isotopic data and xenocrystic and detrital zircon ages from the Pre-Variscan basement in the eastern Bohemian Massif: speculations on palinspastic reconstructions. – Geol. Soc. London, Spec. Publ. 179, 113–129. KRÖNER, A. – ŠTÍPSKÁ, P. – SCHULMANN, K. – JAECKEL, P. (2000): Chronological constraints on the pre-Variscan evolution of the northeastern margin of the Bohemian Massif, Czech Republic. In: Franke, W. – Haak, V. – Oncken, O. – Tanner D. Eds: Orogenic Processes: Quantification and Modelling in the Variscan fold belt. – Geol. Soc. London, Spec. Publ. 179, 175–197. MALUSKI, H. – RAJLICH, P. – SOUČEK, J. (1995): Pre-Variscan, Variscan and Early Alpine thermotectonic history of the north-eastern Bohemian Massif: An Ar/Ar study. – Geol. Rdsch. 84, 345–358. ŠITAVANC, D. – SOUČEK, J. (1988): Geochemie hornin keprnické klenby. – Čas. Mineral. Geol. 33, 149– 170. ŽÁČEK, V. Ed. (2000): Vysvětlivky k základní geologické mapě České republiky 1 : 25 000, 14-421 Velké Losiny, pp. 75. – MS Czech Geol. Survey, Prague.
34
Keprník Orthogneiss Quartz-rich, sodic, moderately peraluminous, mesocratic, S-type, I-series granite 17two-mica 1biotite 12orth 16ortho 17ortho SiO2 69.77 69.15 71.18 71.22 72.88 TiO2 0.27 0.33 0.20 0.27 0.13 Al2O3 15.91 16.09 14.90 15.35 14.45 Fe2O3 0.48 0.45 0.50 0.94 0.50 FeO 1.49 1.88 1.20 1.17 1.04 MnO 0.05 0.04 0.06 0.04 0.05 MgO 0.91 1.18 0.93 0.60 0.58 CaO 2.38 2.31 1.22 1.92 1.38 Li2O 0.01 n.d n.d. n.d. n.d. Na2O 4.51 4.22 3.50 4.19 3.19 K2O 2.46 3.55 4.31 3.19 3.86 P2O5 0.10 0.07 0.06 0.11 0.04 Mg/(Mg+Fe) 0.45 0.47 0.49 0.34 0.40 K/(K+Na) 0.26 0.36 0.45 0.33 0.44 Nor.Or 15.09 21.69 26.62 19.35 23.83 Nor.Ab 42.04 39.19 32.86 38.64 29.93 Nor.An 11.59 11.38 5.94 9.05 6.87 Nor.Q 26.00 22.34 28.83 28.04 34.09 Na+K 197.77 211.55 204.45 202.94 184.90 *Si 161.01 144.62 175.93 169.35 203.02 K-(Na+Ca) -135.74 -101.99 -43.19 -101.72 -45.59 Fe+Mg+Ti 52.75 65.23 48.49 46.28 36.81 Al-(Na+K+2Ca) 29.79 22.04 44.64 30.03 49.65 (Na+K)/Ca 4.66 5.14 9.40 5.93 7.51 A/CNK 1.11 1.08 1.19 1.12 1.22
18ortho 72.18 0.17 14.87 0.47 1.37 0.07 0.51 1.75 0.01 3.58 3.94 0.06 0.33 0.42 24.07 33.24 8.59 29.72 199.18 180.46 -63.08 39.71 30.42 6.38 1.12
Trace elements (mean values in ppm): Keprník Orthogneiss – B 12, Co 19, Cr 33, Cu 48, Rb 48, Sr 400, Y 23, Zn 63, Zr 210.
Fig. 5.18. Keprník Orthogneiss and Desná Orthogneiss ABQ and TAS diagrams. 1 – Desná Orthogneiss (Metagranite), 2 – Keprník Orthogneiss.
35
5.4. DESNÁ ORTHOGNEISS
Size and shape (in erosion level): elongated, tectonically deformed and outlined domal intrusion (a groups of boudins from several metres to kilometres in size), separated by a group of cross-faults into a series of segments. Oskava Stock is oval (small lens-like bodies) in shape of 1.5 km2 (1.5 × 1 km), outlined by faults within the Bedřichov segment. Age and isotopic data: Cadomian. 300–310 Ma (Ar/Ar micas), mylonites on the eastern rim 340– 440 Ma (Ar/Ar micas), 273 Ma (Ar/Ar amphibole), 324 to 520 Ma (Ar/Ar muscovite), 323 ± 3 Ma (Ar/Ar biotite). 684.5 ± 0.9 Ma (PbPb zircon) – crystallization of the protolith, 517 ± 12 Ma (U-Pb zircon), 598.4 ± 0.9 Ma. Polanka Leucogranite 330 Ma (Rb-Sr whole rock). Geological environment: the Vrbno GroupDevonian graphite phyllite, quartzite, metaconglomerates, bimodal volcanics. Contact aureole: unknown. Mineralization: unknown.
Regional position: paraautochthonous PreCambrian basement within the Moravo-Silesicum consists of two separate domal structures connected by fragmented remnants of the Desná Dome. According to Hanžl et al. (2007) the Desná Unit consists of the Tonalite suite, Granite suite (Cadomian) and the Leucogranite suite (Polanka Leucogranite and Rudná (Early Carboniferous). Rock types: porphyroclastic metagranitoids to orthogneisses of the granitic – granodioritic to tonalitic composition. 1. Libina Metagranite – mylonitic mediumcoarse-grained two-mica metagranite, 2. Polanka (Oskava) Metagranite – foliated coarse-grained two-mica leucogranite, 3. Orlík Orthogneiss – mylonitic fine- to medium-grained two-mica metagranodiorite to metatonalite – mylonitic medium- to coarse-grained leucocratic two- mica metagranite – biotite to hornblende-biotite orthogneiss. Desná Metagranite to Metagranodiorite
Quartz-rich, sodic, peraluminous, mesocratic, S-type, granite to granodiorite GV4b GV6c 166 GV6d GV25 SiO2 67.73 68.96 70.04 73.76 71.74 TiO2 0.44 0.42 0.60 0.12 0.36 Al2O3 14.69 15.28 13.55 13.82 13.73 Fe2O3 0.88 1.28 0.49 0.93 0.94 FeO 2.38 1.61 3.60 0.73 1.48 MnO 0.08 0.08 0.08 0.06 0.07 MgO 1.37 0.97 1.55 0.38 0.79 CaO 2.30 2.36 1.99 1.06 1.71 Na2O 5.17 3.79 3.83 3.85 4.33 K2O 1.46 2.55 1.91 3.70 2.01 P2O5 0.12 0.12 0.08 0.03 0.07 Mg/(Mg+Fe) 0.43 0.38 0.40 0.29 0.37 K/(K+Na) 0.16 0.31 0.25 0.39 0.23 Nor.Or 9.20 15.90 12.24 22.57 12.52 Nor.Ab 49.54 35.92 37.30 35.69 40.99 Nor.An 11.33 11.52 10.14 5.23 8.46 Nor.Q 23.77 29.69 31.81 32.94 32.76 Na+K 197.83 176.44 164.15 202.80 182.40 *Si 150.58 178.08 200.76 193.81 195.27 K-(Na+Ca) -176.85 -110.24 -118.52 -64.58 -127.54 Fe+Mg+Ti 83.68 67.79 102.25 32.75 56.50 Al-(Na+K+2Ca) 8.62 39.46 30.98 30.79 26.24
36
(Na+K)/Ca A/CNK
4.82 1.04
4.19 1.16
4.63 1.14
10.73 1.13
5.98 1.11
Desná Metagranite Quartz-rich, potassic, peraluminous, leucocratic, S-type, granite LeuGV6e GV49 GV51 GV62 SiO2 73.78 76.66 77.81 77.10 TiO2 0.05 0.14 0.07 0.11 Al2O3 13.99 12.46 12.06 12.55 Fe2O3 0.14 0.53 0.59 0.12 FeO 0.42 0.40 0.25 0.25 MnO 0.07 0.03 0.02 0.02 MgO 0.19 0.12 0.07 0.04 CaO 0.58 0.07 0.06 0.06 Na2O 3.79 3.25 3.61 3.95 K2O 5.67 5.54 5.11 4.79 P2O5 0.04 n.d. 0.02 0.02 Mg/(Mg+Fe) 0.35 0.19 0.13 0.16 K/(K+Na) 0.50 0.53 0.48 0.44 Nor.Or 34.20 33.48 30.67 28.80 Nor.Ab 34.74 29.85 32.93 36.10 Nor.An 2.67 0.36 0.17 0.17 Nor.Q 26.76 34.32 34.89 33.53 Na+K 242.69 222.50 224.99 229.17 *Si 159.73 201.96 205.97 197.85 K-(Na+Ca) -12.26 11.50 -9.07 -26.83 Fe+Mg+Ti 12.94 16.94 13.49 7.36 Al-(Na+K+2Ca) 11.36 19.69 9.70 15.15 (Na+K)/Ca 23.47 178.25 210.29 214.19 A/CNK 1.05 1.09 1.04 1.07
214 75.53 0.17 12.78 0.83 0.51 0.02 0.09 0.36 3.51 5.06 0.01 0.11 0.49 30.65 32.31 1.76 33.11 220.70 194.04 -12.25 21.87 17.43 34.38 1.07
GV129 75.69 0.15 12.65 1.06 0.53 0.03 0.06 0.70 3.81 5.12 0.01 0.07 0.47 30.67 34.68 3.45 30.40 231.66 179.93 -26.72 24.03 -8.20 18.56 0.97
Desná Metatonalite Quartz-normal, sodic, peraluminous to metaluminous, melanocratic, I/S type, tonalite to diorite GV130 GV131 155B GV32 2A 41A SiO2 61.13 60.68 59.68 59.83 57.03 63.72 TiO2 0.77 0.81 0.91 0.96 0.82 0.77 Al2O3 16.59 16.82 17.28 17.10 18.12 15.31 Fe2O3 2.34 2.30 1.67 2.14 1.73 2.30 FeO 3.74 4.01 4.62 4.88 4.80 3.71 MnO 0.12 0.13 0.11 0.12 0.15 0.14 MgO 2.81 2.93 3.22 3.53 3.16 3.14 CaO 5.62 5.72 3.81 3.79 6.95 2.67 Na2O 3.77 3.71 3.91 3.80 4.29 3.53 K2O 1.99 1.84 1.84 2.04 1.29 1.94 P2O5 0.15 0.16 0.18 0.17 0.18 0.18 Mg/(Mg+Fe) 0.46 0.46 0.48 0.48 0.46 0.49 K/(K+Na) 0.26 0.25 0.24 0.26 0.17 0.27 Nor.Or 12.63 11.72 12.04 13.27 8.30 12.64 Nor.Ab 36.36 35.91 38.88 37.57 41.94 34.96 Nor.An 28.89 29.46 19.62 19.47 36.25 13.30 37
Nor.Q Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) Na+K)/Ca A/CNK
13.94 163.91 108.42 -179.62 160.77 -38.55 1.64 0.90
13.88 158.79 109.85 -182.65 167.51 -32.48 1.56 0.92
15.18 165.24 120.56 -155.05 176.56 38.22 2.43 1.14
14.65 165.94 120.93 -146.89 194.39 34.70 2.46 1.13
5.22 165.83 67.94 -234.98 177.20 -57.85 1.34 0.87
Desná Orthogneiss Quartz-rich, sodic, peraluminous, mesocratic, S-type, M-series, granite n = 13 Median Min Max QU1 QU3 SiO2 75.94 59.21 80.19 69.84 76.88 TiO2 0.11 0.07 0.68 0.08 0.28 Al2O3 13.56 11.81 17.62 12.48 14.39 Fe2O3 0.64 0.38 2.03 0.56 0.78 FeO 0.42 0.10 3.45 0.29 1.97 MnO 0.04 0.03 0.09 0.03 0.06 MgO 0.30 0.09 3.60 0.17 1.46 CaO 0.71 0.19 4.63 0.31 2.10 Na2O 3.68 3.24 4.60 3.52 3.94 K2O 2.92 1.86 5.32 2.24 4.32 P2O5 0.05 0.01 0.78 0.02 0.15 Mg/(Mg+Fe) 0.40 0.15 0.60 0.29 0.47 K/(K+Na) 0.33 0.23 0.49 0.27 0.46 Nor.Or 17.79 11.44 31.84 13.56 26.35 Nor.Ab 34.88 30.29 42.70 32.78 36.48 Nor.An 3.27 -0.64 23.29 1.21 10.08 Nor.Q 33.99 12.21 51.01 29.77 37.48 Na+K 189.14 144.05 233.00 177.83 202.83 *Si 201.49 104.89 296.79 184.07 220.77 K-(Na+Ca) -77.80 -154.40 -6.25 -112.83 -20.51 Fe+Mg+Ti 19.21 15.01 153.53 15.68 80.13 Al-(Na+K+2Ca) 36.66 -13.61 75.75 12.98 47.90 (Na+K)/Ca 14.94 2.02 63.99 5.03 42.15 A/CNK 1.18 0.95 1.49 1.06 1.22 Trace elements (mean values in ppm): Desná Orthogneiss – B 12, Co 19, Cr 33, Cu 48, Rb 48, Sr 400, Y 23, Zn 63, Zr 210.
38
24.62 155.10 166.66 -120.33 168.04 50.33 3.26 1.22
Fig. 5.19. Desná Orthogneiss ABQ and TAS diagrams. 1 – Desná Metatonalite, 2 – Desná Metagranodiorite, 3 – Desná Metagranite and Leucogranite.
References CHÁB, J. – FIŠERA, M. – FEDIUKOVÁ, E. et al. (1984): Problémy tektonického a metamorfního vývoje východní části Hrubého Jeseníku. – Sbor. geol. Věd, Geol. 39, 27–72. FIŠERA, M. – PATOČKA, F. (1989): Geochemistry of Variscan blastomylonites of the Vidly pod Pradědem locality, the Hrubý Jeseník Mts.: palaeotectonic implications. – Věst. Ústř. Úst. geol. 64, 301–312. HANŽL, P. – JANOUŠEK, V. – ŽÁČEK, V. – WILIMSKÝ, D. – AICHLER, J. – ERBAN, V. – PUDILOVÁ, M. – CHLUPÁČOVÁ, M. – BURIÁNKOVÁ, K. – MIXA, P. – PECINA, V. (2007): Magmatic history of granite-derived mylonites from the southern Desná Unit (Silesicum, Czech Republic). – Mineral. Petrology 89, 45–75. KOPEČNÝ, V. (1981): Petrografická charakteristika bedřichovské kry (Jeseníky). – Acta Univ. Palack. Olomouc, Fac. rer. nat. geogr. geol. 20, 19–34. KRÖNER, A. – ŠTÍPSKÁ, P. – SCHULMANN, K. – JAECKEL, P. (2000): Chronological constraints on the pre-Variscan evolution of the northeastern margin of the Bohemian Massif, Czech Republic. In: Franke, W. – Haak, V. – Oncken, O. – Tanner D. Eds: Orogenic Processes: Quantification and Modelling in the Variscan fold belt. – Geol. Soc. London, Spec. Publ. 179, 175–197. KUŽVART, M. (1966): K otázce stáří žuly od Horní Libiny u Uničova. – Čas. Mineral. Geol. 11, 15–19. MALUSKI, H. – RAJLICH, P. – SOUČEK, J. (1995): Pre-variscan, Variscan and Early Alpine thermotectonic history of the north-eastern Bohemian Massif: An Ar/Ar study. – Geol. Rdsch. 84, 345–358. ŽÁČEK, V. Ed. (2000): Vysvětlivky k základní geologické mapě České republiky 1 : 25 000, 14-421 Velké Losiny, pp. 75. – MS Czech Geol. Survey, Prague.
STRZELIN ORTHOGNEISS Regional position: part of the “Strzelin massif” in the Moravo-Silesian Domain in Poland. Rock types: Strzelin Orthogneiss – fine to medium-grained, porphyritic biotite-muscovite granitogneiss, Gosciecice Orthogneiss, Nowolesie Orthogneiss, Stachóv Orthogneiss (dark and light facies).
Size and shape (in erosion level): not characterized. Age and isotopic data: 600 ± 8 Ma, 568 ± 6 Ma (U-Pb zircon). Geological environment: Žulová-Strzelin Composite Massif. Zoning: unknown. Mineralization: unknown.
References
39
OBERC-DZIEDZIC, T. – KLIMAS, K. – KRYZA, R. – FANNING, M. (2001): SHRIMP zircon geochronology of the Neoproterozoic Strzelin Gneiss: Evidence for the Moravo-Silesian Zone affinity of the Strelin Massif, Fore-Sudetic Block, SW Poland. – Geolines 13, 96–97.
VARISCAN INTRUSIONS 5.5. ŽULOVÁ-STRZELIN COMPOSITE MASSIF 6.
Bialy Kościol Granite – coarse-grained muscovite-biotite granite, 7. Gebczyce Granite – fine-grained muscovite-biotite granite, 8. Gromnik Granite – fine-grained muscovitebiotite granite ( subhorizontal dyke) 9. Gęsiniec Tonalite – medium-grained tonalite, – fine-grained quartz diorite, – fine-grained granodiorite 10. Tonalite and quartz diorite dykes – medium-grained diorite (B), fine-grained diorite (C), microdiorite (D). Size and shape: Žulová massif 150 km2, elliptical, part of the granodiorite intrusion, continuing in Poland as Strzelin massif (partly covered by Quaternary sediments and older country rocks). Žulová-Strzelin Composite Massif 60 × 7 km. According to gravity model the maximum thickness of 6 km of the Žulová intrusion is expected 5 km SE of Žulová town. Older hybrid granitoids form large enclaves. The Strzelin granite intrusion consists of small isolated bodies, mostly stocks, flat veins and sills up to tens of metres thick. Granite contacts are sharp and discordant. Gęsiniec Intrusion forms a stock cut by a dyke of leucocratic two-mica granite with distinct contact metamorphic effects. Age and isotopic data: Žulová (Steinberg) Granite 335 ± 7.5 Ma (K-Ar biotite), 260 Ma (K/Ar muscovite), 310 Ma (Ar/Ar), 292 ± 3 Ma (Ar/Ar amphibole), 290 ± 3 Ma (Ar/Ar biotite), Starost Granodiorite 341 ± 20 Ma, 349 ± 10 Ma (K/Ar), Gebczyce and Kościol Granites 330 ± 6 Ma (Rb-Sr whole-rock), pegmatite 304 Ma (U-Pb monazite). Strzelin intrusion: tonalite 291 ± 5.5 Ma (Pb-evaporation zircon), 301 ± 7 Ma (Pbevaporation zircon), country rocks 279.4 ± 1.8 to
Fig. 5.20. Žulová-Strzelin Composite Massif geological sketch-map. 1 – Žulová Granite, 2 – Marginal Granite, 3 – Starost Granodiorite, 4 – Hybrid Granodiorite/diorite, 5 – faults.
Regional position: isolated (Žulová) intrusion in the Silesicum and a group of small stocks and dykes (the Strzelin Intrusion). The tonalite and quartz diorite dykes are several metres to several tens of metres thick. The size, shape and internal structure of the intrusions were defined on the basis of the interpretation of the borehole material. Rock types: 1. Hybrid Granodiorite – hornblende-biotite diorite – quartz diorite, tonalite (older enclaves), 2. Marginal Granite, 3. Žulová (Steinberg) Granite – biotite granite, 4. Starost (Sorge) Granodiorite – hornblende– biotite granodiorite to tonalite, 5. Alkali-feldspar Granite,
40
284.6 ± Ma (Ar-Ar muscovite), biotite granite and two-mica granite 347 ± 12, 330 ± 6 Ma respectively (Rb-Sr whole rock). Geological environment: Upper Proterozoic to Silurian and Devonian (Staré Město, Vrbno, Branná, and Velké Vrbno groups of mica schist and gneisses with lenses of limestone, conglomerates, and quartzites. Contact aureole: Sharp contact, sub-parallel to schistosity of the country rock. In SW is delimited by the Sudetic fault. Numerous roof pendants and scarce relicts of MP/MT-HT metamorphism. Outer refoliation belt in exocontact is penetrated by numerous dykes and stocks of inhomogeneous muscovite pegmatite and biotite granodiorite. A
periplutonic migmatitization along the eastern exocontact. The Strzelin granite intrusion has produced little contact metamorphic effects (hornfelses). Zoning: Vertical compositional zoning – relicts of the hornblende-biotite granodiorite at the roof of the Žulová-Strzelin Composite Massif. Frequent xenoliths of country rocks and granitized tonalites and diorites (the Great Tonalite Dyke) in SW endocontact of the Žulová-Strzelin Composite Massif. Mineralization: Mineralogical occurrences of molybdenite and scheelite, cassiterite and fluorite. Heat production (μWm-3): Starost Granodiorite 2.04, Žulová Granite 2.91.
Fig. 5.21. Strzelin (Intrusion) Massif geological sketch-map (adapted after Oberc-Dziedzic 2007). Blue colour– tonalite and quartz diorite, red colour – granite.
41
Fig. 5. 22. Strzelin Massif (Gęsiniec Stock) ABQ and TAS sketch diagrams: 1 – Strzelin Granite, 2 – Strzelin Granodiorite, 3 – Gęsiniec Tonalite.
Strzelin Massif Strzelin Granite – quartz-rich, sodic/potassic, low peraluminous, leucocratic, I-type granite Strzelin Granodiorite – quartz-rich/normal, sodic, low peraluminous, leuco/mesocratic, I-type granodiorite 1granite 2granite 3granite 5granodiorite 6granodiorite StrzelinGranite StrzelinGranodiorite SiO2 74.36 73.93 74.72 66.15 67.51 TiO2 0.27 n.d. 0.17 0.66 n.d. Al2O3 12.88 13.93 13.25 16.62 17.54 Fe2O3 0.68 0.32 0.10 0.56 2.44 FeO 1.01 1.15 1.42 3.53 n.d. MnO 0.04 0.03 0.20 0.05 n.d. MgO 1.08 0.20 0.22 1.54 1.19 CaO 1.38 1.68 0.93 3.80 3.52 Na2O 3.89 3.14 3.06 3.74 3.90 K2O 3.95 4.86 5.09 2.95 3.99 P2O5 0.28 0.25 0.05 0.10 n.d. Mg/(Mg+Fe) 0.54 0.20 0.19 0.40 0.49 K/(K+Na) 0.40 0.50 0.52 0.34 0.40 Nor.Q 30.87 31.43 32.70 20.14 19.01 Nor.Or 23.99 29.52 31.16 18.34 23.91 Nor.Ab 35.91 28.98 28.47 35.35 35.51 Nor.An 5.14 6.87 4.44 19.15 17.71 Na+K 209.40 204.52 206.82 183.32 210.57 *Si 186.73 185.66 196.66 138.49 122.12 K-(Na+Ca) -66.27 -28.09 -7.26 -125.81 -103.90 Fe+Mg+Ti 52.77 24.99 28.62 102.66 60.10 Al-(Na+K+2Ca) -5.68 9.12 20.22 7.54 8.34 (Na+K)/Ca 8.51 6.83 12.47 2.71 3.35 A/CNK 1.00 1.06 1.09 1.03 1.02
42
Gęsinec Tonalite Quartz-normal, sodic, metaluminous, melanocratic, I-type tonalite n=7 Median Min Max QU1 SiO2 55.04 54.27 66.97 54.27 TiO2 1.50 0.58 1.83 0.88 Al2O3 17.88 12.52 19.68 12.52 Fe2O3 1.53 0.10 10.83 0.87 FeO 5.85 0.00 6.30 0.00 MnO 0.13 0.05 0.20 0.10 MgO 3.30 1.29 8.37 3.00 CaO 6.40 3.75 7.37 4.85 Na2O 3.20 1.73 4.34 1.73 K2O 2.02 1.66 2.59 1.66 P2O5 0.37 0.15 0.45 0.33 Mg/(Mg+Fe) 0.47 0.39 0.60 0.41 K/(K+Na) 0.29 0.22 0.50 0.23 Nor.Q 9.16 3.98 22.10 3.98 Nor.Or 13.25 10.74 18.25 10.74 Nor.Ab 31.90 18.52 40.99 18.52 Nor.An 32.84 18.53 37.37 25.16 Na+K 146.15 110.82 179.33 110.82 *Si 91.99 61.40 147.63 61.40 K-(Na+Ca) -174.50 -212.99 -87.32 -212.99 Fe+Mg+Ti 197.18 88.16 362.16 192.37 Al-(Na+K+2Ca) -28.43 -37.92 14.29 -37.92 (Na+K)/Ca 1.28 1.16 2.68 1.16 A/CNK 0.95 0.90 1.06 0.90
QU3 56.64 1.50 17.88 1.53 5.85 0.13 3.30 6.40 3.62 2.02 0.37 0.47 0.29 14.88 13.25 35.59 32.84 152.06 136.88 -167.64 197.18 -23.28 1.28 0.96
References BEYER, J. (2003): Petrography and succession of granitoids from the southern part of the Strzelin Crystalline Massif (SW Poland) – preliminary data. – Geolines 16, 15–16. CHÁB, J. – ŽÁČEK, V. (1994): Geology of the Žulová pluton mantle (Bohemian Massif, Central Europe). – Věst. Čes. geol. Úst. 69, 1–12. HROUDA, F. – AICHLER, J. – CHLUPÁČOVÁ, M. – CHADIMA, CH. (2001): The magnetic fabric in the Žulová Pluton and its tectonic implications. – Geolines, 13, 62–63. JEDLIČKA, J. (1997): Žulovský masiv ve Slezsku – přehled dosavadních znalostí. – Zpr. geol. Výzk. v Roce 1996, 121–123. KRYSTEK, I. – HARAZIM, S. (1956): Petrografie a tektonika Žulovského plutonu. – Přírodověd. Sbor. ostrav. Kraje 3, 29–37. LORENC, M. W. (1994): Role of basic magmas in the granitoid evolution (a comparative study of some Hercynian massifs). – Geologica sudet. 28, 3–121. LORENC, M. W. – OLSZYNSKI, W. – WISZNIEWSKA, J. (1998): Distribution of phosphorus in granites and pegmatites of the Sudetes Mts. and rapakivi granites from Mazury Complex (NE Poland). – Acta Univ. Carol., Geol. 42, 69–72. LOSOS, Z. – HLADÍKOVÁ, J. (1988): Izotopické složení grafitů a karbonátů z pláště žulovského masívu a jeho využití pro výpočet teplot metamorfózy. – Scr. Univ. Purkyn. brun., Geol. 18, 261–272. MACHOWIAK, K. – ARMSTRONG, R. – KRYZA R. – MUSZYŃSKI, A. – (2008): Late-orogenic magmatism in the Central European Variscides: SHRIMP U-Pb zircon age constraints from the Żeleżniak Intrusion, Kaczawa Mountains, West Sudetes. – Geologica sudet. 40, 1–18. MALUSKI, H. – RAJLICH, P. – SOUČEK, J. (1995): Pre-Variscan, Variscan and Early Alpine thermotectonic history of the north-eastern Bohemian Massif: Ar40/Ar39 study. – Geol. Rdsch. 84, 345–358. MORAWSKI, T. (1973): Granity masywu Strzelin-Žulova. – Kwart. geol. 17, 924–924.
43
NOVÁK, M. – KIMBROUGH, D. L. – TAYLOR, M. C. – ČERNÝ, P. – ERCIT, S. T. (1998): Radiometric U/Pb data of monazite from granitic pegmatite at Velká Kraš, Žulová granite pluton, Silesia, Czech Republic. – Geol. carpath. 42, 309–310. OBERC-DZIEDZIC, T. (1991a): Pozycja geologiczna granitoidów strzeliňskich. – Acta Univ. wratislav. 1375, Prace geol. mineral. 29, 295–324. OBERC-DZIEDZIC, T. (1991b): The geology of the Strzelin granitoids (Fore-Sudetic Block, SW Poland). – Miner. Soc. Poland 14, 22–31. OBERC-DZIEDZIC, T. (1999):The geology of Strzelin granitoids (Fore-Sudetic Block, SW Poland). – Mineral. Soc. Poland. Spec. Pap. 14, 22–23. OBERC-DZIEDZIC, T. (2002): Polycycle structure of the tonalite-diorite dykes in the Strzelin Massif: A result of magmatic differentiation or separated magmatic pulses? – Mineral. Soc. Poland Spec. Pap. 20, 159–161. OBERC-DZIEDZIC, T. (2007): Internal structure of the granite and tonalite intrusions in the Strzelin massif, Fore-Sudetic block, SW Poland. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. mineral. 1, 217– 229. OBERC-DZIEDZIC, T. – PIN, C. – DUTHOU, J. K. – COUTERIE, J. P. (1996): Age and origin of the Strzelin granitoids (Fore-Sudetic Block, Poland): 87Rb/86Sr data. – Neu. Jb. Mineral., Abh. 17, 187–198. OLSZYNSKI, W. (1992): Post-magmatic ore mineralization in the Strzelin Granitoids (Lower Silesia). – Acta geol. pol. 22, 109–126. PECINA, V. et al. (2005): Explanatory text to the geological map 1 : 25,000 sheet 14-221 Žulová, Czech Geol. Survey, Prague. (In Czech) PIETRANIK, A. – KOEPKE, J. – PUZIEWICZ, J. (2006): Crystallization and resorption in plutonic plagioclase: implications on the evolution of granodiorite magma (Gęsiniec granodiorite, Strzelin crystalline massif, SW Poland). – Lithos 86, 260–280. SOUČEK, J. (1987): Minerální asociace hornin pláště žulovského plutonu. – Práce Odb. přír. Věd Vlastivěd. Úst. (Olomouc) 36, 78–83. SZCZEPAŃSKI, J. (2002): The 40Ar/39Ar cooling ages of white micas from the Jegłowa Beds (Strzelin massif, Fore-Sudetic block, SW Poland). – Geologica sudet. 34, 1–7. TURNIAK, K. – TICHOMIROWA, M. – BOMBACH, K. (2006): Pb-evaporation zircon ages of posttectonic granitoids from the Strzelin Massif (SW Poland). – Mineral. pol. Spec. Pap. 29, 212–215. WISZNIEWSKA, J. – KRZEMIŃSKA, E. – MAZUR, S. – GAWĘDA, A. – KOZŁOWSKI, A. (2007): Foreword – brief outline of geology of Poland. In: Kozlowski, A. – Wiszniewska, J. Eds: Granitoids in Poland. – Arch. Mineral. Monogr. 1, 5–7. ZACHOVALOVÁ, K. – LEICHMANN, J. – ŠVANCARA, J. (2002): Žulová Batholith: a post-orogenic, fractionated ilmenite-allanite I-type granite. – J. Czech Geol. Soc. 47, 35–44. Žulová Granite Quartz-rich, sodic-potassic, peraluminous (moderately), calc-alkaline, sub-mesocratic, S-type, Iseries, granite n=13 Median Min Max QU1 QU3 SiO2 73.93 71.48 75.23 72.53 74.28 TiO2 0.22 0.00 0.37 0.18 0.26 Al2O3 13.77 12.71 14.85 13.25 14.20 Fe2O3 0.68 0.10 2.13 0.35 1.02 FeO 1.01 0.63 2.12 0.97 1.31 MnO 0.04 0.02 0.20 0.04 0.05 MgO 0.26 0.13 1.08 0.24 0.45 CaO 1.13 0.10 2.04 0.67 1.41 Na2O 3.63 3.06 3.89 3.30 3.81 K2O 4.22 3.48 5.09 4.03 4.87 P2O5 0.05 0.00 1.35 0.01 0.12 Mg/(Mg+Fe) 0.22 0.13 0.54 0.19 0.30 K/(K+Na) 0.43 0.38 0.52 0.41 0.49
44
Nor.Q Nor.Or Nor.Ab Nor.An Na+K *Si K-(Na+Ca) Fe+Mg+Ti Al-(Na+K+2Ca) (Na+K)/Ca A/CNK
31.43 25.84 33.93 4.44 206.82 186.73 -41.21 35.93 13.52 10.54 1.06
28.78 21.34 28.47 -1.96 192.06 163.75 -85.44 22.00 -5.93 5.41 1.00
34.68 31.16 35.96 10.44 223.42 203.51 -7.26 60.88 81.32 118.32 1.39
30.84 24.48 30.47 0.51 204.52 179.02 -54.35 28.69 4.64 7.75 1.03
33.15 29.61 35.51 6.41 210.98 198.14 -25.82 51.12 30.75 18.70 1.14
Trace elements (mean values in ppm): Žulová Granite – Ba 93, Ce 22, Cr 17, La 14, Nb 20, Pb 22, Rb 305, Sr 24, Ta 5, Th 12,U 8, Y 23, Zn 30, Zr 55 (Lorenc et al. 1998). Starost Granodiorite Quartz-normal, sodic, low peraluminous, mesocratic, I/S-type granodiorite n=7 Median Min Max QU1 SiO2 70.54 67.06 74.56 68.75 TiO2 0.04 0.00 0.20 0.00 Al2O3 15.30 13.86 16.25 13.88 Fe2O3 1.10 0.00 1.75 0.64 FeO 0.58 0.00 2.39 0.00 MnO 0.07 0.00 0.26 0.00 MgO 0.60 0.28 1.06 0.42 CaO 2.17 1.26 4.47 1.36 Na2O 3.58 3.20 4.50 3.30 K2O 3.87 3.06 5.29 3.25 P2O5 0.26 0.00 0.41 0.00 Mg/(Mg+Fe) 0.34 0.14 0.43 0.27 K/(K+Na) 0.40 0.33 0.52 0.36 Nor.Q 28.04 19.08 33.97 23.42 Nor.Or 23.15 18.80 31.98 19.97 Nor.Ab 33.44 29.40 41.78 30.75 Nor.An 10.36 3.96 18.87 4.14 Na+K 202.25 179.85 216.34 184.53 *Si 171.63 105.96 197.42 141.06 K-(Na+Ca) -88.60 -123.64 -15.19 -110.11 Fe+Mg+Ti 40.55 29.70 66.96 36.81 Al-(Na+K+2Ca) 20.35 -90.55 52.06 8.49 (Na+K)/Ca 4.65 2.67 8.96 3.86 A/CNK 1.10 0.76 1.24 1.03
QU3 71.07 0.18 15.61 1.56 1.93 0.20 0.65 2.66 3.69 3.98 0.35 0.38 0.41 29.83 23.32 33.80 12.05 212.94 173.73 -59.37 45.19 26.00 6.01 1.11
Trace elements (mean values in ppm): Tonalite – Ba 555, Cr 33, Cu 46, La 14 ,Nb 12, Ni 16, Rb 54, Sr 430, Zn 54, Zr 55. Diorite – Ba 592, Cr 50, Cu 36, La 14, Nb 12, Ni 20, Pb 14, Rb 44, Sr 275, Zn 55, Zr 205 (Lorenc et al. 1998).
45
Fig. 5. 23. Žulová-Strzelin Composite Massif ABQ and TAS diagrams: 1 – Žulová Granite, 2 – Starost Granodiorite, 3– Hybrid Granodiorite.
5.6. ŠUMPERK MASSIF Regional position: within the Moravo-Silesicum, at the boundary between the Desná and Keprník Domes, similar to the Rudná Stock (see Fig. 5.18). Rock types: Šumperk Granodiorite – deformed leucocratic medium-grained biotite granite to granodiorite.
Size and shape (in erosion level): two large bodies and several satellite outcrops represent a tectonically segmented intrusion by the Temenice and Bludov faults. Sheet-like in shape. Age and isotopic data: Carboniferous? No isotopic data.
Fig. 5.24. Šumperk Massif geological sketch-map (adapted after Cháb et al. 2007). 1 –Šumperk Granodiorite, 2 – faults.
Contact aureole: sharp contact with marbles of Devonian age, tectonic contacts with the Keprník and Desná Orthogneiss. Geological environment: the Keprník and Desná orthogneisses the Branná Group.
Contact aureole: narrow contact zone, distinctive selective thermal effects on Devonian marbles (tactite = “bludovite”). Zoning: not reported. Mineralization: pegmatite and quartz-specularite veins at the exocontact.
References CHÁB, J. – STRÁNÍK, Z. – ELIÁŠ, M. Eds (2007): The geological map of the Czech Republic 1 : 500 000. – Czech Geol. Survey, Prague.
46
CHLUPÁČOVÁ, M. – PECINA, V. – HROUDA, F. (1999): Magmatic anisotropy of the Šumperk granodiorite and its tectonics. – Geolines 8, 14. MÍSAŘ, Z. (1959): Geologicko-petrografická studie šumperského granodioritového tělesa. – Sbor. Ústř. Úst. geol. Odd. geol. 25, 335–376. Talla D., Losos Z., Sulovský P., Čopjaková R. (2005): Studium optických anomálií v granátech z Ca-skarnů brněnského, šumperského a žulovského masivu. Geol.výzk. Mor. Slez. v r. 2004, Masarykova Univerzita: ÚGV, ČGS, ISSN 1212-6209, 2005, XII/2005, 1, s. 98-102 Šumperk Granite Quartz-normal, sodic, leucocratic, metaluminous granite grd1 jih2 sev3 SiO2 71.18 69.43 72.07 TiO2 0.06 0.12 0.04 Al2O3 16.02 16.01 16.05 Fe2O3 0.67 1.64 0.39 FeO 0.39 1.21 0.43 MnO 0.04 0.02 0.01 MgO 0.06 0.60 0.35 CaO 3.53 2.93 2.68 Na2O 4.03 4.33 4.26 K2O 3.05 3.57 4.05 P2O5 0.12 0.06 n.d. Mg/(Mg+Fe) 0.09 0.28 0.44 K/(K+Na) 0.33 0.35 0.38 Nor.Or 18.28 21.41 23.96 Nor.Ab 36.71 39.47 38.30 Nor.An 16.97 14.36 13.32 Nor.Q 27.02 22.17 23.50 Na+K 194.80 215.53 223.46 *Si 158.12 134.82 144.51 K-(Na+Ca) -128.23 -116.18 -99.27 Fe+Mg+Ti 16.07 53.79 20.06 Al-(Na+K+2Ca) -6.10 -5.62 -3.85 (Na+K)/Ca 3.09 4.13 4.68 A/CNK 0.99 0.99 0.99
lom4 69.08 0.07 16.87 1.11 0.96 0.03 0.59 3.02 4.25 2.84 0.08 0.35 0.31 17.17 39.06 14.80 25.00 197.45 149.89 -130.70 42.79 26.14 3.67 1.09
grd25 70.90 0.26 14.61 2.05 n.d. 0.04 0.49 2.37 3.83 3.79 0.18 0.32 0.39 23.09 35.46 10.90 27.53 204.06 161.10 -85.38 41.10 -1.68 4.83 1.01
Fig. 5. 25. Šumperk Massif and Rudná Stock ABQ and TAS diagrams. 1 – Šumperk Granite, 2 – Rudná Granite.
47
5.7. RUDNÁ STOCK Regional position: within the MoravoSilesicum, at the boundary between the Desná and Keprník Domes, similar to the Šumperk Massif. Rock types: Rudná Granite – foliated finegrained leucocratic biotite to two-mica granitegranodiorite up to orthogneiss with magnetite and pyrite. Size and shape (in erosion level): tectonically segmented intrusion oval in shape.
Age and isotopic data: Rudná Granite 330 Ma (Rb-Sr whole rock). Geological environment: amphibolites and paragneisses. Contact aureole: migmatite aureole of several metres in thickness. Zoning: unknown. Mineralization: rare-element pegmatites.
References HANŽL, P. – JANOUŠEK, V. – ŽÁČEK, V. – WILIMSKÝ, D. – AICHLER, J. – ERBAN, V. – PUDILOVÁ, M. – CHLUPÁČOVÁ, M. – BURIÁNKOVÁ, K. – MIXA, P. – PECINA, V. (2007): Magmatic history of granite-derived mylonites from the southern Desná Unit (Silesicum, Czech Republic). – Mineral. Petrology 89, 45–75. ŽÁČEK, V. Ed. (2000): Vysvětlivky k základní geologické mapě České republiky 1 : 25 000, 14-421 Velké Losiny, pp. 75. – MS Czech Geol. Survey, Prague. Rudná Granite Quartz-normal, sodic, weakly peraluminous, leucocratic, I-& S-type granite 7 biotite alkali1881RUD 6 biotite feldspar granite alkali-feldspar granodiorite granite SiO2 75.53 75.59 69.23 TiO2 0.17 0.13 0.45 Al2O3 12.78 13.00 15.71 Fe2O3 0.83 1.02 0.93 FeO 0.51 0.43 2.17 MnO 0.02 0.02 0.03 MgO 0.09 0.25 0.97 CaO 0.36 0.54 2.42 Na2O 3.51 4.08 4.95 K2O 5.06 4.96 2.21 P2O5 0.01 0.04 0.04 Mg/(Mg+Fe) 0.11 0.25 0.36 K/(K+Na) 0.49 0.44 0.23 Nor.Or 30.65 29.60 13.48 Nor.Ab 32.31 37.01 45.89 Nor.An 1.75 2.44 12.12 Nor.Q 33.12 29.43 23.25 Na+K 220.70 236.97 206.66 *Si 194.04 175.97 148.65 K-(Na+Ca) -12.25 -35.98 -155.96 Fe+Mg+Ti 21.90 26.60 71.55 Al-(Na+K+2Ca) 17.43 -0.94 15.55 (Na+K)/Ca 34.38 24.61 4.79 A/CNK 1.07 1.00 1.06
48
Atlas of plutonic rocks and orthogneisses in the Bohemian Massif 5. Brunovistulicum and Moravosilesicum
J. Klomínský, T. Jarchovský, G. S. Rajpoot Published by the Czech Geological Survey Prague 2010 First edition Printed in the Czech Republic 03/9 446-412-10 ISBN 978-80-7075-751-2
Správa úložišť radioaktivních odpadů Dlážděná 6, 110 00 Praha 1 Tel.: 221 421 511 E-mail:
[email protected] www.surao.cz