Numerical Solution of Ordinary Differential Equations
2 0
ACADEMIC PRESS
New York
1971
COPYRIGHT 0 1971,
BY ACADE...
43 downloads
769 Views
10MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Numerical Solution of Ordinary Differential Equations
2 0
ACADEMIC PRESS
New York
1971
COPYRIGHT 0 1971,
BY ACADEMIC PRESS,INC. ALL RIGHTS RESERVED N O PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY PHOTOSTAT, MICROFILM, RETRIEVAL SYSTEM, OR ANY OTHER MEANS, WITHOUT WRITTEN PERMISSION FROM THE PUBLISHERS.
ACADEMIC PRESS, INC. 111 Fifth Avenue,
New York, New York 10003
United Kingdom Edition published by ACADEMIC P R E S S , INC. (LONDON) LTD.
Berkeley Square House, London WIX 6BA
LIBRARY OF CONGRESS CATALOG CARD NUMBER: 73-127689 AMS (MOS)1970 Subject Classification: 65L05
PRINTED IN THE UNITED STATES OF AMERICA
TO Mary and Jay
on on on by on
book
book on
on a
of
xi
Preface
book book by on
on upon on
1 2 4
3.
5
6
book book
by
A.
J. S.
S.
1 A
Fundamental Definitions and Equations
1.1. THE NUMERICAL PROBLEM AND NOMENCLATURE
dy/dx = Y’(x)=f(x,
(1.1-1)
by
Y(Xo) = Yo
(1.1-2)
f ( x ,y ) y
x. xo
x
1
2
1. Fundamental Definitions and Equations
y(x)
yo
x = xo.
y(x)
x
( y o , xo)
y(x), x
fxn>, y(x)
y
=
=
x
As
in y 2 ' , . . . , y,,,'
m
{yn},
on
2,
[yl,
..., dy/dx = y'
= f(x, y)
Y(X0) = Yo
on x by
Y,,,+~ (1.1-7)
by
Z' = F(z)
4x0) = 20 ( I . 1-8)
autotiornous
(1.1-8)
( 1.1-9) nonautonomous.
3
1.2. Taylor Series Expansion
a 5 x i b, - 03 < y < co
f ( x ,y ) a
b x
L
E
[a, b]
u
u, If(x, ). - f ( x ,
-
.)I 5 L Iu - 4 on [u, b ] ,
y(x)
y(x)
x.
x,,> xo,
{x,} {y,}
y(x,) (u = x,, , b)
{x,}
x by
,..., N ;
x,,+~=x,,+~,,;
x,,=a; x N = b
h, = h =
h,
x,,, xl, . . . , x N ,..., N ; h,=h
X , = X , + H ~ ;
x,,.
x,,
x,
= xo
+ ah
- 13)
c1
c(
x,
c(
xo, x l , x 2 , ... .
x
c1
1.2. TAYLOR SERIES EXPANSION
f ( x ,y )
x
y(x)
x
-
= xo
y,
4
1. Fundamental Definitions and Equations
ct
c(
=
1,
y'(x)= y"(x) = y y x ) y'"(x) = y [ 3 ' ( x )
y(x,) y'(x,),
x
h
y"(x,), .. . .
y(~,+~)
y)
y y'
Y"
=f,
= f '= f ,+ f , f
fx
x
Y"'
=f"=f,,+ =f
y(x)
y(x)
y.
+f XY+f,Cf, + f , f I
+ pf,j
= 0,1,2,
...
f (x,y )
1.3. ASPECTS OF NUMERICAL INTERPOLATION
y(x), {x,} (h,, = h =
[6]:
5
1.3. Aspects of Numerical Interpolation
1.
A AYn =Yn+l -Yn A2yn = & n + t - AYn = Yn+2 - 2Yn+1 + Yn A3yn = A2Yn+t - A2Yn = Y n + 3 - 3Yn+2 + 3Yn+ - Yn Aqyn = Aq- 'Yn+l -Aq-lYn
2.
V VYn=Yn P Y n - 1 V2y,=V~n-Vyn-t =~,,-2yn-t + Y ~ - z V 3 y n = V 2 y , , - V 2 ~ , - l= y f l - 3 y n - 1 + 3 ~ , - 2 - ~ , ~ - 3
(1.3-2)
vqyn = v4-'yn - v q - ' y , - l
+ a(a -
+
s((9
+
... ( 3 - n
+
n!
. . . (.
+n -
n!
x, - xo
Anyo,
CI
V"Yn>
Ex=-
=-
Xa
h
- Xn
. n
+
(1
h
by
{x,}.
(yo, y l , . . . , J.,)
y(x)
n or
n,
T,
C
x (1.3-3) by the
J*[""~(() (1.3-4) (1.3-1)
=
C51/7"+1y"'+'1(() xo < [ < x, .
(1.3-2).
of
6
1. Fundamental Definitions and Equations
book,
1.3.1. Hermite Interpolation
{x,},
{y,}
2n
n+1 nomials,
{x,}
{yn'}
{yn}
+2
osculating polyup by
ai(cc)
bj(cc)
2n
+1
n 2n+2
T, = C,h Y q(.) bi(cc) 1.7
[2n+2]
(0 by 1
a =1
HERMITE EXTRAPOLATION
i =0
1.5.
7
Specific Integration Formulas
HERMITE INTERPOLATION
Yn = T, =
1
+ Y n + 11 +
+
Yn = T, =
+
Yn
T, = Y,
=
+
- YA+ 11
+
-
+
(
+
+
1
-
i-
T, = Yn =
1
+
+
I
-
+ (
-
T, = (h6/80)yc6’(()
1.4. DIFFERENTIATION FORMULA;
dyjdx = y’(x)
yn’), y”(x), a
+
hy,‘ = (A + 3 - * . .)y, hy,’=(A+~A2-~A3+...)y,_l hZy; = +1 11 2 - _I 8 5 + * * .>Yn
h2yi = hy,’ = hy,’ =
2
-
+ -
1 2
+1 12
- ,
+ 3 7 3 + . . .)y, + ..* ) y n +
-373
1
1.5. SPECIFIC INTEGRATION FORMULAS
1.4 (1 5 1 )
8
1. Fundamental Definitions and Equations
y(x)
by
ODES. on
y(x) d x
=
dx
=
~ ( x d)x
=
+ :I/
s,,
X"+Z
Y(X)
L-
+ + A - &A2
+A +
XI8
-
1
A2
+ &A3
+ . . .IYn
--A4 720
+ 0 A3 - i&
A4
+ ...]y,,
+ A + & A2 - $ A3 + %A4 -
. *IYn
/::-y(x)
dx
=
-
/;:+'y(x)
dx
=
+ +V + &V2 + $V3 + %V4 + . *.]y,
Ln
y(x) d x
=
+ *V2 + +V3 + g V 4 + . . . l Y n + l
/;:+'y(x)
dx =
X,+2
-3
-
-
- &V3
*
& V2 -
- -V4 720
- ...]y,
V3 - &$ V4 - * * *IY,+ 1
1.6.
As by by (1.5-3)
Anyn, by
A3
x+:/2
x,
Y(X)
dx
< I <x,+~.
=
+ A + + A2]yn -
after
A2
9
1.5. Specific Integration Formulas
by by
(x,,, x , + ~ ) (x,,, , x,,+& (x,,, x , , + ~ ). ,. . . by
h do
X"
trapezoidal rule
Simpson's
rule.
5)
X"
+
(1.5- 18)
10
Fundamental Definitions and Equations
1.
1.6. INTEGRATION FORMULAS FOR ODE y,) Xn+ I
= Y,
+ Jx
= Yn
+
dx
xn+
1
y"x> dx *n
+h
= y,
yo
n
= 0,
y,,
,
1
d.
0
2,
...
xo, y,,
.. , 1.5
1.5 y'(x)
y,
, y,) = f , .
y,'
(1.6-1).
by
YL+a =
q
Y,'
+ .VY,
+ (a
-
,
+ V2y,' + +7
1 )(.)(a
+ 1) . . . ( a + q 1
4! (1.6-1)
yA+,] 4
Y,+,
= yn
(1.6-3)
+ I? 1ffiVi4',', i=O
=1
“i =
?^,’
11
Integration Formulas for ODE
1.6.
a(a
+
... ( a + i - 1) i!
da,
y[q+23
c = a 4 + i h 4+ 2 Y t 4 + 2 1 ( 5 ) a,
+ -c I 2 V2 + $
+ +&+ + ...]y,’
T, = @ ~ ~ y [ ~ ] ( ( ) ;
q=
, = y,, + hy,‘
= +hZy[’]([)
T, = + h 2 y [ ’ ] ( [ ) , T, = O(h2)
h2. by
=0 =
+
+
y n + I= y n - 3
+
- 4v
Y , + ~= y n - s
+
-
ynfl= yn-,
+ +v’ + +V3 + + +
+ ...]y,’,
=
+
5, 1 (
+ 0v3 + g v 4 + -lYn’, - 9V3
1, 3,
=3
+ OVs + ..*]v,‘ =5
(-
1)
by
1
12
1. Fundamental Definitions and Equations
-1
y,+l = yn-5
+
+ +V2y,' - 5V3y,,'+
- ~VY,,'
1 1 ~y,'] 4
T, =
(1.5-17),
y'(x)
y(x),
= 0,
1, 3,
y n + l= y ,
+ k [ 1 - +V - --l-Vz 12 3V'2 4
Y , + ~= Y , , - ~+
-
Y , , + ~= Y , , - ~+
-
-.
- +&V4
+ +V2 + OV3 - 2-V4 90 -
*
.lA+1, n+1,
i" =
0 (
r= 1
8V + y V 2 - $V3 + g V 4 - 0V5 -
+ k [ 6 - 18V + 27V2 -s v 5 + ...]yA+1,
by r Y"
n 1 +=
=0
+ (~/~)CYA+ + 1
T, =
Crank-Nicholson
=
3,
+(~/~)[YA+I
y,+l
T,=
1
-
3
r
5
+W-V"
Y , + ~= Y , , - ~
~
Y =
=
1
13
1.6. Integration Formulas for ODE
+
+ 12YA-1 +
+
yn+i = Y n - 3 T, = -(Sh7/945)y"'(~)
+
1.6.1 Adams Forms r =0
r=1 r Adams-Bashforth (A-B)
=0
Adams-Moulton (A-M)
r =0
y,+1 =
y,
+ h[y,' + +Vyn' + $~V2J),' + +V3yn' + ++##V"y,'
+ -4Aq75y 1440
r Yn+ 1 = Y"
+ "6*
n
'+
60480
n
' + . . .]
=0 1
-P Y A + 1 - i
w Y ; + 1 - &V3L'r;+ 1 - +&J4A+ 1
_ _I_~ 0 v 5 ~ -;T+ o 8 6 3 v6 I r n Y;+, +
on
A-B
(q = (q =
(q = 1. TABLE 1 . 1 ADAMS-BASHFORTH FORMS
4
0 1 2 3 4 5
h
YA-
Y.'
1
1
112
3
11720 1/1440
23 55 1901 4277
1
YA-2
Yn-3
Yrt-4
-1 - 16 - 59
5 37 2616 9982
25 1 2877
Y.-5
14
Fundamental Definitions and Equations
1.
4 Y,+
1
1.1,
=Y,
+ hyn’
( 1.6-25)
( 4 = 0)
1.2, TABLE 1.2 ADAMS-MOULTON FORMS
4
of h
0 1
1
Y:+ 1
1 1
112 1/12 1/24
2 3 4 5
5 9 25 1 475
]/I440
Y.;
1 8 19 646 1427
3
Y:-4
- 19 -173
27
Y,-
Y:-2
-1
-5 -264 -798
1 106 482
Y,,+~, y n
4.
1.6.2. Nystrom Forms r Y,+~ y,+1 = yn-l
1
+ h[2y,’ + OVy,’ + +V2y,‘ + 3V3y,‘
+ gv4yfl’+ +4v’Yn‘+ m 378 v06 y , ’ + . . ~ n + =l ~ n - l
=
Nystrom
(1.6-17). yfl-l
(1.6-29)
+ hC2yA+l - 2 v ~ L + l++V’.YA+~ + O V 3 ~ A + 1
- &7V4j)A+, - & V s ~ ~ +-l *V6y;+1
As on
+
(1.6-30)
15
1.7. Generalized Integration Formulas for ODE
on 1.3
q
=0
+ 2h"'
=
(1.6-31)
midpoint rule.
O(h3). TABLE 1.3 NYSTROM EXPLICIT FORM
4
h
Y"'
1 1 113 113
0 1 2 3 4
2 2 7 8 269
Y L1
y,,
r
,
Y"P3
Yn-4
0
1
-5
4
294
r =0 r =3
Y:-2
r
=
-1 -146
29
1
= 5.
y , , ...
1.7. GENERALIZED INTEGRATION FORMULAS FOR ODE
Y,+~
y,, Y , , - ~ , ...
16
1. Fundamental Definitions and Equations
(1.7-1) (1.7-2) by (1.7-1) (l.7-2),Y , + ~ yi’ on
on
Y , + ~ ,y n + * , . . .
y,
k
Yn+k
=
aiYn+k-i
+
i= 1
on
by
k
1 i=O
(1.7-2’)
fiiY;+k-i
(1.7-1) (1.7-2). 2k +
(1.7-1)by
Pk.
a l , . . . , ak, P o ,
...,
(1.7-2) k, h 1.7.5),
Of
pi
h yy, yy, ...) xi on (1.7-1)
yi‘
(1.7-1).
k
1.6.
r
(1.7-3)]
k k = 1, y , ,
y,
y,,‘;
yA+
single-step
k>
yi
( x n ,y,) y,
Y,+~ multiple-step
( x , + ~J ,J , + ~ ) ] .
ynPl. = 0,
open, explicit,
predictor
on
Y,+~
Po # 0,
Y,+~ closed, implicit,
corrector
on Y,+~
(1.7-I), a l , a z , . . . , c$,
Po,
P 2 , . . . , Pk. x
17
1.7. Generalized Integration Formulas for ODE
p, p.
by
1.7.1. The Method of Undetermined Coefficients
k
=
1,
+ /?[Po
Y n + i = %Y,
+ PiYn’l ul,
frl
fro,
y ( x ) = 1, x,
2(p =
yi‘ = 0 y.’ = 1
Y i = 1, Yi=xI
i=n,
Yi’ =2xi
y t. = x.2 t
7
y i = 1, yi’
x2
=0 =
Y , , + ~=
1 = uIxn0
yi =xi, y;
a1 = 1.
=
+ h[[joO +
1
=
(x,+~ - xn)/h=
1 = fro (p=
+
Y”+ I
p
fro
=
=
+ ff?/2)[Y;+
fro
frl 1
= 4.
+ Y,’]
(P =
+ 1 = 3. p
Yn+l
=
(p=
+
+ fr,
= x i 2 , yi’ = 2xi
=
- Bl)rA+1
+
( P = 1)
p1
18
1. Fundamental Definitions and Equations
p1 by
p
=2;
y(x)
x3. Yn+ 1
x3,
= Yfl
+(k/2)lX+ +
+
1
yC3]. y , = xi3, y,’ = 3xi2
y r 3 ]= 6
C = -h3/12
T, = -(h3/l2)yC3’([) y , = xi2, y,’ = 2xi,
T, =
C y C 2(yCZ1 ] = 2)
C y,,
1
=Y,
+ hC(1 -
= -h 2 [ $
1
1
- PI]
+ PlYn’l
-
k 2 C t - P*lv”l(i>
&
=
PI = 4,
p1 = 1,
p
k
+1
=
1
x,
=0
yi
x, , h
up
p.
kP+’ J!,,+
kJ$+1
= yn =
+ hyn’ + + k 2 y : + $I~J$’ + . . .
+ h2y: + +h3y: + . . .
p
19
1.7. Generalized Integration Formulas for ODE
(1.7-4),
Yfl 1 -1 0 0
Yn+1
- Yfl -3hYA+, - fhy,‘
0
hYn‘ 1 0 -112 - 112
h2yL 1I 2 0 -112 0
0
h3yr 1I6 0 -1/4 0 1/12
0
2
h up -+ih3yC31. 1.7.2. Adams Forms
k
As Yn+i
= a l Y n + a 2 Y n - l +a3Yn-2+cc4Yn-3 + h[pOyA+l + Plyn’+ p 2 Y A - 1 + p 3 Y A - 2
=4
+ 84.Y;-31 (1.7-10)
a2 = a3 = a4 = Po p = 4. (1.7-10)
y ( x ) = 1, x, x 2 , x3,
cc1=1,
P1=+$,
yn+1 = y ,
x4,
p 2 -- - g ,
p3=z,p
4 --
+ (h/24)[55yn’- 59yA-1 + 37yA-2
-224
- 9yA-31
(1.6-28).
=0
(1.7-11)
a2 =
a 3 = a4 = 0,
Po = 0
1.7.3. Higher-Order Derivative Forms
J’n+ 1
+ a 2 J’n-1 + = 3 Y n - 2 + h2CYoY:+ 1 + YiY: + Y 2 Y:-
= aIL’n
(1.7-1)
1
+ Y3~ i - 2 1
(1.7-12)
20
1. Fundamental Definitions and Equations
6. 5
x3.
y(x)
T, = CyC6’.
. . . , x5 a1 = 2
+ a3,
Yo = y2 =
+
=
t12
1, x,
a3 = a3
-
y1 =
-
=
y3 =
ct3 = 0
+
+
+
- Yfl-l
Y,+l =
T,=
~(-11
Numerov’s
+ P i ~ n ’ l+ h Z C ~ o I C ++i Y ~ Y : ]
+
=
p
y(x) = 1,
=4
x, . . . , x4 Po=&=+
yo=-’ = Y,
129
Y1
+
+
+
=&
+ XI
T,= 1.7.4. Gaussian Forms
Yn+l
= u1Yn
+ hPlf(xn+p,, Y n + p I ) + hP2 f(Xn+pz, al,
x,+~,
x,+~,
x,
pl,
Y,+PJ
p2,
x,+~
do
p =4
y(x)
= 1,
. . . , x4. P1+&=1
+ P2X,+Pz 2 B1X,2+p1+ 8 2 X,+p, 3 3 PIX,+L3, + B2 x n + p 2
BIXn+pl
=
4
=
3
=
t
21
1.7. Generalized Integration Formulas for ODE
4
pl, f12,
x , + ~,
= p 2 -- 2I
1, 3-43
cI1= Xn+p,
=
(
3 4 3 Xn+O2=-
t
~
6 be
1.12 As
book ( p =4),
1.7.5. Variable Step Forms h h = h,
Po = 0 a 4 = 0.
71 =
1,
7 2 = 2,
h
73
a2 =
fix
do
T ~ 7, 2 ,
(
PI
=
1- P2 -
4,
- P4
=
= 3,
22
1.
T ~ T,
T~ =
~
1,
,
T~
Fundamental Definitions and Equations
73
= 2,
T~ =
on
3
by
[9].
1.8. COMPILATION OF VARIOUS MULTIPLE-STEP INTEGRATION FORMULAS INCLUDING yi AND yi’
yn, y n - l , . . .
, yfl , r
...
,
{xn}.
Po = 0
flo # 0 k by
p
[2]. 1.8.1. Explicit Forms
k
=4
Yn+l =alyn+a2Yn-l
+C(3Yn-2
+E4Yn-3
+ ’?[Plyn’ + P 2 Y L - 1 + 83Y:-2 + f l 4 Y L - 3 1
(1.8-1)
xi p = 4.
1.4. 1.4
EXPLICIT EQUATION(1 3 - 1 ) k=4, 611
a2
a3
a4
1 0 0
0
0 0 1 0
0
I 0 0
0
tll =
p=4 P 2
55/24 813 2118 9/24
0
0 1
1
-59124 -513 -918 -413
(1.6-28),
P4
P 3
37/24 413 1518 813
c ( ~ =
-9124 -113 -318 0
1
1.3),
k Yn+l
=aiYn
=
3
+ a 2 L ’ n - 1 + H 3 Y n - 2 + ~ [ P I Y ~+’
+ 83Yn-21 (1.8-2)
23
1.8. Multiple-Step Integration Formulas Including y i and y,‘
(1.8-2)
4, p
5.
by
= 4,
a3
1.5
as.
(1.3-7).
a3 = 10
1.5
p=4
+
9 10 9 18 3
c(3 =
PI = p2
a3
=
p3 =
-
0
+ +
(- 1
T, =
”
9 0
9 1 6 6 0 12
9 1613
4413
0 1962 by
W.
by
-7
-8
- 18
- a3 a2 = 9
*
by / ~ ’ y [ ~ j ( & S ! .
(1.8-2),
3 a2
1.6.
a3 1.6
k
+ aZ
=
1
=3
+ a3 Yn-2 + I1[fllYn’ + f l 2 y i - 11 (1.8-3)
a3 (1.3-6)
J’n+ 1
T, =
=
=3
1.7
a3 = 0
a3. ci3 = 1
+
1
+
+ 6hCyn’ +
~ n - 2
11
24
1. Fundamental Definitions and Equations 1.7
(I k=3, - 54
5a3
MI=
u* = 5
u3 = a3 pi f 8 2 = 2 f 4a3 T. = 4 - 4 ~
3
9 1 6 6 0“
45 10 24 42 - 36
5 0 4 2 4
0 1962 by
W. by
Book by
‘T, = k
=4
p4 = 0, u3
1.8
p = 4.
a4
1.8 2-5)
-8
- u3
+ 8x4
-8 9 0 0
u3 = u3 a4 = a2 = 9
PI = ==
P 3 =
+ a3 + (- 1 + +9 d 3
T,= a
0 0 0 1
-
1413
-
a3
- 4a3
+
-I 9 1
0 6 6 0 9
by h5yr5](5)/5!.
a3 = 0, a4 = 1
y,,+
I = yn-3
1.8
+
-
y;,-
I
+ 3~*:-2)
0 1 1 3 0 3 36
1.8. Multiple-Step Integration Formulas Including
25
and y,’
1.8.2. Implicit Forms k Yn+
=
+ E Z Y,- + hCPo Y;+ + P l y ” ’ + P 2 .Y;-
=
1
11
(1.8-6)
= 3.
1.9
1
(1.8-6)
a2
p
TABLE 1.9
IMPLICIT EQUATION
1
1 - cc2 =(5 -
po
= (8
+
415 1i5 215 415 0
0 1 113 413 113
0
o(2 = o(2
c(2)/12
bT,= “
0
W.
1962 by
by
by
T, =
x2 = 1 Milne’s equation
1) = Y,-
y,+
T, = -(h5/9O)y[’’([) k
1
(1.8-7)
4.
=3
+ +
yn+l = E ~ Y ,
a2 1.10. a2 = z3 = 0
+ ( h / 3 ) M + 1+ 4yn’ + YA- 11
* * *
~ 3 Y , - 2
+ h[P,Y;+1 + . . . + p =4
u3
ci2 =
x 2 = 0, x 3 = 1 a2 = 0, u3 = - $
41. (1.8-8) 1 1 p
P3 = 0 = 4.
by
b3YA-21
3 Humming’s rz
1, x 3 = 0
h,
TABLE 1.10 (1 3-8)” = 3.
k 0 0
9/24 19/24 .- 5/24 1/24 -1916
p=4
0 1 0 I 13 413 113
0
0 1 318 918 918 318 - 912
0
-413
113 113 113 13/36 39/36 15/36 5/36 3
112 112 0 17/48 5 1/48 3/48 1/48 - 9i4
918 0 -118 318 618 318 0 -3
01962 by
b’. by
0 213 113 25/72 91/72 43/72 9/72 --43118
Book
by h 5 y r s 1 ( [ ) / 5 !
TABLE 1. I 1 (1.8-8) p3=0, XI
-
U/8)(9
-9
4
c(2 =c(2 a3
Po
-
PI Pz
-
-(1/8)(1 - X Z ) (1/24)(9 - a z ) (1/12)(9 f 7az) (1/24)(-9 i l 7 ~ 2 )
T, x h5y[5’([)
0 1 0 113 413 113 -1190
k=3,
9/17 9/11 -1117 6/17 18/17 0
-31170
p=4
1 119 -119 10127 22/27 -8127 -19/8lO
918 0 -118 318 314 -318 --1/40
917 -117 -117 8/21 213
--10/21 -171630
45/31 -9131 -5131 12/31 1813 1 18/31 -9/310
9i5 -315 -115 215 215 -415 -1130
27
1.9. Multiple-StepFormulas Including y i and y,'
1.9. COMPILATION OF VARIOUS MULTIPLE-STEP FORMULAS INCLUDING yi AND ~
i "
y" = f ( x , y )
yn, yn-
...
Y : + ~ ,y:, yz-
1,
.. . .
1.7.3
1.9.1. Explicit Forms
Y.+
1
+ @ 2 Yfl- 1 +
=
+
Y::-
11
(k = p
= 3.
do Y,+ 1 = - Yn- 1 + T, = (k4/12)Y[41(1)
k = 4, p = 5 Y"+ 1 = T, = -
1
+
-
+ Y:- 1 +
by Yn+ 1
= 2 ~ -n
Y.-
1
-~
yn+1 =
+
~
+
1
+
Y"+l = 2 Y n - Y n -
-
-
1
+
+
+
-
1
- 1761';-
x
1
-
+
-
Stormer's equation. 1.9.2. Implicit Forms k =2 = xi?,,
+
+
+
p = 3,
+
- 1'"-1 T, = - (k4/24)yt4'(<)
?'"+ 1 =
1
+ y:-
11
(1.9-8)
28
1. Fundamental Definitions and Equations
k
=
3
+ C(3Yn-2 + h2CYoY;+ t + YlYl + Yz
rlyn f
Yn+l
p
=5
cx3
+ Y3
a
1.12. TABLE 1.12 IMPLICIT EQUATION (I
k=3,
p=5
3
2
1
0
-3
1 1
0 0
-3
~~
1962 by
Hill,
by
by h 6 y L 6 ] / 6 ! .
a3 = 0 Yn+ 1
= 2Yn - Yrr-1
+ (hZ/12>[IY;:+ 1 +
+ Y;- 11
T, = Numeror’s
yn+ 1
= 2yfl - y n - 1
+
(1.9-10)
royal road
+
+
+ 4yi-2
-~ i - 3 1 1)
1.10. MULTIPLE-STEP INTERGRATION FORMULAS: HIGHER DERIVATIVE TERMS
As a J ’ ~ ,ji’
(1.7-14)
yi’,
1.10. Multiple-Step Integration Formulas Involving Higher-Derivative Terms
1.10.1. Explicit Forms
Yn+ 1
= XlYn
+ u2 Y n - I + U l Y , ' + D 2
11 + /I2[IY,?.;: +
1.13. 1.13
EXPLICIT EQUATION .10-1)"
"
Q 1962 by
Hill,
by by h5yrs1/5!.
I,
1
a2 = 0
1.10.2. Implicit Forms do : Yn+ 1
= j'n
T, =
+ ( ~ / ~ ) C Y A +1 +
+
11
p =4
(k = a2
'
4';-
1
+
29
30
1. Fundamental Definitions and Equations
5) 1
= 2yn - y n -
1
+ ( 3 h / 8 ) [ ~ ’ ; +1
11 +
1
+
-
11
0.
T, =
1.10.3. Higher-Derivative Forms
[5] = J’,
+ k ~ . , ,+’ ( h 2 / 2 ) y : +
T, = = yn
+
+
+
11 -
-
11
-
T, =
J’nt 1
= Yn
+
+ Y”’1- (h2/10)[!’::+ + yfi’]
+
T, = ( 1 2
1
-
J , [ ~ [)
by
k
by
by
k. k.
k
1.11. FURTHER DEFINITIONS
1.11.1. The Local Truncation Error 17
y(x) y(x)
+1 by
31
1.11. Further Definitions
bound
to
by
p
+1
p T ( x , h ) = ChP+ ‘ y [ p +
T,)
T ( x ,/ r )
local truncation error, xo
xl, . . . , x,,, by
... . y, + 1 = Y ,
+
>
= 0,
y, ; A),
1,2, . . .
on x,, y, ,
increnrent function
1
All
h
h)
x
y(x) T ( x , h) =
y(x); / I ) -
f
+
1
11)
If p
p’ (1.11-4)
h +0
T(x, h ) = O(hP‘+’) p p
on h,
g(h),
u(h)
C,,
u(h) = O(g(h))
h,
Iu(h)/g(h))I C1 h+O
hp+’ h. @ = f ( x , ,y,).
=Yn+hS(x,>Y”)
(l.6-7)), h) = +/z’y”’(<)
=
1,
32
Fundamental Definitions and Equations
1.
O(h2).
+ hf(x, Y ( X > ) - v(x + h)
T(x,h) = = y(x)
+ hy’(x)- y(x + h)
(1.1
p
p
p on bound,
< hP+’C bound
h-(p+
-
hP+’ C
-+
C
( 1.1
h30
As ly[21(x)l I M
by
IT(x,
= b(x)
+ hY’(X) - v(x + h)l 5 (h2/2)M
bound on
by
L[y(x)],
p L[x’] = 0,
j = 0, 1, . . . , p
L[x’] # 0,
j =p
+1 y
y(x) p
y(x) = j=o
.
1
k
p!
0
-x J + - f (X - V ) ” + ~ ~ + ’ ~ ( V dv ) y”l(o) J !
(x - v),
=
x -v)
(1.1 1- 10)
L,
1
1 k G , ( V ) ~ ~ ” ~ ’dv ’(V)
L[y(x)]= 7 P.
0
(1.1 1-1 1)
33
1.11. Further Definitions
by
influencefunction,
12)
CP(4 = L[(x g(x) x=(
aI x r b
f(x) b
jJ(x)s(x) g(x)
a
b
b
dx =
(1.11-13)
d x ) dx
on [a, b ] [ 2 ] . as
( I . 11- 14)
(1.11-15 )
Y , + ~- y ( x n + , )
T ( x , h)
(1.11-16)
Gp(v)
G,(v)
1.11.2 The Accumulated Truncation Error accumulated truncation error
we y(x)
by
~ ( x +n1) = Y(xn) + h@(xn J(Xn) ; h) - T(xn h ) 9
9
( I . 11- 17)
34
1. Fundamental and Definitions Equations
T ( x , , h) h -+ 0, T ( x n ,h) +
0
E, En
1-
= Y n - Y(xn)
y)
T(x,h ) =
IT(x,, h)l fl
by n = 0, 1, 2, . . .
T ( x ,h) = T. i
1 ~ 2 1i
i i i
(1
+ hL) + + hL)I&,I+ + hL)21e,l + + + + hL)I&,I + T + ~ L ) ~ I E+, I + + h ~+) + ~ L ) ' ] T on
by
bound on
(n + E,, =
0
35
1.11. Further Definitions
y), Ent1
+ hf& +
=
f;-
y, I
=
jj
(1.11-26)
, h)
I
lfyl
h)l 2 T,
bound on of
E,
by
bound
7
y” = f ’
=f,
+f,f.
A) = bound ~ ” ( 5by )
M
= a
f,
f, =
u20
+ hL)”+’ I
+ +
-
len+ll I
-
=
-
E~ = 0,
I
IEn t 1
t1
-
h --t 0,
1.11.3. Other Items on
All
do
local rounding error. Jn+l
en
+
= jn
12)
+ e,
- 11
-
11
L
36
1. Fundamental Definitions and Equations
h x
hM
En+1<
e
[i + ];
L
xO)l
-
En = J,, - y(x,). h+0,
e n ,Eo = 0,
e=
-
[
x = x, .
= xo
h, hop,, ( h M / 2 )+ (e/h),
h
hop,= (2kfe)'iZ hop,,(hM/2) = (e/h) good h y' = -y,
yo = 1.0, h=
h
y ( x ) = eCX.
h
=
x = 1.0
1.0,
2. on
360
hop,
e
M =1
110-,4,
h,,,
hop,
= 510-4
=
ll0-,.
h h
h h h
1.14
31
References 1.14 -YATX=
FORy’=
1.0
h
DP 1.810-7
9.210- 6
4.610- 4 .Sl0-
3
-
book
stability
principal error function. n
4 T ( x, h ) = hP+’+
+
4 = +y[’](().4 hp+’
1967.
1. 2.
“
1962. 3.
“
1962. 4. 5.
Z., J. D.,
A.
1955. y’ = f ( x , y ) by 2. Angew Mufh. Phys. 13,223
38
1.
6.
Fundamental Definitions and Equations
“
1962. 7.
f. Franklin Insr. 262, 111 8.
y” = +(x, y , y’)
Znsr. 263, 401
J. 9.
Wyk,
2 Runge-Kutta and Allied Single-Step Methods
a 4
3.
2.1. DEVELOPMENT OF SINGLE-STEP RUNGE-KUTTA FORMULAS
by
( x . + ~Y, , + ~ )
(x,,y,).
up by
(x,, y,)
f ( x , y ) within
( x , + ~Y, , + ~ ) .
by
f ( x ,y ) 39
40
2. Runge-Kutta and Allied Single-Step Methods
up
" wi
L'
f ( x ,y )
v
k,
1,
=
wl,. . . , w,
c 2 , ..., c v , a Z j , ...
y)
(x, y )
yn,
yn+l xn .
x,,+~
y)
h
v
=3
w2,
c2,
f ( x ,y )
x
Y' Y" = f x Y "'=f x x f ( x n , y,)
k1 = k2 = h f n
+
+ +
+
+f'f,, +f , ( f +f f y ) =
1
=Yn
+
= hfn
Y ) =f +f,f
=fn
Yn+
k3
y,
+ h f n + + h 2 ( f x + .ffy>n + + .r2fyy + f y f x + f y ffy>n
+ h2(c2 f x + a , , f l y > n +
fx
fx
+ ~2 a z l f f x y + +
+ +
+ a21ff)fy>n
+
+
+
41
2.1. Single-Step Runge-Kutta Formulas
(2.1-5) w 1 + w2
c p a21W.7
+
w3
+ (a31 + a32)w3
a21w2
by
(2.1-1) =
1
=
3
+ c3 w3 = 3 + 3c32 w3 = +
cp wp 3c22w2
+ c3(a31 + a32)w3 = 3 c2 LZ31w3
=
(2.1-4)
1
2
$21w2
+
+(a31
+
4
a32)'w3
=
a21431w3
=
(2.1-6)
+ a32
c2 = a p l
c3 = a31
(2.1-7)
(2.1-7)
c2 c3, p =3
a (p=u
=
2.1.1. Specific Runge-Kutta Forms . always
h2 : w1
+
w2
=
1,
c2w2
c2 1
( w l , w2)
p
(0,
= +,
(4,2 )
c2
(2.1-9)
w2 .
c2 = 4, +,
)I!, (+,+)
Y"+l
= Y"
+ h f ( x f l + +hYfl + 3hffl)
Yn+l
=Yn
+ (17/4)Cf(xn,
Y"+ I
=
Y"
= a21
(2.1-10)
+ 3f(xn +
+ ( h / 2 ) C f ( x f l ,Yfl) +
+ 11,
+ (2.1-
+
= 21 = 2 L' =
3
I - = 4,
42
2. Runge-Kutta and Allied Single-Step Methods
Y,+i = Y ,
k3 Y,+i
+ 4k2 +
+
= hf(x,? = Izf(x, = hf(x,
Y,)
+ fh, y, + + h , y , - k1 +
=Y,
+
+
k l = h f ( x n 2 Y,) k2 = h f ( x , t h , y , $1, y, k3 =
+ +
Y,+
i
+k2)
+ 3k2 +
+
=Y,
+ +
= hf(xJl7 Y,)
+ +h, Y , + k3 = h f ( x , -t- Sh, y , + $ k z ) =
-
by
= yn
+ 3kz + 3k3 +
+ Yn>
=
k2 = k3 = h f ( x , k4 = h f ( x ,
yn,
1
hy,:+ 1
+ t h , y,, + + k i ) + yn + + + h , J, + k2 +
+
+k1
k1 -
+ + + i [ k 1 + 4k2 f
= J.’, hy,’ = f7)’”’
k3]
-1
43
2.1. Single-Step RungeKutta Formulas
2.1.2. Alternative Approaches to Generation of Formulas
on
x , + ~by
x, (x,, x,+~).
+ X k i + 3k3I
=
kl = h f ( x n ,
kz k3
h j ( x , , + +h, y, = h f ( x n + +h, yn
=
+ +
#I)
Gk2)
Y,,+~
1, y n + l / 3
2.1.
+ (h/3)y,'
=
Yn+l/3
y,
p = 1, Yfl
2, y n + 2 / 3
Yn+l/3 Yn+2/3
= yn
p y,
+
= 2,
3, Y , , + ~
y,+2i3 Yn+ 1 = Yn
+ +Y,' + $ Y A + 2 , 3
TABLE 2.1
1 2 3
Yn+1/3
1
Y n + 213 Y", 1
114, 314
1 2 3
44
2. Runge-Kutta and Allied Single-Step Methods
h
p = 3,
h x.
1.5,
x , , + ~ ,A ~.
by
1.7.4
2.2
2.2
112
rt
1 1 I2
2 4
1
1
114
3
0
0 213
0 - 1/6)/10
314 119
+
5
0,1
1
2
0,1 1 I2
116 213
4
+
0, 1 (5 i 1/5)/10
(16 -
6
45
2.2. Condensed Nomenclature
[33], x,
(0,
x,,+~)
( - 1,
+
2.2 2.2
no
0 0
do x,+~
x,
look
As (Y, L‘) =
5),
7),
f(x, y )
r > 4. 2.2. CONDENSED NOMENCLATURE FOR RUNGE-KUTTA METHODS
by
0
or
c2
a21
c3
a31
a32
c4
a41
a42
a43
46
2. Runge-Kutta and Allied Single-Step Methods
A, aij on x, MI,, . . ., H'".
ki
y,, wT
c L'
11 3 1
2 1 4 1 6
6
ki+l explicit ki+l
b
A, k i , ki-,, ..., k,. As open-ended Runge-Kutta. on k i + l ,k i . . . . , k , k , , k,-,,. implicit closed-end Runge-Kutta
. . , k i + l ,k i , . . . , k,.
2.3. EXPLICIT RUNGE-KUTTA EQUATIONS OF DIFFERENT ORDER
L'
by p substitutions, derivative evaluations, L' p p
L'
stages,
N(r) p
z'
N ( r ) = z', N ( 5 ) = 4,
2'
1)
54
5, N(7) = 6 N(9) = 7
=
N ( 8 ) = 6,
1,
15
..., 4 p
= I'
5
no
47
2.3. Explicit Runge-Kutta Equations
0)
5 8.
2.3.1. First-Order Formulas (1, 1) (1,
2.3.2. Second-Order Formulas (2, 2) c2 p
=2
c2
C2
:2
1-tcz by
f + fyyf’)
h ) = \I3[+ - ( C 2 / 4 > l ( L Y X + + ( h 3 / 6 > ( f xf y + f;’f> Of = f ’
T ( x ,\I)
=f,
+f&,, + (h3/6)f,Df
= It3[+ -
+
= h3[+ -
c2 = +, 5,
fyf’
1,
+I: 0
9/, 3
c2
=
4
c2
=
5
0 1
3
1 3 4
4
-.
48
2.
Runge-Kutta and Allied Single-Step Methods
= 1 1 2 2
:
w1 = 0,
1.
2.
=
+
3.
+ ~n + + h, + A?,)
k2 =
do
y)
2.3.3. Third-Order Formulas (3, 3) c2
c3
by T(x,
+
-
=
+ (1
-
-
2
1 3 8
c2 =
2 1 3
6
+,
cj = 1
49
2.3. Explicit RungeKutta Equations
0 c2 =
3,
=3
c3
-
y ) =f(x). 2.3.4. Fourth-Order Formulas (4, 4) c3 .
c2
by
1 30
+ [--
w3 a 3 2 c22c3
+ w?c4(a42
2 c2
+ a 4 3 c32)
2 w4 a 4 3 a 3 2 c2
2
j
f P 2 . f
1
+
w 3 a 3 2 c 2 3 w4(a43c33 6
+
42
c f,,D3f
7
+ 1120 - - w4 a 4 3 a 3 2 c 2 ( c 3 + '4)]
f yO f y
1
+
120f3f)
0 ~
2
+
1
2
0 % 0 0 1
c* = cj =.=
+
50
2. Runge-Kutta and Allied Single-Step Methods
c2
= 4,
c3
=3
14)
0 1 2
3
1 2
(,I2
- \/2)/2 - J2’2
-
1
0
1
+ J2/2
~2
= ~3 = 3
(2.3-15)
2.3.5. Fifth-Order Formulas (5, 6) p 25
As
p = 5,
(2.3- 16)
a
192
0
-
0
192
8 1 1 2 5 192 192
[461,
_ _
&+,
G5,
( p = 6).
&,
2.3. Explicit Runge-Kutta Equations
0 1
51
1
-12
1 1 4 1 2
14 64
1
96
-1
-5 - A
64
64
1 2 -12 --
96
8 -
64 -
64
64
64
90
90
90
96
64
1 90
0
96
90
0
1
1
i
3
1
8
:;
-1 - -
1
2
4 5 --
1 4
64
64
_1_
0
90
2 2 0 -3 64
64
1 2 L j z G 90
90
90
0 1
-1
+
;
q - 1 1
-
-
-
1
-5
? 6 0 ° & 7
3
7
7
- 12-
7
0 1
1
.
1
1 -
r
0 - 3 1
3 4
8
-
1 8
13600
i%
8 7
90
52
2. Runge-Kutta and Allied Single-Step Methods
0 1 -
5 2 -
5
1 3 4 -
5
1 -
x,
k, x,,+~)
by k4
go
no k, by (5,
2.2 on
53.
x,-~
53
2.3. Explicit Runge-Kutta Equations n
rn
c;'
c? W
-.
3
?
4
G.
n
> 2
4
. n
0
4
. _ n
?
3
G. -?
t
2 .
0 3
0
n
4
oo
gg
n-
2
. 2
3
-. 4
4
sz 0
'
3
3 3
?!
m
3
54
2.
Runge-Kutta and Allied Single-Step Methods
0 1 -
1 -
1 -
1 -
1
0
2 -
7 -
2
2
4
27
3
-1 -
4
2
1
1 0 16 28 5 2
&
2
10
625
546 625
O
0
5 4
625
378 625
3555125 336
336
336
by
3
0 1 -
6 4 1 5 2 3 4 5
1 6
4 I5 5
6 8
_-
16 75
_ -8 25 18 5
361 320
1 -
5
3
2
144
31 384
16 25
~
407 128
2816
1 1 --
55 __
32
168
80
128
0 1 -__
9000 3 10 3 4
1
1 9000 -4047 10 2 0241 -~ 8 931041 -~ 81 ~
_4050 lo 20250 8 931500 81
15 ___-_ 8 _ _ _ _ _ _ 48910
112 __ 81
66
55
2.3. Explicit Runge-Kutta Equations
2.3.6. Sixth-Order Formulas (6, 7) and (6, 8)
0 1
1 -
1 -
1 -
-31
1
9
9
6
3 -
24
24
4 -
-3
6
4 8_ 5 27 24 _ -__ 8 8 8 8 _2 2_1 _ _ 9_8 1 -8 6_7_ _ 1 0 2 783 678 _ _447_82 _ -46 86 ___ 48 48
1 -
2
2 5 6
~~
41 840
?_
9
48
82
82
82
82
216 840
0
21 __
272 __
840
3 -
80 -
840
48
82
82
_2 7 _2 1 6_ 840
840
4_ 1 840
~
0 1 -
1 -
3
3
+
0
3
1 12 1 3 -
3 1 1 -
1 --
2
r
16
9 8
0
2
11 2
3 _16
3 --
8
_ _38 _ -43
1 2
0
1 300 1 -
5
3 -
5
14 15
1
~
1
300 29 5
__
__ 323
30 5
___ 330 5
5 5 1_ 0 1_ 0 4 __521640 -_ 810 810 417923 427350 I7 77 198
10 5
_ _1 82_17 00 5 10605 77 1225 3698 ~
~
1925 810 1309 77 1540 3698
~
54 77 810 3698
I
77 3698
_
_
~
56
2. Runge-Kutta and Allied Single-Step Methods
2.3.7. Higher-Order Formulas lo),
12)
2.4. RUNGE-KUTTA FORMULAS DERIVED FROM TRUNCATION ERROR ANALYSIS
p 24
As p > 4.
[56]
[38]
T(x,h) = P + 1 $
(2.4-1)
4
141 < C M K P ,
M,K
<M,
(2.4-2)
C= =
(2.4-3)
2.4.1 Second-Order Formulas (2.3-4) by
h ) = h3[+ - ( c 2 / 4 ) l ( f x x+ 2 f X Y ff
fyyf2)
+ ( h 3 / 6 ) ( f , f y+ f,’f>
(2.4-4)
(2.4-3) M, < KM,
f,
fXY
f,, < K 2 M f,,
(2.4-4)
h)/h31
=
141 < [4l+
- (c2/4)l
+
(2.4-5)
2.4.
bound on 4
c2 =
57
Truncation Error Analysis
141 < 4 M K 2 .
c2 = 3
2.3
+,
141 < + M K ~ 141 < 3 M K 2 141 < + M K ~
c2 = 3, c2 = 1,
2.4.2. Third-Order Formulas by
By
161.
c2 =
3,
~3
= 1,
c2 = cg = 1 47 c2
=
3, c3 = 3,
c2 = 3,
c3 =
+,
c2
c3
c2 = 4, c3 =
+
141 < 3 M K 3 141 < + M K 3 141 < + M K 3 141 < 3 M K 3 by c2 =
+ 0.4648162 0.7675919
= 0.4648162
0.4648162 0.8256939 0.2071768 0.3585646 0.4342585
2.4.3. Fourth-Order Formulas by
0 -2J
c3 =
c2 N 0.46 c3 N 0.77
58
2. Runge-Kutta and Allied Single-Step Methods
on
0 0.4 0.4 0.45573725 0.29697761 0.15875964 1 0.21810040 - 3.05096516 3.83286476
0 2 -
2
3 -
3 -20
5
5
1
5
3 4 19 -I2
44
44
c2
40 44
=f,
c3
=4
59
2.5. Quadrature and Implicit Formulas
y) = f ( x )
by 1
(T(x,h)l 5 (h5/2880)y[’1(C)
h = (1/2880).
bound
300
2.5. QUADRATURE AND IMPLICIT FORMULAS
3,
h. do
n
As
h. h h. h
A,
ki
aij. k , , k , ,.. . ,k i V l ,k i , k i + l ,. . .,k,; ki
As 2.1. 2.5.1. Basic Forms
by U
~n+l=~n+Cwiki i= 1
60
2. Runge-Kutta and Allied Single-Step Methods
,..., u
,
ki=hf u
c; = by
xr=
aij. c1 = 0, x = x, .
ki, k,, k,
x.
ki
i - 1.
aij.
A, j
=u
[8,9] u(u
Explicit
+
k,, . . . , k i - , .
ki, on i - 1.
z(u
Semi-Implicit
+ 3)/2
# 0.
ki,
k,,
. . ., k i . i
on c(u +
Implicit
ki,
k,,
. . ., k , . on
on
aij. u. by
y’ = f(y)
x
y
by XI
I
I
=
[
f ( x ) dx
= h C w; f ( x ,
+
i= 1
by
wl,. . . , w,
cl, . . . , cti, aij
61
2.5. Quadrature and Implicit Formulas
2.5.2. Gauss Forms
c 2 , . . . , c, -
=0
P,(x)
u.
xi
(- 1,
(0, by
p =
u
P,(2c
cl, . . . , aij( j = 1, 2, . . . ,
= 0.
-
i, i = 1,2, . . . ,
b.
w j ( j = 1,2,
...,
21)
U
C1 w j c ; - '
=
l/k,
k
=
1, 2 , . .., u
j=
#0 c = 1, 2,
u = 1,2, 3
. .., 5
p = 221, by
[ 151
+I+
(2.5-3) 1
(5 1/2
+
+ 3J
+
(10 - 3
+
-3
5
62
2. RungeKutta and Allied Single-Step Methods
2.5.3. Radau and Lobatto Forms
Case 1. c1 = 0; c 2 , . . . , c, Case 2. c, = c,, . . . , c,-~ Case 3. c1 = 0, c, = 1 ; c 2 , . . . , c,-~
1, x = 0 2, x = 1
x,) x.+~)
y); y).
to
3, x x ,+ ~ )
=0 y).
x =1
xn)
of p
= 2u -
1
p = 2v - 2
2
1
c1 = 0, all = aI2= . . . = a,, = 0 c, = 1, a,, = a,, = . * . = a,, = 0
1 2 3
1, 2, CASE
3.
aij
=
2
aij
3.
1 FORMULAS
010 1
u=1,
2.2
0
-
+
+ -
0
+ +
0
0
-
3
2.5.
Quadrature and Implicit Formulas
-
-
- 11
1
0 0 0
+ +
+ 11
+
63
-
u = 3, p = 5 CASE
3 FORMULAS
0=2,
O1 I 01 *0 1
I)
1 2
2
u=3, 121 6
3
6
2.2
0
+
-
+
+
0
1
0
+ +
1
7
+
-
1
-
0
0
0 119 21
0 1
+
-
1
0
0
0
- 21
-
+
119 219 U =
We
0 0 0
0 -
5, p = 8
0 0 0 0 0
64
2. Runge-Kutta and Allied Single-Step Methods
2.5.4. Semi-Implicit Forms [59]
[30].
by upon by
(2.5-15)
= h[f(Yn)
k2 k3
= h[f(Y,
1
+
= h [ f ( Y nf f
b,kJ b2
+ a2 4 Y n + + f
(2.5-16)
A(Yn + C 2
+
1
y' = f ( y ) . A ( y ) =f,
a,
= u2 =
= 0,
on
no
= hf(Yn)
= h[I
(2.5-16)
ki no k i + 2 ,. . . , k,. w,,. . . , w 3 ,a,, b,, a 2 , . . . ,
+
-
(2.5-15)
(2.5-16),
k,
k2
(2.5- 17)
:
by z' = 2, p = 3
a, 6, = c,
=
1 + ,/6/6 = 1.40824829,
=
{ -6
- J6 W,
a2 = 1
+ J58+ 20d'6}/(6 +
= -0.41315432,
=
- ./616 = 0.59175171 = 0.17378667
1.41315432
(2.5-18)
65
2.6. RungeKutta Formulas for Vector DE
u = 2, p = 2
u = 4, p = 3 u 2 = 1,
a,
a3=1,
b , = 1, b2 = +, b3 c1 = 1, c2 = Q d, =+, d 2 = F9 F5 fI 2e , = +, - 99
a,=+
= $q
cJ = e2 = g1 = 0 w, = ~ 1 9 - w,2 = -41 18,
U, = a,
w3
w 4 = -11 6
- 2
= 0.788675134,
b, = - 1.15470054, u =2
=9
W, =
c1 = 0,
3,
~2
=4
p =3
3.
A
ki. aij do
2.6. RUNGE-KUTTA FORMULAS FOR VECTOR DIFFERENTIAL EQUATIONS
on
m
= g(x,
y,
66
2.
Runge-Kutta and Allied Single-Step Methods
Y(X0) = Yo>
Y ' ( X 0 ) = Yo'
(2.6-2)
z(xo) = 20
(2.6-3)
= y'
2' =
f(x, z),
on (2.6-3). Y' = f ( 4Y , w) w' = b ( x , y , w)
y , w) =
y'
(2.6-4) (2.6-3).
=
(2.6-4)
(2.6-5)
on m = 2.
b
m (m 2 2) ~ ' l ' = f l ( x~, ~ 2 ' = f i ( x~,
1 ~ , 2 . ,. . , ~ m )
Ym' =fm(x, ~
1 ~ ,( 2 3
1~, 2
' ., . ) yrn)
(2.6-6)
. . . , yrn)
y
f.
2.7.
67
Two-step Runge-Kutta Formulas
m
2.7. TWO-STEP RUNGE-KUTTA FORMULAS
2.5 p
u
( x ~x,,+~). , As
to k
=2
121
by
by
on
upon n
U
4(Yn-1)
= W(Xn-1,
lz(yn-1) = h f ( X n - 1 /,(Yn-l)
+ u2h,
= hf(Xn-l
kl(Yn)= W ( X n
Yn-d + ulh, Y n - 1 + ull1)
3
+ ('2 - '3)'l
+ '3'2)
Yn)
k 2 ( ~ n )= W ( X n
+
k3(Yn)= W ( X n
+ u2
si = 0 u = 3, wi
Yn-1
Yn
u1
Yn
+ u1k1) + (.2
u2 u1
(p=
-4
kl
+ u3 k2) u3,
u2. u = 2,
I,
(p= u1 by
O(h3)
O(h4).
k,
68
2.
Runge-Kutta and Allied Single-Step Methods
u = 2, p
-
=
u3 =
-
-
=3
u 2 , ul
u1 # 0, u2 # 0, u1 # u 2 . u1 u l , u2
on bound “
u1 = u1 = 0.541, u2 = 0.722779927
”
0
p
=
3
p =4
(k >
by
2.8. LOCAL TRUNCATION ERROR ESTIMATES IN A SINGLE STEP
by T(x, h) h
T(x, h ) x,
x,+~;
2.9 x,
x, +
,
T(x, h).
2.8.1. Merson and Scraton Forms
T ( x , 17)
2.10 x,+~
69
2.8. Local Truncation Error Estimates in a Single Step
0 1 3
3
i
l 6
1
p=4
l 6
(p=
(u =
As
wi
a,,
c,
j n + ;l
Y,+~
by h
f ( x ,y)
good
- 9k3 + 8 k 4 - k51
T ( x , h) =
f ( x ,y )
[68] by 0 2 -
2 -
1 -
1 -
9
3 3 4
&
9
I
1 4 3 _2 4_
12 _6 9_ 128
128
2025
544 (x&)
* o
8 1
( 1 n 9k 1
3 2
2 5 0
+*k3
T(x, h ) = -(k4 x
u = 5, p = 4
210 __
128
- ‘$k2
- -&k4
+ sk3 - &k4)
2.8.2. Collatz Rule of Thumb [ 171
T ( x ,h) by
/7.
+ &+/i5)
70
2.
Runge-Kutta and Allied Single-Step Methods
k,
1
1
=
k,
1.0
h
h
1, h
1, h As
y)=
k, = k ,
f(x)
by ki. y' = ay
+b
by
As
2.8.3. Sarafyan Embedding Forms on
by (h) Y,,+~ Y l , n + l , y 2 , n + l , Y 3 , n + l > Yd,n+l,
ki. Y,,"+~ k , , , . . ,y 6 , n + 1 y , ,"+ p =1 y6,n+l p = 5 ( p = 5, u =
,
k,, y2,n+l k , , k , , k , ,k 4 y2,"+ p = 2
y4,n+l
Y6,n+l
k, k, . . . , y4,"+
y6,n+lr
k, . p =4
71
2.8. Local Truncation Error Estimates in a Single Step
up
up
j
h up
upon
O I
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
~
31 3
+I +
1 4
~ = 6 ,p = 5 2
1 1 0
~
n+ 1 28
2
&
125
O
625-625 5 4 378
625 546
n+ 1
0
3555125 336
336
336
= n+ 1
+ k,
=
ktki + 4 k 3
=
f
k4I [40, p. 21 11.
no on h
= 1
= Y,
~4,,,+ 1 =
+ k1
+k2 + + 2 k 2 + 2k, + k4I
(2.8-9)
72
2. Runge-Kutta and Allied Single-Step Methods
ki 1 0
upon
4.
1)
0<
upon
01
v
= 6,
ki =Yn n+ 1
+
= Y n - k~
+
0 1
1
-
1 -
2
4
-1 4
2
1
2
2
7
4 7
L + -_2_4_7 7
14) L!! 7
73
2.8. Local Truncation Error Estimates in a Single Step
= = yn = y,
+
Y2,n+l
+ 4k2
1
+ 32k3 + 12k4 + 32k5 +
=
+
= Yn
+ k2 2h
h. x, yn+l u = 6.
y4,n+l
h
[60] by
2.8.4. Fehlberg Embedding Forms (u = (u =
(u = (v =
-____.
0 1 16)
74
2. Runge-Kutta and Allied Single-Step Methods
h. 2.9. LOCAL TRUNCTION ERROR ESTIMATE IN TWO STEPS
2h
h
2.9.1. Extrapolation T(x, h).
5, (x,-,,
Y,-~)
(~,+~,y,+~) h (x,,
( x , , y,)
(x,,-,, Y,-~)
go
2h
y,,,)
go (x,,-,, Y , , - ~ ) h = x , + ~- x, = x, - x , - ~ . (x,,+~, y,+,)
= h' = x , + ~- x , - ~ .
T ( x , h) = 4hP+l
4 h: Y(xn+l)
-~
(nh )+ = l
h'
no y(x,+,)
h' = 2h
h
k
h' = kh
0
1.
4
75
2.9. Local Truncation Error Estimate in Two Steps
h.
1
p:
(y!,"+! - Y , " : ~ ) :
4
2
+
3 14
4
5
6
1 3 0 -L 62
126
bound on
h'
= 2h
2.9.2. Gorbunov-Shakhov Method
y, by
y,,
Y,,+~ T( x,h) = &'zP+' Y,+~
h p
yn*.
(-A)
(2.9-5)
y,* - y , = 24hp+l by
2,
y,. 1,
y.*
3 1
2
2.5. by
y,
yn+l y,+,
by (x,, y,)
4
(x,,,,
Y,+~)
- 4.
[29] T(x, h) = a+hP+'
(2.9-6)
a
jn+l
+a
-a.
yn+ 1 = X Y n +
1
+
Y=n+ 1 1
yn+l
(2.9-7)
76
2. Runge-Kutta and Allied Single-Step Methods
by
0 2 -
2
2
3
3
3
1 I 1 4 4
1 -
2 -
I 4
8
1 8
1 2
2
3 3-3-
-9
2-18-
0
4
4
-9
u = 4, p
=3
fc(
2.10. LOCAL TRUNCATION ERROR ESTIMATES IN MORE THAN TWO STEPS
[ 151
by
+ 9yll-1 - 18y, +
y,+l =
[ 161
+ 6yL-l +
O(h6).An by hyL-2 = 57,~,-, - 24y, y,+ 1 ,
+
+ 5 7 ~ +~ '
..., by 1.1
30T(x, h) = y n + 2+ 18Y,+i - 9 ~ -, ~OY,-I -
+ 6L
77
2.11. Local Round-Off Error in Single-Step Methods
T(x, h) x,+~
x,+ 2 . x,-~
x , + ~ x,+, .
x,,
x,
x,+~
x,+~ up by
to
x,+ . go h. 2.11. LOCAL ROUND-OFF ERROR IN SINGLE-STEP METHODS
= jj”
+ W x , , J,; 17) + en
e, y,
.
7,
upon
(IO(,, y , ; h ) = i r k l All
ki
+ 2k2 + 2k3 + k4] on
78
2. Runge-Kutta and Allied Single-Step Methods
ki
@
good
Yn+ 1 = Yn + ( h / 6 )Ck,
+ 2kZ + 2k3 + k41 ki
h/6
by h/6,
kis,
jn jn+l
h@(x,,, jn; h) As
2.12. THE EXPLICIT USE OF SINGLE-STEP FORMULAS
n y = y o , x = xo SINGLE-STEP COMPUTER ALGORITHM
by 1,2, . . . ,
=
h = hn
79
2.13. Modern Taylor Series Expansions
(1)
h, (3)
h
3).
h,, u
h, T(x, h) h, by bound ; by
h, .
As
2.13. MODERN TAYLOR SERIES EXPANSIONS
Y,+~
of y,
by
f ( x ,y )
by
80
2. Runge-Kutta and Allied Single-Step Methods
+ ha,-%> Y";
=Y,
p,
p
=
1,
.. . . y)
2.13.1. Error Bounds
1.11.2 >
Y n ;h ) -
9
Y(X,)
; h)
L
1
-
p Y,) -
5
9
-
bound on 1
h + 0,
hP
E,
y(0)= 1
Y'=Y,
bound
=
h,
E,,
~(x,)=
x, ,
x,
by
by
+ 1,
81
2.14. Published Numerical Results
2.13.2. Nonarithmetic Computer Operations on
.. . .
f(x, y),
As
on by
20
up. As
y). .... on
[53],
2.14. PUBLISHED NUMERICAL RESULTS
on
by [60].
82
2. Runge-Kutta and Allied Single-Step Methods
on [ 151
on
on y’ = y -
y(0) = 1
y(0) = 1
y’ =
h = 0.1
on 124,251
y” = -qJ 9
on y’
=y,
Y ( 0 ) = 1,
Y’(0) = 0
y ( 0 ) = 1.
h
on by
no
yl
= x(x
+
by
on
+ (x +
y(+) = Q
h
1. I 1.3.
83
2.15. Numerical Experiments
- x’)”’ h
+ 6 y = 0,
-
0.0125
y(0) =
y4,n+l
-4,
~ ‘ ( 0=)0 11
y6,n+1
x). As
y4,n+l
Y6,n+l
h
h. by
h
y ( 0 )= 1
y’ =
x < 0.1.
h
= 0.1,
h = 0.2, 0 = 4.66 > 1; h = 0.05, 0 = 0.4401 < 1. h < 0.1
0 = 1.2083 > 1 by
by
f ( x ,y )
64 upon
:
1.
2 . As h h 3. 2.15. NUMERICAL EXPERIMENTS
on
3.
2.3
I.
y ’ = --y
11. 111.
y ’ = +Y
Yo = 1 Yo = 1
y(x) =
y’ = u
Yo = 0
Y(X) = ( l / b ) ( P-
+ by
y(x) =
a = 1) =
I/Yz
Yz’= y” = - y
Y,’
=Y ,
Y2’ =
VI.
= y z o=
[I]
-Y1
y‘ = Ay
Yo=
1 y l ( x )=
x
x
y2(x) =
+ e-50x
yl(x) = y2(x) =
0 0
A=[
-50 70
+ e-12Ox
y 3 ( x )=
y’ = 1 - y*
Yo = 0
+1)
= (ezx -
y(x)
no
VIII. A Y,’ =
~
i
+
+
= ’
+
+ +
-
+
+
+O.O~Y~+~)Y~+~}/Z~,
YS’ = zi
-
+
=
Mi
yo =
+ + + o.o8~z)uZ/z6
[
+ 75,
[~:~~~
i = I , 2, .. . , 6
0.73576500 0.74875687
;
M
=
0.76774008
-0.1 1306320
0.77971 110 0.78383672 u1 = uz
= 0,
yo
(y = 0 ) .
IX. :
-(I yz’
=
+
E)yl O.S(exp E - 1)
E = 25yz/(yz
+
-
+
E-
-0.1111889 y z 0 = 0.0323358
85
2.15. Numerical Experiments
As
on
360150-67
2.3.
no
VIII I
11,
TABLE 2.4 EXACTSOLUTIONS FOR DIFFERENT SYSTEMS System I1
System I
0 0.2 0.4 0.6 0.8 1.o 2.5 5.0 7.5 10.0 15.0 20.0 25.0
System VII X
0 0.125 0.250 0.375 0.500 1.0 2.0 3.0 4.0 5.0 6.0
0 0.2 0.4 0.6 0.8
1.o 0.81 8731 0.670320 0.548812 0.449329 0.367879
1.o
1
3
0.45399910 - 4 0.30590210 - 6
2.5 5.0 7.5 10.0 15.0 20.0 25.0 System VI
0 0.2 0.4 0.6 0.8 1.O 2.0
2.0 0.98024 0.96079 0.94176 0.923 12 0.90484 0.81873
.o 0.4540010 - 4 0.2061 1 1 0 - 8 13 17
0.19287,o - 2 1 0.37201 1 0 - 4 3
Y(X>
0 0.124352 0.244919 0.358357 0.462117 0.761594 0.964027 0.995054 0.999329 0.999909 0.999987
86
2. Runge-Kutta and Allied Single-Step Methods
by on y,-y, y,
y,
2.4 11,
ci]
y,(x)] ; R y(x)
y(x)
Ri] y,(x)];
ciSP
yi(x) 2.15.1.
E~,,~]
(DP)].
of
2.5 11,
h
= 0.5
As
h,
x
11. E
= 25.0
= 0.231
x
= 25.0, yl(x) =
11
4 good by
h = 0.1
I1 1.0 h 5 0.1.
1.0
h
h.
on
3.10.
87
2.15. Numerical Experiments TABLE 2.5 DOUBLE PRECISION h = 0.5 R-K
R-K
R-K
I X
R
R
0 1.o 2.5 5.0 10.0 15.0 20.0 25.0
1.o 1.007841 1.019718 1.039824 1.081235 1.124294 1.169068 1.215626
1.o 0.9992085 0.9980225 0.9960488 0.9921132 0.9881932 0.9842887 0.9803996
0 1.0 2.5 5.0 10.0 15.0 20.0 25.0
1.o 1.003512 1.008804 1.017686 ’ 1.035685 1.054002 1.072644 1.091615
I1
1.o 1.000344 1.000861 1.001723 1.003449 1.005177 1.006909 1.008644
R 1.0 0.9999862 0.9999656 0.9999312 0.9998625 0.9997937 0.9997250 0.9996562 1.o 0.9999987 0.9999968 0.9999936 0.9999871 0.9999807 0.9999743 0.9999679
IV X
0
1.o 2.5 5.0 10.0 15.0 20.0 25.0
R2 1.o 1.00888 1.04048 1.15216 1.75982 3.89496 14.5637 126.009
R2 1.o 0.998311 0.995974 0.992600 0.987787 0.985528 0.985812 0.988649
h.
2. x
R, 1.o 1.00001 0.999919 0.999490 0.997586 0.994293 0.989622 0.983590
Rz 1.o 1.00005 1.00022 1.00079 1.00298 1.00658 1.01162 1.01811
88
2. Runge-Kutta and Allied Single-Step Methods
\
-10-
.. , \
Ralston third order, h=003125I
1
1
I
I
1
I
1
I
versus x .
Figure 2.1.
2.6
I/h x
=
1.0.
h) h) h
on
2.6. h, 2.7
2.8.
2.8 2.7
TABLE 2.6 SYSTEM I. SINGLE PRECISION ABSOLUTE ERRORVERSUS
FOR x = 1.0
1/ h
1 2 4 8 16 32 64 128
0.71210 - 2 0.291 1 0 - 3 0.14710 - 4 0.47710- 6
-4
-5
0.26210- 5 0.19010 - 5 0.41110 - 5
0. 0-5 0.10610 - 4
TABLE 2.7 SYSTEM V. SINGLE AND DOUBLE PRECISION WITH FOURTH-ORDER x = 0.5
x = 2.0
z
x = 6.0
h x
-
x
x
-
x
x
-
x
x-
x
x
-
x
x
-
x
90
2. Runge-Kutta and Allied Single-Step Methods
TABLE 2.8 SYSTEM x = 5.0
x = 10.0
h (e-.
- yDp)/e-X
0.5 0.25 0.125 0.10
-2
4 5
0.05
0.01
(e-x - ysP)/e-”
(cx - yDp)/e-”
-0.396693 10 - 2
874710 - 5 0.221 15310 5 0.93990010 - 5 0.70768910- 4
-
2
-0.90581710
5
(ecx - y s p ) / e - X - 0.79494010 - 2
10 - 4
0.44873810
5
-0.54293410 - 6
4
- 0.8371891, - 9
0.14551910 - 3
x.
x
x
y, y,
y,.
y3
2.9
y2 y3. y3
y,, y,,
h As
3
h.
h > 0.02.
1h=8 1h
do
2.10 x
y6
x
=
5.0
=
5.0
y6 do y l , . . . , y 5 . = 8.
I. /7.
91
2.15. Numerical Experiments
TABLE 2.9 SYSTEM VI. DOUBLE PRECISION
x El
h
25 50 75
8.7010-10 1.7710 -9 2.6610-9 3.5410 - 9 1 .0610 -9 8.7110-9 1.2910-8 1.7010-8
100
h = 0.005
h =0.01
25 50 75 100 25
8.08 10-9
1.7010-8 2.4910-8 3.2410 -8 1.701,-s 3.241o 8 4.62,- 8 5.8610 -8
50
h =0.02
Et
75 100 25 50 75 100
E3
-2.16,,-11 - 1.%lo-
-8.4710-10 -9.4610-10
11
-5.3210-12 -2.0310-12
-I.1510-11
-2.4410-
.%lo-
-1
If
- 3.7SI0- 1 4
9.6510 ' -6.4110-1' -4.7s10-15 -2.6710 - 2 0
-9.6510- 17 -6.411 0 - 10 -4.7810-15 -2.6710 - 2 0
-
- 1.3310-25
-1.3310-25
-3.3410-13 -9.3s10-24
- 3.3410-13
-9.3s10-24 - 1.98l0- 3 4 -3.71 1 ~ - 4 5
-1.9810-34
-3.71 10-45
I/h = 128. one function evaluation 2.07 =
(u = (u = =
6.21 8.28 12.42 14.49 2.10
2.5,
12
-3.%lo - 9 - 1.3010- 3.7510-14
-3.3510-9
17.
W
h,
t 4
2.10 y6
2 4 8 16 32 64 128
-0.02373383
-0.02374239
-0.02374220
-0.02374 1 05
-0.02374309 - 0.02374454
- 0.02373745
-0.02373829
-0.02373595
-0.02374147
1
-0.02373922
-0,02373504
0.02373456 l / h = 128 7.02
a -0.02373675
-0.02373990
- 0.02374192
-
P)
- 0.02374044 -0.02373964
- 0.02374359
in 7.03 a
-0.02373045
P
x = 5.0
-0.02374067
-0.02373324
-0.024039 18
11.11
12.78
-0.02373270 -0.02372888
8.28
8.47
11.16
z &
2 =
2.15.
93
Numerical Experiments
1/h
1. always below 2.
h
z’,
H
= 2h/c
(2.15-10)
H H
= 2h/3, = 2 h / 4 ,
= 2h/6
4.
H
IjH I/H
h). At
1 IH
on
3.
I 0.50 0.552 0.651
IV
I1
0.525 0.564 0.651
0.45 1.08 1.31 10
100
thefifrh-order method is to be preferred as long as high accuracy is desired.
do (2.3-17), (2.3-28)
(2.3-20),
(2.3-25)
(2.3-27), (2.3-32).
3,
upon I,
As
94
2. Runge-Kutta and Allied Single-Step Methods
As
y,+l=
h2 2
[
1)
h3 6
y(x) =
h4 24
h5 120
h 6 ]y 640 "
- x),
2.11
are by
the
to use. A by
4.3
4.8 5.1 on
2.12
on Also
100
2.
ROCumiloo steps,
no
360
TABLE 2.11 R1 R2
SYSTEM
N L
VI
h=0.01
h=0.1
1 .o
1.o 1.o
1.o 1
.o
1 .o
1.0 1
1.0046 0.99193
0.99944 1.0033
R1 RZ
1.o 1.o
1.o
1.0090 1.0173
0.99980 1.0330
R1
1 .o
1 .o 1.o
1 .o 1.o
1 .o
0.31795 4.0619
R1
0.99985
0.41171 3.0080
~=0.5
1 0.99955
0.99999 0.99995
0.99990 0.99976
0.99988 0.99749
x = 10.0
1.0082 0.99073
0.99758
1.0137 0.98295
1.1313 0.85916
x=0.5
~=0.5
x = 10.0
h=0.5
1.o 1.0
1.o 1
1
1.0
..
1.o
R2
R2
i;’
c
!?
-8
k. B
Rl R2
TABLE 2.12 SYSTEM I. h = 0.1.
AND
FOR
DIFFERENT METHODS )
SP
0.99999
0.99999 5
DP
1.o
1 .o 14
x = 10.0
SP
0.99999 4.5951 0 - 5
0.99999
1.o 9.36010 - 6
1.o
0.99672
0.99993 8.96310 - 6
1.0962 9.26710
1.0
1.0962 9.26610 - 2
0.99993 8.081 10-6
0.99994 1.17410- 5
0.99993
1.o 5.9311 0 - 1 5
1.o
1.o 3.74710 - 6
h =0.1 X 0.2 0.4 0.6 0.8 1.o
RO/step (SP) 7 -4.768 10
RO/step (DP) '6
- 8.74310 -
- 5.96010 - 7 - 5.96010 - 7
15
-
1.0016
0.99672 5
- 15
2
1.0016 4.45910 - 2 1.19152 2
1.19159 1
2.15.
97
Numerical Experiments
2.15.2. Use of Implicit Single-Step Methods 2.5. 10).
2.13,
2.13
h = 0.5 R X
0 1 .o 2.5 5.0 10.0 15.0 20.0 25.0
System I
System I1
1.o 1 1.0230 1.0466 1.0954 1.1464 1.1999 1.2558
1.o 1.0618 1.1618 1.3498 1.8219 2.4593 3.3196 4.4808
:
System IV 1.o 1.0089 1.1015 1.6048 8.6738 3
1.406610+ 4
h
11,
= 0.5.
2.5 good 2.14 on by
no
stability
on 11,
on
98
2. Runge-Kutta and Allied Single-Step Methods 2.14
h = 0. X
0.2 0.4 0.6 0.8 1.o
1.00002 1.00004 1,00006 1.00008 1.00010
0.2 0.4 0.6 0.8 1.o
1.00002 1 1.00006 1.00008 1.00010
11
1.0330,o - 10
7 6
2.503310 - 6 2.443710- 6
k,.
k,’s 2.15 good
11. h
2.5,
As
1.16
I1 100
0.651
up
1.16
100
0.86
TABLE 2.15 SYSTEM I AND 11. BUTCHER IMPLICIT METHOD System 11 x = 1.0
X
h=0.5
1.0 2.5 5.0 10.0 15.0 20.0
x
x = 1.0
= 10.0
X
EDP
ESP
x = 10.0
ESP
EDP
__
0.143010 - 5 0.7748 0 - 6 0.1 19210- 6 0.165810- 8 0.1560,,
-
6
0. 160710- 6 0.216510 - 8 10
12
1.0 2.5 5.0 10.0 15.0 20.0
2
0.104210+ 1 0.231010 + 3
0.12281,, - 3 0.299310 - 2 0.8884 0.197710+ 3 5
100
2. Runge-Kutta and AUied Single-Step Methods
2.15.3. Truncation Error Estimates 2.8
2.9
h,
All : 1.
T(x,
h
2.
T(x, h ) = 3.
2h
2.9.1.
- y;Z:1]/30.
2h
2.16 2
ci
on
Ti As
by by
h
on y= y4,n+l
y, =
y, = Y , , ~ + ~
y,
h
y, h
y,
y, h = 0.01
y 10- 14.
2.1 1 y,
.
h y,
= 0.1, x = 0.5
h
= 0.1, x =
10.0,
x = 0.5
TABLE 2.16 DOUBLE PRECISION. ESTIMATE OF TRUNCATION ERROR IV X
h =0.01
h = 0.1
0.2 0.5 1 .o
0.5 1.o 3.0 5.0
0.5 1.o 0.2 0.5 1.0 3.0 5.0
102
2.
Runge-Kutta and Allied Single-Step Methods 2.17
System IV Y
X
h = 0.01
0.1
Y4
1.
1.1051709 9.04837421p - 1
1.1051709 9.048374210- I
1.6487213 6.065306610- I
1.6487213
1.6487213
2.7182818 1
2.71 82818 3.6787944 10-
1
1
4.4816891 2.231301
1
1
0.5 1.0 1.5
2.0
4.4816891 7.3890561
0.6
1
1.o 2.0
2.71 828 18 1
4.481 6891
7.3890561
1.8221 188
1
1
7.3890561 1
I
h = 0.1
Y6
1.8221173 5.4881 1971,
1.8221 1
1
2.7182818 3.6787944 I 0 - 1
2.7182797 3 .678795610- 1
2.7182817
7.3890561
7.3890541
7.3890596 1.3513350710 - 1
1
1
5.0
610+ 2 6.737947010 - 3
1.484138510 + 2 6.737897610 - 3
1.4841396,, + 2 6.737891910- 3
10.0
2.2026466,0 + 4
2.202699410+ 4
2.2027010
5
5
5
I
1
I
I
1
+
4
VII h=0.01
0.2 0.6 1 .o 1.6 2.0 0.2 0.6 1 .o 2.0 3.0
1
7.615941610 - 1 9.21 66855 10- 1
1
1
1
1 1
I 1
1
5.370495710- I 7.61 59416,0 - 1 I
5.3704913 1 0 -
1
1
1
1
9.640271 3 10 - 1
1
1
9.95054671, - I
103
References
y,
h = 0.1, x
=
2.1 1, 1.710-1,
1 .710-s, 6.110-9
10.0
VII y,
h = 0.1, x
= 3.0
210-8
2.15.4. Recommendations
h,
4
REFERENCES in
1.
2. 3.
York, 1966. Comm. ACM 9, 626
W.
Simulation 11,
A
219 4.
A
J . Assoc. Comput. Much. 13, 495
J.
5.
Austral. Math. SOC.3, 185 6. J. C . , 203 7. J. 179 8. C., 9. Comp. 18, 233 10. J. 408 11. G . D. J . Assoc. Comput. Mach. 13, 114
A.
J . Austral. Math. SOC.3, J . Austral. Math. SOC.4,
Math. Comp. 18, 50
on
Math. Math. Comp. 19,
104
and Allied
2.
12.
Comrn. A C M 10, 102
13. Proc. IEEE 56, 744 SIAM J. Numer.
14. Anal. 3, 598 F. 15.
1966. 16.
S ., AFIPS Cony. Proc. 32, 467
17. 1960. E. J., Comput. J. 10, 195
18. 19.
Math. Comp. 18, 664
A
20.
y” = f ( x ) y +g(x), Comput. J. 7 , 314
21. B I T 6 , 181
22. 23.
IBM J. Res. Develop. 6 , 336 24. NASA Technical Report,
25.
NASA
Technical Report, J., 26.
Math. Comput. 20, 392
by
27. SIAM Rev. 6 , 134
28. Comput. J. 3, 108 Y. A.,
29.
U.S.S.R. Comput. Math. and Math. Phys. 3, 239
ibid., 4,427
30. Comput. J. 12, 183
31. 1962. P. “ York, 1962.
32. 33.
1956. 34.
by 35.
Comm. ACM 11, 814 L.,
306 36. Comm. ACM 9, 108
Math. Comp. 18,
105
References 37. SIAM Rev. 9, 647 38.
Math. Comp. 20, 386
39. SIAM J. Numer. Anal. 4, 607 Z.,
40. 41.
1955. Chiffres 2, 21
du (1
42. 1967. 43. SZAM J . Numer. Anal. 3 , 593
44. SIAM J. Numer. Anal. 4, 620 D., SIAM J. Numer. Anal. 4, 372 H. 46. (1 47. 45.
48.
SIAM Rev. 8, 374 Math. Comp. 22, 434
A., SIAM Rev. 7 , 551
49. Comput. J . 11, 305
50.
Simulation 12, 87
H.
51.
Proceedings
of Symposium on Data Processing, 52.
J.
P., 4.
1967.
53. 1966.
V. S., on
54.
by U.S.S.R. Comp. Math. and Math. Phys. 5 ,
608 55. Comm. A C M 6 , 491 56.
Math. Comp. 16, 431
S.,
57.
by
NASA Technical
Report,
58. 59.
NASA Technical Note,
S., H. Comput. J. 5 , 329
60. 61. 62.
E.,
SIAM Rev. 9, 417 Datamation, 12, 32 14
106
2. Runge-Kutta and Allied Single-Step Methods
63. 15 64. 18
65. 29 66.
BIT7, 156 67. Comput. J . 6 , 368
68. Comput. J . 7 , 246
by
69. Comp. 20,21
70. MTAC 12, 269 Comput. J. 10, 417
71. 72.
ZBM J. Res. Develop. 2, 340
73. Comm. A C M 9 , 293
74.
C., 22, 71
Quart. Appl. Math.
3 Stability of Multistep and Runge-Kutta Methods
n
3.1. LINEAR MULTISTEP METHODS
y
y’
do on
108
3. Stability of Multistep and Runge-Kutta Methods
Y n + l = 'lYn
+ ." + ' k Y n - k + l + h[POyA+l -t " '
-k
PkyA-k+ll
(Po = #
predicted on corrected (3.1-1)
Y,,+~ yn+
yL+l
4.
p(5) =
-rk
+
p(E)Yn-k+l
y;+,, y,,',
on
"'
@k
by Ekyn=y,,+k,
E,
J J , , + ~ ,y,,
+ +
+ ha(E)yL-k+l
, . . . , Y ; + ~y,,', , ...
=O
by Y , + ~ y, n , . . .
...
y(x).
Pi
xi
y(x),
O(hp+') k
&=O
i=O
:
1. 2. 3. p
Po p(4)
a(<)
(q, no
-
109
3.2. Numerical Stability of Linear Multistep Methods
2
o(t)
p(5)
by
concergent yo = Y(X), h-0 nh-rx
x E [a, 61
h-0
y,
y,(h) = y o ,
i = 0, 1,2, . . . , k - 1 = 0,
consistency,
y,
y(x), y(x)
by
3.2. NUMERICAL STABILITY OF LINEAR MULTISTEP METHODS
y, y(x,)
y , - y(x,),
1.
by by
2.
An k -1
110
Stability of Multistep and Runge-Kutta Methods
3.
n, E, , E,
=
-
y(x,)
+ WE)f(xn
p(E)y(xn)
by
> ~ ( x n ))
on y
n -k
T n == 0
+1
n
Tn = T ( x , , h) P(E)Y, + W E ) f ( x , > Y J
+
vfl
=0
q,, Y,,~ y,
p(E>IIyn - ~(xn)l+ W E > [ f ( x n yn) 1
Y,) - f ( x , 5 j 5 y(x,,) f(xn
y,
3
p(E)En
E,
E,,
, ...,
7
T n
-f(xn
dxn)) =fp(xn
j)
7
+ )I,
=0
YXY, - Y(x,>) by 1,
+ ho(E)I,c, + r, + q, = 0
by
R, , T, ,
q,,
n. E,
As
x.
n
111
3.2. Numerical Stability of Linear Multistep Methods
, T,,,
n.
).
, T,,
T,
y~.
y~.
n
g,,
p(E)s,
+ MG(E)E,,+ T + q = 0
A
[Ek
+
Uk-1 Ek- 1
+
+ ao]E,, = b
" *
a,, ... ,
n.
k pk
+ ak- 1pk-' +
+a,=O
* * *
k
As
+ c2 p2' +
= Clpln
..., c k
pkfl
by
+ c2n + + ~
=
+ ck
m,
pl, E,,,
* * '
+ +
+
, - ~ n ~ - c,pmn ~ ) p ~... ~
C k p c
1 a,,
..., a k - l p1 = v R
+ iv,
p2 =
-
r 2 = vR2 + vI2
1
8=
E,,
=
clrn
nO
+ c2 r"
nO
+ c 3 pjn +
* *
. -+ ck p /
by Enp
=
+
ak-1
+
"'
+ ao)
1 rn
E,+k
+
Ak-1Efl+k-1
+
"'
+
AoE,
=b
112
3. Stability of Multistep and Runge-Kutta Methods
G(E)E,= b,
G
x
G(p) = 0
G
m
p
x
m
{b[I
Ecij(pp)'+
&in=
16)
j = 1 1=1
G(p),
+
Ak-1
+ + AO]-'}i
i = 1, 2, ...,
PbC) + W P ) = 0
1
k En
cnh
- ( T + q)
+ Enp
1
by
cnP
+
= Ell,
ak-1
b=
+ + uo) *..
E,
+ E t a i + h n z t pi).
by n
E,
n
E , ~
ci
E~~
on
k
c0,
. . ., & k - l .
k
go E,,
y,. Yn = d i p i n
+
+ + dkp;
d2 ~ 2 "
* * *
di
on
y o , . . . ,yk-,,
di
ci
by
y' = l y , y(xo) = 1,
A
y(x) =
p,,
+ O(hP+')
p1 = ehA
1)
1 I3
3.2. Numerical Stability of Linear Multistep Methods
h + 0.
principal root, pln
k-1
spurious, parasitic,
extraneous roots k no
y' = Ay,
y(x,) =
d2 p2" + * *
lpll
> I p J , i = 2, 3, . . . , k ,
- + dkp / ,
n
dlpl,". /pil > lpll
i, p:
plfl,
no
pi
no
lpll > I p J , i = 2,3,
. ..,k. E,,
E,
i=
lpil 5
n. 2, . .. , k.
A Ipil s i = 1, 2, . Ipil 5 l p l l , i = 2, 3,
Absolurely stable Relatively stable
lpll i 1, i =
3, ..., k . y'
= Ay
. ., k
.. . , k
2,
. . . ,k ,
(plI < Ipil
inherently stable x,,
s
i
= 2,
< 0. x,.
x,,
2 0, Ipil 5 1,
no p:,
do
114
3. Stability of Multistep and Runge-Kutta Methods
y’ = f ( x , y ) ,
An = 1, = pn
on
hA
p(E)
A
h
lhll
Ipil = 1
lp,l
a(E). hi
>1 i=
1
2
0
Xh
n4
h >0
00,
< 0.
=
h -+ 0.
h -,0,
h
h.
h 3 0. h n -+
p(E)&,
--f
0
co.
+T+q =0
n -+ co.
En
k Ipil 5 1,
=
= C1’/lln
p(p) = 0
+
C2’pLn
+
+
Ck’p;
p(p) = 0
2, . . . , k,
lpil
>1
n -+ co.
i,
h +0
a
(1)
p(p) = 0
on
on p(p) = 0
ID,( 5
1 . Con-
3.2. Numerical Stability of Linear Multistep Methods
on weakZy stable.
by
[5].
by vi
on
+
p i ( h i ) = pi(h -+O)evlhrl ~ ( h ' )
pi(h +
pi(hi) p(p) = 0
=
1, v, = 1.
vi
on y' = Ay,yo = 1, by Yn+1 = Yn-1
p2 - 2hAp
p1
=hi
P2
=-
+
- 1 =0
+ +(
h y y
pl
pl = 1
+ o(h4)
+ LI +
p l = ehA- +(hA)3
+ o(h4)
by yn = d l ~ , "+ d2 ~
2 "
p1n = e'nh[ 1 - & n / i 3 i 3 +
. . .]
p2" = (- l)"e-A"h[l+ +nh313
dl
=
I - d2
+
y, = erlXX" - &i3x,erlXnh2 d 2 e"*
+ . . .]
yo = 1)
+ d2(
- l)ne-'xn
by
116
3. Stability of Multistep and Runge-Kutta Methods
p2.
y , # p,
d2 # 0.
< 0. y, .
h + 0, +1.
v2
=
- 1,
n,
h = 0,
y’ =
Ay. no /I + 0, IZ+
co, h, ,
h
n + 03,
3.3. DAHLQUIST STABILITY THEOREMS
p
Theorem 3.3.1. p = 2k, k + 2 . k odd,
k
k
p
Theorem 3.3.2. An Theorem 3.3.3. p = 2, k = 1.
+ 1.
a
k
117
3.3. Dahlquist Stability Theorems
A A((x)-stable,(x E (0, h>0
n -+ co
< a,
S, = { z :
S, (x
E
zf O}
3.1. A 3.3.2
(0,
2
= Ay
A(&)-
no
3.3.3
\
Absolutely stoble
S,
Unstable
h
/ Unstable
hh
Figure 3.1.
1.
3.3.6.
S,.
on Theorem 3.3.4. Theorem 3.3.5. Theorem 3.3.6. k = p =3
a
p 2k r E
k = p =4.
+ 1,
118
3. Stability of Multistep and Runge-Kutta Methods
3.4)
no
(3.1-1).
3.4. STABILITY OF MULTISTEP METHODS IN INTEGRATING COUPLED ODEs
do
(3.1-1) An by
(3.1-1).
on y' = Iy. (1.6-7)
y' = 2y, yn + 1 = p1 = 1
+ A,.
2
I, >0 I, <0
(3.4-1)
+ hA I 1 +hIl
=I,
+"bn 3.2.
s
(3.4-2)
1
I I 8 > 01 < 01.
I,
= 0,
8
I,
by
= Xe",
= 7[/2 =2
0
I, =
0.
119
3.4. Stability of Multistep Methods
+I
+I
Backward Euler
0
c
PI
Trapezoidal rule
-I
-I
-2 0
-2 5
-I 5
-05
-I 0
0
h i
Figure 3.2. = 1,
+ il,
A = Xeie
A.
(3.4-2) 11
+ hXeie]2 1
(3.4-3) (3.4-4)
I
I, =0
0 = 0,
bound
(3.4-3)
hI 2 - 2 .
(3.4-4)
8,
(3.4-3)
hX
3.3, hX 3.3
(3.4-4). 3.4
p =1
hl
[lo-14,27, 281
by
on ”
“
by
3.4.
eAX
3.3
120
3. Stability of Multistep and Runge-Kutta Methods 30
Figure 3.3.
3.
2.
-x -r E
H
1.1
3
Figure 3.4. 1-5.
121
3.4. Stability of Multistep Methods
1
pin
pi = ewihn = e w i x ,
wi
pi)//?.
wi.
pi,
"
"
w,
A
hw
hw
hw = hw,
hjl
+ ihw, hw,
hjl. hi" = hd, + i h l , , hw, hiL,
3.5
by
U = hw, V = hw,. U = 0,
by
on
U
A hi., - hA, U =0
U-V
h
3.4 i= 3.5. -0.25.. h = 0.10
hi. =
Y
-10
-08
+ 4i 3.5 I7 = 0.05
hw
+
-06
3.5.
-04
-02
=
hw =
h = 0.15
0
Gurk [14].
2
+ +
122
3.
Stability of Multistep and Runge-Kutta Methods
2.19i
hAR - hA,
U-V
on U =0
= Y"
+
y' = Ay
- hi)
=
Yn+l
- hA)-'. < 0, lpll
3.2
(1.6-20).
y'
=l
1.
y 1 ++hi
Yn+i
3.2
= ___ Y n
1- t h A
< 0.
1
lpll
3.3.3
by =
=
A
nij.
10)
=
y1
y,
.
Al
A2,
yl(x) = clule'lx
+ c2 ulelZX + c2 u2 e l z x
y z ( x ) = c11i2ellX
123
3.4. Stability of Multistep Methods
u = (ul,
v
u,)
u2)
= (u,,
c2
h by
+ 1)
1
=
+1 = by
In
+1 (I +
= (1
+
1
=
by =I
+
+
2.
+ -+ .
.
= 1,
+
Yln+l = Y2,+,
+
=Y L+
+ az2Yz") by
Y,"
YZn= upn
= up",
+
- p)u/h
a12u = a Z l u+ a Z 2v =
allu
- p)u/h
- p ) / h = -1, u
p =1
v
+ h1
1
124
3. Stability of Multistep and Runge-Kutta Methods
y," = y," = C l U 2 ( l
v,, c 2 , u,
u
(I + hA)
M(hA) (1
+ 2,h)"
1)
+ 112 h)" < 0,
+ I , h)" + h)"
+ Il,h)" + + +
nh)
< 0, (1
+ A,h( <
11
+ I,hl
<1
h by
l i h+ 0, <
yn+, = (I - +hA)-'(I
+ +hA)y,
M(hA) = (I - +hA)-'(I
Y l n + l = Yl,,
Y2"+l
= Y2,
+ 4hA)
+ (~/2",lY,"+,
+ a , 2 Y 2 , , + , )+ ( a I l Y 1 " +
+
+ a 2 2 4 ( 2 , + , ) + (a21Yln +
y l , = up"
y,,, = cp" a,,u+a,,v=
az,u
21-p
hl+p
U
+ a Z 2v = - h __ U l+p -
125
3.4. Stability of Multistep Methods
p
=
+ +hi+)/( 1 - fhA)
+
1
1 +hA, 1-
+
< 0, by
h --t 0,
A when used to integrate a coupled set of linear ODES the stability of the method depends only on the eigenvalues of A.
on
A
on y= = =
A = AZ
Ai.
A =
=p
126
3. Stability of Multistep and Runge-Kutta Methods
A
M(PAP-'h)
M(B) =
(
i= 1
=P
f
biBi)-'( i =
1
B =PAP-'
i= 1
i= 1
= PM(A)P-'
M(Ah) z M(Ah) M is pl, i
pl(hAi)z
[M(Ah)]" fl+
Ai
2,
. . ., m
=0
m
1pi(hii)l <
y' = Aiy, So
=
i=
2 , . . ., rn
on
As
akYn+k + ' % - 1 Y n + k - l
+ ". + a O Y n
+
= hA(Pkyn+k
+ POYn)
127
3.4. Stability of Multistep Methods
k. by
m =2
by
km m
by p i j , i = 1 , 2 ; j = 1, 2, ..., k .
2k k
by p l l eA2h
y. ellh
p, j
p1
,
= 2,
k.
. . ., k . Pll
pZl,
... , k
C,, = clul, D,,= c, u,, CZ1= q u , ,
j = 2, 3,
(2k
= 2).
PZl
D,, = c2 v 2 .
Ipijl I 1, i = 1, 2 ;j = 1, 2, . . . , Ipu,,J 2 Ipljl Ip21l 2 1 ~ 2 ~ 1 ,
= by on h
A
on
A.
k
C(aiI + hPiA)yn+i = 0
i=O
k
C(aiI i=O
+ h p i A ) ~ n +=i 0
128
3. Stability of Multistep and Runge-Kutta Methods
E,
z,+~ = Ez,,
k
1(ail + ~~,A)E’z, =o
i=O
2k k
i=O
by a i
pi,
on hAj,
j = 1, 2. 3.5. STABILITY OF INTEGRATION OF NONLINEAR ODEs
y’ = f(x, y). (y, , x,)
n Y’ =
+ [ f y I n ( ~ - YJ+ O(h2)
li, = 1,2, . . ., m
[f,],
y’ = f(x, y)
h.
(h
.
--f
5.1.1.
on
. h. f t
3.6. Stability of Runge-Kutta Methods
3.6. STABILITY OF RUNGEKUTTA METHODS
3.6.1. Explicit Runge-Kutta Methods 2.3.
y' = Ay,
2.3, y' =
f f l= Ay, , k , = hAy,,
k,
yn+1 =
p1
=
= hA(y,
+ k,) = hA(yfl+ Myn),
+ h l + $h2R2)y, 1 + hl
+ $hZA2 p =2
3.4. hl > Y , , + ~= pl(hA)yn,
p1 = 1
+ /?A +
+h21"2
I)
3.4.
+#3l3
130
3. Stability of Multistep and RungeKutta Methods
pl = 1
+ hi, + +h2A2 + +h3A3 + &h4A4
3.4
p
p 54
=v =
= 5,
u = 6,
a,
ai 2.3.5.
u6
2.3.5 by
IhAl < 1, Ihi,( > 1
(hi,)6
p = 5,
IhAl > 1. a6 3.4
3.1, 3.6
Unstable
30-
x
E 20-
H
-50
-4
0
-3 0
-20
-I
0
Re ( h i )
Figure 3.6.
hX
(2.3-30) [ZO].
0
131
3.6. Stability of Runge-Kutta Methods
a6
=0
a6
3.1,
bound
h. 3.6.2. Implicit Runge-Kutta Methods go by
If rn
ajxj
= j=O
=
2
bo = 1
j=O
n(X) =
rn
f(x).
+ n. 1. 2.
,(x)
=
rn
+n
x = 0. m
= j=O
F,,,
m
x = 0.
+n + 1
-
=
m
[(f 0
c j x j ) ( 0i b j x J ) -
+n + 1
fu j x j ] / i b j x j 0
0
on x.
(f 0
0
-
0
aid=
djxi m+n+ 1
c W p3
THEORETICAL STABILITY LIMITS FOR Method
1)
Order
Rek)
TABLE 3.1 DIFFERENT EXPLICIT RUNGE-KUTTA METHODS, q = hX Characteristic root
Im(q)
2 2 2
1
3 3 3
1 + q +aq2
4 4 4
1
+ q -t aq2 + :q3 + +4q4
1
+ q + : q z + f q 3 + 2zq4 + 2 0 4 5 ;
w
+ q + is2 + :q3
=0
=
=
same as
= =0
same as same as 5 6
=
- 1 SO
=
= 0.5625 1 + q + +q2 + fq3 + &&q4+ &0q5
+ &q6;
=
3.6. Stability of Runge-Kutta Methods
133
0
x
c)
-1;s +
-
N
I1
E
Y
.iN
+
-T
I
N
Y
r d
+Y
T
N
II
E
I
J:?
3
I1
E
31-
-
-Y
0
I1
N
+Y -
E
-I 0
I1 9
-
d
PI
I1
I1
I
9
II
P
II 9
134
Stability of Multistep and Runge-Kutta Methods
3.
P,,,(x)
As
Q,(x), fl
...,
C~,,,+,-~-~b~=0, 0
<
cj
b, = 1
a , = C ~ , - ~ b ~ , r = O , 1,..., m 0
bj=O,
m
ex
e-x.
=3
n
j>n
3.2
ex
= 4. A
rn
rn
n,
Yfl+l = Y ,
+
k , = hf(x,, + fh, Y ,
rn
=n
~
1 + +hA 1 - +hA Yfl
x,
+
k,. y' = Ay, = Yfl
+
k1 = h2(yn k, = h i ( y ,
+ +
+v
2
+ +
-
k,
+
+ $k,) k,
+
1 +hl = 1- +hi +
+1
rn + n
1
+
y' = l y =
=n
Yfl
135
3.6. Stability of Runge-Kutta Methods
lpll
<1
< 0.
< 0.
<1 :
by 3.2
<0 n
n.
3.2
n = 1, nz
=0
=0
2.5.
n = 1, m = 2
n
=
1, m = 3 y’ = Ay by
We F,,,(hA) E
F,,,(hA)
( 1bj(hA)’) (ir$hA)i)
= i”,
F,,”(hA)
-
= M(hA)
136
3. Stability of Multistep and Runge-Kutta Methods
by
by
h 4
on hA on
3.10
3.6.3. Semi-Implicit Runge-Kutta Methods 2.5.4
” = 1+
1 -
-
+ (+ > 0,
3.7.
on
Also
’’
=
11 - 1.578hl+ 0.622h212
137
3.7. Stability of Single-Step Methods
I
Stoble t 6
-*I-
-I
-8
Re (hN
Figure 3.7.
y‘ = Ay. J J , , + ~=
[I - fhA
+ +h2A2 - &h3A3]-’[I + +hA + $h2A2 + &h3A3]~, O(h5).
70 x 70.
A y n + l = [I
-
+hA
+ &h2A2]-1[I + fhA + &h2A2]yn
O(h5)
do A
3.7. STABILITY OF SINGLE-STEP METHODS EMPLOYING SECOND DERIVATIVES
l’n+l
+h2yOl’;:+l
+alyn+h~lyn’+h2y,y~
138
3. Stability of Multistep and Runge-Kutta Methods
by
3.3.3 uI = 1,
Po, y o ,
y1
r
Y,+
1
= Y, -
1
i= 1
on up
1 =
+
Y?’)
r = 2. r = 3.
r = 1,
+ P,hA +
1 - Po hA - yo h2A2
i = 1, 2, . . . , m, by
hAi -+ 0
p.
p = 3,
+ PI = 1 + Po + Y o = 3 Po
Yo =
=
1
+ (1 - P,)hA +
- Po)
- 3Po)h2A2
1 - Po h l - (+ - + P o ) h 2 A 2
p = 2.
y1 = 0,
Po, ?’”+ 1 =
Yfl
+ I 0 0 L+I + ( 1 - P0)Yfl’l + h2(+ - Po)Y:+
1
139
3.7. Stability of Single-Step Methods
Do
Do = 3, pl
p = 3.
3.8
i o
-I
-60
-20
-3 0
-10
0
t20
+6 0
+I 0
t30
+I
i 0
-I
hX
[23].
Figure 3.8.
hA. hA 2 6.
Do
= -$,
p =3
n = 2, m = 1
n
m = 1.
Do p, hX = 0,
+1
hX = 2/(2P0 -
-1
hX = 1
J [ 1 - 4/(2&
-
12)
140
3. Stability of Multistep and Runge-Kutta Methods
$ 2 13,
23, jpll>
-
0 < hX <
Po = +. pl 3.8.
p = 3,
13,
=
1+
pl
by
by r
Yn+i
= YE
+ iX= Y1i r ' i [ ( - l )
i+ 1~ [i] n + l I
yir
2r
r. 3.8. STABILITY VERSUS ACCURACY
A h ]MI
no
h h
by
h h on
by
pl
by
w i=
As hw,-hw, (U- V
hi.,-hR,
by
141
3.8. Stability Versus Accuracy
To on
[hi.[< 0.1.
h
no
2, ..., m. sujjicient
lhll,l I 1, i = 2,
< 0.
i = 1,
. . . ,177, necessary
1. JhlLil< 0.1
i
2. ]hlLilI 1, i = 1, 2,
. . .. m.
by [21]. JJ,’ = -
-
-
= = 4.0010
=
y , = 0.0005e-3X -
+ 4e-0.3X
y, =
50.0005. h 5 0.333,
2. As
2,
=
x>0 2, = -0.3 0.3h < 0.1,
h < 0.333 = 2,
,12
=
14
= s e - 3 s - 3e-0.3‘ = 10e-3” + 4e-0.3“
(3.8-3)
142
3.
Stability of Multistep and Runge-Kutta Methods
h < 0.0333, =
-3
no by
h on 6. by on on
A
on
u(t) j ( s ) / U ( s ) = G(s). z-
s=
j ( z ) / i ( z )= G’(z) G(s) z = eihn
C’(z) 0.
by
-
G(iR)l/lG(iR)l.
hl, hw,
hw, by
/I
3.9. PUBLISHED NUMERICAL RESULTS
on 0.999
-1
/d,
3.10.
143
Numerical Experiments
0.9991.
y(0) =
on
h on by
bound
h by
3.10. NUMERICAL EXPERIMENTS
2.15,
no bound on
h.
3.1
on h l
As
+
by
h
2.
h,
hA
bound on h. 3.10.1. Preliminaries
2 1. System I. =-
3.1 2. System IV. = -1 I,, =
1.
+ 1. A,,,= i
3. System V. 3.1.
3.1.
144
3.
Stability of Multistep and Runge-Kutta Methods
4. System = - 120.
A3
on h
5. System
3.1
by
3.5
fy
=
3.1
4.
by
3.10.2. Explicit Methods h
by
by 3.3. h
=
h = 2.5,
1.0
on TABLE 3.3 STABILITY BOUNDSFOR SYSTEMS I AND V I h = 1.0
h = 2.5
R I .63 2.68 12.9
X ~
5.0 10.0 25.0
R
X
__
2.5 5.0 7.5 10.0 15.0 20.0 50.0
V
xX
12.0 21.0 30.0 50.0
h = 3.0
h = 1.0
__ 6.0
-1 0
x
-
2.34
1
- 16.48
0.15
45.64 245.4
145
3.10. Numerical Experiments
h = 1.0
/i =
3.0. h
by
bound /I
h,
on 3.3 h
3.1 on bound 3.2
y’ = - y
1.6
3.4. 1.7. h = 2.0.
/z = 1.0
upon y’ = - y 5.7
3.4 /I, =
h=
= 0.028
h=
= 0.0475.
3.4 h = 0.025, h = 0.04
h = 0.1
3.10.3. Implicit Methods
1, 11, VT, 3.5 2.18 2.19
I, 11, 3.6 1
11
h
no by
R2
= 2.5
146
3.
Stability of Multistep and Runge-Kutta Methods
TABLE 3.5 DOUBLE PRECISION. ROSENBROCK THIRD-ORDER METHOD 11, h = 2.5
h = 2.5 Y
R
R
&
2.5 5 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
~
IV, h = 2.5
1.380 1.904
&
6.748 -
3.627 - 5.005 6.908
17.5
s
- 1.1 8210 + 2
3
01 1
2.073 + 3 - 5.38710 + 3
2.50510+ 1
4
&
15.0
*
P
1
R
&
1.168 1
.017 1
1.002
i;'
c
VII, h = 1
VII, h = 2.5
2.5 5.0 7.5 10.0 12.5
w 1
R
148
3. Stability of Multistep and Runge-Kutta Methods
h
h
=
1.0
h=
= 2.5
h
= 2.5.
h
h. TABLE 3.6 SYSTEM I. DOUBLE PRECISION BUTCHER IMPLICITMETHOD E,
X
-
h = 2.0
8,
h = 4.0
8,
h = 6.0
2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0
h
h = 2.0, 4.0, h = 2.0 on h = 6.0,
h = 4.0,
3.7
Po = 1. b.
3.6
6.0
3.7.
3.10.
149
Numerical Experiments
3.7
E ~ h , = 2.0
X
0.51831,- 3 O.I3O2,01 -0.178310-1 -0.642910-2 0.366210-1 -O.Z688,,-1 -0.25501 0 - 1 0.603710-1 -0.235410-1 -0.5421 10- 1 0.256910-1 0.535010-1 -0.1590 0.2443 0.2537
2.0 4.0 6.0 8.0 10.0 12.0 14.0
16.0 18.0 20.0 30.0 40.0 50.0 60.0 66.0
y n , ynp1,
ynfl
E
~ h , = 4.0
€2,
h = 6.0
-
0.2745 -
-0.4310 -
0.3952lo-1 -
0.9459 -0.196910+ 1 -0.5832,0+1 -0.1091 I 0 + 2 -
Y:+~, y l ,
As do
3.5 go up.
h
= 0.1
no
3.8 h = 0.1, X
0.5 I .o I .5
2.0 3.0 4.0 5.0 6.0 7.0
0.2985$ 0- 2 0.8507,o -2 0.134110-1 0.143310-1 0.241410- 2 0.320710-1 0.389610-1 0.211610-~ I 0.517910-
0.3658104 0.397510-4 0.510310-5 0.914310-4 0.267410-3 0.202410-3 0.172210-3 3 0.5269100.4232103
c2
150
3. Stability of Multistep and Runge-Kutta Methods
on
11 =
0.01, 0.1, 0.5, 1.0, 2.0,
5.0.
/I
1. by
2. h
/z
h
Simulation,
1. 11, 219, 1968.
2.
J. Math. and Phys. 44, I 3. Proc. IE€€ (Letters) 55, 2016 4. Math. Scand. 4, 33
5. Proc. Symposia in Applied Mathematics 15, 147 6.
BIT 3 , 27
E.
7.
Comput. J . 10, 195 8.
AIChE J. 14, 946
9. E.’s, BIT 8, 276 ( I 10.
Quart. Appl. Math. 12, 133
1
by 12.
J . Assoc. Comput. Mach. 1, 5
J., 13, 87
13. Gurk, 6 , 58 14. Quart. Appl. Math. 13, 73 15.
1962. 16.
P.,
York, 1963.
151
References 17. 18.
1964. B., ‘‘
York,
1956.
L. G . ,
19.
22. 1967.
20.
five SIAM J . Numer. Anal. 3 , 593
21. NASA Technical Report, 22. NASA Technical Note, 23. NASA Technical Note, 24. Comput. J . 11, 305 ‘‘
25. 1958. 26.
1966.
J. Assoc. Comput. Mach. 1,
27. 186 28.
D.
G.
pp.
York, 1962.
York,
29. 1963. 30. 31.
Comput. J., 10,417 0. 65
A
on
BIT 7 ,
4 Predictor-Corrector Methods
: Yn+l
+ a2Yn-I + + akYn+l-k + h [ P o A + 1 + P l Y n ' + ... +
=a1Yn
* * *
Po = 0
(1.7-1)
Po # 0. by yn+l ;
Y,+~
h h
al,
. . . , ak, Po
... , P k
h P-C
152
1.7.5
153
4.1. A Simple Predictor-Corrector Set
4.1 1
y
y’.
y 4.10
y”, y”, . . . .
4.1. A SIMPLE PREDICTOR-CORRECTOR SET
:
y,+ 1 = y,-
~ , += l
Y,
1
+
+
qx,
+ Y:],
A) =
?.(x.,h ) =
=
lW,
> IW, 41, (k =
(k = by
.
y,, yz , . . , y ,
Y,+~.
by = f ( ~ , , + ~p,+l). ,
j,,,;
Y,+~ Y,+~,
y;+,,
ynf2.
predicted Y , + ~ corrected
evaluation, jA+l,
Y,+~ by Y;+~ ecaluated.
Y,+~
on
Tn
y’
154
4. Predictor-Corrector Methods
Y,+~,
by Y , * + ~ ,
by
Y,+~
by
y,+,
Y,,+~.
by s
j,,+
yn+,
4.8.
1.
good
ynfl
Y,,-~
y,,’
do go on 2.
4.3 h Y,,+~.
y,
3.
f,+,)
by
do Y,,+~, j,+l) Y,+~) P-C x.
4.
yo
y,.
155
4.2. A Modified Predictor-Corrector Set
xo ,
yo
4.2. A MODIFIED PREDICTOR-CORRECTOR SET
by
<
= Tfl+l,P= = T n , 1,
xn < 5c < xn+1
=
= 7n+1
+
=
-
+ Y,+
1
=
-
-
+
1=
=!
-
by
x,+,,
y 1)
=
< i<
=
only
j7,+l
by 1
-
1
= =
3
(0
$K+
=
Y , + ~- j n + l
4.13
<
h on
156
4. Predictor-Corrector Methods
Tn+1, p = 4(Yn + 1 - Yn + 1)
Tn+
1, p
= %n+
1
- Yn+
1)
= 4(Yn
- Yn) by
$(yn -
pn)
Yn+l Tn+l,c=
-+(Yn+I
-
mn+,,pn+l,
c,+~
by on no ;
As fn
+
157
4.3. Convergence of Iterations in the Corrector
2
O(h3)]
3
O(h4)]. y = x3
by c,+, = y(x,+,) - Y , , + ~
y
= x3].
by
4.1
4.3. CONVERGENCE OF ITERATIONS IN THE CORRECTOR
Y,,+~ yn+
on
by w,.
LHS
Y,+l
- hBof(x,+,>
Yn+J - w,
=0
Y,,+~. :
4.3.1. Jacobi Iteration
by Y ! Z l l ) - hPof(x,+,, Y21)
-
w,
=0
158
4. Predictor-Corrector Methods
[31].
Y+:
1
Y,*+~
- hPof(x,+
- Y,*,
YS+ll)
Y Z l l ) - Y,*+
1
1
=
=
- wn = 0
1 , Y,*+l)
WO(f2
1
hbO[fYIY(Y%
- f:+
1
- Y,*,
bound on f,, , IlfJ
y,*+ I yI ys;'!,.
IlY%+11) - Y,T+ 1 I/ 5 hP0 L
IlY?++ll)
1)
- Y:+
1
I I Y 2 1 - Y+: 1 II
/I 5 ( h P 0 LY+
l l Y 2 l - Y,*,
1
II
A IhPoLI < 1
f,,,
on fy, L
L,
hPol4naxl < 1
bound
11,,,,1 is
on h,
h
h x.
hPo 1A,,,1
= 0.1. 1.6.1,
1.2,
= 2,
3, q =4, 4
=
hL < J$hL < + hL <=g 2 5 1
< L,
159
4.3. Convergence of Iterations in the Corrector
yn+i = Y n - 1
+
+ <3 rn
-
< 1, (s
I
(S)
- ~ (s+ n +1)iI
+
(s+l)
(1 - ~ B ~ L ) I Y , * + ~ 5
hPoif%
+
Y,+~.
=
-
-
4.3.2. Accelerated Iteration A +.)y~~~)-hBof(xn+,,y~!,)-~,-ccy~!,=O C!
C!
= 0,
by (1 + u)Y,*+1 - hBof(xn+
C!
1,
Y,*+ 1) - wn - “Y,*+
1
=0
= 0.
by
of
1,
160
4. Predictor-Corrector Methods
by
c1
4.3.3. Newton-Raphson Iteration
on
f,,+l
Y,,+~
by y;++;)
= Y,,+ (s) 1
+ [I - kPo A!;
1
1]-'[kflof??
-
f,
A?il
~ $ 21 + w,,] y?!'.
4.3.1
ll[I
-
~ P o ~ ? ! l l ~ 'II(Wy)[I li
- hPoA?!llI/
IY?;/)
4.3.2
-
Y,!?,l/
51
As II[I - ~ f l o ~ ? ? l l - l l l= 1 II(d/ay)[I - kPo A?!
k<
11H
6107
kPo
lly?,?:) - y$!ll\ on
h
6 0.1. Anfl A?! y,,. yn+'
by
yn h
A,,+1
4.3.4. Backward Iteration on
161
4.3. Convergence of Iterations in the Corrector
Y?!I
Y?!
1
=
- Y+:
hPof(xn+l,
1
=
Y??:)) + w n
(S+l) hfio[fn+ 1
-f*
]
n+ i (s+l) = hBo[fyly[~n+ 1
YX+
11
~ ~ / ~ P o ~ l l r f y l -
lower bound on h
bound
A f,
4.3.5. Summary
on
1A,,,,,1
h
bound on 17 bound.
1.
A 10,
2.
A 10, h
on
162
4. Predictor-Corrector Methods
4.4. ACCURACY AND STABILITY FOR SOME SIMPLE PREDICTOR-CORRECTOR METHODS
by Yn+ 1
= Yn
Yn+ t
=
~n
+ hyn‘ +
1
+~ n ’ l
if the cor-
by rector is used only once.
4.4.1. Truncation Error Considerations
y’ = Ay
L
p, = 1
+ hl.
p1
0
h’1’ 2
h2i2 2
p, = 1 +hi+-+-
p I = 1 + h/!
1
h3i3 4 h3Eb3
2
h’i.’ ++ __ + h4A4 2 4 8 ~
3
163
4.4. Accuracy and Stability
y' = Ay
by
h2A2 h3A3 h4A4 eh' = 1 + hA + - - - ... 6 24 2
+
+
+
by ,ul - eh',
- h2A2/2
0
- h3A3/6
h3A3/12 h3A3/12
(4.1-2) P-C
(4.1-1) Y n + l =Yn-, Yn+ 1
yn+l = ( 1
= Yn
2 3
+ 2hA~n
+ (h/2)CAJn+ + A ~ n l 1
+ (hA/2)+ h2A2)yn+ (hA/2)ynp1
- h3A3/6
,u2
+ hA
1,313112
- hA/2
0 1
h3A3/12
- hA/2
2
A
4.4.2. Stability Considerations
on
(4.4-7)
164
4. Predictor-Corrector Methods
An on
on
by by
-2 < hA < 0.
bound
s
-2
s=O, 1,2,3
by
Y?++?
= Y”
+
1
+
s
P1=
1+
-
1by 1
+ h42
=ix@ s-+
co,
< 2. y,!?,!,’)
y?!
by P-C
1
165
4.4. Accuracy and Stability
3.4, by
+ h i + h 2 i 2 / 2+ O(h4) pz = -(1 - h i + h2i2/2) 4- O(h4) pl = 1
p1
> 0, p l
p2
< 0, p l
p2
by
p2
< 0.
> 0, 4.4.1
<
< 0. do do
4.4.3. Increasing the Stability Bounds
bound bound
[46] y,+, Y n + l = ~,Y,+,(s =
+
- dY,+,(s =
0 _<
aI
_< 1.
xl,
4.1 a1 = 3.4 a1 = a1 =
hi >
bound
As a, = =1
s =2
yn +
bound by
by P-C
166
4.
Predictor-Corrector Methods
Unstable
20I
r< c
H
10 +To
(-51,O) Stable
0 -40
-30
-2 0
-I
0
0
ReihX)
Figure 4.1. Euler (P) and trapezoidal rule (C) stability bounds.
4.1
bound
4.5. MILNE PREDICTOR-CORRECTOR FORMS
[35].
(k = (1.8-7) =Yn-3 + (4h/3) c2Y:,-Y;-l T(.u,h) = (2Sh5/90)y[51(~)
= !‘n
-1
+
+ 4Yn’ +
T ( x , 11) = good l d . As
167
4.5. Milne Predictor-Corrector Forms
4.2
by :
pn+ = Y I%+ 1 =
c,+
~
+-(4h/3)[2yn’ ~
+ 2y;-,]
-
Pn+ 1 - (28/29)(Pfl - 4
(4.5-3)
,= y,- + (h/3)[mA+ + 4yn‘ + yA- ,]
yn+, =
+(1/29)(~,+~ - c n + J
4.5.1. Milne Corrector (4.5-2)
y’ = Ay (4.5-4) p1
p2.
h + 0, p2-1=0
pl =
+ 1, p2 =
- 1. (4.5-4)
p l z e +h l ,
by
p 2 r e- h l / 3
(4.5-6)
p2
> 0, p,
(4.5-6) )p21 < 1. p2
p2
no
< 0, p1 bound. ptl
hi.
[36] 4.2
bt2
[19] 4.3, 4.4
[7] by
0
by 4.2
hA.
a. hl
no
-2.01
-2.0
- 1.0
- 0
\
t 1.0
t 2.0
hX
4.2.
W.
(4.5-5) Journalofthe ACM, Volume 6, pp.
hh.
0 1959,
t2 0
+ I 0
-5 A
0
a 0 x 3.
-I 0 .
-2 0 -30
-2 0
-I 0
0
+I0
hX
Figure 4.3. Journalof the A C M , Volume 6 , pp.
0 1959,
t20
t 30
169
4.5. Milne Predictor-Corrector Forms
hX
Figure 4.4. Journaloffhe A C M , Volume 9, pp. 457-468;
0 1962,
4.5.2. Milne Predictor-Corrector Combination y'
= 1.y
(4.5-7) y n - 3 ( k = 3).
yn+l
4.5
x
< 171 < - 0.3
/71,
/7 -+
pl =
0 4.5.
+ 1,
p 2 = - 1,
p 3 = p4 = 0,
170
4. Predictor-Corrector Methods
-24
-20
-16
-12
-08
-04
0
to4
to8
t12
+I6
f20
hX
E.
Figure 4.5. Journal ofrhe ACM, Volume 9, pp.
1962,
03I
x c
Unstable
02H
0
I-
I
0
/ih
Figure 4.6.
W.
Volume 12, pp.
;
8 1965,
P-C Journal of the A C M ,
171
4.5. Milne Predictor-Corrector Forms
1p1 = 1
1p1 =
lehAl
bound
4.6
< hL <
4.6
bound
no
4.5.3. Modifled Milne P-C Combinations 4.7
hi,
by
1.8 (WITH MODlFlC 1.6
I.4
1.2
10 i 0.0
04
02 -hA
Figure 4.7.
Journal of rlie A C M , Volume 9, pp. 457-468;
0 1962,
172
4. Predictor-Corrector Methods
bound no
hl
4.5.4. Increased Stability by Averaging
Y,+l,
Y,,+~,
Y,,+~.
Y,+, y,+, = Y , - ~+
As
by
by
h.
+ 3 ~ "+'
+
4.5.5. Hermite Predictor and Milne Corrector up As As by
ifthe corrector is not iterated. Yn+ 1
=
+ 5 ~ " - + h(4~n'+
1)
y' = l y
Y,+1
+ 4(
- h n ) ~, (5
+ 2h1)~,,- 1 = 0
173
4.5. Milne Predictor-Corrector Forms
h -+ 0, p l =
+1
pz =
on
y'
+
Yn+l
=
Yn+ 1
=Yn-
1
+ 2yA-J
+
+ (h/3)CYA+ 1 +
+ YL- 1 1
= Ay
Y,,
- 1) y ,
+ ( W 3 ) C Y n + 1 + 4yn + ~ n - 1 1
- +h2jV2yn - (1
+
p , = +{4hzlL2 [J$l?"A" p2 = 3{$hzA2 - [J$h4i4
As h + O , p1 -+ 1
+ ( 5 + 2/?A)Yn- 1
Yn+ 1 = Yn+l = Y n - 1
+ 2h1. + + h 2 i 2 ) y n + +
1
=0
+ 2hA + + 2hi. +-+h2i2)]"2}
p 2 -+ - 1,
pl
hA,
p2
1.0 < hA < 0
/?A.
Unstable
05
Stable
0
Figure 4.8. Juunrol o f / / i e A C M , Volume 14, pp. 351-362; 1967,
174
4. Predictor-Corrector Methods
4.8.
bound
-
1.0 <
hi. < 0 no on
4.6. HAMMING PREDICTOR-CORRECTOR SET
do
Yn+ 1
T(x,
=
Yn-3
+
=
- YA- 1
+
1
+
=
Yn+ I =
- Y n - 2 1 -t
-
T ( x ,h ) =
4.6.1. Hamming Corrector on
J’n+ 1
=
+ nZ
l’n-
1
+ % 3L ’ n - 2
f h[aO
YA+ 1 +
$- P 2
YA- 1 1 (p=
175
4.6. Hamming Predictor-Corrector Set
-9
a1 = a2
= a2
c(3
=
po = PI =
4
>
- a,), T ( x ,h ) =
- a2)
+ 7a2) f
83
+5~~)h~y[~’([)/360 x2 = 1
x2
h =0 8p3 -
+
- a2)p2 pl = 1
- C I ~= )
p2
p3
4.9
a2.
a,
< a2 < 1.0 a2 =
0
1, &, $, 0,
-3,-2-
al, a 3 , ..
-A.
. , pz
h = 0. a2 a2 = 0
I
PI
\ -I 0
j -05 -06
I
0
fO 5
+I 0
a2
Figure 4.9. W.
(4.6-6) Journalof the A C M , Volume 6 , pp.
az.
0 1959,
176
4. Predictor-Corrector Methods
-08
-I 6
-24
0
to8
t16
t24
hX
Figure 4.10. Roots of iterated Hamming corrector. [Adapted and reprinted from P. E. Chase, Journal of rhe ACM, Volume 9, pp. 457-468; copyright 0 1962, Association for Computing Machinery, Inc.]
rx2
=0
(4.6-2)
h 15 %) (az = 0 )
h # 0.
by
0,
by x ,
0
by
4.10 (4.6-7) 4.4 -2.6 < h l < 0.
4.6.2. Hamming Predictor-Corrector Combination (4.6-1)
(4.6-2) on
-0.5 < h l < 0
h = 0.
4.12)
do
4.6.
Hamming Predictor-Corrector Set
177
< h l < 0. (4.6-3) by
+
p5(121) -t p4(-126 112(hl)2) + p3(54hl 168(h1)2) + p2(14 - 24hl - 168(l11)~)+ p( - 9 - 42hl + 112(h1)2) + 42hl = 0 (4.6-8) 4.2). [32]
(k = 5 ) by = Y n 4-
Yn-3
Y n + l = ikC126Yn
- Yn-4
4-$h[2Yi - 3YL-i - 14yn-2 + 9 ~ n - 3
3YA-2 - 2YA-31
+ h(42jA+ + 1 0 8 ~-~ 5’ 4 ~ 4 - + 24.~;-2)] 1
(4.6-9)
1
(4.6-3). (4.6-8) 4.11.
(4.6-911,
hl
Figure 4.11. Roots of Hamming modified P-C combination. [Adapted and reprinted from P. E. Chase, Journal of the A C M , Volume 9, pp. 4 5 7 4 6 8 ; copyright 01962, AssociaComputing Machinery, Inc.] tion
178
4.
Predictor-Corrector Methods
< h l < 0.
4.12
by by 4.7 4.13, 4.6,
As
< h l < 0,
< h l < 0, < h l < 0. As
O4 0
2
0
04
00
S 12
16
20
, 1
- hA Figure 4.12. Journalof the A C M , Volume 9, pp. 4 5 7 4 6 8 ;
0 1962,
179
4.6. Hamming Predictor-Corrector Set
Unstable E
H
05-
0 -2 0
I
-10
-I 5
-05
0
Re (hX)
hX
Figure 4.13.
L.
0 1965,
ACM, Volume 12, pp. 227-241 ;
4.6.3. Extensions
by by
W.
Journal ofthe
180
4. Predictor-Corrector Methods
by bound
>
h2 >
bound (v = 4)
0
(u =
2.352
0 0 5 0 -18 9 10 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1.547 - 1.867 2.017 112 112 0 417 317 0 0 0 0 1 0
k k k
=3
k k
=7
=4 =5
=8
3 k =4 k =5 k =6
k =2 k k
=4
=5
k =7
0 918 1 1 1 1 1 1 1
0 1
1 0 0 0 0 0 0 0 0
0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1.442
1 2 4 9 813 312 19011720 427711440 198,721160,480 434,2411120,960 2.002 1 103142 22,32117440 62,249117280
0 3 813 0 51 - 591 371 - 27741 26161 99821 705,5491 - 1,162,1691 2,183,8771 1.818 -991 691 - 881 611 24,2161 101,4301 5,615,1991
113
413 618
112
11 81
-118
0 0 0 0 0 0 0
0 0 2 18 - 413 - 11
113 - 318 0 - 11 - 51
25 11720 47511440
191 6461 14271
36,7991120,960
139,8491
- 121,7971
- 2641 - 7981
181
4.7. Adams Predictor-Corrector Set
do
4.7. ADAMS PREDICTOR-CORRECTOR SET
(A-M) 4.1 4. PREDICTORS‘
0 0 0 0
- 12741 -72981
- 171 -1.51
0 19,0871 295,7671
- 134,4721 - 1,041,7231
(1
’
0
yc
- 36,7991
(1
.4016h
0
- 120341 - 764901
yC6’
0 28871 407,1391 2,102,2431 0 0 0 30,5451 3,444,8491
0 164,1171
- 50791 - 1,149,0481
1,691h ‘180,640)y[’
0
CORRECTORS 8 3
P4
P 5
P7
P6
W ,h )
0 0
y[” 931
0
yL4’
0
1061 4821 37,5041 123,1331
- 191 - 1731
are the same as the first one
0 271 63121 41,4991
that
0
-
0
1,3511
y[*’
182
4. Predictor-Corrector Methods
=
=
by
A-M) y' = Ay
(1
-
(
111) yn+ 1 - 1
+
;
h A) yn
5hl + 24 yn
-1
hl
- 2 yn- 2 k
p3
+ A(hl)pZ + B(/IA)p + C ( h l ) = 0
=0 =
183
4.7. Adams Predictor-Corrector Set
A(hl>, . . . , C(hl)
h +0
hl. =0
(p pl = 1, p2 = p3 = 0.
1
h (p -
= 0.
=0
on h = 0. no
h
h 4.7.1. Third-Order Adams P-C Combination ( p =3)
by y' = Ay.
::
(
p - l+-hlp
+
(t:)
5 -hlp--hhl=O 12
hA
144
by
hl 12
-
80 25 +h212 p - - h2A2 = 0 144 144
4.14,
< h l < 0,
< h l < 0,
- 1.8 < hA < 0.
P-C
- 1.6 < h l
< 0.
4.14
184
4. Predictor-Corrector Methods
15
10
4 c
E
H
05
0
-
-I 5
-I
0
-0 5
0
R e (hX)
Figure 4.14. Region of stability in complex hX plane for third-order Adams P-C combination.
4.7.2. Fourth-Order Adams P-C Combination
(
- 1+-hA
p
)p 3 + -2459h A p 2 - - h A2437p + - h A =2409
hA (1 - - h294A ) ’ (1 + -iz) p--
(5hA 24
CL+-+-
-
(
p - 1+-+h2A2p
7:A
)
5hi + -+-
5 hA p2+-hAp--=0
24
24
59h2A2)p2 64
(-24hA + 6437
- h2A’)p
9h2A2 +--0 64
-+-
95h2A2)p - (hi. 64 24
91h2A2)p2 64
9h2A2 -0 +-45h2A2 64 P - - 64 C, PECE
PE(CE)2
185
4.7. Adams Predictor-Corrector Set
-20
0
-I 0
+I0
Figure 4.15. Mathematics
of Computation;
0 1965, Volume 19, pp.
et al.
4.15
4.16
0, 0,
x.
< hA < 0,
< hA < 0,
< hA < 0
- 1.3 < hA
< 0,
et al.
-2 0
0
-I 0
+I0
hX
Figure 4.16. Mathematics Compzctarion;
0 1965, Volume 19, pp.
186
4. Predictor-Corrector Methods
5 h < \ D
&
\
10-
05-
,
--,---;-
" -30
-20
I
I
-I
0
ijl 0
hX
+I0
[12].
Figure 4.17.
< h2 < 0.
bound
4.17
by 4.18,
2 0-
-
4.19,
Unstable
4
L=
E
H
IOStable
0
by
187
4.7. Adam Predictor-Corrector Set
-
1
x
E
H
0 5-
n -
1
-20
--
I
5
-I 0
-05
0
Re (hi)
hX
Figure 4.19.
Journal o f t h e A C M , Volume 13,
0 1966,
pp. 374-385;
i
4.7.3. Higher-Order Adams P-C Combinations 4.20
4.21 4.2
by
188
4.
Predictor-Corrector Methods
Figure 4.20.
hX Journal of the ACM, Volume 13, pp. 374-385;
0 1966,
Unstable
I I
-I 5
Figure 4.21.
hh Journal of the A C M , Volume 13,
pp. 374-385;
0 1966,
189
4.7. A d a m Predictor-Corrector Set
STABILITY
TABLE 4.2 BOUNDSOF ADAMSFORMS
~~
Real
stability
p
-6.0 -3.0 -1.8 -1.2
-1.5 -0.92 -0.68 -0.49 -0.35 -0.25
-1.3 -0.95 -0.7 -0.5
-0.5
1.3i 0.9i 0.7i 0.5%
0.4i 0.3i
4.7.4. Crane-Klopfenstein P-C Combination by go
181 4,7.5.
hA
go
bound bound
hl
hl. = - 1.3
=
4.22 jn+ 1 =
-
-1
-
+ 2.0 +
-2 -
-3
-
190
4. Predictor-Corrector Methods
- 4.0
- 3.0
-2.0 Re ( h i )
-1.0
0
hh
Figure 4.22.
L. Journal of the ACM,
hi
0 1965,
12, pp.
hi = bound
=
on 4.22 4.19.
bound
hl
= 0.70i
4.7.5. Krogh P-C Combination
go by
y,.
yn-l
4.1
4.23 4.3
hi -
0.3i,
1.3
P-C
= - 1.8,
191
4.7. Adams Predictor-Corrector Set 15
IC
c x
I
E
H
05
C
-
-1 5
-I 0
-0.5
0
Re ( h i )
hX
Figure 4.23.
F.
Journal of rhe ACM, Volume 13,
0 1966,
pp.
4.7.6. Nordsieck Method
y,, y,,’, y”, . . . , Yn,Yn-t%Yn-2,* . . .
xn
by
4.7.7. Hull Combinations
a,
pi; pz =
p3 = -c,
192
4. Predictor-Corrector Methods
p 2 = +c
p3 = -c p2 =
p3 = = 0.
=
+ 5c2 + + + - +
+
+ (-
=y,
+
c2yn-1
+ (19c2 +
- c2yn-2
+
-
c2yn-2
+
+
- 5)yA +
+
+
As
+
-c
+
- 5)yA-I
+ (-5c2 + + -c +
by
+ (5c2 + 8)
= ( 1 - c ) ~ n + ( ~ - c ~ ) ~ n - 1+ c 2 y n - 2
+ +
+
+ 1
c=
c=
T ( x ,h ) =
4.7.8. Extensions
4.4.3
Yn+ 1
= yn
+
- YA-
11
T(x, h) = y‘ = Ay bound < h l < 0.
-
1.0 < h l <
bound
Y,,+~ =
yoYn+,(P)
+
-
0I yo I
1.0.
y o = 1.0,
y o = 0, yo = 0.65
193
4.8. PE(CE)‘ Versus P(EC)’ Combinations
bound
- 5.7
< hA < 0
Y,,,~
h.
2h (4.7-20)
T ( x , h ) = 2 [ ( 5 l 1 ~ / 1 2 ) y [ ~=~ ( i ) ] 2h. T ( x ,h ) =
=
by
bound
bound
-
on
4.8. PEKE)” VERSUS P(ECY COMBINATIONS
yA+l Y,,+~ jJL+,}
s = 1,
{Y”+~,
{ J J ” + ~ y;,,} ,
2h
Y,,+~ s=I
h.
194
4. Predictor-Corrector Methods
bound.
do ?
y’ = Ay)
Yn+ 1
= Yn
y,
+
1
= yn-l
+
+
jn+l
by j,+l
=
+ = J’, + = Y,
p5
- (1
-
+
+y ) 4
+ 37j’A-z +
15
91
+ 24p 3 - 24 - i1J.p + - hi,p - - = 0 8 8
O(k5) =
1,
4.8.
195
PE(CE)” Versus P(J3C)s Combinations
h =
on
4.19 bound
- 1.3 < hA
< 0.
4.24.
<
bound
1
c x 1
O2
E l
O L 0
Unstable!
1 _-
-0 3
R e (hX)
Figure 4.24.
P(EC)
hh
0 1968, Volume 22,
Mathematics of Computation;
pp. 557-564.1
hA < 0
- 1.3 < h i
<0
bound 4.24, 4.19.
by
196
4. Predictor-Corrector Methods
4.7.4. -
jnil =
+
+
+
+
+
+ 4.25
As hl =
hA =
by
Also
Unstable
R e (hX)
hX
Figure 4.25. P(EC)
Marhernarics of Compurarion; Volume 22, pp. 557-564.1
4.26 4.5
4.27
4.12. As bound
bound < hA < 0. bound
0 1968,
197
4.8. PE(CE)' Versus P(EC)' Combinations
0
- 1.0
-0.5
0
to 5
+I0
+0.5
+ 1.0
hX
Figure 4.26.
-I 0
- 0.5 Figure 4.27. Roots
0 hX
198
4.
Predictor-Corrector Methods
4.9. SPECIAL SECOND-ORDER DIFFERENTIAL EQUATIONS
Y” =f ( x ,v> y’
by
y,,+
- ynP3
=
T ( x ,11)
+
+
+
+
+
=
by yn+l =
- yn-l
+
q x ,/ I )
= -
up Y,“ = p n + l=
Yn)
+
-
cnil
= 2yn - y n - l
Yn+1
=
+ yi-] +
+
+
+ toy,” + y i p 1 ] -
Cn+J
4.10. USE OF HIGHER-ORDER DERIVATIVE P-C COMBINATIONS
y’
=f(x, y )
1.10,
(k = j,l+ T ( x ,/ I )
= =
+
+ (2h2/3)[2y;+
4.11.
199
Hybrid Type Methods
As Yn+l
+ Yn’l +
= Y,+
+
T ( x ,11) =
[j,: -
no
no Ail. y”.
jn+ =
Y , ~ +1 =
+
1
+ YA-
- Y,-
11 + ( 2 h / 7 ) [ A + +
-
11
1
+
j;+
As h + 0 7p2 - 8p + 1 = 0 pl = 1
p2 =
1
h
by
y”
4.11. HYBRID TYPE METHODS
p, uI, .. . , a k , P o ,
3.3.1 p I k + 2. 2k
.. . , P k ; p = 2k
[17], p
= 2k
P-C
+1
200
4. Predictor-Corrector Methods
f ( x ,y )
between xn
x,+~;
4.11.1. The Butcher Approach by
+ '2Yn-1 + + C l k Y n + l - k + h[fiO f n + 1 + f i l f n + ' + P k f n +
Y n + l = 'lYn
' * *
* '
h f i f + l - O .p 2k + 3 p = 2k + 2. 2k + 1. As
1- k l
+ hfifn+
1-0
by 8 # 0, 1, 2, . . . , k . 8
3
3
on ~(y,+~-~
p
8
= 2k
+2
fn+l-O, -o.
M
=
-
1 1 K = --+0
Hi = H i - 1 +
- 8) ... ( k
- 0)/k!}'
1 + ... +-
+-k -18
i 2 1,
Ho = 0
(4.
4.11.
6=
k
= 4,
k
As
h =0 k = 8, no
6 = 3.
5 , 6,
y,+l =Y,,
20 1
Hybrid Type Methods
=
1, Q
=
+
k
=
1, 2, 3,
3, +A1
+
0(h5).
p =4
h/2
Y,,+~
y,, yfl+l,2 k =2
+ 2 = 4,
=k
k
=2
3.3.3,
h. f,+
-0.
do Tfl+i-e = E
+
+
i ~ n E2yn-i
+
+
* * *
+M2Yn-1 + +
Y n + l ='IYn
+
Tfl+,- e
+ &Yn+l-k
. * *
+ B k f , + 1- k l
+ MkYn+l-k + ... + Tn+l-e "'
ffl+l-e
f,+l.
JJ,+~
2k
2k p = 2k - 1 p = 2k p = 2k - 1
do
;
f,,+
j n +I ;
+1
do = Yfl +
Tfl+
= Y, ~
n 1+ = ~n
+ h[2Tfl+ +
1
+
1/2
+ fnI
k=l, JG+ l j 2 = Y f l -
Yn+ Y,+
= 1
=
+ w 3 ) r 9 f f l+ 3
,] + (k/15)[32Tfl+
-
~ 1~-
Yfl-
k=2,
+
112
p=5
-
+
-
+ 12fn - f,(4.1
202
4. Predictor-Corrector Methods
=
zz
Yn+l
=
+
+
+
+ -
+
+
-
1
-
+
-
+
-
-
-
-
%=+,
4.28 bound - 1.45 < hA
< -0.1.
hX
P-C
Figure 4.28.
P-C :
k 2 5 1
3 2 6
4.11.
203
Hybrid Type Methods
As
4.11.2. Different Predictors A
+2
p = 2k
by
8
2k
+
k 5 6.
6
+3
fn+l
p
pfl+l
-B
on
2k y) 2k
= 2k
+3
+ 2.
jn+
ffl+l.
f f l +-B
h-
p,+,
+
= 4 5
+
= --3TYfl+ Yn+l
=
j,+l =
+ +
=
+ =
+ k
= 2,
1,
+
+
+
+ +
+ffll
Q = 3,
lpll = 1
+fl-1
= Yfl+
k
+
+
+ + +
+
+
6 = 0.5773502,
Ipll = 1,
by
4.11.3. Further Predictors
[25] p = 2k
+ 1) k
=2
+
+
+ +
lpll = 0.039630
+ 2.
204
4. Predictor-Corrector Methods
j7n+l
bfn+l - 0
As
Y,+,;
el. 1. 2.
yi
jn+el J,+e J;1+8,
(P3)
4.
yi
Y,,+~
+2 p = 2k
0
+ 1 by k
(P2)
k k
yi
+2
+
fi
+2
2k
+4
2k
+4
yi
+1
k k+l 1 1
,fi
fi
4
2k
+3
2k
+3
k 1
+
6
fi
fi
1
(C’
fi
yi
jn+l
.E+ e
”
(P2)
3.
p = 2k
“
fi
P-C
k _< 6
(PI)
4.11.
205
Hybrid Type Methods
+
+ 3.221Yn-z + h[3.686fn + 6.072fn-, + O.9558fn-,] = 0 . 5 3 3 6 ~+ ~ 0 . 4 4 9 4 ~ ~+ - 0.01695~,-~ + h[0.7024fn + 0.1942fn-, + 0.08660~n+,,7] ynfl = + h[0.3095fn - O.O098O3fn-, + 0.7002Tn+0,7] = - 5 . 7 9 3 ~ ~ 3.572yn-1
Jn+0,7
J n + 1/2
~ 1 "
yn+l=yn+(h/6)Cfn+l +47n+1/2+fnI = +,
k = 1,
= 0.7
(4.11-13)
+ 23.4IJn-2 + 4.509JJn-3 + h[6.955fn + 26.96fn- + 17.18fn-, + 1.40Ofn-,] = -.5709yn + .8758yn-, + .6808yn-, + .O1430yn-, + h[1.262fn + 1.266jn-, + .2466fn-, + .082537n+.7566] j n + = .7195~,+ .2804~,- + h[.5929fn + .09455fn- .002092fn + .594ifn y n c l = .9603~,+ .03963~,-, + h[.1293fn+, + .2772fn
Jn+.7566
= -16.30Yn - 11.61yn-,
Jn+,5773
+ .7566]
-2
+ .009285fn-, + .6237fn+.,,,,] k
= 2,
0 = 0,5773,
0,
= .7566
(4.1 1-14)
P-C
4.11.4. The Special Second-Order ODE no p = 2k p = 6, 0 = 0.3
by 4
J n + l - @=
4
p i y n + I - i + h2C7iy;+1-i i= 1
E l = - 1.9320993
E2 =
6.4719549
i i j = -3.4476119
ii4
=
-0.0922437
i= 71 =
v2 =
0.862500525 3.030380475
0.433679775 y4 = -0.007217775 73 =
(4.11-1 5 )
206
4. Predictor-Corrector Methods
=
+
+
-
... p
-
+ 14.66 . . .
+ 2.66 . . .
=7
u1 =
2.05804967222800
Yo =
'2
=
y1 =
'3
=
yz =
=
4'
y=
0.152641470035498 0.161595975532325
y3 =
0 0.704431783153855 0.0872587915934802 0.154458906599228
~4 =
/lo = 0.
4.11.5. More Than One Nonstep Point
in the corrector
on As k<
p
= 2k
k
+1
k 2 15
p = 2k by
+ 2.
7
207
4.11. Hybrid Type Methods
. . . , Pk.
+
2k 3 p = 2k + 2. k 5 15
O2
c(,,
. . . , a k , b,, b,, P o , pl, #
h=
0, go
k 5 4, k no (h #
by
208
4. Predictor-Corrector Methods
4.12. STARTING THE P-C COMPUTATION
y = yo
y,, y 2 , . . . yo
yo
... .
4.13. ADJUSTMENT OF THE STEP SIZE DURING THE P-C SOLUTION
x
A,,
by
4.13.1. Stability Considerations A,,
bound on
by
bound on ( -Ah)calc
on h,,,
. A l , ,,, . by
bound on A,,
bound.
1=f, f,
h,,,
by
209
Adjustment of the Step Size
4.13.
(4.13-2)
A bound on
4.13.2. Truncation Error Considerations j , , - y,,
jn+l - yn
As
h
by
h
go
h/2
h 2h h/2
h,,,,
2h
bound on up
h
jnfl -Y,+~
h
h
All y,, y,-,,
I7
k
= 2)
y,
.
yn-2
2h
y n W 2At
h3 j, -y,
by Z 3
= 8.
h k =2
J,,-~
y,-l,2
210
4. Predictor-Corrector Methods
by
y,,
+(j,-
h
h
h.
up
4.13.3. Further Stability Details on h,,,.
A A
= A,
A,
=f, =
A,,' =f,' A,,' hA
c = ?.,,'/A,,, A,, # 0.
hA
c. o
AA
c=0 c#0 c = 0 (A,,= ;
4.14. TABULATION OF EQUATIONS AND STABILITY BOUNDS
4.1
4.3
4.14. Tabulation of Equations and Stability Bounds
211
4.3
1.
-2
0
-02
-2, -2,
s= 1
0 21
s=3
2. -2, -2,
s=l s=2
-1, -1, -1,
s=l s=2 s=3
3.
4.
’
-0.8 < hh < -0.42 < hx <
5. -1 -2.6
6.
S=
1
S=
2
-0.85
0.71
-0.55 -6.0 -1.8, -1.3, -2.0, -1.6
0.721
7.
c
s=l s=2 s=3
1.31 1.61 0.71
8. -0.3 S=
1
S=
2
0.421 li 0.91
9. -0.2
0.25 .3i
-0.95
0.71
212
4. Predictor-Corrector Methods 4.3
10. 0.55i 1.051
0.41 0.681
-0.5 -0.5 -0.4
0.71 0.951 0.721 0.551 0.421 0.31
- 1.45 - 1.05
12. -
0
< hh <
13.
-0.1
4.15. PUBLISHED NUMERICAL RESULTS
on is
4.15.1. Stability of P-C Methods
y’ =
+ 100 - 10oy,
A
y(0)= 0
4.15.
213
Published Numerical Results
x
2
y’ = 1 - y ,
y(0) = 2 by
y (0) = 0, y’(0) =
y” = - y ,
of
Y,’ = Y2
Yz’ =
3
4.15.2. Adams P-C Combinations (p= 6
y’ = ay
+b
wx c = 0,
k k 2 3
-
x
1500 380
4
5
43
k 6 7 8
-
x
17 6 2
214
4. Predictor-Corrector Methods
do
on
s,
s/h =2 =3 p =6
no
= =4
1 s = 2,
7
4.15.3. Variable Coefficient and Hybrid Methods 1
on
P-C, h
4.11.
by et al.
on
on
4.15.4. Comparison of P-C and Runge-Kutta Methods
on
y);
up
21 5
4.16. Numerical Experiments
(2.3-20),
on bound
1.
2. do 4.16. NUMERICAL EXPERIMENTS
2 on
2.
(-
4.17 will
&$‘
-:,\.: 5
4.16.1. Milne Methods
h = 0.01
1.0
4.4
h = 0.01 x.
3
h = 0.1,
h = 1.0
on
h
216
4. Predictor-Corrector Methods 4.4
SYSTEM
SINGLEPRECISION MILNEFORMS pea'
X
81
E2
0.1 0.3 0.5 0.7 1.o 2.5 5.0 7.5
1 1 1 1 1 1 2 2
0.5 0.7 1.o 2.5 5.0 7.5 10.0
3 4
4.0 5.0 6.0 7.0 8.0 10.0
15 13 23 7 24 6
2 3
0.136910- 1
5
h h (h = 0.1
h
= 0.01
h 4.7
h up up
4.16.2. Hamming Methods
4.5
on
VII
h
= 0.02,
0.1,
217
4.16. Numerical Experiments
4.5
&
X
h = 0.5 0.1 0.2 0.3 0.5 0.7 0.9 1.o .5 2.0 3.0 4.0 5.0
-3
17110 50710 - I
I
0.5
h, h, h
h = 1.0
= 0.5
on
on
4.16.3. Adams Methods
111,
VTI. s = 1, 2,
111
4.6 h
= 0.25
b
=
3. 1.
-
218
4. Predictor-Corrector Methods
4.6 111. b
=
- 1,
h = 0.25.
x = 20.0
h = 0.01 5625
s/h.
s=2
s=1
3
on
( p = 3)
h
I
Figure 4.29. PE(CE)”.
2
versus s / h
3
= 2.0.
IV
VII
4 5 Log2 ( s / h )
111.
6
7
I
219
4.16. Numerical Experiments
-
-2-
L
e
al -
2-3A 0
-4
-
-2
I
I
I
I
I
1
I
I
1
I
I
I
-
L
8 -
0 -3-
0,
3
-4
-
s=1
p
= 3.
111.
on
h h = 1/100,
4.7
p = 4.
on h = 1/100 = 0.01 y, y3
y,.
y1
x, x ‘v y,
h= = 0.02 is y,, by h=
y, y3
h=
y3).
y, , = 0.025,
p
= 4,
220
4.
Predictor-Corrector Methods TABLE 4.7
SYSTEMVI. SINGLE PRECISION ADAMSFORMS, p =4
0.16 0.26 0.36 0.46 0.56 0.76 0.96 1.26 1.56 1.96 5.96 10.96 15.96 25.96 45.96 0.20 0.325 0.45 0.70 1.20 1.70 2.20 2.70 3.70 4.70
k,
hI
k
= 4,
5,
6
h2 h
4.16.4. Hermite-Milne Methods 4.5.5 4.8
V. =0
x.
= 1,
y(x)
on
22 1
4.16. Numerical Experiments 4.8
I
I
h = 0.5, s = 0 X
s = 1,
I/h 2.0
YDP
1 .o 0.6067 0.3593 0.2708 -0.1875 2.2083
0 0.5
1 .o 1.5 2.0 2.5 3.0 3.5 4.0
-
4.0
8.0 10.0
20.0 100.0
x = 1.0
(CX -YDp)/e-X
-0.283810- 2 -0.121510-3 -0.637610-5 -0.252610- 5 -0.147910- 6 -0.225010-9
(Kx-ysp)/e-”
-0.283810-2 -0.121610-3 -0.631 5 -0.243010-5 -O.16ZO1o- 6 0.226810- 5
14.OOOO
92.8333 -613.000 4049.33 -26748.0
4.5
5.0
V s -1
h ___ 0.50 0.25 0.125 0.10 0.05 0.01
x
= 0.5
x - y,D,)/sin x x = 6.0
x = 2.0
0.540010 - 3
0.911810-3
0.873110-4 0.534010-5 0.187910-5 0.135310- 6 0.215410-9
O . ~ O ~ O ~ O - -0.972710-3 ~
s=2
0.202910 5 0.790310-6 0.44271 0- 7 0.64270 - 10
-0.215110- 1 -0.497310- 4 -0.194610 - 4 -0.110310-5 -0.161610 - 8
=
=0
s= 1 on
h.
4.16.5. P(EC)’ Modes
All
upon
x = 20.0 14.88 0.3899 0.1
-1
0.388610 - 2 0.122210 - 3
222
4. Predictor-Corrector Methods
4.8, on
h,
s,
4.9
4.32
151.
by
s = 1, do
h = 0.5 h = 0.125
s = 1,
bound
h = 1.0 2
0.125. s h = 0.5 s = 3,
3
s=1
-81
0
05
I
10
1
15
20
(s/
Figure 4.32. P(EC)”.
versus s/h
System I.
25
3
h
=
4.16. Numerical Experiments 4.9
0.5 0.25 0.125 0.0625 0.03125 0.01 5625
0.5 0.125 0.03125 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.5 0.25 0.125 0.0625 0.03125 0.015625
0.5 0.125 0.03125 a
on E
223
224
4. Predictor-Corrector Methods
h
no
x
11,
11,
h
x.
x = 15.0,
y(x) =
h = 0.03125.
0.197
h
= 0.50
h = 0.125, y1
x.
h’s
= 1,
h = 0.0626
h = 0.25.
= 2,
bound
h h on bound
x=O.5, on As 1. 2. 3.
h
h = 0.00125
225
4.16. Numerical Experiments
4.16.6. Hybrid Methods 1, 11, good h = 1.0
4.10 h = 0.1
4.10 h = 0.1
I1 &
X
0.2
0.4 1.o
2.0 5.0
&
-0.673510- 5 0.112610- 4 -0.816510-5 20.226410- 5 0.408710- 7 IV
X
0.2
0.4 0.6 0.8 1.o
2.0 4.0 5.0 VI X
&
0.8
2.0
0.715210 - 6 0.178810- 5 0.48271,- 5 0.655610- 5 0.882 I 5
5.0
0.1001
0.2 0.4 0.6 1.o
<10-6
~
- 4
226
4. Predictor-Corrector Methods
4.16.7. Higher-Derivative Methods
P:
(u)
(b) P :
+ \ifn
= y,
+
Y , + ~= y,
P:
1
+
= yn
+ ilfn +
= y,
+ hj, +
fn+ 1]
(d) P :
c:
(c) P :
yn+ 1 = y n
+
(9) P :
n 1+ =
Yn+ 1
yn-
1
+
+ f n + 11 +
+
P : j n + l= y n - l ~
+
+
11
-
+
fA+11 f:+ 11
-
+ +
1
+
+ h[fn-
= 2yn - y n - 1
+ 1
1
+
-
1
+ 3fn’]
yn+l
+
+
-
by 1.
V
0.001
h’s
2.0.
4.1 1
h h = 0.01
2.8,
h = 0.1
by /7 = 2.0
x = 5.0
4.12 h.
el h. h.
x on
4.16.
227
Numerical Experiments
4.11 =
X
0.5 1.o 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0
X
h = 0.01
h = 0.1
h = 0.5
5.0
h=1.0 0.633110 - 1
8.0
10.0 12.0 15.0 16.0 20.0 24.0
0.623610 + 2 0.2027
0.513810 + 2 0.1521 0.1636,o + 7
4.12
E*
x = 5.0
h = 0.01
h = 0.1
h = 1.0
O.8OOO10
0.813910 - 2
0.8679
h = 1.0. h = 2.0. h = 1.0. h = 2.0. h = 1.0. h = 2.0. h = 1.0.
-4
0.3644
h = 2.0. h = 1.0. h = 2.0. h
-4
=
2.0, h = 1.0. h = 2.0.
228
4. Predictor-Corrector Methods
10' 10-2
IO-~
e ; -
10-6
10-8
IO-~ 0
r
Figure 4.33.
2
3
X
4
6
5
h
x
W h:C
10-12
b,
) 001
Y
10-l~
I 0- 140
2
I
3
4
5
X
Figure 4.34.
x
h
6
229
4.16. Numerical Experiments
0
1
1
i
i
i
i
i
2
3
4
5
6
x
Figure 4.35.
X
7
h
V
10 1 I00
10-1 10-2 -
o3
E W
10-6
10'~ 10-8 10-9
10-10
0
2
4
3
5
6
X
Figure 4.36. Error
x
V
h
g,
230
4. Predictor-Corrector Methods
4.12 go up.
k
(k = 2
=
up, ;
4.16.8. Recommendations on
A 1. 2. on h
3. 4. 5.
4.17. NUMERICAL COMPARISONS OF SINGLE- AND MULTIPLE-STEP METHODS
no
rn
4.17.1. Solution of PDEs by the Method of Lines by
23 1
4.17. Numerical Comparisons of Methods
Yt = Y x x 2 ) = 0, Yx(0, t ) = 0,
t>O t>O
y(x, 0) = - I ,
0 <x < 1 yxx x
m t
x “
y’ = Ay,
y(0)
Im x
y
= -1
A
on
A
As Y , = [ 1 + .(
+
+
2x2
1)2
I”
Yxx
Y ( 1 , t ) = 0, Y,(O, t ) = 0,
t>O
y(x, 0)= - 1 ,
0 <x < 1
t>O
by
A
by t
m;
As 1. 2.
(2.5-18).
m.
232
4.
Predictor-Corrector Methods
3. (4.6-3).
P-M,-C-M,
y,
h, y,, +
y,,+ y,, + Y,,+~
y,,,, h up
on 4.13 DOUBLE PRECISION
EQUATION
50 X
t
= 0.20
= 0.10
0.8 0.6 0.4 0.2 0
h
-
150
is
50 X
t = 0.001
t = 0.01
t
= 0.10
t = 0.20
t
0.8 0.6 0.4 0.2 0
h occurs
h=
0.50
4.17. Numerical Comparisons of Methods
233
TABLE 4.13 (continued) PRECISION EQUATION (4.17-3). DOUBLE Rosenbrock
Hamming
Errors at value
50 points
30 points t = 0.01
X
0.8 0.6 0.4 0.2 0
4.210-4
5.210-5 5.310-7
-8 1 .Ole - 9
h Computing time Comments
10-2
10-4
-
-54 sec/100 steps.
18 sec/100 steps. Unstable at h =
Stable for h = 10-5. Unstable for h = 10-4.
bound
h
2h. by
on
PDE by (4.17-1). P-C;
4.13.
by
=
1.5
50/30 = 1.7.
h
by 4.14
PDE
234
4. Predictor-Corrector Methods 4.14
30 X
0.8 0.6 0.4 0.2 0.0 h
- 77 15
30 = 0.10
t
X
0.8 0.6 0.4 0.2 0.0
t
= 0.20
h 65
15 X
0.8 0.6 0.4 0.2 0.0 h
t
= 0.10
= 0.20
5.410 - 3 8.11 0 - 3 1.010 - 2 6.910 - 3 10-3
20 30
t = 0.40
4.17.
Numerical Comparisons of Methods
235
do
on 1.
by 2.
on
3.
4.17.2. Solution of System IX
yZ(0) =
=
x = 5.0.
h = 0.001
h = 3.0,
1. 2. 3. 4. 5. 6. 7.
h
= 0.1
0.5
h = 0.001
4.15. E 4.16
236
4. Predictor-Corrector Methods
SYSTEM
TABLE 4.16 Ix. DIFFERENT METHODS REACHX
h = 0.001
= 5.0
h = 0.1
h
P V"
tDP
V
k P
tDP
2000
1.6
1.7
200
0.13
0.13
22.8
3000
2.1
2.4
300
0.18
0.34
27.5
3500
2.5
2.7
350
0.21
0.36
12.9
1000
tDPc
20,000
16.1
17.3
30,000
21.4
35,000
25.3
10,000
Y
tse
tSP
V
''
1.04
0.08
10,007
6.4
7.3
1007
0.71
0.80
113
0.11
0.12
10,007
5.8
7.5
1007
0.56
0.68
113
0.09
0.11
10,007
6.3
7.7
1007
0.57
0.17
113
0.10
0.11
-1
h = 1.0 h = 3.0 h = 1.0 h = 3.0 h = 1.0 h = 3.0 h = 3.0
h=0.5 h=1 h = 0.5 h=1 h = 1.0
h = 3.0 a
x
5.0
:
x=5.0
a
5
r
c
P
w
f4-. v1
P 0,
z3 Lr
!2
238
4.
Predictor-Corrector Methods
:
h = 0.01
1.
good
h
2.
h = 0.1
3.
h = 0.5,
4.
4.16
= 0.01
4.15
1 : 2 : 3.5
h h
=
1.0,
h = 1.0.
=
on on :
1.
by
2.
4.17.3. Recommendations 1.
h = 3.0.
(rn <
239
References
2.
1.
Simulution 31,
A 219
2. 3.
J. Math. Comp. 1 9 , W J. J.
4.
A
M.
Much. 14, 769
J. Assoc. Assoc. Cbmput. Much. 12, 124
5. 6.
Math. 20, 1 A J . Assoc. Comput. Much. 14, 84
4
5
7.
J. Assoc. Comput. Mach. 9, 457 W., A J . Assoc. Comput. Much. 12, 227
8.
J.,
9.
J . Assoc.
Much. 9, 104 G. A
10.
3,
27
on
11.
J.
Syst. Sci. 2, 203
12. 13.
AZChEJ. 14,946
J . Assoc. Comput. Much. 15, 712
14.
I.
“A SIAM
1966. 15. SIAM J . Numer. Anal. 2, 69 16. Comp. 21, 146 17. B., H. J., J . Assoc. Compuct. Much. 11, 188 18.
Math.
Comput. J. 9, 410
240
4. Predictor-Corrector Methods
19.
J . Assoc. Comput. Mach. 6, 37 S.
20.
by
J . Assoc. Comput.
Mach. 14, 549
21. J. SIAM 9, 31 22. 23.
J . SIAM 10, 351 A. Comput. Mach. 10, 291
J. Assoc. S.,
24. Math. Comp. 22,557
25.
G. J. Assoc. Comput. Mach. 14, 155
26. J . Assoc. Comput. Mach. 15, 390 27. J . Assoc. Comput. Mach. 13, 374 28. J . Assoc. Comput. Mach. 14, 351 on
29.
Math. Comp. 21,
717 30. SIAM J. Numer. Anal. 4, 597
31. 1962. 32.
O.D.E., NASA Technical Report, 33.
Simulation 12, 87
34. Rev. Franc. de Traitement de L’lnformation, 135
35. 1953. 36. J . Assoc. Comput. Mach. 6, 196
7, 46
37.
J . Assoc. Comprrt. Mach. 9, 64 38.
Math. Comp.
16, 22 39.
BIT6, 51
40. Comput. J . 4, 64
41.
in
SIAM Rev. 7 , 114
42. 43.
1965.
5, 164
241
References
44.
A J. Numer. Anal. 2, 265 (1965). 45. J., 84 (1965). 46. H. “ (Arch. Elektron. Rechmen.) 3 , 286 (1968). 47. W. of
SZAM Math. Comp. 19,
BIT 5, 276 (1965).
5 Extrapolation Methods
5.1. EXTRAPOLATION TO THE LIMIT
5.1.1. Accumulated Truncation Error of Single-Step Methods on y(x)
@(x, y ; h) by
IE,~
C
Chp,
E, +
0
h + 0. how
E,
E,.
Theorem 5.1.1.
E, E, = hPE(X,)
e(x),
(5.1-1)
rnagnged error function,
E(XO)
242
+ O(hP* ')
=0
(5.1-3)
243
5.1. Extrapolation to the Limit
by yn(h)
y(xn)
h, yn(h)= y(x,) y(x)
+
+ O(hP+')
(5.1-4)
E(X)
(5.1-4) =A x n )
+ O(hp+')
+ y,, .
y(x,).
(5.1-6) by
y(x,),
O(hP+').
by
h h/8, 2.9.1 x,-~
x,+, by
2h,
h
by
(5.1-7)
by y(x,+J, Y 2 1
=
1)
+ O(hP+')
5.1.2. Extrapolation to the Limit
by
(5.1-8)
244
5. Extrapolation Methods
on by T(h).
y,,(h) = T(h).
h, T(h) = 70 -k
71h”
+
-k 7 2 h Y 2
* * * ,
i = 1, 2,
. ..,
zo
yi =
b_=
yi = i y
0 < 71 < 72 < * “ p =1
1-2) ~(x,,),
1. z1
T(h)
[I21
yi= T(h)
by
h ”
.
yi = i, i = 1,2, . . . .
s t f ( x ) dx by
+
T(h) = h[+f(a) f ( a
+ h) + - - + +f(b)] *
- 10) O(h2), h
y i = iy, y = 2.
h/2. Tio)=
4T(h/2) - T ( h ) 3
1 0
Ti0)
0(h4), = To
-7 2 h4 - . . . 4
Tio)=
16Tio’(h/2) - T‘,O’(h) 15
3)
O(h6),
-
245
5.1. Extrapolation to the Limit
by
Tik)
by
2k
by
y,(h)
Tik)
hk
=(x - ~
Tf)
)/2~, hk = (b -
by
T(h)
yi = i
y i = 2i,
Tg) by
by by (k)
T
on
h. A
ho > h, > * - - > h, y i = iy
(5. I y = 1, 2
h, = h0/2,,
by
A by
246
5. Extrapolation Methods
y = 2.
y
=
Theorem 5.1.2
A T z )= to n+m
T(h)
h
y =2
=0
(5.1-18)
bound. Theorem 5.1.3 y i =2i
T(h)
k + co,
T g )- T o
= (-
1)"hk2 * * * hz+m(tm+ + O ( h k 2 ) ) hk+ 1
-> O k1O
hk
8,
bound,
> 0, 1)
< 6 m + l h k 2 " ' h k2 + m T T!:)
to
5.1.3
T~
T ti to
lT'io) - tO1< Km m+m
on
TLo)
Km+ -Km
T(h) h
=0
by
Tg)
247
5.2. Extrapolation Algorithms for ODE
by
T!L)(hi)= T(hi),
i = k , . .., k
+ nz
do,
(k) Tm-2 (k+ 1 )
Tm-2
T:?;’ on
5.2. EXTRAPOLATION ALGORITHMS FOR ODE
on
5.2.1. The Euler-Romberg Method
y(x,,)
y,,
y’ = f ( x , y ) ; y(xo) = y o .
x,, y,,
y(x,,)
h, y , = y(X,,)
+ ‘Cl(X,,)h -k t 2 ( X , , ) h 2 -k
‘C3(X,)h3
4-
.*‘
on x. on
k
= 0,
1, 2, . .. h,
y,(hk)
= i,
y,,
h,, YAk).
x,,- xo. i = 1, 2, . . .,
248
5. Extrapolation Methods
(5.2-1).
hk
h,
odd
(5.2-1)
= /1,/2~,
(5.1-15) (5.2-2)
hk,k
1, 2,
= 0,
... ,
- ygL
y $ )= (hk/hk+rn)y:zi) (hk/hk+m)
(5.2-3)
(5.1-17), 1
(5.2-3)
-
y)
x,
hk,k
= 0, 1,
do
2,
x,,,
... ,
h,
- x,.
x,,
each
x 2 , ...,
= h,
-
.
local h,
(x,,, y,,) - x,, = h,
Y,,+~
, by
by
by Yh'), by
Y,,+~, h,,
Yk0) = y n
+ h,f,
(5.2-4)
Yhk)
Yp y61) yco,
y p
yC1) y p
by h,, h, , ..., by 5.1 Yhl) h, =h,/2 Y J 2 ) h, = h,/4
h,/hk, k
= 1,
2,
. .. ,
hk = h0/2k, 11.
hk
= ho/2k
x,
h, h,,
... Y
(5.2-2)
on
x,,+~.
5.2. Extrapolation Algorithms for ODE
I
I I I
I I I
I I
I
I
I
I
249
I
I i
Figure 5.1. Successive halving in Euler’s method. [Adapted and reprinted from
T.R . McCalla, “Introduction to Numerical Methods and Fortran Programming,” p. 342; copyright 1962, John Wiley & Sons.]
by E ~ ,
YLk)
yn+
Y,,+~.
1. 2.
Y p =y,
+ h,f,. YLk’
:
by
-5)
250
5. Extrapolation Methods
k > 1, go
3. 4.
k
4. by
=
1,
2.
Y , , ~ = Y, k =k
1. k < Kmax
+1 k
2. K,,,
(5.2-1)
odd Y
h,
h2
on local
each global entire
x, = a
x=b
xn= x g
+ nh, .
5.2.2. The Trapezoidal Rule
h2
T(x,/ I )
= yn(h) Yn + 1
T(x, / I )
= Yn
+ ('7/2)(fn
+1
+f n )
+
(5.2-6)
= y(Xn) 4- 7L(x)/72 T 2 ( X ) h 4 -I-
~~(x), 72(x), . . .
-
a
(5.2-7)
*
(5.2-1).
global 5.3.2. (5.2-6)
is
(5.2-6)
exactly
25 1
5.2. Extrapolation Algorithms for ODE
4.3.3
x,
1.
x =b
=u
Thy!, n = 1, 2,
h,.
N = (b - u)/ho. X, = X,
..., N ,
n
T
+ nh,.
x, = a
2.
hk = h,/2k, k = 1 , 2, x, = x, + nh,, n = 1, 2, . . . , N ; k = 1, 2, . . ., K. T
.. . . At
x=b T& , Tgk,,
x, . x,, x, = x,
3. 4.
K
=K
+ nh,, by
+1
1
K. y , = Ti:;
on 6
5.2.3. The Modified Midpoint Method h2 h h
on by
x,
y’ = f ( x , y ) h,, hk = ho/2k,
k
= 0,
x, + 11, by
h,, 1 . 2, . .
hk = { A o , ho/2, h0/3,h0/4, h0/5,h0/6}
[8]
252
5.
Extrapolation Methods
T(hk,x) T(0, x)
~ ( h , x) ,
=
y(x)
= y(x)
hk-0
ti,
y(ti,h)
+ h, . [x,, x, + h,]. x, + h, , n = 1, 2,
< ti< x,
x,
x,
,
.. .
Y(41, k ) = Y o + hf(x0 > Yo)
by
by
y(x, h)
h.
T(h,x)
T(hk, x) by
T,’,)
TLkl
1.
Tik’= T ( h , , X )
= 0,
a
h,
+
x, = x, nh,, n = 1 , 2, . . . , N . S(/7,, xl) on h,, k = 0,
2.
K
2, . . . , T(2h,, x,) T
h,/h, by T c ) , by (5.1-17)
3. A
on on
Tz) TAo’ ,
TAy y,.
4.
2
3
x, = x,
on
+ nli,,
n
= 2,
3, . . . , N .
TAk-’),
253
5.3. Stability and Error Analysis
on :
I1 II
h
'
5.3. STABILITY AND ERROR ANALYSIS OF EXTRAPOLATION METHODS
5.2.
Yn+l
x , + ~- xn = h,
A>Yn
=
pl(hoA) xn
locally
x,+~
yn + 1 = B(h0 2, m, klyn
k m
h,,
Y m
=M,
k = K,
yn+1 = P(h0 h,,
h, =
k = 1 , 2,
M , Klyn
... , K .
Ilk,
k
= 1,
2,
... , K,
n Y , = [P(/70
4M , K)]"y0
(5.3-4)
254
5. Extrapolation Methods
< 0,
y' = Ay IB(h0L M ,
5 1
K
M
hoA by
5.3.1. The Euler-Romberg Method by
Y Yg'
=
+
=
k
7
= 0,
1 , 2 , ...
T
m
Y p= i=O
-2
m
-
,
- cm-l,-l = 0
2" - 1
YhK)
P(hOib,
M,K,
Y,+~,
K+i
=
2K+t
m =1 Y y=
k
-
= 0,
Y y = {1
+ h, 2 +
42k)yk}yn
255
5.3. Stability and Error Analysis
y,( k ) - 38 k
0
m
c2,0 = t.
c 2 , 2= +, c ~ =, ~
0
-
=2
+gyp
= 0,
Y i 0 )= {+(1
+ +h,A)"
- 2(1
+ +h01)' +
+ hoE.)}y,
rn
K K K
h,
M, M
=0
A4 A4 = 1
Y
5.2
hoA.
P(hoA, M ,
Figure 5.2.
h,
6
-t- 1
M,
p(ho
M. M W O ) I I U X
As
1
2
3
4
5
6
256
5. Extrapolation Methods
5.3.2. Trapezoidal Rule
local global
no
on
[a, b].
by
T
=
(51-15)
T
By
M
=
1, K
= 0,
2.
/3(ho1,
h, I by by
M
K
I/3(hoA, 1,
< hoA < 0
hoR > 1.85.
by h,
+ co,
<1
257
5.4. Published Numerical Results
5.3.3. The Modified Midpoint Rule 5.3.1
5.3.2.
3.3.
hoA
6. 5.4. PUBLISHED NUMERICAL RESULTS
by by
on
1. 2. :
3.
-1 :
x =0
1. y’ = -y, y(0) = 1.
x
= 20
x = 20
e - 20 x
(y, - e-20)/
= 20.
2. 3. 4.
16.
y’ = - y (M
=
M
=6
258
5.
Extrapolation Methods
by
2. (M =
A4 = 6
3. A on y’ = - y
M
M on y’ = - y , M = 10
M
= 4.
A4 = 6. M
= 10
5.5. NUMERICAL EXPERIMENTS
on
2 6.
FORTRAN DIFSYS
by by
ho,
EPS,
ho m
7, h o , , , ~ = ~ . ~ ~ O , O I C I ho, n e w = O . ~ ~ O , . M
nt 2 7,
ho,
h0/2,
ho/8,
...
259
5.5. Numerical Experiments
I,y’
5.1,
=
-y,
5.1
ho = 0.05, ho
X
0 5 7 7 7 5
0 0.05 0.125 0.1925 0.25325 0.307925
0.05 0.075 0.0675 0.06075 0.054675
y
x
1 49 105 105 105 49
0 4
y
0.0250
. 0.0
-3
(u)
E
1.o 0.9506108 0.8840196 0.8279507 0.7804320 0.7383381
=1
0
0.0125 0.0250 0.0375
0.5908082
1
0.0083 0.0167 0.0250 0.0333 0.0417
0.9606364
2
0.0062 0.0187 0.0250 0.03 0.0375 0.0437
0.9231223
3
0.0042 0.0083 0.0125 0.0167 0.0208 0.0250 0.0292 0.0333 0.0375 0.0417 0.0458
0.9513791
4
260
5. Extrapolation Methods TABLE 5.1 (continued) Progress in calculation, First Series x values
Extrapolations
Extrapolated y
0.0031 0.0062 0.0094 0.0125 0.0156 0.0187 0.0219 0.0250 0.0281 0.0313 0.0344 0.0375 0.0406 0.0437 0.0469
Counter
0.9506108
5
End step 1, 10.9513791 - 0.95061081 = 17.710-41< l . O l O - 3
5.1
x = 0.05. “
”
u
0.
RHS h, = 0.05
l.010-3. (0, 0.05}
EPS =
yo,os;
yo,,,
EPS =
yo.,,
x
= 0.9506108
0.0750
h,
5.1
As
yo.,,, 0.0675
h,
= 0.8840196. =
0.8279507. EPS = 0.1
5.2.
by
h = 0.5. 5.1
5.5.
Numerical Experiments
261
5.2 SYSTEM SINGLE PRECISION, MODIFIED MIDPOINT METHOD X'
-
E
Counter
0
0
-
0 0.0500 0.1250 0.2375 0.4062 0.6594 1.039 1.608 2.462 3.744 4.224 4.945 6.026 7.698 10.08
3 3 3 3 3 3 3 3 3 23 3 3 3 3
1 21 21 21 21 21 21 21 21 21 357 21 21 21 21
0 0.5000 0.8750 1.437 2.281 2.914 3.863 5.287 7.422 10.62
0 5 15 3 3 13 3 3 3 3
1 49 223 21 21 22 1 21 21 21 21
0 7 7 7 7 7 7 6 7
1 105 105 105 105 105 105 73 105 49 21 21
0 0.1925 0.4637 0.7603 1.084 1.439 1.827 2.308 2.987 3.946 5.228 7.656
ho = 0.05, EPS = 0
3
3.310-3 5
5
3 13
262
5.
Extrapolation Methods
5.2
X"
0 0.3387 0.6521 0.9549 1.286 1.648 2.096 2.655 3.444 4.712 7.073
8
ho 0
1 105 105 105 105 73 49 105 49 49 49
0 7 7 7 7 6 5 7 5 5 5
2
2
a
5.2
EPS = 0.1
h,
h,
h = 0.05
= 0.05
EPS =
1.0,,-5
420
(0,
h, =
0.05
EPS =
1
5.3. h,
= 0.05
/I,
7. h,
6.
263
5.5. Numerical Experiments 5.3
v
System X'
c2
0 0.1015 0.3190 0.4966 0.6409 0.8091 0.9048 1.091 1.368 1.564 1.763 1.987 2.152 2.332
X
0 0.2739 0.3209 0.3607 0.3990 0.4317 0.4595 0.4859 0.5109 0.5354 0.5622 0.5845 0.6065 0.6253
U
0 5 7 6 3 6 5 6 6 5 4 4 5 5
1 49 105 73 21 73 49 73 73 49 33 33 49 49
V
E
0 9 6 7 8 8 6 6 6 6 7 8 8 6
1 217 73 105 153 153 73 73 73 73 105 153 153 73
264
5.
Extrapolation Methods
5.5.1. A Nonlinear System
on
Yl’ = 2 0 1 -2 2 Yl -2 3Yl Y2’ = Q l - Q 2 Y 2 - Q 3 Y l Y,(O) = 5.010-3, Y*(O) = 300
1.735, Q2
= 2.510-5, = 5.678,,-3,
(5.5-
X 2 = 5.01,-3, X 3 = 7.8610+12, = 11363, Q, = $2, =7.8610+16. y, y2 4.41 1 0 - 3 306 h, 0.05 90.0 EPS
l.Ol,-s
0.1
5.4
h, y1
h,
= 0.05
h,
2.7
1.4
EPS
1.2
h,.
EPS
h, . 5.4 h = 20.0.
0.55 h, = 20.0
1.4
x h, . by by
5.5.2. Summary 1.
= 0.05
y2 = 20.0
TABLE 5.4 NONLINEAR SYSTEM. SINGLEPRECISION" ~~
h~ = 0.05, EPS = X
a
YI
ho Yz
0 0.05 0.125 0.2375 0.4062 0.6593 1.039 1.608 2.462 3.744 5.666 8.549 12.87 19.36 29.09 43.68 65.58
300.0 300.001 300.004 300.008 300.013 300.022 300.035 300.054 300.082 300.125 200.188 300.282 300.420 300.621 300.908 301.310 301.853
1163.
305.967
= 20.0, EPS = 1
X
0 20.0 50.0 95.0 162.5 263.75 350.87 404.08 477.89 588.61 754.68 844.36 978.88 1180.66
~~
~
h = 20.0
5
Yz
300.0 300.63 30 1.47 302.48 303.59 304.63 305.17 305.36 305.57 305.76 305.89 305.92 305.95 305.97
X
Yz
__
0 100 200 300 400 500 600 700 800 900 1000
1040
300.0 302.62 305.09 304.92 305.38 305.64 305.79 305.87 305.91 305.94 305.95 305.96
f q
i;'
c
v w z
B5.
266
5.
Extrapolation Methods
6 on
2.
by
1.
[4].
F. Proc. of Symposia in Applied Mathematics, 15, 199 (1963). by
2. Numer. Math. 8, 1 (1966).
3. Numer. Math. 8, 93 (1966).
4. Argonne National Laboratory Report,
7428
1968).
BIT, 3, 27
5. (1963). “A
6.
Proc. IFZP Congress, Supplement, P.,
7.
I , 32 (1968).
York, 1967. 8.
SIAM
W. J . Numer. Anal. 2, 384 (1965).
9. 10.
14,
York, 1964
For
York, 1962. 11.
12.
13.
‘‘
1967. C. London, 226, 300 (1927). W., heim), 28, 30 (1955).
Trans. Roy. Soc. Norske Vid. Selsk. Forh. (Trond-
6 Numerical Integration of Stiff Ordinary Differential Equations
stif.
[2]. 6.1. DEFINITION OF THE PROBLEM
VI,
y'
= Ay,
y A=
y(0)
= [2,
[
=
do [ y l ,y 2 , y 3 ]
0
-50
0
1, 21, = e-0.'"
yz(x) = F y3(x) = e
+ e-50" (6.1-1)
5 0 X
- 5 ~+ ~e
-lzo~
267
268
6. Numerical Integration of Stiff ODEs
1, = - 120,1,
A
=
- 50,
1, = - 0.1. y,, y , , 1, A,,
y3
1,
1, h
by
IhAJ, 1,
=
1, 2
by
1
10.
A,
by
< 2,
h=
A. no
h
As (rn >
6.7.1
A by
< 0, i
=
1, 2,
.. ., m,
A = A(x)
[df/dy].
by [ 151
A
=
[
-0.04 0.04 0
- 104y, - 6107y , 6107y2
1
1O4yz
- 104y, 0
269
6.1. Definition of the Problem
A by
A1
+ x
+ 104y, +
=0
+
+ 61011
A1 = 0, = 0, = y , = 0, y 3 = 0, y , = 1,
= 0,
x,
=0
(6.1-4)
1y i = 1 1, = 0, 1, = 0,
= - lo4.
by
h by
h<
0 2 x 5 40, 2105
y‘ = Ay.
x,+~
x, by
by
m
p l i= 1
+ hA,,
=
rn on in M(/7A) = I + hA, 2, . . . , m.
h
2, hood
At
stability accuracy.
2, h
270
6. Numerical Integration of Stiff ODEs
on
h on
on 6.7. 6.2 EXPLICIT SINGLE-STEP METHODS
6.2.1. Treanor’s Method A [ 161.
by
by y’
jj
=
-P(y - j )
x
x
by yi’= f i ( x , y)
by yi’ =
-(Pi)nyi
+ (Ail, + (BJn x + (Ci)n x2
A i ,B i ,C i ,
Pi
[x,, x,
f,(x, y)
x,, x,
P j
+ $A,
x,
+
by
+ $h y,
=Y,
+ (h/2)f”
=Yn
+
Y 2 1 = Y,
+
=Yn
+
(2) Jn+1/2
.vn+ 1
+
+
PhF,
+ hu,(Pyn + f n ) + + f!i’?,/,) +
+ f,P, -
+
+
271
6.2. Explicit Single-Step Methods
e-Ph
Fl
=-
-1 ,
F2=-
- Ph
e - P h- 1
+ Ph (6.2-3)
e-Ph- 1 + Ph - +(Ph)’ F3 = -(Ph)3 UI
=
-F2
+ 4F3, ~3
212
= 4F3
(6.2-4)
- 3Fz P.
(6.2-2)
= 2(Fz - 2F3)
Pi
(6.2-1)
P
(6.2-3) Pi
(6.2-2) p . = - f ‘$!+ 112 - f YC’+ 1 / 2 - Y!,?+
112
(6.2-5)
1,2
to by P
Pi
(6.2-2) (6.2-5). If
(6.2-3)
P
m
P
Pi P Pi 1. 2. 3. 4. 5.
h. yA$)1/2 P y,+,
y,!:)l,2
Pi
> E,,,, - ynl/lyn+ll< ]
(6.2-2). (6.2-5). Pi< 0, P = 0. (6.2-2). h = h/2 2. h = 2h 2. 6.1.
hA h
by
- 2 < hAi < 0, hLi < -2,
P.
6.1. If
Ph
= 8,
- 10,
-2.785.
272
6. Numerical Integration of Stiff ODEs 1-
I
I
I
ASYMPTOTIC TO 2, SECOND-ORDER R UNGE K UT T A B 0 UN DARY
THE
-
16
c
a 12
-hX
hh [ll].
Figure 6.1.
on
P,
< hAi < 0, hAi <
6.1
A
6.2.2. Lawson’s Method
to 2.5, (1.1-5), z(x) =
- xA)y(x)
(6.2-6)
273
6.2. Explicit Single-Step Methods
= yo
-
=
m xm
A z' =
-xA)[f,
g, =
-
f, -
g,
1
+ h 1 aij
+ ci
=
1
..., u
ki=exp[-(xn+cih)A][(fxn+cih,pi)-Api], u
=
+1
i= 1
=
5
hA)y,
= = =
0=
-
+
+h
h,
i- 1
aij
-
j= 1
-
+h
wi
1-
II ... I C" 5 1
f,,
h, As
274
6. Numerical Integration of Stiff ODEs
6.2.3. Osborne's Method pl(hA) + 0
hi, + - 00.
hi, + - a.A P(hA)/Q(hA). [I21
pl(hi,) = O(l/hA) y' = Ay
h2 + - co.
by
y
yo
+
m
C f f i X i
(6.2-11)
i =1
- h < t1 < t2 < * . . < tm< 0,
-h < x < 0.
(6.2-12)
Yo =
a , , . . . , a,
by
m
y-, =yo
+ Cai(-h)'
(6.2- 13)
i= 1
(6.2-14) (6.2-14)
We
Ca = -Ayoe
(6.2-15)
e (6.2-16)
C=
p(A) =
p,(A)
=
+(e -
(6.2- 17) (6.2- 1 8)
C.
K;(C)= ai
-AY~P;(~)/P(A)
(6.2-19)
275
6.3. Implicit Single-Step Methods
-1
pi(A) m
C;, = 0
p(A) - 1.
C;, = 0, p(A) pi(A) m. pl(A) = p 1(12)
- 1,
A+
-00.
xT(-h)$i(A) = 2,
t1= -A,
C;, = 0,
pl(A)
tl, C;,, . . . , &,,-l
(C;, =O). -+ 0
l1 > - h,
=2
+
- 00. Also
t1 1)
n
= 2,
=
1
(hA).
Y , , + ~= pl(hA)y,.
6.3.
h
y.
276
6. Numerical Integration of Stiff ODEs
6.3.1. Implicit and Semi-Implicit Runge-Kutta Methods good
2.5.4.
k i. ki
A
6.3.2. Trapezoidal Rule with Extrapolation
6.3.3. The Method of Liniger and Willoughby 3.3.3 p 2 2.
2.
by exponenfiuZJirfing. ~ n + l=
pl(hRi)Yn
<1
< 0,
p,(hAi)
on Yn+ 1 =
+ PO YA+ I + P I Y ~ ’ ]+ YO A’+1 + ~ on
1 . ~ 3
by
(6.3-2)
277
6.3. Implicit Single-Step Methods
to PI
=
PI
4
= =b =0
PI
a
1
- hZ
b = 3.
2,
3,
-
0
+ Ch) d r
b,>Y”(X
-
-
a)[
0
1
+(b
1
- a)[
-
0
P1
=
+ ih) d [
-
+
-
+ [h) dr
+
+
1 p, hA y 1 h 2 i 2 1 - Po h>”- yo
1,
<0
lpll < 1
< a
> 0, b > 0 >0 by
278
6. Numerical Integration of Stiff ODES
2
3
p )= 4 + 2(1 - a ) h l + ( b - a ) h Y 4 - 2(1
vu'3'
=
12 + 12 -
+ a ) h l + (0 - u)~z/Z + + a)hl + +
i = 1, 2,
. . . , m,
As
3.7,
hA = 0 3.7
h l up p = 3. hl, (hl,( $ 1, All = 0
both
pl,
IhliJ
h l i -+ 0.
b
a,
h l = qo = eqO
qo,
exponentiallyfitted
1
pl,
qo
p 1 (40) = -401 - ( e - 4 0 (a, = 4) qo = 0 a
3 2
a(qo) =
1
(p,
=
qo = co
+ 640 + 12 - eq0(qO2- 6qo + 12)]
x [ e Y q o 2 - 240) + 402 +
a
2 h l , qo 4 4 0 41) = 9
b(40
2
41)
b,
ql,
-
= 2(qo - d / C 4 0 r(q1) -
- 40 r(41)l
1
279
6.3. Implicit Single-Step Methods
r(q) =
qo
- e - Q ) [ - ( 2+ q) + (2 + q)e-4]-'
8)
a
q1
qo
0 > qo > - co
hl+ 0 0 > q o , q1 > - 03.
qo
b
q1
q1 1
3
6.3.4. General Observations on Implicit Methods
hR -+ - co,
pl
-+
-1
hA -+ - co.
h
3.10.3
hR.
on on,
by by
by
1. 2. 3.
y1 by (YO+
4.
y , by
5.
+
y,
.
y,
.
+ y,
+ y3)/4.
y , , y,, y s , . . . .
280
6. Numerical Integration of Stiff ODES
by 1
p = 1.
3.3.3. p = 2.
+, 2
3
hA h/l 6.2. As
hX
pL1
-
Figure 6.2. pl (hA)
hA,
pl
1,
3, PI.
28 1
6.4. Predictor-Corrector Methods
6.4. PREDICTOR-CORRECTOR METHODS
6.4.1. Gear’s Method
6.3.
hA
Figure 6.3.
171.
hi < D by D,c(
by
3.3.3
6.3,
6
D,U ,
8.
As h? - co,
o(<)= 0. o(t)
--f
k. k
up
6.4.
D < - 6. 0 < 0.5 A,,
r
k
=
6
282
6.
ODES Im (hi1
-6
-3
-4
-5
-2
-I
-6
k
6.4.
=
...,
=
+
Gear's
- hf(x,
6.1.
1
B i j = (!),
B
PR/crk
-/,
i >j).
6.1
10
11 12
1, 14
15 16
1
0 0 0 0 0
213 1
1201274
I13
1 611 1
0 0 0
0 0
0
0
72011764
1
1
1
1 15 1po 0
2251274 851214 151274 11274 0
162411164 13511 764 1 7511764 2 111164
0
1/1164
283
6.5. Other Stiff Methods
h
k
by
k
h bound.
(5.1-2)], c k hkyCk1. A
6
h6. h
(6.4-4) by
ytkl
kh
k k A
k
k
+ 1,
2 by
h k h up
M
M
A
M
h
on
M
M
A M =3
on by
6.5. OTHER STIFF METHODS
on
284
6. Numerical Integration of Stiff ODES
y' = f(x, y) U' = AU
+ h(u, v, X)
v' = g(u, v, x) u(0)
A.
= uo;
v(0) = vo
r(x) p'
=
p = A-'r(x)
-Ap
+ r(x>
+ A-2r'(x) + A-3r"(x) po(t) [xn,x,,+~]. pl(x)
by
by
r(x)
4%)= h(PO(Xi)>V(Xi)>Xi) p2(x)
by
r(x)
xi) = h(p(xi), ~ ( x j )xi) , IIA-'II llhull
p(t)
u el
v
al.
a on y;+,
y,',
y,,'. ,v,,+~
x,+~= x,
by yn . w
by
+ w/?
by
285
6.6. Published Numerical Results
by
on
on 6.6 PUBLISHED NUMERICAL RESULTS
on by
13
[ll].
on
pi* by
yn+l
h by
[ 131.
1.
2. on 3.
on
1.
286
6. Numerical Integration of Stiff ODEs
2. on no good 3.
6.7. NUMERICAL EXPERIMENTS
6.7.1. ODE Examples
1.
2. 3.
y’ = y(0) = 10 = 10 VT
Y,’= y,’
= =0
+
-
=
+ - Y,) -
+
Y2W
+ IOe-200x
+
=0
4. 6.7.2. Methods Used
1.
2. 3. 4.
DIFSYS
5.
6.3.4 6. 6.3.4 M =3
287
6.7. Numerical Experiments
7.
6.3.4 8. 1
9. 3
6.7.3. Computational Results 1 x =0
x = 15.
-
- x) 1 6.2.
R,
[y, - y(x,,)]/y(x,) 6.2
COMPUTATIONAL RESULTS TOR EXAMPLE 1
R,, h RK4
x
= 0.4
x = 1.0
0.01 0.005
11 18 16.5 b 2 36 1 3 4
0.24 d 0.2 0.2
0.2 0.2 __ (I
h
x, 0.4
on
10. IBM 7094.
0.01 0.1,
0.2
x
= 0.1.
<
x = 0.4
x = 10 x = 10,
288
6. Numerical Integration of Stiff ODES
DEQ h
DIFSYS DEQ.
h
2
by
VI, - 120, - 50,
- 0.1.
6.3.
VI TABLE 6.3 COMPUTATIONAL RESULTS FOR EXAMPLE 2 R1n Method
h
RK4 DEQ TM DIFSYS
0.01 0.01 0.2" d 0.2 0.2 0.01/0.2= 0.2
TR TR-EX CAL LWI
x = 0.4
x = 10
Rz.
R3n
x = 0.4
x = 0.4
Automatic step-size control. Unstable. h changed from 0.01 to 0.2 at x = 0.1. Initial step size 0.1, extrapolations performed until
< x = 15
x =0
x = 0.4
x = 10.
20 x = 10. CAL
3 h = 0.005 - 60 x =0
Time (sec)
- 0.17, x = 15. As
6.4,
DIFSYS
289
6.7. Numerical Experiments
CAL
CAL
6.4 COMPUTATIONAL RESULTSFOR EXAMPLE 3
RZ.
Rln
h
x
0.01
K4
DIFSYS TR-EX CAL
x = 10
x = 0.4
x = 10
0 0 2.9'0-2 4.310- 1 5.71,- 1 0 0 2.910-1
0.005 0.2" d 0.2 0.2
DEQ
= 0.4
0.2
16 41 5 12 2 44 4
(1
0.01 0.1,
h
x = 0.1.
0.2
<
4
As 0, 0,
0, 0, -
x =0
x = 40.
liL, ,l
0.04
2405
on x 2 16,
1, , .1i
x = 10,
x = 40 x = 0.012. DIFSYS
x = 0.358.
x
h
=
h = 0.001 by
CAL h = 0.02
x = 0.02.
6.5. All h = 0.001, E 138
0.001
x =0
h = 0.005 up
x =1
> 1. h = 0.05.
x
> 1, LWI
h,
W 0
TABLE 6.5 COMPUTATIONAL RESULTS FOR EXAMPLE 4
~
h
x = 0.4
x = 10
Automatic step size control. Unstable. Initial step size 0.1, extrapolations performed until error <
x = 0.4
x = 10
x = 0.4
x = 10
Time (set)
P
z
E
6.7.
29 1
Numerical Experiments
on h h 5 0.25. h 5 0.1.
x =0
x = 40
9.3
34
174.673.
h 20
0.02
23.3
1. bound. bound,
2. on
3.
h by h
4.
5.
292
6. Numerical Integration of Stiff ODEs
(m >
on
mx m
on
7094 10 0.083 1.5
20 0.533 11.2
30 1.684 60
40 3.917
50 7.567
-
-
REFERENCES 1.
on Cunad. J.
Eng. 46, 425
A
2.
IBM J.
Develop. 10, 292
3. 1968.
Proc. IFIP Congress,
4.
5. A
6.
IBM J .
Deu., 11, 537
7.
Proc. IFIP Congress,
8.
Proc.
IBM Scientific Computing Syniposiirm on Control Theory and Application, 1966.
9. J . SIAM Numer. Anal. 4, 372
293
References A,, IBM Research Report
10. 11.
NASA Technical Note,
12. 1968.
Proc. IFIP Congress,
13.
K., Univ. of Illinois Dept. of Computer Science Report,
14.
I., SIAM Rev. 1, 3
15.
16.
H. (J. C. k Math. Comp. 20, 39
274,
Index
A
11
12
122
13, 2
B 213 5 30
61 271, 285 82, 142, 214 185 207, 214 251, 258 45, 47, 51, 52, 55 199, 207
122 167, 212 268 264 257, 266 69
67 C
136 82
16 12
29 5
296
Index
D
108 251 119 199, 214 115 119, 121
279 17 203 245 137 143, 186, 208 36 205
H 25, 77, 115, 242 230 82, 91, 191, 213
E 140
199
123
11, 122 276 113
I 31 33
9 9
250 250
9 9
266 66
246 J
F 81 5
K
285
207, 214 214 G
214 20 43 199, 214, 281
82
L 30, 67, 210 54,
285
Index
297 P 131,
273,
275
109 18
113 231 282
3 44 140, 177, 271, 285
I.
214 162
50, 51, 53
190 55
M 248
T.
242 140 123 110
165 91
199 230 15 25, A. 30
191 12 16 226
N 230
160 208
5
5 2 20, 28, 149 14, 50
16 37
R
0
11
12
P., 245 44 A,, 179, 212 K., 283, 285
298
Index 284 244
54, 55, 82 108 36 16 113
245 136, 142, 145 73 35 36 28
113 A(@)-,117 113
119
65 114 114 45 56
114 10 122
4546, 47
130
4748 55
132, 113
54, 73, 82 50
ODES, 128 75 65, 136
150 P(EC)”
61 62 62
113
54 144
114 103 122 114 115 165, 172, 199, 214 83, 231 69, 82 54
286 282
299
Index 76-77
272-273 69-74 7476
276279 277-278 286-
30-33
5
29 1
162-163
274-275 284, 270-272 272
U
251, 258 C., 142
1719
27
V
T 3-4, 79-81 84 207, 214 137 9, 12, 122, 250-251 270-272 33-35, 242-243 69-77
22, 214 21
W 70, 285 83, 214 230 0. B., 117