This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
b>FiDkls`yFiStcFcF2cL^b6?iDklcFiSjStZ4i~rLtleLt_¬Y>üqyFbL4tcFbFs`tleLgScFiOa>tiD8tsx yFcFbFiDkl\Fs`tgvklaFklbLs` yFUklaFs`s`yFUUyFaFs`UiSyLs`^ScF.iDkkl^SbF4s`tliSeLFgSicFrLiviSSfbF^Stqkl¤{jqsx6^`plSaUcFiDiS i>k8FzyFtkiSeLSt~yL¦4^`iSppiScLjD^^x\LcF^`b6thsZbFaUcFiSjDiS^`ySyFrLbLbF^`cLcF^`sxsF m } Y ^Skl{sx^`ScFizbFcFjD^`yFbL^`cFs`cFz4bhFj`eFhF]sSkhs`iS\FaU^F}~FyDhLf^xhn}~6eLiDk x 7→ ax a > 0 aUFiDyDkhFsSfgL^x}¬hWFyF¤ SiDtklkls`aUyLiS^`cFcLtkl\Fs`cLjS^xiLh?mna6F^`yDa.hLfcF^xt hK¦ÖbFpd 4FtyDc6hLhF4_iSf_n^SY kl{s~^`L}ns`iS\FaU^viDkls~^`tsSkh.s`iS\FaDiS_n}8^ X^x cFU yFi`eLgj£^`cL^xeLbFpt k^S4iSFirLiSScFHkls`yFUaFs`Uy¢bFyL^`tsFiSc6hFs`bFt ô !ÿDòÀôxñ÷oøBù LY
©ntyL4bFcu~yL^`p4tyFcFiDkls`gL|vUFiSs`yFt`eFhFtsSk¨hjvyL^`pleLbF\FcFWk4zk eK^x¬mxyL^`p4tyFcFiDkls`gqbFpbF\FtklaUiS_jStleLbF\Fb6cF}`yL^`p4tyFcFiDkls`g^`piSjSiSliZFyFiDkls`yL^`c6 iSkls`FjDyF^ tlrLbtleLs~tY ncFxY bFð_?^xyL^`pt4j?tyF\FcFbLiDklkls`s`i bn}62òBkl÷*iSÿDiSs`òBjSùtô sSkls`þ>jSò!Uø ]÷-ÿb6^S2klyL6^`taFpcFs`tO klUFiStc6klhFs`s`jSb6`hLts2Y cFtkl^`aUbFi`SeLi`gSeLaDti t bFpjStkls`cFiStviSFy6tlrLtleLtcFbFtyL^`p4tyFcFiDkls`bd£4bFcFbLf^xeLgScFiStv\FbLkeLiWcFtp^`jSbLklbL4 aUaFiSbniSY`yS©8rL^`bFaOcLiS^`Fs~y6}¬tlcFrLttliSeL~tDcFicLrL^xbLh4yL^`p4rFeFtyFh cFi~iDrLklcFs`gZiSphFcLj`^eF\FhFcFtiSsSki>hiS FFtlyFeLtlzrLtleL\FtbLcFkb6eLh iDFi`}xeLyLi~^`jScFtzcFb6 h ]sSrFiSeF\Uh FyFiDkls`yL^`cLkls`jD^F}f drFeFh£FiSjStyD6cFiDkls`bn}Ö?drFeFheLbFcFbFbnIY üqyFbWrLyFUiD*Ò¤ ùJ÷7ó÷ eLxz÷ !þ>\Fò!bLø keL÷*ÿiD¦}§iScLF^.yFtltlrLrLtlbFeLcFtbFcF FbF£bSyLi`^`eLpgS4{tyFbLcFBiDklyLs`^`gWp44tcFyFicFiDtklkls`s`bHjD^ yL^`s~p^`yFa6tp^Ft }fFyLi`^`eKpl^`rLltl^`eFthFsS]kh£t Fti tiZcL^]rLjStcFtklj`hFp^`cFcFt\L^Skls`b ¤ FyFbL4tyFm`yL^`pyFtp^`s`gZs`yFtlF4tyFcFiSt4cFi~tkls`jSi 4i~ c6iOrLjS64tyFcFiS_>FiSjStyD6cFiDkls`gS}UFiSjStyD6cFiDkls`gd i~rLcFiD4tyFcFiS_?eLbFcFbFt_K¦Y G p ^`FUs`iLm −∞ klyFtlrK^Ok rLbLqUpbFb>jOj`hFpaUiS_? bUrLaUiDkl²s`b = 1 p0 (t) = −
1 :
Ä°
0
$
Ç
*
°
0
~`ª
"+ò
:!ÿDòÀôxñ÷oøBùJúø3!ÿ÷7ó÷5÷*6*
D
D=
/Ao
# =&xx #>
"ã"1 #Æ
Æ
Æ
iSFyFtlrLtleFhFtsSkhvqiSyL4eLiS_ ln N , ln n
(4.1.1)
rLt N d\FbLkeLii~rLbFcL^`aUiSjS£\L^Skls`t_n}ÖcL^WaUiSs`iSyFt4i cFiyL^`pyFtp^`s`gk^S4i` Fi~rLiSScF_iS ntaFscL^Fi~rLiSScFtt4\L^Skls`bkveLbFcFt_FcFz4byL^`p4tyL^S4b<j n yLyL^`^`pzp44ttyFcFcFgSiD{kls`bFgLtz}UbLSk~DrLiUrL\FcFb?F¬yFY bL4ttcFaDticFjScFb6iSrL_>ts`a>gLiS}Ss`\FyFs`tipaFiSFS}6yFaFtlrLjDtl^xeLrLtyLcF^`cLs`^x h2b>qaFiSUyLS4S}DeLrKiS^`_vtsO¤ LklYiSSiSY ~sx¦ jStsSkls`jStcFcFiqpcL^~\FtcFb6h S}SZb F}SkliSeK^SklU]bFtkhOkrLyFUbL4bOiSFyFtlrLtleLtcFb6hL4bnYDX iSpcLseL^~\FbFtl\FcFbFbFtiSYsZcFb6¬}`i~rFcL^`aUiL}xiSFyFtlrLtleLtlcFbFt¤ LY SY ~¦84itsqFyFbFjStkls`bObOarLyFiSScFiD4 &É
&
¦'
¦'
§bLk`Y LY Sm 6#Bg &*0*$Y7 .B#$7)#.`ñ ¤«ý§bLk`Y LXY iS~p¦gDY4«ttÎklaDiSiScFs`tyF\FtcFpiSia(FiSrFjSeLs`bFiScFySiSh6_ hLs`b#iSFtrKyL^x^`eL FbLbF tki iDkls~ F^`tjScF{s`yLbL^x4eLbLgSkcFhHUè iSs`yFs`tyFpta6s`^xg 4bn}6Fi`eLU\FbLcFtaDiSs`iSyFiStq4cFitkls`jSis`iS\Ftan}UhFj`eFhF]ttk¨h>k^S4iSFi~rLiSScFzYUoqp FiDkls`yFiStcFb6h>jSb6rLcFiL}6\Fs`i N = 2 b n = 3}Fsx^`a \6sSi ý
$'
E'
D=
ln 2 ≈ 0, 63093. ln 3
(4.1.2)
iSiSs`cFtkltHs`tFtyFg>kyL^Skkf^`s`yFbFjD^`t4z4cFi~tkls`jSiDHcFtiSs`yFbF L^`s`tleLgScFU^xrF rL\LbF^Skls`s`bFbnjS}DcFi~UrLcL^qbFUp]cFaFaD FiSbFs`iSyF¤¥f ^SiSkkla6F^`¦ pm(x) jD^`tsS}Uk¨sxh ^`Fa?D\Fkls`s`iiS_nt}UkeL^b?rLjSiSts`yFrLtyFpUiSa b6L FrLi~tlrLeLiSbFSsScFk¨h>HcLbL^kSs`i~yFrFb cFiS_n}6s`i m (L) = 2m (L/3) . qts`yFrLcFi?FyFiSjStyFbFs`gL}K\Fs`i?yFt{tcFbFtHs`iSi?UyL^`jScFtc6b6hvhFj`eFhFtsSk¨hkls`tFtcFcL^xh qUcFaF Fb6h m (x) = m (1) x , (4.1.3) rLt D jScFiSjSgrK^`tsSkh jSyL^xtcFbFt¤ LY SY S¦Y iSyL4eL ¤ LY SY D¦4i cFi yL^Skkf^`sx yFbFjD^`s`gaU^`a tti~rLcFiiSFyFtlrLteLtcFbFtzyL^`p4tyFcFiDkls`bnYS[4rLiSScFikeLta6^4i~rLbLqbF Fb6 yFiSjD^`s`gtiL}6jSjStlrFh>FiSc6hFs`bFtyL^xrLbFSk^ R m
D
¦'
+
m (R) = m (1) RD .
¦'
(4.1.4)
Ù/A7
~ +´ rFhFrLtkltg _Lk¨mh(R) jScFUs`d£yFb£s`t{Ft^`yFyLg^yLf^x^SrLkbFk^WDkl\LiD^S kls`Rb<}4yLb ^SklDkfdk^`s`ÿ yFbF/ø!jDøB^`÷otö 4iSmiô 4!ÿDcFi~òÀôxñt÷okls`øBùJjD^FúS}ÖY cLÖ^xkSeFi`b f^Skk^2yL^`jScFiD4tyFcFi?yL^Skl6yFtlrLtleLtcL^?Fi?iS nt4S}Ks`i }TtkeLbiScL^ yLb6eL^`jSb cFiD4tyFcFi]yF^SklFyFtlrLtl}LeLkltiScLiS^]s`jSFti]sSkl6s`eLjSiDtklcFaUcFiDiLklYs`bvb6^SeLkkb^OFbFiZpFi`m(R) ySeLhLbF4yFiSiS_njD=^`}xcFs`m(1)R icFiSm(R) _?s`iS\F=aFbvm(1)R j s`iD m(R) = m(1)R keLU\L^`t yL^`jScL^>cFeLY qeLt2yL^`jScL^>bWf^Skk^vkl\Fts`cFiSi4cFitkls`jD^ bFpi`eLb6 yFk2iScFjDt^`aUcFiScFs`iSyFzs`¡iS\F4tancFYi~iStkliSs`s`jScFiDiS{tFcFyFbFiDt 4tl¤ L Y SUY s`DiS¦]\FcFiSiSjSiSiyFbFs`s~bF}TL\F^Fs`m4is`4i !DbL4t>tcFt
ò¥¦
&É
(
1 :
Ø
3
2
"G
1
?
¦'
§bLk`Y LY 6m )%+Yo.!"62f/.`ñ ÖkeLbW4SrLt¢cFtOFyFiDkls`i USbFyL^`s`g FtcFs`yL^xeLgScFUs`yFts`gviSs`yFtpaUiSjL}n^ pcL^S^4cFttc6_?hFs`aUg]^`a2tt§cLrL^iSiDFkli`c6eLiScFjDt^`cFcFbFbFtbn }SrLFi]i`eLyLU^`\FjSbLcF.iDklrLs`yFiSyFUiSUcF¢cFtFiiDks`eLyFtltrLUiSjDi`^`eLs`gStlcFeLbFgSa6cF^FiD}klFs`iDg?kls`«¤ ý§yFbLiStk`c6Y cFLiSY S¦i Y oqpqiS\FtjSb6rLcFiSiFiOFiDkls`yFiStcFbFBkliSiSs`cFiS{tcFb6h ý
$'
'
keLtlrL`tsx}F\Fs`i rLt
m(L) = 4m(L/3), m(x) = m(1)xD , D = ln 4/ ln 3 ≈ 1, 26186
~ ` + /Ao # =&xx #> eLSi`bFeLcFgSb6{hn}FtcFtliOrLbFtcFbFt FcFtq}¬Fs~iS^`jSa tyD\F6s`cFi iD4kls`!gLY bL4ttrLtleLi k4cFi~tkls`jSiD}TaUiSs`iSyFiStDtcFt ^S4iSFi~rLiSScFt4cFi~tkls`jD^kc6t FtleLiS_ yL^`p4tyFcFiDkls`gScL^`pjD^`]s Rô ù !ÿ LY8«i`eLtt>kls`yFiSiStS}
DiSshn}4jSiSp4i~ c6iL}8b£cFt?iSaUiScF\L^`s`tleLgScFiStS}
iSFyFtlrLtleLtl cFqbFyLtZ^`aFqsxyL^x^`eKaF^Ssx4^xb?eK^kl\FDb6^`sxp^`bF]yFSsStksSh>k¨h24cFcLi~Õ^ tô kls`!jDÿD^FòÀ}Dôxy ñZ«÷oøBHù aDaiSs`9 iSyF+ø ÷-cFô tqkl¦iS jSòL^xrK^`÷otö sk]þ b6 ¤ y s`Z«iSFi`¦ m eLcFiSiS_bFyL\F^`tpkl4aDiStyF_.cFyLiD^`klps`4bOtyFyFtcF^xiDeLklgSs`cFgSY b6eL^`b bFS4i`ieLrLttltOeLbFyFrLSiStS4cFzO4b kls`rFyFeFUhWaFs`bFUpyU\FhFtj`cFeFb6hFhW]sSqkyLhO^`UaFFsxiD^x8eLh6g` cFUsx^xhjS{tf^SkkliSjD^xhyL^`p4ty6cFiDkls`g>b òBùJ÷7þ5ñ ô !ÿDòÀôxñ÷oøBùJú.¤ j>iSFyFtlrLtl eLp^`tjScFbLcFkliDbLH4kiD4kls`zbOkeL\FtbLkd?eK^qFyLF^`iSaFaFs`yFbF\FjDt^`kl]aU^xhvb6yFtq^xeLyLbF^`paF^`sx F^xb6eOhva6y eLZ«ts`iS¦ad?¤ aFFUiSSa6iS^`jUp¦
^`iSs`sqtleFb6g2kleLs`bFtFcFttcF_FbcFi`j iOyL^`p4tyL^FY ©ntyL4bFcuxqyL^`a6sx^xe
|Se¡jSjStlrLtcjiSSb6Di~r¡«tcFD^ ^`cUrLtleLgSSyFiSs`iD} ^S4tyFbFaU^`cLklaFbL f^`s`tf^`s`bFaDiD Fi`eLgDklaUiSiFyFiSbLk¨Di~OrLtcFb6h,¤¥kY>ti/yL^`Si` s` S} ¦YDo4tcFcFitiD4ts`yFbF\FtklaFbF_?^SklFtaFsqyL^`aFsx^xeLgScFiS_aUiScF FtF FbFb2klFiDkliS` jkls`jSk^SiS4jD^xeSyLz^`klps`cFyFiDW4.cL^~b£Ua6{^x.bFyFd.iSaUqiD4bFp.bFaUyLtS^S}8klF6yFbLiD4klbFs`b¬yL}§^`cFft^`cFs`bFtyFbLq^xeLyLiS^`jSaFtls~rL^xteLcFgSbFcFbn}8SbF4i`ieLrLiStleLbFtbn_ } qbFpbFi`eLiSbFbn}Uti`eLiSbFbn}UaDi`eLiSbFbn}6aDiScFiD4bFaUtS}DeLbFcFjSbLkls`bFaUtS}6aUiDk4i`eLiSbFb x ^` jSY s`qiSytkldiD`4eLcFttklcFscFhFi sxbF^`_ a6FiStSF}
~\FeFs`hFivyFbFcFpt^`fs`^xiSeLy Ukl*iSjSyFyFi`teL4g tcFjvcFiSs`iDiqs`bFFLyF^FiS}D F6t4kkltt ]klbF_ yLF^xeWiSa6b^`pk^`^Ss` g \Fu~s`s`iSivjDt^`4yeLcFbFD F iDcF| i>brFeFj>h.rLrLjDiD^ kls`klb6\6tsxt^>cFb6UhWStlSrLklbFFs`tlgvU^FklY¬iSS[§tklklFtltlrL.cFbFka6^S^F4}TiS\Fi s`i «ZY s`i>^`dvc6bLrL4tleLtgScFScFyFi iSs`sxiL^F}} jStyFi~hFs`cFiL}nk^S4iSi FiSF~eFhFyFcFiSi jvcL^Skls`ihFtt jSyFt8hWf^`s`tf^`s`bFa6^vj cFtf^`s`tl \Fft^`£s`bF\FiStjSkliSaDyFiSbF_?s~YklyFtlrLtS}ShFj`eFhFtlsDk¨hOeLU\F{bLWkljSb6rLts`tleLgDkls`jSiD s`iD4S}D\Fs`iiSc pcL^`ts~}Di zrLcL^`aUiiDklcFiSjScFiS_WFyFbF\FbFcFiS_£sx^`aDiSijSpyFjScFiSivyL^`pjSbFs`b6h£byL^SklFyFi` kls`yL^`cFtcFb6hs`b6b6rLt_hFj`eFhFtsSk¨h¡kliSjSyFt4tcFcF_aDiD4FgS]s`tyn}]jSzkls`UL^`]bF_ FbLi~£rLiS\LS^SyLk^`jqpiDyFWi`eLcFb tkl4iDiS^`jS eLs`b>iSyLS^]¢bLkSkeLs`tlgOrLiSFjDi`^`eLs`Utl\FeFthncF}xStY pqaUtiSs s`kliSiDyF4iScFiZtcFb6s`_ b yFjOts`piDeLgx}Fs~\F^`s`s`i cFcFtbFFaUy6i`tl yFs`i`eLjSgScFaUiSivtZkljSiSi`jSeLtyF]{ FbFtcL*ksSkljSsxiS^`jSyF^`cF¬bF}ntzcFaDiiD4bWFyFgS]i~Os`trFyFtcFcFbFt22cFs`iStl6jScFi` eLiScL^~bFU_2\FcFj`eLt \Fs`ttls6pcF^i`eLkliSiSSiSbF_ _n}ncFa t \FbLkeL?aDiSs`iSyF?iSsSc6iDklbFsSkh bvqyL^`aFs~^xeLgScF_ ^`cL^xeLbFpSY bFcFaFbnüq}Ss`yFibF\FcL~^ZrFeLeLbLb6kljSs`g`t>hOqa6eLiStyLcL4^F/}`s`qiyLcL^`^qaFaFsxU^x\FeLtgSjScFt.iSkl`s`eKyF^`Ua6aF^Fs`}~Us`yni}4cLF^qibFDi~p yFtbFpt2^`cFs`cFiiStcL^qgxkliScFy6tl rK^S4bFiSStyFtl gStS}KkliSplrK^`]s2jSFt\L^`seLtcFbFtcFtaUiS_^xeLgxs`ty6cL^`s`bFjScFiS_tiD4ts`yFbFbn} b6kls`rLjDU^S4tb<_cFiSsztjSFiSyFpbF4yFii~ rLcFiL}Y iSðFbLtk_L^`kls`s`gzjSbFaUs`iStls`eLiSgSyFcFUiL£}ÖFbyFbFk^SjSf^W\6cFFzyS4hLbf^x^`hncL}^xeLb
"ã" 1 #Æ
Æ
-
Æ
- 1&
1 :
4 5
K
:"
$
$
$
K
Ñ*
$
1 :
G
*
Ç
* K
KG
$
&É
2
K
Ù/A7
~/Ñ
"ã"1 #Æ
ò¥¦
4iSgSs`iS_>tqiSyL4~eL}6FyFtjSyL^`s`bFjOttqjOyFtaFUyFyFtcFs`cFiStkliSiSs`cFiS{tcFbFt
4tpeLgxs~^`s`iD'sx^`aUiS_ u~FyFiS~eLaFbn| ¤ cL^`pjD^`t4iS_ ó/ôx÷ xò!ø!øB÷*ÿ oñ 7ò xú -ôx÷7ù D¦ klsx^`cFts FiDkeLtlrLiSjD^`s`tleLgScFiDkls`g²s`iS\Fta j aDiD46eLta6klcFiS_ 6eLiDklaDiDkls`b YKX¢p^`jSbFklbL4iDkls`bviSs jSSiSyL^ b FyFb sx^ FiDkeLtl z , z , ..., z , ... rLb iSjD^`s`tleLgS¦cF}¬iDklkls`s`yFg?t44bFi~s`gDtlk¨s>h DaDi~cFrL~eLbFs`g?¤ cLaU^?^`anS}TtcLklaD^`iSFcFyFtbL\F4cFtiDynzkl}Ts`gFyF¤ cb a6^`an}¬klna6^x→b t∞}¬FyFb c¦zb6=eLb0 StzklaDiS=cFt2\FcFi`eLDOrK^`s`gL}DiDkls~^`jD^`s`gDkh cL^aUiScFt\FcFiD.yL^Skkls`ci~=hFcF0bFb2iSzs F=tcF1/2 s`yL^b2cFt kaUls`iSyFs`tiS8yFiShL_>klg2kScFi~brLavbFsSa6k^`h?aDFiSiD_vkeLaUtliSrLcFiSaFjDyF^`ts`s`tlcFeLiSgS_vcFiDs`iSkls`\Fg aUtSYT©niS\FaU^2aDiD46eLta6klcFiS_v6eLiDklaUiDkls`bn}La }6cL^`pjD^`tsSkh oùJùô ùJ÷-ôx÷*ÿYFX FtyFjSiD£keLU\L^`t^`s`s`yL^`aFs`iSyFiDhFj`eFhFtsSk¨h S{ztklaU}iScFtl\FcFiDkls`gL}6jSijSsSiSy6iDd cFeLgLY ý
zn+1 = zn2 + c,
n = 0, 1, 2, . . .
*<
6
 5 &
-
1
2
n
0
0
0
Ç
1
n
§bLk`Y LY Fm 6#Bg&*0*$Y76Ð X9+%5.DØÙO2)#.B+%+K5.b2.!$7&*QR#&-+#!HA^!95.!0*$%>Ú¨ñ ^SqbFa6klbFyF`t<s`tFtyFg b.yL^Skk4iSs`yFbF4cFitkls`jSi jDkltlpcL^\FtcFbF_ } FøBùAyFb<öo÷XaUiSb s`iSyFU¦FY iDÖkeLkeLtlbrLiSjD^`s`tleLgS}8ccFsxiS^`klaFs`bLg B{z4cF}iiDtklklsxs`^`jStiDsSkh
$'
q2©
K
0
0
n
1
s`^.iOklyLbF^`s`cFSbF^` L F^ b6h?rLtyFqtpiSaUyLi4bFbFpyF4SttcFsSkbFhHsSkbnhn}Öm6jS\FcFs`Uis`FyFi~tcFcF^xbFeL_>U_n^`}s`s`kyL^S^`4aFiSs`tviSy?bFcFDs`tyFtZtcFkt]cFiSSt~rLpltrLstklcFgL}ÖeLtFt } yFtkls~^`cFts?Ss`g2eK^xrLaUiS_n}Kklsx^`cFts?klb6eLgScFi2bFpleLiDf^`cFcFiS_vcL^ yL^`pcFvf^Skl{sx^`D^x cL«¤ ý§^ bLaDk`iSY s`LiSY DyF¦iSY`_n]}ncLbF^zp4cLt^`yFFtiDcF4cLbF^xcLh.^`tFsziveLa6bF^`cFyFbFs`HtS}nFiSiSa6S^`tpyFtl jD^`g`thsSk hrLtls` cFtbFSSi`rLeLg]gSj {qtS}¬iSyF\FjSttlbF4bnt}cFrFgSeL{b6t f^Skl{s~^`?FiDkeLtlrLcFt_n}Ts`i>tkls`g?\FtSi`eLttFirLyFiSScFiStbFpiSSyL^xtcFbFts~^?a6^`yFs~^ rK^`ts~YLXcFbLf^`s`tleLgScFi yF^`p eFh6rLjD^xh>yFbLk`Y LY F}F4i~ cFiOiSScL^`yFD bFs`gL}6\Fs`i2irLbFc b c = −0.1235 + 0.56508i,
'
³
$'
S + /Ao # =&xx #> s`©
iS^`sZaFbFttkl^SeL4tiS8Fti~cFrLsiSjDSklcFs`yFtZt\Lkl^`s`tyFsSUkaFhs`6jqy6yL¡^`pl«ZeLbFY \FcF^`c6OrLtl4eLtgSklSs~yF^xiSsbOb bL4cL^`tptjDsq^xyLe ^`pqcFyL^`taFsxyL^x^`eKp4^S4tyFbnY Y
" ò
"ã" 1 #Æ
Æ
Æ
$G
§bLk`Y LY Lm 6#Bg &*0-$Yo6A.B+,#&-9+:7^)+$.`ñ ý
$' '
§bLk`Y LY 6m h)#.!?+$.B9+:5.!"N+;I9+:6hd.!$Exñ vcFi~tkls`jSi zeLbL^ kls`i`eLgt/FyFb6DiSseLbFjSip^`jSbLklbFsiSs c Y ÖkeLb jSSyL^`s`g s`i<Fi`eLU\FbLDtcFti~rLcFS}]c^=St−klaU0.12 iScFtl\F+cFiS0.74 t4i,cFi~tksSjSiHrLtqiSyL4bFyFiSjD^`cFcF \FiSaFtcFyFbFD_ cFciD}TklFs`yFtbF_njS}i~jDrFklhFt§tb6vtÖiSa SklyLj`^`hFppU^`]cFcFzb6qklklj`s`hFyFpUcFaFiSs`tÖU4yLcF^Si~¢4tklcFs`ijSiLtY klvs`jcFi~tzkls`eLjSbLi ^FM}TcL^`ppcL^x jD^`tsSk@h ÿñ÷ ò!øBùAöo÷*ÿï oñ 7ò xú -ôx÷7ù «¤ ý§bLk`Y LY U¦Y ÖkeLb c ∈/ M }44cFi~tkls`jSi ¤«ý§bLzk`eLY bLL^qY SyL¦Y^SXklLcF^xtrKF^`iDtklsSyFktlhrKjkls`iSjS`teKcF^`cFaUiSiq_b6`peLi`bFeLpbFiDyFkliSs`jDb^`iScFscFyL^`cFs`iSbF\F Ft aOd Rô ù xúñ óõ xú qyL^`aFsx^xeLgScL^xhqFeLg iSSyL^`pSts2rLbFjSbFs`tleLgScFtOqbFUyF¡dv^`piSj`tFiSyFs`yFts`M o÷7ù þ>ò!ø ÷ ñ ÿ «¤ ý§bLk`Y LY ªD¦ ª Y ý
G
$'
8)
Â
*G
)
 5 / &6
)
-
Ø' '
?
1 -
"4&2
K
'
iÈ
"&
"'
0 *MÁ5
/A7
¾&
"ã"1 ##$§
ò¥ Ã
F
ÆE #
§bLk`Y LY ªFm hd.!b*!Y;IHuN#)+$7)+&*$ f/.!$%+W+#!HJ,+%+5.!QR%#?/%Kñ
4
ý
$'
sç.³¶·~³
ë{3±
¹t¶·
üqyFiS Ftkk ^`c6rLtleLgSSyFiSsx^ hFj`eFhFtsSk¨hWeLbF{gi~rLcFbLbFp 8cFi~tkls`jD^^xeLi` yFbFsS4iSjWtcFtyL^` FbFbHqyL^`aFsx^xeLgScFkls`yFUaFs`UynY]cHcL^`eFh6rLcFi.rLt4iScLkls`yFbFy6Sts jSiSpcFbFaFcFiSjStcFbFtZU^`iDk^bFpFiSyDh6rLa6^F}FcFi U^`iDkZs`iSs rLts`tyL4bFcFbFyFiSjD^`cvbvjSiDklFyFi` bFb pyLjS^xirLrLUbL]s YU[z eK^`tZpUklFjSiDiS8t_vhFcFklUs`s`yFiStqiSjS_ kl{bLftZ4klcFts`tl yFbFbFtcF_aFbvb>FFiSiSyLySh6^xrLaU^`iD]s}FcLcF^`iO{rFtZeFhvjSiSFiSyFSbFyLyF^~irLtcFcFbF t iS ntaFs`iSjWkls`yFiSbF_<FiSySh6rLiSaHdklaUiSyFttbFkla6eL]\FtcFbFtS}\FtFyL^`jSb6eLiLY]S\FcFi F\FyFbFbLjSiDklUkls`sSgkls`iSjSsU]i~rLcF^xiSh ijSiaFqptyL4^`6aFeFsxhF^xeLyFiS^Fa2irLrLiSyFSUcFiD4OklbLFklyFs`b>tfkli^x6 yLjD^`^`cFyFtbLcF^`bFSb2tleLiSgSScFiStkls`ig24¤ bFiSps`4bFjDtc6^D¦ rK^`tsOiDkcFiSjD^`cFbFtZyL^Skkf^`s`yFbFjD^`s`³g øBùJ÷ /øBù þ>ò!ø xòO¤ ø þ ñõò~¦ÖqyL^`aFsx^xeLY XjStlrLtcFbFtkls`i~U^Skls`bFaFb klUtkls`jStcFcFiqiSSiS^`^`tsZqyL^`aFsx^xeLgScFUHaUiScF Ft6 FFbFyFiSbFpb>jSyLirL^SklbL{bFmLyDiShFc tFsOiSkcFqbLtfyF^` tsStk¨tqhvFa6yF^`bLa 4tScFtkltaUcFiSbFcF_ntY \FcFs`iSi~tU4^SklcFs`i~bF\Fttklks`aFjDbF^O_vyFqt^xyLeL^`bFaFps~^`^x Fe bFcF_tqkqjSpiD^xk rK^`cFcFiS_OcL^ZcFt jStyFi~hFs`cFiDkls`cFiS_O4tyFiS_v-¤ ø2ù où xøBù þ>òBø oñxø !ÿ xú³ oø U¦Y iSiSs`cFiS{tcFbFtz¤ LY SY D¦TFiScFbLf^`tsSkhs`tFtyFg]j]k4zkeLtf^`s`tf^`s`bF\FtkaUiSizi~ b6rK^x cFb6hn}Ö¤¥klyFtlrLcFtivFiv^`cLk^S4`eLq¦}
^ kljSiS_Lkls`jSi k^S4iSFi~rLiSSb6hyL^SklFyFiDkls`yL^`c6hFtsSk¨h bcL^jStyFi~hFs`cFiDkls`cFt2D^`yL^`aFs`tyFbLkls`bFaFbkls`i~D^Skls`bF\FtklaUiSiqyL^`aFsx^xeK^FY8«~rLU\Fb Skls`i~s`Dg^Sklkls`s`bFi~U\F^StklklaFs`bFbL\FHtklj?aFibLrLcFbOiDjSiqfjD^Sklkltl{s~rL^`yFSUtS}Lb6j?Oklfb6eL^Svkl{ksx^S^`4DiS^xF¬i~Y rLðiSyFSb6UhvbLq4b yL^`kaFeLs~iS^xjDe^S4rLbni`eF}xUjSttlc eLqbFyL\F^`taFcFsxbF^xt]eK^OyL^`cFpt4kltiSyFFiSyFjiScLjS^`i~`OeLrK^xrKt^`sStk4h iS6_24\Lt^ScFklgSs`{b2tyLcF^SbFktkHf^`klsxs`^`yFs`bFbLjDkl^`s`tbF4\6iStkliaFb6kls`iUZ^SeLklUs`aFbFs`\FSt^`klaD FiSbF_ni Y ð BG
&É
È
0&
4 $(M
¦'
0&"MB
3 6
""6*6 3
5
ù-o ùx øBù" R ô( ù-x ÷oö ñxò°+4 ø!øB÷oö( øBù-o ùx øBù" *V ö³ò!òA÷oøBñ÷oö/òòoù 4+øBùJ÷*Mþ1xöoõòVô/øBó/ôò57ò/òBñ"$I÷7ùþ5ñõòe÷7ù ñ÷-ô+ÿxúñ÷°*÷(J
qtcFs`yL^xeLgScFiS_ 4irLtleLgS¡s`tiSyFts`bF\FtklaDiS_vqbFpbFaFb>hFj`eFhFtsSkh f^`s`tyFbL^xeLg` cL^xh2sSiS\6a6^dOiS ntaFskls`i`eLgf^xeL2yL^`p4tyFiSjL}D\Fs`ir6eFh>UaU^`p^`cFb6h?tliFi`eLi~tl ø
&É
D
/Ao
"+ò
# =&xx #>
"ã"1 #Æ
Æ
Æ
ÖbFk`Y LY ´Um ]X,+#Q&*)5.!"6)+&* &*$7?.JØû7Ú[%u2,+#Q&*)+;IHJO*.!bØdc5Ú¨ñ cFs`iSb6\Fh£aFjbnY!FýfyF^`iDpkl6s`4yLt^`tcLsSklks`hnjS}t2jDklrLtfiDpkl^`sxjS^`bLs`kliSbF\FscFiiSsrKyL^`^Ss`kgkfaU^`iSs`iSyFyDrLbFjDbF^`cLt^`4s`/iS_qi~prL^xcFrKiS^_\FbnmtiSiDF4bFtkls`yFjDbF^x\FhtklXaDkliStl_ eLtcFcFU}T4B4i~tkl\FbFsx^`s`g?sx^`aFbF4bs`iS\Fa6^S4b FtleLtl^xeK^`aFs`bFa6bn}Tj?kli`eLcFt\6 cF4iSi`_veLtklaFbLkleLs`t4}FtbFp4U¡\L^xklh \FbF^`s`sxiD^`£t4s`iS\Fkla6\F^SbF4sxb ^`t6£eKs`^`iScF\Fts`a6^S4}Lb j2lkleLiDtklaF~rLs`yFtiSkqcFl¢^`pb>iDh6rLd?yFiL^`Ys`iD4b6eLb «~rLt}rFeFhaFyL^`s`aUiDksSb¬}zcL^`pjD^`s`gf^`s`tyFbF^xeLgScFtWs`iS\FaFb /ùJ÷-ÿ !ÿ LY ýf^`p4tkls`bFj ^`s`iD4BcL^2FyDhL4iS_cL^?yL^`jScFiDHyL^Skkls`ihFcFbFbrLyFUiSs2rLyFUl^F}KFi`eLD \FbL¢i~rLcFiD4tyFcFU*4irLtleLgvaFyFbLkls~^xeFeLbF\FtklaUiS_.yFt{ts`aFbn}
^ yL^`pSyFiDk^`j?b6.keLD \L^`_FcFiL}UFi`eLU\FbL4irLtleLgOirLcFiD4tyFcFiSil^`p^FY rLtklgL}Ui~rLcL^`aDiL}6keLtlrLStsaUiStl \Fs`i Us`iS\FcFbFs`gL}Fb jOFtyFjSUiS\FtyFtlrLgd FiSc6hFs`bFt?uxkeLU\L^`_FcFiL|~Y rLOkliDkltlüqrFDhLkl4s`b gyL^`s`^`iDpcF4tzyLb ^SklaUFi`i`eLeLti~`eL]tcFsSkhjq¤ cFs`iStz\Fja6k^x4 zxkeL, xt]p,^`xjSbL,kl...bL4bOiDyLksS^SbOkkliSs`sihFjScFyFb6th 4tl4cFtlb Od a6{^`bFyFyFs`iSbFaFcLb6^2OklFsxyF^`tls`rLbFtl\6eKcL^x^xhn}T«¤ ý§^ bLj?k`Y kL4Y z´`¦kY eLvtib6 cFpicL^~eL\Fb?tcFklbFaU^`_ prF^`s`eFghviyL^`s`piDcF}U \Fs`FiyFiSiDcF4b tl yL^SUkls`FaUyFiStljUrL¦tlj eLtcFkeLU\L^`_FcFi , qts~}naU^`aFbL¢SFyFbF\FrFeLbFjSz¢s`ivyL^SklFyFtlrLtleLtcFbFtOcL^S¢cFb a6cL^`^zpF^xyDeLhLiD4kgLiSxY_nð}cLeF^xh.rLi]s`iSp^xiLrK}¬^`\Fs`g]s`iSbUSeL!bDiSiSjSsiShyFSbFs`g>4zikkeLeLtUcF\LcF^`i_F¤cFa6iD^`rK\6^`eLt4tcFiS*t>yLaU^SiSkls`FiSyFyFtliSrLtlieLti~cFrLbFbFtScL}f^`cLaDiS^SjS!cFY t>üqrKiS^`cFs`iDi 4USp}4cLt^`ks`eLgLb}fF4yFbFcLbL^x4rFteFttl bFs.iScFi.klsx^`s`bLkls`bF\FtklaUiD4£b6eLb£rLts`tyL4bFcFbFyFiSjD^`cFcFiD4£^`cLk^S4`eLYzrLcL^`aDiL} tsxk^`eLsqb?klc64iS<jD^zbLbO4tkltcF.iSjDjS^FiS}ps`4iZi~D cFtiDklFs`yFgbOFfiS^xjSeLs`iDiSvyShF\Fs`bLgkeLaUtklcLF^`t`yFeLbL4rLtcFtcFsbFb2_cL4^`i~` eLcFiZrK^`Ds`klgs~^`yFcFtiSpjSbFeLs`g`g ^`aFs keLU\L^`_FcFiDkls`bn}K^OFyFbvSi`eLgS{iDWd2FiDkls`yFiSbFs`g cFtaUiSs`iSyFU!4irLtleLg2klsx^`s`b6 kls`bF\FtklaDiSi2^`cLk^S4`eFhnY üqyFtlrLFi`eLi~ bL}6\Fs`iOsx^`aU^xh>jSiSp4i~ cFiDkls`gtksSgL}6b>\Fs`iL}6cL^``eLrK^xh?cFtaUi` s`iSyF_£FyFiD4tl Us`iSa (0, x] iDklbn}44*Dkls~^`cFiSjSb6eLbn}8\Fs`i \FbLkeLi ^`s`iD4iSjcL^cFt N (x) eLb s`tFyLt^SyFklgLF}SyFyLtl^`rLptlSeLbFtjDcF^xih F(0,ipx]^`aDiScLcF^A iSs`üqyFDt^SpkaFklb iScL∆x^qkliyLkl^`yFpltleLrLbFcF\FbLcFWiS_pcLrF^eL\FbFtcFcFbF}Dt4HhNS~(x)i rLtY ÖFi`k eLU\L^`s`g]s`iSs]tyFtp~eLg~sx^`s]brFeFhs`b6iSs`yFtpaDiSjL}sxY~tSY~UjSb6rLbL}~\6sSiZc6tp^`jSbLklbL4i iSkliSszcL\F^ZbLklklitleklyF^`tls`rLiDcF4bLiSjzcLpcL^^rL\FyFtUcFbFb6t iSs`yFtpa6^x N (∆x ) yL^SklFyFtlrLtleLtcFi]Fizp^`aUiScFe üqD^Sk }xFyFiSFiSyF FbFiScL^xeLgScFz hN (∆x )i = hN (x)i∆x /x L } ` s ? i 4 ~ i F c 2 i l k 6 a ` ^ p ` ^ ` s L g F } F \ ` s 2 i 4 ¡ L b 4 l t t L r l t L e 2 i k u ÷ ñ÷-ôx÷ ñõ[ÿ ó /ø!øB÷7ñ÷oö/ø #ÿ ∆x oñxø !ÿ òÀÿ}UiSFbLkljD^`]bL}6cL^`FyFbL4tyn}Fi~rLcFiD4tyFcF_>b6rLt^xeLgScF_>l^`pSY ý
"'
w
1
'
2
3
G
C
i
i
i
3i 6
5 i
5
"4
0&
/A7
¾&
FyFtlrLtleLvtcFi~b6rLhntleL}bF\FyFyFiStjDp^`jSs`gL\L}Ö^`s~_FY cFtSYiFFi`yFeLiDUkl\Ls`^`iLs`Y g£üqaDiDiS4cFtaFklyFs`tbFs`jcFFttyFyFjSt^x_eLbF^`ps`^`iD FbF}b
ò¥ Ã
ÆE #
&
G
1
−µ x
2
hN 2 (x)i − hN (x)i = µx,
rLt µ = const d>eLbFc6t_FcL^xh6eLiSs`cFiDkls`g>^`s`iD4iSjLYûÖs`i>klj`hFp^`cFi?kiDkliSSzHkljSiS_6 kls`jSiDyL^SklFyFtlrLtleLtcFb6h ψ (x) = µe }FrLiSj`eLts`jSiSyDhF]tiUyL^`jScFtcFbF hN (x)i = µx,
−µ x
1
`siSyLs`cF^`aFiS{s`SttcFsSbFk¨thvdψaU^`a½/ψ÷7ùAøcFtzùAp^`øBùAjSbLö klxbFòsqó iS!s ÿ xxY5ù ûÖLs`Y ikljSiS_Lkls`jSiqFD^SkkliScFiSjDklaDiSiZFyFiS Ftkk^ i~6yL^`cFbFjs`tFty6gOs`iSst^xeLliSyFbFsS`eLDOrK^`cFb6h rFeFh>FiDkls`yFiStcFb6h>keLD \L^`_FcFiSi>yL^SklFyFtlrLtleLtcFb6hW^`s`iD4iSj cL^>FyDhL4iS_n}njSiSpgD4tjD4tkls`i ψ (x) rLyFUiSt yL^SklFyFtlrLtleLtcFbFt ψ(x)}fcFt>hFj`eFhF]ttk¨h£a6klFiScFtcF FbL^xeLgScFzIY üqi`eLgSp`hLklgleLtl cF4bFtcFt2s~k^`eLyFUcF\Lz^`4_FcFbiSklyFi>tl\FrKbLkls`keKjD^S^v4^`bs`iDs`4tiSiSyFj>bFcLb^ jSiSts`yFyFithFps`aDcFt iD[0,kls`tx]_£4ó/iô cF+iø xcL÷o^`ö _Fs`b þ5yLùJ^Skl÷FyFóxtlòÀrLôtlöoeLõ tl Çñ ñ ÷ ùAø »öÇùJ÷7þ +ò }fklyFtlrLcFtt>pcL^\FtcFbFt>bWrLbLklFtyLklbFY ÖkeLb£FyFb 4s`bviD.aDiSrLcFbLtkl\FFcLt^FyL}Fkls`b6iOh>rFyLeF^ShvklFs`yFi`tleKrLkltls`eLt c6b60kh eLiSψ(x) b>^`s`iDf^x tj28yL^SFkkli`s` FihFyFcFtl b6h>cFt44tl?OFrLi`?eLklUiD\FklbLtlrLcFhNbL4(x)i b σ ∝ x, s~YLtSYLiSs`cFiDklbFs`tleLgScFtZeLUaFs`D^` FbFb δ = σ /hN (x)i \FbL∝keKx,^ ^`s`iD4iSj2j>keLiSts`i`eLbFcFiS_ SrLUs?USjD^`s`g a6^`a Y
]seLbF\Fb6tOiSs2FD^Skkli` cF\FiStkljDaDkliDaD£iSyFitl^` cLbLk^S44t2`¤ eFcFh teLFbFyF{b>geL]jx Ss`iD }U\F}Fs`aUi^`s`a t6jStyF{gtS}Fs`^is`xcLi`^`eL`gSeLaDiOrKF^`yFtsSb kh2Si`jeLgS^S{klbLb64LF¦s`Y iSs`b6 X keLU\L^`t StklaUiScFt\FcFiS_
1
1
04
(4.2.1)
1
Á4 /
1:
"1È
È 5
3
"$
©M
1
2 N (x)
©
N (x) −1/2
N (x)
−ν−1
ν
4 <""H 0
0
0&
/
%4&&
/Ao
"+ò
('
# =&xx #>
"ã"1 #Æ
Æ
Æ
SFi~rLÖ6kfeL^`bs`gLF}LyF\FbFs`c6i>hFs`yFgtl\FjSg?i.FjSyFcFiDbLklfs`i?^`cFb6bFrLtvts2s`i`i>eLklgSyFaUtli.rLtFtkyFjSFtyF_t4t^`cFaFcFs~iS}§_s`aUi£iScF4 Fit cFcFs`iWyL^`S FbFeLt_i ^`s`iD4iSj f (x) = dhN (x)i/dx ∝ x , USjD^`]t_k?yFiDkls`iD x Fi kls`tFtcFcFiD4Wp^`aUiScFSY4^`a£s`i c6t rLbFjSbFs`tleLgScFiL} cFi s`i2cFtsx^`anY taDi2kliSiSSyL^`pbFs`gL}U\Fs`i2FyFiS Ftkkq`eLDOrK^`cFb6hn}FtcFtyFbFyFU]bF_ yLbF^SFklFiSyFs`ttls`rLbFtleL\FttcFklaDbFiSt_*^`s`u~iD\L4^SiSkljLs`}~bFbF FcFjD|~^`}yFyLbL^S^`kcFks`^xt cbFiSjDs`^`cF]iDklbFts`_¢tleL^`gSs`cFiDiZ4cL^`F}zyLk^`eLj`teLjDt^£cFb6cLh^`FrLyLjS^`b6jSi£tb6cFeLb6hb cFklF*yL^`6jDi ^2icLrL^xcFeLiDt4jS.iL}Kb£yL^Ss`kiDkl4s`.ihFcFb6t>h p^`4aDtliSOcFrLDYIûÖkliDs`kli tlrFplhLcL4^~\FbbFj?s~}4eF\FZs`Si iDUSkeLjDU^`\LcF^`bFtt yLf^S(x)klFyFrLtlrLi`tleFeLOtl cFi cL^``eLrK^`s`gDkhj iSSt kls`iSyFiScF!iSs jSSyL^`cFcFiS_s`iS\FaFbn}nFi`eLi~tcFbFtOaUiSs`iSyFiS_ rL4yF!UjSb6¬S}ftky6eLttlrLiSpjD^?^`cLs`^tl\LeL^xgSeLcFi>iL}8aD6iSeLiSiSyDs`rLcFbFiDcLkl^`s`s~g.Y q^`s`i?iD4s`iSiSjs rL^`i`s`eFiD cLcF^bF\FUSt<jDcF^`tOs`giSsj eLbFiS\LS^`t>tsSkls`khiSyFiSi`s cF*iSs`cFiDklbFs`tleLgSc6ieL]SiSibFp?cFb6¬IY ü^`yL^xrLiSa6kl^xeLgScFiDks`gklbFs`D^` FbFbiS\FtjSb6rLcL^Fm tkls`keLiSbHyFiSiScFs`cF}SiDs`klibFs`iStls`eLcFgSiDcFkliLbF}Ös`tlkleLaUgS^xcFi t}§s`iS\FaFb iScLx^qrL}§i`6eFeL iSs`cLcF^iDSkls`gs`g^`^Ss`kliDbL4fiS4j.tUs`SyFbF\FjDcF^`tiSs _nmDj.USiSSt jD^`s`cLg ^xcLeL^`tFjSyLiL^`}
jS^ i Dbv#jSiSpp^`yLs`t^Sklsx^`Fs`tgOyFxtF_FyF>s`bbWxFjtyFy6ttl4 tbLtcFUbFSbvsSjDiS^`\6cFaFb6bhn}¬cLcF^`i`eLkOSrLi`teLcFtb6t hvjSiSzs kliSxaDiSrLii x cL^~\L^xeLgSc6iSipcL^~\FtcFb6hn/Y ûÖs`iSiL}i~rLcL^`aUiL}cFtÖFyFiSbLk¨Di~rLbFsFmjDkltÖ^`s`iD4WyL^Skkf^`s`yFb6 jDv^`t4bLiS4_2tklts`yFUrLaFtls`eLUi yFk
−ν−1
"
#
1
2
1
2
1
G
- ( -
e
ë{åä
,~,|
*M
K &2
³Û
8ç,³¶·~|
¹t¶
^`piSjStqyL^`aFsx^xeLgScFUFeLgL}6rFeFh aDiSs`iSyFiS_>DkeLiSjSb6h
hNν (x)i = µν xν ,
fν (x) = µν νxν−1 ,
*MB -
K &2
0<ν61
(4.3.1)
jSFi`eLc6hF]sSkh2cFtZs`i`eLgSaDij^SklbL4Fs`iSs`bFaUtZSi`eLgS{b6Os`i`eLbFcn}UcFib?FyFb2eL]S x cFbFtdtjSt iDk2klòBsxñx^`òÀôcFoiSùJj`eL÷-tôxcF÷*b6ÿh Y Ut} cFøBt÷oyLö/^`òÀô s`iSAyòBñFñ÷ eLb2Rklô j`hFpù ^`cxkútñt÷ 6eLóiSõ s`cFxiDú kls`}`gS^Z 6feLiS(x)s`cFiDUklyLs`g^`jSψcFt(x) Ú
*M
°
1
ν
C
ν
fν (x) = ψν (x) +
Zx
fν (x − x0 )ψν (x0 )dx0 .
(4.3.2)
üqiDklsx^`jSbLWp^xrK^~\62cL^`_Fs`b tcFtyF^`sSiSy>yF^`aFsx^xeLgScFiS_?FeLb FiOp^xrK^`cFcFzSkeLi` jSb6hL¤ LY FY ~¦ üqyFbL4tcFbL£a UyL^`jScFtcFbFjSiDkklsx^`cFiSj`eLtcFb6h?FyFtiSSyL^`piSjS^`cFbFt ^`6eK^Sk^Fm 0
¦'
fbν (λ) = [1 + fbν (λ)]ψbν (λ).
(4.3.3)
0[o
Üx&
D eLU\L^` ν ¦=kliS1iSs`¤ jSyLt^`sSjSklcFs`iDjS4`ttsyFcFiD4jklyFtlrLcFtyL^SklFyFtlrLtleLtcFbF^`s`iD4iSjvcL^viDklbn} f (x) = µ ò¥ ádx75x
"ã"1 ##x
ÆE R
1
1
bn}LkeLtlrLiSjD^`s`tleLgScFiL}
ψ1 (x) = µ1 e−µ1 x ψb1 (λ) =
µ1 . µ1 + λ
ðt_Lkls`jSbFs`tleLgScFiL}xFi~rKkls~^`jSbFjqs`iqjSyL^xtcFbFtjqUyL^`jScFtcFbFt¤ LY FY S¦nbOyL^`pl yFt{bFjOtiOiSs`cFiDklbFs`tleLgScFi fb (λ) }6Fi`eLU\FbL ¦'
1
fb1 (λ) =
ψb1 (λ) µ1 = , b λ 1 − ψ1 (λ)
iSs`aFrK^bvkeLtlrLSts f (x) = µ . üqiDklsx^`jSbLs`t6tyFg/jSiSFyFiDkbFcL^\FtSm2a6^`aUiS_rLi`eF cL^Ss`g/UeLiSs`cFiDkls`g ψ (x) yL^`p4t}FyF\FcFs`iDiSklSs`g νt
1
ν
¦'
ν
¦'
ψbν (λ) =
−ν
ν
fbν (λ) µ = , µ + λν 1 + fbν (λ)
µ = µν νΓ(ν).
qyFb>jSFi`eLcFtcFbFb>iSSyL^`s`cFiSiFyFtiSSyL^`piSjD^xcFb6h ^`6eK^Sk^ ü
ψν (x) = ú
−1
n
o ψbν (λ) (x) = ú
−1
½
µ µ + λν
¾
(x) = µ ú
−1
yL^`pleLi bLkl6f4?tiD4ts`yFbF\FtklaDiS_ FyFiSyFtkklbFb>jOyDh6r
} λ−ν
∞
X 1 = (−a)j λ−γ , −ν 1 + aλ j=0
b jSiDklFi`eLgSplStfkh>kliSiSs`cFiS{tc6bFt XyFtp~eLg~sx^`s`tqFi`eLU\FbL
ú
−1
©
λ−ν
γ = jν + ν,
ª xγ−1 . λ−γ (x) = Γ(γ)
ψν (x) = µxν−1
½
∞ X (−µxν )j . Γ(νj + ν) j=0
1 1 + aλ−ν
¾
(x)
Sª + /Ao # =&xx #> []\FtbFs`ZeLjDt^xyLh ^jOFjSyFb6tlrLrKtqklsxyD^`h6j`rKeL^ tcFbFt Lr jSD6L^`yL^S4ts`yFbF\FtklaDiS_ qUcFaF FbFb vbFs`sx^`l
" ò
"ã" 1 #Æ
Æ
Æ
G
Eα,β (z) =
∞ X
zj , Γ(αj + β)
FtyFtFbF{t£tcFtyL^`s`iSy qyL^`aFsx^xeLgScFiS_?FeLb jOjSb6rLtSm j=0
ψν (x) = µxν−1 Eν,ν (−µxν ).
^`FiD4cFbFjL}\Fs`i ψ (x) dq6eLiSs`cFiDkls`gZjStyFi~hFs`cFiDkls`brFeFhkeLU\L^`_FcFiSi]yL^Skkls`i~hFcFb6h 4tlOrL.kliDkltlrLcFbL4b^`s`iDf^S4bqyL^`aFs~^xeLgScFiS_.FeLbn}
p^`FbF{tjStyFihFs`cFiDkls`g X s`iSiL}6\Fs`i X FyFtjSzklbFsOp^xrK^`cFcFiStqpcL^\FtcFbFt xm
(4.3.4)
ν
û
(X > x) =
Z∞
ψν (x)dx = Eν (−µxν ).
Lr tklg dvi~rLcFiSL^`yL^S4ts`yFbF\Ftkla6^xh qUcFaF Fb6h vbFs`sx^`l tZeLtyL^ ¤¥kY[üqyFb6 eLi~tcFbFEt~¦YüqyFb ν = 1 iScF^FyFtjSyL^`^`tsSkh?j iSS\FcFUaUklFiScFtcFs`S} x
_G
ν
E1 (−µx) = e−µx ,
Lbb¢44tt bLF4Dt^StkkliScFrLiStljDeLklia6bFk_?iSFSyFiS\F FcFtzkkzrLFyFDiS^SSkcFkliSiScFiiSFjSiSklaFySbLh6rLa6^>FyF¤ÅiSrL FyFtiSkSklcFiD_>(Y üqFSyF^Sb kklνiScF
0
T
·³Bï|³¶·çB³
ë{/ë
| ~¹i
|
¶.~ðé
ï|.~¹i
nyL^SqbFakeLU\L^`_FcFiS_qUcFaF FbFb bL4ttls>qiSyL42eLtkls`cFbF F}TjDkltkls`D Fkh tcFFgSivaFbOsx^`aUaDiSiSs`_ iSyFeLiSt_Okls`bLcF4bFt F]t2scFit rLbFiS\FcLt^`cFaUg iSjSUrLHiSSNjScFziL(t)klY8iSZs`Skl}`iScFSitcFyLcF^`i>pcFUs`ikrFsxeL^`bFcFcFiSSjSY+bFüqsSkih rLcFcFbLtf~rL^`s`iSg`` cFztsiS}`a6aDiS^`prK^`s`^zgDrFkeLhZbFiScF\FHtcFklgzs`USFi`eLtcFgSt{aOiSbL_n4}bt]StlsqSUi`eLbFgS_{DiS_tfyL^`rLp6SfyF^`iDtk`s~m}rF\FeLs`bFiZcL4^bFklcFs`iSUjDF^xteqc6eLgSaFtklb s`4cFb6i` FjSiSiSStS}~bOs`UsFi~r cFiSbt4FiSL^xrK^`tsSk¨hOjSc6iSjSgkls`UFtcFgSaU^F}xrK^qbOcFti~rLcL^FY Y Y cLu q^vtjyFsbFpFjSiStSkls`tcFyFiDmb ¡Ú |qdWb6jSeLiDgDkl4a6tSeLYfbF]aFcFs`ts`s~iS}fi`L ^xs`rKi^xhnsx}f^ iSc£eLtFkli~s`rLcFiSbFS LcF^i btcLyF^`iSpÄ jDæ^`tsSyFkb6h.h \FqtyFbFs`aFiS~jSeLiSb6_ ¤ÅrLg`hFjSi`eLgDklaUiS_L¦lY a6kl6tyF©nbLiq4tcFts`tSkYL^S4XiSiStplgDkl4jSiSt_LklbFs`jScFiqs`tqyFyLjD^x^`e?aFs~rF^xeLeLbFgScFcFiSiS_ _LFkZeL\FbbLFk yFeLi~iDhFj`eF^`hFs`tiDsS4k¨iShj jqNkeL}6tlyLrL^`Up]iSSgStt ti]cL^ hF\Fttabn}~Fi~rKkl\FbFs~^`jZ\FbLkeLiq^`s`iD4iSj]j]a6^xOrLiS_b6pcFb6¬}~FyFtlrKkls~^`jSbLyFtl peLgxsx^`sqn jjSb6rFtbLkls`iSyL^Sf+Y üqyFb ν = 1 jSb6r bLkls`iSyL^Sf4HSrLtsqp^`jSbLklts`gqiSs C
=
@
# =&xx #5
7f
ò¥ ò
¬ §# #&1ã$§ R&5x÷Ç
Æ
#´
Æ
§bLk`Y LY Fm Éb*Q&-#&-+%#&Q[.!0* $.!^7.D)+.b-^%+&-+%#"6Y ò2\\)#.!b 0-O95.!g%+Yo.!&*$DO*%#0-$7O*)#.!QQREJY 0-9+E/W5.!& Ø 0-9#&-Yo.7Ú%J#&V0-O95.!g%+Yo.!&*$D&*&VY0-9+E/W5.!& Ø Ú(Ø 0-N#)#.BYo.7Ú©) òleô * ñ ý
"'
ν=1
ν < 1 ν = 1/2
§bLk`Y LY ÑFm '2aVaX%+K+%#&-#$dN#&*)+&*Q&*g.!&*Q0*$%¬?.!?AaXE/#?K+%#" ) òlôe* ñ \FbLkeK^^`s`iD4iSj N (L) jbFcFs`tyFjD^xeLt L b2\FbLkeK^qhF\FttanY ÖkeLb?klyFtlrLcFtt]\FbLkeLi^`s`i` 4iSjvj hF\Ft_FaDt rLiDkls~^`s`iS\FcFivjStleLbFaUi¤¥klaU^xt}
Si`eLgS{tOs`yFtlU \Fts`yFtl rLtk¨hFs`aUiSjU¦}Us`ipN^`F(L)/n i`eLcFtcFSrLUsjDkltzhF\Ft_FaFb?b?FyFbF`eLbFpbFs`tleLgScFii~rLbFcL^`aDiSjSz ý
$'
ν
&
S
"+ò
/Ao
# =&xx #>
"ã"1 #Æ
Æ
Æ
§bLk`Y LY Fm {[9+E/W5.BH++;&)+&2.B9+%#b2.BK+%+%aXE/#?K+%+% Ü ØÙY7&*)of/+%+HO2)#.aX%#?5Ú(% ØÙ+%#g+%+HJO2)#.aX%#?5Ú¨ñ \FbLkeLiD¢^`s`iD4iSjLYüqyFb.qyL^`aFsx^xeLgScFiDHtOyL^SklFyFtlrLtleLtcFbFbH¤ ¦Z\L^Skls`g>hF\Ft tan}8aU^`aFyL^`jSb6eLiL}
SrLtsiDklsx^`jD^`s`gDk¨h.FDkls`iS_¢«¤ ý§bLk`Y LY D¦Y Zνj`eL
?'
Nν (t) ν = 1
ν = 1/2
?'
©F
B K9"<"
-
ν
1'
1G
'
R(ν) = lim hn0 /ni.
qtyFtFbLk^`j ¤ LY FY D¦ÖjOjSb6rLt b brLbLqjStyFFti`cFeL FcFbLbF^xj eLgScFiSiDS4yL ^`Us`yLcF^`iSjSt cFt[λcFFbFyF +tiSµ]SyLψ^`p(λ) iSjD^xcF=bFtSµ} FyFb6Di~rLbL a rLyFiSScFi` ü
µ→∞
¦'
ν
ν
vDt Sklsx^`cFiSjSb6eLb£j P =ψ¸
= n(x)}8\F+s`i.µψFyFb (x)ν =<µδ(x). yFt{tcFbFt>s`iSi UyL^`jScFtcFb6h jSyL^xO^`tsSk¨h>\FtyFtpqrLjSD6L^`yL^S8ts`yFbF\FtklaFUBqUcF1aF FbF vbFs`sx^`l tZeLtyL^ G
0
ν x
ν
ÝÜ
ν
7G
ψν (x) = µxν−1 Eν, ν (−µxν ), Eα, β (z) =
∞ X
zn . Γ(αn + β) n=0
# =&xx #5
7f
ò¥ ò
¬ §# #&1ã$§ R&5x÷Ç
Ñ
Æ
§bLk`Y LY SSm V9#$#0*$% Á ñ Utkls`jSStsttqi~rLcFiOFyFtlrKkls~^`j`eLtcFbFts`iS_>6eLiSs`cFiDkls`b ´ } ý
Æ
$'
ψν (x) ν = 0.1(0.1)1 _
ψν (x) =
1 t
Z∞
e−t φν (µx/t)dt,
φν (ξ) =
sin(νπ) , π[ξ ν + ξ −ν + 2 cos(νπ)]
FiSpjSi`eFhF]ttzSklsx^`cFiSjSbFs`g^SklbL4Fs`iSs`bFaF FiSjStlrLtcFb6h 6eLiSs`cFiDkls`b?FyFb Si`eLgS{b62bvf^xeL?jSyFt4tcL^x ¤ yFbLk`Y LY S~¦m 0
α 6= 1
$'
µν ν−1 x , Γ(ν) ψν (x) ∼ νµ−ν −ν−1 x , Γ(1 − ν)
cL^
x → 0; x → ∞.
Ly ^`s`iSyF¢vFi~hFklj`cFeFiShFjD]^?sSUk¨Sh tlOjOrKyF^`ttpf~eFkhgxsxjv^`s`s`tqiDFyF}nbL\F4s`ti cFtrLcFyFb6iShvScFs`i`yF trLSbLiSjD^`qcFtb6yFh>tcFk F^SbL4^xiSeLFg`i~cFrLiSStb6iShnFY tl ýf^Skk4iSs`yFbL¡s`tFtyFg yL^SklFyFtrLtleLtcFbFt rFeFhkeLD \Ls`t^`iS_FyFcFbFiSb ijS\FiDkbLklks~eK^`^OcFiS^`j`s`eLiD4tcFiSb6j h qyL^`aFs~^xeLgScFiS_?FeLb pcL^(x)iSs`yF=tpaUtq(Nr6eL(x)bFcFiS=_ xn)Y iS eK^SklcFi G
û
n
û
pn (x) ≡ (N (x) = n) =
û
n X j=1
û
Rj > x −
n+1 X j=1
Rj > x ,
n = 0, 1, 2, . . .
D + /Ao # =&xx #> bvkeLtlrLU]^xh klbLkls`tf^ObFcFs`tyF^xeLgScF>UyL^`jScFtcFbF_?rFeFh p (x) bL4tts28tkls`iLm '
" ò
"ã" 1 #Æ
Æ
Æ
n
pn (x) = δn0
Z∞
ψν (τ )dτ + [1 − δn0 ]
Zx
ψν (x − τ )pn−1 (τ )dτ,
qiDkeLtqFyFtiSSyL^`piSjS^`cFb6h ^`6eK^Sk^Fm x
ü
0
n = 0, 1, 2, . . .
Fc]iSSyLiO^`yLs`cF^SiSklFtyFFtlyFrFttliSeLStyLcF^`b6phniSm jD^xcFbFtFyFbFjSi~rLbFs>a.klbLkls`t4tOUyL^`jScFtcFbF_rFeFh.qyL^`aFsx^xeLg` λν pbn (λ) = −µb pn (λ) + µb pn−1 (λ) + λν−1 δn0 , n = 0, 1, 2, . . . , pb−1 = 0.
qyFb ü
0
ν x pn (x)
ν→1
= µ[pn−1 (x) − pn (x)] +
x−ν δn0 , 0 < ν ≤ 1. Γ(1 − ν)
iScL^FyFtjSyL^`^`tsSk¨h>j klbLkls`t42rFeFh yFteFhFyFcFiSi keLU\L^xhnm
(4.4.1)
dpn (x) = µ[pn−1 (x) − pn (x)] + δ(x)δn0 . dx
rLtklgbLklFi`eLgSpiSjD^`cFiFyFtlrLtleLgScFiStO¤ jOk4zkeLtZiSSiSStcFcF qUcFaF FbF_K¦kliSiSs`cFi` {tcFbFt
x−ν = δ(x). ν→1 Γ(1 − ν) lim
lk aUiS_eL[]tklyLs`^`cFjSbFcF FtcFb6YXh<üq¤yFLb Y LνY ~¦Z=bW1iSFrFbLeLklbFcFjD^`]yLsv^`pklcFsx^`£s`bLklkls`s`UbFF\FttcFkltaFanbF}4t>DkliSjSs`iSg _Lklbs`jDbL^?4rLt]g`hFs.jSi`yLeL^`g`pl SyFiDk`}
cFi yL^`pSyFiDk s`iSsc6t>aFyFbFs`bF\FtklaFbF_nmfcFtscFbiS\FtcFgaUiSyFiSs`aFb6kls`UFtcFta jS¤ s`bFiSs`\FgDcFkhnttSY>}SðiSg`cFhFb jSfi`eL^xeLgDkiSaFjSbFtyF_ iDhF^`s`yLcF^`]aF¦s`}`tcFyvb eLiSt\Fklts`cFcFgqb6 Fr6BeLbFFcFyFcFi~hF¬j`}SeFb2hFt4sSik¨ hvcFeLibF{aU^`g2a6 Fs`yFib FνyFbF
%
5
*6
4
"5 * wÈ
0&"MÈ 1 5 "% "<"
sç.³¶·~³
ë{
""< ° -4 1
hg=6
¹t¶·jï
: "" "
"æ,~|æ
|~ï
qyFiDkls`yL^`cLkls`jStcFcF_ ^`cL^xeLiSZ6yF^`jScFtcFb6h.¤ LY FY S¦ÖbL4ttsOjSb6r
m ü
¦'
f (x) = ψ(x) +
Z
f (x − x0 )ψ(x0 )dx0 .
5
"
/A7
¾&
Zi21 x &x
L \L]^ScFklis`bFiS FFbL}TklcL^~jD\6^`bFtscL^`kl]yFtlrLtcF_ ]kl#jSiSt6eLrLiSjSs`b6cFiDtklcFs`gHbFt\FbFbLpkeKcL^^\Lkl^xs`eKi`^2eLaFaUcFiSiSiSjSyDtrFcFbFbFcL_^`s>cFtkbLFklt\FyFttlpS^`i~]rLcFiStl__ 6eLiSs`cFiDkls`gS YRûÖs`iL}Fi~rLcL^`aUiL}FcFttlrLbFcLkls`jStcFcL^xhvbFcFs`tyFFyFts~^` Fb6hnmKtkeLbvFyFtlrF FbLi`kl\FeLtip ^`bFtss`gLb}
\Fk2pxs`jSivtjvyFi~a6hF^xs`OcFiDrLkliDs`gS kls`i`eLaFcFyLiS^SjSkltcFbFtb.6eF\LhF^StklsSs`k¨bFh£ LcL^^ kOjSt\LyF^Si~klhFs`s`bFcF niD}fklFs`gSyF irLi`1eF−O1/n ^`z b6.rLjSb6tcFbFt>k?s`t4bt?Ft1/nyFtlDi~rLcFz4bjStyFi~hFs`cFiDklnshL4bcFtp^`jSbLklbL4ivrLyFU iSs trLkyF^SU4liD^F4}F2rFeFUhyL^`kljSyFcFtltrLcFcFbFt_Y 6eLiSs`cFiDkls`bkls`i`eLaFcFiSjStcFbF_4¡jScFiSjSg FyFb6rLtas`iD4 yL^Skkf^`s`iSyFDbFkljDs`^`jSs`tgcFcFeLiZbF{rLjSg»b6ø tò cFbF}ftiDcLklsx^S^`kj`jqeLtrKcF^`c6cFcFiD_ \Lk^SeLklUs`\LbF^` Ftt_cFtzj.bFjScFb6s`rLtyFt>taUklSiStcFs~t}D\F4cFHiSSi ~rLb6eLt b StklaDiScFt\FcFiSi4cFi~tkls`jD^Ws`iS\Fta<j£Fy6iDkls`yL^`cLkls`jSt¤ cL^`piSjSttiL}§rFeFh
ò¥ ÿ
ÆE #
/â
>71#
â
'
5
K &2
ψ(x) =
1 −r e , 4πr2
r = |x|
DiSyFiS{i]bFpjStkls`cFi Yxw]klbL4Fs`iSs`bF\FtklaDiStFiSjStlrLtcFbFtqUcFaF FbFb f (x) FyFbs`iD bL4ttsOjSb6r ¢sx^`aUiD4tzyFtpeLgxsx^`s`f4H(x)FyFb6∝rLtr.b , FyFbOreL]→SiD∞.rLyFUiDjSSiSyFtFtyFtlSi~rF cFiS_>6eLiSs`cFiDkls`bn}F~rLiSj`eLts`jSiSyShF]t_>SkeLiSjSbF
as
2
−1
σ ≡
Z
p(x)|x|2 dx < ∞.
yFbFbFb s`DiS^`s` FcFb6iDh?k¨hFbFsDpk¨4h tb>cFbF`sSeLkDh OjOrKk^`eLcFUb6\Lhv^`tSkZ}UFttkyFeLtlb?DirLrLbLcFkliSF_>tyL6kleLb6iSh>s`ScFtiDklklaDs`iSgScF t\FcL^F}Ua>s`iS_?a6^`s`ti`
ψ(x) ∝ r −3−α ,
cL^`pjD^`qtt4FiDt klyFu~tlFrKi`kleLs`tjSsxt^ScF4cFbiStFtyFjStb¬iS|xSY yL^`piSjD^xcFbFt UyFgSt]bFcFs`tlyL^xeLgScFiSiUyL^`jScFtcFb6h
jOiS`eK^Skls`b f^xeL |k| }6aUiS rK^ FyFbFjSirLbFsOavkliSiSs`cFiS{tcFbF
r → ∞, α < 2 +
˜ [1 − ψ(k)] f˜(k) = 1 ˜ 1 − ψ(k) ∝ |k|α , |k|α f˜as (k) = 1,
U + /Ao # =&xx #> aFjSbFjD^xeLtcFs`cFiD42UyL^`jScFtcFbF¡k]rLyFiSScFzWeK^`6eK^SklbL^`cFiD '
" ò
§i y6t{tcFbFtbL4ttsOjSb6r
"ã" 1 #Æ
Æ
Æ
−(−∆)α/2 f as (x) = δ(x). f as (x) = C(α)r −3+α ,
rLt C(α) d cFiSyF4bFyFiSjSiS\FcL^xh?FiDkls`ihFcFcL^xhnYLZSyF^`sSb6sStZjScFbLf^`cFbFtZcL^bFp4tcFtcFbFt DpcLirL^`a6cF^ZiS_vFt6yFeLtliSr s`cFαiDmSklsxs`^`bvaOFttSyF}Stla6r ^`αaOb kls`jiSbFi~s?rLcF4iDbF4cFtSyFk`cF}TiD^ j2keLqUiS\LyL^`4t~jeLjStqrFyLeF^xh6teLcFiSbFs`bcFrFiDkleFs`h bvFjDtklyFtlt s`iS\Ftad6eLZk`YS©
^`aDiStFiSjStlrLtcFbFtyFt{tcFb6hhFj`eFhFtsSk¨h keFtlrKkls`jSbFtStklaUiScFtl\FcFiS_ rFb6eLeLbbFcFkeLUs`\LyL^`^`_FtcFaFiSs`tiSyFkqbFaUbniSY cFÖtk\FeLcFb zs`yL^`kltyFaFtls`rLiScFyFbLbU§h ¦bL\F4bLtkteLsi2aDUiSplcFeLtiS\FjLcF}6iSs`ti2¤Å^SrLkltbLs`4tyLF4s`bFiSs`cFbFbFa6yF^ iSjD^`c6cFiSt f (x) cFStrL§t¦§sjSsxtl^`eLaUbFiSaD_OiL}Ds`tSi}Dqa6^`Ua2cFaFb Fp(x) D } ` s i t l k ` s g D } S S i s n h D } t k L e 2 b ` s i F \ L b k L e > i ¤ j ∝r b6h f (x) SrLtsbL4ts`ghFyFaDijSyL^xtcFcF_2U\L^Sklkls`yFiStla2rFk FiSjStlrLtcFbFt ∝ r }Fk4tc6hF]bF_Lkh U\L^Skls`aUiD}6 rLt f (x) ∝ r Y yL^xrLbFDkX/^ RkeLU^S\LklbL^`4t>FSs`tiSkls`aUbFiS\FcFttkl\Fa6cFbviS_yL^Ss`klyLs`^`ttsOaFFs`iSiOyFpbF^`bHaUiSklcFyFTtlmrLcFtt>\FbLkeLi tt?UpleLiSjj {^`yFt &
as
−3−α
as
−3+α
as
hN (R)i ∝ Rα ,
−3−α
'(
Z« Y ^`c6rLtleLgSSy6iSsbLklFi`eLgSpiSjD^xe>Fi`eLts` tjSb?rFeFhv4irLtleLbFyFiSjD^`cFb6h>yL^SklFyFtlrLtl eLcFtzcF4b6b2h rK^`^xcFeKcF^`aFzs`4bFbnaW}6\F¤ Us`plieLiSFjUiS¦ÖyFib>rLFb6i`eLeLiUt\Fb6t]evi~aUrL^~bF\Fc?tkls`s`tjSyLt4cFcFbFiScntq}6FkliSiSFeK^SeFklhFbFyFtqcFkq_?cL^`j`eLFiDkrKeL^`tls`rLtlc6eLbFg`t i~rL
α ∈ (0, 2].
1 -
Ç
°
hN (r)i = Br D ,
r = |x|,
dhN (r)i BD D−d = r , Sd rd−1 dr Sd
FyFbjDkltl r ∈ (0, ∞) }~^zcFtÖs`i`eLgSaUizjZ^SklbL4Fs`iSs`bFaDtSi`eLgS{b6qyL^Skkls`i~hFc6bF_nY frLbFc6 kls`jStcFcFiStiSseFbF\FbFtiSsZirLcFiD4tyFcFiSiqk eLU\L^xhn}~ rLt`eLDOrK^`cFbFtSeLiZcL^`FyL^`j`eLtc6 cFz}L4üqcFyFiSbLiD44tcFtyFbFcFj iSFtqyF`tleLiSDSOyL^`rKp^`iScFjDbF^`tqcFbFSt rLt6£y6FgSyFttlFrLiO6i`jSeKtaF^`ls`^`iSs`yFgO bFpiSs`yFiSFcFzY f (x) =
0 < r < ∞.
+
cL^xDirLbL
x
e fe(k) + ψ(k), e fe(k) = ψ(k) e ψ(k) =
fe(k)
fe(k) + 1
.
*
/A7
ò¥ ÿ
¾&
"ã"1 ##$§
Zi21 x &x
ÆE #
vi~ c6i FiSaU^`p^`s`gL}6\Fs`i
/â
>71#
â
G
rLt
fe(k) ≡
j
Z
e
ikx
d
BD f (x)dx = Sd
Cd (D) =
j
Z
eikx rD−d dx = Cd (D)|k|−D ,
d
BD 2D π d/2 Γ(D/2) . Sd Γ((d − D)/2)
©
^`aFbLiSSyL^`piD}6s`yL^`cLkqiSyLf^`cFs~^ UyFgStqbLklaUiD4iSiOtcFtlyL^`s`iSyL^ B+
e ψ(k) =
rLiSj`eLts`jSiSyDhFtsUyL^`jScFtcFbF
1 1 + Cd−1 |k|D
.
e e ψ(k) = −Cd−1 |k|D ψ(k) + 1,
^Ok^SiSc>d UyL^`jScFtcFbF¡k]eK^`6eK^SklbL^`cFiDjrLyFiSScFiS_ kls`tFtcFbnm oklFi`eLgSpxh>s`iOrLtkls`jSi
ψ(x) = −(−4d )D/2 ψ(x) + δ(x).
1 1+
Cd−1 |k|D
=
Z∞
−1
e−[1+Cd
|k|D ]t
dt,
FtyFtFbF{t£s`yL^`cLkqiSyLf^`cFs` UyFgStqjOjSb6rLt 0
+
e ψ(k) =
Z∞
e−t ged ((Cd−1 t)1/D k; D)dt, D ∈ (0, 2].
]SyL^`s`cFiStZFyFtiSSyL^`piSjD^xcFbFt UyFgStqFyFbFjSi~rLbFsOa qiSyL4~eLt 0
+
1 ψ(x) = (2π)d
=
Z∞
j
Z
dke
−ikx
Z∞ 0
d
e−t ged ((Cd−1 t)1/D k; D)dt =
dte−t (Cd /t)d/D gd ((Cd /t)1/D x; D) =
0
= Cd DrD−d
Z∞ 0
D
e−Cd (r/ξ) ξ d−D−1 gd (ξ; D)dξ.
'
+ /Ao # =&xx #> rFveFBh U|x|\6eLbb plξrLrFtkleFg>h b6(CpiSs`/t)yFiSFbF|x|yL^SY klF^SyF4tltrFs`tlbLeLtcF}4bF\F_ s`i b6bLeLkliSFs`i`cFeLiDgSklps`iSg jD^~FeLtbyFtliSDSiiSrKp^cL^bL\F4tcFttbFs t jr cFeLtiDkliSStcFcFiDkls`g6iSyDh6rLa6^ r m '&'
" ò
"ã" 1 #Æ
Æ
Æ
G
ψ(r) ∼ DCd r
D−d
Z∞
1/D
d
−(d−D)
ξ d−D−1 gd (ξ; D)dξ =
2−D Cd Γ((d − D)/2) −(d−D) r , r → 0. Γ(D/2)
qyFbL4tcFtcFbFt^SklbL4Fs`iSs`bF\FtklaDiSi]yL^`pleLi~tcFb6hrFeFhDkls`iS_F\FbFjSiS_6eLiSs`cFi` kls`b FyFbFjSi~rLbFsa2kliSiSs`jStsSkls`jSU]t4yL^`pleLi~tcFbFrFeFh bLklaDiD4iSitcFtyL^`s`iSyL^Fm 0
ü
∞ 2nD nΓ((nD + d)/2) −nD−d D2 X r ∼ (−1)n−1 d/2 Cdn Γ(1 − nD/2) 2π n=1
ψ(r) =
@
∼
D2 2D Γ((D + d)/2) −D−d r , r → ∞. 2π d/2 Cd Γ(1 − D/2)
}, î
S Y§x_KaWGXZV µZYrKi][ 2u yF mGu I } F I YSd w }u yF ZI m ¡Y|Yu }¬Ñ#´´DY 6Y¡§x_KYa|WGYXZVu µZYrKiÒ[ }¬J ÑS 6Y u ù +I IM { YdÙ{ Å I m FSY ¿dò 7òÝô yL^`aFsx^xeLY6d WY m vbFyn}nÑÑFSY LY ¡ôò 7òÀôx yL^`aFsx^xeL}UU^`iDk`}Fkls`tFtcFc6tp^`aDiScFY vbFcFbL^`s`]yFbFpqStk aDiScFt\FcFiSiOyL^xhnYUd viDklaFjD^x oZtjDklanm#ý ð2}K`SFSY 6Y yF^`aFsx^xeL/jqbFpbFaUtSY üqi~r
Y
yFtlr
dY 6ú+òBùôx÷7ñxòÀôx÷ SÝ>÷ oùJù Ì» 8d WY m vb6yn}
ÑSSFY ªFY ù 2òBñk9 e k ùAòÀôÆ [9 zqyL^SkliSsx^qyL^`aFs~^xeLiSjLY]]SyL^`p aUiD8 6eFta6klcF?rLbFcL^S4bF\FtklaFb6 klbLkls`tY6d WY m vbFyn}n ÑÑ FY ´U7 Y òBó ñ¼ ©÷ ð þ>ò!öq © §oqpjStkls`b6h£jSUpiSjL[Y ýf^xrLbFiDqbFpbFaU^ ¸ n}fD ¤ `SSD¦Y F Y \±2=_KYe`¶X=¥ £ MI±F } wI I F u yF ¹ · }LS+ ´´2¤ `SF~¦Y ÑF7 Y m_h «K`baSÊ 2 I GY { I w Y { Y w I ´n}U`F¤ `S D¦Y F¢Y ^s_KafSl³`¶_Gr ;jm`¶_Ka ³^XZa¸£g` ml³`¶rKaf MI±F } w±I I F u yF ¹6´n}Lª Ñ ¤ `S D¦Y J $Z & S QS(Y $Z XS(V J $Z XS(V
R$ &
5 ÂÙ.J+
'
05
Z X
R"S(V"Q0S(V"
$Z S&QS(Y
BG
&X-0 Z
T X-V åT &V
S3P Z
9
+ G
ù¬J
¬J ¸J E1È
¸J -J
¬J
&
"G
EJ ÄG
&
J -J
R"S
&Y T &V .S(V"
&X-X
&V$Y T V$ S Z 1Q0T
$
:(
-J ¬J
BG
¸J
Z U
$G
BG
"
$Z S(V"Q0T 3Q
"G
ÇJ#+
¬(M -°
1S(V
Ü
(
"Z S&QS(Y
P$X- Z
S(V"
J
R"S
T XP$YÝSå3T &V
&YÝT &V S(V"
$Z S&QS(Y
&
1õ
'
$
"Z S&QS(Y
ØJ
0M1: -J
'
J
(M" /
J
Ò V
BG
¸J ¸J
ØJ J
R"S
ØJ ØJ
&Y T &V 9S(V$
ET ¦P Z QS3T &VS(V"
-J$
ØJ ØJ
-
'
ÂS3R
ÂS3R
R
Ü
R"S
"G
' (
1Q0T
J J#+ BG
¸+
4&6*
,
.+
(
J_Ù.J
p
[]\
å #â p
o
ì_^H`
aa
å #ç èâ èçèâ ß /æèß â #ßá%å p
o
fe
qp
;gih
jg
EÓ
lk
ís\ït\ r
r h
p
q
èã å #æÔÓ s çèæ #âMtã å^' ß áãè` ß _ÚæÔÓ ÑèãèßÚç ÚßáæÔÓ h
p
dp
dcqk
o
{z
&
ì|
lk
o
"!
ï|.~¹iì~ î ³¶·~¹
|çB|ï
dOiSSaFcFiSjStcFcF_ rLbFqty6tcF FbL^xeLgScF_?iSFtyL^`s`iSyn} d Y üqDkls`g vcFiSiSaFyL^`s`cFiS tFyFbL4tcFtcFbFt ti>a rLbLqtyFtcF FbFyF`t4iS_rLi`eF cFiStO\F bLkeL≡i dxyL^`p qUcFaF FbFb f (x) } G
x
x
f (1) (x) = f
(2)
(x) =
f (n) (x) =
xf
(1)
x f (x),
(x) =
..., (n−1)
xf
(x) =
2 x f (x),
n x f (x),
FyFiSbFpjSirLbFsOFiDkeLtlrLiSjD^`s`tleFgScFiDkls`gFyF.iS.bF.p,jSi~rLc6?cL^`s`UyL^xeLgScF?FiSySh6rLaUiSj f (1) (x),
f (2) (x),
f (n) (x),
a6{^xtOcFbFrFt _ \6eLtcOaUiSs`iSyFiS_Fi`eLU\L^`tsSkhObFpFyFtlrLrLUtiqyFtaFUyFyFtcFs`cFzWkliSiSs`cFi` f (n) (x) =
(n−1)
...,
[4rLiSScFi]rLiSFi`eLcFbFs`gZs`FiDkeLtlrLiSjD^`s`tleLgScFiDkls`gDó/ôx÷ Fi`eLi bFjOttyL^`jScFiS_>k^S4iS_ qUcFaF FbFb xf
(x),
f (0) (x) =
n = 1, 2, . . . ,
...
f (0) ≡ f (x).
x}
*1:/öo÷5ñx÷*M¬ñ"4*ò!öo÷°*÷eó÷-ô15
0 x f (x)
= f (x).
~ ` + xo 5 ('Çx 5G77 R # Ì&xx #5 bFp^`jSyDi~h6rLrLc6 iS_ kqklkliSbLiS4s`jSjSi`teLsSiDkls`jSfU](x)U¡4kl¢s`tSF~trLcFtg WiS6bLtklyLF^`i`s`eLiSgSyLpiS^jDrL^`bLs`gqrFeFth>yFtiScFS FiSbFpyFcLiS^~jD\F^`tcFcFb6b6h h2FyFi` 1 " Çÿ
ã
Æ
"
1 ã
Æ.â
Æ.â
(n)
f (n) (x) =
n x f (x),
yFo tkl4Fti`cFeLcLgS^xphniSjS}
^`FcFibFtqaDiSiSs`FiStyFyLiS^`_Ws`iSjSyFtlcFrLiSt_sSk¨klh.bLrL4bLjSi`eLqbFtaFyFbvtcFiD FkliSbFSyFtiScFjDcF^`iOcFbF~tSrL}niSiSSscFeLiObFs`\LiS^` trKsS^Fk}LhWaUiSiSsrK^`^ yFFDtl 4tcFsx^ qUcFaF FbFbn}6cL^`FyFbL4tyn}
n x f (ax)
=
n = 0, 1, 2, . . .
dn f (ax) dn f (ax) = an = an f (n) (ax) 6= f (n) (ax). n dx d(ax)n
üqi`eLU\L^`t4tFyFbL4tcFtcFbFt*yFtaFUyFyFtcFs`cFiSikliSiSs`cFiS{tcFb6h<FyFiSbFpjSi~rF cFtiS`eK^xrL^`ZskeLtlrLU]bL4bvkljSiS_Lkls`jD^S4bnm SYZzrLc6iSyFi~rLcFiDkls`gLm f (bx + c) = b f (bx + c). 6Y bFc6t_FcFiDkls`gLm n x
n (n)
.
[bf (x) + cg(x)](n) = bf (n) (x) + cg (n) (x), b, c = const
FY eFi~tcFbFtqFiSyDh6rLaUiSj ¤ Fi`eLUyFUFFiSjSiStqkljSiS_Lkls`jSiU¦m
[f (n) (x)](m) = [f (m) (x)](n) = f (m+n) (x).
üqiDkeFtlrLcFttbL4tts?Si`eLttcL^` eFh6rLcF_jSb6r
}LS~rLU\FbvFyFtlrKklsx^`j`eLtcFi2j2iSFtl yL^xsSiSy6cFiS_vqiSyL4tSm = = . LY üqyFiSb6pjSi~rLcL^xh?FyFiSbFpjStlrLtcFb6h.¤ FyL^`jSb6eLi t_FScFbF F^D¦lm m x
n x
n x
m x
'
m+n x
-
[f (x)g(x)](n) =
n µ ¶ X n
k
f (k) (x)g (n−k) (x).
6Y s`üqtlyFeFiStb6pm jSi~rLcL^xhkls`tFtcFcFiS_.qUcFaF FbFb.kFi`eLi~ bFs`tleLgScFz< FtleLz<FiSa6^`p^x k=0
n m x (x−a)
= m(m−1)...(m−n+1)(x−a)m−n =
^S8ts`bL}L\Fs`i
Γ(m + 1) (x−a)m−n , Γ(m + 1 − n)
−∞ < a < ∞, m, n = 0, 1, 2, ...
n x (x
− a)
m
=
½
m!, 0,
n=m n>m
}
ÿ$¥ Ã
('
('D&xx x >
~ 6 ªFYpüq^`yFs`iStlbFeLptjSi~}
rL\LcL^S^xklh s`iviSs>bLklkls`Fti`FeLtgScFpcF`iStf_^xqh UrFcFeFaFh. FbFyLb ^`plkeLi~iSs`yFtbFcF Lb6^`hWs`tlqeLUgScFcFaFz FbF_W FtljeLz^SklbL4FFiSaUs`i`^x s`bF\FtklaFbFt?¤ FyFb x → ∞¦yDh6rL}FbL4ttsOjSb6r
m x #5Æ÷x #Æ "5÷15 ##Æ
n x (x
§ ã
− a)−m = (−1)n [Γ(m + n)/Γ(m)](x − a)−(m+n) , m, n = 0, 1, 2, ...
UY qi~rLiSScFi2}]iSFrFte6yLhB^`s`aUiSiSyFs` iSyF }¬bF4t]t4FiDkl}Zs`iiShFFcFtcFyL^`s`tOiSyFq UcFaF FbFbbL4Ct](x)s¢kl=jSiScb } c = const u~FiDkls`i~hFcFcFtS| qUcFaF 6bFb C (x)C (x)= P= 0 c (x − a) m ´ ü
x
x
1
n−1 k=0 k
n
{3±
&
ì|
n x Cn (x)
=
n x
n−1 X k=0
k
1
n x
ck (x − a)k = 0,
n = 0, 1, 2, 3, ..., ck = const, C0 (x) = 0.
"!
ï|.~¹iìðE¶¹
"!
|ðE¶·~¹
|-ç|ï
ýf^Skk4iSs`yFbLrLyFUU6iDkeLtlrLiSjD^`s`tleLgScFiDkls`g>qUcFaF FbF_ }TFi`eLU\L^`tl 4 UbFp2s`iS_Wt2bLkDirLcFiS_qUcFaF FbFb f (x) FiSjSs`iSyFcFzbFcFs`tfyFbF(x)yFiSjD^`cFb6tiSs cFtaDiSs`iSyFiSi qbFaUklbFyFiSjD^`cFcFiSiFyFtlrLtleK^ a rLiOs`taFUtiOpcL^~\FtcFb6h xm m
f1 (x) =
Zx
dξ1 f (ξ1 ), f2 (x) =
^S4ts`bL}F\Fs`i
Zx
dξn
d x fn (x) = dx
Zξn
dξn−1 . . .
a
a
dξ2
Zx
Zξ2
dξ1 f (ξ1 ), . . . ,
a
a
a
fn (x) =
Zx
Zξ2
dξ1 f (ξ1 ), . . . .
a
fn−1 (ξ)dξ = fn−1 (x),
n≥1
b6eLb ©ntFtyFgziSFtyL^`s`iSy klj`hFpjD^`fts\6eL(x)tcF.= s`iSf_qF(x). iDkeLtlrLiSjD^`s`tleLgScFiDkls`bZjiSSyL^`s`cFiD cLiSc>^`FrKyL^`^`tj` s eLtó/cFôbFò bnõ mnSrLU\FbW\6FeLyFtbLc 4tlcFtcFcFzY¡Öa.keLi~b rLcFiDt4FtyFbFtp2iScFSiSb6p¬cL}
^cL\F^`bFFs`yFgObL\64eLttyWcFa fcFiS(x) } S j S i _ FiDkeLtlrLiSjD^`s`tleLgScFiDks`bn}6bFp4tcFfbFjOpcL(x)^`a FtyFtlr FiSyDh6rLaUiD n } a
n−1
x n
x
5 95 4&À"M
$
n−1
fn (x) ≡ a f (−n) (x),
n
~ S + xo 5 ('Çx 5G77 R # Ì&xx #5 bWcFF?yFbLFkliSs`yDyFh6iSrLbFaUs`iSgjb6jOWFiSkeLyDh6tjDrL^ aDtaWjSFiSiDpyLkeL^StlklrLsx^`iScFjD^`bUs`h>tlcFeLiSgSjScFiDkl2s`bcFiDF4yFtiSyFbFiSpjLjS}Fi~4rL¢cFFi`eLFUi`\FeLbLi~£ bFSs`ttlkleLaUg`i` cFt\FcFU£jziSSt§kls`iSyFiScFW6iDkeLtlrLiSjD^`s`tleLgScFiDkls`gzkfi~rLcFbL bs`t tÖcL^`FyL^`j`eLtcFbFt tcFtyL^` FbFb>tt\6eLtcFiSj kZFiD4iSgSiSFtyL^`s`iSyL^ d2keLtjD^cL^`6yL^`jSiLm 1 " Çÿ
ã
Æ
"
1 ã
Æ.â
Æ.â
x
. . . , a f (−n) (x), . . . , a f (−1) (x), f (0) (x), f (1) (x), . . . f (n) (x), . . .
ZeLtcFWkfiSs`yFbF L^`s`tleLgScFz4bpcL^~\FtcFb6hL4bFiSyDh6rLaUiSjzklcL^`~tcF.cFb6 cFbL bFc6rLta6 kliD }nUa6^`pjD^`]bLcFb6 cFbF_WFyFtrLtleWbFcFs`tyFbFyFiSjD^`cFb6h¤ \6eLtcFkFi`eLi~ b6 s`cFtlteLcFgSDacFOzrK4^`b]FsSiSk¨yDhnh6}¬rLiSaUcF^Sbv4bnd?}~eLs`iSiZa6t^xkleLs`gSgLcF}Fu~cFt^SDkl^`s`yLi~^`hFaFs`bFttSyF|]bLklFs`y6bFiSaFbFb pjSi~rLUcFcFa6 FtSbF}j]bn}Ts`iSb6s`yL^xbFOc6^`rL]ta6k^xbF t tt FiSjStlrLtcFbFt jviSaFy6tkls`cFiDkls`b.rK^`cFcFiS_.s`iS\FaFb x}8^>cFt2jvaDiScFt\FcFiDbFcFs`ty6jD^xeLt }Fa6^`a>bFcFs`tyL^xeL]¦YL[4rLiSScFijSjStkls`b>iSFtyL^`s`iSy>bFcFs`tyFbFyFiSjD^`cFb6h (a, x) =
a x f (x)
≡
Zx
f (ξ)dξ,
sx^`a>\Fs`i f (x) = f (x) = f (x). ü yFbL4tc6h6hFyL^`jSb6eLiðbFyFb6UeLtiSZbFp4tcFtcFbFbOFiSyDh6rLaU^ZbFcFs`tyFbFyFiSjD^`cFb6h q jrLjSUaFyL^`s`cFiDbFcFs`tyL^xeLtkqFtyFt4tcFc6zFyFtlrLtleLiD£jScFUs`yFtcFcFtiL} a
(−n)
Zx
a x a
dξ2
Zξ2
a
n a x
(−n+1)
dξ1 . . . =
Zx
dξ1
Zx
dξ2 . . . ,
b2iSbLaFklyLF^`i`s`eLcFgSptZ`h bFcF4s`tts`i~yLr>^xeLf<^`s`ts`fiS^`_>s`bFF\FiDtkkleLaUtliSrL_2iSjDbF^`c6s`rLtlUeLaFgS FcFbFiSklbns`}6b24ji i~rLcFcFiiSFaFyFyLt^`iSs`ScFyL^`tqpiSkljSi^`s`kls`gt4FcFtc6i` cFz4b>h6rLyL^S4bn}FFyFb6rFh a sx^`a>cL^`pjD^`t4iS_>qiSyL4~eLtqiS{bnm a
a
af
(−n)
(x) =
Zx a
dξn
Zξn
a
dξn−1 . . .
a
Zξ2 a
ξ1
1 dξ1 f (ξ1 ) = (n − 1)!
Zx a
(x − ξ)n−1 f (ξ)dξ,
n = 1, 2, 3, . . . o l k F ` i L e S g p ` h ` s b q S i L y 8 ~ L e kljSiS_Lkls`jD^FyFiSb6pjSi~rLcFZ FtleLqFi`}~eLcFi~t s`yFbF~s`rLtlcFeLiqgScFUStlZrLFbFiSs`yDgDh6k¨hrLaUjZiSs`jiDiDkl}xsx\F^`s`]iqsSs`k¨hyFbOklFFyFt^`yFjSjStlrFt eLbFjSz4b b 6i iSs`cFiS{tcFbFavqUcFaF Fb6hL f (x), n = 1, 2, 3, . . . m SY f (bx + c) = b f (bx + c); 6Y [bf (x) + cg(x)] = b f (x) + c g (x), b, c = const; a
a a
−n x
−n
(−n)
ab+c a
(−n)
(−n)
(−n)
a
(−n)
ÿ$¥ Ã
('
('D&xx x >
x #5Æ÷x #Æ "5÷15 ##Æ
§ ã
(
FY = = , m, n > 0. ©
^`an}FFtyFjSiStkljSiS_Lkls`jSirLiSa6^`pjD^`tsSk¨h k eLtlrLU]t_ jSa6eK^xrLaUiS_nm
−m a x
a
a
−n x
−n x a
a
−n x f (bx
−m x
1 1 = (n − 1)! b
bx+c Z µ
Zx a
(x − ξ)n−1 f (bξ + c)dξ =
ζ −c x− b
ab+c
1 1 = (n − 1)! bbn−1 1 1 = n b (n − 1)!
−m−n x
a
1 + c) = (n − 1)!
~
¶n−1
f (ζ)dζ =
bx+c Z
(bx + c − ζ)n−1 f (ζ)dζ =
ab+c
bx+c Z
(bx + c − ζ)n−1 f (ζ)dζ =
1 bn
ab+c f
(−n)
(bx + c).
Xs`iSyFiStkeFtlrLSts bFpiSSti kljSiS_Lkls`jD^eLbFcFt_FcFiDkls`bvbFcFs`tyL^xeLiSjL}Fs`yFts`gStjSs`tl a6^`tlsObFpk^S4iS_ kls`yFUaFs`UyFaFyL^`s`cFiSiObFcFs`tyL^xeK^FY iS eK^SklcFiO^`a6klbFiDf^`s`bFaUet ý4iDkk^ }Fs`b6 s`yFtl kljSiS_Lkls`jrLiDklsx^`s`iS\FcFirFeFh FyFbLkljSiStcFb6hq6c6aF Fb6hL f (x) pjD^`cFb6hFyFiSbFpjSi~rLcFFiSyDh6rLaU^ −n j]s`iS\FaUt x FyFiD4qtlU cFUaFs` FaUbF^ b (a, x] YLt©
k^`sSaFgvbLF£yFiSiDSkls`yLi ^`piDaF}6yLF^`yFs`iScFbFp_WjSibFrLcFcLs`^xth>yLiS^xs`eyFbFiS Lsv^`s`tls`eLiSgS_c6qiSUiOcFFaFiS FyDbFh6bWrLFaUi^ −n f (x) n Y (a, x] jSiS_Lkls`jSi F}iSs`yL^xO^`]tt*aUiDf4Us~^`s`bFjScFiDkls`g rLbLqtyFtcF FbL^xeLgSc6 iSFtyL^`s`iSyFiSj (n > 0) 4tlOrLkliSSiS_n}*b%bFcFs`tyL^xeLgScFiSFtyL^`s`iSyFiSj rK ^=rLbL qtyF(ntcF F>bL^x0)eLgS4cFtlO_?rLiSvFkltiSyLS^`iSs`_niSy?}LklrLi~t6_LyLkl^`s`c6jShFSttsSsOk¨hvFiDbkeLj?tqkbF4cFts`{t^`yLcF^xcFeLiDgSHcFiSkeLiLU}\L^`tS}LaUi` ab+c
0
a
n a x
(n)
8
−n x
a
n x
n m x a x f (x)
=a
n−m , x
cFiOcFtbL4tts 4tklsx^Oj keLU\L^`tqiSSyL^`s`cFiSiFiSySh6rLa6^F}6cL^`FyFbL4tyn} x a
s`iS rK^aU^`a
a x
d x f (x) = dx
Zx
f (ξ)dξ = f (x),
a
x f (x) =
Zx a
d f (ξ)dξ = f (x) − f (a) 6= f (x) = dξ
x a x f (x).
~ + xo 5 ('Çx 5G77 R # Ì&xx #5 iSüqs`i£cFiS{s`iSt_
1 " Çÿ
n x f (x)
Æ
"
1 ã
Æ.â
Æ.â
n x
n a x
n a x
ã
= f (x) −
n−1 X
f (k) (a+)
(x − a)k 6= f (x) = k!
n n x a x f (x),
x > 0.
LüqY yFiS^SjS4tyFtbLcFbLiDklj>sx^xqeLiSgSyLcF4~tqeLklt jSiS_Ltkl_Fs`SjDcF^Fb6Y L^?^`aFs`iSyFbL^xeL n! b (n − k)! l^Sff^x qUcFaF Fb6hL4b b + 1 − k) kiSiSsSjStlsDksSjStlcFcFiL}`bn}`FyFbFc6hFjjSiqjScFbLf^`cFbFtS} \Fkl6s`fi 4Γ(nbFyFiS+jD^`1cF−bFΓ(nk)tqFbL+i 41)ttrLsiOFΓ(n i`teLklZaDiSkcF^qtj\FcFs`iDiS\Fkls`a6bn^xm k = n + 1, n + 2, . . . }SyL^SklFy6iDkls`yL^`cFbL S k '
k=0
¬
[f (x)g(x)]
(n)
=
∞ X
Γ(n + 1) f (k) (x)g (n−k) (x). k!Γ(n + 1 − k)
XiDklFi`eLgSpSt4kh2rK^xeLttkljSiS_Lkls`jSiD^Sff^x qUcFaF FbFb k=0
OjbviSFSiDtkb6eL?t\LkliS^SaFklsyLh6^`>yLtcF^`jSb6thvcL\Fkls`bFjDk^eLbFns`tlcLeF^ h−1bvpm cL^S4tcL^`s`tleFhvcL^
Γ(n + 1) = n(n − 1) . . . (n − k + 1)Γ(n − k + 1)
a [f (x)g(x)]
(−n)
=
∞ X
k!Γ(n − k + 1)
(−1)k f (k) (x)g (−n−k) (x),
p^S4tcFbL
n = 1.
vcFiSiSaFyL^`s`cFizFiSjSs`iSySh6hiSFtyL^` FbF£bFcFs`tlyFbFyFiSjD^`cFb6hFiz\L^SklshL jzjSyL^xtcFbFb k=0
G
a [f (x)g(x)]
(−1)
=
Zx
f (ξ)g(ξ)dξ,
USttl_FOScFrKbF^`t Lf^k¨cFhB^ jkeLklUF\LyL^`^`_>jStli~rFrLeFcFbFiSjSaFiDyLkl^`s`s`bBcFiSp^`iFbFbLcFk^`s`cFtcFyFiSbFyFi
a
−n x (x
(x − a)m+n = (n − 1)!
Z1 0
− a)
m
1 = (n − 1)!
Zx a
(x − ξ)n−1 (ξ − a)m dξ =
(1 − z)n−1 z m dz = [Γ(m + 1)/Γ(m + 1 + n)](x − a)m+n , −∞ < a < ∞, m, n = 0, 1, 2, ...
hf6# ux 5G7o Pu I21}
~ S yFbF L^`s`tlªFeLY+gSüqcFyFziS4bFb pjS Fi~tlrLeLcFz4tb iSs`FyFiSbFa6 L^`p^`^`s`s`tltleLeFgShLcF4b>OcFFtiSyDklh6UrLaUtiSkjsSjSklUs`]tFs>tcFY cF2qUcFaF FbF_?kziSsx ´UYxoqcFs`tyL^xeLgScFtiSFtyL^`s`iSyFWcF~eLtjSqUcFaF FbF_ ¤ s`iqtksSgqqUcFaF FbF_n}~cFt yLpcL^`^jS\FcFtcF2bFb s`iFOtyFrLtt4kls`tjScFtcFcFiScFiOiOcFFyFeLtlrLtl}FeKcF^Di¦iScFStqyLbL^`4t^`]]s~Y b6 bFcFs`tyL^xe jcF~eLgFyFb>eL]SiD FY ^`yDh6rL?k]eLtjSiDkls`iSyFiScFcFbL4b>bFcFs`tyL^xeK^S4b ÿ$¥ á
Æ
"
1 #Æ
â
"õ"#$ §
$
n a x f (x)
1 = (n − 1)!
Zx
1 = (n − 1)!
Zb
4i~ c6i jSjStkls`b>b FyL^`jSiDkls`iSyFiScFc6bFtSm
n x b f (x)
a
(x − ξ)n−1 f (ξ)dξ
(ξ − x)n−1 f (ξ)dξ.
]\FtjSb6rLcFiL} = ( ) = }Fs`iS rL^OaU^`a = (− ) = (−1) Y 76N@ oqpiSSyL^`pbLyFtp~eLg~sx^`s` cL^`{t_
{åä
−1 n x
x
−n x
s| ~¹iì~ 9³¶¹
n x b
æ~
−1 n x
}
n
î
−n x
ﶶ
?G
x
x
9G
&
~`ª
1 "+Çÿ
('Çx 5G77 R
ãxo5Æ
# Ì&xx #5
1 ã
"
Æ.â
Æ.â
yL^xeK^> Ftl^ eLiSF_ tyFaFjSyLiD^`¢s`cFsxiD^`kls`FbKt2¦Z4cL^>iSrLSyFiSiSSScFbL
af
(−m)
(x) =
Zx a
1
Zξm Zξ2 dξm dξm−1 . . . dξ1 f (ξ1 ) = a
a
1 (m − 1)!
&2
Zx a
K
(x − ξ)m−1 f (ξ)dξ,
F yFtjSyL^`^`]^xhvFiSjSs`iSyFcF_bFcFs`tyL^xe 6yFiSbFpjSi`eLgScFiS_v FtleLiS_aFyL^`s`cFiDkls`b j i~4rLi~cFiStaFs yF^`SsSc6s`g _bLklbFFcFi`s`eLtgSpyLiS^xjDe^`cFki2h6rFrLeFyFhWiD^`cLkl^xs`eLtbFFs`tbFcF\FcFtiSklaUiiSs`i>bFLF^FyFYi~rLûÖi`s`eFiFtcFyFb6tlrKh klbFsx^`cFj`s`eLttyLcFbF^xmeLt iSbj FtleLiS_>aFyL^`s`cFiDkls`b m jOiS`eK^SksSgjSttkls`jStcFcF2pcL^~\FtcFbF_Wu~aFyL^`s`cFiDkls`bn| µ > 0 ¤ÅrLyFiSScF_ ^`cL^xeLiSqiSyL4eLqiS{bK¦m m = 1, 2, 3, . . .
a fµ (x)
≡
af
(−µ)
1 (x) = Γ(µ)
Zx
(x − ξ)µ−1 f (ξ)dξ,
µ > 0.
qtyFjSiStS}¬\Fs`ivs`tFtyFgvcL^xrLivkrLtleK^`s`gL}¬s`ivFyFiSjStyFbFs`gL}njSFi`eLcUhFZsSk¨h eLb iDjSb6klcFrLiScFjSiLcF}L6tyFb kliSiSs`cFiS{tcFb6hv¤ l D¦8jkeLsx^2U\Lq^`tiSyLrL4yFiSeKS^ cFkliSjSpLcL^x^~rK\F^`ttcFs b6k_ qFiSiSa6yL^`4p~^`eLs`iStl_veFhnqYUiS]{\Fbntl } bkliSiSs`cFiS{tµcFb6=h<ms`b¢= jS1,2,Fi`3,eLc6. hF. .]sSkhn(Y ýf^Skk4iSs`yFbL/iSSbF_¢k eLU\L^`_n}Fi`eLi bFj Y jSiS_Lkls`jSi>~¦ ν = −µ < 0 a
ü
a
ν x f (bx
+ c) = bν
ab+c f
(ν)
(bx + c), ν < 0,
§bLk`YT6Y Sm )+!%#b-Y72,++;&V5.!$E)#.B9+:+;IfN#)/"/,#?/!YDñ ý
§bLk`YK6Y 6m )+!%#b-Y72,++;&VK#&-9+;IfDN#)/"/,#?oYe^!%+f6b-5.!?/!YuØÙ,+%5aVa(&*)%+#$7&-O2)#.B9+;(Ú¨ñ ý
hf6# ux 5G7o Pu I21}
ÿ$¥ á
Æ
"
1 #Æ
~+´
"õ"#$ §
â
FyFiSjStyShFtsSkh>leLt4tcFsx^`yFcFiL} a
ν x f (bx
jSiS_Lkls`jSi S¦
1 + c) = Γ(−ν)
Zx a
(x − ξ)−ν−1 f (bξ + c)dξ = bν
ab+c f
(ν)
(bx + c).
keLtlrL`tsO[bfbFpq(x)eLbF+cFtcg(x)] _FcFiDkls`b bF=cFs`btyLf^xeLgS(x) cFiS+iOiScFtgyL^`s`(x), iSyL^FY b, jSciS=_Lklconst, s`jSi D¦ ν < 0, (ν)
a
(ν)
a
(ν)
a
-
¤rLpU^S]4ts`bLgx£s`tSiS}¬SplyLrL^`tpkliDg iSm D^?FiSaU^`p^`s`tleFh µ b ν iSs`yFbF L^`s`tleLµ,gScFν]<¦]0rFiSa6^`pjD^`tsSkhkeLtl a
µ x a
=
ν x f (x)
=
1 = Γ(−µ)Γ(−ν)
Zx
a
µ x a
ν x
a
a
ν x a
ν x
µ x
=
1 Γ(−ν)
a
Zx a
a
=
1 Γ(−µ)Γ(−ν)
=
1 Γ(−ν − µ)
(x − ξ)−ν−1 f (ξ)dξ = Zη a
(η − ξ)−ν−1 f (ξ)dξ =
Zx Zx −µ−1 (η − ξ)−ν−1 dη f (ξ)dξ = (x − η) a
Zx
dη(x − η)
−µ−1
µ+ν , x
ξ
(x − ξ)−µ−ν−1 f (ξ)dξ ≡
a
µ+ν f (x), x
µ, ν < 0.
Lr tklgbLklFi`eLgSpiSjD^xcFi¢FyL^`jSb6eLißðbFyFb6UeLtHFyFbFtyFtklsx^`cFiSjSaDtbFcFs`tyL^xeLiSjb qiSyL4eK^
Z1
a
(1 − x)−µ−1 x−ν−1 dx =
©
^`aFbLiSSyL^`piD}6qUcFaF Fb6h 0
af
(ν)
1 (x) = Γ(−ν)
Zx
Γ(−µ)Γ(−ν) . Γ(−µ − ν)
(x − ξ)−ν−1 f (ξ)dξ,
ν < 0,
(5.3.1)
cL^`pjD^`tf^xh ôx÷ 7ñõ[ÿ ñùAò ô x÷*ÿ #ÿ oñ +ö ó÷-ô −ν > 0 iS s #ÿ qoUñ cFaF FbFb +ö f (x)Ç}f4÷7iùô tsoSùAò s`xgúñF÷yF*bF÷¬c6hFósx÷-ô^j aU^~\Ftkls`jSt ôx÷ 7ñ÷ »ó/ôx÷ öo÷ ñ÷ Y qtFyFtyFjScFiSt4cFi~tl kls`jSis`b6 FyFiSbFpjSi~rLcFbFpiSSyL^xtcFikljStseLiS_OeLνbFcF
*6
E ù"4 &1
´
"<
° /
a
°
E ù"4 ( Ä5 *6 15
15 *M *1:
5
*M
~`
1 "+Çÿ
§bLk`Y#6Y Fm
('Çx 5G77 R
ãxo5Æ
ý )+!%#b-Y72,++;& 95.!"D9+%++%#"Ú
¨ñ
# Ì&xx #5
1 ã
"
Æ.â
Æ.â
$7)%+K5.!$7&-9+:+;IfªY7&*_ &*0*$Y7&-++;IfTN#)/"/,#?o!Y|Ø 0-Y7&*$i
§bLk`YK6Y Lm &*)+&-fo2,A$d,#)+^!+;IfD%+#$7&-O2)#.B9#!Ye?J,#)+^!+;QN#)+!%#b-Y72,++;IQfñ 76N@ - (Û ]FyFtlrLtleLbFj.rLyFiSScFt FyFiSbFpjSi~rLcFt iSs`yFbF L^`s`tleLgScFFiSyDh6rLaDiSjL}§cFtiS` DaUiiSrLjLbLY~4i^`pF^xyFeLi~iDrLklgzi`eFS bF}~s`gs`iqb64.i~ jcFiSiq`eKk^SrFkltls`eKg^`s`FgZi`FeLyFi iDklbFs`s`ztleLgSbFcFp4WtcFjSttcFbFttkls`pjScLtcF^`a6cF^zF.iSFyDiSh6yDrLh6a6rF^F m FbLi`4eLtli~hv jSbFs`yLtl^xeFgScFtcFbFtOt2pcL¤ 6^~Y \FFtY ~cF¦Öb6rFhneFY h ðiStleLs`yFiLbF}T Li~rL^`s`cLtl^`eLaDgSiLcF}Tj s`νiD}LyL}n^S\Fkls`Fi yFFiDklyFs`b yL^`FcFi`bFeLs`i~g tbFs`itleLgStcFcL^ bFcFs`tyL^xe ν ý
'
s| ~¹i
{/ë
æ~
|
}
ï|.~¹i
î ﶶ´
µ ¶
Zx
(x − ξ)−ν−1 f (ξ)dξ
yL^SkSi~rLbFsSkh>cL^jStyD6cFtFyFtlrLtleLtSY zrLbFc?bFpZFUs`t_?FyFti~rLi`eLtcFb6h?s`iS_?s`yFrLcFiDkls`b>Se?yL^`pjSbFs6ý§bLf^`cFiDWb bFUjSb6eFeLtYFoZ?Fi~rFDir Se iDklcFiSjD^`c?cL^FyFi~rLi`eFtcFbFb kliSiSs`cFiS{tcFb6h a
(n)
k (n−k) (x) x af
k k−n f (x), x a x
jOiS`eK^Skls`gFi`eLi~ bFs`tleLgScF?pcL^~\FtcFbF_>cFt FtleL ν m af
(x) =
(ν)
=
n < k = 1, 2, 3, . . .
k k−ν f (x). x a x
rLtklg 4i~ cFiFi`eLi bFs`gyL^`jScFzeL]SiD4cL^`s`UyL^xeLgScFiD4\FbLkeLS}DFyFtjSiDkSi` rFhFt4k ν Y6[frLiSScFiL}Ui~rLcL^`aUiL}UjSplhFs`gOcL^`bL4tcFgS{ttqbFps~^`aFb6>\FbLkltle
}Fsx^`a>\Fs`i af
(x) =
(5.4.1)
bL>iSSyL^`piDYBüqyFtlrF Fi`eLi~ bL^`}eFcLh6^SrL*cFicFts`iSZ~SFi~yFrLiSbL F4tlrLi£UcLyFq^`_F4s`ib FcFyFiziSiSbFFpbLjSki~^`rLs`cFgzUk eLtlrLfU](x) ¤ pjStplrLiS\Fa6^£cL^ iDklb ν I} ý§bLk`YÖ6Y U¦Y v*t 64ttBcL^xDi~rLbFs`g FyFiSbFpjSi~rLcFt2eL]S¤ FtleL£b rLyFiSScFL¦ iSs`yFbF L^`s`tleLgScF<FiSyDh6rLaDiSjb¢ FtleL<Fi`eLi bFs`tleLgScF<FiSyDh6rLaDiSjLY k − 1 ≤ ν < k.
'
9G
a
(3,4)
7f6# =&xx #> vu I21}
GÜ
~ /Ñ cL^`rLFtlyLeK^`^`j`teLtcFcFbFtklb>aUiDi`eLklbngS}6aDiOsx^`{an}F^`\FiSs`jiSStlrLbFjOcFbFyF\FtpcFiSeL_>gxsxrF^`eLs`bFtqcFFiSLiSs^Skls`s`iSgO\FcLaF^Ob iSνs`jOyFbFiS Ls`^`yFs`bFtl LeL^`gSs`cFtlUeL¡gScFFiDi` eLSiDklgLYRüqDkls`g k dv\FbLkeLi sx^`aFb6{^`iSj?rLi FiSL^xrK^`cFb6h j 6tyFjS_.tlrLbFc6bF\FcF_ bFFcFyFs`bFt{yFeLjDb?^xe£jiSs`s`iSyF\FbFaF L2^`k]s`tliSeLs`gSyFcFbFiS L_^`s`Ftli`eLeLgS`cFiDiSkl_?b aD(−1, 4tyFt}6FkyFiS=bFp4jS¦iY rLvcL^x h iSiSyDrL0)bFcL^`¤ js`iScL_ ^`ν{−tk F=yFbL−0.6 sx^`aDiSiOFiSyDh6rFa6^jS\FbLkeFhFtsSkh FirLyFiSScFiD42^`cL^xeLiS?qiSyL4eLqiS{bnm ÿ$¥ ò
Æ
Æ
"õ"#$ §½ÇÅ $ §
â
©G
af
(ν−k)
Zx
1 (x) ≡ a fk−ν (x) = Γ(k − ν)
(x − ξ)k−ν−1 f (ξ)dξ.
qs`iSSjStyFcFUs`gDk¨hvj bLkSi~rLcFUBs`iS\FaFS}LcL^xrLi2krLtleK^`s`g s`tt {^`iSjL}6cFi2Dt jSiSFs`jSyLt^`sSjSkliLs`YFjSSt^xs OrL iDh 4kl?s`ts~F^`taUcFiDg 4>s`{iS^`iO>iSFkltiSyLiS^`s`s`jSiStyLsSkl^Fs`Y6jSX<`tyFsOtpiSFeLtgxyLs~^`^`s`s`iSty F i`keLUb \L^`kt{^`^Skli` a
=
x
k
af
(ν)
(x) =
k (ν−k) (x) x af
1 = Γ(k − ν)
k x
Zx
(x − ξ)k−ν−1 f (ξ)dξ.
^S4ts`bFjL}§\Fs`i\FbLkeLi cL^.tlrLbFcFbF FSi`eLgS{t FtleLiS_H\L^Skls`bbLk¨Di~rLcFiSi FiSySh6rLa6^ ν }KiSSiSpcL^\L^`t4iS_ [ν]k}KFtyFtFbF{tHs`vqUcFaF FbF}TcF^`pjD^`t4U ó/ôx÷ jSb6/rLöo÷t ñ÷ ¾ #ÿ oñ +ö H¤ Fi`eLi~ bFs`tleLgScFiSi?FiSyDh6rLa6^D¦]qUcFaF FbFb f (x) }¬j a
*
1:
5
*M
E ù"4 &1
af
(ν)
(x) =
[ν]+1
1−{ν} f (x) a x
1 = Γ(1 − {ν})
[ν]+1 x
Zx
f (ξ)dξ (x − ξ){ν}
rLt {ν} iSpcL^~\L^`tsrLyFiSScFU£\L^Skls`g]\FbLkeK^ ν } 0 ≤ {ν} < 1 }sx^`a\Fs`i ν = [ν]+{ν} Y X<¤ a6^`yLav^`pFjSi`teLyFi~cF Us`bFiDs`£tleLjSgSbUcFrLt¬jS}Lsx^`yLav^xbtiScFs`bFyFtqbFrF LeF^`h>s`tlrLeLyFgSiScFScFLiS¦_>FFiSyFySiSh6bFrLpaUjSiSi~j2rLcFpiS^`_>FbLFklyFiSjDbF^`ptjSsSi`k¨eLhgScFkeLtl rLU]bL£iSSyL^`piDm R } (x − ξ) f (ξ)dξ, ν<0 af
(ν)
(x) ≡
a
ν x f (x)
=
1 Γ(−ν)
x
−ν−1
a
1 Γ(1−ν)
a
Rx
(x − ξ)−ν f (ξ)dξ, a Rx 2 1 (x − ξ)−ν+1 f (ξ)dξ, x Γ(2−ν) a ...................,
x
0 ≤ ν < 1,
nY YnY¬YnYnY¬Y X yL^Skkf^`s`yFbFjD^`t4¢cF^S4brLyFiSScF6yFiSbFpjSi~rLcF¢bFcFs`tyFbFyFiSjD^`cFbFt jStlrLtsSk¨h?iSsFiDkls`i~hFcFcFiSicFb6 cFtliFyFtlrLtleK^rLiFtyFt4tcFcFiSijStlyD6cFtiL}SFiaUi` s`iSyFiD4v¤ FyFb>Fi`eLi bFs`tleLgScF ν ¦§jSFi`eLcUhFtsSkh rLbLqtyFtcF FbFyFiSjD^`cFbFtSYD©8^`aFbFt 1 ≤ ν < 2,
ªS + xo 5 ('Çx 5G77 R # Ì&xx #5 FiSFyFyFiSbFtlrLpjStleFirLhFcF]sSk¨t hcLkl^`iSpiSs`jDcF^`iS]{sStkc6h bFt ò!öo÷oøBùJ÷-ôx÷7ññ #ÿ LYnoZó/ô /öo÷oøBùJ÷-ôx÷7ññ xò?^`cL^xeLiSb 1 " Çÿ
ã
Æ
"
>
(ν) fb (x)
≡
x
ν b f (x)
Æ.â
"
=
1 ã
Zb
1 Γ(−ν)
x
"
(ξ − x)−ν−1 f (ξ)dξ,
1 (− Γ(1 − {ν})
x)
[ν]+1
Zb
Æ.â
ν < 0;
f (ξ)dξ , (ξ − x){ν}
ν > 0,
X aU^~\Ftkls`jStvFyFtlrLtleLiSj.rLyFiSScFFyFiSb6pjSi~rLcFH4iSl6s.jSzkls`UL^`s`g.b Y∞ DoqcFiS rK^qFyFiSbFpjSirLcFt¤ bFcFs`tyL^xeL]¦fjSb6rK^ f (x) cL^`pjD^`]suó/ôx÷ /öo÷ ñõ[ÿ <¤ ñùAò ô !ÿ ¬¦ +ö
ò K>Y üqiDkeLtrLcFbFtqbFcFiS rK^O4i~rLbLqbFf FbFy6(x) 6]sSdnk¨hvó/ôxkeL÷ tlrL/öoU÷ ]ñxõbLÿ
° 1 ³ù"4 1
(ν) f∞ (x)
x
*1:
ei(ν+1)π = Γ(1 − {ν})
[ν]+1 x
Z∞
*1:
(ν)
−∞
(ν) ∞
5
/
5
° 1
f (ξ)dξ . (ξ − x){ν}
qbFsx^`s`tleL}KtleK^`]t4vU eLUSbFs`gDk¨hj?s`tiSyFbFrLyFiSScFviSFtyL^`s`iSyFiSjL} bF4pli~rK ^`cFcFi>b6h?FiSd2yFaFtc6aUbFiD4b tc6rL` iSª jD^`Y s`g?aFcFbFb 6} }n^?s`t}naUiD4vrLiDksSUFc6p^`yFUStl cFt =
x
Ñ #
Ø ³Û {
Á '
"!
ï| ï
| ~¹
|
Zÿvÿ]ønö˶ÿ¡÷ Z÷Tø§ö SY bFc6t_FcFiDkls`gLm
Î,ºÎ,º
ÊÇ¿
"!
ï|.~¹
af
9Î
.
ν x (bf (x)
+ cg(x)) = b a f (ν) (x) + c a g (ν) (x).
6Y iSyF4~eK^eLbFcFt_FcFiSiOFyFtiSSyL^`piSjD^xcFb6h?FyFtlrLtleK^Fm a
+
ν x f (x)
= b−ν
ν (x−c)/b f (bx
ν x f (bx
+ c) = b−ν
FY iSyF4~eK^eLbFcFt_FcFiSiOFyFtiSSyL^`piSjD^xcFb6h>^`yF64tcFsx^Fm ab+c
+
a
+ c), b > 0.
ν x f (x),
LY iSyF4~eLiSs`yL^xtcFb6hnmFFSkls`g s`iSrK^rFeFh ν < 0) bL4t] s2f (x) 4tkls`≡i2fkl(ciSiS−s`cFx),iS{tcFb6c h ∈ R, = f (x), b a
' +
ab+c
c
a
ν x
−∞
a+b x
ν x
=
ν b
a+b
0 x
ν ∞ 0 f (x).
b > 0.
(ν)
(x)
Ü
# ('D&xx #5 (' d¶è÷ d! à ÿ]ü Ë( ( eV
ÿ$¥ ÿT
.# 1+
Æ
Æ
af
(ν)
ªF
(x)
û Ë üqDkls`g b dzFi`eLi bFs`tleLgScFtfjSttkls`jStcFcFtf\FbLkeK^F}lsx^`aq\Fs`i α β FtleL= b } ^ b d L c ` ^ ` s U L y x ^ L e S g F c t F \ L b k K e < ^ S } 6 } F ] } Y Y Ö Y F r F e < h m n = F yFiSbFpjSirLcF?iSS iSS^xtsSkh?j keLtlrLU]UBklbLkls`t4>qiSyL4e>rFeFh>rLyFiSScF¬m Î,ºÎ,ºÌ α x
Ë?¿
−β x
a
¿
a
a
−α x a
a
α xa
rLtklg
−α x a
α xa
β x f (x)
β x f (x)
−β x f (x)
=
=
−β x f (x) −α+β
α+β
af
(ν)
=a
=a
f (x) −
n X
af
(β−j)
(a+)
af
(β−j)
(a+)
j=1
n − 1 < β 6 n,
(a+) = lim
OtîË]ö4ø¶ÿ ]ÿË]ö4ø˶
ε↓0
a
a
β > α;
j=1
n X
−α x
−α−β f (x); x
α−β f (x), x
f (x) −
m − 1 < α 6 m,
Î,ºÎ,ºÍÌ
a
,
β x
a
a
qÓ
ν a+ε f (a
(x − a)α−j ; Γ(α − j + 1)
(x − a)−α−j ; Γ(1 − α − j)
α + β < n. + ε).
9Ó
aF2FiSyDh6rLiSFaUiDiSjLklsxY#^`ýfjS^`bLjS2tcLs`klts`FjSti yFgrLyFiSScFtfFyFiSbFpjSirLcFtfFyFiSs`bFjSiSFi`eLi cFZFipcL^x
ν x a
−ν x f (x)
(ν−j)
(a+)
= f (x)
jSF yFyFtb 8hvν a6>^`av0iSSjSyL^`Fs`i`cFeLc6_ hFtFsSiSk¨yDhh6rLrFiSeFavhFeLyF]bL4SiSt_¡cFtcFkl6b6fh4bFs`yFb6`>t4iSt_BiSFqtUyLcF^`aFs` FiSyFbFiSb jOfrK(x)^`ts }zbFjcFiSs`_i yFtpeLgxsx^`s a
a
−ν x a
ν x f (x)
= f (x)−
n X
af
(x − a)ν−j , n−1 < ν 6 n = 1, 2, . . . , Γ(ν − j)
iSSiSS^x]bF_.bFpjStkls`cFUqiSyL4~eL qgS]s`iScL^x t_FScFbF L^FYnX!\L^Skls`cFiDkls`bn}8FyFb j=1
Ä
0<ν=α61 a
−α a x
α x f (x)
= f (x) −
(x − a)α−1 (α−1) (a+). af Γ(ν)
©
^`aFbL¢iSSyL^`pliD}KiSFtyL^`s`iSy hFj`eFhFtsSk¨h ò!öoõ[ÿ ÷ -ô oùJñõ[ÿa iSFtyL^x s`iSyFiD}FcFiv¤ aU^`a b j keLU\L^`tq Ftl eL>FiSySh6rLaUiSjU¦ÖcFtcL^`iSSiSy6iSs~Y a
ν x
Á
*6 1
a
−ν x
ªD
1 "+Çÿ
('Çx 5G77 R
ãxo5Æ
# Ì&xx #5
1 ã
"
Æ.â
Æ.â
§þ Zÿ§ÿ qü7ãäã¢ÿË]ÿ ]ü˧ö]ü]ÿ ÖkeLbHStklaDiScFt\FcFt>yDh6rLqUcFaF FbF_ P b P kDirFhFsSkhyL^`j` cFqiDiS4yLt4yFcFeKiW^ j.aFyFUt 0 < |x − a| < R }§s`i6yFbHfeL]S ν j.cFftklFyL^`jStlrFeLbFjD^ Î,ºÎ,º«·
Ê
¸¿
Ï
j
a
ν x
∞ X
∞ X
fj (x) =
a
ν x fj (x)
=
a
∞ X
ν x j
(ν) a fj (x).
ßBü7ãäã¢ÿË]ÿ ]ü˧ö]ü]ÿ ˧üzý§ÿ qÿ]ü
Î,ºÎ,ºÎ
j=0
j=0
Ï
j=0
7Ó
t_FScFbF LU^cFt^kls`rLjSyFSiSts/ScFcFttqklFaUi`iSeLySh6gSaDrLiaFbnqYTziSyLrLcL^}?bFiSpSiScFSb6?^xbL]4ttb6s jSbFb6pr jSyDtklh6s`rKcF^ U qiSyL4eL
a
ν x
∞ X
[f (x)g(x)] =
µ
ν c ck + µ
¶
af
(ν−ck−µ)
(x)a g (ck+µ) (x),
rLt 0 < c ≤ 1}K^ µ FyFiSbFpjSi`eLgScFiStZjSttkls`jStcFcFiSt\FbLkeLiLYüqyFb s`iSsOyDh6rv6yFbFcFbLf^`ts jSb6r k=−∞
a
ν x [f (x)g(x)]
=
∞ X
c=1
b
µ=0
Γ(ν + 1) (ν−k) (x)g (k) (x), af k!Γ(ν − k + 1)
2^ FyFb FyFtjSyL^`^`tsSkhj?iSS\FcFUqiSyL4eL t_FScFbF L^FYðyFUl^xhvFyFtlrF klsx^`j`eFhFνtsS=k¨h nbFcFs`tyL^xeLiDFi FiSySh6rLaF2rLyFiSScF?Fy6iSbFpjSi~rLcF¬m a
ν x
k=0
[f (x)g(x)] =
Z∞
Γ(ν + 1) (ν−µ) (x)a g (µ) (x)dµ. af Γ(µ + 1)Γ(ν + 1 − µ)
Otîîì!ÿ¶ÿË( ( e¶wÿ
]ö qUcFaF F]bFSjS\FicFjDkl_(t_?yDiSh6`r,eK^S©nkls`tb?_6eLtiStZyLiS^FyFFtliSrLptljSeLi`teFcFhFb6th>sFiOjSiDklk\Fkltsxs`^`cFcFiDiS4jS?bFs`4gcFi^`cL^xteLkls`bFjSs`2bF\FtttZklFaFyFUi` bFpjSi~rLc6? FtleL>FiSySh6rLaUiSjjOi~rLcFiS_>s`iS\FaUtSY FtyFtlDirLiDa>rLyFiSScFzFyFiSbFpl jScFi~tlrLeLcFiSaUz^x eLgSjScLiS^xphq4i~rL yFiScFSiDcLkl^xs`hqb FsxyF^`aDiSbFiSpijSi~FrLyFcLtl^xrKh2klsxu~^`jDj`4eLttcFb6^`th2sFyL|z^Sj]kl{kltbF~yShhFS]i`sSeLkgShn{}Dtfb?bFcLs`qiiSFyLiSfc6^`hF Fs`bFcFbniLm} \Ft eLiSa6^xeLgScL^xhO FtleK^xhnYFzrLcFibFp]sx^`aFb6 iSSiSStcFbF_OyDh6rK^©nt_6eLiSyL^bL4ttsjSb6rnm Î,ºÎ,ºÍ
−∞
%θ¿dË
f (x + ξ) = c
∞ X
1 (ck+µ) (x)ξ ck+µ , af Γ(ck + µ + 1)
0 < c ≤ 1.
üqi`eK^`l^xh?plrLtklg b FyFbFcFbLf^xhjSiOjScFbLf^`cFbFtS}L\Fs`i 1/Γ(k + 1) = 0, = 1, µ = 0 FyFb k = −1, −2,c−3, 6 } F F y 6 b D i~rLbL£a>iSS\FcFiD42yDh6rL?©nt_6eLiSyL^FY ... k=−∞
Ü
# ('D&xx #5 ('
ª FiDkeLtlrLðiSjDyF^`Us`tliSeL_qgSjDcF^`iDyFkbLs`^`b?cFrLsyFiSiSSSiScFS2tcFFb6yFhZiSbFyDph6jSrKi~^rL©
cFt_6 eLiSyL^iDklcFiSjD^`cZcL^bLklFi`eLgSpiSjD^`cFbFb ÿ$¥ ÿT
.# 1+
Æ
(νj ) a Dx f (x)
≡
Æ
af
(ν)
&
(x)
1−νj −νj−1 (1+νj−1 ) (x), af a x
ν0 = 0,
0 < νj − νj−1 ≤ 1, j = 0, 1, 2, . . . m : f (x) =
∞ X (x − a)νj (νj ) a Dx f (a). Γ(ν + 1) j j=0
^S4ts`bL}F\Fs`iL}FjSiSiSSt]iSjSiSyDhn}
DiSsh cL^vuDiSyFiS{b6¬|qUcFaF Fb6h6?s`bvFyFiSbFpjSirLcFtkliSjSL^xrK^`]s L}Lk`YLS Y iSyL4eKU^ tkls`jSStsjD^`yFbL^`cFs~}ZbLklFi`eLgSpU]bF_¡s`i`eLgSaUirLyFiSScFtbFcFs`tyL^xeLY (νj ) a Dx f (x)
6=
a
(νj ) x f (x),
'
*
+
Z∞
f (x + ξ)ξ µ−1 dξ = Γ(µ)
µ x ∞ f (x)
F yFb>qbFaUklbFyFiSjD^`cFcFiD x b µ > 0 tkls`gcFt]\Fs`ibFcFiSt]aU^`aÇùô oñxø ÷-ô+ÿ oñù ò Fi`eKñ ^`^xh ñ x = 0}8ϕFi`(ξ)eLU\F≡bLfbL(xklaU+iD4ξ)iSt2YÖyLX^`plFeLi`ieLc6th6cFhbFtSiS}
ScFyLi^`s`cFcFt?iSt jFyDyFh6tr£iSSFyLi^`pFiSyFjSiS^`bFcFpbFjSt>irFb cFz}L ^ ö ñùAò ô ó÷ ñùuò Ýô !ÿ2m 0
å
-
/
Ä94 "&<""
x
° 1
1 f (ξ) = 2πi
0°
µ+∞ Z
(−z) −z Γ(z) 0 f∞ ξ dz,
ξ > 0,
µ > 0.
yDh6Lr rFtaFklgbnY bFklFi`eLgSpiSjD^`cFiviSSiSStcFbFt rLyFiSScFiSivbFcFs`tyL^xeK^cL^aUiD46eLtaUklcFt>Fi` §ti~rLbFc>jD^`yFbL^`cFsiSSiSStcFb6h?yL^`pleLitcFb6h ©nt_6eLiSyL^ObL4ttsOjSb6r µ−i∞
f (x) =
Z∞
af
µ
(x0 ) (x − x0 )µ dµ. Γ(µ + 1)
]öà!ÿ]ü]ÿ eËî ˧üzý e þ]ÿË]ÿ¬ý ]ÿ d¶ÿ Fi`eLU\FbFüqs`yFgObLF4i`teLc6th6phcFUiS¡Sq\FcFiSyLU4£qeLSiS}6yLjS4~yLeL^xq©n^`tZ_6eLiS6yL¢^zarLyFrLiSyFSiScFSUcFiS_FFyFyFiSiSbFbFppjSjSi~irLrLcFcFUiS_qeL\FttyFaUtip FtleLtqFyFiSbFpjSi~rLcFtqjOcL^\L^xeLgScFiS_>s`iS\FaDtbFcFs`tyFjD^xeK^Fm Î,ºÎ,ºÝ
a
ν x f (x)
½½¶kË
=
n−1 X k=0
−∞
9ξÓ
(x − a)k−ν 1 f (k) (a)+ Γ(1 + k − nu) Γ(n − ν)
9Î
Zx a
Ï #¿
f (n) (t)dt , (x − t)ν−n+1
n = [ν]+1.
('Çx 5G77 R # Ì&xx #5 Î Î ¦ò ßBü7ãäã¢ÿË]ÿ ]ü˧ö]ü]ÿ ã ]ü]ü dÂã ]ü]ü üqDkls`g d 4iScFiSs`iScFcL^xhqUcFaF Fb6hn}KbL4t]^xhcFtFyFtlyFjScFUFyFiSbFpl jbFSi~cFrLs`cFtUyL^xYee 6 ôx÷ 7ñõ[ÿ ñùAò ô x÷*ÿ ñ ó÷ ñ cL^`pljD^`tsSkh ª
1 "+Çÿ
('
,º ,º
ãxo5Æ
"
Ï
*6
g(x)
7
µ a g(·) f (x)
6ôx÷ 7ñ
HË
° 1
94 "&<""
Zx
1 = Γ(µ)
a
a
d = 0 g (x)dx
1−α a g(·) f (x)
Æ.â
Ï
;Ó
µ > 0,
α ∈ (0, 1)
HË
³94 "&<""
f (x)
f (ξ)g 0 (ξ)dξ , [g(x) − g(ξ)]1−µ
*6 ½ó/ôx÷*1:/öo÷5ñ½ó÷-ô15
iSFyFtlrLtleFhFtsSkh qiSyL4~eLiS_ g(x) α g(·) f (x)
1 ã
§6c6aF FbFb Zx
]cL^O4itsOSs`gOsx^`a6tFy6tlrKklsx^`j`eLtcL^j qiSyL4t ^`yF{iLm a
Ï
g(x)
a ≥ −∞.
d 1 = Γ(1 − α) g 0 (x)dx
Æ.â
f (x)
ó÷B94ñ"&<""
f (ξ)g 0 (ξ)dξ . [g(x) − g(ξ)]α
G
a
α g(·) f (x)
f (x) 1 α = + Γ(1 − α) [g(x) − g(a)]α Γ(1 − α)
Zx
[f (x) − f (ξ)]g 0 (ξ)dξ . [g(x) − g(ξ)]1+α
iSSyL^`piD¢b jSFjSyFi~iSr6bFhFpsDjSk¨i`h.eLgSFcFyFiDiS bFpjSi~bLrL4cFttt2m k FyFtlrLtleK^S4b X\L^Skls`zw cFiDcLkl^xs`eLbniS}FbFF\FyFcFb zg(x) =x ν Z } f (ξ)ξ dξ σ , ν<0 a
σ
∞
xσ
Y
(x, ∞)
σ−1
(ξ σ
Γ(−ν) − xσ )1+ν x ν f (x), ν = 0, ∞ f (x) = µ ¶n+1 Z∞ −n σ−1 d σ f (ξ)ξ dξ , ν = n + α > 0. σ σ Γ(1 − α) − xσ−1 dx (ξ − x )α
¦õ ö÷Tü ]ø§ø4ü]þ]ÿ
÷V§ÿ §ÿ qÿ]ü]ÿ x
Î,ºÎ,º
Ó
¯Ó
]ü
ÓË
qyFb ν FtleLiD¢iSs`yFbF L^`s`tleLgScFiD¤ ν = −m, m = 1, 2, . . .¦x8→bL4att rLtleLi kqiSS\FcFzbFcFs`tyL^xeLiD¢}UrFeFh aUiSs`iSyFiSi ü
af
(−m)
(a) ≡ lim
x→a
m a x
1 = lim x→a (m − 1)!
Zx
af
(ν)
(x)
f (ξ)(x − ξ)m−1 dξ = 0.
jSÖyLk^`eLb ^`νtsSdkFhi`jqeLi~iS SbF\Fs`cFtleLUgScFiS¤ Fttl FeLtlUeLqiS¦4tzFb6yFeLiSb2bFcFpjSi`ieLrLg?cF¤ UνH=b6eLnb ¦}SkF^SyF4iSbFpqjSUi~cFrLaFcL F^xhbFHfjqs`(x)iS\FaUFt yFatl m a
a
af
(n)
(a) = f (n) (a).
ν
Ü
# ('D&xx #5 ('
ÿ$¥ ÿT
.# 1+
Æ
Æ
af
(ν)
ªD
(x)
eFh>jDkltl2rLyFUb6>pcL^\FtcFbF_ ν ^`cL^xeLbFs`bF\FtklaU^xh q6c6aF Fb6h ð
f (x) =
bL4ttsOFyFiSbFpjSi~rLcFt af
∞ X f (k) (a)
k!
k=0
(ν)
(x) =
∞ X
(x − a)k ,
f (k) (a) (x − a)k−ν ∼ Γ(k − ν + 1)
} } x → a + 0. ÖkeLb cFt¢hFj`eFhFtsSk¨h^`cL^xeLbFs`bF\FtklaUiS_n}cFi!FyFbFcL^xrFeLt bFsa6eK^Skkl rLyFiSScFi` rLbLqft(x)y6tcF FbFyFSt4?qUcFaF FbF_ ª } k=0
f (a) (x − a)−ν → ∼ Γ(1 − ν)
½
0, ν<0 ∞, ν > 0
_
f (x) = (x − a)p ϕ(x), p > −1, ϕ(x) =
s`i FyFb
af
(ν)
Y
ϕ(a)Γ(p + 1) (x) ∼ (x − a)p−ν → Γ(p − ν + 1)
∞ X ϕ(k) (a)
k=0
(x − a)k ,
( 0,
ϕ(a)Γ(p + 1), ∞,
mø ö÷Tü ]ø§ø4ü]þ]ÿ
÷V§ÿ §ÿ qÿ]ü]ÿ
x↓a
k!
ν
} }
]ü x → ∞ ]SyL^`s`bFjS{bLklg.arLyFUiD4£FyFtlrLtleLS} }Ö4iSyL^`cFbF\FbLfk¨h yL^Skk4iSs`yFtcFbFt^`cL^xeLbFs`bF\FtklaFbU qUcFaF FbF_ fx(x)→Y5ðaeFh→ν ∞< 0} Î,ºÎ,º
Ó
af
(ν)
¯Ó
1 (x) = Γ(−ν)
Zx
1 f (ξ)dξ = (x − ξ)ν+1 Γ(−ν)
iS eL^SklcFiOyL^`pleLitcFbF¡©nt_6eLiSyL^ a
af
f (x − ξ) =
∞ X (−1)k
k!
(ν) (x) = af
x−a Z
ÓË
f (x − ξ)dξ . ξ ν+1
0
(ν) a fx
b.jSFi`eLc6h6h.FiS\6eLtcFcFiSt
∞ X (−1)k f (k) (x)(x − a)k−ν
k=0
(x)
f (k) (x)ξ k .
oklFi`eLgSpxh tivjvFyFtlrLrLUt_WqiSyL4~eLtOrFeFh bFcFs`tyFbFyFiSjD^`cFbFtS}6FyFb6DirLbL£a jSyL^xtcFbF k=0
(ν)
k!Γ(−ν)(k − ν)
.
ªSª ÖkeLb
1 "+Çÿ
xÀa
}6s`i
('Çx 5G77 R
ãxo5Æ
# Ì&xx #5
1 ã
"
Æ.â
Æ.â
(x − a)k−ν ∼ xk−ν + (ν − k)axk−ν−1
b af
(ν)
(x) ∼
0f
(ν)
(x) + (a/π)Γ(ν + 1) sin(νπ)f (0)x−ν−1 ∼
0f
(ν)
(x), x → ∞.
p ^`eLjStlbLrLkliStjDs`^`gs`iStlseLgScFcFb6iL }¬cFrFteFhiSFi`yFeLtlgSrL{tleKb6^F }DaDxiSs`rLiSyFyFiSScL_n^x}Dh.jF\LyF^SkliSs`bFcFpiDjSkli~s`rLbncL}U^x4h i~fts(x) Ss`gFtpyF^St4kltsxc6^`ttcs cFeLtY Ftkk^ foq(x)cFs`t}8yF4FiyF ts`cFbFiyF`klaUh ^`Fpt^`yFs`tgL4}nt\Fc6s`cFivUFyFxbWaUS^`i`aOeLgSjS{yFtb68hOjSyFjSti`4eLt]cL F^xbF bOyFcFi`teLaDgviSs`cLiS^yF\LiS^xeLiqgScFFiSyFi`i kl4iDkleLs`bFi~yFhFScFtb6sShkh2FyFjiSjS Fb6trLktzk^>FyFklbFsx^`cFcF FiSbFjSLbF^sSiSkhyLF^`yFcFtbFcF\FttScFyFcFtliS _ bLL4^Siv8hFfs`^xbneL}DiSiS_npY cLûÖ^~\Ls`iS^`]s bF^`_naF}`s>\FbWs`iqrFiSeFy6h FyFtlrKklaU^`p^`cFb6hjSi`eL] FbFbHsx^`aUiSi.FyFiS Ftkk^.jSrLUt x > x rLiDklsx^`s`iS\FcFi FpcLyF^`tls`rLgZ{ttkliZs`jSFUiS]jStlrLbFtcF_ bFcLt^SjZkls`FithFyFbFi~trO4 iSxyL^`´ cFbFm \FtlcFcFiS_FyFi~rLi`eF bFs`tleLgScFiDkls`b (x−T, x) }
a
(ν)
0
af
(ν)
(x) ≈
x−T f
(ν)
(x),
x > a + T.
X ^Si`4eLgxts`s`bLtyFyF}¬\FY s`i s`iSs>jSjSi~r 6tyFta6eLbFa6^`tsSkh.kFyFbFcF FbF6iD¢p^`s`DU^`cFb6hL^S8hFs`b Î Î Ê˧üz ý e]ö §ø Ö÷Tø[ ©niL}\Fs`izFyFiSbFpjSirLcFtfiSs`yFbF L^`s`tleLgScFqFiSySh6rLaUiSjiSsFiDkls`i~hFcFcFqqUcFa6 FaUiSbFF_?iDcFkltZs`iyLhF^`cFjScFc6>cFkl~s`eLtFt}UcFFcFiSc6 hFs`qcFiLUmDcFjSaFtl FrLbFg_niSm cFb2cFtZ\Fs`ibFcFiStZaU^`a?bFcFs`tyL^xeL
,º ,º
7Ó
a1
(ν)
9Î
(x − a)−ν , ν < 0, x > a, Γ(1 − ν)
(x) =
qtklaUi`eLgSaDi]cFti b6rK^`cFcFzvrFeFh\FbFsx^`s`tleFhO4its]hFjSbFs`gDk¨hs`iL}~\Fs`iqbFyFiSbFpjSi~rF cFtqFi`eLi bFs`tleLgScF?FiSySh6rLaUiSjiSsFiDkls`i~hFcFcF?qUcFaF FbF_>iSseLbF\FcF¢iSscFeFhnm
a1
(ν)
d[ν]+1 1 (x) = Γ(1 − {ν}) dx[ν]+1
Zx a
dξ (x − a)−ν (x − a)−[ν]−{ν} = , = Γ(1 − [ν] − {ν}) Γ(1 − ν) (x − ξ){ν}
qyL^`j`rK^F}TFyFbW FtleL pcL^\FtcFb6h6 iScFb.iSSyL^`^`]sSkhjvcF~eLgL}¬a6^`a.b.Fi`eLi~tl cFi FyFiSbFpjSi~rLcFz¡FiDkls`i~hFcFcF¬Y qνi j FyFiD4tl Us`aU^x4tlOrLcFbL4bnY Y Y vits ü
ν > 0, x > a.
©
G
Ü
# ('D&xx #5 ('
ª#´ SjSi~rLs`c6gLiS}_ kvs`bL*^`jWaFs`qiDbF!aUkleLbFtyFiS\FjDt^`cFk4cFiSbF_yFbFs`s`iSgD\FkaUhnt }FiDk4iSs`yFtja6cL^`^WaFqiSjSUtlcFrLaFt FcFbFbFbtFFiSyFySiSh6bFrFpl a6^ ν ¤«ý§bL1k`Y6(x)Y S¦YÖoqpiSSyL^`pbFj.s`iS\FaU^S4bcL^WiDxklb =νa p+cL^~1\FtcFb6h 1 (a + 1) = 0 } \F1s`iSS(a<j+F1)yFiD4=tl 0} Us`1a6^x?(a4tl+O1)rL =cFbL0,4b>. . yL.}8^S4qbFa?cFaFt yFjSb6b6jSrLiSbL_ 1iDkcF(aiSjD^`+cF1)bF_iSrFs`eFa6h.eLiSs`cFiSb6eFiL } kh2iSsiDklbn}DcL^aDiSs`iSyFiS_ eLtlO^`ss`b?s`iS\FaFbnYFzrLcL^`aUiFiDklsx^`jSbL.tt]irLcFOs`iS\FaFS} kliSiSs`jStsSkls`jSU]UpcL^\FtcFbF ν = 0m ÿ$¥ ÿT
.# 1+
a
a
Æ
Æ
af
(ν)
(x)
(ν)
(2)
a
a
(3)
a
(0)
(1)
(ν)
FoyF4iStbFcFpcFjSiirLlcLsS^xihOpqcF^~U\FcFtaFcF FbFbFt?bOiStFkls`yFgtlrLktl^SeFfhF^qtsSk¨UhcFkla6iS FiSb6s`hnjSY t©
sStklFs`tjSy6Ug]Dtt_cF^`tla6eLklgSbFpliDh 4kliSaU_n^`m
p^`cFs`gLeL}xt\FjD^xs`hi jDklts`iS\FaFbeLtlO^`s?cL^?iDklbnmKi~rLcL^ u~jSL^xeK^F|~Y ðyFUl^xh^`a6klbFiDf^2s`yFtS`ts~}¬\Fs`iSS FyFiSbFpjSirLcL^xhOSeK^^`cL^xeLbFs`bF\FtkaUiS_2qUcFaF FbFt_ FbFb 1 (a + 1)}
FyFi~DirFhFbF_W\FtyFtp2Ua6^`p^`cFcFν}Dt klsxs`^xiSeL\FiaFbnS}nrLs`i`gLeF}SyLt^ScWqFbFyFa2tlrKqklUsxcF^`a6j` eFb£hFFs`tlg>yFkltiSklSta6iS^`_v]eK^xUrLaFUiDklg aFy6bFjjSUs`iS\F}Ka6jS^xSi~SrF}fhF6} UFB}Y bFY YIpüqs`yFiSb£\FaFFb tlyFktaUkliSt\FiSyStcFrLbFbFb£cL^`a6sx^x^SO4b rLiS(0,_bF1)p s`b6vs`iS\FtaiScL^24tc6hFts?ν pcL^`an}T^?^S46eLbFs`rK^?ttaUi`eLtD^`cFbF_n}La6^`aFiSaU^`pjD^`]s jS\FbLkeLtcFb6h>Fi iSyF4~eLt a1
(a + 1) = 1.
(ν)
a
Ø
a1
(ν)
(x) =
(x − a)−ν , ν > 0, Γ(1 − ν)
USjD^`ts~Y
oqp2s`iS_£qiSyL4eLsx^`a6t?jSb6rLcFiL}
\Fs`iqtaFsvs`iSsiDkeK^`StjD^xtsvk UjStleLbF\FtcFm bFt yL^Skkls`i~hFcFbUh4tlOrLs`iS\Fa6^S8b a b x bbLkl\Ftp^`ts]kliSjDklt>j]FyFtlrLtleLt a → −∞ −∞ 1
(ν)
(x) = 0, ν > 0.
§üzý e¶ÿ¡÷Tø4ÿ ]ÿ ã ]ü]ü §ti~rLbFcjD^x cF_jSjSi~rOkeLtlrLStsZbFpjS\FbLkeLtcFb6hrLyFiSScFiS_FyFiSbFpjSi~rF cFiS_>iSs kls`tFtcFcFiS_vqUcFaF FbFb Φ (x − a), µ > 0m Î,ºÎ,º[Ì
ÊË
%Ó
9Î
HË
Ï
µ
a
ν x Φµ (x
=
1 − a) = Γ(µ)Γ(1 − {ν})
1 Γ(1 − {ν} + µ)
[ν]+1 (x x
[ν]+1 x
Zx a
− a)µ−ν =
(x − ξ)−{ν} (ξ − a)µ−1 dξ = 1 (x − a)µ−ν−1 . Γ(µ − ν)
qyFbpcL^~\Fts`cFi~b6Oh6 rLtµkls`=jStνcFcF−iOjyL}¬^`jSrLcLt ^0cF≤eLj m < ν }TrLyFiSScL^xhFyFiSbFpjSi~rLcL^xhqUcFaF FbFb ü
Φµ (x − a)
a
ν x Φν−j (x
− a) = 0.
ªS
1 "+Çÿ
('Çx 5G77 R
ãxo5Æ
# Ì&xx #5
1 ã
"
Æ.â
Æ.â
(n)
1 (x)
0
1 x=1 x=1.5 x=3 0
n 1
2
3
4
§bLk`YF6Y 6m <>.BY%#0-%#Q0*$:N#)+!%#b-Y72,+#!H6N+70-$7B"/+#!HJaXE/#?K+%+%Yd$7!W#?/&X$N#)/"/,#?. ñ sx^xeLi]Ss`gL}a6^xOrK^xhbFps`b6qUcFaF FbF_rFeFh 7ùJ÷ *÷rLbLqtyFtcF FbL^xeLgScFiSiiSFtl yLyFt^`{s`iStyLcF^bFtbF£yLU^`yLtls^`jSyFcFi`teLcFg>b6h u~FiDkls`ihFcFcFiS_n|~Y/ðy66lbL4b?keLiSjD^S4bn}`tkeLb φ (x) hFj`eFhFtsSk¨h ý
ν
°
0
s`i b qUcFaF Fb6h φ(x) = φ0 (x) +
a
[ν] X
ν x φ0 (x)
= f (x), ν > 0,
cj Φν−j (x) = φ0 (x) +
[ν] X
Cj (x − a)ν−j−1
s`i~tZSrLFtyFsbFtcFbLifyF^`tt{sWtcFtlrLbFbFtcL
j=0
0
ν
s| ~¹i
{
|
ï|.~¹i
}
af
(ν)
(x) =
n n−ν f (x), x a x
î |
hf6# =&xx #> aze&
ªÑ \LcFb6^SklhWs`is`bLb6kl.Fi`iSeLFgStyLp`^`t FsSbFk_.hWbFbWp4rLtyFcFUtc^xhWcLaU^ iSiScLSklyLs`^`yFs`UcFaF Fb6_nhnmn}8jScLj^~aU\LiS^xs`eLiStOyFjSiS_WFFi`iSeLySc6h6hFrLtiSsSaWkhWjSaFyFF^`i`sSeLc6cFiStlt rLbLqtyFtcF FbFyFiSjD^`cFbFtS}6^p^`s`t£jS\FbLkeFhFtsSk¨h>rLyFiSScF_>bFcFs`tyL^xe
m ÿ$¥
Æ
"õ$5
Æ
© ^`a6^xh>aUiScLkls`yFUaF Fb6h cL^`pjD^`tsSkhÇó/ôx÷ /öo÷ ñ÷ ¢ oó ùJ÷~Y L^xrK^`]XBsrLiSyFSUqtkz¢rLkyFeLUU\LiD^`tOYUXFyFiSiSpbFgD4pjStiWrLcFFyFiStAbFý§pjSbLifrL^`cFcLU^x ý§bFbLUfjS^`b6cLeF^xeF h bWbFUjSb6^`eFFeFUh2s`i FcFiSyDt2h6klrLiSa6j`^ b FyFtiSSyL^`p`tttkeLtlrLU]bL£iSSyL^`piDm 0<ν<1 (ν) a f (x)
≡
n−ν a x
*1:
5
n x f (x).
*M
"4
af
(ν)
1 (x) = Γ(1 − ν) 1 = Γ(1 − ν) =
x
Zx a
Zx
f (ξ)dξ 1 = ν (x − ξ) Γ(1 − ν)
x f (x
− ξ)dξ
ξν
+
a
(ν) a f (x)
+
x
Zx
f (x − ξ)dξ = ξν
a
1 f (a+) = Γ(1 − ν) (x − a)ν
1 f (a+) , Γ(1 − ν) (x − a)ν
0 < ν < 1.
^S4ts`bL} \Fs`i cL^ 4cFi~tkls`jSt qUcFaF FbF_n} ~rLiSj`eLts`jSiSyShF]b6 DkeLiSjSbF yL^`pcFbF L^O4tlOrL?yL^Skkf^`s`yFbFjD^`t4z4b>FyFiSbFpjSi~rLcFz4b>bLkl\Ftp^`tsFY f (a+) = 0 X S i S t keLU\L^`tkliSiSs`cFiS{tcFbFt4tlOrL FyFiSbFpjSirLcFz4b ^`FUsSi*b ý§bLf^`cL^x bFUjSb6eFeFh>bF4tts jSb6r
af
(ν)
(x) =
(ν) a f (x)
+
n X
1 f (j) (a+) , Γ(1 + j − ν) (x − a)ν−j
ν > 0,
n = [ν].
©ntFtyFg¢rFeFh!kliSjSL^xrLtcFb6h¡s`b6B6yFiSbFpjSi~rLcFcFtiS~Si~rLbL4iL}]\Fs`iSS,j<s`iS\FaUt iSSyL^`^xeK^`klgj£cF~eLg£cFt s`i`eLgSaUik^Sf^WrLbLqtyFtcF FbFyFStf^xh¢qUcFaF Fb6h x=a F } F c iOb ttFtyFjS?FyFiSbFpjSirLcF¬Y f (x) ]\FtjSnb6rL=cF[ν]iL}6\Fs`i j=0
(ν) a 1(x
s`iS rK^aU^`a a1
XiSiSStS} a
(ν)
ν x (x
− a) ≡ 0,
(x − a) =
− a)µ =
ν > 0,
1 (x − a)−ν . Γ(1 − ν)
Γ(µ + 1) (x − a)µ−ν , Γ(µ + 1 − ν)
o ´x + xo 5 ('Çx 5G77 R # Ì&xx #5 F4iSi~ s`cFiD4iO FyFiStlSrKyLkl^`s~s`^`cFjSiSbFtZs`klg iSjOiSs`jScFb6iSrL{t tcFbFtZ4tlOrL yL^Skkf^`s`yFbFjD^`t4z4b?FyFiSbFpjSi~rLcFz4b 1 " Çÿ
ã
(ν) a f (x)
=
Æ
a
ν x
"
1 ã
[ν[ X f (k) (a)
f (x) −
k!
Æ.â
Æ.â
(x − a)k
rLt [ν[ § FtleLiSt\FbLkeLiL}6iSFyFtlrLtleFhFt4iStqUyL^`jScFtcFbFt [ν[< ν ≤ [ν[+1 Y oqcFs`tyL^xeLgScFt FyFtiSSyL^`piSjS^`cFb6hFyFiSbFpjSi~rLcFcL^ aUiScFt\FcFiDBiSs`yFtpaDt ¤ Fi`eLi~ bL}6r6eFh FyFiDkls`iSs`} a = 0¦rLiSScFiOjSFi`eLc6hFs`g 4tlsSirLiD ^`6eK^Sk^Fm k=0
fb(λ) = ú {f (x)}(λ) ≡
Z∞
e−λx f (x)dx.
iSFiDklsx^`jSbLWs`yL^`cLkqiSyLf^`cFs` ^`6eL^Sk^klyL^`jScFbFjD^`t42FyFiSbFpjSi~rLcF¬m } ν<1 λ fb(λ), [ P } f (λ) = λ f (0), ν ≥ 1 λ fb(λ) − 0
ν
0
b
(ν)
n
ν
n−j
0
(ν−1+j)
j=1
d (ν) 0 f (λ)
= λν fb(λ) −
oqpqs`b6>jSyL^xtcFbF_ keLtlrL`tsx}F\6sSi lim
0f
(ν)
(x) = lim
n X
λν−j−1 f (j) (0).
j=0
(ν) 0 f (x)
= f (m) (x),
sx^`a\Fs`i>iSSts`bFyFiSbFpjSi~rLcFtkliSeK^SklU]sSkh£¤ j>UaU^`p^`cFcFiDk4zkeLt~¦]kiSS\6 cFz4b?FyFiSbFpjSirLcFz4b2 FtleLiSiFiSyDh6rLaU^FYF]cFb?kliSjSL^xrK^`]ssx^`a6t]FyFb?SkeLiSjSbFbn} rL\FyFs`iUlf^(0)FyFb>=rLfbLq(0)tyFt=cF FfbFyFiS(0)jD^`cFbF=b?.F.iD. kl=s`i~hFfcFc6(0) nm = 0, cFiviSseLbF\L^`]sSkh.rLyFU2iSs ν↓m
(1)
s`iS rK^aU^`a
ν↑m
(2)
[ν]
01
(ν)
(x) = xν /Γ(1 − ν),
(ν) 0 1(x)
X s`iDiSs`cFiS{tcFbFbOFyFiSbFpjSi~rLcL^xhO^`FUs`iqFyFbFjS\FcFttrFeFh qbFpbFa6^F}xaUiSs`iSyFiD4 cFtFyFiDkls`iZFyFbL4bFyFbFs`gDk¨h kÖs`t}x\Fs`iqaU^`aFbFtl s`iZFyFiSbFpjSi~rLcFtÖiSsZtlrFbFcFbF F4iSUs Ss`gOiSseLbF\FcFz4b iSsOcFeFhnY = 0,
ν > 0.
%{f6# =&xx #> a6³}|J
ÿ$¥
Æ
o´U
Æ
( X~ Si`eLtt~ðrLyFiSiSSScFcFiD8tFjSyFb6iSrFbFDp}SjSti~keFrLb cFrLtDbLý§qbLftyF^`cLtcF^x F bFyFbF`UtjSsSb6keFhOeFrLhviD4klsxiS^`s`UiSs2\FScFis`Sg?iSyF6iSyF{bFjS^xtlh rLqtcFU¡cFa6a Fb6hnYüqSkls`g 0 < ν < 1 m s| ~¹i
{
|
ï|.~¹i
l|
af
(ν)
d 1 (x) = Γ(1 − ν) dx
Zx
f (ξ)dξ . (x − ξ)ν
XFi`eLcFbLk eLtlrLU]bFtqrLt_Lkls`jSb6hnY ~V¦ üqyFtliSSyL^`pStWbFcFs`tyL^xevbFcFs`tyFbFyFiSjD^`cFbFtFi \L^SklshLm Zx a
f (ξ)(x − ξ)
−ν
a
¯ξ=x Zx (x − ξ)−ν+1 (x − ξ)−ν+1 ¯¯ + dξ = −f (ξ) df (ξ) = ¯ −ν + 1 −ν + 1 ξ=a a
= −f (x) · 0 +
f (a)(x − a)−ν+1 + −ν + 1
Zx
S¦VüqyFirLbLqtyFtcF FbFyFStWyFtp~eLg~sx^`sOFi xm d dx
Zx
(5.7.1)
f (ξ)(x − ξ)
−ν
dξ = f (a)(x − a)
−ν
a
+
(x − ξ)−ν+1 df (ξ). −ν + 1
Zx
(x − ξ)−ν d[f (ξ) − f (x)].
qi~rpcF^`aUiDrLbLqtyFtcF FbL^xeK^?4¡rLiSD^`jSb6eLb mTFiDklaUi`eLgSaF FyFb bFcFs`tl yFbFyFiSjDD^`¦VcFüqbFb>iDkFeFi tlrLξcFhFbFj`_ eFbFhFcFtsSs`k¨th yFF^xiDevkls`FiyFhFtcFiScFSiSyL_n^`p}6Sts`Wi cFbF−fbFcF\Fs`(x)ttyFiObFcFyFtiSjD4^`tcFc6bFhFtt£s~Y FxiO\L^SklshLm a
ü
a
Zx
(x − ξ)
−ν
d[f (ξ) − f (x)] = (x − ξ)
−ν
¯ξ=x Zx ¯ f (ξ) − f (x) ¯ dξ. [f (ξ) − f (x)]¯ −ν (x − ξ)ν+1 ξ=a
qi~rKkls~^`j`eFh6h2Fi`eLU\FtcFcF_?yFtp~eLg~sx^`sj ¤ 6Y ´UY ~¦§b?FyFiSbFpjSi~rFh2cFtiS~Si~rLbL4tZkli` aFyL^`tcFb6hn}6iSaUiScF\L^`s`tleLgScFiFi`eLU\L^`tm ü
a
a
x Z f (x) − f (ξ) 1 f (x) (ν) ν , (x) = dξ + af Γ(1 − ν) (x − ξ)ν+1 (x − a)ν
0 < ν < 1.
qi`eLU\FtcFcL^xh>qiSyL4~eK^b FyFtlrKklsx^`j`eFhFts kliSSiS_Çó/ôx÷ /öo÷ ñ ¼ *ô(5.7.2) J÷~Y ^Skls`iObLklFi`eLgSpU]sSk¨h ttqjD^`yFbL^`cFs`kqStklaUiScFt\FcFz4b>FyFtlrLtleK^S4bnm a
ü
*1:
5 "4&2
 Ú
=
−∞ f
(ν)
ν (x) = Γ(1 − ν)
Zx
−∞
f (x) − f (ξ) ν dξ = (x − ξ)1+ν Γ(1 − ν)
Z∞ 0
f (x) − f (x − ξ) dξ, ξ 1+ν
o´` b
1 "+Çÿ
ν = Γ(1 − ν)
(ν) f∞ (x)
('Çx 5G77 R
ãxo5Æ
Z∞
# Ì&xx #5
1 ã
"
f (ξ) − f (x) ν dξ = (x − ξ)1+ν Γ(1 − ν)
Z∞
Æ.â
Æ.â
f (x) − f (x + ξ) dξ. ξ 1+ν
(5.7.3) q F y S i F b p S j ~ i L r L c x ^ h ` ^ 6 y { i 4 ~ i t O s S ` s O g F ` i L e U F \ t L c ^ v b 4 t F c t t L c ` ^ F e 6 h L r F c z Si`eLttziSSbL.FUs`tmUyFteFhFyFbFp^` FbFt_2yL^SkDirFhFtiDkhOjSyL^xtcFb6hn}DFi`eLU\L}F^`cFtli 4üqiSiSa6iz^xFyFtbFtls`yFi t4cL^OtcFFtyFpbLcL4^`taUyF^ztFFiSyFySh6iSbFrLpa6jS^i~jzrLcFrLiSyF_>iSSkqcFSiDt>klaUbFiScFcFs`tt\FyLcF^xzeLtXý§cFb6bL f^`cFcLbL^x FbFyFUtlrLjSb6tleLeFiDeFhnYY ðyFiSScF_?bFcFs`tyL^xe iSs`yFbF L^`s`tleLgScFiSiFiSyDh6rLaU^ p^`FbF{tsSkh>jjSb6rLt −ν (ν > 0)
ü
x
0
G
1 −∞ f−ν (x) = Γ(−ν)
Zx
1 f (ξ)dξ = (x − ξ)ν+1 Γ(−ν)
Z∞
f (x − ξ)dξ , ξ ν+1
ν > 0.
qyFiS FtlrLUyL^yFt~e6hFyFbFp^` FbFb?p^`a6eL]\L^`tsSk¨h?jjSrLtleLtcFbFb2bFpZlsSiSlijSyL^xtcFb6h aUiScFt\6cFiS_ \L^Skls`bW¤bª2_KYei¦`¶XUda`¶Xqd L Y Y ¦j k4zkeLtwrK^Sf^`yL^Fm −∞
ü
−∞ f
(ν)
0
1 (x) = p.f. −∞ f−ν (x) = p.f. Γ(−ν)
Z∞
f (x − ξ) dξ ξ ν+1
0
1 Γ(−ν)
≡
Z∞
f (x − ξ) − f (x) dξ, ξ ν+1
0 < ν < 1.
FÖi`sxeL^Zi~aU iSbFcFs`ttl\FeFcLgS^xcFhiS\L^SiOklFs`iSgySbh6rLbFa6cF^ s`tνyFY FyFts`bFyFStsSk¨h2aU^`arLyFiSScL^xhFyFiSbFpjSirLcL^xh ^`yF{i 4i~ cFiüqrLyFjSi~6rL8i`h>eF FUbFss`hLgO4FbnyFxY iSüqb6ptjSy6i~jSrLcF_>bFt pcF^`b6y6>{iSiO\FtjOjSiSb6`rLeKtcn^Sklm s`gpcL^~\FtcFbF_ ν Si`eLgS{b6 0
û
G
G
ν + f (x)
=
ν − f (x)
=
d dx
¶[ν]
{ν} Γ(1 − {ν})
=
=
µ
µ
d − dx
{ν} Γ(1 − {ν}) Z∞ 0
¶[ν]
{ν} Γ(1 − {ν})
Z∞ 0
f ([ν]) (x) − f ([ν]) (x − ξ) dξ, ξ 1+{ν}
{ν} Γ(1 − {ν})
Z∞ 0
f (x) − f (x − ξ) dξ = ξ 1+{ν}
Z∞
f (x) − f (x + ξ) dξ = ξ 1+{ν}
0
f ([ν]) (x) − f ([ν]) (x + ξ) dξ. ξ 1+{ν}
%{f6# =&xx #> a6³}|J
o ´ jDüq^`iDcFkcFeLiDtlrLc6jSh6b6hrLFt`myFiSbFpjSi~rLcL^xhbFc6iS rK^qFyFtlrKkls~^`j`eFhFtsSkhOjcFtklaUi`eFgSaUi4i~rLbLqbF FbFyFi` ÿ$¥
Æ
∗
ν − f (x)
=e
Æ
iνπ
µ
d dx
¶[ν]
{ν} Γ(1 − {ν})
yFUiS_ FUs`g2iDklcFiSjD^`c cL^ s`iD}K\6sSi ð
a6^`a
Ä÷7ñxòBþ5ñ¬ô :oñ÷oøBùJúóxòÀôöo÷°*÷Aó÷-ô15
ν + f (x)
ν = Γ(1 − ν)
Z∞
Z∞
f (x) − f (x + ξ) dξ. ξ 1+{ν}
0
tkls`g2cFt\Fs`i2bFcFiStS} qUcFaF FbFb f (x)}Fsx^`a>\Fs`i
f (x) − f (x − ξ) ∆1ξ f (x)
∆1ξ f (x) dξ, ξ 1+ν
ν < 1.
qs`iSSFyFirLi`eF bFs`gs`ijSyL^xtcFbFt]jiS`eK^Skls`g }Up^S4tcFbLWFtyFjSUyL^`pl cFiDkls`gOyL^`pcFiDkls`gSjSzkl{tiFiSyDh6rLaU^ m kqs`ttqν {>^`1iD ξ m 0
=
∆1ξ f (x) 7→ ∆m ξ f (x) =
XyFtp~eLg~sx^`s`tqFi`eLU\L^`tm
rLtklg
ν + f (x)
1 = κ(ν, m)
Z∞
m X
(−1)j
j=0
∆m ξ f (x) dξ, ξ 1+ν
µ ¶ m f (x − jξ). j
ν < m = 1, 2, 3, . . .
0
κ(ν, m) =
Z∞
µ ¶ m X (1 − e−ξ )m n m dξ = Γ(−ν) nν , (−1) ξ 1+ν n n=1
0 < ν < m,
d cFiSyL4bFyFiSjSiS\FcFtq6iDkls`i~hFcFcFtSY üqyL^`jSiDkls`iSyFiScFcFbFtq^`cL^xeLiSb?s`b6>FyFiSbFpjSi~rLcF2bL4t]s jSb6r
m b
0
ν − f (x)
= (−1)
ν − f (x)
kliSiSs`jStsSkls`jStcFcFiLY
[ν]
{ν} Γ(1 − {ν})
(−1)[ν] = κ(ν, m)
Z∞ 0
Z∞
f ([ν]) (x) − f ([ν]) (x + ξ) dξ ξ 1+{ν}
0
∆m −ξ f (x) dξ, ξ 1+ν
ν < m = 1, 2, 3, . . .
o´
1 "+Çÿ
*'
('Çx 5G77 R
ãxo5Æ
# Ì&xx #5
1 ã
"
Æ.â
Æ.â
jS\FbLbFkljSt{s`bLgvkliSg ^Ss 4kteLms`UbL}n\La6^`t}L^`a.\Fs`s`i2i`eLFgSyLaU^`ijSmtY5\Lklð^Ss~eF^`klh?s`cFbviSeLjSj?]bFsSSqkiSiSh.yLiOS4cLi`eL^`eKs`gS^xU{?yLt ^xrFeLνeFgSh Y[cFüqiS iSia6f^x(x) t<FtyFs`tiLkl}ns~iS^`]yLs2^`cFpb6^x
ν ±
0<ν<1
m
à ! Z∞ Z∞ m m X ∆±ξ f (x) f (x ∓ ξ) f (x) 1 1 1 n m nν (−1) dξ = + dξ = n κ(ν, m) ξ 1+ν κ(ν, m) ν²ν κ(ν, m) n=1 ξ 1+ν n²
²
à ! Z∞ m X f (x ∓ ξ) − f (x) 1 n m (−1) nν dξ. = n κ(ν, m) n=1 ξ 1+ν
[§kls`yFt4bFj s`tFtyFg ² a cFeL}FjSb6rLbL}F\Fs`i 1 κ(ν, m)
Z∞
∆m ±ξ f (x) dξ = ξ 1+ν
0
=
(
n²
à ! ) Z∞ m X f (x ∓ ξ) − f (x) 1 n m dξ = (−1) nν κ(ν, m) n=1 ξ 1+ν n 0
ν Γ(1 − ν)
Z∞
f (x) − f (x ∓ ξ) dξ ξ 1+ν
Lr t_Lkls`jSbFs`tleLgScFi]cFtÖp^`jSbLklbFsiSs Y vts`irLiD FyFtiSSyL^`piSjD^xcFbF_ ^`6eK^Sk^4i~ cFi FiSa6^`p^`s`g s~^`a6tS}§\Fs`i.j.a6eK^Skklmt>rLiDklsx^`s`iS\Fc6i
0
¸
ν +
S(V"
ν 0 x g(x)
ν 0 x
ν + f (x)
ý4t{tcFb6tbFcFs`tyL^xeLgScFiSi]UyL^`jScFtcFb6h jSyL^xO^`tlsDk¨h\FtyFtprLyFiS` = f (x) cFcFUt n}F\FFs`yFi iSbFFpyFjSiSi~bFrLplcFjSUi~ rLcL^xh ^`y6{^`i yF{kliSiOiSs`iScFsOiSF{iDtklcFs`bFig(x) thFcFcFg(x) iS_ q=UcFaF FbFfb (x)yL^`Y8jS]cL^sS4cFt~s`eLbLY }ncL^`aDi` = f (x) ↔
= g(x).
ν 0 x
wG
ν +
G
- & {
ì|
0!Ù
ï|.~¹i}~³¶í.ç
Û
î ~çð
ðyFiSScFtvFyFiSbFpjSi~rLcFt^`cL^xeLbFs`bF\FtklaFb6q6c6aF FbF_
jOiS`eK^Skls`gaUiD46eLtaUklcF>FiSyDh6rLaUiSj af
(ν)
(z) =
n! 2πi
Z L
f (ζ)dζ (ζ − z)n+1
ν
Γ(ν + 1) 2πi
Z
f (ζ)dζ , (ζ − z)ν+1
rLtp^S4aFcFUs`_
'x xÜ
o ´` qUcFaF FðbFb?yFUd2iSiS_SiSSklFiDtklcFiSbFBtqFqiDiSklyLs`4yF~iSeLtcF b6h/rLyFiSScFiS_*FyFiSbFpjSi~rLcFiS_*^`cL^xeLbFs`bF\FtklaDiS_
ÿ$¥
x #5ÆA1 R"5ôx&1ãx
n z (z
õ ã÷
− a)m = m(m − 1) . . . (m − n + 1)(z − a)m−n =
cL^rLyFiSScFtqFiSyDh6rLaFb a
ν z (z
− a)m =
m! (z − a)m−n (m − n)!
m! (z − a)m−ν Γ(m − ν + 1)
kZFiDkeLtlrLU]bLFyFbL4tcFtcFbFtttqa ^`cL^xeLbFs`bF\FtklaUiS_ qUcFaF FbFbn}6FyFtlrKklsx^`j`eLtc6 cFiS_>jOjSb6rLtkls`tFtcFcFiSli ySh6rK^Fm ∞ X
f (z) =
cm (z − a)m ,
cm = f (m) (a)/m!.
XWyFtp~eLg~sx^`s`tFyFb6Si~rLbLa keLtlrLU]t4iSFyFtlrLtleLtcFbFHrLyFiSScFiS_FyFiSbFpjSi~rFcFiS_ ^`cL^xeLbFs`bF\FtklaDiS_vqUcFaF FbFbnm m=0
af
(ν)
(z) =
a
ν z
Ã
∞ X
cm (z − a)
m
!
=
∞ X
m! cm (z − a)m−ν . Γ(m − ν + 1) m=0
<X keLU\L^`tZ FtleLiSiFiSyDh6rLaU^ n iScFi kiS eK^SklStsSk¨h>kZiSS\FcFziSFyFtlrLtl eLFti`cFeLbFi t bFs`ntl eLaFgSyLcF^`iDs` cFiS_vFyFiSbFpjSi~rLcFiS_ νf = (x) }KFyFbFyFiSbFpjSi`eLgScFiD£jSttkls`jStcFcFiD kν liS eK^Skl`tsSkhkFyFiSbFpjSirLcFiS_6ý§bLf^`cL^x bFUjSb6eFeFhnY7ðt_Lkls`jSb6 s`tleLgScFiL}6jOFtyFjSiD£keLU\L^`t m=0
(n)
∞ ∞ X X m(m − 1) . . . (m − n + 1) (m) (x − a)m−n (m) f (a) = f (a)(x−a)m−n = (m − n)! m! m=0 m=0
=
n
∞ X (x − a)m (m) f (a) = f (n) (x). m! m=0
§qbLs`fiSS^`(cL^x FyFbFiSUjStjSyFb6bFeFs`eFg
=
1 Γ(k − ν) =
1 Γ(k − ν)
µ
d dx
µ
d dx
¶k Zx a
(x − ξ)k−ν−1 f (ξ)dξ =
¶k X Zx ∞ 1 (m) f (a) (x − ξ)k−ν−1 (ξ − a)m dξ. m! m=0 a
o ´xª + XFi`eLc6h6hFi~rKklsx^`cFiSjSaF 1 " Çÿ
Z1
Fi`eLU\L^`tm
0
('Çx 5G77 R
ãxo5Æ
θ = (ξ −a)/(x−a)
∞ X
µ
d dx
¶k Zx a
a
Æ.â
Γ(α)Γ(β) , Γ(α + β)
µ
d dx
¶k
(x − a)k+m−ν =
∞ X
1 f (m) (a)(x − a)m−ν . Γ(m − ν + 1) m=0
^S4ts`bL}F\Fs`i bL4tts 4tkls`i b Si`eLttqiSSttqkliSiSs`cFiS{tcFbFtSm ν x
Ã
3 & {
(x − ξ)k−ν−1 f (ξ)dξ =
1 f (m) (a) = Γ(m + k − ν + 1) m=0 =
Æ.â
bbLklFi`eLgSp`hbFpjStkls`cFUHqiSyL4eL
(1 − θ)α−1 θβ−1 dθ = B(α, β) =
1 Γ(k − ν)
# Ì&xx #5
1 ã
"
∞ X
m=0
ì|
cm (z − a)
m+p
!
=
∞ X
Γ(m + p + 1) cm (z − a)m+p−ν , Γ(m + p − ν + 1) m=0
p 6= −1, −2, −3, . . . .
ï|.~¹i}| |
"!
l,~~¹
Û
î ~çð
XtyFcFtfkh/a/FyFtlrKkls~^`j`eLtcFbF rLyFiSScFiSi¡bFcFs`tyL^xeK^jBjSb6rLt
rLt
lim Φ−ν (x) ≡ Φ−n (x) = δ (n) (x),
δ (n) (x)
n = 0, 1, 2, ...
d n h>FyFiSbFpjSi~rLcL^xh2rLtleLg~sx^x qUcFaF FbFbðbFyL^`a6^ ν→n
Z∞
f (ξ)δ (n) (x − ξ)dξ = f (n) (x).
δ(x) ≡ d1(x)/dx
m
] FyFtlrLtleLtcFcL^xh sx^`aFbL¢iSSyL^`piD¢qUcFaF Fb6h FyFbW FtleF Fi`eLi~ bFs`tleLg` cF ν = n = 1, 2, 3, . . . kliSjSL^xrK^`tskqFyFiSbFpjSifrLcFz(x)4b FtleLiSiFiSyDh6rLa6^ −∞
a
af
(n)
(x) = f (n) (x),
(ν)
x > a,
;:
ÿ$¥¦
# =&xx #5
ã 1 ##Æu
Æ
*
o´´
Æ
^FyFb FtleL>iSs`yFbF F^`sSteLgScF ν = −n d2k n aFyL^`s`cFz4b bFcFs`tyL^xeK^S4bnY oqpkljSiS_Lkls`jD^ Φ ? Φ (x) = Φ (x). cFAtòBFñiDñkl÷yFtlrKkls`jSñ tcFcFi jSs`m ta6^`tsvqiSyL4eK^>rLyFiSScFiSi?rLbLqtyFtcF FbFyFiSjD^`cFb6h÷ 7÷ µ
λ
µ+λ
*6 *6*
À
*MÂ94 "&<""
X\L^Skls`cFiDkls`bn}
Φµ
(ν) a [Φµ (x − a)]x =
a [1(x
a [δ(x
a [δ
(n)
− a)](ν) x =
− a)](ν) x =
(x − a)](ν) x = a [Φν−n (x
(x − a)−ν + . Γ(1 − ν)
−ν−1 (x − a)+ = Φ−ν (x − a), Γ(−ν)
−n−ν−1 (x − a)+ = Φ−n−ν (x − a), Γ(−n − ν)
− a)]νx = δ (n) (x − a),
?> @ {z
µ−ν−1 (x − a)+ = Φµ−ν (x − a). Γ(µ − ν)
y|糶·~¹i¾| ~¹i
|
x > a.
ï|.~¹i
üqyFtlrLtleLgScFiStFiSjStlrLtcFbFtrLyFiSScFiS_FyFiSbFpjSi~rLcFiS_ FyFb klj`hFp^`cFi Zk cFiSjSzs`bFFiDrLyFiSScFiSirLbLqtyFtcF FbL^xeLgScFiSiiSFtyL^`fs`iSyL^F}UiSFxyF→tlrLtlaeFhF]ti eLiSaU^xeLgScFUrLyFiSScFUFyFiSbFpjSi~rLcFU¡qi`eLjD^`cFaU^`yL^Fy6tlrLtleLiD Ñ ν a x
¯
fx(ν) = lim
ν ξ [f (ξ)
− f (x)],
tkeLb lsSiSsOFyFtlrFtleklUtkls`jSSts~Y wzjSs`iSyF¡4iSs`bFjSbFyFU]s2cFiSjSiStiSFyFtlrLtleLtcFbFtkls`yFt8eLtcFbFtjStyFcFUs`g2FyFi` brLFpyFjSiSiSrLcFcFziS_ pklcLjSiS^~\F_LtklcFs`jSb6i hL<x÷ FiSyDxh6úrLñaD÷oiSøBjLù YxLð}6eFUhs`yLF^~i`\FeLtcFU\FcFtiScFtqb6th¡cFFtyFs`b yFbFFjStbLyF^xtleLSgSi~cFrLtqiSsOyFt Fptl~eLeLg~?sx^xa s`iSjcL^s`iD¡FUs`bbL¡FyFb6DirLbFsSkhFtyFtk4iSs`yFts`g FiSc6hFs`bFt2rLbLqtyFtcF FbFyFD tbL4kkiDeLkltls`rLb iSbjD^`jSs`jSgtklqs`UbcFFaFiS Fc6bFhFbs`bFk>tqeLyLiS^`a6aF^xsxeL^xgSeLcFgSiScF_vzrL4bLbqyLt^SyFqtbFcFa6 F^SbF4yFbnSt}44s`iDbFklLs`^ bn}¬qFUiScFpaFjS Fi`bFeF_hF]Xt_6tt tyF{s`yL^Skk^F}LcFtrLbLqtyFtlcF FbFyFSt4tj?iSS\FcFiDHk4zkeLtSY vBcFtSrLtHyL^Sk kf^`s`yFbFjD^`s`gOsx^`aFbFtqFyFiSbFpjSi~rLcFtSY ξ→x
*
x
G
@
o´x
1 "+Çÿ
('Çx 5G77 R
ãxo5Æ
# Ì&xx #5
1 ã
"
Æ.â
Æ.â
}, î
S Y´?Ñ#rh´`UsY [ ]p { I ;F tz +F Yndx{ "Å I m wL NO ¨ MO } 6Y ð !ÿ ÷ ð ± N /ød ± *ô þ>ò!ö G oqcFs`tyL^xeL.bFyFiSbFpjSirLcFt rLy6iSScFiSiFiSyDh6rLaU^b£cFtaDiSs`iSyFt?b66yFb6eLi~tcFb6hnY
d vbFcLklanm ^~UaU^vb s`tl6cFb6a6^F}nÑS#´UY FY ÷ ^xeLg\FAbFò!anök}F `SS FY Rû§eLt4tcFs`rLyFiSScFiSibLkl\FbLkeLtcFb6h b b6>FyFbL4tcFtcFbFtSYFd LaY ©V W;gN_KÍ [ ¾GªN_Ka`¶XZY¼\ SJ u I F Y d { Å I m ~ n ;F F }¬ Ñ#´ LY 6Y ʳ`yg`b=rKi}r Í ¾u I F Y I Y èd ÿ I D} ¯ ML m +F ;F n ;F F }¬ ÑS L}T ÑS# ´U}T ÑS Ñ6}T ÑÑFSY ªFY u§q`bVbV XZYkÍ ©´rhk[ ~ I sd { I í Å I ±m ¯ u I }F Y } I H I F I I aW wI F ÑÑ 6Y ´U7 Y ¨r+W2V µZaA¢² ]u I H I F Y
d w +OGI m ~ n ;F F }¬ ÑÑÑFY J
Q3P Z
(3 T V
J #J ¬6
ÂS3R$XS3TÝQ
J J Â
Z U
Z T V & Z Ð Z YÝS
¸J -J
_G
¬*È"4&Ú
©
J ÇJ
'
-J J QS&1X-TÝQ 9Z 3QS Z 3
-J 9Z
1J
*'
$Z S&Q3T &V"S(Y ('
-J #J J $Z S&Q3T &V"S(Y Z T V 3TÝS(Y &
9Z
J $Z & S Q3T &V"S(Y
R$
S(YÝQ0P$Y P
$Z S&Q3T &V"S(Y
ÇÐ &Y ÇÒ Ò Ð
V Ò V Z 11P"Q3T &VÇ 3R$ Z U
P"S3T &V T Z V&3T S(Y
S(YÝQ0P$Y P
P"S3T &V
Z T S(XS
$Z & S Q3T &V"S(Y &R$V T Y
1S(V
T
Z U
S "S(V
S(YÝQ0P$Y P S(V" &V &Ò " V Q
QS&1X-TÝQ
ís\ït\ r
r h
p
ßÚæèâ èæÔÓ s ã å æèß #âM* áãèß`_ÚÔ æ Ó Ñèè ã ßÚç ÚßáæÔÓ h
e
c
jgwp
dcqk
o
o
¢ üqyFtlOrLtS}?\Ft FyFbLkls`UFbFs`ga yL^Skk8iSsSy6tcFbF rLyFUiS_ aUiScLkls`yFUaF FbFb rLyFiSScFBFyFiSbFpjSi~rLcF¡d nyF]cFjD^xeFg`rK^x ts`cFbFaUiSjD^6}qcL^`FiD4cFbL cFtaUiSs`iSyFt ^`aFs`¢bF^vp4bLc6kl\Fi~bLkteLklts`cFjSb6t2h qyLU^`cFpaFcF FiDbFkls`_nt}
_niSY FyFtrLtleLtcFcF.cL^ jDklt_ jSttkls`jStcFcFiS_.iDklbn} jSjStlrLtiSFtyL^`s`iSy k¨rLjSbFl^OkliSiSs`cFiS{tcFbFt
,|¹
B{z
KÂï
?j
ªC
~|
]FtyL^`s`iSys`iSsZeLbFcFttcn}`tiqFiSjSs`iSyFcFiStFyFbL4tcFtcFbFtiSFyFtlrLtleFhFtsSk¨h qiSyL4eLiS_
n ξ f (x)
ξ f (x)
= f (x + ξ),
ξ > 0.
iSiSFyFtlrLtleLbL>ti]s`iS_ qiSyL4eLiS_r6eFh n = 0 biSs`yFbF L^`s`tleLgScFpcL^~\FtcFbF _ −1 } } üq}nDY YklYTs`]g \FtjSb6rLcFiL} = hFj`eFhFtsSk¨h iSFtyL^`s`iSyFiD}6iSSyL^`s`cFza Y −2 −3 yL^`pleK^`l^`tsSk¨h>jOyDh6r©nt_6eLiSyL^Oj s`iS\FaDt }Fs`iSrK^ qiSyLf^xeLgScFi s`iSsOyDh6rv4i~ fcF(x)iOFyFtlrKklsx^`jSbFs`g kqFiD4iSgSiSFtyL^`s`iSyFcFiS_?xa6klFiScFtcFs`m ð
= f (x + nξ),
−1 ξ
f (x + ξ) =
n = 1, 2, 3, . . . .
−ξ
ξ
∞ X ξk
k!
k x f (x)
= exp(ξ
x )f (x).
iSFiDklsx^`j`e6h6hWs`i kliSiSs`cFiS{tcFbFt2k2iSFyFtlrLtleLtcFbFtiSFtyL^`s`iSyL^k¨rLjSbFl^F}
FyFb6Di` rLbL£avklbL4jSi`eLbF\FtklaDiD42FyFtlrKklsx^`j`eLtcFbF
k=0
ξ
= exp(ξ
x ).
D
S
('7x 5GÜ
"+
ã>xx&ôxÆ
# Ì&xx #5
Çã
Æ.â
jSiDkls`iSyFXiScFjStlcFrLbFt_ ∆}lrK^xeLkltiStSiS}s`rFcFjDiS^{yLt^`cFpb6cFhLiD4klbs`cFqiSFtyL^`s`iSyL^FmleLtjSiDkls`iSyFiScFcFbF_ −
∆± = I −
= I − e∓ξ
x
Æ.â
∆+
bFyL^x
.
qts`yFrLcFi jSb6rLts`gL}6\Fs`iOrFeFh>rLbLqtyFtlcF FbFyFSt4iS_>jOs`iS\FaUt x qUcFaF FbFb
lim
∓ξ
∆− ∆+ = − lim = ξ→0 ξ ξ
x.
"!
"! qü iDkeLtlrLiSjD^`s`tleLgScFi`tfFyFbL4tcFtcFbFtÖiSFtyL^`s`iSyFiSj ¤ ¦¬aqUcFaF FbFb rK^`tsOttZeLtjSt ¤ FyL^`jSt~¦ÖyL^`pcFiDkls`b jSzkl{b62FiSyDh6rLaU∆iSjLm ∆ ξ→0
¯
B{3±
~|nðE¶¹
´| ~¹
|ç|ï
+
∆+ ∆+ . . . ∆+ f (x) =
∆n + f (x)
=
= (I −
n X
k=0
∆− ∆− . . . ∆− f (x) =
n X
−ξ )
f (x) =
n X
k=0
k
à ! n (−1) k
à ! n (−1) k
k −ξ f (x)
=
à ! n (−1) f (x − kξ), k k
∆n − f (x)
=
n
f (x)
−
= (I −
(−1)k
ξ)
n
f (x) =
n X
k=0
k
k ξ f (x)
=
à ! n f (x + kξ), k
S^ 4tc6h6hplrLtklgZ FtleLiSt FyFiSbFpjSi`eLgScFz bFyFi~rLi`eF^xhOkl6f4bFyFiSjD^`cFbFt rLiOStklaUiScFt\FcFiDkls`bn}6Fi`eLU\FbLnyL^`pcFiDkls`b>rLyFiSScFν?FiSySh6rLaUiSjLm k=0
∞ X
∆ν± f (x) =
(−1)k
µ ¶ ∞ X Γ(ν + 1) ν (−1)k f (x ∓ kξ) = f (x ∓ kξ). k k!Γ(ν − k + 1)
lksxiS^`yLjSfbFs`^xgOeLgSjOcFjSib6iSrLFt yFtlrLtleFhFt4t]s`bL4b kliSiSs`cFiS{tlcFb6hL4b2iSFtyL^`s`iSyF<4i cFiFyFtlrF +
k=0
∆ν± = (1 − e∓ξ
x ν
) = 1−
k=0
ν ∓ξ e 1!
x
+
ν(ν − 1) ∓2ξ e 2!
x
−
ν(ν − 1)(ν − 2) ∓3ξ e 3!
]sSklrK^OjSb6rLcFiOFi`eLUyFUFFiSjSiStZkljSiS_Lkls`jSiyL^`pcFiDkls`cF>iSFtlyL^`s`iSyFiSjLm µ+ν , ∆µ± ∆ν± = ∆±
x
+. . .
21}<
F aUklsxiS^`s`j`iSeLyFtliScFtbF4bni~m ts>Ss`g>jSjStlrLtcFi?b cFtFiDklyFtlrKkls`jStcFcFi>j>SbFcFiD4bL^xeLgScFiDHFyFtlrF "¥ á
}
x #5Æ A+1 #+x D(5xã+Á¥ ¥ ¥
∆µ± ∆ν± f (x) ∞ X
=
k=0
=
k=0
l=0
∞ ∞ µ ¶X X µ
∞ X
k
(−1)
&
T
ì|
B{åä
∞ X j=0
(−1)j
j=l
"
j
j=0
=
µ ¶ µ (−1) ∆ν± f (x ∓ kξ) = k k
µ ¶X µ ¶ ∞ µ ν (−1)k (−1)l f (x ∓ (k + l)ξ) = k l
k=0
=
=
∞ X
µ
¶ ν f (x ∓ jξ) = j−k
¶# j µ ¶µ X ν µ f (x ∓ jξ) = j−k k
k=0
(−1)j
µ
¶ µ+ν µ+ν f (x ∓ jξ) = ∆± f (x). j
e X
ï|.~¹i
.ç|~,í~¹iæ
76N@
~ﳶ·Â
ÂE¶|æ
y,~ç|ï
]FyFtlrLtleLbLiSFtyL^`s`iSyF.rLbLqtyFtcF FbFyFiSjD^`cFb6hrLyFiSScFFiSySh6rLaUiSj]FyFtl rLtleLgScFz4bvkliSiSs`cFiS{tcFbUhL4b ∆ν+ , ξ→0 ξ ν
Dν+ ≡ lim
∆ν− . ξ→0 ξ ν
Dν− ≡ lim
iSiSs`jStsSkls`jSU]bFtqbL£FyFiSbFpjSirLcFtqp^`FbLkljD^`]sSkh?j jSbUrLt ∞ 1 X Γ(ν + 1) (−1)k f (x − kξ) ξ→0 ξ ν k!Γ(ν − k + 1)
(ν)
b
f+ (x) = Dν+ f (x) = lim
(6.3.1)
k=0
(ν)
∞ Γ(ν + 1) 1 X f (x + kξ) (−1)k ξ→0 ξ ν k!Γ(ν − k + 1)
f− (x) = Dν− f (x) = lim
bÎcF^`pjD^`]sSkh¼ó/ôx÷ ó/ôò57ò/x÷*ÿ¬J
Exô ñxö
*1:/öo÷5ñõ[ÿ
k=0
2
(6.3.2)
(xú 5* ùDòBùJñ""÷oö(qø;6oò!ø0÷7ñxòBþ5ñõ[ÿ
D
D
"+
('7x 5GÜ
ã>xx&ôxÆ
# Ì&xx #5
Çã
Æ.â
Æ.â
qi`eLgSp`hLklgqiSyLf^xeLgScFzFyFtlrKkls~^`j`eLtcFbFt}FFi`eLU\FbL ü
(1 − e−ξDx )ν = (Dx )ν , ξ→0 ξν
Dν+ = lim
(1 − eξDx )ν = (−Dx )ν . ξ→0 ξν
Dν− = lim
Fª Y FY S¦ZqrLyFtiSs`SyFcF~rLcFt2i.FUyFSiStlbFrLpbFjSis`rLgDkcFht2jW~s`rLiDiSj`}§eLt\Fs`s`jSiWiSySjShFjS]tlrLstcFFcFyFbFtvcF 6klbFiSFiSs`cFkliSiS{iSs`tjScFtb6sShLkl4s`b¡jSb6¤¥hnªFY Y FY ^xl FbF{teLtjSiDkls`iSyFiScFcF]yL^`pcFiDkls`grLyFiSScFiSiFiSyDh6rLa6^ ν jOyL^`pjStyFcFUs`iDjSb6rLt
∆ν+ f (x) = f (x)−
ν(ν − 1) ν(ν − 1)(ν − 2) ν f (x−ξ)+ f (x−2ξ)− f (x−3ξ)+. . . . 1! 2! 3!
üqyFb FtleLiD s`iSs>yDh6r.iSSyFjD^`tsSkhcL^ \6eLtlcFt b.4!FyFb6DirLbL¢a iSS\FcFz£qiSνyL=4neK^SWrFeFh aUiScFt\FcF?yL^`pcFiDkls`nt_ − 1 ∆0+ f (x) = f (x). ∆1+ f (x) = f (x) − f (x − ξ),
¡b s~Y]r
YdüqyFtlrLtleLgScFtWiSs`cFiS{tcFb6h lim ∆ f (x)/ξ kliSjSL^xrK^`]skWiSS\FcFz4b FyFiSbFpjSirLcFz4bkliSiSs`jStsSkls`jSU]b6£FiSySh6rLaUiSj wzcL^x eLiSbF\FcFtjS\FbLkeFtcFb6h¢kFyL^`jSiDkls`iSyFiScFcFbL4byLf^`pcF(x), iDklshL4nb<=FiS1,aU^`p2,jD.^`.]. .s~}Ö\Fs`i Y lim ∆ f (x)/ξ = (−1) f (x) } üqtyFt_6rLt s`tFtyFga iSs`yFbF L^`s`tleLgScFz FtleLzÎpcL^~\FtlcFb6hL ν = −m X ` s D i k L e U L \ ` ^ q t D y 6 h L r F c q t S i S F y D j ` ^ ] S s k n h } m = 1, 2, 3, . . .
∆2+ f (x) = f (x)−2f (x−ξ)+f (x−2ξ) = [f (x)−f (x−ξ)]−[f (x−ξ)−f (x−2ξ)] ξ→0
n +
n
(n)
ξ→0
n −
n
n (n)
∆−1 + f (x) = f (x) + f (x − ξ) + f (x − 2ξ) + . . . ,
^ZbL4t]sjSb6rObFcFs`tyL^xeLgScFOkl6f¤ S~rLtFi`eK^`^`s`gL}x\Fs`iiScFb ^`Dkli`eL]s`cFikSi` rFhFsSkhK¦m ∆−2 + f (x) = f (x) + 2f (x − ξ) + 3f (x − 2ξ) + . . . ,
∆−1 + f (x)
=
∞ X
f (xk ) = ξ
k=0
∆−2 + f (x) =
−1
∞ X
f (xk )∆xk ,
k=0 ∞ X
k=0
(k + 1)f (xk ) = ξ −1
∞ X
k=0
xk = x − kξ,
∆xk = ξ,
(k + 1)f (xk )∆xk .
21}<
jSi~bLrLklb6FsDi`k¨h>eLgSa piSjSjDb6^`rLcF bFt FyL^`jSb6eK^ðbFyFb6UeLtÖrFeFhOkl6f}xFiDkeLtlrLcFttjSyL^xtlcFbFtFyFb6 "¥ á
}
x #5Æ A+1 #+x D(5xã+Á¥ ¥ ¥
&
∞ X
−2 ∆−2 + f (x) = ξ
eLtlrLiSjD^`s`tleLgScFiL}
∆xl
l=0
(−1) f+ (x)
=
∞ X
f (xk )∆xk .
k=l
Zx
dξf (ξ),
−∞
b jSiSiSStS}
(−2) f+ (x)
Zx
=
dξ2
−∞ (−m)
rLt −∞ f
f+
(x) =
(−m)
Zx
(x) =
Zξ2
dξ1 f (ξ1 )
−∞
−∞ f
(−m)
dξm . . .
(x),
Zξ2
dξ1 f (ξ1 ).
qyFiSbFpjSirLcFtiSs`yFbF L^`s`tleLgScF FtleLFiSyDh6rLaDiSj>FyFtlrKklsx^`j`eFhF]s kliSSiS_eLtjSi` kls`iSyFiScFcFbFtqbFcFs`tyL^xeLkliSiSs`jStsSkls`jSU]t_>aFyL^`s`cFiDkls`bnY Fi`eLU\L^`wztcL^xm eLiSbF\FcFz iSSyL^`piD} rFeFh FyL^`jSiDkls`iSyFiScFcFb6 FyFiSbFpjSirLcF −∞
ü
rLt
(−m)
f−
(−m) (x) f∞
=
−∞
(−m) (x), (x) = f∞
Z∞
dξm . . .
Z∞
dξ1 f (ξ1 ).
©
^`aFbLiSSyL^`piD}F4UStlOrK^`t4khn}6\Fs`i FyFiSbFpjSirLcFt x
(ν)
ξ2
∆ν+ f (x) ξ→0 ξν
f+ (x) = lim
iSStklFt\FbFjD^`]sbFcFs`tyFFi`eFhF FbF!4tlOrL?bFcFs`tyL^xeK^S4bvb FyFiSbFpjSi~rLcFz4b> FtleLiS_ aFyL^`s`cFiDkls`b (ν = . . . , −2, −1, 0, 1, 2, . . .) bFi.s`iS_FyFbF\FbFcFtvcFtaUiSs`iSyFt ^`jSs`iSyF¢cL^`pjD^`]sb6?rLbLqtyFbFcFs`tyL^xeK^S4b Y Ä 0
D
('7x 5GÜ
"+
('
&
ì|
B{/ë
ã>xx&ôxÆ
e X
ï|.~¹i
ìç|~,í~¹iæ
# Ì&xx #5
Çã
76N@
~ﳶ·Â
ÂE¶|æ
Æ.â
Æ.â
y,~ç|ï
FyFb x üq>Dakls`TY g©niSrL bLrK^2q{t^`yF tcFξ F4bFyFi~ `tc6fi>^xhHklj`qhFpU^`cFs`aFg? Fkb6h FtlfeL(x) iS\FbLkiSeLsteLcFbFcF\FiScL_^ FiSts yFtcF4teFcFhcFiSs`i`_ eLkgSaU=i kliSiSs`cFiS{tcFbFt 0, 1, 2, . . . , K x−a ξ= b p^`FbLk^`s`geLtjSU¡FyFiSbFpjSirLcFUjOjSb6rLt K af
(ν)
(x) =
ν a D+ f (x)
1 = lim ν ξ→0 ξ
(x−a)/ξ
X
b6eLb aFjSbFjD^xeLtcFs`cFiDt4 = lim
µ
K x−a
¶ν X K
k=0
Γ(ν + 1) f (x − kξ) (6.4.1) k!Γ(ν − k + 1)
ν a D+ f (x)
=
Γ(ν + 1) f (−1) k!Γ(ν − k + 1)
µ
af
(ν)
(−1)k
(x) =
k
x−k
µ
x−a K
¶¶
.
(6.4.2)
wzcL^xeLiSbF\FcFziSSyL^`piD4i~tsSs`gFyFtlrKkls~^`j`eLtcL^vbFyL^`jD^xh.FyFiSbFpjSi~rLcL^xh rFeFhvqUcFaF FbFbn}6iSSyL^`^`]t_Lkh?jOcFeLg 6yFb x > bY üqyFtlrKklsx^`j`eLtcFbFt nyF]cFjD^xeLg`rK^x ts`cFbFaUiSjD^6} rLiSScFiSt!rFeFh(\FbLkeLtcFcF yL^Skl\Fts`iSjL}¬cFt iSStklFt\FbFjD^`ts~}¬i~rLcL^`aDiL}¬FyFtlrLtleLgScFiSi FtyFtlDirK^ a. FtleLz¢iSs`yFb6 La ^`jSs`b6tlrLeLSgS}6cFbLz4
k=0
wC
KG
µ ¶ n! n(n − 1) . . . (n − k + 1) Γ(n + 1) n = = , = k k!Γ(n − k + 1) k!(n − k)! k!
b p^S4tcFbFjOplrLtklg n cL^ µ
−m k
¶
=
−m
}F6i`eLU\FbLm
−m(−m − 1) . . . (−m − k + 1) (m + k − 1)! = (−1)k = k! k!(m − 1)! = (−1)k
Γ(m + k) . k!Γ(m)
FcoiSklFiqi`eLaUiSgSp`h>qbFs` Fi?bFjStcFs~yL^ ^x¡t¢cFjbFtiS`rFeKeF^Shkls`^`gZcLiS^xs`eLyFbFbFs` LbF^`\Fs`ttlkleLaUgSiScFi FyFνi~rL=i`eF−µ,tcFµb6hv>S0bF}`cFFiDi`4eLbLU^x\FeLbLg` ν k
µ
−µ k
¶
= (−1)k
Γ(µ + k) , k!Γ(µ)
T
"¥ ÿ
#
. §
&xo 5x7 GÜ !
Æ.â
bvkliSiSs`jStsSkls`jStcFcFiL}
"â _Å
(x−a)/ξ
X
−µ µ a Dx f (x) = lim ξ
b
ξ→0
−µ a Dx f (x)
= lim
µ
k=0
x−a K
¶µ X K
D
"õ"#$ §m>¥ ¥ ¥
$ §
Γ(µ + k) f (x − kξ), k!Γ(µ)
Γ(µ + k) f k!Γ(µ)
µ
x−k
µ
x−a K
¶¶
.
qyFiSjStyFbL klFyL^`jStlrFeLbFjSiDksSgFi`eLU\FtcFcFkliSiSs`cFiS{tcFbF_j]keLU\L^`t µ = 1 m K→∞
ü
(x−a)/ξ −1 a Dx f (x)
rLt
= lim
ξ→0
X
k=0
Z K X Γ(1 + k) f (xj )∆x = f (x0 )dx0 , f (x−kξ)ξ = lim ∆x→0 k!Γ(1) j=0 x
Y j = K − k, x = a + j∆x, K = (x − a)/∆x k=0
Ø - (Û $¢@ j
ï³
B{
a
³
·é¾| ~¹iæ¯n| ,|æ¯
qts`yFrLcFi UStlrLbFs`gDk¨hn}6\Fs`iOrLyFiSScFtqbFcFs`tyL^xeL µ ¶
}
ﶶ
î
æ~
−∞ f
b
(−µ)
1 (x) = Γ(µ)
Zx
−∞
(−µ) f∞ (x)
1 = Γ(µ)
Z∞
f (ξ)(x − ξ)µ−1 dξ
f (ξ)(ξ − x)µ−1 dξ,
µ>0
F LyF^`s`tlrKtleLkls~gS^`cFj`eF?hF]FiSs?yDklh6iSrLSaDiSiS_>j rLyFiSScFtFyFiSbFpjSi~rLcFt nyF]cFjD^xeLg`rK^x ts`cFbFaDiSjD^iSs`yFb6 x
−∞ f
b t_Lkls`jSbFs`tleLgScFiL} ð
−∞ f
(−µ)
(−µ)
C
(−µ)
(x) = f+
(−µ)
(−µ) (x) = f− f∞
1 (x) = Γ(µ)
Zx
−∞
f (ξ)(x − ξ)
∆−µ + ξ→0 ξ −µ
(x) ≡ lim
∆−µ − . ξ→0 ξ −µ
(x) ≡ lim
µ−1
1 dξ = Γ(µ)
Z∞ 0
f (x − ξ)ξ µ−1 dξ =
D
Sª
('7x 5GÜ
"+
1 = Γ(µ)
ã>xx&ôxÆ
Z∞
e−ξ
x
ξ µ−1 dξf (x) = (
x)
# Ì&xx #5
Çã
−µ
Æ.â
(−µ)
f (x) = f+
Æ.â
(x).
t f b (x) b f (x) }¬iSFyF}DtlFrLyFtlb2eLtiSc6sx cFtzyL^`
© cF^`taFtzbLF¢yFtliSrLStlyLeK^`^Sp4iDb2}LiSs`rLcFyFiSiS{ScFtcFbFtO_ FyFlimiSb6p∆jSi~rLfcF(x)/ξ yFbF L^`s`tleLgScF<FiSySh6rLa6^x ν = −µ < 0 4iSUs£Ss`g£limFyF∆tlrKklfsx^`(x)/ξ j`eLtcF j£jSb6rLt bFcFs`tyL^xeLiSj f (x) b f (x) }fcL^`pjD^`t4.rLyFiSScFz4bbFcFs`tyL^xeK^S4b rLtlbFe UjSb6eFeFaUhiSb2cFtX\FtcF_6zeFh klpiScLiS^~s`\FjSttcFsSbFklts` jStcF}6cFFiLi`Y eLU^S\F4bLt£cFbFbFjqcFjs`tFtyLyF^xjSe³iDý§bLbFfp^`cFcLb6^FO} cFb6 cFbF_ Fy6tl 0
ξ→0
(−µ) ∞
(−µ)
−∞
−∞
(ν) + ν
ν +
ξ→0
(ν) − ν −
ν
a
af
^Fi`eLi~ bFjOp^`sSt
(−µ)
1 (x) = Γ(µ)
Zx
f (ξ)(x − ξ)µ−1 dξ,
Zx
f (ξ)(x − ξ)µ−1 dξ,
dOrLyFiSScF_>bFcFs`tyL^xe³ý§bLf^`cL^x bFUjSb6eFeFhnm a=0 a
0f
µ > 0,
(−µ)
1 (x) = Γ(µ)
µ > 0.
qtyFtlDirHj.Fi`eLi~ bFs`tleLgScFU iS`eK^Skls`g pcL^~\FtlcFbF_HFiSa6^`p^`s`tleLt_iDklcFiSjSjD^xtsSkh cL^u~FyL^`jSb6eLt§FiSa6^`p^`s`tleLt_n|~}iSs`yL^x^`Zt Fi`eLUyFUFFiSjSiStfkljSiS_Lkls`jSirLyFiSScF yL^`pcFiDkls`t_nm 0
ü
µ+λ ∆± = ∆µ± · ∆λ± ,
µ+λ ∆± ∆µ± · ∆λ± ∆µ± ∆λ± = lim = lim · lim = Dµ± · Dλ± . ξ→0 ξ→0 ξ µ ξ→0 ξ λ ξ→0 ξ µ+λ ξ µ+λ ν ν = m−µ m ν 0<µ<1
µ+λ D± = lim
F üqtlyFeLtliSrKtÖkl\Fsx^`bLj`keFeLh6iLhq}FFyFi`teLjSiiD kSbFi~s`rFtlhFeLgScFtiSt§tfb6\FeLbLbkyLeL^`i jSc6iSjt jSb6rLdqt ^ FtyFtFbF{t£s`i kliSiSs`cFiS{tcFbFtqjOjSb6rLtSm
} d]rLtrLyFiSSd]cFcL^`_bL4iDklts~cF^`gSs`{iStant }
X yFtp~eLg~sx^`s`tFyFb6Di~rFbL
−µ Dν± = Dm ± · D± = (±
ν (x) f+
=
−∞ f
(ν)
x)
m
· D−µ ± ,
1 (x) = ( x ) Γ(µ) m
@
Zx
−∞
ν f− (x)
=
(ν) f∞ (x)
1 = (− x ) Γ(µ) m
Z∞
f (ξ)(x − ξ)µ−1 dξ,
f (ξ)(ξ − x)µ−1 dξ,
ν > 0,
ν > 0.
« i`eLttFi~rLy6iSScFtkljStlrLtcFb6h irLyFiSScF FyFiSbFpjSi~rLcF 4i cFicL^`_Fs`b(j aFcFbF^x l Y x
Ä
*
"
#´
1õ7
}, î
SY rLð yF!iSÿ ScF÷ iSð i±FiSNyD h6rLaU^/b£ød cFtl±aU iSs`iS yF*ô t?b6þ>Wò!ö F yFGb6 eLi~oqtcFcFs`b6thnyLY
^xd eL.vbbFcLFklyFaniSm bFpjS^~iUrLaUcF^vb t s`tl6cFbFa6^F}n ÑS# ´UY 6?Y ÷ Aò!ö © [ðyFiSScFiStObLkl\FbLkeLtcFbFt2bWtivFyFbL4tcFtcFbFtSY
d WY m bFpl f^`seLbFs~}T`S FY F2Y ~ (V W;gN_KÍ n [ ¾}¬ GÑ#ª2´ _KLaY `¶XZY¼\ 0J u I F YO d { Å I m ;F F L?Y ʳ`y g`b=rKi}r Í ¾u I F Y I Y èd ÿ I D} ¯ ML m ;F ;F n ;F F }¬ ÑS L}T ÑS# ´U}K ÑS ÑF}T ÑÑFSY 67Y §q`bVV XZYkÍ ©´rh [ ~ I I í Å I u I F uÑÑ FY yI H I F sd { I ±m ¯ I aW wI F } Y }
J #J ¬6
J J Â
¸J -J
_G
È"4&Ú
J ÇJ &
-J J QS&1X-TÝQ 9Z
'
3QS Z 3
©
-J 9Z
ÇG
1J
*'
$Z S&Q3T &V"S(Y ('
-J #J J "Z S&Q3T &V$S(Y Z T V&3TÝS(Y &
R$
S(YÝQ0P$Y P
$Z S&Q3T &V"S(Y
ÇÐ &Y ÇÒ Ò Ð
V Ò V Z 11P"Q3T &VÇ 3R$ Z U
P"S3T &V
S(Y QP$Y P
Z T SXS
$Z & S Q3T &V"S(Y &R$V T Y
©+
Z U
S "S(V
S(YÝQ0P$Y P S(V$ &V &Ò " V Q
ís\ït\ r
å ' ÚæÔÓ â æ #âMtã ^ Ñèãèâß`Ú_ ã å ß å²æèç dp
x
c
lk
nm
& @ ³ WX bFcFs`tyFi` rLbLqtyFtcF FbL^xeLgScFiDvbLkl\FbLkeLtcFbFbrLyFiSScFFiSyDh6rLaUiSjZbFcFs`tl FyLtleL^xeLgScFFiStyDFh6yFrLtaUiSiSSjLyLY4^`©npiStjDF^xtcFyFb6g.hiSbFcFbyLk^`eL]Ds>Ot^`s tcFSt>i`eLs`i`teLtgSjDaU^xi rFcFeFUh^`yFcLi`^xeLeLgLbF}Kp\F^t
ì.|
-{z
|ï~
y ¶E
Á51
5*
G
å 1ÈÂ4
""M
L
f (x) 7→ fb(λ) = ú {f (x)}(λ) =
Z∞
e−λx f (x)dx.
klgZFyFtlrLFi`eK^`^`tsSkh^`Dkli`eL]s`cFiZkDirFhFbLfkhjZaUiD46eLtaUklcFiS_Fi` eLqo UcF6s`eLtiDklyLaD^xiDeklpls`rLb tReλ Y iSyL4eK^OiSSyL^`tc6b6h>bL4ttsOjSb6r >0 0
+
f (x) = ú
−1
1 {fb(λ)}(x) = 2πi
σ+i∞ Z
eλx fb(λ)dλ,
x > 0,
(7.1.1)
rLtOFyShLf^xh FyFiDi~rLbFs>L^`yL^xeFeLtleLgScFi 4cFbL4iS_.iDklb.kl6yL^`jD^?iSs jDkltl iDkliSS2s`iS\Ftσa>bF=piSconst SyL^xtcFb6h fb(λ) Y X^x cFt_F{bL.kljSiS_Lkls`jSiDaU^xOrLiSibFcFs`tyL^xeLgScFiSiFyFtiSSyL^`piSjS^`cFb6hhFj` eFhFtsSk¨hcL^xeLbF\FbFtklFt FbL^xeLgScFiS_qiSFtyL^` FbFbqdZkljStyFs`aFbd]bkliSiSs`jStsSkls`jSU]t_s`ti` yFt4HikljStyFs`aDtSYDX£keLU\L^`tFyFtiSSyL^`piSjD^xcFb6h ^`6eK^Sk^qkljStyFs`aU^ZrLjSDOqUcFaF FbF_ σ−i∞
ÑS f (x)
x%7 5G7o
1 "+
b
g(x)
iSFyFtlrLtleFhFtsSk¨hvqiSyL4~eFiS_ Zx
f ? g(x) =
^s`tiSyFtf^Oi kljStyFs`aDt eK^Sklb6sLm
0
S&x#7 +x
1 ##Æ
"
"§
f (x − ξ)g(ξ)dξ,
ú {f ? g(x)}(λ) = ú {f (x)}(λ) · ú {g(x)}(λ) = fb(λ)b g (λ).
^`FiD4cFbL}6\Fs`iOrFeFh FyFiSbFpjSi~rLcF2 FtleL>FiSySh6rLaUiSj
(n) (λ) = ú {f (n) }(λ) = λn fb(λ) − fd
^rFeFhv4cFiSiSaFyL^`s`cF?bFcFs`tyL^xeLiSj
n−1 X
λk f (n−k−1) (0+), n = 1, 2, . . . , (7.1.2)
k=0
\ (−m) (λ) = λ−m fb(λ), m = 0, 1, 2, . . . .
af
]StZqiSyL4eL<4iSUsSs`giS ntlrLbFcFtcFji~rLcFiS_2p^`FbLklb rFeFh?FyFiSbFpjSi`eLgScFiSi ¤ Fi`eLi~ bFs`tleLgSc6iSiOb6eLb iSs`yFbF L^`s`tleLgScFiSiU¦Ö FtleLiSi ν m &É
d (n) (λ) = λn fb(λ) − 0f
n−1 X
(n−k−1)
λk 0 f0
(0+), n = 0, ±1, ±2, . . .
üqiDklaUi`eLgSaFrLyFiSSc6_b6cFs`tyL^x@ e ý§bLf^`cL^x bFUjSb6eFeFhWFyFtlrKkls~^`j`eFhFtskli` SiS_ kljStyFs`aF2bFcFs`tyFbFyFSt4iS_vqUcFaF FbFbvkli kls~^`c6rK^`yFs`cFiS_vkls`tFtcFcFiS_n} k=0
0f
(−µ)
(x) = f ? Φµ (x),
FyFbL4tcFtcFbFts`tiSyFt4iqkjStyFs`aUtjStlrLts]aFyFiSbFpjStlrLtcFbF£eK^`6eK^SkliSjDklaFb6qs`yL^`cLk qiSyLf^`cFsrLjSD?s`b6 qUcFaF FbF_nm \ (−µ) (λ) = fb(λ)Φ b µ (λ).
0f
^`FiD4cFbFjL}U\Fs`i
Fi`eLU\FbLm
b µ (λ) = 1 Φ Γ(µ)
Z∞
e−λx xµ−1 dx = λ−µ ,
0
\ (−µ) (λ) = λ−µ fb(λ), µ > 0.
0f
%
=< &
ÑF qs`iSSjSFi`eLcFbFs`gFyFtiSSyL}F^`pFiSyFjDtl^xrKcFklbFsx^`t jSbL£^`6tleKt^SjOk^ jSb6rLrLyFt iSSc6iS_FyFiSbFpjSi~rFcFiS_ ý§bLf^`cL^x bFUjSb6eFeFh $¥¦
#7 +xx $ 1#
=
0f
0f
(ν)
ν
(x), ν > 0
(x) =
n (−µ) (x), x 0f
µ = n − ν ∈ (0, 1),
bjSiDklFi`eLgSp`tfkhqiSyL4~eLiS_£¤Ý´UY SY S¦FyFtiSSyL^`piSjD^xcFb6h ^`6eK^Sk^ FyFiSbFpjSi~rFcFiS_ FtleLiSiOFiSySh6rLa6^ n qUcFaF FbFb f (x) YFX
(−µ)
0
d (ν) (λ) = ú { 0
0f
ν x f (x)}(λ)
(−µ) (λ) − = λn 0 f\
= λν fb(λ) −
X\L^Skls`cFiDkls`bn}FtkeLb
n−1 X k=0
0<ν<1
n (−µ) }(λ) x 0f
k=0
n − 1 < ν < n.
}Fs`i
d (ν) (λ) = λν fb(λ) −
0f
(ν−1)
^S4ts`bL}F\Fs`iOrFeFh>rLiDkls~^`s`iS\FcFiDiSyFiS{b6?qUcFaF FbF_ 0f
(ν−1)
=
λk [0 f (−µ) ](n−k−1) (0+) =
λk 0 f (ν−k−1) (0+),
0f
n−1 X
=ú {
1 (0+) = lim x↓0 Γ(1 − ν)
Zx
(0+).
(7.1.3)
(7.1.4)
f (ξ)dξ = 0, (x − ξ)ν
bvqiSyL4eK^ ¤Ý´UY SY U¦§FyFbFcFbLf^`ts2kliSjDkltFyFiDkls`iS_>jSb6r
m 0
'
d (ν) (λ) = λν fb(λ), 0 < ν < 1.
0f
cFi ^`cL^xüqeLiSyFtbFiS\FScFyLz^`piSjSF^`UcFs`b6tt £j ^`jS6bUeKrL^StSkm^FyFiSbFpjSirLcFiS_?^`FUs`i4i~tsSs`gFi`eLU\Ftl
d (ν) 0 f (λ)
= λν fb(λ) −
X\L^Skls`cFiDkls`bn}FtkeLb
n−1 X
}Fs`i
k=0
0<ν≤1
λν−k−1 f (k) (0+), n − 1 < ν ≤ n.
d (ν) 0 f (λ)
= λν fb(λ) − λν−1 f (0+).
(7.1.5)
Utkls`jStcFcL^xhyL^`pcFbF L^4tlOrLs`bL4b rLjS68hOiSSiSStcFb6hL4b ¤«ý§bLf^`cL^x bFUjSb6eFeFhb ^`FUs`iU¦j?s`iD}T\Fs`i>FtyFjSiStbFpcFb6£¤Ý´UY SY D¦zklirLtyD bFs2rLyFiSScFt
ÑD +x%7 5G7o # S&x#7 +x FyFbFiSsZbFFpjSyFiiSrLbFcFpjSi~tSrL}TcFjSplhFts`s`i`teLgSj>aDiZs`iS F\FtlaDeLt x=FiS0yDh6}¬rLj?aDs`iSi jLY jSqyFtt8k4hiSaUs`^`yDahcLjS^ZsSiSy6s`iSiLt }xiS¤ÝS´UtÖY SFY SyF¦ziSbFkli~prLjSi~ty6rF cFt?bL4t]s irLbFcL^`aUiSjSt2s`yL^`cLkqiSyLf^`cFs` ^`6eK^Sk^F}ntkeLbrLbLqtyFtcF Fb6yFStl jOf^xcFh ~eLqgOUcLcF^aF FcFb6b6hO b cFtkl£iSiSFs`jSyFttlsSrLkltls`eLjStSUm ]ttaUi`eLbF\Ftkls`jSiqttFyFiSbFpjSi~rLcFiSSyL^`^`]sSkh 1 "
"
1 # Æ
"§
i
d (ν) 0 f (λ)
d (ν) (λ) = λν fb(λ).
^`aUiScFt n}!rFeFhóFy6iSbFpjSi~rLcFiS_ nyF]cFjD^xeLg`rK^x ts`cFbFaDiSjD^F}!j keLU\L^`t bL4t]t_ jSb6r 0<ν<1
0f
(ν)
=
0f
C
f (0)x−ν 1 (x) = + Γ(1 − ν) Γ(1 − ν)
FyFtiSSyL^`piSjS^`cFbFt ^`6eK^Sk^
Zx 0
(x − ξ)−ν f 0 (ξ)dξ,
d (ν) (λ) = λν−1 [f (0) + λfb(λ) − f (0)] = λν fb(λ).
F\]tsSkl4aDtiDs` bLk4}Uz\Fs`keLitSF}`yFcFtiqiSbLSyL4^`tptiSsqjDsx^x^`cFaUbFiSt _^`t6eKjSb6^SkrO^]jrFkeF4h zνkeL>t1iSScFiSt]SklUtlcFtcFkls`jSSqtsUcFjaFa6 FeKbF^S_ kkl b6 Y ( & ðyFUiStZbFcFs`tyL^xeLgScFiStqFyFtiSSyL^`piSjD^xcFbFtS}DrLt_Lkls`jSU]ttqjOs`iS_>tiS`eK^x kls`b (0, ∞) }6d s`iOFyFtiSSyL^`piSjD^xcFbFt vtleFeLbFcL^ 0f
.
-{3±
ì.|
|ï~
0
E¶¶~
³G
M
f (x) 7→ f (s) =
{f (x)}(s) =
]SyL^`s`cFiStZFyFtiSSyL^`piSjD^xcFbFt vtleFeLbFcL^
Z∞
xs−1 f (x)dx.
0
³G
f (x) =
−1
1 {f (s)}(x) = 2πi
σ+∞ Z
x−s f (s)ds,
σ = Re s.
]FtyL^` Fb6h kljStyFs`aFb vtleFeLbFcL^b s`tiSyFtf^rFe6h cFttp^`FbLkljD^`]sSkh?j jSbUrLtSm σ−i∞
b
G
f ◦ g(x) = {f ◦ g(x)}(s) =
Z∞
f (x/ξ)g(ξ)dξ/ξ
0
{f (x)}(s) ·
{g(x)}(s) = f (s)g(s).
%
Ñ \FbLkeFhFtsSk¨^`hvFiDbF4cFcFs`bLtyF}
b6\FyFs`iSijD^`FcFyFbFttiS£SyLF^`iOpiS\LjD^S^xklcFsbFhLtm vtleFeLbFcL^FtyFjSiS_WFyFiSbFpjSi~rLcFiS_.jS $¥ Ã
v6
#7 +xx Rx
&
BG
f (1) (s)
=
Z∞
x
£
s−1 0
f (x)dx = x
0
s−1
f (x)
¤∞ 0
− (s − 1)
Z∞
xs−2 f (x)dx =
0
£ ¤∞ = xs−1 f (x) 0 − (s − 1)f (s − 1).
qyFi~rLi`e6O^xh?jS\FbLkeLtcFbFtkZFiD4iSgSbFc6rLUaF FbFbn}FFyFb6Di~rLbL£a ü
f (n) (s) =
ÖkeLb
n−1 X k=0
Γ(1 − s + k) h s−k−1 (n−k−1) i∞ (−1)n Γ(s) x f (x) + f (s − n). Γ(1 − s) Γ(s − n) 0 (7.2.1)
h i h i lim xs−k−1 f (n−k−1) (x) = lim xs−k−1 f (n−k−1) (x) = 0,
qiSyL4eK^ ¤Ý´UY 6Y ~¦ÖFyFbFiSSyFtlsx^`tsOFyFiDkls`iS_>jSb6r
m x→∞
x→0
f (n) (s) =
0 ≤ k < n,
(−1)n Γ(s) Γ(1 − s + n) f (s − n) = f (s − n). Γ(s − n) Γ(1 − s)
üqyFtiSSyL^`piSjS^`cFb6t vtleFeLbFcL^]bFcFs`tyL^xeK
^ ý§bLf^`cL^x bFUjSb6eFeFh4i~ts]Ss`g Di klUtkls`j`eLtcFicFtFiDklyFtlrLkls`jStcFcFirFeFh?cFt FtleF2FiSySh6rLaUiSjL}DFiDklaDi`eLgSaFOqiSyL4D eK^bL4tts ^`cL^xeLiSbF\FcF_>jSb6r
m G
0f
(−µ)
1 (x) = Γ(µ)
Zx
(x − ξ)µ−1 f (ξ)dξ.
F[ZiS4yScFh6i~rLiSa ^xhbFcFiSs`Stt>y6\LbF^SyFkls`iSbjD^`tcFt b6h cL^ FiOx FyL^`dxjSb6}§eLbFuc6ðsStlbFyFyFb6bFUyFeL`tShH}F4Fi xFi`iSeLs.U\L^`trLi m ∞ bH4tc6h6h 0
s−1
0
f (−µ) (s)
FiD4iSgS!p^S4tcF \FtyFtpqStsx^x qUcFaF FbF
1 = Γ(µ)
Z∞
}TjScFUs`yFtcFc6bF_ bFcFs`tyL^xe.4i~ts>Ss`g?jSyL^xtc 0
t = ξ/x
Z∞ dξf (ξ) (x − ξ)µ−1 xs−1 dx. ξ
Z∞ Z1 µ−1 s−1 s+µ−1 (x − ξ) x dx = ξ (1 − t)µ−1 t−s−µ dt = ξ s+µ−1 B(µ, 1 − s − µ). ξ
0
x%7 5G7o
Ñ XyFtp~eLg~sx^`s`tbL4tlt
1 "+
('
0f
(−µ) (s)
Γ(1 − s − µ) f (s + µ) (Re s < 1 − µ). Γ(1 − s)
"§
^`_6rLt*iSSyL^`p vteFeLbFcL^rLyFiSScFiS_¢FyFiSbFpjSirLcFiS_ý§bLf^`cL^x bFUjSb6eFeFhnY iS eK^Sklc6iOttqiSFyFtlrLtleLtcFbF
=
S&x#7 +x
1 ##Æ
"
_G
0f
(ν)
(x) =
n (ν−n) (x) x 0f
≡ g (n) (x),
oklFi`eLgSp`h?jS{tFyFbFjStrLtcFcFUBqiSyL8~eL rFeFh
g(x) =
n − 1 ≤ ν < n (n = [ν] + 1).
g(s − n) =
(ν−n) (s
0f
− n) =
g (n) (s)
0f
(ν−n)
(x),
b Fi~rKkls~^`j`eFh6h>jOcFtt
Γ(1 − s + ν) f (s − ν), Γ(1 − s + n)
FyFb6DirLbL a2keLtlrLU]t4jSyL^xtcFbFHrFeFh s`yL^`cLkqiSyLf^`cFs` vtleFeLbFcL^ZrLyFiS` cFiS_>FyFiSbFpjSi~rLcFiS_ý§bLf^`cL^x bFUjSb6eFeFhnm @G
(ν) (s) = 0f
n−1 X
i∞ Γ(1 − s + ν) Γ(1 − s + k) h (ν−k−1) f (s − ν). (x)xs−k−1 + 0f Γ(1 − s) Γ(1 − s) 0
KrÖ^`kteLsOb
0f
(ν) (s)
=
Γ(1 − s + ν) f (s − ν) (Re s < 1 − µ). Γ(1 − s)
eFh>FyFiSbFpjSi~rLcFiS_>^`FUs`i ð
(ν) 0 f (s)
=
n−1 X
i∞ Γ(1 − s + ν) Γ(ν − k − s) h (k) + f (x)xs−ν+k f (s − ν), Γ(1 − s) Γ(1 − s) 0
b6eLbn}FFyFb cFeLtjSiS_>FtyFjSiS_ kl6f4tS}FFtyFtFbLk^`cFcF_ jOjSb6rLt k=0
−∞ f
(−µ)
1 (x) = Γ(µ)
Z∞
ξ µ−1 f (x − ξ)dξ,
tkls`g cFt\Fs`i bFcFiStS}Fa6^`a iSSyL^`p vtleFeLbFcL^ qUcFaF FbFb φ (ξ) ≡ f (x − ξ) ¤¥ks`iS\Fc6i` kls`gSrLiZ4cFi~ bFs`tleFh 1/Γ(µ)¦nk µ}FyFi~rLi`eFtc6cFzvjzaUiD46eLta6klcFU£6eLiDklaUiDkls`gLm 0
G
x
Γ(µ)
−∞ f
(−µ)
= φx (µ).
%
$¥ á
0/ #
#7 +xx
ÑD
õ &
qyFbL4tcFbFjOiSSyL^`s`cFiStqFy6tiSSyL^`piSjD^`cFbFt ^`6eK^Sk^ ü
ReZµ+∞
1 φx (ξ) = f (x − ξ) = 2πi
b Fi`eLi bFj
}FFi`eLU\FbLm x=0
Γ(µ)
∞f
−µ
(x)ξ −µ dµ,
ξ > 0.
Re µ−i∞
1 φ0 (ξ) = f (−ξ) = 2πi
ReZµ+∞
Γ(µ)
∞f
−µ
(0)ξ −µ dµ,
ξ > 0.
© ^`aFbLHiSSyL^`piD}FqUcFaF Fb6h 4its Ss`g jSiDkklsx^`cFiSj`eLtcL^Fi2ttqrLyFiSScFz bFcFs`tyL^xeK^S f (x) }6jSplhFfs`(x)zs`i`eLgSaUiFyFb>i~rLcFiDWpcL^~\FtcFbFb>jStyD6cFtiFyFtl rL4tliSeK_ ^ x = 0}FtkeLb>iScFb bF pjSY7tý4klts`plcF~<eLgxrFs~eF^`h s]jDs`kliStl2sq4aUiDi46teLs]tyLaU^SklkcFkf>^`s`FyFiSbFyDjDh6^`rLs`aDgDiSkj hµaU^`cLa^iSFSyDiSh6` tcFbFRetqyLµ^`pl=eLi~const tcFb6>h q0 UcFaF FbFb f (x) j ySh6r©nt_6eLiSyL^FY 54 & üqyFbHyF^Skk4iSs`yFtcFbFbHFiSjStlrLtcFb6hFyFiSbFpjSi~rLcFcL^ jDklt_jSttkls`jStcFcFiS_ iDklb −∞ < x < ∞ Si`eLttZFi~rFDirFhFbL£iSaU^`pjD^`tsSkh?FyFtiSSyL^`piSjS^`cFbFt UyFgSt Re µ−i∞
∞
(−µ)
*
-{åä
ì.|
|ï~
î ·
+
F
Þ
f (x) 7→ fe(k) = {f (x)}(k) ≡
kZiSSyL^`s`cFz£Fy6tiSSyL^`piSjD^`cFbFt f (x) =
b s`tiSyFt4iS_>i kljStyFs`aUt
Þ
∞ Z
Þ
−1
1 {fe(k)}(x) = 2π
f (x − ξ)g(ξ)dξ
Z∞
eikx f (x)dx
−∞
Z∞
−∞
e−ikx fe(k)dk
Þ
(k) = {f ∗ g(x)}(k) = fe(k)e g (k).
ðeFhiSFtyL^` FbF_8cFiSiSaFyL^`s`cFiSi2bFcFs`tyFbFyFiSjD^`cFb6hbvrLbLqtyFtcF FbFyFiSjD^x cFb6h bL4t]s 4tkls`i2kliSiSs`cFiS{tcFb6h −∞
fen (k) = {
Þ
n −∞ x f (x)}(k)
= (−ik)−n fe(k),
n = 1, 2, . . . ,
x%7 5G7o
ÑSª
1 "+
S&x#7 +x
1 ##Æ
"
"§
Þ ðeFhbFcFs`tyL^xeK^¬ýÖbFf^`cL^x bFUjSb6eFeFhvrLyFiSScFiSi2FiSySh6rLa6^F}T4!klcFiSjD^ bLk fe(n) (k) = {
n
f (x)}(k) = (−ik)n fe(k),
Fi`eLgSpStWFyFtlrKklsx^`j`eLtcFbFtjOjSb6rLtkljStyFs`aFb
(−µ)
n = 1, 2, . . .
s`tiSyFt4?i kljStyFs`aDt e e e b jSyL^xtcFbFtZrFeFh UyFgStl iSSfyL^`p^(k) qUcF=aF FbFfb(k)ΦΦ(x)(k),m −∞ f
−∞
Ç+
(x) = f ∗ Φµ (x),
(−µ)
µ
µ
1 Γ(µ)
e µ (k) = Φ
qyFbL4tc6h6h bFpjStkls`cFU¡qiSyL4~eL ü
Z∞
eikx xµ−1 dx = (−ik)−µ .
0
(ik)ν = |k|ν exp{−iν(π/2)sign(k)} = |k|ν {cos(νπ/2) − i sin(νπ/2)sign(k)},
Fi`eLU\L^`tWrFeFh>eLtjSiDkls`iSyFiScFcFtib6cFs`tyL^xeK^
e(−µ) (k) = (−ik)−µ fe(k) = |k|−µ exp{i(µπ/2)sign(k)}fe(k), µ > 0.
wzcL^xeLiSbF\FcFiL}UrFeFh FyL^`jSiDkls`iSyFiScFcFti −∞ f
(−µ) fe∞ (k) = (ik)−µ fe(k) = |k|−µ exp{−i(µπ/2)sign(k)}fe(k), µ > 0.
bL4ttð¤ neFh¢= eL[ν]tjSiD+kls`1iS¦ yFiScFcFb6rLyFiSScF¢FyFiSbFpjSirLcFý§bLf^`cL^x bFUjSb6eFeFh4
Þ
e(ν) (k) = {−∞
−∞ f
n−ν (n) f (x)}(k) x
Þ
= {Φν−n ∗ f (n) (x)}(k) =
zw =cL^x(−ik) eLiSbF\FcFiL}UrFeF·h (−ik) FyL^`jSiDfkls`(k)iSyFiS=cFcF(−ik) b6 f (k) = |k| exp{−i(π/2)sign(k)}f (k). −(ν−n)
n
e(ν) x f∞ (k)
e
ν
e
e
ν
= (ik)ν = |k|ν exp{i(νπ/2)sign(k)}fe(k)
qUcFaF Fb6h f (x), −∞ < kxsSy6
(1)
-C
(−∞, x)
−∞
ν x f (x)
=
−∞
ν
x f (x)
(n−1)
=
Dν+ f (x)
(x, ∞)
1 = Γ(n − ν)
Zx
−∞
f (n) (ξ)dξ . (x − ξ)ν+1−n
"
Ñ#´
1õ7
}, î
S Y~¨r;WV µZaAq² n du }¬ÑI ÑÑFY H I F Y
d¾{ Å I d¾p I 2I m ;F F 6Y [2i;XZYí¨ ä^Xeei ªNgN_KVR# m=~ LNL I FÎIM u I F n 2F +F Y Y ´ £º³`bV eXZY I ¢w } w NO MLI }F`SSFY F?Y ´µZ`ba [ =u I n I yF YdÂ| I mkp I NO } v O ù }¬ ÑÑSªFY +O yF LY cFð !ÿtOrL÷ yFiSð S]cFiSi> FiSyDh6/rLø³aU^ b. cFt©aD iSs`*iSô yFþ>t ò!öDb6 FyFb6TeLoqicFs`ttcFb6yLhn^xY eLv¡bFbcLFklanyFmiSbFp^~jSUi~a6rF^ b s`tl6cFbFa6^F}n ÑS# ´UY J "Z & S Q3T &V"S(Y QS&1X-TÝQ 9Z .J
R åTÝQ
'
J
J
T Z V&3TÝS(Y
©J-Ò V Z YÝ
$Y TÝQS3T &V 1Q0T V 3T Q T V S
J $Z & S Q3T &V"S(Y Z 1T V $P &R S3
Ò V&3
J J Â
J J ¬60
P"S3T &V
Z S(Y S(V"
(0V 3TÝS(Y
Z U
$Z S&Q3T &V"S(Y Z S Z Y
&V" &V
S(YÝQ0P$Y P T V
&V &XS(V
¸J -J
KG
K
ís\ït\ r
å ' Ó ß #âæÔ×èç ^ tçÔÑèâã /çèæwt Ö' è ã æÔÓ â çèæ #âMt ã å^' Ó ç Ñèè ã ßÚç ÚßáæÔÓ â p
óg
dm
dp
-
B{z
dcqk
&
³Û
}|,~𳶹 ~
Bæ|
|
(
ï|.~¹i
EE
ýf^Skk4iSs`yFtcFcFtjS{tFyFiSbFpjSi~rLcF( t ý§bLf^`cL^x bFUjSb6eFeFhOkli~rLtySO^`sZbFc6 s`jSt?s`yLbF^xFeLTgScFmLirLt§bFiScvFtbFyLp^`Fs`yFiSyFtlrL.tleLkÖiSkljObFc6hFj`~eFeFhFhFtyFsScFk¨zhv>6th6yFrLtyF4iDtcF}cFFzyFbFYTcLX^xrFi eL4tlOcFiS^`b6bFvtÖqXbFi`peLbFgx\Fs`ttky6aFyFb6i` pcF^xiDrK4^\LiS^x¬s`yF}Fti~prLaFcL^`aUb6iLeL}Fb bFFcFis`tjDklyFtbF_OyFjSiStjD^`cFtklbFs`tjScFtcFtiScFiSD_i~iDrLklbLbO4iSi s jSFi`eLrLc6i hFs`g YDF©
i?^`a6q^xbFh a6klklbFbFs`yFDiS^`jD F^`b6c6h bL4tts4tkls`iL}DcL^`FyFbL4tyn}UFyFb2cL^xDi~OrLtc6bFb?kla6^xeFhFyF−∞ cFiSiFiS∞s`tcF FbL^xeK^ φ(x) }Ukli` plrK^`jD^`t4iSicL^iDklb x yL^SklFyFtlrFtleLtcFcFz£Fi cFt_>p^`yDh6rLiD£kq6eLiSs`cFiDkls`gS f (x)
1 φ(x) = 4π
Z∞
f (ξ)dξ . |x − ξ|
] FyFtlrLtleLtcFbFtqcL^`FyDh6tcFcFiDksSb klj`hFp^`cFiOkZjS\FbLkeLtcFbFt£bFcFs`EtyL(x)^xeK^ = −dφ(x)/dx, −∞
x
1 Ex (x) = 4π
Z∞
−∞
sign(x − ξ)f (ξ)dξ . |x − ξ|2
`S
n£7&x 5x
"+
5÷x1 #Æ "
G7o
õ §ÆAx"5
&
1 #Æt¥ ¥ ¥
WY>ý§bLk]klSiDiS S tYKcFzbFt/rLbFsxc ^`bFaFpZb6,rLyFbFiScFScFs`t?yL^xbFeLcFiSs`j tyLcL^x^ eLiSrLjLyF}6iSbLS4cFt]tbFF_ iSySjSh6b6rLr aFb²jSFi`eFcFtcFi G
¯ 0
ν
1 f (x) = 2Γ(ν) cos(νπ/2) "<"x÷*ÿ
f (x) =
f (ξ)dξ , |x − ξ|1−ν
ν ∈ (0, 1),
xø!ø FiSyDh6rLaU^ iSsOqUcFaF FbFb
cL^`pjD^`tsSkhÇó÷7ùAòBñ † ν
Z∞
−∞
}6rLyFUiS_n}
E
3
Z∞
sign(x − ξ)f (ξ)dξ , ν ∈ (0, 1), −∞ < x < ∞. |x − ξ|1−ν
1 2Γ(ν) sin(νπ/2)
ν
f (x)
dcL^øB÷7jDó/klô tqFòi`eLBi~ñ ñõ[bFs`ÿtleLógS÷7cFùAòBt ñ ¤ b>rKx^x÷*ÿ¼tq aUxiDø!4ø 6`eLY5tûÖaUs`klb2cFFiSt~s`¦tpcFcL F^~bL\F^xteLcFb6h yL^SklFyFiDkls`yLY ^`c6hF]sSk¨h taUi jSb6rLts`gL} \Fs`i(FiSs`tcF FbL^xeLU ý§bLkk^(klj`hFp^`c6 ν >k*0bFcFs`tyL^xeK^S4b ý§bLf^`cL^x bFUjSb6eFeFh kliSiSs`cFiS{tlcFb6hL4b −∞
1"
"<"
E
å
*
ν
1 ( 2 cos(νπ/2)
=
ν −∞ x
+
ν x ∞) ,
† ν
b \Fs`i iSSyL^`s`cFtqkliSiSs`cFiS{tcFb6h>bL4t]s jSb6r
m
1 ( 2 sin(νπ/2)
=
ν −∞ x
−
ν x ∞) ,
= cos(νπ/2) + sin(νπ/2) , = cos(νπ/2) − sin(νπ/2) . XF i`eLc6hF]sSkh s~^`a6tkeLtlrLU]bFtFyL^`jSb6eK ^Ok eLi~tcFb6h>FiSyDh6rLaUiSjLm6tkeLb>Fi`eLi`
ν −∞ x
ν
bFs`tleLgScFt
µ>0
µ ν
-
&
B{3±
b
† ν
ν>0
f (x) =
ì.|
sx^`aUiSjS}6\Fs`i
µ+ν
f (x),
54
ν x ∞
µ+ν <1
† µ † ν
|ï~
ν
}Fs`i
† ν
f (x) = −
µ+ν
f (x).
î ·
cFiDklkls`iSgSS#iS_órLi
EE
−1
+
ν
geν (k) =
Â+
ν−1
Z∞
|ξ|
ν−1 ikξ
e
dξ = 2|k|
−ν
Z∞
|ξ|ν−1 cos(ξ)dξ = 2|k|−ν Γ(ν) cos(νπ/2),
xs ^`a\Fs`i>FyFtiSSyL^`piSjS^`cFbFt UyFgStFiSs`tcF FbL^xeK^ iSSyL^`piDm −∞
0
Þ
+
{
ν
f (x)}(k) =
Þ
ν
f (x)
jSeFh6rLbFs>keLtlrLU]bL
1 {gν ∗ f (x)}(k) = 2Γ(ν) cos(νπ/2)
ä&xx #5
wu
15Æ
"¥ á
`F
Æ
1 geν (k)fe(k) = |k|−ν fe(k). 2Γ(ν) cos(νπ/2)
=
wzcL^xeLiSbF\FcFiOcL^xSi~rLbFsSkh>b iSSyL^`p UyFgStkliSFyDh6tcFcFiSiOFiSs`tcF FbL^xeK^Jý§bLkk^Fm +
Þ
rLt †
sx^`a>\Fs`i
geν (k) =
{†
Z∞
ν
f (x)}(k) =
1 † geν (k) · fe(k), 2Γ(ν) sin(νπ/2)
sign(ξ)|ξ|ν−1 eikξ dξ = 2i sign(k)|k|−ν Γ(ν) sin(νπ/2),
−∞
Þ
{†
ν
f (x)}(k) = i sign(k)|k|−ν fe(k).
yFtlDirviSs^`a bFcFb?s`tjkyLeL^xUeL\LiS^`j t]a i~rLFcFyFiDiSklbFs`pliSjSyFi~iSrLcFcFc6zb6¢ ¤FiSyFs iSbFiSs`pjSyFibFrL LcF^`s`tlAeFý§gScFbLf ^`cLν^x a FbFi`UeLjSi~b6 eFeFbFhns`}DtleLFg`t cFbvz4§t¦]s`i4rLi~iD£tyFs?tiD~klUeFhFy6tbFkls`p^`j` FeFbFhFbvs`gDwkhvrK^Sa6f^`^`ayLF^FUY s`t FtleLiSi2rFbLtlyFtcF FbFyFiSjD^`cFb6hn}Lsx^`a iSSyL^`piSðjS^`iScFFbFi`_neL}cFklbLi£rLtFyDyFObF^`jStlrLb6tZcFcFrLbLtqjStyF{ttcF FklbLiSiS^xeLs`cFgSiScF{_tcFiSb6Fh tyLL^`^`s`yFiSiSy_vFkteLyFtljSrLiSU]izFiSb6yD>h6FrLyFa6tl^F }
-
EE|ï¹
B{åä
|
ï|,~¹i
Þ
b
{
1−ν
x
f (x)}(k) = (−ik)|k|ν−1 fe(k) = −i sign(k)|k|ν fe(k),
Þ üqi`eLU\FtcFcFtqqiSyL4eL<FiSpjSi`eFhF]scL^SyL^Skkf^`s`yFbFjD^`s`gkliDklsx^`jScFt]iSFtyL^`s`i` yFbn øB÷7 ó/ô ò Bññõ ÷7óxb òÀô oùJ ÷-ô XòÀa6ô^`òBañ ÷7/óxôxòÀ÷oô ö ooùJñ ÷-ô ¢ xø!Xø xòÀ}FôklòBiSñ iSs`/jSôxt÷osSö klos`ñ jStcF¾cF i xø!ø Y ]FyFtlrLtleFh6h<6yFiSbFpjSi~rLcFUÃý§bLkk^aU^`a
x
† 1−ν
x 1 "
† 1−ν
f (x) ©M
f (x)}(k) = (−ik)(i sign(k))|k|ν−1 fe(k) = |k|ν fe(k), 1 x
1−ν
f (x)
_5 "K
1 @5 "% ( " E 3
"<"
"<"
& "
E 3
rLtleLtcFb6hHaDiScFt\FcFiS_H\L^SksSbFiwrK^Sf^`yFyFbLkkliSj.FiSs`tcF FbL^xeHiSs`yFbF L^`s`tleLgScFiSi FiSySh6rLa6^F}6Fi`eLU\FbLm p.f.
1 = Kν,2
Z∞
−∞
−ν
f (x) = p.f.
1 Kν,2
f (x − ξ) − f (x) dξ ≡ |ξ|1+ν
Z∞
−∞
ν
f (ξ)dξ = |x − ξ|1+ν
f (x),
0 < ν < 2,
ν 6= 1.
`D rLtklg
n£7&x 5x
"+
Kν,2 =
½
5÷x1 #Æ "
2Γ(−ν) cos(νπ/2), −π
G7o
õ §ÆAx"5
&
0 < ν < 2, ν = 1.
1 #Æt¥ ¥ ¥
ν 6= 1,
b cFtkliSDkls`jStcFcF_?bFcFs`tyL^xevbFcFs`tyFFyFts`bFyFStsSk¨ha6^`a>FyFtlrLtle Z∞
Z
f (x − ξ) − f (x) dξ = lim ε→0+ |ξ|1+ν
iSyL4~eK^rLyFiSScFiS_?FyFiSbFpjSi~rLcFiS_ý§bLkk^ +
−∞
|ξ|≥ε
ν
1 f (x) = Kν,2
4i~tsOSs`g Fy6tiSSyL^`piSjD^`cL^a jSb6rL
Z∞
−∞
f (x − ξ) − f (x) dξ. |ξ|1+ν
f (x − ξ) − f (x) dξ |ξ|1+ν
0 Z∞ Z f (x − ξ) − f (x) 1 f (x − ξ) − f (x) ν f (x) = dξ + dξ = Kν,2 |ξ|1+ν |ξ|1+ν −∞
1 = Kν,2
0
Z∞
f (x + ξ) − 2f (x) + f (x − ξ) dξ ξ 1+ν
(8.3.1)
kÖ FtcFs`yL^xeLgScFiS_yL^`pcFiDkls`gSjZ\FbLkeLbFs`tleLtFi~rFcFs`tyL^xeLgScFiSi]jSyL^xtcFb6hnYðeFh FyFiSbFpjSi`eLgScFiSi ν > 0 s`iSs 4ts`i~rvFyFbFjSirLbFsOa jSyL^xtc6bF}
ν
0
f (x) =
1 Kν,2j
Z∞
2j
∆ξ f (x) dξ, ξ 1+ν
kli~rLtySO^`t42 FtcFs`yL^xeLgScFtqyL^`pcFiDkls`bvqUcFaF 6bFb 2j ∆ξ f (x)
=
2j X
0 < ν < 2j,
\Fts`cF>FiSyDh6rLaDiSj 2j m
0
f (x)
µ ¶ 2j f (x + (j − k)ξ) (−1) k k
b cFiSyL4bFyFiSjSiS\FcFtZaUiSqbF FbFtcFs` k=0
Z∞
Kν,2j = (−1)j 22j−ν
sin2j ξ dξ. ξ 1+ν
S^ 4ts`bL}`\Fs`iFyFiSbFpljSi~rLcFtVý§bLkk^qjSyL^xO^`]sSk¨hO\FtyFtpFyFiSbFpjSirLcFt ^`yF{i kliSiSs`cFiS{tcFbFt 0
ν
f (x) = [2 cos(νπ/2)]−1
¡
.G
ν + f (x)
+
ν − f (x)
¢
.
0/ #S&xx #5 ('u
` tqiSSyLýf^`^SpkiDk4}UiSFs`i`yFeLbLU¡\FbLs`tFm tlyFg.kliSFySh6tcFcF_FiSs`tcF FbL^xe@ý§bLkk^FY[ðt_Lkls`jS`hs`t
"¥ ò
†
#7 +xx
ν
f (x) = p.f.
† −ν
õ &
Æ
1#
−1 f (x) = p.f. 2Γ(−ν) sin(νπ/2)
&
Z∞
−∞
−1 = 2Γ(−ν) sin(νπ/2)
Z∞
sign(x − ξ) f (ξ)dξ = |x − ξ|1+ν
sign(x − ξ) [f (ξ) − f (x)]dξ = |x − ξ|1+ν
−∞
x Z Z∞ −1 f (ξ) − f (x) f (ξ) − f (x) = dξ − dξ = 1+ν 2Γ(−ν) sin(νπ/2) (x − ξ) (ξ − x)1+ν −∞
ν 2Γ(1 − ν) sin(νπ/2)
=
x
Z∞
[f (x − ξ) − f (x + ξ)]ξ −1−ν dξ,
54 "!
-
&
ì.|
B{/ë
|
0
|ï~
ï|.~¹
0 < ν < 2.
î ·
EE
qs`iSSWcL^`_Fs`bs`yL^`cLkqiSyLf^`cFs` UyFgStFyFiSbFpjSi~rLcFiS_ ý§bLkk^F}~Fi~rLt_Lkls`jSD t£cL^iSStq\L^Skls`b>yL^`jStcLkls`jD^ ¤¥FY FY ~¦§iSFtyL^`s`iSyFiDFyFtiSSyL^`piSjD^xcFb6h UyFgStSm =
¬+
rLt
Þ
g (ν) fx (k) = {
ν
+
1 f (x)}(k) = 2Γ(−ν) cos(νπ/2)
Z∞
F (k, ξ)ξ −1−ν dξ
0
Þ
F (k, ξ) = {f (x + ξ) − 2f (x) + f (x − ξ)}(k) = [e−ikξ + eikξ − 2]fe(k).
^S4tcFiS_>FtyFt4tcFc6 b>bLklFi`eLgSpiSjD^`cFbFtqiSyL4~eF Z∞ [1 − e−ξ ]ξ −1−ν dξ = −Γ(−ν),
4FyFb6Si~rLbL£a yFtpeLgxsx^`s`
0 < ν < 1,
0
Þ
{
ν
f (x)}(k) =
Γ(−ν)[(−ik)ν ] + (ik)ν ] e f (k) = |k|ν fe(k), 2Γ(−ν) cos(νπ/2)
kliSeK^SklU]t4DkhkvkliSiSs`jStsSkls`jSU]t_qiSyL4~eLiS_rFeFhH FtleLFyFiSbFpjSirLcF rK^`cFcFiSis`bFL^FY
` †
n£7&x 5x
"+
('
5÷x1 #Æ "
wzcL^xeLiSbF\FcFz£iSSyL^`piD}DrFeFhvkliSFySh6tcFcFiS_>FyFiSbFpjSi~rLcFiS_ ν
f (x) = p.f. †
Fi`eLU\L^`t
†f fxν (k)
Þ
= {
−ν
†
f (x) =
ν 2Γ(1 − ν) sin(νπ/2)
0
rLt XFi`eLc6h6h>Fp(k,^S4tξ)cF2=FÞ t{fyFt4(xtcF−cFξ)>−jOfbF(xcFs`+tξ)}(k) yL^xeLt = [e †
Z∞
ξ
−1−ν
sin(kξ)dξ = sign(k)|k|
ν
b FyFbL4tc6h6hvqiSyL4eL
Þ
†
F (k, ξ)ξ −1−ν dξ
0
ikξ
− e−ikξ ]fe(k).
t−1−ν sin tdt
t−1−ν sin tdt = −Γ(−ν) sin(νπ/2),
FyFb6DirLbL£a jSyL^xtcFbF 0
Z∞
Z∞
0
0
Z∞
1 #Æt¥ ¥ ¥
Z∞ [f (x−ξ)−f (x+ξ)]ξ −1−ν dξ,
ν f (x)}(k) = 2Γ(1 − ν) sin(νπ/2)
ν
G7o
õ §ÆAx"5
&
†
ν
0 < ν < 1,
f (x)}(k) = i sign(k)|k|ν fe(k).
s`yL^`cLkqiSyLf^`cFs`FyFb ν → 1 b ν → 0 } 4 jSb6rLbL^``}LeL\Fs`rKi ^xh>iScLp^O^Oc6FtiSjSFtltrLyFttlcFSbFi~trL£bFsOs`j iSf_ve (k) b kliSiSs`jStsSkls`jStcFcFiL}6b Fi s`iS_ FyFbF\FbFcFtrLyFiSScF_iSFtyL^`s`iSy c6thFj`eFhFtsSk¨feh(k)iSFtyL^`s`iSyFiDrLbLqtyFtcF FbFyFi` jD^`cFb6h ν iOFiSySh6rLa6^FY 4 - & ^`aiSsS4t\L^xeLiDklgZjS{tS}~yFbLkkliSjSWFiSs`tcF FbL^xeLklj`hFp^`cF£kÖbFcFs`tyL^xeK^S4b ý§bLf^`cL^x bFUjSb6eFeFh kliSiSs`cFiS{tlcFb6hL4bnm
{
†
B{
}|,~ð³¶
ν
0
E¶¶,
b
ν
=
1 ( 2 cos(νπ/2)
ν −∞ x
† ν
=
1 ( 2 sin(νπ/2)
ν −∞ x
+
ν x ∞)
−
ν x ∞) .
é/A
5÷x1 "
"¥ ÿ
`D
Ro
ø tl#eFÿ eLtyFñiDùAò Sô exjS÷*jSÿtl}SrLFtyFctliSrKFklts~yL^`j`^`eFs`iShFy]Si`bFeL_>ttkliSiSSSiS_ teFizbFs`cFbFt_FLcF^FU}xcL¡^`pklUFjDt^`yFtF4iSp_bF F(bFò <rLòÀyFôxiS÷o`ö cF?bFcFs`tyL^xeLiSjAý§bLf^`cL^x bFUjSb6eFeFhnm +
B
0& µ
° 1
ν u,v f (x)
= A−1/2 [u
ν −∞ x f (x)
ν x ∞ f (x)].
cFvbF!\FbFjSjjSptlcLeL^b \FkltcFb6rKhO^>rLFjSyFDiSbFpLjS^`i`yLeL^SgS4cFtUs`yFiSFjqi`rKeL^`icF cFbFiSs`tliqeLiSgSFcFtUyL^`s`FiSiDyLkl^ s`i~uhFb cFcFvUkl bLfA4ts`yFbF}n\FiScFzyL^x DkeLiSjSb6t u + v = 1 YüqtyFtlSi~rFh>a FiSs`tcF FbL^xeL^S@ý§bLkk^F}L^p^`s`td a>hFjScFz FyFtlrKkls~^`j`eLtcFb6hL£bFcFs`tyL^xeLiSjL}F4Fi`eLU\FbLm G
+v
−1/2
2
ν u,v f (x)
2
= A−1/2 [(u + v) cos(νπ/2)
A−1/2 = 2Γ(ν)
Z∞
ν
f (x) + (u − v) sin(νπ/2)
u + v + (u − v)sign(x − ξ) f (ξ)dξ, |x − ξ|1−ν
† ν
]=
0 < ν < 1.
o klFi`eLgSp`h.bFpjStkls`cFt2s`yL^`cLkqiSyLf^`cFs` UyFgSt rLyFiSScF.bFcFs`tyL^xeLiSj ý§bLf^`cL^x bFUjSb6eFeFhb6eLb/yFbLkkliSjS!FiSs`tcF FbL^xeLiSjL}cL^`_6rLt(s`yFtcLkqiSyLf^`cFs` UyFgStqtleFeLtyFiSjDklaUiSliFiSs`tcF FbL^xeK^Fm −∞
q+
+
Þ
{ νu,v f (x)}(k) = A−1/2 cos(νπ/2)[(u+v)+i(u−v)tg(νπ/2)sign(k)]|k|−ν fe(k),
] FtyL^`s`iSyn}iSSyL^`s`cF_qtleFeLtyFiSjDklaD0iD<4ZνF
©M /
0&"M
"<"
ν u,v f (x)
= p.f.
−ν Fu,v
A−1/2 = 2Γ(−ν)
Z∞
−∞
u + v + (u − v)sign(x − ξ) [f (x)−f (ξ)]dξ, |x − ξ|1+ν
XFi`eLc6h6h>cFtkeLi~ cFtqjSa6eK^xrLaFb 0 < ν < 1. Z∞
−∞
=
Zx
−∞
u + v + (u − v)sign(x − ξ) [f (x) − f (ξ)]dξ = |x − ξ|1+ν
u + v + (u − v) [f (x) − f (ξ)]dξ + (x − ξ)1+ν
Z∞ x
u + v − (u − v) [f (x) − f (ξ)]dξ = (ξ − x)1+ν
Z∞ = −2 [(u + v)f (x) − uf (x − ξ) − vf (x + ξ)]ξ −1−ν dξ, 0
` Sª + 5 x n£7&x 5x FyFb6DirLbL£avkeLtlrLU]t4?yFtpl~eLgxs~^`s`Tm "
ν u,v f (x)
"
νA−1/2 = Γ(1 − ν)
÷
1 #Æ
&
G7o
õ §ÆAx"5
1 #Æt¥ ¥ ¥
Z∞ [(u + v)f (x) − uf (x − ξ) − vf (x + ξ)]ξ −1−ν dξ.
klaUiSiF!X iSs`pt^`cFa6 FeLbL]^x\FeKt^FcFm bFtS}
cL^`_6rLts`yL^`cLkliSyFf^`cFs` UyFgSt iSD^`s`cFiSivqtleFeLtyFiSj` 0
>+
©
ª ν u,v f (x) (k)
νA−1/2 = Γ(1 − ν)
Z∞
{(u + v)f (x) − uf (x − ξ) − vf (x + ξ)}(k)ξ
−1−ν
dξ =
0
∞ Z νA−1/2 = [(u + v)) − ueikξ − ve−ikξ ]ξ −1−ν dξ fe(k) = Γ(1 − ν) 0
= A−1/2 [u(−ik)ν + v(ik)ν ]fe(k) =
qs`iSS<~rLiSj`eLts`jSiSyFbFs`gDkeLiSjSbF
= A−1/2 cos(νπ/2)[(u + v) − i(u − v)tg(νπ/2)sign(k)]|k|ν fe(k).
=
Þ FiSpjSi`eFhF]t4cL^`pjD^`s`gviSFtyL^`s` iSy ©
ν u,v
¡ν
u,v f (x)
hFcFcL^xh A rLi`eF cL^Ss`gOjSplhFsx^jOjSb6rLtSm
ν u,v
(k) = fe(k),
L}8FiDkls`i`
Xò/ òÀôx÷oö/ø0÷*M@ó/ôx÷*1:/öo÷5ñ÷*M
A = [(u + v) cos(νπ/2)]2 + [(u − v) sin(νπ/2)]2 .
- &
ì|
B{
¢ª
ï|.~¹i
³
Z
|j~ ﳶ,~
Zklsx^`jS{^xhLk¨hv\L^Skls`g rK^`cFcFiS_ eK^`jSFiDklj`hFtcL^rLyFiSScFzHiSFtyL^` Fb6hLHj 4cF cFiS_iDbF4cFs`tyFtcFyLiD^xWeFiSyFs>iDklqs`UyLcF^`aFcL Fkls`bFjSb t R }6s`FiSi?\FaFcLb>^`FaDyLiS^`s`j`iSeLyFtiScFbFiiS}KSiSp^xpcLrK^^`\FjDbL^`t.4\FiDt4yF tp x4Y#tðyFcFyFziS` d tlrLbFcFbF\FcFz£jStaFs`iSyFiD u }6iSFyFftl(x)rLtleFhFtsSkh jSyL^xtcFbFt d
µ u f (x)
1 = Γ(µ)
Z∞
f (x − uξ)ξ µ−1 dξ,
o4tts 4tkls`i Fi`eLUy666FiSjSiStqkljSiS_Lkls`jSiLm 0
µ ν u u f (x)
µ+ν f (x), u
yFiSScL^xh?FyFiSbFpjSi~rLcL^xh?FiSySh6rLa6^ ð
=
n+ν f (x) u
=
µ
µ > 0.
rK^`tsSkhvkliSiSs`cFiS{tlcFbFt n+ν
d du
¶n+1
µ, ν > 0.
1−ν u f (x),
{ % f6# =7o>x
&
` #´ iSrLStyL^`d/du s`bL4iDkls`iSbnSm \6cL^xhFyFiSbFpjSi~rLcL^xhvFi?cL^`FyL^`j`eLtcFbFY¬o4tts>4tkls`i kljSiS_Lkls`jSi ^Skls`cFt2Fy6iSbFpjSi~rLcFut ý§bL ff^`(x)cL^x ≡bFfU(x). jSb6eFeFh rLyFiSScF.FiSySh6rLaUiSjviSFyFtl rLtleFhF]sSk¨hvaU^`a b j keLU\L^`tq FtleL?FiSyDh6rLaUiSjLm "¥
"1Æ $ 15Æ
Æ
ν ν u u
=
νj xj f (x).
(νj ) aj fxj (x)
= aj
νd xd f (x),
wzcL^xeLiSbF\FcFiOjSjSirFhFsSkh k4t{^`cFcFtqFyFiSbFpjSirLcFt (v) a fx (x)
= a1
- T s| ~¹i
B{
ν1 x1
. . . ad
9,~¹
v = (ν1 , . . . , νd ).
³
f^Skkf^`s`yFbFjD^xh>yFbLkkliSjS
¶ ¶~¹
ý
Djν f (x1 , . . . , xj , . . . xd ) = 1 = Kν,2
Z∞
−∞
f (x1 , . . . , xj − ξ, . . . , xd ) − f (x1 , . . . , xj , . . . , xd ) dξ, |ξ|1+ν
a6^`aqaUiD4FiScFtcFs`aFjD^xrLyL^`s ∇ ∇ YLX<qiSyLf^xeLgScFiS_?p^`FbLklb ∇ ν
2ν
ν
∇2ν ≡
d X
ν
2ν j .
(8.7.1)
`süqtyFyDb hFtlνs→jD^x1 cFs`tiS_Fs{iStFt2tyLkljS^`iSs`_LiSkly s`FjSyFi teKjS^`yL6^`eK^S^`kltbLsS^`k¨cLh ^>jdeK^`bF6c6eKjD^S^`klyFbLbL^`^`cncF}Ss`i~cFrLiDcLkls`^`gaDiiSFs`yFcFbiDklνbFs`
−(−4)ν ≡ − −
d X
ν
2 j
,
FyFb ν →] S1yL^`sxp^` a>UtyFFgSyFtqtiSjSFyLt^`yL^`^`s`]iSyFiSbFj _L¤¥kFh?Y ´UjOY ~iS¦ÖSbW\F¤¥FcFY ´UY_?S¦ eK^`6eK^SklbL^`cnY j=1
+
Þ
©
d X ª (−ikj )2ν (k) = ∇2ν x j=1
(8.7.2)
`S b
"+
Þ
n£7&x 5x
5÷x1 #Æ "
{(−4)ν } (k) = −
d X
rLt4iScLkls`yFbFyFU]s b6?yL^`pleLbF\FbFtFyFb
j=1
ν
41/2
(−ikj )2 =
d X
d X ∂f (x) j=1
∂xj
j=1
kj2 = |k|2ν
ν = 1/2
,
v u d uX ∂ 2 f (x) =t . ∂x2j j=1
^`_6LY rLX
1 #Æt¥ ¥ ¥
ν
YLX\L^Skls`cFiDkls`bn}FFyFb ν<1
∇1x f (x) =
^
G7o
õ §ÆAx"5
&
+
(−4)ν
cF^qUcFa6
Þ Þ Þ bn}LkeLtlrLiSjD^`s`tleLgScFiL} Þ Þ Þ Þ üqtyFjD^xh bFpkljStyFs`jD^`t4 qUcFaF FbF_n}FU^`yL^`aFs`tyFbFpU]^xh>rLt_Lkls`jSU]bF_viSFtl {(−4)ν f (x)} (k) = −1
(−4)ν f (x) =
{(−4)ν } (k) · {f (x)}(k)
{ {(−4)ν } (k) · {f (x)}(k)} (x) =
−1
yL^`s`iSyn}6cL^xDi~rLbFsSk¨hvkeLtlrLU]bL£bFcFs`tyFbFy6iSjD^`cFbFtm
Þ
= |x|
−2ν−d
−1
{|k|2ν }(x) = (2π)−d
ª |k|2ν ∗ f (x).
e−ik·x |k|2ν dk =
Rd
(2π)
−d/2
Z∞
Jd/2−1 (ξ)ξ 2ν+d/2 dξ = [γd (2ν)]−1 |x|−2ν−d ,
rLt ^ ν ∈ (−1, 0)YL©
^`aFbLγ iS(2ν) SyL^`p=iD2} 0
d
1 (−4) f (x) = γd (2ν) ν
Z
©
−2ν
π d/2 Γ(−ν)/Γ(ν + d/2),
Z
f (x0 )dx0 , |x − x0 |d+2ν
−1 < ν < 0.
(8.7.3)
6aûÖ^ s`i−2νjSY yL^xtc6bFt FyFtlrKkls~^`j`eFhFtsHkliSSiS_ 4tyFcF_¢FiSs`tcF FbL^xe ý§bLkk^£FiSyDh6rF X¡4cFiSiD4tyFcF6yFiDkls`yL^`cLkls`jD^x¬}TiDkliSStcFcFi?j>s`yFtlF4tyFcFiD}¬FiSs`tcF FbL^x eL*bFyL^`]sSi`eLtt>klUtkls`jStcFcFUyFi`eLgj.qbFpbF\6tklaFb6p^xrK^~\L^x¬YüqyFbL4tyFiD Rd
{ % f6# =7o>x
&
` Ñ pl4rKi~^`jDt^`st4keLD_ yLbF^Ss`klgFyFkltla6rL^xtleFeLhFtyFcFcFbFt_OFp^`iSySs`h6tcFrL FiSbLjq^xkÖe FlyFeLiDtklaFs`s`yLyF^`iDcLklklsxs`^`jSs`tbFcF\FcFtiSkl_aDiS6eLiiSs`FcFi`iDeFklh s`φ(x) gS f}S(x)kli` m "¥
"1Æ $ 15Æ
Æ
φ(x) =
1 4π
Z
1 f (x0 )dx0 = |x − x0 | 4π
©yFtlF4tyFcFiStFyFtiSSyL^`piSjD^xcFbFt UyFgStZrK^`ts R3
Z
R3
f (x0 )dx0 . |x − x0 |3−2
+
e φ(k) =
Z
eik·x φ(x)dx = |k|−2 fe(k).
§bLkkliSjqFiSs`tcF 6bL^xe iSSiSS^xts]s`iSFtyL^` FbFHcL^ZFyFiSbFpjSi`eLgScF_FiSyDh6rLiSah6rFyL^ bFcFs`tyL^xeK^ 2 → µ b>FyFiSbFpjSi`eLgScFUyL^`p4tyFcFiDkls`gOFyFiDkls`yL^`cLkls`jD^ ý
µ
f (x) =
1 γn (−µ)
R3
Z
f (x0 )dx0 , |x − x0 |d−µ
µ 6= n, n + 2, n + 4, . . . ,
üqyFb bLklFi`eLgSp`tyFteFhFyFbFp^` FbFbFcFs`tyL^xeK^O4ts`i~rLiD£wrK^x f^`yL^F}6jOyFtp0~eF
1 (−4) f (x) = γd (2ν) ν
Z
[f (x0 ) − f (x)]dx0 , |x − x0 |d+2ν
0 < ν < 1.
(8.7.4)
üqtyFtlDirWjviS`eK^Skls`g 4itsvSs`gviDklUtkls`j`eLtc a6^`a.FiSjSs`iSyFcFiS_ yFkeLtU\LeF^`hFtyF4bFp^` FFbFi`eLt_nU\L}^`s~t^`a¢Fb¢yFtlFrKyFνklbLs~4≥^`j`teLcF1ttcFcFbFbFtt*aUiScFt\FcFyL^`pjOcFiDjSklb6s`rLtt_nYXFiDkeLtlrLcFt Rd
(−4)ν/2 , ν > 0
1 δd (ν, l)
(−4)ν/2 =
Z
(∆lh f )(x) d , | |d+ν
kZrLjSt taF(∆s`iSyFfcF)(x) z£{d ^`aUiSiDcF t\F cLY ^xh>yL^`pcFiDkls`g qUcFaF Fb6b f (x) cFtklaUi`eLgSaFb6?FtyFt4tcFcF vi~ cFiObLklFi`eLgSpiSjD^xs`gplrLtklgOiSD^s`bFL^OyL^`pcFiDkls`t_?d FtcFs`yFbFyFiSjD^`cFcFt Rd
l h
G
(∆lh f )(x) =
b cFt FtlcFs`yFbFyFiSjD^`cFcFt
l X
(−1)k
k=0
(∆lh f )(x) =
l X
k=0
µ ¶ l f [x + (l/2 − k) ] k
(−1)k
µ ¶ l f (x − k ). k
6 + 5 x n£7&x 5x Ax 5G7o qiSyL4bFyFiSjSiS\FcFtZFiDkls`i~hFc6cFtS}FiSStklFt\FbFjD^`]bFtZjSFi`eLcFtcFbFtqyL^`jStcFkls`jD^ "
"
÷
1 #Æ
&
õ §
Æ
"
1 #Æt¥ ¥ ¥
Þ
1 δd (ν, l)
iSFyFtlrLtleFhF]sSk¨hvbFcFs`tyF^xeK^S4b
Z
Rd
(∆lh f )(x) = |k|ν fe(k), d | |d+ν
rFeFh cFt FtcFs`yFbFyFiSjD^`cFcFiS_>yL^`pcFiDkls`bn} rFeFh FtcFs`yFbFyFiSjD^`cFcFiS_>yL^`pcFiDkls`bnY rLtklg x dFtyFjD^xhB¤ jFyFbFcF FbFFtS}eL]D^xhK¦OaUiD4FiScFtcFsx^ d 4tyFcFiSijStaFs`iSyL^ Y ^S4tlsSbF}\Fs`izyFbLkkliSjiSFtyF^`sSiSy }ljSyL^xtcFcF_ x = {x , x , . . . , x } \FtyFtp§yL^`pcFiDkls`g ∆ }ñxò /ö xø ù÷7ù öoõ 7÷-ô l }s`yFtS`tsSk(−4) hs`i`eLgSaDiL}\Fs`iSS l > ν Y 0# @ - - oqkqpbFjScFts`kls`tcFyL/^xeKF^SyF4iDb³kls`üqDt ^SklkiSkiSiScLs`cF^ iS{ tcFb6hn}4klj`hFpjD^`]bFt?FiSs`tcF FbL^xeF ýÖbFkk^ R −d−ν ix1 dx (1 − e )|x| d R R δd (ν, l) = l−ν l sinl x1 |x|−d−ν dx 2 i Rd
1
1
B{
ν
2
9:( 0
d
l h
EE|ï¹
©6
ν/2
1
|,~𳶹
Âï
l,~
y.ï
*
f (x)
û
t f (x) ≡
b 6^Dkk^x Xt_FtyF{s`yL^Skk^ C
Γ((d + 1)/2)t π (d+1)/2
Z
Rd
f (x − x0 )dx0 (|x0 |2 + t2 )(d+1)/2
B *
t f (x)
≡
1 (4πt)d/2
Z
0 2
f (x − x0 )e−|x |
/(4t)
dx0 .
eLbFj`UhFjSpb6gOeFeLsxbF^OtiDjDklklUaDiStiOkls`s`j`bFeFLhF^ tsS k¨nh b>FFiDyFklyFtlrKtlrKklsxkl^`s`j`jSeFiDhFti~sSrLkhvcFiDq4iStyLyF8cF~eK?^S4rLyFbniSm ScF?bFcFs`tyL^xeLiSj Rd
*
ν
1 f (x) = Γ(u)
Z∞
û
tν−1 ( t f )(x)dt,
(8.8.1)
0
ν
1 f (x) = Γ(ν/2)
Z∞
tν/2−1 (
t f )(x)dt.
qyFiD4tqs`iSiL}6bL4t]s24tkls`i2keLtlrLU]bFtkliSiSs`cFiS{tcFb6hnm
(8.8.2)
0
û t
ν
f (x) = ( ν− (
û
τ f )(x))(t)
(8.8.3)
wu
ä&x 5 x
15Æ
"¥
"
S
1 #Æ#xx
÷
6S
&
f )(x) = ( ( f )(x))(t) (8.8.4) rLtqiSFtyL^`s`iSyF b rLtL_ ksSjSU]sOFiOFtyFt4tcFcFiS_ τ Y taUizDk4iSs`yFts`gZiSStt§j]s`b6qiSyL4~eK^x¬mj]FtyFSj iS_bFpcFb6j]a6^~\Ftkls`jSt (
t
ν/2 −
ν
ν/2 −
ν −
τ
h6qrLiSyL{^£b?bFrLc6jSsSbUtlyLt^xcFeLb6gSh cFiSi£iSFtyL^`s`iSyL^£kls`iSbFs6eLiSs`cFiDksSg d 4tyFcFiSi£bFpiSs`yFiSFcFiSi
Pt (x) =
Γ((d + 1)/2)t 1 , π (d+1)/2 (|x|2 + t2 )(d+1)/2
jSijSsSiSy6iS_?d d 4tyFcL^xh>6eLiSs`cFiDkls`gOSyFiSUcFiSjDklaUiSlirLjSb6tcFb6h Wt (x) =
2 1 e−|x| /(4t) . (4πt)d/2
Lr]jSDb6^Ots`cFbbF_nFyF}FiSp^x FrKtk^`kjD^ ^`tF4yFiDbF4cLO^xrFUeL^`tlyL^`aF^`s`s>tklyFtbL4klts`_LbFkl\6s`tjSkl>aUiSbF_vpiSqs`UyFcFiSaFF FcFbFt _ tjSb6 tleLg`rLt_Lf^
p˜d (k, t, ν) ≡
Z
ν
p(x, t, ν)eik·x dx = e−t|k| , Rd
eFh>s`yFtl>FtyFjS?yLP^`p(x)4tyF=cFiDp(x, kls`t_ t, 1), pd (x, t, ν) = π −1 pd (x, t, ν) = (2π)−1 pd (x, t, ν) = (2π 2 |x|)−1
eFh>FyFiSbFpjSi`eLgScFiS_?yL^`p4tyFcFiDkls`b ð
pd (x, t, ν) = (2π)
−d/2
d Z∞
0<ν≤2:
Wt (x) = p(x, t, 2).
t
ð
å+
R∞
0 R∞
0 R∞
ν
e−ts cos(s|x|)ds, ν
e−ts J0 (s|x|)sds, ν
e−ts sin(s|x|)sds,
d = 1; d = 2; d = 3.
0
ν
e−ts Jd/2−1 (s|x|)1−d/2 sd−1 ds.
qyFiD4tqs`iSiL}6bL4t]s24tkls`i yL^`peLi~tcFb6h>jOyDh6rL 0
b
pd (x, t, ν) ≡ pd (r, t, ν) = =
∞ Γ((νn + d)/2)Γ(νn/2 + 1) 1 √ −d X (−1)n−1 (r π) sin(νnπ/2)(r/2)−νn tn , π Γ(n + 1) n=1
∞ X √ Γ((2/ν)n + d/ν) pd (r, t, ν) = (2/ν)/(2 πt1/ν )−d (r/2)2n t−2n/ν . (−1)n Γ(n + d/2)Γ(n + 1) n=0
6 ~ + 5 x n£7&x 5x Ax 5G7o üqtyFjS_bFpcFb6kDirLbFsSkhFyFb bhFb.j`eFhFhFj`eFtsShFk¨th sSk^ShWklbL^S4klbLF4s`iSFs`s`bFiS\Fs`tbFkl\FaFtbLklaF
"
÷
1 #Æ
&
õ §
Æ
"
1 #Æt¥ ¥ ¥
'
p
d
1
Z
kf kp =
|f (x)|p dx
F yL^`jStlrFAUeLELbFI4jDA ^qk3¬eL=tlrLðUeF]h.eL^x]h SiS_WqUcFaF FbFb eL]SiSi µ ∈ (0, 2] Rd
Õ
Ö
b
rLt
ν
1 f (x) = Γ(ν/µ)
d
< ∞.
f ∈ Lp (Rd ),
Z∞
tν/µ−1
1 < p < d/ν
(µ) t f (x)dt
}
b.rFeFh (8.8.5)
0
(µ) ν f (x) t
1/p
(µ) t f (x)
=
Z
ν/µ (µ) τ f (x))(t),
=(−
(8.8.6)
f (x − x0 )p(x0 , t, µ)dx0 .
EL7
36QD36CFA `C6RTEeLtaUiHFyFiSjSirLbFsSkhFiDkyFtlrKkls`jSiD*FyFtiSSyL^`piSjD^xcFb6h
UyFgStSm +
Rd
&×Ø®£
[]\FbFs`jD^xhn}F\Fs`i Fi`eLU\L^`tm
Þ
Z f˜(k) ( f )(k) = tν/µ−1 p˜d (k, t, ν)dt. Γ(ν/µ)
∞
ν
Þ
0
{ ν f }(k) = |k|−ν f˜(k),
Z Z ∞ |k|−ν f˜(k) f˜(k) ν/µ−1 −t|k|µ dt = τ ν/µ−1 e−τ dτ = |k|−ν f˜(k). t e Γ(ν/µ)) 0 Γ(ν/µ) ∞
iSyL4eK^ ¤¥FY FY ªD¦8keLtlrLStsqbFp¤¥FY FY S¦
a6^`aOyFtpeLgxsx^`sZFi`eLUyFUFFiSjSiSiqkljSiS_Lkls`jD^ iSFtyL^`s`iSyFiSj (x)m ©
^`aFbLiSSyL^`piD}4 FyFb6DirLbL=a FtleL.iD4
0
(µ) t
(µ) (µ) t τ
(µ) t+τ
Ñ
Ä
"
6
1õ7
}, î
S Y?´`¶Xe ³§ ~ =z YK´n¹K}¬ ¤ Ñ +ÑD¦Y 6Y rLð yF!iSÿ ScF÷ iSð i±FiSNyD h6rLaU^/b£ød cFtl±aU iSs`iS yF*ô t?b6þ>Wò!ö F yFGb6 eLi~oqtcFcFs`b6thnyLY
^xd eL.vbbFcLFklyFaniSm bFpjS^~iUrLaUcF^vb t s`tl6cFbFa6^F}n ÑS# ´UY FY [2i;XZY0¨ D^Xeei ªNgN_KVa# ¹m ~ LNL I FIM u I F n 2F +F Y Y v º³`bV eXZY7´ 6d w NO MLI m I ¢w }K`SSFY L7Y i}XZ`baql § k^XZ`y=¥ ~ z Yn¹6· n}LS>¤ ÑSªSD¦Y 6³Y \2r;gaN+rKa¢´ Nn I NY p I 2I ¢z Y wI Y · ³¬}K/ ÑS>¤ Ñ#´ D¦Y ªFYY Ua6÷ ^Fx}¬÷7ù ÑS* ôFò!Y ö £ FzrLcFiD4tyFcFtzDkls`iS_F\FbFjStyL^SklFyFtlrLtleLtcFb6hnYSd WY m ^x ´U7 Y ¸]rKV rKi}_KY XZ ® =§ m I v I F I n IGv Mv SY Y v ¥?_Ka`q\ ´r;gN_KibfM` ® £Í 6Sd p I 2I Nm ~ n ;F F }¬ ÑSFSY F?Y Ík`bV µ_h7U mU ]Ye`bK_hei}_KK_sº m§ ³jYe`bVV r0\ \ NJ +I uIM I H I F YUSd ~ =F m yF ~}LLN`L SSªFY I F ÑF? Y ´µZ`ba [ =u ù }¬I ÑÑSªFY +O yF n I yF YÂd | I km p I NO } v O ÇJ
QS
('
ÂS3R
J #J ¬6
J J Â
¸J -J
_G
.J 9J
R åTÝQ
'
J
.J ÇJ
¸J
J 9Z 1Q
-
©J©Ò V T V S
ÂS3R
$Z & S Q3T &V"S(Y 1Q0T V 3T Q
$Y TÝQS3T &V Z Z ÝY
S(YÝQ0P$Y P -T V
Ü
QS ÂS3R
&V" &V
©
1Q
IJ ÇJ
G
&
ØJ ÇJ¬Ò V &V Z T $P13T &V Ç ØJ -J &V" &V Q& S 1X-TÝQ 9Z
J J $Z S&Q3T &V"S(Y
9Z
¬J ÇJ
T Z V 3TÝS(Y
J $Z & S Q3T &V"S(Y Z 1T V $P &R S3
Ò V&3
P"S3T &V
Z S(Y S(V"
"S 1TÝY T
1J 1J
Z BS(V" Y åNT Z
(0V 3TÝS(Y
S Z Y
X
R$ /3 Z $ S(X
1J
$Y TÝQS3T &V
&V &XS(V
ís\ït\ r
r _EÓ èæèß ÚâæèæÔÓ â áç Õ Õ âãèâæÔ×èç å^' ÚæÔÓ â h
lk
x
Ö ã å Úæèâæèç k
3
B{z
nm
(ÛX~
&
ì|
l.
î ï~,~
bFUjSb6üqeFeFyFhniD}6kls`bLt4_Ft{tsOtt§jSUb6yLr
^`m jScFtcFbFtS}kli~rLtySO^`ttfrLyFiSScFUFyFiSbFpjSi~rLcFUký§bLf^`cF^x
ν x f (x)
= h(x),
x > 0.
dZeLbFUp\FjSbFts`klg s`cLyF^xtlh{qtcFUbFcFtaF Fs`b6iShbi Lr tklg dOνbLdZklaUFiDyFfiS^xb6h pjSqi`eLUcFgScFaFiS Ftfb6hnFi`Y eLÖi~kl s`tbFkls`s`tljSeLtgScFcFcLiS^xt§h \FFbLiSkFeLiLs`} h(x) U a ^ F ` i f (x) UyL^`jScFtcFb6h rLt_Lkls`jSbFtWcL^iSSt]ti\L^Skls`b?iSFtyL^`s`iSyFiD = FyFbFjSirLbFsa qUcFaF FbFb 0
1
0
f (x) =
0
−ν x h(x)
1 = Γ(ν)
Zx
(x − ξ)ν−1 h(ξ)dξ,
−ν x
ν 0 x
x > 0,
(9.1.1)
aUcFiStZs`hFiSj`yLeF^xhFhtsSrLkth _Lklts`jSiObFiSs`StleLgSbLcFivyFtrL{iSj`tlcFeLbFts`tjSiSY yDhFts>yL^Skkf^`s`yFbFjD^`t4iD4UyL^`jScFtcFbF}ncFi oqp P=]¶¬= ¸.keLtlrLSts~}n\Fs`i rFjSt2qUcFaF FbFb b g(x)}nbL4t]bFt i~rLc6b s`2tFyFiSbFpjSi~rLcFUrLyFiSSc6iSiFiSyDh6rLa6^ ν } n −f (x) } 1 < ν < n, n = 1, 2, 3, . . . 0
af
(ν)
(x) =
ag
(ν)
(x),
6 ª +D.Ô³ xx #x J[ x klj`hFp^`cFrLyFUkZrFyFUiDkliSiSs`cFiS{tcFbFt "
Æ.ã
Æ
f (x) = g(x) +
÷
n X
1 ##Æõ7"#xx"§
cj xν−j ,
jaUttqiSs`yFiStyF{iDt cFbFc thFyLj`^SeFkhFkf]^`sSs`kyFh2bFFjDyF^`iStbF4piSjSi`ieLUgSyLcF^`zjS4cFb2tlcFFb6iDh?kls`rLi~i`hFeFcF cFcFziO4bLbn4Y ts`eLg tlrLjSiSb6jDr ^`s`tleLgScFiL}SiS` j=1
j
f (x) =
0
−ν x h(x)
n X
+
cj xν−j ,
lk i~rLtySO^`bF_ FiDkls`i~hFcFcF¬}LaDiSs`iSyFt4iSUs Ss`g2iSFyFtlrLtleLtcFbFp yFyLiD^` cFbF\FcF} SkneLiS=jSbF[ν]_nY++}üqi~1rLt_Lkls`jSiSjD^xjcL^iSStz\L^Skls`b2s`iSiUyL^`jSc6tcFb6h2iSFtyF^`sSi` (µ ≤ ν − 1) j=1
µ x
0
0f
(µ)
(x) =
0
µ−ν h(x) x
b FyFbFcFbLf^xh jSijScFbLf^`cFbFtqiSyL4eL
µ ν−j xx
=
n X
+
cj
j=1
0
µ ν−j , xx
Γ(ν − j + 1) xν−j−µ , Γ(ν − j + 1 − µ)
jSyL^`pbL>s`bFiDkls`ihFcFcFt§\FtyFtp§D^`yL^`aFs`tyFbLkls`bFaFbqUcFaF FbFbjzyL^`cFb6\FcFiS_s`iS\6 aUtSm f (0+) c = , Γ(ν − j + 1) sx^`a>\Fs`i 0
0
j
f (x) =
−ν x h(x)
(ν−j)
+
n (ν−j) X (0+) ν−j 0f x . Γ(ν − j + 1) j=1
XiSpgD4tjOa6^~\FtksSjStqFyFbL4tyL^OUyL^`jScFtlcFbFt 0
§i iSSttqyFt{tcFbFt
0
3/2 x
= x5 .
s`i~hFcFcFb t c b c }rFeFhY iSFyFtlrLtleLtcFb6haUiSs`iSyF Lckli~^xrLrLtiOyS pcLbF^`s]s`gOrLjSFtÖyFFiSbFyFpiSjSbFi~prLjScFi`eLgSt cFft§FiDkl(0+) ^S4ts`bL}F\Fs`i j keLU\L^`tZrLyFiSScFiSiUfyL^`jScFtcF(0+) b6h ^`FUs`iL}
f (x) =
0
−3/2 5 x +c1 x1/2 +c2 x−1/2 x
0
ν 0
x f (x)
=
0
ν x
Ã
f (x) −
(1/2)
m−1 X
= [Γ(6)/Γ(15/2)]x13/2 +c1 x1/2 +c2 x−1/2 , 0
xk (k) f (0+) k!
1 2 (−1/2)
!
= h(x),
x > 0,
m−1 < ν ≤ m,
yL^`cFbF\FcFtSkeLiSjSb6hOqiSyL4~eLbFyFU]sSk¨h2kbLkFi`eLgSpiSjD^`cFbFtFyFiSbFpjSirLcF FtleLi` iOFiSyDh6rLaU^ f (0+) Y (k)
0
k=0
.
"¥ Ã
G
6o´
#/xxBãÇx"5 771 ##xâ©õÂõ7"#xx
& X cFbF_n}FFyFXbFtkli~gDrLfcF^ziS_ Sb bFj _k4eLtUs`\Li^`rOtqyFFtt{yFttcF4b6thcFcFrLyF iSSaDcFiSrLqbLbF FbFqttcFyFs`tiScFjL F}6bLiD^xkleLcFgSiScFjD^`c?UcLyL^^`FjSyFcFb6tl jStlrLtcFbFb>b6>a jSb6rL2bFcFs`tyL^xeLgScFiSiUyL^`jScFtcFb6h Xi`eLgxs`tyFyF¢jSs`iSyFiSiyFi~rK^FY ýf^Skk4iSs`yFbL p^xrK^~\F qiS{b rFeFh rLyFiSScFiSi UyL^`jScFtcFb6h FiSyDh6rLa6^ m α ∈ (0, 1) f (x) − af (x) = h(x), f (0+) = b. üqyFtlrKkls~^`jSbL£UyL^`jScFtcFbFtZs`i jOjSb6rLt
3
B{3±
ìïÂ,~ìçn~ 9³¶·~|æ
0
α x
(α−1)
0
α x f (x)
î ï~,~
î
b FyFtlrFFi`eLi~ bL£cL^jSyFt8hn}F\Fs`i tiOFyL^`jD^xh?\L^Skls`g 0
= F (x),
FcbFbFpjStts~kl^`s`aUcLiS^FY iOUiSyLeK^`jS^ScFklcFtcFi2b6Fh?yFbLtlrL4ttrLs UjSb6tr 4 L^`yL^`yL^SqS}LFyFb F (x) = af (x) + h(x)
f (x) =
b xα−1 + Γ(α)
0
α ∈ (0, 1)
iSStty6t{tl
−α x F (x).
XXti`yFeLcFgxs`UtjSyF{y6bLklgjSs`aviSFyFyFiSt iyFcFi~bLrLH^ iSSiSplcL^~\FtcFb6hL}6Fi`eLU\FbL£bFcFs`tyL^xeLgScFiStqUyL^`jScFtcFbFt f (x) = f0 (x) +
rLt
a Γ(α)
Zx 0
b 1 f0 (x) = xα−1 + Γ(α) Γ(α)
f (ξ)dξ , (x − ξ)1−α Zx
h(ξ)dξ . (x − ξ)1−α
o 4tcFcFizkfsx^`aUiSis`bFL^UyL^`jScFtcFbF_n}cL^`pjD^`t4 oò ò!öoõ[ÿ L}lcL^\FbFcL^xeLiDklgyL^`pl jSbFs`bFtqrLyFiSScFi` rLbFZtyFtcF FbL^xeLgScFi`i^`FL^`yL^`sx^FY "!$ ¢ 0# Û 3 UyL^`jScFtXcFiDb6klh Fi`XeLi`gSeLpg~Ss`ttfyFk¨yFh#rFÿDeFòBhùJ÷ yFt÷*{ÿ tcFób6÷oøhò F÷oi`öeLoUùA\Ftò cFxcFúiSñõ i ó/jSô{t*òbFcFBs`ñ tyL8^xm eLgScFiSi 0
B{åä
,|.
6 /
|9¶Â|ïE¶·~¹
5
fm (x) = f0 (x) +
a Γ(α)
/ 5
Zx 0
(
/
fm−1 (ξ)dξ , (x − ξ)1−α
?È
³¶
"63$
l,~
""M
m = 1, 2, 3, . . .
6 +D.Ô³ xx #x J[ x üqyFiSbFpjSi~rFh?FiDk eLtlrLiSjD^`s`tleLgScFtZFi~rKklsx^`cFiSjSaFbn}UFi`eLU\L^`tm "
Æ.ã
f1 (x) = b
Γ(αk)
3 X ak−1 xαk−1
k=1
Æ
2 X ak−1 xαk−1
k=1
f2 (x) = b
Γ(αk)
+
Zx 0
+
÷
Zx · 0
"
1 ##Æõ7"#xx"§
¸ (x − ξ)α−1 h(ξ)dξ, Γ(α)
2 X ak−1 (x − ξ)αk−1
Γ(αk)
k=1
#
h(ξ)dξ,
. . . . . . . . . . . . . . . . . .. . # x" m m+1 X ak−1 xαk−1 Z X ak−1 (x − ξ)αk−1 + h(ξ)dξ, fm (x) = b Γ(αk) Γ(αk)
b s~Y r
YLX<FyFtlrLtleLt
k=1
0
}F rLt
k=1
m → ∞ fm (x) → f (x) # Zx "X ∞ ∞ X ak−1 xαk−1 ak−1 (x − ξ)αk−1 f (x) = b + h(ξ)dξ. Γ(αk) Γ(αk)
X yFtp~eLg~sx^`s`tFyFb6Di~rLbL
G
f (x) = bx
α−1
k=1
0
α
Eα,α (ax ) +
Zx
(x − ξ)α−1 Eα,α [a(x − ξ)α ]h(ξ)dξ.
cFtcFb6h X¢\L^Skls`cFiDkls`bn}Fp^xrK^~\L^OqiS{b>rFeFhvFi`eLUbFcFs`tyL^xeLgScFiSiv¤ α = 1/2) UyL^`j` bL4ttsOyFt{tcFbFtjS b6rK^ f (x) − af (x) = h(x), f (0+) = b, 0
0
1/2 x
0
¡ √ ¢ b f (x) = √ E1/2,1/2 a x + x
Zx
(−1/2)
³ p ´ (x − ξ)−1/2 E1/2,1/2 a x − ξ h(ξ)dξ.
X keLtlrLU]ttlrLbFcFbF\FcFiDbFcFs`tyFjD^xeLt2FiSyDh6rLaDiSjL} ν ∈ (1, 2) }
yFt{tcFbFt p^xrK^~\Fb qiS{b
bL4ttsOjSb6r 0
ν x f (x)
f (x) = bx
ν−1
− af (x) = h(x),
ν
Eν,ν (ax )+cx
ν−2
0
0f
(ν−1)
(0+) = b,
ν
Eν,ν−1 (ax )+
Zx 0
0f
(ν−2)
(0+) = c.
(x−ξ)ν−1 Eν,ν [a(x−ξ)ν ]h(ξ)dξ.
. w6 55'>7 5 ! 3 "¥ ò
(
,|.
B{/ë
'x&x Rxx
5ôx&1ãx
"ã"
1
â
6Ñ
0!
¬ç,í.ç
|³¶~|æ|ï
UyL^`jScFtcF^`b6Fh>iD F4tlcFeLbLiSi}x\FFs`iSiZyDeLh6rLbFa6cF^t_FcFiqcFtp^`jSbLklbL4tyFt{tcFb6hrLbLqtyFtlcF FbL^xeLgScFiSi
n x y(x)
n−1 y(x) x
0 x y(x)
kZFiDkls`ihFcFcFz4b aDiSqbF FbFtcFsx^S4b a iSFyFtlrLtleFhF]sSkh>cF~eFhL4b Pn (
x )y(x)
≡
+ a1
øBùþ>ò!ø0÷°*÷Jó÷ñ÷*ÿ
+ . . . + an
j
=0
αj
È*ô1ùAòÀô"
Pn (z) = z n + a1 z n−1 + . . . + an .
t_Lkls`jSbFs`tleLgScFiL}FFi~rKkls~^`j`eFh6hvjOrLbLqtyFtcF FbL^xeLgScFiStqUyL^`jScFtcFbFt U\FbFs`jD^xhn}6\Fs`i FyFb6Si~rLbL£av^xeLtSyL^`bF\FtklaDiDP4 ( 6yF)e^`jScFt=cFbFP (λ)e , ð
λx
x
n
y(x) = eλx
b
λx
sx^xeLiSs`gL}ÖtkeLb d£aUiSyFtcFgWU^`yL^`aFs`tyFbLkls`bF\FtkaUiSiUyL^`jScFtcFb6hn}ÖsSi hFj`eFhFtsS]k¨h SyLyF^`ts`{bLtfcFkbFhts`λtrLFtbLyFg?qavtyFrLtyFcFiS FSbLcF^xiDeL4gS cFiSUyLi^`jSUcFyLt^`cFjSbFcFtcFY b6vhnY ts`irD^`yL^`aFs`tyFbLkls`bFe\Ftl cFklaFtb6 FtleLFiSi`ieLbFFcFiSiDyD4h6iSrLj>a6^ cFt 4i~ts>Ss`g cFtFiDklyFtlrKkls`jStcFcFi 6yFbL4tcFtc.a.UyL^`jScFtcFbF Pn (λ) = 0.
λj x
j
G
νn x f (x)
νn−1 f (x) x
ν0 x f (x)
ûÖs`iW4i~ cFiWk¨rLtleK^`s`gL}fi~rLcL^`aUiL}4tkeLbHiSlyL^`cFbF\FbFs`gDkhs`i`eLgSaUi yL^` FbFiScL^xeLgScFz4b p cL^\FtcFb6hL4b ν YSX£s`iD.keLU\L^`tS}StkeLb q dcF^`bL4tcFgS{bF_ iSSbF_ 4cFi~ bFs`tleLg pcL^S4tcL^`s`tleLt_?rLyFiSSt_n}6aUiSs`iSyFz4b FyFtlrKkls~^`j`eLtcF ν }Fs`iOtkls`g 0
+ a1
0
+ . . . + an
0
= 0.
*
j
j
bLcFiSkSi~iOrLUcFyLiS^`t?jSUc6yLtcF^`b6jSh>cFtFcFiSbFyDt>h64rLa6i~^ cFiFyFtl rKklm sx^`jSbFs`g j jSb6rLt2rLyFiSScFi` rLbLqtyFtcF FbL^xeLg` νn = nν,
(n, q)
ν n x]
ν = 1/q,
*
ν n−1 x]
ν 0 x]
X
f (x) + a1 [0
n
n λx xe
0
f (x) + . . . + an [0 ν x
= λn eλx ,
n = 0, 1, 2, . . .
f (x) = 0.
S ` +D.Ô³ xx #x J[ x # 7 #xx rLÖyFkeLiSSb
Æ.ã
0
ν x
ν λx xe
Æ
÷
1 # Æ õ
"
"§
yFiSScFiStfrLbLqtyFtcF FbFyFiSjD^`cFbFtÖFyFtjSyL^`^`tszaUklFiScFtcFs`jzrLyFUUHqUcFaF FbF} i~s`rLiScL_ ^`aDiSiLF}]tyLklU^` FbFtb>kls`bFjSpU4]ts
ð
oqpjStkls`cFisx^`a6tS}F\Fs`i
ν x
0
= Ex (−ν, λ).
ν x Ex (µ, λ)
= Ex (µ − ν, λ).
jStqs`bvqiSyL4eL¢Fi~rLiSScF¢qiSyL4~eK^S 0
ð
b
[xEx (µ, λ)] = xEx (µ − ν, λ) + νEx (µ − ν + 1, λ),
xe
λx
µ > −2.
= λeλx
kliSiSs`jStsSkls`jStcFcFiLYKoklFi`eLgSpiS jD^x[xe cFbFt]s`=iS_λxe ^`cL^xeLiS+bFebvjStlrLts2a keLtrLUZt_s`tiSyFtl λx
x
λx
λx
Ly4^`tSpl}ÖeLa6bF^S\FkcF^`]¤ iStS_Lkhb6_vkeLkUeF\L6^x\Fhn^`_ }ÖaDFiSyF tlrKrK^.kls~jD^`klj`teFhFcFts eLbHkliSUS^`iSyL_?^`SaFi`s`eLttyFtqbLkls`s`yFbF\FrLtcFklUaUBiSpiW^xrKF^i`\FeL bFcF iDf¦Y^ AUELI4A q3¬Y +øBùJú Â *
Õ
Ö
¬4
h
5
0
nν x
+ a1
0
(n−1)ν x
+ . . . + an
0
0 x
i
f (x) = 0
°57ò 5ôx* ÷ 67ñ÷*/5 "%(òÀôòBñ"<"xúñ÷oò4Bô1/öoñxòBñ"xòó÷-ô15 (n, q) q = 1/ν þ1xø/x÷¬
Pn (z) = z n + a1 z n−1 + . . . + an
5
Ý>÷
αi 6= αj
i 6= j
5
yj (x) =
5
n X
m=1
Am
q−1 X
k=0
N
¬4
(;5*ò!ò
Pn (z)
0 A−1 m = P (αm ),
°5*ùA÷4Bô1/öoñxòBñ"xò³#ÿDò!òBù
<xò x÷oò
¼ +øBùJú
øB÷7÷7ùAö/òBùAøBùAö4&2.À"MÈ*ô1ùAòÀôxøBùþ>ò!ø&"Mcó÷ñ÷*ÿ¬J ó/ô ñ 4*ó÷ ñ÷* " ÿ
α1 , . . . , α n
5
m = 1, 2, . . . , n.
ñxò0Mñ÷*Àñxò3:(/öxø0+ÿõ?ÈAôò0ÚAòBñ""M
q qj−k−1 ), Ex (−kν, αm αm
j = 1, 2, . . . , N,
d
°57ò ñ #ÿDòBñ&ú ÚAò!¸ ò <xò x÷oò1þ ø x ÷ K67÷ x&ú ÚAò! ò Dô1/öoñ÷oò J nν ò!øBùJN úñxò0Mñø04óxòÀôxó÷:"<"7ù1Èuôò0ÚAòBñ""MJ
,6*ÀAò!òXôò0ÚAòBñ"xò
. 75xx5 7 #xx mo xxx #x7D&xx x "¥ ÿ
Æ õ
"
"§
"÷
1 #
*§ ã
/ I89 qADI8M =üqyFiDkls`t_F{ttZrLyFiSScFiStqUyL^`jScFtcFbFtZFiSyDh6rLa6^ ¤ L} D¦ f (x) = 0 ØÖ
S6
¦'
4/3 x
bLcFiS4tiOtss`bFiSFS^ ttyFt{tcFbFtzjjSb6rLtzklUFtyFFiSpbF FbFbrLjSD\L^Skls`cFOyFtl{tcFbF_2kls`tFtc6 0
rLt C b C d2FyFiSb6pjSi`eLgScFtZFiDkls`i~hFcFcFtSY6[]yL^`jScFtcFbFt f (x) = C1 x1/3 + C2 x−2/3 ,
1
2
FiSySh6rLa6^
(2, 2)
h
1 x
+a
bL4tts irLcFiOyFt{tcFbFt 0
0
1/2 x
i + b f (x) = 0
f (x) = α1 Ex (0, α12 ) − α2 Ex (0, α22 ) + Ex (−1/2, α12 ) − Ex (−1/2, α22 ) = √ √ = α1 exp(α12 x)erfc(−α1 x) − α2 exp(α22 x)erfc(−α2 x)
¤ tkeLb
3
α1 6= α2
¦Y taUijSb6rLts`g sx^`aUtS}F\Fs`i $
f (0) = α1 − α2 ,
0f
(−1/2)
(0+) = 0,
0f
(1/2)
(0+) = ∞,
f 0 (0) = ∞.
B{
}.|.~||,~¹i
î ï~,~
ð|~³¶·~| |
|-ç
^`FiD4cFbL}6\Fs`iOiSStt]yFt{tcFbFtqcFti~rLcFiSyFirLcFiSirLbLqtyFtlcF FbL^xeLgScFiSi UyL^`jScFtcFb6h> FtleLiSiFiSyDh6rLa6^
n x
n−1 x
4i~tsOSs`gOFyFtlrKklsx^`j`eLtcFiOjOjSb6rLt [
f (x) =
Zx
+ a1
+ . . . + an
0 x ]f (x)
= h(x)
G(x − ξ)h(ξ)dξ + C1 G(x) + C2 G0 (x) + . . . + Cn G(n−1) (x),
d qUcFaF Fb6h nyFbFcL^FY4XkjDeLklUt \L^`t i~ rLrLtc6iSCyFi~rLdcFFyF>iSbFyLp^`jScFi`eLbFgS\FcFcFt2 6DiDkeLkls`iSi~jShFbFcF_ cFf(0)tS}4^ =G(x) f (0) = . . . = f (0) = 0 C yL^`jScF¢cFeL¡b 0
C
i
0
f (x) =
Zx
(n−1)
G(x − ξ)h(ξ)dξ.
vts`i~rFiD/FyFtiSSyL^`piSjD^xcFb6h ^`6eK^Sk^Ws`iSs£yFtpeLgxsx^`syL^SklFyFiDkls`yL^`c6hFtsSkh¢cL^ rLyFiSScFi` rLbLqty6tcF FbL^xeLgScFtZUyL^`jScFtcFb6h?yL^` FbFiScL^xeLgScFiSiFiSySh6rLa6^ Y G
H
0
*
i
SS
D.Ô³
"+
AUELI4A q3¬=
[ x # 7 #xx +øB÷7þ5ñ÷ ÀñxòBó/ôòÀôxõöoñ ¬ñ uñ ñ m +øBùJú ñùAò!ò ò ô
Æ.ãxx#xÆJ
5
&4 Õ Ö ¬4+øBùJú ô4+òÒÿ*+øBó÷7ñxòBñ"<"xúñ÷h(x) °*÷6óx÷-ô15
[0
5
nν x +a1 0
(n−1)ν +. . .+an 0 x
0 x ]f (x)
*
[0, ∞)
= h(x),
Ý
÷
1 # Æ õ
"
(0,4 ∞)(5* 94 "&<"#J ¬
"§
° "
f (0) = f 0 (0) = . . . = f (N −1) (0) = 0
5
5 ôx÷*76 ñ÷oò¬5 "KX òÀôòBñ"<"x úñ÷oòB 4 ô/öoñxòBñ"xòeó÷-ô15 °57ò ñ#ÿDòBñú& (n, q) N ÚAò!ò<xò/x÷oò¸67÷3xú&ÚuòBòB³ô1/öoñ÷oò J >÷°5*ò°*÷³ò5 ñxøBùAö/òBññ÷oòdôò0ÚAòBñ"xò5* nν òBùAø3Â ÷-ô+ÿ4*x ÷*M f (x) = °57ò ó÷G(x) ñ÷*ÿ
5
Zx 0
G(x − ξ)h(ξ)dξ
5ôx÷*67ñ@94ñ"&<" xôñ* ñM57òBññ1:È*ô1ùAòÀôxøBùþ>ò!ø0÷°*÷ øDó÷*ÿ÷*J À ú& 2 ÷*6-ô1oùJñ÷°*÷uó/ôòB÷*6-ô*:o÷oö(oñ"Âùoó/ø3
}E
Pn (z)
G(x) = ú
3
,|.
B{
#
−1
{P −1 (λν )}(x).
(
³Û
¶| j,~´ïé ,~~| n
cFbF_n}4Fvi~rLcFiSiSScFbFitz4a6eKts`^Si~krLklbF.\FUt^`klaFyLb6^`aFt]s`4ttyFs`bLi~klrLs`HbF\FyFttkl{aDiStcFib6hOFi`rLeLbLbFcFqiDftyF^Ft}4cFyL F^SbLkl^xFeLyFgSiDcFkls`yL^`Uc6yLhF^`]jSsScFk¨tlh cLcFz^W4rLbnyF}¬iSS\FcFti` rLj bLkeLqU\Lt^`yFttcF F FtlbLeL^xeLg`cFFiStyDh6b¢rFaUiSiSaUjL^`Y¬pjDb6^`]sS\6kbLhkeLsx^S/FyFcFbFt.cL^x4rFteLcFtlt t bFs>½b qÿDtaFòBs`ùJbF÷j` ô x÷ òBñ uôò AòBñ ÇöuøBùAòBóxòBññõò(ô õfY XtyFcFtfkh a>UyL^`jScFtcFbF G
5
1 :
"
0Ú
"
15
(ν) x f (x)
bOFiDklsx^`jSbLp^xrK^~\FcL^`_Fs`bOtiqyFt{tcFbFtFyFbOyL^`cFbF\FcFiDDkeFiSjSbFb j FyFtlrLFi`eLitcFbFbn}D\Fs`iFyL^`jD^xhO\L^Skls`gUyL^`jScFtcFb6h h(x) 4i~tsSs`gfyL(0+) ^`pleLi~=t0cL^ Fjvi`yDeLh6i~r bFs`^`tla6eFeLgScLiSyF^xh>tcLF^FiD}
klks`Si~i~hFrFcFhFcL^xbFhn_Lm kh.jviS`eK^Skls`b 0 ≤ x < R }
rLt R dcFtaUiSs`iSyL^xh 0
= h(x),
x > 0,
0 < ν < 1,
G
h(x) =
∞ X h(n) (0+) n x . n! n=0
«rLt£bLkla6^`s`gOyFt{tcFbFtqUyL^`jScFtcFb6h>jOjSb6rLt f (x) = xp
∞ X
qi~rKkls~^`jSbFjiSD^s`b6>yDh6rK^j UyL^`jScFtc6bFtS}
an x n .
n=0
ü
0
ν x
Ã
∞ X
n=0
an x
n+p
!
=
∞ X h(n) (0+) n x n! n=0
. %4ux R5xx "¥
#7 5 ('³[ x # (' &xo 5x S
*§xm
0
b U\FbFs`jD^xhn}6\Fs`i Fi`eLU\FbL
0
1 Æ
ν p xx
=
b
÷
1 # Æ
(
Γ(1 + p) xp−ν , Γ(1 + p − ν) p=ν
an =
]aUiScF\F^`sSteLgScFiL} f (x) =
=0
−ν x
h(n) (0) . Γ(1 + n + ν)
∞ ∞ X X h(n) (0+) Γ(n + 1) h(n) (0+) xn+ν = n! Γ(n + 1 + ν) n! n=0 n=0
∞ X h(n) (0) n x = n! n=0
0
−ν x h(x)
1 = Γ(ν)
Zx
0
(x − ξ)ν−1 h(ξ)dξ,
−ν n x x
=
0 ≤ x < R.
Fyt^`{a.tbWcFbFkteLtlrL¤jiSÑFjDY S^xY eL~i ¦Y i~ b6rK^`s`gL}ncL^`_6rFtcFcFiSt plrLtklgvyFt{tcFbFt?kliSjSL^xeLi k \L^Skls`cFz
"! 3 # B{
0
¢
¯
"! ³
¶| l,~}ïjf| ~¹ ì,,~𳶷~¹
| ,||ï
X£s`iD.L^`yL^`yL^Sqt4FyFbL4tcFbL.yL^`pleLi~tcFb6tzjyDh6r2a?k^S4iD4iSSyL^`sx Fca6^`iDa.4^`yFiSF6t4yLt^`cFs`s~iSY yFS}4yLs`^SiSk_.kf F^`tls`eFyFgSbF*jD^x4hrLyFiSFiSSyFcFtlrLi`tlrLeLbLbL¢qkltcLyF^~t\LcF^x FeKbL^?^xaUeLiSg`cFq_£bFiS FFbFttyLcF^`s`s`!iSy yL^` pl eLi~tcFb6h
ν
[Pn (z)]−1 =
∞
X 1 bj z j = Pn (z) j=0
bjSiDklFi`eFgSpStfkhZbL4brFeFhFyFtlrKklsx^`j`eLtcFb6hqiSyLf^xeLgScFiSiyFt{tlcFb6hUyL^`jScFtcFb6h jOjSb6rLt
Pn ( 0
f (x) = [Pn (0
ν x )f (x)
ν −1 h(x) x )]
=
= h(x),
∞ X
bj
0
jν x h(x)
/ I89 qADIY#ðeFh>UyL^`jScFtcFb6h (1 + a )f (x) = h(x), j=0
ØÖ
0
ν x
ν < 0,
=
∞ X j=0
ν<0
bj 0 h(jν) (x).
D.Ô³
S bL4tt
"+
'
b
[ x
Æ.ãxx#xÆJ
1 ##Æõ7"#xx"§
÷
P (z) = 1 + az, [P (z)]−1 =
∞
X 1 = (−az)j , |az| < 1, 1 + az j=0
sxq^`iSavyL\Fs`i2yFt{tcFbFt6yF^`jScFtcFb6h8i~ts Ss`g2p^`FbLk^`c6i j2irLcFiS_vbFpk eLtlrLU]b6 f (x) =
∞ X
(−a)j 0 h(jν) (x),
j=0
Zx
d f (x) = dx
rLt
0
X\L^Skls`cFiDkls`bn}FFyFb
3 - B{
gν (x) =
gν (x − ξ)h(ξ)dξ,
∞ X (−a)j x−jν j=0
Γ(1 − jν)
.
ν = −1/2
√ 2 g−1/2 (x) = ea x erfc(a x), x > 0.
,|.
$@ ³
.|
|ï~
y ¶E
XkeLU\L^`tFiDkls`i~hFcFcFaUiSqbF FbFtcFs`iSjjStklgDf^WqtaFs`bFjScFzFyFi` rLi`eFO^`ts2iDklsx^`jD^`s`gDk¨hÇÿDòBùJ÷ ñùAò ô xúñõ mó/ôòB÷ -ô o÷oö oñ LYðeFhyFt{tcFb6h cL^^`6FeKi`^SeLk`^iDb6klb eLb (0FyF
°
?È
*6 1 :
( ""M
³G
(ν)
FyFb cL^~\L^xeLgScFiDWDkeLiSjSbFb 0f
(x) + af (x) = h(x), x > 0, ν ∈ (n − 1, n], (ν−k)
x^ rK^~\L^2sx^>yFt{^xeK^Skg>j>yL^`SiSs`t Ö4ts`i~rLiD<FiDkeLtlrLiSjD^`s`tleLgScFvFyFbF`eLb6tl cFbF_nY rLtklg 4!FiSa6^xt}¬aU^`a iScL^?yFt{^`tsSk¨h.4ts`i~rLiD<FyFtliSSyL^`piSjD^`cFb6h ^x 6eK^Sk^FYFweLtSyL^`bF\FtklaDiStqUyL^`jScFtcFbFtZrFeFh>s`yL^`cLkqiSyLf^`cFs` 0f
(0+) = bk , k = 1, 2, . . . , n.
Â
λν fb(λ) + afb(λ) = b h(λ) +
n X
k=1
bk λk−1 ,
. 46 55¾&x#7 #>x x<& # "¥
(
"§
SS
$ 1
eLtaDi yFt{^`tsSk¨hnm
n X b h(λ) λk−1 fb(λ) = ν + . bk ν λ +a λ +a
eFh iSSyL^`s`cFiSjOi²jSb6FrLyFt tiSSyL^`piSjD^xcFb6h ^`6eK^Sk^~rLiSScFi²FyFtlrKklsx^`jSbFs`g²rLyFiSSg ð
k=1
λk−1 /(λν + a)
∞
rLt
X 1 λk−1 (−a)j λ−γ = λk−ν−1 = ν −ν λ +a 1 + aλ j=0
YLXFi`eLc6h6h>FiS\6eLtcFcFiStqiSSyL^`tcFbFtZyDh6rK^
γ = νj + ν − k + 1 ½ k−1 ¾ ∞ X λ −1 ú (−a)j ú (x) = λν + a j=0
kZbLklFi`eLgSpiSjD^`cFbFtkliSiSs`cFiS{tcFb6h ú
cL^xDirLbL ú
−1
½
λk−1 λν + a
¾
−1
{λ−γ }(x) =
(x) = xν−k
∞ X
−1
{λ−γ }(x)
xγ−1 , Γ(γ) (−axν )j . Γ(νj + ν − k + 1)
Ly ^`jScFbFjD^xh Fi`eLU\FtcFcF_ySh6r.kkiSiSsSjStlsDksSjSU]bLFyFtlrKklsx^`j`eLtcFbFtHrLjSD6L^x yL^S4ts`yFbF\FtklaDiS_vqUcFaF FbFb vbFs`sx^`l tZeLtyL^
j=0
G
Eα,β (z) =
jSb6rLbL}F\Fs`i
∞ X j=0
ú
−1
½
λk−1 λν + a
oklFi`eLgSpxh>s`tiSy6t4?i kljStyFs`aUt λν
¾
zj , Γ(αj + β)
(x) = xν−k Eν,ν+1−k (−axν ).
(k = 1)
© ª 1 ·b h(λ) = ú xν−1 Eν,ν (−axν ) (λ) · ú {h(x)}(λ) = +a ©¡ ν−1 ¢ ª x Eν,ν (−axν ) ? h(x) (λ), =ú
FyFb6Si~rLbL£a bLklaDiD4iD4?yFtpeLgxsx^`s`Tm f (x) =
Zx 0
(x − ξ)ν−1 Eν,ν (−a(x − ξ)ν )h(ξ)dξ +
n X
k=1
bk xν−k Eν,ν−k+1 (−axν ).
D.Ô³
S`ª
"+
[ x
Æ.ãxx#xÆJ
eFh>i~rLcFiSyFi~rLcFiSiUyL^`jScFtcFb6h
÷
1 ##Æõ7"#xx"§
ð
Fi`eLU\L^`tm6FyFb ^FyFb
0f
(ν)
(x) + af (x) = 0
ν ∈ (0, 1) f (x) = b1 xν−1 Eν,ν (−axν ),
ν ∈ (1, 2) f (x) = b1 xν−1 Eν,ν (−axν ) + b2 xν−2 Eν,ν−1 (−axν ).
^Skls`cF_keLU\L^`_sx^`aUiS_p^xrK^\FbyL^Skkf^`s`yFbFjD^xeKkhj]aFcFbFt myFt{^xeLiDklg Fi`eLrLbLqtyFtcF FbL^xeLgScFiStZUyL^`jScFtcFbFt =
'(
(1/2) 0 fx
Zk cL^~\L^xeLgScFzDkeLiSjSbFt ý4t{tcFb6t6i`eLU\FtcFiOj jSb6rLt`m
+ f (x) = 0, (−1/2) 0 f0+
x>0
= b.
√ √ √ f (x) = bx−1/2 E1/2,1/2 (− x) = b(1/ πx − ex erfc( x)).
^`FUs`ý4i t{bL²s`t²tB4ts`i~rLiDÚ^`cL^xeLiSbF\FcFiStUyL^`jScFtcFbFt¡kFyFiSbFpjSi~rLcFiS_ FyFb cL^~\L^xeLgScF2DkfeL(x)iSjSb6+h6 af (x) = h(x), x > 0, ν ∈ (n − 1, n] (ν) 0
f (k) (0+) = ck , k = 0, 1, . . . , n − 1.
qyFtiSSyL^`pi`jD^xcFbFt ^`6eK^Sk^s`tFtyFg FyFbFjSirLbFsOa UyL^`jScFtcFbF ü
n−1 X λν−k−1 b h(λ) ck ν fb(λ) = ν + . λ +a λ +a
oklFi`eLgSp`h?yL^`pleLitcFbFtqjOyDh6r
k=0
∞
X 1 λν−k−1 = λ−k−1 = (−a)j λ−γ , ν −ν λ +a 1 + aλ j=0
b jSFi`eLc6h6h>iSSyL^`s`cFiStZFyFtiSSyL^`piSjS^`cFbFtS} ú
−1
½
λν−k−1 λν + a
¾
(x) =
∞ X j=0
(−a)j ú
−1
γ = νj + k + 1
{λ−γ }(x) =
. 46 55¾&x#7 #>x x<& # "¥
(
= xk
∞ X
FyFb6Si~rLbL£a yFtpeLgxsx^`s`
j=0
f (x) =
Zx
"§
S+´
$ 1
(−axν )j = xk Eν,k+1 (−axν ) Γ(νj + k + 1)
(x − ξ)ν−1 Eν,ν (−a(x − ξ)ν )h(ξ)dξ +
eFh>i~rLcFiSyFi~rLcFiSiUyL^`jScFtcFb6h 0
ð
(ν) 0 f (x)
Fi`eLU\L^`tm6FyFb ^FyFb
n−1 X
ck xk Eν,k+1 (−axν ).
k=0
+ af (x) = 0
ν ∈ (0, 1) f (x) = c0 Eν (−axν ),
ν ∈ (1, 2) f (x) = c0 Eν (−axν ) + c1 x Eν,2 (−axν ).
X<\F^Skls`cFiDkls`bn}FyFt{tcFbFtp^xrK^\Fb (1/2) f (x) 0
+ f (x) = 0,
x > 0,
f (0+) = c
bL4ttsOjSb6r √ √ f (x) = cE (− x) = ce erfc( x). XyL^`SiSs`t ª }`FiDklj`hFtcFcFiS_O^`cL^xeLbFps`iS_ p^xrK^\FbOFyFiS Ftkklk F÷oøyFb6rK^`jD^xeKk¨hkk4zu~\Lk^Se kls`iSôxs`÷ iS7_nñ|÷ ³ôò +ø Y[üqLyF}Kb ^2FyFiS FtkklyFt{k tνcF∈bFt2(1,UyL2)^`jScFd tνcFôx∈b6÷ h.(0,7ñõ 1)^x FUs`i2bFp4tc6hFtsSkhc6tFyFtyFjSωcFi2=FyFabFtyFtlSi~rLtc bF=c6rFt0a6k^ ν bFpi~rLcFiS_ iS`eK^Skls`bvj rLyFUUY Si~rFhFbF_Lk¨h ySh6r x
1/2,1
@5
*6
*M
/ 3<""
0<" 1<""M
1/ν
_5
*6
?È
0
f (t) = c0
∞ X
(−1)k
(ωt)νk Γ(νk + 1)
4rLtiScLS^xt¬cq}UrFkzeFUhjStljSeLbF\F\FbLtkcFeLbFttcF.b6hjSyFyFtt4{ttcFcFb?b6klhaUs`iSi`yFeLiDgSklaUs`izgFkSyFi~brLiSbLs`4cFiDiDklkls`bFb2s`tlLeL^xgSrKcF^`i]ts~cFYtðSi`eFeLh2gSS{i`b6eLZgS{jSyFb6tl jSyFt4tc?eLU\F{tbLklFi`eLgSpiSjD^xs`gO^SklbL4Fs`iSs`bF\FtklaUiStqyL^`pleLi~tcFbFt k=0
f (t) ∼ −c0
∞ X
k=1
(−1)k
(ωt)−νk , Γ(1 − νk)
t → ∞.
D.Ô³
S`
"+
[ x
Æ.ãxx#xÆJ
÷
1 ##Æõ7"#xx"§
rLtleFhFtsSw]k¨hvklbL4eKF^`s`jSiScFs`zbF4\Fb>tkl\6aUeLiSttcLF^SiS4jSb tlrLUta6cF^`bFpt^`cFFcFyFb2fyL^x^`eLpleLvi~btcFSbFi`eL_ gS{b6>jSyFt4tcL^x iSFyFtl f (t) ∼
½
c0 [1 − (ωt)ν /Γ(1 + ν)], c0 (ωt)−ν /Γ(1 − ν),
t → 0+; t → ∞.
]sS4ts`bL}n\Fs`i?rLyFiSScFiStUyL^`jScFtcFbFtyFtleK^`a6k^` FbFb Fi klyL^`j` cFtcFbF¡k]iSS\FcFz (ν = 1) rK^`tsSi`eLtt]Szkls`yFUyFtleK^`aUk(0^` F
,|.
B{
î ~çð
~
XFi`eLcFbFjOFyFtiSSyL^`piSjS^`cFbFt ^`6eK^Sk^ (µ) 0 fx
+ a 0 fx(ν) = h(x),
0 < ν < µ < 1.
(λµ + aλν )fb(λ) = c + b h(λ),
cL^`_6rLt£s`yL^`cLkqiSyLf^`cFs`2yFt{tcFb6h qts`yFrLcFi jSb6rLts`gL}6\Fs`i
c=
0f
(µ−1)
(0+) + a 0 f (ν−1) (0+)
c+b h(λ) fb(λ) = µ . λ + aλν
fb(λ) = [c + b h(λ)]
∞ X
(−a)j λ(ν−µ)j−µ
FyFtlrKkls~^`j`eFhFtsZkliSSiS_ZeK^`6eK^SkliSjDklaFbF_iSSyL^`pfFyFiSbFpjStlrLtcFb6hkls`tFtcFcFiS_qUcFaF FbFb b?rLjSD6L^`yL^S4ts`yFbF\FtklaUiS_ qUcFaF FbFb vbFs`sx^`l tZeLtyL^Fm x j=0
G
µ−1
ú
−1
∞ X
(−a)j λ(ν−µ)j−µ
(x) = xµ−1 Eµ−ν,µ (−axµ−ν ) ≡ G(x).
XcFiSjSgbLklFi`eLgSp`h?s`tiSyFt4?i kljStyFs`aUtS}6FyFb6Di~rLbL£a>jSyL^xtcFbF j=0
f (x) = cG(x) +
Zx 0
G(x − ξ)h(ξ)dξ,
(9.9.1)
. ;:h:eo #xxx "¥¦
UjèyL^`aDjSiScFs`tiScFyFb6iDhn m 0
µ xG
+a
#xN1À x
S /Ñ bL4tts k4zke qUcFaF FbFb nyFbFcL^ yL^Skkf^`s`yFbFjD^`t4iSi
B5"#Æ.â
"
C
G(x)
ν xG
1 ##Æ.⯥ ¥ ¥
÷
G(x) = xµ−1 Eµ−ν,µ (−axµ−ν ),
= δ(x),
0 < ν < µ < 1.
qyFbFjStlrLt q6c6aF FbFb nyFbFcL^ttrFeFh cFtklaUi`eLgSaFb6FyFiDkls`OUyL^`jScFtcFbF_nm ü
0
BC
a a
0
ν x G(x)
ν x G(x)
= δ(x),
0
α x G(x)
+b
0
G(x) =
ν−1 x+ ; aΓ(ν)
G(x) = (1/a)xν−1 Eν,ν (−(b/a)xν );
+ bG(x) = δ(x),
a G(x) =
0
β x G(x)
+ cG(x) = δ(x),
α > β,
∞ 1 X (−1)k ³ c ´k α(k+1)−1 (k) x Eα−β,α+βk (−(b/a)xα−β ). a k! a
X<6iDkeLtlrLcFtkeLU\L^`tqs`yL^`cLkqiSyLf^`cFsx^OqUcFaF FbFb nyFbFcL^ k=0
(9.9.2)
(9.9.3)
C
b G(λ) =
FyFbFjSirLbFsSkh a jSb6rL
1 , aλα + bλβ + c
∞
1 1X cλ−β 1 b G(λ) = = (−1)k c aλα−β + b 1 + cλ−β /(aλα−β + b) c
µ
cλ−β aλα−β + b
¶k+1
iSSyL^`s`cFiStFyFtiSSyL^`piSjD^xcFbFt ^`6eK^Sk^ aUiSs`iSyFiSi?jSFi`eLc6hFtsSkh kFyFbL4tcFtcFbFt qiSyL4eL k=0
¬
(k)
Eα,β (z) ≡
b>rK^`tsOqUcFaF FbF*¤jÑFY ÑFY D¦Y
3 ?> B{z
;
∞
X dk (j + k)!z j Eα,β (z) = . k dz j!Γ(α(j + k) + β) j=0
76 ¢
³
ï~,~}}E|,ï~¹iæ
| ~|
ì,,~𳶷~¹iæ
| ,³||æ
FyFbFiD]keLyLtlrL^`iScFjDbF^`\Fs`ttlcFeLb6gShcFiDcL£^WFaUyFiDbLf44tUcFsxt^`cFs`bFbFbjScFrLiDyFkliSs`SgcFb< FiSyLF^`tjSyLb6^`eLs`iiSyFkiSeLj i~FiStlcFSDb6Oh
° ³5 %
a
hν1 ,ν2 ,...,νk i x
"<"
≡
a
°
ν1 x a
1
ν2 x
...
1
a
νk x .
,
S +D.Ô³ xx #x J[ x # 7 #xx cFÖiSkeLib>rLjDbLklt qν tyFirLtcFcF FiSb6iyFiSpjDcL^`^`cFa6b6^Fh }Us`kli6fiSFft^`yLyF^`cFs`iSiSy2iFs`iSiSyDsOh6rLkliSa6jS^FL} ^xrK^`tsk]iSFtyL^`s`iSyFiD rLyFiS` (
"
Æ.ã
Æ
÷
1 # Æ õ
"
"§
j
hν1 ,ν2 ,...,νk i x
ν1 +ν2 +...+νk . x
HX FyFiSs`üqbFiSjSa6cF^xiDtkeLU\Ls`^`itScL}U^yFtFpyFbLeL4gxsxt^`yFstS}FpF^`y6jSbFbLjSklbFtlrLstiScFscFiDFiSyDj h6rL aU^Y#ýfkeL^StlkrLkfiSjD^`^`s`cFyFb6bFh2jD^`bF]c6sSrLkth>a6kls`iSyFjLb Y rLbLqtyFtcF FbL^xeLgScF2UyL^`jScFtcFb6h k 0 < ν < 1 m a
≡
a
0
b
b)
0
a)
xu
≡
0
h1−ν,νi v(x) x
1−ν+ν u(x) x
≡
0
1−ν 0 x
]Sttqy6t{tcFbF tFtyFjSiSw(x) iUyL≡^`jScFt cFb6h c)
hν,1−νi x
0
a)
u(x) =
= h(x), ν x v(x)
0
ν x 0
1−ν w(x) x
Zx
h(ξ)dξ + a,
= h(x), = h(x).
rLt dFyFiSb6pjSi`eLgScL^xhFiDkls`i~hFcFcL^xhnY qs`iSScL^`_Fs`b qUcFaF FbF }xFi~rLt_Lkls`jSD tcLa^OiSStq\L^Skls`bvjSs`iSyFiSiOUyL^`jScFtcFb6hvklcL^~\L^xeK^iSFtyL^`s`iSyFiD v(x) }K^Op^`s`t£d iSFtyL^`s`iSyFiD YLXyFtp~eLg~sx^`s`tqFi`eLU\FbL 0
(=
0
0
−ν x
b)
v(x) =
Zx
ν−1 x
h(ξ)dξ + b1 + b2 xν−1 .
4t{^xh>s`yFts`gStUyL^`jScFtcFbFtS}F4FyFbL4tcFbLHklcL^\L^xeK^ }L^p^`s`td m 0
ý
0
c)
w(x) =
Zx
−ν x
0
ν−1 x
h(ξ)dξ + c1 + c2 x−ν .
iSFi`eLcFbFs`tleLgScFtkeL^`l^`t4tqFi~hFj`eFhF]sSk¨h jDkeLtlrKkls`jSbFtkliSiSs`cFiS{tcFbF_ 0
ð
γ γ−1 xx
γ−1 γ−1 x x
S^ 4ts`bL}F\Fs`iOjOs`iOjSyFt8hn}6a6^`a>iSSttZyFt{tcFbFtqUyL^`jScFtcFb6h>FtyFjSiSiFiSySh6rLa6^ kli~rLtyS bFs~}6a6^`a?b>Fi`eLi~tlcFiL}Ui~rLcF FyFiSbFpjSi`eLgScFU¢FiDkls`i~hFcFcFU}UiSSbFtZyFt{tl O^`sZiSFsxi rLcFb6jStZhFUiDyLkl^`s`jSi~cFhFtcFcFcFbF_¬kY5klüqiDyFklsxb ^`νjScF=z41/2bkl6yFft{ft^`cFyFb6cFh iSv iZ¦ÖFb iSyDh6¦rLkla6iS^FjS}~LyL^x^`rKjS^`cF]iSs~}DiFSyF}`b kli~νrL6=tyS1/2 eLbF\L^`]sSkhrLiSFi`eLcFbFs`tleLgScFz4bOkeK^`l^`t8z4bn}~rK^`]bL4bjqcFeLtklbFcFeFhFyFcFiDkls`b yL^`pcFFiSyDh6rLaUiSjLY¬wzjSs`iSyF!yL^`SiSs` §iSsS4t\L^`]s~}n\Fs`i jSjStlrLtcFbFtOkliDklsx^`jScF
0
≡ 0,
0
= Γ(γ),
Q
0
γ = ν, 1 − ν.
. ;:h:eo #xxx
#xN1À x
F iSSFi`eLtyLgS^`{s`tiS¢yFiS\FjbLkUeLjSt?tleLcLbF^~\F\LbF^xjDeL^`gStcFs\F bLDkkeLeLiHiSjSklbFjS_niSS}
icFrLtcFiSDHi~rLFbLiD4kls`i~hFcFrFcFeFhi~rLbcFFiSiSpcLs`yF^\FtScFcFiSiDivkls`jSg£j SiSyL^yFt{tcFb6hnY X
B5"#Æ.â
"
÷
1 ##Æ.⯥ ¥ ¥
(
*
α,β x
≡
h(α−1)β,1,(α−1)(1−β)i x
=
β(1−α) 0 x
(1−β)(1−α) , x0 x
©yFbvUyL^`jScFtcFb6h?yL^Skk4iSs`yFtcFFyFb cL^~\L^xeFgScFiDDkeLiSjSbFb
0
0
0f
(−(1−β)(1−α))
α ∈ (0, 1), β ∈ [0, 1].
(0+) = b
kZbLklFi`eLgSpiSjD^`cFbFtqiSyL4~eFFyFtliSSyL^`piSjD^`cFb6hnm ú
n
0
α,β x f (x)
qtyFjSiStZUyL^`jScFtcFbFtSm ü
o
(−(1−β)(1−α))
(λ) = λα fb(λ) − λβ(α−1) 0 f0+
§iOyFt{tcFbFt
0
Xs`iSyFiStqUyL^`jScFtcFbFtSm
f (x) = b
§iOyFt{tcFbFt f (x) =
©yFts`gStUyL^`jScFtcFbFtSm §iOyFt{tcFbFtSm
α,β x f (x)
= a.
axα x(1−β)(α−1) +b . Γ(α + 1) Γ((1 − β)(α − 1) + 1) 0
= 0.
x(1−β)(α−1) . Γ((1 − β)(α − 1) + 1)
0
α,β x f (x)
α,β x f (x)
+ af (x) = 0.
∞ X λβ(α−1) fb(λ) = b (−a)j λ−αj−γ , = b a + λα j=0
f (x) = bx
γ−1
(0+).
γ = α + β(1 − α),
∞ X (−axα )j = bx(1−β)(α−1) Eα,α+β(1−α) (−axα ). Γ(αj + γ) j=0
D.Ô³
D
"+
(
[ x 8
Æ.ãxx#xÆJ
÷
1 ##Æõ7"#xx"§
©
^`acL^`pjD^`tsSk¨h.bFcFs`tyL^xeLgScFiSt UyL^`jScFtcFbFt FtyFjSiSivyFirK^vkOeLbFcFt_FcFiS_ klUFtyFFiSpbF FbFt_?eLtjSiSib FyL^`jSiSirLyFiSScF?bFcFs`tyL^xeFgScF>iSFtyL^`s`iSyFiSj 3
|
B{zz
l,~~|
u
î ï~,~
ν −∞ x f (x)
+v
ν x ∞ f (x)
E¶
= h(x),
k]kZFFiDiDkl4s`iSi~hFcFgS¡cFzq4tlb?eFaUeLiStyFiSjDqklaUbFiS FbFitcFFs~iS^Ss`4tcFb FubL^xb eKv^ YL]cFi4i~tsSs`gFyFtlrKklsx^`j`eLtcFi
ν u,v f (x)
1 ≡ Γ(ν)
Z∞
c1 + c2 sign(x − ξ) f (ξ)dξ = h(x), |x − ξ|1−ν
rLt c = (u + v)/2, c = (u − v)/2, c + c 6= 0, 0 < ν < 1 Y qiSyLm ý4t{tcFbFts`iSi]UyL^`jScFtcFb6h4i~tsZSs`g]FyFtlrKklsx^`j`eLtcFi]j]i~rLcFiS_bFpÖrLjSD 1
∞
2 1
2
ν f (x) = AΓ(1 − ν)
b
b
rLt
ν f (x) = AΓ(1 − ν)
Z∞
−∞
2 2
c1 + c2 sign(x − ξ) [h(x) − h(ξ)]dξ |x − ξ|1+ν
Z∞ [(u + v)h(x) − uh(x − ξ) − vh(x + ξ)]ξ −1−ν dξ,
Y f^Skk4iSs`yFbL£Fi~rLyFiSScFtt]rLjD^jD^x cF?\L^Skls`cF>keLU\L^xhnm 0
A = 4[c21 cos2 (νπ/2) + c22 sin2 (νπ/2)]
ý
Z∞
−∞
Z∞
ϕ(ξ)dξ = h(x) |x − ξ|1−ν
sign(x − ξ)φ(ξ)dξ = h(x). |x − ξ|1−ν
^`a?keLtlrLStsbFpZjS{tbFpleLitcFcFiSiL}SyFt{tcFb6h?s`b62UyL^`jScFtcFbF_ rK^`]sSkh>kliSiSsx cFiS{tcFb6hL4b −∞
³ νπ ´ ν ϕ(x) = tg 2π 2
Z∞
−∞
h(x) − h(ξ) dξ, |x − ξ|1+ν
. b
2&x/ Rx x&xx x
{:eo #xx
"¥¦*Ã
"§Äo1
"
Æ.â
Z∞
³ νπ ´ ν ctg φ(x) = 2π 2
*§ ã "â
( &
h(x) − h(ξ) sign(x − ξ)dξ. |x − ξ|1+ν
© ^`aFbL iSSyL^`piD}*4 Fi`eLU\Fb6eLbiSFtyL^`s`iSyF}*iSSyL^`s`cFt FiSs`tcF FbL^xeK^S b kliSiSs`jStsSkls`jStcFcFiLYRðeFh.rLiDklsx^`s`iS\FcFivSiSyFiS{b6.qUcFaF FbF_s`b M , R , R jSyL^xtlcFb6hv8iSUsOSs`gOFyFtlrKklsx^`j`eLtcF¢j jSb6rFt −∞
ν u,v
ν
0ν
1 f (x) = AΓ(1 − ν)
x
Z∞
c2 + c1 sign(x − ξ) h(ξ)dξ, |x − ξ|ν
Z∞
−∞
1 ³ νπ ´ ϕ(x) = tg 2π 2
b
3
−∞
³ νπ ´ 1 φ(x) = ctg 2π 2
¹
;
B{z±
x
sign(x − ξ) h(ξ)dξ, |x − ξ|ν
x
Z∞
−∞
h(ξ)dξ . |x − ξ|ν
ï~,~8 ÂE¶,~~¹iæ¯ |çBæ¯
eLgScFiStOUyL^`jScFtcFbFt2klki~rLFti`ySeL i~bF sbFs`FtlyFeLiSgSbFcFpzjSi~4rFb Fc t FtlÖeFkeLbWFeLiSbFyDcFh6trL_FaDcFiSiSj t frLbLq(x),tyFtfcF FbL^x(x), FiDkls`i~hFc6cFz4b aUiSqbF FbFtcFs~^S4b p , . . . , p . .} . , f (x)
(n1 )
m X
pj
nj x
(n2 ) 1
(nm )
m
f (x) + af (x) = h(x),
m X
pj = 1,
m X
nj = n,
`s Fi bL^xkleLi~gSrLcFtyS _ bLiS4FiSttyL^`qs`bFiSy UFyFiScFyDh6>rLa6klaD^ iSSiSa>4i~tsOyL^Skkf^`s`yFbFjD^`s`gDkh?aU^`a?rLbLqtyFtc6 }nyL^SklFyFtlrLtleLtlcFcFiSi FivcL^`s`UyL^xeLgScFz
1
∞ Z
−∞
j=1
m
w(ν)
a
j=1
1
ν x dν
f (x) + af (x) = h(x), Z∞
−∞
w(ν)dν = 1.
w(ν) ≥ 0, −∞ < ν < ∞,
n
+D.Ô³ xx #x J[ x # 7 #xx ð bL}DqStyFrLttcF FbLiS^xSeLiSpgScLcF^~\L_ ^xs`iSgFt\FyFt^`yFsStliSp y FiSyDh6rLaU^ }Dνs~^`}La2yL^S\Fkls`FiyFptlrL^`FtleLbLtkcF^`cFcFcFiSiSi2tjSk6{eLiStzs`UcFyLiD^`kljSs`cFgStl w(v) cFbFtFyFbL4tsOjSb6r
m = h(x). iL} FyFftlrL(x)iDkls`+tyFaft\F(x) L e l t L r S t ~ s } ~ i L r L c ` ^ D a g bFcFs`tyL^xeLgScFi` rLbLqtyFtcF FbL^xeLgScF_ÎiSFtyL^`s`iSy \Fa6bF^`sxa ^`s`iStlFeFthnyLm ^`s`iSbFy cFs`tyFFyFtDs`klbFyFyFtl`rFh cFtcFcF_ Fi keLU\L^`_FcFiD42FiSyDh6rLaF ν } ( ('
"
Æ.ã
÷
1 # Æ õ
"
"§
{ν;w(·)} x
a
{ν;w(·)} x
a
Æ
a
ν x
cFtÖkeLtlrL`ts]kl\Fb6sx^`s`gL}\Fs`izyFt{tcFbFtÖkliSiSs`jStsSkls`jSU]tiUyL^`jScFtcFb6h4i~tsSs`g cLyFiD^`_6 rLtcFiFFUiOs`jDtkl¡t£^`cLjS^xiSeLpiS4ibF \FcFcFziSivpDcLkl^~yF\FtltrLcFcFb6thLc6 b6h}FyFFt{iDkltaDcFi`b6eLhgSaFU yL^`jScFtcFb6hk2iSFtyF^`sSi` ν a
a
3
B{z¸ä
ν x
h
;
a
{ν;w(·)} x
ν x f (x; ν)i
= ha
6= h
ν x ihf (x; ν)i.
©
ï~,~
a
ν x i,
,.æ,~~¹iæ¯
ç|
8ð,~.æ¯
sx^S4bnYXüqyFbF{jSt>tlrL4t*<FyLyF^SkbLk4ft^`y.s`yFyFb6t{jD^xteLcFbb6hUyLrL^`yFjSiScFStcFcFiSb6h£i>k2UyLF^`iDjSklcFs`ti~cFhFb6c6h cFzk4Fb£tyFaUtiS4tcFqcFzbF F¢bFaUtc6i` qbF FbFtcFs`iD}6yL^Skk4iSs`yFtcFcF_ j m
rLtklg
¤ s`i tkls`gL} ν = 1 − µ¦}ftk eLb 0 < µ < 1 } n = 2 ¤ s`i tkls`g ν = n = 1 ¦ ¬ } t k L e b 2−µ 1<µ<2 iScFiOa6jSbFbjDs~^xYeLrntY[cFüqs`cFyFibrLcLyF^~iS\FS^xcFeLiDgS4cF2bFcFSs`kteLiSyLjS^xb6eLh6gS cFiDf42(0+) UyL^`jScF=tcF0,bF k =
0
ν x f (x)
= a−µ
n 2µ x (x f (x)),
µ = n − ν > 0.
(k)
0, 1, 2, . . . , n − 1
qyFb ü
b a=π
iScFiOFyFtjSyL^`^`tsSkh?jOUyL^`jScFtcFbFtwzStleFh µ = 1/2 x2µ f (x) = aµ
xf (x) =
Zx
0
−µ x f (x).
(9.13.1)
(x − ξ)−1/2 f (ξ)dξ,
yFt{tcFbFtqaUiSs`iSyFiSicL^xDi~rLbFsSk¨hv4ts`irLiD£FyFtiSSyL^`piSjD^xcFb6h ^`6eK^Sk^Fm 0
XHyL^`SiSs`t TcL^`_6rLtcFiyFt{tcFbFtZUyL^`jScFtlcFb6h ¤jÑFY FY ~¦8rFeFh?FyFiSbFpjSi`eLgScF cFt Ftl eL?Fi`eLi~ bFs`tleLgScF µm f (x) = x−3/2 exp(−π/x).
¬
f (x) =
aq −q−1 x exp(−a/x), Γ(q)
a > 0,
x > 0.
.
&x x
2[ x +
D i~rKkls~^`cFiSjSaUiSm _ti>Fir bFc6 s`X¡tklyLF^xyLev^`jSb>tlrFFeLiDbFkeLjSiDtlrLkls`Ub]tti?_>eLpt^S4aDti>cFUiSS_ tl6rLtbFyFs`tgD4khtcFFcFySiShL_ 4ξiS_ =Fax/(xz + a) h:eo #xx
"¥¦ á
"
"§Ä
a
µ
0
Æ.âXÇã>¨
&â
−µ x f (x)
aµ aq = Γ(µ) Γ(q)
Zx 0
qyFb ü
÷
" "â
(
(x − ξ)µ−1 ξ −q−1 e−a/ξ dξ =
aµ e−a/x 1 = Γ(µ) xq+1−2µ Γ(q)
Z∞
z µ−1 e−z dz . (xz + a)q−µ
iDkls~^`jS{bF_Lkh?bFcFs`tyL^xevtkls`g FyFiDkls`i q=µ 0
aµ
−µ x f (x)
=
Γ(µ),
µ>0
}FFiSs`iD4
aµ e−a/x = x2µ f (x), Γ(µ) x1−µ
\Fs`i b>p^`a6^`cF\FbFjD^`tsrFiSa6^`p^`s`tleLgDkls`jSiLY ©ntFtyFg yL^Skk4iSs`yFbL£UyL^`jScFtcFbFt
ν x f (x)
0
− axβ f (x) = 0,
cL^~\L^xeLgScFz4b>DkeLiSjSb6hL4b 0
Q
af
(ν−k)
x > 0, ν > 0, β > −ν, a ∈ R
(0+) = bk ,
k = 1, 2, . . . , n.
]cFiOaFjSbFjD^xeLtc6sSc6iObFcFs`tyL^xeLgScFiD42UyL^`jScFtcFbF¡Xi`eLgxs`tyFyF¢jSs`iSyFiSiyFi~rK^ rLt
a f (x) = f0 (x) + Γ(ν)
Zx 0
f0 (x) =
n X
ξ β f (ξ)dξ , (x − ξ)1−ν
bj xν−j . Γ(ν − j + 1)
qyFbL4tcFbFjOa cFt4>4ts`ir6iDkeLtlrLiSjD^`s`tleLgScF2FyFbF`eLb6tcFbF_n}FFi`eLU\FbL j=1
ü
rLt
fm (x) =
n X j=1
ck =
" # m X ¡ ν+β ¢k bj xν−j 1+ ck ax , Γ(ν − j + 1) k=1
k Y
Γ[r(ν + β) − j + 1] . Γ[r(ν + β) + ν − j + 1] r=1
Sª +D.Ô³ xx #x J[ x # 7 #xx [§4tkls`s`yFyFtbF8\FeFtklh6aDh iS_mqa.UcFSaFt FklaUbFiSb cFvt\FbFcFs`iDsxkl^`s`lb bWtbLklZFi`eLeLtyLgSp^F`}Uh FyFyLb6^`Dpli~eLrLi~bL£tcFa bFqt iSjvyLyD4h6~rWeLt s`yFtl6L^`yL^x (
"
Æ.ã
G
f (x) =
n X
Æ
÷
bL4ttsOyFt{tcFbFt
0
@
}, î
"§
¢ ¡ bj xν−j Eν,1+β/ν,1+(β−j)/ν λxν+β . Γ(ν − j + 1)
ν x f (x)
f (x) =
"
X<\L^Skls`cFiDkls`bn}6j bFcFs`tyFjD^xeLtqFiSyDh6rLaDiSj j=1
1 # Æ õ
− axβ f (x) = 0,
0<ν<1 0f
(ν−1)
p^xrK^~\L^qiS{b
(0+) = b,
¡ ¢ b ν−1 x Eν,1+β/ν,1+(β−1)/ν axν+β . Γ(ν)
SY=¥rKY XZaQ(r ´ ¾§x_K`ba_KY WK`¾À m0u yF u I F Sd I { Å I m z wL NO +F Y MY O v}TÑÑ#¬´U_K} Y Lª`bYKaSi} XZFYe` Y U k§x_K`ba_KY WK` À d 6Y §q`bVbV XZYkÍ ©´rhk[ ~ I I t Å I u I F u ÑÑ 6Y I H I F Y~d { I mK¯ I WäwI F } Y } FY rLð y6!iSÿ ScF÷ iSð i±FiSNyD h6rLaU^/b£ød cFt±aD iSs`iS yF*ô t?b6þ>ò!ö 6 yFGb6 eLi~oqtcFcFs`b6thnyLY
^xd eL.vbbFcLFklyFaniSm bFpjS^~iUrLaUcF^vb t s`tl6cFb6a6^F}n ÑS# ´UY LaY ©V W;gN_K$Í k[ Gª2_Ka`¶XZYÎ\ ³J u I NF YZd¼{ Å I d p I 2I Nm ~ n ;F F }¬ Ñ#´ LY 67Y ¨r+W2V µZaAq² du I H I F Y
éd { ÂÅ I ¾d p I 2I m ~ n ;F F }¬ ÑÑÑFY ªFY §x_K`ba_KYWK`dÀ £ MI±F } wI I F u yF ³¬}¬ DªFO¤ ÑÑSªD¦Y ´U Y º³`bV X+Yq´ ?m ~ LNL I FIM u I F n 2F +F DY Y v º³`bV X+Y´ 6d w NO MLI m I qw }K`SSF} n4YL# ´UY FY ÊkrKaaXZa=_GËgNXZYj mÀ ¯LNY n NF +F ~m z Y ù Y · n}Lª Ñ#´2¤ ÑÑSD¦Y ÑF Y Í `bV µ_h7U £U dYe`bK_hei}_KK_kº m§ ³j2Ye`yVV r0\ \ NJ +I ~ IM u I H I F YUSd ~ =F m yF }LLN`L SSªFY I F J
EJÒ V &V&3T VP$P$X Q3R"S(V$TÝQ Z U Z T V & Z.Ð Z YÝS
-J #J J $Z S&Q3T &V"S(Y T Z V&3TÝS(Y &
J #J ¬6
$Z S&QS(Y S(V" $Z & S Q3T &V"S(Y S YÝQ0P$Y P T V ( J EJ Ð T V$V"S (
V Ò V Z 11P"Q3T &VÇ 3R$ Z U
P"S3T &V
J J Â
$Z & S Q3T &V"S(Y &R$V T Y
S(YÝQ0P$Y P S(V" &V Ò V"Q
¸J -J
_G
'
-J J
(V" &V
1J
QS&1X-TÝQ 9Z
J $Z S&Q3T &V"S(Y QS&1X-TÝQ 9Z EJ
R"S
&Y T &V .S(V"
?J EJ
R åTÝQ
P"S3T &V
S(YÝQ0P1YÝP
P"S3T &V
"Z S&QS(Y
ÂS3R
Z U
Z U
&V" &V
'
$Z S&Q3T &V"S(Y 1Q0T V&3T Q
¬J ÇJ
T Z V 3TÝS(Y
$Z S&Q3T &V"S(Y
T Z V&3T S(Y
J,Ò V $Y TÝQS3T &V J Z Z YÝ T V S
¬J J $Z S&Q3T &V"S(Y
R$
*'
©
S(YÝQ0P$Y P T V V
1J 1J R$ X /3 Z $S(X
R åTÝQ
Ü
Z BS(V" Y åNT Z
$Y TÝQS3T &V
ís\ït\ r
u
ã å Úæèâæèç k
nm
ÑèãèßÚç ÚßáæÔÓ dcqk
k
e
s
å
#æÔÓ s
lgwp
76 0# X^x cFt_F{UHyFi`eLgqjZrFbFcL^S4bFaUtyL^SklFyFtlrLtleLtcFcFklbLkls`tbFyL^`]sqUyL^`j` cFtcFb6hjZ\L^Skls`cFFyFiSbFpjSi~rLcF¬Y~XWkeLU\L^`tirLcFiD4tyFcFiS_klbLkls`t4¤ x dqaDiSiSyDrLb6 cLb ^`yLsx^`^Fpl} rLttdeLtjScFyFcFtz84hK¦§b FFy6tiDyFklts`4tt_FcF{cFbFztZ4UbKyL¦^`bLjS4cFttcF]b6s hjS¤¥b6kzr FiDkls`i~hFcFcFz4b2aUiSqbF FbFtcFsx^S4b
?>
z B{z
s| ~|
³¶¶í.ç|¾Âï
∂ n f (x, t) ∂ m f (x, t) = + h(x, t), ∂tm ∂xn
m, n = 1, 2, . . . ,
j,~
t > 0,
−∞ < x < ∞.
]iSshvj2FyL^`aFs`bFaUtyFt{tcFb6hqbFpbF\Ftkla6b6vp^xrK^\vjDkls`yFt\L^`]sSkhbvjSzkl{bFtpcL^x \FtcFb6hFiSyDh6rLaDiSj m b n }Ö FtcFs`yL^xeLgScFiSt4tkls`i£p^`cFbLf^`]sFtyFjStvb<jSs`iSyFt FyFiSbFpjSirLcFtSY ^`bFSi`eLttZFiSFeFhFyFcFz4bv4i~ cFi kl\FbFsx^`s`g $
60 xøBùþ5ò!ø0÷oò
5 "K94:÷7ññ÷oò
bnöo÷ xñ÷oöo÷oò
UyL^`jScFtcFb6hnY
∂f (x, t) ∂f (x, t) = + h(x, t), ∂t ∂x ∂f (x, t) ∂ 2 f (x, t) = + h(x, t) ∂t ∂x2 ∂ 2 f (x, t) ∂ 2 f (x, t) = + h(x, t) 2 ∂t ∂x2
;:7:eo #xx
S
"+>
(
"
('D&xx #> ('
"§Çô15Æ
Æ
cL^jStüqtkli~s`OjS^xteLcFUcF_n}DtqkF^S4iSySzh6WrLaFbFb cFs`FyFyFbFiSbFUp]jSi~rLbLcF¬j} bFs`iSt]iSSiSStcFb6h s`b62UyL^`jScFtcFbF_ ∂ α f (x, t) ∂ ω f (x, t) = + h(x, t), ∂tω ∂xα
ω, α ∈ R,
t > 0,
−∞ < x < ∞,
hFj`!eFÿDhFòBtñxsSòBkñ h£jSiSó p*8ô i~! ÿDcFòBiDùklôxs`÷ogö cL^``b eLrKYT^`Xs`g DijSri`eLbF]p FcFbFtklaDi`yFeLtgS{aFtb6cF£bF_u~a6FeKyF^SbkklbFñx\FòBó/tôkaFòÀôxb6õ¬|?öoñs`÷*i`ÿ \Fl^`ta.^`kts FtlaUeLi`iSeF\FeLbLtkaFeL Ftb6cFBcFzyF4t{b taUcFωiSbFiS_ yDrLb αbFrKcL^`^`s~tsO^S4cLb ^xrLj>tlO6eLrLiDklaUcLiD^Okls`Sg klF(ω,t{α)cFiStSFtklyFaDbLiS8cFttcF\FtcFcFi>bFtiSSb6i` avqbFpbF\FtklaFbL}Fs`tl6cFbF\FtkaFbLb>rLyFUbL£p^xrK^~\F^SY vcL^~\Fc6tkqFyFiDkls`t_F{t_>p^xrK^~\Fb qiS{b?rFeFh UyL^`jScFtcFb6h 1:
""
1
G
∂f (x, t) + ∂t
0
α x f (x, t)
= 0,
x > 0, t > 0, α ∈ (0, 1),
f (x, 0) = F (x).
iD÷ 7÷ \AòBbFñsxñ^xõ[h ÿ t aDöo÷iSxiSñyDrL÷oöobFõ[cLÿ ^`s`iSBô_n/}öo^ ñxxòBñ d]jSòÀyFÿtY/4ðtcFeFth }^`jSs`iSyF.tyLi^`SyFiStls`{ tcF bFDtZcL^`SpjDeL^xieLbqcL^`t_6(10.1.1) F rLtcFij yL^`SiSs`t nb FyFtlrKkls~^`j`eLtcFiOjOjSb6rLt α = 1/2
@ 0
À
t4
*6 *6*
"
- *
t f (x, t) = √ 4π
Zx
F (x − ξ)ξ −3/2 exp(−t2 /4ξ)dξ.
XFi`eLc6h6hFyFtiSSyF^`piSjD^`cFbFt ^`6eK^Sk^OUyL^`jScFtcFb6h¤ FY SY ~¦Fi bU\Fb6 s`jD^xhn}?\Fs`i exp(−λ ) tkls`g*s`yL^`cLkqiSyLf^`c6sx^/irLcFiDkls`iSyFiScFcFt_Dkls`xiS_F\FbFjSiS_ 6FeLyFiSb s`FcFyFiDiSkls`bFbpjSgi`eL(x;gScFiDα) }6eLtaUiOjSm yL^`pbFs`g\FtyFtpqs`?6eLiSs`cFiDkls`gOyFt{tcFbFt ¤ FY SY ~¦ α ∈ (0, 1) 0
α
+
f (x, t) = t
^`FiD4cFbL}6\Fs`i
−1/α
Zx 0
F (x − ξ)g+ (t−1/α ξ; α)dξ.
g+ (x; 1/2) =
1 −3/2 x exp(−1/4x), 4π
sxkeL^`a U\L\F^`s`tiFY i`eLU\FtcFcF_ yFtpeLgxsx^`skliS eK^SklStsSk¨h kFyFbFjStlrLtcFcFz.jS{t\L^Skls`cFz qts`yF~rLcFiOjSb6rLts`gL}6\Fs`i tkeLb F (x) > 0 b R F (x)dx = 1 }Fs`i
∞ −∞
Z∞
−∞
f (x, t)dx =
Z∞
−∞
F (x)dx = 1
;:
¡f6#xN1/
Ñ \Lb>^`q_FcFUiScF_aF FaDbFiSb iSyDfrL(x,bFcLt)^`s`¡4i\L^Stklss`bFS FBs`gj>F4yFiDb64rKt^`cFc>s?k4jSyFztk4e tcF6beLiSts`Y cFÖiDkkleLs`bb>jSj?tcLyF^~i\LhF^xs`eLcFgSiDcFkls`b>_k4eLDi` 4tcFsOjSyFt4tcFb \L^Skls`bF L^cL^xDi~rLb6eK^SklgjOs`iS\FaDt x = 0 }6s`i F (x) = δ(x)} 1 R5ôx&1ã>xA#xx
"¥¦
(
∂f (x, t) +0 ∂t
b
α x f (x, t)
= δ(x)δ(t)
(10.1.2)
(10.1.3) qyFb α = 1 b klaU4i`yF¢iDklbLs`4gStt£YL©8kl^`jSaDiSiSS_vi~rLyFcFtlfi` (x,tzbLrL£t)jSb6rL=jSb6ttcFbFttZδ(tcF\Lb6hv^SklcLs`xbF^`−pl FiS1)jStkZ =FiDδ(xkls`i~−hFxcFøBt),ùcFiSx_ þ5ò!¤ yLø ^`#jSÿqcFiSY>_?üqtlyFrLb bFcFbF 6t~¦ yL^SklFyFtlrLtleLtcFbFtzjStyFi~hFs`cFiDkls`t_ aUiSiSySrLbFcL^`s`SrLtscFtzs`i`eLgSaUiFtyFt4t^`s`αgDk¨
ü
−1
−1
¯60&
Z∞
0&
f (x, t)xdx = ∞.
X klj`hFpb k s`bL rLiSScFtt keLtlrLbFs`g p^FtyFt4ttcFbFt f^`aUklbL46f^ yL^SklFyFtlrLtleLtcFb6hnm ]cHFtyFt4t^`tsSkhkvjSiSpyL^Skls~^`]xt_Hkl∝aUiStyFiDkl.s`gS §sx^`aDiS_yFt bL}^.jD4tkls`tk cFbL£b []UyLyL^`^`jSjScFcFttcFcFbFbFt t ¤ FY SY ~¦Ö4i~ c6i cL^`pjD^`s` g ø óxòÀô xøBù >þ>ò!ø #ÿ LY 0
max
1/α
04
ω 0
t f (x, t)
+
∂f (x, t) = 0, ∂x
¬! 60
x > 0, t > 0, ω ∈ (0, 1).
&
(10.1.4)
Si FbLkljD^`ts?rLyFUiS_ s`bF.rLjSb6tcFbUh.dkø xøBù þ>ò!ø F}TFyFbWaDiSs`iSyFiD¢\L^x rLkls`bLbF Lq^]trLyFjStb6cF FbFtsSyFk¨iSh jD^`kcFUbFStFjDi ^`]jSyFtt4_tjcFb.klyFiDtlklrLUcFttklkls`aUj`iSeFyFhFiDtklsSs`k¨gSh s`Y tF^St4yFgvts`iSbLFt}xyL\F^`s`s`iqiSyFrLiDy6¢iSScFiS^xt FUs`iLm ω 0
t f (x, t)
≡0
ω t f (x, t)
−
04&6*60
t−ω f (x, 0+) = 0 Γ(1 − ω)
0&"M
ω t [f (x, t)
− f (x, 0+)].
F© iD^`kla6aD^xi`h>eLpgS^SaF4 tcL^Oklj`hFp^`cL^kqcFtiSDi~rLbL4iDkls`gSjSrLtyD^`s`gOcFiSyL4bFyFiSjSaFTm (10.1.5) Z∞
−∞
¯x=∞ ∂f (x, t) ¯ dx = f (x, t) ¯ = 0, ∂x x=−∞
D + ;:7:eo #xx rLi`eF cFiObL4ts`g24tkls`i yL^`jStcLkls`jSi '
" >
Z
∞ −∞
ω 0
t f (x, t)dx
=
ω 0
t
Z∞
('D&xx #> ('
"§Çô15Æ
"
f (x, t)dx = ω 0
+1
Æ
= 0,
aUiSs`iSyFiStqjSFi`eLc6hFtsSkh s`i`eLgSaUi FyFb rLbLqtyFtcF Fb6yFiSjD^`cFbFbv^`FUs`iLYFXFyFiS\Ft} Fý§i~bLrKfkl^`s~cL^`^xj`eFh6bFhUjS¤ b6FeFY eFSh>Y S¦vb>cFjD ¤ cFFiSY S_ Y UcF¦iS}qyL44²bFyFFiSi`jSeLaDiSU_>\L^`yFtt{tUcFyLb6^`hnjSmcFtcFbFtHk£FyFiSbFpjSi~rLcFiS_ −∞
'
0
ω t f (x, t)
+
t−ω ∂f (x, t) = f (x, 0+). ∂x Γ(1 − ω)
ÖkeLb jOcL^~\L^xeLgScF_>4iD4tcFs jSy6t4tcFb \L^Skls`bF L^cL^xDi~rLb6eK^SklgjOcL^~\L^xeLtqaDiSiSyDrLb6 cL^`s~}Fs`i UyL^`jScFtc6bFtqs`i bL4ttsOjSb6r
0
ω t f (x, t)
+
∂f (x, t) t−ω = δ(x). ∂x Γ(1 − ω)
§iOyFtl{tcFbFtqsx^`a6tqjSyL^xO^`tsSkh2\FtyFtpqDkls`iS_F\FbFjSU6eLiSs`cFiDkls`g g (x, ω) kli` iSs`cFiS{tcFbFt 1 f (x, t) = x g (tx ; ω). yFtlrLcFttpcL^~\FtcFbFts`iSi yL^SklFyFωtlrLtleLtcFb6hvaUiScFt\FcFi bvrLjSb6tsSkhFi p^`aUiScF t kUSjD^`]t_klaDiSyFiDkls`gS}Ks`i?tkls`g?bL4tts>4tkls`i>p^S4tlrFe6hFZttkhn}TklUSD^xeFeLb6 eLkls`iSbFjS\FUt{kltaDaniS}UtcLrL^xjSrLb6i`eLtiOcFbFptS^xY rLtyS^S 4tlbFrFjDeL^`t]cFbFtb6?s`\Li ^Skl4s`i~bF FtSs>Y Ss`g>iSSSkeLiSj`eLtcFi2cL^xeLbF\FbFt UyL^`jScFt]cFSbFt bF_/keLU\L^`_rLyFiSScFi` D^~eFeLbLkls`bF\FtklaUiSirLjSb6tcFb6hn}iSFbLkljD^`t4_
+
−1/ω−1
+
−1/ω
ω
0
ω t f (x, t)
+0
α x f (x, t)
4yL^Skk4iSs`yFbL£jOP=¹6·n=¥¹6·nY
?>
¢
z B{3±
î
¢ .
=
î
t−ω δ(x), Γ(1 − ω)
0 < α, ω < 1,
~é|
f^Skk4iSs`yFbL£i~rLcFiSyFirLcFiStqUyL^`jScFtcFbFt ý
FyFb DkeLiSjSbFb
0
ω t f (x, t)
=
lim f (x, t) = 0,
x→±∞
∂ 2 f (x, t) , t > 0, −∞ < x < ∞ ∂x2
h
(ω−1) (x, t) 0 ft
i
t=0
= ϕ(x), 0 < ω < 1.
(10.1.6)
;:
Ç 5
L ts2¤¥kklUU~yLrL^`bLjScFtqcFUbFptbF£qrL¦bLYûÖqs`i£UpUbFyLbn^`}KjSFcFyFtb cFbFωt£<¤ F1yFb iSFbLkljD^`ts ¦ püq^SyF4b tlrFωeLt=cFcF1UiS cFi>rLbLkliSjSqLU^xrKpbF^`² SeLibFcFs`tyFFyFts`bFyFiSjD^`cFiAý4Y qbFf^`s`~eFeLbFcFz njyL^S4a6^x2FtyFaUi`eFhFω FbF=iScF1/2 cFiS_ ¤ yFtSt{aDiSjSiS_K¦n4i~rLtleFbn}`^zti]yFt{tcFbFtbLkkeLtlrLiSjD^xeLiDklg 2Y ^`_FcL^`yDrFb 6brLynY jSi~rLbFüqrLbLyFtiSqSyLtyF^`tpcFiSjS F^`bLcF^xb6eLtgS cFiSt^`U6yLeK^`^SjSkcF^tcFFbFitjSa2yFt^x4eLtcFtlb?SyLb ^`bF\FUtyFklaUgSiDt]4FSi}xyFaDiSt{iSyDtrLcFbFbFcLt^`aDs`iSt]s`FiSyFyFb6i` iObL4ttsOjSb6r "¥ Ã4
,õ
õ
"§
'
$
H
³+
_
G
'(
+
b fe(k, λ) =
ϕ(k) e . λω + k 2
`s] SyL^`s`UcFyFiSgStqtqFyFyFt{tiStScFyLb6^`h piSiSjDs^xcFjSbFyFtt4tcF^`6b eK\F^StkyF^tjSpqyLU^xcFaF^` 6tbFsO p^`vjSbLbFkls`bLsx4^`liD kls`tgOs`ZyL^`eLcLtkyLq^Fm iSyLf^`c6 ³
ª+
ªG
ω−1 fe(k, t) = ϕ(k)t e Eω,ω (−k 2 tω ).
qiDkeLtlrLU]ttZiSSyL^`tcFbFt UyFgStqrK^`tlsOyFt{tcFbFtjOjSb6rLt ü
+
Z∞
f (x, t) =
rLt
−∞
G(x, t) =
1 π
Z∞
G(x − ξ, t)ϕ(ξ)dξ,
tω−1 Eω,ω (−k 2 tω ) cos(kx)dk
tFklyFs`tgiSSqyLU^`pcFiSaFjS F^`b6cFh b6h nyFbF^`cL6^.eK^SrLk^`^cFcFs`iSiS_ iWqUyLU^`cFjSaFcF FtbFcFb b6hnFiOY§XjSyFtF4i`teLcFcFbnbF} jWFyDhL4iStvbiSSyL^`s`cFiSt 0
C
b λ) = 1 G(x, π
Z∞
cos(kx)dk = (1/2)λ−ω/2 exp(−|x|λω/2 ), λω + k 2
0
1 G(x, t) = 4πi
Z
exp(λt − |x|λω/2 )λ−ω/2 dλ,
k rLteK^`jp^S4tcFHFtyFt4tcFcF b b2rLtqiSyL4bFyFxh rLi`eF cFz iSSyL^`piDWaDiScFs`Uy bFcFs`tyFbFyFiSjDσ^`cF=b6h λt }6zFi`=eLU|x|t\L^`t Br
_ '(
G(x, t) =
rLt
1 1−ω/2 t 4πi
Z
exp(σ−zσ ω /2)σ −ω/2 dσ =
d?qUcFaF 6b6h ýf^`_Fs~^FY W (z, µ, ν) Ha
−ω/2
1 ω/2−1 t W (−z, −ω/2, ω/2), 2
;:7:eo #xx Ø ¢
U
"+>
'
?>
z B{åä
î
.
î
"
~
|³¶
('D&xx #> ('
"§Çô15Æ
Æ
î |
tqs`bFLX ^ yL^`SiSs`t DyL^Skkf^`s`yFbFjD^xeLiDklgrLyFiSScFi` rLbLqUplbFiScFcFiSt4UyL^`jScFtcFbFt§s`iSi . *
ω t f (x, t)
∂ 2 f (x, t) , ∂x2
pcL^x^]rKF^~i`\FeLb i~ kZbFyLs`^`tlcFeLbFgScF\FiScF_z4Fi`b eLD`kiDeLkliSb>jS¤ b6jZhLF4i`b eLUFyFiDkls`yL^`cLkls`jSt~¦m x, t ∈ R Y7ý4t{^xeLbLklg]rLjSt 0
=
0 < ω < 1,
+
1) f (x, 0) = l(x),
b
f (0, t) = 0,
t > 0;
rLt l(x) iSSiSpcL^~\L^xt2)sOklfs`(x,UFt0)cF\L=^`s`l(x), U¡tlrLbFfcF(0,bF\Ft)cFU=!−1, qUcFaF Ft bF>0,}LyL^`jScFUcF~eF¡rFeFh iSs`yFbF L^`s`tleLgScF?pcL^~\FtcFbF_v^`yFlF8tcFsx^FY üqyFb p^xrK^~\Fb kljSirFhFsSkh>a a6eK^SkklbF\Ftkla6bL}LbF4t]bLyFt{tcFb6h ω=1 1) f (x, t) = Erf(t−1/2 x/2) ∼ π −1/2 xt−1/2 ,
b qyFb ü
FirKklsx^`cFiSjSa6^ ω<1
2) f (x, t) = Erf(t−1/2 x/2) ∼ π −1/2 xt−1/2 , f (x, t) = F (y),
t → ∞, t → ∞.
y = t−ω/2 x
FyFbFjSi~rFbFsOa bFcFs`tyFi` rLbLqtyFtcF FbL^xeLgScFiD4 UyL^`jScFtcFbF d2 F (y) = y 2/ω dy 2
jOaUiSs`iSyFiD
η −1−2/ω g(y/η)F (η)dη,
0
g(y) =
Z∞
2 (1 − y 2/ω )−ω−1 . ωΓ(−ω)
iSiSs`jStsSkls`jSU]bFtqyL^`cFbF\FcFtqDkeLiSjSb6h?FyFbFcFbLf^`]s jSb6r 1) F (0) = 0,
F (∞) = 1;
qyFtiSSyL^`pi`jD^xcFbFt vtleFeLbFcL2)^OFFi (0)y jS=tlrL−1,tsOa yLF^`(∞) pcFiDkl=s`cF0.iD42UyL^`jScFtcFbF ü
³G
(s − 1)(s − 2)F (s − 2) = g(s + 2/ω)F (s),
;:
x&x
yFt{tcFb6h>aUiSs`iSyFiSiL}6kliSiSs`jStsSkls`jSU]bFtqUa6^`p^`cFcFzDkeLiSjSb6hL}6bL8t]s jSb6r
m "¥ áT
,õ
õ
õ55
"§
'
√ Γ(−s)Γ(1/2 + s/2)Γ(1 + s/2) 1) F (s) = 2s / π , Γ(1 − s)Γ(1 + sω/2) √ Γ(s)Γ(1/2 + s/2)Γ(1 + s/2) 2) F (s) = −2s / π . Γ(1 + s)Γ(1 + sω/2)
]SyL^`s`cFiStZFyFtiSSyL^`piSjD^xcFbFt vtleFeLbFcL^rK^`ts ³G
√ F (y) = 1/ πh(y/2),
rLt 1 1) h(z) = 2πi
c+∞ Z
Γ(s)Γ(1/2 − s/2)Γ(1 − s/2) s z ds, Γ(1 + s)Γ(1 − sω/2)
c+∞ Z
Γ(−s)Γ(1/2 − s/2)Γ(1 − s/2) s z ds, Γ(1 − s)Γ(1 − sω/2)
c−i∞
1 2) h(z) = − 2πi
^`_6rLtcFcFtOs`yL^`cLkqiSyLf^`cFs`FiSpjSi`eFhF]s jSyL^`pbFs`g yFtpeLgxsx^`s \FtyFtp2qUcFa6 FbFb iSaUk^Fm c−i∞
Ç+
¯ µ ¯ √ 21 1) f (x, t) = (1/ π)H23 t−ω/2 x/2¯¯
¯ µ ¯ √ 30 t−ω/2 x/2¯¯ 2) f (x, t) = −(1/ π)H23
(1, 1); (1, ω/2) (1/2, 1/2), (1, 1/2); (0, 1)
¶
− ; (1, 1), (1, ω/2) (0, 1), (1/2, 1/2), (1, 1/2); −
, ¶
oklFi`eLgSpxhbFcLqiSyLf^` FbF ikljSiS_Lkls`jD^xHqUcFaF FbF_ iSa6k^F}§eLtaUiUStlrLbFs`gDkhn} F\ s`iFyFbFjStlrLtcFcFtqyFt{tcFb6h?~rLiSj`eLts`jSiSyShF]ss`yFtSSt4zWcL^~\L^xeLgScFzWDkeLiSjSb6 hLkls`¢tFb.tcFDcF^`iSyL^`iOaFs`s`tbFyFLbF^Fpm U]sSkhW4tlrFeLtcFcFiUSjD^`]t_ klivjSyFt4tcFt^SklbL4Fs`iSs`bFaUiS_ qyFb ü
+
1) f (x, t) ∼ 1/Γ(1 − ω/2)xt−ω/2 ,
.
t → ∞,
2) f (x, t) ∼ 1/Γ(1 − ω/2)xt − 1, t → ∞. ` s
b F y t { t F c 6 b > h F F y t S j L y ` ^ ` ^ ] S s k > h O j 6 a K e S ^ k klbF\FtklaFbFtqyFtp~eLg~sx^`s`m ω=1 −ω/2
∞ 2 X (−1)k (xt−1/2 /2)2k+1 = Erf(xt−1/2 /2); 1) f (x, t) = √ k!(2k + 1) π k=0
HX p^`a6eL]\FtcFbFtZ FbF2)s`bFfyF(x,`t4t)iS=_>yLErf(xt ^`SiSs` ¬/2) ^`jSsS−iSy21.iSsS4t\F^`tsx}U\Fs`iFi`eLU\Ftc6 cFtyFtpeLgxs~^`s`BiDklsx^`]sSkh klFyL^`jStlrFeFbFjSz4bbj>keLtlrLU]t_iS`eK^Skls`bpcL^~\Ftl cFbF_ FiSySh6rLa6^FyFiSbFpjSi~rLcFiS_?FiOjSyFt4tcFb 1 ≤ ω < 2 Y −1/2
7 *
'&'
Ø ¢
?>
z B{/ë
;:7:eo #xx
"+>
9~³¶·~³
('D&xx #> ('
"§Çô15Æ
"
Æ
Âí
ð ]sqyFt{tcF*bFñ tjSxi`úeLñcF÷ iSjSiSi]ob6þ>eLò brL¤ pbL^xrKq^\FUtp_vbFiSi cFyLcFiS^SklFi]yFUiDyLkl^`s`jSyLcF^`tcFcFtb6cFhObFbvkpkl^xbFrK^`cLcF^xcFeKiS^D_¦cLq^`iSpyL4jDiS^x_ ñ oþ xúñ÷ *÷ ø *ñ x}nkliSplrK^`jD^`t4iSi?bLkls`iS\FcFbFaUiD}
FiD8ttcFcFzjqbFaUklbFyFi` jDsx^`^`aDcFiScF_ Up^xs`rKiS^\F\FaFb>SbLYF4X
$
°
*M:((5*
0M
0°
∂ 2 f (x, t) ∂f (x, t) = , ∂t ∂x2
x ≥ 0,
t≥0
§t yFt{tc6bFt cL^xSi~rLbFsSkh FUs`t¢f6yF(0,bL4t)tcF=tcFφ(t). b6hW6yFtiSSyL^`piSjD^`cFb6h ^`6eK^Sk^>kbLk Fi`eLgSpiSjD^`cFb6ts`tiSyFt4i kljStyFs`aDtS}
Â
f (x, t) =
rLt
Zt 0
S(x, t − τ )φ(τ )dτ,
x S(x, t) = √ t−3/2 exp[−x2 /(4t)] 2 π
FyFtlrKkls~^`j`eFhFts]kiSSiS_qUc6rK^S4tcFs~^xeLgScFiStfyFt{tcFbFt]¤¥qUcFaF FbF nyFbFcL^D¦¬klbFlcL^xeLg` cFjStiScF_ cFpiS^xrKi ^~bL\F4bn}TF~FeLiDgDklaUklcFi`eLiSgSi.aFvklbFiSFcLbL^xkleK^ jD^`ts2yL^SklFyFiDkls`yL^`cFtcFbFtOFtyFjSiScL^\L^xeLgScFi>4cFi` Y]cFi.jSyL^xO^`tsSk¨h\FtyFtpv6eLiSsx cFiDkls`gOi~rLcFiDkls`iSyFiScFcFtiSkls`iS_F\FbFjSφ(t) iSiyL=^Sklδ(t) FyFtlrLtleLtcFb6hvkqFiSaU^`p^`s`tleLt 1/2 C
√ S(x, t) = g+ (x/ t, 1/2)
bFcL^xeLgScL^xh?p^xrK^~\L^rFeFh>rLyFiSScFi` rLbLqtyFtcF FbL^xeLg`cFiSiUyL^`jScFtcFb6h
ω t f (x, t)
=
∂ 2 f (x, t) , ∂x2
x ≥ 0,
t ≥ 0,
f (0, t) = φ(t)
bLkkeLtlrLiSjD^xeK^Sklg 2Y ^`_FcL^`yDrLb ´ÀÑ FbOrLynYS©yL^`cLkqiSyLf^`cFsx^ ^`6eK^Sk^ZqUcFaF FbFb nyFbFcL^jrK^`cFcFiDkeLU\L^`tqbL4ttsOjSb6r 0
+
&G
³
C
Sbω (x, λ) = exp{−xλω/2 },
XjSi~rFh>^`jSs`iD4i~rLtleLgScFUFtyFt4tcFcFU cL^xDirLbL
1 F (r; ω) = 2πi
r = xt−ω/2
Z
bvqUcFaF FbF x ≥ 0.
exp(σ − rσ ω/2 )dσ,
Br
S ω (x, t) = t−1 F (r; ω).
;:
"¥ ÿ
U
( R&âIxx&âxãx
'
joqcFaUiDs`t46yLeL^xte a6klFcF(r,U¢ω)6eL4iDkliaUiDtkls s`gSFUsSs`gvt^`cLkl^xiSeLiSbFs`s`jSbFt\FsSklts`klaFjSUb.]FyFi~trLii`eFrLtqtcWiSyLkO8FbFi`yFeLiSSjDiD^`klcFb b6h r aU>iSc60 s`UyL^vbFcFs`tyFbFyFiSjD^`cFb6hnY üi`eF6\F^`t4iSt FyFbs`iDyFt{tcFbFt2jSyL^xO^`tsSkh.\FtyFtp qUcFaF FðbF yFUý4iS^`t_FsxF^FyFY tlrKkls~^`j`eLtcFbFt]klbFcL^xeLgScFiS_ qUcFaF FbFb nyFbFcL^qrLyFiSScFiSiqFiSyDh6rF a6^ rK^`tsSkhi~rLcFiDkls`iSyFiScFcFtl_DksSiS_6\FbFjSiS_6eLiSs`cFiDkls`gSk U^`yL^`aFs`tyFbLksSb6\FtklaFbL FiSaU^`p^`s`tleLt ω/2 bv4^Skl{sx^`ScFz£^`aFs`iSyFiD b = x m BC
2/ω
?> &
S ω (x, t) = x−2/ω g+ (x−2/ω t; ω/2).
ì| ³¶.æ
z B{
~|æ¯|ïç
X tyFcFtfkhs`tFtyFg?anY8¹6·n= Y ^S4ts`bL}K\Fs`i?SiSshFyFb Fi`eLU\Ftc6 cF_ s~^S£yFtp~eLg~sx^`s kliSjSL^xrK^`tskZa6· eK^SkklbF\FtklaFbLrLbLqUpbFiScFcFωz=yF1t{tcFbFt
1 G(x, t) = √ exp(−x2 /(4t)), 2 πt
DjFklyFtb _£ωiDklb£< F1tyFjStiSklps~cF^`bFts a6^`Sts£s`Fg y6FbFiDcFkl Fs`bFi~FhFbLcF^xcFeLiSgS_£cFiSjSt.tleLiSbFs\FeLbFbFcF\FiSbF_¬tS}fmiSbFc£cFs`UtSyLjD^x^`etsiSs k?fs`(x,t\Ftt)cFbFtF i jSyFt4tcFbnm Z∞
ω−1 ω−1 f (x, t)dx ≡ fe(0, t) = ϕ(0)t e Eω,ω (0) = ϕ(0)t e .
FÖyFs`ti6hFcLsS^`klyFs`UjS{`ttszcFbFFt yFbFcFc6iShFyLs`4iSbF_yFjiSrFjSaFbLb¢yFtU{pb6tiScFcFb6cFhiS_qirLs`cFtiSiSyFyFbFi~rLbcFbFiScFs`iWtyFrLFyFyFiStSsxcF^`iS FbFi£b UfyL(x,^`jScFt)tcFaUb6^`ah 6eLiSs`cFiDkls`b rLbFqUc6rLb6yFUZb6O\L^Skls`bF n}U^ G(x, t) da6^`a 6eLiSs`cFiDkls`b jStyFi~hFs`cFi` kls`bnmFcFb ]\F\FbLtjSkeLb6iOrLcF\LiL^S}klcFs`tbFkl ni~}F6cFyLb ^`cFjSttcFyFbFi~t§hFbFs`cFcFs`iDtkls`yLgO^xs`eLt^z6ttklyFs`g gZcFkltjSiSkl_Li~6kls`yLjS^`izc6hFk^S]4sSiSk¨hnizY UyL^`jScFtcFb6hn} ^ kls`cFbFt F¡FyFFiSiS F teLkliSk^FY ^`]i]SsSsk¨hnhn}K}Lj2b6eLFbyFbFbLcFkl F\FbFtpF^`tS]}Ks2bj2klUyFtptkleLs`jSgxUsx^`]s`s2tFyLyF^SiSkl FLt^xkrKkl^F}F}LcFj2i?aU4iS¡s`iScFyFbFa6 ^`aU\LiS^x_ bFcLqiSyLf^` FbFbiSqs`iDjqcL^`{tUyL^`jScFtcFbFtcFtp^`a6eK^xrLjD^xeLbnY`«i`eLtts`iSiL}`UyL^`j` cFcFtb6cFhbFFt]i`rKeL^`cFtiSs_v^SjSkltbLyF4iFhFs`s`iScFs`iDbFkl\Fs`tbnkl}KaFs`b iSklrLs`^2tFaUt^`cFacFiSbF_ pjS¤ ts`kliOs`tcFkls`tgL>} qÿDbFò pbF\FòBtñklñaFõ bF¬t¦4Fpy6^`iSaU FiStc2kklUBSkeLjD^xtl rLU]sFiSaU^`p^`s`tleLgScFiD4p^`aUiScFS/Y ðtleLiL}Ukls~^xeLiSs`gL}Djk^S4iD.UyL^`jScFtcFbFbn}Sj ò *÷ töosõöoF÷ iO7aFòl#Y yLüq^`_FyFcFb2tjS_ cF4bLtfyF^`tZs`tlrLeLjDgS^cFyLiD^`.pleLyLbF^S\FkkcF4iS?s`yFiStSc6iSbFSb?tiScFSbFcL_n^`yF}UDjS s`bFtjDaU^x^`t]sSkhnb6}`?\Fs`b6i?kls`UyFtlt?kls`yLjS^`Dpl eLFbFyF\FiS FcFtk¬k^F}ScF>Y iüqtaFyFjSt\FbFbFjDk^xeLeLbLtc6£sSc6s`bvOs`FyFyFb tlrKFklyFs~tl^`rKj`kleLsxt^`cFj`bFeF_ tcFa6b6eKhn^Sm kklbF\FtklaUiSiZrLbLqUpbFiScFcFiSi −∞
û
"
5
©M
°
5
∂ 2 f (x, t) ∂f (x, t) = , t > 0, f (x, 0+) = ϕ(x), ∂t ∂x2
(10.5.1)
;:7:eo #xx
Dª
"+>
'
('D&xx #> ('
"§Çô15Æ
"
∂f (x, t) ∂ 2 f (x, t) = + ϕ(x)δ(t), f (x, 0−) = 0, t ≥ 0, ∂t ∂x2 Zt 2 ∂ f (x, τ ) f (x, t) − f (x, 0+) = dτ, t > 0. ∂x2
Æ
(10.5.2) (10.5.3)
[]\FbFs`jD^xhn}8\Fs`i f (x, 0+) = ϕ(x)}f^vrLtleLg~sx^x qUcFaF Fb6htkls`gFyFiSbFpjSi~rLcL^xhWiSs kls`UFtcF\L^`s`iS_vqUcFaF FbFb ]jSbLk^`_6rK^ l(t)} 0
d l(t) , dt
rLjD^FiDkeLtlrLcFb6?UyL^`jScFtcFb6h 4i cFi FtyFtFbLk^`s`gOjOjSb6rLtSm δ(t) =
∂ 2 f (x, t) ∂ [f (x, t) − ϕ(x) l(t)] = , f (x, 0−) = 0, t ≥ 0, ∂t ∂x2 f (x, t) − ϕ(x) =
Zt
dτ
(10.5.4)
∂ 2 f (x, τ ) , t > 0. ∂x2
(10.5.5)
U yL^S^`4jStcFcLt^cFiSbFFb?tyLjStl^`rLs`iStsyL^za>FyLyF^SiSkbFkp8jSiSisSrLy6cFtiScF_cFFiDi]42jSyFjSt4{tcFtZbjDrL^`yFyFiSbLS^`cFcFiSs`_2FkZyFcLiS^`bFyFpUjS{i~rLtcFcFiSc6_iS_?j]FcFtiSyFyLjS4iDb6 yFiSjSaUiS_nY
wzcL^xeLiSbF\FcL^xh.iSFtyL^` Fb6hWjkeLU\L^`t2k U\Fts`iDrLyFiSScFiS_.FyFiSbFpjSi~rLcFiS_ iSsOFiDkls`ihFcFcFiS_>FyFbFjSi~rLbFsOma ñxòB÷ ñ÷-ôx÷ ñx÷-ÿ Bô /öoñxòBñ
5
ω t f (x, t)
0
=
0
5
44 1
""2
∂ 2 f (x, t) t−ω + ϕ(x). ∂x2 Γ(1 − ω)
(10.5.6)
XkeLU\L^`t¤ FY 6Y S¦Z4bL4ttrLtleLik bFcFs`tyFi` rLbLqtyFtcF FbL^xeLgScFz¢UyL^`jScFtl cFyLbF^`s`tiSyL}¬^bbFacFs`tti2yFrLbFyFyFiSiSSjDcF^`cFiDb64h?vrLiSyFSiSiSS`cFztcF£bF^`!cL^xteLkliSs`tiDkls`WjStcFs`iScFi>iOb6iSrLFs`tb yL^`Fs`UiSs`yLt^Fm p^S4tcFBiSFtl f (x, t) − ϕ(x) =
−ω ∂ x
2
f (x, τ ) . ∂x2
qyFbL4tcFbFjOa iSStbL\L^SklshL£Fi`eLU\FtcFcFiSiUyL^`jScFtcFb6h>iSFtyL^`s`iSy } ü
0
0
0
ω t f (x, t)
=
t−ω ∂ 2 f (x, t) + ϕ(x), 2 ∂x Γ(1 − ω)
ω x
FyFb6DirLbL
C
0
ω t G(x, t)
=
∂ 2 G(x, t) t−ω + δ(x), ∂x2 Γ(1 − ω)
;: T
"¥
,õ
õ
7 x &x
"§Ââx
â
â
5´
571#
'
©yL^`cLkqiSyLf^`cFs~^ UyFgStl ^`6eK^Sk^s`iS_vqUcFaF 6bFb +
be G(k, λ) =
λω−1 λω + k 2
FiSaU^`pjD^`tsx}4\Fs`i.FyFbFcF FbFkli~6yL^`cFtcFb6hjSty6i~hFs`cFiDkls`bj rK^`cFcFiD!keLU\L^`t jS Fi`eLc6hFtsSk¨hnm be G(0, λ) =
?> Ø ¢ z B{
î
,
î
Z∞ 0
e t)e−λt dt = 1/λ. G(0,
nïéæ¯~| |æ,~|æ
|~ï
£ ¬:8!7 ¤89 ¦¥§I898:43¬= eLtlrLxh yL^`SiSs`t }TyL^Skk4iSs`yFbL¢yFt{tcFbFtOUyL^`j` cFtcFb6h klU~rLbLqUpbFb2jOStklaDiScFt\FcFiS_?i~rLcFiSyFi~rLcFiS_>kly6tlrLtS}FFi`eLi bFjL}DrFeFh iSS cFiDkls`bn}UyL^`p4tyFcFiDkls`g6yFiDkls`yL^`cLkls`jD^yL^`jScFiS_2FyFiSbFpjSi`eLgScFiD4 FtleLiD4 \FbLkeL dm Ç¢
?«
1 f (x, t) = Γ(ω)
Zt
dτ (t − τ )ω−1 4d f (x, t) + φ(x).
4cFbFt{t tlcFbFt>s`iSiUyL^`jSc6tcFb6hjSyL^x^`tsSkhW\FtyFtp qUcFaF Fb6 nyFbFcL^kliSiSs`cFiS{tl Z 0
ý
;C
Gω (|x − x0 |, t)φ(x0 )dx0 .
f (x, t) =
qyFtiSSyL^`pi`jD^xcFbFt ^`6eK^Sk^FiOjSyFt4tcFb>rK^`ts ü
Rd
fb(x, λ) =
Z
b ω (|x − x0 |, λ)φ(x0 )dx0 , G
rLt b (r, λ) = g(r, λ )λ G . ^`a>FiSaU^`p^`cFij }6qUcFaF Fb6h g(r, a) ~rLiSj`eLts`jSiSyShFtsUyL^`jScFtcFbF ω
Rd
ω/2
ω−1
(4 − a2 )g(r, a) = −δ(x)
b?jSyL^xO^`tsSkh2\FtyFtp4irLbLqbF FbFyFiSjD^`cFcFUqUcFaF FbF«tkkltleFh?jSs`iSyFiSiyFi~rK^Fm g(r, a) = (2π)−d/2 (r/a)1−d/2 Kd/2−1 (ar).
D + ;:7:eo #xx 5 ('D&xx #> (' ð^xeLtt<^`jSs`iSyF iSsS4t\L^`]s~}\Fs`i!FyDhL4iSt
" >
"
"§Çô 1 Æ
Æ
tG
¯ φ(σ) =
Z∞
dt tσ−1 φ(t)
bvklj`hFpgS4tlOrL?cFbLb>FyFtiSSyL^`piSjD^xcFbFt ^`6eK^Sk^ 0
¯ φ(σ) =
X
>
1 Γ(1 − σ)
1 G (r, σ) = Γ(1 − σ) ω
Z∞
Z∞
ˆ dss−σ φ(s).
0
g(r, λω/2 )λω−σ−1 dλ =
0
XyL^xO^xhHiSSyL^`s`cFiStvFyFtiSSyF^`piSjD^`cFbFt \FtyFtpqUcFaF FbF iSa6k^F}§FyFb6Di~rLbLa qiSyL4eLt = ω −1 π −d/2 2−2σ/ω r−d+2σ/ω Γ(1 − σ/ω)Γ(d/2 + σ/ω)/Γ(1 − σ). y+
qyFb ü
ω
G (r, t) = π ω=1
−d/2 −1 −d
2
r
20 H12
¯ µ ¯ −ω/2 t r/2¯¯
(1, ω/2) (d/2, 1/2), (1, 1/2)
FyFb6Si~rLbL£a bFpjStkls`cFiD42yFtpeLgxsx^`s`Tm
¶
.
G1 (r, t) = (4πt)−d/2 exp(−r 2 /4t).
iS eK^SklcFiOkljSiS_Lkls`jD^SqUcFaF FbF_ iSa6k^ Ç+
Gω (r, t) ∼ γ ω r−[(1−ω)d]/(2−ω) t−[dω/2]/(2−ω) ×
rLt XcFiS_nF}6i`FeLi`cFeLbFUjZ\FbLFy6 γtiSS=yL^`πpiSjD^`cF2bFt UyFgS(2tF−i ω)d 4tyFcFωiS_FyFiDkls`yL^`cLkls`jStcF.cFiS_FtyFt4tc6 × exp{−(2 − ω)ω ω/(2−ω) (r/2)2/(2−ω) t−ω/(2−ω) }, ω
−d/2 d/(ω−2)
−1/2
[ω(d+1)/2−1]/(2−ω)
,+
e ω (k, t) = (2π)d/2 k 1−d/2 G
Z∞ 0
d/2 dr, Jd/2−1 (kr)Gω j (r, t)r
;: %4
# R
7 x Ì&x
+Ñ vrLtlt eFeLJbFcLd¢^qFUi cFFaFt FyFb6th4t«cFtcFkiSkl_ tleFhrKF^`ttsFyFmjSiSiyFi~rK^FY üqiDkeLtlrLU]tt.FyFtiSSyL^`piSjD^xcFbFt ,õ 1 Æâx
"¥
G
â
5o1#
â
'
k
iSs`aFrK^
e ω (k, t)}(σ, t) = t−σω/2 {G
Γ(σ/2)Γ(1 − σ/2) , 2Γ(1 − σω/2)
¯ µ ¶ X ∞ ¯ 1 11 (−1)n ω ω/2 ¯ (0, 1/2) e k 2n tnω . G (k, t) = H12 kt ¯ = (0, 1/2), (−k, ω/2) 2 Γ(1 + nω) n=0
qyFb ü
ω=1
Fi`eLU\L^`tiS\FtjSb6rLcF_>yFtpeLgxsx^`sFm
e 1 (k, t) = exp(−k 2 t). G
eLtaDi Fvi`iDeL4Ut\LcF^`s`tÚ 4zkl4Ub>~rFFbLyFtiSSUyLp^`b6piSiScFjDcF^xcFiSbFi
>G
hr2n (t)i =
Z
Gω (|x|, t)|x|2n dx = 22n
X\L^Skls`cFiDkls`bn}
Γ(n + d/2)Γ(n + 1) nω t , Γ(d/2)Γ(nω + 1)
n = 0, 1, 2, . . .
Rd
hr0 (t)i = 1,
hr 2 (t)i =
2d tω , Γ(ω + 1)
hr4 (t)i =
8(2 + d)d 2ω t Γ(2ω + 1)
b<s~Y r
YoqpFtyFjSiSiyL^`jStcLkls`jD^.jSb6rLcFiL}\Fs`i£p^xrK^`cFcL^xhHj£cL^~\F^xeLgScF_¢4iD4tlcFs jSbFyFptjS4s`tiScFyFbiScFiiSd2yL4\FbFs`yFi2iS{jSaUbF^yFbFqcLU^cFrLaFbL Fb6b qUnpyFbFbFiScLcF^cFiSk2is`tL\F^`taUcFtbFs~t^F¡}KkljSiDyFkltyF4ttrLcFiSb£s`iSkl\Fi~t6cFyLcF^`iSc6hFiOtj sSk¨cLhn^x} ^ \L^xeLgSxY cFûÖs`_iL}U4piD^S44ttlcFrFs.eLtjScFyFcFtiS4tZtFcFiObklj.yL^`cLjS^~cF\Lt^xcFeLbFt>aUk]iSiSiSyDSrLbF\FcLcF^`iSs~_2}frLyLbL^Skls`qts UpFbFyFtiS_2FyLiS^SyFkl F6bFeLiScL^xjDeL^`gScFcFbFit t rLbLqUpbFiScFcFiSiZL^`aUtsx^qbOrK^`tsqiDklcFiSjD^`cFbFtcL^`pjD^`s`gqsx^`aDiS_ FyFiS FtkkklU~rLbLZ qUpbFt_nY C
ω/2
?> Ø z B{
î
ï|³¶~¹
ïéæ¯~| |æ,~|æ
|~ï
ýf^Skk4iSs`yFbLs`tFtyFg2s`iOtUyL^`jScFtcFbFtj iS`eK^Skls`b pcL^\FtcFbF_ } s`yFtSU]ttrFe6hjSSiSyL^WtlrLbFcLkls`jStcFcFiSi£\L^Skls`cFiSi£yFt{tcFb6h¢p^xrK^`ωcFb6∈h(1,rLjS2)D cL^~\F^xeLgScF?DkeLiSjSb6_nYFXStyFtj aU^~\Ftkls`jStqsx^`aDiSjS
b
f (x, 0) = φ(x) ¯ ∂f (x, 0) ¯¯ = χ(x). ∂t ¯t=0
S` + ;:7:eo #xx 5 ('D&xx #> (' UyLiS^`iSjSs`cFjSttcFsSbFkls`tqjSbLU4]ttsOtt jSb6s`r bLcL^~\L^xeLgScFz¢SkeLiSjSb6hL¢bFcFs`tyFi~rLbLqtyFtcF FbL^xeLgScFiSt " >
"
"§Çô 1 Æ
Æ
1 f (x, t) = Γ(ω)
Zt
dτ (t − τ )ω−1 4f (x, t) + φ(x) + χ(x)t.
4t{tcFb6tlsSiSliO6yF^`jScFtcFb6h>FyFtlrKklsx^`j`eFhFtsSk¨h jOjSb6rLt 0
ý
f (x, t) =
Z
Gω (|x − x0 |, t)φ(x0 )dx0 +
Z
K ω (|x − x0 |, t)χ(x0 )dx0 ,
rLt K dköoùJ÷-ô ñ éxô ñ x}ns`yL^`cLkqiSyLf^`cFs~^ ^`6eK^Sk^?Fi jSyFt4tcFb aUiSs`iSyFiS_>jSyL^x^`tsSkh>\FtyFtpqs`2tqUcFaF FbF g(r, a) m Rd
Rd
1Ñ94 "&<"
(ω)
iSiSs`jStsSkls`jStcFcFiL}
b ω (r, λ) = g(r, λω/2 )λω−2 . K
1 K (r, σ) = Γ(1 − σ) ω
Z∞
g(r, λω/2 )λω−σ−2 dλ =
0
b
= ω −1 π −d/2 2−2(1+σ)/ω r−d+2(1+σ)/ω Γ(1−(1+σ)/ω)Γ(d/2+(1+σ)/ω)/Γ(1−σ)
tsOjSb6r
K ω (r, t) = π −d/2 2−1−2/ω r−d+2/ω × ¯ µ ¶ r −ω/2 ¯¯ (1, ω/2) 20 ×H12 t ¯ (d/2 − 1/ω, 1/2), (1 − 1/ω, 1/2) . 2
w]klbL4Fs`iSs`bFa6^jSs`iSyFiS_qUcFaF 6bFb nyFbFcL^vFyFbWSi`eLgS{b6 jSyFt4tcL^x bL4tl C
K ω (r, t) ∼ δ ω r−[(1−ω)d+2]/(2−ω) t−[dω/2−2]/(2−ω) ×
rLt δ =π 2 (2 − ω) ω ©yL^`cLkqiSyLf^`cFsx^ UyFgStqFiOFyFiDkls`yL^`cLkls`jStcFcFiS_ FtlyFt4tcFcFiS_
× exp{−(2 − ω)ω ω/(2−ω) (r/2)2/(2−ω) t−ω/(2−ω) },
ω
−d/2 (2−d)/(2−ω)
−1/2
[ω(d+1)/2−3]/(2−ω)
.
B+
e ω (k, t) = (2π)d/2 k 1−d/2 K
Z∞ 0
Jd/2−1 (kr)K ω (r, t)r d/2 dr,
;: 7³ >&x &x7 "¥
"
1§_õ
#õ
S6
"§
^tt4tleFeLbFcFiSjDkla6^xh>s`yL^`cLkqiSyLf^`cFsx^FiOFtyFt4tcFcFiS_ UyFgSt Ç+
iSs`aFrK^OkeLtlrLSts
1−σω/2 eω {G j (k, t)}(σ, t) = t
Γ(σ/2)Γ(1 − σ/2) , 2Γ(2 − σω/2)
¯ ¶ X µ ∞ ¯ (−1)n 1 11 ω/2 ¯ (0, 1/2) ω e = K (k, t) = tH12 kt ¯ k 2n t1+nω . (0, 1/2), (−k, d/2) 2 Γ(2 + nω) n=0
]sSklrK^F}6jO\L^Skls`cFiDkls`bn}L4iSUsOSs`gOjSjStlrLtcFiOkliSiSs`cFiS{tcFbFt eω e ω (k, t) = ∂ K (k, t) G ∂t
b cL^`_6rLtlcFFyFtlrLtleL
e ω (k, 0+) = 1, G
^S4ts`bL}F\Fs`i
s`iS rK^aU^`a
?> - ) z B{
e 2 (k, t) = cos(kt), G
³
e ω (k, 0+) = 0. K
e 2 (k, t) = (1/k) sin(kt), K
e 1 (k, t) = exp(−k 2 t). G
¢
|| ~³ î ,¬
f^Skk4iSs`yFbL£s`tFtyFg yFt{tcFbFtqUyL^`jScFtcFb6h
î
ý
∂f (x, t) = −(−4)α/2 f (x, t), ∂t
kZcL^~\L^xeLgScFzDkeLiSjSbFt t > 0, x ∈ R , 0 < α ≤ 2, f (x, 0) = φ(x). üqyFtlrKkls~^`jSbFjOyFt{tcFbFtqj jSb6rLt d
f (x, t) =
Z
G(x − x0 , t)φ(x0 )dx0
p^`FbF{tUyL^`jScFtcFbFtZrFeFhvqUcFaF FbFb nyFbFcL^ Rd
C
G(x, t)
∂G(x, t) = −(−4)α/2 G(x, t) + δ(x)δ(t), ∂t
rK^`cFcFiS_>p^xrK^~\Fbnm
G(x, t) = 0,
t < 0.
(10.8.1)
S S + ;:7:eo #xx 5 ('D&xx #> (' XFi`eLc6h6h>FyFtiSSyL^`piSjD^xcFbFt UyFgStqFiOFyFiDkls`yL^`cLkls`jStcFcFz£FtyFt4tcFcFz} " >
"
"§Çô 1 Æ
Æ
+
e t) dG(k, e t) + δ(t) = −|k|α G(k, dt
bvyFt{^xh s`i iSSaFcFiSjStcFcFiStZrLbLqtyFtlcF FbL^xeLgScFiStqUyL^`jScFtcFbFtFtyFjSiSiOFiSyDh6rF a6^F}F4Fi`eLU\FbLm e t) = exp(−|k| t). ^`_6rLtcFcFiStyFt{tcFb6ttkls`gZU^`G(k, yL^`aFs`tyFbLkls`bF\FtklaU^xhOqUcFaF Fb6hO4cFiSiD4tlyFcFiSiZbFpi` s`yFiSFcFiSiODkls`iS_F\6bFjSiSiOyL^SklFyFtrLtleLtcFb6hW¤ yL^SklFyFtlrLtleLtcFb6h tjSb6 tleLg`rLt_Lf^D¦m α
å+
e t) = ged (t1/α k; α). G(k,
]SyL^`s`cFiStZFyFtiSSyL^`piSjD^xcFbFt]rK^`ts 1 G(x, t) = 2π
Z
e−ikx ged (t1α k; α)dk = t−d/α gd (t−1/α x; α).
(10.8.2)
Fc b6h ¤ vFY F
G
-C
1/α
?> 3 Ø ©#
ï³
z B{
04
·éæ j
;| ~¹iæ¯
5 "K94: 0M
D~
l,~Bæ¯ î
nðE¶¹iæ¯
|éï.æ,~
1/2
Û
î ï~,~
|
ï|,~¹iæ¯
v
0
b
0
ω t fω,ν (t)
= Kfω,ν (t) + Φν (t)
df = Kf (t) + δ(t). dt
^~\L^xeLgScFtDkeLiSjSb6h FyFb jviSSiSb6 keLU\L^xh6¤ iSsS4tl `s bL¢kliS eK^SkliSjD^xcFcFiDkls`g2iSSiSpcL^~f\FtcF(t)bF_nmK→FyFb0 ω →t1↑b 0ν → 0 FtyFjSiStUyL^`jScFtcFbFt FyFtjSyL^`^`tsSk¨h>jSiOjSs`iSyFiSt~¦Y
0
ω−1 ω,ν t
;: .T
"¥
Ü
}|Jx
. § â/õÇ
"§âÇõo"#xx >¥ ¥ ¥
S
(
XFi`eLcFbFjOFyFtiSSyL^`piSjS^`cFbFt ^`6eK^Sk^iSSiSb62UyL^`jScFtcFbF_n}
λω fbω,ν (λ) = K fbω,ν (λ) + λ−ν ,
λfb(λ) = K fb(λ) + 1,
b yL^`pyFtl{bFjOb6>iSs`cFiDklbFs`tleLgScFiOs`yL^`cLkqiSyLf^`cFs~}6FyFb6Di~rLbL£a kliSiSs`cFiS{tcFbFm fbω,ν (λ) = λ−ν fb(λω ).
]SyL^`s`cFiStZFyFtiSSyL^`piSjD^xcFbFt]rK^`tsFm 1 fω,ν (t) = 2πi
rLt
Z
λt −ν
e λ
C
hω,ν (t, τ ) =
fb(λ) =
1 2πi
Z
Z∞
hω,ν (t, τ )f (τ )dτ,
0
eλt−λ
ω
τ
λ−ν dλ.
qyDhL4iS_>FyFiSjStyFaDiS_ 4i~ cFiOUStlrLbFs`gDkhn}6\Fs`i yFt{tcFb6h UyL^`jScFtcFbF_ C
ü
b
0
ω t fω,0 (t)
df = Kf (t) + δ(t) dt
klj`hFp^`cF¢kliSiSs`cFiS{tcFbFt fω,0 (t) = ωt
ω−1
Z∞
= Kfω,0 (t) + δ(t)
ω
+
f ((t/τ ) )g (τ ; ω)τ
−ω
dτ =
^yFt{tcFb6h UyL^`jScFtcFbF_ 0
b 2d kliSiSs`cFiS{tcFbFt fω,1−ω (t) =
Z∞
0
Z∞
(10.9.1)
(10.9.2)
f (τ )g + (tτ −1/ω ; ω)τ −1/ω dτ,
0
(10.9.3)
ω t fω,1−ω (t)
= Kfω,1−ω (t) +
df = Kf (t) + δ(t) dt
ω
f ((t/τ ) )g+ (τ ; ω)dτ = (t/ω)
Z∞
t−ω Γ(1 − ω)
(10.9.4)
(10.9.5)
f (τ )g+ (tτ −1/ω ; ω)τ −1/ω−1 dτ.
§ 3 qAD1436:894A¹K=8Xklts`b kliSiSs`cFiS{tcFb6hiDkls~^`]sSkhklFyL^`jStlrFeLbFjSz(10.9.6) 4bbj 0
0
keLU\L^`tS}FtkeLb d?cFtp^`jSbLk¨hFbF_ iSs2jSyFt4tc6bveLbFcFt_FcF_viSFtyL^`s`iSyn}FrLt_Lkls`jSD ]bF_ cL^OqUcFKaF FbF f (t) ≡ f (x, t) Fi2kliSjSiSaFUFcFiDkls`b?FtyFt4tcFcF xY $Ö
;:7:eo #xx
S
"+>
'
('D&xx #> ('
"§Çô15Æ
"
Æ
eK^Sklc6iOXqtyFiScFyLt4f~keKh^S<s`tF¤ tFyFY g]ÑFY aqU¦ rLyF¤ iS6SY cFÑFi`Y ªS D¦}D^xteFeLibLyFkls`tbF{\FttcFklbFaUtiD44]i~UyLt^`sjSScFtcFs`bFg¢FyF¤ tlrKFklY SsxY ^`ªDj`¦eLY tcFi`i jOjSb6rLt
'
f (x, t) = (t/ω)
Z∞
τ −1/α−1/ω−1 g+ (τ −1/α x; α)g+ (tτ −1/ω ; ω)dτ.
(10.9.7)
oO}6cL^`aUiScFt n}FqUcFaF Fb6h nyFbFcL^rLbLqUpbFiScFcFiSiUyL^`jScFtcFb6h>iSStis`bFL^ 0
C
0
ω t G(x, t)
= −(−4)α/2 G(x, t) + δ(x)
t−α Γ(1 − α)
jSyL^xO^`tsSk¨h>\FtyFtpqUcFaF Fb6 nyFbFcL^v¤ FY FY S¦ÖkliSiSs`cFiS{tcFbFt ªC
G(x, t) =
t ω
Z∞
gd (τ −1/α x; α) g+ (tτ −1/ω ; ω) τ −1/ω−d/α−1 dτ,
FyFbFjSi~r6hFbL£a>rLyFiSScFi` Skls`iS_F\FbFjSiS_?6eLiSs`cFiDkls`b
(10.9.8)
0
G(x, t) = t−ωd/α qd (t−ω/α x; α, ω).
?> ?> z B{z
ÁE¶ 9 8~|
î ï~,~
X¢kls~^`s`gSt ~ ny6t{^`tsSkh UyL^`jScFtlcFbFt *
h
β 0
2γ 0
i
Gγα,β (x, t) = b1 δ(t)δ(x),
kZcL^~\L^xeLgScFz4b>b yL^`cFbF\FcFz4b DkeLiSjSb6hL4b 2α 0
t
+b
t
−
x
Gγα,β (x, 0) = b2 δ(x), lim Gγ (x, t) x→±∞ α,β
= 0,
¯ ∂Gγα,β (x, t) ¯ ¯ ¯ ∂t
lim
"
= 0, t=0
∂Gγα,β (x, t)
#
= 0.
oqcFs`tyFFyFts`bFyFxh a6^`aOjSyFt8hn}D^ aU^`a aDiSiSyDrLbFcL^`s`S}`jUyL^`jScFtcFbFbOs`iD.4i~ cFi UjSb6rLts`gvrLyFiSScFt_^`cL^xeLiS s`tleLtxyL^SqcFiSivUyL^`jScFtcFb6hn}njaUiSs`iSyFiSt iScFibFy6tl jSyLU^`yFgS^`tZtFsSikhWaUiSFiSyFySb rLbFαcL^`=s`tZβb>=yFtγ{t=cFbF1tZIY Füi`eLy6UtiS\FStyLcF^`cFpiSiSjDi^x^xcFeLbFt tSyL^`^`6bFeK\F^Stkkl^vaUiSFi iUjSyLyFt^`4jScFtcFtcFb£b6bh FyFbFjSi~rFbFsOavkeLtlrLU]t4?jSyL^xtcFbFrFeFh s`yL^`cLkqiSyLf^`c6sSm x→±∞
∂x
B
+
e γ (k, λ) G α,β
≡
Z∞ 0
dte
−λt
Z∞
−∞
dxeikx Gγα,β (x, t) =
b1 + b2 (λ2α−1 + bλβ−1 ) . λ2α + bλβ − |k|2γ
;: ;:7¨ RG7o2[xx 7 #xxx "¥¦
õ
SS
"
eFh>jSFi`eLcFtcFb6h>iSSyL^`s`cF?FyFtiSSyL^`piSjS^`cFbF_?FyFbFjStlrLt£ttqa jSb6rL ð
2α−1 + bλβ−1 ) e γ (k, λ) = b1 + b2 (λ = G α,β 2α β λ + bλ − |k|2γ
∞ X 1 Ω(λ) |k|2γ λ−β |k|2γn λ−βn−β , = Ω(λ) = 2γ −β |k|2γ λ2α−β + b 1 − |k|2α−βλ (λ2α−β + b)n+1 n=0
rLt Ω(λ) = b + b (λ + bλ ) bFyFtlrLFi`eK^`l^`tsSkhvjSFi`eLc6tcFbFtSkeLiSjSb6h pkS`i~hLrLklgbL4kliDjSkliSs`_Lbkls`jDtiD^S44tbs`yFiSbFS\FiStSklaUtiSc6_cFFiSyF_!iSs`yFyFttlk6klLbF^`b yL^S||k|4ts`yFλbF\Ft/(λ klaUiS_/qU+cFaFb)| FbF
2
λ β−1
2α−β
+b
2γ −β
2α−β
wG
e γ (k, t) = G α,β
∞ X
n=0
n+1 (−bt2α−β )+ |k|2γn {b1 t2αn+2α−1 E2α−β,2αn+2α
h i n+1 (−2bt2α−β ) }. +b2 t2αn E2α−β,2αn+1 (−bt2α−β ) + bt2α−β E2α−β,2αn+2α−β+1
^p^`s`t£b iSSyL^`tc6bFt UyFgStSm ¬+
Gγα,β (x, t) = ∞ 1X n+1 sin(nγπ)Γ(2nγ + 1)|x|−2nγ−1 {b1 t2αn+2α−1 E2α−β,2αn+2α (−bt2α−β )+ π n=1 h i n+1 n+1 +b2 t2αn E2α−β,2αn+1 (−bt2α−β ) + bt2α−β E2α−β,2αn+2α−β+1 (−bt2α−β ) },
=−
rLt b 6=üqi`0,eK^`−1l^xh2−plm,rLtklmg = 0, 1,}62,Fi`.eL. U. Y \FbL£yFt{tcFbFtUyL^`jScFtcFb6h α=β ]G (x, t) = b δ(t)δ(x) [ +b − jOjSb6rLt 2α 0
Gγα,α (x, t) = −
t
α 0
t
2γ 0
x
γ α,α
1
∞ 1X sin(nγπ)Γ(2nγ + 1)|x|−2nγ−1 {b1 tα(n+2)−1 Eα,nα+2α (−btα )+ π n=1
+b2 t2nα [Eα,αn+1 (−btα ) + btα Eα,αn+α+1 (−btα )]},
0 < γ < 1, 0 < α < 1.
^.iDklcFiSjStvs`iSi£kliSiSs`cFiS{tcFb6hn}§p^S4tc6hF]tijcFtaDiSs`iSyFiDk4zkeLt q4b iSyL4beL.qyLj^S4yLt^`yLSkliS^xsx ^xq yFiScF FbF}l^F }nk yL4^`pFyLbF^`yFDbF^`\Fs`tklaFjD^`btsSiSk¨Fh¡yFtl4rLi~tleLrFtltleLcFcFg¢zkW4baUiSLcL^`klyLs`^SbF4s`Uts`s`bFyLj`^x cFs`tzyLα^xUeyLrL^`jSyFacFiStScFcFbFiSti2}TFkliSi~ySrLh6trLyDa6^^`¤FbLyFiSbFyFpjStirLeFcFhFUyF bFpiSjD^`^`yFcF{cFiU¦_bFbFyFFbFtyLjSiklrFbFhFcFbLeFHhFyFacFjSi`_eLbFcFc6i` jSiD42UyL^`jScFtcFbF¡kZFiSs`tyDhL4b jSb6rK^
t
'(
α
tG
·
¸ Zt 1 ∂2 4aα Γ(α + 2) cos((α + 1)π/2) p(x, τ )dτ 4 − 2 2 p(x, t) = p.f. , c0 ∂t πc0 (t − τ )α+2 −∞
S`ª + ;:7:eo #xx 5 ('D&xx #> (' j rLkt 4p(x, zkeLt)taDdziSrKcF^`tj`\FeLcFtiScF_ bF\LtÖ^Sj]kls`s`iSb>\FFaDi2t xwrKjZ^S4fiD^`8yFtScFY sZjSyFt4tcFb t }~^zbFcFs`tyL^xeFiScFbFf^`tsSkh ðyFUiS_WFi~rFSi~raiSFbLk^`cFbF*iDkeK^``eLtcFb6h.jSi`eLcWjs`tyL4iSj`hFpaDiS_klyFtlrLt Se>FyFtlrFeLi~tc>jyL^`SiSsx^x ~~ o ´ YDXtiiDklcFiSjSOSeLiFi`eLi~tcFiUyL^`jScFtcFbFt " >
·
4−
"
"§Çô 1 Æ
Æ
¸ 1 ∂2 µ ∂ [4p] , p(x, t) = − 2 c20 ∂t2 c0 ∂t
(10.10.1)
FrLUt s`tµ£dWp^SaU4iStcF¢qeKbF^` F6bFeKt^ScFks bL^`s`cLt^yL4tiSij`hFrLpyFaDiSiDSklcFs`bniS_>YÖX/kls`tyLF^`tScFiSgSs`t } ziScFi SeLi.iSSiSStcFi ·
4−
Ä
¸ i µ ∂ h 1 ∂2 p(x, t) = α (−4)α/2 p(x, t) , 2 2 c0 ∂t c0 ∂t
α ∈ (0, 2],
\Fs`i2kliSiSs`jStsSkls`jS`tsO^`FFyFiSa6klbLf^` FbFb?rLbLklFtyLklbFiScFcFiSi kliSiSs`cFiS{tcFb6h 2
k −
µ
ω c0
¶2
=i
(10.10.2)
µ ω|k|α , cα 0
FyFbFt8eLt4iS_jSi>4cFiSb6FyL^`aFs`bF\FtklaFb6klbFs`D^` Fb6h6¬}TjSa6eL]\L^xhn}KFi>Us`jStyDOrLtl cFbFB^`jSs`iSyL^yL^`SiSs` }6eLgxs`yL^`pjSUaUiSj`tZbLkkeLtlrLiSjD^`cFb6h?j24tlrLbF 6bFcFtSY µ
?>
z B{zz
8
~|泶·~³
¢
î
~j|
çB
`^ jStyF{bL?s`q eK^`jS]yL^Skk4iSs`yFtcFbFt>i~rLcFiD4tyFcFiSiFyFiS Ftkk^ oñ÷*ÿ xú bvklUFtySrLbLqLU}~pklbFiSb.\Ft¤ sxα^`]<2bL¦Y >§j]iOkltUSyLtf^`FjSyFcFbFtpcFcLbF^`tqaFbbL4a6t^`tas kljSUb6rrLbLqUpbFb ¤ ω < 1¦}sx^`a
ñ÷*M5 "%94:"
&
$
ω 0 Dt f (x, t)
= −(−41 )α/2 f (x, t).
^`akeLtlrLSts?bFpOP=]¹6·n= ±n}Kti?yFt{tcFbFtrFeFhStklaUiScFt\FcFiS_iDklb SjyFt{yL^xtcFOb6^`h.tsS¤ k¨hWFY \FStSyFY ~t¦fp2cLrL^yFaUiSiSScFcFtli`\F DcFkliDs`iS_FiS\Fs`bFyFjStpUaU/t 6eLiSs`cFkZiDkli~s`rLgLcFY iSyFrLirLtklcFg z44b>/−∞yLyL^S^`k
0
1
−41 φn (x) = λn fn (x), φn (0) = φn (L) = 0.
(10.11.1)
;:
Ç 5G x
©3dx I
â 1 ##$§Ç
"¥¦
#õ
"§
"
S+´
ã
iSDkls`jStcFcFtZpcL^~\FtcFb6h>s`iSiOiSFtyL^`s`iSyL^ λn = (an)2 ,
a = π/L, n = 1, 2, 3, ...
^OkliSiSs`jStsSkls`jSU]bFtqbLkliSDkls`jStcFcFtqqUcFaF FbFb φn (x) = cn sin(anx),
0 6 x 6 L,
rLt c d cFiSyL4bFyFiSjD^`cFcFtqFiDksSihFcFcFtSY X¢iDklcFiSjStqFyFbL4tcFtcFb6hvs`iSi?4ts`irK^ avUyL^`jScFtcFbFBkqrLyFiSScFzeK^`6eK^x klbL^`cFiDWeLtl bFsOs`tiSyFtf^iOs`iD}F\Fs`i tkeLb ψ(z) dOrLiDklsx^`s`iS\FcFiDiSyFiS{^xh>qUcFa6 ^xO^`tsS}
k¨h^ \F Ftb6yFhnt}Öp s`kli£iSDklkliSs`DjSklts`cFjScFtcFcFtptvcL^p\FcLt^cF\Fb6thcFb6iShFtiSyLF^`ts`yLiS^`yLs`^xiS yL^`^xyF q6U4cFtaFcF Fs~^bFb λ ψ(−4 qiSyL4)eLjSiS_ yLψ(λ kliSDkls`jStcFcFtqqUcFaF FbFbvkliSjSL^xrK^`]sk φ (x) Ñ >Y üqi~rKkls~^`jSbFjyL^`pleLi~tcFbFt ) n
1
n
n
n
f (x, t) =
∞ X
fn (t) sin(anx)
jOUyL^`jScFtcFbFt ¤ FY SSY ~¦§b>U\FbFs`jD^xhn}6\Fs`i2kliS eK^SklcFis`tiSyFt4t n=1
Fi`eLU\FbL
(−41 )α/2 sin(αnx) = (an)α sin(αnx), ∞ X
[0 ω
t fn (t)
DZ[ i4rLcFbLi~£a ^xh UyLs`^`i jScFUtyLc6^`bFjS cFtcFbFtqcL^ n=1
ω 0 Dt fm (t)
+ (an)α fn (t)] sin(anx) = 0.
sin(amx)
+ (am)α fm (t) = 0,
yFt{tcFbFtqaUiSs`iSyFiSibL4tts jSb6r rLtqFiDkls`i~hFcFcFt
b bFcFs`tyFbFyF`hvFiOiSs`yFtpaF
[0, L]
m = 1, 2, . . .
fm (t) = fm (0)Eω (−(am)α tω ) ,
fm (0) =
ZL
f (x, 0) sin(amx)dx
iSFyFtlrLtleFhF]sSk¨h cL^~\L^xeLgScFz4b>DkeLiSjSb6hL4b>p^xrK^\FbnYLXbFs`iStFi`eLU\L^`t 0
f (x, t) =
∞ X
n=1
fn (0) sin(anx)Eω [−(an)α tω ] .
}FFyFb6
S ` + ;:7:eo #xx 5 ('D&xx #> (' cLüq^yFbiSs`αyFt=paU2t s`iSsyFtpeLgxs~^`skliSjSL^xrK^`tsk]yFt{tcFbFtWUyL^`jScFtcFb6h?klU~rLbLqUpbFb " >
f (x, t) =
∞ X
n=1
f (x, t) =
"§Çô 1 Æ
Æ
£ ¤ fn (0) sin(anx)Eω −(an)2 tω ,
Fi`eLU\FtcFcFzjyL^`SiSs`t ª }6^FyFb qUpbFbn}
"
∞ X
ω=1
d kZyFt{tcFbFtUyL^`jScFtcFb6h>klUFtyDrLbLZ
fn (0) sin(anx) exp [−(an)α t] ,
F yFbFjStlrLtcFcFz£j Ñ Y5üqyFb b 4FyFb6DirLbL£a bFpjStksSc6iD4?yFt{tl cFbF¡UyL^`jScFtcFb6h>cFiSyLf^xeLgScFαiS_2=rLbL2qωUp=bFb 1 ` Y 76 ³Û ?> Xp^`a6eL]\FtcFbFtZ eK^`jS
Ä
s| ~|
z B{z±
î | íï¹i
¶|~|
$
Z(α, ω, θ) = S(α, θ)/[S(ω, 1)]ω/α ,
rLyFiSScFi` DksSiS_6\FbFjSiS_nY ¹K= cLüZ^`eLpiSiSs`jScFtiD kls`g ôx÷ 7yLñ^S÷ klF+yFøBtlùJrL÷ tleLþ txcFöob6÷ h ½óq(x; keLU\L^`_FcFiS_ jStleLbF\FbFcF θ) x÷7ùJα,ñ÷oω,øBùJ ú YT]cL^ jSyL^x^`tsSkh \Ftl Z(α, ω, θ) yFtpSkls`iS_F\FbFjStq6eLiSs`cFiDkls`b g(x; α, θ) kliSiSs`cFiS{tcFb6t 5
*6
* 4
q(x; α, ω, θ) =
*M 1
Z∞
*M
ω < 1,
&2
g(xy ω/α ; α, θ)g+ (y; ω)y ω/α dy.
s`i`eLgSaUi2· cL= ^2ÖkFeFi`b eLi~0
1
Ü
ÖkeLb θ = 0}Fs`i s`iqtksSg]rLyFiSScFi` Skls`iS_F\FbFqjS(−x; iStÖyL^Sα,klFω,y6tlrL0)tleL=tcFqbF(x;tk α,θ =ω,00)hF,j`eFhFtsSkhklbLf4ts`yFbF\FcFz iSs`cFiDklbFs`tleLgScFiOcL^\L^xeK^aUiSiSySrLbFcL^`s~Y
q (−x; α, ω, θ) = q (x; α, ω, −θ) .
;:
ªf6#xN1
"¥¦*Ã
Ü
=&
S/Ñ
õ$5 ôxÆ $ R"5x5
§bLk`YFY Sm Ú Y0*)#.BY#&-+%+%m0 ¨ñ ¸
= iS eK^Sklc6ikljSiS_Lkls`jSbFcFjStyLklbFbn}2rLiDklsx^`s`iS\FcFi*yF^Skk4iSs`yFts`ga6eK^Skk rLFi`yFeLiSSSiDcFki`bn S}6kl\Fs`s`iSi _F\FFbFiSjSpjSi`]eF6hFeLtsiSs`jScFjSiDtklkls`s`tb>_iFrLyFcFbqiDjDkls`kltliS yFiSα,cFcFωttqb θFyFs`ti`iSeLSgSyLaD^`ipcLiSjS^^`FcFi`bFeLt i~ vbFtls`eFtleLeLbFgScLcF^ iS_ ý ±)#.aX%#?%,#)+^!#!i«Eo0*$7!H+W+%+Y;If N+9#$#0*$7&-HkØ O2)#.aX%#?.!QR%AEo0*$7!H+W+%+Y;IfN+9#$#0*$7&-HØ $7!#?%#&X9+%++%+%>Ú ω
= 1/2
³G
q¯ (s; α, ω, θ) =
Z∞
xs q (x; α, ω, θ) dx,
−1 < Re s < α,
aUiSs`iSyFiSt`} jklb6eL klFt FbLqbFaFb rLyFiSScFi` Dkls`iS_F\FbFjSiS_ keLU\L^`_FcFiS_ jStleLbF\FbFcF} 0
` ªS + ;:7:eo #xx 5 ('D&xx #> (' hF Fj`bFeFiShFcFtcLsS^xkh.hvUp^`cLyL^^`\FaFbFs`s`ttlyFeLbLgSklcFs`i2bF\FSi`tkleLa6t^xth£rLqiSUScFcFaFz Fb6hnbFYcLüqkls`yFyFbL644ttlc6cFh6s`hiD<s`^`icL^xFeLyFbFtpiS^FS}FyL\F^`tpiSjSs`^`yLcFbF^xrLt b6b bLklFi`eLgSpxhjSyF^xtcFbFtrFeFhsSyF^`cLkqiSyLf^`cFs` vtleFeLbFcL^2Dkls`iS_F\FbFjSiS_v6eLiSs`cFi` kls`b Γ (1 + s) Γ (1 − s/α) g¯ (s; α, θ) = ρ , ρ = (1 + θ)/2, Γ (1 + ρs) Γ (1 − ρs) 4Fi`eLU\FbL " >
"
"§Çô 1 Æ
Æ
ªG
q¯ (s; α, ω, θ) = ρ
Γ (1 + s) Γ (1 − s/α) Γ (1 + s/α) . Γ (1 + ρs) Γ (1 − ρs) Γ (1 + ωs/α)
s`i`eLgSaUi>¶¬j += ðkeLyFiSUS\LcF^`i`t αDkls`=iS_F2\FYbFüqj`iSyFtb yL^Ss`kliDF
(2n)
(2, ω, 0) ≡
Z∞
4n n!Γ (n + 1/2) . x2n q (x; 2, ω, 0) dx = √ πΓ (nω + 1)
qyFb jSs`iSyFiS_bjSzkl{bFtÖ4iD4tcFs`StklaDiScFt\FcF}FyFb klUt1kls`<jSiSαjD^`<s`g2bvklyFtlrLcFttpcL^\FtcFbFtSY ¤n=¬X
−∞
q (0; α, ω, θ) =
b
α≤1
FtyFtkls~^`ts
Γ (1 + 1/α) Γ (1 − 1/α) cos (θπ/2) πΓ (1 − ω/α)
Q (0; α, ω, θ) ≡
Z0
q (0; α, ω, θ) = (1 − θ) /2.
iSyDS^ rL4bFtcFs`^`bLsx}6}FaU\FiSs` irK^ q α(x;≤α,1ω,b θ)ω
?
ω<1
−∞
θ>0
s`kls`iqttFklts`cFgZcFrLiSyF_ iSpS^`cFjSi`bL klDbLkls`4iSiD_Fkl\Fs`bFbKjS¦§6tÖjSiD6kleLs`iSs`}6cF\FiDs`kls`i bb>bLD4klts`]iSsq_F\FsxbF^`jSaFbFttq6eLtiSss`h6cFiDkltls`eLbnY t¤ jk4zkeLt cFiDkls`iSyF±niSV= cFcFüq]yFb αDkls`=iS_F2\FrLbFyFjSiSUScFi`6 eLDiSkls`s`cFiSiD_Fkl\Fs`bFg2jD^xklhviSiS6s`eLcFiSiSs`{cFtiDcFklbFs`tg jSyL^xO^`tsSk¨h\FtyFtpOi~rF q (x; α, ω, θ) ∼ g (x; α, θ) /Γ (1 + ω) ,
q (x; 2, ω, 0) =
1 ω |x|
g 1+2/ω +
³
|x|
−2/ω
x → ∞,
´ ; ω/2 .
;:
ªf6#xN1
Ü
=&
` ªF cFbF_ jS¹6yL·n^x= q^^``ZyFsS^`k¨aFh>s`t\FyFtbLyFklts`pbFq\FtUklcFaFaFbF Ft2bFb qUvcFbFaFs` FsxbF^`bl rLyFtiSSZcFi`eL tDyLkl^s`iS_F\FbFjS yL^SklFyFtlrLtleLtl "¥¦*Ã
õ$5 ôxÆ $ R"5x5
K
G
qe(k; α, ω, θ) = Eω (−ψ(k; α, θ)),
rLt o4tts 4tkls`iOyL^`pleLψ(k; i~tcFα,bFtqθ)F=iOiS−|k| SyL^`s`cFexp{−iαθ(π/2)signk}. z£kls`tFtc6hL α
q(x; α, ω, θ) =
∞ X
(−1)n−1
Γ(nα + 1) x−nα−1 . Γ(nαρ)Γ(1 − nαρ)Γ(1 + nω)
K¹ ¹K=KzrLcFiD4tyFcFtrLyFiSScFi` Dkls`iS_F\FbFjSt6eLiSs`cFiDksSb tkls`tkls`jStcFcFz iSSyL^x piDiSSiSS^`]sSk¨h>cL^O4cFiSiD4tyFcFt n=1
qd (x; α, ω, Γ) =
Z∞
gd (xy ω/α ; α, Γ)g+ (y; ω)y dω/α dy,
iSFbLkljD^`]bFtZyL^SklFyFtlrLtleLtcFbFtkeLU\L^`_Fc6iSiOjStaFs`iSyL^ 0
. Zd (α, ω, Γ) ≡ Sd (α, Γ) [S1 (ω, 1)]ω/α .
^`yFs`cF}TbFUpi`^x `s yFiSFcFv rLyFiSiSyLScF^`cFi`bFD\FklbLs`fiS_Fkh<\6bFpljSrLtvklg£6eLFiSts`yFcFt\FiDklbLs`kteL_ tcFqb6t(x;α,kljSiSω,_Lklµs`j£) ≡klsx^`qc6rK(|x|; α, ω) yL^`aFs`tyFbLkls`bF\FtklaU^xhqUcFaF 6b6h aUiSs`iSyF?bL4ttsOjSb6r G
d
0
d
qed (k; α, ω) = Eω (−|k|α ).
SSY SYVüZeLiSs`cFiDkls`b
qd+2 (r; α, ω)
b
qd (r; α, ω)
qd+2 (r; α, ω) = −
klj`hFp^`cF¢kliSiSs`cFiS{tcFbFt
1 dqd (r; α, ω) . 2πr dr
FcüZiSeL_ iSs`FcFiSiDySklh6s`rLb a6^q 1/2(r;Y α, ω) b q (r; α, ω) klj`hFp^`cFFyFbFiD4iSbvFyFiSbFpjSirF SSY 6YVüqi~rLiSScFicFiSyLf^xeLgSc6iD4OkeLU\L^`}DFyFiStaF Fb6hOrLbLqUpbFiScFcFiSi d 4tyFcFiSi jStaFs`iSyL^ X(t) cL^ d 84tyFcFiD Fi~rLFyFiDkls`yL^`cLkls`jSt¤ d < d¦8rLbLqUc6rLbFyF`ts kliS eK^SklcFi d 4tyFcFiD8?p^`aUiScF sx^`aFbL4b>tL^`yL^S4ts`yL^S4b α b ω Y SSY FYX iSseLbF\FbFtóiSs%cFiSyLf^xeLgScFiSi keF6\F^xhn}(yL^`pleLbF\FcFt aUiSiSyDrLbFcL^`s` \L^Skls`bF F}qkliSjStyF{^`]t_¡^`cFiDf^xeLgScFU,rLbLqUpbF ¤¥k X (t), ..., X (t) 6 b L e b ¦cFtqhFj`eFhF]sSkh>cFtp^`jSbLklbL4z4b>rLyFUqiSsrLyFUl^FY α 6= 2 ω 6= 1 d+1
d
0
0
1
d
0
` ªD SSY LYpüZcFeL^~iS\Fs`tcFcFiDbFkt sSg '
;:7:eo #xx
"+>
('D&xx #> ('
"§Çô15Æ
Æ
aDiSdWcFtU\FScFiOjDs`^`i`]eLgSaU^xiOh£tqkeLUb cFaFd F
qd (r; α, ω) qd (0; α, ω)
qd (0; α, ω) =
X\L^Skls`cFiDkls`b SSY 6YjSX<kt`eLm U\L^`t
"
Γ(1 + d/α)Γ(1 − d/α) . (4π)d/2 Γ(1 + d/2)Γ(1 − dω/α)
q1 (0; α, ω) =
ω=1
csc(π/α) . αΓ(1 − ω/α)
rLyFiSScFi` Dkls`iS_F\FbFjStZ6eLiSs`cFiDkls`bvFtyFtlSi~rFhFsOj Skls`iS_F\Fb6
qd (r; α, 1) = ρd (r; α) Z ∞ α qd (r; α, 1) = ρd (r; α) = (2π)−d/2 e−s Jd/2−1 (rs)(rs)1−d/2 sd−1 ds.
SSY ªFYo4tlts 4tkls`i2kliSiSs`cFiS{tcFbFtSm SSY ´UY ÖkeFb ,
α=2
b
qd (r; α, ω) = ω<1
}Fs`iS rK^
Z
0
∞ 0
³ ´ qd rτ ω/α ; α, 1 g+ (τ ; ω)dτ.
h i−1 , q1 (0; 2, ω) = 2Γ(1 − ω/2)
b?rFeFh
d≥3
h i−1 | ln r|, q2 (r; 2, ω) ∼ 2πΓ(1 − ω)
r → 0,
h i qd (r; 2, ω) ∼ (4π)−m/2 Γ(d/2 − 1)/ Γ(1 − ω) (r/2)−(d−2) ,
SSY FY ^Si`eLgS{b62yL^Skkls`i~hFcFb6h6 .
r → 0.
qd (r; 2, ω) ∼ (4π)−d/2 (2 − ω)−1/2 ω [(d+1)ω/2−1]/(2−ω) × ×(r/2)−d(1−ω)/(2−ω) exp{−(2 − ω)ω ω/(2−ω) (r/2)2/(2−ω) }.
SSY ÑFYyLX^~OkeL^`U]\LsS^`kt h>α\F=tyFt1p} ωcFt=Fi`eL1/2cFU¡yF^Skl^SFfyFftlrL^xtlqeLtUcFcFb6aFhv FbFrFeFhm jDkltl yL^`p4tyFcFiDkls`t_jS ³ ´ ´ 2 Γ (d + 1)/2 r2 /4 ³ 2 qd (r; 1, 1/2) = √ e Γ 1 − (d + 1)/2, r /4 . π (4π)(d+1)/2
`ª
1õ7
"
&
eFh cFt\Fts`cF>yL^`p4tyFcFiDkls`t_ ð
³ ´Ã ! µ Γ (d + 1)/2 2 r2 2 er /4 E(d+1)/2 (r2 /4), qd (r; 1, 1/2) = √ (d+1)/2 4 π (4π)
rLt µ = 1 − (d + 1)/2Y SSY FYX¢keLU\L^`t α = 1, ω = 1
£ ¤−(d+1)/2 qd (r; 1, 1) = Γ((d + 1)/2) π(1 + r 2 ) .
SSY SSY(üqyFtiSSyL^`piSjS^`cFbFt vtleFeLbFcL^Fm ³G
q˜d (s; α, ω) ≡
SSY ~6Y(üqyFb
=
α=2
qd (r; α, ω)r s−1 dr =
0
2s Γ(1 − (d − s)/α)Γ(s/2)Γ((d − s)/α) . α(4π)d/2 Γ(1 − (d − s)ω/α)Γ((d − s)/2)
jDklt4iD4tcFs`klUtkls`jSU]sOb bL4tlZsOjSb6r h|X(t)|2n i =
@
Z∞
}, î
´n Γ(n + d/2)Γ(n + 1) ³ 4Dtω . Γ(d/2)Γ(nω + 1)
S Y[XZY XZaNº k^sXeei ªNgN_KV«# ~ Sw Y z Y · ±n}>Ñ >¤ ÑSªSD¦Y 6Y n[2i;XZY0Y¨ YoDY^| Xeei ªNgNY6_Kd Va# m¹~ LNLm I FIM u }K`I SSFY F 2F +F w NO MLI I ¢w F?Y ʳ` fM=_Ki¦2VV `ba¢´ ´ Nn 2F Y w Y wI Yn¹ n} US?¤ ÑSSªD¦Y L7Y §x_K`ba_KY WK`0À m ;F "w Mv ´`¶rKaXZY r ]´Gf;f±XZYe`j Fd w NO MLI m I q w I N I }nFÑz Ñ LY Yn Y v 6¢Y ^Zhq^ ¯LY z 2Y n 2F Y · ³¬}L+´xD?¤ ÑSSªD¦Y ªFY U¹fMY _Kc¹_KV¬ £¨ { I ? +F· ±n}¬ U?¤ `SDS¦Y ´U7 Y §x_K`ba_KY WK`dÀ o IA K´n}L` ¤ ÑÑDS¦Y F7Y §x_K`ba_KY WK`dÀ MI±F } wI I F u yF ³¬}¬ DªFO¤ ÑÑSªD¦Y ¬J
©J
.J 9J
R åTÝQ
J J
'
EJ³Ò V #J
J
R
&S
&
ÂS3R
Z
&Y
$Z S&Q3T &V"S(Y $Y TÝQS3T &V Z YÝ 1Q0T V 3T Q
&V&3T VP &P 1Q0T V&3T Q
R
&V$Y T V$ S Z
EJ
S&1T
EJ
R"S
'
V"S(X-TÝQ
T U(S Ü
&Y T &V .S(V"
S(YÝQ0P$Y P -T V
1ÜÜ 1'
S N& ÄS(V" S $T Y T /7T V ?J Z Z YÝ T V S
ÂS3R
¸J .J
1Q0T
©J©Ò V T V S
T Y ¦ Z
QS
$Z S&QS(Y
'
1TÝS ('
`ª
;:7:eo #xx 5 ('D&xx #> (' ÑFY§x_K`ba_KYWK`ÆÀ mu u zwL NO +F Y® MO Y }Tv ÑÑ#¬´U_KY Y ª`bayF i}XZYe`U ?§x_K`baI _KYWK`?À nd F dx{ I "Å I m FY7£ËgaXZ`¶WGXZYq^ £´ k^Zh¢^ L¯ Y z Y2n 2F Y K·n}¬ ¤ ÑSÑD¦Y SSY Iþ ñ Ãû© ´K´n}¬S~S?¤ ÑÑÑD¦Y ~6Y¬_K=_KY¶f±r0´ dÀ ³¬g`¶_GËËg2`¶r¢U « WG0X (V `bKXZ`bY _l ¬ L¯ Y IM(z Yn 2F Y ¸T±n}F D`S2¤ `SSD¦Y FY7N;_Gµ r¾j m L¯ Y~ ZI F Y w ZI YN~ YK±n¤ } +ÑFO¤ ÑÑ U¦Y LY7N;_Gµ r¾j m k^ D\ NL¯ Y~ ZI F Y w ZI YN~ Yn¹6·T³¬}F #´2¤ `SSD¦Y ~6Y[(V _GËe«hei r;Ë«Á ?j L¯ YN~ ZI F Y w eI Y~ YK³K³¬}K`D`?¤ ÑSDS¦Y ªFY` fhgig`bVV\ N ;F u NF Y6d¢ v 2O }¬ÑSSFY o´UY¨©`¶XZYËXU Á m~ ZI F Â+Å F } ~ÑSLNL Ñ6Y I F Ynd¾{ I m~ ZI IF (I wI I ¾F IMn ~2F n } IL I ;2F v } FY¬gNXZaÆ^ YNn 2F YNp Y ·· }K`ªSF¤ `SDS¦Y ÑFY?²eV `¶Ë³§ d]`b¢§ ³j2YZaXZY?² dU?aNgή u©~!~ ´n} D >¤ `SDS¦Y `FY=¿ ô oñ q¿ ] /ò!ø? +ðbLqtyFtcF FbL^xeLgScFtb2bFcFs`tyL^xeLgScFt]UyL^`jScFtcFb6h f^xsStf^`s`bF\FtklaUiS_qbFpbFaFbnYd tcFbFcFyL^xrd viDkaFjD^Fm` ©oO}DÑ#´ F}k`Yxª LY 6SY?6 ø F[]yL^`jScFtcFb6h?j\L^Skls`cF?FyFiSbFpjSi~rLcFOrLyFiSScFiSiFiSyDh6rLaU^FYUd WY m ^~Ua6^F}F`SD6Y S6Y?uÍ `bV µ_h U Ye`bK_hei}_KK_ º j2Ye Y6`bVbdaV rÄ \ qJ }L+I `SSªFY ~ LNL I FÆIM I H I F yF "+>
('
EJ>Ò V
QR"S(V$TÝQ Z T V & Z.Ð Z YÝS
"
"§Çô 1 Æ
$Z S&QS(Y wS(V" $Z S&Q3T &V"S(Y S YÝQ0P$Y P wT V ( J EJ ÂÐ TÝ0V$V"S
J J
J
BL $M"& IJ%IJ)
ÂS3R
R
Ü
'
?J 9J
J ¸J
Q &P / 1J
J ?J
1J
J J
J
ÇJ
"
R$T V
.J 9J
X- Z
1'
1Q
X- Z
Q &P /
S(V Z U
R
0å
S(X
'
Z TÝ &
ØJ
R åTÝQS(Y 9Z T V"Q0T $Y S(V" X- Z TÝQS 1 $P Z
$ (
?J
G
È"4 J#IJ $
G
J $Z S&Q3T &V"S(Y
R
('
Ò V Z 11P"Q3T &VÇ T Q &P /3TÝQS(Y 1Q0T 0/
J
ÂS3R
X- Z
1Q
Y P$TÝ
Q &P /3TÝQ
ÇJ
³J 1:
1Q
Q &P /
S*N& ,T V
1YÝTÝQS3T &V
&V&3T VP$P$X Z U
¸+
J EJ
?J 9J
Æ
('
& &
¬J
T Z V&3TÝS(Y
P"S3T &V
1J
R$ Y åNT Z
Z ¾S(V"
$Y TÝQS3T &V
('&'
[]\
ãèç o
ì_^H`
âæèâæèç
nm
aaa
o
â #ßá%å qp
ís\ït\ r
uªu
â¯s å²æèç p
fh
å
+ ! üqiDkeLtlrLc6h6h2ds`yFts`g`h>\L^Skls`gaFcFbFb>FyFtlrKkls~^`j`eFhFtsOkliSSiS_2iSSpiSy2yL^`pleLbF\6 cF2FyFbL4tcFtcFbF_ 4ts`i~rK^rLyFiSScF FyFiSbFpjSi~rLcF jqbFpbF\FtklaFb62p^xrK^~\L^x¬}DcFi aUp^xiSrKc6^t\L\F^xcF iL}f4cFit jDcFkli2tl¬FIYi`eLüUy6\FtlbFrKs`klg sx^`bFj`peL«tcFbFbF`t eLbFi iScFyLt ^SjSqa6bFeLb ]6\FyFtbLcF4cFtcF£tcFj.bF_niSS}KpcFiStyklqi~rLbFtpySbFO\F^`tkaFtb6_n } jSFyFiS\Ft}FyL^`SiSsFi s`tiSyFbFbvUFyL^`j`eLtcFb6hn}UrLbFcL^S4bFaUtqU^`iDk^F}6{6f^S£b cFtaUiSs`i` yFzrLyFUbLklFt FbLqbF\FtklaFbL£cL^`FyL^`j`eLtcFb6hLY ^~\FcFts`iSsqiSSpiSyk4tU^`cFbF\FtklaUiS_p^xrK^~\Fbiqs~^~Us`i~6yFiScFtS}xFiDkls~^`cFiSjSa6^ aUiSs`iSyFiS_2FyFbFcL^xrFeLtl bFs wzStleL5Y üqiaFyFbFjSiS_n}UyL^SklFi`eLitcFcFiS_2jFtyFjSiDWaFjD^xrF yL(^`Å cFs`tjStyFs`bFa6^xeLgScFiS_6eLiDklaUiD kls`bbFyFi~Si~rFhFt_\FtyFtpcL^~\L^xeLi]aUiSiSySrLbFcL^`s¤ iDklg cL^`FyL^`j`eLtcL^jSjStyS¬}DiDklg >iSyFbFpiScFs~^xeLgScL^D¦}DbFpqkliDkls`i~hFcFb6h2FiSaUi~h?klaDi`eLg` pcFbFiSs_ Sft^Spzks`klyFt}xcFFb6iSh?L^xFrKi~^xr2hrLjt_L4kiDsS4jStb6cFtsjSklyFb6teL4tcFsb h6tjkls`cLb>^\Lf^x^`eLs`iqtyFaUbLiS^xiSeLyDgSrLcLbF^xcLh ^`s~sSY iS\6a6^`^_Fs`tlbOrLbFUcFyLbF^`\6j` cFtcFbF6t ù ùJ÷ /ôx÷7ñõWdO8cFi~tkls`jD^cL^~\L^xeLTgScFs`iS\Fta {x, y} }SiSs`jSt\L^`]b6Oi~rF Y
SSY ~t¦t?>Y Uüq\LD^Sklkls`s`g a6^vh(s)iSs dcFiDjS4z?kliSbvsxs`^viDs`4iS?\FaFbtsxp^~cLU^s`\Fit6cFyFbFiSBcFjSyF}4tkl4iStiScFs`bjStklsSaDkli`s`eLjSg`U]tcF^xb6h h rFTeLbF«¤ ý§cFt bLk`s(h) cL^~\F^xeK^aUiSiSySrLbFcL^`srLiOs`iS_ s`iS\FaFbnYLoqpqp^`aDiScL^Okli6yL^`cFtcFb6h>cFtyFbFb ĸíé|l. î | |~
zz{z
&
-4
È
2 s(h(t)) ˙ /2 + gh = E.
U\Fts`iDcL^~\L^xeLgScFiSliDkeLiSjSb6h ˙ = 0 bL8tt jD^`cFbFtqFUs`t£yL^`plrLtleLtcFb6h>FtyFt4s(y) tcFcF?rK^`ts
1 T =√ 2g
s(y) Z 0
p
s˙ 2 /2 = g(y − h)
ds y − h(s)
.
Y6oqcFs`tyFbFyFi`
` ªS FXtjSyFi~trF4htiScFScFyLiS^`_ s`cFUHa
ª6M'>>x
"+>
h(s)
qUcFaF FbF
1 T =√ 2g
Zy
η(h)
ã
}xFyFiSbFpjStlrLtvFi~rbFcFs`tyL^xeLiDp^S4tcF
dη/dh √ dh = y−h
r
π 2g
1/2 0
y η(y),
jStyF{}
iSbFSs`yLg^`yFs`tbF{s`g tcFtbFtSt } plk yL^xrK^`p^~]\Fb¬F}nyFcLbF^xjSrLi~rFivhFcL^`U_FWs`bWabFFp i`eLUs`FiSyFiviSbFUpyLjS^`i~jSrLcFcFtiSc6_qb6hW^`qFUUcFs`iLaFY FqbF s`iSSs =p^`η(y) y = h(s) rK^xeLttSY }^`b{jSt_yF F^`tlpeLbFgSs`£g Ss\FeLtyFiztFp§iSFaUt^`yFpt^`4s`gLtcF}a6cF^`at j]xFb y6yiS F}cFtkizkl4tÖ.yFtcF{t§tScF~b6rLht?bFpFjSyFti~krLsSi`c6eFt_FO{^`ts`_g 4tlU^`cFbF\6tklaUiS_>p^xrK^~\Fb>jSiSpcFbFa6^`]srLyFiSScFtqFyFiSbFpjSirLcFtSY 0
=
§bLk`YnSSY Sm »b2.B,5.*W#&e$.*E$7*f+)+&ñ ý
©! X¢a6eK^SkklbF\FtklaUiS_v4tlU^`cFbFaDtiSSyL^`s`cL^xh p^xrK^~\L^d2iSFyFtlrLtleLtcFbFtFiSs`tcF Fb6 ^x4eKi~^OjStsWp^`FbLyF8bFi~jSrLttkl_Ls`klbs`jSaHb6h rLFyFi iSSbFcFpi`4 rLtySbLhFtq4tzyFbFcFDs`^`tyL^`yLaF^xs`eLtgSyFcFbLzkls`BbFa6U^SyL£^`jSrLcFjStb6cFb6hLtcFb6Y h ^`d2 sxeF^`hFaUcFt t j±°~u vtlU^`cFbFaFbn| ^`c6rK^b bLq{bF L^ }FiDklj`hFtcFcF_¢iSFyFtlrLtleLtcFbF F4iSts`yFtcFcF F bL^xaDeLi`gSeLcFtiSD_^`cFbFcF_ tyFiSsObFb cFUtyF(x)bFb Fi>bFpjStkls`cFiS_p^`jSbLklbL4iDkls`bFtyFbFi~rK^ T i~rLcFi` «¤ ý§bLk`Y
SSY S¦Y ^xrK^\L^OkljSi~rLbFsSkh a yFt{tcFbF bFcFs`tyL^xeLgScFiSiUyL^`jScFtcFb6h E ~¹i
zz{3±
¸í
æ ~ç
G
Ñ
¯ 0
√
T (E) = 2 2m
X(E) Z
p
dx E − U (x)
,
(11.2.1)
rLt tkls`g.aDiSyFtcFg UyL^`jScFtcFb6h ¤ÅrFeFhFyFiDkls`iSs`kl\FbFs~^`t!Fi` s`tcF FX(E) bL^xe?\Fts`cFiS_2qUcFaF FbFt_n}D4iScFiSs`iScFUcF(x)ijSiS=pyL^SEklsx^`]t_Fi4tyFt]rK^xeLtcFb6h iSs 0
#o 5 0!>x x M'>x x
` ªÑ \FcLbL^~\F^xeKrL^OyFiSaUSiScFiSi`yD rLrLbFbLcL^`qsD¦tYxyFüqbFcFts`yFttlSyLi~^xrFeLh gSavcFi`bFtZcFUs`yLt^`yFjScFbFtyFcFiSbFjDt^`cFbFBFi2FtyFt4tcFcFiS_ U }LFi`eLD &¥ Ã
Æ
1ô Çâ
√
T (E) = 2 2m
ZE
ã
√ dX(U ) dU √ = 2 2mπ dU E−U
1/2 0
E X(E),
bFu cFvs`tltD^`yFcFbFbFyFaFiSbnjD^`|FcFm bFt]aUiSs`iSyFiSiFyFbFjSi~rLbFsa?qiSyL4~eLt¤ ~6Y S¦fcL^k`Y 66iD8hFcFUs`iS_ 0
'
G
X(U ) =
1 √
2π 2m
ZU 0
T (E)dE √ . U −E
§bLk`YnSSY 6m »Y;IY7*,+EJE)#.BY#&-+%#"¬Ø òòñ ôxñ òBÚ¨ñ ý
§bLk`Y
SSY Fm Y;IY72,+EAaV)+QREB9+;Ø òòñ ôxñ ôÚ¨ñ ðyFUl^xh2iSSyL^`s`cL^xh2p^xrK^~\L^4tlU^`cFbFaFb2dOiSFyFtlrLtleLtcFbFtqFiSs`tcF FbL^xeL^jSp^`b6 4i~rFt_Lkls`jSb6h>bFpaUklFtyFbL4tcFsx^xeLgScF2rK^`cFcF?FiyL^SkkltlhFcFbF\L^Skls`bF kZp^xrK^`c6 cF°SiSS_.Y ª>cFaFtcFyFbFbFb t_ E¦[Y düqklyFj`iShFpt ^`cLjD^ kltk ivyFt{sx^ tcFpbF^xtrK^~\LbF^vcFs`qtiSyLyL4^xeLgSeLcFbFiSyFSivtsSUk¨yLhW^`jSjcFftcF^xb6eLhiSU eLqiS¤¥jSkiD Y FyFbF`eLb6tcFbFbnY üqDkls`g?FiSs`tcF FbL^xeLgScL^xhcFtyFb6h\L^Skls`bF FBj?Fi`eLtyL^SkkltbFjD^`z ti. FtcFs`yL^ U (r) < 0}Ö4iScFiSs`iScFcFiWjSiSpyL^Skls~^`ts Fi4tyFtv~rK^xeLtcFb6hiSsWc6ti ý
@ *
+´x + ª6M'>>x Ub eLbLiDkl\FtyLp^`^Stks>kltlcLhF^?cFb6Sh tklθaUiSbOcFFtyF\FbFcF FiDtlkleLs`gSbncFm zU(r)L^`→yL^S40tFs`yFyFbiD rx →Sj ∞yL^xYnO©n^`iSt sSrKkh^>qklj`iShFyLp4g ~4eLiStlO_ rL " >
ã
0
x θ(x) = E
Z∞
dU dr √ . dr r2 − x2
(11.2.2)
iSyL4eK^Osx^ FyFtlrKkls~^`j`eFhFts2kliSSiS_>FyL^`jSiDkls`iSyFiScFcF]¡Fi`eLUFyFiSbFpjSirLcFUB^x FUs`i FiOFtyFt4tcFcFiS_ x m x
+
2
θ(x) 1 = Θ(x) ≡ x E
Z∞
√ dU dr2 π √ = 2 2 2 dr E r −x
]SyL^`tcFbFtZs`iSi kliSiSs`cFiS{tcFb6h?rK^`tsFi`eLUbFcFs`tyL^xe x2
E U (r) = √ π
r2
1/2 2 ∞ Θ(r )
2E = π
Z∞
1/2 x2
∞ U (x
θ(x)dx √ , x2 − r 2
2
).
(11.2.3)
kliSjSL^xrK^`]bF_kqiSyL4eLiS_ ¤ SSY ªD¦
aFcFbFlb=æYü^`j`eLtcFaUi Y ^xDi~rFhbFpUyL^`j` cFtcFb6h · ¸ dσ 1 dx = 2 d cos θ dΩ aUkl qUcFaF FbF }ÖiSSyL^`^xhttbFirKklsx^`j`eFh6hHj£qiSyL4eL¤ SSY 6Y D¦}§Fi`eLU\L^`t bLklaUiD86¡qx(θ) UcFaF FbF U (r) Y & ³Û # kls`b FiOüqpi^xrK^`iScFyFcFbFiDp4iScF2sxp^x^`eLaUgSiScFcFiS _OVFiS(t)jStyDj`6rLcFi`iDeLklgOs`iDb klzb =Ox0 j`rLhFjSpb6aDiSt_ sScFkh>tkS i`bLeLfgS{^`tb642iSyL_ ^` p4b6trLyFaDiSi`j 6eK^Skls`bFcL^F}UUj`eLta6^xh2p^kliSSiS_?keLiSb2 bUrLaUiDkls`b.«¤ ý§bLk`Y¬SSY U¦Y ðjSb6tcFbFt] b6rLaUi` kls`b iSFbLkljD^`tsSkh?UyL^`jScFtcFbFt ^`jSgStl s`iSaUk^ r
(
2
zz{åä
8¶~éïéï³
ç|
BçB|
'
ρ
∂2v ∂v = η 2, ∂t ∂z
0 < t < ∞,
−∞ < z < 0.
rLtklg d]6eLiSs`cFiDkls`gz b6rLaUiDkls`bn} dZttÖj`hFpaUiDkls`gL} dqklaUiSyFiDkls`g b6rLaUiDksSb `j rLi`eLgρiDklb Ox cL^ eLUSbFcFt z < 0ηj 4iD4tcFs t Y v(z, t) \Fs`i bFcFüqs`tyFtlyLrL^xFeLi` eLi~ UbFyFjLgS}§t \Fs`i£jWrK^xeLtaUiDFyFiS{eLiD! b6rLaUiDkls`g£FiSaDiSb6eK^SklgL}Ös~^`a
ª+
ve(z, ω) =
Z∞
−∞
eiωt v(z, t)dt
&¥ á
ܳ
$5x § *ã>
+´U
ã 5
§bLk`YnSSY Lm »b2.B,5.*W#&dN+95.!0*$%+#&X5.N#!Y7&*)of/#0*$%6Yo"b-?/!Hug%+,#?/0*$%Kñ kSi~rFhFsSkh.FyFbWjDkltl }nbW\Fs`icL^ StklaDiScFt\FcFiS_.eLUSbFcFtO b6rLaUiDkls`gjDkltOjSyFt8h FiSaDiSbFsSkhn}FrFeFhs`yL^`cLzkliSyFf^`cFs` UyFgStFi`eLU\FbLiSSaFcFiSjStcFcFiStZrLbLqtyFtc6 FbL^xeLgScFiStZUyL^`jScFtcFbFtqjSs`iSyFiSiFiSyDh6rLaU^ ý
'
µ+
kZyL^`cFbF\FcFz4b DkeLiSjSb6hL4b
(−iω)ρ ve(z, ω) = η
ve(0, ω) = Ve (ω),
d2 ve(z, ω) dz 2
[4rLiSj`eLts`jSiSyDhF]ttZs`bLSkeLiSjSb6hLyFt{tcFbFtbL4ttsOjSb6r ve(z, ω) = Vb (ω) exp
ve(−∞, ω) = 0. ³p
´ −iωρ/ηz .
ðbLqtyFtcF FbFyFxhti.Fi bHjSjSirFhHkrFjSbFiSjSiSt>cL^`FyDh6tlcFbFt¤¥klb6eL£s`yFtcFb6hn} Lr t_Lkls`jSU]UcL^?tlrLbFcFbF 6z 6eLiS^xrLb6eLiDklaUiDkls`bK¦ σ(z, t) = η∂v(z, t)/∂z }TFi` eLU\FbLm √ σ e(z, ω) = ηde v (z, ω)/dz = (−iω) ηρ ve(z, ω). ûÖs`iOiSpcL^~\L^`ts~}6\Fs`i 1/2
σ(z, t) =
√
ηρ
Zt
Φ1/2 (t − τ )
∂v(z, τ ) √ dτ = ηρ ∂τ
(1/2) (z, t) ∞ vt
(11.3.1)
Kr ¤ jB^`]sxsD^`¦aDY iS_*FiDksx^`cFiSjSaUtFyFiSbFpjSi~rFcFt¢^`FUs`i¡b ý§bLf^`cL^x bFUjSb6eFeFh/kliSjSL^x bFpbF\Ftkla6^xhbFcFs`tyFFyFts~^` Fb6h¡s`iSiyFtp~eLg~sx^`sx^£p^`a6eL]\L^`tsSkhjHs`iD} \FtsSs`kihOcLyL^`^S`kleLFyFrKtlrL^`ttl4eLtiScFtbFjt4iDkl4aUtiScFyFsiDkjSsSyFtlt_4 tcFb6b rLaFt b6jOs`\LiS\F^SklaUs`t bF(x, n}`Fz)yFb6cLD^`i6rFyDhFh6b6tcFbFbFtzpiSiSFaFyFyFtltrLkls`tle6cFh6i` kls`brLyFUiS_s`iS\FaFbOs`iSikeLi~h (x , z) }`rLtiScFbcL^xDi~rLb6eFbLklgL}`kla6^xt}`j4iD4tcFs YKXklb6eL>sSyF^`cLkeFhF FbFiScFcFiS_bFcFjD^`yFbF^`cFs`cFiDkls`byFt{tcFb6hviSs`cFiDklbFs`tleLgScFi x } t
+
0
0
+ ´` + ª6M'>>x aUsx^`taDcLiS^`t`eLtrLyLt^ScFklb6FhyFtl(x,rLtleLz)tcFYbFûÖt]s`kli aDiSbyFiDtklkls`s`g t_OFjyFiDkls`s`iSts_F4{iDbF4_.tcF4s2tlD¤ t^`cF¦8bFbLp4
ã
0
(1/2) ∞ t
dV √ = F (t) − S ηρ dt
(1/2) . ∞ Vt
cL^`pjD^`cFXiUaFyLcF^`bFjScFmt tcFüqbFi~trFeL]«ScF eLiSb6i ©niSyFjSklbFi£aU^Fk}Fkli~rLeLcLaU^`iSaD_j]rLj`jShFb6paDiSt_cFb6klh yFtl{rLtZ^`yL¤Å ^b6frL^SaUkiDkliSkls`_ bnm}x^`b>ptSyL}^x6rLeKbF^`Dpk4^ t~a¦ bL4ttsOjSb6r dV m rLtklb6eK^OkliSFyFiSs`bFj`eLtcFb6h W (t)dtrK^`=tsSk¨Fh (t)÷-+ô+ÿ Wx(t),÷ q +ø!ø ñxò!ø Fm (11.4.1) m
'(
Â
s| ~|
zz{/ë
*
'
î ï~,~
ì,,~𳶷~|
}·
|~
_
4* *M
.4
0
0
dV (t) 2 − W (t) = −6πηaV (t) − πρa3 3 dt r Zt 1 dV (τ ) ρ 2 √ −6πηa dτ. πη t − τ dτ
(11.4.2)
qkliDtklyFsxjS^`j`eF_hF\6]eLtcUplrLkltiSkgqFyFFiSyFs`tbFrKj`kleLsxt^`cFj`eFb6hnhFt}ns kliSiS÷-s`ô+jSÿ tsSkls`jS6ð ]ùJ÷ +Uø x}xcLjS^xs`eLiSbFyF\FiS_bFÔdqbFó/cFô txyFøB F÷obFò iScFñxcFòBUñ ñ÷ »ÿ /ø!øBõ*{^`yL^F}s`yFts`bF_FyFiSFiSyF FbFiScL^xeLtcrLyFiSScFiS_FyFiSbFpjSi~rLcFiS_FiSyDh6rF a6Ö^vkeLxbvV` rLi2´ cLxY ^~üq\L^xi~eLrKgSklcFsx^`iSj`eFi h64hWiD4¤ StScFY Lsx^ Y S¦j¤ SSs`Y tlLeLY ~i?¦}F6FiSaUi`eLiSb6UeL\LiD^`kltgL}FUcFyLb6^` jScFcFbFtcF_bFFtyFrLtljSrLb6tletj2cFFb6i`hn Y keLtlrLcFt/bFcFs`tyL^xeLt 4i~ cFi£p^St4=tcFbF0s`g£cF~eLt/b
ü
4*4
* 3
*M
'
5
"
'
µ
2 m + πρa3 3
¶
dV (t) √ + 6πa2 ρη dt
β 0
tV
+ 6πηaV (t) = F (t),
β = 1/2. (11.4.3)
ªf6#xN1Òm[ x
=&>xx
+ ´ ^`a k¦ eLtl\LrL^SSklts`sgb6tpi<sxyF^UtS{ttyFc6iSb6jSh iS_ sStliSyFt4}v eK^`jSrLcLiS^xj`h eLt^Ss`kljSbLiS8yDhFFts`sHiSsSUb6aD\FiStyFkla6iS\F^xhtcFcF¤ iDF4yFb t→∞ UyL^`jScFtcFbF¡kZtlrLbFcLkls`jStcFcFiS_ FyFv(t) iSbFpjS≡i~rLcFViS_2(t)rLyFiSScFiSiFiSySh6rLa6^ &¥ ÿ
÷
1 ##xx
as
β 0
UrLyLt ^`jSmcFtcF} bFbtOb ¤ SSβY LdY U¦§Fi`FeLyFit jSyLbF^`s`tleL^`gStcFsSkh>tvjOFiSiDSkls`i~\FhFcFcFiScFtZcFtSgSY ]s`^SiS4cFtiSs`jSbLiU}§yL\F^`s`jSicFtlFcFyFbFb tZrLβjSb6→tl1 cFb6h s`tleK^Fi~r>rLt_Lkls`jSbFt^`aFs`bFjScFiS_vklb6eF F (t) bvklb6eLkliSFyFiSs`bFj`eLtcFb6h −bv Y
76 ¢ X fyL^Skkf^`s`yFbFjD^`tsSk¨hp^xrK^\L^2i>L^xrLtcFbFbs`tleK^?j ^`sS4iDkqtyFtS}KiSFbLkl jD^`t4iSt]rLyFiSScFi` rLbLqtyFtcF FbL^xeLg`cFz^`cL^xeLiSiDUyL^`jSc6tcFb6h qgS]s`iScL^ mβ
β
+ bv(t) = F (t),
(11.4.4)
' '
s| ~|
zz{
tv
ì,,~𳶷~|
Â,~
w
β 0
^~\L^`jkqFyFiDkls`t_F{ti keLU\L^xh?d iSsSklUsSkls`jSb6hvklb6eLkliSFyFiSs`bFj`eFtcFb6hn} mβ
^`jSs`iSy>Fi`eLU\L^`ts
mβ
b
tv
β 0
+ bv = mg.
tv
= mg,
(11.5.1)
mgtβ mβ Γ(1 + β)
v(t) = v0 +
x(t) = x0 + v0 t +
(11.5.2)
mgtβ+1 , mβ Γ(2 + β)
(11.5.3)
rLt v d cL^\L^xeLgScL^xh>klaUiSyFiDkls`gL} x d cL^\L^xeLgScL^xh?aUiSiSyDrLbFcL^`s~^FYFXb6rLcFiL}6\Fs`i FyFb f¤ ^xeL tFyF¤ tb < 1¦4rLyF¦iS}KSs`cLiS^x h rK^OFyFa6iS^`avbFpFjSyFirLbcLS^xi`hOeLrKgS^`{tlb6s? d?i`eLcFgS^`{iSDS
0
E
β
aFbFcFts`bF\FtklaU^xh>kliDkls~^`j`eFhF]^xh aUiSs`iSyFiS_ jSyL^xO^`tlsDk¨h \FtyFtpOu~bL4FeLgDk`|iSS\6 cFzkliSiSs`cFiS{tcFbFt Eβ = Kβ + U,
Kβ =
p2 . 2mβ
(11.5.4)
(11.5.5)
üqiDkls`i~hFcFcL^xh cFt?bL4ttsyL^`p4tyFcFiDkls`b£f^SkklY qs`iSS bL4tleK^yL^`p4ty6 cFFiDiOkljSs`yFg?t4cFttcFyFbn}FbFSmbn}¬eL^2b>bLbL4klFFi`eLeLgDgSkpiSSjD^`ecFFyFjSiSFyLiS^xyF FbFtiScFcLb6^xh eLtcvFyFiSbFpjSKi~rLcFiS_vaUiSiSyDrLbFcL^`s` ?=
β
β
pβ = m β
ν 0
t x,
Kβ =
mβ [ 2
ν 0
x] . 2
(11.5.6)
ª6M'>>x
+´
"+>
*'
ã
¤ SaUSiSY 6yFY iDSkl¦ s`g ¤ S`bFY UpY 4ªD¦§tcFbLt4cFtb6th sOjSb6cFr tyFbFbn}cL^`_6rLtcFcL^xh k bLklFi`eLgSpiSjD^`cFbFt qiSyL4e
rLt
dE mβ µv02 t−β mgv0 m2 g 2 t β = + + − mgv, dt [Γ(1 + µ)]2 Γ(1 + µ)Γ(1 + ν) mβ ν[Γ(ν)]2
µ=
1−β , 2
ν=
(11.5.7)
1+β . 2
^S4ts`bL}~\Fs`i]aFbFcFts`bF\FtklaU^xhcFtyFb6hs`tleK^zjSiSpyL^Sklsx^`tlsx}^zklaUiSyFiDkls`gzjSiSpl yLcFb6^Sklhnsx}Ö^`pcF^.b6hbLklFa6i`eLeL]cF\FiS_tcFbFcFttyFkbFeLb U\Ls`^xtlhneK}Ö^>aDcFiStO rKF^.yFiSjWFiScLyF^~ F\LbF^xiSeLcLgS^xcFeLgS_HcL^?4kliDaU4iStyFcFiDskls`jSbyFtt4i?tcFrLbHjSb6s`tleLtli FiSaUiSb6eFiDklgLm
· ¸ 1 m2 g 2 1 dE = − tβ , dt mβ ν[Γ(ν)]2 Γ(2ν)
v0 = 0.
üqyFb b qiSyL4~eL¢¤ SSY 6Y S¦}6¤ SSY 6Y D¦nbv¤ SSY 6Y ´`¦nFtyFtlDirFhFs jDiSyFiS{ibFβpjS→tkls`1cFtqmjS=yL^xmtcFb6h>a6eK^SkklbF\FtklaDiS_ 4tlU^`cFbFaFbnm
1
v(t) = v0 + gt, x(t) = x0 + v0 t + E=
gt2 , 2
mv 2 − mgx = const. 2
lk aUiSyFiDk[]sSb \Ftb saUkliSb6iSeLyD£rLb6kliScLF^`yFs`iSs`bFLj`^xeLrLt^`cFZb6htFyFi bFFjSiOirLrLbFyFsZiSaOScFki`eL tlrFrLbLU]qtbLyFtcFjS FbLyL^x^xeLgScFtiScF4b62hL p^`rFaUeFi`h cF?s`tleL^Fm v(t) = v0 Eβ,1 (−(b/mβ )tβ ) +
b
mg β t Eβ,1+β (−(b/mβ )tβ ), mβ
x(t) = x0 + v0 tEβ,2 (−(b/mβ )tβ ) +
mg 1+β t Eβ,2+β (−(b/mβ )tβ ). mβ
üqyFiD^`cL^xeLbFpbFyFiSjD^xj a6klFtyFbL4tcFs` k L^xrLtcFbFt{tkls`bH\FtleLiSjStak jS lrLk iSbLs` qtFyF tcF FDSbL, FyFbF{tleÎaÎjSjSi~rLS}W\Fs`irLyFiSScFi` ^xeLgSqcFUs`_ iSjLF}irF^`DjSi~s`rviSy Fy6b klsxβ^`s`=gSb 0, 998 b cFt6DtiSFb6 kljD^`tszaUklFtyFbL4tcFsx^xeLgScFtp^`jSbLklbF4iDkls`b x(t)}~m/m \Ftva6eK^S=kkl1,bF\F457tkaFbF_nYoüqyFbF\FbFcF s`iSi ^`jSs`iSy>cFtqFi~hLklc6hFts~Y ¾'
β
&¥
{f6#xN1Òm[ x # ܳ 76 ¢ ÷
s| ~|
zz{
1÷x$ §5x
1 # Æ
+´`
ÂÛ
ì,,~𳶷~¹
é|ð¶¶|
s`iSa6kiSüqjSi tyFkteK_6^`rFhH^`t4jWiSUtZyLb>^`jSrLcFiStDcF^`bFjSbbFj¤ SaFSjDY ^`LpY DbF¦UFiSyFsUklaDUiSyFiDklb6kls`eLbHS}FaFi`aUeLiSUiS\FySbLrL£bFcLU^`yLs`^`tSjS}§cFiStFcFDbFklt s`bFj '
Q
£
2 t
α 0
¤ + b x(t) = f (t), a, b > 0, α = 1 + β,
iSFbLkljD^`]ttrLjSb6tcFbFtZiDkl Fb6eFeFhFs`iSyL^F}DcL^xDirFhFtiDkh Fi~r2rLt_Lkls`jSbFtUFyFD kliSyF_tlr
klY b6§eLi2qb£UklcFb6aFeL Fb6h s`yFntyFcFbFb6cLh^ rFyFiSScFjSiSivyL^xs`ObFL^`^FtsS}
kUh>^`yL\F^`tyFaFts`ptyFqcFUiScF_ aFrF FeFbFhb j`s`hFbFpLaU^ iSvUFbFyFs`Usx^`bUl tZeLtyL^j¤ ÑFY ÑFY D¦Y¬X Ñ fcL^`G(t) _6rLtcFi?rLyFUiStOttFyFtlrKklsx^`j`eLtcFbFtS}¬Si`eLtt~rLiSScFiSt rFeFhv^`cL^xeLbFp^Fm G(t) = G (t) + G (t), rLt $
+a
t
C i
G
1
2
G1 (t) = Ce−σt sin(Ωt + Φ), Z∞ rα e−rt dr a sin(πα) G2 (t) = . π (r2 + ar α cos(πα) + b)2 + (ar α sin(πα))2
Ly ^`jScFbLóFi`eLU\L^`t4tFyFb s`iD yFtpeLgxsx^`s` k,a6eK^SkklbF\FtklaFbL4b ¤ ν = 1¦ Y(üqyFb a − 4b > 0 b ν 6= 1 a6eK^SkklbF\FtkaUiStaUklFiScFtcF FbL^xeLgScFiSt p^`s`DU^`cFbFt]rLiSFi`eLc6hFtsSkh>Si`eLtt4tlrFeLtcFcFiS_ aDiD4FiScFtcFs`iS_vkls`tFtcFcFiSiOs`bFL^ 0
Â
2
G2 (t) ∼
a sin(πα) Γ(α + 1)t−α−1 , πb2
t → ∞,
F iSyFiOrK^`t4iS_?rLyFiSScFiS_>FyFiSbFpjSirLcFiS_nY USjD^`]üqyFb t_ aFiv−4ba6klF
$G
!
zz{
²
³
Bç³´ç ¶ïéç
î í.ç|æ
|³¶
X
ª6M'>>x
+´xª
"+>
ã
§.!0-bL%#k`QRYZN#S$7S$Y 6%#m ?.D} )+Ø ^!$7#)!%+i«fo,+!%5YoaV.!"6a(&*?+)+)&-%++KYo+.!%5"#.BÚ¨9+ñ :+;IHk0-K+%+9+9#"$7)Ø 0-N+9+7V5.!"½?+)%+Yo.!"#Úd%k&-O2 eLbF{gU\Fts`iDj`hFpaUiDkls`b?b>FyFtcFtSyFtl^`]s\6eLtlcL^S4bn}FU\FbFs`jD^`]bL4b>FyFtlrFzk s`iSyFbF(rLjSb6tcFb6hb¢FyFbLkliStlrLbFcFtcFcFU#f^SkklS}b¢\Fs`iHs`iFyFihFj`eFhFtsSkh¢FyFb klyL^`jScFtcFbFb yFtp~eLg~sx^`s`iSjyL^Skl\Fts`iSjkza6kFtyFbL4tcFsx^xeLgScFz4b2rK^`cFcFz4b ~6}Lª } ^`jSs`iSyF¢yFt{^`]sp^xrK^~\F?kZU\Fts`iD£j`eLb6hFcFb6h FyFtlrLzksSiSy6bFbnY üqi`eK^`l^xh>klaDiSyFiDkls`gOl^`p^ ý
Â
³
v (t) = v0 + Aω sin ωt,
>abvrLFyFtyFiStlSScFi~i`rF bFh cFavs`tSklyLaU^xiSeFyFgStcFcFiDbF4 WUyL(t)^`jScF=tcFVbF˙ (t)¡X}FiSi`cFeLbvgxs`FtyFyFyFbFjSirFÖhFs yFi~UrKyL^^`jSiScFs`cFtcFiDbFklbFtqs`rFtljSeLb6gScFiLtmcFb6h ¯Ò3Ò
W (t) + α
kZFyL^`jSiS_>\L^Skls`gS
2
Zt
2β W (τ )dτ + √ π
0
Zt 0
W (τ )dτ √ = f (t) t−τ
2β f (t) = α (v0 + Aω sin ωt) + Aω cos ωt + √ π 2
2
Zt
Aω 2 cos ωτ dτ √ . t−τ
qiDkls`i~hFcFcFt b klj`hFp^`cF
ü
0
α2 =
9η , 2 2a (ρ + ρ0 /2)
β=
√ 9 ηρ0 . 4a(ρ + ρ0 /2)
&¥
%h´ & ã $§_ã
Ì&x R
$ §_¬"ã"õ$5ôx&1ã>â
qyFtiSSyL^`piSjS^`cFb6t ^`6eK^Sk^ ü
+´´
1
ˆ (λ) = W
FyFbFjSirLbFsOa s`yL^`cLkqiSyLf^`cFs`tqjSb6rK^ ˆ (λ) = W
rLt
Z∞
e−λt W (t)dt
0
λfˆ(λ) √ = A(λ)fˆ(λ), λ + 2β λ + α2
λ1 + α 2 λ λ + α2 λ 2β A(λ) = − − λ1 − λ 2 λ − λ 1 λ − λ1 λ − λ1 λ1 − λ 2
rLtklg
λ1,2
d aUiSyFcFb>s`yFtl6\6eLtcL^
Ã
√ √ ! λ1 λ λ2 λ − . λ − λ1 λ − λ2
}FyL^`jScFt
(λ + α2 )2 − 4βλ p = [β ± β 2 − α2 ]2 .
] aUiScF\F^`sSteLgScFiStÖjSyL^xtcFbFt§rFeFhklaDiSyFiDkls`b\L^Skls`bF F}cFtFi~rLjSb6 cFiS_j]cL^~\L^xeLg` cF_v4iD4tcFsOjSyFt4tcFbn} λ1,2
V (t) =
bL4ttsOjSb6r V (t) =
Zt
W (τ )dτ,
0
"
p
1
Ã
# ! √ √ 1 eλ1 t erf( λ1 t) eλ2 t erf( λ2 t) p p + 2 f (t). − α β + β 2 − α2 β − β 2 − α2
ûÖs`iyFt{tcFbFt]rK^xeLtt]SeLibLklFi`eLgSpiSjD^`cFiqrFeFh>iS 6tcFaFb?FyFtlrLtleLgScFiSiyL^x rLbFDkl^a6^`FtleLgL}lDkls`iS_F\FbFjSZaaDi`eLtD^`cFb6hLY^`6eFhkli~6yL^`c6hFtskljSiSUeLiSs`cFiDkls`g pcF^?t_ kl\Fts rLt_Lkls`jSb6hjScFUs`yFtcFcFb64i`eLtaF~eFhFyFcFklb6e
YTXc66s`yFtlcFcFttrK^`j`eLtcFbFtj FyFiSFiSyF FbFiScL^xeLgScFiFiSjStyS6cFiDkls`cFiD42cL^`sh6tcFbF σ } p 2
β 2 − α2
^kl\FtsrLt_Lkls`jSb6h?klb6eL
a
µT¶
=
r 4
27 ησ . 8 Aω 2 ρ2
(11.7.1)
+´x + ª6M'>>x 4]bn FYStcF©
a6^`^an}xFsx^zyFbOrL\LiS^Sj`kleLs`tiSs`s`jStqiS~yFzbFs`a tlneL gScFbi]pjSkliSUaUeKiS^SjSkliDS>tsSrKk^`hj`k§eLtcFaUbFklFb>t~yF bLz4rKt«cFsxq^xeLiSgSyLcF4z~4eK^b¤rKS^`ScFY ´UcFY~¦ rK^`ts>aFyFbFs`bF\FtklaFb6_WyL^xrLbFSkaU^`6eLb D>4aL}¬s`iS rK^?a6^`a aUklFtyFbL4tcFs FiSa6^`p jD^xeS4aLY - " >
"C
ã
'
Ä'
zz{
µð|~~³
;| ~¹iæ¯
¸í
|
ï|.~¹iæ¯
]StbFpjStkls`cFiL}aU^`aFU#jD^x c66 yFi`eLgbFyL^`]s£jD^`yFbL^` FbFiScFcFtFyFbFc6 FbFF,jkliSjSyFt4tlcFcFiS_Bs`tiSy6ts`bF\FtklaUiS_!qbFpbFaUtSYqXjStlrLtcFbFtWrLyFiSScFFyFiSbFpl jSj i~yLrL^ScFkk4iSFs`iSyFptjScFi`bFeFt hFtcFs?taUtliScLtOkltSyFi`jDeL^`ts`tbFyLjS^ScFkl{t>bFklyFbLbFkls`s`gvt4kqVYtyFûÖvs`i.b6iDklFiSyFSbLt4cFtcFcFitcFcFb6thniS~}nDjSia6rLeLbL]4\Fi bFjj rLkljSyFtiSs`StcFFi`yFrLiSbL`eLtq8tyFtbFcFcF Fs`bLt^~yFeLFgSyFcFtiSsx_?^` F4bFtlb U^`rLcFbFbFcLaU^StS4Y bF\FtklaFb6>FtyFt4tcFcF Fty6t4tcFcF j üqyFiDkls`t_F{^xhWjD^`yFbL^` FbFiScFcL^xh.p^xrK^~\L^vjSeFh6rLbFskeLtlrLU]bL¡iSSyL^`piDY jSz4bvbvjSs`i` üqDkls`g2qUcFaF Fb6h yFz4b \L^Skls`cFz4b2L(q, FyFiSbFu,pjSv,irLt)cFzcF4tFb yFFtiyFjDkljStcL.^OkljDjS4iStbLkl s`t^`klyFi26kl4jStiScFbLs~4^Sb F}Dt^ yF{q(t)} d8cFi` tkls`jSi qUcFaF FbF_ cL^ [a, b] kcFtFyFtyFjSc6z4b eLtjSz4b b FyL^`jSz4b FyFiSbFpjSi~rF cFyLz^`4cFbbF\FFcFiSzyS£h6rLDaUkiSeLj iSjSαbUhL∈ (0, 1] b β ∈ (0, 1] kliSiSs`jStsSkls`jStcFcFiL}n~rLiSj`eLts`jSiSyShF]b6 © FbFyFiStcLS^xSetsSk¨hWcL^`_Fs`b.sx^`aFUqUq(a) cFaF FbF=/q bF,p q(b) s`iS=ivqklt.4t_Lkls`jD^F}ncL^ aUiSs`iSyFiS_.qUcFa6 S[q(·)] =
Zb
(α)
a
b
(β)
(β) t qb
L(q(t), a qt , t qb , t)dt,
≡
t
β b q,
FyFbFcFbLf]^`StiSsOpcL^~a6\Fkls`bLyFWtf\Ft^xyFeLtgSp cFiStqpcLbL^~kl\FaDtiDcF4bFUtSBY qUcFaF FbF¡b FyFtlrKkls~^`jSbL a
q(t)
(11.8.1)
q(t)
jOjSb6rLt
rLt ² d.FiDkls`i~hFcFcL^xhn}fkliSiSs`jStsSkls`jSU]^xhjSSyL^`cFcFiS_qUcFaF FbFbklt4t_Lkls`jD^F}§^ tDkeLiSjSb6hL}6\Fs`Y4i XbFq(t)i`eLc6}Lh6qh.UrLcFyFaFiS FSb6cFhviSkqt cFrLbLeLtjSqtl η(t) 4bd2yL^`cFrLbFiS\Fj`cFeLzts`4jSb£iSyDShFk]eLiSjS^xb6h?hL4s`tb £η(a) yFqtUcFcF FaFbF FyFbFiSiSjDcL^`^xcFeKbF^FtZ}UqFi`UeLcFUaF\F FbLbF£b.t¤ SiOSY Fa6Y^`Sa ¦fb?q=UFcFi~η(b) raFK Fkls~bF^`¡j`=eFLh60^`h?yL^SyF4tpts`eLyLgx^ sx^`m sjjSyL^xtcFbFt]rFeFh ² q(t) = q(t) + ²η(t),
S(²) =
Zb a
(α)
L(q + ²η, a q t
(α)
(11.8.2)
(β)
+ ² a ηt , t q b
(β)
+ ² t ηb , t)dt.
&¥
!>x
ÅV"÷xxxx$§
# x&xx #5
$ô Â
Æ.â
+´oÑ
Æ.â
qtiS~Si~rLbL4iSt]DkeLiSjSbFtZa6kls`yFt46f^Os`iS_vqUcFaF FbFb
dS(²) = d²
Zb "
# ∂L ∂L ∂L (β) (α) η η+ dt = 0. η + (α) a t (α) t b ∂q ∂ a qt ∂ t qb
(11.8.3)
qo cFs`tyFbFyFiSjD^`cFbFtFi\L^SklshL¡FyFtliSSyL^`pStjSs`iSyFiS_bs`yFts`bF_bFcFs`tyL^xeF*a jSb6rL a
Zb a
Zb
∂L
(α) η dt (α) a t a qt
∂
∂L
(β) η dt (β) t b t qb
=
Zb à a
=
Zb
Ã
∂L (α)
∂ a qt ∂L
! !
a
α t ηdt
=
a
Zb "
∂L + ∂q
a
t
α b
Ã
α b
Ã
(β)
∂ t qb
t
β b ηdt
=
!
∂L (α)
t
α b
Ã
β t
Ã
a
qi~rKkls~^`j`eFh6h>6i`eLU\FtcFcFtjSyL^xtcFb6h>j¤ SSY FY D¦} ü
∂
Zb
+
a
β t
Ã
β t
Ã
Zb
a
a
∂L (β)
!#
∂L (α)
∂ a qt
!
!
∂L (β)
∂ t qb
ηdt,
ηdt.
ηdt = 0,
bU\FbFs`jD^xhqFyFiSbFpjSi`ejjSSiSyFt η }6yFb6Di~rLbL>aqrLyFiSScFiD4Z^`cL^xeLiSzUyL^`jScFtcFb6h ûÖ_6eLtyL^x ^`yL^`c6^Fm a
∂ a qt
∂ t qb
∂L + ∂y
t
∂L
!
+
a
∂L
!
= 0.
(11.8.4)
qyFb α = β = 1 iScFiFyFtjSyL^`^`tsSkh jiSS\FcFiStzUyL^`jScFtcFbFtûÖ_6eLtlyL^x ^`yL^`c6O^ ¤ cL^`FiD4[]cFyLbL^`jS}FcF\Fts`cFi bFt]¤ SS=Y FY Ud/dt ¦KeLt}FcFaDi]i iSS iSS=^`−d/dt) tsSkhqcL^zY keLU\L^`_qUcFaF FbFb ^`yL^`c6O^F} p^`jSbLk¨hFt_>iSsOcFtkaUi`eLgSaFb6?FyFiSbFpjSi~rLcF2aUiSiSySrLbFcL^`s`} ü
1 t
a
t
'
n
∂L X + ∂q j=1
(α)
∂ a qt
t
αj b
Ã
S[qj (·)] =
1 b
∂L (αj )
!
+
X
(β)
∂ t qb
∂ a qt
m X
a
k=1
βk t
Ã
∂L (βk )
∂ t qb
!
= 0.
qj (t)
³ ´ (α) (α) (β) (β) L q1 , . . . , qn ; a q1,t , . . . , a qn,t , t q1,b , . . . , t qn,b ,
UyL^`jScFtcFbFt6ûÖ_UeLtyL^x ^`yL^`c6O^FyFbFc6bLf^`ts jSb6rvklbLkls`t4UyL^`jScFtcFbF_ a
∂L + ∂qj
t
α b
Ã
Ä
∂L (α)
∂ a qj,x
!
+
a
β t
Ã
∂L (β)
∂ t qj,b
!
= 0,
j = 1, 2, . . . , n.
(11.8.5)
`S
3
e
zz{
³Û
ª6M'>>x
"+>
ã
毶·¸|~~´ç,~| d.æ¹
t4iS_cL^S4eLtlbrLi`rLhOcFyLiD^`4StiSyFs`cFt iS_~kbL}xkliSs`FtyF4tlrLtlk§eLeKbL^` yLiS^`Sc6iS SbLt^`cFcFc6iDt}bLrL4iSFj`eLeLtgDs`jSklHiSyDyLhF^S]kkfbL^` s`yFUbFyLjD^`j`^x cFtcFbF*¤ SSY FY S¦}6kliSiSs`cFiS{tcFb6hL4b
*
b jSjStlrLt^S4b6eLgxs`iScFbL^`c
pα =
∂L
,
(α) ∂a q t
(α)
+ p β t qb
(α)
dH = pα da qt −
+
∂L
(α) q (α) a t ∂a q t
(α) a qt dpα
−
− L. (β)
+ p β d t qb
∂L
(β) q (β) t b ∂t q b
(11.9.1)
(β)
∂t q b
(β)
§i 6i`eLcF_>rLbLqtyFtcF FbL^xe bL4ttsOjSb6r H = p α a qt
∂L
pβ =
−
(β)
+ t qb dpβ −
∂L ∂L dq − dt. ∂q ∂t
üqi~^`rKyLkls~^`^`c6j`OeF^>h6h>¤ SklSY FrKY ^S¦§bLF4yFFtlrLeLgDrLkl¢UbFtp2iO¤ SFSUY ÑFcFY aF~sx¦§^Fb>}6FFi`i`eLeLUgS\Fp`bLhLklm gUyL^`jScFtcFbFtûÖ_6eLtyL^d
dH =
(α) a qt dpα
(β)
+ t qb dpβ +
h
(β) a pβ,t
i ∂L (α) + t pα,b dq − dt. ∂t
(11.9.2)
FbFiSb FiDFkltsxyF^`tj`4eFth6cFhcFs` iSsZq,yFptp, eLpgxs~, ^`t sZk§rLbLqtyFtcF FbL^xeLiD l^S4b6eLgxs`iScFbL^`cL^zaU^`aqUcFa6
α
dH =
β
∂H ∂H ∂H ∂H dq + dpα + dpβ + dt, ∂q ∂pα ∂pβ ∂t
LrFyFbLb6DqirLtyFbLt cF FabL^xeLkgSeLcFtliSrLUi]rLjStb6_ tklcFbLb6klh s`ti4rLt# cFiD4l^St4yFcFb6iSeL_ g~s`kliSbLcFkliSs`jSt4m UyL^`jScFtcFbF_ÎrLyFiSScFi` (α) a qt
(β) a pβ,t
=
∂H , ∂pα
(α)
+ t pα,b =
(β) t qb
∂H , ∂q
=
∂H , ∂pβ
∂L ∂H =− . ∂t ∂t
^`aOjSb6rLcFibFp¤ SSY ÑFY S¦}~rLyFiSScFi` rLbLqtyFtcF FbL^xeLg`cF_l^S4b6eLg~s`iScFbL^`cOcFthFj`eFh6 tsSkhWbFcFs`tyL^xeLiDrLjSb6tcFb6hWrK^xt2jkeLU\L^`tS}
tkeLb.eK^`yL^`c6 bL^`cWc6t?p^`jSbLklbFs iSsOjSyFt4tc6b>hFjScFiLY ðjD^BFyFbL4tyL^6yFbFjStlrLtcF j ~ u Y üqtyFjS_/di~rLcFiD4tyFcL^xhklbLkls`tf^ eK^`yL^`c6 bL^`cFiD L = [ q ] /2, 0 6 t 6 1YzXs`iDkeLU\L^`tiSSiSStcFcFt q *
(α) 2 0 t
;:
[x I R &x
` F bL4FeLgDkl }fl^S4b6eLg~s`iScFbL^`c }fa6^`cFiScFbF\FtklaFb6t UyL^`jScFtcFb6h p q = = qp ,, qp ==00 Y rLtklg β FyFiSbFpHjSi`eL=gScFpiL}¬/2FiSs`iD4 iSaUiSc6\L^x s`tleLgScF_ yFtpeLgxs~^`s 4i~ cFiOp^`FbLk^`s`gOjOjSb6rLt q Y Xs`iSyFiS_HFyFbL4tynm L = h q i /2 + h q i /2 + q q Y rLtklg p = q rLjSb6tcFb6h bL4+tts q jSb6r, p = q + q } H = p /2 = p /2 bWUyL^`jScFtcFbFt 5"â$ #&5xx
&¥¦
(α) 0 t
α
(α) 0 t
(α) 0 t
α
?>
³
" §
(β) t
§
2 α
+
t
(α) 1
毶·¸|~|ï
(α) (α) 0 t 1 2 (α) t 1 t
2
(α) 0 t (β) t 1
β
0
â
β (β) t 1
α
(β) t 1
e
zz{z
&â 1
(α) 0 t
´³
(α) (α) 0 t t 1
2 α
(α) 0 qt
(β)
+ t q1
ì|泶
æ
2 β
´
= 0.
¶
|³¶
X ~ LyL^Skk4iSs`yFtlc b2keLU\L^`_ cFtFyFtlyFjScFiS_2klyFtlrLda6eK^SkklbF\FtklaDiSiFi` Fe h φ(x, t), a 6 t 6 b, c 6 x 6 dY §i.eK^`yL^`c6 bL^`c¤ s`iS\FcFttS}Ö6eLiSs`cFiDkls`g eK^`yL^`c6 bL^`cL^F}LcFi>keLiSjSi.u~6eLiSs`cFiDkls`gL|?4¡rFeFhaFyL^`s`aUiDkls`biSFDklaU^`t§¦zkli~rLty6 bFs>j?a6^\Ftkls`jStO^`yF64tcFs`iSj?\L^Skls`cFtFyFiSbFpjSi~rLcFtiSs φ a6^`aFi>aUiSiSySrLbFcL^x sx^S}Fs~^`a b FiOjSyFt4tcFbnm ¯ *
(α)
(β)
L = L(φ, a φt , t φb , c φ(α) x ,
iSiSs`jStsSkls`jSU]bF_>t4?^S4b6eLgxs`iScFbL^`c>bL4ttsOjSb6r (α)
H = πα a φ t
(β)
+ πβ t φ b
− L,
πα =
(α) x φd ).
∂L
, πβ =
(α) ∂a φ t
∂L (β)
.
« tyDhiSscFtiFi`eLcF_rLbLqtyFtcF FbL^xe
} FirKklsx^`j`eFh6h6eLiSs`cFiDkls`bbL4F~eLg` kliSj
(α) a φt
=
∂L (α) ∂c φ x (β) a πβ,t
∂H , ∂πα =−
(α)
+ t πα,b =
(β) t φb
∂H (α) ∂c φ x
∂H + ∂φ
c
(α) ∗(α) a φt a φt
∂H , ∂πβ ∂L
,
XplhFjeK^`yL^`c6 bL^`c>Fi`eFh>jOjSb6rLt L=
=
(β) ∂x φ d α x
∂L ∂H =− , ∂t ∂t =−
∂H ∂
(α) x φd
+
∂H (β)
∂x φ d x
β d
, ∂H (β)
∂ c φx
∗ 2 2 ∗α − c20 c φα x c φx − µ0 c0 φφ ,
.
ª6M'>>x
` D b cL^`_6rFh>a6^`cFiScFbF\FtklaFb kliSFyDh6tcFcFtbL4FeLgDkl ∗(α) , a φt
FyFb6DirLbL£a l^S4b6eLg~s`iScFbL^`cF πa =
(α)
πa∗ =
, πβ = 0,
(α)
"+>
(α) a φt ,
ã
πβ∗ = 0,
∗(α) + µ20 c20 φφ∗ . − L = πa πa∗ + c20 a φ(α) a φx x
+ πα∗ a φt
üqi~rKkls~^`cFiSjSa6^ti j2a6^`cFiScFb6\FtklaFbFtUyL^`jScFtcFb6h FyFbFjSi~rLbFs avUyL^`jScFtcFb6hL£rLjSb6 tcFb6h H = πα a φ t
πα∗ =
∂H = 0, ∂πβ
(α) a φt ,
πα =
∂H = 0, ∂πβ∗
∗(α) , a φt
b −c ð jD^'FiDkeLtlrLcFb6 UyL ^`jScFtφcFb6hà 4i~ cFiφ yL^Sk=kfµ^`s`cyFbFφ.jD^`s`g 6a ^`a rLyFiSScFi` rLbLqtyFtcF FbL^xeLgScFtZiSSiSStcFb6h Bô /öoñxòBñ 0 ò ñ ¦x÷-ô ÷7ñ ~ Y t
∗(α) α b a φt
− c20
(α) α b a t
t
x
2 0 x
β ∗(β) d a φx
= µ20 c20 φ∗
β (β) d a x
2 2 0 0
@
Ç4 1
""M
³ 0M
5
*
}, î
S Y /ñ vtlU^`cFbFaU^FYUd WY m ^~Ua6^F}TÑSSFY 6Y7[(Ëe«# No Y zqI YNn 2F YL¸¤n} SªÑ>¤ Ñ#´ U¦lY FY ö òBñ ÷ taF FbFbvFi?s`tiSyFtlsSb6\FtklaUiS_4tlD^`cFbFaUtSYLd WY m bFpf^`sx eLb6sx}K`SD6Y L7Y ¨r+W2V µZaAq² du I H I F Y
éd { ÂÅ I d¾p I 2I m ~ n ;F F }¬ ÑÑÑFY 67Y [?_+fGV Xs´ m jrKYe;` «¨ d\ N¯LY ~ LNL Y z YK¶¬¹K}K/ Ñ ¤ ÑS U¦Y ªFY /ñ S vtlU^`cFbFa6^klUeLiS{cFklyFtlr
Yd WY m
o©© }
ÑD L}6k`Y¬~`FY ´UY ð ò ñ¢÷ >ðbFcL^S4bFa6^Oj`hFpaUiS_vcFtk¨ bLf^`t4iS_ b6rLaUiDkls`bnYLd WY m Ui` kls`tFb6plrK^`sx}¬ ÑDS6Y F7Y Àm_kÍ Nn 2F ~ T¶L·n}¬ ÑÑ>¤ `SDS¦Y ÑF Y £ËgN_TeXZY² ]ÍXZª"(X³ { I ? +F K´n}FªF ¤ `S U¦Y FY ¥rKY XZaQ(r ´ ¼m n I 2O±FIMÄw ZI Ku J F°I z NI NF qwL u I F |xYUd }TI ÑSSªF} n4YKI `2 FÑFNY IGL ³ù 5*4ù¬J J 9ù"9Ú"<Ù.J ÇJ"G
'
©J
N
"
wJ #J
¬
1
$
R
.J 1J
$Y
P"S3T &V
('
QR
%+
Z U
&V" &V
('
ÇJ¬G
ªG
-J J
-J #J
KZ S(V
*'
T Z V&3T S(Y
³ù 5*4ù¬J J ù"9Ú"<µÙ.J C © ' :&
"
G
J $Z S&Q3T &V"S(Y QS&1X-TÝQ 9Z J 9J
BG
G
C
R åTÝQS ªÜ
J
#J
&V$Y T V$ S Z
Z X
JÒ V 9Z $Q0 TÝV 03R 1 .S(V" Q0TÝS(Y
V"S(X-TÝQ
Q &V" P$V"Q3T &V
Ü
('
Ò
V 3 Z " V S3T &V"S(Y BÐ S Z " V S
Z U åR
1õ
&
¸J .J
ÂS3R
.J ÇJ
ÂS3R
V"S(Y åT .S(V"
'
È Ú
¬4&<
-J
5 ""
J
V"S(Y
-J J $Y Ü
J iJ
(
$
$Y
J #J
-)
1" -J -J
¸+qÜ
"2.IJ -J
Ù.J J
G
J J
R$X
V
$ &
#J J
('
J
ís\ït\ r
· m
cqh
Ð u
ß5Ö è Ñ ã {Ö tß
jgwpyx
& X#\6bLkeLtFtyFjS¡yL^`SiSs~}ZjaDiSs`iSyF¡bLklFi`eLgSpiSjD^xeKkh¡^`FL^`yL^`srLyFiS` cFvFyFiSbFpjSirLcF>rFeFhiSFbLk^`cFb6hvj`hFpaUiSUFyFUiDkls`bn}KkeLtlrL`ts?UaU^`p^`s`g2yL^`SiSs` wY OY UtyL^SklbL4iSjD^ }DcL^\FbFcL^`]UZkh?klikkleLaFb?cL^UyL^`jScFtcFbFtZ«i`eLgS Lf^`cL^FY ð^xeLttZiSc FbF{tsFm u ûÖa6klFtyFbL4tlcFsx^xeLgScFtvbFkkeLtlrLiSjD^`cFb6h£FiSa6^`pjD^`]s~}4\Fs`i.iDkliSSiSlijScFb6 aUfiO^`cFcLb6^ShkeLptl^SrKkkleLs`DjS tcFbFcFjDiS^`_>ts\L\L^S^Sklkls`s`b cFcF^`_FjSyDb6h6rts`cFiSb6hniz} UyL^`jScFtcFb6hn}~kliSiSs`jStsSkls`jSU]bF_s`i`eLg` z±{z
C
}|,~|ïçB
¸í
0
σ(t) =
Z∞
G(τ )ε(t − τ )dτ.
qtO4tcFgS{bF_bFcFs`tyFtkFyFtlrKklsx^`j`e6hFts>sx^`a6tOs`iSs keLU\L^`_n}TaUiSrK^?cL^`FySh6tcFbFt p^`jSbLklbFsiSsjDkltlOFyFtlrL{tkls`jSU]b6¬}ScL^xrFeLtlO^`bL iSSyL^`piDjSpjStl{tcFcF σ(t) prLcLt^q\FiStyLcF4bFbF_OyFkiSaUjDiS^`yFcFiDb6klh?s`tp_^`jSrLbLtklqbLiS4yLiDfkl^`s` FgObF4bntl}OcFiZrL cFtÖrLb tqiSyLf^` FbF_nYðeFhsx^`aFbUFyFiS FtkkliSj 0
σ
σ(t) =
Z∞
ε
K(τ )ε(t ˙ − τ )dτ,
tkeLb iSlyL^`cFbF\FbFjD^`s`gDkh?s`i`eLgSaUiOcL^SkeLtlrKkls`jStcFcFiS_>\L^Skls`gScL^`FyDh6tcFb6hnY | jSbFs`g kl]j`hFsSp4g ts`4bLtlO}8rL\Fs`cLi^`bLF4yDh6tcFcFticFbFts`
`Sª
"+*Ã
&x 7
Å,§ ã>1õ
(õ
1
kls`Uj Ft4cFiD\L4^`s`tcFiS_Ws`!jSUyFcFta64 FtbFcFtb _n}
p^xb rK^`cFcFiSY _ üqklyFaUbF^~`\FeLaUb6iSiSS^xyLh.^x6pcFeKz^`jS4cFbU/FyFpbF^`yLjS^`bLklbLtcF4b6iDhLkls`4g b ε(t) Fi`eLgSp`hLklgFy6bFcF FbFFiD£eLbFcFt_FcFiDkls`bn}FFi`eLU\FbL∆ε(t £bFcFs`)tyL^xeLgScFU¡kl6f4 t
t−τ
FyFb
j
σ(t) =
X
FyFbFcFbLf^`]UBjSb6r
tj
∆tj → 0
σ(t) =
Zt
j
K(t − tj )∆ε(tj ),
K(t − t0 )dε(t0 ) =
Zt
K(τ )ε(t ˙ − τ )dτ.
s`i]jD^x qcFyFzi~rLi`}eFF iSs`bLiD4q FbF\Fs`s`bFi]yFiSiSSjD^`cF\FbFcFtOiFyLyF^`SbFiSiSs`yF bFs`6ts]tyLj]^SklkiSbLpl4rKiS^`jDcF^ bFb¤¥4bcFyLtO^`FpyFjStlbFrKs`klbFsxb^`rLj`eFyFhFiStSsScFk¨i`h rLbLqtyFtcF FbL^xeLgScFiS_4i~rLtleFb j`hFpaUiSUFyFUiDkls`bFyFbFFbLkljD^`]s ^`jSs`iSyL^SHSi`eLtt FiSplrLcFb6u ?F^SUk`eLeLtlrKbFkla6s`^`jS FtbFcF_KcL¦^xY hqUcFaF Fb6h¢rFeFhcFtaUiSs`iSyFf^`s`tyFbL^xeLiSj¡¤ jSi`eLiSaFcFb6 kls`iS_vkls`yFUaFs`UyF]¦ÖrLi`eF cL^ObL8ts`g2jSb6r 0
ü
0
ªC
rLtqFiDkls`i~hFcFcL^xh
K(τ ) =
A>0
A , τα
b α eLtl bFs24tlOrL?cFeLt£b tlrLbFc6bF Ft_nYxüqi`eLi bFjOtlt A=
κα , Γ(1 − α)
rLtFiDkls`i~hFcFcL^xh p^`jSbLkbFsiSs£kljSiS_Lkls`jjSttkls`jD^.b Γ tkls`g£_6eLtyFiSj bFcFs`tyL^xevjSs`iSyFiSiκ yFi~>rK^F}60Fi`eLU\FbL α
κα σ(t) = Γ(1 − α)
Z∞
ε(t ˙ − τ) = κα τα
α 0
t ε(t),
0 < α < 1.
nûÖUs`a6iv^FeL}6bFFcFyFtb _FαcFiS=t?kl1iSd iSs`jOcFiSp{^`aUtiScFc bFt2qgS4]tlOs`iSrLcL ^εrFeFb h σjScF6UyFs`b yFtαcFcF=t0iOs`iSyFSyLtcF^`b6hn^`| tsSk h.Y jvp^`aUiSc cFbLf^`ts©
^`FaFy6bLiD4tliS SyLUs`^`iSpiD\FcFiS}StZj`hFFpi`aDeLiSi~UFtyFcFUbFl^xtZh24kltlyFOtlrLrK2^j`jhFiSpFaDyFiStl_?rLcFtleLtUtcFFcFyFiDU.iSiS_2s`b>cFiS^`{Dklti`cFeLbF]b2s`pcF^xi UFyFUiS_>cFtj`hFpaUiS_>f^`s`tyFb6hL4bn} ½ ¤ p^`aUiSc nUaU^D¦ Eε(t), ¤ p^`aUiSc qgS]s`iScL^D¦} σ(t) = (12.1.1) ηdε(t)/dt, bvqiSyL4eK^ C
0
0
C
σ(t) = κα
α 0
t ε(t)
0!
(12.1.2)
ªf6#xN1Òm[ x
` #´ 44i~bnY+üqtsOyFb yL^Skkf^`s`iSyFcLbF^ZjD^`rKs`^`gDtksh?pa6^`^`aUa>iSc jSiSqpgS4]i~s` iScFcL^F}`_ FklyFFb iDkliSbFcFds`tpyF^`FaUi`iSeFc hFn FUbFa6bv^F4YSqtlOiSrLcFt?\FcFcFb6iL } s`i£cFt tlrLαbF=cLkl1s`jStcFcF_klFiDkliSbFcFs`tyFFi`eFhF FbFbn}αb¢=s`0iSs^`aFs~}\Fs`iHkls`tFtcFcFiS_ pbF^`aDyLiS^`c tsOqplrFUts`kls`gObFcFyFlt^£{kl^`j`]hFp^`Uc<¡kyFi`yFeLtgL{Y tcFbFt/UyL^`jScFtcFb6h
Z6³
1 ##$§Çâ5 #
÷
"ã$1#
C
¯
1C
D
+
G
G C
D
*
G
s| ~|
z±{3±
æ|,ÂE¶·
ì,,~𳶷~³
çBïE¶¶
G
&É
BC ¯G
σ(t) + τ
t σ(t)
= Eτ
t ε(t),
τ > 0,
Fi`eLi bFjS{ttOcL^\L^xeLivkliSjSyFt4tcFcFiS_ qtcFiD4tcFi`eLiSbFbj`hFpaUiSUFyFUiDkls`bnYT[]yL^`j` cFtcFbFt?s`iiSFbLkljD^`tsvFiSjStlrLtcFbFt?klbLkls`t4}4kliDkls`i~hFt_WbFp?6iDkeLtlrLiSjD^`s`tleLgScFi kliStlrLbFcFt¦ÖcFlcFeFt4tUcFFs`yFiSUj iS¤ FyFiWD¤¥ k2bF4cFi~¢rLb2eLtrLt4ULFqyFtUyL^DiD¦zkls`¤«bý§bLEk`Y¬¦q~bW6Y j`~hF¦YpaUiSiSyLiWf¤¥^xkOeLj`gShFcFpiSaUtziDiSklSs`iSgS` η = Eτ p^St4cFtbFcLt^S4s`b iS_ 4irLtleLbcL^2rLyFiSScFi` rLbLqtyFtcF FbL^xeFgScF_vs`bF F} 8rLiDkls`bFl^`tsSk¨h $+ Ñ '(
τ
tσ
7→ τ α 0
α t σ(t),
τ
tε
7→ τ β 0
β t ε(t);
0 < α, β < 1 :
`S
"+*Ã
&x 7
Å,§ ã>1õ
(õ
1
σ(t) = Eτ ε(t), ý4t{tcFb6ts`iSiWUyL^`jScFtcFb6hHiSs`cFiDklbFs`tleLgScFiWcL^`FyDh6tcFb6h
(12.1.1) F F y b p x ^ rK^`cFcFiS_ pbL^`4jStbLtklsObLjS4b6iDr kls`b2rLtqiSyLf^` FbFb ε(t) iSsjSyFt4tcFb.¤ ε(t) FyFb t <σ(t) ¦0kliSeK^SklcFi ¤jÑFY ÑFY ~¦ σ(t) + τ α
rLt üqyFb
0
α t
σ(t) = cG(t) + Eτ β
β
Zt 0
β t
0
G(t − z)
0
β z ε(z)dz,
G(t) = (tα−1 /τ α )Eα,α (−tα /τ α ). α=β=1
cFÖkeFeLhb rLrLi]tqjStliSeLyLbFf\F^`bF FcFb6 h εε(t)biDjkl4sx^`iDt4sStk¨cFhspjS^`yFs`ttv4tFcFiDb kls`ti~=hFcF0cFkliSaU_n^~}\FqaUUiScFiSaFS FyLb6^`hplcFniy64bFtcLc6^hF¤t~sS6kYh26Y iS~s ¦ rK^`tsOiSS\FcFU¤ rFtD^`tjDklaFUq¦ÖyFtleK^`a6k^` FbFcL^`FyDh6tcFb6hnm G(t) = (1/τ )E1,1 (−t/τ ) = (1/τ )e−t/τ .
(12.2.1)
C
0
σ(t) = ε0 Ee−t/τ .
§bLk`Yn~6Y Sm J2,#&-9+:6A.!?/0-Y7&-9+95.`ñ ý
7x cFiSjD^`cL^]ðcLyF^qUlL^x^`hvyL^xFeFiSeLFtl~eLeFgShFcFyFiDcL ^xhvkliSa6tleKrL^SbFkc6kltbFcF\FbFtb kla6F^xyFhD 4ibFrLcFtleLg2bOd³rLtÿ4÷ L7qò xtyLú0^ J ¤«ý§ò xbLú+k`ö YL~ñ 6OY Sd>¦Y iD§kt z±{åä
76 ¢
s| ~| æ|,ÂE¶
ì,,~𳶷~|ì| |
l,~
}E¶·ï~
5 /
aUiScLkls`bFs`Us`bFjScFiStq6yF^`jScFtcFbFtqbL4tts jSb6r
/
b¡piD iSSiS Sm^`tsSk¨hcL^HrLyFiSScFi` rLbLqtyFtcF FbL^xeLg`cFU4irLtleLg¢keLtlrLU]bLiSSyL^x σ(t) = E [ε(t) + τ
t ε(t)]
H *
h σ(t) = E τ α
0
α t ε(t)
+ τβ
0
β t ε(t)
i
, 0 6 α < β 6 1.
#Jxx
`Ñ
*Ã$¥ òU
,+x(5$§_â> #Ǭ
^Skls`cFiStZyFt{tcFbFts`iSiOUyL^`jScFtcFb6h =
1 ε(t) = Eτ β
Zt
£ ¤ (t − z)β−1 Eβ−α,β −τ α−β (t − z)β−α σ(z)dz.
qi~rKkls~^`cFiSjSa6^klrK^ α = 0, β = 1 jSiSpjSyL^`^`tscL^Sk>j.yL^S8aFbklsx^`c6rK^`yFs`cFiS_ jS4iSi~prFcFtlbFeLaFb{qttZtleLcLgS^`jSFbFyDcLh6^F}Ötj£cFbFaDt iSsSσiSy6jSiS_¢pkla6jD^~^`\FtaDsiSrLiStSqyL^`iSpyLcFfi<^` F¤ jHbF 4iD8tcFsjSyFt4tcFb t = 0¦ 0
ü
0
ε(t) =
´ σ0 ³ 1 − e−t/τ , E
a6kFiScFtcF FbL^xeLgScFiFyFbF`eLb6O^`]UZk¨ha l6aDiSjDklaUiD4/FyFtlrLtleL Y t→∞
σ0 /E
}2FyFb
§bLk`Yn~6Y 6m J2,+&-9+:D&-9+:Y%+5.`ñ ý
Ø
z±{/ë
,~BÂ~³æ|.ÂE¶·ln.y| |
l,~
^~\Ftkls`jD^ iSStb6Wa6eL^SkklbF\FtklaFb64i~rLtleLt_~rK^\FcFi kliS\Fts~^`]sSkhj kSt4t t cFtyL^F}FaUiScLkls`bFs`Us`bFjScFiStUyL^`jScFtcFb6tj2aDiSs`iSyFiS_vbL4tts?klbLf4ts`yFbF\FcF_iSs`cFi` klbFs`tleLgScFiOcL^`FyDh6tcFbF_ b>rLtqiSyLf^` FbF_>jSb6r
m
Ösx^ s`yFtlU L^`yL^S4ts`yFbF\Ftkla6^xh4irLtleLg?c6iDklbFs?cL^`pljD^`cFbFtøBù oñ *ôxùJñ÷ ³ÿ÷ 7ò LY §7ò tÖxrLúUyF¦ iSSª c6}Ui`iS rLFbLbLklqjDt^`yFttsScFkh2 FbLaU^xiSeLcLgSkcFsSi`b6t§sSUiSSs`iSbFSjScFztcFbFUt]yL¤Ò^`þ>cFòBùJtcFõbFôtòÀk]ó rL*yFô iS!ÿScFòBzù4ô b?þ5Fò!yFø iSbFDpjSÿi~rF÷ cFz4b i~rLbFcL^`aDiSjSiSiFiSyDh6rLa6^ α ¤ \Fts`jStyFs`_ L^`yL^S4ts`yK¦m σ(t) + τ
û
5 /
t σ(t)
= E [ε(t) + θ
t ε(t)] ,
- 5* È" 1
(12.4.1)
*M
5 / 0 *
σ(t) + τ α
α t σ(t)
= E [ε(t) + θ α
α t ε(t)] ,
qo cFs`tyFFyFts`bFyF`h£L^`yL^S4ts`yF b aU^`a£jSyFt4tcL^s`t4FtyL^`s`UyFcFyFtl eK^`aUk^` FbF_FyFbFiDkls`ihFcFcFiD cL^`FyDh6tτc6bFbθbFiDkls`i~hFcFcFiS_rLtqiSyLf^` FbFbkliSiSs`jStsx kls`jStcFcFiL}T^ E a6^`abFpiSs`tyL4bF\FtklaFbF_ 4irL~eLgL} tcFtyvrK^xes`tyL4irLbFcL^S4bF\FtklaUiSt 0
0
0 < α < 1.
(12.4.2)
/ ÑS + > &x 7 rLiSSiDvklcFs`iStljSe^`cF¤¥4bFttsxkl^xs~eF^`eLc6iSrKjU^`¦ yFs`´ cFYiSð_ jD4^Oi~rLiDtlkleLcFbiSjSj?cFyL>^S4Ua6yL^x^`vjScFs`ttcFiSb6yFhvbFbs`ts`yLt4yL4iSUiSFUyFFUyFUiDkliDs`klbs`bklj`s`hFjSpty6 jD^`]s>iSs`a6eLiScFtcFbFtOs`t4FtyL^`s`UyF iSs>tt yL^`jSc6iSjStklcFiSi?pcL^~\FtcFb6h.kcL^`FyDh6 s`tlteKcF^ bFtb?rLtqiSyLf^` FbFt_n#Y üqtyFjSiSt]δTbFpZcFb6>klj`hFp^`cFik]s`t6eLiSjSzWyL^Skl{bFyFtcFbFt 1 (12.4.3) ε = σ + λδT ¤ λ d.eLbFcFt_FcF_aUiSqbF FbFtcFs.s`tUEeLiSjSiSi.yL^Skl{bFyFtcFb6hK¦YÖXs`iSyFiStviSs`yL^xO^`ts rLyFjStleKt>^`FaUyFk^`bF F\Fb6bFhKcF¦bFp4tcFtcFb6hs`t4FtyL^`s`UyFmfs`tyL4i~rLbFqUpbF#¤ s`t4FtyL^`s`UyFcL^xh µ ¶ " *Ã
Å,§ ã 1õ
(õ
1
dδT dt
=−
bv^xrLbL^`D^`s`bF\FtklaDiStZbFp4tcFtcFbFtqrLtqiSyLf^` FbFb rLt
µ
diff
¶
dδT dt
1 δT, τε
= −γ
(12.4.4)
dε , dt
YLXyFtpeLgxsx^`s`tqFi`eLU\L^`tm adiab
γ = (∂T /∂ε)adiab µ ¶ µ ¶ ¶ µ 1 dε dδT dδT dδT = + = − δT − γ . dt dt diff dt adiab τε dt
(12.4.5)
qi`eK^`l^xh 1 + λγ = τ /τ b bLkla6eL]\L^xhvbFpUyL^`jScFtcFbF_W¤ ~6Y LY D¦Öb¤ ~6Y LY U¦Ö\6eLtc kZbFp4tcFtcFbFts`t4FtyL^`s`UyF δT } tcFty>b FyFbF{tleva UyL^`jScFtcFbF/¤ ~6Y LY S¦Y tklU~rFbL^S4tc6Uh6ph.b6iSUcFyLcF^`jSiScF_?tyFcFtlbFeKtv^`aU¤ ~k6^`Y FLbFY Ub ¦zrLyFiSScFi` rLbLqtlyFtcF FbL^xeLgScFz<UyL^`jScFtlcFb6 ü
'
σ
ε
' ' '
' '
α t δT
1 δT, τα
=−
0 < α < 1,
2Y ^`_FcL^`ySrLb Fi`eLU\Fb6e jD4tkls`i¤ ~6Y LY S¦§UyL^`jScFtcFbFt 0
+
"G
α t δT
'
1 δT − γ τα
α t ε,
\Fs`iqbFyFbFjStleLiqarLyFiSScFi` rLbLqty6tcF FbL^xeLgScFiD4qiSSiSStcFbFklsx^`c6rK^`yFs`cFiS_O4i` rLtleLbW¤ ~6Y LY S¦}UjOaUiSs`iSyFiDbLklFi`eLgSpiSjD^`cFikliSiSs`cFiS{tcFbFt 0
=−
0
'
4 b yFtleK[]^`yLa6^`k^`jS FcFbFtcFb>bFb tOFs`i`bFeLLp^.U\F¤ ~t6kls`Y LbnY S}6¦jSFjDt4yFtjSkls`t2tqkFyFjStlrFs`eLtiaU^`tZcFi bL4^`b.FUbFs`pOiOcFb tiv^`q_FUcLcF^`aFyS FrLb6b h6j Ñ#´U >k2bLklFi`eLgSpiSjD^xcFbFt¢rLyFiSScF.FyFiSbFpjSi~rLcFW^`FUs`i ªF}8 aU^`a4Fb6 yFa6bFkl\F6ttklyFaUbL^x4h
'
>
9+
G
G
ÂC
('
_
h6>
*Ã$¥ ÿ
z±{
2 N1.¨x # © =6T
#ö.¨ R
|,ÂE¶·
/ÑF
& ã
µ
K¶
Á|ïç
F yFtlrLtleKüq^SyF4i~b rLiSi`FeFbL kbF^`jcFcFyLiS^`pijSbFjSs`bF{tftrLyFiSiSSSiScFSi` trLcFbLb6hOZkltsxyF^`tc6cFrK F^`bLyF^xs`eLcFgSiScF_2i`4_i~qrLttlcFeLiDbn4}D«tcFi` eLeLiSb b2bFbq©npi`^ yFjSbFaHjSplh6eLbUyL^`jScFtcFbFtkvyL^`pleLbF\6cFz4b<FiSySh6rLa6^S4bHrLyFiSScFFyFiSbFpjSirLcF rLtqiSyLf^` FbFb>b cL^`FySh6tcFb6hnm σ(t) + τ β
β t σ(t)
= E [ε(t) + θ α
α t ε(t)] .
eLtlrLxh£yL^`SiSs`t }
jSiDklFi`eLgSpStfk¨hWFyFtiSSyL^`piSjS^`cFbFt ^`6eK^Skl^k?4cFbL4z L^`yL^S4ts`yFiD λ = iω m
0
Â
fb(iω) =
Z∞
0
(12.5.1)
e−iωt f (t)dt.
XyFtp~eLg~sx^`s`tqsx^`aUiSiFyFtiSSyL^`piSjD^`cFb6h2Fi`eLU\FbLm 0
b σ b(iω) = E(iω)b ε(iω),
rLt
1 + (iωθ)α b E(iω) = E 1 + (iωτ )β
daUiD46eLta6klcF_4i~rLeLgLYüqyFbWiS\FtcFgvcFbFpaFb6.\L^Skls`iSsx^x E(iω) bf^`s`tl yFbL^xevjStlrLts klth aU^`av^`Dkli`eL]s`cFiOUFyFUl^xhn}6b6rLt^xeLgScL^xh>yFtbpbFcL^FY→üqyFb>E jSzkliSaFb6 \L^Skls`iSsx^x s`yL^`cLkliSyFf^`cFsx^ E(iω) bL4ttsaDiScFt\FcF_?FyFtlrLtle s`i`eLgSaUiWjkeLU\L^`t α = β }ÖbyL^SrK4^`tcFs`cFyFz4bn4}Fi~FrLyFtleLbFbjStlrLrLti`cFeFcF zcF4b Sj s`g jSY ttkls`jStcFcFz4bn}fcFi b£FyFbs`iD iSUcFyLbv^`jScFcFttcF4bFiSbUjSs2\FSbLks`eLg2tcFFb6yFhiSb6rLpi`jSeFi` eLgScFcFzrK4^`bnjDmL^`iDs`klg]cFcFiStjDiS^`s`cFyFcFbF Ltq^`s`cLtl^ eLgScFs`iDUHaUjSiScFcLUkls`s`yFbFts`cFUcFs`]bFHjScFyLiD^x SiSs`bcFtiSs`yFbF L^`s`tleLgScFUklaUiSyFiDkls`gZrFbLkklbFL^` FbFbOcFtyFbFbnY qs`iSSDkls~^`cFiSjSbFs`g rLjStleLs`bnt}La6^`«]eLb6b tbviSsS©nkliSyFrKjSbF ^ a ùAyLòÀ^Sô+kÿk÷4iSs`ñ yF!tlÿ eLb þ>klò!bFø cFDxklòeiSb6÷ rKô ^xoeLñ gScFþ>UòBñ rLvtcL^OiSyFLf^`^`yL F^SbF4 ts`yF¡4i` α
β
α−β
%
&=
5
FyFiSbFpjSirFhFUcL^`FyDh6tcFbFt
0&
° 1 "
"
ε(t) = sin(ω0 t),
X cFUs`yFtcFc6h6hWyL^`SiSsx^F}nkliSjStyF{^`tf^xh jvtlrLbFcFbF Ft2iS ntf^>jvtlrLbFcFbF F jSyFt4tcFbn} rK^`tsSk¨h jSyL^xtcFbFtm σ(t) = A sin(ω0 t) + B cos(ω0 t). &É
σ(t)ε(t) ˙ = Aω0 cos(ω0 t) sin(ω0 t) + Bω0 cos2 (ω0 t).
(12.5.2)
/ ÑD + > &x 7 \FüqtyFklb aDiDF4iD>kls`kli~iShFiScFs`cFcFiSiS_O{s`ttcF4bFF tyL^`s`UyFtZs`ijSyL^xtcFbFtzaFjSbFjD^xeLtcFs`cFis`tyL4i~rLbFcL^S4b6 " *Ã
Å,§ ã 1õ
(õ
1
Us`jStyDOrK^`]t4S}T\Fs`i klaDiSyFiDkls`g>FyFiSbFpjSirKkls`jD^?4tlD^`cFbF\FtklaUiS_yL^`SiSs`¡jScFUsx yFtcFcFbL4b klb6eK^S4b p˙ yL^`jScL^ZklaDiSyFiDkls`bFyFbFyL^`tcFb6h kljSiSSirLcFiS_lcFtyFbFb Ψ˙ 6eLZk FklaUiSiSpyFjSi`iDeFksShFgWtsqrLFbLyFkiklhLbFklLcF^`bF Fs`bFgb¢klbFcFs`tSyF^`l FbFbFb ¢²˙kY s`tyLiSF4iDiklrLsxbF^`cLj`^SeL4tbFcF\FbFttklaFs`bLb64b2rLiSjSyLD^`HcFUbFyL\F^`tcFjScFb6thLcF4bFb _
(12.5.3)
b Im E(iω) ≥ 0,
0 < ω < ∞.
b ReE(iω) ≥ 0,
0 < ω < ∞.
wzcL^xeLiSbF\FcFzHiSSyL^`piDcL^xeK^`^`tsSkhviSyL^`cFbF\FtcFbFtcFtiSs`yFbF L^`s`tleFgScFiDkls`bjScFUsx yFb tUcF\FcFbFts`_2yLjD^`^xShOiSs`cFtiSmSs`FyFyFbFiS LbF^`cFs`s`tlteLgSyFcFbFiDyFkliSs`jDg ^`jUyL^`jScFtcFb6h¤ ~6Y 6Y S¦8b¤ ~6Y 6Y D¦4FijSyFt4tcFb }`rLiDkls~^`s`iS\FcFiFiSs`yFtSiSjD^`s`gqcFtiSs`yFbF L^`s`tleLg` cFiDkls`b A }~\Fs`iSSl^`yL^`cFs`bFyFiSjD^`s`g]cFBtliSsSy6bF L^`s`tleLgScFiDkls`gZyL^`SiSs`tjScFUs`yFtcFcFb6klb6e
Y qtiSs`yFbF L^`s`tleLgScFiDkls`g A rLiDkls`bFl^`tsSkh>DkeLiSjSbFt
ýf^`pleK^`^xh2aDiD46eLta6klcF_?4i~rL~eLgcL^jSttkls`jStcFcFU4cFbL4U\L^Skls`b2b bLklFi`eLgSpxh>FyFbFjStrLtcFcFtqjS{tqiSyL^`cFbF\FtcFb6h?cL^cFb6¬}F^`jSs`iSyF ¬Fi`eLU\L^`]s keLtlrLU]bFtiSyF^`cFbF\FtcFb6h cL^L^`yL^S4ts`yF4irLtleLbnm ª
1) E > 0, 2) α = β, 3) θ > τ.
(12.5.3)
Lr]yFiSyLS^`cFcFi`bF \FrLtbLcFb6qh tyFts`cFb FbLl^~^`eLyLgS^`cFcFiSs`_bFyF4Ui~]rLstleLbs`tj`yLhF4piaUrLiSbFUcLF^SyF4UbFiD\Fklts`klb!aFUb/iSklSiSyL^`eKp^SUkl]iSsjD^`iDcFklcFcFiSiSkljSs`g rFeFh>rK^xeLgScFt_F{tiyL^`pjSbFs`b6h klt4t_Lkls`jD^sx^`aFb6 4i~rFtleLt_nY & X{tW4 jSb6rLtleLbn}\Fs`iHs`tyL4i~rLbFcF^S4bF\FtklaFbFtWiSyL^`cFbF\FtcFb6hkljStleLb~ LcFt^`cFyLbF^St4 ts`yFbF\FtklaFU8i~rLtleLga ` L^`yL^S4ts`yFbF\FtklaUiS_k?aDiScLkls`bFs`Us`bFjScFzBUyL^`j` σ(t) = E [ε(t) + θ ε(t)] . σ(t) + τ (12.6.1) ýf^`pleLi bL£cL^`FyDh6tcFbFt L c ^ L r S j t l k D i l k x s ` ^ ` j F e F h ] 6 b ¬ } σ(t) z±{
},¶
9,
E
>'
α
0
α t
σ(t) = σ0 (t) + σ1 (t),
α
0
α t
*Ã$¥
¾7 5G #
& § (
/Ñ
&
iSFyFtlrLtleFhFt4?UyL^`jScFtcFb6hL4b σ0 (t) + τ α
b
0
α t σ0 (t)
= Eε(t),
(12.6.2)
klqsxi~^`rLjStbF_Fj.kls`yFjStiSpljD~^`eLjOgxs~cL^`^2sWiSk StUyL\L^`^SjSklcFs`bvtcFUbFyLt^`jScF¤ t~cF6b6Y ªFhY D¤¦~}f64Y ªFi~Y S¦cFiSiWFUtyLjSb6^`s`rLiStyFs`gLiD}f\Fθs`iW jSjStlrLbtklcFiScFFi`t aUiD8FiScFtcFs`klj`hFp^`cFkliSiSs`cFiS{tcFbFt σ1 (t) + τ α
ü
0
α t σ1 (t)
= Eθ α
0
α t ε(t).
(12.6.3)
α
σ1 (t) = θ α
0
α t
α t σ0 (t),
sx^`a2\Fs`iyFtpeLgxs`bFyFU]tt]cL^`FyDh6tcFbFtZFi`eLc6iDkls`gS¢iSFyFtlrLtleFhFtsSkh2bFcFbF FbFbFyFD ]t_ aDiD4FiScFtcFs`iS_ σ (t) m 0
0
σ(t) = σ0 (t) + θ α
α t σ0 (t).
üqDkls`g£sx^£aDiD4FiScFtcFsx^F}yL^`jScL^xh
(12.6.4) t = 0
0
σ0 (t) = 1(t)σ0 sin(ω0 t).
qi~rKkls~^`j`eFh6h>lsSiOjSyL^xtcFbFtqj qiSyL4eL¤ ~6Y ªFY U¦}UFi`eLU\FbL ü
'
σ(t) = σ0 sin(ω0 t)+ Zt Zt σ 0 ω0 θ α cos(ω0 t) cos(ω0 z)z −α dz + sin(ω0 t) sin(ω0 z)z −α dz . + Γ(1 − α)
wzcL^xeLiSbF\FcFziSSyL^`piD}6b6pUyL^`jScFtcFb6h.¤ ~6Y ªFY S¦§cL^xDi~rLbLm 0
0
ε(t) = α
+
σ 0 ω0 τ cos(ω0 t) Γ(1 − α)E0
Zt
σ0 sin(ω0 t)+ E
cos(ω0 z)z −α dz + sin(ω0 t)
Zt
sin(ω0 z)z −α dz .
.X iSaFyFtkls`cFiDksSbcL^~\L^xeLgScFiSi]4iD4tcFs~^]s`bOqUcFaF FbFbjSiSpyL^Sklsx^`]szFiZkls`tl FtcFcFiD42p^`aUiScF?kZFiSa6^`p^`s`tleLt 1 − α } σ(t) ∼
0
0
σ0 ω0 θα 1−α t , Γ(2 − α)E
ε(t) ∼
σ0 ω0 τ α 1−α t , Γ(2 − α)E
t → 0,
}
/ Ñ + > &x 7 j]kZ^Sp^xklbLrK4^`cFFcFs`iSiS_>s`bF\LaU^StÖklSs`i`iSeLs`iSgS_{b6Zm jSyFt4tcFyFtjSyL^`^`]sSk¨hjz^`yL4iScFbF\FtklaFbFtÖaUi`eFtD^`cFb6h ('
" *Ã
nh
ω0
Å,§ ã 1õ
(õ
1
³ απ ´i
h ³ απ ´i o sin(ω0 t) + (ω0 θ)α sin cos(ω0 t) , 2 2 h ³ απ ´i o ³ απ ´i σ0 nh sin(ω0 t) + (ω0 τ )α sin cos(ω0 t) . 1 + (ω0 τ )α cos ε(t) = E0 2 2 σ(t) = σ0
1 + (ω0 θ)α cos
üqtseFhbLkls`ty6tpbLk^WFyFbs`iD/ksx^`cFiSjSbFsSkhHleFeLbFFs`bF\FtklaUiS_n}^Wsx^`cFtcFkvU eK^ FiSs`tyFgrK^`tsSkh>jSyL^xtcFbFt
rLt
η = tg(ϕσ − ϕε ), ¶ (ω0 θ)α sin(απ/2) 1 + (ω0 θ)α cos(απ/2) µ ¶ (ω0 τ )α sin(απ/2) ϕε = arctg . 1 + (ω0 τ )α cos(απ/2)
b
ϕσ = arctg
µ
qi`eLgSp`hLklgbFpjStkls`cFiS_>s`yFbFiScFiD4ts`yFbF\FtklaUiS_vqiSyL4eLiS_n}6Fi`eLU\L^`tm ü
ω0α (θα − τ α ) sin(απ/2) . α ω0 (θα + τ α ) cos(απ/2) + ω02α (τ θ)α
η=
qo ps`tyL4i~rLbFcL^S4bF\FtklaD1iS+i2iSyL^`cFbF\FtcFb6hkeLtlrL`ts~}K\Fs`i2FiSs`tyFbvFi`eLi~ bFs`tleLgScF FyFb>eL]ðS^xiSeL_>gScF\Lt^S_Fkls`{iSts`ttSY yL^`pjSbFs`bFtrLyFiSScFi` rLbLqtyFtcF FbF^xeLgScFiSi.cL^`FyL^`j`eLtcFb6h<j yFs`bFti`jSeLcFiStbFb2UyLkl^`j`jShFcFpt^`cFcFb6ih?kzaUbFiSps`UiS\FyFtcF?bFtbLW44t]cFiSs jSiSb6Lr ^`yL^S4ts`yFbF\FtkaFb624i~rLtleLt_n}SaUiScLkls`bFs`D σ(t) +
m X
ν τj j 0
νj t σ(t)
"
= E ε(t) +
m X
θkµk 0
µk t ε(t)
#
.
æY OY5Xýf^`iDSkliScFs`iScFjSiSvjklFjSi`iSeLt_i~ 4b6i~e rLtliSeLFb yFtlcLrL^StlkeFeFhFtl]rKkls`tjStqtcF6cFyFiS^`_ jScF4ttlcFUbF^`t cFbFaFbs`jStyDrLs`tle S
z±{
j=1
|.E¶·
k=1
¯ |~|ï
@ 0
"
rLt
}
·
»
t
»
¸
}F^ qUcFaF Fb6ht» p^xrK^`tsSk¨h kls`tFtcFcFzyDh6rLiD
σ(t) = E ε(t) − β
α ∈ (−1, 0] β 6= 0
Z
α (β, x)
0
α (−β, t
− τ )ε(τ )dτ ,
(12.7.1)
α
= xα
∞ X
β n xn(α+1) . Γ((n + 1)(1 + α)) n=0
(12.7.2)
%h6> Xux# 5x +
/ ÑD jDüq^`i~cFrKb6klhns~}6^`j`FeFi`h6eLh U\F¤ bL~6Y m ´UY S¦
j2¤ ~6Y ´UY ~¦8bOFi`eLgSp`hLklgqiSyL4eLiS_rLy6iSScFiSiqbFcFs`tyFbFyFi` *Ã$¥
#
"
∞ X
(−β)n+1 σ(t) = E ε(t) + Γ[(α + 1)(n + 1)] n=0 "
= E ε(t) +
∞ X
"
= E ε(t) +
(−β)
n+1
0
n=0
0
−(α+1) t
∞ X
(−β)
ε(τ )dτ = (t − τ )1−(α+1)(n+1)
Zt 0
−(α+1)(n+1) ε(t) t
n+1
0
#
=
#
.
−(α+1)n ε(t) t
(12.7.3)
eLtlrL`h?yL^`SiSs`t ~ }UFyFbL4tcFbL£a>iSStbLW\L^SklshLs`iSiyL^`jStcLkls`jD^iSFtl yL^`s`iSy m
n=0
*
α+1 t
0
0
α+1 σ(t) t
=E
=E
"
0
"
0
=E
"
α+1 ε(t) t
α+1 ε(t) t
0
α+1 ε(t) t
Eβ
∞ X
(−β)n+1
0
+
(−β)n+1 0
n=0
− βε(t) − β
− βε(t) − β
^`_6rFh>bFpqFiDkeLtlrLcFtiOyL^`jStcLkls`jD^
∞ X
∞ X
(−β)
n
0
n=1
∞ X
(−β)n+1
n=0
−(α+1)(n+1) ε(t) t
= E[0
0
−(α+1)n ε(t) t
−(α+1)n ε(t) t
#
#
=
=
−(α+1)(n+1) ε(t) t
α+1 ε(t) t
− βε(t)] − 0
#
.
α+1 t
bFirKklsx^`jSbFj]s`i]jD4tkls`iZ6iDkeLtlrLcFtiZkeK^`l^`t4iSizj¤ ~6Y ´UY D¦}FyFb6Di~rLbLvaUyL^`j` cFtcFbF n=0
σ(t) = Eε(t) + (E/β)[0
α+1 ε(t) t
− βε(t)] − (1/β)0
α+1 σ(t), t
aUiSs`iSyFiStZFiDkeLtqleLt4tcFsx^`yFcF>FyFtiSSyL^`piSjD^xcFbF_?FyFbFcFbLf^`ts jSb6r σ(t) + τ
ρ t σ(t)
= τE
ρ t ε(t),
rLt }§^ Y§©8^`aFbL!iSSyL^`piD}f4i~rLtleLg½ýf^`SiSs`cFiSjD^vhFj`eFhFtsSkh \L^Skls`τcFz=1/β keLU\L^`tρ `= Lα^`yL+^S41ts`yFbF\FtklaUiS_.4irLtleLbW« eLb6 ©niSyFjSbFaU^FYüqyFb α = 0 iScL^OkliSjSL^xrK^`tskZiSFyFtlrLtleFhF]bL£UyL^`jScFtcFbFt ^`a6kljStleFeK^FY 0
0
H'
G
/ÑSª
- Ø
z±{
|.ï~¹
&x 7
"+*Ã
©!
Å,§ ã>1õ
(õ
1
}æ ¬~í.çyæ|,ÂE¶
l eLt4tcFÖs`kliSs`j`trLkljSs`DjS tcFs`cFbFi>FiSFj£iDkl¤s~U^`FjSyFbFUs`g?iSjSiviSFbyFiDj`k`hFmKp4aDiSi~ iUc6¦Zi2FeLiDbkls`yFkiSFbFiDs`4giSj`hFgSpaUiSklUs~F^`yFc6UrK^`UyF*s`cF4i` rLtleLgrLyFiSScFi` rLbLqtyFtcF FbL^xeLg`cFiSis`bFL^±, ¤¥kY ©
^`¦ a6^x6hi¢4^`i~cLrL^xtleLeLiSgbFSb¡eKk.^tFtiDklls`eLyFtiSaFts`cLyF^ iSs`ntl6yFcFiDbFkkl\FiDtklaFb bLvF^`yFyFiSjSiSbFScFyFiD^`piDrFeF}zh bFαpeL=i~1/2 tc6 cFz!jWaFcFbF~t Y8 ]cL}f^?bHFyFiSStlrKiSSklsx^`tj`cLeF^ hFts klbLiSkSkliStleL_ tkl!s`yFbUaF«Ös`eLUZyF4teLcFtiDkls`cFcLbF^ \FcFFiSyFiSivbFs`pbFjSi`LeL^FgS}ncFkliSi`t α ∈ (0, 1) klsx^`j`eLtcFc66bFpStklaUiScFt\FcFiS_FiDkeLtlrLiSjD^`s`tleLgScFiDkls`bleLt4tcFs`iSjkjSSyL^`cFcFz4b iSFyFtlrLtleLtcFcFz£iSSyL^`piDWL^`yL^S4ts`yL^S4b.¤¥kYLyFbLk`Y¬~6Y FY ¦Y
ÇC
@G
¬
D
Á '( *
§bLk`Yn~6Y Fm J2,#&-9+:D±)+0*02.BiÝA.!)Y%+5.s) ò2FZ* ñ iDkls`b ]ESiS¦pb
e k
d k
k
k
εdk = εek+1 + εdk+1 ,
k = 0, 1, . . . , n − 2.
(12.8.1)
T
M'>x x
+"#Æâ
*Ã$¥
/Ñ#´
ô &1ãxxâ5 R
^jStyD6cFtaUiScF Ft ε=ε +ε , cL^OcFb6 cFt ε =ε . 6YwrFrLbFs`bFjScFiDkls`g L^`yL^xeFeLtleLgScF?cL^`FySh6tcFbF_nm
d 0
e 0
d n−1
e + σkd , σke = σk+1
e n
k = 0, 1, . . . , n − 1.
(12.8.2)
^aUiScF FtZeLtkls`cFbF F σ=σ . FYqiD4FiScFtcFs`£rLtqiSyLf^` FbF_Ob cF^`FyDh6tcFbF_ klj`hFp^`cFH4tlOrLkliSSiS_OkliSiSsx cFiS{tcFb6hL4bnm 1 σ , (12.8.3) ε = E b
e 0
e k
k
σkd = ηk
e k
dεdk . dt
(12.8.4)
LYüqyFtlrLFi`eK^`l^`tsSkhn}U\Fs`i ε(t) = 0, t 6 0, b σ(t) = 0, t 6 0. üqi~rKkls~^`j`eFh6h?¤ ~6Y FY D¦¬jO¤ ~6Y FY ~¦¬bFtyFtlSi~rFhas`yL^`cLkqiSyLf^`cFsx^S ^`6eK^x k^F}6Fi`eLU\FbLm '
e (λ) + Ek+1 εbdk+1 (λ), bk+1 Ek+1 εbdk (λ) = σ
k = 0, 1, . . . , n − 2.
wzcL^xeLiSbF\FcFiL}6FirKklsx^`j`eFh6h.¤ ~6Y FY U¦§jv¤ ~6Y FY S¦}UFyFb6Si~rLbL£a UyL^`jScFtcFbF '
e σ bke (λ) = σ bk+1 (λ) + ληk εbdk (λ),
k = 0, 1, . . . , n − 1.
Lrýft^`cFplcFrLiSteLtqbFbFj?piSqSiStyL\L4^SkleLs`bv6¤ ~yF6^`Y jSFcFY ªDt¦ÖcFb6cLh^`F¤ yS~h66Y FtY ScF¦bFtcL^
e σ bk+1 (λ)
(12.8.5)
(12.8.6)
}KFi~rKklsx^`jSbFj j?cFtli?cL^`_6
e e (λ) + ληk+1 εbdk+1 (λ) (λ) = σ bk+2 σ bk+1
b FyFiSbFpljStlrFh>cFtaUiSs`iSyFtkliSaFyL^`tcFb6hn}6FyFtlrKklsx^`jSbL£yFtpeLgxs~^`sOjOjSb6rLtSm Ek+1
Ek+1 εbdk (λ) =1+ e σ bk+1 (λ) ηk+1 λ +
1 e bk+2 (λ) 1 σ ηk+1 εbd k+1 (λ)
,
/ÑS
"+*Ã
En−1
&x 7
Å,§ ã>1õ
(õ
1
εbdn−2 (λ) 1 En−1 . =1+ e σ bn−1 (λ) ηn−1 λ + ηEn
vcFiSiSaFyL^`s`cFiStFiSjSs`iSyFtcFbFts`iS_ FyFiS FtlrLUyFBjStlrLts>a FyFtlrKklsx^`j`eLtcFbFiSs`cFi` {tcFb6h εb(λ)/bσ(λ) j jSb6rLtq FtFcFiS_?rLyFiSSb o´ n−1
G
Ä
E0
εb(λ) λ−1 E0 /η0 λ−1 E1 /η0 λ−1 En−1 /ηn−1 λ−1 En /ηn−1 =1+ ... . σ b(λ) 1+ 1+ 1+ 1
iSFiDklsx^`j`eFh6h?Fi`eLU\FtcFcFiStqjSyL^xtcFbFtkqyL^`pleLitcFbFt x(x + 1)α−1 =
x (1 − α)x 1+ 1+
1·(0+α) 1·(2−α) 1·(1+α) 1·(3−α) 1·2 2·3 3·4 4·5
4i~ cFiOUjSb6rLts`gL}6\Fs`i FyFb Fi~r6Di~rFhFtjSSiSyFtZL^`yL^S4ts`yFiSjL} E1 /η0 = (1 − α)c0 ,
1+
1+
1+
1 · (0 + α) c0 , 1·2
E1 /η1 =
bLkkeLtlrL`t4iStiSs`cFiS{tcFbFtqbL4ttsOFyFtlrLtle
1+
...,
...,
¯ ε(λ) ¯¯ = 1 + (c0 /λ)(c0 /λ + 1)α−1 . E0 σ(λ) ¯n→∞
X<^SklbL4Fs`iSs`bFaUtf^xeL λ}LkliSiSs`jStsSkls`jSU]b62Si`eLgS{bLjSyFt4tcL^S t} E0
ε(λ) ∼ (c0 /λ)α . σ(λ)
XijSyFt4tlcFcFiS_¢iS`eK^Skls`b¢s`iD4
α t ε(t).
qtaUiSs`iSyFiSt,DkeLi~ c6tcFbFt²aUiScLkls`yFUaF 6bFb 4i~rFtleLb jStlrLtsÎa rLyFiSScFi` rLbLqtyFtcF FbL^xeLgScFiD4 iSSiSStcFbF4i~rLtleFb ^`a6kljStleFeK^ 0
G
σ(t) + τ α
α t σ(t)
= τ βE
β t ε(t).
j yDh6rLt>üqyLiD^`klSs`iSyFs~iS}
tcFSiSb6sh£h£Fb6iWrLiSiSSs`cF\FiStsieLbFkliSjSyFsx_^qjStiSklyLgDff^x^veLbFeLp]SiSb£FiSsSs`klcFs`*yL^`bcFtFcFyFcFiiDrLkli`s`eFgOiS^`s ]qsSkb6h pbFaFbvhFj`eLtcFbF_cFtFiSpjSi`eFhF]s2FyFb6c6hFs`g>b6vaU^`aqbFpbF\FtklaFUBbFcFs`tyFFyFtsx^` FbF rLyFiSScFi` rLbLqtyFtcF FbL^~eLgScFiS_?4i~rLtleLbnY 0
0
*Ã$¥
.7¨x ¸u # 3 "§
Á.|
z±{
/ÑÑ
õ$
¯ î E
4 tlOrLrLbFtpqbFiS\FyLtfklaU^`iS FtbFtiS_ ¬b2hLcFklcF^`FtcFyDbFh6trLtcFyFbFiStS.cFi`S rLbLeLiqqrK^`tcFyFitcFcF F^bL^xiDeLklcFg`iScFjSiDtz4kl>sxkl^`iSs`iSbLs`klcFs`iSbF{\FttklcFaDbFiS _ s`tiSyFbFbnýf^Dk^>rFeFhWj`hFpaDiSUFyFUiDkls`b.yL^Skls`jSiSyFiSj Fi`eLbL4tyFiSjvjvcFgS]s`iScFiSjDklaUiS_ cL^?b6rLklaUaDiSiDyFkls`iDbnkls`Y#g2ýf^`rLpljSeKb6^`l^xth2cFb6klhaUiS FyFtiDcFkls`s`yLg^?a6s^xh6OrLtiSkl_2s`b bFp FNtFiS4\6i`aFeLbnt}¬aFkl~iSe?jSLFi`^xrKeLbL^`]4tyFUcFiS_2ki FtklFaDiSiS\FyFaFi`b jSkls`yLgS^`ts`cFtbF\FttcFrLb6thqiS yLb64rLbFaDyFiDiSkljDs`^`bncF}4cFbiS_iSs` FcFtiDFkliSbF\Fs`aFtlbWeLgSa.cFUyL^`jScFklaUiSiSjSyFtkliDcFkls`iSgL_ }
qiSFiSyLbL4kltS}njD^`b.]jSUF*i`eLjSc6iSh6plh cFtiSDi~rLbL4t]jS\FbLkeLtcFb6hn5} ý4^~Dk]Fi`eLU\Fb6e?rFeF½h ø 7ö *÷oöo÷ *÷Dÿ÷ G(ω) jS e yL^xtlcFbFt +
&É
5 °
e G(ω) = nkT
°
5 4*1
N X τj2 ω 2 τj ω + i µs ω + nkT . 1 + τj2 ω 2 1 + τj2 ω 2 j=1
N X
(12.9.1)
rLtklg d^`Dkli`eL]s`cL^xhOs`t4FtyL^`s`UyL^F} dFiDkls`ihFcFcL^xh2«i`eLgS Lf^`cL^F} d\FbLkeLi 4 i`eLtaFTe j>tlrLbFcFb6 FtOiS ntf^ yL^Skls`jSiSyL^Fk}Kb τ d?U^`yL^`aFs`tyFbLkls`bF\FtklaFb6tOnjSyFt4tcL^ yFtleK^`aUk^` FbF_n}FbL4t]bFt2¤ FyFb j < N/5 b ωτ < N /250) jSb6r
j=1
&É
j
1
τj '
2
τ1 , j2
(12.9.2)
6(µ0 − µs ) , nπ 2 kT
klrLs`jSt tµcFcFiLb Y>üqµi~rKd kls~kl^`s~j`^`eF Fh6bFh.iScL¤ ^`~yF6YcFÑFY St2¦§j`jvhF¤ p~aU6iDY klÑFs`Y ~bW¦}6yLF^SyFkls`b6jSSiSi~yLrL^ bL£ba yL^SjSkls`yLjS^xiSyFbFts`cFtlbFeF hkl(12.9.3) iSiSs`jStsx τ1 '
0
s
[N/2]
e G(ω) ' iµs ω + nkT
X
[1 − ij 2 /(τ1 ω)]−1 .
qtyFtlDirFhOiSskl6f4bFyFiSjD^`cFb6hOa2bFcFs`ty6bFyFiSjD^`cFbF¢kbLklFi`eLgSpiSjD^`cFbFqiSyL4~eL ü
lim
FyFb
∆x→0
∞ X j=1
j=1
Z∞ [1 − i(j∆x) ]∆x = (1 − iξ 2 )−1 dξ = i1/2 π/2
∆x = (τ1 ω)−1/2
b
2
0
[N/5] À τ1 ω ≥ 25
}FFi`eLU\L^`tm
p √ √ e G(ω) ' iµs ω + nkT (π/2) iτ1 ω = iµs ω + (3/2)(µ0 − µs )nkT iω.
]SyL^`s`cFiStZFyFtiSSyL^`piSjD^xcFbFt UyFgStkliSiSs`cFiS{tcFb6h +
e ε(ω) σ e(ω) = G(ω)e
SS b jStlrLtsa bLklaUiD4iD42yFtpeLgxsx^`s`Tm σ(t) = µs
t ε(t)
+
p
&x 7
"+*Ã
(3/2)(µ0 − µs )nkT
Å,§ ã>1õ
(õ
1
1/2 t ε(t).
qo pÖcL^`_6rLtcFcFiSizjSyL^xtcFb6hjSb6rLc6iL}\Fs`iZcL^`FyDh6tcFbFtj]Fi`eLbL4tyFcFiD yL^Skls`jSiSyFt kla6eK^xrLjD^`tsSk¨hbFprLjSDv\L^Skls`t_n}¬i~rLcL^2bFpOaUiSs`iSyFvD^`yL^`aFs`tyFbFpSts?yL^Skls`jSiSyFb6 s`\FtlteLang}xaD¤ iScFs`gSiS]yFs`iS_cFiSpjD^`jSklaFbLUklbFs] iSsZb6rLb6aUiDFklyFs`tlgUrL¦z}
^ kls`jSiSs`yFiSbFyLbn^x}`h^ZrKkeL^`ttls rLiSjSjDa6^`eKs`^xtlr.eLgSFcFi`iLeL}bLb4iStsZyFFcFyFtl rLz FtklFs`i`i` yFbFb jDkltis`t\FtcFb6hnYD©
tliSyFb6¬h ýf^Dk^ZrK^`tsqiSyL4s`iS_ p^`jSbLklbL4iDkls`bn}SiSStklFt\Fb6 jDcF^xhs`at
0
σ(t) =
q
√ (3/2 π)(µ0 − µs )nkT ε0 t−1/2 .
©
^`aFbL¢iSSyL^`piD}KyL^Skl\Ftsýf^Dk^?jStlrLts>a aDiScLkls`bFs`Us`bFjScFiD4UyL^`jScFtcFb6/kó÷ ó/ôx÷ /öo÷ ñ÷ L} σ(t) = E ε(t) + E ε(t), FyFtlrKkls~^`j`eFhF]t4.kliSSiS_ \L^Skls`cF_WkeLU\L^`_W4i~rLtleLb«eLb.b©niSyFjSbFa6^FYûÖa6k F\Fts`yFi2bLkl4UtcFts`kl¡s`jSk`t4sOcFiS{bFiSyF\FiSbLaFkbFeL_>tcFyLcF^`zp4SyFb iDs`kZjSptcLyD^rL\Fzt4cFbFb _ Fi`eLjObL4bFtcFyLs`^St4yFjDb ^xFeLiSt a6^`p^xeLbn}F}6iSi~rL¬cLhL^`klcFaDiLtl } cFyLbF^Sklt s`aUjSiSiSs`yFiStSyFY iSvi>s`iDyFklts~S^`ScFtiSs jSSbLi`feLkthtOcLiS^Si~rLt_.cFiS4_i~rLbFtlp eLyLbn^`}nSα\FiSts~¢}8jSFi`eLFi`bLeL4cFttyFcFcFcF(0,t?1)4j i`eLltsSaFiD¡eLcL^xj FyL^`j`eLtcFbFb ~ Y Û ¢! ?> drLbFcL^S4bF\Ftkla6^xh FtyFt4tcFcL^xh2i~rLcFiSyFirLcFiS_OrFbFcL^S4bF\FtklaUiS_?klb6 üqDkls`g kls`t4b V (t)AdjScFt{cFttzFi`eLtS}SjSiSp4U^`]ttyL^`jScFiSjStklcFi`tzkliDkls`ihFcFbFt]klbLkls`tl j£4yL}
^`jSFcFiDiSkeLjStt kljScFa6iSeLt]kl\FiDtklcFs`i~b6hFhcFaDbFiStSs`}iSklyFiSiSiSs`ijStklsSbLklkls`s`jStUf]^vcLt^t\FbFcFcLiS^`jStzsvyFtlDeKkeL^`a6iSjSk^`b6 FhLbFY Fd^S8Ftb6y6eLtlgxDs`i~i`r cFl^SbL4^`b6ceFsxgx^`s`aDiSiScF_ bL^`klcLbL^kls`jStiS4p!4UbL4ttcFtb6s>hnjS} b6r kl6f4!cFtjSiSp4UtcFcFiSi2l^S4b6eLg~s`iScFbL^`cL^2b 4
*1:
5
*
*M
0
1 0
1/2 t
&É
ØG Ä *
z±{z
s~æ¯í.ç
|.
¬|,
EC
H = H0 + Hint ,
;:{f6x x xÜx&x5'>5
SF eLaUiSbFs`cFiStyF_FcFiS_>_klkfj`hFaDpiS^`c?qkZbFF FiSs`bFttc6cF Fs`bLiD?^xeLFiDyFiSFjSiScFyFt{ FbFcFiStcL^xieLFgSi`cFeFiDhnkls`Y b bj`}lhFpp^`gjSbLs~k^hFFyFttlrL¤ Fa6i`^`eKaq^`b^`kt^SsSfkh^ rLbFcL^S4bF\FtklaU^xh FtyFt4tcFcL^xh A¦\FtyFtpqiSSiSStcFcFtZaDiSiSyDrLbFcL^`s`¢b bL4FeLgDkl iSsjSyFt4tcFbnm H = −b(p(t), q(t))V (t). ûÖjSi`eL] Fb6h jSiSp4UtcFcFiS_ klbLksSt4iSFbLkljD^`tsSkhObFpjStkls`cFiS_2qiSyL4eLiS_ qUSiLm *Ã$¥¦
"â ô &1ã
int
1 hA(t)i = hA(0)i + 2π
Z∞
−iωt e Ve (ω)G(ω)e dω,
(12.10.1)
rLt G dp^`L^`plrLjD^`]^xh qUcFaF Fb6h nyFbFcL^>¤ s`tyL4irLbFcL^S4bF\Ftkla6^xh?aDiSyFyFtleFhF Fb6 iScFcL^xh qUcFaF Fb6hK¦klbLkls`t4} −∞
C
G(t − t0 ) = −1(t − t0 )h{b(t0 ), A(t)}ieq ≡ hhb(t0 )A(t)ii,
^ {. . .} d?kaUiSSaFb üqD^SkkliScL^FY Fi`eLbL4tyF^cFiDklHcFiS FjSttzFiSs`\FiStaBi¤ qa6eLiSyLUSfiS^x\FeLaUbFiSpjUf¦^yLyL^`^SplkeLkbFf\F^`cFs`iSyF_HbFjDrF^`eLtbFsScFk¨h?klY(bLýfkl^`s`pt4ftl^yFp ^`Fb6UHsx^`FcFyFcFtlrF Fi`eK^`^`]sDk¨h 4cFiSi 4tcFgS{tf^`aFyFiDklaDiSFbF\FtklaFb6¬}FcFi 4cFiSiOSi`eLgS{tZyL^`p4tyFiSj jD4^`iSs`cFgDiDk4hnt}LyLkl^FaU/Y i`üqeLgSiprbFrLs`tgL_L}LklyFs`jDjS^`bFs`tgDk¨hnjS}LcFyFt{taDcFiDt4SiZbFFcFi`bFeFyFhiSjDa6^`eLs`UgLSYxiSüq\FaFSbkls`g s`b x 4iSb xUs]rLd2trLqjSiStyLs`4iSbF\FyFaFi`b sx4^`bOaDiSiS_ yF F^`tplFrLiSiq\F4aFtbncF}FgSjS{plhFts`rFeLtbFcFjOcL^`UF\LyL^S^`kls`j`a6eL^]tcF FbFtb FiScL\F^`aFsbnh6}SkltiScFtb6rLhnbFc6Y hFý4]^Skkls`t_Oi~hFcFs`bFbts`4iStl\FOaFbnrLY/?ýfcF^`b6pl cFiDkls`g>s`b6r6eLbFc.cL^`pjD^`]s?p^`L^SkltcFcFiS_r6eLbFcFiS_nY ÖkeLb i~rLcL^?bFpOs`b6s`iS\Fta FaFyFbb64Stli~OrLbFrLsZj]s`rLbLjS4b6bs`tliScF\FbFa6tS^S}x4s`iZbn}~F^ztyFpjS^`zs`tv rLDtleFiDtÖFyFjSb6DFiyDrLhLbF8s]e6jzhFrLtsSjSkb6hOkt^ScFvbFt§U\LrL^SyFklUs`liS^xah Fs`tiSF\FiSaU\6^F Y ðbLkklbFL^` Fb6h£cFtyFbFbj.kliDkltlrLcFb6U\L^Skls`a6^xFyFiSbLk¨Di~rLb6s.k>p^`L^`plrLjD^`cFbFt} rLjSiSyFs iSScFs`Ui.Bp^`FLyF^`iSplb6rLpjSi~jDrL^`cFcFUbFt?YKbHXFiSpiS4yFi~UOrKtcF^`b6tls tklpbL^`aUkls`iStc£4rL¡t4p^`La6qeLbF]yF\LiS^`jDt^`sScFkb6hvhnj }§klti~trLrLttySOiS^`yFfbF^x_ dvFyFtlrKklsx^`j`eFhFtsSkh FjbFjSbnb6} rLVtZ(t)kl6f=4<ε(t)UF}nyF^>UiSiSs`_a6eL¤ iSbFSaWyL^`kls`bLbLkl4s`tiS4_K!¦ dvcL^`FyDh6b2tcFcFtb6UtFyFσ(t) U S i _ ¤ÅrLbLkklbFL^`s`bFjScFiS_n} cFtiSSyL^`s`bL4iS_K¦ σ = A kliDkls~^`j`eFhF]b6¬σY = Eε \L^`_FcFiSwziWjSFs`iSiSys`tcF~ F bLn^xrKeK^x^eLtiSt\FFtcFbFg{ts`sFyFmfrLou üqtcnyDVY hLüq4iSiS_vs`yLiD^S4klH\Ft4s? qUp^ScF4aF FtcFbFbLb /nyF^SbF4cLb6^ eLrFgxeFs`hiScFkbLeL^`Dc jSp^`bL4irLt_Lkls`jSb6h>tiODklyFtlrLcFtcFcFz£pcL^\FtcFbFt|Fm
1
2
%
e
d
> *
ÂC
[§klyFtlrLcFtcFbFtiDklUtkls`j`eFhFtsSkhFiZrLbLklaFyFts`bFpbFyFiSjD^`cFcFiD4jSyFt8tcFbOp^`L^`plrLjD^x cFb6h n i 4iScFiD4tyL^ nt kZyL^SklFyFtlrLtleLtcFbFt£jStyFi~hFs`cFiDkls`t_ H int (p, q, t) = −b(p, q)V (t).
0
P (nt0 ) =
t 0 N0 , n > N = θ/t0 , N0 = (ν + 2)θ ν+2 , 0 < ν < 1. (nt0 )ν+1
SD b FyFbFjSirLbFsOa jSyL^xtcFb6 G(t − t0 ) =
**
∞ X
&x 7
"+*Ã
P (nt0 )b(t0 − nt0 )σd (t)
++
= N0
Å,§ ã>1õ
(õ
1
∞ X hhb(t0 − nt0 )σd (t)ii . tν0 nν+1
^xeLtb t¢^`jSs`iS}y/FyFtc6tSyFtl^`ts¡sStlyL4i~rLbFcL^S4bF\FtklaFbL4baUiSyFyFtleFhF Fb6hL4b4tlOrL ð
b(t0 )
n=N
n=N
σd (t)
0
G(t − t ) =
½
−N0 0,
P∞
−ν −ν−1 δ(t n=N t0 n
− t0 − nt0 ),
b cL^xSi~rLbFss`yL^`cLkqiSyLf^`cFs` UyFgStqUcFaF FbFb nyFbFcL^Fm
= −N0
"
∞ X
+
e G(ω) = −N0 −ν−1 t−ν 0 n
∞ X
t > t0 , t 6 t0
C
−ν−1 t−ν exp(−iωt0 n) = 0 n
n=N
exp(−iωt0 n) −
N −1 X
−ν−1 t−ν 0 n
#
exp(−iωt0 n) .
XFi`eLc6h6hFyD}LhL48i~iS tcFbiOiSFSyFyLiS^`jSs`tcFyFiSbFtvs`gOFs`yFi~tOiSSrLyLt^`klps`iSjSjSi ^`cFb6h vtleFeLbFcL^q(12.9.2) UcFaF FbFb n=1
n=1
@G
exp(−iωt0 n), ω > 0
1 exp(−iωt0 n) = 2πi
c+∞ Z
Γ(s)(ωt0 n)−s exp(−isπ/2)ds, 0 < c < 1.
jSqtli~rLrKtklsOs~^`a>cFjSiSjSa6yL^q^xtticFbFj qiSyL4eLv¤ ~6Y ÑFY S¦4kzbLklFi`eLgSpiSjD^`cFbFtsStliSyFt4
ü
rLt
e G(ω) = −N0 Γ(−ν)ω ν eiνπ/2 − " # N −1 ∞ X X n−ν −nu−1+n m −N0 t0 ζ(1 + ν − n) − [(−1)n /n!]ω n eiνπ/2 ,
dOrLptsx^x qUcFaF Fb6hý§bLf^`cL^F} ζ(z) n=0
m=1
qyFb ω < 0 bFp4tc6hFtsSk¨hvpcL^`a>FtyFtlr4cFbL4iS_ tlrLbFcFbF Ft_nY X FyFtlrLtleLtÖFyFb jDkltÖkeK^`l^`t4t§jzaFjD^xrLyL^`s`cFklaUiSSa6^xZbLkl\Ftp^`]s pyL^ 4bLbFkls`a6iSeLjD]^\FFtyFcFtlbFrKtklsx^`Fj`teLyFtjStcFiSb6l→h>iiS¤¥0k SiSnS=t0cF¦cF}KiSaU_2iSrFs`iSptyFsx^x_v qcLU^xcFDaFi~ FrLbFbFb sSk¨hkbLklFi`eLgSpiSmjD^`cFbFt resz=−ν ζ(1 + z + ν) = 1.
ü
0
e lim G(ω) = −N0
t0 →0
£
ζ(ν + 1, θ/t0 ) ¤ Γ(−ν)(iω)ν + (νθ ν )−1 .
&x 7Ü
S s`üqUi~s`rKbFkljSs~cF^`iDj`4eFh6?h?UyLs`^`iSjSs cFty6cFtbFp~eLgxs~^`sOj qiSyL4eL?qUSi ¤ ~6Y ÑFY ~¦}6FyFb6Si~rLbL£a aDiScLkls`b6 ©¨ xxx
*Ã$¥¦
§ ã1õ
&ô
1 hσd i = −N0 Γ(−ν) 2π
(õ
Z∞
−∞
Â5/Æ
&
(iω)ν εe(ω)e−iωt dω−N0 (νθ ν )ε(t) = ην
a
ν
ε(t)+ξν ε(t),
kli~rFtyDO^`t4 rLyFiSScFUFyFiSbFpjSirLcFU ν iOFiSyDh6rLaU^FY ³Û [Ì Ê dÖ÷ V§ÿø4ÿnþ] ÿ ]ü]ÿ üqtyFjSiS_*p^xrK^~\Ft_n}OyFt{tlcFcFiS_ UtyL^SklbL4iSjSz#jFyFiDkls`t_F{t_rLyFiSScFi` rLbLqtyFtcF FbL^xeLgScFiS_yFti`eLiSbF\FtklaUiS_ 4irLtleLb2kaUiScLkls`bFs`Us`bFjScFz.UyL^`jScFtcFbFt ην = −N0 Γ(−ν), ξν = −N0 (νθ ν )−1 ,
z±{zz ,º
©º
Á,í,~}ï³
ç| î
î |
¹
H¿
;C
SeK^Wp^xrL^~\L^.i£s`t\FtlcFbFb¢j`hFpaUiSUFyFUiS_kyFtlrL kUaU^`p^`cFcFz4b
_ L \ S ^ l k ` s F b F bL4t]s jSb6r
m y y(x, t) σ(t) = κα
α 0
t ε(t),
K
y(x, 0) = 0,
¯ ∂y(x, t) ¯¯ = 0, y(0, t) = 0, y(a, t) = ϕ(t). ∂t ¯t=0
rLjS68h.XiSyFrLbFtlpeLiSbLcFs~^xleLeLgStcF4ztcF4s~b.^`yFcFyL^`c6_ hLL4^`b.yLtl^xrLeFbFeLcFtleLbFtl\FFcFbFiSF_Wtlr6eL iSb6rL^xaDrLiDbWkls`kObnyL}¬^SiSkklyLs`^`icFhFbFcF\FbFttcF c6dx_ 4tlOrLOcFbL4bnYU[]yL^`jScFtcFbFtrLjSb6tcFb6h2 FtcFs`yL^f^Skkzs`iSileLt4tcFs~^bL4ttsjSbUr
b
rLt
ρ
ρ = const
∂σ ∂2y = , ∂t2 ∂x
d 6eLiSs`cFiDkls`g b6rLaUiDkls`bnYüqyFbFcFbLf^xh jSijScFbLf^`cFbFtS}F\Fs`i ∂y , ∂x
= κα
α 0
Fi`eLU\L^`tUyL^`jScFtcFbFtZrLjSb6tcFb6h jOjSb6 rLt ε) = κ
t
ε=
σ = κα
∂ ∂σ = (κα ∂x ∂x c2
∂2y = ∂t2
α 0
α 0
α 0
t
t
tε
α α 0
t
∂y ∂x
∂2y , ∂x2
ρ ∂2y 2 , c = . ∂x2 α κα
S
&x 7
"+*Ã
('
Å,§ ã>1õ
(õ
1
4iSj£bLkla£Fi`teLt>gSpbFiSpjDiS^xSe
Ñ
d2 yb = c2α p2−α yb dx2
kZyL^`cFbF\FcFz4b DkeLiSjSb6hL4b §i y6t{tcFbFtbL4ttsOjSb6r
yb(0, p) = 0,
yb(a, p) = ϕ(p). b
b ϕ(p), yb(x, p) = K(p) b
rLt
sh(cα p1−α/2 x) b K(p) = . sh(cα p1−α/2 a)
]SyL^`s`cFSiSY tZqFgSyF]ts`iSiSScFyLiS^`jDp^iSjD ^xb6cFrLbFaUtZiDSkls`geLiOjSFi`eLm cFtcFirFeFh s`yFtl keLU\L^`tjLY $
(α = 1)
) ( µ ¶ Zt ¶2 µ ∞ 2 X kπ kπx (t − τ ) ϕ(τ )dτ, y(x, t) = exp − (−1)k−1 k sin (πc1 )2 a c1 a k=1
0
6Y6[]FyFUl^xh klyFtlrK^
0 6 x < a. m (α = 0)
∞
2 X (−1)k−1 sin y(x, t) = c0 a k=1
µ
kπx a
¶ Zt 0
sin
½µ
kπ c0 a
¶
¾ (t − τ ) ϕ(τ )dτ,
FY>üqyFiD4tl Us`iS\FcF_vkeLU\L^`0_?6d j`xhF
∞ ³ nπx ´ Z 2 X (−1)n φ˙ n (t − τ )ϕ(τ )dτ, y(x, t) = sin π n=1 n a
α = 1/2
Y
t
0 6 x < a,
0
φn (τ ) =
∞ µ X
nπ
¶
(−1)k τ 3k/2 , Γ(3k/2 + 1)
n = 1, 2, 3, . . .
eFh>yL^`jScFiD4tyFcFiSirLjSb6tcFb6h jStyS6cFt_>6eLiDklaUiDkls`b ð
k=0
c1/2 a
ϕ(t) = vt,
v = const > 0
&x 7Ü
SD UtjOyL^SjSklb6bLrL4tZiSrLjjScLiS^`_F{cFiStle>icLyD^`h6FrKyD^Fh6mtcFbFtZcL^jStyS6cFt_>FiSjStlyD6cFiDkls`b?FyFb>FyFiSbFpjSi`eLgScFiD α ©¨ xxx
*Ã$¥¦
§ ã1õ
&ô
Â5/Æ
(õ
C
σ(a, t) =
∞ ∞ X j X 1 [−(2k + 2)c a] α = κc1/2 v t−α/2 + 2 t−j(1−α/2)−α/2 . Γ(1 − α/2) j!Γ((1 − j)(1 − α/2)) j=0
qyFb iScFi iSSyL^`^`tsSkhjvStklaUiScFt\FcFiDkls`g>FiSyDh6rLa6^ mnjvj`hFpaUiS_ b6rF aUklaUiDi`ksSyFbiDtklcFs`=tlgLeL}60gSFplyFhbL44tc6cFh6iShvjStScFklcFb6i eLbFkliStiSaDSiScFbFts`\Fg2cFiS_ yL^`jScFtlbFeL\FbFcF\FiSb6_cF6YeLiDklaUiDklα/2 s`b x = a aUiScFt\FcFU [Ì Ì ¹¢ü Zü eË]ü]þ]ÿ
÷ V§ÿBø4ÿnþ]ÿ ]ü]ÿ Xs`iSyL^xhp^xrL^~\L^F}yFt{tcFcL^xh UtyL^SklbL4iSjSz(d!rLjSb6tcFbFtj`hFpaUiSUFyFD iS_ b6rLaUiDkl}¬s`jSbyL^`4tl^`O]rLbFaU4iDbL^`ka6hklbLF^xi>eFpgS^xcFrKz^`4cFb
,º
©º
k=0
¸¿
C
1
2
1
· ³ ∂2 ∂ 3 ∂ ρr r = κ ∂t2 ∂r ∂r 3
α 0
t ϕ(r, t)
´¸
,
2
r1 6 r 6 r 2 .
§iOyFt{tcFbFtqrLi`eF cFiO~rLiSj`eLtlsSjSiSyShFs`gcL^~\L^xeLgScFzDkeLiSjSb6hL
¯ ∂ϕ ¯¯ =0 ∂t ¯t=0
ϕ(r, 0) = 0,
b yL^`cFb6\FcFzSkeLiSjSb6hL
Sj yL^xO^`]bFFyFb6eLbFF^`cFbFt\L^Skls`bF cL^Wkls`tcFa6^x¬Y UcFaF FbFb b j cL^~\F^xeLgScF_8iD4tcFs?jSyFt4tcFb t = 0 FyFtlrLFi`eK^`^`]sDk¨hyL^`jScFz4ϕbv(t)cF~eL!ϕjD4(t)tkls`t kli kljSiSbLX<4\Lb>^SFklyFs`cFiSiDbFHpjSi~keLrLUcF\Lz^`4tSbn}6YaUiS rK^ f^xeLi Fi2klyL^`jScFtc6bFBk r ¤ Fi~r6 r −r =δ {bFFcFbFavklaUi`eLg`tcFb6hK¦} ϕ(r1 , t) = ϕ1 (t),
ϕ(r2 , t) = ϕ2 (t), .+
1
2
σ(r, t) =
κr1 r2 rδ0
α 0
1
t ψ(t),
0
2
1
ψ(t) = ϕ2 (t) − ϕ1 (t),
cL^`FySh6tcFb6h cL^FiSjStyD6cFiDklsh6 rK^`]sSkh jSyF^xtcFb6hL4b σ(r1 , t) =
κr2 δ0
α 0
t ψ(t),
σ(r2 , t) =
κr2 δ0
α 0
t ψ(t).
(12.11.1)
^S4ts`bL} \Fs`icL^`FyDh6tcFbFt?cF^jScFt{cFt_WFiSjStyD6cFiDkls`b4tcFgS{t2cL^`FyDh6 tc6b6h.cL^?jScFUs`yFtcFcFt_ j r /r yL^`pSYRüqyFbF\FbFcL^>s`iSi>\FbLkls`i tiD4ts`yFbF\FtklaU^xhnm
2
1
SSª + > &x 7 FyLiO^SklpF^`yFaUtliSrLcFtlOeLtrLcFtH_LkliSs`cFjSb b6h>Fib>yLF^`yFpiScFs`zbFjSi~6rLeLt_LiSkls`^xjSrFb6hLh?iS}SSb2tqaDkliSb6cFeL F
" *Ã
Å,§ ã 1õ
(õ
1
%!
C
cL^`FyDh6tcFbFts`i~tbL4ttsOl^`yL4iScFbF\FtklaFbF_ jSb6r
ψ(t) = A sin(ωt)
³ κr2 απ ´ A sin ωt + δ0 2
σ(r1 , t) =
kliWk¨rLjSbFiD!^`p}fp^`jSbLk¨hFtBiSs Y ^`FyDh6tcFb6hj.\FbLkls`iWUFyFUiS_klyFtlrLt aUi`eLt`eFZsSk¨hHklbFcL^`pcFi k?rFjSb6tcFbFtαBFiSjStyD6cFiDkls`t_n}8j \FbLkls`i.j`hFpaUiS_£klyFtlrLt krLjSbF^`pqkliDklsx^`j`eFhFts π/2Y
8
z±{z±
[Ì,º[Ì,º
ç
î ç
,æ|ï³
º<ý þ]ÿ]ü]ÿý ö #¿Ë
³Û ç|
¹
©Ë
X ¡°B F´ b6HeLaFbFcFc6bFrLyFb iD! k>Ñ FyLtyF^Stk4kftcF^`s`cFyFiSbF_£jD6^`teLsSiSk¨h^xrLbFgSpleLU\FttcFi bFkltt\FptjScFUb6a6h ^StklaUY iScFt^\FcFyLz^Sk Fa yFU eLz» kls`i~hFcFbFb r iSsviDklbn}84cFiSivSi`eLgS{t
i
9
c ϕ(r, t) = − 2π
t−r/c Z
p
˙ 0 )dt0 S(t c2 (t − t0 )2 − r2
,
rLt c d.klaDiSyFiDkls`gpjSUa6^FY8XjSi`eLcFiSjSi`_WpiScFt?iDklcFiSjScFU*yFi`eLgbFyL^`tsiS`eK^Skls`g pcL^~\FtlcFbF_ t − t ∼ r/c }6sx^`a \Fs`i24i cFi kl\FbFsx^`s`g −∞
0
(t − t0 )2 −
r³ r2 r´ 0 ' 2 t − t − . c2 c c
XyFtp~eLg~sx^`s`tFi`eLU\L^`t£FiSs`tcF FbL^xe 1 ϕ(r, t) = − 2π
r
c 2r
t−r/c Z
−∞
p
˙ 0 )dt0 S(t t − r/c − t0
=−
1 2
r
c 2πr
1/2 −∞ S(t
− r/c)
Ü
h3
S#´
ã"õ$5ã5&â § ã> Ä5/Æ
*Ã$¥¦*Ã
bvklaDiSyFiDkls`g
∂ϕ 1 √ ' v(r, t) = ∂r 2π 2cr
[Ì,º[Ì,ºÌ
t−r/c Z
p
¨ 0 )dt0 S(t t − r/c −
ì!ÿ]ü]ÿý ö −∞
Ê9Ô¿d
t0
1 = √ 2 2πcr
3/2 −∞ S(t
− r/c).
©Ë
Sj i`eLcvkqXU^x\F ts`cFiDiS_ Fp^xiSrK eF^iS\Ft_vtcF^`b6aFh Dklbvs`bFyLaF^Sb>kklhFtlj`hFeFcFhFb6th sSkb6h yLj2^Sklkl\FyFttlrFs tSFYKyFoqipDjSi~tOklrLs`cFtc6iLb6}Fh \Fs`pi2jSU^SaU4iS6jSeLb6 s`rK^ 6eLiDklaUiS_.jSi`eLcF}¬yL^SklFyFiDkls`yL^`c6hF]t_Lk¨h.j`rLi`eLg iDklb z }nUSjD^`ts>p^vkl\Fts FiSeLiStcFb6h>FiOa6klFiScFtcF FbL^xeLgScFiD42p^`aDiScF A(z) = A(0)e−γz ,
rLtqaDiSqbF FbFtcFsFiS eLiStc6b6h γ p^`jSbLklbFsiSsO\L^SksSiSs`¢pjSUaDiSjSiS_?jSi`eFcF} γ = Y s~^`c6rK^`yFs`cL^xh2qiSyLf^qkliSiSs`cFiS{tcFb6hO4tlOrLjSi`eLcFiSjSzv\FbLkeLiDH¤ÅrFeLbFcFiS_ γ(ω) jSi`eLcFiSjSiSlijStaFs`iSyL^D¦ k }6\L^Skls`iSs`iS_>b>aUiSqbF FbFtcFs`iDWFiS eLiStcFb6h>bF4ttsOjSb6r
k=
ω + iγ(ω), c0
rLt = a ω Ñ 5Y ûÖs~^aFjD^xrLyL^`s`bF\FcL^xh p^`jSbLklbL4iDkls`gL}`i~rLcL^`aUiL}SbL4tlts4tkls`i eLbF{γ(ω) gqjZDkeLiSjSb6h6f^xeLiSiZFiSeLiStcFb6hn}x\Fs`i^`aFs`bF\FtklaFbjDklt rK^ZklFyL^`jStlrFeLbFjSi rFeFh.l^`piSjL}TcFi rFeFh rLyFUb6¬}nSi`eLttO6eLiSs`cF.klyFtlr
}
p^`jSbLklbL4iDkls`g γ(ω) 4i~ts iSa6^`p^`sSgDk¨hiSseLbF\FcFiS_OiSsZaFjD^xrLyL^`s`bF\FcFiS_nY`XW\L^Skls`cFiDkls`bn}xjqj`hFpaDiS_OklyFtlrLtkiS\FtcFg jSzkliSaDiS_?sStl6eLiSFyFiSjSi~rLcFiDkls`gSaUiSqbF FbFtcFsFiS eLiStlcFb6h>aFjD^xrLyL^`s`bF\FcFiOjSiSpl yLjSz^SklklsxiS^`aFtlb6s¬Fm yFb2cFbFpaFb6 \L^Skls`iSsx^xOb2FyFbF`eLb6O^`tsSk¨h2a2FiDkls`i~hFcFcFiS_ jStleLbF\FbFcFt]FyFb ½ } a ω , ω→0 γ(ω) ∼ X!yL^`SiSs`t ` ÖFyFtlrFeLi~tcL^Sai`eL, tt iSSω→^xhW∞.kls`tFtcFcF^xh£^`FFyFiSa6klbL4^` Fb6hn} Fi~rFaFyFt6eFhFtf^xh yDh6rLiDa6klFtyFbL4tcFs~^xeLgScF?rK^`cFcF.¤ P= · = n=¥¹K}Usx^``e
YL6Y ~¦m 2
2
2
2
0
Â
ÝÜ
γ(ω) = aν |ω|ν , ν ∈ [0, 2].
] ntlrLbFcFbLs`bv^`FFyFiSa6klbLf^` FbFb>jOtlrLbFcFUBqiSyL4~eL &É
FyFbFjSirFhFU¡a kliSiSs`cFiS{tcFbF
γ(ω) = a0 + aν |ω|ν ,
k=
ω + i[a0 + aν |ω|ν ]. c0
SS [Z4cFi~ bFjOiSStq\L^Skls`b tiOcL^
&x 7
"+*Ã
−ie pν (k, ω)
peν (k, ω) =
Z∞
dx
Å,§ ã>1õ
}FrLt
Z∞
(õ
1
dtei(kx−ωt) pν (x, t),
d¢s`yL^`cLkqiSyLf^`cFs~^ UyFgSt¢¤ Fi
−∞
−∞
¬+
1 ∂pν ∂pν =− − [a0 + aν (−41 )ν/2 ]pν (x, t), ∂x c0 ∂t
41 ≡
∂2 . ∂t2
~iXrLjScFtliDrF4htlcFyFiScFjSiD4t2FrLtyFyFiStS4cFti`cF¥cFrLbLt τq=tyFttcF− Fx/c bL^xeLgSbcFiSf4 (x,UyLτ^`)jS=cFtecFbFp s`(x,t6eLτiS)F}`yFFiSyFjSb6i~SrLi~cFrLiDbLkls`bna m 0
a0 x
ν
ν
∂fν (x, τ ) = −aν (−41 )ν/2 fν (x, τ ). ∂x
üqi`eK^`l^xhbLkls`iS\FcFbFa.pjSUa6^?cL^xDi~rFhFbLfk¨h.j 6eLiDklaUiDkls`b }np^`FbF{t¢yL^x cFbF\FcFiStvDkeLiSjSbFtvjWjSb6rLt f (0, τ ) = p (0, τ ) = p (τ ) }§xsSiS=rK^W0 kliSiSs`jStsSkls`jSUz jSUtt?6t4eLiS.s`yFcFtiD{kls`tg cFbFt?jSyL^`bFpbFcFsSs`k¨thyL\F^xteLyFiDt p?irLcFiD4tyFcFUklbLf4ts`yFbF\FcFUDkls`iS_F\Fb6 g (τ ; ν) ν
ν
0
1
pν (x, τ ) = (ax)
−1/ν −a0 x
e
Z∞
³ ´ g1 (τ − τ 0 )(ax)−1/ν x; ν p0 (τ 0 )dτ 0 .
cF¡X bFka6eL^UiS\L^`yLt^`bLcFbF4\FFtcFeLcFgDiSkl_?cFiSrFeLi?bFbLs`kltls`eLiSgS\FcFcFiDbFkls`a6b ^F}TyFb6teL{btcFcLbF^?tS6i`yFeLbFgScF{bLiDf^`tyLs ^SkjSklb6s`r i~hFcFbFbiSs?bLkls`iS\6 −∞
pν (x, τ ) = (ax)
−1/ν −a0 x
e
³
g1 τ (ax)
−1/ν
´
; ν Q0 ,
Q0 =
Z∞
p0 (τ 0 )dτ 0 .
üqi?4tyFtyL^SklFyFiDkls`yL^`cFtcFb6hvbL4FeLgDk^2ti rFeLbFs`tleLgScFiDkls`g2yL^Skls`ts?6yFiSFiSyF FbFi` cL^xeLgScFi x }U rLt x dOFyFiS_6rLtcFcFiSt]jSi`eLcFiS_2yL^Skkls`i~hFcFbFtS}6^S46eLbFs`rK^tZjSi`eLcF USjD^`tsFyFiSFiSyF FbFiScL^xeLgScFiiSSyL^`s`cFiS_?jStleLbF\FbFcFtS} x Y −∞
1/ν
−1/ν
SÑ
1õ7
"
}, î
S YòÀô /ø #ÿ÷oö 2÷ üqyFbFa6eL^xrLcL^xhOf^`s`tf^`s`bFa6^qbO4tlU^`cFbFa6^¹ · }SS6q¤ Ñ DD¦Y 6Y UV ËrK2i¦V _GµZ`§ §x_KYei¦`baX K®X f±_\ \ h¯ I GIMz yFw L¸
}~ SªF ¤ ÑÑÑD¦Y FY À£Ye`¶XWKYe`¶Ëgt¬ o +I Y~ K·n}¬~6O¤ ÑÑF~¦Y L?Y ÊkrKaaXZa=_GËgNXZY¼j sÀ ko +I IGO szqI NO mJ I w +H yF ½ ¯FY N}~ ¯ LNI L I Y6d ; F Y p m wL {NO I ;}¬F ÑÑFSn Y 2F +F K´n¹K}¼ Y v GF GF 67Y £Ëg`¶Xe+XZVº d§xXZiZV XZY´ ][V 2=XZa¢U ÊkrKaaXZa=_GËgNX+Y0j mÀ ¯LYNn 2F Y~m z Y ù Y · ´n}FªD`#ª ´2¤ ÑÑDS¦Y ªFY ¬_ª2i}r=§ §x_K`ba_KY WK`dÀ Nn ~ LNL ù +IGL 2F +F ±n¹K}¬ ¤ Ñ#´U~¦Y ´U7 Y ¸]XZaXZYk¬ ¾ GF MOGI n ;F F }¬ Ñ DFY ~ GF IMz yF YS=d MOGI ±m È F sIM FY ¬_ª2i}r=§ §x_K`ba_KY WK`dÀ o Y { NI GI Y I ¤ ¨¦Z¹K}¬ªFO¤ Ñ#´U~¦Y ÑF Y ¥(Y rh7[ ¯LNY ~ LNL n 2F Yn¹6´n}L6~?¤ Ñ 5´`¦Y F?Y [_+fMV X´ £ ³jrKYe;` «¨ d\ N¯LY IM o +I IGO K·n}n >¤ ÑSSªD¦Y SS?Y d W7÷7Y mùJñ^~÷oUöva6 ^F}T Ñ#÷ ´´Uû§Y eLt4tcFs`BcL^SkeLtlrKkls`jStcFcFiS_4tlU^`cFb6aFbs`jStyDrLvs`tle
Y ~6Y ÷ ^xeLg\FAbFò!anös}L `SS FY Rû§eLt4tcFs`rLyFiSScFiSibLkl\FbLkeLtcFb6h b b6>FyFbL4tcFtcFbFtSYFd FSY j£+ËgNr;X fMV©YDÊ d 0^ J m n 2I }¬ ÑSN I ÑFIGY O J +I éIM p yF ZI GF I wL NO LGY ~ (V W;gN_KÍ n [ ¾}¬ GÑ#ª2´ _KLaY `¶XZY¼\ 0J u I F YO d { Å I m ;F F ~6Y Ng`¶Xe+XZVº ][V 2=XZaqU ¯L2Y n 2F Y ~m z Y ù Y · ¤n}L`D+ ´2¤ ÑÑ D¦Y ªF?Y *ô ñxòÀôä S¿ ³ -ôxñxøs VüqtyFtlDirLcFtFyFiS Ftkkl jWeLbFcFt_FcF klbLkls`tf^x¬Y6d WY m
o }¬ ÑSªFSY o´UDY 9 ñþ ñ qtFcFtZrLyFiSSbnYUd WY m ^~UaU^F} bFpf^`seLbFs~}
Ñ#´ FY F?Y ¨di;XZaY XZ`bi}XZYj ¸ ~ NO Y z Y z YK´L¸
}L` ¤ `S U¦Y ÑFY oñ nb6rLyFirLbFcL^S4bFa6^FY6d WY m ^Ua6^F}T ÑSSFY `FsY ¬gNXZaä^ NY n 2F Y p Y ·· }K`ªSF¤ `SDS¦Y 1 0
J -J
('
ÇJ
9J
0
R$ &Y
'
ÂS3 Z TÝS(Y
1Q0T V"Q0 Ü
(
Ü
QS
¬J
J
J
?J EJ
R
V
ÇJ
J
R$TÝQS
EJ
YÝS /3TÝQ0T /S(V" 9Z ('
ÇJ
P Z S(V"
$Y T
TN
('
$R åTÝQ
0S(Y
P *N
V$T N( Z åT /
R$TÝQS
¦Ò3Ò
T X-V
('
R
J 9J
$Y T
V$YÝS /3TÝQ0T
EJ
J
6 G
&P Z V$S(Y
?J EJ R &Y &TÝQS(Y $ $1Y Y T V R Z X 11V"S(X-TÝQS(Y-S(V$ $ Z S&Q3R$ Ü Q3P Z
(3 -T V R åTÝQ
S 3S Z T V & Z &P E Z Y T V
S3T /3TÝQS(Y Ð S P1 ÂS3R
1J 1J
.J 1J
&Y &
Ü
&
wJ -J
$
È"4&Ú
J ÇJ
¬J
ER"S*NT Z
'
J R$ E Z Y T V
-J J QS&1X-TÝQ 9Z
1J
R$
*'
¬J
5
R$V &X-V &Y &TÝQS(Y Z T V & Z
J
R
Z
R$
$Z S&Q3T &V"S(Y
T V$ S Z-Ð T 3Q YÝS /3TÝQ
S(Y QP$Y P
ÂS3R
V
&
"
+
ÇJ ³J E 7Jù¬J BG "C ¬¬ + G
1
J ¬J"ø
BG
?J ØJ
V &
ÂS3R
ù 5*4Bù¬J J 9ù"9Ú"<Ù.J ÇJC J
R$T V
R
0å
QR
('
('
BG
"
Z U
%
ís\ït\ r
u
Õ Õ Ö ç
¿ ç
c
nm
ÑèßÚãèç k
ógwp
/ãèâá%åys
Ó s
g
E ! Fb yFiSaUiSt>FyFbL4tcFtcFbFtvs`tiSyFb6h£rLbLqUpbFbcL^xSi~rLbFs j ti`eLiSbF\FtklaFb6 bltiDqbFpbF\FtklaFb6.p^xrK^~\L^x¬}nrLt?iS ntaFsx^S8b4i~rLtleLbFyFiSjD^`cFb6h hFj`eFhF]sSkhFyFi` rL FtbFkiDkl^`¡aFs`rLbFjSjSb6cFt.cFb6bWh s`iSyFa6UklbFcF\Fs`iScFjSWiSjSsxiDr
irL}TiSl^`jvpF^?yFb iSbFcFptjSqi~rKs`b kls`j>jD^ cFtjqFs`itrLcFpiDtkl4cFcF.keL6yLi~h6^`¬cFb6}TeLyLb6^x ^x¬Y ýf^Skkf^`s`yFbFjD^`tsSkhyL^SklFyFiDkls`yL^`cFtcFbFtkli6yL^`c6hF]t_Lkh 6bL4bF\FtklaUiS_klU` klqsxiS^`yLcFf 6bF^` FbbF\FtyFY tqpÖtFi~i`rLeLcFcFiSiDy6kli~s`rLgScFiDklb6s`eFb2bq\LiS^SyLkls`fbF^`\F FcFbFi]b2cFF^SyFkli~hFj`eFthFcF]cFUsSkh2jSji~rLcLiS^x_qeLbFt\Fi`bFeLb?iSyLbF^`\FpleLtkliDaF4UiS j bvcFiSs`_nyF}4taU^`bFyFcnS}FiScLeL^`bFsxcF^Sp4bvbK¦FY iSynaF}FjSp^`iSFpgi`eLcFs`tcFcFklyFtl?rLrLS}§yFUkibLjD4klbt44bbFcFkltjSyLiS^xbLeK4^Sb£4bcFtl¤i~aFrLjDcF^`iSyFyF Fi~trLcF}LiDkleLsb6h6 4b£FyFtlrKkls~^`j`eFhF]Ui~rLcFWkeLU\L^`_FcFUyFt^xeLbFp^` FbFcFtaUiSs`iSyFiSiklsx^`s`bLkls`b6 \FcFtb6klh>aDiSrLjSi>b6^`cLtsSk^Skh>4`rLeFbLhklqyFUtlr
c6rL}TbFFyFiUr]rLt_L^xklh>s`jSklUbFDtkl<sx^`klcFbU FeLb6Bhn}6sh6\L^Sklts`klbFs` Fb baUiSyFs`^xiSrLyFbFiSt_>cFsxiS^ Ss`rKt^`aUj`^`eL]tls cFcFtzF4yFbiScFFbFiS Ls`^`iSta64^S4bnt}~jScLa6^xeLrL]i`eL\FtiZcFb6phn^Skl}Ts`FyFttyFjDt^`cF]iDs]khFjZsSk¨Fh iSyLcL^x^?Sbi`FeLyFgS{iScFbFbFt LyL^`t^S4kkls`i~hFjScFa6b6eLh]F\Fi~tcFrLb6pth68¬ Y ©yL^`taFs`iSyFb6hvaU^xOrLiS_ sx^`aDiS_ \L^Skls`bF FFyFtlrKklsx^`j`eFhFtsSk¨hvjStklgDf^cFtyFt~eFhFyFc6iS_ eLDibFrLcFb6bFeKt^S_nkl}ng sxrL^`i`aUeLiS_ iSt2cFbFjSs`yFgSt8hklivbW4r6cFeLi~bFcFcFtkls`jSiDy6¢iSjSUcFptleL.aUUiS\Lj ^Sjvkls`4aUtiSkljsx^x¤¥6¬yF}niSSrLtt iS\LjU^S¦kl}
s`bFrL Lt?^ iScLcL^x^ rLjSbF^xeK^SklgL}xFi~rF6jD^\FtcFcL^xhFirLpt4cFz FiSs`iSaDiD/Y ýf^`p64ttsSkhn}`FyFiSStbOs`bOcFt hFs`iSj`\FeFthF\F]cFsSzkh4b>FyDiShLS4yL^`i`peLiSbFjDcF^xtcF_Fb6cFhLz44bnb.}DcFiSiOs`yFttkpeLa6bn^S}64klbna6^x}¬yL^`tjScF}Ui>jOa6F^`ta yFjSb.iDWUpFtlyFeLbFaF`b eLcFb6thFtcFj`bFeFb>hF]FsSyFktlh cFtSyFt\FgiSs`a6eLiScFtcFbFtWFyFiSStiSjiSsFyDhL4 iSs`yFtpaUiSjL}U^UptleLaDiSjdiSss`iS\Ftan} s`i 4Fi`eLU\FbL£cFtaUiSs`iSyFtqiDklcFiSjD^`cFb6h2rFeFh iSSyL^`tcFb6h?av4irLtleLb « XZY ï
z¸äB{z
|.
|,Â
D
&É
,
hf6
F~
"+> á
#õ
&xx ('
"§Â
N'
1Æ Â5/x
cL^ FyFiDX¡kls`FyLyF^`iDcLklkls`s`tjS_Ft{cFcFti`< jSjDyF^`tyF4bLt^`cFcFcFs`iSt_rLs`iSbL_.^`8yLi~^SrLftl4eLtvb Fs`yFyLtl^`rKtklaFs~s`^`iSj`yFeFb6hFh tsSa6k^xhHOj.rLiSjS_b6rL\Lt>^SkleLs`iDbFf F^x cFiS_eLbFcFbFbn}~aU^xOrL_klt4tcFs]aUiSs`iSyFiS_L^`yL^xeFeLtleLtciDklbaDiSiSyDrLbFcL^`s¤ StklaDiScFt\6 cFiOSzkls`yFiStqrLjSb6tcFbFtS}8u~Fi`eLtsF|D¦b6eLb iDklb jSy6t4tcW¤ FyFtSjD^`cFbFtqjOeLiSjSU{aDt~¦Y ðeLbFcFBs`b6klt4tcFs`iSj>bjSyFt4tcF^?FyFtSjD^`cFb6hcFtp^`jSbLklbL8Bj?FyFiDkls`t_F{t_ 4i~rLtleFbnm¬s`brLjStOqUcFaF FbFb klUs`g>jDkltS}K\Fs`i s`yFtS`tsSkhpcL^`s`g?rFeFhiSFbLk^`cFb6h¤ j klsx^`s`bLkl]s`bFD\FkltDkOaUrKiDH^xh!k46zeLiSks`eLcFt~¦iDklsxs`^`baDiSyLi^SklrLFjSyFb6tlrLtltleLcFtb6cFhnbUY h keLU\L^`_FcF!jSyFt4tc Fkls`yFjStUS]s jD^`eLcFbFb6{hvg j?rLeLjSiSt jSUF{yFiDaUkl^xs`¬}Kt2^`jSqs`iSiSyLyF4~eL B4cLrF^~eF\FhWbFcLsx^`^`]aFψb6s> k(t)yLU^Ss`kljSFtyFyStlOrLrLtleLtcFtcFb6bFhn_ }T\Fds`i FiSkla6U^`p^xtlT s`tleLgScFiSt ψ (t) ∝ e bvkls`tFtcFcFiStS} qiScFt\FcFiL}~s`iSs^`aFsx}x\Fs`iqs`b qUψcFaF(t) FbFb∝eLttaDiqrL. bLqtyFtc6 FbFyFiSjD^`s`gZbObFcF(13.1.1) s`tyFb6 yFiSjD^`s`gL}LcFt4i~ts>keLD bFs`g>qbFpbF\FtklaFbLiDklcFiSjD^`c6bFtH4i~rLtleLbnY¬«i`eLttklUtl s`kls`iSjSs`tbFcFa6cF^zyL^SklhFFj`yFeFtlhFrLttlsSeLkthcFb6s`h iL}4jSyF\Fts`4i tbLcFb24tFcFtcFyFi jSiSs~^`iqaUrLiS_¢iDkls`¤¥klb6s`tFtcFtcFb6cFh2iSp_K^x¦rKjS^`b6cFr£cFiSbL_O4s`tiSt\Fs.aFb ^SklrLbLbL4Z6 Fqi`UeLc6UrL\FbFtyFc?UrF]eFh tjS_ yF\Lt4^Sklts`cFbFb Fp^x}¬6FjDyF^`s~b ^aFs`UiDS bF\Fωtkl=aUiS1/2 _>SYnyFwziSUcLcF^xiSeLjDiSklaDbFiS\F_2cFeLiS_ jSUyF{tpaDiSeL_ gxsx^` s>Y Se qi.cFtvkeLtlrLSts.jSb6rLts`g.jWkls`tFtcFcFiS_qUcFaF FbFb¤ FY SY ~¦s`i`eLgSaUiWkeLtlrF keKls`^xjSh bFs`t!tiSrLyFbLb6h qyFUtlpeKbF^`iSa6cFkcF^` FbF iSc66cFyFiS? FthFkj`kleLiStjLcF}?bFD_niS}FsiSh FbLcLkl^jD^`s`tiS4_ ?iDklpcF^`iSaDjSiStBcFiDFiDqkls`i`yFeLiSgStyFcL^~^U{ F^xtl []b6eLg`hLf^x X^`sSk^FY rLtleLtcFb6üqhyFjSiDiSklps`cFiSbF_ a6F^`yFts2bL4b tynj>}¬FrKyF^`iDcFklcFs`t_6_ {j t_ }¬b6rLFyFiSa6irL^`pbFcL^SjD4^`tbFs~\F}Tt\Fkls`aUi iS_sx^`paU^xiSrK_ ^~\Fs`tbFd .s`yLt^S\FkltFcFyFbFtlt üqD^`pt_6eFh2jaFyFU eLiS_?s`yFUStS#Y ýf^Skk4iSs`yFbLiSs`yFtpiSa2s`yFUS
i 0
T
−µt
−ω−1
T
Ä *
_ 0
L
^Skls`bF L^OkZsx^`aUiS_ klaUiSyFiDkls`gSFyFiDi~rLbFsrK^`cFcF_ iSs`yFtpiSa>p^jSyFt8h v(r) = v0 (1 − r 2 /R2 ),
=
T =
eFh>\L^Skls`bF n}6rFeFh aUiSs`iSyF ð
bn}LkeLtlrLiSjD^`s`tleLgScFiL}
0 < r < R.
L L = (1 − r 2 /R2 )−1 . v(r) v0
}
T >t ¶ µ 2 û û L L r >1− , = (T > t) = R2 v0 t v0 t û
ψT (t) = −
d (T > t) L = t−1−ω , dt v0
ω = 1.
x&x5'5>x
F keLtlrLcFtüqtyF4bLi4ttyFsZS}4i~s`rLg]cLF^`i`aDeLiLU}8\FcFtt>cFi]p^SrF4eFthc6sxhF^`]aFsb6rLiSklaUbL^`kls`p^`ts`tl}xeLaUgD^`klas`jDt^Fi`}
eLrKiS^bFb£\FtjSklyDaFh6bFr£teLkls`b£yFUFa6i` s`UyFY qi2jSiSs2\Fs`iL}KcL^?4iS_jSp eFh6r
}KjD^x c6i?plrLtkgLmKFiDklaUi`eLgSaF>j?yF^S4a6^xvFyFi` 8b Tb FyFtSjDF^`i`cFeLb6cFh iDjOkls`eLgSi` jSkls`Ut{_Fa6{^xtL_¦?¤¥8kqi~cFrLttlpeL^`b jSbLklbL« 4zX 4bvs`i`FeLyFgSiSaDSitrL^SjS4t.b qRUcFbvaFjS FyFbFtb 4tψcL^S(r) iSFyFtlrLtleFhF]s?FyFiS Ftkk`}Ks`i>klUtkls`jSiSjD^`cFbFt^`jSs`iD4i~rLtleLgSc6iS_^SψklbL4(t)Fs`iSs`bFaFb jSiSpl 4i~ c6iOeLbF{gOj keLtlrLU]b6>\Fts`yFtl keLU\L^xh6¬m ¡f
á"¥¦
¬+
#
,
R
Z∞ 0
Z∞ r
Z∞ 0
Z∞
rψR (r)dr < ∞,
ψR (r)dr ∝ r
−α
,
Z∞ 0
tψT (t)dt < ∞;
Z∞ 0
rψR (r)dr < ∞,
Z∞
ψR (r)dr ∝ r −α ,
Z∞
t
T
tψT (t)dt < ∞;
ψT (t)dt ∝ t−ω ; ψT (t)dt ∝ t−ω .
X FtyFjSiDkeLU\L^`tW^SklbL4Fs`iSs`bF\FtklaU^xh\L^Skls`gHyFt{tcFb6h « XrLiSj`eLts`jSiSyDh6 ts?iSS\FcFiD4?rLbLqUpbFiScFcFiD4>UyL^`jScFtcFbF}KjSi?jSs`iSyFiDd klUFtyDrLbLqUpbFiSc6 cFk iDrL4yFiSSk>cFiSrL_HyFiSFSyFcFiSiSbF_HpjSklis`rLtFcFtiScF_HgS FiWjS^`yF6teK4^StklcFbLbn^`}ÖcLbn^F}Ö}4cLjW^`s`aUyFiStcFs`tgS nt}Ö!jWd£\Ftkls`UjStrLyFbLs`iDq!6dplbFrLiSyFcFiScFSiDcF4i` rLbLqtyFtcF FbL^xeLgScFiD4FiaUiSiSyDrLb6cL^`sx^SbWjSyFt4tcFbWUyL^`jScFtcFbF^`cFiDf^xeLgScFiS_ rLeLbLbrKq^`cFUcLpbF^xhbn+Y klüqbFs`yFSiS^`` FeLb6thf^F~}`rLs~iS^`j`aFeLbLtWs`jSiSiSSySyLhF^`tps2iDDk}SeLkliSjSjSi~bFrLbFsS^`kh jSs`a iD4jSiSi~FrLyFtleLiDgSklTcFiDmxrLkls`tbn_L}Lkls`DjSiSbFss`htleLSBgScFij a6^\Ftkls`jStqFyFiD4tl Us`iS\FcFiS_v^SklbL4Fs`iSs`bFaFb , cFiDkls`g.FyF^`bFyDFh6bLrLkl>kjD^`s`tsSbLk¨¡hH¤ \LcL^S^`klps`iSbFjS Lt£^S¡trL³i bLóxòÀqôöoUõ[c6ÿOrLbF¦yFFUi~]rFSi~trL_HiDklU}FDj2klsxaD^`iScFs` FiSbFyFbniD}§Hkk^SeLfU^\L^`_6t klyFtlqrKbF^? FFbFi`teKcF^`s~l^ ^`trLsSbLkhqirLUcFpbFiSb.yFi~cFrLt2cFiSp_^`jS¤ bLtk¨t hFfsv^`iSs`s tyFaUbLiS^xiSeLyDgSrLcFbFcLtO^`sDaD¦iS}8klUqbFtkl Fs`bFjSt`cFts`sv!b.s`rLbFyFLU^>aUiSi`_n } Si`eLtt qbFpbF\FtklaFb6_WFirFDi~r
YnX¡s`iD öoùJ÷-ôx÷*ÿFi~rFSi~rLt keLU\L^`_FcFiDkls`gL}¬s`iS\FcFttS} rLcFtjSyFb6ttsSeFkhFhyFcLrL^xts`h2tcFyLt4i~bFrLcFcFbFiSyFyFiSijDrL^`cFcFiDcFklzs`gL}DFiSSyFyLbF^`FpbLiDkl jDF^`itlksDeLk¨Uh>\Lk^`yF_FtlcFrLiqtS}DyL ^Sklb6FrLi`aUeLiDi~kls`gtcFjcFzaUiSs`iSFyFyFiSb6_ DiSseLbFjSiS_WqiSyL4aU^`cL^xeK^S¤¥4irLtleLgkeLU\L^`_FcFiS_WklyFtlrL]¦Y ^ cFtaDiSs`iSyFzbLk a6iSs`eLcF]t\FklttcFcLbF^ta }¬s`iDeL4]2D^xb6h eLb>4i~bFrLcFtliDeL4g 2Fs`tbFyFFtScFYLiDqk^?iScFj aF6yFiSts`yFbFbLpkl^`s` FiSb6_Wh?kyFtltrLt 4i4rLi~tleLb ts>iDSklUs`g>tkleLs`tj`eFaUh6i tsSkhkljSiS_Lkls`jD^S4bvbL^`yL^S4ts`yL^S4bFyFiS 6tkk^2`eLDOrK^`cFb6hvj2FtyFjSiDkeLU\L^`tS}Lb klsx^`s`bLkls`bF\6tklaUiSi2^`cLk^S4`eFh>keLU\L^`_FcFi` cFti~rLcFiSyFirLcFiS_>klyFtlrL¢d jSijSs`iSyFiDY r
t
,
8
F
z¸äB{3±
hf6
"+> á
'
e
~
$
î ¶|ï~~³
#õ
&xx ('
"§Â
N'
1Æ Â5/x
||·
k 4zkeLt~X#¦?yLklj`^`hFSpiS^`s`s`t gOs`b<FyFrFtljDrF^eLi~s`bFLtc!^£iS4FtbLs`kli~^`r
cF}qb6FhniSY(pýfjSi`^SeFkhFk4]iSs`yFbFbL_/¤ jFi`kleLsxU^`Ss`tbLklklaUs`iSbFcF\Ftlt\FklcFaDiD _ Fb6eLbFc6rLyn}8p^`Fi`eLcFtcFcF_.yL^`cFeK^S4bn}
FSkls`iSsS/4tlOrL aUiSs`iSyFz4bWbkliSplrK^`]s Fi`eLqc6th6aFh?sFs`iSiSyFsObLiSkls`s`iDyFklts`pbniSa?ml Fb6b6rLeLaUbFiDc6klrLs`yLgz^FyFyLiD^`kcF^~\FeKbF^SjD4^`b tsS4k¨hq¢\FStyFrLttp§FDFkli`s`eLiSUs`\L^`Y7s`üqgiSyLjS^`s`piSeLyFbFcF\FicFp^xt Fkls`yFjSiDiSkljDs`^`yLs`^`gOcLklkls`jSjSi~th cFcFñ tyL^SklmFyFótl÷-rLô tlxeLøBtùJcF÷ob6øBh ù ω }LaU^xOrLiD4>bFpaUiSs`iSyF SrLts2kliSiSs`jStsx H
Ç94 "&<"
ÀQÁ¶ (x)/SÃQĽŠ] ,
tcFb6h>iSS FyLb6^`eLpbF`tc6s rLLy yL^`jS^cLb2^xh?6eLiSiSs`cFiS^x{rFb tcFFbFi`eLcF6iSeLiSikl^xt\FrLtb?cFcFb6thp¤«^`ý§c6bLhFk`s`YKiS _>FYl~yL¦^`Y cFv~eKcFi~^S4b>tkl\Ls`^SjSkli s`Ωb kl=t\F{ω} klsx^`s`bLkls`bF\FtkaFbF_^`cLkl^S4`eLgs~^`aFb6£klyFtlr
}f^ 4i~tsyL^Skkf^`s`yFb6 jD^`s`gDkh?]a6S^`iSa pcLkeL^~\FUbF\Lj?^`_F\FcLt^xyFh>tp yFt^xeL¤ bFÇ p} ^`¦Z Fb6aDh>iScFcF FttaUcFiSs`s`yLiS^`εyF FiSbF(x) iFrL∈yFbLiS[0, Fqtk1]Ukc6^FrLY bFyFU]t_ b6rLaUi` kls`b.j>rK^`cFcFiS_ yFt^xeLbFp^` FbFub.klyFtlrL ω ∈ Ω}np^`FbF{trFeFh.cFttrLbLqUpbFiScFcFiSt UyL^`jScFtcFbFt ∂u ∂ u ε (x) =K (13.2.1) ∂t kZyL^`cFbF\FcFz4b DkeLiSjSb6hL4b ∂x , t > 0, 0 6 x < ∞, εω (x) = [S
ω
&G
ω
ω
ω
ω
2
ω 2
X jSi~rs`iSi?UyL^`jScFtcFb6hiDklcFiSjD^`cvcL^>keLtlrLU]b6kliSiSSyL^xtcFb6h6¬Y i` FeKiS^SFkltc6yFit\FpcF^`aUiStcFkl t\FtbFcFa6b6^h aU Fi`b6eLeLbFbF\Fc6trLklyLs`^jD^ b6rLaDiDb kls`bn}6FyFi~}LDkliiSrFiShFs`jStt_?sSklps`^jStjScFyFcFti
h yL^`dtjScF\F tyFtp x=x x=x uω (0, t) = u0 = const,
uω (x, 0) = 0,
uω (x, ∞) = 0.
+
1
2
dQ1 = −Kω (x1 )
∂uω (x1 , t) Sdt, ∂x1
dQ2 = −Kω (x2 )
∂uω (x2 , t) Sdt. ∂x2
§bLk`Yn FY Sm J2,#&-9+:eO2)#.B+E!9+%#)+!Yo.B+#!HJN#)%#0*$70*$%Kñ ý
7¨ RG7o2[
F~ yLoq^`pp4cFtiDcFklts`cFgSbF tBaUi`eLbF\Ftkls`jD^ b6rLaUiDkls`b jkeLiSt (x , x ) p^/jSyFt8h dt rK^`tsSk¨h á"¥ á
$§Äâ> #
1
2
¸ ∂uω (x1 , t) ∂uω (x2 , t) Sdt, − Kω (x1 ) dQ1 − dQ2 = Kω (x2 ) ∂x2 ∂x1
^p^bFcFs`tyFjD^xevjSyFt8tcFb ∆Q(t1 , t2 ) =
·
d bFcFs`tyL^xeLiD
(t1 , t2 )
Zt2 ·
Kω (x2 )
¸ ∂uω (x2 , t) ∂uω (x1 , t) − Kω (x1 ) Sdt. ∂x2 ∂x1
qiOp^`aDiScF?kliFyF^`cFtcFb6h f^Skkl¤ s`tiSyFt4tc6tFyFtyFjScFiDkls`bK¦ t1
ü
Zx2 ∆Q(t1 , t2 ) = [uω (x, t2 ) − uω (x, t1 )]εω (x)Sdx.
qyFbFyL^`jScFbFjD^xhs`bjSyL^xtcFb6hn}xFi`eL^`l^xh (t , t ) = (t, t+δt)} (x , x ) = (x, x+ b Dkls`yFt8eFh6h δt → 0} δx → 0}FFyFb6Si~rLbL£a UyL^`jScFtcFbF δx) x1
ü
1
εω (x)
∂uω ∂ = ∂t ∂x
µ
2
Kω (x)
1
∂uω ∂x
¶
2
.
üqyFbf^xeLaDiScF FtcFs`yL^` Fb6h6v b6rLaDiDkls`b `s bFjScFz# FiDkls`ihFcFcFz#aUiSqbF FbFtcFs`iD rFbLKUpb64b i~ KcF}i?iSps`^SaF4~trKcF^¡bFs`b*g>keLtlqrLStta6s UyL^`jScFtcFbFt ¤ FY 6Y ~¦Y ^`FbF{tHs`tFtyFg keLU\L^`_FcFU!FiSyFbLkls`iDkls`g jSbLk¨hFt_ iSsaUiSiSyDrLbFcL^`skly6tlrLcFt_2FiSyFbLkls`iDkls`b ε b?kεeLU(x)\L^`_Fj?cFiSjS_ b6rLZtOeLklU6aFfs`4D^`B FbFc6b tFpi`^x yFbLkls`iDkls`b η˜ (x)m (13.3.1) []yL^`jScFtcFbFt ¤ FY 6Y ~¦§jOs`iDkeLεU\L(x)^`tq=FyFεbL+4tηs jS(x), b6r ω
ÁE¶ 9 8~³´æ|,ÂE¶·
z¸äB{åä
ω
ω
ω
ε
ω
∂uω ∂ 2 uω ∂uω + ηω =K . ∂t ∂t ∂x2
X LFiSaU^`p^`cFiL}`\Fs`ijyFtp~eLg~sx^`s`tzFyFiDk^\FbFjD^`cFb6h b6rLaUiDksSb \FtyFtpzFi` Fy bLkls`U¢klyFtlrLFyFiSbLk¨Di~rLbFsuø !ÿD÷ +øÝôò ñxòBñ òSm~cL^qjSDirLtbFpz Fb6eLbFc6rLyL^ZrFeLbFcFiS_ LÀ1Àr r aUiSc6 FtcFs`yL^` F¤bF d2uyL^`}Fp4rLtiSy>j`eLyLt^`s`cFjSiS~eTyDhF¦Ö]a6klUFtyFUbLyL4^`tjScFcFsxt^`cFs`bFiSy cL^``eLrK^`tsDklyFtlrLcFtcFcFU ¯
å
*4
5
"
ω
ε
∂huω i ∂ ∂ 2 huω i + hηω uω i = K . ∂t ∂t ∂x2
(13.3.2)
hf6
Fª
"+> á
#õ
&xx ('
"§Â
qyFtlrKklsx^`jSbLZeLUaFs`UbFyFU]UaDiD4FiScFtcFs`2FiSyFbLkls`iDkls`b
ü ùAò/ò°ô1ñ÷°*÷Jó/ôx÷*<xò!ø!ø3
rLt
N'
1Æ Â5/x
ηω (x)
jjSb6rLt
d FS^SkkliScFiSjDklaFbF_?FyFiS Ftkk`}
ηω (x) = (−1)N (x) A,
N (x)
û
(N (x) = k) =
(µx)k −µx e , k!
k = 0, 1, 2, . . . ,
bpcLA^~\FdZtlcFcFb6tÖhLp4^`jSb bLkhFm ^xhiSszcFtiZkeLU\L^`_FcL^xhjStleLbF\6bFcL^]k§rLjS68hyL^`jScFiSjStyFihFs`cFz4b ±a
XyFtp~eLg~sx^`s`tqDkeLiSjScFiSi>¤ FyFb
hAi = 0, A=a
hηω (x)|A = ai = a
∞ X
¦b>StpDkeLiSjScFiSiSklyFtlrLcFtcFbF_ Fi`eLU\FbLm hA2 i = a2 .
(µx)k −µx e = ae−2µx , k!
(−1)k
k=0
wzcL^xeLiSbF\FcFziSSyL^`piD}rFeFhBaUiSyFyFtleFeFhF FbFiScFcFiS_BUcFa6 FbFbBFyFb cL^xDirLbLm hηω (x)i = 0,
hηω2 (x)i = a2 .
x2 > x 1
hηω (x1 )ηω (x2 )i = ha(−1)N (x1 ) a(−1)N (x2 ) i =
= a2 h(−1)2N (x1 )+N (x2 −x1 ) i = a2 h(−1)N (x2 −x1 ) i = = a2
∞ X
(−1)k
[µ(x2 − x1 )]k −µ(x2 −x1 ) = a2 e−2µ(x2 −x1 ) . e k!
o4tts 4tkls`i2keLtrLUZ^xh s`tiSyFtf^irLbLqtyFtcF FbFyFiSjD^`cFbFb m k=0
Ç '( ÙVø/ ò!øBùJú³ñxò0÷7ùJ÷-ôxõ©MÂñxò0Mñõ©MÄ94ñ"&<"÷7ñn÷7ù ÿ*ô÷oö ø0÷°*÷ó/ôx÷*x< ò!ø!φøåx [ηω (·)]0 0 dø¬ñ"4*ò!öoõ[ÿ ÿoùAòÒÿoùþ>òBø0&#ÿ ÷ 5*oñ"xòÒÿ ηω (x ) x < x è ê* ùJ÷
hηω i = 0
d hηω (x)φx [ηω (·)]i = dx z¸äB{/ë
-
µ¹iï|.
¿ À d ηω (x) φx [ηω (·)] − 2µhηω (x) φx [ηω (·)]i. (13.3.3) dx
76 ¢
| ~|
ì,,~𳶷~| |
î ï~,~
^`6eK^SXk^tyFFcFiOtjSfyFkth4s`ttcFFbnt} yFgaUyL^`jScFtcFbF ¤ FY FY S¦Y8XFi`eLcFbFjFyFtiSSyL^`piSjD^xcFbFt
ελˆ uω + ηω λˆ uω = K
d2 u ˆω , dx2
u ˆω (0) =
u0 , λ
#xN1À[ x +x7
á"¥ òdÅ.Æ.#>
DklyFtrLcFbLtiOFi
÷
ω∈Ω
Fo´
õo$5xx"§
1 #
b Am
ελhˆ uω i + λhηω u ˜ω i = K
d2 hˆ ui , dx2
hˆ u(0)i =
u0 . λ
oklFi`eLgSpxh>s`tiSy6t4?irLbLqtyFtcF FbFyFiSjD^`cFbFb.¤ FY FY D¦}UFi`eLU\FbL
(13.4.1)
d dx
À ¿ d dˆ uω , hηω u ˆω i = −2µhηω u ˆ ω i + ηω dx dx
(13.4.2)
¿ À ¿ À ¿ À dˆ uω dˆ uω d2 u ˆω ηω = −2µ ηω + ηω . dx dx dx2
(13.4.3)
üqi~rKkls~^`jSbFj!j¤ FY LY D¦WjSs`iSyFU FyFiSbFpjSi~rLcFU Fi }OcL^`_6rLtcFcFU bFp ¤ FY LY S¦}UFiDkeLtqcFtkeLi~ cF?FyFtiSSyL^`piSjD^xcFbF_?Fi`eLU\FbLrFeFhvxqUcFaF FbFb
'
'
ˆ (x, λ) = hηω u W ˆω i
keLtlrLU]ttqUyL^`jScFtcFbFt
¶ µ ˆ ˆ d2 W a2 λ dW ε¯λ ˆ 2 W = + 4µ + 4µ − hˆ uω i, dx2 dx K K
kZcL^~\L^xeLgScFzDkeLiSjSbFt ˆ (0, λ) = 0. W X<^SklbL4Fs`iSs`bFaUtSi`eLgS{b6 x yFt{tcFbFts`iSiOUyL^`jScFtcFb6h 2
c (x, λ) ≈ − a λ W 2K
Zx 0
dξ
p
h ³ ´ i p K/¯ ελhˆ u(ξ, λ)i exp − 2µ + ε¯λ/K (x − ξ) ∼
∼
a2 √ λ1/2 , 4µ π ε¯K
λ → 0.
FeXhF FFbFi`b eLcFbFjviSSyL^`s`cFiSt FyFtiSSyL^`piSjS^`cFbFtZ ^`6eK^Sk^F}n^`jSs`iSyF ÖcL^`{eLbWaUiSyFyFtleF -
hηω uω i =
1 2πi
;
ˆ (x, λ)dλ, eλt W
Fi~rLklsx^`j`eFh6h>aUiSs`iSyFtqjv¤ FY FY S¦}66yFbF{eLbva>UyL^`jScFtcFbF C
ε¯
∂ 2 huω i a2 ∂huω i √ =K + ∂t ∂x2 4µ π ε¯K
0
3/2 t huω i.
hf6
F
"+> á
#õ
&xx ('
"§Â
N'
1Æ Â5/x
w qx
sw
x x+dx
§bLk`Yn FY 6m I)E^?.,+%5aVaXEb-%+% ý
-
µ|³¶|ç|~~³
z¸äB{
x
||·
X yL^`SiSs`t }yL^`pjSbFjD^`]t_FiZklUs`bs`iztÖcL^`FyL^`j`eLtcFbFtS}yL^Skkf^`s`yFbFjD^x tsSkh2cFtklaDi`eLgSaUibFcL^xh?kls`yFUaFs`UyL^klyFtlrLmDs`yFtlF4tyFcFiSt]FyFiDkls`yL^`cLkls`jSip^`Fi`eFcFtl cFFiiWSaDtiSkls`FiSiSyFyDzh6!rLiSb6\FrLcFtzsWF4yFiScF Fitktk>kls`cFjSiSiDyLf^xFeLtgSyFcFtiSF_£Us~rL^`bLcFcFqWUpbFbFbnSYÖaFX*b6. FjStli`eLeLiDiSaU}§iSs`cyF¤Us`SyFaFUbHSiSaKs`¦b } bL4t]sOs`tc6rLtcF FbFiSyFbFtcFs`bFyFiSjD^`s`gDkh?j`rLi`eLgiDklb 5Y üqDkls`g dOi~rLcL^bFpqs~^`aFb6 s`4yFtlUOSrLiSacL«¤ ý§^`FbLyLk`^`Yj` eLFtY cFSbF¦l} t<σ iDkld.b 6eLiSb iD^xklrLgSgtlt>eLFt4iSFttcFyFsxt^>\Fs`cFxyFiSUSi aFklbntY[\FüqtcFωyFb6tlhnrL} Fθi`eL(x) d.}¬U\Fi`s`ei i L b s6`yFeLUiDSklaDaFiDbWkls`pb^`Fi`eLcFtcFjSjScFi~trLFbFisSrLkjSh b6xjS ivcFjDiS_.klt s`yFb6UrLSaUaFiDbWkls`gSyL^SklY8s`XjSiSyn4}TiDrL4bLtcFsqjSUyFc6trL4bFtyFcFUb ]t=bF_W0Fij cFbL£j kliSiSs`jSxtsS=kls`0jSbFb kqp^`aUiScFiD bFa6^FYL©niSrK^ ¸ *
ω
ω
Ñ+
∂uω (x, t)σω dx = qω (x, t)σω cos [θω (x)] − qω (x + dx, t)σω cos [θω (x + dx)] ∂t
WbklUklDiSkliSsxs`^`cFcFiS F{bFb tcFb bFtOttcF6teLFiSyFs`tcFyFiDkljSs`cFgSiD¡kls`s`bWiSa64^ tlOrL aDiScFjO FrKtcF^`s`cFyLcF^`iS F_ bFs`tyF_.UrLSbLaUtqUpc6^`rLFbFbFyF{Ut]sSk¨hvt_j q (x, t) ω jSb6rLt ω
∂[qω (x, t) cos θω (x)] ∂uω (x, t) =− . ∂t ∂x
iSD^`jSbLklrK^p^`aUiSc bFa6^Fm ð
+
qω (x, t) = −K0
∂uω (x, t) ∂uω (x, t) = −K0 cos[θω (x)] . ∂l ∂x
üqi~rKkls~^`j`eFh6h jSs`iSyFiStOUyL^`jScFtcFbFt j FtyFjSiStS}nFi`eLU\FbL¢UyL^`jScFtcFbFtOcFiSyLf^xeLgScFiS_ rLbLqUpbFb>j`rLi`eLgs`yFUSaFbnm
∂ ∂uω (x, t) = ∂t ∂x
½ ¾ ∂uω (x, t) K0 cos2 [θω (x)] . ∂x
eLtlrL`h> FbFs`bFyFSt4iS_ yL^`SiSs`tS}6FyFtlrLFi`eLi bL}F\Fs`i p
K0 cos[θω (x)] = ε¯ + ηω (x)
(13.5.1)
Ü
#xN1À[ x #x
FÑ dcFbLk£eLUp\LcL^`^~_F\FcFtcFbF_ t FyFiS Fb taDkk`iS}¬yFyFcLtl^`eFFeFyFhFbL F4bFtiSyncF}
cFkliSsx_ ^` FqbFUiScFcLaF^`yF FcFbFt_ _ l^DkkliSj>FyFiS 6tkk klivklyFtlr6 ε¯ á"¥
Å,5x ÄÆ.#5
÷
õo"#xx"§
1 #
hηω (x1 )ηω (x2 )i = a2 e−µ|x2 −x1 | .
rLtklg a b
-
1/µ
FyFtlrLFi`eK^`l^`]sSkh f^xeLz4bnY
³Û
76 ¢
ª||
z¸äB{
ï¹iï|,
| ~|
ì,,~𳶷~| |
î ï~,~
[§klyFtlrLcFbLWs`tFtyFg?¤ FY 6Y ~¦8Fi ω }DFi`eK^`^xh σ klsx^`s`bLkls`bF\FtklaFb?cFtlp^`jSbLklb6 m θ (x)
4iS_>iSs
ω
ω
∂ 2 hui ∂ ∂ 2 ∂hui − ε2 = 2¯ ε hηω (x) ∂u(x, t)/∂xi + hη (x) ∂u(x, t)/∂xi. 2 ∂t ∂x ∂x ∂x ω
qiSyL4qeL iScFq FiStjScFbFs`yLaUiS^`jD F^~b6 h uUyF(x,U F t) hF Lj`}¬eFhF~ tsSkh qUcFaF FbFiScF^xeLiDiSs
å+
ω
'
*
ηω (x)
YüqyFbL4tc6h6h
À X À ¿ ¿ k Z Z ∞ ∂u 1 δ [∂u(x, t)/∂x] = dx1 . . . dxk Ψk (x, x1 , . . . , xk ), ηω ∂x k! δηω (x1 ) . . . δηω (xk )
rLt x , . . . , x ) d]6eLiSs`cFiDkls`g ðeFh>Ψp^x(x, rK^`cFcFiSi η (x) k=0
k
R
1
_aF64~eFhFc6sSWkeLU\L^`_FcFiSiFi`eFh
R
k
k+1
ηω (x)
Y
ω
Ψ1 (x, x1 ) = hηω (x)ηω (x1 )i = a2 e−µ|x−x1 |
b
X
Ψk = 0,
rLt
hηω ∂u(x, t)/∂xi = a2
Z
k 6= 1.
0
[∂hf (x, x0 , t)i/∂x] e−µ|x−x | dx0 ,
R
^xeLttS} ð
f (x, x0 , t) = δuω (x, t)/δηω (x0 ).
hηω2 ∂u(x, t)/∂xi = hηω (ηω ∂u(x, t)/∂x)i = a2
Z ¿ R
δ(ηω ∂u(x, t)/∂x) δηω (x1 )
À
e−µ|x−x1 | dx1 ,
hf6
D` keLtlrFiSjD^`sSteLgScFiL}
"+> á
¿
δ(ηω ∂u(x, t)/∂x) δηω (x1 )
bn}6cL^`aUiScFt n} ¿
ε˜2
∂u(x, t) ∂x
À
À
= a2
= δ(x − x1 )
#õ
∂u(x, t) + a2 ∂x
Z ¿
&xx ('
δ 2 ∂u(x, t)/∂x δηω (x1 )δηω (x2 )
R
∂hu(x, t)i + a4 ∂x
Z2 ¿
δ 2 ∂u(x, t)/∂x δ ε˜(x1 )δ ε˜(x2 )
À
N'
1Æ Â5/x
"§Â
À
e−µ|x−x2 | dx2 ,
e−µ(|x−x2 |+|x−x1 |) dx1 dx2 .
cFbF*¤ qFyFY 6bLY ~4¦t} c6h6h qUcFaF FbFiScL^xeLgScFiSt rLbLqtyFtcF FbFyFiSjD^`cFbFt a UyL^`jScFtl R
ü
¸ ¸ · · ∂fω (x, x0 , t) ∂ ∂ ∂ ∂ − fω (x, x0 , t) = 2 (¯ ε + η ω )2 (¯ ε + ηω )δ(x − x0 ) uω (x, t) ∂t ∂x ∂x ∂x ∂x
b>FyFtcFtSyFtl^xh>\6eLtcL^S4bn}LklirLtyDO^`bL8b a b a }6Fi`eLU\FbL 2
4
∂ 2 hf (x, x0 , t)i ∂[δ(x − x0 )∂hu(x, t)i/∂x] ∂hf (x, x0 , t)i − ε¯2 = 2¯ ε ∂t ∂x2 ∂x
b
∂ 2 hu(x, t)i ∂ ∂hu(x, t)i − ε¯2 + 2¯ εa 2 2 ∂t ∂x ∂x
Z
(13.6.1)
∂hf (x, x0 , t)i −µ|x−x0 | 0 e dx . (13.6.2) ∂x
FyFbFjSi~rFqbFiDsSkkeLh ta>rLrLiSyFjSiSi`SeLcFgSi`cF i£rLbLyFiDq4tliSyFpltrLcFaF Fb6bL¢^xeLjSgScF\FiSbL4k eLUtcFyLbF^`jS_cFtklcFbLbFkls` tf^¤ FY ªFY ~¦ ¤ FY ª6Y `¦ R
ü
∂ 2 hu(x, t)i ∂hu(x, t)i = K0 +η ∂t ∂x2
rLt 0
4
z¸äB{
1/2 t v
1 =√ π
Zt 0
s¶·¸ð
(t − τ )−1/2
0
1/2 ∂ t
2
hu(x, t)i , ∂x2
dv(τ ) dτ + v(0)t−1/2 . dτ
zrLbFc bFp]4ts`irLiSjf^`s`tf^`s`bF\6tklaUiSiiSFbLk^`cFb6hOFyFiS Ftkk^qcFtkls~^` FbFiScL^`y6 cFkiSU_ ^`yLq^`b6aFeLs`g~ts`yFyLc6^`z FHbFb rFkeF hbLcFft^`ttcL4^xiSeL_bF \FbFb6trLHaDiDFklyFs`iSb s`iSj\FFcFi`eLUS¤ t~kl¦aDiSbcFpt^S\FklcFs`iSiS__FcFFiSyFbFkl¤ Ss`¦iS_ piSklcvyFtliDrLkt cF]iSjSb6?jD^`rKt^`sSj`keLh tcLcFbF^2_ klbLkls`t4tOqtcFiD4tcFi`eLiSbF\FtklaFb6>UyL^`jScFtcFbF_vrFe6h kliSiSs`jStsSkls`jSD b ª Y p (x, t) p (x, t) (x ≥ 0, t ≥ 0)
1
²
2
∂p1 (x, t) ∂p2 (x, t) ∂ 2 p1 (x, t) + (1 − ²) =K , ∂t ∂t ∂x2
á"¥
% /A
D6
$ #&57"÷x"§
∂p2 (x, t) = γ(p1 − p2 ) ∂t
kZaFyL^`tjSz4b SkeLiSjSb6hL4b
`sXt6eLs`iSb6iSD4UyLtcL^`^OjScF4ttlcFOb6h6rL >²piSd£cL^SiS4 bnn} tK4cLd2^xhaUiSrLi`e6h<qbFF FyFbFiSts`cFiSs\FcFrLbLHqpiSUcnpbF} bnγ} Pd£(t)FiDkld2s`i~phF^xcFrKcL^`^xc6h cL^xh.p^`jSbLklbL4iDkls`g>rK^`j`eLtcFb6h cL^ FiSjStyD6cFiDkls`b iSs jSyFt4tcFbnY8©yFtS`tsSkhWcL^`_Fs`b yL^xrLbFtý4cFts{rK^x^`h2j`eLjSts`cFiSb6yFh>iStzcLbF^pZUs`yLiS^`_ jSFcFiStjScFtbFyS_?6cFklbLiDklkls`s`tb 4p<(t)b2F≡i~rK∂pklsx^`(x,j`eFh6t)/∂x| h yFtp~eLg~sxY ^`sjFty6 jSiStS}UFi`eLU\FbLm (13.7.1) rLtqiSFtyL^`s`iSy iSFyFtlrLtleLtc ( kliS−iSs`KcFiS {t)pcFbF(x,t t) = 0, p1 (+0, t) = Ps (t), p1 (x, 0) = p1 (∞, t) = p2 (x, 0) = p2 (∞, t) = 0. &É
s
0
2
ú
ú
ú
2
2 x
1
1
2
+ (1 − ²)γ − (1 − ²)γ 2 e−γt
qtFiDklyFtlrKkls`jStcFcFiS_?FyFiSjStyFaUiS_>4i~ cFiO6StrLbFs`gDkhn}6\Fs`i
b
ú
2
x=0
p1 (x, t) ≡ [²
t
© p1 (x, t) ≡ e−γt [²
½ q −γt = e ²
+ (1 − 2²)γ − (1 − ²)γ 2
t
ú p1 (x, t) =
+ (1 − 2²)γ − (1 −
²)γ 2
0
0
−1 γt t e
(ú −
√
iSs`aFrK^bLklaUiD4_ yL^xrLbFtcFs
K
x )( ú
+
√
0
K
x )p1 (x, t)
−1 γt t ]e
¾
ª
p1 (x, t)
p1 (x, t).
(13.7.2)
= 0,
p p0 (t) = − 1/K ú p1 (0, t) = q p = − 1/Ke−γt ² t + (1 − 2²)γ − (1 − ²)γ 2
−1 t ]p1 (x, t).
XyFtp~eLg~sx^`s`t^`aFs`iSyFbFp^` FbFb>UyL^`jScFtcFb6h.¤ FY ´UY ~¦§bL4tt t
XFyFtlrLtleLgScFiD*keLU\L^`t kl6eLiS{cFiS_<FyFiSs`iS\FcFiS_
p
0
−1 γt t e Ps (t).
1/2 t Ps (t).
XHrLyFUiD£FyFtlrLtleLgScFiD£keLU\L^`tZd2kl6eLiS{cFiS_>p^Skls`iS_FcFiS_>piScF
p 1/Ke−γt
1/K q
0
γ − γ2
0
−1 γt t e Ps (t)
=
²=0
hf6
DS
"+> á
p
γ/Ke−γt 0 p = − γ/Ke−γt
=−
−1/2 t
#õ
p
t
&xx ('
"§Â
− γeγt Ps (t) =
−1/2 γt e 0 t
1/2 t Ps (t).
^`aUiScFt n}Uj keLU\L^`tqiSsSklUsSkls`jSb6hvf^SkkliSiSD4tcL^4tlOrL?piScL^S4b
p0 (t) = −
p
0
√ 1/K ²
N'
1Æ Â5/x
γ=0
b
1/2 t Ps (t).
v¢bL4tt£plrLtklgOs`iSsty6tp~eLgxs~^`s~}F\Fs`iOb jOFtyFjSiD£keLU\L^`tS}6cFi kZUjStleLbF\Ftc6 cFz£aUiSqbF FbFtcFs`iDWrLbLqUpbFb K = K/² Y - jSi`eLc<jXÚkeLyLiS^`bLSkliSs`s`iSt _
0
0
µ|³¶~¹
z¸äB{
7
Z 3P
åT /
α ˆ (−iω) ∼ α∞ [1 + (iωτα )−1/2 ],
üqrLyFt tτiSSyLb ^`τpi`jDd^xcFqbFbFtZpbFbFp\Ft\Lkl^SaFklbFs`tiSFs`cFiDiSkls`_>i~jShFiOcFcFjSyFttS4}xUt^`cFyLcF^`Ua6¡sStliSyF`bFeKp^SUkl]s`b?iSbFFt]yFkltljSrLiStl_LeLktsScFjDb6^qh>4rKi^`rLttlsFeLm bnY ˆ β(−iω) ∼ 1 + (iωτβ )−1/2 ,
α
β
h i α(t) = α∞ δ(t) + a(t/τα )−1/2 , β(t) = δ(t) + b(t/τβ )−1/2 .
. G#}| > +
D cFüqtyF_2jSiSs`_va6eL\6bFeLa?tcklyFj?tlrLFyL^`}DjSsSiSiS_ rK\L^^SaUkl^`s`a2bjSa6s`^xiSOyFrLiSiS_ \6i2eLbFtpc?iSs`s`b6yLv^xjS^`tyLs^xtt]tcFLbF^S_ 8hFrKs`^`gLtYFs?Z4klcFcFiSiSjSjScFtc6t UyL^`jScFtcFb6h>yL^SklFyFiDksSyF^`cFtcFb6hv^`aFSkls`bF\FtklaUiS_>jSi`eLcF¢FyFb s`iD£bL4t]s jSb6r á"¥
-ã $§Äâ> #
(
ρα ?
β?
∂p ∂v =− , ∂t ∂x
∂p ∂v = −Ka , ∂t ∂x
rLt K diS nt4cF_O4irL~eLgqUFyFUiDkls`bOjSiSplrLDU^F} p d^`aFDkls`bF\FtklaDiStrK^`j`eLtcFbFtS} v a d>yL^`klpaDcFiSiSyFjSiDbUklrLs`cFg2iD\Lkls`^Sb?kls`rLbFyF FiSSYTcFoiSklia6eLs`]tleL\Lt^xhvyL^SbFqpcFiSs`b6ivUUyLyL^`^`jSjScFcFttcFcFb6bFh _ rK^`j`eLtcFbFtS}LFyFb6Si~rLbL &É
a
∂2v 1 ∂2v − +A ∂x2 c2 ∂t2
Zt
∂ 2 v/∂t02 0 ∂v √ dt − B = 0, 0 ∂t t−t
rLt A b B d>pb6pbF\FtklaFbFtFiDkls`i~hFcFcFtS} c = c /√α d klaDiSyFiDkls`g2j2FiSyFbLkls`iS_ dklaUiSyFiDkls`gjSi`eLcFHjkljSiSSi~rLcFiDFyFiDkls`yL^`cLkls`jStSYðyFiSScFt klyFtlrLtS} s`tleLtyL^Scq=cFtqρ/K UyL^`jScFtcFb6h>bLkkeLtlrFiSjD^xeLbLklgj yL^`SiSs~^x F}¬Ñ nb>rLynY 0
0
0
3
a
D~
e
z¸äB{
∞
Â
ç|ï³´æ|,ÂE¶·
s`bFjSiSjSt©nk tFyLiS4c6bFhF½c s`bFóxòÀô rL÷ bLqUWpbFÒ¤ bnó/Y8ôx÷oXø os`þ ixö jSoyFñ tx8òxh¦4a6S^`aWe>rLjSbLjStlrLqtc2Upjb6hWyL^`FSyFiStls`rKt kls~`^` j`TeFjhFFtsSyFki`h a6yF^`iSa jD^`kcFeLcFUiS\L_K^`¦Z_FcFkyFiStltrL`tSeL}nDFOtyFrKaU^`i`cFeFbFhFt F\Lb6^ShWkls`4bFz FHkeLjbFsSyFkth.a6eF^`hFa.yFcFyFiSt_eF¤ ihFrLyFcFcFiSiSyFti~rLrLcFjSiSb6_rLtcFts`bFttyL4¤Å bFcFb6rFb6 aUiDksSb¬}Ds`t6eK^F}SleLtaFs`yFbF\Ftkls`jD^D¦fjkeF6\F^`_FcFiS_2klyFtlrLtSYDX£a6^~\6tkls`jSt]4i~rLtleLb sx^`aDiS_ yFklyFiStl_ rLFy6tliSrLSFi`\FeKcF^`i.l^`bFtklsSFkhi`eLpgS^`pc6UhF]s`s.z¢FtkyFbFjSitrLyFbFi~\FhFts`klcFaFiDUkl s`gS yFt{p tb.s`aFklSjS}§iSSa6i^xrLOcFrFz<_HkUjSpttlyFeHihFaUs`iScFs`i`i` kls`gS Y iSjSiSaFUFcFiDkls`g]p^`c6hFs`kliDkltlrLcFb6rLyFUkÖrLyFUiDUpleLiSjZiSSyL^`pU]s a6yLeK^Skl^SFkls`yF1−p ttlynrLYtleLtsxcF^`b6c6hrK^`a6yFeKs`^ScFksSztl4yFb2iSjqp^xFrKiZ^yL\L^`^Sp44b tyLs`^StiSyFbbFb rLyFFUtyFbLaUi`eFhFt FiDbF4bOts`hFyFj`bFeF\FhFt]klaFsSbLkh vbFUp^`UyL\F^`taFcFs`bFtlt yFbLkls`bFaU^S}xiSFyFtlrLtleLtcFbFtÖsx^`acL^`pjD^`t4iSiFiSyFiSl^FyFiSs`ta6^`cFb6hdZjStyFi~hFs`cFiDkls`b }FyFbaUiSs`iSyFiS_qa6eK^Skls`tyklsx^`cFiSjSbFsSk¨hStklaUiScFt\FcFz}bqrLynY ^`yDh6rLZkfUpleK^x p=p 4bvbFpU\L^`]sSkhvbkjSiS_Lkls`jD^ klj`hFpt_n}FaUiSs`iSyFt4iSUs Ss`g a6^`a FyFiSjSi~rFhFbL4bn} sxj^`\La ^Sklb.s`cFs`UiDklFs`bFbnaD}SiSrFjSeFzh?4bFbpU¤ux\F4tcFtyFb6s`h2jSlzeL4taFb.s`aUyFiSbFcF\F Lt^SklaU4iSbn_2|D¦FY
yF©
iS^`jSaFi~rLbFbLt244iDiklrLs`tlb?eLkb.eLUbL\LklF^`i`_FeLcFgSp U]leLsStkaUhn } s`yFbF\FtklaFb6> FtFt_nY üqyFiDkls`t_F{t_.4i~rLtleLgSFyFiSjSi~rFhFti>aUeK^Skls`tyL^vkO4tyFs`jSz4bWaDiScF L^S4b hFj`eFhFtsSk¨h s~^`a cL^`pjD^`tf^xhyFtSt{aDiSjD^xhO4irLtleLg2«¤ ý§bLk`YK FY D¦Y ÖkeLbux4tyFs`jSt 1<"
å 1 ( "
¬
*
c
hf6
D
"+> á
'
#õ
&xx ('
N'
1Æ Â5/x
"§Â
§bLk`Y
FY Fm &*)+?/!9#"/K+%#!+;IHJ?95.!0*$7&*)6%A&-O2dO2)+&*^&* ?/!Yo.!"AQ2,#&-9+:Dñ aUiScF F|rLiDkls~^`s`iS\FcFirFeLbFcFcFtS}fb6£4i cFi.kl\FbFsx^`s`g StklaUiScFt\FcFz4bnYðjSb6tl cFbFtrLbLqUc6rLbFyFU]t_klUDklsx^`cF FbFbv~rLiSScFi FyFtlrKklsx^`j`eFhFs`g?kltStj2jSb6rLtrLjSb6 jSttyFcFi~b6hFhs`cFcFiDtklps^`hLjS4bLklbnbLYD4X£aU^xOf^`rLs`iDt yFbLU^xpleLeLgStcFFyFiSjSs`i~iSrF\FhFtan}xtU_ FklyLj`^`hFj`peFb hFt4iS\L^Sizkls`rLbFbL L^qDUSpi~bFrLiSbFcFs2cF¤zb64eLbb k>¤u~iSpUFLyF|2trLtlyFeLttScFtcF{iSa6_^DjS¦tbyFijShFiSs`pcFjSiDyLkl^`s`s`gSbFs`gD4khvi~iSs`ts`s rKU_F^?s`\FbKt¦yFj.tpSkiSeLaDUabiS\LjS^`U_FcFiSs`tUFjSbFyFaUt8iSjShnU}KyL^SjSkltFs`yFjStlg rLtleLtcFcFiStS}6a6^`a>bFpjStkls`cFiObFps`tiSyFbFb SyFiSUcFiSjDklaUi`irLjSb6tcFb6hn}LkZ6eLiSs`cFiDkls`gS ý
q(t) ∝ t−3/2 ,
t → ∞.
XFtyFjStrLyFiSScFi` rLbLqtyFtcF FbL^xeLg`cFiStUyL^`jScFtcFbFtrLbLqUpbFbOSeLiklj`hFp^`cFik yFtSt{aDiSjSiS_?4i~rLtleLgSjOyL^`SiSs`tý4Y>ý4Y qbFf^`s`~e6eLbFcL^ 6 Y v¢jSjStrLtWs`i UcLyL^ ^`jSScF tY cFbFtS}UkeLtlrLxh?Si`eLtt]FiSplrLcFt_2yL^`SiSs`tZXZY zY6wzyD6bFcF\FttjD^b³û]Y WY6«^SklaFb6 }y DStklaUüqiScFyFttl\FrLcFFii`eK^`Dlkl^xs`h2z4cF}Ui~b?FtyFkb6sScFjSbLifp^xUhnS}6gSt\Fjs`iyFrLtbLSt{qa6U^Fpb6}Dh2cL^`FFiyL^`cFj`bLeLWtcFcFcFiDklbF sj`iSrLSi`eL\FgcFiDklb_ U^`yL^`aFs`tyn}K^OrLbLqUpb6hvj2cL^`FyL^`j`eLtcFbFbviDklb x FyFiSbLkDirLbFs2s`i`eLgSaUi2cL^2k^S4iS_ ns`yFiSbF_cLiD^ klbn}~FyFtlrKklsx^`jSbLklsx^`c6rK^`yFs`cFiStÖrLbLqUpbFiScFcFiStÖUyL^`jScFtcFbFtÖrFeFhOqUcFaF FbFb $
0 1G
G
*
C
jOjSb6rLt
∂G − K4G = δ(x)δ(t) ∂t ∂2G ∂2G ∂G − Kx δ(y) 2 − Ky 2 = δ(x)δ(y)δ(t), ∂t ∂x ∂y
kliSiSs`jStsSkls`jSU]t2rLbLqUpbFbqjzyL^Skkf^`s`yFbFjD^`t8iS_qcFti~rLcFiSyFi~rLcFiS_q^`cFbFpiSs`yFiS6 Fc iS_2klyFtrLt]kaUiSqbF FbFtcFs~^S4bOrLbLqUpbFb K b K j`rLi`eLgkliSiSs`jStsSkls`jSU]b6 iDklt_nYFXFi`eLcFbFjOFyFtiSSyL^`piSjD^xcFbFt ^`6eK^Sk^Fi jSyFt8tcFb b UyFgStqFi aDiSiSyDrLb6
x
y
Ç+
á"¥
. G#}| > +
DS
-ã $§Äâ> #
cL^`s`t x }FFi`eLU\FbL
µ
∂2 λ + Kx k δ(y) − Ky 2 ∂y 2
4t{tlcFbFts`iSiOUyL^`jScFtcFb6h>bL4tts jSb6r ý
¶
˜ y, λ) = δ(y). G(k,
£ ¤ exp −(λ/Ky )1/2 |y| ˜ G(k, y, λ) = . 2(Ky λ)1/2 + Kx k 2
^Ok^S4iS_>iDklb x iScFiOFyFbFcFbLf^`tsOjSb6r
Ã
λ
1/2
+
Kx 1/2
k
2
!
˜ 0, λ) = 1, G(k,
kliSiSs`jStsSkls`jSU]tt]rLyFiSScFi` rLbLqtyFtcF FbL^xeLgSc6iD4 UyL^`jScFtcFbF¡klU~rLbLqUpbFbnm
1/2 t G(x, 0, t)
2Ky
³ ´ ∂ 2 G(x, 0, t) − Kx /2Ky1/2 = δ(x)δ(t). ∂x2
(13.9.1)
[]yL^`jScFtcFbFtOs`i iSFbLkljD^`ts?yL^SklFyFtlrLtleLtcFbFtrLbLqUc6rLbFyFUb6\L^Skls`bF n}ncL^xDi` rFhFb6Dkh cL^iDklb x}FFiSs`iD4 0
Z∞
G(x, 0, t)dx < 1
bWkOs`t\FtcFbFtjSyFt8tcFb.6SjD^`tls>Fikls`tFtcFcFiD4p^`aDiScFTm¬jDklt Si`eLgS{^xhrFi`eFh \LiSyD^SrFkls`bFbFcL ^`s`j 4iD4tcFY s>ÖbFkpeF4b tyFttcFb6bFhcFs`iStaUyF^`tpkliSjDjD^`^`s`tgDsSk¨kh hvaDjSiScFiStyDrLs`bFiScL_^`s`iDiSkl_ bn}Ts`i>StltpkliSs`s`g>cFiDbLkl4bFts`ttls>eLgSaUcFi`i apUrLSg`yFh6U2iS_nyF}ntys`Sivt6={t0a6kls`^Fgv}6kyLeL^StlkrLkSft^`sOs`FyFi`bFeLjDgS^`ps`iSg jD^xjDs`klt gDk\Lh?^SUklyLs`bF^` FjScFtl}ncFjSbFa6teL ]\L^xxh.cL^xSi~rFhFbFtkh cL^ −∞
"
1/2 t G(x, t)
− (Kx /2Ky1/2 )
∂ 2 G(x, t) t−1/2 = δ(x) . ∂x2 Γ(1/2)
(13.9.2)
cFiDkliSüqSiSi~_?rL\FcFttyFi~aFrLcFcFtiSyF}6i~\FrLs`cFi iS_ kljS^`iScFbLbF.piSrLs`yFyFiSiSSFcFbFzb WklyFUtl^`rLyL^`aF}Ls`jOtyFaUiSiDs`iSyFs`iSb>_ UFyLyF^`iSjSbLcFk¨tDcFi~b6rLh?bFsiS~rLhFbLpZ^x qUpb6hnY qtSrLgZttS}~s`iqtksSgZbL4t_\L^Skls`bF F£jStyFihFs`cFiDkls`gZFtyFt4t^`s`gDk¨hj`rLi`eLg x cF}xcL_ ^xDjSi~b6rFr hLklg]jScFts`iS_iDklb>¤ FyFb y 6= 0¦8UyL^`jScFtcFb6trLbLqUpbFbbL4tleLiqSiSS\6 0
∂2G ∂2G ∂G − Kx 2 − Ky 2 = δ(x)δ(y)δ(t). ∂t ∂x ∂y
rLtklgklyFtlrK^Ws`i~t^`cFbFpiSs`yFiSFcL^<¤ aDiSqbF FbFtcFs`rLbLqUpbFb jyL^`pcF Lc ^`FyL^`j`eLtcFb6h6qyL^`pcFt~¦}c6iZ^`cFbFpiSs`yFiSFb6hs~^zi~rLcFiSyFirLcL^Fm K b KK cFtÖp^`jSbLkhFs iSsaUiSiSyDrLbFcL^`s~Y
x
y
hf6
D`ª
"+> á
#õ
&xx ('
N'
1Æ Â5/x
"§Â
p USgStj iStyLaU^`i]cFFbFyF\FtltrKcFklcFsxiS^`_ jSbFrFs`eLgqbFcFkltS}Kt§FrKyF^xb6eLrKgS^`cFcFtbF_Ft{ttÖs`yLiS^`_vpjSrFbFeLs`bFbFcFtts`kiSeL_U\L4^`i~_FrLcFtliSeLbi jSDtl^`rFyLt^`cFaFbFs`ttl yL^F}8bFp4tcFtcFbFt¡6eLiSs`cFiDkls`bpUSgStjk2yFiDkls`iD }4bLklFi`eLgSpiSjD^xcFbFtkeLU\L^`_FcFi yLSgS^StkljFyFj`tlrLrLi`tleFeLgtcFiDcFklb W}S¤ jSj2a6s`eLiD]\Ft\FcFbLbFkteL tbvjScFFti {rLcFyFb6 iSSklcFb6iDe
4}S?iSxSFtDkl^SFkltkl\FiSbFcFjDiS^`jD]klaUiDb642klpcF^`iDaUkiS\LcFF^Skl¦s`pbFD j`rLi`eLg x }6j`rLi`eLg xy }6j`rLi`eLg x b y }6jSjStlrLtcFbFtZaDiSyFyFtleFhF FbF_>cL^iDklc6iSjStS}UcL^`FyFbL4tyn} rLcFtyFcLiS^ScFjOiSyLi?^`SSiSyFsxiS^xU?cFwziSjDyDkl6aUbFi`cF\Fi2trLtjDjS^ b6¤¥ktcFb6YFhsx^`ba6s~Y¬tr
aFY8cF]bFs` \L^S kls`nb bvs~kl^>s~^`Fs`yFgSiS yL ^Sf¦fY ^?jSFi`eF
@
Ç (
i '(
}, î
S Y§x_KY¶f±rKV `baí¥ d[XZY «GrKcd`bi³[ ¯LY2n 2F Y Y ¹6·L¸
} +ÑD?¤ `SSD¦Y 6Y ±nI} þ 5´´2¤ `ñ SDS¦Y Iþ ñS 4]SiSpynY¬FyFbFa6e
Ynb.FyFiDY
f^`s`tf^`s`bFaFb F7Y l©Yr;ËgNXZa2«GrKK_x¥ d]`b=_k´ MI±F ¹K¹K} +ÑD?¤ `SF~¦Y LY NgN_ª`bYr® ml ]r fM`barKs§ ® Nn 2F ~B±n¹K}K`ª >¤ Ñ#´xD¦Y 67Y mr fM;`barKK_Í ÊkXXZV£§ e¬ £ MI±F ¹U¸
}ÑSD?¤ `S U¦Y ªFY £_TÆ(=_Ka¢¨ (¥ ¯LNY u ¢z Y ¤n} D6 ¤ ÑD/ ÑD¦Y ´Uq Y ®_KY _GW;gN_K ´ ä F I n IGv =F n H I F YUd m wL NO ¨ MO }T ÑSSFY FY ÁsXZYeYe`¶WG_s[ d]Ë«S\ § Nn 2F Y o Y ¼· ´nx} ´U >¤ ÑS D¦Y ÑFX Y #dËgN_K` «K`baä® Nn 2F ~ · ¶K¶¬}FªD>¤ ÑÑSD¦Y F?Y Ísr;Ëg0Á m ][Y _GW"0\ mÀ Nn 2F Y u NF n¹K>} ÑSªD?¤ ÑSSD¦Y SSY mX f±XZai¦`bV gNrKs=X¨ mX fMY _KaW\ (¬rKs`bi¦`]\ ¯L±Y ~ LNL Y I YL¹6±n}6`ª ¤ ÑS ÑD¦Y ~6Y l© Ñ>Yr;¤ Ë gNÑSXZ a2D«G¦rKY K_¢¥ ® 7®rKV «GrK³ U £_;«Gr;WK`baN «K`b`mÍ N² ¯L2Y I IGO · ¤ · } FY l©Yr;ËgNXZa2«GrKK_x¥ d]`b=_k´ Nn 2F ~ · ³K¶¬}L/ Ñ#´2¤ `SSD¦Y L?Y ñ N s`i~D^Skls`bF\FtklaFbFtUyL^`jScFtcFb6hObOjSi`eLcF£jkeLU\L^`_FcFiqcFti~rF cFi`yFi~rLcF>klyFtlrK^x¬YUd WY m ^~Ua6^F}T ÑSSFY ~6Y (õIùJ÷oö ð m ô /ö ÷oö ?Ý où *ôø sSiU^Skls`bF\FtklaFbFt]keLD \L^x_FcFtFi`eFhnYUd WY m ^~Ua6^F}T Ñ#´xFY ¸J
J
R
L $M"& ÄIJ9IJ -L $M"& 1'
¸J
'
-J
R"S
1'
ÇJ ØJ
R åTÝQS
ÇJ 9J
.J ¸J
Y P$TÝ
J #J E Z Y T V
J
ØJ
('
$
9Z T P åT &V Z T V & Z Ð Z YÝS
1J ÇJ
&
R"S
QR
#J
P"S3T &V
J9IJ
J
ØJ .J
$ ('
R$X
R
S Z 3TÝS(Y
$Y X ;S(V" &
N
T Z 0V 3TÝS(Y
&
R åTÝQS
J 9J
1J EJ
R
.J
Y P$TÝ
1J
¸J ØJ
#J J
Ü
1J
$Y
-J J
&
¸J
'
1<& -IJ -J
J
BG
J ÇJ
BG
1 < "
R åTÝQS
"
³IJ J " -
0&"MIJ -J
Y Q Z 1QR$X
R Z &XS
Z
&
1õ
¸6
"
wJ -J
9J
ØJ
J
ØJ
ÇJ
Q &P /
J 9J
V
1Q
.J 9J
#J J
J J
(
'
R
&S
Ü
9J 9J
/3X
ÇJ J
&Y
EJ ÇJ)
J
Z 1 Z
V"S(X-TÝQ
('
X- Z
1J ÄJ 9Z 1Q
IJ%Ù.J ¸ 0&
"
T
&V$Y T V$ S Z
1J J
'
$Y
$È"
1
#J
S(X
Z TÝ &
R$T Y
$Q
"Ü
1ÜÜ 1' ¸+
T P åT &V¯S(V" Z TÝ & V T N( Z åT / $
.J ÇJ
S(X
ÂS3R
#J J
$Z S&QS(Y S(V$
S&Q3T &V BT V 9Z R åTÝQS Ü
Ü
(
&
r
R]
ís\ït\
Ç âã z.ë{z
o
u
ßáçèæ å o
ç
fh
#
} 9.ï~ì,
å ~
ýf^`pjSbFs`bFtZrLyFiSScFi` rLbLqtyFtcF FbL^xeLgScFi`_?s`tyL4i~rLbFcL^S4b6aFbvFyFiSbLkDirLbFsOj Fc tklaDi`eLgSaFb6vcL^`FyL^`j`eLtcFb6h6¬Y v¡aUiDklcFtfkhj?s`iS_eK^`jStrLjSDvbFpcFb6vd>s`t6 eLiSFtyFtcFiDk^b s`tiSyFbFbv^`piSjS FtyFtlDirLiSjLY üqyFiDkls`t_F{^xhp^xrK^~\L^2s`t6eLiSFtyFtcFiDk^>jSeFh6rLbFs keLtlrLU]bL¢iSSyL^`piDY ýf^Skk4^`sSy6bFjD^`tsSkhFi`eLUStklaDiScFt\FcF_kls`tyDtcFgqkfbFpi`eLbFyFiSjD^`cFcFiS_SiSaDiSjSiS_qFi` bLjSt4yStF]c6iDklbFs`_ gSirL}LbFyLcL^S^`klaUFiSi`jSeLUi~ts`cFtcF4F_tyFcL^`^2sSUFyFi`eL`¤ FiDyFklbbL4xt£≥ t0tqbvjOrLa6i>^\F4tkliDs`4jSttqcFsxcF^ eLtt=jSiS0_K¦jDYFkl©yFrLtl SStsSk¨hcL^`_Fs`bs`t6eLiSjSiS_s`iSa2¤ s`iS\FcFttS}ti FyFiStaF FbFq¦ ≡ j(0, t) }aUiSs`iSyF_ rL Li`^ eFtc?Fi~rLjSirLbFs`gDkh2a>kls`tyS cF\FtyFtpZtxiaDiScFt n}U\Fs`iSq(t) Ss`t4FtyL^`s`UyL^aUiSc6 4 t 6 c 6 h K e S ^ l k g l k O i S j F y t 4 t F c t £ F O i p x ^ K r ` ^ F c F c D i 4 2 p ` ^ D a S i F c Y f (0, t) T (t) (T (0+) = 0) G
§bLk`Yn LY Sm »b2.B,5.*W#&d5.BO2)+&-Yo.B+%+%A0*$7&*)/g#"Fñ cFz£DkðeLeFiShOjSbUiShLs`jStyFsxt^Z{cLt^qcFbFs`tiSsUyLjS^`iSjSFcFyFtiDcFkb6cFh>ts`iSt~6SeLi~rLiSbLF4yFiSiqjScLi^`rL_FcFs`iDb2kls`klb iSiSs`jStsSkls`jSU]ttrK^`c6 ý
'
∂2f ∂f = K 2, ∂t ∂x
x > 0, t > 0,
(14.1.1)
S + w¨ 5x rFrLeFbFhvcL^`yLs`^StkljSFyFtl\FrLbLtlkeLeLtbFc6s`b6gOhvbLs`kltaU4iDF4tUyL¡^`s`jSUtlyFeL bF\FfbF(x,cF t) b rLbLqtyFtcF FbFyFiSjD^`cFbFtFi aUiSiSy6 &
1 " >ò
&â
"â ã
r ¯ Zt T (t0 )dt0 K d ∂f (x, t) ¯¯ √ q(t) = −K . = ¯ ∂x π dt t − t0 x=0
(14.1.2)
4tpeLgxsx^`s ¤ LY SY S¦}KFyFtlrKklsx^`j`eFhF]bF_ bLklaDiD4UjStleLbF\FbFcFvj>jSb6rLtFi` eLUFyFiSbFpjSirLcFiS_n}F4itsOSs`gOFi`eLU\Ftc b>bFcFzFUs`tY üqyFtlrKklsx^`jSbFjUyL^`jScFtcFbFt ¤ LY SY ~¦§jOjSb6rLt ý
0
'
'
µ
∂ ∂2 −K 2 ∂t ∂x
¶
f (x, t) =
µ
0
1/2 t
b U\Fshn}F\Fs`i yFt{tcFbFtUyL^`jScFtcFb6h µ
1/2 t
+
−
√
√
K
∂ ∂x
∂ K ∂x
¶
¶µ
0
1/2 t
+
√
K
∂ ∂x
¶
f (x, t) = 0, (14.1.3)
f (x, t) = 0
jSiOjDk¨hFaUiD£keLU\L^`tqrLiSj`eLts`jSiSyDhFtsb>UyL^`jScFtcFbF/¤ LY SY ~¦}UFi`eLU\FbLm 0
1 ∂f (x, t) = −√ 0 ∂x K
'
1/2 t f (x, t).
[Z4cFi~^xh.s`iyL^`jStlcLkls`jSi cL^ −K bWFi`eK^`^xh x = 0}nFyFb6Di~rLbL¢akliSiSs`cFiS{tl cFbF*¤ LY SY S¦ √ q(t) = K ]srK^`jD^xhrLi`eF cFiSt^`jSs`iSyL^S }>\FgSbT (t).s`tiSyFts`bF\FtklaFbFtyL^`SiSs` kls`b6 cF4eLtBbFyFiSiS`jDeK^x^SeLklbs`bn}?FyFcFiStlcFeLbFgSaFplcFh iSjScFtt!cFbFiStsS4u~tFs`i`bFeLs`UgLbF}>cF\Fs`s`tiyL^xUeLyLgS^`cFjScF¬tcF|b6h 4ts`s`i~b²rLiSj¤ StjpFuy6rLbFyFa6iSeKS^xcFrFi` rLbLqtyFbFcFs`tyL^xeLgScFiS_n|Hs`tyL4bFcFi`eLiSbFbn}ZFyF^`j`rK^D¦v4i cFi<jDkls`yFts`bFs`g¢ttj F{tbFyF LjS^FYTv[]bFyLpl^`rKjS^`cFcFtb6cFh6bF£t u¤ vLtlY 6DY ^`~cF¦}TbFaFj>b \L^Skl6kls`eLcFiSiD{klcFs`bn}¬vSklyFrLtlUr
\F| b rLiSY Fð i`eLcF^`tc6cFrKcF^~zS} zcLY ^~\LW^xYeLgScFbLzZ DkeLiSjSbFt}KkliSjSL^xrK^`tsOkUyL^`jScFtcFbFt¤ S6Y ªD¦ FbFs`bFyFSt4iS_aFcFbFb¤ Y¬ DªD¦}6aUi` s`iSyFiStZh FyFbFjSi 2j iSSiSpcL^\FtcFb6h62iSyFbFbFcL^xeK^Fm '
0
0
G '
1/2 t
" #G Q
Zt
dT0 (τ ) dτ √ . dτ t−τ
Zt r
χ q(τ )dτ. π(t − τ )
κ q(t) = √ πχ
'
© ^StFirL\FtyFaFbFjD^`tsSkhn}6\Fs`i2qiSyL4eK^sx^FyFtlrKklsx^`j`eFhFts kliSSiS_?iSSyL^`tcFbFt bFcFs`tyL^xeLgScFiSiOkliSiSs`cFiS{tcFb6h κT0 (t) =
−∞
−∞
h¨G& Rx ÉÈ Ê
G 2[ x A 7ox
F ^S4ts`bL}B\FFs`yFi iSbFj pljSi~iSrLScFiSb6te ý§bLkeLfU^`\LcL^x^xh6 bFU`jSeKb6^`eFeFirKh?^`bvyDh ^`DFkUeLs`iSiOjSb6aFhLjS bFjD^xTeL(0+) b =0 t F c ` s Y T (−∞) = 0 qivjStyFcFtfk¨hWakliSjSyFt4tcFcFiDkls`bnY
X!aFcFbFt Ös`iSs4ts`i~riSSiSStc cL^ FyFiS Ftkk`}6iSFbLkljD^`t4_>UyL^`jScFtcFb6t ò¥ Ã
$
â
"§ .ôx
õ
ô &1ã"õ
÷"õ
&
 *
2 x
4t^`s`aFi~s`rLiS^FyFm bFp^` FbFbOs`iSiUyL^`jScFtcFb6hOFyFbFjSirLbFsa2keLtlrLU]t_³÷oøBñ÷oöoñ÷ [
+
t
− α(x, t)
− β(x, t)
*M÷-ô+ÿ4*ò
∞ X
A(0, t)qx (0, t) =
+ γ(x, t)]T (x, t) = 0.
x
aj (0, t)
0
(1−j)/2 . t
X%\L^Skls`cFiDkls`bn}rFeFh k eLU\L^xh FiDkls`ihFcFcF aUiSqbF FbFtcFs`iSj Fi`eLU\L^`tm T (0, t) = T = const j=0
α, β, γ
b
0
√ qx (0, t) = (1/ α) =
µ
µ
0
1/2 t
β δ + √ + 2 α 2
−1/2 t
−
δ2 8
0
−3/2 t
¶ + . . . T0 =
¶ 1 δ √ β δ2 √ √ + √ +√ t − √ t t + . . . T0 . π 6 π πt 2 α
( ©
í,
¢
ÌË
Á ¶|| æ,~
z.ë{3±
0
î
ì,í.ç
XÍ
9~ð
î
î
s`t6eLiSjS«iDi`<eLt¤ÅrLtbLbFcFqs`tUyFptbFkliScFcFiScF_¢iD§k¦fqFiSbFs`piSbFaU\FtZtklcLaD^iS_yLs`^`iScF\FbFaF 6b¢tq{py6^`tyLcF^ b6rh=hFj`ReFY6hFXHtsSkh<s`iDp£^xrKkeL^\LU\L^W^`it ·
b
∂ −K ∂t
µ
∂2 2 ∂ + 2 ∂r r ∂r
¶¸
T (r, t) = 0, r > 0, t ≥ 0,
¤ aUiSqX²bF Fs`b6ttiScFyFsObFb/s`tF6eLi`eFiShFFyFyFbFiSjSp^`irL FcFbFiDb/kls`yLb>^SkFkyFfbF^`c6s`+hFyFs bF1/R)T pjDlrL^`ttsSklgOk¨h(R,yL^`rLjSbLt)cFzqUtlprLb6bFhcFbFjS Ftt~¦tY kls`jD^bFp kqtyFbF\FtklaDiS_a6^`6eLb b6rLaDiDkls`b j?iSaFyFDO^`]ttFyFiDkls`yL^`cLkls`jSiL}Kp^`Fi`eLcFtcFcFiSt rLbFyFpjSUtkliSs`_cF iD4b6vrLaUpiD^`klaUs`iSgScF }SFyFb DkeFiSY jSbFbn^xrK}`\F^`cLs`i^?yLsx^x^`rLa6bFDtOkaUa6iS^`cF6 FeLtb cFyLs`yL^Sk^`sS Ftlb6sh kljSitjSyFttkl4s`tjDcF^?t a6^`FUi eLjStb?cLt^kls`tjDtZ^ FiSjStyD6cFiSiDFklbLs`klRb C=jD^`tR(t) Y6h?oqUpyL4^`tjScFcFttcFcFbFbFtZt aUiScF FtcFs`yL^` FbFb2rLbLqUc6rLbFyFU]ti (t) S s k c(r, t) qr (R, t) = (
0
1/2 t
s
"
∂ −K ∂t
µ
∂2 2 ∂ + ∂2 r ∂r
¶
# R2 R˙ ∂ + 2 c(r, t) = 0, r > 0, t ≥ 0 r ∂r
D kZaFyL^`tjSz4b SkeLiSjSb6hL4b
w¨ 5x
1 "+>ò
&
&â
"â ã
c(R, t) = Cs (t); c(∞, t) = 0; c(r, 0) = 0, r > R(0) ≡ R0 .
6aüq^i`eLcLU^\FFtiScFjScFtiSyDtz6j cFiDkl¬s`b>4taUs`^`i~6rLeLiDb bL4^`taFtsOs`iSjSyFb6b6r
pm ^` FbFb2jSyL^xtcFbFtzr6eFh?6eLiSs`cFiDkls`b?FiSs`i` *
jr (R(t), t) =
+
Ã
√
K
"
0
1/2 t
¨ 3R˙ 2 (R) R(t) − 2 8R (t) 4R(t)
√
˙ R(t) K + R(t) 2R(t)
+
!
0
−3/2 t
qyFb>FiDkls`i~hFcFcFiS_>aUiScF FtcFs`yL^` FbFb cL^FiSjStyD6cFiDkls`b ü
jr (R(t), t) =
+
Ã
√
0
−1/2 + t
#
+ . . . Cs (t).
"
√ √ ˙ R(t) K 2 t 1 + + K √ + πt R(t) 2R(t) π
¨ 3R˙ 2 (R) R(t) − 8R2 (t) 4R(t)
!
# 4t3/2 √ + . . . Cs (t). 3 π
üqtyFjStrLjD^2\6eLtcL^?Fi`eLU\FtlcFcFyL^`pleLi~tcFb6hiSFbLkljD^`]s2FyFiS Ftkkj>keLU\L^`t cFtFi~rFjSb6 cFiS_ yL^`cFbF F}6iDklsx^xeLgScFtqFyFtlrKkls~^`j`eFhF]s2kliSSiS_?FiSFyL^`jSaFbn}6U\FbFs` jD^`]bFXHtqcFyLt^SaUkliS{s`bFiSyFyFtiDcFbFtqk4a6z^`6keFeLtqbnY iSSyL^`s`cFzWyL^Sklk4iSs`yFtcFcFiD4 jS{tZFyFiS FtkklhFj` eFhFtsSkh FyFiS FtkkyL^Skls`jSiSyFtcFb6hl^`p^?j? b6rLaUiDkls`b.FyFb tivk¨O^`s`bFbnm¬p^`Fi`eLcFtc6 cF4tlrF_eLlt^`cFpcFiDiFkiSqjStyF{bF^`\6ttsSklkaFhnbFYÖ_XiS yFnttpH~eLiSg~aFsxyF^`Ds`ttiScv n t!b6rLb¢aUiDfkls`^SgSkk^.}KrKl^`^`j`peL^.t6cF4bFttcFj?gS{aUiS^`s`]iSsSyFkiShn_ } 64tcFgS{tcFbFtÖf^Skkl.FyFiSbLkSi~rLbFszp^zkl\FtszyL^Skls`jSiSyFtlcFb6hl^`p^jz b6rFaUiDkls`bn}aUiSs`i` yFiS^`t]a4Fi~iS a6cF^`pi^`yLcF^Si2kkj f^` s`}KyFrKbF^`jDj`^`eLs`gtcFa6bF^`taOj?rLbLFi`eLqiDUkls`pbbF<s~^`ta6it4i`~eLrLtiSaFj`~eLe2ts`\FjStiSyFySthFp]tFs2iSUjSyLt^`yDjS6cFcFtiDcFklbFs`gL Y k]rLyFiSScFz4b FyFiSbFpjSirLcFz4bnY X~ (Û 76AÎ ; ©ntiSyFb6haFyFbFs`bF\FtklaFb6qhFj`eLtcFbF_O]yFcF{s`t_FcL^x qtyFcFb6aUt§iDklcFiSjD^`cL^cL^s`yFtl Fi`oeL÷7ùAi~òÀô+tÿ cFb6h6þ> ò!ø ÷ #Y uüqø tyFjS#iSÿ t/dOòÒÿkliS÷oiSøBùJs`cFú iS{tcFbFt]4bOtlZOeLrLUOaFs`pD^`^`jS FbLb6khFhL4bt_ \FiSbLskeKs`^qt44Fi`teLyLtl^`aFs`~Ue yF jOSi`eLgS{iD<¤ Fi2klyL^`jScFtc6bFBkZaUiSyFyFtleFχ(ThF FbF) iScFcFiS_?rFeLbFcFiS_K¦iS nt4t V klbLkls`t4Nm &É
&É
Ç *
ï~,~
z.ë{åä
i~
~
},~çB ø
1:
0 *M
&2
&É
hN i χ(T ) = − nV 2
µ
∂V ∂P
¶
= T
δ2 , nkB T
h:eo #xxx0e|
ò¥ á
GÜx21.Ïx x
¬5
"
ã
& &
d rLiSt s`ncFiS={hNtcFbFi/VtrLbLdklklFyFttlyLrLklc6bFh6b h\FaUbLiSkcFeK F^ tcFNs`yLa^` FFbUDhO^Sk4kli`iSeLcFtiSaFjDkle
aDiS}`_v^ δrLbL=klF(hN tyLklbFb i−hN FyFb is`iS)/hN _ti aUiSc6 FtcFs`yL^` FbFbnY iSyL4~eK^ sx^ iSpcL^~\L^`ts~}¬\Fs`ijklbLkls`tf^xWkOjSzkliSaUiS_.k bL4^x t\L4^SkliDs`klbFs`gS ²Si`¤ eLcLt^`tFy6jStbLyF4ithFyns`}cFjW}KyL\F^`tpyFtlj?ts`cFjScFtySrLl^`ps`^xtleKL¦^x¬SYTi`XeLgS{yL^xbFOtv^xZhveLUs`aFb s`DZ^`eL FUbFaFbHs`D\F^`bL Fkb6eKb^ \FtyFtpqbFcFs`tyL^xeviSsOaUiSyFyFtleFhF 6bFiScFcFiS_vqUcFaF FbFmb ó÷uö/ø!òÒÿ ¬ó/ôx÷oøBùô oñxøBùAö 2
2
2
©+
4
FyFb6Si~rLbL£avqiSyL4eLt
2
δ =1+n
Z
1
4
C(r, T )dr,
nkB T χ(T ) = 1 + n
Z
C(r; T )dr,
lk j`hFpjD^`]t_?aDiSyFyFtleFhF FbFiScFcFUBqUcFaF FbFBkZs`t4FtyL^`s`UyFiS_nY oqpjStkls`cFiL}x\Fs`irFeFhOjDkltlSkls`iS_F\FbFjSOklbLkls`t /∂P ) < 0}SjqiSaFyFtklsx cFtfiDkl^vs`bFivrKtO^`j`aFeLyFtbFcFs`bFbF \FtklaUiS_.s`iS\FaFb.iSSyL^`^`piSjS^`iStlsSi?kh FtjyFtlcFD~i~eLrLgL^ }8(∂V FyFiSbFpjSi~rLcL^xhiSs>iS ¬ Y T ^ ûÖs`ikljSb6rLts`tleLgDkls`jSS(∂P/∂V tsiSaU)kls`yFtf^xeLgScFiSi`eLgS{b6OZeLUaFχ(Ts`D^`) F→b6h6O∞,6eLiSs`TcFiD→kls`b2T j aFyLyF^SkbFkls`tlbFhF\FcFtb6klh£aDiSkl_2jStiSsx`^FeK}8^S6kls`eKbn^`}`pF4iStyFcFi~cFOrK^`aD]i`eLtb6D^`hFcFj`bFeL_tcFb£b6s~hOYfaFnyFYfbFXs`bFiS\FpcFtklbFaUaUiS^`_2]iSL^x^xheLtFklyF Fb£tcF 6s`bFiDbn } yL^Sk¨Di~rLbL4iDkls`gbFcFs`tyL^xeK^OiSsaUiSyFyFtleFhF FbFiScFcFiS_ qUcFaF FbFb T
&É
c
T
c
Z
C(r; Tc )dr = ∞
Ua6^`pjD^`tlscL^OStklaUiScFt\FcF_>yL^xrLbFDkqaDiSyFyFtleFhF FbF_n}LiSSDkeLiSjxeLtcFcF_>cL^xeLbF\FbFt FeLr eLbFpbFcFFcFiSiSaU^`ivp6jDjS^`iDtkls~s~}6^ \FaUs`iSiyF6yFjStliDeFklhFs FbFs`iSiScFsOcFiSbL_4tqtUs2cFklaFs` FtbFFb tcFC(r; cFiS_>jSTb6)r
Y4m ©ntiSyFts`bF\FtklaFbF_£^`cL^x c
C(r; Tc ) ∝ r −(d−2) ,
s`rLiStyFdtqyLa6^`klpF4tyFtyFbLcF4iDtklcFs`s`g>FFyFiSiDaUkl^`s`pyL^`jDcL^`kls`]jDs~^F}6Y \Fs`i bFkeLtcFcFiSttO4i~rLtleLbFyFiSjD^`cFb6tbcFtaUi` =
r → ∞,
C(r, Tc ) ∝ r −(d−2+η) ,
rLt η §Fi`eLi~ bFs`tleLgScFiStq\FbLkeFiL}L4tcFgS{ttqtlrLbFcFbF FY /öoñxòBñ xòÒÿ rLyFôxUñ JiS_ ùAXs`ò qiSñyFUiScFmt aF6ò FÀbFôxFb ñ i`eL+i~òl}tcFFbFiSpt}¡jSi`SeFi`iShFeLs`]tyLtÚ^xObL^`rLtiSsSSFkcFh tiSyF_ t_Fs`rFñb eFùAh òiSs ô ^`cLxq^xúeLUñbFcFõ[paFÿ^ FbFb aFyFBôbFC(r; a T) ` s F b F \ t l k F a 6 b c(r; T ) hFj`eLtcFbF_nm
"Ú
0M
° 1
"$
C(r12 , T ) = c(r12 , T ) + n
Z
C(r23 , T )c(r13 , T )dr3 .
4 1
"
w¨ 5x
1 "+>ò
& ('
&â
"â ã
[]ó/ô yL5^`ÿ jScFtcFbFþ t./øBùJs`iú yL^`pleK^`}4^`tiSsFbLókl÷ xjDñ ^`]U÷-ôôjSò p^`bF4i~÷7rLñtñ _Lkls`jSbFt ñ C(r, cL_6^ T) ? k ` L e 6 b O ` ^ {bLiSaFyFDtcFbFtc(r, b¡T F) iSs`iD4aDiSyFiSs`aUi~rLt_Lkls`jSU]U}zb ñx1òBó/→ô 52ÿ ¢þ /øBùJúS} hLjS yL1^xO→^`t43 U→ bF2,cFs`1t→yL^xeL3iD→Y q4tF→yDhL2,f^xh. .\L. ^S,kl1s`g£→iSs`3cFiD→klbFsS4kh<→a<.jS.p.^`→bL4i~nrLt→_Lkls`2jSb6b FiSs`iD4iSFyFtlrLtleFhFtlsvaDiSyFyFtleFhF FbFbWcL^>Si`eLgS{b6yL^Skkls`i~hFcFb6h6¬Y8]StOaUiSyFyFtleFh6 Fkls`bFi~iShFcFcFcFbF_ntv}L qrFUtcFFaFyD FhLbF4bSttaUpyLiS^`yFpyF4tleFtyFhFcF FbFbvY§X/iSs`yFaFbFyF LbF^`s`s`bFtl\FeLtgSklcFaDiS_H}KfsS^xiSeK\6^FaUtvYxüqyFyFi`teLcFg.tSfyF^xtleLl^xh £bLyL4^Sbnk } b>4tcLyF^xcFrFiSeL_tl6eL^`iSs`bLcFiDkliSs`SbyL^`jSptiDyF.ihFcFs`iScFyLiD4kls`bFtyF_n`}§h ^ c(r,k^S4Ti )}FbF4cFi~s` tcFyLi^xeLFgSyFcFb6iSrKt>^`s`UgOyL^`t_ jScFkt4cFzbFt ke 4s`iyFtltUs Ss`gObFcFs`tyFFyFts`bFyFiSjD^`cFiOa6^`a>6yF^`jScFtcFbFtkeLU\L^`_FcF?`eLDOrK^`cFbF_nY 76 ¢ ÂÛ
X~ (Û 76AÎ \Fs`i!q©UcFyFaFts` FgSb6th 6c˜i`(k,eLi~Tt)cFbFFtZyFtls`rLtiSFyFi`eKbFb^`l]^`tyFsScFk¨h/{s`\Ftt_Fs`cFcF^xiS _*qt^`yFcLcF^xbFeLaUbFtZs`pbF^`\Fa6teLkl]aUiS\L_/^`tsSqkUh?cFjaF Fs`bFiDt_ } j iSaFyFtkls`cFiDkls`b k = 0 rFeFh jDkltl?s`t4FtyL^`s`Uyn}FjSa6eL]\L^xh T m k = |k| "4&2}
1 4&2
/1<"
"4&2}94 "&<""2
$
1 4&2
$
,
z.ë{/ë
s| ~| î ï~,~
ì,,~𳶷~¹
i~
~
n~³¶|
},~ç
ø
c
c˜(k, T ) − c˜(0, T ) ∝ k 2 ,
k → 0.
Ö¤ Ss`yFbLiS<UcFiSiSSjDtklklaFFbFt_K\F¦fbFjDU^`^`tyLsS^`kaFhvs`taUy iScF^Stkl\FbLcF4iDFkls`s`iSg?s`bFrLaFbLbvklFaDtiSyFyFklbFyFbtleFhFu~F FyFbFiSiSScFtcFliS^F_ |2bUrLcFbLa6 FbFqb UpbFiScFcF_ û
C as (r, Tc ) = Ar −1 ,
rLiSj`eLts`jSiSyDhF]t_>klsx^` FbFiScL^`yFcFiD42UyL^`jScFtcFbFcFiSyLf^xeLgScFiS_2rLbLqUpbFbnm −4 C as (r, Tc ) = 4πAδ(r)
yL^`pleLi~XtcFklbFsxtS^`}6c6FrKyF^`tlyFrKs`klcFsxiS^`_j`eLs`ttcFiScFyFiSbFtqb<jObLjSklb6FrLi`teLgSp`tsSkhiSSiSyFjD^xcFcFiSt cL^WjSs`iSyFiD\6eLtcFt c˜(k, T ) = c˜(0, T ) − (R2 /n)k 2 ,
rLt R(T ) d 7ò /ò!ö/ø ñ où oñ KY s`yFUaFs`UyFcL^xh2qUcFaF Fb6h FyFbFcFbLf^x tsOjOs`iDkeLU\L^`tZeLiSyFtcF FtjDklaFbF_>jSb6r 5 060
0 5 ³:( 4È "
ak =
R−2 1 = −2 , 2 2 1 − nc(0, T ) + R k ξ + k2
rLtp^`jSbLkhF^xhviSs>s`t8FtyL^`s`UyFb6eLiSs`cFiDkls`b jStleLbF\FbFcL^ ξ cL^`pjD^`tsSkh ñ÷ ÷-ôôò LxY üqyFb T → T iScL^ iSSyL^`^`tsSk¨hvj2StklaDiScFt\FcFiDkls`gLY¬]SyL^`s`cFiSt *MÄ
/1<""
c
5"
[ x DR ('q&xM'55
D FyFyFtptiSeLSgxyLsx^`^`psiSjSrF^`eFcFh bFtFi`eLUcFyFiSgS_>taUjiSyFyFyF^SktlkeFfhF^` Fs`bFyFiSbFcFjDc6^`iSt_v4qiDUcFFaFyF FbFbF`bneLm b6tcFbFbOrK^`tskeLtlrLU]bF_ hz
$15
ò¥ ÿ
ã "÷ "§
Æ
&
+
Y eLtlrLSts]Fi~rL\6tyFaFcFUs`gL}~i~rLcL^`aUiL}\Fs`iZjZkeLU\L^`t§rLjS64tyFcFiS_klbLkls`t4yL^Sk kf*ô ^`s`yFÿbFjD^`þ>tò!4ø u_>ô F/i~øBrFùASi~òBr ùYLFqy6bFyFjSiDi~4rLtbFsOs`iSa iL^`}FD\FklUbLyDkeLrLtTcFmUcFaUiSiStyFyF4tli~eFrLhFtl FeLbFbFiSyFcFiScLjD^x^`h>cFbFqtUbvcFaFyD Fh6b6rh xa6k÷ FtyFbL4tcFs`iSjkzf^`cFbFs`cFz4b?klbLkls`tf^S8b2FiSaU^`pjD^`ts~}`\Fs`ijaFyFb6sSb6\FtklaUiS_ sSiS\U aUtZaUiSyFyFtleFhF FbFiScFcL^xh>qUcFaF Fb6h d 4tyFcFiS_ kbLkls`t4¢eLU\F{tq^`FFyFiSa6klbL4bFy6StsSkh qiSyL4eLiS_n}6FyFtlrFeLi~tcFcFiS_ bF{tyFiDm C(r, T ) ∝
½
(R2 r)−1 exp(−r/ξ), r−1 ,
T < Tc , T = Tc
 *
° "
0&
1
Ç+
C(r, Tc ) ∝ r −(d−2+η) ,
(14.4.1)
Di rLkeKt ^`η`dzeFhFFti`seLi~sS y6tbFs`s`gStlteLgS6cFi`iSeLt4i~\FbLtkcFeLbFiLtq}s`4ttiScFyFgSbF{bnt}Ftfptl^SrL4bFtcFc6bFh6 Fh>toYûÖiOsxs`^yFqtSiSiSyLjD4^`cF~eKbF^t ^`aFs`bF\FtklaFb c˜(k, T ) − c˜(0, T ) ∝ k α , 0 < α < 2
k → 0.
^`a2keLtlrLStsbFp]cL^`{t_2yL^`SiSs` }U^SklbL4Fs`iSs`bF\FtklaU^xh?\L^Skls`gyFt{tcFb6h2js`iD keLU\L^`tD^`yL^`aFs`tyFbFpStsSkhs`yL^`cLkqiSyLf^`cFs`iS_ UyFgSt Ce (k, T )}TrLiSj`eLts`jSiSyDh6 ]t_ UyL^`jScFtcFbF e ]cFizhFj`eFhFtsSkh UyFgStl iSSyL^`|k|piS CUyL^`(|k|, jScFtcFTb6h) kÖ=eKA(α). ^`UeK^SklbL^`cFiDvjzrLyFiSScFiS_kls`tFtcFb '(
_+
α
as
as
c
c
+
(−4)α/2 C as (r, Tc ) = A(α)δ(r).
©
^`aFbL iSSyL^`piD}~jZs`iS_rLyFiSScFi` rLbLqtyFtcF FbL^~eLgScFiS_4i~rLtleLbOaFyFbFs`bF\Ftl lk aUi`ikliDkls`i~hFcFb6h2klyFtlrLFyFb T → T cL^`yFU{^`tsSkh2^`cL^xeLbFs`bF\FcFiDkls`gs`yL^`cLkqiSy6 f^Skl^`bLcF4s`Fs`iSFs`ySbFhL\F4tiSkl_.aFbFaU_ iSyF\6yFeLtlteFc hF FbFiScFUcFyLiS^`_.jScFqtUcFcFbFaFtJ FüqbFbnD}n^SkjDklkiSeLcLtl^ rKklFs`yFjStbFjStOyL^`\Ft^`i tsSiSk¨FhbLklj?rLjDy6^`iS]ScFiSttt U\LyL^`_F^`jScFcFt?cFbFjStiSpüqSDSO^SkrLkltiScFcLbF^F_>Y ûÖklyFs`Ci tlrLkljSb6FrLyFtbvs`tleLgD^`klps`iSjSjSSiStsFi ty6qtlyLD^`i~aFrLsxt ^xeL gSY cFiS_>kls`yFUaFs`UyFtkeLD c
as
- *
z.ë{
x
¢
8¶E
"! ©!
8çð
ì
|ï¹
, |,Â|ï
XyL^`SiSsx^xn ý4Y ]b6eLgxqtyL^ ªxÀ Ñ }8yL^`pjSbFjD^`]b6WcFiSjS_jSp eFh6rcL^s`ti` Fysx^xbFeLgScFU^`piSyFjSi`eL>gL}¬F\FtyFt
Sª + w¨ 5x F¤¥4yFtbFcFjSgStl{eK^tOa2~¦FFyFiStlrLyDFh6i`rFeLa6i~^F}6cLt^`cFpbFjD¢^`cFicFkliSUitj kls`´ jSiSñxjD^`òÀô cF/bFöob2ñ÷oö/^`ò!pøBiSñj`õ[ÿ FóxtyFòÀôtlDò i~÷rLiS!jqÿ rLLyFY iSScFiSi iS eK^SklcFiiDklcFiSjScFzÚFiDkls`eK^`sx^SÚs`tyL4irLbFcL^S4bF\Ftkla6^xh jScFUs`yFtcFc6h6h 4cFiStcFyFiSs`b6iShHcFcFkli?bLkljSs`iStp4yL ^SklsxU^`]=Ut_n(S,}4¤ FV,iS\FNs`b) rLjDkli`eF rLFcL¦^rLSbLs`qg.tiyFrLtcFcF FiSpbFcLyF^~`\FtcF4iSiS_n_}4bjSi~rLFUcFa6iSyFeLi~iSrF_n } cFiS_v¤ FtyFjSiSiqFiSySh6rLa6^D¦4qUcFaF FbFt_OiSs`cFiDklbFs`tleLgScFikljSiSb6^`y664tcFs`iSjqdcFs`yFi` FbFb S }6iS nt V b \FbLkeK^O\L^Skls`bF N YLXa6eK^SkklbF\FtklaUiS_ 4i~rLtleLb &
1 " >ò
1
&â
"â ã
È 5*
&É
s`iS rK^2aU^`aj?aFjD^`cFs`iSjSiS_kDt4t b rLi`eF cF¡Ss`g?iSyL^`cFbF\FtcFcFz4bklcFbFpSY [§cL^Sk4eLiSbFjS\Fb6th>klaFlUsS¡b SkZklcFs`tiSiS_F~\FDbFijSrLiDbLkl4s`iDgLklY s`gSS b?rLUiDklsx^`s`iS\FcFiDkls`gSiSStklFt\FbFjD^`]ss`tyL4i~rLb6 ZeK^SkklbLqbFa6^` Fb6h£^`piSjSWFtyFtlDi~rLiSjiSS\FcFi.qiSyL4eLbFyFStsSkh£j.Fi` c6s`thFyLs`4b6h6i~rLb6cL6eL^S4iSs`bFcF\FiDtklkls`aFb¡bFtvkljSFiSiSSs`i~trLcFcF FiSbL_¢^xeLcFtcFyFtFbFyFb¡tyFbUeLjSbcF*rK^`j`rFeLeFthcFb6{hnbF}zyFFiSiDaUkliSaDi`i eLa6gSeKaF^SkkrL^yFUjSpbF^xt bL4i~rLtl_Lkls`jSbF_nY ð^`j`eLtcFbFt p = p(T, µ) tkls`gkliSFyDh6tcFcL^xhHjSFUa6eK^xhFi.iSsx 6cFeLiS{iSs`tcFcFiDbFkls`b a.cF6s`eLyFiSiSs`FcFbFiDbkls`b.cFtyFbFbb>6u(S, eLiSs`ρ)cFiDkl=s`b U\F(S/V, bLkeK^O1,\L^SN/V kls`bF )/V aU^`aWqm UcFaF FbFb 0 < V < ∞,
0 < N < ∞,
−∞ < S < ∞,
−∞ < U < ∞,
s = S/V
ρ = N/V
p(T, µ) = sup[µρ + T s − u(s, ρ)],
rLt µ dOwz6cLbL^x4eLbFbFp\FtklaF^`pbFiS_ jSiSFiSizs`tFcFt FyFbLtlD^xi~e
rL} ^ZTs`d2yFt^`SD`klti`sqeLbL]kls`FcLi`^xeLh?gSps`iStjD4^xFcFtb6yLh^`s`klUiSiSyLs`^FjSY tsSkls`jSU]tl izs`tyL4i~rLbFcF^S4bF\FtklaUiSizFyFtlrLtleK^FYý4^Skk4iSs`yFbLvs`tyL4irLbFcL^S4bF\FtklaFbF_FyFiS Ftkk b kliSiSs`jStsSkls`jSU]s T µ(0) = µ aF]yFm R−R bFs`bF\Ftkl} aDσiS_.7→s`(TiS\F(σ), aDtSRY ýfq(σ)) ^`pleLi}~ sx^`bLaU iS_np}=\Fs`ip(TT (0)(σ),=µ(σ)) cL^?yFteFhFyFcFUb klbFcFD eFhFyFcFUBkliDklsx^`j`eFhF]bFt X£a6eK^SkklbLqbFa6^` FbFb ûÖyFtcLpq=tklpsx^+^`ppiSj`_O. FtyFtlSi~r2iSs`cFiDklb6eKk¨h a2FtyFtlSi` rK^S£FiSySh6rLa6^ n j s`iD£b>s`i`eLgSaUiOjOs`iDkeLU\L^`tS}6tkeLb s,ρ
2
c
reg
n σ psng (T (σ), µ(σ))
c
sng
rFeFh σ ≈ 0 }F rLt A, B ∈ R b l(σ) d?kls`UFtcF\L^`sx^xhvqUcFaF Fb6h ]jSbLk^`_6rL^FYF[§keLi` jSbFtZ¤ LY 6Y ~¦¬iSs`yL^xO^`tszaUiScFt\FcF_yL^`pyFj n _FyFiSbFpjSi~rLcFiS_rK^`j`eLtcFb6hj]s`iS\FaUt YT]cFi 4i~tsOSs`gOFyFtlrKklsx^`j`eLtcFiOb jOcFtklaUi`eLgSaDiOSi`eLttZiSStjSb6rLt σ=0 J(C, n; σ) ≡
∼ A l(σ) + B,
n = 1, 2, 3, . . . ,
(14.5.1)
'
lim
J(C, n; bσ) = 1, J(C, n; σ)
b > 0.
(14.5.2)
ûÖs`iiSpcL^~\L^`ts~}§\Fs`i hFj`eFhFtsSk¨h¢4tlrFeLtlcFcFi4tc6hF]t_Lk¨h¢qUcFaF FbFt_ n; σ) `^ yF64tcFsx^ σ FyFb σJ(C, 4 Y § [ k L e iSjSbFt.¤ LY 6Y S¦b6i`eLi~tcFij iDklcFiSjS rLyFiSScFi` rLbLqtyFtcF FbL^xeLgScFiS_¡→a6eK^S0kklbLqbFa6^` FbFb!^`piSjSFtyFtlDi~rLiSjL}]FyFtlrFeLi~tcFcFiS_ σ±0→
'
[ x DR ('q&xM'55
hz
ò¥ ÿ
$15
ã "÷ "§
Æ
& #´
jùJ ÷ m xú ÷¬o÷oò!öoø õ óxòÀôò ÷ ñ @ .K : &
©M /
È 5
:oõö(/òBùAø3? :o÷oöoõ[ÿqóxòÀôòÈ÷5÷*ÿ¢ó÷-ô15
lim b
Dò!ø/
J(C, ν; bσ) =1 J(C, ν; σ)
Y rLtklg
σ→0±
ó/ô2.67÷*ÿ ó÷x÷ ùAò/xúñ÷*ÿ
ν
ν σ psng (T (σ), µ(σ)).
qs`iSSHFiSc6hFs`gL}D4iSUseLb?^`piSjStFtyFtlDirLrLyFiSScFiSiFiSyDh6rLa6^Ss`g s`s`ttyLyL44iirLrLbFbFcLcL^S^S44bFbF\F\FttklklaFaFb/bFtyLkl^`bLplklyFs`tt{4tcF}6cFrFzeF4h bnaU}DiSs`ý4iSY yF]b6 eLgxqtyyL^Skk4iSs`yFtle/4i~rLtleLgScFt J(C, ν; σ) = 0
=
p
s2 + c 2 ,
rLt a, b, c > 0 b a > b YD]\FtjSb6rLcFiL} T (s) = ∂u/∂s > 0 b ∂ u/∂s > 0 }`s~^`aO\Fs`i dOjSFUa6eK^xh2b>4iScFiSs`iScFcFijSiSpyL^Sksx^`]^xh2UcFa6 Fb6hnYLZcF^rLt4iScLkls`yFbFyFD u(s) t\FsWs`iOFkltbLyFkltls`Sti~frL^>¤ F LiSySY 6h6Y DrL¦4a6^D^`νyL^`aF=s`tyF1bFjWpStaFsSy6k¨bFh?s`bFiS\FyLtkl^`aUcFiSbF_\Fts`cFiScF\FiSaU_2t iSs`eK^S=kls`gS±∞ ¢jSY iSp4^Si4 ts`cFbL } s`t4FtyL^`s`Uy a−b=T
(14.5.3)
2
2
'
u
c
min
max
p
b2 − (T − a)2 ,
Ua6^`pjD^xh2cL^ klUtkls`jSiSjD^xcFbFtq^`piSjSiSiFtyFtlSi~rK^FiSySh6rLa6^ p(T ) = c
(14.6.4)
FyFb T üq=yFTiDkls`iS_.b FTyFbL=4tTy£klbLY kls`t4 ¤ LY ªFY D¦]FiSa6^`pjD^`ts~}n\6sSis`tyL4irLbFcL^S4bFa6^ yL^`pyFt{^`tsrLjD^zFyFbFcF FbFFbF^xeLgScFiZyL^`pleLbF\FcFsSb6L^Z^`piSjSqFtyFtlSi~rLiSjLmiSS\6 FcFtyFttlSi~^`rLp*iSjSrLyFtÖiSFStcFyFtlSi~FrLiSySh6 FrLtleLaUiSj νFiSyS
min
max
'
p
p
min
µ
max
min
max
S + w¨ 5x iScL`^SeK4^SbFkl\Fs`tgSklaFb6aDiScFFtiS\Fs`cFtcF FbLs`^xteL4iSFjtrFyLeF^`s`hHUy.bFcFFs`Uts`yFtF¢yFtjSsxjS^`tl FrLbFtbcFb6Fh tyF4tlcFDiSirLiSiSpj.cL^F\FiScFySh6rLa6s`^ tyL4i~rLb6 Y ν < 1 üqiSplrLcFtt ]b6eLgxqty>jStyFcF~eKk¨h a>i~rLcFiSpcL^~\FcFzFiSs`tcF FbL^xeK^S Y iSs`cFFiDkly6s`b g]cFs`yFiSFbFb }s(T }s`jStyL4s`ti~a6rL^`bF]cL^S4^xbFhaFbFbpZF¤ yF tlLrLY 6FY i`UeK¦¬^`klls`^`yFttls ) = (∂p/∂T ) 4bFsSkhüZa eL−∞ ` s F y t ` s F b _ § t p ` ^ U a S i q c klUtkls`jSiSjD^`cFbFtqiDklTiSS→iS_>Ts`t4FtyL^`s`UyF T }LFyFbvaUiSs`iSyFiS_ 6eLiSs`cFiDkls`g2cFs`yFiSFbFb bFpU\L^`tsFm XcFbFt klb6eLaFjD^`cFs`iSjSi` 4tlU^xcFbF\FtklaUiSlis(TFyFiS) bL=k¨D0.i~OrLtcFb6h<s`yFts`gSti£p^`aUiScL^WpcL^~\Ftl 4i~ cFi yL^Skklf^`s`yFbFjD^`s`g aU^`a4bFcFbLf^xeLgScFUs`t4FtyL^`s`UyFWaFjD^`cFs`iSjSi` 4tlU^`TcFbF\6tklaUiS_2klbLkls`t4}Ss`iS rK^qa6^`a T d4bFcFbLf^xeLgScL^xh s`t4FtyL^`s`UyL^a6eK^Sk klbF\FtklaDiS_vklbLkls`t4¤ T > T ¦Y &
1 " >ò
&â
³
"â ã
H
'
'
µ
min
0
0
0
@
min
0
min
}, î
S Yap ©V W;gN_KmN~Í [ qGª2n _Ka`¶XZYÌ}¬\Ñ# ´ J LY u I F Yqd { Å I d I 2I ;F F 6Y7 oò2ñ ÷ m L©nt6eLi`Öb f^SkkliSFtyFtcFiDk`YUd tcFbFcFyL^xr
m ]bL4b6hn}nÑSSªFY F7Y ©§ YnSòBYUø d 0W Y m xvýfbF^`jSyncF}
iSjSÑ#t´xkl6cLY ^xh bcFtyL^`jSc6iSjStklcL^xhvklsx^`s`bLkls`bF\FtklaU^xh 4tU^`cFbFa6^FY LXY #dËgN_K` «K`baä® 7® ?¥(+_KY rK¥ ©¥ ¯LY z NY n 2F Y K´n}K U ?¤ ÑÑ#´`¦Y 6Y Iþ ñ ¬]SiSpynYUFyFbFa6e
YFb FyFiDYLf^`s`tf^`s`bFaFbW¹ · }¬ ÑD?¤ `SDS¦Y ªFY º³`bV X+Y´ Nn 2F Y w YL¸K¸
} D6O¤ ÑÑF~¦Y ´U Y º³`bV X+Y´ Nn 2F NY o Y p Y ¤K´n}¬ ÑS>¤ ÑÑDS¦Y FY º³`bV X+Y´ zqI NY n 2F Y p YL¯ ¤n} ´´ >¤ ÑÑDS¦Y ÑF Y º³`bV X+Y´ Nn 2F NY o Y DF}L DªSª>¤ ÑÑ D¦Y F?Y º³`bV X+Y(´ ±m ~ LNL}T`SS6}I =Y IMU / u ÑFY I F n 2F +F Yxd w NO MLI m I ¢w L -J J
1J
QS&1X-TÝQ 9Z
(V" &V
.(6
.
0&4 ØJ G $G
*'
$Z S&Q3T &V"S(Y
R$
wJ -J
'
S(YÝQ0P$Y P
ØJ ØJ
¸J ¸J
ÂS3R
1
Ü
' (
S(YÝQ0P$Y P ©T V
R åTÝQ
R
Z U
L $M"& IJ%IJ
Z YÝ
J
R
1Q Z
$
J
R
N
0å
J
1
R
J
R
N
0å
@'
'
&
J(Ò V $Z S&Q3T &V"S(Y $Y TÝQS3T &V $' 1Q0T V&3T Q
T V S
Z
Ðq
ís\ït\ r
u
¿ çwѯ' â
4
z {z
#ãèç èç
hdp
fh
,~|æ,~|³¶| 9
E¶çEð
tcFiD4tcFi`eLiSbF\FtklaFbF_!Fi~rFDirFyFtlrLFi`eK^`l^`ts~}q\Fs`iFi`eFhFyFbFp^` Fb6hBrLb6 l eLtaFs`yFbFaU^ P (t) }FiD4ttcFcFiSizjzFtyFt4tcFcFiStÖleLtaFs`yFbF\FtklaDiStFi`eLt E(t) }~kla6eK^x rLcL^`FjDyS^`h6tsSk¨thcFbFcFpiDklrLs`jSb DFi`\LeF^Sh>kls`jOt_sSiSds4cFtiS4jSiDtcF4cFtiScF_ sOPjSyF(t)t4t}xcFFbyFiSFiSyF FbFiScL^xeLgScFiS_pcL^~\FtcFbF +
1
b p^`L^`plrFjD^`Zt_
P1 (t) = χ1 E(t),
P2 (t) =
Zt
K(t − t0 )E(t0 )dt0 .
] SiSpcL^~\6bLv\FtyFtp FyFtlrLtleLgScFiStpcL^~\FtcFbFt FyFbFiDkls`ihFcFcFiS_ b Y XcFb6ha6eKp^S^`kLkl^`bFpl\FrLtklaDjDiS^`_<]s`χttiS_vEyFklbFiDb
2
2
1 dP2 = (χ2 E − P2 ). dt τ
Ö4iDkeL4btcF6sOtyFjSjSyFiStcL4^~t\LcF^xb eLgScFiOleLtaFs`yFbF\FtklaDiStFi`eLtbFi`eFhFy6bFp^` Fb6hvyL^`jScFcF~eL}K^ j 4lcFiSjStcFcFiOFyFb6eK^`l^`tsSk¨h FiDkls`ihFcFcFiStqFi`eLt E }Fs`i t=0
0
iSs`aFrK^
dP2 1 1 + P 2 = χ 2 E0 , dt τ τ P (t) = P1 (t) + P2 (t) = [χ1 + χ2 (1 − e−t/τ )]E0 ,
D + {f6 R 5 x rLt τ d jSyFt8h>yFtleK^`a6k^` FbFbnY XkeLU\L^`t(Dksx^`cFiSjSbFjS{tiDk¨hÎyFtl bLf^²jÚFtyFt4tcFcFiDèl^`yL4iScFbF\Ftl klaUiDFi`eLt bL4tts 4tkls`i2kliSiSs`jStsSkls`jSbFt E(t) = E e (15.1.1) FyFbFjSi~r6hFttqavkliSiSs`cFiS{tcFbF ⇔ iω, ('
" >*ÿ
0
¨& &ã"
ã
iωt
t
· P (t) = P1 (t) + P2 (t) = χ1 +
¸ χ2 E(t). 1 + iωτ
b
üqtyFtlDirFhaaUiD46eLtaUklcFiS_HrLb6leLtaFs`yFbF\FtklaUiS_FyFiScFbF L^`t4iDkls`b iSSiSpcL^~\FtlcFb6h
ε(ω)
bjSjSi~rFh
ε0 = ε(0) = 1 + 4π(χ1 + χ2 )
Fi`eLU\FbL
ε∞ = ε(∞) = 1 + 4πχ1 ,
ý
1 ε(ω) − ε∞ = . ε0 − ε ∞ 1 + iωτ
cFtaUiSs`iSyFiS_ qUcFaF FbFb
fb(iω) =
f^Skkf^`s`yFbFjD^xh?Fi`eLU\FtcFcFU¡qUcFaF FbF¡aU^`a s`yL^`cLkqiSyL4^`cFs` ^`6eK^Sk^kq4cFb6 4z^`yF64tcFs`iD } f (t)
Z∞
B
e−iωt f (t)dt
0
fb(iω) =
FyFtlrKkls~^`jSbL£s`i2kliSiSs`cFiS{tcFbFtZj jSb6rLt
1 , 1 + iωτ
iωτ fb(iω) + fb(iω) = 1.
UXyLiS^`pjSjScFyLt^`cFbF^xhFklrLg tDav^`jStjDyFkltaU4iSt_2cFc yFiStl_ eK^`Fa6tkyF^`t F4bFtb cFcFiS_n}KFyFb6DirLbLHavrLbLqtyFtcF FbL^xeLgScFiD4
τ
df + f (t) = δ(t), dt
yFt{tcFbFtqaUiSs`iSyFiSibL4tts aUklFiScFtcF FbL^xeLgScF_>jSb6r f (t) = e−t/τ .
21.z
&x x
G&x x
L ]SiSS^~h?iSFtyL^` FbFiScFcFiStqkliSiSs`cFiS{tcFbFt ¤ ~6Y SY ~¦§cL^OkeLU\L^`_?rLyFiSScFiS_ kls`tFtcFbn} *ÿ$¥ Ã
Xz
®Ò I x
÷x&1 d1õ d1õ
1ã>
%â "ã
α t
ô &1ã$§mx"5
( "÷ "§
⇔ (iω)α , α ∈ (0, 1),
('
(15.1.2)
4i~ c6i i b6rK^`s`g2kFyL^`jStlrFeLbFjSiDkls`gOkliSiSs`cFiS{tcFbF_n}6FyFbFjStlrLtcFcF>j ©
^``e
Yn~6Y Sm .!^!9+%+K5.Bò Lxñ òñ üqyFiS Ftkk UyFgStqiSSyL^`p []yL^`jScFtcFbFt qiS~eK^x ZiSeK^ fb(iω) = [1 + (iωτ ) ] [τ + 1] f (t) = δ(t) qiS~eK^x ðjSb6rKkli`cL^ fb(iω) = [1 + iωτ ] [τ + 1] f (t) = δ(t) 6^`jSyFb6eLg`hFaU^x qt^S4b fb(iω) [τ = [1 + (iωτ ) ] + 1] f (t) = δ(t) üqyFbFjStlrLts`tFtyFg24tcFttqiSyLf^xeLgScF_?jSjSi~r>s`b6>UyL^`jScFtcFbF_nY x 76Ax Ó & −∞
+
α
α −1
C
−β
³
}| î ¶
α t
t
α
α −β
ì|ð.E
z {3±
−∞
−∞
β
α t
β
0
}| î ¶
æç|ç| í.ç³~³,
,.ð
üqyFiDkls`t_F{bL.f^`aFyFiDklaUiSFbF\FtklaFbL.klFiDkliSSiDjSjStlrLtcFb6hrLyFiSScFiS_ FyFiSbFpl Sj i~rLc6iS_vj2p^xrK^\F>i2yFtleK^`aUk^` FbFb hFj`eFhFtsSkh rLyFiSScFi` rLbLqbvtyFcFt^`cFF FyDbLh6^xeLtgScFcFbFi`tt iSSiS` tcFbFta6eK^SkklbF\FtklaUiSi kliSiSs`cFiS{tcFb6hv4tlOrL>s`iSaUiD rFeFhvb6rLt^xeLgSc6iSi aDiSc6rLtcLk^`s`iSyL^d ôx÷ 7ñ÷ XòÀôòBñ i(t)xúñõ oñ x÷ u(t) ÷7ñ ÿ Fm ik4SziSs`kcFeLiSt{6tyFcFiDbF4t¢tl s`Uis`iSi(t) iS\FFcFbLzkl=# KjD4^`ttlsBO rLl!eLu(t), t4b6rLtcFt^xsteL>gS FcFt0,zFbn 0}O
*6
*/5 "K
"<"
©M_ °:(
α a
α t
1
0
D
Ä
*
∆u(t0 )
i(t) = A∆u(t0 )(t − t0 )−α ,
FüqyFttyFiStSFyLbL^`kp^`iSjjS^`¤ ~cF6b6Y hn6Y}USjS¦Kb6rFrLeFbLh6}FyF\FiSs`bFi pjSi`eLgScFiSijSb6rK^ Kα ∆u(tj ) d i(t) = Γ(1 − α) dt
Z
t tj
u(t)
t > t0 .
(15.2.2)
bjSFi`eLcFbFjzleLt4tcFsx^`yFcFt
dt0 = A∆u(tj )(t − tj )−α , (t − t0 )α
A = Kα /Γ(1 − α).
U ÖFyFkeLb b
{f6
"+>*ÿ
('
¨& R&ã"5ãx
4t}Fc6s`hFiOtsSjSkh yLcF^xtFtyFcFtbFyFt jS¤ ~cF6i Y 6bY SrL¦§iDFklyFsxbL^`4s`iSt\Fs cFjSi>b6rSzkls`yFivksSy6t4bFsSkh.a.cFeL
u(t0 ) t0 → −∞
i(t) = A
Zt
du(t0 ) = Kα (t − t0 )α
α −∞
t u(t)
= Kα
−∞
α t u(t).
(15.2.3)
¤ FyFiSbFpjSi~rFcFteý§bLf^`cL^x bFUjSb6eFeFh>bv^`FUs`iplrLtklg kliSjSL^xrK^`]sD¦Y üqyFbFcFbLf^xh.jSivjScFbFf^`cFbFt cL^xeLbF\FbFt2j aUiScFs`UyFt2^`aFs`bFjScFiSivkliSFyFiSs`bFj`eLtl cFb6hn}Fp^`FbF{tUyL^`jScFtcFbFtqbFyD6iD^ −∞
i(t)R + u(t) = E(t),
{rLtt cFE(t) b6hW¤ ~d½6Y 6ûY Dð ¦ÖkeLbLtlklrLs`SiStl\FscFrLbFyFaUiS^vSFcFbFi`s~rL^`bLcFb6hnqY8toqyFtpOcFF FiDbLk^xeLeLtlgSrLcFcFi`ttZi UyLU^`yLjS^`cFjStcFcFtbFcFt b6h bkliSiSs`cFi`
rLt UcFaF Fb6h q iSeK^x qi`eK^ m E(t) = e
[τ α
iωt
α t
+ 1] u(t) = E(t),
tkls`g yFtl{tcFbFtÎs`iSi UyL^`jScFtcFb6h FyFb
τ α = Kα R.
+
z {åä
−∞
fbα (iω)
[(iωτ )α + 1] fbα (iω) = 1,
³
0 < α < 1,
(15.2.4)
ç|ç| í.çB³´~,
,,ð
^` eFh6rLcFiS_ 4bFaFyFiDklaDiSFbF\FtklaUiS_24irLtleLgS<l^`piSiS`yL^`pcFiSliqb6eLbO b6rLaUiSi rL4bFi`leLeLttaFaFs`e
yF}KbFklaUjS^iSShFi~j`rLeFcFhFitsS6keKhO^`FjD^`yF]tlrKklsxb6^`>j`bveLtjScFyLbF^`tzi^`cF]t b6a6D^`ka h>ij2klaFiSb6jS6iShFaFUFtcFHiDklSs`bOeLgxFiSi`cFeFtShF}6yFbLcF4b6 s`bFyFU]t<j`eLb6hFcFbFts`t6eLiSjSiSi2rLjSb6tc6b6hiSaFyFDO^`]b64i`eLtaF~e
Y¬^xOrK^xh 4kls`i`jSeLSttaFseKjS^>cFtiS{`cFeKt^xt?rK^`Fti`s?eLkltSiS}8DjSklcFs`UjSs`tyFcFtcFcFzcFHbFt rLbFklb6FeLi`*eLgScFj`zhFp¢aUiD4kiDsS4btb£cFs`kliDb6eL}n*cL^?bFcFaUtiSyFs` FiSbFyFbnYf_XrL^xtlO_6 eLcFtt_F_n{m§4bLi`eLkltjSaFiS~_LeLkl#s`jSu~iDcFt jSs`b6iSrF_.hFsF4| i~rLrLtyFeLUb >hFrLj`yFeFUhFt^FsSY§kh X/jSiSpsS^`klbLU4sScLkl^xs`hjSbFcFtvtpjS^`c6jStbL{klcFbLt4iDi.kls`6g?i`eFrLhbFFb6i` rLbFFi`eLgScFt?4iD4tcFs`*yL^SklFyFtlrLtleLtcF/bFpiSs`yFiSFcFiLY4Xa6eL]\FtcFbFt?jScFt{cFtiFi` eFh keLta6^qFiSjSiSyL^\FbFjD^`tsZaU^xOrL_ bFpcFb6¬}SkliSplrK^`jD^xhOkl6ff^`y6cF_ cL^`jStlrLtcFcF_ rLbFFi`eLgScF_24iD4tcFs~}SaUiSs`iSyF_ FijSa6eL]\FtcFbFb s`iSiFi`eFh cL^~\FbFcL^`ts?u~yL^Skk^x kljD^`s`gDkhn|~}Kj>\FtjOUeLiSjS2FtyFt4tcFcF ϑ, ϕ a6^`a -ôx÷ ñ÷oö/ø ÷oò 7ö òBñ xòó÷mø XòÀôòlYf[]yL^`jScFtcFb6t s`iSi FyFiS Ftkk^Fi`eLU\L^`tsSkh£bFp iSS\FcFiSi
Ä6
5 $
"
å
*4
0
Ô/Ax &
*ÿ$¥ ò
â
"⩧5
('
rLcLbL^`s~}¬qjSUp\FbFtiSyFcFaFcFbFiSjD^`i cFbFUtyL^`jSyLcF^xtrLc6bLb6^xhneL}
gSpcF^`iSF_bLkaU^`iScFiScFySiSrLbFi cLj^`s`k!qbtyF\6bFeL\FttcLklaU^ iSk_WyLkl^xbLrLklbLs`^xt4eLgSt?cFaDiSiS_iSyDFrLyFb6i` bFpjSirLcFiS_nm δ(cos ϑ − 1) ∂p(ϑ, ϕ, t) = K4ϑ,ϕ p(ϑ, ϕ, t) + δ(t), ∂t 2π
rLt p(ϑ, ϕ, t) dZ6eLiSs`cFiDkls`gZjStyFi~hFs`cFiDkls`bFi`eLi~tcFb6hs`iS\FaFbcL^]kqtyFtÖjZ4iD4tcFs jSyFt4tcFb t } K daDiSqbF FbFtcFs rLbLqUpbFb.jFyFiDkls`yL^`cLkls`jSt cL^`FyL^`j`eLtcFbF_n}8^ 4 UyL^`jScFtiScFSb6iSph>cLcL^~^\L^`tsWU eLiSjSU \L^Skls`g£b bFeKcF^`s`6teK^SyFkbFbLyF^``cLh ^FYF[Zi 4kqcFi~tOyFtS^x}6h¢Fi`iSeLSUt\L\L^`^St¢kls`b¢m s`iSi ϑ,ϕ
f0 cos ϑ sin ϑdϑdϕ
df (t) = −2Kf (t) + f0 δ(t). dt
Ös`iOUyLq^`s`jSi¢cFtcFbFttq4jStli~rL tsOcFia?bFrLpt4D^`ttcFjDbFkls`aUgiD4j ps`^`iSaU_iScF4 i~yFrLtltleKeL^`bna6}k^`\F Fs`bFiSSbnY Fi`eLU\FbFs`gaU^~\Ftl cFkls`tjScFt FcFbLcF^xieLgSrLcFyFiSUiiS, t.FiSjStlrLtcFbFt.FyFiS Ftkk^Fmzkls`tFtcFcFiStWUSjD^`cFbFt jD4tkls`iHa6klFi` ]DklDOrK^xh2FyFbF\FbFcFiSseLb6\Fb6h FyFiS Ftkk^yFtleK^`aUk^` FbFb>js`jStyDrL2s`tleK^x iScFsiDkls`bFiSs`tliLeL}4b\FrLs`bFi FcLi`eL^``gSeLcFrK^`4tsSiDk¨4h£tcFj s`iS^`j>ppl^xrL¬t[} klðg>DiScFt{cFttOy4kiSFyLU^`s jStlklrF\FeLb6bFsxjS^`is`gDpk^Sh4cFtb.\L^`kltjSs~iS}4S\Fis`rFi cFz4bn}DcFb2cFtp^`jSbLklbL4z4bOrLyFU]iSsrLyFU^FY Ökls`tkls`jStcFcFiFyFtlrLFi`eLi bFs`gL}D\Fs`ij rLcFtbFUsSFk¨h£iSySjSh6rLiS \FbUtrKcF^`cFs`iDgLW}
sSFjSiStla6yD^vrLiDjyFtls`ptl~eLeLtqgxiSs~cF^`bWs`t2uxs`8tt6{eL^`iS]jSiSsi rLyFrLUjS]b6rLyFtUcFb6ThW|~}6iD\Fkls`jSiOiSSbLiOFrKyF^`b6tsSDki`h rK4^`tcFkls`cFiviSrFieFcFhWiDs~kl^`bFaUs`iStleFivhnY[FðiSjSbFiSFyFi`iSeLs~g^F}na6aD^`iSas`iSSyF/6_WiS6L4^xrKt^`cFtgSs{jbFsveLFiSjSiSUs`{tcFaF FHbL^x¤ eLjgSFc6yF6iD/kls`yLcF^`tcFyFkls`bFjS t cL^`FyL^`j`eLtcFbF_K¦qbWFyFtSjD^`tsvs~^ScFtaUiSs`iSyFiSt2keLU\L^`_FcFiSt2jSyFt8h }8FiDk eLt2\Ftl cLi^`FklyLiS^`jSj`tyFeL{tcF^`bFttSsYK4XtcFyFiSi~jShFts`c6cFcFiDkls`_>gLkl}La6F^t\FyFiSjSaiScL¤ F^~\LiSjS^xeLiSyFgScFiSsDi2¦§kljiDklrLyFyFtlUrLiSiSs`t]iS`\FeLtcFbFcLpaU^xiSh t]cLTa?^ Fu~yFFtli` eLcFZtkl4tS| kqtyF}6yL^Skls`ta6^`tlsDk¨h Fi kqtyFtqj kliSiSs`jStsSkls`jSbFb p^`aDiScFiD£klU~rLbLqUpbFb û
(15.3.1)
=
Q
α t p(ϑ, ϕ, t)
= K4ϑ,ϕ p(ϑ, ϕ, t) +
δ(cos ϑ − 1) t−α , 2π Γ (1 − α)
b jOFyFtlrLtleLt yL^`jScFiD4tyFcFiOyL^SklFyFtrLtleFhFtsSkh FiOcFt_nYüqyFb>s`iDklyFtlrLcFtt pcL^\FtcFbFt z FtyF→iStaF∞ FbFb?rLbFFi`eLgScFiSi 4iD4tc6sx^O~rLiSj`eFts`jSiSyDhFtsUyL^`jScFtcFbF 0
α t f (t)
= −2Kf (t) + f0
t−α , Γ(1 − α)
iSSiSS^x]t4¤ ~6Y FY ~¦§cL^ klUrLbLqUpbFiScFcF_?FyFiS Ftkk`Y 0
z {/ë
4
,~|æ,~
æH
oqpjStkls`cFiL}
\Fs`ijkeLU\L^`t USjD^`tsva6klFiSc6tcF Fb6 = f (t) ^xeLgScFi>cFtp^`jSbLklbL4i iSsvkljSiSt_ FyFtlαrLz=kls`1,iSyFbFfb (t)f (t), }ncFivjvkeLU\L^`t α < 1 t<0 α
1
1
{f6
"+>*ÿ
('&'
¨& R&ã"5ãx
Ftkk^FY7UðSyFUjD^`bLts 4b Fi keLkliSs`jDt^SF4tcFbncF}`iD44vcLp^`^``aUeLiScFrK ^`j?tp^`cFjStbLaDkliSbLs`4iSyFiDkls`_Obs`iSbFs?³Fó yF!tlÿ rLxzù kls`LiSYyFûbFbqFtyFaFi`s L^S8hFs`b Se2iSsS4t\Ftc cFtklaUi`eLgSa6bL4b2^`jSs`iSyL^S4bOs`tiSyFts`bF\FtklaFb6 b la6klFtyFbL4tc6 sxuK^x eLgScFyL^`SiSs~}i~rLbFcbFpaUiSs`Ú |iSÔ yFqYTrKX^xeOkls~kl^`jSsSiSgSt_tkls~s`^`iSs`_vgSFtyFjSbFjSyLi~^`rLpbFbFsSs`k¨tlheLgSiScFFiSbLtÖk^`cLcF^`bFptjD^`kcFeLbFtlt rLU]tiOa6klFtlyFGbLF 4tcFsx^FI Y {t_ 4t©yFyFtOb bUÑrL4tcFbFs`cFbFU\FscFrLi >4aDiDiS4c6trLcFts~cL^Fk}6^`aUs`iSiS yLrK^^Sb62eLyLb?^`cLp^`iDaU4iSaFyFcFiS~s`eLaDbni}UpF^Si~4rKaF^xeLcFb?Us`cL<^FaUiO^xO4rLtcFg`_ cLbFp^`aUcFiLb6}4<FyFkltla6rL^z\FiSkls`aiSyFcLbF^`FbHyDh6s`b6tcFb6aUh iSc6UrLtcL=k^`s`100 iSyFiSj XSbeLcLb^~\LyL^x^`eLplbeLbFbF\FpcF4tYÖyFtqcFiSbFc6trLs`tlcLiSa6k^`^Fs`YiSzyrF cL^xDirLb6eKkhHFi~r
fα (t)
S&XSå Z R"S .X-X
Z
0
Á
_
E
3
1
3
Ç '
*
E(t) =
0, E0 , 0,
t < −θ; −θ 6 t < 0; t ≥ 0.
FbF nXyFbFcLyL^ ^xOj^xqhHiSyFyLt4{t tvcFbFbFts`s~U^`yLl^` jScFttcFZb6heLtkyL^>s`bWiS_FyFFtlyLrK^`kljSs~^`iSjS_HbF\Ljv^SFkliDs`gSkeL tlrL\FcFt]yFt*pjvqjSUb6cFrLa6t kls`tFtcFcFiSiOyDh6rK^F}6Fi`eLU\FbL qC
BG
u(t) = E0
Z
· µ ¶α ¸ j ∞ X (t − t0 )α−1 t − t0 − dt0 , τ −θ j=0 Γ(αj + α) 0
Ö½×ÙØoÚÜÛUÝQÞßáàYâAßÙãÚ.äQÝà[åVæÙçßáèßÙÚ.ãDé"ßVâ àQãêVë¬ì í
t ≥ 0.
Ô/Ax &
U oqkljSpiS4_LtklcFs`bLjSiDHWFliS^SySfh6frLiS^xa qbFUcFcFs`aFt FbFyFbnbFyF}6iSFjDi`^`eLcFUb6\FhvbLbm kl6f4bFyFiSjD^`cFb6hvbn}KjSiDklFi`eLgSpi`jD^xjS{bLklg *ÿ$¥ ò
"⩧5
â
α
u(t) = τ E0
∞ X
('
(−1)j Γ(αj + α + 1)
qtyFt_6rFhOa kl6f4bFyFiSjD^`cFbFHFi j=0
ü
−
"µ
t+θ τ
k = j +1
∞ X (−1)k (t/τ )αk
Γ(αk + 1)
¶αj+α
µ ¶αj+α # t − . τ
bOFyFbFc6hFjjSiqjScFbLf^`cFbFtzkliSiSs`cFiS{tcFbFt
= 1 − Eα (−(t/τ )α ),
FyFb6Si~rLbL£avkeLtlrLU]t4?jSyF^xtcFbFrFeFh iSs`cFiS{tcFb6h k=1
u(t)/u(0) =
(15.4.1)
u(t)/u(0), t > 0
Eα (−tα /τ α ) − Eα [−(t + θ)α /τ α ] . 1 − Eα [−θα /τ α ]
m
(15.4.2)
^xOrLiD4 pcL^\FtcFbFL^`yL^S4ts`yL^ plrLtklg>kliSiSs`jStsSkls`jSSts?klt4t_Lkls`jSi>a6yFbFjS¬} iSs`cFiDkhFb6UklkiShqiSs`ajSyLt^`sSplkleLs`jSbFS\FtcFszi>rLcLjSyF^taF4yFtαbFcLjD^S^x?hnp}6^`cFyDth6prL^`aFjSb bLθk¨hF}bs`^xi`h?eLiSgSs aDizY5irLðcFtiD_L4kls`]jSpbFcLs`^~tl\FeLtgScFcFbFiL m
α (α = 1)
θ
|u(t)/u(0)|α=1 =
E1 (−t/θ) − E1 [−(t + θ)/τ ] = 1 − E1 (−θ/τ )
1 − exp(−θ/τ ) exp(−t/τ ) = exp(−t/τ ), 1 − exp(−θ/τ )
=
t ≥ 0.
X iS`eK^Skls`b¡Si`eLgS{b6jSyFt4tc yL^`pcFiDkls`g
'
'
u(t) ∼ θE0 t
α−1
∞ X
(−1)j Γ(αj + α)
µ ¶αj t = θE0 tα−1 Eα,α [−(t/τ )α ], τ
t À 0.
qo pjStkls`Y¬cFiLX}Lk\FeLs`Ui?\L^`sxt^?tqkeLUb cFaF Fb6hbL}K4jSts`tiSs>yFiSkl_s`t\6FeLttcFccFiSj>_quiS6yLjS4iDkl~sFeL|Ft>m ¤ f~6(t)Y LY ~∝¦kltsx^`cFiSjS}KbFFsSyFkbh t→∞ FyFtcFtSyFtl bL4i f^xeLzrFteF¿h tθÀ τ m f (t) ∝ t (τ ¿ t ¿ θ) Y yL^`pyDFh6yFrLtlaFrKbnkl}~s~F^`iDj`kleLs`tyFcFiStcFcLcF^ tý§bLkÖk`bLYÖklF~6i`eLY SgSY¬pXiSjDyF^`tcF4bFttcL ^>jSp^`yDyLh6^xrLaFtlb cFb6h¤ ~q6Y yFLbFY ~jS¦rFteFph ^`ySαh6rL=aFb60.998 ¤ jStyD6c6h6h eLbFcFb6hK¦x} ´UY F6Y b 6Y ¤¥c6b6 c6h6h?eLbFcFb6hK¦#Y ðeLbFs`tleLgScFiSt θ = 10 jSFyFiDtkeL8thcFcLt^`aUFiSySs`h6iSyFtiScFi bFt4kliDL4^xtrKcF^`s~t^vsqkl4iS! eKcL^S^`kl`cFeLi]rKa6kl^`FtiScFyLtcF^S FklbL^xteL6gSeLcFtiDcF4bFtOpaF^`yFaUbFiSjScFe ðrFteFDh ^xhnyL}~^`cFpli eLbF\FcFWpcL^~\6tcFbF_ θ bFtyFtlDi~rjcFtlrLtD^`tjDklaFbF_kls`tFtcFcFiS_p^`aDiScnIY ûÖs`ijS eFhUrLbFs sx^`an}¬aU^`a S~rLs`i>L^S8hFs`g jSiSpjSyL^`^`tsSkhj klbLkls`t4FiDk eLtOcFtaUiSs`iSyFiSi j=0
α
α
−α
Q
'
Q !
Q
Q
'
−α−1
Dª
{f6
"+>*ÿ
('
¨& R&ã"5ãx
§bLk`YK~6Y Sm R.!0*0-W+%#$!.B++;&X?+)%+Y;&Xb2.!)/"/,#?%+ij)#.!b*)/"/,+?%e,+9#"d)#.!b-9+%+W++;Ifeb-5.*W#&-+%+H ñ bFcFs`tyFjD^xeK^jSyFt4tcFbnY6©
^`aUiSt]FiSjStlrLtcFbFt]SeLicL^`pjD^`cFi Xò ùJ÷*ÿ öo÷oø!øBù oñ÷oö cFtòBpñ ^`jSßbLkló bL!4ÿ ixiSù s θ mFLXY ^S8üqhFyFs`b g αiSsSkl=UsS1kls`yFjStl`eKts~^`Y aUk^` Fb6h
θ
-K 0
"
'(
−6
5
+
-
Ô/Ax &
*ÿ$¥ ò
â
"⩧5
('5´
§bLk`Yn~6Y 6m 3?o0-N#&*)%#Q&-#$.B9+:+;&V?+)%+Y;&)#.!b*)/"/,#?%J^!EQ[.!g#!O2?/!+,#&-#02.!$7)#.`ñ ý
§QR%bLk`Ø Y6òBÚR~6,+Y 9#F"em {^!E)#Q[.BY.!#&g-#+%!#O2&eW+?/%#!0-+,9#+&-&-+#0+;2I.!f $7)+)#&*. b-E!9+:!$.!$7!Yd0Ø¥Á ôÚx0'*?/0-N#&*)%#Qñ/ &-#$.!)#.B.!9+Q:&*+;$7) QR%Y,5;.B+^)#+;.BIi )#.BY+;Q¬\/Á 11S`ñ FI§('*?/0-N#!#&-+K+%5.B9+:5.!"aXE/#?K+%#"ï*M§X)#.!b-+%+î K5.IQ&*g,+E $7&*)+&*$%+W#&*0*?/!H ?+)%+Y7!HJ%A'*?/0-N#!#&-+K+%5.B9+:#!HAaXE/#?K+%#&-HKñ klaUi`izyFt{tcFb6hba6klFtyFbL4tcFs~^xeLgScFqrK^`cFcF¬}lDiSshcL^``eLrK^`tsSk¨hcFtaUiSs`iSyFiSt yL^`pleLbF\FbFt2cF^vSi`eLgS{b6jSyFt4tcL^x¬[Y üqyFbWSi`eLgS{b6 θ }nrFeFhWFyFiS Ftkk^ p^`yDh6rLaFb6 ý
θ = 300
τ ≈ 0, 4
−1
α
D
{f6
"+>*ÿ
('
¨& R&ã"5ãx
§bLk`Yf~6Y Lm ¨ñ yL^`pyDh6rFaFbHSeHsStliSyFts`bF\FtklaFbFyFtlrKklaU^`p^`cFtyFtlDi~rHiSs.irLcFiSi.USjD^`]ti klkls`s`ttFFttcFcFcFcFiSiSi i?pp^`^`aUaUiSiScLcL^^?(tSeLi>) avrLtrL_LyFkls`UjSiDbF4s`tl eL(tgScFiviSS)cLY¬^`©
yFD^`aUiSttcFi bFpj 4tiScFFtcFsxbF^xtO 6kOiSa6l^`eLptl^`aFs`s`tlyFeFi`h eLbFs`bF\FtklaFbLaUiSc6rFtcLk^`s`iSyFiD¢«¤ ýÖbFk`Y
~6Y U¦Y peLgxsx^`XBs`iSjLp^`Y¬a6©neLt]yL4\FtbFcFc
−α
−α−1
'
*
ø0ùAò/xúñõ?Èö*(5* ÈÄ57ö4ÈÇ÷*ÿó÷7ñxòBñù
FtyFjD^xhqbFpÖaDiSs`iSyFqcFtÖp^`jSbLklbFsiSsFyFtlrLzkls`iSyFbFbn}~^jSs`iSyL^xhZd]p^`jSbLklbFs~Yx]St§iScFb USjD^`]sklijSyFt4tcFt}DcFiFtyFjSiSt¤ aUklFiScFtcF FbL^xeLgScFiSt~¦fkeK^`l^`t8iStS}SFiScL^~\F^xeL F4yFcFtiScFtiqSSyFi`tleL gSbL{4titfjSs`^xiSeLyFiSiStFiLi}xUklSyL^`jSjDcF^`ttcFs]bFS<zklks`FyFttyFtSjSYSzXyF}Stklpsx^`eLcFgxiSs~jS^`bFs`tSsS}`k¨hOjSs`rLiSiDyF4iSb6tcFkbFeKyF^`Ul^`]t4bLiStS } F\FyFbLb4zSi`eLY gS{b6?jSyFt4tcL^x¬}L rLtyL^Sklt6eLtcFbFtaFyFbFjSvklsx^`cFiSjSb6sDk¨h hLklcFi2yL^`pleLb6 u(t)/u(0) = e−t/τ + ηα (t),
&
x
ì|ð.E
z {
76U
}| î ¶
EïBÂE|~
eLtlrL`hyL^`SiSs`t ´ }yL^Skk4iSs`yFbL*rLyFUiS_sSb6¡yFtleK^`aUk^` FbFbd<qiSeK^x jSb6rKkliScL^FY qs`iSSFtyFt_Fs`b2a2iSFbLk^`cFbF<s`iSis`bFL^F}ý4Y b6f^`s`~eFeLbFc FyFtlrF ð
@
&=
*ÿ$¥ ÿ
Xz
21Âf
÷x&1 d1õ
¬1#5x
('+Ñ
klsx^`j`eFhFtlsOiSS\FcFiStZUyL^`jScFtcFbFtqa6klFiScFtcF 6bL^xeLgScFiS_>yFtleK^`a6k^` FbFb>jOjSb6rLt exp(−Ω0 t)
exp(Ω0 t)f (t) = 0,
(15.5.1)
rLt dFiDkls`ihFcFcL^xhn}§iSFbLkljD^`]^xh£jSp^`bL4i~rLtl_Lkls`jSbFtf^`aFyFiDklaDiSFbF\FtklaUiSi rLbFFi`ΩeFhHk?s`tyL4iDklsx^`s`iD YfX/\L^Skls`cFiDkls`bUyL^`jScFtcFbF#¤ ~6Y 6Y ~¦FirL\FbFc6hFtsSkh SqUs`cFg?aF FiSb6Fh bLkf^`(t)cL^24rFi~eFrLhtleLklgSbL!kls`t eLU}SyFiStlaDeKiS^`_va6Fk^`iS 6s`b6tcFh¢ FaDbLiS^xs`eLiSgSyFcFiS_vhLcL4^!4kbFa6rLyFjSiS6U8yFhiSjSFcFi`t eLi4i~tcFtb6s hLeK4^`aUb k^`yL F^`bFjSbOcFiScLjS^~t\FklbFb6cLh£^`t¤ yFsStlk¨eKhO^`Fa6iDkk^`eLs`tiSy s`iSiLyF}`tlaUeL^`b6a U^Dk¦ FiDx4 SiSYTgSX¡jScFs`iSt{_.cF4tlirLitl6eLi`b eFFh yFkliSiS FpltrKk^`ktsSyFkth yL^`pcFbF L^ jcFtyFbFb.rFeFhWs`b6.rLjSD Fi`eLitcFbF_WyL^`jScFiSjStklb6hnYnoqpjStkls`cFiL}n\Fs`i s`4yFi~bFrFaDtliSeLj g b.yFtlkleKU^`a6kt^`kls`s`iSjSyLU]^ s?yLyF^`tlSeLiSb6s`D^ }¬kl^`FjSyLs`^`iSjSyFtlBrFeLaDbFiSjDs`^2iSyFrFeFh {FyFbFtlyFrLiSFaDyFiSbFcFi>bLa6feK^x^SeLkb.k^2FrLiSbFFleLs`taFa6b 4i~rFbLqbF FbFyFiSjD^`s`gs`24irLtleLgL}DbLklFi`eLgSp`h24irLtleLb?FyF aDiSjSiSiFtyFtcFiDk^p^x yDiSFh6rLbL^Zk^`bOs`gvbFiSc6cFtcFiSa6_klFFiSyFcFiStjScFi~ FrLbLbL^x4eLiDgSklcFs`Ub /ÑFyF}UtleK ^`aU}xks~^`^` FanbF}`\Fs`YfiSzS£rLcLk^`taDtivFjviD4aUiSiScFtgS\FcFiD4i kl\FcFtiqs`St2jDeLklit sxk^`^` FaFbFbFbtF«¤ ýÖiSF(X ýs`¦aF}UbkliSD eK^`p^SbFklyFcFUi]aDsSiSk¨s`hviSyFcLiS^O_ aUcFiStlcFrL FttDF^` FtbFjDklbvaFyLbF^S_OklpF^`yFaDtliSrLc tleLyFttlcFeKcF^`aUk>^`jS FyFbFtb 4tcvyFFtleKyF^`tlrFa6 klsx^`j`eFhFtlsDk¨h>jOjSb6rLtklUFtlyFFiSpbF FbFb>rLtD^`tjDklaFb6?kZ6eLiSs`cFiDkls`gSyL^SklFyFftl(t)rLtleLtcFb6h jSyFt4tc p(τ )m 0
t
q
Á+
¬
0
+
f (t) =
Z∞
e−t/τ p(τ )dτ.
(15.5.2)
£X klsx^`s`gSt ´ T4irLtleLgyFtleK^`aUk^`s`iSyL^ yFtleLb6D^4irLbLqbF FbFyFStsSkh bLk¨Di~rFhObFprFyFD b6>kliSiSSyL^xtcFbF_nY Y ^OÖb keLb f (t)dyFt{tcFbFt G(t) = exp(Ω t)f (t) UyL^`jScFtýfcF^Sb6kh.k4¤ ~iS6s`YyF6bLY ~ ¦}Uqs`i UcFs`aFiS FrKbF^ G(t) d U a S i L c l k ~ s ` ^ F c x s = f (0) 0
¬+
³
0
t G(t)
= 0.
(15.5.3)
üqyFtlrLFi`eLi~ bL¢s`tFtyFgL}
\Fs`ijvcFtaUiSs`iSyFt24iD4tcFs`jSyFt4tcFbklbLkls`tf^ Lc4^xtDcFib rLbFsSkhOjkliDkl}s`i~^WhFcFcFbFt bOyL^`jScFbiSjSjDt4klb6thnkls`Y7iðyFcFUtlyLbL^`jS4cFb2iSkjSeLtiSklcFjDiS^S_4bna6}x^`jyFs`s`bFb2cF 4iDkl4UtcFs`tkHsSjSjS`yFttls yLZ^`eLjSUcFaFiSs`jSG(t) tD^`kl FcFbFi`b tq=kleLiD0iSkla6s`^xieLhFgScFcFbFtSfOY>(0)üqFyFi`eLbFt\F_?bFcFjiSrL_ bFls`eLiStaFiOs`yF4bFiSaUtSU}6sOFSyFbFs`jSgLirF}6hFcL^`FbFyFtZbLa?4tynaF}FyLs`^`tc66bFeLyFiSiSjSjSaUtt jScFt{cFtiFi`eFhnY qyFiD4tzs`iSiL}SFyFtlrLFi`eLi~ bL}S\Fs`i4iD4tcFs`jSyFt4tcFb2aUiSrK^ = f (0) yLyDhn^Skl}`FjyF4tlrLiD4tleLttcFcFs`£FjSiyFtk4^S4tcFiSbnF}SiklrLiSiSjSSLcF^xiDrK4^` ]¤¥qbFyLt^`aFksxs`^xiSeL\FgSa6cF^SiD44bOFcF¦8t4aUc6iSi~s`iSyFtiSkls`iqjSSkY`^SoqG(t) 4cLiS^~F\Fi~trLiSSiScFjSi`i` i 4cFi~tkls`jD^F} G(t) = f (0)}K^j24iD4tcFs`}KkliSjSL^xrK^`]bFtkqFSkls`iSsx^S4bvlsSiSli 4cFitkls`jD^F} G(t) = 0Y©niS rK^F}ÖbFcFs`tyFbFyFxh¢qUcFaF FbF G(t) biDklUtkls`j`eFh6h
D` + {f6 R 5 x DkltyFkltls`rLjDc6^Ft}FcF4bFit> FcFi i yLF^`i`pleLeLUbF\F\6bFcFs`zg B~yF t^xeLb6p^` Fb6hL¡FiDkls`yFiStcFb6h£k^S4iSFi~rLiSScFiSli4cFi`
" >*ÿ
¨& &ã"
ã
*
rLtklg A d.FiDkls`i~hFcFcL^xhn}4iSFyFtlrLG(t) tleFhFt=f^xAhkl s`yFUaF[fs`(0)]. UyFiS_qyL^`aFs~^xeLgScFiSi (15.5.4) 4 cFi~tl 0
−1 t
−β t
0
lk s`jD^F}UcL^aUiSs`iSyFiDWyL^SklFyFtlrLtleLtcL^ G(t)} β ∈ (0, 1] dOtiOqyL^`aFs~^xeLgScL^xh2yL^`p4ty6 cFiDkls`gLY qtyFtcF FobFklyFFiSi`jDeL^`gScFpb6`hnh£}UkljSjSiSyL_L^xkls`jDt^cFbFiSt Ft¤ yL~6^`s`Y 6iSY yF~iS¦Öj4i~rL yFiScFSiOcFFiStyFitbFFcFbLs`kt^`s`yFgObFj yFiSjSjDb6^`rLcFt b6h£b£rLbLZ
oqcL^~\FtiSjSiSyDhn}ÖtkeLb4 yF^Skkf^` s`yF[G(t)] bFjD^`t/=yF0.tleK^`aUk^` FbF}FyFbaDiSs`iSyFiS_¢(15.5.5) jSp^`b6 β t
0
4i~rLt_Fkls`jSbFtvk?jScFt{cFbL¡Fi`eLt¡cFiDklbFsFyFtyFjSbLkls`_Hk^S4iSFi~rFiSScF_WU^`yL^`a6 `s tyn}Ls`i2s`iS rK^OUyL^`jScFtcFbFt2¤ ~6Y 6Y D¦§rFeFhqUcFaF FbFb G(t) p^S4tc6hFtsSkh UyL^`jScFtcFb6 t¤ ~6Y 6Y S¦Y üqyFbFcFbLf^xhjSivjScFbLf^`cFbFt }8UyL^`jScFtcFbFt rFeFhqUcFaF FbFbyFtleK^`a6k^` FbFb G(t) 4 i F c i p ` ^ F L b l k ` ^ S s g O j S j 6 b L r t f (t)
b6eLbvkqbLkFi`eLgSpiSjD^`cFbFtWiSFtyL^`s`iSyFcF iSiO[exp(Ω kliSiSs`cFiSt)f{t(t)]cFb6h = ~0 exp(−Ω0 t)
exp(−Ωu
0
1−ε )0 t
α t
0
β t
0
exp(Ωu
0
1−ε ) t
(15.5.6)
Ä *
= (0
ε t
+ Ωε)α/ε ,
FyFb6rK^`s`g t42Si`eLttqcL^`eFh6rLcFU0B<qεiS6yL41,?qαiS6eK^ε,dAðjSb6rKkliScL^Fm eLtlrLU]bFtjSjSirLk¨(rL tleK^`+cFΩjO) aDfiS(t)cF Ft= F0.bFs`bFyFSt4iS_vyL^`SiSs`Y (15.5.7) yFz.FyF~bL[¦ 4üqtyFcFiSbL Fft^kkÖ4qi~rLiStleKeFg^x yFðtleLj`^`b6a6rKkkl^`iSs`cLiS^yL^4i~yFttls]eLbLb6U4^ts`jgqkl4iSt\Fklts`sxiZ^`cFjqbFklb2bFklkzs`cFttlfrL^xt¬D}~^`atljDaUkliSaUs`iSi`_ yFa6^xtleK¬^`}DaUaFkyF^`bL FklbFsxt^x_neFY§eK^xX?iSpk]4bFi~iS cFcFcFiLiS_?}8sxF^`yFaFiSbFjSt i~rLDbLkeL4iSiDjSklb6s`hgSjS}U^Fs~i`^`eLa6c6hF]tqsSjk hb6j.rLaFkltb6?cFtb?s`6iSleKeL^StklaFs`s`bFyF\Fb6tl klaFb6>aFy6bLklsx^xeFeK^x¬Y S¦ UcFaF Fb6h yFtleK^`aUk^` FbFb>sx^`aFb6 klbLkls`t£~rLiSj`eLts`jSiSyShFtsUyL^`jScFtcFbF 0
t
0
β
¬+
¸+
b bL4ttsOjSb6r
[
t
β
+ Ω0 ] f (t) = 0, tβ−1 −Ω0 t e . Γ(β)
cL^aUiSs`DiS[¦ yFüiDB^`yLkl^Ss~4^`tsSs`bFy kls`βbF\Fu~bLtkl4aFtbHtsyLk^S4klFzyFk tle rLqtleLyLt^`cFaFsx^x4eLgSiDcF4iSt_cFs`yL^`pjS4yFttyF4cFtiDcFklbns`b}fiS4s`cFjSi~tsSklts`kljSs`tjDc6^F } cFt>p^jSp^`bL4i~rFt_Lkls`jSbFt 4tlOrLWleLt4tcFsx^`yFcFiS_kliDklsx^`j`eFhF]t_£qbFpbF\FtklaUiS_ klbLkls`t4b jScFt{cFbL£Fi`eLt|xY
f (t) = C
*ÿ$¥
21. G
÷x&15"#$ # §ã !"â
&
ì|ð.E
z {
e
D6
76K
ï¶ç
ì Øæ¯
«i`eLtt>iSS^xh^`FFyFiSa6klbLf^` Fb6hn}4i6jD^`s`jD^`]^xhWjDklt>s`yFbyL^Skk4iSs`yFtc6 cF?jS{tZrK^`tsSkh?rLjSD6L^`yL^S4ts`yFbF\FtklaUiS_ qiSyL4eLiS_ 6^`jSyFb6eFhFa6^x qt^S4b C
f˜αβ (iω) =
1 , [1 + (iωτ )α ]β
0 < α < 1,
0 < β < 1.
(15.6.1)
4t{tcFbFtkiSiSsSjStlsDksSjSU]tlirLyFiSScFi` rLbLqtyFtcF FbL^xeLgSc6iSiUyL^`jScFtcFb6h ý
[1 + (τ
t)
α β
] f (t) = δ(t),
iDklcFiSjD^`cFcFiStqcF^ yL^`pleLi~tcFb6b rLyFiSScFiS_vkls`tFtcFbiSFtyL^`s`iSyFcFiS_vkl6f4j2StklaUi` cFt\FcF_ ySh6r qgS]s`iScL^ 0
Â
[1 + (τ
0
t)
α β
] =
∞ µ ¶ X β
Fi`eLU\FtcFiOjOyL^`SiSs`t ¬b bL4ttsOjSb6r
m
n
n=0
-
(τ0
t)
α(β−n)
,
µ ¶α(n+β) ∞ 1 X (−1)n Γ(n + β) t f (t) = − . Γ(β) n=0 n!Γ(α(n + β)) τ
üqiDklaUi`eFgSaF2L^`yL^S4ts`y }La6^`av4jSb6rLtleLbvj24irLtleLbqiS~eK^x ZiSeK^6}Fklj`hFp^`cvkli lk s`tFtcFcFzyL^SklFyFtlrLteLtαcFbFtjSyFt4tcFb rLtyD^`cFb6h jOeLiSjSU{aDtS}F^OL^`yL^S4ts`y β U^`yL^`aFs`ty6bFpiSjD^xe.qyL^`aFsx^xeLgScFiStyL^SklFyFtlrLtleLtcFbFt 4iD4tcFs`iSjvyFtleK^`aUk^` FbFb.jv4i` rLtleLb qiS~eK^xðjSb6rKkli`cL^F}Ds`i tkls`tkls`jStcFcFiOFyFtlrL6i`eLi~ bFs`gL}6\Fs`i yL^Skkf^`s`yFbFjD^`tl 4iD42FyFiS Ftkkl F^`jSyFbUeFhFa6^x qtl^`4b?FyFbLklUb iSStqs`b iDkliSStcFcFiDkls`bnY piSjD^`c?jOoqcFyLiS^`_SiSFs`i~t rFD irOY aO4i~rLtleLbFyFiSjD^`c6bFHFyFiS Ftkk^ 6^`jSyFb6eFhFa6^x qt^S4bbLklFi`eLg` C
C
- '(
;
z {
ÂÛ # X~
~ï,E³¶·~¹ E¶çEð
ç|~
l|~
l,
qts`yFrLcFi!jSb6rLts`gL}\Fs`ijDkt¢FtyFt\FbLkeLtc6cFtjS{t¢4i~rLtleFbcFtlrFtD^x ðt jDklaDiSiScF_{tlrLyLbL^Fm qUpbFb rLiSj`eLts`jSiSyDhF]saFyFbFs`tyFb6hL UcFbFjStyLk^xeLgScFiSiiSs`a6eLbFaU^
f (t) = A[(t/τ )µ+1 + (t/τ )ν ]−1 ∼ ½ A(t/τ )−µ−1 , t À τ, 0 6 µ 6 1; ∼ A(t/τ )−ν , t ¿ τ, 0 6 ν 6 1
DS
{f6
"+>*ÿ
χ e(ω) ∼
½
B(ωτ )µ , B(ωτ )ν−1 ,
¨& R&ã"5ãx
ωτ ¿ 1, ωτ À 1.
F bFb4cFu~iS[]cFb6bFjSt¤¥^`yLjSks`^xiSeLy gScFiD~kl s`gLkl|\FbFjsxrK^`^`ts cFcFdiDjDklaDtliSLcF¦qs`fta6^`kls`s`ttyFbLiS^xpeLcLiS^j\L^`4ts~i}6\Fts`sviOSs`bFs` gyFitlUeK^`^`yLaU^`ka6^x s`tyFbFpiSjD^`c p^xrK^`cFbFt.i~rLcFiS_ s`iS\FaFb?j6eLiDklaUiDkls`b Yðt_Lkls`jSbFs`tleLgScFiL}SFyFiSjStl rLyFtbFcFpcF^` FbF_vb2j Fi`ÑFeF}nhF~yF cF8^` cL^xb2eLcFbFtpqFi`a6eFklhFFyFtcFyFbL4trLcFbFs~l^xeLeLtgSaFcFs`yF>bFaUrKiS^`α,jLcF}UcFβf^`>cFFti s`bFy6aUtliSeKj^`a6jk^`f F^`bFb cFbFFs`i`cFeFiDh6 FcFi`eLtS}4FFyFyFiSjSi rLaDcFiSbFjSaUiSiS_£jL}FpyF^SiS4jStlirFrLeLbLt4cFiDcFkliDs`4b£jklFLi`^xeLrLUFyFeLiSZjS4i~bFrLcFcFtbFklaU F^xtncF}
FFbFyFbniS}]jSFi~rFiSjSbLt4yDiD6klcFs`iDb£kls`bFcFiSiSc6_ FyFiSjSi~rLbF4iDkls`b.bFpi`eFhFs`iSyFiSjL}¬aFbFcFts`bFaUt 6bL4bF\FtklaFb6.yFt^`aF FbF_n}84tlD^`cFbF\FtklaUiS_ yFFtlyFeKtlrL^`aUFki`^`eL FibFbOtcFUFbFyFtSYUi` 6eK^Skls`bF\FcFf^`s`tyFbL^xeLiSjqjqiDklcFiSjScFiDFirLs`jStyDOrK^`tsZs`i X{t4DtiSDklDOrK^xeFb qbFpbF\6tklaFbFtFyFtlrFFiDkleLaFb sx^`aDiSiOFiSjStlrLtl cFiOb6a6heKk^SeLklis` tyLcF^x?aUkliSbLyFklyFs`tlteLbFY~yFX iSjDyL^`^`cFScFiSs`t rLbFª DFi`sxeL^zt_ aU^`b>yFs`jSbFcL ^eFh6rLrLiSbFFs i`eLkcFeLttlcLrL^UF]yFtrKbLkl£sx^`iSj`SeLyLt^`cFpbFiDt Y rLbFFi`eLt÷ _n}ÿaDiSs`BiSôxyF÷oø t÷7ó keLþ>tlrLò!øU]÷-sBÿ pB^Bôx÷obFöopñx8òDtmncFbLt4cFtb6thLsS4k¨hbkjSeLcFUt\L{^`_FcFcFtiSiBtO\FFbLi`keFeLh i^`b6aF/s`bFbFjSc6cFrLb6 jSb6rLD^xeLgScFt£klaDiSyFiDkls`bByFtleK^`a6k^` FbFbBiSFyFtlrLtleFhF]sSk¨h!jSp^`bL4i~rLt_Lkls`jSbFt kb6 LyL^S^`pkkl4bFtjSyFcFiSzjLY4bkliDkltlrFhL4bn}¬qiSyL4bFyFU]bL4bjSiSaFyFUcFb6a6eK^Skls`tyF!keLU\L^`_FcF ÷ ÿ6ò /÷oø ÷7ó þ>ò!ø ÷*ÿ Bôx÷oöoñxòSmFihFj`eFhF]sSkha6eK^Skls`tyF}kli~rLtySO^`bFt ksxlj`^`hFaFpb6^`>cF4cFtptiDrLklaUyFiSUFZbFk\FrLtklyFaFUb6?iD.iS`4eKi`^SeLkltsaFh6~ eL¤ÅrLSiDaU4i`teFcLeL^xtLaF¦Ös`aUbFiSjSy6cLyF^xtlh2eLklbFaUyFiSSyFtiDs klkZs`g\FbLyFktleLeKiD^`aUk^`^` FaFbFs`bFb2j`j cFFiSjStlrLrLtbFcFFb6i`hneL}
t_iSs`jZyLrL^xiDO4^xthcFtaU^`bOakliFyFkls`iDiklUs`^SyLkl^`s`cLbFkl\Fs`tjSkltaFcFbLcF4b tS}8kljSsx^`iSa_Lkb£sSjDjS^SyF8tb8bFtcUcFrLcFbFjSt b6rLfD^S^xkleL{gSs~cF^`iSS i aUiSyFyFteFhF FbF_nY jSa6eK^xrLiS÷ jjDÿ kltl BôxrL÷oiDø 4t÷7cFó iSjOþ>klò!bLø kl÷-s`ÿ t4B¢ôx÷ojSöotlñxrLòStmxsiDa>klyFUtlcFrLbFcFjSttcFyLbFkt^xjqeLgSFc6y6iDiS4 F2tkklkls`ttklF6tfcF4cFiDbF4yF2iSjDF^`iScFjSb6tlh rLtcFbF¡yFtleK^`a6k^` FbFb klbLkls`t4jO FtleLiDY jSbLklbFsziSX.s]yLkl^SiS4iSs`aUcF^xiS{aUtiScFcFb6 FhtlF4 FtlbFO6b rLðq6iSeLcFiS{s`cFtiDyLkl^Fs`}gS£s`qttyLaF4s`i`bF jS^`cFaFiDs`klbFs`jSg]bFyFaFiSyLjD^`^`cFcFbFcFyFiS]jDrL^`bFcFFb6i`heLpt^x_ kZcFtyFbFt_ W } bu~aFyFbFs`bF\FtklaDiS_n| 6eLiSs`cFiDkls`gSn ∝ exp{−W/k T } @ *
*
.
"
0
"
0
;4
%!
3:
4
!
0
"
0
74
d
B
nc ∝ kB T /µ2 ,
FrLttF FµbFbnd>}8rLFbFyFFb i`eLgScF_ 4iD4tcFs>aFyL^`cFbFyFSt4iS_ 4i`eLtaFeLY iS eK^SkcFi>s`iS_aUiSc6 \6bLkeLirLb6Fi`eLt_jiSaFyFDtcFbFbaU^xOrLiSivrFbFFi`eFhjSiSpl yL^Sklsx^`ts FiS\Fs`bWn a6¿klFiSncFtcF 6bL^xeLgScFiL}nsx^`a.\Fs`ib6 FiSjStlrLtcFbFtOhFj`eFhFtsSkh.aUi`eFeLta6 s`bFjScFzb£iSFyFtrLtleFhFtsUcFbFjStyLk^xeLgScF_.s`bF£yFtleK^`a6k^` FbFbklbLkls`t4*j FtleLiDY d
c
D üqaFyFyLiS^`s`cFbFbFjSyFiSiSFjDi`^`eLcFibF tcF}KjD_HkeLtlt rKklks`eLjSUbF\Lt^`aU_ iSs`niSyFiSÀi2nrLbFFUi`^`eLyLb^`aFFs`ttyFyFtbFklpsx`^`t]sSs.khbFkljSjScFiSzb6 kliDkltlrLt_WbjStlrLUsklt~hWcFtp^`jSbLklbL4iL}
iSFyFtlrLtleFh6hWs`tBk^S4zrLtD^`tjDklaFbF_Ws`bF yFtleK^`aUk^` FbFbW¤¥kYL©
^``e
Yn~6Y S¦Y ©
^``e
Yn~6Y 6Y+ðtD^`tjDklaU^xh?b>cFtlrLtD^`tjDkla6^xh?yFteK^`a6k^` Fb6h ~ üqyFbFpcL^`aFb ðtD^`tjDklaFbF_?p^`aUiSc []cFbFjStyFk^xeLgScF_>p^`aUiSc ûÖaFi`yLcF^` FcFtbFcFyFs`iSyLjD^`^` FcFbFbFb t nqtaFÀs`bFnjScFiSt cFtnqt¿aFs`nbFjScFiSt Xp^`bL4i~rLt_Fkls`jSbFt keK^`SiSt klb6eLgScFiSt üqiSjStlrFtcFbFt bFc6rLbFjSb6rLD^xeLgScFiSt aDi`eFeLtaFs`bFjScFiSt qtl^S8b>^`j aUFiSyFcFtltrK nk}]sxj<^`j`eLp^`ta6cFeLbF]b \FyLt^ScFklbFFtyFtlrLeKtl^`eLjSt#cFcFFyF?bFjSjSyFtlrLt4t tc yFyFtltleKeK^`^`aUaUkk^`^` F FbFbF b 6o ^`´ jSyFb6eFhFa6^x 1õ7
"
(
d
c
Ä *
d
c
d
c
lC _
fαβ (t)
=
Z∞
e−t/τ pβα (τ )dτ,
0
¯ ¯ ¯ 1 ¯¯ 10sαβ sin(βθ) ¯ β pα (τ ) = ¯ ¯, π ¯ [102sα + 2 · 10sα cos(απ) + 1]β/2 ¯
rLt
} d cL^`bFjStyFi~hFs`cFiStZpcL^~\FtcFbFt τ }L^
s = log(τ /¯ τ ) τ¯
·
¸ sin(απ) θ = arctg . 10sα + cos(απ)
rLbFiSs`FtliDeLklgSsxcF^`j`eF_.tcF^`bFyFtZ64s`b6tcF s?qj>iSyLF4i`eLgSevpkO ¤ jS~yF6tY 4ªFY t~cF¦fcFrKiS^`tli>sx}6FaUi^`rFa Di~4rKcF^2taFyFFtliSrKbLklkls~aF^`j`eFqhFbFtpsSbFk\Fhnt}6klUaUSiStl_ bFcFs`tyFFyFts~^` FbFbvcFtlrLtD^`tjDklaUiS_?yFtleK^`aUk^` FbFbnY
@
}, î
S Y¬]2Ye`¶X § ]\ ~ ;F ³L 2F yH } F Y ªF}T¹6´n}L` >¤ SÑD¦Y 6¢Y ®rKaD£Ëgc¹XZ`¶WV XZYl m´ N~ Y ?n 2F q· ¸
}x´USO¤ ÑS#´`¦Y F¢Y ^Xeei}XZYeV 2aWs Nn 2F =w L ¸ n}¬o´ v¤ ÑÑF~¦Y LY Iþ ñ Iþ ñ0
[Z\6tcFt2p^`FbLklaFbW[4eLg`hFcFiSjDklaDiSi iDk`Y UcFbFjStyLklbFs`tsx^FY tyFb6hWu bFpbF\Ftkla6^xhn| D¤ o´`¦}¬ ¤ `SDS¦Y 6ZY #dËgN_K ` «K`ba ® ³® #dËgN_K` «K`baxÁ ³® mm MI±F £} I L Ç J FLI 0d { ¯ F 2m I ¢w }T`SS6} L Y #´UY ÇJ 1J
V$V"S(Y .1QR$T X-T S1 $R åT P$ .J J
#J
R åTÝQS
V$V
Z YÝ
&
R åT U
1Q Z T 1S Ü
' BL $M"& _IJIJ L $M"& &+ ØJ ØJ Z å
1 Z
å Z
*'
J9IJ
J ØJÒ V 1Q0T V&3T Q
'
R"S " &
&X $Y
T /S(V"
KZ S(V
Z
D
{f6
"+>*ÿ
'
¨& R&ã"5ãx
ªFY 4 Itþ Or
YqaDñ iScLqtyFt³cF F bFÿ b-ôxu ÷ /ò!bFö pbFþ aU^ð rL?bF leLtaFð s`yFbFoaUùJiS÷ojLö|~Y] d 0Ý ^`cFaF^`sxs`ÀüqtyFtbLs`^xteLyFMSUyF> } `SS6}6k`Yn~/ÑFY ´U Y ʳ` fM=_Ki¦2VbV `ba¢´ ´ ]´nM_GµrK¾É_ ml Nn 2F Y wI qw K±n}F#´?¤ ÑÑ#´`¦Y F7Y ÀYFr;ð gV `¶Ëgº J +I =IM +F YUd ?Ç I m 2I n ;F F }nÑD`6Y ÑF Y \2rKaN+ËgNXZYtU sÍ n ;F F }¬ ÑS FY o Ç I wI NF Yqd p I 2I sm yF F³Y \2rKaN gNXZYU £Í ¯LY z Y w Yn2¹ ¤n}K` #´ ¤ ÑSF~¦Y SSY ñD ÷ LoqpjLY6jSUpiSjLY bFpbFaU^ · ·K·n}L`ª ¤ Ñ#´oÑD¦Y ~6?Y ÷ Òÿ oùJù ñ0 m d 7÷oö ©© K±n}nFO¤ ÑÑ#´`¦Y F?Y ÊkrK;` «GrKS® d® ©^r.ZËZ`¶XËgNrKc] «M`NÍ d^ NÍrK «GrKK_G ±U jg`¶XZVj z w =d n I q· n} Ñ#´´2¤ `SDS¦Y LZY #dËgN_K` «K`baä® 7® Y ¯LNY J +I 2Y n 2F YL¸ · }¬~6O¤ `S D¦Y ~6³Y \2rKaN+ËgNXZY(U NÍ ±È F o Ç I p Yxkd p I 2I 2m bF n ;F F }¬ ÑÑSªFY ªF³Y \2rKaN+ËgNXZY©U NÍ \±2YeV XZcd`¶Ë(U ^XZY rKaÍ I LI n 2F +F }6S U`ª ¤ `S D¦Y o´U0Y j2aËXZY7l ~ á> m ZI VxD` +´`x ZI Y yF } F z ¤ `SDS¦Y L $M"& ÑIJIJ
6
: &+
J ¬J
&J .J
Z
R$
J -J
"4&6*&
J -J
°
4*
T Y Q Z TÝQ &
ÂS3 Z
'
Ò
S3T &VµT V
YÝS Z V" &V
&Y TÝ
9Z
&V" &V
R$Y å S
&
Q0T "+
ØJ ØJ ©6
¬J%Ù.J#+
Ü
-J J
ØJ ØJ1Ò V
J -J
R$
V$T N& Z 3S(Y
9Z
J -J
Z
R
YÝS
S3T &V
J
?J ÂS3 Z TÝS(Y
Q &V$
XS
&
S
-J
&
TN
¸J J
Ü
&YÝS(V"
.J ¸Z
"JEG
&S3 Ü
&Y TÝ
Z
YÝS
ØJ ØJ
1QT V"Q0
R
T Y Q Z TÝQ
J -J T Y Q Z TÝQ 9Z
ØJ
J J
¬J
"60
&
&V" &V
&V 3X
N ( Q &V$
R$0Y åS
Z S Z
XS 1T 1
R åTÝQ ÂS Z
T Y Q Z TÝQ ('
ís\ït\ r
u
Ñ ãèß Úßáæèç èç ß»'ÔÖ è lk
fh
¢ E ! }xFyFi~Si~rFhFti]\FtyFtp L FtyFtlSi~rjq6eLiDklaDiDkls`b üZeLiSs`cFiDkls`gZs`iSa6^ j (x, t) F } S j L y x ^ O ` ^ t S s ¨ k > h F \ t F y t p D a S i F c F tcFs`yL^` FbFrLyFiSa ρ(x, t) kliSiSs`cFiS{tcFbFt x=0
?
s
z B{z
nï
î
|³¶
î |ï|,~çB V
x
¯ ¯ ¯ j(t) = [eK x − eµE(0)] ρ(x, t)¯ ¯
,
Fc rLiDt kls`egOdb pkl^`yFyStlh6rLrcFtltqeLjStyFaFts`8yFiSh?cL ^F} bFK,pcFb>µ,rLb yFiSτan}dEaDiSd cL^`qFbFyS Fh6bFttcFcFs cFiDrLklbLs`gOqleLUptbFaFbns`yF}nbFF\Fi~trLkljSaDb6iSOi Fi`eFh£cFtklaDiD4FtcLklbFyFiSjD^`cFcFWp^`yDh6rLiSjLY ^Sf^t aDiScF FtcFs`yL^` Fb6hrLiSj`eLts`jSi` yDhFtls UyL^`jScFtcFbFm x=0
£
2 x
kZaFyL^`tjSz4b SkeLiSjSb6hL4bnm t
−K
+ µE(x)
x
¤ + 1/τ ρ(x, t) = 0, x ≥ 0, t > 0
qDkls`g>6eLiSs`cFiDkls`gvs`iSaU^ d eLtaUi bFp4tyShFtf^xh.jStleLbF\FbFcL^?dvbFpjStklsx cL^F}`s`yFY tS`cLt^~sS\Fkth cFbFcLt^`_6sSs`bOiS_vaUiSjScFtl FeLtbFcF\Fs`bFyLcFj(t) ^` FbFiSFyFrLtlrLyFtleFiShFa tρ(0, jqkls`6cFeLiDiDklkls`aUbniD}Kkls`4b iD4L t cF s2FtpyF^`FtlDbFiyLrK^x^ t) ~ s K } j L \ S ^ x=0 cFyLb6^`s`h£cFFiStStyFYKtl]DiyLrK^`^cFbFF\Fy6bLbfbFkcFh>jSpltrLyLtklklbFgOb£Fs`yFiSiDa6kl^s`tk?_F{Fi`bLeLi~ keLbFUs`\Ltl^`eLtgS cFiSicL^`FyL^`j`Y eLüqti`cFeKb6^`h^xcLh2^rFiSeF`h const FyFiDkls`iSs` K = 1 bjSjSi~r6hWiSSiSpcL^~\Ftc6b6h β = µE, γE == 1/τ, } δ = β /4 + γ 4ts`i~rFiD^`aFs`iSyFbFp^` FbFb>Fi`eLU\L^`tm ρ(x, 0) = ρ(∞, t) = 0.
ü
V
2
j(t) = e−δt (
0
1/2 t
+ δ/2)eδt ρ(0, t).
;
D`ª ý4t{tcFb6tlsSiSliO6yF^`jScFtcFb6h>bL4tts jSb6r
"+>
1 ρ(0, t) = e
Zt "
e−δ(t−θ) β p − e−γ(t−θ) erfc 2 π(t − θ)
&x #5x x
õ
¶# µ √ β t−θ j(θ)dθ. 2
ã
(16.1.1)
cFiL}§baDHX iSrLt_LqklbFs`jS FbFbFs`ttlcFeLs gScFβiD}§klps`^`bnjS}FbLaDkliSbFcFs.t\FiScFs iLx}6cLY^`X*FyD\Lh6^Skls`tcFcFiDcFkliDs`klbns`gO}§rFFeFi`heFhn6}F4^OcFkieL tlrLbFiSs`jDtleL^`gSs`tlcFeLg` X Z rLbFi~rLiSj 0
,=
2 exp(−x2 /l2 ) β(x) = − √ . πl 1 + erfc(x/l)
Xs`iDkeLU\L^`tqaUiScF FtcFs`yL^` Fb6h>rLyFiSa>p^`FbLkljD^`tsSkh?jOjSb6rLtySh6rK^ ρ(0, t) = (1/e) exp[−(l2 /π + γ)t](
−3/2 t
0
−1/2 t
+ π −1/2 l−1
0
−1 t +
qyFi~rLi`eFtcFbFtzyFt{tcFb6h2s`iS_2p^xrK^\Fb24i~ cFicL^`_Fs`b?j Y viSsS4ts`bLWs`i`eLg` aUkls`iLyF}L6\F4s`ti2cFrLsyFyFiStS{cFtc6tb6Fh yFUiSyLbF^`pjSjScFitrLcFcFb6hOt?bO¤ FcFi`t]eLklUj`bFhFcFps`^`tcFyL^xkzeLq]bF¦pjSb6zaUkliSs`_OUFLyF^`iS] Fs tkplkrL^FtYSklXg2a6iD^`klavsx^xbFeLc6g` cFiS_>t\L^Skls`bveK^`jSFi~hFj`eFtcFbFtqrLyFiSScF>FyFiSbFpjSi~rLcF?iSSDkeLiSj`eLtcFiOqbFpb6 \FjSi~trLklaFcFbLbF4aU^xb ¬iDY kliSStcFcFiDklshL4b>FyFiS 6tkkliSjFtyFtcFiDk^jcFtUFiSyDh6rLiS\FtcFcF2Fi`eLUFyFi` +2π −1 l−2
ü
0
+ . . .)j(t).
B 0 G
¹ ÂÛ ðbLklFtyLklbFiScFcF_!FtlyFtcFiDk¤ ð6ü¦bklUrLbLqUpb6hBcFiDkbFs`tleLt_p^`ySh6rK^ cL^``eLrK^`tsSk¨h.jyL^`pleLbF\Fc6.FikljSiSt_W4bFaFyFiDklaUiSFbF\FtkaUiS_kls`yFUaFs`UyFt2cFtUFi` yDh6rLiS\FtlcFcFHFi`eLUFyFiSjSirLcFbFa6^x¬m§^S4iSyLqcF¬}fiSyFl^`cFbF\FtklaFb6¬}§FiSyFbFkls`n}§cL^x cFiDkls`yFUaFs`UyFcF¬}zFi`eLbFaFyFbLkls~^xeFeLbF\FtklaFb6¬}z b6rLaFb6¬}]klb6eLgScFi`eLtbFyFiSjD^`cFc6FiSyFbLkls`tb cFtUFiSySh6rLiS\FtcFcFtklyFtlrL SS}¬~ Y
?
s ,|~~¹
z B{3±
Ø
,,~|
> '(
+
@
t
*
; 73
D+´ FtyFtlSi~zrLtZrLbFiSc.sbFbFcFp?s`kltFiDyLkl^xiSeLSgSiScFj>jS2UjSyLi^`rKjS^>cFtUcFyLbF^`_?jScFkteLcFUbF\L_.^`_FiDcFklc6iS2jD`^`eLc DcLO^vrK^`^ScFklbLbF4_?F4s`i~iSrLs`tlbFeL\Fb tklaUiDtl yL^b viScFs`yFi`eFeK^ kli kls`tFtcFcFzByL^SklFyFtlrLtleLtc6bFtBjSyFt8tc£i~ b6rK^`cFb6ha rLs`yFyFi`iSeFSeKcFi`^F}6rLa6bL^`a qb6tpy6jSttcFkls` FcFbLiL^x}6eLSgSiScFyFziS.{¤iFiSi~rLFbLyFiSklScFjDt^`ttskiDY klcF iSLjS}DcF~ tZ¦Y iDvkliSi~SrLttlcFeLcFg iDkls`¬b tyLð6^]üOb Y viSc6 yL^`pjSb6eLZb*klcFs`iSyFjStl6UjDyF^~hLiSjSklgWcFtlcLjS^iSt<UyLiSF^`jSbLcFk^`tcFcFbFbFbtklU^`c6rLbLtjSqtcLU^Fp}bFb*vtk<s` 6FeLttyFy¢tlDbi~rLZiD(eK^Sqas`fty ^`aFyFi`ª klaUi`FbF\FtklaUiS_WrLyFiSScFi` rLbLqty6tcF FbL^xeLgScFiS_ rLbFcL^S4bFaUtSY4X ª bLkkeLtlrLiSjD^xeLiDkg cFcFtf^`yFFaDyFiSiSjD FkltaUkiSkltiSj£iSSkiSScFtFtlyFcFtbFyFtUjSyLcF^`zjScFtjSc6yFb6th 4tqcFtL4}tUcLF^xyL q^`j`i`eFeKhF4tiS4iSi`tyFiSyLjS^S^.klFrFyFeFtlhrLtlkeLeLtUcF\LbF^`t_6 jSyFt4tc} iSÑ cF¦tY cF FbL^xeLgScFiS_6eLiSsx ^Skls`iZrLyFiSScFi` rLbLqtyFtcF FbL^xeLg`cFtUyL^`jScFtcFb6hFi`eLU\L^`]sqFyFiDkls`iS_Op^x cF4ttcFcFb6iSh6_FFyFyFiSiSbFbFpljSpjSi~rLi~rLcFcFzv4 FbtleLrLyFviSSFcFiSyDh6rLFaUiSiSyDj2h6rLj>aDa6iSeKjL^S}¬kb klbFeL\FbFt{klaFg b6FviSaFs`bFiD¢cFts`FbF\Fsxt^`kl]aFsSb6k¨h.UrKyL^`^`s`j`g jDqklbFs`pyFbFt\F\Lt^`kls`aDgqiSbOt?s~iS^`SaUiDiSkltcFiSu~jDiS^xScFiDbFklt2cFiSsxjD^`^xaUcFiSbF_£tS|FpmF^S4uxXtcFkeL tlrK¤¥klks`jSY4bFcLt^`kFeLyFi~bL 4cFtiDy kls`ª b¦bOIY püq^`yFFb6USsx^`i~rLcFb6cFeLiDkliDs`klbg s`yL^`taFs`iSyFbF_?rLjSb6tcFb6h>\L^Skls`bF >4i~ cFiOklaU^`p^`s`gL}U\Fs`iyL^xrLbFtcFs ¤ FyFiSbFpjSirLcL^xh FiOaUiSiSySrLbFcL^`s`t~¦klsx^`cFiSjSbFsSk¨h qyL^`aFsx^xeLgScFzb j ∼ ∂ n/∂t |~Y XkltFtyFt\FbLkeLtcFcFt klFiDkliSS¡iDklcFiSjD^`cF¡cL^?FyFtlrLFi`eLi~tc6b6h6iSs`cFiDklb6 s`tleLgScFi4tlD^`cFbFpf^.FtyFtcFiDk^FVY ûÖs`bFyFtlrLFi`eLitcFb6hHFyFb6Di~rLbFsSk¨hiSSiDklcFiSjS jDs`t^`yFs`bLg^xFeKyF^ b>b yLrF^SkeFkh4aDiSiSs`cFyFaFtcFyFbFts`b>cFaU^xvOSrLkiSeLiSijSiSbFs_vrLtleLaUgSklFcFtiSyFbLiO4kteFcF6sx\F^F^xYThnXmDrFklsxeF^`h>ts aUiSjScFiSaFFyFyFtiDs`k`cFmFiScFtliOeLfgSpl^xh eLbvcFtFiDklyFtlrKkls`jStcFcFi2bFpcL^`SiSyL^OaUklFtyFbL4tcFsx^xeLgScF>rK^`cFcFvkrLtleK^`s`g2irLcFi` pcFcLiD^k\F^±cF, _ jSjSi~ri?rLyFiSScFi` rLbLqtyFtcF FbL^xeLg`cFiDU^`yL^`aFs`tyFtUyL^`jScFtcFb6hFtyFt 5âX5 ##x1
"¥ á
D
ÑG
>
'
D
* *G
G
G
7
=
Â+
%
=
2γ
?
8
z B{åä
ï|æ|,ÂE¶·~|·
2γ
rLbLqtX yFtcFcL F^`bL{^xteL_gScFyL^`?SiSUs`yLt ^`jScFo t´ cFbF_rK^`ð6cÚü!qcL^OtcFiDiDkl4cFtiScFjSi`tqeLiSaUklbFF\FttyFklbLaF4bF_ tcFsxjS^xeLjSgSicFri DrLklyFsxiS^`cFScFiSj`i` eLtcFcF^`aFs`iSjL}§StpbLklFi`eLgSpiSjD^`cFbUhHFyFtlrLFi`eLi~tcFbF_
4 "
3
;
D`
"+>
&x #5x x
õ
ã
iSFyFtlrLtlýfeL^StkcFkbF4 iSs`rLyFyFbLt _Lqa6iSeKjS^SiSk_HklbFF\Fi~trLkjSaFb6bF _ cFiDu~kljSs`yFbt8cFh6iDklFbFyFs`i`tleLeFtt_s`cFp^`_nyD| h6rK^Fa6}klk¨6DttyFfbL^W4aDtcFiSs`s iSyFFi`i iFyFtlrKkls~^`j`eLtcL^WcL^ný§bLk`YZªFY SYVû§eLtaFs`yFiScF bHrLyFaFb<tcFtyFbFyFU]sSkh<jiS` yLleL^`tpaF Fs`t>yFiSiSrK^FYÖ\FcF i lkleLjSttaFs`s`iSyFjSizrK^S!bL4FFyFbFeLa6gDeKkl^xiDrLeKjD^`^`tpsStyLkh^cLkli.^`FklyDs`h6iSyFiStcFcF*b6tvFsxi`^`eLaUUiSFtSyF}fiS\Fps`yLi^\FklcFiSiSiSsxi jStsSkls`jSU]ttleLtaFs`yFbF\FtklaUiStzFi`eLtjScFUs`yFb iSSyL^`p L^ZpcL^~\FbFs`tleLgScFiFyFtjS{^`ts F4i`iDeLkls`tZbcFtiSyLs2^`pjScLcF^`iSa6jS^ tklcLcF^`F yDh6cFiDkltbFcFs`b6tlhKeL¦t_>DDpi~^`rFyDhFh6s rK^Fj?Y Fû§i`eLeLtUaFFs`yFyFiSiSpcFyL^~\F¤ cFb6eLb>_vrLleLtyFaFaFs`bnyF}6ijOr
}KprL^`jSbLyFklaFb6b s`¤ b6yFeLi~bnrLS}4YUklXHiSiSks`eLjSUtsS\Lkl^`s`t]jScFtiScFyLcFfiL}n^xeLleLgScFtaFiSs`iyFiSFcFt]yFt¦ZcFrLiDyFkt^_LrLqyFUt]_LqsUaW]FyFbFiSt]s`bFSjStpziSFpi`^xeL6i~jD ^`sxcF^qiDj4Fi`leLeLt ta6E cFiDklbFs`tleLbvqiSyL4bFyFU]sOFyShL4iSUi`eLgScF_>bL4F~eLgDkqqiSs`iSs`iSa6^ ½ } const, t < t I(t) ∝
T
0,
t > tT ,
(16.3.1)
rLtdö*ôòÒÿ uó/ôx÷ òBù t iSFy6tlrLtleFhFtsSkhklaUiSy6iDkls`gS£rLyFt_L^ v brFeLbFcFiS_iSSyL^`p L^ m YDXWrLt_Lkls`jSbFs`tleLgScFiDkls`bn}`yL^SkkltlhFcFbFtrLtleLiSa6^xeLbFpiSjD^`cFcFcFiDklbFs`tleLt_ L t = L/v jFyFiS FtkkltvrLyFt_L^F}Öp^x6jD^`sWjWeLiSa6^xeLbFpiSjD^`cFcFtkiDkls`i~hFcFb6hb<s`tyL4bF\FtklaUiSt jSklbFzs`kltljSeLiStS_OiObL4rLtttlcFsqbFtl^~cFSiDkklklbFiSjSs`tleLqt_.iSyLF4yFbFjSkliqirFklhFyFs>tlrLa.cFbLyL^`pp4cL^~\Fs`tbFcFbFtL ^`aUtsx^FY ûÖs`iSs>bL{^`bFaUyFts>bFcFcFiSi`_ √ Y6XHs`iDkeLU\L^`t]FtyFtlDirLcF_?s`iSa iDklsx^`thx(t)i sSkh2FiD∝kls`ti~hFcFcFz}UFi` ∆x(t) ∝ t I(t) a6^vL^xFrtyFs`tliSrLaUcF^2bFF_£yFqiSbLyFkiSScFi~svrLbFls2^Dj?kkls`iStjD\F^>tcFLbF^`taDtjSsxyF^vt4cFtt2cFrLb iDkls`bF^`tsvYTrLyF^`UaiSyFtivpaFeLyLgx^xs~hW^`s~iS}TS4yLB^`pcL L^x^F Y `cLeL^``eLrK^`rKt^`tsSklk¨h>eK^xjOSti`cFeLcFgS{_HbFcLFklyLs`^`jSjStqU_FiSaFySyLh6^`rL_iS\FbLt4cFFcFeL∆x/hvi >gDkf^W^`qs`tiSyFs`bLiS^xsSeLiSiSaUjL^FY YÖ©
^`a6^xhaU^`yFs`bFcL^ zrLcL^`aUijcFtaDiSs`iSyFOcFtUFiSyDh6rLiS\FtcFcFFi`eLUFyFiSjSi~rLcFbFaU^x ¤ j^S4iSyLZ crLFynY ¬¦O}TcLF^`iS`yFeLbLklrKs`^`t¬sS}¬kcFhtl6klF6tiS FyDbLh6qrLiSbF\F\FttcFklcFaFbF_iSklbFyFcL^`cF^xebF\FFtkltaFyFb6tlD¬i}¬rLklcFb6iSeLgSi.cFi2s`iSeLa6t^ bFyFiSjD}^`cFkliDcFksSvih6b bF_bFp>rLjSD£iS`eK^Skls`t_kliWkls`tFtcFcFz!FiSjStlrLtcFbFt I(t) bFyFiDI(t) 4tl Us`iS\FcFiS_
-
T
T
§û7ÚXbL'-k`9#Y8&*?+ªF$7Y )S%+m W+J&*0*&*?$7.!2"A,+%#0Ò?/fo.&*Q['*.?/0-'*N#?/&*0-)N#%#&*Q)%#&#$Q7&-!#$Y./N#Á Dc5!ÚN#)#)+.!&-0-,#N#&-)+9#&-&-,#+%&-#9#&-+%,##)+&&-H5#a(0-!%#Y7$7!&-H¬9#&-N#H¬2,+b2Y.!%#)/g"/,5#.e0*N#$)%x% Ü #)+Q[.B9+:#QN#&*)+&-#0*&Á ÚR?+)%+Yo.!"N#&*)+&-f72,+#!O2$7?.XN#)%e#)+Q[.B9+:#QN#&*)+&-#0*&Á"ñ#Ú 9+%+#&-H+5.!"Db2.BY%#0-%#Q0*$:eî Y7)+&*Q&-+%AN#)+!9#&*$. $$7!9#_%++;k^7)+.bK5.`ñ ý
; 73
D/Ñ
5âX5 ##x1
"¥ á
iS`eK^Skls`bnm I(t) ∝
½
t−1+α , t−1−α ,
t < tT , t > tT ,
α < 1.
(16.3.2)
üqiSa6^`p^`s`tleLg }cL^`pjD^`t4_ xøBóxòÀôø ÷7ññõ[ÿ»ó *ô !ÿDòBùôx÷*ÿ}p^`jSbLklbFsiSs UcF^`iSyLyL^`faF^xs`eLtgSy6cFbLzkls`4bFbqa£FtklyFyFtltlαDrLirLcFbz44i~bFtyFsviS Fp^`tkjSkbL^Skl4ts`bqg LiS^`svyL^Ss`4tt4s`Fy tyL^`s`cLU^`yFpjDY^`üqtsSikhZ^`cLjS^xyFeLtiS4tbFcFb.t k FyFi`eLts~^F}`DiSsh bL8ttscFtklaDi`eLgSaUiqbFcFiS_2qbFpbF\FtklaFbF_ kt4zke
5Y ûÖa6klFtyFbL4tcFs~^xeLg` cFiODklsx^`c6iSj`eLtcFi }U\Fs`i FyFb>rLbLklFtyLklbFiScFcFiD£FtyFtcFiDkt B5
0
1
T
tT ∝ (L/U )1/α ,
rLt U 2diScLyL^`fFyS^ h6klbFtcFcLbF^xtSeKY ^ FtyFtlSi~rLcFiSi s`iSa6^ j FyFbFjStlrLtcFcF,aUiSiSyDrLbFcF^`sx^x d FyL^`aFs`bF\FtklaFbcFt?p^`jSbLklbFsviSsjStleLbF\Fb6cF/FyFb6eLi~tc6 lg[I(t)/I(t )] lg(t/t ) cFFiSyFbLiklUcL^`FtyD4h6cFiStcFbLb6 h?fb>^`s`yLt^`yFpbL4^xteKyF^SiSjbiSScLyL^`^`ppjD L^`^?cFiA¤ Fø!i~öorL÷ y6xiSøBSùAcFöot÷*tqÿ kYñ x6ö/} òÀôø ¦YxûÖús`ñi ÷oøBklù jSiS_Lkls`÷-jSô i yLÿ^`õ pleLBbFô \FxcFöoõ cFóxtòÀUôFò iSyD÷ h6ñrL÷ iS*\F÷tcFùJcF÷ xY fýf^`^Ss`kltFyFyFbLiD^xkleLs`iSyLjZ^`cFFti~cFrLcFs`iDjSklts`ySgOrKs`^`b6ts iDklñ iSxSö/tòÀcFôcFø iDklxs`útñ_÷oøBrFùJeFh ú kljSiS_Lkls`jFtyFtcFiDk^FY cFiSi.s`ÖiSa6keL^Wb2^`cLjS^`s``iDeLf^`s`rKbF^`\F]tsSklkaFh bHpiS^``jSeKbL^xklbLrK4^`]iDkls s`b/ø ¤ #ÿªFY óFùJY 6÷7}Fù ªFY þ>FòBY Dø ¦}`#s`ÿ¢iaFø!yFöo÷bFxjSøBùAt]öoF÷*tÿ yFtlSñi~rF ö/òÀôø xúñ÷oøBù L+Y ðt_Lkls`jSbFs`tleLgScFiL}6FtyFtFbF{t¤ ªFY FY S¦§jOjSb6rLt
(16.3.3)
+
T
T
# 1 4 " 3
*M
Á
?È
È 5
°
4 "
@ 0
3
*
I(t) ∼
½
3
A(L, E, α, . . .) t−1+α , B(L, E, α, . . .) t−1−α ,
0&
*M
t < tT , . t > tT ,
XyFt8h FyFi`eFtsx^ t iSFyFtlrLtleFhFtsSk¨h FiOFtyFtklt\FtcFbFB^SklbL4Fs`iSs`bFanm
y4 ""
(16.3.4)
T
IT = A(L, E, α, . . .) t−1+α = B(L, E, α, . . .) t−1−α . T T
]s`aFrK^ Y jSiS_Lkls`jSi!^SklbL4Fs`iSs`bF\FtklaUiS_UcFbFjStyLk^xeFgScFiDkls`b iSpcL^\L^`tsxt}
\Fs`i= q(B/A) UcFaF Fb6h I(τ t )/I rFeFh τ ¿ 1 b τ À 1 cFt?p^`jSbLklbFsiSs t Y qkls`tjSs`i yFklFrLyLcF^`iOjSptl^SrF4eLtbFs`jSbFiLs`m gL}F\Fs`irFeFh q6c6aF FbF_vkq^SklbL4Fs`iSs`bFaU^S4bW¤ ªFY FY U¦fs`i2kljSiS_6 T
1/2α
T
I(τ tT )/IT ∼
T
½
τ −1+α , τ −1−α ,
'
τ < 1, τ > 1,
α < 1.
T
]sS4ts`bL}\Fs`i£pcL^~\FtcFbFt cFtyL^`jScFi Y©niS\FaU^ iSFyFtrLtleFhFtsSkh FiFtyFtklt\FtcFbF¡^SklbL4Fs`iSs`I(tbFa F)tyFtlDirLcFiSiIs`iSaU^FyFb f(t^xeL, I?b>) Si`eLgS{b6 jSyFtl 4tcL^x¬Y Dtf^ bFp4tyFtcFb6hHjSi.jSyFt8h6 FyFi`eLts`cF£a6klFtyFbL4tcFsx^xjSFi`eLc6hFtsx khs~^`aFbL!iSSyL^`piD}4\Fs`i.6eLiSs`cFiDkls`g.FtyFtlDirLcFiSi.qiSs`iSs`iSa6^j.iSSyL^`p Ft?sSi`e6 bFcFiS_ L iSFyFtlrLtleFhFtsSkha6^`aSklyFtlrLcFtcFcL^xhFis`i`eLbFcFt6eLiSs`cFiDkls`gs`iSa6^
T
T
T
T
;
SªS FyFiSjSi~rLbF4iDkls`b
"+>
1 I(t) = L
ZL
&x #5x x
õ
j(x, t)dx.
ã
(16.3.5)
] \FtjSb6rLcFiL}f\Fs`i.cL^ cL^~\L^xeLgScFiD¡sx^`Ft bFcFs`tyL^xej.FiDkeLtlrLc6t_ bqiSyL44i~eL tcFcFiOtpp^`^`FjSbLbLklkbF^`s`sOgLiSm s LY iSeK^SklcFiv¤ ªFY FY D¦t} ¿t ∝t L Y cL^~\FbFs~}6rFeFh A } B I 0
T
T
1/α
T
A ∝ L−1 ,
IT ∝ L−1/α .
B ∝ A t2α T ∝ L,
FyFtlrKkls~©
^`^`j`aFeFbLhFts2iSklSiSyLS^`iSp_>iDj?}6fU^`cFs`bFtjSft^`yLs`kbF^x\6eLtgSklcFaUiDiDklHs`gOkq4ziSyLkeL4tklaFjSyFiS_LbFkljSs`jS>i F^`tjSyFs`tliDD4ii~rLrLcFtliSeLgSiOcFs`iDiSkla6s`b^ ¤¥k^S4iSFi~rLiSSbUhK¦ÖcL^jSyFt4tcFcF 4^Skl{sx^`D^x I(t; L2 ) ≈ (L2 /L1 )
−1/α
´ ³ −1/α I t(L2 /L1 ) ; L1 ,
(16.3.6)
LrL^xt ?I(t; s`i`eLLbF)cFb iS_ I(t;L Lb )LdOjSklyFiSiSts`4jSttcFsScFkls`jStqtpcF^`cFjSiLbLY klbL4iDkls`b?FtyFtlSi~rLcFiSis`iSa6^jiSSyL^`pl yL^SklFyFtlüZrLtleLeLiSts`cFcFb6iDh>kls`jSg yFts`4iSa6tcF^b FFyFtiSyFjSjSi~iSrLbLi4rLiDiDkls`klbs`b6j(x, tcFt)b6h FyFiSFiSyF FbFiScL^xeLgScL^6eLiSs`cFiDkls`b 1
2
1
2
p(t|x)
j(x, t) = eN p(t|x),
rLt d leLt4tcFsx^`yFcF_£p^`yDh6r
} d \FbLkeLi.qiSs`iSbFc6taFs`bFyFiSjD^`cFcFWcFiDklbFs`tl eLjStltrL_nt}necFFbFyFt b6Si~rFhFttFkh yFtlcLrK^>klsxtl^`rLj`bFeFcFhFbFt FsvNkliS6SeLiSiS_jS^xrLtyFb i~hFiDkls`jScFtiDkls`^`g t4s`iSiSi?iL}¬l\FeLs`taFivs``yFeLi~DrKO^FYrKü^`]y6iSbF^xplh \L^Skls`bF L^.p(t|x)dt ¤ jvcL^`{t¢keLU\L^`tS}ncFiDkbFs`tleLgvp^`yDh6rK^D¦zrLiDkls`bFcFts aUiSiSySrLbFcL^`s` }np^ jrLSyFbFtcL8^`hns`¡}4eL`tleLOD^`OrKt^`t ]j tbF_cFs`\Lt^SyFkljDs`^xbFeL Ft [t, t + dt)bXYFiSüZs`eLiSiSas`cFjStiDyFkls`i~ghFs`yLcF^SiDklklFs`yFb tlrLtleLtcFb6klhj`hFaUpxiS^`iScFy6 p(t|x) UyL^`jScFtcFbFt£kli~6yL^`cFtcFb6h?jStyFi~hFs`cFp(x|t) iDkls`b ∂p(x|t) ∂p(t|x) + = δ(x)δ(t). ∂t ∂x
(16.3.7)
FyFtlrLtleLtcFiSb6eKhv^SjSklcFyFi.t4¤ tcFªFbvY FFY St¦ZyF^SjSkliSbLiO4FrLs`iDiSkls`s`bFb6a6^ tcFFb6tyFhvtlcLD^ irLScFi`iSeLgSi {s`b6iS>a6^ jSyFb.t86teLcLiS^xs`>cFiDhFklj`s`eFb.hFtyLsS^Skkh kls`tFtcFcFiS_kFiSaU^`p^`s`tleLt YoqpH¤ ªFY FY ªD¦Ob¤ ªFY FY ´`¦2keLtlrL`tsHk^S4iSFirLiSSbFt qUcFaF FbFb p(t|x) cL^jSyFt4tcFcFα 4^Skl{sx^`D^x¬m
p(t|x2 ) =
µ
x2 x1
! ¶−1/α à µ ¶−1/α ¯¯ x2 ¯ p t ¯ x1 . ¯ x1
(16.3.8)
; 7: 5Ü x # ? ; ³Û "¥ ò
SªF
ô 1ã"ãÇ R/1#xA" 5â> ##x5
| íï|·
z B{/ë
çç
9¶Âïyï|æ|.ÂE¶·~|
XyFt8hrLiDksSbUtcFb6haUiSiSySrLbFcL^`s` hFj`eFhFtlsDk¨hkeLU\L^`_FcFiS_jStleLbF\FbFcFiS_b F4yFttlcnrK}Sklps~^q^`aUj`iSeFs`hFiStyFsqkliStzSc6iSiD_klbFkl6s`tlfeL4gFrLyFjSi~DSi~rLkbFeKs^`lk^`eLtiS2x4b dqcFtb p^`jSbLklbL4YiSkiSeLs`UjS\Lt^`sS_Fkls`cFjSU]jSyFttlt yLa6^x^SOklFrFyFiStlrLi tleLkteLcFi~bFhnt]m jSyL^xO^`tsSk¨h?kljStyFs`aDiS_2yL^SklF(0,yFtlx)rLtleLt(x,cFbF_?2x)jSyFt8tc?FyFiDi~OrLtcFb6h
p(t|2x) = 2−1/α p(2−1/α t|x) =
Zt
dt p(t − t0 |x) p(t0 |x) = p∗ (t|x).
(16.4.1)
üqtyFjSiSt?yL^`jStcLkls`jSijH¤ ªFY LY ~¦keLtlrL`ts.bFp ^`jSs`iD4i~rLtleLgScFiDkls`b¢¤ ªFY FY ªD¦Yý8t{tl FUc ^`bFyLt^`aFUs`yLty6^`bLjScFkls`tbFcF\Fb6th klaF¤ bLªFY LFY ~iS¦faUhF^`j`p^`eFs`hFtlteLsStk¨h>i~rFcFiDkls`iSyFiScFc6h6h?Dkls`iS_F\FbFjD^xh?6eLiSs`cFiDkls`gOk m α 0
'
'
p(t|x) =
³ x ´−1/α
¶ µ ³ ´ x −1/α g+ t ;α . K
(16.4.2)
Z
(16.4.3)
©
^`aFbLiSSyL^`pliD}f6eLiSs`cFiDkls`g.yL^SklFyFtlrLtleLtcFb6hjSyFt4tcFbHFtyFjSiSirLiDkls`b6tcFb6h Fkls`yFbFtl\FrKtklkls~aF^`bLj`eF£hFFtsviSa6kl^`iSpS^`iSs`_ tleLitrLcF}6iDyLkl^`s`jSiScFyFziScFWcF]rLbL/klFStklyLs`kliSbF_FiS\FcFbFcFjSiDU4/?6LeL^`iSyLs`^ScF4iDtkls`s`yFgSY kU^`yL^`aFs`tyFb6 4eL ¤ üqªFi~Y rKFklY Ss~¦^`}UjSFbFyFj?b66DeLi~iSrLs`bLcF£iDkla>s`g jSs`yLiS^xa6^?tFcFyFbFiSjSi~rFrLeFbLh 4iDFklts`yFb tlDj(x, irLcFiSt)iO=s`iSeNaU^Fp(t|x) m j qiSy6 K
I(t) =
eKN α α−1 t L
∞
ζ −α g+ (ζ; α) dζ.
rLtklg YDqyFbFjStzFtyFtlDirLcFiSis`iSa6^2¤ ªFY LY D¦8jFyFb6jStlrLtcFcF UaqiSiSiSs`ySiSrLs`bFiSζcLa6^`^ =sx^x¤ tªF(L/K) rFY LeFY hD¦ZyLkO^`plleLa6bFkl\FFcFtyFbL4ptcLcF^~sx\F^xteLcFgSbFcF_ zα4bFiSrKaU^`^`cFp^`cFcFz4bWcL^]b.yFyFbLtk`pYFeLªFgxY 6s~^`Y s`iDyL^`}njScFFti`cFeLbFDt \FFtyFcFtlrKcFzkls~^`j`k>eLtFcFiDi4iScL^¢gSyF,bLk`u~Y iDklcFªFiSY FjSYdcFiSý§bLiklUUcFyLiS^`ajScFFtcFiSaUb6^`hkpð6jDüO^`|tsxwz}ZyD\F6s`bFiFyFiSjDt{^xÝtý§cF~bFrLttc6rLaUyFi iSScF i` } rLbLqtyFtcF FbL^xeLgScFiSiUyL^`jScFtcFb6h`eLb6t§aa6klFtyFbL4tcFs~^xeLgScFz rK^`cFcFz}\Ft yFtti {UtcFyLbF^`t jScFu~tiDcFklb6cFh.iSjS^`cFjSiSs`iSiyFUyL^` jSÑ cFftbLcFklb6Fuh i`ð6eLgSüOpiS|jDwz^xeLyDb6bFFFyFiSbFjD`^xeLÝ ý§b6rLttcFcFbFaUtSiL}
#Y klüqiSyFeKb>^SjSklcFi jSi~aDrLiStZs`iSklyFjSi`i` 4WSi`eLgS{b6cLkls`jSicFiDklbFs`tleLt_£p^x6jD^~\6tcFcL^rLiDkls~^`s`iS\FcFi eLUSiSaFbFt eLiSjSU{aFb ¤ cFb6tvrLt4^`yFa6^` FbFiScFcFiSi.UyFiSjSc6hK¦}§iDkljSiSSiOrLtcFbFtvk aUiSs`iSyFa4iD4tcFs` iDklsx^`tsSk¨h.f^xeLiSjStyFi~hFs`cFzY¬[§keLiSjSbFts`ivcFtOjSFi`eLc6hFtsSkh Fy6b.pcL^~\FtcFb6h6 αt} `eLbFpaFb6 avtlrLbFcFbF FtS}LbvcFtiSStklFt\FbFjD^`tsOFtyFtlDirFyFb α → 1 avyFtl bL4 cFiSy6 f^xeLgScFiSiFtyFtcFiDk^FY
'
−1/α
0
ζ0
'
Ñ
q
;
SªD
&x #5x x
"+>
õ
ã
§bLk`Y6ªFY 6m ò `ñ Sñ `ñ taFs`bFyFüZiSeLjDiS^`s`c6cFcFiDkls`OgZcFyLiD^SklklbFFs`yFtleLtlrLttl_ eLtcFb6hL}S^`aUyL^`^xa2eFeLkeLtleLtlrLgSScFtiSs_bFFpi`eL¤ HªFY aUFiSY ´`iS¦
yDrLbbF¤ cL^`ªFs`Y L£Y Sq¦}xiSyLs`^`iSjSbFcLc6^
ý &*)+&*$%+W#&-0*?%#&?+)%+Y;&[N#&*)+&-fo2,+#!O2($7?. Ø 2` M F7ÚÁ,+9#" )#.!b-9+%+W++;If b-5.Bi W#&-+%+H6,+%#0-N#&*)+0-%#!+#!O2N5.!)#.!Q&*$7)#.
f (x, t)
∂ f (x, t) = p(x|t) = − ∂x
Zt
¶ µ³ ´ x −1/α t ³ x ´−1/α−1 g+ t ;α . p(t|x)dt = αK K K
nyL^SqbFaFb>s`iS_ 6eLiSs`cFiDkls`b FyFtlrKkls~^`j`eLtcFcL^yFbLk`YnªFY LY ? 76 ¢ 0
'
C
(16.4.4)
'
s| ~|
z B{
çç
³Û
ì,,~𳶷~¹i
9¶Âï
î ï~,~
î | íï|
UcFaF FbFb¤ ªFY LY S¦b£¤ ªFY LY U¦hFj`eFhF]sSkhyFt{tcFbFtUyL^`jScFtcFbF_krLyFiS` cFz4b FyFiSbFpjSi~rLcFz4bnm +
'
K −1 0
' '
α t p(t|x)
α t f (x, t)
+K
+
∂ p(t|x) = δ(x)δ(t), ∂x
t−α ∂ f (x, t) = δ(x). ∂x Γ(1 − α)
(16.5.1)
rLtklgOyL^Skkf^`s`yFbFjD^xeLiDklgirLcFiDkls`iSyFiScFcFttZrLjSb6tlcFbFtcFiDklbFs`tleLt_nYLX¢keLU\L^`tqcL^x eLbF\Fb6h FiSs`iSaU^?j>iSs`yFbF L^`s`tleLgScFiDcL^`FyL^`j`eLtcFbFbbTV~b6eLbyL^SkkltlhFcFb6hcFiDklbFs`tleLt_
0
; ªf6#xN1Òm[ x "¥ ÿ
÷
Sª
1 ##Æõ7"#xx"§Ñ¥ ¥ ¥
&
§)bLO*k`.BY4+%+ªFW#&*Y F0*m?/!O2)¬%+?/Y;QR& N+N#9#&*&*)+?/&-02fo.u2,+I#!h O2Dij $78? .`ñ>) ò2FZ!*òW#ïR?N+%AE/§J#?+'*$?o%#0-)N#&*§)%#)+Q&*&-b-#$EB9+:!.B9+$.!:$!+;ÁxN#&!,59+E/.B+W#+;&-++;& I,+H³9#" 0 N#Q_:7¯ó!0-#!Y#!O2DE)#.BY#&-+%#"J} nô6X)of/%+N#!Yo.BiRE!,#&-#?/s) 2ò SZ*òï0-N+9#5.!"u9+%++%#" §eN#&*)+&-fo2,++;IHJ$7?Ø 2ò ``ñ òñ ô Ú¨#ñ }%#0-N#&*)+0-%#!++;IH6N5.!)#.!Q&*$7) ñ jOFiDkeLtlrLcFt£UyL^`jScFtcFbFb?rFiSD^`jSbFsSkh2rLbLqUpbFiScFcFiStqkeK^`l^`t4iStSm ý
α = 0.8
α t f (x, t)
+K
∂f (x, t) ∂ 2 f (x, t) −D = δα (t)δ(x), ∂x ∂x2
(16.5.2)
rLt δ (t)üqyF=bDt kls`yF/Γ(1 t8eLt−cFbFα)b£Y rLbLklFtyLklbFiScFc6iSiL^`yL^S4ts`yL^ α atlrLbFcFbF Ft qUc6rK^x F4yFtcFbs~^xs`eLiDgScFk^St4yFiZtU{yLt^`cFjSb6cFhvtcFUbFyLt^`FjScFtyFtcFtlDb6ihWrLbF¤ sqªFjZY 6a6Y SeK¦Ö^SFkkltbFyF\FtlDtkli~aDrFiShFtsOij2rLcF^~iDD4ktklyFiScFjSiS t6UeLyLiS^`s`jScFcFiDtklcFs`bFgLt } iSaFaDtyL^xÀ üZeK^`cFa6^FY jD^`s`g k eL©
tl^`rLaFUbL]iStStSyLm ^`piD}TFyFiSjStlrLtcFcF_ jS{t ^`cL^xeLbFpOFiSpjSi`eFhFts?aUiScLklsx^`s`bFyFi` bFcFpiDkls`aUb!klFaFtyFyFbFbLjS4t¡cFsx^xFeLtyFgScFtlDi?iDrLklcFsxiS^`cFi
α
−α
+
Â4
5 "K
"<"
*M 1
,!
>5
"<" "4
*6
*
;
Sª
&x #5x x
"+>
('
õ
ã
§?%JbLk`§Y)+&*ªFb-E!Y L9+m :!$.!$e)+QQR2%#,+)+&-!9+Yo%#.B)++!5.Yo!.B"+%#5."JuQ&-,+&*%+$72+%,#+K+Q½EJN#!!9+#$5.7!&-" ij ?/.!!)+K9##&-#$YD7)+)#..BQK+%+?/.B"fJ#0Òfo0-&*%#QR$7;@&-9#^!&-9+HKEñRgx,5!W+.Bii +%+He»&*)+.!iÝJ!#$7)995./ÁBN+E/#?+$%#)V§V)+&*b-EB9+:!$.!$!Á*N#!9+E/W#&-++;IH0N#Q_:7kó!0-#!Y#!O2 E)#.BY#&-+%#"} nôX)of/%+N#!Yo.BiREB,#&-#?/ ) 2ò 1Z*«Á#0-N+9#+;&9+%++%+%6§eN+9#$#0*$%Ø 2ò ``ñ MSñ MoÚ¨ñ øBùAö K}DsxY6tSY6FyFb Dkls`yFt8eFtcFbFb rLbLklFtyLkbFiScFcFiSiOL^`yL^S4ts`yL^ a>tlrLbFcFb6 FtFtyFtlSi~rFhFs>j?yFt{tcFb6hrFeFhcFiSyLf^xeLgScFiSi?FtyFtcFiDk^F}KFyFb αs`iD¢kl^S4b UyL^`jSc6tcFb6h>FtyFtlDi~rFhFsjOa6eK^SkklbF\FtklaUiStqUyL^`jScFtcFbFt iSaFaUtyL^xÀ üZeK^`cFa6^ • rL+y6øBùJt_L÷ qþtxrLö iSa6^`pó xjD÷7^`ùJtñs÷okløBFùJyLú/^`jSFtlrFiSs`eLiSbFaUjS^iDkls`jSgtyFi~bFhFFs`iScFs`iDtklps` b6yFtbyL^£rLbLb klFvtlyLiSklcFbFs`iSyFcFi`cFeFiDeK ^ i kls`tFtcFcFiD£yL^SklFyFtlrFtleLtcFbFb jSyFt4tc i b6rK^`cFb6hnY rLvyFi`iScFSs`c6yFi`i` rLeFeKbL^qb t4yFi~trLcFtl FeLbLgS^x¡eLgS4cLcF^~iSh¢iS4aFi~yLrL^`tls`eLcFgHiSkliiSpeK^x^S6kljDS^`tsxsS^Fk}Dh¢cFiOk Fs`yFtb iSyFbFs`tiD_ WrLyFtiSyLS^£cFi`b • rLbFtlyFtcF FbL^xeLgScL^xh4i~rLteLgZFiSpjSi`eFhFtszjZyL^S4a6^x¬ ò ñ÷ *÷ ÷-ô+ÿ !ÿ iS6bLkljD^`s`gOcFiSyLf^xeLgScF_>b>rFbLklFtyLklbFiScFcF_ FtyFtcFiDk rLb6yF\FiStSklc6aUi`iS _OrLbLiDklcFqiStjSyFiSt_cFrF FeFbLh ^xeLiSgSFcFbLi`kt^`cFUb6yLh^`jSrLcFbLtkcFFbFttyLkl4bFi~iScFtcFs>iSkieLDF tyFbFts`cFg>iDkq^ZtjcFiDcF4tUtFcFiSi`yDeLh6i` • rLi`\FtcFcF>Fi`eLUFyFiSjSirLcFbFa6^x¬Y ý
'
+
4
*M 1 (
$!
D
G
D
G
5 (!
°
1:
"
SªD
1õ7
}, î
S Y oòBñ ÷G m F©
t6eLi`§bvf^SkkliSFtyFtcFiDk`YUd tcFbFcFyL^xr
m ]bL4b6hn}nÑSSªFY 67Y aUiSò jL7YUòBd ñtW Y m ©v¡ bF÷qyn}n ÑÑFSbFY pbFa6^ bWFyFbL4tcFtcFbFt>^S4iSyLqcFFi`eLUFyFiSjSi~rLcFb6 FYY Rö ñ qbFcFtlsSb6\FtklaFbFt'hFj`eLtcFb6h j cFtl66iSyDh6rLiS\FtcF Fi`eLUFyFiSjSi~rLcFbFa6^x¬Y d WY m vbFyn}n ÑS LY L?Y ÷oød N ò +øB÷7ñ 6XHaFcnY m6w]4iSyLqcF_?aFyFt4c6bF_>b?yFi~rKkls`jStc6 cFtf^`s`tyFbL^xeLY6¬d üqi~r>yFtlr
Y Y yFbF F{tqd WY m vbFyn}
ÑÑF`Y 6Y [_KY «G_K`dl Nn 2F Y o Y Ƥ n}F DªFS?¤ `SF~¦lY ªFY [`y+ÏZXZYei(\ Nn 2F Y o NY p YK±n¹K}FFSªSD2¤ `S D¦Y ´U Y [`y+ÏZXZYei(\ Nn 2F Y o Y ¢³ · }LFSS Ñ?¤ `SDS¦Y FZY #dËgN_K` «K`baÆ® ® ]`¶µ_Ki}rK³´ (j Y Nm { I Ç d ¢v ~Y ]Y ¯LNY p NI Y6=d I ¢w w } w NO MLI }FI `SL# ´UY ÑFY ð oùJ÷oöS Ý Iþ ñ bFpbFa6^?bs`tl6cFbFaU^?Fi`eLUFyFiSjSi~rLcFbFaDiSj ¸
¹K} Dª>¤ `S# ´`¦Y F]Y õ ñxòk ©6÷7ñ ô oùAòBñ ÷= ð oùAö/ò!ò!ö [üqbLklgDf^ Ãû© ´K·n} Dª ¤ `S U¦Y SSY ʳ` fM=_Ki¦2VV `ba¢´ ´ Nn 2F Y w F?wI ¹ · nx} ´ Ñ>¤ ÑS U¦Y ~6Y ʳ` fM=_Ki¦2VV `ba¢´ ´ Nn 2F Y w F?wI ¹ · ¸
} S Ñ>¤ ÑS U¦Y FY £ËgNXZY7º d§xrKai¦Y rKVbVl 7^ Nn 2F Y o Y ¹ · }K US2¤ Ñ#´`S¦Y LY £_K`¶ËgNXZsU ² ¸]_heV _K+ «"D¥ § MI±F ³¬x} ´` >¤ ÑÑ#´`¦Y ~6Y Iþ ñ Ãû© ¹K¹F¶¬}L6S ?¤ ÑÑÑD¦Y ªFY §xXZiZV XZY7´ ÍkV _T i}XZY \ Nn 2F Y o Y ¤n¹K}Fª SS>¤ `SSD¦Y ð oùJ÷oös Ý üqbLklgDf^j Ãû© ´ ¤n}L` v¤ `S# ´`¦Y o´UY Iþ ñ F?Y UY «;g` ªNrKé® ² ]´WGXZa2«GrsU ² Nn I±F Y z MO Y ¸¬¶¬}n Ñ>¤ ÑSDS¦Y ÑF?Y (ô ó÷oö £ ÷oö Dò oò 7ò!ö0» £ ] 7òBñ ÷k V© ü ·· } ´` >¤ ÑSSD¦Y ¸6
"
wJ -J
5
BG
J "G
°
ÇJ©+
-J
-J
-G
'
R
"60 " ('
>L%J $ +
Ü
1J
R
N
1J
R
N
('
0
N
ØJ ØJ
1T 3
"G
7J
.J
1
BG
G
('
&
0å
J ?J1Ò V P -0S(Y
Z YÝ
&V$Y T V$ S Z Q0T V"Q0S(V" &X $Y Z 1Q0T V 3T Q T V S
T /
ØJ J L $M"& ÂIJ©IJK+
?È J ÇJ $' (' ('
J Â
&S3P
&Y TÝ1T
J J
R
&S3P
&Y TÝ1T
¸J J
L $M"& IJ%IJ) J
L $M"& IJ%IJ
R
"60
IJ -J :(
Ü
$
)
(' ('
'
(
R"S
¸+
1J
ù¬J©IJ
0N
¸J ÇJ
ØJ J
(
-J
R
J J
$È"
"
J J
¬J
'
5 1
R
&
N
ØJ "J
J J
)
R1TÝY
¸+
('
ÂS
&ù¬J -J Øù 06 5
EJ J E4 5
"
J -J+
¸+
±
ís\ït\ r
õ' â v
u
#ãèß #â¯s æèç
hdp
p
fh
å
& ýf^Skk4iSs`yFbL,irLcFiSyFi~rLcFUÎleLtaFs`yFbF\FtklaFU eFbFcFbF 6tyFtlrK^~\/rFeLbFcFiS_ l Y>üqDkls`g L, C b R d k^S4iSbFc6rLUaF Fb6hn}6t4aUiDkls`gOb kliSFyFiSs`bFj`eLtcFbFtqtlrLbFcFbF F rFcLeL^ bFlcFeL*taFeLs`yFbFicFrLbFjSbnb6YÖ UirL^xcFhiDkl4b6eK^ aDiScF FW}TeL^bFcFrLbFyFb¡U¤¥iSk>_vaUaUiSiSiScFyStrL vbFcLp^`^Ss`4iSaF_ cFUxs2=cL^ 0)iSSiSFSyFb6eLtli~cFcFiStlt kliSFyFiSs`bFj`eLtcFbFt Z(p) «¤ ý§bLk`Y
o E´UY ~(t)¦YT]SiSpcL^~\FbL\FtyFtp U (x, t) yL^`pcFiDkls`g FiSs`tc6
7
z -{z
}|³¶
î
.ç|~,í~³
9¶,çí.ç³´¶~
0
0
§bLk`Yno´UY Sm »Y;IY72,+EJ$7&-9#&-O2)#.aX#!O2dE)#.BY#&-+%#"Fñ Fj>bL^xs`eLiSiS_ jZs`8iStl\FOaUrLtOj s`4iS\FiD4aDiSt_cFs x jSeLyFbFtcF4bFtbc6bbptY8üeL^xtrL_>t¤cFcLbF^`tFyDcLh6^`FyDth6cFbFt~tl¦cF}`b6^zh.\FcLtyF^?ttlp rLI(x, dqrFs`eLiSb6a t) F b F c F b F t cF
∂I ∂U = −L − RI. ∂x ∂t
(17.1.1)
qtyFtL^xrWs`b iSaU\F^vtyFcLt^ pqbFs`piDi`eFhFU F\LbF^S kls`aDt2yL^`m jStcWkl6f4t2s`iSaDiSjvUs`t\FaFbW\FtyFtp2t4aDiDkls`g ü
(C∂U/∂t)
(GU )
∂U ∂I = −C − GU. ∂x ∂t
(17.1.2)
SªS ÖkeLb bLkla6eL]\FbFs`g2s`iSan}6Fi`eLU\FbL£UyL^`jScFtcFbFt
h%
M'x
"+ d© R&ã"5"5
ã
LC
∂2U ∂U ∂2U + (RC + LG) + RGU = , 2 ∂t ∂t ∂x2
cL^`pjD^`t4iStJùAò ò ô ñõ[ÿY yL^`piSjD^`XcFtbFyFt cFtf^`6kheK^Sak^klbLFkliOs`tjS4yFtt4UtyLcF^`bnjSm cFtcFbF_¤ o´UY SY ~¦ ¤ o´UY `Y S¦bjSFi`eLcFbLHFyFtiS` / °
b dU b λ), = −L(Lλ + R)I(x, dx
(17.1.3)
dIb b (x, λ). = −(Cλ + G)U dx
FcûÖtsxcF^bFkl¡bLkljSs`sStiSfy6^iSrLiOjSDF iSyD6h6yFrL^`aUjS^FcF}FtaUcFiSbFs`_?iSFyFtiSyFtjS4iSiiFts iSyDSh6rLs`aUgO^pF^`yFFbFbLjSki^`rLcFbFiOsSaUkh?^`a>a?rFi~eFrFh cFiDcL4^` FyDUh6yL^`j`tl cFb6h b d U b (x, λ) = 0, −µ U (17.1.4) dt sx^`a>b>rFeFh s`iSa6^ 2
2
2
d2 Ib b λ) = 0, − µ2 I(x, dt2
rLt ]SttZyFt{tcFbFtUyL^`jScFtcFb6µh.¤ =o´U(Cλ Y SY U¦ + G)(Lλ + R). 2
'
b (x, λ) = Aeµx + Be−µx . U
oqpqUyL^`jScFtcFb6h.¤ o´UY SY D¦ÖkeLtlrLSts
b λ) = I(x,
p
(17.1.5)
(Cλ + G)/(Lλ + R)(Be−µx − Aeµx ).
qiDkls`i~hFcFcFt A b B iSFyFtlrLtle6hFZsSk¨h yL^`cFbF\FcFz4b DkeLiSjSb6hL4bnm ü
b (0, λ) = A + B, U
] \FtjSb6rLcFiL} b (0, λ) = E b (λ). U XjStlrFh>iSSiSStcFc6iStqkliSFyFiSs`bFj`eLtcFbFt Z(λ) kliSiSs`cFiS{tcFbFt b b (l, λ) = Aeµl + Be−µl . U 0
b (l, λ) = I(l, b λ)Z(λ), b U
(17.1.6) (17.1.7)
h%
$¥¦
#
õ 1
SªÑ
&1ã>xx&ôx$§Ä¨( R&ã"5ôx&1ã$§Â Rxx"§
p^`FbF{tjSs`iSyFiStqDkeFiSjSbFtqjOjSb6rLt b Aeµl + Be−µl = Z(λ)
p
¡ ¢ (Cλ + G)/(Lλ + R) Be−µl − Aeµl .
qi`eLi~ bFj p b γ = Z(λ) (Cλ + G)/(Lλ + R), 4Fi`eLU\FbLrFe6h iSFyFtlrLtleLtcFb6h FiDkls`ihFcFcF?rLjD^UyL^`jScFtcFb6hnm ü
b0 (λ), A+B =E
(γ + 1)Aeµl = (γ − 1)Be−µl .
^S4aFcFt s`tFtyFgaDiScFt OeLbFcFbFb2cL^qiSSiSStcFcFi`tklpiSFyFiSs`bFj`eLtcFbFtS}SyL^`jScFiSt } + G) `s iS rK^ γ = 1 b bFpq6yF^`jScFtcFbF_.¤ o´UY SY ªD¦}n¤ o´UY SY ´`¦§bL4Zbtt= A =(Lλ0,+ R)/(Cλ b B = E (λ) È*ô1ùAòÀôxøBùþ>òBø0÷*ÿ46øB÷7ó/ôx÷7ùxöòBñ""2>ñ""
c
0
rLt
b (λ) U b I(λ) = , Zbc (λ)
i h p b (λ) = E b0 (λ) exp − (Lλ + R)(Cλ + G) x . U
FcûÖiSs`_.iSs jSi`keLeLcFU\L^`Y_£ûÖkls`iSiviSjSs`b6jStrLsScFklivs`jSbF`p tsjSFyLi`^xeLUSttcFklb6aUhiScF¤ to\F´UcFY SiSY _.S¦eLm¬bF\Fc6s`bFiSbnSmfjiScFcFivt_kli~cF6tyLs^`c6iSs`h6yLeL^xivqtb6c6 pbF\FtklaFbF_£k4zke£FyFb }8j\L^Skls`cFiDkls`bn}8iDklsx^`jD^xeLiDklg iSyL^`cFbF\FtcFcFzFi jStleLbF\FbFcFtS}6FiDkls`i~hFcFcL^xh xA→rLi`∞eF cL^Ss`gOyL^`jScL^cF~eLY cFiS{tcFÖbF keLbajStpl4hFaUs`iDg2kls`s`bBtFt¤ j£yFg?k4keLzUk\LeL^`t_n}Lj`eLaUiSb6hFrKc6^ b6h
Zbc =
r
bv4Fy6b6Di~rLbL£avkliSiSs`cFiS{tcFb6
Lλ + R ' Cλ + G
b I(λ) =
r
r
R −1/2 λ , C
C 1/2 b λ U (λ), R
aFjSbFjD^xeLtcFs`cFiD4 6yF^`jScFtcFbFBk]rLyFiSScFiS_>FyFiSbFpjSirLcFiS_ I(t) =
r
C R
0
1/2 t U (t).
x
#´
7
z -{3±
²
h%
M'x
"+ d© R&ã"5"5
!
ã
¶,ç| æ¯
Ly ^`pjSbFs`W^ cFiDiSkjScFiStÖjS4ttrLs`yFi~iSrLScFiS^`cLi ^xeLbLbFklp\F^bLj]keLlteLcFtb6aFh.s`yFmj i6´xbLx4 bFbi~dZrKF^xi`eLFUyFbFiScF{s`teLiSyL^xi eLgSjScFtaU^ _SbFeLi`b eLrLbLqtyFtcF FbL^xeLgScF_?4ts`i~rL 6} YLZklcFiSjScL^xh p^xrK^~\L^leLtaFs`yFi~6bL4bF\FtklaDi` t4tc6 s`i?iSj?^`cLcL^x^2eFFbFiSpjS^Otd2yS6iScFFiDyFkltls`rLbtleLleLtcFtaFbFs`tyFaUiiSrKcF^ FxtcF=s`yL0^` FY bFqb tFρ(x, iDklyFtlt)rKklls`eLjSttaFcFs`cFyFiSiDt^`aFbFs`pbF4jStcFyFtc6 bFlt eLρ(0, p^`s`yFrLcFbFs`tleLgScFiL}iSyL^`plrLi.eLt\FtiSFyFtlrLtleFhFtsSkhja6klFtyFbL4tcFs`t 6eLiSs`cFiDkls`t)g s`iSa6^cL^FiSjStyD6cFiDkls`b
ª
jx (0, t) = −K
∂ρ(x, t) ¯¯ ¯ ∂x x=0.
oklFi`eLgSpiSjS^`cFbFts`iS_ qiSyL4eL}TirLcL^`aUiL}Ks`yFtSSts?yFt{tcFb6hrLbLqUpbFiScFc6iSi UyL^`jScFtcFb6h>jOFyL^`jSiDFi`eLUFyFiDksSyF^`cLkls`jSt ¤ jScFUs`yFb leLtaFs`yFi~rK^D¦ ∂ 2 ρ(x, t) ∂ρ(x, t) =K . ∂t ∂x2
X yL^`SiSs`t DSeLi]FyFtlr6eLi~tcFiu~bFpj`eLt\Fg]aFjD^xrLyL^`s`cF_aUiSyFtcFgL|bFpÖiSFtl yL\Ft^`cFs`iScFyFiSiStqjLU}nyLkl^`s`jSi~cFhFtcFbFb6t.jviSStm b6\L^Sklsh6.s`iSivUyL^`jScFtcFb6h.b.Fi~rKklsx^`jSbFs`gvjvFi`eLD ¸ '(
x=0
1/2 t ρ(0, t)
= K 1/2
∂ρ(x, t) ¯¯ = −K −1/2 jx (0, t) ¯ ∂x x=0
Ös`i2kliSiSs`cFiS{tcFbFtqjOiSSyL^`tcFcFiDWjSb6rLt 0
û
ρ(0, t) = −K
−1/2
0
−1/2 jx (0, t) t
= −K
−1/2
1/2 0 t j(0, t)
1 ≡ √ π
Zt
jx (0, τ )dτ √ t−τ
b eLt eLij£iDklcFiSjS£cFiSjSiSi£8ts`i~rK^leLtaFs`yFi~6bL4bFbnYXkltqbFpbF\FtklaFbFtU^`yL^`a6 s`tyFbLkls`bFaFb¢plrLtklgWjSplhFs` s`i`eLgSaDicL^WyL^`cFbF Ft }c6bFa6^`aUiS_bFpSs`iS\FcFiS_ bF4cLtcFqtiScFyLb6fh£^` F4bFtb?s`i~SrKi`^eLgS{^`t]aFs`cFiStZyFbLbFklpF^`i` FeLbFgSbpSk2tsSbLk¨klhnFY5i`üqeLgSi`p iSklUjD^`xcFtbF=klts`jS0SF}SyFs`iSiObFpSjSirLeLcFiF tyFrLjSyFiSiSt]SFcFyFb6 FiSyDh6rLaDiSjLY 7 ) Æ ~ ! ³Û s! Z^`yL^`aFs`tyFbLkls`bFaFbleLtaFs`yFi6bL4bF\FtklaFb6Skls`yFiS_Lkls`jHbFyFiSs`taU^`]b6¢j cFb66yFiS FtkkliSjjSi4cFiSiDiSFyFtlrLtleFhF]sSkhkljSiS_Lkls`jD^S4bWFiSjStyD6cFiDkls`b£4ts~^xeF eLbF\FtklaDiSileLtaFs`yFi~rK^F}cL^xDi~rFhFt_Lkh¢j£aUiScFsx^`aFs`tWk b6rLaFbL*b6eLbs`jStyDrLz leLtaFs`yFi`eLbFs`iDYTX¢a6eK^SkklbF\FtklaUiS_ s`tiSyFbFbj`eLb6hFcFbFtyL^`cFbF FcL^ FyFi~Si~OrLtcFbFt z -{åä
}æ
Â~
l,| ¬|ï|
0
|ï, ~|
h% 7 &x/x 0|J2'5 + 5Ü&x #M'x
U F\FttyFcFtcF4iS_OtcFLcF^`iSyL^xieFs`eLiStla6eL^gScF\FityFktiDpZ4klbFbL\Fkls`ttklaF4bLO.iSFkliSbLFklyFiSjDs`^`bFtj`sSeLkh tcFbFyLt^` cFbFl\6eLcFtaFiSs`_2yFti`4eLaUbFiDs~kl^Fs`Y#gSüqyF}DbOjSa6s`eLiDz rLt_Lkls`jSbFs`tleLgScL^xhq\L^Skls`gzbL4FtlrK^`cLk^cFt§p^`jSbLklbFsiSs\L^Skls`iSs`}^4cFbLf^xhiSSyL^`s`cFi FFyFiSaUiS^`FpiSyF FjD^`bF]iScLsZ^xjeLgSScLi`^qeLgSt{_nY bFvcLkcFsSiSjStbFkt]eLUa6\Lkl^`Fttjqy6bFbLcF4iSt_cFs`U^`yL¤ ^`cLaF^~s`\FtbFyOcLF^xiSh?jSkztlrLyLt^`c6Sb6iShns`m` Fiq aFTyLi~rL^`_FcLcF^`aDt_i 4tyFtS}j]iSyL^`cFbF\FtcFcFiD>rLbL^`L^`piScFt§\L^Skls`iSsz\L^Skls`iSs`cL^xhp^`jSbLklbL4iDkls`gzbL4FtlrK^`cFk^ eLU^`tyL^`aF}~s`eLttly6ObFp^`StsSbLk h4rLtliSOD^`rLjSi`\FcFcF~eLzt \6bOeLttlcFrLiDbFcFbFkl Fs`tt_nF}tcFcFiSiZjSb6rKY#^ ûÖA(iω) kÖcLF^`iSpaU^`jDp^`^`s`]tls ` s S i q s 6 \ L e t O c η<1 òÒÿDηòBñ>ùJ÷*ÿó÷oøBùJ÷ xññ÷ oõ¢Ý¤ û(ü ¦Y ^xeLbF0\F
â
1
5
#´
1G
7 *
−η
0
*MK :
¬+
¬+
_
¬
%!
1
Z(iω) = R +
.
2
iωC +
1
aR + iωC +
2 a2 R + . . .
üqyL^`aFs`bF\FtklaFb2jS\FbLkeLtcFb6h2FyFiSbFpjSi~rFhFsSk¨h rFeFh2aUiScFt\FcF FtFcFOrLyFi` S t_?k]\FbLkeLiDWyFtaFUyLklbF_ n b?iSsSkeLtl bFjD^`tsSk¨h?FiSjStlrLtcFbFt]yFt{tcFb6h>kzjSiSpyL^Sklsx^x cF6eKbFt^`s`iLn}SYjSzkl^iScFsxbF^paDaFiSb6sS2iSy6\LiS^Sklis`iSrFs~eF^xh2Oa6rL^xtO_LklrLs`iSjS_ bFs`FtliDeLkgSeLcFtlrL^xh2U]\L^Sklts`_2gy6bLt4aFFUtlyLrKkl^`bFcLb?kU^jSjStleLSbFi~\6rLbFbFjDs^`tcLsx^ kh?j a/2 yL^`pSY ^jSzkliSaFb62\L^Skls`iSsx^x FyFtlrLtleLgScFiStZpcL^~\FtcFbFtZbL4FtlrK^`cLk^yL^`jScFi Y vtlOrLWs`bL4b£rLjS68h£FyFtrLtleK^S4bHklbLkls`tf^iS`eK^xrK^`tskljSiS_Lkls`jSiDÕ û(ü k R
$
©G
¬+
h%
`
#´
M'x
"+ d© R&ã"5"5
ã
§bLk`Yno´UY 6m 3?Y%+Yo.B9#&-#$5.!"60Òfo&*Q[.d &*)+2fo!Yo.!$7!HuN#!Y7&*)of/#0*$%J'-9#&*?+$7)+2,5.`ñ FiSa6^`p^`s`tleFt η = 1 − D }§rLt D = ln 2/ ln a dqyL^`aFsx^xeLgScL^xh£yL^`p4tyFcFiDkls`g a6kls`^`iScFs`s`t]iSyFcLiS^jDjS^qz4klcFiSiaFb6tklb2s`jDcF^FbFY plvaFb6cF bLf\L^S^xklh s`\LiS^Ssx^xkls`Og b2Z(iω) kliSiSs`jSiStSsSyLkls`^`jSs`ScFtiqsJFû(yFü iSF¡iSyFj FFbFyFiSiDcL4^xeLtl gScLU^Zs`\LiS\6^x cFiS_HiS`eK^Skls`bnY§©
^`aFbLiSSyL^`piD}fiSSiSStcFcF_£p^`aUiSc<Zf^ rFeFhH{tyFi~SiSjD^`s`iS_ FiSjStyD6cFiDksSb?jO\L^Skls`iSs`cFiD£FyFtlrKklsx^`j`eLtcFbFb>bL4tts jSb6r ý
&G
¬+
−1 b b b b (iω), I(ω) = [Z(iω)] U (iω) = A−1 (iω)η U
^jSiOjSyFt4tcFcFiDWd2kli~rLtyD bFsrLyFiSScFUFyFiSbFpjSirLcFUm I(t) = A−1
η t U (t).
^`aiSsS4t\L^`tsSkh j>yL^`SiSs`t ´ }nkls`tFtlcFcL^xh p^`jSbLklbL4iDkls`g>bL4FtlrK^`cLk^?iSs L\ ^Skls`iSs`bn}LkeLtlrLiSjD^`s`tleLgScFiL}DrLyFiSScF_>FiSyDh6rLiSa>FyFiSbFpjSi~rLcFiS_ klj`hFp^`cF¢kqaUiSc6 eLaFtUtyFtcFcFbF FpbFaUtiS_2_yF\Ltp^SbLkls`kls`iSbFs`jScFiSyL^SiklFb2yFtiD4kls`aUyLiD^`kls`c6cFhFiStsSik¨hFUFs`it_2 FtFFyFbiSs`rLt^xa6eL^`gScF{b6h2tS}Ös`iSFaUyF^FtlOY rLbFtcL\F^xte?SiSi`c \Lk4^Skli~s`iStsxsv^xU_FSs`i`bWeLgS\F{tyFtStY p ýfF^`iSp6jS4tyDt6tcFsSk¨iDhnkls`}cFyFUt/^xeLtgS4cFaUiDtkls`FgLiS}njSFtySiS6s`cFiDiDkls`bHbL4hFFj`tleFrKhF^`]cLkOsSk¨cLh¢^ kcF^SbF4piSaFFb6i` rLiSScFz4b¢eLbF{gHjHiSyL^`cFbF\FtcFcFiD/bFcFs`tyFjD^xeLtWf^Skl{sx^`SiSjL}\Fs`iHjHaUiScFt\FcFiD bFs`^`iSptiS¤ UFyFeKtl^rLtlFeFiShFs`tts2yFgUb ¦Y rLbL^`L^`piScv\L^Skls`iSs~}Lj2aUiSs`iSyFiDbL4tts?4tkls`i?FiDkls`ihFcLkls`jSi
0
1õ7
@
"
#´
}, î
S YÑSñ ª *L÷Y ^`s`tf^`s`bFa6^ rFeFhvleLtaFs`yFi`bvyL^xrLbFiSbFc6tcFtyFiSjLY6d WY m ^~Ua6^F} 62Y (V W;gN_K Í ¾[ íGªN_Ka`¶XZYÂ\ \ I Y Y I Y · ¤n} FO¤ Ñ#´xD¦Y F2Y (V W;gN_K Í 0[ DGªN_Ka`¶XZYÆ\ sJ u I F d"{ Å I d p I 2I mN~ n ;F F }nÑ#´ FY LY S¥?ªFrK i}r¤ § Ñ#´`S¦²Y g`b`Á F I Ym Y I YTªFS} 6¢Y ^rKV ?² Nn NF YNo Y · ³¬}x´`S?¤ ÑD`ªD¦Y ªF?Y ÁsXXZ;`¶X7´ I ~ ¹6·n}¬S ¤ ÑSªDS¦Y ´UY 6ú+òBùð ôx÷77ñxòÀôxo÷ ó o³ñâÝ5Ý ÷ 7oxùJô ù t¾» F§d X*WklLY m Y mvbFynyL^`}naF sxÑS^xSeLF}6k`YLj. qFbFY pbFaUtSIY üqi~ryFtlr
Y ° ('
JG
G
-J Z Y Q $Q3R$X
J
-J
J
1J
QS&1X-TÝQ 9Z
&V" &V
'
1J
ÇJ
J
J
R
J
ù"4
1J
Y Q Z S(V"S(Y
R$
$Z S&Q3T &V"S(Y
$ &
*'
Y Q Z S(V"S(Y
R$X
S(V"
R$0X
S(YÝQ0P$Y P
Ò V 3 Z AS&Q0TÝS(Y
J ù¬J
"J :(
$*M
QS
-J EJ BG
+
"G
Ò V 3 Z AS&Q0TÝS(Y
S(V"
N
Y Q Z 1QR$T X-TÝQS
'
Y Q Z 1QR$X
Z U
ís\ït\ r
u
Ö ãw_5Ö' âæ #æèß Ç
dp
?-
ö
z B{z
¢
î
jgwpyx
î ¶,~~³
¢
î
iS eK^SklcFiaUi`eL4iSiSyFiSjDklaUiS_4irLtleLbi~rLcFiSyFirLcFiS_bFpiSs`yFiSFcFiS_s`UyFSD eLtcFs`cFiDkls`b klaUiSyFiDkls`gqiSs`cFiDklbFs`tleLgScFiSi]rLjSb6tcFb6hOs`iS\FtaOs`UyFSeLtcFs`cFiS_ klyFtlrL} cL^xDirFhFb6Uk¨h>cL^yL^Skkls`i~hFcFbFb r rLyFUqiSsrLyFU^F}
j!bFcFtyF FbL^xeLgScFiS_*iS`eK^Skls`b/yL^Skkf^`s`yFbFjD^`tsSkh*aU^`akeLU\L^`_FcL^xh/FtyFt4tcFcL^xhn} klyFtlrLcFbF_ aFjD^xrLyL^`saDiSsSiSy6iS_ yL^SksStls2kZyL^Skkls`i~hFcFbFtFyFiSFiSyF FbFiScL^xeLgScFi r m ∆u = u(x + r) − u(x),
(18.1.1) 2/3
h(∆u)2 i = C0 ε2/3 r2/3 ,
klaULr i`t_klg cFCtyFd bFSbtcLpyL^z^`tlprL4bFtcFyFbFcL 6^xh>fF^SiDkklkls`i~hF} lcF=cL^x(εhn} ε/v)d?klaDiSdZyFiDaDkli`s`eKgO4rLiSbFiSkyFklbFiSLjDkl^`a6 F^xbFhZbvrFaFeLbFbFcFcLt^Fs`Y bF\Fi`tl iSó s`xjSùJtsSõ kls`jSU]bF_2s`iS_>4irLtleLb?cFtyFts`bF\FtklaFbF_>klFtaFs`y2rK^`tsSkh ÷7ñ÷*ÿ ùôò
0
3
l < r < L.
(18.1.2)
1/4
:(
È
?È
rLt k d jSi`rLeLyFcFUiSiSjS_i`tZkl\Fs`bLiSkyFeLiSiLcF}F^ }8CbFE(k) dp jStaDkli`s`=eKcF4iLCε}4iS\FiSs`yFi iSkjDiSkls`a6cF^xiDh2kl, bFFs`iDtlkleLs`gSi~cLhF^xcFhWcL^xrLhnbLY qUpb6h¢(18.1.3) ¤ rFbLZ qUpb6hWjStaFs`iSyL^vyL^Skkls`i~hFcFb6h4tlOrL rLjS68hFiD4t\FtcFcFz4b\L^Skls`bF L^S4bK¦rLi` j`eLts`jSiSyShFtsOp^`aDiScF¬ ý§bF\L^`yDrKkliScL^ ¤ ÷7ñ ùôò ÇöoùJ÷-ôxõ 4¦ 2/3 −5/3
:(
"4
È
hr2 i = C1 ε(∆t)3 ,
?È
s`itkls`gL}UklUtkls`jStcFcFiSi`eLtt]Szkls`yFzWFiOklyF^`jScFtcFbFk]cFiSyLf^xeLgScFiS_OrLbLqD pbFt_FyFiS FtkkliDY ÖkeLb j>qiSyL4~eLt>¤ FY SY ~¦Fi~rLyL^`p64tjD^`s`g2yL^`pcFiDkls`g klaDiSyFi` kls`t_ FiD4t\FtcFcFiS_OL^`yF\L^Skls`bF n}SFtyFt4tcFcL^xh r klsx^`cFtskeLU\L^`_FcFiS_Ob2qiSyL4eL
(18.1.4)
xª + 4¨ G ¤ FY SY S¦Öklsx^`cFtsOjSiSp4i~ cFzbFcFs`tyFFyFts`bFyFiSjD^`s`gOa6^`a
#´
"
Kõ
(õ R"5x1
üqi~rKkls~^`j`eFh6hklrK^qklyFtlrLcFbF_OaFjD^xrLyL^`sZiSs`cFiDklbFs`tleFgScFiSiqyL^Skkls`ihFcFb6hbFp¤ FY SY U¦} cL^xDirLbL Ft FbLqbFa6^rLbLh(∆u) qUpbFbqi j=s`CUyFSε∆t, ~eLtcFCs`cFiS=_klCyFtlCrLt`}cL.^`pjD^`t4iS_n} rFeF(18.1.5) haFyL^`sx aUjSb6iDkl6s`yFbnt}_vù yLB^`ô pcFvòBñyLùJ^`pñ4÷ tyFiSjL}KklUxtò kl s`jS¤¥U© ]ð¦}b6iS SDj2k eLs`iSUj`yFeLSt~cLeL^ÖtcFrLs`tcF_LiSkl_s`jSklbFyFttl rLtScLxY ^ý4\L^S^Skklkls`s`bFi~ Fh6 cFaUiSbFyFtiS4s`tlaDOiStÖrLqs`i`rLeLjSgS6aU8i]hFFiryFiSrLStcF_Lzkls`4jSbbF\Ltv^SkljSs`b6bF6 LyS^Shn4}~byL4^`pi~4ttyFsqklUaUiSs`tiSklyFs`iSjSti]cFcFklyLi]^`bFjSpcF4bLt4cFbFs`kÖgDlk¨hsSbFp ^ yL^Skkls`i~hFcFb6tY qt.rK^xeLgS{tZrFyFUiSsrLyFU^s`b>\L^Skls`bF F}Fs`t£Si`eFgS{tZyL^`p4tl yFyL£^SkkljSs`b6i~6hFyFcFtb6_nt }~yL^`4pcFtlOiDkrLhFvcFb6bL4b6bnYnrLXyFUyL^SiS4s]a6^xrLvyFUa6leK^F^S}~ks`kltbF \FtkklSaUi`iSeL_gS{s`ttiS_yFbFklaUbiSyFrLiDbLkls`qgSUpyLbF^Sbkls`sxt^xs aUiS_qtaFsZl4itsZSs`g]rLiDkls`bFcFUs]jSjStlrLtcFbFtvp^`jSbLklbL4iDkls`baUiSqbF FbFtcFs~^ rLûÖbLs`iSs qFUiprFbFDb i~Dr SiSsOeviSbLs`cFklFiDi`klbFeLs`gStlpeLiSgSjDcF^`c? j aDFiSbFiSiSyDcFrLtbFyLcLklaD^`iSs~}F_ sxyLY tS^`YLSiSiSs s`t yL^Sý§klbFkl\Ls`^`i~yShFrKcFklb6iShncLm ^ D =}FD(r) p^`Fb6 Y k^`jS{ti>UyL^`jScFtcFbFtrFeFhW6eLiSs`cFiDkls`b.yL^SklFyFtlrLtleLtcFb6h p(r, t) keLU\L^`_FcFiSi yL^Skj kls`i~hFcFb6h£4tlOrL.L^`yFiS_\L^Skls`bF FyFbL4tklbn}4cL^xDi~rLbFjS{b6DkhWj4iD4tcFs t = 0 i~rLcFiS_>s`iS\FaDtS}FjOjSb6rLt · ¸ h(∆u)2 i = C0 ε2/3 hr2 i1/3 .
2
2
4 6*4*
2
0
'
1/3 1
*M5 "%94: 0M
"=
0
∂p ∂ ∂p D (r) = ∂t ∂r ∂r
{kaUbFiSyFbFcF¢qbFrL FbLbFtcFqs`UiDpbFiSrLcFbLcFiSqiULpbF^`baUtDsx^ (r)∆(t)∝ rFi p}K^`aDkliSiSiScFs` jStsSkls`jSU]bL£UjStleLbF\FtcFbF 4/3
lk Utkls`jStcFcFY
i©niStiSseLyFbFts`\LbF^`\F]tklaFtbW4Dsxk^`h#aUiSiStOsFiScFjSiStlyLrLftcF^xbFeLtOgScFcLiS^`{ieLrLi bLiSSqiDklUcFpiSbFjDiS^xcFcFcFbFiStijvbFpp^`jSaUtiSklcLsx^ ∆(t) ∝ t cF yL^`SiSsx^x wY OYUqi`eK4iSiSyFiSjD^qb?wY WYF]SDDiSjD^qaU^`a?keLtlrKkls`jSbFtZb6FiSs`tp ikls`kjS^St4cFiScFFzi~rLiSyLS^`bFpb4eLtyFiScFa6z^xeLWgScFLiZ^`yLbF^Sp4iSs`tyFs`yFiSFiDWcFiSd _kls`aDUiSyFyFSiD~kleLs`tgScF¢s`cFrLiDbLklks`klbnbF}`LiS^`F FyFbFtlb>rLtls`eFUhFyFtS4iSeL_tcFtls`rLcFbFiSc6_ cFtyFbFb ε ~ Y iSiSs`cFiS{tcFb6h>¤ FY SY U¦¬b ¤ FY SY S¦nFiSaU^`pjD^`]sx}\Fs`iqjZs`iqjSyFt8hn}xa6^`aFi` jStlrLtcFbFt iSs`cFiDklbFs`tleLgScFiS_WklaUiSyFiDkls`b rLjSD \L^Skls`bF kiSjD4tkls`bL4ikOSyFiSUcFiSjDklaDiS_ yL4^`i~s`rLiStlyFeFcFgStzcFbLiSkyLkfeL^xtleLrLgSiScFjDiS^`cF_ b6rLhObLjq KUFpbFi~b?rLs`jjSti~yDrLOcFiSrKyF^`i]rLscFiSl_?sSiUkl¦sx}S^`yL F^SbFkiSklcLs`i~^`hFyFcFcFbFiSt]_?4klyFtlOtlrLrLtOO¤ÅeKcF^`bLS4i`b jStlrLts?klt~hbFcL^\FtSmKti>klyFtlrLcFbF_aFjD^xrLyL^`s2FyFiS6iSyF FbFiScL^xeLtcs`yFts`gSt_ kls`tFtcFbnY ÖklyFktleLrLbtqyFiSt`\FeKgZ^`jSaUt^Fkl}Us`s`biOi]iSeLc?bFFcFyFtiS_FFcFiSiDyFv FyLbF^`iSpcL4^xteLyFttc r rLbL}6s`qiSUrKc6^rLbFa6yF^`Ua>]jcFtiSyLi]fj]^xs`eLUgSyFcFSiDeLtkcFeLs`UcF\LiS^`_ t s`iSs yL^`p4tyyL^SksStls2FyFiSFiSyF FbFiScL^xeLgScFi t t mKR© ð/hFj`eFhFtsSk¨hvDklaDiSyFtcFcFiS_ rLbLZ qUpbFt_.¤¥klUFtyDrLbLqUpbFt_L¦lY ∆(t) ∝ t3/2 ,
1/2
1G
'(
'
B *
3/2
1/2
{:eo #xxx ?- ; "¥ Ã
"
G
ÜÇ x ¢ ³Û ¢
õ (õ R"5x
ï~,~ì î
z B{3±
#´´
#õ
î ¶,~~|
î
yFbL4tcFs`iD^~\F}StiklrLs`cLjSt^`cFaUcFiqi>s`iSFsi`eLU^`\FaFts~cF}`cF\Fs`tOijSjqi{rLcFtOiSyFy6ti~prL~cFeLiSgx_s~^`js`klyFtlkrLiScF teK ^SklkliSyFjDtl^~rLeLtbLaUkliSg kqa6bFkl FFb6tl tcFs2rLbLqUpbFbrLi`eFtc p^`jSbLklts`g?iSs>yF^Skkls`i~hFcFb6h 4tlOrLv\L^Skls`bF L^S4bn}nkliSplrK^x jDyF^xte¢peLiSgxFsxyF^`tls`rLiStljLeLY tcFcFt FyFiS`eLt4 jHqbFpbF\FtklaUiS_
G
Á
−µt
∂p(x, t) =µ ∂t
Z
K(x − x0 ) [p(x0 , t) − p(x, t)] dx0 ,
kcL^\L^xeLgScFzSkeLiSjSbFt }`aUiSs`iSyFiStrLiSScFttjSa6eL]\FbFs`gjFyL^`jSU \L^Skls`gOUyL^`jScFtcFb6hn}6Fi`eLi p(x,bFj 0)p(x,=t)δ(x)= 0 FyFb t < 0m ∂p(x, t) =µ ∂t
Z
K(x − x0 ) [p(x0 , t) − p(x, t)] dx0 + δ(x)δ(t).
iSiSs`jStsSkls`jSU]ttÖUyL^`jScFtcFbFt§rFeFhs`yL^`cLkqiSyLf^`c6sS UyFgStS}~s~Y tSY~U^`yF^`a6 s`tyFbLkls`bF\FtklaDiS_qUcFaF FbFbW¤ ¦
Ñ+
¦+
Z
bL4ttsOyFt{tcFbFt n h i o e pe(k, t) = exp −µ 1 − K(k) t . X4i~jS tlrFc6hqicFUiSSjStlrLt§bFs`FgDtyFkhnt4}U\6tsScFicFU^`tÖyLkl^`iSa6iSsSs`tlcFyFiScL{^xth2cFrFb6hLeFh24b rLbLz=qktUpbFiScFb cFPe (z,Ft)yFiS= Ftpkekl(ztiSj^SklbL4, t)U } rLs`iStleKs`bF^ \FtklaU^xh ^`jSs`iD4i~rLtleLgScFiDkls`s`gZyFyFttlS{SttsOcFb6jShn}`Fs~i`Y tSeLYScFkltUcFbUh tklSs`jSkeLiSiSjDjS^`b6cFhbFtcFtcFeLtjSiSiZFyFtl pe(k, t) =
eikx p(x, t)dx
1/α
Pe (z, ∞) = lim Pe (z, t) t→∞
e |1 − K(k)| ∝ |k|α , k → 0.
−1/α
4¨ G
x
#´
"+
(õ R"5x1
Kõ
SrLts FyFb α ∈ (0, 2] ¤ jScFt s`b6 FyFtlrLtleLiSjvirLcFivbFp iS~hFp^`s`tleLgScF R rFeFh /X¢Sk eLkeLUiS\LjS^`bFtq_ bFK(0) peiSs`yFiS=6cF1iS_>b rLbLeqUpK(k)dk bFeb ≥ 0 cL^`yFU{^`tlsDk¨hK¦Y
e K(k)
+
+
−ikx
e 1 − K(k) ∼ B|k|α , k → 0,
b eK^`jScF_ ^SklbL4Fs`iSs`bF\FtklaFbF_v\6eLtc
fe(k, t) ≡ Pe (ktν , ∞)
rLiSj`eLts`jSiSyDhFtsUyL^`jScFtcFb6
dfe(k, t) = −B|k|α fe(k, t) + δ(t). dt
§i y6t{tcFbFt e FyFtlrKkls~^`j`eFhFtsvkliSSiS_ bFfp(k,iSs`yFt)iSF=cFiSexp i>D{−B|k| kls`iS_F\FbFjSt}iSi>yL^SkFyFtlrLtleLtcFb6hWkFiSaU^x p^`s`tleLtüq yFαb Y iSSyL^`tcFbFts`iSiUyL^`jScFtcFb6h bL8ttsjSb6r2iSS\FcFiSiZrLbLqD pbFiScFcFiSiUαyL^`=jScF2tcFb6h¤ −|k| dWFyFtiSSyL^`pliSjD^`cFbFt UyFgSt>iSFtyL^`s`iSyL^ ^`6eK^Sk^ ¦}FFyFb α 6= 2 Fi~hFj`eFhFtsSk¨h>rLyFiSScL^xh>kls`tFtcFgOeK^`6eL^SklbL^`cL^Fm 4
α
Ç+
+
2
Â
3
∂f (x, t) = −B(−4)α/2 f (x, t) + δ(x)δ(t). ∂t
(18.2.1)
4t{tcFb6t>tijSyL^x^`tsSkhW\FtyFtp x 4tyFcFU6eLiSs`cFiDkls`gbFpiSs`yFiSFcFiSiDkls`iS_6 {\FbFtjScFiSbFti yL^SklFyFtlrLtleLtcFb6h¤ yL^SklFyFtlrLtleLtcFb6h tjSb6 tleFg`rLt_Lf^D¦ g (x; α) kliSiSs`cFi` f (x, t) = (Bt) g ((Bt) x; α), α ∈ (0, 2]. ðbLklFtyLklb6h>s`iSiOyL^SklFyFtlrLtleLtcFb6h StklaDiScFt\FcL^F} ý
B
å+
3
−3/α
−1/α
3
hX2 i = ∞,
bkeLrFtlrLeFShtlsOD^`jSyL^`SaFyLs`t^`yFs`gbFprL^`yF FUbFbU¡yL^S4kl6teLyF?jDt^`cFiOb6{hvbFrLyFbLbFcFq}FUpcLbF^`iSFcFyFcFbLiS4ti2ynL}F^`{aUbFtyFsxbF^>cFkl?i?cLjS^yFtjS4ztklcFiSts` t }~b6eLbyL^xrLbFSkkqtyF }xkli~rLtySO^`t_p^xrK^`cFcFUjStyFihFs`cFiDkls`g Yx«~rLU\Fb h∆ FiScLyF^xiSeLFgSiScFyFi FbFiScL^x}FeL\FgSs`cFi2zkl4iSbOeKrL^SyFklUSRztsSrLkyFh>UkqDp}U^`4aUtiSyFcFiDn s`ý§b?bFyL\L^S^`klyDs`rKUklsiScLkl^ijSFyFyFtb 4tlcFtWFpyFY iS÷ FiSyF Fb6 t α = 2/3 h
p
ÿ!ßDû åT.èøÙÝQùvQå å ú YÝQçQÝåû«ý.å¬ü.éQé"ãäQåVßÙÝQý.þ½ÞVåÚ.ÚÜãVè"éQß Ú äQú Ý«ç"þÚÜèQçYûß Ú.ú.Þ ã¬ú ÝQéQÿ¼åÙÚUç"ÝQêþâ.ß Ú.åV"Ýä ÞQ}ßÙÝ[ãþ½êåVãúãÝQà åVéQä åVQ®ÞÚÚ è"è"ÝÝQú ûúÿoéQÿ!Ú.Ú ä û ú ú .ãÝQÝQÞÙÚ Ý[ûë!éQ½ã?åþ½åVÞú ãþ½ú åVÚ.åVä"ý äQèßáå àß?ú ãQÝYÝ?Ú®âä"Þ åVßú ýÜÚ.ú ûýéèã?ç ß ®æ ú Þ®û ß ãQê«ÝÚ à[úÞ ã®è"ÞÙæVûÝQä"Ú.ÿ ß ã 0ãVßÙþQÝ"â2Ý?åVè"æVä ä"ß ½.ßÙåä"â ßÙþQQããÚ.äQåVæÝ Xú ãÝQÞUþ éQäQÚÜè"ÚÜç"Ú ú åVÞVé"ßáèßÙãê ú è"Ý ú éQÚ.ä ú ÝQÚ FãåþQß ú ßÙÚ.ã ú à 1/α
h(∆u)2 i
α→2
hr 2 i
7¨ G "¥ á
(õ R"5$§½
?õ
"§Çõ"ôx(5⯠§ ã>5
õ
#´oÑ
s`b6>UyL^`bFjSpcFbFt\FcFtb6klh6a6>^xhkljSbFi~cFrLs`bFtsSyFkh>FyFavts~s`^`iD F4b6Sh/}F\FyFs`i`i2eLb!keLUrL\LyF^`iS_FScFcFiS_ts`klyLs`^`ttFaFts`cFiSbyFbFeKbv^`6\LeK^S^Sklkls`bLbF^` ncL}L^¢kli`j iSs`jStsSkls`jSU]b6Hs`bLFyFiS Ftkk^S}ÖjiSseLbF\FbFtiSsWSyFiSUcFiSjDklaFb6s`yL^`taFs`iSyFbF_ kl¤ αs`t=yF]2¦¦}FcFDtq^`iShFs`j`bFeF\FhFt]klaFsSb kh yLcF^`tpFSyFyFiDtyFk^`cFjScFcFztq4jObn}LF^OyFiDFklyFs`tlyLrK^`klcLs~kl^`s`j`jSeFtShF}6]hFs2j`eFklhFiS]SiSsS_>khvklkDeLklUs`\LaF^`bW_FcF¤ a6zeK4^xb qyL^`aFsx^xeK^S8bnYXFi`eLc6hF]^xhsx^`aDiStfrLjSb6tcFbFt§\L^Skls`bF L^cFtaUiSs`iSyFiSt§jSyFt
haU^`a SjS( cFtpu~^`s`FiScFFi \Ftu~sSkeLhnt|.sx^`j tsFiS|?aFyFcLt^2kls`ScFi`eLiDklgSs`{biStiSs`yLcF^SiDkklkbFsSs`itlhFeLcFgSbFcFti.bcFcLtS^~\Fi`eLbFgScL{^`tb6s Wu~yLs`^`iSpF4sx^`tyFs`gDiSk¨jLhn}4|?p^`sxs`^St Y ©
^`aUiS_>s`bF rLjSb6tcFb6h b cL^`pjD^`]svu~Fi`eLts~^S4b tjSbn|~Y +
?-
ö
z B{åä
¢
î
î ¶,~~³
î í,|æ
ï³
¢
î
ç|
tlO^`bFtj£iDklcFiSjStvrLyFiSScFi` rLbLqtyFtcF FbL^xeLg`cFiSiWUyL^`jScFtcFb6h<s`UyFSD eLtcFs`cFiS_ rLbLqUpbFbv¤ FY 6Y ~¦4kliSiSs`cFiS{tcFb6hv¤ FY SY S¦ ¤ FY `Y U¦8iSs`cFiDk¨hFsSkh a2yL^`pl jSSbFtkls`aDiSiS_OcFi~trL\FcFcFiSyFLi¦ZrL\FcFbLiS_keKs`^xUm yFSý4~teL_FtcFcFi`s`eLcFg`iDrKklks`^ b bWFyFiSbs`yLrL^xiDklsx^`^`]s`iSs\FklcFsxi^`s`jSbLzklkls`iSbFaF\Fb6t>klaD¤¥iSqt?iSyLk^Sf4^xiSeLFgSi~cFrLiZi`d SUbFyLtS^`}njScFUt^`cFyLbF^`taFs`¤ tyFFcFY 6iSY t ~¦ZrFeFFhWyFtlbFrKcFklsxtyF^`j` FeFbFhFiStcFscFiSu~aFiyFUbFFcFcFs`tiSyFptjDyF^xc6eKbL^vkl\Ls`iS^StSkls`|iSiSs~FY bLüqki^`cFbFs`t iS_rLbLFyFbFq\FUbFpcFb6t iScFcFiSi FyFiS Ftkk^FYKX¢iS`eK^Skls`b tf^xeL yL^Skkls`i~hFcFbF_kla6^`pjD^`]sSk¨hviSs`a6eLiScFtl cFs`b6iDh£¡iSkls.jSb64rLitrLs`tltleLeLb£gDklrLs`jSjSb6StstlcFa6b6^`h aWeK^`tjSSbniSyL}8^`iSs`SiSDyFkcFeLiSj`t2eLbLtcFkkcFeLtlt2rLiSj`jDeL^`b6c6hFb6cFhnbF}8ts~B^`a£j`hFb£paD\6iDbLklks`eLbtcFd.cFiSiSt 4i~rFtleLbFyFiSjD^`cFbFt F>} Ñ YLXa6eL]\Ftc6bFtjOUyL^`jScFtcFbFtqkeK^`l^`t4iSiOkZj`hFpaUiDkls`gS
'
Ñ
-
∂f + B(−4)1/3 f (x, t) − η4f (x, t) = 0 ∂t
U \FbFs`jD^`ts 4i`eLtaF~eFhFyFcFUrLbLqUpbF}FiSsSjStlsDksSjStlcFcFUBp^hFj`eLtcFb6h FtyFt4tl O^`t8iDðkls`iSb Fi`FeLyFcFb bFaUjiStcFtiO\FcFcL^~\L?^x\FeLbLgScFkeKz^xSý4kteL_FiScFjSi`bFeLtg` rKk^FY
(18.3.1)
jSFi`eLcFbLFyFtiSSyL^`piSjD^xcFbFt UfyF(x,gStqF0)i =FyFδ(x), iDkls`yL^`cFkls`jStcFcFiS_ FtyFt4tcFc6iS_ +
df˜ + [B|k|2/3 + ηk 2 ]f˜ = 0, dt
4t{tlcFbFtFyFtiSSyL^`piSjD^`c6cFiSiUyL^`jScFtcFb6h ý
f˜(k, 0) = 1.
(18.3.2)
bL4tlteLtg`s*rLjStb6_Lrf^ Fk yFiSbFpjStlrLtcFb6hrLjSDU^`yF^`aFs`tyFbLkls`bF\FtklaFb6 qUcFaF FbF_d tljSb6 b l^DkkliSjSiS_>qUcFaF FbFbnYüqyFbvf^xeL ¤ Si`eLgS{bFtqyL^Sk kls`i~hFcFbUhK¦f eK^`jScFαU<= yF2/3i`eLgj?¤ FY LY S¦4bFlyL^`tskeK^`l^`t4iStS}SkliSiSs`jStksSkls`jSU]tts`Uy6 SeLtcFs`cFiS_>klUFtyDrLbLqUpbFb>k α = 2/3}6FyFb>Si`eLgS{b6 k ¤¥f^xeLtZyL^Skkls`i~hFcFb6hK¦ 2/3 2 f˜(k, t) = e−B|k| t · e−ηk t
+
'
q
SS + 4¨ G R 5x d{lt^cFDbFktqkliSbLjS4iZttks eK^`jSlb6^`rvt4kliSjStSt}~yFiSs`FaFbLb>klrLjSjDD^`?]yL^SbFkl_FyF4tli`rLeLtlteLaFt~cFeFbFhF_ yFcFUrLbLqUpbFYD]SttyFtl
"
Kõ
(õ
"
1
³ ´ ψ(x, t) = (Kt)−9/2 g3 (Kt)−3/2 x; 2/3
b
³ ´ χ(x, t) = (ηt)−3/2 g3 (ηt)−1/2 x; 2 : f (x, t) =
Z
ψ(x − x0 , t)χ(x0 , t)dx0 .
SeLtcFs` cFiD^~kl\Fs`tb kls`FjSi`teLcFUcF\FitFcLi~^ADiý4OYLq^xh2yL^`iS_F F\FtcFcLa6^`cF^iDyFi`eLj b yL4^S4i`eLa6t^xaF?eFpcLhF^~yF\FcFbFiSs`_?tleLrLgSbLcFiOqSUi`peLbFtb?tjkeLs`i~UOy6 cFcLiS^2Fi?yFj bL4ft^`cFs`ttcFfbF^`bs`bFrL\FyFtiSklSaDcFiD<v6FeKyF^`iScFbFtOpqjSi~iSrFyLcFf^x¬eL}KbFFpfirF^ Di~r
}KYFy6tl^SrFkleLs`i~i~hFtcFbFcF_n}K_ iDklXZcFiSY jDq^`tcFcFcFiD_ } Si`eLtt£FyFiSpyL^\Ftc!jkls`iU^Skls`bF\FtklaUiD k4zkeLtHb!FyFiDkls¢jjS\FbLkeLbFs`tleFgScFiD iSs`cFiS{tcFbFbnY R3
Â
=
?-
z B{/ë
76 ¢
| ~|
¹6 Ø
ì,,~𳶷~|ì| |
î ï~,~}ï·
l,~
|çBE
ü!#"%$&(' "%)*+$+,.-/102+34+56+*"%-8789;: <-+=?>@ 8,BA<5B<-8)'45878:4$CD&(789E"%)<)76F " )78G8' "%-+'H"4<+02+I8JB+K+78'L)$58K+$ /B'4=8)=8+34MJB*+76N('4=876OP=B
Ô 2
"¥ ò
K1
!vw1v Px+y1z1xõB{|"y1x+y1z"§
!|"x ~},6wã$|
+d8`
ýQ<+"%I856'%JB'%/B'4=876OpNP'YZ4)+34f-6/1<+"4"4<8,8+) /B78G8=8RH'Y+)i=8+5B0Q</BU+=6+34B,8$ JB+*/B'4)*++5O6F CD)E$5B<*+=8'4=876OB0"iJB58+K+=8R027TI858+78:4*+JB=8R027,Q<E02=8+3%02'458=8RH'#78:4+)58+I8=6RH' $"%)+98G876*+RH'D5B<+"%I858'%JB'%/B'4=876Ofo($5B<*+=8'4=876OB0["H/1<I6/1<+"%7B<=80E*gJB58+K+=8+9i"%)'4I8'%F =87XuZ4)0]7?"%"%)+78)i/B+3478-6
1 1 ∂u ¯ (−4)α/2 u ¯, +u ¯∇¯ u = − ∇p − ∂t ρ
α ∈ (0, 2],
(18.4.1)
3JB' op<=B</B+3YG87B" /1¬ < ý2'498=8/BUJ1"4<8,15B<*+=8RH9k' 02$pI8587 qr: <+02'4)7B0,G8) α=2 5 <: 02'458=8"%)UE+I8'45B<)+5B< B ' % " ) E U 8 J B / 8 7 8 = ? < ? * % " ) 4 ' 8 I 4 ' 8 = 7
t s X M c )4/B78G878'pI6+-6<F 4α/2 −α : <)'%/8O +)f-6/1<+"4"%78G8' "%-+34f:4=B<G8'4=876OEa\+:4=B<GB<'%),BG6)+i+I858'%JB'%/8O8CD&('4'jqr-+=6F α "%)78)$)78*+=8+'t$5B<*+=8'4=878'L)$58K+$/B'4=8)=8+9P"%58'%JBRm+)4/B78GB<'4)+"O(+)D-6/1<+"4"%78G8' "%-+34 =8U+CD)+=8+*<(: <-+=B<(345B<JB78'4=8)<8X ýQ<: 02'458=8"%)=8RH9[<=B</B78:\$5B<*+=8'4=876OWq ` d8X
BX `tDI85878*+ JB78)#-?Z4=8'45834'4)78G8'%F "%-+02$j"%I8'4-8)58$
E(k) = C¯ ε¯2/3 k −γ , I8+-<: <)'%/BU
Ô
γ = (9 − 2α)/3
-+)+58+3%\/B'%Nf78)f)'4I8'458Ui*f78=8)'458*</B' >@ 8, t X g'4*<Oj345B<=876lB*L7?I6/1<: 02+9@ ` eXns/B'4'f)+34B, , ts*fI8587B"%)'4=8+G8=80V" /B+'g)$56F +K+RHG8=B<Oj=6U+CM)+=8+*
1 1 ∂u + u∇u = − ∇p + ∂t ρ cD=jI85878*+JB78)\-#"%I8'4-8)58$
0
µ t 4u,
µ ∈ [0, 1).
E(k) = C¯ ε¯2/3 k −γ "MI8+-6<: <)'%/B' 0
âå ú Ö ãSê ß Uè"Þ ÚÜç"êV®æVÞäQßÙåVÚ.ãã ú ûà þú ß éQÚ.®þQÞãßáäQç åâ Qã"å ßÙþQç"Ú.å ýÜnß.û þ½ú.åVú ãååVÞVäQå åVý.ú åDÞVå éQäQú Ú.ãÞ ÞVå¬ãVßÙûÚ.äQã æÙûáç"Ú Qã Qå ú ãÝ éQÚ.äQÚTâÚÜÛßÙÚ ~ s
γ = (5 − 3µ)/(3 − µ),
L #
% D%
E
4¨
.|B|
+da
KõB{+v(õx+y"6y1w11
+K/1<+"%)U?:4=B< G8'4=8789]-+)++56+34bq `+,s>@H/B'%Nf78)[)'4I8'458Um" /B'4*+)["%)<=6J1<58)=8F 34p:4=B< G8'4=876Om>@8X!02K+78=87858$OEZ4)7?JB*<jI8J8A J1<8,n<*+)+5EI85878*+J878)p*<587B<=8) +K++K+&('4=8=834;$5B<*+=8'4=876OWg<*+U+'%F~L)+-"4<8,2"%JB'45NP<&('434;JB58+K+=8RH'#I858+78:4*+J8F =8RH'g-<-#I8\*+58' 02'4=87,8)<-#7#I8\-++5+JB78=B<)<+0
∂u 1 1 + u∇u = − ∇p − ∂t ρ
0
µ α/2 u, t (−4)
(18.4.2)
3JB' I8587 , I8587 7 "%++)*+'4)+"%)*+$'4)MI8'458'4=6+5B0276F α ∈ (0, 2] µ = 0 µ ∈ [0, 1) α=2 58+*<=8=802$i=B<(JB58+K+=8RH'!5B<: 02'458=8"%)7#*+58' 02'4=87p7jJ8/B78=8RG87B" /B$h2'498=8/BUJ1"4<8X !'458'4=8"gZ4=8'4583%787;*i)<-+9;02 JB'%/B7k+)iK+/BU+S(76A#0Q<+"%S()<K++*\-;02'4=8U+S(7B0W5B<+" F &('4I6/8O8'4)+"~OV=B
?- z B{
76 ¢
| ~|
(Û
ì,,~𳶷~|
î ï~,~¥H ~|³¶·ÂE
k
g<I802=87B0,G8)m¦%§¨+©ª1«%ªB¬1« L«%BªB®¯1°±²¨#*p-6/1<+"4"%78G8' "%-+9?)'4+58787?)$56F K+$ /B'4=8)=8"%)7#I8/B$GB<'4)+"Oj78:!$5B<*+=8'4=876O#g<*+U+'%F~L)+-"4<
1 ∂u + u∇u = − ∇p + ν4u ∂t ρ
7#$+" /B+*+76Oj=8' "Nf7B0Q<'402"%)7#Nf76JB-"%)7
I $)' 0#5B<:%/BNP'4=876OgI8/B'49 8 )$<l87871t
u
7
∇u = 0
p
=B<"%58'%JB=878'L-02I8+=8'4=8)R[7YI8$/BU"4<l8787iqM/B$-6F
¯ + v, u=u
p = p¯ + p˜.
N1 m
ªf "¥ ÿ
({+w1vy1w ³.z
u
nx+{+x+y÷1zB|6#y1w1x-õB{|By1x+y1z1x
GÜ
x 1y1w6#³.|
+d+
cD=B
∂u ¯i u ¯i 1 ∂ p¯ ∂ +u ¯j =− + ν4¯ ui − hvi vj i, ∂t ∂xj ρ ∂xi ∂xj
(18.5.1)
∂u ¯i = 0. ∂xi !58+l8' "4"!5B<+"%I6/BRH*<=876OpI8$ /BU"4<l8787 ,1*++:4=878-8S('49p*i=8'4-+)+58+9k0Q</B+9p+K/1<F vi "%)7p"%58'%JBRg,83458$K+\02Nf=8\+I87B"4<)U\$5B<*+=8'4=878' 0[JB7Bg!$:4787
∂vi = K4(vi + u ¯i ), ∂t " +I8"%)<*/8O6Oj-+)+58+'g"!$5B<*+=8'4=878' 0m=8'4I858'458RH*+=8" )+7 %
(18.5.2)
∂ ∂vi + (vi vj ) = 0, ∂t ∂xj
I8/B$G87B0
∂ (vi vj ) = −K4(vi + u ¯i ). ∂xj
(18.5.3)
cDK++K+&P<Oh$5B<*+=8'4=878'fq ` d8X >6X a+t=B
*02' "%)pq ` d8X >6X tI8/B$G87B0
∂vi = −K(−4)α/2 (vi + u ¯i ) ∂t
∂ (vi vj ) = K(−4)α/2 (vi + u ¯i ), ∂xj
G8)fI8" /B'!$" 58'%JB=8'4=876O#I8\I8$/BU"4<l876OB0[J1<'4)
∂ hvi vj i = K(−4)α/2 u ¯i . ∂xj u58'4:4$ /BU)<)'Y*02' "%)Eq ` d8X >6X `tI6/B$GB<' 0VJB58+K+=8FJB7Bg!'458'%=8l87B</BU+=8RH9 <=B</B+3M$5B<*+=8'4=876Oj2'498=6/BUJ1"4<
¯ 1 ∂u ¯ ∇¯ ¯. +u u = − ∇¯ p + ν4¯ u − K(−4)α/2 u ∂t ρ
(18.5.4)
!58'%JBI8" /B'%JB=8'4';" /1<3%<' 02+'k*mZ4)0´$5B<*+=8'4=8787]+)=8"%78)+"Ob-^02/B'4-8$/8O858=6+9 JB7Bg!$:4787,Q+)5B<NP<CD&('49W!78:478G8' "%-878'k"%*++9B" )+*
4¨
.|B|
+d
?- z B{
¢
î
E
KõB{+v(õx+y"6y1w11
"!
!
7B"X` d8X `+6µH¶4·¶ ¸¶4¹ º»¼»½»¾¿À8Á
nï
|³¶|E|ï¹
´,í,~
u=8'4-+)+58RAE" /B$GB<O6AE" /BNf=8RH9?I858+l8' "4"\=8'458'434$ /8O858=8+34#)$58K+$ /B'4=8)F = +34;JB*+76NP'4=876OV$ JB+K+=8EI858'%J1"%)<*+78)U?*E*+76JB'jJB7Bg!$:478+=8=8+34kJB*+76NP'4=876OV* 8 JB'4)'45B0278=87858+*<=8=8+9p"%58'%JB'Y"!: <*+7B"O8&('49j+)f-++5JB78=B<)f"%-+58"%)U+C(X8 G87B" /B$ )<-876A;02 JB'%/B'49EI65878=B<J8/B'%Nf78)p0JB'%/BUh¡Y58'498:478=B
hN i =
p
t
5B<*+=8
2Ky t/a;
a+t"402'4&('4=878'(GB<+" )+76l8R *JB/BUf"%7 +I858'%JB'%/8O8'4)+"OpJB/8'49k=8' "%-02I8'4=B"%76F ∆x x 58*<=8=8RAhI8$ /BU"4<l8789
P ∼ δN/N Kx ≈
t" /B$GB<98=B<Oj*+'%/B78G878=B<
δN
(∆x)2 (V0 t)2 P 2 = ; t t
I8JBG878=6O8'4)+"~Op3 <$"4" +*++9j"%)<)7B"%)78-'
*µ
δN N
¶2 +
∼
1 hN i
{ f "¥
0&
(z
#õ z"§;
('
'
1w6w16w1Æ 6x&ô1x+y1z"§
+d>
<*+)+58R¤I85878SY/B7k-k*+RH*+JB$+,8G8)j+I856'%JB'%/B'4=8=8RH9k+K+RHG8=8R0W+K+5B<:40T-+Z g!76F l878'4=8)PJB7Bg!$:4787j*JB/BU
x
Kx =
V02 t V 2 ta V 2a = p0 = p 0 t1/2 hN i 2Ky t 2Ky
* +:45B<+"%)<'4)k"%k*+58' 02'4=8' 0,-<- √ ,n);' "%)UB,n7B02'4'4)E02' "%);"%$I8'45JB7Bg!$:478+=6F + t =8RH9#58'%Nf7B0X JB'%/1<=8=8RH'I858'%JBI8/BN('4=876O, JB=B<-B, /B'434-I8JB*+'45834=6$6)UH-85878)78-'+X L" F /B7 op"%58'%JB=8'4'\*+58' 0O,.-+)+58+'PI858+*+ JB78)hGB<+"%)78lB<j*jJ8=80^" /B+'+,.)jG87B" /B τ I8"%'4&('4=8=8RAh'4C" /B+'4*\:
t
hN (t)i = t/τ
I858"%)p± ®¯BŪB®\ÆÇQÈP°iI858+I8+58l878+=B</BU+=8
t
X1ÉY+5B02$/1<
hN (t)i ∝ t1/2
7B02'4'4)W02' "%)T/B78S(UV*W" /B$GB<'+,-+3J1< ,H
X=
N X
∆Xi
i=1
I8" /B'%JB+*<)'%/BU+=8RH'f"402'4&('4=876O =8'iO8*/8O8CD)+"~Om=8'4: <*+7B"%7B02R027bqr78:%Fe:
∆Z = ∆X + ∆X
N/2
X≈ 7
Kx =
X
∆Zi ,
i=1
hX 2 i hN i h(∆Z)2 i h(∆Z)2 i = = . t 2 t 2τ
n<-87B0+K+5B<:40,202RÍI85876A+JB7B0-TI8"%)O8=8=802$[-+Z g!78l878'4=8)$?JB7Bg!$:4787 * JB/BU ,B"%*+76JB'4)'%/BU"%)*+$CD&(' 02$if)0,8G8)\JB7Bg!$:476Oj*\J1<=8=8+9#02JB'%/B7jO8*F x /8O8'4)+"~Op=8+580Q</BU+=8+9X Q<+"4"402+)587B0T)'4I8'458Ui" /B$GB<9jJB*+7NP'4=876O#*\I858+)78*++I8/BNf=8RH'g"%)+58+=8R JB*+$A;I8/8$6K+'4"%-+=8'4G8=8RATqr*#=B<I85B<*/B'4=8787 t!"/B+'4*BXuZ4)0" /B$GB<'\*+58' 0O y T 02'%N\JB$WI8'458' 02'4=B<+027b=B<I85B<*/B'4=876OWJB*+76NP'4=876ObGB<+"%)78l8RÎqr*+58' 0Ob*++:4*+5B<)345B<=878l8'!5B<:%JB'%/1<\" /B+'4*tL5B<+"%I858'%JB'%/B'4=8\I8f"%)'4I8'4=8=802$h: <-+=8$
pT (t) ∝ At−3/2 ,
t → ∞,
4¨
.|B|
+d+Ï
KõB{+v(õx+y"6y1w11
"%58'%JB=8'4'j:4=B<G8'4=878'j=8'#"%$&(' "%)*+$+'4),2I858+l8' "4"h+-<:4RH*<'4)+"Om"%$I8'45JB7Bg!$:478+=6F =8R0,I8JBG878=6O8CD&(7B02"Om*;<+"%7B02I8)+)78-'iJB58+K+=8FJB7Bg!'458'4=8l87B</BU=802$;$5B<*F =8'4=878C(X Ð!=8)'458' "%=B<O#02 JB'%/BU\5B<+"4"402+)58'4=B<(*\5B<K++)'!\X6uMX8Ê!$-8K<5B
Ô
∂n + v∇n = K4n, ∂t
4v = 0,
:
∂n ∂2 = K 2, ∂t ∂y
µû
∂n ∂n − 2 ∂x ∂y
¶
= 0,
(18.6.1)
y=0
3JB'ûjoPG87B" /B\!'4-6/B'+,5B<*+=8+'D+)=8+S('4=878C^A<5B<-8)'458=8+34(:4=B<G8'4=876Oh!$=8-8l8787 )+-6<E)'4G8'4=876O q tP-W-+Z g!78l878'4=8)$[JB7Bg!$:4787 XLn<-6<O Ψ v(y) = dΨ/dy K : <J1<GB<*++:4=878-6<'40)HI8587Y+I87B"4<=8787gK+R"%)58+34HI858+=878-8=8+*+'4=876OY0Q<34=878)=8+34DI8/8O *\: <+0Q<34=878G8'4=8=8$C¤I6/1<: 02$h*JB/BU(A+58+S(PI858+*+J6O8&('434PZ%/B'4-8)58J1<jÑ a+>ÒeX !58'4+K+5B<:4+*+<=878'YY<I6/1<+"4
λˆ n=K
d2 n ˆ + n0 (x, y), dy 2
(18.6.2)
3 JB' oW=B< GB</BU+=8+';5B<+"%I858'%JB'%/B'4=876'EI8587B02' "%7XH2'4S('4=878'Wq ` d8X Ï8X a+tf";$G8'4)0 n 345B<=8780G8=8+34P$" /B+*+76O
n ˆ |y→∞ = 0
7B02'4'4)\*+76J
n ˆ (x, y, λ) = ´ ³ p ´ Zy ´ n (x, y 0 ) ³ p ³p 0 √ λ/Ky 0 = C exp − λ/Ky + exp − λ/Ky dy 0 + exp 2 Kλ 0
+ exp
³p
λ/Ky
´ Z∞
exp
³p
λ/Ky 0
´ n (x, y 0 ) 0 √ dy 0 , 2 Kλ
(18.6.3)
ä"ß ú Ö éQ!äQæÚÜè"ÚÜÚ.ç"Ú?Ú QäQÝÚ àSÚéQQäQÝQåVÚ æVÚ.TýÜßáß èQß QÝQÝaãVßÙåVãæSÚÜçQåTà"è âvQåââåTÚ.Û¬ä Ú.Qã åâ"ß æÙQçQãû½Ý[ÛÞ èß QÝQÝ "ß ú ãÝ ú Tßáèß â TßÙþ½å Qåâ Ô
~
M
y
~
H
i MÕ Ö ×Ø
;
Ù BÚ
% <
Ü
gÛBÜE6xÝ+|;hÝÛB{+vÛx+yBÝ6y1w E6{+x³.x
+d
3 JB' √ I8/B Nf78)'%/B'4=p7#JB'49B"%)*+78)'%/B'4=pI8587kI8/B Nf78)'%/BU+=8RAj7#JB'49B"%)*+78)'%/BUF λ =8RA ,< o;I858+78:4*+/BU+=B<O;I8"%)O8=8=B<O,+I858'%JB'%/8O8' 0Q<O?345B<=878G8=8R0$" /BF λ C *+78' 0^I8587 Xg<A J8OE78:kq ` d8X Ï8X t 7[I8J1" )<*/8O6O?58'4:4$ /BU)<)#* y =0 ∂n ˆ /∂y|y=0 I858'4+K+5B<:4+*+<=8=8+'DI8P(<I/1<+"%$f$" /B+*+78'\q ` d8X Ï8X ` t ,I8/B$G87B0[J8/8O
n1 = n(x, 0, t)
p
1 dˆ n1 = λ/K n ˆ 1 + (P/2) dx K
Z∞ 0
³ p ´ exp − λ/Ky n0 (x, y)dy.
u]-++5JB78=8<)+=6Fe*+58' 02'4=8=8RAhI8'458' 02'4=8=8RAj$5B<*+=8'4=878'MZ4)f7B02'4'4)\*+76J
∂ ∂t
Zt 0
p
n1 (x, t0 )
P ∂n1 =− dt + 0 2 ∂x πK(t − t ) 0
Z∞ 0
¶ µ n0 (x, y) d y2 √ dy. (18.6.4) exp − 4Kt πKt dy
uW/B'4*++9jGB<+"%)7p02R*+76JB7B0mJB58+K+=8$C¤I858+78:4*+ JB=8$C(X cDK+&('4'M58'4S('4=876'!$5B<*+=8'4=876OEq ` d8X Ï8X
t ,+I87B"%RH*<CD&('434YJB7Bg!$:478CI85876F 02' "%7#*JB/BUP$:4-+34PI8+)+-6<8,6*+RH5B<NP<'4)+"OjG8'458'4:!'434f!$=8-8l878CÂ5878=B<
G(x, y, t) = "%++)=8+S('4=878' 0
l(x) √ P Kt πKt
n1 (x, t) =
?- @ Þ iß
Z∞
−∞
dy
µ
Z∞ 0
¶ µ ¶ (2xP + y)2 2x + y exp − P 4Kt
dx0 n0 (x0 , y)G(x − x0 , y, t).
³Û
Ëà\áãâsäYåæHçÄäÄæDà\è#égàêpåëjæDë#ì ãâLè#åLíkå
u?)'4+58787\02=8+34+-85B<)=8+34D5B<+"4"%'%O8=876OP"%*+'4)
ε(r)
Φε (q) =
1 8π 3
Z
e−iqr h[ε(r1 ) − ε][ε(r1 + r) − ε]idr.
R3
u "%)<)7B"%)78G8' "%-87(JB=8+58JB=8+9!7Y78:4+)58+I8=8+9Y)$58K+$ /B'4=8)=8+9("%58'%JB's"%I8'4-8)5B</BUF ? =B<OhI6/B+)=8"%)UP: <*+7B"%78)P)/BU+-P+)\<K"%/BCD)=8+9i*+'%/B78G878=8R^*+'4-8)+58=8+34P<5834$F 02'4=8)< ,67#Z4)<\"%*O8:4U\*+RH5B<NP<'4)+"O#"%++)=8+S('4=878' 0
q = |q|
w(θ) = (1/2)πk04 Φε (q)
+d+d
î.|B|
Ù ðïnÛB{+vÛx+yBÝ6y1w1Ý6ñ
3JB' , < oD*+/8=8+*++'QG878" /BD* JB=8+58JB=8+9g"%58'%JB'L"QJB78Z%/B'4-8)5876F q = 2k sin(θ/2) k0 G8' "%-+9\I8"%0)O8=8=8+9 Xum78=8'458l878+=8=80;78=8)'458*</B'*+/B=8+*+RAYG87B"%'%/n,+"%+3/1<+"%=8 ε -/102+3%+58+*"%-02$f: <-+=8$fJB*+$Ah)58'4)'49,
Φε (q) = Cq −11/3 ,
C = ò%ó+ôBõ ö
qr$5B<*+=8'4=878'TqaÏ8X 8`tP-8=878347 Ñ aÏÒrt Xsg<78K+/B'4'p*+'458 O8)=8m5B<+"4"%'%O8=878'k=B
w(θ) = (1/2)πk04 C[2k0 sin θ/2]−11/3 ∼ Aθ −α−2 ,
(18.7.1)
θ → ∞, A = const, α = 5/3.
$"%)UP*P=B<GB</B'M-++5J878=B<)P=B<A JB78)+"Oj)+G8'4G8=8RH9#02+=8+=B<I85B<*/B'4=8=8RH9 ! 7B"%)+G8=878-E"%*+'4)<8X.usRHK+'458' 0W-++5JB78=B<)=8$C "%U "%+*+IB<J1<CD&('49k"YZ4)7B0]I8'456F Z *+78G8=8R0¤=B<I85B<*/B'%=878' 0 XuÌ0Q</B+$3/B+*+0^I85878K/B76NP'%=8787T)'4+58787[5B<+"4"%'%O6F Ω =876Ob-++5+JB78=B<)< !+)+=B0+)N\JB' "%)*/8O8'4)+"~O^"kI858+96JB'4=8=8R0´7B0ÌI8$)' 0,H< z J8/8OiA<5B<-8)'4587B"%)78-87h+)-6/B+=8'4=876Oh'434Y+)(I8'458*++=B<GB</8U+=8+34g=B<I85B<*/B'4=876Oi7B" F I8/BU+:4$+'4)+"~OjJB*+$602'458=8RH9#*+'4-8)+5 ,8+K/1<+"%)U\78: 02'4=8'4=876Op-+)+58+34 u = {Ωx , Ωy } 5B<+"%S(785+O8'4)+"Ok=B
∂f (z, u) = ∂z
Z
[f (z, u − u0 ) − f (z, u)]w(|u0 |)du0 , f (0, u) = δ(u).
R2
cD=8[I8JB+K+=8?$5B<*+=8'4=878C(,+I87B"%RH*<CD&(' 02$T02=8+34+-85B<)=8+'p5B<+"4"%'%O8=878'k:4<5O6F NP'4=8=8RApGB<+"%)78lk*h*+'4&(' "%)*+'+XBQ<:%/1<3%<Op$602'4=8U+SP<' 02+'Y*h5+O6JEI8 7k*+RHI8/8F u0 =6O6OT78=8)'434587858+*<=878'Eqr)?' "%)UB,$"%58'%JB=6O6OTI8E$3/B$[5B<+"4"%'%O8=876O1t ,2I85876A+J8O8);78:4*+' "%)=802$k$5B<*+=8'4=878C´)78IB<;ÉY+-8-'45B<FM/1<=8-6
f (z, u)
hu2 i ∂f as (z, u) = 42 f as (z, u), ∂z 2 R 3JB' 7 oi"%58'%JB=8789p-8*<JB5B<)P$3/1< 42 = ∂ 2 /∂u2x + ∂ 2 /∂u2y hu2 i = w(|u|)u2 du
5B<+"4"%'%O8=876Oj=B
∂f as (z, u) = AJ(u), ∂z
J(u) =
Z
R2
[f as (z, u − u0 ) − f as (z, u)]|u0 |−α−2 du0 .
Ü
Ù BÚ ùûúgÛBÜE6xÝ+|;hÝÛB{+vÛx+yBÝ6y1w E6{+x³.x
+d+
!587 76=8)'4345B</"%)/B-8=8+*+'4=8789W5B<+"A JB78)+"O,L7WJ8/8O]$"%)5B<=8'4=876O]Z4)+9 α ≥ 1 5B<+"~AJB7B02"%)7?*+"%I8/BU+:4$+' 0Q"~O?I858+l8'%JB$58+9?58'434$/8O85878: <l8767m£HJ1<+0Q<5B<8,n: <+02'%F =6O8CD&('49?5B<+"~AJ8O8&(789B"~OE78=8)'4345B</ '434#-+=6'4G8=8+9]qr*k"%02R" /B'i£HJ1<+0Q<5B<t J(u) GB<+"%)U+C
Z
p.f. J(u) ≡
[f as (z, u − 2u0 ) − 2f as (z, u − u0 ) + f as (z, u)]|u0 |−α−2 du0
R2
2'434$ /8O85878:4+*<=8=8RH9m)<-87B0+K+5B<:4078=8)'4345B</W*+RH5B<N\<'4)+"~OTG8'458'4:hJB58+K+=8$C "%)'4I8'4=8UPJB*+$602'458=8+34P/1<I6/1<+"%7B<=B
Z
[f as (z, u − 2u0 ) − 2f as (z, u − u0 ) + f as (z, u)]|u0 |−α−2 du0 = −c(α)(−42 )α/2 ,
R2
c(α) =
π 2 (1 − 21−α ) . [Γ(1 − α/2)]2 sin(απ/2)
/B'%JB+*<)'%/BU+=8B,<+"%7B02I8)+)78G8' "%-+'üI8+*+'%JB'4=878'ý$3/B+*++34þ5B<+"%I858'%JB'%/B'4=876O !+)+=8+*B,I858+S('%JBS(76AhI8$)U *\)$58K+$/B'%=8)=8+9p"%58'%JB'+,6+I87B"%RH*<'4)+"O f as (z, u) x $5B<*+=8'4=878' 0T"DJB*+$602'458=8R0m/1<I6/1<+"%7B<=80[JB58+K+=8+34PI8+5+O6JB-6<8
∂f as (z, ÿ ) = −c(α)A(−42 )α/2 f as (z, ÿ ), ∂z
f (0, ÿ ) = δ(ÿ ).
2'4S('%=878'ÌZ4)+34$5B<*+=8'4=876O*+RH5B<N\<'4)+"~OG8'458'4:¢JB*+$602'458=8$Cã78:4+)58+I8=8$C $"%)+98G876*+$6CI6/B+)=8"%)U?g'4*+76F~ÉY'%/BUJB34'49B0Q<E"jA<5B<-8)'4587B"%)78G8' "%-87B0 I8+-6<: <F )'%/B' 0
α = 5/3
1 g2 (r; α) = 2π "%++)=8+S('4=878' 0
Z∞
α
e−k J0 (kr)kdk
0
f as (z, ÿ ) = [c(α)Az]−2/α g2 ([c(α)Az]−1/α |u|; α).
cD)+02'4)7B0T)587jA<5B<-8)'458=8RAi+) /B78G876Oj5B<+"4"%'%O8=876Oj*P)$58K+$/B'4=8)=8+9#"%58'%F JB'+)!<=B</B+3478G8=8+34MI858+l8' "4"4
x
y
++
î.|B|
Ù ðïnÛB{+vÛx+yBÝ6y1w1Ý6ñ
jæMåè#çgæDà\è#ç
"! $# % !'& (*)+)-, . 0/ 1 324653 879) ;: < 324=> 876? ;: < >24@=> BA DC)-7 4E0F-GHG IJLK>@M NBOP IJQ@E- NSR$UTIJG H'VWOP X $ &Y # & +Z6? S= [24\ ])-,6A S= [24\ 7 ^OP DQ_a`4 Ncb$Qd fe^`4 N"Mg h$iD j`4SK>kIJQ_kG lm n &po ,+q Sr+ sI IJ$Htvu3^4 Nk`$Q_$c4S`4( &Y Pwyx n z{% L|L& X ^?$q u4 L4 X $wyx n z{% )+) ^= } 24W~ \ N41 /-24C *=> 3s W
p @.3 j ^r 'G IDDH'V0IJ >K>S Na3IDDQkE- N4ukG siQ_IJ cE @X &Y P# & ^A$Z 3M IJvL NykG r$ ( Un ! ( 9)+) A ^K> DQH@u3 NLkFakP N;e UTJF- VfLBX &Y # & Z+, X IJG DMDQ{GdG kIV sIJQ_I NM D IJ s`4 N g¡6 ¢bg¤£P¤(¥ z Y ¦ sz 4F- s" Nr+Q_ §UIJGE- Ny¨ LK>IJQ@G $©@ª(«? o+¬ @G §DQ_ §Ry+ ( Un ! Jz $( 3M IJvL6ªX$m ! x z m $% w m mx ?$Z 3e {D;`4 NBr+Q_IJH6T IJ Vjbg lm n &4o ,6A
`+X
ó6ò
a6X Y®¯ g® ®§1®©
X
ó
X
ó6ò
6¡(<=kHHL
,
ó+ô 6ó+ô
,B+#q ` aÏt X
1,B>+d#q `
B`t X
8X
sƦ B®©
6¡(£DÌHHL
,1a+ahq `
B`t X
BX
sƦ B®© >djq `
t X
Ð!:4*+' "%)76OT£DHHLQ,Q"%'45X234'4!78:+X ,2
>mq `
B`t
>6X
X
6õ
X
%ö~ö
X
,Badahq ` ++t X
Ï8X p®ªB¬Bª
6¡(£DÌHHL
X p®ªB¬Bª
BÐ!:4*+' "%)76O#£D´HHL2,B"%'45X834'4!78:+X ,Baiq ` >Ït X
,Ba+>Ïjq~` >+>+t X
d8X
,D` 8`
ö
qa+8`t X
8X
X
ô8ô
q ` +t X
` 8X
6õ
X
,
X
8õ
ò
X
,
>
1,B
>hq ` +Ï+dt X
8õ
`+`+X p®ªB¬Bª Êg<+"%)U X6o
¯1® ´L)<)7B"%)78G8' "%-6<O 3476JB5802'%A<=878-6<8X [X Bg<$-<8,.` +Ï> 6Êg<+"%)U X6o [X Bg< $6-<8,.` +ÏX
`a6X
hÅ
È 8« ¯1®§ ` >+>X
L'4+5876O] JB=8+58JB=8+9V)$58K+$ /B'4=8)=8"%)7Xo
` 8X
6õ
q ` +dt X
`4
BX
BX
ò%ó Bõ ö
X
ó6ò
X
#X
`>6X
X
%ö~ö
X
X
%ö~ö
` Ï8X
6õ ò4õ
@
++hqa+
t X
`X
,` Ï++jqa++t X
` d8X ` 8X a8X
BX
óõ
,
ó
ò%ó Bõ ö
öó+ôBõ
X
X
6ò
ô
#X.+,Ba>jq ` +d>+t X
ö
ò ö
õ
X
,!`+` +
,`4
a
#qa+
t X 6õ
q ` ++dt X
X
[X LÐ!f,
,8a#qa++Ït X
,8>#qa++t X
X
,++Ï
úYzBÝ6x+{|6ÝÛB{|
+8`
g - [®*53 N+ y< 2k9=>+¯±° ²+7
³ ´:9µ ) ¶$7 ;·B $³ 3¸ ¸ [)-7 [¹ U³ .39¸$¯±° ~)-,+q µ [24¸ Nµ J -< º24¸ NP. [k »k ¼)-, ½ c\=> N. ¾ W®*g24 N¿ W J³ ¸gÀ3 P. J Á³ 324$=> N@·B W$³ 3¸$¸ ;·B $³ 3¸ ¸ [) o
a6`+X (§.«% ¬Bª
jÇ Bª1«
sÉ
,Ba
ahq ` a+t X
a+a6X ¨ +¦+ªB¬Bª
8ÓMÉ(
a8X
cDK++:458'4=878'LI85878-6/nX7PI8580X0Q<)' 0Q<)78-87
a
BX
8¨ +¬Bª
¦ +Æ%¨§
a+>6X 1®§.±«4«4© q ` ++t X
sÉ
1§.« 6¬ 1¨
,1>iqa++t X
,+Yqa++Ït X
,` +>hq ` ++Ït X P¨4¯.±¨
QÉY78:478-6
,n>
aÏ8X sÇQÈP®© §6¨© B®© B¨È\¨§.² +¬B us*+'%JB'4=878'P*j"%)<)76F "%)78G8' "%-8$C5B<JB78!78:%78-8$X60]a6Xo [X Bg<$-6<8,.` d8X aX (®¯1° 6¦Å +¬Bª 8¨ +¬Bª +us*+'%JB'4=878'*M)'4+5878C]I858 AN\JB'4=876O GB<+"%)78l#G8'458'4:g*+'4&(' "%)*+BXo [X B£)0278:%J1<),` d8X ad8X
8¨ +¬Bª
cDK++:458'4=878'LI85878-6/nX7PI8580X0Q<)' 0Q<)78-87
,d
B`!qa+t X
ÂÄÃÆÅ]ÇÄÅ ÈÉ Ê ËÍÌÎ ÏÐÌ Ñ
Þ iß4Þ
^Ò L[ÓÔÓ "Õ" LÖ S× 4Ø 4Ùº×
Ó
è#ìYégë#ì í
åè#åë
#ç!ê
gë#ç
Ú
åë#ì åë#ì!êpì
L"%)' "%)*+'4=8=8R0Ë"%"%)O8=878' 0ÃI6/1<: 0RøO8*/6O8'4)+"O¢)$58K+$ /B'4=8)=8+']"%"%)F O8=878'+,HJB*+76N('4=878'[GB<+"%)78l¤*W-+)+580_I858+7B"A JB78)WI8]:4<-+=B<+0Í<=80Q</BU+=8+9 JB7Bg!$:4787X£=80Q</BU+=8RH9[A<5B<-8)'45?JB7Bg!$:4787m=B<K/BCsJ1<'4)+"Om*p/1<K++5B<)+56F =8+9 I6/1<: 02'Ñ `%FÒe,M: <+0Q<34=878G8'4=8=8RA*+76A658'4*+RAI8+)+-6<A´Ñ
B,Y>Òe,!*-"4078G8'%F "%-9EZ%/B'4-8)58 JB78=B<+0278-'#Ñ ÏFdÒe,1*jI858A N\JB'4=8787E-"40278G8' "%-876Ak/B$G8'49;*#Â6</1<-6F )78-'iq"40X t X M<5B<-8)'458=8+9P"%+K+'4=8=8" )+U+CmJB*+76N('4=876OPGB<+"%)78lP*!I6/1<: 02'sO8*/8O8'4)+"~OP=B<F /B78G878'i=8'4JB=8+58 JB=8+34#7[I8"%)O8=8=8k02'4=6O8CD&('434"~Om0Q<34=878)=8+34pI8/8OXu +KF /1<+"%) O6AkI8+*+RHS('4=8=8+9k=8'4JB=8+58 JB=8"%)7kJB*+76NP'4=878'P: <5O6JB+*h*jI8+I8'458'4G8=8RA;I8 +)=8+S('4=878C¤-#"%7/B+*+R0[/B78=876OB0m=B<I85B<*/B'4=876O6A,6"%+I858+*+N\J1<' 02+'78=8)'4=B"%78*F =8R0p*+5B<&('4=878' 0#*++-858$3Q/B78=8789,: <+02'%J8/8O8'4)D76AYI8'458' 02'4&('4=876's*MI858" )+58<=B"%)*+'+, "%+:%J1<'4);Z g!'4-8)k/B+*+$S(-87XL/B$GB<98=8RH'p"%+*+IB<JB'4=876OT"%-+58"%)7T: <5O6NP'4=8=8+9 GB<+"%)78l8Rb"=B<I85B<*/B'4=878' 0;J8/B78=8=8+9i7i3/1<JB-+9i"%76/B+*++9\/B78=8787iI8+:4*+/8O8'4)Y"%F *+'458SP<)UH'49gJ1</B'4-878'LI8'458'%A+JBR?I85B<-8)78G8' "%-87YK+'4:5B<+"4"%'%O8=876OXus58' 02'4=B
Ý ÛÜ?)+Ü o
f˜(k, λ) ≡
Z∞ 0
dt
Z
Rd
dx e−λt+ikx f (x, t) =
1 − q˜(λ) , λ[1 − q˜(λ)˜ p(k)]
+
î6.|8|
Þàß $áâ Ù
.|
Q|
3JB' 7 of)5B<=B"4!+5B0Q<=8)R^Y<I6/1<+"4
λβ f˜(k, λ) = −|k|α f˜(k, λ) + λβ−1 .
ºã
(19.1.1)
VZ4)02$DN('L$5B<*+=6'4=878CT02R?I85876JB' 0, +I8785B<OB"%UH=B
0
ä
β t f (x, t)
= −(−4)α/2 f (x, t) +
t−β δ(x), Γ(1 − β)
;
(19.1.2)
O8*/8O8CD&('4' "~O\/8+3478G8' "%-87B0E+K++K+&('4=878' 0k$5B<*+=8'4=876O p+=878=B<8X2'4SY'4=878' 0?$5B<*F =8'4=876O[q ` 8X `+X a+tQO8*/8O8'4)+"OhJB58+K+=8Fe$"%)+98G878*+'M5B<+"%I858'%JB'%/B'4=878'+X g<I802=878*Z4)7YI85878=6l878I8Rm<=80Q</BU+=8+9DJB7Bg!$:4787,402R?I85878*+'%JB' 0h=876NP' =8' "%-/BU+-mI8587B0'458+*T76AW-+=8-858'4)=8RA]58' </B76: <l8789b=B<m!78:478G8' "%-0¢$58+*+=8' 5B<+"4"%$N\JB'4=8789,+K/1<J1<CD&(76A\K+/BU+S('49f=B<3/8O6JB=8"%)U+C^7hK+/B'4'D)' "%=8+9h"%*O8:4U+C "M"%=8+*+=8R027hA<5B<-8)'4587B"%)78-<+027#5B<+"4"40Q<)5878*<' 02+34PI858+l8' "4"4<8X
Ñ å æ L 4Øv ç""èêé [ë ì ^ÛÜ9)+Ü) ? síî À 1 y ° Λ(τ ) Þ iß
iípè#ìí
jë#ç
já#åHâ
#ìí
Pìí
<-6<-8=8G878*<Om78:%/B NP'4=878'j*+RH*+J1
b b λ) + δ(x) λb n(x, λ) = Λ(λ)4 b(x, λ) + S(x, 2n
qrI858'%JBI8/1<3 <'4)+"O,G8)\*(=B<GB</BU+=8RH9j020'4=8)\*+58'402'4=87jGB<+"%)78lB<(=B<A JB76/1<+"%U(* =B<GB</B'!-++5JB78=B<)t X /B'%JB$O[I85878=8l878I8$[<*+)02JB'%/BU+=8"%)7,I8JB)*+'45N\J1<' 0202$EG87B" /B'4=8=8R0 0 JB'%/87858+*<=878' 0,*+RHK+'458' 0b)5B<=B"4!+5B0Q<=8)$kO6JB5B<#*#*+76JB'i"%)'4I8'4=8=8+9[!$=8-6F 2 l8787
Λ(λ) = Kλ1−β ,
0 < β 6 1,
7E$602=8Nf7B0b+K+'PGB<+"%)7E$5B<*+=8'4=876OE=B< X2cDK+5B<)=8+'(I858'4+K+5B<:4+*<=878'PY<F λβ−1 I6/1<+"4
0
ä
β t n(x, t)
= K42 n(x, t) + Q(x, t).
Þ ïñð Ù
Ú
Ú
+ò
$ó
+ò
-ô
$õ
gx+{|By1w1x+6y HxfÝ+| 1z1w1yB|B{+y Hxi{|6 1{+x³.xx+y1z
+>
34
58'4S('4=878' *+RH5B<NP<'4)+"O G8'458'4: JB58+K+=8Fe$"%)+98G878*+$C I/B+)=8"%)U ,bS(785878=B< JB7Bg!$:478+=8=8+34øIB<-'4)< 5B<+"%)'4)ÄI858+I8+58l878+=B</BUF q2 (x; 2, β, 0) =8 β/2 X
t
n<-87B0+K+5B<:40,n*/B76O8=878'hIB<+0O8)7m: <+02'%J8/8O8'4)kI858+l8' "4"fJB7Bg!$:4787Xu 5B<+02-<AT)'4+58787W</B' "%-8$[I858'%JB'%/BU+=8RH9W" /B$GB<9 "%++)*+'4)+"%)*+$+'4);=8+56F β → ∞ 0Q</BU+=8+9]J87Bgg$:4767,sG8)V*T+I858'%JB'%/B'4=8=8+9^"%)'4I8'4=87^I858+)78*++58'4G878)T02JB'%/B7 p+=878=B<8,J1<CD&('49jI8587j)0mNP'!I858'%JBI8/BNP'%=8787#f0Q<58-+*+"%)7#"%$I8'45J87Bgg$F :478+=8=8RH9W58'%Nf7B0XcDG8'4*+76JB=8R0 +K++K+&('4=878' 0JB*+$AVZ4)76AWI8 J8AJB+*EO8*/8O8'4)+"~O $5B<*+=8'4=878'
0
ä
β t n(x, t)
= −K(−42 )α/2 n(x, t) + Q(x, t),
!$=6J1<+02'4=8)</BU+=8RH' 58'%S('4=876O -+)+58RA qr) ' "%)UB, 58'4S('4=876O I8587 tg*+RH5B<N\<CD)+"~O[G8'458'4:iJB58+K+=8Fe$+"%)+98G878*+RH'f5B<+"%I858'%JB'%/B'4=876O Q(x, t) = δ(x)δ(t) 7; A8*<)RH*<CD)i-6<-;"%$KJB7Bg!$:478+=8=8RH'hq t ,.)<-;7E"%$I8'45JB7Bg!$:478+=6F β < α/2 =8RH'fq ts58'%Nf7B02RgX
β > α/2
Ñ sö Þ iß
[÷ "º×
Ëåè#çYägë#ìYäYåHâLë
é
¨Õ"
´åËâLæç
[÷
#ìgë#çgèjë
´å
è#çYâ jè#åLíkåsêpåë
'ø
£YX8uMX6Ê!'4G8-876=j7juMX X8Â+=8GB<5kÑ ` Ò.7B"%I8/BU+:4+*</B7\JB58+K+=8+'D$5B<*+=8'4=878' É +-8-'45B<FM/1<=8-6
Ý
!587
α→2
pe(k, ∆t) = e−K|k|
α
∆t
,
g'4*+76FeS($60[I8'458'%AJB78)P*f3 <$"4"%+*BX
0 < α ≤ 2.
++)*+'4)+"%)*+$CD&('4'HJ1<=8=8+9h02JB'%/B7i$5B<*+=8'4=878'J8/8OiI6/B+)=8"%)7h5B<+"%I858'%F L : <5O6N('4=8=8+9#GB<+" )+76l8R7B02'4'4)f*+76Jn JB'%/B'4=876Op"%-+58"%)7
f (x, v, t)
∂f + Ω[v, ez ]∇v f = η∇v (vf ) − K(−4v )α/2 f. ∂t !58'4+K+5B<:4*<=878' 0WÉY$58U+'
fe(k, t) =
Z
dveikv f (v, t)
++Ï
î6.|8|
Þàß $áâ Ù
.|
Q|
+=8\I85878*+ JB78)+"O#-j*+76JB$
∂ fe + (Ω[k, B] + ηk)∇k fe = −K|k|α fe. ∂t
2'4S('4=876'YI6" /B'%JB=8'434pqrI8587p=B< GB</BU+=80m$+" /B+*+787
v(0) = 0
tLJ1<'4)+"~Op!+5B02$ /B+9
© ¡ ¢ ª fe(k, t) = exp −(K/αη) 1 − e−αηt |k|α ,
)<-kG8)h5B<+"%I858'%JB'%/B'4=878'P"%-+58"%)7p*+RH5B<N\<'4)+"OpG8'458'4:(78:4+)58+I8=8$C $"%)+98G876F *+$C¤I6/B+)=8"%)Ufg'4*+76F~ÉY'%/8UJB34'49B0Q<8
¢¤−3/α ¢¤−1/α £ ¡ £ ¡ f (v, t) = (K/αη) 1 − e−αηt g3 ( (K/αη) 1 − e−αηt v; α). !587p0Q</BRAh*+58' 02'4=B<A
f (v, t) ∼ (Kt)−3/α g3 ((Kt)−1/α v; α),
7?02R 7B02'4' 0]JB'%/Bp"(JB*+76N('4=878' 0bg'4*+7,.*#I858'%JB'%/B'\K+/BU+S(76Ap*+58' 02'4=E: <*+7B"%76F 02"%)Ui+)f*+58' 02'4=87p7B"%G8'4: <'4)f7k02RI85876A JB7B0W-k"%)<l878+=B<58=802$h5B<+"%I858'%JB'%/B'%F =878CI8f"%-+58"%) OB0
f (v, ∞) = (K/αη)−3/α g3 ((K/αη)−1/α v; α).
!587 +=8j"%+*+IB<JB<'4)i"Y5B<*+=8+*+' "%=8R0W0Q<-"%*+'%/8/B+*+R0V5B<+"%I858'%JB'%/B'4=878' 0, α=2 I8587?JB58$3476A?:4=B<G8'4=876O[I8+-6<: <)'%/6O[+=8k"%$&(' "%)*+'4=8=8p+) /B78GB<'4)+"~Om+)p5B<*+=8F *+' "%=8+34!I8'458'45B<+"%I858'%JB'%/B'4=878' 0E*+'458O8)=8"%)7f78:I85802' Nf$6)+G8=6+9f+K/1<+"%)7i" -F 58"%)'49(*D+K/1<+"%)7g76A(0Q</BRAg7(K+/BU+S(76A!:4=B<G8'4=8789,+K+5B<:4$OY<+"%7B02I8)+)78G8' "%-878' A6*+"%)R"%)'4I8'4=8=8+34\)78IB<8
f (v, ∞) ∝ |v|−α−d ,
Ñ úù [ÓÔÓ 3ûº× @û BÛÜ4?Ü{79Ü)-Z Þ iß
Ãà
|v| → ∞.
[÷ÄëüÓ
ûè#å ìgë#çgë#âLë
ìgæMìgë#ìYä
Â/1<*+=8+9?"%+K+'4=6=8"%)U+CÌI8'458'4=8"4<#58'4:4+=B<=B"%=8+34#78:%/B$G8'4=876O?*pI6/1<: 02' q "40X 1t!O8*/8O8'4)+"OTI858+I8+58l878+=B</BU+=8"%)Up/B78=8'498=8+34E-+Z g!78l878'4=8)< I8+3/B+&Y'4=876O -+Z g!78l878'4=8)$k78:%/B$G8'4=876OE*p"%I8'4-8)5B</BU+=8+9k/B78=8787,*#58' F k(ω) :4$ /BU)<)'iG8'434kI8 J1<*/8O8CD&('4'fK+/BU+S(78=B"%)*+k!+)+=8+*#58'4:4+=B<=B"%=8+34p78:%/B$G8'%F =876OV)$)EN('#I8+3/B+&P<CD)+"O,Q"%=8+*
Þ ý}þ Ú
Ù
$ÿ
-ô
M³1|B{+y1w1xiÛ Pz1{+x+y1z1xh 1xBÝ6{|6ñy1wpz1y1z1z
+
K+/BU+S(7B0X+uV=B<78K+/B'%'I8+I8$ /8O858=8+9f*Y5B<+"%G8'4)<A\02JB'%/B7iI8/B=8+34gI8'458'45B<+"%I858'%F JB'%/B'4=876OEGB<+"%)+),GB<+"%)+)<jI8'458'478:%/B$G8'4=8=8+34#!+)+=B
Ý
∂N (x, t) =γ ∂t
Z
dx0 K(x − x0 ) [N (x0 , t) − N (x, t)] ,
3JB' oi*+'%58O8)=8"%)U\5B<JB7B<l878+=8=8+34(JB'4*++:4K+$N\JB'4=876O#<)0Q
K(x)
K(x) = ub<+"%7B02I8)+)78G8' "%-0q
|x| → ∞
¿ À e−k(ω)|x| k(ω) . 4π|x|2
tsI85878K/B76N('4=8787
K(x) =
Ý
A 4π|x|α+3
7#$5B<*+=8'4=876'gs78K+'45B0Q<=B<F D/BU"%)'498=B<(I85878=87B0Q<'4)\*+76J
∂N (x, t) = γA ∂t
Z
N (x0 , t) − N (x, t) 0 dx , |x0 − x|α+3
!58'4+K+5B<:4*<=878'YÉY$58U+'!I8f-++5JB78=B<)<+0[J1<'4)
3JB'
e (k, t) ∂N e (k, t), = −γA∗ |k|α N ∂t Z∞ A = A (z − sin z)z −α−2 dz ∗
Ý
0
oP=8+*<OiI8"%) O8=8=B<OX6n<-87B0m+K+5B<:40,+$5B<*+=8'4=878'M Z4-8*+78*</B'4=8)=8($5B<*+=8'%F =878C"MJB56+K+=8R0m/1<I6/1<+"%7B<=80]Ñ `+`%Ò
∂N (x, t) = −γA∗ (−4)α/2 N (x, t). ∂t
¡g/8Oh/B+58'4=8l8+*"%-+9h76/B7p!+9834)+*"%-+9hg+580V"%I8'4-8)5B</BU+=8+9h/B78=8787
Ñ
Þ iß
" é @ç ºÛÜP?Ü{79Ü)-Z
íkçgèjë#ìYåËà
hè#åë
α = 1/2
X
LÖ ¨è [ ""
#åâ #å jæDè#ç!ê
gë#ì ûê
jë
Q<+"4"40Q<)5878*<Ok* p!+5B027858+*<=878'("%7B0Q02'4)5878G8=8+9;/B78=8787E78: F /B$G8'4=876Om*;I6/1<: 02'+,Q02R´+)+02'4)76/B7V-6<-m*<Nf=8RH9Tg<-8)+5[*/B76O8=876OV"%)/B-8=8F *+'4=876Oi78:%/B$GB<CD&('434P<)0Q<("JB58$347B027#<)0Q<+027XuW-6/1<+"4"%78G8' "%-0?I858'%J1"%)<*F /B'4=8787V*+/B=8+*++9ml8$3#Z%/B'4-8)580Q<34=878)=8+34?78:%/B$G8'4=876OW"jGB<+"%)+)+9 qr' "%)'%F ω0 "%)*+'4=8=8+'!$S(7858'4=878'!=8'g$G878)RH*<'4)+"Oj*+*+76JB$i)+34B,6G8)f78:%/B$GB<)'%/BU+=8+'M *+58' 0O
++d
î6.|8|
;°
Þàß $áâ .|
Ù
Q|
Nf78:4=87 ,63JB' of-+Z g!78l878'4=8) L98=8S()'498=B<8,6*+'%/B78-PI8f"%5B<*+=6'4=878C τR = 1/A A "i)78I878G8=8 R0*+58' 02'4=8' 002'%N\JB$["%)/B-8=8+*+'4=876OB0271tg=8'4I858'458RH*+=8;7B"%I8$+"%-6<'4)+"O <)020JB;)'%AmI8+5,2I8+-
-Ú
ψ1 (t)
µ = 4d2 n
p
πk T /m,
3JB' oh"%58'%JB=8'4'g5B<+"4"%)O8=878'Y02'%N\JB$jl8'4=8)5B<+027k<)02+*\*i0202'4=8)h" )+/8-8=8+*+'%F d =876O, o(-+=8l8'4=8)5B<l876Oh<)02+*B, oP0Q<+"4"4
E(t) = E0 exp(−iω0 t + iϕ(t)), PN (t) 3JB' ,1< oiI8+IB<58=8f=8'4:4<*+7B"%7B02RH'g5B<*+=802'458=8\5B<+"%I858'%F ϕ(t) = j=1 ∆ϕj ∆ϕ JB'%/B'4=8=8RH'* " /B$GB<98=8RHj'*+'%/B78G878=8RgX6LI8'4-8)5i78:%/B$G8'4=876O Fe34Y"%*++K+JB=8F [0, 2π) j 34YI858+K+'43%
Ij (ω, Tj ) ∼ |E(ω)|2 =
=
µ
µ
¯ ¯2 ¯ ¶2 ¯¯ Ztj ¯ E0 ¯ ¯ exp(−iω0 t + iϕj + iωt)dt¯ = ¯ ¯ ¯ 2π ¯ tj−1 ¯
E0 π
¶2
sin2 [(ω − ω0 )Tj /2] . (ω − ω0 )2
!/B=8RH9#"%I8'4-8)5,B"%+:%J1<*<' 02RH9j<)020m: <\*"%'!*+56' 0O#78:%/B$G8'4=876O
I(ω) ∼
*N (τ ) X j=1
+
Ij (ω, Tj ) .
τ
,
úYzBÝ6x+{|6ÝÛB{|
++
uÍ"%)<=6J1<58)=80 I858'%JBI8/BN('4=8787]+K?Z4-6"%I8+=8'4=8l87B</8U+=80 5B<+"%I858'%JB'%/B'%F =8787;78=8)'458*</1
I(ω, τ ) ∼ hN (t)i
∼
µτ (ω − ω0 )2 =
u q
I858'%JBI8/BN('4=8787 7
ψ(t) = ψν (t)
µ
E0 π
¶2 Z∞ 0
E0 π
¶2 ³
0
µτ ´ 1 . 2 (ω − ω0 )2 + µ2
hN (t)i = µtν /Γ(ν + 1) µ
E0 π
¶2
I1 (ω, t)ψ(t)dt ∼
sin2 [(ω − ω0 )t/2]e−µt µdt =
NP'ËøJB58+K+=80
µτ ν Iν (ω, τ ) ∼ 4Γ(ν + 1)
µ
Z∞
I8+5O6J8-'I8$+<+"4"%+=8+*"%-34ÎI858+l8' "4"4< tsI8/B$GB<'40
φν (∆),
φν (∆) =
Z∞ 0
sin2 (∆ · t/2) ψν (t)dt. (∆ · t/2)2
jæMåè#çgæDà\è#ç
gDG t§¡>eK> NB£PUIJG ;>K>BIJQPG $X x{m ;m ¶ 3M D IJ S`4gIJQPG $X $ &Y $# & +Z+, 3M D IJ S`4gIJQPG $X $ &Y $# & +Z+7 ¨IJG IJa`4gk N@ O I DIJG kB NDF' IJjE-E-9X 9x{m ;m 7 kF-G HÔbg N3¨IJG IJ`4¨k NDF' IJ«E-3E-X x{m ;m ² ^KLHG t6t[`4;bg N gIJG IJ$¡P@K> N H;T U eE- & ¦ X y & )-,9) 3;M 'm tGHG{Q N¼KLHG t6t `4bg N H;T sU e*( z Y $% ÄKLHG t6t`4^bg N gIJG IJ$¡gK>$X $wyx n z{% A
`+X
6õ
a6X
X
X
X
X
6õ
8X
6õ
õ
,6
+
+djq ` ++dt X
X
,8+Ï>jq ` ++t X
BX
X
6õ
q ` ++Ït X
>6X
6õ
q ` ++t X
Ï8X
X
X
õ
,Q`>+
õ
õ
4ó
` +++jq ` ++Ït
,D
>>
õ
6õ
X
õ
ö
d8X
,8+Ï+8`\qa++t X
õ
X
%ö~ö %ö~ö
X
@
Ï
dhqa+
t X
6õ
X
8õ
,BaÏ++jq ` ++t X
X
1,
ò%ó+ô
F
+
î6.|8|
^G IJJFº4 x{m ;mX +ª x w n sz [o ? 3M I U§d`4^bg Ne6 bg-F$ X sz x{m ;m q W·B $³ aÁ) ? ¸4¸ N < 244®*
8X
õ
6õ
X
` 8X `+`+X
ó+ôö ó
X
Bõ ó+ô
6õ ò4õó
8¨ +¬Bª ¨ 1¨§1®© 0Q<)+76-87 ,B>
jqa+>+t X
,
Þàß $áâ Ù
.|
Q|
`fqa++t X õ
õ
,.d#qa+a+t X
gcDK++:458'4=878'[I85878-6/nXD7I8580XM0Q<)'%F
ÂÄÃÆÅ]ÇÄÅ Ì
å+*
iß4Þ
"!$#
,
àÎ&%"'üÌ)( %
¨ç [÷
è#ç jæMìgë
.-0/21434/2506-7398:0:;% - O4<4=4-7<4-;>96?@8A>9=4B06CD8<48 < RFEG:;6D:;H 6 O4<4=4IKJ.1434-;L:;HA8C8 > O4-;M = q.6<46<98 N 1 = tL8C<46T=SED634+ 6 SR67=9:0:U>9-;L96CD8<4¤ 6 qV: N X N RFEPO-050/2QR= N =SC6>9<98 N Ì <98143XDÑ `%Òrt Xs£<98A>9650=4W4<8RX-Y14346+l4-Z:0:%RL4>8O[>96?@8A>9=4B06CD8A<4<8RFEq\C]61434-;L9-;>9-0<4=4= £<@L9-039:;6<9! 8 Ñ aÒrt^C=4O398 l4=46<48 < RFE.:;6D:;H 6 O4<4=4i I q.398?4H6<46 C t<98_W98A>9=.=9:0:U>9-;L96CD8H UM : O`>98 = S(Uaf : d+AMbE 5;6_L96B C X.34= N -0398 N =cHA8?4=@E`C=4O398 l4=4E I O4C8 > O4dH~: Oe?26>4>9-0?@H=@CM <8RX-f5U83 N 6<4=4W4-Z:;?4=4-g?26>9-0OD8<46 = O7:;50/:;H?26C H/234O/Z>9-0<4H<46506 N 850<4=4H<46506`1@68 > O q N 850<4=4H8 < RFERL96 N -0<46 C tK6H<46D:;=4H-;B > U<46.6OQR-0506146>96 NR-0<46 = Oh398C<46C-Z:;6 = OX+Éi398?@M H68 < Rj=450398dHfCD8 N<4/2dk346B > UfC N -;ED8<4=4B N -l6O398B06CD8A<46 = Oa?4/214-0346CD:;?4=@Ea1983`C :;C-03E@14346C6_8 L O4QR=@Em6345;8<4=4W4-Z:;?4=@Eg146>9= N -0398AEf=?2-0348 N =4W4-Z:;?4=@EY:;6-;L9=4<4-0<4 = O@EKJ 8iH_86 ? Nh-C+L934/250=@h E .=4B0=4W4-Z:;?@=@Eg:;=9:;H- N 8AE=m1434+6 l4-Z:0:08Ap E Ñ ÒeX8Éi348?4H68 < RnE28348?@M XQu N -;E28<4=4W@-Z:;?26I N 6_L9-;>9= H-034=4B0/2dH: OW.398?4H6<4<46I7398B N -034<46D:;H Ud df < 2 JoC W4=9:;H6`=4B06H34614<46I :m1434-06O>8AL8<4=4- N :;?28A8 > O434<46I]/21434/2506D:;H= 1 < df < 2 q\=4<4CD834=98<4H<46I 6H<46D:;=4H-;B > U<46C398QR-;<4=41 I t X>96H<46D:; H U#.398?4H6<48 < RFE d <1 :;6D:;H6 O4<@=4IY:;H-014-0<48 < R N 6O398B06 N BZ8C=9:;=4Hh6HlW9f 8:;H6H R¢Ñ
Ò
ρ(ω) ∝ ω ds −1 , 5pL9on:;14-0?@H348A>BU<98OP398B N -034<46D:;HU[8<9:08 N O>8OKJX8]146D:;H6O4<4<98O d = d /σ 61434-;L9s-;>8O4-0H:~fO=4<@L9-0?@:;6 N :UCO4B0<46D:;Hp = .398?4H_8AB > U<46I:;H34/2?4H/238R Ñ qÒe θ
σ
σ = 1 + θ/2. c
uwv0xypz;yHÖU{}|Ayp~__yp|AyFzFw;ypzU;U_w;zU
4_^^_;yp;UzU
àð
î.|B|
a
+á
!|By1wnz zB|
C>96_R-0<4<8RFEgCRL9C/ N -034<46-.14346D:;H398<9:;HC69J J@L4>8O#.398?4HA8A>96CRC 0, 75 . σ . 1, 42 H34-;E N -034<46 N 14346D:;H398<9:;HCX 0, 75 . σ . 2, 23 Éi398?4HA8AB > U8 < RX-mC6B0O/DlL9-0<4=6OcED8398?4H-034=4B0/2dH:O]<4-;>9=4<4-0I4<8R N L9=9:;14-03@M :;=46<48 < R N :;66H<4+6 SR-0<4=@- N :UH-;14-0<4<46506C=@Lh 8 Ñ ÏÒ ω = Λ|k|σ = Λ(k 2 )σ/2 .
(20.1.1)
}6>9-0-R146ZL9346O<46-R1@34-;L:;HA8C>9-0<4=4-h6OiZ0H=@Ea146<6O4H=6O@EaW4=4HA8H-;>BU N 6Zh-0Hg146>9/DM W4=4HU+=4BBZ8 N -0W98H-;>BU<465066OB06398PÑ ÒJ?l?26H6346 N /gO<4-06ZL9<46?4398H<46+6O398Qh8A>:~O 1434=<9814=9:08<4=4=jZ0H6I=1434-;LBRFL4/@Qi-0I5p>8CBX
å+* å iß
4÷ Ó ¨ç
êpçYé ´å
[÷
Ãè#ç jæMìgëjë
¨û
"º×
´åäYì égàhÄíkåë
>9-;L9 / Oi6+O RXW48 < R N C ?4CD8<4H6C6I N -;E28<4=4?D-}34-4l4-014H_8 N JA/ N <46_= N qa8X `+X `t <98hC6>9<46C/2d¤./2<4?8l4=4d =143@6=4B0C-;L9- N BZ8 N -0<4/ Ψ(x, t)
u34-0B0/Z>BUAH_8H1463O@L9?28
ω 7→ i∂/∂t,
146>9/2W98- N
k 2 7→ −4.
k 7→ −i∂/∂x,
>9=4<4-0I4<46-
/2398C<4-0<4=4-
j34-;L9=4<450-0398L9346O<46506
∂Ψ = −i−σ Λ(−41 )σ/2 Ψ(x, t). ∂t .346D:;H398<9:;HC-0<4<8RXI N <46_=4H-;>BU C6>9<46C6Ij./2<4?8l4=4= ψ(x) i
(20.2.1)
Ψ(x, t) = ψ(x)eiωt
/ZL96C>9-0HC63O4-0HRL9346O<46 N /g8<98A>9650/m:;HA8l4=46<9834<46506h/2398C<4-0<4=6Oj34-;L9=4<450-0398
u
−(−4)σ/2 ψ(x) = λψ(x),
q
λ ≡ iσ ω/Λ.
Ñ Ò71434=4C-;L9-0<8R1434=4O>9=@h-0<4<8RX-C+RX398Ah-0<4=6OL4>8O t σ
ω|x| . Λ
µ
ω(i|x|)σ ψ(x) ∼ exp − ΛΓ(1 + σ)
=Y8:;= N 14H6H=4?4=
l4-0<4H398A>BU<46IW98:;H=
¶
¶1/2 Λ x−(σ+1)/2 , x → ∞, ωΓ(−σ) 34-4SR-0<4=6OZ0H6506[/2398C<4-0<4=6OX Y-;L4>9-0<4<46-cBZ8H/DE28<4=4-?.398?4H6<4<46ISC6>9<@6C6I ./2<4?8l4=4=n1434= /2?@84B RXCD8-0Hc<98eO6B > U+SR/2dC-0346 O4H<46D:;H Ue6O<9834/D=4H U x → ∞ .398?4H6
µ
P
ïñð å+* sö
BÚ
+ó
gxz1y1x1y1w1xf³.{+w1vy1w4³.znx+{+x+y 1zB|6ñy1w1xPÛB{|By1x+y1z1xpÚØÚØÚ
iß
[ @è "
åsê
^Ò L[ÓÔÓ L [Ù
jë#å jë#ìYå÷ípè#ìYégë#ì í
à\è#çYägë#åë
#å
è#åLí
jë
+
"Õ" LÖ
åè#åë
#ç!ê
gë#ìYå
Låè#ç
+=4<4-0I4<46-mL9346O<46MbL9B = g.-03@-08 < l4=98AB > U<46-/2398C<4-0<4=4; - qa8X a6X `tUJC+RXC-;L9-0<@M <46- =4Bc:;66H<46+SR-0<4=6Oqa8X `+X `tUJF:;14398C-;L4>9=4C6e>9=8S(U7C7H6I N -034-JFC7?26H6346I BZ8C=9:;= N 6D:;H Ud W98:;H6H R 6H¡=4<4H-0<9:U=4C<46D:;H = +348?4H6<4<46IGC6>9<8R N 6_<46 ω 1434-0<4-0O34-08 W UBXj/2C-;>9=4W4-0<4=4- N 8 N 1@>9=4H/ZB L R <4-06OZED6_L9= N 6aCC6ZL9=4H U`:;6M |Ψ(x, t)| 6HC-0H:;HC/2dQR=4-Y14614398C?4 = XLu14-034C6 N 1434=4O>9=@h-0<4=4=¡:;66H<4+ 6 SR-0<4=4m - qa8X `+X `t BZ8 N -06 < O4-0H~: OY:;66H<4+6 SR-0<4=4- N
ω = Λ|k|σ − ζ|Ψ(x, t)|2 ,
ζ > 0,
146?28B4RXCD8dQR= N J0W4H6W98:;H6HA8X?26>9-0OD8<4=4I+/ N -0<8U+Sh8-0H:~OR:
3@6D:;H6 N 8 N 1@>9=4H/_LBRgX ¢66HC-0H:;HC/2dQR=4-sZ0H6Il:;CO4B0=iL9346O<46MbL9=Bg.-034-0<8l4=98A>BU<46-¢/2398C<4-0<4=4-¢= N -0-0H C=@L ∂Ψ(x, t) = −i−σ Λ(−4)σ/2 Ψ(x, t) − ζ|Ψ(x, t)|2 Ψ(x, t). (20.3.1) ∂t ¢65p>98:;<46 L8<4<46I7CVÑ ÒX=4<4H-0341434-0HA8l4=4=KJZ0H6c/2398C<4-0<4=4-f6H398Ah8-0H;O4C>9-0<4=4:08 N 6D:l8H6 = OqV:08 N 6 .6?4/D:;=4346C?41 = tY.398?4H6<4<46506 C6B0O/DlL9-0<46 = OKJo?265L8 ?26>9-;M OD8<4=6O7E C O@L934-Y/D:;=@>9=4CD8dH~: OKJ
8`C`E@C6D:;Hj - oe6D:U>8O-0CD8AdH X.6<4?4/234-0<4H6 N Z0H6M = .3988 ? l46 = OKJ}+C RX4B RXCD8dQh8 O£r_398:;1@B > RXCD8<4=4p - O@L93984s X N /[1434+6 l4-Z:0:;/[+C R:;H/2198-0HcL9B u}?@>9dW4-0<4=4-R8<46 N 8AB > U<46IfH/234O/_>9-0<4H<46IfL9B = g./2B0=4p = .398?4H6<48 < RFEgC6B0O/DlL9-;M <4=4I`L96146>96 < O4-0H/2398C<4-0<4=4p - qa8X 8X `t-0QR-l6_L9<4= N L9346O8 < R N >81@>8:;=98<46 N Jt6HAM C-0H:;HC-0<48 < R N BZP 8 Z0H6Hl1434+6 l4-Z:0: i
i
∂Ψ(x, t) = −i−σ Λ(−4)σ/2 Ψ(x, t) − Kβ (−4)β Ψ(x, t) − ζ|Ψ(x, t)|2 Ψ(x, t), ∂t 0 < β 6 1.
å+* úù iß
¤
[÷*è æ "û [Ù ^Ò è#ìYégë
jë
égà\è
4Ù
"º×
çgë#ç!êpì à\è#çYägë#åë
ç
çgëiíkçDà
/
+8h6D:;<46C-.398B0C=4CD8- No¥ Eg146>96Zh-0<4=4IfL9346O<46MbL9=Bg.-034-0<8l4=98A>9¦<46ImL9=@M <98 N =4?4=E.398?4H6<46Cf8CH63 ¥ Ñ Ò1434-;L:;?28B ¥ CD8dHg=4<4H-034-Z:;< ¥ I`§ g.-0?4H;²¨ g® ±« ¯1® ¨4¯1¬ ¨ B¬B¬k.398?4H6<46C9¨ r ¢/2H¦ § g.-0?4HA8PBZ8?@>9dW98-0H:©kCG:U>9-;L9/2dQR- N ¨Y.-;>9=4<4-0I4<98A©kBZ8C=9:U=@M + D 6 ; : H m ¦ W98:;H6H ¥ .398?4H6<986Hm8 N 1@>9=4H/_L ¥ 1434=4C6ZL9=4Hm?a=4B N -0<4-0<4=4dÌ+8B ¥ 6D:UM N l4=@>4>48 © l4=4Ig6H+©@L9398i?E@C6D:;H/lC6B0O/DlL9-;<4=@©K6 ¨ TH-0W@-0<4=4- N C34- N -0<4=g<98ZW98A>9¦< ¥ -
³ - ¾
àð
î.|B|
+á
!|By1wnz zB|
+8B06C ¥ -<4-06_L9<46346ZL9<46D:;H=<98398:;H_8dH_J9=C?28?26I@MH6 N 6 N -0<4HC34- N -0<4=p.398?@M H6<`r_398:;198AL8-0H:©Ks+<98i6D:%l4=@>4>4©4H63 ¥ J+8B ¥ ?26H63 ¥ ElCiB0<98_W4=4H-;>9¦<46Im:;H-014-;M <4=g14-034- N -0ªR8< ¥ B ¨ ÉR8B06C6-X14-034- N -0ªR=4CD8<4=4-6H398Al8-0H:©m<98iCBZ8= N <46 N 398:;146M >96_R-0<4=4=`:UH3@/@?@H/234< ¥ Ea§;>9- N -0<4H6j C .398?4HA8A>84J9/2W98:;HC/2dQR=@ECg?26>9-0OD8<4=@©@Et¨ .34=h§0H6 N <9834/2ªh8-0H:©h6H<46ªR-0<4=@©h§;>9- N -0<4H6C.?@8?hO>9=@l8I4ªR=@Eh:;6D:;-;L9-0 I A14-;3@M C6<98_W98A>9¦<46gO>9=4B0?4=4-l§;>9- N -0<4H ¥«N 650/2Hf398B06I4H=9:U¦Cf146>9-lC6>9< ¥ Jt8gL8A>9-0?@=4:;O>9=4B0=4H¦D:©KsA¨ 6O398Qh8-0H:© ЬL8A>9-0+ - Rr .34=G:;=@>9¦<46 N 14-034- N -;ªR=4CD8<4=4=«¨ ¨ ¨=4<@L9-0?@: θ C <4/Z>9¦7¨ ¨ ¨ Jo:;<4= N 8dH:©]/D:U>96C=@©KJH34-0O/2dQR=4-m>96?@8A>9=4BZ8 l4=4=eC6B0O/DlL9-0<4=4IKJ= .398?4H6<£6O34-0H_8-0HnL96>9506_lL8<4<4/2d :;C6O6_L9/D ¨ uF6>4<98¡?@8?£O ¥ :;6B;L8-0HP:;-0O<4-0W4H6gC346ZL9-i?2634=@L96398:i-0C?@>9=@L96C6IY:;C©4B0<46D:;H¦dRJ9CL46>9¦m?D6H6346506m6<98lO-Z:UM 1434-01@©4H:;HC-0<4<46+14346_E6_L9=4H+:;?4C6B0¦.:;34-;L9/¨DC>9-0<4=4- N 6_<46.398:0: N 8H34=4CD8H¦.?@8? ²%ÈD§6¨ªBªBÇQp²%®¯1¬BÈP®ªfL4>@©f?26H634650( 6 .398?4HA8A>9¦<46-398:;1434-;L9-;>4-0<4=4-.6?28B ¥ CD8-0HAM :©f14346B0398_W4< ¥N s_¨ ¡+>4©YC6>9<46C ¥ Eg146>9-0IKJ9/:;H6I4W4=4C ¥ E6H<46D:;=4H-;>9¦<@6g:08 N 6D:l8H=@©KJ8CH6M 3 ¥ Ñ ÒKC ¥ C6_L4©4HR/2398C<4-0<4=@©
Kβ (−4)β ψ(x) + ωψ(x) + ζ|ψ(x)|2 ψ(x) = 0, ©4C>4©4dQR-0506D:©gL9346O< ¥N 8<98A>96506 N /2398C<4-0<4=@©#ÂK=4<4B0O/2345;8AMei8A<@L8_/J
(20.4.1)
−K4ψ(x) + ωψ(x) + ζ|ψ(x)|2 ψ(x) = 0. c<4=[8:0:;6+l4=4=434/2dH L9346O< ¥ I7E28398?4H-03T614-0398H6346C`Cc/2398C<4-0<4=@=¤qa4¨
9¨ `tR: ?2650-03@-0<4H< ¥N .63 N =4346CD8<4=4- N <4-;>9=4<4-0I4<46506eC6>9<46C65;6c146>4V © o]<981434= N -03KJ ?26<@L9-;<9:08H<46ITC6>9<46C6T I ./2<48 ? l4=4=T<4=@h-H6W4?4=T14-034-;ED6_L8 Cc:;C-03DE@14346C6_L@©@M QR-0-.:;6D:;H6_©4<4=4D - ol146_LfC>9=@©4<4=4- N L96>9506_L9-0I9:;HC/2dQR=@E?263434-;>48 © l4=4IKJ@C<46D:©4Qi=@E :;/2QR-Z:;HC-0<4<4/2d<4-;>96?@8A>9¦<46D:;H¦hCl146C-;L9-0<4=4-+:;=9:;H- No¥ ?@8j ? l4-;>965069¨
å+*
iß
¨û
ë
"
ç åèjë#ìYåËì \êpç.Äíkåë
4Ø
#åËçgæMì ìYä
i8B0-034< ¥N 6_E2>8AlL9-0<4=4- N =1@>9-0<4-0<4=4- N 8H6 N 6Ch<98B ¥ CD8dHh<46C ¥ IH-;E2M <46>9650=4W4-Z:;?4=4In14346+l4-Z:0:a146>9/2W4-0<4=@©P8H6 N 6C]:aH- N 14-0398H/2398 N =PC]L9=98198B06<4<98<46?2-U>9¦C=4<46? C q\H6a-Z:;H¦a:;6Y:;?26346D:;H0© N =e1463©@L9?@8 NN¢® :4t;J:;/2QR-Z:;HC-0<4<466O6M 5;8H=4CªR=4IfªR=4346?4/2dG6O>8:;H¦h<98<4 6 .=4B0=4W4-Z:;?4=@Eg=9:0:U>9-;L96CD8<4=4Ihom6H:;14-;?4H346M :;?2614=@=f:;C-03E@C ¥ :;6?26506.398B034-0ªR-0<4=@©m=g8H6 N < ¥ EW98:;6C+L96h8H6 N <46Im=4<@H-;B 3 .-;M 346 N -0H34=4=]=]?26<@L4-0<9:08 l4=4T = }6B0-;M ¢I4<4ªRH-0I4<9? 8 Ñ 2 J dÒ2 ¨ uF:U>9-UL:;HC=4-g6O N -0<98= N M 14/Z>9¦D:08 N =¡ = .6H6<98 N =[>8B0-034<46506]=4B;>9/2W4-0<4=@©P=P1434=46O34-0H-0<4=@©¡= N 14/Z>9¦D:;6C 6HZL8ZW4=71434=T:;146<4HA8<4<46 N =4BU>9/2W4-0<4=4=T1434+6 l4-Z:0:m§0C6>9D d l4=4=T8H6 N <46506a= N 14/_>9¦M :08+C ¥ 5p>4©@L9=4Hi?@8?g:U>9/2W98I4<46-O>9/DlL8<4=4-CR= N 14/Z>9¦D:;<46 N 14346D:;H398<9:;HC- ¨ ÐL9-;© <46C6506 N -0H6_L8m6_E2>8AlL9-0<4=@©a:;6D:;H6=4HgCf:;6B;L8<4=@=aCg6?434-Z:;H<46D:;H=a<98_W98A>8?26M 63DL9=4<48Hh= N 14/Z>9¦D:;<46506R14346D:;H398<9:;HCDh 8 q t
<4-0O6>9¦ªR=@E398B N -0346CrZ>96C/2ªiM p=0 ?4=Ks_J?4/ZL8`8H6 No¥&N 650/2H`146198AL8H¦ C`34-0B0/Z>9¦AH_8H-Y:U>9/2W98I@< ¥ E]O>9/DlL8<4=4I7=
s°
ý $á
+â
BÚ ûúg| x+{+y1w1xhw@¯6.|4°h³.x+y1z1xh|Ý6w w1
Dq
6D:;HA8CD8H¦D:©lHA8 N 14346_L96>4=4H-;>9¦<46-C34- N ©K¨8cE2>8AlL9-0<4=4-JE28398?4H-034=4B0/- N 6-C = N 14/Z>9¦D:;<46 N 14346D:;H398<9:;HC-gC6B0398:;HA8<4=4- N ?26<8l4-0<4H398l4=4=T8H6 N 6CaC 6?434-0:;HAM <46D:;H= =f/ N -0<4¦ªR-0<4=4- N -0-BZ8R1434-;L9-;>8 N =f>46C/@ªi?4=KJ2C N 8H- N 8H=4W4-Z:;?D6 N p=0 1@>8<4-F6O/D:U>96C>9-0<46?26<4?4/234-08 < l4=4-;IhL9C/DER1434+6 l4-Z:0:;6B C _= N 14/_>9¦D:;<46IRL9B = g./2B0=4-0I =Y6O398QR-0<4=4- N C<4/_>9¦mC-0346Z©4H<46D:;H=YC ¥ ED6_L8l=@BRH6W4?4= ¨ Ð+:;H634=@©Y?@8AlM . p=0 L965068H6 N 8gE28398?4H-034=4B0/-0H:©`146D:U>9-;L96CD8H-;>9¦<46D:;H¦dkCBZ8= N <46f<4-0BZ8C=9:;= No¥ E :U>9/2W98I4< ¥ EeC-U>9=4W4=4< J±5pL9oc:U>9/2W98I4<98A©e14346_L96>4M T , Θ , T , Θ2 , T3 , Θ3 , ... Θ :U>9/2W98I4<48A© 14346ZL96j>4=4H-;>9¦<46D:;H¦mL9B = g./DM =4H-;>9¦<46D:;H¦ M506g1@>9-0<41-0<4=@1©KJ 2 oY j T B0=4= N -;lL9/ M N = M N 1@>9-0j<@-0<4=4- N J}<98B ¥ CD8- N 8A©TC34- N -0<4- N 344- l@=434?4/_>4©@M j j+1 l4=4=KB ¨ >96H<46D:;H=398:;1434-;L9-;>9-0<4=@©§0H=@EY:U>9/2W98I4< ¥ EfC-;>9=4W4=4<6O6B0<98ZW4= N qT (t) = ¨ qΘ (t) ¢:U>9=W98:;H6HA8h14-034-Z:;?26?28hC6?434-0:;H<46D:;H= C-;L9-0H:;-0OZ©f146lBZ8?26<4/ p=0 µ ¶α p 1 , p < p0 , R(p) ' τ 0 p0 H6 ²
Ú
(Θj > θ) ∼ Aθ −ν , θ → ∞, 5pL9-146?@8BZ8H-;>9¦ :;C©4BZ8
f0 (t) =
Zt 0
[F (t0 ) − F 0 (t0 )]dt0
W4-034-0B398B0<46D:;H¦e:;?D6346D:;H-0IT14-034-;ED6_L96C = J/_L96C>9-0HC63©4dQR=@E7:;=@M F (t) F 0 (t) :;H- N -=4<4H-050398A>9¦< ¥ E/2398C<4-0<4=4; I q\1434=g/:U>96C=4=KJDW4H6RL9C=@R-0<4=4-<98ZW4=4<98-0H:©g: 6D:;C6O6ZlL9-0<4=@©g=4B.>96C/2ªR?41 = t
F (t) = qT (t) +
Zt 0
F 0 (t) = .34=
Zt 0
F 0 (t − t0 )qT (t0 )dt0 ,
F (t − t0 ) qΘ (t0 )dt0 .
N 0- <4=4C+1434-06O398B06CD8<@=4-i81@>8:08=34-0ªR=4Ci8A>950-0O398=4W4-Z:;?4/2dn:;=9:;H-;M / 4 J 4 1 6 9 > 2 / 4 W = N N qbT (λ) 1 − qbΘ (λ) fb0 (λ) = · . λ 1 − qbT (λ)b qΘ (λ)
àð
î.|B|
+Ï
+á
!|By1wnz zB|
+8?:U>9-;L9/-0Hl=4Bg.=4B0=4W4-Z:;?4=@Ef1@6>96_h-0<4=4I
1 − qbΘ (λ) ∼ Aλα ,
1 − qbT (λ) ∼ Bλβ ,
5pL9¨.uP6O>8:;H= N 8A> ¥ EB0<98_W4-0<4=4I ./2<4?8l4=@© /ZL96C>9-0HC6M 0 < α, β < 1 λ fb0 (λ) 3D©4-0Hl/2398C<4-0<4=4d Aλα fb0 (λ) + Bλβ fb0 (λ) = Aλα−1 . .34= N -0<4=4C6O398H<46-1434-06O398B06C8<4=4-Mi81@>8:084J2146>9/2W4= N [0
ä
α t
+ b0
ä
o-0ªR-0<4=4-JA146>9/2W4-0<4<46-F:}146
β t ]f0 (t)
N 6QR¦d
1 t−α . Γ(1 − α) N -0H6_L8!./2<4?8l4=4I\ÂK34=4<98= N -0-0H.C=@L
=
°
f0 (t) = tα−β Eα−β,α+1−β (−btα−β ). ¢H6i34-0ªR-0<4=4-:;65p>8:;/-0H:©:X34-0B0/_>9¦_HA8HA8 N =W4=9:U>9-0<4<46506 N 6_L9-;>9=4346CD8<4=@©:X146M N 6QR¦dG:;=9:;H- No¥ =4<4H-050398A>9¦< ¥ Ef/2398C<4-;<4=4IK¨
å+*
iß³
´µX¶b·F¶¸
,
Õ "Õ"º×
ê#àYìgè#åHâ #åë
¨ç "
ûë#çgë#ì jè
#âLæç!êjêpìYä
¹cº»¼o½»¼±¾À¿YÁKÂ.ÃtÄÅ
aÛÜ;?Ü{79Ü)-q
+8?n6H N -0W98A>46D:;¦]C KJ>9/634-Z:;Æ4-0<4Æ4=@©[146>9/214346C6_L9<4=4?26C ¥ E <98<46?434=9:;H_8A>4>96C9JA6O>9/2W98- No¥ Ei>8B0-0346 N JA= N -0-0H N -034Æ98H-;>9¦< ¥ IhE28398?4H-0314-;M 34=46_L ¥ =4B;>9/2W4-0<4=@©gÇ MÈ:;6D:;H6_©4<4=@©ÉtW4-034-;L9/2dH:©h: MÈ:;6D:;H6Z©4<4=@© N =KJZC?26H63 ¥ E óÊ <98<46W98:;H=4Æ98h<4-.=4B;>9ó+/2ô W98-0H_¨ ¢?@:;14-034= N -0<4H ¥ 146?@8B ¥ CD8dH_J±W4H6 L4>9=4H-;>9¦<46D:;H=T143@-0O ¥ CD8<4=@©]C`§0H=@E :;6D:;H6_©4<4=@©@E[:U>9/2W98I4< ¥ =¡Ce14-034C6 N 1434=4O>4=@h-0<4=4= N 650/2He398:0: N 8H34=4CD8H¦D:© ?@8?f<4-0BZ8C=9:;= No¥ -.:U>9/2W98I4< ¥ -.C-;>9=4W4=4< ¥ = J4398:;1434-;L9-;>9-0<@M T1 ≡ Ton T0 ≡ Toff < ¥ -+146:;H-014-0<4< ¥N BZ8?26<98 N ²
°
(T1 > t) ≡ Ψ1 (t) ∝ t−α , P (T0 > t) ≡ Ψ0 ∝ t−β , 0 < α, β < 1. £C-0346Z©4H<46D:;H<46IcH6W4?4=eB034-0<4=@© N -034Æ98dQh8A©eË>9/634-Z:;Æ4-0<4Æ4=@© N 6Zh-0H O ¥ H¦h1434-;L:;HA8C>9-0<98RClC=@L9-146D:U>9-;L96CD8H-;>9¦<46D:;H=g14-034-;E6_L96Ch:;=9:;H- No¥N -;lL9/ L9C/ N ©]/2?28BZ8<4< ¥N =7:;6D:;H6Z©4<4=@© N =KJ±14346=9:ED6ZL4©4QR= N =]C :U>9/2W98I4< ¥ - N 6 N -0<4H ¥ C34- N -0<4p = Ñ 4J9 Ì Ò+¨ .34= N -03H398-0?4H634=4=mH_8?26506+H=4198+1434=4C-;L9-0<<9g 8
=9:¨@Í 4¨ ÌDÇV8DÉU¨ Îc398 N ?@8AEi§0H6I N 6_L9-;>9=RC398O6HA8Af E Ñ 4J2 Ì Ò2C ¥ W4=9:U>9-0< ¥ ?263434-;>4©4Æ4=46<4< ¥ -FË./2<4?@M Æ4=4= =a198398 N -0H3 a8<@L9-;>4©K¨^ÎPL9-0I9:;HC=4H-;>9¦<46D:;H=`:;=4H/8Æ4=@©KJ^?D6<4-0W4<469J^:U>96_lM <4-0-J9H- N <4- N -0<@-0- N 6_L9-;>9¦lL9C/DE:;6D:;H6_©4<4=4Ie Ç Æ¬Bª1¨§1ª1¨0Ï g®±« ¯1°2ÉF?28_W4-Z:;HC-0<4<46 1434-;L:;?28B ¥ CD8-0Hh<4-0?26H63 ¥ -+:;HA8H=9:;H=4W4-Z:;?4=4-iBZ8?D6<46 N -034<46D:;H=K¨ }/_L9- N 6H:;W4=4H ¥ CD8H¦À14346ZL96>4=4H-;>9¦<46D:;H¦ÀC34- N -0<4=<98O>9d}L9-0<4=@© t 6H N 6 N -0<4HA8P=4B N -0<4-0<4=@©k:;6D:;H6_©4<4=@©&Ç\14-034-;ED6ZL8DÉa=j398:0: N 8H34=4CD8H¦P14346Æ4-Z:0:
p
L/
-ó +ó $õ
BÚ ÐÒÑg.Û@ÓÔÕ+ ÕÖ × `Ö9Ø9ÖÓÔ×1ÝØ61tÓ1
Ù
t
t
Q(t)
f1 f0
0
1
q 0
1
a)
b)
=9:¨XÍ4¨ ÌÚ¢Û¼¶UÜÝ4¸¼ ¿½»¸pÞÝ4À ߶Uà»·Dáaß»pâã@Ý0ä}åH»æ7çL·Dè¶Z⻸㻾Dã¿¿1Á±é_êg¸·Dè½@Ý;æ¾@Ý4À ¼_â2Ý4p» Þ¼Z ¶ â+¿À!¿ë@ê»»Fì2â»à¸¼ZÝ%¹ ·»¾¿»s¹+Þ¶ ¶ZâAà+¿¾@Ý4¼ZÝ;Ü8Á
Jh398C< ¥ I&:;/ NN 834<46IíL4>9=4H-;>9¦<46D:;H=&=4B;>9/2W4-0<4=@©BZ8£C34- N ©<98O>9dFL9-;M Θ(t) <4=@©eÇr
=9:¨Í4¨ ÌDÇ\îÉÉU¨4Î}C-;L9- N :U>9-UL9/2dQi=4-+6O6B0<98_W4-0<4=@©KÚ Ì.p = Rïm:;6D:;H6_©4<4=@© = J9:;66HC-0H:;HC-0<4<46 ó+ô óÊ ïC-0346Z©4H<46D:;H¦lH65069J@W4H6<98_W98A>9¦< ¥N 14-034-;E6_L96 N ©4C>4©4-0H:© ε1 0→1 ïC-0346Z©4H<4² 6D:;H¦lH65069J@W4H6<98_W98A>9¦< ¥N 14-034-;E6_L8R©4C>4©4-0H:© ε2 1→0 ïiC-0346Z©4H<46D:;H¦.H65069JW4H6i:;/ NN 834<98A©l14346ZL96>4M p1 (θ|t)dθ = (Θ(t) ∈ dθ) =4H-;>9¦<46D:;H¦g=4B;>9/2W4-0<4=@© BZ8mC34- N © <98O>9dFL9-0<4=@© 1434=4<98AL4>9-;=4Hf=4<4H-034CD8A>4/ t
$C
C
C
C
(θ, θ + dθ) ïh:;34-;L9<4-0-W4=9:U>96R14-034-;E6_L96C =4B B08iC34-;M f1→0 (θ, t)dθdt 1→0 (θ, θ + dθ) © N (t, t + dt) ï:;34-;L9<4-0-¢W@=9:U>9614-;34-;ED6_L96C C=4<4H-034CD8A> f (θ, t)dθdt 0→1 (θ, θ + dθ) BZ8hC34- N 0→1 © J (t, t + dt)
C
Ψn (t) =
Z∞
² ψn (t0 )dt0 = (Tn > t),
n = 0, 1.
t
Ð <4H-050398A>9¦< ¥ -/2398C<4-0<4=@©KJ:;C©4B ¥ CD8dQR=4-fCC-;L9-0<4< ¥ -C ¥ ªR-1@>96H<46M . :;H=KJ4= N 0- dHC=@LÚ
p1 (θ|t) =
Zθ 0
f0→1 (θ − t0 , t − t0 )Ψ1 (t0 )dt0 +
Zt 0
f1→0 (θ, t − t0 )Ψ0 (t0 )dt0 , (20.6.1)
àð.Ø9ÖÓ×+áZ×9Ø
Ùð
î^ØBDØ
f1→0 (θ, t) =
Zθ 0
f0→1 (θ, t) = .34=
f0→1 (θ − t0 , t − t0 )ψ1 (t0 )dt0 + ε0 δ(θ)δ(t),
Zt 0
f1→0 (θ, t − t0 )ψ0 (t0 ) dt0 + ε1 δ(θ)δ(t).
(20.6.2)
(20.6.3)
N -0<4=4ClL9C6I4<@6-.1434-06O398B06CD8A<4=4-Mi81@>8:08
pˆ1 (λ1 |λ) =
146>9/2W98- N
Z∞
dt
0
Zt
dθ e−λt−λ1 θ p1 (θ|t)
0
b 1 (λ + λ1 ) + fb1→0 (λ1 , λ) Ψ b 0 (s), pb1 (λ1 |λ) = fb0→1 (λ1 , λ) Ψ fb1→0 (λ1 , λ) = fb0→1 (λ1 , λ) ψb1 (λ + λ1 ) + ε0 ,
fb0→1 (λ1 , λ) = fb1→0 (λ1 , λ) ψb0 (s) + ε1 . 8B034-0ªh8A©f§;H/g:;=9:;H- N /J91434=@E6_L9= N ?H398<9:0Ë.63 N 8<4H_8 N W98:;H6Hh14-034-;ED6_L46C ε1 ψb1 (λ1 + λ) + ε0 , fb1→0 (λ1 , λ) = 1 − ψb( λ + λ1 )ψb0 (λ)
ε0 ψb0 (λ) + ε1 , 1 − ψb1 (λ + λ1 )ψb0 (λ) = C ¥ 398AR-0<4=4dL4>4©H398<9:;Ë+63 N 8<4H ¥ =9:;?D6 N 6I1@>96H<46D:;H=KÚ fb0→1 (λ1 , λ) =
pb1 (λ1 |λ) =
ε0 ψb0 (λ) + ε1 1 − ψb1 (λ + λ1 ) + λ + λ1 1 − ψb1 (λ + λ1 )ψb0 (λ)
ε1 ψb1 (λ + λ1 ) + ε0 1 − ψb0 (λ) . (20.6.4) λ 1 − ψb1 (λ + λ1 )ψb0 (λ) .6D:U>9-;L9<4-0-C ¥ 398Ah-0<4=4-+:H6W4<46D:;H¦dSL96l6O6B0<98_W4-0<4=4Ig:;6C198AL8-0Hh:.34-0B;/_>9¦AH_8AM H6 N Jt146>9/2W4-0<@< ¥N CEÑ ÒoL4>4©aE28398?4H-034=9:;H=4W@-Z:;?26I`Ë./2<4?4Æ4=4=`1@>46H<@6D:;H=`398:UM 1434-;L9-;>9-0<4=@©¡=4<4H-0<9:;=4C<46D:;H= N 8?4346D:;?D614=4W4-Z:;?26I¡Ë>9/634-Z:;Æ4-0<4Æ4=4=K¨}Ë Î Ñ Ò§0H_8 H398<9:0Ë.63 N 8<4HA8`=9:;146>9¦B0/-0H:©TL4>4©n8:;= N 14H6H=4W4-Z:;?26506]8<98A>9=4BZ8`198398 N -0H398 a8<@L9-;>4©K¨ ¥ JF6O398H=4C7H348<9:0Ë.63 N 8<4H/¡: 146 N 6QR¦dñL9346O<46M/:;H6I4W4=4C ¥ E 398:;1434-;L9-;>9-0<4=4IKJ}146>9/2W4= N C]©4C<46 N C=@L9- C ¥ 398Ah-0<4=4-YL4>4©S:08 N 6IP8:;= N 14H6M H=4W4-Z:;?D6Ia1@>96H<46D:;H=a398:;1434-;L9-;>9-0<4=@© =Y146?@8Ah- N JW4H6m§0HA81@>96H<46D:;H¦ p (θ|t) /ZL96C>9-0HC63D©4-0HRL9346O<46MVL9=9Ë+Ë.-034-0<4Æ4=98A>91¦<46 N //2398C<4-0<4=4dR¨
+
P
-ó +ó $õ
BÚ ÐÒÑg.Û@ÓÔÕ+ ÕÖ × `Ö9Ø9ÖÓÔ×1ÝØ61tÓ1 ´µX¶b·F¶b´
Ù+
ò£½Á
ó
»Áoô0Â.ºõSõPÃK½ÃK»öº¼±ÄÅ
»÷]Ã ø ½¼où
»ÃK»º¾ú½Á
öÃûtû^¼
ά398O6H - Ñ Ì_Í Òg1434-;L4>96Zh-0< N -;E28<4=4B NN -034Æ98<4=@©KJR6D:;<46CD8<4< ¥ Ik<98 N 6_L9-;>9= L9=9Ë+Ë./2B0=46<4<46M?D6<4H346>9=434/- No¥ E`§;>9-0?4H346<4< ¥ E]14-03@-;ED6_L96C9J?D6H63 ¥ I]1434=4C6M L9=4H ?71@>96H<46D:;HZ© N 398:;1434-;L9-;>9-;<4=@© M.= M=4<4H-034CD8A>96CaC C=@L9-crZL9346O< ¥ E ó+ô óÊ §0?@:U146<4-0<4H4s4Ú ψ0 (t) = cβ0 tβ−1 Eβ,β (−cβ0 tβ ).
α−1 α ψ1 (t) = cα Eα,α (−cα 1t 1 t ),
.34=
= /§0H=@Eg1@>96H<46D:;H-0If398 1434-;L9-U>9-0<4=@©f= N -0dH:©]r_HZ©@Rü;> ¥ -s ò α<1 β<1 ;: H-014-0<4< ¥ -}E@C6D:;H ¥ ¨.34= = rZL9346O< ¥ -}§0?2:;146<4-0<4H ¥ s14-034-;ED6_L4©4HC α→1 β→1 6O ¥ W4< ¥ -.§0?@:;146<4-0<4H ¥ ¨9ý8?4= N 6O398B06 N J2=4B N -0<4-0<4=4-iCD:;-0506l6_L9<46506l198398 N -0H398 C.?@8AlL96Ih=4BX1@>96H<46D:;H-0I = 146B0C6>4©4-0H N 6ZL9-;>9=4346CD8H¦.?28?:;H-014-0<@M ψ (t) ψ (t) < ¥ -J4H_8?=§0?2:;146<4-0<4Æ4=98A>9¦< 1 ¥ -.398:;01434-;L9-;>9-0<4=@© M
= M=4<4H-034CD8A>96C9¨ ó+ô óÊ .6_L:;H_8C>4©@©fH398<9:0Ë.63 N 8<4H ¥ i81@>8:08R§0H=@EË./2<4?4Æ4=4IKÚ ψb1 (λ) =
1 α, 1 + (λ/c1 )
ψb0 (λ) =
ClC ¥ 398Ah-0<4=4-ÇbÍ4¨ Ï4¨ Ù2ÉUJ2146>9/2W98- N Ú pb1 (λ1 |λ) =
1 1 + (λ/c0 )
(20.6.5)
β
£ ¤ −β β α−1 α c−α + c0−β λβ−1 + c−α ε1 (λ + λ1 )−1 + ε0 λ−1 1 (λ + λ1 ) 1 c0 λ (λ + λ1 )
+-;34-014=4ªR-
−β β −α −β α α β c−α 1 (λ + λ1 ) + c0 λ + c1 c0 (λ + λ1 ) λ
N 146D:U>9-;L9<4-0-+:;66H<46ªR-0<4=4-.ClC=@L9-Ú
(20.6.6)
α β λβ pb1 (λ1 |λ) + C(λ + λ1 )α pb1 (λ1 |λ) + c−α b1 (λ1 |λ) = 1 (λ + λ1 ) λ p
£ ¤ β α = C(λ + λ1 )α−1 + λβ−1 + c−α ε1 (λ + λ1 )−1 + ε0 λ−1 . 1 λ (λ + λ1 ) L9-Z:;¦ ¨4Î 146>9<@©@©gL9C6I4<46-6O398H<46-1434-06O398B06CD8A<4=4-Mi81@>8:08i= C = cβ /cα ¥ /2W4=4H ¥ CD8A©KJ@W40H6 1
ì
1 (2πi)2
Z Γ
1 = 2πi
5pL9-
Z
dλ
Z
Γ0
dλ1 exp(λt + λ1 θ)(λ + λ1 )α pb1 (λ1 |λ) =
dλ exp(λt) exp(−λθ)
þ
Γ
a t
0
ä
α θ
exp(λθ)b p1 (θ|λ) = þ
ïm614-0348H63f:L9C=45;8h1@6C34- N -0<4= <98hC-;>9=4W4=4<4/ Ú t a þ
a t p1 (θ|t)
= p1 (θ|t + a),
−θ t 0
ä
α θ θ þ t p1 (θ|t),
.
àð.Ø9ÖÓ×+áZ×9Ø
Ù9Ì
î^ØBDØ
1434=@ED6ZL9= N ?cL9346O<46MbL9=9Ë+Ë.-034-0<@Æ4=98A>9¦<46 N /Y/2398C<4-0<4=4d«L4>4©e1@>96H<46D:;H=e398:UM 1434-;L9-;>9-0<4=@©Y:;/ NN 834<46IgL4>9=4H-;>9¦<46D:;H= M =4<4H-034CD8A>96C9Ú 0
ä
β t p1 (θ|t)
−θ t 0
+C þ
ä
ó+ô
α θ θþ t
p1 (θ|t) + c−α 1
0
ä
β t
þ
−θ t 0
ä
α θ θþ t
p1 (θ|t) =
¶ −α t−β c−α (t − θ)−β αε0 βε1 t−α 1 θ + δ(θ) − + . = C δ(t − θ) Γ(1 − α) Γ(1 − β) Γ(1 − α)Γ(1 − β) θ t−θ ./D:;H¦R14346Æ@-Z:0: N -034Æ98<@=@©g=4B0/2W98-0H:©g: N 6 N -0<4HA8R14-034-;E6_L8i=4B MoC M óÊ ó+ô :;6D:;H6_©4<4=4-¨ýK65pL8 = ¨QÐ.BfH_8_/2O-0346C6IeH-0634- No¥ :U>9-;L9/-0H_JW4H6 ε1 = 1 ε 0 = 0 C ¥ 398Ah-0<4=@-YÇbÍ 4¨ Ï4¨ ÏDÉ C8:;= N 14H6H=4?2-O6>9¦ªR=@EYC34- N -0<[Ç −1 É= N -0-0H t À c−1 1 , c0 C=@LÚ C(λ + λ1 )α−1 + λβ−1 , C(λ + λ1 )α + λβ .-034-014=4ªR- N 146D:U>9-;L9<4-0-+C ¥ 348Ah-0<4=4-.ClC=@L9-Ú pb1 (λ1 |λ) ∼
µ
C = cβ0 /cα 1.
(20.6.7)
¤ C(λ + λ1 )α + λβ pb1 (λ1 |λ) = C(λ + λ1 )α−1 + λβ−1 . Î ¥ 146>9<@©@©YL9C6I4<46-i6O398H<46-i1434-06O398B06CD8A<4=4-Yi81@>8:084J41434=@ED6_L9= N ? 8:;= N 14H6H=4W4-Z:;?D6 N /[L9346O<46MbL9=9Ë+Ë.-034-0<4Æ4=98A>9¦<46 N /T/2398C<4-0<4=4dÿL4>4©P1@>96H<46M :;H=398:;1434-;L9-;>9-0<4=@©Y:;/ NN 83@<46IfL4>9=4H-;>9¦<46D:;H= M=4<4H-034CD8A>96C9Ú ó+ô £
0
ä
ä
t−α t−β + δ(θ) . Γ(1 − α) Γ(1 − β) (20.6.8) Ð.B0C-Z:;H<46YÇV: N ¨4<981434= N -03?Ñ ÌÌ%Ò\ÉUJ@W4H6C ¥ 398AR-0<4=4-
β t p1 (θ|t)
+C þ
−θ t 0
α +θ θþ t
p1 (θ|t) = C δ(t − θ)
λβ−1 β Cλα 1 +λ ©4C>4©4-0H:©gL9C6I4< ¥ N 1434-06O398B06CD8A<4=4- N i81@>8:08RË./2<4?4Æ4=4=KÚ ³ ´ (Ctβ )−1/α q+ θ(Ctβ )−1/α ; α, β ,
5pL9ïYL9346O<46M/D:UH6I@W4=4CD8A© 1@>96H<46D:;H¦9JKC ¥ 398Ah8dQh8A©9:© W4-034-0B6_L4M q (t; α, β) <46D:;H6+346<4<4=4-./D:;H6I4W4=4C ¥ -.1@>96H<46D:;H= = Ú g+ (t; α) g+ (t; β) q+ (t; α, β) =
Z∞
dτ g+ (τ ; β)g+ (tτ −β/α ; α) τ β/α .
0
+8AED6ZL4©g634=450=4<98A>YH398<9:;Ë+63
N 8<4H ¥
ÇbÍ4¨ Ï4¨ É
³ ´ p(θ|t) = [C(t − θ)β ]−1/α q+ θ[C(t − θ)β ]−1/α ; α, β
-ó +ó $õ
BÚ ÐÒÑg.Û@ÓÔÕ+ ÕÖ × `Ö9Ø9ÖÓÔ×1ÝØ61tÓ1
Ù9ÌÌ
=9:A¨^Í4¨ Í@Ú4Û±â2Ý%¹ ¾»¾¿»H¸Fâ»è4·Dá4¼ZÝ4¼ZÝ0ß¿h߶Uà»·¿2â¶4¹AÝ%¾¿ÀRß»¼¶Uà¶ZßP¶4¾¼»Ý0â+·¶+Á
³ ´ +(C −1 θα )−1/β q+ (t − θ)(C −1 θα )−1/β ; β, α .
(20.6.9)
=R/2W4=4H ¥ CD8A©R:;66H<46ªR-0<4=4-L4>4©hË./2<4?4Æ4=4IiL9346O<46M/D:;H6I4W4=4C ¥ E398:;1434-;L9-;>9-0<4=4I
14-034-014=4ªR- N
³ ´ ³ ´ Q+ ξ(Cτ β )−1/α ; α, β = 1 − Q+ τ (C −1 ξ α )−1/β ; β, α ,
ÇbÍ4¨ Ï4¨ DÉ
ClC=@L9-Ú
¸ ³ ´ α (t − θ) (Cθα )−1/β q+ (t − θ)(Cθ α )−1/β ; β, α . (20.6.10) p1 (θ|t) = 1 + β θ ·
¢398C<4-0<4=4-34-0ªR-0<4=@©ÇbÍ4¨ Ï4¨ Ì DÉR:f34-0B0/Z>9¦AHA8HA8 N = N 6ZL9-;>9=4346CD8<4=@©T14346M Æ4-Z:0:08 N -0H6_L46 N Y6<@H-UM+83@>969J1434-;L:;H_8C>9-0<4<46-<98!
=9:¨2Í4¨ Í@J146?28B ¥ CD8-0HE6M 346ªR-0-+:;65>8:;=4-¨
àð.Ø9ÖÓ×+áZ×9Ø
Ù9Ì_Í
î^ØBDØ
jæMåè#çgæDà\è#ç
'/ 4 6°
>9-0?4H346< ¥ =Ë.6<46< ¥ ¨2ïWe¨ Ú JtÌ DÍ@¨ Í@¨^`6UIJ DJLOPSL X ¨$ &Y ¨9)-,+qKJtÌ0Ù DÍmÇwÌ DqðDÉU¨ 4¨R [»k=> N= k249¸ ) ¶ o J4ð fÇbÍ Ù2ÉU¨ Ù9¨^`@ $¡3`4BIJQ@G $X ¨ &Y ¨$# & ¨ A$ZKJtÌ DÍfÇwÌ ð ÉU¨ q@¨SKLHG t6t`4bg NgDF' IJ>E-gE- X ¨$ &Y ¨ ²+K² JtÌ Ù2q DqmÇbÍ DÍÉU¨ 4¨k§U¡U;WRg X N +§F$TPu3 N @ T U S40 &Y ¨ | -% ¨X ¨²+²KJ ð4ÌÇwÌ Ù2ÉU¨ 2¨;: ¨ Ú iU=4³ B>N À38HZ>9\=4H_ J^¢Í -;>9-04?4¨ H=4C<98A©n:;14-0?4H346D:;?2614=@©[6_L9=4<46W4< ¥ E N 6>9-0?4/Z>¨
ï e ð4¨^
S N¨
¼ S NS2 "24 NS¨ Ú . i=4 B $8¿ HZ>9=4H_J^Í Dq@¨.3 ¢HA8H=9:;H=4?@8 +-0C=g=f>8B0-034<46-.6ZE2>8AlL9-0<4=4-¨2ïWe N 4¨4E0F-'c V g Ng §UB£P Nr+HG T IJ¡k4$9 ¨+ªX & ¨ X sz ?$Z o JtÌZð4ÌÇbÍ DÍÉU¨ Ì 4¨^K> V0G He NB §Ug£P+9 ¨+ªX & ¨ X ¨) ?) JtÌ_q fÇbÍ Ù2ÉU¨ Į̀W·B $³ "¸9¸ ) ¶$K7 J4ðÙ mÇbÍ DÉU¨ Ì_Í@¨ºR 'V>E- N@K> JF'k4B`4 @X & Un mx ªX & z mxBX sz ) ?$K7 J DqAÙ Ù ÇbÍ DqÉU¨ ̨R¨ Y¨ª hÅ
BÐ!
6õ
«¯.«%ªBÇQ
p¬¯1®©¨ªB®©
+Ï
8ÓMÉ(
8õ
%ö~ö
++
+
6õ
Ï
²¨± ° +® 1É
H
H¨ §.± ¦
H¦ P®
pó
g²1«
(® ª .É
B¨ªBª8¦±4Ŭ +
+
Ï+Ï
8õ
BÓMÉ(
6
H
+
6õ ò4õ
+
6õ
++
8¨ +¬Bª
+
+
ó
++ ô
ó
ò
8õ ò4õ
6
ÂÄÃÆÅ]ÇÄÅ È
å
Ï
!
fÞYß4Þ
!$#
àÎ&%"'üÌ %
3é 4Ø Ø LÖ èjà
S×
3ç
jë#ì çYâ}øæçYégë#ç âLæDèjà
ìíkåsê
LÖ
çgëiíkåsê
jæDà\è#ç
Yégè#ìgæç
+8?261@>9-0<4< ¥ -?i<98:;H6_©4QR- N /C34- N -;<4=iOD8B ¥ L8<4< ¥ E+8:;H346<46 N =4W4-Z:;?4=@E <98O>9dFL4-0<4=4IG398:;1434-;L9-;>9-0<4=@©GC=@L9= N 6I N 8H-034=4=£C6nÎF:;-;>9-0<4<46I£:;6D:;34-;L96H6M W4-0< ¥ C 6OB06398AEtJ±:;6_L9-03l8QR=@Ee398B0<466O398B;<4/2d&=@<9Ë.63 N 8Æ4=4d6 N =@>4>9=46<98AE = N =@>4>9=46<98AE`?26D: N =4W4-Z:;?4=@E`6 O K-0?4H6C9Út12>8<4-0HAJKB0C-0B;LJK5U8A>8?4H=4?KJ±:;?D61@>9-0<4=4I 5;8A>98?4H=4?KJ±:;?261@>9-0<4=4I]:;?D61@>9-0<4=4Ie5;8A>8?4H=4? 6 O K-0?@H6CY:;1@-0Æ4=98A>9¦< ¥ E`H=4146C9Ú ?4CD8BZ8346C4J¢14/Z>9¦D:08346C9J¢398AL9=465;8A>8?4H=4?n=¡L93K ¨ ¢H3465067506C63©KJ}:;6C34- N -0<4<98A© ?26D: N 6>9650=@©`Ç\<98Z/2?@8R6RC6B0<4=4?4<46C-0<4=4=m=g§0C6>9dÆ4=4=fÎF:;-;>9-0<4<46IÉL96>4<98R614=@M 398H¦D:©i<98CD:;d7§0H/+=4<9Ë.63 N 8Æ4=4dRJ_6_L9<98?D6§0H61434-;L:;HA8C>4©4-0H:©h:;-0506ZL9<@©R<4-0C6B;M N 6_< ¥N J4?@8?f<4-0C6B N 6_R-0
9C
UÝ
³
+¾
ξ(r) = (r/r0 )−γ , 5pL9= ï ! !#"%$@Ï '&')('(#*0Ï,+-$.&'(.*A¨QÐ.B0C-Z:;H<46`HA8?@h-JW4H6 γ = 1.77 ± 0.04 r :;?261@>9-0<4=@©f5U8A>8?4H=4?cÇ\?@>80 :;H-03 ¥ É¢=:;?D61@>9-0<4=@©:;?D61@>9-0<4=4IcÇV:;/214-034?@>8:;H-03 ¥ ÉUJ
-â
Ó×+áZ×9Ø
Ù9Ì0Ù
î0/^Ø'1DØ Ù32 . Ó 4
398:0: N 8H34=4CD8- No¥ -h?28?`H6W4-0W4< ¥ -l6O K-0?4H ¥ J^146>96_R-0<4=@©`?26H63 ¥ Ea61434-;L9-;>4©@M dH:©T?2663L9=4<98HA8 N =TÆ4-0<4H346C N 8:0:JoED8398?4H-034=4B0/2dH:©T?263434-;>@©4Æ4=@© N =[H6506 h-R:08 N 6506:;H-014-0<4<46506mH=41984¨5
>9-;L9/2dQR=4-i6D:;6O-0<4<46D:;H=fL8dH146C6_LL4>4©Y146M =9:;?@8<46C6Ih?D6<4Æ4-014Æ4=4=KJ8A>9¦_H-034<98H=4C<46Ih?@>8:0:;=4W4-Z:;?D6IÇV:;65p>8:;<46146D:U>9-;L9<@-0I :}/ N -0<4¦ªR-0<4=4- N N 8:;ªRH_8OD84J_H6.-Z:;H¦9J:}/2C-;>9=4W4-0<4=4- N 5>9/2O=4< ¥ 6OB063984JZ398:;1434-;M L9-;>9-0<4=4-+C=@L9= N 6I N 8H-034=4=C ¥ 5p>4©@L9=4HlCD:;-.O6>9-0-6_L9<46346_L9< ¥N ÉU¨ Ì# ¨ 6+>4©`5;8A>8?4H=4? 6?@8B ¥ CD8-0H:© 398C< ¥N Y19:JKH65pL8g?@8? L4>4© r0 5h−1 ?@>8:;H-0346C Y 9 1
: R = 0 B 9 < _ 8 4 W 4 = H ; 9 > ¦ 4 < 6 O 6 9 > ¦ R ª 4 L 4 > h © ; : /214-034?@>8:;H-0346C9¨ ¢H6 r ' 25h−1 6BZ8AL8_W4=@CD8-0H40Út?@>8:;H-03 ¥ 1434-;L:;HA8C>4©4dH:©eO6>9-0-l?263434-;>9=4346CD8<4< ¥N =c:;H34/2?@M H/2398 N =KJ^W4- N 5;8A>8?4H=4?4=tJ^=4Bh?D6H63 ¥ Ea6<4= :;6D:;H6_©48 H 7'6i34/250= N =`:U>96CD8 N =KJ398:UM 1434-;L9-;>9-0<4=4-i5U8A>8?4H=4? N 6Z<46m6Z=@L8H¦O>9=4B0?4= N ?Y6ZL9<46346_L9<46 N /m<98l398:0:;H6M ©4<4=@©@E :Ì 9AMÌ_q −1 19:J@H65pL8R?@8?g?@>8:;H-03 ¥ =:;/214-034?@>8:;H-03 ¥ <98O>9dFL8dH:© h <98l:;/2QR-Z:;HC-0<4<46lO6>9¦ªR=@Em398:0:;H6_©4<@=@©@E E Ñ ÌJ9Í Ò¨ Í@ ¨ ;.63434-;>4©4Æ4=46<4<98A©aL4>9=4<98C6B0398:;H_8-0H:h398B N -0346 N C ¥ O634?4=TÇ\5p>9/2O=@M <46If6OB06398D É Ñ 4J4Ù Ò¨ 4= ¨
°
9
¨1 / ³ ³ '/
$ J³
/
/
³ ³ 1 '1/ $N v/ ú/ 1$ J³ DN Jú³ / kN"1 ³1 + J³ P ³
U³ Ny³
hN (R)i = (4/3)πρR3 .
ì
8 N -0H= N JW4H6iC.§0H6 N :U>9/2W98-X<4-X= N -0-0H+B0<98ZW4-0<4=@©KJ146 N -0Qh8-0H:©R>9=Æ4-;<4H3m:0Ë.-;M 3 ¥ J¢C]?26H6346I[14346=4B0C6_L9=4H:©n1@6_L:;W4-0H_J}Ce>9dO/2dÿH6W4?4/ N <46_R-Z:;HCD8e=@>9=¡C >9dO/2dL934/250/2dH6W4?4/g14346D:;H398<9:;HCD84¨ e <98A>9=4BF14346Æ4-;L9/23 ¥ =4B N -034-0<4=@©h5p>96OD8A>9¦<46Ii1@>96H<46D:;H= N 8:0: ¥ ÎF:;-;>9-0<@M <46I`1434=4C-;m > ¨ a8<@L9-;>9¦O346HA8g?`L934/2506 N /a61434-;L9-;>9-0<4=4dË.398?4HA8A>9¦<46I 398B;M
9
$ô +â -ÿ
õ
â
Ù Ú Ùf2 ÔÛ ÖÓ Ø84 (ÝØ'g2Ö9Ø h4Ý@ÔÛ9BÝÛ9Ô_Øi
Ó0j^Õ/ñKkYØ9Ö'j^Õ/ñMg2ÔÓBÝØ
Ù9Ì_q
¨ l<14=4ªR-0HRCR5p>98C-l r ¢/2QR-Z:;HC/-0H+>9=g5>96OD8A>9¦<98A©l1@>96H<46D:;H¦ N 8H-;M N -034<46D:;H=K' 34=4=.ms_J4?@8:08dQR-0I9:©g398:;1434-;L9-;>9-0<4=@©5U8A>8?4H=4?C6ÎF:;-;>9-0<4<46IKÚ r n.H6O ¥ 6143@-;L9-;>9=4H¦.=R=4B N -034=4H¦.1@>96H<46D:;H¦9J_<98_W4=4<98dH: N 8:0: ¥ M (R) Cg:0Ë.-034-R398AL9=4/D:08 JÆ4-0<4H3 ?D6H6346Ia146 N -0QR-09-¨ 8H- N C ¥ W4=9:U>4©4dH R 1434=4O>9=@R-0<4<4/2d£1@>96H<46D:;H¦9J@61434-;L9-;>4©4- N /2dG?28?
ì
ì
M (R)/[(4/3)πR3 ]. .6D:U>9-¢§0H6506C-;>9=4W4=4<4/ /D:;H34- N >4©4dH?RO-Z:;?26<4-0W4<46D:;H=KJZ=R5p>96OD8A>9¦<4/2d]1@>96HAM R <46D:;H¦61434-;L9-;>4©4dHm?28?Y1434-;L9-;>J9?Y?26H6346 N /f:ED6ZL9=4H:©Y1434=4O>9=@R-0<4<98A©Y1@>96HAM <46D:;H¦9¨ .69JoL9-0I9:;HC=4H-;>9¦<46c>9=[5p>96OD8A>9¦<98A©71@>96H<46D:;H¦`L96>4<98e:E6_L9=4H¦D:©T? 146>96Z=4H-;>9¦<46 N /c=@>9=7?D6<4-0W4<46 N /c1434-;L9-;>98 / m ¢:U>9=7H_8?KJoH6`:;?26346D:;H¦ :E6_L9=@M ¨ 6R8A>9-0-J±6Æ4-0<4?4=]1434-;L9-;>9¦<46I]1@>96H<46D:;H= N 6D:;H=76D:;H_8C>4©4-0HYh-;>8H¦a>9/2W4ªR-05069 C-;L9/2HR:;-0OZ©mC-Z:;¦ N 8+:;H398<4<469M ¨ .6 N -034-/2C-;>9=4W4-0<4=@©m5>9/2O=4< ¥¡N =43984JL96D:;H/214<46M 506.H-;>4-Z:;?26198 N JA1434=4O>9=@h-0<4<98A©h1@>96H<46D:;H¦./ N -0<4¦ªh8-0H:©R/_L9=4C=4H-;>9¦<46.:;=9:;H-;M ¨ ¢65>8:;<46hL9-iÎF8?4/_>9-034/ ÇV: N d ¨ o ÌÌ p\ÉUJ46<98 N -0<@©4-0H:©Y14346M N 8H=4W4-Z:;?4= N 6O398B06 N . ¨ + 8 O 9 > F d L 8 I 4 1 6 2 ? 8 Z B 8 H ; 9 > ¦ <46506 N -0<4¦ªR-JDW4- N 4J28 14634Æ4=46<98A>9¦<46 o N ¥ RD−3 DN <98=@>9/2W4ªh8A©h6Æ4-0<4?@8.<98.6D:;<46C-F?D6D:;C-0<4< ¥ Eh<98O>4dFL9-0<4=4I:;6D:;HA8C>4©4-0H ¨ D = 1.23 ýK-0B0=9:lL9-mÎF8?4/Z>9-0398fBZ8?@>9dW98-0H:©cCH6 N JKW4H6a146C-UL9-0<4=4-1434=4O>9=2h-0<@M <46IY1@>96H<46D:;H=a6H398Ah8-0H34-Z8A>9¦<46D:;H¦9J96B;<98_W98dQR/2dRJ4W4H6 ¨ ¢H_8 M (R) ∝ RD Ë.63 N /Z>8m<98146 N =4<98-0Hm?@>8:0:;=4W4-Z:;?4=4I 34-0B0/Z>9¦AH_8H_J^Cg?26H6346 N ªh83a398AL9=4/D:08 R Cf-0C?@>9=@L96C6 N 14346D:;H398<9:;HC-h398B N -034<46D:;H= = -0-0H6 O K- N ¨KÎ5p>8CC - q d N ∝ Rd I ;.6ZE284J:X6D:;<46C< ¥N 6HZ>9=4W@=4- N No¥ CD:;H34-0H=@>9=mH_8?4/2dnh-Ë.63 N /Z>9/iL4>4©?434=4C6r J¢8 CcH6 N J
W4H6c146?@8BZ8H-;>9¦ ©4C>4©4-0H:©T<4-Y-0C?@>9=@L96C6I7398B N -034<46D:;H¦d E = 2 L9346O<46I`Ë.398?4H_8A>9¦<46I 398B N -034<46D:;H¦d ¨ e C5p>8C-lðgC ¥ C6_L9=@>8:;¦gB08C=9:;=@M D N 6D:;H¦ M (R) ∝ RD L4>4©`?28<4H6346CD:;?26Ia1 ¥ >9=`<98gC34- N -0<4<46I 6D:;=TÇ L4>4©`?26H6M 346I ÉU¨ d=1 ÎF:;-§0H=]Ë+8?4H ¥ <98C6_L4©4H<98 No¥ :U>9¦9JW4H6Y146?@8B08H-U>9¦fL9-gÎF8?4/Z>9-0398 D ©4C>4©4-0H:©YË.398?4HA8A>9¦<46Ig398B N -034<46D:;H¦dRK s o 4J9:;H3K¨9ðD)q p¨ s N -0<4<46cË+348?4HA8A>9¦<98A©7?D6<4Æ4-014Æ4=@©T146B0C6>4©4-0H 1434= N =434=4H¦e<98O>9dFL98-;M N 6-}<4-0398C<46 N -034<46-Ç\=4B06H34614<46MÈ:;H-014-0<4<46-}6H<46D:;=4H-;>9¦<46<98ªR-0IR5;8A>8?4H=4?4=É 398:;1434-;L9-;>9-0<4=4-.L934/250=@Ef5;8A>8?4H=4?Y:+?D6D: N 6>9650=4W4-Z:;?4= N 1434=4<4Æ4=4146 N J:;65p>8:;<46 ?26H6346 N /]ÎF:;-;>9-0<4<98A©]L96>4<98 C ¥ 5>4©@L9-0H¦`6_L9=4<98?D6C6 C6 CD:;-;E]:;C©4BZ8<4< ¥ E]: <4-0IT:;=9:;H- N 8AE76H:;W4-0H_t 8 o Ì_)Í p¨ ¢H6cB0<98ZW4=4H_JW4H6c14-034- N -0<4=4CcH6W4?4/JoCB;©4H/@dC ?@8ZW4-Z:;HC-m<98ZW98A>8?2663L9=4<98HAJ No¥ L96>@< ¥ C<46C¦Y146>9/2W4=4H¦Y=4B06H34614<46-m6HAM <46D:;=4H-;>9¦<46g<46C6506<98_W98A>8?2663DL9=4<98Hm398:;1434-;L9-;>9-0<4=4-h:R1@>96H<46D:;H¦djW4=9:U>8 6?434/Dl8dQR=2Ef-0-i5;8A>8?4H=4?KJ4/2O ¥ CD8dQR-0If6H<46D:;=4H-;>9¦<46<4-0-i146H6 N /gh-i:;H-;M 14-0<4<46 N /+BZ8?26<4/¨_Î}6B N 6_<46>9=R§0HM 6 mH.-0H_J_-Z:U>9=R34-0W4¦=@L9-0H6r_BZ8:;H ¥ CªR- N sL9-UM H-03 N =4<4=4346CD8<4<46 N 398:;1434-;L9-;>4-0<4=4=KÚZÆ4-0<4H3i:;= NN -0H34=4=R6D:;HA8<4-;HD:©+<98X1434-;<4- N ¨ 6R84J-Z:U>9=`146ZL`1@>96HAM N -Z:;H-Jt<4-l:;6C198AL8dQR= N :R<46C ¥N <98_W98A>96 N ?2663DL9=4<98H_. <46D:;H¦dk146<4= N 8Hh ¦ I%!#"D+:('YuYSM$.)BG('IBG]J^H6-Z:;H¦9Jt1@>96H<46D:;H¦9J^/D:;34-;L9<4-0<4<4/2d 146 :;HA8H=9:;H=4W4-Z:;?D6 N /]8<9:08 N O>9díHA8?4=@Ee398:;1434-;L9-;>9-0<@=4IKJo8Y?26D: N 6>9650=4W4-Z:;?4=4I
"Ú
9°
°
-â
Ó×+áZ×9Ø
Ù9Ì:q
î0/^Ø'1DØ Ù32 . Ó 4
1434=4<4Æ4=417BZ8 N -0<4=4H¦`-0506`:U>8O6I]Ë.63 N 6IKÚ±/D:;34-;L9<4-0<4<46-gHA8?4= N 6O398B06 N 398:UM 1434-;L9-;>9-0<4=4-C-0QR-Z:;HCD8.C6+ÎF:;-;>9-0<4<46IlL96>4<46+C ¥ 5p>4©@L9-0H¦+6_L9=4<98?D6C6.C+>9dO6I :;=9:;H- N -F?2663DL9=4<98H_J_Æ4-0<4H3l?26H6346Ih:;6C198AL8-0H:}6_L9<46IR=4BF5;8A>98?4H=4?K¨Î}C-;L9-0<@M < ¥ ( I ¨ a8<@L9-;>9¦O346H6 N JZ:p>8O ¥ I+?26D: N 6>9650=4W4-Z:;?4=4I+1434=4<4Æ4=4 1 o ð p2C6D:;:;HA8<46C=@> Ç\C 650398<4=4W4-0<4<46 N C=@L9-_É+=@L9-0d398C<4614398C=@©c398B;>9=4W4< ¥ E]:;=9:;H- N ?2663DL9=4<98H Æ4-0<46In<9834/2ªR-0<4=@©n§0?@C=4CD8A>9-0<4H<46D:;H=n14/D:;H ¥ E[=nBZ8<@©4H ¥ E[C-0QR-Z:;HC6 N H6W4-0? ÎF:;-;>9-0<4<46IgÇ\BZ8 N -0H= N JAW4H6C:U>9/2W98-
398C<46 N -034<4650614/8:0:;6<46CD:;?26506X398:;1434-;L9-;M >9-0<4=@©m§0HA8i§0?4C=4CD8A>9-0<4H<46D:;H¦iC6D:0:;HA8<98C>9=4CD8A-0H:©=g:U>8O ¥ I?26D: N 6>9650=4W4-Z:;?4=4I 1434=4<4Æ4=41Y:;6C198AL8-0Hl:-0506l6O ¥ W4<46IfË+63 N 6IÉU¨ 6+>4© N 6_L9-;>9=4346CD8<4=@© Ë.398?4HA8A>9¦< ¥ EY398:;1434-;L9-;>9-0<4=4E I ¨ a8<@L9-;>9¦O346H =9:;146>9¦B06CD8_> N 6_L9-;>9¦O>9/DlL8<4=4I«:n8:;= N 14H6H=4W4-Z:;?4=í:;H-014-0<4<46I«14-034-;E6_L4M <46IS1@>96H<46D:;H¦d =146>9/2W4=@>G?@8ZW4-Z:;HC-0<4<46-e:;65p>8:;=4-c:c<98O>9dFL8H-;>9¦< ¥N = L8<4< ¥N =K¨ r Y6_© N 6_L9-;>9¦R398:;1434-;L9-;>9-0<4=2©g5;8A>8?4H=4?mC6D:;14346=4B0C6ZL9=4H+>9dO/2d¡h-;>8AM - N /2díË.398?4H_8A>9¦<4/2dk398B N -034<46D:;H¦ =9:;146>9¦B0/©a1 ¥ >9¦9J^HA¨ -¨ J N <46_h-Z:;HC6 D<2 ¨ 6+>4©gL96D:;H=@R-0<4=@©§0H6IfÆ4-;>9=g© M H6W4-0?fH6146>9650=4W4-Z:;?26Ig398B N -034<46D:;H= D =0 =9:;146>9¦B0/2dn:U>9/2W98I4<46-FO>9/DlL8<4=4-J1434=lT?26H6346 N N 8H- N 8H=4W4-Z:;?26-X6_=@L8<4=4O-Z:;?26<4-0W4<469J146D:;?D6>9¦?4/ MF50=414-034O6>9=4W4-Z:;?@8A© :U² >9/2W98I4<98A©aC-;M hU 2 i U (= |∆X|) >9=4W4=4<984JD:6² O34-0BZ8<4=@- N 1434= ¨Dý±8?4= N 6O398B06 N JAL4>4© J J u=1 u ≤ 1 (U > u) = 1 1434= @ J 4 L 4 > © ¨ u > 1 (U > u) ∝ u−D 0
°
å å fÞYß
SÛÜ o ÜHA ì
"ç
æHçgæ #âLæ
3ûç 4Ø
fçýäÄà
fì
ê#à\á#å
;+8HA8A>9650=5;8A>8?4H=4?G=j:;?261@>9-0<4=4IG5;8A>8?4H=4?j:;6ZL9-03Dh8H¡C ¥ O634?4==4B 1434=4O>9=@R-0<4<46h?D6<4=4W4-Z:;?4=@Em6O K- N 6Ci:6H<46D:;=4H-;>9¦<46RªR=4346?4= N =m/25p>8 N =m398:UM ?43 ¥ H=@©KJ0L96 ¨ ¢/2QR-Z:;HC/2dH_JZ6_L9<98?D69J;L934/250=4-
<98O63 ¥ L8<4< ¥ EKJ06H<46D:©4QR=4-Z:© 90◦ ?R6W4-0<4¦/2B0?4= N H-;>9-Z:;< ¥N /25>8 N JA6?D6>96 ◦ P¨ .6§0H= N L8<4< ¥N J:¢14614398C?26Ii<98 1 ?26<4=4W@-Z:;?4/2d¡50-06 N -0H34=4dRJ N 6_<46+=9:0:U>9-;L96CD8H¦.146C-;L9-;<4=4-F>96?@8A>9¦<46Ih1@>96H<46M :;H=mCL96>9¦i6W4-0<4¦iH6<4?4=@E=L4>9=4<4< ¥ EÆ4=@>9=4<@L9346C9JD146>9/2W4=@H¦iHA8?m<98B ¥ CD8- No¥ $.L 8"DNQ="U)X !.Q£yÇ x _ÉU¨ n.=9:U>9-0<4< ¥ -§0?@:;14-034= N -0<4H ¥ :=9:;146>9¦B06CD8<4=4- N 614=9:08<4<@6IgC ¥ ªR- N -0H6M L9=4?4=m146D:;H346-0<4=@©mH6W4-0W4< ¥ E398:;1434-;L4-;>9-0<4=4IgË.398?4HA8A>9¦<46506+H=419r 8 o Ì p1434=4C-;M
U
IJ6JHGgT I DF- DtIJ¡
$á +â
Ù Ú {zÝDØÝ@×.4Ý@×9Ø|1hÛ Z4Ó }/.ÛBÜÕ
Ù9Ì>
>9=e?]:U>9-;L9/2dQR= N C ¥ C6_L8 N Jt146_L9HC-03DlL9-0<4< ¥N O6>9-0-146B;L9<4= N =e=9:0:U>9-;L96CD8AM H-;>4© N = o Ì0Ù9JtÌ_)q pÚ 6HR6_L9<46Ig5U8A>8?4H=4?4=gL96 Ç wÉ¢398:;1434-;L9-;>9-0<4=@-+:U>9/2W98I4<46506R398:0:;H6Z©4<4=@© R O>9=@h8I4ªR-0Ih?l<4-0IhCL8<4<46 N >9/2W4-iÇ\/2B0?D6 N Æ4=@>9=4<@L934-_ÉE28398?4H-034=4B0/-0H:©RL4>9=4<@M < ¥N E@C6D:;H6 N :;H-014-;<4<46506H=4198 ²
ú
(R > t) ∼ Ct−ω ,
0<ω<1
DC
:g146?28BZ8H-;>9- N JoBZ8C=9:©4QR= N 6H`Ë.398?4H_8A>9¦<46I]398B N -034<46D:;H=7398:UM ω = ω(D) 1434-;L9-;>9-0<4=@©5U8A>8?4H=4?Cl14346D:;H398<9:;HCÇa~
=9:¨^Í@̨ Ì_É D=α Ç ÈÉh398:;1434-;L9-;>9-0<4=4-gL4>9=4< ¥ :U>9-;L9/2dQR-0506 =4<4H-034CD8A>8 N -;lL9/e5;8A>8?4H=@M ?@8 N =7CaÆ4=@>9=4<@L934-:U>8O6aBZ8C=9:;=4HY6Ha1434-;L ¥ L9/2QR-0506 =]1434=4O>9=@R-0<4<46 N 6_h-0H :;W4=4H_8H¦D:©<4-+BZ8C=4:©4QR= N 6Hl<4-0506¨
úH
~ =9:¨}Í@̨ ÌÚÛd) áYßàDè`ç}â2Ý0ÞJZÝDá:
M0æ`â2ÝDpßpâ
M:Zá_ä
èPM:
ßnìMZÞÝDUÝD) D Mpß )D2Þ â2ÝDM:Yß)UàMZßKGD
M)Ý0â MZ -aZì2âPßDÝD çTZâDßtè@Ý α = 2−D D ê?Z â2ÝD::ω:,
Î ¥ C6_L ¥ §0H=ñ146B0C6>4©4dH&1434= N -0<4=4H¦L4>4©8:;= N 14H6H=4W4-Z:;?D6506614=@M 0: 8<4=@©«>9/2W4-0C6I:;H_8H=4:;H=4?4=&<98£O6>9¦ªR=@Ek398:0:;H6_©4<4=2©@E 6_L9-;>9¦£14/D8:0:;6M t N ¨ÎÿW98:;H<46D:;H=KJFL4>4©C-0346_©4H<46D:;H= <46CD:;?D6506T² 14346Æ4-Z:0:08]L9346O<46506T1463D©@L9?28 ω 146>9/2W4= N w(n; t) ≡ {N (t) = n}
³ ´ ³ ´ w(n; t) ∼ G+ [(n + 1)CΓ(1 − ω)]−1/ω t; ω − G+ [nCΓ(1 − ω)]−1/ω t; ω ∼ ∼
³ ´ t −1/ω −1/ω t; ω , [nCΓ (1 − ω)] g+ [nCΓ (1 − ω)] ωn
t → ∞,
-â
Ó×+áZ×9Ø
Ù9ÌZð
î0/^Ø'1DØ Ù32 . Ó 4
5pL9G+ (t; ω) =
Zt
g(t0 ; ω, 1)dt0
0
ï6_L9<46D:;H6346<4<@©@©g/D:;H6I4W4=4CD8A©Ë./2<4?4Æ4=@©f398:;1434-;L9-;>9-0<4=@©K¨ s+:;146>9¦B0/©gC ¥ 398AR-0<4=4-L4>4© N 6 N -0<4H6C6H34=4Æ98H-;>9¦< ¥ Eg1463D©@L9?D6C Z∞
g+ (t; ω) t−ν dt =
Γ (1 + ν/ω) , Γ (1 + ν)
0
<98I@L9- NTN 6 N -0<4H ¥
W4=9:U>8h6H:;W4-0H6ClC=4<4H-034CD8A>4hN k (t)i =
@+-050?26TC=2L9-0H¦9JXW4H6
(0, t)
Ú
k!tkω k
[CΓ (1 − ω)] Γ(1 + kω)
.
= N 6 N -0<4H ¥ :U>4/@W48I4<46IPC-;>9=4W4=4< ¥ hN (t)i ∝ tω < -FBZ8C=9:©4H6H ¨P;+8?R6H N -0W98A>96D:;¦C ¥ ªR-J_§0H6ï+:;14-0Æ4=9Ë.=4W4-Z:;?264 ζ = N/ hN (t)i t :;C6I9:;HC6`:;H6ZE28:;H=4W4-Z:;?4=@E7Ë.398?4HA8A>96C9¨oý8?26-:08 N 6146ZL96O=4-f:;H6_ED8:;H=4W4-Z:;?26I :;H34/2?4H/23 ¥ 6B0<98_W98-0r H )BCIL BCIBCN&." -AA" BC*cI?* U)LJI%!#"+:(#"-(.&2ÏoÚ<4-.:;/2QR-0:;HC/2M -0HHA8?26IYH_8?26506398:0:;H6_©4<4=@© J9W4H6m1434= :;HA8H=9:;H=4W4-Z:;?4= N =`Ë>9/2?4H/8AM t1 t > t1 Æ4=@© N = Z 6 4 < i 6 4 1 4 3 0 4 < 0 O 4 3 0 4 W 9 ¦ J = 4 < = 4 1 4 3 = @ ? 8 2 ? 6 N t <4-;>9¦B;©BZ8 N -;<4=4H¦R:;34-;L9<4-0N (t) N :U>9/2W98I4<46I+14-034- N -0<4<46I -0-
B0<98_W4-0<4=4- N B0<98_W4-;<4=4-¢5p>8AL9?D6IRË./2<4?4Æ4=4= f (N ) N (t) 6Hl/:;34-;L9<4-0<4<46I14-034- N -0<4<46I
J³
/
hf (N (t))i 6= f (hN (t)i),
t → ∞.
}6>9-0-H65069JD<98iCD:U-;E N 8:;ªRH_8OD8AEl<98O>9d}L8dHD:©m14346O-;> ¥ J<4-:;6_L9-03Dh8QR=4-H6M W4-0?KJ9=KJ9Cm6HZ>9=4W4=4-i6H6O ¥ W4<46506l14/D8:0:;6<46CD:;?D6506h398:;1434-;L9-;>9-0<4=@©KJ9<4-0HmHA8?D6506 N 8:;ªRHA8OD84JCe?26H6346 N 398:;1434-;L9-;>9-0<4=4-aH6W4-;?nC ¥ 5p>4©@L9-;>96eO ¥ 398C<46 N -034< ¥N ÇV:;C6I9:;HCK 6 ."%!#" H"-*P" IBG&9J ÉU¨
ú/
ú/ 'ÛÜ o Ü o × " å sö Ù ¨ ¨Õ" [÷¤vØ }é "×WØv fÞYß
çYâsâså fë
è#çYä jæç
#å
âsäYåæç
#ìgëjë
#ì!ê
~8:;14346D:;H398<@©@©9:;¦m6Hm=9:;H6W4<4=4?D6C`Ç\B0C-0B;LJ5U8A>8?4H=4?ÉUJ^:;C-0Hm=9:;1 ¥ H ¥ CD8AM -0H7398:0:;-;©4<4=4-`C7<4-034-050/_>4©434< ¥ E¡50398C=4H_8Æ4=46<4< ¥ En146>4©@EPÎF:;-;>9-0<4<46IK¨FÎÀ398AM O6HO - o :Ì qp¢O ¥ >8398:0: N 6H34-0<98YBZ8AL8ZW986 N <46506?4398H<46 N 398:0:;-;©4<4=4=`>9/2W98Y:;C-;M HA8aCa50398C=4HA8Æ4=@6<4<46 N 146>9-Jo:;6B;L8CD8- N 6 N :U>9/2W98I4< ¥N 398:;1434-;L9-;>9-0<@=4- N H6M W4-0W4< ¥ E N 8:0:J26O398B0/- No¥ E14/D8:0:;6<46CD:U?4=4If8<9:08 N O>9¦9J ¨ ~8:;W4-0H ¥ 14346C-;L9-0< ¥ C
ï
õ
$ó +òPâ
×>ôÓ 6õ6â
×
Ù Ú t^Ø0404@Õ ^Ö×Õr4012ÕÝØ_Ô_Ø'12×BÝØ ×ÓÖÖ
0/
Ù9Ì
398 N ?28AE]:;HA8<@L834H<46506 N 8A>96/25p>96C65;6Y1434=4O>9=@h-0<4=@©KJ±?265pL8Y6H?@>96<4-0<4=4-gW98AM :;H=4Æ ¥ Ç\CgL8<4<46 N :U>9/2W98-JKË.6H6<98DÉ6Hf14-034C6<98_W48A>9¦<46506g<9814398C>9-0<4=2©`614=@M : ¥ CD8-0H:©]L9C/ N -034< ¥N C-0?4H6346 N J8 6H?@>96<4-0<4=4- N H398-0?4H634=4=T6H 143© N 6M u >9=4<4-0I4<46IS1434-0<4-;O34-05;8-0H:©Ku ¨ ./D:;H¦ ï[/25p>96C6- 398:;1434-;L9-;>9-0<4=4-cË.6H6<98 σ(u) 1434=h398:0:;-;©4<4=4=hC.50398C=4HA8Æ4=@6<4<46 N 146>9-F6H0L9-;>9¦<46506=9:;H6W4<4=4?@8lÇ\5;8A>8?4H=4?4=ÉUJ R H65L8R398:;1434-;L9-;>9-0<4=4-.Ë.6H6<984JD=9:;1 ¥ HA8CªR-0506 398:0:;-;©4<4=4IKJDL8AM σ(u)du = 1 n -0H:© N <46506?4398H<46I:;C-034H?26IfHA8?4=@Ef398:;1434-;L9-;>9-0<4=4ItÚ σ (n+1) (u) =
Z
σ(u0 )σ (n) (u − u0 )du0 ,
5pL9- (0) ¨Ó5>96C6-h398:;1434-;L9-;>9-0<4=4-mË.6H6<46C9J14346ªR-;L9ªR=@E 14/2H¦ J σ (u) ≡ δ(u) x BZ814=4ªR-0H:©ClC=@L9f (u, x) =
∞ X
pn (x)σ (n) (u),
n=0
5pL9ï[C-0346Z©4H<46D:;H¦TH65069J}W4H6[<98714/2H= Ë.6H6