B o u n d a r y Value Problems for P a r t i a l Differential Equations and Applications i n Electrodynamics
This page is intentionally left blank
BOUNDARY VALUE PROBLEMS FOR PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS IN ELECTRODYNAMICS IN. E . TovMAsyAN Stale Engineering
EdiTEd
University of Armenia
by
L . Z . GEvoRkyAN State Engineering
University of Armenia
C . V . ZAltARyAN State Engineering
Univeristy of Armenia
World Scientific Vb
Singapore • NewJersey
• London • Hong Kong
Published by World S c i e n c e Publishing Co. Pie. Lid. P O Box 128. Fairer Road, Singapore 9128 USA office: Suite IB, 1060 Main Street. River Edge, NJ 07661 UK office; 73 Lynton Mead, Tolteridge, London N20 SDH
BOUNDARY V A L U E PROBLEMS FOR P A R T I A L D I F F E R E N T I A L EQUATIONS A N D APPLICATIONS I N E L E C T R O D Y N A M I C S Copyright © 1994 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book or pans thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.
For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc.. 27 Congress Street, Salem, MA 01970, USA.
ISBN 981-02-1351-4
Printed in Singapore by Utopia Press.
PREFACE
The
book
is
differential and
developed
equations,
technology.
practical
this
and
to
calculus,
I , the
differential
as
growth of
resolution
in
are
is
of
indicated. of
Cauchy
detailed
differential
convenient
new
for
problems
of
functional
I I I , the
From
the
that of
charges
i f
absent,
of of
and
sufficient
role
in
chapter
is
not
problem
this
a
well-posed allowed
f o r general
resolution
of
are
method is
in
to
general,
formulae
systems
of
and
partial
of
of
boundary
analytic such
analytic
value
functions
equations
are
functions,
problems
in
the
obtained. formulae
of
asymptotic
medium
the
of the
s o l u t i o n s of
Maxwell's
of propagation o f e l e c t r o m a g n e t i c energy
electromagnetic
are
systems
functions
and
representations
obtained the
necessary is
i n the class of
of
asymptotic
i s t h e law
of
half-space.
investigations
which
general
class
obtained
which
methods
ellipse,
for
the
A
problems
integral
b o u n d e d by
chapter
the
on t h e
Efficient
and
in
this
I I , singular equations
considered.
propagation
the for
methods
problems
main
analysis of
equations
chapter
particular,
oriented to of
Fourier transformation
the
problem
problem,
c o r r e c t boundary value
obtained.
as
value
The
resolve
In
number
functions,
well
the
the
mentioned
partial physics
theory
great
investigated.
solvability
investigation
equations
a
half-space
However
domains,
developed
problem
chapters.
boundary
equations
polynomial
are
the
for
applications in
technologies.
book c o n s i s t s o f 6
condition
value
constantly applied.
chapter
In
boundary
various wide
i t contains
in different
analysis are
In
the has
book t h e t h e o r y o f a n a l y t i c
operational
The
addition
applications,
application In
In
for which
contains
energy energy
i t
follows,
in
charges,
the
velocity
of
diminishes is
are
formulae
and
propagated
tends with
to
the
zero. I f speed
of
light. In
chapter
cylindrical The
problem
field of
IV,
the
parallel of
potentials conductors
determination
and
are of
the
c a p a c i t i e s of
these
quantities
i s reduced t o t h e system of equations
analytic
functions.
This
two
insulated
determined.
system
V
is
with
of
electromagnetic
the s h i f t
resolved
by
i n the
class
successive
approximations decreasing In are
and these
geometric
New
analytic
and e f f i c i e n t machinery
efficiently
Diriclet
differential
equations
Chapter
concerning system
permits,
and
t o t h e exact
of resolutions
f o r
Poincare
solution
of qualitative
equations
with
example
problems
theorem.
o f algebraic equations
with
t o
mentioned.
resolve,
f o r elliptic
I . The main
a n d some Here
variable
The r e s u l t s
I at the investigation I , I I , VI
equations
are
more
systems
we
of
consists of
topological
coefficients
of this
chapter
the theoretical
chapters
I I I , I V , and V
chapters
I and I I t o t h e e f f i c i e n t
o f system o f
investigate
o f boundary problems
compose
part
properties of solutions
a parameters
Zuidentaerg-Tarsky's
Chapters
as
i n t h e d o m a i n s b o u n d e d by e l l i p s e .
generalized functions.
chapter
methods
V I , i s a n addendum t o c h a p t e r
investigation
differential
of
tend
c h a p t e r V, n u m e r o u s b o u n d a r y v a l u e p r o b l e m s f o r e l l i p t i c investigated
the
approximations
progression.
i n the class
are applied i n
i n the half-space.
part
are the application
problem also the
of
t h e book
of the results
resolution
of concrete
and
of the
application
problems. The
main advantages o f t h i s
1.
In
this
differential 2.
The
book,
equations
efficient
The
obtained
It
i s especially
opens
are
f o r more
general
o f wide
class
boundary
value
(Ch. V ) ;
applied
to
the
investigation
of
(Ch. I l l and I V ) .
important
o f Maxwell's
u p a new
of solution
results
problems
(Ch. I , V I ) ;
e q u a t i o n a r e shown
electromagnetic fields
solution
value
are considered
methods
problems f o r e l l i p t i c 3.
book a r e t h e f o l l o w i n g :
t h e boundary
t o mention
equation
approach
that
t h e asymptotic
(Ch. I l l ) o b t a i n e d
f o r the investigation
formulae
i n t h e book,
which
o f the electromagnetic
fields. The
methods
solution
developed
o f t h e problems
in this arising
book
may
be
i n different
applied domains
also
f o rt h e
o f science
and
technology. This
book
i s based m o s t l y
considerable part This
book
specialists radio,
can
be
including
electro
on t h e i n v e s t i g a t i o n s
o f i t i s published here
and
used
by
professionals
mathematics, heat
mechanics,
engineering,
engineering.
VI
of t h e author
for the first
and
i n
t h e wide
physics, many
and a
time. range
as w e l l
other
of
as i n
realms
of
L.Z.
Gevorgyan,
contribution text
i s read
supply would
the like
G.V.
i n the by
ft.A.
author t o thank
Zakaryan,
and
preparation of Andryan,
with
A.O.
precious
a l l these
V.N.
the
Babayan,
remarks
persons.
VII
Tovmasyan
layout of
and
and
this S.A.
have
a
book.
The
great full
Hairapetyan
improvements.
The
who
author
This page is intentionally left blank
CONTENTS
PREFACE
1
V
BOUNDARY
VALUE
PROBLEM
FOR
GENERAL
SYSTEMS
OF
DIFFERENTIAL
EQUATIONS I N THE HALF-SPACE 1.1.
Introduction
1.2.
Fourier Transformation
1.3.
Cauchy P r o b l e m
1.4.
P r o o f o f Theorems 1.1,
1.5.
Examples
1 1 of
Functions
Belonging
t o the
7
Class M
2
f o r Equation
(1.1]
9
1.2 a n d 1.3
17 26
THE SYSTEM OF SINGULAR INTEGRAL EQUATIONS I N THE CLASS OF ANALYTIC FUNCTIONS Reduction
o f Equation
Equation
i nthe Class
2.2.
Analysis o f t h e Equation
(2.1)
32
2.3.
Analysis o f t h eEquation
(2.2)
35
2.4.
E f f i c i e n t Method
2.5.
Reduction to
2.6.
o f Holder
30
f o r Solving t h eEquation
(2.1)
37
o f Sinqular Integral
Equations
(2.1) and (2.2)
Representation
Simply
Analytic
(2.1) t o t h e S i n g u l a r I n t e g r a l
o f Some C l a s s e s
Equations
Integral in
3
Z9
2.1.
Connected
41
o f Functions
Domains
through
Which
are Analytic
Functions
Which a r e
i nt h eUnit Circle
45
ASYMPTOTIC FORMULAS FOR SOLUTION OF MAXWELL'S EQUATIONS AND THE LAWS OF PROPAGATION OF ELECTROMAGNETIC ENERGY AT GREAT DISTANCES 3.1.
Cauchy Problem
3.2.
Formula
49 f o r Maxwell's
Equations
f o r S o l v i n g Cauchy P r o b l e m
System
f o r Maxwell's
System 3.3.
Harmonic O s c i l l a t i o n s
3.4.
Harmonic O s c i l l a t i o n s
49 Equations 53
o f E l e c t r o m a g n e t i c Waves
along t h ex-axis
56 o f E l e c t r o m a g n e t i c Waves
a l o n g t h e axes x , y and z
60
IX
3.5.
Cauchy P r o b l e m
f o r M a x w e l l ' s E q u a t i o n s System
G e n e r a l Boundary
with
more 6
Data
3.6.
On t h e B e h a v i o r o f Some I n t e g r a l s w i t h
3.7.
A s y m p t o t i c Formulas
3.8.
Law o f P r o p a g a t i o n o f E l e c t r o m a g n e t i c E n e r g y
f o r Solutions
Parameter
65
o f Cauchy's Problem f o r
M a x w e l l ' s E q u a t i o n s System
68 a t a Great 7
Distance 3.9. 3.10.
4
Cauchy P r o b l e m
f o r Maxwell's
Resume o f C h a p t e r
E q u a t i o n s System
a t
2
76
I I I
78
DETERMINATION OF ELECTRIC POTENTIALS AND CAPACITANCES OF TWO INSULATED CYLINDRICAL CONDUCTORS
81
4.1.
Formulation o f t h e Problem
4.2.
Uniqueness
4.3.
Reduction o f the Solution
4.4.
On t h e E x i s t e n c e o f t h e S o l u t i o n
Functional
4.5.
Solution
of the Solution
82 o f Problem A
84
o f Problem A t o t h e
Equation i n t h e Class o f A n a l y t i c
Functions
84
o f Problem A
o f Problem A by t h e Method
88
o f Successive
Approximations
5
3
91
4.6.
Solution
o f P r o b l e m A i n G e n e r a l Case
4.7.
Determination o f Conductor c a p a c i t a n c e s
98 102
E F F I C I E N T METHODS FOR SOLVING BOUNDARY VALUE PROBLEM FOR ELLIPTIC
EQUATIONS
5.1.
Boundary
5.2.
Certain
5.3.
Dirichlet
105
Value Problems
Restricted
b y Two C i r c u m f e r e n c e s
Boundary
Value Problems
a n d Neumann P r o b l e m
Domains R e s t r i c t e d 5.4.
General S o l u t i o n
5.5.
Dirichlet of
5.6.
f o r L a p l a c e E q u a t i o n i n Domains
Functions
f o r Weakly
128
E q u a t i o n s o f Second Order Connected
Elliptic
Problem
f o r Weakly
Connected
Elliptic
139 Systems o f
Second O r d e r E q u a t i o n s i n Domains R e s t r i c t e d b y E l l i p s e 5.7.
Poincare's Problem order
f o r Regular E l l i p t i c
131
Systems
E q u a t i o n s o f Second Order Beyond C i r c l e
Dirichlet
122
f o r Laplace Equation i n t h e
by a n E l l i p s e
of Elliptic
Problem
105 for Analytic
143
E q u a t i o n o f Second 152
5.B.
Dirichlet
5.9.
Certain Elliptic
5.10.
f o r Biharmonic
Equation
i nEllipse
o f Boundary Value
Integral
Equations
173
Problems f o r E l l i p t i c
i nt h e Class
o f Analytic
Systems
F u n c t i o n s 177
Examples
184
ADDITION TO CHAPTER 1
193
6.1.
Some C o r o l l a r i e s
6.2.
System o f O r d i n a r y D i f f e r e n t i a l
6.3.
Certain
of
Functions with
o f Zaidenberg-Tarsky
Theorem
Equations
i n the
193 Class
P o l y n o m i a l Growth
203
Estimates f o r Solutions o f Ordinary
Equations
System w i t h
Differential
a Parameter i n t h e Class o f
F u n c t i o n s o f Polynomial Growth 6.4. 6-5.
Z12
On a S y s t e m o f A l g e b r a i c E q u a t i o n s Reduction
of a Matrix with Analytic
with
a Parameter
217
Elements t o a Diagonal
Form 6.6.
165
Problems f o r Regular
Systems o f Second o r d e r E q u a t i o n s
Reduction to
5.11.
Problem
C o r r e c t Boundary Value
219
System o f A l g e b r a i c E q u a t i o n s Functions
i n the Class
o f Generalized 220
REFERENCES
220
XI
CHAPTER 1
BOUNDARY VALUE PROBLEM FOR GENERAL SYSTEMS OF DIFFERENTIAL
1.1.
Introduction
Let
R
n
be n - d i m e n s i o n a l
be d e n o t e d b y x=tx
will Let
now R "
be
space, t h e p o i n t s
where
will
thefollowing
( i =-1),
o f which
The p o i n t s
of this
space
i n t h e (n+1)-dimensional
be d e n o t e d by ( x , t ) , differential
t))
Euclidean
w h e r e xeR",
t>0.
t o be f o u n d ,
i i s
equation
i s the solution
A f u ) a n d B(cr) a r e s q u a r e m a t r i c e s o f o r d e r ra, a r e polynomials
, . . . ,cr ) . I n e q u a t i o n 1
space.
) .¬
half-space
k
unit
elements
c-{a
a
,...,x
U(x, t ) - f f J [ x , t ) , . . . ,U (3t,
imaginary the
Euclidean
,x
o f which
L e t us c o n s i d e r
a
EQUATIONS I N THE HALF-SPACE
of real
l i s considered
U{x,t)
(1.1) t h e s o l u t i o n
a
variables
; p as
n
m-dimensional
specified
vector-function.
otherwise,
m-dimensional vectors) w i l l Eguation
Here
be c o n s i d e r e d
(1.1) i s t h e matrix-form
differential
equations
and
further,
a l l m-dimensional
with
constant
as of
i f i t i sn o t
vector-functions
(or
vector-columns. t h e system
and,
i n
of
general,
partial complex
coefficients. In
t h edetailed
the
polynomial
and
V(x, t )
form
o f equation
be a s c a l a r
differential
function.
(1.1) looks
Then p j i g j )
as f o l l o w s .
will
L e t P ( c ) be
b e assumed
as t h e
operator
-M)n,. ,^v...J^j:i-MJ'-^. ). t
Suppose
that
t h e elements
t
of
matrices
1
A (
a n d B(cr) a r e t h e
a
polynomials the
b
(u) and
m a t r i x form
(u)
f/,k=l,...,»).
of the following
h • 1
Now
l e t us
define
Definition infinitely
i n t h e closed
and s a t i s f i e s
S
«•>(«
—,
k
1
C and
derivatives on
The
|jrl-*n a n d t-t+n
The
goal
(l+t)
a
) ez",
k
T
(l+lxl) ,
2
=
1
R^*
i fi ti s
( i . e . i nthe
fXytJeS;
,
(l.Z)
k=0,1, . . . ,
, |a|=a +. . ,+a ,
'
n
| xl=i/x^ + . . . + x
( 1 . 2 ) mean
2
on
V and o r d e r
function
of
and y i s a c o n s t a n t d e p e n d i n g
only
that
the rate
,V
(x,t)
growth.
(X,t))
t o t h e same c l a s s .
of this
chapter
U(x,t),
(1.1) . The u n i q u e
of the function
be r e f e r r e d
I f t h e elements
belong
belongs
solution
o f increase
i s not greater than that o f a polynomial
. The c l a s s H s o m e t i m e s w i l l
o f polynomial i
U(x,C)also
the
A
and i t s d e r i v a t i v e s
functions
the
v.
estimates
U(x,t)-(L'
here,
t o t h e c l a s s M,
half-space
ax " , . . . 8 x " 1 a a r e constants depending
a a n d k,
function
V(x,t)
a t
, . . . ,tt
D
3t"
jr
Q B
from
the estimates:
ID"D^(x,t) | C
where
o f f u n c t i o n s where
( 1 . 1 ) a r e t o be l o o k e d f o r .
1 . 1 . The f u n c t i o n V ( x , t ) b e l o n g s
D=
(1.1) i s
j=l,...,m.
t h e classes
differentiable
d o m a i n yeR™, t i O )
equation
*
(x,t)<-ir',
solutions of equation
Then
equations:
t o M,
then
as
as a c l a s s o f
of vector-function we
shall
say
that
i s t o p o i n t o u t t h e boundary c o n d i t i o n s on
providing solvability
t h e unique
means
that
solvability
the solution
of exists
equation and i s
unique. The
equation: d e t [ A ( c r ) X + B ( o - ) ] = 0,
with
respect
(1.1).
to X
i s called
a
fr-fff,
6
characteristic
I n ( 1 . 3 ) t h e v a r i a b l e s IT , . . . ,a
2
are
( 1
V *"' equation
parameters.
of
"
3 )
equation
L e t u s d e n o t e t h e number o f r o o t s o f e q u a t i o n number
of roots
counted
with
accordinq
and r ( t r )
depend
Definition
non-positive real
to i t s multiplicity.
on
As
by r ( c ) . Each
a
rule,
root i s
t h e numbers
p (cr)
ifel/*.
1.2. T h e e q u a t i o n
r(o") a r e f i n i t e
(1.3} by p ( u ) and t h e
parts
(1.1) i s c a l l e d
and do n o t depend p(c-)
p,
regular,
i f p(er) a n d
o n cr, i . e .
r(tr) =
R
,
(1.4)
6
where p and r a r e n o n - n e q a t i v e i n t e g e r s . In
this
chapter
we s h a l l
consider
c l e a r t h a t p and r s a t i s f y
is
only
regular equations
(1.1). I t
the inequalities:
0 •= r s p s m. If
equation
order
(1.1) i s r e g u l a r then
of t h e equation
(l.l)
(1.5)
t h e number p i s c a l l e d
and r i s an order
a n summary
of regularity
of
this
equation. When A{a)=E boundary
,where
value
classes
of
developed
function
i n these
satisfying
essentially
are
papers
as
in
[ 1 - 1 0 J.
VtreR".
value
problems
of the matrix
A '(
i n v e r s e m a t r i x f o r A{o~) , p l a y a n i m p o r t a n t r o l e . detA(cr)=0 method
the matrix must
be
A' (cr)
does
1
essentially
not exist, modified
so
and
technique A{o)
o f matrix detA{a)=0
f o r such
papers
different
The
B u t when
i n the previous
m , the correct
(1-1) i n
be a p p l i e d i n c a s e
deZA(a)*a,
o f t h e boundary
vectors
equation
investigated
may a l s o
complicated,
associated
matrix of order
f o r regular
the condition
investigation
and
E i s an i d e n t i t y
problems
the
equation
i s
t h e eigenvectors
where
A '(c) i s
I t i s clear that t h e above completed
the
when
mentioned with
new
constructions. One o f t h e e x a m p l e s following
system
of regular equation
of equations 3D _"
5 9
del-A (ir) =0 i s t h e
dU _ + u =0, 2
+
(MS
te
0
1 Bx
(1.1) w i t h
(n=l,m=2):
dU
V =0; MR , 1
-
t£0.
Bx
Now we p r o c e e d t o t h e i n v e s t i g a t i o n o f b o u n d a r y c o n d i t i o n s . Let
us take
boundary
c o n d i t i o n s f o r t h e s o l u t i o n s o f equation (1.1)
3
as p ( i g ! ] t / O r , 0 ) = f ( J C ) , xeR", where
P(
is
a
matrix
i n
polynomials
n
1
(1.1),
(x),...,f
f(x) = (f
Definition
1.3.
corresponding
of
order
and
r
(x)) I f
(rxm) ,
i s the
function
f{x)
we
assume,
from
condition
of
the
(1.1),(1.7) Now
we
(1.7)
problem
a t fso
shall
we
not
denoted
which of R. n
depend
by
M,
t,
on
that
q
are
equation
the
is
t ^ O , ft= ( ^ ,... , J f J e z "
specified
to
otherwise, is r,
the
is
the
that
(1.8) equation
the vector-function
class
in
c o n d i t i o n s on
solvability
problem
of
regularity
H
Q
and
class
the
M.
solution
The
problem
homogeneous p r o b l e m .
together with
value
be
regularity
belongs
formulate
consider,
boundary
of
(1.1),(1.7)
is called
P(ff) p r o v i d i n g u n i q u e end
order
does
xeR",
i f i t i s not
i s regular, the
U(x,t)
7eM
class of functions w i l l k
Further
elements
of
i s a given vector-function i n
the
IDV(X) |iC (l+|jr| ) * ,
(1.1)
the
order
(1.7)
the
for
the
the
problem system
A{&),
matrices
of the problem
(1.1), (1.7).
S(n)
and
For
this
(1.1),(1.7),the following of
ordinary
differential
equations: + B(a)y
^(cr)^
- 0;
t>0, oW,
(1.9)
P ( < r ) y ( 0 ) = b, Hr(b,,
where
,D. )
y ( t ) = ( y , ( t ) ,... , y The of
solution
n
is
(t))
of
the
given
the
problem the
(1.9),(1.10)
r
we
i
Definition condition, uniquely in
A(o-)=E (or ia
constants
1.4. i f
the
The
and
i s looked
f o r i n the
class
d e p e n d i n g on
t^O,
(1-11)
a.
basic problem
problem
(1.1),
(1.9),
(1.7)
(1.10)
satisfies at
every
Lopatinsky's fixed
ceR
shown
that
a
is
solvable.
the ,
are
introduce the
vector
found.
estimate:
|y(t) |=C(l+t) ,
Now
constant
i s t h e s o l u t i o n t o be
functions satisfying
where C and
(1.10)
above
mentioned
papers
d e t d ( o - ) * 0 a t VtreR") a n d
[1-10], the
4
i t has
equation
been
(1.1)
is reqular,
i f then
Lopatinsky's (1.1),
condition
(1.7).
det^(ir)^0.
Now
The
provides
we
extend
exact
unique
this
solvability
result
formulation
of
to
the
of
include
obtained
the
problem
the
case
of
is
as
results
follows. Theorem is
1.1. For unique
necessary Theorem
1.2.
Lopatinsky's
I f
the
condition
n=2 h a s i n f i n i t e
may
Definition
1.5.
at
i t
satisfy (1.7) a t
(1.1),
(1.7) does n o t
dependinq
on m a t r i c e s
independent
solutions of
(1.1),
Thus,
( 1 . 7 ) has a
how t h i s
finite
n u m b e r c a n be f o u n d
o f non-homogeneous
problem
i n t r o d u c e a new
problem
0" «R",
not
(1.1),
f r o m one t o i n f i n i t y .
the solvability
e n d we
The
point
s o l v a b l e a t a-a
be a r b i t r a r y ,
(1.7)
solutions.
then,
when t h e p r o b l e m
about
case ? For t h i s
condition
(cf.(7))
does
problem
independent
independent s o l u t i o n s ,
what c a n be s a i d this
(1.7)
t h e homogeneous
i f n = l and t h e p r o b l e m
arises:
number o f l i n e a r l y
in
(1.1),
(1.1),
Lopatinsky's condition.
a n d P (IT) , t h e n u m b e r o f l i n e a r l y
n = l a question
and
problem
number o f l i n e a r l y
homogeneous p r o b l e m
at
o f t h e problem
i tsatisfies
Lopatinsky's condition
.4(c), B((T), the
that
then
The e x a m p l e s show t h a t satisfy
solvability
and s u f f i c i e n t
(1.1),
(1.7) s a t i s f i e s
i f t h e problem
(1.9),
Lopatinsky's
(1.10)
is
uniquely
. 0
The f o l l o w i n g Theorem a
1.3.
finite
number
Lopatinsky's points In
theorem
answers t h e above mentioned
of
linearly
condition
independent
i s violated
(1.1),
solutions
i s always
o f t h e problem
Theorems
l . l ,
1.2,
(1.1),
and
1.3
only i f number o f
solvable.
c h a p t e r , t h e f o r m u l a f o r t h e number o f l i n e a r l y
solutions
( 1 . 7 ) has
i f and
i n no more t h a n a f i n i t e
and t h e non-homogeneous p r o b l e m
this
question.
L e t n = l . Then t h e homogeneous p r o b l e m
independent
(1.7) i s obtained f o r n = l . are proved
i n section
1.4
of
this
chapter. We
formulate
Lopatinsky's conditions
i n terms
o f m a t r i c e s A(a)
, B{o~)
and P ( c ) . Let
T
point
i n the characteristic
i n R
including PeA(ff)s0 the 11
these
a n d F(<7) be a
a l lthe roots and
roots
trcR ,
n
then
leaving
other
of
( 1 . 3 ) be
arbitrary
an
arbitrary
closed curve without
the characteristic
roots
of the characteristic r(o-) i s a n
equation
smooth
beyond
equation
i t . I f the real
closed curve
5
which
(1.3) w i t h
parts
equation (1.3) a r e p o s i t i v e
roots.
fixed
intersections,
ofa l l
f o r fixed
does n o t
include
Let
us denote f
<0(C7) = - U
(^(o-JX+BfcrlJ-^to-JtlX.
(1.12)
r(c-) We
integrate
positive
t h e elements
everywhere, not
depend
mentioned
i s defined
as
the direction
except
of
of curve
Tfc)
following
Theorem
the
analytic
in X
t h e n w(o-)
does
i f i ti s chosen that
i n t h e above
the matrix
<J(
v a r i a b l e s a- , ...,
theorem
1.4.
condition
The
leaves
side.
for t h e roots of t h e equation (1.3),
o n t h e shape
i nreal
direction.
which
(A(o-) A + S ( c r ) ) a r e
the matrix
way. I n t h e c h a p t e r 6 i t i s p r o v e d
analytic The
r(o-) i n t h e p o s i t i v e
t h e curve
domain bounded b y r(cr) t o t h e l e f t
finite As
over
direction
The
a t point
ceR
i s true.
problem n
(1.1),
(1-7) s a t i s f i e s
Lopatinsky's
i f and o n l y i f E -u(o-) (1.13)
rank
at t h i s
point.
T h e o r e m 1.4 i s p r o v e d Thus t h e p r o b l e m only
i n t h e chapter 6 (section
(1.1),
i f the condition
6.2, t h e o r e m 6 . 3 ) .
(1-7) s a t i s f i e s L o p a t i n s k y ' s c o n d i t i o n s
(1.13)
i s v a l i d a t every p o i n t
i f and
n
o-<=R, i . e .
E -u>(cr)" m m, vO-eR .
rank
(1-14)
P(o-) The
main
tools
Fourier
integral
problem
f o r systems
generalized
i n investigation transformation of ordinary
functions.
Pars.
o f t h e problem and
detailed
differential 1,2
and
(1.1),
analysis
are
Cauchy
equations i n t h e class of
1.3
are
devoted
q u e s t i o n s a n d we a l s o show a m e t h o d t o s o l v e t h e p r o b l e m in
(1.7) of
to
these
(1.1), (1.7)
p a r . 1.4. All
auxiliary
results
used
i n this
c h a p t e r 6.
6
chapter
are presented
i n
1.2. F o u r i e r T r a n s f o r m a t i o n o f F u n c t i o n s B e l o n g i n g t o t h e C l a s s
Let
S be t h e c l a s s o f i n f i n i t y
functions
1 and o s u c h t h a t
d i f f e r e n t i a b l e and q u i c k l y ipss
i n J?", b y d e f i n i t i o n the following
decreasing
i f t h e r e i s a number C
inequality
M
f o r every
i s satisfied:
C xeR",
IZnp(X)l*
(1.15)
{i+ixiy x= ( y , . . . ,x ) ,
where
1
I x | = x + . . . *x 2
2
T>
constants depending a complex-valued
,
2
1
a=(a 1
n
, . . . ,a ) sz", l *
n'
on i p ( x ) , a a n d /. The f u n c t i o n
i>(x),
C
are aj
-
i n general, i s
one.
The F o u r i e r t r a n s f o r m a t i o n a n d t h e i n v e r s e F o u r i e r t r a n s f o r m a t i o n o f ipeS
function
( d e n o t e d by F{ip)
a n d F~' ( p ) , r e s p e c t i v e l y )
a r e d e f i n e d as
follows:
F(p)(o-)=j
1
F" (}.)(«•)=
[ i0(x)exp(-icrx)dx, (27T)"
1
n
i s known
1
that
c l a s s S a n d FF~'(cp)=¥> Linear
continuous
definition
L puts
(denoted
where C
i f ipeS
(1-17)
„
n
then
I
L
over
(L,p)),
S
belongs
i n correspondence
by
n
F((p) a n d
1 1
F~ (cp) a l s o
will
be
denoted
t o the class
S' ,
t o every f u n c t i o n
2 ) . (L,Cp)=C(L,ip) ,
t o the
I ( L , p ) |sc max
inequality
V
[(1+1x1°)
by
By The
= ( L , ^ ) + (L.cp^) ,
t
f r o m S, a n d 3 ) . t h e f o l l o w i n g
S'.
i f : 1) .
tp o f S a c o m p l e x
( L , 9*
i s a n a r b i t r a r y c o m p l e x n u m b e r a n d tp,
functions
f t n
belong
, F~'F(
the functional
functional number
R
, . . . ,cr ) , x = ( x , . . . ,x ) , d x = d x . . .dx . a n d o"x=cr x + . . .+u x .
h e r e tr=[ir It
(1.16)
a
r
e
arbitrary
2
i s satisfied:
I D % ( x ) l ] , (pes,
I a I ^q w h e r e C,/ Linear
and g a r e c o n s t a n t s depending continuous
generalized
functional
functions.
greater
than
function
f
that
of
over
o n L b u t now d e p e n d i n g
S will
I f t h e growth
rate
a
at
polynomial
c a n be a s s o c i a t e d w i t h
be a l s o r e f e r r e d of \x\^,
then
e v e r y such f u n c t i o n
way:
7
f (x)
function a
on p.
later
as
i s not
generalized
i n the following
f(x)
( f . f H
If
L
i s a
generalized
function,
F o u r i e r t r a n s f o r m F~ (L)
inverse
l
,
(1.18)
PES.
i t s Fourier
transform
are defined as f o l l o w s
(f(L),*)-{L r(f)),
F(L) and
[1] I
^ s ,
f
(i.i9)
,
(F"'(L),<ji)-(L,r* ()»), p e s . t h e f u n c t i o n f(x)
If
(1.16) is
may d i v e r g e .
defined
with
t h e formula
them as g e n e r a l i z e d
t h e Fourier
transformation o f the function ,. . . ,x ) . 1
to
f u n c t i o n U{x,t)eH
every
At
every
Let
fixed
=[
U(t)
U{X,t) {X)dx
defined
by t h e f o r m u l a :
,
V
t t Ot h e f u n c t i o n a l
on t as a
U(x,t)cH
We p u t i n c o r r e s p o n d e n c e
ri
the functional
<[/
depending
function
f u n c t i o n s i n accordance
(1.18).
t o t h e v a r i a b l e x-tx
respect
g r o w t h a t IJTI-*», t h e i n t e g r a l
T h e r e f o r e F o u r i e r t r a n s f o r m a t i o n f o r such
by c o n s i d e r i n g
B e l o w we d e f i n e with
has a polynomial
(1.20)
U(£) i s a
(1.21)
generalized
function
parameter.
U ( x , t ) c M , t h e n f o r (1.21)
l(P(t),f)r*e,(i*tl
implies:
' m*x\(l+\xl')
*
Y
a
iD »>(x> l | ,p«s,tso,
(1,22)
\a\sq where not
c
l
''
l
l
If
l l
a n l z
function
e
constants
we s h a l l
depending
depending
say t h a t
i s not greater
U(x,t)
on f u n c t i o n
but
than
on parameter
t h e growth
that
t satisfies the
rate
o f a polynomial
o f generalized a t t-»+~ { h a s a
growth).
us denote
fixed
r
f u n c t i o n V(t)
(1.22)
L/(£)
polynomial Let
a
^ "J
o n
generalized
inequality
at
''
depending
the Fourier
t * 0 by F ( U ( t ) ) .
transform
From
(F(U(t)),cp)=J
(1.19)
of the generalized and (1.21)
f J ( c f , t ) F ( p ) (cr)dcr ,
ft
f u n c t i o n [/(£)
i t follows
that: (1-23)
The
F(U(t))
functional
function
U(x,t)
will
with
be
named
respect
the
Fourier
transform
r = ( x , . . . ,xj
to
and
i
of
the
denoted
by
function
of
F (D(x,t)). %
It
should
polynomial The
be
noted
derivatives
respect
that
to
the
of
the
variable
C
(
It
is
clear t
variable U(x,t)eK
is
the
be
dt
t j
'*')
=
a
,
at
every
£s0.
defined
the
product
the
of
the
generalized
functional
W(t)
1
is
i t
a
function
follows
with
respect
ift(x)
and
that
at
lxl-*°.
1.3.
i s an
of
us
mm,
the
infinitely
and
the
differentiable
i t s derivatives
consider
are
not
f o r Equation
the
M
o
Applying x=(x
[X),...
g ( x ) = (g
class
equation
condition
the
we
,g
(x))
(cf section
,...,x ) t o
to
the
p.S.
function
,1.25,
^(x)
is
assumed
function
greater
than
(1.26)
which
that
of
growth
polynomial
Cauchy's b o u n d a r y
condition:
(1.1)
(1.1)
Fourier the
both
is
rate
a
with
r j ( x , 0 ) = g ( x ) , XEK",
where
i f
sense:
Cauchy P r o b l e m
Let
of
that
formula:
( V ( X ) V ( C ) , i p ( x ) ) = (» ( t ) , ^ ( x ) p ( x ) ) , peS, where
2
I - *)
ipeS
(1.23)
r r"
The
with
s
(
)=F
by
(U(x,t))
V(t)=F
sense:
• ?* -
fixed
From
U(t
derivative also
function
m?L. U JSi^lrm in
generalized
i n a weak
f ^ i - f i
"5t
half-axis
the
t may
generalized
r i s assumed
(W{Z)
that
on
then
variable
F (t7(x, t ) )
growth.
a
given
(1-27)
vector-function
belonging
to
1.1). transformation sides
of
with
equation
obtain:
9
respect (1.1)
and
to to
the
variable
the
boundary
A (a)
d
£
^< >
+ B(cr)V(t)=0
, t>0,
(1.28)
7(0)-l, where
V ( t l - f r , ( t ) ,. t , ,F ( t j )
transforms lV
(X,t),...,V
m
g
(as
(r,t))
(if)) with
and
generalized and
d-29)
L=(i,
functions) given
x-{x^,
ym-F ip(X t]U The
problem
the
Fourier U( x,t)
solution
at
L=0
=
L
g(x)=(g (x),..., i
.. . ,x^) , L=F(g).
r
(1-28),(1.29)
are
the
vector-functions
respect t o the variable
i
I>J
of
will
(1-30)
be
called
the
homogeneous
problem. (ir) and b (cr) b e t h e e l e m e n t s o f t h e m a t r i c e s A'a) a n d B(cr) Jk Jk ( j f K = l , - - - ,<") - E q u a t i o n ( 1 . 2 8 ) may be d e t a i l e d i n t h e f o l l o w i n g f o r m : Let
a
I J
! " ^ — c i t —
3
+
b
i
i
, ^
)
V
^
t
)
\
=
•
0
t
>
0
'
J *
-
1
m
(
1
-
3
1
)
k=i In
(1.29)
7(0) i s the l i m i t
of the vector-functional
V(t)
a t t-t+0,
i.e. (HO)
(V(t),p)
, pes,
(1.33)
nowhere ( K ( t ) ,p} = ( ( l ^ ( t ) ,p) , . .-, ( ^ ( t ) , p ) ) . Definition belongs fixed
1.6.
The
functional
t o the class M
t = 0 and s a t i s f y J
- d V ^ d t
I
, i f V^{t)
a
If
(t) . ,f> aC ( 1 + t )
—
on
t h e parameter
belong
j
T
1
J
2
max (l+lfl )
t o S' a t
t
every
, then the vector
V(t)
z
_—, ) ID (p(o-} I , , f -1 l a l aq a
(1.34)
peS, t > 0 ,
" d q are constants depending
t h e components o f t h e v e c t o r
class M
and •
the estimates:
j=0,1; where
V ( t ) depending
(1-33)
K(t)=(V
on
belongs t o M .
10
K^ft).
(t),...,V
( t ) ) belong t o the
Since t h e s o l u t i o n U ( x , t ) M,
i t is
Therefore searched
evident, the
It M*,
as a
existence
necessary
[1.28),(1.29)
and
1.5.
( 1 . 2 8 ) , (1.29)
Let
of
the
(1.28)
aim of t h i s
will
problem
equation
i n the class
on
L,
solution
of
Cauchy's
i s to
providing
condition plays
the
homogeneous solution,
is the matrix Proof.
and i n
cauchy's
problem
theorem. be
regular.
i s solvable
i f and
only
i f the
vector
the condition:
V(t)=lV
defined
1
Let with
by
(1.28),
i s an
(1.35)
(1.29)
identity
( a t L=o)
matrix
has
o f order
m
only
the
a n d CJ(IT)
(1.12).
L e t t h e problem
V (t))eM . m
(t)
condition
problem
where E
Necessity.
an
(1.1),(1.7)
u
trivial
the
problem
solution.
(1.1)
M*
i n the class
paragraph
( E - u ( t r ) )L=C, and
be
condition
condition
M* . I n t h e s e q u e l t h i s
i s t h e main
functional L satisfies
H*.
class
o f t h e boundary
i n t h e i n v e s t i q a t i o n o f the problem
construction of this
i n t h e class
the
(1.2a),(l.29)
f o r equation
[ 2 ] . The
sufficient
i n the class
The f o l l o w i n g r e s u l t Theorem
side
to
S'.
uniqueness
role
belongs
problem
the right
i s not correct
and
important
Cauchy
t h a t Cauchy's p r o b l e m
rule,
the
M*,
(1.1) i s searched
= F (<7 (X, t ) )
of
i n the class
i s known
find
the
solution
i n the class
(1.29) b e i n g
of equation V(t)
that
We
(1.28),
shall
prove
(1.29) that
have t h e s o l u t i o n L
satisfies
the
(1.35).
W ( t ) be
t h e Laplace
respect
transformation
to
the
transformation variable
t .
of the vector By
definition
function V(t) of
Laplace
([13],p.494): +D (r(A},f)-
| (V(Z)
,
ReX>0,
(1.36)
o where p i s an a r b i t r a r y Thus
function of the class
t h e f u n c t i o n a l W(X)
i s a generalized
S. f u n c t i o n a t each complex
n u m b e r X, ReXsO. Calculating
t h e Laplace
(1.28) w i t h r e s p e c t
transformation
of
both
sides
of
equation
t o t h e v a r i a b l e t and i n v i e w o f t h e c o n d i t i o n : /(0)=L
11
(1.37)
we
find: (A(o-)X+fl(cr) )W{A)=A(
the
us denote
sphere
the class
lcl
by S
of functions
.By
Re\>0.
(1.38)
belonging t o S with
definition,
carrier
carriers in
of the function
p (cr)
o is
the
closure
( 1 . 3 8 ) we
of
points
s e t o-eR"
f o r which
(J(cr)X+B(i7) )W(A)=A(
p ( c ) «0.
By
virtue
equality
\o-\
ReX>0.
(1-39)
( 1 . 3 9 ) means t h e f o l l o w i n g : ( ( ^ ( o - ) X + B ( c ) ) W ( A ) ,p) = ( . 4 ( c ) L , p ) ,
for
of
have i n p a r t i c u l a r :
any f u n c t i o n
peS^
(1-40)
Re\>0.
, o
If
the vector-functional
^(
L=(L ,...,L ]
i s the vector-functional a n d t h e v e c t o r L.
Since
equation
(section
numbers e
Q
(1-1) i s r e g u l a r ,
6.1)
and p
o
f o r every
so t h a t
s',
and
matrix
vector:
(L^p) ) . then
positive
a c c o r d i n g t o lemmas
number
r
there
o
are
6.4
and
positive
the inequalities:
det(A(
s
a t l
d e t (A(o-) x+B(c))«0 a t l o l s r ^
are
t o the class
the product of the
(L,p) i s t h e f o l l o w i n g ( L , * > ) - ( ( ! . , ,ip)
6.6
) belongs
o b t a i n e d as
0
(1-41)
o
| X | >p , Re\>0 q
(1-42)
satisfied.
Let satisfy From
r
Q
be
a
fixed
positive
the inequalities ( 1 . 3 9 ) we
number
and
and
p
g
are
chosen
to
( 1 . 41) , ( 1 . 4 2 ) .
have: (A(v)\+B((T)
)W(k)=A'
J c r K r ^ , 0
(1-43)
and (A(c)X+B(cT))Ii'(A)^(c)L,
12
|cr|
U I > p , ReX>0. o
(1.44)
Remark.
I f ipeS
and
r
the function
p(er) i s d e f i n e d
i n the
sphere
o |rr|ar
o
t h e p r o d u c t $(a)
sphere,
i s assumed t o be e q u a l t o z e r o b e y o n d o
Multiplying
both
[A(cr)X+B(cr) ) " ' we
sides o f equations
(1.43)
l
f
l
Laplace's
by t h e m a t r i x
( V ( t ) , tp)
( f ( t ) ,
with
i s
inverse transform
(1-45)
ltr|
I X | 2 p , ReX>0.
(1.46)
D
o
i s Laplace's
respect
expressed
0
o
(W(X) ,
the vector-function
vector-function then
(1.44)
lo-|
fcr(X) = (,l (cr)X+B(cr) )~ A'
and
obtain:
V ( X ) = (^(cT") X+B (tr) ) ~ A [&) L
peS) ,
this
i . e . ifi (a) tp (cr) = 0 a t l c r | e r .
transform
t o the variable
throuqh
(fif(fc>, (p]
t by
of the
(at
fixed
means
of
((13),p.499):
(K(t),fJ- ^ i j
j
( W ( X ) , p ) e x p ( X C ) d X , a>0
(1.47)
a- Im
* S i n c e 7 ( t ) e M , i t means t h a t tpsS i n c r e a s e n o f a s t e r
fixed may
be a n y a r b i t r a r y L-0.
Let lcl
Then
t h e elements o f t h e vector
positive
number
i n accordance w i t h o
v(t)=o and
((13),p.499). equation
R e X i p . Hence a t a = p , f o r (1.47) Q
since r
o
i s arbitrary,
we
So we h a v e p r o v e d
that
we
have W(X)=0 a t
(1.48)
o
obtain: t>0.
(1-49)
t h e homogeneous p r o b l e m
( 1 . 2 8 ) , ( 1 . 2 9 ) has
det(A(o-)X p
is
then:
p
p
,
+ B { o - ) ) = a ( c ) X + a ( c r ) X " + . . .+ a ( o " ) ,
a
polynomial variable
o
i
non-negative
(1.50)
p
integer,
a (tr) , a (cr) , . . . , 3 ^ (cr) o
j
n
(1.51)
o
(1.50)
and
are
c ~ ( < r , , . . . ,0"^] a n d : a ( u ) * 0 , o-eR .
From
only
solution.
Since e q u a t i o n (1.1) i s r e g u l a r ,
where
(1.46)
implies:
a t t > o , |cr|
V(t)=0,
trivial
C(t),p) at
t h a n a p o l y n o m i a l a t t->+». So i n ( 1 . 4 7 ) a
(1.51)
i t follows
13
that
the
elements
b
jk
(X,cr)
m) o f t h e m a t r i x
(j=l
{A (a) A+B(ir) ) ,
p
|h (A, -)l^Ur k
where the
C is
| c | s r , |X|sp Q
([14],p.16)
0
a
( A ( a ) X+B(cr) ) ' i n
o n r . So t h e m a t r i x
can
g
theestimate:
a t l*l=ff ,lAl*P ,
0
c o n s t a n t depending
o
domain
satisfy
be
represented
by
Cauchy's
integral
a),
(at fixed
fi 1
(J(.r)X+B(cr))~ =S(X,cr) + ^
where
^(o-)*',
ICl^T,,.
£
I*I P -
(1.52)
0
6=m-l-p,
f(*.«^)= - 2S1
j i- ' ")^* ")^ ^!' 1
0
0
1
( 1
-
5 3 )
l£l-P„ j
Kj(
In
(1.54) t h e i n t e g r a l
variable
,
d
M(c)e+B(c))- - 4
being
along t h e
,j=0,...,m-l-p.
r
calculated with
circumference
l£l=P
respect i
n
0
(1.54)
t o
complex
counter clockwise
direction. The
sum
principal (A(o-) at
o ( c ) +0^ (cr) A+-. . + a (IT) k
i n the right
S
o
s
part
of
X+B(cr))with
the
Laurent
series
side
expansion
respect t o the variable
o f (1.52) of
X i n vicinity
the of
i s a
matrix infinity
f i x e d ireR", l o - | ^ r o
Let
pes
. Then e q u a t i o n s o ReX-*+», i f a n d o n l y i f : u^o-lAfo-JL^O It the
( 1 . 4 6)
a t l
and
(1.55)
i s necessary
imply
,9)-*0
j=l,...,m-l-p.
i s known t h a t t h e L a p l a c e t r a n s f o r m condition
(1.52)
at
(1.55)
(1T(A) >p(
f o rt h e s o l v a b i l i t y
o f t h e problem
(1.28) , (1.29) . Let t h e condition
( 1 . 5 5 ) be s a t i s f i e d .
t A(a)\+B(a)
)~ A(O)L=Bi\,O)A{0-)L, 1
L
The at
formula
fixed
(1.53)
function
implies
ipeS
that
the vector
i s analytic o
domain
Then
IXI=P and 0
14
from
( 1 . 5 2 ) we
obtain:
\&\
(1.56)
Q
function
t o t h e complex
(B (cr,\)
variable
A{
i n the
(B{\,v)A(o-)L,tp)-tO So,
i n accordance w i t h
Jordan's
a t j &.)-#*• • lemma
( S ( X , c r ) ^ ( c r ) L , p ) exp(Xt
lim
{[13],p.439):
) d A = 0 , a t ipeS
,
t±0,
[1-57)
lying
i n the
half-plane
i n ( 1 . 5 7 ) we
obtain:
r
i s the part
of circumference
lAI=g
RsX^a-const,a>0. Substituting
f
lim
B{\,cr)A(u)L
from
(1.56)
((.4(0-)\+B(o-) ) " ' a { ( f ) L , f ((F)) e x p { A t ) riA=0, a t p e S , t i O .
(1.58)
q let
r
b e t h e s t r a i g h t - l i n e s e g m e n t EeA=e lying within q 0 I A I & J a n d 5 b e t h e u n i o n o f T a n d y i . e. S = r u T .
q
q
A c c o r d i n g t o Cauchy's theorem f
q
q q
the
circle
q
([13),p.45): 1
^(A(o-) A + B ( c ) ) " A(o-)L,p(a') j e x p f A t ) d A -
5
q (^(o-)A+B(D-) )
A(a)L,
\exp{\t.)d\,
( 1 . 59)
s w h e r e g > p , t^O a n d tpzS^
.
Q
o By
passing
to
the
limit
in
(1.59)
at
q->+
and
using
( l . 58)
we
obtain:
f
( U(o-) A+B(o-) )~ A(o-)L,
exp(At)dA
E - i n
( ^ ( c ) A + B ( c ) ) ~ i ( c ) L , ( p J e j r p ( A t ) d A , ipeS.t^O. ,
J
IS
(1.60)
From e q u a l i t i e s
(1.45),(1.47)(at
a=c ) and
( 1 . 6 0 ) we
Q
| | ( J ( , T ) X + B ( c f ) )- A(
lV(t),p)m
have:
,
1
(1.61)
r
& Let
L^
be
a
differentiable and
complex
number.
And
functional function
variable since
A
belonging
with at
to
respect
s'
to
o
o
L
be
variable
lo-|^r ,p -£s| A I * p + e ,
the functional
a'\,a)
and
real
where
o
E
infinitely
o-=(oi s a
i s l i n e a r and c o n t i n u o u s ,
f
](
. ..
,aj
positive we
have
([1],p.66)1
f
where f
J l y «(A,
(1-62)
j
i s any a r b i t r a r y f u n c t i o n
belonging t o the class S o
Taking (1.61)
the
equality
(1.62)
into
account,
l e t us
write
equation
as: ; r ( t ) ,f)~(u{a,t)L,f)
,
>peS
,tiO,
r
(1.63)
where
w < l r
'
t )
=
2WI j
+
(^(^)^ B(T))"'A(cr)exp(At)dA.
(1.64)
\ Evidently,
the function
"(c,t)=
(1.64)
-^j
J
may
be r e w r i t t e n
as:
l
(A((r)A+B(c))" A( r)exp(At)dA,
(1.65)
(
T(o-) where r(
equality
(1.63)
in
V{t)=u(a-,t)L, From
lemma
6.16
(1.12).
means:
(chapter
6,
|o-|
(1.66)
o
section
16
6.3)
i t follows
that
a{
belongs
t o t h e class
M*.
number, t h e n
from
positive
As
rv,, i n we
( 1 . 6 6 )
V(t)=W(a,t)L, substituting
E=0
obtain
into
(1.67)
(1.29)
we
the equality
(1.35)
f o r the solvability
Sufficiency. that of
t h e problem
and
arbitrary
fixed
(1-67)
r e c a l l i n g t h e boundary
(1.35).
Thus, t h e n e c e s s i t y
of t h e problem
K ( t ) defined
i s an
creR", t^O.
Let the condition
the function
(1.66),
obtain:
(1.28),(1.29),
(1.35)
be
(1.67)
condition
i s proved.
satisfied.
by t h e f o r m u l a
condition
of
We
shall
show
i s the solution
(1.28) ,(1.29) .
The e x p r e s s i o n
(1.65)
3
*(g) "]
r
,
C
>
implies:
+
B(o-)u(o-,t)=
t
^ i j
J A(cr)exp(At)cU=0.
(1.68)
Her) Hence,
( 1 . 3 5 ) we 7(0)
And h e n c e , 7 ( E ) = u ( i T , t } L the
V{t)
the vector-functional
From t h e c o n d i t i o n
class
H
-td(o-, t ) L
- u(cr,0)L
= u(ff)l
i s finite
Cauchy p r o b l e m This proved
1.5,
sides
(1.27)
= L. ( 1 . 28) , ( 1 . 2 9 ) i n
o f c h a r a c t e r i s t i c e q u a t i o n (1.3)
dependent
i n the class
from
on
a,
then
M has o n l y
the formula
(1.48),
the
homogeneous
trivial the
solution.
later
being
a s s u m p t i o n t h a t p (IT) - c o n s t < o .
o f Theorems
1 . 1 , 1.2
transformation of equation
the following
(1.28).
i s proved.
not
follows
under t h e only
Fourier
in
does
(1.1),
statement
1.4. P r o o f
both
and
equation
i s t h e s o l u t i o n of t h e problem
. The t h e o r e m
Remark 1 . 1 . I f t h e number o f r o o t s p(o-)
satisfies
have:
with
and
1.3
respect
to
variable
( 1 . 1 ) and t h e b o u n d a r y
x = ( x , . . . ,xj
condition
[
on
(1.7) r e s u l t
problem: A ' a )
d
V
^ -
+ B(c-)7(£) = 0, P(
17
t>0,
(1.69) (1-70)
w h e r e V(t)
and u a r e F o u r i e r t r a n s f o r m s o f t h e v e c t o r - f u n c t i o n s
£(x)
and
r e s p e c t t o t h e v a r i a b l e x~(X ,
with
U(x,t)
. . . ,X ) i
t
o
l"(t)=F (B[X,tJ) and u = F ( f ( x ) ) . As
t ) eM
f (x) eM,
and
K{ t ) e M *
M
functional
M i s d e f i n e d i n s e c t i o n 1.3.
We s h a l l * * class K .
search
The
and H
then
functions
relation
are defined
the solution
a n d peS'
i n section
The
classes
of
1.1, and t h e cases o f
o f t h e problems
between t h e problems
(1.71)
(1.69),
(1.70)
( 1 . 1 ) , ( 1 . 7 ) and ( 1 . 6 9 ) , ( 1 . 7 0 )
i n the
i s the
following. 1 . 1 . L e t U(x, t )
Lemma
V(t)-F
then f(t)
(U(X,t))
i s the solution
solution
the
problem
solution U(x,t)
the proof
(1.69) , (1.70)
will
be
and
can
U{x,t)
then
i s
I f be the
i somitted.
( 1 . 1 ) , ( 1 . 7 ) c a n be s o l v e d a s f o l l o w s . i n the class
M , then
a s V ( t ) = F {U{x,t)),
may be r e p r e s e n t e d
construct
(1.69),(1.70)
U(x,t)sH,
where
( 1 . 1 ) , (1.7) ,
{ 1 . 69) , ( 1 . 70) .
(1.1),(1.7).
i sobvious,thus
the problem
o f t h e problem
o f t h e problem
t h e problem
{U[x,t)),
of t h eproblem
Lemma l . l So
of
a s V(t)-F
represented
be t h e s o l u t i o n
i sthe solution
the solution
of
First, show
where
t h e problem
a l l s o l u t i o n s o f t h e problem
we
we s o l v e that
this
I7(jr,t)eM.
Then
(1.1) , (1.7) .
(1.1),(1.7)
We
may
i n the class M i n
t h i s way. Proof
o f theorem 1.1.
t h e c l a s s M*, t h e n
L e t K ( t ) be t h e s o l u t i o n
o f equation
b y v i r t u e o f t h e o r e m 1.5 ( s e c t i o n
(1.69) i n
1.3) we h a v e :
(E -u(o-))l'(0)=0,
(1.72)
i
where
w(tr)
problem
i s the matrix
(1.69),(1.70)
(1.69),(1.70),(1.72) Let
t h e problem
( 1 . 1 ) , (1.7)
t o t h e theorem
condition
(1.14).
in the
1.4
By v i r t u e
6.6) t h e s y s t e m
t h e class
by t h e f o r m u l a M
(1.12).
i s equivalent
Hence, t h e
t o t h e problem
i n t h e same c l a s s .
According
section
defined
i n t h e class
satisfies this
o f theorem
(1.70),(1.72)
S' i s u n i q u e l y
Lopatinsky's
condition
6.4 a n d f o r m u l a
with
18
t ot h e
(6.158)(Ch.6,
respect t o t h e vector V{0)
s o l v a b l e and t h e s o l u t i o n
formula:
condition.
i s equivalent
i s d e f i n e d by
K(0)=^
(1.73)
i
J=l 1
where from
( i —P(r
the formula
(1.70)
i s reduced
Since t h e r i g h t to
theorem
(1.69),
r
( x ) ) a n d a(
1.5
(1.73)
(6.158)
.. ,a(
t o cauchy
i s m-dimensional
Chapter
problem
6.
Hence
(1.69),
vector
function
t h e problem
(1.73)
(1.69),
i n the class
M .
s i d e o f (1.73) s a t i s f i e s
e q u a t i o n (1.72) and a c c o r d i n g
and t h e f o r m u l a
section
i s solvable,
(1.67)(
the solution
1 . 3 ) , Cauchy
i s unique
problem
and i s d e t e r m i n e d
by t h e f o r m u l a :
V{t)
- u(o-,t)Y
CUCT))!^ J =
w h e r e u{
(1.74)
1
i s t h e m a t r i x d e t e r m i n e d by ( 1 . 6 5 ) ( s e c t i o n 1 . 3 ) .
a (cr) b e t h e m a t r i x w i t h c o l u m n s c o i n c i d i n g w i t h t h e v e c t o r s r " ( c ) . n ( c ) i s a r e c t a n g u l a r m a t r i x o f d i m e n s i o n (m-r) . T h e n
t h e f o r m u l a (1.74) becomes: 7(t)
= u(cr,t)a(£r) J J ,
(1.75)
where V={» ,...,U )=F(f(X)). 1
How
we s h a l l
represented
show t h a t
as
V(t } = F
lemma 1 . 1 , U(x,t) As
the
vector
(j=i,2,..-,r)
the vector-functional
(t/(x, t ) ) , where
i s the solution f
;
a
Q
q
the
according t o (1.7).
components
f (x)
n
(1.77)
, 0£|al<», x e R ,
a
of
[x)) 6 M ,
Then (1.1),
j
theestimates:
\D fj(X)|£C jl+lxl j
where C
C(e)=u(ff,t)«(ef)|j c a n be
17 ( x , t ) s M .
o f t h e problem
f ( x ) = ( f ( x ) ,. . . , f
satisfy
(1.76)
r
and y a r e a c o n s t a n t , y i s a n o n - n e g a t i v e i n t e g e r
independent
a. L e t q be a p o s i t i v e V
(x,t) "
—
i n t e g e r and: f u(cr,t)a((r) fi+|o-| |
( 2 " ) " ^
2
1
19
'
n
e x p ( - i c x ) dcr, XER ,
(1.78)
17 (x,t)=\W
n
(a,tig
(Jf-o-)do-, x e R ,
t*0,
(1-79)
where
q f(x) J
and
I i s the unit operator.
Since the
f(x)=(f
same
(x),...,f
estimates
vector-function 6.3
" ax
2
g
a n d 6.4) we
with
the
( x ) . From
infer
number q
natural
i
(x)) satisfies
with
same
lemmas
that
the estimates constant
6.16 a n d 6.17
f o r any n a t u r a l
, so t h a t
the derivatives
respect t o the variable
t
y
(1.77), i s
(Chapter
number
6,
for
section
f one c a n f i n d
of vector
a
W (x,t)
function
up t o v - t h o r d e r a r e c o n t i n u o u s
n
domain t = 0 , xeK and these d e r i v a t i v e s
then
true
i n the
s a t i s f y theestimates:
6 (jf.t) | C ( l + e ) 3
2
2
"(l+lxl )
p
, OSftsi',
(1.80)
w h e r e y i s t h e same c o n s t a n t a s i n ( 1 . 7 7 ) . The
estimate
mentioned (1.78)
(1.80)
lemmas.
by p a r t s
The f o l l o w i n g
To
at
|x|sl follows
obtain
this
immediately
estimate
a t |x|al,
2 ( n + l + y ) times and then a p p l y these inequality
from we
t h e above
integrate i n
lemmas.
i s obvious:
l+|o--x| 's2 (1+|0-1 ") ( l + l x l * ) , cr.XeH". From t h e i n e q u a l i t i e s integral
(1.79)
a t q=f
(1.77),
(1.80)
converges
v
and (1.81)
(1.81)
i tf o l l o w s
that the
and t h e i n e q u a l i t y S
ID^rj^ holds,
(x,t)|
where
and
y
(1.79)
i t follows:
sC
i ) ( x
(l+t)
2
1
''(l+lxl ) ',
a r e t h e same
as
Oifrsv,
i n inequalities
(1.82)
(1.77)
and
(1.80). From
F
(1/ ( x , t ) ) = u ( o - , t ) a ( r / } u , v = 0 , 1 v
20
(1.83)
Thus: U
As the
the vector equality
(1.84)
(x,t),
U
function
U (x,t)
function
{x,t)=U
(x, t )
i s true
belongs
V{t)
(1.75) and ( 1 . 8 3 )
i s the solution as
satisfies
f o r any n a t u r a l
K(t)-F
Since
(1-84)
the estimates n u m b e r v,
(1.82)
and
then the vector
t o M.
Comparing t h e e q u a l i t i e s
represented
V=l,2
i n (1.85)
we
obtain:
(17 ( x , t ) ) . o
o f t h e problem
(1.85)
(1.69),
(1,70)
U (x,t) , in o
the vector-function
and c a n be accordance
q
with
lemma
uniqueness
1.1,
i s the solution
of the solution
of
t h e problem
o f t h e problem
(1.1),
(1.1),
(1.7).
The
(1.7)follows
from
(1.74) .
Thus
Lopatinsky's condition
problem Let
(1.1),
provides t h e unique
(1.7) i n t h e class
Lopatinsky's condition
solvability
(1.13)
be v i o l a t e d
a t some
point
rank
We
shall
prove
non-trivial Let
us
that
of the
M. O ES°, (
(1.86)
t h e homogeneous
problem
(1.1),
(1.7) has
a
solution.
denote
a
non-trivial
solution
of
t h e system
of
algebraic
equations: (E_
- u(o" ) ) a = 0 , 0
P(o- )a=0,
(1.88)
o
by a=(a ,...,«_) ]
and l e t : V(Z)
where 6{
(1-87)
= u(a-,t)6(c-
i s Dirac'= delta
function:
( 5 { o - o - ) ,p(o-)) - *>(cy o
21
(1.89)
and
u>(cr,t)
One
i s the matrix of
can e a s i l y
problem
(1.69),
Since
verify
(1.65). V(t)
that
i s the solution
o f t h e homogeneous
(1.70).
u(cr,t)S ( o — f f ) = u { c r , t ) a ( o — c ) , o
o
then
Q
the
V(t)
functional
becomes: V(t) From
( 1 . 9 0 ) we
= u(c ,t)5(o-u )a. o
(1-90)
o
have: V(t)
-
F^'U'x.t)),
(1.91)
where V(x,t) From
lemma
Thus,
by
solution We
6.16
U{x,t)
function
= u(
(Ch. 6,
section
virtue
of
lemma
that
U(x , C ) i O .
is a
t=0
=
a point
o~=o e R . n
1.2.
function
[7(jr,t)
i n
(1.92)
and
nontrivial
L e t n^2
The l a t t e r
us c o n s i d e r t h e system
a
solution
o f t h e homogeneous
and L o p a t i n s k y ' s c o n d i t i o n
be
i s m-dimensional
violated
means:
(1.93)
of equations: (1.94)
f
P(C)K(0)=0,
to
problem
1.1 i s p r o v e d .
(B_-M:(ff)|I'(0)=&
w h e r e V(0)
M.
i s the
recalling
rank
Let
vector
aexp(-ixa ).
( 1 . 7 ) i n t h e c l a s s M. T h e t h e o r e m
Proof o f theorem at
the
obtain:
U(x,a) U(x,t)
that
(1.1),(1.7).
Substituting
o
Hence,
i t follows
1.1, t h e v e c t o r
u ( < 7 , 0 ) = u ( c r ) a n d u ( c r ) a = a we
(1.1),
6.3)
(1.92)
d e f i n e d by t h e f o r m u l a (1.92) belongs t o t h e c l a s s
o f t h e homogeneous p r o b l e m
show
.
o
vector
(1.95)
functional
of the class
S' w h i c h i s
be f o u n d . In
Chapter
6, s e c t i o n
6.6 we h a v e s h o w n
22
( T h e o r e m 6.5) t h a t
under t h e
condition
(1.93) ,
linearly
t h e system
independent
(1.94), l
solutions
(1.95)
has
7(0)(j=l,2,...)
infinite
number
concentrated
of
at the
point
Q
Now
we
shall
consider
the
system
(1.69)
with
Cauchy's
boundary
condition: ]
V{0) It
i s clear
every
that
j
fixed
= 7(0).
the solution
i s also
a
(1-96)
o f Cauchy
solution
problem
(1.69),
o f t h e homogeneous
(1.96)
problem
at
(1.69) ,
[1.70) . ]
Since theorem
7(0) s a t i s f i e s 1.5
(1.70)
and
the condition
formula
i n the class H
(1.94),
(1.67) ( s e c t i o n
then
J
be w r i t t e n
with
(1.69), as:
J
= u(o-,t)7(0) .
(1-97)
) As t h e v e c t o r f u n c t i o n a l s 7 ( 0 ) a r e l i n e a r l y 1 is true f o r 7(t)(j=l,2,...) . J As t h e v e c t o r
problem
h a s t h e s o l u t i o n a n d i t c a n be e x p r e s s e d 7(t)
may
i n accordance
1 - 3 ) , Cauchy's
functionals
independent,
the
latter
7 ( 0 ) a r e c o n c e n t r a t e a t t h e p o i n t cr^, t h e y
i n t h e form: J l V ( 0 ) = F (b(x)exp(-ix(T )
),
o
(1.98)
]
where b
(x)
i s a m-dimensional
polynomials of
theorem
vector
v a r i a b l e s x={x
on t h e r e a l
1.1, one c a n p r o v e t h a t
function,
elements
^,. . . ,x ^) .
from
Similar
(1.97) and
(1.98)
o f which
are
t o the proof i t follows:
I J V(t)=F {t7(x,t)),
(1.99)
>
J
w h e r e U(x,t)
i s a m-dimensional
According solutions
to of
functionals
lemma
the
1.1,
vector
the
homogeneous
J V ( t ) are
problem
linearly
function
vector
o f c l a s s M. J U(x,t)
functions
(1.1),
independent,
(1.7), equation
and
are
the
since
the
(1.99)
implies
1 that
the
independent.
vector-functions Theorem
1.2
U(x,t)
(j-1,2,...)
i s proved.
23
are
also
linearly
P r o o f of theorem at
infinite
1.3.
L e t n = l and L o p a t i n s k y ' s c o n d i t i o n be
numbers o f p o i n t s f ( J - 1 , 2 , . . . ) .
rank
We
shall
prove
that
.
homogeneous
latter
means:
j=l,2
< m,
fit,)
The
violated
(1.100)
(1.1),
problem
(1.7)
i n the class
h a s i n f i n i t e number o f l i n e a r l y i n d e p e n d e n t s o l u t i o n s . ) l l L e t a=(oc ,...,cc ) b e a n o n t r i v i a l s o l u t i o n o f a l g e b r a i c
K
system:
i
J (S -W(:|,))« B
) P(?j)« •
0.
(1.101)
0-
( 1 . 102)
J
o f v e c t o r a a r e complex numbers.
The e l e m e n t s While proving
J U(x,t) are
nontrivial
(1.103) under the
J = u(F ,t) expl-ixe ), i
i t follows
that
these
n = l and
i£
the class
M
problem
(1.69),
(1.69),
(1.70),
b
system
y
. As
we
(1.70) (1.72)
virtue
solvable
number
of
have
be
shall
shown
when p r o v i n g
i n t h e same
M*
with
independent
(1.70),
(1.72)
solutions.
at finite
number
(1.69),
t h e theorem
i s equivalent
So in
of
(1.70)
1.1,
t o the
the
problem
class.
i s violated,
(1.72)
(1.7)
(l.l),
independent
violated
From
independent.
solve t h e problem
i n the class
(1.103)
( c f (1.92)).
problem
6.6
at finite
and
6.7
r e s p e c t t o V(0)
solutions.
number
(chapter
and t h e c o r r e s p o n d i n g homogeneous
linearly
t h e system
we
o f theorems
(1.70),
always
of
number o f l i n e a r l y
functions:
.
(1.7)
are l i n e a r l y
t h e homogeneous
. First,
As L o p a t i n s k y c o n d i t i o n •--
(1.1),
solutions
Lopatinsky's condition
F
the vector
j-1,2,...
i
(1.100)
the condition
points
the
a
s o l u t i o n s of t h e problem
c l a s s M h a s an i n f i n i t e
Let
in
1.1 we h a v e shown t h a t
theorem
Hence
of points 6,
6.6)
section
i n the class
S'
system
finite
has
the general
a
is
solution
i s d e t e r m i n e d by t h e f o r m u l a : N 0
^
H0)=L+) k =1
24
k C^L,
(1.104)
where
L i s a
particular
solution
o f non-homogeneous
problem
[1.70),
k [1.72)
and
L
homogeneous complex Thus, (1.69),
( f t = l , . . . ,N)
problem
t h e problem
then
(1.69),
i n t h e class
Since t h e r i g h t
1.3),
(1.72),
independent
and
C
j f
solutions
C ,.•.,C
a
t
e
of the
arbitrary
constants.
(1.104)
(1.72),
are linearly
(1.70),
side
(1.70)
i s reduced
of the condition
according
t o theorem
Cauchy's p r o b l e m
t o Cauchy's
problem
M*.
(1.69),
1.5
(1.104) s a t i s f i e s
and t h e f o r m u l a
the equation
(1.66)
(section
(1.104) has t h e s o l u t i o n : N
7(t)-w({r,t) where (o(c,t} Let
i s the matrix
( i = F ( f (x) ) ,
where
of
(1.105)
(1.65).
f ( x ) sM .
I n Chapter
6,
section
6.6,
i t
i s
]
shown the
(theorem
system
6.S)
(1.70),
that
i n this
L=F(
where
case
the solution L
(j=0,...,W)
of
(1.72) can be r e p r e s e n t e d a s :
g j
(x)),
j=0,...,K,
(1.106)
g^fxJeM^.
Hence, t h e v e c t o r
f u n c t i o n u(cr,t)Z. ( j = 0 , . . . , N ) can be e x p r e s s e d a s :
] ) <ji(o-,t)L=F 'U(x,t))
,
x
j=0,
. . . ,K,
(1.107)
J
w h e r e U ( x , C ) a r e some m - d i m e n s i o n a l Thus,
the general
solution
vector
(1.105)
functions
o f t h e problem
o f the class (1.69),
M.
(1.104)
is:
7(t)
By v i r t u e
= F I u<x,t)
+\
o f lemma 1 . 1 , t h e v e c t o r
cu'x.t)
(1.108)
function: N
U(x,t)
= Btx t)*T
C U{X,t).
t
k
25
( 1 . 109)
is
the solution Thus,
of
points
(1.7)
F ,F , . . . t h e
complex
prove
linearly
now
(1.1),
(1.7).
Lopatinsky's condition
i s d e t e r m i n e d by
arbitrary We
of t h e problem
i f n = l and
the
general formula
is violated
solution
of
at finite
the
( 1 . 1 0 9 ) , where
number
problem
(1.1),
(ft=l,...,N)
are
numbers.
that
the vector
J U(x,t)
functions
independent, obviously,
N)
(j=0
from formula
(1.107)
we
are
have:
J J u ( o - , 0 ) L = F (U(JC,0)) .
(1.110) J 1
The
latter
and
the
equalities
u ( i r , 0) = u ( c )
and
k>(o~) L=L(
j = l , . . . ,N)
imply: J ) L • F^([7{x,0)),
j=l,
(1.111)
J
Since then
the vector
the
formula
(j=l,...,W) (1.104)
finite of
(1.111)
are also
1.6.
implies
linearly
in particular
Theorem
result
I f n=l
and
number o f p o i n t s ,
At
(1.72)
t h e end
independent class
s'.
that
are
the
linearly
vector
i n d e p e n d e n t . The
independent, ) U{x,t)
functions
latter
and
the formula
in Lopatinsky's condition
t h e number o f
t h e homogeneous p r o b l e m
number o f t h e l i n e a r l y (1.70),
L(j-1,...,N)
functionals
(1.1),
linearly
is
violated
independent
(1.7) i n t h e c l a s s M
at
a
solutions
i s equal t o the
i n d e p e n d e n t s o l u t i o n s o f t h e homogeneous
system
i n t h e c l a s s S' .
of Chapter solutions
H e r e we
6,
section
6.6,
we
find
o f t h e homogeneous s y s t e m
mean l i n e a r
independence
t h e number o f (1.70),
(1.72)
over t h e f i e l d s
of
linearly i n the complex
numbers. 1.5.
Examples
Example
1. L e t us
c o n s i d e r t h e system au — 1
at
dV + a — 'ex 3
of equations:
+ b U =0,jf<ER',t>0, 1
26
1
(1.112)
a v
au b U
2
2
Sx where to
U={0
a ,b
,b sf!
can
easily
J
2
2
1
solution
are given
be
found,
which
belongs
numbers.
that
t h e system
of equations
i s r e g u l a r i f and
i f : bjSO , b > 0 ,
a a ib
;
Let
t h e c o n d i t i o n (1.114)
of
the
we
must
impose one
Me
take
i t as:
system
(1.112),
be
boundary
«
and
(
function
from
Applying
i s uniquely
problem
(1.112),
solution. (1.115)
I f 0^=0,
has
We
0^*0,
w h e r e C>0 class
H.
We
take
and
lR
f(x)
is a
and
1.6
we
given
(1.7)
(1.113).
is a
given
obtain:
(1.112),
(1.115)
(1.113),
a ro ;
the
i n the class H
an
+
elliptic
one
^£
-
a
1
2 C
U
i s always
solvable
independent
(1.112),(1.113), solutions.
in half-plane:
xex',t>0,
= 0,
i n the
(1.116)
2 x
t o be
condition i n the
3
(1.115)
non-homogeneous
linearly
independent
equation
i s the solution
t h e boundary
f (x)
2
£
consider
fi(x,t)
to
(1.115)
a =0 t h e homogeneous p r o b l e m
4 * where
1.3
number o f l i n e a r l y
at
regularity
(1.112),
a +a^«0, a n d
homogeneous p r o b l e m has
S
of
according
t h e system
constants,
the problem
(1.113),
infinite
E x a m p l e 2.
Then t h e o r d e r
Therefore,
s o l v a b l e . I f 11^-0,0^*0,
the corresponding
(1.114)
o
1.1,
class M
.
M-
I f a^O
1.1.
i
0 ) = f (x) ,XER' ,
2
real
the class
theorems
Statement
i s one.
+ aU (x,
are given
;
c o n d i t i o n on
i
where
]
satisfied.
(1.113)
a U (x,0)
and
to
3
2
verify
(1.113)
flx
i s the
;
1
One
2
( x , t) , t ? ( x , T.))
(
t h e c l a s s M,
only
2
+ a — '=0,Jt6R', t > 0 ,
found,
which
form:
" ^ ° ' + pf7(X,0) = f (x) ,
function
from
belongs t o the
the
class
«R*, M,
a
(1.117, and
8
are
real
constants. The
equation
(1.116)
may
be
rewritten
27
as
t h e system
(1.1) u s i n g
the
following notation: Bjt t)-V(X,t)
,
r
The e q u a t i o n Applying
a
U (x,t)=
U
(1.116) i s r e g u l a r and i t s o r d e r
theorems
l.l,
1.3
and
1.6
t
^ '
2
)
•
of regularity
t o t h e problem
(1.116),
i s 1. (1.117}
we o b t a i n : Statement class
M
1.2.
The
i s always
solutions
of
non-homogeneous p r o b l e m
solvable
the
corresponding
(1.116),
(1.117)
N of linearly
a n d t h e number
homogeneous
problem
i n the
independent
i s defined
as
follows: N=0 a t a*Q,
B*C
B
o r a=0,
N = l a t a*0, B=C,
(1.118)
N=2 a t a = 0 , S i C . E x a m p l e 3. He c o n s i d e r t ^ ^ 2 u
Shi
at
ay
ax
w h e r e 00
a n d U(x,y,t)
the class
M.
The b o u n d a r y
f(x,y)
c
8t''
i s a
equation
*
U
,
t
i s the solution
c o n d i t i o n i s taken d U t ,
where
an e l l i p t i c
+
given
B t 7
i
y
)
^
i
t
>
0
(1.119)
i
t o be f o u n d ,
which
belongs t o
i n t h e form:
x
<
function
X
i n half-space:
= f
2
f*»7) '
from
(f.yjEK ,
the class
M
o
(1.120)
and
p
i s a
real
constant. Applying
theorems
1. l
and
1.2
t o t h e problem
(1.119),
(1.120)
we
obtain: Statement is
1.3.
uniquely
has
infinite
Examples x={x
if
. . . ,xj
I f e
solvable.
t h e problem
number o f l i n e a r l y 2
and
3
(1.119),
(1.120)
I f SiC, t h e c o r r e s p o n d i n q
show
has c r u c i a l
that
independent dimension
28
(1.1),
H
problem
solutions. of
spatial
i n f l u e n c e on t h e f i n i t e n e s s
s o l u t i o n s o f t h e homogeneous p r o b l e m
i n the class
homogeneous
(1.7).
variables
o f t h e number o f
CHAPTER 2
THE SYSTEM OF SINGULAR INTEGRAL EQUATIONS I N THE CLASS OF ANALYTIC FUNCTIONS.
L e t D* b e a f i n i t e sufficiency the
simply connected
domain i n t h e complex p l a n e
smooth boundary I " . The p o s i t i v e
one w h i c h
leaves
t h e domain
a l o n g r . F u r t h e r we i n t e g r a t e Definition
D* o n t h e l e f t
be an a n a l y t i c
is
an a n a l y t i c
vector-function
plz)-(p
function
i nthat
on contour
side
over T i n p o s i t i v e
when
with T i s
o n e moves
direction. (z) , . . . ,tp ( z ) )
i s said
i n domain D , i f i t ' s every
element
2.1. T h e v e c t o r - f u n c t i o n
to
direction
domain.
We c o n s i d e r t h e s y s t e m o f i n t e g r a l
equations:
r w h e r e K ( z , t ) i s a s g u a r e m a t r i x o f o r d e r n, t h e e l e m e n t s o f w h i c h a r e analytic
with
respect
domain
D*
( z ) ) i s an
t o be
vector-functions We s u p p o s e condition
Jp
We
also
t^t^eT,
from
i
;
t o t h e v a r i a b l e s z and t
£=£+11)),
given
analytic
that
i
2.3
a t zeD'ur,
Holder's tel",
i.e.
the inequality:
C
and a
a r e some
positive
constants,
and t . g
f (z)
a n d tp ( z )
satisfy
i f i t i snot specified
vector-functions w i l l
integral
fixed
i s a
n
where
z ,z ,t
suppose
section
f(z)=(f(z),...,f (z))
(z,C) s a t i s f y
D*ur. F u r t h e r m o r e ,
In
( a t every
vector-functions i nthe
t h e e l e m e n t s o f t h e m a t r i x JC(z,t) s a t i s f y
respect
z ,z eD'uI";
independent
found,
z
analytic
i n t h e d o m a i n D*.
that
with
elements K
the
at
t o complex v a r i a b l e
¥>(z) = (u> (a),
and
be c o n s i d e r e d
of t h i s
chapter
as
Holder's
condition i n
otherwise, a l l n-dimensional
vector-columns.
we
also
consider
t h e system
of
equations:
.
w
+
^
j M
m
+
^
r
j r c t i p y * r
29
=
f
(
z
)
,
( 2
.
2 )
where K ( z , t ) and W ( z , t ) of
which
areanalytic
the
n,
o f order
r e s p e c t t o complex v a r i a b l e
t h e elements
z i ndomain D ,
i s t h e v e c t o r - f u n c t i o n s t o be f o u n d ,
which i s
n
i n d o m a i n D*,
analytic p(z),
a r e square m a t r i c e s
with
f(z)=(f
(z),...,f
i s a complex
(z)) i sa given
conjugated
analytic
with
respect t o
vector-functions
i n
d o m a i n D'. Here
we
suppose
H(z,t),and
that
t h e elements
Holder's
matrices
K(z,t),
o f v e c t o r - f u n c t i o n s f ( z ) a n d p [z)
both
satisfy
c o n d i t i o n a t zeO u T;
The e q u a t i o n s
2.1. R e d u c t i o n
According
tel".
chapter w i l l
forelliptic
be a p p l i e d i n s t u d y o f t h e boundary
equations
o f Equation
Equation
of
( 2 . 1 ) and ( 2 . 2 ) a t f = 0 a r e s a i d t o be homogeneous.
The r e s u l t s o f t h i s value problem
t h e elements
(Chapter 5 ) .
(2.1) t o t h e Singular
Integral
i nt h e Class o f Holder
t o Sokhotzhy-Plemel's f o r m u l a ( [ 1 8 ] , p . 6 6 ) :
f
f zeD*, t s r . o
In the
equation
(2.3) and f u r t h e r
sense o f p r i n c i p a l
value
a l l singular integrals
([18],
p.50).
Proceeding
z-*t =£ +iii <=r, (zeD*) i n t h e b o t h s i d e s o f e q u a t i o n o
the
o
Q
formula
a r e assumed i n to thelimit a t
(2.1) and applying
( 2 . 3 ) we o b t a i n . f K(C , t ) < p ( t ) d t
(a+ f i c r v v M V
+
~
^
f
t
c
= < „' - V
r
-
2
4
! - '
t where E i s i d e n t i t y m a t r i x o f o r d e r n. Equation
(2.4) w i l l
be c o n s i d e r e d
i na wider
class o f functions:
, K ( t ,e)*(t)dt (E
+
^ivv)*cv
+
sir — ^
f t ), t T, (
o
o
(2.5,
r where found,
|K(t) = (^ ( t ) ,. .. , ^ ( 1 ) ) l
defined
on
i s n-dimensional
t h e contour
T,
30
v e c t o r - f u n c t i o n t o be
t h e elements
o f which
satisfy
Holder's
condition.
boundary
value
of
The d i f f e r e n c e i n equation
from
the class
f ( t
side
of
) of
Q
equation
equation
(2.5) i s t h e
(2.1)(of
analytic
(2.4) and
(2.5) t h e v e c t o r - f u n c t i o n of Holder,
o f any a n a l y t i c
( 2 . 5 ) i s due t o t h e f a c t
p
i s an a r b i t r a r y
i . e . i t i s not, i n general,
function
t h e boundary
vector-function.
have t h e f o l l o w i n g :
Theorem sense. value
2.1. Equations
( 2 . 1 ) and
I f p(z) i s the solution
of
analytic
( i n D')
equation Proof.
equation
(2.5),
(2.5) are e q u i v a l e n t
o f equation
(ter) i s the solution
solution
How
side
between equations
that
We
right right
f(t)).
vector-function
value
The the
(2.1),
of equation
then
boundary
which
is
in
following
i t s boundary
i f tli(t)
(2.5) and
i t i s the
v e c t o r - f u n c t i o n s
then
the
i s the
value
of
an
solution
of
(2.1). The f i r s t
l e t (fr(t)
be
part
o f t h e o r e m 2.1 f o l l o w s
the
solution
of
equation
from
the equality
(2.5).
We
(2.4).
consider
the
vector-function:
r and
denote t h e boundary value
Proceeding applying
to
the
the formula
limit
o f $ ( z ) a t z->t6r(zeD*) in
equation
(2.3) and e q u a t i o n *(t)=tf(t)
Substituting the
solution
Theorem if
the
2.1
implies:
equation
independent general
(H(t)=*(t)
of equation
0(t)=¥>(t), w h e r e 4)
the general
is
(2.7),
p ( z ) i s an
solution
and
(2.7)
i n ( 2 . 6 ) we
solvable,
equation
z->ter(zeD')
obtain:
obtain that
*(z) i s
Theorem 2.1 i s p r o v e d .
of equations
of
( 2 . 5 ) we
by * ( £ ) . at
at ter.
1) t h e e q u a t i o n
(2.5)
solutions
solution
from (2.1).
(2.6)
( 2 . 1 ) i s s o l v a b l e i f and 2)
the
(2.1) and
(2.5)
arbitrary
of equation
is
numbers
of
(2.5) a r e equal,
defined
solution
by
the
of equation
only
linearly 3) t h e formula (2.1) and
( 2 . 1 ) i s d e f i n e d by t h e f o r m u l a :
r w h e r e # ( t ) i s an a r b i t r a r y F u r t h e r , we w i l l
solution o f equation
see t h a t t h i s
equivalence
31
(2.5).
i s important not only f o r
analysis
o f equation
when t h e r i g h t class
2.2.
(2-1),
but also
side of the latter
( s a t i s f y i n q Holder's
f o r analysis
o f e q u a t i o n (2.5)
i s any v e c t o r - f u n c t i o n
of
Holder's
condition).
Analysis of Equation (2.1)
Together
with
equation
( 2 . 5 ) we c o n s i d e r t h e e q u a t i o n : cj(t)K(t,t )dt o
-o,
t «r,
(2.9)
o
r where
u ( t ) - ( u ( t ) .... , W ( t ) )
In
Holder's
equation
condition
(2.9) i s c a l l e d
respect t o equation us
on
the
system
(2.5) are
called
Q
should
condition From
be
noted
f o requation
(2.10)
equations
B(t )=
of
and
o
that
normal
[2.11)
i tfollows
(or satisfying
the
when
of function t
t^T.
o
(2.11)
i s also
(2-11)
the
normality
that
the normality
condition f o r
i s :
i t i s assumed t h a t
index
once, d i v i d e d
x-
type
o
condition
t er.
o
continuous
a(t)
on r w i l l
i s path-tracing
(2.12)
Q
the condition
H ( C ) be a c o m p l e x - v a l u e d The
o
(2.9).
(2.5) and (2.9)
Herein a f t e r
arga(t),
o
det((A(t )-B(t ))»0,
o
Let
with
(2.10)
|K(t ,t ).
o
d e t ( E + K ( t , t ))'0,
by
vector-line.
condition)([IB],p.507),if: det((A(t )+B(t ))*0,
tel".
found,
denote:
normality
Let
be
(2.5)([18],p.507).
0
It
to
a a s s o c i a t e d homogeneous e q u a t i o n
A(t l=E+ f K ( W , The
vector-function
r.
( 2 . 9 ) u ( t ) i s c o n s i d e r e d as a
The e q u a t i o n
Let
is
n
satisfying
(2.12)
function
issatisfied. on T and a ( t ) * 0 a t
be c a l l e d
t h e contour
r
t h e increment of
i n positive
direction
b y 2n.
us d e n o t e
t h e index
Normal-type
of function
equations
det(E+K(t,t))
(2.5) a r e c o m p l e t e l y
32
on t h e c o n t o u r T analyzed
i n [18]
(p.510), where t h e f o l l o w i n g 1)
The
number
homogeneous
of
equation
two
statements are
linearly
(2.5)
and
proved:
independent
the
number
solutions
of
linearly
s o l u t i o n s o f t h e homogeneous e q u a t i o n ( 2 . 9 ) a r e f i n i t e
of
and:
m -m =-x. o
2) N o n - h o m o q e n e o u s
equation
vector-function f ( t )
|
(2.13)
a
(2.5)
satisfies
the
independent
is
solvable
the following
i f and
only
i f the
condition:
j - 1 , 2 , . .. ,m' ,
cj(t)f (t)dt=0;
(2-14)
a
r I where
U ( t ) ( j = l , 2 , . . . ,ra' )
In
this
section,
linear
equivalence of
above m e n t i o n e d T h e o r e m 2.Z.
The
We u[z)
shall = (u (z) i
Proof. is
2.3.
The
i f vector
Lemma
equations
number m
(2.1)
and
of l i n e a r l y
o
(2.1)
and
and
linear
(2.5)
i n two
need t h e f o l l o w i n g the
independence
(theorem
independent m'
of
a
equation
satisfies respect
t o Cauchy's theorem
1 2m
and
solutions
linearly
(2.1)
the
of the
independent
and
i s solvable
the condition
(in
domain
the conditions to
2.1)
i f and
(2.14).
£>')
vector-function
e q u a t i o n (2.9) , t h e n cj(z)=0.
n
with
are
simple
analytic
, . . . ,ej (z) ) s a t i s f i e s Let u(z)
the
theorems.
t h e number
non-homogeneous
I f
of
numbers.
function f ( z ) satisfies
2,1,
analytic
accordinq
solutions
o f t h e homogeneous e q u a t i o n (2.9) a r e f i n i t e
Theorem only
independent
dependence
o f complex
statements r e s u l t
homogeneous e q u a t i o n solutions
linearly
(2.9).
assumed o v e r t h e f i e l d The
are
g
homogeneous e q u a t i o n
complex
of
lemma 2 . 1 .
variable
z
since
i n domain
K(z,t)
D' ,
then
([13],p.45):
M(t)K(t,tJcK J
t-z
- =0,
VzeD ,
(2.16)
r w h e r e D~ i s t h e c o m p l e m e n t o f D*u Proceeding
to
the
limit
at
T t o t h e whole
z-»t
(zeD~)
33
complex p l a n e .
and
applying
Sokhotzky-
Plemelj's
formula ([18],p.66)
we
obtain
D(t)K(t,t ) d t +
- ^ ' . i f t ' o - V
lib-
-
t
0
;
t
r
2
V -
' -
1 7
'
r Comparing
(2.9)
and
(2.17),
we
find
t d ( t ) =0, t e r . Q
Lemma
o
2.1
is
proved. Let
us c o n s i d e r t h e f u n c t i o n a l l (f)=
(see
(2.14)):
| o(t)f(t)dt,
j
j = l
m;.
(2.18)
r The
functionals
I
Holder's class.
We
as f u n c t i o n a l s
over
are
shall
linearly
prove t h a t
the class
independent
as
functionals
they are also l i n e a r l y
of analytic
boundary v a l u e s b e l o n g i n g t o t h e Holder
over
independent
vector-functions
i n D*
with
class.
Let
C
i V
f
)
+
C
A
(
f
)
+
---+
5
W ^
Substituting
from
(2.IB) i n t o
|
0
"
G
'
V f
-
(2-19)
0
( 2 . 1 9 ) , we
have:
U>(C)f(t)d
(2.20)
r where l - S j i U t t ) +...+
u(t) 1
As
(2.20)
(2.21)
o
k
k
u ( t ) ,. . . , u ( t )
also
h C u ( t ) , H=m' .
the
are the solutions
solution
of
this
of equation
equation.
In
(2.9),
particular,
then tj(t) i s from
equation
and
applying
i t follows:
r Proceeding
to
the
limit
at
S o k h o t z k y - P l e m e l j ' s f o r m u l a , we
z-it^r
(zcD~)
in
(2.22)
obtain:
" * V •lb J
34
"
S
3
?
t
a
.
»
i
We
( i n d o m a i n D')
consider the analytic
vector-function:
r Let
us
denote
Proceeding
t h e boundary
to
the
values
limit
at
Sokhotzky-Plemelj's formula,we
of
t ( z ) a t z->t er,zeD*
by
o
z^t (zeD*)
in
o
(2.24)
and
i(t ). o
applying
obtain:
r Comparing
(2.23)
and
(2.25)
one
*(t )
- u(t )
o
Hence, ( J ( t )
finds: , t er.
Q
i s t h e boundary
(2.26)
o
value of a n a l y t i c vector-function * ( z ) . 1
According
t o lemma
independent, condition
then
(2.14)
2.1 u ( t ) = 0
C =...-C^-0
(k=m^).
i
are linearly
k
a n d s i n c e d>(t) , . . . , u ( t ) Thus,
we
are
proved
linearly that
the
independent.
2.3. A n a l y s i s o f t h e E q u a t i o n ( 2 . 2 )
Equation here of
(2-2) should
we w i l l
be
analyzed
formulate the results
similarly
(2.1),
so
moments
proofs f o r the statements. Here,
linear
(2,2)
and t h a t
(2.2)
will
(2.2)
independence
t o the limit
and a p p l y i n g
E»
of the solutions
of solvability
conditions
0
of real
(zeD*)
i n both
S o k h o t z k y - P l e m e l j ' s f o r m u l a , we
1 tK(t .t ))Kt ) 0
a t z^tt^r
0
1 + £j
f K(t ,t)V»(t)dt —
[
suppose
2T7I |
equation
numbers. sides
of
equation
obtain:
0
c
r +
o f homogeneous
f o r non-homogeneous e q u a t i o n
be a s s u m e d t o be o v e r t h e f i e l d
Proceeding
We
t o equation
and p o i n t o u t t h e e s s e n t i a l
M(t.E)V(t)dt -t^l
= < >' f
that:
35
C
0
+ i«(t ,t ) (t ) o
o
P
0
+
det (E+K(t ,C >)*0, o
This (Cf.
condition
C er.
o
i s the condition
of
(2.28}
o
normality
f o r equation
(2.27)
[ 1 4 ] , p.275).
Equation f(t )
(2.27)
will
i s the right
o
The
be
solved
i n Holder's
side of equation
normal-type
equations
classes,
assuming
that
(2.2).
(2.27)
i s completely
analyzed
i n
[ 14 ]
(pp.273-278). As f o r e q u a t i o n ( 2 . 1 ) , are
one c a n p r o v e t h a t
e q u i v a l e n t a n d t h e o r e m 2.1 i s s a t i s f i e d
(2.1)
being
replaced
by
the equation
equations
(2.2) and
(2.2) and
t h e e q u a t i o n (2.5)
b e i n g r e p l a c e d b y t h e e q u a t i o n ( 2 . 2 7 ) when f o r m u l a t i n g We
consider
together
with
the
(2.27)
f o r t h e them, t h e e q u a t i o n
equation
this
(2.27)
theorem.
the
following
equation: ,
,
i
f u(t)K(t,t )dt 0
f a(t )
[ u(t)«(t, t j d t
Q
2ni
I
= ° .' t„eT, a
t-t
(2.29)
r where
a ( r ) = l i m ^-^—, t«=r i-iZ
and
u ( t ) = (u ( t } ,...,u ( t ) ) t
(vector-line),
The e q u a t i o n ( 2 . 2 9 ) equation If
is
n
satisfying
(2.27)
([14],
vector-function
Holder's condition
i s called
(2.30)
t-T
to
be
found
on r .
associated equation t o the
p.275).
the normality condition
(2.28)
i s satisfied,
i t i s shown i n ( [ 1 4 ] ,
p.276) t h a t one can p r o v e t h e f o l l o w i n g t w o s t a t e m e n t s : 1)
The
equation of
number
k
(2.27)
and t h e number
o
of linearly
independent k'
of
o
solutions
linearly
t h e a s s o c i a t e d e q u a t i o n (2.29) a r e f i n i t e
The
non-homogeneous
equation
(2.27)
36
homogeneous solutions
and
where x i s t h e i n d e x o f t h e f u n c t i o n d e t (f?+K(t, t ) ) 2)
of
independent
o n F.
i s solvable
i f and
only i f
the vector
function
f(t)
satisfies
the condition:
j
Be
fc)(t)/(t)dt-0,
(2.31)
r i where
u ( t ) (J=l,...,k' )
are
g
associated The
equation
linearly
independent
solutions
of
the
(2.29).
equivalence
of
equations
(2.2)
and
(2.27) ,
and
the
above-mentioned statements r e s u l t i n : Theorem
2.4.
The
number
homogeneous e q u a t i o n solutions
of
the
non-homogeneous satisfies
2.4.
Let
equation
equation
the condition
Efficient
D'
be
containing
h
of
Q
(2.2) and
linearly
independent
t h e n u m b e r k'
(2.27)
(2.2)
are
is
of
finite,
solvable
solutions
linearly
k -k'=-2x-
and
i f and
of
independent
only
The
i ff ( z )
(2.31).
Method f o r S o l v i n g E q u a t i o n ( 2 . 1 )
a
simply
the origin
connected
domain
with
o f c o - o r d i n a t e s . L e t us
smooth
boundary
consider the
T
following
integral equation:
. 2Si
z
*< >-
f K ( z , t ) (p{£)dt t-«(z)
- i, hi J K (Z,t)«(t)l (l- f ) d t = f ( z ) , 2
r where
K (z,t)
complex
function
with
logarithmic
We
JC (z,t) ?
z
and
respect
t
are at
Holder's function,
a t every f i x e d
(2.32)
condition which
and
functions teD
variables
and on
D*ur,
t o be f o u n d , a n a l y t i c on
D*ur,
i s analytic
In(1-2) with
with
respect
satisfying
is
to
Holder's
f(z) is a
given
i n d o m a i n D* a n d that
respect t o z
branch
of
( i n domain
t e r and e q u a l t o z e r o a t z=0.
impose f o l l o w i n g
D* a n d s a t i s f i e s
analytic zeD
t o both
and (>(z) i s a f u n c t i o n
satisfying
D*)
and
variables
condition
n
r
restrictions
Holder's condition
on c t ( z ) :
ot(z) i s a n a l y t i c
i n domain
on D*u f , a n d t h e v a l u e s a ( z ) a r e :
a(z)eD'
at
zeD*u T,
(2.33)
[^|^-ja7
at
Z S D \ J T,
(2.34)
37
where g i s a It
equation
From
2.1
Since
class.
condition
K^fz, t ) p ( t )
complex
variable
formula
([13],
i t is a
(2.1) t o s i n g u l a r
inteqral
t o zero.
indicate
(2.32),
which
solvability
another,
allows a in
a
more
necessary
terms
of
the
are analytic
2
a t every
fixed
zeD*,
i n D* w i t h
then
according
respect t o to
Cauchy's
p.54):
Substituting
J — r
t=ct(z)
Integrating
both
f f
sides
|
e
D
( 2 . 3 5 ) , we
(«(z»- 35! J r of
0 a n d z a t j - 2 , we
Z
|Z£
i n t o formula
V*,«(2))
(2.35)
g-
with
'
C
e
D
' J
= 1
2
' -
2
< -
3 5
)
obtain:
.
a ( z )
respect
to
(2-36)
C
between
the
find:
K (z,C)»>(t)dt= g i j J K ^ t ^ t J p f t J I n f l -
|)dt.
(2.37)
| K ( z , t ) i o ( t ) d t - f ( z ) , z«D*,
(2.38)
2
o Hence,
case of
that
shall
unique
particular
obtained.
and K ( z , t ) * ( t )
t
K^z,t)p(t)=
limits
we
equation of
is a
i t follows
equation
Here
c o e f f i c i e n t s t o be
(2.32) (2.33)
i s equal
have reduced
method f o r s o l v i n g
sufficient
equation
equation
and i t s i n d e x
we
i n Holder's
efficient
that
the condition
equation
section
equation
and
to verify
(2.1).
normal-type In
constant.
i s easy
r
equation
(2.32)
may
be r e w r i t t e n
as:
i
ip(z)-B(z)p(a(Z))-z"'
2
0
where S[z) It
i s clear
The s o l u t i o n
= R (z,«(Z)).
t h a t |3(z) i s a n a n a l y t i c of equation
(2.38)
(2.39,
(
function
i s sought
38
i n domain
D*.
i n the form o f :
E
C J
jfz
+ z"u>(z) ,
(2.40)
] =o w h e r e C ,.-.,C o
satisfying chosen
ui
are constants,
Holder' s
u ( z ) i s an a n a l y t i c o n D*<J I " , m i s a
condition
( i n D*)
natural
function,
number
t o be
later.
Substituting
tp(z)
from
(2.40)
i n t o equation
(2.33)
we
obtain:
z z ( J ( z ) - S ( z ) (n(z))° (a(z) ) - z"' JjC ( Z , t ) c'u (t) d t = t l ( z ) , N
tl)
z
(2.41)
where
£![z)=f(z)-^
j f z ' + f3(z)^
J -O
In
equation
C ,...,C
-jllatzD'+z-'^
J-0
(2.41)
a r e t o be
From t h e c o n d i t i o n
J =0
the analytic
Performing
(2.34)
(2.42)
0
function
u ( z ) and
the
constants
i t follows: | '<0)|sg.
d i f f e r e n t i a t i o n on
both
( J
(2.42)
sides
of
equation
a n d s u b s t i t u t i n g z = o , we
f! '(0)=0, fi(z) from
(2.43)
Q
t o z up t o ( m - l ) - t h order
Substitutinq
( z , £.) F d£.
found.
a(0)=0,
respect
J
j {|
j-0,1, into
,10-1.
( 2 . 4 4 ) , we
obtain: (2.45)
z
Cjjl-eiOJ^'IO))
1
-
K
^
C
)
) +
^d
i
p
with
obtain: (2-44)
C ( l - f i ( 0 ) - K ( 0 , 0 ) ) = f (0) , o
(2.41)
C=f
,
J
,
(0),
(2.46)
j=l,...,m-i, where d Let
a r e some w e l l - k n o w n c o n s t a n t s . ip the following conditions: 1 - 6 ( 0 ) (n- ( 0 ) )
j
K (0,0) j ^ — *0, j = 0 , l , . . .
39
(2.47)
be s a t i s f i e d . Then the
t h e system
solutions
function From
of
(2.45), the
(2.46)
system
i s uniquely
into
(2.42)
we
solvable.
shall
Substituting
find
the
analytic
fl(z) .
(2.44)
i t follows: £l{2)=z"£l (Z) ,
(2.48)
o
where
fi (z)
i s analytic
0
condition
function
i n d o m a i n D*
which
satisfies
Holder's
on D'<J r .
Substituting
tl(z) from
sides of equation
(2.48)
(2.41)
i n t o e q u a t i o n (2.41)
b y z", we
obtain:
<j(z)=L(u)
+ Q (z),
and d i v i d i n g
both
(2-4°)
where z 5
L(u)=B(z) f ^ ^ - ]
"(f(z))
+ z~"~' | K ( Z , t ) t " u ( t ) d t .
(2.50)
a
o If
the solution
domain
Dur,
u(z) of equation
then
satisfies
Holder's
satisfies
Holder's
equation in
(2.49)
recallinq
(2.50)
the
on
D-'uP,
condition condition
on
D*ur.
i s continuous
riqht we So
side
find
of
that
i n the closed this
equation
this
solution
i t i s sufficient to
i n the class of analytic
c l o s e d d o m a i n D*ur From
(2.49)
that
i n domain
D*
and
solve
continuous
functions.
and t h e c o n d i t i o n
(2.34),
i t follows:
II
I L ( u i ) |s
z
I
m+1
(2.51)
where ||= max l f i ( z ) l , ZeD ur
|(j||=
+
max l w ( z ) I , zi=D*vr
(2.52)
and ||K || = max z.teD'ur We
choose t h e number m
IK ( z , £) | .
satisfy the inequality:
40
(2.53)
(2.54)
This and
choice provides
thus
equation
iteration
t h e norm o f t h e o p e r a t o r L ( u ) b e i n g
(2.49)
i s uniquely
solvable
a n d may
less than 1
be
solved
by
method([19],p.47): z
c j ( Z ) = n ( z ) + L ( f i ) + L < C y + ..., 0
(2.55)
o
w h e r e L ' ( D ) means t h a t t h e o p e r a t o r L i s a p p l i e d t o £i k t i m e s . d
The If
o
s e r i e s (2.55) m
satisfies
satisfied
Substituting
we
solvability It
(2.54) , t h e n
t h e s o l u t i o n s C , . . . ,C
of equation
have
shown
of equation
progression.
t h e c o n d i t i o n (2.47)
is
only f o r j=0,1,...,m-l.
of
the algebraic
and t h e s o l u t i o n u ( z ) o f e q u a t i o n
the solution
Hence,
the condition
geometric
f o r jwtt, so i t needs t o be v e r i f i e d
(2.45),(2.46) find
converges as a decreasing
(2.49)
into
equations ( 2 . 4 0 ) , we
(2.38).
that
the condition
(2.47)
provides
unique
(2.38).
i s easy t o see t h a t t h e c o n d i t i o n (2.47)
i s satisfied, i f :
|JC ( 0 , 0 ) l+IK ( 0 , 0) < 1 ,
(2.56)
]
or t c ' ( 0 ) = 0 , K ( 0 , O ) + K ( 0 , 0 ) * l , K (0,0)«2,3 t
Hence,
From
(2.32)
described
o r (2.57)
i s satisfied,
then
i s uniquely solvable.
method
t h e c o n d i t i o n (2.47)
homogeneous e q u a t i o n
(2.57)
2
i f one o f t h e c o n d i t i o n s (2.56)
the equation
if
2
f o r solving i sviolated
(2.32)
equation a t least
has n o n - t r i v i a l
(2.32)
i tfollows that,
f o r one i n d e x j , t h e n t h e solution.
So, we o b t a i n t h e f o l l o w i n g : Theorem conditions
2.5.
2.5. E q u a t i o n (2.47)
Reduction to
i s u n i q u e l y s o l v a b l e i f and o n l y i f t h e
o f Some C l a s s e s o f S i n g u l a r
Equations
Integral
Equations
( 2 . 1 ) and ( 2 . 2 )
L e t D* be a f i n i t e sufficiently
(2.32)
are satisfied.
smooth
simply
connected
boundary T
domain i n t h e complex plane
a n d D~ b e t h e c o m p l e m e n t
41
o f D*u
with T i n
the
complex
plane.
Let us c o n s i d e r t h e f o l l o w i n g
integral
equations:
K(t„,t)»»(t)dt (
E +
3
*
(
*
„
+
.
2^T
w(t +
&
t)^(t)dt
— ^ r ^ t -
r where
g ( t > = (£/, ( t )
(tfi ( t ) , . . . , | t t condition
(t))
matrices
(2.1);
(2.27)
i s due
arbitrary
a
T.
a
given
I n equation
t o the fact
5 9 )
function
and
satisfying
(2.58), K(z,t)
0(E) = Holder's
i s the matrix
( 2 . 5 9 ) , K ( z , t ) and H ( z , t ) a r e t h e
(2.58),
that
(2.59)
the right
s a t i s f y i n g Holder's
H e r e we s u p p o s e t h a t
sides
and e q u a t i o n
(2.5),
of t h e former
are
c o n d i t i o n o n T.
the normality condition: d e t [E + K ( t , E ) )»0, t <Er n
is
-
(2.2).
between e q u a t i o n s
functions,
f 2
« V <
vector-function
and i n e q u a t i o n
from equation
The d i f f e r e n c e
is
n
known
on t h e c o n t o u r
from equation
= * t V * 0
,g (t)) is
= g(£ ) , t e r , ( 2 . 5 8 ) =" o " 0
t-t
0
(2.60)
Q
fulfilled. We
shall
equations
show
that
( 2 . 1 ) and
equations
because
some
previous
s e c t i o n , may b e s o l v e d
First, !&(t)
classes
l e t us
of equation
(2.58)
of
consider (2.58)
equation
analytic and
equation
as
(2.58)
and
and
respectively,
reduced
shown
represent
the
i n the
solution
(2.61)
I
X (z) )
are
I0(t) from
a n d D~ r e s p e c t i v e l y , ( p ( t )
o f p ( z ) a n d X ( z ) a t z ^ t e r , zeD* a n d
a n d X(«)= l i n t X ( z ) . (2.61)
the
n
I I I -Mo
Substitutinq
to
i s important
i t was
X(z)=(X,(z)
v e c t o r - f u n c t i o n s i n t h e domains D
zeD
be
, ter,
n
X ( t ) are t h e boundary values
z-ittF,
(2.1),
may
reduction
a s ( [ 1 8 ] ,p. 136) :
(2.59)
This
efficiently.
*(t)=(p(t)-X(t) where
and
(2.2) r e s p e c t i v e l y .
into equation
42
(2.58)
we o b t a i n :
(E
|K(t ,t })( (t )-X(t »
+
0
o
V
0
o
j i j
+
— ?
^
=g{E ) o
(2.62)
r Let
us
denote:
j
, *(z)=¥>(z) +
, K(z,t){(p(t)-Jt(t))dC
JJJJ
, zeD
J - J
.
(2.63)
r Let the
t h e b o u n d a r y v a l u e o f
# ( t ) be limit
at
z-*t e r ,
ZED*
Q
Plemelj's
formula (2.3),
#(t )-»(t
o ) +
0
we
in
a t z-»ter, zeD*. P r o c e e d i n g
(2.63)
obtain
and
applying
to
Sokhotzky-
: f K(t — 2
x t t ^ t ^ ^ g - K g ) ^
t ) (
(2.64)
r H e n c e , e q u a t i o n ( 2 . 6 2 ) may
be
rewritten
as:
0(t )-X(t )=g(t ), n
T h u s , we analytic the
have a p r o b l e m
0(z)
t er
o
of conjuqation
vector-functions
formula
n
and
(2.65)
o
(2.65)
Jt(z).
The
f o r the d e f i n i t i o n
solution
i s defined
of by
([IS],p.136): 0(z)
= G ( z ) , zeD",
X(z)
-
G(z),
(2.66)
z<=D~,
(2.67)
where
r Proceeding
to
the
limit
at
z-+t er(zen )
in
o
formula
(2.67),
we
obtain: X(t , 0
fat,H.
-
0
&
j
,2.69,
f Substituting
*(Z)
and
X(C)
from
(2.66)
and
(2.69)
into
(2.63) ,
we
have: p ( z )
^
[
^
W
^
=
43
f
(
z
l
,
, * l f ,
(2.70,
where
T h u s we
obtain
Theorem
2.6.
variable defined
z
I f the
i n domain
by t h e f o r m u l a
matrix
D*,
fC(z, t )
the general
is
analytic
solution
with
respect
to
(2.58)
i s
of equation
: *(t)-*>(t)-G"(t),
where ^ i ( z ) i s any s o l u t i o n o f e q u a t i o n vector-function
i n domain
D°
and
(2.72)
(2.70)
G~(t)
i n the class of
i s defined
by
analytic
the
formula
(2.69) . Hence,
the solution
equation How I/I(Z)
of equation
(2.58)
i s reduced t o t h e s o l u t i o n
of
(2.1) .
we
shall
from
reduce equation
(2.61)
into
(2.59)
equation
j (£+ i ( t , £ ) ) ( H t ) - X ( t ) ) K
p
o
0
t o equation
( 2 . 5 9 ) , we
o
+
( Kit — 2
^
(2.2).
Substituting
obtain : , t ) «p(C>-*(C))dt —
+
r +
3H(t ,t )(p(t )-X(t )) o
o
o
0
+
f w(t ,t) ( (t)-JC(t))dt P
+
2WT
—
E=E
- f < V -
r
2
V "
< -™>
IL e t us
* ( z ) ^ ( z
denote:
)
+
I
;
F
I
, K(z,t) (?(t)-X(t))dt j ^ —
j
+
r Proceeding
, M(z,t) ( ( j ( t ) - X ( t ) ) d t ^ (2.74)
r
to
the
Sokhotzky-Plemelj's 1
limit
at
z^t sr, o
zeD*
in
(2,74)
and
applying
f o r m u l a , we o b t a i n : ,
i
44
f K(t
t) ( (t)-X(t))dt V
!
,
.
S ^ W ("'V-^^D
+
Hence, e q u a t i o n
(2.73)
Similarly,
+
c
5ffi J_ —
f=£;
2
as :
*(t )-Jt(t )-tr(t ),
t
o
(
f «lt ,t)
may be r e w r i t t e n
0
#(Z)
,
o
f l 6
•
r.
(2.76)
we o b t a i n t h a t X ( t ) i s d e f i n e d b y t h e f o r m u l a
(2.69)
o
i s the solution
1
l
i
of equation
J
2ni J
(2.2),
t-z
(^-")
and
where:
2nT J
T
t-z
r T h u s we
obtain:
Theorem
2.7.
I f the matrices
respect
t o variable
(2.59)
i s defined
solution
of
formulae
(2.69)
2.6.
Let
D°
be
by
formula
K(z,t) D',
and W ( z , t )
the general
(2.72),
( 2 . 2 ) and
where
f ( z ) and
of Functions
C o n n e c t e d Domains t h r o u g h i n the Unit
a
simply
|tl»l o n t h e c o n t o u r
i s an
with
equation arbitrary by t h e
which
are Analytic
Functions
which a r e
circle
connected
domain
with
sufficiently
of the unit
smooth
circumference
r , preserving the orientation.
denote:
a-,
It
p(z)
of
G~(t) are defined
b o u n d a r y T. L e t z = a ( t ) be o n e - t o - o n e m a p p i n g
Let us
are analytic
solution
and ( 2 . 7 7 ) .
Representation
Simply
Analytic
i n domain
equation
Integral in
z
i s supposed
that
t )
=lim T-tl
SLi|ilSLlii,
a(t)satisfies
|t|-|t|-i.
Holder's
condition
a n d a'(t)«0 a t
I t 1 = 1. Let circle
t=R(z) IEI<1.
be t h e c o n f o r m a l Then,
mapping
obviously, every
45
o f t h e domain
analytic
D°
function
onto
the unit
p ( z ) i n domain
D*
represented
as: (2.78)
w h e r e iC(t) i s an In
the
analytic
representation
involved
which
indicate
another
in
the
unit
z-a(t) will
of
be
We
used
Theorem
then
the
function,
curve
[".
i n the
of
be
circle.
expressed
analytic
only
These
unit
conformal mapping
cannot
representation
i n Chapter
function
involving
the
representations
function
explicitly.
of
(p(z)
by
S (z)
is
Here
we
analytic
parametric
equation
analytic
functions
5.
following:
2.8.
D*and
i t may
general,
circle
the
have t h e
domain
in
function (2.78)
I f
(P(z)
is
satisfies be
function
Holder's
represented
analytic
condition
in
in
the
a
simply
closed
connected
domain
D*u
r
as:
(2.79)
where
Z=Q (t)
function the
closed
Proof. i/i(t), is
is
the
analytic
unit circle
Let
which
parametric
i n the
us is
circle
Itl^l
solve
and
equation
in
the
the
curve
s a t i s f y i n g Holder's
#(t)
i s d e f i n e d by
equation
analytic
of
ltl
(2.79) unit
with
circle
(o(z)
respect |tl
T,
0 (t)
is
condition
a in
uniquely
to
the
assuming
function z
that (J( )
known. By
substituting
£=a(t) i n
(2.79),
we
obtain:
(2.80)
r w h e r e 0(£) According
i s the
inverse
function
t o Cauchy's f o r m u l a
of o ( t ) .
( [ I B ] , p . 5 4 ) , we
have: (2.81)
r Substituting
p(z)
from
(2.81)
into
(2.80),
we
obtain (2.82)
f In
[18] (p. 133),
i t is
shown
that
the
equality
(2.82)
is
true
for
every
point
zeD*
i f and o n l y
if: (*<«)-*, ( 5 ) .
where 0 ( z ) i s an a n a l y t i c ]
Let
z=u(C)
be
t h e d o m a i n D*. represented
mapping
( z ) i s an a n a l y t i c i*(t)
from
i s clear,
that
o n e - t o - o n e mapper In
l&(t)
(2.85)
every
( 2 . 7 9 ) . Theorem More
onto 111<1
the
general
(2.84)
function.
i n ( 2 . 8 3 ) we
obtain:
t.CW3»{5)>1 "
e r
- ? -
a
function
z=w(S ( O )
maps
(2.85)
T
onto
itself
in
and p r e s e r v i n g o r i e n t a t i o n .
has unique
from t h i s
formulated
ltl
0 ( t ) i n domain
2
i n D* d o m a i n
"
[ 1 8 ) ( p . 5 7 3 ) , i t was
Hence,
l
= « (u(t) ) ,
(2.84)
MO
shift
function
4 {*)=0. circle
as:
Substituting
It
of the unit
Then, o b v i o u s l y , a n a l y t i c
iMt) where
i n d o m a i n D~ a n d
function
the conformal
(2.83)
fact
proved solution.
We
the problem obtain
of conjugation with
unknown
analytic
function
and t h e r e p r e s e n t a t i o n ( 2 . 8 4 ) .
function 2.8
that
p (z)
i s represented
uniquely
by
the
formula
i s proved.
integral
representations
i n Ref.[20].
47
of
the
form
(2.79)
are
CHAPTER 3
ASYMPTOTIC FORMULAS FOR SOLUTION OF MAXWELL'S EQUATIONS AND THE LAWS OF PROPAGATION OF ELECTROMAGNETIC ENERGY AT GREAT DISTANCES
3.1.
Cauchy P r o b l e m
Let
us w r i t e
complete partial
f o r Maxwell's
t h e system
system
E q u a t i o n s System
o f mathematical statements representing t h e
of electromagnetic
differential
theory
equations, i . e . well-known
equations o f Maxwell's
([15],
pp.289-293, [ 1 6 ] ,
p.27) : rotH=|?+J, dicD=p,
rotE=-|5, and
algebraic
(3.1)
div-B=0,
(3-2)
relations: D-ee E, B=UU H a n d J = c E , o
where E = E ( r , t ) i s i n t e n s i t y of
point
(x,y,z),
i s a magnetic
H=H(?,t)
i sintensity
D=D(r,t)
i s an e l e c t r i c
c (i
i stheelectric
o
o f an e l e c t r i c
field,
i s t h e speed
induction, o f a magnetic f i e l d
constant,
of light
,
induction, e -10 o
/ 4 n c = 8 . 8 5 1 -10"', 2
7
i n vacuum,
i s t h e m a g n e t i c c o n s t a n t , |i =4rr-10 '=1.257*10
o
o
J
i s a conductance
p
i s a charge
c
i sa dielectric
u
i sa magnetic
current
constant,
permeability, electric
medium i s i s o t o p i c
The
main
goal
a t great
Henry/meter
density,
conductivity.
V a l u e s H,D,J,E a n d B a r e v e c t o r s
fields
6
density,
cr i s a s p e c i f i c
that
? i sa radius-vector
t i s time,
B-B(r,t)
c
(3.3)
Q
of this
chapter
values of t
energy over a g r e a t
i n 3 - d i m e n s i o n a l space.
We
suppose
a n d h o m o g e n e o u s , t h u s JJ, c a n d tr a r e s c a l a r . i s t o study
and t o o b t a i n
distance.
49
t h e behavior
o f these
t h e law o f propagation o f
Taking
equation
(3.3) i n t o
account,
t h e system
(3.1),
( 3 . 2 ) may b e
w r i t t e n as: 3
| | = -roCE, d i r B = 0 , ^
_
a
r o t
t i O , (x,y,Z)eR ,
BE, t s O , ( x , y , z ) e R
B
(3--1)
,
(3.5)
p«ee d i r E ,
(3.6)
where EE UU 0 O To to
obtain thecharacteristics
consider Let
M
t h e system
and M
be
Q
(3.4),
and
8 =
EC
(3.7) 0
o f electromagnetic
field
i t i s enough
(3.5) o n l y .
t h e classes
of functions
defined
i n Chapter
1
(section 1.1)i The s o l u t i o n class Let The
o f Maxwell's equation
B-(B (r,t),B (?,t),B
(?,t))
B
initial
i n the
(r\t)).
B (?,0)=f
,
E (?,0)=f (x),
(3.9)
,
E (?,0)=g (x),
(3.10)
i
(X)
^ (x) ,
f (x) j
]
a n d g^ ( x )
t=0 into
the conditions
(3.8)
0 (x)=const
y
f o r Maxwell's
2
are given
t o (3.10)
equations
functions
t o theclass
equation
i s necessary
]
2
o f t h e considered
t h e second
we
depending
M. Q
Cauchy's
p r o b l e m . The
o f (3.4) and t a k i n g obtain
—
—
f o rsolvability system
(3.8)
2
i
( j = l , 2)
B a n d E be t h e s o l u t i o n
substituting
0)-* {x),
t
o n l y on t h e v a r i a b l e x and b e l o n g i n g
problem
(?,t),E
E tf,
I
condition
E = ( ( E (?,£),E
and
,
L
B (?,0)=g (x)
of
be s o u g h t
B (?,0)=« (X)
! f
Let
(3.5) w i l l
C a u c h y ' s c o n d i t i o n s a r e t o be t a k e n a s :
) [
where
(3.4),
o f f u n c t i o n s H.
account
= 0 . Hence, t h e o f t h e Cauchy's
(3.4),{3.5)
t o be s o l v a b l e .
Thus, t h e c o n d i t i o n (3.8) must be t a k e n a s : B (?.0)= r
where
i sa given
Cauchy's zero
problem
initial
data
real
C , o
B^(?,aJ- * ( x ) ,
(3.11)
2
constant.
f o rMaxwell's ( a t C =0, q
equations
0.,(X)=O,
50
system
f (x)=0, }
(3.4) ,
g (X)*0,
(3.5) with
j=l,2)
will
be
called
a homogeneous
problem.
One h a s t h e f o l l o w i n g : Theorem the
3 . 1 . Cauchy p r o b l e m
initial
d e p e n d s on x a n d t Proof. Remark seek
the
system
(3.4),
1 . 1 ) . Now
(3.5) with
and t h e s o l u t i o n
only.
The u n i q u e n e s s we
(3.4),
i s established
shall
i t i n the class
equations
f o r Maxwell's
data o f (3.9)-(3.11) i s uniquely solvable
prove
of functions
(3.5) and
i n Chapter
l (section
1.3)
existence of the solution. on x
dependinq
t h e boundary
and
conditions
shall
t only.
Then
(3.6)—(3.10) i n
C a r t e s i a n c o - o r d i n a t e s take t h e form: BE ^
= -BEJx.t)
,
(3.12)
E (x,O)=0 (x),
(3.13)
B
8B
2
(x,tj
SB
—
{X,t)
=°<
—
3
=°<
f -
(x,0)=C , SB
BE {x,t)
(x,t)
3E ( x , t )
ax
at
'
BJx,Q)=f
aB (x,t) at
The
solution
of
defined
(3-17)
a
, E J x , 0)=gjx)
t h e problem
. The s o l u t i o n
(3.12)-(3.19)
o f t h e problem
'
(3.16)
,
aE ( X , t ) SB ( x , t •" a t " ~ —ax
BE ( x , t )
—bx
BJx,0)=gJx)
-»<x<+»
BEJx.t),
ax
(x) , EJx,0)=£Jx)
i
4
(x,t)
SB =
at
1
(3 . 15)
0
is
(cf.
We
eejx.t), B^
(3.is)
y
.
(3.19)
i s sought
at
£>0
( 3 . 1 2 ) , (3.13) and ( 3 . 1 4 ) ,
and
(3.15)
by: B (X,t)-C x
,
0
(3.20)
EJx,t)=
(3.21)
Bt
Substituting
in
equation
(3.18)
and
in
the
boundary
conditions
(3-19) : B (x,t)=V<-x,t),
(X,t)=W(-x,t),
;
we
obtain:
51
(3.22)
wptX
SU*^L,
=
ax
PL
=
ot
-(W(r.t) ,
ox
(3.23)
1
7 ( x , 0 ) = g ( - x ) , XER ,
(3.24)
i
W(X,0)=g (-X),
XER'.
2
Thus, Cauchy's problem The
Cauchy's
problem
problem
(3.16),
(3.16),
(3.19)
always
further
we
be
reduced
shall
study
to the
equation
( 1 . 3 ) ( c f . Ch.1) , c o r r e s p o n d i n g t o t h e
(3.16), i s : \ +B>.-KxF'=O 2
The r o o t s
Here
can
Hence,
(3.17).
characteristic
system
(3.18), (3.17) .
(3.25)
1
gej? .
r
o f e q u a t i o n (3.26) a r e d e f i n e d
the
•/ 6 - 4 a F 2
radical
2
means
(3.26)
by:
the
branch
satisfying
the
conditions: / B -iaf 2
I m / B*-4af From e q u a t i o n s ( 3 . 2 7 ) ,
>0 a t 6 > 4 a e ,
(3.29)
>0 a t e <4a£. .
(3.30)
2
2
z
2
(3.28)
i t follows
Re\ (e)<0, i
l
Hence, t h e s y s t e m section
Cauchy's p r o b l e m (Ch.l, problem
section (3.16),
(3.16)
1.1,
i s reqular
Definition
(3.16),
(3.17)
1 . 1 ) . By v i r t u e (3.17)
2
with the order of regularity I t is
satisfies o f Theorem solvable
52
that:
ReA (0)=0.
1.2).
i s uniquely
Z
£ER',
Re^fFJ-eO, 5«R , £*0,
(Ch.1,
2
easy
to
verify
Lopatinsky's condition 1.1
(Ch.l,
section
and Theorem
3.1
r=2 that (1.13)
1.1) t h e
i s proved.
3,2.
Formula
f o r S o l v i n g Cauchy Problem f o r
Maxwell's
Definition is
Equations
System
3.1. The f u n c t i o n f ( x ) belongs t o t h e c l a s s C^(R'), i f i t
infinitely
differentiable
in R
and i s equal t o zero outside
o fa
segment. We r e p r e s e n t t h e f o r m u l a f o r s o l v i n g and
(3.18) , (3.19)
C™(R') .
These
studying
fjx)
with
formulae
asymptotic
Cauchy's p r o b l e m
a n d g^x)
will
(j=l,2)
be u s e d
behavior
(3.16),
belong
i n sections
(3.17)
t o t h e class
3.7 a n d 3.8 when
o f electromagnetic f i e l d
a t t h e great
values o f t . At
t h e construction
of solution
we
n o t deduce
transformations.
it
t h e s o l u t i o n o f t h e c o n s i d e r e d problem under
is really Calculating
(3.17) w i t h
the Fourier
However,
shall
mathematical
transform
r e s p e c t t o v a r i a b l e x, dU —
du
(3.16)
study. and c o n d i t i o n
we o b t a i n :
= -iCtye.t),
t > 0 , $«=»',
(3.31)
= -«ie.u ( s . t j - p t y e . t ] , t > o , e a r , y (?,0)=ll. (e), 2
,t) , WJx,t)=EJX,r.),
CO
(3.32)
e*R\
2
(3.33)
and CO
!*,(€)= [ fAx)explixF)dx, The
i nequation
(F,t)
^M.P
system
rewritten
rigorously
show a f t e r w a r d s t h a t
(e,t j
—
w h e r e WJx ,t)=BJx
we s h a l l
U (e,t)= )
(3.31),
i n matrix ^m
J W (x,t)exp{ix£.)dfi,
j=l,2.
j
(3.32) and t h e boundary
conditions
(3.34)
( 3 . 3 3 ) may b e
form as f o l l o w s : ,t)
+ - 4 ( e ) t 7 ( € , t ) = 0 , t > 0 , feR',
(3.35)
C(€,0)=*t€i .
(3.36)
where W(?,t) = ( U ( i t , t ) , [ J ( C , t ) ) ]
2
53
, *(e) =(
l
*
,
.
(3.37)
« H S * Solving (1.67),
Cauchy's
problem
(3.35),
(3.38)
?)• (3.36)
we
formula
obtain ( c f
Ch.l, section 1.3): W(€.tl=ffl(€,t)#(gJ,
(3.39)
where "IS'')
3
(E^+A'f)
zli
)-*«rp(at)dX,
(3.40)
H?) is plane
a unit X,
equation
matrix
o f order
2, T ( f ; ) i s a c l o s e d c o n t o u r \ ( £ ) a n d k (?)
enclosing the roots
i n complex
of the characteristic
z
f
{ c f . (3.27) and ( 3 . 2 8 ) ) .
Performing
t h e inverse
Fourier
transformation
on f o r m u l a
(3.39)
we
obtain:
| »(5,t)>(5)exp(-:ijr£)d?,
w(x,t)= ^
(3.4i)
where V(x,t)=(B^(x,t),£ (x,tj).
(3.42)
i
Now
l e t us p r o v e
Cauchy's p r o b l e m From
that
t h evector-function
V(X,t)
i st h esolution of
(3 . 1 6 ) , ( 3 . 1 7 ) .
( 3 . 3 8 ) we h a v e :
( E W ( O )
A+0 - I ?
= X +BA+af
Calculating ([13],p.85)
the
integral
(3.40)
l-aii;
by
(3.43]
A
Cauchy's
residue
theorem
we o b t a i n :
w(e,t)=
*,(C)-A (e)
X^ijJ+S -cie
- i f . 1 A e)J P(\^)t)e
i
x
(
2
fX
(O+fi - i f . exp(A (,t)t)
(3.44)
2
A (?)
From
formula
(3.44)
we o b t a i n
w(£,0)=E
54
Hence,
from
formula
(3.41)
we h a v e :
V{x,0)-
- 7 J $?&mp(-£$x}a&-f(x)i
(3.45)
where f ( X ) - ( f j ( x ) , f ( a r ) ) . a
Thus,
t h e vector
initial
condition
function
(3.17).
f (x)eC™(R )
to differentiate Equation
under t h e i n t e g r a l
+ A
at
where V ( x , t ) = ( B
Substituting into
solution From
(x,t),
Taking
E
W(x,t)
account
of equation
formulae
the class
then
( 3 . 1 6 ) m a y be r e w r i t t e n
ay Ifx, ^Sl
(3.40)
formula
(j=l,2),
1
functions
(x,t))
(B ( x , t ) , E
From
satisfies
(3.44)
i t follows
i n formula
(3.41)
Cauchy's that
i f the
i ti s possible
sign.
i n m a t r i x f o r m as f o l l o w s :
m*£L
AV>x,t)=0.
+
(3.46)
(x,t)).
from
(3.41)
we show
that
into
(3.46)
and t a k i n g
equation
W(x,t)
the vector-function
i s
the
(3.46).
(3.41)
and (3.44),
i t follows
that
W{x,t)
belongs t o
M. formula
(3.44)
into
account,
formula
( 3 . 4 1 ) may b e r e w r i t t e n
as: 3 Bjx.fj-
»n
1 2
Y
a
| (s -4«f )
2
(*,(€) ( * j ( € ) + f l ) -
-iS^mlexpt^Ot-iSxldf;, 2
, *™
J = 1
(3.47)
- I
-oa
+A (f)0 (sT))ex (X (i:)t-iex)d :J
where
2
a
0 (?) and ^ I C )
respectively Therefore,
r
e
2
P
t r i e
J
(3.48)
1
Fourier
transforms
/ ( x ) and t
f (x) 2
( c f . (3.34)). i f f (x)ec"(R ) ( j - 1 , 2 ) ,
55
thesolution
o f Cauchy's
problem
(3.16),
In
(3.17)
(3.16),
(3.17).
(3.23), is
i s defined
(3.24)
defined
Applying
we
functions g
0
and
(-6)
Let
the
(£)
T
and g
functions
(3.18),
(3.19)
0
and
2
(EJ
are the Fourier
j
f (x) ]
(J-1,2)
g {x)
and
}
i n R' and s a t i s f y
boundary may
be
belonging
Harmonic
In
this
data
solved
t o the class
C™(R
we
shall
construct
]
i
and
t h e boundary
A^,
u,
are
be c o n s i d e r e d shall
consider
(3.13) given
and
of
and these
case t h e f o r m u l a e f o r
Waves a l o n g
the
the
solution and
x-axis
of
(3.19)
Maxwell's
o f t h e form : ,
(3.49)
0 ) = j ) C o s (ux+(p ) ,
(3.50)
2
real
(3.17)
i n t h e case
( x , 0 ) =A cas{ux+
i
conditions
k—0,1,2.
(3.16),
remain t r u e .
(3.17)
a
( j =l, • • • , 4 )
we
as
). In this
i n the present section
B ( x , 0 ) = A c o s ( w x + j ^ ) , EJx,
First,
continuously :
xeR
J — 1 , 2 and
i n a s i m i l a r way
(X, 0 ) = J cos (ux+ip ) , E
B
case u = 0 w i l l
twice
problem
O s c i l l a t i o n s of Electromagnetic
section
}
be
-i-t
Cauchy's
e q u a t i o n s system w i t h t h e boundary data
tp
by
of the
dx'
s o l u t i o n obtained
3.3.
(3.19)
transforms
sc(i+iri:
where C and r a r e t h e p o s i t i v e c o n s t a n t s ,
the
problem
are defined
the estimates
d"g,CO
dx'
functions
the
J-i,2.
g^-fjexpfiftjOdf.,
«C(l+lll)
(3.18) , (3.19)
to
(-£):
functions
such
(3.48)
a n d W(x,t)
7(x,t)
while
d'fjx)
Under
(3.48).
i s reduced t o the problem
(3.47),
formulae
(3.22),
0,(5)=
differentiable
(3.47),
equations
t h a t the s o l u t i o n of the problem ( 3 . 1 8 ) ,
find
by e q u a t i o n
(3.48)
(3.47
by
3 . 1 the problem
section
z
(
(3.15)
(
a r e n o t chanqed,
constants
A*0
with
where
u>0.
r
The
separately. the
boundary
conditions
in
the
complex
form: l y x ^ l ^ e x p t ^ c j x + t ^ ) ) , E (x,0)=^ exp(i(ux+ p ) ;
w h e r e A ,A
a n d tp
are the constants
56
2
l
2
),
from t h e c o n d i t i o n
(3.51) (3.49).
Since part the
thecoefficients
o f t h es o l u t i o n problem
The
(3.16),
solution
o f equation
o f t h e problem
(3.16)
(3.16),
i
(3.51)
then
the real
i sthesolution of
i s sought as:
E (x,t)=l (t)exp(icjx), ;
(3.52)
2
where * ( C ) and T ( t ) a r e t h e c o n t i n u o u s l y t
(3.51)
(3.49).
o f t h e problem
B^(x,t)—t (t)exp(iux),
be
are real,
(3.16),
2
differentiable
functions t o
found. B ( x , t ) and E
Substituting equations
(3.16)
( x , t ) from
(3.52)
and t h e boundary c o n d i t i o n
into
(3.51),
t\ ( t ) = u i y ( t ) , t^m-alMf^-et^ti
,
(3.53)
. * (0)=^exp(ip ) .
(3.54)
a
r m~» m>iMj i
From
i
t h e system o f
we o b t a i n :
z
2
e q u a t i o n ( 3 . 5 3 ) we h a v e : r\(t)
V
»*(t) Substituting
+
t=0 into
e
>
!
= — h i — •
ey;(t)
(3.55)
+ &fm (t\
3
-
5
5
)
= 0.
i
and a p p l y i n g
t h e second
(3.56) condition of
( 3 . 5 4 ) we o b t a i n : r ; (0) = u i a e x p { i ( i l . a
3
(3.57)
The e q u a t i o n : A is
t h echaracteristic
roots
A. a n d A
?
2
+ BA +
= O,
equation corresponding t o equation
j f - f i V e -4u a J , i | - e + / 2
Case (3.56)
( 3 . 5 6 ) . The
o f e q u a t i o n (3.58) a r e d e f i n e d by:
AjB Let
(3.58)
2
i.m
2
S -4iA<
us c o n s i d e r t w o cases: 2
2
I . 8 *4(j H.
Then
a
n
d
t h e general
solution
o f equation
i sd e f i n e d by: r (t)=Cexp(A t)+C'.exp(A. £) , i
where C and C
i
f
a r ea r b i t r a r y constants.
57
(3.60)
]
Applying (3.57),
formula
we
(3.60)
*Aexp(iy)-Aiu
c
and
the
boundary
conditions
Aui
exp(i»)
r—
3
2
1
1r
22
Let
(3.56)
z
B
8 =4w «.
i s defined T
we o b t a i n
3
Then
( t ) = (C
t
a
^ "^"""f
3
+ C t)ex ((
t
c
t
]
solution
(c
solution
of
(3.63)
=A , u i e x p ( i f > ) + S ^ e x p t i p , ) ,
§*>•
4
(3.52)
2
(3.51).
o f t h e problem
(3.64)
2
g . ( t ) and ? ( t ) i n t o
(3.16),
(3.62) t i l e
:
c
problem
d
| t ).
P
v >= sf - i * . ^ Substituting
n
by:
C =A e x p { i p ) ,
the
1
( 3 . 5 5 ) a n d f o r m u l a ( 3 . 6 0 ) we h a v e : rAt)j M c A «rp(X 1t ) + 1 C ' A e x p ( A t ) ) .
I I . Now
Similarly
61
--< - '
2 'a ' ui [ i 1
Case
and
e x p f i p , ) -X A e x p ( i j > )
—• < V -
From e q u a t i o n
equation
(3.54)
find:
The
(3.16),
real
we
part
(3.49).
(3
obtain
of
this
The p r o b l e m
-
the solution solution
(3.17),
65)
of
i s the
(3.50)
may
be s o l v e d s i m i l a r l y . Now
l e t CJ=0,(> =0 i n t h e b o u n d a r y c o n d i t i o n s
(3.66)
BJx,0)=A ,
EJX,d)=A .
(3.67)
o f t h e problem B (x,t)=r y
Substituting
c a s e we
B
condition
and
2
i
(3.16), (t), E
i
from
(3.66)
(3.68)
(3.66)
a
i s sought
i n t h e form:
(x,t)=)- (t) .
(3.68)
2
into
t h e system
and by a p r o c e d u r e
similar
(3.16)
and t h e
t o the previous
obtain: Bjx.t)^.
is
then:
EJX,0)=A ,
3
The s o l u t i o n
(3.50),
BtX,Q)-A , t
boundary
(3.49) and
]
Similarly
we
defined
by :
obtain
that
EJX,Z)=A exp(-Bt) 2
the solution
58
.
o f t h e problem
(3.69) (3.17),
(3.67)
EJx,l)=Aexp'-BZ).
B {X,t)-a , i
Now of
we
t o analyze
e l e c t r o m a g n e t i c waves First
in
begin
3
2
case.
formulae
asymptotic behavior
2
and
of amplitude
and
phase
at great values of t .
L e t 8 >4u a. (3.60)
(3.70)
Then
(3.62)
X < A < 0 . Hence, ]
J
a t great values
i t c a n be a s s u m e d
of t
that: (3.71)
where (3.71)
is into
defined (3.52)
B Hence, t
by
we
(X,t)*
(3.61).
Substituting
T
(C)
l
and
S' (t) 2
from
obtain: C X -^sxp(\t+iux)
C ^ e x p f A ^ t + i u x ) , EJx,t)=
the solution
of the problem
.
(3.72)
(3.16),(3.49) a t great values of
i s d e f i n e d by : BJx,t)~
Re|c exp(x t+itjx)j , 2
EJx,!
s
:
•-••!- - ^ - e x p ( X t + i u x ) 2
(3.73)
Let C = IC 1exp(i0 ) . z
Substituting C
from
(3.74)
2
into
(3.74)
a
( 3 . 7 3 ) we
obtain:
S ^ l x , t ) = I C | e x p ( A t ) cos((jx-t-0 ) , 2
;
(3.75)
2
A e x p ( A X) -COS(CJX+0 +^) IC I-
BJX.t)*
(3.76)
2
2
where A uiexp'if c 2
)-X 1 e x p ' i p
• * -'VC 2
2 while
A and \
Second case.
)
=
(3.77) 2
1
a r e d e f i n e d by t h e f o r m u l a ( 3 . 5 9 ) . 2
z
L e t |J = 4 o j a . T h e n
i n a s i m i l a r way we
B^(x,t)=IC ltexp(-
obtain:
|t)Cos(wX+0 ),
4
(3.78)
4
e E X , t | * I C l | | e x p ( - § t) c o s ( u x + 0 + § ) , i
(3.79)
l
where C =A uiiexp(i»> ,)+ ^ • B ^ e x p ( i v > ) , 0 = a r g C . j
z
;
i
59
1
i
<
(3.80)
Similarly, a)
we
2
obtain:
2
I f B >4w a,
then
BJX,t)
= \d \exp(\ t)cos(ux-il> ) J
,
l
2
(3-81)
A
E (x,t)"
IdJ-^isostw-*^),
(3.82)
where
Auiexp(-i(J
) -X J e x p ( - i ( p _ ) £ - 3 ^
b)
2
I f
2
fl =4u a,
•
1
- r g d
i
,
(3.83)
then B ( x , t ) =l d l t e x p ( - | t ) cos ( u x - 0 ) ,
(3.84)
(Jf,t)«ld l|§e)fp(- f t ) COS (UV-i& -|) ,
(3.85)
i
£
3
3
3
3
where d -^wiexp(-ii>> ) 3
Thus,
+ - f ^ e x p f - i ^ ) , 0 =argd .
(
i fthe initial
(3.13),(3.15),(3.49)
data
and
3
B(x,t)
(3.50)
and E ( x , t )
one
can
satisfy
conclude
(3.86)
3
the conditions
from
the
derived
E
of the
formulae: 1)
At
every
fixed
t>0 the projections
B
. B 1
vectors zero 2)
B and E a r e harmonic
2
2
I fe E4(J a,
then
with
t h e phases o f these
t h e phases o f these
Harmonic O s c i l l a t i o n s along
Maxwell's takes
E
. y
amplitudes
x
decaying
to
a t t->+™,
otherwise
3.4.
oscillations
and x
oscillations
oscillations
are stabilized,
are unstable.
of Electromagnetic
waves
t h e axes x, y and z
equation
system
( 3 . 4 ) , ( 3 .5)
i n the Cartesian
t h e form:
SB ' st 3B
at
z
8E
BE ay
az x
dB i y ay ' at aE
8E
y 3E
y
ax'
at
60
dE X ax SB
as » SB
By
az
az
I
x u
y
coordinates
BE
SB
dB 1
dE
dB
SB -SE ,
S
J~ V
ax SB Let
us
consider
SB
Cauchy's
W -
SB
problem
y_ »
Sir
f o rthis
(3.89)
a
Sy problem
with
initial
conditions: ,
B(x ,y,z,0)=a exp(ju x)+
a^expfiu^y) + a^expliu^Z) ,
(3-91)
E ( x , y , z , 0)^h^expfiu^x) + i > e x p ( i t > y ) + b ^ e x p l i w ^ z ) ,
{3.92,
i
i
2
a -la
where
constants real
,a
a n d b = (£>
)
with,
constants,
a
i ]
u^O. S u b s t i t u t i n g
It
iu exp(icj x, i
further
be s a t i s f i e d .
uniquely
equation
u {j=l,2,3) are (3,90)
and t a k i n g
3
+ a ^ i ^ e x p f i c j ^ z ) =0,
(x,y,z,eR .
solution.
=0, a =0, a =0.
we assume
We s h a l l
3.1 (theorem
We s e e k
J t
uniqueness
for this
+
]
Etx.y.z.tl^^tjexplii^x)
J
(3.93,
Cauchy's p r o b l e m
prove
a r e supposed
(3.87,-(3.92, i s problem
i s proved
existence
of
the
i t as:
l
(> (tl-(i>
(3.93,
the equalities
that
3 . 1 , . Now we s h a l l
B(x,y,z,t)=»i (t,exp(iu x)
where
that
prove
s o l v a b l e . The s o l u t i o n
section
are
a r e t h e given
elements,
gives:
Therefore
in
t-0 into
+ a^ioi^expfiu^y,
]
,t> ) ( J = 1 . 2 , 3 l
complex
we o b t a i n :
a
to
,b
g e n e r a l l y speaking,
a c c o u n t o f c o n d i t i o n (3.91)
2
(tJ,fl
J i l
+ p (t, exp(iu Z) ,
2
a
+ $Jt)exp'ih>^z)
+ 0 (t,exp{iu y) 2
(t) *l )
2
(t))
J 3
3
and
(Sj f t ( * ) . # ,
a
f
£
(3.94,
,
(3.95)
]
•1
,
t
i
t h e v e c t o r - f u n c t i o n s t o be f o u n d a n d :
(P (t)s , n
0
,> (t)s0, 2 2
(p (t,30.
The v e c t o r - f u n c t i o n B d e f i n e d b y e q u a t i o n equation
( 3 . 9 0 ) . I t i seasy t o see t h a t HjftJexpUc^*:)
(3.96)
3 3
(3.94)
obviously
equality:
+ U ( t ) e x p ( i u y ) + fi^ ( t ) e x p ( i u z ) 2
3
61
3
satisfies
is
ijt)exp(iw x)
+ iJt)exp(i
s
+ » ( t ) exp (iu z)
2
s a t i s f i e d i n t h e domain t > 0 , ( x , y , z ) e f i " ,
,
3
3
(3.97)
i f and o n l y i f (3.98)
Substituting
B
and
E
from
(3.94)
and
(3.95)
into
the
system
( 3 . 8 7 ) - ( 3 . 8 9 ) and t h e boundary c o n d i t i o n s (3.91) and ( 3 . 9 2 ) , and u s i n g the
equivalence
the
following
of the of the equalities f o r ip^lt)
Cauchy p r o b l e m
0^ (t)=-S0 j
p; (t)=iu i/ 2
|
(t),
j )
(3.97) and
( 3 . 4 8 ) , we
(3.99)
( t ) , j-1,2,3,
(3
100)
(3
101)
(3
102)
0 (t)=«i J P (t)-Bil; (t),
(3
103)
(t) , 0 (t)=ai J i(i (t)-Si(; (t),
(3
104)
(3
105)
I ] 3
0; (t)=aiu 3
] (
p
(t)-B!l(
] z
l 3
(t),
r Jt)=-<*iu <.t) i
l
p
(t)=iu i(/ a
(t)=iu 0
3 i
3
(t),
2 ]
2 3
2
a]
(
2 3
(
#> ,(t)=-iL> 0 (t), 3 :
3
2(
2 l
( t ) -BK( (t) , 2 3
E3
3
2!
3 ]
=-ai(J ip
3 i
•
12
=-oiw ip
Z3
M
P
obtain
tp^t):
and
3
3 2
Z 3
( t ) -Bif,
(t) ,
3i
(3 106) «', , ' <*» t ^ ™ , ' j . f t - P . m = l , 2 , 3 , j«J(. JR JR pa pa o f t h i s p r o b l e m i s g i v e n i n t h e p r o c e e d i n g s e c t i o n Now ( 0 , = a
0
u
let
6
u
us c o n s i d e r t h e f o l l o w i n g
initial
conditions:
BJx,y,z,0)=C cos(u x+^ )+C cos(u^+a )+C COS^ z+^ ) n
B (x,y,z,0)
i
ii
=C
¥
B
iz
i2
cos(w
(X,y,Z.0)=C i'
1
1
(3.107)
s3
cos ( u y+i» 22
21
c o s ( u x+i5 31
3
) +C
x+iS
21
l3
) +C
31'
2^
) +C 22
c o s ( u y+ij 32
2
J
c o s ( u z+i5 ) 23
) +C
32
3
c o s ( u z-H» 33
'
3
(3.108)
23
)
(3.109)
33'
E^x.y^^l-d^cosJu^+T^J+d^cosdj^+y^J+d^cosl^z+T^)
(3.110)
E^(x,y,z,0)-d cos((J x+T )+d cos(u) y+)' )+d cos(w z+T )
(3.111)
E (x,y,z,0)^d cos((J x+7 )+d cos(ui y+)' )+d cos((J z+r )
(3.112)
2 l
i
where u^O,
3 l
C
, Jk' j,k=l,
i
l
2 1
3 i
, -d , y Jk' ] k ' *Jk 2,3 . d
2 2
3 2
and
; i
2
id, a r e J
62
2 2
3 2
real
2 3
3 3
3
2 a
3
3 3
constants,
c
*0, jk '
d
£0, jk '
Substituting
t=0
( 3.107)-(3.109)
into
equation
we o b t a i n
(3.90,
and
using
the
conditions
the equality:
<
Let
and b
the constants a
i n the conditions Jk expressed by C , S and d , j accordingt o : J* )* J* J" a
=C explis Jk )k r
(3.91)
3
-
1
and (3.92)
1
3
>
be
, and b =d exp(i)' ) . Jk' Jk Jk )k
l
r
y
Then i t i s o b v i o u s t h a t t h e r e a l p a r t o f t h e s o l u t i o n o f t h e p r o b l e m (3.87)-(3.92)
i s
the
solution
of
the
problem
(3.8.7)-(3.90),
(3.107)-(3.112) .
3.5.
Cauchy P r o b l e m more G e n e r a l
In
this
f o r Maxwell's
Boundary
section,
e q u a t i o n s system
E q u a t i o n s System
with
Data
Cauchy's
boundary
conditions
for
Maxwell's
a r e taken as: B(r,0)=f
(x)+f (y)+f (z) , 2
(3.114)
3
E(?-0)-g,(x)+g (y)+g (z), 2
where with
f^ { f ^ ,f
2 J
g=
, f" ) , 3)
ZJ
a
loss
( l
Substituting into
t=0
into
a c c o u n t , we
)
=
0
f
'
real 0
2 2
(
equation
0
)
'
f 3
3
sti }
0
vector-functions (j=1.2,3).
that:
(
(3.90)
0
,
(3.116)
" ° -
and
taking
the
condition
obtain:
f; (x)+f i
0
l
e
f «H , G
o f g e n e r a l i t y we may assume
f
(3.114)
r
3
r e s p e c t t o c o r r e s p o n d i n g arguments,
Without
It
(g ,9 '9 ,) i}
(3.115)
3
2 2
(y)+f; (z|=0,
(x,y,z,sR
3
,
(3.117)
gives: f J . O O - C , , f JY)=C 2
where C , C 1
and C 1
2
-fj (Z)=C .
a r e r e a l c o n s t a n t s and: 3
S3
3
3
(3.118,
C +C +C = 0 . I 2 3 From e q u a t i o n s ( 3 . 1 1 6 ) a n d ( 3 - l l B ) ^ ( x ) ^ * Hence t h e c o n d i t i o n problem the
condition
the
(3.120)
( 3 .87) - (3 .90) ,
satisfied.
, f
the solution
i s easy
t o verify
EJX,y,Z,0)~g iX)
(3.120)
of this
of the satisfy
i s assumed t o be
problem
l e t us consider
BJx ,y
B ( ? , t ) = (C x , C^y, C z} ,
that
%
,2,0)-C^Z,
(3.121)
0)=0.
(3.122)
E(?,t)=0
is
the
(3.87,-(3.90) , (3.121), (3.122). c o n d i t i o n s be:
8 (X,y,Z,0)=r
y
of equations
2 ]
(x, y, z, 0) = f
(x),
2I
( x ) , EJx.y,
(3.87)-(3.90) w i t h
a j
(X) , (3 .123)
z, 0) =g^ 'X) . t h e boundary
(3.124) conditions
( 3 . 1 2 3 ) , ( 3 . 1 2 4 ) i s a n a l y z e d i n s e c t i o n s 3 . 1 a n d 3.2.
Case I I I . L e t t h e i n i t i a l B (x,y,Z,0)=/ K
E (x,y,z,0)=g >
] ?
solution
l 2
c o n d i t i o n s be: BJx.y,
(y),
o f Cauchy's
i n t h e class
obtain
a problem
similar
22
t othat
z, 0) = f
3 2
(y) ,
, EJx,y,z.,0)=g Jy).
(7)
problem
of functions
BJx.y,
z, 0) = 0 ,
( y ) , E^ ( x , y, z, 0) — 5
sought
(3.125) (3.126)
2
(3.87)-(3.90),(3.125),(3.126)
depending
on y and t o n l y .
B^fx.y,z,0)=f
o f Case I I .
E <x,y,z,0)=g
c o n d i t i o n s have form:
] 3
B
j r
(x,y,z,0)=f
( z ) ,E (x,y,z,0)=g I J
y
£ j
64
2 3
( z ) , B fx, y, z, 0) - 0 , j
( z ) ,E (x,y,z,0)=g 2
J
(z) . J
is
T h e n we
l e t us c o n s i d e r :
Case I V . T h e i n i t i a l
x
C_, a n d
jT
c o n d i t i o n be:
, E (x,y,z,0)=g
tl
Similarly
C
B {*,y,Z,0:)=O, E^ ( x , y ,z,
B^x.y.z, 0)=0,
The
(3.120)
for thesolvability
z
Case I I . L e t t h e i n i t i a l
system
(z)=Cz.
where
BJx,y,z,0)=C y,
of t h eproblem
t h e form
3 3
cases:
EJX,y,z,O)=0,
The
2
(3.119). Further t h e condition
BJx.y,2,0)^0^,
of
(y)=C y , f
i s necessary
Case I . L e t C a u c h y ' s i n i t i a l
It
we h a v e :
{3 .114) - (3 .115) ,
To c o n s t r u c t
following
solution
2 2
(3.119)
Summing t h e s o l u t i o n s solution
o f Maxwell's
conditions
3.6.
obtained
f o r t h e c o n s i d e r e d c a s e s , we g e t t h e
e q u a t i o n s system
On t h e B e h a v i o r o f Some I n t e g r a l s
We s h a l l
(3.4),(3.5)
with
t h e boundary
(3.114),(3.115).
with
Parameter
analyze t h e behavior o f p a r t i c u l a r
used f u r t h e r .
L e t us consider t h ef o l l o w i n g
integrals
which w i l l
be
integrals:
r ^(tJ-Vf
( 1FJexpU_,(OOdi;.
(3.127)
-IT
i t J e. exp(\ {&ty4£,
IJt)
Z
(3.128)
2
-y IJX,t)=St
| expU^Ot-ixFja?- exp[-
(3.129)
-1 J I
f F e x p U (e)t-ixf)dF-
(x,t)=t
_ A M i ^ I expi-
, ,
(3.130)
where _ -
B +
y
a 6
-4 g
_ _s_
;
a
.
=
There i s t h e f o l l o w i n g : Lemma 3.1.
The r e l a t i o n s : I (t)=0 ,h-l,2,
lim
(3.132)
t->a>
lim
I ( X , t ) = 0 , K=3,4,
(3.133)
t->-tco
are
true,
and I ( x , t )
to
variable
xeR .
Proof.
3
a n d IJx,t)
tend
t o zero uniformly
with
respect
Since:
* (ei a
--"^ 2
fi+v^ -4a(;
< - fe a t icisr, 3
2
65
(3.134)
then
ft where m 2
c= | |T|erpf- |-c )dx.
From t h e a t k=l. In
last
inequality,
i t follows
A t Jt=2 t h e r e l a t i o n ( 3 . 1 3 2 )
the proof
p.445) w i l l
be
of
(3.133)
the
(3.132)
is
true
following
well
known
relations
([13],
exp (-a ( j r + i b ) ) d x = 0 ,
(3.135)
IB
|
expl-a(x+ib) )dx=yif,
j (x+ib)
z
-co
We
equality
used:
to
where a>0,
that
i s proved s i m i l a r l y .
2
-co
£>ER*.
s h a l l evaluate the following
integral:
7
ijt)= From
the
|
inegua1ity
Lagrange's
mean
value
From f o r m u l a
( 3 . 1 3 1 ) we
P
(3.134) theorem
account of t h e i n e q u a l i t y exp(- ! ? * t ] -
:
[e*p(- |e t]-ejf (x (i:)t)jce.
i t follows to
the
( 3 . 1 3 4 , we
(3.136)
2
1^ ( t ) ^ 0 .
that
function
e*
and
Applying
taking
into
obtain:
e x p ( A ( S ) t ) a e x p ( - | i l t j (2
2
| e t - X (?) t ] . i
j
(3.137)
have:
(3.138)
From t h e i n e q u a l i t i e s
(3.137) and
( 3 . 1 3 8 ) we
obtain:
ID
°« (t)i f ^ —Bp s
-
p
f
where
66
- ^ t l d C -
(3.139)
We r e p r e s e n t t h e f u n c t i o n
I ( x , t ) as: 3
I (*,t)=r (*-,t)+I (jf,tJ+r (x-,t) , 3
6
7
(3.140)
B
where
r
j e y p ( A ( i ; ) t ) - e x p ( - j ^ t ] ] exp ( - i * ? ) d£_,
r {r,t)=Vt"| a
(3.141)
?
-vl: I
I (X,t)7
2
exp(- |? t-ixt:]d?,
(3.142)
r ( X , t ) = v T f e x p ( - l ^ t - i x s j d ? - vWHIT e r p ( - f ^ j.
(3.143)
B
From
(3.136) and t h e e s t i m a t e
(3.139) i t f o l l o w s :
| I ( X , t ) |S / E J ( t ) 5 6
From e q u a t i o n
|
7
i s clear
(3.144)
exp(- |€'t)d«3 v T
e X
p ( - ^ f / t ) J exp (-
f ^ t j d e .
that:
expj-
From
|.
( 3 . 1 4 2 ) we h a v e :
| X ( X , t ) |*
It
s
(3.135),
|^-
i
x
S
j= , [e
P
« (t t
+
i y ] - p ( -
(3.143) and (3.146) i t f o l l o w s
ggj.
(3.146,
immediately that:
I (x,t)s0.
(3.147)
a
From
the relations
the
function
at
t-H-».
IJx.t)
(3.140),(3.144),(3.145),(3.147) i t follows uniformly
I t i s proved
converges
similarly
67
that
with
respect
the function
t o xeR
1
I {x, t ) t
that
t o zero tends
uniformly
3.7.
w i t h r e s p e c t t o xeR
1
t o z e r o a t c-»+». Lemma 3 . 1 i s p r o v e d .
Asymptotic Formulas f o r S o l u t i o n s for
In
Maxwell's
this
solution
noted
System
we
obtain
section
shall
o f t h e problem
of t
values
Equations
that
(3.16),
o f Cauchy's
the asymptotic
(3.17)
and
w h e n f {x)ed^(S )
a n d g ( x ) eC^fJ? )
Cauchy's
at
1
1
}
;
problem
(3.10)
f o r Maxwell's
equations
(3.16),
(3.17) and ( 3 . 1 8 ) ,
Problem
formulae
(3.18),
(3.19)
f o r the at
great
( J - 1 , 2 , 3 ) . I t s h o u l d be
initial
condition
system
i s
(3.8),
reduced
to
( 3 . 9 ) and
the
problem
(3.19).
There i s t h e f o l l o w i n g : Theorem the
3.2.
problems
The
(3.17) and ( 3 . 1 8 ) ,
Bjx,t)=
^ [ ^ x p ( -
V ' = x
EJx,t)
solution B(x,t),
(3.16),
t J
exp
(3.19)
fil)
a n d B (X,t),
+ ^(X,C)],
( " f=r)
E(x,t)
of
a r e represented as:
(3.150)
<-
+
3
1511
where m
CD
a , - - ^ 2i/na 1
V ~ 4 = 2v1ta
i fJx)d , J X
1
2
-o>
- CO
w h e r e t h e f u n c t i o n s A^x.t) w i t h r e s p e c t t o xsR Theorem A
1
3.2 s t a t e s
I J
(J-1,2/3,4)
tend uniformly
t o z e r o a t t-*+«
a t t-»+o>. that a t great
v a l u e s o f t i t c a n be a s s u m e d
( X , C ) B O (J'=1,2,3,4) i n t h e f o r m u l a e
that
(3 . 1 4 8 ) - ( 3 . 1 5 1 ) , i . e . :
(3.152)
68
The
formulae
asymptotic (3.5)
(3.20),
formulae
(3.21),
w i t h Cauchy's boundary
Proof
of
Theorem
representation
(3.152),
(3.153)
f o r s o l u t i o n s o f Maxwell's
3.Z.
(3.148).
conditions
(3.13),
In
the
first
From
the
formula
will
equations (3.15),
place
we
be
(3.17),
shall
(3.47)
called
system (3.4) (3.19).
find
i t follows
the that
B ( x , t ) may b e r e p r e s e n t e d a s : B ( 3 f , t ) - J > ( X , t ) +
( > ( x , t ) + «> (x,t) ,
1
3
(3.154)
4
where
VA >L)=-
hi
X
'• -I
*> (X,t)- ^
z
/ S -4oe
j
2
2
)£|*7 r
/ B -4«P.
expt^ieit-ixfld?,
(3.155)
exp(X (5)t-ixOde,
(3.156)
2
a
2
#,(e)(i-(€)+Pi-i#,(€:) —
#, ( 0 ) e x p f A ^ t J t - i x e j e l S ,
2
(3.157)
iS, ( o ) ?
-fcr
-
(3.158)
-T .
(3.159)
4i/a From t h e f o r m u l a e
(3.27) and (3.28) i t f o l l o w s Re^tf;)*- f ,
Re^(?) -
1
CsR ,
|SI=r-
S
It
that:
gives:
|exp(V?)t)
|exp(* (e)t)|:!exp[-e^5t], 2
1
S i n c e f (x)eC°(R ) j
(j =l,2),
t
jsexpf- z r j '
then
| 5 ( T,
the function
69
a
£
° "0.
[ ^ ( C ) |.
(3.160) (3.161)
K^tCH-
I\
I
(3.161)
(J,k=l,2) we
are
inferable,
therefore
from
(3.160,
and
have:
Ipjft) l^fflrpjk t*)')*j, s
| ^ ] ,
| ( P ( t ) |*C,,e*p(2
P^^t],
(3.162)
| |€|exp(A (e)t)d£-C t 2
(3.163)
a
-7 where
C , C
a r e some c o n s t a n t s a n d 1^ ( t )
a n d C"
2
3
i s t o be
found
from
(3.127) . Using
the
notations
of
(3.129),
the
function
may
be
represented as: (3.164)
Let
us i n t r o d u c e
the function:
« p [ - f ^ j j.
J l ^ ^ t J - v T ^ ^ t ) -
(3.165)
2Vnat From
(3.154)
a n d ( 3 . 1 6 4 ) we
have:
*. ( 0 ) AJX,t)^Vt
This
equality
(
P i
(x,t)+^ (x,t,*(i (x,t))+ - ^ — I ^ x . t ) . 2
3
and t h e e s t i m a t e s (3.162)
and (3.163)
(3.166)
give:
U
* From
the inequality
tends u n i f o r m l y We
obtain
Now allows
we
with
(3.167)
1
prove
t o write E
(3.167)
a n d lemma
r e s p e c t xeR
the representation
shall
W
(3.148)
representation
i tfollows
that
A
(x,t)
directly (3.149) .
from The
(3.165). relation
(3.48)
as:
E _ ( X , E ) = T J ( x , t ) + 1tjx,t)+ ;
3.1
t o z e r o a t t-t+m.
1
where
70
T J ( X , t ) + HjX,Z), 3
(3.168)
-aieic,
1
($)*,<€)
+
"
a
Kfp(v(€)t-ixC)d€,
(3.169]
erp(X,(e)E-j[jfe)dt,
(3.170)
e x - p { i ( 5 ) t - i j r f ) d ? , (3.171)
-H-*.(0)
s
-4*< ai0
(0)
f
(3.172)
tJ
V*' " "2-70 It
i s easy t o see
that:
,-ait-C ,Cel+» , ( 0
0
— ^ 7 = = — / where C
4VK
-7
i s a constant.
«te* .(Oil
,
— s — '
+
|
e
|
s
r
'
3
B -4af.* Therefore
there
i s the estimate: (3.173)
where I ( t ) 2
Similarly
i s d e f i n e d by
(3.128).
t o the estimates
( 3 . 1 6 2 ) we o b t a i n :
\ \ i f . t ) |* C « p ( - f^J ,
(3.174)
s
| l ) ( j f , t ) |s C.ejcp|- S t ( 2 - 1 / 3 ) 1
(3.175)
a
Using
t h e n o t a t i o n s of (3.130),
the function ^ ( x . t )
may
be
rewritten
as: 0.(0)r ai .(Y,t)+ u ( x , t ) = - - f — [ 2nfl r I 4
Let
exp
(-IS)]-
(3.176)
exp
Bx - 4at
(3.177)
4/rcat
us d e n o t e : •/e^, ( o j x 4ti/itat
71
)]•
Using and
the equality
(3.168)
zero
Let
(3.149)
B^lx.t)
T h e n , a s i t was
W(x,t),
related
o f Cauchy's and
(3.151)
formulae
a r e , e.g.
solutions of
(3.23),
f o r V(x,t)
to
(3.177) t h e
the
problem
(3.18), and
are the
(3.24). Using t h e representations U(x,t)
and
we
respectively.
also
(3.22)
take
obtain
Theorem
place
(3.150)
3.2
and
i s proved.
when t h e b o u n d a r y
twice continuously differentiable
and
data
satisfy
estimates: k i
(x)|
Iff]"' the derived asymptotic BJix,t),
B (x,t), EJx.t)
2)
values
Let
of Propagation
t h e terms and
on
(3.19)
only
great
values
EJx.t)
values
of magnetic
field
Electromagnetic
hand
J
3 . 1 ) . Then
o f t i t may
that:
a t t-»+c=, s o
(x,t),
the i n i t i a l
side
be
i n conditions
differentiable
f (x)=0, g (x)=0
i s a constant, o these boundary data (section
vanish
Distance
the right
2
With
of
constants.
be c o n c l u d e d
field.
be i n i n f i n i t e l y
* (X)=0, where b
EJx.t)
and
of t , only
Energy a t a Great
(3.17)
i t may
f a s t e r t h a n B ( x , t ) and B
the electromagnetic
Law
formulae
EJx.t)
vanish
At great
affect
3.8.
( x ) |* C ( l + | x | ) - ' - \
k = 0 , l , 2 ; X E R , where C and r a r e p o s i t i v e
From 1)
c(i+|x|)-'-*,
S
1
j=l,2;
t
(3.175) tends
equality
and E ( x , t ) by t h e r e l a t i o n
if;
and
the
and E ^ ( x , t ) ,
asymptotic
(j-1,2)
(3.174), AJx.t)
that
i n s e c t i o n 3 . 1 , t h e f u n c t i o n s V(x,t)
problem
(3,149)
f o r B^fXjt)
Derived fj(x)
be shown
t o B (x,t)
(3.148)
(3.173),
prove
follows.
(3.19).
solution
we
r e s p e c t t o X E R . From
EJx.t)
and
manner,
1
a t t->+« u n i f o r m l y w i t h
representation
the
the estimates
lemma 3 . 1 , i n t h e s i m i l a r
j
(3.13), q
o
field
t o formula
(3.15),
C =0,
a t |x|=b , j - 1 , 2 ,
the electromagnetic according
and
depends
(3.20)
and
(3.178)
on x (3.21)
and at
assumed:
BJx,t)=0,
EJx,t)=0
72
(3.179)
B , E^,
and
B^,
E
a r e d e f i n e d by
the asymptotic
formulae
and
( 3 . 1 5 2 )
( 3 . 1 5 3 ) .
As
i t i s known,
electric ([17],
field
the magnetic
energy
density
field w (x,t)
( 3 . 3 ) we
From t h e r e l a t i o n s
Using
the
formulae
asymptotic
H
f o r cj (x,t)
formulae
and
the
formulae
J
( 3 . 1 5 2 ) ,
—?
'
'
be
l
-Co
b=
f<x)dx,
a
fixed
point.
L e t us
& i a T
( 3 . 1 7 9 )
the
in
asymptotic
]
,
( 3 . 1 8 3 )
->
J
ffjWdar.
the function
E
E
u (x,T )=
( 3 . 1 8 4 )
of T
H
and T
i t i s known, of light.
u (x,t)
the
I
n
of
M
and
i.«.:
h
max
t=T
cj (x,t) ,
(3
. 1 8 5 )
( 3 . 1 8 6 )
t <
d e p e n d o n x. electromagnetic
F
— - — T T t
i s t h e speed
of
u (x,t) .
\x\-b
I
the values
and u ( x , t )
Hence, f r o m t h e c o n d i t i o n If
fx
±
out E
E
max 0
find
H
U " [ X , T " ) =
where c
and
obtain
-to
maximizing
values
( 3 . 1 5 3 )
t , we
« p
3
- m 1
of
( 3 . 1 8 1 )
u (x,C):
* ta
xeR
( 3 . 1 8 0 )
^V(x,t).
E
u. (x,t)=
values
32ant
speed
the
E
and
(x,t)=
As
by
obtain:
f o r great
( 3 . 1 8 1 )
formulae
The
defined
E
B
E=T
are
u ( x , t ) = ^ED.
5u7T V,t-),
E
density u (x,t)
p.54),
c j " { J f , t ) = |HB,
Let
H
energy
E
I
\x\-b I
field
i s propagated with
( 3 . 1 7 8 )
the
i t follows:
f)
—-—-,
( 3 . 1 8 7 )
light.
73
The
inequality
(3.187)
means t h a t
the points
o f maximum
r
| x | _ b
°
of u*(x,t)
1
and ( j ( x , t ) ( a t f i x e d x ) a r e i n t h e i n t e r v a l t e — , +» Now we f i n d t h e p o i n t s t o f maximum o f t h e f u n c t i o n o f c j ( x , t ) |x|-b , H
r
maxima
i n the interval
function (j"(x,t)
te —-—-,+»
i nthis
interval
. I fx
i s sufficiently
i sdefined
large, the
by t h e a s y m p t o t i c
formula
(3.82). In
thefirst
interval reaches
place
l e t us f i n d
the points
te[0,+«). S i n c e CJ ( x , 0) = u " (x,-) h
maximum o f u " ( x , t ) M
=0 a n d u ( x , t ) > 0
this
i n the
function
t-T*.
i t s maximum a t a p o i n t
Then: a
K
Substituting solvinq
u (x,t)
from
H
" " < ' ^ ' - =0 a t t = T . at formula
(3.182)
(3.188)
into
equation
(3.IBS) and
i t we o b t a i n :
r"-
7 o V
.
(3.189) Ixl-ft
It and
i s clear only
that
i f Ixli s sufficiently
i ti s the point
o f maximum
large
the point T*i
of the function
u
(x,t)
c
in
the
1-1*1 ~ o 1 — ,+»|. b
interval
Using t h e asymptotic that
The
a t great
(3.183)
i n t h e s i m i l a r m a n n e r we
values o f Ixl t h etime T
E
equalities
(3.189)
of electromagnetic Substituting
formula
T
and (3.190)
energy a t a great H
(3.185) and (3.186)
and
T
£
from
and t a k i n g
i s d e f i n e d by:
represent
(3.182) and (3.183) f o r t h e l a r g e
t h e law o f propagation
distance.
formulae
into
(3.189)
and
v a l u e s o f I x l we
2
(*•,£) =
74
(3.191)
2
27CC (0 +£. ) •- •' •• 4e ttB x
DSKB
into
formulae
obtain:
2
e
(3.190)
account o f t h e asymptotic
b +b max c j " ( x , t ) = '- — , o£t<m 4ercuig x
max u
obtain
(3.192)
These f o r m u l a e be
assumed
magnetic
affirm
that
the
that
a g r e a t distance from the plane
electric
field
i s acting.
From f o r m u l a
( 3 . 1 S 9 ) we
field
is
equal
to
zero
and
yz
i t can
only
the
obtain:
(3.193)
(3.194)
at
Substituting
T
This
defines the velocity
formula
from
t h e p o i n t x.
with
Thus,
(3.189) i n t o
formula
reaches every Using velocity
the
point the formula
i t also
(3.190)
i n the
T
E
from
s
similar
i t is
propagation magnetic
seen
from
of electric
energy
dx_
_ J2S^
(3.190) i n t o 7==
of
follows
of propagation of e l e c t r i c
Substituting
propagation
of magnetic of
energy
energy
decreases
that
the
magnetic
energy
space.
V*
As
of yz.
the plane
(3.194)
obtain:
of propagation
the velocity
t h e d i s t a n c e from
From
( 3 . 1 9 4 ) we
the
we
obtain that
(
.
1
9
6
j
(3.194)-(3.197)
(3.197, the
velocity
at a great distance i n greater than
75
3
obtain:
pffr-
field.
the
by:
.
( 3 . 1 9 6 ) we
formulae
field
manner
i s defined
of that
3.9.
Cauchy P r o b l e m
Let
and
Cauchy' s
(3.15),
(3.17)
problem
solution
conditions a t cr=0 we
f o r Maxwell
and
boundary
(3.19).
of
depends
E q u a t i o n s S y s t e m a t cr=0
As
Maxwell's x
on
t
and
conditions
we
showed
equations only.
the
form
section
system
with
From e q u a t i o n s
(3.13) ,
3.1,
Cauchy's
such
boundary
(3.20)
and
(3.21)
obtain: B (X,t)=C , i
The
have
i n
system
(3.16) and
SB
y
(3.198)
2
( 3 . 1 8 ) a t cr=0 t a k e s t h e f o r m :
SE
(x,t)
SB
(X,t)
at SB
(x,t)-# {X,
o
ax
3t
Bx
(x.t)
"
dx
3E ( x , t )
(x,t)
BE
(X,t)
'
SE
3B ( x , t ) - -« - = !ax=
'
(3.199)
et (X,t) 4 ?at
3
•
2 0
( - °>
where
(3.201)
F r o m t h e s y s t e m o f e q u a t i o n s ( 3 . 1 9 9 ) we
aB
aB
2
aE
2
As
i t i s known, by
the
= «
q e n e r a l s o l u t i o n Of
* vJx-
i
Substituting equations
\ • Bx'
the
(3.202)
equations
(3.202)
, E =i!( ( x + i / a t ) + ^ ( x - v ' a ' e } , i
is
B^
Satp' ( x W a t ) t
-
(t)
a
n
d
0 (51
a
r
e
2
infinitely
. from
formula
(3.203)
into
the
system
of
obtain: •/a
Vaji'^ ( x + v ' a t ) equalities
E^
and
( 3 . 1 9 9 ) we
(3 .203)
i
f,(?)i P,(C)i
r e s p e c t t o t h e v a r i a b l e £eR
The
z
1
— St*
( [ 1 7 ] , p.128) :
BJX,t)=tp (X+Sot) where
aE
2
\ " « \. Bt* Bx
defined
obtain:
2
-
(3.204)
i*| (x4V«t) + tD^'x-Zat)
(x-i/at) = cii>j(xWat) + and
(3.205)
if:
76
are,
,
(3.204)
(r-vut) .
in particular,
(3.205)
satisfied,
di
*, < € ) From
(3.203)
BJX,
t)=p
Thus,
( ? ) , # i t S i = -V5t> (£) , 6«H*, a
( 3 . 2 0 6 ) we
functions
for arbitrary
,
E ^ f x , t ) - i ' a ( p 'x+Vat) and
and
(
-
]
B (x,t) (f> ( f )
(3.206}
2
obtain:
( x + v ' a t ) +tpJx-S5t)
t
the
(3.207)
and
rftj*,
E (x,t),
P (£),
defined
by
are the s o l u t i o n
2
.
the
(3.207) formulae
of the
system
(3.199) . Substituting boundary
B ( x , C)
conditions
f (x)+ i
It
and
(3.17),
( f
E (x,t)
from
i
we
equation
(3.207)
into
- ( x ) = f ( x ) , Va(^(x)-¥> (x))=f (x) . 2
the
obtain:
]
2
(3.20S)
2
gives: f, (x) g> ( x ) = - L 1
Substituting
f <*-) + -2 . AX)
?
^ (x)
2
2V^
and
p (x) from ;
B ( X , t ) = i f (x+i/5t)+ — ' 2V"a
f
(x+Vot)+ i f
Similarly,
into
(x-vat)
i
solution
of
the
(x) — • ^
2
(3.209)
( 3 . 2 0 7 ) , we
obtain:
— f ( x - i / a t ) , (3.210) 2vc£ 3
'
(x+i/at)+ i f (x+v'ut)the
f
^
(3.20S)
1
E (x,t)=
Fix) -
V
(x-vat)+ i f (x-vat) .
problem
(3.200),
(3.19)
is
(3.211) defined
by:
B (x,t)= 2
*
B '
g, (x-v at)+ i g , (x+i/at)
2/5
1
£ (*,tlHence
/
i g (x-/5t)+
^|g E
y
1
2
2
(K-y5t)+ | g ( r V 5 t ) 2
B z
and
E
—
g, (x+Vat) , (3.212)
2/5
1
^fg,
a r e t h e sum
rr*VEt)+
of
3
ig (x+vat).
t h e two
(3.213)
3
planes
homogeneous
y
z
waves p r o p a g a t i n g i n o p p o s i t e d i r e c t i o n s a t t h e c o n s t a n t speed: V= Va = . (3.214) V'EII where
c
i s the
constants, From
the
speed
of
light,
E
and
11
are
dielectric
and
magnetic
respectively. derived
electromagnetic
field
formulae
i t follows
that
at
o-=0
p r o p a g a t e a t t h e c o n s t a n t s p e e d V=
77
the
energy
- —. V'EII c
of
Comparing conclude:
these
essentially
difference,
current
and is
conserved In
field
the
form
the
absent,
similar
(3.114),
section
3.6,
is
Cases
system w i t h
energy
at a constant
obtain
the
where
divided
three
I V ) . The
problem
f
at
field
IT=0
2
(y) 0,
the field
of
f
3 3
(Z)=0,
and
problems ( c f .
of the solutions
solution
kinetic
the
f o r solution
independent
sum
to
of
c o n d i t i o n s have t h e E
2
This
velocity.
formula
(yj«0,
into
I , I I and
Cauchy's
f
being
electromagnetic
when C a u c h y ' s b o u n d a r y
are
a t
diminishes, of
we
o»0
a t t-*+»-
transferred
propagation the
we
system
that
be
and
of t h e energy
tending t o zero
to
section
a t
t h e r e f o r e t h e energy
and i s p r o p a g a t e d
(3.115),
gives
of
therefore
manner,
problem
problems
proceeding
of propagation
velocity
field,
velocity
equations
Cauchy's
the
t h e energy
i s consumed
of this
completely
Maxwell's
this
of
of
i n o u r o p i n i o n , i s due t o t h e f a c t
o f charges
decreases
that
the velocity
a n d a t u*Q
electromagnetic
energy
with
o f propagation
different,
a t a=o
constant
of
results
t h e laws
f o r Maxwell's
of
these
equations
such boundary c o n d i t i o n s .
3.10. Resume o f C h a p t e r I I I
A central system on
x
only
problem
In
have
s e c t i o n 3.3
initial
3.4
when
by C a u c h y ' s p r o b l e m f o r
form
(3.13), (3.20),
(3.15), (3.21),
(3.17), (3.47)
(3.19).
This
(3.48)
in
and
3.2. t h e formulae system
f o rthe solution
are obtained
t h e methods Cauchy
solving
initial
data
o f Cauchy's p r o b l e m f o r
f o r t h e case
when
Cauchy's
along x-axis. Cauchy's
problem
are harmonic
a r e showed
oscillations
in
along
y a n d z.
section
analyzed shown
the
i s occupied
when Cauchy's b o u n d a r y c o n d i t i o n s depend
i s harmonic o s c i l l a t i o n s
section case,
In
chapter
(formulae
equations
data
a x e s x,
f
and
3.1 a n d
Maxwell's
In
i n this
i s solved
sections
the
place
o f Maxwell's equations
when
that
3.5
Cauchy's
the i n i t i a l
t h e problem
( z ) c a n be
problem data
f o r Maxwell's
has t h e form
i s solvable
represented
as
i f and
i n equation
78
equations
(3.144), only
(3.120)
system i s
(3.115).
i f IV where C
(l) , , C
I t was f
(y) , and
C
are
constants,
+C +C =0. 2
Cauchy's
3
reduced t o t h e problem considered In
s e c t i o n 3.7
solution obtained
when
(3.19).
These
(3.152) and In
values
the i n i t i a l
Cauchy's d a t a
are
obtained
have t h e form
of propagation
In
section
explicitly (3.15),
3.9
is
by
formulae (formulae
(3.13),
f o r Cauchy's
(3.13),
t h e formulae
problem
system
are
(3.15),
(3.17),
(3.20),
(3.21),
(formulae problem
o f t h e magnetic (3.182)
(3.15),
o f magnetic
Cauchy
(3.17),
(3.19)
(formulae
of electromagnetic
diminished
and
(3.17),
and e l e c t r i c
and
and tends
field
electric
(3.183) c =0
( i
(3.19) energy
when a
0
at a
"d
great
(3.189)-(3.197)). f o r Maxwell's
(3.198),
equations
79
a t tr-<3 t h e
a t t h e speed
of electromagnetic
t o z e r o a t t-t+«, b u t t h i s
o f t h e space.
is
(3.13),
(3.210)-(3.213)).
i s propagated
of propagation
system
have t h e form
o f s e c t i o n s 3.8 a n d 3.9 i t f o l l o w s t h a t
a t amO t h e v e l o c i t y
point
condition i s
equations
s o l v e d , when cr=0 a n d t h e b o u n d a r y d a t a
From t h e f o r m u l a e energy
formulae
have t h e form
solutions are defined
distance are also given
and
asymptotic
data
such
(3.153).
density
laws
with
o f t ) f o r Maxwell's
s e c t i o n 3.8 t h e a s y m p t o t i c
energy
the
t h e simple
( a t great
problem
i n s e c t i o n 3.2.
of
field
energy reaches
light energy every
CHAPTER 4
DETERMINATION
OF ELECTRIC POTENTIALS AND CAPACITANCES OF
TWO
INSULATED CYLINDRICAL CONDUCTORS
Introduction.
In
problems
reduced
of
electrostatics,
t o t h e seeking
intensity
solution
of a scalar
o f an e l e c t r i c f i e l d
of
function,
Maxwell
equations
potential
V,
E by: E - -gradU,
and
using Maxwell's
i s
related t o
( 4 . 1 )
equation:
divE
P —,
-
(4.2) o
we
obtain: P = - — , o
divgradU
-9
1 where
p
i s density
constant, depends
c
on
o f charge,
i s dielectric two coordinates
(4.3)
L = 3 ^ 1 °
Farad/meter
O
permittivity. x
a n d y,
When
p=0
the equation
i s electric
and
the
field
( 4 . 3 ) takes t h e
form:
2
ax The m a i n p r o b l e m on
given
density charge
For
o f charges
reliable
electric
and
t h e system the field
on c o n d u c t o r s a r e known
of
charges.
beyond
The
generated
potential
t h e conductors
a r e t o be d e t e r m i n e d
and t h e p o t e n t i a l s
of
and t h e
or the total
beyond
conductors
determined.
lines,
balanced
by
a r e known
on conductors
a r e t o be
cable
i n e l e c t r o m a g n e t i c i s t o seek t h e f i e l d
conductors
conductors
SY
and h i g h - q u a l i t y - t r a n s m i s s i o n
as w e l l
cables
f o r improvement
i t i s necessary
parameters,
Approximate
as
including
formulae
t o know
capacitances
for electric
81
of information
o f design
of
t h e exact
through
communication
values
of
basic
of cables.
potentials
and
capacitances
of
cylindrical there,
conductors
t h e accuracy
Here,
are obtained
i n accordance w i t h
solutions
f o r potentials
and
capacitances
their
analytic It
functions,
was p r o v e d
successive
i n R e f . [ 2 6 ] , [ 2 7 ] and
[28 ] . B u t
o f d e r i v e d f o r m u l a e was n o t d i s c u s s e d .
with
which
that
t h e m e t h o d s o f [ 2 8 ] , we o b t a i n of the field
equations
approximate
cylindrical
accuracy.
are solutions
obtained
approximations
desired
beyond
They
conductors
a r e expressed
o f some f u n c t i o n a l
by
equations.
may b e s o l v e d b y t h e m e t h o d o f
and t h e approximate
solution
tends
t o exact
s o l u t i o n as a decreasing g e o m e t r i c a l p r o g r e s s i o n .
4.1.
F o r m u l a t i o n o f t h e Problem
Let the
us consider t h e two i n s u l a t e d p a r a l l e l
same s i z e .
radius of
L e t us d e n o t e
t h e plane
coordinates) orthogonal t o these
of insulation.
conductors
centers o f conductors 2R. I n t h e p l a n e
n
0
0 O
conceding
this and
cylindrical
L e t r be t h e r a d i u s o f t h e c o n d u c t o r
with
n
o
a
segment c e n t e r
c o m p l e x number z = x + i y
Let
and
dielectric plane,
with
be
o
( i i s imaginary
permittivity
[
and
be
, e > c [
82
j (
and 0
be t h e
}
xOy w i t h
the origin
between every
(x,y)
point
unit).
cross-section of insulation e ,
(
a n d Ox a x i s i n t h e d i r e c t i o n o f
1. cross-section o f insulated
permittivity
(0 i s t h e o r i g i n
. Let 0
a n d t h e d i s t a n c e b e t w e e n t h e m be
segment. L e t us s e t up a c o r r e s p o n d e n c e
picture
b y rc
we c h o o s e a c o o r d i n a t e s y s t e m
o
]
on t h e plane
conductors o f
and R i s t h e o u t e r
conductors o n xOy
the external
I * and T
;
plane,
domain
on
are t h e boundaries
with xOy of
1
the D
r
D ,
domain
and
are
the
o f domain D r<\z-R\
i s the r i n g
r<]z+R\
is
(see p i c t u r e
the circumference
lz-Rl=r,
F
i s the circumference
lz-RI=R,
r
i s the circumference
lz+RI=r,
F
i s the circumference
|z+RI=R,
is To
the
find
first, and
D
of
D ,
domain
infinite
the
domain
capacitance
define
the
r
and
2
i s the ring
D__
boundaries
4
boundaries t
T
3
of
and
the
of
are 4
l ) , i.e.:
r e s t r i c t e d by
potential
r
2
system
the of
circumferences
conductors
electric field
i n the
we
r"
and
2
shall,
domains
at
D,
D
i n t h e d o m a i n s D^,
D
(
. 3
Let and D of
us
denote
the
the potentials
( z ) , U^ ( z , a n d
by
3
U
of e l e c t r i c f i e l d
(z),
3
respectively.
They a r e t h e
following:
Problem harmonic
A.
Find
the
functions
i n t h e domains D , boundary
U (z)
Cf ( 2 ) ,
and
[
following
D
and
2
(z,
, respectively,
3
and
which
l
U (z)= 2
U
on
0
-U
(4.5) (4.6)
3
3
U (z)=
r ,
on T ,
o
(ZJ- C (z)
t
on r ,
(4.7)
2
t 7 ( z ) on T ,
a
3
au
(4.8)
4
air
at/
at/ U («i=0,
(4.11)
3
where n
are
s a t i s f y the
conditions: U (Z)-U
fixed
;
solutions
i s t h e o u t e r normal
t o the corresponding
boundary
and
H
is a
number.
P r o b l e m A a t t7 =0 Let
us
Proceeding
from
problem
will
A
will D
denote
)
a be
be c a l l e d h o m o g e n e o u s
domain physical sought
including scene, in
the
83
the
the
one.
boundary
solution
class
of
U
]
by ,
(j=l,2,3).
U
a
harmonic
and
f/
3
of
functions,
continuous first
in
supposed
to
be
respectively, vicinity
4.2.
the
closed
d e r i v a t i v e s of
of this
shall
Let
in
the
these
point
closed z=0,
U
l
are
Z> ,
y D
(
The
are
2
also
and
,
in
the
restricted
A
the
solution
(z)
a
and
domains
and
the S o l u t i o n o f Problem
uniqueness
i
z
V
and
l ~^ ~ ' i
respectively. to x
point.
prove
I7 ( z ) ,
D^,
and
2
t
of
a c c o r d a n c e w i t h t h e method d e s c r i b e d
p r o b l e m A and
T>
5 ,
solutions with respect
continuous
excluding
Uniqueness of
We
domains
these
E 1
a
n
d
(z)
3
U
~
3 ~
e
,,
be
the
T
j '
the
n
e
of
problem
A
in
i n Ref.[21].
n
solutions
of
the
homogeneous
:
,6 V
3 U , [4.12]
Since U
3
1
Iz)
i s harmonic-in-D
'
f u n c t i o n and
3
dU
c 3 1
2
where C
_
ay
^ F '
3
1
'
then
c 3
ax
U («)=0,
at Izl
lzl*2R,
(4.13)
2
2
i s a constant, lzl=/x -ty , [21].
Applying
Green's f o r m u l a
(4.5)-(4.10)
(U = 0 )
we
i n (4.12) and
using
the boundary c o n d i t i o n s
obtain:
au
au
\ 11 l"a^l
!
dxdy -
0.
(4.14)
3X Hence, P
U (z)=C^
at
oh
and
)
U (z)=0 z
J(
that
V
(z)=0,
r
3
j=l,2,3.
zeD^
,where
L/^fzJ-iO The
at
are
constants.
lzl-», t h e
uniqueness of
the
Since
U (Z)-0
solution
of
problem
proved.
4.3.
Reduction Equation
We
of
the S o l u t i o n of Problem A t o the
i n the Class of A n a l y t i c
seek t h e s o l u t i o n
of problem A
84
as:
Functions
on
i
c o n d i t i o n s UJz)=C•
Functional
imply A
is
ET
(z)=Re
(4.15)
U {z)=J?e
(4.16)
3
(4.17) where
C
and
q
C
are
[
analytic
functions
following
conditions:
a)
t/)(z)
and
are
b)
p(O)=tf(O)=0,
c)
(p(z) and
unit
circle
It
unit
circle
i s easy
then
C (z) 2
problem (4.7)
A
and
where
we
expansions
^ (z)
series
iji ( z )
are
satisfy
the
and
which
of the
function
real,
0(z)
are
t o check and
hand,
continuously
that
(4.17),
i f U (z)
and
)
VAz)
i s solved,
differentiable
i n the
closed
the
and
conditions
UAz)
satisfy i f U (z) [
U (z)
functions
satisfy
satisfy UAz)
by On
conditions
conditions and
(jf«1,2,3), d e f i n e d (4 . 5) , (4 . 6) , ( 4 . 1 1 ) .
(4.8) are
(4.7) and
(4.9),
(4.10).
Hence,
and
subjected
to
conditions
into
condition
(4.9) .
Substituting (4.7),
, lzl
lzl=l.
( 4 . 1 5 ) , (4.16) other
r^r/R
constants,
the
t h e c o e f f i c i e n t s of McLaurin's
ip(z)
the
real in
( z ) and
U (z) 3
from
(4.15)
and
(4.16)
obtain:
t=(z-R)/R-
From t h e c o n d i t i o n s
i m p o s e d on t h e f u n c t i o n
and
0(z) i t follows
that: fiep(z)=Rep(z) The
, Reip (z) =Reili (z)
b a r o v e r a c o m p l e x n u m b e r means c o m p l e x
From
(4.19)
at ltl=l
we
,
IzKl.
(4.19)
conjugation.
obtain:
(4.20)
85
Re^||]=7iei(i(t)=Re|0(t) . Hence,
the equality
( 4 . I S ) may
a
Re[j>(t)-p(r t]-^{t)+0[In
the left
function this to
£
(4.21)
be r e w r i t t e n a s :
i^]-C In(t+2)-C Inr *rjJ.-B> i
)
s i d e o f (4.22) t h e e x p r e s s i o n i n square
which
function
i s analytic
i n the unit
b y means o f S c h w a r t z ' s
circle
integral
( P ( E > - ¥ > ( r ^ t ] - t f ( t ) + 0 [ - \ yC ln{t+2)-C ln L
2
l
brackets i s the
([13],
p.223)
according
obtain:
ItKl,
r +U =iC ,
o
(4.22)
I t 1<1- R e c o n s t r u c t i n g
i t s r e a l p a r t o n t h e c i r c u m f e r e n c e |t.|«l, we
where C
I t 1*1.
0
o
o
z
(4.23
i s a real constant. 2
Substituting condition
t = 0 i n t o e q u a t i o n (4.23) and t a k i n g
j>(0)=0,
we
( t f - s l -C In2-C [ 2J l
Inr +17 =iC . o o o 2
r
Since
^
t h a t C =°•
s
Hence,
z
a
r e a
l
number,
And
now,
2J
( 4 . 9 ) we
(4.24)
'
i t follows
(4.24) t a k e s t h e f o r m : -C I n 2 - C l n r +[/ = 0 . i o o o UJz)
s u b s t i t u t i n g D" ( z ) a n d
condition
(4.24)
1
then from e q u a l i t y
the equality
'I
the
i n t o account o f the
obtain:
from
( 4 . 2 5) ' ' (4.15)
and
(4.16)
into
obtain: 2
cRe[t^(t) + £
where
^ ( r ' f j + c j -
c-c•/ -
Above, Similarly,
E
we
2
derived
the
equality
(4.22)
from
t r a n s f o r m i n g e q u a t i o n ( 4 . 2 6 ) we
the
obtain:
R e \ c ( t f - ( t ) + r t i p - ( r t ) + C ) + t i K ' (t) + 2
2
o
For t h i s
e n d we u s e t h e r e l a t i o n s :
86
equality
(4.IB).
2
=Re[
2
r * t > ' ( r t ) ]=Re f f | t ^ ( r 1 ) ] , l t l - 1 ,
Re^'|i]]=He^t|(('(t)J=Se^ A p p l y i n g Schwartz's
formula, from
( 4 . 2 7 ) we
— — » * '•y\( (t+2) '
«f***Hc^Cr{t)4cJ+tr(t)+ where
t r (t) ]=Re[t
f
(4.28)
IC 1-1.
(4.29)
^c ,|t|
(4.30)
have: 2C ^
:.
3
i s a real constant.
Substituting
t=0 into
e q u a t i o n ( 4 . 3 0 ) we h a v e EC + C " * z G , a
i . e . <7 =0 3
and C-
-CC .
(4.31)
Q
Hence, e q u a t i o n (4.30) t a k e s t h e f o r m :
c(p' ( t ) + " - * ' ( r t ) ] + 0 - ( t ) + - ^ 2
2
Differentiating
2
)
!
p '
[~ t + r ) " t T 5
= 0
b o t h s i d e s o f e q u a t i o n (4.23) w i t h
'
I C I < 1
-
4
< '
r e s p e c t t o t,
3 2
> we
obtain:
3
ff'{Ej-r^'(r t)-
1
(t)+
r
;
(; - j .i j ] -
•
:
-0, | t l < l .
(4.33)
(t+2) Let
us denote
t h e a n a l y t i c f u n c t i o n by p ( t ) and 0 ( t ) i *>,(t)-t>' ( t ) , ^ ( t ) - * ' ( t ) .
S i n c e , (p ( 0 ) =id ( 0 ) = 0 ,
then from
( 4 . 3 4 ) we
£
have: z
0 ( z ) = J t» ( t ) d t .
0
t
(4.35)
0
Summing e q u a t i o n s ( 4 . 3 2 ) a n d ( 4 . 3 3 ) we
Subtracting
(4.34)
obtain
e q u a t i o n (4.33) m u l t i p l i e d by c f r o m e q u a t i o n ( 4 . 3 2 ) ,
obtain:
87
we
c, 7-:-1
(l-e)
• •
(l+e) (t Solving and
t h e equations
(4.25)
and (4.31)
with
respect
to C
o
and
u s i n g t h e n o t a t i o n s o f ( 4 . 3 5 ) , we h a v e :
C -
-
(f 0
cln2-lnr
f Sjftjatj,
(4.38)
o
a
V
Thus,
problem
A
i s
einZ-inrJV
equivalent
( 4 . 3 6 ) , ( 4 . 3 7 ) , ( 4 . 3 8 ) and (4.39) tpAz)
and 0 (z) (
called
4.4.
to
with
(4-39,
the
system
of
equations
respect t o the analytic functions
and t h e c o n s t a n t s
C and Q
system
a t U =0 i s
o f problem
A t h e main
Efj. T h i s
n
a homogeneous one:
On t h e E x i s t e n c e
When role
[
proving
i s played
Lemma
o f t h eS o l u t i o n o f Problem A
t h e existence
4 . 1 . L e t p ( z ) be
continuous
of the solution
by t h e f o l l o w i n g :
i n t h e closed
analytic circle
i n the unit |z|sl,
p(0)=0
circle and
C
Q
|Z|<1 a n d i s a
real
constant.I f
RejV(z) " v f z ' V )
+ C In-!^-J
2
o
- 0, ] z l = l ,
(4.40)
then f > ( z ) = 0 , C -0. o
Proof.
L e t I z I = 1.
Then:
1
2
2
Re .Jz" r ]-Re p(r 5)=Rep(i l f
The
equality
(4.40)
at lzl=l
l
takes the
ee
form:
2
r ).
(4.41)
Re\
l
It
i s clear
circle
that
lzl
from
i s analytic
o
( 4 . 4 2 ) we
V{z) where C
the function
Thus,
(4.42)
i)
o
-
i n unit
have:
g
lzl
2
(4.43)
i s a real constant. 2
Substituting i p ( 0 ) = O , we
z=0
into
C ~C^=0.
obtain
a
equation Hence,
(4.43)
and
taking
e q u a t i o n (4.43)
into
account
of
becomes:
c p ( z ) - p ( z r*)«0,
(4.44)
Let 2
p(Z)=a Z+a z +. .. i
be
McLauren's
(4 . 4 4 ) , w e
expansion
of
0
from
IzIsi. we
jt(z).
Substituting
this
expansion
into
obtain:
V Since
(4.45)
2
shall
Substituting
equation
Lemma 4 . 1
r
=
o X
0
h
'
{4.46)
we
=
1
2
-
from
4
-
2, . . .
h=l,
have
4
.
6
)
Hence
i s proved.
prove t h e existence of the s o l u t i o n
G
(
(4.39)
of problem
i n t o e q u a t i o n s (4.36) and
A.
( 4 . 3 7 ) we
obtain:
a +
(l cWt+2?(Elh2-inr
)( V
+
(
0,(t)d(t)),
|tl
(4.47)
2 t
x
2
(t) = -
(r t)-
e(i-c) (l+c) (t+2) (eln2-lnr ) ("V
i=5
* f- J J +
} ^ t t i ^ t t ) } ,
lt|
(4.48)
o
Thus, system
the
solution
of
problem
(4 . 4 7 ) , (4 . 4 8 ) w i t h
A
i s reduced
to
respect t o the analytic
t.m-
69
the solution functions
of
p (z) j
the and
At
first,
U =0)
solutions defined the
we s h a l l
has
o
only
prove
that
trivial
t h e homogeneous s y s t e m
solution.
o f t h e system
Indeed,
a t D"-0.
Then
l e tp
formulae
problem
(4.35),
Since
A,
w h e r e C ,C ,f{Z)
be t h e
]
1> a n d Z
be s o l u t i o n s o f
a n d 0 (z)
a r e defined
by
problem
A
has o n l y
trivial
solution,
then
i.e.
Z
R
+C l n l *
|
= 0 , ZeDj.
Q
us denote
2— o
—=L—n
=E• T h e n t h e e q u a l i t y (4 .49)
R e [ p ( O - 0 ( r V]]+C ln-L£I o
and
^
V^,
(4.38) and ( 4 . 3 9 ) .
t h e homogeneous
UJz)sQ,
(4.47),(4.48)(at and
the functions
by t h e formulae (4.15),(4.16) and (4.17) w i l l
homogeneous
Let
(
(4.49)
takes t h e form:
- 0 , r *|j£|ai
(4.50
0
a c c o r d i n g t o Lemma 4.1 p ( z ) = 0 a n d C^=0.
Thus,
from
( 4 . 3 8 ) we
(44 ..: ( 3 5 ) we h a v e p ^ f z J ^ O .
Substituting
£^=0 a n d U = 0 Q
into
obtain: o |
0 (t)dt=O
(4.51)
j
1 2 Substituting
p ( z ) =0 ]
and
U^o
a c c o u n t o f ( 4 . 5 1 ) we o b t a i n Thus, homogeneous s y s t e m
^,
into tT2-]
= 0
equation a
*
(4.47)
and
taking
lt|
o f equations (4.47),(4.48) has o n l y
trivial
solution. Now we s h a l l system Let
prove
the existence of the solution
( 4 . 4 7 ) , ( 4 . 48) ( a t B
analytic
be
Banach
i n lz[
o f non-homogeneous
V *0). Q
space
of
vector-functions
and c o n t i n u o u s i n I z l ^ l w i t h
S(z) = ( p ( z ) , j
0 (z))
t h e norm:
||*| = m a j f d i i p j i . l d j ) ,
(4.52)
B
where \
In
s p a c e - B we c o n s i d e r t h e f o l l o w i n g
90
system
(z) I .
o f equations:
(4.53)
(P,(z)+ 1
(1+C) ( z + 2 )
0.(Z) +
The
system
completely (4.55)
the
continuous
of
system,
linearly
solvability
IZKI.
(4-55)
functions.
from
t h e system
Therefore,
then
solutions
system
a Fredholm
by
(4.54),
(4 . 4 7 ) , ( 4 .48)
is
also
system, i f
o f homogeneous
i s e q u a l t o t h e number
o f t h e non-homogeneous s y s t e m
( 4 . 4 7 ) , (4.48)
i f the
t h e system
independent
:
(4.54)
2
(4.54),(4.55) i s c a l l e d
t =i"Qj
( 4 . 5 4 ) , (4 .55) ( a t
differs
operators.
o n e . The s y s t e m
number
z + i !
(z) are given a n a l y t i c
(4.54) ,(4.55)
m
H
2
i s Fredholm's
Fredholm
2
— r0,f- ?iWl=f,(zj* (1+E) (Z+2) H J
1
where / ( z ) and f
,0,1- s f e r l - f . W ' '
system
of the conditions
of
(4.54),(4 . 55).
Since
I
t
^
-
^
i
l
*
^
56
.
«" >
2
I(1+c)(z+2) | then
equation
(4.55)
of e q u a t i o n (4.55) (4 . 5 4 ) , [ 4 . 5 5 ) Fredholm
Hence,
system.
Since
trivial
solution,and
solvable,
Substituting
existence
(4.47),(4.4B)
system
t h e system of
the
being
solution
solution
(4 . 5 4 ) , (4 . 55)
i s also
(4.47),(4.48)(at
(4 .47) , ( 4 . 48)
the
Thus, t h e system
i . e . t h e system
t h e system
t h e homogeneous
the
solvable.
e q u a t i o n ( 4 . 5 4 ) we o b t a i n
i s uniquely
system.
provides
i s uniquely
into
a
U =0)
has
only
Fredholm
one
0
a
of
is a
Fredholm
non-homogeneous
s y s t e r a ( 4 .47) , (4 .48) . This
system
turn,is
i s equivalent
equivalent
t o t h e system
t o the problem
A.
(4.36)-(4.39) which,
Hence,
problem
A
is
in i t s
uniquely
solvable.
4.5. S o l u t i o n
o f Problem
A by t h e Method o f
Successive Approximations
L e t us c o n s i d e r t h e system
r
T+f >
V
< z
r
o
£
)
—
1+C Q 2 0
2
c
;
> "
r
r
" T r l X ' o 1+C
(4.36),(4.37) a t
i ^ ( - t T 2 ]
(l+e)(t+2r t
01 0
)
—
—
i
(i )( 2) + E
^
L
(1+E) ( t + 2 )
£
* J - t+r) s ;
t +
91
l
t
+
~
+
>
C=ls
£
>
+
—
l c l < 1
4
'
t -
5 7
>
5 S
>
2
—
(1+E)(t+2)
»• 2
l t l < ]
-'
4
( -
where
if (t)
and
continuous The
relation
defined
a
i n the
circle
|tl
and
ltl=l.
between problem
4.1.
and
defined C
functions analytic
A
and
the
system
(4.57),(4.58)
is
by.
Theorem P (t)
iji ( t ) a r e
i n the closed c i r c l e
I f the
# (t)
are
2
by
the
system
( 4 . 5 7 ) , (4.58)
i t s solutions,
formulae
the
i s uniquely solution
of
solvable problem
p(z)
(4 .15) , (4 .16) , (4 .17) , w h e r e
A
,0(z),C
and is and
are equal t o :
l
Z
p(Z)=*J
£ P (t)dt, 2
ip(z)=yj 0 ( t ) d t , 0
C=7,
C =
§,
(4.60)
»=e[7 |e | i * ( t ) d t + c I n 2 - l n r j
first
we
shall
.
o
2
Proof. At
(4.59)
a
O
(4.61)
show: o
c J 0 (t)dt+cln2-lnr>O
(4.62)
2
2 Indeed, the
impossible, inequality In
(z) , i& ( z ) = 0 ( z ) , ^ = 1 -C^—
otherwise,
system
of
2
equations
since t h i s (4.62)
s e c t i o n 4.2
by t h e f o r m u l a
]
s y s t e m a t U =0 has 0
we
showed t h a t
(4.15),(4.16)
and
=
0
Q
•
i But
satisfy this
solution.
is
Hence,
C
o
problem
A
i s defined
Z
| P,(t)dt,
and
of
(4.17),where:
0(Z) = j
o i
f
only t r i v i a l
the solution
E
at
is true.
p(z)=
and
-
a
(4.36) - (4.39)
0,(t)dt,
(4.63)
0
C
satisfy
the
system
of
equations
(4.36)-(4.39). comparinq into
account
the
systems
of t h a t
(4.36),(4.37)
t h e system
and
(4.57),(4.58)
obtain:
92
(4.37),(4.58)
and
taking
i s u n i q u e l y s o l v a b l e , we
PAt)mC At)
, >fiAt)=C lllJt)
i9
Substituting (4.39),
ipjt)
.
l
and * ( t ) from
(4.64)
into
(4.64)
equations
(4.33) and
we o b t a i n :
e ! n 2 - J n r [o -e,
C = o
\ 0.,(t)dt],
o
(4.65)
o " 3 o c i n Z - l n r J V ^ | *At)dt).
V
(4.66)
"2 Solving obtain
t h e system
formulae
Substituting
( 4 . 6 5 ) , (4.66)
(4.60),
£7 f r o m
(4.60)
into
formulae
is
uniquely
condition
(4.67)
s o l v e t h e system
s o l v a b l e and t h e s o l u t i o n approximations.
(4.68)
t h e system
i t follows
shall
the
formula
prove
that the
system
noted
by t h e method o f that
at
r
s
^ j
the
( 4 . 5 7 ) , ( 4 . 5 8 ) we r e p l a c e : ,Jz)=VJZ>
c o n s t a n t t o be c h o s e n
,
(4.69)
later.
may be w r i t t e n a s :
*o< >= l i K v ^ ' £
be
i s s a t i s f i e d a t any E i l
where X i s p o s i t i v e Then t h e s y s t e m
may be f o u n d
I t should
o
The
(4-67)
(4.57),(4.58).We
^(z)=Xp (z)
w
we h a v e :
1
and
we
(4.61).
(4.57),(4.58) a t
successive
In
and p ,
o
formula
Theorem 4.1 i s p r o v e d .
Now we s h a l l system
(4.35)
t o C
by
. * &)**I%m-
3
From
respect
i s defined
(4.64)
1>At)-l"P (t)
(4.59).
with
i
where
(
1
+
e
, ^
(
1
+
E
(4.70),(4.71)
^
/ o ( -
2
+
2
, *
t h h +
»°(- M
Mi«)i «)t
a
+
o
W
l t l < 1
-
m
i
<
< - > 4
-
may b e r e p r e s e n t e d a s a n o p e r a t o r
93
( 4
-
70
7 i )
equation
in
B space: *[t)=K(4) ( t ) + f (t) ,
(4.72)
• (t) = (p (t),V (t))eB,
(4-73)
! 1-E X(l+E)(£+2)'(1+E)(t+2)
(4.74)
K ( * ) (£) = (£,(*) ( t ) , * . , ( * ) ( t ) ).=B,
(4.75)
where 0
tit)
o
o("
(1+E)(t+2)'
K (*)(t)a
-
1-E
^ ^ ^ ( r ^ t ) -
(1+E) Here K i s a n o p e r a t o r i n Banach norm.
From e q u a t i o n s
t + 2^'
(4.77) (t+2)
;
s p a c e B s p a c e . We
( 4 . 7 6 ) , ( 4 . 7 7 ) we
(4.76)
shall
estimatei t s
have:
B '
(4.78) (4.79)
Hence,
||K(») || ^ inax(||iC B
<*) ||, \\KAt)
i
B '
(4.80)
where
1
C—1
2 ,
2
. - 1
E - l l
2 .
2C
r
r
E+T o E+T* < c+T o ETIJ We t a k e X e q u a l t o t h e p o s i t i v e s o l u t i o n o f t h e e q u a t i o n :
E+T
o
E+T*
2
-(E-l)(l-r )
c+T
R
2
+
A + 0
e+l<
2
2
/{E-l) (l-r ) +16cr
.. _,, <*•«)
| 4
-
B 2 )
2
(4.83) 4cr From
(4.81) and (4.82)
i tfollows
94
2
that:
(4.84)
Substituting
A
from
(4.83)
into
(4.84)
we
find
q
that
s a t i s f i e s the
inequality: 0«J<1, if
and
only
From
the
i f the condition inequalities
K s a t i s f i e s the
operator
(4.68)
(4.80)
is satisfied.
i t follows
According
defined
to
the
(4.72)
that
the
norm
of
principle
of
.
(4.86)
compressed
mapping
i s u n i q u e l y s o l v a b l e i n space B
((19],
and
p.47)
where K
1
2
solutions
i(t)=(p
solution
l e t us
geometrical Since
n
of the
(4.57),(4.58)
of by
( t ),
0
1
(t) )
O
from
(4.87)
problem
A
is related
that
the
series
to
the
(4.87)
obtain
of
the
system
as
a
decreasing
then:
B
the
series
with
t h e common r a t i o
<¥> (t) 0n
n-th
solution
converges
n
be
we
progression.
||K (f) | | V l | f l l Therefore
(4.69)
.
t h e o p e r a t o r norm i s l e s s t h a n g,
progression
into
system ( 4 . 5 7 ) , ( 4 . 5 8 ) .
means o f T h e o r e m 4 . 1
show
(4.87)
K " ( f ) = K ( K " ( f ) ) , n=2,3
( f ) = K ( f ) and
Substituting
Now
is
by: 1
The
the
i t s solution
* ( t ) = f t t J + X ( f ) ( t ) - t K ( F ) («)+. . . ,
the
the
inequality: |E|ag
equation
(4.85)
,H (t)
converges q.
•
as
(4.88) a
decreasing
geometrical
Let
) = * ( t ) = f (t)+K(f) (t) + . . .+K"(f) ( t )
0
approximation the
(4.87)
B
(4.89)
B
of
According
to
difference
between t h e exact
the
estimate
solution
(4.88)
we
solution
| * ( t ) - * ( t ) l n
and
of
have n-th
2
B
9 5
* TZg|f|l
B
the the
equation estimate
(4.72). for
the
approximation:
•
(4.90)
From
(4.74)
i t follows:
V
MB-
where
V Hence, f r o m
H r r t t i T '
n
* - ^ - f t
B
Substituting solution
From
9 1 1
< -
( 4 . 9 0 ) we h a v e :
l*(t)-* (t)|
the
4
f i r ) -
* ( t ) i n t o ( 4 . 6 9 ) we o b t a i n n o f t h e system (4.57), (4.5S): d>,
(Z)=A*>
the formulae
(4.69)
(2) , and
0,
.
0
t h e n - t h approximation of
(Z)-#„
(4.93)
(4.92)
and
(z) •
(4-93)
the estimate
(4.92)
we
obtain:
b (z)-P 2
2
n
(z)|| = *
Hence, t h e e r r o r (4.57), then
(4.58)
this
l
^
z
'
z
lltf < >-* ,„< >ll :
a
5
v £ ^ -
(*•")
o f n - t h a p p r o x i m a t i o n o f t h e s o l u t i o n o f t h e system
does
error
V
b q"' {1-g)"'maxJl.X).
n o t exceed
Since
1
g
0
tends t o zero as a d e c r e a s i n g g e o m e t r i c a l p r o g r e s s i o n
when n-n» . Successive
approximations
(4.71) a r e d e f i n e d
p
»
t
of
the solution
by t h e f o l l o w i n g
t
l
=
A(l+J(t+2)'
0
co<
C )
and
(l+cKt+2)'
n-th approximation defined
=
t h e system
(l+c) (t+2) '
tl
A(1+c)(t+2)' 2
+
of
(4.70),
recurrence formula:
l t l
'
S l
'
W
n=l,2
(
by t h e f o r m u l a e
96
>
4
t '
9
5
'
(4.96)
4
< -
9 7
>
(4.95)-(4.97) coincides
with n - t h approximation The
exact
passing
solution
(4.89). may
be
obtained
from
t h e approximate
one
by
t o the limit:
Substituting
)>
and
i/i
from
(4 . 9 5 ) - ( 4 . 9 7 )
(n=0,l,...
approximation
of the solution
m
(4.93)
into
the recurrence
) we o b t a i n t h e r e c u r r e n c e
*
^
+
o f t h e system
t
&
-
(1+e)
n
«
formulae ofn-th
(4.57),(4.58):
u,^--l-
l t , < 1
(l+cHt+2)'
formulae
=
1
^
2
'
)
(
+
4
-
9
9
)
(1+C)(t+2)' The
exact
solution
( 4 .I 5t 7K)l ,, ( 411-1,2 .58) i s o b t a i n e d
of
by p a s s i n g
(t4o. 1t0h0 e )
limit:
c 5
M -£3ffi *•..»>* Now
we
find
(4.57),(4.5S).
first
approximation
According the
of
solution
formulae
approximation
tp ( ) = t a ( l + c ) (z+2) Z
z
V*' From first
Theorem
4.1
this
1
of
the
(4.98)-(4.100), system
2
-
0
1
)
system
the
i s defined
1
by
first the
2{c-l)
5 (i+e) (2+r z) 4
and
the solution
4
;
2
(
(
-
i s a l s o d e n o t e d b y
c
r
-
(l+c)(z+2)
approximation
of
2[l-c)r +
1LS -
J, f ) =
of
( t )
^.,
t o t h e formulae
approximation (this
-&3
+
E
)
^(
+
2
2
+
r
(
z
t h e formulae
of the solution
97
(4.102)
-.
(4.103)
( e + 1 ) ( Z + 2 ) (3+2z)
o= )
, 2
(
C
"
1
)
2
2
e +
i) (z+2)(3+2z)
(4.102) , (4.103)
o f problem
A.
we
obtain the
4.6.
Solution
In
section
solve
4.5 we a p p l i e d
problem
section violated,
Let
o f Problem A i n General
we
A,
when
shall
t h e method o f s u c c e s s i v e a p p r o x i m a t i o n s t o
the condition
solve
problem
section
4.4,
problem
were
analytic
i n the unit
unit
circle
It M l .
respect
uniquely
4.4
was
i s satisfied.
the
condition
In
this
(4.68)
is
circle
series
we p r o v e d
solvable.
Now
(4 . 4 7 ) , (4 . 4 8 ) . F o r t h i s
R
reduced
t o t h e system
t o the functions
I n addition
McLaurain's expansion section
o
s
A
with
is
when
u s r e m e m b e r t h a t e= — - > 1 , r • — £ — < l .
(4.47), (4.48)
In
(4.68)
A,
i.e. :
E
In
Case
we
assumed
we
shall
that
functions
t h a t t h e system
2
+
(l
+
C
)(t 2)( in2-lnr +
C
o
)
(-
[
J
a
k
- r ' t
KT
+
real.
of equations (4.47),(4.48)
show a m e t h o d
o
i n the closed
the coefficients of
were
e n d we r e w r i t e t h e s y s t e m
1+c
which
]
It I<1 and c o n t i n u o u s
of these
of equations
p ( t ) and
t o s o l v e t h e system as f o l l o w s :
+
C
} *, < >
d t
) •
4
( -
1 0 5
>
1
2
2
R
1+C 0
c(l-c) (1+c) ( t + 2 ) ( c l n 2 - l n r
k!
" 0
k
j ^ ( t j d t j ,
o
I ' 2
98
k
r t + ' o
|tl
(4.106)
where » i s a n a t u r a l Let us
n u m b e r t o be c h o s e n
later.
denote:
(0)=a ,
fc-0,1,
k
m,
(4.107)
o
- j 0, tt)m=a
.
mn
This notation
1-E
t r a n s f o r m s t h e system
2 V"
21 V —
r
" T+£ o
r
c
(4 . 1 0 5 ) , ( 4 . 1 0 6 )
into:
I
2E
+
Z
(4.108)
1 109)
) [-*..
(l+E)(t+2)( ln2-JmE
, '"o J '
I C I < 1
4
'
<-
K =0
p""(0) i n k=0 c-1 (1+E)(t+2)'
+ Now
we
shall
functions If
p
i
then
(^(t),
r
R
C
o
consider 0 {t)
t h e system
and c o n s t a n t s
i
Q
i t i s clear
_2E 2 v ~ f * > 1 +E 0 /_ ~KT 0
t+2)
(l+ )(t+i)(Eln2-inr )K,^
( t ) and a / a , . .. r *
(t),
2 >
[" -.0 1 [
that
]
[
,
c]'
l t l < S
4
-
< -
(4.107)-(4.110) a.,a,...,a
where
of t h i s
( t ) are t h e solutions
1 1 0
)
analytic
a r e t o be
are the solution
m t l
and #
R
found. system,
o f t h e system
(4.47) , (4.4B) . Now
we
solvable natural Since 111<1
shall with
that
the
10,(1;)
i s the function
continuous
that
system
t o analytic
number m i s s u f f i c i e n t l y
and
evident
show
respect
(4.109),(4.no)
functions
p ( t ) and ]
is tf (t) ]
uniquely , i f the
large. which
i n the closed
the function:
99
i s analytic unit
circle
i n the unit 111 = 1 ,
then
circle i ti s
—
is
analytic
|t|3r
2 Q
.
analytic
i n the circle
Hence,
|t|
according
functions
(0)
2
and c o n t i n u o u s
t o the principle
i n the circle
2
ICI
i n the closed
of
(p=r~ )
modulus
([13],
circle
maximum f o r
p . 5 6 ) we h a v e :
it = D
k-0
I
V '°'''
,2,.
,(0)
k=0
h=0
< *
According expansion
2
(
- * l
t o Cauchy's
f
i
r « {
inequality
of the analytic
t
2
J ^
) , p=r" .
f o r the coefficients
functions
([13],
I * - " " (0)1 -p 5 max
of Taylor's
p.64):
I p ( t ) |-|p || .
a n d ( 4 . 1 1 3 ) we
(4.113)
1
|t|ai
From t h e e s t i m a t e s ( 4 . 1 1 2 )
(4.112,
obtain:
(4.114) 1
. _ k -0 Let
1
l-r '
us d e n o t e :
0
0 Mr
• (Tle*!+l) '
100
i s c l e a r t h a t g ->g <1 a t m-m , e > l .
It
t h e r e e x i s t s a number m s o t h a t :
Therefore
g
•
B
L e t m be c h o s e n t o s a t i s f y equations
(4.109),
and
and t h e s o l u t i o n
0 (t) ]
(4.110)
(4.117)
the uniquely
(4.117).
Then t h e s y s t e m o f
i s uniquely solvable with may b e f o u n d
respect
b y t h e method o f
to p (t) successive
approximations. Let
j» =f ( t ) 1
( 4 . 1 0 9 ) , ( 4 .110) W^g^ft) and
and 0 =g(t)
be
j
when
1 7 - 1 a n d a =0 O k
t h e solution
a r e t h e s o l u t i o n s o f t h e same s y s t e m
a =1.
Then
represented
t h esolution
of
(h=o, 1 , . . . ,m-l)
while U =0,
when
o f t h e system
0
t h e system p =f ( t ) l p
and
a =0 a t j * p
(4.109),(4.110)
i s
as: •-I p (t)=U f(t)+ Y n
o
f
a
i
(t),
(4.118)
j =o m * 1
l/' (t)=!7 g(t)+ ^ 1
ajffjtt).
0
(4.119)
j-o It
i s clear that
Substituting equations
P,Ct)
and pjft)
- >
uniquely system
»-i Z +
3
a system
a ,a ,...,a solvable.
( a t U =0) o
system
be
by the
defined
o
and (4.119)
i n
the
m,
II V
C)dt
"~ 'o j 9 ( )
this
t
c
1
d
t
-
(4.121)
I
o f algebraic equations
. Now we s h a l l
For
(4.120)
0 £
end
has o n l y t r i v i a l
Let 17 =0 o homogeneous
(4.118)
0
j =o
we o b t a i n
from
a/jfOJ- P f (0), k=0,l
• • 1
Thus,
by t h e
( 4 . 1 0 8 ) we o b t a i n :
a
constants
a n d g may b e a l s o f o u n d
approximations.
(4.107) and
B
£-,g,£
the function
method o f s u c c e s s i v e
prove
f o r finding
that
i t i s sufficient
the
t h esystem i s
t o show
that
the
solution.
and constants
a ( j = 0 , 1 , . . . ,m+l) be s o l u t i o n of the ) o f e q u a t i o n s (4.12 0 ) , (4.121) and p ( z ) and p (z) ;
formulae
(4.118),
101
(4.119).
Then
the
]
constants
a (j=0,l
i
Thus,
ifijt)
system (it
and
$At)
of equations
was p r o v e d
j> =0 t
(k=0,1,...,m+l).
(4.48)
(4.120),
we f i n d
A—0
g
conductors.
per
into
o
o f t h e system
unit
system
we
obtain
o f equations
3^=0
(4.120),
solution.
( a t U *0)
i s the difference
charge
since
solution
i
(4.108)
a ( j " = 0 , l , . . . ,m+l)
solutions
But
trivial
0 (t)=O.
(4.107),
t h e homogeneous
(4.121)
the solution
2U
Let
o
into
(4 .107) - (4 .110) .
(4.48).
has o n l y
]
4.7. D e t e r m i n a t i o n o f C o n d u c t o r
the
a t l/ =0
0
the
(4.47),
4.4),then p (t)=0,
and
Thus,
t h e system
t h e system
( a t U =0) has o n l y t r i v i a l
Substituting system
(4.47),
i n section
Substituting
(4.121)
and ^ ( t ) s a t i s f y satisfy
of
t h e formulae
non-homogeneous (4.118),
(4.119)
(4.47), (4.48).
Capacitances
of potentials U
length,
Then t h e c a p a c i t a n c e
q is
between t h e c o n d u c t o r s , -U
and
g
are
Q
the
potentials
at
i s d e f i n e d by t h e f o r m u l a : C=
^g-.
(4.122)
o
It
i s known
that:
r¥ • f n ° ' fi E
where
e
i s electric
Q
0
insulation),
n i s o u t e r normal
normal the
i s the
integration,
E
of
intensity
permittivity
conductor
surface at the point
o f an e l e c t r i c
of electric
of electric
of
(without
field
field
field
on t h e
i n D.
depend
Since
[
on x and y
takes t h e form:
a
(
=
i s t h e circumference
S u b s t i t u t i n g O (z) from
123
'- >
unit-length,
i s potential
(4.123)
4
j> sir*™'
t o the conductor's
i s projection
c V
where F
"
h
E and t h e p o t e n t i a l
only, t h e formula
=
i s dielectric
surface
t o the surface,
intensity
n
constant,
insulation,
of
d
( E
n
d
s
= "
| z - R | = r , ds
(4.15)
into
102
W
x
an"
d
s
'
t 4
1
2
4
)
i s an element o f t h e a r c r .
(4.124)
we
obtain:
-
(M
I2L.
-Re
TirT
f
-c 0
(4.125)
m.
r
J
Since,
,Iz-Rlz-R \-R-\Rr-'
*
3n
Rr
2
0
dip
(4.126)
\'
ZsF
2
Rr '
Z-R
Rr
0
an
2
0
z-R
(4.127)
(z-R)r
(4.128)
then the e q u a l i t y
-9— : e
=
(4.125)
becomes:
f z - R ) d ( z-R) z-R) TR
-Re
e
0
As
(z)
closed that
is
analytic
circle
|z|=l,
the integrals
in
then
the
circle
from
i n ( 4 . 1 2 9 , are equal
q from
0
formula
-
2
and
(> (z,
In
the
equation (4.132)
2
and
0 (z) are 2
preceding
(4.57),
(4.58)
i s s a t i s f i e d and
successive formula
in
p.45)
the
follows
hence (4 .130)
( 3 . 1 2 2 ) we
obtain:
c C a i o
(4.131)
condition: - I t i
0
true
continuous
([13],
t o zero,
(4.130, into
r <
(4.58).
theorem
10
nc
is
(4.129)
-2ne e C .
C =
the
-2JTC (z-R)
| z | < l and
Cauchy's
^
Substituting
d(z-R)
i
r
g=
Let
Rr
, Br z-R
(
"J *
solutions we
uniquely
the solution
approximations,
(4.60).
the
section is
Substituting
and
the
C
from
q
(4.132,
3E-1
103
of
showed solvable may
be
constant
the
that when
found C
g
(4.60) into
system the
by
the
(4.57) ,
system
t h e method
i s determined (4.131)
we
of
condition
by
obtain:
of the
(4.133)
where
(4.134)
Thus t h e
capacitance
(4.132)
i s determined
are
solution
of
the
the solution
by
the
(4.103)
of
the
conductor
the
formula
the
system
equation
( 4 . 1 3 4 ) we 4 3" -
i n the
o
( c f . equation
4e
o
f/ =l. B
(^(zjand The
preceding
0,(z)
method section
( 4 . 1 3 1 ) a t U = l we 0
first
(4.57),(4.58) 0 (t) ;
tp ^ ( t )
approximation is
determined
from
equation
In
(4.135) (c+1)
(4.136)
3e-l
formula(4.131)
•*•
eln2-ln
are for
.
condition and
at f - l
i s defined
Q
by
the
(4.33)).
/- — _
where
The
the
tp ^ (t)
obtain:
o Then t h e c o n s t a n t C
where
Substituting
(c + lT 4-r*
let
formula
satisfying
(4.57),(4.58).
(4.102),(4.103).
e-1, £+1
Now
when
(4.133) ,
of t h e system o f equations
formulae into
of by
the
r
solution
solvinq
of
this
Substituting
C
o
j
L-
is . (t)dt
the
system from
(4.137)
system is
(4.137)
(4.47),(4.48)
described into
the
in
at the
formula
obtain:
C
=
Eln2-lnr
104
L-
j
0, ( t ) d t
(4.138)
CHAPTER 5
E F F I C I E N T METHODS FOR SOLVING BOUNDARY VALUE PROBLEM FOR E L L I P T I C EQUATIONS
5.1. Boundary Value
Problems f o r Laplace
i n Domains R e s t r i c t e d D be d o u b l e
Let
circumferences 2
2
J(x-x ) +y ; o
connected
plane,
restricted
w h e r e z=x+iy,
g
Oax < 1 , 0 < j r + r < l
by t w o
| z | =y x +y ,
| z-x^ | =
and r > 0 .
c
1) D i r i c h l e t
i n xOy
domain
| z | = 1 a n d | z-x | =r,
I n d o m a i n D we s h a l l
Equation
b y Two C i r c u m f e r e n c e s
consider the following
boundary
value
problems:
problem:
£| dx
•
ay
U(x,y)~fjz), U(X.y)-fAz),
(x,y)eD,
(5.1)
\2f\-t,
(5.2)
|z-x |=r.
(5.3)
= 0 , (x.yitD,
(5.4)
0
2 ) Neumann p r o b l e m :
^ dx ^
+ & dy
>
=f,,z),
SS*iXl
= ,z», f i
|z|=l,
\z- J=r.
ax
+
^
ay
[7(x,y)=f Here,
,5.6)
X
D a tthe point
(x,y).
,
(5.7)
(z) , | z - x j = r .
(5.9)
where N i s t h e o u t w a r d normal t o t h e boundary 3) Mixed b o u n d a r y v a l u e p r o b l e m : £f
(5.5)
=0, ( x , y )
f (z) and f ( z ) , a r e given r e a l ]
105
e C
functions
satisfying
Holder's
condition It
on t h e c i r c u m f e r e n c e s |z| = l a n d | z - x | = r , Q
i s known
boundary
([21],
pp.
value problem
Neumann's p r o b l e m
298-369),
that
respectively.
Dirichlet
problem
and
mixed
f o r L a p l a c e ' s e q u a t i o n a r e u n i q u e l y s o l v a b l e and
i s solvable,
|
i f and o n l y
f (z)ds +
;
o
if:
^(Zjtto-O,
(5.10)
ds=Jdx +dy -
where
2
2
The g e n e r a l s o l u t i o n
o f h o m o g e n e o u s Neumann's p r o b l e m
i s defined
by
the formulae: Usconst. We
assume
that
the condition
(5.11)
(5.10)
is satisfied
f o r Neumann's
problem. The
aim
problems
of the present by
t h e method
section
of
reducing
them t o f u n c t i o n a l
analytic
functions,
The
method,
problems
to
i s t o solve
successive
equations with
the shift
w h i c h w e r e d i s c u s s e d i n Ch. be
described
i n domains r e s t r i c t e d
t h e above
approximations
further,
II,
allows
i n the class of
section us
to
2
2
2
+y =R ,
Q
2
problem.
analytic
0
and C
|z-x |>r, r e s p e c t i v e l y , o
o f
a t |z|-*+»
t
The
solution
( z ) + p ( z ) | +C J n - I
where P ( z ) and p ( z ) a r e f u n c t i o n s
Substituting
(5.13)
2
of
the equation
i n t h e form: t/(x,y)=ReL
limit
these
(5.12)
lx-x ) +y =r,
(5.1) i s sought
2.4.
solve
by t h e c i r c u m f e r e n c e s : x
w h e r e x ^ 0 , x +r
mentioned
preliminary
U(x,y)
o
-,
(5.14)
i n t h e domains
i s a r e a l c o n s t a n t . We
| z | < l and
suppose t h a t t h e
exists.
from
(5.14)
i n conditions
(5.2) and
( 5 . 3 ) we
obtain:
KeL L
( Z ) + if ( z ) l J
+ C I n — | B - X
106
= f (Z|, | z | - l , D
|
(5.15)
z-x_ There a r e t h e f o l l o w i n g
Re
equalities:
( z ) = Feipjz)
t f i
(5.16)
=r.
-
Re
,
Vj
Rep, ( z ) = Rep ( z ) = R e «
jr + _
|z|=l.
(5.17)
r
(5.IB)
(5.19)
o
z
1-x
1
•
Thus,
i nthis
n l
case t h e boundary
conditions
(5.15)
and (5.16)
may be
r e w r i t t e n as: Re* (z)=f (z) , o
|z|=l,
o
Re« (z)=f (z), i
i
(5.20)
|z-x |=r,
(5.21)
0
where
(5.22)
(z)=
P„(z)
+
(5.23) z-sr
It
i s clear,
circles the
that
0 (z)
conditions
(5.20)
and ^ (z)
O
| z | < l a n d | z~x
are analytic
|
functions
i nthe
Hence, t h e y a r e d e f i n e d
b y means o f S c h w a r a ' s
formula
from
((13),
p.223):
)
* < "V
(z)=p (z)+iC , o
l
l
z )
2 ) + i C
V
(5.24)
where
t-z
107
(5.25)
2ttX
=: and
C
(
0
t -
a n d C" a r e a r b i t r a r y r e a l c o n s t a n t s . 2
S ubsti t u t i n g
* ( z ) and ^ (z)
from
0
(5.24)
into
(5.22)
and
(5.23)
we
obtain:
f (z) 0
+
n
^] V l^Fz
a
new
variable
z
V >
=# (z)+ie , a
z-x
Introducing
=
?-x + o
-_—,
o
+ i t
V
l
z
l
<
1
< 5
-
'
2 7
(5.28)
|z-v |
equation
(5.28)
may
be
represented as:
Vf=F Now
we
pass
substitute
t o complex-conjugate
values
|e-X |«r.
+iC , 2
Q
i n equation
(5.29)
(5.29)
and
z f o r £:
( z ) - i c , |z-x I s r ,
(5.30)
where
x + - i o — z-x Substituting
p ( z ) from ]
equation
(5.30)
(5.31)
into
equation
(5.27)
we
obtain:
P (z)-*» 0
D
o
1-x z +
C
J 0
n
l=x~i
where
108
=V
z ) + i t
V
|z|
(5.32)
'
0,(2)=
z
* < > c
( 5
- *«("7")'
0
-
3 3 1
5
r
< -34)
us denote:
2
• (•)-•.+ -H! -.
(5.3S)
Since r < l - x , then
a s
l«(z)l V —
d-jr.) —i=i— < 1
*V
l-x
1*1**'
s
36
>- '
o
Therefore t h e equation
l-x z o
has
one s o l u t i o n
z=z inside the circle
|z|
o
which
i s defined
by t h e
formula:
Z
Since r < l - x Equation
o
5
2i
38
<- >
a n d O^x < 1 , t h e n 0*z < 1 .
(5.32) a t z=z
o
takes t h e form:
c
aJ
n
T ^ 1-Jf.Z.
* . < * „ >
*
o'
+
J
C
(5-39)
aT
H e n c e , we h a v e :
V The s o l u t i o n
Re* ( t
Z o
)
V
i n r - i n d - x z )'
oo
(P (z) o f e q u a t i o n 0
(5.32)
<" > 5 40
i s sought as:
|P (z)-(z-z )u(z) , 0
where u ( z ) i s a f u n c t i o n a n a l y t i c From
(5.41),
(5.41)
o
i ntheunit circle
u s i n g t h e e q u a l i t y z = a ( z ) , we o
109
o
obtain:
|z|
ipja(z)
Substituting equation
we
»> (ot ( z ) )
o
and
^ " r d r ^ 'V
o
( 5 . 3 5 ) we
(5.41)
from
o
(5.42)
+
i
C
5
V
( -
4 3
>
have: (z
z )r
2
«(*)-«{V ( i - x Y j t l - x z ) Dividing
into
obtain:
(z-z )u(z)-(a(z)-a(z ))u(a(z))=
From
(5.42)
o
and
o
(5.32),
) = { a ( Z ) - n ( z ) )«(«{») J .
both sides of equation
( 5
( 5 . 4 3 ) b y Z - Z , we
"
4 4 )
obtain:
q
u ( z ) - S ( z ) u ( a ( z ) )=i0 (z) ,
(5.45)
5
where
0
( z )
4
+
z
V> From t h e r e l a t i o n in
the circle
i C
3
^
o
I
^
i
( 5
z=z
(5.40),
i t follows
that
0 (z) i s analytic 5
"
4 7 )
function
|z|
Since the
n
Osx < 1 a n d rr < l - x , t h e n t h e f u n c t i o n o c i r c l e | z | < l and |P(Z)|s
r
8(z)
i s also
—— < 1 a t | z | = l .
analytic i n
(5.48)
(1-X ) Q
Therefore the of
the equation
analytic
(5.45)
i s uniquely
solvable
f u n c t i o n u ( z ) a n d i t s s o l u t i o n may
with
respect t o
be f o u n d b y t h e m e t h o d
successive approximations »:f*j = # ( Z ) + K ( ( ( ( z ) ) B
5
2
+ X ( * ( z ) ) + ... 5
,
(5.49)
where K(tf) The
series
e 0 ( z ) ^ ( a ( z ) ) , a n d K" (ill) (5.49)
converges
as
110
= K (K" ' ( 0 ) ) , n = 2 , 3 a
geometric
(5.50)
p r o g r e s s i o n and
the
series
remainder
may b e e s t i m a t e d a s f o l l o w s :
(5.51,
where
From
t h e formulae
obtain
Particular constant, and
(5.14),
(5.30),
(5.40),
(5.41)
and
(5.49)
we
t h e s o l u t i o n o f D i r i c h l e t ' s problem. case.
and f * 0 . Q
(5.40)
L e t f (z)=U From
and
f (z)=-U ,
t h e formulae
(5.25) ,
U
where
(5.26) ,
is a
(5.31) ,
real (5.33)
i t follows: 0 (z)=U , o
0 (z)=-t; ,
o
]
o
* (Z)—O , 2
0
0 (z)=2I/ , 4
(5.52)
o
2U C o l n i — I n (1-JT z ) ' o o'
(5.53)
1
where 2.
Z
q
i s defined
Neumann
Laplace's
( 5 . 3 8 ) .
from formula
problem's
solution.
The
general
solution
(5.14)
of
e q u a t i o n ( 5 . 1 4 ) may b e r e p r e s e n t e d a s : n
" <*,7) -*« Substituting we
U(x,y)
from
|V < z >+*>,( z > ""V F*J 0
(5.54)
into
•
t h e boundary
(5.54) condition
(5.5),
obtain: Re(zo;(z)
+ zv'
(z))-
C ae o
^
«f ( a ) ,
|z[-l.
(5.55)
o It
i s clear
that a t |z|=l there
i s the equality:
R e - f — = Re _^ , R e ( z < p ; ( z ) ) = Re ( 5fl>;( z ) ) - Re o o 1
) t
Therefore the condition
1
1
1
.
(5.56)
z J
(5.55) t a k e s t h e f o r m : Re# (z)=f (z), o
n
where
111
|z| = l ,
(5.57)
i The
function
is defined
*
(z) i s a n a l y t i c
„'(_U-
(5.58)
l-zx_
i n the circle
IzKl,
by Schwarz's f o r m u l a f o r m t h e c o n d i t i o n
therefore
* (z) 0
(5.57):
P
il> (z)
where may
i s defined
B
o
by t h e f o r m u l a
( 5 . 2 5 ) . Hence,
equation
(5.58)
by r e w r i t t e n as:
zp; z (
Substituting we
) +
| * ; ( - = - ) - T=£T
U(x,y)
from
- M « i * * V
O
(5.54)
into
|
z
|
<
1
t h e boundary
-
(5.59)
condition
(5.6),
obtain:
=> - f
Rc
It
i s clear
that a t lz-x l=r there
o
(5.60)
i s the equality:
o
Re[(z-x )
( z ) , \z-x \=r.
x 0 + -— ! L
R e ^ ( z - x ) p ; ( z ) j = Re o
(5.61)
z-x
Therefore the condition
(5.60)
may
be r e w r i t t e n a s :
Re(* (z))=-f (z) ]
at
l
|z-x l=r,
(5.62)
o
where
if' ( z ) +
i (z) = i Since in
that
1 1
r
*o' '
i s bounded
domain.
Hence,
at
u' x *i
z-x
|z|>i,
then
the function
o
+
-E— z-x.
(5.63)
( z - x ) ip'Az) i s a l s o 0
0 (z) i s analytic ]
bounded
i n the
circle
lz-x l
From defined (5.63),
the condition by we
the
(5.62)
formula
we
have *
(5.26).
i
(z)
(z) t i c , where
Substituting
obtain:
112
# (z) i
into
iji ( z ) i s equation
r
*V
'
- j
z-x * i 0
l/»,(z)+iC , l z - x K r . ?
n
(5.64)
The s u b s t i t u t i o n : (5.65) reduces e q u a t i o n (5.64) t o :
r
l s
M '
£-x
- p
*o
2
- *,(€)+%,
IC-Jf0l>r,
(5.66)
where (5.67)
We pass t o t h e l i m i t a t
i n e q u a t i o n ( 5 . 6 6 ) , we o b t a i n C = -iCj C« )+lC .
-
0
(5.68)
a
Since 0 (x ) i s a r e a l number t h e n :
From e q u a t i o n (5.66) we have:
+ 0 (z), lz-xQl>r,
(5.70)
0 (z •
(5.71)
a
z-x where C 0 (z) = — —
r
+ o
o
A c c o r d i n g t o (5.67) and (5.69) t h e f u n c t i o n
iji
3
(z) may be r e p r e s e n t e d
as:
(5-72) z-x
113
Let
us
denote: tp' (z)-=u ( z ) o
Then t h e e q u a t i o n s
o
(5.59)
and
and p j(z)=w (5.70)
0
Substituting
( Z ) =
ui (z) [
i'
+^ (z),
-
3
from
-
l z l < 1
( 5
-
7 4 )
0
\ Z • LI
take t h e form:
=
z<* m+1",[-=-1-i=zl-
(5.73)
(z) .
t
equation
(5.75)
lz-x l>r.
into
(5.75)
o
equation
(5.74),
we
obtain:
0
1-zx
where
0 (z)=l* (z)4
From f o r m u l a |zl
(5.72)
i 0
o
i tfollows
L e t z=0 i n e q u a t i o n
that
3
i/> (z)
t o formulae
(5.72)
and
p (0) 4
Thus,
the equality
(5.78)
(
"
i s analytic
a
5
-
7
7
)
i n the circle
(5.76):
-C = id ( 0 ) + iC According
I Z L < 1
( ~ ^ ] '
(5.77)
.
(5.78) we
have:
- 0 (O) .
(5.79)
o
takes t h e form: (5.80)
Since may
0 (0) i s a real O
number
( c f . formula
(5.25)),
equation
(5.79)
be r e w r i t t e n a s : C =0, C
By v i r t u e o f e q u a t i o n s
(5.69)
and
114
(0). (5.81),
we
(5.81) have:
(5.82) The c o n d i t i o n Dividing
(5.82) c o i n c i d e s w i t h
the condition
b o t h s i d e s o f e q u a t i o n (5.76)
by z, we
(5.10)
obtain:
(5.83)
1-ZJC
0
where r
*.
( 0 >
1
1
(5.84)
<1.
(5-85)
Since
(l-zjr the
equation
(5.83)
approximations. We
find
(5.73) w i t h
may
be
Substituting and
p
]
(z)
also
solved
this
solution
by
integration
sc 0
of
(5.75)
both
of we
successive find
sides
of
ujz)
.
equation
* " (Z)dz, 0
I^CzJ-
o And
t h e method into
r e s p e c t t o z:
(P (Z}= j
into
by
finally,
substituting
the general
| W, ( 2 ) d Z , zeD.
(5.86)
i
solution
ip ( z ) ,
( z ) and C
o
(5.14),
we
find
Q
from
(5.81) and
the solution
of
(5.86)
Neumann's
problem. 3.
Solution
(5.54)
into
similarly
of the
mixed
problem.
boundary
( c f . the formulae
Substituting
conditions (5.59) and
1-zx.
where are
0 (z) 2
defined
P, ( z ) = ~ t
x_ +
i s defined
by
by t h e f o r m u l a e
(5.8)
(5.25)
and
115
general (5.9)
solution
we
obtain
(5.30)):
=$
( z ) + i C , 1 z I < 1,
+ (S ( z ) - i ( 7
the formula
the and
(5.87)
at Iz-x l ^ r ,
(5.31), (5.26),
while
#
Q
(z)
respectively.
(5.88)
and
0 (z) T
L e t us s u b s t i t u t e p
(z) from equation
(5.88)
into
equation
(5.87),
then
zip' ( z ) + 1-zx =id (z)+ic, o
From e q u a t i o n s
(5.26)
and
(5.31)
izi
(5.89)
i t follows:
=0. 1-tO A s s u m i n g z=0 i n e q u a t i o n
( 5 . 8 9 ) , we o b t a i n : -c =* (o) i o
It
(5.90)
z
0
+
C i
.
gives:
Let us
C m -* ( 0 ) , C = 0 .
(5.91)
ip- ( z ) = u ( z ) .
(5.92)
denote:
Dividing
both
sides
of the equality
of t h e n o t a t i o n of equation
(5.89)
by z
( 5 . 9 2 ) and t h e e q u a l i t y
»(Z) +
-*„(Z).
and
taking
account
( 5 . 9 1 ) , we o b t a i n :
IzKl,
(5.93)
1-zx where
(5.94)
From The
(5.90)
i tfollows that
equation
(5.93)
may
be
0
(z) i s a n a l y t i c
also
solved
by
i n the circle
t h e method
of
|z|
successive
approximations. Substituting equation
the
( 5 . 9 2 ) we
solution
u(z)
d e f i n e tp : o
116
of
equation
(5.93)
into
I
P (Z)= o
where C
(0(Z)dZ+C ,
(5.95)
4
i s an a r b i t r a r y c o n s t a n t .
T h e f u n c t i o n ip ( z ) w i l l
be f o u n d
t
T h u s , we (5.14).
from
i p ( z ) , *> ( z ) a n d C
found
g
The m i x e d
]
problem
{5.SB).
c o n s t i t u t i n g the general
Q
f o r Laplace's
equation
solution
i s solved.
now D b e t h e r i n g :
Let
?
2
2
r <x +y
s h a l l consider
the following t » ox 3
°a»'
€ll 3y
+
y l
=
more g e n e r a l
0
,
problem:
aV(X,yi=fAz)
+
(5.96)
.
(5.97)
iJEl-1,
(5.98)
[/(x,y)=f(z) , Izl-r, where
z=x+iy,
Holder's a
and
f (z),
f . ( z ) are given
o
condition
on t h e c i r c u m f e r e n c e s
at the point
The ring
Laplace
real
lzl=l
i s a r e a l c o n s t a n t , and N i s t h e o u t w a r d
lz!=l
(5.99) functions
and
normal
lzl=r,
satisfying
respectively,
t o t h e circumference
z.
equation's
solution
may
always
+ p,(z)] +
Vl¥r
be
represented
i n the
D as ( 3 0 ]
0(x,y)=Re^> iz) o
where p |zl>r,
o
( z ) a n d (p ( z ) a r e a n a l y t i c [
respectively,
C
g
and C
In well
t h e r e p r e s e n t a t i o n (5.100) as
t h e constants
C
o
and
.'
(5.100)
]
I z | < l and
constants,
» (o)-0.
(5.101)
l
the analytic C
c
f u n c t i o n s i n t h e domains
are real
;
+
f u n c t i o n s ip^ a n d
are defined
by
means
of
»
uniquely. Substituting (5.98)
and
U(x,y)
( 5 . 9 9 ) , we
from
(5.100)
obtain:
117
into
t h e boundary
as
t/(x,y)
conditions
R«[l»;
+ a p ( z ) + *A*)-C +
=f (z),
It
i s clear,
(5.102)
+C J-f,(Z),
t f ^ f z )
o
that:
,
V
— ,
R e p (z)=Rev> ( z ) - Re(p | )
]
Reip ( z ) = R e ]
Using
the
(5.103)
lzl=r.
1
R e ( p ; ( z ) z ) = R e [ ( > ; ( z ) z ) = Re || ;
condition
+ o c j
|Z|=1,
o
Re^ (z)
aClnr
a
Q
relations
(5.102)
]
(z) = R e ^
P i
—
(5.104),(5.105)
and (5.103)
(S.104)
lzl=l,
(5.105)
lzl=r.
,
and
(5.106)
lzl=l.
(5.106),
the
boundary
may be r e p r e s e n t e d a s :
Re0 (z)=f (z),
|z|=l.
(5.107)
Re*,(z)=f,(z),
|zl=r.
(5.108)
o
o
where * (z)-zp;(z)+ o
0
(Z)=^ (z) 0
It
+
P
defined
lzl
and
lzl
aC
] (
(5.109)
(5.110)
t
# ( z ) and 0 ( z ) a r e a n a l y t i c i n t h e o
]
respectively.
from t h e c o n d i t i o n s
aCJnr+
C.
)
i s obvious t h a t t h e functions
circles
(p^-^j-c^
+«
\
(5.107)
Hence,
and (5.108)
those
functions
are
b y means o f S c h w a r z ' s
formula: * (z)=* (z)+iC , 0
0
2
118
lzl
(5.111)
P, ( z j - * , ( Z ) + i e where l " (z)
i s defined
0
C and C^are a r b i t r a r y
[5.109)
and
0
by t h e f o r m u l a ( 5 . 2 5 )
and
O
^
( 5 . 1 1 0 ) , we
from
formulae
(z) + a
-(S ( z ) + i C ,
+
0
Since p
Passing
to
the
limit
the conditions
a t z-*0
(5.101)
o
f
p
-C + aC lnr n o
:
into
+ aC = I
lzl
(5.114)
aC lnr a
and
f
(
p'
(5.115)
=0.
(5.116)
i n equations and
(5.116)
i
and
account,
(5.115), we
+ iC ,
and
obtain: (5.117)
2
ic .
(0) +
are real-valued
(5.114)
into
+ aC^^AO) C=#
Since
(5.112)
(«)=0, t h e n
-C +
real
and
+ e*"#. ( z ) + i e _ , l z l < r .
lim —
taking
(5.111)
obtain:
+ o:p
P (z)
and
real constants.
a
Substituting
(5.112)
lzl
3 )
(5.11B)
3
functions,
then 0 (O) O
and
(0)
are
numbers.
From e q u a t i o n s
(5.117)
and
+ aC
-C o
lnr o
( 5 . 1 1 8 ) we + aC = 0 1
C^fO),
have:
(0), C '
o
c3-o.
=0,
(5.119)
2
(5.120)
Let l-alnr*0.
119
(5.121)
Then from
( 5 . 1 1 9 ) a n d ( 5 . 1 2 0 ) we
obtain:
0.^(01-^(0) (5.122)
1-otln r Thus,
the constants
C ,C ,C
a (5.120)
equations
(5.114) and (5.115), Z
P ( )
+
0
and
C
Substituting
we
0
*>,.
the
formulae
=uAz)
_
these
constants
into
obtain:
\ p;|-r-j+«P (z)+«
0
by
3
(5.122).
are defined
a
(5.119),
Z
and
t
f, | - = - j = " ( z ) (
(5.123)
,
(5.124)
0
lz!
where
»„(«)-#„(»)-# (0),
(5.125)
0
w (a)-*,(•)-#,(0)
T h e n a t £= — z
the equality
p.tO-
Differentiatinq
Taking
equations
- f
(5.124) t a k e s
t h e form:
(5.127)
-z-
0
b o t h s i d e s o f (5.127) w i t h
(5.127)
(5.126)
.
t
and
(5.128)
r e s p e c t t o £, we
into
account,
the
obtain:
condition
( 5 . 1 2 3 ) may be r e w r i t t e n a s : zp'(z)
8
a
+ r Wp;(r zl
+ op
( z ) - «»
(r*z)=u
( z ) , lz|
(5.129)
where :
:
2
u ( z ) = u ( z ) + r z u j ( r z ) -a<J ( r z ) . 2
From f o r m u l a e ( 5 . 1 2 5 )
o
t
and (5.126)
i tfollows
120
that:
(5.130)
u (0)=0.
(5.131)
z
Expanding
ip a n d u i i n t o t h e T a y l o r s e r i e s , g
we
;
(P (Z)= £
obtain:
a z",
0
(5.132)
k
k = 1 U ,
" W (2>- 2^
b
z
a
Substituting (5.129) the
f
o
and
and e q u a t i n g
following
2
from
"'
W (0) "TH •
V
(5.132)
and
the corresponding
system
of algebraic
2 k
(k + k r Let the
u>
k
(5.133)
(5-133)
into
coefficients
the
equation
o f z", we
obtain
e q u a t i o n s , d e t e r m i n i n g a^:
+ a - a r " ) a^b^, 2
k » l , 2 , . ..
.
(5.134)
conditions: k(l+
r
2
k
) + a ( l - r ")
* 0,
2
k=l,2
(5.135)
be s a t i s f i e d . Then f r o m
eguation
( 5 . 1 3 4 ) we
have:
b. -. k - 1 , 2 , ... k(l+r Substituting
2 k
)
1
If
l-alnr=0,
problem
(5.132)
0
then
r' a — "
T
(f =0, Q
f
— S
U(x,y)=Cin ^ Izi
(5.97)-(5.99)
into
2
™
(5.136)
a(l-r "
P (z) from equation
ID ( z ) = - >
.
2
+
T
+ u M
( 5 . 1 2 7 ) , we
obtain:
2 i -E- , I z l s l . «
i s the
solutions
(5.137)
of
homogeneous
f «0). I f t h e e q u a l i t y : !
a
K(l+r Va|l-r )-0 is
satisfied
for a
certain
natural
number
k,
then
the solutions of f t r 1 U*-CRe\z — J and 2
homogeneous U=CRe^i^z"+ T h u s , we
problem r k
(5.97) - (5.99)
are
'] j i w h e r e C i s a n a r b i t r a r y r e a l
obtain:
121
constant.
k
Theorem only
i f
5.1.
The
the
conditions
conditions the
are
formula
(5.97)-(5.99)
satisfied,
are
the
the
solution
0^=0,
and
(5.135)
of
and
0
(5.122),(5.132),(5.136)
c o n d i t i o n s (5.121)
i s uniquely
(5.121),(5.135)
(5.100) , where
by t h e f o r m u l a e The
problem
and
s o l v a b l e i f and
satisfied. problem
and
I f
these
i s defined C
g
are
by
defined
(5.137).
are s a t i s f i e d ,
in particular,
for
Hence, t h e r e i s : 5.1.
Corollary
I f aao,
then
the
problem
(5.97)-(5.99)
is
uniquely
solvable.
5.2.
C e r t a i n Boundary Value Problems f o r A n a l y t i c
The
results
L e t us
of t h i s
section will
consider the f o l l o w i n g
Problem satisfies
A.
Find
a
function
t h e boundary
be
used
p(z)
analytic
Find
a
In
these
function
problems
H61der's c o n d i t i o n
ring
r<|zl
which
f(z)
|z|=l,
( 5 . 1 3 3)
|zl=r.
analytic
(5.139) i n the
ring
r
which
conditions: K e p ( z ) = f (z) ,
(5.140)
(5.141)
f(z) is a
on
i n the
conditions:
p(TZ)=p[»z), P r o b l e m B.
further.
problems.
Re[zp' (z) j = f (z) ,
s a t i s f i e s t h e boundary
Functions
given
real-valued function
the circumference
of
lz!=l
and
y
is a
satisfying constant,
1/1 = 1. Solution ring,
may
of be
Problem
A.
represented
Function
f(z) where
P (z) 0
respectively,
and
^(z)
which
is analytic
in
the
as:
are
»
analytic
and
122
P ]
in
(z), the
(5.142) domains
|z|
and
|zl>r,
Jim p ( z ) - 0. 111 -»»
(5.143)
]
Substituting we
p ( z ) from
(5.142)
into
conditions
(5.13B) and
(5.139),
obtain: Re [zp^(Z)
•PAIZ) It
i s clear,
+ zp;( Z ) ] = f ( z ) ,
+
(5.144)
Q
- P (a-z) + Pj ( j r z ) , 0
lzl=r.
that:
R e ( z p ; ( z ) ) = R e ( z p ; ( z ) ) = Re [ - | - p j
fAlz) these
= 9 [Z£\.
the conditions
(5.146)
, lzl-1,
(5.147)
lzl=r.
(5.148)
= r . f f l .
0
relations,
], lzl =l,
("4-]
Re p ; ( z ) - Re p; ( z ) - Re
Using
(5.145)
(5.144)
and
(5.145)
may
be
r e w r i t t e n as:
[ Z9' (Z)
Re
M From e q u a t i o n
0
T
Z
)
+ | p;[-4-]j-f (z), Q
" v ( ^ ] "
(5.143)
, p
i
i t follows, H i
the
function
i P: f - = - ] 1
tz|
i ti s defined
((13],
p.223):
from
z
z )
l z l = r
-
(5.150)
= 0
-
(5.151)
J
z p ' ( z ) +—p' ( — — I I z J 0
[ j
(5-149)
that:
z-»to
Since
>
o( z-]"» i ' '
lzl-1,
i s analytic
i n the
circle
by Schwarz's
formula
1
the condition
(5.149)
z p ; ( Z ) + \ p; [ - ^ - | = P ( z ) + i C , 0
123
i
(5.152)
tfi (z)
where real It
is
circle lz|sr
i s defined
g
by
the
formula
[ 5 . 2 5 ) , and
i s an
arbitrary
constant. clear, !zl
(5.150)
that
the
and
(i
g
i s bounded
i n the
i t follows that
function
a l l complex plane
constants,
i.e.
s
) i
y
| ^-j
j
analytic
vicinity
these
throughout
- 2
g
of
they
beyond
infinity.
f u n c t i o n s can and
is
are
be
analytic
the From
in
closed
the
circle
the
condition
analytically
continued
bounded,
t h e r e f o r e they
are
(5.153)
(5.154) where C It
i s an
?
arbitrary
i s e a s y t o see
therefore
we
rewritten
as:
constant.
that
shall
equations
consider
(5.153) and
only
the
(5.154) a r e
last
equation,
equivalent,
which
may
be
(5.155) Differentiating
both
sides of equation
(5.155) w i t h r e s p e c t
t o z,
we
obtain:
z
P ; < > = " t-^T Let
us
substitute i
for z ^l-Z-l
| z l > r
Pof-V")'
i n equations = V ir*r*z
(5.156)
(5.155) and )
e
"
-
C, 2
lzl<
(5.156): i.
(5.157)
(5.158)
Let
us
(5.152),
substitute
from
(5.158)
into
equation
then
z
We
equation
define C
l
from
2
the
2
>p' (r r z o
2
2
last equation
124
)-=* (z)+iC , 0
at
z=o:
IzKl.
(5.159)
0 (O)+1(^=0.
( 5 . 160)
O
Since P (0) i s a r e a l
number,
0
equation
C =0,
(5.160) t a k e s t h e f o r m :
j
sir
J f(e
i 6
)de=0.
(5.161)
o Thus, t h e c o n d i t i o n A.
Let this
the
(5.161)
condition
i s necessary
be s a t i s f i e d .
forsolvability
Then
the equation
o f problem
(5.159)
takes
form: eZ)~* f * (*Vz ?
a
)=#(Z),
d
(5.162)
where
(z) since |Z|<1, may
p (0)=0,
then
o
and s i n c e
- (p'(z),
(f(z,= - ^ r — •
the function
0
$(z) i s analytic
the equation
(5.162)
be s o l v e d by t h e method o f s u c c e s s i v e
1>gf*i,~y
Integrating
i k
(Tr)
, , l
i*[(rT)
0
where C i s an a r b i t r a r y Substituting
i n the
circle
i s u n i q u e l y s o l v a b l e and
approximations:
2
2
z]+^(Tr) *" 0j (yr) *
b o t h s i d e s o f ( 5 . 1 6 3 ) , we f i n d
P (z)=
(5.163)
l k
z).
(5.164]
:
j 0 ( t ) d t + C, Q
(5.165)
o
constant.
P (z) from 0
formula
(5.165)
into
( 5 . 1 5 5 ) , we f i n d
2 2
J r x
I
(Z)dt+ o
C-C , 2
\z\>r.
(5.166)
o Passing condition
t o the limit (5.143)
into
at
IZI-K°
i n formula
a c c o u n t , we
(5.166)
and
taking
the
obtain:
D-Cy.
125
(5.167)
Substituting formula
V ( z ) and ip ( z ) f r o m 0
equations
]
( 5 . 1 4 2 ) we f i n d
the solution
(5.165)
o f t h e problem
and (5.166)
into
A:
•V »>(z)= f #„(t)dt+ | o
tf (t)dt+C,
(5.168)
o
o
w h e r e C i s an a r b i t r a r y c o n s t a n t . T h u s , we o b t a i n
:
T h e o r e m 5.2. T h e p r o b l e m A i s s o l v a b l e i f a n d o n l y (5.161)
i s s a t i s f i e d . The g e n e r a l
(5.168)(The f u n c t i o n Solution into
( 5 . 1 4 0 ) we
Substituting
+
Q
o
Hence,
function
equation
(5.142)
( z ) j ^ f ( Z ) , |Z(-1.
P ]
(5.169)
o
may be r e p r e s e n t e d a s :
Re[|p (z)
The
p ( z ) from
obtain:
Rejp (z)
This condition
(5.164)).
0
B.
i ft h e condition
i s d e f i n e d by t h e f o r m u l a
* ( z ) d e f i n e d by t h e f o r m u l a
o f t h e problem
equation
solution
tp ( z ) +
+ P [^)]=f [Z),!zl-l. ]
tp \-^—\
i t i s defined from
(5.170)
0
i s analytic
t h e boundary
i n the unit
condition
circle
(5.170)
|z|
by Schwarz's
formula:
z
g> (z)+ # , [ - | - ) ' ^ f ) 0
where
+ i
0
Z
0 ( ) i s d e f i n e d by t h e f o r m u l a O
C .
(5.i7i)
1
( 5 . 2 5 ) , and C
]
i s an a r b i t r a r y
constant. Substituting (5.141), obtain
as
p(z) from
the relation
into equation
formula
i n t h e case
of
(5.155).
( 5 . 1 7 1 ) we
(5.142)
solution
i n t o t h e boundary of
Substituting
the preceding p ( z ) from l
condition problem,
equation
we
(5.155)
obtain:
2
P„(z) + ( P ( ( 7 r ) z ) 0
L e t us r e p r e s e n t t h e a n a l y t i c
- C=
0 (z)+ i C -
function
126
Q
t
(P (z) a s : 0
(5.172)
M where a
~V
J
Z U
Z
< > '
D
(5.173)
i s a c o n s t a n t and U ( Z ) i s a n a l y t i c
Q
i nt h eunit
Q
Substituting we
Z
¥> (z) f r o m
(5.173)
0
into
equations
circle
(5.155)
lzl
and (5.172),
obtain:
z
v
> = v
F y w ^ f V S
a +a + Z U ( Z ) + 0
n
0
Let z = 0 i n equation
(5.175), a +
Passing
t o the limit ip («>)=• i n t o
)-C^i^zJ+iC.
(5.175)
then: (5.176)
a t IZ[-Mi n equation
account,
i
we
(5.174)
and t a k i n g t h e
obtain;
C=a .
(5.177)
o
From
equations
(5.176)
and
(5.177),
a =iir(0)+iC o
Taking
formula
rewritten
(5.178)
i7
< - <>
^ - C ^ f O J + i C ,
0
condition
5
4 ^ 4 4 ^ ) - ^
into
we
have:
e-iioy*^.
l (
account,
(5.178)
t h e equation
(5.175)
may be
as:
u> (Z) 0
+
>-VU (TVZ) = i ( z ) , 0
(5.179)
.
(5.180)
0
where
* (z)= o
Since
0
successive
then
equation
—
^
(5.179)
may
be s o l v e d
by t h e method o f
approximations:
%m-£
(7D%((»r) If a
Substitutinq
, k Z
0
k 3
P ( z ) and f j z ) from 0
127
(TrJ^Jf/r) "-^). 1
)-[
(5.181)
0
(5.173)
and (5.174)
into the
representation
(5.142) and u s i n g t h e e q u a l i t i e s
r
p(z)-^ (0)+iC +z(J (Z)+ ^ o
Thus,
we
defined
obtain
]
o
the general
solution
(5.181) and C
i s arbitrary
5.3.
a n d Neumann P r o b l e m
real
Domains R e s t r i c t e d by an
L e t D be a f i n i t e
domain,
2
obtain:
2
- O ( J ' r z " ') .
(5.182)
o
o f t h e problem
w h e r e uAz)
by t h e f o r m u l a (5.182),
Dirichlet
z
( 5 . 1 7 8 ) , we
i s defined
B,
which i s
by t h e f o r m u l a
constant.
f o r Laplase Equation i n the
Ellipse
restricted 2
x a
2
by a n e l l i p s e
T:
2
v + i =1, b
(5.183)
2
b>0.
where a>
L e t u s c o n s i d e r Neumann's p r o b l e m :
— ax
+ — ay
2
= aU{ g
where
ff (z) 0
condition
i s given
x'
a
=0, ( x , y ) e D ,
(5.184)
2
yi
Z
V >' z ^ + ^ r .
real-valued
(5.185)
function,
on P a n d N i s t h e o u t w a r d
normal
satisfying
t o t h e boundary
Holder's r
at the
point zef. It
i s known t h a t
Neumann's p r o b l e m
has s o l u t i o n
i f and o n l y
i f the
condition: [f(z)ds=0
is
satisfied. Here i n a f t e r , The
we a s s u m e t h a t
this
condition
i s satisfied.
p a r a m e t r i c e q u a t i o n (5.183) o f t h e e l l i p s e has t h e f o r m : x=acos6,
o r i n t h e complex
y=bsina,
form:
128
0si)i2n,
(5.186)
z-x+iy-acos-O+ibsin-O, which,
0*a*2tr,
(5.187)
, 0±-a±2n,
(5.188)
i n i t s t u r n , may be r e p r e s e n t e d a s : Z=k(t+«t
') , t - e
where
As i t i s k n o w n , t h e g e n e r a l
solution
connected domain D i s r e p r e s e n t e d
of Laplase's equation
U{X,y)=Re\li(z) w h e r e ifi(z)
i s an a r b i t r a r y a n a l y t i c
This
representation
(5.185)
i n t h e form:
allows
Re[[
Substituting
z from
us
,
(5.190)
function t o
i n t h e domain
express
] 0 ' ( z ) ] = g„(z) / ' ' v a
b
(5.183)
Re[(t-(it"*)||.' (k(t+ut
1
into
Q
D.
boundary-condition
zer.
(5.191)
b
( 5 . 1 9 1 ) , we
) J j = 11 - | i t " ' | Q
the
+
4
a
i n simply
as([13),p.200,:
obtain:
[ k ( t + j i t ' ') ] , l t l = l .
(5.192)
L e t us denote: 1
cpttJ^Rtt+Wt" )]
It
i s clear,
that
ip(t) i s analytic
.
i n the ring
(5.193)
r
where
r=v^I
and:
2
(5.194)
u
In
the notations
takes
of equation
(5.193)
t h e boundary
condition
(5.192)
t h e form:
Re(tcp' ( t ) ) = / ( t ) , I t 1=1., o
129
(5.195)
where
r- (t)-|t-nt"|g o
From
( 5 . 1 9 3 ) we
(kft+dt-'))^.
o
have:
(t) Thus, the
we o b t a i n
analytic
precluding In
t h e boundary
function
section
( 5 . 1 9 3 ) we
a t Itl-VjZ.
(5.196)
value problem
p ( t ) , which
was
(5.195),(5.196} t o find
completely
solved
i n th«
( P r o b l e m A) .
substitute: 1
z -kft+ut" ) and
obtain:
P( where
v£I?
beyond
i s that
t h e segment
S?)'
C = v ^ ,
branch o f square r o o t
V(x,y)=R w h e r e ip(z)
2 W
which
(-C,C) a n d i s r e a l - v a l u e d
H e n c e , t h e Neumann p r o b l e m ' s
Let
(5.197)
solution
at
(5.198)
i s continuous z=x>C.
i sdefined
by t h e f o r m u l a :
S
i s t h e s o l u t i o n o f t h e problem
(5.199)
(5.195) , (5.196) /jr-VjI.
us c o n s i d e r D i r i c h l e t ' s p r o b l e m :
~ ax
2
* ^ - r =°< ay
U(x,y)-g {z) o
Substituting
U(x,y)
(*,y)«D,
(5.200)
, (r,y)sr.
(5.201)
z
from f o r m u l a (5.190)
into condition
( 5 . 2 0 1 ) , we
obtain; Rei*(t)-g (t) , ter.
(5.202)
o
Taking
account
o f (5.188)
we c a n r e p r e s e n t
130
t h e boundary
condition
(5.202)
as: Re
p ( t ) = f ( t ) , I t 1=1,
( 5 . 203)
Q
where
,
(p(C)=ij|R(C+Mt" )j ,
f (C)=g o
The
${t)
function
condition
(5.200),(5.201) solution
General
Let
D*
boundary for
be F
us
section
a
finite
by
solution
the
formula
(5.203),(5.196).
(problem
simply
I/U<\Z\<1
i n the ring
of
and
satisfies
Dirichlet's
(5.199)
The
(5.
where
latter
ip(t) i s the
i s also
solved
E g u a t i o n s o f Second
connected
and
D
domain w i t h
Order
sufficiently
i s t h e complementary
domain
t h e system
and
system
no
real
the
elliptic
smooth
t o D'<J T
C
are
(x,y)) (5.206)
of e l l i p t i c
constant
square
i s the solution
i s called
equations:
t o be
elliptic
matrices
of
order
n,
found.
i f detC'O a n d
the
equation:
Z
If
in
B).
d e t
the
problem
plane.
(x,y),...,U
The
[k(t+Jlt"')J .
o
the
Solution of E l l i p t i c
consider
A,B
where U=(U
i s defined
i n the plane,
whole
Let
Hence,
of t h e problem
the preceding
5.4.
is analytic
(5.196).
(5.204)
(5.207)
roots.
matrices equation
Ref.(30],
H e r e we
ones
and
obtain
used
i n sections
A,B
and
system do
C
are
(5.206)
real,
the
general
i n the f i n i t e
not r e q u i r e f o r the matrix
D'
and
general
solution
5.5
and
t o construct the solution
131
this
A,B
the
5.6
of
solution
domain
system,
C t o be
which of
of
i s given
will
the in real be
Dirichlet's
problem At
f o r t h e system
first
Lemma
we
(5.206)
in finite
s h a l l prove the
5.1.
I f
the
roots
of
Proof.
Let
a -(«
, . . . ,11^ )
be
>
us
characteristic
a
(5.208)
k=l,...,2n.
non-trivial
solution
denote
S
k
)a = 0 .
2
k
the
the vector-column:
k
(5.210)
first
we
shall
prove
that
k
the
vectors
8 ,...,B
independent.
I t i s easy
t o show t h a t
the vector
are
linearly
2n
1
the
of
(5.209)
k
A a At
equation
system: fA+BX +CX
Let
domains.
then ranfcfA+B^+CA^ ) = n - l ,
algebraic
infinite
2a
1
(5.206) are s i m p l e ,
and
following:
8
k
i s the solution
of
system:
e,
A 8 =A
where
O k
(5.211)
k
k '
(5.212) E
n
i s n-dimensional unity
matrix,
Let C B + . . .+ C 8 1*1
where C , . . . , a r e Multiplying taking
Bi/211
sides
of
equation
i n t o account of the r e l a t i o n C . A l t . . .+ C
Since equation
l
l
van-der-Monde's (5.214),
(5.213)
'
constants.
both
I
=0,
(5.213)
( 5 . 2 1 1 ) , we
X B =0, Zn Z n 2 n
determinant
k-0,1 is
not
by
the
matrix
A
g
and
obtain: 211-1. equal
(5.214) to
zero,
from
i t follows: Ctf^
0,
k-1,...,2n
132
(5.215)
B^tQ, t h e n
Since
from
(5.215)
v e c t o r s 6^,...,6^ a r e l i n e a r l y =
r
L e t now * ( l i
we h a v e :
» ) be a n a r b i t r a r y
1
C =0, h = l , . . . ,2n. k
Hence, t h e
independent. solution
] n
o f t h e system: (5.216)
and
'(vJ-
(5.217)
Then A e = x S i n c e t h e v e c t o r s B^. • • • ,B
(5.218)
are linearly
2n
independent,then
S - CB+. . .+ C 8, . Multiplying we
obtain
both
s i d e s o f (5.219)
(5.219)
by t h e m a t r i x
^ (k=0,1,...,2n-l), o
as i n t h e case o f (5.215):
a-e 1 *e1H
It
gives,
respect
i n particular,
t o i
has
rank(A+B\fC\*)=ii-\. other
indices.
Lemma
5.2.
(5.207) finite
one
1 =C a.
Hence,
linearly
Similarly,
the equation
independent
t h eequality
(5.216)
solution.
(5.208)
with
Therefore,
c a n be p r o v e d f o r
Lemma 5 . 1 i s p r o v e d . I f t h e roots
are simple,
then
A ,...,A
the solution
of
characteristic
o f t h e system
(5.206)
equation i n
the
d o m a i n D* i s d e f i n e d b y t h e f o r m u l a : 2 n
[7(x,y)-^« ip (x+*. y) , i[
B
(5.220)
ii
k - 1
w h e r e a = ( a .....a k
and at
1
kl
) i sa non-trivial
solution
o f t h e system
(5.209)
kn
analytic
functions
with
r e s p e c t t o x+A^y
(x.yJeD*. Proof.
L e t us denote: (5.221)
133
Then t h e system
(5.206)
A
F r o m e q u a t i o n ( 5 . 2 2 1 ) we
i n these n o t a t i o n s takes t h e form:
ax
+
B
ax
*
c
ay
" ° -
( 5 . 2 2 2 )
have: SZ = « . ay ax
Multiplying
both
sides
of
equation
1
(5.222)
by
the
matrix
(5.223) '
C" ,
we
obtain: » The
system
-
( 5 . 2 2 3 ) , ( 5 . 2 2 4 ) may
^
^
B
g
be w r i t t e n ay
where J i s t h e m a t r i x o f
g
=A
.
(5.22.)
as:
(
ca3F '
5
-
2
2
5
)
(5.212):
Q
(5.226) Let
(3 be
formula
the
matrix
(5.210)).
From
whose
columns
(5.211)
^ fi-ediag(X o
w h e r e diag{\^, in the
.:..., A
)
are
kJ 2
]
i s the diagonal
vectors 0
(the
that:
matrix
,
(5.227)
with
elements
^ , . . . , \^
diagonal.
Substituting
i n e q u a t i o n (5.225) (j=P
we
the
i t follows
0^),
[5.228)
obtain: a* ( x , y )
Changing t h e v a r i a b l e s fixed
j
(j=l,...,2n)
e#(x,y) k
-hy
—Tx
' J
t ; + i J | = x + A y we
t o the
Equation
(5.230)
1
2 n
5
"
( -
reduce e q u a t i o n (5.229)
2 2 9
f o r the
3$
i s t h e complex f o r m o f t h e Cauchy-Riemann system
( [ 1 3 ] ,p.21)
for
»
equation: a
equations
=
the
function
134
tf^.
Hence,
*,=#•• '(.£) ,
of
where
0
(O
i s an a r b i t r a r y a n a l y t i c
Returning
function
x a n d y we
t o the variables
o f complex
variables
C,=£+iT|.
obtain:
i(r ( x + A ^ y )
is
]
an
arbitrary
analytic
x+A^y a t
(x,y)eD*.
This
analytic
function
# j ( C ) a n d x+A^y;
which
means t h a t
i s t h e i m a g e o f d o m a i n D*
Substituting
^ ( x ^ ) from
function
i^(x+A^y) ^(C)
2
into
with
respect
analytic
i n t h e domain
t^x+A^y.
( 5 . 2 2 8 ) , we
obtain:
n
CJ=^ B^fX+^y) . 1
Taking
account
written
to
i s a superposition of the
being
a t mapping
(5.231)
(5.231)
(5.232)
=i
o f ( 5 . 2 1 0 ) , ( 5 . 2 2 1 ) , (5.226) , t h i s
equality
may
be
as:
15.233) J-1 2
l e t us
n
denote: it * X
f !x+A y)= J
J'
)
.
where It
0
• !
tfjteidf, y J O
(x ,y )eD*. o
o
i s clear,
(x+A^y) a t The
y
that
particular
defined
f ^ (x+A^y)
i s analytic
function
with
respect
to
(x.y)eD'. solution
of
system
o f equations
(5.233),(5.234)
i s
by t h e f o r m u l a :
U(X,y)-V
djfjfx+A^y)
(5.235)
1=1 and
the general
(5.334)
problem
solution
of corresponding
i s U(x,y)=b , a
where
b
constant vector.
135
Q
homogeneous s y s t e m
i s an a r b i t r a r y
(5.233),
n-dimensional
Hence, t h e g e n e r a l s o l u t i o n o f t h e s y s t e m
(5.233),(5.234) i s defined
by t h e f o r m u l a : «
Uix.y)^
S i n c e t h e v e c t o r s S ,...,6 1
/
j
+
V
are linearly
(5.236)
independent, then
2n
rank(a.,)=n.
(5.237)
1
Therefore the vector b
Q
2n
may b e r e p r e s e n t e d a s : b = C a +...+ o i l
w h e r e C ,...,£7 1 '
arecertain
C a
2n 2n
,
(5.238)
constants.
' 2n
Substituting
£>
o
representation
from
(5.238)
(5.220),
into
formula
<e (x+X ^) =f
where
s
}
(5.236)
(x+^y)
we .
obtain the
Lemma
5.2 i s
proved. Let
X , . . . ,A
the roots
1
simple.
of
F o l l o w i n g R e f . ( 3 0 ) , we
Definition
characteristic
equation
(5.207)
be
2n
5 . 1 . The e l l i p t i c
introduce: system
(5.206)
i s said
to
be
weakly
connected,i f 1) I n A^O,
j=l,...,n,
(5.239)
2) I n A
The
sets
of
(5.240) (a , . . . ,a )
vectors
1
linearly
be r e g u l a r
Lemma (5.207,
a n* l
, are
2n
5.2. T h e s o l u t i o n U(x,y)
o f t h e system
(5.206)
i ssaid t o
i n t h e d o m a i n D~ i f i t s a t i s f i e s t h e e s t i m a t e s : W.YH* C. \ax\~ m\s —, § — .', \3y\ \%\* — ,- ^ = • .2 . -.2 x +y v x +y
(5-341,
C=const. 5.3. are
connected, are
(a
independent.
Definition
where
and
n
defined
I f the roots simple
and
then a l l regular
X 1*
of
characteristic
equation
••••*' in
the elliptic solutions
system
of this
(5.206,
system
i s
weakly
i n t h e d o m a i n D~
by t h e f o r m u l a : z *
V(x,y)=Y
^fjx+^y)
136
,
(5.242)
where
^(aC+A^y)
x+A^y
at
i s an a n <
(x,y)eD~
H=l,2,...,2n
i
arbitrary
analytic
i s bounded
respect
to
infinity for
k=l,.,.,n.
k
k
with of
and •P {c=)=0,
function
i n the vicinity
i s assumed
t o be t h e f o l l o w i n g
limit:
V (x+\v),
llm
(5.243)
r = / x +y 2
k
.
2
r-+» Proof. z
For s i m p l i c i t y
2
r +* yy >>l1.. S Similarly
we
shall
prove
Lemma
f o r Lemma 5.2, we o b t a i n
5.3
i n t h e domain
( c f .t h e formula
(5.233),
(5.234)) :
I!
"X
x
"jV^V
eD
' ( -y> ~-
(5.244)
J-i 2n
" = ^ d j X ^ ^ x + i . y ) , (x,y)eD~,
(5.245)
i - i
where ^ ( x + A ^ y ) Since linearly
r e s p e c t t o x+A^y a t (x,y)eD
i sanalytic with
t h e vector
B (k-1,...,2n)
( c f . t h e formula
. (5.210))
are
independent, t h e f u n c t i o n s I/I (x+A y) a r e l i n e a r l y e x p r e s s e d au au an au ' ... and ^ ^ from equations (5.244), (5.245). 1
through Hence,
according
t o t h eestimate
l^tx-^y) N
) 3 f +
( 5 . 2 4 1 ) , we
C j[-j7|.
i sa constant. ) Hence, t h e f u n c t i o n ^ ( x + A ^ )
obtain:
J"=l
iS.
(5.246)
where C
* {m yJ= J
j
J^pTy
may b e r e p r e s e n t e d a s :
+
f
j <
X
+
X
j
y
)
'
j
where a i s a c o n s t a n t a n d f (x+A y ) i s a J > l x+A^y a n d s a t i s f y i n g t h e e s t i m a t e :
=
1
2
"'
function
(5.247) analytic
with t o
C x +Al,
lf,(X+Av)Is J
J
2
|x+A yl }
137
M
2n,
(5.248)
C =const. l
L e t D~ At
be
first
t h e d o m a i n D" w i t h o u t t h e r a y Jfe(l,+»), we
shall
t h e d o m a i n D"
find
i n the class of f u n c t i o n s s a t i s f y i n g
\U(x,y)\*
ClnSx^y ,
°
|fg|.
2
/ (x,y)^D
at
The
x
Ql
+
general
defined
by
y
the
,
x +y 2
° /
2
(5.206) i n
estimates:
. x +y 2
(5.249,
2
*2.
solution of this
the
y=0.
the general s o l u t i o n o f the system
system
(5.244),
(5.245,
i n the class is
formula: 2n a
U(Y,y)=
J
«J
J N ( X +
V
2n
Y
+
)
+
(**V* V
J= i
(5.250)
J=i
where • +A
y
*X
H
and is
fc
i s an
Q
that
Since and with
arbitrary
branch
of
f (x+A y,
the to
O
n-dimensional
logarithmic function
i s analytic
satisfies respect
constant
y
J
0
function
estimate
x+k^y
at
with
(5.248),
(x,y)eD~
is
respect
then
and
vector.
which (x+k
p
is
Here
t o x+k y)
bounded
!n(>T+>.y,
continuous y
i s also
i n the
in
D~.
{x,y)eD~
at
analytic
vicinity
of
infinity. The
solution
single-valued
U(x,y)
represented
i n t h e domain D
!=l
J=l
( 5 . 2 5 2 ) we
supposed
bounded
and
(5.252)
J-»«l
have: i
Y "j °' J=1 have
is
15
a
we
(5.250)
Y VJ" Y V)" '
n
Since
in
only i f :
Y W' 0
From e q u a t i o n
as
i f and
that
=
the
i
Z ) j °' ) = n. 1 a
sets
a
=
of
(5.253)
vectors
{ a , .. . ,a } 1
138
n
and
(
" - i ' ' " ' we h a v e :
,
a
n
2 n '
a
r
e
l
i
n
e
a
r
l
Y
independent,
a=Q, Hence, t h e r e g u l a r
solution
then
j=l,
from
equation
(5.253)
2n.
(5.254)
o f t h e e q u a t i o n (5.206)
i n D~ i s d e f i n e d
by t h e f o r m u l a : 3o U(x,y)=^
<
W
J f + X i
,J')
+ b
(5.255)
,
[
)=i Since
i t was s u p p o s e d
linearly
that
t h e system
n
2n
V
|] Vj'"'
=
)= I
where C
,...,C
Substituting
and
p (x+X y)-)i
5.5.
Dirichlet
j
j
are certain f> f r o m
. ..,« ) i s 2 n
(5.242) , j
Y, *V C
where
into
(5.255)
p (x+i^yj^p j
( x + i ^ y J + C ^ a t ;"=n+l, . . . , 2 n .
Problem
(5.256)
k - n . 1
constants.
(5.256)
o
representation
of
{a
o f vectors
independent, then
Beyond
a t j = l , . . . ,n
Lemma 5.3 i s p r o v e d .
f o r Weakly Connected
E q u a t i o n s o f Second Order
we o b t a i n t h e
(x+X^y) -JJ^ («)
f
Elliptic
Systems
Circle
1) L e t D~ b e t h e d o m a i n x + y > l a n d T b e t h e c i r c u m f e r e n c e x + y = l . 2
Let
us
(section
consider
weakly
5.4, D e f i n i t i o n
2
elliptic
o f equations
+
+ axay
= 0 , (x.yJeD",
(5.257)
ay
the condition: U ( x , y ) = f (x,y) , (x,y)t=r,
where
f(x,y)=(f(x,y),...,f
function We
2
system
5 . 1 ) i n t h e d o m a i n D~:
A€3L ax with
2
connected
satisfying
suppose
that
(x,y))
i s given
H&lder's c o n d i t i o n the roots
X ,...,X
139
(5.258) n-dimensional
vector-
o n F. of
characteristic
equation
(5.207) a r e s i m p l e and s a t i s f y the
s o l u t i o n s o f t h e system
H e r e we to
use t h e n o t a t i o n s
Lemma 5.3
in
addition i t
D~
may
be
(5.240),
and
i n t h e domain D .
from s e c t i o n
5.4.
According
s o l u t i o n o f t h e system
represented
(5.257)
as i n f o r m u l a
(5.242).
I fi n
t h e boundary
condition
(5.258)
satisfies
}
(5.242),
S u b s t i t u t i n g U(x,y)
d o m a i n D u T.
are continuous i n the closed
from 2
(5.242)
into
( 5 . 2 5 8 ) we
obtain:
n
Y z=x+iy.
(5.239) and
( [ 2 5 ] , p . 128) t h a t t h e f u n c t i o n s p ( X + A j j O , i n c l u d e d i n
representation
Let
the regular
s o l u t i o n u{x,y)
the
c a n be shown
the
and d e f i n i t i o n s
( s e c t i o n 5.4)
t h e domain
the conditions
(5.257) a r e r e g u l a r
\V (.X+\Y)=f
(x,y)
k
I t i s clear
, (x,y)er.
(5.259)
that: = »
x+X^y
, j = l
= K^fz+f^z),
n,
(5.260)
j = n + l , . . . ,2n,
(5.261)
z= | a t z e r , where i+A
V Since
the
roots
.240), then
v*a.
Y.
where Let
t
,
V
-2T-
J
r=^'
ti ,...,X Id l < I ,
Hence, c o n d i t i o n
i-A
=
n
satisfy
+
1
2n
the
5
-
263
<- >
conditions
(5.239)
and
j=l,..-,2n.
(5.259) t a k e s t h e form:
l
"k 'k( 'k
( Z + l ,
Z
, ,
« " )
+
Y
t
Vk( \
( Z
+
"' ''j
Z )
=
,
) S <
Z )
'
(5.264
lzl=l, g(z)=f(x,y). us d e n o t e :
^ ( z j ^ ^ l z + d ^ - ' j j ,
140
k=l
n,
|zl>l,
(5.265)
0 (z)=(P B
l
1 [
[ 'k
( z
"
, + J 1
k
Z )
] ' K-»+l.--'»2ll,
IzKl,
[5.266)
an * (z)=^
o 0 (z),
IzKl,
(5.267)
* ( Z ) = ^ K ^ f z ) , |Z|>1.
(5.268)
t
k
k
2
k•1 Since bounded
^(x+A^y)
i s analytic with
i n the vicinity
•are a n a l y t i c i n t h e d o m a i n the
domain
lzl>l,
the functions P (z) a t k=l,...,n, k
and a t k = n + l , . . . , 2 n
(5.243)
i t follows
K> <«) =G , the notations
of
(5.267)
that . . . ,n.
k
( 5 . 2 6 4 ) may
and
(5.268)
]
t h e boundary
conditions
and
|*'t-l,
2
p ( z ) a n d tp ( z ) a r e a n a l y t i c
respectively, determined
(5.269)
be r e w r i t t e n a s : 0 (z)+^ (Z)=g(Z),
Since
are analytic i n
IzKl.
From t h e c o n d i t i o n
In
t o x+A^y a t ( x , y ) i = n ~ a n d i s
respect
of infinity,
i n t h e domains
i t follows
from t h e boundary
(5.270)
conditions
that
IzKl
these
as f o l l o w s
and
lzl>l,
functions
are
(cf.,[18],p.136):
p (Z)-U(Z) , I z K l ,
(5.271)
-iJ (z)=w(Z) , l z ! > l ,
(5.272)
2
where g(t)dt
1
(5.273)
t-z lili Substituting and
( 5 . 2 6 8 ) we
^ (z)
a n d fA,Z)
from
(5.271)
and
(5.272)
into
(5.267)
obtain: 2n
Y
^>Az)=^(Z)
a
141
,
IzKl,
(5.274)
(5.275)
Since
t h e system
system
(5.274)
$ (z) ,
p (z)
1
of equations
and and ^
n
Substituting
(5.257)
(5.275)
AX) ,,, . , *
F,=v ( z + n ^ z
(5.265)
*> (0=!l»
Similarly,
from
connected,
solvable
with
to
we o b t a i n :
(5.276)
2f
( 5 . 2 6 6 ) , we
then the
respect
(z) .
&
) into
t
i s weakly
uniquely
have: 2v , f t = n + l , . . ., 2 n .
Substituting solution
P (F) k
(5.242),
from
( 5 . 2 7 6)
and
(5.277)
into
(5.277)
the
general
we o b t a i n :
U(x,y)=
V
a
x+k
y
+ y~(JC+X
k^k
2
2
y) -4i' (i
2U
2". r+A^y +
In
formula
(5.278)
-J f - 4 i > j i 2
2
t
i s5 c o n t i n u o u s
b e y o n d t h e s e ggm e n t
and
the condition:
satisfies
/
(5.278) 2
(j +X y) -4v U C
j
k
B
i s that
branch
joining
t h e p o i n t s Zjf^V®
^2
,
o f square
root
which
a n d -2v
fv.^
2
(5.279)
id-*.
€
T h u s , we o b t a i n : Theorem problem the
solution
l& ( z ) , . . . , t
5.3.
(5.257),
I f t h e system (5.258)
i s defined
(5.257)
i s weakly
i n t h e domain by
(z) are defined
t h e formula from
lzl>l
(5.278),
t h e system
14 2
connected,
i s uniquely where
o f equations
then
the
s o l v a b l e and the
function
(5.274)
and
(5.275). 2)
Now l e t u s c o n s i d e r t h e p r o b l e m 2
x domain
v
—- +
> 1 . The boundary
x v * * — + * — = 1 . By s u b s t l t u t i o n x=a£ a D the p r e v i o u sone. 2
2
2
a
(5.257),
(5.258)
when D~ i s t h e
2
of
this
domain
i s the ellipse
b
and y=b7j,
this
case
I s reduced
to
2
5.6.
D i r i c h l e t Problem Second Order
Let D
D*
f o r Weakly Connected
2
be t h e c i r c l e
3
x +y
be t h ecomplementary Let
2
T
B
2
t h e domain
(5.206) f
used
D', w h e r e
and s a t i s f i e s
x
fi iY) ( ,( iV) class
plane.
+
| ^ - + axa
=0, ( x , y H D ,
y
ay
t ••• t
(x,y) r,
o n r.
t h e system
x
v
( < ))
(5.281)
6
(5.280)
a l lt h ec o n d i t i o n s f
(5.280)
2
V(x,y)=f(X,y),
=
2
be t h e c i r c u m f e r e n c e x + y = l a n d
d o m a i n t o D'<J r f o r t h e w h o l e
+
x
Systems o f
by E l l i p s e
us c o n s i d e r D i r i c h l e t ' s problem:
ax
in
Elliptic
E q u a t i o n s i n Domains R e s t r i c t e d
sa
i
coincides
indicated
vector-function
A l l d e f i n i t i o n s and n o t a t i o n
with
t h e system
i nsection from
of sections
5.4,
and
t h e Holder
5.4 a n d 5.5 a r e
here.
Substituting condition
the
( 5 . 2 8 1 ) we
general
solution
(5.220)
into
the
boundary
obtain: 2n
tx tpAx±\J)=£ ( x , y ) , ( x , y ) e r .
(5.282)
v
k=l
Using may
t h ee q u a l i t i e s
(5.260)-(5.263), t h e boundary
condition
(5.282)
be r e w r i t t e n a s : 2n a >
i i ( z , = f
(5.283)
k
k =1
where f(z)=f(x,y),
z=x+iy,
*k
(
z
)
=
*k[V
z
+
W
Z
k "'
14 3
1
)
]'
fc=l
,n .
(5.284)
ipJz)=
Since a t
tp (x+A y )
the function
(x,y)eD*,
then
tf (z)
J t = l , . . . ,n a n d i n t h e r i n g From
s
i
k
ft=n+l
l
k
i s analytic
analytic
1< | z j < |»i |
2
in
2n. with
(5.285) t o x+A y
respect
the
z
ring
| (i^ | < |z| <1
at
a t h = n + l , . . .,2n.
k
( 5 . 2 B 4 ) a n d ( 5 . 2 8 5 ) we h a v e : $Az^J=9Az-Si\)
^^[zo^j-p^zo^]
Substituting
et=t> (z~
+zo )
k
a t |ar|-l,
(5.287)
k=n+l,...,2n.
i n ( 5 . 2 8 5 ) , we
u
(5.286)
a t |z|«l, J t = l , . . . , n ,
obtain:
2f ,
Similarly,
from
(5.284)
(5.288)
fc=n+l,...,2n.
we h a v e : 2
•+ / e - 4 ^
U i
, k-1,...,n .
2e.
Here
2
i
2
/5 -4f U
segment
i s t h e branch
k
joining
the points
which
-21/^vTi^
i s continuous and
21/^vTi^
(5.289)
outside
and
of the
s a t i s f i e s the
condition:
lim
Substituting solution
P (O k
(5.220)
we
from
=1.
(5.288)
and
(5.289)
into
obtain:
x+A r k
f7(x,y)=
V
i*
2
+ /(x+X y) -4v B
k
2f.
144
Z 0 l |
t h e general
Zn
2l>
(5.290)
Thus,
the problem
problem
(5.283),
[Jt-l,
2n) .
Let
(5.280),
(5.286),
(5.2B1) (5.287)
us r e p r e s e n t t h e f u n c t i o n 1>jz)
where
i& (z)
= \Az)
a
r
value
functions
0 (Z) k
B
e
analytic
2
(5.291)
Jt=l,...,2n,
k
^,, ( )
t o t h e boundary
analytic
^ ( z ) as:
+ ^ Az). z
and
k l
i s reduced f o r the
i n the
domains
| z | < l and I
|z[>
and
v ^ j i j " , respectively,
|z|>1, r e s p e c t i v e l y ,
a t J t = l , . . . ,n, and
at k=n+l,...,2n,
i n t h e domains
|z[<|w |
2
k
and (5.292)
I/I^ ( z )
Substituting ( 5 . 2 8 7 ) , we
from
(5.291)
into equations
(5.283),
(5.286)
and
obtain: En ^
i* (v^ "z) k ]
a (i4 (z) k
-f ^ ( ^ z ) ^ ^ , !
k
2
1
z
P
K I
^ ) + ^ J ^ ) '
Z
2
-
8 8 1
k
=# 1
n
.
(5.294)
Z 1
-
0
- *
K 2
and
( 5 . 2 9 5 ) may
— \
i s clear IzI<1,
that
be r e w r i t t e n
(5.296)
|z|=1, k=n+l,...,2n.
(5.297)
- I * ! " ' ,
as:
-
1
~
f 1
circle
I !
(5.293)
k2
(5.294)
v'lTz
It
(x,y)er,
t2
viT
conditions
0^Tz)
tf (z))=f{z),
+
— 1
The
+
h l
h
=
1
n
i/JTz
the -
function ^k2 f
1
^
2
'
ft ^
(v^z)
s
145
analytic
0
K
—— I i s analytic outside
of
this
i n the circle
and
i s bounded
condition
i n the vicinity
(5.296)
(cf.[18J,
of infinity.
C, k
^(v^Tz) where It
H e n c e , we o b t a i n
from the
p.135):
= C
k-
|z|
(5.298)
k-l,...,n.
|z|>l, k-1
n.
(5.299)
(5.298)
and
(5.299) a r e
i s an a r b i t r a r y constant. i s easy
t o see t h a t
equations
equivalent.
Therefore,
we
consider
Substituting
vTTz^F, we o b t a i n : M ^ k i M " ^ '
Similarly,
from t h e c o n d i t i o n
KI
t h e equation
> V
*V
( 5 . 2 9 7 ) we
*=1
(5.299)
'•
only-
(5.300)
obtain:
(5.301)
where
i s an a r b i t r a r y
Substituting equations
constant. ( k = l ,...,«) ...,n
(5.300) and (5.301) M
and 0
K L
(€)
( k - n + 1 , . . . ,2n)
into the condition
-c.
+ #„(»)-cL
k2 |1 Z
from
(5.293):
=f(Z).
(5.302)
11 = 1 1 . 1
The b o u n d a r y
condition
( 5 . 3 0 2 ) may b e r e w r i t t e n a s : (5.303)
where 2n
n
t (Z)= ]
£
° ^ (2)+ k
k l
k = i
F
"k k2 r
P. Z
+C,
(5.304)
k=n*1 in
r n
+
,(z)= -
o
- ) ac .
146
(5.305)
(5.306)
I t
i s clear
domains vicinity (5.303)
that
the
| z | < l and of by
functions ^
jz|>l,
infinity.
Hence,
the formula
(z)
they
([18],
are
i s an
arbitrary
are
2
#
2
(z)
defined
analytic
i s bounded from
the
in
the
in
the
condition
p.135): a,
|z|
(5.307)
# (z)=u(z)+
a,
|z|>l,
(5.308)
1
2
a
#
and
( Z ) = I J ( Z ) +
« >
where
and
respectively,
n
dimensional
constant vector,
and
h i Substituting (5.304)
and
^
(z)
and
( 5 . 3 0 5 ) , we
#
2
(z)
from
formulae
(5.307)
and
(5.308)
into
obtain:
rv
2n
^c. 0 K
k
]
(z)
° A
+ ^
^X
2
+
f j T 5 |
C=u(z)+
a,
|z|
(5.310)
+
^
"A:
k =
Let
us
expand
|S
1
* ( z ) ,#
a
A=
(
Z
)
-"f '- '
=
2
3
I !* ' 2
1
(5.311)
It = n. * 1 k 2
a
(z)
n
d
" ( z ) into
a
Laurent
series:
GO Z
a
t& ( ' = Z kl
0
k
a
)-i
( z ) = ^ b
t
J
2
l
k J ''
z "
J
.
z
l
<
1
'
IZl>l.
k=l,...,n
,
h=n+l,...,2n,
(5.312) (5.313)
iiu l z J ^ S j Z '
,
IzKl,
(5.314)
,
lzl>l,
(5.315)
1=0
- u t z H ^ a ^ z ' where
a
r
2 W i l t |J - l f ( t ) t " " ' d t , J
147
j=0,±l,±2
1* ,tz),
Substituting equations
0
K
(5.31Q)
and
J
Let
^
and
,...,a
A
matrices
with
columns,
be
" (
and
k)
Therefore, solvability conditions
a Therefore
we
m
(5.312)-(5.315)
equating
the
into
coefficients
of
(5.316)
I
(5.317)
matrices
with
vectors
a
A
respectively,
[
,
and a
' • • •»
, . . . ,0:^
and
A
the
be
u
s„ j
a
a
t n e l
n
-
r
(5.318),
(5.319)
i s uniquely
solvable with
respect
, i f and o n l y i f :
*0, j = l , 2
conditions
(5.320)
problem
(5.320)
(5.320)
are
(5.280),(5.281).
necessary L e t us
be s a t i s f i e d . A t f i r s t
(5.280),
i f f=0, then
( 5 . 3 1 8 ) a n d ( 5 . 3 1 9 ) we
Now
o
for
prove
unique
that
these
are s u f f i c i e n t f o r unique s o l v a b i l i t y o f t h i s problem. Let
Indeed,
problem
r
« u j , . - . a n d
the
conditions
follows
f
a a + C=a + a, t 10 o
columns,
of the problem
homogeneous only.
)
obtain:
det=
the
z
respectively.
and b
kj
the
their
Hence, t h e s y s t e m to a
, we
d
k = n-l
a
as
n
kmn*l
k=l
a
a
( )
2
(5.311)
c o r r e s p o n d i n q powers o f z
k-l
z
t
k
^=0, from
a^=0
p=n+l,...,2n;
Jt=l
(5.290) ,
n ; p = n + i , ..., 2 n ; (5.300) ,
(5.301) ,
B u t s i n c e U(x,y)=a
(5.281).
are
shall
(j=0,il,±2,..«)
s h a l l prove the existence (5.280),
we
( a t f=0) has
prove t h a t the
trivial
and
solution
from
equations
have:
—Q,
t h a t U=const.
(5.281)
The
uniquely
j = l , 2,. . . .
(5.312)
a t (x,y)er,
of the solution
coefficients
determined
148
a
f c j
from
of
and the
and
(5.313) i t
t h e n [7=0. non-homogeneous (
, )t=l
system
n;
(5.318),
(5.319).
We
p u t a=0
assumption, equation
into
( 5 . 3 1 7 ) we
t h e system
a ,...,a
the vectors
(5.317).
Since,
=0, k = l
k ( J
n.
(5.321)
t h e system o f e q u a t i o n s (5.316) t a k e s t h e form: C=a .
(5.322)
Q
Passing equation
by t h e
independent, then from
obtain: a
Therefore,
(5.316),
are l i n e a r l y
t o the limit ( 5 . 3 2 1 ) we
at
i n (5.300)
and
taking
into
account
C =0, k = l , . . . , n . Substituting
C
(5.306) o b t a i n
of
obtain
and
from
(5.222)
(5.323)
and
(5.223)
into
equation
t h e system: a C = -a k
which d e f i n e s t h e c o n s t a n t s C Thus, Hence,
the constants a we
formula
obtain
(5.290),
H e n c e , we
the
i s clear
of
( 5 . 3 2 0 ) be
only
Particular and
problem
(5.280),
(5.312)
and
uniquely.
(5.281)
from
(5.315).
(5.380),
(5.381) t o be
uniquely
i t i s necessary and s u f f i c i e n t
that
satisfied.
det
A 1
2]
A
A
the conditions
large
values
fora finite case.
the roots A
]
=detA
(5.320)
of
j
detA
»0.
are automatically
. Hence,
these
satisfied
conditions
must
at be
number o f i n d i c e s j .
L e t t h e system
(5.280) c o n s i s t s o f one e q u a t i o n ( n = l )
a n d X^ o f c h a r a c t e r i s t i c
equation:
2
J+BA+CA =0, satisfy
are defined
that:
means t h a t
checked
(5.301),
|z|
A
It
a t a-0
the problem
(5.300),
circle
lim
sufficiently
uniquely.
^ and
For D i r i c h l e t ' s
i n the unit
conditions It
,...,C
,
the solution (5.291),
0
have proved.
T h e o r e m 5.4. solvable
k )
k
the condition: rmA >0, 1
ImA^<0.
149
Then
the general
solution
of the equation
(5.280)
i s d e f i n e d by t h e
formula: f(Jt,y)=(J where x+X^y In
*P (x+\ y) l
this
2
if ^ (x+X^y)
and
i
a n d x+X^y,
(K+JljV) + « J ( x + A y ) ,
l
are a n a l y t i c
respectively,
case t h e m a t r i c e s
at
A
1 , 1 . 1
1
Therefore, Hence, (5.280), The which The
2
'
J
(5.281)
"HI , 0 =
z'
21
problem
are constant
numbers:
i+X
l
consists
N
D
satisfied. of
one
|z|
(5.280),(5.281)
i s reduced
formulae
equation,
t o one
f o r n - 1 a n d a-0
the
problem
solvable.
by t h e method o f s u c c e s s i v e
above mentioned
to
2 j
A
I T X -
are always
(5.280)
i n the circle
c a n be s o l v e d
and 1 l j l'-X
2'
c o n d i t i o n s (5.320)
i f t h e system
respect
1
=(2 , 1
l j i '
functions with
(x,y)=D*.
1' 1-1-1,
(5.324)
2
functional
equation
approximations. take
t h e form:
2v x+\ y+y(jr+^y)
-4v*n
s
(
U(x,y)=^
t
x+A
2v
2
i+X
1
J
y) -4\! u 2
,
z
2
2"
(5.325)
2
i-X
21
1
y+/lx+X
'
(5.326)
21
2
l» (z) + ^,,
(5.327)
lfr (z)= ( S ^ f z ) + ^ ( z ) ,
(5.328)
(z)=
n
2
(5.329) 1
A
( z ) + (1
-swhere satisfy
u(z)
is
defined
-
+
i
- ',- e 3
u(z), izKi,
0,,(z) = - " ( z ) by
the
(5.330)
formula
(5.331)
(5.332)
1zl>l,
(5.309),
0
] 2
(z)
and
if
(z)
the conditions:
*i»<*S-
*„(-)-
150
f i
-
(5.333)
From
t h e f o r m u l a ( 5 . 3 3 2 ) we h a v e :
# -{3!? = " " ( z )
Substituting
0
(z) from t
(5.334)
{
1
(5.334)
0,
4S
into
Z
( 5 . 3 3 1 ) we G
*„(*>- * ,, 'V « >"
l
+
2
'
C
|
Z
obtain: |
<
1
[5.335)
'
where u Let
Z-0
i n equation
(z) = u ( z ) + u U i - | .
]
(5.335): C +
u(0)=0.
(5.336)
(z)=0(Z)Z,
(5.337)
£
Let
us
substitute: 0
where
0(z) i s analytic
follows
that
^
(5.335)
and t a k i n g
l l
function
i n the circle
(Q|-0, S u b s t i t u t i n q
0
] (
(z)
lz|
from
i n t o account o f t h e e q u a l i t y
From
(5.337)
(5.337) i t
into equation
( 5 . 3 3 6 ) we
find: (5.338)
where u ( z ) - o (0) IX)-
u Passing t o t h e l i m i t 2
(») "0
and
^
n
a t Ifl-w
( 0 ) = 0,
we
i n (5.329)
obtain
C=0.
and t a k i n g This
i n t o account o f
result
and
equality
(5.336) g i v e C =-(J(0) . a
Hence,
from
( 5 . 3 3 7 ) , ( 5 . 3 2 9 ) , ( 5 . 3 3 0 ) a n d ( 5 . 3 3 1 ) we #,! ( z ) = z * ( z ) , u
l
0
2 1
u -M-
(Z)=
j i ^ z t f f j i ^ z )
/ —
(z)= - to(z)- — — I*.
151
1
(5.340)
'
l z l >
+"(0),
, 0
(5.339)
IzKl,
f " l l
"z* *HzT *
obtain:
lzl<
|Z|>1.
— ^
(5.341)
(5.342)
Since
| ( i | < 1 , |« | < l , t h e n
method o f s u c c e s s i v e
t h e equation
( 5 . 3 3 8 ) may b e s o l v e d
by t h e
approximations:
•p(Z)=y
( U
P
I
)
2
1
' W
IzKl.
( ) I J M J Z ) ,
:
(5.343)
h -0
Thus,
i n this
defined the
formulae
the solution
o f t h e problem
(5.280) ,(5.281) i s
( 5 . 3 2 5 ) , w h e r e ( t ( z ) a n d 0 ( z ) a r e d e f i n e d by J
2
(5.327),(5.328),(5.339)-(5.343). z
*
Now
case
by t h e formula
l e t D
be t h e d o m a i n
restricted
by
the
ellipse
X
—- +
S u b s t i t u t i n q x = a r a n d y-bri,
In
s e c t i o n 5.10 we p o i n t
problem method and
Dirichlet's
be r e d u c e d t o t h e p r e v i o u s
f o r t h e system
t o obtain
solutions unique
solvability
5.7. P o i n c a r e ' s Equation
1)
f o r solving connected
t h e p r o b l e m more c o m p l e t e l y f o r t h e number
of
homogeneous p r o b l e m ,
Dirichlet's domain.
linearly when
This
i n the circle independent
t h e condition of
Elliptic
Order
2
L e t D' b e t h e c i r c l e
a n d V be t h e c i r c u m f e r e n c e
z
x +y
theregular e l l i p t i c
ax A,
method
i n any s i m p l y
Problem f o r Regular
X^R
where
(5.380)
(5.320) i s v i o l a t e d .
o f Second
Let us consider
problem f o r t h e system
o u t another
t h e formula
o f corresponding
= 1.
case.
(5.2H0)
allows us t o analyze
2
b
a
may
V
+ jtZ
+
B
ay ax
c
2
2
x +y =l.
equation:
t R
=
0
,
t*,y)«D*,
(5.344)
ay
B and C a r e g e n e r a l l y
speaking,
complex
constants,
in
the
d o m a i n D*. L e t us r e c a l l equation satisfy
that
t h e equation
(5.344) i s c a l l e d
i f C*0 a n d t h e r o o t s
and
a regular
of the equation
elliptic 2
,l+BA+CA =0
the condition:
rmX >0, i
We s h a l l
consider
ImA <0.
two problems f o r t h e equation
152
(5.345)
2
(5.344).
Problem
P.
Find
(
a
solution
D , s a t i s f y i n g t h e boundary aU
where M and
dN' ' ¥l
Problem
P.
normal
a
d
where
The
first
of
which
be
noted
[30]
domain
point
an
out
more
(5.346) (x,y)i=r,
at the point
P
are
and
j
i n the
domain
(5.347)
complex-valued
functions
F
are
;
sought
in
class and
and
c
of the
r.
on D'U
c o e f f i c i e n t s A,B
i f the
the
d i f f e r e n t i a b l e i n D,
are
real,
i s r e d u c e d t o L a p l a c e ' s e q u a t i o n by
£+i7|=x+A y. t
i s reduced
for
to a
method
the
equation
singular
results
(5.344)
in
i n t e g r a l equation.
for solving
i n t h e domains,
complete
given
s a t i s f y Holder's condition
problem
efficient
(5.344)
V.
on
e q u a t i o n (5.344)
c i r c l e D' a n d
obtain
domain
- f ( r , y ) , (*.y)eT,
)
continuously
then,
Poincare's
connected
the
twice
linear transformation
In
r
the equation
f(x,y)
problems
are
then the e l l i p t i c the
and
d e r i v a t i v e s of which should
of
8U
H61der's c o n d i t i o n
solution
functions
i n the
condition:
+ b(x,y) ^'y
)
a(x,y),b(x,y)
satisfyinq
It
x x
(5.344)
, (r,y)«T,
t o t h e boundary
solution
D , s a t i s f y i n q t h e boundary a(x,y) "l -y
equation
constant.
Find
?
the
«U{x,y)=f(x,y)
+
i s the outward
a i s a complex
of
condition:
t h e problems
P
[
r e s t r i c t e d by an e l l i p s e .
f o r a r b i t r a r y simply
simply Here
and
we
F^
in
Further
we
connected
domain
than those of [ 3 0 ] . Solution
of
represented x
Let
us
problem
3Ujx,y)
i s easy
(5.344),
+
8U
gx
y
BU(x,y)
boundary
condition
( x,y)-flX,y),
+
(5.346)
(x,y) r.
aU i
to
+ y ly' aU
X,r)
check
t h e n v{x,y)
A
By
The
may
be
(5.348)
6
denote: V{x,y)=x
It
Pi.
as:
the notation
that
+ «U(x y),
r>
i f U(x,y)
is a
i s a solution of t h i s t Z dx of
+
B
J-JL axdy
+
C
(x,y)=D\
r
solution
(5.349) t h e c o n d i t i o n
153
the equation
equation too, i . e .
_^!| , , ( x , y ) e D \ ay 0
of
(5.349)
(5.350)
(5.348) t a k e s t h e form:
V(x,y)=f Hence,
to
determine
the
(x,y)
(x,y)er.
Thus, t h e s o l u t i o n of
function
of problem P
equations
U(x,y),
obtain
V(x,y)
i s reduced
is a
Dirichlet's have
pointed
problem.
(5.344),(5.349)
where
we
I n t h e p r e c e d i n g s e c t i o n we
an e f f i c i e n t m e t h o d t o s o l v e t h i s
system
(5.351)
V(x,y)
function
problem f o r equation (5.350). out
,
with
t o the solution respect
solution
of
to
of the
an
unknown
Dirichlet's
problem
(5.350),(5.351).
il(p,e)
Let
respectively, equation
(5.349)
be
(x,y)
values
of
U(x,y)
and
the polar coordinates (p,B).
+ aU(p,e)=V(p,a)
us c o n s i d e r t h e f o l l o w i n g
Case I . L e t «=0
, Oapal,
dV
= V(p,6),
a)
i n e q u a t i o n (5.353)
0=9=2rc.
(5.352)
e q u a t i o n (5.352)
becomes:
p a p a l , 0aSa2n.
t o the
w h i c h i s C a r t e s i a n c o o r d i n a t e s may
limit
(5.353)
a t p-tO, we
be w r i t t e n
obtain
If [ 0 , 8 } ,
as:
K(0,0)=0. Hence, t h e c o n d i t i o n P
]
at
a-0.
( 3 . 3 5 3 ) we
Let
V(x,y) The
cases:
(Neumann p r o b l e m ) . The p gp'
Passing
the
with
i n polar coordinates takes the form:
p-"^'^Let
V(p,&)
and
at the point
(5.354)
this
(5.354)
i s necessary f o r s o l v a b i l i t y
condition
be
satisfied.
Then,
of problem
from
equation
obtain: P 0(p,6)-
Passing
to
the
limit
|
at
C(e)=[/(0,6)=[/(0,0) , i . e . C(6)=C Changing
the variable
V(T
! idr c
p-iO o
+ C(9).
e
in
is a
of integration
formula
(5.355)
(5.355)
we
obtain
constant. r=pt
i n t h e f o r m u l a (5.355)
we
obtain:
rf
J PE'
8)dt + C,.
a The
f o r m u l a (5.356)
i n Cartesian coordinates takes t h e form:
154
(5.356
f(x,y)=
v{xt
|
'y - -dt
(5.357)
c.
+
c )
t
o
o Since the of
V(y,y)
i s the U{x,y)
function that
solution
equation
For
obtain
problem
P
the
this
problem
arbitrary Case
i s defined
the
Rea>0.
Then
the
i s d e f i n e d by t h e f o r m u l a P U(p,8)=
Multiplying a t p-^0, we formula
K(0,0)=0,
i s also a
then
solution
following: s o l v a b l e , i t i s necessary
C(0,0)=0.
formula
The
general
(5.357),
where
solution c
is
an
constant.
I I . Let
(5.352)
by
and
(5.357)
a t tt=0 t o be
and s u f f i c i e n t t o s a t i s f y t h e c o n d i t i o n of
(5.350)
d e f i n e d by t h e f o r m u l a
e q u a t i o n . H e n c e , we
T h e o r e m 5.5.
of
the both obtain
(5.358)
general
the
equation
(5.358)
a
sides
then
of
j r°"V(T,©)£ft + p~ C(9). a
p'"
of
by p"
(5.35B)
C(e)-0. Changing and
solution
:
and
returning
again
passing
t o the
limit
o f i n t e g r a t i o n %=pt
the variable
to Cartesian
in
coordinates
we
obtain: i
J
"(x,y)=
(5.359)
t ' V(tx,ty}dt. a 1
o It
is
satisfies
easy
to
check
the equation
Thus, problem P Case
I I I .
equation
Re
that
U(x,y)
defined
i t may
Since
be r e p r e s e n t e d
r ( X , y ) - VAX+XJ) where
tpAx+X y)
r e s p e c t t o x+A^y and L e t us w r i t e
tpAx+X^y)
and
i
the
formula
(5.359)
solution
of
a t Rea>0 i s u n i q u e l y s o l v a b l e .
a^O, a * 0 , - 1 , -2
(5.350)
by
(5.344).
p"
(5.360)
2
V{x, )=Y [ \{ Y
analytic
at
(x,y)eD
tp1' 1+
'x+V' part
functions
with
.
as: 111
i
(0)
H
(
t =o where m i s t h e i n t e g r a l
the
(5.360)
z
certain
1 1
0)
is a
+ P (J£+A y) ,
x+A^y, r e s p e c t i v e l y ,
the formula •
are
K(x,y)
as:
o f Re (-c£) :m=[Pe
155
(-«)
) ,
X + A
k
a
y) )
+
.
(5.361)
•
(1c )
(
V(x,y)=V(x,y)-Y
I I
- \?Ux+\y)"
+
k
^,
< Q )
t
(x+A y) ].
(5.362)
z
k =o
In the
the vicinity
of
the point
(0,0) t h e
W(x.y) L e t us c o n s i d e r
the function
\ic(x +y ) 2
2
2
Since the
(5.363)
:
G
V (x,y) s a t i s f i e s the estimate
r i g h t side of formula
It
i s easy
satisfies
How
we
trivial Let
to
the
particular
check
show t h a t
U(x,y)
that
defined
(5.344),(5.34S).
o f p r o b l e m P^
then
the
integral i n
by
the
Hence,
i n the considered
t h e homogeneous p r o b l e m
formula
this
(5.364)
function
is a
case.
i n t h i s case
has
only
a
solution.
U(x,y)
be
the solution
o f homogeneous
problem
(5.344),(5.348).
i t as: Vlx,y)=
where
(5.363),
(5.364) c o n v e r g e s .
equations
solution
represent
^ (x+^y)
respect t o x+^y
and
uyx.+A^y)
# (x+A y) 2
2
£(
U(x,y)=
are
3
and x+A y,
Hence, i n t h e v i c i n i t y
or,
satisfies
.
h -0
We
V (x,y)
function
estimate:
+ 0 (x+A y), 2
2
certain
analytic
correspondingly, at
o f t h e p o i n t ( 0 , 0 ) we
^i°I
{ K + V
,'
+
functions
with
(x,y)eD*. have:
-4^> )"), {K+V
( 5
.365)
i n polar coordinates:
Y
U(p,B)=
P [ ^ki
( Q
1
' (c°s6-+* sine) ' + 1
' - ^ - ( c o s e + A S i n 9 ) '1 . ( 5 . 3 6 6 ) a
Jt=0
A b o v e we problem P of
]
h a v e s h o w n t h a t t h e s o l u t i o n V(p,B) s a t i s f i e s the equation
t h i s equation
( a t y=0)
o f t h e homogeneous
( 5 . 3 5 2 ) a t V=0.
The
i s d e f i n e d by t h e f o r m u l a :
156
general
solution
(5.367) where C
(6)
J
i s an a r b i t r a r y
Comparing
formulae
T h u s , we
obtained the
T h e o r e m 5.6. uniquely Case V-0
depending
and
(5.367)
on 9
we
only.
obtain
that
( e ) =0.
U(p,e)=0.
Hence,
shall
function
(5.366)
s o l v a b l e and
IV.
a n d 01*0,-1,-2,.. . . , the solution
l e t a--m,
Now
consider
we
following:
I f ReaaO
the
m
where
homogeneous
then
the
problem
i s d e f i n e d by t h e f o r m u l a is a
problem
natural P.
number.
From
]
At
equation
P
first,
we at
have:
Comparing
(5.366)
and
]
CJcose+X^sine),
l
where C and C a r e c o n s t a n t s . S u b s t i t u t i n g C(6) f r o m f o r m u l a V(X,y)-C A *X , i
then
3
independent. (5.344).
the
These
Hence,
linearly
(5.369)
(x+k^y)"
function
homogeneous
independent
vicinity
of
Y
P" [
the
point
the
are
solutions of
problem
in
this
i t follows,
(0,0)
may
Ejf=s[
that
be
linearly
the
equation
case
has
two
solution
0)
h
[
G
1
of the equation
origin
~k\
2
V(x,y)
the function
expanded
i n polar coordinates takes the
t h e c o o r d i n a t e system
v(p,e)=
(x+X^y)'
and
also
til ' " ^ ( c o s 9 + \ s i " 9 ) +
Hence, t h e g e n e r a l of
(5.370)
solutions.
This expansion
V(p,B)=
( 5 . 3 6 8 ) , we o b t a i n :
2
functions are
the
into
(x+A,y) *+ C (x+Xjf)".
l
From t h e r e p r e s e n t a t i o n ( 5 . 3 6 0 )
series.
(5.369)
}
]
the
(5.36B)
( 5 . 3 6 8 ) , we o b t a i n :
C(e)=C (cos0+A sine)"+
in
is
(5.358)
U(p,fl)=p°C(e) .
Since
]
(5.364).
into
a
Taylor
form:
(cosB+X^sinB)
(5.352)
j .
(5.371)
i n the
vicinity
i s d e f i n e d by t h e f o r m u l a :
tcose+x^me)
157
+
(cosB+x sinB) 2
] +
Ip +p*lnp[ On the
m
1
1
<°> (cose+X in9) + n
iS
the other vicinity
series
Ip " -5_f°l(cose+A sine) " ] + C j ( e ) p " .
1
[
hand,
(5.372)
3
the solution
o f the coordinate
(5.36S).
1
Comparing
U(x,y)
system
o f t h e e q u a t i o n (5.344) i n
the origin
t h e expansions
i s expanded
(5.366)
and
i n a
(5.372),
we
obtain:
*>!"(0)
(0) {cosB+X^inB)
—^j-f
S i n c e A *A , t h e n f r o m
( 5 . 3 7 3 ) we
Hence,
the condition a t a--m.
P^
representation solution
of
(5.374)
Let this
P
is
(
(0)=0.
and z v
(5.373)
(5.374)
i s necessary condition
(0)=0
(5.361), problem
0*9*2n.
have:
(0)=0
*i
problem
( c o s e + A ^ i n S ) =0,
+
be
(0)=0.
a n d
defined
f o r the solvability satisfied.
by
the
Then,
of
i n the
Therefore t h e general formula
( c f . formula
(5.364)):
0
!t=0
+C (x+A y)"+ l
where C and
are a r b i t r a r y
;
How
we
express
( 5 . 3 6 0 ) we
C (x+A y)°,
i
2
(5.375)
2
constants.
the condition
(5.374)
by t h e f u n c t i o n
V(x,y).
From
have: 8
y
l ' 8x" {
y
°C<x+Av)
)
1
* f'"(X«j),
(5.376)
1
and
a
°I-
, y l 1
ax" ' a y From
these
equalities
h*?<x*hM
+ v ^ ' t * v > -
=
1
1
1
1
i t follows
2
that
5
< -
3 7 7 )
2
conditions
(5.374)
are
equivalent t o the conditions:
e"V(0,0)
„
I 1 I =0
. and
Sx
158
d V(0.0) a
— = 0 . ax" ay
(5.37B)
T h u s , we h a v e p r o v e d t h e f o l l o w i n g : Theorem
L e t a=~m,
5.7.
solvability
o f problem
sufficient,
and
where
P,,
m
is a
natural
the conditions
i t s general
solution
number.
(5.378)
is
Then, f o r
are necessary
defined
by
the
and
formula
(5.375). From t h e f o r m u l a e
( 5 . 3 7 6 ) a n d ( 5 . 3 7 7 ) we h a v e :
ff'O)- * 1
2
*2 \ L A
ax'~'ay
ax"
,<-',0)- ^ [ x *i L 2
-
^ M ax"
1
2
S u b s t i t u t i n g x=0,y=O i n t o
m
=l,
J
-
, 3=1,2 ax"''ay
t h e formula
2
(5.380,
J
( 5 . 3 6 0 ) , we o b t a i n :
r ( 0 , 0 ) = t > ( 0 ) + (P (0, .
(5.381)
^ ( 0 , ^ ( 0 , 0 ) , P (0)=0.
(5.382)
t
2
Let 2
Substituting into
1
i p ^ ' (0) and
t h e formulae
(5.364)
and
p r o b l e m P^ e x p r e s s e d b y y ( x , y ) Let
us proceed
we s h a l l shift Let
now
consider
1
ip^ " ( 0 ) ( m = 0 , l , 2 (5.375)
we
)
also
f o r t h e c a s e Re
from
A=0.
t o t h e a n a l y s i s o f t h e problem
preliminary the following
(5 . 379) - (5 . 382)
obtain the solution of
P. ;
For t h i s
end
conjugation problem w i t h
(Gaseman's p r o b l e m , . D be a f i n i t e
simply
boundary
r i n t h e plane,
mappings
£=x+A y
and £=x+* y.
i
analytic
Im A >0
K = ? + i T ) ) , where
A^
and
which
are
2
Find
i n t h e domains
smooth
and Im A <0.
]
problem.
domain w i t h s u f f i c i e n t l y
correspondingly
2
A^ a r e c o n s t a n t s , Gaseman's
connected
a n d f ^ a n d D„ be t h e i m a g e s o f d o m a i n D a t t h e
D
two [
functions
jfr [j£]
and
a n d D. , c o r r e s p o n d i n g l y ,
l* (0 2
and s a t i s f y t h e
boundary c o n d i t i o n . +
* (*- A y,=V,(x+A y, + g ( r , y ) , 2
w h e r e g{x,y)
i s given
2
]
(5.383)
f u n c t i o n s a t i s f y i n g H o l d e r ' s c o n d i t i o n on I".
I n a d d i t i o n we assume
that W
where
(x,y)«T,
X
A
)
=
° '
(5.384)
(x ,y ,e D i s fixed. o
o
Lemma 5.4. T h e p r o b l e m
(5.383,,(5.384,
159
i s uniquely
solvable.
(5.
I n t h e c a s e w h e r e D ,D a n d D c o i n c i d e a n d x+A y a n d x+A y a r e
Proof. shift
o f more g e n e r a l t y p e ,
Let D
^
z=cj (^}and
2
(O
z=u> ( O
t
i s proved
be c o n f o r m a l
a
t h e d o m a i n D ( z = x + i y ) . Then
onto
;
lemma 5.4
i n t h e book [ 3 3 ]
mappings
o f t h e domains
the analytic
functions
D
and
[
ipAO
and
may b e r e p r e s e n t e d a s ; 0J ( t ) = * j t * * j (C) ) . J - 1 , 2 .
where p
]
(z)
and
¥> (z) a r e a n a l y t i c
( 5 . 3 8 4 ) we
i n t h e domain
a
Substituting
0 (<) from
(5.385)
into
D.
the conditions
( 5 . 383)
and
obtain; p (« (z))=*) (a (z)) z
i
]
w h e r e a ( z ) - u i (x+A ^y) , j = l , 2 , (
The
itself.
orientation
functions
Since
ImA^o
0
a (z)
problem
a
o
zer.
(5.386)
o
and « (z)
j
r
map
2
a r e o n e - t o - o n e and
a n d ImA^O, t h e m a p p i n g
and t h e mapping
r e d u c e Gaseman's
+g(z),
2
and J5 =u (x +A_,y ) , g ( z ) = g ( x , y ) .
)
Obviously, onto
(5.385)
aAz)
reverses
a (z) ]
preserves the
the orientation.
t o t h e case d i s c u s s e d
i n [33].
Thus,
we
Lemma 5.4 i s
proved. In
t h e case where
(without section and
additional 5.6
!* (C)
domain
(cf .equation D
e
2 0
D
i s a circle,
condition
(5.384))
(5.282)
solution
Gaseman's
h a s been
problem
efficiently
(5.383)
solved i n
a t n = l , 0 ^ = - 1 a n d a_, = l ) • L e t |S
o f t h e problem
(5.383).
Then
obviously
(O the
functions: *,($)-
0, (O-0 o
are t h e s o l u t i o n Solution P
2>
then
l o
(x +A Q
i y o
o f t h e problem
o f problem
[7(x,y)+C
constant.
solvable.
Therefore,
#
( C ) - * „ ( * + X y ) , (5.387) 0
i s a solution
a solution
I t means i t is
a o
a
0
(5 . 383) , (5 . 384) .
I f U(x,y)
P^,
i s also
arbitrary
),
that
of that this
naturally
problem
to
o f t h e problem
problem, is
introduce
where
C i s an
not
uniquely
an
additional
condition: ! > < x , y ) - a„, 0
where
(x ,y ) o
condition fact,
o
i s a fixed
(5.388)
i f U
n
(x,y)
does i s
point
i n D*u
not affect a
(5.388)
0
r , and a
Q
i s given
the solvability
solution
160
of
problem
number. The
of problem P ,
then
P . 2
In
17(x, y ) m
~U
(x.y)-U
Ix
,y
)+a
condition
(5.388).
allows
to
From
us
obtain
equation
equation
is a solution Further
we
unique
(5.324)
( 5 . 3 4 4 ) may
of problem
will
that
of
problem
solution
we
obtain
that
be r e p r e s e n t e d
P
see
the
with
the
the
additional
condition
P
(5.388)
in certain
general
solution
where
i& ()f+X y) 1
and
]
x+X^y
x + A y and t
0 (x+A y) a
i
are
z
( x , y ) s D*,
at
J
and
C i s an
The (
, 0
arbitrary
representation and
2
(5.388)
functions
analytic
with
respect
to
j-1,2,
o
(5.390)
constant. differs
are defined
U(x,y)
and
o
(5.389)
C i n (5.389)
Substituting and
(5.389)
2
and
* (x ,y )=0, J
the
as:
[7{x,y)=l|i (x+A. y)+0 (jr+* y)+C, i
cases. of
from
taking
from
equation
into
(5.324)
by f / ( x , y ) (5.389)
account
of
by
the fact
that
uniquely. into
the
conditions
condition
(5.347)
(5.390),
we
obtain: (a (x,y)+\ b(x,y))tli-Ax+X y) i
+
i
=f(X,y),
(a ( x , y ) + A b ( x , y) ) ;
(x+A.,y) -
(x,y)er,
(5.391)
C=a .
(5.392)
o
Let
us
denote: rjx+X^-f^X+X^)
It
i s clear
that
,
(x,y)*D
i s also
,
J-1,2.
analytic
with
(5.393) respect
to
x+A
(J-1,2)• From
(5.390)
and
( 5 . 3 9 3 ) we
have:
PjteJSS.
^(X+A^)• 0
Substituting ( 5 . 3 9 1 ) , we
(x+A^y) ,
(j-l,2)
(5.394)
*A y JO
from
( 5 . 3 93)
into
the
condition
obtain: ^(x+A-jO
= G(x,y)
where
161
+g(x,y),
(5.395)
y
}
It
i s supposed
that: a(x,y)+A b(x,y)»0, j = l , 2 ,
(x,y)er.
j
Following of
[ 1 8 ] , the condition
normality
o f problem
(5.397)
proof
of
considered problem
lemma
be c a l l e d
the
condition
P . ;
T h u s , we h a v e r e d u c e d p r o b l e m P the
will
(5.2-97)
5.4,
t o Gaseman's
?
the latter
may
i n [ 3 3 ] ( p . 124) . B u t h e r e
( 5 . 3 8 3 ) , ( 5 . 3 8 4 ) because,
that
we
be
problem
( 5 . 3 9 5 ) . As i n
reduced
reduce
to
this
the
problem
problem i s e f f i c i e n t l y
case
t o the
solved i n
d o m a i n r e s t r i c t e d by e l l i p s e ( c f . s e c t i o n 5 . 6 ) . Let m,
us denote
t h e index o f the function
i . e . t h e increment of
a r g G(x,y)
G(x,y)
o n t h e c o n t o u r r by
when t h e p o i n t
c o n t o u r r once i n p o s i t i v e d i r e c t i o n . S i n c e G(x,y) t h e n m i s an Let
point
(x,y) traces the
i s c o n t i n u o u s on r ,
integer. ( 0 , 0 ) s D.
The b o u n d a r y
condition
(5.395)
may
be
rewritten
as:
G (x,y)p (x+X y) ( x + X ^ ) "
a
o
i
]
+ g(x,y), {x,y)er,
(5.398)
where G ( x , y ) = G(x,y) ( x + ^ y ) " " .
(5.399)
0
It
i s clear
Let
that
9 {x+X y) l0
t h e index of function and
i
zg
(x+A y) ;
be
G (x,y) Q
particular
on r i s e q u a l t o zero. solution
of
Gaseman's
problem:
P (*+V)=
f^lx+X^+lnGJx.y)
20
Since function Let
the index of the function lnG [x,y) g
G (x, y) o
on r
s a t i s f i e s Holder's condition
i s equal
,
(x,y)eT.
t o zero, the
on r .
us denote: ^(X+Ajy)- exp(p
From e q u a t i o n s ( 5 . 4 0 0 ) a n d ( 5 . 4 0 1 )
j o
(x+\ y)),
j-1,2.
i ffollows
that:
]
162
(5.401)
(
Substituting
G (x,y)
from
Q
(5.402)
into
the condition
(5.398),
we
obtain: l*(x+X y)-( + 2
x
n ]
y ) " " V ( x + A y ) + gjx.y),
(X,y)eT,
]
(5.403)
where
+
* < * V >= V * + V ) ' M * + V > f J i + A j )
(x+A y ) o (»t»y)
x
V from
( 5 . 4 0 4 ) we
'
y
)
^(x+^y)
^(x+A^)"
obtain: #>(0)=0.
Let
us c o n s i d e r t h e f o l l o w i n g
(5.405)
cases:
Case I . m = l . T h e n a c c o r d i n g t o lemma 5.4, Gaseman's (5.405)
i s uniquely
Case I I . m^2.
problem
(5.403),
solvable.
Then f r o m c o n d i t i o n s
iA(j£+A y)= i * ( X + A y ) , 2
0
(5.403)
f l
a n d ( 5 . 4 0 5 ) we
[x+Xjjr)
2
9
w h e r e g). (X+X y ) a n d 0 ( x + A y ) a r e Gaseman
o
2
o
]
0
problems
2
li (Jf+A y)- ip (x+A y) + g ( x , y ) ,
(X+\7)
obtain:
.
(5.406)
solution:
(x,y)er,
o
(5.407)
(5.408)
Q
According
to
' t**
lemma
5.4
the
problem
(5.407) , (5.408)
is
uniquely
solvable. From t h e second e q u a t i o n s o f (5.404) and (5.406)
i t follows
that:
k l
( / ( 0 ) = 0 , K = l , 2 , . . . ,m-l. Hence, t h e c o n d i t i o n
(5.409)
i s necessary
(5.409)
f o rthe solvability
of the
problem P . Let
the
( 5 . 4 0 6 ) we
condition
(5.409)
be
satisfies.
Then
from
(5.404)
and
obtain:
«= (*•+*,y)<e, f , ( x + A v ) = t f fx+A y)i& (x+A y ) , « > ( X + A y ) = —
163
(x+\
y) .
(5.410)
Case I I I ,
L e t nuO.
We
represent
p(x*\
f)
as:
-•*i Y
•p{X+k y)= i
c
J * Y'i x+
l
V
( +>> y)"" t( > Y)
+
x
1,
i
x+
i
•
1
(5.411)
i* = 1
where
C
are constants
k
t o a t x+X^y
and
a t ( x , y ) e D*
(Mx+A^)
is analytic
function
with
0(O)=O. Substituting
respect
and
(Hx+A^)
from
(5.411)
(5.412) into
the
condition
(5.403)
we
obtain:
-ra * 0(x+A.,y) = ( M x + A ^ )
According solution
t o lemma
I ,
0
k
1
arbitrary
(5.412),(5.413)
constants
formula: - B
(Mx+A^)-
L^JX+A^)
(5.413)
i
5 . 4 Gaseman's p r o b l e m
a t the given
, 0
+ g (x,y)+^C (x+X y) '* " ,(Jr,y)er.
C"
and
k
has
unique
i t i s defined
by t h e
.i
+ ^C c
(x+A y),
(5.414)
C^S ( x + A ^ y ) ,
(5.415)
i
J k
i
k -1
*(x+A y)=
+ V
fi (x+A y)
£
o
2
%
h=\ where
u (x+A^) k
and
5^ [ x + A y )
are
2
solution
of
the following
+ FJX.y)
,
(x,y)«r,
Gaseman
problem: S (X+A y)= K
a
uJx+X ) jY
u (0)-0,
(5.417)
T
f (x,y)-g (x,y) , F (x.yJ-fx+A^) 0
o
Hence,
the general
constants. problem
From F 2
(
a
, j = l
f
t
solution
derived fs0,a =o, c
of
formula has
problem
P^
i t follows
exactly
solutions.
164
(5.416)
-m+1
-m+1; includes that
k=0,...,-«+!. -m+1 the
linearly
arbitrary
homogeneous independent
T h u s , we
obtained:
Theorem
5.8.
I f m=i,
then the condition
then
(5.409)
problem
of
t h e non-homogeneous p r o b l e m
If
msO,
then
the
corresponding independent The if
and
non-homogeneous
homogeneous
Dirichlet
Problem
P
;
is defined
i s always exactly
F^ a n d
simply connected
uniquely.
solvable
-m+l
and
linearly
Theorem
5.8
remain
true
domain.
by t h e e l l i p s e I " :
2
v
2
+ 2-_ = i , a > b > o .
consider Dirichlet's
problem 2
f o r biharmonic equation:
(x,y)eD ,
U(X,y)=f (x,y) 0
8 U
l
X N
'
Y )
(5.418)
+
fl (J=0,
=f,(x,y)
(5.419)
,(x,y)sr,
s
— + i s Laplace's 3x ay f u n c t i o n t o be f o u n d .
(5.420)
,<X,y)eT,
where N i s t h e outward normal t o t h e boundary A
i f m£2
for solvability
f o r Bihormonic Equation i n E l l i p s e
x — us
solution
has
o f problem
finite
D' be t h e d o m a i n r e s t r i c t e d
Let
the
solvable;
sufficient
problem
problem
f o r analysis
D* i s an a r b i t r a r y
Let
i s uniquely
solutions.
methods
5.8.
p
i s n e c e s s a r y and
r at the point U{x,y)
o p e r a t o r and
(5.421)
is a
(x,y)sr.
real-valued
2
z
af It where
i s supposed
af
^-^
that
i s the
f , f and o i
derivative
5 — as
of
f
satisfy with
H61der's
condition
respect t o
the
arc
on r , of
the
contour r . It
i s known
uniquely problem
that
solvable. in elliptic
Dirichlet's Here
we
problem
show
a
method
equation i s
for solving
this
domains.
From c o n d i t i o n
( 4 . 4 2 0 ) we
The
( 5 . 4 2 1 ) , ( 5 . 4 2 2 ) may
have:
Sign conditions
f o r biharmonic
simple
=
165
,
(x,y) r.
be r e p r e s e n t e d a s :
E
(5.422)
§|cos(N,x}+ | p c o s { W , y ) = f
an 9f (x,y) §^cos(S,y)= ,
SJT
f£cos(S,x)
+
(5.423)
( x , y ) , (x,y)«T,
]
(x,x)«r
(5.424)
Since cos(S,x)—cos(N,y),
cos(N,x)=
then
from
(5.423)
— a
and
! 2
a
4
cos(S,y)=co5(N,x)
,
cos (If, y ) b
b'
( 5 . 4 2 4 ) we
^ 5_ * a
2
1
€ b 4
have:
|| =g (x,y),
(x,y)er,
(5.425)
j| - g ^ y ) ,
(x,y)er.
(5.426)
o
where (5.427)
g„(x,y) = a
b
a
4
0
4
a
4
b
4
af ( x , y )
£T, (x,y) = From
(5.427)
and
(5.428)
as
(5.428)
i t follows: (5.429)
Let
(X ,y ) Q
o
be a f i x e d p o i n t
on r . T h e n f r o m
( 5 . 4 2 0 ) we
have:
17(x ,y )=f(x ,y ). o
Hence,
the conditions
conditions At
(5.420)
first
we
Lemma 5.5.
o
o
(5.430)
o
(5.425),(5.426)
and ( 5 . 4 2 1 ) , and v i s e
s h a l l prove the f o l l o w i n g
and
(5.430)
from t h e
simple:
I f 0<«<1, t h e n t h e r e t a k e s p l a c e i s t h e i n e q u a l i t y
z
)
1
2
i - u " " ' > ( J t + i ) n ' ( i - n ) , k-1,2,... .
Proof.
follow
versa.
L e t K i s b e a n o d d n u m b e r , a n d m=
166
. Then
(5.431)
1
i V
,
" " = ( i V ) ( i W
+
. . . V ) = f i -
= ( l V ) ^
Since 0
2 U
f t - 2 j > 0 a t }=0,1,...
)
( l V
,m,
,
!
The 5.5
(5.432)
and
inequality
-
! |
2
1
2
) ^
y v -
2
1
) -
' } .
(5.432)
.
(5.424) t h e i n e q u a l i t y (5.431)
.
then
lV"- ">J^From
k
(
a t e v e n ft may
(5.433) (5.431)
be
follows.
obtained
s i m i l a r l y . Lemma
i s proved.
At
first
(5.425), [5.419)
we
shall find
(5.416).
As
a p a r t i c u l a r s o l u t i o n o f t h e problem
i t i s known,
the general
i s d e f i n e d by t h e f o r m u l a
solution
([25],p.134) .
f / (:,y)=Re X , y ) = R e L\fp ( z ) + z 0 ( z ) ,
w h e r e ( p ( z ) a n d iK(z) a r e a n a l y t i c Substituting conditions
U[x,y)
(5.425)
from
and
(5.419),
of the equation
(5.434)
f u n c t i o n s i n domain
equation
(5.434)
D*.
into
the
boundary
( 5 . 4 2 6 ) we o b t a i n :
Re|V(z) Re[ip'(z)
+ zr
(z) + 0 ( z ) ] =
ff (z), fl
(x,y)sT,
- i ( i ( z ) ] = gjz),
+ziV'(z)
(5.435)
(x,y)er.
(5.436)
Let o(t)=h|t+ w h e r e fc= ^ The
t j ,
I t 1 = 1,
(5.437)
a n d tf-
function
z=a(t)
maps
unit
circumference
ltl=l
one-to-one
into
the e l l i p s e r . According |(i(z) may
t o theorem
2.8
be r e p r e s e n t e d
( C h . I I , s e c t i o n 2.6)
the analytic
, / !& (t)a' ("c)dr Z
function
as:
*! >=2T7I
1
«(T)-Z
lrl = i 167
-
" °
(5.438)
where 0 f t ) i s a f u n c t i o n a n a l y t i c i n t h e c i r c l e From t h e f o r m u l a
(5.43S)
we
ltl
have:
(5.439] . 0 (r) '(r)dT o
,
a
0;(r)dr
L e t us c o n s i d e r t h e f u n c t i o n : ,
a
(r)tf'(r)dr
1x1-1 It
may b e a l s o r e p r e s e n t e d +
*'<*> 5ST
)
as: c.(r)-z
= 2 ^
j
„(r)-z
w h e r e j> ( r ) i s a f u n c t i o n a n a l y t i c i n t h e u n i t c i r c l e The c o n d i t i o n s
'
s
I
- "
'
|x|
( 5 . 4 3 5 ) a n d ( 5 . 4 3 6 ) may b e r e w r i t t e n a s :
+
Re[
l i m (#>' ( z ) + «Tt)|p'(z> + l*(z) > ] = g ( a ( t ) ) , 111=1 ( z s D ) ,
Re[
l i m £i»' ( z ) + « W W
(5.442)
0
(z) - i 0 ( z ) ) 1 = g, (« ( t ) ) , ! 1 1 = 1 (zeD*) . ( 5 . 4 4 3 )
L z-*ait)
J
From t h e r e p r e s e n t a t i o n s ( 5 . 4 3 9 ) and ( 5 . 4 4 1 )
+ «(t)#'W-
f
+
] I t l=i
a
(
i tfollows
r ) - z
that:
+
(0l(T)-flc7x))l»' ( X )
5
]
4
<"">
1X1=1
changing the v a r i a b l e
£=a(r) i n ( 5 . 4 3 8 ) we
obtain:
r where 6 ( S ) i s t h e i n v e r s e mapping w i t h r e s p e c t t o a ( T ) . Using
1
Sokhotzki-Plemelj's
formula
obtain:
168
([18),p.66),
from
(5.445)
we
lim
Hz).
fr>
Here and f u r t h e r Changing
°
a singular
, |tl-l.(MD*).
integral
once more t h e v a r i a b l e
(5.446)
i s assumed as p r i n c i p a l
F=a(r)
i n the integral
value.
(5.446),
we
obtain:
VoM+Th z-Hl
8
I t
,
I The
equality
,
,
T
T ) '
«(t) '
*
*
| t |
1
t 5
- -
"
4 4 7 )
*
I = 1
( 5 . 4 4 7 ) may b e a l s o w r i t t e n a s : ,
,
0.(t)dT
5*„ ( t > + I5T M
(
(
/ +
T-t
2^1
K(t,T)# [r)tfr, o
(5.448)
Itrl-.
l-cl-i
w
where 1
' '
a(t)- a(r)t - r
T h i s e x p r e s s i o n and (5.437) g i v e : K(t,r)=
S i n c e lf> (r) e
the
i s analytic
circumference
I t 1=1,
r-TTV ' tr t-
i n the circle
(5.449)
lrl
and t h e p o i n t
t i s on
then((13),p.289) Mx)dx |x | =1
From
(5.448)
a n d ( 5 . 4 5 0 ) we
(KZ)-*
lira
Similarly
( ( p ' ( z ) + ajij*'
1
+ From
(t)+
we o b t a i n f r o m lim
( 5 . 4 3 7 ) we
have:
5^
o
(5.451)
(5.444): (z))- P <
t )+
0
, («{ . i^aitiJ |x| = i
[K(e,X)# (r)trC, l t l = l .
sjg
o ( i j JS» l •
I
«(r)- , ( t )
have:
169
U(t , r ) j > ( r ) d r + o
J
d r
'
l t l = 1
-
5
< "
4 5 2
>
f t l
*
g
T
- < >-
Since
t h e functions
lt|
then, 1
and V (t)
o
(5.453)
are analytic
0
i n the circle
a c c o r d i n g t o C a u c h y ' s r e s i d u e t h e o r e m , we h a v e : Ml* ( r ) d T
f
J
2irr
at l t l - l r i - 1 .
tlx-ifl
«(*) ~ «(t)
( u l
j 2WI
f
Mp (t)dr
j
—-T—UT
f
351
J
K< *
t
1
!5
M°>' ''"' -
~
ut
454)
0
"
P
o
|T|-I [ t j d-Mtr)^; r)dT t
1
V»-
K[tj-
=
T
t
i
t
"
)
' . ( ° ) '
l
t
l
=
1
a
(
—
(
<
< 4
4 5 5
)
T
—
V-*;|fJ=(iVi 'is;(»it'),
-
By v i r t u e o f t h e e q u a l i t i e s
_ C
(5.451)-(5.456),
iti-i.
t h eboundary
(4.456)
conditions
( 5 . 4 4 2 ) , (5.443) t a k e t h e f o r m : - >pJ0)
» e ^ ( t ) + P (Mt) 0
0
+ (l-W )t*;(at) Z
+ Hilt) + (C (Mt)0
-# <°>] = g ( a ( t ) ) , l t l - 1 , 0
Re [i(p (£)+i¥> (ut) - i p ( 0 ) + i ( 1 o
o
Q
ti0 (O)]= o
It
i s obvious
U
z
) t ^ ( y t ) -i\fi (t)-ipAnt) o
g,(«(t)),
+
|t|-l
(5.458)
that:
Rep (Ht)=Rep (nt) , o
(5.457)
0
Re[(lV)t
o
^ ( ( i t ) |=Re [ ( 1 -
2 M
)t ^((It)j
,
Re!& (ut)=Re^ ( t), o
o
H
Re(i0 (iJC))=Re^-i0 (ot) j , Re[it o
o
Re^ (pt)]=Re[-i o
170
^ ( U t ) j =Re [ - i t
tfijut)
1.
l^(ut) j
,
Therefore
t h e c o n d i t i o n s ( 5 . 4 5 7 ) , ( 5 . 4 5 8 ) may b e r e p r e s e n t e d a s :
R e | p ( t ) + p ( t ) - p { 0 ) + ( l V ) t : r U*)+ o
o
U
0 ( t ) + ^ ( w t ) -(ft (0) ] =
0
o
- g t"(t)),
o
0
ltl-1.
o
(5.459)
Re[i¥- (C)-i P ( « C > - i f . ( 0 ) - i ( l V ) t t V ( u t ) - i * ( t ) + i o
B
o
o
^ (nt)+i0 (O)J=
o
o
o
= g ( o < t ) ) , l t l=l.
(5.460)
i
It
i s easy
are
t o see t h a t
analytic
t h e expressions
i n the circle
Schwarz's i n t e g r a l
p (t)+ 0
ltl
([15),p.223)
•pjut)-
from
2
(> (0) + ( l - ( i ) t o
0
o
U t)-i
by
i* (0) = o
ItKl,
(5.461)
0;(Jlt)-i0 (t)+i
2
Vg
brackets
are defined
0 ; ( U t ) + ^t)+ i * ( 0 t ) -
o
o
t h e square they
c o n d i t i o n s (5.459) and (5.460):
=? (t)+i(7 ,
ip (t)-i
between
therefore
o
i/i ( t)+i0 (O) = Q
U
o
-^{tj+iC , ltl
(5.462)
where 2ST j
t}
V =
9/a(r)) |±| | ^ , | t l < l ,
j=0,l,
(5.463)
lxl = i and C
and
g
area r b i t r a r y
Multiplying and
adding
right
and l e f t
P (t)
- »> (Q) +
C =C =0.
r e a l constants. L e th e r e a f t e r
both sides o f equation sides
g
j
(5.462) by i a n d t h e n s u b t r a c t i n g
o f equations
(5.461)
and (5.462),
we
obtain:
Q
Z
lD (Ut) + ( l - f i ) t o
Let
ii;(«F) + ^ ( t )
u s expand
(5.463))
= l ^ f t j - i ^ l t ) ), I t K l ,
0
0
- 0 (O)= j ( * ( t ) + i ^ ( t ) ) , o
t h e know a n a l y t i c
0
functions * (t) Q
a n d t h e u n k n o w n o n e s ¥> (t) a n d # ( t ) i n t o 0
Q
171
(5.464)
ItKl.
(5.465)
and 0 ( t ) (formula (
a Taylor
series:
v
e
- f
> "
(5.466) +
0
Es.** it = i
p (t)= ^ a / , » 0
0
1
l £ l < 1
*" ' '
( £ ) ^ M ' ,
'
ItKl,
(5.467)
where , g (a(x))dx c
Substituting and
(5.465) }
of
t
,*=
s i "J
.
-
f> (t) and * ( t ) from 0
(j=0,l,...),
we
1
'
( 5
' '
(5.467)
0
and e q u a t i n g
1
I
into t h e equations
t h e c o e f f i c i e n t s o f t h e corresponding
(5.464) powers
^"^ej-
U
1
(5.469)
(l-« )5j+
a + E.h-dL. a," + J
4 6 B )
obtain: 5 = ± d , a " = i d , Q 2 oo o 2 10
«,* H
'
a
»,"<*„.
(5.470)
3^+ JU " (1-H )E + b ^ ^ , ( > 2 , 3 . . . ) , J
1
2
)
(5.471)
where
V £
(5.469) and t h e f i r s t e q u a t i o n
V l
a
o f ( 5 . 4 7 0 ) we
a
o o '
fcV^V* 5
o = l
0
1
have:
-
<
a,=d - S j d . a
]
from
(5.474)
5
'
4
7
3
>
(5.474)
0]
Substituting
(5.472)
i n t o t h e second
equation
o f (5.470),
we
obtain:
(lV) The
left
equation the
side
with
of equation
respect
B )=d - u d
(b+
1
u
(5.475)
i s a
t o t h e constant
b
;
o ]
.
real
(5.475) number.
has s o l u t i o n
Hence,
this
i f and only i f
condition: Im(d -ud n
is satisfied.
17
2
o i
)=0
(5.476)
It
i s e a s y t o show t h a t
(5.429).
Therefore
this
condition coincides
i t is satisfied. d
-pd
V is
the p a r t i c u l a r Substituting b
solution from
;
"
(5.477)
of the equation
(5.477) i n t o
(l-U
defined
by
to
the
J
and
obvious
i ]
-ji
(5.431),
J
o j
the
i s uniquely
p*2,3
d ,
(5.480)
equation
solvable
and
(5.480)
the
with
solution
is
2 )
J
2
( l - u ) - ( d , - f x d ,) V ' t l - U ) n
, w
4 ^2
J-2,3...
iVV-jV'J-^uV) b
a
(5.441),
problem
b^
,
Substituting
T h e n we
j
inequality
-U d)
J
(t).
2
j
(5.479)
formula:
(d
$
J
>2,3...,
j(
)b +j(i "'(l-0 )E =d
constant
f , - - ^
coefficients
2 J
the
the
(5.478)
have: J
to
.
2(lV)
0J
According
0 1
"
a,-rf -W E
respect
obtain:
-(id )
U(3
F r o m e q ( 5 . 4 7 1 ) we
(5.475).
( 5 . 4 7 4 ) , we
=d ' °'
a
w i t h the c o n d i t i o n
Then
from
at find
and
(5.481)
j—2,3,... the
then
we
(5.479)
define a
the
also
(5.481)
find
the
f u n c t i o n s 1> (t)
and
a
i#(z) from
particular from
we
define the
f u n c t i o n s f ( z ) and
(5.419),{5.425),(5.426) that the
into
. T h u s , we
.
equations
solution formula
U {x,y) g
(5.434).
(5.438) of I t
the is
function:
U(*,y)=U U,y)-VVy ) f (Vy ) 0
also
satisfies
the solution
5.9
Certain Correct Elliptic
Let
the
D*
be
conditions
of D i r i c h l e t ' s
a
o
(5.4 3 0 ) .
problem
Thus
o
the
o
set
of
functions i s
(5.419)-(5.421) .
Boundary Value Problems f o r Regular
Systems o f Second Order
finite
t
simply
Equations
connected domain w i t h s u f f i c i e n t l y
173
smooth
boundary
r
elliptic
e q u a t i o n s of second
i n t h e p l a n e . We
+ B&L°
j£| dx* A,B
where
the
C
and
U={UAx,y)
xoy
are
, . .. ,U(x,y))
roots of the
c o n s i d e r i n t h e domain
D*
the
system
+ C^L ay
=0,
constant
i s the
(X,y)eD*,
(5.482)
1
square
solution
matrices
t o be
of
order
found. Let
equation: 3
roots are counted according t o t h e i r
Definition system
5.3.
i f detc*0
The
system
( 5 . 482)
multiplicity. a
regular
elliptic
and: n,
(5.484)
I m A ^ O , j = n + l , ... ,2n.
(5.485)
J
after
(5.483)
is called
rjnX >0, j = l
Here
n,
..
d e t (71+BA+CA ) =0 . The
of
order:
we
assume
that
the
conditions
(5.484)
and
(5.485)
are
satisfied. If this
the
coefficients
system
The
of
the e l l i p t i c
aim o f t h e p r e s e n t s e c t i o n
problems domains
f o r regular and
elliptic Let
system
i s always a r e g u l a r e l l i p t i c
to
show
elliptic an
(5.482)
are
i s t o formulae c o r r e c t boundary systems
efficient
the
(5.482)
method
in
t o solve
simply these
roots
A ...,A i(
2
solutions of the
be
simple
and
In
problems
l e t a ^ f a ^ , .. .
2
t
Let
value
connected in
)
be
system: (J+BA +CA )H =0,
a
then
domains.
non-trivial
and 8
real,
system.
(5.486)
ii
i s 2n-dimensional vector-column:
us d e n o t e t h e m a t r i x w i t h section
matrix p~
1
5.6
may
be
columns
i t i s proved t h a t
B ,...,8
by Z
p.
ranJt(a+BA + C A ) = n - l a n d k
deC8*0.
The
r e p r e s e n t e d as:
(5.488)
174
where B
)[j
( f t , j = l , 2)
are square matrices
of order
t h e r o w s o f m a t r i x ft.
L e t us
denote
L e t us
consider the following
by
...,n, U{X,y)
If
GJx,y)
where
J a
fAx,y)
and
H61der's c o n d i t i o n , is
a
solution
[/(x,y)+C
is
also
a
solution
v e c t o r C.
To
define this
B
,8.
boundary c o n d i t i o n s :
nax+ satisfying
n.
=f(*,y),
are
G^fXjyJiO,
(5.489)
(X.y)eT,
functions defined
r
on
of
the
problem
(5.482),(5.489),
of
that
problem
at
v e c t o r , we
and
j=l,2,...,n.
i m p o s e an
arbitrary
additional
then
constant
condition: (5.490)
Let m
be t h e i n d e x o f t h e f u n c t i o n
There
i s the
Theorem solvable
5.9.
0
(X,y)
on
r.
following: For
the problem
i t i s necessary
and
(5 . 4 8 2 ) , ( 5 . 4 8 9 ) , ( 5 . 4 9 0 )
sufficient
that
the
t o be
uniquely
equality: (5.491)
be
satisfied. Proof.
In
L e t us
this
conditions
denote:
notation, (5.489)
take
the the
equation
(5.482)
and
the
boundary
form: 0,
S - if.
(x,y)eD*,
(5.493) (5.494)
(5.495)
17 5
I * . y)
f(x,y)=
Thus,
the solution
V(x,y)dx+¥(x,y)dy+a .
i («
o
(5.496)
o
o
. y
)
of this
considered problem
i s reduced
t othe
problem (5.493)-(5.495). Let us denote: U-(JJ. Then, t h e problem
y where
n4J
^
(5.497)
(5.493)-(5.495) takes t h e form:
«(x,y) + G ^ x . y J j ^ i j f x . y J ^ t x . y ) , i s the matrix
o
T ,T
of
equation
(x,y).=r, (5.212)
j=i,...,n, (section
(5.499)
5 . 4 ) , and
a r e t h e rows o f m a t r i x 8 .
1 2
2n
Substituting
i n e q u a t i o n (5.498) and c o n d i t i o n B,(*,y)- 6 0 ( x , y ) ,
#-(# (x,y)
(5.499):
* „(x,y)),
1
a
(5.500)
we o b t a i n :
*
,(x,y)
According
+ G (x,y)0 ,(x,y)=f t o the equality
(x,y),
(x,y)«T, j - 1
(5.211)(section
o,
5.4) t h e s y s t e m
(5.502) (5.501)
takes t h e form: 30
30
W " ^SST The
general
solution
of
{
>
this
1
2
h
>
(5
'
system
-
has
the
form
503)
(equation
(5.231), s e c t i o n 5.4): •jfX.y)where
»>j ( x + A ^ y )
i s an
^(X+^y) ,
arbitrary
function,
(5.504) which
i s analytic
with
r e s p e c t t o x+A^y a t ( x , y ) e D * . Substituting (P
n r j
(x+A
n <
0j(x,y)
from
(5.504J
into
,y)+G, ( x , y ) p j ( x + X j y J - f ^ x , / ) ,
176
( 5 . 5 0 2 ) , we (x,y) r, t
obtain: j = i , { 5 . 5 0 5 )
Thus,
the
considered
[5.505) . I t h a s been II
and I I I ) , which
problem
i t follows
s o l v a b l e , i f and o n l y
is
I n s e c t i o n 5.7
Gaseman
problem
problem
considered
in
domains.
such Using
the
(5.395)
we
i f m =1,
have
i n t h e domain
shown
of
5.7
analyze
we c o n s i d e r
by
a regular elliptic
fJ be
a
square
matrix
Jordan's
canonical
principal
d i a q o n a l , where A
many
In
this
section
smooth
we
allowing
system
be
boundary
connected
t o singular show
a
t o solve
a
finite
elliptic
new them
Gaseman's
(5.489),
are equal
(5.482)
t o 1.
f o r general
case,
( 5 . 4 B 3 ) may b e m u l t i p l e . (detf!*Q)
[t
so t h a t
A , ...,\
I
placed
of Analytic
boundary
value
integral
f has i n the
more
Systems
Functions
problems
equations
approach
for elliptic
i n Holder's
t o the solution
efficiency
connected
consider
+
2
+
d
x
a
y
domain
Dirichlet's
—* *>> ay
C
V(x,y)=f(x,y), and
problem
(5.482),
i n many
class
of
these
cases [ c f .
with
sufficiently
problem
f o r weakly
system o f equations:
—z ax
A,B
resolved
Chapter). simply
r . L e t us
k
where
2n
i n t h e Class
5.11 o f t h e p r e s e n t
l e t D*
Hence, t h e
(5.488),(5.489),(5.490).
(cf. [25),[30])
a r e reduced section
problems
1)
ellipse.
5.9
t o solve
i s t h e matrix o f (5.212).
Equations
works
equations
method
o f Boundary Value Problems f o r E l l i p t i c
Integral
(5.505) i n theorem
i f m a t r i x ft i s r e p l a c e d b y t h e m a t r i x ft i n
5.9 r e m a i n s t r u e ,
Reduction to
In
an
concerning
the roofs
f o r m u l a t i o n o f t h e problem
5.10.
Thus,
t h e problem
o f order
with g
Theorem the
form
problem
may be e f f i c i e n t l y
where t h e r o o f s o f c h a r a c t e r i s t i c e q u a t i o n Let
t h e problem
an e f f i c i e n t
(5.482)
section
completely
that
Gaseman's
( c f . ( 5 . 3 9 5 ) , case I ,
j=l,...,n.
restricted
f o r t h e system
results may
to
i n t h e case where n o t a l l o f t h e numbers m
(5.490) Now
we
reduced
i n s e c t i o n 5.7
immediately
uniquely true.
is
scrutinized
C
are
tX'Fi^,
(5.506)
(X,y)er,
constant
177
square
matrices
(5.507) of
order
n.
'(*iy)=(f,(x,y),...,f^(x,y)) U(x.y)=(U,(x,y),•..,U
is
(:r,y))
H 6 1 d e r c o n d i t i o n o n r a n d D'u r , It
i s supposed
that
d e t ( A + B X + C X ) =0
given
simple
vector
function, function
and
satisfying
respectively.
the roofs l,,...,7t
are
2
a
i s unknown
and
of characteristic
a
they
satisfy
the
equation
conditions
(5.484),(5.485). As we h a v e shown i n s e c t i o n 5.4, t h e g e n e r a l (5.506) Our
i s d e f i n e d by t h e formula aim
Fredholm's this in
i s
to
reduce
integral
solution
problem
(5.506),(5.507)
i n the class of analytic solution
o f t h e system
(Lemma 5 . 4 ) .
Dirichlet's
equation
e n d we r e w r i t e t h e g e n e r a l
integral
(5.220)
to
f u n c t i o n s . For
(5.220) o f t h e system
(5.506)
form.
Let x=x(t)
, y=y(t),
l S
t=e
,
ose=2ir r,
be t h e p a r a m e t r i c e q u a t i o n o f t h e b o u n d a r y
\x' ( t ) \ + \y' ( t ) 1^*0. 2
Let us denote: 1
i
(t)=x{t)+\ y(t),
1 (t)=x(t)+\ y(t) i
There
,
i
j V n + 1 , . . . ,2n.
takes place t h e following:
Lemma
5.6. T h e
general
c o n n e c t e d d o m a i n D*
solution
2,
"k
(
m k=i tp^ ( z ) ( j = l , . . ., 2n)
satisfying
o f t h e system
(5.506)
in
T
J lrl=i
are analytic
d
T
*,( > *,< > v t > A y ' i
1
functions
H&lder's c o n d i t i o n i n t h e closed c i r c l e
i n the circle
The
analytic
|zl
I z l s l and
*j<0)=°r j = n + l , . . . , 2 n .
U(x,y)
simply
i s d e f i n e d by t h e f o r m u l a :
V
where
(5.508)
}=!,...,n,
i
(5.510)
f u n c t i o n s tp ( z ) ( j = l , . . ., 2n) a r e d e f i n e d w i t h j
respect t o
uniquely.
Proof. solution
I t i s clear o f t h e system
that
the set vector-functions
( 5 . 5 0 6 ) . L e t U[x,y)
( 5 . 5 0 6 ) . T h e n i t may b e r e p r e s e n t e d L e t D* b e t h e i m a q e o f £>* u n d e r
(5.509)
is a
be a s o l u t i o n o f t h e system
as i n t h e f o r m u l a
(5.220).
t h e m a p p i n g £~x+\ y, ;"=!,...,2n, a n d }
178
r
be
t h e boundary
conditions ltl=l
D*.
o f t h e domain
Since
(5.484) , (5.485) , t h e f u n c t i o n
one-to-one
onto
t h e boundary
,...,*
a n
satisfy the
If f t } maps t h e c i r c u m f e r e n c e ,
preserving
the
orientation
2n) • According
t o theorem
2.8
(Ch. I I ,
section
f
s
2.6) t h e f u n c t i o n
(9j{£)
may b e r e p r e s e n t e d a s : j_
^T)d7 ( T
" j « > - 2ST ]
r
J
ip ^ ( t )
condition
i s analytic
i n the circle
i n t h e closed
circle
r e s p e c t t o tp^ ( 5 ) u n i q u e l y Substituting
<" > 5
511
and s a t i s f i e s
and
Holder's
( t ) i s defined
with
(5.511)
i n t o t h e f o r m u l a ( 5 . 2 2 0 ) , we
be a s o l u t i o n
I
J T (*)-»-> -c I = t '
of the following
obtain:
5
v ' '
< -
system
5 1 2 1
of equations:
Tt
1
a C +. . .+a C =-a 1 1 r. n the vectors
equations It
'
11 \<1
|t|si,
" < * ' * > - £ 2HT k=l
Since
-
( j - 1 , . . . , 2n) .
|> (£) f r o m
L e t C ,...,C
-g
1
|T|-> where
i ( T )
1
(5.513)
i s clear
a ,...,<* I
n
i s uniquely
ill
n t l n-1
1
(0)-...-a '
W
are linearly
\p ( 0 ) . *»
(S.513)
independent, t h e system o f
solvable.
that:
dv , ( r ) !ni 2rci
] r (z)-x-k i1*1-1 Ti=i J
Therefore t h e equality i
y
2 i r i J e-x-X r.
1
(5.514)
y
( 5 . 5 1 3 ) may b e r e w r i t t e n a s :
f£
C da- fx)
F
(0)dr
(r) (5.515)
1
Subtractinq representation
|TI
=
1
'
'
the relation (5.509),
k = n* 1
(5.515)
0
j
=1
where:
4 (r)=0 (r))
IrI
f r o m f o r m u l a ( 5 . 5 1 2 ) we o b t a i n t h e
Cy
]
C * W j ( T ) - H> ( 0 ) , i
179
j=l,...,n,
(5.516)
j-gn+1., - . . , 2 n .
(5.517)
Now we p r o v e t h e u n i q u e n e s s o f t h e r e p r e s e n t a t i o n
(5.509).
Let U(x,y)=o i n formula (5.509), i . e . Zn
^Ax+\y)*0,
V
(x.y)eD,
a
(5.518)
fca 1
where , tp ( X + A V ) — 77—T *j' s 2ni Differentiating
j IT1-«
0 (T)dy (T) -ly-r i^r , j = l , i (r)-x-A y j
Zh .
(5.519) '
j
b o t h s i d e s o f ( 5 . 5 1 8 ) w i t h r e s p e c t t o x a n d t o y , we
obtain: i n
Y
\9'Ax*X y)'0,
(x,y)«D*.
k
(5.520)
k = 1 in
Y" a A P ( x + A y ) = 0 , k
k =
Let
us
consider
k (
k
(x,y)0*.
k
(5.521)
1
the
system
r e s p e c t t o tp' (x+A y ) ( J t = l ,
of
equations
(5.520),(5.521)
with
, 2 n ) . T h i s s y s t e m may be r e w r i t t e n a s :
Zn
V
S iD (x+A y)=0, k
k
(x,y)eD*,
ii
(5.522)
k= l where
£
k
i s the vector 5.1)
we
(5.210) ( s e c t i o n
provinq
lemma
have
shown
linearly
independent. Therefore, from
5.4) .
that
I n section
the vectors
5.4
1
p
k
(
J
C
+
V
S
0
i 'Y)
'
x
e D
(5.522) *'
h
=
1
(when
e ,...,S
i tfollows -2n.
are 2n
that: (5.523)
Hence: ,
« (x+A y)n=C , k
w h e r e C, a r e c e r t a i n Substituting
k
2n,
(5.524)
constants.
K> (x+A y) k
(X,y)eD', h = l
k
k
from
(5.524)
into
(5.518)
and
(5.519),
we
obtain: Zn
*H -°' C
x
It = 1
1B0
(5.525)
Tm
From
:
( 5 . 5 1 4 ) we
is
(5.527)
C
f
t o theorem
uniquely
X
From
,
d
l
2.8
represented
the
relations
j=l,...,2n.
l e t us
f
J
(
T
=
1
2 N
-
<
5
-
5
2
6
)
)
(Ch.
II,
i n the
s e c t i o n 2.6)
form
( t ) = C
J*
(5.526).
equation
represented
c
the function
Thus,
from
tp(Z)-
(5.526)
k
and
1
' - - - ' and
2
n
-
(5.528)
(5.528)
i t follows
that
i s proved. S i n c e x=x(t)
(5.506) , ( 5 . 5 0 7 ) .
of the curve
r, then
, y=y(t)
t h e c o n d i t i o n (5.507)
as:
lim U(r,y)-g(t), It) w h e r e g (E) = f [ > r ( t ) , y ( t ) ) , Substituting
=
j
(5.510),(5.525)
Lemma 5.6
analyze the problem
is the parametric be
J
i tfollows that:
0j(t}so,
may
•
J
*J
Now
•
Y
1
'J
have: 1
According
I\T)- -A
1*1-1 i 1 _.
the
(5.529)
z=jr+by, z ( t ) =x ( t ) + i y ( t ) .
general
i n t o c o n d i t i o n ( 5 . 5 2 9 ) , we
((x.y)eD'),
ltl=l,
solution
I7(jc,y)
from
the
formula
(5.509)
obtain: *.{X)<JT.(T)
£ e^o +
J"l > j ^ r . : ^ , ' ' J i m
it
/ s e c t i o n 5.8
satisfies
boundary
. we
l i m
formula
J = l
l
| r |«= i
Itl-l-
(5.530)
1x1=4
- , 351 h a v e shown (5.451).
c o n d i t i o n (5.530)
V
- +
*
J3 5 1
1
In
35
that
T T c F I i f 0(z)
Applying
i s the
this
integral
formula,
we
as:
k * , t t i *
(
" a i i
K (t,T)* (T)
|T|=1
181
J
j
+
(5.438),
rewrite
the
2n 2n
+ £
( jV'
> +
U
25T
J
K j t t . ^ J ^ j t ^ ^ J ^ t t ) .
ICI-1.
(5.531]
J - "+ 1
where
r*. ( t ) K
,
(t,r)= J
Tj ( r ) - ?
The c o n d i t i o n
(t)
)
,2«.
j=n+l,
—
(5.533)
T-E
( 5 . 5 3 1 ) may be r e p r e s e n t e d a s : 21
n £
« * (t)+ ^ J
( | ] = F ( t ) , I t 1=1,
J
1 ^ 1
(5.534)
J = n » 1
Where •a F(t)=g(t)->^ ^
It
K (t,z) p (T)dz,
j
)= i
i
l
the circle
side
of this
Therefore
(5.535)
t h a t t h e v e c t o r - f u n c t i o n a $ ( t ) + ...+«
i s clear
1
in
|t|-l.
i
111=1
ItKl,
circle
these
and
a n
,,
T
+
- ••
1 +
n o
: 2
n
* j „ |f ]
n
i
s
a n d v a n i s h e s a t |tl-i™, i n a c c o r d a n c e
functions
are defined
analytic out with
(5.510).
through F ( t ) from t h e condition
(5.534) by t h e f o r m u l a ( c f . [ 1 8 ) , p.136):
lrl =i
Vi=
I
- *h
F
\ Ixl-i
i
^
C h a n g i n g z f o r ^ i n e q u a t i o n ( 5 . 5 3 7 ) , we z
I
V ^ - l f l
J = n t 1
Substituting we
F ( t ) from
-
obtain:
1 I
(5.535)
I
(5.538)
I = 1
into
have:
182
equations
(5.536)
and (5.538),
n
2n
£ • ,* < )~Y J-l x
^
i
^
2TrT
z
k•
I r1 =
1
c t ^ f z ) ^
) = n« 1
H
l k
(z,T># (t)dT*W(ar) K
^ 1
(z,r)*
^ 1
IzKl,
l
(5.539
1
(r)dr+u(z) , I z K l ,
B
(5.540
I t K l
where 1
K
(
,(t, )
.
t
K (t,T)
It | = .
1x1=1
Itl-i From
(5.541)
and (5.542)
* j ( z ) ( j = l , . . . ,2n) j=n+l,...,2n, Hence,
satisfy
i t follows t h e system
i . e . t h ec o n d i t i o n
t h e problem
that
i f analytic
(5 . 539) , (5 . 540) ,
(5.510)
(5.506),(5.507)
functions then
i s reduced
t o t h e system
Fredholm's e q u a t i o n s (5.539),(5.540) i n t h e c l a s s o f a n a l y t i c discussed
i n Ch I I , s e c t i o n s
Since t h e a n a l y t i c (5.509)
are defined
linearly
of
function,
2 . 1 a n d 2.2.
f u n c t i o n s
r e s p e c t t o !7(x,y) u n i q u e l y ,
independent
[5.506),(5.507)(at
solutions
f=0) 1
$(0)-O,
i s satisfied.
and
of
that
t h e number
homogeneous of
of
problem
homogeneous
system
3
( 5 . 5 3 9 ) , ( 5 . 5 4 0 ) ( a t (0=w=0) i s t h e same. T h u s we h a v e Theorem
proved:
5.10. The s o l u t i o n
o f t h e problem
(5.506),(5.507) i s defined
by t h e f o r m u l a (5.509) where ^ ( z ) ( j = l , . . . , 2 n ) of
t h e system
analytic Let
(5.539),(5.540)
i nthecircle
t h e system
i n the class
be c o n s i s t i n g
tp (x+h y ) a n d P ( x + A y ) 2
Without
one e q u a t i o n
+ tpAX+Xj),
t
a n d x+X^y,
o f only
(n=l),
i s d e f i n e d by t h e f o r m u l a :
U(li,m** SX+\Yl
X+X^y
solution
which are
IzKl.
(5.506)
then t h egeneral solution
where
i s thegeneral of functions,
are analytic
z
respectively,
loss of generality,
(5.543)
functions
a t (x,y)eD*, Im^sO, i t may b e s u p p o s e d
V* +A y )=0, 0
2
o
183
with
respect t o
ImX^O.
that: (5.544)
where
(x ,y ) o
i sa fixed
D
U(x,y)
Substituting
point.
from
V ' + V According (5.545) and
t o lemma
i s uniquely
(5.543)
5.4
(section
solvable.
In
one
(5.383),(5.384) Gaseman's the
elliptic i n any
problem
class
of
+
the
,
V > - 251
(x,y)<=D* ;
circle
and x = x ( t ) ,
(5.544),
(5.506),(5.507)
(5.539),(5.540) a t
(5.344)
to
domain.
o f Fredholm's
functions.
The
( t h e problem
Gaseman's Now
integral
solution
problem
l e t us
of
reduce
equations i n the
problem
i s sought as: Mt)
,
) V t w . v 111 -1 f
*,(t)d»
|
T
a
,
0,(t)di,(t)
+ I i n | ?At)-* -x y 111 = i 0
(t)
( t ) - r -
V
, -
,
|t|=l
2
( 5
0
a
2
5 4 6
H (Z ) a n d 0 ( t ) a r e f u n c t i o n s , 2
y (t )=x(t) +A
5
( t ) T - » v ' 0 2 0
which
>
y=y(t)
i s the parametric equation of the contour r
j y
5 4 7
>
are analytic i n
and 0 ( O ) = o ,
(
(t) ,
f '
ItKl,
;
"
0,(t)dr ( t )
151
3
|t|=l
where
equations
connected
t o t h e system
, M *
problem
Poincare's problem
equation
simply
analytic
(5.383),(5.384)
5 . 7 ) , Gaseman's
solvable.
5.7. we h a v e r e d u c e d
regular
obtain: (5.545)
Therefore t h e problem
of integral
a
section
for
( 5 . 5 0 7 ) , we
(x,y)er.
z
a =« =l are also uniquely i
condition
fjx+k y)=fix,y),
+
t h e c o r r e s p o n d i n g system
n=l.
into
I ( t ) = x ( ? ) + * y (t") , g
2
(t=e
1 0
,
0^9=2n) . Substituting equation n=l,
S.11.
Let
^(x+^y)
a n d ipJx+X^)
( 5 . 3 8 3 ) , we o b t a i n
a =a =1,
which
t h e system
i s uniquely
from
(5.546)
and
(5.547)
into
o f equations (5.539),(5.540) a t
solvable.
Examples
D
be
a
simply
connected
parametric equation defined
x+iy=Jj[t+ w h e r e R, n a n d v a r e r e a l
domain
restricted
by
contour
r
with
by t h e f o r m u l a , t=e
l S
,
0=as2n,
constants satisfying
184
the conditions:
(5.548)
\u\
R>0, The f u n c t i o n |tl=l the
(5.548)
one-to-one
and
orientation.
family from
an
1.
We
lul<(l-|fl) .
at the condition continuously
(5.549)
onto
(5.549)
maps t h e c i r c u m f e r e n c e
t h e contour
( a t v=0,
A l l ellipses
of contours
2
If K l ,
05p
I " , and
preserves
are included
i n the
T
differs
equation
i n the
( 5 . 5 4 8 ) . I f |i*0 a n d t>*0, t h e n t h e c o n t o u r
ellipse. consider
Dirichlet's
problem
f o r Laplace's
d o m a i n D: 2-2 + €R ax ay
= o , (X,y)«D,
(5.550)
2
V(x,y)=f{x,y), The
general
(x,y)<=r.
solution
of
the equation
U(x,y)=0
i
( z ) +*l>Az),
w h e r e tp ( z ) a n d 0_,(z)
are analytic
(5.551)
(5.550)
i s defined
by t h e
formula: (X.y)zD',
z=x+iy,
functions with
(5.552)
r e s p e c t t o z a n d z,
respectively. Form (5.509)
the
formula
(5.552)
of the equation
2^1
i t follows,
(5.550) ,
t
I
~
that
the general
(T)da(T)
, +
2nT
w h e r e 6 (Z.) a n d * ( z ) a r e f u n c t i o n s a n a l y t i c 2
:
*
(T)da(T)
—
=
i n the circle
* <0)=0, «(t)=/*(t+ ^ Substituting
U{x,y)
similarly
from
(5.553)
t o equation
"
(
5
"
5
5
3
)
\z\
2
(5.551).
solution
takes t h e form:
] • into
( 5 . 5 3 1 ) , we
I X I -1
(5.555) the
boundary
condition
obtain:
I X | = 1
=g(t),
I t 1 = 1,
where
18 5
(5.556)
Ii
( r
K
l
K
,
T
|
a(T)-a(t)
[t,T)=
_ a(t)-a(E)
2
Substituting
oc(t) f r o m
1 . t - t'
t C )
l =
T c
(5.557) \ ' I
( T >
(5.555)
(5.558) t - t
into
(5.557)
and
(5.558) ,
we
obtain:
K
ft,T) =
^ ( t - i > ) (t-L>) [ r - i > -
jj-r ,
(5-559)
K, ( t , T ) = — ^ • (t-V) ( T - f ) [ r - v - ^ T I t-i>
(5.560)
T
J
U From t h e c o n d i t i o n
(5.549)
i tfollows
that the points
v,
v+
and t-v
U i>+ - — a t l t l = l b e l o n g t o t h e c i r c l e t-f A p p l y i n g Cauchy's r e s i d u e theorem, —U
2711
K (t,r)*
, )
I
1
'
'
1
1
lz[
(r)dr= $ '
i
IT I - 1
obtain
Ji_l
-
((13),
p.S5):
* («) , l t l - 1 ,
(5.561)
*Av)
(5.562)
e-v .
I t 1=1.
1x1 = 1 It
i s clear
By the
virtue
that:
of
(5.561)-(5.563) t h e boundary
condition
(5.556)
takes
form: p(t)
- 0 ( t ) = g ( t ) , I t 1=1,
(5.564)
where
H,ff)
*mIt
i s clear
* i ( - ^ r ] -
t h a t i p ( t ) and ^ ( t ) a r e a n a l y t i c i n t h e d o m a i n s
|t|>l,
respectively,
Hence,
these
formula
-
a n d i/>(t)
functions
(cf.[lB],
i s bounded
are defined
p.136):
1B6
i n the vicinity
from the c o n d i t i o n
of
ltl
and
infinity.
(5.564)
by t h e
'i
( Z )
+
_
*;(
*
"
a
(W) - " ( z ) =
" * i ( - S ^ - )
Z
+ C
"' '
+
C - IzKl. | Z | > 1
'
(5.565)
<
(5.566)
where , 2WT
and
g(t)dt
| I t| =
t-z
<
1
c i s an a r b i t r a r y c o n s t a n t .
C h a n g i n g z f o r —* j i n e q u a t i o n ( 5! . 5 6 6 ) ,
!
* 2
z
)
+
* • ( i-lz
=
]
z l J
we
z ,
,<
obtain:
~
c
-
(5.567)
where
i ^ '
Substituting condition
z=0
into
(5.554),
we
2m
equation
obtain
Jl - z t
(5.567)
* (0)==-C. i
and
taking
Therefore
$
l
account
of the
(2) i s represented
as: 4> ( z ) = Zin ( z ) - C, i
where
p
(z) i s a function
Changing
*
[
(z)
analytic
zip (z)-C
by
(
(5.568)
i
i n the circle
i n equations
|z|
(5.565)
and
(5.567) ,
we
obtain:
zip^
(z) + « ( - _ a
1
Z
] " "¥>,(") " * ( P ) = " ( Z ) + C,
z
a
*
- ~~i^fz
3
From e q u a t i o n
(5.569)
a t z = 0 we
-> Using
equality
(5.571), Z(P,(Z)
Substituting
2
(5.569)
5
»,(-i^b-)-
< -
5 7 0
>
have:
-v*P ( V ) - t ( v ) - w ( 0 ) . T
(5.571)
a
t h e equation u
+
* ( z ) from
-
IzKl,
equation
( 5 . 5 6 9 ) may (
z
187
u
)" <°>-
(5.570)
obtain:
be r e w r i t t e n a s :
i n t o equation
(5.572) (5.572),
we
3 ip ( z ) *V
-
H
'
|
ip
1-(K+I>H)Z
.
/
.
+ (J (z) , I z K l ,
* i ll-(i>+yn)z)
1
2
(5.573)
'
where
z *'
z
1
Since
|ji|<(l-li»l)
and
1-1>Z
IvKl,
1 (. l - f z
)
\u\
then
I t
directly
gives
that: Lii-L^ i-lvl(i+l«l)
*
2
"" - =\ \ (l-li'l)
^llll.
U
(5.574)
(ITIVI)
Hence,
ll-<Xi>J ' l-|,l(lli,1) From
inequality
solved
(5.575)
i t follows
l z | 3 1
that
-
<" > 5
t h e e q u a t i o n (5.573)
575
may
be
by t h e method o f s u c c e s s i v e a p p r o x i m a t i o n s :
(0,(3) = ujz)
+ K[L>Jz))
z
n
+ K ( u > ( z ) ) +...+
K (u (z))
2
+...,
2
(5.576)
where 2 K
,
z
«o < >>^ l - ( ^ f 2
The
series
Substituting and
(5.571)
through
the
equation
converges
as
) z
we
find
and
> ( z ) i
tf (z) ;
problem
(5.573)
in
by
and
(5.551) of
formulae
solution
progression.
(5.568),
I7(x,y)
(5.570)
i s expressed
(5.553). is
reduced
analytic
to
functions,
the
functional
which
may
be
by t h e m e t h o d o f s u c c e s s i v e a p p r o x i m a t i o n s .
Particular ellipse.
case.
L e t t>=0, i . e . t h e b o u n d a r y
r o f t h e d o m a i n D be
an
Then t h e e q u a t i o n (5.573) t a k e s t h e f o r m : ^(ZI-IMP^Z)
The
into
2
the formula
class
.
a decreasing geometric
0 ( z ) . The
(5.550), the
2
" 4 l - l " ^ ) z ) -
^ ( Z ) f r o m f o r m u l a (5.576)
0Az)
Thus,
solved
(5.576)
U
solution
o f e q u a t i o n (5.577)
+u (z).
i s defined
IBB
(5.577)
2
by t h e
formula:
consider Poincare's problem
^
(
x
y
'
)
b(x
| j
i n t h e domain
a(x,y),b(x,y)
satisfying
y)
* ' a%
and
a
It
i s a given
Q
and
Holder's
i s supposed
f(x,y)
condition
5
l "
are given
on I " ,
section
respect the
complex-valued
(x ,y ) o
i s a fixed
o
5 B 1
>
functions
point
i n DuP,
number. that:
5.7 we h a v e r e d u c e d
find
(5.580)
V
2
In
(5.579)
(X.y)eT,
l a ( x , y ) |*+|b(x,y) | *o,
problem:
D:
ay
"(Wo)" where
(5.578)
+ * - g = 0 , (X,7\m,
ax a
U^UAt^Z).
two functions
this
(x,y)er.
problem
p ( z ) a n d iyli(z),
t o z = x + i y and z = x - i y ,
respectively,
t o following
which
Gaseman's
are analytic
a t ( x , y ) e D and
with
satisfying
conditions: pXz)
* # • ( * ) - g(3C.y). ( x , y ) e r ,
(5.582)
fp(0)=0. We
seek t h e s o l u t i o n
z
>°( > = 2nT
.
(5.583)
o f t h e problem
(5.582),
) Irl-i
2rti J | t | , i
(
a(r)-
z
# (t)da(t)
,
(5.583) a s :
(5.584)
o(r
#,(Tlda( (5.585)
where a(t)
0 ( z ) a n d Az) a r e a n a l y t i c
Substituting the
i n the circle
]
i s defined
boundary
(5.5S5), Hence,
by t h e f o r m u l a p (z)
a n d iji (z)
condition
lzl
and # ( 0 ) = 0 , z
(5.555). from
formulae
( 5 . 5 8 2 ) , we o b t a i n
(5.584)
and
(5.585)
into
t h e same s y s t e m o f e q u a t i o n s
(5.566). Poincare's
problem
(5.579),
189
(5.580)
i n t h e above
mentioned
domains
D may be a l s o
reduced
t o functional
equation
{ 5 . 5 7 3)
in
the
class of analytic functions. 3.
L e t now
t h e domain
circumference
IzI=1.
in
IzKl.
thecircle We
suppose
section The
that
We
D'
be
consider
t h e system
(5.506)
5 . 1 0 . H e r e we a r e u s i n g
f u n c t i o n s (5.508),
the circle
Dirichlet's
IzKl
problem
satisfies
r
be t h e
(5.506),
and
(5.507)
a l l conditions of
thenotation of that section.
(5.532) and (5.533)
i nthecircle
D* h a v e t h e
forms:
r (t)l' (t4 j
j-=l
J
~—,
K,(t,T)=
j=l
2n,
n,
|t|-ltl-l,
u t
. .
Kjtt.T)where
u
the constants
2*.
z(z utj
j
and v
are defined
|
Itl=ltl=l,
by t h e f o r m u l a s
(5.262),
(5.263). Hence,
theequality
(5.531) t a k e s
t h e form:
I hv VJ( -i Kv°>] I WM wv'-w '] •
Zn
tj +
+
+
) • I
0
J -n> 1
-g(t),
t-1,
(5.586)
w h e r e f (t) = f (£, i i ) , t = F + i T ) . From
c o n d i t i o n (5.586),
similarly
•
Zn
Y
J-
t o ( 5 . 5 6 5 ) a n d ( 5 . 5 6 6 ) , we o b t a i n :
•j(# (*)-# (*)l+ J
£
J
1
J •
Z
a (# (H Z)-# (0))=u(z)+ j
=71 -
where C i s an a r b i t r a r y
J
J
£7, I z K l ,
(5.587)
1 Zn
u
Vj(
J
Z
1
)
+
£
a
constant
J
*j(*)""*
, ( :
* * ,
C j
1*1 > 1 *
n-dimensional vector,
111 - 1
190
(5.588)
The
equation
( 5 . 5 8 8 ) may be r e w r i t t e n a s : n
£
2n
a tfi (U 2T) )
)
+
^
J
j-1
Putting
|z|
a ^ (z)= j
j
(5.589)
I-n«1
z=0 i n t o e q u a t i o n
( 5 . 5 S 7 ) , we
obtain:
c= -ui(0) . Let
us
expand
[ J - ! , . . . ,2n) ,
w(z) and
into
a
Taylor
eries: CD C
*j{Z)= ^ , k=0
*j(Z)= £
C
z k k
i k
-
=
J
1
z\
j=n + l
£
d z ,
(5.590)
2n,
(5.591)
k= 1
u(z)=
k
(5.592)
k
k=
0
o
k- 1 where V
351
J
f ( t
> ~"~' t
d t
<
V
2WT
111 = i
Expanding
the function
[
k
^Ot -'dt.
111 = i
^ ( z ) ( j n+1,...,2n),
we
used
the
condition
(5.510). Substituting and
(5.589)
z", we
t h e expansions
and e q u a t i n g
(5.590)-(5.593) i n t o equations
the coefficients
(5.587)
o f c o r r e s p o n d i n g powers o f
obtain:
X
V,
J=n* 1
191
V
(5.594)
k
> a H
T h u s , we Theorem problem
+ >
"C
= b ,
(5.596)
fc=l,2,
obtained: 5.11.
I f D*
(5.506),
coefficients
i s the
(5.507)
in
a
function
C
circle
i s defined
Taylor
series
(J-1,2)
are
|Z|<1,
then
the
by t h e f o r m u l a
expansion
defined
by
solution
(5.509),
(5.590), the
of
(5.591)
system
the
where t h e
of
of
the
equations
(5.594)-(5.596). Let
1
,...,a
a
2
,
be
the
matrices A
and
respectively,
with
columns
a , ...,a 1
A_,
and
and n
be the matrices with n»l 2n columns a u ,. . . ,a u and respectively. Since t h e a n a l y t i c f u n c t i o n s * (z) are d e f i n e d w i t h r e s p e c t t o U(x,y) r
uniquely, problem of
then
the
(5.506),
homogeneous
formula
Theorem
(5.506),
linearly
(5.507)
5.12.
Both
(5.507)
(5.595),
i t and
I f D*
independent
independent
solutions
correspond t o l i n e a r l y
problem
(5.509).
linearly
J
is
(5.596),
theorem the
5.11
circle
solutions
of
i s d e f i n e d by t h e
of
homogeneous
independent s o l u t i o n s
in
accordance
with
the
result i n :
lzl
then
Dirichlet's
the
number
homogeneous
m
Q
of
problem
formula: A
2n-rank
A
1
lk
A A
2k
(5.597)
?
Since
lim Jc-*« the
terms of the s e r i e s
equal t o Theorem
det
A
A 1
2
A..
A,
(5.597)
<•
beginning
detAdetA^O,
from
a certain
number k
zero. 5.12
completes t h e r e s u l t s
192
obtained
i n section
5.6.
are
CHAPTER 6. ADDITION TO CHAPTER I
The
results
problem
6.1.
o f t h i s Chapter
(1.1),
Some C o r o l l a r i e s
Let
used
i n chapter I i n studying the
o f Zaidenberg-Tarsky
us c o n s i d e r t h e system
respect
t o
PjtC,
f=l
t; ,W,T)=0, k
real
are
Theorem
of equations:
Pj(5,. with
were
(1.7).
g, (,...,5 .w,r),
variables
polynomials
(6.1) where
k
5 ... ,£ ,(l, T
i n
)(
with
k
real
coefficients. Zaidenberg-Tarsky's condition system
on u
(6.1) w i t h
Using
theorem
a n d z,
establishes
providing
respect the variables
Z a i n d b e r g - T a r s k y ' s Theorem,
statement Lemma
a
necessary
and s u f f i c i e n t
t h e existence of solutions (
i nR e f . [ l )
oft h e
( [ l ) iP 197).
fL .../(L
( p 197-198) t h e f o l l o w i n g
i s proved; 6.1.
C6a
Let
the
components
, M j ) o f t h e system
| i and
r
of
any
solution
(6.1) s a t i s f y t h e i n e q u a l i t y : U ' f (r) ,
where
f(r)
(6.2)
i s c o n t i n u o u s and p o s i t i v e
1TI-»>. T h e n
these
function
components o f t h e s o l u t i o n s
i n R
1
and f(r)-*+m a t
satisfy the inequality:
7
H * C(l +l r l ) , C
where
and
coefficients In the
?
are
some
positive
(6.3) constants
o f t h epolynomials P (j=l,...,g)
accordance
with
t h e scheme
of proof
depending
on t h e
only.
}
o f lemma
6.1 o n e c a n p r o v e
and
of
following:
Lemma
6.2.
Let
,(J,c)
o f t h e system
(£ where
f(r)
components
i s a
the
components
continuous
satisfy
u
(6.1) s a t i s f y function,
the inequality
r
solution (6.2),
1
f ( r ) >0
(6.3) ,
any
the inequality a t r e R . Then
where
c
and ?
these
a r e some
constants, c>0. Unlike If
lemma 6 . 1 t h e n u m b e r
t h e conditions
semi-axis
• then
of
1 i n lemma 6.2 may be n e q a t i v e o n e .
lemmas
6.1
the inequality
193
and
6.2
are satisfied
(6.3) i s a l s o
satisfied
on t h e i n this
semi-axis. Let
v
be
a
natural
( 5 , , . , « ( X )
number.
o f t h e system
the set of
solution
(6.1) s a t i s f y i n g t h e i n e q u a l i t y
We
shall
denote
|T|M» b y
There i s t h e f o l l o w i n g : Lemma 6.3. and
I f t h e s e t £1
t h e component
(6.1)
u
i s positive,
i s bounded
o f any
a t any f i x e d
solution
then t h e following
natural
number
inequality
U * C(l+|Tl) , T
w h e r e C a n d n a r e some r e a l the
u
o f t h e system
( ^ , . . . , £ ^ , ( 1 , 1 )
[6.4)
c o n s t a n t s depending on t h e c o e f f i c i e n t s o f
P ( j = l , . . . , q ) o n l y a n d C>0, i s s a t i s f i e d .
polynomials
P r o o f o f lemma 6.3. L e t t h e c o n d i t i o n s o f lemma 6.3 be s a t i s f i e d . I t is
clear
that
closed,
(S
J*(£j,-•.
t h e continuous
p * n
solution
that
?
U,^« M 2
o f t h e system
,2, . . .)
.li>T)"M:P
A
s
CJ^ i s c l o s e d .
L e t us
t h e s e t £1^ i s b o u n d e d and
reaches
i t s minimum
at a
point
at (5
v
i s clear
k
function i , e
IW
It
v
a t f o r any f i x e d
consider t h e function
] (
...,
?
F^u.rJsCl^. since
3
(6.1) , then
(6.5)
(E^
^v'^v'^V
according
1
i
s
3
t o t h e conditions of
1 eroroa 6. 3 » >0, v
Let us consider
the function
t
#( )=
u 1
/(fV i~'V
)
1=1,2" 0 ( r ) d e f i n e d by
(t-V+1)
+
li(T)=0(-T) The
function
0 (r)
[6.6)
i s a positive
at
t>=l,2...
,
(6.7)
a t t^O.
(6.8)
one and monotony
decreases
i nthe
s e m i - a x i s r^O. Let
now
Let (C,r function
(£ ...,5 rU,t) i r
f-1
be a s o l u t i o n
k
be
the
>M,t)f[i . v
integer
Therefore,
0(r) i tfollows
part from
o f t h e system of
(6.5),
i
(6.1) and r i O .
. Then
v-15r
(6.7) and monotony
and
of the
that: «
2
M = v
0(i'-l)E0(r),
194
(6.9)
i.e. u = 0 ( r ) a t r £ 0. The
inequality
(6.10)
c o m p o n e n t s p and
at
where 0 ( r ) i s c o n t i n u o u s and to
lemma 6.2,
is
proved. Now
we
is
proved
similarly.
(6.1) s a t i s f y
positive
the 1
function
Hence,
inequality
i n R.
(6.4).
lemma
6.3
consider the equation: p
0
p
a (<7)A ~V...+ a (
in
independent
real
on
(6.11)
X, w h e r e a (cr) , . . . , 3 ^ ( 0 - )
variable
variables
tr-l^,
p
r e s p e c t t o t h e complex
polynomials
are
o
EF^.,,.. ,a
and
p
is
a
natural
number
a, a (
Let
the
(i=0(r) ,
Thus, a c c o r d i n g
t h e s e components s a t i s f y t h e i n e q u a l i t y
a (o-)X + with
T<0
r o f t h e system
(6.10)
A (tr),...,
*p<°) be
i
(6.12)
the roots of equation (6.11).
L e t us
suppose
that ReX
(cr) =0,
j=l,...,r,
g e x Ctr)>0, j = r + l , . . . , p , where
r^O
is
an
integer
according t o t h e i r Lemma 6.4. the
following
independent
I f the conditions
Proof. real
Let
and
yeR
1
(
j
imaginary
}
j
parts
j=l,...,r.
p
5 ,
conditions L e t us
of
are enumerated cc
the
(6.14)
on
c.
The
and
(6.14)
roots
are
counted
(6.13)
are
satisfied,
then
1 1
o-sR", j = r + l
p,
(6.15)
a r e some c o n s t a n t s , t a k e s p l a c e .
A ( o - ) = a (cr) + i | J {a) ,
X (°~) ( j = r + l , . . . , p)
From
o-eR",
inequality 2
and
(6.13)
multiplicity.
ReA^fcr) > C l l + l o - l ) , where c>0
n
crsR ,
a>
j=l,...,p, X^ (a) ,
where
i n such
a way
j=r+i, . . . , p - l ,
(6.13)
and
denote:
195
a
}
and
respectively,
and
P
j
are
the
the roots
that:
creR".
(6.14)
we
have
"p^O,
a
j
<
a
p'
a - a
p
= - & * ,
a - a
} - ! , . . . , r ,
2
=5 , J=r+1
(6.16)
p-1,
2
(6.17)
2
7j=o- + .. .+
i s known t h a t
(6.11)
...,X
t h e numbers
(6.18)
are t h esolutions
p
p
P
,
a ( c r ) A + - ( i r ) A " + . . .+a (
for
i
p
o
right
the coefficient
sides o f equation
J
w h e r e f ^ (cr, ^ , . . . , A )
the
real
X =oi^+i(!
j
u
*
6 ,...,8 Now
with
we
(6.21)
with
p
1•
p
This
6.3 i f we t a k e 6.3
a
P )=°r
i
variables,
satisfies
taking
*,<•••« *p with
< T
1
f
r
e
respect
means
that
=
1
2
and equating we
obtain:
P.
(6-21)
tr, ...... er , i ' ' B'
(6.16),
a ,...,n , I ' ' p'
into
complex
complex
variables.
t o t h e group arbitrary
There
i st h e following
Lemma
6. S.
be
I fthe roots
polynomials
L e t these
of variables
p
196
,
applying
n
i
polynomials f
a £a I P
i n variables
O - = ( I T , . . . ,cr ) e R , be
( 3 t . . . , X ) a n d (X
X (a) , . . . , A (tr) j
and
while
symmetric ,...,X ) .
o f t h e v a r i a b l e s o f one group
o f polynomials
c o n d i t i o n s ( 6 . 1 3 ) , (6.14) and
Therefore
of
coefficient,
rearrangement
does n o t change t h e v a l u e
(6.18) , p^,...,fi
T)=<7 +. . . +t7 , i r o f lemma 6.4.
account
( j = l , • • • ,1)
p
with
(6.17),
a l l o f t h e c o n d i t i o n s o f lemma
a n d YI a s j i a n d r , r e s p e c t i v e l y .
X ,..., X a
*,«•-•»*p(6.20)
v a r i a b l e s a^, . . . ,a , o ^ , . . . , a
t o real
l e t ( > * » • • • <* ) J
7
p
i n real
system
and
P
Now j
(6.20)
*,/•••»*p) t o z e r o ,
( j » r + l , . . . , p - l ) , we o b t a i n t h e s t a t e m e n t
cr , . . . , er^,
equation
t h e s e t o f equations
respect
3
i n t h e l e f t and
coefficients.
consider
fi ,.... _,,
Lemma
a ,0
i
, . . . ,tr^,
i n
1
real
k
P *.
into
p a r t s o f f(
are polynomials J
of A
-
*p)=°;
]
(j-l,---,P)
and imaginary w (ir,a
where
o f t h e same p o w e r
arepolynomials
p
Substituting
the
(6.19)
p
( 6 . 1 9 ) , we o b t a i n :
f (o-,A
It
. . .
a n y c o m p l e x n u m b e r A.
Comparing
[
o f equation
i f and o n l y i f :
.
o f equation
(6.11)
satisfy
1
Y
\PA
,* (o))\
* a,
Z
p
VCTER",
J "i then •[
Y
\PA,\
2
(<0.
\ ( f f ) ) |* > C f l + l c l ) * ,
a R\
p
(6.22)
e
J =i 1
where 0 0 Proof.
a n d vsR a r e c e r t a i n L e t us
constants.
denote: W=
Z IV°''V'.'---'V~V if
i
|
3
J
Applying and
(6.23)
Lemma \P(a)
lemma
6.3 t o t h e s y s t e m
6.6. I f P(T)
IP((T) I '
Lemma
6.6
follows
+
[
--- °"n-
(6.16),
6
(6.17),
"
2
3
1
(6.21)
i n real
v a r i a b l e s a , . . . ,a
and
then
p
where C and y a r e c e r t a i n
+
o f lemma 6.5.
i s a polynomial
• • - ,
t
°":
o f equations
we o b t a i n t h e s t a t e m e n t
\ >0 a t
r =
'
2
lemma
(6.24)
C>0.
constants,
from
3
C(l+lcr| ) ',
6.3
i f one
takes
ji=|P(ir}|
2
and
2
r ^ * . . . +0" . i n Let ,z ) =
Q (z
( z -z ) ,
l S q < J S r
w h e r e z^, . ..,z a r e c o m p l e x Let
us denote
A.
I ti s clear
and
only
o
variables.
t h e s e t o f zeros that
i fequality
(z^, . . . , Z ) f
z
=
z
t
(6.25)
'
of t h e polynomial i s a
zero
i s satisfied
v
( L ( Z , , . . , z ) by
of t h e polynomial
f o rcertain
numbers
0, i f g
ft
and
v (Jt*v) . Lemma
6.7.
variables
I f t h e polynomial
z ,
>z , 5 j i • • • < 5
k
P ( z ...., Z ,
satisfies
P(Z ,...,Z , 1
then
i n complex
? ) = 0 a t (z ,,,,,z )«Jl ,
r
k
t
p
e
(6.26)
i t c a n be r e p r e s e n t e d a s : P(z
where
£,...,£)
the condition:
]
z , i r
P ( Z j , • >z i
t
e )-Q (z ,...,Z )P (z ,...,Z , t
o
C j i • • • *£ ) k
r
i
a s
197
o
i
polynomial
r
C,
i n complex
(6.27) variables
z
,
v Proof.
c„From t h e c o n d i t i o n
( 6 . 2 6 ) , we h a v e
P(z Expanding in
z
t h e polynomial
i nt h ev i c i n i t y
2
account,
5
V
e
i
k
,
=
0
a
t
(
W
P ( z ,...,z , ? , . . . , £ ) z^ a n d t a k i n g
of thepoint
i n a Taylor equality
6
-
2
8
)
series
(6.28)
into
we o b t a i n : p
<,
v
z
Substituting equality
Z =z 3
(6.26)
into
i
SfcJ-tvWK
<M
both
i n t o account
Proceeding
similarly
further,
we
z , g r
with
find
of equality
V - < 6.29)
(6.29)
and
taking
we o b t a i n :
P,(z
process
sides
t,
V
e )=0 a t = z .
l
s
Z i
t h e polynomial
P
the representation
(6.30)
a
and c o n t i n u i n g (6.27).
Lemma
this
6.7 i s
proved. Let us consider t h e i n t e g r a l : , f
(
. V
Z
P,(A)dX
« . ( X - z , ) . . . ( X - z
r where
P (X)
g-1,...,k), z ,...,Z i
[
i s a
polynomial
)(X-
g
i
i n complex
r i s a smooth c l o s e d c o n t o u r
variable
6
)... X- (
'
1
3 1
< ' >
V
k
X,
z *Z
(j-l,...,r;
e n c l o s i n g t h e c o m p l e x numbers
and e x c l u d i n g t h e complex numbers ( L , • • * E
L e t u s d e n o t e b y Q(z^, . . . ,z^,
Q{Z
z , e,
l (
• • • , 5^)
«J
the
polynomial
6
= 1 1 (*.-«»)• lSJSr
J
< -
3 2
>
4
There i s t h e f o l l o w i n g : Lemma 6.8. T h e i n t e g r a l
(6.31)
may b e r e p r e s e n t e d a s : P
f(z
z , F
t
( Z ,...,z ,F ,...,P ) ' * . r
£ ) -
«,.«, where with P (X) T
with
P
q
i s a
polynomial
coefficients,
i n complex
depending
and on t h e numbers
variables
only
on c o e f f i c i e n t s
r a n d k,
t h e polynomial
respect t o the group o f v a r i a b l e s :
198
(6.33)
e ) k
z^, . . . , z , o f t h e polynomial P
q
being
symmetric
( z ^ - . - . z ) and (€ ,... ,£ ). t
k
L e t z «z a t j » g ( j , q - l , . . . , r ) . T h e n c a l c u l a t i n g t h e i n t e g r a l J «. b y C a u c h y ' s r e s i d u e t h e o r e m ( [ 1 3 ] , p . 8 4 ) we o b t a i n :
Proof. (6.31)
P(z f
,
Z
.
€
^
.
=
V
0 C,
where Q and Q a r e d e f i n e d polynomial
coefficients and
r
i n
complex
depending
formula
(6.34)
z >z . J q Hence,
(6.34)
and
with
P ^ X ) a n d o n n u m b e r s It
,...,z , g ,...,€ ) -
P{z^,...,z
P
q
of
,? ,...,S ) ]
the condition
i n t h e form (6.33)
(6.27). (i'q;j,
f , i t follows Since
i s true
t h efunctions
variables
has a l s o t h i s
derivatives
(z
] (
a t any
2,...,2.
f and Q a r e symmetric w i t h
...,z )
feature.
and
defined
by t h e formula
(1.1) i s r e g u l a r ,
o f any order
[ l j , . . . , £_) ,
f a s t e r than
a polynomial
From t h e f i r s t
condition
i n
the
respect then
the
Lemma 6.8 i s p r o v e d .
with
then
respect
(1.12) ( c h . l
i t s matrix
elements
t o a , . . . ,
increasing
of
a t z *z J i
(6.33)
1.1). I f t h esystem
their
satisfies
>
t h e representation
Lemma 6.9. L e t u [ ( T ) b e t h e m a t r i x
Proof.
(6.35)
From t h e c o n t i n u i t y o f t h e f u n c t i o n
(6.33)
t h e group
polynomials
section
z , £ ,...,£ ) ,
i t c a n be r e p r e s e n t e d
(6.27)
follows. the equality
representation
and
>
and P i s
Z.,,..,? .
F )Q ( z ,....z ) Q ( z
6.7. T h e r e f o r e ,
q=l,...,r)
to
and (6.32),
3 4
g*j. t h epolynomial
lemma
that
(6.25)
variables
6
' '
we h a v e :
= f ( z ,...,z , £
From
E ) EJ-
on t h e c o e f f i c i e n t s o f
P(z
of
€
0
only.
From
at
f
by t h e formulae
Q
a
z
z ) (z,
0
are
not
n
a t lirl-w.
(1.4) (Ch.l,
section
1.1) i t f o l l o w s
that detUfo-JA w h e r e a^fcr)
+ B(cf)) s a ( i T ) A
p
Q
(Jc-0,-..,p)
+ a (tr) A "' +. . . + a p
f
are c e r t a i n polynomials
Thus t h e c h a r a c t e r i s t i c e q u a t i o n
(1.3) (Ch.l,
p
(cr) ,
(6.36)
a n d a ( c ) » 0 , Vo-eR". o
section
1.1) t a k e s t h e
form: a (o-)A
p
p
+ a ( c ) A "'+. . .+ a ( < r ) - 0 .
o
Let
A j ( o " ) , . . . i *p(°")
b
e
t
(
n
e
roots
of equation
199
(6.37) and
(6.37)
ReA ( o - ) * 0 , j - l , . . . , r , Hex It
i s known
(6.37)
(o-)>0, j = r + l , . . . , p ,
[1), that
satisfy
the roots
X Jo)
VcreR",
(6.38)
VtreP.".
(6.39)
(j=l,...,p)
P|a«r)l ^ | (o-)l' h =I °
IX^cOlsH-
'
a
i
=
n
Since
o f the equation
the inequality
a ( c ) * 0 a t oeR , t h e n f r o m lemma 6.6 we o
1
p
-
(6.40)
have:
|a (u) I a C(l+|iTl V ,
(6.41)
o
w h e r e C>0,
yep' a r e c e r t a i n c o n s t a n t s .
From t h e i n e q u a l i t i e s
(6.40)
and (6.41)
we h a v e :
7 s
\XJo)\ It
should
r(0")
i s
be n o t e d
an
1
that
arbitrary
N
Cjd+lo-l' )
, (T6R ,
i n the integral
smooth
closed
we
fixed
choose
natural
(1.12)
contour
S j i * ) *:• • • / i y t i r i ( b u t e x c l u d i n g t h e r o o t s Now
j—l,...,p
j
(Ch.l,
domain r e s t r i c t e d
by t h e s t r a i g h t
section
enclosinq
1.1)
the
roots
(IT) , . . . , A (o") . p
t h e c o n t o u r r ( o " ) a t |cr|< c, w h e r e
number. L e t us d e n o t e
(6.42)
V
i s an
arbitrary
by G line
t h e f i n i t e , s i m p l y connected 1 J T ReX= ^ C ( l + t > ) a n d by t h e p a r t
2 " i
of
circumference 2
1
IXI=2C (1+v )
lying
i n
the
half-plane
7
ReXs^C{l+i> ) ° ,
where
C,C
y
]
y^
and
are constants
from
(6.15)
and
(6.42). Let
us denote
From T (o")
t h e b o u n d a r y o f t h e d o m a i n G^ b y P .
the inequalities
(6.15)
and
(6.42)
From (6.42)
the definition i t follows
i t follows
that
t h e contour
a t |tr|< v.
may b e r e p l a c e d b y t h e c o n t o u r r of contour
and t h e i n e q u a l i t i e s
(6.15)
and
that:
IX-X^crJI
£ ie(l+V*)
T
a t Xsr^,
|cr|si>, j = l
p,
(6.43)
y 1*1 From t h e i d e n t i t y det
!
1
£ 2CJl+f )
( 6 . 3 6 ) we
a t Xsr^.
(6.44)
have:
MfD-JX+Bfo-) ) = a ( c r ) ( X - A ^ c r ) ) . . . (A-A (tr) ) o
200
(6.45)
From
(6.41),
( 6 . 4 3 ) a n d ( 6 . 4 5 ) we
obtain: 2
Idet (X[c) A+B(cr))\*CAl+v where t h e c o n s t a n t s
and »
4
V
t
)
at Xs^,
\:ff[
(6.46)
d o n o t d e p e n d o n A, cr a n d v,
a n d C >0. (
Let V-\S\9\s» Then
taking
(1.12)
and
the contour
applying
as
(6-47)
the contour
the inequalities
r(cr) i n t h e
(6.44) ,
(6.46)
and
integral
(6.47) ,
we
o b t a i n t h e s t a t e m e n t o f lemma 6.9. Let
P(cr) b e a r e c t a n g u l a r
polynomials (Ch.l, denote
i n real
section
variables
1.1), C
(r*m) m a t r i x , cr ,...,<£
t h e elements
o f which are
a n d w(cr) i s t h e m a t r i x
i s m-dimensional
identify
matrix.
(1.12) L e t us
t h e s e t o f a l l p o s s i b l e m-dimensional minor determinants o f t h e
matrix:
v*>4/?W' b y AJ
v
6 4b
4 (tr).
L e t t h e n e q u a t i o n ( 1 . 1 ) be a l s o r e g u l a r w i t h r.
<- >
e j , n
Then t h e r e
the order of regularity
i s the following:
Lemma 6.10. I f
then •A
AJtr)
w h e r e C>0 a n d i Proof. (1.3),
|iC(l+lcrlV.
are certain constants.
L e t A (tr) , . . ., Ap (cr) (
be t h e r o o t s
since equation (1.1) i s regular,
inequalities
(6.50)
(6.38) and
According the equality
of characteristic
then these
roots
equation
satisfy the
(6.39). (6.45)
a n d lemma 6.8, t h e m a t r i x CJ(CT) may
represented as:
201
be
(°-,\ to") U(Q-)
=
^
*„(»))
.,M8,W
'
(
•
6
-
5
1
)
where 0 (0-)=
n
(X ( c r ) - X { t r ) ) ,
(6.52)
13 j a r
r * J 3q£p and
u (cr,X , ..., A ) i
which
i
p
are polynomials i nvariables
CJ (tr,A ,...,X
)
(>,.-•*.*) From
i s m-dimensional
i s symmetric
—v-
representation
A (cr) , . . . , A (a) 3
(6.51)
square
matrix,
ov,,..,
with
respect
i t follows
t h e elements p
t o t h e group
that
of
and t h e m a t r i x
t h e minor
o f variables
determinants
c a n be r e p r e s e n t e d a s :
q
•A (°->=
. • • ,q,
where
oy ,..,
-
X
, (""l
(
(6-53)
are
p
( A , . . .,A ) a n d (A
also
with
polynomials
respect
i n
t o t h e group o f
*(*p)•
)
From c o n d i t i o n
a
^
and a r e symmetric
f
variables
P
"
( 6 . 4 9 ) we h a v e : •i Y
\AA
* 0, 0-6R".
(6.54)
A ( c r ) ) \ r 0, D-eR".
(6.55)
I =i
From
(6.53)
a n d ( 6 . 5 4 ) we o b t a i n : q
Y
I * " , («•/*, («")
Z
p
)=i Hence, a p p l y i n g
lemma 6.5 we o b t a i n :
q
Z
p
' j
2
!
A ( c r ) } | > C ( l + lo-|') , o-eR". p
s
(6.56)
S i n c e a (o-) i s a p o l y n o m i a l , t h e n we h a v e : Q
2
|a"(cr) I s C ( 1 + | ( T | ) 6
w h e r e C >0 a n d y a r e c e r t a i n c o n s t a n t s . 6 p From i n e q u a l i t y ( 6 . 4 2 ) i t f o l l o w s t h a t :
2 02
S
,
(6.57)
2 *7
\QAv)
I * C (l+|o-r) 7
.
(6.58)
w h e r e C* >0 a n d if a r e c e r t a i n c o n s t a n t s . T
From
( 6 . 5 7 ) a n d ( 6 . 5 8 ) we h a v e : 1
6
2 C (l+lo-l*)
7
From e q u a t i o n ( 6 . 5 3 )
i t follows
that:
q
q
'-v ")' —^—^—; 0
y~
2
latter
inequality
y l a (o-)Q (tr) | 4 i
' The
and
if.to-.x.to-)
p
the inequalities
(6.50).
(6.56)
Polynomial
us c o n s i d e r t h e f o l l o w i n g
A
tit
* y~ ' B
0
( ) ) i s the solution i s sought
c
dt and r k
Let
of equations:
t
>
(6.60)
'
0
t o be f o u n d .
i n t h e class
M.
The s o l u t i o n
The c l a s s
M
of
the
includes t h e
y ( t ) , satisfying t h e estimates: d"y(t
where C
provide the
Equations i n t h eClass o f
system
system function
(6.59)
Growth
Y=(Y (£)<•••.y (6.60)
and
Lemma 6.10 i s p r o v e d .
Functions with
l
s
x„c
J
6.2. S y s t e m o f O r d i n a r y D i f f e r e n t i a l
Let
(6.59)
s C^tl+ltl)
, t = 0 , Jp=0,l, . . . ,
-
are certain constants. k
us c o n s i d e r a system
o f equations o f t h e form: dz ee, s i ) h -1 c-—
dz 5T
-W
L
%*r
203
=
k
2
fr-
(6.62)
k-1 Z
where
u ,..., o ]
k
=^a
and
p
B
Z
J
j
a^
m,
k=p+l
r
are
(6.63)
given
complex
Rep aRe« 2 . . ,£Rep , a n d z ( t ) .... ,Z ( t ) e M i s t h e s o l u t i o n 1
2
a
The
system
canonical The
1
(6.61),
constants.
t o be f o u n d ,
a
(6.62)
and
(6.63)
will
be c a l l e d
a
system
equation: det(\A+B)=0
is
called
(6.60) .
the characteristic
L e t t h e complex
(6.64)
equation
constants
(6.62) and (6.63) s a t i s f y
p
] (
corresponding
...,p
t o the
i n t h e system
p
p-r,
(6.65)
Rep SO, j = p - r + l , . . . , p . Then t h e r e Indeed
(6.61)
are exactly r linearly
l e t r < p . Then
i sdefined
Rep >0 i
(6.66) solutions
i n t h e class
and t h e g e n e r a l s o l u t i o n
independent
o f equation
by t h e f o r m u l a : z^Cexpfp^) ,
where c It if
(6.67)
i s an a r b i t r a r y c o n s t a n t .
i sclear and o n l y
(6.62)
system (6.61),
the inequalities: FCM > 0 , J'=l
M.
of
form.
we
that
the function
i f C^O,
obtain
z =C e x p ( p t ) ]
i . e . z^o.
similarly
[
[
belongs
Substituting
z^tj^o,
t o t h e class
z^O
j=l,2,...,p-r.
into
the
Thus,
H,
system
t h e system
(6.62) t a k e s t h e f o r m :
=K Z ' k
dt"
Since (6.68), and
Rep^O
at
=
M
k V
fc=P-r+li
K
a
) kjV ]"p-r*l
fc-p-r+1,...
,p,
f t =
P-
then
t>0,
r + 2
has e x a c t l y
r linearly
2 04
(6.69)
of the
system
(6.61),
(6.62)
t h e system
independent
M.
t>0.
a l l solutions
( 6 . 6 9 ) b e l o n g t o t h e c l a s s H. T h u s ,
(6.63)
P-
(6.6B)
solutions
i n t h e class
The case r = p i s o b v i o u s . Now we s h a l l
show t h a t i f det(X^+B)*0,
the
system
(6.60)
c a n always be reduced
(6.70)
t o the canonical
form.
There i s t h e f o l l o w i n g : 6 . 1 1 . I f d e t (AA+B) *0
Lemma
characteristic
equation
and U , . . . , u
are the roots
p
]
of the
(6.64), then there i s• l i n e a r transformation: y=Cz
modifying (6.63),
t h e system
where
o r d e r m, Proof.
(6.60)
(6.71)
t o t h e canonical
z-(z (t),...,z (t)),
C
]
form
i s a constant
(6.61), square
detc*0. L e tus
c o n s i d e r t w o cases:
Case 1 . L e t detA*Q.
Lemma 6 . 1 1 f o r t h i s c a s e i s p r o v e d
Case 2. L e t detA=Q.
Then t h e e q u a t i o n :
i n[ 2 2 ) .
aA=0 has
a
non-trivial
solution
(6.72)
n = ( i i ,...,ot ) . 1
vector
(6.62),
matrix of
a i s considered
I n equation
as a v e c t o r - l i n e .
0
of a . a 2 3 1 0 . . 0
0
0
1
. . 0
0
0
0
. . 1
1
A = i
Multiplying
both
sides
the
To be d e f i n i t e , l e t u s assume
Then l e t us c o n s i d e r t h e square m a t r i x o f o r d e r
a
(6.72)
ID
of equation
(6.60)
m:
from
the left
ofthe
matrix A , we
obtain:
V And
it
+
A
B
y
=
°>
c > 0
-
since: d e t lAMfAJ3)=astijSet
205
(A\+B)
(6.73)
then t h econdition
(6.70)
implies: det
From
equation
[A^X+A^B)
(6.72)
(^jlA+^BJsO.
i t follows
(6.74)
that
i s e q u a l t o aB. T h e r e f o r e , f r o m
the first (6.74)
row
of matrix
we h a v e :
ctB*0, and
first
e q u a t i o n o f t h e system
(6.73)
takes t h e form:
bj =0,
fc y +...+ j
(6.75)
(6.76)
m
i
( b , ...,b )-aB a n d a t l e a s t o n e o f t h e c o m p o n e n t s o f t h e v e c t o r l ia tb , . . . , & ) i s n o t e q u a l t o Zero. L e t b *0. Then from (6.76) we 1 rr. m obtain: where
b Y = - -sr-Y -• . . 'm b 'l Substitutinq system with
y
from
(6.77)
( 6 . 7 3 ) , we o b t a i n constant
characteristic system
coefficients equation
Theorem 6.1.
this
S-^y b n-l /
1
t h e remaining
of ordinary
with
of this
(6.60). Continuing
Lemma 6 . 1 1 i s p r o v e d .
solutions
into
a system
b
respect
system process,
to
coincides we
equations
differential
shall
obtain
I f d e t ( A A + B ) * Q , t h e n t h e number o f l i n e a r l y (6.60)
i n t h e class H i s equal
roots of characteristic equation
(6.64)
Now we c o n s i d e r C a u c h y ' s p r o b l e m
r
equation
t h e case 1 ,
independent t o number o f
(6.60): (6.78)
,...,« ) i s a g i v e n c o n s t a n t v e c t o r .
lit b e t h e m a t r i x d e f i n e d b y t h e
2ni J r where
The
ofthe
w i t h ReA^O.
f o r t h e system
y(0)=«.
Let
that
T h i s lemma r e s u l t s i n :
o f t h e system
w h e r e amfat
ofthe
equations
¥,,--•,¥,• with
(6.77) '
i s closed (6.64)
contour
with
formula:
(.4A+B) ^dA,
enclosing a l l the roots
ReA^O a n d e x c l u d i n g t h e o t h e r
There i s t h e f o l l o w i n g :
206
(6.79)
of characteristic roots.
Theorem (6.60), is
6.2.
Let
(6.78)
solvable
d e t (.4A+B) I O .
has o n l y
trivial
i n the class
M,
Then
Cauchy's
solution
i f and o n l y
homogeneous
problem
and t h e non-homogeneous i fthe vector
one
a satisfies the
condition: (E^Under t h i s
condition
u)a=0.
the solution
(6.78) i n t h e c l a s s H i s d e f i n e d y(t)-
(6.80)
o f non-homogeneous p r o b l e m
(6.60),
by t h e f o r m u l a :
^ j(AX+B)- Aae d*. ,
I
(6.81)
Xt
r Proof. taking
A p p l y i n g Laplace's
the condition
transformation
( 6 . 7 8 ) i n t o a c c o u n t we
t o t h e system
(6.60)
U A + B ) Z ( A ) = . 4 a , ReA>0, where 2(A) i s Laplace's
and
obtain: (6.82)
transform: a
Z(A)=|exp(-At)y(t)dt,
Re>0.
o F r o m e q u a t i o n ( 6 . 8 2 ) we
have:
Z ( A ) = ( A A + B ) " Aa, 1
where A Let
...,7l ,
Re>0,
A^are t h e r o o t s o f c h a r a c t e r i s t i c
]
a=0,
then
The f i r s t
part
f r o m e q u a t i o n ( 6 . 8 2 ) we
o f theorem
6.2
(6.83)
p
equation
obtain
Z(A)=0.
(6.64). Hence,
y(t)=0.
i s proved.
Let ReA^sO,
. . , r , (6.84)
ReA^>0, Reducinq (6.63)
t h e system
and s o l v i n g
equation
(6.60)
j=r+l,...,p.
t o the canonical
i t s t e p b y s t e p we o b t a i n
(6.60) which belongs
form
that
(6.60),
any s o l u t i o n
(6.62), of the
t o t h e c l a s s M can be r e p r e s e n t e d a s :
y ( t ) = ^ P (t)exp(A t) , t
k =i
207
k
(6.85)
where P ( t ) a r e c e r t a i n m-dimensional
vector-functions,
(
which
are polynomials
Applying
Laplace's
t h e element
of
i n t . transformation
(6.85)
t o formula
we
obtain:
k=1 where
j-i c o n s t a n t s a n d q^ a r e n a t u r a l
b^-are It
i s known t h a t t h e f u n c t i o n
means o f L a p l a c e ' s
inverse
From
(6.86),
formulae
follows
numbers.
y ( t ) may
be e x p r e s s e d
t h r o u g h Z ( A ) by
transformation:
f
y(t)=
where a i s an a r b i t r a r y
k
p o s i t i v e number (6.88)
(6.88)
exp(At)Z(A)dA,
([13],
and J o r d a n ' s
p.499). lemma
([13],
p.
439)
i t
that: y ( t ) - JJIJ
(
where r i s t h e c o n t o u r o f f o r m u l a (6.83)
S u b s t i t u t i n g Z(A) from
exp(At)Z(A)dA,
(6.89)
(6.79).
into
(6.89)
we
obtain:
f e x p ( A t ) (^A+BJ^^ddA.
y(t)=
(6.90)
r Substituting
t= 0 into
boundary c o n d i t i o n Hence,
Let (6.90) t=0
the condition (6.60),
problem
into
(6.90)
(6.90)
we o b t a i n
(6.80)
and t a k i n g
the equality
i s necessary
into
account
of the
(6.80).
for solvability
of the
(6.78).
the condition satisfies
formula
(6.78),
(6.80)
t h e boundary we
be
satisfied.
condition
obtain:
208
Then
(6.78).
the
vector-function
I n fact,
substituting
y (O) = wet Substituting solution
of
Cauchy's
y ( t ) from
the
system
residue
vector-function
(6.90)
into
(6.60).
theorem
(6.91)
(6.60)
we
Calculating
([13],
y ( t ) belongs
a. find
the
p.84),
t o t h e c l a s s M.
that
y ( t ) i s the
integral
we
(6.90)
find
that
T h e o r e m 6.2
by the
i n proved.
Let q « Then
the
equation
(6.80)
rank(E with
- u) •
(6.92)
respect
a
to
1
has
exactly
Ji=m-q
n
linearly i n d e p e n d e n t s o l u t i o n s . L e t a,...,a be t h e s e s o l u t i o n s ) i J y ( t ) = ( y ( L 3 t S Hd 2S 2 r | (6.60), ( 6 . 7 8 ) i n t h e c l a s s H a t a-a. S i n c e y ( 0 ) = = a [ j - 1 , . . . , k) Independent,
independent. solutions shall
Thus,
of
prove
the that
the we
solutions have
equation any
y(t),...,
(6.60),
which
of
y ( t ) are k
constructed
solution
belong
equation
also
linearly to
(6.60)
the
Let
linear
y ( t ) be
us d e n o t e the
is a
solution
o f e q u a t i o n (6.60)
y ( 0 ) = n . According t o t h e theorem
condition
(6.80).
I x
C 1'
From
'
the vector a
Let
satisfies
(6.93)
are c e r t a i n constants.
the solution
i t follows that
the
vector-function:
o f homogeneous p r o b l e m
Thus, a c c o r d i n g t o t h e f i r s t p a r t
y(t)=
the
y(t). y{t)eM.
h
k C y(t)
5>(t)= y ( t ) - C y ( t )
Thus,
We the
k
(6.93),
solutions
and
+. . .+ C^ct,
1
is
H. to
Hence: a = C*
where C
6.2,
class h
combination of the solution y ( t ) , . . . ,
an a r b i t r a r y
linearly
independent
belonging
1
c l a s s H,
are
k
1
linearly
and
system
(6.60)
i n the class
i C y(t)
has
k
(6.60),
of theorem
(6.78)
6.2
we
i n the class
h a v e
k +. . .+ t y ( t ) ,
exactly
M.
209
k=m-q
o
M.
and
(6.94)
linearly
independent
According solutions is
to
theorem
o f t h e system
t h e number
of roots
6 . 1 , t h e number (6.60)
i n theclass
of characteristic
of
linearly
independent
M i s e q u a l t o r , where r
equation
(6.64)
with
ReAsO.
Hence K = r a n d q= So
m-r
(6.95)
we o b t a i n :
Lemma 6.12. T h e r a n k o f t h e m a t r i x E -w i s d e f i n e d ranK(E -
u ) = m-r,
a
where r i s t h e number o f r o o t s
by t h e formula: (6.96)
of characteristic
equation
(6.64)
with
ReA^Q. Now we c o n s i d e r
t h e equation
(6.60) w i t h boundary
condition:
P y ( 0 ) = S, where
P
i s a
given
8 = 1 6 ^ , . . . , B^) i s g i v e n
rectangular
i nt h eclass
matrix
r-dimensional
T h e o r e m 6.3. L e t d e t ( J A + B ) s O . solvable
(6.97) of
vector
The p r o b l e m
dimensions
(rxra)
and
constants. (6.60),
(6.97)
i s uniquely
M, i f a n d o n l y i f : E -u D
rank
(6.98) P
Proof. the
Let the condition
problem
consider
(6.60),
(6.97)
(6.98)
be s a t i s f i e d .
We
f o r any B i s u n i q u e l y
shall
prove
by s o l v a b l e .
t h e system: (E -(j)c(=0,
(6.99)
|>
Pa=B, Let
that
L e t us
us use P
determinant equivalent
J
t o denote
of t h e matrix
(6.100)
t h e s e t o f rows E -u.
Then
included
t h e system
i n t h e basic (6.99),
minor
(6.100) i s
t o t h e system ; PfO,
(6.101)
Pa=S.
(6.102)
210
From c o n d i t i o n
(6.98)
i tfollows
that: P
det
Therefore the
t h e system
system
Now
(6.99),
we
shall
(6.101),
(6.100) solve
*0.
(6.102)
i s also
the
(6.103}
i s uniquely
uniquely
system
solvable.
Hence,
solvable.
(6.60)
with
Cauchy's
boundary
condition: y(o)=tr, where a i s t h e s o l u t i o n o f t h e system Since a s a t i s f i e s
the condition
(6.104)
i n the class
defined
by t h e f o r m u l a
follows
that
condition problem We
(6.60),
solution
of
Cauchy's p r o b l e m
From e q u a t i o n s
6.2,
(6.100)
proved t h e existence
uniqueness
t h e homoqeneous
(6.60),
has a s o l u t i o n and
i . e . the solution y ( t ) satisfies
T h u s we
the
(6.100).
then
t o t h e theorem
(6.97) i n t h e c l a s s
now
(6.99),
(6.99),
according (6.90).
Py(0)=S,
(6.97).
prove
H,
(6.104)
(6.104), i t the
boundary
of the solution of the
M.
of
the
problem
solution.
(6.60),
Let
(6.97)
y ( t ) be
i n the class
the M,
then: Py(0)=0. Since
y (t)
according
i s the
solution
t o t h e theorem
of
6.2, we
(6.105)
equation
(6.60)
i n the
(E -u)y(0)=0. From
the
condition
the
trivial
(6.98)
H,
(6.106)
n
(6.106) has o n l y
class
have:
i t follows
solution,
that
i . e . y(0)=0.
the
system
(6.105) ,
From t h e u n i q u e n e s s o f
s o l u t i o n o f cauchy's problem i t f o l l o w s t h a t y ( t ) = 0 .
Now l e t : (E^-CJ)
= m <
ra.
a t 6=0
has
rank P Then
t h e system
A = ( a ,...,a ) .
Let
(6.99), us
(6.100)
consider
the
system
a
non-trivial
(6.60)
with
solution Cauchy's
condition: y(0)
211
= o
(6.107)
a
Since (6.107) this
solution
From the
satisfies
by
(6.100)
solution.
has
(6.107)
problem
T h e o r e m 6.3
a
(6.99),
solution
Cauchy's
problem
( C f . Theorem
(6.60).
6 . 2 ) . We
denote
( a t 8=0)
(6.60),
i t follows
(6.97)
i n this
that
Py(0)=0.
Hence,
case has a
non-trivial
i s proved.
Certain Estimates f o r Solutions o f Ordinary Differential in
At
M
y(t).
and
homogeneous
6.3.
the condition
i n the class
E q u a t i o n s System w i t h
a Parameter
the Class of Functions of Polynomial
first,
we
consider
one
equation
of
Growth
first
order
with
constant
coefficients: - Ay = f{t),
^
t>0,
where A i s a c o m p l e x number a n d f ( t ) in
t h e s e m i - a x i s t ^ 0 and s a t i s f i e s
lf(t)l and t
Here
t
integer. of
are c e r t a i n
The s o l u t i o n
functions satisfying
The g e n e r a l s o l u t i o n defined
i s a f u n c t i o n which
i s continuous
the estimates:
- C,(l+t) \
tsO.
c o n s t a n t s , C >0 ]
(6.109)
and r
y ( t ) o f e q u a t i o n (6.108)
i s a
non-negative
i s sought
i n the class
]
the inequality: y(t)
is
(6.108)
T
I - c(i+t) ,
of the equation
tiO. (6.108)
(6.H0) i n the indicated
class
by t h e f o r m u l a :
y(t)=-j
exp(X(t-x) )f (i)dr
a t ReA>0,
(6.111)
i t
y ( t )=Jexp(A(t-T.) ) f ( T j d r + a ^ x p f A t )
a t ReA^O,
(6.112)
o where a
t
i s an a r b i t r a r y c o n s t a n t .
Substituting (6.109)
t-0
into
and t h e f o r m u l a e
formula
(6.112),
( 6 . 1 1 1 ) , (6.112)
212
we
obtain
a =y(0). ]
From
i tfollows the estimates:
l y ( t ) IsC^C l l + (HeA)
|(l+t)
C
and r
t
constant Let
0
( f f ) —
p
o
f(tr,t)
(T ..... cr l
inequality
(6.114)
(6.109)
and C
is
a
i s f u n c t i o n which and
t
equation:
(6.115)
p
a (c)*0,
to
t t O , ReAaO,
p . , +--•+ a { c r ) y = f ( c r , t ) , E>0, ITCH",
d
a (cr) a r e polynomials
o
and
from
now t h e d i f f e r e n t i a l
+ a,(g>
where a ( c ) , . . . ,
(6.113)
o n jr o n l y .
us c o n s i d e r
a
+ly(0)l,
are the constants
f
depending
t £ 0 , ReA>0,
1
V ly(t) (•CjCjfl+t) where
\
i n
i n real
variables
u
] (
... ,cr , n
a
(F"((r .... ,u )«R ,
i s infinitely differentiable
the
domain
eeO,
and
with
respect
satisfies
the
n
estimates: T | f / f (c,Z) | s c ( l + t ) k
where Let
and
are certain
y^sO i s a n
integer. equation:
]
p
p
+ a (cr)A ~
o
corresponding
t o equation
us suppose
+...+ a ( c ) ,
treR",
p
(6.117)
(6.115).
that:
RcA (cf)>0, j
where r does n o t depend on There
1
i
Re* ( t r ) i O ,
j=l,...,r,
n
(6.118)
creR",
(6.119)
ceR ,
J=r+l,...,p,
rjfR".
i s the following:
Lemma
6.13.
Let the
the conditions
satisfied
and
infinitely
dif ferentiable
domain
(6.116)
A ( o ) , . .., Ap(«r) be t h e r o o t s o f c h a r a c t e r i s t i c a (cr)X
Let
constants,
6 " ( l + lcr|)
solution with
t * 0 , ireR" a n d s a t i s f y
(6.116),
y(tr, t ) respect
of to
t h e estimates:
213
(6.118)
the ff-fffj,..
and
equation . ,0)
(6.119) (6.115)
and t
be be
i n the
^DgYia.t)
* a .{1*1*1*)
I
IP^£y(fr,t) I «
t>A
y(
Then t h e s o l u t i o n
, creH", I J t l ' O , j * 0 , o-eR", t = 0 , I f c l ^ O , j M .
(1+t)'
satisfies
the
w h e r e d^, T Proof.
k
and
5^ a r e
* 2
'(l+lcl )
k
IJr|£0, j * 0 ,
(6.122)
constants.
E q u a t i o n ( 6 . 1 1 5 ) may b e r e w r i t t e n
as:
•%M*)r«'i'M>
(it where I i s i d e n t i t y
(6.121)
estimates:
1 ( o , t) I i d ( l + t )
I D^D^y
(6.120)
(- ) 6
123
operator.
Let us denote:
Then e q u a t i o n
(6.123)
becomes: ||
From
the
inequalities
- f(c,t). (6.120)
(6.125)
( a t |R|=0)
and (6.24)
we o b t a i n
the
estimate: 2
T
n
I (lr (cr, 0) I i C ( l + l o - | ) , From
the
estimate
(6.125)
a t any
#(cr,t)
satisfies
(6.121)
fixed
i t follows that
ceR™ s a t i s f i e s
t h e inequality
d e p e n d e n c e o n t h e s i g n o f ReA Using these estimates
[
(6.126)
the
solution
the inequality (6.113)
or
(6.110).
(6.114)
^/(
a t X=A (cr)in i
(
and t a k i n g i n t o
account o f (6.15),
(6.42) and
( 6 . 1 2 6 ) , we o b t a i n :
|^(cr,E)| We p r o c e e d known. lkl=0,
similarly
Continuing
J (1+t)
with equation
this
j = 0 . From t h i s
s C
process,
8 0
,
(6.124),
we o b t a i n
0 1
.
assuming
the
sd
0 J
(l+t)
|fl(cf,t)
estimate
p r o o f , i t i s easy t o d e r i v e t h e 1
\D*j(
a
( l + l-r[ )
t o be
(6.122) a t
estimate:
S 2
"'(l+lcrl )
214
0 )
, j i O , creR", t * 0 ,
(6.127)
where d
o j
, r
o
j
and S
Differentiating
arecertain
gj
both
side
constants.
of equation
(6.115)
with
t o
respect
i
obtain: dz
dP"'z
p
a
°
( l T ,
dr7
' ^'""'dtT"
7
+
" '
+
a
p
(
i
r
)
Z
™
f
t
(
f
f
,
t
>
'
t
>
0
' '
T e R
6
"'
< -
1 2 8
)
where
Since
f (tr, t )
(6.127),
then
and
y (IT, t )
f (
If (cr,t)l Using for
satisfy
satisfies
t h e estimate ay_ dv t h e f u n c t i o n da
-= C
the
estimates
(6.116)
and
t h e estimate:
2
(1 + t )
° (l+|cTl)
( 6 . 1 2 9 ) we s i m i l a r l y Continuing
this
0 Z
,
n
t i O , (reR .
(6.129)
obtain t h e estimate
(6.127)
process
we o b t a i n t h e e s t i m a t e
l
a t a n y h= ( k
(6.122) Let
t h e equation
be t h e o r d e r Let
k ) . Lemma 6.13 i s p r o v e d . ( 1 . 1 ) be r e g u l a r and p be a c c u m u l a t e d
of regularity
us c o n s i d e r
f o rthis
t h eequation ^((T)^
where y=(y
Since equal
B(a)
and
equation
n
t h e matrices
and r
i s regular
from
t o be
(6.130) equation
( 1 . 1 ) and
found.
and t h e accumulated
order i s
t o p, t h e n : det(^(cP)A<-B(cr))s a (o-)A n
w h e r e a (cr) ,...,
a p
Q
i°i
a
r
p
+ a
Q
There
i st h e following:
Lemma
6.14. I f y ( u , t )
component
y (c,t) k
i
( < r ) + . . . +
a (c) ,
crefl",
i s the solution (k=l,...,m)
equation:
215
of
(6.131)
p
c e r t a i n p o l y n o m i a l s i n tr^,...,
e
" (ir)*0,
any
order
section 1.1).
o f t h e form:
i sthesolution
(6.130)
(Ch.l,
* B ( c r ) y = o , t > 0 , rX6R ,
are
(
equation
and: (6.132)
o f t h e system this
solution
(6.130),
then
satisfies
the
a.(ff)
p
where a ( ( r ) , . . . ,
1
p
from
p
Let A ,
,
:
A
be
t>0,
r
VeR",
(6.133)
p
a (u) a r ethe polynomials
Q
Proof.
a A
£ * a (cr) — — i d t d t ~ '
D
different
(6.131).
roots
of
the characteristic
q
equation: p
a (cr)A o
at
f i x e d neR a n d According
may
be
t o the canonical
system
systems.
a (tr)=0
t h e canonical
o f these
6.2),
equation
forms
(6.61),
h a s t h e same c h a r a c t e r i s t i c
Solving
(6.134)
p
arethe m u l t i p l i c i t i e s
t o lemma 6 . 1 1 ( s e c t i o n
reduced
canonical
v
3
+ a^trJA* "'
system
(6.130)
equations
o f equations
we
B
y (a,t)
-
k
where a
arecertain
kjr
From
formula
(6.133).
proof
Lemma
6.15.
infinitely
Lemma
with
t erp(A t),
(6.135)
3
y (cr,t) s a t i s f i e s t h e equation k
i n R e f [ 2 3 ] . From
lemmas 6.13
y(a,t)
of
respect
(6.120),
t h e system
t o or ,...,<* (6.121),
(6.130)
is
a n d Wt, t£0, ueR",
then
i t satisfies the
(6.122) . 6. 16.
I f t h e system u(c,t),
Substituting
( 6 . 1 3 0 ) we f i n d
then
t h e elements
by t h e formula
(1.65)
(Ch.l,
S d ^ l l t t j ^ t l + k l " )
the matrix
u(cr.t)
from
n
t i O , cr R . 6
(1.65)
into
(6.136) equation
t h a t u(cr,t) s a t i s f i e s t h i s equation, i . e . •4(0-)^°^-
identity
(1.1) i s regular, defined
estimates:
I D V U ^ . C ) !
The
r
k ; r
that
I f the solution
d i fferentiable
1.3) s a t i s f y t h e
Proof.
t h a t any
follows:
of t h e matrix
section
a
o f lemma 6.14 i s q i v e n
s a t i s f i e s t h e estimates
estimates
u^lVft)
find
(6.130) i s :
independent on t .
i t follows
6.14 i t i m m e d i a t e l y
and
as t h e i n i t i a l
- 1
£
constants
(6.63) and
Lemma 6.14 i s p r o v e d .
Another and
(6.135)
a t fixed c
(6.62),
component y ( f , t ) o f t h e s o l u t i o n y(o-,t) o f t h e system v
root.
(6.137)
1
* B ( c r ) ( j ( c r , t ) = 0 , t > 0 , creR".
means t h a t
every
216
column
of t h ematrix
(6.137) u(o-,t)
is
a solution
of the equation
Calculating t at
by Cauchy's r e s i d u e any f i x e d
treR
1
U
t
Hence u ( t r , t )
theorem
satisfy
\D D "LI
elements
(6.130).
u(cr,£) a n d i t s d e r i v a t i v e s w i t h r e s p e c t
t
a d
1
satisfies
see t h a t
Let
, B{a)
1
'
'
'
'
satisfy
the inequalities
and P(tr) be t h e m a t r i c e s
(6.136).
Parameter
from
equation
the following
system o f a l g e b r a i c ( E - w(o-) )a
equations:
=0,
(6.138)
P(cr)cf - b, b = ( b , . . .,b ) ]
(tr) . . . . ,a
a(c)=(a
( 1 . 1 ) and t h e
c o n d i t i o n s ( 1 . 7 ) r e s p e c t i v e l y , a n d u(
Let us c o n s i d e r
where
and (ir,t)
t h e c o n d i t i o n s o f lemma 6.15, t h e r e f o r e , t h e
o f t h e m a t r i x cj(tr,t)
A(a)
u
(cr) ( 1 + t ) * , t i O , treR" 1
kl<
6.4. on a S y s t e m o f A l g e b r a i c E q u a t i o n s w i t h a
boundary
t o cr , . . . ,a
t h e elements
t h e estimates:
(c,t)l I ,
[ 1 3 ] , we
(cr))
is
given
(6.139)
i—dimensional
i s the solution
t o be
constant
vector
and
found.
a
1
B e l o w we s h a l l
analyze t h e character
o f dependence o f s o l u t i o n a ( c )
on t r . There i s t h e f o l l o w i n g : Lemma 6.17. I f t h e e q u a t i o n
( 1 . 1 ) i s r e g u l a r and IE
-u(c)l
rankl then of
t h e system
this
system
(6.138),
(6.139)
is infinitely
c^,..., tr a n d s a t i s f i e s
°
p ( £ r )
1= m, treR ,
i s uniquely
differentiable
(6.140)
s o l v a b l e . The s o l u t i o n with respect
a
t o variables
the estimates: 1
|D^a(tr)l Proof.
Since
regularity we
t h e system
of this
system,
:
5 C (l+|frl' ) h
l k l ? 0 , treR".
(1.1) i s r e q u l a r then
according
have:
217
and
r
(6.141) i s the order
t o lemma 6.12
(section
of 6.2)
(6.142)
r a n k ( £ - w(u})= m-r, crsR Let rows
tr be any f i x e d point i n R and O ltr) n
Q
of t h e matrix E -
w(ir)
be a m a t r i x w i t h those m-r
g
which a r e l i n e a r l y
independent
a t cr=cr , g
i.e. (6.143)
ranJriJ (£r ) = m-r. 0
From ( 6 . 1 4 0 ) ,
(6.142)
o
and (6.143)
i t follows t h a t :
fl
((X )
det
Since
the elements of m a t r i c e s
r e s p e c t to cr , . . . , c r , from (6.144)
det
P(
(6.144)
•o.
fi (cr) 0
it
*0
and P(cr)
a r e continuous with
follows:
a t Icr-cro \
(6.145)
where e i s a s u f f i c i e n t l y s m a l l p o s i t i v e number. From the c o n d i t i o n (6.133),
(6.139)
(6.14 2)
and (6.14 5)
t h a t t h e system
f! (cr)a =0,
Itr-c^Ke,
(6.146)
P(cr)a - b,
\
(6.147)
o
in
i t follows
i s e q u i v a l e n t to the system of e q u a t i o n s :
g
the v i c i n i t y of the point cr o
From (6.145)
i t follows t h a t the system ( 6 . 1 4 6 ) ,
(6.147)
s o l v a b l e and the s o l u t i o n i s i n f i n i t e l y d i f f e r e n t i a b l e
i s uniquely
w i t h r e s p e c t to
a , . . . , cr i n the v i c i n i t y of the point c eR". It set
i s c l e a r t h a t i n s t e a d of the matrix of
rows
of
the m a t r i c e s
independent a t the p o i n t From the c o n d i t i o n
E -u(ir)
I p
J
and P(cr) ,
o
n
e
c
a
n
which
choose any are
linearly
o-cr .
(6.140)
g
and lemma 6.10 ( s e c t i o n 6.1)
it
follows
t h a t the matrix n,(c) may be always chosen to s a t i s f y the i n e q u a l i t y :
det
=
C(l+lu l)*, o
where C and r are c e r t a i n c o n s t a n t s independent on cr , (C>0) .
218
(6.148)
Since of
fl (o-) 0
i s a sub-matrix of the matrix
6.9
(section
lemma
6.1)
i s true
(j(cr) , t h e n t h e s t a t e m e n t
f o r t h e elements
of matrix
!) (cr)
too. Solving into are
t h e system
account
we
independent
that
(6.146),
obtain
(6.147)
o n c r . As cr (6.141)
the estimate
a t
(6.141)
i s an a r b i t r a r y p o i n t
o
the estimate
and t a k i n g
the estimate
o f R", n
i s satisfied
f o r a n y creR .
(6.148)
C
and »
i t follows
Lemma
6.17 i s
proved. Remark
to
everywhere, of
lemma
are
6.17.
the condition i q t h e p o i n t s cr, . . . ,
excluding
Let
(6.139) q
(6.140) Then,
n
6.17, i t c a n b e p r o v e d
(6.138), i points
lemma
that
be as
excluding
n
c r , . . . , cr, a n d i n t h e v i c i n i t y
i n t h e case
t h e s o l u t i o n d(o-) o f t h e s y s t e m
d i f f e r e n t i a b l e i n R,
is infinitely
satisfied
of i n f i n i t y
the
t h e e s t i m a t e s (6.141)
satisfied.
6.S.
Reduction of a Matrix with
Analytic
E l e m e n t s t o a D i a g o n a l Form
Let
b(cr) be
e-vicinity
an a n a l y t i c
of the point
function
c=cr
b(tr)iO,
real
variable
a
i nthe
(creR , O^ER' ) , i - e. :
b(cr)=\
If
of single
1
o
jj-^-{c-a )>,
Icr-o^Ke.
o
i t c a n be r e p r e s e n t e d , i n t h e
vicinity
(6.149)
of
the
p o i n t CT
Q
it ,
b ( C r ) = ( c r - , ) ' b (tr) (
w h e r e g^O of
multiplicity)
are
now
o
and
b^cr^io.
The
(cr) i s a n a l y t i c
number
o f zero o f t h e functions
a (cr)
be
a square
analytic functions
(6.150)
]
i s a non-negative integer,
the point
Let
o
matrix
q
d e t a ( c r ) * Q at
cr^c^.
t h e elements
o f which
o f t h e p o i n t cr=cr a n d o
0
deta(ir )=0.
219
the order (or
b(cr) a t t h e p o i n t
o f o r d e r m,
i n the vicinity
in E-vicinity
i s called
o
(6.151) (6.152)
Then t h e r e Lemma
i s t h ef o l l o w i n g :
6.18.
non-degenerated analytic
In
the
square
vicinity
of
where n
]
((T)a(cr)Di (o-)=diag((o-(7 )
n +n +..,+n I i i s the multiplicity n
d i a g ( (cr-cr ) (tr-cr )
6.6.
of
zero
m
are with
System o f A l g e b r a i c
B(tr)
.4(cr),
a n d (j(cr)
equation
(6.153)
o
integers,
-n , • o
(6.154)
o f d e t a (cr)
(cr-cr ) " i s t h e d i a g o n a l .
o=
a t the point
Q
( 1 . 1 ) be
The p r o o f
with
t h e elements
of this
lemma
c a n be
t h e problem
(1.1),
i n the
Functions
a n d P(<J~) be
matrix
S.l.
Equations
Class o f Generalized
Let
2
there
o
order
( o - - t r ) ") ,
i s t h e diagonal
i n R e f . [ 3 4 ] , Ch. 8, s e c t i o n
(1.7)
of
n
' , . . . , ( 0 — 0 ^ ) ')
o
found
cr
point « (c)
'
o
2
n a r e c e r t a i n non-negative a
1
n
and
elements so t h a t t h e m a t r i x
a ]
and
the
a (cr)
matrices
be
t h e matrices
t h e matrix regular
(1.12)
and
r
be
from
(Ch.l,
section
t h e order
of
1 . 1 ) . L e tt h e regularity
this
equation. Let
us consider
t h e f o l l o w i n g system o f a l g e b r a i c
equations:
(E_-u(cr) ) K = 0 ,
(6.155)
P(cr)K=L, where
L=(L ,...,L) ]
generalized Here
i s
given
and
(6.156) K=-(7 ,. . . , V ) j
v e c t o r - f u n c t i o n from t h e class
S'
i s
an
unknown
(FeS', L E S ' ) .
i s t h ef o l l o w i n g :
Theorem
6.4. L e t t h e s y s t e m
regularity
r . The s y s t e m
( 1 . 1 ) be r e g u l a r
(6.155),(6.156)
with
i s uniquely
t h e order solvable
of i f and
only i f :
[E -u(cr)1 rankl Proof.
p ( ( j
.
}
= m, CTER .
Sufficiency. Let the condition
220
(6.157)
(6.157) be s a t i s f i e d
and l e t
the
solution
o f t h e system
functions,
where
the
(6.138),(6.139) b
vector
i n the class
of
ordinary
has
the form (1,0,...,0),..., J J J b y a (cr) ,. . . ,<x (o-) («(c) = (« (
( 0 , ... , 0 , 1 ) , be d e n o t e d
l
1
According defined
t o lemma 6.17
u n i q u e l y and s a t i s f y
*
r
6.4) t h e v e c t o r s a (a) , . .. ,a (cr)
(section
are
t h e estimates (6.141).
Let r
(o-JL^
(6.158)
J-i It
is
easy
to
see,
that
7
solution
of
the
system
(6.155),(6.156)
i n the
(6.155),(6.156). Now
l e t us
class
c o n s i d e r t h e homogeneous
of generalized
CI (cr) b e t h e m a t r i x
functions.
with
those
problem
L e t
be
g
m-r
rows
a
fixed
point
of the matrix
i n K " and
E -U(CT)
o
which
ft,
a r e l i n e a r l y i n d e p e n d e n t a t t h e p o i n t cr From t h e e q u a l i t i e s ( 6 . 1 5 7 ) a n d ( 6 . 1 4 2 ) o
we
have:
SI (cr ) det
Since with
t h e elements
respect
to
«0.
of the matrices
Si (ir) 0
(6.159)
and
cr= [cr , . . . ,a ) ,
the variables
P(ir) a r e continuous
then
from
(6.159)
we
obtain: fi (cr) 0
*0,
det
I cr—cr l i e ,
(6.160)
F (cr) where c i s a s u f f i c i e n t l y Let it
V be t h e s o l u t i o n
i s obvious, that
small positive o f homogeneous
i tsatisfies
number. problem
(6.155),(6.156)
(! (cr) v = o .
(6.161)
o
F-(Q-)
From t h e c o n d i t i o n
(6.160)
Hence, t h e s o l u t i o n
V=0.
i t follows 7(ir)=0,
is
(6.162) that:
|cr-c Me.
(6.163)
V o f t h e homogeneous s y s t e m
equal t o zero i n t h e v i c i n i t y
Then
t h e system:
o f a n y p o i n t cr sR o
221
(6.155),(6.156)(L=0) n
T h e r e f o r e , 7=0.
Thus, system
the condition
Necessity.
(6.157)
Let the condition
o
(6.157)
solvability
of the
functions.
be v i o l a t e d a t a c e r t a i n
o c = ( a , . . . ,aj
and t h e c o n s t a n t v e c t o r
the
provides t h e unique
(6.155),(6.156) i n t h e class of generalized
be a
i
non-trivial
point
solution of
system: (E_-td(
(6.164)
o
P(tr )a=0.
(6.165)
o
Then i t i s easy t o check t h a t t h e f u n c t i o n a l :
V=tx& is
a non-trivial
is
Dirac's delta-function.
Now
o
s o l u t i o n o f t h e system
Hence, t h e c o n d i t i o n solvability
(
(6.157)
o f t h e system
(6.155),(6.156),
w h e r e S (cr-tr^)
i s necessary and s u f f i c i e n t
( 6 . 1 5 5 ) , ( 6 . 1 5 6 ) . T h e o r e m 6.4
l e t u s c o n s i d e r t h e homogeneous s y s t e m
f o r unique
i s proved.
(6.155),(6.156):
(£ -u(o-) ) K = 0 ,
(6.166)
P(o-)K=0, where
V—(V
, . . . ,Y )
i s t o be f o u n d , and l e t us f i n d
finite Let
vector-function
belonging t o the class
S',
CD
1
which
i s a
(6.167)
number o f l i n e a r l y t h e system
the conditions
independent s o l u t i o n s
( 1 . 1 ) be r e g u l a r
with
which
forthis
provide
a
system.
the order of r e g u l a r i t y r .
Then h e r e i s t h e f o l l o w i n g : Theorem least, has
infinite
Theorem have
6.5.
a t one
a
L e t n^2 point
a, o
number
necessary
and s u f f i c i e n t
excluding
a finite 6.7.
independent
linearly
of satisfy
number o f p o i n t s
I f
excluding
(6.156),(6.157)
of
n=l
and
a finite
(6.157)
t h e homogeneous
I f n = l , f o r t h e homogeneous
finite
Theorem
the condition
then
number o f l i n e a r l y
6.6.
everywhere,
and
the
system
independent the condition
(6.166),(6.164) t o solutions, (6.157)
i t is
everywhere,
1
condition
(6.157) 1
i n R,
i s s o l v a b l e f o r any v e c t o r - f u n c t i o n a l
222
at
i n R.
number o f p o i n t s
1
violated,
(6.166),(6.167)
solutions.
P r o o f o f t h e o r e m 6.5. L e t n*2 a n d t h e c o n d i t i o n a t t h e p o i n t tr = (tr , ... ,u ) , i . e . : o 01 On' ' r
be
system
is
satisfied
t h e n t h e system £ from
(6.157)
S'.
be v i o l a t e d
r
Let
(l (o-)
be t h e m a t r i x
6.4).
Then
from
o
(6.166),
a
n
k
"p{tr ) j * -
chosen,
the equality
(6.167)
m
{
while
proving
(6.142)
i n the vicinity
(6.168) lemma
i t follows
of the point
c
o
6.17
that
(section
the
system
i s equivalent
tothe
system: 0(17)7=0, w h e r e <. i s a s u f f i c i e n t l y
Itr-c l=e,
(6.169)
o
small positive
number,
fl(o-) =
(6.170) P(o-) ,
From t h e i n e q u a l i t y
(6.168) i t f o l l o w s det
The
solution
of
t h e system
concentrated a t the point
that:
£l(o- )=0.
(6.171)
o
(6.169)
i s sought
as
a
functional
a, i . e . g
Y^
V=
C
D
„ "
S
(°~-
(6.172)
0
0 S | k | Sq
It
i s clear
(6.172)
that
satisfies
V
i f vector-functional
t h e system
(6.169),
defined
i talso
by
the
satisfies
formula
t h e system
(6.166),(6.167). Substituting
V from
(6.172) i n t o
system
( 6 . 1 6 9 ) we J
j(l(o- )C D'fi(o--cr )+ o
l
where
j-(j
can
derive
defining
IjK l ' l I a
linear
}
are certain
constant
square
m.
independence
from
(6.173)
o
, . - . , ] ) , I j 1 = j , * J +- - • * j • \
matrices of t h e order Using
^ CD a((r-(r )j=0,
o
OiUMq
obtain:
equation
of the set of functionals ( 6 . 1 7 3)
the following
h
{D S ( t r - o ) ,
system
o
of
one
equations
t h e v e c t o r s C^s 17.(0^)^=0, Cl(iT )C + o
lkl=q, a
(
M
22 3
u} i > a m0
(6.174) l k l <
*'
(6.175)
where B In
are c e r t a i n constant square matrices of t h e order
B J
equation
indices
;=(j,,
ii
Let
(6.175)
be
summation
i s carried
out with
U
t o the
J J .
t h e number
j-(j
of those points
n
nq
integer
m.
respect
1
non-negative
coordinates
j +. . . +j - g .
and
) t B , which
are of
I t i s clear
that
n
-*+<» a t g-»+co, n£2. nq
Since det ti(iT )=0, o
(6.174), ones. the
there
equation
L e t us exclude t h i s
system
greater
t h e number
, . . . ,k ),
j
\k\=q
n
linearly
equation
(6.174),(6.175)
than
k=(k
a t every fixed
i s one
depending
from t h e system
t h e number
of
o f e q u a t i o n s by
the remaining
(6.174).
constants «
i n t h e system
on
to
. Thus,
Hence, i n
be
found i s
theorem
6.5
is
proved. Proof at
o f theorem
infinite
6.6.
number
non-trivial
of
L e t n = l and t h e c o n d i t i o n
(6.157)
be v i o l a t e d
points
Let
denote
cf=f
(j=l,2,...).
us
B _ - U ( € ) \a = 0 ,=
'•>>}"
(6.176)
°'
(
I P(€j)« = 0 , 1.1
b y a=\a , t
(6.177)
I
. . . ,a I
It
i s clear
linearly Let
that
now
the condition
2
solution
vicinity
the vector-functional
i n d e p e n d e n t and s a t i s f y
f L * $ j ,
the
s o l u t i o n o f t h e system:
of
concentrated
( 6 . 1 5 7 ) be v i o l a t e d
V o f t h e system
at
o f t h e system
i t c a n be p r o v e d
the point the
o^.
)
v=aS ( t r - t ^ )
(j=l,2,...)
are
(6.166),(6.167).
at
(similarly
a
finite
number
t o theorem
6.4)
of that
(6.166),(6.167) i s equal t o zero i n the
Hence,
points
the solutions
£ , P ,...,<; .
of
this
Therefore,
system i t
can
are be
r e p r e s e n t e d as: 1
7=K
2
q
*• V +...+
V,
(6.178)
]
where point for
the
vector-functionals
f ^ . S u b s t i t u t i n g V from
any f i x e d
j
(j=l,2,...,q),
P(j-1,2,...,q) (6.178)
into
we o b t a i n
224
i s concentrated
t h e system
t h e system:
a t the
(6.166) , (6.167)
(£_- u>(u) )V = 0 ,
(6.179)
I P(V)V
= 0.
Let us denote t h e m a t r i x b u i l t proof the
6.4 b y Qlg),
o f theorem
point
0"-?^- T h e n
following
(6.180)
similarly
t o t h e m a t r i x El O) g
t h e system
i n the
0
b u t i n s t e a d o f t h e p o i n t
we t a k e
i sequivalent t o t h e
system: 1
PjOJF
=0,
(6.181)
where
F
,
i
a
)
' [ p U )
}•
(
6
-
1
8
2
)
J when
deriving
equation
(6.181),
we t o o k
into
of V
account
being
c o n c e n t r a t e d a t t h e p o i n t f. . According
t obuilding
a^tr);
of thematrix rnnkQjte,)-
Since
t h e elements
o n tr, t h e n
from
of t h e matrix
m-r.
(6.183)
£!, ( o )
a r e continuous
functions
J
( 6 . 1 8 3 ) we o b t a i n :
rank(II (
number.
( 6 . 1 4 2 ) a n d ( 6 . 1 8 3 ) we h a v e :
r
at
small positive
(6.184)
a
n
k
IE - u ( < r ) | { "p(cr) "
r
-
n
(!) (o-) 1 * P ( f f ) j-rtnKPA*)
1«.183)
Icj-F^lse Above,
i t was s u p p o s e d
only a t t h epoints
that
t h e condition
• • • >5 - T h e r e f o r e f r o m q
(6.157)
was
detP (e )=0, )
(6.186)
|
detP (tf)»0 a t 0 < l o — F , K c , j
j
1-1.3 According
t o t h e lemma
6.18 ( s e c t i o n
225
violated
( 6 . 1 8 5 ) we o b t a i n :
(6.187)
q. 6.5), i nt h e v i c i n i t y
of
the
point
£_ ^
there
exist
non-degenerated
a n a l y t i c e l e m e n t s , so t h a t one has a
matrices a
the
(IT)
j t
and
a
( < T ) P ( t r j c t ^ l c r ) = d i a g [ ( r - f : ) J !., ( t r - ^ )
fi
j
t
| I T - ( ; |«e, w h e r e n , . . . , n are c e r t a i n J )i Jm n
+n Jl
j 2
(cr),
with
equality:
,
j
(6.188)
non-negative integers
+
+n
and
=n , J- )
J2
(6.189)
n^ i s t h e z e r o o r d e r o f d e t P ^ f c r ) a t t h e p o i n t t ; ^ . Substituting
7=a {F)l/
(6.190)
) 2
in
t h e system left
(6.181)
and
by
matrix
from
the
into
a c c o u n t , we
the
multiplying a
both sides of equation
and
taking
the
(6.181)
equality
(6.188)
obtain:
«.
:
fcr-e ) " W = 0 , g = l , . . . ,m, J
J
w h e r e W-f^, From
. . . ,¥_) .
(1.190)
concentrated As
(6.191)
J
i t follows
at the point
that
the
vector-functional
W
is
also
S; .
i t i s known, t h e s o l u t i o n
o f t h e system
(6.191)
i s defined
by t h e
formula:
*v
C
( ( r
S
~V
9
'
=
1
(
6
.
1
9
2
)
t>=o where C
are a r b i t r a r y constants.
qf Substituting
obtain
that
( c | = l , . . ., m)
eq.(6.181)
from
at fixed
J =0, t h e n W = 0 . Jq q (6.192) i n t o e q u a t i o n
I f n
; has
exactly
a
j
linearly
(6.190),
we
independent
solutions. J Substituting j=l,...,g exactly So,
into
the
( 6 . 1 7 8 ) , we
n '11^+. . . +n j
we
solutions (6.157)
solution
derived
the
obtain
of that
the
formula f o r the
at
system
t h e system
l i n e a r l y independent
of t h e system i s violated
V
finite
number
226
at has
solutions.
number
of
linearly
( 6 . 1 6 6 ) , ( 6 . 1 6 7 ) a t n = l and a
(6.179),(6.ISO) (6.166),(6.167)
of
points
independent
when t h e £
condition .
Theorem
6.6
i s proved.
Proof
of
theorem
T h e o r e m 6.6
cr=o,
point
6.7.
f o r t h e case
For
simplicity,
of violation
only
prove
of the c o n d i t i o n (6.157)
we
shall
at the
i.e. : rank\ m~ °' )= I P(f7) E
L e t T,(cr)ec"(P.')
u{
m a t (N^,<x*0.
l
(6.193)
>
be
r?(cr)=l
a t Io-11_,
7i(cr)=0
a t |cf|£e,
where e i s a s u f f i c i e n t l y s m a l l p o s i t i v e number. L e t us c o n s i d e r two systems o f e q u a t i o n s : I
(B - «(©•)) r-o, I P(tf)K=(l-
(6.194) T,(cr))L, 2
(£ - u(
1
1
, ..., V )
(6.195)
functional
Since
belonging
1-T) (tr) =0
2
are
m-dimensional
vector-
.•
t o t h e c l a s s S',
at
which
a r e t o be
found,
and
L is
(1.156).
|cr|s |
and
the
o f t h e sy r stem
solution
T|(0-)L,
, . . .,V ) L
side of equation
particular
2
V= [V
and
m
1
the r i g h t
2
1
Y=(V
=0
2
P(CT)P- =
where
)F
V=\
c o n d i t i o n (6.193)
i s satisfied, a
(6.194) i s :
a(cr) (l-n(o-) J l y
J
w h e r e ct (cr) ( j = l , . . . ,m) Proving the
theorem
system
system
are the v e c t o r - f u n c t i o n s from
6.6,
(6-191).
of equations
we
have
reduced
Similarly, of the
we
t h e system
reduce
the
(6.158). (6.179) ,(6.180)
system
(6.195)
to
to the
form: D *
where
W
, . . . ,V
functional It
from
i s easy
are S'
J
"j=9j<
functions
and
to verify
n ,...,n that
to
J
be
=
1
m
found,
are c e r t a i n
the particular
227
<
(6.196)
and
a,
. . .
non-negative solution
of
are
given
integers. the
equation
(6.196)
i s defined
by t h e formula:
v"y(
(6.197)
k=0
It
i s clear
that
V is
the solution Definition.
Fourier M
transform
i s defined
o
Theorem
of
(6.155},(6.156) It are
should sought
Proving the
solution
( 1 . 1 ) be
1
from
that
regular,
R.
Then
S' . T h e o r e m
a l l solutions
also belong
i f L
6.8 s t a t e s
the formula belongs
t o t h e same c l a s s .
228
the
finite system
Q
that
6 . 6 a n d 6 . 7 we h a v e c o n s t r u c t e d
that
of
a
F(M ) .
o
From
and t h e
0
t o t h e c l a s s F(M ) under t h e assumptions
follows
i f i ta
( t h e class
perhaps,
t h e s o l u t i o n s o f t h e system
( 6 . 1 5 5 ) ,.(6.156) .
Q
M
n=l,LeF(H )
everywhere excluding,
belongs t o t h e class
be n o t e d
theorem
system
immediately
cr
F(H ) ,
t o the class
1.1)).
be s a t i s f i e d
i n t h e class
belong also
t o the class
o f a function f belonging
points
(6.198)
( 6 . 1 5 5 ) , ( 6 . 1 5 6 ) . Theorem 6.7 i s proved.
i n (Ch.I,section
(6.157)
2
+ V
f u n c t i o n a l V belongs
6 . 8 . L e t t h e system
condition number
o f t h e system
The
1
- V
to
(6.155),(6.156) these
solutions
made.
a l l the solutions of
o f these class
solutions,it
F(M ), O
thus
the
References
1.
G.E.
Shilov,
(Russian). 2.
G.E.
Mathematical
Dukopolov,
equations
on
witch
Math. S b o r n i k
boundary
constant
solution
general
Second
special
course
value
problems
coefficients
f o r
differential
i n half-space
(Russian).
5 9 ( 1 0 1 ) No.2, 2 1 5 - 2 2 8 , 1 9 6 2 .
3. S. Agmon, A. D o u g l i s for
Analysis.
Moscow, 1 9 6 5 .
a n d L. N i r e n b e r g ,
of elliptic
boundary
value
partial
Estimates
differential
conditions,
near t h e boundary
equations
I . Comm. p u r e
satisfying
Appl.
M a t h . , 12,
623-727, 1959. 4. A.L.
Pavlov,
On
equations with Sbornik
103(145),
5. V.P. P a l a m o d o v , coefficients 6. W.L.
8. N.E.
Sbornik,
( R u s s i a n ) . Math
367-391, 1977.
differential
Elliptic
systems
Linear
partial
equations
operators
with
constant
in
the
plane.
London,
San
differential
operators.
Springer,
and
functions
of
equations
growth
(Russian)
Math.
o f boundary value problems f o r p a r t i a l
i n half-space
i n the class o f generalized
( R u s s i a n ) . S i b e r i a n M a t h , j . v o l . 2 3 , 171-1B5, 1987.
Kosheleva,
differential [Russian).
polynomial
( 1 0 ) , 185-212, 1986.
Tovmasyan, C o r r e c t n e s s
functions
systems o f
on h a l f - p l a n e i n t h e c l a s s e s o f g e n e r a l i z e d
1 3 1 , ( 1 7 3 ) , No.2
differential
T.M.
Linear
for differential
Tovmasyan, Boundary v a l u e p r o b l e m s f o r n o n - r e g u l a r
functions
10.
No.3,(7),
problems
i n half-space
H e i d e l b e r g , New Y o r k , 1 9 6 9 .
differential
9. N.E.
value
M e l b o u r n e , 1979.
Hormander,
Berlin,
boundary
( R u s s i a n ) . Moscow, " N a u k a " , 1 9 6 7 .
Hendland,
Francisco, 7. L.
general
constant coefficients
General equations
boundary in
Differentsialnie
value
class uravnenya,
1984 .
229
of
problems generalized
vol.20,
No.10,
systems
of
functions 2138-2147,
11.
S.L. S o b o l e v , Izvestia
12. R.A.
On a new p r o b l e m
o f mathematical
AN SSSR, s e r i a m a t h , v o l . I S ,
Alexandryan,
Sobolev-type
Cauchy
problem
differential
No.l,
and
physics
special
equations system
(Russian).
1954.
mixed
problem f o r
(Russian). Trudi
Moscow
M a t h . Soc. v o l . 9 , 1 9 6 2 . 13.
M.A.
L a v r e n t i e v a n d B.v.
variable 14.
N.P.
functions
Vekua,
Groningen, 15.
E.G.
16.
E. P a r s e l l ,
shabat,
Methods
of
theory
o f complex
( R u s s i a n ) . " N a u k a " , Moscow, 1 9 7 0 .
System
of
singular
integral
equations.
Noordhoff,
1967.
Kalashnikov, E l e c t r i c i t y Electricity
( R u s s i a n ) . " N a u k a " . Moscow, 1 9 7 7 .
and magnetism ( R u s s i a n ) , v o l . 1 1 ,
"Nauka".
Moscow, 1 9 7 5 . 17.
v . V. N i k o l s k y , (Russian).
18.
N.I.Mushkelishvili, Groningen,
19.
L.A.
N.E. by
21.
22.
Singular
integral
and V . I . Sobolev,
Tovmasyan,Integral
radio-wave
equations,
Noordhoff,
Elements
of functional
representations of holomorphic
densities
798, A n a l y t i c
A.N. T i k h o n o v (Russian).
propagations
analysis
" N a u k a " , Moscow, 1 9 5 1 .
holomorphic
Mathematics
and
The N e t h e r l a n d s , 1953.
Lusternik
(Russian). 20.
Electrodynamics
" N a u k a " , Moscow, 1 9 7 8 .
and t h e i r functions,
a n d A.A. S a r o a r s k y ,
applications. Kozubnik,
Equations
functions
Lector notes i n
439-445, 1979.
of mathematical
physics
Moscow, 1 9 5 3 .
I.G. P e t r o v s k y , L e c t u r e s on i n t e g r a l
equations
( R u s s i a n ) . "Nauka",
Moscow, 1 9 5 1 . 23.
L.S. P a n t r y a g i n ,
Ordinary
differential
equation
(Russian).
"Nauka". Moscow, 1 9 7 4 . 24.
J . L . L i o n s a n d E. M a g e n e s , and
applications.
Non h o m o g e n e o u s
Springer, Berlin,
230
boundary
New Y o r k ,
value
problems
H e i d e l b e r g , 1972.
25.
I.N. Vekua, Holland,
26.
New
methods
f o r solving
elliptic
equations.
North
Amsterdam, 1967.
E.T. L a r i n a , M . I . Memenko insulated
cylindric
and I . B . Peshkov,
conductors
(Russian).
field
o f two
Electrichestvo,
Electric
No.11,
85-87, 1977. 27.
N.A. S e t z k o ,
On
cable c i r c u i t 28.
29.
N.E. T o v m a s y a n
and
G.M.
(Russian).
Electrichestvo,
N.E. T o v m a s y a n , elliptic
A.V.
On
a
of
No.1, 66-69,
Bitsadze,
Boundary
value
of
cylindric
electric conductors
198 0 .
f o r solving
Sbornik, vol.89
balanced
69-72, 1963.
Determination
o f two insulated
method
two-wired
No.l,
boundary
systems o f second order d i f f e r e n t i a l
( R u s s i a n ) . Hath.
equations.
capacitance
Mirzabekyan,
and c a p a c i t a n c e s
plane
31.
of
potentials
for
30.
calculus
(Russian). Electrichestvo,
value
(131), No.4(12),
problems
problems
equations
f o r second
on t h e
1972.
order
elliptic
N o r t h H o l l a n d , Amsterdam, 1968.
I . N . Vekua,
Generalized
analytic
functions.
Pergamon
Press,
O x f o r d , 1962. 32.
N.E. T o v m a s y a n , E f f i c i e n t m e t h o d s f o r s o l v i n g for the
second
order
domain,
uravneniya, 33.
G.S.
34.
bounded
equations
by
ellipse
with
of Dirichlet
constant
(Russian).
problem
coefficients i n Differentsialnie
v o l . 5 , No.1, 1969.
Litvinchuk,
equations
elliptic
with
S. P r o s s d o r f ,
Boundary
the shift
Einqe
value
problems
and
singular
integral
( R u s s i a n ) . " N a u k a " , Moscow, 1977
Klassen
Singularer
V e r l a g , B e r l i n , 1974.
231
Gleichungen,
Akademic-