This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
O, and is "large enough relative to c " , then every k-arc i s contained in a conic, 5) if C is complete, then its secants fill up the plane, i.e. each point of the plane is contained in at least one secant of C. There arises the problem: for which values of k and q do complete As an answer, L. Lombard0 Radice k-arcs in PG(2,q) exist? constructed complete (q+5)/2 -arcs, k-arcs] with constructed complete and Pellegrino 1191 showed that if q Among the k-arcs then complete k-arcs with k <(q+1)/2 exist. which are not necessarly complete but are not contained in a conic, we recall the k-arcs contained in a cubic (see Di Comite [ 1 3 ] , 1141, 1151 and Zirilli [37]) . I t easy to see that the order of the known complete k-arcs is very "large" with regard to the theoretical valuation k > ( 3 + 1 / 1 t U q ) / 2 (see 1 2 8 1 ) and we are still a good way from finding a solution of the following problem: I f q is fixed, what is the smallest number k, such that a complete k-arc of PG(2,q) exists?
[
-
R. Capodaglio di Cocco
116
Recently, in order to obtain new resul.ts, the definition of has been generalized as follows (see [3]).
k-arc
9
(not DEFINITION 1: A k-set K o f , a finite projective plane necessary desarguesian) is called thick if V P E 9 there exists a s-secant of K passing through P with s>l. DEFINITION 2: A thick k-set K is called minimal subset of K is not thick,
if
every
proper
Obviously every complete k-arc is a minimal thick k-set, but the next examples show that the converse is wrong: 1) Let r and s be distinct lines of a projective plane of order q > 5 . If P = r n s , let AlrA2,...,Ac., be points of r and F , , B 2 be points of s , with Ai:bPkBi (i=1,~,...,q-1;j=1,2~. Then the set K = {A11A21...IAq-l,B,,B2} is a minimal thick (q+l)-set. 2) Let r,s,t be three non-concurrent lines of Pc(2,q). If we embed PG(2,q) in PG(2,q2), the set of the points of r,s,t is a minimal 3q-set of PG(2,q2). (E. Ughi's example). In the sequel, we will be interested in the minimal thick k-sets for which k takes the maximal value, i.e. qt2 (see [3]) . We point out that minimal thick (qt2)-sets exist: a (qt2,qtl)-arc is a trivial example of such sets. Moreover we will show that a minimal thick (q+2)-set can be represented by a permutation polynomial, and so the study of these sets is connected to a subject to which many important papers have been devoted (see [ 6 1 r [8I [ 9 1 I101 i r [12I). DEFINITION 3: A point N of a k-set K is called a nucleus of every line through N is a s-secant of K with s < 3 .
K
if
A (qt2)-set with a nucleus is obviously thick, but not necessarly minimal: for example let q=ph, with p*2,3 odd and qrl (mod. 3). In PG(2,q) assume r is an irreducible cubic with an isolated I t is easy to see that is a non-minimal double point N. (qt2)-set with nucleus N. Moreover if q = 5 , and F is a point of inflection of ,then {F} is a minimal thick 6-set. Remark: Irreducible cubics with an isolated double point are used in [IS] to construct (qt9)/2-arcs. So it seems that the following problems are the most important in the theory of minimal thick (qt21-sets: I: Has every minimal thick (q+2)-set one and only one nucleus? 11: For which number n is a minimal thick (qt21-set K a (qt2,n)-arc? 111: When is a (qt2)-set K with a nucleus minimal? In the following we suppose that the order of the plane is odd and we give partial answers to these problems. In particular in: problem I: we show that a minimal thick (qt2)-set has at most one nucleus, Moreover, if the plane is PG(2,q), we find conditions for the nucleus to exist.
r
r
r-
On Thick (Q+2)-Sets
I17
problem 11: we show that if K has a nucleus, then either n=q+l or n
1
Let 9 be any finite projective plane of odd order q. DEFINITION 4 : A point A of a thick k-set K is called essential if the set K - { A ] is not thick. Obviously, a thick k-set K is minimal if and only if every point o f K is essential. Suppose now that K is a minimal thick (q+2)-set, then for each X E K there esists at least a point Px such that every line through Px is an 1-secant for K - { X } . If X is not a nucleus o f K , then P,FX, whereas if K has a nucleus N and X # N , then any point Px is on the line NX. In this section we are interested in problem I, first we shall show that a minimal thick (q+2)-set has at most one nucleus. THEOREM 1: If a (q+Z)-set K has two distinct nuclei, then i t is not minimal. Proof: The plane Y contains no (q++arc, s o K has at least a s-secant r with s > 2 . Then every point A of K n r is not essential. Corollary; If the minimalqhick (q+2)-set K has a nucleus N and XEK, X Z N , then there exists at least one s-secant r3X of K with s>2. REMARK:
We point out that some (q+2)-sets with two nuclei exist. In fact, if N1 and N are any two distinct points and r is the 2 line N N , let ,ti (i=1,2) be the set o f the lines through N. and 1 1 f: + E 2 be any bijection. It differen$ from k, moreover let is easy to prove that K= { snf(s); s E g l } u { N1, N2 ] is a thick (q+Z)-set and Nl, N2 are nuclei of K . So the number of the is equal to the number of the (q+2)-sets with nuclei N1,N2 bijections from to , i.e. q!. On the other hand , if .iP = =PG(Z,q) , in[4] it is siown that a (q+2)-set can have more than two nuclei only if q is even. Now we find conditions for a minimal thick (q+2)-set to have a nucleus.
El
El
THEOREM 2 : Let K be any minimal thick (q+2)-set o f PG(Z,q), with q odd; then K contains two points C and D, such that, if the frame is conveniently chosen, it is possible to represent the set W = K - { C , D )
R. Capodaglio di COCCO
118
by an equation y=f(x), where f(x) is a permutation polynomial with 1) the polynomial f(x)-x has no root in G F ( q ) . Moreover if K has a nucleus, we have 2 ) v m € G F ( q ) , m-1-1,the polynomial f(x)-mx has only one root in GF(q). Proof : In the first place we suppose that K has no nucleus and we define an application r:K--->PG(2,q) in the following way: we choose a point X l € K and we pose r ( X 1 ) = P where Pq is one of the above-stated points. The line X , C ( X l f l 'intersects K at XI and at an other point, say X 2 . We pose z ( X 2 ) = Z ( X l ) . Then we choose a point X 3 f X 1 , X 2 and. we call z ( X 3 ) one of the points Px3' The line X 3 r ( X 3 ) intersects K at X 3 and at an Other point, say X4. If either X 4 = X 1 or X 4 = X 2 , we have nothing to define; if X 4 k X 1 1 X 2 we pose r i X 4 ) = r ( X 3 ) and so on. Since qt2 is odd, there must exist at least two points A and B of K such that the distinct lines A r ( A ) and B r ; B ) intersect K at the same point C, because otherwise the set K would have a partition in disjoint pairs. Obviously z ( A ) , r ( B ) and C are not collinear, so we can choose r ( A ) as the improper point of the axis x, r ( B ) a s the improper Let D be the only point of the axis y and C as the point ( 0 , O ) . point of K on the improper line, then, using the terminology of 1311, the set W=K-(C,D} is a diagram relative both to z ( A ) and to z(B) and so it can be regresented by an equation y=f(x), where f(x) is a permutation polynomial. If we choose the point (1,l) on the line CD, we obtain the cond. 1). Now let K have a nucleus N and A,B be distinct points of K, with AcN-fB. We choose a point PA (resp. a point PB) as the improper point of the axis x (resp. of the axis y) and we call D the only improper point of K. If we pose C=N, w e can repeat the above proof. The cond, 2 ) is satisfied, because C is the nucleus of K. THEOREM 3 : In P G ( Z , q ) , with q odd,let W be the set represented by the equation y=f(x), where f(x) is a permutation polynomial with 1) the polynomial f(x)-x has no root in GF(q) 2 ) v m E G F ( q ) , mtl, the polynomial f(x)-mx has only one root in GF(q). If C is the point ( 0 , O ) and D is the improper point of the line y=x, then the set K=Wu{C,D} is a (qt2)-set with nucleus C. Proof: Self evident.
I1
Now we shall deal with problem 11. In the plane 9 let K be a (qt2)-set w i t h a nucleus N. In conformity with the terminology of ( 3 6 1 , K is a (q+2,n)-arc for a convenient number n, and it has at least three characters, because i t has s-secants for s=1,2,n. Let t be a line which intersects K exactly in the n points B 1 , B2t
. . .1 0 , .
On Thick lQ+2)-Sets
119
THEOREM 4: Suppose the minimal (qt2)-set K has a nucleus N , then either n=q+l or n<(q-l) and so q > 4 . Proof: If n=qtl, we have nothing to prove. Suppose n=q; if C ~t is point different from Bl,B2,. . , B n r we have N,B1 ,B2,...,BnrA} , where A is a convenient point of the line but this means that A is another nucleus for K, in contrast with th. 1. Suppose n=q-1; if C1 and C2 a r the points of t different from B l r B 2 , . . , B n , we have K = N,B1 ,B?, . . . ,Bn,A1 , A # where A , is a convenient point of NC, (i=l,2), Since A1 cannot be a nucleus, the line A,A2 must pass through one of the points B ~ : but this is impossible because this point would be not essential. So we have n
.
.
Ifp=PG(2,q), the above result is improved by the next theorem and its corollary. set of PG(2,q) with a nucleus N . Then any line A1 A2, Ai E K, A, 3:N , A1,/zA2,is at least a s-secant df K with s > 3 . Proof: Let A1kN:bA2 be two disinct points of K. Let PA, be the point of the line NA, definied in the section I (i=l,2). For the instead of P ~ ~ . A f t ear B. Segre's sake of brevity we write P, scheme of proof (see 1281 ) , we chose P2 ,PI ,N as the fundamental triangle of a homogeneus coordinate system in PG(2,q). The line PIP2 contains only one point of K, say A3. Let U=P2A1 n N A 3 ; we choose U as (l,l,l), so we have A l = ~ O , l , l ~A3=(l,1,0) , and A2=(l,Ora) with a.kO. For each point CEK, C#.N,AlrA2,A3,the lines NC, P I C , Pf are represented respectively by the equations x1 =m2x0, x ~ = ~ x2=mOx1 ~ x ~ with , m,-=mom 2 If we consider all the points C of K, C=FN,Al,A2,A3, we obtain that m2 and mo take all the values of GF(q) different from 0 and 1, while m 1 takes all the values of GF(q) different from 0 and a. Since the product of all non-zero elements of GF(q) is equal to -1, we have a=-1. This means that the points A1,A2,A3 are collinear . Starting from the points A1 and A3 and putting P=P by the above arguments we have that the only point of K 3 $3 ' , vhich is on the line PI P3 is a so on the 1 ne A1A3 . If this point is distinct from A2, then the line A1A2 intersects K in at least four points; otherwise the point A4, the intersection of K with the line P2P3, is certainly distinct from A 1 and lies on the line AIA2. THEOREM 5 : Suppose K is a minimal thick
Corollary: Suppose the minimal thick set K of PG(2,q) has a nucleus N, then K is a (qt2,n)-arc with either n=qtl or 4
120
R. Capodaglio di Cocco I11
We need a new definition. Let q be an odd prime power. It is known [12] that a permutation polynomial for GF(q) is in reduced form if its degree isq , For the sake of brevity we put U(f(x))=vf. DEFINITION 5: A permutation polynomial is called pseudolinear if there exists a group d , subgroup of AGL(l,q), transitive on the elements of GF(q), except for at the most one element, and such that 1 V d e A the permutation polynomial a-'( vf 6 v ; ) is of the first degree. All the permutation polynomials xk , with GCD(k,q-l)=l, are pseudolinear because for them we can choose A = { x ---> ax; a E G F ( q ) , a-kO}. On the contrary,the polynomial corresponding to the permutation x--->x if'x-l.0~1; 0--->1:1--->0 is not pseudolinear. THEOREM 6: In PG(2,q) let H be the set represented by the equation y=f(x), where f(x) is a pseudolinear permutation polynomial and is the group of the affinities which map H onto itself. assume Then 17 is transitive on H , except for at the most one point. Proof : It is sufficient to point out that I1 cointains all the affinities x= a - $ 6 ) (xl ) ly= a- ( vf 6 v;' )(y') where ~ E A .
n
Now we treat the problem 111. Suppose the (q+2)-set K of PG(2,q) has a nucleus N. We choose a coordinate system different from the one we used in the proof of th. 2. Let A k N be a point of K , then we choose A N as the improper line and N as the improper point of the axis y . Since the set H=X-{N,A} is a diagram relative to N, so i t can be represented by an equation ( 1 ) y=f(x) where f(x) is a polynomial. THEOREM 7 : Suppose K is minimal, then it is possible to choose the improper point of the axis x such that f(x) is a permutation polynomial, Proof: self-evident.
On Thick (Q+2)-Sets
121
If in (1) f(x) is a pseudolinear permutation polynomial, then, by th. 6 , the group of the affinities that map H onto itself is not trivial. Now we suppose K is a (q+2,n)-arc with ncq+l and we prove that if some conditions are satisfied, then K is not minimal.
n
THEOREM 8: Let f(x) be a pseudolinear permutation polynomial. Assume 17 contains a subgroup 17, of the group of the is transitive on H, then A and N are the translations and only essential points of K . Proof: Let B be any point of H and t E 0 be a s-secant of K with s>l; assume T is the improper point of t. Since n < q + l , then there exists Q such that o(t)=t'+t. Obviously t' passes through T and it is likewise a s-secant of K . On the other hand, since any affine line through T is either external or s-secant of K , then no 1-secant of K passes through T. Let now Q be any point of the line BN: since the line QT is not a 1-secant of K - { B ) - , then the point B is not essential.
nq
THEOREM 9 : Let f(x) be a pseudolinear permutation polynomial. Assume any element of n fixes the improper points of the axes and a proper point 0 (obviously 0 is on H ) ; moreover assume 17 is transitive on the points of H different from 0, then 0 is not essential. Proof: Let X be the improper point of the axis x; since the line XO is an 1-secant of K , then there exists at least a line 2 3 0 that is a s-secant of K with s>2. The line r is a m-secant of H, where m=s-1 if A is on r , m=s otherwise. Since is transitive on H - { O } , then the q points of H are shared among d lines which pass through 0 and are m-secant H , with obviously q-l=d(m-l). It is easy to see that is transitive on the lines passing through X and different from XN and XO, and therefore also on the points of the line ON different from 0 and N. Suppose the line ON contains a point Q:bO,N such that any line u3Q is t-secant H with t<2, then the same is true for every point R of ON (RI0,N). But evidently this is absurd, So the point 0 is not essential. EXAMPLES :In PG(Z,q), with q=phodd, let N and A be respectively the improper point of the axis y and the improper point of the line y=x. Moreover let he the set represented by the equation xpt. . tch- xp%-I y=f (x)'COX where c i EGF(P) and GCD(cotclx +. . .+ck1xh-l,1-xh )=l. It is known [12] that f(x) pseudolinear because we can K=Hu{A,N}. Since the satisfied, no point of H is essential for K . 2 ) Let A , N , K have the same meaning d s in l), while H is the set represented by the equation
.
y=xk
As we have already proved, xk is a where GCD(k,q-l)=l. pseudolinear permutation polynomial. In this case the conditions
122
R. Capodaglio di Cocco
required by th. 9 are satisfied, so the point ( 0 , O ) essential for K.
of H
is
not
LITERATURE [l] A.Barlotti:Sui (k,n)-archi di un piano lineare finito. Un.Mat.Ital.11 (1956) 553-556.
Boll.
[2] A.Barlotti: Un'osservaziome intorno ad un teorema di B. Segre sui q-archi. Matematiche (Catania) 21 (1966) 287-395. [3] U.Bartocci: k-insiemi densi in piani di Ga1ois;in c o r s o di pubbl.su1 Boll.Un.Mat.It. [4] A.Bichara,G.Korchmaros: Note on (qt2)-sets in a Galois plane of order q . Ann. of discr.Math.14 (1982) 117-122 [5] R.C.Bose: Mathematical theory of the symmetrical factorial design. Sankhya 8 (1947) 323-338.
161 A.Bruen: Permutation functions on a finite field. Canad. Math.Bull.15 (1972) [ 7 ] :A.Bruen:The number of Lines Determined by n2 Points.Journ.of Comb.Theory (A)15 (1973) 225-241.
[8] L.Carlitz:Permutations in a finite field. Soc.4 (1953) 538.
Proc.Amer.Math.
[9] L.Carlitz: A Theorem on permutations in a finite field.Proc. Amer.Math.Soc.11 (1960) 456-459.
[lo] L.Carlitz: A note on permutation functions over finite field. Duke Math.J.29 (1962) 325-332.
[Ill L.Carlitz: Some theorems on permutation polynomials. Amer.Math. 68 (1962) 120-122. [lZ].L.Carlitz: Permutations in finite field. ged. 24 (1963) 196-203.
Bull,
Acta Sci Math-Sze-
[13] C. Di Comite: Sui k-archi deducibili da cubiche p ane. Acc.Naz.Lincei ( 8 ) 33 (1962) 429-435.
Rend.
On Thick (Q+Zl-Sets
123
[14] C. Di Comite: Sui k-archi contenuti in cubiche piane. Acc.Naz.Lincei ( 8 ) 35 (1963) 274-278.
Rend,
[15] C. Di Comite: Intorno a certi (q+9)/2-archi d i S(2,q). Acc.Naz.Lincei ( 8 ) 36 (1964) 819-824.
Rend.
[16] F. Karteszi: Introduzione alle geometrie finite. Feltrinelli 1978 (traduzione italiana)
[17] G. Korchmaros: New examples of complete k-arcs in PG(2,q). Eur.J. of Comb. [18] L.Lombardo Radice: Sul p r o b l e m dei k-archi completi di S(2,q).Boll.Un.Mat.It.l1 (1956) 178-181. [19] G.Pellegrino: Sur les k-arcs complets des plans des Galois d'ordre impair.Ann. Discr. Math. 18 (1983) 667-694. [20] B. Qvist: Some remarks concernin g curves of the second degree in a finite plane. Ann.Acad.Sci.Fenn.1 134 (1952) [21] L. Redei: Uber eindeutig umkerbare Polinome in endliche Korpern. Acta Sci.Math.Szegd. 11 (1946-1948) 85-92 [22] M. Sce, L. Lunelli: Sulla ricerca dei k-archi completi mediante calcolatrice elettronica. Convegno reticoli e geometrie proiettive.(Palermo 1957) Roma Cremonese 81-86 (1958) [23] B.Segre: Sulle ovali nei piani lineari finiti. Naz.Lincei (8) 17 (1954) 141-142.
Rend.Acc.
[24] B.Segre: Curve razionali normali e k-archi negli spazi finiti. Ann. Mat.Pura Appl. 39 (1955) 357-379. [25] B.Segre: Ovals in a finite projective plane. Canad. J. Math 7 (1955) 414-416. [26] B.Segre: Sui k-archi nei piani finiti di caratteristica 2.Rev. de Math.Pure et Appl. 2 (1957) 289-300. [27] B.Segre: (1959) 1-96
Le geometrie di Galois.
Ann.Mat.Pura Appl.
[ L 8 ] B.Segre:
Lectures on modern Geometry.
48
Cremonese,Roma 1961
[29] B.Segre: Ovali e curve nei piani di Galois stica due. Rend.Acc.Naz.Lince1 32 (1962) 785-790 [30] B.Segre: Introduction to Galois geometries. Lincei, 8 (1967) 135-236.
di
caratteri-
Mem.Acc.Naz.
R. Capodaglio di Cocco
124
[31] B.Segre,U.Bartocci: Ovali ed altre curve nei piani di Galois di caratteristica due. Acta Arithm. 18 (1971) 423-449 [32] B.Segre,G.Korchmaros: Una proprietd degli insiemi di punti di un piano d Galois caratterizzante quelli formati dalle singole rette esterne ad una conica,Rend.Acc.Naz.Lincei 62 (1977) 613-618.
[33] G.Tallin teristica p=2
Sui q-archi di un piano lineare finito di caratRend.Acc.Naz.Lince1 23 (1957) 242-245.
:
[34] G.Tallini: Le geometrie di Galois e le loro applicazioni alla statistica e alla teria del'informazione. Rend.Mat.e Appl. 19 (1960) 379-400. [35] M.Tallini Scafati: Sui k,n -archi di un piano grafico finito. Atti Acc. Naz. Lincei.Rend. 40 (1966) 373-378. [36] M.Tallini Scafati: k,n -archi di un piano grafico finito, con particolare riguardo a quelli con due caratteri (Note I e 1 1 ) Atti Acc.Naz. Lincei Rend. 4 0 (1966) 812-818; 1020-1025. [37] F.Zirilli: Su una classe di k-archi di un piano di Galois. Rend. Acc.Naz.Lincei 54 (1973) 393-397.
Annals of Discrete Mathematics 30(1986) 125-136 0 Elsevier Science Publishers B.V. (NorthHolland)
125
ON A GENERALIZATION OF INJECTION GEOMETRIES P i e r V i t t o r i o C e c c h e r i n i and N a t a l i n a Venanzangeli D i p a r t i m e n t o d i Matematica "G. Castelnuovo" U n i v e r s i t a d i Roma "La Sapienza" C i t t a U n i v e r s i t a r i a , 00100 Roma, I t a l y
I n j e c t i o n geometries have been i n t r o d u c e d i n [ 3 ] as a gene r a l i z a t i o n o f p e r m u t a t i o n geometries s t u d i e d in [ 1 1 . We p r e s e n t a g e n e r a l i z a t i o n o f i n j e c t i o n geometries, namely 7-geometries, i m p r o v i n g i n some cases p r o p e r t i e s o f i n j e c t i o n geometries s t a t e d i n [ 3 ] . 7-geometries have been i n t r o d u c e d i n [ 9 1, and a l s o preannounced i n [ 3 1 , i n a "Concluding remark" unknown t o t h e authors , F g e o m e t r i e s have been r e c e n t l y c o n s i d e r e d a l s o i n [ 4 1, under t h e name o f "squashed geometries" and i n [ 6 1 , [ 8 ] .
1. INTRODUCTION I n what f o l l o w s a l l s e t s w i l l be f i n i t e . L e t N be a non empty s e t and
2
N =
=NxN. I(x,y)
2
EN
f a E N , we g e t t h e g e n e r a t o r s g ( a ) = { ( x , Y ) E N2 : x = a) and g ( a ) = 1 2 : y = a]; t h e f i r s t (resp. second) system o f g e n e r a t o r s i s
= g 2 ( a ) : a € N 1. A ( p a r t i a l ) correspondence o f N 2 i s any subset o f N ; a p a r t i a l a p p l i c a t i o n ( r e s p . c o a p p l i c a t i o n ) o f N i s any sub2 s e t o f N which i s 0- o r 1-secant each g E G ( r e s p . g E G ) ; a subpermutation F 1 1 2 2 o f N i s any subset o f N2 which i s 0- o r 1-secant each g e n e r a t o r ; i f dom F = N,
G1
=
Igl(a)
aEN1 (resp. G
z
t h e n F i s a p e r m u t a t i o n o f N.
I n [ 7 1 s e t s and groups o f p e r m u t a t i o n s o f N a r e
studied ( w i t h special a t t e n t i o n t o t r a n s i t i v i t y p r o p e r t i e s ) from t h i s geometrical p o i n t o f wiew.
I n [ 2 ] c e r t a i n semigroups o f subpermutations a r e c h a r a c t e r i z e d i n
t h e c l a s s o f a l l semigroups. p e r m u t a t i o n geometries,
In [ 1 1 s p e c i a l s e t s o f subpermutations o f N (namely
c f . no. 2 ) a r e i n t r o d u c e d by means o f axioms s i m i l a r t o
m a t r o i d axioms; more g e n e r a l r e s u l t s a r e o b t a i n e d i n a s i m i l a r way i n ( 5 1 , where s e t s o f p a r t i a l a p p l i c a t i o n s ( o r c o a p p l i c a t i o n s ) i n s t e a d o f subpermutations a r e considered. Other g e n e r a l i z a t i o n s o f p e r m u t a t i o n geometries a r e i n j e c t i o n geomed t r i e s , c f . [31. I f d a l i s an i n t e g e r , i n t h e s e t N we have d systems o f genera-
tors :
P.V . Ceccherini and N. Venanzangeli
126
G . = t g . ( a ) : a e N ) , where g . ( a ) = I ( x l 1
1
1
,...,x d ) e Nd
: x . = a1 1
(i=ly...yd);
d . a subset o f N i s c a l l e d i n j e c t i v e i f i t i s 0- o r 1-secant each g e n e r a t o r ; an d i n j e c t i o n geometry i s a s e t o f i n j e c t i v e s e t s o f N s a t i s f y i n g s u i t a b l e axioms, which a r e s i m i l a r t o m a t r o i d axioms and which reduce t o t h o s e f o r d = 1 and t o p e r m u t a t i o n geometry axioms f o r d = 2. T h i s t a l k concerns a g e n e r a l i z a t i o n o f i n j e c t i o n geometries (namely 9-geom e t r i e s ) g i v e n i n [ 9 ] i n a v e r y a b s t r a c t way which i n c l u d e s a l s o p a r t i a l a p p l i c a t i o n ( o r c o a p p l i c a t i o n ) geometries ( c f . no. 2 ) . P r o f . M. Deza i n f o r m e d us d u r i n g t h i s conference t h a t t h e concept o f 9-geom e t r i e s i s claimed i n a c o n c l u d i n g remark (added i n p r o o f s ) i n [31 and t h a t i t i s going t o be developed i n [ 4 1 , where our 3-geometries a r e c a l l e d squashed geometries.
A d i f f e r e n t and v e r y e l e g a n t approach t o squashed geometries as "bou-
quets o f m a t r o i d s " i s g i v e n i n [81, where i n s t e a d o f o u r s e t 7 an a n t i c h a i n C i s c o n s i d e r e d s a t i s f y i n g s u i t a b l e axioms ( i n o u r language C i s t h e s e t o f maximal elements o f A ) ; t h a t approach seems t o be v e r y e f f i c i e n t . I n what f o l l o w s we s k e t c h a t h e o r y o f 9-geometries, i m p r o v i n g i n some cases p r o p e r t i e s o f i n j e c t i o n geometries s t a t e d i n [31.
2. DEFINITION OF 9-GEOMETRIES L e t us s t a r t w i t h t h e f a m i l i a r concept o f m a t r o i d . A m a t r o i d Mr(X), o r rank r on s e t X, i s a p a i r Mr(X) = (X,A)
DEFINITION 2.1.
where A i s a s e t o f subsets o f X, p a r t i t i o n e d i n t o A = A,,u...
UAr
w i t h Ar # 0,
s a t i s f y i n g t h e f o l l o w i n g axioms ( t h e elements A . E A . a r e c a l l e d t h e f l a t s o f r a n k 1
1
i o f M (X), O < i < r ) : r ( 1 ) A i s c l o s e d under i n t e r s e c t i o n ; ( 2 ) i f Ai E Ai
( 3 ) i f AifAi, such t h a t Ait,
A' 3
AU
,
A . E A , and Ai C_ A . t h e n i 6 j; J J J i < r and b E X \ A t h e n t h e r e e x i s t s an u n i q u e AitlE
i'
>_ A i u I b 1 ;
moreover A
it1
i s i n c l u d e d i n each A ' E A
Aitl such t h a t
[bl.
We r e c a l l now t h e d e f i n i t i o n s o f t h e s t r u c t u r e s mentioned i n $ 1 . DEFINITION 2.2
( [ 1 1). L e t N be a non empty s e t and X c N x N. A p e r m u t a t i o n
127
On a Generalization offnjection Geometries
geometry P ( X ) o f r a n k r on X, i s a p a i r P ( X ) = ( X , A ) where A i s a s e t o f subperr r w i t h A # 0, s a t i s f y i n g t h e m u t a t i o n s o f N, p a r t i t i o n e d i n t o A = A o u UAr r axioms ( 1 ) - ( 3 ) w i t h t h e r e s t r i c t i o n t h a t axiom ( 3 ) h o l d s f o r t h o s e b E X \ A . such
...
1
i s a subpermutation of N. (Note t h a t t h e o r i g i n a l d e f i n i t i o n g i v e n 2 . i n [ 1 1 concerns t h e p a r t i c u l a r case X = N ; 1.e. o u r d e f i n i t i o n i s s l i g h t l y more t h a t AiU t b l
general 1. DEFINITION 2.3
([5]). L e t N be a non empty s e t and X C N x N. A p a r t i a l ap-
p l i c a t i o n ( r e s p . c o a p p l i c a t i o n ) geometry o f r a n k r on X i s a p a i r ( X , A ) , where
A i s a s e t o f p a r t i a l a p p l i c a t i o n s ( r e s p . c o a p p l i c a t i o n s ) o f N, p a r t i t i o n e d i n t o A = A,
U...
UA
r
with A
r
# 0, s a t i s f y i n g t h e axioms ( 1 ) - ( 3 ) w i t h t h e r e s t r i c -
t i o n t h a t axiom ( 3 ) h o l d s f o r t h o s e b E X \ A . such t h a t A . u i b 1 i s a p a r t i a l a p p l i 1
1
c a t i o n ( r e s p . c o a p p l i c a t i o n ) o f N. DEFINITION 2.4 “ 3 1 ) .
d L e t d > 1 be an i n t e g e r , N a non empty s e t and Xc- N
.
An i n j e c t i o n geometry o f rank r on X i s a p a i r I ( X I = (X,A) where A i s a s e t o f r d i n j e c t i v e subsets o f N , p a r t i t i o n e d i n t o A A , U U A w i t h Ar # 0, s a t i s f y r i n g axioms ( 1 ) - ( 3 ) w i t h t h e r e s t r i c t i o n t h a t axiom ( 3 ) h o l d s f o r t h o s e b E X \ Ai d The number d w i l l be c a l l e d t h e such t h a t A . u t b l i s an i n j e c t i v e subset o f N
...
.
1
dimension o f I r ( X ) . We g i v e now t h e de i n i t i o n o f
3-geometries.
DEFINITION 2.5 ( c f . [9], and a l s o [ 3 ] , [ 4 ] , [ 8 ] where t h e d e f i n i t i o n i s g i v e n i n a s l i g h t l y d i f f e r e n t f o r m ) . An 9-geometry o f r a n k r on a s e t X, i s a quadruple
G ( X ) = (S,3,X,A) where S i s a non empty set, I i s a s i m p l i c i a 1 complex o f d i s t i n -
r
guished subsets o f S ( i . e .
Z C Z ’ E ~ i m p l i e s Z E I ) , A i s a subset o f 9 p a r t i t i o n e d
... u
A w i t h A # 0 and X = u A, s a t i s f y i n g t h e axioms ( 1 ) - ( 3 ) r r AEA w i t h t h e r e s t r i c t i o n t h a t axiom ( 3 ) h o l d s f o r t h o s e b € X \ Ai such t h a t i n t o A = A,u
A . U t b l E 3. 1
Ai a r e c a l l e d t h e f l a t s o f r a n k i o f t h e geometry G ( X I . r = A. v i b l f o r t h e s e t Ai+l mentioned i n axiom ( 3 ) . We s h a l l w r i t e A i+l 1 S A m a t r o i d M ( X ) i s a geometry Gr(X) = (S,Y,X,A) w i t h 9 = 2 and X = S, and The elements
r
AiE
2
c o n v e r s e l y . A p e r m u t a t i o n geometry Pr(X) = (X,A), w i t h XcN , i s a geometry Gr(X) = 2 = (S,3,X,A) w i t h S = N and 3 = IF c N2 : F i s a subpermutation o f N l , and convers e l y . P a r t i a l a p p l i c a t i o n ( r e s p . c o a p p l i c a t i o n ) geometries can be e a s i l y c h a r a c t e -
P.V, Ceccherini and N. Venanzangeli
128
r i z e d i n a s i m i l a r way between %geometries. An i n j e c t i o n geometry I r ( X ) = (X,d) d w i t h XsNd i s a geometry Gr(X) = (S,Y,X,A) w i t h S = N and 9 = I F 2 Nd : F i s i n j e c t i v e ) , and conversely. Several examples o f geometries G ( X I can then be dedx r ced from [ l ] , [5], [ 3 ] where examples o f permutation geometries and o f i n j e c t i o n geometries are given. We now g i v e some o t h e r examples. EXAMPLE 2.6.
Free 9-geometries.
Gr(X) = (S,9,X,A)
The f r e e geometry
d e f i n e d by assuming X = S, 9 a s i m p l i c i a 1 complex o f S, A
i
is
= t A E 9 : ( A ( = il,
ral.
O
EXAMPLE 2.7.
S t a r 9-geometries.
A s t a r geometry G (X) = (S,9,X,A)
1 center C i s defined by assuming CCS, A, = t C l , A , = t D ( t a 2 , i,j=l,...,t, i # j ) ,X =
and D.n 0 . = C 1
J
l,...,Dt
where C C D . c S J
t
t
Di,
5’=
with
u 2Di.
i=1
REMARK 2.8. S t a r %geometries are 9-geometries o f rank 1 w i t h IA
1
I > 1 and
conversely ( c f . Theorem 5 . 3 ) . EXAMPLE 2.9. metry w i t h A =
Truncations o f an 9-geometry. I f Gr(X) = (S,9,X,A) A,U
...u A r
(k)
Then Grlk) = (S,9,X,A
i s an 9-geo-
and i f 1 6 k < r , we can consider A ( k ) = A , u . . UAk. . . ) i s an 9-geometry o f rank k, c a l l e d t h e k - t r u n c a t i o n o f
Gr’
EXAMPLE 2.10.
Cotruncation o f an 9-geometry. If Gr(X) = (S,S,X,A)
i s an
9-geometry and i f Ah€ Ah (06 h c r ) i s i n c l u d e d i n some Are Ar, then we can consider =
2i = g,i(A,,)
=
(S,g,X,A) w i t h
G (A,) r
=
tAhti€Ah+i
i, U... ~ f i
c_
Ahti,
i=O,l,.
c f . 5.1 ( a ) .
= Gr,
EXAMPLE 2.11.
B i t r u n c a t i o n s o f an 9-geometry.
metry and i f A h € Ah, w i t h O < h c k c r and A h c A sider
-
-
A = A,
Ji
=
..,r-h].
Then G r ( A h 1 = ~i s -an~9-geometry , o f rank r - h , Note t h a t
: Ah
i.(A ) i h
=
{Ahti
E Ahti
: AhCAh+i,
k i=O,
u... uA;(-~i s an 9-geometry o f rank k-h.
EXAMPLE 2.12.
I n t e r v a l s o f an 9-geometry.
I f Gr = (S,Y,X,A)
i s an 9-geo-
f o r some A k € A k then we can con-
...,k-h}.
I f Gr
=
Then G = (S,Y,X,#)
(S,g,X,A)
i s an %geometry
and i f Ah€ Ah, Ak€ Ak w i t h Ahc Ak, O d h < k < r, then we can consider Ai(A =
{Ahti
E Ahti
: A h L AhtiCAk,
o f rank k-h on Ah.
i=O
,...,k - h l .
Then i i , u . . . u f i k-h
with
A ) = h’ k gives a m a t r o i d
129
On a Generalization of Injection Geometries
EXAMPLE 2.13.
Restrictions of
J-geometries.
l e t Gr(X) = (S,9,X,A)
be an 9-
geometry and l e t be S ' such t h a t A € S ' C X f o r some A E d Define A' = 1 1 1' LJ Z A ' , r ' = max t i : A i E A ' l . Then = tAEA: AcSIl, X I = u ,A, 9' = A€ A A' € 4 ' G r , ( X ' ) = (S'J',X',A') i s an 3-geometry o f rank r ' on X ' .
A s p e c i a l i n t e r e s t i n g case i s obtained when S 1 = X ' = U A f o r some f i x e d AE B Bc A such t h a t D n A l # 0; i n t h i s case r ' = max l i : d i n B f 01, A' = t A E A : A C E f o r some B C B } and 9' =
A€ D
2A.
3. D I R E C T SUMS OF 9-GEOMETRIES By s t a r t i n g from two g i v e n 9-geometries, i t i s p o s s i b l e t o c o n s t r u c t a new one (namely t h e i r d i r e c t sum), i n t h e standard way described below. DEFINITION 3.1. G",,
=
Q
of
9-geometries.
Let GIr,
= ( S ' , 9 ' , X 1 , d ' )and
( S " , ~ " , X " , ~ " ) be two 9-geometries; we can suppose w i t h o u t l o s s o f genera-
0. Assume:
l i t y t h a t S'n S" =
A. = [A!, 1
D i r e c t sum
1
uA" : A ! , € A ! , , A!,,€ i" 1 1 1
A = A, u.. . u A
r = r'
r'
t
A'.',,, i ' t 1
i " =
i},
r".
w i l l be c a l l e d t h e d i r e c t sum G '
Then (S,9,X,A)
r'
8
GI,, o f G,;
and G I , , . It i s
easy t o prove t h e f o l l o w i n g : THEOREM 3.2.
The d i r e c t sum G,;
b G'',
o f two
9-geometries i s an 9-geometry
o f rank r = r ' t r " . DEFINITION 3.3. = (S',9',X',A')
F u l l d i r e c t sum 6 o f i n j e c t i o n geometries. L e t G,;
and G'',
= (S",?',X",A")
dimension d. A c t u a l l y X ' c - S'
=
be two i n j e c t i o n geometries o f t h e
N o d and X " c - S" = NtId. We can suppose w i t h o u t l o s s
o f g e n e r a l i t y t h a t N'n N" = 0, so t h a t S'n S" = N =
N'UN",
-
s
A. = ( A ' u A;, 1 i' A = A, u...uAr, Then (S,?,X,A)
d
= N
-
, x
=
x'ux", T = r 1 E 2
: A i l € A ; , , A;,
r
~ame
0 . Assume:
: I i s injective),
E A;,,, i ' t i"= il,
= r ' t r".
w i l l be c a l l e d t h e f u l l d i r e c t sum
cr
= G,;
s
G I , , o f G;,
and GF,,.
P.V , Ceccherini and N. Venanrangeli
130
THEOREM 3.4.
The f u l l d i r e c t sum GAI & GFII o f two i n j e c t i o n geometries o f di
mension d i s an i n j e c t i o n geometry o f rank r = r ' t r " and dimension d. P r o o f . L e t Gr = (S,5',XP)=G', B G" be t h e d i r e c t sum o f G,; and G;,, c o n s i d r r" d ered as 9-geometries ( c f . Theorem 3.2). A c t u a l l y S = S ' U S " = N ' u N1IdcNd = 3 and 9 C T . I t f o l l o w s immediately t h a t
Er
i s an i n j e c t i o n geometry o f rank
r = r ' t r " and dimension d. F o r d = 2 we have COROLLARY 3.5.
The f u l l d i r e c t sum G L I
5 G;,
o f two p e r m u t a t i o n
( c o n s i d e r e d as i n j e c t i o n geometries o f dimension d.2) i t i s a p e r m u t a t i o n geometry.
o f dimension two, i . e . REMARK 3.6.
t e d meaning -
L e t GAI and G",,
o f (1 1.
geometries
i s an i n j e c t i o n geometry 0
be two " p e r m u t a t i o n geometries" i n t h e r e s t r i c -
Then t h e f u l l d i r e c t sum GAI
G;I,
i s a p e r m u t a t i o n geometry
( i n o u r meaning), b u t i t i s n o t a " p e r m u t a t i o n geometry" i n t h e meaning o f [l], 2 because ( w i t h t h e n o t a t i o n o f D e f i n i t i o n 2.2) XcN ,
4. REGULAR 9-GEOMETRIES
A geometry Gr (X)
= (W,9,XyA)
i s c a l l e d r e g u l a r i f each A Ed i s i n c l u d e d i n
.
Every s t a r 9-geametry i s r e g u l a r . The f o l l o w i n g G2(X) = (S,S,X,A) some A E A r r i s not regular : A, = tA,
X = S = ta,b,c,d),
A
9
=
(A,,
2
[A
=
2
t b ) , {c}, t d l ,
:[
all,
A;,
1
=
[A
= Ia,bl,
1
A ' = Ia,cl, 1
A" = ta,dl.}, 1
A = A, u A u A 1 2'
= Ia,b,c}},
A1,
A
A", 1
{b,cl,
A21. We n o t e t h a t A;' i s n o t i n c l u d e d
in A
2' The same example shows t h a t i f G (X) = ( S , S , X , A ) i s a geometry, t h e n 9 i s r n o t n e c e s s a r i l y t h e f a m i l y o f t h e independent s e t s o f a m a t r o i d on S . I t i s a l s o easy t o g i v e examples o f r e g u l a r Gr(X) w i t h t h e same p r o p e r t y (191).
A geometry G (X) = (W,Y,X,A) i s r e g u l a r i f and o n l y i f f o r r each A. E A , , w i t h i < r , t h e r e e x i s t s b e X \ A. such t h a t A. u [ ~ } 1 E . PROPOSITION 4.1. 1
1
1
P r o o f . Suppose G ( X I r e g u l a r , A. E Ai,
1
i< r . L e t A . c A E dr. We have r 1 1 r A.cA s i n c e i < r ( c f . Prop. 5.1. ( e ) ) . If b E A r \ A t h e n b E X \ A i and i r i' A . W b I E 9 , s i n c e A.u:bl C_ A r E 9 and 7 i s a s i m p l i c i a 1 complex. 1
1
On a Generalization of Injection Geometries Conversely, i f f o r each A.E Ai, 1
A.U 1
w i t h i < r. t h e r e e x i s t s b € X \ A. such t h a t 1
I b I E 9, t h e n A . i s i n c l u d e d i n some 1
times.
131
ArE
A : t h i s f o l l o w s by a p p l y i n g ( 3 ) r - i
r
0
P R O P O S I T I O N 4.2. A geometry Gr(X) i s r e g u l a r w i t h lArl
1 i f f Ar
=
=
[XI.
( I n t h i s case G ( X I i s e x a c t l y a m a t r o i d ) .
r P r o o f . I f A = ( X I , t h e n each A. E A. w i t h i < r i s i n c l u d e d i n A = X = u A r 1 1 r AEA s o t h a t G i s r e g u l a r w i t h IA 1 = 1. Conversely l e t G (X) be r e g u l a r w i t h r r r A = ( A I . I f X E X = u A, t h e n XE A. f o r some A. E A , , so t h a t X E A . c A AE A 1 1 1 1 r r r by r e g u l a r i t y . T h e r e f o r e X c Ar, i.e. X = A r
.
5. FIRST PROPERTIES OF .?'-GEOMETRIES PROPOSITION 5.1.
( a ) IA,1
L e t Gr
=
(S,S,X,A)
1 and t h e element A,EA,
=
be an 3-geometry. i s t h e minimum o f A .
( b ) I f Ah E Ah, A E A w i t h A c A and 0 s h < k-< r. t h e n t h e r e e x i s t s a k k h k k). c h a i n A h C Ah+l c...c A w i t h A E A ( s = h , h t l , k s s ( c ) Each A. E A . ( O < i s r ) i s i n c l u d e d i n a c h a i n A,C A C . . C A. w i t h
...,
1
A
S
E
AS (s=O,l,
1
1
...,i ) .
1
( d ) I f Gr i s r e g u l a r , each A.E A . ( O < i < r ) i s i n c l u d e d i n a c h a i n 1
A, c...c Ai
C...C
( e ) I f Aie where Ai
=
A, v { b }
=
1
w i t h A E A ( s = O ,...,r ) . r s s A i , A . € A . ( w i t h i , j = 0,1, A
J
...,r ) ,
J
and i f A . L A . , 1 J
then i C j ,
A . i f and o n l y i f i = j . J P r o o f . ( a ) L e t 1.) A = A . E A . . From ( 2 ) i t f o l l o w s t h a t i = 0. I f AAEA,, AEA 1 t h e n A,, C - A:. Then A, = A;; o t h e r w i s e i f bEA:\ A,, then from ( 3 ) i t f o l l o w s t h a t A
C A; w i t h AIEA1, contradicting (2). 1C A w i t h Ah+l~Ahtl. I f h t l = k, From (31, Ah v I b } = A ( b ) Let b E A k \ A h' htl - k t h e n Ahtl = Ak by (3). I f h t l < k , t h e n Ahtl C A and i t e r a t i o n o f t h e same a r g u k ment l e a d s t o a c h a i n A h C ... C Ak-l C "A, A,, w i t h A S e A ( h < s < k ) and A ; ( € A k .
S
A c t u a l l y k - 1 < r , so t h a t ( 3 ) i m p l i e s A;( = Ak, required. ( c ) Take h = 0 and k
=
and Ahc
r e g u l a r i t y . By ( c ) we have a c h a i n A, C...C
s=O,
Ar-lC
...,r ) .
Ar,
a c h a i n as
i i n (b).
( d ) If i = r, ( d ) f o l l o w s f r o m ( c ) . I f i c r , t h e n
Ai
... C A ~ - ~ kC iAs
C...C
s o t h a t we g e t a c h a i n
A.C
i
A
r
f o r some A
r
A. and b y ( b ) we have a c h a i n 1
A,C
...C
A.
1
C...C
Ar
(AS€ A
S'
E
A
r
by
P. V. Ceccherini and N . Venanzangeli
132
( e ) We have i c j by ( 2 ) . From Ai pose now A.
A ! w i t h Ai,
C
1 -
1
we g e t a c h a i n
A.
1
=
A,C
A . i t f o l l o w s o b v i o u s l y t h a t i = j. SupJ I f i = O , t h e n A, = A: by ( a ) . I f i f O , t h e n by ( c )
A;EAi.
...CAi-lCAi
C_ A;,
=
so t h a t c o n d i t i o n ( 3 ) i m p l i e s
v { b ] = A! where b E A . \ A . So A . C A! i m p l i e s A. = A ! . Ai-l 1 1 1-11 1 1 1
0
From 5.1 ( e l f o l l o w s COROLLARY 5.2. then AinA;
E A .
J
THEOREM 5.3.
L e t Gr be an 9-geometry.
I f Ai,
A; €Ai
w i t h Ai
# A;(O c i s r ) ,
with O s j c i - 1 . L e t Gr
=
(S,3',X,A)
be an
%geometry.
I f x i s i n c l u d e d i n some i n c l u d e d i n a unique A E A 1 1' A . ( j > O ) , t h e n x i s i n c l u d e d i n some Ai E Ai f o r e v e r y O < i c j . I n p a r t i c u l a r i f J G i s r e g u l a r , t h e n each x i s i n c l u d e d i n some A. E A . f o r e v e r y 0 < i c r . ( a ) Each X E X \ A,is
r
1
1
( b ) I f 0 < i < j < r , each A . E A . i s t h e u n i o n o f t h e elements o f A . which J J 1 are included i n A j' ( c ) I f Ai E A i ( O 6 i < r ) i s i n c l u d e d i n two d i s t i n c t element A ! A'.' E Aitl, ltl'
ltl
then A. = A ' n A:' = n A. 1 it1 it1 Ai 5 A €Aitl ( d ) The f o l l o w i n g c o n d i t i o n s a r e e q u i v a l e n t : ( d l ) f o r a l l 0s i < r, each A . E Ai i s i n c l u d e d i n two d i s t i n c t elements o f 1
Aitl; ( d ) f o r a l l 0 c i < r , each A . E A . i s i n c l u d e d i n two d i s t i n c t elements o f 2 1 1 ( d 1 f o r a l l 0 s i < r , each A. E A. i s t h e i n t e r s e c t i o n o f elements o f A * 3 1 1 r' (d f o r a l l O c i < j 6 r , each A. E A . i s t h e i n t e r s e c t i o n o f t h e elements 4 1 1 o f A. c o n t a i n i n g A i ' J P r o o f . ( a ) Suppose x E X \ A , . Since X = U A, we have X E A . f o r some A.EA AE A J J j' Then x E A , v {XI = A C A , and A i s t h e unique element o f A i n c l u d i n g x. I f 1 - j 1 1 x E A . and O < i < j , t h e r e i s a c h a i n A,CA C . . . C Aic c A. ( A S € A s , O t s < j ) , J 1 J w i t h x E A1 = A, v {XI, so t h a t x E A cA 1 i' ( b ) I t i s enough t o prove t h a t i f x E A . \ A,, t h e r e e x i s t s some A. E A . such J 1 1 t h a t xEAi CA This f o l l o w s from ( a ) .
...
j'
5 Aitl
= A . E A ., w i t h i s j s ( i t l l - 1 by C o r o l l a r y 5.2, so t h a t n J J A! n Uyt1 by P r o p o s i t i o n 5.1 ( e ) . i it1 ( d ) ( d l ) * ( d 2 ) . From ( d i t f o l l o w s t h a t each A.E A . ( O < i < r ) i s i n c l u d e d 1 1 1
( c ) Ai
j = i and A
=
On a Generalization of Injection Geometries
133
and Ar-l i s i n c l u d e d i n two d i s t i n c t elements o f A Ar-1 r' ( d 2 ) * ( d 1. From ( d we have t h a t A . C A ' n A " w i t h A,; A" d i s t i n c t e l e 2 1 r r r = ments o f Ar. I f x ' EA; \ A:; and x" EA; \ ,A; t h e n Ai 2 A;+1 n AYtl w i t h A! 1+ I = A. v t x ' l and A! = A. v t x " 1 , A ' 1 l+l 1 it 1 # AYtl. i n a chain A.C 1
. e C
L
1 2 1 2 ( d 3 ) . From ( d 1 we have A. c A. "Aitl w i t h Ai+l # Ai+l and f r o m ( a ) 1 1 - 1+1 L we g e t Ai = A : nAit,. I f i t 1 = r t h e n ( d ) i s proved. I f i t 1 < r t h e n f r o m ( d ) 1 +1 3 1 11 12 2 21 and f r o m ( a ) we g e t A1 = Ait2 nAi+2 and Ai+2 = A. nA:f2 so t h a t it1 1t 2 hk A. = /--\ Ait2, and so on. i l ~ h k, c 2 (dl)
=,
(d4) * ( d
3
1. Obviously.
(dl) * ( d 4 ) . I n d u c t i o n on j - i . If j - i = 1, then, by ( a ) , ( d 1 i m p l i e s ( d ) . 1 4 Suppose t h a t each Ai E Ai i s t h e i n t e r s e c t i o n o f t h e elements o f A including j-1 A.. By t h e p r e v i o u s argument each such A . i s t h e i n t e r s e c t i o n o f t h e elements 1 J-1 o f A. i n c l u d i n g A * a l l such A . a r e p r e c i s e l y t h e elements o f A . i n c l u d i n g A J - j-1' J J i (because i f AiC A. f o r some A . E A . , t h e n t h e r e e x i s t s Aj-, E Aj-l w i t h J J J A.C A . C J\., by P r o p o s i t i o n 5.1 ( b ) ) . 1 J-1 J I f A E A h and A E A we say t h a t A and A a r e j o i n a b l e i f t h e y a r e i n h k k' h k A; c l u d e d i n some A E A . I f A h and A k a r e j o i n a b l e , we d e f i n e Ah v A k = A n EA A2AhU A t h e n Ah v A = A E A f o r some c >, max [ h , k l . k k c c
P R O P O S I T I O N 5.4.
I f A,,€
Ah, Ak E Ak a r e j o i n a b l e w i t h Ah v A
A nA = A . E A . t h e n h+k>Ii+c. h k 1 1 Proof. I n d u c t i o n on k - i 2 0 . I f k = i , t h e n A =
A
h
v Ai
=
Ah;
k
= A . C_
i
A
h
and A
c
= Ac E Ac and
k =
A v A = h k
i t follows htk = c t i . E A Then w i t h Ai 5 Ak-lCAk. k-1 k-1 Ah v Ak = Ac. Then c ' t c . I f c ' c c t h e n t d A c , ; i f x E A k \ A c , , t h e n
ifk & i + l , l e t be A
Ac, = Ah v Ak-l x
c_
) v Ix) = A v Ix) = = A v Ak = Ah v (A v {XI) = (Ah v A c h k- 1 k- 1 C' I n c o n c l u s i o n c ' t l > c . By t h e i n d u c t i o n h y p o t h e s i s h t k - 1 2 i + c ' , so
A so ~ t-h a~t A
~
Acl+l' that h
t
k %i t c'
THEOREM 5.5.
t
1> i
t
L e t Gr(X)
c. =
0
(S,S,X,A)
be a geometry o f r a n k r 6 3 . Then Gr(X)
satisfies the following condition: ( * ) i f Ah€
and A
k
$,
AkC
Aky A h n A k = A . w i t h h
are j o i n a b l e ,
1
t
k s i t r and i f AhU A E 7, t h e n Ah k
P.V. Ceccherini and N . Venanzangeli
134
Proof. We can suppose w i t h o u t l o s s o f g e n e r a l i t y t h a t h s k . The theorem i s t r u e f o r r = 1.
If r
=
-
2, t h e n a c t u a l l y h t k
i s 2. We can ObViOUSlY
assume t h a t Ah and A
k
a r e n o t i n i n c l u s i o n . I n t h i s case, t h e p o s s i b l e values o f h, k and i a r e : i = O , h = k = l . L e t A1, A ' € A be such t h a t AIUA' E 7 w i t h A nA' = A,€ A,. Then A1 # A' 1 1 1 1 1 1' and i f x E A ' \ A i t i s easy t o prove t h a t A v ( X Ii s an element o f A i n c l u d i n g 1 1 1 2 A1 and A;.
If r
= 3 then a c t u a l l y h t k -
i -<3. kk can obviously
assume t h a t Ah and A
k a r e n o t i n i n c l u s i o n . I n t h i s case, t h e p o s s i b l e values o f h, k and i, which a r e d i s t i n c t from t h e choice
i=O,
h = k = l a l r e a d y considered, a r e
Ii=O,
h = l , k=21 and
li=1, h=k=2) ,
we have A E A1, A2€A2, A1 n A2 = A, A U A € 9 . It 1 1 2 i s easy t o check t h a t t h e element A 3 € A 3 d e f i n e d by A v {XIwhere x E A \ A o , 2 1 c o n t a i n s A and A 1 2' When i = l , h=k=2, we have A A;EA2, A nA' = A € A and A 2 U A ' € 9 , Then i t 2' 2 2 1 1 2 i s easy t o prove t h a t t h e element A E A d e f i n e d by A3 = A v { X Iwhere 3 3' 2 xEA' \ A = A' \ A c o n t a i n s A and A' 2 2 2 1 ' 2 2' When i = O , h = l and k.2,
REMARK 5.6. rem 5.8).
When r ,4,
c o n d i t i o n ( * ) i s n o t n e c e s s a r i l y s a t i s f i e d ( c f . Theo-
I t can be proved t h a t t h e f i r s t values o f i, h and k , f o r which t h e
p r e v i o u s argument f a i l s , a r e I i = O , h=k=2). There e x i s t s an 9-geometry G ( X ) = ( S , 9 , X , A ) , namely a p e r m u t a t i o n 4 geometry o f rank 4, f o r which c o n d i t i o n ( * ) i s n o t s a t i s f i e d . 2 P r o o f . L e t be N = {1,2, 61. An element ( h , k ) E N w i l l b e w r i t t e n hk. L e t LEMMA 5.7.
...,
X
U l , 22, 33, 44, 45, 35, 26, 15), A,,
=
A.
I
=
I t h e set o f singletons o f X I
=
=
0, A,
tIxy1 : x y E X 1 ,
A = I t h e s e t of a l l t h e i n j e c t i v e p a i r s o f X I , 2 A:')=
t l l , 22, 33, 451,
A):'
= t l l , 22, 44, 351,
A:3)=
[33, 44, 11, 261,
A:4)
= I33, 44, 22, 151,
A:51=
Ill, 45, 261,
Ai6)
=
= IAJ,
(11, 35, 26),
A:7)
10 A = U A(i) 3 i=l 3
with:
= I33, 45, 261,
135
On a Generalization of Injection Geometries
) !A
= (33, 26,
151,
A )':
A"):
= (44, 35, 261,
= t44, 26,
151,
3
A = ." A(i) 4 1=1 4
with:
A:)'
ill, 44, 35, 26),
A:')=
= (11,
33, 45, 261,
A t 3 ) = f33, 44, 26, 15). L e t be
4 9
I1 c - N2 : I i s i n j e c t i v e 1 and A =
=
A
i'
i s a p e r m u t a t i o n geometry G ( X ) o f r a n k 4 4
I t i s easy t o check t h a t (S,y,X,A)
on
i =uo
x.
L e t us c o n s i d e r t h e elements o f A2 '. A 2 = ill, 221 and A; = I33, 441. Actual= 0 = A,, 2 + 2 - 0 6 4 , A p U A ; € 7 , b u t A and A ' a r e n o t j o i n a b l e , i . e . 2 2 G ( X I does n o t s a t i s f y c o n d i t i o n [ * I . 4 l y A2nA;
F o r each r >, 4 t h e r e e x i s t s an 9-geometry (resp. a p e r m u t a t i o n
THEOREM 5.8.
geometry) Gr(X) o f r a n k r, such t h a t c o n d i t i o n ( * ) i s n o t s a t i s f i e d . P r o o f . I n d u c t i o n on r 3 4 . For r = 4, t h e theorem reduces t o Lemma 5.7. Suppose t h a t t h e r e e x i s t s an 9-geometry ( r e s p . a p e r m u t a t i o n geometry) G;-l =
(S',S',X',A')
o f r a n k r - 1 2 4, f o r which c o n d i t i o n ( * ) i s n o t s a t i s f i e d ; i n o t h e r
A ' E A ' such t h a t : A ' n A ' = A!, h t k - i s r - 1, k k h k i A' UA' E 7' and A' and A ' a r e n o t j o i n a b l e . h k h k be an F g e o m e t r y ( r e s p . a p e r m u t a t i o n geometry) of L e t GI' = (S",7",X",d") 1 r a n k 1 w i t h A: = (A:). Then we c l a i m t h a t Gr = GAq1 b G; = (A,9,X,A) ( r e s p . words, t h e r e e x i s t
-
b G;) i s an 9-geometry ( r e s p . a p e r m u t a t i o n geometry) o f rank r such Gr = G ' r-1 t h a t c o n d i t i o n ( * ) i s n o t s a t i s f i e d . Indeed
Ah = A ' U A t E A h h'
A = A' U A: E A a r e such t h a t : k k k
A h n A k = (A; n A ; ( ) u A :
= A;UA:
€Ai,
5
k ( A ' U A " ) E A t h e n A,',uA'
h
t
k - i s r
-
I
and A a r e n o t j o i n a b l e , because i f h k C A ' E A ' , which i s i m p o s s i b l e . k -
AhUAk = (A;uAt)uA:€9(resp.E3), AhUAk
but A
0
REMARK 5.9. o f [31 f o r a l l r
=
From Theorem 5.8. 5
we g e t a
counterexample f o r P r o p o s i t i o n 2.3.
4. The p r o o f o f P r o p o s i t i o n 2.3.
i s i n c o r r e c t because t h e f l a t s
" A " and " B ' " a r e n o t n e c e s s a r i l y such t h a t A u B ' i s an i n j e c t i v e s e t .
We n o t e t h a t P r o p o s i t i o n 2.3. o f [ 3 ] i s t r u e f o r r 4 3 , by Theorem 5.6.
136
P. V. Ceccherini and N. Venanzangeli Other p r o p e r t i e s o f 3'-geometries,
s t a t e d i n [ 9 ] , w i l l be developed i n ano-
t h e r paper. ACKNOWLEDGEMENT. This r e s e a r c h was p a r t i a l l y supported b y GNSAGA o f CNR and by M P I . BIBLIOGRAPHY
[ l ]P.J. Cameron and M. Deza, On p e r m u t a t i o n geometries, J. London Math. SOC. ( 2 ) 20 (1979) 373-386. [ 2 ] P.V. Ceccherini and G. Ghera, A Vagner-Preston t y p e theorem f o r semigroups w i t h r i g h t i d e n t i t i e s , Quad. Sem. Geom. Comb. 1 s t . Mat. Appl. Univ. L ' A q u i l a 4, (1984). [ 3 ] M. Deza and P. F r a n k l , I n j e c t i o n geometries, J . Comb. Theory ( B ) 37 (1984) 31-40.
[ 4 1 M. Deza and P. F r a n k l , On squashed designs, ( t o appear).
[51 G. Ghera, Algebra e geometria d e l l e corrispondenze p a r z i a l i d i un insierne i n
se,
Tesi, Roma, 1 s t . Mat. " G . Castelnuovo",
l u g l i o 1983.
[ 6 1 M. Laurent, Geometries laminges: aspects a l g e b r i q u e s e t a l g o r i t h m i q u e s , These Univ. P a r i s V I I ( t o appear). I 7 1 6. Segre, I s t i t u z i o n i d i geometria s u p e r i o r e (a.a. 1963-641, Appunti d i P . V . C e c c h e r i n i Vol. 111: Complessi, r e t i , d i s e g n i , Roma, 1 s t . Mat. "G. Castelnuovo", 1965.
[81 M.C.
S c h i l l i n g , GBometries laminees e t bouquets de m a t r o i d s , P a r i s V I ( t o appear).
These,
Univ.
[ 9 ] N. Venanzangeli, Geometrie d i permutazioni, geometrie i n i e t t i v e e l o r o gener a l i z z a z i o n e , Tesi, Roma, 1 s t . Mat. "G. Castelnuovo", l u g l i o 1984.
Annals of Discrete Mathematics 30 (1986) 137-142 0 Elsevier Science Publishers B.V. (North-Holland)
137
A NEW CHARACTERIZATION OF HYPERCUBES P i e r V i t t o r i o C e c c h e r i n i and Anna Sappa O i p a r t i m e n t o d i Matematica "G. Castelnuovo" U n i v e r s i t i d i Roma "La Sapienza" C i t t i U n i v e r s i t a r i a , 00100 Roma, I t a l y
By u s i n g a theorem o f S. Foldes [ Z ] , we p r o v e t h a t a f i n i t e graph G i s a hypercube i f f i t i s connected, b i p a r t i t e , and t h e number o f geodesics between any two v e r t i c e s o f t h e graph GxK2 depends o n l y on t h e i r d i s t a n c e . Graphs o f t h e t y p e GxK, are also considered.
1. INTRODUCTION I n what f o l l o w s ,
a l l graphs w i l l be f i n i t e w i t h o u t l o o p s o r m u l t i p l e edges.
I f G = (V,E)
i s a graph and i f two v e r t i c e s x , y ~ V a r e j o i n e d by a path, t h e dis-
tance d(x,y) -
i s d e f i n e d as t h e number o f edges i n a g e o d e s i c ( s h o r t e s t p a t h ) be-
tween x and y . We denote by u ( x , y )
= v G ( x , y ) t h e number o f d i s t i n c t geodesics o f
G between x and y . I f x=y, we p u t d(x,y)=O and y ( x , y ) = l . We say t h a t a connected graph G i s a graph w i t h a g e o d e t i c f u n c t i o n i f t h e r e e x i s t s a map F:[O,l,..,
diam G I - N
such t h a t u ( x , y )
= F(d(x,y));in
t h i s case we
s h a l l say a l s o t h a t G i s F-geodetic. A s t u d y o f F - g e o d e t i c graphs i s developed i n
[8] i n a more general c o n t e x t . For each p o s i t i v e i n t e g e r n, t h e n-cube Q
i s d e f i n e d ( u n i q u e l y up t o i s o n morphism) as t h e graph whose v e r t i c e s a r e t h e subsets o f a s e t S w i t h n elements and t w o v e r t i c e s a r e j o i n e d by an edge i f and o n l y i f t h e y d i f f e r f o r e x a c t l y one element. I n o t h e r words t h e v e r t e x s e t o f Qn i s t h e s e t o f o r d e r e d n - p l e s o f 0 and 1; two v e r t i c e s a r e j o i n e d b y an edge i f and o n l y i f t h e y d i f f e r f o r e x a c t l y one d i g i t . A hypercube i s a graph isomorphic t o some
9,.
Several c h a r a c t e r i z a t i o n s o f hypercubes were g i v e n i n [ 1 1 - [ 5 1 ;
i n [51
p r e v i o u s c h a r a c t e r i z a t i o n s a r e a l s o summarized. We m e n t i o n h e r e t h e f o l l o w i n g c h a r a c t e r i z a t i o n g i v e n by S. Foldes. THEOREM 1.1 (S. Foldes [ 2 1 ) . A graph G i s a hypercube i f and o n l y i f
the
P.V. Ceccherini and A . Sappa
138
( 1 ) G i s connected and b i p a r t i t e , ( 2 ) G i s F-geodetic w i t h F ( k ) = k ! . Theorem 1.1 has been extended i n [ 6 ] t o a q-analogous r e s u l t . A q-hypercube Qq i s d e f i n e d as t h e graph whose v e r t i c e s a r e t h e subspaces o f a g r a p h i c space S n o f o r d e r q and dimension n-1, and two v e r t i c e s a r e j o i n e d b y an edge i f f one o f
them i s covered by t h e o t h e r i n t h e l a t t i c e o f a l l subspaces. For q = l , we have 1 Qn 9., I n t h i s paper we g i v e a c h a r a c t e r i z a t i o n o f hypercubes which i s based on theorem 1.1
and on t h e concept o f t h e t r a n s l a t i o n graph TG' o f a graph G '
(V',E').
The graph TG'
where K
i s t h e complete graph on two v e r t i c e s ( 1 and 21, ( c f . a l s o [ 7 1 ) .
2
i s t h e p e r m u t a t i o n graph ( G ' , i d V , ) ,
copy o f
X'E
V';
be a copy o f G ' = ( V ' , E ' )
more g e n e r a l l y ,
i . e . A" = { ~ " E V " : x ' E A ' I .
E
=
E ' uE"LI{(x' ,XI')€ V'XV":
= G'xK
2'
A'CV',
and l e t x " E V " denote t h e
t h e n A"cV" - w i l l denote t h e copy o f A ' ,
Then T G ' = (V,E) where V = V'uV" and X'
EV'l
The d e s c r i p t i o n o f TG' = (V,E)
V = V'xt1,ZI = t(x',h)
-
if
TG'
as t h e p e r m u t a t i o n graph ( G ' , i d V , 1 i s t h e
The d e s c r i p t i o n o f TG' = (V,E) f o l l o w i n g . L e t G" = (V",E")
i.e.
=
. as t h e graph G'xK
2
i s the following:
: x ' E V ' , h=1,2},
E = t((x',h),(y',k))EVxV
: [ ( x ' = y ' and ( h , k ) E E ( K 2 ) ) o r ( ( x ' , y ' ) E E '
and h=k) 11. We s h a l l prove t h e f o l l o w i n g THEOREM 1 . 2 A graph G ' i s a hypercube i f and o n l y i f
( 1 ) G ' i s connected and b i p a r t i t e , (2) G' x K
2
i s F-geodetic, for some F.
2. PROOF OF THEOREM 1.2. We s h a l l s t a r t w i t h t h e f o l l o w i n g lemma. LEMMA 2.1.
L e t G ' be a connected graph and l e t G = G ' x K 2 = TG' be t h e t r a n s -
l a t i o n graph o f G ' .
The f o l l o w i n g c o n d i t i o n s a r e e q u i v a l e n t
( a ) G' i s F'-geodetic w i t h F ' ( k )
k!,
(b) G
i s F-geodetic w i t h F ( k ) = k ! ,
(c) G
i s F - g e o d e t i c for some F.
A New Characterization of Hypercubes Proof. O b v i o u s l y ( b ) - ( a ) , ( c ) . p e r m u t a t i o n graph ( G ' , i d V , ) (a)-(bl:
We use t h e d e s c r i p t i o n o f G = G'xK
o f G ' = (V',E'!
=
dG(x,y!!.
I f x = x ' E V ' and y = y " ~V " ,
2
= (V,E)
as t h e
( 5 1).
l e t x,y€ V. It i s enough t o suppose d ( x , y b 2 .
=uG,'x,y) = d G , ( x , y ) !
139
I f x,y€V',
then
S i m i l a r l y i f x , y ~ V " , then yG(x,y) l e t x " E V " and
Y'E
=
(x,y) G dG(x,y)!. Y
=
V ' be t h e c o p i e s o f x ' and y "
r e s p e c t i v e l y . We have d ( x , y ) = d (x',y'')= d , ( x ' , y ' ) t d ( y ' , y " ) = d ( x ' , y ' ) t l . G G G G G Moreover each geodesic o f G between x = x ' and y=y" i s o f t h e f o r m g ( x , y ) =
...,z',z" ,...,y " )
i s a geodesic o f G '
between x ' and y ' and i t s copy g " ( x " , y " )
=
i s a geodesic o f G"
between x " and y".
z"=x", and t h e case z ' = y ' , i . e . z"=y", a r e
(x',
where g ' ( x ' , y ' )
...,z ' , ...,y ' ) ( x " , ...,z", ...,y" )
= (x',
=
(The case z'=x', i . e .
n o t e x c l u d e d ) . I n o t h e r words, each geodesic g ( x , y ) i s o b t a i n e d e x a c t l y once f r o m a geodesic g ' ( x ' , y ' )
by choosing i n g ' ( x ' , y ' )
(z',z") between
bridge
Y~(x,Y) = Y
G
V ' and V " ) .
(c)-(b): X'E
The number o f such z ' i s d G , ( x t , y ' ) t l . So
, ( x ' , y ' ) .(dG , ( x ' , y ' ) + l )
= (dG,(x',y')+l)!
a c t u a l l y F(0) = F ( 1 )
=
a vertex z ' (as t h e basis o f t h e
= d G , ( x ' ,y '
1. (dG,(X',Y')+l)
=
dG(x,Y)!. =
1. When x , y c V w i t h dG(x,y)
= k>2,
there exist
V ' and y " E V " such t h a t d G ( x ' , y " ) = k . I f Y ' E V ' i s t h e copy o f y", we
have
d , ( x ' , y ' ) = d ( x ' , y O = k - 1 2 1 . With t h e same argument used f o r p r o v i n g G G ( a ) * ( b ) we o b t a i n f r o m ( c ) :
By u s i n g Theorem 1.1 we can now g i v e a new p r o o f o f t h e f o l l o w i n g w e l l known
result
.
LEMMA 2.2.
Qntl
=
Q,
x Kp.
-P-r o o f . We can use t h e d e s c r i p t i o n o f Qn x K 2 ( Q n , i d v , ) o f Q, = ( V ' , E ' ) ( 5 1 ) . The graph Q,
=
TQ
n
as t h e p e r m u t a t i o n graph
i s connected and b i p a r t i t e (theorem 1.11,
so t h a t TQ,
i s also
connected and b i p a r t i t e : i f A ' u B ' i s a p a r t i t i o n o f t h e v e r t e x s e t V ' o f Q (A'u 6") u ( A "
u B ' ) i s a p a r t i t i o n o f the vertex set V
and 6" a r e t h e c o p i e s o f A ' and 6 ' r e s p e c t i v e l y .
= V'U,V" o f TQ
n'
then n where A"
P.V. Ceccherini and A. Sbppa
140
By theorem 1.1 t h e graph Q
i s F ' - g e o d e t i c w i t h F ' ( k ) = k ! , so t h a t (Lemma n 2.1) Q xK i s F-geodetic w i t h F ( k ) = k ! . The graph TQ i s consequently a hypern 2 n cube by theorem 1.1, and t h e lemma i s proved s i n c e diam (TQ,) = diamg t 1 = n t l . n
I f Tn denotes t h e n - t h power o f t h e o p e r a t o r T ( t r a n s l a t i o n n of a graph), we have Q = T K2. ntl COROLLARY 2.3.
We g i v e now t h e L e t G ' a hypercube. By theorem 1.1,
Proof o f theorem 1.2.
condition ( 1 ) i s
s a t i s f i e d . Moreover G = TG' = G'xK
i s a hypercube by lemma 2.2, so t h a t ( b y the: 2 rem 1.1 again) G'xK2 i s F-geodetic w i t h F ( k ) = k ! , ( 0 k ~ G d i a m G), and c o n d i t i o n ( 2 ' ) i s satisfied. Conversely i f G ' i s a graph s a t i s f y i n g ( 1 ) and ( 2 ' 1 , then, by lemma 2.1, s a t i s f i e s c o n d i t i o n ( 1 ) and ( 2 ) o f theorem 1.1,
G'
so t h a t G ' i s a hypercube.
3. A GENERALIZATION OF LEMMA 2.1.
If G'
= (V',E')
( m 2 2 ) , t h e graph G = G'xK, V = V'x11,2
i s t h e complete graph on m v e r t i c e s m i s defined by
i s any graph and K
,...,m l
= (V,E)
= t(x',h):x'EV',
E = [((x',h),(y',k)EVxV:
h = 1,2,..
.,ml,
[ ( x ' = y ' and ( h , k ) E E ( K
in
1) o r ( ( x ' , y ' ) E E '
and h=k)]l.
An o t h e r d e s c r i p t i o n o f t h e same graph G = G'xK = ( V , E ) i s t h e f o l l o w i n g . L e t i i i im i G = (V ,E 1 be a copy o f G ' = ( V ' , E ' ) and l e t x E V denote t h e copy o f x ' E V ' , 1 ,m, where we assume G1 = G I , x = x ' . Then i=1,2,.
..
v
=
m u i=1
i
v ,E
m =
.
. u E' 1 =1
i ' u i ( x ,~J).v
i xvj :
X'EVI,
i,j=1,z
,...,m ; i + j l .
Lemma 2.1 i s i n c l u d e d f o r m=2 i n t h e f o l l o w i n g PROPOSITION 3.1.
Let G' =
(V',E'l
be a connected graph and l e t be G
=
G'xK
( m 2 2 ) . The f o l l o w i n g c o n d i t i o n s a r e e q u i v a l e n t ( a ) G' i s F'-geodetic w i t h F ' ( k ) = k ! (b) G
i s F-geodetic w i t h F ( k ) = k !
(c) G
i s F-geodetic f o r some F.
Proof. We can use t h e same argument as f o r Lemma 2.1. Indeed, i f x,yC V w i t h i i i x=x E V and y = y j ~ V (j i # j )t,h e n t h e o n l y e s s e n t i a l p o i n t i s t h a t G x I i , j ) = i = TG " T G ' .
m
A New Characterization of Hypercubes
COROLLARY 3.2.
141
A graph G ' i s a hypercube i f and o n l y i f
( 1 ) G ' i s connected and b i p a r t i t e ,
( 2 " ) G'xK
m
REMARK 3.3.
i s F-geodetic f o r some F and some m. P r o p o s i t i o n 3.1 e a s i l y y i e l d s a f a m i l y o f connected graphs which
a r e F-geodetic w i t h F ( k ) = k ! and which a r e n o t hypercubes (because t h e y a r e n o t bipartite). ACKNOWLEDGEMENTS.
T h i s r e s e a r c h was p a r t i a l l y supported by GNSAGA o f CNk
and by M P I . BIBLIOGRAPHY [ l ] L.R. Alvarez, U n d i r e c t e d graphs r e a l i z a b l e as graphs o f modular l a t t i c e s , Can. J . Math. 17 (1965) 923-932. [ 2 j S . Foldes, A c h a r a c t e r i z a t i o n o f hypercubes, D i s c r e t e Math. 17 (1977) 155-159. 131 J.M. Laborde, C h a r a c t e r i z a t i o n l o c a l e du graphe du n-cube, t o i r e s , Grenoble (1978).
Journee Combina-
[ 4 1 J.D. McFall, Hypercubes and t h e i r c h a r a c t e r i z a t i o n s , U n i v e r s i t y o f Waterloo Dept. o f Combinatorics and O p t i m i z a t i o n Research Report CORR 78-26 ( 1 9 7 8 ) . [ 5 1 J.D. 241.
McFall,
C h a r a c t e r i z i n g hypercubes, Annals D i s c r e t e Math. 9 (1980) 237-
[ 6 1 P . V . C e c c h e r i n i , A q-analogous o f t h e c h a r a c t e r i z a t i o n o f hypercubes as graphs, J . Geometry 22 (1984) 57-74.
[ 7 1 A. Sappa, C a r a t t e r i z z a z i o n e d i g r a f i t r a m i t e geodetiche, Tesi, Univ. d i Roma, D i p a r t i m e n t o d i Matematica (1984). [81 P . V . C e c c h e r i n i and A. Sappa, F-binomial c o e f f i c i e n t s and r e l a t e d combinat o r i a l t o p i c s : p e r f e c t m a t r o i d designs, p a r t i a l l y o r d e r e d s e t s o f f u l l b i n o m i a l t y p e and F-graphs, Annals D i s c r e t e Math. ( t h i s volume).
This Page Intentionally Left Blank
Annals of Discrete Mathematics 30 (1986) 143-1 58 0 Elsevier Science Publishers B.V. (North-Holland)
143
F-BINOMIAL COEFFICIENTS AND RELATED COMBINATORIAL TOPICS: PERFECT MATROID DESIGNS, POSETS OF FULL BINOMIAL TYPE AND F-GEODETIC GRAPHS P i e r V i t t o r i o C e c c h e r i n i and Anna Sappa D i p a r t i m e n t o d i Matematica "G. Castelnuovo" Uni v e r s i t l d i Roma "La Sapi enza" C i t t a U n i v e r s i t a r i a , 00100 Roma, I t a l y
We i n t r o d u c e F-binomial c o e f f i c i e n t s as a n a t u r a l g e n e r a l i z a t i o n o f b i n o m i a l and q - b i n o m i a l c o e f f i c i e n t s . A g e n e r a l c a l c u l u s w i t h these numbers l e a d s t o u n i f y t h e a r i t h m e t i c a l p r o p e r t i e s o f ( f i n i t e ) p r o j e c t i v e and a f f i n e spaces and o f S t e i n e r systems S(t,k,v) i n t o those o f p e r f e c t matroid designs ( 5 2 ) . P a r t i a l l y o r d e r e d s e t o f f u l l b i n o m i a l t y p e ( 5 3 ) and graphs such t h a t t h e number o f geodesics between any two v e r t i c e s depends o n l y on t h e i r d i s t a n c e ( 5 4 ) a r e a l s o s t u d i e d by means o f t h i s f o r m a l c a l c u l u s .
1. F-BINOMIAL COEFFICIENTS Let N (resp.
Q ) denote t h e s e t o f non n e g a t i v e i n t e g e r s ( r e s p . r a t i o n a l
numbers) and l e t be N* = N \ ( O I , L e t F: N
+
Q*
=
Q\rO).
Q* be any f u n c t i o n such t h a t F ( 0 )
any f u n c t i o n such t h a t f ( 0 ) = 0, f ( 1 )
=
1 and f ( N * )
=
F ( 1 ) = 1 and l e t f : N
+
Q be
5 Q*.
F and f w i l l be f u n c t i o n s s a t i s f y i n g t h e above c o n d i t i o n s .
I n what f o l l o w s ,
Given an F, t h e a s s o c i a t e d f w i l l be d e f i n e d by: f(0)
0, f ( n )
F(n)/F(n-l) for n 1 1 .
=
Given an f, t h e a s s o c i a t e d F w i l l be d e f i n e d by: F ( 0 ) = 1, F ( n ) = f ( n ) F ( n - 1 )
i . e . F(n) = f ( n ) f ( n - l ) . . , f ( l )
Two such f u n c t i o n s F and f a r e t h e n m u t u a l l y associated,
f o r n 31.
and sometimes below t h e y
w i l l be used i n t e r c h a n g e a b l y . DEFINITION 1.1.
Given a p a i r ( F , f ) o f m u t u a l l y a s s o c i a t e d f u n c t i o n s and g i v e n
any i n t e g e r s k,n w i t h
OC
n
k < n , we s h a l l d e f i n e t h e F-binomial c o e f f i c i e n t ( o r
b i n o m i a l c o e f f i c i e n t ) I 1 as t h e r a t i o n a l number k F
f-
144
P. V. Ceccherini and A. Sappa
These numbers t u r n o u t t o be p o s i t i v e i n t e g e r s i n t h e f o l l o w i n g examples ( i n which f and F a l s o t a k e i n t e g e r v a l u e s ) .
EXAMPLE 1.2.
Binomial c o e f f i c i e n t s . Consider t h e p a i r o f m u t u a l l y a s s o c i -
ated functions
fl(t)
=
t
F ( t ) = t! 1
and
for a l l tEN.
Then n
in)= k F1
= Ik} i s t h e usual b i n o m i a l c o e f f i c i e n t
k fl
(O
EXAMPLE 1.3. Gaussian numbers. Given an i n t e g e r q > 1 , c o n s i d e r t h e p a i r o f m u t u a l l y associated f u n c t i o n s
f (t) = [ t l 9 9 where [ ]
9
[Ol,!
F ( t ) = [t],! 9
and [ ] ! a r e d e f i n e d by q
9
[OI
and
=
[ll
0,
=
=
9
[ll ! q
[tlq
1,
= q
t-1
t
... + q t l ,
[ t l q l= [ t l [ t - 1 1
= 1,
q
q
... [ llq,
t 22.
Then
n - n I k I F - ikIf 9 q
n
[,Iq i s
the q-binomial coefficient
EXAMPLE 1.4. Constant c o e f f i c i e n t s .
( g a u s s i a n number, c f . 141).
Given an i n t e g e r a z 1, c o n s i d e r t h e
p a i r o f mutually associated functions f(0) = 0,
f(1)
=
1,
f ( t ) = a;
F ( 0 ) = F ( 1 ) = 1,
F ( t ) = at - ’
(tz2).
Then n n I 1 = i l =1, n F OF
and
n
IkjF =
a
for
Usual b i n o m i a l i d e n t i t i e s and q-binomial
O < k
are p a r t i c u -
I45
F-Binomial Coefficients and Related Combinatorial Topics l a r cases o f F-binomial i d e n t i t i e s ( o b t a i n e d f o r F
F
=
1 g i v e now some o f them, w r i t t e n a s f - b i n o m i a l i d e n t i t i e s .
and f o r F
=
F r e s p . ) . We q
P R O P O S I T I O N 1.5. The f o l l o w i n g f - b i n o m i a l i d e n t i t i e s h o l d :
n ‘k’f
- f(n) - fo
n
-
Ikff
-
n-1
I k
{
If +
-
n-1 k If
f(n)
fo
f(n)-f(n-k) f(k)
n-1 ‘k-l’f
- f(n-k+l) n f(k) ‘k-l’f
(O< k tn),
n-1 (k-l’f
These f o r m u l a s suggest t h e f o l l o w i n g DEFINITION 1.6. Given a f u n c t i o n f and any i n t e g e r s k,n w i t h 0 < k
PROPOSITIONS 1.7. L e t
n,k
be as Def. 1.6. The f o l l o w i n g c o n d i t i o n s a r e
equivalent: (a)
i s independent o f n;
n,k
(b) f = f
dfn,k
(c)
9
f o r some q E Q * (where f
= qk
f o r some
f (n)-f (k) 9 9 f q(n-k) bf
n,l
f(n) =
=
i s f o r m a l l y d e f i n e d as i n Ex. 1 . 3 ) .
q E Q*. f
P r o o f . O b v i o u s l y ( c ) = + ( a ) . We have ( b ) -
q
=
9
n-1
+ . . . +q
..+q+l
qn-k-1,.
9
( c ) because
=
gf
n,k
=
A
n,k
k (b).
= qk. We prove now t h a t ( a )
L e t us p u t
q f o r a l l n, Then f ( 1 ) = 1 and f o r a l l i n t e g e r s n 3 2 we g e t Af
n,l
f(n-l)+f(l),
so t h a t t h e e q u a l i t y f ( n )
=
q
n-1
+
...
+ q+l f o l l o w s by
induction.
2 . PERFECT M A T R O I O DESIGNS A c o m b i n a t o r i a l geometry ( o r s i m p l e m a t r o i d ) M on a f i n i t e s e t S i s a m a t r o i d
P.V. Ceccherini and A. Sappa
146
0, S andevery s i n g l e t o n o f S a r e f l a t s o f M ( c f . [ 2 1 , [911. A p e r f e c t m a t r o i d d e s i g n (PMD) i s a c o m b i n a t o r i a l geometry M such t h a t e v e r y k - f l a t ( f l a t of rank k ) has t h e same number f ( k ) o f p o i n t s , k = O,l, ...,r k M
on S such t h a t
[lo],
(cf. f(0)
[ 1 2 ] , [ 1 4 1 ) . We s h a l l say t h a t f i s t h e s i z e - f u n c t i o n o f M. Obviously
n
0 and f ( 1 ) = 1, so t h a t f - b i n o m i a l c o e f f i c i e n t s t k l f can be
=
considered
(Osk(n4r-k MI. X PMDs i n c l u d e boolean s e t s 2 , p r o j e c t i v e spaces, a f f i n e spaces, t - ( v , k , l )
designs ( c f . [ 1 4 ] ) . PROPOSITION 2.1.
L e t M be a PMD on a f i n i t e s e t S w i t h s i z e - f u n c t i o n f .
I n t h i s case ( a ) M i s t h e m a t r o i d o f a l l subsets o f S i f and o n l y i f f = f 1' n n f f ( n ) = n, 1 ~ = 1( k ) ~ and = 1.
( b ) M i s t h e m a t r o i d o f f l a t s o f a p r o j e c t i v e space o f o r d e r q i f and o n l y n n-1 n i f f = f ( w i t h q a 2 ) . I n t h i s case f ( n ) = q t ... t q t l , 1 ~ = 1[ 1 ~ and 9
f ",k
k q
(Conversely, each o f t h e s e e q u a l i t i e s i m p l i e s f = f 1. 9 n-1. ( c ) IfM i s thematroid o f f l a t s o f an a f f i n e space o f o r d e r q, t h e n f ( n ) = q , f k 2k-n n t h e converse i s t r u e when q a 4. I n t h i s case { k ] f = qk(n-kl and = q - q . n-1 1. (Conversely, each o f these e q u a l i t i e s i m p l i e s f ( n ) = q
q
=
*
P r o o f . ( a ) i s obvious. For ( b ) ( r e s p . ( c ) ) , we have t o prove o n l y t h e " i f " p a r t . A s i m p l e c o u n t i n g argument shows t h a t e v e r y 3 - f l a t i s a p r o j e c t i v e ( r e s p . an a f f i n e ) p l a n e o f o r d e r q, so t h a t t h e r e s u l t f o l l o w s f r o m a w e l l known charact e r i z a t i o n o f p r o j e c t i v e ( r e s p . a f f i n e ) spaces by means o f planes, c f . [ Z ] ( r e s p .
[ll).
0
With an argument which i s s t a n d a r d f o r f i n i t e p r o j e c t i v e spaces ( c f . [14] one can prove t h e f o l l o w i n g PROPOSITION 2.2.
L e t M be a PMD w i t h s i z e - f u n c t i o n f.
( a ) The number o f k - f l a t s i n c l u d e d i n a r - f l a t ( w i t h O < k 6 r ) i s g i v e n by
- 'r, 1 " ' ' r , k - l A k, 1 * k, k-1
'
...f ( r - k + l )
f(r)
.
f(k). .f(l)
--
A ~ , ~ . . . A ~ , ~ - ~
'k, 1
"
'Ak,k-l
'k'f'
( b ) When a k - f l a t i s i n c l u d e d i n a r - f l a t , t h e number o f j - f l a t s between them
(01:k < j c r ) i s g i v e n by
147
F-Binomial Coefficients and Related Cornbinatorial Topics
I n p a r t i c u l a r B(O,j,r) B(k,ktl,r)
= cr(j,r)
and
"" f ( r - k ) A
=
k+l, k
( c ) When a k - f l a t A i s i n c l u d e d i n a r - f l a t 6, t h e number o f maximal c h a i n s
s g i v e n by
o f f l a t s between them ;(k,r)
...B ( r - 2 , r - l , r )
r ) B(ktl,kt2,r)
B(k,ktl
=
=
Ar,k.'.Ar,r-2 Ak
F(r-k)
t l ,k ' * ' A r -,lr - 2
where F i s a s s o c i a t e d t o f . L e t M be a PMD on a f i n i t e s e t S w i t h s i z e - f u n c t i o n f (and
PROPOSITIONS 2.3.
a s s o c i a t e d f u n c t i o n F ) and l e t a ( k , r ) , t i o n 2.2.
B(k,j,r),
;(k,r)
be d e f i n e d as i n p r o p o s-i
The f o l l o w i n g c o n d i t i o n s a r e e q u i v a l e n t :
( 1 ) M i s t h e PMD o f a g r a p h i c space S o f o r d e r q ( i . e . a p r o j e c t i v e space o f o r d e r q ( p o s s i b l y a " l i n e " ) , when 9 2 2 , o r t h e boolean s e t PS, when q
r-k =(j-k~
(lb) B(k,j,r)
( l b ' ) B(k,k+l,r) ( l c ) ;(k,r)
=
Moreover, i f c o n d i t i o n ( 1 (2) f
=
f
q'
for all
= f r-k)
F(r-k)
a(k,r)
D < k.S r
for all
( l a ) a ( k , r ) = {;If
1);
c r k M;
0 6 k < ;i < r s r k M;
for all
for a l l
=
O s k i r s r k M;
O < k < r < r k M.
i s s a t i s f i e d , then r k q'
= [ ]
l3(k,j,r)
=
[;][I,,
;(k,r)
= [r-kl!
P r o o f . I t i s w e l l known ( c f . [ 3 ] , [ 1 6 ] ) t h a t ( 1 ) i m p l i e s ( l a ) - ( l c ) and ( 2 ) . (la)-(l).
By Prop. 2.2,
we g e t
A r , l * { 2r1 f r a ( 2 , r ) = A- 121f
231
s
P.V. Ceccherini and A. Sappa
148
(Ib')
=,
( 1 ) . By Prop. 2.2,
we g e t R ( k , k t l , r )
=
'r k 'ktl
4
r,k
=
'k+l,k'
.
f o r k = l we o b t a i n
a(k,r)
A
= A
r,l
= R(O,k,rl
= f(r-k)
and ( 1 ) f o l l o w s as above.
2,l
r - 'k'f'
r-0 I k-O'f
=
f(r-k)
,k
-
(lb)
=,
(la).
(Ic)
=)
( l b ) . I n each maximal c h a i n of f l a t s between a k - f l a t A and a r - f l a t
B t h e r e e x i s t s e x a c t l y one j - f l a t C ( 0 k ~c j < r ( r k M ) ; g i v e n such a C, t h e j o i n -
i n g of a maximal c h a i n between A and C and o f a maximal c h a i n between C and El i s a maximal c h a i n between A and B. {(C,$):C
The double c o u n t i n g argument, a p p l i e d t o t h e s e t between A and B), g i v e s :
i s a j - f l a t belonging t o a chain 0
F(r-k)
Nk,j,r)
=
REMARK 2.4.
F(j-k)F(r-j),
i.e.
B(k,j,r)
- {r-k j-kff.
F(r-k)
= F(r-jlF(j-kl
0
L e t M be t h e m a t r o i d o f f l a t s o f an a f f i n e space o f o r d e r q and +
define
a(k,r),
R(k,j,r)
and v ( k , r ) as i n Prop. 2.2. From ( 2 ) o f Prop. 2.3,
f o l l o w s t h a t f ( 0 ) = 0, f ( t ) = qt-', r-k a(k,r) = q REMARK 2.5. such t h a t
(k,r)
F ( t ) = qt(t-1)'2
r-1
[k-llq, B ( k , j , r )
=
[;:;Iq,
;(k,r)
it
and f o r k > O = [r-kl
q
!.
We g i v e now an o t h e r example o f a PMD M with s i z e - f u n c t i o n f
# F ( r - k ) . L e t S be a S t e i n e r system S(Z,k,n)
(e.g. t h e S t e i n e r
system whose b l o c k s a r e t h e l i n e s o f a p r o j e c t i v e ( r e s p . a f f i n e ) space S o f o r d e r q w i t h k = q t l ( r e s p . k = q ) ) and l e t M be t h e PMD ( o f r a n k 3 ) whose f l a t s a r e t h e empty s e t ,
the s i n g l e points,
t h e b l o c k s and t h e f u l l s e t o f p o i n t s . The s i z e
f u n c t i o n f i s such t h a t f ( 0 ) = 0, f ( 1 ) = 1, f ( 2 ) = k, f ( 3 ) = n; t h e a s s o c i a t e d f u n c t i o n F i s such t h a t F(0) = F ( 1 ) = 1, F ( 2 ) = k, F ( 3 ) = nk; moreover =
= 1,
A
2,l
= k-1,
A
3,l
=-
'-' . k
=
Therefore
2 whenever n f k - k + l ( i n t h e p r e v i o u s examples, whenever t h e space S i s n o t a p r o j e c t i v e plane).
149
F-Binomial Coefficients and Related Combinatorial Topics 3. POSETS OF FULL
BINOMIAL TYPE
These s t r u c t u r e s have been i n t r o d u c e d i n [111, ( c f . a l s o [71). We s h a l l use t h e n o t a t i o n o f $1.
(P,*.) be a p a r t i a l l y o r d e r e d s e t ( p o s e t ) w i t h minimum 0, and l e t a,b be elements o f P. I f a 4 b, t h e i n t e r v a l between them i s d e f i n e d by I ( a , b ) = Let
=
f c ~ P :a < c c b l . I f a < b a maximal c h a i n between a and b i s a c h a i n
a = a < a <...< an = b o f I ( a , b ) which i s n o t i n c l u d e d i n a l o n g e r c h a i n o f 0 1 I ( a , b ) ; t h e number n i s c a l l e d t h e l e n g t h o f t h e c h a i n . We s h a l l denote by ;(a,b) t h e number o f maximal c h a i n s o f I ( a , b ) , We s h a l l say t h a t
and we s h a l l assume
=
1 when a=b.
P i s a JD-poset i f i t s a t i s f i e s t h e f o l l o w i n g c o n d i t i o n
(Jordan-Dedeking c h a i n c o n d i t i o n ) : i f a,b
(JD)
;(a,b)
E
f
w i t h a < b, a l l t h e maximal
c h a i n s o f I ( a , b ) have one and t h e same l e n g t h , denoted by d(a,b)
and c a l l e d t h e
d i s t a n c e between a and b ( o r t h e l e n g t h o f t h e i n t e r v a l ( I ( a , b ) ) . If a=b, we p u t d(a,b)
=
If
0.
P i s a JD-poset w i t h minimum 0, t h e n t h e rank o f an element a
d e f i n e d by r k a=d(O,a), and t h e rank o f We n o t e t h a t i f a,bEP
there exists a function F : f O , l , ;(a,b)
interval o f length n o f that
i s d e f i n e d by r k
w i t h a < b, t h e n d(a,b)<
We s h a l l say t h a t a JD-poset
a < b, t h e number
P
rk
P
P
P.
P ( w i t h minimum 0 ) has a c h a i n f u n c t i o n if
...,r k
PI
+
N such t h a t , f o r a l l a,b E 2 w i t h i.e.
every
has F ( n ) maximal c h a i n s . I n t h i s case we s h a l l say
p i s an F-chain p o s e t . A poset
DEFINITION 3.1. (1)
P
i s c a l l e d a poset o f f u l l b i n o m i a l t y p e i f
P has minimum 0,
(2) P
i s a JD-poset,
(3)
P i s a F - c h a i n poset, f o r some F.
If
f i s a JD-poset w i t h minimum 0, f o r each i n t e r v a l I ( a , b )
each i n t e g e r k, w i t h O s k s d ( a , b ) , Ik(a,b)
= I c E I(a,b)
We s h a l l say t h a t f : IO,1,
...,r k
+ .
P and f o r
of
we s h a l l p u t
: d(a,c) = k)
P has a s i z e f u n c t i o n _ i f t h e r e e x i s t s a f u c n t i o n
P)
is
= max t r k a: a € $ , .
o f maximal c h a i n s between them i s F ( d ( a , b ) ) ,
P
E
N such t h a t , f o r a l l i n t e r v a l s I ( a , b ) o f f ,
f,
I50
P.V. Ceccherini and A . Sappa IIl(a,b)I
= f(d(a,b)).
I n t h i s case we s h a l l say t h a t
P
i s an f - s i z e poset. The f o l l o w i n g p r o p o s i -
t i o n y i e l d s o t h e r e q u i v a l e n t d e f i n i t i o n s o f poset o f f u l l b i n o m i a l t y p e . PROPOSITION 3.2.
P
Let
be a JD-poset w i t h minimum 0; t h e f o l l o w i n g c o n d i -
t i o n s a r e e q u i v a l e n t , where f and F a r e m u t u a l l y a s s o c i a t e d f u n c t i o n s : (a)
i s a poset o f f u l l binomial type).
(Oc k c d(a,b)).
= t d(a,b)]
( b l IIk(a,b)I (c)
P
P i s an F-chain poset ( i . e . P i s an f - s i z e poset.
Proof. Let a , b E P , (a) * ( b ) . e x a c t l y one c E
acb.
L e t be O < k < d ( a , b ) .
I n each maximal c h a i n o f I ( a , b ) t h e r e e x i s t s
P such t h a t d(a,c)
= k.
I f c i s such an element o f I ( a , b ) ,
the
j o i n i n g o f a maximal c h a i n o f I ( a , c ) and o f a maximal c h a i n o f I ( c , b ) i s a maximal c h a i n o f I ( a , b ) . CL
The double c o u n t i n g argument a p p l i e d t o t h e s e t I ( c , o ) :
i s a maximal c h a i n o f I ( a , b ) , F(d(a,b)) = IIk(a,b)
I
d(a,c)
= k)
C E ~ ,
gives:
F ( k ) F(d(a,b)-k),
so t h a t ( b ) f o l l o w s .
( b ) * ( c ) . For k = l we o b t a i n I1 ( a , b ) I = I d(;yb))f = f ( d ( a , b ) . 1 ( c ) * ( a ) . A c t u a l l y I 1 ( a , b ) I = f ( d ( a , b ) ) . We now a p p l y i n d u c t i o n on d ( a , b ) ; 1 i f d(a,b) = 0,1, t h e n 1 = ;(a,b) = F ( d ( a , b ) ) . I f d(a,b),2, a p p l y t h e double coun t i n g argument t o t h e s e t { ( c , ~ ) : c E
U,U
i s a maximal c h a i n o f I ( a , b ) ,
d(a,c)=ll.
By t h e p r e v i o u s argument and b y t h e i n d u c t i o n h y p o t h e s i s , we have ;(a,bl
= (Il(a,b)I
EXAMPLE 3.3.
F(1) F(d(a,bl-l)
= f(d(a,b))
P= 2
I f X i s a f i n i t e s e t and i f
o f X o r d e r e d by i n c l u s i o n , t h e n
P
F(d(a,b)-l)
X
= F(d(a,bl).
i s the set o f a l l
0
subsets
i s a poset o f f u l l b i n o m i a l type, w i t h s i z e
f u n c t i o n f ( t ) = t and c h a i n f u n c t i o n F ( t ) = t ! ( 0 t ~c
1x1)
any such f u n c t i o n s f and F ( w i t h dom f = dom F = t O , l ,
...,n l ) ,
(cf.
[ 1 3 1 ) . Conversely
( c f . example 1.21, X can be c o n s i d e r e d as s i z e f u n c t i o n and c h a i n f u n c t i o n o f a boolean s e t p = 2 w i t h x x X 1x1 = n. We n o t e t h a t , i f P = I X I U ( o ) U ( , ) U...U ( k ) w i t h 2 4 k < 1x1 - 1, t h e n t h e
P i s n o t of f u l l b i n o m i a l t y p e : i f Y
poset
= d(Z,X)
z
to
x.
= 2, b u t t h e r e a r e
X
E ( 2 ) and
2 c h a i n s from 0 t o Y and
Z E(krl)l
1x1
-
t h e n d(0,Y)
=
(k-1) > 2 chains from
F-Binomial Coefficients and Related Combinatorial Topics EXAMPLE 3.4. dimension n-1
IS1
If X i s a f i n i t e p r o j e c t i v e space PG(n-1.q)
o f o r d e r q and
2 and i f ?' i s t h e s e t o f f l a t s o f X o r d e r e d by i n c l u s i o n , t h e n ?
i s a poset o f f u l l b i n o m i a l t y p e w i t h s i z e f u n c t i o n f ( t ) = [ t ]
and c h a i n f u n c t i o n q Conversely, any such f u n c t i o n s f = [ ] and
F ( t ) = [ t ] !. ( c f . [ 3 ] , prop. 3.3.). 9 h F = [ I ! w i t h q = p ( h h l , p p r i m e 3 2 1 and dom f = d a n F = 10.1 f-l
,...,n l
q ( c f . exaE
p l e 1 . 3 ) can be c o n s i d e r e d as t h e s i z e and t h e c h a i n f u n c t i o n s o f t h e poset o f t h e subspaces of a p r o j e c t i v e space X = PG(n-l,q) We n o t e t h a t , if with i
=
P
o f o r d e r q and dimension n-1.
i s t h e s e t of a l l t h e i - d i m e n s i o n a l f l a t s o f X = PG(n-l,q),
-l,O,...,k,n-1
where 1 4 k < n - 2 , t h e n t h e poset
P i s not o f f u l l binomial
t y p e : i f Y i s a l i n e and 2 i s a ( k - 1 ) - d i m e n s i o n a l f l a t , t h e n d(0,Y) b u t t h e r e a r e q + l c h a i n s f r o m 0 t o Y and q wk-' +
EXAMPLE 3.5. I f
$=
...+q+l > q + l
,,..., xla ,...,xnl ,...,x na 1
{xo,xl
= d(Z,X)
= 2
c h a i n s f r o m Z t o X.
i s any s e t w i t h a n t 1
elements (a,n a l ) , o r d e r e d by assuming xo as minimum and x
< x i f f i < h, t h e n ij hk i s a p o s e t o f f u l l b i n o m i a l t y p e w i t h s i z e f u n c t i o n f ( O ) = O , f ( l ) = l , f ( t ) ad with
2
t-1 chain functionF(O)=F(l)=l,F(t) = a ( 2 6 t < n ) . Conversely, any such f u n c t i o n s f and F ( c f . example 1.3.) can be c o n s i d e r e d as t h e s i z e and t h e c h a i n f u n c t i o n s o f a poset o f f u l l b i n o m i a l t y p e p as above. REMARK 3.6.
L e t M be t h e PMD o f t h e f l a t s o f an a f f i n e space X = AG(n-1,q) and l e t B
o f dimension n - 1 3 2 ,
not o f f u l l binomial type: t h e n d(0,Y)
z
to
= d(Z,X)
be t h e p o s e t o f t h e f l a t s o f X. The poset
P
is
i f Y i s a l i n e and Z i s an ( n - 3 ) - d i m e n s i o n a l f l a t ,
= 2 , b u t t h e r e a r e q c h a i n s f r o m 0 t o Y and q + l c h a i n s f r o m
x. Therefore,
if
M i s a PMD on a f i n i t e s e t X and if P i s t h e s e t of t h e f l a t s
o f M ordered by inclusion, then
P i s not necessarily a poset o f f u l l binomial
t y p e : t h e number o f maximal c h a i n s i n an i n t e r v a l I ( a , b ) does n o t depend o n l y on t h e l e n g t h o f t h e i n t e r v a l , b u t a l s o on t h e r a n k s o f a and b ( c f . a l s o Remark 2.5,
and Examples 3.3,
3.4).
The case when
P i s a poset o f f u l l b i n o m i a l t y p e
i s characterized by t h e f o l l o w i n g proposition. PROPOSITION 3.7.
L e t M be a PMD on a f i n i t e s e t X and l e t
t h e f l a t s o f M o r d e r e d b y i n c l u s i o n . The poset
P
P
be t h e poset o f
i s of f u l l b i n o m i a l t y p e i f and
o n l y i f M i s one o f t h e f o l l o w i n g PMD's: ( a ) M i s t h e t r i v i a l PMD o f r a n k 1 o r t h e t r i v i a l PMD o f r a n k 2 on X ( i . e .
M i s a t r i v i a l g r a p h i c space o f dimension 0 on 1 on X r e s p . ) ;
152
P.V. Ceccherini and A . Sappa (b) M i s t h e m a t r o i d 2
X
o f a l l subsets o f X, i . e . M i s t h e g r a p h i c space o f
o r d e r 1 and dimension 1x1-1;
( X I o f a l l f l a t s o f a p r o j e c t i v e space, o f dimenY q h a v i n g X as s e t o f p o i n t s .
( c ) M i s t h e m a t r o i d Mn-l s i o n n-1 and o r d e r q * 2 ,
P r o o f . I f M i s a PMD as i n ( a ) - ( c ) , t h e n t h e poset
P
o f i t s f l a t s i s a poset
o f f u l l b i n o m i a l t y p e ( c f . Ex. 3.3 and Ex. 3.4). L e t M b e a PMD on X such t h a t t h e p o s e t b i n o m i a l type. I f r k
M r 2,
B o f i t s f l a t s i s a poset o f f u l l
t h e n we a r e i n t h e case ( a ) . If r k
M > 2,
l e t f denote
t h e s i z e f u n c t i o n o f M. F o r any f l a t Y o f r a n k 2, we have t h a t lIl(O,Y)l
P
I n o t h e r words, t h e p o s e t
= ( Y I = f ( 2 ) = f(d(0,Y)).
has t h e same s i z e f u n c t i o n f t h a n t h e PMD M. Thus
c o n d i t i o n ( b ) o f Prop. 3.2 holds; i t means t h a t c o n d i t i o n ( l b ) o f Prop. 2.3 h o l d s . So c o n d i t i o n ( 1 ) o f Prop. 2.3 h o l d s too, and t h e r e s u l t ( b ) - ( c ) i s proved.
0
4. F-GEODETIC GRAPHS a l l graphs w i l l be f i n i t e w i t h o u t l o o p s o r m u l t i p l e edges,
I n what f o l l o w s ,
an:i a l l d i r e c t e d graphs w i l l be w i t h o u t d i r e c t e d c i r c u i t s . Any d i r e c t e d graph
p =
p(t) =
G'
(V,;)
=
i s o b v i o u s l y t h e Hasse diagram o f a poset
where x < y i f and o n l y if t h e r e e x i s t s a d i r e c t e d p a t h f r o m x
(V,<)
t o y; c o n v e r s e l y t h e Hasse diagram o f a poset p = (V,<)
6
= (V,:),
=
that
E
where ( x , y )
P(E) a r e
and
I f G = (V,E)
EE
i s a d i r e c t e d graph
i f and o n l y i f x i s covered by y. We s h a l l say
mutually associated.
(resp.
6
*
= (V,E))
i s a graph ( r e s p . d i r e c t e d graph) and i f two
v e r t i c e s x,yE V a r e j o i n e d by a p a t h ( r e s p . d i r e c t e d p a t h ) , t h e d i s t a n c e d ( x , y ) ( r e s p . i ( x , y ) ) i s d e f i n e d as t h e number o f edges i n a geodesic i . e . p a t h (resp. d i r e c t e d s h o r t e s t p a t h ) between x and y. We denote by (resp. b y
*
r (x,y)
+ = rG(x,y))
i n a shortest r(x,y) =rG(x,y)
t h e s e t o f d i s t i n c t geodesics o f G (resp.
of
between x and y; we p u t : v(x,y) q(x,x)
=
I
r(x,y)l
y(x,x)
= 1
diam G = max I d ( x , y )
and ;(x,y) and
=
;I
x,y)I +
d ( x , x ) = d x,x)
: x,y E
Vj,
d am
We s h a l l say t h a t a connected graph G =
E
V,E)
ifx # y; = 0;
= max ~+d(x,y) : x,y E W .
( r e s p . a d i r e c t e d graph
5
= (V,:))
El
153
F-Binomial Coefficients and Related Combinatorial Topics
...,diam
i s a graph w i t h a geodetic f u n c t i o n i f t h e r e e x i s t s a map F : ( O , l , (resp. F : ( O , l ,
*
...,diam
G)
N ) such t h a t u ( x , y ) = F ( d ( x , y ) ) ( r e s p .
+
GI
+
N
+
u(x,y) =
I n t h i s case we s h a l l a l s o say t h a t G (resp.
i) i s
= F(J(x,y))
f o r a l l x,y E V .
F-geodetic.
Note t h a t F(0) = 1 and t h a t F(n) # 0 f o r a l l n E dom F, so t h a t t h e as
sociated f u n c t i o n f can be considered as i n $1. Let
2
= (V,;)
be a d i r e c t e d graph and l e t x , y ~ V be such t h a t x - < y . Then t h e
i n t e r v a l I ( x , y ) i s defined by +
I(x,y) := I z E V :
x < z - ( y l , i . e . I ( x , y ) i s defined as i n P ( G ) ,
and t h e geodetic i n t e r v a l I g ( x , y ) i s d e f i n e d by := t z e V:
P(x,y)
Note t h a t I 9 (x,y)
C;(x,y) f o r some
ZE
5 I(x,y)
C; E r ( x , y ) ~ .
and t h a t I g (x,y) = t z e I ( x , y ) : i ( x , z )
= ;(x,y)-;(y,z)).
For any 1 < k < i ( x , y ) , l e t : = I z e I g ( x , y ) : ~ ( x , z )= k l
I;(x,y)
E
We say t h a t
= (V,:)
has a source
= (zE
I9 ( x , y ) : J ( Z , Y ) = i ( x , y ) - k l .
O E V i f f o r any
XE
V \ (01 t h e r e e x i s t s a d i r e c -
t e d path from 0 t o x.
A graph
6
= (V,i)
w i l l be c a l l e d a d i r e c t e d graph o f f u l l binomial t y p e ( w i t h
geodetic f u n c t i o n F ) i f : (a)
E
has a source 0,
( b ) f o r a l l x , y ~ Vw i t h x < y : (c)
Let
E
be t h e poset associated w i t h
(2)
= I(x,y),
G i s F-geodetic f o r some F.
PROPOSITION 4.1.
(1)
I 9 (x,y)
P has a minimum P i s a JO-poset
= (V,i)
6
be a d i r e c t e d graph and l e t P = P ( 6 ) = ( V , < )
(so t h a t
=
0 i f and o n l y i f
6(P)).
Then
has source 0;
i f and o n l y i f I g ( x , y )
I(x,y),
=
for a l l x , y ~ V
with x
6
P
i s a poset o f f u l l binomial type w i t h chain f u n c t i o n F i f and o n l y i f
i s a d i r e c t e d graph o f f u l l binomial type w i t h geodetic f u n c t i o n F. Proof. -
( 1 ) i s obvious. ( 2 ) :
s e t M(x,y) o f maximal chains o f G(x,y;of
E
P i s a JD-poset P i n I ( x , y ) i s the
O f o r a l l x , y ~ Vw i t h x c y
0
f o r a l l x , y ~ Vw i t h x < y t h e set
I(x,y) = Ig(x,y).
? ( x , y ) o f t h e geodesics
( 3 ) : P i s a poset
of
P.V . Ceccherini and A . Sappa
154
f u l l binomial type w i t h chain f u n c t i o n F
I
(M(x,y) Ig(x,y)
F(+d(x,y)) f o r a l l x < y i n V
=
= I(x,y)
and [;(x,y)(
= F(d(x,y))
t y p e w i t h g e o d e t i c f u n c t i o n F. The poset
p = (V,<),
o
O P has minimum 0, I' i s a JD-poset and
"G
has source 0, f o r a l l x < y i n V
E
i s a d i r e c t e d graph o f f u l l b i n o m i a l
0
where V = IO,x,y,z,tl
and O < x < z < y , O < t < y , i s n o t a
b u t t h e graph 6 ( p ) i s F-geodetic ( w i t h F = l ) ; n o t e t h a t Ig(O,y)
JD-poset, = {O,t,Yl
c I(0,y)
=
=
v.
PROPOSITION 4.2.
Let
"G
=
be a d i r e c t e d graph. The f o l l o w i n g c o n d i t i o n s
(V,i)
a r e e q u i v a l e n t (where F and f a r e m u t u a l l y a s s o c i a t e d ) : i s F-geodetic f o r some F,
(a)
( b ) f o r a l l x < y i n V and f o r a l l 1 g k c a ( x , y ) : (c) f o r a l l x < y i n V:
II~I=
k
*
The double c o u n t i n g argument
+
(z,<(x$y)): z ~ < ( x , y ) ,ger(x,y),
=
J(X,Y) k IF'
f(i(x,y)).
Proof, L e t x,y be elements o f V w i t h x < y . ( a ) - ( b ) . a p p l i e d t o t h e s e t Zk
9
( I (x,y)I = i
z(x,z) = k l
gives:
+
F ( d ( x , y l ) = I I z ( x , y ) l F ( k ) F(a(x,y)-k), (b) * (c) for k (c)
=)
=
9 d ( x ,y so t h a t I k ( x , y ) = I
1.
( a ) . We a p p l y i n d u c t i o n on a ( x , y ) 3 1 . I f a ( x , y )
= 1 = F ( 1 ) . Suppose d ( x , y ) h 2 ; by t h e i n d u c t i o n hypothesis,
IT(z,y)
1
= F(i(z,y))
t o t h e s e t Z1 g i v e s : = F(a(~,y)).
If
2
ated t o
E.
F.
1
I
=
we have 1 Therefore t h e double c o u n t i n g argument a p p l i e d
= F(G(x,y)-l).
I?(x,y)
1, t h e n I;(x,y) when Z E Z
= IIg(x,y) l F ( l ) F ( i i ( ~ , y ) - l ) = f ( a ( x , y ) )
1
F(a(x,y)-l)=
0
i s a d i r e c t e d graph, we s h a l l denote by G t h e u n d i r e c t e d graph a s s o c i -
PROPOSITION 4.3.
Let
= (V,:)
be a d i r e c t e d graph w i t h source O S V . Suppose
t h a t f o r each x E V t h e p a r i t y o f t h e l e n g t h o f any d i r e c t e d path f r o m 0 t o x depends o n l y on x; w r i t e p ( x ) =O i f i t i s even and p ( x ) = 1 i f i t i s odd. Then +
t h e u n d i r e c t e d graph G a s s o c i a t e d t o G i s connected and b i p a r t i t e . P r o o f . G i s connected s i n c e 0 i s a source. We v e r i f y t h a t G i s b i p a r t i t e by 0 1 i assuming V = V U V where V = I x E V : p ( x ) = il, i = 0 , l . We have t o prove t h a t i f ( x , ~ ) EE then p ( x ) # p ( y ) . We can suppose w i t h o u t loss o f g e n e r a l i t y t h a t (X,Y)E
E.
I f G(0,x) and G(0,y)
a r e geodesics f r o m 0 t o x and t o y resp.,
then
F-Binomial Coefficients and Related Combinatorial Topics
155
g(0,y) and G(0,x) u (x,y) are both d i r e c t e d paths from 0 t o y, so t h a t t h e i r lengths have t h e same p a r i t y p ( y ) . It f o l l o w s t h a t p ( x ) # p ( y ) . PROPOSITION 4.4.
L e t G = (V,E) be a connected b i p a r t i t e graph and l e t 0 be
any vertex o f G. Then by s t a r t i n g from 0, a n a t u r a l o r i e n t a t i o n can be d e f i n e d
on E, i n such a way t h a t
= (V,:)
i s a d i r e c t e d graph w i t h source 0 (and w i t h o u t -*
d i r e c t e d c i r c u i t s ) . It f o l l o w s t h a t
$=
where x
E
Proof. I f x,y E V w i t h d(0,x)
p(G)
=
(V,C) i s a poset w i t h minimum 0,
a d i r e c t e d path from x t o y .
= d(O,y),
then x and y cannot be adjacent be-
cause G i s b i p a r t i t e . Let ( x , y ) be an edge o f G. We have e i t h e r d(0,y) = d(O,x)+l o r d(O,x)
= d(0,y)tl.
Orient t h e edge from x t o y i n the f i r s t case, from y t o +
x i n t h e second. It i s easy t o show t h a t , whenever t h e r e i s an edge (x,y) EE, then (x,y)
i s t h e o n l y d i r e c t e d path from x t o y, and t h a t whenever t h e r e e x i s t s
a d i r e c t e d path from x t o y then t h e r e i s no d i r e c t e d path from y t o x; indeed i s a d i r e c t e d path, then we have
(by i n d u c t i o n on i ) , i f (xo,x l,...,xi) (xo,xl)
,..., ( X ~ - ~1 , X . and ) E ~d(O,xi)
THEOREM 4.5.
= d(O,xo) t i.
0 +
+
L e t G = (V,E) be a connected b i p a r t i t e graph and l e t G = (V,E)
be the d i r e c t e d graph obtained by s t a r t i n g from a given vertex OEV as i n Prop.
4.4. Then, whenever x and y are elements o f
V w i t h x < y , the f o l l o w i n g c o n d i t i o n s
are e q u i v a l e n t : (a
p(x,y) i s a d i r e c t e d path from x t o y i n
(b
p(x,y)
(C
p(x,y) i s a geodesic from x t o y i n G.
t,
i s a geodesic from x t o y i n 6, *
Proof.
be any d i r e c a) * ( b ) . Assume x = 0 f i r s t . L e t p(0,y) = (O=x",,.,,x.=y) 1
t e d path o f lenght i from x t o y i n
5.
We have d(O,y)=i, by t h e i n d u c t i o n argu-
ment sketched a t the end o f t h e p r o o f o f Prop. 4.4.
Therefore p(0,y) = p ( x , y ) i s
a geodesic i n G. Assume now 0 < x < y . L e t p(0,x)
and p ( x , y ) be any d i r e c t e d paths i n
8
from
0 t o x and from x t o y resp. By g l u e i n g p(0,x) and p(x,y) we get a d i r e c t e d path p(0,y)
in
'G.
For t h e previous case p(0,y)
i s a geodesic i n G. Thus i t s subpath
p(x,y) must a l s o be a geodesic i n 6.
(b)
=)
( a ) . I n d u c t i o n on i = d ( x , y ) .
x < y . so t h a t p(x,y)
When i = l , we have p(x,y) = ( x , y ) ~ isince *
i s a d i r e c t e d path i n G. Assume now i Z 2 and suppose t h a t
P.V. Ceccherini and A . Sappa
156
any geodesic o f G o f l e n g t h j w i t h 1 6 j < i i s a d i r e c t e d p a t h i n
,...,x 1. - 1 ,xi=y)
p ( x , y ) = ( x =x,x
Then p ( x , y ) i s a d i r e c t e d p a t h i n obviously.
(b)*(c).
I f p(x,y)
The geodesic
i s o b t a i n e d by g l u e i n g t h e geodesics p(x.xi-,)
and ( X ~ - ~ , Xo f~ G. ) These a r e b o t h d i r e c t e d p a t h s i n
(c) *(a)
6.
6
by t h e i n d u c t i o n h y p o t h e s i s .
E.
...,x .1= y ) i s a geodesic i n G, t h e n p(x,y) i s 0 1' (because ( b ) = . ( a ) ) , and i t must be a geodesic i n because = ( x =x,x
6,
a d i r e c t e d path i n
+
i n G would be a p a t h o f G s h o r t e r t h a n p ( x , y ) ,
any s h o r t e r d i r e c t e d p a t h p ' ( x , y )
which i s i m p o s s i b l e s i n c e p ( x , y ) i s a geodesic i n G. COROLLARY 4.6. L e t G
(V,E)
=
0
be t h e
be a connected b i p a r t i t e graph and l e t
d i r e c t e d graph o b t a i n e d by s t a r t i n g f r o m a g i v e n v e r t e x O E V as i n Prop. 4.4. Then ( 1 ) whenever x , y ~ V w i t h x r y , we have d ( x , y ) that
= +d(x,y), r ( x , y )
= ?(x,y)
so
r(x,y) = t(x,y); ( 2 ) G i s F-geodetic i f and o n l y i f
Proof.
E
i s F-geodetic f o r a l l O E V .
( 1 ) i s obvious. For ( 2 ) i t i s enough t o n o t e t h a t ;(x,y)
= r ( x , y ) when we
assume 0 = x. COROLLARY 4.7.
Let G
=
be a connected b i p a r t i t e graph. Then t h e f o l -
(V,E)
l o w i n g c o n d i t i o n s a r e e q u i v a l e n t , where F and f a r e m u t u a l l y a s s o c i a t e d f u n c t i o n s : ( a ) G i s F-geodetic,
IIzEV:
d(x,y)
( b ) x,yEV,
Otkcd(x,y)*
( c ) x,yEV
*
REMARK 4.8.
The statement o f C o r o l l a r y 4.7 also h o l d s i f G i s n o t b i p a r t i t e ;
~ [ Z E V :d(x,z)
d ( x , z ) = k, d(z,y)
= 1,
d(z,y)
= d(~,yl-kl(=
d(x,y)-llI
I
= f(d(x,y)).
)f,
0
i t can be proved by a d i r e c t argument ( c f . [ 1 6 1 ) . T h i s can a l s o be o b t a i n e d f r o m -t
t h e p r o o f o f Prop. 4.2, r(x,y), (zEV:
d(x,y)
by r e p l a c i n g g(x,y),
+
r(x,y),
+
d(x,y)
(and by exchanging consequently t h e s e t I!(x,y)
r e s p . w i t h g(x,y), and t h e s e t
d ( x , z ) = k, d ( z , y ) = d ( x , y ) - k ) ) .
EXAMPLE 4.9.
The complete graph Kn, a t r e e G , t h e ( 2 k t l ) - c i r c u i t G a r e F-geo-
d e t i c graphs w i t h F = l . An F-geodetic graph w i t h F-1 i s c a l l e d g e o d e t i c - g r a p h ( c f . [161, [ l a ] ) . The i l k - c i r c u i t G i s F - g e o d e t i c w i t h F ( t ) = l , f o r t < k , and w i t h F ( 2 ) = 2 otherwise. EXAMPLE 4.10.
The complete b i p a r t i t e graph Kn,,=(V,E)
with V =
V'UV",
157
F-Binomial Coefficients and Related Combinatorial Topics
IV'(
=
IV"I
= n i s F-geodetic w i t h F ( 0 ) = F ( 1 ) = 1, F ( 2 ) = n.
A hypercube i s an F-graph w i t h F ( t ) = t ! . Conversely any con-
EXAMPLE 4.11.
n e c t e d b i p a r t i t e F-graph w i t h F ( t ) = t ! i s a hypercube ( c f .
= t (0
The graph Kn x Km i s F - g e o d e t i c w i t h F ( t
EXAMPLE 4.12. (cf. (51,
131).
< t s 2 cn,m)
[151 1 -
I f Qn i s t h e n-cube, t h e graph Qn x K
EXAMPLE 4.13.
s
m
F-geodetic
with
F ( t ) = t ! ( O s t < n t l ) ( c f . [51, Prop. 3.1).
i s F - g e o d e t i c f o r some F
I f G i s a connected graph and i f GxK,
EXAMPLE 4.14.
and some m x 2 , t h e n F ( t ) = t ! . Moreover, i f G i s b i p a r t i t e , t h e n G i s a hypercube (and GxK i s a l s o a hypercube i f and o n l y i f m = 2 ) ( c f . [ 5 ] , Prop. 3.1, Cor. 3.2) m EXAMPLE 4.15. L e t G be t h e d i r e c t e d graph whose v e r t i c e s a r e t h e subspaces ~o f a g r a p h i c space o f dimension n and o f o r d e r q 3 1 and ( x , y f l a t x i s covered b y t h e f l a t y. Then
6
i s F-geodesic w i t h F ( t
i s an edge i f t h e =
[tlq!( c f .
[31,
Prop. 3.3).
REMARK 4.16.
E
L e t G be t h e u n d i r e c t e d graph a s s o c i a t e d t o t h e d i r e c t e d graph
c o n s i d e r e d i n t h e Ex. 4.15.
I n o t h e r words, G i s t h e q-analogue o f Qn-,.
Note
t h a t when q a 2, G i s n o t F-geodesic: i f x,y a r e two p o i n t s and z i s a p l a n e cont a i n i n g x, t h e n d(x,y)
= d(x,z)
t h a t t h e d i r e c t e d graph
5
graph o f Example 4.15;
=
2, b u t 2 = v(x,y)
#
u ( x , z ) = q t l . Note a l s o
o b t a i n e d f r o m G by s t a r t i n g f r o m t h e empty f l a t i s t h e
when we s t a r t from a f l a t O f 0 , t h e n
E
i s F - g e o d e t i c i f and
only i f q=l. EXAMPLE 4.17. o f Ex, 3.5.
Then
Let
6
6
=
6(P) be
t h e d i r e c t e d graph a s s o c i a t e d t o t h e p o s e t
p
i s F-geodetic a c c o r d i n g l y t o Prop, 4.1 ( b u t G i s n o t F-geode-
tic). ACKNOWLEDGEMENT.
T h i s r e s e a r c h was p a r t i a l l y supported by GNSAGA o f CNR and by
MPI.
BIBLIOGRAPHY [ 1 1 F. Buekenhout, Une c h a r a c t e r i z a t i o n des espaces a f f i n s basee s u r l a n o t i o n de d r o i t e , Math. Z. 111 (1969) 367-371. [ 21 P . V . C e c c h e r i n i , 78-98.
S u l l a nozione d i s p a z i o g r a f i c o , Rend.
Mat.
( 5 ) 6 (1967)
P.V , Ceccherini and A . Sappa
158
[ 3 ] P.V. C e c c h e r i n i , A q-analogous o f t h e c h a r a c t e r i z a t i o n o f hypercubes as graphs, J. Geometry 22 (1984) 57-74. [ 4 1 P.V. Ceccherini, A. Dragomir, Combinazioni g e n e r a l i z z a t e , q - c o e f f i c i e n t i b i n o m i a l i e spazi g r a f i c i , A t t i Convegno Geometria Combinatoria e sue a p p l i c a z i o n i (Peruaia. Settembre 1970) 137-158.
-~
[ 5 1 P.V.
Ceccherini, A. Sappa, A new c h a r a c t e r i z a t i o n o f hypercubes,Annals D i s c r e t e Math. ( t h i s volume).
[6
1 L.
[7
1 L.
C e r l i e n c o , F. P i r a s , C o e f f i c i e n t i b i n o m i a l i g e n e r a l i z z a t i , Fac. S c i . C a g l i a r i 52 (1982) 47-56.
Rend.
Sem.
C e r l i e n c o , F. Piras, G-R-Sequences and i n c i d e n c e coalgebras o f p o s e t s o f f u l l b i n o m i a l t y p e , ( t o appear).
[ 8 ] R.J. Cook, D.G. [ 9 ] H. Crapo, G.C.
Pryce, U n i f o r m l y g e o d e t i c graphs, t o appear. Rota, C o m b i n a t o r i a l geometries, MIT Press, Cambridge (1970).
[ 1 0 1 M. Deza, N.M. S i n g h i , Some p r o p e r t i e s o f p e r f e c t m a t r o i d designs, Annals D i s c r e t e Math. 6 (1980) 57-76. [ 11 ] P. D o u b i l e t , G.C. Rota, R.P. SRanley, On t h e f o u n d a t i o n s o f C o m b i n a t o r i a l t h e o r y V I : t h e i d e a o f g e n e r a t i n g f u n c t i o n , i n G.C. Rota ( e d . ) , F i n i t e Oper a t o r Calculus, Academic Press, New York (1975) 83-134. [ 12 1 J. Edmonds, U.S.R. Murti, P. Young, E q u i c a r d i n a l m a t r o i d s and m a t r o i d d e s i gns, i n "Combinatorial Mathematics and i t s A p p l i c a t i o n s " , Second Chapel H i 11 Conference ( 1 9 7 0 ) .
[ 1 3 1 S. Foldes, A 159.
c h a r a c t e r i z a t i o n o f hypercubes, D i s c r e t e Math. 17 (1977) 155-
[ 14 1 B.L. R o t h s c h i l d , N.M. S i n g h i , C h a r a c t e r i z i n g k - f l a t s i n geometric designs, J. Comb. Theory A 20 (19761, 398-403. [ 15 1 A. Sappa, C a r a t t e r i z z a z i o n e d i g r a f i t r a m i t e geodetiche, Tesi, Univ. d i Roma, D i p a r t i m e n t o d i Matematica (1984). [ 16
I R.
S c a p e l l a t o , On g e o d e t i c graphs o f diameter two and some r e l a t e d s t r u c t u r e s ( t o appear).
[ 1 7 1 B. Segre, L e c t u r e s on modern geometry. With an Appendix by L. Lombardo-Rad i c e , Cremonese, Roma (1961).
[ 1 8 ] J.C. Stempe, 266-280.
Geodetic graphs o f diameter two, J. Comb. Theory
B 17 (1974)
Annals of Discrete Mathematics 30 (1986) 159-170 0 Elsevier Science Publishers B.V. (North-Holland)
159
POLYNOMIAL SEQUENCES ASSOCIATED WITH A CLASS OF INCIDENCE COALGEBRAS. Luigi Cerlienco Dip. di Matematica Univ. di Cagliari 09100 Cagliari Italy
Giorgio Nicoletti Dip. di Matematica Univ. di Bologna 40127 Bologna Italy
+
Francesco Piras Dip. di Matematica Univ. di Cagliari 09100 Cagliari Italy
A few special sequences of polynomials associated with both automorphisms and hemimorphisms of a particular class of coalgebras as well as their links with locally finite posets of binomial type are analysed.
50 *
The purpose o f this paper is to briefly study a class of coalgebras, which we call c o a Z g e b r a s of binorniaZ t y p e . These are the coalgebras C having a countable basis (bi) such that i i 0 ~ bi. =i6 Abi = j ~ ohj bj@bi-jy i where h. are integers and hE=l. 1
Coalgebras of binomial type are the background for some recent work in combinatorics beginning with polynomials o f binomial type [17].We show that, under mild conditions, the structure constants hj behave much like binomial coefficients, and that the analog of sequence of polynomials of binomial type is obtained in any coalgebra of binomial type from coalgebra morphism. The one new coalgebraic notion introduced in this work is the notion of k e m i m o r p h i s m , namely, a linear map f on C into itself such that A*f = (1ef)oA. The image of the distinguished basis (bi) under a hemimorphism generalizes sequences of polynomials introduced by Goldman and Rota [ 1 4 ] . We believe the general setting of coalgebras (and Hopf algebras) to be suited to a variety o f combinatorial problems which we propose to study in future publications.
§ I* 1.1. Let C:=(V,A,E) be a coalgebra over a field K of characteristic zero. Here V is a K-vector space and e:V-K fcounitland A:VNVBV f c o m u Z t i p Z i c a t i o n o r diagonaZizationl are linear maps such that the following diagrams commute: Research partially supported b y "Fondi Ministeriali per la Ricerca 40% e 60%".
L. Cerlienro, G. Nicoletti and F. Rras
160
vA ' ev K@V
-
h
V-
V@V /A@ I
(coassociativity)
V@V@V
IQA
- €@I
I @ E
V@V
VOK
i s t h e c a n o n i c a l isomorphism and I t h e i d e n t i c a l map).
($
v@w"w@v (twistI f , moreover, we have A = T o A , where T : V 0 V - V @ V y - o p e r a t o r ) , C i s s a i d t o be c o c o m m u t a t i v e . A s u s u a l , we s h a l l d e n o t e by C*=(V4,m,u) t h e d u a l K-algebra of C ; w e have U=E* and m=A*o j , where j:v'@v"-(V@V)" i s t h e c a n o n i c a l embedding. A l i n e a r map f:V-V i s an endomorphis m o f C i f (3) Aof = ( f 8 f ) o A (4) €Of = E . A l i n e a r map f : V - V
i s s a i d t o be a r i g h t he m im or phis m of C i f = ( I e f ) 0 A. L e f t hemi morph is ms a r e d e f i n e d i n a s i m i l a r way. I f C i s cocommutativ e , e a c h r i g h t hemimorphism i s a l s o a l e f t hemimorphism, and c o n v e r s e l y . L e t u s d e n o t e by & m ( C ) t h e s e t of a l l r i g h t hemimorphisms of t h e c o a l g e b r a C . Hem(C) i s c l o s e d under l i n e a r c o m b i n a t i o n and f u n c t i o n a l c o m p o s i t i o n . Hence Hem(C) i s an a l g e b r a . Moreover, i f f" i s t h e d u a l map of feHem(C), t h e n f o r every arV w e have: (5)
p(a) = =
A o f
f'(m(a@l))
= ( f ' o m ) ( a @ l ) = (f'O(A*oj))(a@Jl) =
( ( A o f ) * o j ) ( a B l ) = ( ( ( I @ f ) o A ) * o j ) ( a @ l ) = ( A * o ( I @ f f o j ) ( a @ 1) =
(because of ( f e g f o j =
=
jo(P@g") )
( ( A * o j ) o ( f @ f " ) ) (a el)
=
(A* o j ) ( a @ f*(l))
= m(a@ f C ( l ) ) ,
i . e , , u s i n g aB i n s t e a d of m(a @ 6) : F(a) = a*f"(l) w i t h l=u(lK)EV, (6) which becomes f * ( a ) = ? ( l ) . a i n t h e c a s e of l e f t hemimorphisms.
The e l e m e n t f'(l) ind(f) :
w i l l be c a l l e d t h e i n d i c a t o r o f f and d e n o t e d by
i n d ( f ) := f'(1)
(7)
.
A s a consequence of ( 6 ) we o b t a i n :
Prop.1. 17')
The map ind : &m(C)C* f c----ci n d l f )
i s a monomorphism o f a Z g e b r a s .
( N o t i c e , however, t h a t ( 7 ' )
i s an antimonbmorphism i n t h e c a s e o f
161
Polynomial Sequences and Incidence Coalgebras
.
l e f t hemimorphisms) P r o o f , I t r e m a i n s t o p r o v e t h a t ind(f0:) we have = g'(f"(1) (fogf (1) = (g*of')(l)
= ind(f)-ind(g); in fact, = P(l)*g*(l).
1.2. I n t h e f o l l o w i n g w e s h a l l a l w a y s assume t h a t C = ( V , A , E ) a c o u n t a b l e b a s i s (bi)iEN such t h a t
i
Abi =
i
jio hj bj@bi-j,
D has
0
h 0 =1
I f t h i s i s t h e c a s e , C i s s a i d t o be a c o a t g e b r a of b i n o m i a l t y p e . I t i s t h e n a s t r i c t l y g r a d e d c o a l g e b r a . I n p a r t i c u l a r , bo i s t h e u n i q u e g r o u p - l i k e e l e m e n t ( i . e . Abo=bo@3bo) and bl i s a p r i m i t i v e e l ement ( i . e . Abl=bl@bo + b o @ b l ) . The d u a l a l g e b r a C' i s n a t u r a l l y endowed w i t h a t o p o l o g i c a l s t r u c t u r e ( t h e s o - c a l l e d f i n i t e t o p o t o g y ) assuming t h e f a m i l y Ui = IBEV
1 ( V j ) ( j s i =$ B ( b1. ) = O l ,
ieN
a s a b a s e f o r a s y s t e m o f n e i g h b o u r h o o d s o f z e r o . With t h i s t o p o l o g y , e a c h e l e m e n t a o f C y c a n be r e p r e s e n t e d a s f o l l o w s : i n i a = 1 a.b := l i m .Z a . b i>o 1 n-m i=o 1 where a := < a l b i > : = a ( b i ) E K i and bi: V-K i b -6. j 3 i T h i s i s sometimes e x p r e s s e d by s a y i n g t h a t ( b ) i E N i s a p s e u d o - b a s i s o f v". With r e f e r e n c e t o a f i x e d b a s i s ( b i ) and i t s d u a l p s e u d o - b a s i s ( b i ) , we c a n r e p r e s e n t e a c h c o u p l e o f e l e m e n t s i " i a = L aib EC' Z a bi E C , i=o i>o i i r e s p e c t i v e l y a s a c o l u m n - v e c t o r ( a ) o f e n t r i e s a and a s a row-vecT h u s , we may w r i t e t o r ( a , )o f e n t r i e s a 1 i' i .(a) = : < a l a > = ( a i ) * ( a ) .
a =
Moreover, f o r a n y g i v e n l i n e a r map f : V - V l e t us define the repres e n t i n g m a t r i x M f f ) , i n t h e same way a s i n t h e f i n i t e - d i m e n s i o n a l c a s e , t o be t h e ( N r N ) - m a t r i x whose ( r , s ) - e n t r y i s g i v e n by < r l f ( s > := < b r l f ( b s ) > = < p ( b r ) l b S >
.
Of c o u r s e t h e same m a t r i x a l s o r e p r e s e n t s t h e d u a l map f*: M(f)=M(f*). N o t i c e t h a t t h e i - t h column f ( b i ) o f M(f) h a s a f i n i t e s u p p o r t . Using t h e above n o t a t i o n a l c o n v e n i e n c e s , w e may e a s i l y d e d u c e t h e following : Prop. 2 .
A l i n e a r map
g:C*--tCu
i s a continuous ( r e l a t i v e t o the
L. Cerlienco. G. Nicoletti and F. Piras
162
f i n i t e t o p o l o g y ) i f and onZy i f t h e r e e x i s t s a l i n e a r map f : C - + C s u c h t h a t g=f”.
Proof. In fact g is continuous if and only if its representing matrix M(g) has columns with finite support. 0 i i i If cr=~a.b , B = c ~ . b and y=zy.b :=m(a@B), we have 1 1 i i y i = 2 h. a . B . (10) j=o J J 1-j s o that hi’s are also the structure constants of the algebra C* relative toJ the pseudo-basis (b’). This, together with Prop.1 and 2, imp1 ie s : Prop. 3 . I f C i s a c o a Z g e b r a of b i n o m i a l t y p e , t h e n map ( 7 ’ ) i s a n i s o m o r p h i s m of a l g e b r a s . Proof. In fact, for every @EC* the representing matrix of the lin-
ear map m(-@g),
because of (lo), has columns with finite support.
1.3. Commutativity of diagrams (1) and (2) gives.rise to the following identities relative to structure constants hl: I i . h. h’ = (11) J
r
(12) Obviously, C is cocommutative if and only if i
i
h. = himj. (13) J The structure constants hi of a coalgebra of binomial type can all be expressed in terms &f h i alone, which will be more simply denoted by ni:=ht. In fact, we have the following: Prop. 4 . ~E{z,z,
t h e n f o r e v e r y i and e v e r y
f o r lrjss-1 b u t n s = O , 5e haue:
I f rl .#O
..., s-11
a)
n
b) i f
el
P
=O f o r some p > s , t h e n
i
i+l
J
j
h:h
*
I f i n s t e a d q.#O
...
.hi+s-j
=
j
and n i ! : =
3
j
+1
i
ti.i 11
rli-l!
oi
)
+j - 1
=...=h;
=O;
0.
f o r e v e r y j, t h e n h j =
3 q0!:=1
h!=hP
ni! = 0
,
i’‘ lli-i*
(where
f o r e v e r y i and e v e r y j . I n such a c a s e ,
C i s cocommutative. i-1 Proof. For r-1, (11) gives hi = hj-l ni/nj. From this, we deduce by recurrence both a) and b). Let us first prove c) when j=1. From (11) and a) we get
163
Polynomial Sequences and Incidence Coalgebras
and t h e n , s i n c e n =O, c ) f o l l o w s from tge case s t a t e m e n t i s now t r i v i a l .
..
i i+l i+s-li+s-l=h . hl . .hl -0. When j > l , and from b j . The second p a r t o f t h e
nini+b".n J=
0
Thus, e a c h c o a l g e b r a o f b i n o m i a l t y p e C i s c h a r a c t e r i z e d , r e l a t i v e Accordingly, we s h a l l t o t h e b a s i s ( b i ) , by t h e sequence TI=(, ) n nc w r i t e C,=(V,A,,E) i n s t e a d o f C=(V,A,c). F u r r h e r m o r e , C, i s s a i d t o be o f full b i n o m i a l t y p e i f q l = l and q i # O f o r e v e r y i > O .
.
P r o p . 5 . Any t w o c o a l g e b r a s o f f u l l b i n o m i a l t y p e , s a y C and CA, ll are isomorphic a s coalgebras:
c
(14)
n
bi
a c----t
qi
!/Ai
.f b i .
Proof. T r i v i a l . Here a r e some examples: i i i 1) C o a l g e b r a o f p o l y n o m i a l s : C,,=K[xl, b . = x , h . = ( . ) , nn=n. C; i s t h e a l g e b r a o f d i v i d e d power s e r i e s . I n t h e l f o l l o w l n g J we s h a l l d e n o t e t h i s coalgebra w i t h CN. i 2 ) C o a l g e b r a o f d i v i d e d powers: C =K[x], h . = n . = l . C* i s t h e a l g e b r a 11 1 1 rl of f o r m a l power s e r i e s . [i] ! 3 ) q - e u l e r i a n c o a l g e b r a : C =K[x], h i. = ( i. ) = (Gaussian rl J J [jlq! [i-jlq! 2
:= l + q + q + . . . + q c o e f f i c i e n t s ) and n i = [ i J algebra of formal e u l e r i l n series.
i-1
.
C*
n
i s s a i d t o be t h e
C o a l g e b r a s l i k e t h e s e have a s i g n i f i c a n t c o m b i n a t o r i a l c o u n t e r - p a r t . Let 5' be a l o c a l l y f i n i t e p a r t i a l l y o r d e r e d s e t ( f o r s h o r t , 1 . f . poset) t h a t s a t i s f i e s t h e following f u r t h e r conditions: a ) a l l maximal c h a i n s i n a g i v e n i n t e r v a l [x,y] o f 9 have t h e same c a r d i n a l i t y ( e q u a l t o " l + l e n g t h [ x , y ] " ) (Jordan-Dedekind c h a i n c o n d i t ion) ; b ) a l l i n t e r v a l s o f l e n g t h n i n 9 p o s s e s s t h e same number, s a y B n , o f maximal c h a i n s ; c ) t h e r e e x i s t s i n '7 o n l y one minimal e l e m e n t . A f t e r [ 1 2 ] , t h e s e p o s e t s a r e s a i d t o be 1.f. p o s e t s of full b i n o m i a l t y p e . With e v e r y 1 . f . p o s e t o f f u l l b i n o m i a l t y p e o f i n f i n i t e l e n g t h one c a n a s s o c i a t e a c o a l g e b r a of f u l l b i n o m i a l t y p e C,=(K[X],A,,E) - t h e s o - c a l l e d maximally r e d u c e d i n c i d e n c e c o a l g e b r a o f ( 7 - by d e n o t i n g w i t h b i t h e r e s i d u a l c l a s s o f a l l i n t e r v a l s o f t h e same l e n g t h i i n 9 and assuming n i = B i . Thus, e a c h s t r u c t u r e c o n s t a n t hf g i v e s t h e number h l = Bi/B,Bi-j o f e l e m e n t s o f r a n k j i n a n y i n t e r v a l o f l e n g t h i . I n $ h i s way, t h e c o a l g e b r a s c o n s i d e r e d above c o r r e s p o n d r e s p e c t i v e l y t o t h e following posets: a) t h e l a t t i c e of a l l f i n i t e s u b s e t s o f a c o u n t a b l e s e t ; b) t h e c o u n t a b l e c h a i n ; c ) t h e l a t t i c e of a l l f i n i t e - d i m e n s i o n a l subspaces of a v e c t o r space of dimension w o v e r GF(q)
.
164
L. Cerlienco, G. Nicoletti and F. Bras
12.
I n t h i s s e c t i o n we s h a l l show how b o t h automorphisms and hemimorphisms o f a c o a l g e b r a o f f u l l b i n o m i a l t y p e C, are a s s o c i a t e d w i t h s p e c i a l s e q u e n c e s o f p o l y n o m i a l s , whose g r e a t i n t e r e s t i s well-known ( a t l e a s t i n the p a r t i c u l a r c a s e of t h e coalgebra of polynomials). 2.1. Let u s b e g i n by g e n e r a l i z i n g t h e n o t i o n o f p o l y n o m i a l s e q u e n c e o f b i n o m i a l t y p e ( s e e (171 ) , I n o r d e r t o s t u d y a n a l i t i c a l l y a c o a l g e b r a C = ( V , A , E ) g i v e n i n some i n t r i n s i c way, i t i s c l e a r t h a t we may a r b i t r a r i l y c h o o s e any b a s i s ( v i ) o f V . Then, a l l we have t o know i s t h e v a l u e o f s t r u c t u r e con-
~. s t a n t s T~J r, c i o c c u r r i n g i n A V . = . L T J v~. @ v and E ( ~ . ) = E How1 i s h f h i A g 'but a usefuf t o o l . Thus, e v e r , t h e chosen b a s i s (vi) i t may happen t h a t t h e a n a l y s e s r e g a r d i n g C c a r r i e d o u t u s i n g two d i f f e r e n t b a s e s ( v i ) , (v;) c a n n o t be compared t o each o t h e r by means o f t h e map v i - v i . T h i s remark j u s t i f i e s t h e f o l l o w i n g d e f i n i t i o n . ,E) be a c o a l g e b r a o f ( f u l l ) b i n o m i a l t y p e and l e t ( b i ) L e t C,=(V,a b e a b a s i s l i x e d on i t . A new b a s i s (b:) o f V i s s a i d t o be an q - b a s i s of C i f t h e t h e map rl f : C -c (15) 0
b.
1
-
rl
b:
i s a n automorphism o f c o a l g e b r a s , t h a t i s
.
A,b!
(16)
= j=O
1
.
I'![J q
b!gbi-j. 3
C o n s i d e r t h e isomorphism $I:
c -cN n
bi-
ni!/i!
x
i
from C n t o t h e c o a l g e b r a o f p o l y n o m i a l s C N . We s h a l l s a y t h a t a s e q u e n c e p i ( x ) of p o l y n o m i a l s i s n-nomial i f t h e r e e x i s t s a n - b a s i s such t h a t p i ( x ) = $ ( b i ) . I t i s simple t o prove t h a t : (b:) i n C, P r o p . 6 . A polynomial sequence p i ( x j d ( [ x ] , onZy i f t h e f o l l o w i n g s t a t e m e n t s h o l d : 1 ) degfpil = i; 2 1 p o ( x l = I; 3) p i l o ) = 0 f o r every i f 0 ;
;EN,
i s q-nornial i f and
0 The i n t e r e s t i n q-nomial s e q u e n c e s o f p o l y n o m i a l s i s due t o t h e f a c t t h a t t h e y e n a b l e u s t o c a r r y o u t n - a n a l o g o f umbra1 c a l c u l u s a l o n g t h e l i n e s f o l l o w e d b y Rota and o t h e r s [17] , [18] ( s e e a l s o [ 8 ] , 191 ,[14). The f o l l o w i n g p r o p o s i t i o n s p r o v i d e u s w i t h a u s e f u l t o o l i n o r d e t t o g e t 17-nomial s e q u e n c e s . L e t C, be a c o a l g e b r a o f f u Z Z binomiaZ t y p e a n d Zet be a morphism of coaZgebra8. T h e n t h e r e p r e s e n t a t i v e m a t r i x i s c o m p l e t e l y d e t e r m i n e d by f"(bl):
Prop. 7 . f:C,,-C, M(f)
165
Polynomial Sequences and Incidence Coalgebras
w h e r e t h e i - t h power i s c a l c u l a t e d i n C , .
Proof.
With a straightforward calculation, from (3) we get t 0 r+s.[ 1 = j g o 151 <slflt-j>; < 0 / f / t > =t6 n rl which imply (18). i If a = .l Zd 0 a.b , B = .1)Z 1 Bib i EC,,* the element 1.3Z0 ( a1. / n1.! ) B iE C is ~ said 1 to be the c o m p o s i t i o n of a and Prop. (191
8.
The map
13
and denoted by
a0B.
--
A
Aut(C,l
C;
f ' f*(bl) i s a n i s o m o r p h i s m o f t h e g r o u p A u t l C , ) o f - t h e a u t o m o r p h i s m s of t h e of t h e e l e m e n t s c o a l g e b r a C , on t h e c o m p o s i t i o n a l g r o u p ( C G , o ) a=ZaibicC; s u c h t h a t ao=O#al. Proof. Because of (18), map M(fog)=M(f)xM(g) it follows:
(fog)'
1 (b )
=
19) is a bijection. Moreover, from
i$o
2.2. We come now to sequences of polynomials associated with hemimorphisms. For the sake of simplicity, in the remainder of this section we assume that the underlying vector space of the coalgebra of binomial type (not necessarily of full binomial type) C, is V=K[x] with its canonical basis bi=xi: i i i i-j A x = Z 11. xj8x . rl j=o J and Moreover, let,us identify the linear dual of K[x] with K[[x]] denote also b1 by X I ; thus, in general, the "series" x i is not the i-th power 6 f x1 in C;. i i Consider in :C the element < = x . (zeta-function) I and let u=.Z LJX 130 1
1+0
(Miibius function) be its multiplicative inverse: r,u =l. We have: P r o p . 9. and l e t
L e t f : C,+C D
'n
rl
be a h e m i m o r p h i s m s u c h t h a t i n d ( f l = f * ( l ) = u
( x i := f l x n i =
.;
z=o
hl
i
' I ~ -x ~
EC
n
.
T h e n t h e s e q u e n c e ( P i x , y i l n e N of homogeneous p o l y n o m i a l s d e f i n e d by a P (x,ll=p (xi satisfzes the identities: n P ( x , y J = Z hn P ( x , z l P Iz,yl ( 2 0) n k=o k k n-k (21)
More generally:
P (1,O)
n
= 1.
L. Cerlienco, G. Nicoletti and F. Piras
166
i
If u = . E
Prop. 10.
u.x i s an e l e m e n t o f ,C; g:C,-C i s t h e hemiz A n i n x morphism of i n d i c a t o r u, s 1xJ i s t h e p o l y n o m i a l g ( x I = L h a n i=o i n - i a n d S ( x , y l t h e homogeneous p o l y n o m i a l such t h a t S ( x , l ) = s ( x J , t h e n n n ue have n fz,y) S ( x , y ) = c hn P ( x , z ) S (22) k=o k k n-k n uhere Pk I x , y l i s a s i n Prop. 9 . 230
I n o r d e r t o p r o v e t h e p r e v i o u s p r o p o s i t i o n s , w e need t h e f o l l o w i n g f o u r lemmas. n r r n-r Lemma 1 . F o r a r b i t r a r i l y g i v e n polynomiaZs P ( ~ , y ) = ~ p: n~ x y n n r r n-r , the identity and S ( ~ , y ) = , s~n ~x y n 4 (23) qw k =z r hnk p rk s q n --kk = 6 rq s qn ,
is e q u i v a l e n t t o ( 2 2 1 . Proof.
igcittity
Conside6 t h t
n
k=o r = o t = o A ( k , r s t ) = Formula ( 2 2 ) becomes : E
Z
(24)
tzo
n-t t+r rfo kfr A(ksr,r+t-k)
(because of ( 2 4 ) ) r r n-r
n - t t+r r+t-k = r i o ~ -nt n=E ~ o r =z~ o k z= r h kn p kr s n-k n
=
rso {Sn-hr
n
Pr
n-t
- t =E l r z o '
n - r IxrYn-'
so
r n-r-t
X Y
z
t -
t+r I: hn pr s r + t - k k = r k k n-k
-
r n-r-t t y
z
Putting r+t=q, t h i s i s equivalent t o ( 2 3 ) . n r r n-r be a sequence o f p o l y n o m i a l s Lemma 2 . L e t P n I X , ~ ) = ~ $p n~ x y Let us consider the matrices P=(prl
s a t i s f y i n g ( 2 0) and 1 2 1 ) . &(hn) k
(251
n
( w i t h hn=o f o r n < k ) . Then k t . tl?.P
Thus, t h e sequence P (x,yJ n c i e n t s hn.
=
Pa h
=o. 0
and
= I.
i s compZetely determined by t h e c o e f f i -
k
Proof.
From (ZO), when y = o and z = 1 , we g e t xn
n
=
kio
This, together with pn(x,l)
hn P ( x , l ) . k k n = kgo P: Xk,
e x p r e s s e s t h e change o f b a s e s
xn-P
n
( x , l ) i n K[x], t h a t i s ( 2 5 ) ~
167
Polynomial Sequences and Incidence Coalgebras Lemma 3 .
I n t h e h y p o t h e s e s o f Lemma 2 . ,
the identity
(26)
i s e q u i v a l e n t t o / 2 3 ) , and t h e n t o ( 2 2 ) .
r Proof. ( 2 3 ) i m p l i e s ( 2 6 ) . I n f a c t , i f we m u l t i p l y (23) by ht and sum w i t h r e s p e c t t o t h e i n d e x r , t h e n w e g e t : k ,qn hqt = r = t k = r hn k p kr ,qqk n-k hrt = k = t hnk sq-k n-k r = 1 t p i hf =
2
2 9
(because o f (25)) hn s q - k g k = hn sq-t k = t k n-k t t n-t' C o n v e r s e l y , (26) i m p l i e s (23) : 6: s: = ( b e c a u s e o f ( 2 5 ) ) = sn 9 k& 9 =
3
h:
pk r =
1
k=r
hn ,q-k r k n-k 'k'
cr
n
~ b e yan a r ~b i t r a r- y s e~q u e n c e o f Lemma 4 . Let P (x,y)= z p k ~ n k=o n p o l y n o m i a Z s . T h e n , ( 2 0 ) a f 2 3 ) I ( ( 2 5 1 and (26)) w i t h s k = p k n n P r o o f . A s i n Lemma 1 . a n d Lemma 3 .
. 0
n - b s~e r v e t h a t P r o o f o f P r o p . 9 . C o n s i d e r t h e c o e f f i c i e n t s pA=hi+u ~. . .O t h e h y p o t h e s i s c p = 1 i s e x p r e s s e d by ( 2 5 ) . T h e r e f f i r e , owing t o Lemma 4 . , i t i s s u f f i c i e n t t o p r o v e f o r m u l a ( 2 6 ) . I n f a c t we h a v e : qwt = h: hn-t = ( b e c a u s e o f ( 1 1 ) ) = hn hq ht Pn-t q - t n-q q t n-q - ht P n * By a s i m i l a r a r g u m e n t , one c a n p r o v e P r o p . 1 0 ~
C o n v e r s e l y , i f we c a l l a n y s e q u e n c e o f homogeneous p o l y n o m i a l s P (xd ( r e s p e c t i v e l y , S n ( x , y ) ) s a t i s f y i n g (20) and ( 2 1 ) ( r e s p e c t i v e l y , ( 9 2 ) ) r e l a t i v e t o s u i t a b l e c o e f f i c i e n t s hf a GoZdman-Rota-sequence ( r e s p e c t i v e l y GoZdman-Rota- A e f f e r - s e q u e n c e ) , i t i s p o s s i b l e t o p r o v e t h a t : Prop. 1 1 . The c o e f f i c i e n t s h: (hn#Ol a s s o c i a t e d w i t h a n y Goldman- R o t a - s e q u e n c e can b e a s s u m e d a s s t g u c t u r e c o s t a n t s o f a c o a l g e b r a o f binomial type. P r o o f . We h a v e t o p r o v e t h a t (20) i m p l i e s b o t h (11) a n d ( 1 2 ) . We h a v e i h i h!-r = 1 A i h k hk-r = ( b e c a u s e o f Lemma 2 . ) r J-r k=r k r j-r =
i
z
{
i
z
k = r n=k
p
k
n
i
hn}h:
hk-r = ( b e c a u s e of ( 2 6 ) ) j -r
kzr
ic h i h k k-r = h: h: n h k. - r k-r = . -r k = r n = k n j - r h r 'n-r n=r J - r Pn-r ( b e c a u s e o f Lemma 2 . ) . . i = c h: . hrn 6 nj --rr = h i h: , n=r Moreover, (12) i s a s t r a i g h t f o r w a r d conset h a t i s f o r m u l a (11); q u e n c e o f ( 2 1 ) and Lemma 2 .
= iz
L. Cerlienco. G . Nicoletti and F. Piras
168
In conclusion, we give a combinatorial interpretation to both Goldman- Ro ta-sequences and Goldman-Ro ta-Sheffer-sequence s. Prop. 12. L e t C, b e t h e m a x i m a l l y r e d u c e d i n c i d e n c e c o a l g e b r a o f a 1 . f . p o s e t of f u l l b i n o m i a l t y p e 9. I n r e s p e c t o f t h i s c o a l g e b r a C q J l e t u s c o n s i d e r t h e Goldman-Rota-sequence Pnlx,yl and t h e Goldman-Rota- S z e f f e r - s e q u e n c e a s s o c i a t e d w i t h t h e s e r i e s c=;.,~ x n . F u r t h e r ?O more, l e t pn(x)=Pn(x,l) a n d s n ( x 1 = ~ ( x , l ) . Then e a c h z n t e r v a l of l e n g t h n i n T has p n ( x l a s its c h a r a c t e r i s t i c p o l y n o m i a l and s , ( x l a s i t s l e v e l number i n d i c a t o r ( t h a t i s , t h e c o e f f i c i e n t s of S n ( x ) a r e t h e l e v e l numbers of s e c o n d k i n d o f t h e g i v e n i n t e r v a l ) .
Proof. See [7]. REFERENCES: Abe, E., Hopf Algebras (Cambridge Univ. Press, Cambridge, 1980). Aigner, M., Combinatorial Theory (Springer-Verlag, New York, 1979). Allaway, W.R., A Comparison o f two Umbral Algebras, J.Math. Anal.App1. 85 (1982) 197-235. Andrews, G.E., On the Foundations o f Combinatorial Theory V: Eulerian Differential Operators, Studies in Appl.Math. 50 (1971) 345-375, Cerlienco, L . and Piras, F . , Coalgebre graduate e sequenze di Goldman-Rota, Actes du Sdminaire Lotharingien de Combinatoire, Publ. de l’IRMA, Strasbourg, 230/S-09 (1984) 113-125. Cerlienco, L . and Piras, F . , Aspetti coalgebrici del calcolo umbrale, Atti del Convegno “Geometria combinatoria e d’incidenza: fondamenti e applicazioni”, Rend.Sem.Mat. Brescia 7 (1984) 205-217. Cerlienco, L. and Piras, F., G-R-sequences and incidence coalgebras of posets o f full binomial type, J.Math.Anal.App1. (to appear). Cerlienco, L., Nicoletti, G. and Piras, F., Automorphisms of graded coalgebras and analogs of the umbra1 calculus, Actes du Sdminaire Lotharingien de Combinatoire. Publ. de l’IRMA, Strasbourg, 230/S-09 (1984) 126-132. Cerlienco, L., Nicoletti, G. and Piras, F., Coalgebre e Calcol o Umbrale, Rend.Sem.Mat.Fis. Milano (to appear). Cerlienco, L., Nicoletti, G. and Piras, F., Umbral Calculus, Actes du Sdminaire Lotharingien de Combinatoire, Publ. de l‘IRMA, Strasbourg, 266/S-11 (1985) 1-27. 1113
Comtet, L., Advanced Combinatorics (Reidel P.C., Boston, 1974).
Polynomial Sequences and Incidence Coalgebras
169
Doubilet, P., Rota, G.-C. and Stanley, R . P . , On the Foundations o f Combinatorial Theory VI: The Idea of Generating Function, in: Rota, G.-C. (Ed.), Finite Operator Calculus (Academic Press, New York,1975) 83-134. Garsia, A.M. and Joni, S.A., Composition Sequences, Comm. Algebra 8 (1980) 1195-1266. Goldman, G.R. and Rota, G.-C., On the Foundations o f Combinatorial Theory IV:’ Finite Vector Spaces and Eulerian Generating Functions, Studies in Appl.Math. 49 (1970) 239-258. Ihrig, E.C. and Ismail, M.E., A q-umbra1 Calculus, J.Math.Ana1. Appl. 84 (1981) 178-207. Joni, S.A. and Rota, G.-C., Coalgebras and Bialgebras in Combinatorics, Studies in Appl.Math. 61 (1979) 93-139. Mullin, R. and Rota, G.-C., On the Foundations o f Combinatorial Theory 1 1 1 : Theory o f Binomial Enumeration, in: Harris (Ed), Graph Theory and its Applications (Academic Press, New York, 1970) 167-213. Rota, G.-C., Kahaner, D. and Odlyzko, A., On the Foundations o f Combinatorial Theory V I I I : Finite Operator Calculus, J.Math.
Anal.App1. 42 (1973) 684-760.
I 191
Taft, E.J., Non-cocommutative Sequences o f Divided Powers, Lecture Notes in Math. 933 (Springer-Verlag, New York, 1980) 203-209.
This Page Intentionally Left Blank
Annals of Discrete Mathematics 30 (1986) 171-184 0 Elavier Science Publishers B.V. (North-Holland)
171
R-REGULARITY AND CHARACTERIZATIONS OF THE GENERALIZED QUADRANGLE P(W(s),( - ) ) M.
De S o e t e a n d J . A .
Thas
S e m i n a r of G e o m e t r y S t a t e U n i v e r s i t y o f Ghent Krijgslaan 281 B-9000 Gent-Belgium
I n a generalized quadrangle of order ( s , s + 2 ) , s # 1, r e g u l a r p o i n t s c a n n o t o c c u r . T h e r e f o r e
we i n t r o d u c e t h e n o t i o n o f R - r e g u l a r i t y f o r p o i n t s and l i n e s i n t h o s e g e n e r a l i z e d quadrangles o f order, ( s , s t 2 ) which c o n t a i n a s p r e a d R U s i n g t h e s e new c o n c e p t s we g i v e t h r e e c h a r a c t e r i z a t i o n theorems f o r P(W(s),(m)). I. INTROUUCTION 1. DEFINITIONS
A f i n i t e generaZized quadrangle i s a n i n c i d e n c e s t r u c t u r e S = (P,B,I)
Zines r e s p . ,
where P a n d B are s e t s o f e l e m e n t s c a l l e d points a n d w i t h a symmetric i n c i d e n c e r e l a t i o n I which s a t i s f i e s
the f o l l o w i n g axioms :
( i ) each p o i n t i s i n c i d e n t with l+t l i n e s ( t 1 ) a n d two d i s t i n c t p o i n t s a r e i n c i d e n t w i t h a t most one l i n e ;
( i i ) e a c h l i n e i s i n c i d e n t w i t h l t s p o i n t s (s > 1 ) a n d t w o d i s t i n c t l i n e s a r e i n c i d e n t w i t h a t most one p o i n t ; ( i i i ) f o r e a c h n o n - i n c i d e n t p o i n t - l i n e p a i r (x,L), t h e r e e x i s t s a u n i q u e p a i r (y,M) E P X B s u c h t h a t x I M I y I L . We c a l l s a n d t t h e parametersof t h e g e n e r a l i z e d q u a d r a n g l e , a n d ( s , t ) ( o r s i f s = t ) i s t h e o r d e r of S . T h e r e h o l d s IPI = v = ( l + s ) ( l + s t ) IBI , = b = ( l + t ) ( l + s t ) and s + t I s t ( s t l ) ( t + l ) 1 1 2 1 . M o r e o v e r t h e r e i s a point-line d u a l i t y f o r g e n e r a l i z e d q u a d r a n g l e s o f o r d e r ( s , t ) ; t h i s means t h a t i n a n y d e f i n i t i o n o r t h e o r e m t h e w o r d s p o i n t a n d l i n e a n d t h e p a r a m e t e r s s a n d t may b e interchanged. If t h e p o i n t s x , y ( r e s p . l i n e s L,M) a r e c o l l i n e a r ( r e s p . c o n c u r r e n t ) we write x y (resp. L M ) . The l i n e d e f i n e d by d i s t i n c t
-
-
c o l l i n e a r p o i n t s x , y i s d e n o t e d by x y ; t h e p o i n t d e f i n e d b y d i s t i n c t c o n c u r r e n t l i n e s L,M i s d e n o t e d b y LM o r L n M .
M.de Soete and J.A . Thas
112
L e t S b e a g e n e r a l i z e d q u a d r a n g l e of o r d e r ( s , t ) . F o r x E P , we d e f i n e t h e s t a r of x as x'
{z
E
P II z
-
X I ; remark t h a t x
The t r a c e of two d i s t i n c t p o i n t s ( x , y ) i s t h e s e t x 1
.
1
1
E
x
1
.
y l and i s
-
d e n o t e d by { x , y } There holds I{x,yI I = s + l i f x y and 1 I{x,y} 1 t + l i f x f y . More g e n e r a l l y , f o r A C P we d e f i n e n{xl
A'
I1 x
E
A}.
F o r x # y we d e f i n e t h e s p a n o f ( x , y ) as t h e 1
set {x,y}ll { u E P II u E z', Vz E { x , y } I . If x f y , t h e s e t {x,y}" i s a l s o c a l l e d t h e h y p e r b o Z i c l i n e d e f i n e d by x a n d y . We 11 have I [ x , y } I s + l i f x y a n d I { x , y }11 I < t + l i f x f y . A p a i r
-
of d i s t i n c t p o i n t s ( x , y ) i s r e g u l a r p r o v i d e d x - y o r x f y a n d l{x,y}l11 = t + l . A p o i n t x i s reguZar provided ( x , y ) i s r e g u l a r f o r all y P , y # x . If S h a s a r e g u l a r p a i r o f r i o n - . c n l l i n , - a r p o i n t s , then s 1 or s t 1 9 1 . A triad of p o i n t s i s a t r i p l e o f p a i r w i s e n o n - c o l l i n e a r p o i n t s . A p o i n t u i s c a l l e d a c e n t e r of t h e t r i a d 1 ( x , y , z ) i f f u E x i n yl n z '. A s p r e u d o f S i s a s u b s e t R o f B s u c h t h a t e a c h p o i n t o f S i s i n c d e n t w i t h e x a c t l y one l i n e o f R . T h e r e holds I R I st+l. 2 . THE MODELS W ( q ) , T 2 ( 0 ' ) , T;(O)
( a ) The p o i n t s of P G ( 3 , q
AND P ( S , x )
together with t h e t o t a l l y i s o t r o p i c
l i n e s with respect t o a symplectic p o l a r i t y , define a generalized 2 q u a d r a n g l e W(q) w i t h p a r a m e t e r s s = t = q , v = b = ( q + l ) ( q t l ) .
We r e m a r k t h a t t h e l i n e s of W(q) a r e t h e e l e m e n t s o f a l i n e a r l i n e complex i n PG(3,q) [ 1 0 1 .
All p o i n t s o f W(q) a r e r e g u l a r ; t h e l i n e s of W(q) a r e r e g u l a r i f f q i s e v e n [ 9 1 . We n o t e a l s o t h a t W(q) i s s e l f - d u a l
i f f q i s even
I 9 1. ( b ) Let 0' be an oval [
4]
o f PG(2,q)
H , w h e r e H i s embedded i n
P. Define p o i n t s as ( i ) t h e p o i n t s o f P \
(ii) the p l a n e s X o f P w i t h IX n 0'1 = 1, ( i i i ) a new symbol ( m ) . The l i n e s a r e ( a ) t h e l i n e s o f P w h i c h a r e n o t c o n t a i n e d i n H a n d meet O f , PG(3,q)
H,
a n d ( b ) t h e p o i n t s of 0'. The i n c i d e n c e i s d e f i n e d as f o l l o w s . A p o i n t o f t y p e ( i ) i s o n l y i n c i d e n t w i t h l i n e s of t y p e ( a ) a n d t h e i n c i d e n c e i s t h a t o f P . A p o i n t of t y p e ( i i ) i s i n c i d e n t w i t h t h e l i n e s of t y p e ( a ) a n d ( b ) c o n t a i n e d i n i t . The p o i n t
(m)
i s incident
w i t h n o l i n e of t y p e ( a ) b u t w i t h a l l l i n e s of t y p e ( b ) . The obtained s t r u c t u r e i s a generalized quadrangle with parameters 2 s = t q , v = b = ( q + l ) ( q t 1 ) a n d i s d e n o t e d by T 2 ( O ' ) . T h e s e q u a d r a n g l e s a r e due t o J . T i t s
[4].
The q u a d r a n g l e T 2 ( 0 ' )
i s i s o m o r p h i c t o W(q) i f f q i s e v e n a n d 0' i s a n i r r e d u c i b l e c o n i c
1 9 1 . F u r t h e r , a l l p o i n t s of t y p e ( b ) are r e g u l a r , and t h e p o i n t i s r e g u l a r i f f q i s even [ 9 l .
(m)
R-Reguiaritv of the Generalized Quadrangle P( W ( d . (-I)
173
( c ) L e t 0 b e a c o m p l e t e o v a l ( i . e . a ( q + 2 ) - a r c 1101) o f t h e p l a n e a t i n f i n i t y o f A G ( j , q ) , q e v e n . The p o i n t s o f t h e s t r u c t u r e T ; ( O ) a r e t h e p o i n t s o f A G ( 3 , q ) ; t h e l i n e s o f T;(O) a r e t h e l i n e s of AG(3,q) i n t e r s e c t i n g t h e p l a n e a t i n f i n i t y i n t h e p o i n t s of 0 ; t h e i n c i d e n c e i s t h a t o f AG(3,q). Then T;(O) i s a g e n e r a l i z e d q u a d r a n g l e o f o r d e r ( q - l , q + l ) . It w a s f i r s t d i s c o v e r e d by R.W. A h r e n s a n d G. S z e k e r e s [ 1 ] a n d i n d e p e n d e n t l y by P4. H a l l J r . I 5 1 . A p a i r o f n o n - c o n c u r r e n t l i n e s (L,M) o f T;(O) is r e g u l a r i f f t h e l i n e s a r e p a r a l l e l 1 9 1. ( d ) I n [ 7 1 S . E . Payne g i v e s a n i m p o r t a n t c o n s t r u c t i o n o f g e n e r a l i z e d q u a d r a n g l e s o f o r d e r (s-l,s+l). C o n s i d e r a g e n e r a l i z e d q u a d r a n g l e S = ( P , B , I ) o f o r d e r 5,s > 1, w i t h a r e g u l a r p o i n t x . 1 D e f i n e PI a s t h e s e t P \ x I n B' t h e r e a r e t w o t y p e s o f e l e m e n t s : t h e e l e m e n t s of t y p e ( a ) a r e t h e l i n e s of B which are m t i n c i d e n t 11 with x, the elements of type ( b ) are t h e hyperbolic l i n e s {x,y} , y t. x . Now w e d e f i n e t h e i n c i d e n c e r e l a t i o n . If y E P ' , L E B ' w i t h L a l i n e o f t y p e ( a ) , t h e n y 1' L i f f y I L ; i f y E I" a n d L E B' w i t h L a l i n e o f t y p e ( b ) t h e n y I ' L i f f y E L . Then t h e s t r u c t u r e S ' = ( P f , B f , I f ) i s a g e n e r a l i z e d q u a d r a n g l e o f o r d e r (s-l,s+l) a n d i s d e n o t e d by P(S,x). I n t h e even c a s e t h e g e n e r a l i z e d quadrangle P ( W ( q ) , x ) , x a p o i n t o f W(q), i s i s o m o r p h i c t o a T;(O) ( h e r e 0 i s a n i r r e d u c i b l e c o n i c t o g e t h e r w i t h i t s n u c l e u s ) [ 9 1. The g e n e r a l i z e d q u a d r a n g ! e P(T2(01),(m)), w i t h T 2 ( 0 ' ) as i n ( b ) a n d q e v e n , i s i s o m o r p h i c t o T;(O) where 0 = 0' U { n } w i t h n t h e n u c l e u s o f 0' [9]. I n P ( W ( q ) , x ) , q o d d , a p a i r of n o n - c o n c u r r e n t l i n e s ( L , M ) i s r e g u l a r i f f o n e o f t h e f o l l o w i n g c a s e s o c c u r : (i) L a n d M a r e l i n e s o f t y p e ( b ) , ( i t ) L a n d M a r e c o n c u r r e n t l i n e s o f W(q) ( b u t a r e n o t c o n c u r r e n t i n P ( w ( q ) , x ) ) ; i n P ( w ( q ) , x ) , q e v e n , a p a i r of non-conc u r r e n t l i n e s (L,M) i s r e g u l a r i f f one o f t h e f o l l o w i n g c a s e s o c c u r s : ( i ) L a n d M a r e l i n e s o f t y p e ( b ) , ( i i ) i n W(q) some l i n e o f {L,M)' i s i n c i d e n t w i t h x.
.
1 7 . R-REGULARITY OF POINTS AND LINES 1. DEFINITIONS
Consider a generalized quadrangle S
(P,B,I)
of o r d e r (s,s+2),
s > 1. S i n c e 1 :. s .< t r e g u l a r p o i n t s c a n n o t o c c u r [ 9 1 . M o r e o v e r , i n t h e known e x a r z p l e s a l s o r e g u l a r l i n e s d o n o t o c c u r . T h e r e f o r e we i n t r o d u c e t h e c o n c e p t o f R - r e g u l a r i t y .
M. de Soete and J.A. Thas
174
I n what f o l l o w s w e a l w a y s assume t h a t t h e g e n e r a l zed q u a d r a n g l e 2 o f o r d e r (s,s+2) c o n t a i n s a s p r e a d R ( I R - s t l ) ) .
S = (P,B,I)
1.
= {z E P 1 I z -. x , z # x , zx 4 R u { X I I* For a p a i r o f d i s t i n c t p o i n t s x,y we d e n o t e t h e set x n yl* as
F o r x E P, we d e f i n e x
-y
.
I stl. b u t xy 4 R , t h e r e h o l d s I { x , y ) 1. II x E A } . So f o r a More g e n e r a l l y , f o r A C P we d e f i n e A'* 9Ix l*l* p a i r o f n o n - c o l l i n e a r p o i n t s x , y we have { x , y l - I u E P II u z, uz 4 R , Vz E ( x , y I 1 * } So we o b t a i n I I x , y ) ' * l * I < s t l . I f x y 1.1. = xy and s o ~ { ~ , y } ' *= ~s*t l~. b u t xy 4 R , t h e n c l e a r l y I x , y l Ix,y}'*.
If x f y or x
1.
-
.
-
A p a i r of d i s t i n c t p o i n t s x,y i s c a l l e d R-regular p r o v i d e d x -. y 1.1, and xy 4 R , o r x f y and I I x , y } I = s t l . A p o i n t x i s R-regular
p r o v i d e d ( x , y ) i s R - r e g u l a r for a l l y E P , y f x. A R-grid i n S i s a s u b s t r u c t u r e S ' = ( P f y B 1 , I 1 )o f S d e f i n e d as follows :
P'
I x i j E P II i = l Y . . . , s t 2 , j = l, . . . , s t 2 ,
B' = I L 1 , . . . , L s t 2 , I'
I n Li
((PI
17
Xijxji
Mj
M1,...
,Mst2}
X B ' ) U (€3'
X
Rji
c B \ R , and
P I ) ) , w i t h Li f L
x i j i f i f j , Li = Rij
and i # j } ,
E R for 1 6
i,
J
Mi -f- M j y
- xjj iyy and
x !j
j . Mi,
G st2.
11.
We d e n o t e t h e set { L 1y...,Lst2! ( r e s p . !MI,.. * ,Mst2)) by { L i y L j 1 o r {Mi,rCl1* (resp. (MiyM.Ill o r { L i , L . l l * ) f o r any i # j . J J J I f L1,L2 E B \ R, L1 j . L 2 , t h e n by d e f i n i t i o n t h e p a i r ( L 1 , L 2 ) R-regular i f f ( L l a L 2 ) b e l o n g s t o a R-grid. I n such a c a s e t h e r e e x i s t s a unique R E R for which L1 R L2. A l i n e L E B \ R i s
is
- -
weak R-reguZar i f f ( L,M) i s R - r e g u l a r f o r a l l M E B \ R w i t h L .f- M 1 and IIL,M} RI 1. A l i n e L E B \ R i s R-reguZar i f f L i s weak R - r e g u l a r and f o r a l l M E B \ p a i r (L,M) i s r e g u l a r .
R , L -f- M y w i t h I{L,Mll
R i f 1, t h e
F i n a l l y , n o t i c e t h a t R-regularity f o r l i n e s i s not t h e dual of R-regularity f o r points. 2 . EXAMPLES
2.1.
Theorem. C o n s i d e r P ( W ( q ) , x )
(P',B1,I')
and l e t R be t h e s e t
.
of a22 l i n e s of t y p e ( b ) i n B ' ( s e e 1.2.(d)) Then e ac h p o i n t Each l i n e of B ' \ R i s R-regular i f f q is e v e n . P r o o f . L e t W(q) = ( P , B , I ) . Choose a p o i n t x i n W(q). It i s o b v i o u s i s R-reguZar.
t h a t t h e set ( ( x , y l
11
I1 y E P , x f y l d e f i n e s a s p r e a d R i n P(W(q),x).
175
R-Regularit). of the Generalized Quadrangle P(Wls1. 1-11 L e t y,z E I", y % ' z . T h e n i t f o l l o w s t h a t y i s re&ular
'd(g). Let
ill
'-I x1
i [y,z)"
= {?<,!,I. 1
4 z. We know t h a t (y,z) 1
x1 b e d e f i n e d b y { y , z } l n x = { z g } 0 Prom 11.1. a n d 1;he d e f i n i t i o n o f R we
zO,
'*
2'
E
11.1
1
I *
I{y,z,} 1 = I{y,z) \ {zojl q a n d l{y,z} I 11 g. Helice e a c h p o i n t o f F ( W ( q ) , x ) i s R - m g u l a r . \ [ziti :{y,zI
s ~ t 3 i i ! !t h a t
=
-
D' \ R , L1 % ' L-,. if L1 L2, (L1,L2) i s a r e g u l a r 1 '< I- i n F ( W ( ~ l ) , x )a n d {L1,L21 c R . I f L1 4 L, but L1,L2 a r e b o t h k , q n c u r r , c r t t w i t h a same l i n e or W ( q ) through x , t h e n (L1,L2) i s L t 1 m ( b o t , k i n W(?) a n d i n P(W(q) ,x)) i f f q i s even. IIere we h a v e I' 8) R = 0. P i n a l l y , s u p p o s e t h a t L1 # L2 a n d L1,L2 a r e n o t {I,l,Lql coricuri7.ent w i t h a same l i n e t h r o u g h x i n l d ( q ) . T h e n I {L1,L2}" i? R I Let Ll,L2
6
i
= 1. If' q is e v e n , (L1,L2) i s r e g u l a r i n k l ( q ) . I n t h i s c a s e , l e t 1 11 - [ L1, . . ,Lq+ 1 1 and l e t tL,;,Lql = tM1,... Y M(-lt 1 1 Y L1 Y L2 1 L . I xi I !
-
L
i a R - g r i d i.n ? ( W ( q ) , x ) . I n d e e d , Li
- I
1
-
M . i f f i # j, a n d s i n c e f o r J xi, x.. x. (with x J1 J 11 ij -
a n y i # j t x i , x .J ) c t x i , x i j l , x J. .1 , w e have L i (1 X. and x j i = I,. 9 M . ) a n d h e n c e x.. E I x , x . . I J J 1 J 1 1J x . . - ' x.. w i t h x . . x . 6 R . We c o n c l u d e t h a t e a c h l i n e of B' \ 1J J1 1~ ~i R - r e g u l a r iff' q i s e v e n . n 2.2.
'-
R is
ii p o i n t x of 0 is R - r e g u l a r if a n d
Ttieoi~eni. L e t R b e t h e s e t oj- a 7 1 l i n e s t h r o u g h i n 1 1 ' T ( 3 ) . A point y, r e s p . a 7ine L @ R , L
;,+' O \ { X I < s n coizi,-. It i s i m m e d i a t e t h a t R i s ,JP~?:. IJ
c'onic
h o l d s T:(3)
tilerc'
2
3
? ? r e a d i n T;(O).
If 0 \
{XI is a
P(W(\q),y), q even. Applying t h e foregoing
L
f o l l o w s t h e R-regulcrity. Ti"0 p r o v e tkie c o n v e r s e , w? remark t h a t T;(O)
theorem therc.
P(T2(0'),(m)),
t x } ( 1 . 2 , ( d ) ) , Assume t h a t T;(O) = ( P , B , I ) a n d T2(0') = ( P 1 , B 1 , I 1 ) .C o n s i d e r a p o i n t y 1 E P s u c h t h a t yl i s R - r e g u l a r . 1'
0 \
T h e n yl i s
I
p o i n t o f type ( i ) i n T,(O').
We p r o v e t h a t y1 i s
r e g u l a r i n T2(O').
y2 f' y l Y w i t h y 2 a p o i n t of t y p e (i). If y1 'i y2, i s R - r e g u l a r i n T;(O). L e t [y1,y2) 181' -I" C tyl,y211' t h e r e r e s u l t s y i - - I Z {y,,y ? , . . . , yp). S i n c e {y1,y21 j' I' ll*l* (see 1.3.4. i n 1 9 1 ) . Consequently E {y,,y,] VYi E [YpY,] I U s i n g a g a i n 1.3.4. i n [ 9 I w e o b t a i n t h a t iY 1 ,Y?} l * l * C {y1,y21 L e t y2
E
P',
(yl,y,j
tlie p a i r
""J', .
is r e g u l a r i n T,(O').
(v,,y,) lint- y y
1 2
J1,...,N
meet 0 \
E
R.
D e n o t e by
-
Now r u p p o s e t h a t y 2 yly i.e. the e p o i n t s o f 0 \ { X I , a n d by
X ~ , . . . , X ~ +t h ~
i = 1, . . . , q + 1, w h i c h { x i = 0' i n a u n i q u e p o i n t . T h e n {ylYy21" = t W 1 , Wqtl}
q+1
t h e p l a n e s d e f i n e d by y1,y2,xi,
...,
M.de Soete and J.A. Thas
116
1 'I ' = { z II z 1 y,y,l u I ( - ) ) s i n c e y 1y 2 'i' a n d {Y,,Y21 V i l,...,qtl. A g a i n ( y l , y 2 ) i s a r e g u l a r p a i r i n T2(0'). N e x t ,
I' l e t X E P' be a p o i n t of t y p e ( i i ) w i t h y1 -f.' X . The t r a c e I y , , X l c o n t a i n s a t l e a s t t w o p o i n t s x1,x2 o f t y p e ( i ) w i t h x1 7L' x2. On t h e
contains, b e s i d e s yl and X, at least one p o i n t o t h e r hand y 2 o f t y p e ( i ) . C l e a r l y y2 7L' y l . From t h e f o r e g o i n g i t f o l l o w s t h a t (yl,y,) Iyl,Xl
i s r e g u l a r i n T 2 ( 0 1 ) . S i n c e {xl,x21 C I y 1 , y 2 I 1 ' a n d C Ixl,x2li', t h e p a i r ( y l , X ) i s a l s o r e g u l a r i n T2(O').
F i n a l l y , from t h e r e g u l a r i t y of (-) i n T 2 ( 0 ' ) , q e v e n , t h e r e r e s u l t s t h a t ( y l y ( - ) ) i s r e g u l a r . We c o n c l u d e t h a t y1 i s a r e g u l a r p o i n t i n T 2 ( 0 ' ) and hence 0' i s a c o n i c 1 9 1 .
Next we s u p p o s e t h a t L1 E B \ R i s R - r e g u l a r a n d t h a t ( L 1 , L 2 ) i s a R - r e g u l a r p a i r i n T;(O). W e u s e t h e n o t a t i o n s of 11.1. w i t h q s+l. F o r n a c h p a i r (LiyMi), 1 Q i G qtl, t h e r e holds {Li,Mill = I R i l y . . . y R i ,st1 1 C R . E a c h p a i r o f l i n e s o f R i s r e g u l a r ( t h e y d e f i n e t h e same p o i n t x o f 0 ( 1 . 2 . ( c ) ) . Hence ( L . , M . ) i s a r e g u l a r 1 1 p a i r o f T;(O), a n d s o d e f i n e s a p o i n t xi o f 0 , i = 1, ...,q t l 1'1' ( 1 . 2 . ( ~ ) ) . T h e r e f o l l o w s t h a t t h e s e t s {L1,L2} I - IL1'".'Lqtl I' a n d {L1,L21 = I M ly...,Mqtll a r e t h e t w o sets of g e n e r a t o r s o f a h y p e r b o l i c q u a d r i c Q i n PG(3,q). The o v a l 0 ' i s a p l a n e i n t e r s e c t i o n of Q. Hence 0 ' i s a c o n i c . fl 3 . R-REGULARITY AND AFFINE PLANES
3.1. Theorem. L e t x b e a R - r e g u l a r p o i n t of t h e g e n e r a l i z e d q u a d r a n g l e S o f o r d e r ( s , s + 2 ) w i t h s p r e a d R. T h e n t h e i n c i d e n c e I* s t r u c t u r e ( P ' , B * , I * ) where P* = x , B' {L E B II x I L and L 4 9 l U ( ~ y , z l ' * l * II y,z E X I * , z 7~ y l and I* t h e n a t u r a l i n c i d e n c e , i s a 2 - ( ( ~ + 1 ) ~ , s + l , ld)e s i g n i . e . an a f f i n e p l a n e of o r d e r s t l .
Proof. Immediate. 0 3.2,
Theorem. L e t S b e a g e n e r a l i z e d q u a d r a n g l e of o r d e r (s,st2)
w h i c h c o n t a i n s a s p r e a d R and a R - r e g u l a r p o i n t x w i t h x I L E R . T h e n e a c h p a i r (L,M), M E R, is r e g u l a r and IL,M}'l C R . Proof. L e t x E L E R a n d M E R \ { L l . C h o o s e a p o i n t y E M s u c h t h a t x 7L y . Then (x,y) i s a R - r e g u l a r p a i r . L e t { x , y }l * l * { z i y l G i G stll w i t h x zl, y = z stl. Each p o i n t zi i s i n c i d e n t w i t h a u n i q u e l i n e Ri E R w i t h R1 = L , R s + l = M , a n d w i t h a u n i q u e l i n e Li which d o e s n o t c o n t a i n a p o i n t o f I x , y l * * , f o r a l l 1 i G s+l. S i n c e z i 1 Rj, i # j , 1 < i , j 4 stl, w e o b t a i n ,
177
R-Regularity of the Generalized Quadrangle P( W(s), (mil
-
a p p l y i n g axiom ( i i i ) o f 1.1. w . r . t . z and R t h a t Li R for all i j' j y1 j # i , 1 G i , j Q s + l . So (L,M) i s r e g u l a r a n d m o r e o v e r {L,MI = ILiy 1 d i G s+ll a n d { L , M } l ' = I R i , 1 < i Q s+l). 0
3.3. C o r o l l a r y . L e t 1 b e a s e t o f n o n - c o n c u r r e n t l i n e s o f a g e n e r a l i z e d q u a d r a n g l e o f o r d e r ( s , t ) . T h e n 1 i s normal ( s e e I 7 l ) provided each p a i r o f l i n e s o f L i s r e g u l a r and t h e i r span i s a s u b s e t of 1. T h e f o r e g o i n g theorem shows t h a t i n a g e n e r a l i z e d q u a d r a n g l e S o f o r d e r (s,s+2) w i t h a s p r e a d R i n w h i c h a l l p o i n t s a r e R - r e g u l a r , t h e s p r e a d R i s a n o r m a l s e t . Then a n a f f i n e p l a n e o f o r d e r s + l c a n b e d e f i n e d i n t h e f o l l o w i n g way. L e t P' = R , B' = { { M , N l l l y M , N E R l a n d I* t h e n a t u r a l i n c i d e n c e . Then t h e s t r u c t u r e (P' , B ' , I * ) i s a n a f f i n e plane AR of order stl.
3.4. Theorem. L e t S b e a g e n e r a l i z e d q u a d r a n g l e of o r d e r ( s , s + 2 ) w i t h a spread R.
Let R, R'
E
R , R # R ' and a s s u m e t h a t ( R , R ' )
.
i s r e g u l a r w i t h {R,R'I1' {R1 R, R2,.. , R s + l = R ' I C R . If a l l p a i r s of p o i n t s i n c i d e n t w i t h d i f f e r e n t l i n e s of { R , R ' I L 1 a r e Rr e g u l a r , we c a n d e f i n e a n a f f i n e p l a n e (P',B',I') of o r d e r s+l
P I = t z E P II z I R ~ R~ , E ( R , R ~ I ~ ' , 1 < i Q s+i), 1.1' 11 tR,R'}' U tR,R'l II z,z' f PI, z U {{z,z'l
B'
+
2')
with
and 1'
t h e natural incidence. E P', z f z ' , t h e set 11 { z , ~ ' l ' * ~ *C P ' . L e t z I R i y z ' I R j y R i , R . E {R,R') From t h e J l*l* p r o o f o f 11.3.2. i t f o l l o w s t h a t for a n y zk E { z , z ' l the l i n e 11 Hence zk E P I . Now i t i s Rk E R , zk E R k , b e l o n g s t o { R i , R . ) J i m m e d i a t e t h a t ( P ' , B ' , I ' ) i s a 2-((~+1)~,stl,I) d e s i g n . Cl
Proof. F i r s t we p r o v e t h a t for z,z'
.
.
3.5. T h e o r e m . L e t S b e a g e n e r a l i z e d q u a d r a n g l e of o r d e r (s,s+2) w i t h a s p r e a d R and a R - r e g u l a r l i n e L. I f R , R ' E L1 R , R f R', 11 t h e n ( R , R ' ) i s r e g u l a r and { R , R ' I L1 fi R . Proof. L e t R , R '
E
L
1
n R,
R # R'. C o n s i d e r a n a r b i t r a r y p o i n t x I R ,
x 1 L . The p o i n t x i s i n c i d e n t w i t h s + 2 l i n e s o f B \ R . S i n c e IL1 n R ( = s+l t h e r e e x i s t s a t l e a s t o n e l i n e L ' E B \ R , x I L', such t h a t {L,L'll n R = I R I I n view o f t h e R - r e g u l a r i t y o f L, ( L , L ' ) b e l o n g s t o a R - g r i d . U s i n g t h e n o t a t i o n s of 11.1. w e p u t IRli, i 2 s+2) L1 n R w i t h L = L1, L' = L2. T h e n {L1,M1ll R R12, R f = Rlk, 3 G k Q s t 2 . A g a i n b y t h e R - r e g u l a r i t y o f L 11 = (L1,M1) i s a r e g u l a r p a i r . Hence ( R , R ' ) i s r e g u l a r a n d { R , R ' ) L'l nR. 0
.
,...,
hl. de Soete and J . A . Thas
178
3 . 6 . T h e o r e m . L e t S b e a g e n e r a l i z e d q u a d r a n g l e of o r d e r (s,s+2) w i t h a s p r e a d R . If S c o n t a i n s a R - r e g u l a r l i n e L, t h e n t h e i n c i d e n c e s t r u c t u r e (P',B~,E)w i t h P I = L* \ ( { L I u R ) , B' = { ~ K , K ' I ~ ' * n P I II K , K ' E P I , K Y K ' and I K , K ' I b e l o n g s t o a 11 R-grid} U I I K , K ' I II K , K ' E PI, K Z K ' and { K , K ' ) d o e s n o t b e L o n g t o a R - g r i d ; U { x B II x I L l w i t h xB t h e s e t of a l l l i n e s J f PI i n c i d e n t w i t h x, Proof. D e n o t e L
i s ax a f f i n e pLune of o r d e r s + l .
1 i-
R by {R1,
...,R s t l I .
Each p a i r of d i f f e r e n t l i n e s
o f t h i s s e t i s r e g u l a r (11.5.5.). L e t K , K ' E PI, K Y K ' a n d l e t I L1 E I K , K ' I , L f L1. Prom t h e R - r e g u l a r i t y o f L t h e r e r e s u l t s if I { L , L ~ ~n' R I
+
( L , L ~ )i s a r e g u l a r p a i r . I I e n c e ( K , K ' )
I that
is
a l s o r e g u l a r w i t h l I K , K 1 l L 1 I = s+l. I t i s o b v i o u s t h a t i n t h i s c a s e
i s t h e u n i q u e e l e m e n t of B' t h r o u g h K a n d K ' .
{K,K'l'' that
r- R / = 1 .
l{L1,Lll
Iri
d e f i n e s a R-grid.
(L,L1)
Now s u p p o s e
v i e w o f t h e R - r e g u l a r i t y o f L t h e pair
T h i s R-grid c o n t a i n s K and K ' .
Hence
l t K , K ' I l l * n P'l = s+l. C l e a r l y { K , K ' I l l * i s t h e u n i q u e e l e m e n t o f B' t i i r o u g h K a n d K ' . F i n a l l y , i f K , K ' E P' w i t h K I x I K ' t h e n xu is t h e u n i q u e l i n e o f B' t h r o u g h K a n d K f . We h a v e a g a i n l x B l = s+l. H e n c e , we c o n c l u d e t h a t (P',D',E) i s a 2 - ( ( s t 1 ) 2 , s t 1 , 1 ) d e s i g n . 0
3 . 7 . T h e o r e m . L e t S b e a g e n e r a l i z e d q u a d r a n g l e o f o r d e r (s,s+2) w h i c h c o n t a i n s a s p r e a d R . If x i s n R - r e g u l a r
p o i n t and
(L1,L2)
a R - r e g u l a r p a i r of l i n e s s u c h t h a t x i s i n c i d e n t w i t h no
line x
o f R ( w i t h t h e n o t a t i o n s o f II.l.), t h e n s is o d d .
ijxji
Proof. C l e a r l y x i s i n c i d e n t w i t h n o line o f [ L l , L 2 1 1 * . L e t {L1,L2I1'* = {L1 ,..., L s + 2 1 a n d l e t y i b e d e f i n e d b y x yi, , Y , + ~ a r e s t 3 p o i n t s of yi I Li, 1 G i 4 s + 2 . The p o i n t s x , y l ,
-
...
t h e a f f i n e p l a n e o f o r d e r s t l d e f i n e d by x (11.3.1.). E a c h l i n e t h r o u g h x i n t h a t p l a n e h a s a u n i q u e p o i n t i n common w i t h t h e s e t
,...,Y , + ~ I . . . . ,s t 2 1 , a r e
{yl
Suppose t h a t yi,yj,yk,
J
...
c o l l i n e a r i n t h a t a f f i n e p l a n e . If t h i s i s t h e c a s e , 1'
I
= s+l. S u p p o s e t h a t o n e of t h e p o i n t s I' which i s c o n c u r r e n t is i n c i d e n t w i t h a l i n e M E {L1,L21
t h e r e holds IIyi,yj,ykI yi,y.,yk
i f j # k f i, i , j , k E { l ,
w i t h Li,Lj,Lk,
e . g . yi I M.
o f M w i t h L j ( r e s p . L,).
Let u
Then ' I ,
j
E
( r e s p . u,)
be t h e i n t e r s e c t i o n
{yi,yk}".
Hence y
-
j arises, a c o n t r a d i c t i o n .
u k y j @ R , a n d a t r i a n g l e u.u y J k j T h e r e f o l l o w s t h a t t h e r e i s a l i n e o f {L1,L211*
uk, w i t h
which i s i n c i d e n t
o r y, a n d c o n c u r r e n t w i t h e a c t l y t w o of t h e l i n e s L i , L j or L,. S u p p o s e e . g . t h a t yi I M j , M . E { L l , L 2 1 1 * , a n d M I uk I Lk. J j From t h e d e f i n i t i o n o f a R - g r i d i t f o l l o w s t h a t L I x I Mk a n d
with yi,yj
j
jk
R-Regularity of the Generalized Quadrangle P(W(s), (-)I
uk
E R .
- yj,
j ' k'k
179
I* Hence y = x On t h e o t h e r h a n d u k E I y i , y k j and hence j jk' u k y j 4 R , a c o n t r a d i c t i o n . So t h e p o i n t s y i , y . , y k a r e n o t J
c o l l i n e a r i n t h e a f f i n e p l a n e of o r d e r stl. Hence I y l , . . . , y s t 2 } d e f i n e s a n o v a l i n t h e c o r r e s p o n d i n g p r o j e c t i v e p l a n e . The st2 tangent l i n e s
o f t h e o v a l a r e c o n c u r r e n t a t x . So we c o n c l u d e t h a t
t h e o r d e r s + l of t h e p l a n e i s e v e n .
3.8. C o r o l l a r y . L e t S b e a g e n e r a l i z e d q u a d r a n g l e of o r d e r ( s , s t 2 ) w h i c h c o n t a i n s a s p r e a d R . If x i s a R - r e g u l a r p o i n t and L a R-regular
l i n e such t h a t x
Z R,
n R , then s i s odd.
VR E L1
,... J s t d
P r o o f . L e t x I R x , Rx E R . T h e n Rx 3 L . P u t I L , R x j l = I K 1 1 and L n R (R1 , . . . , R s t l j . I f M E {Rl,R2)13 M # L , t h e n M
-
Ri,
for a l l 1 G i G s+l ( 1 1 . 3 . 5 . ) . Hence t h e r e e x i s t s a t l e a s t o n e l i n e L ' , L' # M , i n c i d e n t w i t h y , w h e r e y = P4 3 R j E {l, ..., stl}, 1 j' s u c h t h a t L' f K i , 1 i G s + l . Then { I , , L ' I n R {R.) a n d so 11' J (L,L') i s a R - r e g u l a r p a i r . L e t I L . L ' ) = IL1, ,Ls+2j. If R x i s
...
of t h e form x i j x j i
(w.r.t.
t h e R - g r i d d e f i n e d by L a n d L ' ) , t h e n
-
-
-
-
I L i , L .J) { L , L ' ) = $ and s o M1 . L , Mi L ' , Mj L , Mj L'. o n e o f t h e l i n e s Ki i s c o n c u r r e n t w i t h L ' , a c o n t r a d i c t i o n .
Hence 0
111. CHARACTERIZATIONS OF P ( W ( . b + l ) , ( m ) )
1. THEOREM Let S
(P,B,I)
be a g e n e r a l i z e d q u a d r a n g l e o f o r d e r ( s , s + 2 )
w h i c h c o n t a i n s a s p r e a d R . If aLL p o i n t s a r e R - r e g u l a r , isomorphic t o P(W(s+l)),(m)) w i t h
(m)
then S i s
a n a r b i t p a r y p o i n t of W ( s t 1 ) .
P r o o f . W e d e f i n e an i n c i d e n c e s t r u c t u r e S' = (P',B',I') as f o l l o w s .
P' c o n t a i n s t h r e e t y p e s of p o i n t s : ( i ) the points x
E
P; 1
( i i ) t h e s e t s IRl,R2} , R1,R2 E R ; (iii)a unique p o i n t (-). B' c o n t a i n s t w o t y p e s o f l i n e s : (a) the lines L E B \ R ; (b) s e t s , e a c h b e i n g t h e union of a l l t r a c e s o f p a i r s o f e l e m e n t s cf a same p a r a l l e l c l a s s i n A R ( c f . 1 1 . 3 . 3 . ) . I ' i s d e f i n e d as :
-
a p o i n t o f t y p e ( i )i s i n c i d e n t w i t h a l i n e o f t y p e ( a ) i f f t h e y are i n c i d e n t i n S; i t i s i n c i d e n t w i t h no l i n e o f t y p e (b);
M . de Soete and J.A. Thas
180
-
-
a point IR1,R2)
1
of type (ii) i s i n c i d e n t with each l i n e 1 and w i t h t h e u n i q u e o f t y p e ( a ) which b e l o n g s t o IR1,R2} l i n e of t y p e ( b ) from which it i s a s u b s e t . t h e symbol ( m ) i s i n c i d e n t w i t h a l l l i n e s o f t y p e ( b ) b u t w i t h n o l i n e of t y p e ( a ) .
It i s e a s y t o check t h a t S' s t l (see a l s o 1 7 I).
i s a g e n e r a l i z e d q u a d r a n g l e of order We p r o v e now t h a t m o r e o v e r S' W(s+l).
1st p r o o f . A p p l y i n g t h e t h e o r e m o f C.T. Benson 1 2 1 we o n l y h a v e I 'I ' IIx,y}
t o c h e c k t h a t e a c h p o i n t o f S' i s r e g u l a r , i . e . f o r a l l p a i r s ( x , y ) i n S ' w i t h x 7L' y .
S u p p o s e t h a t x a n d y a r e b o t h p o i n t s o f t y p e ( i )w i t h x Let x Y y . S i n c e a l l p o i n t s of S a r e R - r e g u l a r , we h a v e I{x I' 1 s t l . L e t x L Rx E R , y I R y E R . Then I x , y } = I x , y l l * U IRx,Ryl 1 .
From t h e p r o o f o f 11.3.4. it, f o l l o w s t h a t e a c h p o i n t o f I x , y } l " l ' is l*l* I 'I ' i n c i d e n t w i t h a l i n e of I R x , R I1. Hence { x , y l c Ix,y) Y 1'1 1 A p p l y i n g 1.3.4. o f [ 9 1 we o b t a i n I I x , y l I = s + 2 . If x I R I y , R E R, t h e n I x , y ) l ' c o n s i s t s o f t h e s t 2 p o i n t s {R,R'}', R' E R and 1 'I 1 R # R ' , o f t y p e ( i i ) .C l e a r l y I x , y l 3 I z II z I R I u { ( m ) } , a n d 1'1 ' so IIx,yl 1 = s t 2 . Hence ( x , y ) i s r e g u l a r i n S'.
.
Let x b e a p o i n t o f t y p e ( i ) and y IR,R'I1 a p o i n t o f t y p e ( i i ) , w i t h x 7 L 1 y . I f x1,x2 E { ~ , y } ~ w' i, t h x1,x2 p o i n t s o f t y p e ( i ) ,t h e
p a i r ( x 1 , x 2 ) i s r e g u l a r i n S'. Hence t h e r e f o l l o w s t h e r e g u l a r i t y o f ( x , y ) i n S'. Next we s u p p o s e t h a t x i s a p o i n t o f t y p e ( i ) a n d y = x I R E R , t h e n Ix,(-)}l'
(m).
c o n s i s t s of t h e s t 2 p o i n t s { R , R ' )
If
,
R a n d R # R ' , i n S ' . C l e a r l y I x , ( - ) } "" 3 I y II y I R I u I ( m ) } , 1 'I 1 and so / I x , ( - ) } I = s t 2 . Hence ( x , ( m ) ) i s r e g u l a r i n S'. 1 , y = IR , R ' I I , RxyR;, R , R t E R , b e F i n a l l y , l e t x = { R ,R;} X 1 y y Y Y I' t w o p o i n t s of t y p e ( i i ) , { R x y R i I 7L' { R R'}'. C h o o s e x1,x2 E I x , y )
R'
E
Y: Y
a r e two p o i n t s of t y p e ( 1 ) . From t h e r e g u l a r i t y o f (x,,x,) i n S ' , t h e r e f o l l o w s t h a t ( x , y ) is r e g u l a r in S ' . S i n c e t h e s e a r e t h e o n l y p o s s i b l e c o m b i n a t i o n s for a p a i r of d i s t i n c t p o i n t s ( x , y ) , x f t y , we c o n c l u d e t h a t S ' --L W(st1). Hence t h e q u a d r a n g l e S i s i s o m o r p h i c t o P ( W ( s t l ) , ( - ) ) . The l i n e s o f 1 'I ' t h e spread R i n S can be i d e n t i f i e d w i t h t h e sets { ( = ) , X I Y x Y ' (m). s u c h t h a t x1,x2
2nd p r o o f . I n [ l l ] C . S o m a d e f i n e s t h e S t e i n e r s y s t e m l*l*
P , B1 = B U I I x , y } 1I x , y E P , x f y I a n d I1 t h e n a t u r a l i n c i d e n c e . Now we p r o v e t h a t e a c h s u b s t r u c t u r e o f 0
D = ( P 1,B1,I1) w i t h P1
181
R-Regularit). of the Geiieralized Quadrangle Pl W(sl, (-I) g e n e r a t e d by a n a r b i t r a r y p o i n t x E P I , a n d a n a r b i t r a r y l i n e L
E
B
1'
x I, L,, i s ari a f f i n e p l a n e o f o r d e r s t l . w i t h L = { y , z J '*I* a n d x Z1 1,. ( i ) S u p p o s e x E Pi' L E U
wit11
(a) I f x E (y,zl
I*
1'
t h e n xw E
E \ R , Vw
E Iy,zl
1'1.
.
The
i s a s u b s t r u c t u r e of D which
s f f i n e p i a n e d e f i n e d by x ( c f . 1 1 . 3 . 1 . )
c o n t a i n s x a n d L. Hence x a n d I, g e n e r a t e an a f f i n e p l a n e o f o r d e r stl,
1'
( b ) I f X I * n {y,zj
d e f i n e d by r ( c f . 1 1 . 3 . 1 . )
= {ri, r # x, t h e n t h e n f f i n e p l a n e i s a s u b s t r u c t u r e o f 0 which c o n t a i n s x
a n d L . So i n t h i s c a s e , x a n d L d e r i n e a g a i n an a f f i n e p l a n e o f 3 r d e r stl. l*
l*l*
= $ a nd x ~- w w i t h w E { y , z ~ xl* a { y , z } , R E R , t h e n w e c o n s i d e r t h e a f f i n e xw 4 R . If j i I R z I RZ, R Y' y' z p l a n e o f o r d e r s+l d e f i n e d by {R ,RZ) ( s e e 1 1 . 3 . 4 . ) . T h e l i n e Y 1 ( s e e 11.5.2.). I i e n c e t h i s a f f i n e p l a n e i s a l s o g e n e X W E {Ry,HZI ( c ) Suppose
r a t e d by x and L .
(d) L e t x
I*
{ y , z l '*
= 8 and x
.-
w with w
E
{y,zl
l*l*
,
R , t h e n we c o n s i d e r t h e a f f i n e z I RZ, R ,R xw E A . I f y I R Y' Y Z p l a n e o f o r d e r s + l d e f i n e d by {R ,RZ1 ( s e e 3.4.). From 1 1 . 3 . 2 . i t E
11
f o l l o w s t h a t xw E {Zy,RZ}
.
Y
Again x and L g e n e r a t e a n a f f i n e p l a n e
of o r d e r s + l . 1
= 8 and xL* 5 {y,zl** = 9 . n { y , z l I*'* 1'1' C o u n t i n g t h e number o f p o i n t s u i n S s u c h t h a t u' n { y , z l f $ 1' 1' # 4 w e o b t a i n (stl)'(s-1)+2(~+1)~ = ( ~ + =l v). ~ p r u 17 t y , s l ( 2 )
Suppose t h a t x
IIence t h i s c a s e c a n n o t o c c u r . ( i i ) Suppcse x
E
PI., L
E
B w i t h L # R a n d x f, L . S i n c e S i s a
g e n e r a l i z e d q u a d r a n & l e r;here e x i s t , s a p a i r (y,M) E P
X
B such t h a t
x I M I y I L. (a) I f M E R we c o n s i d e r t h e a f f i n e p l a n e d e f i n e d by ( M , P ! ' l L , M' E R . T h i s p l a n e o f i ; r d e r s + l i s a l s o g e n e r a t e d by x a n d L . ( b ) I f P4 R we c o n s t r u c t t h e a f f i n e p l a n e of r o d e r s t l d e i ' i n e d b y y ( c f . 11.3.1.). T h i s p l a n e i s g e n e r a t e d by x a n d L . ( i i i ) L e t x E PI, L E B w i t h L E R a n d x I 1 L . S i n c e S i s a g e n e r a l ' z e d q u a d r a n g l e t h e r e e x i s t s a p a i r (y,.Nl) E P X B s u c h t h a t 1.1, L' E R a n d L' # L. T h e n we x I M I y I L w i t h :.I E R . L e t L' c o n s i d e r t h e a f ' f i n e p l a n e d e f i n e d by {L,L'l ( c f . 11.3.4.). A g a i n t h i s p l a n e i s g e n e r a t e d by x a n d L . (cf. 3.4.) with M
-
-
I n e a c h o f t h e c z s e s t h e p l a n e g e n e r a t e d by x a n d L i s a n a f f i n e p l a n e o f o r d e r s+l. I f s 2 3 w e c a n a p p l y t h e t h e o r e m o f F . Bueken-
M.de Soete arid J . A . Thas
182
h o u t 1 3 1 . Then D i s a t h r e e d i m e n s i o n a l a f f i n e s p a c e of o r d e r s + l .
By t h e e m b e d d i n g t h e o r e m of J . A . S
f
P(W(s+l),(-))y
or S
f
T;(O)
T h a s 1131 a n d s i n c e s 2 3, we h a v e w i t h 0 a c o m p l e t e o v a l of PG(2,s+l)
w i t h s o d d . S u p p o s e we a r e i n t h e s e c o n d c a s e . The s p r e a d R o f T;(O!
i s a n o r m a l s e t ( s e e 1 1 . 3 . 3 . ) . Hence a l l l i n e s o f R a r e c o n c u r r e n t i n a same p o i n t x o f 0 ( I I , l . ( c ) ) . S i n c e a l l p o i n t s a r e R - r e g u l a r , 0 \
{ X I i s a conic ( 1 1 . 2 . 2 . ) .
So i n t h i s c a s e we also h a v e T ; ( O )
f
P ( W ( s t l ) , ( m ) ) ( c f . I I . l , ( d ) ) . I f s = 2 ( r e s p . s = 1 ) t h e r e i s , up t o i s o m o r p h i s m , o n l y o n e g e n e r a l i z e d q u a d r a n g l e of o r d e r ( 2 , 4 ) (resp.
( 1 , 3 ) ) 1 9 I, and again t h e r e s u l t follows.
0
2 . THEOREM L e t S = (P,B,I) b e a g e n e r a z i z e d q u a d r a n g l e of o r d e r (s,st2) c o n -
.
If e a c h l i n e o f B \ R i s w e a k R - r e g u Z a r , ( m ) a n a r b i t r a r y p o i n t of w(st.1). Proof. A n a l o g o u s l y a s i n 111.1. w e c o n s t r u c t t h e g e n e r a l i z e d q u a d r a n g l e S' o f o r d e r s t l . Now w e p r o v e t h a t S' = W ( s + l ) , s o d d , u s i n g t h e d u a l of T h eo r em 5 . 2 . 6 . i n 1 9 1. Assume t h a t t h e l i n e s L 1 , L 2 o f S d e f i n e a R-grid o f S . From t h e d e f i n i t i o n of a R - g r i d i t f o l l o w s t h a t e a c h l i n e o f { L l , L 2 1 1 * , as w e l l as e a c h l i n e of IL1,L2)1L' is c o n c u r r e n t ( i n S') w i t h a u n i q u e l i n e o f t y p e ( b ) , a n d t h a t I* ~ a r e never concurrent d i f f e r e n t l i n e s f r o m I L ~ , L ~ I o r { L , ~L 1"' ( i n Sl) w i t h a common l i n e of t y p e ( b ) . Now we n o t i c e t h a t Li,Mi ll* w i t h Li E IL1,L21 , Mi E { L 1 , L 2 } ' * , 1 4 i < s + % , a r ec o n c u r r e n t w i t h a same l i n e of t y p e ( b ) a n d m o r e o v e r a r e i n c i d e n t w i t h a s a w p o i n t of t h a t l i n e of t y p e ( b ) . I n d e e d , for t h e p o i n t s xki I M i , k f i , xik I L i , k # i , t h e r e h o l d s xikxki E R . T h e r e e a s i l y f o l l o w s t h a t (L1,L2) i s a r e g u l a r p a i r i n S'. C o n s i d e r t h e p o i n t ( m ) . A n a l o g o u s l y a s i n t h e p r o o f o f 111.1. we show t h a t ( m ) i s r e g u l a r in 9 ' . Let x b e a n a r b i t r a r y p o i n t o f t y p e I' 1 ( i ) 2 n d p u t {x,(m)l = { ( R , R j . l , x I R E R , Ri E R } . L e t ( i l , L 2 , L , j b e a t r i a d o f l i n e s of S' w h i c h a r e i n c i d e n t w i t h p o i n t s J r of (x,(m) 1' . 'i'hen t h e following t wo c a s e s may occLir. The t h r e e l i n e s a r e of t y p e ( a ) , or t w o i i n e s a r e of t y p e ( a ) a n d o n e i s o f t y p o ( b ) . S u p p o s e t h a t L1,L2 a r c of t y p e ( a ) . I n S t h e l i n e s o f R w h i c h are c o n c u r r e n t w i t h L1 ( r e s p . L 2 ) f o r m a l i n e L1 ( I - e s p . L 2 ) sf t . h e a f f i n e p l a n e A R , S i n c e i n 2' t h e l i n e s L 1 , L 2 a r e c o n c u r r e n t w i t h d i f f e r e n t l i n e s o f t y p e ( t i ) , t h e l i n e s L1, l 2 o f A R a r e n o t p a r a l l e l . I f R' E R i s t h e C O ~ T I C e~ l~eIm e n t of L1 a n d L 2 , t h e n c l e a r l y 3' i s t h e u:iique e l e m e n t of R !;~hicil i s c o n c u r r e n t (in s ) w i t h L1 t a i n i n g a normal s p r e a d R then S
2
P(W(s+l),(m)), s odd, w i t h
I83
R-Regularit)' of the Generalized Quadrangle PI WIs), (-)I
a n d L 2 . H e n c e t h e p a i r f L L 1 b e l o n g s t o a R - g r i d i n S , a n d by t h e 1' 2 previous paragraoh it is a r e g u l a r p a i r i n S ' . By 1 . 3 . 6 . ( i i ) i n
1 9 1 t h e t r i a d (L1,L2'L ) h a s a t least one c e n t e r . Using t h e d u a l 3 o f 5 . 2 . 6 . i n I 9 1 , t h e r e r e s u l t s t h a t S' i s i s o m o r p h i c t o W ( s + l ) , s o d d . Hence t h e q u a d r a n g l e S i s i s o m o r p h i :
t o P ( W ( s + l ) , ( m ) ) . The
l i n e s of t h e spread R i n S can b e i d e n t i f i e d with t h e sets
{(-),xH1'l',
x Y'
( m ) .
0
3 . THEOREN Let
s
be
3
g e n e r a l i z e d q i l a d r a n g l e of o r d e r ( s , s + 2 ) c o n t a i n i n g a
spread R.
If e a c h Z i n e of B \ R i s R - r e g u l a r t h e n S P(W(stl),(=)) ( a ) an ar2bitrary poiqt of W(s+l). P r o o f . T h i s i s i m m e d i a t e f r o m 1121.5. a n d T h e o r e m 1 1 . 2 . 0 s ociLI, w i t h
T a k i n g a c c o u n t o f I I I . l . , 1 1 1 . 2 . a n d III.3., w e c a n f o r m u l a t e t h e next theorem.
4. THEOHEM L e t S be a g e n e r a l i z e d quadrangle of o r d e r ( s , s + 2 ) which c o n t a i n s a spread R .
Then t h e f o l l o w i n g s t a t e m e n t s a r e e q u i v a l e n t
:
( i ) e a c h point i s R - r e g u l a r and s i s o d d ; ( i i ) e a c h line i s weak R - r e g u l a r and R i s a n o r m a l s e t ; ( i i i )each l i n e i s R-reguZur; (iv) S
2
P(W(s+l),
( m ) ) ,
s odd,
with
(m)
n n a r b i t m r y p o i n t of
W(s+l).
REFERENCES I11
Phi.en; , R . l u . a n d S z e k e r e s , G . , On a c o r n b i n a t o r i a l g e n e r a l i z a t i o n o f 27 l i n e s a s s o c i a t e d w i t h a c u b i c s u r f a c e , J . A u s t r . Math. S O C . 1 0 ( 1 9 6 9 ) 485-492.
12]
B ( , t l s r-,C.T., O n the s t r u c t u r e ot' g e n e r a l i z e d q u a d r a n g l e s , J . A l g e b r a 15 ( 1 9 7 0 ) 443-4511.
I31
B u e k e q h o u t , F . , Une c a r s c t ; r i s a t i o n d e s e s p a c e s a f f i n s b a s 6 e sur l a n o t i o n d e d r o i t e , I I P t h . 111 ( 1 9 6 9 ) 367-372.
I4 I
Dembowski,P.,
151
kIa11,N. J r . , A f f i n e g e n e r a l i z e d q u a d r i l a t e r a l s , S t u d i e s i n P u r e [ l a t h . ( e d . L. M i r s k y ) , Academic P r e s s ( 1 9 7 1 ) 1 1 3 - 1 1 6 .
161
-.
F i n i t e geometries (Springer-Verlag,l968).
P a y n e , S . E . , T h e equivalent? o f c e r t a i n g e n e r a l i z e d q u a d r a n g l e s , Col,ib. T h . 1 0 ( 1 9 7 1 ) 7'34-289.
J,
184
M . de Socte and J . A . Thas
I71 Payne,S.E., Quadrangles of order (s-l,s+l), J. Algebra 22 (1972) 97-110. 181
Payne,S.E. and Thas,J.A., Generalized quadrangles with symmetry, Part 11, Simon Stevin 49 (1976) 8 1 - 1 0 3 .
L 91
Payne,S.E. and Thas,J.A., Finite generalized quadrangles, Research Notes in Mathei:idtics # 1 1 0 ( P i t m a r ? Publ. Inc. 1 1 8 4 ) .
I 10
]
Segre,R., Lectures on modern geometry (Ed. Cremonc.;? Rorn? l ' h
1).
I111 Somma,C., Generalized quadrangles with parallelism, Annals of Discrete i""ath.14 ( 1 9 8 2 ) 265-282. 117 1
Thas,J.A., Combinatorics of partial geometries and generalized quadrangles, in : Higher combinatorics (ed. M. Aigner), Nato Advanced Study Institute Series, Reidel Publ. Comp. (1976) 183-199.
[ 131
Thas,J.A., Partial geometries in finitc affine spaces, Math. Z. 1 5 8 ( 1 9 7 8 ) 1 - 1 3 .
Annals of Discrete Mathematics 30 (1986) 185-202
185
0 Elsevier Science Publishers B.V. (North.Holland)
ON PERMUTATION ARRAYS, TRANSVERSAL SEMINETS AND RELATED STRUCTURES M i c h e l Deza and Thomas I h r i n g e r U n i v e r s i t i ! P a r i s V I I , U.E.R. de Math., P a r i s , France Technische Hochschule, Fachbereich Mathematik, Darmstadt, Federal R e p u b l i c o f Germany
E x p l o i t i n g some i d e a s o f C41, t h i s paper i s focused on t h e e q u i valence between s e t s o f m u t u a l l y o r t h o g o n a l p e r m u t a t i o n a r r a y s and a s p e c i a l c l a s s o f seminets ( t h e s o - c a l l e d t r a n s v e r s a l s e m i n e t s ) . Besides t h i s e q u i v a l e n c e , S e c t i o n 2 c o n t a i n s a c o n s t r u c t i o n method f o r t r a n s v e r s a l seminets u s i n g groups. Nonsolvable p e r m u t a t i o n groups o f p r i m e degree and t h e p r o j e c t i v e s p e c i a l l i n e a r groups PSL(2,Zm) y i e l d examples f o r t h i s method. I n S e c t i o n 3 some upper bounds a r e p r o v e d f o r t h e number o f m u t u a l l y o r t h o g o n a l p e r m u t a t i o n a r r a y s , depending on t h e i n t e r s e c t i o n s t r u c t u r e o f t h e s e a r r a y s . With t h e r e s u l t s o f S e c t i o n s 4 i t i s shown t h a t a l l examples o f Section 2 are row-extendible. Section 5 deals w i t h several i n c i dence s t r u c t u r e s a s s o c i a t e d t o t r a n s v e r s a l seminets. The consequences a r e i n v e s t i g a t e d when t h e s e i n c i d e n c e s t r u c t u r e s have s p e c i a l p r o p e r t i e s ( f o r i n s t a n c e , when t h e y a r e p a i r w i s e balanced d e s i g n s ) . S e c t i o n 6 d i s c u s s e s b r i e f l y t h e r e l a t i o n s o f t r a n s v e r s a l seminets w i t h o t h e r mathematical s t r u c t u r e s , e.g. w i t h t r a n s v e r s a l p a c k i n g s , g e n e r a l i z e d o r t h o g o n a l a r r a y s , and s e t s o f m u t u a l l y o r t h o g o n a l p a r t i a l quasigroups.
1. INTRODUCTION
A = ( a . . ) w i t h e n t r i e s a . . f r o m t h e s e t I1,2 ,...,r l i s 1J 1J c a l l e d a p e r m t a t i o n amuy i f each row o f A c o n t a i n s each o f t h e elements 1,2, A vxr matrix
. . . ,r
e x a c t l y once, i . e . i f t h e rows o f
r l . The i n t e r s e c t i o n s tr u ctu r e o f
A
A
represent permutations o f
i s d e f i n e d as t h e vxv m a t r i x
{l,Z
,...,
F(A) =
..=a. 1 . The v x r p e r m u t a t i o n a r r a y s (Fi i , ( A ) ) w i t h F 1. 1. , ( A ) : = t j I l s j s r , a IJ i'j A = ( a . . ) and B = ( b . . ) a r e c a l l e d e i r n . L Z a i * i f F ( A ) = F(B). C l e a r l y , A and 1J 1J a r e s i m i l a r i f and o n l y i f , f o r a l l i n d i c e s i , i ' , j ,
The p e r m u t a t i o n a r r a y s if, f o r a l l
aij
A
and
and
bij
B
B
a r e c a l l e d orthogonu2 i f t h e y a r e s i m i l a r and
i,i',j,j', = ai,j,
= bi ,j, ==3 j = j ' .
T h i s concept o f o r t h o g o n a l i t y g e n e r a l i z e s t h e well-known i d e a o f o r t h o g o n a l l a t i n r e c t a n g l e s . I t has been d e f i n e d and i n v e s t i g a t e d by B o n i s o l i and Deza i n C41.
M. Deza arzd T. lhringer
186
(See a l s o 1 7 3 f o r c l o s e l y r e l a t e d c o n s i d e r a t i o n s . ) S i m i l a r l y as f o r l a t i n r e c t a n g l e s and l a t i n squares, one w i l l be i n t e r e s t e d i n sets
4=
{A1,A 2,...,At}
of
mutually orthogonal permutation arrays, w i t h
t
p o s s i b l y g r e a t e r t h a n 2 . I n t h i s case t h e i n t e r s e c t i o n s tr uc tur e
t
F(A) =
(Fi ,i(f)i ) o f A i s d e f i n e d as t h e common i n t e r s e c t i o n s t r u c t u r e o f t h e A k' i . e . F(&):= F(A1) = F(A2) = = F(At). A p e r m u t a t i o n a r r a y A = ( a . .) i s c a l l e d standardized i f alj = j f o r a l l j 1J
...
.
Without loss of generality, i t w i l l be assumed i n t h i s paper t h a t each permut a t i o n array is standardized, and t h a t i t s a t i s f i e s the following n o n t r i v i a l i t y conditions (CII and ( C 2 ) . (C,)
The p e r m u t a t i o n a r r a y
A
A
has no c o n s t a n t column, i . e . each column o f
c o n t a i n > a t l e a s t two d i s t i n c t values, any two rows o f
(C,)
X
Let
A
are d i s t i n c t .
be a nonempty s e t , and l e t
d i s j o i n t s e t s o f nonempty subsets o f
Lo,L1,
...,L t
(with
X. The elements o f
tzl)
3 :=(X;Lo,L1 ,...,L t )
poi n t s and t h e elements o f ,..,, Lk Zines. Then i s c a l l e d a seminet o r (more p r e c i s e l y ) a ( t t 1 ) - s e m i n e t i f (S1)
any two d i s t i n c t l i n e s i n t e r s e c t i n a t most one p o i n t ,
(S,)
each c l a s s
Li
partitions the point set
w i l l be c a l l e d
X
u,,,,,
be m u t u a l l y
X.
C o n d i t i o n (S2) j u s t i f i e s t h e t e r m p a r a l l e l c l a s s f o r each o f t h e l i n e s
Li.
The
n o t i o n o f a seminet g e n e r a l i z e s such well-known s t r u c t u r e s l i k e a f f i n e p l a n e s , n e t s and (more g e n e r a l l y ) t h e p a r a l l e l s t r u c t u r e s o f Andre 121. A subset o f
X
3
in
c a l l e d a transi.arsa2 o f t h e seminet
5
e x a c t l y one p o i n t . I f p a r a l l e l class
Li
5
r:=
then
r
has a t r a n s v e r s a l c o n s i s t i n g o f
contains e x a c t l y
r
o f t h e seminet c o n s i s t s a l s o o f e x a c t l y versals o f
i f i t i n t e r s e c t s each l i n e o f
(X;Lo,L1
3
is
p o i n t s , t h e n each
l i n e s ( a n d hence each f u r t h e r t r a n s v e r s a l r
p o i n t s ) . I f T1,T
,...,Lt;T1,T2 ,..., Tv)
*,...,TV
are trans-
i s c a l l e d a transversa2
seminet ( o r transversal ( t t 1 , r ) - s e m i n e t i f each t r a n s v e r s a l c o n s i s t s o f
r
p o i n t s ) . B o n i s o l i and Deza r41 p o i n t e d o u t t h a t t h e r e i s a c l o s e r e l a t i o n s h i p b e t ween set.s o f m u t u a l l y o r t h o g o n a l p e r m u t a t i o n a r r a y s and o t h e r mathematical s t r u c t u r e s . F o r i n s t a n c e , t h e y proved t h a t each s e t o f p e r m u t a t i o n a r r a y s i s e q u i v a l e n t t o a 1-design w i t h number
r
and
ttl
mutually orthogonal v x r
t
v
treatments, r e p l i c a t i o n
m u t u a l l y o r t h o g o n a l r e s o l u t i o n s (see S e c t i o n 5 ) . Moreover,
i t was shown t h a t any o f these a r e e q u i v a l e n t t o a t r a n s v e r s a l ( t t 1 , r ) - s c m i n e t
with
v
t r a n s v e r s a l s . T h e r e f o r e many o f t h e examples and r e s u l t s i n t h i s paper
can be t r a n s l a t e d i n t o analogous statements on c o m b i n a t o r i a l designs w i t h m u t u a l l y ortogonal resolutions.
Oil
Pennutatioii Arrays
187
2. AN EQUIVALENCE AND A CONSTRUCTION METHOD
J :=
Let 1 2 {lo,l
o,...,lL).
(X;Lo,L1,..
. ,Lt;T1,T2,.
.. ,Tv)
Lo:=
be a t r a n s v e r s a l seminet w i t h
( I n f a c t , t h r o u g h o u t t h i s paper t h e s e t o f p a r a l l e l c l a s s e s , t h e Lo o f any t r a n s v e r s a l seminet a r e
s e t o f t r a n s v e r s a l s and t h e s e t o f l i n e s of
assumed t o be l i n e a r l y ordered, by t h e numbering o f t h e i r elements.) One can now k d e f i n e t m u t u a l l y o r t h o g o n a l v x r p e r m u t a t i o n a r r a y s Ak = ( a . . ) , k=1,2, ...,t, 1J i n t h e f o l l o w i n g way: F o r i E I 1 , 2 ,... ? v 1 , j E I 1 , 2 ,...,r l , k < I1,2 ,...,t ) l e t Ti n l;, and l e t
be t h e unique p o i n t . c o n t a i n e d i n
x
x. L e t
be t h e u n i q u e p o i n t w i t h
y
t h r o u g h y. F i n a l l y , d e f i n e one can conclude t h a t
a:j:=
1
y c T 1 n 1, and l e t
be t h e 1;
L k - l i n e through
be t h e
Lo-line
c . From t h e p r o p e r t i e s o f t r a n s v e r s a l seminets
&J):=IA1,A2, . . . ,A t )
i s , i n fact, a s e t o f mutually
orthogonal permutation arrays. The c o n d i t i o n s (C,)
o f S e c t i o n 1 can be paraphrased i n terms o f
and (C,)
t r a n s v e r s a l seminets as f o l l o w s : There i s no p o i n t o f t h e seminet w h i c h i s c o n t a i n e d i n a l l t r a n s v e r s a l s ,
(D1)
...,
. = ni=1,2, v Ti 1 , a n d v.2.)
1.‘.
line (D2)
0.
Any two t r a n s v e r s a l s a r e d i s t i n c t , i . e .
I n t h e c o n s t r u c t i o n procedure f o r
Ti
i
J?-(r) only
T
for
j
X have been T h e r e f o r e one can always
those p o i n t s o f Ti.
r e s t r i c t o n e s e l f t o t h e reduced t r a n s v e r s a l seminet
( X ’ ;LA,Li,.
d e f i n e d by
XI:=
ui=1,2,...,v
f o r each
iz j .
used which a r e c o n t a i n e d i n one o f t h e t r a n s v e r s a l s Tv)
I1 I t 2
(This implies, i n particular,
,
. ,LC;T1,T2,. . . ,
L k’ : = ( 1 n X ’ j l c L k I .
Ti’
I n t h e r e s t of this paper a l l transoersa2 seminets are assumed t o be reduced
arid t o s u t i s f g the ron,Zitions (0,) m d (DJ. Y
The process of c o n s t r u c t i n g m u t u a l l y o r t h o g o n a l p e r m u t a t i o n a r r a y s f r o m t r a n s v e r s a l seminets can be r e v e r s e d : L e t k p e r m u t a t i o n a r r a y s Ak = ( a . . ) , k=1,2, 1J
+
r ; , and l e t
& be ...,t .
a set of Define
be t h e e q u i v a l e n c e r e l a t i o n on
Y
t
Y:=
with
mutually orthogonal v x r {1,2. v) x {l,Z,
...,
...,
( i , j ) $ ( i ’ , j ’ ) i f and
j i Fi i ,(A). D e f i n e t h e p o i n t s e t X o f t h e seminet as t h e set o f equivalence classes o f 9 , i . e . X:= Y / $ = “ ( i , j ) l l b 1 (i,j)t:YI. For c = C C 1 , 2 ,.... r and k = 1,2,, . .,t l e t lo:= (I ( i , j ) l $ I j = c , i=1,2,...,v) and l k : = 1 2 k 1 2 ,...,1 L I . { I ( i , j ) l d j a . . = c l , and d e f i n e L o : = {lo,lo ,..., lor}, L k : = Ilk,lk
o n l y if j = j ’
and
~
1J
Finally, l e t (X;Lo,L1,..
T.:= 1
.,Lt;Tl,T2,,
= A .Summarizing,
’,r
(i,j)l$
..
1
j = 1 , 2 , . ..,rI, i = 1 , 2
,...,v .
Then
J(R):=
,Tv) i s a (reduced) t r a n s v e r s a l seminet w i t h one o b t a i n s
&(T(R))
M. Deza arid T. Ihririger
188
The existence of a s e t
2.1. PROPOSITION.
01
t
mutually orthogonal v x r perm-
tation arrays i s equivaZent t o the existence of a transversal (t+l,r)-seminet with
v
transversals. T h i s e q u i v a l e n c e was a l r e a d y observed i n 141. One can show even a l i t t l e more.
Let
. . ,Lt;T1,T2,..
= (X;Lo,L1..
.,Tv)
be reduced t r a n s v e r s a l seminets w i t h
.
and ‘U = (Y;Mo,M1,. ..,Mt;U1,U2,. .,Uv) 1 2 ,...,1 L I and Mo 1 2 ,..., Lo = ilo,lo Imo,mo
m i l , and assume R(’3’)= A(%). D e f i n e a mapping $ : X 4 Y as f o l l o w s . F o r X E Ti n 1: l e t $ ( x ) be t h e unique element c o n t a i n e d i n Ui nm:. Then 0 i s an and U , i . e .
isomorphism o f
0 satisfies
onto p a r a l l e l l i n e s ( i n f a c t , for all 2.2.
PROPOSITION.
If
y
&(J) =
T. nT. = 0
= Ui
$Ti
and
i i $lo = mo
u
are reduced transversa2 seminets with are isomorphic.
.
.
= ( X;Lo,Ll,. .,Lt;T1,T2,. .,Tv) corresponds t o a o f m u t u a l l y o r t h o g o n a l Zatin rectanglos e x a c t l y i f
IA1,A 2,...,Atl
for a l l
J
and
and
The t r a n s v e r s a l seminet
1
$Li = Mi,
i ) . This y i e l d s
J , ( J )= L ( U ) then
set
0 i s a b i j e c t i o n which maps p a r a l l e l l i n e s
i,j, i z j . The a r r a y s
A1,A 2,...,At
form a s e t o f m u t u a l l y
o r t h o g o n a l Zatin squares i f and o n l y i f tT1,T2,,..,Tv\,
(X;Lo,L1,, ..,Lt,Lt+l), w i t h Lt+l:= I n o t h e r words, t h e e q u i v a l e n c e o f P r o p o s i t i o n 2.1
i s a net.
s p e c i a l i z e s t o t h e c l a s s i c a l correspondence o f m u t u a l l y o r t h o g o n a l l a t i n squares w i t h nets. The f o l l o w i n g theorem p r o v i d e s a c o n s t r u c t i o n method o f s e t s o f m u t u a l l y o r t h o gonal p e r m u t a t i o n a r r a y s v i a seminets, u s i n g groups. 2.3.
THEOREM.
G he a f i n i t e group with neutral eZement e . Let
Let
t and
be p o s i t i v e integers, and Zet So,S1,.. .,St and F1,F2,.. .,F be nontrivial S subgroups of G such that the foZZowing conditions are s a t i s f i e d f c r aZl i , j E S
10,1,
..., tl,
k,l
E
11,2
,..., ~
4 Si n S j
(2)
i j
(2)
S. O F = {el,
(3)
k * 1 =$ Fk z F,,
(41
l F k I = CG:Sil.
i
= (el,
k
Then there e x i s t s a s e t o f S r : = I F I and v:= -./GI . 1 r
Proof. i.e.
1 :
F o r each
Li = {Sig
1
t
i E (O,l,
geG1. Then
mutualZy orthogonal v x r p e r m t a t i o n arrays, with
...,t l
let
(G;Lo,L l,...,Lt)
Li
c o n s i s t o f the r i g h t cosets o f i s a (tt1)-seminet:
Si,
C o n d i t i o n (S1)
On Permu tutiori Arru-vs
189
i s t r i v i a l l y s a t i s f i e d w h i l e ( S 2 ) i s a consequence o f ( 1 ) . Each r i g h t c o s e t
Fkh i s a t r a n s v e r s a l o f (G;Lo,L1, ..., L t ) : I t has t o be Fk n F k h l = 1 f o r a l l g,hsG. As a consequence o f ( 2 ) one o b t a i n s
o f one o f t h e subgroups show that
lSig
1S.g n F k h l i 1. Assumption ( 4 ) then i m p l i e s u f C F k S i f = G, and hence 1
lSig n F k h l
2
1. Each t r a n s v e r s a l has
d i s t i n c t r i g h t c o s e t s . Thus t h e r e a r e form
Fkh, w i t h
(D1) and
k t t1,2,
...,s l
and
r = lFll
elements, and each
v = :*IGI
Fk
IGI
has
d i s t i n c t transversals o f the
h e G. Finally, the n o n t r i v i a l i t y conditions
( D p ) a r e a consequence o f t h e n o n t r i v i a l i t y o f t h e subGroups Fk and o f
(3), r e s p e c t i v e l y . By P r o p o s i t i o n 2.1, t h e p r o o f i s complete. The seminet
seminet, i . e .
n
,,...,
L t ) o f t h e above p r o o f i s , i n f a c t , a transZation (G;Lo.L i t has a t r a n s l a t i o n group o p e r a t i n g r e g u l a r l y on i t s p o i n t s : I n t h e
r i g h t r e g u l a r represeritation o f
G
each maoping
XH xg,
g r G , maps e v e r y l i n e
o n t o a p a r a l l e l l i n e . On t h e o t h e r hand, each t r a n s l a t i o n seminet can be o b t a i n e d i n t h i s way f r o m a group
G
and subgroups
So,S l....,St
satisfying condition
(1). Analogous group t h e o r e t i c c h a r a c t e r i z a t i o n s have been given, f o r i n s t a n c e ,
f o r t r a n s l a t i o n planes, t r a n s l a t i o n n e t s , t r a n s l a t i o n s t r u c t u r e s and t r a n s l a t i o n group d i v i s i b l e designs ( s e e e.g.
rll,
1151. C221, [31 and 1201). Marchi r181 uses
s i m i l a r i d e a s f o r his c h a r a c t e r i z a t i o n o f r e g u l a r a f f i n e p a r a l l e l s t r u c t u r e s by p a r t i t i o n l o o p s . P r o b a b l y one can f o r m u l a t e an analogue o f Theorem 2.3 u s i n g l o o p s i n s t a e d of groups. The problem would be t o f i n d examples f o r such a g e n e r a l i z a t i o n . The r e s t o f t h i s s e c t i o n y i e l d s two c l a s s e s o f examples f o r Theorem 2.3. C f . Huppert 1141 and W i e l a n d t 1241 f o r t h e group t h e o r e t i c n o t a t i o n s .
2.4. EXAMPLE.
Let
G
be a n o n s o l v a b l e t r a n s i t i v e p e r m u t a t i o n group o f p r i m e
v:= p 2 , r:=-I,G I and l e t d be the p o s i t i v e i n t e g e r w i t h d < p - 1 P d = r (mod p ) . Then one can c o n s t r u c t a s e t o f t : = 1 mutually orthogonal
degree p . L e t and
i-
v * r p e r m u t a t i o n a r r a y s : Assume tl,Z, . . . , p 1
define
FkzF,
k z
for
So,S l,...,St,
1
Fk
since
G
t o o p e r a t e on
t o be t h e s t a b i l i z e r o f
6
*,.... a P I .
ial,a ak
in
G, i . e .
F o r each
k
Fk:= Ga
6
Then
k' i s d o u b l y t r a n s i t i v e ( c f . Theorem 11.7 o f r 2 4 1 ) . L e t
be t h e Sylow p-subgroups o f
G
(with
t ' 1 1 because
G
i s non-
s o l v a b l e ) . O b v i o u s l y , these subgroups s a t i s f y t h e assumptions o f Theorem 2.3. Hence t h e r e a r e show P
of
t'
m u t u a l l y o r t h o g o n a l v x r p e r m u t a t i o n a r r a y s . I t remains t o r G has e x a c t l y Sylow p-subgroups. L e t
t ' = t or, equivalently, t h a t
be a Sylow p-siibgroup o f
P
is
P
i t s e l f . Hence
a
G. The o n l y Sylow p-subgroup o f t h e n o r m a l i s e r
NG(P)
i s s o l v a b l e and t h u s o f o r d e r
pad'
NG(P)
with
( c f . r141, Satz 1 1 . 3 . 6 ) . T h e r e f o r e t h e number n o f Sylow p-subgroups G r satisfies n=[G:N ( P ) l = p . d ' = a T . From n = l (mod p ) one o b t a i n s d ' = r (mod p ) , G r i . e . d = d ' and n =
d"p-1
a.
The n o n s o l v a b l e t r a n s i t i v e p e r m u t a t i o n groups o f p r i m e degree have been comp l e t e l y determined, due t o t h e c l a s s i f i c a t i o n o f f i n i t e s i m p l e qroups ( s e e
M. Deza Q
190
I I T. ~ Ihringer
C o r o l l a r y 4.2 o f F e i t C111). N o t i c e t h a t solvabZe t r a n s i t i v e p e r m u t a t i o n groups o f p r i m e degree o cannot be used i n t h e above c o n s t r u c t i o n : These groups have e x a c t l y one Sylow p-subgroup, which would i m p l y 2.5. EXAMPLE.
t = 0.
F o r each i n t e g e r
mr2
one can c o n s t r u c t a s e t o f t m u t u a l l y m-1 rn ( 2 - 1 ) - 1 9 v : = (2m+1)2 and r : = m 2m(2m-l): Regard t h e p r o j e c t i v e s p e c i a l l i n e a r group G = PSL(2,q), w i t h q = 2 ,
orthogonal v x r permutation arrays, w i t h
t:= 2
as a p e r m u t a t i o n group o p e r a t i n g c a n o n i c a l l y on t h e
q+l
o f t h e p r o j e c t i v e l i n e o v e r t h e q-element f i e l d . F o r each define
Fk
t o be t h e s t a b i l i z e r o f
ak
in
G, i . e .
be t h e ( m u t u a l l y c o n j u g a t e ) c y c l i c subgroups o f
=
=-,
t'
o f conjugates o f
ttl, i.e.
k
t
..,aq+l) . . ,q+11
{al,a2,.
{1,2,.
Fk:= G L e t So,S l,...,Stl ak' q + l . By t h e r e s u l t s
o f order
G
t h e s e subgroups s a t i s f y t h e assumptions o f Theorem 2.3.
i n 1141, pp. 191-193, t h e number
points
one o b t a i n s
So
For
t ' + l= C G : N G ( S o ) l = w
t ' = t.
i n o r d e r t o conPSL(2,q) s t r u c t designs w i t h m u t u a l l y o r t h o g o n a l r e s o l u t i o n s . F o r i n s t a n c e , f o r each q E N o t i c e t h a t Hartman [121 used some o f t h e groups
{19,31,431 t i o n s and
there e x i s t s a design w i t h
v=qtl
t r e a t m e n t s , r =?
replica-
t+l=q mutually orthogonal resolutions.
3. BOUNDS FOR THE NUMBER
OF MUTUALLY ORTHOGONAL PERMUTATION ARRAYS
.
o f m u t u a l l y orthogonal p e r m u t a t i o n a r r a y s i s c a l l e d {A1,A2,. . ,At) maxima2 i f t h e r e e x i s t s no p e r m u t a t i o n a r r a y which i s o r t h o g o n a l t o a l l Attl Ak, k = 1,2 ,..., t. A t r a n s v e r s a l seminet (X;L0,L1, Lt;T1,T2 ,Tv) i s c a l l e d L-mo.ximaZ i f t h e r e e x i s t s no a d d i t i o n a l p a r a l l e l c l a s s Lt+l such t h a t (X;Lo,L1,
A set
...,
..
.,Lt,Lttl;T1,T2,. obvious. 3.1.
LEMMA.
. .,Tv)
i s a g a i n a t r a n s v e r s a l seminet. The f o l l o w i n g lemma i s
of mutually orthogond permutation arraps is maximal
A set
i f mid only if the associated transversal seminet
3.2. PROPOSITIOM.
,...
J (A)is
L-maximal.
of rnintualZy orthogoxu2 permutation arrays of
Eaeh s e t
Example 2 . 5 is maximal.
Proof.
Let
G = PSL(2,2m)
a s s o c i a t e d t r a n s v e r s a l seminet
be t h e group used f o r t h e c o n s t r u c t i o n of
7
has
G
as p o i n t s e t . The subgroups
...,St
a r e e x a c t l y t h e l i n e s t h r o u g h t h e n e u t r a l element
groups
F1,F2,.
. .,Fq+l
e
are e x a c t l y the transversals through
of
e
A.The SO'S1,
G, and t h e sub( c f . the proof
191
Oir Permu tation Arrays
G. Hence
o f Theorem 2 . 3 ) . By Satz 11.8.5 o f Huppert L141, t h e s e subgroups c o v e r t h e r e cannot be any a d d i t i o n a l l i n e through
e, and
i s t h e r e f o r e L-maximal.
J 2 J(&).
By Lemma 3 . 1 t h e p r o o f i s complete, s i n c e P r o p o s i t i o n 2.2 y i e l d s
0
A c t u a l l y , t h e a s s e r t i o n o f Propos t i o n 3 . 2 depends o n l y on t h e i n t e r s e c t i o n
F(&)
structure
of
a:L e t
gonal p e r m u t a t i o n a r r a y s w i t h
,..., B t , I
3
B1,B2
F(JJ )
= F(&).
S e c t i o n 2 shows t h a t t h e t r a n s v e r s a l seminets p o i n t s e t s and t h e same t r a n s v e r s a l s
n
y @ ) As .
number
Y
lines o f
through
e
7113)
7
G. T h e r e f o r e each l i n e o f
T(&)t h r o u g h
x
have t h e same o f the proof
contains e x a c t l y
J(&)
t h a t t h e same i s t r u e f o r
a consequence, t h e r e i s a p o i n t
t'+l of lines o f
and
pairwise d i s j o i n t transversals
0
=
7 7(A)i m p l i e s
p o i n t s , and
for
u s e s oF1s
S E S ~ w, i t h
')'(a)
The t r a n s v e r s a l seminet
n:= I S I = CG:F1l
o f Proposition 3.2 contains F1s,
be a s e t o f m u t u a l l y o r t h o -
The c o n s t r u c t i o n procedure o f
x
of
J ( 3 ) such
and a l s o
t h a t the
c a n n o t exceed t h e number
( i n f a c t , t h i s i s t r u e f o r each p o i n t
x
t+l o f
y(2)) .
of
T h e r e f o r e P r o p o s i t i o n 3.2 can be improved as f o l l o w s .
3.3. PROPOSITION.
Get
a ={A1,A
2,...,Atl
be one of t h e s e t s ofmutuaZZy
3
orthogonal permutation arrays of Exnmple 2 . 5 . Let
= IB1,B2,.
of mutually orthogonal permutation arrays with F ( B ) = F(&).
. . ,Bt, Then
be a s e t
1 t'
5
C..
The n e x t lemma g i v e s an upper bound f o r t h e number o f m u t u a l l y o r t h o g o n a l p e r m u t a t i o n a r r a y s depending on t h e i n t e r s e c t i o n s t r u c t u r e of t h e a r r a y s . The p r o o f o f t h i s lemma i s a u n i f i e d v e r s i o n o f t h e p r o o f s o f s e v e r a l r e l a t e d r e s u l t s i n
'41 and 171. 3.4.
LEMMA.
Let
A =IA1,A2 ,..., At] I
pemutatioil arrays, and l e t
..., r l
j o <{ l , Z ,
{ l , Z ,..., v},
i o c
1 1 , 2 ,..., vl,
J 5 {1,2,...,rI,
satisfg
II,
al
I
bi
t"il,i2t
I:
ai
'JiE I :
j o d F .1 i,
(A),
dl
V j c J
3i.I:
j + F i i
f
be a s e t of mutualZy orthogonu2 v x r
j O c Fil12'
(A),
0
(a.
I"he1i t ' r - ! J I - 1 .
-
P r o o f . L e t A = ( a . . ) be a v r p e r m u t a t i o n a r r a y w i t h F(A) = F ( & . 'J t h e r e e x i s t s an element i l k I . Define c:= a i . From b ) one o b t a i n s 1" 0 f o r a l l i I , and c ) i m p l i e s aio,of c. F o r each j c J t h e r e e x i s t s an witn
ai
OJ
= a i j , by d ) . Thus
jLj0
and
aijza..
'JO
= c . Hence
aioj
By a )
"jd
ic I
c . There-
192
M . Deza arid T. Iliringer
fore
aioj = c
f o r e x a c t l y one element
. . . ,rl \
(J
A,
with
c
kt+
j,
t J?-
mapping
o f the (r-iJl-l)-element set
j
{1,2,
I n p a r t i c u l a r , t h i s i s t r u e f o r each o f t h e p e r m u t a t i o n a r r a y s
{j,}).
IJ
and
j
r e p l a c e d by
ck
and
j,
.
By o r t h o g o n a l i t y ,
t s r - IJI
i s i n j e c t i v e . This implies
- 1.
the
0
The f o l l o w i n g c o r o l l a r y t r a n s l a t e s Lemma 3.4 i n t o t h e language o f t r a n s v e r s a l seminets. N o t i c e t h a t t h i s c o r o l l a r y c o u l d have been used i n o r d e r t o prove t h e P r o p o s i t i o n s 3.2 and 3.3. COROLLARY.
3.5.
seminet, and 7.et
I
al
. . ,Lt;T1,T2,. io c {1,2¶, . . , v l
= (X;Lo,L1,.
..,Tv)
. ., v l ,
and
I c {1,2,.
b e a transversa2
x
X
E
satisfy
6,
mi,, T ~ ,
b)
Ti
x
el Then
f
Lat
0
t sr-6
-
. 1, w i t h
r : = ITl]
and
ITi n (uicI
6::
Ti) I
0
3.6. COROLLARY.
Let
A={A1,A21...,A
uerrnutation arrays, and l e t
p: =
max { I Fi
t
.
1 be a s e t of rnutuaZZy orthogonal v x r
, (A) I I i ,i'=1,2,.
. . ,v,
i*i' I . Then
t i r - U - 1 .
~
Proof.
Choose
i,iot.il,2
,..., v l
and
j o t {112]
..., r I 1 w i t h
.
j o & F i i (A)D e f i n e I : = t i 1 and J : = F i l o ( & ) 0 s a t i s f y t h e assumptions of Lemma 3.4. 1-1 and
3.7. COROLLARY.
Let
pervnitution a r r a y s . Let T'hen t s r Proof.
-A-2 . Choose
A=IAl,A2, ...,A t 1 h:=
min { I F . #(.+?-)I li
. Then
IFi io(sZ)I =
IJ
I , io, J , jo
be a s e t of mutzia1Zy orthogonal v x r
1
i,i'=1,2,..,,v),
io,i1,iz8 i 1 , 2 ,...,v l , il*i2$ and
joF11,2
and assume
,..., r l
X z l .
with
jo'
(A)
(A).
Fili2(&), j o ~ F i l i o ( ~ ) and j o & F '2'0 . . D e f i n e I : = {ilyi21, J : = F.'1'0. IJ F . (f-). T h e n I , io, J , j o s a t i s f y t h e assumptions o f Lemma 3.4. Hence t h e 12iO proof i s complete i n t h e case IJI -Xtl. Assume now I J I = A . Then X = IF. (&)I = IF. .
A
(&)I,
1 l i O
IFi i (&)I = IJ u tjo)l = X t l . T h e r e f o r e t h e case 1210 1 2 i s s e t t l e d by C o r o l l a r y 3.6. U and t h u s
The C o r o l l a r i e s 3.5,
IJI
=
3.6 and 3.7 y i e l d s l i g h t g e n e r a l i z a t i o n s for some o f t h e
r e s u l t s i n L41, 171 and r 1 7 1 (which a r e f o r m u l a t e d i n terms o f designs w i t h mutually orthogonal r e s o l u t i o n s ) .
A v x r p e r m u t a t i o n a r r a y A i s c a l l e d row-transitive i f t h e rows o f s e t o f p e r m u t a t i o n s o p e r a t i n g t r a n s i t i v e l y on t h e s e t { l Y 2 , . ..,rl.
A
form a
193
Oil Permutatioii Arraj's
3.8. PROPOSITION.
A =IA1,A2, ...,At]
Let
be a s e t of mutuully orthogonal
v' r p e r m t a t i o n arrays. Assume one of these arrays (and hence a l l of them) t o be
row-transitive.
t c min Ir-1 , m t l }
Then
orti?ogonal Latin squares of order
Proof. line
, with m t h e largest number of rm*tualZy
.
R o w - t r a n s i t i v i t y i m p l i e s each l i n e o f t h e a s s o c i a t e d t r a n s v e r s a l semi-
T(&) =
net
r
1 cLi,
(X;Lo,L1
,..., Lt;T1,T2 ,...,T v )
i > l , i n t e r s e c t s each l i n e o f
i s a (t-1)-net
Lt) existence o f
t o have e x a c t l y Lo
r
p o i n t s , s i n c e any
e x a c t l y once. Thus
(X;Lo,L
l,...,
o f o r d e r r . The e x i s t e n c e o f such a n e t i s e q u i v a l e n t t o t h e
t - 1 m u t u a l l y o r t h o g o n a l l a t i n squares o f o r d e r r
A complete ( t t 1 ) - n e t o f o r d e r r has e x a c t l y
rtl
w i t h a t r a n s v e r s a l cannot be complete. T h e r e f o r e
. Hence
t-lsm.
p a r a l l e l classes. But a n e t
t + l c
rtl.
U
4. EXTENSION BY ROWS
A set
J1= IA1,A2,.
. .,At}
o f mutually orthogonal v x r permutation arrays i s
c a l l e d row-ertercdible i f i t i s p o s s i b l e t o a d j o i n a new row t o each o f t h e a r r a y s such t h a t t h e r e s u l t i n g ( v t 1 ) x r p e r m u t a t i o n a r r a y s a r e a g a i n m u t u a l l y o r t h o g o n a l . A t r a n s v e r s a l seminet
(X;Lo,L1,
...,Lt;TI,T2,
...,T V )
i s c a l l e d zrwsversal-
estendibZe i f t h e r e e x i s t s a t r a n s v e r s a l seminet (Y;Mo,M 1,...,Mt;T1,T2,...,TV, Tvtl) w i t h Y 2 X and Li = I m n X 1 m c M i l . As transversal-extendibility i s t h e obvious t r a n s l a t i o n o f r o w - e x t e n d a b i l i t y i n t o t h e language o f t r a n s v e r s a l semin e t s , one o b t a i n s
4.1. LEMMA.
o f inutun1L;j orthogonaz permutation arrays i s
A set
extendible ij' and only i f t h e associated transversal seminet
J (&)
TOW-
i s transver-
sa 1-e.-cteadib l e . The above d e f i n i t i o n o f r o w - e x t e n d a b i l i t y i s s t r i c t l y s t r o n g e r t h a n t h e one g i v e n i n r 4 1 where t h e r e s u l t i n g a r r a y s were o n l y assumed t o be s i m i l a r . Both def i n i t i o n s coincide i f
Y =
X i n t h e t r a n s v e r s a l seminets used i n t h e d e f i n i t i o n o f
transversal-extendibility. I n p a r t i c u l a r , t h e d e f i n i t i o n s c o i n c i d e i f
...,L t )
(X;Lo,L1, i s a n e t ( c f . P r o p o s i t i o n 4.4 o f r 4 1 ) . I n t h e case o f m u t u a l l y o r t h o g o n a l
l a t i n squares, r o w - e x t e n d i b i l i t y i s e q u i v a l e n t t o t h e e x i s t e n c e o f a common
colLumz-tj.ans?~ersaZ ( i .e. a u s u a l t r a n s v e r s a l o f l a t i n squares w i t h t h e c o n d i t i o n "no two c e l l s a r e on t h e same row" r e p l a c e d by t h e weaker c o n d i t i o n " n o t a l l c e l l s a r e on t h e same r o w " ) ; see 141, P r o p o s i t i o n 4.2. Tv)
Let
,...,
(X;Lo,L1,...,Lt;T1,T2
be t h e t r a n s v e r s a l seminet a s s o c i a t e d t o t h e l a t i n squares
A1,A2,.
..,At.
194
M . Dezu urid T. Ilrringer
C l e a r l y , t h e l a t i n squares have a common column-transversal e x a c t l y i f t h e r e
Tvtl
e x i s t s a transversal
T v I . There i s no such
.. ,Lt)
(X;Lo,L1,.
i f the net
Tv+l
A1,A 2,...,At
if
(i.e.
of
with
a Lt+l:=
Tv+l
(X;Lo,L1,...,Lt,Lt+l)
i s an a f f i n e p l a n e
f o r m a complete s e t o f m u t u a l l y o r t h o g o n a l l a t i n s q u a r e s ) .
I n g e n e r a l , i t i s an open q u e s t i o n whether such a t r a n s v e r s a l e x i s t s i f
...,Lttl)
..,
tT1,T2,.
(X;Lo,L1,
i s a transversal-free n e t i n t h e sense o f Dow C101.
A l t h o u g h t h e n e x t p r o p o s i t i o n i s easy t o prove, t h e r e s u l t i s q u i t e s u r p r i s i n q .
a
4.2. PROPOSITION. 411 s e t s of muti*aZZy o?thogonaZ permutation arrays 0.7 the Examples 2.4 and 2.5 are row-extendible.
Proof.
G
Let
JL, and
of
let
associated t o
be t h e group used i n Example 2.4 o r 2.5 f o r t h e c o n s t r u c t i o n
r = (X;Lo,L1 ,...,Lt;TI,T2
G and t h e subgroups
,...,T v )
,..., S t
So,S1
X = G,
R e c a l l f r o m t h e p r o o f o f Theorem 2.3 t h a t
i E {O,l,
for all
...,tl,
4 . 1 and because o f
IT1,T2
,...,T v }
and
,...,F,
F1,F2
of
G.
I gcG1 = Isif( f t F 1 } k=1,2 ,...,s } . By Lemma
Li = ISig
= IFkg
1
gcG,
i s s u f f i c i e n t t o show t h a t t h e t r a n s v e r s a l
i s transversal-extendible.
seminet with
and
r ( R ) ,i t
J
be t h e t r a n s v e r s a l seminet
Let
Fl
=
{flfcF1)
b e a copy o f
F1
F1OX=O, and d e f i n e Y : = X u F 1 . A s a l l subgroups Si,
c o n j u g a t e t o each o t h e r , t h e r e e x i s t Mi:=
{Siaifut-f}
and
Li 2 tmnX
iaifl=Siaif2. S o n F1
I feF1}, i = O , l , ...,t, and d e f i n e I mcMi}. I n o r d e r t o show Li = ImnX I mcMi}, Then
le}
(a.S 1 0ay1)aifl 1
one o b t a i n s
Li = I m n X i mcMil.
fore
i=O,l,...,t, are -1 w i t h S. = a . S a , L e t 1 i o i Tv+l:= F1. T r i v i a l l y t h e n Y g X
...,at E G
ao,al,
= (a.S 1 0ar1)aif2 1
fl = f2. T h i s i m p l i e s
assume
and t h u s lLi I = ltmnX
The same argument i m p l i e s c o n d i t i o n
...,Mt).
I t remains t o show (S1).
satisfy
iz j, x r y
and
x,y
6
Let (Siaifl
i,j u
E
{O,l,
Ifl})
...,t } ,
n (S.a.f
3 5 2
fl,f2
E
I mcMi}
F 1 and From
flf;'cSo.
I, and t h e r e -
(S2) f o r (Y;Mo,M1,
fl,f2
IJ IT2}).
E
F1 and
As
x , y ~X
(X;Lo,Ll,~..,
X. Assume y k X. Then y=Tfl=f2 and x c S . a . f n S . a . f = (a.S aT1)a.f n (a.S aT1)a.f = aiSoflnajSofl. 1 1 1 J J 2 1 0 1 1 1 J O J J 1 and thus Si = S contraT h i s i m p l i e s xf;' E a.S n a.S Hence aiSo = a.S 1 0 JO' J O j' d i c t i n g i* j . 17 Lt)
i s a seminet, e i t h e r
x
or
y
cannot be c o n t a i n e d i n
The a l t e r n a t i n g group
f o r some o f t h e r e s u l t s o f t h e A 5 y i e l d s an example 2 p r e c e d i n g s e c t i o n s . Since A 5 and PSL(2,2 ) a r e isomorphic as p e r m u t a t i o n groups, b o t h o f t h e Examples 2.4 and 2.5 i m p l y t h e e x i s t e n c e o f a s e t
of
5
m u t u a l l y o r t h o g o n a l 25x12 p e r m u t a t i o n a r r a y s . By P r o p o s i t i o n 3.2, t h e s e t
59,
is
maximal, and by P r o p o s i t i o n 4.2 -9:
of
5
i s row-extendible, i . e . there e x i s t s a s e t
m u t u a l l y o r t h o g o n a l 2 6 x 1 2 p e r m u t a t i o n a r r a y s . I t i s unknown whether
i s row-extendible o r not.
195
Oit Pcrniutatiori Arra),s
5. TRANSVERSAL SEMINETS CARRYING DESIGNS
The concept o f t r a n s v e r s a l seminets comprises a l a r g e v a r i e t y o f d i f f e r e n t mathematical s t r u c t u r e s . F o r d e t a i l e d i n v e s t i g a t i o n s one has t h e r e f o r e t o add f u r t h e r r e s t r i c t i o n s . S e c t i o n s 2 and 4 and p a r t s o f S e c t i o n 3 t r e a t e d t r a n s v e r s a l seminets w i t h a group o f t r a n s l a t i o n s o p e r a t i n g r e g u l a r l y on t h e p o i n t s . I n t h i s s e c t i o n a d d i t i o n a l assumptions w i l l be imposed on t h e f o l l o w i n g i n c i d e n c e s t r u c t u r e s which a r e a s s o c i a t e d t o each t r a n s v e r s a l seminet T2,...,TV)
(let
o f l i n e s and
I(T,X)
-
T:= IT1,T2,
i.e.
L
J ):
t h e t r e a t m e n t s a r e t h e t r a n s v e r s a l s and t h e b l o c k s a r e t h e p o i n t s
J,
t h e t r e a t m e n t s a r e t h e p o i n t s and t h e b l o c k s a r e t h e l i n e s arid
The i n c i d e n c e s t r u c t u r e
J.
I(T,X)
exactly i f
J.I n
i s e s s e n t i a l l y t h e seminet o f
I(X,L
cases t h e in c i dence i s d e f ined n a t u r a l l y . For example,
I(T,X)
x r T.. 1
x
E
and
X
x,yt X
x,y
E
or
1
.
are i n -
a r e d e f i n e d t o be
p a r a l l e l i n t h e i t h p a r a l l e l c l a s s i f and o n l y i f t h e r e e x i s t s a l i n e I(T,X)
a l l three
Ti ,- T
i s the design w i t h mutually ortho-
gonal r e s o l u t i o n s mentioned i n S e c t i o n 1: The b l o c k s with
. . ,L t '- T 1' i s the set
'j',
blocks a r e the l i n e s o f
the transversa s o f
cident i n
= (X;Lo,L1,.
. . . ,T V l ,
t h e t r e a t m e n t s o f t h i s i n c i d e n c e s t r u c t u r e a r e t h e p o i n t s and t h e
of I(X,LUT)
and
the s e t o f transversals o f
T
-
I(X,L)
LouL1u ... uLt
L:=
1 t Li
Two i n t e r e s t i n g cases d i s c u s s e d l a t e r i n t h i s s e c t i o n o c c u r when
I(X,LuT)
a r e PBD's ( p a i r w i s e balanced d e s i g n s ) . F o r i n s t a n c e ,
has t h i s p r o p e r t y i f t h e a s s o c i a t e d s e t o f p e r m u t a t i o n a r r a y s i s a com-
I(X,LuT)
p l e t e s e t of m u t u a l l y o r t h o g o n a l l a t i n r e c t a f i g l e s ( t h e examples a f t e r P r o p o s i t i o n
5 . 3 show t h a t t h e converse o f t h i s s t a t e m e n t i s n o t t r u e ) . B e f o r e g o i n g i n t o det a i l , some d e f i n i t i o n s a r e necessary. The seminet
3=
exactly
n
ILi I = r
f o r a l l i ), and
has
..., L t )
(X;Lo,L1,
's
p o i n t s . I n t h i s case
5
i s c a l l e d n - r e p Z a r i f each l i n e c o n t a i n s i s a (tt1,r)-seniinet
i s a l s o c a l l e d an ( r , n ) - h n o
n s r, w i t h e q u a l i t y i f and o n l y i f
3
with
r = IXl/n
(i.e.
c o z f i p i m t i o z . One
i s a net or, equivalently, i f the
a s s o c i a t e d p e r m u t a t i o n a r r a y s a r e r o w - t r a n s i t i v e (see S e c t i o n 3 ) . An n - r e g u l a r t r a n s v e r s a l seminet s a t i s f i e s
n
5
v
w i t h e q u a l i t y i f and o n l y i f t h e T i ' s
rv = C. ITiI 2 1x1 = r n ) , 1=1,2, . . . ,v are pairwise d i s j o i n t . I n t h i s s i t u a t i o n
(because
t h e s e t o f t r a n s v e r s a l s can be c o n s i d e r e d as a new p a r a l l e l c l a s s
Lt+l,
associated permutation arrays are l a t i n rectangles. Therefore, i f
n = r = v, then
I(X,LIJT)
i s a (t+2,r)-net,
and t h e a s s o c i a t e d p e r m u t a t i o n a r r a y s a r e l a t i n
squares, The t r a n s v e r s a l seminet
and t h e
r= (X;Lo,L1
,..., Lt;T1,T *,.. .,Tv)
i s called
M . Deza and T, lhririger
196
q- uniform i f each p o i n t i s c o n t a i n e d i n e x a c t l y q t r a n s v e r s a l s . A q - u n i f o r m t r a n s v e r s a l seminet i s n - r e g u l a r w i t h n = v/q. Each column o f each o f t h e assoc i a t e d p e r m u t a t i o n a r r a y s c o n t a i n s each element
i e
..., r l
{1,2,
either
q
or
0
t i m e s . An example o f an n - r e g u l a r ( w i t h n=4) b u t not q - u n i f o r m t r a n s v e r s a l seminet i s p r o v i d e d by t h e o r t h o g o n a l p e r m u t a t i o n a r r a y s
IA1,A21 i s a row-extension o f two o r t h o g o n a l l a t i n squares. I t i s easy t o check t h a t A1,A2 have no o r t h o g o n a l mate.) (The s e t
For each p o i n t
x
t r a n s v e r s a l s through
o f a t r a n s v e r s a l seminet, l e t x, and d e f i n e
the incidence s t r u c t u r e treatments
I(T,X)
i : ={: I
incident with
E ;
The b l o c k s o f
I(T,X)
r
treatments. Notice t h a t have
ttl
denote t h e number o f
X E X I . F o r each t r a n s v e r s a l seminet
i s a 1-design
i s incident w i t h exactly
TicT
Y
Sr(l,i,v),
i . e . each o f t h e
b l o c k s , and each b l o c k I(T,X)
x
v is
may have repeated b l o c k s .
m u t u a l l y o r t h o g o n a l r e s o l u t i o n s ( i . e . any two
p a r a l l e l c l a s s e s o f d i s t i n c t r e s o l u t i o n s c o i n c i d e i n a t most one b l o c k ) . The r e s o Lo,L1 ,...,Lt. I f t h e r e i s a nonnegative i n t e g e r
l u t i o n s a r e g i v e n by
i j
A
with
ITinTT.l
J
( i . e . i f t h e t r a n s v e r s a l s f o r m an ( r , h ) - e q u i d i s t a n t
f
= A
for all
code), t h e n
PBD w i t h any two d i s t i n c t t r e a t m e n t s c o n t a i n e d i n e x a c t l y
becomes a
i,j
with
I(T,X) A
blocks.
E q u i v a l e n t l y , t h e a s s o c i a t e d p e r m u t a t i o n a r r a y s a r e equidistant w i t h Hammingdistance
r-A, 1 . e . any two rows o f each o f t h e p e r m u t a t i o n a r r a y s c o i n c i d e i n
exactly I(T,X)
p o s i t i o n s . I f , moreover, t h e t r a n s v e r s a l seminet i s q-uniform,
A
i s a 2-design
if I ( T , X )
i s an
case, any A'
t'
S,(2,q,v).
SA,(t',q,v),
As a consequence, with
t ' 22, then
then
r ( q - 1 ) = A ( V - 1 ) . Analogously,
(:,--\)
r (?,--ll) = h'
.
I n this
d i s t i n c t rows o f each o f t h e p e r m u t a t i o n a r r a y s c o i n c i d e i n e x a c t l y
positions.
The t r a n s v e r s a l seminets c o n s t r u c t e d i n t h e p r o o f o f Theorem 2.3 a r e n - r e g u l a r and q-uniform, w i t h n = -I G I and q = s . F o r none o f these examples I ( T , X ) i s a r PBD. Many examples o f t r a n s v e r s a l seminets a r e g i v e n i n r171, w i t h
I(T,X)
an
ITi n T . 1 < 1 f o r a l l d i s J t i n c t i , j ) . For i n s t a n c e , by Theorem 1 . 5 o f r171 t h e r e i s a p o s i t i v e i n t e g e r v1 such t h a t , f o r v z vl, t h e c o n d i t i o n v = 3 (mod 12) i s e q u i v a l e n t t o t h e e x i s SA,(t',q,v)
o r a g r o u p - d i v i s i b l e d e s i g n ( i n t h i s case
tence o f a t r a n s v e r s a l seminet S(2,3,v).
with
t
2
and t h e p r o p e r t y t h a t
I(T,X)
i s an
There a r e s i m i l a r r e s u l t s o f o t h e r a u t h o r s ; some o f them a r e l i s t e d here:
I97
On Pwmictation Arrays
1) D i n i t z l81.
F o r each p r i m e power o f t h e f o r m
a positive
c > l an odd i n t e g e r , t h e r e e x i s t s a t r a n s v e r s a l seminet such t h a t
t=c-1
I(T,X)
and
I(T,X) 3)
k
i n t e g e r and
i s an
i s an
S(2,2,qtl).
There e x i s t s a t r a n s v e r s a l semient such t h a t
Kramer e t a l . C161.
2)
k q = 2 c t 1, w i t h
t = 12
and
5(5,8,24).
Hartman C121.
There e x i s t t r a n s v e r s a l seminets such t h a t
S(3,4,v)
( v , t ) = (20,3),(32,5),(44,7).
for
I(T,X)
i s an
T r a n s v e r s a l seminets can be r e p r e s e n t e d by t h e f o l l o w i n g ( t t 1 ) - d i m e n s i o n a l array.of side r : the c e l l
(io,il,.
,,,it)
contains the s e t
1
ITicT
xcTi}
if
l ~ o n l ~ l n . . . n l ~ t= { X Iand , i t i s empty o t h e r w i s e ( t h e l i n e s o f each p a r a l l e l 1 2 r c l a s s a r e assumed t o be l i n e a r l y ordered, i . e . Lk = {lk,l ky...,lk}). I f I(T,X) i s an
S(2,2,v),
t h e n t h i s a r r a y i s c a l l e d a Room ( t t 1 ) - c u b e o f s i d e
such a r r a y i s e q u i v a l e n t t o size
(v-l)x(v-l)
(see 191). I f
(t+l)-dimensional S(5,8,24)
1-design
i s an
S,,(t',q,v),
t h e n t h e above
y i e l d s a 13-dimensional Room d e s i g n o f s i d e 253, see [161.
I 1I
Sttl(l,;
I(X,L)
I
I(X,L)
o f t h e seminet
I(X,L)
l c L } ,I X I )
becomes an
purullel structure) i f ments o f
I(T,X)
a r r a y i s a ( t + l ) - d i m e n s i o n a l Room design; f o r i n s t a n c e ,
The i n c i d e n c e s t r u c t u r e then
r = v - 1 . Each
p a i r w i s e o r t h o g o n a l symmetric l a t i n squares o f
ttl
(X;Lo,L l,...,Lt)
w i t h o u t repeated blocks. I f
5
Sttl(l,n,rn). I(X,L)
3=
3
is a
i s n-regular,
i s c a l l e d an An&& seminet ( o r a f f i n e
i s a l i n e a r space, i . e . i f any two d i s t i n c t t r e a t -
a r e i n c i d e n t w i t h e x a c t l y one b l o c k . O b v i o u s l y , AndrG seminets
do n o t a d m i t t r a n s v e r s a l s . A t r a n s v e r s a l seminet i s c a l l e d aZmost-Andr6
( o r com-
p l e t e ) i f any two d i s t i n c t p o i n t s a r e e i t h e r connected by a l i n e o r by a t r a n s v e r s a l . As each almost-Andre t r a n s v e r s a l seminet i s L-maximal, Lemma 3.1 y i e l d s 5.1, REMARK.
raiatecl s e t
Let t h e warisverstil seniinet
r)
fL(
0.fm : i t i t a
be aZmost-An&&.
Then. the asso-
2Zy mtho
A c t u a l l y , P r o p o s i t i o n 3.2 was proved e s s e n t i a l l y hy showing t h a t t h e i n v o l v e d t r a n s v e r s a l seminets a r e almost-AndrG. Recall t h a t a s e t o f c a l l e d .?ompZete i f 5.2. PROPOSITISN. sols. Then
t .. r-1,
t
mutually orthogonal l a t i n rectangles o f s i z e
vxr
is
t = r-1.
Let
be a trwi?suersiiZ ( t t 1 , r ) - s e m i n s t
wit;z e p n l i t y if
U ~ L oxLy !
with
if t h e associated s e t
v
trcrnsver-
A(3')
of
pemnutation arrags is a z o ! p i e t e se% of ni!tunllLg orthogonal L i t i n r e c t a n g l e s . I n
this i?me
I(X,LuT)
is dr:
S(P,jr,v},rv)
.
M. Dezu and T. Iliringiv
198
Proof. The inequality t 5 r-1 i s a t r i v i a l consequence of Corollary 3.5. Assume now t =r-I. By Corollary 3.6 then u = O f o r Jt(T) o r , equivalently, & ( T ) i s a s e t o f l a t i n rectangles. The completeness of fL(J) implies 7 t o be complete, i . e . any two elements of X are connected by a b l o c k from LuT. As T i r i T . = O for a l l i , j with i t j , one obtains t h a t I ( X , L u T ) i s a n J S(Z,{r,v),rv). n
Notice that complete sets of mutually orthogonal l a t i n rectangles have been constructed in Quattrocchi, Pellegrino C191 f o r a l l v n o t exceeding the smallest prime divisor of r For a transversal seminet (X;Lo,L1,.. .,Lt;T1,T2 ,...,T v ) and M c {1,2, ...,v l , M Z ~ ,l e t tM:= T ~ I, and define d : = E ~ ~ ~ , ~ ,Mz0 - ~ ,. .. ,v} Then
.
inicM
with equality if the transversal seminet i s almost-Andr6. 5 . 3 . PROPOSITION. Let s a k . Let Thev t =
w7
J
be a transversaZ (ttl,r)-semiMet i i ) i t h v
transuer-
be n-regular, and asswne I(X,LuT) to bc an S ( 2 , { r , n l , r n ) . V 1 , anti there are eractly transversals through. each x
n n-
n
t
X,
Proof. As the transversal seminet i s almost-Andr6, ( 1 ) i s valid with equality. Since I T i nT.1 5 1 for i z j , one o b t a i n s o = El:. tli',) J '-1 I V for a l l 1 - L and 1x1 = rn, ( 1 ) turns into
=
v(;).
With
lll=n
This can easily be transformed into the claimed equality for t . Let Q. be the number o f transversals through some x c X. Then v - l = r n - l = a ( r - 1 ) +( t + l ) ( n - 1 ) together with the equality j u s t proved yields Q. .=: 3 A class of examples satisfying the assumptions of Proposition 5 . 3 can be obtained as follows. Let (X;Lo.L1, ...,L r ) be an affine plane of order r . For kz2, consider the transversal seminet J = (X;Lo,L1,. . . ,Lr-k;T1,T2,. .. ,Trk) L i . Then satiswhere T1 ,T2,. . . ,Trk are the lines contained in Ur-k
'
On Permurariorr A F T U ~
199
v = n r . Together w i t h P r o p o s i t i o n 5.3, t h e
w i t h the additional property that
r e s u l t s o f [131 and [51 on t h e s e designs i m p l y 5.4.
PROPOSITION.
S (2, I r,nl, r n )
A n n - r e g u l a r transversa2 ( t + l , r ) - s e m i n e t
I ( X,LuT)
with
an
ezists
a)
i n t h e case
n = 2, r ?3
if a n d onZy if e i h t e r t = 0, r = 3 o r t = r-1,
bi
in the case
n = 3, r = 2
if and onZy if
t = 0,
ci
in t h e case
n=3, r = 4
if and onZy if
t = O
or
t=3.
N o t i c e t h a t a l l seminets i n t h e above p r o p o s i t i o n a r e e i t h e r complete s e t s o f m u t u a l l y o r t h o g o n a l ? a t i n r e c t a n g l e s ( t = r-1) or t r a n s v e r s a l d e s i g n s (t=O).
6. SOME STRUCTURES RELATED TO TRANSVERSAL SEMINETS I t i s well-known t h a t n e t s a r e e q u i v a l e n t t o s e t s o f m u t u a l l y o r t h o g o n a l l a t i n
squares, t o t r a n s v e r s a l d e s i g n s ( v i a d u a l i t y ) , t o o r t h o g o n a l a r r a y s , t o o p t i m a l codes, e t c .
P r o p o s i t i o n 2.1 i s a g e n e r a l i z a t i o n o f t h e f i r s t o f t h e s e e q u i v a l e n -
ces. Next, t h e second e q u i v a l e n c e i s g e n e r a l i z e d t o t r a n s v e r s a l seminets.
.
Each t r a n s v e r s a l s e v i n e t = (X;Lo,L1,. . ,Lt;T1,T2,. . . ,Tv) i s e q u i v a l e n t t o a ~ P ~ ~ ~ ~ J C Ip aW cJk Li n g , v i a t h e i n c i d e n c e s t r u c t u r e I ( L , X ) . Each b l o c k X C X h i t s each o f t h e gyi"7u:s t i n c t groups
Li,L.
L.
1
J
i n e x a c t l y one t r e a t m e n t
lcLi,
two t r e a t m e n t s f r o m d i s -
a r e j o i n e d b y a t most one b l o c k , and t h e r e i s no such b l o c k
if
L . =L.. Moreover, t h e r e a r e a d d i t i o n a l mzin tr.eatmeurts Ti; 1 $1 t i o n s t h e treatments o f I(L,X) i n t o d i s j o i n t blocks.
each
Ti
parti-
...
and
Supoose now X and each Li t o be l i n e a r l y o r d e r e d , i . e . X = Ix1,x2, I 1 2 r Li = { l i 7 1 .,..., l j 1 . L e t t h e m a t r i x B = ( b . . ) o f s i z e ( t t 1 ) X I X I be d e f i n e d 1J
1
b . . = k :0 x. i . T h i s m a t r i x i s an OA (orthogomZ a r r a y ) i f t h e seminet 1J J i s a n e t ( s e e e.g. 191). 11.1 t h e general case, t h e s e t o f a l l 1x1 columns o f B
by
forms a code o f ZeilgLh
t+l o v e r t h e a l p h a b e t
{1,2,
...,r l
with
1x1
w r d s and
distance t , s i n c e any two d i s t i n c t columns c o i n c i d e i n a t most one p o s i t i o n . Each t r a n s v e r s a l T. corresponds t o a f a m i l y o f codewords (columns o f 6 ) J such t h a t , f o r a l l k ' 11,2 ~ ,...,r I and a l l i c [0,1, . . . ,t l , t h e r e i s e x a c t l y one codeword i n t h i s f a m i l y w i t h v a l u e k i n row i , The t r a n s v e r s a l T . can a l s o
miriimaZ
be regarded as an ii!je,:tioe
, i i a g o n r l subset o f
r words o f l e n g t h t + l o v e r
{l,Z,
..., r ?
{1,2,
. . . ,rIttl
J ( i . e . as a s e t o f
which d i f f e r i n an-y c o o r d i n a t e ; see
161). L e t the associated permutation arrays or, equivalently, l e t Doints
xcX
Ti i . , T . = 0
J
and o f t h e l i n e s
li.Li
for a l l (i21)
A1,A2,
...,At
now b e l a t i n r e c t a n g l e s
i , j , i z j . Assume t h e numbering o f t h e
now be more s p e c i a l t h a n above: L e t
M . Deza and T. Ihririger
2 00
k l = l k if lnT1zlo, andlet x=x i j these assumptions t h e f i r s t row o f B
m.1,
for
t h e m t h row o f
i.e.
'm-19
(bm,(i-l)r+l
9
(i :;)
of
A
b
U
=k
if
k xcTinlo.
Under
j = k (mod r )
and,
bm,(i-1)r+2
3..
3
i s t h e i t h row o f
bm,ir)
corresponds now t o t h e s e t o f columns
Ti
Am-l.
(i-l)r+l
,
o f B . F o r example, c o n s i d e r i n g t h e s i m p l e complete s e t A1 = 1 2 3 2) o f m u t u a l l y o r t h o g o n a l l a t i n r e c t a n g l e s , one o b t a i n s A2 = (3
,
The p e r m u t a t i o n a r r a y s of
satisfies
if
.. . , i r
(i-l)rt2,
j
j=(i-1)rtk
becomes a " l i n e a r i z a t i o n " o f t h e l a t i n r e c t a n g l e
B
Notice t h a t the transversal
Q(A,A')
with
A
and
A'
a r e s i m i l a r e x a c t l y i f , f o r a l l j , column
can be o b t a i n e d f r o m column
A'
be t h e become
Q(
r x r
k's
matrix
(q..)
i n column
[; :;)' (;
'J
J
:23)
j
of
d e f i n e d by of
=
A ' , and
A
by renaming t h e symbols. L e t
qij= k
i f the
qij=*
o t h e r w i s e . For example,
i's
i n column
j
(; ;:). * 1 3
As a l l p e r m u t a t i o n a r r a y s a r e assumed t o be s t a n d a r d i z e d ,
qii
=i
for all
Q ( A , A ' ) . I n no column o f t h i s m a t r i x a symbol a p e a r s t w i c e . T h e r e f o r e
i in
Q(A,A')
can be c o n s i d e r e d as ( t h e m u l t i p l i c a t i o n t a b l e o f ) a p a r t i a l l e f t - c a n c e l l a t i v e g r o u p o i d d e f i n e d on
{1,2,
..., r l .
The p e r m u t a t i o n a r r a y s
A,A'
are orthogonal i f
Q ( A , A ' ) t h e n becomes i s a complete quasigroup i f and o n l y i f
and o n l y i f t h i s g r o u p o i d d l s o i s r i g h t - c a n c e l l a t i v e , and a p a r t i a l quasigroup. Moreover,
Q(A,A')
the permutation arrays are row-transitive.
Let
A1,A2¶.
. . ,At
be s i m i l a r permuta-
t i o n a r r a y s . By P r o p o s i t i o n 1.2 o f 141, these a r r a y s a r e m u t u a l l y o r t h o g o n a l exactly i f
Q(A1,A2j,
Q(A1,A3),
. .. , Q(A1,At)
are mutually orthogonal p a r t i a l
quasigroups. N o t i c e t h a t t h e a s s o c i a t e d t r a n s v e r s a l seminet i s n - r e g u l a r i f and Q(Ai,A.), i z j , has t h e f o l l o w i n g p r o p e r t i e s : Each i E (1,2, ...,r } J appears e x a c t l y n times, and t h e r e a r e e x a c t l y n d i s t i n c t symbols i n each rcw
o n l y i f each
and i n each column. There a r e many i n c i d e n c e s t r u c t u r e s b u i l t f r o m n e t s . Examples a r e t r a n s v e r s a l geometries 161, d-dimensional n e t s 1211, and e x t e n s i o n s o f d u a l a f f i n e planes
C231. I t w i l l be i n t e r e s t i n g t o s t u d y s i m i l a r s t r u c t u r e s w i t h n e t s r e p l a c e d by t r a n s v e r s a l seminets.
On Permutation Arrays
101
REFERENCES
[I1
J. Andre, Uber nicht-Desarguessche Ebenen m i t t r a n s i t i v e r T r a n s l a t i o n s gruppe. k t h . %. 60 (1954) 156-186.
r21
J. Andrii, u b e r P a r a l l e l s t r u k t u r e n . T e i l I: G r u n d b e g r i f f e . E4ath. 2. 76 (1961) 85- 102.
131
J. Andr'e, u b e r P a r a l l e l s t r u k t u r e n . T e i l 11: T r a n s l a t i o n s s t r u k t u r e n . Math. 2. 76 (1961) 155-163.
141
A. B o n i s o l i and M. Deza, Orthogonal p e r m u t a t i o n a r r a y s and r e l a t e d s t r u c t u r e s . Acta U ~ i u .CuroZirzue 24 (1983) 23-38.
151
A.E. Brouwer, A. S c h r i j v e r and 1-1. Hanani, Group d i v i s i b l e d e s i g n s w i t h b l o c k s i z e few. Discrete ?.k&zerriatks 20 (1977) 1-10.
I61
M. Deza and P. F r a n k l , I n j e c t i o n geometries. J . Comb. Theory (B) 37 (1984) 31-40.
I71
M. Deza, R.C. M u l l i n and S.A. (1978) 322-330.
181
J . D i n i t z , New l o w e r bounds f o r t h e number o f p a i r w i s e o r t h o g o n a l symmetric l a t i n squares. Cong~essus1"hmercmtium 22 (1979) 393-398.
191
J . D i n i t z and D.R. S t i n s o n , The spectrum o f Room cubes. E d r o p . J . Combinatorics 2 (1981) 221-230.
r 101
S . Dow, T r a n s v e r s a l - f r e e n e t s o f s m a l l d e f i c i e n c y . A w h . Math. 41 (1983) 472-474.
Vanstone, Orthogonal systems. ileq. r b t h . 17
I 1 1 1 W . F e i t , Some consequences o f t h e c l a s s i f i c a t i o n of f i n i t e s i m p l e groups. Pruiteedin2s of i'ymposic; ix Fur-e kfu.athematics 37 ( 1980) 175-181.
r 122
A. Hartman, Doubly and o r t h o g o n a l l y r e s o l v a b l e q u a d r u p l e systems. I n : R.W. Robinson e t a l . ( e d s . ) , i,'~~!t,i,zat.jr?:uZ M~ithe.oiaticsVII. L e c t u r e Notes i n Mathematics 829 ( S p r i n g e r , B e r l i n H e i d e l b e r g New York, 1980).
r 131
Ch. Huang, E. Mendelsohn and A. Rosa, On p a r t i a l l y r e s o l v a b l e L - p a r t i t i o n s . AvnuZs of iiiscrele k t h e m c t i c s 12 (1982) 169-183.
1141 B. Huppert, E r d l i z h e
CY14pp?7!
T ( S p r i n g e r , B e r l i n H e i d e l b e r g New York, 1967).
r 151 D.
J u n g n i c k e l , E x i s t e n c e r e s u l t s f o r t r a n s l a t i o n n e t s . I n : P.J. Cameron e t a1 , (eds . ) , Ipinitc geonetries uid d e s i g i i s . L e c t u r e Notes London Math. SOC. 49 (Cambridge U n i v e r s i t i y Press, Cambridge New York, 1981).
r 161
E.S.
Kramer, S.S.
M a g l i v e r a s and D.M.
Mesner. Some r e s o l u t i o n s o f S(5,8,24).
J . Comb, Theory ( A ) 29 (1980) 166-173.
l17J
E.R. Lamken and S.A. Vanstone, Designs w i t h m u t u a l l y o r t h o g o n a l r e s o l u t i o n s . Ezirop. J . Curnbimtorics ( t o a p p e a r ) .
r 181
M. Marchi, P a r t i t i o n loops and a f f i n e geometries. I n : P.J. Cameron e t a l . (eds ) , Finite 2eometr.ies m i designs. L e c t u r e Notes London Math. SOC , 49 (Cambridge U n i v e r s i t y Press, Cambridge New Y G r k , 1981).
119J
P. Q u a t t r o c c h i and C. P e l l e g r i n o , R e t t a n g o l i l a t i n i e " t r a n s v e r s a l d e s i g n s " con p a r a l l e l i s m o . A t l i i'e~~. ~ 2 t .pis. G .io. :.;s,?e?~: 28 (1980), 441-449.
1201
.
R. H. Schulz, On t h e c l a s s i f i c a t i o n o f t r a n s l a t i o n group d i v i s i b l e designs. J . Co/?iZ;lii;LZt,s.&?s ( t o appear).
.'~!WO!J.
c211 A.P.
Sprague, I n c i d e n c e S t r u c t u r e s whose p l a n e s a r e n e t s . !?':crop. d . Corribinut ~ P i i ?2 ~(1981) 193-204.
c 221
A.P.
Sprague, T r a n s l a t i o n n e t s . ~ i t c .,..,th.
[231
A.P.
Sprague, Extended dual a f f i n e p l a n e s , C e m . T)edz:c. 16 (1984) 107-124.
C 241
H. Wielandt, Finite perriutatio?; groups (Academic Press, New York London, second p r i n t i n g 1968).
Sem. Giei3etz 157( 1982) 46-68.
This Page Intentionally Left Blank
Annals of Discrete Matliematics 30 (1986) 203-216 0 Elsevier Science Publishers B.V. (Nortlr.Hollatid)
PASCALIAN CONFIGURATIONS I N PROJECTIVE PLANES
Giorgio Faina D i p a r t i m e n t o d i Matematica Universita d i Perugia 06100 P e r u g i a ITALIA
INTRODUCTION Following T i t s [19],
l e t P he a p r o j e c t i v e Oval of a p r o j e c t i v e
p l a n e TI and l e t P ( d ) be t h e f i g u r e formed by a i l o f t h e s e c a n t s o r t a n g e n t s t o 5: which a r e p a s c a l i a n l i n e s w i t h r e s p e c t t o R (see [4,p.
3701).
The f i g u r e s P ( 2 ) a r e c a l l e d ? - p a s C a l i a n
configurations
of 2. The p r o b l e m o f d e t e r m i n i n g t h e c o n f i g u r a t i o n P(G) was i n t r o d u c e d by F. E u e k e n h o u t i n [ 4 ] a n d , by u s i n g t h e s e c o n f i g u r a t i o n s , i t i s
p o s s i b l e t o produce an i n t e r e s t i n g c l a s s i f i c a t i o n f o r t h e p r o j e c t i v e o v a l s (see, a l s o , [ 7 ] ) . The p u r p o s e of t h i s p a p e r i s t c p r o v e t h e following r e s u l t :
I t seems e x t r e m e l y i n t e r e s t i n g t o m e n t i o n t h a t i n a G a l o i s p l a n e
h P G ( 2 , q ) , q = p , t h e p r o b l e m of d e t e r m i n i n g t h e non-empty R - p a s c a l i a n configurations i s completely resolved. I f o f S e g r e [18],
q
i s o d d , by t h e t h e o r e m
t h e o v a l s a r e c o n i c s , f o r which e a c h l i n e i s p a s c a l i a n
(see [4, p. 3 7 2 1 ) .
I f instead
q
i s e v e n t h e n t h e r e is, o t h e r t h a n
G. Fairia
204
the class of conics, another class of ovals (called L k a n . & U v n ow& [lo]) which have a single non-exterior pascalian line and such a line is a tangent (see [lo]). We also note that there are projective ovals having non-exterior pascalian lines in non-desarguesian planes, but in this setting the problem is very far from being resolved (see [4, p. 3801 , [21] 1 . At present two other R-pascalian configurations were found: a) If G is the Wagner's oval [21]
then the R-pascalian configuration
contains a unique line (see [7] : Buekenhout also discovered that this line is a tangent to S7 (see 1 4 1 ) b ) If R is the Tits ovoide 2i
.
&abt&ldon [19],
set of tangents to R (see [4, p. 3821 and
then P(Q) coincides with the
171).
So we see that in 2 ) and 3) of our Theoran we have exhibited
new types of
2-pascalian configurations.
1. DEFINITIONS
PRELlMINARy RESllLTs
For definitions of the terms projectibe plane, aollineation, translation plare, desarguesian plane and near-field see, for exanple, Segre [MI. A phojective u u d is defined (see [19]) as a set of pints R of a projective
plane I such that
M)
three are collinear and through each there passes one and
only ore line (the tangent) that contains IY) other pints of R.
is a 6-ple (a a a b b b ) of p i n t s of R , m t recessarily 1' 2' 3' 1' 2' 3 distinct, such that : ai,bj # aj,bi, ai#aj and b #b for i#j and ai#bi i j (i,j=lr2,3), where a , h is a w e n t of R when a.=b Hexagons have three 11i j' (ifj) and are called pcrlc&aii when distinct hiagorule p o i a t h a.,b,n
A hexagon of
c)
_ I
1
_ I .
3
c,% J i
these three points are collinear. The €amus theorem of Euekenhout
143 m y
be
stated as: Id each i a c h i b e d lwxagot1 in a pm jcc..Citive v u d R 0 p a c d i a n -then R in a t u n i c i n a p o jeotiwe pappian ptane.
Let R be a projective oval ii1 a projective plane TI. A line R of
R
205
Pusculiatr Corij~gurutiorzs111 Projective Planes
i s c a l l e d R-puncae-Lun i f e a c h hexagon i n s c r i b e d i n R which h a s t w o d i a g o n a l p o i n t s on L a l s o h a s t h e t h i r d d i a g o n a l p o i n t on 1. The
II which a r e
f i g u r e P ( Q ) formed by a l l o f t h e p a s c a l i a n l i n e s o f
s e c a n t o r t a n g e n t t o R i s c a l l e d R - p a d c a L h n c u n d i g u f i a t i o n o f II.
Oval d o u b l e l o o p s
1.1.
I t h a s b e e n o b s e r v e d by many a u t h o r s ( [4]
, [ 6 ], [7] 1 ,
that a projecti-
ve o v a l may be u s e d t o d e f i n e o p e r a t i o n s o f a d d i t i o n @ and m u l t i on i t s p o i n t s . W e w i l l d e s c r i b e a method f o r d o i n g t h i s
plication
which i s a s l i g h t m o d i f i c a t i o n o f B u e k e n h o u t ' s p r o c e d u r e [ 4 , p.
3731
w i l l c a l l e d a n o v a l dou6Le
The r e s u l t i n g a l g e b r a i c s y s t e m (Q ; @ , O ) T
Loop. Let
R be a p r o j e c t i v e oval i n a p r o j e c t i v e p l a n e ll. A r b i t r a r i l y
s e l e c t t h r e e p o i n t s on R and l a b e l them
ylo,i
p o i n t of i n t e r s e c t i o n of t h e t a n g e n t s a t p o i n t s of R, o t h e r than
y
and t h e n l a b e l t h e
o
and
i s a s s i g n e d a and
o
is assigned 1 .
i
I f a and b a r e t h e symbols a s s i g n e d t o t h e p o i n t s
if 0;
in
},
a#o if
x . The
y , a r e t h e n a r b i t r a r i l y a s s i g n e d symbols
with the r e s t r i c t i o n t h a t
Q\&
with
a
and
b
of
we d e f i n e t h e sum a@6 i n t h e f o l l o w i n g way:
-
then the l i n e a=o
then l e t
a point
z
w i l l m e e t R i n a point
a,x
a'=o. If
o t h e r than
bfo
x; i f
then t h e l i n e b=o
then l e t
a'
o,b
other than
meets
z=x. L e t
x,y
C be t h e
~
p o i n t o f i n t e r s e c t i o n of t h e l i n e
a ' ,z n R } \ { a ? =pl
then
c=a'
a',z
. Letting
w i t h QN{a'j; i f
c be t h e symbol a s s i g n e d t o
t h i s p o i n t we d e f i n e u616=c. If
a r b E R \ { o l y ] , w e d e f i n e t h e p r o d u c t a o b as f o l l o w s :
the tangent a t then the l i n e
i
b,j
__
meets t h e s e c a n t
o,y
i n a point
w i l l m e e t R i n another point
j; i f
b'#i;
if
a,i
b#i b=i
with t h e then l e t b ' = i . L e t t h e i n t e r s e c t i o n of t h e l i n e l i n e o , y be h. L e t c be t h e p o i n t o f i n t e r s e c t i o n of t h e l i n e
-
h,b'
-
with t h e s e t R\{b'] ; i f { h,b'nR}
N
jb'} =$
then
c=b'. Letting
c be t h e symbol a s s i g n e d t o t h i s p o i n t w e d e f i n e a 0 6 = c . I f w e c a l l t h e s e t of symbols u s e d
Q , then i t i s e a s i l y seen t h a t
.
G.Fuiria
206
0
together with the operations defined above is a double loop which
is denoted by where
which is also called an o v a l double l o o p ,
(Q,;@,')
{o,y,i}. This leads us to
S:=
LEMMA 1.[6]- The loop (Q
S
-
the line
,@)
is an abelian group if, and only if, i-
is a R-pascalian line; the loop (Q,,')
x,y
group if, and only if, the line
+ Qs:=Qx{o}.
cy
is a R-pascalian line, where
It is not difficult to verify that every point fied with a involutorial permutation
is an abelian
I(p)
p€II\R can be identi-
of the points of R as
follows: if
p ~ u \ R ,two points of R are a pair in the involutorial permutation if they lie on the same line through
I(p)
LEMMA 2 . [ 4 ] -
p.
For a line l of a projective plane containing a pro-
jective oval R , the following are equivalent: 1)
.i? is
R-pascalian, and
2) for each triple of involutions I(p) , I ( q ) , I (r) with centers
on l, the composition
I(p)I(q)I(r)
is also an involution
with center on 1. An a u t o m o 4 p h i n m of a projective oval R is a permutation $ of the points of R which preserves the involutorial permutations I(p), where
v
p~ll\R,that is to say:
PErI\R,
3!
q&n\R
: $ I(p)lp=I(q).
The automorphisms of R form a group. Denote this group by
AutR.The
following is easily proven: each c u L l k n e a t i o n mirkph44tn 0 6
06
ll t h a t pekmuteh R i n t o i t b e t 6 i n d u c e s an a u t o -
0.
We also have the following result.
LEMMA 3.[4]-
Let 52 be a projective oval of a projective plane Il and
let a be a collineation of TI that permutes R into itself. The line
207
Pascaliaii Coiifigirrarioiisiir Projwtive PIaiies _.
x,y
,
where
x,y~:R,is a R-pascalian line if, and only if, the line
(x),w.(y) is a (1-pascalian line.
1.2. The near-field of order nine (Andrb [l]) Let
2
x =-1
an irriducible quadratic over GF(3). Let
of all elements of the form where we assume
on K
a+bi
as
a
and
b
K
be the set
vary over GF(3),
2
i =-1. We wish to define an addition and a product
in such a way that, using the field GF(3) addition, K will
be a near-field. We define the addition as follows (a+bi)+ (c+di):= (a+c)+ (b+d)i f for all
a,b,c,deGF (3).
We define the product in the following way: ai=ia, for all
a€GF(3)
a(btc)=ab+ac, for all ab+ba=O, for all
a,b,c~K
a,bEK\GF(3), where
afb
and
a+b#O.
It is evident that (K,+) is an abelian group and that K\{O} is a group. G’ven
(a+b#O), there is a unique
a,b,cEK
XEK
such that
ax+bx+c=O. 2
Finally, a =-1
for all
acK\GF(3).
1.3. The non-desarguesian translation plane of order 9 (Andr6 [l] From the Rear-field of order 9 K
)
we may now construct a transla0
tion affine plane of order nine, denoted by T
,
as follows (see,
for example, [1] :
-
points are the pairs (x,y) for all
x,y~K;
lines are defined as sets of points (x,y) whose coordinates x,y satisfy an equation of one of the forms (aEK),
(1) x=a
(2)
y=ax+b
(a,bcK).
There is, up to isomorphism, a unique projective plane that
0
T =T\{d}
infinity of same
TO.
To
for a line d of
T
such
T , where d is called the line at
and its points are called points at infinity of the
C.Faitia
208
If
p
is the point at infinity of
y=ax+b
is the point at infinity of
by (a). If
p
denoted by
(m).
then it will be denoted x=a
then it will be
It has been shown by Denniston [5] and Nizette [14] that in the translation non-desarguesian plane of order nine dual
T
(and in its
T I ) the ovals fall into a single transitivity class under the
collineation group. The self-duality property make it unnecessary to study
and T'
T
jective oval in
Rodriguez )6] the group oval of
T
separately; so the following example of pro-
T will suffices:
discovered the oval
AutR
of
32
collineations that leaves invariant an
and proved that AutR
I J
x' =ix-iy y' =ix+iy
and Nizette [14] has studied
R
have generators
x ' =-x
x'=x
Y"Y
with
io=-ir a € Aut K.
1.4.
The Hughes plane of order nine (Zappa [22])
From the near-field of order plane, denoted by
H
9 K
we may now construct a projective
as follows:
- the points of H are the triplets
( x ,x ,x 1 , where
x.EK, other 1 2 3 than ( O , O , O ) with the identification (x1,x2,x3)=(kxl,kx rkx3) for 2 all non-zero k in K;
- the lines of H will now be the sets of points satisfy an equation of the form any automorphism of
K
(x,y,z) which
x+yt+z=O, teK, such that if cf is
then the mapping
x'=a xa+b yo+c zu 1 1 1
z'=a xO+b yO+c z(J 3 3 3 with
(VaitbircicGF3), i=1,2,3)
det(a,,b,,c,)#O, is a collineation of
H.
209
Pascaliun Configurations in Projective Planes
Denniston [ 5 ] and Nizette [14] have discovered that in the Hughes plane
H, ovals fall into two transitivity classes under the colli-
neation group of 48
riant under
H. An oval,
D , in one of these classes is inva-
collineations, as against
16
collineations for
the other class. So the following examples of non-isomorphic projective ovals of
H
will suffice:
N={(l,i,O), (1,-i-l,O),(l,-l,i+l),(l,-l,-i-l), (O,i,l),(O,i,-l), (l,~,-i-l),(l,~,i+l), (l,l,i),(l,l,-i)l. In [14], Nizette proved also that
AutN have generators
a
a
x'=x-y
x =-x
x'=x +y
y 1 =-y
y'=x+y
a a y'=x - y
Z'=Z
Z'=Z
1
0
(with i'=-i-l).
2. PASCALIAN CONFIGURATIONS JJ Let
R
T
AND IN
T'
be the Rodriguez oval of the non-desarguesian translation
plane of order nine T. First we show that each non-exterior line (to R ) through the point ( 0 , O ) is a R-pascalian line. Let the tangent
y=ix
(O,l)=i, (0,-i)=-i,
(i,-i)=2i+l, (-i,i)=2+i, (i,i)=2+2i, (-i,-i)=l+i Q
denote
and label the points of R in the following way:
(-i)=O, (i)=-, (-l,O)=l, ( 1 , 0 ) = 2 ,
Letting
.t
be the symbol assigned to the set Rx{(i)l
coinciding with the set of elements of the near-field the following triplet of points on R :
. (i.e. Q K),
is
we select
G. Fabra
310
By
1.1, the algebraic system (QS;@,O) is an oval double loop. Now, with a straightforward proof which we omit for shortness, we can to check that a@b=a+b, for all
a,bEQ (1.e. for all
a,bEK).
Since (K,+) is an abelian group, we have that (QS ,@)
is an abelian
group. Therefore, by Lemma 1, we have that the tangent at
(i)=-
is a R-pascalian line. Also, s h c e AutR {
is a transitive permutation group on the set
,
(i), (-i)I C R (see [ 4 ] )
is
by Lemma 3 , we have that the tangent y=-ix
R-pascalian.
NOW, in order to show that the secant
x=O
it is only necessary to prove that, for + o
loop ( Q s ,
)
, where
+ QS=R\{ (0,l), (0,-1)1 ,
is a
S=I (0,l), (O,-l), (i)1 , the is an abelian group. A very
long, but straightforward computation, shows it. that (see [ 1 4 ] )
AutR
fixes the point
tive on the points of R*{(i),(-i)}. all non-exterior lines through
R-pascalian line,
It is well known
( 0 , O ) and that it is transi-
Thus, from Lemma 3, we have that
( 0 , O ) are R-pascalian.
Now we will prove the non-existence of non-exterior R-pascalian (0,O).The points of R may, for
lines not passing through the point shortness, be denoted by digits from
0
to
9
as follows:
!i)=o, (-i)=1, (-1,0)=2, (1,O)= 3 , (i,-i)=4 ,(-i ,i)=5 ,(1,i)=6 ,(-i,-I)=7 , (0,1)=8 and (0,-1)=9. By [4, p. 3831 and [20, table 32/34],
it follows that, if we denote
by G(8) the group of all elements in AutR
then
IG(8)
1=4
and that
G(8)={f
f
f
which fix the point
8,
f 1 , where
1’ 2 ’ 3 ’ 4
Finally, since AutR acts transitively on R\{ (i), (-i)1 , by Lemma 3, the only thing remaining to be shown is that the lines
- - - - 8r8
I
5,8
r
O,8
x e not R-pascalian.
i
218
r
0,l
21 I
Pascalinn Configurations in Projective Planes
First of all, consider the following points of ll\R: __-
-~
-~
--
-__
p =1,9r18,8, p =1,6n8,8, p =5,8nO,O, p =5,8nOI2, p =0,8fll,l, 1 2 3 4 5
--
--
--
~~
____
p =0,8ni,2, p =2,8no,o, p =2,8noI3,p =0,1n2,2, p =0,1n2,4, 6 7 8 9 10 --
pl1=0,1fl2,6. Now, without giving the proofs (which are straightforward but time-
consuming) we remark that
p1,p2,p3~8,8 but
I(p1)I(p2)I(p3)
is
-
not a involutory permutation of R with center on
8,8; thus, by
__
Lemma 2, it follows that the line
8,8
is not R-pascalian.
Repeating this process, replacing
I (p,) I (p,) I (p,)
by I (p,) I (p4)I(p,)
,
~
gives that the line
5'8
Similarly: I (p5)I (P,) I (P,)
is not R-pascalian.
,
I (P,) I (P,) I (p7)I I (P,) I (pl0)I (pll) are -
not involutory permutations of R with center in
~
0,8, 2'8, 0,1,
respectively. Hence these lines are not R-pascalian.
The R'-pascalian configuration of the dual
T'
of
T
is again of
the same type and we omit the analogous proof.
3. PASCALIAN CONFIGURATIONS
IN
H
In [8], Hughes reproduces the plane
H
in the useful following way:
- the points are the symbols A i , B i ,C.,D ,E.,FifGifi=O,1,..., 12; i i i -seven of the lines are the following sets of points 1) IAO,A1 'A3 I Ag,Bo tCo I Do I Eo I Fo 'Go 1 2) IAotB1rB8tD3 'Dll
tE2 tE5 ,E6,G7,Gg1
-
217
G.
G){A
0'
C
7'
C,D 9
D
2'
FUiflO
D E E F,F) 5' 6' 3' 11' 1 8
7) {AOiB3rB11 r C 2 rC5rC6 r D7 i D g rG1 rG8);
- the remaining lines are found by successively adding one to the sub-scripts, reducing modulo 13. In this notation, we remark that (see [5] and [ 1 4 ] )
the ovals D und
N of section 1.4 are the following sets of symbols:
B0rE0rC 6 r D 6 r C 7 rD 7 I
P'{A4'A5'All'A12'
N={B
0'
c0' c 4 ,G4' c 6 ' D 6' B 7' F 7' B ll'E1l'
'
We first show that the D-pascalian configuration is the empty set. The suggestive term JLeaL is used for the points A
of H I then in D i there are four real points and six i m a g i n a h y points. It is well
known that (see [5]
, [14])
IAutPj=48 and we note further important
properties: 1) Auto is generated by: (A11A12)(BoEo)( C 6 C 7 ) ( D 6 D 7 )
2) AutD is transitive on the set of real points of 0; 3 ) AutD is transitive on the set of imaginary points of
D;
4)
I (AutD)xl=12
5)
(AutD)x is transitive on the set of imaginary points of D for
for all real point
XED;
all real point xrD; 6 ) if
is a real point of D , then
x
set of real points of 7 ) if
(AutD)x is transitive on the
D.{xl;
is a imaginary point of D then
y
I (Autp)
Y
1=8;
8) (AutD) =(AutD) : BO EO 9) (AutD) BO
is transitive on the set {C
D C D I. 6' 6 ' 7' 7
We omit the proof which is very long, but not difficult. By the above properties of AutP and Lemma 3 , the only thing remaining
213
Pascalian Configurations in Projective Planes
to be shown is that no one of the lines
- - - A4rA4r A12iA12
I
A4iA5
r
BOrEO
I
BOrC6
I
A4rA12
is D-pascalian. As in the proof of section 2, it is sufficient to exhibit some appropriate involutorial permutation of the points of
D
. First of
all, consider the following points of i l \ P
:
Now we remark that the following permutations
are not involutory permutations of type in
-
I(p) with the centers p
~
-
-
A4,A4, A12,A12, A4,A5, A4,A12, B O I E O ~BO'C6
respective1.y. Hence, by Lemma 2, these lines are not D-pascalian. Finally, we must show that the N-pascalian configuration is the empty set too. Also in this case, it is well known that (see [5] and [14]) 1AutNI=16 and it is not difficult to check that:
1) AutN is generated by
X=(C C F E G D B B
4 6 7 1 1 4 6 7 11
and
2) AutN fixes the set {Bo,Co}; 3 ) AutN is transitive on the sets {B
0'
C
0
1
and I=N\$ 0 ,C0 1 respecti-
vely; 4) (AutN) is transitive on 1; BO 5 ) (AutN) =(AutN) : BO cO =(AutN) =(Id,ul G4
.
Hence, in order to prove that P(N)=gf, it is sufficient to show that no one of the following lines is N-pascalian:
G. Faina
214
A repetitionofthe arguments used in the earlier proof of this CtiOn
98-
shows that the permutations
are not involutory permutations of the points of N
with center in
the above mentioned lines, respectively, wile we have that:
--
C41G4, E 8' E 0EC 4 ' C 6' C 5' G0EC 4' D 6' E 2' A 1EC 4IB7' Hence, by Lemma 2, no one of these lines is a N-pascalian line.
REFERENCES 1. J. ANDRE' , U b a nLckt-Dwqutbdche Ebenen miit .hanb.Ltiveh ThansLatLonghuppe, Math. Zeit. 60 (19541, 156-186.
2. A. BARLOTTI , Un'oodehvatione i & V h n O Le Matematiche 21 (1966) 23-29.
ad un ,teahema di B. Sqhe
3. U. BARTOCCI, Condidekazioni d d h Universita di Rcana (1967).
&O&a
4.
F. BUEKENHOUT, 333-393.
5. R.H.F.
d&e
ova&
6u.i
q-mcki,
Tesi di Laurea,
Etude imkin6Eque d u o v a t u , Renl. Mat. (5) 25 (19661,
DENNISTON, On
~MCAi n
pojecfive phnw
06
o t d a 9, Manuscripts
Math. 4 (19711, 61-89.
6. G. FAINA, Sut d o p a cappio ahdociato ad un ova&, (5) 15-A (19781, 440-443.
eOll. Un. Mat. Ital.
7. G. FAINA, Un m66inamento deRea o e a 6 b i 6 i c a z i o f l e di BuetzenhoLLt peh g k 5 o v d i a b w , Boll. Un. Mat. Ital. (5) 16-B (19791, 813-825. 8. D.R. HUGHES, A ceadd 9 (1957), 378-388.
06
n o n - P t b a q u u h n p o j e c f i v e p h n e ~ ,Canad. J . Math.
06 p o j e c t i v e &neS 9. Z. JANKOI TRAN VAN TRUNG, The & U A i @ U % W okdeh 9 wkich podbe6 an invo.&Lion, J. C a b . Theory 33 (19821, 65-75.
Od
215
Pascalian Configurations in Projective Planes
10. G. K O R C W R O S , SuRee ow& di .Ouu&zhne i n un piano di G d v D di ohdine p&, Rend. Accad. Naz. XL (5) 3 (1977-78),55-65. 11. G. KORCHMAROS, U n a geneA&zzaLane d d teahema di Buehenhout A&e ow& p a s c a l h n e , Boll. Un. Mat. ItdL. (5) 18-B (19811, 673-687. 12. R. MAGARI, Le c o n d i g m a z i o n i p a h z i ~ckiube contevwte net piano P 4ut quabicohpo a ~ n o c i a t i w odi ohdine 9 , Boll. Un. Mat. Ital. (3) 13 (1958), 128-140. 13. G. M E N I C H E T T I , Sapha i k-UJLCki [email protected] n& piano g h a d i c ~di a h h ~ a z i o ne di ohdine 9, Le Matematiche 21 (1966), 150-156. 14. N. N I Z E T T E , P e t e h m i n a L b n den o w d e n du p h n de .i%anS.b.x%on nun ahguesien e,t du p&n de Hughen d'ahche m u d , Bull. Soc. Math. Belg. 23 (1971), 436-446. 15. T.G. OSTROM, 1-18.
Semi-.i%annhtion ptanen, Trans. Amer. Math. Soc. 111 (1964),
Un enempio di o v d e che non L? una q u a i - c o r t i c a , Boll. Un. 16. G . RODRIGUEZ, M a t . Ital. (3) 14 (1959), 500-503. 17. L . A . R O S A T I , S u u n a 13 (19641,39-55.
nuowa d a b b e
di p i a n i g h a d i c i , Ricerche d i M a t .
18. B. S E G R E , 1ectuhe.d o n modehn g e o m e t h y , C r e m o n e s e , R o m a 1961. 19. J. T I T S ,
UvoLda d . i % a n S r n o n , Rend. Mat.
(5) 21 (19621, 37-59.
20. A.D. THOMAS, G.V. WOOD, Ghoup T a b t e a , S h i v a P u b . , O r p i n g t o n 1980. 21. A. WAGNER, On pmpec..tiui,tien 71 (19591, 113-123.
06
&&Lte phojecfiwe p&UwA,
ZAPPA, SLLi g m p p i di c o U n e a L o n i d e i pian; M a t . Ital. (3) 12 (1957), 507-516.
22. G.
Math. Zeit.
di Hughen, Boll. Un.
This Page Intentionally Left Blank
Annals of Discrete Mathematics 30 (1986) 217-224 0 Elsevier Science Publishers B.V. (North-Holland)
217
MONOMIAL CODE
- ISOMORPHISMS
Pave1 F i l i p and W e r n e r H e i s e (*) Mathematisches I n s t i t u t der Technischen U n i v e r s i t a t Munchen 20 2420, D -8000 Munchen 2
P.0.Box
Germany
Let
D be two l i n e a r subspaces of GF(q)" and a Hamming weight preserving l i n e a r b i j e c t i o n . It
and
C
v : C+D
w i l l be proved t h a t cp i s t h e r e s t r i c t i o n o f a monmial transformation o f GF(q)" , i.e. an n x n - m a t r i x over GF(q) , which i s t h e product o f a diagonal and a permutation m a t r i x . An a p p l i c a t i o n shows t h a t t h e group o f a l l Hamming weight preserving l i n e a r b i j e c t i o n s o f t h e
, r 2 3 , of
code HAM(r,q)
length
isomorphic t o t h e general l i n e a r group Let
F be a f i n i t e s e t c o n s i s t i n g o f
For
i EZ":= { 1 , 2
. .. ,n l
F"
Cartesian product
by
associates t o every p a i r t h e words
?
3
and
2
we denote t h e
n z l
be an integer.
ithpr oje c tion of t h e
-
n fold
. With respect t o t h e
; ( ~ , $ ) j I { i € ~ " ; ~ ~ ( ~ ,) which *~~(3)}t
(?$) E F"
x
F"
t h e number
p(?,g)
d i f f e r , t h e Cartesian product
A non empty m e t r i c subspace I t s minimal d i st a n ce d(C)
is
t
elements and
q22
mi : F"+F ; ( X ~ , X ~ ~ . . . ,)+xi X
p:F"xF"+lN0
H m i n g d i st a n c e
q - a r y Hamming
... t qr-1 GLr(q) .
1t q t q
CcF"
F"
i s c a l l e d a (bloc k ) code o f length n over F .
i s defined as d(C) : = m i n i
I C I 2 2 and as d(C) := n + 1 o r
o f p o s i t i o n s i n which
becanes a m e t r i c space.
d(C)
:=a
if
?+;I
p(?$);?,;€C,
if
C c o n s i s t s o f only one codeword.
.
be two codes o f length n over F In c o n t r a s t t o sane more pragmatic d e f i n i t i o n s i n t h e coding t h e o r e t i c a l l i t e r a t u r e we take a sanewhat mathematically p u r i s t i c a t t i t u d e . We define a code -isomorphism cp: C - r D as a Let
C
and
D
b i j e c t i o n cp frm p(cp(?),cp($))
=p(sf,$)
C
onto for a l l
D which preserves t h e Hamming distance, i.e. +-D
x,y~C
. Extending t h e range o f
cp
frm
0 t o F"
i s a code -rnonaorpMsm o f
we a l s o say t h a t
c p : C+F"
r e s t r i c t i o n OIc
o f a code-autmorphism
fonns a t r i v i a l code) t o a code
CcF"
C , Clearly, t h e 0 from t h e whole space F" (which
i s always a code-monanorphism of
C
.
(*) The authors g r a t e f u l l y thank prof. L u c a - M a r i a A b a t a n g e l o f o r h e r e x c e l l e n t organisation o f t h e congress and S e r g i o P o v i a f o r h i s extraordinary care during our sojourn a t t h e h o t e l Riva d e l Sole i n Giovinazzo.
P. Filip and W.Heise
218
Every permut a t io n $ o f t h e symmetric group Sn o f Zn induces on F" a c o d e automorphism y : F"+F". We s e t "$(?)) f o r a l l i E n n and a l l ZEF" Two codes C,DCF" a r e c a l l e d equivalent, i f t h e r e e x i s t s a permut at ion ~1 o f Zn w i t h y ( C ) = D Sometimes ( e . g . i n [ 2 1 f o r t h e b i n a r y case q = 2 )
IT$(^^(?)
.
.
i s c a l l e d t h e automorphism group o f t h e code C Othertimes (e . g. i n [l] ) i t s f a c t o r group := {y ; $ E G I i s c a l l e d t h e a u t m o r F r m o u r p u r i s t i c p o i n t o f view, we do n o t agree w i t h t h e s e phism group o f C d e f i n i t i o n s (*), because t h e r e a r e o t h e r t y p e s o f Hamming d i s t a n c e p r e s e r v i n g bijections t h e group G : = { $ c S n ; y ( C ) = C }
.
-
.
.
L e t x : = ( A ~ , A ~ , . . . , ~ , ) E S : b e a v e c t o r o f l e n g t h n , whose components i E Z n , a r e permutations o f t h e s e t F We d e f i n e a code -aut anorphism
.
by s e t t i n g
F"
ni($!(?)) :=Ai(ni(?))
for a l l
i EZn and a l l
hiesF , $! o f
2EF" ,
F r m now on l e t q be a power o f a prime number and l e t F be t h e G a l o i s f i e l d is o f order q , F=GF(q) The Hamming m e t r i c p on t h e v e c t o r space F"=V,(q) + induced by t h e k m i n g w e i g h t , i . e . t h e norm y : F " + N o ; x - , I ~ i E Z n ; ni(?)+0Il,
.
i n t h e u s ual way. F o r ?,?EF"
we have
P(?$)
=y(?-;)
. I n case
n= l
, the
Hamming w eight y : F + { O , l I i s t h e ordinary characteristic function o f t h e s e t F* : = F \ { O } Using t h e Kronecker symbol 6i,j we have y ( x ) = 1 for all xEF
. For
.
a subset
CcF"
we a b b r e v i a t e
y(C) : = F y ( t )
.
EC
By a Zinear (n,k) -code
C
F we understand a m e t r i c subspace C c F "
over
which i s a l s o a k - d i m e n s i o n a l
l i n e a r subspace o f
F"
. Let
CcF"
,
be a l i n e a r
i EZn t h e r e s t r i c t i o n nilc : C+F of t h e ithp r o j e c t i o n fran F" t o t h e l i n e a r code C i s a l i n e a r form. T h i s l i n e a r f orm
(n,k) -c o de. F or "i
: F"+F
, i.e. nilc i s non - t r i v i a l i f and o n l y i f t h e derivation Ai(C) := ker(nilc) Ai(C) = { ~ E C;mi(?) = 01 , of C i n the position i i s a ( k 1) - d i m e n s i o n a l l i n e a r subspace o f C , A code-monomorphism (p:C+F" w i l l be c a l l e d Zinear, i f
-
i t i s a l i n e a r mapping. A l i n e a r i n j e c t i v e mapping c p : C+F"
phism, i f and o n l y i f i t preserves t h e Hamming weight , i.e. for a l l ~ E C
i s a code-monanor iff
-
y(cp(-d))=y(?)
.
.._
Fo r i E Zn we denote by -#ei (6i,l,6i,z,...,6 ) t h e ithcanonical unit i,n aector of F" Now l e t $ € S n b e a g a i n a p ermut at ion o f Zn Then
.
~
i= 1
Hence
.
(i)(;).ti = e n i ( ? )
i s a l i n e a r transformation o f
k=1
F"
.t
(i)
for a l l ZEF"
, $EGLn(F) , which
.
can be represent ed w i t h r e s p e c t t o t h e canonical by t h e permut a t io n m a t r i x ( 6 i , $ - 1 ( j )1 1 S i , j 9 n b a s i s t z i ; i ~ Z n } o f F" Mow l e t h=(A1,A2,...,An)E(F*)" be a v e c t o r
.
(*) Remark by W. H e i s e : What do I c a r e about my r u b b i s h s a i d y e s t e r d a y !
Monornial Code-lsomorphisms
219
where a l l cmponents a r e non -zero. For i E Z n we i d e n t i f y t h e element A ~ E F w i t h t h e permutation XiES, defined by Xi(x) :=Xiax f o r a l l x € F , Then n
n
i = l
i =1
f ( > ~ ~ ( ? ) - z ~=) >ni(z).xi.ti
f(?) =
transformation o f
,
F"
( A i o 6 i , j ) l < i <, jn
for a l l
w i t h respect t o t h e canonical basis o f
X = (X1,X 2,...,A,)
i.e. i f
ni(O(z))
= h i a n
i s a linear
F"
i s called m o n a i a 2 , i f there exists a
i €Zn and a l l
for a l l
monomial l i n e a r transformations o f
.
F"
and a permutation $ E S n
E(F*)"
(?) $(i)
f
, which can be represented by t h e d i a g o n a l m a t r i x
'?EGLn(F)
A l i n e a r transformation @EGLn(F) o f
vector
. Thus,
?EF"
such t h a t
2EF"
0 =
by ,
. Obviously,
preserve t h e Hamming weight o f every v e c t o r
F"
.
.
? EF" L e t C be a l i n e a r (n,k) -code over F A l i n e a r code-monanorphism c p : C-F" w i l l be c a l l e d monomia2, i f i t can be extended t o a monanial l i n e a r
transformation a : F"+F"
; i.e. i f t h e r e e x i s t s a monanial transformation
, whose r e s t r i c t i o n t o
c p : C+F"
i s m o n m i a l , i f and only i f t h e r e e x i s t
and a permutation all F.
is
C
such t h a t
$ES,
cp
n
J. M a c W i l l i a m s and N . J. A . S l o a n e [2;p.2381
group o f a l i n e a r (n,k)-code l i n e a r transformations code
C
C
over
OEGLn(F)
o f the
h l y X 2y...,AnEF*
i E Z n and
for a l l
d e f i n e t h e autanorpnism
o f t h e whole vector space
nology, t h e group o f l i n e a r code-autcmorphisms o f cpEGLk(F)
elements
F as t h e group o f a l l those monanial
i n v a r i a n t , i.e. f o r which we have a(?) E C
transformations
code -moncmorphism
=Xi.n6ci.(t)
mi(&)
.
?EC
.A
, (oJc =cp
OEGLn(F)
for a l l C
, which
F"
leave t h e
. I n our
ZEC
termi
-
consists o f a l l l i n e a r
k -dimensional vector space
, which preserve
C
.
t h e Hamming weight, i.e. f o r which y(cp(2)) = y ( t ) f o r a l l ? E C So t h e group o f a l l l i n e a r code -automorphisms o f any l i n e a r equidistant (n,k) -code (i. e.
v(z)
for a l l
=d(C )
?€C\ldl
problem 33 o f [2;p.231fl t h i s paper l i n e a r code
- with
i s t r i v i a l l y t h e group GLJF)
from t h e binary,
q=2
. Extending
, t o t h e general case we prove i n
our d i f f e r e n t conception o f a code - isomorphism
- ismorphism i s monomial.
- that
every
This then gives evidence f o r t h e f a c t , t h a t
our p u r i s t i c a t t i t u d e i s n o t too f a r from
F. J . M a c W i l l i a m s ' and
N. J. A . S l o a n e ' s pragmatic p o s i t i o n . For t h e proof we make sane a u x i l i a r y
propos it i ons Let
.
C be a l i n e a r (n,k)-code over F=GF(q) , cp:C+F"
morphism and
D:=cp(C)
a l i n e a r code-mono-
,
The f i r s t proposition, as an easy consequence of t h e rank formula f o r matrices, whose l i n e s form a basis of t h e l i n e a r code s t r u c t u r e of t h e code
C
.
C
, does n o t make use o f t h e m e t r i c
220
P. Filip and W.Heise
PROPOSITION 1 . L e t t b e a n i n t e g e r w i t h O i t s k and i ( 1 ) , i ( 2 ) , . . . , i ( t ) € Z n p a i m i s e d i f f e r e n t i n d i c e s . The t p r o j e c t i o n s TI^(^)^^ , h = 1 , 2 , ..., t a r e l i n e a r l y independent i f and o n l y i f f o r e v e r y c h o i c e o f t ( n o t n e c e s s a r i l y a l y ~ 2 , . , . y a t E Ft h e r e a r e e x a c t l y qk-t codewords t € C
d i s t i n c t ) elements with
T T ~ ( ~ ) ( ?,) h== 1~, 2~,
...,t .
Note, t h a t t h e case t = k p r o v i d e s us w i t h a c h a r a c t e r i s a t i o n of t h e l i n e a r so c a l l e d MDS -codes, c f . [ l ; p . l 6 4 f .I o r [2;p.317ff .I.I n t h i s paper p r o p o s i t i o n 1
-
i s o n l y used i n t h e c a s e t = 1 I n t h i s case p r o p o s i t i o n 1 i s a mere r e f o n n u l a t i o n o f t h e "Satz u b e r d i e G l e i c h v e r t e i l u n g d e r Zeichen i n l i n e a r e n Codes" from r1;p.2103.
-
.
.
02s I n - k
.
If p r e c i s e l y s o f t h e n p r o j e c t i o n s TI.1Ic i EZn , a r e t r i v i a l , t h e n a l s o p r e c i s e l y s o f t h e n , j €Zn , a r e t r i v i a l . p r o j e c t i o n s nj PROPOSITION 2
Let
s
be an i n t e g e r w i t h
ID
Proof. F o r each non - t r i v i a l p r o j e c t i o n milc , iE Z n , b y p r o p o s i t i o n 1 we have F y ( n i ( z ) ) = qk-'- ( q 1) F o r each t r i v i a l p r o j e c t i o n nilc , i€Zn, we have
- .
EC
= 0
>y(ni(?))
. Th e r e f o r e
y(C) =
>Y>y(ni(z)) i = l ~
6€C
E
= (n
- s).qk-'.(q
c
- 1) .
E x a c t l y i n t h e same manner we prove y ( D ) = ( n-a). qk-'a(q -1) , where a i s t h e number o f t h e t r i v i a l p r o j e c t i o n s n j J D , j EZn The b i j e c t i o n c p : C + D p r e serves t h e Hamming weight, so we have y(C) = y ( D ) , whence a = s
.
.
The p r o o f o f p r o p o s i t i o n 2 i s e s s e n t i a l l y t h e o n l y p l a c e i n which we make use o f the fact, that
F= G F( q )
i s a f i n i t e f i e l d . However H a n s K e l l e r e r
(Math. I n s t .
d. TU Munchen, n o t Hans K e l l e r e r , Math. I n s t . d. LMU Munchen) showed t h a t p r o p o s i t i o n 2 h olds a l s o f o r codes o v e r a n i n f i n i t e f i e l d F : Denote by n ( h ) , h = 1,2,.. . , s , t h o s e s i n d i c e s from Zn f o r which t h e p r o j e c t i o n s TI
n(h) I C ,j
njID
a r e t r i v i a l . By a we denote t h e number o f t h e t r i v i a l p r o j e c t i o n s
€Zn . S i n c e F i s i n f i n i t e , t h e r e i s a codeword
?€C w i t h ni(?) * O f o r each i E Z n \ I n ( l ) , n ( ( 2 ) , n ( s ) 1 , hence y(cp(2)) = y ( t ) = n - s and t h u s -P n -s 5 n - u S i n c e t h e r e i s a l s o a codeword d E D w i t h ~ ( d=) n - U we g e t
...,
.
+
-
t
-
.
I ndependent ly y(cp-l(d))=y(d) = n - a and t h u s n - I S 5 n s , whence a = s L u d w i g S t a i g e r (ZKI d. Akad. d. Wiss. d. DDR) gave another p r o o f o f t h e same f a c t which w i l l be i n c l u d e d i n h i s f o r t h c o m i n g paper "On c o v e r i n g codewords" i n t h e A t t i d e l Seminario Matematico e F i s i c o d e l l ' U n i v e r s i t a ' d i Modena. As a consequence t h e theorem o f t h i s paper does n o t depend on t h e f i n i t e n e s s o f t h e underlying f i e l d F
.
N = I n(l),n(2),...,n(s) 1 t h e s e t o f those indices n ( h ) E Z n , .,s , f o r which t h e p r o j e c t i o n i s t r i v i a l . Then, b y p r o p o -
We denot e by h=l,2,..
nn(h)
Ic
22 I
Monomial Code-Isomorphisms
s i t i o n 2 there i s a set t h e projections j e c t i o n nilD
M=Im(l),m(2),
m ( h ) ID
n
(h)
...,m ( s )
...,s
lcZn
.. , r .3
denote by
R
IN1 U I K ( j )
;j E R
.
3
O f course, f o r a l l
i n d i c e s , such t h a t
j EZn\N
the pro-
we i n d i c a t e by
'
j E Zn\N
ah EF *
with 1 -< r . 5 n k t 1 . We I K ( j ) , j EZn\N Then
is a partition of
7Ln
-
we have
a system o f r e p r e s e n t a t i v e s of t h e s e t s
l
s
1 t h e s e t of a l l t h o s e r . i n d i c e s j ( h ) EZn\N ,
such t h a t t h e r e e x i s t s a n element
Ic = ah-n j Ic
of
,are t r i v i a l . For i E Z $ M
i s always non - t r i v i a l . F o r each index
K ( j ) := I j(l),j(2),...,.i(r.)
h = l,Z,.
, h=1,2,
n
and we have
.
n =c r ts ~ E jR
.
.
PROPOSITION 3 L e t j E R b e an i n d e x . Then t h e r e i s a s e t L ( j ) = { i ( l ) , i ( 2 ) ,..., i ( r j ) 1 cZn\M o f r j i n d i c e s and t h e r e a r e n e c e s s a r i l y d i s t i n c t ) elements the r . projections 1
ni(h)
ID
..
The d e r i v a t i o n
1
f o r h = 1 , 2 ,... ,r. 3 L(j) nL(j') = 0
t h a t ni(,,(cp(Z)) = hi(h,.nj(h,(?) jlER\{jl i s an o t h e r index, t h e n
Pro o f .
r
(not
1
E F * such t h a t any two of X i ( l ) , X i ( * ) ,... "i (r ) , h = 1,2,. ,r. , a r e l i n e a r l y dependent and such and a l l
S'EC
.
A:=A.(C)=ker(n.I 3
I C
( k -1) - d i m e n s i o n a l l i n e a r subspace o f t h e
)
of
i n the position
C
. If
j
k - d i m e n s i o n a l v e c t o r space
is a C
.
It
c o i n c i d e s w i t h t h e d e r i v a t i o n s A. ( C ) of C i n t h e p o s i t i o n s j ( h ) , 1(h) h = 1 , 2 ,..., r . . The r . p r o j e c t i o n s n j ( h ) ( A , h =1, 2 ,...,r a r e t r i v i a l as 7
3
IA
.
j
w e l l as t h e s p r o j e c t i o n s n n ( h ) , h = 1,2,...,s The l i n e a r subspace B :=cp(A) o f t h e k - d i m e n s i o n a l v e c t o r space D=(p(C) has dimension k - 1
-
. We
a p p l y p r o p o s i t i o n 2 t o t h e codes A and B and t o t h e l i n e a r code isanorphism There a r e r . t s t r i v i a l p r o j e c t i o n s nilB , i EZn among them t h e
cpIA : A + B
.
7
p r o j e c t i o n s nm(hl J B , h = 1,2,.
..,s . The o t h e r
r . t r i v i a l projections 3
a r e r e s t r i c t i o n s o f t h e non - t r i v i a l p r o j e c t i o n s n 1(1) . IB'ni(2) IBI...,~ i ( r j )IB t o t h e subcode B c D Thus t h e d e r i v a t i o n s ni ( 1 ) ID"i(2) i ( r . )ID (D) o f D i n t h e ' p o s i t i o n s i ( h ) , h=1,2y...yr. , a l l coincide with B A (h)i 3 Thus t h e p r o j e c t i o n s , h = 1 , 2 , ...,r.1 , a r e p a i r w i s e l i n e a r l y dependent. + S inc e C i s a l i n e a r code we can choose a codeword z E C \ A w i t h n . ( b ) = 1 By -b I s u p p o s i t i o n we have n j c h ) ( b ) = a h , h = l Y 2 , . . . , r , . It+i s cp(z)Ecp(C\A) = D \ B , 1 thu s f o r h = 1,2,. . . , r . t h e element B ~ ( := ~ ni ) ( h ) (cp(b)) E F i s always non - z e r o . L + + with Each codeword t E C = < b > @ A can u n i q u e l y be w r i t t e n as c = B - b t ; B E F and ~ E .A Fo r h = l y 2 y . . , y r we s e t Xi h ) : = B i ( h ) / ~ h E F * Then f o r j d)) = h=lY2,...,r. we have ~ ~ ~ ( ~ ) ( c p ( ~t ~) )~ ( ~ ) ( B . c ~ ( i ) t =v (E*nich)(cp(lf)) 1 -b + + = B.Bi(,)*ah/ah = B*Xi(h)*ah* nj ( b ) = j(h)(b) = Xi(h)'nj(h)(B*b) =
.
.
ID
.
.
+ +
= Xi(h).nj(h)(6'b+a)
= 'i(h)*"j(h)(')
The s e t L ( j ) c o n s i s t s o f t h e r j i n d i c e s i ( 1 ) y i ( 2 ) y . . . , i ( r . ) .Analoguosly t h e 3 Suppose t h e r e s e t L ( j ' ) c o n s i s t s o f rjl i n d i c e s i 1 ( l ) , i ' ( 2 ) , . . . , i ' ( r . , ) 3 e x i s t s a n index i E L ( j ) n L ( j ' ) Then, b y what we have seen above, t h e r e e x i s t
.
.
P. Filip and W.Heise
222
(t)
and n,(cp(t)) = n;.n 1' for two elements ni ,rl; E F* w i t h ni(w(t)) = ni-nj(?) a l l t E C Hence n ITj, are 1 i n e a r l y dependent, c o n t r a d i c t o r y t o our and j Ic supposition t h a t j and j ' a r e two d i s t i n c t indices from R
.
THEOREM
.
Ic
.
The l i n e a r code -monmorphism
Proof.
The system tation JIES, o f
i s monanial.
cp
I M 1 u { L ( j ) ;j ER 1 i s Zn by pasting together
a partition of
Zn .We define a pennu-
t h e b i j e c t i o n s I)N : M + N ;m(h)+n(h)
...,
.
and J, : L ( j ) + K ( j ) ; i ( h ) + j ( h ) , j E R For h=1,2, s w e s e t A m ( h ) : = I (we 1 could choose as w e l l any other element o f F* ) and get (2) f o r h=1,2,.. .,s and a l l t € C , by proposi nr' ( h ) ('(')) = = nr' (h) " J , (m (h)) + t i o n 2. By proposition 3 we get f o r a l l j ER , ( ~ ( c ) =) X i (h);nJ, ( i ( h ) ) f o r h=1,2 ,...,r and f o r a l l ?EC Thus @ = t o $
-
.
j
Note t h a t t h e permutation J, and i f s = O o r s = l t h e n projections nj
.
.,An)
if
jER
3
I n F"
.
i s uniquely determined, i f
r. = 1 f o r a l l
j ER
3
I n c a s e r . = l f o r a l l j E R and s = O ; i . e . i f a l l 7 , j E Z , , a r e pairwise l i n e a r l y independent then t h e
Ic
vector
A = (A1,AZ,.. r.=1 forall
(t)
E (F*)"
,s=l
i s uniquely determined, also. The same i s t r u e and q = 2 .
we use the usual s c a l a r product
F"
x
F"+F
;
(2,;)
n
+
:=>ni(x)*ni(y)
+
.
i=1
The dua2 (a more appropriate but unusual name would be "orthogonal")
C* := r?EF";?.t=O 1 of a l i n e a r (n,k) -code C over F i s a l i n e a r code over F , which i s not necessarily a canplement t o C i n F" . Now l e t jections
be a l i n e a r
C
nj
Ic
(n,k) -code over
, j EZn , are
F
, such
(n,n-k)-
t h a t any two o f t h e n pro
-
l i n e a r l y independent. By t h e "Untere Abschatzung des
Minimalabstands 1 inearer Codes" [1;p.2271 t h i s c o n d i t i o n i s equivalent t o t h e f a c t t h a t t h e minimal distance o f t h e dual CL o f C i s a t l e a s t three, d(C*) 2 3
.
(Other codes are i n many respects f a i r l y u n i n t e r e s t i n g . ) Then t h e r e i s f o r every l i n e a r code -autmorphism cp o f C p r e c i s e l y one monomial transformation
@Ic .
*,...,
=Q = 2 07 E GLn(F) o f F" w i t h X = ( A l , X An) E (F* ) n , J, € S n and Therefore i n case d(C*) 2 3 t h e r e i s no d i f f e r e n c e between MacW i11 iams I and S l o a n e ' s concept o f the l i n e a r autanorphism group o f the code C and t h e author authors' concept. These groups a r e isomorphic. The transformation a' = t-' 07 as
Q,
a monomial transformation o f F" dECl
.
preserves t h e Hamming weight o f every codeword From O(C) =C we deduce O'(C1) = C * Thus t h e map cp+Q' i s a hano
.
IcL
-
morphism fran t h e group o f a l l l i n e a r code-automorphisms o f C i n t o t h e group o f Ifany two o f t h e n projections nilcI , a l l l i n e a r code-autmorphisms o f C*
.
i EZ, , a r e a l s o l i n e a r l y independent, i.e. i f d(C) 23 , then t h e r a l e s o f C = (CL)l can be interchanged i n our argunentation and t h e groups o f a l l l i n e a r code-autanorphisms o f C and C* are isanorphic.
Monomial Code-Isomorphisms
For over
r=3,4,
...
F =GF(q)
t h e simplex code HAMl(r,q) o f length
223
i s d e f i n e d as a l i n e a r
(n,r) - c o d e
n = (qr - l)/(q - 1) , which as a l i n e a r subspace o f F"
i s generated by t h e rows o f a
r x n - m a t r i x over
F
, whose
columns f o r m a s y s t e n
o f r e p r e s e n t a t i v e s o f t h e o n e - d i m e n s i o n a l l i n e a r subspaces o f
Fr ( c f . e . g.
-
[ l ; p . 2 3 2 ] ) . O f course, t h e r e a r e many code i s a n o r p h i c v e r s i o n s o f HAMl(r,q) One can change t h e o r d e r o f t h e columns and g e t e q u i v a l e n t codes. One c a n a l s o choose o t h e r systems o f r e p r e s e n t a t i v e s . N o t e t h a t e v e r y l i n e a r code
C
.
with
d(CI) 2 3
c a n be o b t a i n e d by p u n c t u r i n g ( i . e. d e l e t i n g t h e components i n sane f i x e d p o s i t i o n s i n a l l codewords) a s u i t a b l e s i m p l e x code. The d u a l o f HAMl(r,q)
. The s i m p l e x code i s . Indeed, any l i n e
i s t h e q - a r y Hannning code HAM(r,q) m i n i m a l d i s t a n c e d(HAMl(r,q)) m a t r i x has (qr-'
- l ) / ( q - 1)
= qr-l>4
equidistant with of i t s g e n e r a t o r
z e r o e n t r i e s and any non - z e r o codeword o f
can be i n t e r p r e t e d as a l i n e i n a g e n e r a t o r m a t r i x o f
HAW(r,q)
HAMl(r,q)
which i s
o b t a i n a b l e from t h e o r i g i n a l g e n e r a t o r m a t r i x by a p p l y i n g o n l y elementary o p e r a t i o n s on t h e l i n e s . The group o f a l l l i n e a r code - a u t a n o r p h i s m s o f tIAtP(r,q)
. Since
i s t h e g e n e r a l l i n e a r g r o u p GLr(F)
b y d e f i n i t i o n any t w o o f t h e l i n e a r
, i cZn , a r e l i n e a r l y independent ( i n f a c t i t i s forms nilml(r,q) d(HAM(r,q)) = 3 ) t h e g r o u p o f a l l l i n e a r c o d e - a u t a n o r p h i s m s o f t h e Hamming code HAM(r,q)
i s isanorphic t o
GLr(F)
.
F i n a l l y , we make a bow t o p r o j e c t i v e g e a n e t r y and remark t h a t t h e theorem o f t h i s paper a p p l i e s m u t a t i s mutandis t o "semi
- linear
code
- ismorphisms".
REFERENCES
[11 Heise, W. and Q u a t t r o c c h i , P. , I n f o r m a t i o n s - und C o d i e r u n g s t h e o r i e ( S p r i n g e r , B e r l i n - H e i d e l b e r g - N e w York -Tokyo, 1983).
121 MacWilliams, F. J . and Sloane, N. J . A., The t h e o r y o f e r r o r - c o r r e c t i n g codes ( N o r t h - H o l l a n d , Amsterdam
- New
York - O x f o r d , 1977).
This Page Intentionally Left Blank
Annals of Discrete Mathematics 30 (1986) 225-242
225
0 Elsevier Science Publishers B.V.(North-Holland)
ONTHE CROSSING NUMBER OF GENERALIZED PETERSEN GRAPHS S . Fiorini
Department of Mathematics, University of Malta
ABSTRACT la,, a*,
The Generalized Pcte:-scfiGmnn P ( n , k ) is defined to De the qraph on 2n vertices !abel led an,bl,b2 ,...,bn} and edges ta.b.,a.a. 1 1 1 i+1 'bibi+k:
...,
i = 1,2,.. .,n; subscripts modulo nl. The crossing numbers v(n,k)of P(n,k) are determined as follows: ~ ( 9 ~ 3= )2, v(3h,3) = h, v(3h+2,3) = h+2, h+l&v(3h+l ,j)Lh+3,v(bh,4)=2h; various conjectures are formulated. All graphs C I (V(G),E(G)) considered will be simple, i.e. contain no loops or multiple edges. 'be Generalized Petersen Graph P(n,k) is defined to be the graph of order 2n with vertices labelled ia,a2 ,...,an,bl,b2 bn} and edges (aibi,aiai+,,bibi+k:i=l,2,.. ,n; subscripts modulo n ,l6ki.n-I1 'The derived Generalized Petersen Graph denoted Pt(n,k) is obtained from P(n,k) by contracting all edges of form ai,bi, called spokes; edges of form bibi+k in P(n,k) are then called chords of the n-circuit al,a2, PRELIMINARlES
.
,...,
...,
an,a,. A drawing of a graph in a surface is a mapping of the graph into the surface in such a way tnat vertices are mapped to points of the surface and edges vw to arcs in the surface joining the image-points of v and w and the image of no edge ccntains that of any vertex. In our case, the only in the surface we consider is the plane and all our drawings will be sense that no two arcs which are images of adjacent edges have a common point other than the image of the c o m n vertex, no two arcs have more than one point in common, and no point other than the image of a vertex is c o m n to more than two arcs. A common point of two arcs other than the image of a c m o n vertex is called crossing. A drawing is said to be optimal if it minimizes the number of crossings; clearly, an optimal drawing is necessarily good. rhe number of crossings in an optimal drawing of a graph C is denoted by v(G); the number of crossings in a drawing U of C is denoted by vp(G).
S.Fiorini
226
TECHNIQUES The technique of proving that t h e crossing number of some graph C is some p o s i t i v e i n t e g e r k is q u i t e standard. Some g o d drawing is e x h i b i t e d whereby a n upper bound for k is e s t a b l i s h e d . By some ad hoe method it is then shown that t h i s number i s also a lower bound. Embodied i n t h e theorems of t h i s s e c t i o n we p r e s e n t some conclusions of a general n a t u r e which h o p e f u l l y could be used also i n determining the lower bounds of c r o s s i n g numbers of o t h e r graphs. If two g r a p h s C and H are homeomorphic, t h e n t h e i r crossing numbers are i d e n t i c a l . / I COROLLARY1 ('Ihe Monotone l'heorem) If u = ( k , n ) , t h e greatest comnon d i v i s o r of k and n , and i f 2 6 u 6 k < i n ,
THEORW 1
then
and where w
'n, k fvn-n f a , k-klo ' n,k
denotes v(P(n,k.) f
.
P B Let H be obtained from P ( n , k ) by d e l e t i n g k s u c c e s s i v e spokes and l e t i( be obtained from P(n,k) by d e l e t i n g every k ' t h spoke i n t h e c a s e u 4 2. Then H is homeomorphic t o P(n k,k) and i f u 5 2 , then K is homeomorphic t o P(n-n/o ,k-k/a). 'The r e s u l t f o l l o w s from 'Theorem 1. / /
-
If C is a graph and X 5 V(G)oE(G) t h e n the subgraph induced by X is denoted by u(>.
THEORM 2
If v3= PROOF
(The Decomposition Theorem) Let 0 be an optimal drawing of a 0. graph G and l e t E(C) = XWYJZ, XnY = YnZ = ZlrX 0 , then v ( G ) = vo(uY> + vaCd,z>
v(G)
E
vD(C) = v O U ~ Y >+ vyo[uz>
-
vVCD
+
k , where k
is t h e number of c r o s s i n g s of form Y x 2 5 VV<XUY>
+
= vyu(aY> +
w p z > v
- va*
0aCuZ>, s i n c e v 0(x>
0
The followiw c o r o l l a r y r e a d i l y follows by i n d u c t i o n on k:
COROLLARY
2
Let D be an optimal drawing of a graph G i n which some s u b s e t X of E(C) makes 0 c o n t r i b u t i o n t o vu(C).
, of E(C) t h e n
YinY. = 0 ( i d j ) is a d e c m p o s i t i o n J
v(G) f
&
v <XUYi>.
/I
The Crossing Number of Generalized Petersen Graphs
THEOREM 3 (The Deletion 'heorem) Let u be the least number of edges of a graph G whose deletion fran G results in a planar subgraph H of C. Then u (GI b a. PROOF Assuming on the contrary that w < a, then deleting the (at most)v edges being intersected results in a planar subgraph of G I contradicting the minimlity of a. / / We often make use of this simple conclusion in conjunction with Euler's polyhedral formula as in the following:
THEOREM 4
w(9,3)
I
2
PROOF The graph of Figure 1 (i) shows that 2 is an upper bound for v(9,3). M o s that it is also a lower bound we note that P(9,3), contains as subgraph a homeomorph of the graph C of Figure 1 (ii); (the subgraph is
obtained by deleting an edge from each of the three triangles of P(9,3). ) has 12 vertices, 18 edges and girth 5, so that if u edges are deleted to obtain a planar subgraph HI Euler's formula for H implies that
G
5(b
Thus, ~ ( 9 ~ 3 + )a
5
- a) 6 2(18 - a).
r4/31 = 2. / /
(ii) Fig.1.
227
S.Fiorini
228
THEOREM 5 (lhe Contraction Theorem) Let 0 be a grawing of a graph C and l e t e E E(G) make 0 contribution t o vi) ( G ) . Let G be t h e graph obtained from C by c o n t r a c t i g t h e edge e = uv to a single vertex u = v and let 0' be the drawing of G induced by 0. Then wv ( C ) p wDi
PROOF (i)
(ii)
Let wv
fEE(G) such that f is adjacent t o e
If f d E(Ge) ( t . g uw is missing i n 0' ;
E
uv,
E ( G ) ) , then any crossing involving f i n 1)
If f E E(Ge) and f i s crossed by some edge t u i n 0, then t h i s crossing is a l s o missing i n 0'.
Since a l l o t h e r crossings a r e unaffected, i n a l l cases
v
If is an g p t i m l drawing i n which e then v(G) 5 w(G 1.
COROLLARY 1
t o v,(G),
Pi3OOF
E
E ( G ) niakes 0 contribution
By t h e Contraction Theorem, v(G)
uD(C)
a u u , ( G e ) 9 "(Gel. / /
Repeated use of the Contraction Theorem y i e l d s t h e following:
...,
COROLLARY -2
Let <e e > be a sequence of edses of G each of whicb makes 0 contribution to vD!h) i n iome drawing U . I f w e d e f i n e recursively G = G,
Oo = 0, Gi = (G1-'Iei,
Vi 0
t h e drawinp; of Gi induced by Ui-',
uOO(G ) 2 <,,((?I
1
13
... 2 wyt(G t 1.
then
//
Let D be an optimal drawing of C and let H be a subsraph of CSROLLARY 3 C such that for Rach edge eHof H , e makes 0 contribution t o w U ( G ) . ' h e n w(G) 2 v ( G ), where C is obtained from G by contracting each edge e of' H.
-PROOF
W e order t h e edges o f :I and apply C o r o l l a r i e s 1 and 2.
//
RMAHKS
(i) In t h e Contraction meorem and its c o r o l l a r i e s , t h e condition t h a t "e makes 0 contribution t o w l l is v i t a l . Consider the graph G obtained from K by "expanding1' any vertex i n t o two adjacent v e r t i c e s u , v , of valency 7 4. It is not d i f f i c u l t t o s e e t h a t 7 2 w ( C ) ) U ( C ~ ~ I )v(K7) 9. ( i i ) 'The reverse inequality w(Ce) 2 w ( C ) cannot i n general be proved, even i f o t h e r conditions (e.g; i f G c o n t a i n s no t r i a n g l e s ) a r e imposed.
The Crossing Number of Generalized Petersen Graphs
6 If Ck d e n o t e s t h e d e r i v e d graph P 1 ( 3 k , 3 ) , then v(Gk) = k and there e x i s t s an optimal drawing i n which the ( 3 k ) - c i r c u i t C does n o t i n t e r s e c t itself.
-THEOREM
PROOF ~
That v(Gk) 4 k follows from t h e drawing of F i g u r e 2:
Fig. 2 To e s t a b l i s h the r e v e r s e inequali.ty we n o t e t h a t t h e d e l e t i o n of any t h r e e s u c c e s s i v e edyes of C y i e l d s a subgraph homeomorpnic t o GK-1' 'The s t a t e m e n t is now proved by i n d u c t i o n on k. To start t h e i n d u c t i o n we apply t h e D e l e t i o n Theoren t o G4, for which m = 24, n = 12 and g = 4 , s o that f = ( 2 4 - ~ ) - 1 2 + 2 =1 4 - a =>
=>
-
4(14 a ) & 2(24 v 2 u 2 4,
- a)
and t h e s t a t e m e n t is v a l i d i n t h i s case.
W e now c o n s i d e r an optimal drawing U of Gk and assume, for c o n t r a d i c t i o n , t h a t
v3 (C,)
k-I. If' C does n o t i n t e r s e c t i t s e l f i n 3 , t h e n by t h e Decomposition t h e i ' t h set of three s u c c e s s i v e chords [heorem w i t h CC, = C and Yi ( i = 1,2, ...,K), we conclude t h a t v(Gk) k , s i n c e ( X U Y i ) = 1. It follows t h a t i n t h i s c a s e v ( G x, 1 = k and t h e r e e x i s t s a drawinq i n which C does n o t i n t e r s e c t itself. I f , on t h e o t h e r hand, C i n t e r s e c t s i t s e l f i n some edge e , then by d e l e t i n g e and two s u c c e s s i v e edges of C, we o b t a i n Ck-l f o r which Lhe inductive hypothesis implies:
a contradiction.
/I
The same a r q c n e n t , o n l y s l i T h t l y modified, h o l d s for PV(3k+h,3) ( h = 1,2) and determines t h i s c r o s s i n g number as k + h. However, s i n c e the i n d u c t i v e argument f a i l s i n i t s i n i t i a l s t e p for h = 1 ( t h e g i r t h of P 1 ( 7 , 3 ) = 31, we
start w i t h k = 3 for t h i s case.
229
230
S.Fiorini
THEOREM 7 If Ck denotes t h e derived graph P1(3k+h,3), then f o r h = 1 , k 3 3 and for h = 2 , k & 2 , v(G,) = k + h. F u r t h e r , t h e r e exists a n optimal drawing i n which t h e ( j k + h ) - c i r c u i t C does n o t i n t e r s e c t itself. That v(Gk) c k + h follows from t h e drawings of Fig. 3.
To e s t a b l i s h t h e r e v e r s e i n e q u a l i t y we proceed by induction and n o t e t h a t for ( h , k ) = ( 1 , 3 ) or ( 2 , 2 ) t h e g i r t h is 4 and (n,m) = (10,201 and (8,16) r e s p e c t i v e l y . 'he Deletion Theorem, then y i e l d s : PROOF
f
= 12
a and f
10
L 2(20
- a)
- a)
4(12 respectively;
-
- a,
r e s p e c t i v e l y , so that
and 4(10
- a ) c 2(16 - a),
i n e i t h e r case v 2 a .r 4 = k
+
h.
Now suppose t h a t C makes 0 c o n t r i b u t i o n t o vI) i n some drawing 0 .
.men C
is p l a n a r l y embedded and a l l chords e i t h e r l i e i n I n t ( C ) or i n Ext(C).
Case ( i )
if a l l a d j a c e n t chords l i e i n d i f f e r e n t r e g i o n s , then two d i s t i n c t
sub-cases a r i s e none of which
i3
optimal;
Case (ii) If some p a i r of ad.jacent chords ai,3ai, aiai+3 both l i e i n t h e same r e g i o n , then two f u r t h e r sub-cases, according as ai-2ai+, l i e s i n the same or i n d i f f e r e n t r e g i o n s a s t h e s e , arise. In a l l cases that l o c a t e
ai,lai+2, a re-drawing is p o s s i b l e which both does not i n c r e a s e which some chord i n t e r s e c t s C.
v
and i n
i4e conclude t h a t i n all. cases t h e r e e x i s t s a n optimal drawing i n which C is i n t e r s e c t e d i n some edge e. Assuming for c o n t r a d i c t i o n t h a t v(Ck) < k + h , d e l e t i n g t h e edge e and two s u c c e s s i v e edges, we o b t a i n a homeomorph of Ck-l for which t h e i n d u c t i v e hypothesis implies: k + h
-
1
v(Ck-.,) f v(Gk)
-
1 5 k
+
h
-1-
1,
a contradiction. The drawings of Figure 3 are then seen t o be both optimal and i n which C does not i n t e r s e c t itself. / I
The Crossing Number of Generalized Petersen Graphs
Fig.3.
23 1
S. Fiorini
232 THEORkM 8
k + 3
w
(3k + 1,3) 2 k + 1
PROOF That
v(3k + 1,3) 5 k + 3 follows from t h e drawing of Figure 4. 'lo show that t h e lower bound a l s o holds, we consider two cases for a minimal
counterexample: Case ( i ) If t h e r e e x i s t s an optiml drawing i n which no spoke is i n t e r s e c t e d , then t h e Contraction Theorem implies that
v(3k + 1,3) 2 v'(3k + 1,3) = k + 1 (By Theorem 71, for k ? 3. That v(7,3) =
3 follows from
t h e work of Exoo, Harary and Kabell.
Case ( i i ) If some spoke is i n t e r s e c t e d , then d e l e t i n g t h a t spoke and two successive spokes, w e o b t a i n a homeormorph of P(3k 2,3) whose crossing number is k, by t h e rninimality of k. But then,
-
~ ( 3 +k 1,3) 2 v(3k a contradiction.
- 2, 3) + 1
//
Fig . 4 .
= k + 1,
233
The Czossing Number of Generalized Petersen Graphs
The remaining two cases: v(3k + h,3) = k + h (h exactly the same way once we prove that u(d,3)
= 0,2) are established in
4 = u(12,3).
4'
Fig .5 Proofs which are not case-by-case are elusive. 'To facilitate presentation we sketch the method of procedure. We assume, for contradiction, that the crossing number is at roost 3 and consider separately the cases where (i) no crossing is a spoke intersection, (ii) where a l l three crossings, (iii) two of the crossings, and (iv) exactly one crossing is a spoke intersection. 'The Contraction Theorem deals with (i) whereas 'Theorem 1 deals with (ii). 'Thereafterthe armwent takes the following sequence: A large (usually Hamiltonian) circuit H is chosen in the grapn. If H is planarly embedded in some optimal drawing of the 2-spoke-deleted graph, then a contradiction is obtained by virtue of the Decomposition 'heoremwith H = X. If not, then H must intersect itself in exactly two of its edges to yield a 2-looped drawing of itself. A contradiction is obtained for each pair of edges. 'To this end heavy use is made of the following remarks. We define the planarization induced by a drawing of a graph C to be theplanar grapn obtalnL4 DY replacins eat?n Lrossins oj a new vertex with U incident edges, in the obvious way. He aiso define a pair of parallel. ckol of a circuit C to be a pair of e&es (a,b),(c,d) in G\C such that s
c.
S. Fiorini
234
Remark 3: If C t o g e t h e r with chords ( a , b ) , ( c , d ) , ( e , f ) is homeomorphic t o K then a 2-looped p l a n a r i z a t i o n o f H t o g e t h e r w i t h t h e s e edges a l s o c o n t a i n s 3'3 i f t h e c r o s s e d edges of H b o t h l i e i n a segment of H a homeomorph of K c o n t a i n i n g a t rn0s3'~one of t h e vertices { a , b , c , d , e , f ]
That v(d,3) 5 4 foliows from t h e drawing of Fiqure 5(i). 'To establish t h e reverse i n e q u a l i t y we n o t e t h a t s i n c e n 16, m = 24 and t h e g i r t h g I6 , then t h e Deletion Theorem i m p l i e s t h a t
--PROOF:
6(10
so t h a t
v> u
-
CO =
2
2(24
- a)
3.
Lf t h e r e e x i s t s an optimal drawing i n which no spokes i n t e r s e c t , then t h e Contraction 'heorem t o g e t h e r w i t h Theorem 7 imply that w
(8,3)
2
v'(t1,3) = 4.
Thus we can assume t h e r e e x i s t s an optimal drawing i n which e x a c t l y t h r e e c r o s s i n g s occur one of wnich is a spoke i n t e r s e c t i o n : If a l l t h r e e i n t e r s e c t i o n s are spoke c r o s s i n g s , then d e l e t i n g t h e t h r e e crossed spokes should r e s u l t i n a p l a n a r graph. But d e l e t i n g t h e s e t h r e e spokes ( i n a l l p o s s i b l e ways) t o g e t h e r with a n a p p r o p r i a t e f o u r t h spoke we can always o b t a i n a honeormorph of t h e graph obtained from P ( 5 , 2 ) by d e l e t i n g a spoke, which is non-planar; a contradiction.
Case (i)
Case ( i i ) If e x a c t l y two spokes are i n t e r s e c t e d , tnen d e l e t i n g t h e s e two spokes should r e s u l t i n a grapn with c r o s s i n g number 1 and i n each optima.1 drawing of which no spoke is i n t e r s e c t e d . However, i f t h e two spokes are e i t h e r s u c c e s s i v e ( a t d i s t a n c e 1 on t h e rim) or alternate (at d i s t a n c e 2 ) , then d e l e t i n g an a p p r o p r i a t e t n i r d spoke r e s u l t s i n a homeomorph of P ( 5 , 2 ) wnose c r o s s i n g number is 2. If tne d i s t a n c e is 3 ( r e s p . 4 ) t h e n the r e s u l t i n g d e l e t e d graph c o n t a i n s a homeomorph of t h e graph of F i g u r e 6 (i) ( r e s p . ( i i )); both t h e s e cyaphs are seen t o p o s s e s s t h e Hamiltonian c i r c u i t H <1,2,3, 10,11,12,1>. If t h e r e e x i s t s s n o p t i r a l drawinq i n which H is p l a n a r l y embedded, t h e n by t h e Decomposition 'Theorern w i t h X = H , Y = t ( 1 , 5 ) , ( 2 , 7 ) , ( 4 , 9 ) 1 and Z = i(6,11),(8,12), (10,3)1, t h e f'irst graph is seen t o have crossing number 2 ; for t h e second graph we t a k e Y = ~ ( 1 , 5 ) , ( 2 , 1 0 ) , ( 3 , 1 2 ) }and z = t ( 4 , a ) , ( 6 , 9 ) , ( 7 , 1 1 ) } . I n each case ~ U Y >= K = GUD. Thus we m y assune that t h e only optimal drawings are t h o s e i J ' d h i c h H intersects i t s e l f e x a c t l y once i n non-spoke edges. For t h e f i r s t graph, i t S , , d e n o t e s t h e segment <6,7 12> and S2 = <1,2 7>, and i f we assume that ( 6 , " ) = S 1nS 2 is not c r o s s e d , then some edge i n S l \ ( 6 , 7 ) must cross some edge i n S2\ ( 6 , 7 ) , by Remark 3. Now, for sL1 p a i r s of edges ( e ,e2)cSlxS, t h e r e e x i s t s a p a i r of parallel edges s e p a r a t i n g tnem e x c e p t *or e ( 4 : 6 ) , which is a spoke, anyway. 'Thus ( 6 , 7 ) must i n t e r s e c t some edge i n & r j , S>, by Remark 2. But (6,7) is s e p a r a t e d from each edge i n <10,11,. by parallel edges (3,10),(4,9),so it cannot cross any of them, by Remark 1. O f t h e remaining edges, tne only non-spokes are ( d , g ) and ( 4 , 5 ) , both of which cases are d i s pensed w i t h by Remark 3. A s to t h e second graph, some edge i n segnent
...,
,...,
,...,
...,
..,>
235
The Crossing Number of Generalized Petersen Graphs
..
.
,11> must c r o s s some edge i n segment S2 = <12,1 ,.. ,5> by is K and t h e Remrk 3, s i n c e H together w i t h chords (6,i2),(7111),(8,4) 393 same holds for chords ( 2 , 1 0 ) , ( 3 , 1 2 ) , ( 1 , 5 ) . Now for each p a i r of edges
S, = <6,'T,.
(el,e2)e(S, x S2), there e x i s t s a pair of p a r a l l e l edges s e p a r a t i n g them. Thus by Remark 1, d cannot i n t e r s e c t itself.
2
B (ii)
Fig. 6 Case ( i i i ) : If' exactly one spoke is i n t e r s e c t e d , then d e l e t i n g t h i s spoke, 7 1 , l l ) s a y , should result i n a graph whose crossing number is 2 ; a s i n t h e previous case we show t n a t t h i s l e a d s t o a contradiction. 'The c i r c u i t (Fig 7 ( i ) ) C = <1,2,3,3~,6',11,4',4,5,6,7,'~',2~,5',8',8,1> is seen t o be a Hamiltonian c i r c u i t i n t h i s graph and h a s chords ( 2 , 2 ' ) , ( 5 , 5 ' ) , ( 7 , d ) which together w i t h 'Thus, i f C is planarly embedded i n some optimaL C a r e horneornorphic t o K 313' drawing, then one o r o t h e r of' che spokes ( 2 , 2 ' ) , ( 5 , 5 ' ) is n e c e s s a r i l y crossed, e conclude that C must i n t e r s e c t itse1f;if eyact.Ly contrary to assumptions. W ; otneronce, then t h i s i n t e r s e c t i o n m u s t occui* i n t h e segment <2,1,...,6,5> wise e i t h e r ( 2 , 2 l ) or (5,5') is crossed. T n i s i n t e r s e c t i o n must also occur i n t h e segment <5r,2',...,4',6'>, s i n c e as before, C together w i t h chords W e conclude that t h e c r o s s i n g ( 6 , 0 * ) , ( 5 , 5 ' ) , ( 4 ' , 7 ) is hmemiorpnic to K must occur i n t h e i n t e r s e c t i o n of these 3'3'seqnents, i e ; i n t h e segment < 5 8 , 2 1 , 7 f , 7 , 6 , 5 > . Since (7,7') is a spoke and a loop n u s t contain a t Least two v e r t i c e s four cases a r i s e according as t h e crossing occurs i n : ( a ) ( a ) (5,6) i( ( ' 7 f , 2 1 ) , ( b ) ( 5 , 6 ) s ( 2 , , S ' ) , ( c ) ( 6 , 7 ) x ( 7 ' , 2 ' ) o r ( d ) ( t i , ' / ) x (2',5').
i n t h e unique embeddin? of t h e p l a n a r i z a t i o n of' c spokes ( 2 , 2 ' ) , ( 5 , 5 ' ) , ( 6 , 6 ' ) can be drawn uncrossed i n only one way i n cases ( a ) , ( d ) , i n two ways i n case ( c ) and i n no way i n ( b ) . I n ( a ) ('7,d) and one (3,4) or ( 3 ' , 8 ! ) must each c o n t r i b u t e 1 t o v ; i n ( d j , ( 7 ' , 4 ' ) and one of (3,4) o r ( 3 ' , d l ) each cont r i b u t e 1 t o V ; and i n ( c ) each of ( 7 , 8 ) and ( 7 ' , 4 ' ) c o n t r i b u t e 1 t o v i n e a c h embedding, Since a l l cases yi-eld a c o n t r a d i c t i o n we conclude t h a t C must be twisted twice, i n three Loops, i n such a way t h a t a l l o t h e r edges can be drawn i n without f u r t h e r crossinqs.
S. Fiorini
236
(ii)
F ip .7. 'To i d e n t i f y t h e two p a i r s of' i-ntersecting edges OP C we inake use of t h e foliowing remarks: If ( a , b ) and ( c , d ) (a w i t h some edge i n segnentor between some edge i n w i t h an edge i n <j, b>, tnen edges ( a , b ) and ( c , d ) cannot be drawn without crossing each other. Furtnermor*e t h e planarization of C and tne paraLJ.el edges must be drawn a s i n Fip;ure / ( i i ) ie: with both end loops i n the e x t e r i o r (or equivalently, the i n t e r i o r ) of r;he
Henark 1:
m s i <j(b)
...,
middle loop. 2: Ln a good drawing h crossing riurnber V l each of the end-loops must t h e middle loop has a t most two vertices, contain a t ieast 2 v e r t i c e s . ocher than v e r t i c e s of chords of t h a t loop, then t h e r e e x i s t s another drawing w i t h a t most w crossings in which C does not i n t e r s e c t i t s e l f ' ; t h i s reduces t o 3 previous case.
-.Heinark
7
.
i f ' both twists occur i n the segnent <2' ,'/',. .6' ,3'> then the chords ( 7 , d ) , ( 2 , 2 ' ) , ( 3 ' , 8 ' ) necessarily i n t e r s e c t . so t h a t one twist involves one of' t h e edr;;es ( 2 l , 5 ' ) , ( 5 I ~ l ) , ( ~ , 2 ) , ( 2 , 3 ) We i n v e s t i g a t e each of these separate1.y. I'he f i r s t ( i n a counter-ciockwise sense) candidate t o cross ( 2 ' , 5 ' ) is ( d , 2 ) which is separated from it by tne p a r a l l e l chords (5,5'),(8'-,3'). Hence t h e second t w i s t must occur Detween one of (5',2'),(2','7'),('7,6),(6,5) and one of (d,2),(2,3) , by v i r t u e of Henark 1. O f t h e f i r s t s e t , ( 7 , 6 ) and ( 6 , 5 ) are excluded s i n c e they a r e also separated by tne paralle.1 chords ( 8 ' ,3' ,4% 'The reminino; cases are disposed of by Hemark 2. Arguing i n t h i s Way we conc l u d e t h a t the set of edges t h a t can c r o s s ( 2 ' , 5 ' ) is empty. For t h e otner edges, the only crossings t h a t need discussing are (5', d ' x ( ~ , 2,(5' ) ,a' x (2,3), (5',Yl) x ( ' / l , 2 l ) , (2,2) x ( 3 1 , 6 v ) . W e assume witnout loss of Senera l i t y chat v e r t i c e s 8 and 8' l i e on r;he l e f t loop and consider t n r e e possible l o c a t i o n s of' 3 ' : on che r i g h t loop, on t h e lower branch of t h e middle loop,
.
and on t h e upper branch. I n each cas ( 6 v , 3 c ) can be drawn i n uniquely. i n t h e l a s t case, 2 must l i e on t h e P hr; 1 . 0 0 ~s~o t h a t ( 2 ' 2 ' ) is necessariLy crossed. I n the o t h e r cases, 7 must e on t h e upper branch o f t h e middle loop, s o that one of ( 2 , 2 ' ) or ( 5 , 5 ' ) is crossed. The o t h e r cases are s i m i l a r l y d e a l t with. / I
237
The Crossing Number of Generalized Peterseii Graphs Theorein 10
w ( 1 2 , 3 ) = 4.
.
ro i'hat v ( 1 2 , 3 ) 5 4 follows from t h e drawing of F i g u r e 5 ( i i e s t a b l i s h t n e r e v e r s e i n e q u a i i t y we assume f o r c o n t r a d i c t i o n t h a t u 5 3 and n o t e t h a t i f none of t h e spokes i n t e r s e c t i n some o p t i m a l drawinq then a p p l y i n g t h e k l e t i o n rneorem t o t h e d e r i v e d Sraph for wnich m = 4 , n = 12 and g i r t h is 4 , we g e t
Proof:
4(14
-
CX)
5
2(24
-
a)
so t h a t v > a > 4 .
'Thus sone spoke is i n t e r s e c t e d and we proceed t o c o n s i d e r three cases a c c o r d i n 5 a s t h e number of spokes involved is e x a c t l y 3 , 2 or 1.
Case ( i ) : if^ a l l tnree i n t e r s e c t i o n s are spoke i n t e r s e c t i o n s , then deletin;< t n r e e spoKes should r e s u l t i n a p l a n a r graph. If' two of the d e l e t e d spokes w e e i t h e r c o n s e c u t i v e ( a t d i s c a n c e 1 on t h e 1 2 - c i r c u i t , C ) o r a l t e r n s t e ( a t d i s t a n c e 2 on C ) , then d e l e t i n 5 a f o u r t h a p p r o p r i a t e spoke r e s u l t s i n a homeomorph of P ( 9 , 3 ) less a spoke, which is non-planar. rhus we assume t h a t t h e d i s t a n c e on C between d e l e t e d spokes is a t least 3. If t h e y are e q u a l l y spaced, then t h e resuLcin.7 p l a n a r graph c o n t a i n s zi homenorph o f X a c o n t r a d i c t i o n . There r e n a i n s t h e r e f o r e two s u b c a s e s a c c o r d i n g 3' 3'as tne s u c c e s s i v e d i s c a n c e s on t h e r i m are ( 3 , 3 , 6 ) or ( 3 , 4 , 5 ) .
(ii)
Fig. 8. i n t h e first i n s t a n c e , t h e r e s u l t i n g p l a n a r graph is one or other of' t h e graphs i n d i c a t e d i n Figure d ( i ), whereas t h e second case g i v e s rise t o one of t h e two g r a p h s implied i n F i g u r e d ( i i ) . Ln each i n s t a n c e one of the d e l e t e d edges n e c e s s a r i l y i n t e r s e c t s more than one edge.
Case ( i i ) : if e x a c t l y tao spokes are i n t e r s e c t e d , then d e l e t i n g t h e s e two spoKes should r e s u l t i n a qraph whose c r o s s i n g number is one. As i n t h e p r e v i o u s case, i f t h e d i s t a n c e between the d e l e t e d spokes is e i t h e r 1 or 2 a l o n g t h e 1 2 - c i r c u i t C , tnen d e l e t i n g a f u r t h e r a d j a c e n t spoke a p p r o p r i a t e l y y i e l d s a hoioeomorph of P(9,3) whose c r o s s i n g number is 2. 'The remaining cases are d e a l t with s e p a r a t e l y . I n each case we d e l e t e t h e spoke ( 1 , l ' ) and one of ( 4 , 4 ' ) , (5,5'),(6,6'),(7,7'), r e s p e c t i v e l y . Each o f t h e F i r s t t h r e e graphs i s s e e n t o p o s s e s s a tlamiltonian c i r c u i t H as follows: <1,2,2',5',5,4,3,3',6',6,7,7',4',1', 10' , l o , 1 1 , l l ' ,a' , 6 , 9 , 9 ' , 1 2 ' , 1 2 , 1 > , < I ,2,2' ,5' , d ' , 1 1 ' , 1 1 , 1 0 , 1 0 ' , 1 ' , 4 ' ,7' ,7,8,9,
9',~',6,5,4,3,3',12',12,1>,< 1 , 2 , 2 ' , 1 1 ' , 1 1 , 1 0 , ~ , ~ , ~ ~ , 5 ' , 5 , 6 , ~ , 7 ' , 1 U ' , 1 ' , 4 ' , 4 , 3 , W e assume t h a t H is p l a n a r l y embedded is some o p t i m a l
3',b8,9',12',12,1>. drawing.
S.Fiorini
238
Then, i n t h e first case the p a i r of chord t r i p l e s ( ( L j 1 , 8 l ) , ( 7 , 8 ) , ( 9 , 1 0 ) ) and ((31,121),(11,12),(21,111)) each c o n t r i b u t e 1 t o t h e c r o s s i n g number so t h a t by t h e Decomposition Theorem t h e c r o s s i n g number is a t least 2. I n t h e second case, t h e t r i p l e of chords ( ( 4 , 4 1 ) , ( d l ~ 1 ) l ( 9 , 1 0 )n)e c e s s a r i l y y i e l d s a c r o s s i n g involving one or o t n e r o f t h e spokes ( 4 , 4 ' ) o r ( 8 , 8 ' ) , reducing t o Case ( i ) ; s i m i l a r l y , i n t h e t h i r d case, a c r o s s i n g must arise among t h e t r i p l e of chords ( ( ~ , ~ ~ ~ , ( 1 0 , 1 0 ~ ) , ( ~a~g a, i1n 1reducing ~~), t o Case ( i ) . Since a l l cases imply a c o n t r a d i c t i o n we conclude t h a t H must i n t e r s e c t i t s e l f , g i v i n g rise t o e x a c t l y two l o o p s , i n such a way that a l l remaining edges can be drawn i n without further crossings. W e shall need the following: Remark: If H t o g e t h e r w i t h chords ( a , b ) , ( c , d ) , ( e , f ) is homeomorphic t o I< 3,3 then t h e p l a n a r i z a t i o n of H obtained from i n t e r s e c t i n g i t s e l f once i f t h e crossed edges both l i e i n a segnent of H c o n t a i n s a homeomorph of K c o n t a i n i n g a t most one 3'3 v e r t e x i n { a , b , c , d , e , Q . Thus i n t h e f i r s t example, H t o g e t h e r w i t h chords ( 9 , 1 0 ) , ( 7 , 8 ) , ( 5 ' , 8 l ) is homeomorphic t o K so t h a t one of the crossed edges must l i e i n t h e segment < 7 , 7 ' , ,8,0>, 3,3 non-spoke edges i n tnis segment being: ( 9 , d ) ,(8',11' ) , ( I 1,101 , ( l o ' , I ' 1 , ( 1 ' , 4 ' 1 , ( 4 ' , 7 * ) . Taking t h e s e i n t u r n , ( 9 , 8 ) is s e p a r a t e d from each of the e d v s i n tne segment <91,12f,...,61) by t h e parallel c n o r d s ( g 8 , 6 * ) , ( 9 , 1 O ) and from t h o s e i n segment <101,1',4',71> by ( 9 , 1 0 ) , ( 1 0 1 , 7 ' ) so t h a t t h e only p o s s i b l e edges c r o s s i n g it are: ( d l , l l l ) , ( l O , l l ) and ( 6 , 7 ) . The o n l y o t h e r possib1.e c r o s s i n s s are simi1arl.y found t o be: ( 8 1 , 1 1 1 )x (11,101, ( 8 I , 1 l 1 ) x ( 6 , 7 ) , ( 1 0 , 1 1 ) x ( 6 , 7 ) and ( l O 1 , l f ) x (4''7'). Of t h e s e the f i r s t and last are disposed of by v i r t u e of Remark (above). As f o r t h e remaining cases, i n (9,8)x (10,111 and ( 9 , d ) x ( 6 , 7 ) t h e r e s u l t i n g graphs are indeed p l a n a r , but i n the unique p l a n e embedding either ( 1 , l ' ) or ( 4 , 4 * j crosses a t least two edges, i n a l l t h e rest, the p l a n a r i z a t i o n of H together with (6,,9' ) ,('7,a), (8!,5') is uniquely embedded i n t h e p l a n e , but t h e n ( 1 l 1 , 2 " ) n e c e s s a r i l y i n t e r s e c t s some edge.
...
I n t h e second i n s t a n c e , H t o g e t h e r with ( 6 , d t ) , ( 6 , 7 ) , ( Y , l 0 ) is homeomorphic with H must l i e i n t h e segment < 6 , 6 ' , lo>. I n tne t h i r d i n s t a n c e , t h e i n t e r s e c t i n g edge must l i e i n segment (10' , 7 ' , 1 1 ' ) s i n c e h e r e H and chords (10',10),(Y,01),(81,111) is K O f the 3' 3 ' v e r i f i e d t h a t s i x non-spokes i n t h e segment of t h e f o r n e r , it is r e a d i l y none q u a l i f y to i n t e r s e c t any other edge and of t h e seven i n t h e latter case o n l y one, ( d , 9 ) x ( 1 0 , l l ) . I n Lhis case, t h e r e s u l t i w graph is indeed p l a n a r b u t the d e l e t e d spokes ( 1 , 1 1 ) , ( 6 , 6 q ) cross a t least twice each i n t h e unique embedding. There r e n a i n s t o c o n s i d e r t h e f o u r t h graph obtained by d e l e t i n s ( 1 , l ' 1, ( 7 , 7 ' which is n o t Haniiltonian. IJe c o n s i d e r i n s t e a d i t s subgraph obtained by d e l e t i n g '7' and i n c i d e n t edges. T h i s graph i( has a c i r c u i t d = <12',9',9, 1 0 , 1 1 , 1 1 ~ , ~ ~ , d , 7 , ~ , 6 8 1 3 ~ ,,2',2,12> ~ 1 4 , 5 , t~h~a t i n c l u d e s a l l v e r t i c e s except 4 1 1 1 f , 1 0 f which , l i e on a c h a i n j o i n i n g v e r t i c e s 4 and 10 on H. I f t n i s chain is n o t i n t e r s e c t e d i n some optimal drawing i n which H is p l a n a r l y embedded, so tnat i t l i e s i n .tnt(A) without loss of g e n e r a l i t y , then a l l cnords ( 9 , d ) , ( 1 1 , 1 2 ) , (2,3),(5,6) must l i e i n Ext (H), y i e l d i n g a t least two c r o s s i n g s . If on the other nand, H i n t e r s e c t s i t s e l f , then one of t h e crossed edges must l i e i n t n e segnent <12,12', 8> and t h e other i n <6,6' , .,2>. But each non-spoke i n t h e first is s e p a r a t e d from each non-spoke i n t h e second by t h e p a r a l l e l edges ( 2 ~ l l 1 1 ) , ( 5 1 , dexcept ~) for ( l l l , d t ) and ( 5 ' , 2 ' ) which are i n t u r n s e p a r a t e d by (d,c)) and ( 3 * , 1 2 ' ) . W e conclude that t h e c h a i n < 4 , 4 1 , 1 f , 1 0 1 , 1 0 > is i n t e r s e c t e d i n either ( 1 1 , 4 ' ) or ( l g , l O t ) . But then any edqe i n t e r s e c t i n 4 one of t h e s e edges must also intersect one of ( ' / l l 4 ! ) , ( 7 1 , 1 0 1 ) i n t h e correspondinr: drawing of P ( 1 2 , 3 ) .
...,
'<3,3so t h a t some i n t e r s e c t i n g edge of
...,
..
...,
The Crossing Number of Generalized Petersen Graphs
239
Case ( i i i ) : Lf e x a c t l y one spoke is i n t e r s e c t e d , tnen d e l e t i n g t n i s spoke, (12,12') s a y , ShOlJld r e s u l t i n a f r a p h whose c r o s s i n g number is 2. F i g r e 3 stiotas m%tt h i s .;rmli p o s s e s s e s 3 xmi.Ltonian c i r c u i L kl.
dow ii t o 3 e t h e r w i t h chords (5,5'),(9,9'),(3,4Jis K so t h a t i f H is p.lanarly emedded i n some o p t i m i drawinq, then one of t h e 3'3'spokes (S,51),(Y,r1) must be crossed. 'Thus, H crosses itself and we assume that i t i n t e r s e c t s itself e x a c t l y once i n two l o o p s . i n t h e induced p l a n a r i z a t i o n , we show tnat two f u r t h e r crossiws cann0.i be avoided. dy Remark 3, one of the crossed edi:es of H , e s a y , must be i n segment S1 = <8',11', ..., ?I>;otherwise, one of t h e spokes (8,dt),(9,9')is i n t e r s e c t e d . 'The other, f , say,rnust be i n s e p e n t S2 = <4,j,...,5'>; otherwise, one or" (5,5'),(d,d') i s crossed. Since p a r a i l e l spokes (5,5'),(6,df)s e p a r a t e e and f for a l l ( e , f ) E ( S \ (d,7)) x ( S 2 \ (4,5)), o t h e r than spokes, we need only c o n s i d e r (4,5)E S1 and (8,'7)E S2. Ln t h e P i r s t case, ( 3 , 4 ) must CI'OSS i n each of t h e three distinct Locations of' v e r t i c e s U and 9. A i W t h e r c r o s s i n g arises f'rom e i t h e r ( 6 , 7 ) o r (1',4'). I n the second case, (7';IO') must cross and a f u r t h e r c r o s s i n g arises from either ( 1 ' , 4 ' ) or ( 2 ' , 1 1 1 j . Vie conclude t n a t H i n t e r s e c t s itself e x a c t l y twice i n such a way t h a t a l l ocher edTes can be drawn i n without f u r t n e r c r o s s i n q s . As before, some crossed edge, e l i e s i n S1 and some edTe f i n S2. If' e crosses f , then by t h e above reaso1-dq, e i t h e r e = (4,s)or f' (b,7). r f e = (4,5) and f E S =, then e and f are s e p a r a t e d by one or o t h e r of the p a r a l l e l p a i r s (d,Y'),(6,7)and (8,8'),(3,4),so t h a t i f 5 and h are t h e crossed edges, t h e n g (4,5) or (5,6), by Remark 1 of 'Theorem 9. ht 5 = ( 5 , b ) and h E S are also s e p a r a t e d by (8,8'),(5,5') which d o n o t s e p a r a t e e andh,so t h a t 5 = e and f is a t d i s t a n c e a t least 3 from h a.long H by Remark 2 o f Theorem 9. l'he set of' edge p a i r s i n S s a t i s f y i n g these c o n d i t i o n s and s e p a r a t e d from (5,6) oy p r e c i s e l y t n e same sets of' p a r a l l e l edqes is seen t o be empty. S i x i l a r l y , r' = ( d , ' ( ) cannot cross any e E < 5 , 6 , ...,S'> U ( 4 , s ) . 'Thus , e crosses y t f, 5 G '11 I (7' ,4', , 8 ' > , and f c?osses n # e , n E U = e n o t e c h a t L fl U z (5',d1),,(4',7')and t h e spoke (4,4') which < 5 ' , b 1 , ...,4>. W we ignore. Lf g ( t I ' , S ' ) , t n e n g cannot cross any edge i n t h e sub-segnent <4,5,. ,3>, s i n c e t h e y are separated by p a r a l l e l c h o r d s ( 2 ' , 11 ), ( 3 , 4 ) and no edge i n 'I is bounded by (3,4). i f ' g crosses e = (2,3), then h is either ( 5 ' , 6 ' ) or (8l,llf)and f E 0, so that # (dl,5f). If h ( 8 ' , 5 ' ) crosses some edge i n <7',7,.. .,ll>, these are seDarated by (2',11') and one of (4',l1),(10,l'l) which bound no ed<e i n < 5 ' , 2 ' , b ;t h u s (8',5') crosses no edge.
...
..
...,
240
S, Fiorini
...,
If q = (49,71), then g crosses no edge i n <4,5, 5'> since these edges are separated by (11,4') and either (3,4) o r (5,5'), which bound no edge in <7',7, df>. Similarly, h z (4',7') cannot cross any edge in <8,9, ...,8l> since they are separated by (6,'/),(8,8') which bound no edge in <4,5, 5'>. If h I (4',7') and f = (7,8) then e and g cannot be separated by parallel edges since h and f are not. rhus (f,h) are either ((2,3),(5,6)) or ((2,3),(4,5)). In the unique planarization of each case (/',lot)is necessarily crossed. l'hus If e, say, is (5I,2l), then {e,gl &! <4,5,...,j r >and {f,h} C_ <7','7 ,..., g E <2,3,...,4> and f = (b1,Il1), h E. But (5',2') is separar;ed from g E <3,3', 4> by (21,111),(3,4)which do not separate f , h, so that g = (2,3). But each h in < 1 , 1 1 , ...,7 l > is separated from (dl,llr) by (2l,1l1) and another parallel edge wnich do not separate e and g, so that neither e nor g is (5f,21). If e = (2,3), then g E <3',9', 4> excluding <3', ...,6'>, since these latter edqes are separated from (2,3)by (31,6v)l(3,4)which do not separate f,n. Thus g is either (6,5) o r (5,4) both of which are separated from e by (6,7),(9,9'). But then no edge other than the spoke (7,7*) qualifies as either f or h, so that neither e nor g lies in (2,3)u <3', ...,61>. Since these edges account for all distinct possibilities in <5',2', 4>, the result is proved. I 1
...,
...,
...,
...,
...,
Comnents and Problems: It is known [3] that (i) if 1 5 k, in 5 n-1 and !un P 1 (mod n), then P(n,m) 5' P ( n , k ) ; (ii) P ( n , k ) '2 P(n,n-k). It foliows from out' conclusions that v (3h+1,3) = ~(3h+l,h)= v(3n+1,2h+l) = v(3h+193h-2) = h+l v (3h+2,3) = ~(3h+2,h+l) ~(3h+2,2h+l)= ~(3h+2,3h-1)= h+2 'Thefollowing table of knom values for u(n,k) can be drawn up: 1
1 2 3 4 5
6 7 8
9 10 11
12 13
2
3
4
5
0
0
0
0
0 0
2 2 0
7
d
3
0
0
0
0 1 0 0
3 3 3 3 0
0 4 1 4 0 0
6
10
11
12
13
14
0
0
0
0
0
3
3
0
4 ? 1 ? 4
5 5 2 2 5
0 0 4
0
3 2 2 3 2 3
*
5 5
6 ?
? 1 ?
? 3 3
6 ? 1
0
0
5
'
0
3
4
5
6
0
?
>
0
5
?
0
3
6
0
0
0
The Crossing Number of Generalized Petersen Graphs
24 1
Regarding e n t r i e s marked (*), t h e f o l l o w i n g can be s a i d : P( k t , t 'The drawing of P ( k t , t ) i n which tne k t - c i r c u i t is p l a n a r l y drawn and t h e t"k-helms" are drawn s u c c e s s i v e l y a l t e r n a t e l y in t h e i n t e r i o r and e x t e r i o r of' t h e k t - c i r c u i t g i v e s-t h e following upper bound for t h e c r o s s i n g number ct:
It is r e a d i l y v e r i f i e d that i f t h i s estimate is v a l i d for a p a r t i c u l a r odd value of t , t h e n it is a l s o va1.i.d for t + l . 'The same cannot be s a i d for even t. ( I t is of i n t e r e s t t o n o t e t h a t a similar s i t u a t i o n o b t a i n s for t h e complete e conclude that v ( 4 k , 4 ) 2k. b i p a r t i t e ~ y a p h s : c f . [ 2 ] 1. W
References: 1.
2.
G. EXOO, F. Harary, J. Kabell, Ine C r o s s i n s numbers o f some Generalized P e t e r s e n Graphs, irlath. Scand. 2 (1981) 184-188. R. Guy, the d e c i i n e and rali of Zarankiewicz's Theorem, Proof rechniguz? Graph l'heory.(F. r k r a r y , ed.)
.i--n
3.
Iy.
Watkins, A 'Theorern on hit Colourings
..., J.C.T.(B) &
(1969) 152-104.
This Page Intentionally Left Blank
Annab of Discrete Mathematics 30 (1986) 243-250 8 Elsevier Science Publishers B.V.(North-HoUand)
243
COMPLETE ARCS IN PLANES OF SQUARE ORDER J.C. Fisher1, J.W.P. Hirschfeld2 and J . A . Thas3 'Department of Mathematics, University of Regina, Regina, Canada, S4S OA2. 2Mathematics Division, University of Sussex, Brighton, U.K. BN1 9QH. 3Seminar of Geometry and Combinatorics, University of Ghent, 9000 Gent, Belgium. Large arcs in cyclic planes of square order are constructed as orbits of a subgroup of a group whose generator acts as a single cycle. In the Desarguesian plane of even square order, this gives an example of an arc achieving the upper bound for complete arcs other than ovals. 1.
INTRODUCTION
Our aim is to demonstrate the existence of complete (q2 - q + 1)-arcs in a 2 2 cyclic projective plane II(q ) of order q . The only such plane known is
PG(2,q2),
the plane over the field GF(q2)
.
These arcs were found incidentally
by Kestenband [S], using different methods, as one of the possible types of intersection of two Hermitian curves in PG(2,q2) . The importance of these arcs, not observed in [S], is Segre's result that for q e en, a complete m-arc in 1 . Thus, this example of a PG(2,q) with m < q + 2 satisfies m 5 q - Jq +
complete arc attains the upper bound f o r q even As a by-product of the investiis the disjoint union of gation, it is shown that a Hermitian curve in PG 2,q') q + l of these arcs. 2.
NOTATION
Let
n
= n(q
2
)
be a cyclic projective plane of order 9'.
identify its points with the elements i of
ZV, v = q4
+
q2
+
cyclic group is generated by the automorphism u with o(i) = i [ 3 ] , 5 4 . 2 . The lines are obtained from a perfect difference set lo =
j = O,l,.. ., v
Ido,dl,., . dq2} as the sets u J ( l o ) , Let b = q2 + q + 1
and k = q
2
- q
are relatively prime, Zv= Zb x Zk. i = (1,s)
where i
In this notation u(i) = (r + 1, s
+
+
For
1;
i
-
l),
+
1, i
E
Zv,
1.
then v = bk.
Since b
and k
in Zv, we write
r(mod b), i L s(mod k)
taken modulo b and the second modulo k . to any arithmetical operation in Zv.
One can so that the
1,
.
where the sum of the first component is The notation extends in a natural way
J.C. Fischer, J . W.P.Hirschfeld and J.A. Thar
244
By the multiplier theorem of Hall [2], q 3 is a multiplier of II ; this 3 means that the mapping J, given by $(i) = q i is an automorphism of Il. Since q6 F 1 (mod v) , so J, is an involution. Indeed, J1 is a Baer involution since it fixes all b points of kZv = [(r,O) If we define r ( q 3 - 1) E 0 (mod b)
:
r
E
3
Zb1; this is because q r - r
=
.
= I(r,s) : r
B
E
Zbl for s
O,l, ..., k
=
-
1,
then o(Bs) = BS+l and the q2 - q + 1 Baer subplanes Bs partition Il. A l i n e of a Baer subplane Bs is a line of Il meeting Bs in q t 1 points. Similarly define = {(r,s) : s
K
whence o(Kr) = K
r+l It will turn out that
3.
iZk 1 for r = 0,1,. . . , b - 1 ,
also partition Il. Thus i = ( r , s ) = Bs n K r is a complete (q2 - q + 1)-arc.
and the Kr Kr
,
COMPLETE k-ARCS LEMMA 3 . 1 :
$(i)
E
=
(1,
k
-
s)
Proof:
i = (r,s) i n
For each
izb
Zk, we have that
x
of i
, 3
q s + s = s ( q + l)k
LEMMA 3.2:
=
fixes the first component r
It was noted in 52 that
Now, for each s in iZk
whence
izv
.
q3s F - s s k
For any l i n e
IK
n
~~1
.t
-
3
0 (mod k) ,
s (mod k )
.
0
BS , w i t h
of the Baer subpZane odd if
(r,s)
E
(r,s)
=
Bs n Kr,
K
is even
if ( r , s ) #
p..
Proof: By lemma 3.1, the involution $J fixes exactly one point of Kr namely the point (r,O) where it meets B o ; the other points of Kr are interwhich implies changed in pairs. If K is a line of Bo it is fixed by $ , that the number of points of .t n Kr outside Bo is even. Thus the parity of 1.t n Krl varies as L n Kr n Bo is empty o r the point (r,O) . For a line .t of Bs, apply the same argument to o-’(.t) , which is a line in Bo. 0 3
245
Complete Arcs in Planes of Square Order Let
LEMMA 3 . 3 :
be an automorphism group that a c t s regularly on t h e
S
p o i n t s of some p r o j e c t i v e p h n e
n(n)
of order
n,
and suppose t h a t
VO,V1, ...,Vt are the orbits of t h e p o i n t s under t h e a c t i o n of a subgroup s . If .t i s a Zine of n(n) and A . = 19.. n v.1 , then 1
G
of
3
A.(A.
j=1
J
-
1) = I G I
1.
-
J
n2 + n elements y of S \ { l } there corresponds Q of 9. for which y ( P ) = Q ; in fact, P = y - 1 ( 2 ) n 2 and Q = 2 n y(L) . If there was another such pair on 2 , then S would not act regularly on the lines of n(n) . Now we count the set Proof:
To each of the
a unique pair of points P ,
in two ways. First, each y
IJI
whence
= IGI - 1 .
other than the identity gives a unique pair
(P%Q),
Second, 9. is a disjoint union o f the sets 9. n V. , 3
and to each pair (P,Q) , P # Q , in 9. n V . there is a unique y in G such J that y ( P ) = Q ; hence IJI = 1 4 . (A. - 1) and so I J I = A . (A. - 1 ) . 0 Aj>l J J j=1 J J We are now ready to prove the main result.
In 14, an alternative proof is
provided that makes use of the properties of perfect difference sets. For
THEOREM 3.4:
k
=
q2
lie i n
-
q + 1 in
B
q
n(q2) .
are t h e
q + 1
2,
>
each o r b i t
is a complete k-arc w i t h
Kr
Furthennore, the l i n e s through tangents t o
Kr
at
(r,s)
Bs n Kr = ( r , s ) t h a t
.
Proof: Fix a Baer subplane B and let II be one of its lines. For each orbit K r j ( j = 0 , 1 , . . . , q ) that meets .9. n Bs, set C I . + 1 = 12 n K I ; J rj for the remaining orbits, set @ . = n K 1 , j = q + 1, q + 2 , ... , b - 1 . 1 j' By lemma 3.2 both a . and B . are even. I
3
By definition,
By lemma 3.3, b-1
1
j =q+1
Bj (Bj - 1)
+
j=1
( a . + 1) a J. = q J
whence subtraction yields b-1 j =O
2
- 9,
J.C. Fischer, J. W.P.Hirschfeld and J.A. Thas
246
B. I
Consequently
E
{0,2}
for
j 2 q
(rj,s) Krj
E
so t h a t
II n Kr j
a t the point
1.
II o f t h e s u b p l a n e B s ,
Summarily, f o r any l i n e (i)
t
aj
= 0,
(!2 n
K
rj
1
either
= 1 and
is t a n g e n t t o
II
i = (r.,s) 1
or (ii)
.t n K,.
1
Bs = 0 and II meets
n
in
Krj
or
0
points.
2
i s a l i n e of e x a c t l y one o f t h e s u b p l a n e s Bs, it f o l l o w s i n more t h a n two p o i n t s ; t h a t i s , Krj is a (q2 q + 1 ) - a r c . From ( i ) it i s c l e a r t h a t , f o r each p o i n t ( r j , s ) o f K,. , I at t h e q + 1 l i n e s of Bs through ( r j , s ) a r e t h e q + 1 t a n g e n t s o f K r j t h i s point.
S i n c e each l i n e of
il
t h a t no l i n e meets
Krj
-
For q
a s i m p l e c o u n t i n g argument suffices t o show t h a t t h e k - a r c
2 4 ,
Kr
i s complete. Assume t h e c o n t r a r y . Then t h e r e i s a p o i n t P through which p a s s q 2 - q t 1 t a n g e n t s o f Kr , one from each of i t s p o i n t s . S i n c e P E K r , for
some
r’ # r ,
q 2 - q + l
i t f o l l o w s t h a t through each p o i n t o f
tangents of
t h e g r o u p g e n e r a t e d by
(because
K br a )
.
Since
Krl
l i n e s i s counted more t h a n t w i c e , whence tangents.
But a s
i ( q 2 - q + 1)’ When
L
Kr
(q
q = 3,
t
has e x a c t l y l)(q2 - q
+
and
Krl
is i t s e l f a k - a r c , none of t h e s e t a n g e n t 2 - q + l )2 has a t l e a s t ;(q
Kr
(q + l ) ( q 1)
,
- q
t
t a n g e n t s , we have
1)
a contradiction for
it must f i r s t b e observed t h a t
p l a n e of o r d e r 9 , Bruck [l].
there are
Krl
are o r b i t s u n d e r t h e a c t i o n o f
Kr
Then t h e o n l y 7 - a r c o f
q
2
4.
i s t h e unique c y c l i c
PG(2.9)
whose automorphism
PG(2,9)
group c o n t a i n s an element o f o r d e r 7 i s a complete arc, [ 3 ] , 514.7. q = 2
The c a s e
i s a genuine e x c e p t i o n : a 3 - a r c i s never complete. 0 Remark A theorem o f Segre [ 3 ] , 510.3, s t a t e s t h a t a complete m-arc i n
q
even, i s e i t h e r an o v a l , t h a t i s a (q + 2 ) - a r c , o r
m
5
q
-
PG(2,q),
Jq + 1 .
So, f o r
q
247
Complete Arcs ira Planes of Square Order an even s q u a r e , theorem 3 . 4 g i v e s an example of a complete (q - Jq + 1 ) - a r c and shows t h a t S e g r e ' s theorem cannot be improved i n t h i s c a s e . §1 0 . 4 , t h e comparable theorem s t a t e s t h a t a complete m-arc i n is e i t h e r a c o n i c , t h a t i s a (q + 1 ) - a r c , o r
m
odd
q ,
q
odd,
This r e s u l t
However, t h e e x i s t e n c e o f a
iq + 1
i s n o t t h e b e s t bound f o r a l l
514.7.
[3],
LINES IN lI(q2)
4.
Any l i n e of
THEOREM 4 . 1 : (i)
q
+
(ii)
d ( k - 1) = j = 1,2,..
('12
.,
(d,O)
A line
one p o i n t .
Zb;
Each o f i t s l i n e s
Bo.
.
Since
of
j
Zk\{O}
i s f i x e d by
$,
r
Zb
p a i r e d with t h e same element
of
j
r. # D
I t remains t o show t h a t
3
t h a n twice among t h e p o i n t s o f
L
.
f o r by t h e
i = (0,s)
, s # 0,
k - 1 differences
that lie in l i n e of
=
Kt
Bs ,
common wi t h i t .
in
(I
q
+
D
generates 1
for
.
of t he p a r t i t i o n i n exact l y
interchanges
( r j , j ) and j
and
k - j
and t h a t no
r.
I
in
Zb\D
are
can ap p ear more
T h i s f o l l o w s from t h e fact t h a t t h e p o i n t s of
Zv : each of t h e
k - 1 differences
Bo
-
j))
.0
g iv e n i n t h e theorem i s e s s e n t i a l l y t h e
is a k - a r c whose t a n g e n t s are t h e l i n e s through
Kr
Zb
.
t ( ( r j , j ) - (rj, k
(r,s)
The d e s c r i p t i o n of p o i n t s of t y p e ( i ) and ( i i ) shows t h a t any
i s a ta n g e n t t o t h o s e
Bo
the other os(Bo)
Bs.
ok
must o c c u r e x a c t l y once, and t h e s e are accounted
The d e s c r i p t i o n of a l i n e of a l t e r n a t i v e proof t h a t
Bs
it f o l l o w s t h a t both
c o n s t i t u t e a p e r f e c t d i f f e r e n c e set f o r
of t h e form
for
o ccu r s a s t h e second component o f
Lemma 3 . 1 shows t h a t
L. L
therefore contains
meets any o t h e r subplane
Bo
of
II
since
q,
i s an element o f a p e r f e c t d i f f e r e n c e s e t
d
Thus each element
e x a c t l y one p o i n t o f
(rj, k - j)
i s an element o f a p e r f e c t
d
is i t s e l f a c y c l i c p l a n e of o r d e r
where
L
, where
3
a c y c l i c group f o r elements
(d,O)
pairs of p o i n t s of the form ( r j , j ) and ( r j , k - j ) $ ( k - 1) , w i t h the r . d i s t i n c t elements of Zb\D .
Bo
Proof:
for
D
c o n s i s t s of
Bo
1 p o i n t s of the form
difference set
a
-
q
shows t h a t
PG(2,9)
odd, [ 3 ] ,
PC(2,q),
q - Jq/4 + 7 / 4 .
5
has been s l i g h t l y improved by t h e t h i r d a u t h o r . complete 8 - a r c i n
q
For
0
or
2
points.
Kt
t h a t meet i t i n a p o i n t o f
Bo;
it meets
The proof i s completed by n o t i n g t h a t
which e i t h e r c o i n c i d e s with
Bo
o r h as no p o i n t s o r l i n e s i n
248
J.C. Fischer. J. W.P. Hirschfeld and J.A. Thas HERMITIAN CURVES
5.
The only known cyclic planes are the Desarguesian ones and, in this section, we restrict our attention to P G ( 2 , q 2 )
.
Lo of Bo and define are incident exactly when i + j (mod v)
It is convenient to distinguish one line
.
R . = o-’(Ro) 1
element of
Then
Lo.
i
and R .
1
In particular, L
theorem 4.1; now, D
B0
= { i = (d,O) : d
H = {
(d/2, s) : d
Hermitian curve and is t h e d i s j o i n t union of the
liii H is odd or even, whence
n
q
6
+
D, s
.
‘b
Zk} i s a
E
1 compZete k-arcs
Bs is a conic or a l i n e of
tI is a disjoint union o f
is an
as in (i) of
DI
E
0 is a distinguished, perfect difference set f o r
iil The s e t
THEOREM 5 . 2 :
n
Kd/2 ’
Bs according a s
k subconics or
q
k sublines
accordingly.
Define the correlations $ : i a . and p : ( r , s ) c-f 2 (r,-s) . is an ordinary polarity for q odd and a pseudo polarity for q even, [ 3 ] , g 8 . 3 . Thus, with J , as in 12, we have that p = $0 = $ 9 . In fact, p is Pro0f:
Then
+-f
$
a Hermitian polarity since the self-conjugate points of p are the q3 + 1 points (r,s) satisfying ( r , s ) + (r,-s) = (d,O) for d in D , From this ( i ) follows. In Bo in Zb. So
the points are
Bo
(r,O)
while the lines are R
is self-polar with respect to
self-conjugate points of the polarity
@
p
(r,O)
and meets H
induced on
B0
by
p
’
.
both with r in the q + 1 These self-
conjugate points form a subconic when q is odd and a subline when q is even. there exists s ‘ such that bs’ t s (mod k) since b and k are Given s , coprime. Thus H n Bs = 0bs’ (13 n Bo) = I(d/2, s) : d 6 D} is a conic or a line of Bs according as q is odd o r even, and the last part of (ii) follows. 0 THEOREM 5 . 2 : q
The tangents t o any complete
( q 2 - q + 1)-arc
in
2 PG(2,q )
,
even, form a dual Hermitian arc. Proof:
See Thas [ 6 ] .
THEOREM 5.3: The tangents t o any o f t h e complete 2 PG(2,q ) form a dual H e m i t i a n curve i f and only i f q
(q2 - q + 1)-arcs
Kr
in
i s even.
Let q be even and consider the arc K O , where D has been Proof: chosen s o that 21) = D (which is always possible since 2 is a Hall multiplier and each multiplier of Bo fixes at least one line of Bo) . Then the tangents
249
Complete Arcs in Planes of Square Order to
II II
with
(d, 0 )
to
d
namely t h e l i n e s o f
in
E
D = 2D
determined by
p
c o i n c i d e s with t h e s e t o f t a n g e n t s t o Now l e t
q
b e odd.
have t h e form (0,s)
,
takes
KO i s {I. : j = ( d , s ) , d 6 U , J these lines a r e the self-conjugate
Thus t h e s e t of t a n g e n t s t o
H.
KO
P
not i n
and so i s odd, t h i s number i s never
1
+
do n o t form a d u a l H e r m i t i a n a r c . 0
Kr
(q2 - q
Each of t h e
Tb'EOREM 5 . 4 :
,
to
H.
- q
q'
Hence t h e t a n g e n t s t o
q + 1 .
(0,O)
(0,O)
S i n c e t h e number o f t a n g e n t s from a p o i n t
h a s t h e p a r i t y of
Kr
to
which t a k e s
t h e set of t a n g e n t s t o
9,
l i n e s of t h e p o l a r i t y
Kr
containing
Bo
obs' ,
Since
D .
(d,-s) ' Zk}. From t h e assumption t h a t
(d,O)
s
(0,O) ,
at
KO
+
i s t h e intersection of t u o
Kr
1)-arcs
Wermitian curves.
Proof:
First, let
contained i n a p(H)
=
H
q
be even.
H,
Hermitian c u r v e
and l e t
H*
by t h e t a n g e n t s t o Now, l e t
q
Kr
Then a s i n theorem 5 . 1 , t h e a r c
which d e t e r m i n e s a p o l a r i t y
Then, a s i n theorem 5 .
Hrl
n Hr2
d2
= Kt
D
in
,
so
Zb,
Let
n Hr21
(b)
If
H
iZk such t h a t
f o r any
k
is a perfect
+
r2,
r1 # r 2 .
Also
s i n c e t h e r e e x i s t unique
dl
0 , q
even, and l e t
ti.
then
q > 2 ,
Suppose m
theorem 1 0 . 3 . 3 , c o r o l l a r y 2 ) , (q2 + 2 ) - a r c .
E
be a Hemitian curve in PG(2,q')
m = 4 if q = 2 . 2 m = q - q + 1 and (i)
=
rl = i d
+
(m+1)-'zw in H , 2 m = q - q + l if q > 2 ;
Pro0f:
D, s
d l - d 2 E 2 ( r 2 - r l ) (nod b ) .
If there is no (a)
(ii)
IHrl
t = ad
where such t h a t
be an m-izric contained in
(i)
E
s c izk
we have t h a t
THEOREM 5.5: K
D,
In f a c t , s i n c e t h e r e e x i s t s r ' kr' Hr = o (Ho). Since D
i s a l s o a Hermitian c u r v e .
and
E
Hence Hr = { ( d / 2 + r , s ) : d
difference set in
is
Kr
Let
b e t h e d u a l H e r m i t i a n c u r v e o f theorem 5 . 3 t h a t is formed Then p(Kr) = H* n h , whence K = p(H*) n H .
be even o r odd.
is a Hermitian c u r v e .
,
.
.
H = Ho = { ( d / 2 , s ) : d
k r ' : r (mod b)
p
>
K
Now, count t h e p a i r s
q'
then -
K
q + 1
.
is compLete. Then by S e g r e ' s theorem ( [ 3 ] ,
is c o n t a i n e d i n an o v a l (P,Q)
such t h a t
P
E
t h a t is a
0, K,
Q
E
0 ,
P
# 9 and
250
J. C.Fischer. J. W.P. Hirschfeld and J.A. Thas
PQ is tangent to H .
There are at most two points P f o r a given Q ,
since
three would be collinear. So
Hence 3m
2q2
5
+
4,
and 3q2
2 ( q 2 + 2 - m)
m
.C
-
3q
+
3
c
2q2
+
. 4
implies that q = 2 .
This
gives the result. (ii)
Suppose K is not complete, then the same argument as (i)
gives q ' whence q2
-
3q
-
1
5 0 ;
-
q
+ 1 5
2(q
that is, q = 2 .
+
l),
U
For q odd, the points of Bo together with the q2 + q + 1 Remark: conics Cr = { (6d + r, 0) : d E D} , r E Zb , form a plane of order q This
.
plane is isomorphic to PG(2,q) via the isomorphism 6 given by 8(x,O) = (gx, 0) For all q , this configuration of conics also appears as the section
.
by a plane
TI
in PG(3,q),
of the q2 + q + 1 quadric surfaces through a twisted cubic T where 71 is skew to T ; see [4], theorem 21.4.5.
REFERENCES [l]
Bruck, R.H., Quadratic extensions of cyclic planes, Proc. Sympos. AppZ.
Math. 10 (1960), 15-44. [2]
Hall, M., Cyclic projective planes, Duke Math. J. 14 (1947), 1079-1090.
[3]
Hirschfeld, J.W.P.
Projective Geometries over Finite Fields (Oxford
University Press, Oxford, 1979). [4]
Hirschfeld, J.W.P., Finite Projective Spaces of Three Dimensions (Oxford University Press, Oxford, to appear).
[5]
Kestenband, B., Unital intersections in finite projective planes, G e m .
Dedicata 11 (1981), 107-117. [6]
Thas, J.A., Elementary proofs of two fundamental theorems of B. Segre without using the Hasse-Weil theorem, J . Combin. Theory Ser. A . 34 (1983), 381-384.
Annals of Discrete Mathematics 30 (1986) 251 -262 0 Elsevier Science Publishers B.V. (North.Holland)
25 1
ON THE MAXIMUM NUMBER OF S Q S ( o ) H A V I N G A PRESCRIBED PQS I N COMMON" Mario G i o n f r i d d o ' , Angelo L i z z i o ' , Maria Corinna Marino'
S u m m a r y . We d e t e r m i n e some r e s u l t s r e g c r d i n g t h e p a r a m e t e r D (v,ul , where D ( v , u ) i s t h e maximum number of S Q S l v l s s u c h t h a t a n y t w o o f t h e m i n t e r s e c t i n u quadruples, which occuring i n each of t h e S Q S l v l s
.
1.
Introduction
A p a r t i a l quadruple system v
is a f i n i t e set having sets c f
elements and
such t h a t every
P
an element
of
s
. If
(PQS)
3-subset of
(P,sll
and
is a p a i r
{ x ,y , z } c p
are
t h a t every
,
s
her
then
DMB
, then
3-subset (P,s)
/PI = v
of
p
a r e two
(P,s2)
I
=(I,
if
.
If
If 2 . (P,s) is a
= v (v-1) (~-2)/24
s
,
they n s
1 s
1
2
=@
if and
(P,sll
s
such
PQS
i s c o n t a i n e d i n e x a c t l y one element o f (SQS)
is t h e o r d e r and i t i s well-known t h a t an v :2
I n what f o l l o w s an 19
PQSs
(DMB)
i s s a i d a S t e i n e r quadruple system
re e x i s t s i f and o n l y i f
4-sub-
is contained i n an element of
l s l l = 1s21
P
i s c o n t a i n e d i n a t most
P
and o n l y i f i t i s c o n t a i n e d i n an element of lP,s2)
where
is a family of
s
a r e s a i d t o be d i s j o i n t and m u t u a l l y balanced and any t r i p l e
,
(P,s)
SQSlv)
or
.
The n u t
SQS(vl
the-
4 (mod. 6 ) .
w i l l b e denoted by
(&,a)
. We
have
.
On o f t h e m o s t i m y o r t a n t p r o b l e m i n t h e t h e o r y o f
SQSs i s t h e
determination of the parameter: D l v , u ) =Max 112 :
1
h SQSlvl ( Q , q l )
,..., l Q , q h l / q i n q j = A ac
i,j
J
i# j
J
,
IAl = u }
.
" L a v o r o e s e g u i t o n e l l ' a m h i t o d e l GNSAGA e c o n c o n t r i b u t o d e l MPI (1983).
' D i p a r t i m e n t o d i M a t e m a t i c a , U n i v e r s i t B , V i a l e A . D o r i a 6 , 95125 Catania, Italy. ' D i p a r t i m e n t o d i M a t e m a t i c a , U n i v e r s i t g , V i a C . R a t t i s t i 9 0 , 98100 Messina, I t a l y .
M. Gionfriddo. A . Lizzio and M.C. Marino
252
I n [2]
J. Doyen h a s p o i n t e d o u t t h i s problem f o r S t e i n e r t r i p l e
systems. I n t h i s p a p e r we p r o v e some r e s u l t s r e g a r d i n g
.
SQSS
for
D(v,ul
2 . Known r e s u l t s Let
be a
(P,s)
d(x) = r
degree
X,YEP
,
X # Y
9
if
FQS
x
. We w i l l
say t h a t an element
belongs t o e x a c t l y
we w i l l i n d i c a t e b y k
tained in exactly
quadruples of
quadruples of
r
(x,ylr s
. We
x,.:. P
a pair
has
. If
s
{x,y~P c
have
con-
.
dlx) =41s1 X E P
The d e g r e e - s e t o f a where
ve d e g r e e (he),
are t h e elements o f
,
hi
for
..., ( hs II,.
2
If An
.
xly,..
(of
K
1x1 )
i s a factor [I] o f
Fi
F . n F . = @ f o r every 1
1
K
3
I < h < IxI-1 ,
F
i,j =1,2,
on K
elements of
ri
c
DS = ( h
w i l l write
1x1
i s called a partiaZ
)
1
P I J
X
F = [ Fl,--.,Fh~
is a family (on
,
ha-
P
b e t h e c o m p l e t e g r a p h on
1x1 X
...
. If
f r = IPI
+...
is a f i n i t e set, l e t
X
I-factorization
where
r
where
P
, we
i =1,2, . . . , p
DS = [ d ( x ) , d l y ) , . . . ]
is the s e t
IP,s)
PQS
.
,
X) a n d , f u r t h e r ,
i #j
.
I t is
h = 1x1-1
.
If
1-factorization (of
On
x. A partial
1-factorization
embedded i n an
1-factorization
if
Y s X
Let XnY=@
G = I GI
, and e v e r y X
. If
and
Y
F={Fl
,..., G u - l }
an
,
then
{1,Z,...,u-Z}
{xl,x2,yl,ye} C X A Y
Fa\ = { F ; , F ; , ..., Fe} h F = {F .,F 1 on l’** k
on a s e t
X
,
i f and o n l y
.
F9‘: E Fg: is contained i n a F .€ F z 3 b e two f i n i t e s e t s such t h a t 1x1 = I Y I = u
,..., F
V-
1
1
i s an
I - f a c t o r i z a t i o n on
I - f a c t o r i z a t i o n on IF,G,cl)
such t h a t
Y
,
a
is
Y
X
and
,
a p e r m u t a t i o n on
i n d i c a t e s t h e s e t of the quadruples
253
On the Maximum Number of SQS(vI I t i s well-known
with
X n Y =0
,
I n 1-31, [4],
,
(X,A)
and
IQ,q) = [ X u Y ] IA,B,F,G,rxI
then
q=AuEwr(F,G,cO
morphism, a l l
that, if
is an
[6]
SQS(2v)
fY,B)
a r e two
, where
Q =XuY
having
m=8,12,14,15
(i.e.
m~ 1 5 q) u a d r u -
These r e s u l t s a r e t h e f o l l o w i n g :
1,2,:,4 1,2,5,6 1,3,5,7
1,2,3,5 1,2,4,6 1,3,4,7
1,4,6,7
1,5,6,7
2,3,5,8 2,4,6,6 3,4,7,9
2,3,4,8 2,5,6,8 3,5, 7,9
5,6,7,9 3,4,8,0 3,5,9,0
4,6,7,9 3,4,9,0 3,5,8,C
4,6,9,0
4,6,8,0
5,6,8,0
5,6,9,0
and
.
pies.
92
,
M. Gionfriddo has constructed, t o within iso-
DMB P Q S
97
SQSlv)
1,4,5,6 1,4,?,8 1,5,7,9 1,6,8,9 2,4,5,7 2,6,7,8 2,6,5,9 2,4,8,9 3,4,6,8 3,5,&,7
1,4,5,7 1,4,6,6 1,5,6,9 1,7,8,9 2,6,8,9 2,4,5,5 2,4,7,8 3,6,5,7 3,5,7,9
3,4,5,9 3,7,8,9
3,4,8,9 3,6,7,8
3,4,5,&
1,2,3,4 1,2,5,6 1,2,7,6 1,3,5,7 1,4,6,7 1,3,6,6 2,3,5,8
1,2,3,5 1,2,4,7 1,2,6,8 1,3,4,6 1,5,6,7 1,3,7,8 2,3,4,a
2,4,5,7 2,4,6,8 3,4,5,6 3,4,7,8 5,6,7,8
2,4,5,6 2,5,7,8 3,4,5,7 3,5,6,8 4,6,7,8
M . Gionfriddo. A . Lizrio and M.C. Marino
254
1,2,3,4 1,2,5,6 1,3,5,7 1,4,6,7 2,3,5,8 2,4,6,8 3,4,7,8 5,6, 7,9 5,6,8,0 5, 7,8,A 5,9,O,A 4,7,9,A 4,8,0, A 4,6,9,0
41
42
7,3,4,5 1,3,6,7 1,3,8,9 1,4,6,8 1,5,7,8 1,4,7,9 1,5,6,9 2,3,4,6 2,3,5,8 2,3, 7 , 9 2,4,5,9 2,5,6, 7 2,6,8,9 2,4,7,8
1,3,4,6 1,3,5,8 1,3,7,9 1,4,5,9 1,5,6,7 1,6,8,9 1,4,7,8 2,3,4,5 2,3,7,6 2, 3,8, 9 2,4,6,8 2 , 5 , 7,8 2,4, 7,9 2,5,6,9
3. The v a l u e o f
1,2,3,4
1,2,3,5 1,2,4,6 1,3,4,7 1,5,6,7 2,3,4,8 2,5,6,8 3,5,7,8 4,6, 7 , 9 4,7,8,A 4,6,8,0 5,6,9,0 5,7,9,A 5,8,0, A 4,9,0, A
1,3,5,7 1,4,6,7 2,3,5,8 2,4,6,8 3,4,?,9 3,4,8,0 3,6,9,0
1,2,3,5 1,2,4,6 1,3,4,7 2,5,6,7 2,3,4,8 2,5,6,8 3,4,9,0 3,6,8,0 3,5,7,8
3, 6 , 7 , 8 5,6,8,0 5,6,7,9 4,5,9,0 4,5,7,8
3,6, 7,9 4,6,7,8 5,6,9,0 4,5,8,0 4,5,7,9
4,
9"
1,2,5,6
1,2,3,4 1,2,5,6
1,2,7,8 1,3,5,7 I, 4 , 7 , 6 I, 3 , 6 , 8 1,4,5,8 2,3,5,8 2,4,5,7 2,4,6,8 2,3,6,7 3,4,5,6 3,4,7,8 5 , 6 , 7,8
~ ( v , q ~ - m lf o r some c l a s s e s o f
1,2,3,5 1,2,4,7 1,2,6,8 2,4,5,8 2,5,6, 7 2,3, 7,8 2,3,4,6 1,3,4,8 1,4,5,6 1,5,7,8 1,3,6,7 3,4,5, 7 4,6,7,8 3,5,6,8
SQSfvl
We prove t h e f o l l o w i n g theorems.
THEOREM 3 . 1 . L e t
(P,sII
,..., ( P , s h )
be
h
D M B PQS
.
If t h e r e
On the Maximum Number of SQSlv) e x i s t an
I x , ~ ) ~i n
, then
IP,s.) 2
It f o l l o w s
Proof.
{ r , y l ~ P such t h a t i t i s
.
h(2k-1
in
ix,ylk
,
(P,s.l 3
..., h l .
f o r every , j ~ I 1 , 2 ,
{ x , ~ , a ~ ~ , a ~ ~ } a { ~ , ~ , a . ~, {~x ,, ya, a~ k~l 3 } aa k.2 .} ~ s i ' let F i IIallJa12}a{a21,a22},.. {akl,ak211 It f o l l o w s
If be the
is a partial
.,Fkl
1
1-factorization of
torization on
I-factors
Fi elements, it follows
2k-1
IF1 = k i 2 k - l
We have
THEOREM 3 . 2 . L e t
(in the case
on
KZk
,.
Since the set o f the
can (at most) be an h<2k-1
be two s e t s such t h a t
and
XnY = @ . F u r t h e r , l e t
F
and
Kzk
on
{1,2
and
X
,..., Z k - 1 1 . If
then
t h e r e e x i s t s an > 2k-1
Dlv,qv-k'(2k-1)l
Proof.
Let
be two
r e s p e c t i v e l y , and l e t
Y
be an
(Q,ql
F
1x1 = I Y I
=2k
I-factorizations
of
be a p e r m u t a t i o n on
CY
containing
SQSlvl
]-fa5
necessarily.
Y
G
on
h =2k-I
A).
and
X
KZk
1-factorization of
the set A = ~ all,al2,aZlJaz2,.. .,ak1"ak2 l is exactly an
.
.,
1-factors F ={F , F 2 , . ,
that
and a p a i r
i€{l,,,.,hl
255
,
I'(F,G,al
. SQS(vl
containing the family
lF,G,aI
.
I t is
If 1
2
...
1
2k-1
...
2
2k-1
[a .+iE a +i a ti 1 2
Zk-1
i
for where ''*
a
2k-1
z 2k-I 1
+i
, then the quadruples of khe families TfF,G,a.l, i =0,1,2, ..., 2lk-1) , form 2k-1 DMB PQS f P , s ) , I P , s I ,... 1
=1,2,.
..,2k-2
2 (k-2 ) l
('9
D(v,q-k
...
3
2
,
all embeddable in an
(Zk-1)) L 2 k - 1
THEOREM 3.3.
If
SQS(v)
.
2k i2
or
Hence
.,
k€N
i s such t h a t
4 (mod. 6 )
,
then
M. Cionfriddo. A. Lizzio and M.C. Marino
256
Proof. I f
is such t h a t
k€N
p o s s i b l e t o c o n s t r u c t an
or
of o r d e r
Zk
s ~ ~ l 2 k lw i t h
( ~ ~ , q b e~ two l
two
SQS
2k - 2
I-factorizations of
. Let
on
and
Q,
Theorem 3 . 2 we c a n c o n s t r u c t e x a c t l y 2 k - 1 2 -k ( 2 k - I ) q u a d r u p l e s i n common. Hence
and
lQ1,ql)
~ = @~ , a n dQ l e t ~ F
Q
K2k
(mod. 6 ) , t h e n i t i s
4
and
G
be
r e s p e c t i v e l y . From
Q2
having
SQS(4k.J
q4k
2
D(4k,qqk-k
TI-IEOREM 3 . 4 .
v -2
For e v e r y
6'11
4 (mod.
or
Proof. Let
. Further, . ., 2 k - l b e
,
k'2
. w =min { v E N : u , 4 k ,
let
F =IF 1
let
i i=I,.
..,2 k - 1
1x1 =
tions
F'=fFII
with
or
F
on a s e t
embedded i n
4 (mod. G ) }
X ' n Y ' = @ and
G' ={GI}
z i=l,...,w
.
If
.
F'
ip
then
i s embedded i n
G
SQS(wl
and
a
a bijection
I - f a c t o r i z a t i o n on
{r,ylEGE
{ g
G'
-1
(x),m
. Further,
i s a permutation of
-1
From Theorem 3 . 2 i t f o l l o w s
Y
l-factoriza-
Y
,v
~2
such t h a t
X' +Yfy
Y'
such t h a t
(y)lEFI
if
,
fX',ql),
{l,Z, ...,w-
11
, IY',q2)
a r e two
,.
, t h e n we c a n c o g
SQS(2wl = [.x'uY'] Iq7,qZ,F',G',al
s t r u c t an
and
X
I X ' I = ~ = m i nC V E N : u >4k,8
Let
lY'I = / X ' I
on
X C X ' , l X f 1 , 2 1 X I = 4 k >-8 ,
such t h a t
is a set, containing
Y'
the
,
X'
IYI = 2 k > d
and
1 two I - f a c t o r i z a t i o n s o f K e k i i=I,. r e s p e c t i v e l y . From Theorem 8 o f 18.1, t h e r e e x i s t s a n
G = { G
.
>2k-l
D(2w,qZM-k'!2k-l))
b e two f i n i t e s e t s w i t h
Y
X n Y =@
and
,
I t follows
,
and
X
k€N
(2k-1)) Z2k-1
containing T(F',G',al 2 D(2w,qgM-k ( 2 k - I l l 2 2 k - 1
COROLLARY, F r o m t h e s a m e h y p o t h e s e s of T h e o r e m 3 . 4 it f o ~ l o w s D(2v,qw-k
2
(2k-1)) >2k-l
,
f o r every
v 'w
, v
:2
or
..
4 (mod.
6).
P r o o f . The s t a t c r n e n t f o l l o w s f r o m p r o o f o f Theorem 3 . 4 a n d f r o m
Theorem 8 o f
181
From p r e v i o u s t h e o r e m s w e h a v e t h e f o l l o w i n g s c h e m e :
.
257
On the Maximum Number of SQS(v)
k
-
w> 4k
2
q2u-k
VLW, v - 2
i2k-1)
o r 4 (mod. 6)
-
2
8
3
14
928
4
16
5
20
6
26
7
28
- 112 q4@- 225 q s 2 - 396 q50'- 637
8
32
964 960
..
........ ........
q16 1 2
- 45
qs2
-
*.
... ...
I t is easy t o see that v
4 . The v a l u e o f
2
(2k-1))
= + m
.
-t+m
for
D(v,qv-rn)
D(v,qv-k
Zim
m=8,14,15
a n d the value o f
D( 8, qg-1 2 )
I n t h i s s e c t i o n we d e t e r m i n e
THEOREM 4 . 1 .
s
i
for
DMB P Q S
(for
and
m =8,14,15
.
D18,q8-121
, > a
D(v,qv-m)
(
a quadruple
Let
i I,. ~
(P,s..J
. .,Jil)
such t h a t
b
be
h
i
=1,2
t h e r e exist t h r e e e l e m e n t s
.....
x,y,z
h ) . If
E P
and
( ~ , ~ ) ~ , ( x , ~ ) ~ , { x= , by E, s~ . } , t h e n
h < 2 . Proof.
and
h=3
hence
From Theorem 2 . 1 i t i s
,
then
.
h < 3
.
If
{~,14,~,~},{2,y,a,b}Es 3 .
I t follows
{z,z,c,~~€s~,
(x,z)>~ -
THEOREM 4 . 2 . I t i s n o t p o s s i b l e t o c o n s t r u c t t h r e e m =8,14,15
quadruples.
DMB PQS
with
M. Gionfriddo, A . Lizzio and M.C. Marino
258
P r o o f . I t i s e a s y t o s e e t h a t i n t h e u n i q u e p a i r s of
with
rn = 1 5
and
rn = 8
DS = [17/2, (617]
and
,
,
and i n t h e p a i r s o f
,
(x,y12
(x,zJ2
,
DS = [(714, (612, (4)41 and a q u a d r u p l e
DS = [ ( 7 / 2 , ( 6 1 3 , ( 4 ) 6 ] , (see
b ={z,y,zl
DS = [(7)8]
, since
and
. If
it is
h =3
.
then
{1,2,3,x}~s w i t h z ~ { 6 , 7 , 8 } But, x = 6 3 implies {2,2,4,81, {3,2,5,71 E s [resp. {1,2,4,6), 3 w i t h { 1 , 4 , 6 , y } ~ s ~ [ { 1 , 3 , 8 , y l ~ s ~ ] and y @ { l , Z x = 8
it follows
. Therefore,
y e {1,2,.,.,81
DS = [ ( 6 1 8 ]
T h e i r d e g r e e - s e t is
P r o o f . I n t h e p a i r s of
or
DS = [ ( 6 ) 4 , ( 4 ) &
( X , Y ) ~
,
(x,z)
with
G = { G ,G ,G 1 1 2 3
X = {1,4,5,8)
. It
I
with
has degree-set
I
F3
E s3]
{1,2,5,8)
,... ' 8 1 . From
,
with
m=l2
m = 12
quadruples.
h a v i n g DS=[f6)6,(4)31 such t h a t :
z,y,z
(see 5 2 ) . Therefore,
Consider t h e l a s t p a i r of DS = [ ( 6 j 8 ]
. Let
1 - f a c t o r i z a t i o n s of
F={F
K4
respectively:
I
x=7]
{ 1 , 5 , 8 , y l ~ s ~ and
b =Ix,y,z)
(Theor. 4 . 1 ) .
Y = {2,3,6,7)
[resp.
the
.
DMB PQS
be t h e f o l l o w i n g and
Fl
F =
D M B PQS
2 ) . The-
with
t h e r e e x i s t t h r e e elements
h =2
m =12
3 '
h =2
and a q u a d r u p l e
2
f o r them i t i s PQS
it is
There e x i s t t h r e e
THEOREM 4 . 3 .
..
{1,3,5,6),(2,3,4,7)~s
§
. Consider
h =2
m =14
such
x,y,zEP
r e f o r e , from Theorem 4 . 1 , i n t h e s e c a s e s i t i s case
m = 14
D M B PQS w i t h
t h e r e e x i s t ( i n every c a s e ) a t l e a s t t h r e e elements that
D M B PQS
I
I
G2
I
G3
DMB
F F 1, 1, 2' 3
on
259
On the Maximum Number of SQS(v) Further, l e t
=( If
=
1 2 3
1(618]
)
1 2 3 3
, we
(P,T(F,G,a
3
.
Further,
r(F,G,a
J
1
)
2 3 1
can v e r i f y t h a t
I )
are three
and
,
D M B PQS
) 1
with
*
l) , m=12
and
it follows t h a t it is not possi-
m
with
7 2 ~ 3 D M B PQS
(P,I'(F,G,a
{1,2,3}
a r e t h e two f a m i l i e s i n d i -
r(f,G,ci2)
cated i n 5 2. Since it is ble t o construct
1 2 3
)
3 1 2 '
,..., 8 1
,
(P,r(F,G,a21)
DS
1 2 3
P={1,2
b e t h e f o l l o w i n g p e r m u t a t i o n s on
a i
=12
and
DS = [ ( 6 j 8 ]
. Hen-
c e , i t follows t h e statement.. THEOREM 4.4. Proof.
and
Let
D(8,q8-121 (X,A)
( i= 1 , 2 , 3 )
(Y,8)
let
I - f a c t o r i z a t i o n s of
K4
b e two
F = f F , F ,F 1 1 2 3
on
X
, where
SQS(4)
and
Y
, ,
SQS(8)
W e have :
.
X={1,4,5,8}
G = { G ,G G 1 1 2' 3
and l e t
b e t h e p e r m u t a t i o n s , d e f i n e d i n Theorem 4 . 3 .
191 t h a t t h e p a i r
i n an
.
. Further,
Y={2,3,6,7}
t h e two
and
= 3
a
be
i
I t i s known
260
M. Gionfriddo, A . Lizzio and M.C. Manno We can see immediately that:
,
q1nq2=qlnq3 =q2nq3
for every
i,j€{I,Z,31,
have
Di8,q8-12) = 3
v = 2
Proof.
n+2
,
u=5-2
Since for
=2
. From
Theorem 3.1, in the case
k =2
, we
. D(v,qv-8) = D ( v , q - 1 4 ) =D(u,q - 1 5 ) = 2 v v
THEOREM 4 . 5 . We h a v e every
3
i # j .
D(8,q8-12) >3
Hence
lqinq.l
n
v =2
, n+2
to construct at least two
u=7.2
,
, and
v =5.2
SQS(vl
quadruples in common (see [ 6 ] ,
n
n
,
with
nL2
[ 7 ] , [13]),
.
v =7.en
qv-8
or
, for
it is possible q -14 V
or
4,115
the statement follows
from Theorem 4.2, directly..
REFERENCES
111 C. Berge, Graphes e t h y p e r g r a p h e s , Dunod, Paris, 1970. 1-21 J. Doyen, C o n s t r u c t i o n s of d i s j o i n t S t e i n e r t r i p Z e s y s t e m s , Proc. Amer. Math. SOC., 32 (1972), 409-416.
[3] M. Gionfriddo, On some p a r t i c u l a r d i s j o i n t and m u t u a Z l y b a l a n c e d p a r t i a l q u a d r u p l e s y s t e m s , Ars Combinatoria, 12 (1981), 123-134. 141 M. Gionfriddo, Some r e s u l t s on p a r t i a l S t e i n e r q u a d r u p l e sys t e m s , Combinatorics 8 1 , Annals o f Discrete Mathematics, 18 (1983), 4 0 1 - 4 0 8 . 1 5 1 M. Gionfriddo, On t h e b l o c k i n t e r s e c t i o n p r o b l e m for S t e i n e r
q u a d r u p l e s y s t e m s , Ars Combinatoria, 15 (1983), 301-314. 161 M. Gionfriddo, C o n s t r u c t i o n of a l l d i s j o i n t and m u t u a l l y b a l a n c e d p a r t i a l quadrupZe s y s t e m s w i t h 1 2 , 1 4 o r 1 5 b l o c k s ,
Rendiconti del Seminario Matematico di Brescia, 7 (1984), 343354. 171 M. Gionfriddo and C.C. Lindner, C o n s t r u c t i o n of S t e i n e r q u a d r u p ? e s y s t e m s h a v i n g a p r e s c r i b e d number of b l o c k s i n common, Di-
screte Mathematics, 34 (1981), 31-42. 1-81 C . C . Lindner, E. Mendelsohn, and A. Rosa, On t h e number of I - f a c t o r i z a t i o n s of t h e c o m p l e t e g r a p h , J . o f Combinatorial
Theory, 20 (B) (1976), 265-282.
26 1
On the Maximum Number of SQSlvl
[ 9 ] C.C. Lindner and A . Rosa, S t e i n e r q u a d r u p l e s y s t e m s - A s u r v e y , Discrete Mathematics, 2 2 ( 1 9 7 8 ) , 1 4 7 - 1 8 1 .
[lo] A . Lizzio, M.C. Marino, F. Milazzo, E x i s t e n c e of v ~ 5 . 2 and ~
n z 3
, with
qv-Zl
and
qv-25
S(3,4,vl
,
b l a c k s i n common,
Le Matematiche 1111 A . Lizzio, S. Milici, C o n s t r u c t i o n s of d i s j o i n t and m u t u a l l y baZanced p a r t i a l S t e i n e r t r i p l e s y s t e m s , B o l l . Un. Mat. Ital. ( 6 ) 2-A ( 1 9 8 3 ) , 183-191.
1121 A . Lizzio, S. Milici, O n some p a i r s of D a r t i a l t r i p l e s y s t e m s , Rendiconti 1st. Mat. Un. T r i e s t e , (to a p p e a r ) . 1131 G . L O F a r o , On t h e s e t order 47. 1141 A .
v =7.2n
with
Jlvl n22
f o r S t e i n e r quadruple systems o f
, Ars Combinatoria, 1 7 ( 1 9 8 4 ) ,
39-
Rosa, I n t e r s e c t i o n p r o p e r t i e s o f S t e i n e r q u a d r u p l e s y s t e m s , Annals of Discrete Mathematics, 7 ( 1 9 8 0 ) , 1 1 5 - 1 2 8 .
This Page Intentionally Left Blank
Annals of Discrete Mathematics 30 (1986) 263-268 0 Elsevier Science Publishers B.V. (North-Holland)
263
ON FINITE TRANSLATION STRUCTURES WITH PROPER DILATATIONS Armin Herzer Fachbereich Mathematik Johannes Gutenberg-Universitat Mainz, Germany
Recently, Biliotti and the author obtained a certain number of results on translation structures with proper dilatations including structureand characterisation-theorems, which here will be reformulated in a different manner, throwing a new light on some of the regarded questions. 1 . GROUPS OF EXPONENT p AND CLASS 5 2 .
Let K be a (commutative) field of characteristic p > 0 with automorphism Y and V a vector space over K. For a subspace W of V we consider mappings f: VxV + W with property ( * ) : namely f is alternating, vanishing on VxW and bisemilinear with automorphism y , i.e. f satisfies the following conditions: (*I (i) f(UrV) = -f(v,u) (ii) f (ul+uz,v) = f (u1,v)+f (uz,v) (iii) f(uk,v) = f(u,v)ky (iv) f(u,u) = 0 = f(u,w) for all U , U ~ , U ~E ~V, V w E W, k E K. Clearly f is bilinear iff y=l.
G = (G,.) is called of exponent p, if xp = 1 for all x G holds, and G is called of (nilpotency) class 5 2 , if the commutator subgroup of G is contained in the center of G: G' 5 Z ( G ) . We define a multiplication a on V by xoy := x+y+f(x,y) for all x,yEV. We write (V,f) for the structure consisting of the set V and the multiplication a on it, where f has property ( * ) . A group
PROPOSITION 1 . G = (V,f) is a group of exponent p and class 5 2 . Proof: The neutral element is 0 , the inverse of x is -xI and an easy computation shows (xay)oz = x+y+z+f (x,y)+f(x,z)+f(y,z) = X O ( ~ * Z ) . Moreover xn = x+...+x (n times) holds and so xp=ol since K has chaPacteristic p . At last for the commutator of x and y we have [x,yl = x-I= y-l- x'y = 2f (x,y), and so G' 5 W 5 Z(G) is valid.
A . Herzer
264
Conversely the following is true: PROPOSITION 2 . Every group of prime exponent p and class 52 is isomorphic to a group (V,f) as defined before.
Proof: Let G be such a group. We define an abelian group (G,+) in the following manner. For p=2 let be x+y=xy; for pf2 we define =
p-l
x+y := xy[x,yl 2 for all x,yEG. Then is a K-vector space for some field K of characteristic p (at least K=GF (p)) Defining p+l f(x,y) := [x,yl 2 for p odd, and f(x,y)=o for p=2, the mapping f: GxG + G ' has property ( * ) with y = l , and G=(G,f) holds.
.
It is easy to construct such mappings f with property ( * I . Let V,W,K, y be as before and vlf...vh a base of a complement of W in V. We choose elements wijEW for l
'
For p an odd prime there is also a connection between such groups and the kinematic algebras: We look for A a local K-algebra with A= K @ M, where M is the maximal ideal of A satisfying x2=0 for all xEM. Then defining f on M by f(a,b)=ab for all a,bEM one can show that the bilinear map f has property ( * ) with y=l, since char K # 2 . On the other hand for A* the group of units of A the factor group A*/K*={(l+a)K*I aEM} is a two-sided affine linearly fibered incidence group1, and is For, since (1+a) (1+b)=1 +a+b+f (a,b) holds , the isomorphic to (M,f (l+a)K* is an isomorphism of groups, " 6 1 ) mapping M --t A*/K*; a Conversely from the preceeding results every group of prime exponent p and class 5 2 has (in at least one way) the structure of such an affine incidence group as cited before.
.
~
2 . GROUPS WITH A PARTITION TI AND A NON TRIVIAL TI-AUTOMORPHISM.
(non-trivial) partition TI of a group G is a system of subgroups of G called components with the properties: (1) G and 1 1 1 are no components (2) every element of G different from 1 is contained in exactly one component. An endomorphism a of G is called a n-endomorphism, if Ua -< U does hold for every component U of n. A
For an abelian group G with partition n we have the following RESULT 1 (And&, [l]). The n-endomorphisms form a ring K without zerodivisors. So in the finite case K is a field (called the kernel of n) and G is a K-vector space, whereas the components are K-subspaces. More general we have
Translation Structures with Dilatations
265
PROPOSITION 3 (Biliotti/Scarselli [ 4 ] , Herzer [ 7 ] ) . Let G be a finite group with a partition n and a non-trivial n-automorphism a. Then G is of prime exponent p and class 22. Now suppose we have a group G = (V,f) for some K-vector space V, and there is some aEK with O+a+l, and a defined by va = va for every vEV is n-automorphism of G for a partition n of G. This forces (x0y)a = (xa)o (ya) and so f(x,y)a = f(xa,ya) = f(x,y)a2Y
.
Thus, if G is non-abelian and therefore f(x,y)#o for appropriate x,y, we have a = a2' which is only possible for y # 1 . (For every odd number n one can construct such an a of period n for an infinite series of finite fields K and suitable automorphism y of K , see 171, pg.387.) In a certain sense also the converse of the above statement is true: PROPOSITION 4 (Herzer 1 7 1 ) . Let G be a finite non-abelian group with partition n and non-trivial n-automorphism a. Then there is a field K, an automorphism y of K, a K-vector space V and a mapping f with property ( * ) , such that G is isomorphic to (V,f). Moreover there is some aEK with va=va for all vEV, and every component is a K-subspace of V.
3. THE GEOMETRIES BELONGING TO THOSE GROUPS
(Most of the following ideas can be found in Biliotti/Herzer [ 3 1 . ) Let P be a set the elements of which are called points, and 8 a set of subsets of P called blocks with the property, that any two points x and y are contained in exactly one block denoted by (x,y) and moreover every block contains at least two elements and is different from P. We call = (Pl6,Il)a arallel structure, if /I is a parallelism of i.e. an equivalence re?ation on 8 the classes of which are partitions of P. A permutation u of P is called a dilatation, if for every block B also Bo and Bo-l are blocks and moreover BHBo holds. A dilatation is called a translation, if it has no fixed points or is the identity map, and is called a ro er dilatation, if it has exactly one ( P , B , ' ) is called a translation fixed point. A parallel structp&= structure, if there is a group of translations of acting transitively on P.
s,
s
s
Let G be a group with a partition n.Then S(G,n) = (G,6,//)is a translation structure, where 8 is defined to be the set of all right cosets of the components and any two blocks are parallel, if they are right cosets of the same component: 6 = {UxlUEn, xEGI; UyIlWz * u = w. A transitive translation group of S ( G , n ) is G acting on the pointset G by right multiplication. PROPOSITION 5. S ( G , n ) possesses proper dilatations if and only if G possesses at least one non-trivial n-automorphism. (So far we have repeated basic concepts, which can be found in Andrg's paper [ I ] and as a short survey also e.g. at the beginning of Biliotti [ 2 1 . ) NOW, by the preceding results, if G is finite and possesses a non-tri-
A . Herzer
266
vial n-automorphism, then G is of prime exponent p and class 52: moreover G has the structure of a K-vector space such that the components are subspaces. Then the concept of parallel structure leads to the following definitions:
s
The parallel structure = (P,B,I() is called affinely embedded, if there is an affine space A such that P is the set of points of and B is a set of affine subspaces of A ( , whereas 1 I in general is not the natural parallelism of A ) . For different points x,y of A the line of A joining x and y is expressed by xvy.
A
Let R be the set of all lines of A and Ilr a parallelism on R. For BEB and xEP define C = n(x,B) by C E B and BllC and xEC. Similarly for RER and YEP define S = nr(y,R) by S E R and RllrS and yES.Let the parallel strucure A = (P,B,W) be affinely embedded in the affine space A as defined before. A parallelism Ilr on R is called compatible with if for every BEB and RER with IBnRl = 1 the following hold: for every xER and every yEB (i) In(x,B)tlnr(y,R) I = 1 (ii) Let xER and yiEB and define z by [ z , )=ll(x,B)nnr(y.,R) for i=l ,2,3. Then y ,y ,y are colfinear fn A if and on$y if z 1 , are collineir In ‘2 “3 (If an affinely embedded parallel structure = (P,B,/l) possesses a compatible parallelism /r on R for BE8 and RER with lBnRl = 1 , the set U n(x,B) = U nr(y,R) xER YEB is a generalized affine Segre variety, and the set { X E B I X I I B , X n R # @ } is the projection of an affine d-regulus, where d is the dimension of B in A, as defined in Herzer [ a ] . )
s,
A,
s
PROPOSITION 6. An affinely embedded parallel structure most one parallelism Ur on R beeing compatible with
s,
s
s possesses at
The parallel structure = (P, B, ll) is called an affine microcentral translation structure (of odd order), if in an embedding in an a€fine space A (of odd order) is a translation structure with translaand tion group T, such that the elements of T also are affinities of there is a parallelism Ilr on R which satisfies for every T E T with t f l the condition XVXT jr yvyr €or all x,yEP.
s
A
s
PROPOSITION 7. For an affine microcentral translation structure the parallelism Ir on R as given by the definition is compatible with
s
s.
5.
Let be a finite affinely embedded arallel structure possessing a parallelism f/r on R compatible with We define the following incidence proposition (D) ( a kind of Desargues’ theorem - 1 : (D) For i=1,2,3 let xi,yi be points no three of which are collinear. If then xlvyl Ilr x vy and j j hold for j=2,3, ( X I J 1 I (Y1,Yj) j so also (X,IX3) (YyY,).
-
u
s
PROPOSITION 8. Under the conditions for given in the preceding section is an affine microcentral translation structure, if and only if (D) is valid for
s
s.
Translation Structures with Dilatations
261
By omitting the more complicated case p=2 (which can be found in [3]) all this together gives the following characterisation:
s
the following statements THEOREM. For the finite parallel structure are equivalent: a)There is an affine embedding of in an affine space of odd order, such that possesses a compatible parallelism Ir on R , for which (D) is valid b)S is an affine microcentral translation structure of odd order c)There is a group G of prime exponent p > 2 and class 5 2 and a partition n of G, such that = S ( G , n ) holds.
s
s
s
Concerning the proof the implications a)*b) and c)-a) follow from the preceding propositions. The implication b)-*c) follows from the fact, fulfilling b) can be considered as an affine two-sided linearthat ly fibered incidence group1, which then is represented by an affine kinematic algebra A= K (3 M as defined at the end of chapter 1.
s
EXAMPLE. Let V be a K-vector space of dimension at least 2, and for a
subspace W of V and automorphism y of K let f: vxv + W have property (*) Define G = (V,f) and n = {vKlo#v€V}. Then the translation structure = S(G,n) is even a microcentral affine translation Sperner space (i.e. all blocks have the same cardinality): For any subfield F of the fixed field of y we can choose A = AG(V/F) as an embedding affine space of (In the last chapter of 131 these special geometries of most simple shape in their class are characterized.) The properties of f imply f(v,u)=o for some fixed u#o and all vEV. So in there is at least cne parallel class of blocks which is also a parallel class of subspaces of A w.r.to the natural parallelism in A , (The analogic thing holds for the lines and their parallelism Ilr.)
.
s
s.
s
s
REMARK. Since the parallel structures of the theorem are the only candidates for finite translation structures with proper dilatations, one could ask how to characterize this additional property. But for a which is affinely embedded and possesses a paralparallel structure for different points x l y l zof the lelism //r on R compatible with same block it is easy to give an incidence proposition (Dxyz), which guaranties the existence of a (proper) dilatation 6 with fixed point x and y6 = z (see [31, 3.8).
s
s,
FOOTNOTE 1. G is an affine two-sided linearely fibered incidence group, if G is the set of all points of an affine space A, such that for every element a of G by left multiplication and right multiplication a on A are induced affinities and moreover all lines through 1 are subgroups of G. For A = AG(V/K) every such grou can be represented by means of a lo= ' x VxEM, see [ 5 1 or [91. cal K-algebra A = K @ M with , REFERENCES
[I] Andrg,
Math.Z.76 (1961) 85-102 and 155-163. [ 2 ] Biliotti, M., Sulle strutture di traslazione, Boll.U.M.I.(5) 14 A (1978) 667-677. [3] Biliotti, M. and Herzer, A . , Zur Geometrie der Translationsstrukturen mit eigentlichen Dilatationen, Abh.Math.Sem.Hamburg (1984) 1-27. J . , Uber Parallelstrukturen I.II.,
268
A . Iferzer
[ 4 ] Biliotti, M. and Scarselli, A., Sulle strutture di traslazione
[5]
[6]
171 181 [91
dotatedi dilatazioni proprie, Atti Acc.Naz.Lincei, Rend. C1.Sci.Fis.Mat.Nat. (8) 6 7 ( 1 9 7 9 ) 75-80. BriScker, L., Kinematische Raume, Geom.Ded. 1 (1973) 2 4 1 - 2 6 8 . Herzer, A., Endliche translationstransitive postaffine Riume, Abh. Math.Sem.Hamburg 48 ( 1 979) 25-33. Herzer, A., Endliche nichtkommutative Gruppen mit Partition ll und fixpunktfreiem WAutomorphismus, Arch.Math.34 (1980) 385-392, Herzer, A., Varietg di Segre generalizzate, Rend.Mat.(Roma) to appear 1986. Karzel, H., Kinematic Spaces, Symposia Mathematica XI ( 1 9 7 3 ) 4 1 3 439 (Istituto Nazionale di Alta Matematica).
Annals of Discrete Mathematics 30 (1986) 269-274
269
0 Elsevier Science Publishers B.V. (North-Holland)
Sharply 3 - t r a n s i t i v e groups g e n e r a t e d by i n v o l u t i o n s
Monika H i l l e and H e i n r i c h W e f e l s c h e i d
The s e t J: = { y E G ) y 2 = i d , y + i d } o f i n v o l u t i o n s of a g r o u p G which o p e r a t e s s h a r p l y 3 - t r a n s i t i v e l y on a s e t M, i n d u c e s , t o a l a r g e e x t e n t t h e s t r u c t u r e of t h i s g r o u p G . F o r example t h e c h a r a c t e r i s t i c of G and t h e p l a n a r i t y of G a r e e x p r e s s i b l e a s p r o p e r t i e s of J In t h i s paper we a r e looking f o r
2
.
s h a r p l y 3 - t r a n s i t i v e permutation-
g r o u p s G which a r e g e n e r a t e d by t h e i r i n v o l u t i o n s . I t i s shown t h a t :
K c Z 2 and r e s u l t s on g r o u p s G w i t h G = J 3 a r e g i v e n . Also a c l a s s of examples of g r o u p s w i t h G = J 3 a r e p r e s e n t e d The q u e s t i o n , f o r what n E N t h e r e e x i s t g r o u p s G s u c h t h a t G = Jn b u t G c Jn-l i s s t i l l open. On t h e o t h e r s i d e t h e r e do e x i s t s h a r p l y 3 - t r a n s i t i v e g r o u p s G which a r e n o t g e n e r a t e d by t h e i r i n v o l u t i o n s ; e . g . a l l f i n i t e such g r o u p s G which a r e n o t isomorphic t o a P G L ( 2 , K ) f o r some K have t h i s p r o p e r t y . G = J 2 n G SPGL(2,K)
fi
F o r u n d e r s t a n d i n g t h e f o l l o w i n g w e need t h e n o t i o n of a K T - f i e l d and t h e b a s i c r e p r e s e n t a t i o n theorem: Definition 1:
F ( + , . , a ) i s c a l l e d a KT-field
i f t h e f o l l o w i n g axioms
are valid: FB 1
FB 2
( F , + ) i s a l o o p ( w i t h i d e n t i t y 0 ) which h a s t h e p r o p e r t i e s : a + x = 0 x + a = 0. ( w e p u t x:= -a) F o r e a c h p a i r of e l e m e n t s a , b F F t h e r e e x i s t s a n e l e m e n t - x f o r each x E F. d a I b E F such t h a t a + ( b + x ) = ( a i b ) +d a,b ( F * , - ) i s a g r o u p ( w i t h i d e n t i t y 1; F*=F { O } )
FB 3 -
a.(b+c) = a-bta-c
KT
o i s an i n v o l u t a r y autornorphism of t h e m u l t i p l i c a t i v e group ( F * , * ) which s a t i s f i e s t h e f u n c t i o n a l e q u a t i o n :
and
0.a = o
for a l l a,b,cCF
270
M.Hille and H Wefehrheid
-
O ( l + U(x) = 1
F:=
f o r all x E F \ { 0 , 1 } .
x
--f
an e l e m e n t n o t
FUI-1.
The t r a n s f o r m a t i o n s of t y p e a a n d B of a:
-
L e t F be a KT-field,
R e p r e s e n t a t i o n - T h e o r e m 2: i n F a n d d e n o t e by
a ( l + x)
8: x
a+m-x
+
F
onto
F:
a+cs(b+m-x)
w i t h a , b , m E F , m $ O a n d a ( - ) = - , o ( n ) = 0 , o ( 0 ) =-, f o r m a g r o u p T~ (F) which o p e r a t e s s h a r p l y 3 - t r a n s i t i v e l y On F'. C o n v e r s e l y each s h a r p l y 3 - t r a n s i t i v e group i s isomorphic a s a permutation g r o u p t o t h e g r o u p s T (F) of a u n i q u e l y d e t e r m i n e d K T - f i e l d . 3 In the following let
G
r e p r e s e n t e d i n t h e form x
+
a
8,:
x
+
-b + n o ( b + x )
case of
,
3:
-1
6(a) = b
Lemma 4:
If
*
F*.
and
S
b E F and
-
I f t h a t i s t h e case
=
x1,x2
- b _ + ~
).
6
6 E G with
2
*
is called a
id
i f t h e r e e x i s t s two d i f f e r e n t p o i n t s
and G
n E S := { s E F*lo(s).s=lI
then
A transformation
pseudo-involution with
are:
G
a E F ( i f char F = 2 , then a * O )
- ;o) I z E F * ) .
n = z.o(z
a s being
.a has t h e o n l y f i x e d p o i n t ;in 2 t h e n .a h a s t h e two f i x e d p o i n t s and p o s s e s s e s f i x e d p o i n t s x 1 , x 2 i f and o n l y i f
*
char F whereas
Definition
x
char F = 2
n E R := { z . a ( z with
T 3 ( F ) The i n v o l u t i o n s of
a0:
I n case of a-2-I
-
be a s h a r p l y 3 - t r a n s i t i v e g r o u p
F
a,b E
6(b) = a 6 then 6
c o n t a i n s a pseudo-involution
4
J
2
Proof: L e t be 6 E G a p s e u d o - i n v o l u t i o n w i t h S ( 0 ) = m a n d 6(-)
Then 6 h a s t h e form 6 ( x ) = a ( m - x ) = o(m) - a ( x ) t h e r e e x i s t two i n v o l u t i o n s 6 , m =
6(0) =
0 = 6(m) =
1 . C a s e : L e t be
,8 ,
E J such t h a t 6 =
e102co,
*
8, (-1
B,B2(-)
=b
B,
B,
(m)
Then 66(z) = 6 S B 2 ( 0 )
= B(0) = z
w i t h m E F*\S.
Bl 8,.
= 0.
Suppose
Thenwehave:
= B2(0)
(0) =
02(4
* 0,-.
= 6R,B2B2(0) = 6 8 , ( 0 ) = 6 B 2 ( m )
=
I~~B,B,(-)
=
Sharply 3-Transitive Groups =
PI(-)
=
z. * u ( m ) * m - z = 6 6 ( z )
-
= z
27 1
a(m).m = 1 * m E S c o n t r a r y t o
o u r assumption m E F * \ S .
6,
2 . Case:
(a) =
* B1 h a s t h e 1 B 2 i n t e r c h a n g e s 0 a n d OJ. T h e r e f o r e (3, h a s t h e form @ , ( x )= n.o[x) w i t h n E S . * u ( m ) -r?(x) = 6 ( x ) = = B15,(x) = - n - a ( x ) . * o ( m ) = - n * m E S s i n c e n E S and -1 l i e s i n t h e c e n t e r of (F*,’) C o n t r a d i c t i o n t o m E F* \ s.
Then w e g e t B 2 ( 0 ) = B, (-1 f i x e d p o i n t s 0 and
m
=$
=
=.
0 = B2(m) = @ ( 0 )
=
-
QD.
B, ( x )
x.
.
3 . Case: @ ,
*
B2(0)
=
= 0
(m)
B1
(m)
= 0.
T h i s l e a d s t o t h e same proof as i n case 2 , i f
w e i n t e r c h a n g e B 1 and B2.
Theorem 5 : L e t G be a s h a r p l y 3 - t r a n s i t i v e g r o u p . Then G = J2 i f and o n l y i f G S P G L ( 2 , K ) and I K I > 2 . Proof: “4‘ PGL(2,K) S J
2
if
I K I > 2 i s commonly known and c a n b e
v e r i f i e d by c a l c u l a t i o n . 2 w*11 Let be G = J Because of lemma 4 t h e g r o u p G c a n n o t c o n t a i n any
.
pseudo-invo1ution.Therefore F * \ S = #. A K T - f i e l d w i t h F* = S i s a commutative f i e l d ( c f . [ 3 1 , S a t z 1 . 6 ) . Now w e t u r n t o g r o u p s G w i t h G = J
3
.
(F,+,*u) i s c a l l e d p l a n a r , i f t h e e q u a t i o n ax + b x = c w i t h a + - b always h a s a s o l u t i o n x E F . D e f i n i t i o n 6: A KT-field
P l a n a r KT-fields a l r e a d y a r e n e a r f i e l d s ; i . e . group.
(F,+) i s a n a b e l i a n
(cf. [ I ] , 5.6).
Theorem 7 : L e t be (F,+,.,u) a K T - f i e l d w i t h I F / > 2 a n d l e t b e G t h e induced s h a r p l y 3 - t r a n s i t i v e group. G~:=
I yEGly(a)
= a
Then
~ f o r ca n a E ~F
~
i s v a l i d i f and o n l y i f F i s p l a n a r and S - S = F* w i t h S : = =
CsEF*ls-U(s) = I}.
M . HiNe and ti Wefelscheid
212
Proof:
W e conduct t h e demonstration i n s e v e r a l s t e p s :
L e t b e F a p l a n a r K T - f i e l d a n d S - S = F*.
A:
1 . Gm -
cJ' 1 0
Proof:
The e l e m e n t s of t h e g r o u p Gmlo:={yEGI y ( 0 ) = 0 , y ( m ) h a v e t h e form:
=m)
= {LIEGI p : = - , k x w i t h k E F * ] . .
Gm10
Because of S - S = F* t h e r e e x i s t n 1 , n 2 E S s u c h t h a t nl' n 2 = k . Then ( x ) = n n (x) = n l * u a ( n x ) = B 1 B 2 ( x ) w i t h B ( x ) = n l . u ( x ) , 1 2 1 2 2 1 p,(x) = u ( n 2 x ) a n d B 1 , B , - E J .
'V ( x ) = n n
A
2*
f o r each a E F .
Gm,acJ2
P r o o f : L e t b e a : x-, a t x . Then G -1
b e c a u s e of
3.
J
ci
c1-I
=
J.
a
= ci G
ci
-1
c c1 J
2
2 a-l
--J
=I0
Gm= { y E G l y ( x ) = c + m-x, c , m E F , m t O } c J
2
Proof: L e t be T:= { T E G I T ( x ) = ~ = , x = ~ } . Then w e h a v e
S i n c e F i s p l a n a r , t h e s e t T c o n s i s t s of t r a n s f o r m a t i o n s o f t h e form: T = { T E G ~ I T ( X= ) b t x w i t h b E F * l
But f o r IF1 > 2 w e h a v e Hence T c J
2
T
.
B . L e t be G a c J 2
Then Gm = y G a y
-1
= a 2 a 1 E J2 w i t h a i ( x )
= ai-x
f o r some a E F . 2 -1
c y J y
= J
2
f o r some y E G w i t h y ( a ) =
L e t now b e c 1 E Gm w i t h a ( x ) = c + m x , m + 1 a n d c1 =
B,(x)=-b.+n *o(bi+x),i = 1,2. i
a n d a 2-al = b .
i
B2Bl
EJ
m.
2
with
Because of B i E J w e h a v e n
i
ES.
W e show t h a t c1 p o s s e s s e s a n o t h e r f i x e d p o i n t d i f f e r e n t f r o m - .
B 2 B 1 (-1
= - b 2 + n 2 u ( b 2 + ( - b +n o ( b l + - ) ) )
m
= a(-)
=,
= -b +n. o ( b -b ) 2 2 2 1 b2 = b l = : b . +. a ( x ) = -b
=)
The s e c o n d f i x e d p o i n t of
=
1
(n2n1-'b
t
ci
i s -b.
1
t
n2n1 - 2 . x )
We h a v e
Sharply 3-Transitive Groups
213
S i n c e e a c h a E G m h a s two f i x e d p o i n t s , F i s p l a n a r w h e r e a s f o l l o w s t h a t (F,+) i s a n a b e l i a n g r o u p .
* a ( x ) = (-b+n2n1-lb)+n2n,-'-x
=)
m
= n n -1
ES.S
2 1 Thus F* = S - s s i n c e m E F * was a r b i t r a r i l y c h o s e n .
Remark:
I f Ga c J2 t h e n G c J3. Wether t h e c o n v e r s e i s t r u e , w e do n o t
know. I n c o n c l u s i o n w e g i v e e x a m p l e s of s h a r p l y 3 - t r a n s i t i v e g r o u p s G w i t h 3 b u t G t. J2. W e u s e t h e f o l l o w i n g g e n e r a l method f o r c o n s t r u c t i n g
G = J
s h a r p l y 3 - t r a n s i t i v e g r o u p s due t o Xerby ( c f . [ 2 ] , p . 6 0 ) : L e t (F,+, - 1 be a commutative f i e l d and l e t a ( x ) = x - ' .
Suppose
A < (F*,.) s u c h t h a t :
2
EF*laEF*}cA
(1)
Q:=
(2)
T h e r e e x i s t s a monomorphism
(3)
i (x) E
{a
xA f o r all
T
E
TI
F*/A
TI:
+
Aut(F,+,')
(F*/A) a n d a l l x E F*.
D e f i n e Oob = 0, and f o r a + O , a o b = a - a ( b ) where a cp
Then ( F , + , o , o ) i s a K T - f i e l d . coupled Dickson-nearfield,
(To b e e x a c t :
(F!+#o)
cp
= a(a.A).
is a strongly
which i n a d d i t i o n i s p l a n a r ( c f . [ 5 ] ) )
( 1 ) i n d u c e s [F*:A] = 2111 where I d e n o t e s a n a p p r o p r i a t e i n d e x s e t .
One can c o n s t r u c t f o r a r b i t r a r y i n d e x sets s u c h K T - f i e l d f o r which t h e i n d u c e d g r o u p G s a t i s f i e s G = J 3 b u t G t. J2, W e i l l u s t r a t e t h i s method of c o n s t r u c t i o n f o r I ={1,2}: L e t b e K a commutative f i e l d and L : = K ( x 1 , x 2 ) a t r a n s c e n d e n t a l
r1
e x t e n s i o n of K . C o n s i d e r t h e f o l l o w i n g automorphisms a 1 , a 2E AutKL
al:
{
X
+
1-Xl
x2
+
x2
k E K
+
k
a2:
+
1-x2
x
+
x1
k E K
--*
k
u 1 and a2 a r e i n v o l u t a r y a n d s a t i s f y u 1 u 2 = a 2 a 1 . Take F:= L ( t l f t 2 ) where t h e t i are t r a n s c e n d e n t a l o v e r L. L e t b e 7i
E A u t F t h e f o l l o w i n g c o n t i n u a t i o n of a 1 f o r h E L [ t ,
/t21:
:
214
M . Hille arid H. Wefelscheid
and define
h, := h2
T , (-)
I
ri(hl) for -r;(hZJ
h, A l s o let be gradi€ = gradi$-:=
f = -hlr h2
h ,h EL[tl,t21 1 2
gradihl
- gradih2 the degree function
of the polynomials h l r h 2EL[tlrt21with respect. to ti. Now we define for € , g E F : grad f grad2f T2 fog:= f m f w ( g ) with fQ:= Then Fr+,oru)is a planar KT-field (to be exact: (F,+,oru)is a planar KT-nearfield; o(a) = a-1 the inverse with respect to ( - 1 1 . We note thatA = Kern cp = {fEF*l gradifZO mod 2 for i = I r 2 } c S and [F* : A] = 4 = 211[. The 3 other cosets are: t,*A, tZ-Ar t,-t2-A The Dickson-group r:= If EAut F / fEF*] consists of the 4 automorcp -c2, T ~ T ~ } . Fany O ~ T €rand any z E Itl,t2,tl.t21 phisms: r = {id, ~~r we have T(Z) = z and therefore Z O U ( Z ) = 1. * z E S and z - A = zoAcSoS for z E {t,,t2rtl-t2).* F* = S o S . This shows that this example satisfies the conditions of Theorem 7, whence the induced group G fulfills G o . c J 2 and therefore G = J 3
.
References [l]
H. KARZEL: Ztmsammenhlnge zwischen Fastbereichen,scharf 2-fach transitiven Permctationsgruppen und 2-Strukturen mit RechtecksaTiom, Abh. Math. Sem. Hamburg, 31 (1967) 191-208
[2] W. KERBY:
Infiilite sharply mul'iply transitive groups. Hamburger Mathematische Einzelschriften. Neue Folge Heft 6, GSttingen 1974, Vandenhoek und Ruprecht
[3] W. KERBY und H. WEPELSCHEID: Uber eine scharf 3-fach transitiven Gruppen zugeordnete algebraische Struktur. Abh. Math. Seminar Hamburg
37(1972) 225-235 [4]
H. WEFELSCHEID: ZT-subgroups of sharply 3-transitive groups, proceedings of the Edinburgh Mathematical Society 1980, Vol. 23, 9-14
[5]
H. WEFELSCHEID: Zur Planaritat von KT-Fastksrpern, Archiv der Mathematik, Vol. 36(1981) 302-304
Fachbereich Mathematik der Universitlt Duisburg D 4100 Duisburg 1
-
Annals of Discrete Mathematics 30 (1986) 275-284 0 Elsevier Science Publishers B.V. (North-Holland)
275
OY T I E G E N E R A L I Z E D CIIROMATIC NUMBER F l o r i c a Kramer and I l o r s t K r a m e r Computer T e c h n i q u e R e s e a r c h I n s t i t u t e s t r . R e p u b l i c i i 109 3400 Cluj-Mapoca ROFIANIA
The c h r o m a t i c number r e l a t i v e t o d i s t a n c e p,den o t e d b y r(n,C) i s t h e minimum number o f colors s u f f i c i n g f o r c o l o r i n g t h e vertices o f G i n s u c h a way t h a t a n y t w o v e r t i c e s of d i s t a n c e n o t q r e a -
ter t h a n p have d i s t i n c t colors. W e q i v e upper 'f(3,G) f o r h i p a r t i t e ( p l a n a r ) g r a p h s and g e n e r a l i z e a r e s u l t
bounds f o r t h e c h r o m a t i c nur.ber
o f S . A n t o n u c c i q i v i n q a lower bound f o r r ( 2 , C ) .
I. INTFODITCTION I n t h e f o l l o w i n g w e s h a l l u s e some c o n c e p t s and n o t i o n s i n t r o d u c e d
i n t h e book L 5 ] o f C.Oerqe. We r e s t r i c t o u r s e l v e s t o s i m p l e g r a p h s , c o n n e c t e d u n d i r e c t e d f i n i t e g r a p h s which h a v e no l o o p s o r mul-
i.e.
b e a s i m p l e g r a p h , where 17 i s t h e v e r t e x s e t and R i s t!ie ec'ge s e t o f G. I f x , y e V , w e s h a l l d e n o t e by q ( x ) the deqree o f t h e v e r t e x x , by b (G)=max L g ( x ) ; x ~ V t3h e maximum
t i p l e edqes. L e t G = ( V , E )
d e g r e e o f t h e v e r t i c e s of G , by d G ( x , y ) t h e d i s t a n c e b e t w e e n t h e v e r t i c e s x and y i n t h e g r a p h G , i.e.
t h e l e n g t h of t h e s h o r t e s t
p a t h c o n n e c t i n g v e r t i c e s x and y i n t h e q r a p h G ( t h e l e n g t h of a p a t h i s c o n s i r i e r e d t o be t h e number o f e d g e s w h i c h f o r m t h e p a t h ) . d e n o t e s t h e c o m p l e t e g r a p h w i t h n v e r t i c e s and K t h e complete n m*n b i p a r t i t e qraph. it
I n 1969 w e h a v e c o n s i d e r e d i n t h e p a p e r s
[111 and 1123 t h e
follow-
in? c o l o r i n g problem of a graph: DEFINITION 1. L e t p h e a g i v e n i n t e q e r , p z 1 . An a d m i s s i b l e k-color i n q r e l a t i v e t o d i s t a n c e p o f t h e g r a p h G=(T',E) f: V
9 {1,2,...,k)
such that
2
=>
is a function
v x , y € V with 1 ~ d C ( x , v ) p f(x) # f(y). The s m a l l e s t i n t e g e r k f o r w h i c h t h e r e e x i s t s an a r ' r n i s s i h l e k-colo-
F. Kramer and H. Kramer
216
r i n g r e l a t i v e t o d i s t a n c e p is denoted by y ( p , C ) and i s c a l l e d t h e c h r o m a t i c number r e l a t i v e t o d i s t a n c e p of t h e q r a p h G . DEFINITION 2 .
L e t G=(V,E) b e a g i v e n g r a p h and p an i n t e g e r , p
W e s h a l l d e n o t e by G P = ( V , E
set
17
2 1.
t h e g r a p h , which h a s t h e same v e r t e x P a s t h e g r a p h G whereas t h e edge set E is d e f i n e d by: )
5Pp.
( x , y ) E Lp i f and o n l y i f 1 s d G ( x l y )
There e x i s t s t h e n t h e f o l l o w i n q r e l a t i o n between t h e c h r o m a t i c numb e r r ( p , C ) and t h e o r d i n a r y c h r o m a t i c number g(C) : )$(PIC)
In t h e papers
= $-(l,CP) =
[ill,
K(C,P). [121 and [133 w e o b t a i n e d some r e s u l t s r e l a t i v e
t o t h e c h r o m a t i c number
r ( p , G ) , e s p e c i a l l y one c h a r a c t e r i z i n g t h o s e
g r a p h s G f o r which we have r ( p , G ) = p + l . The problem of c o l o r i n q a g r a p h r e l a t i v e t o a d i s t a n c e s w a s recons i d e r e d i n 1 9 7 5 by P.Speranza [ l G ] u n d e r t h e name of L s - c o l o r i n g of a g r a p h ; t h e same oroblem was a l s o s t u d i e d by M.Gionfriddo [6], [7] and [f311S.Antonucci [11 and by G.Wegner L171. 2 . UPPER BOUNDS FOR THE CHROMaTIC NUMBER r ( 3 , G ) G.Weqner 1111 proved t h e f o l l o w i n g theorem: T!IEOREY
1. L e t G=(V,F) be a s i m p l e p l a n a r g r a p h s u c h t h a t
W e have t h e n :
s(2,G)
-
A
( C ) f 3.
f 8.
A s t i l l open problem is t h a t of f i n d i n g a p l a n a r g r a p h C, w i t h maxi-
mal d e q r e e 3 such t h a t w e have $ - ( 2 , G ) = 8 o r else t o prove &-(2,G)f7. F i r s t w e s h a l l g i v e some bounds f o r t h e g e n e r a l i z e d c h r o m a t i c number ) ( " ( 3 , G )of b i p a r t i t e g r a p h s . L e t C=(A,B;E) be a q i v e n b i p a r t i t e graph. t h e g r a p h , which h a s t h e v e r t e x s e t A and t h e cdqe s e t EA is d e f i n e d by:
W e s h a l l d e n o t e b y Gp=(A,EA)
( x , y ) E E A i f and o n l y if d G ( x l y ) = 2 . The g r a p h GA c a n b e o b t a i n e d from t h e g r a p h C, by t h e e l i m i n a t i o n o f t h e v e r t i c e s of 13 and by t h e a p p l i c a t i o n of t h e f o l l o w i n g t h r e e operations: a ) I f w e have a " 3 - s t a r " w i t h t h e c e n t e r i n a v e r t e x y of B ( i t f o l l o w s t h a t t h e v e r t i c e s x1,x2,x3
struct in
GA
a d j a c e n t t o y are i n A ) t h e n w e con-
t h e c i r c u i t x1x2x3x1.
h) I f a verte:: y o f B h a s d e q r e e 2 i n G and x1,x2 a r e t h e two v e r t i ces of A a d j a c e n t t o y i n G I t h e n w e r e p l a c e t h e p a t h xlyx2 o f l e n g t h 2 i n C by an edge (x1,x2) i n GA.
c) I f by t h e a p p l i c a t i o n of t h e p r e c e d i n g two o p e r a t i o n s a p p e a r mult i p l e e d g e s between t w o v e r t i c e s x and y, w e s h a l l r e t a i n o n l y one
011the Generalized Chromatic Number
211
of t h e s e e d g e s and delete t h e o t h e r s . Analogously w e i n t r o d u c e t h e g r a p h G B = ( B , E R )
with t h e v e r t e x set 8
and t h e e d g e set EB d e f i n e d by: ( x , y ) E E B i f and o n l y i f d c ( x , y ) = 2 . An upper hound f o r t h e c h r o m a t i c number
o r d i n a r y c h r o m a t i c numbers
and
$-(C,)
r ( 3 , G ) i n f u n c t i o n of t h e
r(CR)
is qiven i n t h e follo-
winq: TlICOREM 2 .
L e t G = ( A , B ; E ) b e a b i p a r t i t e q r a p h . Then
(1) Proof.
T(3,G)
5 pA) + K(CB).
b e i n g t h e o r d i n a r y c h r o m a t i c number of t h e g r a p h
$(GA)
t h a t ( x , y ) E EA w i t h )-'(CB)
,...,
CA
3 Ll,? r ( G A ) ) of i t s v e r t i c e s such i m p l i e s f l ( x ) # f l ( y ) . We c o n s i d e r a l s o a c o l o r i n g
t h e r e is a c o l o r i n g f l :
A
c o l o r s o f t h e v e r t i c e s of t h e g r a p h GB f 2 : B +
..
[bp(GA)+l,
.
such t h a t ( x , y ) 6 EB i m p l i e s f2 ( x ) # f 2 (y) bb(GR)+ 2 , . , y(GA) + ?,G(GB)) The f u n c t i o n f : A U l 3 -3 ( 1 , 2 , r ( C A ) + g ( C B ) j d e f i n e d by
...,
f(x) =
(2)
{
fl(x),
i f xEA
f2(x), if xEB i s t h e n a c o l o r i n q of t h e v e r t i c e s of t h e b i p a r t i t e g r a p h G=(A,B;E) w i t h '$"(GA)
+
r ( G B ) colors. W e s h a l l now v e r i f y t h a t t h e s o o h t a i -
ned c o l o r i n g is an a d m i s s i h l e ( d i s t a n c e 3 of t h e g r a p h
C,,
i.e.
t (C,) ) - c o l o r i n g r e l a t i v e t o t h a t x , y 6 A V B and 15 d G ( x , y ) 3
f-(GA)
6
i m p l i e s f ( x ) # f ( y ) . R e a l l y , i f d G ( x I y ) = l or d C ( x , y ) = 3 it f o l l o w s t h a t one v e r t e x , l e t it be x , b e l o n g s t o A and t h e o t h e r , y , b e l o n g s
.
t o B. Then o b v i o u s l y f ( x ) # f ( y ) On t h e o t h e r hand i f d G ( x , y ) = 2 it f o l l o w s from t h e b i p a r t i t e c h a r a c t e r o f C t h a t b o t h v e r t i c e s x and y a r e i n A , o r b o t h a r e i n R . C o n s i d e r now t h e c a s e s : a ) i f x , y E A and A G ( x , y ) = 2 , i t r e s u l t s t h a t ( x , y ) E E A and t h e r e f o r e f ( x ) = f1(x) # f p = f(y). b ) i f x , y E B and d G ( x , y ) = 2 , i t r e s u l t s t h a t ( x , y ) c E B and t h e r e f o r e f (XI = f 2 ( x ) f f 2 ( y ) = f ( y ) . Thus w e have proved i n e q u a l i t y ( 1 ) .
THEOREM 3 . L e t G = ( A , B ; E )
be a s i m p l e p l a n a r b i p a r t i t e g r a p h w i t h
A(G)$ 3 . Then w e have (3) r ( 3 , G ) 5 8. T h i s bound is s h a r p i n t h e s e n s e t h a t t h e r e are c u b i c p l a n a r b i p a r t i t e g r a p h s f o r which
X(3,C)=S.
P r o o f . From t h e p l a n a r i t y of t h e i n i t i a l g r a p h G and t h e c o n s t r u c t i o n way of t h e g r a p h s GA and GB r e s u l t s t h e p l a n a r i t y of t h e g r a p h s
GA
and CB. By t h e f o u r - c o l o r theorem proved by K.Appe1 and W.Haken([Z],
218
I;: Krumer and ti. Krumer
and [41) w e have t ( G A ) 4 and t h e n immediately i n e q u a l i t y ( 3 ) .
5
L31
'rl:
Fig. 1 i n Theorem 3 we o b t a i n :
$(GB)
5
4.
B y Theorem 2 f o l l o w s
The f a c t t h a t t h e so o b t a i n e d bound f o r $ ( 3 , C ) can n o t be lowered , c a n be s e e n from t h e f o l l o w i n g example: L e t G=(A,B;E) be t h e g r a p h o f t h e
hexahedron, which is a b i p a r t i t e p l a n a r c u b i c g r a p h w i t h 8 v e r t i c e s and d i a m e t e r 3 . I t r e s u l t s t h a t w e have = 8. I f w e renounce t o t h e p l a n a r i t y of x ( 3 r G ) = IAlJBl
be a b i p a r t i t e g r a p h such t h a t
THEOREM 4 . L e t C = ( A , B ; E )
(GI
f
G
3.
Then w e have: p(3,C)
(4)
5
14.
The o b t a i n e d bound i s s h a r p i n t h e s e n s e t h a t t h e r e e x i s t b i p a r t i t e c u b i c q r a p h s f o r which r ( 3 , C ) = 1 4 . Proof. Consider a b i n a r t i t e qraph G=(A,B;E)
w i t h n ( G ) f 3 and t h e
an(' c,., d e f i n e d above. From A ( C )
correspondinq qraphs
L,
3 results
i p m e d i a t e l y A ( C , ) f 6 and A(C,) L, 6 . A well-known t.!ieorem (see f o r i n n t a n c e [ l 5 ] v o l . 1 , S a t z I V . 2 . 1 ) asserts t h a t f o r any g r a p h G , t h e o r d i n a r y c h r o m a t i c number i s a t most one g r e a t e r t h a n t h e maximum d e g r e e A (GI. W e have t h e n ( G A ) 5 7 and f 7. Applying a g a i n Theorem 2 w e have Y ( ? , G ) 14. The f a c t t h a t t h i s bound i s s h a r p ,
F(GB)
5
can be s e e n from t h e example o f t h e well-known
Ileawood g r a p h (see F i q . 2 )
,
which i s a c u b i c b i p a r t i t e g r a p h w i t h 1 4 v e r t i c e s and o f d i a m e t e r 3 . W e ha-
r ( 3 , C ) = I A U B I = 14. A d i r e c t g e n e r a l i z a t i o n of Theorem 4 i s t h e f o l l o w i n q theorem.
ve t h e n :
Fig.
2
THEORE'fi 5 . L e t C: be a s i m p l e b i p a r t i t e qraDh w i t h maxinum clegree
A
=
a (c).
Then w e have: ~
(5) P r o o f . From
A
(
3
f~
~
+ 1A
(
A -
1)).
= max I g ( x ) ; x E A U B) w e o b t a i n immediately t h a t
t h e number of v e r t i c e s y which a r e a t d i s t a n c e 2 from a g i v e n v e r t e x
On the Generalized Chromatic Number
A (A-1)
x i n t h e q r a p h G i s a t most and
b(GB)
-
r ( C B )f
2 n(A-1)
and t h e r e b y
a(a-1)+1. Applying
COROLLARY 1. L e t G = ( A , B ; E )
279
A(c;,) A( A - 1 ) +1 a n d
.\ve h a v e t h e n
g(GA)5
= L
A(A-1)
respectively
now Theorem 2 w e o b t a i n i n e q u a l i t y ( 5 ) .
be a simple A - r e g u l a r
b i p a r t i t e graph of
d i a m e t e r 3. Then w e h a v e : ( A \
16)
+ !B1 5 2 ( 1 +
h ( a - 1).
Examples o f g r a p h s f o r w h i c h w e h a v e t h e e q u a l i t y s i q n i n ( 5 ) and
1) f o r
also in (6) are:
b
= 2 t h e c i r c u i t C6 o f
a=
lenqth 6; 2) f o r
3 t h e a b o v e d i s c u s s e d ifeawood
g r a p h and 3 ) f o r
A
= 4 t h e 4-regular
b i p a r t i t e q r a p h of d i a m e t e r 3 w i t h 2 6 v e r t i c e s from F i q . 3. D(C) = 3
implies again r ( 3 , C ) = I A U R \ = 26. An improvement of Theorem 5 and o f Theorem 4 c a n b e o b t a i n e d i f w e appl y Brooks theorem (see f o r i n s t a n c e [ 9 1 Theorem 1 2 . 3 ) : I f
G is A-colorable
A(C)=A t h e n
unless:
= 2 and G h a s a comnonent w h i c h
(i)
i s a n odd c y c l e , o r ( i i )A > 2 and
K A + l i s a component o f
Fis. 3
G.
w a s d i s c u s s e d i n [ _ 1 1 ] , 1 1 2 1 and L131.Let u s assume t h a t 7 2 . The g r a p h s CA and GB a r e c o n n e c t e d s i n c e C, i s c o n n e c t e d . I f
The c a s e A.2
A
now a t l e a s t o n e of GA, GB
-
s a y , GA
-
is not a K
t h e n by
g(GA)fA ( A - 1 ) and b y Theorem 2 w e h a v e t h e i n e q u a 5 2 A ( A - 1 ) + 1 . T h u s i f e q u a l i t y h o l d s i n Theorem 5 w e \ B \ = n(n- l ) + land C, i s a b i p a r t i t e A - r e g u l a r q r a p h o f
Brooks t h e o r e m , lity
K(3,G)
have ( A 1 = d i a m e t e r 3. bb(GB)5
I f n o n e o f GA,GB
n(n-1) and
is a K
by Theorem 2
A ( A -1) +1 t h e n )$'(GA) f a(n-1), a ( A - 1 ) . W e c a n now
x(3,G)f2
enounce : COROLLARY 2 . L e t C = ( A , B ; E )
A ( G ) =A >
be a simple b i p a r t i t e qraph such t h a t
2 and min ( I A I , \ B \ ) )9(3,G)
In p a r t i c u l a r , i f
A
>A(a-l)+l.
52 4 ( A -
= 3 and I A \ > 7 , \ R 1 > 7
1;(3,G)
5 -
12.
Then w e h a v e :
1). t h e n w e have:
280
F. Kramer and H. Kramer
3 . LOWER BOIJNDS FOR THE CHROMATIC NUMBER 2('$
,G)
F i r s t we s h a l l p r o v e a r e s u l t needed i n t h e s e q u e l . THEOREM 6 .
(i)
L e t G=(V,E) b e a s i m p l e g r a p h w i t h t h e p r o p e r t i e s :
t h e derjree o f e a c h v e r t e x i s a t l e a s t 2 ,
( i i ) t h e d i a m e t e r o f t h e g r a p h D(G)=2, ( i i i ) G d o e s n o t c o n t a i n c i r c u i t s of l e n g t h 3 and 4 .
Then G is a Moore g r a p h . P r o o f . P r o p e r t y ( i ) i m p l i e s t h e e x i s t e n c e of a t l e a s t o n e c i r c u i t i n t h e g r a p h G. By ( i i ) and ( i i i ) r e s u l t s t h a t t h e g i r t h o f G i s 5 . (7 is t h e n a Moore q r a p h by a r e s u l t o f R . S i n g l e t o n l 1 4 1 which a s s e r t s
t h a t a simgle graph with diameter k
2
1 and g i r t h 2 k + l I s a l s o regu-
l a r and h e n c e a Moore a r a p h . I n 1978 S . A n t o n u c c i L 1 1 o b t a i n e d t h e f o l l o w i n g lower bound f o r t h e c h r o m a t i c number y ( 2 , G ) a s a f u n c t i o n of t h e number of v e r t i c e s and t h e number o f e d q e s o f t h e g r a p h G: THEOREY 7. L e t C = ( V , E ) be a s i m p l e g r a p h w i t h n v e r t i c e s and m e d g e s and w i t h o u t c i r c u i t s of l e n g t h 3 and 4 . Then w e h a v e : n
(7)
3
n 3- 4m2 But S . A n t o n u c c i d i d n ' t g i v e a n y example o f g r a p h s f o r which t h i s hound is a t t a i n e d . W e s h a l l p r o v e t h e f o l l o w i n g theorem: TIIE0RE:I 8. The o n l y g r a p h s of d i a m e t e r D ( C , )
f
2 , without c i r c u i t s of
l e n g t h 3 and 4 , w i t h n v e r t i c e s and m e d g e s f o r w h i c h w e h a v e
a r e t h e g r a p h s K1,
K2 and t h e Moore g r a p h s of d i a m e t e r 2 .
P r o o f . The o n l y g r a p h of d i a m e t e r D(C)=O i s t h e g r a p h K1,
f o r which
we h a v e n = 1 , m=O, '$'(2,G)=1.K1 v e r i f i e s t h e n e v i d e n t l y (8). I f D ( G ) = l , G is a c o m p l e t e g r a p h K w i t h n - 2 . The o n l y c o m p l e t e n 2 , w i t h o u t c i r c u i t s o f l e n g t h 3 is t h e g r a p h K2, f o r graph Knl n which w e h a v e n=2, m=1, ) f ' ( 2 , K 2 ) = 2 and t h e r e f o r e ( 8 ) is v e r i f i e d . I f D(G)=2, w e h a v e t o d i s t i n g u i s h t w o cases:
a)
g = min c q ( x ) : x G V }
= 1. Then t h e r e is a v e r t e x al o f d e g r e e 1
and t h e v e r t e x b a d j a c e n t t o a l h a s t o b e a d j a c e n t t o a l l t h e o t h e r v e r t i c e s o f V b e c a u s e D ( G ) = 2 . But a s
G
d o e s n ' t c o n t a i n c i r c u i t s of
On rhe Generalized Chromaric Number
l e n g t h 3, G i s a ( n - 1 ) - s t a r w i t h n
2
28 I
3 , i . e . G=(V,E) w i t h V= Ca1*a2* i=1,2 n-1J W e h a v e t h e n m=n-1 and E= [ ( a i , h ) , =n. R e l a t i o n (El becomes n ( n 3 - 4 ( n - 1 ) 2 ) = n3 The o n l y sol u t i o n s of t h i s e q u a t i o n a r e n =0, n 2 = 1 and n =n =2, none o f w h i c h 1 3 4 c o r r e s p o n d s b e c a u s e as w e h a v e s e e n a b o v e w e h a v e n 'I, 3. The c o n c l u s i o n is t h a t w e can n o t have b)
x = min
$=
,...,
.
.
1.
{g(x) ; x E V 3 2 2 . G is t h e n a Moore g r a p h o f d i a m e t e r 2
by Theorem 6 . A r - r e g u l a r Moore g r a p h o f d i a m e t e r 2 h a s n = 1
+ J2
v e r t i c e s and m = n. x/2 = $(l+x 2 ) / 2 e d q e s . Because D ( G ) = 2 w e h a v e x ( 2 , G ) = n = 1+J2. I t f o l l o w s t h a t
With t h a t Theorem 7 i s p r o v e d . REMARK.
By a well-known r e s u l t o f A.J.Hoffman
and R . R . S i n q l e t o n
(101
a Moore g r a p h o f d i a m e t e r 2 h a s o n e o f t h e d e g r e e s 2 , 3 , 7 o r 5 7 ;
f o r e a c h o f t h e d e q r e e s 2 , 3 , 7 t h e r e i s e x a c t l y o n e Moore g r a p h of d i a m e t e r 2 ( i t is. n o t known w h e t h e r o r n o t t h e r e i s a Moore q r a p h of d i a m e t e r 2 and d e g r e e 5 7 ) .
lower bound f o r b " ( 2 , G ) s i m i l a r t o t h a t o b t a i n e d by S.P.ntonucci can a l s o b e deduced f o r g r a p h s which h a v e c i r c u i t s of l e n g t h 3 o r 4 .
A
TIIFOREM 9 . L e t C=(V,E) be a s i m p l e c o n n e c t e d g r a p h w i t h n v e r t i c e s and m e d g e s i n w h i c h w e d e n o t e by: (i)
c3 t h e number of c i r c u i t s o f l e n q t h 3 i n G ;
( i i ) c:
t h e number of c i r c u i t s o f l e n g t h 4 , f o r w h i c h n o p a i r of o p p o s i t e vertices i n t h e c i r c u i t are a d j a c e n t i n G ; 1 ( i i i ) c 4 t h e number o f c i r c u i t s o f l e n g t h 4 , f o r which o n e p a i r o f o p p o s i t e v e r t i c e s i n t h e c i r c u i t a r e a d j a c e n t i n C and t h e o t h e r p a i r of o p p o s i t e v e r t i c e s a r e n o t a d j a c e n t i n G . If G doesn't
c o n t a i n a n y s u b a r a p h of t h e t y p e K t h e n t h e chroma2,3 t i c number X ( 2 , G ) v e r i f i e s t h e i n e q u a l i t y 3 n (9)
c
3 0 1 2 n +n ( 6 c 3 + 4 c 4 + 2 c 4 )- 4 m
I
**
T h i s bound i s s h a r p i n t h e s @ n s e t h a t t h e r e e x i s t s s r a p h s v e r i f y i n q t h e h y p o t h e s e s o f t h e t h e o r e m and f o r which w e h a v e t h e e q u a l i t y siqn in (9). P r o o f . The p r o o f o f t h i s t h e o r e m c a n b e o b t a i n e d hy a m o d i f i c a t i o n of t h e p r o o f g i v e n by S . A n t o n u c c i f o r Theorem 7 . A s w e h a v e o b s e r v e d
282
F. Kramer and H. Kramer
above w e h a v e
Y(2,C)
=
s q u a r e of t h e q r a p h G.
$(llC2)
=
2
r(C;) ,
where c; 2 = ( V I E ) i s t h e 2
I f w e d e n o t e b y m2 t h e c a r d i n a l i t y of t h e
e d q e set E 2 , t h e n w e h a v e by a Theorem of C . B e r q e r(2,C= ;) g(G2) 7 =
(10)
2
( c 5 J l p.321)
.
n2-2m2 The number o f a l l p o s s i b l e p a t h s of l e n g t h 2 i n t h e q r a p h by t h e sum
2 (q(ii)).
xyz of lenq&'
G
i s qiven
If we introduce corresnondinq t o each path
2 i n C an e d q e ( x , z ) w e s h a l l o h t a i n a q r a p h C " = ( V , E " ) .
C E", h u t t h e r e may h e e d q e s i n E 2 which are m u l t i p l e e d g e s i n El'. L e t a , b EV h e a p a i r of v e r t i c e s , which i s c o n n e c t e d i n O b v i o u s l y E2 C;
by a t l e a s t o n e p a t h of l e n q t h 2 . W e h a v e t o d i s t i n q u i s h t h e cases:
1) a and h are a e j a c e n t v e r t i c e s i n G . Then t h e ec'qe ( a , b ) i s cont a i n e d i n a t l e a s t one c i r c u i t of l e n q t h 3 i n G and t h e o r d e r of mult i p l i c i t y of t h e e d q e ( a , b ) i n E" w i l l be e q u a l w i t h t h e numher of c i r c u i t s o f l e n n t h 3 which c o n t a i n t h e e d q e ( a , b ) . As e a c h c i r c u i t of l e n g t h 3 c o n t r i b u t e s t o t h e i n c r e a s e of t h e m u l t i n l i c i t y o f e a c h e d g e of t h i s c i r c u i t by one u n i t y , w e h a v e t o d e l e t e 3c3 e d q e s from El' i n o r d e r t o make a l l e d g e s a p a r t a i n i n q t o c i r c u i t s of l e n q t h 3 simple e d g e s . 2 ) a and 13 a r e n o t a d j a c e n t i n C. Because G d o e s n o t c o n t a i n any s u b g r a u h of t h e t y p e K 2 , 3 , t h e v e r t i c e s a and h c a n h e c o n n e c t e d i n G by a t most t w o p a f h s of l e n g t h 2. W e d i s t i n q u i s h t h e n t h e s u b c a s e s : 2 a ) a and b a r e c o n n e c t e d i n C: by e x a c t l v one p a t h of l e n g t h 2 . Then ( a , b ) i s obviously a simple edge of t h e graph G " . 2b) a a n d b a r e c o n n e c t e d i n G by two p a t h s of l e n q t h 2 . The e d g e ( a , h ) w i l l b e a d o u b l e edge i n C". But i n t h i s c a s e a and b form a p a i r of o p p o s i t e v e r t i c e s i n a c i r c u i t of l e n q t h 4 i n G . B e c a u s e a c i r c u i t of l e n q t h 4 of t h e tyrJe (ii) leads t o t h e d u p l i c a t i n g of b o t h d i a g o n a l s of t h e c i r c u i t , and a c i r c u i t of l e n g t h 4 o f t h e t y p e ( i i i ) l e a d s t o t h e d u p l i c a t i n q o f o n l y o n e d i a q o n a l , i n o r d e r t o obe d g e s from El' b e s i d e t h e t a i n t h e q r a p h C2 w e h a v e t o d e l e t e 2c:+c: 3c3 edctes a l r e a d y d e l e t e d . W e h a v e t h u s n g(xi) 1 (3c3+2cy+c4). m2 = m + i=1 I t r e s u l t s then:
t(
)-
283
On the Generalized Chromatic Number
2
- -2m-
.
1
( 3c3+2c>c4)
n
T h i s i n e q u a l i t y and. (10) v i e l c l s
As
r(2,C)
w h i c h [r]*
i s an i n t e g e r w e o b t a i n i m m e d i a t e l y t h e i n e q u a l i t y ( 9 ) i n 2 r. An e x a m p l e o f a n r a p h f o r w h i c h w e
denotes t h e smallest i n t e q e r
have t h e e q u a l i t y s i g n i n ( 9 ) i s
4 f o r which we 1 h a v e n = 7 , m = l l , c = 3 , c 4 = l , c0=2, 4 3 D ( G ) = 2 and )f(2,C)=n=7. I t i s e a s y t h e q r a p h from F i g .
to v e r i f y t h a t f o r t h i s qraph we have t h e r e l a t i o n s : Fiq.
i3
n
4
3
'i'
= [343/551*
0
1
n +n ( 6 c 3 + 4 c 4 + 2 c 4 )- 4 m
= 7 = $(2,C,).
ACKNOWLEDCYENT. The a u t h o r s w i s h t o t h a n k t h e r e f e r e e f o r t h e h e l p f u l comments.
The s e c o n d a u t h o r would l i k e t o t h a n k a l s o t o t h e
A l e x a n d e r von H u m b o l d t - S t i f t u n q f o r t h e f i n a n c i a l s u p p o r t d u r i n g t h e y e a r s 1981-1982. REFERENCES [l) A n t o n u c c i , S . ,
G e n e r a l i z z a z i o n i d e l c o n c e t t o d i cromatismo d ' u n
q r a f o , Boll.Un.Vat.Ita1.
[23
Eq
[q
Appe1,K. ,Haken,W., Amer.Vath.Soc.
( 5 ) 15-B
( 1 9 7 8 ) 20-31.
E v e r y p l a n a r map i s f o u r c o l o r a b l e , B u l l .
82 ( 1 9 7 6 ) 711-712.
Appe1,K. ,Ifaken,IJ.,
E v e r y p l a n a r map is f o u r c o l o r a h l e , P a r t I .
D i s c h a r g i n g , I l l i n o i s J.Math. Appe1,K. ,Iiaken,W. , K o c h , J . ,
2 1 ( 1 9 7 7 ) 429-490.
E v e r y p l a n a r map i s f o u r colorable,
? a r t 11. R e d u c i b i l i t y , I l l i n o i s J . M a t h . ti51 R e r q e , C .
[6!
,
Craphes e t hypergraphes
Gionfriddo,M., Mat.Ita1.
S u l l e c o l o r a z i o n i Ls d ' u n g r a f o f i n i t o , B o l l . U n .
( 5 ) 15-A
[7]
Gionfriddo,M.
[8]
Gionfriddo,M.,
2 1 ( 1 9 7 7 ) 491-567.
(Dunod, P a r i s , 1 9 7 0 ) .
( 1 9 7 8 ) 444-454.
, Alcuni
r i s u l t a t i r e l a t i v i a l l e c o l o r a z i o n i Ls
d ' u n q r a f o , Riv.Mat.Univ.Parma
(4)
6
( 1 9 8 0 ) 125-133.
Su un p r o b l e m a r e l a t i v o a l l e c o l o r a z i o n i L2 d ' u n
q r a f o p l a n a r e e c o l o r a z i o n i t s I Riv.Mat.Univ.Parma
(4) 6 ( 1 9 8 0 )
I;. Krarner and H . Kramer
284
151-160.
1 IIarary,F., Graph Theory
(Addison-Wesley Publ.Comp. ,Mass. 1969). - - Hoffman,A.J. ,Singleton,R.R., On Moore graphs with diameters 2 and 3, IBM J.Res.Deve1op. 4 (1960) 497-504. [l
[lo1
rlq -
.
Annals of Discrete Mathematics 30 (1986) 285-290 0 Elsevier Science Publishers B.V.(North-Holland)
285
A CONSTRUCTION OF SETS OF PAIRWISE ORTHOGONAL F-SQUARES OF COMPOSITE ORDER Paola L a n c e l l o t t i and Consolato P e l l e g r i n o
D i p a r t i mento d i Ma t e m a t i ca V i a Campi 213/B 41100 MODENA (ITALY)
I n t h i s n o t e complete systems o f o r t h o g o n a l F-squares a r e c o n s t r u c t e d i n which t h e number o f symbols i s v a r i a b l e and t h e o r d e r n i s a prime power. F u r t h e r , we g i v e an e x t e n s i o n o f t h e MacNeish theorem by c o n s t r u c t i n g systems o f o r t h o g o n a l e F-squares o f composite o r d e r n = p1 elp2e2 p, m having a v a r i a b l e number o f symbols: such c o n s t r u c t i o n improves t h e r e s u l t s t h a t have been reached so f a r .
...
1
-
DEFINITIONS AND PRELIMINARY RESULTS
A square m a t r i x
F = [aij]
o f order n
, defined
,i s
on a s e t A
s a i d t o be
an
F-square o f t y p e (n,1) (and we s h a l l w r i t e s h o r t l y F(n,A) i f each element o f A appears A t i m e s i n each row and i n each column o f F Given t h e F-squares F1(n,’xl)
.
and F2(n,A2)
d e f i n e d r e s p e c t i v e l y on t h e s e t s A1 and A2
, we
s h a l l say t h a t t h e y appears ;\1x2
a r e o r t h o g o n a l i f a f t e r superimposing them each p a i r (x,y)€A,xA2 times. I n such case we s h a l l w r i t e F 1 ( n y ‘ x 1 ) ~ F p ( n y ’ x 2 ) . Given t h e F-squares
Fl(n,’xl)
, F2(n,’x2) ,
...
, Ft(n,’xt)
, we
s h a l l say t h a t t h e y
.
f o r m an o r t h o g o n a l system i f
If
ItAl,‘x
2,...,~tll
z
Fi(n,’xi)LF.(n,’xj) for all i,j=1y2y...yty i#j J we s h a l l say t h a t t h e o r t h o g o n a l system has a v a r i a b l e
1
number o f symbols, I n
3
1
t h e f o l l o w i n g theorem has been proved:
THEOREM 1 .l.The maximal number
..., Ft(n,’xt) i=1,2, ...,t ) :
t
o f orthogonal
F-squares
s a t i s f i e s t h e f o l l o w i n g i n e q u a l i t y (we s e t
i
mi
i=1
-
t
An o r t h o g o n a l system o f F-squares
<
(n-1)
2
F1(n,.“,),
F1 (n,hl),
n = l .im i
. F2(n,X2),
...
, Ft(n,At)
complete i f
5
mi
-
t
=
(n-1) 2
.
i=1 Complete systems o f
F2(n,’x2), for
F-squares a r e c o n s t r u c t e d i n
[2 ] , [3 ]
.
is
called
P. Laricellotti and C. Pellegritlo
286
-
2
CONSTRUCTION OF COMPLETE SYSTEMS OF F-SQUARES
,...,Xr
We s h a l l say t h a t a p a r t i t i o n . d =I XI,X2 is
1 Xi\
h-regular i f
@ = O(
&)
o(ai)
,..,, r ) .
(i=1,2
= h
t h e mapping f r o m A
to
1,
1 o f an m-set A=Ial,a2 ,...,am) I f I,= I 1 , 2 ,..., r 1 we denote by
d e f i n e d by
i f and o n l y i f
= j
aie x
j '
The mapping o w i l l be c a l l e d t h e c a n o n i c a l mapping a s s o c i a t e d w i t h t h e p a r t i t i o n Sg Given an F-square F o f t y p e (n,h) d e f i n e d on a s e t A and t h e c a n o n i c a l mapping o a s s o c i a t e d w i t h an h - r e g u l a r p a r t i t i o n .d o f A , we r e p l a c e each element x o f F by ~ ( x and ) o b t a i n a n F-square o f t y p e (n,ih).We s h a l l c a l l such a square t h e descendant o f F by o and denote i t by o ( F ) .
.
OBSERVAT 10'1 I f F i s an F-square o v e r t h e s e t w i t h a n 1-regular p a r t i t i o n o f A
PROPOSITION 2.1. L e t d e f i n e d on t h e s e t s
F1 Al
A
and @ i s t h e c a n o n i c a l mapping a s s o c i a t e d we can i d e n t i f y @(F) w i t h F
.
, F2
be F-squares o f t y p e (n,x,)
and
A2
; let
o1
and (n,h2) r e s p e c t i v e l y ,
be t h e c a n o n i c a l mapping a s s o c i a t e d
w i t h an h l - r e g u l a r p a r t i t i o n dl = I X1 ,X2,,,.,Xrl o f A1 and l e t o2 be c a n o n i c a l mapping a s s o c i a t e d w i t h an h 2 - r e g u l a r p a r t i t i o n d2= { Y1 ,Y2,..., of
A2 ; i f
F1
1F2
then
o,(F1)
1a2(F2) .
constitute a partition
element
(a,b)cXi
F2 t h e p a i r ol(F1) with
x Y.
J
hlh2
yS}
...,
(i=1,2, r ; j=1,2, Xi x V j A1 x A2 ; f u r t h e r , s i n c e each times i n t h e s u p e r i m p o s i t i o n o f F1 w i t h
PROOF. L e t us observe f i r s t o f a l l t h a t t h e s e t s
...,s )
the
-regular o f
appears ~~h~ x Isappears i 1 x 2 hlh2 t i m e s i n t h e s u p e r i m p o s i t i o n o f and t h a t proves t h e a s s e r t i o n .
( i y j ) 61,
e2(F2)
PROPOSITION 2.2. Given an o r t h o g o n a l system .F o f F-squares, i f one r e p l a c e s one p a r t i c u l a r square o f 9 by a s e t o f descendants which a r e p a i r w i s e o r t h o g o n a l , one obtains a n o r t h o g o n a l system again. PROOF. I t f o l l o w s i m m e d i a t e l y f r o m P r o p o s i t i o n 2.1. and f r o m t h e o b s e r v a t i o n p r e c e d i n g it . PROPOSITION 2.3. L e t F be an F-square o f t y p e (n,x) d e f i n e d on a s e t A ; l e t Q be t h e c a n o n i c a l mapping a s s o c i a t e d w i t h an h - r e g u l a r p a r t i t i o n d ={ X1,X2,
...,X r }
of
A
and l e t
B={Yl,Y2,
partition
(I) holds, t h e n
lxin
YJ
be t h e c a n o n i c a l mapping a s s o c i a t e d w i t h a
...,Ys yj
I
1 of A
? -- r-
=
k-regular
; then i f the c o n d i t i o n
(i=1,2
,...,r
; j=1,2
,...,s )
o(F) I Y ( F ) and c o n v e r s e l y .
PROOF. Superimposing
@ ( F ) and
times i n each row and hence
Y(F) each p a i r
nAlXi
n Y J. 1
( i 7 j ) e 1, x
Is appears A I X i n V . 1
times altogether; i t follows t h a t
J
Sets of Painvise Orthogonal F-Squares
Xi n Y i s the j and t h a t proves t h e a s s e r t i o n .
i f and o n l y i f t h e c a r d i n a l i t y o f t h e s e t s
Y(F)
Q(F) f o r each
287
.,r ; j=1,2,.
i=l,Z,..
..,s
same
Two mappings Q and 'Y s a t i s f y i n g t h e hypotheses o f P r o p o s i t i o n 2.3. t o g e t h e r w i t h t h e c o n d i t i o n ( I ) w i l l be c a l l e d o r t h o g o n a l and denoted b r i e f l y b y Q _L Y
I
PROPOSITION 2.4. L e t (G,t) be an a b e l i a n group; l e t H, K be sobgroups o f G and Q , Y t h e c a n o n i c a l mappings o f G o n t o t h e q u o t i e n t groups G/H ang G/K respectively. I f (11) then
Q
H
t
K
IXty : X E H
, y6K
G 1
=
1Y .
PROOF. S i n c e H n K i s a subgroup o f G , i t s u f f i c i e s t o p r o v e t h a t f o r each X E G / H and f o r each Y a G / K t h e c o n d i t i o n X n Y E G/H.nK h o l d s . I n f a c t i f X = a t H and Y = b t K , t h e n i t f o l l o w s f r o m ( 1 1 ) t h a t X = y t H f o r some element y c K and Y = x t K f o r some element x e H I f Z E X n Y t h e n we have
.
y
2
x' = x
t
t
y'
with X'
-
= (X t
y'
-
x = y'
Y E
.
HflK
Hence
z
-y
t
y ) E (X
y)
t
HfIK
t
and t h a t means X A Y c_(x t y ) t
(x
S i m i l a r l y one shows t h a t PROPOSITION 2.5. d e f i n e d on a s e t
t
y)
t
HAKSXnY
For each p r i m e power
A
o f cardinality
.
HllK
q m=qk
and t h a t proves t h e a s s e r t i o n .
and f o r each F-square
, there
F
e x i s t s r = (qk
o f t y p e (n,A)
-
l)/(q
-
1)
I q' PROOF. L e t us c o n s i d e r a k-dimensional v e c t o r space V o v e r GF(q); f o r any two d i s t i n c t ( k - 1 ) - d i m e n s i o n a l v e c t o r subspaces W1 , W2 o f V we have W1 @ W2 = V.
p a i r w i s e o r t h o g o n a l descendants o f F of t y p e
(n,Aqk-l)
d e f i n e d on t h e s e t
-
Since t h e r e a r e r = (qk l ) / ( q - 1 ) d i s t i n c t ( k - 1 ) - d i m e n s i o n a l v e c t o r subspaces o f V , i t f o l l o w s f r o m t h e p r e v i o u s p r o p o s i t i o n t h a t F admits r p a i r w i s e k-1 o r t h o g o n a l descendants o f t y p e (n,Aq ). PROPOSITION 2.6.
Let 9
be a complete system o f
t
F-squares o f o r d e r
one o f t h e squares of t h e system i s d e f i n e d o v e r a c a r d i n a l i t y prime power q , t h e n t h e r e e x i s t s a complete system o f F-squares o f o r d e r n , PROOF, An immediate consequence o f P r o p o s i t i o n 2.2.
m = qk
s = t - 1
t
n ; if for
a
k
(q -l)/(q-1)
and 2.5.
The P r o p o s i t i o n 2.6. p e r m i t s , i n a s i m p l e way, t o c o n s t r u c t complete systems e i t h e r o f known t y p e o r w i t h a v a r i a b l e number o f symbols. F o r i s t a n c e we can o b t a i n complete systems o f b o t h t y p e s by r e p l a c i n g one o r more l a t i n squares, w r i t t e n i n t h e f i r s t column o f t h e f o l l o w i n g t a b l e , w i t h t h e r e s p e c t i v e descendant w r i t t e n beside each o f them.
P. Lancellotti und C. Pellegrino
288
3
-
0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0
0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0
0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2
0 0 1 1
1 1 0 0
1 1 0 0
0 0 1 1
0 1 0 1
0 1 0 1
1 0 1 0
1 0 1 0
0 1 1 0
1 0 0 1
0 1 1 0
1 0 0 1
0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1
0 0 1 1
1 1 0 0
0 0 1 1
1 1 0 0
0 1 0 1
1 0 1 0
1 0 1 0
0 1 0 1
0 1 1 0
0 1 1 0
1 0 0 1
1 0 0 1
EXTENSION OF THE MACNEISH THEOREM
MacNeish i n 1922 proved the f o l l o w i n g theorem THEOREM 3.1.
(cf. [ 4 ] ):
n be el e2 pmem then there e x i s t s a s e t o f min(pl ,p2 , n = p p2 pairwise orthogonal l a t i n squares o f order n
el e2
I f we l e t the prime decomposition o f a number
...
.
...
e
,p,
3.P.Mandeli and W.T.Federer i n 1983 ( c f . [ 5 ] ) gave a method f o r constructing orthogonal systems o f F-squares o f composite order n w i t h a v a r i a b l e number o f symbols, using a technique which i s an extension o f the MacNeish theorem f o r l a t i n e el e2 then the system consists o f the F-squares squares. If n = p1 p2 p, defined as follows:
...
c
... c
c
...
LJ m '
j = 1, 2,
... B
LJ
j = n 1' n1tl,
On1n2.. n.mm-l
B LAitl
0
On1n2., n.mm-l
c
Lil 8
LA 2
0 0 "1
LJ
we have denoted by
"m
... c
j = n
LJ"m
...,n2-1
n.+l,...,n i' i
j = nmm-lynmm-,tly
LJ "m
Yi =
nl-1
1 Lni
2 Lni
, ...
it1-l
...,nm-1
;
n.-1 L
'
"i
a complete system o f l a t i n
Sets of Pairwise Orthogonal F-Squares
squares o f o r d e r
ei
ni
:= pi
0
and by
, by
On
289
t h e square m a t r i x o f o r d e r
n
with a l l
@
t h e d i r e c t sum of m a t r i c e s . By P r o p o s i t i o n 2.6. e. 1 i s p o s s i b l e t o r e p l a c e each square o f o r d e r pi w i t h a system o f t
e n t r i e s equal t o
F-squares. i=2,3,
...,m
If
s
denotes t h e g r e a t e s t o f t h e number
si=(pi
it
e. el '-p, )(
we can t h e n s t a t e t h e f o l l o w i n g Theorem
THEOREM 3.2.
I f t h e p r i m e decomposition o f a number n i s q i v e n by e el e2 em el e2 ( p1 < p2 < < p, rn ) t h e n t h e r e e x i s t s a system n = p1 P2 * * . P,
...
t = s + p 1 F-squares of o r d e r n w i t h a v a r i a b l e number o f symbols; 1 such system c o n t a i n s t h e system o f p a i r w i s e o r t h o g o n a l l a t i n squares c o n s t r u c t e d by MacNeish.
of
EXAMPLE. If n = 2 3 - 3 3 - 3 1 we c o n s t r u c t a system o f
76
F-squares which c o n t a i n s :
a ) t h e system o f 7 p a i r w i s e o r t h o g o n a l l a t i n squares c o n s t r u c t e d by MacNeish; 3 2 b ) 23 F-squares o f t y p e (n,2 . 3 ) ; 3 2 c ) 46 F-squares o f t y p e (n,2 - 3 - 3 1 ) . ACKNOWLEDGEMENTS. Work done w i t h i n t h e sphere o f GNSAGA o f CNR, p a r t i a l l y supported by M P I . REFERENCES J.P.Mandeli, F.C.H.Lee, W.T.Federer, On t h e c o n s t r u c t i o n o f o r t h o g o n a l F-squares of o r d e r n f r o m an o r t h o g o n a l a r r a y (n,k,s,2) and an OL(s,t) s e t ; J . S t a t i s t . P l a n . I n f e r e n c e 5 (1981) 267-272. A.Hedayat, D.Raghavarao, E.Seiden, F u r t h e r c o n t r i b u t i o n s t o t h e t h e o r y o f F-squares d e s i g n ; Ann. S t a t i s t . 3 (1975) 712-716
.
W.T.Federer, On t h e e x i s t e n c e and c o n s t r u c t i o n o f a complete s e t o f o r t h o g o n a l F ( 4 t ; 2 t , Z t ) - s q u a r e s d e s i g n ; A n n . S t a t i s t . 3 (1977) 561-564 H.F.MacNeish,
E u l e r ' s squares ; Ann. Math. 23 (1922)
221-227
.
.
J.P.Mandeli, W.T.Federer, An e x t e n s i o n o f MacNeish's Theorem t o t h e c o n s t r u c t i o n o f s e t s o f p a i r w i s e o r t h o g o n a l F-squares o f composite o r d e r ; U t i l . Math, 24 (1983) 87-96
.
This Page Intentionally Left Blank
Annals of Discrete Mathematics 30 (1986) 291 -296
0 Elsevier Science Publishers B.V. (North-Holland)
29 1
RIGHT S-n-PARTITIONS OF A GROUP AND REPRESENTATION OF GEOMETRICAL SPACES OF TYPE "n-STEINER" Domenico Lenzi Dipartimrnto di Matematica Universith degli Studi LECCE (Italy)
SUMMARY. In [9] we gave a generalization of thr notions of subgroup and of S-partition of a group, in order to obtain a description of all the linear spaces having a transitive group of collineations, by means of a method that generalizes some methods used in particular cases l i k e transitivr projective planes, transitive linear spaces with a parallelism (in the sense of AndrB) and others (see bibl.iography) . after some considerations on gromrtrical spaces, rxtrnd our method, by means of the concept of right S-n-partition of a group ( s e e def.6), in order t o obtain a description of all geometrical spaces (E,Q), where &jcz,y(E), of type "n-Steiner" (i.e.: if P1 , . . . , Pn+l arr n arbitraty and pairwisr different elrmrnts of E , then there is a unique Be%? such that {P1,...,Pn+l}c B) having a transitive group of automorphisms. Hrre,
IVO
N.1.PRELIMINARIES AND RECALLS. Let G be a group and S a subgroup of G . Wr shall say that a subset Q of q ( G ) is a partial right S-covering of G if the following properties hold:
REMARK 1. Onr can immediately verify that: (a) S a c A , for every AeB. lndeed S c Aa-l,by (2) and(1). (b) Let I:=AzBA. T h e n , by ( 2 ) , A1-l 2 I for every AeB and i e I ; thus A 2 I 1 and hence I is a submonoid of G . This ensurrs that t h e set of t h e subgroups of G included in I has a maximum
292
D.Lenzi element (c)
H 1= {ieG: Ii=I }
= {ieG: iI=I} = { ieG;VAeQ ,iA=A}.
If we set &G:={Ag:AeQ , geG1, then the group of the right translations determined by the elements of G is a group of automorphisms of the geometrical space ( G , 0- G ) . Moreover Q coincides with the such that leB; set of the elements B E & G as a consequence, for xeG and B e Q G , xeB if and only if B x - l e 8 .
(d) For every A , A ' e Q , let us set AiA' when A'=Aa-', where a is a suitable element of A. In such a manner we define an equivalence relation on & . Now. for an arbitrary right S-covering & o f G , let: E:=ISx:xeC} (the set of the right cosets of S in G ) ; < B > : ={Sx:Sx (for Be(tG) and W : = { < B > : B e Q G I .
B}
If we set (Sx)*y=S(xy) (for every x,yeC). then G becomes a transitive generalized automorphism group of the geometrical space (E,g)(i.e.: the function that associates to every geG the permutation 8 acting on E like g is an homomorphism from G into the automorphism group of ( E , O ) ) . Conversely. every geometrical space (E' a')having a transitive generalized automorphism group G can be obtained (but for an isomorphism) in the previous manner. Let indeed P be a fixed element of E' and S:= {geG:Pg=P1 (the stabilizer of P in C); if we associate to every Q=PgeE' the right coset Sg. then we obtain a bijective function f from E' onto the set E * of the right cosets of S in G ; as a consequence we can construct a geomrtrical space (E*, a * ) (by setting g*:=W'f): furthermore G becomes in a natural way (by setting (Sx)*y:=(Sx)f-'yf=S(xy)) a transitive generalized automorphism group of (E*, a * ) ,Now let us B; : = s x y B ~ (for S ~ every B*e W*) and : = { B* :leBL} U It is easy to verify that Q is a partial right S-covering of G and (E*,B*) can be obtained from Q. in the previous manner.
.
If ( E . 9 )
is a geometrical space let u s set, for PeE. Wp=IBeg:PeBl B(the closure of P in W ) , Then (E,g) is said to be
and = a To space when, for every X,YeE, x=y implies that X = Y ; moreover, ( E . B ) is said to be a T1 space when. f o r every XeE,IX(=l. REMARK 2. Obviously, if ( E , B ) has a transitive generalized automorphism group and P is a fixed element of E , then (E,g)
293
Right S-n-Partitions of a Group
is a To space if and only if, for every X e E , X = P ; moreover, (E,.B) is a TI space if and only if
x=P P =
{
implies that PI.
Now let us fix a subgroup S and a right S-covering The following propositions hold. PROPOSITION 3 . For every geG, A70.(Ag)=Apo-A ( s e e (b) in remark 1).
(Z
of G.
if and only if geHl
PROOF. T h e assert is obvious, since ,4za(Ag)=(A2fiA)g=
Ig. Q.E.D.
PROPOSITION 4. Let (E,.%?) b e the geometrical space associated to Q with respect to S ; then: n A. i) ( E L B ) is a TI space if and only if S =A€&
ii) ( E 3 ) is a To space if and only if S=H1 (see (b) remark 1).
in
PROOF. i) It is obvious. ii) For every e 3 , S g e < B > if and only if geB; then the closure of Sg in B is the stit of the right cosets o f S included in ge'&B B= A2m,(Ag). As a consequence, is equal to the closure of S in if and only if (Ag) = Apa A ; whence the thesis by proposition 3 and remark 2.
Q.E.D. In [9] ( s e e thror. 9 ) we proved that a group G is a transitive generalized group of automorphism (collineation) of a linear space if and only if it admits a right generalized S-partition. We can say that a subset of 9 ( G ) is a right generalized S-partition of G if it is a partial right S-covering of G 'and the following properties hold: (3) AYaA = G ; (4) VA1,A2eQ: (5)
Al#A2
a
AlnA2
= S;
wa.
By (1),(2) and (4) it is easy to verify that, for every element A of a right generalized S-partition 0 of G , the following property holds (cfr. 191. def.2):
(6) S
c
A and
( V x , y e A : A ~ - ~ # A y -= l Ax-l n Ay-l=S).
Wr observe that the foregoing conditions can be reformuled, by virtue of the following PROPOSITION 5 .
Let
Q
c
9 ( G )
and
I:=
Aga
A ; furthermore let
D.Lenzi
294
property (2) hold, and:
= A1nA2
A1 # A 2
( 4 ' ) VA1,A2eC2:
= I.
Then I i s a s u b g r o u p o f G. can suppose
We
.
of Q
101 #
1. Now l e t A1.A2 different elements -1 -1 -1 -1 T h e n , f o r e v e r y i , j e I , i j eAlj nA2j But A , j - ' # A 2 J ,
PROOF.
.
h t ~ n c t( ~b y ( 2 ) and ( 4 ' ) )
A1j
N.2.
THE
THE
OF
CASE
-1
nAZj-'=I, therefore i j - l e I .
GEOMETRICAL
OF
SPACES
Q.E.D.
TYPE
"n-STEINER".
Let u s g i v e t h e f o l l o w i n g
DEFINITION
6.
shall
We
say
a
that
fl+ o f
subset
thr
power
? ( G ) o f
-
( 7 ) Vgl , . . . ,g n e G ] A € & : { g l ( 8 ) VA1,A2e& : A1 # A2
, . . . ,9 , ) s
;1
set
pcirtial
A.
A1 n A 2
is
tht.
of m 5 n r i g h t c o s e t s of S i n G (whrre m
union
is drpen-
d i n g o n A1 a n d A 2 ) .
I t is easy t o v e r i f y t h a t i f ( E ' , B ' ) i s a geometrical space o f t y p e " n - S t r i n e r " ( s e e summary) h a v i n g a t r a n s i t i v e g e n e r a l i z r d automorphism group G , t h e n t h e set I'lc P ( C ) f r o m w h i c h ( E ' , 2 8 ' ) c a n b r o b t a i n e d (*I i s a r i g h t S - n - p a r t i t i o n of G . Convrrsrly,
('I b e
let
a
right
S-n-partition
This
of
G;
then
the
i s of t y p e " n - S t r i n e r " .
associated gromrtrical space (E,%)(sre N.l)
an immediate consequence of t h e f o l l o w i n g
IS
PROPOSITION different
7.
If
right
Sh l , . . . , S h n t l
are
S in G,
c o s e t s of
n
then
arbitrary there
and
pairwise
is a unique s u b s r t n
B of
G of
w i t h AeQ
t y p e Ag,
and geG,
PKOOF. By ( 7 ) a n d ( l ) , t h e r e i s AeQ s u c h c A,
hence Ihl
, . . . ,1
~
~ , t h u~ s
lil S h l c
such t h a t -1
..
B.
-1
t h a t { hlhn+l.. ,hnhntl,l)c n+l ~U S h l 1 4 Ahntl ~ (since
SA=A). On
the
other
gl,g2eG) (see
the
hands, i f n+l then S l!lShlh-:tl second
part
Algl n A2g22Y#
4. Alglh,iln of
(c)
in
Shl
(with
A2g2h,:l.
remark
1)
Al,A2e@
As a c o n s e q u e n c e -1 -1 Alglhn+l=AZg2hntl
b y v i r t u e o f (8), a n d h r n c e A1g1=A2g2.
*
( ) Cut f o r a n isomorphism;
srr N . l .
and
Q.E.D.
295
Right S-ri-Partitionsof a Group
REMARK
8.
Wr
obsrrvr
that
is a right
if
-
t h e n ( b y ( 8 ) and (2))
Ax-' m < n right cosets i s d e p e n d i n g on A ) .
(9)
S-n-partition
of
G,
f o r e v e r y AeQ t h e f o l l o w i n g p r o p e r t y h o l d s :
Vx,yeA:A~-~#Ay-l
n Ay-I
of
of
the
is
in
S
G
iinion
(whrrr
m
s h a l l s a y t h a t a s u b s r t A of C i s a r i g h t S - n - b l o c k o f G i f S c A and p r o p e r t y ( 9 ) h o l d s ( * * ) ; m o r e o v e r i f A i s a r i g h t S - n - b l o c k o f G b u t n o t a r i g h t S - ( n - 1 ) - b l o c k , we s h a l l s a y t h a t A is a proper r i g h t S-n-block of G.
W r
O b v i o u s l y , e v e r y r i g h t S - o - b l o c k i s a subgroup of G . PROPOSITION 9 . A n e c e s s a r y ( a n d t r i v i a l l y s u f f i c i e n t ) c o n d i t i o n f o r a s u b s e t A of G t o b r a r i g h t S - n - b l o c k o f G i s t h a t : (10) S
c
A,
and (11)
Vgl.g2
e
G
union of m
5
# Ag2
Agl
:
-
Agl n Ag2
is
the
n r i g h t c o s e t s of S i n G .
PROOF. I t i s e n o u g h t o p r o v e t h a t t h e c o n d i t i o n ( 1 1 ) i s n e c e s s a r y . H r n c r l r t A b r a r i g h t S - n - b l o c k o f G , l e t Agl#Ag2 ( w h e r e
gl.g2eG)
and l e t t e A g l g i l n A .
Then A g , g , ' t - l # A t - l
and t g 2 g i 1
-'-'
e A n Ag2g;t C o n s e q u e n t l y , by ( 9 1 , Aglg2 t n At-' (and a l s o Agl n AgZ) i s t h e u n i o n of m 5 n r i g h t c o s e t s o f G. We
hrncr S in
Q.E.D.
conclude
by
observing
that
every
d r t r r m i n r s i n a n a t u r a l manner I n f a c t one c a n c o n s i d e r t h e set =
e
{ A1
: A1
e b(G)
=
Aa-',
a
with
right
S-n-block
A
of
G
r i g h t S - n - p a r t i t i o n of G . 0. : = Q1 1 . ~ Q 2 , w h e r e f f l =
aeA}
and
C2
is
the
class
of t h r s u b s e t A 2 o f G s u c h t h a t :
1)
s
Az;
j j ) A 2 i s t h r u n i o n of n + l p a i r w i s e
d i f f e r e n t r i g h t cosrts
of S i n G ; j j j ) VA1e
Consrqurntly, (**) In
for
I(il
rvrry
:A2
L
group
A1. C
and
for
rvrry
subgroup S of
G,
191 and 1101 w r c a l l e d r i g h t S - b l o c k s t h e r i g h t S - 1 - b l o c k s ( c f r . t h r p r r v i o u s p r o p e r t y ( 6 ) ) and p r o v e d s e v e r a l a l g r b r a i c a l and g r o m r t r i c a l p r o p r r t i r s .
D.Lerizi
296
wr
can have several (trivial) geometrical spaces of typr n-Strinrr, since if m 5 n+l then the union A of m pairwisr different right cosrts of S in G such that S 4 A is a right S-n-block of G . B I B L I OG RA PHY
1.11
..
Andre' J., Ubrr Parallrlstrukturrn , Tril I , Tril 1 1 , 85-102,155-163,240-256, Tril 111, Tril IV, Math. Z.E(lY61). 311-333. [2] Biliotti.M., S-spazi ed 0-partizioni. Boll. U.M.I.(5) 14-A(1977), 333-342. [3] m l i o t t i , M . , Sullr strutturr di traslazionr, Boll.U.M.1. (5) G-A(1978), 667,677. 1_4] Biliotti, M., Strutturr di Andre rd S-spazi con traslazioni, Grom. Drdicata, lo (1981), 113,128. 151 Biliotti, M., Strutturr di Andre rd S-spazi con traslazioni 1 1 , Ann. di Mat. pura ed appl., (IV), Vol. CXXXV.(1983), 151-172. 1-61 Biliotti, M., Hrrzrr A., Zur Gromrtrir drr Translationsstrukturrn mit rigrntlichrn Dilatationen, Abh. Math.Sem.Hamburg 53 (1983). 1-27. 1:7] Karzrl, H., Bericht uber projrktive Inzidrnzgruppen, Jbrr. Drutsch.Math. Vrrein. E(1964) 58-92. [ S J Lingenberg,R.. Uebrr Gruppen projectivrr Kollinrationrn, wrlchr rine prrsprktive Dualitat invariant lassen, Archiv. der Math. E(lY62) 385-400. 191 Lrnzi, D., Rrprrsrntation of a linear space with a transitive group of coll inrat ions by a general izrd S-part it ion of a group, Atti Convrgno "Grom.combin." La Mrndola-Italy (1982), 471-482. 1,lOJLrnzi, D . , On a charactrrization of finitr projrctive planes having a transitive group of collinrations, to apprar. llllScarsrllj, A., Sullr S-partizioni rrgolari di un gruppo finito, Rrnd. Acc.Naz.Lincri, LXII (1977). 300-304. 11121 Zappa,G., Sui piani grafici finiti transitivi e quasi transitiv i , Ricrrchr di Matematica,II (lY53), 274-287. 1-13.1Zappa,G., Sugli spazi grnrrali quasi di traslazionr, Le Matematichr, 19 (1Y64), 127-143. 11141 Zappa, G.. Sulle S-partizioni di un gruppo finito, Ann.di Mat.2, (1966). 1-24. 1151Zappa, C . , Partizioni ed S-partizioni dri gruppi finiti, Symposia Math. I(196Y), 8 5 - 9 4 .
Annals of Discrete Mathematics 30 (1986) 297-302 0 Elsevier Science Publisliers B.V. (North-Holland)
297
ON BLOCK S H A R I N G S T E I N E R QUADRUPLE SYSTEMS Giovanni LO FAR0 ("1 Dipartimento di Matematica dell'Universitl, Via C. Battisti 90, 98100 MESSINA, Italy
Abstract , We detarmine, f o r a l l u :4 or 8 (mod. 121 , the s e t of a l l those numbers k f o r which there exist two S t e i n e r quadruple systems of order u on the same s e t t h a t share e x a c t l y k bZocks.
Introduction. A Steiner quadruple system
set and
(I
(SQS)
(Q,qJ
is a collection of four element subsets of
that every three element subset of The number (mod. 61
is a pair
IQI = v
where
Q
Q
is a finite
(called blocks) s u c h
Q belongs to exactly one block of q
is called the order o f the SQS((Q,q!
is an obvious necessary existence condition for an
and
.
u E 2 or
4
SQS of order u
( S Q S l v ) ) . On the other hand, in 1960 Hanani proved 181 that this condition is also
sufficient. Therefore in saying that a certain property concerning SQS(v) true for all If
iQ,ql
u
it is understood that u - 2 or is an S Q S i u )
A quadruple system
and
then
141 = 7,
4
(mod. 6)
=uiv-l)(U-2)/24
is
.
.
(Q,qj has a proper subsystem if there exist sets R C Q
rcu such that ( R , r )
A . Hartman 191 proved that for every
proper subsystem of order
Irl < 141
is an SQS with
8
vL16
.
there exists an SQSlV)
with a
.
Earlier results on subsystems of
SQSs
can be found in 131.
In their excellent survey of Steiner quadruple systems, C . C . Lindner and A. Rosa 1111 rise a series of questions. One of them is: "For a given u
k2qv
is it possible to construct a pair of
SQS(ujs
having exactly
,
for which
k blocks
in common?". Denote by I ~ v=)IO, I, 2,.
J(v) ={k :
j
SQSSIV) (Q,qll, (Q,q2)
. .,qv-14,qu-12,qv-8,qu}
, v8'
.
such that
1q1nq21 = k ) ;
G. Lo Far0
298
So the author's best knowledge, the only results concerning this problem are: ;J f l O ) = { 0 , 2 , 4 , 6 , 8 , 1 2 , 1 4 , 3 0 1 ;
(i) J ( 4 ) = I ; J ( 8 ) = { 0 , 2 , 6 , 1 4 }
.., 77,?9,83}
J ( 1 4 ) - 3 1 ( 1 4 ) - (48,50,52,57,58,60,62,63,. {q
-8=83;q14-12=79;q14-14=77 14
;
-15 = 7 6 I n J ( 1 4 1
"14
=0
(ii) J ( u ) E I ( u ) , for all 028 (iii) J ( V ~= ~ ( u , i for all
u
=
n+l n ~ ; 5 - 2 ;7 . 2 n ,
n22
.
The aim of this paper is the investigation of the block intersection problem for SQSs of order 2u
obtained by doubling suitable systems of order
. In
2,
.
particular it is obtained that J l Z v ) = 1 ( 2 u l
Although he was not able to prove it yet, the author feels that the following conjecture makes sense.
Conjecture:
J(U)
=I(vl
, for
all
.
v216
.
2. Prel i minaries
In this section we describe two constructions for quadruple systems o r order 2u
which are the main tool used in what follows. C o n s t r u c t i o n A (well known e.g. see 1111).
(X,al
Let
..., Fu-1 3
and
tY,b)
and
G = I G 7, G
be any two SQSS(vl with X n Y = B
,..., Gv-l}
vertices) on
complete graph on permutation on the set
{7,2
be any two
x
( 2 ) If
,x E X 1 2
and only if
(x # x 1
)
2
{x ,x ) € F i 1
2
l X u Y l Ia,b,F,G,al
by
K
U
'I
F
2' ' ' * (the
be any
,..., u-21 . , as
S=XuY
follows:
a or b belongs to s ; yl,y2EY
and
,
(yl#y2)
{ y l , y Z ~ E G j and
It is a routine matter to check that iS,sl
I-factorizations of
F={F
X and Y respectively, and let
Define a collection s of blocks of (1) Any block belonging to
. Let
(S,sl
fx
then
a(<) =j
is an
.
3:
1'2
,y ,y )ES 7
2
if
S Q S f 2 u I , We will denotc
,
1 .
C o n s t r u c t i o n B (compare 13 )
iQ,ql
Let and let
cp
be an SQSlu)
, Q'
be a bijection from Q
a finite set such that onto
Qr
IQI
=I&'\ , QnQ'=@
with x'.=cp(x.) , for every z i E Q z
.
299
Block Sliaririg Steiner Quadruple Systems Obviously,
(Q',q')
is an
qlcq
we define a collection p(ql)
I (z ,xq,xi,x i ) ; (x ,t ,xL,x'); A
( 3 ) { i s .x ,x7,x'); 1 2 2 4
(x',x',x',x 2
-
,x ,x ',a- ' );
(x
1
-
4
J.(x',x',x'
3
1
3
);(x',x',x',x
3:
2
3
4
(2
,z ,x 1, x 1); (x z ,x ',x 'I;
6 2 3 I}cp(q ) 1 1
4
.XI);
2 , 4 1 3
'
(x',x',x',J:
4 1 1 2 3 if and only if
, for every x l , x 2 t Q , x l # x 2 (P,p(q
It is a routine matter to check that note
(P,p(ailI
iP,pI
.
I;
4
by
.
1
( ( Q u Q ' l , ( q , q l ) ) If q i = O
)I
.
. W e will de-
is an SQS(2vl
then we denote
(P,p(@II
by
w i t h blocks i n common.
3 . SQS(2vls
In this section we will determine J ( 2 v )
two
;
4
( 4 ) i x , . ~ ~ , x ' , x ' i t p ( )q 1 1 2 1
X={Z,2
Take
P = Q u Q ' as follows:
1
ix ,x9,,x ,x'I; ix ,x .x ,xLI; (x ,x .x
1 2 4 3 " 1 3 4 ' 2 (3: ,x , x 7 , x I E q-q1 ; 1
of blocks of
d 4 1 4 2 3 2 3 1 4 if and only if (x*,x2,x3,x41 '? I'
1 3 (s,u,x 4, . r1' , . r2' l ~ c p ( q 1 ) 1
(Q,q.1) where
(=cp(q I) belongs to p(qlI
q1 or 4;
(1) Any block belonging to
(2)
obtained from
.
q ' = V ( q ) ={vie/ : e c q l If
(the S@S(v)
SQS(v)
,..., v} , F
v an even positive integer, and
X where F = {FlJF2,.. .aFv-Il and
2-factorizations of
We will say that
.
G have k edges in common if and
and
In 1121 C.C. Lindner and W.D. Wallis gave a complete solution to the interse5 tion problem for
I-factorizations F
there exist two
....--v iv-1 I
kEi0,1,2,
Q={I,Z
Take F={F
F
I-factorizations. In particular, they showed that for any
,..., F v- 1 1
I-factorization of
be Q'
and
THEOREM 3 . 1 . Assme
Proof. Let
Q' = { 7 ' , 2 '
(called the
3
H C J(2v)
,..., 0 ' 1
~
2
{xi,x
.8If
) E F
h
be an
i
4 , then
Q n Q ' = 0 and let
F'={F'
F'2J...J~i-ll
. If
is a
F) where
.
X={O,1,2
SQSiv)
with
1-factorization derived from
. iQ,q)
.
1-factorization of
{ x i , x i } E F ' . if and only if
then
G with k edges in common for every
and
- n } - in-l,n-2,n-3,n-51
,..., v}
v>8
v (v-1) ,..., -=nl--in--Ian-2,n-3,n-5I 2
k€H
then there exist two
l-factoriza-
G.Lo Faro
300
e
If
is the i d e n t i t y permutation, it i s a routine matter t o see t h a t
[ Q U Q ' I[q,q',F,G',e]
and
((Qu&!'l,(q,@))
k
SQS(2v)s with e x a c t l y
a r e two
b l o c k s i n common. The statement f o l l o w s .
I t i s w e l l known 111 t h a t i f 32'2~
,
then
there
y
t i o n of
(a
a r e even p o s i t i v e i n t e g e r s and
1 - f a c t o r i z a t i o n of order
exists a
1 - f a c t o r i z a t i o n of o r d e r
y
1 and
2-factorization
c o n t a i n i n g a sub-
z
n
of o r d e r
is a
I-factoriza-
K ).
2
...,n+98,n+lOO,n+104,n+112) Proof. L e t
. If
v iv-1) n =, v> 16
THEOREM 3 . 2 . Let
(Q,q)
1 , then k E J ( 2 v )
be a n
SQS(v)
Let
= (T,z)
SQSS(16) ( ( , ? U R ' ) , (?,'$)) F={FIJFg,
...,Fv-2 1
SQS(8)
(R,rJ
as a subsystem.
((QuQ'), (q,0)) = ( P , p )
SQS(2vl
F"2,.. ,,F"}
be two
7
I-factorizations
.
Q and R r e s p e c t i v e l y w i t h F$GPi , f o r e v e r y i = l , 2 , , . . , 7
of
SQS(2vl
l y easy t o s e e t h a t t h e
SQS(l6)
Ir,r',F",F"',i]
IRuR'I
IQuQ'I
con-
.
F"={F"
and
..
.
containing an
It i s s t r a i g h t f o r w a r d t o s e e t h a t t h e tains the
k E {n-I,n-Z,n-3,n-5,n+l,n+Z,.
Iq,q',F,F',i]
=(P,s)
It i s equal-
contains the
.
=(T,t)
Obviously, we have:
= 28 k E J(16) =1(16)
Let
such t h a t If SQS(2vls
.
(i",al
SQS( 6 )
I t i s p o s s i b l e t o c o n s t r u c t two
(T,b)
and
lanbl = k ,
fp-zlua=p'
Is-tlUb=s'
and
with exactly
v (v-1 I
--28+k
, then (P,p'l
(P,s')
and
are two
b l o c k s i n common.
2
T h i s completes t h e proof of t h e theorem., LEMMA 3 . 3 . O _< h _
Proof. Let /q
2
is:
I =k .
(Q,qi
_
v Iv-1 ) (v-2) =qv 24
b e an
SQS(V)
. If
and t a k e
1 =q -81k-hl qlJq2
C l e a r l y , t h e number o f d i s t i n c t b l o c k s of
Z(k-hl +6(:c-h) =8(k-h) REMARK. L e t
q
1
and then
= 8 and q2Cq
,
then
2v
Ip(q11np(q
2
with
q14q2C.q
(P,p(ql))
)I
ZEJ12vl
=qgv-8(k-h)
and
.
, lql/ = h (P,p(qz))
.
)q21 = t L q v ; from Lemma 3 . 3 , i t f o l l o w s
,
30 1
Block Sharing Steiner Quadruple Systems that
q
2V
- 8 t ~ J ( d v l , f o r every
THEOREM 3.4.
Assume
. If
v,lG
v (v-1) + 98 2
I7 + 4-71
q -12--
e
(Q,qJ
(q
I
1
that
be a n
=t+12(
SQS(v.i
. By
I p i r ) n p ( q I 1 =y 1
2V
SQS(16) ((RuR'),(F,P)) ; t h e r e f o r e
.
(P,p(r)) qZV
The s t a t e m e n t f o l l o w s b y c h o o s i n g
THEOREM 3 . 5 . Assume
Proof.
v,lC
.
If
w i t h a sub-SQS(16)
SQS(2ul
a r e two
(P,p(q
and
))
1 J(2v)
-8(t-i?)-(140-k)€
lEI(2u)
and
contain the
, for
then
LFqZV-l4C SQS(u!
w i t h a sub-SQSS(2u)
. Thus,
q
,
with
SQS(2u)s such
kE~l17,118,...,124)C.1~16/
I t i s w e l l known 111 t h a t i f t h e r e e x i s t s a n
then t h e r e e x i s t s an
then
rCqlCq
and l e t
I
.
It i s straightforward that both
kEJ116) =Iil61
(R,ri
(P,p(q I !
and
,..., 7,
.
8
SQS(8)
(P,p(rll
-8(t-21
, then l € J ( 2 v )
h+2
-0
containing an
Lemma 3.3
2
qZv-7. = 8 t + h , h=O,1,2
Proof. We s t a r t n o t i c i n g t h a t i f
Let
.
,...,
i:E{O,1,2
a11
.. lEJ(2v) ,
w i t h a sub-SQS(u),
t h e r e e x i s t s an
SQS(2Vj
.
It i s easy t o check t h a t
-(140-h.)€ J ( 2 v )
21)
for a l l
h c J ( 1 6 ) =I(161
.
T h i s c o m p l e t e s t h e proof..
Combining t o g e t h e r ( i i i ) and Theorems 3 . 1 ,
3.2,
3.4,
3 . 5 we g e t o u r main
result: THEOREM 3.6.
J l v ) = I ( v ) for a l l
vE4
or
6 (mod 1 2 )
.
REFERENCES
111 A. CRUSE, On embedding incomplete s y m e t r i c l a t i n squares, J. Comb. T h e o r y S e r . A ( 1 9 7 4 ) , 19-22. 121 J. DOYEN and A . ROSA, An u l ' h t e d bibliography and surV?y of S t e i n e r systems, Annals of D i s c r e t e Math. 7 ( 1 9 8 0 ) , 317-349. 131 J. DOYEN a n d M. VANDENSAVEL, Non isomorphic SOC. Math. B e l g i q u e 3 3 (1971), 393-410.
S t e i n e r quadruple systems, B u l l .
141 M. GIONFRIDDO, On the block intersection problem f o r S t e i n e r quadruple stems, A r s C o m b i n a t o r i a 1 5 ( 1 9 8 3 ) , 301-314.
sy-
G. Lo Far0
302
L I N D N E R , Construction of S t e i n e r quadruple SySi%ms having a prescribed number o f blocks i n common, D i s c r e t e Math. 34 ( 1 9 8 1 ) ,
151 M. GIONFRIDDO and C.C. 31-42.
161 M. GIONFRIDDO and G. LO FARO, Cn pear.
Steincr
systems
171 M. GIONFRIDDO and M.C. MARINO, On S t e i n e r Systems U t i l i t a s Math., 25 ( 1 9 8 4 ) , 331-338.
Si.?,4,14!
S(3,4,20)
,
and
to
ap-
S(3,4,32),
181 H. H A N A N I , On quadrupie systems, Canad. J. Math. 1 2 ( 1 9 6 0 ) , 145-157.
19
I
Quadruple systems contuining AG/3,2)
A. HAR'I'EIAN,
, Discrete
Math.
,
39 (1982)
( 3 ) , 293-299. L I N D N E R , On the construction of non-isomorphic S t e i n e r quadrupZe stems, C o l l o q . Math. 29 ( 1 9 7 4 ) , 303-306.
1101 C . C .
1111 C . C . LINDNER and A. ROSA, S t e i n e r quadruple systems t h . 2 1 ( 1 9 7 8 ) , 147-181. 112
1
-
651-
n survey, D i s c r e t e Ma-
C . C . LINDNER and W.D. WALLIS, A note on one-factorizations having a p r e s c r i bed number o f edges i n common, Annals of D i s c r e t e Math. 1 2 ( 1 9 8 2 ) , 203-209.
1131 G. LO FARO, On t h e s e t J ( v ) for S t e i n e r qumdmpZc systems of order v=7-2" with n > 2 A r s Combinatoria, 1 7 ( 1 9 8 4 ) , 39-47.
,
1141 G. LO FARO, S t e i n e r yuadrupie systems having a prescribed nwnber o f quadrup l e s i n cononon, t o appear. 1151 G. LO FARO and L. PUCCIO, S u l l ' i n s i e m e Steiner, t o appear.
J(14)
d e i sistsmi d i quaterne di
("1 Lavoro e s e g u i t o n e l l ' a r n b i t o d e l GNSAGA e con finanziamento MPI ( 1 9 8 4 , 40%).
Annals of Discrete Mathematics 30 (1986) 303-310
0 Elsevier Science Puhlishers B.V (North-Holland)
303
ROOTS OF AFFINE POLYNOMIALS
Giampaolo M e n i c h e t t i (-) D i p a r t i m e n t o d i Matematica, U n i v e r s i t P d i Bologna, I t a l y
INTRODUCTION.
Let F = GF(q) be a G a l o i s f i e l d of o r d e r q = p h , where p i s a p r i m e ,
and l e t K = GF(qn) be an a l g e b r a i c e x t e n s i o n of a g i v e n d e g r e e n > l . An a f f i n e
pziynon;iaZ (of K[x]over F ) i s a polynomial of type (1)
P ( x ) = L(x) - b , b € K ,
with
...,un-1 }
I f a b a s i s {uo,ul,
n- 1 of K o v e r F i s f i x e d then we can p u t x = 5 x . u . .
i =O Hence, t h e d e t e r m i n a t i o n of ( e v e n t u a l ) r o o t s of t h e polynomial ( 1 ) i n K can be
1 1
reduced t o t h c d e t e r m i n a t i o n of s o l u t i o n s o f a l i n e a r s y s t e m of e q u a t i o n s i n i n d e t e r m i n a t e s xi and w i t h c o e f f i c i e n t s i n F ( c f . [ l l , Chap.11). This procedure i s , however, t e d i o u s a l s o i n t h e most simply c a s e s and does n o t d e c i s e "a p r i o r i " how many r o o t s i n K e x i s t . I n t h i s p a p e r , we prove t h a t the e q u a t i o n ( 1 ) h a s r o o t s i n K i f and o n l y i f the following system of l i n e a r equations
(3)
+...+
llYl
loyo
+
l:-lYO
+ l:yl
= b
+. . .+ 1 ~ - 2 y n - l = bq
..................... n- 1
1qn-ly0 + 1;
1 n-1Yn-1
y1 +.
.. +
I
.
,
.
n- 1
n-1
1;
yn-l = bq
has s o l u t i o n s . Moreover, i f ( 3 ) i s s o l v a b l e and i f r is t h e rank of t h e m a t r i c e s b e l o n g i n g t o ( 3 ) , then qn-'
g i v e s us t h e number of s o l u t i o n s of ( 1 ) i n K. Besides
t h i s , we show t h a t t h e r o o t s of ( 1 ) a r e e x p r e s s i b l e as f u n c t i o n s of c e r t a i n s o l u t i o n s of t h e l i n e a r s y s t e m ( 3 ) . I n p a r t i c u l a r , t h e o b t a i n e d r e s u l t s a r e u s e f u l a l s o i n t h e c a s e t h a t t h e c o e f f i c i e n t s of t h e polynomial ( 1 ) are n o t c o n s t a n t ( c f . f . e . [2] ).
(-) This r e s e a r c h was s u p p o r t e d i n p a r t by a g r a n t from t h e M.P.I.(40% f u n d s ) .
304
G.Menicketti 1. An n x n matrix of the type
... an-1
.
A( .a ,al ,. . ,an-
)=
is called autocirculant. Each row of A(ao,al,...,an-l) is obtained by the previous one
if we permute the elements under the cyclic permutation
apply the field automorphism a : K
-+
(0
1. ..n-1) and then
K , a I+ aq.
The sum and the product of autocirculant matrices are autocirculant matrices. In addition, if
A
is autocirculant, the transpose
it is
also autocirculant.
Let
T = and Aq(aO,al
...,0 )
&(O,l,O,
,...,an-1)
=
A(aq,aq, ...,a:-1). 0 1
It is easy to verify
T A- T-l , Aq= -
(4)
A has rank r, 1 5 r G n - 1 , i f and only if i t s (colwnns) are l i n e a r l y K-independent and i t s (r+l)-th row (column) is a K-linear cornbination o f t h e preceding POWS (coLwmzs). LEMMA 1. An autocirculant matrix
first r
FOWS
Proof. The transpose of an autocirculant matrix is itself autocirculant. Thus it is sufficient to prove the statement for the columns of A.
The assertion is an obvious consequence of the following observation, Let
A=
(%,,A1,...,$I-l).
~f
s-1 (5) --s A = E kiAi , kfK, i=O s-1 0 < s < n-1, then A' = C kqAq and therefore -s
i=o
1-1
s-1 s-1 1 k . A . = c k!A. ,k!E K. 1 kqii+l + kq s-liz0 l-li=o 1-1 1 i=O 2 3 n-s-1 and use previous If we raise both sides of ( 5 ) t o the powers q ,q ,...,q
s-1
s-2
&+I=. 1=0 1 kqAi+l
=
arguments, we see that the columns &+2, K-linear combination of
%, A1,...,s A .n
& + 3 , , , , , &-l
can be expressed as a
PROPOSITION 2 . I$& i s an autocirculant m a t r i x o f rank r then the homogeneous
Linear system (6)
-AY
=
0 ,y =
(Yo Yl
Y,-l)t
..,
t zl,,. z 0 0) w i t h zr # 0 . Furthermore, n-r and LL' t = 2. given A' = A(zo, zl,. . , z r' 0,. , O ) , w i h m e rank(&')= Proof. If one has A = (A+, . , 411) then Lemma 1 guaranties the
has s o l u t i o n s of the type 5
.
= (zo
.. 4,. .
n-1 existence of the elements a ! E K such that A -K
=
T a!A. holds. And, this proves the
i=o
1-1
Roots of Affine Polynomials
305
f i r s t p a r t of t h e a s s e r t i o n .
(s,A; ,..., A&). n- 1 By d e f i n i t i o n , one h a s % T-lzq, - ..., r-(n-1IzqLet Att=
-A'= 1
- and
therefore
= z
A= -l'
A?= 0
If we c o n s i d e r t h e q-th power of deduce
0=
=
TAAi.
Thus
and t a k e i n account a l s o ( 4 ) , w e
h i = 0.Analogously,
0,. , . ,A$-l=g,
we prove A A ' =
--2
and have f i n a l l y
hi,. . . , g-l)= Ah'
A($,
=
0.
A;,
We deduce, i n p a r t i c u l a r , t h a t e v e r y element Ai,, ..., -nA ' €Kn i s a 1 s o l u t i o n of t h e l i n e a r s y s t e m ( 6 ) and h e n c e , i t f o l l o w s r a n k ( A ' t ) , < n - r . To see t h e i n e q u a l i t y r a n k ( A ' ) > , n - r ,
w e remember t h a t t h e m a t r i x which a g r e e s
i n t h e f i r s t n-r rows and l a s t n-r columns w i t h
..
A'
is non-singular.0
LEMMA 3 . T4e elements w .€ K , i = 0,1,. ,s , are l i n e a r l y F-independent if und n-1 t n o n l y if the vectoras w . = (wi wq w! ) EK , i = 0,1,. ,s, are Zinearly
.. .
-1
..
K-independent . Proof. Let us examine t h e c o n d i t i o n S
1 k.w.
(7)
i =O
1-1
=
0,kiEK,
under t h e h y p o t h e s i s t h a t t h e e l e m e n t s wi a r e F-independent. I f w e suppose t h a t a t l e a s t one c o e f f i c i e n t k i , then w e can d e t e r m i n e k E K such t h a t h = kk 0
0'
f o r example ko, i s n o t z e r o ,
t r ( h o ) # 0 ( ' ) h o l d s . From ( 7 ) ,
we
obtain S
T: h.w. 1-1
= 0 , h . = kk
-
i=O
I
i'
s
j
R a i s i n g t h e l e f t s i d e o f t h i s e q u a t i o n t o t h e powers qJ we o b t a i n ? h: i =O
...,n-1.
j = 0,1,
particular
wi
=
0,
S
I f we add t h e s e n e x p r e s s i o n s , w e f i n d C ( t r ( h i ) ) w i = i =O
2;
in
S
Y ( t r ( h i ) ) w i = 0, t r ( h o ) # 0 , i=O i n contrast with the hypothesis.
It i s e v i d e n t how t h e second p a r t of t h e t h e s i s may be proved.! COROLLARY 4 . Y7ie n x n matrix
nm-singular
2
=
(%,El,... ,%-,),
if and onlg if { u o , ul,. . .
...
n-1
)t,iz li= ( u i :u uqi , u ~ - ~is} a b a s i s o f the vector F-space K.!
For any polynomial ( 2 ) , t h e s e t Z(L) = { x € K : L(x) =
01
is o b v i o u s l y a v e c t o r subspace of K . Moreover, i f Z(P) = { x E K : P ( x ) = 01
(8)
(l)
Z(P)
=
xo+ Z ( L ) , x0E Z ( P ) .
t r ( x ) = t r ( x ) = x + xq + F
...
n-1
+ xq
,v
XEK.
# d then
G. Menichetti
306
Given an a f f i n c polynomial ( l ) , l e t
A(P)
= G(L):
= A(lo,ll,...,ln-l).
If rank(A(L))
PROPOSITION 5.
...,w
Proof. Let {wo,wl,
r then d i n $ Z ( L )
=
=
n-r.
] b e a b a s i s of Z(L) and l e t V C K n be t h e s o l u t i o n
space of t h e homogeneous l i n e a r s y s t e m
A(L)JI-=
(9)
0,11. =
.. . yn-l)t.
(yo y1
From Lemma 3 , i t f o l l o w s t h a t the v e c t o r s w.= (w. wq -1
1
1
.,. w:
n-1
,...,s ,
)t,i=O,l
a r e l i n e a r l y K-independent and i t i s e a s i l y v e r i f i e d t h a t each of them i s a s o l u t i o n of ( 9 ) . Thus,
Let
(11)
<
di%Z(L)
(10)
A' be
di%V = n-r.
an a u t o c i r c u l a n t m a t r i x which s a t i s f i e s t h e c o n d i t i o n s
-
i \ ( L ) A f t = 0 , r a n k ( A ' ) = n-r
2 = (%,,ul, ...,-n-1 u )
( c f . P r o p . 2 ) and l e t
be an n x n non-singular m a t r i x ( c f .
Coroll. 4 ) . From ( l l ) , we deduce
A(L)(A'
t
g)
=
With t h e o b s e r v a t i o n
0,rank(&' t 2) = n-r. t h a t Attg = (I&,?; ,...,$I&), u! -1 i
can conclude t h a t u ! E Z ( L ) ,
O,l,
=
(lo),
( c f . a l s o Lemma 3 ) . From t h i s and immediately
...,n-1
.o
(u! u!
=
1
and d i % < u ; ) , u i
'... u!'
n-1 ) t , we
1
,...,u'n-1
> = n-r
t h e P r o p o s i t i o n 5 f o l l o w now
COROLLARY 6 . Suppot~e rank(A(L)) = r .
Tf
-z =
0 O...O)
zl...z
(zo
t
is a
s d l u i i o n of the Zineura system ( 9 ) f o r any choose of t h e basis I u o , u l , . , , , u
n-l
1
o f tlie vector F-space K, the eZements n-r
(12)
x. 1
= z
u + O i
29,
n-r
us
n-r+l n-r+l + zq uq + r-1 1
... +
n-1
n-1
u4
2;
,
i=O,l,
...,n-1,
f o m n s e t of generators of Z(L). Hence, oiie has n-r (12)'
Z(L) = { x = z k O
+ zqr
n-r
n-1
+
kq
... + zq1
n-1 : kEK}.
kq
Proof.
The C o r o l l a r y f o l l o w s from t h e proof o f t h e p r e v i o u s P r o p o s i t i o n i f n-r n-r+l n- 1 one o b s e r v e s t h a t A't= A(zo,O 0,z: .z:-~ zq ). 1 t PROPOSITION 7 . If = ( z o z l . . . z ~ - ~ E) K" is a sokction of the linear system
,....
,...,
0
z
(13)
A(L)y =
b, y
= ( y o y1
...
=
(b bq
... bq
n-1
then, for every v E K w i t h t r ( v ) # 0 , (14)
x = (z v 0 0
+
2 z:-lvq
+ zq vq n-2
2
+...+
n-1 n-1 zq vq )/tr(v) 1
It,
Roots of Affine Polynomials
307
is a root of the poZynomiaZ ( 1 ) . P r o o f . Let
A(?)
-At (5)=
=
A(zo,zl,,s.,zn-l).
(2, -'zq, T 2 z-q
Raising L ( L ) z =
b
2
Then
,..., -T - ( n - l ) z q -
n- 1
).
2
- = Lq o r A(L)(X-'L~)
t o t h e power q , we o b t a i n A q ( L ) z q =bq=(bq bq
Using ( 4 ) , we h a v e , t h e r e f o r e , -TA(L)L1zq
=
2.
...bq
n-1 b)t.
Iterating this,
we f i n d
Thus, i t f o l l o w s , t A(L)A ( 2 )
(b b
=
... b).
Now, t h e r i g h t m u l t i p l i c a t i o n o f t h i s e q u a t i o n by n-1 ( t r ( v ) ) b ,I1= (v' v'q., , v f q
A ( L )1'=
=
( v vq...
n-1 vq ) t gives
lt
COROLLARY 8. The poZyizorniaZ (1) hus r o o t s i ? i K ,if and onZy if rank(A(1,)) =
rank(A(L) Ib-)
=
r . If t h i s c ondition holds, one izus IZ(P)I
= qn-r.
Proof. I f ( 1 ) h a s a r o o t x E K t h e n r a i s i n g b o t h s i d e s of t h e e q u a l i t y 0
t o t h e powers q , q
2
,..., q n-1 , we
find
n- 1
... + 1:-2x: ..................... n- 1
n-1
Thus,
&=
xi +
xo+ 1;
:1 (xo
= bq,
+ '10 xq0 +
l:-l~o
X:
...
...
n-1
+ :1
n-1 n-1 xq = bq 0
n- 1 xq ) t is a s o l u t i o n of ( 1 3 ) . From h e r e and from Prop.7, 0
it
f o l l o w t h a t (1) h a s r o o t s i n K i f and o n l y i f ( 1 3 ) h a s s o l u t i o n s . Taking i n account (8), t h e l a s t p a r t o f t h e a s s e r t i o n f o l l o w s from Prop.5.u In p a r t i c u l a r , we find the following RESULT (Dickson 1 3 ) ) .
c r n d onz$
If d e t ( A -( L ) ) #
T k ma[) L : K
-t
K, x
+
L ( x ) is n p r m u t a t i o n on K f,f
0.
Moreover, we o b s e r v e t h a t i f d e t ( A ( L ) ) # 0 , t h e o n l y r o o t x E K of t h e 0 polynomial ( 1 ) can be determined u s i n g Cramer's r u l e , t h a t i s
x 0= d e t ( b, ($,
Al.... ,&-l)
4 ,...,$-l)/det(%, =
A19 .
-
*
sS-1)
3
A(L).
I n g e n e r a l , t h e a f f i n e s u b v a r i e t y of R c o n s i s t i n g o f t h e s o l u t i o n s of polynomial ( 1 ) is given by (8) w i t h xo and Z ( L ) e x p r e s s e d by ( 1 4 ) and ( 1 2 ) ' respectively
.
308
G.Meniclietti From C o r o l l a r y 8 , we deduce t h e f o l l o w i n g u s e f u l
OBSERVATION. A polynomiaz (1) W i t h d e g ( L ( x ) )
=
q d , 0 ,< d
corripZetcZy redueible in K if and on2y if r a n k ( L ( 1 ) j b )
=
<
n-1, is
rank(A(L)) = n-d.
Another consequence i s t h e f o l l o w i n g
PROPOSITION 9 . Tuo a f f i n e poZynomiaZs, (1) and P ' ( x )
=
L'(x)
-
b ' , have
common u>oots in K if and onZy ?'f t h e equalions of t h e Zinear sistems (13) and y= b ' m e compatible.
A(L') -
Proof. If x E K i s acommon r o o t of b o t h P(x) and P'(x) t h e n x
4
O
(xo :x
=
n-1
... x:
) t i s a s o l u t i o n f o r both l i n e a r systems i n t h e a s s e r t i o n .
Conversely, i f t h e e q u a t i o n s of b o t h systems a r e c o m p a t i b l e , we f i n d , by ( 1 4 ) , a common r o o t f o r t h e given polynomials.[ I t i s easy t o prove t h a t , when t h e c o n d i t i o n of t h e p r e v i o u s p r o p o s i t i o n i s
s a t i s f i e d , t h e s e t of common r o o t s f o r P(x) and P ' ( x ) i s an a f f i n e s u b v a r i e t y of K whose dimension i s n - r ' ,
(-Gi1:
,-;I
where
(-:
A(L)
r ' = rank
-
A(L)
=
)
b
-I - :. A(L')I b'
rank
--
Now we want t o use t h e p r e v i o u s r e s u l t s t o d i s c u s s t h e e q u a t i o n
m
xq
(15)
- x
=
b , b E K , 1 ,< m , < n-1
.
F i r s t we observe t h a t , given d = (n,m) and k = n / d , t h e i n t e g e r s i m + j ,
i
= O,l,
...,k-1,
j = O , l , . . .,d-1,
a r e p a i r w i s e incongruent modulo n.
I n t h i s c a s e , t h e l i n e a r s y s t e m (13) becomes
'+m Y2m+ j
- 'm+j
'( k-1 ) m+ j
-
= bq'
...................
(16)
'i
-
(k-2 )m+j (k-1 )m+ j
=
'+(k-2)m bqJ
=
bq
j + (k-1 ) m
,
j = 0.1,
and t h u s i t s e q u a t i o n s a r e compatible i f and o n l y i f
...,d-1, im j k-1 j+im k-1 C bq = ( C bq )' = 0. i=O
i=O
From t h i s , we deduce t h a t (15) has some r o o t s i n K i f and o n l y i f (17)
k-1 im C bq = t r F , ( b ) = 0,
i =O d where F' = GF(q )
(')
C_
GF(qn)
(2),
The i n t e g e r s h d , h = 0 , 1 , k-1
modulo m and t h e r e f o r e
I: bq i =O
... ,k-1, im
and i m , i = 0,1,
k-1 =
C bq h=O
hd
.
...,k-1,
a r e congruent
Roots of Affine Polynomials m
-
L(x) = xq
309
x implies obviously
d Z ( L ) = GF(q ) , d = ( n , m ) .
(18)
T h e r e f o r e , w e can d e t e r m i n e a r o o t x E K of (15) u s i n g P r o p . 7 and supposing t h a t C
(17) i s s a t i s f i e d . From (16), by s u c c e s s i v e s u b s t i t u t i o n s , we f i n d
i-1 yim+l
j
hm
C bq
= yj + (
, i
)q
1,2
=
,...,k-1,
...,d-1,
j = 0,1,
h=O and by (17) yim+j =
A. 1
k-1
j
hm
C bq
(
)'
h=i
, X.EK,
i = 0,1,
J
...,k-1,
j = O,l,...,d-l
Let u s c o n s i d e r t h e p a r t i c u l a r s o l u t i o n =
'im+j
k-1
-
j
hm
C bq
(
, i
)q
=
O,l,
...,k-1,
j
=
...,d-1.
X = 0, j = 0,1, j From ( 1 4 ) w e o b t a i n
obtained f o r
n-1
x tr(v) 0
h
h
k-ld-1
E 24 vq n-h
=
h=O d- 1
Hence, s e t t i n g v = wq
, we
=
i=O
' j=o
qn-(im+j)
n-(im+j)
"4
'im+j
have
k-1 d-1 n-(im+j) n-(im+j)+d-1 x t r ( w ) = C C z;m+j wq 0 i=O j=O where t r ( w ) = t r ( v ) # 0. I f we o b s e r v e t h a t n-(im+j) = -
zSm+j
k-1 n+(h-i)m k-i-1 rm Cbq = C bq , h=i r=O
t h e n , s u b s t i t u t i n g i n t o t h e p r e v i o u s e q u a l i t y , one h a s
x tr(w) 0
k-1 k-i-1 rm d-1 n-im+(d-1-j) Z C bq C wq i = O r=O j =O k-1 k-i-1 r m d-1 n-im+s = - C C bq C w q i = O r=O s =o k-1 k-i-1 rm d-1 s n-im = - C Z bq ( C w ' ) ~ i=O r=O s=o =
-
.
From h e r e , p u t t i n g d-1
a =
C
s W
~
s=o
and o b s e r v i n g
k-1 d-1 tr(w) =
c
i=o we deduce
I: wq j=O
im+j
im
k-1 =
c
i=O
a'
= trF,(a),
...,d-1,
0,1,
h=i
.
G.Menichetti
310 k-1 C i=O k = C h=1 k-1
xOtrFI(a) =
-
c
= -
k-i-1 rm n-im C bq aq r=O r m hm h-1 C b q aq
r=O h-1 ~
hm
rm b
q aq
.
h = l r=O T h e r e f o r e : The equation (15) has r o o t s i n K = GF(qn) i f and only i f b s a t i s f i e s
the condition ( 1 7 ) . If such condition i s s a t i s f i e d , the s e t of r o o t s i s the a f f i n e subvariety ( 8 ) in which Z ( L ) i s given by (18) and x
=--
k-1 h-1 rm hm C C b q a' trF,(a) h=l r=O
,
t r F l ( a ) # 0.
I f ( k , p ) = 1 ( p = c h a r K ) then t r F l ( l ) = k # 0 and t h e r e f o r e , we can s e t a = l . The p r e v i o u s r e s u l t a l l o w s u s t o determine t h e r o o t s of a second d e g r e e e q u a t i o n i n a f i e l d K of c h a r 2 . I n f a c t , f o r q = 2 , m = 1, w e f i n d t h e w e l l known c o n d i t i o n t r ( b ) = 0 i n o r d e r t h a t t h e e q u a t i o n X'
+ x
t
b = 0
h a s a r o o t in K = GF(2").
Moreover, from (18) and ( 1 9 ) , we deduce t h a t t h e r o o t s
of t h e above e q u a t i o n a r e
n-1 x
C
=--
h-1
C b
2r 2h a
and
xo+ 1 ,
t r ( a ) h=l r=O where a E K i s a f i x e d element w i t h t r ( a ) # 0.
REFERENCES
[ l ] Berlekamp, E . R . ,
AZgebraic coding theory (Mc Graw Book Company,New York,1968).
121 B i l i o t t i M. and M e n i c h e t t i G . , On a g e n e r a l i z a t i o n of Kantor's l i k e a b l e planes, Geom. D e d i c a t a , 1 7 (1985) 253-277.
[ 3 ] Dickson, L . E . ,
Linear Groups w i t h an e x p o s i t i o n o f t h e Galois fieZd theory
(Teubner, L e i p z i g . R e p r i n t Dover, New York, 1958).
Annals of Discrete Mathematics 30 (1986) 31 1-330 0 Elsevier Science Publishers B.V. (North-Holland)
O n the parameter
n(v,t
31 I
for Steiner t r i p l e systems ( " )
-13)
Salvatore Milici ("") Abstract. L e t D ( v , k l ([l], [ 8 ] ) b e t h e maximum number of S t e i n e r T r i p l e S y s t e m s of o r d e r v t h a t con b e c o n s t r u c t e d i n s u c h a way t h a t an3 t w o of t h e m h a v e e x a c t l y k b l o c k s i n common, t h e s e k bZocks b e i n g moreover i n each o f t h e STS(v), Let t v =vlv-11/6 I n t h i s p a p e r we prove t h a t D ( v , t v - 1 3 ) = 3 f o r everg ( a d m i s s i b l e ) v,1:
.
.
.
1 . Introduction a n d definitions. A PnrtiaZ T r i p l e System
a finite non-empty set and
(PTS)
(P,P) where
is a collection of
P
2-subset of
called blocks, such that any
P
is
P
3-subset of
,
P
is contained in at
.
P
most one block of
is a pair
Using graph theoretic terminology, we will say that an element
of
x of
P
P
has d e g r e e
if x
d(x) =h
. Clearly
belongs to exactly
. We will
d ( x ) =31PI X E P
of a
PTS
(P,P) the
. If i = I , . .. , s
are the elements of degree
h
,
i
for
,
where
then we will write Two balanced
PTSs
A set of
s
r
1
Ih I
i~
(P,PII if
(DMB)
in a block of
p
Pl
PTSs
+... =h
and
call the d e g r e e - s e t
.
DS = I d ( x ) , d ( y i , . . ]
n-uple
,
where
elements of i , we will write DS =
there are
+ r = IPI S
r
.
If
blocks
h
P
(DSl
..
x,y,.
having
r . = I , for some
i
,
i '
IP,P21
are said d i s j o i n t and m u t u a Z l g
= 0 and a 2-subset o f P is contained 1 2 if and only if it is contained in a block of p2 P n P
(P,P1),iP,P2i,.
. ., ( P , P s l
is said to be a set of
( A )
Lavoro eseguito nell'ambito del GNSAGA (CNR) e con contributo finanziario MPI (1983).
(*$<)
Dipartimento di Matematica dell'Universit5, Viale A . Doria, 6 9 5 1 2 5 - Catania.
*
S. Milici
312 s
if
DMB P T S s
i,jE{1,2,3
,..., s l
s e t of
DMB PTSs
s
Two
and
(P,Pi)
and
.
isomorphic if
A degree set
(P,P;I
i s associated w i t h every
DS
..
(P;P
such t h a t
(S,B)
PTS
IS1
=v B
c o n t a i n e d i n e x a c t l y one b l o c k o f
DS
a r e n o t isomor-
.
and e v e r y
. It
2-subset of
3 (mod 6 ) ( v
or
IBI = t
blocks i s
V
STS(v))
is
S
i s well-known t h a t a r . e c e s
s a r y and s u f f i c i e n t c o n d i t i o n f o r t h e e x i s t e n c e of an
u :I
..., PSl .
v ( o r more b r i e f l y a
4 S t e i n e r t r i p Z e s y s t e m of o r d e r
is a
(P;PI,Pz,
Pi,. . .,P ' I
,P 2 , , ,P s ) and ( P ; P '1, 1 p h i c , i t i s p o s s i b l e t h a t t h e y have t h e same However i f
.
.,PL) are 2 by t h e same isomor-
(P;P;,P',.
..,s .
i =1,2,.
a
(P;PI,P 2 J , . . , P )
and
i s isomorphic t o
IP,Pi)
phism, f o r e v e r y
. .,Psi
(P;Pl,P2,.
f o r every
DMB
. We d e n o t e by J
i # j
(s+l)-tuples
are
(P,P.)
STSIv)
is
a d m i s s i b l e ) and t h a t t h e number o f t h e
=v(v-l)/6 ,
We w i l l p u t
S
A(a,Ia,b,cll
=A(a)-{b,cl
with
u Pi .
{a,b,c} E
i=l
The
i s s a i d t o b e embedded i n t h e t r i p l e s y s t e m
P T S (P,?)
provided t h a t
(S,Bl
Given an i n t e g e r D(v,k)
exactly
k
each o f t h e
,
v
0 -k <
STS(vls
t o, l e t u s denote by
t h a t c a n b e c o n s t r u c t e d on
i n s u c h a way t h a t any two o f them h a v e
b l o c k s i n common, t h e s e Dlv,k)
.
PCB
such t h a t
k
t h e maximum number o f
a set o f c a r d i n a l i t y
D(u,k)
and
P S S
systems. In
k
Ill,
b l o c k s b e i n g moreover i n Doyen a s k e d t o d e t e r m i n e
( s e e a l s o IS]).
Much r e s u l t s a r e a l r e a d y known i n t h e c a s e k f o
, same r e s u l t s a r e c o n t a i n e d i n 1 3 1 , 1 4 1 ,
p a r t i c u l a r , i n these papers
u
a d m i s s i b l e and
k = t -m V
D(v,k)
with
k =O
1 8 1 . For
1 5 1 , 1 6 1 , 1-71. I n
h a s been d e t e r m i n e d f o r e v e r y
m(12
.
313
Parameter D(v, tv-13)for Steiner Triple Systems
I n t h i s paper w e prove t h a t
f o r every
Dlv,t -13) = 3
vz15
2,
.
2 . Preliminar r e s u l t s . W e now g i v e some p r o p e r t i e s w h i c h w i l l b e u s e d i n t h e r e m a i n i n g
sections. 1x1
Let
I n any (2.1)
b e t h e g r e a t e s t i n t e g e r lesser t h a n o r e q u a l t o
fp;P , P 2 , . . . , P
IP
1
I
=IP21
rn=IPil
=...
,
= I P s l 24
(i=2,2,
..., s)
If
(2.3)
d(x) > 2
(2.4)
s c 2 d l u l -rl - 2
(2.5)
If
R
s <2r-2
,
p =min
; we w i l l p u t
IPI ~6
,
then
m22h
{dlx) : S E P } 5
, where
and
n=IPI
;
h =muz { d l s ) : X E P }
(2.2)
.
w e have (31:
)
1
s
n=
IA(u,{u,u,w}l
is a block such t h a t
and
n22h+1 ;
and
s 5 2 ~ - 1;
-A(v,{u.u,w~ll ;
with
l R n M p I '2
P
=2,3
,
then
. 3
Lemma 2 . 1 .
3 '
3 B = nA(j,Il,2,3}1 j=l
i = I, 2 , 3 , 4 i)
1x1
In a
j=l
(P;P ,P2,P ,P ) 1 3 4
if
f o r some
REPi
, then: = 161 = 4
Proof. L e t 4,5,b',aI
.
and
X = uA(j,{l,2,3})
~ e tR = I I , ~ , ~ } = M
and
ii)
017
REP1
,
1x1
and
= 5
IBl = 2
without loss of generality. If
Al2) = {1,3,4,5,6,b}
I
2 4 5 4 5
... . * .
3 a 6 6 b
1 2 4 1 5 u 1 6 3 2 3 5
2 6 b
...
I ...
A l l ) ={1,2,3,
, we h a v e n e c e s s a r i l y
p4 1 1 1 2 2
.
1 2 5
1 1 2 2
4 6 4 3
... ...
3 a h 6
1 2 6 1 4 5 1 3 a
2 4 5 2 3 b
...
*..
S. Milici
314
or ii) -p4
PI
1 1 1 2 2
2 4 5 4 5
...
1 1 1 2 2
3 a 6 6 b
6 3 a 5 b
... ...
... I n c a s e i ) we o b t a i n wc o b t a i n
2 4 5 3 4
. This
3eM4
i s impossible. I n case i i )
and t h i s complete t h e p r o o f o f t h e
A ( 3 ) ={lJt',4,5,a,b}
lemma. Lemma 2 . 2 . (P;P1,P
2
Let
R={1,2,a}
, P 3 , P 1 .J , i f
i) A(l,{1,2,all
,
= 3,4
i i ) if
Pi , f o r some
RE
j =1,2
x
x2EAla)
'I
or
...
1 1 1 2 2
6 7 2 5 6
, then
and
,
j =1,2
then necessariZy
,
I
a 5 7 6 7
In a
If
~ = i l , 2 , a l E P without loss of g e n e r a l i t y . 1 =A/Z,{I,Z,a}i ={4,5,6,7} , we h a v e n e c e s s a r i l y
A(l,{l,Z,a}l
2 4 6 4 5
4 .
.
Proof. Let
1 1 1 2 2
aEM
x.EAlj,{Z,2,a~l 3
, for every
x . e A(3-jJ{1,2,a})
i
3 =1,2,3,4
,
a r e s u c h that
xl,x2EP
and
1,2EM
a n d ~ A l a , { 1 , 2 , a } i n A ~ j , { 1 , 2 , a } 1l
=.4(2,{1,2,u}~
f o r every
3
,with
a 5 4 a 7
...
I
1 1 1 2
6 7 2 4
4 a 5 7
26a
...
1 1 1 2 2
4 5 2 5 7
7 a 6 4 a
...
,
I
or
1 1 1 2 2
2 4 6 4 5
a 5 7 6 7
...
1 1 1 2 2
2 6 7 5 7
4 a 5 6 a
...
1 6 4
i 7 a 1 2 5 2 4 a 2 7 6
...
1 1 1 2 2
2 4 5 4 6
7 a 6 5 a
...
Parameter D(v, tv-13)f o r Steiner Triple Systems
p2
pl
12a 1 1 2 2
4 6 4 5
5 7 6 7
p3
1 2 4 1 6 5
1 1 1 2 2
1 7 a 2 5 a 2 6 7
2 4 5 5 7
315
p4 6 a 7 4 a
1 1 1 2 2
2 4 5 4 6
7 6 a a 5
or
... I ... I ... I ...
1 1 1 2 2
2 4 6 4 5
1 1 1 2 2
0 5 7 6 7
...
2 6 4 4 6
5 a 7 0 7
...
I t i s a r o u t i n e m a t t e r t o see t h a t
1-
I
p4
p1
1 4 x1 1 1 5 a
1 2 5 1 1 4 6
1 2 6 1 4 a
1 2 0 1 4 x
1 6 x
l a x
1 5 x
1 5 6
1 2 4
1 2 a 1 5 6
1
2 5 6
2 5 x ,
1
2 4 a
2 5 a
2 f i x 2
2 4 x
or
1
2 5 s
L1
2 4 6
2 a x
tlence complete
3.
STS
.,
2
X ~ , X , , E
ACa)
ii
... . At
2
2
1 6 a
1 1 6 x 1
2 5 a
2 4 2
2 4 6
2 6 x
...
...
this point t h e
l a x l 2 4 5
2 6 a
2 a x
...
...
2
p r o o f o f t h e lemma i s
D(u,t
. Let
2
2
1
w i t h b l o c k s i n common
I n t h i s s e c t i o n we w i l l p r o v e t h a t u21.i
1
P = {1,2,..
.,8,a,b,cl
following three sets o f
13
and l e t
PI ,
t r i p l e s each:
U
-131 2 3
f o r every
P2
P3
and
be the
S.Milici
316
,
P
Lemma 3 . 1 .
Let
1
1 l 1 2 2 3 3 a a b b c c
=
2 a 4 a 4 b 4 5 7 5 6 5 6
3 b c c b c a 6 8 7 8 8 7
Dlv,tv-131
S=I1,2
P
1 3 a 1 4 b 2 3 4
3 3 c 4 a 5 6 5 6 5 7
b a b c b 7 8 8 7 6 8
v
= l E
for
2 b a
P
,..., 8 , 9 , 0 , a , b , c , d , e } 1 1 1 1 2 2
T = c 9 d c e O
Clearly,
,
2 3
1 2 c
l a c 1 2 2 3 4 a a b b c c
=
2
1 2 4
(S,P~UT)
, i
5 6 7 8 5 6
3
=
3 4 a a b b c 0
b c 5 6 5 7 5 6
15
.
and
9 0 d e e 9
=1,2,3
.
I t follow t h a t
v 231
and f o r e v e r y
, are three
STSllSls
t h a t a n y two o f them i n t e r s e c t i n t h e same b l o c k - s e t IT1 = t - 1 3
c a 8 7 6 8 7 8
T
such
with
.
-13) ' 3 I n [ Z ] , J . Doyen a n d R . M . 15 W i l s o n h a v e shown t h a t a n y S T S f v ) c a n b e embedded i n t o an S T S ( u I
f o r every
u,Bvtl
Lemma 3 . 2 .
Let
D(15,t
. Then
Df19,t
S={1,2
19
D(v,tv-13)
-131 2 3
f o r every
2 3
.
,..., 8 , 9 , O , a , b , c , d , e , x , y , Z , t l I l 2 2 2 2 2
d e 5 6 7 8 d
x y 0 9 t 2 Y
2 e x
3 3 3 3 3 3 4 4
5 6 7 8 9 0 5 6
x Y d e 2 t Y 2
and
6 e z
v231
.
Parameter D(v. tv-131 for Steiner Triple Systems
,
(S,P,u F)
Clearly,
z
,
i =l,2,3
are three
STS(19)s
t h a t a n y two o f them i n t e r s e c t i n t h e same b l o c k - s e t
.
I F 1 = t1 9 - 1 3 Lemma 3 . 3 .
Let
Then
21
y d c y a e
x f c l = x l g
y 3 g y 4 h
x 1 x x x
Clearly,
2 5 7 3 4
y b f
h 9 0 8 6
y y y y d
6 5 2 1 e
(S,P.uL/ z
9 0 8 7 f
,
i =1,2,3
8 h 9 0 4 g h 3 0 6
and
d d d d d e e e e e
1 5 2 3 7 7 8 4 l Z
,
are three
b h O
e 3 5 f 8 g
c g o
f 7 h
c 9 h
f f f $ a
g 2 5
1 2 3 4 9
9 0 6 5 0
h 1 6 9 3 7 4 8 0
u g h b 9 g
STS(2l)s
t h a t a n y two o f them i n t e r s e c t i n t h e same b l o c k - s e t
. Then
[LI =tZ1-13 Lemma 3 . 4 .
Let
S
= i 1,2, ,
2,
hl
x z u z f g o
. ., 8 , 9 , O , x ,
y , z , a, b , c, d , e , f. g , i , p , q , F, s , t , M
0 3 d e u i
2 5 9 2 6 0 2 7 e 2 8 d 2 x s
l z r
2 z i 2 t r
3 3 3 3
2f-s 2 P g
3 u g 3 i f
1 1 1 1 1 l
y t s r P q d
5 6 7 8 x y
I t s '
Ifs
b 9 e
I P q
2 Y U
3 5 x 3 7 2 3 8 t O 9 d e
P q r s
8 x q
Clearly,
(S,P.uH)
, i
4 4 4 4
5 Y 6 x 7 t 8 2
4 4 4 4 4
o 9 d e i
4 u f
BYP
, are t h r e e
=1,2,3
.
Then
D(27,t
27
-13) ' 3
.,
I
q P s r g
ST'S(271s
t h a t a n y two o f them i n t e r s e c t i n t h e same b l o c k - s e t /MI =tg7-13
with
.
-13) ' 3
a 0 9 a d e
a a a a a a b
L
such
,.
D(21,tZ1-131 ' 3
D(27,t
with
.
,..., 9 , 0 , a , b , c , x , y , z , d , e , $ , g , h ~
x y z x d a x e b
F
such
.
~ ( 2 1 , t -13) 1 3
S=Il,2
>3
D(19,tl3-13)
317
M
such
with
and
S . Milici
318
Lemma 3 . 5 .
D125,t
-
Let
25
,...,
P = { I , ~
t h r e e s e t s of
-13) > 3
. -
PI
andlet
9,0}
- ,P 2 , P g
be the following
t r i p l e s each:
13
0 1 2 0 3 4
0 5 6
P
S = {1,2,.
Let
2 4 b Z a l
Z t d 3df 3 e s
Z e f 2 g r
1
2 h s
3 g t 3 h l
Z i n
3 p i
Clearly,
=
8 9 9 1 2 1 4 1 4 3
3 6 2 4 5 5 6 3 5 6
-
P
3
= 8 8 8 9 9 9
1 2 3 1 3 5
8 O b 8 a i 8 c s
7 0 a
? b e ? c h 7 d s
8 n d 8 e g 8 f l 8 h p
7 f i 7 g n 7 1 t
9 O c
c i Z
g i g
9 9 9 9
c t f
4 4 5 5 5 5 5
a t b S d h e Z
c n r c d e 4 4 4 4
9 g P 9 s n 7 p r 8 r t 9 r i
iS,PiuQ)
,
a nd
i =1,2,3
,
a d t f
c l e s
are three
.
Then
D(25,t
25
-13) 2 3
..
h n a p e f g
r p b d n h s
S i t O d i 6 b c O e p 6 d r O f g 6 e i
6 f p 6 g Z 6 h n
STS(25/s
t h a t a n y two o f t h em i n t e r s e c t i n t h e same b l o c k - s e t
IQi = t Z 5 - 1 3
4 5 6 2 4 6
..,S,O,a,b,c,d,e,f,g,h,i,l,n,p,r,s,tI
3 5 c 3 a n 3 b r
2 c p
2
7 7 8 7 7 8 8 9 9 2
Q
O h t O l n O s r
such
with
I n c o n c l u s i o n , b y Lemmas 3 . 1 , 3 . 2 , 3 . 3 , 3 . 4 a n d 3 . 5 w e o b t a i n t h e following theorem.
Theorem 3 . 1 .
4.
Dlv,t - 1 3 1 V
D(v,t -13) 2 3
f o r every
for every
11215
v 215 ,
.
I n t h i s s e c t i o n we w i l l p r o v e t h a t t h e r e d o e s n o t e x i s t a
3 19
Parameter D(v, tv-13)f o r Steiner Triple Systems (p;P , P , P ,P I 1 2 3 4
with
m=13
. Further
w e w i l l d e t e r m i n e D ( v , t -131 V
IP;P , P , P , P i
From P r o p e r t y 2 . 3 , t h e e x i s t e n c e o f a M2 = @
.
m =I3
, can have t h e following parameters:
I t i s e a s y t o see t h a t a
and
DS= [(4/$,3] ;
2)
n =I1
and
DS= L(416,13/5]
3)
n =12
and
DS = [ ( 4 1 3 , / 3 ) 9 ]
4)
~1
=23
and
DS= [ ( 3 I l 3 ]
Proof.
T h e r e i s no
.
If
where
, or
or
{ 7 , 8 , 9 } E Pi
,
Fi(A)
,
(P;P ,P2,P 1
3
,P I
M4 = f l , z
. f o r some
,
=
M
[5,(4/4J(3)6]
2
,
= @ and
or
;
.
={XI,
i =l,2,3,4
DS
implies
4
, with
3
D S = [5,4,f3Il0-1
Suppose t h a t t h e r e e x i s t s a
o s = [ f 4 1 31 Let M 3 9’ A = A ( x l = {1,2,3,4,5,6}
2
3
DS = [ ( 5 ) 3 , ( ~ 1 ; ~ 1
[(5),, (4)2, ( 3 ~ ~ 1 o r,
Lemma 4 . 1 .
A
1
n =10
=
2
IP;P , P , P , P , I
1)
DS
1
with
4
(P;PlJP2,P
,..., 9 1 , ,
i = 1,2,3,4
DS
3
=
[14/9J3]
,P I
with
4
P=M
.
3
u M4
and
then necessarily
t h e r e are f o u r d i s t i n c t
1 - f a c t o r s on
.
If such t h a t
{7,8,9} @ P
REA
P . =
z
with
.
i Let
,
then necessarily there e x i s t s a block
7 8 1 7 9 2 8 9 3
7 3 4 7 5 6 8 2 6
(a= 4 , B = 5 , y = 6 1
Particularly, i f
, we
R={l,2,3}
or
have
8 4 5 9 1 5 9 4 6
(a = 6 , B = 4
{7,8,9} $ PI
x l a
1 2 3
2 2 1 3 x 3 y
,y
=5)
we obtain
.
,?€Pi
.
S. MiIici
320
X I 6 x 2 4
or
x 3 5
Let
F =IFi
I
i =1,2,.
..,5}
b e the
€PI
I-factorization on
ven by:
I t follows that
i) L e t
Alx) = F , 1
Afxl = F
. Then,
I
or
A(xl = F
up t o isomorphism, we o b t a i n
pl
p2
x 1 4 x 2 5 x 3 6
x 1 2 x 3 4 x 5 6
7 8 1 7 9 2 8 9 3
7 8 5 7 9 4 8 9 1
7 8 3 7 9 6 8 9 2
7 3 4 7 5 6 8 2 6
7 1 3 7 2 6 8 2 3
7 1 4 7 2 5 8 1 5
8 4 5 9 1 5 9 4 6
8 4 6 9 2 5 9 3 6
8 4 6 9 2 3 9 4 5
1 2 3
1 4 5
2 3 6
--
5 .
A
gi-
Parameter D(v, t,,-13) for Steiner Triple Systems
p3 x 21 63 1 x 4 5
where
7 8 5 7 9 1 8 9 2
7 8 6 7 9 3 8 9 4
7 8 3 7 9 1 8 9 4
7 8 2 7 9 6 8 9 5
7 2 3 7 4 6 8 1 4
7 1 4 7 2 5 8'1 5
7 2 6 7 4 5 8 1 2
7 1 3 7 4 5 8 1 4
8 3 6 9 3 4 9 5 6
8 2 3 9 1 2 9 5 6
8 5 6 9 3 6 9 2 5
8 3 6 9 1 2 9 3 4
1 2 5
3 4 6
1 3 4
2 5 6
r
jiE{1,3,4},
i i ) Let
A(x) = F
5
.
i
€{1,2,4}
,
8.€{1,2,3}.
z
T h e n , up to isomorphism, w e obtain
x 1 6 x 2 4 2 3 5 7 8 1 7 9 2 8 9 3
7 8 5 7 9 3 8 9 1
7 8 4 7 9 6 8 9 2
7 3 4 7 5 6 8 2 6
7 1 6 7 2 4 8 2 3
7 1 5 7 2.3 8 1 6
8 4 5 9 1 5 9 4 6
8 4 6 9 2 6 9 4 5
8 3 5 9 1 3 9 4 5
1 2 3
1 3 5
2 4 6
32 I
322
S. Milici
i: /
where
jl
p4
2 3 5
7 8 2 7 9 6
7 8 3 7 9 5
8 9 1
8 9 4
7 1 5 7 4 6 8 1 6
7 1 3 7 4 5 8 3 4
7 1 6 7 2 4 8 1 2
8 3 4 9 2 4 9 3 5
8 3 5 9 1 2 9 5 6
8 5 6 9 2 4 9 3 5
8 5 6 9 1 3 9 2 6
1 5 6
2 3 4
1 2 6
3 4 5
7 8 5 7 9 1 8 9 6
7 8 2 7 9 3 8 9 4
7 2 3 7 4 6 8 1 2
E I1,3,41
,
,
r E {1,2,41
i
s
.
E {1,2,3}
i
I t i s a r o u t i n e m a t t e r t o s e e t h a t , i n i ) and i i ) , t h e r e i s no a
(P;P ,P ,P ,P 1 2 3 4
Lemma 4 . 2 .
with
DS= [3,f41
T h e r e i s no
(P;P1,P
2
1 .
9
J P ,P 3
Suppose t h a t t h e r e e x i s t s a
Proof.
DS = 1 , ( 4 1 6 , ( 3 1 5 ]
. Let
M
3
= {1,2,.
.. , 5 )
4
I
with
( P ; P ,P , P ,P ) w i t h 1 2 3 4 and , M4 = {a,b,e,d,e,t}
P=M UM 3 4 .
A t f i r s t , suppose t h a t t h e r e e x i s t s a block E P
R ={1,2,31
1
UAli,{l,2,3}1 i= 1
( Y (= 3 , 4
with
RGM
3
. Let
w i t h o u t l o s s o f g e n e r a l i t y . A p p l y i n g Lemma 2 . 1 ,
i3
obtain
=4,5
.
Let
3 U A f i l
Y = P -
, we
i=l
IYnM4( ) l
. Then
.
DS = I . ( 4 J 6 , ( 3 1 5 ]
( P I (2 1 4
i t must b e
we
obtain
. This
is
impossible. Now, s u p p o s e t h a t t h e r e e x i s t s a b l o c k
I
.
R
such t h a t
=2 Let { 1 , 2 , a ) E P I , X = A ( l ) u A ( 2 ) u A f a ) - { 1 , 2 , a } 3 Y = P - { A ( l ) u A ( 2 1 u A ( a l } , I t follows t h a t 1x1 = 6 , 7 , 8 ,
lRnM
A t f i r s t , suppose
1x1
=8
. Let
X-Alal
and
= { z 1 , z 2 1, from Lemma
323
Parameter D ( v , tv-13)for Steiwer Triple Systems
x EA(i,{l,Z,u}l , f o r some i = 1 , 2 7' 2 ~Ali,{1,2,a?InAla,{1,2,a}l I < 2 This i s impossible.
2.2 we obtain
and hence
x
.
1x1
Now, s u p p o s e
we h a v e
.
Y ={3,4}
since otherwise
.
=6
flence
n I M4
1A(3,{3,4,t}lnA(4,13,4,t1)
4
,
Let
Y =I31
Let
{3,4,t}EP
- { u , t l ) l 1.2
1x1
Now, s u p p o s e
follows t h a t
.
e
5
n =I1
Since
Al41
- {a,ti)l
.
,
4 e Y
,
n=Il
,
(3,41C_P
w e have
,
a $ A(41
we m u s t h a v e
. Let
yEM4-{a,t}
,
and
{b,c,d}GA(3)
(otherwise
R
2
{c,d,t}EA(a)
e,dEM
),
5 with
={24,u,r} E P
or
(c,d)I=R2
(cr,B)
.
= (c,d)
If
.
Since
nor or
.
and
B =d
and with
< 2
, w e have
34Ala)
e,d#A(llnA(21
.
Let
A t t h i s p o i n t we h a v e
,
otherwise
.
S , a E A ( l ) t ~ A ( 2 ) and
a =c
we
x,aEA(4)
Ib,t,e}cA(l)nA(z)
c,dEA(l)c,A(2/
u =u = e
if
I
It
i t follows that
xcEAf41
Further, since
{u,u,r} C{5,b,c,d,el
u =v =5
I t follows t h a t
.
1
it follows t h a t
1 c,d$A(l)uA(2)
neither
If
,
1,414, { 4 , x , y 1 ) n A ( x , { 4 , x , y I )
{4,a,b?,{4,c,d}EP
.
.
,
j =2,3,4
.
(2
=@.
4 i =1,2,3,4
4EA(lluA(2)uA(al
.
n
is impossible.
f o r every
i
.
IAi3,13,4,tl)nA(4,{3,4,t}ll
,
IA(l,{l,Z,ul)
. This
={3,4,5}EP with R C M Since 1 , 2 , a $ A ( 3 ) 1 j 13 a ~ A ( 4 1 and 1,2#A(4/ In f a c t , l e t x E { l , 2 ]
must h a v e
1 ,4t h e n
it follows t h a t Y n M
, o t h e r w i s e , f o r some
R
~
i t follows t h a t
and
~3
1M41 2 7
T h en
I
IPl
tEA(llnAl2lnA(ai
from P r o p e r t y 2.4
. Since
=7
then, since 1
with
{3,4,tlEP1
. Further,
m >13
nA(2,{2,2,ul)n(M
Y n M4 # @ i m p l i e s
Since
Crisp.
$A(lI uA(2)
u =d
with
B =c]
and
, then
.
={5,e,d} From P r o p e r t y 2 . 4 i t i s n o t p o s s i b l e t h a t 2 IA(x,{x,5,y}lnA(S,{x,5,y}ll < 3 for x=l,2 and y E M 4
R
{5,a,t} E P
1
or
{5,a,bI
E
P
. The n
I '
T h i s i s i m p o s s i b l e a n d t h e p r o o f o f t h e lemma i s c o m p l e t e . . Lemma 4 . 3 .
f P ; P ,P2,P ,P I 1 3 4
T h e r e i s no
Proof. S u p p o s e t h a t t h e r e e x i s t s a DS =
is,
/4)4, (3)6]
.
Let
M
3
= { I , z , . ..,6'1
with
DS = [ 5 , ( 4 / q , ( 3 / 6 ] .
fP;P , P ,P ,P I 1 2 3 4
with
,
, M4 ={a,b,c,dl
M
5
and
P =
uMi
i=3
*
A t f i r s t , suppose t h a t t h e r e e x i s t s a block
REE4
3
.
Let,
5
=Is}
3 24
S. Milici
R={1,2,3}EP
I
obtain
w i t h o u t l o s s o f g e n e r a l i t y . A p p l y i n g Lemma 2 . 1 we
2
3 uA(i,{1,2,3]1)
. Let
=4,5
,
Y=P-(Afl)uAf2luA(3))
i=l
then (necessarily)
with
IY( = 3
,
YcM3
lPll 2 1 4 .
since otherwise
I t follows t h a t
1 2 3 2
x 4 5 x 6 d 4 6 a
2 x b 2 . . 3 x c
P = l x a 1 . .
d ~ A ( 4 J u A I 5 l, otherwise
with
$P,
d ~ A ( 4 )
(otherwise 14,d,c) E P
Since
and
1
b E
n
and s o
Now, s u p p o s e
E P
deM3
1 3
. This
. It
I ZZ),
.
it fol-
, it follows t h a t
i s impossible.
follows t h a t
d ~ A ( 4 1 n A f S J
1
(2
. Since
.
Ali) i=l
IA(5,{5,6,b}lnA(b,{5,6,b}ll
{b,IJc},{b,3,a}EP2
15,c,al
IA(5,{5,c,a}lnAlc,{5,c,a}) 3
lows t h a t
3 . .
1A(6,{6,dJ+lInAIdJC6,d,x})I
. Necessarily
Suppose, f i r s t , (4,b,d)
4 . . 5 6 b 5 . .
,
a4A151
other-
3
wise
{4,d,cl
E
,
Pl
c
nA ( i l
E
and s o
{lJc,b},~2,c,a},{3,dJb} E P
i=l
and
~ A f l , { I , a , x } ) n A f a , ~ l , a , x ~ () (2
it is not possible t h a t (4,bJd},{a,2,d3,{a,3,b}
.
If
,
a$A(5/
for Property 2.4
IAf4,[4,6,a})nA(a,{4,6,al)l E
P
1
{l,b,c}E P
and hence
<3
with
1
1
. Then, c E M
3 '
This i s impossible. Now, s u p p o s e t h a t t h e r e e x i s t s a b l o c k
R
such t h a t I R n M 3 1 = 2 .
X = A ( l ) u A ( 2 l u A l a l - { l J Z J a } and 1 ' Y = P - ( A ( l ) u A ( 2 ) u A ( a ) l . I t follows t h a t 1x1 =6,7,8
Let
{1,2,a} E P
1x1
4 . 2 we o b t a i n
Now, s u p p o s e t h e n we h a v e nA(a) n(M4
1x1
. =6
since otherwise
. This
and
. Since
. Hence
Y ={3,41
- {all I 2 2
1M41 > 4
f 8
m >23
YnM
4
{3,4,b} E
= @ implies
. Further,
I A ( 3 ) n . 4 ( 4 1 n (M4
Pl
with
since
- {a,b)) I '
. From
Lemma
lPll 214
,
bEA(l)nAf21n IA(Z)nA(2) A
2
,
it follows
i s impossible.
Now, s u p p o s e
1x1
=7
. Since
n =I1
,
i t follows t h a t Y n M 4 = @
.
325
Parameter D(v, t,-l31 f o r Steiner Triple Systems
,
Y={3}
Let
then, since
I t follows t h a t with
R E P
J-
{3,4,x}
IA(3)nM
RGM
.
3
1
.
In fact, let
. If
y =5
zE {1,2}
,
and
ce
,
P
{5,d,b} E
cA(41
. Then
c,b,d€Af5)
for
6 =b
X, b ) ,
5
.
.
nAla, {1,2,u}) n(M4
E P
I '
with
, f o r some
' 2
a ~ A ( 4 )
.
and hen-
This is impossible.
I t follows t h a t
6EA(I)r\A(2)AA(a)
- { a ] )1
.
Let
{4,x,c},I4,a,d},IS,c,~},
[z,c,b,a} C A(51
t h e r it follows t h a t
lA(y,{y,x,c~})(3
{ I , 6 , c ) , { 2 , x , d ) , { 2 , 6 , b } E Pl
{3,x,c},{3,5,dI
and
and 6 E I x , ~ }
y =4
I t follows t h a t
n ~ ( 2 , { 1 , 2 , a l ) n (M4uM5)I ' 2
Now, s u p p o s e {x,c,d,a}
w e must have
x ~ A l y ) we m u s t h a v e
and
{u,x, 6 } , { I ,
IAf1,{1,2,a})
with
5 2
i t follows t h a t a ~ A ( y )
a , r ~ A ( y )
~ E J M- { a } ) u M 4 {3,5,xl, {3,c,d} E PI
Suppose, f i r s t , x,c,d~A(4)
if
with
nA(x,{y,x,a})1(2
,
1,2,a$A(3)
.
a#A(y)
lA(1,{1,2,u})n
.
I '2
]A(3,{3,y,6jInA(y,13,y,6}1I
for
and so
.
,
j =2,3,4
. Necessarily
A(3! ={4,5,x,b,c,d}
y =4,5
for
f o r every i =1,2,3,4
(3,4)EPi
, o t h e r w i s e , f o r some
=2
{ 3 , 4 , b } ~ P ~ Since
1,2 $ A ( y )
,
A(41 ={3,x,a,b,c,d}
n A f 2 , { 1 , 2 , a } ) n ( M 4 u M5)
and
3
Let
4 PI , o t h e r w i s e
Let
n = I 1
{4,5,c,z}
and hence
.
i =1,2
EA l a l
. Fur-
IA(i,{l,2,a})n
T h i s is i m p o s s i -
b l e a n d t h e p r o o f i s complete.. Lemma 4 . 4 .
P ,P
1 ' 2
3
Suppose t h a t t h e r e e x i s t s a
Proof. DS = [ f 5 1
T h e r e i s no ( P ; P
(4)2,(3/7]
2'
.
Let
M
3
= {I,Z
,P
4
with
DS=[(5)2,(4)2,(3)7].
(P;P ,P2,P ,P ) with 1 3 4 71 , M = { a , b } , M ={z,y} 4 5
,...,
5
and
u Mi
P =
n = 11
, Since
, it follows t h a t
(x,yl
C_P
i=3
A t f i r s t , suppose t h a t e x i s t s a block ~ = { 1 , 2 , 3 }€ P I
,
3
i3
=
1x1
=4,5
.
1 3 14
P I I, -> 1 4 ,
if
if
Let
3
Let
UAli) i=l
Y = P -
i =I
lyl =
.
w i t h o u t l o s s o f g e n e r a l i t y . A p p l y i n g Lemma 2 . 1 , we
u A(i,{l,2,3})
obtain
RGM
I '
=5
1x1 = 4
.
Further, it follows
YGM
3
. Then
otherwise
326
S. Milid
1x1 = 4 , w e
If
I
=i:lI
and hence If
obtain
2 x b
3 y b
4 6 y
5 6 b
2 a y
3 x a
4 5 x
4 7 a
5 7 y
,
we o b t a i n
. This
=2
and
Y={4,5,61
,
Y={4,5,6,7}
l a b
lA(7,f4,7,a}lnA(a,14,7,a})l IXI=5
,
X={a,b,x,y}
6 7 x
is impossible.
.
X=I7,a,b,z,yl
It
3
follows
Ali)
7 E
,
(i,j , k l C A ( 7 1
otherwise
with
i,j
E {1,2,31
i=l
k ~ 1 4 , 5 , 6 l or
and
i,j
j
E {{1,2,31
If
z E A ( ~ J and
-{ill
z =b
and h e n c e
,
with
' 2
IA(7,{7,i:,yllnA(k,{7,k,y}il
r i l y w e have
i
1x1
#8
. It E
P
,
=2
1x1
y E{7,a,x,y}
R
such t h a t l R n M
with
1x1
#6
i24
.
4
s
i24
for
1x1
Further, it follows 6 E M u M
,
and hence
f 7
,
YEM
and hence
.
3
I
=2.
Y =P-(A(I)U
Lemma 4 . 2 w e o b t a i n
since otherwise
bEA(l)nAI2JnA(a)
n ~ l b , t 3 , 4 , b I ) n ~ ~'2 I
with
,
. From
=6,7,8
.
with
X = A ( l l u A ( 2 ) u A f a l -{1,2,a}
If follows
follows
I
,
E {l,2,31
we o b t a i n
R = { 1 , 2 , a } E PI
{3,4,bI
Then n e c e s s a -
,
IAii,{i,b,y}InAIb,{i,h,y}iI
uA(2)uA(a)l.
.
y E {a,b,z,yl
Now, s u p p o s e t h a t t h e r e e x i s t s a b l o c k Let
and h e n c e
k E{1,2,31
with
z # A ( j )
z E {a,bl
and
and
E {4,5,61
, with Y={3,4), 3 IA(3,{3,4,bI) n
since otherwise
{3,4,63
E
IA(3,{3,4,61)nA(4,{3,4,6}1nMi)
PI ( 2
, for
T h i s c o m p l e t e s t h e p r o o f o f t h e lemma., Lemma 4 . 5 . Proof.
There is no
(P;P ,P ,P ,P 1
2
Suppose t h a t t h e r e e x i s t s a
DS= [(5j3,(3j8]
, Let
M
3
={1,2,.,.,8}
3
with
4
DS =
(P;P ,P ,P ,P 1
,
M
5
2
3
4
[ (S13,
I
= { a , b , c } and
(3Jg]
.
with P=M
3
u M
5 .
327
Parameter D(v. t,-13) for Steiner Triple Systems
Since
n =I1 Let
with
ct,B,y
it follows t h a t
{a,b,c} $P,
,
i n3
i=l
(x,ylC_P
,
1
for
x , y E ia,b,cl
.
w i t h o u t l o s s o f g e n e r a l i t y . Then
.
~{4,5,6,7,8}
Since u = B = y = 4
,
(A(i,{1,2,3}j
, f r o m Lemma 2 . 1 we o b t a i n
‘ 3
;
1 2 3
1 l I 2 2 3 4
l a b 1 2 2 3 3
4 a 4 4 b
. Necessarily
{ 1 , 2 , 4 ) E P2
A t f i r s t , suppose
c c b a c
2 a b a 3 4 a
1 1 1 2 2 3
4 3 c b c b c
2 4 3 4 3 4
a b c c b a
...
1 1 1 2 2 3
I
...
2 4 3 4 b a
1 2 b 1 4 3
c a b 3 a c
...
...
l e a 2 3 a 2 4 c 3 b c
...
I
1
...
or
-
ii)
p3 1 2 3
1 2 4
l a b
l u c
1 2 2 3 3
1 2 2 3
4 a 4 4 b
...
c c b a c
3 3 c 4
...
Pan
p4
#@
and
b a b c
...
PI
2 4 b 4 3 a
... ...
a 3 c c b c
1 1 1 2
f0
A
. Then
2 4 3 3
1 2 c
b a c a
1 1 2 2 3
2 4 c 3 4 b
... I *.. I
PI n F 5 # @ and
I n case i ) we h a v e have
1 1 I 2 2 3
PI n a
3 4 4 b b . * * * * *
F3 # 0
(P; P
a b 3 a c
1
. In
case i i ) we
,P 2 ,P 3 ,P 4 )
cannot
exist.
Now s u p p o s e
{I, 2 , 4 }
4P
j
f o r every
j =2,3,4
. Necessarily
S.Milici
328
i) 1 l 1 2 2 3 3
2 a 4 a 4 4 b
3 b c c b a c
p4
pZ
p3
1 2 a 1 4 3
1 2 b 1 4 a
l 2 2 3
1 2 2 3
b 4 3 a
c c b c
...
4 c 4 b
2 b a 3 b c
2 3 4 3
c 0 b 4
...
...
...
...
a , .
3 c a 3
7 1 1 2
. I .
_ I
or I
I
I
ii) 1 l 1 2 2 3 3
2 3 a b 4 a 4 4
e c b a b c
p2
p3
1 Z a 1 4 b 1 3 c
1 2 b 1 3 4
2 4 c
p4
2 4 a 2 3 c 3 a b
1 1 1 2
l e a
2 3 b 3 4 a
... ...
...
2 4 3 3
e a b 4
2 b a 3 a c
... ...
... ...
P n P # @ i n c a s e i ) and
I t follows t h a t
i i ) . Then a
I
(P;P ,Pz,P 1
1
4
3
, P 4)
P l n P 2 # @ in case
c a n n o t e x i s t s and t h e p r o o f i s comple-
te.
Lemma 4.6. or
DS=
1413,(319]
=
RcM
or
1 5 , 4 , ( 3 1 1 0 -I 3
.
.
Suppose t h a t t h e r e e x i s t s a
Pro0 f DS
(P;P ,P ,P ,P I 1 2 3 4
T h e r e i a no
Let
2 . 1 we o b t a i n
{2,2,3}
€PI
I3
UA(i,{1,2,3}) i=l
(XI = 4 + k
and
1x1 # 4 ,
otherwise
(YI = 5
(YI =4
Let
with
1
,P
2’
P ,Pql 3
1
10
with
e v e r y case e x i s t s a b l o c k
w i t h o u t l o s s o f g e n e r a l i t y . A p p l y i n g Lemma
clearly and
(p;P
. In
DS = [ ( 4 ) 3 , ( 3 ) 9 ]
DS = [5,4, ( 3 1
vith
=
YAMi=@
Y={4,5,6,7}~M 3
for
=4,5
.
3
Let
Y
=P- U A ( i l , i=l
for
(Y(= 5 - k
and
1x1
k =0,1
. Then
l P , l 224
. Since
i=4,5 m=13
.
I t follows t h a t
we h a v e
1x1
=5
. ,
we o b t a i n t h a t ( x , y ) C P 1
Parameter D f v , tv-13)for Steiner Triple Systems
with
.
xJy E Y
Let
2 = {z E
I t follows t h a t
Z nM with
3
IZI =3
and hence
zl f z 2
=a . zl
E
Z
M
,
otherwise
IA(4,{4,5,z
1
~
.M A t~ t h i s
3
={1,2
PI w i t h
{ 4 , 5 , z I l , {6,7,z
2
I5
{4,5,z1))
p o i n t we h a v e
,..., 9 ) ,
E
2
1
E
3'
M
5
.
s , y E }'l
P
1
, with
. Observe
lAfl,{l,zl,y}l nafzl,{l,zlJyII
DS = ( 1 4 )
and hence
{zJy,x}
1 ) nA(zl,
O t h e r w i s e we o b t a i n
= {8,9]EM3
Let
.., 7 1 : 7
P - {1,2,3,.
329
I
that =O
3 nA(i,{lJ2,311 =
=@,
i=l
.
13J9]
4 M
4
and
={a,b,c]
U Mi '
P =
i=3
Then
or
I n c a s e i ) we h a v e ii),
l ~ ( l , { ~ , O , ~ } ) n ~ f u J { ~ ,5u2, ~ , }In l l case
.
l ~ f ~ , { l , 8 , a } ) n A f u J { l J 8 , 0 } 5) l2
( P ; P ,P , P , P ) 1 2 3 4
Then a
can-
n o t e x i s t s and t h i s c o m p l e t e s t h e proof., Lemma 4 . 7 .
Proof.
T h e r e is no
3
.P 4
with
DS=[(3)13]
.
The s t a t e m e n t f o l l o w s i m m e d i a t e l y f r o m Theorem 2 . 1 o f [ S ] .
Theorem 4 . 1 . Proof.
(P;Pl,P2,P
D(v,t -13) = 3
for every
V
A p p l y i n g Lemmas 4 . 1 , 4 . 2 ,
obtain that a
I F ; PI, P2,.
..,P
)
e x i s t , Then, s i n c e t h e e x i s t e n c e of o f them i n t e r s e c t i n
tu-13
4.4,
4.5,
4.6 and 4.7, we
m=13
and
s > 3
4.3,
with s
.
v z 1 5
STS(vls
blocks (these
,
t -13 V
cannot
s u c h t h a t a n y two blocks occurring,
330
S.Milici
moreover, in each of the (P;PIJP2,...,PSl v L15
every
.
S T S f v l s ) implies the existence of a
, from Theorem 3.1 we obtain D ( v , t V - 1 3 1
=3
for
REFERENCES
111
J . Doyen, C o n s t r u c t i o n of d i s j o i n t S t e i n e r t r i p l e s y s t e m s , Proc. Amer. Math. SOC., 32 (1972), 409-416.
L2-1
J . Doyen and R . M . Wilson, E m b e d d ings of S t e i n e r t r i p l e s y s t e m s , Discrete Math., 5 (1972), 229-239.
[3]
S . Milici and G. Quattrocchi, Some r e s u l t s on t h e maximum numb e r of S T S s s u c h t h a t any two of t h e m i n t e r s e c t i n t h e same b l o c k - s e t , preprint.
14.1
G. Quattrocchi, A l c u n e c o n d i z i o n i n e e e s s a r i e p e r DMB P T S e o n e l e m e n t i d i g r a d o 2 , Le Mate matiche (to appear). S. Milici and
Z ' e s i s t e n z a di t r e
[5]
G . Quattrocchi, S u l m a s s im o numero d i D M B P T S a v e n t i 1 2 b l o c c h i e i m m e r g i b i l i i n u n STS , Riv. Mat. Univ. Parma (to
appear). 161
G. Quattrocchi, SuZ p a r a m e t r o D ( 1 3 , 1 4 1 di S t e i n e r , Le Matematiche (to appear).
1.71 G . Quattrocchi,
SuZ p a r a m e t r o
D(v,tv-lOl
p e r S i s t e m i d i Terne
,
19 ' v < 33
per
S i s t e m i di T e r n e di S t e i n e r , Quaderni del Dipartimento di Mate-
matica di Catania, Rapport0 interno. 181
Rosa, I n t e r s e c t i o n p r o p e r t i e s of S t e i n e r s y s t e m s , Annals Discrete Math., 7 (1980), 115-128.
A.
Annals of Discrete Mathematics 30 (1986) 331-334 0 Elsevier Science Publishers B.V. (North-Holland)
33 1
A NEW CONSTRUCTION OF DOUBLY DIAGONAL ORTHOGONAL LATIN SQUARES Consolato P e l l e g r i n o and Paola L a n c e l l o t t i D i p a r t i m e n t o d i Matematica V i a Campi, 213/B 41 100 MODENA ( ITALY)
.
We g i v e a new s i m p l e c o n s t r u c t i o n o f p a i r s o f d o u b l y d i a g o n a l o r t h o g o n a l L a t i n squares o f o r d e r n, DDOLS(n), f o r some n=3k i n c l u d i n g t h e case n=12.
A p a i r o f d o u b l y d i a g o n a l o r t h o g o n a l L a t i n squares o f o r d e r n, DDOLS(n), i s a p a i r o f o r t h o g o n a l L a t i n squares o f o r d e r n w i t h t h e p r o p e r t y t h a t each square has a t r a n s v e r s a l b o t h on t h e f r o n t d i a g o n a l D1 and on t h e back d i a g o n a l D2 The r e a d e r i s r e f e r r e d t o t h e monograph [I] by J.Denes and A.D.Keedwel1 for t h e d e f i n i t i o n s which a r e n o t g i v e n here. W.D.Wallis and L.Zhu proved t h e The problem was posed by K . H e i n r i c h and e x i s t e n c e o f 4 DDOLS(12) i n [ Z ] A.J.W.Hilton i n [ 3 ] .
.
.
Let
Q
be a L a t i n square o f o r d e r n based on t h e s e t be t r a n s v e r s a l s o f
S, T
t o t h e element o f of
r)
. We
Inoccupying t h e c e l l
In occupying t h e c e l l
In={O,l
form a permutation
(k,i)
(h,i)
,..., n-1)
and l e t
Inas f o l l o w s :
on
o f S we a s s o c i a t e t h e element
o f T ( i . e . t h e c e l l o f T t h a t l i e s i n t h e same
column). We denote by Q(S,T) t h e L a t i n square o b t a i n e d by r e p l a c i n g each e n t r y s o f Q w i t h t h e element a S a T ( s ) . O b v i o u s l y we have: (a) i f
U
i s a transversal o f Q then
U
i s also a transversal o f
Q(S,T);
( b ) i f R i s a L a t i n square which i s o r t h o g o n a l t o Q t h e n R i s a l s o o r t h o g o n a l t o Q(S,T). Let
Q
be a L a t i n square and l e t h be a symbol; we denote by
o b t a i n e d by r e p l a c i n g each e n t r y
s
THEOREM. For an even p o s i t i v e i n t e g e r k l e t l e t T1, T2 be two common t r a n s v e r s a l s o f A
Q
(h,s).
A, B be a p a i r o f DDOLS(k) and and B I f T1 and T2 have no
common c e l l w i t h each o t h e r and w i t h each d i a g o n a l exists a pair o f
Qh t h e copy o f
o f Q w i t h the ordered p a i r
.
D1
and
D2
DDOLS(3k).
P r o o f . Consider t h e two o r t h o g o n a l L a t i n squares o f o r d e r
3k
, then
there
C. Pellegrino and P. Luncellotti
332
O f course 8 possesses a tranSversa1 on t h e f r o n t d i a g o n a l , w h i l e t h e back diagonal i s a transversal o f B S t a r t i n g f r o m A and B we f o r m t h e f o l l o w i n g L a t i n squares o f o r d e r 3k
.
From ( a ) and ( b ) i t f o l l o w s i m m e d i a t e l y t h a t t h e square
i
on t h e f r o n t d i a g o n a l w h i l e we have :
Aij
( c ) each subsquare having (d)
A”
,D,
T,,T,
and
of
,D,
s t i l l has a t r a n s v e r s a l
has a t r a n s v e r s a l on t h e back d i a g o n a l . I n a d d i t i o n
Bij
and
6
of
i s a doubly d i a g o n a l L a t i n square
as p a i r w i s e d i s j o i n t t r a n s v e r s a l s ;
are orthogonal.
Since t h e square i s obtained from subsquares, we have f o r j=1,2, ...,k :
Hj
the set
o f the entries o f the
D,
transversals
, T,
A,,
of
H’. o f t h e e n t r i e s o f t h e J
D, o f
A,,
T, o f
A,,
and
7i by s u i t a b l y renaming symbols i n t h e j - t h column o f
which l i e on t h e
A,, and D, o f A, coincides w h i t t h e s e t ( k t j ) - t h column o f l y i n g on t h e t r a n s v e r s a l s of
a
D, o f
A,,
;
the set
K o f t h e e n t r i e s o f t h e ( k t j ) - t h column o f which l i e on t h e j t r a n s v e r s a l s D, o f A,,, T, o f A,, and D, o f A,, c o i n c i d e s w h i t t h e s e t
Kj
o f t h e e n t r i e s o f t h e ( 2 k t j ) - t h column o f
D, o f each
, T,
A,, j=1,2,
of
...,k
A,,
and D, o f
exchange i n
A,,
?i the
’li
elements o f
same row; s i m i l a r l y we exchange t h e elements o f Ki same row o f
A”
(property
d i s t i n c t c e l l s ) : from
A^
(e)
(c) and
l y i n g on t h e t r a n s v e r s a l s
. H
j and
implies t h a t the elemints o f (f)
matrix i s a L a t i n square. F u r t h e r e a s i l y shows.
and
K:
ij
Hj
appearing on
appearing on t h e and
K! occupy
J
i t f o l l o w s immediately t h a t t h e r e s u l t i n g
8
i s d o u b l y d i a g o n a l as t h e c o n s t r u c t i o n
333
Doubly Diagonal Orthogonal Latin Squares Observing t h a t
has p r o p e r t i e s which a r e analogous t o ( e ) and ( f ) we can
exchange elements i n
c
B
as we d i d i n d e r i v i n g
A”
from
A
d o u b l y d i a g o n a l L a t i n square ( d ) . Hence
8
and
8
which i s o r t h o g o n a l t o
are p a i r o f
and t h u s o b t a i n
R
a
because o f p r o p e r t y
DDOLS(3k).
EXAMPLE. S i n c e f o r each r s 2 t h e r e e x i s t s a p a i r o f DDOLS(2r) s a t i s f y i n g t h e h y p o t h e s i s o f t h e p r e v i o u s Theorem, we have t h a t f o r each r 3 2 we can c o n s t r u c t a p a i r o f DDOLS(3-2r). ACKNOWLEDGEMENTS. Work done w i t h i n t h e sphere og GNSAGA o f CNR, p a r t i a l l y s u p p o r t e d by MPI. REFERENCES J.Denes and A.D.Keedwel1, New York, 1974).
L a t i n squares and t h e i r A p p l i c a t i o n s (Academic Press
W.D.Wallis and L.Zhu, Four p a i r w i s e o r t h o g o n a l d i a g o n a l L a t i n squares o f s i d e 12, U t i l . Math. 21 (1982) 205-207. K . H e i n r i c h and A . J . H i l t o n , Doub1.y d i a g o n a l o r t h o g o n a l L a t i n squares, D i s c r . Math. 46 (1983) 173-182.
This Page Intentionally Left Blank
Annals of Discrete Mathematics 30 (1986) 335-338 0 Elsevier Science Publishers B.V. (North-Holland)
335
ON THE MAXIMAL NUMBER OF MUTUALLY ORTHOGONAL F-SQUARES
Consolato PELLEGRINO and N i c o l i n a A. MALARA D i p a r t imento d i Ma tema ti ca V i a Campi, 213/B 41 100 MOOENA ( ITALY)
I n t h i s paper we pi-ov t h a t t h e upper bound, g i v e n by Mandeli and Lee and Federer 131 f o r t h e number t o f orthogonal squares, a l s o h o l d s f o r F1(n;xl), F2(n;;x2), ... , Ft(n;ht) x 1 ,ml 1 9 t h e number t o f o r t h o g o n a l F1(n;x1,1,x1,2 F*("12,1 ,A*,2'* *. J ~ , ~ ~ , Ft(n;ht,l,xt,2 L ,A t,mt 1 squares.
,...,
...
1
-
,...
DEFINITIONS AND PRELIMINARY RESULTS
Hedayat and Seiden, i n c o n n e c t i o n w i t h some r e s u l t s b y o t h e r a u t h o r s , g i v e i n 111 a g e n e r a l i z a t i o n o f t h e concept o f l a t i n square: t h e c o n d i t i o n t h a t each element appear e x a c t l y once i n each row and i n each column i s s u b s t i t u t e d b y t h e c o n d i t i o n t h a t each element appear one and t h e same f i x e d r l u m b e r o f t i m e s i n each row and i n each column. They c a l l such squares frequency-square o r s h o r t l y F-squares. More p r e c i s e l y t h e y g i v e t h e f o l l o w i n g d e f i n i t i o n : DEFINITION 1.
...,am 1 .
Let
L
We say t h a t
write briefly
A
k.':J 1
F =
m a t r i x d e f i n e d on a
i f f o r each
times
Ak
nxn
F-square o f t y p e
,..., A,,,),
F(n;xl,x2
appears p r e c i s e l y
i s an
F
a
b
,..., A),
(n;xl,x2
k=1,2,.
A = Ial,a2,
m-set
..,m
and we
t h e element
ak
of
i n each row and i n each column o f
ik 2 1)
F
.
A ~ = X ~. .== A. = A t h e n m i s determined u n i q u e l y by n and h , m hence we s i m p l y w r i t e F(n;A) Note t h a t an F ( n ; l ) square i s s i m p l y a l a t i n I t i s easy t o prove t h a t an F(n;Al,x 2,...,hm) square of o r d e r n square e x i s t s m
In particular i f
.
.
i f and o n l y i f & X i = n
I n [l; Hedayat and Seiden a l s o e x t e n d t o F-squares t h e c o n c e p t o f o r t h o g o n a l i t y o f l a t i n squares t h r o u g h t h e f o l l o w i n g d e f i n i t i o n s : DEFINITION 2.
Given an F(n;xl,A 2 2 ' . . . , A
and
,...,p s )
F2(n;p1,p2
i s orthogonal t o the p a i r each
(ui,v.)
J=1,2,
J
F 2 , and w r i t e of
UxV
Ai
Let
F-square o f t y p e
be a
(n;xi ,1
i s a set o f
i p j , i,j=1,2
on a F1
appears
r
)
square on a
s-set
r-set
U = {u,,u2,.,.,ur}
,...,v S I ,
V = {vl,v2
we say t h a t
1.F2
, i f upon s u p e r i m p o s i t i o n o f
xipj
times, f o r each
i=1,2,
F,
F1 on and f o r
...,r
5
...,s .
OEFINITION 3.
, ,.,Ft
square
,..., t.
t
m.-set,
, A ~,2,.
1
.
i=1,2
"i ,mi )
,...,t.
on t h e s e t
Fi
be on
We say t h a t
F,,F2,
F o r each
Ai
mutually (pairwise) orthogonal
.
i, l e t
F-squares i f
FiLFj
,
C. Pellegrino and N. A . Malara
336
Hedayat, Raghavarao and Seiden proved t h a t the maximal number o f mutually I n [2] orthogonal F(n;x) squares i s (n-1) 2/(m-1) , where m=n/A. I n [3] Mandeli, Lee and Federer proved t h a t the maximal number t o f mutually orthogonal , Ft(n;xt) squares (where f o r each i = l y 2a...,t Fi i s F1(n;;X1), F2(n;;x2), defined on a mi-set and n=himi) s a t i s f i e s the i n e q u a l i t y
...
2.
ON THE MAXIMAL NUMBER OF MUTUALLY ORTHOGONAL F-SQUARES
I n analogy t o THEOREM. Let
we prove the f o l l o w i n g
[3]
...,h Z a m 2 ) , ... ,
F l ( ~ ; ~ l , l y h l , 2 a . . . a ; x l , m l ), F2(n;;x2,1,h2,2y
Ft(n;;xtal,xt,2,...,A
)
be
t
mutually orthogonal
tamt
i = l a 2 ,...,t Fi i s defined on the mi-set number t s a t i s f i e s t h e i n e q u a l i t y t
‘&mi
-t5
Ai
F-squares, where f o r each mi and n = xi,j Then t h e
&
.
.
(n-1) 2
1=
Proof. From Fh(n;;xh,lyhh,2y...yx ) we d e f i n e a n2 xmh m a t r i x Mh = [a:ja,], hamh where ah -1 i f the k - t h symbol o f Ah occurs i n the c e l l ( i , j ) ( i a j = l , 2 , ij,kn ) o f Fh and 0 otherwise. L e t M = [MlIM21 . I M t ] . By the property o f the
...,
..
(n-1) 2t 1 and
F-squares, the number o f l i n e a r l y independent rows i n M i s a t most so we o b t a i n
Now, we can w r i t e the product o f t h e transpose o f
M’M
=
L2Jm xm L~ 2 1
L2N2
M with
...
M i n t h i s manner:
2 Jm2xmtLt
:~ I
where
Li =
’
[ U ~ , ~ J( i = l y 2 y , . . a t )
,...,
i s a diagonal m a t r i x o f order
mi w i t h
urlr= i
f o r each r=1,2 mi, Ni = [nk,s] i s a diagonal m a t r i x o f order mi i nr,r = n f o r each r=1,2, ...ami i s a m a t r i x o f s i z e mixm and Jmixmj j ( i ,j=1,2,. ,t) w i t h the element 1 everywhere.
with
..
Maximal Number of Mutually Orthogonal F-Squares
337
Let
Om2xml
*..
L2
- J1
...
Lt
where
i s the matrix o f size
Omixm
j
everywhere.
As
A.
.#O,
-
JmtxmlL1
The e i g e n v a l u e s o f t
t- (mi-1) GT
and
t-1
are
M
.
(iyj=lyZ
1 . l
i s i n v e r t i b l e and t h e m a t r i x
A
1 ,J
as t h e m a t r i x
,..., t )
m.xm.
tn,
Jmtxm2L2
n
and
0
*
*
w i t h t h e element
M'M
*
0
has t h e same rank
Nt
j! .
with respective m u l t i p l i c i t i e s
1
,
Then t
1 +
(mi-1)
= rank(M) = rank(M'M) =
t rank(#) Hence
5 m i n { (n-1)
t
mi
-
t
1=
When
...=
XiYl=Xiy2=
and Federer
[3]
.
1.
i,m.
...
i
(i=1,2,
..., t )
. we have t h e r e s u l t b y Mandeli, Lee
Furthermore, t h e p r e v i o u s theorem suggests t h a t we c a l l a s e t
of m u t u a l l y o r t h o g o n a l
A~,,,~),
=A 1
< (n-1) 2
F-squares
Ft(n;;h t,l,~t,2,,.,y~t,mt)
F1(n;;xl ,l,;xl
y2
,...,A,,,,~),
a complete s e t i f
F2(n;;x2,1yx2,2y...y
338
C. Pellegrino and N . A . Malara
where
n=hiYl+xiy2t
...+x. ,mi 1
(i=l,2,.
.., t ) .
ACKNOWLEDGEMENTS. Work done w i t h i n t h e sphere o f GNSAGA o f CNR, p a r t i a l l y supported by M P I
.
REFERENCES (1
1
A.Hedayat, E.Seiden, F-squares and o r t h o g o n a l F-squares design: a g e n e r a l L z a t i o n o f l a t i n square and o r t h o g o n a l l a t i n squares design; Ann. Math. S t a t i s t . 41 (1970) 2035-2044.
121 A.Hedayat,
D.Raghavarao, E.Seiden, F u r t h e r c o n t r i b u t i o n s t o t h e t h e o r y of F-squares design, Ann. S t a t i s t . 3 (1975) 712-716. W.T.Federer, On t h e c o n s t r u c t i o n o f o r t h o g o n a l Fsquares o f o r d e r n f r o m an o r t h o g o n a l a r r a y (n,k,s,2) and an OL(s,t) s e t , J. S t a t i s t . Plann. I n f e r e n c e 5 (1981) 267-272.
131 J.P.Mandoli ,F.C.H.Leey
Annals of Discrete Mathematics 30 (1986) 339-346 0 Elsevier Science Publishers B.V. (North-Holland)
339
CARTESIAN PRODUCTS OF GRAPHS AND THEIR CROSSING NUMBERS Giustina Pica
+
D i p a r t i m e n t o d i Matematica e A p p l i c a z i o n i U n i v e r s i t a d i N a p o l i , Naples, I t a l y Tomat P i s a n s k i
++
Oddelek za Matematik0,Univerza v L j u b l j a n i L j u b l j a n a , Yugoslavia A l d o G.S.Ventre
+
I s t i t u t o d i Matematica,Facolta d i A r c h i t e t t u r a U n i v e r s i t a d i N a p o l i , Naples, I t a l y
Kainen and White have determined e x a c t c r o s s i n g numbers o f some i n f i n i t e f a m i l i e s o f graphs. T h e i r process uses r e p e a t e d C a r t e s i a n p r o d u c t s o f r e g u l a r graphs. I t i s shown how t h i s process can be s u b s t a n t i a l l y g e n e r a l i z e d y i e l d i n g e x a c t c r o s s i n g numbers and bounds f o r v a r i o u s f a m i l i e s o f graphs.
INTRODUCTION
I n t h i s paper graph embeddings and i m n e r s i o n s a r e s t u d i e d . I n o r d e r t o keep i t s h o r t we a d o p t s t a n d a r d d e f i n i t i o n s o f t o p o l o g i c a l graph t h e o r y t h a t can be found, say i n [ 2,3,4,5,13] . U s u a l l y o n l y normal imnersions o f graphs i n t o s u r f a c e s a r e considered, i . e . imnersions i n which no two edges c r o s s more than once and no edge crosses i t s e l f . I n p a r t i c u l a r , t h i s means t h a t two edges t h a t a r e a d i a c e n t do n o t c r o s s . We r e q u i r e i n a d d i t i o n t h e i m n e r s i o n t o be a 2 - c e l l immersion which means t h a t t h e complement o f t h e immersed graph i s a d i s j o i n t u n i o n o f open d i s k s ( 2 c e l l s ) and t h a t t h e r e e x i s t s a s e t o f edges t h a t can be removed f r o m t h e immersed graph i n o r d e r t o o b t a i n a 2 - c e l l embedding o f i t s spanning subgraph i n t o t h e same s u r f a c e . The connected components o f t h e complement o f t h e immersion a r e c a l l e d faces. I n a 2 - c e l l i m n e r s i o n o r embedding a l l f a c e s a r e open d i s k s . A f a c e i s s a i d t o be p a r t i a l i f i t has a t l e a s t one c r o s s i n g p o i n t on i t s boundary o t h e r w i s e i t i s s a i d t o be t o t a l . We w i l l make use o f t h e d e f i n i t i o n o f an ( s k)-embedding o f 1 1 1 t h a t we r e p e a t here f o r convenience ( s e e a l s o [ l o ] and 1125).
[
A 2 - c e l l embedding o f a graph G i n t o a s u r f a c e S i s s a i d t o be an (s,k)-embedding i f we can p a r t i t i o n t h e s e t o f f a c e s o f t h e embedding i n t o s+l s e t s F1yF2y,..,FS,R i n such a way t h a t t h e boundary o f each s e t Fi, l(i(s, i . e . t h e u n i o n o f boundar i e s of faces b e l o n g i n g t o F i s an even 2 - f a c t o r o f G, i . e . a spanning subgraph i’ o f G c o n s i s t i n g o f c y c l e s o f even l e n g t h s ; f u r t h e r m o r e , k o u t o f t h e s 2 - f a c t o r s c o n s i s t o f q u a d r i l a t e r a l s o n l y and a l l f a c e s o f R ( i f t h e r e a r e any) a r e q u a d r i l a t e r a l s . R i s c a l l e d t h e s e t of r e s i d u a l f a c e s and may be empty. I f k=s we a r e dea-
340
G. Pica. T. Pisanski and A. C.S. Ventre
l i n g w i t h q u a d r i l a t e r a l embedding. I f G has no t r i a n g l e s t h e embedding i s a l s o m i nimal, y i e l d i n g t h e genus o r n o n o r i e n t a b l e genus o f G (depending on t h e o r i e n t a b i l i t y t y p e o f S), see [Ill L e t G I have an (s,k)-embedding i n t o S ' and l e t G2 have an (s,k)-embedding i n t o S " . We say t h a t t h e two (s,k)-embeddings agree i f t h e r e e x i s t s a b i j e c t i o n between t h e v e r t e x s e t s o f G and G w h i c h induces a b i j e c t i o n 1 2 o f a l l s sets o f nonresidual faces.
.
Example 1 . P a r t ( a ) o f F i g u r e 1 shows an (1,O)-embedding o f K -2K2 i n t o t h e sphere. The o u t e r f a c e i s hexagonal and t h e r e a r e two r e ~ i d u a 1 ~ ' ~ f a c e Ps a. r t ( b ) of F i g u r e 1 shows an (l,O)-embedding of K i n t o t h e p r o j e c t i v e plane. There i s one hexagonal f a c e and t h r e e r e s i d u a l 3 9 3 f a c e s . The two ( 1 ,D)-embeddings agree, which i s shown by an a p p r o p r i a t e numbering o f v e r t i c e s i n b o t h graphs.
(b)
Figure 1 An i m n e r s i o n o f a g r a p h G i n t o a s u r f a c e S i s s a i d t o be an (s,k,c,e)-immersion if i t i s a 2 - c e l l immersion w i t h c c r o s s i n g p o i n t s and i t . i s p o s s i b l e t o o b t a i n a n (s,k)-embedding o f a spanning subgraph H o f G i n t o S by removal o f e edges, and by removal o f any e-1 edges t h e r e remain some c r o s s i n g p o i n t s ( e i s m i n i m a l ) . H i s s a i d t o be a reduced graph o f t h e (s,k,c,e)-immersion o f G. L e t G have an (s,k,c,e) i n t o S ' . We say t h a t t h e two immer-immersion i n t o S and an (s,k,c',e')-immersion s i o n s agree, i f t h e c o r r e s p o n d i n g (s,k)-embeddings o f reduced graphs agree. The f o l l o w i n g examples h e l p e x p l a i n t h e above d e f i n i t i o n s . Example 2. F i g u r e 2 r e p r e s e n t s p l a n a r (1,0,3,2)-immersion of K , The reduced graph and i t s (l,O)-embedding i s d e p i c t e d o n , F i g u r e l ( a ) . Note 3 y 3 t h a t t h e immersions o f K on F i g u r e s 2 and l ( b 1 agree. 3,3 The f o l l o w i n g two examples were f i r s t used by Kainen [6,7] and Kainen and White[9]. Example 3. P a r t ( a ) o f F i g u r e 3 shows an (1,1,4,4)-immersion of K i n t o the sphere. I f t h e edges 1-6, 2-7, 3-8, and 4-5 a r e removed a ( 3 , 3 ) - e m f j d d i n g w h i c h i s o f course a l s o an (1,l)-embedding of t h e 3-cube graph Q i n t o t h e sphere r e 3 s u l t s ; see F i g u r e 3(b). P a r t ( c ) o f F i g u r e 3 r e p r e s e n t s t h e well-known genus i n t o t h e t o r u s which i s a (4,4)-embedding. embedding o f K 494
34 I
Cartesiati Products of Graphs 2
1
6
3
4
5 Figure 2
N o t e t h a t i m m e r s i o n s on F i g u r e s 3 ( a ) and 3 ( c ) a g r e e as (1,1,4,4)i m m e r s i o n s , as t h e y have f a c e s 1-2-3-4 a n d 5-6-7-8 i n comnon.
(C)
Figure 3
and (l,l,O,O)-
342
G. Pica, T. Pisanski and A.G.S. Ventre
Example 4. F i g u r e 4 ( a ) r e p r e s e n t s a (2,2,8m - 8,4)-immersion o f t h e C a r t e s i a n product C x C 4 i n t o t h e sphere f o r t h e case m = 3. P a r t s ( b ) and ( c ) o f F i g u r e 2m analogous t o p a r t s ( b ) and ( c ) o f F i g u r e 3. Namely, by removing 4 are a p p r o p r i a t e f o u r edges A-B, C-0, E-F, and G-H we o b t a i n a p l a n a r , r e s dual ( 3 , 3 ) embedding o f PPm x C4 (which i s o f course a l s o a ( 2 , 2 ) - and even ( 1 , 1 -embedding) as d e p i c t e d by Figure 4(b). F i n a l l y , Figure 4(c) represents the f a m i l i a r t o r o i d a l (4,4)-embedding o f C 2m x C4. Note t h a t ( a ) and ( c ) agree as 1,1,8m - 8,4) - and ( 1 , I ,O,O)- immersions (and n o t as (2,2,p,q)immersions f o r any P and 4). R e c e n t l y Beineke and Ringeisen have shown [ I ] t h a t c r ( C x C ) = 2m. T h i s means m 4 t h a t t h e immersion o f F i g u r e 4 ( a ) i s f a r from o p t i m a l .
Cartesian Products of Graphs
343
Figure 4 CONSTRUCTION OF IMMERSIONS When d e a l i n g w i t h c r o s s i n g numbers on s u r f a c e s t h e f o l l o w i n g two c o m b i n a t o r i a l i n v a r i a n t s a r e handy. d (G) = q k Jk(G) = q
-
g(p g(p
-
2(1 - k))/(g 2 + k)/(g
-
-
2)
2)
Here p denotes t h e number o f v e r t i c e s , q denotes t h e number o f edges, and g denot e s t h e g i r t h o f G.In b o t h cases k i s a n o n n e g a t i v e i n t e g e r r e p r e s e n t i n g i n t h e f i r s t case t h e ( o r i e n t a b l e ) genus and i n t h e second case t h e n o n o r i e n t a b l e genus o f some s u r f a c e . They a r e sometimes c a l l e d E u l e r d e f i c i e n c i e s as t h e y r e f e r t o t h e graph and t h e s u r f a c e , and o n l y t h e E u l e r c h a r a c t e r i s t i c o f t h e s u r f a c e i s i n v o l ved. They were i n t r o d u c e d b y Kainen. The o r i e n t a b l e v e r s i o n was i n t r o d u c e d i n [ 6 ] w h i l e t h e n o n o r i e n t a b l e one was d e f i n e d i n [ 8 ] and l a t e r used by Kainen and White [ 9 1 E u l e r d e f i c i e n c y t e l l s us t h e number o f s u p e r f l u o u s edges which o b s t r u c t t h e embedding o f a graph i n t o t h e s u r f a c e . The P o l l c w i n g lemma shows how E u l e r def i c i e n c i e s serve as l o w e r bounds f o r c r o s s i n g numbers c r ( G ) and Cr (G). k k Lemma 5.
.
crk(G)>dk(G)
and
Zk(G)>dk(G).
.
F o r p r o o f o f t h e o r i e n t a b l e case see [ 6 ] The n o n o r i e n t a b l e case i s e s s e n t i a l l y To o b t a i n an upper bound f o r t h e c r o s s i n g number we t h e same; see a l s o [8,9] need t h e f o l l o w i n g lemna.
.
Lemma 6, L e t G be a connected graph w i t h p v e r t i c e s and q edges. I f G a d m i t s a n o r i e n t a b l e (s,s,c,e)-immersion, t h e n c r (G),
3 44
G.Pica, T.Pisanski and A.G.S. Ventre
P r o o f . By removal of e edges we o b t a i n i n b o t h cases a q u a d r i l a t e r a l embedding o f t h e reduced subgraph H. T h e r e f o r e t h e s u b s c r i p t k ( h ) corresponds t o t h e genus ( n o n o r i e n t a b l e genus) o f t h e s u r f a c e i n which t h e immersion o f G and t h e embedding of H takes p l a c e . Since t h e r e a r e c c r o s s i n g p o i n t s t h e statement o f Lemma f o l l o w s . The f o l l o w i n g lemma w i l l h e l p us t o f i n d graphs w i t h (s,s,c,e)-immersions, namely t h e C a r t e s i a n p r o d u c t s o f o t h e r graphs. These w i l l be t h e graphs f o r w h i c h Lemmas 5 and 6 w i l l a p p l y y i e l d i n g l o w e r and upper bounds f o r t h e c r o s s i n g numbers. Lemma 7. L e t G and H be two connected graphs and 0 1 , s>,k)O two i n t e g e r s . L e t t h e r e e x i s t a p r o p e r edge c o l o r i n g o f H u s i n g a t most s c o l o r s such t h a t d o f t h e c o l o r s used determine d 1 - f a c t o r s o f H. L e t t h e r e be f o r each v e r t e x v o f H an (s,k,c e )-immersion o f G i n t o some s u r f a c e S(v). Furthermore, l e t a l l t h e i r m e r and E = x e Then t h e C a r t e s i a n p r o d u c t G x H s i o n s ” ’agree. D e f i n e C admits an (s+d, min(k+Zd ,s+d)y C,E)-immerxion i n t o some s u r f a c e T. (Here T i s o r i e n t a b l e i f and o n l y i f a l l s u r f a c e s S ( v ) a r e o r i e n t a b l e and H i s b i p a r t i t e . )
=xc
.
The p r o o f i s e s s e n t i a l l y t h a t o f Lemma 2.3 o f [II] and i s o m i t t e d . I n t u i t i v e l y , t h e c r o s s i n g p o i n t s do n o t i n t e r f e r e w i t h t h e argument used i n t h e p r o o f , as t h e y o c c u r o n l y i n t h e r e s i d u a l f a c e s and a l l embeddings o f G agree on a l l n o n r e s i d u a l faces. S t a r t i n g now w i t h graphs such as those o f Examples 1,2,3 and 4 and u s i n g repeatedl y Lemma 7 i t i s p o s s i b l e t o o b t a i n composite graphs t h a t s a t i s f y Lemma 6. I n some cases t h e upper bound o f Lemma 6 and t h e l o w e r bound o f Lemna 5 c o i n c i d e t o g i v e e x a c t c r o s s i n g number; see [9] f o r examples! CONSEQUENCES
I n t h i s s e c t i o n we a p p l y our lemmas t o o b t a i n bound f o r c r o s s i n g numbers and e x a c t c r o s s i n g numbers i n some s p e c i a l cases. i n t o a surface o f Theorem 8. I f a connected graph G admits an (s,s,c,c)-immersion genus k t h e n c r (GI = c if t h e s u r f a c e i s o r i e n t a b l e o r 5 (G) = c i f i t i s nonk h o r i e n t a b l e , where k= 1-p/Z+(q-e)/4 and h=Z-p+( q-e) /2. P r o o f . Combining Lemnas 5 and 6 we o b t a i n t h e i n e q u a l i t i e s e(cr (G)
Cartesian Products of Graphs
345
Note t h a t t h e r e s u l t o f Theorem 6 i n case o f G = K was o b t a i n e d a l r e a d y by K a i 1 nen and White [ 9 ] . Theorem 10. L e t G be an a r b i t r a r y connected b i p a r t i t e graph and l e t k),2 be an i n t e g e r . For each i n t e g e r n > d ( G ) - 1 and f o r each m such t h a t 0,<M2n t h e r e i s 4mGrg-m(C21. x Qnt2 where g i s t h e genus o f CZk x
x G)
<
8(k
-
l)m
,
x G.
P r o o f . S t a r t i n g w i t h immersions as i n F i g u r e 4(a,c) we c o u l d e a s i l y p r o v e b y i n d u c t i o n on n t h a t C 2k x Qn+2 a d m i t s an o r i e n t a b l e ( n t l ,n+l,8(k-1 )m,4m)-immersion p r o o f o f Theorem 9 we observe t h a t a l s o C and t h e n as i n t h e 2k 'n+2 a d m i t s an immersion o f t h e same type. By t h e o r i e n t a b l e p a r t of Lemmas 5 and 6 t h e r e s u l t f o l lows. Note t h a t b y t a k i n g k = 2 i n Theorem 10 we o b t a i n t h e i n e q u a l i t y : 4m\A ( G ) and f o r each m such t h a t 0(m<2n t h e r e i s 2m(Eg-m ( K 3,3 x Qn x G)( 3m, where g denotes t h e n o n o r i e n t a b l e genus o f K3,3 x Qn x G. P r o o f . The p r o o f i s e s s e n t i a l l y t h e same as t h a t o f Theorem 9 t h a t i s by i n d u c t i o n on n. The b a s i s o f i n d u c t i o n i s p r o v i d e d by F i g u r e l ( b ) and F i g u r e 2. A s m
I ] L.W.Beineke and R.D.Ringeisen,
[ 21 [ 31
[ 41 [ 53 [6]
[ 71
On t h e c r o s s i n g numbers o f p r o d u c t s o f c y c l e s and graphs o f o r d e r f o u r , J.Graph Theory 4 (1980) 145-155. R.K.Guy, C r o s s i n g numbers o f graphs, i n "Graph Theory and A p p l i c a t i o n s " , L e c t . Notes i n Mathematics 303 (ed. Y.Alavi, e t a l . ) , S p r i n g e r - V e r l a g , B e r l i n , Heid e l b e r g , New York, 1972, 553-569. R.K.Guy and T.A.Jenkyns, The t o r o i d a l c r o s s i n g number o f K J.Combinatoria1 n ,my Theory 6 (1969) 235-250. M.Jungerman, The n o n - o r i e n t a b l e genus o f t h e n-cube, P a c i f i c J.Math. 76 (1978) 443-451. P.C.Kainen, Embeddings and o r i e n t a t i o n s o f graphs, i n " C o m b i n a t o r i a l S t r u c t u r e s and t h e i r A p p l i c a t i o n s " , Gordon and Breach, New York, 1970,193-196. P.C.Kainen, A l o w e r bound f o r c r o s s i n g numbers o f graphs w i t h a p p l i c a t i o n s t o and Q(d), J.Combinatoria1 Theory B 12 (1972) 287-298. Kn*Kp,q P.C.Kainen, On t h e s t a b l e c r o s s i n g numbers o f cubes, Proc. Amer.Math.Soc. 36 (1972) 55-62.
[8] P.C.Kainen, Some r e c e n t r e s u l t s i n t o p o l o g i c a l graph t h e o r y , i n "Graphs and Combinatorics", Lect.Notes i n Mathematics 406 (ed. R.A.Bari and F.Harary) ,
G.Pica, T. Pisanski and A.G.S. Ventre
346
Springer-Verlag, B e r l i n , Heidelberg, New York, 1973, 76-108. C 91 P.C. Kainen and A.T. White, On s t a b l e c r o s s i n g numbers, 3 . Graph Theory 2 (1978) 181-187. [ l o ] T. Pisanski, Genus of Cartesian products o f r e g u l a r b i p a r t i t e graphs, J. Graph Theory 4 (1980) 31-42. C111 T. Pisanski, Nonorientable genus o f Cartesian products o f r e g u l a r graphs, J Graph Theory 6 ( 1 982) 391 -402. C121 G. Pica, T. Pisanski and A.G.S. Ventre, The genera o f amalgamations o f cube graphs, Glasnik Mat. 19 (39) (1984) 21-26. C131 A.T. White, Graphs, groups and surfaces, North-Holland, Amsterdam, London, 1984.
.
t
Work performed under t h e auspices of CNR-GNSAGA.
t+
The author was p a r t i a l l y supported by 6. K i d r i E Fund, Slovenia, Yugoslavia.
Annals o f Discrete Mathematics 30 (1986) 347-354 @ Elsevier Science Publishers B.V. (North-Holland)
AND
OVOIDS
347
CAPS
Giuseppe
1. -
INTRODUCTION
Let
(S,YJ
Y a
family of
IN
T a l l i n i (Roma)
be a l i n e a r s p a c e , t h a t is a s e t parts
in
SPACES
PLANAR
whose elements we c a l l p o i n t s ,
S
, whose elements we c a l l l i n e s , such t h a t any
S
l i n e h a s a t l e a s t two p o i n t s and two d i s t i n c t p o i n t s are c o n t a i n e d i n j u s t one
(S,p) i s a s u b s e t
l i n e . A subspace i n x f y
S‘
in
, t h e l i n e j o i n i n g them belongs t o
S’
i n t e r s e c t i o n of s u b s p a c e s i n
.
x,yES‘ ,
such t h a t f o r any
S
Obviously t h e s e t t h e o r e t i c a l
i s a s u b s p a c e , s o t h a t t h e f a m i l y o f sub-
(S,yj
s p a c e s is a c l o s u r e system.
9
Suppose a f a m i l y every JZ E points
there
planar
o n l y one element
is
,
9
t h e elements of
of
.
.p
are called
. Straightforward
planes
examples n 23 ,
s p a c e s a r e : t h e a f f i n e o r p r o j e c t i v e s p a c e s o f dimension
n 2 3 , [HI
any s u b s e t
H
= PG(n,q)
, w i t h r e s p e c t t o t h e i n t e r s e c t i o n s of
H
l i n e s and p l a n e s having t h r e e independent p o i n t s of
9 ‘ of
t h e f o l l o w i n g : c o n s i d e r a whatever f a m i l y
, n
2 4
H
.
and
PG(n,q)
9 the
w i t h its s e c a n t
A f u r t h e r example i s
d-dimensional
each o f them n o t b e l o n g i n g t o any
f a m i l y of l i n e s i n
PG(n,q)
. The
PG(n,q) ,
in
, two by two meeting i n a t most one l i n e , l e t
family of planes i n S = PG(n,q)
is c a l l e d
(S,&?,p)
The t r i p l e
w i t h r e s p e c t t o t h e i r l i n e s and t h e i r p l a n e s ;
PG(n,q)
19 1 2 2 ,
e x i s t s such t h a t
(S,Y)
c o n t a i n s t h r e e independent p o i n t s and through t h r e e independent
planar space of
of subspaces i n
subspaces i n
9’’ be SdE
triple
the
9‘. Set
(S,y$%p?q’?
is a p l a n a r s p a c e . Let
(S,x9) be a p l a n a r s p a c e . We d e n o t e
t h r e e by t h r e e n o t c o l l i n e a r . We c a l l (1.1)
Given any p o i n t lines t o
51
PE
through
a
cap H
ovoid
in
in (S,L?,!?)
a s e t of points
(S,z%
a cap
9
such t h a t :
t h e s e t t h e o r e t i c a l union o f t h e t a n g e n t P
is a s u b s p a c e Z p
&I
(S,a
such t h a t
G. Tallini
348 every plane through
space In
the
Z
P
P
not i n
meets Z i n a l i n e . The P P is c a l l e d t a n g e n t s p a c e t o through P 5
a
f o l l o w i n g we
h a v e t h e same s i z e
suppose
k23
,
that
the
lines
.
the planar
of
and t h e p l a n e s h a v e t h e same s i z e
(S,Y,y)
space v
,
t h a t is:
(1.2)
(S,a
Then
p’denotes If
R
is a S t e i n e r s y s t e m
the s e t of lines in
,
S(2,k,V)
IS1 = V
JT , (JT,
and for any
is a S t e i n e r system
d e n o t e s t h e number o f l i n e s t h r o u g h a p o i n t o f
t h e number of l i n e s t h r o u g h a p o i n t o f
R
(1.3)
,
= (V-l)/(k-l)
, it
(JT,%)
r
€9, if
J-C
S(Z,k,v)
r
and
(S,Y)
,
is
is:
= (v-l)/(k-l)
,
moreover : (1.4) If
s
= V(V-l)/k(k-1)
lyd
,
= v(V-l)/k(k-l)
i s t h e number o f p l a n e s t h r o u g h a l i n e i n s = (V-k)/(v-k)
(1.5)
.
( S ? g q ) , we e a s i l y o b t a i n
(R-l)/(r-l)
=
C o u n t i n g i n two d i f f e r e n t ways t h e number of p a i r s c o n s i s t i n g of a p l a n e J-C and a l i n e t h r o u g h i t , w e h a v e :
/.!??I la
1 4s ,
=
t h a t i s (see ( 1 . 4 ) , ( 1 . 3 ) ,
(1.5)):
1 9 1
(1.6) If
= V(V-l)s/v(v-l)
= VHs/vr = V R ( R - l ) / v r ( r - l )
l.ypl i s t h e number o f p l a n e s t h r o u g h a p o i n t
P
,
.
c o u n t i n g i n two d i f f e r e n t
ways t h e number of p a i r s e a c h of them c o n s i s t i n g o f a p l a n e t h r o u g h l i n e on i t n o t t h r o u g h
P
,
l ~ p l ( [ y J - C=l - r1YI-R ) ,
we obtain:
P
and a
t h a t is (see
(1.4),(1.3),(1.5)):
Iqp1= ( V - l ) ( V - k ) / ( v - l ) ( v - k )
(1.7)
If
=
(s,Y’,~)i s a p l a n a r s p a c e s a t i s f y i n g
Theorem 1.
-
If
in a
= PG(3,q) odd, an o v o id i n
(S,y,.!??)
Rs/r = R(R-l)/r(r-l)
(1.2),
an ovoid
we p r o v e :
a
e x i s t s , i t is
is an e l l i p t i c quadric i f PG(3,q)
, if
q
.
is e v e n .
q = k-1
(S,y,a=
&
Ovoids and Caps in Planar Spaces
- Let
Theorem 2 .
be a
H
r
If -
(S,SP) ,
h-cap o f a p l a n a r s p a c e
, r
h<.R+l
(1.8)
349
r
is even, o r if
Then:
odd.
i s odd a n d
1n76Hl
# r+l
f o r any
E.9, we h a v e : (1.9)
,
hlR-s+l the equality holds i f f
i f f (S,xfl = Theorem 3.
-
n >1
i s a n o v o i d , t h a t i s ( s e e Theorem 1)
H
.
PG(3,q)
(S,Zy)
If i n a p l a n a r s p a c e
,
H
divides
r-m
e q u a l i t i e s holding i f f
(Sz,.q)
o f a prime i n
@
W e remark t h a t ,
PG(d,q)
r
if
, Moreover
s-1
n = q
is o d d , a
,
PG(d,q)
=
(0,n)
m = (r-l)/n
with respect to l i n e s e x i s t s , then
a n i n t e g e r and
of type
,
m u s t be
,
n
the
i s t h e cowplement
H
.
(R+l)-cap
in
i s a s e t of t y p e
(S,y,p)
(0,2), s o by Theorem 3 , we h a v e :
-
Theorem 4 .
If -
- OVOIDS
Let P
(1.8) e q u a l i t y h o l d s ,
Sz
at
(S,Y,*q) s
is
3t (7
either
through
@
and t h e c a p
.
(S,y,% s a t i s f y i n g
r-1
to , tl , tr
P # Q ) , s o it meets
l i n e s through
and s o exterior,
InnfiI
P =
or t a n g e n t ,
I
PQ):
[
I
( 1 . 2 ) . If
P,QE
does n o t belong t o t h e tangent
PQ
Q E 3t and
t h e number o f p l a n e s t h r o u g h
(2.1) Let
n
P (because
It follows t h a t t h e
a r e secant of
PG(d,2)
= 2
(S,6qty)
IN
, any p l a n e
to
f MCD(s-l,(r+l)/Z)
( S , y + V ) = PG(d,2)
then
be a n ovoid i n a p l a n a r space
# Q
rp
.
s-1
is t h e complement o f a p r i m e i n
H
2.
i n (1.8) t h e e q u a l i t y n e v e r h o l d s i f
is o d d ,
does not divide
(r+1)/2 in
r
=
in
.
r
JT
in a line P , d i f f e r e n t from C '
a,
space t
t
P
,
P '
I t follows t h a t every plane of
or
r-secant
to
fi
and
(being
s(r-2)+2 , i . e . by ( 1 . 5 ) :
= R-s+l
.
b e t h e numbers of e x t e r i o r , t a n g e n t a n d
r-secant planes t o
G. Tallini
350
s1 respectively. We have (see (1.6),(2.1)5(1.7)):
(2.2ll is obvious. (2.2) and (2.2) follow by computing in two different ways 2
3
a
the pairs consisting of a point of
fi
and a plane through it and two points of
and a plane through them. By (2.2) we have (see (1.5)):
(2.3)
=
(R-s+l)(R-s)s/r(r-l)
t
=
t 0
=
(R-s+l)s(s-l)/r(r-l) 2 (s/r)[(V/v)R + s - (R+l)s]
1
Being
t 20 0
,
2
vcs
V
By (1.3) it is
By (1.5) we have
(k-l)R+l
=
s-1
;
-
, R-s
(R-r)/(r-l)
=
2
,
(r-1) /(R-r)> 0
PG(n,q) n-1
I
,
n 23
,
= (rR-2Rtl)/(r-l)
= r-2
and
a
2
+ (r-1) /(R-r)
k > , r , so
by (2.6) it is
9 is a projective plane of order
a Galois space
.
whence we have
R-s):
k - 1 2 ER(r-2)+l]/(R-r)
(2.6)
+ VR2 0
s(R+1)]
v = (k-l)r+l , whence we obtain:
(see also (2.5) and dividing it by
in
.
by (2.3) we have: 3
(2.4)
Being
, ,
t
q = k-1
is a
k
=
r
,
and every plane JG
.
It follows that (S,zrzq.% is n-1 (q t1)-cap in PG(n,q) (being
n-2
= R-s+l =
qi + 1 = q
qi -
i=O
n-1
+ 1). It is known (see [5])
that in
i=O
n-1 PG(n,q) , n > 4 , ( q +l)-caps don't exist, whence 2 (q tl)-cap in PG(3,q) So Theorem 1 i s proved.
n
=
3
and
is a
.
3.
-
Let
CAPS
H
IN
be a
(S,z.q)
h-cap in a planar space
n E 9 , n = IJGAH(L2
,
$7 n H
is a
n-arc in
( S , y , p ) satisfying (1.21. Given
. We
easily prove that:
351
Ovoids and Caps in Planar Spaces n s r + 1 ,
(3.1)
H
.
P,Q E H , P # Q
Let
a
n = r+l
(3.2)
in at most
H
has no tangent lines
By (3.1) each of the and
h < R + 1
,
(3
.
odd
planes through
s
P
points different from
r-1
r
3
, whence h
=
meet
PQ
I t 1 1 1 (r-l)s+2,
that is (see (1.5)): (3.3) the equality holding iff:
=
~ 9I , JdnHI22
J 7 E
,
I n n H I = r+l
so that, by (3.2): h = R+l
(3.4) @
H
0
has no tangent lines
H
F)
is of type ( O , r + l ) with respect to planes
Let us now suppose:
we remark rha-c, by ( 3 . 2 ) , (3.5) is fulfilled, if r
P f Q , by (3.5) and (3.11, each of the at most
points different from
r-2
P
s
is even. F o r any
planes through
and
(3
h l R-s+l
,
, whence
h
meets
PQ =
P,QEH , H
in
IH( S ( r - 2 ) s + 2
,
that is (see (1.5)): (3.6)
the equality holds iff
u n ~ @ [nnH122 , a
lnnql = r
,
that is: (3.7)
h
=
R-s+l e H
If (3.5) holds and a
=
s
,
there are just s
through
P , not in
fi
tangents to
H
z p , in a line. So
is an ovoid, by ( Z . l ) ,
h So Theorem 2 is proved.
=
/ H I = R-s+l
R-stl
F)
through
Jd
PQ
,J 7 nH
is
P , A s the number of planes through PO at
tangents by (3.7) is a subspace z
of such
=
s
with respect to planes.
, for any plane
R-s+l
r-arc having only one tangent at
is
H
h
is of class [O,l,r]
H
P H
. The
P of
( S a
set theoretical union meeting every plane
is an ovoid. Conversely, if
and (3.5) holds (see sect. Z ) , i.e.:
is an ovoid
.
G. Tallini
352 4. -
SETS
Let
OF
(0,n)
TYPE
s a t i s f y i n g (1.2). Let
S'
r'
be
(lS'l-l)/(k-l)
,
P
e n t from
t h e number S'
If w e s e t
( S S
lines
through
through
P
meets
SinH
JslnHI =
rl(n-1)
S' = S
,
or
VJGEY,
(4.3) is of t y p e
1
=
, H
(O,r(n-l)+l)
1nnHI
,
r e d u c e s t o a p o i n t , so i t is n o t
that
n = k-1
if
prime
n E pis
every
points differ-
of
(S,Y)
, H
.A
,
1
,
r(n-l)tl
n = k
. Therefore:
.
is t h e complement o f a s u b s p a c e
meeting any l i n e n o t b e lo n g in g t o
subspace
If
.
1
lo
=
2Snlk-1
(S,Y)
.
S'
with respect t o planes.
(4.4) We remark
+
+
( H I = R(n-1)
H
n-1
in
and
S ' = J'C r e s p e c t i v e l y i n (4.11, w e h a v e :
(4.2)
whence
a point in
0
S'nH f
such t h a t
of
(S,y,,fl
whence:
(4.1)
n
(s,2',.9)
IN
LINES
be a subspace o f
P E S ' n H , every l i n e i n
If
TO
RESPECT
be a s e t of type ( 0 , n ) with r e s p e c t t o l i n e s i n a planar space
H
=
WITH
i n a point.
S'
(S,y,.!?)
planar space
S'
in
We d e n o t e s u c h a proper , i f
is c a l l e d
t h e l i n e a r c l o s u r e o f w h a t e v e r t r i p l e t of i t s i n d e p e n d e n t p o i n t s .
We p r o v e : Theorem 5. -
(S,y,.!?)
type
exists,
(O,k-l)l
then
i s t h e complement o f a p r i m e
(S,2?,9)
in
=
PG(d,q)
.
H
PG(d,q)
of
&
H
I t follows t h a t a
p r o p e r p l a n a r s p a c e is a Galois s p a c e i f f i t c o n t a i n s a p r i m e . Proof point. the
in
S' Let
line 3t
= S-H
is a s u b s p a c e o f
P,Q€S'
PQ
meets
is p r o j e c t i v e ,
,
T E H
and
being
i.e.
. The
plane
proper.
(S,2',9)
PQ = S'nn
meeting any l i n e n o t i n
(S,a
Each o f
i n a point, so
(S,y,Y, =
PG(d,q)
joining
J'C
,
r = k with
the
S'
in a
meets
S'
in
l i n e s through
T
P,Q,T
r
and e v e r y p l a n e i n q = k-1
.
(S,zfl
Thus t h e t h e o r e m
is p r o v e d . Let
n
b e a n i n t e g e r s a t i s f y i n g ( 4 . 4 ) and
(see (4.3))
/nnHI
= r(n-l)+l
.
If
3t
P € n -H
E 9 such t h a t
,
3t
n H # 0 , i.e.
t h e number o f l i n e s t h r o i i g h
P
353
Ovoids and Caps in Planar Spaces in 3c ,
n-secant of 3cnH
m = (r-l)/n
hence
must
number of planes through (4.2),(1.5) and being
therefore It is
r-m
is
be an integer. If
1
meeting
s-1
n < r - m I r-1
,
whence
k = r
In fact, if
r-m
space
PG(d,q)
is
is an exterior line of
,
H
and
whence the contradiction
n 1 2 ) we should k> r
n = r-1 , but by (4.41,
so that every plane is projective. Then and
H , the
v = /Hl/(r(n-l)+l) , that is (by
(being m = (r-l)/n
the equalities hold iff
,
H
e
.
n+l > r ; by (4.4), k 2 n + l
have
u = (3cnHI/n , so that:
r-1 = mn) we have:
divides
.
r-m>n
,
is a set of type
.
So it is
r>k2n+l
,
(S,Y,YJ is a Galois
(O,k-lIl , that is the complement of
a prime. Thus Theorem 3 is completely proved.
REFERENCES
r_l]
F. Buekenhout, Une caract6risation des espaces affins bas6e s u r la notion de droite, Math. Z. 111 (19691, 367-371.
[ Z ]
F. Buekenhout et R . Deherder, Espaces linCaires finis B u l l . SOC. Math. Belg. 23 (1971), 348-359.
[ 3 ]
M.Hall, Jr., Automorphisms of Steiner triple systems, IBM J. Res. Develop. 4 (1960), 460-472 ( = Amer. Math. SOC. Proc. Symp. Pure Math. 6 (1962),47-66).
[ 4 ]
H. Hanani, On the number of lines and planes determined by Technion. Israel Inst. Tech, Sci. Publ. 6 (1954/5), 58-63.
Is]
G. Tallini,
Sulle
Q plans isomorphes,
d
points,
k-calotte di uno spazio lineare finito, Ann. Mat. (4)
42 (1956), 119-164.
[6j
G. Tallini, La categoria degli spazi di i-ette, 1st. Mat. Univ. L'Aquila, (1979/80), 1-25.
[ 7 ]
L. Teirlinck, On linear spaces in which every plane is either projective or affine, Geometriae Dedicata, 4 (1975), 39-44.
This Page Intentionally Left Blank
Annals of Discrete Mathematics 30 (1986) 355-362 0 Elsevier Science Publishers B.V. (North-Holland)
355
(k,n;f)-ARCS AND CAPS I N FINITE PROJECTIVE SPACES B. J . Wilson
Chelsea C o l l e g e U n i v e r s i t y of London 552 K i n g ' s Road London SWlO OUA
I n 5 1 some theorems which g e n e r a l i s e r e s u l t s o f d ' A g o s t i n i are g i v e n . Some p a r t i c u l a r examples o f ( k , n ; f ) - a r c s a r e d i s c u s s e d i n 52 a n d t w o i n f i n i t e classes are d e s c r i b e d i n 13. I n 14 t h e e x t e n s i o n o f t h e r e s u l t s of 5 1 t o h i g h e r dimensions is n o t e d . E.
1 . I n t h e p a p e r s of B a r n a b e i [ 2 ] and d ' A g o s t i n i [ 4 ] [ 5 ] a n a c c o u n t h a s been g i v e n of some r e s u l t s c o n c e r n i n g w e i g h t e d ( k , n ) a r c s i n f i n i t e and p a r t i c u l a r l y G a l o i s p l a n e s . These o b j e c t s a r e a l s o c a l l e d ( k , n ; f ) - a r c s i n [4] and [ 5 ] . I n t h i s n o t e w e a r e concerned w i t h e x t e n d i n g t h e work i n [ 5 ] . However w e f i r s t mention t h a t t h e i d e a of a w e i g h t e d ( k , n ) - a r c was o r i g i n a l l y proposed by M. T a l l i n i - S c a f a t i [16] and t h a t t h e theme of t h a t p a p e r , namely t h e embedding of t h e a r c i n a n a l g e b r a i c c u r v e was c o n t i n u e d by Keedwell i n 191 and [ l o ] .
We s h a l l work w i t h t h e d e f i n i t i o n of a w e i g h t e d a r c g i v e n i n [ 5 ] acknowledging t h a t t h e d e f i n i t i o n g i v e n i n [ I 6 1 i s e q u i v a l e n t and h a s p r i o r i t y . Thus w e a r e c o n c e r n e d w i t h a s e t K of k > 0 p o i n t s i n P G ( 2 , q ) t o e a c h p o i n t P of which i s a s s i g n e d a n a t u r a l number f ( P ) c a l l e d i t s w e i g h t and such t h a t t h e t o t a l w e i g h t of t h e p o i n t s on any l i n e d o e s n o t exceed a g i v e n n a t u r a l number n , i . e . f o r e a c h l i n e R of PG(2,q) w e have C f (P) 5 n PER
A l i n e h a v i n g t o t a l w e i g h t i is c a l l e d a n i - s e c a n t o f K . Points n o t i n c l u d e d i n K are a s s i g n e d t h e w e i g h t z e r o . F o l l o w i n g t h e
n o t a t i o n of
[5] w e l e t
w = max f ( P ) PEK and u s e L. t o d e n o t e number of p o i n t s o f w e i g h t j f o r j 3
=
O,l,...,w.
F o l l o w i n g t h e n o t a t i o n and t e r m i n o l o g y o r i g i n a t i n g i n [ I 3 1 l e t t i d e n o t e t h e number of i - s e c a n t s of K f o r which i =O,l,...,n. W e call t h e t i t h e c h a r a c t e r s o f K a n d , i f e x a c t l y u of them a r e non-zero w e say t h a t the a r c K has u characters. I f t h e v a l u e s of i f o r which t i i s non-zero a r e m l < < n t h e n K i s s a i d t o b e of t y p e ( m ~ , r n 2 , . . . , n ) . I n [ 1 3 ] , [ 1 4 ] , [71 and s u b s e q u e n t l y i n l a t e r p a p e r s , one of which i s [ I S ] c o n s i d e r a b l e a t t e n t i o n h a s been g i v e n t o ( k , n ) a r c s h a v i n g e x a c t l y two c h a r a c t e r s . In p a r t i c u l a r t h e connection between such a r c s and H e r m i t i a n c u r v e s h a s been e x p l o r e d and g e n e r a l i s a t i o n s i n t o h i g h e r d i m e n s i o n s d i s c u s s e d i n [ 1 5 ] . A good bibliography i s included i n [16].
...
B.J. Wilson
350 I t i s proved i n [ 5 ] t h a t f o r a 0 < m < n , it i s n e c e s s a r y t h a t
( k , n ; f ) - a r c K of t y p e ( m , n ) , when
w S n - m
(i)
and q 5 0 mod (n - m)
.
(ii)
Let W = C f(P) = C f ( P ) , and t h e n i t may e a s i l y b e s e e n [51 PEK P E E (2,q)
that m(qt 1) 5 W
5 (n-w)q+n.
(iii)
A r c s f o r which e q u a l i t y h o l d s on t h e l e f t a r e c a l l e d minimal and a r c s f o r which e q u a l i t y h o l d s on t h e r i g h t a r e c a l l e d maximal. The case of m = n - 2 w a s d i s c u s s e d a t l e n g t h i n [ 5 ] . By (ii)w e must I n order t o have a n a r c have g = 2h and t h e n ( i )r e q u i r e s t h a t w 5 2 . which i s n o t s i m p l y a ( k , n ) - a r c w e t h u s must have w = 2 so t h a t (iii) gives
( n - 2) ( q +1 ) 5 W 2 (n- 2) ( q +1 ) + 2.
(iv)
W * ( n - 2 ) ( q + 1 ) + 1 and t h e o t h e r two p o s s i b l e v a l u e s of w a r e d i s c u s s e d i n [ 5 ] . Such a r c s have p o i n t s I t may e a s i l y be shown t h a t
having p o s s i b l e w e i g h t s 0 , l and 2; w i t h t h i s i n mind w e c a n s t a t e t h e f o l l o w i n g r e s u l t s which a r e g e n e r a l i s a t i o n s of theorems i n [ 5 ] and which c a n be proved by s i m i l a r methods. THEOREM 1.
Let K be a (k,n;fl-arc of type (m,n) w i t h n > m > 0 of minimal weight FI=m(q+ 1 ) having some p o i n t s of weight w = n - m , some p o i n t s of weight a for exactly one value of a s a t i s f y i n g both 1 2 u S w - 1 and ( w , d = I and a t l e a s t one point of weight 0. l a ) Suppose there i s exactly one p o i n t of weight 0 . Then a = w - 1 and the p o i n t s of weight w form a l w q + w - q - 1,wl-arc of which the ( w - 1)-secants are concurrent i n the s i n g l e points of weight 0. ( b ) Suppose that 1 , > 1 . Then K c o n s i s t s of a q / w c o l l i n e a r p o i n t s each of weight w and the q 2 p o i n t s not co2lincar w i t h them, each of weight a. Further, n=aq+w. THEOREM 2.
Let K be a (k,n;f)-arc of type h , n l w i t h n > m > 0 of maximal weight W = ( n - w ) l q + 1 ) + W having some p o i n t s of weight 0 , some p o i n t s of weight a. f o r exactly one value of a s a t i s f y i n g both 1 s a ~ w 1- and ( w , d = 1 and a t l e a s t one point of weight w . l a ) Suppose there i s exactly one point of weight w. Then a = 1 and the p o i n t s of weight 0 form a I w q + w - q - l,w)-arc of which the ( w - l ) - s e c a n t s are concurrent i n t h e single point of weight w. Suppose k w > l . Then K c o n s i s t s of a q / w + 1 c o l l i n e a r p o i n t s each of weight Ibl w and t h e q2 poznts not c o l t i n e a r w i t h them, each of weight a. Further n = a q + w .
-
I t h a s been shown [ l ] t h a t t h e e x i s t e n c e of a ( n o q +n o q - 1 , n o ) - a r c w i t h n , > 2 r e q u i r e s t h a t q - 0 (mod n o ) and t h a t i n t h a t c a s e t h e a r c p o s s e s s e s e x a c t l y q + 1 ( n o - 1 ) - s e c a n t s which a r e c o n c u r r e n t i n a p o i n t N c a l l e d t h e n u c l e u s of t h e a r c . The a d d i t i o n of t h e p o i n t N t o t h e a r c then gives a (n,,q+n,-q,n,)-arc, known as a maximal
357
( k *ri;f)-Arcs und Cups in Finite Projective Spaces
(k,n,)-arc. For even v a l u e s of q such a r c s have been c o n s t r u c t e d i n G a l o i s p l a n e s by Denniston 161. I t h a s a l s o been shown t h a t n o s u c h a r c s c a n b e c o n s t r u c t e d i n G a l o i s p l a n e s f o r n o = 3 by Cossu f o r q = 9 [3] and Thas [ 1 9 ] . Hence t h e theorems 1 and 2 are o f i n t e r e s t o n l y if n-m>3. 2 . I t f o l l o w s from t h e r e s u l t s of § 1 t h a t f o r t h e c a s e n - m = 3 w e need t o c o n s i d e r f u r t h e r i n a d i s c u s s i o n of maximal and minimal (k,n;f)-arcs the cases
and
R, > 0;
II, > 0; 1, > 0;
In particular we discuss (v).
(1,
(vi)
> 0.
I n t h a t case
( n - 3 ) ( q +1 ) 5 W 5 ( n - 2 ) q t n . F o l l o w i n g t h e n o t a t i o n of
(vii)
[ 5 ] w e u s e t h e symbol v!
t o denote the
number of i - s e c a n t s which p a s s t h r o u g h a p o i n t of w e i g h t j . t h e arguments i n [ 5 ] t h e v a l u e s of v:
and
vA-~,
j = 0,1,2
Using
are fixed
i n d e p e n d e n t l y of t h e p o i n t u n d e r c o n s i d e r a t i o n . F o r W minimal, i . e . W = ( n - 3 ) ( q + 1 ) w e have i n p a r t i c u l a r vo = q + l n-3
vo = 0 n (viii)
I t f o l l o w s i m m e d i a t e l y t h a t no p o i n t o f w e i g h t 0 l i e s on a n n-secant. W e now a t t e m p t t o c o n s t r u c t examples of ( k , n ; f ) - a r c s which s a t i s f y t h e s e c r i t e r i a , i . e . ( v ) , n - m = 3 , and W = ( n - 3 ) ( q + 1). Easy c o u n t i n g arguments g i v e
Solving ( i x ) gives
tn = ( n - 3 ) q / 3 tn-3
= (3q2+6q-nq+3)/3
Now l e t a b e a n - s e c a n t on which t h e r e are no p o i n t s of w e i g h t 0 so w e suppose t h a t on a a r e a p o i n t s o f w e i g h t 1 and 6 p o i n t s of w e i g h t 2. Counting p o i n t s o f u and w e i g h t s o f p o i n t s on a g i v e s a + B = q + l (xi) c c + B = n solving (xi) gives a = 2 ( q + 1) - n = n- (q+l)
(xii)
B.J . Wilson
358
C o u n t i n g i n c i d e n c e s between p o i n t s of w e i g h t 2 and n - s e c a n t s g i v e s
Hence, u s i n g ( v i i i ) , ( x ) and ( x i i ) w e have
II,
= (n-3)(n-q-
1)/2
(xiii)
S i m i l a r l y c o u n t i n g i n c i d e n c e s between p o i n t s of w e i g h t 1 and n-secants gives R,vk =
tnCl
whence, u s i n g ( v i i i ) , ( x ) and ( x i i ) w e have
L1
=
( n - 3) ( 2 q + 2 - n )
(xiv)
From ( x i i i ) and ( x i v ) , c o u n t i n g t h e p o i n t s i n t h e p l a n e w e o b t a i n 2q2+ (11-3n)q+n2-6n+11-2Ro= 0 It i s t h u s n e c e s s a r y t h a t (n-q),
-
(xv)
(48-16R0)
s h o u l d be a s q u a r e . W h i l s t it i s n o t t h e o n l y c a s e f o r i n v e s t i g a t i o n a n o b v i o u s v a l u e t o t r y i s L o = 3 . The r e s u l t i n g s o l u t i o n s f o r ( x v ) a r e t h e n n = 2 q + 1 and n = q + 5. By c o u n t i n g t h e p o i n t s of a n ( n - 3 ) - s e c a n t c o n t a i n i n g t h r e e c o l l i n e a r p o i n t s of w e i g h t 0 i t may e a s i l y be s e e n t h a t f o r n = 2 q + 1 i t i s i m p o s s i b l e f o r t h e t h r e e p o i n t s of w e i g h t 0 t o be c o l l i n e a r . A s i m p l e example may be found i n P G ( 2 , 3 ) . Assign t h e weight 0 t o and ( O , O , I ) , t h e w e i g h t 1 t o t h e p o i n t s t h e p o i n t s ~1,0,0),(0,1,0) ~ 2 , 1 , 1 ~ , ~ 1 , 2 , 1 ) , ( 1 , 1 , and 2 ) ( l , l , l ) and t h e w e i g h t 2 t o a l l o t h e r points. T h i s y i e l d s a ( 1 0 , 7 ; f ) - a r c of t y p e (4,7). For t h i s c a s e of R, = 3 w i t h n = 2 q + 1 w e may o b t a i n from ( x )
Thus by ( x i i i ) t h e n - s e c a n t s form t h e d u a l of a
The e x i s t e n c e of such a n a r c would, i f q > 3, v i o l a t e t h e L u n e l l i - S c e c o n j e c t u r e [ I l l t h a t f o r a ( k , n , ) - a r c w i t h q i 0 (mod n ) it i s n e c e s s a r y t h a t k 5 ( n o l ) q + 1 . However i t was shown by H i l l and Mason [ 8 ] t h a t c o u n t e r e x a m p l e s t o t h i s c o n j e c t u r e c a n be found f o r a n i n f i n i t e number of v a l u e s of q .
-
We now c o n s i d e r t h e c a s e i n which ( v ) h o l d s , w i t h t o = 3 , W minimal and n = q + 5 . I f t h e t h r e e p o i n t s of w e i g h t 0 a r e c o l l i n e a r t h e n i t may be shown t h a t t h e p o i n t s of w e i g h t 2 form a c o m p l e t e ( 2 q + 3 , 4 ) a r c of t h e t y p e ( 1 , 2 , 4 ) . Examples of such a c o n f i g u r a t i o n have been found i n P G ( 2 , 3 ' ) . I f w e d e f i n e GF(3') by t h e r e l a t i o n a'= 2 a + 1 o v e r GF(3) t h e n one such example i s c o n s t r u c t e d as f o l l o w s :
359
Ik,n;fl-Arcs and Cops in Finite Projective Spaces The t h r e e p o i n t s ( 0 , l , a 3 ) ,( 0 , l , a 6 ) I ( 0 , l , a 7 ) h a v e w e i g h t 0 and t h e t w e n t y two p o i n t s
Q, ( 0 , 0 , 1 ) Q l ( O t 1iO) Q, ( 0 , 1 ,a:)
Q3(0ilra 1 (1, a l l 1 ( 1 ,a,a)7 (l,a,a 1
(1 , a 2, a 3 ) ( 1 ,a;,a;) (1,a la 1 (1 ( 1 ,a 3 , a 4 1 (1,a3
(1,a5,a1
(1,aSIa:) ( ~ , a ~ ~ a ( 1 , a 6 ,1 ) ( 1 , a 6 ,a) ( 1 ,a67,a7) (1,a r l ) ( 1 ,a7,a) (I ,a7,a7)
have w e i g h t 2 . The r e m a i n i n g p o i n t s of P G ( 2 , 3 ) a r e a s s i g n e d w e i g h t 1 g i v i n g a n ( 8 8 , 1 4 ; f ) - a r c K O of t y p e ( 1 1 , 1 4 ) w i t h t h e p o i n t s of w e i g h t 2 f o r m i n g a c o m p l e t e ( 2 2 , 4 ) - a r c of t y p e ( 1 , 2 , 4 ) . L e t v be t h e l i n e , x , = O , of c o l l i n e a r i t y of t h e t h r e e p o i n t s of w e i g h t 0 . On v a r e f o u r p o i n t s R,,R,,R,,R, of weight 1 and f o u r p o i n t s Qa,QlrQ2,Q3, w i t h c o o r d i n a t e s a s i n d i c a t e d a b o v e , of w e i g h t 2. F u r t h e r , t h e r e a r e p r e c i s e l y t h r e e p o i n t s P 1 , P 2 , P J of w e i g h t 1 which d o n o t l i e on v and which a r e j o i n e d t o t h e p o i n t s R i o n l y by 14-secants. T h e i r l i n e of c o l l i n e a r i t y p a s s e s t h r o u g h Q , and t h e n i n e l i n e s PiQ, a r e 1 1 - s e c a n t s meeting i n t h r e e s a t t h e s i x p o i n t s P l , P 2 , P 3 , Q l , Q 2 , Q 3 and o t h e r w i s e o n l y i n p a i r s . This configuration i s , i n P G ( 2 , 3 2 ) , d e t e r m i n e d c o m p l e t e l y by f i v e of t h e p o i n t s *.-
rQ,.
3. The ( 1 O l 7 ; f ) - a r c of t y p e ( 4 , 7 ) i n PG(2,3’) which w a s c o n s t r u c t e d i n 5 2 i s a p a r t i c u l a r c a s e of two o t h e r w i s e d i s t i n c t i n f i n i t e c l a s s e s . F i r s t l y w e n o t e t h a t t h e p o i n t s of w e i g h t 1 form a $-arc, t h i s b e i n g t h e i r r e d u c i b l e c o n i c
xi
t
x: + x ;
= 0.
I n P G ( 2 , q ) , w i t h q odd, l e t C be an i r r e d u c i b l e c o n i c . There a r e e x a c t l y q t 1 p o i n t s on C a t e a c h of which t h e r e i s a u n i q u e t a n g e n t l i n e t o C. The p o i n t s of t h e p l a n e which a r e n o t on C may t h e n b e p a r t i t i o n e d i n t o t h e d i s j o i n t classes of q ( q + 1 ) / 2 e x t e r i o r p o i n t s , t h r o u g h e a c h o f which p a s s e x a c t l y t w o t a n g e n t s t o C and q ( q 2 ) / 2 i n t e r i o r p o i n t s , t h r o u g h e a c h of which t h e r e a r e n o t t a n g e n t s t o C . A s s i g n i n g w e i g h t 0 t o e a c h i n t e r i o r p o i n t , w e i g h t 1 t o e a c h p o i n t of C and w e i g h t 2 t o e a c h e x t e r i o r p o i n t g i v e s a minimal ( ( q 2 + 39 t 2 ) / 2 , 2 q ; f ) - a r c of t y p e ( q + 1 , 2 q + 1 ) . By a s s i g n i n g d i f f e r e n t w e i g h t s t o t h e p o i n t s of t h i s c o n f i g u r a t i o n o t h e r ( k , n ; f ) - a r c s may b e o b t a i n e d . F o r example a s s i g n i n g t h e w e i g h t 0 t o e a c h i n t e r i o r p o i n t o f C , t h e w e i g h t 1 t o e a c h e x t e r i o r p o i n t of C and t h e w e i g h t ( q + 1 ) / 2 t o e a c h p o i n t of c a maximal ( ( q 2 + 3 q t 2 ) / 2 , ( 3 q + 1 ) / 2 ; f ) - a r c of t y p e (q t 1,2q + 1 ) is obtained.
-
A s e c o n d i n f i n i t e c l a s s of
( k , n ; f ) - a r c s i s s u g g e s t e d by r e g a r d i n g t h e t r i a n g l e of p o i n t s o f w e i g h t 0 i n t h e ( 1 0 , 7 ; f ) - a r c of 12 a s a s u b p l a n e . G e n e r a l l y l e t n o b e a s u b p l a n e of o r d e r q o of a ( n o t n e c e s s a r i l y G a l o i s ) f i n i t e p r o j e c t i v e p l a n e n of o r d e r q w i t h q > q ; + q , . I n t h i s c a s e t h e r e a r e some l i n e s of n which d o n o t c o n t a i n a n y p o i n t of n o . A s s i g n w e i g h t 0 t o p o i n t s of n o , w e i g h t u t o p o i n t s of TT which a r e n o t on l i n e s of n o and w e i g h t v t o t h e r e m a i n i n g p o i n t s where u / v = ( q - q:) / ( q q , q i ) i n i t s l o w e s t terms Then t h e r e i s formed a minimal ( ( q- 9 0 1 ( g + 9, + 1 ) I + 9,+ l ) u + ( q - q i - q , ) v ; f ) - a r c
-
-
(4
of t y p e ( ( q + q o ) u , ( q : + q o l+) u + ( q - q i - q , ) v ) .
B.J. Wilson
3 60
As in the case of the previous example reassignment of other weights to the sets of points involved leads to further (k,n;f)arcs. 4 . The definition of a (k,n;f)-arc given in § I may be extended to that of a (k,n;f)-cap [5] by substituting PG(r,q) for PG(2,q) with r > 2 . In [ 5 ] it was shown that (k,n;f)-caps of type (n- 2,n) , with r 2 3 do not exist. This proof required results listed by Segre [12] p 166 concerning the non-existence of certain k-caps in PG(r,q) with r 2 3.
If we use the notation Qr to denote the number of points in PG(r,q) then the results in [I21 showed that the number of points on a k-cap cannot be Qr-l. For a (k,n;f)-cap of type ( m - n) with O < m < n the minimal weight is mQy-l. However it may be shown using analogous arguments to those indicated above that a (k,n;f)-cap of minimal weight mQr-l and otherwise satisfying the conditions of theorem 1 cannot exist. A similar result can be obtained for maximal arcs. REFERENCES Barlotti, A., Su {k;n}-archi di un piano lineare finito, Boll. Un. Mat. Ital. 1 1 (1956) 553-556. Barnabei, M., On arcs with weighted points, Journal of Statistical Planning and Inference, 3 (19791, 279-286. Cossu, A., Su alcune proprieta dei {k;n}-archi di un piano proiettivo sopra un corpo finito, Rend. Mat. e Appl. 20 ( 1 9 6 1 ) , 271-277. d'Agostini, E., Alcune osservazioni sui (k,n;f)-archidi un piano finito, Atti dell' Accademia della Scienze di Bologna, Rendiconti, Serie XIII, 6 (19791, 211-218. d'Agostini, E., Sulla caratterizzazione delle (k,n;f)-calotte di tipo (n-2,n), Atti Sem. Mat. Fis. Univ. Modena, XXIX, (1980), 263-275. Denniston, R.H.F., Some maximal arcs in finite projective planes, J. Combinatorial Theory 6 (1969), 317-319. Halder, H.R., h e r Kurven vom Typ (m;n) und Beispiele total m-regularer (k,n)-Kurven, J. Geometry 8, (19761, 163-170. Hill, R. and Mason, J., On (k,n)-arcs and the falsity of the Lunelli-Sce Conjecture, London Math. Soc. Lecture Note Series 49 (1981), 153-169. Keedwell, A.D., When is a (k,n)-arc of PG(2,q) embeddable in a unique algebraic plane curve of order n?, Rend. Mat. (Roma) Serie VI, 12 (19791,397-410. [lo] Keedwell, A.D., Comment on "When is a (k,n)-arc of PG(2 embeddable in a unique algebraic plane curve of order n?1 : ) , Rend. Mat. (Roma) Serie VII, 2 (19821, 371-376.
36 1
( k , n;fl-Arcs and Caps in Finite Projective Spaces L u n e l l i , L. a n d S c e , M . , Considerazione arithmetiche e v i s u l t a t i s p e r i m e n t a l i s u i { K ; n l q - a r c h i , 1st. Lombard0 Accad. S c i . Rend. A 98 (1964), 3-52.
S e g r e , B . , I n t r o d u c t i o n t o G a l o i s Geometries, A t t i . Accad. Naz. L i n c e i Mem. 8 (1967), 133-236. T a l l i n i S c a f a t i , M . , { k , n } - a r c h i d i un p i a n o g r a f i c o f i n i t o c o n p a r t i c o l a r e r i g u a r d o a q u e l l i c o n due c a r a t t e r i (Nota I ) , A t t i . Accad. Naz. L i n c e i Rend. 40 (1966), 812-818. T a l l i n i S c a f a t i , M . , { k , n ) - a r c h i d i un p i a n o g r a f i c o f i n i t o c o n p a r t i c o l a r e r i g u a r d o a q u e l l i c o n due c a r a t t e r i (Nota 111, A t t i . Accad. Naz. L i n c e i Rend. 4 0 (19661, 1020-1025. T a l l i n i S c a f a t i , M . , C a t t e r i z z a z i o n e g r a f i c a d e l l e forme Rend. Mat. e Appl. 26 (19671, 273-303. h e r m i t i a n e d i un S r , q . T a l l i n i S c a f a t i , M . , G r a p h i c C u r v e s on a Galois p l a n e , A t t i d e l convegno d i Geometria C o m b i n a t o r i a e s u e A p p l i c a z i o n i P e r u g i a
(1971), 413-419.
T a l l i n i S c a f a t i , M., k - i n s i e m i d i t i p 0 (m,n) d i uno s p a z i o a f f i n e A r l q , Rend. M a t . ( R o m a ) S e r i e V I I , 1 (1981), 63-80. T a l l i n i S c a f a t i , M., d-Dimensional t w o - c h a r a c t e r k - s e t s a f f i n e s p a c e A G ( r , q ) , J . Geometry 22 (19841, 75-82.
-
i n an
T h a s , J.A. , Some r e s u l t s c o n c e r n i n g ( q + 1 ) (n-1) 1 , n ) - a r c s and { ( q + 1 ) ( n - 1 ) + l , n } - a r c s i n f i n i t e p r o j e c t i v e p l a n e s of o r d e r q, J . C o m b i n a t o r i a l Theory A 19 (19751, 228-232.
This Page Intentionally Left Blank
Annals of Discrete Mathematics 30 (1986) 363-372 0 Elsevier Science Publishers B.V. (North-Holland)
363
N. Zagaglia Salvi Diparthnto di Matematica Politecnico di Milano, Milano, Italy
Let C be a circulant (0,l)-matrix and let us arrange the elements of the first row of C regularly on a circle. If there exists a diameter of the circle with respect to which 1 ' s are synanetric, we call C reflective. In this papr we prove some properties of the reflective circulant ( 0 , l ) -matrices and of certain corresponding cam binatorial structures.
INIXOWrnION
A matrix C of order n is called circulant if C P = P C, where P represents the permutation ( 1 2 n 1.
.. .
Let C be a circulant (Ofl)-mtrixand let us arrange the e l m t s of the first row regularly on a circle, so that they are on the vertices of a regular polygon. If there exists a diameter of the circle with respect to which 1's are symnetric, we call C reflective. In this paper we prove some properties of the reflective circulant (O,l)-mtricesand of certain corresponding carbinatorial structures. In particular, % is proved that a circulant (O,l)-mtrixC of order n satisfies the equation C P = CT, 0s h 2 n-1, if and only if it is reflective. Moreover we determine the number of such C for every h. It is proved in certain cases the conjecture of the non-existence of circulant Hadamard matrices and, therefore, of the non-existence of certain Barker sequences. We also give a sufficient condition that the autcmrphism group of a directed graph is C the cyclic group of order n. n' Finally we determine a characterization for the tournaments with reflective circulant adjacency matrix. For the notations, I and J denote, as usual, the unit and all-one matrices: the matrix C denote the transpose of C. T
... , cn-13
I. L e t c be a circulant matrix. If [co, cl, it follows [2] that the eigenvalues of c are n-1 x = c c,bJjr
r
j=o
is the first nm of C,
(1)
3 2ai where 0 5 r 5 n-1 and w = exp( 1.
n
Consider the circulant matrix A
=
C P. The first row of A is obtained frcm the
N . Zagaglia Salvi
364
first row of C by shifting it cyclically one position to the right. n-1 where 06 r
Jrr
.
PFOKSITtCN 1.1 - !he eigenvalues Ar and vr , 0 5 r 5 n-I , of the cir ant mah "3ir trices C and CP , 0 2 h 5 n-I , as in (1), satisfy the relations v =A (w ) r r
.
- The eigenvalues A trices c and D, as in (11, satisfy
PROKSITION 1.2
and p
0 5
r 5 n-I , of
the circulans ma-
r' h e relations p =A if and d r r
y if D =
cT.
...
2 Roof.If A= diag( 1, w, w , , wn-I 1, where w=exp(-),2ri then there exists an n unitary mtrh U such that P = U A U*. If [c0, c , c.n-1 1 and [do, dl, d:n 11 are the first rows of C and D, n-1 we have C = .C c.P3 = U r Ux where r= ;i!,cjA7 and D = U( nf'd,AJ)U*.
...,
'
...,
3=0 3
7=0 7
n-I ' If p equals 'i for all r, it f o l l m jgodjA7 = TIE L e r s e i5 easily proved. Q DEFINITICN 1 . 3
exp (
I- n
- Let wr, up two nth roots of unity , 0 5
. If d
2~i
7 and hence D =
=
I r-pI , we
T'
r,p 2 n-I, and w =
say that such roots are at distance d and we write
dist( wr, wP)=d. Clearly, then, dist( Gr, Gp)=d.
-
h THMlREM 1.4 A circulant (0,l)-mtrix C satisfies the equation CP =C T' 0 5 h 5 n-I, if and only if it is reflective. proof. k t C be a reflective circulant (O,l)-matrix of order n; let A r' 0 I r 5 n-I, be the eigenvalues of C as in (1). p2 PS Suppose that A l = w + w +...+a , 0 5 p < p 2 <
...
...,
P,+l. Pi Since C is reflective, it follms that also for the s nth roots of unity w , 1 5 i I s, there exists a dimter 2 of the mit circle with respect to which such m t s are symnetric. a a 1 2 If 2 contains at most o m of the above roots, consider an ordering H = I w ,u , a , w of such roots obtained by traversing the unit circle counterclockwise, so that the diameter 2 is encountered only once. In case a does not contain any o! ci"i ' "i+l s-(i-l) s-i )=dist( w roots, s is even and dist( w , w ,w ), I ~ i s 5 - 1 . 2
...
5%
In case 2 containrone root, s is odd and that r w t is w a ai a i+1)=&st( w's-(i-I) s-i s-1 ?hen dist( w , w , w ),ISis--. 2
If g contains two roots, we ignore one of these, then we proceed as before. a
So the two roots on g are wax
and w
.
365
Cornbinatorial Structures
-
ci
...,
a
-011 2 ,s It is easy to see that the roots w , w , w are syrmmetric for the diameter b, where b is the reflection of g in the real axis.
There are two cases:
a
i 1) the diameter a contains at m s t one of the roots w , lSiSs. a +h a s -1 k t h be the minirmnn positive integer such that w = w
.
cis "s-1 the symnetry of the roots with respect to g,we obtain: dist( w , w )= a a a a a +h -a2 a +h s- 1 s-2 dist( w w 'I= dist( .1' It follows that w = w , 0 a al+h a - 3 S h hrw , ..., w = ij andhence hlw = h Thus A ( w ) =A ISrk-1. 1r r t h Consider the matrix D = 8 Let p- be the eigenvalues of D, as in ( 1 ) . By Prop. By
',
.
-
whir
the a v e statements, pr = Ar. ( so thai, 1.1, we have p = r r By Prop. 1.2 D=C a. T' i 2) The diameter 5 contains two of the roots w , l
.
-
I
e
h
Suppose, m, that the circulant (O,l)-matrix C satisfies the equation 8 =CT, 06hSn-1; we prove that C is reflective. h If [co, cl, c is the first rcw of C, then the first rows of 8 and
...,
3
n-1 cT are respectively [c-h, cl-h, c J and [cot cn-l, ...,cJ n-lh F r m the relation C P = C we obtain the equalities c = c where O5i5n-1 TI i-h n-it and the indices are mod n, so that C is ref1ective.a
.
...,
Recall that, if A = [a.
,I and B are two matrices of order m and n respectively,
13
then the direct product of A with B is a matrix of order rm defined by ,-
a B a B A X B =
21
...
22
...
Let C be a reflective circulant (0,l)-matrix. If there are two diameters of the circle with respect to wich the 1's are symnetric, then there are t m integers k and k kl k such that C P = C , i = 1,2. h 2' 2' I& C satisfies such equations and 1% <;f
-A
h circulant (O,l)-matrix C of order n satisfies C P
=
C, IhSn-I,
N . Zagaglia Salvi
366
i f and only i f it i s C = 0 or C = J f o r (h,n)=l and C = J x D f o r ( h , n ) = t > 1 , q n where q = - and D is circulant (0,l)-matrix of order t. t h Proof. The f i r s t rrm of 8 is obtained f r a n the f i r s t row of C by s h i f t i n g it cyclically h p x i t i o n s to the right. h is the f i r s t row of C, f r a n 8 =C we obtain If [cl, C2' . . . I CJ
where the indices are mod n. W e have t w cases to consider:
a) (h,n)=l b) ( h , n ) > l .
...,
Case a ) . I f ( h , n ) = l , then the n e n t r i e s of H = { I , l+h, l t ( n - l ) h } are a l l 1 d i s t i n c t and H is equal to the set {1,2,. ,n} 1 Hence in the sequence (2) there are a l l the entries of the f i r s t row of C and it is or C = 0 or C = J.
.. .
Case b). Let (h,n)=t>l w i t h n=tq. I n HI only q elements of t h e set K
..., I + (q-I)hl
are d i s t i n c t . It i s easy t o prove that a l s o the elements of the set K =I i , i + h , . i i j. i 6 [l,t] are d i s t i n c t and, mreover, K . is d i s j o i n t fran K
1
={ l , l + h ,
.., i+(q-1) h l ,
f
1 1' c repeated q times determines the f i r s t I t follows that the sequence c c2 t row of c. hen, i f D i s the c i r c u l a n t matrix whose f i r s t r m is [cl c2 ct] , we have
...
...
C = J
xD.
q Conversely, i f it is
c
= J
q
x
D, then it is easy t o prove that
ah=
C.
II
Remark t h a t , i f a circulant (0,l)-matrix C of order n=hq s a t i s f i e s the r e l a t i o n c Ph = C, then there are also s a t i s f i e d the relations c ph" = C, s=1,2,. ,q. k let C be a circulant (0,l)-matrix such that C P = CT, k€[O,n-l].
..
r
r
I f k is even, say k=2r, then we obtain CP = ( CP
IT;
r
denoted CP =E, it follaws
E = E
T'
If k i s odd, k=2q+l, 920, then we obtain (CPq)P=(mq)Trwhere, denoted CPq=E,
ET .
it i s EP=
'IIIEORFM 1.6- A n-square c i r c u l a n t (0,l)-matrix C = J
x
D, where D has order t
and n=tqr is r e f l e c t i v e i f and only i f D is reflectiye. Proof. Let C = J X D, of order n=tq, t , q > l , be a circulant (O,l)-IMTx; then D is ( 0,1) - c i r c u l d t , of order t, and by Theorem 1.5 it is s a t i s f i e d CP =C. If C is reflective, there exists an integer r such that, denoted d = E , we have E = %or E P =
ET.
L
Since it is El?= = E, by Theorem 1.5, there exists a circulant matrix F of order t such t h a t E = J x F. 9
Combinatorial Structures
367
.-
It is easy to prove that E = E iff F = F and E P = E iff F P = F where? T T T TI represents the permutation ( 1 2 t). r fir Since C P = E, then it is D P = F and C is reflective iff D is ref1ective.a
...
DEFINITICN 1.7 - A set D = { d if the circulant is reflective. d,, d2,
of k integers mod n is reflective to w h i c h the 1's are in the positions
...,%,
- If the set of integers mod n D = {dlld then it is reflective the set t~ = {tdl, td2, ...,tc$
THMlRFM 1.8
, ..., $2 is reflective, , for every t prime to n.
Proof. Let D = {d } be a reflective set and let C be the circulant (0,l)-matrix with ch the 1 ' s are in the positions If we arrange the e l m t s of the first rcw of C rqlarly on a exists a diameter g of the circle with respect to which the 1's are symnetric. L e t H = { a , a2, . ., ak } an ordering of the elements of D obtained by traversing the unit circle counterclockwise, so that the diameter 2 is encountered only once. Let ~1 be the last element of H before traversing a ( a can belong to a). r r Let c1 ' the syrrpnetric of a. as regards t o g , iC[l,r]. i
,
.
Consider the set tH ={ k l l ta2,
..., tak 1 .
Because t is prime to n, the ele-
ments of t€l are distinct and tcci f toi' (mod n) I but perhaps for i=r. ~ r e m e r as , we have a - a , =a ' ki' kr' , where td dif#e&ces
-
-a '
, then tar - h.= t(a -cr.)=t(ai' -a ' I = r i r &e mod n and i C [ltr-11.
Then tcci', l$isr, is synanetric of tcr. as regards to the diameter that reduces to half the distance between tclr and to:'; hence tD is reflective.0
2. Let C be a reflective circulant (0,l)-mtrix. is the first rcw of C, fran the relation ah= If [col c1, ...,c n-1 hc [O,n-d , by the above remarks we obtain
1
cTI
c = c i-h n-i
(3)
where Oliln-I and the indices are rrcd n. The relation (3) is an equality between two different elements except for i-h :n-i ( mod n ) ; in that case there exists an integer k 5 0 such that 2i = h + kn.
(4)
Let n and h odd, n=2t+l, h=2r+l and r't; then we have 2i=2r+l+k(2t+l). For k=l we obtain i=r+t+l and clearly this is the d y possible value.
If n is d d and h even, n=2t+l and h=2r, we have 2i=2r+k(2t+l)and i=r is the only possible value. If n is even and h odd, n=2t and h=2r+l,we have 2i=2r+l+k(2t);this equation is clearly impossible.
N.Zagaglia Salvi
368
For n and h even, n=2t and h=2r, the equation 2i=2r+k(2t)has two solutions: i=r and i=r+t, corresponding to k=O and k=l. THEXlFEM 2.1
- Let h,n be two integers , OSh5n-1. When n is odd, there are
h P = , C, while , when n n+A for h wen. such matrices for h cdd and 2
circulant (0,l)-matrices C that satisfy the equation
?
is even, there are
n%
2
C
Proof. Let n be odd. By the above remarks, from (3) we obtain and one identity. So in the first row of C exactly n-1 + 1 = 2 arbitray. As every e l m t can be 0 or 1, there are 2
n-1
- equalities n+? elements are 2
"+Acirculant ( 0 , l ) -matrices that
h
satisfy the equation C P = CT, for n odd. n n-2 If n is even, the relations (3) correspond to 5 equalities for h odd and to 2 equalities and two identities for h even.
n+32such matrices
% distinct mtrices when h
is odd and 2
Hence, there are 2 when h is even.0
3. Recall that a difference set D = {d1 l d2,
...,$I
is a k-set of integers
rnod v such that every a f 0
(mod v) can be exspressed in exactly X ways in the form d d. E a (mOa v) , where d. and d . are in D. We suppose O<X
-
PROPOSITICN 3.1
- If C is a circulant incidence matrix of a (v,k,A)-configura-
h tion, it never satisfies the equation 8 = CT. Praf.If row of
[corcl,
cT is
...,cn-1]
is the first r m of a circulant matrix C, the first
..., cl]
, i.e.
[cofcn-l,
c. has been replaced by c - ~ ,where the
indices are mod n. p be the positions of the elements equal to 1 on the first row k t p l , p2,
...,
S
of C. If C is an incidence matrix of a (v,k,X)-canfiguration,then fp , p ,...,psi 1 2 is a difference set. Since -1 is not a multiplier for a difference set [37 , then there exists no such that { p,+h, p2+h, ...,pS+h) = integer hL [O,n-I] -pl r -p2, -ps) r
...,
i.e.
c d ~ e snot satisfy c ph
=
cT.a
Recall that a (v,k,X)-mtrix is a (O,l)-mtriY A of order v which satisfies A%=
(k-X)I+XJ
where 0 < X < k < v-1. It follows that detA
v- 1 =
k(k-X
)
2
.
Combinatorial Structures
369
matrix of + I ' s and -1's such that H H p I . It has been conjectured [6] that a Hadarnard mtrix cannot be circulant for v > 4 . Remrk that we can define the notion of reflective circulant Hadmard matrices, analagous to the corresponding notion for the (0,l)-matrices.
A Hadamird matrix H of order v is a
PR(IPOS1TION 3.2- A Hadarmrd matrix of order v cannot be reflective circulant o r coincident block circulant , for v > 4.
Proof. If H is a --aiiective c i r c u l m t o r coiiiiident block circulant Hadamrd f i s a reflective o coincident block circulant $ v ~ r v and ) A = f v ~ 1f i By m - 0 ~ . 3.1 a reflective circulant matrix cannot be the incidence m a t r i x of a (v,k,X )-configuration, then cannot be a (v,k,X )-matrix. Moreaver, since it is clear that the determinant of a coincident block circulant matrix is zero, such a matrix cannot be a (v,k,X )-matrix. [I
matrix, then K = -( H + J 2 (v,k,A )-matrix, w i t h k =
\
.
z(
The hrop. 3.2 is a p a r t i a l answer to the problem, i n d i g i t a l c d c a t i o n s , of the existence of f i n i t e sequences of 1 and -1 {b.Iv w i t h the property that
t h e i r aperiodic auto-correlatim- coefficients
1 1
V
c . = C b.b 3 i.1 1 i + j ' 1 2 j Lv-1, should be 1 ,O,-I. It is w e l l knm that there is a one-to-one correspondence between such s e q u e n ~ sand circulant Hadamrd matrices [I ,pg. 981 W e note that the results of the Prop. 3.1 and the Prop. 3.2 were implicitely proved i n [ 3 ]
.
.
4. L e t G be a directed graph with n vertices;we car. suppose that its adjacency matrix is not symnetric. We call cyclic a graph w i t h circulant adjacency matrix. For a cyclic graph the mapping i + i + l , and its powers, are clearly autanorphim by definition. Hence, these graphs always have the cyclic group of order n, C , a s a subgroup of t h e i r autcmorphisn group. In f5lthe problem is posed h w t o give a procedure for determining the aukmorphism group of a cyclic graph. The follmdng Theorem 4.2 gives a subset of the graphs for which the autcmorphisn group i s exactly C n' LDW?I 4.1-
If C
f
0,J is a circulant matrix of order prime n,then det C
...
7
*
0.
is the f i r s t row of C, the eigenvalues of such Proof. I f [co , c , ,c n- 1 m t r i x are as i n = c c .w = 0. If det c = 0, there exists an e i envalue A Hence F( w)=O, where F ( x ) =1 c , x ' ~with iq n, I s a rational plyncxnial of 7 degree
11).
40d
...
''
J.0
N. Zagaglia Salvi
370
- Let G be a directed cyclic graph having a prim number n of vertices and reflective circulant adjacency matrix. Then the automrphim group of G is precisely C . n
l%3m4.2
Proof. Let G be a directed graph with a prime number n of vertices. If A is the adjacency matrix of G and Q is the permutation matrix Corresponding to an automrphim of G, we have (5)
4,AQ=A.
If A is reflective circulant, there exists a kt [I ,n-11 for h i c h A Pk =
men we have k
\.
k
4 y A P Q P T = A .
By LemM 4.1, (5) and (6) we obtain
k
P
k
Q P T = Q .
It follows prkuprk = Q, r c [I . I , Since n is prime, The integers rk, rt[l,n], mod n are distinct; then there exists jt[l,n]such that jk- 1 (md n). Hence we have P Q P = Q, i. e. Q is T circulant.0 In [5] it is proved that if a directed graph with a prim n m h r of vertices has C as autawrphism group, then the adjacency matrix A of G has distinct n eigenvalues. COROLIARY 4.3- If A is the reflective circulant adjacency matrix of a directed & r of vertices, then the eigenvalues of A are distinct. graph G with a p r h n
If R is the mtrix corresponding to the pewtation i+ n-i, we have the followinq
- Let G be a directed graph with a prime number of vertices and reflective circulant adjacency matrix. Then G is self-converse an has exactly n ismrphistns with the converse, corresponding to the matrices RP , hC[l ,nJ . COFOLTARY 4.4
4,
Proof. Let G be a directed graph with a prime nunher of vertices and reflective circulant adjacency matrix. holds, R Corresponds to an isanorphisn of G w'th t& conver4 . 2 , every autmrphim of G corresponds to Pti , h Cll ,n] ;
f ? . y ; e k m
then every matrix RP corresponds to an isamorphim of G with G'. It is well k n m that the number of i m r p h i s n s of a self-converse graph G w i t h the converse GI is equal tc the nunber of autanorptusms of G.U
5. Recall that a tournwent T of order n is a directed graph in which every pair of vertices is joined by exactly one arc. A tournament matrix A is the adjacency matrix of a tournament T and satisfies A + % = J - I .
37 1
Combinatorial Structures
LetR the reflective circulant tournament matrix, of odd order n, that satisfiesRP = A T' It is easy to prove that the I Is of the first row ofR are in even positions, the 0's in odd positions. THEy)REM is C
5.1
- The autmrphisn group of the tournament 2 corresponding to P
n'
Proof. Let Q be the permutation matrix corresponding to an autmrphisn cf then we have Q
and, being A P
p Q =4
;
(8)
=AT, it follows
QTA P Q PT
=a.
(9)
R nonsingular [ 9 ] Since is regular, it follaws ~ n t is obtain P Q P = Q, i. e. Q is circulant. T
a
183 the follawing theorems are proved. THFxlRFM 5 . 2 - If a tournament matrix A satisfies A Q = i+
;
by (3) and ( 9 ) w
In
where Q is a permu-
tation matrix, then Q corresponds to a n-cycle. PROPOSITIW 5 . 3 - Every tournament matrix A for wfiich AQ, where Q corresponds to a n-cycle, is also a tournament matrix, is penrutationally similar t o R
.
Now, we have the following
-
THMRFM 5.4 A reflective circulant toumamntmatrix is reflective circulant if and only it is pennutationally similar t o A
.
Proof. Let A be a reflective circulant tournament matrix of order n. Since the row sums of A are constant, it follaws that the t o u r n m t corresponding to A is regular; hence n is odd. Bec use A is reflective circulant, there exists an integer kC[l ,n-1] for which A P =%. k By Theorem 5.2 P corresponds to a n-cycle; then, by Proposition 4 . 3 A is pernutationally similar toR. The converse is easily pr0~e~1.O
r:
- The automorphisn groq of a tournament with reflective circulant adjacency matrix is C . n
COROLWIY 5 . 5
Proof. The proof follaws imnediately fran Theorems 5.1 and 5 . 4 . CDY5.6 - The determinant of a reflective circulant tournament matrix of n-1 order n is
-.2
Proof. Since the matrix of cdd order n
R satisfies the relations
+
It
=
N . Zagaglia Salvi
312
-
J - I andRP =AT,it follm A (I + P)= J I; then we have detR.det(I+P)= det(J - I). It is immediate to prove that det(1 t P ) = 2 and det(J - I)=n-I for n odd. BY Proposition 5.3, the prmf is capletai.CJ
[I]
Bamrt, L.D., Cyclic Diffemce Sets (Lscture Notes in Mathematics,
n. 182, Springer Verlag, 1971). [2]
Biggs, N., Algebraic Graph Theory (Cambridge University Press,1974).
A note on multipliers of difference sets, J. of bs. Nat. B. of Standards, ~01.69 B (1965) 87-89.
131 Brualdi, R.A.,
[4]
Davis, P.J., Circulant matrices
[5]
Elspas, B. and Turner, J., Graphs with circulant adjacency matrices, J. Cunbinatorial Theory 9(1970) 297-307.
[6]
(
A Wiley-Interscience Publication, 1979)
.
Ryser, H.J., Canbinatorial Mathematics ( Cams Math. Monograph, N. 74, New York, 1963).
[7]
Turner, J., Point-Symwtric Graphs with a Prim N d r of Points, J. Cmbinatorial Theory 3 (1967) 136-145.
[8]
Zagaglia Salvi, N., Sulle matrici tome0 associate a matrici di pennutazione, Note dihtematica, vol. I1 (1982) 177-188. Zagaglia Salvi, N., Alcune proprieta delle matrici torneo regolari, in: Atti del Convegno "Geanetria Cconbinatoria e di incidenza: fondamenti e applicazioni" La Mendola, 4-11 Luglio 1982 ( Editr. Vita e Pensiero) 635643.
Annals of Discrete Mathematics 30 (1986) 373-382 0 Elsevier Science Publishers B.V. (North-Holland)
373
OVALS I N STEINER T R I P L E SYSTEMS
Herbert Z e i t l e r
Mathematisches I n s t i t u t , U n i v e r s i t g t Bayreuth D-8580
B a y r e u t h , West Germany
T h i s a r t i c l e i s a r e p o r t o n some j o i n t w o r k s w i t h
H. Lenz, B e r l i n [ 2 , 7 , 8 ] .
Using t h e n o t i o n o f a
r e g u l a r o v a l , S t e i n e r t r i p l e systems of o r d e r v = 9
o r 13 + 12n w i t h n
E
INo are c o n s t r u c t e d .
INTRODUCTION L e t V w i t h I V I = v > 3 be a f i n i t e s e t a n d B w i t h I B I = b a s e t o f 3 - s u b s e t s of V. The e l e m e n t s of V a r e c a l l e d p o i n t s , t h e e l e m e n t s o f B l i n e s or blocks.
I f any 2-subset o f V i s contained i n e x a c t l y one
l i n e , then t h e incidence s t r u c t u r e (V,B,E)
i s called a S t e i n e r
t r i p l e s y s t e m of o r d e r v , b r i e f l y S T S ( v ) . Each p o i n t o f a n S T S ( v ) 1 1 l i e s o n e x a c t l y r = ~ ( v - 1 )l i n e s a n d t h e r e a r e e x a c t l y b = - v ( v - I ) 6 l i n e s . The c o n d i t i o n v = 7 o r 9 + 6 n , n E INo i s n e c e s s a r y and s u f f i c i e n t f o r t h e e x i s t e n c e of a n S T S ( v ) . The s e t of t h e s e " S t e i n e r numbers" v w i l l b e d e n o t e d by STS. Any non empty s u b s e t H c V i n a S T S ( v ) i s c a l l e d a h y p e r o v a 2 i f f e a c h l i n e of S T S ( v ) h a s e x a c t l y e i t h e r t w o p o i n t s ( s e c a n t ) o r no p o i n t ( e r t e r n a 2 l i n e ) i n common w i t h H. Thus w e o b t a i n I H I = l + r . = V x H t o g e t h e r w i t h a l l e x t e r n a l l i n e s of H forms
The complement
a s u b s y s t e m S T S ( r ) a n d , v i c e v e r s a , t h e complement of a s u b s y s t e m STS ( r ) i s a h y p e r o v a l i n STS ( v ) P r e c i s e l y f o r a n y v = 7 o r 1 5 + 1211,
.
n E INo
t h e r e e x i s t s a n STS ( v ) w i t h a t l e a s t o n e h y p e r o v a l
[21,
14I
[7]. The s e t of a l l t h e s e s p e c i a l S t e i n e r numbers w i l l be d e n o t e d by HSTS. The r e m a i n i n g S t e i n e r numbers i n RSTS = STS\HSTS
o r 1 3 + 12n, n
E
INo.
are v = 9
,
374
H. Zeitler
1 . OVALS
1 . 1 DEFINITIONS Any non empty s u b s e t 0 c V i n a S T S ( v ) w i l l b e c a l l e d a n o v a l i f f there e x i s t s exactly one tangent a t each point of 0 ( t h i s tangent
meets 0 i n e x a c t l y o n e p o i n t , t h e s o - c a l l e d p o i n t o f c o n t a c t ) a n d e a c h l i n e of S T S ( v ) h a s a t most t w o p o i n t s i n common w i t h 0 . Somet i m e s t h e complement 5 = V \ O t o g e t h e r w i t h a l l t h e e x t e r n a l l i n e s
t o 0 w i l l b e r e f e r r e d t o a s t h e “ c o u n t e r o v a l ” . The p o i n t s o f 0 w i l l be c a l l e d t h e on-points,
t h e points on t h e tangents to 0 with
t h e points of contact deleted w i l l be c a l l e d t h e ex-points
and a l l
t h e remaining p o i n t s t h e in-points. 1 . 2 ENUMERATION THEOREMS 1 . 2 . 1 CLASSES OF POINTS
Each o v a l has e x a c t l y r = -1( v - l ) p o i n t s and t h e c o r r e s p o n d i n g 2 1 ) oints. counter oval exactly r + 1 = ~ ( v + l p Proof:
Each p o i n t o n t h e o v a l l i e s o n r l i n e s , a n d p r e c i s e l y o n e
of them i s a t a n g e n t . 1 . 2 . 2 CLASSES O F LINES
W i t h r e s p e c t t o a n o v a l 0 t h e r e e x i s t e x a c t l y r = ~1 ( v - 1 ) t a n g e n t s , 1 1 exactly = s ( v - l ) ( v - 3 ) s e c a n t s and e x a c t l y - r ( r - I ) =’(v-I) (v-3) 6 24 external l i n e s .
(;)
Proof:
An e a s y c o u n t i n g a r g u m e n t .
1 . 3 THEOREM
The number of t a n g e n t s t h r o u g h a n e x - p o i n t o f a n o v a l - 0 i s e v e n o r odd, a c c o r d i n g t o r b e i n g even o r odd. Proof:
L e t s b e t h e number of s e c a n t s , t t h e number o f t a n g e n t s
t h r o u g h a n e x - p o i n t o f 0 . By 1 . 2 . 1 ,
t + 2 s = r, and t h e s t a t e m e n t
follows.
1 . 4 THEOREM
For a n y v
E
HSTS t h e r e e x i s t s a n S T S ( v ) w i t h a t l e a s t o n e o v a l .
375
Ovals in Steincr Triple Systems
Proof:
When v E HSTS t h e r e e x i s t s a n S T S ( v ) w i t h a t l e a s t o n e
h y p e r o v a l . Any r p o i n t s of t h i s h y p e r o v a l form a n o v a l . T h e s e o v a l s
are s p e c i a l ones, because a l l t h e t a n g e n t s m e e t i n e x a c t l y one p o i n t , t h e k n o t of t h e o v a l . 1 . 5 DEFINITION
O v a l s a l l whose t a n g e n t s a r e c o n c u r r e n t will b e c a l l e d k n o t o v a l s . I f through each ex-point
of a n o v a l t h e r e p a s s e x a c t l y two t a n g e n t s ,
then t h e oval w i l l be c a l l e d a regular oval. 1 . 6 THEOREM
In a n S T S ( v ) w i t h v E HSTS t h e r e a r e no r e g u l a r o v a l s , i n a n S T S ( v ) w i t h v t RSTS t h e r e e x i s t no k n o t o v a l s . Proof:
I f v E HSTS, t h e n r = 3 o r 7 + 6n, n
E INo,
a n d r i s o d d . By
1.3, r e g u l a r o v a l s c a n n o t e x i s t i n s u c h a n S T S ( v ) . I f i n a n S T S ( v ) w i t h v E RSTS a k n o t o v a l e x i s t e d , t h e n a d d i n g t h e k n o t t o t h e p o i n t s of t h e o v a l w e would o b t a i n a h y p e r o v a l ; t h e r e f o r e , v E HSTS, a contradiction. 1 . 7 THEOREM
For any r e g u l a r o v a L 0 i n at? S T S ( v ) t h e r e e x i s t s e x a c t l y o n e i n point. Proof:
L e t e be t h e number o f e x - p o i n t s a n d i t h e number o f i n -
p o i n t s of 0 . The e x - p o i n t s a n d i n - p o i n t s t o g e t h e r a r e t h e p o i n t s o n the counter oval
6. T h e r e f o r e ,
e+i =
=
r + '1. By 1.5 e a c h ex-
p o i n t l i e s on e x a c t l y two t a n g e n t s a n d o n e a c h of t h e r t a n g e n t s to 0 t h e r e are e x a c t l y t w o ex-points.
Consequently, e = r and i = 1 .
1 . 8 THEOREM
For a r e g u l a r o v a l t h e n u m b e r s of l i n e s i n t h e d i f f e r e n t c l a s s e s t h r o u g h p o i n t s of d i f f e r e n t c Z a s s e s a r e a s f o l l o w s :
H. Zeitler
316
secants
tangents
in-point
1 1 ? ( r - 2 ) = T(v-5) 1 1 =p - 1 )
0
on- po i n t
r - 1 = ?1( v - 3 )
1
ex- po i n t
2
Tr
external lines 1 1 ~(r-2= ) T(v-5) 1 1 = x(v-1)
zr
0
i
The proof f o l l o w s immediately from t h e p r e c e d i n g theorems.
2 . THE M A I N THEOREM For a n y v E RSTS t h e r e e x i s t s a n STS(v) w i t h at l e a s t o n e r e g u l a r
oval. Now t h e S t e i n e r numbers v
E
HSTS and v E RSTS w i l l b e c l a s s i f i e d i n
a g e o m e t r i c a l way u s i n g t h e e x i s t e n c e o f S T S ( v ) ' s w i t h k n o t o v a l s and w i t h r e g u l a r o v a l s , r e s p e c t i v e l y . D i s r e g a r d i n g t h i s d i s t i n c t i o n between o v a l s w e c a n summarize: F o r any S t e i n e r number v E STS t h e r e e x i s t s a n STS(v) w i t h a t l e a s t one o v a l . I n [ 2 ] t h i s theorem i s proved by c o n t r a d i c t i o n . W e now g i v e a d i r e c t proof by c o n s t r u c t i o n [ 8 I .
Throughout t h e proof by a n o v a l w e always mean a r e g u l a r o v a l . Taking i n t o a c c o u n t theorem 1 . 6 , w e s t a r t w i t h a S t e i n e r number v E RSTS and c o n s t r u c t a n STS(v) w i t h a t l e a s t one r e g u l a r o v a l . 2 . 1 THE POINTS
1 With v E RSTS, 101 = r = -2( v - l ) = 4 o r 6 + 6n, n E INo, and 1 161 = r + 1 = z ( v + l ) = 5 o r 7 + 6n, n E INo. T h e r e f o r e , t h e number o f p o i n t s o n t h e o v a l 0 is e v e n and t h e number o f p o i n t s o n t h e c o u n t e r o v a l i s odd. W e c o n s i d e r two r e g u l a r r-gons w i t h t h e same c e n t r e M whose e d g e s
have d i f f e r e n t l e n g t h s . F u r t h e r m o r e , t h e r-gons a r e r o t a t e d w i t h
. The
...
v e r t i c e s Po,P, , ,Pr-, of t h e v e r t i c e s Qo,Q,,...,Qr-l of t h e o u t e r polygon as e x - p o i n t s and f i n a l l y t h e p o i n t M i s t a k e n a s t h e i n - p o i n t of t h e o v a l 0 . W e c o u n t t h e v e r t i c e s of each polygon c o u n t e r c l o c k w i s e . F i g u r e 1 shows t h i s i n t e r p r e t a t i o n f o r r = 1 6 . r e s p e c t t o e a c h o t h e r by a n a n g l e
f
t h e i n n e r polygon a r e t a k e n a s o n - p o i n t s ,
Ovals in Steiner Triple Systems
377
0
M
Figure 1 I t t u r n s o u t u s e f u l t o r e p r e s e n t t h e numbers r modulo 1 2 , Conse-
q u e n t l y , r = 1 2 or 4 or 10 o r 6 + 12n. n E INo. I n t h i s p a p e r w e r e s t r i c t o u r s e l f t o t h e case r = 4 + 12n. The p r o o f s i n t h e o t h e r cases may be done i n a s i m i l a r way. 2 . 2 CONSTRUCTION OF SPECIAL 3-SUBSETS
F i r s t o f a l l w e c o n s t r u c t s p e c i a l p o i n t sets h a v i n g no c o n n e c t i o n with an oval. L e t a r e g u l a r r-gon be g i v e n w i t h v e r t i c e s O,l,
...,r-1
and c e n t r e M .
( a ) F i r s t c l a s s of s u b s e t s I 1 There a r e = T(v-l) d i a m e t e r s i n t h e g i v e n p o l y g o n . The two end-
H , Zeitler
378
p o i n t s o f each d i a m e t e r t o g e t h e r w i t h t h e c e n t r e M f o r m a 3-subset o f t h e f i r s t class. ( b ) Second c l a s s o f s u b s e t s L e t i , j w i t h i <j b e t w o v e r t i c e s o f t h e g i v e n p o l y g o n . Then t h e
minimum o f j
- i,
r
+i-
j
is c a l l e d t h e " d i f f e r e n c e " of t h e t w o ver-
t i c e s . By t h i s d e f i n i t i o n , t h e f o l l o w i n g d i f f e r e n c e s a r e p o s s i b l e : 1 1 1 1 , 2 , . . . , p - 1 = a ( " - 5 ) . (The d i f f e r e n c e ?r i s a l r e a d y e l i m i n a t e d w i t h t h e f i r s t c l a s s ! ) Now w e form o r d e r e d " d i f f e r e n c e t r i p l e s " ( d l , d 2 . d 3 ) i n s u c h a way t h a t e a c h o f t h e m e n t i o n e d d i f f e r e n c e s occ u r s a t m o s t o n c e and d l + d 2 = d3. Which d i f f e r e n c e s c a n o c c u r i n t h e t r i p l e s ? How many d i f f e r e n c e t r i p l e s of t h i s kind are p o s s i b l e ? I n [ I ] ,
[21,
[31,
q u e s t i o n s a r e a n s w e r e d . Here w e g i v e t h e r e s u l t o n l y
[ 6 1 these
-
w i t h o u t any
proof.
r = 4 t 12n, n E IN (1,
5 n + l , 5n+21 , ( 2 ,
3n,
3n+2),
(31
5n,
3n-1,
3n+3),
(2n-1,
4n+2, 6 n + l )
5n+3), (4,
,
(2n, 2n+l, 4 n + l ) .
1 The d i f f e r e n c e 3 n + 1 = -r i s missing, any o t h e r d i f f e r e n c e o c c u r s 4 e x a c t l y once a s r e q u i r e d . A l t o g e t h e r w e h a v e 2n d i f f e r e n c e t r i p l e s .
The l e a s t v a l u e f o r r , i . e . r = 4 1 d o e s n o t p r o v i d e d i f f e r e n c e t r i p l e s . We o b t a i n t h e a f f i n e p l a n e A G ( 2 , 3 ) . I t i s e a s y t o show t h a t i n t h i s system t h e r e e x i s t r e g u l a r ovals ( f o r i n s t a n c e t h e s e t o f p o i n t s (x,y) with x,y
E
GF(3) and x 2 - y 2 = 1 ) . I n t h e f o l l o w i n g w e
o m i t t h i s s p e c i a l case. 2.3 THE EXTERNAL L I N E S Now t h e p o i n t s 0 , 1 , . . . , r - 1
i n 2 . 2 a r e t h e ex-points
QoIQ1f...fQ,-l
and M i s t h e i n - p o i n t o f a n o v a l 0 . Next, t h e e x t e r n a l l i n e s t o 0 a r e c o n s t r u c t e d u s i n g t h e d i f f e r e n c e t r i p l e s g i v e n i n 2.2. F o r better t y p i n g w e f r e q u e n t l y w r i t e ( P , x ) a n d (Q,x) i n s t e a d o f Px a n d Qx. (3)
The e x t e r n a l l i n e s c o n t a i n i n g M
The s u b s e t s o f t h e f i r s t c l a s s d e t e r m i n e d by t h e p o l y g o n d i a m e t e r s
Ovals in Steiner Triple Systems
319
a r e t h e e x t e r n a l l i n e s o f 0 c o n t a i n i n g M . We c a n w r i t e {M
,
(Q, x )
,
(Q,x+
1 with x t
2 t h e number x modulo r .
{O, 1,.
. ., r - I
1. W e a l w a y s u n d e r s t a n d
( b ) The r e m a i n i n g e x t e r n a l l i n e s
( Q , x ) , ( Q , x + 2 ) , ( Q , x+3n+2 ( Q , x ) , ( Q , x + 4 ) , (Q1x+3n+3
( Q , x ) , ( Q f x + 2 n ), ( Q l x + 4 n + l x t {0,1,
..., r - I }
1 I n t h i s way w e o b t a i n a l t o g e t h e r r . 2 n = - - ( v - I ) ( v - 9 ) a d d i t i o n a l 324 s u b s e t s o f p o i n t s . These l i n e s are e x t e r n a l l i n e s o f 0,too. Together 1 1 w i t h t h e -r = - ( v - l ) e x t e r n a l l i n e s c o n t a i n i n g M w e h a v e g o t 2 4 1 1 1 ~ ( v - 1 )+ ? ; r ( v - I ) ( v - 9 ) = ~ ( v - 1 ()v - 3 ) e x t e r n a l l i n e s . By 1 . 2 . 2 , t h i s
is t h e set of a l l e x t e r n a l l i n e s . In t h e difference t r i p l e s 2 . 2 the difference 3n+ 1 is missing. The a s s o c i a t e d p a i r of e x - p o i n t s
( ( Q , x ), (Q,x+3n+l)) w i t h
w i l l b e i n v e s t i g a t e d l a t e r on i n connection with
x E {O,I,...,r-l} the tangents. 2 . 4 THE SECANTS
I n f i g u r e 2 w e have t h e s e c a n t s o f a n o v a l contair.inq t h e ex-point
-
f o r r = 16.
B
0
*
0
0
0
.,
M
, , , , , , , ,.
....0............... .........-0
----_ --- -- -------z
-0
01,-
o--
-0
0-
-
--+
-Q
-Q
o Q Figure 2
D
A
Q
H. Zeitler
3 80
Secants containing a n ex-point
( a ) First c l a s s o f p o l y g o n c h o r d s W e s t a r t w i t h t h e p o l y g o n v e r t i c e s A and B ( f r o m B t o A c l o c k w i s e ! ) 1 having t h e d i f f e r e n c e Tr. I n t h e set of polygon chords o r t h o g o n a l 1 t o t h e diameter through B we choose t h o s e T ( r - 4 ) c h o r d s which a r e n e a r e s t t o B ( f u l l l i n e s ) . Then t h e n e x t p o l y g o n c h o r d o f t h i s k i n d i s a p o l y q o n d i a m e t e r CA. The e n d p o i n t s o f t h e p o l y g o n c h o r d s
c h o o s e n i n t h i s way h a v e t h e d i f f e r e n c e s 2 , 4 , .
. .,-!-r-2, 2
respectively.
( b ) Second c l a s s o f p o l y g o n c h o r d s The p o l y g o n v e r t e x which f o l l o w s A g o i n g c l o c k w i s e from B t o A i s D . 1 I n t h e s e t o f p o l y g o n c h o r d s p a r a l l e l t o CD w e c h o o s e t h o s e -r 4 c h o r d s which a r e f a r t h e s t from B ( d o t t e d l i n e s ) . The e n d p o i n t s o f 1 t h e s e p o l y g o n c h o r d s h a v e d i f f e r e n c e s l 1 3 ~ . . . r ~ r - rle~s p e c t i v e l y . One o f t h e s e c h o r d s i s a n e d g e o f t h e p o l y g o n . The e x - p o i n t
lying
close t o t h i s edge i s Q. The e n d p o i n t s o f e a c h p o l y g o n c h o r d , b o t h i n ( a ) a n d i n ( b ) , t o g e t h -
e r w i t h Q form a n o v a l s e c a n t . I n t h i s way w e o b t a i n a l t o g e t h e r 1 1 = ;(r-2) -4( r - 4 ) + s e c a n t s c o n t a i n i n g Q. By 1 . 8 w e h a v e f o u n d a l l s e c a n t s of t h i s kind.
ar
T h e r e i s no s e c a n t c o n t a i n i n g Q and t h e t w o o n - p o i n t s A and B a s
w e l l . T h e r e f o r e , t h e s e t w o p o i n t s must b e t h e p o i n t s o f c o n t a c t o n t h e t w o t a n g e n t s t h r o u g h Q . By o u r c o n s t r u c t i o n t h e d i f f e r e n c e o f A 1 and B i s e x a c t l y -r. 4 I n t h e same way it i s p o s s i b l e t o c o n s t r u c t t h e s e c a n t s t h r o u g h a n y ex-point
(Q,x)
.
Now w e c a n e x p l i c i t l y w r i t e down a l l t h e s e c a n t s c o n t a i n i n g a n e x point (Qrx):
1 1 ( Q l x ) , ( P , x + ~ r - l ) , ( P r x 2+ - r + l ) } .
Furthermore,
1 (A,x) = ( P r x + , r ) ,
1 3 ( B , x ) = ( P , x + ~ r ) ,( C , X ) = ( P , x + - r ) . 4
We f u r t h e r see t h a t t h e t a n g e n t c o n t a i n i n g ( Q l x ) a n d ( Q , x + + )
has
t h e p o i n t o f c o n t a c t ( B , x ) . The d i f f e r e n c e o f t h e s e t w o e x - p o i n t s i s
1 Tr .
Again, x E { O r l t . . . , r - l } .
38 1
Ovals in Steiner Triple Systems Secants containing t h e in-point The e n d p o i n t s o f a n y d i a m e t e r o f t h e i n n e r p o l y g o n form a n oval 1 s e c a n t t o g e t h e r w i t h M . I n t h i s way w e o b t a i n e x a c t l y secants
zr
c o n t a i n i n g M. By 1 . 8 w e h a v e f o u n d a l l t h e s e c a n t s o f t h i s k i n d : 1 namely, t h e y a r e { M , ( P , x ) , ( P , X + ~1 ,~ x) E { O , l , ...,r - 1 ) . Adding t h e numbers o f 1 1 o b t a i n r--(r-2) +-r = 2 2
oval s e c a n t s i n t h e t w o d i f f e r e n t classes w e 1 1 -r(r-1) = - ( v - l ) ( v - 3 ) . 2 8
2 . 5 THE TANGENTS When c o n s t r u c t i n g t h e e x t e r n a l l i n e s i n 2 . 3 some p a i r s o f e x - p o i n t s w e r e l e f t w i t h o u t a c o n n e c t i n g l i n e . The d i f f e r e n c e b e t w e e n t w o 1 p o i n t s o f s u c h a p a i r w a s d = -r 4 = 1 + 3n. The c o n s t r u c t i o n o f t h e o v a l s e c a n t s i n 2 . 4 was d o n e i n s u c h a way
t h a t t h e d i f f e r e n c e of t h e t w o e x - p o i n t s on each t a n g e n t g i v e s t h e number d . T h e r e f o r e , t h e oval t a n g e n t s a r e c o m p l e t e l y d e t e r m i n e d : 1 1 { ( Q , x ), ( Q , x + T r ) , ( P , x + z r ) } , x E { O t l r - . . f r - l } . Our c o n s t r u c t i o n i n case r = 4 + 12n w i t h n E IN i s c o m p l e t e d . CONCLUDING REMARKS
Long a g o P . Erdos a s k e d t h e f o l l o w i n g q u e s t i o n s : Which c a r d i n a l i t y i s t h e maximal o n e f o r a p o i n t s e t M i n a n S T S ( v ) c o n t a i n i n g no l i n e ? F o r w h i c h S t e i n e r numbers v may t h i s maximal case o c c u r ? A l l t h e s e q u e s t i o n s w e r e a l r e a d y answered i n [ 5 ] . H e r e w e relate
t h e s e p r o b l e m s t o h y p e r o v a l s a n d o v a l s . The r e q u i r e d maximal c a r d i n a l i t y o c c u r s i f each p o i n t of M l i e s on s e c a n t s o n l y . T h i s y i e l d s I M I i;
l + r . T h e r e f o r e , i n case o f maximal c a r d i n a l i t y M i s a h y p e r -
o v a l . P r e c i s e l y , f o r any v
€
HSTS t h e r e e x i s t s a n S T S ( v ) w i t h s u c h
a s e t o f maximal s i z e l + r . I f s u c h h y p e r o v a l s do n o t e x i s t , t h e n
1M[ 5 r . The u p p e r bound i s a c h i e v e d i f M i s a r e g u l a r o v a l . F o r a l l S t e i n e r numbers v
E
RSTS t h e r e e x i s t S T S ( v ) ' s w i t h s e t s o f t h e
r e q u i r e d maximal c a r d i n a l i t y r . A n o t h e r matter i s t h e i n v e s t i g a t i o n o f f i n i t e a f f i n e a n d p r o j e c t i v e s p a c e s w i t h r e g a r d t o ovals. W e m e n t i o n some r e s u l t s : I n P G ( d , 2 ) w i t h d > 2 t h e r e e x i s t e x a c t l y 2 ( 2d + l - 1 ) k n o t o v a l s a n d no r e g u l a r o v a l s . I n AG(2,3) t h e r e e x i s t e x a c t l y 54 r e g u l a r o v a l s a n d no k n o t o v a l s . I n AG(d, 3 ) w i t h d
2
3 t h e r e e x i s t neither knot
H. Zeitler
382 o v a l s n o r r e g u l a r ovals.
W e n o t i c e t h a t t h e r e a r e s t i l l many u n s o l v e d p r o b l e m s a b o u t o v a l s i n a n S T S ( v ) . (The t o t a l number of o v a l s i n a g i v e n STS (v) ; t h e number of non-isomorphic S T S ( v ) ' s w i t h o v a l s i f t h e S t e i n e r number i s g i v e n ; i n v e s t i g a t i o n o f automorphism g r o u p s ; )
...
F o r S t e i n e r s y s t e m s S ( k , v ) w i t h k Z 3 t h e r e a r e o n l y a few r e s u l t s concerning o v a l s , hyperovals and similar n o t i o n s [ 4 ] . Extensions o f t h e ErdBs p r o b l e m s t o g e n e r a l s y s t e m s of t h i s k i n d a r e unknown, too.
REFERENCES
H i l t o n , A.J.W., On S t e i n e r and s i m i l a r t r i p l e s y s t e m s , Math. Scand. 24 ( 1 9 6 9 1 2 0 8 - 2 1 6 L e n z , H . and Z e i t l e r , H . , A r c s a n d O v a l s i n S t e i n e r T r i p l e S y s t e m s , C o m b i n a t o r i a Z T h e o r y , L e c t u r e No t e a i n M a t h e m a t i c s 969 ( 1 9 8 2 ) 229-250 (Springer Verlag, Berlin, Heidelberg, N e w York) P e l t e s o n , R . , E i n e Losung d e r b e i d e n H e f f t e r s c h e n D i f f e r e n z e n probleme, C o m p o a i t i o Math. 6 1 1 9 3 9 ) 2 5 1 - 2 5 7 R e s m i n i , M. d e , On k - s e t s of t y p e (m,n) i n a S t e i n e r s y s t e m S ( Z , l , v ) , F i n i t e G e o m e t r i e s and D e s i g n s , L . M . S . L e c t u r e N o t e S e r i e s 49 (1981) 104-113 S a u e r , N . and Schonheim, J . , Maximal s u b s e t s o f a g i v e n s e t h a v i n g no t r i p l e i n common w i t h a S t e i n e r t r i p l e s y s t e m o n t h e s e t , Canad. M a t h . BUZZ. 1 2 ( 1 9 6 9 ) 7 7 7 - 7 7 8 Skolem, T . , Some r e m a r k s o n t h e t r i p l e s y s t e m s o f S t e i n e r , Math. S c a n d . 6 ( 1 9 5 8 ) 273-280 Z e i t l e r , H . a n d Lenz, H . , H y p e r o v a l e i n S t e i n e r - T r i p e l Systemen, M a t h . Sem. B e r . 3 2 ( 1 9 8 5 ) 1 9 - 4 9
Z e i t l e r , H . and Lenz, H . , R e g u l a r Ovals i n S t e i n e r T r i p l e S y s t e m s , JournaZ of C o m b i n a t o r i c s , I n f o r m a t i o n and S y s t e m Sciences, Delhi (to appear)
383
PARTICIPANTS
L.M.
V.
Abatangelo
Abatangelo
Bari Bari
S. Antonucci
Napoli
E.M.
Milano
Aragno M a r a u t a
R.
Artzy
Haifa
L.
Bader
Napoli
G.
Balconi
Pavia
A.
Rarlotti
Firenze
U.
Bartocci
Perugia
L.
Benbteau
Toulouse
W.
Benz
Hamburg
L.
Berardi
L I Aqui l a
C.
Bernasconi
Perugia
L.
Bertani
Heggio E m i l i a
A.
Beutelspacher
Mainz
A.
Bichara
Roma
M.
Biliotti
Lecce
P. R i o n d i
Napoli
P. B i s c a r i n i
Perugia
F.
Ronetti
Ferrara
A.
Bonisoli
Munchen
A.A. A.
Bruen
Caggegi
1. C a n d e l a
G.
C a n t a l u p i Tazzi
Western O n t a r i o Napol i
Bari Milano
Participants
384 R . C a p o d a g l i o d i Cocco
Bo 1ogna
M.
Bari
Capursi
B. C a s c i a r o
Bari
P.V.
Roma
Ceccherini
N.
Cera
Pescara
N.
Civolani
Milano
A.
Cossu
Bari
C.
C o t t i Ferrero
Parma
M. Crismale
Bari
F . De C l e r c k
Gent
E . Ded6
Milano
M.
De Finis
M.L. M. M.M.
D e Resmini
De S o e t e
Deza
C . D i Comite
Roma Roma Gent Paris
Bari
V.
Dicuonzo
Roma
L.
D i Terlizzi
Bari
B . DlOrgeyal
D i jon
J . Doyen
Bruxe 1l e s
F. Eugeni
L Aqui l a
G.
Faina
Pe r u g i a
L.
Faggiano
Bari
M.
Falcitelli
Bari
A.
Farinola
Bari
G.
Ferrero
Parma
0. F e r r i
L I Aqui l a
P. F i l i p
Miinchen
S.
Fiorini
Malta
M.
Funk
Potenza
M.
Gionfriddo
Ca t a n i a
M.
Grieco
Pavia
W. Heise A.
Herzer
Miinchen Mainz
Participarz ts R.
H i l l
Salford
J . Hirshfeld
Sussex
D.
Hughes
London
V.
Jha
Glasgow
H.
Kellerer
Miinchen
H. Karzel Keedwell
A.D. G.
Korchmaros
H.J.
Kroll
Miinchen Gui 1d f o r d Potenza Munchen
F . Kramer
Clu j-Napoca
H.
Kramer
Cluj-Napoca
P.
Lancellotti
Modena
B.
Larato
Bari
D.
Lenzi
Lecce
A.
Lizzio
Catania
G.
Lo F a r o
Messina
P.M.
Lo R e
Napol i
G.
Luisi
Bari
G.
Lunardon
Napoli
H.
Lunenburg
K a iserslautern
N.A.
Malara
Modena
M.
Marchi
Brescia
A.
Maturo
Pescara
F . Mazzocca
Case r t a
N.
Melone
Napoli
M.
Menghj-ni
Roma
G.
Menichetti
Bologna
G.
Micelli
Lecce
G.
Migliori
Roma
F. Milazzo
Catania
S. Milici
C a ta n ia
A.
Maniglia
Lecce
D.
Olanda
Napoli
A.
Palornbella
Bari
385
Participan Is
Pastore
A.M.
Bari
S.
Pellegrini
Bresc i a
C.
Pellegrino
Modena
G.
Pellegrino
Per u g ia
C. P e r e l l i Cippo
Brescia
M. P e r t i c h i n o
Bari
G. P i c a
Napoli
F. P i r a s
Cagl i a r i
Pornilio
A.I.
L.
Porcu
Rorna Milano
L. Puccio
Mess i n a
G.
C a t an i a
Quattrocchi
P. Quattrocchi
Modena
G.
Bari
Raguso
L. R e l l a
Bari
T . Roman
Buc a r e s t i
L.A.
Rosati
Firenze
H.G.
Samaga
Hamburg
M.
Scafati
Roma
R.
Scapellato
Parma
E. Schroder
Hamburg
R.
Schulz
Berlin
D.
Senato
Napoli
H.
Siernon
Ludwigsburg
C. Soma
Roma
R. S p a n i c c i a t i
Rorna
A.G. S p e r a
P a l e rmo
.
Stangarone
Bari
K.
Strarnbach
Erlangen
G.
Tallini
Roma
P..
Terrusi
Bari
R
J . Thas
Gent
M.
Ughi
Perugia
V. Vacirca
C a t a n i a.
Participants K.
Vedder
Gissen
A.
Venezia
Roma
F. Verroca
Bari
R.
Vincenti
P e rugi a
A.
Ventre
Napoli
H. Wefelscheid
Essen
B.
Wilson
London
N.
L a g a g l i a Salvi
M i 1a n o
H.
Zeitler
Bay r e u t h
E.
Zizioli
Brescia
R. Z u c c h e t t i
Pavia
387
This Page Intentionally Left Blank
389
ANNALS OF DISCRETE MATHEMATICS VoI. 1:
Studies in Integer Programming edited by P.L HAMMER, E.L. JOHNSON, B.H. KORTE and G.L NEMHAUSER 1977 v i i i + 562 pages
VoI. 2:
Algorithmic Aspects of Combinatorics edited by B. ALSPACH, P. HELL and D.J. MILLER 1978 out of print
Vol. 3:
Advances in Graph Theory edited by B. BOLLOBAS 1978 viii t 296 pages
Vol. 4:
Discrete Optimization, Part I edited by P.L HAMMER, E.L JOHNSON and B. KORTE 1979 xii + 300 pages
Vol. 5 :
Discrete Optimization, Part I1 edited by P.L HAMMER, E.L JOHNSON and B. KORTE 1979 vi + 454 pages
Vol. 6:
Combinatorial Mathematics, Optimal Designs and their Applications edited by J. SWASTAVA 1980 viii + 392 pages
Vol. 7:
Topics on Steiner Systems edited by C.C. LINDNER and A. ROSA 1980 x + 350 pages
VoI. 8 :
Combinatorics 79, Part I edited by M. DEZA and I.G. ROSENBERG 1980 xxii + 310 pages
Vol. 9:
Combinatorics 79, Part I1 edited by M. DEZA and I.G. ROSENBERG 1980 viii t 310 pages
Vol. 10: linear and Combinatorial Optimization in Ordered Algebraic Structures edited by U. Z W E R M A N N 1981 x + 380 pages
390
VoI. 1 1 : Studies on Graphs and Discrete Programming edited by P. HANSEN 1981 viii t 396 pages
Vol. 12: Theory and Practice of Combinatorics edited by A. ROSA, G. SABIDUSI and J. TURGEON 1982 x t 266 pages Vol. 13: Graph Theory edited by B. BOLLOBAS 1982 viii t 204 pages Vol. 14: Combinatorial and Geometric Structures and their Applications edited by A. BARLOTTI 1982 viii t 292 pages VoI. 15: Ngebraic and Geometric Combinatorics edited by E. MENDELSOHN 1982 xiv -+ 378 pages
Vol. 16: Bonn Workshop on Combinatorial Optimization edited by A. BACHEM, M. GROTSCHELL and B. KORTE 1982 x t 312 pages Vol. 17: Combinatorial Mathematics edited by C. BERGE, D. BRESSON, P. CAMION and F. STERBOUL 1983 x t 660 pages Vol. 18: Cornbinatorics '81 : In honour of Beniamino Segre edited by A. BARLOTTI, P.V. CECCHERINI and G. TALLINI 1983 xii t 824 pages
Vol. 19: Algebraic and Combinatorial Methods in Operations Research edited by RE. BURKARD, R.A. CUNINGHAME-GREENand U. ZIMMERMA" 1984 viii t 382 pages Vol. 20: Convexity and Graph Theory edited by M. ROSENFELD and J. ZAKS 1984 xii t 340 pages
VoI. 2 1: Topics on Perfect Graphs edited by C. BERGE and V. CHVATAL 1984 xiv t 370 pages
39 1
Vol. 22: Trees and Hills: Methodology for Maximizing Functions of Systems of Linear Relations R. GREER 1984 xiv t 352 pages Vol. 23: Orders: Description and Roles edited by M. POUZET and D. RICHARD 1984 xxviii t 548 pages
Vol. 24: Topics in the Theory of Computation edited by M. KARPINSKI and J. VAN LEEUWEN 1984 x t 188 pages
Vol. 25: Analysis and Design of Algorithms for CombinatoriaI ProbIems edited by G. AUSIELLO and M. LUCERTINI 1985 x t 320 pages
Vol. 26: Algorithms in Combinatorial Design Theory edited by C.J. COLBOURN and M.J.COLBOURN 1985 viii t 334 pages Vol. 27: Cycles in Graphs edited by B.R. ALSPACH and C.D. GODSIL 1985 x t 468 pages Vol. 28: Random Graphs '83 edited by M. KARONSKI and A. RUCIrjSKI 1986 approx. 5 10 pages Vol. 29: Matching Theory L. LOVASZ and M.D. PLUMMEK 1986 in preparation
This Page Intentionally Left Blank