、、
,,EE--·· 飞、
nk ••• ,,E
r
Combinatorial Identities
H. W. Gould
Copyright @ Henry W. Gould 1972 Printed by Morg:...
547 downloads
1564 Views
4MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
、、
,,EE--·· 飞、
nk ••• ,,E
r
Combinatorial Identities
H. W. Gould
Copyright @ Henry W. Gould 1972 Printed by Morg:mtown Printing and Binding Co.
To my wife Josephine for her never-failing support and enthusiasm "How do 1 love thee? Let me count the ways."
Combinatorial Identities A STANDARDIZED SET OF TABLES
LISTING
5∞ BINOMIAL
"Sc仿ηtia η.on
COEFFICIENT SUMMATIONS
habet inimicum nisi ig n.o rantiam"
HENRY
Pr时essor
W.
Go皿D
of Mathematics
West Virginia University
Revised Edition Morgantown , W. Va.
1972
INTRODUCTION
Anyone who has taken the time to read far into the vast
1iterature of mathematics wi11 be aware of the fact that summation formulas for binomial coefficients are very wide1y scattered in books and
journa1s.
咀le
situation is para11e1
wi世1
what we
shou1d have if no tab1e of integra1s existed for our dai1y use and convenience. gap 由ld
It is our object here to atternpt to fi11 this st由ldard
we present what we be1ieve is the beginning of a
set of tab1es for binomia1 coefficient summations. 、
..
It wou1d , of course , be a hope1ess task to 1ist a11 known 。r
a11 possib1e formulas , and so the best which an aspiring tab1e-
maker may hope to achieve is to 1ist at a given date those formulas which seem of frequent occurrence , or which are
interes1址ng
some specia1 reason , or which are very genera1 in nature.
for It might
be possib1e to produce some type of minima1 1ist of formulas together with a set of operating ru1es whereby other formulas could be obtained , yet we sha11 not attempt this as such an
att四Ipt
wou1d destroy the uti1ity of the kind of tab1es we propose. Certain 1ists of identities which exist in the 1iterature deserve
specia1 mention
here.
Dougal1 , and Bateman seem very
世le
1ists of Hagen , Netto , Schwatt ,
iu飞portant.
Project , which resu1ted in the series on
咀le
Bateman Manuscript
specia1 到mctions ,
is a
monumenta1 achievement in bringing about order in a chaotic fie1d. Bateman himse1f had projected a book on binomia1 coefficients apart'
from their connection with the hypergeometric functions. The author has worked his "shoe box" notes into pub1ishab1e form.
Wh en
a tru1y comp1ete index of formu1as is conternp1ated , such notes and materia1 w土工 1 be taken into account.. See bib1iography be1ow. - i
-
su回nat10nø
Binom1a1 coeff1c1ent
heve a1weys proved a popu1af
Bubject 1n prob1em departments of mathemat1ca1 journals.
Much
lnterest was stirred up a1so after A. C. D1xon f1rst found a c108ed expression for the sum of an a1ternatlng eeries of cube8 of b1nom1e1 coeff1cients. Thi8 1ed to the great contribut10n8 of ::'
", .omial
~'ranel ,
and Mac lt.ahon on the eummetion of powers of the
coeff1cients. Meny newcomers to this work are
,
however
,
l' Inhrm(diaire 些主 Mathémat1ciens.
unawere of Frane1's paper 1n
The author' s 1nterest in th 1s work began- twenty-seven years with the study of prob1ems 1n the
ag。
!m盯 1can Mathemat1ca1 坠且且1..
!t would be 1mposs1b1e to g1ve complete references for the tab1es of formu1as he has
,
collected and 1n some caees extended for he would ,
have to 1iet v1rtual1y a11 the journa1s which have been at his disposa1 , and this wou1d inc1ude journa1s and books at theUniversity of V1rg1nia
, Duke
Univere1ty , Univers1ty of North Oar011na , the Library
of Congress , and West Virgin1a University.
The author was warned
10ng ago that he might we1l f1 0u nder in formu1as , 1f on1y 1n one 8ma1l field , such as St1r11ng numbers , or Bernou111 numbere , not to ment10n this vast subject of b1Dom1al coefficient summations , and that is one reason he w111 feel some 8enee of accomplishmen"t if even a beginning 1s made in the present tab1es. It must be poinhd out that we omit proofs 1n the present work. In most 1nstances the author ha8 worked out proofs wh1ch
,
dl何时 from
the known proofs; however to 1nc1ude proofs in the present
tex乞 wou1d
magn1fy the 1ength of thie volume by about ten. The 8uthor's per80nal interest 1s not the mere tabu1ation of for皿11a8 , but th18 emphaeis 1_ deslred in the tab1es we g1ve here.
-
11幽
PROOFS As far as proofs are concerned , it is important to indicate the 。f
most 缸nportant
the fo110wing:
methods. c。η飞parison
Th ese seem to be any one or a cornbination
of coefficients in series expansions ,
use of differentiation or integration , finite àifference rnethods , solution of difference equations or recurrence
f,。ηnu1as ,
mathernatica1 ,1
induction , enurneration of 1attice points , theory of combinations an卢 permutations ,
and generalserics transformations.
the finite Taylor's series for po1ynomials is
Th e use of
rather 却nport田lt
a1so.
1n the last part of our ihdex wi11 be founct some useful transformations which are especial1y important in handling the algebra of series. Many of these wi11 be found 1n intricate detai1 1n Schwatt's Introduction to the Operations wi th Se rie~
[7 2 J
NOTAT10NS AND DEFINIT10NS 1n the body of our tables , we have used the 1etters x , y , z for real nurnbcrs except 1n a few instances appears.
哑le
letters j , m, n , r , s
negat1ve intcgers.
1n most cases
here some note to the contrary
",
generally have been reserved for nonk
has been used for the dummy variab1e
of summation and appears in no other usage.
Th e bitiorr归1 coeff1cient
(X J 飞 n.l,
is defined by the fo110wing:
(:)=川);;… 4打 (1 =
x! r (x + 1) in a ;f ew cases , but general工y we and we define feel it best to avoid use of the standard gamma function. The gamma function of Euler i6 only one of an infinity of ways of extending the factorial concept. -ii1-
l
』/
x-fIt--
=、
/flt 飞
1lt/
飞
lll-/
、11ftffιln
Z/fttmv -x-
EE nxn
、飞
\fh/ xn x-mH
xn·
、、 //tII
/i\μ1\
By extensive use of re1etions such e8
(-OE(-1)nf:-) 叫ζ
nhEl--/ ny n n』 J
aEE
E
n
,,,『 tz飞
\}/ 、‘.,,
Aεn
fftt\
n
many veriations of the listed formules We give msy be found. A few of the more
usef、u1
binoruia1 coefficient relations of this type ere col1ected >>
together 1n our lsst tab1e. Although we do not include formu1as which sum seriea involving Bernoul1i numbers , Stir11ng numbers , Eu1er numbers , etc"
We do need to
define the Stirling numbers ineswuch ss many sums involving binomiel coefficients can on1y be given in terms of these. We sha11 define thE Stirlinz 凹旦坦王旦旦主旦旦旦旦主坠旦立 by theeoeff1eient
cZin the
n
expansion
C)- ~_ C~
x
k
The Stir 1i n 旦出业旦旦旦生旦旦旦旦主丛丛 we define by the expension n
xn
-
.2;
11111 ,,,XK
nk ZEE-
nu
,
J
k-=O See the
auth町 's papers(sec。nd bipli。 graphy)U 汀,巳 8] , [3吁, (41) ,巳吨,
(621 for discussions of notation and other properties. A better nota tion S 1 (n ,时, S2(n , k) was introduced in[11]. -l. V-
工n
particular it followa that
哇=叫 :ω(
j嚣'
k \
J=olj / and
时 CB=(-1)k
(*)
AIK+a1IK-n 、 y l l l lJ-dd L 1,. _ .: I l ,. , .: I j! - j
j::O 'k - j I
飞 k + j
I
'
the latter being perhaps the simpleat expression known for the Stirling numbers of the first kind , given by L. SchlBmilch.
Sch工If f工 i
and O.
The reader should consult [2汀, [3才, [3吁,也才, [61J
for details regarding the Stirling numbers. 工n[3司 the author proved a formula inverse to (*) above. 工 terated
summations of terms have been omitted , since their
inclusion would necessitate a tabulation of much greater length. The receþtion accorded the first printing (1959-60) of these tables has been so overwhelminglyfavorable and continued ,‘ thælt the demand for copies has long since exhausted the supply. This corrected reprint has been undertaken to meet the need for such tables. Rather than retype the entire manuscript and run the risk of introducing new errors , it has been decided to correct those misprints which are easy to change. At the end will be found a set 。f
errata tables , bringing'together those errata which have been
ca 工 led
to the
attent 工 on
of the author in the intervening years.
These lists will be useful to anyone who has access to one of the 。 riginal
printings of these
altered; however the reader can
a
工ist
consu 工 t
of research since 1960.
tab 工 es.
The bibliography has not been
of the author's pàpers is included so that those items for a general idea of the trend Most ofthis work has been supported by
research grants from the Nationa 工 Science Foundation since 1960. A few new formulas have been introduced , just those which seem to be absolutely essential.
Al工 binomial
formulas are kept on
file in a card catalogue , and proofs are kept in running volumes of notes now covering several thousand clear that this reprint will serve a author completes a
manuscr 土pt
treatise on the subject of
pageß_
工t
is abundantly
usefu工 purpose
in preparation for a
combinatorial
-v-
until the comp 工 ete 工 y
土 dentities.
new
Sucha new treatise will offer many new identities , a complete revision of the present tables , model proofs , hundreds of references to the literature and a whole chapter on the generalized Vandermonde and Abel convolutions which have occupied much of the author's attention. obl 土 ged
The author is
to Drs. T. A. Botts and Reed Dawson
who originally suggested the compilation of the tables. He must express his deepest thanks to the following who have made many suggestions
and
or suggested new
土n
many cases supplied corrections to the tables L. Carlitz , John Riordan , Donald Kn uth ,
formulas~
Eldon R. Hansen , R. E. Greenwood , Michael P. Drazin , Verner E. H'oggatt , Jr. ‘
,
Julius Lieblein , Emory P. Starke ,
and many others
too numerous to mention. The author would be pleased to hear from users of the tables , and welcomes any
summat 土 on prob 工 em
involving binomial coefficients
whether the user knows the sum or not. improvement will be
careful 工y
Al 工
suggest 土。 ns
for
studied.
The attent 土。 n of the reader is called to a very important recent book COMB工 NATOR工 AL 工 DENTITIES , by John Riordan , published by John Wi 工 ey and Sons , New York , 1968. This is the first booklength treatise 土 dentities.
deal土 ng entire 工 y w土 th
and operators. Anyone
,
generating functions ,
dea 工 ing
Riordan's book. Some of this re 工 ations
wr 土 ter's
of books , in
the
work on inverse binomial
is treated in detail in Riordan's book. There has
theory , but the subject of i口
partitionp 。工ynomials ,
with our subject matter should consult
been a great flood of books recently scattered
combinatoria 工
The subject matter covers: recurrences , inverse
relations (two chapters)
series
the theory of
1土 terature
unpub 工 ished
dea 工 ing
with combinatorial
comb 土natorial 立 dentit 主 es
remains
of several hundred journals , in portions
manuscripts and files , etc.
expected that this situation will shortly change. for pedagogical treatises on the
subject.
工n
There
工t
土s
is a need
TIl E ART OF COMPUTER
PROGRAMMING , by Donald Kn uth , Addison-Wesley , 1968 , V。工 .1 , pp.53-73 , the reader will find a attacking a
prob 工 em
good ,工 eisurely
account of techniques for
of summing a binomial series. -vi-
ABαJT
A NOTE
THE SYSTEM OF INDEXING
It is importent 1n 8 compi1etion such 88 this tomake use of 8 system of 1ndexing to
8110~
~hich ~i11be
fe~
the eddition of e
e8sy to use 8nd flexib1e enough
formulss from time to time without
complete1y destroying the old ordering. We therefore drew Up e sequence of tebles of formu 1es , numbered 。, 1 , 2 ,}, etc. Eech teb1e lists formulSs of the type S:p/q for
certe1n ve1ues of p end q , where p denotes the number of binomie1 coeff1c1ents eppeering in the genere1 numeretor term of the summetlon
,
8nd q hes the S8me me8n1ng for the generel denom1netor term. The tebles ere to be found errenged 1n the ordering 。 /0 , 1/0 , 0/1 , 2/0 , 1/1 , 0/2 , }/O , 2/1
,
1/2 , O/~ , 4/0 ,当V1 ,
.• .etc.
It 18 eesy to prove thet the teb1e number , n , essigned to eech type formu18 , S:p/q , 1s given uniquely eccording to the formu1a p+ q D-q+L
k-q+ 灿 q)(p +什 1 )
k-O Thus , in this system , e11 formules for sums of form s:4/} ehou1d be 11sted in teb1e number ~1. The proof ~f th1s is releted to the usuel proof of the countebi1ity of the r8t1one1 numbers. Conversely , if We desire to find out whet type Qf
s\皿 18
tobe
found in e teble of number n we mey determine' th1s from the formu1as
p- 告(N-1)(N+2) - n where
q&n 回去N(N-1)
N_G1+ 巧有J 丁J
' end where
,
[寸 meens the
1ntegr e 1 pert of x. The proof depends on the fect thet every odd squere is of the form 80 + 1. Thus for teble ~1 , N
-= }5 - ~1 - 4 , eod q
= ~1
-部的 (7)
= }1
-v 工工-
=8 ,
so
- 28 - }.
p-= 告(7)( 10) - ~1
In this
sec∞d
eòition of our formulary , the followlng
tebles Bre 11sted Bnd the indiceted eporoximete number of summBtions of specified type Bre to be found within eech +.8 ble • • :",_
7.E NR.
Form S:p/q listed
t 2
2/0 1/1 。/2
5 6 7 8 10 11 12 16
A1//2O
17
当/2
21 22
6/0 5/1 4/2
;/0 2/1
48 9 3 8 3 5
;/1 2/2 4/1
225 1+
2
75A6/ /冒
;1 71 97
z
135 26 180 29 2 52
1/0 。/1
岛主
x
Approx. nr. sums listed
2
F 56
15 30
p/O Generel theorems TOTALI
555
As might be expected , the 6ums of form 5:2/0 , 5:1/0 , 5.2/1 , end
S:;lo
are most well known. 1n general 6ums of the form 5.0/哇'
with lerge veluee of q ,
ere relatively rare in the literature.
An important fector to keep in mind 18 that there 18 no unique form Srp/q in which e formula of Some bapic type 1s elwsy8 wr1tten , bec8use by use of elementsry binomiel coefficient identitie8 we may rewrite a given formula uelng more or fewer binomial coefficienta. Thus there will slweys exist 8 large degree of whet i8 really cross-classification. However we do not propose to draw up a minimal list of formulss. An axiomatic study is planned later. -viii-
TABLE 1 SUMMATIONS OF THE FORM
Sr1/0
00 c--飞
)‘
(1.1)
f l IX 飞
‘,
zk a(1+z)X
Binomiel Theorem
zz 。、 k I
Velid for erbitrary complex x , end cemplex Iz'<:1 , where the principal val~e 。可 (1 +吟。 is taken. Conver p: ence is irrelevant when wet-hink of this- as a. gener8ting function. -00
寸1
(1.2)
.k / X 飞
).
( -1 ) ~ (
ιJ
飞
)- 0
,
R( x)
>0
,
kJ
k=O 00
Z
( 1.~)
(γ)
.k _ (1 _ x)n
k-O
l xl
+1
<. 1
,
n
Z
(1.4 )
x-1 ("。K ( k x,) Y (-1)a -1) 十
nI川
k-e
/'''飞
1112/
x-k
EES''
-n 飞
,
XA
'
r
"
艺川(:) k
(1.6)
n
fat-、、
飞EEl-
bι
IF『E飞
民J
…
XK
、
nz
叫 C: 丁,
k=O
r
-L
(_l)k(:) ( : : : )
r Bk
'
k-=O n - 1
(1.7)
11m n
a
•
00
2
k-O n
(1.8)
x-r
~_ k-O
C~1)
zk
川 C)kr
-
(r - x)
r
(-x)
'
(Prob. 句51 , Amer.Meth.Monthly , 195"p.482) n
L C-:十 k) k
k-O
z"(1+z) zk
'
(1.9) 艺 C) yk 帽 Z
γι …
k=O
/f'EE 飞t
(1. 10)
k 黯 o
x
-z c~:)川 )k'
n-k-1
n
"的 Z(:)
x
kl
,
-= 0
,
j
z
t- k
--
a哥,-
飞112/
fIt-x -ba
,
『ζ
肉,』
-2-
+-2x-
j?C nυ
k-O
n-
-b叶
k
nE
ZJ-
(n+1)!
唱,
x
n +
1
n
坷,』白
\飞11/
艺
nk
bh fFSEE-
呵/』
k-O
(1. 16)
-
0ζj <:::.. n
tT 一
k
呵J 』
x
午'
J''taEK nk 飞飞 tt 』/
K
1- k
(r ~ 1)
(11A)27(jch-k)n+1E2x;~ n
n n
r~k
(-1 盯)
(1.15 )
'
(x 手-1)
k -= 1
Z
'-
r
a(-1)n rEF
n
"
bh-
Z
r+k
k=O
L
aE ••
a哩,
n
+-
J-k
k- 。
L (: ~:)
x-
,
、
=
n - k
,,‘、-
::1)ZO
(1.1~)
,
fj(1JKN)k
xn-
(n+2)!
Brzfj n
-f- k
'
'
Le t
L(叫:)
sjz
k
"十 3
•
Theo
自 (-1)n(n+j)! -A
..
饵,
'-a
eupee
BS CO
S2
,,.、
CH
(1 .18)
'
aE
,
- (-1)
‘‘,,n
n
n
(1.19)
s
(1.20 )
84
- (-1)
(1. 21 )
85
_ (_1)n
(1.22 )
z C::y:)
当
86
- (-1)
n
n
··EE--
.,
o(~n
+ 1) 12
2 ~)' • n'(n+1) 8
+- 5)!
'
02(如~ + 10n2 + 50 - 2)
.
96
120 - (-1)
' 240
24
n
'
n(15♂ +50n2+Pn-2)
(n + 4)!
(n
'
stE( ,1)nh+1 月÷'
(0 + 2)! • 2 (n + 6
+
bAb--
nu
·唱 4
(1. 17 )
nn
--川
、,,,四
(-1)n
咱
+一刊
s
.‘.··
n-
,
(0 + 6)! 61
n(6'n5 +
.
~15n乌+ ~15n~
' - 9102 - 420 + 16)
40~2
(Velues of S当 Bnd S7prioted in[72)were incorrect , see page 102 that text.) 。岖,
(11.2~ )
L
(n: k) 2-k
n+ 1 -
2
k 翩 O
n
}叫二三 C) k-O
-
2.
, -~-
、飞tt'/
fftt 飞
b民
区J 『ζ
nZ山
nk
o
n ~ d
12
n EO
,
n ( 1.26)
二 C)
008
k>
"'" 2 'COB
nx 乎号_) 2'l COS
n
M "l乎-r) C08
n
'
k 自 O
n
(1.2 7)
Z C)
810 k>
k-O
(
-
2
.s1n 寸r
'
1 约)三。(叫 )ωabEHf2千叶ncoa 忖),
(1.29)
Z (叫:)…= (-1)口川 in 云)山
(1 列)艺 C) 叫'仰
川z …
(1.~1) 三 (2: )ωs 同ζ
Itt qι
EEEF/
、
,,, nk
XJ
--n
lcx
x
ba
,
2j
oh
-斗 zr-1:叫
-4-
n(x:时,
+-2 ,
l
飞 丁J
幽
e--.
a冒-
句ζ
k 4' ‘‘,,x
阳2
-叶ω) e…)·(-1Mh/川叮 X)) n+ øin(2k + 1)x
(1.~4)
k
o:::
O
… "
十+(n~2)
-2
knK
'
4'
1 飞( -1L( 斗)
』/
t
Jftz 飞
2 (1.~6)
=叮 cJ川in(叶阶1♂(x/2) 毗 n{?)l 岛、飞,,,/飞飞
Ir--飞
阳 2吊
(1. ~5 )
e os
,,‘、
吨'''
飞飞 ZE,,/
B+ 』凰
//飞
tre
,回
ι 』且
、,'!-E
,••
飞/回
-句,
ZJ
、
写J
,,‘、
...
-F吨ζ-
nEF
rtlL
,
k...O a唱··"
) ' ( -- \ x 2k / 2k + 1 k O
-η 一
L C:)
4'
(1 .~8)
1-x n--T ‘‘.,," 1-n '-
-,, E、
〔妇
牛'一
2: (:) k:1.
a,‘、-
(l.m
x-
'
nt 1 n t- 1 (x + 1) - (1 - x) 2(n +1)x
-
'
c::
(1.~9)
P二3
Z
x2k k+1
(2k: 1)
>
斗
-5-
'
r-H+-f x-z
-K
nr1 n+-1 . + (1 - x) - 2 (n + 1)x2
例-T肺、
』/
EZ
?一
11
1 一十
XK 飞、
k
I''s、 t
ω2ω
k-O
.:
(x + 1)
-
z
C:j 叫
‘、.,,
a吨,,
k=O yruedothis::f4;斗。f
飞飞』』 JJ
飞
、‘,,
L斗
L 斗
,,,、‘
勾引
xn
x
二 ('1)k(:::)(kf/γ 三
nz
n
(1
4 ‘‘.,,, ••• --un
‘、,,,,
X - k
form 511/1
n/l
'因…E ,,.‘、
‘
1111/
、
,,.‘、.-
n-K k /III、‘.,,
,,‘‘、
n?川 L
、‘,,
tu『
,,,‘、
....
ZJ
,,‘、
(1. 41)
nk 飞、 11 ,,, r
.K
/111 飞
n?L
L
(
-1 叫 :)t
k = 1
k
ak+ 1
.配 1
The following surn 18 en 5:1/0 or e special instence of an 5:1/1
(1. 46)
L
k==O =
(叫 :)1
1 n(n+1)
2(n+~)
+ 2
n
( 1.47)
k Z 川(:) x+k k-O
-
(;7) x
{η
j-1
j
- (-1)
C!J
zk-O r:7=(":::7· 乙:',)
,
n
( 1.48)
1
-6-
'
( j 豆豆 n )
1
•
「 fAVJ
IlIJ/
n
、
+k
x
卡ta
nz
x
}J飞 lttz、
17
-r'' 『lk
「飞
L ('~丁
(1. 50 )
j/
11j/
飞
LUτ
ny
什
勺 n /乙
+nn +
/IIltt\ x
/if--\ k x 41k
k "'" 1
al?
,
ff
x
,唱. ,a
』
-, l。
『
、d
\ht J/
na
••
//l\ n4'\11ls/
L
~+Z
a 卡 kr
x
且
b
tlsf/ 、、
tlt
aE‘唱,
/fit 飞
、飞
++
nx
丰1tT
a
-f/'' 111 ‘飞
\、111/
(1.5~)
rIt-、
nZ川
、、.,,
叫/』
EJ
k-J
/IIIE飞E
/ltl飞
…
良/
,,,‘、
AY--
-KX \lII/
j
阳z …由2
where ~也
e
rz
2 1r i/r
=1 (8
=
,
(r-1 ~ a) pOS. or neg. integer)
\ivz
乎 COB~j)n
cos
(0-2;)3 7γ
r
j -
l
川时
/fIL
=0
nu
//I 飞
功另 k
z:::
(UJr j)'a(1 千去电Jr j 户
1
(n ~ 8 主 0 , r-1 注 8)
Z (1 叫 j)n__= 三 Z( 叫nms平 j .. 1
j ... 1
(156)Z。 {Us 刊 2nHmi号'
-7-
[号.!J
(157)24:1) →F十 2W(?j'
(1 归)Z (;)→ {2n 十川 μ 抖, ( 1δ9)
z C:)
在
k=O
(1. 60 )
k
(1.61)
k)
L( 叫 n : a:
K
(xy)-(x
X
~lC
n 4- 1
n 沪 1 皿
y
a:
'
x - y
O
L C: k)
2
n - 2k
z
L
n 斗 1
k
...
x- y
n
+1
x - y
wh町et
(1. 62)
+ y)
n -
x =
l+F口, y a: 1- ,r;:+可
(叫 ni 丁 (2COSX)n-2K E"::::1)X
k=O
[亏7 ( 1.6~)
Z
(-1) k
t k (":丁
(1.64 )
2
k=O
C
:k)
n
~
2
-= - n
n - k
k 嚣。
[+J
COB x) n - 2k
(2
n
k
here r x
(+)
-= n 2
= 1 +.俨亨丁,
-8-
x . n-1
+
008
y x+y
nx
'
n
y-1- -V耳可
,
(1.65)
L
(-1 )k
22"-2k
C:丁
" -
k-=O
2"
k
n肉ι ,
(2 008 X)
e08(n 千 2)X
'
aE
,
n +-
a唱··
斗
m艺
c=
n
nζ
k
专
‘"
-=
'
n 千 2
(-1)n÷ ,
1 岱~ (叫 k
"+2 -2 "+2
h
ζEL 且 句
b 一+
(
(" ~1)
b且
CF o-B-k
k-=O
(1672]('1)k(n:)
+1
n
A叫一+
nζF
1 担(-1川
(
..
(-1 )叫
O
if' 个'
L , if 才 n n
'
(Cambridge Msth. Tripos , 19究; Hardy , Pu re Math. , p9ge 445.) /it 飞
\i/
♂+ (_1)"2 n
,
n
(n 杀 1)
k=O
(
1 叫z l
n :
k).k
(2 Z a
n+-1
川
二十
n-x-
-x n
x
,
where I
O
\(1.72)L
(叫 n :
十
(-1)
(2z)
忖 '
n/2
千一门
a::
)
2 户 (2叶 1 -t-{ï工石)" -(地斗 1 圣J丰石)
(1.71罢仁 γ= k
+ 1全J亨丁正
k) 2叫
=n 十 1
k-O
-9-
,
z_
-x E二 ( 1 千 x)2
'
叭 l/
/IIt 飞
ε … (
1 拦 C: 丁=
(1.75
2n
,
( 1+ .J雪)n 十 1.(1-4吉) 2n + 1 -ý歹
E 凰n
E
and
a
n-th Fibonaccinumber , Where aos1·la1' n+1
)艺 (?1)kfi 丁 E
-=
8
+a
n
片~
n-1
+ (-1)
(-1)
[:巳~] ,
2
k-O
(1.76)三 (γ)
- ZC"k-)
k-O
b且
川l/
rjt1、
叶位
∞汇川
c: γ
n
自 2n
x
b且
x
十
只U 吁t
r 飞4JtL
/ftt 飞
+k k \ll/
+xn +
'
k-O
,4 n
k
吨'』
1····\
叭 l/
/,
,
-10-
K X
1/〉飞 J
n 也… 「
n
…
(1.79)L
aa2rEusing (1·7A)
k-O
PZ
auo
+1
-圄-2 2n
'
同ζ
b且
』民
『ζ
,,ttE飞飞·
-
nu
内ζ
E
Z C 1)_ / n
ft1h\ 1llIFf n'-n 内ζ
n
十
吨ζ
=0
、11l』/
b且
,)
(1.8
缸十
k
//-11 、
au
_2n ~
叫ζ
n 乙甲 勺 h Z
au
\III-/ n -n
d
,
(n 注 1)
,
:
竹 il/
+、
叫ζ
nd
n
同ζ
JI--\ n /,
句ζ
且
nz
叭 1I/
n
nt
-L
斗
L
nu
、 /Its-
nγLh
k== 。
-n
n >/
nv
叭 1·j/
nζ
t
吨'』 同ζ
,
、川 l/
句丘
、‘,,
,,‘、
、
-1j/
••• n
/III-飞1
飞
吨ζ
、‘,,
//『t11
b民
=
n
\//
‘•.
,
n -n
n
\111/ nk k
(1 +-v'X)
x
+ 2
,
n-1 -
2
'
肉,』
‘、,,
aE·
,,.‘、
1111JF
ζ
z 乙:)
E
n
2
(n 主 1)
-11-
(1 -吗rx)
n
'
… n
nJ''
nk 、
呵'』吨
,,
/tt 『lt1飞
b且
,,,‘、
4··‘•.
k~O
( 1.89)
nk
肉,』
Z
//I1飞1
(1.88)
E
n -n
O
「lJnv
RU
a唱··
,,‘、
吁VLh
c:
l
良J
(1 附 2 k
呵'』
…
nu ‘‘,,
//ti\
n
斗
叫 ν
/lt·\
-2
'
日斗
I
n飞
1.则~ (_1)k (2:)
(1.91)
艺 C:) -
mz
k-O
(1. 92 )
=:
(1
,.、n
+1) :~' ~ 1)
L Lk: l) n
(-v2 )n C08 芋,
_
2n - 1 -
,
2
(n 兰 1)
k...O
2
1:卜1(C n :) .叫)
十
k
叭 ll/
十
(1.9 4)
n h… n乙 ? 之
、{之主 j)
…
,.. . .、n
zc::)
2n -
2
'
k-O
[吁立]
(-OkfnJ 丁
-= (-1)
2
n
k....O n
n+ .Ji)白- (1 - ...;王)
(195)ZOLklxk'
(
1.96) 三。(斗)k乙k.+ 1)
(1.97)
Z
2-./言
(1+1)n-(1·if -
n
,
(n ~ 1)
sM)n sin 子,
21
L川 -2n-1' a 唱··圃
、
,2、
Enζ
a冒··
-12-
n
..
'- '- ,-
'
,唱,.
‘‘,,圃
幅-
2k+υ
, E、-吨'』
斤 2n 〕 =(-T2
A唱···
叫 ?L
(1.99)
-- n '
k ..,。
(1.100)
Z (;:::)3E "?/μ
(1. 101 )
2n - 2 .. (2n - 1) 2
(n 注~)
)kc:::) 皿 (FJ
,
k 菌 o
( 1. 102)
回(B(x忖
ZN)k(::;)k;1
,
symbolically ,
'
where Bn(x)means B (x) 目 Bernou111 polynomia l. n
n
( 1. 10')
Z C)
k
( 1. 104)
:oc
O
主 C:)
k.也 O
(1. 105)
-t-CJ +
.
k. k!
x k +1
1)
x
k E 飞(1-
(1 - 2k) 2
.z c:) • L Z
-J1万 k x
(11(2:)
-
2k
+1
22k
"'"
k 2
k == 1
'
, (
0<1
(1.106)
-E
2k
E
,
W1}f x" + 1
log
( l x Iζ1 )
l x\.( 1 ,
81so va l1d for x
1+ 飞11+x
, \ \x\< 1)
2
c>ð
( 1. 107)
L C:)
k=O
(2k
+ 1)2
-1 ;5-
arcs1n x x
=:
7r
dx = -::- log 2 2
-1
n
r
2
(1.108)
k-O (1. 109)
~
l
t
b
t
n
---5 当
s2 -
(1.112)
s当 -
2
O
n( 知 +2) 当 (5)
s
。'
n( 15n2 十 18n
S
,
o
飞
-冉,
42-吨4
n- 4'-n
'''-呵 ζ
nn
门一十
趴1l/
千+
向ζ
… nz …
盯
m
E
/ft『 Ett
bA
k=O
川 -k2
..EE--K
飞飞111/
nζ
,,,,,
』且
Z
+ 2)
~(5)(7)
n
(1. 11~)
~
2
...
(1.111)
ø
211( 子 (":1)
5o -
旷宇
,
C:J
L (:)址 2
2n + 1 f 2n\ ~ J I n \ 2:2: 1 (2:) 2 ' k=O
k"
,
、
-EE
f( 对自
,/
、‘,,,
『
、.
a咽··
-H
..,,4., - a,..
- k k -- x~
(1 - x)
_.
k
)
f(τ-
GENERALIZED LAGUERRE POLYNOMIALS 1
(111F)ILa) 川
=
n'
x
咱
e
x
_n
υ
X
L (x) n
L~V/(X) u
aE·
-1 鸟,
n
n·
aE
,.,
pr ova--.qaL·AU
nu
n·
n
a咽,
x
/ι-
+
=
(0)
a唱··
X‘
-x (
、‘.,,
n
E
e
J
,,‘、
…
··飞EE ,/
、Z f''EE
‘、,,,
a咽,-
a唱 a-
,。
,,‘、
kk k pn .. x
_a T n
l ‘
Ordinary Laguerre Polynomiala:
aE·
~
哩 x
/』
nz
1
.,
…
7t
,,,, nk n'-k..k-1 ••• (x 十 k)U ""(k+1)" EK
飞、11/
Lι
nz
- ( x - 1)--,
1l/
、
nO川 L
(This 8nd the next two are speciel ceses of e general formula due to Abel.)
(yk)n-k(x-yk)k 回
x
n
,
n
(Abel) ) 付飞:县 Z
n
三( :)旷 k(x-yk)
(1.119)
去 c :b~)Zk 幽
(1.120)
dz
x
( 1. 12~)
b
(::::)
L (2:)
a discussion has been given by
(2k
+ 1)D
22k
y
kz
k
n
因
‘‘,,
、,,
MM
,,‘、
LE
D~ Dick叫1[t7].
Was studied by S. Ramanujan , in whose col1ected works one may find eveluations of this.
ZC) Z Bk(叩 )BVKM)(P 十 qk) k
X
conditions 8S in ebove.)
J
k
,
, (88me
X8
='
<怦 1
Szeg巴)
(Poly8 and
8
\.
, IZl
x
1 • I - 斗. bk' ---, zk
8
,,,‘、
:1.124)
x - 1
、
a + bk
(1 叫 Z
a 斗 1
(Abel)
z= 一一--呵'
k-O
…
'
n!
L JXLY)k
zn - k
k=O
(1.125)
k=O
=
~h 飞了;:qnEE
Bn(x 步 y , z) ,
x . . , k-1 where Bk(x , z) =毛τ(X + kz) (This 18 e Genera11zed Abel Convoluti 句. Compere with (~.仙2)-(; .1 韧) .)
-15-
z
n
lII/
飞
…
/'EEE 、
jz
J 币
』/''
tzt
13
n
/,
、
-= (1 十叶
rL川
…
( 1. 126)
'
(1.12 7)
.D
('寸'〉 Ank
L
-
'
and exp l1 ci tly
L( 斗, 3 (刀 (k-j)n
•
A
nk
(Cf. Carlitz , Math. Mag. , Vol.~2(1959) , p.2的)
These numbers of Euler (also Worpitzky) area special case of numbers due to Nielsen and which we might define
(1. 128)
B~ _ r ,q
...
三、.-
/'
/
Tor all integersm
follows:
q 飞
n
(_1)K ( • l(r - k) 口
L..;、 1.. k-=O
From this it follows that
88
飞→
1
F
x n =(_1)叶 n :E k=O
> n·
-16-
Ix 十 k -
Bk ,m 十 1
t
m
丁
f
,
rj
,,
(灿阳tt[72)
飞
EttE
+
J
、
J''E飞 E
b且
川。乙…
j)
k=O
一2 十
Z(勺-
(1.129)
+K k
,
p.48)
(S 伽 ett(72J, p. 51)
飞』
k
(Gould)
(Chung)
(SaalschUtz)
一户 h
'
(丁2) 立了:)
-17-
x
k
JC::)+
=
X
、‘,,
,,.、
、EEElsF
/IIl 飞
AE1
1tem
』且--、飞FFV-E
as
r
hEEEaa'
飞
飞
气/1-k
咱
、,,
JFEE 飞 fk =/I
飞 lf
飞←
a-
/I
『
『龟 J
LtC~2)
=
、
A』
nm -n
EEEa''
E·飞、
ZJ'h ZJ
、‘,,、‘,,
,,‘、,,‘、
(1.135 )
-3Kaa·; --1-k 4d k
----
nFLM+LM kkk xhEt'' +n xn1
AB-aEa tdl
np 〉LZn
-3ak
end
··44d
Ease'm
jJIlt
.、 d
x X -K 飞,J
咱-4·-
r飞
++、
,, ESEE- 、,,,,
咀 nh 〉μ44TL
、‘,,、‘,,
,,‘、,,‘、
4tAE ‘‘ -B aa-njkm m •••• n
公l/
L>叫2?
q s q L 4 tJ A tJ Z Z dB·A·-
••
/ftItt L民
formulas for
n7 仨
Schwett gives v8rious other more compliceted exemples of this , such 88
'
TABLE 2
nz
SU肌ATIONS OF THE FORM S:0/1
k
xk 、
11
"艺
』,/
/tl 飞
k-O
- f号 [1 十 (:(:1:) }
(-1)
-
x -
1
n
叫μ nO/
n
,
x
艺
(丁?
k-O
'
j - 1
k k
11:
,
1
币
j " 1
-EH
.、z,,,
呼 tH
三( :)
1 十 xk 1 斗 x
_ s
(x) n
.5)
~ _ (1+~)S
,
1
r乙 O
:.6) k
c:
n
D十 2
.(x) a:....:一一;n 十1
+1
1
-18-
_
s
#
n
n 十 1
•
(x) 十
X
1-x 十
,
(斗斗,
n ~2. 7)
Z k = 1
n-1
k-1 ( -1)
.:
2{n 十 1
C:)
)
(-1 )
十 2
C:)
2n - 1 (2.8 )
z
(币1)
k-1
e:)
k = 1 n (2.9 )
艺 k """ 1
... n +n 1
k
2
2k-1
2
.,
k(2~)
,
2n
'
C:)
cð
\2.10)
Z
k=n
(: )
"""
(r >1) ,
,
n r - 1
(:)
C肖3
(乙 11)
Z
k = 1
z
c=旬-
n
kC: 丁
。<:J
(2.12)
k = 1 oa
(2.1 ,)
们丁
6
k+1 =
z + 1
Z
z 十 1
k+1
z
k-O
X千 1
R(x)< 告
00回
=
fxj+
幽 k
k 罩 O
x
k=O
(n~ 1)
,
00
x
:k)
'
k2
k == 1
k=O
(2.1h)
Z
rr
=
~ 1)
n
2
Z (:) 2 (Z 00
, (n
k (-1)
R(x)
回才 9-
3
z :/:. -1 , 0 , k+-1
z z+k
( 1:
<:号,
z 手 0,
x) -1 , -2 , .
, 2, ...
øo
lZ k-O
k
。。
(xJ丁~-
k
L,
。。
k 匾。
-
(丁丁 k'
7t 》 i
k
J
飞
-川I/
1-千
Ef't 、t
Z 1
一+
'n ,‘
-a'
• (Ljunggren)
2
,
18
、11BSJ
,
呵'』
4
bm 皿b 且
x2LE+1
c
( A唱··
nζ4E
bh
2-+
-K
X
-
-J 1 - x2
lxl <1 ,
8180
• Arcsin x
,
ve 旧 for x_ 主 1
)
f2川 EXmJFT 叶/1+ 1)
kk 、、,
内4
飞 J
吨ζ
1
,,‘、
k
Jf
,
/ftt飞 E
‘、,,
41·
bh
1
有F
-k
aE··
/Ftt 飞
-、,,
b且
22『+ 同 ζ
,,a‘、
bh
(2川 ~Z
..
.,,‘、
nk
lC:)
,,‘、
=1
2n+2
k -
飞飞t1J''
qι
a咽,由‘‘,,
k
句 2 k
--vh
kfiIL
1
时 Z
冉+
)-
j - 1
.K
k -
n 2(n 卡 1
k '_0 0
叫 2
17
2n
-4d s
‘‘,,因
,
"节'
,
k
〈 J$iE 、
KL\j - kOL.,
,,‘、回
<
[为} -
-
1-nK
.十
p
1u ‘‘.. ,,,,
HE 吨'』
咱也正亨,
由世、
n
呵'』
1
X 飞f
k'
a咽,
,飞 --rfEEL
的艺
一
rLh 勺
:2 [
k-1
k -
1
k
k 匾。
n
.L,
Z 川
ex.
-k
x+k
-唱F
2 b
.
k _ 0
k
e
kr
X
k!
k
-20-
( lx ,<1 ,
e 1s 0 va lid for x
IIC
+1
)
,
JE2
4··"
~
、
(-十
的 Z
k
--et 飞
/J
-= 4
EE
,, kk •• nζ
,
k== 。
J
‘、
、‘,,
,,墨、
b且
k=O
2
圈子- ~ 1叫吁 1)
z 。。
(1 - x)
(:"2萨
k...1
,
n-1 dx
1 - x"
od
田 n!
Z
(kn 十 1 )(kn 卡2) …… (kn
k -0
+ n)
n - 1 Z坦Z
z
(- Ct/ .J k' (1 -但)--- k )
n-1
log f t J k ·但)k
k -= 1
j
臼J
黯@
K
(E. H. Clerke) n (2.25)
艺 k=O
(2.26)
L
n 千 1
(:)
-='
n 1- 1 2
n千1
z
k 2 k
k = 1
(Also sp也 eciel of (2.4) ')
1
(X :丁
(natural extension of (2.2);
-
2斗-
(Tor B. Stever)
Gou工 d)
C8. se
'
TABLE
,
SUM}.{ATIONS OF THE FORM S &2/0
,
12/
y
.
、
牛 'x
/fsk 、
b且
L (:) (:) - z
(忏 n
:
j(+: -) .
L ( :)乙o :J 皿 Z(二 k)( n:k)-+[(::) 十(:)j. L 仁兄斗 XAM 11
41
、
,
j'
,
/fl飞
吨J
k
J''E 飞、
/fh
\飞11'
、EI 』,, F
/rttt 飞
阳、三川
7)
由
6)
X
、EBEES-
J'tIEK J'EttX n-K vw-
气/
十
nz
--.
nv o u&b on‘‘,, 噜A
C:j(Y:::k)_( 叶飞 o+j
j)L (:)(0 :k) _乙 ::;1)
5)
v--anJuer monAMe nuv
。
,,‘、
咱.
鹏
lIJf
Jrtt\ x
飞
、飞11J
'
b且
_L_
、飞BEEF''
/,I ,E飞
"γ 己 ,)
+n
//Il xk v·.
"
一
- 22-
8吟).2:ε~( 工刀(乙仅2;儿:
1层 0 ]μ 儿:-1) 田→ 4÷4(2:) - 」4三P乒;1卫2二纪:之巧飞℃ 正气;川 J 1飞V飞?γγ
n
2n乙
二
飞
---2n
11飞
、电,,
l/
"
主/,
/l
ljh n
民川 咐介J1
l/hJ
飞
ffUH1吨!'‘
自
川
ll/
.i
J
/····L
有飞 1-2
勘飞
',
、
呵'』!吨'』
fM
J2
i/.·p
、
飞
飞
「EK
艺 (:)(斗-干(:)(二:?缸子r:x.-:r) (n~1 ,
k
、、15''
、EEEEa''
/Ftt xk
‘>
O~rζÞ ) pnEr
唱,
/{利
Z
艺 n …
11).15)
\1 i/ + x 2 k n
·『呵 4-
·十飞
吨'h
飞 11/
4
←
J-1 xn x2\1lIxnnn/FK x+.:bAX
kx a h4 k 2 n · '
171A)
n/ 飞l ")斗
叫罚飞
/IυhnhUH
\11//I
//hv/l
川艺出?''已引艺…
d .斗卅 ♂ 1η )户 (←忖川叫
a--k
cunrar r e
n
aA AU
T aMe n
叫 ::;)Eh-u (n ~ 2 •
。< r ~ n-1 )
(Erik Sperre Andersen)
-2予·
·
!CjZ 门)r:) =r~)r- 万=川) (丁) 1. 17)
.~.
( : ) ( : ) Zk
2
Z(:)c+: -J 怡- 1户,
-
jm)ZCX 刀川 þ.19)
L
ZCJ(X:J .
r:汇) l x+
++
/ttt\ nnxr
111/
、
nk
、飞J/
、、 1
/t1' 飞
/Il 、
nz
,,
』』
… 1721)Z (;rott 2( 可 n 二)l nu
J
k
r
ar
!(5.t!~> ~ (叫 :1;XK+:?)-ifj;二;二 -24-
GO
唱A
w民
-t:~]
L且
k
l阳μ阳叫?川川川 (臼 剖 222约) Z 三。 (:)C:工: :kJ 护)
飞i'/
x'bh
nζ
f
o
十四
、、 E ,,
Jr11 飞
nζ
/FEE 飞、
nLh 勺
xk ve
er Fb
AUhu
•
内1/
+
x2 n1 Il
内ζ
nnkk
/iE 、
认 ly/
十
,
、飞 K E E J
Jftt 飞
k
n
+
』/
(, .26)
x
… ZC:Y:::) -云rcγnE;二)f 十
(, .25)
X
ffhv
十
、11tIJ
nz
/fi1、
(, .24)
、
n?… /μ
/iu XK x +nnkkQll/ /IIE\
π(x242)'
(, .27)
Z C::)(::DZ;::: 刀:引:(C: 刀丁γγ2 ♂产2缸n~圄 ι 口:峦 峦峦[c扣(仅2川阳 4
(, .28,)
L (:JC:j-t::刀,
(, .29)
z (:)(二 r) -(::刀,
(,.,0)
2(:VDk zn( 叫: -) .
(,., 1) 艺 (-叶叫叫 1η) (,.,2)
L (-1串斗卅j 叫 1ηJ)产叫 )kk丁(:)(n二:二k)卜= (←串斗J1 门)产 2 (ι 斗 )γ1叶川+剌忏川川(←忖川唰斗卅1η) = (:)
~:172;;!!fL)!
'
n 'Ar 1II/
r
、
baH\i/ a -r
,, IE 飞
fftt飞 t
叭 luv
b且
fFE-、 -
…L 勺川
ZJ
!以 5乒引号川; 艺 州 CJ比 汇 L (2nιn 二 n :斗k) -叫川(←归川-斗 1
:~.~切!巧5引肪予另) 三;(斗卅d 叫吨)户叫盯 k气 k仁:)(2' (: 二斗!二 :k) - <-i [(仙川:)+刑 ' 川 Z 川了 :γ::; 丁 f二丁 J;-1户,
('.~7)
L
(忏.: k)(斗
:'.;9) 去(叫 MO)Z
(-rcynfb腼 2 乙; 1)( n 刁 2k 村,
川1)2( ,1)KC)LfJE(叫
-ã>-
111/
、
冉'』吨 ζ
冉ζ
/ftt 飞 、 EEBEEtJ
1
刀 //It 飞
呵ζ
冉'』
叭iv
,,, ,· 、· a, E, · //l 飞
L且 冉'』
、飞 111f
9』
b且 向4
』且
1iJ/ 飞
内ζ
句ι
/ttl 飞 、飞1 、1t2J ,
4'一
, E、-吨
n b晶 吨,』
4
bA
λ叫ll/ 少』
//I1l 飞 -h1l/ 、
、 -· //It
飞 EE--
内ζ 内ζ
,/
b且
!j/ 、川
冉£
fIII飞 -K
叫!'/
于
肉'』
割
,f 、
飞
叫 j/ 牛 'r rll
,
t
飞飞 』,/
/IIt' 飞
lJγ
、
叽1川V +『+
MVI 人
b且
//』 tEL
-27-
If-飞
十
川π …
JIl 飞
、,,,
b且
,,‘、
nZ山nZω
、-z'
L斗
?『
,。 L斗
,,.、
M 咱
nz
/fiI 飞
,
z
,
bι
民J L『
/fhv xaf
nk'Ar
…
/'Iiv x \llj/ nkx
ZJ
n 之… 「 且『 L
X -K /fIIL
... aE
/JtttL xn
n n hun -n ZJ
L且
回 (-1)nZ(-4(2:1)(勺 2k
'
EJ(:二) 2
XJ
‘
12
xk kn
k
-(叫
… nz …
,,
…
ffttat A1lF/ xk yngk bEh
XK xn h
M ZJ
‘EI--yn xk
ZJ
ZJ
Z (叫 :γ:::) (~.42)
mr
XK nn xk
~ Z 叫 u川
-hJ3
9)
L; (叫 :yt)-C::)
币)
L, (叫:)(气)~ c寸,
川,6(叫:)(::了)
- (叫马)
,
2
nt』
1lI/
乱翩
儿- 2才; +n
、
ndι
XK n 'n ftttt 、 』 、飞 11l J
nu
ZJ
嚣队 :1:: ,
bh
z c){: ~~:) ·
-
VVAf zJxn zk K xk
/ftl 、z
nOLh
k
lj/ 、气
bι
…
,,, , 、 E, EE
nz
,
,
bh
D
-)
•
d(fU 丁 ftf?Lr z 巾, E
tJ
ft/ ·川 十
It--/ rIlt+ f 2 n 2 n: xn 3 z n n · n bEE
『『
内ζnJ
-EE
,
(Generelizes a formula proposed by B.C.Wong)
111la/
n
-28-
牛t
乱Me
』
k
、111IE/
十
L /It-‘
b且
/FEat--''1t 飞
fk
L且
川
… moL …
JFS飞 E
HM 眠
nz nn
(B. C.
Wo鸣)
(357)Z。(叫丁::Dz(-1〈
、‘,,,
,,‘‘、
a咽'
十
口
、飞 E『,,,
,
//i 飞 吨,』
A 唱··
吨,』
11/ 飞
d 』
呵'h
呵'』
4唱··
-『 EM'
、‘.,,
,,‘、
酶
肉,』
、EEEEEF
,,『『 lh飞
Jrl 飞
a咽,.
、‘,,
,,‘、
‘、.,,
佛
又J ,吨飞
-29-
E
aEd
n 'μh 亨
nu
、‘,,
,,‘、
肉'』内
叭1UJ
,,, E『LE飞
、
k=O
吨ζ
』/
、111''/
11
,E ,
J
吨,』 ,,S ,EE-E飞
, 'An n
ttSEEL
j , Ftt
E.
n\j/ n n JI''tk
\Ei/ n-K k4J
.K
、、
/''-、 1 、,,,
r。
4唱··
、‘,,
noρh nu
xk ‘‘, ndxn
k FOZJ ZJ
E
aE-
,
(叫 :X2::D2kg1+;-1)yn二)
mz
n
E-
ZJ
.z=
(, .62)
aT··
XA n JJ
x-K xnKKK
k
(气2X) n\
(;.59) 主(-1叫
1
k)
、飞
FJ-
』
EJ'''1
吨,』
ndnd
、-
\111/
,
。70) 雪 C:Y →C:) 十二tiroJ 1771)ZC)2 口2)
肉'』
产
飞ll/
nl
、 /It--
V69)zr:1)z÷(:::3
/Jt 飞
一
-A
41
,飞
'h
j
飞
Ea--』
-tI'''
、
L崎冉
/IE
、、
nk
…
1-
lj
4, F 吨,』
飞
/I 』tk
但
nz
nv
hm+-n-x 叫 //n)
/Il飞
/ftt 飞
nzh〉门
2\i/\l/
/i 飞/{飞!/{飞
nzγ二号。已
句"盯 rlL
nk nk k nknk x
1 十(斗)
n
2
a 士(::)十二宁可:) .
! G: r -+C:) 十气气2:) 十
~.7;) 艺 μ1)
1 十~-1)"
--ît) -土耳YJJt(-1)n - 30-
c:r ·
(叫 3川川川 7协A勾向)
Z
(ιi 二二 ι:1J) E→÷封(:) _仨J午干乎÷二严乒!卫卫咛) k斗
叫
2
ι lr =→ +(ω::D:D) - 」斗午平 t=严!旦气i1'{巳 ω2飞节:)奸十 2 1γ丁1)气 n飞c:y
(~.76)
L (: y (扣n卜.斗4叫2位k叫叫旷)2户2 .
吨ζ4 ,
l/
.,
k C:Y - 仨咆 2:)十 C:Y} - 31-
飞飞is-J
呵'』
nn 飞
冉4
n
f'『 ' aE飞
A咽,.
‘、,,,
=
,,t 、
吨'』
吨ζ
、1112/
(_1)
,/'』,、
、.,
L
L且
,,‘、
k~O
~.82)
、,,
k-O
nk
nn
'
-L (叫 :rn : )2k
hz
,
n2(γ1)(2::3 ,
S5z
E(f
~(叫
(, .81)
n
/fl 飞
"Ø.80)
aE-
sr
==-
n』 t
γ ♂ (2:1)'
』/
(~.79)
,
11
γ了:)
E
rk
、
(~. 78)
RM
FIt-L nn ' n』 J
a-2
ll/
k
飞
cr
r
b且
~
们 r /已
(~.77)
/tilL ftttlk nk
'
,
'
,
飞ll/
k
、 1l
』/
,唁 k vER 产
… 飞1ij
vt人
k
/ftt 飞
能
nzh ‘
nz
k
/''a 飞aa
1112/
EEE·
、
吨'』
飞 IE/
b且
//』 t、
…
LU 吁 民U
ZJ
,,, bak nk
nk 、
k-O
vvaA
k
m勺/已阳z
nk
nz
午J
\1 』/
)
町ζ
" :~ ~/
、 rft 『1
四
k
'
(~.85)
Z(-1)k(;)(20 兰k -C:)-;纭,
(; .86)
Z( 叫
(~川川 .87 8盯 7旷
1;.88)
220
L(:)(2:) _L (2: : :l2:) 庐,
n 叫 z k=O n (; .90)
HP1(:}(?
/ f …)门 Z( n- k It\1 k 1 - 22n k=O
-32-
(20 - 1) 22n
'
ftIl 飞
\llj/ nll 冉ζ
_
(叫2:: 汀 2:)
..91 )
川
nOL
n
k-O
Z (2::DfDJ-14::2;:
1.92)
z (2:: 了)C:J阳)(斗1)'(-1附C:)-
j.9')
1 , n .... 0 ,
。, nJ泣,
k-O
z (2: : :k)(2:) (2k-1 )(牛十 1 ) -
~.94)
í'
,
1)(2x 十~)…. (2x 千 2n-1)
t- 1) … . .
2:) (n ~ 0)
,
n
nn
,
n >/
、‘,,
,,‘、
IlI/
、
呵'』
n
-
ft·、
吨'』
呵丘
aE·
2n
c: , 2
a唱 E'
吨'』
FJ
』
吨ζ
,
-'3-
n
崎 L
4
l/
、‘
内'』
bA ζ
+'十
L 斗吨£
nζ4t
b且 LU『吨
ζ
rtlt 飞
h『句
,
VVA KK
'厂
nn EE
..
、
nζ
,,
f'ltEL
a 『
冉t 』
呵ζ
由
bι
飞
qι
-tl''/
、、
n
2:)
叫 1) (
,
(n ~ 1)
(x +吟,
LU 寸
二 1 叫
1I/
b且
III-
,
2
飞
nn
,,
b『
B·E·--EEE. nn KK
飞
b且
IFtt、 1
--
b且 向J 』
ak
LU 丁
吨肉'』
OJRVJ
L
、.,,
ny71
n/川 μ川 Z川 。
…
(2x +-
n
(x \飞lt/
吨'』
,,, r'''' 飞 EEEE- IE
nz
.. 2
+-x xn-4En --n
(
, (n 注 1) ,
飞
k-O
到/飞/
_2n
_
山十 1)
n7ti--1
飞/'''l
Z C: ::k)( 2:) 斗τ
:~.9乡)
4n 2
、
11
内ζ
』,/
J
』 ,,、 -RJ
,,、
嘈』
飞 JW
自
,,‘、
n』 t
十
飞 ,
1J/ 八叫
2
/Il
叭ld
A
8
nu
G
、
1
‘、.,,
时 -2
也
,,‘、
呵'』
斗, ,,,E ,EEE飞 EE , J 飞飞
J't 』『E飞
川lj/
牛‘
且
11122/ 、 -L
/, ttt 飞
EEEJJ 、
nn
,。
K/Iil
fkJFI--
由
bAEJ
、、飞、 /Ittt
叫丘''''』
,,
VH八由
nn 9』
灿lI/
内ζ
卜=
RJ'k
' /''iz飞
2r/
i---n
zkn nk++2 n
M
ιd
,
飞
E11FF
、
nζ
n』 J
、 11Esf
1
』
、
JJ
l‘飞
k
-bAJ''
自
nk
』盯
,
… ?/μ平 L…时 -Z〕 枫UY
号鸟-
1+(-1f-r kn +
JIlt-
n
rr
f''tE飞E
向ζ
k-O
n?… /μ
k-=O
b且
,, r
叫ζ
、飞 EE
叫t 』
//FtL、1
(,1)KCYJ:j2时,(叮 k-=r
nγ/μ
…
n k
/fitnnT
1 十 (-1)
= K
+-
... ,,/ aE·
+ A1I/n r kk n
NOL
K
(刀(":2)
c:
r ) r
. 辽 (叫 :XTJ:7 皿 2吁:)
nhdAU na -s
K
n
+r
n •tnr k
n+
AW
叫丁)r:) 士 (-1)(x: 才' k-=O
n (衷: 1)
。)L
nn
VWEA kk n nLK
n-27、/-z
rL-ak 111JQ
山) Z(k:j)C+l 了十) - .L: C:t k + j : 叫 j. k-O
k=O
5109)ZC) 「;丁
n
(2n-k) 2k
&4n 飞1IF/
n
/,l 飞
肉,』 咱ι
n
a币,
,,‘、
自
k
k-O
hw1
\Pη
h+
,告+
E
-nt
叭l/
/l 飞
l/
n
』
I''SE飞 E
''v
、川 J}
翼J
2 〕
叭ij/E
,叭
』
kr n rn n -n >/ E n
人州)
呵ζ
+k+k
,,S , EE-J''EEE、
4E
U 飞 川
3jill}
2 n n r · K -' n k n 1 2 n . -K -v hn K
ZJZJZJ
rEL
-C2:j ·
2n - 2k
叭1l/
陀ZZZ 二
5110)Z (iyn
2
川 >2: (叫二nk)C叫 :71)E(仇 1) 三
nz … nz
n-
"
k
k- 。
/ftt 、
n
RJnn .1 、 l/
-35-
\112/ nn
zJ
/ff飞 t
飞
11fJ
、
2-5
呵,』 肉,』
+n n
n
吨'』 吨,』
-K
j/
,,Il
叫
b且
n』 J
呵'』
…
k
、、IJ/
L斗
/Itt 飞
,,,ZBEEE、
\飞l/
十
件冉,』
L
~.116)
/rtt 飞
~ .11 日
+n
nn12
,
内J 』
n』 J
呵ζ
1
飞E /FEEE 、、 ,,/
『, t
十
tte'/
、
飞飞EES''
/'』 E飞
帽 4J
、、 EEE ,,
b且
/''BE 飞
111/ 、
frtI飞 E bι 、‘,, ,咱
a唱··
A嘈
内Y
/Il、·
黯
,,
t11t'''/
、 It--
k/th
川l//
// 飞飞 t, t 吨ζ
飞
飞
吨,』
11'/
Ett1/
/rttt 唱'唱'
!li、
n-k
十斗 吨'』,,,,
/ftl 飞
叫4
叫ζ
肉,』
111J 飞 b皿
/JEE飞 E 、EEEE/
/rl 飞
冉ζ 内ζ
L且
ηl/ b且
飞 、 111''
/il
』且
(R.R.Goldberg)
12公)z (叫 :)(nTm1)n艺1 十但 412\
斗门/
+1
j .. n
唔 (:)2 三卡 (2:) [J~l 才
n
-
hZ
k 嚣 O
, (斗 )n 句4
-36-
1 k -
' k
2 川 nZ川 nZ川 nZ川mz川币
,,‘、
kOLU
+ JFEE--nk
nz 1-k
+k
nk n
k
n
n kj
hl/ nkF2 2
nud-
j
,
1)n , asn (,
j"n
o , nk
‘‘.,,
n
x
… nz … nu
•• ••
nk n -n k /Itt\
x ,,,n44 SIB- x
VVA k44k nk
n
叭l//
mz
。。
126)
Z k-O
00
(:r
-I
2n 十 2k
,仇杀 1)
(:) 2
,
2n - 2k+ 1
k=O
C咱
127)
L
(飞) ~
2 (+lk
(+)
k-O
dx
τod1
k=O
L C:)
1
J
-Jfu1·zE
1 - 2k
'
- z2 91n2 x
dx
,
o
BESSEL POLYNOMIALS.
9)
Yn(x)
=
E
x
‘、.,,
,,‘、
•• k ,-
叫ζ
且
li1/
、
-L
乱圃,
JACOBI
呵,』
x
e
m(-1)n
/,,nk t111ts/ n EK
fF』』』k、、
L
aτ··
=
K 、‘,,,
飞 (x)
k
F 入
,,E‘、
?气。)
L C)C: ,1咐_)
k
n
nd
,
nx -x2
D
e
POLYNOMIAIβz
1)prb) 位 )z
n
+x
hu
,
x
a
E
x
Dnx
, 飞
-;7-
fEftL
KU
十
x
a
十
n'
n ,,‘、
aτ··
2"
、‘,,
,,,‘、
=
(r】:丁 :~:)c~lrk (干Jk
Z
f
J?J
LEGENDRE POLYNOMIALS
Rodri恕les:
Definition by formula of
Jτn:
(3·132)PJN "2n!
(x2 -
1 户,
1n terms of generating functions , c:ao
tn
fnh)E(1-23Et 十 t2 ). 去
白 /μ ?
n=O
ρ
三
n .... 0
10 terms of the Hypergeometric fU nction ,
pn(x)z 附+ 1 ,
-n ,
1; 号~)
1-1eoy Bumme. tions of the form 5:2/0 1n the pn( 仆,曰 nd
mz
the f、011owing table Of equivalent hrmsof pnhj may be
found of use.
、 k11//
-n nζ
呵'』
飞(叫亏~r
n-K k /It-、飞 l/
(~.1~4)
飞\ /,tt
…
(~.1~3)
P (x) '* 2-n n
1iterature involve
n x - 2k
zcl (芒-}-)k k
m::::
O
15)Pn忡 ZC)C:j C; Il
-~8-
z n
(~. e6)
几位) -
(~_ 1)k/2
(:)(2:) 2-k
(
x -
(~ - 1 忖
k==O [才可
(}.1'7J
p_(x) -= n
L ~:)C:) 产 r
k-O
叫~
c:r: ::k)
x
2k srxn 嘀x +
x-
1)
'
(R.P.Ke 1i sky)
/2
/7(
窗户手 l
仇"气 +Jt)n"
'0
Ij/
qζ
f''E、 E \飞lj
,
k - 0
/t 飞
+ L,
nk k 'n
o 十
盯/syo
()问 Pn(x) =
向 1一节
wrp
k
,
钊
k-O
nγLh 万
叫 z (-:X: ~J 产 c (-1川 W x
k
-L
(X + Jx
2 -
1ω 守主)n
,
(valid for integral 乞> n )
-,9-
Integral form of L. SchlAf11:
p _(x) = u
2
(t 2 - 1)n
II
~-~~~ Tr l
2
.n -r 1
D ~.
U
dt
,
(t - x)
c ~here
C 1s a circ1e counterc1ockwis6 about the point t ... x • In genera1 one m8y define p_(x) for a11 rea1 va1ues of n. n
and relations such a8 the
A『··
a 唱,
.
b斗
,、,,
(
‘•.
,,
(1 - x)
n
+1
fo11o~ing
Z (n:
are found:
1
k
=-(1-x户 L
k-O
+-x-x
T(z)E PZ
then the above reads
f(n)
E
1/
if one defines
。r
飞,
/tart-
坷 -n-1)
-件。-
x
4
c: r
z cr
xk
.k
,
A G即ERALIZATION OF THE
叫 Z X+JEKzr: 丁
VANDE~~ONDE
CONVOLDTION
(吃了>j 二;;二;fγ 才
y
y 十 (n-k)z
(contains (1.125) as special case)
Zc t:
MZCMKYCn寸 -
叫 zc: 丁(Yn-工) ~.145;
kZ)t- 了
t-
- ZC~:: ,
Z (丁才(PJ 才
p
z t'
+ •
1
(Jensen)
t
zk
_..n-p-1 ~ .
I
, (z - 1)
t
0 三~p~n-1
,
IC;
z
n+1
-
1
•
P-=D
,
z - 1 (Jensen)
(}.146)
Z
(X:γ;二
p rqk
(x
t
kZ )(y - kZ)
p(x+y-nz) 才-
x(x "t- y)(y - nz)
k=1
(:)(士刀
Z
15(nz
,
kz)
.1 1时 Cj斗(d
- 1)
k = 1
E 士C)Z kz1
(M-:7
n
(")
C:j · (归H恒8吨问坤时阳叫 咐甲中g萨伊伊e盯n n - 1
n - 1
川7} 艺
nxq
(dk - 2)! (k - 1) f (dk - k )l \ ,
-41-
n-
nZ -
n 十 k
(Vnn der Corput)
,
(Cbu 吨)
(cf. (7.18))
竹叫川
274
·+1
r 飞
Ln/l adttt
, hj 4d'
,,『
+泣)xmmk
叫
、 J
、
111
11l
blu 飞/,‘
,
,
J
rrk
飞
斗
、J
啊M
J
e
x
/lh川
.1 、112JIVE
》Fh,、 -+Y-
XmL
+mtd 飞
田口飞
k
Y
吁飞 ‘11idr
IIEEE飞
扣儿出
4EWU
飞 II/)(
「
旦
飞
土 23EPJ
17LZ
/ii((
at4t41
〈-nzVHH
e'=-r
州i/
n1)
1l/n
飞
m
ιL4t
-n
-·工
一--n
l/-x 飞
、
1i
/d 川川
11
, -、 -EII J
xa\11/; 俨回
』,/Y-xnx
IrsEEE、=
、
+m/IIEU\il\l
μkah+缸+ /l 飞
-h\二 /
5FHJF
nn
484E1
二
〉民
hζ
11j/
飞
t
/fl飞飞
旦
呻
王h
』
/l
、.,,、‘,,,
J
飞
nn\/μ=-YLPn?L 回
叫-uxjkk /luv/ll飞
·. ·-LA .
,
可J
-乌2-
xi' O(
,、‘,,、‘.,
,,
/lt 飞 n 2
1iJX
、 Jk
rktit-
1
555
ZJZJZJ
..
,-
=飞
/ I l 飞, nk/Il 叽ll'/tt 飞趴
aa
+'BK+m/l
、‘.,、
斗
eAt
Et--v itE1kk1f a t , a··A·· 1 + U X ,""-++-+ . illa-knkk
678
Y
'XUX+n
(… 3川川川… 1巧5刃叨叨3引切) :趴C:川 )C二: k) = 丁士子什钊 斗(-寸丁Xxm - 1) τ
nyLMn?JLMn2Mm2ω
h』 J -'‘、 ,SIZE 飞
ZJZJIJ 寸·叮
F
k k z r k .X+LEEf-F+ < IILL--
-r-mrr fi
4 ••
sns +myn m-JIlt/SEE-++ s ? V · n a + r 2 2 b h U ta h ) Z =\1.h---a -41hu/It--4 -i o x -a 2 2 u · + oa1c AB-4 >
\l/+-3\l/ k k kix xaitEFX-k x1 x x k 2=.-) RJn+h1s , lon+++n
QJD12
3 TO TABLE ADD工 TIONS
叫5川乌):(Jj 儿二) = (x: 丁 (b;? , m=Irl ω
n
,,/
k 扎
、 EEE
n:
向 d
:(JfjC::)=(J: L(_1)k (:)(γ)
5.160)
JIt-飞
~. 159)
x + n
2
h
.,
(叶 )nω 丁号722a ,
川 61);(-1)k(:〉(nLγz:: =(4)n(nL 丁户,
川62)i ←1)k(:)( n:丁产=川 (n 2:) 产幻,
3163)i(:}( 飞2)zffif: 〉 2n也
(Carlitz)
;;16ui 叫:)( ~2) =川 飞飞
IIIJ
no
an
飞ll/=
--'-
-n
址
nad 2JKK 1L + '
,
BT enn er
、‘,,
J0·K
飞
飞
飞 J
、 -EE
,, r
飞
dk
,,IEEE
Vuqr
r 、飞,
'W(dh
、
、EJ
ζ
,
『\、,/一-
队lj/=
飞+23
JK
飞
-斗 3-
占JJJhhZY
叫J 』
AI
-x
R
飞 J
xr
Jn}y
、
L且
+『
,、
D』
'''ttt、11
『飞、 /---2
yfIl
xn rt2
-11·LLIll ta kzk nn + + E K n k 2 2 Z+L22 2+florkntlo 2 2 n E 1 2 kx +-11l/2( r k y x2 xk KIBE-rf''SEEt-
『F 』
「 ζnn r'' 飞飞 』EE
「 4
k=O
,,, st‘飞
LM
n勺 、‘,,
冽l
,、 J
rofo
--14
切
pu
/lil飞u
\ll/
在
EEEEt''
q
、
/FEEt飞-
,,,EEE-‘飞
品
ny
'吨J
冽··
rbRJ
mYLMJ Km/IIlt kn, \lj/ + qq) P + + 4Ea ppkn + kmE
(Brenner)
2 xa 、、lj
=(
; k)
rFSE 飞飞
飞 ZEE-,,,
T(;::)XY(「x
,,,,,
)
4·k /'SEEkk x -n xn ++ -K = 飞 EEE
(3川川川 吻 166句9
2k
+ 1 n +k + 1
.(3.168 )
,,SEE-、
BFFL
'
7) '
(3川川呐 1η7mJO (3川川川川 1η171)叭川1忖)
(C; :二:)门(γ) =(:) .
:
(3172)ic::) 仁++:) = (二)
.
…;(丁) (丁) =(丁) . (Graham and Riordan)
(3.17鸟):(气了)(;1)=(:::) , (当丁75) 二(斗(::7) 产 n
(3.176) k=O n手P
(3.177)
二
k=O
=(:) .
(;;;)(;工) 2盐+1=(:::) (JL:1)(P; 丁 = (γ) 俨P tlMoriarty" , H.T.Davis , et
(3.178)
了
k=O
( 2p : 2k)( p:丁= (3.177)-(3.178)
2ntpr; 丁户
are equiv.to (3.120)-(3. 121).
-乌鸟,
a 工,
:•
(n/2]
k~r
1)k (n \- I J \ k
k\(k 飞 2山=川r{ )~
J
r
飞
n + 1 \ 2r + 1)
(Marcia Ascher)
。[乞 )k -
(companion-piece to (3.179) these are inverse Moriarty formulas -
)(38
a
+
4t
E1tI''
1
k
x+
(Brill)
2b +
b
?」
At
//l
=
a +
飞
、.,,
(2a + 2b + 1)!(2b)! (a + 2b + 1)!b!(a + b)!
,,‘、
= (_1)b
2b +
n
=
飞
AE
,,
/rtt飞 t
。咱』
krLK
、、EE--EJ
kk E·E·、
、.,,、‘,,
,,、,.、
、.,,
4 ••
,,SEEE
n?JL=tyL= ‘‘, IIl-xkt xk ++
t> 2)
2n- 2k-1 ♂( :r)
afK(n : k) ( :)
2b +
a
(A. Brill , Math.Annalen , 36(1890) , 361-370) ere
1飞(勺 c: 丁
/
2t = 3a + 2b + 1
Discussions , proofs , extensions by Gould , Mathematica No. 3 , August 1961)
1切:(叫 :ì 乙 :;1= 川
-鸟5-
Mononga 工 iae
TABLE
.4
SU}.1l1.A TIONS OF THE FORM S 11/1
n ,1)
二 k-
(:) j
...
C:)
(~ )
(n: 1)
1 )
(:十~) n+ 1
e:
x+1 x - z+ 1
n 1. 2)
Z 川 C)(b:k\(b:k)
c n+c
(nu) b - c
n
n I.~)
>
L 川 C)
n-k (xyuZC)(x-KF{1·HK)
ZCIB; (γ)(4;7kzo
|月二(叫:)
k
1
g
Z
k=O 2n + 1 i.7)
Z
k=O
(:) 1:
(n+2x) k+x
k( 缸 k
SO(x) =
-叭l/
1.6)
,
1)
一-Tn
n
,
y 十k
x x+n
2x+ n + 1 (2x + 1)
L-x 的
tnH 十 2') k t- x
-乌 6 嗣
rz
…
E
,
Sr (x) ,
+
/III\
wh1ch 1s (1.42) again.
叭l//
1
-/'『 tt、
-n
s 1(n)E 2(2n
y
(Y:k)
k=O
1.5)
(b ~ c 0) ' (R. Fr1sch)
rk
2
n
20
2k
(2~)
= 2
Z
k
Z
k
k -= 1
1
=:
k
2k
(2: )
=:
1 - 2n
(x 千 1
L (:) (k: r)
n+ r )
-Z(n;7xk
.. C:
r )
n a、
、‘.,,
LH 『
,""可
...
OLh
(2k+1)j1+(-1)n+kj pk(X) I
(n-K+1)2k 十 1(
-乌 7-
n+k 手 1\
2
...
x
n
'
民 l/
IF/-mx
飞
k 1 当)
hn可几
kEO
l :)
'n
k
(_1)k
工
+1
2
1
L
-JrtE、E
4. 12 )
』
n
_1{-1 ( : )
n
F/
、、,,,
,、
BM句·
a2
-T+
n
=2
n
k
l
z
-x
2
hO(2ni1)
aEE' - ..
内ζ
-=
E
飞
÷仁(:)
4.10)
』 1飞
(:) hofn;1)
皿句ζ
~
-tf/-
iI1·
内 ζ
xx a··Et
KEES-、
』
,,
(-1 )k
斗 .9)
x-It
2: c:)
~.8 )
4'n-xaa n-+IMA
Z 川 k-O
rEK
Lt+2}
(川) n 牛 1
2k
-…回5
n 斗 k
(工)
n 寸「
>
刀
4k +1
C:n 十t- k:k)
L.-J
k-O
2D 十 2k
+ 1
2
2k
e:j
'
-
n
Z
川(:)
..
'回
c+ k叶?
k....O
IT h1 s
(2k 斗 1)(
n 千1
'
了 :tf
may be rewritten as an infinite series actue l1 y: 1
二二工 1 牛 1 n 步'
+
.....
(1 吨 )(2-n)
1 4n
(2-电…
2D
7
2
--‘万.
1
1 小· -(2D-1 川'
(H_ F. Sandham)
'l
1 十 2
号(:) h1(x:or; 与
( 2:) R(x) 主 o
1) 艺 (·1)YDK2\- ,川ed 1 <以 2n ,
//k 十叫
o
0
1
,
p being i
号(:)、 kx/n
主 c +: -k) … +12(ijj3121;四) ~------------~~-.
一川
饥艺阳
U
( ~)
-
名气 (71+1 ).1
乓(足协) (Jlt 't) … (~oI 2")
-斗8-
((j. 1 1:- 王《例忖 1:; /J.• 1J 1 廷 4吁沙只
ADDITIONS TO TABLE
I
(-1
k=O
1
(:)( :)自1
-Ea '+-+ ndq 1-2
1
斗-
n
42
1 1 + -四-n
•
= vn ,
n
-.n
= Bn -e
n--+-n fId--L nn -nn- llkA
= C
n
= B
- A n
n
列 i
= Dn =
、、
(:f
(-1)n
,,.、
1)
(乌 .29)
n
z
=
?
)n T
自
n
J 『 』?』
(4.28 )
(-1
丁 +
-
:)(:f J( :f
(乌 .27)
=
-
T
『 ζ'
:川
= un
T
n二7τ":"'" +
2
、 rlJ11
(斗 .26)
(:) (二 S1 C)Cn~
(乌 .25)
=
n
-宁
(鸟 .2 勾)
1- (-1)n 1
E·
2,(叶
n + 1
列
(乌 .23)
(:) (:r C)(:: y1
= cun .,
+丁
2n
-
、‘,,
:川k
、 ,, E
(件 .22)
4
,•.
nB
n
The first of the above eight sums arises natura 工 ly in a stat 土 stical it amounts to the evaluation of the moments of a certa 土E
prob 工 em;
distr 土 bution.
(Gould)
(UO);(-1)k(:)(x;k)-2
X
x
+卫
this is a 工 so listed as (1. 鸟 2) (because of intimate relation with (1.41)). This is a1so r = 0 主 n (ι 的.
-件9-
TABLE
5
SU~~TIONS OF THE FORM
S10/2
00
1.1 )
Z k1
h
k (k: 2
-~
n)2
z (:Y n
f1-z4z·p. 1 飞
~(D +.1) 2n 牛 5
k 属 o
1
n+1
2
fn+2) n 1
+-
-50-
2 k-
Z k....
(:k) 士' 1 (Tor B. St& ver)
TABLE 6
hz
SUMMATI C5S OF THE FORM S "/0
z
k
•'
1飞 1'/ 、-
zn
吨 ,ι
』/
X
‘
/it 飞
-m
EEEE
11t
r
飞
11tt ,,
xn
qLE
斗
,,, nk 飞
nζ
…
/It--‘、
k
n
2)
,
'n)
牛'+
X
川 llIJ
2n ++ zz2n (什: t n ft11·L 飞IBI--J
'鼻
句ι
vvλ
呵ζ
ff』''飞
nn
nt
,
C~γ: 2j
1n the symmetrical form
叫iv
EFt-
『
tI'
...-'m+nT 'D )1
,
mf nf Pr
rIt--k ntnn X
h
飞
的li/
n
千
x -n
(Th. Bang)
UVE户 A
们1j/
Is--
、 EE--J
,
fIII-L xn
\飞 lJF
-U 圃'
内FM
EEEESJ 、、
I'' 『t1
rtzl· 飞
、飞llj
,,
nk XK xn
牛'十
、、 11
J
,
十
(_1)
呵'』
b且
nu
/It-、
hOLh
;) .L_
11·l
rkm
ftI1t /FszT+ nn mmnk PK ,, pp 、、
k
f
mγ← ρ
η
• (Fjeldstad)
z.,,
L (叫 20(2:::1(2::;Jj n
~'or
、, r』,,,
, t 、-a ,-
句ζ-
.,,.z-x
-
k C) (:)C : k) - ('~J x.二}~川 )n ,
川 -RJ
"
,,‘、.
、.,,
,,‘、
田
、
-51-
、飞 11lj
k=O
\l'/ nnzJnn fIlE1
,, EEE-飞
n ‘,,,
qζ
A哩,
1
、飞 』』/
RJ /ft-l nk 呵'』
、.,,
,,‘、
aE·
bι
-z 叫:)(丁川仁). hz
nFafe
RJ-n
'
(A.C.D1xon)
向J 』
b且
ni! 、J 2
刊叮
自灭 J
、,,,口
a'''
引引 人飞?卜
11ltf/ 、
吨,』
内ζ
民
川ll/ 吨ζL
,
LUT呵'』
人
飞 kltu 叫ζ
V
2.-J ,
KK
A儿
K)
、
川lj/
气
l//y
咱飞
,,ESEE 飞
r
、
,电
I/
., Etlt
,他,『,"
飞
,
d
f
同 bE
飞 i/
/lttL
y
i\11/
-LMF'E 斗 同J 』
A
U川八
JIltLJ''tl飞 占J
飞 !/nk
们
Vuλh/lL
nn
2kdFdM
趴·l/~"·Ifl-
.叫
ι --内,
rk-n
一曲门
/Iυ/(
飞
ll/MMH
呵'』
fr
n
十盹 ky 阳w b且
川11/ /tgE‘ E飞 、11i/ b且』且 吨,』
uvn尸n 内4
吃σLN 、1IJJ/
吨'』
n ' r 2 nk j n J J nr S T x ---K. nk n r
fn --BIttJ •
/I11 飞
…
飞
川
川
J
/IIi飞
中''
li
Ij/
/IItL X4J
L且
\飞lIIJ
/III飞
xr
中 tk
、
1111ff
j4' -r
,
I' 』l
飞
\飞ll/
n-K/I'ttEEL x
.k
…
/Il1、
b且
11xk A r ? Z /IL z
nZ川的 2γz
…
,
nz
FEEt
(-X;1 )尸
X 1r
/ttlL nn
/,
ip. 但L)! (宅L)! X f70\k J
/,,,,nn
n-K
IEEEL
』且
k)
m
…
二土生
\10) 卖了/-xy /μ1
hz
ZJ
(Dougall) ~ 1 1.刃.
(x
• X
啊..X
, ..- _
~
f/XJ 'x
"-2 xk
K
』且
』/ \1l
/Ittt 飞
n?川 μ
9
JZ
vd'
…
c:)'叶 2k 18 ) 兄
41m hvd
x
+k
nk
nk
r
RJ''
!l/flLl
「ζ 民J
j16)Z (4CYEtiYC::;:)=(-1)rctD 门' 17)
:.18)
L ( 气十 γ: 二川::) -(:)(:). .
L (X: 比 ::1)(:::)EC;:::)( 叶:丁,
, .L:J:) (:)( .19)
i怡划 20 山削 o叼)
(Nanjundiah
r : : : -) -
X
c: γ 刀,
(叫主)
Z (-1护i 罩 Z<叫::13( 飞)C寸,
、叮/
叶 n一叶/
tt
l 飞 -4'n
一』
tlj/
-53-
,但
ll/2
飞
.t /''飞f
4J
112/-x
、
\EE/-x
肉, ι
』'''飞
12/
rFIt-
n
b凰
/dM1 、· 飞
句ζ
飞飞 /nk
飞
r-fJ'
飞』
J1
/lt
ζ 呵,』
nZ川 nz…
4『句 吨ζ
2nn-ry· \1|J/K -K K k 'n n44JFikn k 2 n 2 Bn (-K EXTT
'
Z
(2:)广丁 kJl n
)k l í.2~) ~ (-1 (-1)~
2n + 1+ k
k=O
6Z
1.24)
C:)( 2川r
r
(-1 (-1 )k.l
2n+ 1
n
k Jl
,/
内,』
叫l/
l
肉'』
飞
L崎
''''E 、 EEE
旷 VA 八
吨,』
b且
n +n
内ζ
州 l/ 一 ,·丁,/
、
叭lJ7'飞
、-
m
,』,/
2k
F-Luh&-
/i 飞 \lir
』1ts
川l/hu--r
12
,
ZJ'E
ftitra--
h崎
EE--F2 、‘
nk11
/fi、
占 Jnn
『
rV
『,,,,
ιkft
Jr
-LU
叫
。可
dkc
h
bA
tm nk n 'n
nrJ-z2M r''tf1L 22z'Tn/it-h 2 r n a -n 128
,‘,
罩、占
F、
口了一口
6-w
-dk
/IIt 飞
nu
/JU叭lj/JJ 缸中
"
n
、11EFF'
\III/ nk
吨'』'
//t、l
冉 Jh
内ζ
/Ft 』1 、
nO/μh
k
'
(如: 1)
- 1 ,
2n 千 1-k
k-O
(丁气?
-
2n 十 1
--2 .n-
,
(Cerlitz)
n
a
127);三 (叫 :)2(:
nz
k=-n
+j 川l/
、、 -tt 』,,,
n
naJ n r'It 『 EK
…
J'' 『』飞
飞、tlEFI
au
\Iυ
bι-
/jt 』ttk
nζ
nk
JI''BEE-
")2(-1)KO2(2:::)s(-1严飞-1)nL;y: 与丘L , ( ~X)
-5 件-
内丘
Ett
,
(Thls ~nd the next tWD formulas ere essentiel1y the one g1ven 1n 汩的 h. Rev. , V.17(1956) , pp.65,-4~
r
,
I'
飞
,,
n
xn 、、,Eta
、
nk
/lt
k x +2
ftst飞 E
』/ \111
O
ZJ
吨ζ
,
hu
/'''飞1
n?L k=O
吨,』
11fF/
、
1ltF/
、
n
少』
x
n
飞 JItE飞E
、1ltI/ b皿
』/
吁勺乙hn?μ
…
同ζ 灭J
、飞 11
内J 』
飞飞 Ifttt
//flt\ X 4I 22 nn
nK
xn
十
11lfI/
埠
k-O
rIts飞 -
、
nJι
1/
』
nz
x -n n--M mb
/Iit飞
叫ζ
n
"-vh EE
ZJ
、、
fhu
Itl飞、
,
nOLx
, (Meth.Rev. ,V.18(1957) , p.4) (Known to Le Jen-Shoo , 1867)
、
•... It's-、 E 』,/
nζ
11t
呵'』
、
呵'』
k
b且
tit-/
飞
注+
lI/
2
2D - 2k
川】2
〈 -1) 步 (-1)j
-EEB』 - ,/
//Il飞
川山2
,, IEE飞
2
(Generelizetion of
(6.~5)
)
21 nAMA 、
nE
nT
L
li/
主gk
1iIJU
/fl飞
1-
土
内lIIJ/
fff 』!
-55-
VHnf
户 E
2n
阳
呵Jh
pvun
111/
nζ
,,,『 tEE1
+k 、 轧匾
、飞!/
nk n
n
ζ rt、-呵
/Il 飞斗
叫 Jn?Lh
h 句ζ
4·Jt、 11
,,‘、
、‘,,
r 。
,。
hZ川
k
E
ilt-//tL tdlt/( iin u akk nk2 k-K n itnk
k-O
ZJ
飞飞
lk
f''
川 iu
(-1
呵'』·.,
•
飞
/IE 飞=
~
n
i1
4JI''tEE
O
b且
1112F/
飞 JISEE
6.~5)
-FEE飞 t
fftt1、
hB,,、
飞1/nk
111/η
飞
o::
t、
k
吨'』,
:6::列)
内J 』
ft tlk --Jn nHaEM- n -n k k /· n k · -//tl\
Jft 』EE飞
:6." )
叭叫 I/
J--16
吨ζ
』
\11 1/
n
』凰-ζ 内
k
(叫 认叮l/
ζ 内
飞
、、,
叮/』
nJι
LK VVAHh nKn -n -r
x
)
0, b
(Gou工 d;
special case a by Samuel Karlin)
/lh
= 2,
x
(Cer 1itz)
n - 2k - r
(6 们);←d (:)(丁 γ; 二 b丁=川(:) /,,
2n
\//
(1 - x2)n Pn
川VEA
k
IF-SEE
飞hEJrt
x
恰?L」
n
→♂
p-
J·
rx
-一+
三C/ coer 川 in nu
(2n - :n+
「JιJE飞 J
2·n12
-
nζ-
ffL
n
n-k
,
…汀…
(-1 )
(6.40)
,
(斗 )k ( : )-;LnxfL寸 E 川
(6 .~9)
'如
fI』 · 飞 E· E
n』 J
lI/
k
飞
n
'n
L
中
…
只J
/Itt 飞
fJt11 \111I n-k
z/?t
;, ;:8)
向J 』
nOL
= 2n
b
n
suggested
‘‘
/,
--=
CM.T.L.Biz 工 ey)
f
+
、 -B
』,,,
+
』,
EE--,,,
SEE-E飞
、飞BEt-
-56-
ih
,
11t
1
ZEE-F
/''EE飞
J
、 .J
L『
1jd\tl 叫
』,
,、飞
kdk
飞
11
EE--tSEEE--
、 ZEE,,,,、
、
EE--
飞
飞 J'SEt t/,
飞飞
,,ll
飞 EJ
.. ?」之 L吁
Jt、,,.、
rbζU
ddd bkbk aca a-ac ++cd abab ++++ c-c -kckc ?}Lkh\/UK FEt--/FEEt-K
(Bizley)
ADDITIONS TO TABLE 6:
(6 件的 tc)r:::k)(m+:_J=(:)( (6 句) ,t (:)(n:J( 气: :
:).(R叫)
= (:) ( :) .'
k)
(Ri 叫
(6 届):(:)(;)(X+:::-k) 平 ;γ: n)
11j/
J
((
Zeit 工 in;
•
equiv. to
6.20)-~
'"芒,兰二 eel EEE
asa -n
(MacManõñ)
ff--
,,
嚣
EE''
飞
飞飞EEBEJ
、
J'tEEEtt \Itts/ ka
k
a
k
「 ζ
n-
k .1 \ ,,,』 EEE
r'''EE-\EItl'
飞飞 111j
+ ak4t
nζ-
O
飞·'
,,‘、
,,,, EE 飞
n?LMk
na
(C. Van Ebbenhorst Tengbergen , 1913) 11 』,,
、-KEEF-
JrEEEEE1 \EEESJ X + aa + k ++ nk rk rr
飞
/lat-飞
飞E ''''EE
乙时
n?
(6.51 )
(:)(:)
口 -2k
(如斗9县一
FhJ
-EE ,,
Kral工)
(6 崎)仨)吵了;二 1)(X: 丁了: k) =
fb
/''t11+n Z
、
=
(equiv. to formula posed by H. L.
(extension of formula of David formula of Surányi.)
y
r +r Z
、
zr +r n -k
J'''、'1
飞飞 EE 『,,
、飞EElsJ
r + yn zkK +m
ff』t11
,
JFEEt 飞
(6. 每7)
、‘-EEB-
IFtst 飞
n?LWYK
.
=
JFEElX +
(Contrast with (6.19)
(652);(ufk)(二 k)
n +
n
γ+
:+r)
(Gou工 d)
C: k) =(丁 γ; 丁,
-57-
TABLE SU1制ATIONS
7
OF THE FORM S 12/1
(:) t: (n)k
们
k/ (:)
Z )
(:)
(叶:+")
气丁) 川斤。 k)\ kJ (寸 z( 寸 7 17.} )
n? 户户
、‘.,,
哼,t
.
L斗
(
ZofO k
c:
<_l)k
(:)
Z
k 黯 O
E
(X:)
(x _ n)! 、/-n:-
(X - n/2 月( -n/2- 如 f
o
<_1)
niX : j ( :)
(:X)
0
n
(7.5 )
2n
'
(叫:)
ft)
(刀 (
。~ j<
0
·阳嗣.
n
=::
(。
xn
n 2n (叶 r- 2
j -
n ,
(2:) 内J 』
4J 甲吨'』
..
/,『,』 『 +LW E飞
、 11EE ,,
J
F
J
飞
u
+飞
,
.‘、EE ,,,,,
AB-
yr
J'ISBEE-4t 1xh 2 x-n yn -nk 、、EEEESE
,,,, EEt 飞·
n
」.
at
、、,,
=
,,.、
(7ui(d(:)(;) 了丁丁
nnMFatu--
叫ζ
2
礼川I/ 缸
内ζ-
., 2k
+→一\tj/
/IIt -r'It--t 飞
n
们/主
(7.6)
kvl/
a••
,
.7)
L (-1户 c:)c: 2:)C:) k0
(n~) 产
Z 川(才)( 2:) k=O
2k+ 1 (n: k) (叫 k + 1)
c:
'.8 )
n
7..9)
z k-
(-1
22k
)k(:f:J
(:k)
0
n
7.10 )
7.11 )
Z • l)k C)(":)
k=O n 三川k(:r k=O
〈可
T
~ k==O
n\ / -n-
( -1)
n
IC:
2n 卡 1
22k
2:) n (2 (-1)
-
(:k) 川)
x( :J
2k
Z (-1)。
7.1~)ζ-'
(节(叫1)
(2叶1)
C:k) (2叶 1 )
:J
,
n
(:k) (n+k) 1
1\
l\.k,. J\JI.n-k) '- }
,
fk 十 f.
.
k
.,
=
J RJQJ
-j.
-22n( …
22k
n
7.12)
( ~:) 2-4n (2:)
-
_ .n ( -1
r"
寸、 r
/
n2 ,\
ι.J '-kl k=O
k十r
'2k=(_1)n /fi--\ nn 1, Illl-/ 」
++
nζ
=
-K-K 、11j/
k
11EEt-'
L
、
14)
-k
n
【 ζ ,,,』 a··.、
h+
fFft11
(2n 十 2k
0
+ 1)
产( -~/4)
(忡1)
C:)
k
) L(:)( 丁
~k\ 2 (γ) t-:
k)
1
zn
寸
\1jJr -
-n
一、111/
一ι'n
Z j
=:
k
1l/ 飞叫
一十
z (:) n
,18)
k-O 2n
,19) J
z
k=O
(rn)f 2
-一
(rn - n)f
n
L k -= 1
1
1
-f'』 'l飞、
1111/
fIIt--L nk
n
117)
-21jJJ
n
}飞
nu
一/fi飞
bA
-x
nzh
千
/t『1、一
...
XM
jtx
=
2
((j'1)n) (j - 1)k
(~: )
m
z+-z+
k
( :)k
(rn 世 n)I
=:
= jk - 1
1
, (mJ注 n)
,
k = 1
j - 2
n~
1 - j
1 (Equiv. to 8 forn川 a of K. L. Chung) <3.1 斗8)
:: -1 for n = O.
kC:X叩丁 k 凶 (2;:3
-60-
(可 n + x :
y -
je 2j n:
(XDCO(2::3
Meny closeà ex~ressions for sums of the form S&2/1 ere known from the theory of the
Hypergeometric 负lnction. QQ
Definition:
Z
F( e , b , c; z) -
(7.20)
(-Dtuzk
(-1 )k
C:)
k... 0 where e , b , c , z ert complex numbers.
,川 , b , c; 1)
F( a
(7 .21 )
_
(c
1)!
-
(c • e - 1)!
、.,,
nJ 』
.、
,,,‘、
s n x
呵'』
兰 cηn
'~7 .22)
1)!
(c - a - b -
R(c)) R(e+ b) ,
(c - b - 1)!
'k
(n reel ,
cos nx
IC
IX/4 衍'2
了。
01 -飞
b且 k
一‘111/
(n re e. l , I 斗 ι1 )
1
nζ
k=O
千·一业
、‘,,
内 Jι
.-n x
cos x
111/
且
JT
eu
-
sin nx
bh
/tts2·L 11fJ/ kk
-61-
-U
缸-Il ‘ KA
X 』、
μ「
i)
内丘
艺(-n/2 k-i)( 的:
,,,、、
(7 .25 )
4··
。。
、A
r ea
ζ
0
rLkiSE-x 圄
-内
:a::
、
k
-一 m个
k-r 冉J 』-, ζ内
.(7.24)
LC.γyn/2 k
sin nx 11:
〈
C吨2
n
2 k2
1i/tl 飞
飞 J1
,,-
ι1
-za--、
咽'-
r ea
n-
&-4B ·唱
hv ←
== 0
x-
mx
1、
k
--,‘阿
IC 才 1) ("气-j
内/』-,
n
呵ζ 』-,
(7.2 ,)
kn-2
cos nx
"'"
cos x
) ,
C. -丁: -!)
-
(8
t- b ).')
I
b
内JFh
‘•.
,,
7.49
+-
'
b +告'" 0 , -1 , -2 , . • . )
1
(b -去)! (8 - 1)! (巴专 b
nRMF
(e
(b- 主>!
叭llj/
8
(8 -告)!
kubuh
飞
4干F
z:::…
-
2·k IF--t
nu
2k 1lJ/
-E-t 』』,,
JL2·K
(a 十 b -告)! (-告)!
、
∞勺 Lh
肉''』
『,1
‘,,,,
OLU ∞
~6)
〈←川川 E斗1η甘咐)川户 衬 4 卅门 k 《
艺 (-斗叫 1
, , • . .)
1 笋 0 , -1 -2
+
(b -
c:)
)号L 4C:JC~:)= K/n 飞
(8/2
n! (-去)!
+ b/2 (b
-
1"
1: 0 ,
2' - b
(b/2 -8/2 ...告)! -1
,
-2 ,...)
/叫号 r: 1) x +丁~ nJ 乙 (y , 1
) (:) _(:l
~-.
l k)
=
x - y called
Capell 土 's
Notes on Binomial
relation by Harry Bateman , Coe~ficients.
Replacing x and y by x/z and y/z and multiplying through by Zn , then let尘土ng n 寺、 f。m
yu
之,
z k- 丁
-•
-k
x~-'y-~"
k=1
-62-
0 , this gives the limiting , n n
=
(x&J. _y~)/(x_y).
Cf.(11. 的, (11.5).
Definitionl
可-= F( -川 n t j 川 'JZO(斗 )k(2:)fD J
.29)
自~ R~ 十 s~ 千 1 ".- j
I
-
Some apeci s. l values of thesesummations ere
r.~~) 咒/
、,,,
h斗
'.)5)
5~1-~'
(n~ 1)
,
(n :;::二 0)
s;E1 5~
_
1
'.;6)
5~
2
_ -
n
t-
j - 1
,
1
2n 千 1 ;(n 千 1)(n 十 2)
,
2(2n 十 1)(2n +~)
'.,7)
s;a(n+2)(n 千 ~)(11n + 10
'.~8)
n 54
,
4(2n 千 1)(2n 手- ~)(2n 手 5)
(n i-2)(n 千~ ) (n -
8(2n 十 1)(2n
,.;9)
Rn 4 -=
问)
R~." -1 ,
-,
follo'W 81
88
-.2n+L , n
.t
4)( 4~n -1 勿}
+ ~)(2D 't- 5)(20 千 (n 注 1 )
(n ~ 0)
由 63-
7)
,
-4f
一川 1l/
j t- 1
f- j -t 1
,
j
且
n
'R~ 'l\
-4Jb
2j 千 1
t-
+,
一中
2~n
sn _ _ ~ 5~ j+1-7Wj
4,
-41
KJV L -f ,JIlt 、
,,,,,、
,工+
n-
吨'』-
十一n
1.~2 )
nt
句4-
.
I
Then theee sums setisfy the recurrence reletions
1RJ4·a‘,,,
,
川川 l//
+k
b且
川 Z…
千
吨
R; 配 F(- 2n - 1 ,去,
.~O)
,
.41 )
n R1"0 ,
.42)
, .‘,咽 4
'-
.4~)
.44)
n+2 ‘'
;:2n +~) 二 (n 卜 2)(n + ~)
ι',"'" 4(2n' r~)(2D 十 5)
R4 _
21(n 十 2)(n+ , )(n 千 4)
+ 5)(2n +-
8(2n 十~ )(20
.与)
,
7)
F(-n 告 j 川 )EZ川
C~)
I .2j •. _2 人(… lì x) . (1 - 4z 川
,
'.46)
n?Lh /JIf--+·'+ 、飞11tl
-、
7''1lL
'.47)
hιJ/ 呵,』bk{
JFFttt nk
,/
E
o
2
-2k .. ~~
_k (4z)-
..
. ' _n
(1 阳也)
- k
晶'
(These relations , (7.29) - (7.47) eppear in a paper by the author ~endi鸣 publ ication.)
人乌8)
t
k=O
(~)+(;; ;) ,-n - k
Ix +
y
\
n
-
I
k\
X+ y + 1 - k = 1 X + Y + 1 - k
I
l7. 斗9) - See page 62. -6 件自
,
(R.Lagrange)
TABLE 8 SUl.1J;:ATIONS OF THE FORM S 11/2
(8. 1)
2>叫2:)
'门广 γ?
-65-
TABLE 10 SU阳ATIONS 、
L叶
11
x 斗 2k
』
F/
0
飞JFSSE
1LhXK
OF THE FORM S .11,/0
x
~x
(-2 X )/ arx(-xyz s10
Z (:)\·÷ZOA
2)
,
(7. <告) (Dougall)
(Dougall / Staver)
k-O
k==O n
,
n k ?Z (;yzZ (-1)k(;ynjZM(:)2门' k-O k-O jeO 14)
~5)
Z k-=O /
I
(_1) (-1)
k(}:~ k^ }n nn- ky ~(::){ 2n 2:) n J
\
2' (-1 )kC l n- : 1)-J l(川) 'n Z
k-O
~ ~
(_1)
n 十
1飞
J \
k
r
PWW
j
k 配 o
nu· 11
r
F/
n
0
(0
,
』
k
9.
r-
、
ttzs't
i'ft1 飞
Z。 (;)A
,,
n4J
飞,,lj
、 1'
《川 V''
'
、、1'''
)二(_1)k 二C f(k:
',8
mJ 』
/JIlt、
zzoy: 丁
KZ川
þ)
( -1)
k
1:
!1 ,
n ". r
n-r ,
Y= (-1)了。)L217)n1 千 2·1)r
_ coef. of xn
-;;(1-x巾
, (Car l1 tz)
TABLE 11 SU JrnUTIONS OF THE FORJ.1 S I当/1
a咽··
,电··
,,.、
.,
‘•• aE·
ic) (:) (k: r) 。
( 11.2)
(x+γ7 亿::)
(叫:寸
c+: 丁
L (:r C+::丁 n
(叫1) c n :
20
/I1、 -ya
'
+1
膺'-
、,,,,'
J
-、飞,,/
EX
EEl--+
‘』 、 一,,t ,
飞
+B
』
』
11
-
飞甲
n-2 k-
,
(飞?
a::
z- y-+ +n-z
X
,,tt
、飞 EE ,,白
-+
℃
-+
z-
-EA
,,, 『 E·E·-
SEE--
11F-vuk
(11.3)
飞
nyLM
、EEEa,,--
''''z 、a -
xk-it1 ,, yk-
'
(equiv. to a formula of H.L.Krall)
at-at
丁 圄a1.
『n
-+k
-/JS飞 E\
飞飞BEar
、EElsF
/ftl 飞
at
EBB
飞
-
n
rrtt'111 XLAi-yk -a
注/寸、
x+
仇}/y+
k
yn --、飞
(_1)k
xI''Et
.的
''''t、 1、
(11
L
+
TKEJ/
k
n +
F
'
x - y
--Harry Bateman (Notes on B土 nomial Coefficients)
-Its飞 --
-67-
Coefficients.
飞、‘E 』,1-
Binomia 工
-
JFF 『K飞一
Ba teman , Notes on
、、 』,,, EEE
、 EEE ,, f
、EE·E·''
r'SEE-、-
、 11EE ,,
,,,,E『 E飞
、 J''It1
AB-
飞,J
J·、
The limiting case of this , when we_r 穿 place x by x/z and y by y/z.and multiply through with zn+l~ 工 et~ing z 一亏~O is precisely (1.60). Bateman does a sim土工 ar thing wi th a series of form S:2/1. The result suggests ana 工。 gies between EEEEE power relations and binomial sums. xnyan?yLM a·k'YXKykx +n -4t -K , k J1 -A'T112/ n -n --K (11.5)
x - y
TABLE 12 SUMHATIONS
OF 四E
FORM SI2/2
二 C) (:) C:>O
( 12 .1)
1 十 2
-
(气 27)
(丁 γ
valid for
(12.2)
R(x
(:丁(
:) (X:k)e!j
LHt
1 十2
lIIl:
,
,
气
n
-叭lJ
一十
(Y!J
1
-68-
-/'1飞 1
z 二二jin
牛J
n:X-':j
C}f// 、
'言
(, j
一叭11/
n
k
~o C-
-告
2
1
告气 1 十
fh 一十
一
一十
-lll/ E
(:) (:)
(n ~)
>
C:y)
frit飞 -…
xk
飞飞 lF/
a、,,
、‘,,,
,,.、、
Z
+k
y)
27Ilk x-x At/-2
(n ~γ :j
k... 0
(12.5)
/t
k
(12.4)
-、飞飞''』,,,
nOL
•
一户 ll
Z
、11/-k
fri 飞 -n
(12.~)
t
R( 叫 y) 美·告
va 1i d for
nk
'
仁 :D
的 Z
(:Y
2k
CT: +)
+1
•
1 宁 (-1 )
nrk
2 2k.
2
2
(n-k+1
k
..
2D
+1
、飞-tsj
n 勺 /r
4k
1-uh
+1
11:
cγγ2 4k (
This moy be rcwritten in the form n .5)
Z
k-O
(J: 扩
(…) n+k
ε.9)
k=O
+ 1)
.2 4k 4n
(2n 千 2k 斗1)2
(:) C: 丁
y-wJ
T
1
注-k
n
(件k
(X : k)(X + Y + : + n + 1) 1
=
了;丁
Harry Bateman (notes on bin~mia 工 coefficients) ; see Gould , Duke Math.J. , 32(1965) , p.706.
-69-
,
TABLE 16 SU1<1M ATIONS 'OF THE FORl-1
-::..
(16. 1)
2 k
C:)(
~j
:0:
(-1 )k
(:)
0
- (-1)
n
22n
S :4/1
x : ) ( : : k)(:
~
:)
(γ)(E 丁~)
,
(Equiv. to e result of Beiley.)
(16.2)
/, ;二
(-1)
k
(可川丁t::: n)(飞丁 e. +kH
b斗
kJ\
c-{
k .., 0
(2:d 千 :j 千 k
n
a::
(-1γ
(2e 千 2n)! (2b 十 2n)! (2c 十 2n)! (n 手 d)! (2n).' d/ 低, (8 t- n)! (b +- n)1 (e 千 n)! (2d t 2n)! (8 + 2n)!
(a 十 b 专 ~n)! (e 千 c +- ~n)l (b +- c 千 ~n)/ (b 斗 2n)! (c + 2n)! (巴千 b 手 2n)! (e + c 手 2n)/ (b 昔 c+ 2n)! ~ith
e , b , c reel
(Equiv81~nt
end
~here
to 8 formule of W. A.
d
IC
e斗
b+
c
.沪, n
Al -S 81 e.时
(1602(:)(;〕(njJf:11(:Y= 「 ;7(y;7 (H.L. Kr all)
-70-
TABLE 17 SU阳,~TIONS
三(叫 -z)(:) (:)
aE·
、‘,,
咱,
...• .
OF THE FORM S 1~/2
kl
{X
e+: 可 e 十 :+k)
+ z)!
(y +z)! (z/2)!
=
(x ,+ z/2)! (y+z/2)!
三( :)
fx 4-
~:)
z!
R(x 斗 y +功)> (~心a11
(叫: t (
n) (y
/ D1x on)
+:
+
n)
.:;
:)
c: 丁(叫 y: 叫 n)
(x+7+n)(": )
w
(Saa 1s chðtz )
勺乙
~17.~)
+ y + z/2)!
(x 中 y 斗 z)!
for
(17.2)
(x
k-O
Let
(-告)!(z- 告)!(x+;-1)f(z-x +;+1), f r w & 1
(弓J.)!(与1)1
(z- 斗斗! (z -号1)1
仰,y) - (1 - z产叶子 (_1)k ι~ k=O0
(17.4 )
and then it follows that
f(x ,y) _ f(y ,x)
)夺(_1)k _(飞)(-2:) (_x:)
f=i
zk
t27、 (-x叼
~
(1
,
~ 2X)( - X~告)(yγ 号 zk
(* ~ x) (- Xγ- i) (Bailey.)
f (J: )(丁)
?了?
(Th. Clausen)
-71-
、
2
z
'
TABI且 21
SUMMATIONS OF THE FORM
L崎
-BEES
f
』
,
飞
n
ZJnJ
n
、
tltE
A 咽··
、、,,
,,a‘、
E
n
/IJIt 飞
ZJ
,,
b且
n -n
冉'』
/It--\ ZJ
、、11'/
、11i/
(_1)k
ISEEEE 飞
Z
,
(21.1)
ZJ
nK
ZJ
s.6/0
EIBEE nn
,/
'
2』 内,,
TABLE22 SU阳~TIONS
au /it--L
(n 十 b)! (n +c)!
(n 寺 a -f c)!
(d 手- 2n)!
-呵'』
•
+8 )t
+a
l/ 一叭
EA-
(2a) f (2b)! (2c)! (n + d)! (2的! (n 州 (n
+k k/ 4·-+K 7f 飞
+
bι
ban
\飞iy
/Iluven 冉 . ζ
+
\飞i/
呵,』.
bn
同ω i
J
LM
』
+
飞飞 11
- (-1)
an
/JI 飞
E
肉,』.
rrftl 飞 E
Z时
/'』 EE、
(22.1 )
\11/ hk
OF THE FORM S 15/1
手 b)!
a{ b! c!
(n+-b 手 c)!
'
(a 令 b>! (a + c )f (b +c)! where
d _ a
+b +c
By use of the 1dentity
(γ丁
ck)
(γ)(2:::丁 and the reøult 1s tabulated under that headin ,.
hz
Special C8ses
+k fIiL RJ
ZJ
nn EE
,/
aτ··
E
,,‘、
-73-
/ttttk zJ
n
、飞
bh
、,,
可iUW
J\j
EJ hk flttL n
、飞EEF/
/'E·E 、·
冉ζ
呵ζ
…
bEm
(知)! (2n)! (刑, nf
'
TABLE2~
SU Mlt.ATIONS . OF TIÆ FORM
n
-K-'由 y
且
-7 乌-
飞川一刻!/
、-EE--x
fttE 飞-中'n
11itJ' n-· 、 Z2
IIl 飞
\飞 --J一
(2~.1) )~
vd··--U
vvn 一-T
飞 /I飞一 /tlh
xk-x YLEvek x--||i
,
S 4/2
(2:)( 2:) (x: 7) Cx : 才(气 -j (Follows from(17δ) .)
TABLE 2 1占
SUMMATIONS OF THE FORM
国
十 27/7,1(·1)
kC)
S :~I:当
( :) ( :)
(γ)C 门口 7
zy
,,,.-、,, -x
''一
一斗
R( x 十 y+z)>
飞,
ve lid for
4'一
(-+ z-rk x-xvw-vw x-zy-rtz-z y
C:Y) c:)
==
f· 一十
(x+; 才
-1
, (Doúg e. ll)
(The 8uthor shows in e pener ewaiti 吨 publication , that this reletion implies FjeldEtad's relation - (6.1). )
T
-75-
TABLE ~1
.1 )
何?/]
(~1
SUMY.ATIONS OF THE FORM S .4;'
( _1)k
c: 可 +k- 〉(;)(;)(;)
k-O
k
(x 十 c>! (y -卡 c)!
J
(z + c)!
C+: 才c γ 丁C+:+j (x 和 y +z 手 c)!
R"
(y 十 Z 十 c)! (z 啡-x +c)! (x+-y 千 C)f
ve11d for
-+- y
cf +z 千 c)
.,,·-
飞,,
,,E‘、,
,.四
(Beiley)
-76-
, 1·
‘‘.. z-a'' x-ve--z -x -vd· ,‘‘., B
、
-x
二,,,
--Ft
X
-
> -1
r 飞
:~1.2)
jfcx- 1: '/2)( :)(- :)
R(x
(DougeU)
'
TABLE 71 su阳ATIONS OF THE FORM
sI6乃
One of the m08t gener81 identit1es known 1s th8t of Dougall , which m8y be expressed 88 8n
516/5
or 88 B 7乌
"ith unit 盯&Um8n也·
「「门盯+丁丁::-丁刀咒)川川川 (:ο:)(:)( :)(:) (叶 y γ +刊仰山 肌 2ce川手
(71.1) 艺(衬
y
口+丁;7+ 丁 γ 丁叹飞γ7川忖("叶+γO ("t 叽丁 (X+ Y 飞 ?+;7+忖0+)
C+γJC寸+j(叫 γ 丁 C:j
,
了:+ n) (Y+:+丁了?丁(叫 :+c寸 TABLE 97
Expreesed 88 e
7气。 ne
hBS the equivalent form of Dougall's formulB
「息, 1 -1- 8/2 , b. C t d t e ,
(97.1)
7'6
..
1I a/2 ,
-
n ;
1 +8 斗, 1;-息 -c , 1+a-d , 1 +8 吨,
• aHC4)n
(1+ak(1+a-b-e)n
(1+8·bd >n(1
(1+a-bh(1+a , ck
( 1 中amdhn十 a-b-c-d)n
where 8nd
1 + 28 .. b 乎 e 千 d + e - n
(x +n - 1)!
户-t- n - 1)
(x)n-r ,-唱、~- n!l. -飞
-77-
J
n
i
' ,
n... 0 , 1 , 2 ,当,..
TABLE X SU肌ATIONS OF THE FORM
S.p/O
An Bsymptotlc formulal n
2 (:r
pn 2
'‘~
-VP
k-=O
p -1
侈;-)
2
a8 n -;..
00.
for p _ lnteger 二~ 1 • (Polyp Bnd Szeg~.)
n
Z C:)
x
k-O
~)
k f ?xP ?- L jp - kr x.- ~ x (k+1)p ( ) ln+
-
(n+1)!P x
(n+1)p
'
(Gould)
t. L~:-l) L'-l)j C
p ;:)
C+ r: jγ
- C)
'
VB l1 d for integral r ~ 1 , P~ 1.
4) Z
Fa
nr
+
-(1;γ ,
r n· -r P
---EES Its-aEEL
,
J
E
a咽,
b晶
叭l/
b且
/Ittt飞
,,‘、
,5)
问Z …
r
(斗 )kLγ)(…tyfr· 〉
'
(The threereletlon8 immedietely ebove ere connected "ith very generel eXpansions of Worpitzky , e8 shown by Cerlitz , end were 'rediscovered' by
veriωs modern writers , in perti叫 er by Shen汩的.)
-78-
Z (:)
飞(q) -
Defini tion:
(X .6)
(Stever)
nzvhzoq
(X .7)
(5tever)
KP
Theo the following formulas are knownl
(X.8)
5_(~)
一2
5 _ J, ( )) 口,""
E
n
zJ
qu
n
'1··
= --.!!当 (n + 2
2 S
n
n-I
A
~(~) = ~二5_(~) -二~ 6 n-' . 6
n ,~-"
(n -
(X .1~)
ZJ‘‘,,,
4··
1L s~ '~(~)
民
(X .12)
qu
.,
ZJ
、、.,,
RJ
ZJ
,,E‘、
n .,
、‘,,,
qu
, (X .11 )
2~
5n , 2(~) ...,一卜 50(~) 十
,,,、‘
(X.10)
(~) --= , 1'.....'
,,,‘、
(X .9)
n
n2 5 n'" n(~) ....- (7n ,...2 - 7n
+ -, 2) Sn_1(~) + -n-1
~) s n-1~(刃, (staver)
8(n - 1)2
Sn-2(当)
,
(Franel) f~r8t
This relation just giveo Wes
proved by J. Frane1 , 1n answer to a
que8tion posed by C. A. Leieant in the first volume (189均 of the journe1
/..
.
..
.. /
.!'Intermédiaire 但旦 Mathematicien8.
Freoel a180 found the
followiog formula es well a8 other interesting resultsI r
(X .14)
J
SJA)s2(2n-1)(5n2-5n+1)s
十 (40 - ~)( 4n -问 (An-5)S (X .15)
JA)
JA) (Franel / St~ver)
主 (:r 小言:c:1; (寸(叫 -79-
KTU 归
-K4d 、飞、EEE
,,, aEE飞、 J
+ 1)
c(q:
(Nenjundiah)
J
,
n ,k
、飞ht1/'
IF- 飞
C( q.
where:
"K
'his genorel result includcs several speciel ceses in the prcceding Ibles.)
Thus: ♂
‘•.
aτ··
,,,‘、
5·K
飞飞,,
k
(n ;, 1)
(0)
,,
(:J
且
、
ff
』
z
If-1、、
向ζ
FM
、‘,,,
11t
,,,、
飞
nub
回
fft1
‘、,,,
户V
,,‘、.
,E··
E
- (-1)
11if/ nK
C(当) =C) 了:丁
阳c 喇 蜘圳胁灿 M 时盹巾 8 加 h10n
owever this 1s too
εxtc 盯nsive
b2k (1 :1 b k) ( 2 :2 ) 1
a
b k llif +m
r
nu
r
』,
飞 tBIll-
a krr rbc 、飞 '1
rtt『t、
•
-
r
=
0
==
0,
J
,
、 //tIll-
‘飞'he''
k11Et--/ a k22 R』 J -bc
rttIFfi、 tt
,
114
alLUFUW
,,,, EE飞
、
1lij/
when
、
I (叫:)
I1 、
,,
/Il--\ a kt4l
(X 丁 7)
JIt-、-
x.16) 主川( :)
to list in the present tables.
b 1 c 1 + b 2 c 2 +… +b r c r <:n
(again a trivial consequence of (z.8)) n (x.18 ) k=O
C:汁:1(af) hen
• • • (
a(r)
bAc b-r-r c -. L n . -2-2 +…+ 1-1A +. b~c~
(another trivial consequence of (z.8))
-80-
TAB tE Z
In this tab1e we 1ist some genere1 expansions , operations on series , and a
few ‘ use 负11
binorniel coeffic1ent identit1ee.
In formu1as (Z.1) through (Z.1l)
f(x) 1s understood to be any
polynomie1 of degree less than or cquel to n in x , thet 18 , a
T川 z
a
X1
i
i= 0
(Z .1)
(Legrange series) n
Let g(x)
_汀 (x
-
Xi
)
,
g'(x)
,
Dxdx) ,
Then
订出
and let distinct realnumbers xo , x1 ,..., xn be given • n
叫 y)-
L
41
x
P··E X--
x
k 四 X
Z
十一 J
n
事 g(x)
x··xi i
veEF-
k=O (Z .2)
- x
k
xk
(Taylor series)
你十 y) 81:' γ 二巳 r(k) (y) ι..J'
k=O
r(x T y)
k'
-二。三(-1)J ( : )
r(k -
l十 y)
(Z .4)
(Worp1tzky - Nielsen series)
叫X十川-1)也 I(叫:'让(叫m :j
r(j _ k -t- y)
'
prov1ded m~ n.
(Z. 乡)
(Melzak , prob. nr. 44饵, Amer. Math. 以 onthly ,
n
(Z .6)
z
川 y)
1
b且
…
/i飞
lj/ 、叫
(-1 俨 C)
Itt飞
Z
'
y+k
nz
+n
/,
(Zo7)
T(x - k)
HDYTh+y)
y十 k
ve
/'l
叫.J
ve
58(1951) , p.6~6;
(Z.1). )
趴lj/
十
y
+
0 1'
n乙 O/
a speciel cese
v.
f川 Z
T(X - k) c
k
1111/ nk
f(x - k)
(y+k)2
'
1-k -
1"
(x)
r (Z .8)
L(叫
WZ (Z .9)
1'(k) ~
<\ 0 , 1
1'
nL r.
蝇飞,
{ (-1"" n' a 、
旦[j
k
一二:- t'(k) _
k'
k 匾。-
n
X
e
J
,
1 1' n
j
e:
._
r.
f
.,、
~ 一一 (_1)A ( '-/ j rι.J ' " ' l jzo k z O
k)
X
、气,
/
I
- J f( j - k) J
Relation (z.8) i8 very useful; we have numerous interesting cases by choosing f; e.g. (1.13) , (6. 斗1) , (X.16) , (X.17) , (x.18) , etc.
-82-
,
/Iiw
、 11lt
2
r
x
2.(. - n) n
Z 付(:) - (-1)
k
t(:n)c: n)( 2n丁十
rz
f(y) 2x 2
18 e restatement of (Z.10).
rπHVK
f(x)
k .... 1
1 - 1 1 .fo k
k
r? 乙 k
=<
•
x -
U
k
provlded r..> n.
rvu
立(-1)k (:)
--
f(Uk )
r 订
(Z.1~)
l C:J
f(x 2+ y)
n
'
f(y + k 2)
2x(x - n) ~h1ch
士 C") f:~)
十
C::J
(x2 - k 2)
k-O
(Z .12)
.2
-.K
f( 二十 y)
_ (_1)n
(Z .11 )
f'(y 手 k2 )
,
b且
…
(Z .10)
缸'?
nz
1
m
c~Uj 古川 -83-
J
for r
>m.
Z.14)
Let f(x) b e. e polynomial of
2 C)
de~ree n 十 1
10 x. Then
f(y - k)
(-1 )k
(k 斗 x)(k+
z)
E(Jx)jc::j Z.15)
Let f(x) be a polynomiel of degree n t 2 1n x. Then n
~(叫 :J k=O
-
(k + u)(k
+v)(k t- w) f、(y
u - 1
+u)
(叶:) n+2
(仆:)
v - 1
f、(y+
f(w 千~
2)(u - v)(v - w)
(川:) 0+2
(n + 1)(n + 2)(u - v)(u - w)
(n 十 1)(n+
~ing
f(y - k)
partial fract100s one may evaluate
v)
~ (-1)k(~)
k=。
n 千 2
n + 2 f(y-k) r
有 (k -r Ui ' 1=1
-8 件-
y)
1n general.
(Z .16)
Let f(
x) 二艺 -1aixi
艺 (_1)k ( : ) If f(x)
~
~
n. 7hen if f(x) i8 of degree 2n-1
f(y - k) 卡 f(y 千 k)
c:
k=O
(Z.18)
k = 1
l/ 的一叭
1n the preced1ng relati0n , let r
1l/-
-…
)
rkf-Ji\ fLEK 、
in x ,
r
,
L( 叫 :)f(y-k)
c:
(Z.17)
k
飞E J'''E
Then
,问 -4·k
r?JU
= f(y)
n )
f(-x) , f(O) = 0 , end f(x) 18 of degree 2n-2 in x , then
n
Z
←1可 kl
k-=O
(Z .19)
=
ttk 丁
O.
A useful ooeretionel formule:
e
L:
Ak =
(k
Z
-KX
k 斗 n-1
+ n-1 )_,
AHH
-K
D
n
a唱··
=:
·俨
(♂吵 y (n!) r
x
ve
(叫叫: -) l寸寸 r (Cf. Carlitz , Amer. Meth. Monthly , Vo 1. 37( 1930) , pp. 的2-9)
-85-
A very usefu1 genere1 technique in summing series 18 to meke U8e of the identity
(x D扩 ιkr Xk
This i8 whet 18 used in e11
the series in t he Be tables Where a series conteine the term Kr xk Bnci 吃、 rr
. 1.丁 f :rs 1n no other connection 1n the 8eries. Schwett gives a b~D~d
discuseion of its uses.
1n terms of the general number8 of Nie 1s en type (see (1.128)ebove)
n
E
n
Bktm+ 1
让川
E 4' Ve
μUO\叫
x
r
一\J/-B
nu
ls/ 、、
/ttE、
(Z .20)
x
川 Z…
we heve
nu
.
ve
In term8 of the Stir1ing numbers of second kind (differences of zero) , two other use fU l generel formules ere
n
z.22)
(x Dx ) n f( x) =
L
-86-
k X
.
n
一-~kr B1c •
1r
•
D二 r(x) •
B~
.
.d
x ,z
,,.‘、
J
毛才 y 川 Z 俨: -
zk .
,ι
:z.21)
bA
x‘,•.
,
(Z.2~)
Let
Z
F(n) -
:) ~(吟,
-1 尸(
(
and suppose thet f(k) does not depend on n. Then the series may be inverted to give n
f( n)
'J '. ..k - 1 / ( -1 ) ~ .
a:
ιJ ‘
and e180
Z k
JC
I
n 飞
飞
kl
F( 时,
1
T(k)E
z
(-1)lu1(;::)F(k)
k ... 1
1
b且
\111j/ ,、 EW
...
•.
、
,,.‘、
伊A
4d
/IIf 飞
A咽,,
、,,
E
,、 J
,,‘、
k 乙μ 勺
,,.‘、
k
‘、,,,
Le&L
曹r
(Z .24)
=
k
, }
,,
nv
K
EtL
nu
(Gould , ~4-J
(Z .25)
Suppose that
Then the 8ummetion
DxUn(x) 皿 n
n
~于(j 们)
j 信 O
Un _ 1(x).
气飞川咐 l(ρ( 仅川 x k.. 。、
ι ,
~es the property thet It is 1ndependent of x , 1.e" ~ey
)
z (:) ~(k) -LH 厅: X) z{ k=O
(Z.26)
,,,,,nk'A-x ,··-圃
-n
bk叫咱 b且
n ‘‘,,,
n?Lh
\111/
llj/
E
a 唱··
,
,,‘、
,,‘、
bA‘‘••
/IlIL x
飞
\i/ xk 霄ι
b且
,, E‘、
…
4··‘‘.,,
//iI飞EE
n 。 jL
t )ten
DxSn(x)
= o.
Hence the series
be eva1ueted by letting x take eny convenient va1ue. (Math. Tripo8 , 1896 ,
or see Hardy , Course of Pu re Mathemetics , 9th Ed. , 19 l山 , pege 27队) -87-
nz 阳)=÷
(Z .2 7)
z 艺 j 嚣 1
k=O
f( 时,
ttjrjk
k-=O
2γi
where 也J
(Z .28)
Z
(r:)
r
=e
Z{:J f(k)ω
f(rk) 斗 Z
气 jk
k=O
(Z .29)
Let 小雪 (_1)k C: 丁子去 k=O
川一川
/,,,,、
叭i//
Then
问z …
and suppose that. f(k) is independent of n.
Ei巴L
号。(-1 )k C) f(k)
(Z.~O)
F(n 泸 2)
-
n 十 2
…e川
independent of n. Then
艺 (-1)吁:)
1- 1 )
+-1 和 -e
lll'
牛1-
我
/'Il 、
nn
?kfIt--L
叽 lM7
2·x-2
n 。 /UH
川 jJ 、川j
nn-n 于十-··于b
-88-
tt21、 -/Itt\
k
同£-叫,』
寸
伊·&
fs
…
千
nknk2x
T( 0) - F( n n
,,
/I』lL
/II』1
(Z .~1)
..
1)
k+1
叭i/
2
k=O
T
f(k
-K
(:)
n
Z
(Z.;2)
(叶 :X)
k=O
(-1 )
a:
Z 忡 Z ~(2k) +
Z
k = 8
k-[+J
t
k =[8
1]
r(2k千-
8
:o:
(Z.;5)
[n
r - 1
艺
-Z
J
j E8 + r;17 r
r(k)
k...a
-a··-
.,
r >/ n >/ ‘‘,, a唱··
4d
a唱,
f
,,‘、
j=O
T rk
‘、,,
,,
,,‘、
圃
,二 ι
4''
J
川艺
、,,,‘,,
霄,
、‘,,,卢、
'3"ζ 实J
,,,‘、
q白
丐/
气/
俨'飞
a
,、/
e
6
a‘、
k=O
.
1- 1)
k-[+J
r(rk 十 j)
K
r(2k
n
····aEcE gT r-F}vuerdO 'E erk -r nn
φu
‘‘、,, aE
回
』u
,,.‘、,,
ZJ
e
k-
Z
]
2
j - 0 hu
;1
-
1'(2k)
...(咛]
k
‘
1)
[n ; 1J
L( 泊问 ~Z k
m··qu 4. aH
k-O
[旦~1J
[+J
n (z. 纠)
Zt~l二) r(时
e1γ7
k 千 x
n
(z.;;)
r(k)
n
n
E
k=O
n
r
(zmzpk)-mrrgap(川(k -t- n )} 2~ k - 1
k
l'川 (0 +1)
Z k
== 1
皿 89恒
r(k)
KZ川
(Z.;8)
nz
…
'
(Z.~9)
飞
hn IJ
』
内J 』
11
,,,··、
f- 飞飞,,/
E1.
1 』
』,
n-xn
「,/飞/j 飞
飞
Z 牛'一千+
,
-、-t ,J'
冉'』
11I/
LU 丁
2n r 飞
内 t
F
叫,叫一 n们
n
-,,''''飞
, ,,
Efs
j'' 』1 、
+-2+ ‘
n-n i
-x
z 十1
飞
x -
/tt
(~)
Jι内
n
了了) ~(4D2:) 产
CfDBZ::(3(;)2
(刀 川lυ-
/MH 川-1i/
J-T/i·、 ··
nnE-MK-AOK
且 Tqι
n
L
-90-
,
k
/ftt、 1一
(;)1月
nt
nζ
a咽,.
、,,
事
k
,,‘、
n
qι
吉
nn
\11lts/
b且
-τ
fii-- 飞
(Z.48)
{)JIjI飞
叫1
C: 于 (."X:)
(Z .47)
n
(n- 去)! .. (_1) n 汁,
且 z
(z.44)
(z.46)
,
d』
JIBE 飞
a电··
,,
刷刷
‘•.
(帽 n -去)!
飞 J''Et--
(Z. 句)
E
,,‘‘、
.42)
Agn 飞EEtt''''
A叩··
、‘a'
‘、
町
,、,
fi
(Z
FJt
儿Il\
(z.4o)
千F(h)!a22n n!( 囚,告)!
kf 川 、飞ttIJ'
』且 , J FI 『atL
tj/ 、们叮
且
叮ζ
吨'』
川lJ叮
ν1λ
也 llIF
,,, 、E, ·E·
内ζ·
叭丁/、叶
-n/itl
bhitt
vu儿
,
/\11
『!
飞
ll/
同严』
XX
nKJ
,
n
UU』 A
内J 』
川、
』/
J''FEE-、 EE
l
叮
-91-
-b
k
/IIIt 飞
11
, f、
ηll/
\叭
hn/Ilh
汕大叽
f'' , lE tt飞h
民JKU
X
JII『'1、
川lJJ 4 『
t
儿
民
--x-
q缸,"
••
V
bhb
'中
(Z.5~)
14·izx akfIll/IItt gkk nk 2n nk -n nt·nrtSEttn -nk
RJRJ
4tk
ba
KK
/Iltt\
~ k)(:k) (η ( : ) ( n
(Z.52)
了了) _l4n:j( 沙 J (Z.51)
(:)---; 二节 ω (z.49)
(Z.50)
1..0
1 " j
(2:::1f::DE(-1叫 :KYL-72知,
(Z .57)
(ι~":二:1)( 1)(f仁: 川)(汇
'
(γ)(门刀升〉 Eι/" ( ":) (" +: -~ (Z.59)
c: 丁2:::丁 -(':γ~2) n /乞 叼
/lil飞
(Z.6o)
Aj/
.
k+x
(It is by this difterentietion thet the finite hermonic series cen be introèuced into a series of binorriel coefficients; e.g. , see reletions of this type such as that obteined from (' Goldberg's reletion
(Z.61 )
('.124) ,
.44)
by u se of (Z .2~) , or
etc.)
(:)厂: 1) 坦时( :n)(丁)
《咽,
蝇'
BIBLIOGRAPHY
1.
N. H. Abe1 ,
Demonstrstion d'une expression de 1squelle 1a formule
bin~me est un css perticulier , Jour. reine u. engew. }.~ath. , V01. 1(1826) , 2.
D.
159.
W. A. Al-Se1em , Note on e
q-1dentity ,】~athematica
Scendinavica ,
V01. 5(1957) , 202-204. ~.
Herry Batemen , Manuscript project by Erde1yi , Msgnus , end Oberhett1nger ,
4.
Higher Tranecendental Fu nctions , N.Y. ,
195~.
E. Bessel-Hagen end H. Hasse , Beweis einer 1dentitAt zw1echen Binomia1koeffizienter>, Jhrsber. Deutsch. Meth.Vereinigung , V01. ~7(1928) , 2;1-4.
5. T..J. 1'e. Bromw1ch , Introduction to the theory of inf1nite ser1es , 2 nd Ed. , London , 1949. 6. L. Car1itz , On a c1ass of finite sums , Amer. Math. Month1y , V01. ;7(19;0) ,的2-479. Note on a formu1e of Sz11y , Scripte Y. athematica ,
7.
Vo 1. 18(1952) , 249-25;.
,
8.
Note on
B
paper of Shanks , Amer. J..1 eth. Month1y ,
V01. 59( 19究), 2;9-24 1.
,
9.
Note on a formu1e of Grosswald , Amer. Meth. Month1y ,
Vo 1. 60(195;) , p. 181.
,
10.
Eu1erien numbers and p01ynom1els , Math , Mag. , V01.;2(1959) ,
247-2 臼.
11. A. L. Cauchy , Exercices de 1~eth{mat1ques , first year , 1826 , p.5; , or see c011. works , ser. 2 , V01.6 , pp.
-93-
72-7~.
12. Chrystal ,
A Textbook of Algebra , Reprint by Chelsea Publ.Co. , N.Y.1959.
15. K. L. Chung , problem nr. 4211 , Amer. Math. Monthly , 1946 , p. }97. 14. E. H. Clarke , problem nr.. '996 , Amer. M~th. Monthly , 19岛 1 , p. }41. 15. J. G. Van der Corput , Over eenige identiteiten , Nieuw Archiefvoor Wiskunde , ser.2 , Vo l. 17( 19'1) , 2-27. 16. Reed Dewson , Binomial Formulery , menu&cript , Washington , D.C. , 1957. 17. Devid Dickinson , On sums involving binomiel coeff1cients , Amer. Math. Monthly , Vo l. 57(1950) , 82-86.
Cf.
Math.Reviews , 11(1950) ,每88.
18. A. C. Dixon , On the sum of the cubes of the coefficients in e
e
certein expansion by the b1nomiel theorem , Messenger of Meth. , Vol. 20(1S91) , 79-80. 19. N. R. C. Dockerey , An extension of Ven der
l~ond'
s theorem end some
ep?lications , The Meth. Gezette , Vol. 17(19") , 26-'5. 20. John Dougell , On Vandermonde's theorem , end some more general expensions , Proc. Edinburgh Meth. Soc. , Vol. 25 , (1906)
,
114-1}2.
21. H.. J. A. Du parc , C.G.Lekkerkerker , end W. Peremens , An elementary proof of a formula of Jensen ,
see Meth. Reviews , Vol. 协( 195}) , p. 858.
22.< Wi l1 iam Fe l1 er , An introduction to probebility theory end its app l1 cations , N.Y. ,
19~O.
2'. J. E. Fjeldsted , A generelization of Dixon's formula , Meth. Scendinavica , Vol. 2(1954) , 46-48. IKJ-Franeh a note published in 1'IntermAMire des BEatt16Laticiene , Vol. 1( 189町, 45-47. ~5.
~6.
,
en
G1ves sums of powers of binomiel coefficients.
ex~en8ion
of ebove , in vo l. 2(1895) , "-}5.
R. Frisch , Sur les semi-inyerients , etc. Videmskeps-Akedemiet s Skr1fter , II , No.} , Oslo , 1926. Q.uoted in Netto' e Lehrbuch , by Th. Skolem , p.}'7. -9 每-
27.
Jekuthiel Glnsburg , Note on Stirling's numbers , Amer. Meth. J.:onthly
,
Vo 1.
~5(1928) ,
77- '3 0.
28.Karl Goldberg , M. Newman , and Emilie Heynsworth , Combinatorial Anelysis , Netional Bureeu of Standerds manu6cript peper , NBS156 , 1959. 29. R. R. Goldberg , Problem nr. 4805 , Amer. Meth. Monthly ,"V o1. 65(1958) , p.6~,. ;0. H. 'tl. Gould , Note on e peper of Grosswald , Amer.
J~ath.
Monthly ,
Vol. 61(1954) , 251-25~.
, Some
;1.
generelizetions of Vanderrnonde's convolution ,
Amer. Msth. Monthly , Vol.
,
;2. }.~onthly ,
6~(1956) , 8斗 -9 1.
Final enalysis of Vandermonde's ccnvolution , Amer. Math.
Vo 1. 64( 1957), 409-415.
;;.
, A theorem concerning the Bernstein polynomials , Math. Ma e;azine , Vol. ;1( 1958) , 259-264.
,
~4.
Note on
5
pepcr of Sparre Andersen , Mathematice Scendinevica ,
Vo 1. 6( 19 5'匀, 226-2;0.
,
~5.
Dixon's seriee expressed ae e convolution , Nordisk
Matemetisk Tidskrift , Vol. 7(1959) ,
7予76.
;;6.
,
Note on e paper of Steinberg , Math. Mag. ,
;7.
,
Stirling number representetion probleme ,
Proe. Amer.
;8.
l-~eth.
, ,
,
11 (1960) ,
1959) ,46-48 •
鸟也7- 乌51.
Generalization of e theorem of Jensen concerning
convolutione , ;9.
Soc.
Vol. 刃(
队Jke
Math. Jour. 27 (丁 960) , 71-76.
EvaluetloD Qf the finite hypergeσmetric serles F(-n ,告, j
+ 1;句,
to be pub I1 shed. 与o.
,
Fjeldstad's series and the q-analog of a series of Dougall ,
Math. Scand. , 8(1960) , 198-200. -95-
55. T. Narayana Moorty , Some summationformuleefor binomiel coefficien tB, l.~ath.
Gazette , Vol.39( 1955) ,
122 幽 125.
56. C. Moreeu , Another so1ution to the
川。blem
of Frenel in 1'Intermldiaire
des Meth{maticiens ,Vo1.1 , p.47. 57. Leo
l-'l
oser , prob1em Nr. E799 , Amer. Y. eth. .t-1onthly , 1948 , p 、 30.
58. T. S. Nenjundieh , On e formu1e of A. C. Dixon , Proe. Amer. Meth. Soc. , V01. 9(1 9,58) , 308-311.
,
59.
/
Remerk on e note of P. Turén , Amer. l.:eth. Monthly ,
Vol. 65(1958) , p.354 •
60. Eugen Netto , Lehrbuch der Combioetorik , Leinzig , 1901 ,
~ec.Ed.1927.
Reprinted by Chelsea Publ.Co. , New York , N.Y~ , 1958. 61. N. Nielsen , Hendbuch der Theorie der Gemmef、unktion , Leipzig , 1906.
_,
62.
Treit: éí6mcnteire des n Olrbres de Bernoulli , Peris , 1924 , note p.26.
63. N. E. N巴 r 1und , Yor 1e sung ,: n_ ð b~r Dif.fere.~ze,n reçþQ.u ng ,.. >>~r.l1 n , 1924. Reprin~ed-by ChelseaPUbl. Co. , New York , N.Y.; 丁 95 件. 64. Q. P61ye end G. $zeg巴, Aufeeben undLehrs8tze , Berlin , 1925. Note Vol. 1 , pert 2 , problems 206-218. 65. John Riorden , An introduction tocombinetoriel enelysis , N.Y. , 1958.
fr6•• R咿 1 ,
Eine
ber口的enswerthe Ide川 t l! t , 问pe'e Archiv , (2) Vo 1. 10 , 110-111.
See review io Fortschritte , Vol.2; , p.262. 67. Heinrich August Rothe , Formulee de eerierum reversione , etc. , Leipzig , 179~. 白.
H. F. Sandhem , verious prob1ems , Nr. 4519 , etc. , Amer. Math. Monthly.
69. L. Schlßfli , ErgAnzung der Abh. ðber die Entwickl. des Produkts...etc. , Jour. r6ine u. engew. 70. O. X. Schl&milch.
,Vol. a『
7
.•
-
l-1 eth.
, Vo l. 67(1867), pp. 179-182.
Compendium der
h 色 heren
Anelysis , Breunschweig , 1866 ,
II , pp. 26-31.
,
Recherches sur les eo~fficients des fecult6s enalytiques ,
Jour. reine u. angew.
Jv:eth. ,飞TOl.44(1852) ,
;44-'55.
'2. 1. J. Schwatt , Introduction to the operetions with series , Univ. of Pe. Press , 1924.
Reprinted 1962 by Chelsea Pub工. Co. , New York , N.Y. -97-
7~.
B. Sollertinsky , e summ8tion equiv81ent to
Chur唱 's
pro !, osed 8S Question Nr. 12 , l' Intermédiaire des J
problem ,
J.~athematiciens ,
VoL 1( 189句, page1. 74. Tor B. Stever ,
om
summasjon ev poteneer ev binomielkoeffieienten ,
Norek Matematisk Tidsskrift , 29.Krgeng , 19饵, 97-10~. 75. B. A. SWinden , Note 2299 , on notes 202; end 209句, lv:ath. Gazctte , Vol.
~6(1952) ,
p. 277.
76. K. v. SZily , see review in Fortschritte , VoL 25(1 ,S9}) , 405-6. 77. P. Terdy , Sopra alcune formole reletiva ai coefficienti binomiali , Journel of Betteglini , Vol.
~(1~6刃, 1-:~.
78. C. ven Ebbcnhorst Tengbergen , ðber die IdentitAten...etc. , Nieuw Arch. Wiskde. , Vol. Hl( 19~4)
,
1-7.
79. G. Torelli , Qualche formola relativa all'interpret a. zione
fattoriale
delle potenze , Batt. Jour. Vol.; ,; 178-182. 80. D. C. Wong , various problems in Amer. Math. Monthlj. 81. J. Worpitzky ,
Studien 咀 ber
die Bernoullischen und Eulerscher> Zahlen ,
Jour. reino u. angew. l-lath. , VoL 94(18ô~) , 20~-2~2. 82. prob.
~~77 ,
Amer.
~eth.
Monthly , 1929.
8~. prob. 句51 , ibid. , 19另, p.432. see solution , ibid.Vol.61(19功), 65~ -4.
-98-
• ERRATA SHEETS FOR THEORIGINAL
OF THE TABLES -
PRINT工NG
page numbers refer to original pagination
ERRATA ,.;5 of' ma1ntableø ,如d 11ne up '-5 , 1n{136) , on right read ). 8 , 10
,. 9 ,
(1δ8) ,
read
n 1T
z
1n
,
, .17 ,
1n (2.16) , on r1ght
~. 18
,
instead o f'
+ x)2
,
read
1nstead of'
.
k'
(:")… ...l旦L
一 k
•
•
or(:n)
n~
. _. n
1n ('.72) , read
+ x)2
.
"注 2.
p. 21 , 1n ('.2') , on r1ght hand s1de read p. 27
_x2
z_
(1
1n (1. 118) , addcondit10n that
1n (2.24) , read
•
C": 1) …叮
(1 川….d
~. 14.1
n τ-
-x
.膨
•
instead oT1·(-1)n.
1nstead 01'
(1
,
bottom , read [72J 1n阳ad of 72
t+( , 1)n
T
in (1.71) , read
f'r om
2
1nstead of n
2.
二4in.
1nstead of
2
'0 , 1n (;5 .95) ,
p.
40 , (4.10) , tbe sum shou1d be
read
p. 40 ,如 (4.1') ,read p. 50
,
1n (7.11) ,
l'
(x + 1)
n+ r
1nstead 01'
I
ead(
x(x 午 1). • .(x 牛 n)
nLh 宁
p.
r" :
n
1nstead o1'{
飞 2n I
(:) 1)
.
r.
1
、 x/
p. 7咱, 11ne ;5, read (Z.12) 1natead of' (Z.1').
p. 79
,
change statement a 1'ter (Z.'5) to read ITh1s 1s the genera1 cas8 f'or (Z.,, ).I
,.80 ,
1n (Z.'9) , on left read
). 80 , 1n 1.
(z.48) ,
.J1f (2n>!
on r1ght read γ(
81 , 1n (Z .52) , read
1nstead o f'
/2 " ,
k
J
.n.
1nstead 01' -99-
1nstead 01' kk
.
(了)
.
ERRATA - Combinatorial Identities by H. W. Gould
page 6 formu叫1.46)
1 24(n+3)
for
气~ 7)
叮 ~4)
{z(J+3}+h
page 18 formula (2.24儿 line 2 α3
α2
n
page 21
~
L
read n
~
I
page 35 , in third for
d土 splayed
.n t.. ---n
read
nJι
nJ』 n』 J
:f ormula (3.22) in le:f t-most sum p k -2k for 2- L.- read • formula from top , t.n .-=0
-100-
n品
d
Er rata f' or:
G∞1d ,
page 4,件 (1.31).
"Combinatoria1 工 dentities ,
Rep1ace Rep1ace
(_l)A
si♂(~)
by by
(-1)
k-1
Multip1y the right member by
page 26 , eq.(3.58).
Multip1y the right member by
严吕e 31, eq. (3.工03). page 43
,
eq.(6.5).
Eepkce
卫讪ce
2nfby ♂-k
叫叫2) by 主[1 + (-l)nJ
page
44, e吐·(6.8).Dehte(4)k
page
44, eq.(6. 工0).
工nsert (_l)k i的。 the s urom.ar也
page 47 , eq.(6.35).
Mu工tip1y the second sum by 22n
page 51, eq.(7. 工9) •
Rep1ace (且-x:y-1) n
by
(n+x:y-1)
page 66,叫. (31. 工).
Rep1ace
by
(x + c)!
(x + y)!
---compi1ed by E1don R. Hansen , August , 1969.
-10 丁-
n-n』 f
page 26 , eq.(3.57).
间可♂
page 13 , eq.(1.106).
si♂(言)
"
FURTHER ERRATA
taL
p.7 , in (1. 切, addzwhere p.14.1
,
,
f&-
read (k +
for
in (7. 丁 8) , the sum in (7.17)
,
1)
Cf. Han5en'5 form this correction.
。f
read
dk
k=1
= -1
for n
= O.
工 ndicated sum correct
for p. 5 丁
A 、 k-1
(2n~竹.
read n -BJO --、飞 /〉 r---
p.51
1)~-'
2τri/r
l1 2n+2x飞 ~2n"""^") ,
p.38 , in (3.1 斗7) ,
e
k-1
in (1.117) , for (x +
p.26 , in (3.57) , for
z
n ~ 1.
in left-hand sum , insert the factor
A 工 50 , for n~ m
1 k
.
m 共 n.
read
p. 65 , for (2,.阳 )iead (24.1). p.86 , item #51
,
for 'Todskrift' read 'Tidskrift'.
p. 87 , item #60 , add ref. to Second ed土 tion ,. 1927. p.3 ,
introduction ,工 ine 丁 0 ,
p. 69 , in (x.13)
,
for 'indes' read 'index'.
for (n_1)3
read
(n_1)2.
p. 14.2 , in def. stated with (丁 .127) , deletethe factor
H. W.
Gou工 d
1 May , 1972
-102-
(_1)k.
Research and Pub1ications. selected 1ist:
H. W. Gou1d
1. Note on a paper of Grosswa1d , Amer. Math. Month1y , 251-253.
61(195 斗)
2. Some genera1土 zations of Vandermonde's Month1y , 63(1956) , 8 鸟-91.
Amer. Math.
convo 工ution ,
,
3. The Stir1ing numbers , and genera1ized d 土 fference expansions , University of Virginia Master's Thesis , June 1956. iii+66pp. 4. Fina1 ana1ysis of Vandermonde's convo1ution , Am er..Math. Nonth1y , 6 斗 (1957) ,鸟09-415. 5. A theorem concerning the Bernstein po1ynomia1s , Math. Magazine , 31(1958) , 259-264. ~.
Note on a paper of Sparre Andersen , Math. Scand. , 6(1958) , 226230.
7.
D土xon's
series expressed as a convo1ution , Nordisk Mat. Tidsk. 7(1959) , 73-76.
,
8. Note on a paper of Steinberg , Math. Magazine , 33(1959) ,斗 6- 件 8. 9.
Combinator土a1 Identities , a standardi~ed set of taö1es ~isting 500 binomia1 coefficient summations , Morgantown , W.Va. 1959-60. 100pp.
10. Genera1ization of a theorem of Jensen concerning DukeMath. J. , 27(1960) , 71-76. 11. Stir1ing number 丁 1(1960) ,
representat 土。 n
斗斗7- 鸟51.
conv 。工utions ,
prob1ems , Proc. Amer. Math. Soc.
,
12. The Lagrange 土 nterpo1ation formu 工a and Stir1ing numbers , Proc. Amer. Math. Soc. , 11(1960) ,也21- 斗25. 13. A q-binomia 工 coeff 土 cient series transform , Bu11. Amer.' Math. Soc. 66(1960) , 383-387. 1 鸟.
Fje 工 dstad's
Math. Scand.
,
series and the q-ana1og of a series of Douga1工, , 8(1960) , 198-200.
气 5.
The q-series genera1iaation of a formu1a of Sparre Andersen , Math. Scand. , 9(1961 ) , 90-9 乌.
才 6.
Note on a paper of K1amkin concerning Stir1ing numbers , Amer. Þ1ath. Month1y , 68( 丁 961 ),鸟 77- 斗79.
17. A series identity for find 土ng J. , 28(1961) , 193-202.
conv。工ution
ident 土 ties ,
Du ke Math.
18. The q-Stir1ing numbers of first and second kinds , Duke Math. J. 28(1961) , 281-289.
,
19. Some re1ations invo1ving the finite harmonic series , Math. Mag. 3 乌 (1961) , 317- 321 •
,
20. A genera 工 ization of a prob1em of L. Lorch and L. Moser , Canadian Math. Bu11. ,斗 (1961) , 303-305. 21. A binomia1 identity of Greenwood and G1eason , Math. Student , 29(1961) , 53-57. -103-
22. (with A.T.Hopper) Operational formulas connected with two generalizations of Hermite p 。工ynomials , Duke Math. J. , 29(1962) , 5 丁 -63.
23. Congruences involving sums of binomial coeffic 立 ents and a formula of Jensen , Am er. Math. Month工y , 69(1962) ,鸟00-402. 24. A new conv。工ut 立。n formula and some new orthogonal relations for 主 nversion of series , Duke Math. J. , 29(1962) , 393- 斗04. 25. Generalization of an integral formula of Bateman , Duke Math. J.
,
29( 才 962) ,鸟75- 斗 79.
26. Theory of binomial sums , Proc. W. Va. Acad. Sci. , 3乌 (1962) , 158-162 (196~). 27. Note on two binomial coefficient sums found by Math. Stat. , 3斗 (1963) , 333-335.
R土。 rdan ,
Ann.
28. The q-analogue of a formula of Szily , Scripta Mathematica , 26(1961) , 155-157 (1963). 29. Generating functions for products of powers of Lucas numbers ,丁 (1963) , No.2 , 1-16.
F土 bonacc 主
and
30. Solution to Prob 工 em 470 , Math. Mag. , 36(1963) , 206. 31. Solut 土。 n to Problem 505 , Math. Mag. , 36(1963) , 267-268. 32. Sums of logarithms of binomial 7 1( 196件), 55-58. 33. The functional operator Tf(x) Math. Mag. , 37(196 斗), 38 蛐斗6.
coeffic 土 ents ,
=
Am er. Math. Monthly ,
f(x+a)f(x+b) - f(x)f(x+a+b)
3斗. Solution to Problem 521 , Math. Mag. ,
37(196 件),
,
61.
35. (with L. Carlitz) Bracket function congruences for coefficients , Math. Mag. , 37(196 斗), 91-93.
b 土 nomial
36. A new series transform with applications to Bessel , Legendre , and Tchebycheff polynomials , Duke Math. J. , 31(196 乌), 325-33 乌37. The operator (ax~)n and Stirling numbers of the f 让 st kind , Amer. Math. Monthly , 71(196 鸟), 850-858. 38. Problem 5231 , Am er. Math. Monthly , 71(196 鸟儿 923. See SG 工 utions , ibid. , 72(1965) , 921-923. 39. Binomial coeffic 土 ents , the bracket function , and cornpositions with relatively prime summands , Fibonacc 土 Quarterly , 2(196 件) , 2 斗 1-260.
40. The construction of" orthogona 工 and quasi-orthogona 工 number sets , 72(1965) , 591-602. 41. An identity involv土ng Stirling numbers , Ann. 工 nst. Stat. Math. 17( 丁 965) , 265-269. 斗 2.
A variant of Pascal's triangle , Fibonacc 主 Quarterly , 3( 丁 965) , 257-271. Errata ,鸟 (1966) , 62.
•
-10 1
,
43. Inverse series re1ations and other expansions invo1ving Humbert po1ynomia1s , Duke Ma th. J. , 32(1965) , 697-711. 44. Note on recurrence re1ations for Stir工 ing numbers , Pub 工.工nst. Math. (Beograd) , N.S. , 6(20)(1966) , 115-119. 句.
Cwi th J. Ka
summatioJ丑lS , J. Combinator 土a1 Theory , 1(1966) , 233-2乌7. Errata , ibid. , 12( 丁 972) , 309-310.
乌6. Note on a q-series transform , J. Combinatoria1 Theory , 1(1966) ,
397-399. 斗7.
(with C. A. Church , Jr.) Lattice point solution of the genera1ised of Terquem and an extension of Fibonacci numbers , Fibonacci Quarter1y , 5(1967) , 59-68. prob 工 em
鸟8. 斗9.
Comment on Prob1em 602 , Math. Mag. ,斗。 (1967) , 107 皿 108. (with Maurice Nachover) Prob1em E 1975 , Am er. Math. Month1y , See solut 土 ons , ibid. , 75(1968) , 682-683.
7 件 (1967) ,斗37- 件 38.
50. Note on a combinator 土a1 identity in the theory of graphs , Fibonacci Quart. , 5( 丁 967) , 2 乌7-250.
bi-c 。工。 red
51. The bracket function , q-binomia1 coeff土 cients , and some new St 土 r1ing number formu1as , Fibonacci Quart. , 5(1967) , No.5 ,斗01423. Errata , ibid. , 6(1968) , 59. ~2.
(with Frank1in C. Sm土 th) Prob1em 5612 , Am er. Ma th. Month 工y , 75(1968) , 791. See solution , ib 土 d. , 76(1969) , 705-707.
53. Prob1em H-1 乌 2 , Fibonacci Quart. ibid. , 8(1970) , 275-276.
,
6(1968)
54. Note on a paper of Pau 工 Byrd , and a Fibonacci Quart. , 6(1968) , 318-321. 55. Note on two binomia1 coefficient Math. Physics , 10(1969) ,斗 9-50.
,
No. 斗,
s 。工 ution
ident 立 ties
252. See solution ,
of prob1em P-3 , of
Rosenbaw且
J.
56. The bracket function and Fonten{-Ward generalized binomia1 coefficients with app1ication to Fibonomia1 coefficients , Fibonacci Quart. , 7(1969) , No.1 , 23- 乌0 , 55. 57. Power sum identities for arbitrary symmetric arrays , SIAM J. App1ied Math. , 17(19~9) , 307-31 6. 58. Invariance and other simp1e techniques as a genesis of binomia1 土 dent 土 ties , Nieuw Archief voor W土 skunde , (3) 丁 7( 1969) , 21 乌-217. 59. Remarks on a paper of Srivastava , J. Math. Physics , 12(1971) , 1378- 丁 379.
60. Comment on a paper of Chiang , J. Math. Physics , 12(1971) , 17 也3. 61. Reviews #2033 - 203件, Math. Reviews , 38(1969). 62. Noch einma1 die Stir1ingschen Zah1en , Bemerkungen zu Noten von Johannes Thomas und F. Klein-Barmen , Jber. Deutsch. Math.-Verein. 73(1971) , 1 件9-152. -105-
,
63. Solut 土。 n of Problem 783 , Math. Mag.
,
鸟斗 (1971) ,
289-291.
64. Equal products of generalized binomia 工 coefficients , Fibonacc 土 Quart. , 9(1971) , No. 鸟, 337-3 斗 6. 。二.
Explicit formulas for Bernoulli numbers , Amer. Math. Monthly , 79(1972) , 斗斗-51.
5.6. Solution of Problem 70-21 , SIAM
Rev 土 ew ,
1 乌 (1972) ,
166-169.
67. A new symmetr 土 ca1 combinator土a 工土 dent 土 ty , J. Comb. Theory , 68. The case of the strange binomia1 identities of Professor Moriarty , Fibonacci Quart. , 69. Some combinatoria1 identit 土 es of Bruckman - a systematic treatment with re1ation to the older 1iterature , Fibonacci Quart. , 70. Two remarkab1e extensions of the Leibniz differentiation formu1a
_4 --
A new primality criterion of Mann and Shanks and its a theorem of Hermite , Fib 。且 acci Quart. ,
re 工 ation
,
to
72. A remarkab1e combinatoria1 formula of Heselden , Proc. W.Va. Acad. of Sci. , 73. Eva1uat 土 on of the finite hypergeometric series F(-n , 1/2;j+1; 的, 7 斗.
The moments of a identities ,
'-~<::.
Fibonomia 工 Cata1an
the
f 土 rst
distr土 bution
numbers , fifty numbers ,
as a genesis of
ar 土 thmet 土 c
properties and a tab1e of
76. A new greatest common divisor property of the 77. ~吧zR,
79.
P 。工ynom土 a1s
associated
w土 th an
土ntegra1
comb 土 natoria1
binom 土 a1
coeff 土 cients ,
of Eu1er ,
Types of orthogona1土 ty for arrays of numbers , Speci豆工
y f
funct 土 ons
associated
w 土 th
the higher derivatives of
X J-
80. Brill's series and some re1ated 吃 xpansions obtainab 工 e in closed form , Mathematica Mononga1iae , #3 , August , 1961. 14pp. 81. Exponential b 土 nomial coeffic 土 ent ser 土 es , Mathematica Monongal 土 ae , #件, Sep t., 1961. 36pp. 82. Note 些 on a calculus of Turtn operators , Mathematica Mononga1iae , #6 , May , 1962. 25pp. 8 二.
The Bateman notes on binomia1 coeff 土 cients , edited by H.W.Gould , August , 1961. 150pp. to appear. Based on 560 page manuscript compr 土 sing three versions of the origina 工 work. -106-