5 downloads
144 Views
165KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
FBGBKL?JKL?J:PBB :JKL
Nbabq_kdbcnZdmevl_l DZn_^jZnbabdbl\_j^h]hl_eZ
U>EYNBABDH< Q:KLV :iijhdkbfZpbynmgdpbcqbke_ggh_^bnn_j_gpbjh\Zgb_
>eyklm^_glh\dmjkZki_pbZevghklb-NbabdZb dmjkZki_pbZevghklb-Fbdjhwe_dljhgbdZbiiijb[hju
KhklZ\bl_eb ijhnKBDmj]Zgkdbc ^hpHB>m[jh\kdbc ^hpEBDmjdbgZ
2
:IIJHDKBF:PBYNMGDPBC AZ^ZqZbgl_jiheypbb < nbabd_ fZl_fZlbd_ l_ogbd_ wdhghfbd_ qZklh ijboh^blky klZedb\Zlvky kh ke_^mxs_c aZ^Zq_c G_dhlhjZy nmgdpby y = f ( x ) aZ^ZgZ lZ[ebqgh l_ \ ^bkdj_lguo lhqdZo x0 , x1 , K , x n ba\_klgu khhl\_lkl\mxsb_ agZq_gbynmgdpbb f (x 0 ), f (x1 ), K , f (x n ) Lj_[m_lkyhij_^_eblvagZq_gb_wlhc nmgdpbb \ g_dhlhjuo lhqdZo x hlebqguo hl agZq_gbc Zj]mf_glZ nbdkbjh\Zgguo \ lZ[ebp_ Ih^h[gZy aZ^ZqZ \hagbdZ_l b \ g_kdhevdh bghc kblmZpbbGZdhfivxl_j_lj_[m_lky\uqbkeblvh^gmblm`_keh`gmxnmgdpbx y = f ( x ) \hq_gv[hevrhfqbke_lhq_dhlj_adZ [a , b] Ij_^eZ]Z_lky\uqbkeblv wlm nmgdpbx \ hlghkbl_evgh g_[hevrhf qbke_ lhq_d \u[jZgguo gZfb ih k\h_fmmkfhlj_gbxZagZq_gby\hklZevguolhqdZojZkkqblu\ZlvihdZdbf-lh ijhkluf nhjfmeZf bkihevamy bgnhjfZpbx h[ wlbo ba\_klguo agZq_gbyo Ih^h[gu_ ijZdlbq_kdb_ aZ^Zqb nhjfZebamxlky dZd fZl_fZlbq_kdZy aZ^ZqZ bgl_jihebjh\Zgbybgl_jiheypbb NhjfZevghwlZaZ^ZqZhij_^_ey_lkylZd. ImklvgZhlj_ad_ [a , b] ba\_klguagZq_gbyg_dhlhjhcnmgdpbb y = f ( x ) \ n + 1jZaebqguolhqdZo x 0 , x1 , K , x n yi = f (xi )
(i = 0, , K , n) .
Lj_[m_lky ijb[eb`_ggh k lhc beb bghc kl_i_gvx lhqghklb hij_^_eblv agZq_gb_nmgdpbb\lhqd_ x . Lhqdb x i gZau\Zxlky maeZfb bgl_jiheypbb < ^Zevg_cr_f [_a h]jZgbq_gbyh[sghklb[m^_fkqblZlv x i −1 < x i (i = 1, , K , n) . ?keb lhqdZ x \ dhlhjhc g_h[oh^bfh \uqbkeblv f ( x ) ijbgZ^e_`bl hlj_adm [ x 0 , x n ] lh ihklZ\e_ggZy aZ^ZqZ gZau\Z_lky kh[kl\_ggh aZ^Zq_c bgl_jiheypbb beb bgl_jiheypb_c \ madhf kfuke_ \ ijhlb\ghf kemqZ_ __ gZau\ZxllZd`_wdkljZiheypb_c Ijbbgl_jihebjh\Zgbb\hagbdZ_ljy^aZ^Zq \u[hjgZb[he__m^h[gh]h kihkh[Z ihkljh_gby bgl_jihebjmxs_c nmgdpbb hp_gdZ ih]j_rghklb ijb aZf_g_ f ( x ) bgl_jihebjmxs_c nmgdpb_c hilbfZevguc \u[hj maeh\ bgl_jiheypbb^eyihemq_gbyfbgbfZevghcih]j_rghklb Ebg_cgZybihebghfbZevgZybgl_jiheypby
3 JZkkfhljbfkgZqZeZh[sbcih^oh^dj_r_gbxaZ^Zqbbgl_jiheypbb< ijhp_kk_ j_r_gby wlhc aZ^Zqb kljhyl nmgdpbx ϕ (x) dhlhjZy \ lhqdZo x 0 , x1 , K , x n ijbgbfZ_lagZq_gby f (x 0 ), f (x1 ), K , f (x n ) GZwlhfhkgh\Zgbb kqblZxl qlh b \ hklZevguo lhqdZo hlj_adZ bgl_jiheypbb [a , b] ϕ (x) ijb[eb`_ggh ij_^klZ\ey_l f (x) < ^Zevg_cr_f m`_ \f_klh f (x) jZ[hlZxl k ϕ (x) =_hf_ljbq_kdb wlh hagZqZ_l ihkljh_gb_ djb\hc gZ iehkdhklb ijhoh^ys_c q_j_a lhqdb k dhhj^bgZlZfb (x 0 ; \ ) , (x1 ; \ ) , ..., (x n ; \ Q ) . H^gZdh m`_ ba ]_hf_ljbq_kdbo khh[jZ`_gbc ykgh qlh q_j_a ^Zggu_ lhqdb fh`gh ijh\_klb [_kqbke_ggh_ fgh`_kl\h jZaebqguo djb\uo jZaebqgufb kihkh[Zfb Kj_^b kihkh[h\ bgl_jihebjh\Zgby gZb[he__ jZkijhkljZg_gguf b mihlj_[bl_evguf gZ ijZdlbd_ y\ey_lky kihkh[ ebg_cgh]h bgl_jihebjh\Zgby dh]^Z bgl_jihebjmxsZy nmgdpby ϕ (x) bs_lky \ \b^_ ebg_cghc dhf[bgZpbb ba\_klguo\u[bjZ_fuogZfbnmgdpbc n
ϕ (x) = ∑ ai ϕ i (x) , i=0
]^_ ϕ i ( x ) - ba\_klgu_ nmgdpbb Dhwnnbpb_glu ai hij_^_eyxlky ba mkeh\by kh\iZ^_gby ϕ (x) k f (x) \maeZobgl_jiheypbb x0 , x1 , K , x n :
∑ ai ϕ i ( x j ) = f ( x j ) ( j = 0, , K , n) . n
i=0
Ihemqbeb kbkl_fm n + 1 ebg_cguo Ze]_[jZbq_kdbo mjZ\g_gbc gZ n + 1 dhwnnbpb_gl ai J_rb\ __ gZc^_f dhwnnbpb_glu ai b l_f kZfuf bgl_jihebjmxsmx nmgdpbx ϕ (x) LZdhckihkh[ijbdhlhjhfdhwnnbpb_glu ai hij_^_eyxlky g_ihkj_^kl\_gguf j_r_gb_f wlhc kbkl_fu gZau\Z_lky f_lh^hfg_hij_^_e_gguodhwnnbpb_glh\ GZb[he__ bamq_gguf b rbjhdh ijbf_gy_fuf gZ ijZdlbd_ deZkkhf bgl_jihebjmxsbonmgdpbcy\ey_lkyfgh`_kl\hZe]_[jZbq_kdbofgh]hqe_gh\ <wlhfkemqZ_
ϕ i (x ) = x i
(i = 0, , K , n) .
Fgh]hqe_gubf_xlhq_\b^gu_^hklhbgkl\Z-boe_]dh\uqbkeylvkdeZ^u\Zlv i_j_fgh`Zlv bgl_]jbjh\Zlv ^bnn_j_gpbjh\Zlv b li Ijbf_g_gb_ fgh]hqe_gh\ \ l_hjbb bgl_jihebjh\Zgby hkgh\Zgh gZ ZiijhdkbfZpbhgghc l_hj_f_<_c_jrljZkkZ L_hj_fZ ([_a ^hdZaZl_evkl\Z ?keb f - g_ij_ju\gZy gZ dhg_qghf aZfdgmlhf hlj_ad_ [a , b] nmgdpby lh ^ey ex[h]h ε > 0 kms_kl\m_l ihebghf p k (x ) kl_i_gb k lZdhcqlh
4 max f (x ) − p k (x ) < ε .
x ∈[ a , b ]
BlZd bgl_jihebjmxsZy nmgdpby ϕ (x) aZibku\Z_lky \ \b^_ fgh]hqe_gZ p n ( x ) kl_i_gb n n
ϕ ( x ) = pn ( x ) = ∑ ai x i = a 0 + a1 x + a 2 x 2 +K + a n x n , i=0
b ^ey hij_^_e_gby g_ba\_klguo dhwnnbpb_glh\ ai g_h[oh^bfh j_rblv kbkl_fmebg_cguoZe]_[jZbq_kdbomjZ\g_gbc
∑ ai x ij = f ( x j ) ( j = 0, , K , n) . n
i=0
Fh`gh^hdZaZlvqlhhij_^_ebl_evwlhckbkl_fuhij_^_ebl_ev
( )
det x ij = ∏ ∏ i> j
( xi − x j ) .
< kbem gZrbo ij_^iheh`_gbc x i −1 < x i hg hlebq_g hl gmey Ke_^h\Zl_evgh ^ZggZy kbkl_fZ bf__l j_r_gb_ b wlh j_r_gb_ _^bgkl\_ggh_ L_f kZfuf ^hdZau\Z_lky kms_kl\h\Zgb_ b _^bgkl\_gghklv bgl_jiheypbhggh]h fgh]hqe_gZ LZdbf h[jZahf aZ^ZqZ ihkljh_gby bgl_jiheypbhggh]h ihebghfZ kl_i_gb n ih n + 1 maemy\ey_lkyh^ghagZqghc H^gZdhg_ihkj_^kl\_ggh_gZoh`^_gb_dhwnnbpb_glh\ ai j_r_gb_fwlhc kbkl_fu ^Z`_ ^ey g_[hevrbo n ij_^klZ\ey_l ljm^gmx \ l_ogbq_kdhf hlghr_gbb aZ^Zqm Ijh[e_fZ aZdexqZ_lky \ lhf qlh kbkl_fZ iehoh h[mkeh\e_gZqlhijb\h^blddZlZkljhnbq_kdhfmbkdZ`_gbxdhwnnbpb_glh\ ai \uqbkebl_evghc ih]j_rghklvx Ih wlhc ijbqbg_ h[uqgh ijbf_gyxl ^jm]b_ nhjfuaZibkbbgl_jiheypbhggh]hfgh]hqe_gZbkihkh[u_]hihkljh_gby Bgl_jiheypbhggucfgh]hqe_gEZ]jZg`Z ;m^_f bkdZlv bgl_jiheypbhgguc fgh]hqe_g \ \b^_ ebg_cghc dhf[bgZpbbfgh]hqe_gh\kl_i_gb n : n
pn ( x ) = y 0 l0 ( x ) + y1l1 (x )+K + y n ln ( x ) = ∑ yi li (x ) . i =0
Ijbwlhfihlj_[m_fqlh[udZ`^ucfgh]hqe_g li (x) h[jZsZeky\gmev\h \k_o maeZo bgl_jiheypbb aZ bkdexq_gb_f h^gh]h i -]h ]^_ hg ^he`_g jZ\gylvky_^bgbp_l_
5 0, _ k ebi ≠ j = δ ij . li x j = 1, _ k ebi = j
( )
LZd dZd li (x) - fgh]hqe_g kl_i_gb n h[jZsZxsbcky \ gmev \ lhqdZo x 0 , x1 , K , x i −1 , x i +1 , K , x n lhhgfh`_l[ulvaZibkZg\\b^_ li (x) = A(x − x 0 )(x − x1 )K (x − xi −1 )(x − xi +1 )K (x − x n ) .
>eyhij_^_e_gbydhgklZglu A mql_fqlh li (xi ) = 1l_
A( xi − x 0 )( xi − x1 )K ( xi − xi −1 )( xi − xi +1 )K ( xi − x n ) = 1 .
Hlkx^ZgZoh^bf A bhdhgqZl_evghihemqZ_f
(x − x 0 )(x − x1 )K (x − xi −1 )(x − xi +1 )K (x − x n ) . (xi − x 0 )(xi − x1 )K (xi − xi −1 )(xi − xi +1 )K (xi − x n )
li ( x ) =
LZdbfh[jZahf n
pn ( x ) = ∑ yi i =0
(x − x 0 )(x − x1 )K (x − xi −1 )(x − xi +1 )K (x − x n ) . (xi − x 0 )(xi − x1 )K (xi − xi −1 )(xi − xi +1 )K (xi − x n )
G_ljm^gh \b^_lv qlh agZq_gby wlh]h fgh]hqe_gZ \ maeZo bgl_jiheypbb kh\iZ^ZxlkaZ^ZggufbagZq_gbyfbnmgdpbb>_ckl\bl_evgh
( )
n
( )
n
pn x j = ∑ yi li x j = ∑ yi δ ij = y j . i =0
i =0
Wlm nhjfm aZibkb bgl_jiheypbhggh]h bgl_jiheypbhgguffgh]hqe_ghfEZ]jZg`Z
fgh]hqe_gZ
gZau\Zxl
Bgl_jiheypbhggucfgh]hqe_gEZ]jZg`Z^eyjZ\ghhlklhysbomaeh\ JZkkfhljbfkemqZcdh]^ZagZq_gby xi y\eyxlkyjZ\ghhlklhysbfbl_ x1 − x 0 = x 2 − x1 = K x n − x n −1 = h .
x − x0 = t lhihemqbf h (x − x 0 )(x − x1 )K (x − xi −1 )(x − xi +1 )K (x − x n )
?keb\\_klbh[hagZq_gb_ li ( x ) =
( xi
=
− x 0 )(x i − x1 )K ( xi − xi −1 )( xi − x i +1 )K ( xi − x n )
[
][
]
th(th − h)K th − (i − 1)h th − (i + 1)h K (th − nh)
[
ih(i − 1)hK h(− h)K −(n − i )h
]
=
=
6 =
t (t − 1)K (t − n) (−1)
(t − i )
n −i
i !(n − i )!
= (−1)
n
t(t − 1)K (t − n) n!
Cni . (−1) t −i i
BlZd\kemqZ_jZ\ghhlklhysbomaeh\bgl_jiheypbhggucfgh]hqe_gEZ]jZg`Z bf__l\b^ pn ( x ) = pn ( x 0 + th) = (−1)
n
t (t − 1)K (t − n) n!
Cni ∑ (−1) t − i yi . i =0 n
i
HklZlhqgucqe_gbgl_jiheypbhgghcnhjfmeuEZ]jZg`Z ?keb \k_ \uqbke_gby ijh\_^_gu lhqgh lhbgl_jiheypbhggucihebghf EZ]jZg`Z pn (x ) \ maeZo bgl_jiheypbb \ lhqghklb kh\iZ^Z_l k aZ^Zggufb agZq_gbyfbnmgdpbb f (x ) :kh\iZ^Zxleb pn (x ) b f (x ) \hklZevguolhqdZo hlj_adZ bgl_jihebjh\Zgby" ?keb kZfZ f (x ) y\ey_lky Ze]_[jZbq_kdbf fgh]hqe_ghf kl_i_gb g_ \ur_ n lh bf__l f_klh lh`^_kl\_ggh_ kh\iZ^_gb_ l_ pn ( x ) = f (x ) \h \k_o lhqdZo < ijhlb\ghf kemqZ_ \ lhqdZo hlebqguo hl maeh\bgl_jihebjh\ZgbyjZaghklv f (x ) − pn (x ) hlebqgZhlgmeyWlZjZaghklv _klv ih]j_rghklv bgl_jiheypbb b gZau\Z_lky hklZlhqguf qe_ghf bgl_jiheypbhgghcnhjfmeu?_g_h[oh^bfhhp_gblv >ey hp_gdb ih]j_rghklb bgl_jiheypbb fu ^he`gu kmablv deZkk bgl_jihebjm_fuonmgdpbclZddZdijhba\hevgZynmgdpbykh\iZ^Zyk f (x ) \ maeZobgl_jiheypbbfh`_ldZdm]h^ghhlebqZlvkyhlg__\hklZevguolhqdZo GZeh`bf gZ f (x ) ke_^mxsb_ h]jZgbq_gby ;m^_f kqblZlv qlh bgl_jihebjm_fZynmgdpby f (x ) h[eZ^Z_lgZhlj_ad_bgl_jihebjh\Zgby [a , b] g_ij_ju\gufb ijhba\h^gufb ^h ihjy^dZ n \dexqbl_evgh b kms_kl\m_l n+1 f ( ) x gZ a , b LZdb_h]jZgbq_gby\uihegyxlky^ey[hevrbgkl\ZkemqZ_\
()
[
]
kdhlhjufbijboh^blkyklZedb\ZlvkygZijZdlbd_Fh`gh^hdZaZlvqlh\wlhf kemqZ_ n +1 f ( ) (ξ ) f ( x ) − pn ( x ) = (x − x 0 )(x − x1 )K (x − x n ) , (n + 1)!
]^_ ξ ∈[a , b] ?kebfZdkbfZevgh_agZq_gb_wlhcijhba\h^ghcgZhlj_ad_ [a , b] n +1 jZ\gh max f ( ) ( x ) = M n +1 lh x ∈[ a , b ] f ( x ) − pn ( x ) =
M n +1 (x − x 0 )(x − x1 )K (x − x n ) . (n + 1)!
7 Wlb ^\Z \ujZ`_gby fh]ml kem`blv hp_gdhc hldehg_gby pn (x ) hl f (x ) _keb n+1 ijhba\h^gZy f ( ) x fh`_l[ulvhp_g_gZ
()
8 JZa^_e_ggu_jZaghklbbbok\hckl\Z NhjfZfgh]hqe_gh\EZ]jZg`ZbaysgZh^gZdhkms_kl\mxl^jm]b_[he__ wnn_dlb\gu_ ih qbkem hi_jZpbc nhjfu aZibkb bgl_jiheypbhggh]h fgh]hqe_gZ Ij_`^_ q_f i_j_clbdbojZkkfhlj_gbx\\_^_fgh\h_ihgylb_jZa^_e_ggu_jZaghklb Imklv fu bf__f g_dhlhjmx ihke_^h\Zl_evghklv maeh\ bgl_jiheypbb x 0 , x1 , K , x n nmgdpbb f (x ) >ey wlhc nmgdpbb b maeh\ \uqbkebf \k_\hafh`gu_hlghr_gby f ( x1 ) − f ( x 0 ) x1 − x 0 f ( x 2 ) − f ( x1 ) x 2 − x1
= f ( x 0 ; x1 ) ; = f ( x1 ; x 2 ) ;
K
f ( x n ) − f ( x n −1 ) x n − x n −1
= f (x n −1 ; x n ) .
LZdb_ hlghr_gby gZau\Zxl jZa^_e_ggufb jZaghklyfb i_j\h]h ihjy^dZ Ihemqb\bofufh`_fihkljhblvjZa^_e_ggu_jZaghklb\lhjh]hihjy^dZ f ( x1 ; x 2 ) − f ( x 0 ; x1 ) x2 − x0 f ( x 2 ; x 3 ) − f ( x1 ; x 2 ) x 3 − x1
= f ( x 0 ; x1 ; x 2 ) ; = f ( x1 ; x 2 ; x 3 ) ;
K
f ( x n −1 ; x n ) − f ( x n − 2 ; x n −1 ) xn − xn− 2
= f ( x n − 2 ; x n −1 ; x n ) .
k -]h
(
)
ihjy^dZhij_^_eyxlkyihnhjfme_
(
) (
f x j ; x j +1 ; K ; x j + k − f x j −1 ; x j ; K ; x j + k −1 x j + k − x j −1
)= f
( x j −1 ; x j ;K ; x j + k ) .
H[uqgh jZa^_e_ggu_ jZaghklb jZkiheZ]Zxl \ \b^_ lZ[ebpu ke_^mxsbf h[jZahf
9 x0
f (x 0 )
x1
f ( x1 )
x2
f (x 2 )
x3
f (x 3 )
x4
f (x 4 )
f ( x 0 ; x1 )
f ( x 0 ; x1 ; x 2 )
f ( x1 ; x 2 ) f (x2 ; x 3 ) f (x 3 ; x 4 )
f ( x1 ; x 2 ; x 3 ) f (x 2 ; x 3 ; x 4 )
f ( x 0 ; x1 ; x 2 ; x 3 )
f ( x 0 ; x1 ; x 2 ; x 3 ; x 4 )
f ( x1 ; x 2 ; x 3 ; x 4 )
Fh`gh ^hdZaZlv qlh jZa^_e_ggZy jZaghklv k -]h ihjy^dZ jZ\gZ j+k f (xi ) f x j ; x j +1 ; K ; x j + k = ∑ . − − − − − x x x x x x x x x x K K ( )( ) i= j i j i j +1 i i −1 i i +1 i j+k
(
)
(
)(
)
(
)
Bgl_jiheypbhggucfgh]hqe_gGvxlhgZ^eyg_jZ\guoijhf_`mldh\ Imklv x 0 , x1 , K , x n - maeu bgl_jiheypbb nmgdpbb f (x ) Z p k (x) bgl_jiheypbhgguc fgh]hqe_g EZ]jZg`Z ihkljh_gguc ^ey wlhc nmgdpbb ih maeZf x 0 , x1 , K , x k Lh]^Z
[
] [
]
[
]
p n (x) = p 0 (x) + p1 (x) − p 0 (x) + p 2 (x) − p1 (x) +K + p n (x) − p n−1 (x) . JZkkfhljbf ex[mx jZaghklv klhysmx \ ijZ\hc qZklb p k (x) − p k −1 (x) Wlh fgh]hqe_gkl_i_gb k Hgh[jZsZ_lky\gmev\lhqdZo x 0 , x1 , K , x k −1 Ihwlhfm p k ( x ) − p k −1 ( x ) = A(x − x 0 )( x − x1 )K ( x − x k −1 ) ,
]^_ A - ihklhyggZy >ey __ hij_^_e_gby \ ihke_^g_f jZ\_gkl\_ iheh`bf x = x k Ijbwlhfihemqbf f (x k ) − p k −1 ( x k ) = A( x k − x 0 )( x k − x1 )K ( x k − x k −1 ) .
Hlkx^ZgZoh^bf A=
(x k
f (x k )
− x 0 )(x k − x1 )K (x k − x k −1 )
−
(x k − x 0 )(x k − x1 )K (x k − x i −1 )(x k − x i +1 )K (x k − x k −1 ) ∑ f (xi ) (x − x )(x − x )K (x − x )(x − x )K (x − x ) i i i i −1 i i +1 i k −1 0 1 − i=0 = (x k − x 0 )(x k − x1 )K (x k − x k −1 ) k −1
10 f ( xi )
k
=∑
i = 0 ( xi
− x 0 )( xi − x1 )K ( xi − xi −1 )( xi − xi +1 )K ( xi − x k )
= f ( x 0 ; x1 ; K ; x k )
bke_^h\Zl_evgh
p k ( x ) − p k −1 ( x ) = (x − x 0 )( x − x1 )K ( x − x k −1 ) f ( x 0 ; x1 ;K ; x k ) .
LZdbfh[jZahf
p n ( x ) = f ( x 0 ) + ( x − x 0 ) f (x 0 ; x1 ) + ( x − x 0 )(x − x1 ) f (x 0 ; x1 ; x 2 ) + +K +( x − x 0 )( x − x1 )K ( x − x n −1 ) f (x 0 ; x1 ; K ; x n ) .
WlZ nhjfZ aZibkb bgl_jiheypbhggh]h fgh]hqe_gZ gZau\Z_lky bgl_jiheypbhgguf fgh]hqe_ghf GvxlhgZ ^ey g_jZ\guo ijhf_`mldh\ ^ey bgl_jihebjh\Zgby \i_j_^ HgZ [he__ m^h[gZ ^ey ijZdlbq_kdbo jZkq_lh\ q_f nhjfmeZEZ]jZg`Zblj_[m_lf_gvr_]hqbkeZZjbnf_lbq_kdbohi_jZpbcWlhl fgh]hqe_gbkihevam_llhevdh\_jogxxkljhdmlZ[ebpujZa^_e_gguojZaghkl_c ohly ^ey \uqbke_gby we_f_glh\ wlhc kljhdb g_h[oh^bfu b \k_ hklZevgu_ we_f_glulZ[ebpu qlhiha\hey_lwdhghfblvhi_jZlb\gmxiZfylvdhfivxl_jZ :gZeh]bqgh g_keh`gh ihemqblv fgh]hqe_g GvxlhgZ ^ey bgl_jihebjh\ZgbygZaZ^ p n ( x ) = f ( x n ) + ( x − x n ) f (x n −1 ; x n ) + ( x − x n )(x − x n −1 ) f (x n − 2 ; x n −1 ; x n ) + +K +( x − x n )( x − x n −1 )K ( x − x1 ) f (x 0 ; x1 ; K ; x n ) ,
bkihevamxsbcebrvgb`gxxkljhdmlZ[ebpujZa^_e_gguojZaghkl_cH[_wlb nhjfmeuih\k_fiZjZf_ljZfkh\_jr_gghjZ\ghp_ggu Bgl_jiheypbhggZyko_fZWcld_gZ ?_ ijbf_gyxl lh]^Z dh]^Z lj_[m_lky gZclb g_ h[s__ ZgZeblbq_kdh_ \ujZ`_gb_ ^ey p n ( x ) Z ebrv _]h agZq_gb_ ijb dhgdj_lghf agZq_gbb x Ih wlhcko_f_agZq_gb_bgl_jiheypbhggh]hfgh]hqe_gZ^eydZdh]h-lhagZq_gby x gZoh^blky iml_f ihke_^h\Zl_evgh]h ijbf_g_gby _^bghh[jZagh]h ijhp_kkZ JZkkfhljbf\ujZ`_gb_ p01 (x) =
y0 y1
x0 − x x1 − x
x1 − x 0
.
Wlhfgh]hqe_gi_j\hckl_i_gbhlghkbl_evgh x ?]hagZq_gb_ijb x = x 0 p01 (x 0 ) =
y0 y1
0 x1 − x 0 x1 − x 0
= y0 .
11 LhqghlZd`_ijb x = x1 p01 (x1 ) = y1 LZddZdbgl_jiheypbhggucfgh]hqe_g i_j\hc kl_i_gb ijbgbfZxsbc \ lhqdZo x 0 b x1 agZq_gby y 0 b y1 _^bgkl\_gguc lh p01 ( x ) b y\ey_lky bgl_jiheypbhgguf fgh]hqe_ghf ihkljh_ggufih^\mfwlbflhqdZfLhqghlZd`_fufh`_f\uqbkeblv p 12 ( x ) , p 23 ( x ) bl^khhl\_lkl\_gghihlhqdZf x1 b x 2 , x 2 b x 3 bl^Wlb\ujZ`_gby e_]dh\uqbkeyxlkygZW
p01 ( x ) x 0 − x p12 ( x ) x 2 − x x 2 − x0
.
Wlh-fgh]hqe_g\lhjhckl_i_gbhlghkbl_evgh x Ijyfhcih^klZgh\dhce_]dh m[_^blvkyqlh_]hagZq_gby\lhqdZo x 0 , x1 b x 2 jZ\gukhhl\_lkl\_ggh y 0 , y1 b y 2 Ke_^h\Zl_evgh p012 ( x ) y\ey_lky bgl_jiheypbhgguf fgh]hqe_ghf ihkljh_ggufihlj_fwlbflhqdZf
p01K k −1 ( x ) x 0 − x 1 x k − x 0 p12K k (x ) x k − x
[m^_l bgl_jiheypbhgguf fgh]hqe_ghf EZ]jZg`Z ijbgbfZxsbf \ lhqdZo x 0 , x1 , K , x k khhl\_lkl\_ggh agZq_gby y 0 , \ 1 , K , \ k qlh we_f_glZjgh ^hdZau\Z_lky ih f_lh^m fZl_fZlbq_kdhc bg^mdpbb Ijb wlhf ihjy^hd b gmf_jZpby maeh\ agZq_gby g_ bf_xl Bgl_jiheypbhgguc ijhp_kk Wcld_gZ oZjZdl_jbam_lky k\hbf _^bghh[jZab_f b e_]dh j_Zebam_lky gZ dhfivxl_j_ DZ`^ucfgh]hqe_g p012K k (x ) ihemqZ_lkyba p01K k −1 (x ) b p12K k ( x ) lhqghlZd `_dZdb p01 ( x ) ihemqZ_lkyba y 0 b y1 . H^gZdh ijb kjZ\g_gbb wlhc ko_fu k bgl_jiheypbhgguf fgh]hqe_ghf GvxlhgZfh`ghhlf_lblvqlhijb\uqbke_gbbihke_^g_]hlj_[m_lkyf_gvr__ qbkehZjbnf_lbq_kdbohi_jZpbc
ω n ( x ) = ( x − x 0 )(x − x1 )K (x − x n ) .
DZd fu \b^_eb jZg__ hldehg_gb_ pn (x ) hl f (x ) hij_^_ey_lky n+1 n+1 \_ebqbgZfb f ( ) (ξ ) b ω n ( x ) ?keb h \_ebqbg_ f ( ) (ξ ) fu fh`_f kdZaZlv ebrv \ dZdbo ij_^_eZo hgZ aZdexq_gZ lh \_ebqbgm ω n ( x ) \ g_dhlhjuo kemqZyofufh`_fbaf_gylvihgZr_fm`_eZgbxbaf_gyymaeubgl_jiheypbb
12 x i IhklZ\bf ke_^mxsmx aZ^Zqm DZd gm`gh \u[jZlv maeu bgl_jiheypbb x i
^ey lh]h qlh[u max ω n ( x ) [ue [u gZbf_gvrbf Ykgh qlh ^ey lZdh]h x ∈[ a , b ] \u[hjZ maeh\ gZbf_gvr_c [m^_l b ih]j_rghklv bgl_jiheypbb >ey hl\_lZ gZ wlhl\hijhkjZkkfhljbffgh]hqe_guQ_[ur_\Z Fgh]hqe_gQ_[ur_\Z Tn (x ) hij_^_ey_lkylZd Tn (x ) = cos[n arccos x ] ,
Ijb n = 0
x ≤1 .
T0 (x ) = cos 0 = 1 .
Ijb n = 1
T1 (x ) = cos(arccos x ) = x .
Ijb n = 2
T2 ( x ) = cos[2 arccos x ] = 2 cos 2 (arccos x ) − 1 = 2 x 2 − 1 .
>Ze__balh`^_kl\Z
[
]
[
]
cos (n + 1)θ = 2 cos θ cos(nθ ) − cos (n − 1)θ ,
iheZ]Zy θ = arccos x ihemqbf j_dmjj_glgh_ khhlghr_gb_ ^ey fgh]hqe_gh\ Q_[ur_\Z Tn +1 ( x ) = 2xTn +1 ( x ) − Tn −1 ( x ) .
LZdbf h[jZahf Tn (x ) ^_ckl\bl_evgh y\eyxlky fgh]hqe_gZfb kl_i_gb n Ba j_dmjj_glghcnhjfmeuihke_^h\Zl_evghgZoh^bf T3 ( x ) = 4 x 3 − 3x , T4 ( x ) = 8x 4 − 8x 2 + 1 , T5 ( x ) = 16x 5 − 20x 3 + 5x , ............. Hlf_lbf g_kdhevdh ihqlb hq_\b^guo k\hckl\ fgh]hqe_gh\ Q_[ur_\Z dhlhju_fu[m^_fbkihevah\Zlv\^Zevg_crbo\udeZ^dZo Dhwnnbpb_glijbklZjr_ckl_i_gb x jZ\_g 2 n−1 .
2) Tn ( x ) dZd fgh]hqe_g kl_i_gb n bf__l jh\gh n dhjg_c GZc^_f bo ba mjZ\g_gby cos[n arccos x ] = 0 .
Hlkx^Z
(2i + 1)π π . (2i + 1) beb xi = cos 2n 2 >Z\Zy i agZq_gby 0, 1, K n − 1 ihemqbf n jZaebqguo dhjg_c fgh]hqe_gZ Tn ( x )
13 AZf_lbf lZd`_ qlh max Tn (x) gZ hlj_ad_ [−1, ] jZ\_g b ^hklb]Z_lky \ mπ (m = 0, 1, K n) . n + 1lhqd_ x m = cos n Imklv l_i_jv \ dZq_kl\_ hlj_adZ bgl_jihebjh\Zgby [a , b] fu bf__f hlj_ahd [−1, ]
(2i + 1)π 2 (n + 1)
(i = 0, 1, K n) .
Lh]^Z
ω n (x) = (x − x 0 )(x − x1 )K (x − x n ) =
Tn+1 (x) 2n
.
Ke_^h\Zl_evgh 1 max ω n (x) = n . x∈[ −1, ] 2 Fh`gh ^hdZaZlv qlh ijb ex[hf ^jm]hf \u[hj_ maeh\ bgl_jiheypbb wlZ \_ebqbgZfh`_llhevdh\hajZklb
LZdbf h[jZahf _keb h]jZgbqblvky hlj_adhf [−1, ] lh ω n ( x ) [m^_l bf_lv gZbf_gvr__ \hafh`gh_ agZq_gb_ k\h_]h fZdkbfmfZ ijb mkeh\bb qlh \ dZq_kl\_ maeh\ bgl_jihebjh\Zgby \aylu dhjgb fgh]hqe_gZ Q_[ur_\Z < wlhf kemqZ_hp_gdZih]j_rghklbbgl_jihebjh\Zgbyijbh[j_lZ_l\b^ M f (x) − p n (x) = n n +1 . 2 (n + 1)!
?keb bgl_jihebjh\Zgb_ nmgdpbb f (x ) ijhba\h^blky gZ ijhba\hevghf hlj_ad_ [a , b] _]h fh`gh i_j_\_klb \ hlj_ahd [−1, ] ebg_cghc aZf_ghc i_j_f_gghc 1 x = (b − a )x '+(b + a ) , 2 1 x' = [2 x − b − a ] . b−a Hp_gdZih]j_rghklb^eywlh]hkemqZylZdh\Z
[
]
M n +1 (b − a ) f (x ) − p n ( x ) = (n + 1)! 2 2n+1
n +1
KieZcg-bgl_jiheypby
.
14 ?_ gZau\Zxl lZd`_ dmkhqgh-fgh]hqe_gghc ZiijhdkbfZpb_c Kmlv kieZcg-bgl_jiheypbb aZdexqZ_lky \ ke_^mxs_f Hlj_ahd bgl_jihebjh\Zgby [a, b] lhqdZfb x 0 = a, x1 , K , x n = b jZa[b\Z_lky gZ n hlj_adh\ [ x i −1 , x i ] (i = 1, 2, K , Q ) ijbq_f dZd h[uqgh ba\_klgu agZq_gby yi = f (x i ) (i = 0, , K , Q ) .
GZah\_f kieZcghf S m ( x ) ihjy^dZ m nmgdpbx y\eyxsmxky fgh]hqe_ghfkl_i_gb m gZdZ`^hfbahlj_adh\ [ x i −1 , x i ] S m (x ) = pim ( x ) = ci 0 + ci1 x + ci 2 x 2 +K + cim x m
(x i −1 ≤ x ≤ x i ) ,
ijbgbfZxsmxagZq_gby y i \maeZobgl_jiheypbbl_ pim (x i −1 ) = y i −1 , pim ( x i ) = y i ,
(i = 1, 2, K , n)
bh[eZ^Zxsmxg_ij_ju\gufbijhba\h^gufb^hihjy^dZ m − 1 \dexqbl_evgh \h\k_o\gmlj_ggbomaeZobgl_jiheypbb (k ) (k ) pim ( x i ) = pi +1,m (x i ) , (i = 1, 2, K , n − 1) ,
(k = 1, 2, K , m − 1) . IhkljhblvkieZcg–agZqblhij_^_eblv\k_dhwnnbpb_glu cij gZ\k_o n
hlj_adZo
dhlhjuf ^he`gu m^h\e_l\hjylv fgh]hqe_gu pim (x ) ih kms_kl\m y\eyxlky mjZ\g_gbyfb ^ey hij_^_e_gby wlbo dhwnnbpb_glh\ _eh \ lhf qlh dmkhqguc fgh]hqe_g lj_lv_c kl_i_gb ij_^klZ\ey_l kh[hc fZl_fZlbq_kdmx fh^_ev ]b[dh]h lhgdh]h kl_j`gy ba mijm]h]h fZl_jbZeZ ?keb lZdhc kl_j`_gv aZdj_iblv \ ^\mo khk_^gbo maeZo bgl_jiheypbb k aZ^Zggufb m]eZfb gZdehgh\ lh f_`^m lhqdZfb aZdj_ie_gby kl_j`_gv ijbf_l nhjfm fbgbfbabjmxsmx _]h ihl_gpbZevgmx wg_j]bx Imklv nhjfZ kl_j`gy hibku\Z_lky nmgdpb_c S ( x ) Ba nbabdb ba\_klgh qlh 4 mjZ\g_gb_ k\h[h^gh]h jZ\gh\_kby bf__l \b^ S ( ) x = 0 Hlkx^Z ke_^m_l qlh
() f_`^m dZ`^hc iZjhc khk_^gbo maeh\ nmgdpby S ( x ) y\ey_lky fgh]hqe_ghf
lj_lv_c kl_i_gb < ^Zevg_cr_f fu [m^_f jZkkfZljb\Zlv lhevdh kieZcgu lj_lv_]hihjy^dZihwlhfmbg^_dk[m^_fhimkdZlv
Imklv i_j\Zy ijhba\h^gZy nmgdpbb S ( x ) \ lhqdZo x 0 , x1 , K , x n jZ\gZ khhl\_lkl\_ggh m0 , m1 , K , mn gZdehgukieZcgZ Lh]^ZgZhlj_ad_ [ x i −1 , x i ]
15 fgh]hqe_glj_lv_ckl_i_gb pi (x ) \lhqdZo xi −1 , x i ijbgbfZ_lagZq_gbyjZ\gu_ khhl\_lkl\_ggh yi −1 , yi b bf__l \ wlbo lhqdZo ijhba\h^gmx khhl\_lkl\_ggh jZ\gmx mi −1 , mi Fh`gh^hdZaZlvqlhlZdhcfgh]hqe_g^he`_g[ulvaZibkZg\ \b^_ pi (x ) =
(x i
[
− x ) 2( x − x i −1 ) + hi 2
hi3 +
(x i
− x ) ( x − xi −1 )
]y
i −1
2
hi2
mi −1 −
(x − xi −1 )2 [2(xi
+
− x ) + hi
hi3
(x − xi −1 )2 (xi
− x)
hi2
]y
i
+
mi ,
]^_ hi = x i − x i −1 -^ebgZ i -]hhlj_adZ
BlZdqlh[uihkljhblvkieZcggZ\k_fhlj_ad_ [a , b] gm`ghhij_^_eblv _]h gZdehgu mi \h \k_o maeZo bgl_jiheypbb Ijb wlhf Z\lhfZlbq_kdb h[_ki_qb\Z_lky g_ij_ju\ghklv i_j\hc ijhba\h^ghc kieZcgZ \h \k_o lhqdZo >ey hlukdZgby \_ebqbg mi bkihevam_f mkeh\b_ g_ij_ju\ghklb \lhjhc ijhba\h^ghc \h \gmlj_ggbo maeZo bgl_jiheypbb Ijh^bnn_j_gpbjh\Z\ ^\Z`^uihke_^g__jZ\_gkl\hihemqbf pi'' (x ) =
[
2 2( x − x i −1 ) − 4(xi − x ) + hi
+
[
hi3
]y
]m
2 (x − xi −1 ) − 2( xi − x ) hi2
i −1
i −1
+
+
[
2 2(xi − x ) − 4( x − x i −1 ) + hi hi3
[
]y
i
+
]m
2 2(x − xi −1 ) − ( xi − x ) hi2
i
IjbjZ\gb\Z_f\dZ`^hf\gmlj_gg_fmae_bgl_jiheypbb xi (i = 1, 2, K , n − 1) agZq_gby\lhjuoijhba\h^guo\uqbke_gguo\e_\hfbijZ\hfhlmaeZhlj_adZo pi'' (x i ) = pi''+1 ( xi ) ,
(i = 1, 2, K , n − 1) .
Ih^klZ\b\ kx^Z y\guc \b^ \lhjhc ijhba\h^ghc ihke_ ijhkluo ij_h[jZah\ZgbcgZoh^bf yi − yi −1 yi +1 − yi 1 1 1 1 , + = + mi −1 + 2 + m m 3 i i +1 2 2 hi hi +1 hi hi +1 h h i i +1
(i = 1, 2, K , n − 1) . Fu ihemqbeb kbkl_fm n − 1 ebg_cguo Ze]_[jZbq_kdbo mjZ\g_gbc k n + 1 g_ba\_klguf mi (i = 0, 1, K , n) G_^hklZxsb_ ^\Z mjZ\g_gby ihemqZxl ba djZ_\uomkeh\bc>Z^bfljb\ZjbZglZlZdbomkeh\bc ?keb aZ^Zgu agZq_gby i_j\hc ijhba\h^ghc \ djZcgbo lhqdZo y 0' b y n' lh d ihemq_gghckbkl_f_^h[Z\ey_f^\ZmjZ\g_gby m0 = y 0' ,
16 mn = y n' . < g_dhlhjuo kemqZyo [u\Zxl ba\_klgu agZq_gby \lhjhc ijhba\h^ghc \ djZcgbolhqdZo y 0'' b y n'' <wlhfkemqZ_^h[Z\ey_fmjZ\g_gby 4m0 + 2 m1 = 6 2 mn −1 + 4 mn = 6
y1 − y 0 − h1 y 0'' , h1 yn − yn −1 + hn y n'' . h1
Ijb k\h[h^ghf aZdj_ie_gbb dhgph\ kieZcgZ fu ^he`gu ijbjZ\gylv gmex djb\bagm ebgbb \ djZcgbo lhqdZo LZdZy nmgdpby gZau\Z_lky k\h[h^guf dm[bq_kdbf beb _kl_kl\_gguf kieZcghf HgZ h[eZ^Z_l k\hckl\hf fbgbfZevghc djb\bagu l_ hgZ kZfZy ]eZ^dZy kj_^b \k_o bgl_jiheypbhgguo nmgdpbc ^Zggh]h deZkkZ Ba mkeh\by gme_\hc djb\bagu \ djZcgbo lhqdZo ke_^m_l jZ\_gkl\h gmex \ gbo \lhjuo ijhba\h^guo ihwlhfm ^h[Z\ey_f ^\Z mjZ\g_gby y − y0 , 2m0 + m1 = 3 1 h1 mn −1 + 2mn = 3
y n − y n −1 . hn
DjZ_\u_ mkeh\by - fh`gh dhf[bgbjh\Zlv l_ \ e_\hf b ijZ\hf djZcgbomaeZo\u[bjZlvbog_aZ\bkbfh Ijb\k_ojZkkfhlj_gguo\ZjbZglZodjZ_\uomkeh\bcihemq_ggZykbkl_fZ n + 1 ebg_cguo Ze]_[jZbq_kdbo mjZ\g_gbc k n + 1 g_ba\_klguf mi (i = 0, 1, K , n) bf__l _^bgkl\_ggh_ j_r_gb_ FZljbpZ wlhc kbkl_fu lj_o^bZ]hgZevgZ l_ g_gme_\u_ we_f_glu gZoh^ylky ebrv gZ ]eZ\ghc b ^\mo khk_^gbo k g_c ^bZ]hgZeyo >ey j_r_gby lZdbo kbkl_f h[uqgh bkihevamxl f_lh^ijh]hgdbdhlhjuc[m^_ljZkkfhlj_g\jZa^_e_ Ih^[hjwfibjbq_kdbonhjfmeF_lh^gZbf_gvrbod\Z^jZlh\ >h kbo ihj fu jZkkfZljb\Zeb aZ^Zqm bgl_jiheypbb Bgl_jihebjm_fZy nmgdpby f ( x ) [ueZ aZ^ZgZ \ dhg_qghf qbke_ lhq_d hlj_adZ [a , b] x 0 , x1 , K , x n bbgl_jihebjmxsZynmgdpby\maeZobgl_jiheypbb\lhqghklb kh\iZ^Z_l k agZq_gbyfb nmgdpbb f ( x ) H^gZdh bgl_jiheypby \ g_dhlhjuo kemqZyo klZgh\blky g_m^h[ghc b ^Z`_ ijhklh g_ijb_fe_fhc Wlh dZkZ_lky ij_`^_\k_]hkemqZydh]^ZagZq_gbynmgdpbbih^\_j`_gudZdbf-lhhrb[dZf gZijbf_j hrb[dZf baf_j_gby Lh]^Z wlb hrb[db [m^ml \g_k_gu \ bgl_jihebjmxsmx nmgdpbx b l_f kZfuf bkdZayl bklbggmx dZjlbgm
17 Wdki_jbf_glZevgu_hrb[dbihboijhbkoh`^_gbxfh`ghmkeh\ghjZa[blvgZ ljb]jmiiukbkl_fZlbq_kdb_kemqZcgu_b]jm[u_ Kbkl_fZlbq_kdb_ hrb[db h[uqgh ^Zxl hldehg_gb_ \ h^gm klhjhgm hl bklbggh]hagZq_gbybaf_jy_fhc\_ebqbguHgbfh]ml[ulvihklhyggufbbeb aZdhghf_jgh baf_gylvky ijb ih\lhj_gbb hiulZ bo ijbqbgu b oZjZdl_j ba\_klgu Kbkl_fZlbq_kdb_ hrb[db fh]ml [ulv \ua\Zgu mkeh\byfb wdki_jbf_glZ \eZ`ghklvx l_fi_jZlmjhc kj_^u b li iehohc j_]mebjh\dhc baf_jbl_evghc ZiiZjZlmju gZijbf_j kf_s_gb_f mdZaZl_evghc klj_edb hl gme_\h]hiheh`_gby bl^Wlbhrb[dbfh`ghmkljZgblvgZeZ^dhcZiiZjZlmju beb \\_^_gb_f khhl\_lkl\mxsbo ihijZ\hd < ^Zevg_cr_f [m^_f kqblZlv qlh kbkl_fZlbq_kdb_hrb[db\hiulguo^Zgguom`_bkdexq_gu KemqZcgu_hrb[dbhij_^_eyxlky[hevrbfqbkehfnZdlhjh\dhlhju_g_ fh]ml [ulv mkljZg_gu beb ^hklZlhqgh lhqgh mql_guijbbaf_j_gbyobebijb h[jZ[hld_ j_amevlZlh\ Hgb bf_xl kemqZcguc g_kbkl_fZlbq_kdbc oZjZdl_j ^Zxlhldehg_gb_hlkj_^g_c\_ebqbgu\lmb^jm]mxklhjhguijbih\lhj_gbb baf_j_gbcbg_fh]ml[ulvmkljZg_gu\wdki_jbf_gl_dZd[ulsZl_evghhggb ijh\h^beky K \_jhylghklghc lhqdb aj_gby fZl_fZlbq_kdh_ h`b^Zgb_ kemqZcghchrb[dbjZ\ghgmexWlhagZqblqlhhgbfh]ml[ulvmf_gvr_gu^h kdhevm]h^ghfZeh]hagZq_gbyiml_ffgh]hdjZlgh]hih\lhj_gbyhiulZ =jm[u_ hrb[db y\gh bkdZ`Zxl j_amevlZlu baf_j_gbc hgb qj_af_jgh [hevrb_ b h[uqgh ijhiZ^Zxl ijb ih\lhj_gbb hiulZ =jm[u_ hrb[db kms_kl\_ggh \uoh^yl aZ ij_^_eu kemqZcghc hrb[db ihemq_ggu_ ijb klZlbklbq_kdhc h[jZ[hld_ Baf_j_gby k lZdbfb hrb[dZfb hl[jZku\Zxlky b \ jZkq_lijbhdhgqZl_evghch[jZ[hld_j_amevlZlh\baf_j_gbcg_ijbgbfZxlky LZdbfh[jZahf\wdki_jbf_glZevguo^Zgguo\k_]^Zbf_xlkykemqZcgu_ hrb[dbBomf_gvr_gb_^hijb_fe_fhc\_ebqbguih\lhj_gb_fwdki_jbf_glZ ^Ze_dhg_\k_]^Zp_e_khh[jZaghihkdhevdmfh]mlihlj_[h\ZlvkyagZqbl_evgu_ fZl_jbZevgu_ b beb \j_f_ggu_ j_kmjku AgZqbl_evgh ^_r_\e_ b [uklj__ fh`gh \ jy^_ kemqZ_\ ihemqblv mlhqg_ggu_ ^Zggu_ khhl\_lkl\mxs_c fZl_fZlbq_kdhc h[jZ[hldhc bf_xsboky j_amevlZlh\ baf_j_gbc < qZklghklb fh`gh gZclb aZdhg jZkij_^_e_gby hrb[hd baf_j_gbc gZb[he__ \_jhylguc ^bZiZahg baf_g_gby bkdhfhc \_ebqbgu ^h\_jbl_evguc bgl_j\Ze b ^jm]b_ iZjZf_lju JZkkfhlj_gb_ \k_o wlbo \hijhkh\ \uoh^bl aZ jZfdb ^Zggh]h ihkh[by A^_kv fu h]jZgbqbfky ebrv hij_^_e_gb_f k\yab f_`^m bkoh^guf iZjZf_ljhf x b\_ebqbghc y gZhkgh\Zgbbj_amevlZlh\baf_j_gbc Imklv bamqZy g_ba\_klgmx nmgdpbhgZevgmx aZ\bkbfhklv y hl x \ j_amevlZl_wdki_jbf_glh\fuihemqbeblZ[ebpmagZq_gbc
x y
x0
x1
y0
y1
K K
xn yn
18 AZ^ZqZkhklhbl\lhfqlh[ugZclbijb[eb`_ggmxaZ\bkbfhklv y = ϕ (x ) ,
agZq_gby dhlhjhc ijb x = x i (i = 0, 1, K n) fZeh hlebqZxlky hl hiulguo ^Zgguo yi LZdZyijb[eb`_ggZynmgdpbhgZevgZyaZ\bkbfhklvihkljh_ggZygZ hkgh\_wdki_jbf_glZevguo^ZgguogZau\Z_lkywfibjbq_kdhcnhjfmehc AZ^ZqZ ihkljh_gby wfibjbq_kdhc nhjfmeu hlebqZ_lky hl aZ^Zqb bgl_jihebjh\Zgby =jZnbd wfibjbq_kdhc nhjfmeu \hh[s_ ]h\hjy g_ ijhoh^bl q_j_a aZ^Zggu_ lhqdb (xi , yi ) dZd \ kemqZ_ bgl_jiheypbb Wlh ijb\h^bl d lhfm qlh wdki_jbf_glZevgu_ ^Zggu_ \ g_dhlhjhc kl_i_gb k]eZ`b\Zxlky Z bgl_jiheypbhggZy nhjfmeZ ih\lhjbeZ [u \k_ hrb[db bf_xsb_ky\wdki_jbf_glZevguo^Zgguo Ihkljh_gb_ wfibjbq_kdhc nhjfmeu \dexqZ_l \ k_[y ^\Z wlZiZ ih^[hj h[s_]h \b^Z nhjfmeu b hij_^_e_gb_ gZbemqrbo qbke_gguo agZq_gbc kh^_j`Zsboky\g_ciZjZf_ljh\ H[sbc \b^ nhjfmeu qZklh ba\_kl_g ba nbabq_kdbo khh[jZ`_gbc GZijbf_j ^ey mijm]hc kj_^u k\yav f_`^m gZijy`_gb_f σ b hlghkbl_evghc ^_nhjfZpb_c ε hij_^_ey_lkyaZdhghf=mdZ σ = Eε ]^_ E -fh^mevmijm]hklb AZ^ZqZ k\h^blky d hij_^_e_gbx qbkeh\h]h agZq_gby _^bgkl\_ggh]hiZjZf_ljZ E ?keb `_ oZjZdl_j aZ\bkbfhklb g_ba\_kl_g lh \b^ wfibjbq_kdhc nhjfmeu fh`_l [ulv ijhba\hevguf H^gZdh ij_^ihql_gb_ h[uqgh hl^Z_lky gZb[he__ ijhkluf nhjfmeZf k gZbf_gvrbf qbkehf iZjZf_ljh\ ijb mkeh\bb bo ^hklZlhqghclhqghklb Ijhkl_cr_c b hq_gv qZklh bkihevam_fhc wfibjbq_kdhc nhjfmehc y\ey_lkyebg_cgZyaZ\bkbfhklv y = a 0 + a1 x . QZklh d g_c fh]ml [ulv k\_^_gu b ^jm]b_ aZ\bkbfhklb dh]^Z bo ]jZnbd \ ^_dZjlh\hc kbkl_f_ dhhj^bgZl g_ y\ey_lky ijyfhc ebgb_c GZijbf_j wdkihg_gpbZevgZy aZ\bkbfhklv m^_evghc we_dljhijh\h^ghklb kh[kl\_ggh]h ihemijh\h^gbdZ σ hlZ[khexlghcl_fi_jZlmju T −
Eg
σ = e 2 kT eh]Zjbnfbjh\Zgb_fijb\h^blkydebg_cghc\dhhj^bgZlZo 1 T , ln σ . I_j_c^_f l_i_jv d jZkkfhlj_gbx \lhjh]h wlZiZ ihkljh_gby wfibjbq_kdhc aZ\bkbfhklb ;m^_f kqblZlv qlh lbi wfibjbq_kdhc nhjfmeu \u[jZg?_fh`ghaZibkZlv\\b^_ y = ϕ (x, a 0 , a1 , K , a m ) ,
19 ]^_ ϕ -ba\_klgZynmgdpby a 0 , a1 , K , a m -g_ba\_klgu_ihklhyggu_iZjZf_lju (m < n) . AZ^ZqZ khklhbl \ lhf qlh[u hij_^_eblv lZdb_ agZq_gby wlbo iZjZf_ljh\ijbdhlhjuowfibjbq_kdZynhjfmeZ^Z_lgZbemqr__ijb[eb`_gb_ d ^Zgghc nmgdpbb agZq_gby dhlhjhc \ lhqdZo x0 , x1 , K , x n jZ\gu khhl\_lkl\_ggh y 0 , y1 , K , y n . A^_kv g_ klZ\blky mkeh\b_ dZd \ kemqZ_ bgl_jiheypbb kh\iZ^_gby agZq_gbc wfibjbq_kdhc nmgdpbb \ lhqdZo xi ϕ (xi , a 0 , a1 , K , a m ) k hiulgufb ^Zggufb yi JZaghklv f_`^m wlbfb agZq_gbyfb hldehg_gb_ h[hagZqbfq_j_a ε i :
ε i = ϕ (xi , a 0 , a1 , K , a m ) − yi ,
(i = 0, 1, K n) .
AZ^ZqZ gZoh`^_gby gZbemqrbo iZjZf_ljh\ a 0 , a1 , K , a m k\h^blky lZdbf h[jZahf d g_dhlhjhc fbgbfbaZpbb hldehg_gbc ε i Kms_kl\m_l g_kdhevdh kihkh[h\ j_r_gby wlhc aZ^Zqb GZb[he__ mihlj_[bl_evguf y\ey_lky f_lh^ gZbf_gvrbod\Z^jZlh\ F_lh^ gZbf_gvrbo d\Z^jZlh\ AZibr_f kmffm d\Z^jZlh\ hldehg_gbc ^ey\k_olhq_d x0 , x1 , K , x n : n
S=∑
i=0
ε i2
n
[
= ∑ ϕ (xi , a 0 , a1 , K , a m ) − yi i= 0
]2
.
S y\ey_lky nmgdpb_c g_ba\_klguo iZjZf_ljh\ a 0 , a1 , K , a m ijbq_f S ≥ 0 . IZjZf_lju a 0 , a1 , K , a m wfibjbq_kdhc nhjfmeu [m^_f gZoh^blv ba mkeh\by fbgbfmfZ nmgdpbb S = S(a 0 , a1 , K , a m ) < wlhf khklhbl f_lh^ gZbf_gvrbo d\Z^jZlh\ < l_hjbb \_jhylghkl_c ihdZau\Z_lky qlh ihemq_ggu_ lZdbf kihkh[hf agZq_gby iZjZf_ljh\ gZb[he__ \_jhylgu _keb hldehg_gby ε i ih^qbgyxlkyghjfZevghfmaZdhgmjZkij_^_e_gby Ihkdhevdm iZjZf_lju a 0 , a1 , K , a m \uklmiZxl \ jheb g_aZ\bkbfuo i_j_f_gguo nmgdpbb S gZc^_f bo ba mkeh\by jZ\_gkl\Z gmex qZklguo ijhba\h^guonmgdpbb S ihwlbfiZjZf_ljZf\lhqd_fbgbfmfZ
∂S ∂a = 0 0 ∂S =0 a ∂ . 1 K ∂S ∂a = 0 m L_f kZfuf fu ihemqbeb kbkl_fm m + 1 mjZ\g_gbc k m + 1 g_ba\_klgufb a 0 , a1 , K , a m J_rb\__fh`ghgZclbhilbfZevgu_agZq_gbywlboiZjZf_ljh\
20 Y\guc \b^ wlhc kbkl_fu hij_^_ey_lky dhgdj_lguf \b^hf wfibjbq_kdhc aZ\bkbfhklb JZkkfhljbf ijbf_g_gb_ f_lh^Z gZbf_gvrbo d\Z^jZlh\ ^ey qZklgh]h kemqZygZb[he__rbjhdhijbf_gy_fh]hgZijZdlbd_<dZq_kl\_wfibjbq_kdhc nmgdpbbjZkkfhljbffgh]hqe_g
ϕ ( x ) = a 0 + a1 x + a 2 x 2 +K + a m x m , Lh]^ZnhjfmeZ^eykmffud\Z^jZlh\hldehg_gbcijbf_l\b^ n
(
S = ∑ a 0 + a1 xi +K + a m xim − yi i =0
)
2
,
hldm^Z ^bnn_j_gpbjh\Zgb_f ihemqZ_f kbkl_fm ebg_cguo Ze]_[jZbq_kdbo mjZ\g_gbchlghkbl_evghg_ba\_klguoiZjZf_ljh\ a 0 , a1 , K , a m : n n n m + + + + = K a n a x a x 1 ) 1∑ i ∑ yi 0( m∑ i i =0 i =0 i =0 n n n n a 0 ∑ xi + a1 ∑ x i2 +K + a m ∑ xim+1 = ∑ xi yi i =0 i =0 i =0 i =0 n n n n m m m+1 2m a 0 ∑ xi + a1 ∑ x i +K + a m ∑ xi = ∑ xi yi i =0 i =0 i =0 i =0 Qbke_ggu_ f_lh^u j_r_gby lZdbo kbkl_f [m^ml jZkkfhlj_gu \ jZa^_e_ J_rb\ ^Zggmx kbkl_fm l_f beb bguf f_lh^hf gZc^_f iZjZf_lju a 0 , a1 , K , a m bl_fkZfufihemqbfwfibjbq_kdmxnhjfmem
GZdhg_p \ ijhkl_cr_f kemqZ_ ebg_cghc aZ\bkbfhklb ihemqZxsmxky kbkl_fm ^\mo mjZ\g_gbc k ^\mfy g_ba\_klgufb fh`gh jZaj_rblv \ ZgZeblbq_kdhf\b^_bihemqblvke_^mxsb_\ujZ`_gby^eyiZjZf_ljh\ a0 =
a1 =
n
n
n
n
i =0
i =0
i=0
i =0
∑ xi ∑ xi yi − ∑ xi2 ∑ xi yi n 2 (n + 1)∑ xi − ∑ xi i =0 i =0 n
,
2
n
n
n
i =0
i =0
i =0 2
(n + 1)∑ xi yi − ∑ xi ∑ yi n
n
(n + 1)∑ xi2 − ∑ xi i =0
i =0
.
21
QBKE?GGH?>BNN?J?GPBJH<:GB? D qbke_gghfm ^bnn_j_gpbjh\Zgbx ijb[_]Zxl dh]^Z g_h[oh^bfh \uqbkeblv ijhba\h^gmx nmgdpbb f (x) aZ^Zgghc lZ[ebqgh beb bf_xs_c hq_gvkeh`gh_ZgZeblbq_kdh_\ujZ`_gb_<wlbokemqZyo\f_klhnmgdpbb f (x) jZkkfZljb\Zxlbgl_jihebjmxsmxnmgdpbx ϕ (x) bkqblZxlqlhijhba\h^gZy f (x) ijb[eb`_ggh jZ\gZ ijhba\h^ghc ϕ (x) Hq_\b^gh qlh ijb wlhf ijhba\h^gZy f (x) [m^_lihemq_gZkg_dhlhjhchrb[dhc Ij_^klZ\bf f (x) \\b^_ f ( x) = ϕ ( x) + R( x), ]^_ R(x) - hklZlhqguc qe_g >bnn_j_gpbjmy wlh lh`^_kl\h k jZa \ ij_^iheh`_gbb qlh f (x) b ϕ (x) bf_xl ijhba\h^gu_ ^h k-]h ihjy^dZ ihemqbf f ( k ) ( x) = ϕ ( k ) ( x) + R ( k ) ( x ).
L d aZ ijb[eb`_ggh_ agZq_gb_ f ( k ) ( x) [_j_lky ϕ ( k ) ( x) lh ih]j_rghklv nhjfmeu qbke_ggh]h ^bnn_j_gpbjh\Zgby k-]h ihjy^dZ jZ\gZ k-hc ijhba\h^ghchklZlhqgh]hqe_gZbgl_jiheypbhgghcnhjfmeu Nhjfmeuqbke_ggh]h^bnn_j_gpbjh\ZgbygZhkgh\_ bgl_jiheypbhggh]hihebghfZGvxlhgZ^eyg_jZ\ghhlklhysbomaeh\ JZkkfhljbfbgl_jiheypbhggmxnhjfmemGvxlhgZ^eynmgdpbb f (x) [_a hklZlhqgh]hqe_gZ f ( x ) ≈ f ( x0 ) + ( x − x0 ) f ( x0 , x1 ) + ... + ( x − x0 )...( x − xn −1 ) f ( x0 , x1,..., xn ). H[hagZqbf x − xi = α i bijh^bnn_j_gpbjm_fh[_qZklbwlh]hjZ\_gkl\Zih x : f ' ( x) ≈ f ( x 0 , x1 ) + (α 0 + α 1 ) f ( x 0 , x1 , x 2 ) + (α 0α 1 + α 0α 2 + α 1α 2 ) f ( x 0 , x1 , x 2 , x 3 ) + ... ... + (α 0α 1 ...α n − 2 + α 0α 1 ...α n −3α n −1 + ... + α 1α 2 ...α n −1 ) f ( x 0 , x1 ,...x n ).
>bnn_j_gpbjmy _s_ jZa ihemqbf ijb[eb`_ggh_ agZq_gb_ ^ey \lhjhc ijhba\h^ghc f ' ' ( x) ≈ 2[ f ( x 0 , x1 , x 2 ) + (α 0 + α 1 + α 2 ) f ( x 0 , x1 , x 2 , x 3 ) + ... ... + (α 0α 1 ...α n −3 + α 0α 1 ...α n − 4α n − 2 + ... + α 2α 2 ...α n −1 ) f ( x 0 , x1 ,...x n )].
<h[s_fkemqZ_^eyijhba\h^ghck-]hihjy^dZ]^_k ≤ n):
22 f
(k )
( x) ≈ k![ f ( x 0 , x1 , x k ) + (α 0 + α 1 + ... + α k ) f ( x 0 , x1 ,..., x k +1 ) + + (α 0α 1 + α 0α 2 + ... + α k α k +1 ) f ( x 0 , x1 ,..., x k + 2 ) + ... ... + (α 0α 1 ...α n − k −1 + ...α k α k +1 ...α n −1 ) f ( x 0 , x1 ,...x n )].
>eyk > n
f
(k )
( x ) = 0.
2.Nhjfmeuqbke_ggh]h^bnn_j_gpbjh\Zgby^eykemqZyjZ\ghhlklhysbo maeh\ Ihemqbf nhjfmeu qbke_ggh]h ^bnn_j_gpbjh\Zgby \ kemqZ_ dh]^Z maeu bgl_jiheypbb nmgdpbb f (x) jZkiheh`_gu jZ\ghf_jgh gZ hlj_ad_ [a, b]. JZkklhygb_ f_`^m ex[ufb ^\mfy maeZfb xi b x i −1 h[hagZqbf h Imklv agZq_gby nmgdpbb f (x) ba\_klgu \ lj_o lhqdZo n = 2): ϕ (x) Bgl_jihebjmxsmx nmgdpbx f ( x 0 ) = y 0 , f ( x1 ) = y1 , f ( x 2 ) = y 2 . ij_^klZ\bf\\b^_d\Z^jZlbqgh]hihebghfZGvxlhgZLh]^Z f ( x ) = ϕ ( x) + R( x) = = f ( x 0 ) + f ( x 0 , x1 )( x − x 0 ) + f ( x 0 , x1 , x 2 )( x − x 0 )( x − x1 ) + R( x) .
(2.1)
Ijh^bnn_j_gpbjm_f\ujZ`_gb_ ihx: f ' ( x ) = f ( x 0 , x1 ) + f ( x 0 , x1 , x 2 )(2 x − x 0 − x1 ) + R ' ( x ).
A^_kv
(2.2)
f ( x 0 , x1 ) = ( f ( x1 ) − f ( x 0 )) /( x1 − x 0 ) = ( y1 − y 0 ) / h,
f ( x 0 , x1 , x 2 ) = ( f ( x1 , x 2 ) − f ( x 0 , x1 )) /( x 2 − x 0 ) = ( y 2 − 2 y1 + y 0 ) /(2h 2 ).
(2.3)
Ih^klZ\bf \ f ' ( x ) = ( y1 − y 0 ) / h + ( y 2 − 2 y1 + y 0 )(2 x − x 0 − x1 ) /( 2h 2 ) + R ' ( x).
(2.4)
HklZlhqgucqe_g\nhjfme_GvxlhgZ Rn ( x) =
f
( n +1)
(ξ ) n ∏ ( x − x i ), (n + 1)! i =0
ξ ∈ [x 0 , x n ] .
>eybgl_jiheypbbihlj_fmaeZfn Hlkx^Ze_]dhihemqblvijhba\h^gmx hklZlhqgh]hqe_gZ\nhjfme_
23 R ' ( x) =
f ' ' ' (ξ ) [( x − x 0 )( x − x1 ) + ( x − x1 )( x − x 2 ) + ( x − x 0 )( x − x 2 )]. 6
GZc^_f f ' ( x) \ maeZo bgl_jiheypbb Ijb x = x 0 ba nhjfmeu ihemqZ_fagZq_gb_i_j\hcijhba\h^ghcnmgdpbb f (x) \lhqd_ x 0 : Ijb x = x1 : ijb x = x 2 :
f ' ( x 0 ) = (−3 y 0 + 4 y1 − y 2 ) /(2h) + h 2 f ' ' ' (ξ ) / 3.
(2.5)
f ' ( x1 ) = (− y 0 + y 2 ) /(2h) − h 2 f ' ' ' (ξ ) / 6,
(2.6)
f ' ( x 2 ) = ( y 0 − 4 y1 + 3 y 2 ) /( 2h) + h 2 f ' ' ' (ξ ) / 3. (2.7) :gZeh]bqgh fh`gh gZclb ijhba\h^gu_ nmgdpbb f (x) bkihevamy agZq_gby ^Zgghcnmgdpbb\[hevr_fdhebq_kl\_maeh\bgl_jiheypbbLZd_kebaZ^Zgu agZq_gby nmgdpbb \ q_luj_o maeZo bkihevah\Zgb_ f ( x 0 ) = y 0 , f ( x1 ) = y1 , f ( x 2 ) = y 2 , f ( x 3 ) = y 3 , bgl_jiheypbhggh]h ihebghfZ GvxlhgZ n ijb\h^bl d ke_^mxsbf nhjfmeZf^eyi_j\hcijhba\h^ghc f ' ( x 0 ) = (−11 y 0 + 18 y1 − 9 y 2 + 2 y 3 ) /(6h) − h 3 f
( IV )
(ξ ) / 12,
f ' ( x1 ) = (−2 y 0 − 3 y1 + 6 y 2 − y 3 ) /(6h) + h 3 f
( IV )
f ' ( x 2 ) = (11 y 0 − 6 y1 + 3 y 2 + 2 y 3 ) /(6h) − h 3 f
( IV )
f ' ( x 3 ) = (−2 y 0 + 9 y1 − 18 y 2 + 11 y 3 ) /(6h) + h 3 f
(ξ ) / 4,
(ξ ) / 12,
( IV )
(ξ ) / 4.
GZb[he__ijhklu_blhqgu_nhjfmeuihemqZxlky^eyq_lguon \kj_^gbo lhqdZoIhwlhfmgZijZdlbd_ih\hafh`ghklbke_^m_lijbf_gylvbf_gghbo GZijbf_j nmgdpby f (x) aZ^ZgZ \ lhqdZo x 0 , x1 , x 2 ,..., x n G_h[oh^bfh \uqbkeblv ijhba\h^gmx f ' ( x) \ wlbo `_ lhqdZo bkihevamy lj_olhq_qgmx ko_fm - GZb[he__ lhqgh_ j_r_gb_ [m^_l ihemq_gh _keb ^ey ijhba\h^ghcnmgdpbb\]jZgbqguolhqdZo x 0 b x n bkihevah\Zlvnhjfmeu f ' ( x 0 ) ≈ (−3 y 0 + 4 y1 − y 2 ) /( 2h), Z f ' ( x n ) ≈ ( y n − 2 − 4 y n −1 + 3 y n ) /( 2h),
Z
Z f ' ( xi ) ]^_i = 1, 2, ... , n-\uqbkeylvihnhjfme_ f ' ( x i ) ≈ ( y i +1 − y i −1 ) /(2h). Z
24
EBL?J:LMJ: 1. ;_j_abgBK@b^dh\GIF_lh^u\uqbke_gbc<l-FGZmdZ- 2 l 2. >_fb^h\bq;IFZjhgB:Hkgh\u\uqbkebl_evghcfZl_fZlbdb-F GZmdZ-k 3. ;Zo\Zeh\GKQbke_ggu_f_lh^u-FGZmdZ-k 4. NhjkZcl>`FZevdhevfFFhme_jDFZrbggu_f_lh^ufZl_fZlbq_kdbo \uqbke_gbc-FFbj-k 5. Iebk:BKeb\bgZG:EZ[hjZlhjgucijZdlbdmfih\ukr_cfZl_fZlbd_F?J@:GB? :IIJHDKBF:PBYNMGDPBC 2 AZ^ZqZbgl_jiheypbb Ebg_cgZybihebghfbZevgZybgl_jiheypby Bgl_jiheypbhggucfgh]hqe_gEZ]jZg`Z Bgl_jiheypbhggucfgh]hqe_gEZ]jZg`Z^eyjZ\ghhlklhysbomaeh\ 5 1.HklZlhqgucqe_gbgl_jiheypbhgghcnhjfmeuEZ]jZg`Z JZa^_e_ggu_jZaghklbbbok\hckl\Z Bgl_jiheypbhggucfgh]hqe_gGvxlhgZ^eyg_jZ\guoijhf_`mldh\ 8 Bgl_jiheypbhggZyko_fZWcld_gZ BNN?J?GPBJH<:GB? 2.1.Nhjfmeuqbke_ggh]h^bnn_j_gpbjh\ZgbygZhkgh\_ bgl_jiheypbhggh]hihebghfZGvxlhgZ^eyg_jZ\ghhlklhysbomaeh\ 20 Nhjfmeuqbke_ggh]h^bnn_j_gpbjh\Zgby^eykemqZyjZ\ghhlklhysbo maeh\ EBL?J:LMJ: KhklZ\bl_ebDmj]ZgkdbcK_j]_cB\Zgh\bq >m[jh\kdbcHe_]B]hj_\bq
25 DmjdbgZEZjbkZB\Zgh\gZ J_^Zdlhj;mgbgZL>