10 downloads
134 Views
405KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
!"# $%& '(# & #) , , ## «*#"& +# &.$ #-. *. . /!+& 0.1. 2-#3+#, 456789 => 9?7 6@?A 6D? E F :;< <5 < BC;6 , 5;C C 5 DCGH=?B I?? ? 9= ; DC=9 E ;5;C69=J@9J=5A 6C 6D?;-C=K?95GL;MN EB5?NCO
pqrsqt puvwuxuy 2006
538.913 B379.1
-76 -76 ScUXUa .. b o b o, o b bo b oob b o boP P P: PQRSTUVQWXUQ YXZ[Z\U] X ^Z_S`ZRS`\Sa `Z_SRQ. – oU\Ua oSdfS`ST: [TZRQ^gWRdS oUQfS`STWXSfS
fSWY\UdQ`WURQRZ, 2006. – 17 W.
bQQ\[Q\R: m`SeQWWS` .. QdWXUa a `Z_SRh WSTQ`UR RQS`QRUVQWXSQ ddQTQ\UQ U UWZ\UQ ^Z_S`ZRS`\S m WZcSWRS]RQ^g\SfS UWW^QTSdZ\U] WRYTQ\RZcU mS `ZWVQRY [ZTZVU T ] ^ \Q`fQRUVQWXUj [S\, WmU\SdSa mS^]`U[ZUU U R`Z\WmS`RZ d WR`YXRY`Zj WS WmU\-S`_URZ^g\hc d[ZUcSTQaWRdUQc bZi_h U \Z\S `QWWQ^gjZY[Z. SWS_UQ m`QT\Z[\ZVQ\S T^] UWmS^g[SdZ\U] d `ZcXZj Q^g\Z] eU[UXZ», «SmS^\URQ^g\hQ f^Zdh XdZ\RSdSa XYQ`WSd «hVUW^URPQ QWXSfS cSTQ^U`SdZ\U]», cjZ\UXU»,Q Q« RSTh cZRQcZRUV Q Q « SmS^\UR ^g\h f^ Zdh eU[UXU Rd `TSfS R ^ Z», « mU\R`S\UXZ»,
W] mS VURZklUjQ W] WRYTQ\RZc dhWiUj YVQ_\hj [ZdQTQ\Ua, S_YVZklUj \Zm`Zd^ \Uk mSTfSRSdXU 010700 «nU[UXZ» U 210600 «oZ\SRQj\S^SfU]». 538.913 B379.1
©
a Y\UdQ`WURQR oUQfS`STWXUa fSUcWYTZ`WRdQ\\h QW . o. . S_ZV d XSfS, 2006 -2-
I.
#!+ #
1. $ )#) !#3$ '#-# $#-,#- %$ # 0
1.1. -
- !"#$ (%) &'!()$*+ &$, &',!-.$$ !"/ + !+ &$* $))+ $0!"#* 1$2 V (r ) , ,!, +"$)+ &$, 1"$, /$+,2 "3 − ∇V (r) , +4&!$ +3 &,"!)( Hˆ & SO 2!("# ! /!+ 04 &)! [1]
Hˆ SO =
5ˆ 1 ˆ [∇U , p]σ , 2 2 4m0 c
(1)
2)$ m - (!++! +&)* /!+ 04, pˆ - $! (6"#+!, ! $! σ7ˆ 0 (!$ +3 ,!, &$, σ8ˆ = (σˆ , σˆ , σˆ ) + ,($ !(, 3&"3-.(+3 x y z (! 0!( 9!6" [1]. : ++ $($ $)0, 3 * & !+! ;(6"4 (1) )!"$$ $,+ 6, (4 (!$( '!/$$ + 3* 9"!,! < = 1. +" $) )+ # $0!"#* 1$2 6+"&"$! +,!/,!( = !!($ & !'0! &"' $2 2!0, !,(, ,!, 2$ $ $$>) & "6&),&* + 6, 6$ [2], !,!3 !+(($ 3 !'4&!$ +3 + 6, 6* '!/!$ +3 SIA (Structure Inversion Asymmetry). 9 1 ( & % &'!()$*+ & )(6$ &,"!), !'4&!$(4* 2!("# !(+ ?!@4 (A.B. ?+ !@!, 1960) [3], , $ !!&" $ ∇V (r ) &)"# Oz ($$ "$)6-.* &): Hˆ R = α (σˆ x pˆ y − σˆ y pˆ x ).
(2)
C+ ! ! α & ;(6"$ (2), !'4&!$(!3 !!($ ( ?!@4, $)$"3$ "/6 &,"!)! )!2 ! % &'!()$*+ &3 & /4> &$ "6&),&4> + 6, 6!> ($$ '!/$$ & $)$"!> % + + + (1 D5) ⋅ 10 −9 eV ⋅ cm . 9 ,"#,6 &( >E)$$( &,"!) ?!@4 & )$*+ &$ 3'! &$@$* !+(($ + 6, 64, &$"/! !!($ ! &'!( + '($$ &$@$2 1"$, /$+,2 "3 & $)$"!> α (E$ ($3 # 3 50% $ &!/!"#2 '!/ $3 [4]. -3-
62* &,"!) & % &'!()$*+ &$ (E$ )! # &6 $33 !+(($ 3 !+"E$3 ! (& & ($ "6&),&* + 6, 64, ,2)! ,+ !"" $ ($$ 0$ ! &$+. !"/$ !,* !+(($ , '!/!$(* ,!, BIA + &$ + &6$ +"!2!$((6 $++$"#>!6'! (Bulk Inversion Asymmetry), + * (G. Dresselhaus, 1955) & 2!("# !$, ($-.( " $)6-. &) [5]: Hˆ D = β (σˆ x pˆ x − σˆ y pˆ y ).
(3)
β , $)$"3-.* &$"/6 1 2 &,"!)!, !'4&!- !!($ ( 9!!( $ $++$"#>!6'!. : "#@+ &$ ++"$)6$(4> "6&),&4> !+ 6, 6 "/! @$3 )&6> &,"!)& α β ~ 1.5 2.2 . + $"#!3 &$ * $&!" !!($ & % &'!()$*+ &3 4", & /!+ + , "6/$ 9)4 & $)!&> 1,+$($ !> '($$- ; ,! & ,&! &4> 3(!>
InAs/AlGaSb [6].
1.2.
"%() *%+) (2) , -.!!"/0%#1% (3) & 23 4 !"#$% &' &1%, 4( !5&, (6&. 664 7.,!#5!5U & 9% ,"/56,%6 (": $%!5,;) & (%66 7"#7.&(6,'& !5.#'5#.. >'5,&64 %!!4 m , % 7.56;,%"/6%: =6.9,:4 7!5:66%, 5 '&%65&) !!5:6,: $%!5,;) ! !7,6 ,5%"/6) &1%, ( !5&, 7,!)&%85!: 9% ,"/5 6,%6 2 p ˆ Hˆ = + α (σˆ x pˆ y − σˆ y pˆ x ) + β (σˆ x pˆ x − σˆ y pˆ y ). 2m
(4)
?#( .+%5/ !5%;,6%.6 #.%&66, @.A(,69.% Hˆ Ψ = EΨ ! # & 9% ,"/56,%6 &0(:5 %5.,;) B%#",, 9% ,"/56,%6 (4). B!'"/ ' :&":8,!: %5.,;% , &5. 9 7.:('%, &"6&%: >#6';,: ("C6% )5/ (' 76656) !7,6. , 7,!)&%8, $%!5,;# ! !7,6 1 2 [1]. DC6 &,(5/, $5 9% ,"/5 6,%6 (4) !(.C,5 ",646) , '&%(.%5,$6 7 , 7#"/!# !"%9% ). 2!5&66) , D>#6';,: , 5%',0 7.%5..+6 &, '%' ,1&!56, :&":85!: 7" !', &"6). ) #( 7=5 # ,!'%5/4 , !5%;,6%.649 #.%&66,: @.A(4,69.%.& &,( 7. ,1&(6,: 7"!' &"6) 6% 6,1&!56) (' 76656) !7,6 : J G Hc E ikr H 1 E Ψ = e I F. (5) c2
-4-
B(!5%&":: >#6';,8 (5) & !5%;,6%.6 #.%&66,4 @.A(,69..% ! 9% ,"/56,%6 (4), ) 7"#$% !,!5 # ( ",6 6)0 (6 (6)0 #.%&66,4 6% ' 7665) !7,6.% c : 1, 2 k2 − E c1 + zc2 = 0 2m 2 k * − E c2 = 0, z c1 + 2m
(6)
9( z = α (k y + ik x ) + β (k x + ik y ). !"&, .%&6!5&% 6#"8 7.(",5": !,!5 ) (6) 71&":5 6%45, =6.95,$!',4 !7'5.: k2 2 2 Eλ (k ) = + λ (αk y + β k x ) + (αk x + βk y ) , 2m
λ = ±1.
(7)
B!" =59 C6 6%45, ' 7665) !7,6.% c1, 2 , 5. . &"6 >#6';,8, '5.%: , 5 &,(: Ψλk =
e
ikr
1
2 λe
iθ (k )
,
θ (k ) = Arg[αk y + βk x − i (αk x + βk y )],
9( λ = ±1. (8) % ', .%1 , =6.95,$!',4 !7'5. (7) , &"6&) >#6';,, (8) 9% ,"/546,%6% (4) 0%.%'5.,1#85!: 6%. '&%65&)0 $,!" (λ , k ). %' , & "6& &'5., ,.", , 7#"/!, 1(!/ 7,!4 )&%5 7"!'#8 &"6# 5%' C, '.56 5!#5!5&, !7,6- ,5%"/69 &1%, ( !5&,:. &) :&":5!: (,!' '&%65 & $,!" λ = ±.%1, !5&5!5 ( &5&: 4 ,!0(69 7%.%",$!'9 !7'5.%, !7"A66)0 23 &1%, 4( !5&, . - !5&,5"/6, ,1 (7) "9' &,(5/, $5 & 5!#5!5&, 23 &1%, ( !5&,:, 5. . 7., α = β = 0 , ) 7"#$, 7.!54 7%.%",$!',4 1%'6 (,!7.!,,. 3(6, ,1 6%," &%C6)0 &7.!&, &16,'%8,0 7., .%!! 5.6,, : 1%(%$% .%!7.("6,, !7,6& & 7. !5.%6!5& !,!5 ! #$A5 !7,6%, :&":5 ! '&%65 &)0 $,!". %', 7.!5.%6!5& & 6%+ !"#$% :&":5!: 7"!'!5/ (k x , k y ) , 7#"/!& ( .69 ="'5.669 9%1%, 6% '5.4 C6 7!5.,5/ .%!7.("6,: !7,6& (": '%C(4 &5&, !7'5.% (7) ! λ = ±1. -5-
%C(4 5$' (k , k ) 5&$%5 6%. !.(6,0 16%$6,4 7.';,4 !7,6% x y (%66 '&%65& !!5:6,,: i = x, y , z & σ i (λ , k ) = Ψλk | σˆ i | Ψλk
.
(9)
B(!5%&":: & &).%C6, (9) &"6 >#6';,8 (8), ) 7"#$% , $5 σ z = 0 5C(!5&66 (": "8 )0 16%$6,4 (λ , k ), 5. . !7,6) 7":.,1&%6) & 7"!'!5, ( .69 ="'5. 669 9%1%. 7665) C 7.';,4 !7,6& & 7"!'!5, (k x , k y ) .%1#85 &'5.6 7" ! !"(#84 !5.#'5#.4: σ λk = (σ x ,σ y ) = λ (cosθ , sin θ ),
(10)
9( >%1% θ (k ) 7.(":5!: & (8).
!" #$ % &' &(% ), *+, -. #/ ",') #"' 0!','&1' 1 &2* & + '3 453, . '. β = 0 , α = 3 ⋅ 10 −9 eV ⋅ cm " 677'* "#$ 1 59'+ 3! :' "1 ,&1 '!+"" 3 0&(% ', % # $ (7) 6$ m = 0.067m0 . 8/ 1.3.
k2 E R (λ , k ) = + λk , (11) λ = ±1. 2m !( (! ," 0'! "" " " " & + ' ! - * /*$ #* (11) # / # # $ # ) 0!" ',' " ,&1 5'"; ' ' 0' ! & " k = (kx , k y ) # $ $ .1 # # * λ = ±1. < # $ 0'* ! 0!" 6 (, &'$ ,&1 $ +&1,$ " # 0!"1 "1 !' $"1 ," 0'! "$$3; *!"#3; . =$'4$11 ($":$11) #' #2 0' * ! $ " .1 #' #(' λ = −1, #$( !'$$11 (#'!;$11) #' #2 0" 3# ' 1 #3! :'$"' 1. (11) >λ = ) %' "1 0" 3; 0!' " ,&1 + "&2 " 453 0!','&1@ $ $ 1 $ $ $ # ) *? #3! :'$"' (10) 7 / θ (k ) "/ (8). <&(%' $$1 ;' "%' * 1 * ! "$ A 0!"#','$ $ " .2. =",$, % ,&1 5'"; #'* !$+ 0&1 ( ) σ = σ , σ λ k x y ) ' ' 0' ! ! 0!','&' "1 # # * 1 $ 0"$# "'@ #", ,$!,$3; #";!') λ =± 0! "#0&:$3 $ 0! #&'$"' #! 9'$"1.
-6-
.1. (11) k = (k x , k y )
λ= ±1. . α = 3 ⋅ 10 −9 eV ⋅ cm , m = 0.067m0 .
.2. σ λk = (σ x ,σ y ) .1 ( ) λ = −1 (b) !
λ = ±1 λ = 1.
".
-7-
) '!' , 59'( &(% @ +, , !'' 0!" ( (@ & ,3 # < * * $ # $$ # #* , ) ",' "' !' '&2; (/ . & + '+ 453 " %&' -. #/ # * * $ , * (,' ! !" 2 " ( ?"@, *+, α = 3 ⋅ 10 −9 eV ⋅ cm , 0 ! ' ! # !' '&2; (/ β = 2 ⋅ 10 −9 eV ⋅ cm , " 0-0!':$'( m=0.067m0 . '!+' "%' ") 0' ! ) 5'"; #' #' λ = ± 1 0* / $ $ " .3. :$ $ * * (7) ,&1 !"1 0' ! #",' 2, % # 59') " ( ?"" αβ ≠ 0 ( #(' "' * k x → − k x , k y → −k y , $ # "&( '!'3 ! '! [1] ;! $1' 1 ?'$ ! "$#'! "" / *$ ,&1 ," 0'! "" E (k ) = E (− k ) .
(7) λ = ±1 .3. # ! " # # . $ # % &
k x → − k x , k y → − k y , α = 3 ⋅ 10 −9 eV ⋅ cm , E (k ) = E (− k ) . '
β = 2 ⋅ 10 −9 eV ⋅ cm , m = 0.067 m0 .
-8-
0!','&'$"1 0"$# ,&1 , $$) / , %" #' ' ,$" "/ *$ (!# 0 1$$) 6$'!+"" E (λ , k ) = const 0* / $3 $ " .4, 0!" 6 " .4( ) #'% ' $":$') #' #" 0'* ! λ = −1, " .4(b) 0" 3# ' ! 0!','&' "' $ ,&1 #'!;$') #' #" 0'* ! λ = 1 . .5! 9 ' $ '51 #$" $"' ! /&"%"' # ) 7!' " 0&9 ," *)$ (! 0 1$$ 6$'!+"" $ " .4( ) " " .4(b). /&"%"' 0&9 ," '%'$ " E = const ,&1 λ = −1 " λ = 1 "'' ' " ,&1 # ! !'$$) ! $'' / , %" β = 0 , * * 6 :$ #",' 2 $ " .1, 0!#,1 " '!+' "%' + " '%' "1 0 &' "1 !3 (! / 6$ * * $ $ E = const #$ 7 . 8/ $ 0! #&'$"1 0"$# :$ ,'& !"1 ! 0!','&'$"1 2 #3#,, % "' 0"$# ! : ' " "' !"@ / *$ ," 0'! "" # k -0! ! $ #'.
.4. α = 3 ⋅ 10 −9 eV ⋅ cm , β = 2 ⋅ 10 −9 eV ⋅ cm #
E (λ , k ) = const λ = 1 . () λ = −1 (b) k
.
-9-
2.
: 2.1.
!"#
$ %&'()*+,) -&*. /&(01&) 2+,34+,) 5*)(6)7'6 84*4943 5%:42()+,6 4:6<)++.= 94'7,> 2 %&(5%: &2&*+,;&2.= +4+&'7:5;75:4=. ?*,+ ,8 %&73&;43, 8 <+.= %&*=&*&2 ; ,= :)1)+,@ &'+&24+ +4 284,3&*)A'72,, '%,+4 94'7,> ' 2&8 & (63, , %:&'7:4+'72)++.3, +)&*+&:&*+&'763, '7:5;75:., 97 & 2+)1+,3, %& 6 2 &/&8+49)+,, *4++&A &/(4'7, B,8,;, ;&+*)+',:&24++&-& &7:4<4)7 ' 6+,6, +48.24)3&A '%,+7:&+,;&A [7,8]. $ +);&7&:.= '(5946= 3&<+& '&'7&:,70 4+4(&-) -)&3)7:,9)';&A &%7,;, 2 +4+&'7:5;75:4=, -*) :&(0 (59)A -&2& &/ ,'%&(+6@7 %&7&;, 94'7,>, ,, 74;,3 &/:48&3, 22)'7, 7):3,+ «'%,+&246 '2)74 7,;4» [9]. C27 &:. %&'()*+)A :4/&7. :4''3&7:)(, 84*495 & :4'')6+,, 2&(+ +4 &%:4+,>) 3)<*5 &/(4'70@ /)8 D? 284,3&*)A'72,6 , &/(4'70@ ' D? 284,3&*)A'72,)3 E41/., 7. ). %:, α ≠ 0 , Aβ = 0 .A $ *4++&A -(42) 3. &/&/F,3 :)85A (0747 :4/&7. [9] +4 /&()) &/F, '(594 :4'')6+,6 +4 -:4+,>) *25= &/(4'7) ' :48(,9+.3, %4:43)7:43, E41/. α ≠ α , β = 0 , %:, G7&3 1 2 :)*)() :) :4 *)7 ( 9)+ (0747 7. % H α 1 → 0 /5 %& 5 85 /& [9]. 74+&2;4 84*49, '=)347,9)';, %&;484+4 +4 E,'.5. E4''347:,24)7'6 &' :4'')6+,, *25=;&3%&+)+7+.= '%,+&:&2 2,*4 (8), 62(6@F,='6 84*494 & 72)++.3, '&'7&6+,63, *253):+&-& G();7: &++&-& -484. E4'')6+,) '&/' +4 -:4+,>) x = 0 *25= &/(4'7)A ' %4:43)7:43, '%,+-&: /,74(0+&-& %:4,3 &,'=*) &*,7 A'72,6 α 2 ()2&3 %&(5%:&'7:4+'72) , α 2 %:42&3 %&(5%: &'7:4+'72). 28 & H:, 8+49)+,, β =10 +4/)-4@F46 2&(+4 ,3))7 2,* 2 N K ikr L 1 I e (12) x < 0 : Ψin = M J , θ (k ) = Arg[k y − ik x ], λ = ±1, 2 λe iθ (k ) , =4:4;7):,85)7'6 ;&3%&+)+743, ,3%5(0'4 (k , k ) , 9,'(&3 λ = ±1, x y A :,+4*()<+ +494@F,3 )O 70 ; ):=+) (, +,<+)A 94'7, '%);7:4 &/&8 % &' 2 /& -43,(07&+,4+4 E41/., &%,'.24)3&-& B&:3A5(&A (11). H&';&(0;5 '7:5;75:4, ,8&/:4
- 10 -
(13)
4 ϕ )'70 5-&( %4*)+,6. &3%&+)+74 ,3%5(0'4 k %:, G7&3 '&&72)7'72)++& x :42+4 k 2 − k 2 %:, *4++&3 +4/&:) ;24+7&2.= 9,')( (λ , E , k ). y
y
.5. - x = 0 α1 α 2 . λ = −1 λ = 1 ! ! λ . 2.2. "#$%&'&() *$+ $,( #$--')&()
$ ',(5 7&-&, 97& :)1)+,) 5:42+)+,6 .:O*,+-):4 (8) *(6 84*49, '& '%,+*2) 2)72, ' λ = ±1, %:&1)*146 , &:7:4,@ *25= 2)72)A & +), ) 7+.3, 2& ; /5 5 % ' 82 ' &GBB,>,)+743, r1,2 . /3)++&, &7:4
Ψr = r1
e
− ik1 x x +ik y y
2
5 2 − ik x +ik y 3 1 0 e 2x y 4 iθ1 1 + r2 −e 2
5 2 3 1 0 4 iθ 2 1 , e
-*) k1, 2 = 2mE + (mα1 )2 ± mα1 , k x1, 2 = (k1, 2 ) 2 − k y2 , , θ = Arg[k − ik ]. 1, 2 y x1, 2
(14)
(15) (16)
H:&1)*146 2&(+4 ' +),82)'7+.3, ;&GBB,>,)+743, t /5*)7 &7(,9470'6 &7 1, 2 A (,10 .:4<)+, +49)+,)3 4:43)7:4 41 . , +4%:42()+,)3 2* ,<)+,6 ()(14)-(16) 8 % E / 2 ' 24 +4%:42& 2*&(0 &', Ox : - 11 -
x > 0:
Ψt = t1
e
ik3 x x +ik y y
2
1 −e
+ t2 iθ 3
k 3, 4 = 2mE + (mα 2 ) ± mα 2 , 2
e
ik3 x x +ik y y
2
1 e
iθ 4
,
(17)
k x 3, 4 = ( k3, 4 ) 2 − k y2
θ 3, 4 = Arg[k y − ik x 3, 4 ].
(18)
(19)
(12)-(19) . r t ! " 1, 2 1, 2 # x = 0 , " # # $ % ' [1]. & # ' # , ! ' # ' % :
Ψ | xx><00 νˆx Ψ | xx><00
=0 = 0,
# () "' " " * + ! " [9]
νˆx =
(20)
α
pˆ x − ασˆ y . m
(21)
, "" " (12), # (20), "% # (14) (17), !' "# % ' # ' % r t , %" 1, 2
1, 2
!# -' ' (12). . " " ' + , " ! ' ! . = = 2.3. /012345 673898:29;8 8<;5<983<29;5 3 >?2@5A@5 321<5
B t1, 2 ++# # (17)-(19). C " " % ' " λ = ±1 -' (12) # ' I D [9] ' " " k , 3, 4
+ - " ' ' " * ! (11):
- 12 -
I (ϕ ) =
1
t1, 2 (ϕ )
dθ dϕ
2
,
(22)
# θ ' λ = 1 ++' # # ϕ tan θ = k k . y
3, 4
" " # ! [9]
I (ϕ )
. 1 2
,
. .6. ! 1 "
#$ $ $ # , . . 1 2 ,
"" # " . %& .6.
' , . $ " , , $ # $
(# .6. )
ϕ c , $ #
$ , . . . , 4,
α =0
α →0
α ≠0
λ = −1
λ =1
t >> t
α << α
k
$ " (18), 1 2 , . . « # » « # », , #
$ +
# . * (# # # .6. # , #
x4 . &((# c + # $ [9],
# .
θ
k
(ϕ )
I (ϕ )
ϕ =ϕ
- 13 -
.6. I
α =0 α ≠ 0 [9].
λ = −1 ( I − ) λ = 1 ( I + ).
ϕ ϕ c ,
. ! k x 4 ( ) . "
, ,
( ).
- 14 -
II.
1
1.1.
1.2.
1.3.
" $ # "
- (4) . " $ % & (7) (8) " (# #$ ( " , (10) #
. .1.1. , & # # - (
#$ # "
#
! .1), ( # #
.3.).
" "
"
! . ! " #$ #
& . " $ ' (10) ) #
.
"
! ( .2)
"
#$ , ( # .4.).
#
2 2.1.
2.2.
2.3.
2.4.
2.5.
# #
"
$ # (( & "
" , (20).
# , $ # (( $ " $ # # (# & " "
- : " " , & .
#
! - , $ ,
(# " .6
(22) . # (( $ & " $ " "
-
. # .2.4. (22) , .2.3.
#
- 15 -
III.
(#
. !. , .. (, , ., 1974 ( #
, .III). [2] . . !" # , *.. , , ., 2000. [3] .. , # , .2, .1224 (1960). [1]
[4] J.B. Miller et al, Phys. Rev. Lett. 90, 076807 (2003). [5] G. Dresselhaus, Phys. Rev. 100, 580 (1955). [6] S.D. Ganichev et al, Phys. Rev. Lett. 92, 256601 (2004). [7] Semiconductor Spintronics and Quantum Computation, edited by D.D. Awschalom, D. Loss, and N. Samarth (Springer-Verlag, Berlin, 2002). [8] I. Žuti , J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004). [9] M. Khodas, A. Shekhter, and A.M. Finkel’stein, Phys. Rev. Lett. 92, 086602 (2004).
- 16 -
#
* 1. - "
I.
!
# - 1.1.
" $ " (# & 1.2. # #
# & 1.3. ' )
# * 2. :
# # # 2.1. %
2.2. 2.3. II.
1
2 III.
- 17 -
' .
3 3 3 4 6 10 10 11 12 15 15 15 16