Библиографический список 1 Пфанцагль И. Теория измерений. - М.: Мир, 1976. 2 Пиатровский Я. Теория измерений для инженер...
6 downloads
107 Views
402KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Библиографический список 1 Пфанцагль И. Теория измерений. - М.: Мир, 1976. 2 Пиатровский Я. Теория измерений для инженеров. - М.: Мир, 1989. 3 Кнорринг В.Г. Теоретические основы информационноизмерительной техники. Основные понятия теории шкал: Конспект лекций. - Л.: Изд-во ЛПИ, 1983. 4 Орнатский П.П. Общенаучные методы познания. - Киев: Общество "Знание", 1984. 5 Философский словарь/ Под ред. И.Т.Фролова. - М.: Политиздат, 1980. 6 Корнеева Т.В. Толковый словарь по метрологии, измерительной технике и управлению качеством. Основные термины. М.: Рус.яз., 1990. 7 РМГ 29-99 ГСИ. Метрология. Основные термины и определения. 8 Кузнецов В.А Общая метрология/ Г.В.Ялунина. - М.: ИПК Издательство стандартов, 2001. 9 Сергеев А.Г. Метрология. Карманная энциклопедия студента/ Крохан В.В.. - М.: Логос, 2001. 10 Гордов А.Н. Основы температурных измерений/ О.М.Жагулло, А.Г. Иванова. - М.: Энергоатомиздат, 1992.
24
Министерство образования Российской Федерации Пензенский государственный университет Факультет автоматики и информационной техники Кафедра метрологии и систем качества
Г.П. Шлыков
ИЗМЕРЕНИЕ ОТ ДЕЙСТВИТЕЛЬНОСТИ К АБСТРАКЦИИ ЧЕРЕЗ ШКАЛЫ
Лекция
Рекомендовано к использованию в учебном процессе решением кафедры "Метрология и системы качества" от 15 октября 2003 г., протокол № 2
2003
УДК 51: 53.08 Шлыков Г.П. Измерение. От действительности к абстракции через шкалы: Лекция.– Пенза: ПГУ, каф. МСК, 2003. – 25 с. (В помощь студенту, серия "Метрология", Вып. 5). Переход от философского понятия "познание" к техническому понятию "измерение" рассматривается в разделе "Теория измерений". Приводятся виды шкал, устанавливающие соотношения между эмпирически получаемыми значениями величин, как отображениями состояний свойств объектов в действительности, и являющиеся фундаментом для дальнейшего рассмотрения процессов измерений, а от них к технологиям измерений. Лекция предназначена для студентов направления 653800 "Стандартизация, сертификация и метрология" при изучении фундаментальной дисциплины "Метрология".
Рецензент: А.А.Данилов, доктор тех. наук. © Г.П. Шлыков, 2003
Издательский комплекс кафедры МСК ПГУ. Компьютерная верстка Н.Ю. Белоглазовой, М.В. Перевертиной Технический редактор Н.Ю.Белоглазова Внутрикафедральное издание Заказ №6 от 9 сентября 2003 г. Тираж 15 экз.
http://.stup.ac.ru 2
ТШГТС, основанная на зависимости сопротивления германиевого термометра от температуры. Считается, что температуры, полученные по ВПТШ-76, отличаются от термодинамических не более чем на 0,001 К. Для дальнейшего сближения МПТШ и термодинамической температурной шкалы Консультативный комитет по термометрии в 1989 г. внес некоторые изменения в рекомендуемые методы ее воспроизведения. Уточнение приведено в Положении о воспроизведении шкалы, получившей название Международной температурной шкалы — 90 (МТШ-90). Среди импортных приборов можно встретить такие, у которых шкалы отградуированы в градусах Фаренгейта (°F). Точно так же в зарубежной технической литературе нередко приводятся результаты измерений или расчетов температур, выраженные в градусах Фаренгейта. В современной шкале Фаренгейта от первоначальной шкалы жидкостно-стеклянного термометра сохранились только числовые значения реперных точек: точке таяния льда приписано значение 32 °F, а точке кипения воды — значение 212 °F. В промежутке между этими температурами шкала наносится способом, предусмотренным МПТШ, и она утратила свойства, присущие первоначальной эмпирической шкале. Интервал температур между точками кипения воды и таяния льда делится на 180 равных частей. Для перевода числовых значений температур, выраженных в градусах Фаренгейта, в градусы Цельсия применяется соотношение °С = 5/9(°F ─ 32). В зарубежной литературе можно также встретить выражение температур в градусах Ренкина, для перехода от которых к Кельвинам применяется соотношение К=5/9°Rn. Так, для температуры таяния льда в градусах Ренкина будем иметь 273,15·9/5 = 491,67 °Rn. На рисунке 4 (страница 12) показаны для сопоставления шкалы Цельсия, Реомюра, Фаренгейта и Кельвина.
23
Реперные точки Т, К Точка перехода сверхпроводимости кадмия 0,519 Точка перехода сверхпроводимости цинка 0,851 Точка перехода сверхпроводимости алюминия 1,1796 Точка перехода сверхпроводимости индия 3,4145 Точка кипения гелия 4,2221 Точка перехода сверхпроводимости свинца 7,1999 Тройная точка водорода 13,8044 Точка кипения водорода при нормальном давлении 20,2735 Тройная точка неона 24,5591 Точка кипения неона 27,102 Интерполирование значений температур между реперными точками рекомендовано производить следующими способами: 1) выше Т = 13,91 К используется МПТШ-68 с введением поправок, максимальное значение которых не превышает 7,4 мК при 19 К; 2) ниже Т = 13,81 К используются предложенные Национальным бюро эталонов США шкалы "4Не 1958" и "3Не 1962", основанные на изменении с температурой давления насыщенных паров гелия с введением соответствующих поправок, максимальное значение которых достигает 7,1 мК при 5 К. В СССР и в России в соответствии с ГОСТ 8.157-75 "Шкалы температурные практические" для интервала температур от 0,01 до 0,8 К установлена шкала термометра магнитной восприимчивости ТШТМВ, основанная на зависимости магнитной восприимчивости термометра из церий-магниевого нитрата от температуры. Эта зависимость выражается законом Кюри. Для интервала температур от 0,8 до 1,5 К установлена шкала 3Не 1962, основанная на зависимости давления насыщенных паров изотопа гелия-3 от температуры, а для интервала температур от 1,5 до 4,2 К установлена шкала 4Не 1958, использующая зависимость давления насыщенных паров изотопа Не от температуры. Для интервала температур от 4,2 до 13,81 К установлена шкала германиевого термометра электрического сопротивления 22
Вместо введения (Из книги И. Пфанцагля "Теория измерений") Объектами измерений являются свойства. Вес, цвет, умственные способности - типичные примеры для иллюстрации смысла, который здесь придается слову "свойства". Если мы говорим о различных проявлениях свойства, то имеем в виду, например, красный, голубой, зеленый, … Конечно, свойства существуют только в связи с эмпирическими объектами (подвергшимися опыту - Г.Ш.), такими, как физические тела, электромагнитные волны, люди. Электромагнитные волны, например, обладают свойством "цвет". Обычно один объект проявляет различные свойства: тон, например, обладает громкостью, высотой и тембром. Измеряя одно свойство, мы пренебрегаем всеми другими свойствами, которыми может обладать объект. При измерении веса, например, мы пренебрегаем такими свойствами тел, как форма и цвет. При измерении оттенка мы пренебрегаем яркостью и насыщенностью, а также временем и местом восприятия цвета. Таким образом, совершенно несходные объекты могут стать эквивалентными, если наше рассмотрение ограничено одним свойством: например, все тела одного веса считаются эквивалентными безотносительно к их форме и цвету. Когда мы говорим, что свойство обладает определенной структурой, мы имеем в виду любую структуру, детерминированную (обусловленную - Г.Ш.) эмпирическими отношениями между эмпирическими объектами. Эта общая формулировка также распространяется на случай "эмпирических отношений" … В качестве примера рассмотрим свойство, называемое "высотой тона". Простейшим эмпирическим отношением между двумя тонами, связанным со структурой этого свойства, является утверждение испытуемого о том, какой из двух тонов выше. Далее, испытуемый может определить высоту тона, лежащую между двумя данными высотами. Рассмотрим в качестве другого примера свойство "электрическое сопротивление". Простым сравнением мы можем определить, имеют ли два реостата одинаковое электрическое сопротивление, и если нет, то сопротивление какого из них больше. Кроме того, реостаты можно включить последовательно, и такая операция придаёт свойству сопротивление" определённую структуру, формально эквивалентную аддитивности (сложению - Г.Ш.). Несмотря на то, что мы всегда исходим из отношений между объектами, предмет измерения составляют свойства, а не сами объекты.
3
1 Основные понятия измерения как процесса познания Формально-логические принципы создания образов реального мира рассмотрим по работам Я. Пиотровского и В.Г. Кнорринга. Напомним, что такое измерение. Измерение - познавательный процесс, имеющий целью определение характеристик материальных объектов с помощью соответствующих измерительных приборов. Осуществляется процесс на эмпирическом уровне. Так трактуют понятие "измерение" философы. В соответствии с нормативным терминологическим документом по метрологии: измерение физической величины - совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с её единицей и получение значения этой величины. Раскроем термины, входящие в данное определение. Значение физической величины - оценка размера физической величины в виде некоторого числа принятых для неё единиц. Оценка – это некоторое приближение к истинному значению. Принятых – означает соглашение, договоренность. Единица физической величины – физическая величина, которой по определению присвоено числовое значение, равное единице. Размер физической величины – количественное содержание в данном объекте свойства, соответствующего понятию "физическая величина". Но теперь надо раскрыть еще один термин: Физическая величина – свойство, общее в качественном отношении многим физическим объектам (физическим системам, их состояниям и происходящим в них процессам), но в количественном отношении индивидуальное для каждого объекта. Согласитесь, что приведенные определения терминов свидетельствуют о сложности понятия "измерение". Поэтому вернемся к философским рассуждениям. 4
Реперная точка Тройная точка равновесного водорода
Принятое значение температуры К °С 13,81 (-259,34)
Оценка погрешности, К ± 0,01
Точка кипения равновесного водорода при давлении 25/76 нормального (33,33 кПа)
17,042
(-256,108)
± 0,01
Точка кипения равновесного водорода при нормальном давлении
20,23
(-252,87)
± 0,01
Точка кипения неона Тройная точка кислорода Точка кипения кислорода Тройная точка воды
27,102 54,361 90,188 273,16
(-246,048) (-218,789) (-182,962) (0,01)
Точка кипения воды Точка затвердевания олова Точка затвердевания цинка Точка затвердевания серебра Точка затвердевания золота
373,15 505,1181 692,73 1235,08 1337,58
± 0,01 ± 0,01 ± 0,01 Точно по определению 100 ± 0,005 (231,9681) ± 0,015 (419,58) ± 0,03 (961,93) ± 0,2 (1064,43) ± 0,2
Кроме того, в состав Положения об МПТШ-68 входит таблица рекомендуемых значений дополнительно еще 25 реперных точек в интервале от 24,546 До 3694,15 К (3421 °С), названных вторичными. По этим точкам шкала не строится, а их значения рекомендованы для использования в различных исследовательских работах. Что касается точности воспроизведения термодинамической шкалы с помощью МПТШ-68, то она характеризуется оценками погрешности принятых значений реперных точек. Для области температур от 0,5 до 30 К в 1978 г. Консультативным комитетом по термометрии была рекомендована Временная практическая температурная шкала (ВПТШ-76). Она основана на следующих условно принятых значениях ряда реперных точек: 21
Достигнутое практическое совпадение шкал МПТШ-68 и термодинамической позволяет в научной и технической литературе применять только обозначения Т и t. Разности температур Т1 - Т2 или t1 - t2, так же как и погрешности ΔT или Δt, выражаются либо в Кельвинах, либо в градусах Цельсия (предпочтительнее в Кельвинах). В размерностях производных величин используется только единица температуры Кельвин, например [с] = Дж/(кг·К). Международная практическая температурная шкала (МПТШ-68) с учетом рекомендаций Консультативного комитета по термометрии 1984 г. основывается на: 1) группе из 12 воспроизводимых температур фазовых переходов (реперных точек), числовые значения которых были получены как наиболее достоверные по результатам газотермических измерений в ряде стран (см. таблицу на странице 21). Эти значения охватывают интервал шкалы от 13,81 до 1337,58 К (1064,43 °С); 2) интерполяционных приборах, предназначенных для интерполирования значений температур между реперными точками. В интервале температур от 13,81 до 903,89 К (630,74 °С) таким интерполяционным прибором является платиновый термометр сопротивления. В интервале температур от 630,74 до 1064,43°С интерполяционным прибором является платинородий (10%) - платиновая термопара. Наконец, выше 1064,43°С — температуры затвердевания золота - температура экстраполируется с помощью монохроматического яркостного пирометра; 3) интерполяционных формулах, значения коэффициентов в которых по поддиапазонам определяются путем эталонирования каждого прибора в соответствующих реперных точках, охватывающих данный поддиапазон, и из условия равенства производных градуировочных кривых на границах соседних температурных участков; 4) рекомендациях по осуществлению отдельных реперных точек, обеспечивающих высокую их воспроизводимость, и требованиях к выбору интерполяционных приборов.
20
Познание – процесс отражения и воспроизведения человеческим мышлением (или машиной) действительности, т.е. процесс перехода от действительности к абстракции. Итак, в философии измерение есть инструмент познания. Теория познания занимается формами поиска и получения информации об окружающей действительности. Можно выделить две формы познания: чувственное и логическое. Чувственное познание – субъект (человек) получает чувственное впечатление, представляющее образ действительности, т.е. переход от действительности к абстракции. Ощущения, восприятия, представления – первая чувственная ступень. Впечатления могут быть выражены в форме определенных суждений – вторая ступень чувственного познания. Логическое познание включает анализ, синтез, умозаключение, построенные на образах действительности, т.е. оно совершается в области абстракции. В результате формируются вопросы, гипотезы, вскрывающие отношения между явлениями и объектами. Основа чувственного и логического познания – наблюдения и эксперимент. Если восприятие отражает количественные отношения, то наблюдение есть измерение. Взаимосвязь рассмотренных понятий схематично представлена на рисунке 1.
2 Переход от свойства объекта к его оценке С измерительными процедурами мы хорошо знакомы. Из практики известно, что в измерительном эксперименте участвуют минимум три звена, что отображено на рисунке 2. Объект, свойства которого нужно определить, находится в определенных условиях и под воздействием ряда факторов. Реакция объекта на воздействие выражается в виде сигнала, несущего информацию о свойствах объекта. Передаётся эта информация на вход измерительного прибора всегда за счет энергоносителя (электрический ток, световое излучение, тепловой поток и т.д.). 5
Образ действительности ПОЗНАНИЕ Суждение Ощущение, восприятие Чувственное познание
Логическое познание
Наблюдение
Свойства объекта
или
Измерение
Технические средства
Способ измерения физической величины
Соотношение
Физическая величина Единица физической величины Размер физической величины
Количество
Значение физической величины
Оценка
Рисунок 1 – Взаимосвязь понятий
6
Соглашение
Международной практической температурной шкале (МПТШ). Публикация и обсуждение предложенных принципов построения практической шкалы завершились корректировкой и утверждением Положения об МПТШ-27 в 1933 г. на 8-й Генеральной конференции. В положении об МПТШ было установлено, что единственно правильной шкалой температур является термодинамическая, в которой конечном счете должны выражаться все измерения температур. Для практической реализации термодинамической шкалы вводится МПТШ, которая должна совпадать с термодинамической настолько точно, насколько это было возможно при состоянии знаний того времени. Было признано, что если с течением времени будет установлено расхождение между термодинамической шкалой и МПТШ, в последнюю должны быть внесены необходимые коррективы. Кроме того, МПТШ должна быть установлена таким образом, чтобы легко и просто было воспроизводить и определять любую температуру по МПТШ с точностями более высокими, чем по термодинамической шкале. Впоследствии, в 1948 и гг., на Генеральных конференциях по мерам и весам в Положение МПТШ вносились изменения, основанные на использовании более совершенных работ в области газовой термометрии в разных странах и имеющие целью дальнейшее приближение МПТШ к термодинамической шкале. Уточненная в 1968 г. практическая шкала получила название МПТШ-68. В МПТШ-68 используются как международные практические температуры Кельвина (символ Т68), так и международные практические температуры Цельсия (символ t68). Соотношение между Т68 и t68 такое же, как между Т и t, т.е. T68K = t68°С + 273,15 Единицей Т68, так же как и единицей термодинамической температуры, является Кельвин (К). Числовые значения температур в абсолютной шкале T68 выражаются в Кельвинах, а в шкале, отсчитываемой в Кельвинах от точки плавления льда, считаются выраженными в градусах Цельсия, °С, т.е. так же, как термодинамические температуры Т и t. Обозначения T68 и t68 применяются тогда, когда хотят особо подчеркнуть отличие этих температур от термодинамических. 19
ПРИЛОЖЕНИЕ В Температурная шкала [ 10 ] Необходимость сопоставления результатов измерения температур в разных странах заставила искать пути создания международного эталона. Первой попыткой в этом направлении было утверждение в 1889 г. на Международной конференции по мерам и весам в качестве международного эталона температуры водородного газового термометра постоянного объема. Эталон предназначался для измерений температур в интервале от -25 до 100° С. В этой области температур отклонение водорода от закона идеального газа очень мало, поэтому поправки на приведение к термодинамической температуре не вводились и эталон являлся инструментом для воспроизведения эмпирической "водородной шкалы". В качестве основных точек были выбраны температуры таяния льда и кипения воды при нормальном давлении, которым приписаны числовые значения соответственно 0 и 100 с делением основного интервала на 100 равных частей. Числовым значениям измеренных "водородных" температур приписывался знак °С (градус Цельсия). По "водородному" термометру было проведено эталонирование набора из четырех ртутно-стеклянных термометров, которые в течение почти четырех десятков лет служили международным эталоном температуры в диапазоне от 0 до 100 °С. Водородный газовый термометр и эталонный набор ртутно-стеклянных термометров создавались и хранились в Международном бюро мер и весов в Севре (под Парижем). Развитие отраслей техники, нуждающихся в надежных методах измерений температур, выходящих далеко за пределы интервала 0—100 °С и обладающих более высокой воспроизводимостью, чем газовый термометр, заставило уже с начала нашего столетия развернуть в разных странах ряд исследований по изысканию практических методов построения температурной шкалы. Эти исследования завершились формулировкой на 7-й Генеральной конференции по мерам и весам в 1927 г. Положения о 18
Объект. Свойство
Энергоноситель информации о свойстве
Прибор (средство измерений)
Приемник Значение информации (человек, машина) (оценка)
Рисунок 2 – Три звена в измерительном эксперименте
До сих пор в научных кругах идут дискуссии по вопросу, что такое "измерение". Некоторые авторы сводят понятие "измерение" к передаче информации, изменению формы сигнала, преобразованию энергии. Но сущность измерения - переход от мира физических реальностей (сферы реальностей, или действительности) к системе знаков, отражающих реальность, т.е. к сфере абстракции.
3 Формально-логический принцип измерения Обратимся к трактовке Я. Пиатровского. В сфере реальности существуют: множество объектов {М1, М2, М3 …} или {М}; множество свойств каждого из объектов М1 → {Q11, Q12, …} или {Q1}; М2 → {Q21, Q22, …} или {Q2}; и тд.; множество состояний каждого свойства каждого объекта {а111; а112; а113 …} или { а11} для Q11, М1; {а121; а122; а123 …} или { а12} для Q12, М1; …….
{а211; а212; а213 …} или { а21} для Q21, М2; {а221; а222; а223 …} или { а22} для Q22, М2; и т.д. В сфере абстракции создаются: 7
~ множество наименований объектов { М }; множество величин (или характеристик), отражающих раз~ личные свойства { Q };
~ }. множество значений величин { a
Таким образом, переход от действительности к абстракции можно показать следующим образом: наименование; величина; значение.
объект свойство состояние
Связь действительности и абстракции устанавливается эмпирическим путем посредством процесса измерения (рисунок 3). Действительность Объект Свойства Состояние
М Q
a
Абстракция Процесс измерения
~
М ~ Q
~ a
Наименование Величина Значение
Рисунок 3 – От действительности к абстракции через измерение
По соглашению устанавливаются тождества: ~ ~ {М} ≡ {M} и {Q} ≡ {Q} . ~ } есть отображение состояния, которое Переход { а } → { a ~ = ϕ(a ). Это отображение называется эмпирической обозначим a ~ шкалой величины Q . Пусть два объекта M1 и M 2 со свойствами Q1 и Q 2 по со~ ~ ~ ~ глашению одинаковы, т.е. Q ≡ Q1 и Q ≡ Q 2 , M ≡ M1 и M ≡ M 2 . Приняв одно из состояний свойства конкретного объекта за эталон, измерение сводят к определению отношения полученного в результате измерения значений одной величины к значению другой величины, принятой за эталон. ~ и a~ , Если в результате измерения получены значения a 1 2 ~ ~ при этом a1 = a 2 , то состояния a1 и a 2 тождественно равны: а1 ≡ а 2 . 8
Сила землетрясения, балл
1 2 3 4 5 6 7 8 9 10 11 12
Название
Признаки
Незаметное Очень слабое
Отмечается только сейсмическими приборами Ощущается отдельными людьми, находящимися в состоянии покоя Слабое Ощущается лишь небольшой частью населения Умеренное Распознается по мелкому дребезжанию и колебанию предметов, посуды и оконных стекол, скрипу дверей и стен Довольно Общее сотрясение зданий, колебаний мебели. сильное Трещины в оконных стеклах и штукатурке. Сильное Ощущается всеми. Картины падают со стен, откалываются куски штукатурки, легкое повреждение зданий Очень сильное Трещины в стенах каменных домов. Антисейсмические, а также деревянные постройки остаются невредимы Разрушительное Трещины на крутых склонах и на сырой почве. Памятники сдвигаются с места или опрокидываются. Дома сильно повреждаются Опустошитель- Сильное повреждение и разрушение каменных ное домов Уничтожающее Крупные трещины в почве. Оползни и обвалы. Разрушение каменных построек, искривление железнодорожных рельсов Катастрофа Широкие трещины в земле. Многочисленные оползни и обвалы. Каменные дома совершенно разрушаются Сильная Изменения в почве достигают огромных размекатастрофа ров. Многочисленные оползни, обвалы, трещины. Возникновение водопадов, подпруд на озерах. Отклонение течения рек. Ни одно сооружение не выдерживает.
17
В настоящее время требования к твердости рекомендуется указывать числами по шкале HRCэ. Для определения твердости растягивающихся тел применяется ч и с л о т в е р д о с т и п о Ш о р у , связанное с числом твердости по Бринеллю. При этом НВ соответствует 7Нш, где Нш — число делений шкалы Шора, которое находится по высоте, на которую отскакивает боек при испытаниях. Для определения твердости резины применяется шкала Шора и международный стандарт, по которому твердость резины рассчитывается по глубине погружения индикатора в испытуемый образец.
ПРИЛОЖЕНИЕ Б Примеры шкал силы ветра [ 8 ] Для оценки скорости (силы) ветра в баллах применяется условная шкала Бофорта, в которой соотношения между баллами и скоростью ветра над сушей на высоте 10 м были приняты в 1946 г. по международному соглашению. Шкала приведена в таблице на странице 11. Для сравнения землетрясений по их силе в мире применяются различные сейсмические (условные) шкалы. Так, в России действует эмпирическая 12-балльная шкала. В ряде стран применяются эмпирические сейсмические шкалы (10-балльные и 12-балльные), отличающиеся по оценке силы землетрясений. За последнее время в мире получила распространение сейсмическая шкала Рихтера (шкала магнитуд), основанная на оценке энергии сейсмических волн, возникающих при землетрясениях. Соотношения между магнитудой землетрясения и его силой в эпицентре по шкале Рихтера зависят от глубины очага и представляются 12-балльной шкалой (была предложена в 1935 г. американским сейсмологом Ч. Рихтером). Международная сейсмическая шкала MSK- 64 для измерения силы землетрясения приведена в таблице. 16
4 Основные соотношения значений (состояний) Важнейшими в теоретическом плане отношениями значений величин являются следующие. Эквивалентность значений - любые два элемента множе~} (в абстракции) состоят в одном из двух соотства значений {a ношений: либо a~1 = a~2 , либо a~1 ≠ a~2 . Строгое упорядочение значений - каждому элементу ~} соответствует определенное положение на чимножества {a словой оси, и любые два элемента находятся в соотношении: либо a~1 < a~2 , либо a~1 > a~2 . Эквивалентность значений и строгое упорядочение ин~} относительтервалов - разность двух элементов множества {a но двух других элементов находится в соотношении: либо a~1 − a~2 = a~3 −a~ 4 , либо a~ − a~ < a~ −a~ , 1
2
3
4
1
2
3
4
либо a~1 − a~2 > a~3 −a~ 4 . Эквивалентность и строгое упорядочение частных - ка~} в отнождое частное от деления двух элементов множества {a шении к частному от деления двух других элементов определяется следующим образом: либо a~1 / a~2 = a~3 / a~ 4 , либо a~ / a~ < a~ / a~ , либо a~1 / a~2 > a~3 / a~ 4 .
Здесь a~2 и a~4 не могут иметь значение равное нулю. Аналогичные отношения могут быть установлены и для элементов множества состояний {a}, т.е. в действительности. Приведенные соотношения используются при построении и анализе шкал величин.
9
5 Типы шкал величин Образы действительности в абстрактном мире представляются в формализованном виде и часто именуются термином данные. Формализация осуществляется в таком виде, чтобы удобно было передавать и обрабатывать эти данные. На отдельных этапах передачи и обработки данные могут фигурировать в аналоговом виде, например, в виде наглядных чертежей, графиков, электрических и иных сигналов, изменяющихся в соответствии с характеристиками объектов. Но более гибким и универсальным является цифровое или кодовое представление данных. Данные, в этом случае, представляются цифрами, буквами, другими графическими символами, а также дискретными состояниями сигналов и устройств. Совокупность правил, позволяющих сопоставить системе объектов с их характеристиками систему цифровых данных или систему чисел, называют шкалой. В теории обобщенных измерений различают несколько типов шкал. Типы шкал характеризуются наборами соотношений, т.е. эквивалентности и упорядочения.
Номинальные шкалы Это простейшие, наиболее слабые, с точки зрения измеримости, шкалы. В них числа служат условными названиями объектов или их классов. Данный тип шкал можно разделить на шкалу наименований и шкалу классификации. Шкалы наименований - шкалы, применяемые для индивидуальных объектов. Присваивается номер в качестве имени объекта: агент 007, предприятие № 49, город Пенза-19. присвоение номера идет произвольно на первый взгляд. Но правило есть, хотя и очень слабое: нельзя присваивать одно имя двум разным объектам. Соотношение в системе объектов – это идентичность объектов самим себе (тождество).
10
ник, имеющий форму четырехгранной пирамиды (с углом при вершине 136°), с приложением усилия f от 49 Н (5 кгс) до 980 Н (100 кгс) в течение времени выдержки, например, 10 с, 15 с, 20 с. После приложения усилия с помощью микроскопа измеряется длина диагоналей на отпечатке dlt dr. Число твердости по Виккерсу определяется по формуле HV = 1,854 F d 2 , где d = (d1d 2 ) 2 . Условной единицей, как в шкалах твердости по Бринеллю и Виккерсу, является ч и с л о т в е р д о с т и п о Р о к в е л л у . При измерении твердости по Роквеллу стандартный наконечник (стальной шарик или алмазный конус) вдавливается с помощью прессов Роквелла в испытуемый образец под действием двух усилий: предварительного Fо и общего F, причем F= Fо+ F1. Пресс Роквелла имеет три шкалы (А, В, С). Измерение твердости по шкалам А и С производится путем вдавливания в образец алмазного наконечника (конус с углом 120°). При измерении по шкале А усилие Fо= 98 Н (10 кгс), F1= 490 Н (50кгс), а общее усилие F- 588 Н. При измерении по шкале С усилие Fо= 98 Н, F1 = 1372 Н (140 кгс), F= 1470 Н (150 кгс). Для сравнительно мягких материалов используется шкала В. При этом используется стальной шарик диаметром 1,588мм под действием нагрузок Fо=98 H, F1=882 Н (90 кгс), F= 980 Н (100 кгс). Твердость по Роквеллу обозначают в зависимости от применяемой шкалы HRA, HRB, HRC с указанием числа твердости, которое определяется в случае шкал А и С по формуле HR = 100 − (h − ho ) 0 ,002 , а в случае шкалы В HR = 130 − (h − ho ) 0 ,002 , где hо — глубина внедрения наконечника в образец под действием предварительного усилия, h — глубина внедрения наконечника в образец под действием общего усилия, измеренного после снятия нагрузки F1, с оставлением предварительной нагрузки. В России имеется специальный эталон воспроизведения твердости по шкалам HRC и НRСэ (шкала Супер-Роквелла). Для пересчета шкал HRC и HRCэ существуют официальные таблицы. 15
Балл
Твердость
0 1
Меньше твердости талька Равна твердости талька или больше ее, но меньше твердости гипса Равна твердости гипса или больше ее, но меньше твердости известкового шпата Равна твердости известкового шпата или больше ее, но меньше твердости плавикового шпата Равна твердости плавикового шпата или больше ее, но меньше твердости апатита Равна твердости апатита или больше ее, но меньше твердости полевого шпата Равна твердости полевого шпата или больше ее, но меньше твердости кварца Равна твердости кварца или больше ее, но меньше твердости топаза Равна твердости топаза или больше ее, но меньше твердости корунда Равна твердости корунда или больше ее, но меньше твердости алмаза Равна твердости алмаза или больше ее
2 3 4 5 6 7 8 9 10
В машиностроительной практике часто используют шкалы твердости (шкалы чисел твердости). Твердость оценивается по условным шкалам Бринелля (НВ), Виккерса (HV), Роквелла (HR) и др. П о у с л о в н о й ш к а л е Б р и н е л л я твердость (число твердости) измеряют, вдавливая стальной закаленный шарик (диаметром 10мм, 5мм, 2,5 мм) в испытуемый образец, с помощью отношения усилия (нагрузки) шарик к площади S отпечатка, остающегося на образце,
[ (
HB = F S = F πD D − D 2 − d 2
)] ,
где D — диаметр шарика, мм; d — диаметр отпечатка, мм; F ~ нагрузка на шарик, измеряемая в ньютонах (Н), иногда в кгс — единицах силы технической системы единиц (1 кгс = 9,8 Н). П о у с л о в н о й ш к а л е В и к к е р с а число твердости определяют, вдавливая в испытуемый образец алмазный наконеч14
Шкалы классификации - шкалы, применяемые для классов объектов. Единственное отношение в системе объектов, передаваемое номинальной шкалой - это соотношение эквивалентности. Примеры: сборник образцов цветов, годные или негодные изделия и т.д. Порядковые шкалы Существенно более сильными являются порядковые шкалы (или ординарные шкалы). Здесь действуют соотношения строгого упорядочения состояний и эквивалентности. Пример. Студенты после экзамена разбиваются на группы получивших оценки 2, 3, 4 и 5. К порядковым шкалам относятся шкала Мооса для твердости минералов, построенная на 10 образцах которая носит название шкалы реперов, а также 12- бальная шкала Бофорта для силы морского ветра (см. таблицу) и международная сейсмическая шкала MSK - 64. Перечисленные шкалы подробно описаны в приложениях А и Б. Они являются неметрическими шкалами ибо физические величины, оцениваемые с их помощью, не входят в систему единиц СИ. Сила ветра, балл 0 1 2 3 4 5 6 7 8 9 10 11 12
Название Штиль Тихий Легкий Слабый Умеренный Свежий Сильный Крепкий Очень крепкий Шторм Сильный шторм Жестокий шторм Ураган
Признаки Дым идет вертикально Дым идет слегка наклонно Ощущается лицом, шелестят листья Развеваются флаги Поднимается пыль Вызывает волны на воде Свистит в вантах, гудят провода На волнах образуется пена Трудно идти против ветра Срывает черепицу Вырывает деревья с корнем Большие разрушения Опустошительное действие 11
Интервальные шкалы Эта и последующие шкалы являются метрическими. С точки зрения отношений между состояниями здесь должны быть эквивалентность, строгое упорядочение состояний и строгое упорядочение интервалов. о
С
1000 900 800 700 600 500 400 300 200 100 0 -100 -200 -273,15
о
К
F
1900
1300
о
Ra
2300
1200 1100
1500
2000
1000 900 1000
800
1500
700 600 500
500 400 373,15 300 273,15 200 100 0
112 100 32 0 -100 -200 -300 -400 -459,67
1000
671,67 500 491,67
0
Температурная шкала является типичным таким примером. С помощью нее можно установить равенство температур, эквивалентность приращений температур двух процессов, но нельзя утверждать, что одна температура вдвое выше другой. Нельзя две температуры сложить. Имея два чайника с кипящей водой, 200 оС не получишь. Примеры: температурные шкалы Цельсия, Фаренгейта, Реомюра, Кельвина. Их соотношения приведены на рисунке 4.
Рисунок 4 - Температурные шкалы Цельсия (оС), Реомюра (оR), Фаренгейта (оF) и Кельвина(К)
Формула связи шкалы Цельсия и Фаренгейта Fо =1,8С°+32. Подробнее о температурных шкалах смотри в приложении В. Своеобразной интервальной шкалой является шкала времени, используемая для датирования событий. Здесь нет нуля, нет реперных точек. Есть эталонный интервал. Нуль – условный. 12
Масштабные шкалы Масштабная шкала (или шкала отношений, или пропорциональная шкала). С точки зрения соотношений между состояниями здесь действуют эквивалентность, строгое упорядочение состояний, интервалов между ними и частных от деления состояний. Шкала должна иметь не условный, а естественный нуль. Тогда между состояниями возможно аддитивное отношение, т.е. возможно сложение. Примеры шкал отношений: шкала длины, массы, электрического напряжения и т.д. Натуральные (абсолютная) шкалы Этим шкалам свойственны любые отношения, аналогичные отношениям чисел. Здесь нет ни реперных точек, ни эталонных интервалов. Речь идет об измерении относительных величин (в естественных единицах), а также о процедуре счета. Счет деталей, счет числа импульсов, счет людей и т.д. Измерение относительных величин: коэффициента усиления, коэффициента деления, эмпирической вероятности и т.д.
ПРИЛОЖЕНИЕ А Примеры шкал твердости [ 8 ]
Порядковая шкала Мооса основывается на 10 реперных точках. Она применяется для изучения твердости минералов. При этом более твердому минералу приписывается более высокий балл. Так, если тальк имеет число твердости (балл), равный 1, гипс — 2, то кварцу соответствует число твердости, равное 7, топазу — 8, корунду — 9, алмазу — 10 (см. таблицу). Шкала Мооса, «старейшая» из шкал твердости, была предложена в 1822 г. Позже для минералов стала применяться 12балльная шкала Брейтгаупта. Балл 1 по-прежнему приписывается тальку, но алмаз имеет 12-й балл. Таким образом, принципиально эти шкалы не различаются. 13