Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann
1307 Takafumi Murai
A Real Variable Method for the Cauch...
8 downloads
488 Views
4MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann
1307 Takafumi Murai
A Real Variable Method for the Cauchy Transform, and Analytic Capacity
Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo
Author Takafumi Mural Department of Mathematics, College of General Education Nagoya University Nagoya, 464, Japan
Mathematics Subject Classification (t980): Primary 3 0 C 8 5 ; secondary 4 2 A 5 0 ISBN 3-540-19091-0 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-19091-0 Springer-Verlag N e w York Berlin Heidelberg
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1988 Printed in Germany Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr. 2146/3140-543210
PREFACE
The purpose of this lecture note is to study the Cauchy transform on curves and analytic capacity.
For a compact set
F
in the complex plane
denotes the Banach space of bounded analytic supremum norm
il-i!H~.
The analytic capacity of
IIflIH~_<_~,
~,(r) = sup{If'(~>l; where
f'(-) : lim
functions
z(f(z)-f(m)).
F
in
~,
~U{o~}-F
H~(F c) (= F c)
with
is defined by
f~H~,
We also define
ilcultH~ =< 1,
y+(F) = s u p t ( ] / 2 r r ) / d>;
Cu~H'(rC),
u >= 0},
where C~(z) = ( 1 / 2 ~ i ) 7 l / ( g - z )
d>(¢)
We a r e c o n c e r n e d w i t h e s t i m a t i n g y ( - ) finite
and y + ( . ) .
finite union of mutually
disjoint smooth arcs. Let
(the generalized
space of functions on
F
length). Let
p(r) = i n f ~ ( E ) / i E I,
transform on
F
~)).
compact s e t s h a v i n g
Hence we assume that i'}
F.
P
is a
denote the l-dimension
LP(F)
(lip! ~)
with respect to the length element
denote the weak L 1 space of functions on
where the infimums
support of
To do t h i s ,
l-dimension Hausdorff measure are critical.
Hausdorff measure
LI(F)
(z¢(the
denote the L p
Idzl,
and let
Put
% ( r ) = i n f ~r+(E)/I~i,
are taken over all compact sets
E
in
F.
The Cauchy(-Hilbert)
is defined by
Hrf(z)
= (i/~)
p . v . IF f ( ¢ ) / ( ~ - z )
id~]
(z~r).
Then we see that p+(F) __< p(F) =< Const p+(F) I/3,
Const p+(F) __< I/]IHFIILI(F),LI(F ) <= Const p+(F), w
where
NHFILI(F),LI(F)
is the norm of
(Theorem D). HenceWthe study of
y(F)
HF
as an operator from
LI(F)
to
is closely related to the study of
Here is a history of the study of the Cauchy transform on Lipschitz According to Professor
Igari,
the L 2 boundedness
LI(F) H F-
graphs.
of the Cauchy transform on
Lipschitz graphs was first conjectured by Professor Zygmund in his lecture at Orsay in 1960's. Let line. Let
C[a]
F = {(x,A(x));
I/{(x-y)+i(A(x)-A(y))}. C[a]
is bounded
(from
a(x) = A'(x),
where
•
is the real
Then the above conjecture means the following assertion: L2(~)
to itself) if
formally expanded in the following the Hilbert
xE~},
denote the singular integral operator defined by a kernel
transform and
Tn[a]
form:
aEL~(~).
The operator
(-~)H + En=0(-i)n Tn[a],
C[a]
where
is H
is
is the singular integral operator defined by a
IV
kernel
(A(x)-A(x))n/(x-y) n+l.
bounded if
aeL~(~)
related to the BMO(R) of functions on Tn[a],
•
Calder6n
theory, where
C[a]
[3] showed that
Tl[a]
is
is the Banach space, modulo constants,
[44] that
Coifman-Meyer
is bounded if
Coifman-McIntosh-Meyer
(Theorem B). David
is already known
BMO(~)
of bounded mean oscillation.
[4] showed that
small, and consequently the affirmative
In 1965, Calderdn
(Theorem A). This theorem is very important and closely
IIC[a]IIL2(R),L2(E)
HF
for continuous
and that the square root is best possible
[18]. Jones-Semmes (See Appendix II.)
with a review of the study of
C[a].
curves
~ Const(l 4 - ~ B M O ( ~ ) )
of Theorem B by complex variable methods. HF
is sufficiently
[7] solved the above conjecture
[17] studied
As a first step of the study of
[8], [9] studied
llallL~(~)
for discontinuous
In CHAP. I,
in
F.
It
(Theorem C)
gives a simple proof
curves
F,
we begin
g proofs of Theorem A will be
given. Once this theorem is known, we can easily deduce Theorem B (cf. CHAP. II), and hence Theorem A is very important if
f, g E L2(~)
(such that (fg)(x)
in the study of
have analytic extensions
f(z), g(z)
limy÷~ f(iy) = limy+~ g(iy) = 0),
functions
is essential
As is easily seen,
to the upper half plane
then the Poisson extension of
to the upper half plane is identical with
of analytic
C[a].
f(z)g(z).
This simple property
in a proof of Theorem A by complex variable
methods. We shall give, in CHAP. I, various interpretations
of this property
the point of view of real analysis
[13]). These proofs
(cf. Coifman-Meyer-Stein
are, of course, mutually very close, but each proof has proper applications interesting
from
and is
in itself.
In CHAP. II, we shall give the proofs of Theorems B and C by perturbation. method
is an improvement
of Calder6n's
perturbation
Our
[4] and David's perturbation
[17]. Put o(C[a]) = sup(i/lli)/llC[a](xlf)(x)l where
XI
intervals
is the characteristic I
function of
and all real-valued
is comparable
to
functions
IIC[a]IIL~(~),BMO(~)
I,
graphs.
necessary.
llfllL~(~) ~ i.
This quantity
for our perturbation. of a primitive
A(x)
CI/iII)/IIC[a](xIf)(x) I dx
(See the figure in § 2.2.) Repeating
is consequently
and the supremum is taken over all with
decomposition
we obtain an a-priori estimate of
and estimating
I f
and convenient
Considering a suitable Calderdn-Zygmund on
dx,
this argument
infinitely many times
infinitely many error terms, we see that the boundedness reduced to the boundedness of
H.
of
C[a]
For the proof, Theorem A is
We shall also give a proof of Theorem A by perturbation
which we use are only the Calder6n-Zygmund
of a(x)
by moderate
decomposition
[45]. Tools
and the covering lemma.
For the proof of Theorem C, we put
~(C[a])
= sup(i/IIl)fiIC[a](xif)(x)i 2 f(x) dx,
where the supremum is taken over all intervals
I
and all real-valued
functions
f
with
0 ~ f ~ i.
Then
o(C[a]) 2 ~ Const $(C[a]).
II C[a](xlf)(x)f(x) dx = 0, a(x),
Since
this quantity behaves like a linear functional of
and this gives an a-priori estimate better than
o(C[a]).
Our method is not
short but very simple, and this is applicable to various kernels. In CHAP. III, we shall study compare
y(-)
HF
for discontinuous graphs
planar Cantor sets are useful to construct various
examples (cfo Denjoy [23], Vitushkin [52]). Let (n$1)
and shall
with integralgeometric quantities. We first give the proof of
Theorem D. As is well-known,
be the union of
Qn-1
F
4n
closed squares with sides of length
with each component of
the component. Put
Q0 = [0,i]~ [0,I]
Qn-i
Q= = ~ n= 0 Qn"
Then
y(Q=) = 0
and
and
(Sl,..,s n 6 ~ )
IQ~I > 0
I'I
try to give grounds to this example. We may consider that Tsl,..,Sn
4 -n
Qn
obtained from
replaced by four squares in the four corners of
This shows that two classes of null sets of y(.)
figure in § 3.3.) Let
and let
(Garnett [28]).
are different. We shall Qn
is a graph. (See the
be the singular integral operator
defined by a kernel i/{(x-y)+i(Asl ,..,an(x) - Asl ,..,an(y))}, • Asl,..,sn~X) = sk
where
(x£ [0,i)).
Sl~-',S n
is comparable to ~ 0 0 an n-tuple (Sl,..,s n) Qm
and
Asl,..,Sn
(x)
=
0
Then we see that max{o(T
to
_ _ ((k-l)/n =< x < k/n, igkin)
); s I .... sn 6 ~ } (Theorem G), and, if we neglect constant multiples,
obtained from a graph
(m = (the integral part of
(log n)/4))
{(x,A 0 0(x)); x E [0,i)} similar ~l,..~Sn is a solution of this extremal
problem. Hence planar Cantor sets are worst curves in a sense. We shall also generalize
Qn"
finite union degree
n,
component
and
A segument
[0,i)
is called a (thick) crank of degree
Fn of
is obtained from a crank Fn_ 1
is less than or equal to
these segments to
~
Fn_ 1
of degree
n-i
replaced by a finite number of segments
parallel to the x-axis such that J
0
and a
of segments parallel to the x-axis is called a (thick) crank of
n
if J
(p=p(J)) Jk
F
2-PIJI
iJk! = 2-PlJ[, (i < k j 2p)
with each
Jl,..,J2p
the distance between and the projections of
are mutually disjoint and contained in the projection of
We shall show that, for any crank
F
of degree
n,
IIHFIIL2(F),L2(F ) ~ Const /~n
and that this estimate is best possible (Theorem E). To prove this, we define singular integral operators
{Tk}~= 0
such that
J.
n+l
T O = (-z)H,
liHrIIL2(F),L2(F)
T n are mutually almost TkIIL2(~),L2(E ) = and { k}k=0 orthogonal. Hence we see that the meaning of ~nn is the central limit theorem.
llz~=0
We define integralgeometric quantities D(z,r) NE(r,0 ) where We put
be the open disk of center (r>0,101%~) i(r,0)
z
Cr (.)
and radius
(0<~
as follows. Let
For a compact set
denotes the (cardinal) number of elements of
is the straight line defined by the equation
E,
ENL(r,0),
x cos 0 + y sin O = r.
VI
Cr (E) = lima+ 0 Cr~S)(E), Cr(C)(E)
= inf f :{f~ Ns{o~=iD(Zk,rk)}(r,8)~
n O{Uk=iD(Zk,rk)}
where
y(E) ~ Const CrI(E),
(cf. Marshall 0<~
U ~ = i D ( Z k , r k) and the infimum is N {D(Zk,rk)}k= 1 of E with radii less than c.
it is interesting
to compare
y(-)
there exists a compact set
sequence of independent
E
such that
y(E ) = i
Yn(X) = Yn_l(X) + Syn_l(x)(X)
This quantity
of degree
n
is comparable
(n~l).
such that to
i/~nn (the central limit theorem) construct
Cr (')
and
Cr ( E )
{Xn}:= 1
the required set
and let
is comparable
space
S O = O,
{Yn}n=O
Then we see that, for Cr (F n)
i/n I-~. and
(n~l), process
= 0
be a
random variables on the standard probability
([O,l),8,Prob) such that Prob(X n = ±i) = 1/2 N S n = Ek= 1 X k (n~l). We define a Galton-Watson
Fn
with
[37]). As an application of Theorem E, we shall show that, for
(Theorem F). For the proof, we use a branching process. Let
a crank
(g>0)
is the boundary of
taken over all finite coverings Since
dr} d~
by
Y0(X) = i,
n~l,
there exists
to Xk= 0 k ~ Prob(Yn=k).
Using the difference of order between
i/n 1-e (the Galton-Watson
process), we
E .
I express my hearty thanks to Professors M.Ohtsuka,
R.R.Coifman,
P.W.Jones
who gave me the chance to lecture during the academic year 1986-1987,
and I am
grateful
to Professors
G.David,
C.Bishop for their variable
express my appreciation
S.Kakutani,
T.Tamagawa,
J.Garnett,
S.Semmes,
comments and suggestions.
to Professor W.H.J.Fuchs
thank to Mrs. Mel D. for typing the manuscr:ipt.
T.Steger,
I especially
for his encouragement. This note is dedicated
I also to the
memory of my mother who died while I was staying at Yale University. New Haven,
July,
1987
CONTENTS
CHAPTER
CHAPTER
CHAPTER
I.
The C a l d e r 6 n
i.i.
Calder6n's
1.2.
Proof of
1.3.
Area
of its boundedness)
........... 1
..............................................
i
..................................................
1
...................................................
2
(1.3)
integral
1.4.
Good ~ i n e q u a l i t i e s
1.5.
BMO
1.6.
The C o i f m a n - M e y e r
.............................................
expression
6
....................................
1.7.
A tent space
...................................................
1.8.
The M c I n t o s h
expression
1.9.
Almost
i.i0.
Interpolation
1 .ii.
Successive
II.
A real v a r i a b l e
2.1.
Coifman-McIntosh-Meyer's
2.2.
Two basic
2.3.
o-function
2.4.
A-priori
2.5.
Proof of T h e o r e m
13 15
..................................................
21
compositions
of kernels
method
.............................
for the Cauchy
transform
on graphs
...... 31 31
...........................................
32
.....................................................
35
estimates
.............................................
A by p e r t u r b a t i o n
2.8.
Proof of
(2.38)
................................................
2.9.
Proof of
(2.39)
................................................
2.10.
Application
III.
Analytic
capacities
3.1.
Relation
between
3.2.
Vitushkin's
3.3.
The Cauchy
3.4.
Proof of
the latter half of T h e o r e m
3.5.
Analytic
capacities
3.6.
Analytic
capacity
of norms of
of
APPENDIX
II.
REFERENCES
E[ °]
(2.38)
of cranks
example,
Proof of T h e o r e m
H
. . . . . . . . . . . . . . . . . . . . . . . . . 53
71 71
example,
Calder6n's
problem
.................................
of fat cranks
79 83
E . . . . . . . . . . . . . . . . . . . . . . . . . . 91
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 quantities
............ 105
F ............................................ ...........................................
B by P . W . J o n e s - S . S e m m e s
112 117
...................... 126
...................................................................
INDEX
61 68
.................................
.......................................... on cranks
55
..................................
and i n t e g r a l g e o m e t r i c
problem
Proof of T h e o r e m
and
Garnett's
problems
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ,C[']
..........................................
¥(.)
transform
and
39
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Proof of T h e o r e m B by p e r t u r b a t i o n
An e x t r e m a l
24
...............................
principles
theorem
Estimates
I.
ii
...........................................
orthogonality
2.7.
3.7.
9
........................................
2.6.
APPENDIX
4
.............................................................
and extremal
SUBJECT
commutator.( 8 proofs
theorem
................................................................
129 132
CHAPTER I.
THE CALDERON COMMUTATOR
(8 PROOFS OF ITS BOUNDEDNESS)
§i.i.
Calder~n's Theorem (Calder~n [3]) Let
Lp
(i ~ p ~ ®)
denote the
Lp
to the 1-dimension Lebesgue measure I'I-
space on the real line Its norm is denoted by
denote the Banach space, modulo constants, of functions IIflIBMO = sup(I/II I) 7ilf(x)-(f)ildx (finite) intervals
I
and
(f)I
f
on
@
with respect
ll'llp° Let ~
BMO
such that
is finite, where the supremum is taken over all
is the mean of
a ~ L~ , we
f
over
I.
For
We write simply by
T[a]
the operator from
define a kernel (i.i) where
A
T[a](x,y) = {A(x) - A(y)} /(x-y) 2,
is a primitive of
a.
L2
itself defined by the above kernel, i.e., (1.2)
T[a]f(x)
=
lim g+O
7Jx_y I,~
> e T[a](x,y)f(y)dy.
Calder~n showed Theorem A ([3]).
For any
f ~ L 2,
T[a]f(x)
(1.3)
IIall" --< Const llT[a]ll2,2
(1.4)
llT[a]l12,2 ~ Const llalI~ ,
exists a.e.
and
where
llT[a]l12,2
is the norm of
In §1.2, we show (1.3). §1.2.
T[a]
(as an operator from
Ps (x) =
E c ~, 171+
XE
to itself).
In §1.3-i.ii, we show various proofs of (1.4).
Proof of (1.3) (Coifman-Rochberg-Weiss For a set
L2
[15])
denotes the characteristic function of
{fl s(A(s)-A(t))dt}dsl
E.
We put
(x 6 ~,
s > 0),
lim ~ ~ 0
@ / 3 = Const lal
s where
I+ s = (x, x+s) , I_s = (x-s, x).
We have, for almost all
x,
Then
a.e.
to
P (x) = Ill+s ~l_s T[a](s,t) {(s-x) 2 + 2(s-x)(x-t) + (x-t) 2} dt} ds I <= fl+ s [(s-x)2} T[a] XI_ (s)l + 21s-x I IT[a] {(x-')Xl s}(s)l + IT[a]{(x--) 2 X I } (s)l] ds -8 C°nst[s5/211T[a]Xl II + g3/2 llT[a]{(x-')Xl }If -s 2 -e 2
< +
s I/2 l{T[a]{(x-.)2~
}If2] -g
-<
Const llT[a]II2,2 {s5/211XI
+ sl/2N(X-')~ I
-g
I] + s3/211(x-')X 112 _g 2 I_ s
N2 } -<- ConstIIT[a]tI2,2 s
3
,
and hence
lal = Const
lira s_~0
p /3 s
ConstHT[a]ll2, 2
a.e.
Thus we obtain (1.3). §1.3.
Area integral ([3])
• In this section we show the proof of (1.4) by Calderon.
Let
C~O
denote the
totality of infinitely differentiable functions with compact support, the inner product and in
CO
and
Y
= X
(g > 0).
(_~,~)c
(',')
Given real-valued functions
denote a,f,g
~ > 0, we estimate
(TE[a]g,f) = f2Te[a]g(x)f(x)dx, where
Te[a]
is an operator defined by a kernel
assume that e = X[0,~ ).
A(x) = fx a(s)ds.
Then
Ys(x-y) T[a](x,y).
We may
A(x) = f ~ e(x-s)a(s)ds, where
We have
r (x-y) {e(x-s)-e(y-s)}g(y)f(x)dydx]ds.
(T~[a]g,f) = f_~a(s)[ f-~f-i
(x-y) 2
Set f+(z) =
1 2~i
f_~
f(x) x-z
dx
Im z l > 0 )
-
<0
We denote also by
f+(x) (x ~ ~)
We define analogously llf_+II2 < IIfll2
and
the non-tangential limit of
g+(z), g±(x).
llg±N2 _-< Ilgil2. Let
Then
f = f+ - f_,
f±(z), respectively.
g = g+ - g_,
K0(x,y,s) = Y g (x-y){e(x-s)-e(y-s)} /(x-y) 2, + K~ (x,y,s) = {e(x-s)-e(y-s)} /(x-y ± is) 2, K2(x,y,s) = s/{(x-s) 2 + (y-s) 2 + s2} 3/2 Then
+ IK0(x,y,s) - K~(x,y,s) l ~ Const K2(x,y,s),
We have
[(T~[alg,f)I = I f_~ a(s)[ /_i Ko(x,y's){g+(Y) - g-(Y)} f(x)dydx] ds I +
=< If_; a(s)[ 7_= Kl(X,y,s)g+(Y)f(x)dydx] dsl
+ If_; +
a(s)[
f_;
K~(x,y,s)g_(y)f(x)dydx] dsl
Const f_~ la(s) l [f_~ K2(x,y,s) {ig+(Y) I + Ig_(y)I} If(x) l dydx]ds
(=
If_; a(s) kl(S)ds I + If_~ a(S)kl(S)dsl + k~(s), k2(s).
We now estimate =
_
+ Const 7_; Ia(s) Ik2(s)ds,say)"
We have _
Kl(X,y,s)g+(y)dy} dx g+(Y)
=
f ; f(x) -
{e(x-s) f ; -
=-i
f_; f(x) [ f 0
=-i
7~
=
g+(Y) (x_y_is)2
dy
- f= s
2 dy } dx (x-y-is)
g+(s+it)/{(x-is)-(s+it)} 2 dt] dx
g+(s+it) [ f_~ f(x)/{(x-is)-(s+it)}2 dx] dt
oo 2~ f0 f+(s+i(t+s))g+(s+it) dt.
Let F(z) =
-i f;
f~(z+i(t+s)) g+(z+it) dt
(z E U),
where
U = {(x,y); x E ~, Y > 0} . Then F is analytic in U and the non(i/2[i) k~(s). Here is a main lemma necessary for tangential limit F(s) equals the proof of(l.4).
Let
Py(X)
be the Poisson± kernel, i.e., Py(X) = y/{~(x2+y2)}.
For a differentiable function v(x,y) in IVv(x,y)] = {)8v/Ox]2 + l~v/Oy12 }i/2. Lemma i.i ([3]).
For
A(v)(x) = {ff
v E L I,
U, we write
we define
IVv(~,D) l2 d~ d~} I/2 A(x)
(x E ~),
where
v~)
= P
* v~)
and
A(x) = { ~ ) ;
I~ - xl < n}
•
Then
llvllI ~ ConstilA(v)ll1 Once this l e n a
is known, (1.4) is deduced as follows.
F'(z) = f$(z + is)g+(z), Const A(f+)(s) M
M g+(s),
we have where
Since
A(F)(s) & A(f+)(s)m(g+)(s) m(g+)(s) = s u p { I g + ~ ) l ; ( ~ )
6 A(x)}
We have
IIMg+ll2~ ConstlIg+II2 ,
Green's formula shows that
and
(See Lemma 2,3.)
is the non-centered maximal operator (Journ~ [35, p.6]).
IIA(f+)II2 = Constllf~l 2.
Thus we have, by Lemma 1.1,
I~
a(s)k~(s)dsl ~ 2~
Ilall~
IIFJI 1
ConstrlaH, IIA(F)IiI
Const Hal< tlA(f+)Lt 2 !m(g+)lt 2
Const Ila!I~ I!f+II2 !Ig+!I2
Const IlaIl~ llfIl2 Ilgll2 " In the same manner, we have
PFaII.]lfll 2 ilgll 2
I.~i a(s)kl(s)ds I =< Const
We have < k2(s) = f l
s (x_s)2+ ~2
Const
M f(s)
If(x) I [ / Z
V(x-s)
+ s2 (x-s)2+(y-s)2+ s 2 {Ig+ (y) I+Ig-(y)I}dy]dX
{Mg+(s) + Mg (s)} ,
and hence S_~ la(s) Ik2(s) ds <- Const llali~ llfll2 IIglI2 • Consequently
l(Te[a]g,f) i ~
arbitrary, we have (1.4) for
Const IIall~ Ilfll2 Ilgll2 . a 6 CO •
Since
f,g ( cO ,
g > 0
are
In the general case, we can deduce
(1.4) from the boundedness of maximal operators
T • [b]
(b ( Co )
and Fatou's lemma.
(See Lemma 2.5.) §1.4.
Good
k
inequalities ([2], [26], [48])
In this section we give the proof of Lemma i.i by the so-called "good inequalities".
We put
m(v)(x) = sup{Iv(x,y) l; y > 0}.
k
Fixing a sufficiently large
T, We prove
(1.5)
ix; ~(v)(x) > ~x , A(v)(x) ~ ~/~ I (Const/T 2) ix; m(x) > k I
Let
W(k) = {x; re(x) > k},
with a sequence
M k = {Ik}
6(k) = IW(k) l .
Then we can write
W(k) = U]= I Ik
of mutually disjoint open intervals.
sufficient to show that, for each (1.6)
(X > 0).
IE I -<-(Const/2) lli,
I ( Mk ,
It is
where
A(v)(~) ~
X/~
for any
where
for some
Since
a
is the left endpoint of
such that
I. ~ .
We choose Since
Iv(X,Yx) I = sup{Iv(x,y) l; y > yx }
for any
intervals
~ • ~/2.
~{J(x )}
x~I <
~/i0,
(1.8)
f
=
~.
Let
I~- xl < Yx/10}
(See §2.2.)
Green's formula
~(v)(x)
=
Then,
Let
~(x ) = {(~,~);
shows that
- ~ 0-~L~-L~ } ds =
Const ff
OR O/On
(x ~ E).
a finite number of mutually disjoint 5 Z IJ(x )I
QO = {(~'~); ~ E I, 0 < ~ < 2111},
~ > Yx } "
{ ~n ]v12
0 < Yx < 21II
Iv(~,yx) I ~ Iv(x,Yx) I - Const A(v)(x)
There exist
such that IEI ~
R = QO N U A(x ), where
large enough so that the last
x E E, there exists
J(x) = {(~,yx);
(~,yx) ~ J(x), we have
- Const X/T
•
m(v)(a) ~ k, we have
Hence, for any
J(x) = (x - (Yx/5), x + (Yx/5)),
where
A(v)(~) ~ X/~ , we have,
IV(a,y) - v(x,y)] ~ Const A(v)(~) =< Const k/~ ,
Iv(x,y) l ~ 2X (x E I, y ~ 21If).
-
E = ~.
~ ~I; otherwise
quantity in (1.7) is less than
I~
To do this we may assume that
x ~ I, y ~ 2111 ,
(1.7)
~X
X/~}.
E = {x ~ I; m(v)(x) > ~h , A(v)(x)
~ ]VVl 2 d~
dr],
R
is the inner normal derivative and {ff ,
IVvl 2 d~ d~} i / 2
ds
where
is the length element. ~*(x) = {(~,~);
Let
l~-xl < q/lO}.
(x) N R Then a geometric observation shows that is a point which is nearest to
x in
AR(V)(X) ~ A(v)(x ) ~
{x }.
k/~ ,
where
xv
Hence the right-hand side of (1.8) is
dominated by: Const fl ~ (v)(x)2dx~C°nst(X/~)2]I] We divide
oR
~ Const k 2 ]I I.
into the following three parts:
DR 0 =
8R N U J(x ),
DR I = {(~,D);
~ ~ I, ~ = 2111},
0R 2 = oR - (oR 0 U oRI).
~IV v(~,~) I ~
Const
By the definition of
any
X/~
on
(~,D) ~ oR, Iv(~,~)I ~
IfDR ~
oR. ~X
+ Const
~-~-[~ds] 8n =< Const
fOR
X/~ ~
mlVvllvl
Note that
Yx (x ~ E), we have, for
Const ~X •
Thus
ds
Const (k/~) ~k /oR ds ~ Const ~2 ill. Since
Iv(~,O) l G Const k
on
OR I,
These estimates yield t h a t 4 R 0 U o R 2 O~/On ~ 0
on
OR 2, 0H/0n = i
on
we have If0R I On
0R 0
8~ 8n
Ivl 2 ds i ~ Const ~2 iii.
Ivl 2 ds G Const k 2 I I [ . and
Iv(~,~)l
~ ~k12
on
Since 8R 0, we have
2 k21El =< Const~8R 0 ~nn 8~ Ivl 2ds =< Const/oRoU OR 2 8~ ~nn Ivl 2ds =
Consequently
(1.5) holds.
By (1.5), we have, with a constant (1.9) where
~(~I<) +
5(Tk) ~
(Colt 2) 6(k),
6(k) = Ix; A(v)(x) > h i .
quantity in (1.9) by
dk
from
CO,
= 2 CO
We now choose
[Im(v)II1 ~ Const llA(v)lll, which gives
and integrate each
Then we obtain
0 to infinity.
Const IiA(v)llI.
llvll1
This completes the
proof of Lemma i.i. §1.5.
BMO (Fefferman-Stein
[27])
Theorem A is closely related to the theory of BMO [27]. the proof of Theorem A by Fefferman-Stein. d~(x,y)
in
U
is a Carleson measure with constant
/7
In this section, we show
We say that a non-negative measure B
if
d~(x,y) ~ BIIl I ×(0,111)
for any interval
I c R.
The following two facts are elementary. is a Carleson measure
Lemma 1.2 ([27]). with constant Proof.
Let a ( BMO. Then yiV a(x,y) l2~ dx dy 2 Const IIalIBM0 , where a(x,y) = P * a(x). Y
Given an interval
I,
we put
a(1)(x) = (a(x) - (a)i) X ,(x), a(2)(x) = (a(x) - (a)l) X , (x), I I c where
(a)I = (i/IIl)
/I a(y)dy
interval of the same midpoint as
and I
I
is the double of
and of length
21I I .
I, i.e., the (open)
Then
a(x,y) = Py * a(1)(x) + P Y * a(2)(x) + (a) I ( = a(1)(x,y) + a(2)(x,y) + (a)i , John-Nirenberg's (See Lemma 2.5.)
inequality
[32] shows that
Hence we have, with
7f^ Y IVa(1)(x,Y)I 2 dx dy I = Const lla(1)II~ ~ Note that
say).
Ila(1)ll2 ~ Const MalIBMO~--~T •
~ = I × (0,1If),
~ f7
y IVa(1)(x,y)l 2 dx dy U
Const IIalI~M0 IIl.
l(a)i. - (a)iI ~ Const jilaliBMO (j ~ I), where Ij is the interval of J the same midpoint as I and of length 2JlIl. We have, for (x,y) E
[Va(2)(x,y)l < Const fl *c _-< Const
=<
Const
=< Const(
-2
1 (x_s) 2
a(2) (s)i ds
Z j=l
I ljl
Z j=l
t I j I -2 l l j + l I {ll aII BMO + I (a) I. - (a) I t} 3
f
la(y)-(a)iI ds lj+l-I j
E j 2-j) II~IBMO/I I] , j=l
and hence ff^ y ''IVa(2)(x,y)l2 dx dy ~ Const(IIallBMo/lll) 2' I 2 Const Ha]]BMO 111 .
/f^ y dx dy I
Thus
ff^
y
''IVa(x,y)I2 dx dy ~ Const
{ff^
I +
.2
dr^ y I
Let
d~(x,y)
be a Carleson measure with constant
=
Let
B.
f 6 L 2,
flu If(x'y) 12 d~(x,y) < Const BIIfH2
Proof.
Q.E.D.
IVa(2)(x,y)l 2 dx dy} -<_ Const ! a~IBMO III.
Lemma 1.3 ([35, p. 85]). Then, for any
y ''lva(1)(x,y)I2 dx dy
I
(f(x,y) = P
2
W(K) = {(x,y) ~ U; If(x,y) l > k}
y
* f(x)).
, 8(k) = ffw(k) d~(x,y) ( k > 0).
Then the left-hand side of our lemma is dominated by Const f~ k ~
kS(k)dk •
sup{If(~,~)l;
contained in I
of
If
(x,y) ~ W(~), then
Ix-El < ~} ~ c M f(x)
C.
Hence
W(k)
is
W0(k) = U I x (0,1If) , where the union is taken over all components
{x; M f(x) > CX} • 6(k) ~
for some constant
ffw0(k )
Thus
d~(x,y) & BIx; Mf(x) > CX 1 ,
which gives f~ X 8(k)dX
~
B f~
XIx; M f(x) > Ckldk
Const B llMflI~ ~ const B IlfIl~ . We now prove Theorem A. Hf(x) =
~
~ lim ~ 0
Q.E.D.
The Hilbert transform
fls-xl > ~
f(s) s-x
ds .
H
is defined by
For
a, f ~ C~, (i.i0)
where
we have
T[a]f(x) = -~ H(af)(x) + ~ [A,H]f'(x),
[A,H]f' = A(Hf') - H(Af').
Since
llH(af)II2 ~ llall~IlflI2, it is sufficient
II[A,H]f'II2 =< Const llalI~IifIl2 •
to show that (i.ii)
we will prove a better inequality.
II[A,H]f'II2 ~ Const IIalIBM0 llfll2 .
Without loss of generality we may assume that have, for any real-valued function ([A,H]f',g) = ~_~
a,
f
are real-valued.
We
g E C~,
[A,H]f'(x)g(x)dx = (A,Hf''g + f'Hg)
= 4 im(A,f~ g+) = 4 Im(A,F') = -4 Im(a,F), where (1.12) Let in
F(x) = fx_~ f~(s)g+(s)ds = -i f~ f~(x+is)g+(x+is)ds.
a(x,y) = Py * a(x,y), F(x,y) = Py * F(x). U,
we have
~0F (x,y) = f$(x+iy)g+(x+iy).
Since
f$(z), g+(z)
are analytic
Thus Lemmas 1.2, 1.3 and
Parseval's formula yield that l(a,F) l
= Const l//U y
Oa ~ (x,y)
= Const Iff
8a ~-x (x,y)f~(x+iy)g+(x+iy)
Y
OF 8~x (x,y) dx dy l dx dy I
U Const {flU Ylf+(x+iy) 12 dx dy} I/2 {f7 U y IVa(x,y) 121g+(x+iy)12dx dY} I/2 Const IIf+II2 IIalIBMO fig+If2 ~ Const IIalIBMO IIfll2 llgll2 • This completes the proof of Theorem A. Fefferman-Stein essentially
Lemma 1.4 ([27]). Proof.
[27] showed also the following inequality, which is
same as (l.ll). Let
a E BMO.
Then
iI[a,H]ll2,2 ~ Const IIaIIBM0 •
Without loss of generality we may assume that
for any real-valued functions
a
is real-valued.
f,g E C O ,
([a,H]f,g) = (a, Hf'g + fHg) = -4 Im (a,f+g+). Let
G(x) = f+(x)g+(x).
G(x,y) = P
Y
* G(x),
Then Parseval's formula shows that, with
a(x,y) = P
Y
* a(x),
We have,
l(a,f+g+)l
8a y ~- (x,y)
Iff
= l(a,G)I = Const
8G 8~x (x,y) dx dy I
U
{ff Y iVal2 I GI dx dy} 1/2 {77 U Y IVGI 2 I GI-1 dx dy }1/2.
Const Since
U
log IG(x,y) 1
is subharmonic in
U,
2 A log IGI
=
PJ-~4"[
(AIGI _
,~,
)
O,
and hence
~2
= ~,G,
+ ~
=< 2 A]G[.
This shows that flu y IVGI2 IGI-I dx dy ~ 2 flu y Since
IG(x,y) iI/2
is subharmonic in
&IGI dx dy = Const fIG11I.
U,
we have
IG(x,y)l ~ Py * (IGil/2)(x)
Hence Lemmas 1.2 and 1.3 yield that
flu y IVa(x'y) I21G(x'Y)I dx dy
flu
y IVa(x'y) 12 PY * (IGIl/2)(x)2dx dy
2 Const llallBM0 IIGIII. Consequently, we have Q .E.D.
l([a,H]f,g) I _-
§1.6,
The Coifman-Meyer expression (Coifman-Meyer [8]) It is important to understand Theorem A from the point of view of real
analysis.
Coifman-Rochberg-Weiss
functions.
Lemma 1.5 ([8]). =
where
a
-
[A,H]f'(x)
Const f_~ [a_s,H]fs(X)/(l+s2)ds
= k S
* a, f S
= k S
* f, ks(X) = S
We have, for
(a E BMO, f 6 C~),
~s/IXl l+is
and
.
E s = F((l+is)/2)/ {F(-is/2) I S } Proof.
[15] showed Lemma 1.4 without using analytic
Coifman-Meyer gave the following expression.
.
a, f 6 CO,
[A,H]f'(x) = Const i 7 ~ 7_~ ei(~+q)x {sign~]- sign(~-~q)} ^
where
^
a, f
are the Fourier transform of
a, f, respectively.
~(~) i~(~)d~ an
Note that
10
{sign ~] - sign(~+q)} (~]/~) = - {sign ~] - sign(<+~q)} X(0,1)(l~]/~I). I~]/~ I = Constf_~ %_s(~) = k_s(~)a(~) =
I~]/~I is/(l+s2)ds
I~I -is a<~)
[A,H]f'(x) : - Const f ~ a_s(~) ~ s ~ )
d~
(In the case of
and
[i/~
( ID/ ~I =< i),
fs(~) = I~qlis fe),
~
e i~+~)x {sign~
d~]]/(l+s2) ds = -Const a 6 BMO,
Since
we have
- sign~+~])}
~ ~ [a s,H]fs(X)/(l+s2)ds.
f 6 CO, it is necessary to show the convergence of
the quantity in the right-hand side of Lemma 1.5.
This will be shown later in the
proof of Theorem A.)
Q.E.D.
Here is another lemma necessary for the proof of Theorem A. Lemma 1.6 ([8]). Proof.
llasllBMO& Const(l + Isl 3/4) II~IBMO.
Without loss of generality we may assume that
a (I) = (a-(a) I) X i,, a (2) = (a - (a) I) XI, c . a
= a (I) + a (2), where S
S
a (j) = k
S
shows that I
S
* a (j)
s > 0.
(See Lemma 1.2.)
(j = 1,2).
We put Then
John-Nirenberg's inequality
S
IIa(1)II2~ ConstlIallBMO~I/~ , and hence la(1)(x)Idx & s
lla~l)H2~ V ~
=
lla
~ Const [IalIBMO llI.
I Note that with
l~sl
x 0 = (the midpoint of f
In the same manner as in Lemma 1.2, we have,
~ Const(l + ~ ) . I),
la(2)(x) - a(2)(x0 ) I dx I I~sl
f
I fZ I
1 {Ix yl l+is -
Const {IZsl (i + sl/4)} f
=
I
i l+is } Ix0-Y I iX_xoll/4 {fl, c
a(2)(y)dyl dx i iXo_yi5/2
la(y)-(a)lldY} dx
Const (I + s 3/4) !IaIIBMO Ill.
Thus we obtain (la s - (as)ll) I ~ 2(la s - a~2)(Xo)l)l ~ Const (i + s 3/4) IIaIIBM O, which gives the required inequality.
Q.E.D.
Theorem A is deduced from Lemmas 1.4-1.6 as follows. that it is sufficient to show that
Inequality (i.i0) shows
II[A,H]f'II2 ~ Const llall~IIfll 2 • Lemmas 1.4-1.6
11
yield that II[A,H]f'II 2 ~ Const 7 ~ Const f £
II[as,H]f32/(l + s2) ds
I][as,H]ll2, 2 ]Ifsl]2/(I + s2) ds
Const IIfll2 fflIasllBMo/(l + s 2) ds Const IIaHBMO llfll2 ~ Const !lall~!Ifll2 . §1.7.
A tent space (Coifman-Meyer-Stein
[13], [14])
The essential part in the sections 1.3 and 1.5 is the proof of the inequality: IIFII1 ~ Const llfll2 l!gll2 (f, g E L2), where
F(x) = fx~
( = - i /0 f$(x + is)g+(x + is)ds).
Rs
by
Rsh = ~s * h, where
F(x) = Const /~_
Rshs(X) ds/s,
where
denote the operator defined
Then we have
hs(Y) = s f~(y + is)g+(y + is).
From this
introduces tent spaces and generalizes
As seen in the proof of the
tent spaces are very useful. Meyer-Stein's
(s E ~)
~s(X) = s2x/(x 2 + s2) 2.
point of view, Coifman-Meyer-Stein inequality.
Let
f$(s)g+(s) ds
•
Tb
I
theorem (Davld-Journe-Semmes
the above [20]),
The following theorem is a special case of Coifman-
theorem; we rewrite their theorem so that only the proof of
Theorem A can be given. Theorem 1.7 ([13]). with norm
Let
T
be the Banach space of functions
llhllT = IIS(h)lll, where
A(x) = {(y,s);
ly-xl < s}.
hs(Y) = h(y,s). Theorem A
Then
h(y,s)
in
S(h)(x) = {7f~(x) lh(y,s)l 2 ayas/s" ~ i 241/2
For h E T, we put
R(h)(x) = fO Rshs(X)ds/s'
U and where
IIR(h)II1 ~ Const llhllT.
immediately follows from this inequality,
since
risf~(y + is)g+(y + is)IfT ~ IIA(f+)m(g+)I[ I ~ Const JifiI2 prgll2 . Here are two lemmas necessary for the proof. = {(y,s); 0 < s < dis(y,lC)} For an open set components
I
(1.13)
where
supp(')
of
~ c ~,
we write
~ .
We say that
supp(p)
c~,
For an interval
(dis(',')
is the distance).
~ = D ~, where the union is taken over all p E T
ff^ Ip(y,s) I2 I
is a T-atom if, for some interval dy ds
~
I/iii,
S
is the support.
Lemma 1.8 ([13]) •
For any T-atom
I, we write
p,
IIR(p)llI =< Const.
I,
12
Proof.
Let
for any
p
be a T-atom and let
b E L~
b 1 = b Xi,
with
and
I
Then,
llblI~~ i, I (R(p),b)I ~ I (R(p),bl)I + I(R(p),b2)I
b 2 = b XI, c
(I*
is the double of
IRsb2(Y) l ~ Const s/IraI ((y,s) E I), I(R(p),b2)I =
be an interval satisfying (1.13).
Iff^ I
I).
where
Since
we have
p(y,s) Rsb2(Y)
~ s
I
=< (Const/III)
7f^ Ip(y,s)l dy ds I _< (Const/ill) {ff^ ip(y,s)l 2 dy ds }1/2 s I
{ff^ I
s dy ds} I/2 ~ Const.
We have I(R(p),bl)I ~
{ff^
77^ IP(Y,S) IIRsbI(Y)I I
ip(y,s)12
~
I (l~/iil) {ff U Consequently we have Hb]l® ~ i,
/f^ ^ l-g where Proof.
{ff^
iRsbl(y) 12
d y ds }1/2 s
I
iRsbl(Y) l2 dy ds}i/2 s -
I(R(p),b)[ ~ Const.
we obtain
Lemma 1.9 ([13]).
}1/2
s
dYadS
Const.
= Const Ilbli]2/~
Since
b
is arbitrary as long as
HR(p)]]1 ~ Const.
Let
ih(y,s) i2
h E T
and let
dYadS
=< /I-E
Q.E.D. E
be a subset of an interval
I.
Then
S(h)(x) 2 dx,
~ = {x E I; MXE(X) > 1/2} . A geometric observation shows that, for any
Y O ~c ~ ~ , where
Y = [y-s,y+s](C ~).
IY N EI/IY 1 --< MXE(X 0) <-- 1/2,
Let
and hence
fI-E S(h)(x)2dx = fI-E
(y,s) E ~ - ~,
x 0 E Y N ~c.
IY N ECI >-_s.
y c Y
and
Then
This shows that
{ ffa(x) Ih(y's) I2 dy 2ds
} dx
s
>
]h(y,s)12 dy ds
ff^ ^
We now prove Theorem 1.7. ~k = {x; MXEk(X ) > 1/2}
Q.E.D.
S
I--~
Given
h E T, we put
(k = O, ±i, ...).
the totality of components of p(k)(y,s)j = (2-k-I/iI(k) i)j
~k
For each
E k = {x; S(h)(x) > 2k} , i~lj T(k) ~7j=l be k, let
and let
h(y,s) xj(k)(y,s)
(j >-_1),
13
where
X! k) is the characteristic function of ~!k) _ ~!k) J J J Then we obtain the following T-atomic decomposition of h: h(y,s) = p(k)j
Each
Z k =-~
Z j =l
2k+l I£4~(k)jI~ P~k)(y,s)-
is a T-atom, since
ff~!k) I P~k)(y,s)I2
supp(p~ k)) c i(k)j
dYsdS
2-2k-2 II!k) I-23
fl (k) E j
S(h)(x)2 dx =< i/ll~k) l
- k+l
Hence Lemma 1.8 shows that
IIR(h)iII --< k =-~E j=IE 2k+l Ijl(k)
Const <
alia
= 2-2k-2 ll~k) l-2 f/^(k) ^(k) lh(y's) 12 ~y ds I, ~Q. s J J
J
by Lemma 1.9.
~(k) = i!k) N ( j J ~k+l )"
Z k =-~
E j~l
Const llS(h)IIl =
IIR(P~k) )III
2k II~ k)
=
Const
S
2klEk 1
k = -~
Const llhl]T .
This completes the proof of Theorem 1.7. As stated above, Theorem A is deduced from this theorem. ~1.8.
The Mclntosh expression (Coifman-Mclntosh-Meyer
[7])
The proof of Theorem A in this section is a version of the method given in [7] for the proof of Theorem B. of
(See Chapter II .) Here is an interesting expression
T[a].
+~ I ds (a E L ~) , Len=na i.i0 ([7]). T[a] = f_Z I isDMa I + is D s where I is the identity operator, D = -i(8/8x) and M a is the multiplier: f -~ af. Proof.
Let
a(x) = e igx, f(x) = e i~x
r[a]f(x) and
=
(-~i) { ~+~
(~, ~ E ~).
sign(~ + ~) - ~
Then we have sign ~ }
14
J-~
I { I + is D
= 7-Z
{ I + is D
I
1 1 + is(a+
J--
=
i 7
f~
=
7
=
(-~i)
1
{
I I + is D
Ma
i+ 1 1 + is ~
i 1 + is(e + ~)
~
(x)
1
(af) }(x)
~)
f}
{ (1 + i s ( ¢
ds S
is ~ ds s
1 1 + is ~
~ + ~
f-~
as 8
--
}
ds 2s
~ + ~))2
}
ds
(1 + i s ~ ) 2
s
{~ + B sign(~ + B) - ~ sign $}.
Hence
T[a]f
= f -~
I { I + is D
{e iax }~ E
Since
Ma
is complete
I I + is D
the proof
of the integral
ds -s-
in the space of functions
f_Zlf(x) 12/(I + x 2) dx < ~ , the required the convergence
} f
equality
in the right-hand
f
holds. side.
with norm
(It is necessary
Q.E.D.
of Theorem A.)
Let
Ps =
to show
This will be given in
I /(~ + s2D2),
%
= sD/(l + s2D 2)
(s > 0).
In the same manner as
in Lemma 1.2, we have Lemma
i.ii
constant
([7]). Const
Lemma (1.14)
Let a ~ BMO. 2 IIalIBMO •
i.i0 shows
Then
tQsa(~) I
2
dxds
s
is a Carleson measure with
that
T[a] = f - Z
{PsMaPs - i % M a P s - i PsMaQs - QsMa~s
~
ds
= -2i fO ~sMaPs
-s-
- 2i fO
PsMa %
dSs
(= -2i L I - 2i L 2, say).
we see that
%= Hence
Q3s
the integration
S~s by parts
shows
that
} dSs
P s = -2 3- . ~s
L1 = f O
[8Q "
= 870
+ S
{ -% + 2 Ps%}]M a P "
~
Ma Ps dSs - 7 0
Since
IIPsll2,2 -< - Const,
s
8 Ma(SS~s
2 Ps%}
Ps)
ds
~ -
ds -% + 2%Ps }Ma Qs2 s-
say). IIQslI2,2 =< Const
and
70"
jIQsfJl
ds
= Const IIfll2
s
2
]IL12112,2 =< Const llaIl~ • we have, for
Shwartz's inequality shows that ] (g, Lllf) l =
+
-270 {
" = 81"O Q3 s M a Ps dSs +
( = 8 LII + 2 LI2,
{-%
ds
s
If; (~g,
f,g E L 2,
%MaPsf) diss
; 2 2 ds }i/2 ~ 22 ds 1/2 {7 I]~g]12 s{~0 ]]~MaPsfN -}s 2 ds }1/2 Const I]gl]2 {7; I]%MaPsfN 2 ~•
= We see that
{%MaPs}f = (%a)(Psf) + Ps {(Psa)(% f)} (To see this,use
a(x) = e iax, f(x) = e i~x
- %{(%a)(%f)}
(~, ~ E R).)
II%MaPsfI122 ~ Const {Ilall2 ll%fII~ +
.
Hence we have
II(%a)(~sf)II~ }.
Lemma I.ii shows that 7; II%MaPsflI22 dSs =< Const Iiall 2 7; H%fH22 + Const
flU ]Qsa(X) Psf(x) 12 dXsdS
_-< Const
Ilall2 llfIl~ + Const
/7
dSs
]Qsa(X) Ps * f(x)12 U
2
_-< Const {llall which gives
2
+ IIaIIBMO} I]f]l -<_ Const IIall 2 llfll ,
IILIIII2,2 ~ Const llall, . Thus
the dual operator of (1.4).
LI,
we have
IILII]2,2 ~ Const Ilall~ . Since L 2 is IIL2 I12,2 =If LIII2,2 • Consequently, (1.14) gives
•
§1.9.
s
Almost orthogonality (Davld-Journe [19]) David-Journ~ [19] showed the so-called
showed the so-called
Tb
immediately Theorem A. only on For
dx ds s
theorem.
theorem (cf. McIntosh-Meyer Given
5 ; the value of
6 > 0, we use C6
B > 0
C6
David-Journe-Semmes
[40]).
[20]
These theorems give
for various constants depending
differs in general from one occurrence to another.
0 < 5 ~ i, we say that a kernel
kernel if there exists
T1
K(x,y) (x # y; x,y E ~)
such that
is a
8-standard
16
tK(x,y)l
N B/Ix-yl , -<-
IK(x,Y) - K ( x , Y ' ) t
=< B I y - Y ' I 5 / I x - Y i 1+8
We denote by
m 8 (K)
inequalities,
(Ix-x'l
BIx-x'l 6 / t x - y l 1+6
IK(x,y) -K(x',y)l
=< I x - y l / 2 ) ,
(IY-Y'I =<- / x - y I / 2 ) -
the minimum of constants
B
satisfying the above three
For the sake of simplicity, we assume that
(I.15)
K(x,y)
(1.16)
Kl(x) = +
is anti-symmetric, i.e., lim s ~0
lim s~ 0
We write simply
K
fl
fg
K(x,y) = -K(y,x), K(x,y) dy
< Ix-yl < 1 Ix-yl < i/e
K(x,y)dy
exists
a.e.
<
the operator defined by the kernel
K(x,y).
The following
theorem is a special case of the TI theorem; we rewrite the TI theorem so that only the proof of Theorem A can be given. Theorem 1.12 ([19]). (1.16).
Then
Let
K(x,y)
be a
6-standard kernel satisfying (1.15) and
IlK]f2,2 ~ C 8 {IIKIlIBM0 + ~8(K)}
Integration by parts shows that
~l(T[a])
IIHaIIBMO ~ Const IIail~ and
.
T[a]l = ~ H a.
~ Const !fall .
We see that (See eemma 2.5.)
Hence this
theorem immediately yields Theorem A. Lemma 1.13 ([19]). e(x,y)
such that
Proof.
Let ef =
L 2 f;
Then its kernel
For
%{(~b)(Psf) } L(x,y) {//
U
flu Us(X-t)(Vs*b)(t)Vs(t-y)
QQb
d ss
SLIt2, 2 ~ C o n s t
dt ds s
dt ds T } '
Then
v s(x) = sign(x/S)Us(X) L(x,y)
(x ( ~, s > 0)
and
is anti-symmetric and
= b.
s
IVs*b(t)'t 2 dtds/s
we h a v e
ds Ps{(~b)(Qsf)} °~-
m
U = {(t,s); t ( ~, s > 0}.
since
d~Ss + 2 f;
Vs(X-t)(Vs*b)(t)Us(t-y)
Us(X) = (i/s)e -]Xi/s ,
L1. = 2 f~ U
el(L) N Const I]BIIBMO.
is given by
L
where
and
be an operator defined by
L(x,y) = Censt +
b ( BMO, there exists an anti-symmetric l-standard kernel
El = b, []elI2,2 ~ Const IIBIIBM0
is a Carteson
measure with
constant
Const
2
ITbtlBM0 ,
HblIBMo .
I t r e m a i n s to p r o v e
el(L) ~ Const IIbIIBM0 •
I n t h e same manner a s i n
17
Lemma 1.2, we have [L(x,y)l ~
IIVs*bll = ~ Const IIblIBMO. Const HDIIBMO
flu
Us(X-t)Us(t-Y)
d
Const IIBIIBMO S_~
Since
t
(Ix-tl + it_yl) 2
IVs(X)l ~ Us(X), dt ds s
So
e-I/s ds
i
s3
=< Const IIbllBMO/I x-yl Since
lU's(X)I -<- Us(X)/S, 18 ~
IV's<X>I < Us(X)/S
(x # 0), we have
L(x,y) I ~ Const IIBIIBM0 fS U Us(X-t)Us(Y-t)
= Const llbIIBM 0
dt (ix_tl + it_yl)3
f~
~
f0
dt ds 2 s i ~es
-i/s
ds
Const IIbllBMo/IX-yl2 Thus
Q.E.D.
c01(L) =< ConstllbIIBMO . Here is the main tool for the proof of Theorem 1.12.
operator L from any f, g ~ L 2.
L2
Lemma 1.14 (Cotlar's Lemma [16]). itself and let that
{Lk}~=_N
@(t)
be a function from
be anti-self adjoint operators from
llejLkll2,2 ~ o(lJ - kl)
llZ ~=_#kI12,2 =< Const
Let
(j,k = O, il ..... iN).
for
[0,~) L2
to
to itself such
Then
E k= 2N0 ~o(k) •
Proof. The following proof is due to Fefferman [25]. Let for any M g i, IIe2MIII/2M 2,2 = IIell2,2. We have L 2M =
We say that an (ef,g) = -(f,Lg)
to itself is anti-self adjoint if
N
L = E k = _ ~ k.
Then,
% .. -N~kl,...,k2M ~ N LklLk2 " Lk2M
Since HLklLk2 • "" Lk2 M 112,2 ~ PILklLk2ll2,2 " • "]ILk2M_ILk2M II2,2 p(Ikl-k21) .,. @(Ik2M_I - k2M I) and IILkl...Lk2MII2,2 =< IILklIl2,2 IILk2Lk3112,2 -.- IILk2M_2 Lk2M_III2,2 IILk2MII2,2 ~
P(Ik2-k3 I) ... @(IkmM_2-k2M_l I) "P ~
,
18 we have 2
IFLkl..-Lk2 M H 2,2 ~ p(O) p(l kl-k21 )P(I k2-k31 ) ...
p(l k2M_l-k2Ml )"
Thus I}LN2,2 = IIL2~II/2M2,2
{Vp (0) -N~
z ~P(I kl-k21 )P(I k2-k31 ) -.-P(I k2M_l-k2Ml ) }II2M kl,...,k2M =< N
{gp(o)
z
~P(I kl-k21 ).. ,P(I k2M_2-k2M_iI )
-N ~ kl,...,k2M_l =< N 2N
×(2 z Vp(j)) j=0 • .. ~
2N % OV~)
{ ~p(0)(2N+l)(2
}i/2M
2M} 1 / 2M
j=O <
p(0) I/4M (2N+I) I/2M
2N Z
2
I/p(j) .
j=0 Letting
M
tend to infinity, we obtain the required inequality.
We now give the proof of Theorem 1.12. KI ~ BMO,
We may assume that
valued.
Since
e(x,y)
so that
KI = LI, llelI2,2 ~ Const IIKIIIBM0
~8(L)
~ ~I(L)
~ Const IIKII!BMO.
Q.E.D. K(x,y)
is real-
we can define, by Lemma 1.13, an anti-symmetric kernel
is anti-symmetric and satisfies
and
Consider the kernel
K(x,y) - L(x,y).
Then this
(K-L)1 = 0,
~08(K - L) _-< Const {IIKIIIBMO + ¢08(K) } . Hence from the beginning, we assume this, we may assume that 0 =< h(x) < i,
KI = 0,
~5(K) = i.
h(x) = h(-x),
Choosing
and show
IIKII2,2 ~
h ( C~
so that
supp(h) c [-i,i],
C8~8(K).
To do
[]h[]1 = i,
we put Kk(X,Y) = I_: i : K(x-s,y-t){hk(S)hk(t)- hk+l(S)hk+l(t)} ds dt where
hk(X) = 2-~(2-kx).
K = lim k ~ ~ Zk=_NN K k. (1.17)
IKk(X,y) I &
Then
Kk
is anti-self adjoint,
We show that C 8 2-k/{l + Ix-yl2-k} I+6,
Kkl = 0
(k = O,tl .... ), and
19 8 I ~-x
(i.18) If
Ix-yl2-k} 1+8
Kk(X'Y) l < C8 2-2k/{i +
Ix-yl ~ 4 ° 2k,
then we have
IKk(X,Y) l = I 7_~ /_~{K(x-s,y-t)-K(x,Y)}{hk(S)hk(t)-hk+l(S)hk+l(t)}
ds dt I
Isl6 + Itl~_ /_: / ~
c8
ix_ylZ+5
ds dt
{hk(S)hk(t) + hk+l(S)hk+l(t)}
C8 28k/[x_yll+ 8 ~ C8 2-k/ {i + Ix-y[2-k} I+8 Let
I, J
we have
be two intervals in an interval /IN J fIN J K(s,t) ds dt = 0,
(1.19)
I /I
{/J K(s't)ds}dtl =
+ /INJ
L.
Since
K(x,y)
is anti-symmetric,
and hence I/l-(In J) {$J K(s,t)ds} dt
{/J-(INJ) K(s,t)ds}dt
I= <
/ LI
2
Integration by parts and (1.19) show that, if
ds S +tdt =< Const ILl.
Ix-yl < 4 " 2k,
then
IKk(X,Y) I = I /_~ /_~ {/~
/_~
/~
v
/0
K(x-s,y-t)ds dt} {h~(u)h~(v)-h~+l(U>h~+l(V)}
(Const 2k)
{lh~(u)h~(v)I + lh~+l(U)h~+l(V)l}du
du dv I
dv
Const 2-k < C 8 2-k/{l + Ix-yl2-k} I+8 =
Thus (1.17) holds.
If
Ix-yl ~ 4 " 2k,
then
18~ Kk(X,Y) l If _~~ 7 -~"{K(x-s,y-t)-K(x,y)} {h{(S)hk(t) /_~ /_~ C8-Jsl 6 + It15
C 8 2 (8-1)k ~ C 8 2-2k/ {I + Ix-yl2-k} I+8 Ix-y[ < 4 • 2k,
then
' t )} hk+l(S)hk+l(
ds dt I
{lh~(s) lhk(t ) + lh~+l(S) lhk+l(t)} ds dt
Ix_yj1+5
If
-
20
[fi ~(x,Y) [ ~
=
V
[f_~ f_~ {fo f0 K(x-s,y-t)dsdt}{h~(u)h~(v)
- h~+l(U)h~+l(V )} du dv [
Const 2-2k ~ C8 2-2k/{I + ]x-yl2-k} I+6 . Thus (1.18) holds. We now show that, for
(1.20)
k ~ g,
[(KkKe)(x,y)[ -<- C8 Pk,e(x-Y),
where pk,g(s) = 2-(k+~)/2(i + [s[2-g) -(I/2)-8 +2 (~8/2) {2-2k]sll-(8/2)
Let
I be the interval of midpoint
[fic C6
By
+ 2-kls] -8/2} (i + [sl 2-k) -I-8 .
y
Kgl(y) = 0,
Ix-yl/2.
2-k (i + Jx-sI2-k) I+6
Kk(X,s)K (s,y)ds[ ~ C 6 fic 2-g/2 (i + Ix-yl2-g) (I/2)+~
and of length
® f -~
By (1.17), we have
2-g (i + Is-yl2-g) I+8
2-k
(1 + Ix-sl 2-k)i+8 Ix-sl 1/2
ds =< CsPk'~
we have
IfI Kk(X,s)Kg(s,y)ds I ~
IfI {Kk(X,s)-Kk(X,y)}
Kg(s,y)ds I
+
IKk(X,y) f I K~(s,y)dsl
=
+
IKk(X,Y) / cK~(s,y)dsl I
( = Ll(X,y ) + L2(x,y),
Jfl {Kk(X'S) - Kk(X'Y)} Kg(s,y)dsJ say).
By (1.17) and (1.18), we have Ll(X,y) ~ C 8 f I
2-2k I s-Yl (i + Ix-yle-k) I+8
2-~ (i + Is-yI2-g) I+8
2-2k+(gS/2) --< C 8 and
(i + Ix-yl2-k) I+6
fl
ds
Is-y1-6/2 ds _<-C 8
pk,g(x-y)
ds
(x-y).
21
2-k L2(x,y ) -<_ C 6
2 f
(i + Ix-yl2-k) I+ 5
Ic
(i + Is-yl
2_Z)146
ds
2-k+ (g6 / 2 ) C8
Thus (1.20) holds.
Since
!IKkKgll2, 2 ~ C 6 2-(k-Z)/2 Letting
N
flC
(i + Ix-yl 2-k) 146
Is-yl -I-(5/2) ds =< C6 Pk,~(x-y)-
llpk,~II1 ~ C 8 2 -(k-g)/2,
we have
Hence Lemma 1.14 gives
IIZ~=_N Kkll2, 2 ~ C6
tend to infinity, we obtain
IIKII2,2 ~ C 5 .
(N ~ I).
This completes the proof
of Theorem 1.12.
§i. I0.
Interpolation
(Lemarie [36])
In this section, we give a proof of Theorem 1.12 (in the case of by interpolation, which was given by Lemarie. let
E
CO
with respect to the norm
For
denote the Banach space of distributions
Fourier transform of [E ,E_~]
f
a 6~
=
obtained from the completion of
(in the sense of distributions).
{~
K1 = 0)
I~I < i,
lllflll~ = {f_~ I~I ~ I~(~)I 2 d<} I/2,
denote the Banach space of distributions
llfIllnt,~
with
f
in
For E
where
~
0 < a <
I,
~
E_~
is the let
with norm
B(s,f)2 d s2 }1/2 < = , $
where B(s,f) = inf{(IIlgill2+s2ilihllI2 )i/2;_
f = g + h, g ~ E , h E E_~ }-
Lemarie showed the following two facts. Lemma 1.15 ([36]). and
El = 0.
IIIKI~I~,~
Let
K(x,y)
Then, for any
is the norm of
K
constant depending only on
6.
Given
as an operator from ~
We may assume that
INfHI~
=
x, y E [,
21x-y I.
By
c a f_: f ~ we write by
KI = O,
6-standard kernel satisfying
< min{l,26},
and
we have
C
E
C ,6
to itself and
(1.15),
(1.16)
~6(K) , where C
6
is a
8 for various constants depending only on
~8(K) = i. If ( x ) - f ( y ) ~ ix_yil+~ I
IllKIll~,~
6 .
Throughout the proof, we use
Proof. and
be a
0 < a
Note that dx dy
the interval of midpoint
(f E E a) .
(x+y)/2
and of length
22
IKf(x)-
Kf(y)l
=
I f~{K(x,s)
I flK(x,s)(f(s)-f(x)) ifI +
ds -
{K(x,s)
- K(y,s)}
f(s)dsl
f : K(y,s)(f(s)-f(y))dsl
K(x,s)(f(s)-f(x))ds
f
- K(y,s)}
f I K(y,s)(f(s)
- f(y))ds
(f(s) - f(x))ds - (f(x) - f(y))
f
ic
K(y,s)dsl ic
fI If(s) - f(x) I/Is-xl ds +
fI
If(s) - f(Y) I/Is-Yl ds
+ c~ ~ If(s)-f(x)lIx-yl~lls-~l1+s ds ( = Ll(X,y)
+ L2(x,y)
+ C 5 L3(x,y)
+ If(x)-f(y)i
+ L4(x,y) ,
Fie
K(y,s)dsl
say).
Hence 2 IllKfilla
C
=
f : f-:
a
iKf(x)_Kf(y ) [,2 ix_y]l+~ dx dy
4
< =
Choosing
C
Lk(X ,y)
Z k=l
a,5
0 < ~
2
4
f ~ f : -~
< 1/2
-
so that
dx dy
( = C
Ix-Y iI+~ a + 2~
>
i,
say).
we have
fls-xl< 21x-yl If(s)-f(x)12ls_×12(l-~ ), ds
Ll(X,y) 2 =< Ca
6 kE=l L~,
Ix_yll-2~
and hence L 1' =< Ca
f
_®~
f
If(s)-f(x)l 2
-~"
{ J'21x-Yl > I~-xl l~-yl l+a
Is_~12(1-~5
dy } ds dx
= c N1flll~ . In the same manner D 2(1 + 6) Y > 1
L~ ~ C
and
IIIflll~
•
Choosing
(a - 26) + 2(1 + 6) Y < I,
0 < T < i we have
[f(s)-f(x)l 2
L3(x,y)2 £ Cg, 6
fts-xl > t~-yl12
so that
Ix-yl25-2(i+~)~
+ i
is_xi2(l+6)(l-y)
and hence , e3
< Ca, 6
~ If(s)-f(x)I 2 f --® f - ~ is_x 12(1+6) ( l - Y )
= %,5 IIIflll~
•
{flx_yl/2<
Is_xllX-y125-2(l+6)Y-~dY} dsdx
23
Since
lSlC K(y,s)dsl
~
i
$1y-~l > Ix-yll2 K(y's)dsl
tllfllla ( sup
L 4' =< C o n s t
i fly-st
y E ~t,~ >0
Given
Y0 ( R, s > 0,
we have, with
l~c K(Y0's)dsl
=
=
i ~
J = (Y0 - s, Y0 + g)
lSjcK(Y0>s)ds
!_, ijI Sj $j
+
(Const/IJi)
+
(Cs/iJi) Sj { Sj, c
Sj {S , J -J
~
ds
ly-s
Lemma 1.16 ([36]).
For any
i1+6
(I/C)NflI 2 ~ llfilint,¢ ~
0 < a < i,
c a llflI2
f 6 L2~ s > O,
2 gs = -~-
Then
f = gs + hs
IIIKflll~ ~ ca, ~ Illflll~
f dt,
h
= s
More precisely,
2
s -I/a SO
"~
D r + t2D 2
f
dt.
ds
{Iilgslii2a+ S 2 liihsNi2a } --~
--<S 0
_
I ~I i + t2E
at)2
1
s
I~f
dt) 2 S
2
} l~(~)I 2 d E ] ds
IEI a
i'li
a
-lla
S
S°_li= s
= c So E s_Z
i + t2E 2 dt)
1
}
dr)
s
I7(<)I 2
d E ] ds
I~1 a
1 + t2~ ~
ds
ca
, which Q.E.D.
[E ,E_¢] = L 2.
r + t2D 2
s-i/a _ i l l + ( S0 i + t2~ 2
:
{ S j , _ j + S J *c } l
and
4 E I_;
=
i
fJI lfj
dy & C 8 .
as}
S
+ ( SO
K(y,s)ds dyl
we put
IIfI!2Int,a = S; B(s,f) 2 ~
a
= (Y0-2g,Y0 + 2g),
(f (L2).
D S®-I/~ s
J
}dy
2 . Consequently we have Hence L 1 =< Ca, 8 lllfill~ gives the required inequality.
Given
and
Sj {Sjc (K(Y0,S) - K(y,s))ds} dy
<
we have
K(y,s)ds i + 1} .
>
ly0-yl ~
Proof.
+ Const,
S_l 11(O12 {7o (I'_~ -7 t
s
) 2
i +
= C a d'_] If(E) l2 d~ = C a IIfll2 .
t2E2
t -c~ --I~I1-L dt +dO(f0 ds) l+teiGi2
dt} dK
24
Let
f ~ [E ,E_~].
f = gs + hs 2 IIfll2
For each
and =
70
Const
J"
Const
gs ~ Ea' hs E E -
s > 0, we choose
lllgslll2 + s 2 lllhslll2 < 2B(s,f)2 -(l =
Const
fO
Const
70
II
II
{
(i +(t~)2 (t~)2) 2
[ 7 _ ~~ {t a
fll
dt ~-
tl
g-a t
tD I + (tD) 2
[ j'-~
oo
tD 2 I + (tD)
II
+
tD r + (tD) 2
fo
l~lalg _a(~)l2
( IIIg _JII 2
+ t-2c~
I~I-a IE _a(~)l2} d ~ ]
+ t-a
fO
dtt
t
]llh -~1112~- ) dt 1-~
t
Cc~
} ~-
t
{lgt_~(~)12 + lht- a(~)12 } d~ ] dtt
t
ca
_all
h
t
t
([ilgsii[2 + s 2 iiihsiii2a )
-ds2 s
=<
Ca
f0~
B(s 'f)2 --2 as = C-IIfi[2 ~ Int,a " s Q.E.D.
Theorem 1.12 is deduced as follows. ~05(K) = i. for each
We may assume that
We use Lemmas 1.15 and 1.16 with s > 0,
we can choose
gs E E a,
a = 6/2.
hsE
IligsIII2 + IIIhsIiI2-a -<- 2 B(s,f) 2, by Lemma 1.15. [[Kfi[22 -< C6
[[Kfll~nt,a = C6 /0
B(s'Kf)2
E_a
Let
K1 = 0 f ~ L 2.
so that
and Then,
f = gs + hs'
Thus Lemmas 1.15 and 1.16 show that d s2 s
=< C6
J'o
-<- C6
fO
=
§i.ii
(INKgs [[12 + s2 [IIKhsIii2-a) ~ds s 2 + s 2 [IlhslIi2a)--2as < C fo ([[[gsIiia = 6 s
C 6 IIfII2nt,c~ <
B(s'f)2
__ds 2 s
c6 IlfIl~.
Successive compositions of kernels Meyer [41] also gave a proof of Theorem 1,12 from the point of view of
composition of kernels.
Using his method, we show the following lemma which also
yields Theorem 1.12. Lemma 1.17. K1 = 0
Let
K(x,y)
be a
6-standard kernel satisfying (1.15), (1.16),
and
(1.21)
sup x,y E
IK(x,y) I (i + Ix-yI) I+5
< ~.
25
We define kernels
{K(n)(x,y)}~=l
K(1)(x,y) = K(x,y),
by
K(n)(x,y) =
f_~ K(x,s)K(n-l)(s,y)ds
(n a 2),
and define ~(K (n)) = Then, for any
sup { ~
I~I
K (n) Xl(X)dx I ; I
0 < s < 6,
~(K (n)) + ~8_s(K (n)) ~ C n 8~g where
Cs,g
(n a I).
interval}
~6(K) n
is a constant depending only on
8, s.
Postponing the proof later, we now deduce Theorem 1.12 (in the case of KI = 0)
from this lemma.
(This lemma plays the role of Cotlar's lemma.)
Without loss of generality, we may assume that and
K1 = 0.
Using
satisfies (1.21). (1.22)
Kk(X,y)
K(x,y)
is real-valued,
in §1.9, if necessary, we may assume that
~06(K) = I
K(x,y)
We put
~(K) = sup { ~
i
o(l,K,f); f 6 Lreal,l
I
interval},
where, in general, (1.23)
Lreal,~
= {f 6 L~; llflI~--< ~ , f
(1.24)
o(l,K(n),f) =
real-valued }
(6 > 0)
and fl IK(n)(xI f)(x)l dx
(n ~ i).
Then IIKH2,2 <_ Const {o(K) + C8~08(K)} (See Lemma 2.5 in Chapter II.)
For
-<_Const {o(K) + C 5} •
n >-_ I, f ~ Lreal,l
and an interval
we have 1 ~(I'K(2 n-i )'f) =< { 41 ~f~ =
{~
7i
/ -= =IK(2n-l)(xif)(x)l 2 dx}i/2
_2 n 12 f(x)~( )(Xlf)(x)dx} / --< { ~
and hence i Tf ~
~(l,K,f) _<- { ~
i
n -n o(I,K (2) f)}2 .
o(l,K(2n),f)} I/2
I,
26
For a while, we assume that XI f = Zk=IN ~k Xlk
Xlf
(l~kl ~ I)
is a step function, saying
Ik
interval,
Ik D I g
= ~
(k # g)).
Then Shwartz's
inequality and Lemma 1.17 show that {
~-
1
N
~T
<
=
171f(x)
~(l,K(2n),f)} 2 ~ ~
K(2~+I)
% k=l
I:I f(x)
Xlk(X)dxl
N :on+l, :^n+l. kEllflk Kk~ :X I k (x) dx I + ~5(K ~Z )) ~ =
i
~f~
~(K(2n+l))
(2n+l) + Const N
infinity, we have ~k' Ik
~6(K
) ~
N d k%l:l_ik{flk ~ =
(i/II I) ~(l,K)f) ~ C 6.
(i ~ k ~ N),
(i/III) ~(l,K,f) ~ C 6 and all intervals
}dx
2n+l C6 ,
Const N
2n+l 2-n (i/If I) ~(l,K)f) ~ {Const N C 5 } . Letting
which shows that N ~ i,
K <2n+l) (Xlf)(x)dxl
n
tend to
Since this inequality holds for any
we can remove the above assumption, i.e.,
for the given
I, we have
f.
~(K) ~ C6,
We now give the proof of Lemma 1.17.
Taking the supremum over all
f ( e~eal,l
which implies Theorem 1.12. Assuming that
~6(K) = i, we
inductively show that ~(K(n)) wheT e K(x ,y)
CO
+ ~8-e
(K(n))
n ~ CO
(n g I)
is a constant depending only on
is anti-symmetric and
~6(K) = I,
~(K (I)) + ~5_8(K (I)) ~ 0 +
'
6, ~,
show that
C
:I K(n) XI(x)dx 7I
{:I :I } +
n-l.
For the sake of simplicity,
for various constants depending only on
~(K (n)) ~ CC~ -I = 7~ :ic
Since
~5(K (I)) = I.
Suppose that the required inequality holds for we use, from now,
and is determined later.
we have
For an interval
I,
we have
{:I :I K(x's)K(n-I)(s)Y)
dx dy} ds
{II fI } = LI + L2 ' dx
and ILl1 ~ { I I IKXi(x) I2dx} I/2
{I I IK (n-l) ki(x) l2 dx} I/2 .
5, 8.
First we
27
K(n-l)l = 0, we have
Since
fl IK(n-I) El (x) 12 dx
2 71 IK (n-l) X
< =
= fl IK(n-l) XlC(X) I2 dx
(x) l2 dx +
2 71 IK (n-l) X , (x) l2 dx I -I
I*c
_2n-2 2 /I IK(n-l) Xl*c(X) 12dx + 2 C 0 71 (f * I -I
dx~_yT )2 dx
2 fl IK(n-l) X i,c(X) I2 dx + C C_2n-2, 0 Ill = 2 LI0 + C C O2n-2 ii I,
< =
is the double of
I
where
I.
Since
171 K (n-l) Xl,c(X)dx I ~ IfI K (n-l) Xlc(x ) dx I + 171 K (n-l) X , (x)dx I I-I IfI K(n-l) Xl(X)dxl
n-l
+ CO
71 ( 7 , I -I n-1 n-i ~(K (n-l)) III + C C O III < C C O III,
) dx
we have 2n-2 El0 ~ 2 71 IK (n-l) X ,c(X) - (K (n-l) X ,c)112 dx + C C O III I I < =
2 ii12 71 { fl ( fl*C IK(n-l)(x'y)-K(n-l)(s'y)Idy)ds}2 (cc~n-2/lli2) fl {fl ( /l*C
-ix_yll+8_e Ix~slS-¢
_2n-2 dx + C C 0 II
) ds} 2 dx + C C O2n-2 ii 1
CC~ n-2 lIf. Thus
2n-2 fl IK(n-l) Xl (x) 12 dx -<_C C O III.
fl IKXI (x) 12 dx ~ CIII,
and hence
IfI KXi(x)dx I <= C C0-1 III. Since Next we show that estimate of
x~
In the same manner,
Iell =< CCo -I iii. Consequently we have I
is arbitrary, we obtain
~o6_e(K(n)) -<_ C C° -I
In the same manner as in the
ILII, we have sup ~,e> 0
sup ~ E ~,c > 0
Iflx_yI >
g K(n-l)(x,y)dyl
Iflx-y I > s K(x'y) dyl < C.
~(K (n)) < CC0 -I
~ C CO-I ,
28
For
x, y ( ~,
we have = f ~ K(x,s)K(n-l)(s,y)ds
K(n)(x,y)
:
fI i
+ f l 2'
i +
+ fI~
LI
=
i +
L2
l
L3 '
! of midpoint where I 1 is the interval interval of midpoint y and of length
x
I
Ix-yl/2
!
and
t
Ix-yl 12,
and of length
13
=
1
12
(1~ U I~) c
is the We
have
IL~I
ds ---~-~[- ~ c c n-i ___ Co l Si ~ --pT--~--~S o
IL~I
=<
flx-yI
-
_-< c
Ifi, ~
{K(x,s)-K(x,y)} K(n-1)(s,y>dsl
c n-i o
fl ~ .......I s-yj ~ l x-yl 1+5
Isq
K(x,s) {K (n-l) (s,y)-K (n-l) (x,y)
IK(x,Y)IIII~
K ( n - l ) (s, y)
+
i
c c n-1 o ~ c c
i
-T~_yT ds + ] ~ i ~ -
dsl
o-l/l~_yl
and
ILil <--
Thus
IK (n-l) (x,Y) I IfiiK(x,s)dsl
n-1
n-i
Is-xlS-s
1
$ii ~
=< c c o
}dsl+
IK(n)(x,y>l_<- c
ds +
n-I
C C0
c -_< c C 0
ix_yll+~_ ~ I%-1l l x - y l
x, x T, y (
For
c0
/[x-yl.
IX-X'I ~ t x - y I / 2 ,
with
we have K (n)(x,y) - K (n)(x',y) = f_®{K(x,s)-K(x ,s)} K (n-l)(s,y) ds 6 Z k=l
=
I 1I !
where 13
=
(X
Ix-x'i
--
2
31xTyl (x
-
6 Z k=l
=
fl~
Ix-xii
, x+
3 x ~4
, x +
4
II
Lk ,
2
) -
I'~ = (y - Ix-Y~4 ' y + Ix?--~i)4 - I~ -
Ie~l < C C0 1 _n-i
_-<
c ~o
,,
12),
and
I~ = (I~ i
ix_sll+8
, 8-6 /
Ix-x I
I2
(I~' U
~
fl~
i, = (x'
)'
I~-yl
-T-~
1+6-6
,
I~
=
Ix-x'L
(y
2
-
U...U n-i
ds < c c O
'
Ixi0 -x'l I~) e.
x,+ i~i[) 2
, y + ~ i0 ' l We have
,
x-x 18/Ix-yl I+6
"
29
IL~I
= n-i < c co
n-i
C CO
,,l~-x'l 8 f~ ix_ytl_~
]-~cFfds
_ l~-x'l 5
Ix_yll+6 log(C
)
C C~-I Ix-x'18-g/Ix-yl l+8-s,
IL~I ~ Ifl~ {K(x,s)-K(x',s)-K(x,y) + K(x',y)} K(n-i)(s,y) ds j + IK(x,y) - K(x',y) l Ifl~ K(n-l)(s,y)dsl
+
C Cn-~ 0
s~
{ _Isnyl ~
l~-yl ~ Ix'_yl I+8 }
ix_yll+8 +
l
ds
n-i ix_x,18/ix_yll+8
+
Ix-y -_< C C0n-I ix_x,18-S/ix_yjl+8-s EL = fl~
{K(x,s)-K(x',s)} {K(n-l)(s,y) - K(n-l)(x',y)} ds
+ K (n-l)(x',y) ~I~ {K(x,s) - K(x',s)} as = ELI + e~0 , L~ = ]I~ {K(x,s)-K(x',s)} {K(n-l)(s,y) - K(n-l)(x',y)} ds + K(n-l)(x''Y) fl~ {K(x,s)-K(x',s)} ds = e21 + L20 and L~ = fI~ {K(x,s)-K(x',S)} {K (n-l)(s,y) - K (n-l)(x,y)} ds + {K(n-I)(x'Y) - K(n-l)(x''Y)}
fI~' {K(x,s) - K(x',s)} ds
+ K(n-l)(x''Y) 7I~' {K(x,s) - K(x',s)} ds = LII + n12 + L"10. Since
IL~zI S C C~-I $Z~
"Ix-x'j8
Js-x'jS-c " ds
ix,_sl l+~
ix_yl I+6-~
c c o~-I l~_~,ls-~/ix_y11+8-~ ,,
Ie211 ~ C Cg-I fl~ C
~
i
Is-x'l~-~
--ix_yll+8_g
n-i 18-g/ l+8-g C0 Ix-x' Ix-yl ,
as
30
,,
n-i
I s-xJ 6-s
i
]~111 _-< c cO
ds
ix_yll+~_d
Ii~, ] - ~
Ix-x' 16-81I x-yl i+s-5 s C Cn-i 0 and
IL~21 ~ c~-I
Ix-x'16-8 Ix-yPI+5-8
{lli~ K(x,s)ds I +I ,, ds Ii I~'-sl
C C0n-I Ix-x' 16-e/Ix-ylI+6-8 we have, with
I0" = I "1
O
12"
U I~
, .
.
.
X - X t 18-8
IK(n)(x,Y) - K(n)(x',y)I $ ILl0 + L20 + L30 I + C C~ -I n-I = IK(n-l)(x',y)IIYI~ {K(x,s)-K(x',s)}dsl + C C O
-< C Co -I
i ~_y~
I 71~ c
1
{K(x,s)-K(x',s)}dsl .....Ix-x'18
ds + C
+ n-i
x_yll+6_s
_!x-x'[ 8-g
n-i C CO
18-g Jx-x[14_6_8 Ix-Y
Ix-x'l6-8
n-i ix_x,18-S/ix_yll+8-¢ C CO Since
K(n)(x,y)
is either anti-symmetric or symmetric, we have also
IK(n)(x,y) - K(n)(x,y')l for
x, y, y' ( IR with
IY-Y'I ~ Ix-Yl/2.
~(K(n)) + ~8_¢(K(n) ) ~ C Cn-i O CO
ly_y,18-g/ix_yil+8-g ~ C Cn-i O Thus ~8_g(K (n)) ~ C Cn-i O • Consequently,
This shows that
~(K (n)) + ~8 _ s (K(n) ) a CnO
if
is large enough. This completes the proof of Lemma 1.17. In Chapter I, we showed 8 proofs of the boundedness of the CalderSn
commutator
T['].
Since the Calder~n commutator is closely related to analycity
of functions, it seems necessary to give more proofs and to have a unified understanding.
CHAPTER II. A REAL VARIABLE METHOD FOR THE CAUCHY TRANSFORM ON GRAPHS
§2.1.
Coifman-Mclntosh-Meyer's
Theorem ([7])
For a real-valued locally integrable function (2.1) where
A
C[a](x,y) = i/{(x-y) + i(A(x) - A(y))},
is a primitive of
a.
We write simply by
operator defined by the kernel (2.1). Calder~n on
a
graph
Lreal~ = ~ >U 0 (See (1.23).)
Lreal,~
The norm
The operator
C[a]
C[a] = (-~)H
+
Tl[a] = T[a]
Meyer commutator (2.2)
= {a E L®;
the singular integral
We put a
is real-valued}.
showed
IIC[a]II2,2
is bounded if
a E Lreal"
is expressed formally in the following form Z (-i) n Tn[a], n=l
(the Calder~n commutator)
(n ~ 2), i.e., Tn[a ]
Tn[a](x,y)
C[a]
This is called the Cauchy transform of
{(x, A(x)); x E ~}.
Coifman-McIntosh-Meyer
Theorem B ([7]).
where
a, we define a kernel by
and
Tn[a]
is the n-th Coifman-
is an operator defined by
= (A(x) - A(y))n/(x-y) n+l.
Prior to this theorem, the following three theorems were shown. that
llTl[a]II2,2 ~ Const Ilall= (a E L~), Coifman-Meyer (2.3)
IITn[a]II2,2 ~ Const n! llalI~
CalderSn showed
[9] showed that
(a E L ~, n ~ 2)
and Calder~n showed that (2.4)
IIC[a]ll2,2
is bounded if
llall~ (a E ereal)
is small enough.
At present, there are three proofs of Theorem B; the original proof, a proof by the Tb
theorem [40] and a proof by perturbation.
contained proof by perturbation. Calder~n
[4] and David [17].
In this chapter, we show a self-
A proof by perturbation was first given by
Improving their methods and repeating a simple
perturbation method, we shall deduce Theorem B only from the boundedness of ([17], [42], [45]).
(See APPENDIX II.)
H
32
§2.2.
Two basic principles
(Zygmund
Here are two basic principles Coverin$ Lemma. IUxEA
~I < = •
Let
{~}X
[54]) in real analysis.
E A be a family of intervals in
Then there exists a sequence
{I~k}k=la
~
such that
of mutually disjoint
intervals such that
lIXkl.
iux~ A ~I-< 5 k=iE
The proof is as follows. larger than the supremum of
~i' "'''
~k-i
llxI
Now we show that
{j;
{IXk }
we have
> 211X. I, j # ~ . Let k
211kk I ,
the same midpoint as
If
{IXk }
be an interval such that
over all
X E Ak_ I,
where
(k ~ 2). (If
is the required sequence.
is
211~kl
A0 = A
is
and
Ak_ 1 = ~, we stop our
We first assume that
Since the intervals are mutually disjoint and
For
IX,
there exists
X ~ A.. Hence J be the smallest integer in the set.
IX. 3
which implies that
which gives that I~ k
211XII
Suppose that
according to the definition of our choice.
1% n Ixk # ~,
IUhE21 Ikl
IXk
lim k ~ ~ llXk I = 0.
[IxI
X ~ Aj}
IIxI ~
, we have
Let
X E A .
(i ~ j ~ k-l)}
is an infinite sequence.
IUk= I IXk I < ~
be an interval such that
over all
II~I
Ak_ 1 = {X E A ; Ik n IX. = ~ J induction at k-l.)
such that
IXI
have been chosen.
larger than the supremum of
{IXk }
Let
IX c IXk , where
and of length
--< I U IXk I --< 5 k=l
51
I"
IX k
Then
Since IXk
X ~
Ak,
is the interval of
Thus
% llXkl • k=l
is a finite sequence, each
IX
intersects with
in the same manner, we have the required inequality.
U
IXk"
Hence,
This completes the proof of
this lemma. Risin$ Sun Lemma. ~ a(x) ~ ~
for any
( ~ ~ T ~ ~ ),
Let
a
be a function in an interval
x E I, where
~ ~ O.
we define a function
the infimum is taken over all functions
B ~
Let in
I
such that
A by
I
such that
be a primitive of
a.
For
B(x) = inf ~(x), where ~ ~ A, ~' ~ Y
a.e. on
I.
33
Let
b = B'
and
components of
~ = {x 6 I; A(x) # B(x)} ~.
(2.5)
=
Uk= I I k ,
where
are the
{Ik}k= I
Then
Y _-< b(x) _-< ~
(2.6)
b(x) = Y
(2.7)
(a)l k
a.e. on
I,
(x 6 ~), I
(2.8)
_-< Y
I~I--< ~ -
((a)l k =
- (b)l T
~
III
fl k a(s)ds, k >-_ i), i "I~[ ~I b(s)ds).
((b)l =
I I
i
Inequalities
(2.5)-(2.7)
are easily seen.
(b) I III = 71 b(s)ds =
which gives (2.8). of Type i
71_62
We have
+ 7~
For the sake of convenience, we call this rising sun lemma RSL
(7-r~y,8-~e£~t);
an open set
z
we shall use later various rising sun lemmas.
~ , we denote by
{I~ ,k}k=l
its components.
For
The following two lemmas
are also the rising sun lemmas for integrable functions. Lemma 2.1 (The Calder~n-Zygmund k > 0.
decomposition
Then there exists an open set
~
[35, p. 12]).
=
in
(0,~)
such that
by
k
and
(k => i),
X
A(x) = f0 If(s) Ids
If(x) l < k
~c.
a.e. on
(x > 0), and define a function
B
B(x) = sup ~(x), where the supremum is taken over all functions
~ & A,
l~ll
f E LI
=
I~I < llflll/k, (Ifl)l~,k TO see this, we put
Let
such that
~
If(x) l ~
~' ~ k 1 ~
a.e. on
f~ If(s) Ids
a.e. on
Let
(Ifl) •
X
(0,~).
= ~ l~l,k
(0,®) - ~I "
~I = {x > 0; A(x) # B(x)}. (k ~ i),
Then
34
Considering Then
f(-x),
we obtain, in the same manner, an open set
~2
in
(0,~).
~i U {-x; x E ~2 } is the required open set. In the same manner, we have
Lemma 2.2. satisfy
Let
f
be an integrable function in an interval
k > (Ifl)l.
Then there exists an open set
i I~I _-< ~ 71 If(x)I ds, If(x) l < k
a.e.
M
is defined by
the supremum is taken over all intervals M
I
k > 0
such that
I
The (non-centered) maximal operator
denotes the norm of
in
and let
(k>= i),
(Ifl) I =< ~,k
on
~
I
I
Mf(x) = sup(Ifl) I,
containing
as an operator from
Lp
x.
For
to itself.
where
p > i,
NMIIp,p
The following lemma
is deduced from Covering Lemma. Lemma 2 . 3 ([35, p.7]). For
f ( L I,
IIMIIp,p~ Cp
X > O, we put
can choose an interval
Ix
(p > i). Ek = {x; Mf(x) > ~}.
containing
x
so that
For each
x ( EX, we
(Ifl) I > ~ . Covering Lemma X
shows that there exists a sequence that
IE~) ~ 5 %k= I Ilxk),
f ( L p and
fk(x) = 0
if
HM f[]
=
=
k~ I /i k if(s) ids ~
k > O, we define If(x) I ~ k/2. = Cp
f0
of mutually disjoint intervals such
which yields that
Ix; Mf(x) > ~I ~ ~5 For
{Ixk}k=l
fx
by
5 ~
[iflll "
fk(x) = f(x)
if
If(x) l > k/2
xP-l]x;
Mf(x) > k]dx
Cp 15
k p-I {Ix; Mfx(x)
Cp 75
xp-I ix ; MfN(x) > X / 2 )
dX
Cp /5
xp-2 llfkllI dX = Cp f~
xp-2 {fk/2 Ix;If(x) I > s I ds} dk
®
> X/21 + Ix; M(f-fk)(x) > k/2 I} dX
2s
Cp f0 Ix;If(x)] > sl { /0
which gives that
IIMIIp,p
and
Then
xp-2 d~} ds = Cp llfll ,
Cp.
At last we note John-Nirenbergts inequality, which was used in Chapter I. This is deduced from RSL. Lemma 2.4 ([32]).
Let
(For the proof of Theorem B, this is not necessary.)
f ( BMO
and
I
be an interval.
Then
35
Ix E I; If(x)-(f)l I >
-function
§2.3.
kI
=< exp(- Const >OIIl
(7~_> l).
([8], [35], [54])
In this section, we show a fundamental
the sake of simplicity, we deal with only kernels
K(x,y)
(See §i.9.)
in (1.22),
We use the notation
~(K), ff(l,K,f)
standard kernel, we define an operator =
K f(x)
I f l 1x '_' y
sup E > 0
K
For
inequality for standard kernels. satisfying
(1.21).
(1.24).
For a
by
> g K(x,y)f(y)dy I .
We show Lemma 2.5 ([35], p. 49). Then
Let
be a
K(x,y)
6-standard kernel (satisfying
(1.21)).
IIK I12,2 ~ Const o(K) + C 6 ~5(K). We begin by showing (2.9)
where
~(K ) ~ Const
~(K )
is the supremum of
and intervals I,
we put
if(K) + C 6 ~6(K),
I.
For
¢ > O,
(l/Ill) /I K (Xlf)(x)dx f E Lreal,l,
over all
an interval
J' = (x - s/2, x + s/2), J = (x - s, x + g), g =
h = XI_ J f. If
0 < ~ <
IiI,
we have, for any
Iflx-y I > s K(x'y)(XIf)(y)dyl
I
f E Lreal,l
and a point %1 fl J f
x
on
and
s E J' ,
= IKh(x) J ~ IKh(s) J + IKh(x)-Kh(s)J
IKh(s) I + C 5 ~5(K) ~ IK(Xlf)(s) I + IKg(s) l + C 6 ~6(K)
= IX ,(s)K(Xlf)(s)l
+ IKg(s) I + CO ~b(K),
I where
I
is the double of
I.
Taking first the square roots of the first
quantity and the last three quantities, respect to
s,
and taking next their means over
J'
with
we obtain
Iflx-Y I > s K(x'y)(XIf)(y)dyII/2 M(I X , K(XIf)II/2)(x) I If
S >= III, then
+ (IKgll/2)j, + C 6 ~6(K) I/2.
/Ix-yl > s K(x'Y)(XIf)(y)dy
= 0.
for all
Hence this inequality holds
s > 0, which shows that this inequality holds with the first quantity replaced by K * (Xif) (x)i/2 . Taking the squares of both sides of the resulting inequality,
and using Shwartz's inequality, we obtain
36
K (Xif)(x) _-< Const
M(IX , K(Xif)I1/2)(x) 2 I
1/2 2 + Const(iKg I )fl, + C6 ~6(K). Since
( M(IX I ,K(Xlf) iI/2) 2) I =< Const <
Const
~
{~(l,K,f) +
Const
{~(K) +
~i
fl* IK(X If) (x) idx
¢05(K) f , ( fl I -I
~
dx}
~6(K)}
and (IKgl
1/2.2 )j, ~ (IKgl)j, & (IK(kj,g) l)j, + (IK(Xj_j,g))j, ~(K) + Const
we have
(K*(XIf)) I ~ Const
Let
f E L 2,
K > 0.
~(K) + C 6 ~6(K),
I
of
*
Mf(x) > ~k
(2.11) (See §1.4). (x0
on
To prove this, it is sufficient to show that,
i
Mf(x) ~ ~Ikl =< - ~
~ E I,
llI.
=
g = Xjf
and
is the left endpoint of
1
-iO
i1 l '
h = Xjcf,
I).
where
IX E I; K g(x) > k I
+ Ix E I; K*h(x) > 2k I
(= L I + L2,
Note that
J = (x 0 - 2II I, x 0 + 2III)
Then we have
Ix E I; K*f(x) > 3X 1 <
L 2.
Assuming that
we prove
Ix E I; K*f(x) > 3X} <
First we estimate
inequality:
Ix; K*f(x) > k I
I, this inequality evidently holds.
for some
Let
k
{x; K f(x) > X} ,
Ix E I; K f(x) > 3X, If
I@f(x) =< ~k I ~_ - ~
is determined later.
for each component
M f(<) ~ ~k
i
Ix; K f(x) > 3k,
~ > 0
which implies (2.9).
We show the following good
*
(2.10) where
~5(K),
say).
K h(x 0) ~ >~. For ~ > 0
and
x E I, we have
37
Iflx-y I > e K(x'y)h(y)dy - 7 1 x 0 _ Y 1 > g K(x0'Y)h(y)dy I ~
IK(x,y) - K(x0,Y)IIN(Y)I
dy + Const
oos(K) M f ~ )
=< C6 oos(K) Mf(~) =< C5 oo6(K) ~ . Since
g > 0
is arbitrary, we have, with a constant
(2.12)
depending only on
5,
K*h(x) <= K*h(x 0) + C6,1 c°5(K) ~X -<_ {i + CS,IOOs(K)~}k
This shows that
L2 = 0
if
C5 ,I oo5 (K) D
Lemma 2.1, there exists an open set
I~I <
C8,1
~ =
(x E I). < i.
Uk= 1 Ik (I k = ~ , k )
Ilglll/(100DX), (Igl)l k = 1 0 0 ~ X Ig(x)I _<- i00~)~
We define a function
g
a.e. on
Next we estimate
L I.
By
such that
(k > I),
~c
by
f J g(x)
(x ~ ~e),
\ L Then llgll~
i00~.
Put
I~*I < 21~I For
s > 0
and
(x ~ I k, k ~ i).
(g) lk
~* = Uk= ~ I Ik* , where
Ik*
is the double of
=< llglll/(50 "qX) --<Mf(~)IJl/(50 ~X) =<
x k = (the midpoint of
(x - s, x + s).
Then
111/15"
x ~ ~ *c , there exist at most two intervals (saying
which intersect with the boundary of
Ik.
II
and
12 )
We have, with
Ik),
I71x-y I > s K(x,y)(g(y) - g(y))dy I = If(i IN 12) n (x-s,x+g) c K(x,y)(g(y)-g(y))dY +
=<
% I k c (x-s, x+s) e
{K(x,y)-K(X,Xk)} flk
Const oo6(K) {(Igl)ll + (Igl)12}
(g(Y) - g(y))dy I
38
+ C0 co6(K)
where
&(x) :
Z k=l
(Igl) (Ix-Xkl
+ Ilkl) I~5
~ C6 co6(K) ~
(i + A(x)).
Ik
Sk= I "'[IkIl'~/(IX-Xk I + ''Ilkl)I+6.
Since
s > 0
is arbitrary, we
have K g(x) ~ K Since J
of
supp(g) c J
g(x) + Cs~o6(K) q%(l + &(x)) and
(x e C'c).
I~l ~ III, the support of
g
is contained in the double
J. Hence (2.9) shows that f
, K
g(x)dx =< f , K (X , g)(x)dx J J
I-~
--< ~(K ) llgll~ IJ*l =< {Const o(K) + C0 ~8(K)} n~ Ill. We have easily I
, {C 6 ~8(K) NX (i + 8(x)) } dx I-~
-<- c6~8( K ) ~ { l ~ i Consequently,
we have, with an absolute constant
depending only on (2.13)
+ I~i} ~_ c0 ~8(K)~l~ l~J. CO
and a constant
C6, 2
6,
L I --< Ix E I - @ ; i
K
g(x) > k I +
I~*I
*
/
, K g(x)dx + iII/15 I-~
Ti 7
, {K*~g(x) + c 0 ~8(K)n~(l + M x ) ) }
dx + I~I/15
I-~ {(C O c(K) + C6, 2 ~8(K))~
+ (1/15)}
III .
Let = min {(2 C6,1~6(K))-I , (30 C O c(K) + 30 C8, 2 ~6(K)) -I} • Then (2,12) and (2.13) show that •
1
lx E I; K f(x) > 3X l ~ L 1 + L 2 = L 1 ~ Thus (2.11) holds, which implies
To
III*
(2.10).
In the same manner as in §1.4, (2.10) yields that llK*fll2 ~ (Const/~)
IIMfll2 ~ {Const ~(K) + C 5 ~8(K)} llfH2,
3g
which implies the required inequality in our lemma. ~2.4.
A-priori estimates In this section, we show some inequalities which play important roles later.
For an operator
T
from
L2
to itself, we put
(2.14)
~0(T) = sup { ~
$(I, T, XI); I
interval},
(2.15)
$(T) = sup
{
$(I, T, f); f ~ Lreal,l, I
(2.16)
~(T) = sup
{~
~(I, T, f); 0 =< f <= i,
(2.17)
~(I, T, f) = fl
IT(XI f)(x)I2 dx,
(2.18)
$(I, T, f) = fl
IT(Xlf)(x)I 2 f(x)dx.
I
interval}, interval},
where
For an open set (2.19) For a
~
with
I~I < ~ , we put
~(T;~) = sup {
8-standard kernel
~(l,T,f);
K(x,y),
f ( Lreal,l,
we have easily
I component of
~} .
o(K) ~ ~(K) I/2 ~- IIKII2,2 ,
and hence, by Lemma 2.5, (2.20)
~(K) I/2 -_< IIKII2,2 ~_ Const
For a non-negative measure respect to
~ ,
i.e.,
~
on
(f,g)
~(K) I/2 + C 8 0~8(K).
~, we denote by = f~
fg
Lebesgue measure, we omit the suffix.)
d~.
(.,.)
the inner product with
(In the case of the 1-dimension
Here is an inequality necessary for the
proof of Theorem B. Lemma 2.6.
Let
open set in
I
I
be an (open) interval,
and let
K(x,y), T(x,y)
K(x,y) = T(x,y)
for any
supported on
and a non-negative measure
~
l(Ku,v)
~ = Uk= 1 I k (I k = I2,k)
x, y ~ I - ~, x # y.
I =< I(ru,v)
I
+ C8(co8(K) + cos(T))
+
be an
be two 8-standard kernels such that
~
Then, for any with
u, v ~ L 2
d~/dx ~ Lreal,l,
y~ I((K-r)(Xlk u), XlkV) k=l
1
HuPI~2 Ilvll,~2 ,
where
" (2.21) Proof.
Since
llwll,~2 = IIwll2 +
{ E k=l
]IXI~
XI_ ~ (K-T)(XI_~U) = 0,
2 }1/2 wll2 we have
(w = u,v; I k is the double of Ik).
40 I (Ku,v)~I
--< I (Tu,v)~I
+
I ((K-T)(X~u), X~v)~I
+ ] ((K-T)(X~ u), Xl_~V)g[ ( = I (ru,v)~l
+
[ ((K-T) 0(I_~ u), X~v)~[
+ L I + L 2 + L3,
say).
Without loss of generality, we may assume that with
Xk = Xlk
IIii _>- 1121 ->- . . . .
We have,
(k > i),
L 1 =< Z ]((K-T)(XkU), XkV)~l k=l ®
+
Z k=l
(= Let
xk
~
l((K-T)(XkU), Xjv)~ I +
Z
j=k+l
Z ]((K-T)(XkU), XkV)~] k=l
be an endpoint of
*¢ y ( (Ik ) N Ij,
k < j,
Ik
k-I
Z
Z
k=2
j=I
+ LII + LI2,
such that
xk ( I -~
l((K-T)~kU), Xjv)~I
say). (k >-- i).
If
x ( Ik,
then
IK(x,y) - T(x,y) I = IK(x,y) - K(Xk,X j) + T(Xk,X j) - T(x,y) l C8 llklS/[x-ylI+6
* c . If xj ( (Ik)
(Here we assume IK(x,y) - T(x,y) l ~ LII
+
C8 llklS/Ix-yll+8.)
Z
Z
k=2
j=k+l
f
Hence
*c I(K-T) (XkU) (x)v(x) ]dx (Ik ) N Ij
Z fl {fie k= 2 ke C8(¢o8(K) + cos(T))
+
then we have evidently
--< Z f , l(K-T)(XkU)(X)V(x)Idx k=l Ik-I k
=< C8(¢o8(K) + ~6(T))
+
* xj ( Ik,
Z k=2
fI k
[ Z k=l IIk]6 ix_yll+8 {
>~ k=l
lu(Y) l Mv(y)dy}
f * Ik-I k
{flk
dy}
Iv(x)l
lu(y) Idy} Iv(x) l dx ] f , IH(X k u)(x)v(x)I dx Ik-I k ~- C6(es(K) + ¢o8(T))
_-
lluII2 llvIl,~2
dx
41
Using the adjoint kernel of
K(x,y) - T(x,y), we have, in the same manner,
LI2 ~ C8(~8(K) + ~8(T)) If
x E Ik,
*e y ~ (Ik ) n (I - ~),
HulI~2llvll~2 then
IK(x,y) - T(x,y) l = IK(x,y) - K(Xk,Y ) + r(xk,Y) - T(x,y) l
IIkIs/Ix-yI 1+8
c8
Hence
we have, in the same manner as in L2
+
a
Z k=l
Z k=l
LII,
f , [(K-T)(XkU)(X)V(x)Idx Ik-I k f
* c l(K-T)(XkU)(X)V(X) I dx (Ik) n (i-~)
C8( ~8(K) + ~8(T)) lluIl,~2 IIvII,~2 . using the adjoint kernel, we have also n 3 ~ C8(~8(K)+ ~8(T)) lluN,~2 Ilvll*~2 • Q.E.D.
Thus the required inequality holds. The following three lemmas are corollaries of Lemma 2.6. Lemma 2.7. for any
Let
I, ~, K(x,y) and
T(x,y)
be the same as in Lemma 2.6.
Then,
f E Lreal,l, ~(I,K,f) 5 (~(I,T,f) +
Z
~(Ik,K,f)
k=l + C8(~(T;~)I/2 + oos(K) + o)8(T)) Ill. Proof.
using Lemma 2.6 with
u = klf, v = X I K(XIf)/IK(XIf) I
and
d~
= dx,
we have ~(l,K,f) = l(Ku,v) l <-- I(Tu,v) I
+
[((K-T)(XkU), XkV) I
Z
k=l +
C8(~08(K) + ~os(T)) III
_-<~(l,T,f) +
Z k=l
~(l,K,f)
+ C8(~(T;~)I/2+~8(K) +~8(T)) lIl. Lemma 2.8.
Let
anti-symmetric
I, ~
Q.E.D.
be the same as in Lemma 2.6.
8-standard kernels such that
Let
K(x,y), T(x,y)
K(x,y) = T(x,y)
be two
42
(x, y 6 1 - ~, x # y).
Then, for any
(l,K,f) < ~(l,T,f) + Z
f 6 Lreal,l
with
0-<- f < i,
~(Ik,K,f) + C5 AI(K,T;~)III
k='i
where AI(K,T;~) =
{~(T~52)I/2 +~os(K) +~os(T)} {a(K) +a(T) +o~8(K) +~Os(T)}
Proof. Without loss of generality we may assume that supp(f) c I. Lemma 2.6 with u = f, v = XIKf and d ~ = f dx, we have ~(l,K,f) +
< l(rf, XiKf)fdxI
+
C8(~8(K ) + c08(T)) [Ifll,~2
Using
Z ]((K-T)(Xkf), XkKf)fd x ] k=l
11XiKfIl,~2
(= L 1 + L 2 + L3,
say).
We have easily L 3 =< C8( ~6(K) + ~8(T)) IIKII2,2 _-<
t I]
C6(~o6(K) + ~08(T))(a(K ) +¢o6(K))II I .< C8 AI(K,T;~) ] I [ .
(See (2.22)). Since K(x,y), T(x,y) are anti-syn~netric, (Xkf(K-T)~k f))Ik = 0 (k ~ i). Hence we have , with x k' = (the midpoint of Ik), L2 =
<=
Z k=l z
k=l
Iflk f(x)(K-T)(Xkf)(x) K{(X k + X , + X *c )f} (x)dx 1 Ik-I k Ik If
f(x)(K-T)(Xkf)(x) K(Xkf)(x) dxl Ik I ( f. Ik- Ik
+
~o8(K) k=iZ flk l(K-r)(Xkf)(x)
+
k=IZ Iflk f(x)(K-r)(Xkf)(x) { K(X
*e
~ )
f) (x) - K(X
Ik
=<
Z
$(Ik,K,f) +
k=l
+
~6(K)
Z
(~)
}
dx
llXkT(Xkf)II2 llK(Xkf)ll2
k=l
Z
ll(K-r)(Xkf)II2 {fie ( f ,
k=l
+
Ik ef )
dx
--~)2dx}i/2
Ik-I k
C8 ~o6(K) k=iZ flk I(K-T) (Xkf) (x) I dx
--< Z
~(Ik,K,f) + Cs(~(T;a) I/2 + ~8(K)) (]IKII2,2
k=l
--< Z k=l
~(Ik,K,f) + C8 AI(K,T;~) Ill.
+ IPTIF2, 2) I~I
1
43 Using Lemma 2.6 with
u = f, v = EiTf
L I = l(Kf, XiTf)fdxl
and
~ ~(l,T,f) +
d~ = f dx,
we have
Z I((K-T)(Xkf), k=l
XkTf)fd x 1
+ C6(~Os(K) + ~o6(T)) llfll,~2 IIXITflI,~2 (= ~(l,T,f) + Ell + LI2,
say).
We have LI2 -<-C8(~06(K) + ~5(T)) IITII2,2 II! :< C 6 AI(K,T;~) In the same manner as in
Ii~. ~
L 2,
Z Ifik f(x)(K-T)(Xkf)(x ) T{(X k + X , + X ,c)f}(x) dx p k=l Ik-I k Ik
LII =
=<
k=iZ I71k f(x)(K-T)(Xkf)(x) T(Xkf)(x) dx 1 + C 8 AI(K,T;~) (IIKII2,2 + liTIl2,2) ~(T;~) I/2 III + C 8 AI(K,T;~) c 8 AI(K,T;~)
III
III. Q.E.D.
Thus the required inequality holds. Lemma 2.9.
Let
E c [, we put
I, ~, K(x,y)
K E = ~KME, where
define inductively define
T~ k)
Ill
and ME
T(x,y)
be the same as in Lemma 2.8.
is a multiplier: g ÷ XEg.
K~ k) = ~ 4 k - l ) ( k
i; K~ 0)
in the same manner as
K~ k).
@(l'K~2)'f){1 ~ ~(I, TI(2), f) +
For
We
is the identity operator).
Then, for any
We
f ( LTeal,l,
Z $(I k, K (2) f) + C 6 A3(K,T;~), k=l Ik '
where A3(K,T;~ ) = {$0(K) I/2 + $0(T) I/2 + ~(T;9) I/2 + ~6(K) +
ms(T)}
× {o(K) + o(T) + ~8(K) + ~8(T)} 3. Proof.
We divide the proof into several steps.
(First Step). (2.22) For any
We begin by showing that fIXI(J) fll,~2 =< C6(~(x ) + ~8(x))JlI 1 g ( L2
supported on
I,
we have, with
(i -<_j ~ 3, X = K, T). Ik
= (the double of
I k) ,
44
fl~
IXg(x) I2 dx ~ 3 / , !X~ ** g)(x)I 2 dx Ik Ik
+ 3 f , IX~ **c g)(x) - (X~ **c g))Ik I2 dx Ik Ik Ik + 3 Ii~I l(X(Xlk**C g))Ik I2 =< +
C6 ~6(X) 2
3 IlxiI~,2 IiXlk** glI~
![Xk Mgll2 + 6 llkl ](X(X **c g) Ik
)ikl2
and
IXkl I(X(X**c g))Ik12 ~
211kl
l(xg)Xkl2+
Ik =< 2 [Ikl l(Xg)ikl2 + C6(~(K ) +~6(K)) 2
211kl [(X(X ** g))ik 12 Ik fIX ** gll~" Ik
Thus % k=l
f , Ik
IXg(x)I 2 dx
=< Const
0~6(K))2
+ CS(~(K) +
=< C6((~(K) + ~o6(K))2
% Ilkl l(Xg)ikl2 k=l
(ilkk ~g]122 +
% k =I
{Hgt122 +
% k=l
IlK ** g]I22 ) Ik
Ilk ** gll~ }, Ik
which shows that HgiI,~2 _-< C6(a(K) + ~6(K)) llgIl**~2 , where put
II'II**~2 g = Xif.
is defined by (2.21) with
If
Ik
replaced by
Then this inequality gives (2.22).
use the above argument. with
I~
To estimate
g = Xi(2)f
j = 2, we put
j = i, we g = Xif
and
IIXifll**~2 , we use again the above argument
replaced by the double of Ik .
j = 3, we put
If
Ik . If
Then we obtain consequently (2.22).
and use the above argument 3 times.
Then we obtain
(2.22). (Second Step). (2.23)
We show t h a t , for any E k=l
I(XkU, Yiv) I ~
u, v E L2
% I(Xku, YkV) l + C 6 { ~6(Y)(~(X) + k=l
+ $0(xll/2(~(Y) + o~6(Y))} Ilull2 where
X k = Xik ' Yk = Yik. We have
supported on I ,
Ilvli,~ 2
(X = K, T;
0~6(X))
Y = K, T),
45
+
Put
Z k=l
(XkU, YIV) I ~
Z k=l
(XkU, Y(X *c v))I Ik
We have, with L2 =
(k ~ i).
(=
(the midpoint of
Z k=l
Illk (XkU(X) - ~k )
l(XkU, Y(X
, Ik-I k
v))l
{~
~I k lu(Y) l2 dy} I/2
(k ~ i)
Ik) {f *c (Y(x,y) - Y(x{,y))v(y)dy} dx Ik
Y(X *c v)(x) dx I ik
--
Z k=l
Z I(XkU, YkV) I + L 1 + L 2, say). k=l
$0(X) I/2
xk
fl k
l +
Then
= I(uX k Xk)ikl ~
+ ~k
+
l(XkU, YkV)
Z k=l
Z (IIXk(XkU) ~vllI + -}~kl k=l
l
fixk MvllI)
[l×kY(× , v)HI) Ik-I k
=< C6 c°6(Y) (IIXli2,2 + ~o(X) I/2) ilull2 Iivll2 + C 6 $0(X) I/2 (NY[]2,2 + c06(Y)) [lull2 J[vH,e2 C6 { ~b(Y)(o(X) + cob(X)) + ~0(X)I/2(o(Y) + cob(Y))} IIull2 !Ivli,~22 and LI
e6(Y)
= Const
Z k=l
dy) dx
Ilk IXkU(X) l ( I , Ik-I k
e6(Y)
Z k=l
I ,
Iv(Y) llHIXkUl(Y)IdY
Ik-I k
C5 ~6(Y)(o(X) + ~b(X)) llull2 Ilv![,~2 • Hence (2.23) holds. (Third Step). (2.24)
We show that . (3):.
l l(Kk f, t
z) i -<-
Z k=l
~ (2)
%(Ik' ~k
' f)
where A3(K) = ($0(K) I/2 + ~6(K))(~(K) + ~6(K)) 3.
+
C 6 A3(K)
Ill,
46
Using (2.23) with
v = .~I(2)f ' X = Y = K
u = Xlf,
and using (2.22)
we have
Z I (Kk f, K~3)f) 1 -< Z" I (Kkf, K k K~2)f) I k=l k=l +
%
($0(K) I/2 +~o6(K))(~(K)
Z I (Kk(2)f, K I(2)f)l k=l
+
+o08(K))
C6 A3(K)
fixif!I2 IIK~2) fll~2 2
III
eo
Using (2.23) with
Z
u = Zk= 1 Kkf,
v = Klf , X = Y = K,
I(Kk(2)f, K~2) f) I <
k=l
Using (2.23)
I(Kk(3)f, K I f)l
+ C8 A3(K)IIl-
k=l
with %
l
we have
u =
Zk= I 42)f,
I (~k " (3)~~' Klf)l
v = Xlf,
-<- %
k=l
X = Y = K,
~(Ik' 4 2)'f) +
we have
C8 A3(K)
III"
k=l
Thus (2.24) holds. (Fourth Step).
j = i,
we use (2.23) with
Z I(ZkTI f,K~2)f) I = k=l +
(i ~ j =< 3, Z = K, T).
Z l(ZkT~J)f, K~3-J)f) I =< C 8 A3(K,T;~)III k=l
(2.25)
If
We show that
u = K~2)f,{
v =
X = Z, Y
Xlf,
% I(ZkK~2)f, Tlf)I k=l
=<
T.
Then
% l(ZkK~ 2)f, Tkf) l k=l
C6{~6(T) (~(Z) + ~6(Z)) + ~0(Z)I/2(~(T) + ~8(T))} ]IK~2)fll 2 I]fll,~2 C6 a(T;e)I/2(~(Z) + ~o6(Z))(a(K) + ~Os(K))2 IIl
If
+
C8 {~os(T)(o(Z) + o~8(Z)) + $o(Z)I/2(o(T) + ~8(T))} (<~(K) + ~o8(K))2 III
<
C8
AB(K, T; e) III.
j = 2, we use (2.23) with Z l(ZkT~2)f, Klf) I k=l =<
u = Kif, =
v = Tif,
X = Z, Y = T.
Z l(ZkKlf, T~2)f)l k=l
Z I(ZkKI f, TkTlf) I + k=l
C 8 AN(K , T; ~) III.
Then
47
Using (2.23) with
u = Ek= I ZkKlf , v = f,
Z I(Zk Klf, TkTlf)I k=l _-<
If
=
Y [(rkZkKlf , Tkf) [ + k=l
j = 3, we use (2.23) 3 times.
(Final Step).
we have
Z I(Tk Z k Elf, rlf) 1 k=l C6 A3(K,T;~ ) III =< C6A3(K,T; ~) [I[.
Then, in the same manner, we obtain (2.25).
We now show the required inequality in our lemma.
generality, we may assume that v = K$3)f," &
X = Y = T,
d~ = dx
supp(f) c I.
Without loss of
Using Lemma 2.6 with
u = f,
and using (2.22), (2.24), we have
(2.26)
+
Z IC C K k - Tk)f, K~3)f)[ k=l I(rl f, K~3)f) I +
% I(Kkf,K~B)f)I k=l
=< l(rlf ' K~3)f) I +
Using Lemma 2.6 with
+
Z
k=l
+ C8(~6(K) + ~6(T)) NfH,~ 2 l]K~3)fli,~2
~ ~~(Ik, ~ (2) ,f) + k=l
u =Tlf , v = K~2)f
Ill
C 5 A3(K,T;~)
[I[.
and using (2.22), (2.25), we have
I((Kk - Tk)Tlf , K~2)f)l
~l(T~2)f, K~2) f) I +
+ C 6 A3(K,T;~)
+
C 8 A3(K,T;~)
[I I
C 5 A3(K,T;~)l!I.
Repeating this argument 2 times~ we obtain
(2.27) i(T2)f, K 2)f)i
<
2), f) ÷ c6 A3(K,T )
Thus (2.26) and (2.27) give the required inequality in our lermna. §2.5.
Proof of Theorem A by perturbation ([45]) In this section, we deduce Theorem A from the boundedness of the Hilbert
transform and Lemma 2.9. Fixing
0 < s < 1/2,
(We do not use Cotlar's lemma nor the Fourier transform.)
we define
S[a](x,y) =
ks(x-y ) T[a](x,y),
48
where
(IsIl~)
( ~ <
- i
g (s) = (i - s l s l )
We shall show that gives Theorem A. Since
Isl --< 2~)
(2S <
!s I --< ll(2s))
(1/(2s)
<
IIS[a]ll2,2 $ Const flail, .
Isl
<_- l/s).
Once this is known, Fatou's lemma
Without loss of generality, we may assume that
~l(S[a]) ~ Const , Lemma 2.5 shows that
a ( Lreal,l.
Iis[a]II2,2 ~ Const{o(S[a]) + I}
Hence it is sufficient to show that (2.28)
~S = sup {o(S[a]);
a ( Lreal,l } <
Const .
Let -
OS(2) where
S[a]~ 2)
=
i
For a, f ( Lreal,l
(2.29) Considering
i~ I -a
(-1/3-&.,l-a.)
~(I, S[a]i
,
f);
is defined in the same manner as
Shwartz's inequality shows that is finite.
(2)
sup { ~["
K~ 2)
in Lemma 2.9.
~
<~ From the definition of = S(2)" and an interval I, we show that
~(I, S[a]~ 2), f)
shows that there exists
Then S[.],
@ (2) S
2 )4 3 ~ 3 =< {( ~ + 7 } ~S(2) + Const {~S + i}.
if necessary, we may assume that
= {x ( I; A(x) # B(x)}
a, f ( Lreal,l , I interval},
(a) I $ O.
b E Lreal,l
RSL
of Type 1
such that, with
(B(x) = A(x0) + f~O b(s)ds,
x0
is the left endpoint of
I),
(2.30)
-1/3 ~ b(x) ~ 1
(2.31)
I~I ~
(The function
b
l-(b)I 1+(1/3)
a.e.
Ill
(x ( I - ~ ) ,
Lemma 2.9 with
I,
l-(a)I i+(i-7~
b(x) = -1/3
we have
I,
we may put
I.
6 = i,
~(I, S[a]~2),f)=< $(I, S[b]~ 2), f)
(x (IC).)
(x, y E I - ~ ) .
we have
+
Z
~(I k, S[a]~2k), f)
k=l
+ Const
~,
Since (2.30), (2.31) are
b(x) = 1
S[a](x,y) = S[b](x,y)
K = S[a], T = S[b],
on
3 Ill ~ 7 III"
obtained from RSL is defined only on
independent of the behavior outside A(x) = B(x)
~
on
A3(S[a] , S[b]; ~) [I I,
Since Using
49
where
~ = Uk= I Ik
dominated by
The second quantity in the above inequality is
(Ik = l~,k)-
= b - (1/3).
(3/4) ~S(2) Ill . Put
S[D] = S[b] + (~/3)H,
~(I, =~
Then
II~II~ ~ 2/3
and
and hence
S[b]~2),f)
=<- ~(I,
S["~]~ 2) , f) + Const
IIsEE]ll~, 2 III
3 (2)4~s(2) i! I +Const {%+1} IIl.
Thus $(I, S[a]~ 2)
,
2 )4 3 {( ~ + ~}
f) ~
3 {oS + i}III
+ Const
$
+ Const
S(2)
A3(S[a], S[b]; ~) IIl.
A3(S[a], S[b]; ~). x E J,
It is necessary to estimate for any interval
J
and
k (x-y) ~x-y
]SIal Xj(x) I -<- Ifj
[I[
Integration by parts shows that,
a(y)dy I + Const.
Lemma 2.5 shows that fj
k (x-y) g x-y
ifj
a(y)dy I dx ~ Const NH*(Xja)II2 IJl I12
Const (~(H) + 1) IJl E Const IJl. Hence we have
(i/IJ I) ~(Ji S[a], Xj) ~ Const.
~0(S[a]) & Const . b(x) = -1/3
on
In the same manner, ~,
Taking the supremum over all
~0(S[b]) ~ Const.
Since
we have, for g ~ Lreal,l ,
~(I k, S[b], g) = Const $(I k, H, g) & Const Ilkl and hence
J,
~(S[b]; ~) ~ Const.
Consequently,
AB(S[a], S[b]; ~) ~ Const (~S + i)
(k a i),
3
Const {~ (S[a]) + ~(S[D]) + 1} 3
,
which gives (2.29). Taking the supremum of and all intervals
(i/IIl) 5(I, S[a]~ 2), f)
over all
I, we obtain, by (2.29),
2 )4 ¼ ~ 8S(2) ~ {( ~ + } ~S(2)
+ Const
3 {oS + i}.
a, f 6 Lreal,l
50
Since
(2/3) 4 + (3/4) < I
and
~ ~ ~ ~S(2) ,
this inequality yields (2.28).
This completes the proof of Theorem A.
§2.6.
Proof of Theorem B by perturbation ([17]) In this section, we deduce Theorem B from the boundedness of
H.
Here are
two lemmas necessary for the proof. Lemma 2.10 (Calder~n [4]). Proof.
Fixing
IITn[a]ll2,2 $ (Const) n llalI~
0 < s < 1/2,
we put
Sn[a](x,y ) = Since
el(Sn[a]) ~ Const n
(n ~ i).
X g (x-y) Tn[a](x,y)
JPalI~,it
is sufficient to show that n+l
(2.32)
~S
=
sup {~(Sn[a]);
a ( ereal,l } ~ C O
n for some absolute constant So[-] = (-~)H. (0 ~ k ~ n-l).
CO
Then We d e f i n e
(which will be determined later). Let
~So =
~S(2) n
T = Sn[b] , 6 = i,
(2.33)
k+l ffSk ~ C O
Suppose that
in the same manner as
4 Let a, b, f, I, ~ <~Sn -<-~S (2) " n K = Sn[a],
~(-[ H) ~ ~.
~S(2)"
be the same as in §2.5.
Using Lemma 2.9 with
we have
~(I, Sn[a]~ 2), f ) =< ~(I, Sn[b]~ 2), f ) +
Z
~(I k, Sn[a]~2), f)
k=l + Const Put
b
= (3/2)(b-
A3(Sn[a] , Sn[b];~ ) l l I .
(1/3)).
Then
2 b* i Sn[b ] = Sn[ 3 + ~] =
I]b I[~ =< 1 n
and
(2)k
i n-k
Sk[b* I
k=0
By Lemma 2.5 and the assumption of our induction, we have IISk[d]II2,2 ~ Const Const (C~ + n)
Then
{~Sk + ~l(Sk[d])} (d ( e~eal,l,
0 ~ k ~ n-l).
Hence, in the same manner as in §2.5, we obtain, by (2.33),
51
~(I, Sn[a] 2 )
f)
~ { (~)4n + 4 } S (2) n
+ Const (C~ + n ) ~ S
+ n) 3 + Const (C~ + n) 4. n
Since
4 ~S
and
I
are arbitrary,
@S(2)
.
Since
a, f E Lreal,l
quantity replaced by
this inequality holds with the first
(2/3) 4n + (3/4) ~ 0.99
and
n ~ ~ n
=< C 0' (C
we have S (2) '
+ n)
for some absolute constant
C O' •
Let
Sn
n
C O = max {2 C~, ,} •
Then
~S
~ Gn _n+l •
This shows that (2.32) holds for all
n
n ~ 0.
This c o m p l e t e s t h e p r o o f o f Lemma 2 . 1 0 .
Remark 2.11.
Q.E.D.
It is known that IITn[a]II~,BM 0 ~ Const {IiTn[a]II2, 2 + ~l(Tn[a])} ¢onst
{I!Tn[a]!12,2 + (n+l)}
(n ~ O,
a E Lreal,l),
where
is the norm of Tn[a ] from L ~ to IITn[a]II~,BMO The proof of Lemma 2.10 by Theorem 1.12 is as follows. Let
and
n ~ i.
Integration by parts shows that
BMO.
(See Lemma 2.5.)
a E Lreal,l
Tn[a]l = Tn_l[a]a.
Hence
Theorem I shows that IITn[a]H2, 2 ~ Const {IITn[a]IIIBM0 + n} = Const {liTn_l[a]aIIBM O + n} ~
Const {IITn_I[a]II~,BM O + n}
Const {Hrn_l[a]II2,2 + n} , which gives Lemma 2.10. For
a E Lreal,
(2.34) where
A
we define a kernel
E[a](x,y) =
is a primitive of
Coifman-McIntosh-Meyer Lemma 2.12.
[7].
a.
1 x-y
exp {i A(x)-A(y)_} x-y
The following lemma was first shown by
A proof by perturbation was given by David
There exists an absolute constant NO IIE[a]II2,2 ~ Const(l + llall=)
Proof.
Since
,
NO
such that
(a E L~eal).
~l(E[a]) ~ Const (i + llall~), it is sufficient NO ~(E[a~) ~ Const (i + llall )
[17].
to show that
52
for some absolute constant (2.35)
N O ~ i.
We put
( ~ > 0)
aE(~) = sup {o(E[a]); a ( ereal,6}
and show that NO
(2.36)
~E(~) -<_ Const(l + 6)
Lemma 2.10 shows that, for any
( ~ > 0).
a ( Lreal, in
~(E[a]) = -<- Z
~(
Z n=O
nl
=
Tn[a])
i
=< Z n=O
~-f ~(Tn[a])
i n! (C°nst)n 11alln <= exp {Const(l + Iiaii®)} •
n=0 Hence > i,
OE(~) < ~
for all
a ( L~eal,~
,
~ > 0
f ( Lreal,l
Type i (-~/3- A.,B- a.)
and
~E(1) ~ Const.
and
I
Let
be an interval.
shows that there exists
b ( Lreal
RSL of such that, with
= {x ( I; A(x) # B(x)}, - 613 ~ b(x)
6 -
Using Lemma 2.7 with
~
6
a.e.
(b) I
on
I,
b(x)
= - ~13
on
~
,
3
we have
K = E[a], T = E[b], 5 = i,
~(I, E[a], f) _~ a(l, E[b], f) +
Z k=l
O(Ik, E[a], f)
+ Const {$(E[b];e) I/2 + ~01(E[a]) + ~Ol(E[b])} Ill, where
I k = I~, k
~(I, E[b],f) = Since
(k >_- i).
~(I, E[~], f).
b(x) = -~/3
on
Put
~ = b - (6/3). We have
Then
II{II~ =< 2~/3
~, we have
D(E[b]; ~) =
~2~(H;~) =< Const.
Thus
~(I, E[a], f) ~ OE (
) +
~E(~) + Const 6 ,
which yields that ~E(6) _-< OE( that is,
) +~
and
001(E[a]) + O~l(E[b]) =< Const ~ .
aE(~) + Const ~ ,
53
(2.37) Let
n
OE(~) < 4 ~E(23 ~)
+ Const ~ .
be the minimum of integers
n =< (log ~)/(log 3/2) + Const.
k->- 1
such that
Inequality
OE(~) =< 4 n ~ E ( ( 2 ) ~ )
(2/3)k~ ~ I.
Then
(2.37) shows that n-i % k=0
+ Const
4 k (2)k3
-_< 4 n {~E(1) + Const (2)n ~} _-< Const where
4n_-< Const (i + ~) N0 ,
N O = (log 4)/(log 3/2).
Thus (2.36) holds.
This completes the proof of
Lemma 2.12.
Q.E.D.
We now give the proof of Theorem B. (x ~ ~),
Since
i/(I + ix) = f0
e-iXs e-S ds
we have C[a] = f~
E[-sa]e -s ds.
By Lemma 2.12, we have IIC[a]I12,2 =< f0 IIE[-sa]ll2,2 e-s ds NO Const f0 (I + sllall )
NO e -s ds _-< Const (i + IIall~)
This completes the proof of Theorem B. §2.7.
Estimates of norms of
E[.]
and
C[.]
In this section, we show Theorem C ([44]).
For any real-valued
(2.38)
NE[a]II2,2 ~ Const (i + IIalIBMO),
(2.39)
IIC[a]I12,2~ Const (i +~IIalIBMO).
In [7], (2.38) was given with was given with
__~MO
replaced by
[44] via [42], [43], [50]. use RSL repeatedly.
a(x), I, ~, ~
and
we define analogously aretan
y.
Then
IIalIBMO
in
BM0,
9 IIalIBMO,
and (2.39)
This theorem was established in
In this note, we deduce Theorem C from (2.36).
The lower bound of A(x) B(x)
a
replaced by
8 IIaIIBMO.
(The sun also rises!)
Type i (y - r.,$ - a.) Let
function
We
RSL in §2.2 is called of a(x)
is independent of (2.5)-(2.8).
be the same as in RSL in §2.2.
For
0 ~ T ~ ~ ,
by using the sun at the right upper infinity of angle
54
~ b(x) ~ 7 (a)ik ~ T
a.e. on (k g i),
I, I~I ~
b(x) = 7
(x ( I k, k ~ i),
(-~) * (b)l
III.
(-~) + 7 This RSL is called of Type 2 ( y - h a y , ~ - d g 6 e e ~ ) . independent
of the above estimates.
For
0 ~ 7 ~ ~ ,
where the supremum is taken over all functions a.e. on
!.
We define
b, ~
--<-b(x) --< 7
In this case
@
in the same manner.
a.e. on
I,
~
we define
such that
is B(x) = sup @(x),
• ~ A,
~' ~ T
Then
b(x) = 7
(x ( I k, k >_- i),
(-~) + (b) (a)i k > y
(k ~ i),
I~I =<
This RSL is called of Type 3 ( y - r . , of the above estimates.
For
~-d.)
~ ~ 7 ~ 0,
(-~) + 7
.
I Ill.
In this case
we define
B(x),
as in Type 3, by using the sun at the lower right infinity
~
is independent
in the same manner
of angle
- arctan
171'
Then 7 ~ b(x) ~ ~
(a)ik ~ T
a.e. on
(k ~ i),
This RSL is called of Type 4
(Y-~.,B
I,
I~I ~
- a.).
b(x) = 7 - (b)l ~ _ 7
(x ( I k, k ~ i),
llI.
In this case,
~
is independent
of the above estimates.
Type 1
Type 2
Type 3
Type 4
RSL of Type j is reduced to RSL of Type i by a suitable affine transformation.
55 §2.8.
Proof of (2.38)
(First Step). (2.35).
We divide the proof into three steps.
~E(~) = sup {~(E[a]);a E Lreal,~} (See (2.16).)
~E(~)
defined by
e
0 ~ f ~ i
(~ > 0).
In this step, we show that, for
(2.40) where
Recall
Put
~E(~) ~ ~E(@~) + ~
(0 < e < i) and
~(I, E[a], f).
~E~T ^ .l+e ~) + (Cs/e)
is determined
an interval
Since
I,
~ ~ i,
we
later. study
For
0 < 5 ~ i,
~5{~E(~)
+
a E Lreal,~,
an a-priori
~(l,E[a],f) = ~(l,E[-a],f),
estimate
~5}
f E Lreal, with
respect
(a)ik ~ Using Lemma 2.8 with
b(x)
=< ~
e~
a.e.
on
(k => i),
I,
I~I
K = E[a], T = E[b],
b(x)
Since
~o6(E[a]) _< C5 ~5,
III
(x E I k,
k >
b ~ L ~real
i),
( ~ = (b)l)-
we have
~(I, E[a], f) -<_ ~(I, m[b], f) + +
= - e~
=< ~ +- ~
to
we may assume that
> 0. RSL of Type i (- e~- ~., ~ - ~.) shows that there exists (a) I = such that, with ~ = {x E I; A(x) # B(x)} = Ok= I Ik (Ik = l~,k). - 6~ ~
,
% k=l
~(Ik, E[a], f)
C 6 AI(E[a] , E[b]; ~) IIl. 0~6(E[b] ) < C5 ~6
$(E[b]; ~)i/2
and
= Const $(H;~) I/2 < Const =
we have AI(E[a ],E[b];~) = {&(E[b];~)I/2 + ~5(E[a]) + ~5(E[b]) } × {~(E[a]) +
~(E[b]) +
~5(E[a]) + ~5(E[b])}
_<_ C5 F5 {~E(F) + ~5 } , and hence ~(I,E[a],f) < ~(I,E[b],f) +
% $(ik,E[a ],f) + C5 ~5{~E(~) + ~5} k=l
ii1.
56
For each
Ik,
there exist
we use~ RSL of Type 2 (e~ -&.,-6-d.).~ bk ~ L r e a l
and an open s e t
-~ & bk(X) ~ e~
(a) I
k,g
a.e.
¢ e~
( ~
on
Let
bk = bk -
-(-~) + e~
(i -e)~/2).
~(Ik,E[%k],f) = $(Ik,E[bk],f).
g(ik,E[a],f) < + % +
Then
(a)~
~k = U g = l l k , g
Ik,
- e~
<
in
Ik
such t h a t
(x E ~k ),
bk(X) = 8~
I),
-(-6 )+(bk) Ik =<
Since
I Ikl <
~+ (a)ik ~+ e~
i- e
IXkl --< "i + e IXk I"
ll%k[l= =< (l +e)~/2
and
Hence, by Lermma 2.8, we have
~(Ik,E[bk],f) +
Y $(Ik, g, E[a], f) g=l l+e AI(E[a],E[bk]; g~k) llkl =< ~E ( T ~ ) Ilkl
ixkl '
~ g(Ik,g, E[a] ,f) + C5 ~5 {OE(~) + ~5} g=l
which yields that g(l,E[al,f) N $(l,E[b],f) + ~E ( Tl+O +
For each
~)
z l~kt k=$
k=l% g=i% o(Ik' g, E[a],f) + C5 ~5 {~E(~) + ~6}{ii I + k=lY llkl}.
Ik,~, we use RSL of Type i (-e~-&.,~-4.) ~k,~ = U~=I Ik,g,m
we obtain an open set (a)
Ik,g, m
~
- e~,
Z m= 1
llk,~,ml
Since
(a)
Ik,g such that
in
Ik,~
< =
1 - e I + e
llk,g
>--eF,
I "
In the same manner as above, i+@ ~(l,E[a],f) ~ ~(l,E[b],f) + ~E ( T ~)
{ £ llkl + E Z llk,~l} k=l k=l ~=i
^
% % k=Ig=l
% ~(Ik,g,m, E[a], f) m=l
+ C5 ~5{aE(~) + ~5} {lll+
% llkl+ k=l
% k=l
Z Ilk,~I} • g=l
57 ^
Since
^ in
-<- - 8 ~ ,
(a) I
c~(Ik,g,m, E[a], f)
is estimated in the same manner as
k,& ,m
~(Ik,E[a],f).
Repeating this argument, .i+@ l-e i-8 2 E ( ~ - ~) I~I {1 + i ~ ÷ (i~) +
~(l,E[a] ,f) =< ~(l,E[b] ,f) + + C 8 p8 {~E(~) + ~ 8 } {JZj
+ I~I ( I + ~
^ l+e~. ~ - n ~(l,E[b],f) + OE(2-~-p) ~ + 8~ ^ ^ ,l+e = o(l,E[b] ,f) + OE<--~- ~)
To estimate
l-e
I-8 2 + (i-~-) + ...)}
l+e JiJ + (C5/8)~5{aE(~) + ~6} 28
~ - n 2e~
c ( Lr eal
~' = Oj=l ~ Ij'
and an open set
-8~ -_< C(X) K e8
a.e.
-(-e~) + (c) x
on
in
I
to b(x)
and
I.
such that
I ,
P~ + n
Jxj _-<
]e'I-<- ./-'(-e~) + e~
Jxl
-I~I + (%/e) ~8{C~E(~) + ~8} I~I.
~(l,E[b],f), we use RSL of Type 3 (85-r.,-e~-d.)
There exist
"}
jlJ.
2ep
In the same manner as above, ~(l,E[b],f) =< ~(l,E[c],f) + ^ ,l+e
Z j=l
e~ +
~E (e~)Ill + ~E<--2- ~)
~(l],E[b],f) + C8 ~8 {OE(~) + ~8} iiI
q,
2e~
Consequently, 7 Ui
$(l,E[a],f) <= {~E(e~) + SE (--2- ~)
+ { ~~E <),i+8 T^
~28~-~
1+8 SE(e~) + - ~ -
2e~
+ C8 ~8(~E(~) + ~6)}
+ (C8/8)~5(~E(~) + ~5)} ^ .l+e O E i _ T ~ ) + (C8/8) ~6{~E(~) + ~8},
which gives (2.40). (Second Step). (2.41)
In this step, from (2.40), we deduce ~E(~) ~ Const
~
( ~ g i).
Let 1+8
hX(e) = e) ~ + - ~ -
l+e)k
(----f--
(o< e < 1,
~.> o).
58 Then
~(e) > i
for any
0<
e
k > 2
i = h2(i/3 ) = Hence we choose
e = 1/3
an interval
we have
I,
in (2.40).
min h2(0 ). 0<0<1
For any
f + 2~ ~(l,E[a],f) _-< 3 ~(l,E[a], - - 3
^ f + 2~ Const {q(l,E[a], ~
qE(~) ~ Const ~E(~) I12.
(2.42)
)
Ceal,~'
a 6
f E Lreal,l
and
2 ) + 3 ~(l,E[a], ~ X I )
1/2
^
2 ~i)i/2}
1/2
III
+ a(l, E[a], ~
DE(7)I/21II,
Const
and hence
and
SE(~) =< ~E (
Inequality (2.40), 0 = 113
+ 2 DE(
) + C5 ~8
shows that
+ ~5}
( ~ ->_ i).
By (2,36), (2.43) where
( ~ ~ i),
~E(~) ~ Const {~E(~) + ~}2 ~_ Const ~N
N = 2N 0 + 2.
Suppose that
N ->_ 3.
We put
N+I ~m = sup{ ~E(~) ~ Then
-c3 -<_ Const.
For any
; i ~ ~ =< (3)m }
2
m >_- 4
and
(3/2) m-I
(m = 3,4 .... ).
< ~ < (3/2) m, we have,
by (2.42), N+I ~E(~ )
~
2
N+I
_<_ ~
2
N+I
N+I
2
2
{~E(~3) + 2 ~E(23 -~)
+
C8( ~
N+I +
2
+
~28)}
N
~:m-1 + c8 (~ 2 +8
+
3
N+I _<,{( ) 2
N+I
~m-i + C5 ~ Hence
~m ~ ~m-I + C 8
N+I
-(li2)
+ 2( ) 2 } .~m_i +
C6(~
p28) }
)}
+
8-(1/2) 2 (m-i)((i/2)-8) ~ Tm-i + C8(3)
(2/3) (m-I)((1/2)-8)
~m <= ~3 + Const
m-i Z k=3
We choose (_~)k/4°3<= Const,
8
1/4.
Then
59
which gives that
Const
~E(~) i.e., (2.43) holds with
N
~
N+I 2
( ~_>-i),
replaced by
(N+I)/2.
Repeating this argument, we
obtain
~E(~) =<
Const 9 3
( ~ ~ i).
Put ~'m = sup {~ E(~) ~-2; 1 =< 9 =< (~)m } Then
' < Const. Since ~3 =
(1/3) 2 + 2(2/3) 2
=
i,
(m = 3,4 .... )
we have, in the same manner as
above, ~'m -<-~tm_l + C6
T'm_l + C6
We put
6 = 1/4.
Then
{(2)(m-I)((I/2)-6)
(Q)(m-l)((I/2)-6)9~
~t ~ Const, m
~E(~) ~ Const Since
~E(~) ~ Const ~E(9) I/2,
(Final Step).
+ (3)(m-I)(2-6)}
(m >= 4).
which yields that
92
( ~ a i)°
this shows (2.41).
At last, we deduce (2.38) from (2.41).
Let
a E Lreal.
We show
that (2.44)
~5(E[a]) ~ C 6 (i + ~25)
1/Ix-y]
We have evidently
IE[a](x,y) I ~
Ix-x'l ~
We may assume that
Ix-yl/2
( ~ = IlalJBM0, 0 < 5 ~ 1/2) Let
x, x', y ~ IR satisfy
y < x < x'.
fyX la(s ) _ (a)(x,x,) ] ds =< Const
We have
~(x-y) log x'-y
which gives that
I A(x)-A(Y)x-y yA(y) - A(x')x'i X'-y
f:' (a(s)
-
I =
I (~_y~(~,_y) X' - X
(a)(x,xt))ds ]
/ yX
(a(s) -(a)(x,x,))ds
80
Xt--X
Const
{i + log ~
x-y
}
xt_X
~
Const
~(x'-x)i/2/(x-y) I/2.
Thus IE[a](x,y) - E[a](x',y) l =<
1 x'-y
+
x'
-
I exp { i
x
A(x),A(y) x-y 1
x' - x (x-y)(x'-y)
i + C6 ~
x' - x
Const
I
+ C6 ~26
(x_y)2
For
f E
a = a - (a) I. an open set
Lreal,l Then
A(x)-A(y) x-y
(Ik = IE, k)
in
I
2-~~i I~(s) Ids ~ III/2' i
I a(x) l =< 2~
a.e.
on
_
}I
{i A(X'x!-A(J~)}I25
A(x')-A(y) x'-y
I 25
C5(I + ~28)(x'-x)6/(x-y) I+6 .
I, we estimate
o(l,E[a],f) = ~(l,E[a],f).
=<
{i A(x')-A(y) xV-y
- exp
(x' - x) 6 (x_y)l + 6
and an interval
~ = Uk= I Ik
I~I
}
I exp {i A(x)-A(Y-~)} e X P x - -y
(x-y)(x'-y) + C6 < =
X ! -- X
"(x-y)(x''y~
o(l,E[a],f).
Let
Le~=na 2.2 shows that there exists
such that
(IaI )i k ~ 2~
(k ~ i),
I - ~ .
We put
b(x) =
Then
b E
e =real,2~
~)
~(x)
(x ~ I-
~(a0)ik
(x l )~ ~). Ik' ( xk >
Using Lemma 2.7 with
K = E[a], T = E[b],
we have
~(l,E[a],f) = o(l,E[a],f) <= o(l,E[b],f) +
~-
For each have
Ik,
~E(2~)
III +
Z ~(Ik,E[a],f) + C 6 (i + ~25) ii I k=l k=Z I ~(Ik,E[a],f)
we use Lemma 2.2 with
a - (a)ik.
+
C8
(I + ~26) iii.
Repeating this discussion, we
81
i 1 ]I I {i + ~ + ~ +
~(I, E[a], f) =< qE(2~)
i {i + ~ + ~
+ C8 (i + ~ 26) III
i
... }
+ ... } =<_ {2 ~E(2~) + C8 (i + ~ 28) } IiI
Thus o(E[a]) ~ 2 ~E(2~) + C8 (i + ~28) Const (i+ ~) = Const(l + IIaIIBMO). Consequently, Lem~na 2.5 and (2.44) yield (2.38) in the ease where a
be a real-valued function in
an(X) =
(x) -
Since
a n ~ Lreal ,
BMO.
a E Lreal.
Let
We put
iax 1 Ia(x) I =< n
a(x)
<
(n->_ I).
-n
we have
IiE[an]II2,2 ~ Const(l + IlanllBMO) ~ Const(l + IIalIBMO). Letting §2.9.
n
tend to infinity,
we obtain (2.38).
Proof of (2.39) Put $C(~,~) = sup {~(C[a]); a ~ Lreal, ~ = a -<_ ~}
We show that, for
~ ~ I,
(e _-< 0,
~ _-> 0).
0 < 8 ~ i,
^
(2.45)
~C(-~,~) ~ 2 ~C (- ~ , ~) + C 8
~8{~C(~) + ~8}
where ~C(~) = sup {o(C[a]); a E LTeal,~} • (Tchamitehian
[51] showed that
¢~C(-~,~) -< 2 OC (- ~2' ~2) +
C6 B6
Inequality (2.45) is an improvement of his inequality.) for the proof of (2.45).
(~ ->_ i). Here is a lemma necessary
62 Lemma 2.13. Proof.
<~c(O,~)= ~C(--~,O) _-<- C5 ~5 {Crc(~ ) + ~5}
The first equality is evident. We define
6 = log 2/log(i/4q). For interval I, we estimate Type 3 (4qB-/t.,0-d.).
(# >_-- i , 0 < 6 -< i ) . q > 0
by
a E Lreal, 0 _-< a--< [3, f ~ eal,l' 0 -< f =< 1 ~(l,C[a],f). If (a)l < 2q~ , we use RSL of
There exists
b 6 L~eal
and an
such that, with
= {x 6 I; A(x) ~ B(x)} , 0 =< b(x) =< 4Q#
on
a.e.
I,
I~1 <
=
0+2r]~3 { i I =< i i i / 2 .
o+~{3
Lemma 2.8 shows that ^
~(l,C[a],f) _-< $(l,C[b],f)
+
Z k=l
~(Io, k,~
C[a], f)
+ c~ ~8 {~c(~) + ~} IT I _< {C-c(O, 4q#) +y$ C.c(0,{3 ) + c6~(ac(#)
+ {3~)} Izl
If (a)l -> 2q~ , we use RSL of Type i (qB-A.,{3-a.). such that~ with = {x E I; A(x) # B(x)} , ~
=< b(x) =< ~
a.e.
There exists
- 2~
on
tI]
=
1-
b ~ Lreal
~
tit.
Lemma 2.8 shows that ee
~(l,C[a],f)_~$(l,C[b],f)
+
Z ~(I~, k, C[a],f) k=l
+c6 ~6{~c(~) +~8} II -
l_~q
We have ~(l,C[b],f) ~71 If I
= fB(1)
IfB(1)
(Const/~)
i (x-y)+ i(B(xiiBiy))
I (B-l(s)-B-l(t)) ~(B(1),C[(B-I)'],
f(y)dyl 2 dx
+ i(s-t)
f=B-l(t) dtl2 B'°B-I(t)
ds B'°B-I(s)
foB-i/B'oB -I)
NO (Const/~) Const {i +If(B-I) ' XB(1)II ~ } II(foB-I/B'°B-I)XB(1)IIIIB(1)I C6 ~-31B(1) I ~ C6 ~-2 i1 I ~ C6111 ,
63 where
B(1) = {B(x); x ~ I}
and
NO
is the absolute constant in Lemma 2.12.
Hence, in this case,
~(i, C[a],f) =< l-zq l-'q
~c(O,~)lll
+ c5 p~{~c(~) + ~ } I I l
•
Thus we have, in both cases, i
~(I, C[a]
f)
--< maX{~c(0'4~) + 215 C (0'~)' z_n_2_2n i-~ ~c(O,~)}
+ c5p6{~c(~) + ~5} ,
which yields that
$C (0'13) --< max{~;c(O'4"q~3) + "2i ~c(O,~), ~l-q + c~{~c(~) If the second quantity in
~c(O,~)}
+ ~}.
max {.,.}
is larger than the first quantity, then
~c(O,~ ) ~ z_,_-_-n c8 ~{~c(~)
+ ~6} = ca ~5{~c(~) + ~5} .
If the first quantity is larger than the second quantity, then (2.46)
$C(0,~) ~ 2 ~C(0,4~) + C6~6{~C(~) + ~6} .
Thus, in both cases, (2.46) holds. k
such that
(4~])k ~ =< i.
Then
Let
m
be the smallest integer of
m _-< {log ~/log(I/4~)}
+ i.
Inequality (2.46)
yields that ~C(0,~) --< 2m ~c(O,(4~)m~) + C 6
m-i Z 2k(4~])kS~8{~C((4~)k~) + (4~)k8 ~6} k=0
2m $C(0,i) + C5 {I + 2m(4~) m6} ~6 {aC(~) +
~5}
C5(~8 + 2TM) {OC(~) + ~6} ~ C6 ~6 {OC(~) + ~6 } . We now prove (2.45). interval
I,
we estimate
For
a ~ e~eal,~, f E e~eal,
$(l,C[a],f).
Since
0 ~ f ~ i
(a) I ~ 0.
RSL of Type i (- e~-~.,6- ~.)
that there exists
b E L~eal
such that, with
(Ik = l~,k),
and an
$(l,C[a],f) = $(l,C[-a],f), we
may assume that
= U~= 1 Ik
Q.E.D.
(e = 1/2)
~ = {x E I; A(x) # B(x)}
shows
64 -
~
~
b(x)
~
(a)ik ~ - 8~
~
a.e.
on
I,
b(x)
=
-
85
- (b) I i~ I =< ~ ~ @~ ii I ~-
(k => i) '
(x
(~),
(e = I/2).
II~I, l+e
Lemma 2.8 shows that g(l,C[a],f) ~ ~(l,C[b],f) + gC(-6~,~)Ill +
Z $(Ik,C[a],f) + C5~8{~C(B) + ~5} ii I k=l
Z g(Ik,C[a],f) + C5~5{ffC(~) + ~8}III . k=l
For each k ~ I, we use RSL of Type 3 (0-&.,-~- d.). Since exist b k 6 Lreal such that
and an open set
- ~ ~ bk(X) ~ 0
a.e.
(a)l ~ - @~,
~
there
k
~k = U~=I Ik,~ (Ik,g = l~k~~) in Ik
on
Ik,
bk(X) = 0
(x ( ~k ),
+ (bk)ik (a)ik, ~ 0 (~ ~ I), B + 0
Lemmas 2.8 and 2.13 show that ~(Ik,C[a],f) ~ ~(Ik,C[bk],f) + --<~C(-~,0) Ilkl +
Z $(Ik,g,C[a],f) + C8~5{~C(~) + ~5} llkl g=l
Z ~(Ik,g,C[a],f) + C5~5{~C(~) + ~5} llkl ~=i
--< Z $(ik,e,C[a],f) + C5 ~5 {OC(~) + ~5} iikl ' g=l Thus ~(l,C[a],f) ~ $C(-8~,~)II] + Z Z $(Ik,g,C[a],f) k=l ~=I + (a)ik,~ => 0 Since
(a) I ~ k,g
csFS{Oc(F) + ~8}II j, (k,~ >_-i), k=1% ~=IZ Ilk,~l =<
ii +- 8e iii.
0, we can apply the above argument to Ik, 3 ° Repeating this,
we have 1
Tff
$(l,C[a],f) ~ {$C(-@~,~) + c8~5(~c(~) + ~6)}{I + il-e ~+
~!~
~c(_ep,F ) + c5~5 {~c(~) + ~5},
~.l-e.2 # + ...}
65
which gives
(2.47)
~c(_~,~) =< z+i2e ~c (-e~'~) + c~ ~
To estimate -
8~a
~ ~,
(a) I ~ 0.
~C(-8~,~), we study
f £ L~eal,
0 & f & i
~(l,C[a],f)
such that, with
for
and an interval
RSL of Type 3 (8~-r.,-@$-a.) ~ = {x 6 I; A(x) # B(x)}
- e~ = b(x) =< e~
I.
a ~ Lreal, First we assume that
shows that there exists = Uk= I Ik
a.e. on
I,
a.
(k . > .1)
e~ .
b(x) = e~
I~I < e~ + g
b 6 Lreal
(Ik = l~,k),
e~ + (b) I (a)l k
(e = ~/2).
{Oc (~) + ~ }
(x ~ ~), e~_
I~I ~ e~+e~
½ I~I =
I~I'
Lemma 2.8 shows that E $(ik,C[a],f) + C8~8{~C(~) + ~8} k=l
$(I,C[a],f) ~ $(l,C[b],f) +
~c(-el3,el3) I~1 + For each
k ~ i,
there exist such that
~(Ik,C[a],f) + C858{~C(~) + ~8}II I. k=l
we use RSL of Type I (O-r.,~-a.).
bk 6 Lreal
0 ~ bk(X) & ~
ii I
and an open s e t
a.e. on
Ik,
Since
~k = Ug=l Ik,~
bk(X) = 0
(ak)ik a e~,
(Ik,g = I~k,g))
(x 6 ~k ), (a) I
~ 0
(9~=>l),
k,i
- (bk) Ik
II
~
~ - e~
llkl
= (l-e) llkl.
Lemmas 2.8 and 2.13 show that ~(ik,C[a],f ) _<_$(Ik,C[bk],f ) + + Thus
Z ~(Ik,&, C[a],f) g=l
C8~8 {C~C(~) + ~8}llkl --< Z ~(Ik,~,C[a],f) + C8~8{~C(~) + ~8}llkl g=l
•
66
$(l,C[a],f) ~ $C(-8~,@#)
(a) I ~ 0 k,g Since
(a) I
~ 0,
Ill
+
(k,g ~ i),
z k=l
% k=l
z ~(Ik, g, C[a], f) g=l
Z ilk,gl ~ g=l
we can apply the above argumen~ to
i_~8 ill.
Ik, ~.
Repeating this,
k,g we have
(2.48) ~ 1 G(I,C[a],f) _-_-{~-C(-@l~,e#)+C6~35(0C({3)+~6)}{1+ t2----~8+ (~)2+...} <
=
Next we assume that there exists
2
~c(_e#,e#) + csp~{Cc(~) + #6} .
1+0
(a) I > 0.
RSL of Type4 (0- A.,6-G.) shows that
such that, with
b E Lreal
~ = {x E I; A(x) # B(x)} = Uk= I Ik
(Ik : l~,k), 0 ~ b(x) ~ ~
a.e. on
I,
(a)Ik ~ 0
(k ~ 0).
Lemmas 2.8 and 2.12 show that $(l,C[a],f) =< ~(l,C[b],f) +
--<
Since
(a) I
% ~(ik,C[a],f) + C5~6{GC(~) + ~5} ]I] k=l
Z $(Ik,C[a],f) + C5~5 {OC(~) + ~6}]I[. k=l
~ 0, we can apply the argument in the case of
(a)
I
~ 0
to the
estimate of k $(ik,C[a],f) ; we have 2 $C(_@~,@~) Ilk I + C5~5 {GC(~) + ~5} llkl " ~(Ik'C[a]'f) ~ i-~ Thus, in this ease also, (2.48) holds.
Consequently,
2
~c (-e~'~) ~i-~ $c (-°~'e~) + c6~{~c(~) + ~}
(e = 1/2).
This estimate and (2.47) immediately yield (2.45). In the same manner as in (Second Step) of the proof of (2.38), (2.45) shows that
G(C[a]) ~ Const(l +~/ilaIl~) (a ~ LTeal).
From this inequality, we
now deduce (2.49)
G(C[a]) ~ Const(l + H~aI~BMO)
(a
is real-valued).
67
For
a E L~eal,
f E L~eal,l
and an interval
Let 8 = IIaNBMO. Inequality (2.44) holds with Lemma 2.2 shows that there exists an open set
I, we study
~(l,C[a],f).
E[.] replaced by C[-]. ~ = U"k=l Ik (Ik = I~, k) in
such that 121
~
--~
fI la(s) - (a)II ds ~ III/2, (a - (a)i)Ik ~ 2~
la(x) - (a)iI
~ 2~
aoe.
on
(k a i),
I - ~.
We put
b(x) =
(x { Ik, k >_- i) (a) I
(x ~ R).
Then ~(l,C[a],f) =< ~(l,C[b],f) +
+
Z ~(Ik,C[a],f) k=l
c5(i + 825 ) Ill.
IITn[']ll2,2 --= i) for some absolute constant C O . (See Lemma 2.10). If I(a)iI ~ 4 c O 8, then IIbll.~ (2 + 4C0)~, and hence
Recall that
~(l,C[a],f) ~ ~C(I + (2 + 4C0) ~) Ill ~ If
l(a)ll > 4c0~,
we put
~(l,C[b],f) =
I .....li-i(a)iI -~
{~ +
b = b - (a) I.
fi ]I I
fl
Then
Const (i +v~)
Ill.
II~II. ~ 2 ~.
We have
f
dyldx
-i - - ) n T n [I~ ] ( X l f ) ( x ) I d x l(-~)H(Xlf)(x) + n=1Z (l_i(a)
Z (i + l(a)l12) -n/2 c0n ii~ii~} ii I =< Const llI. n=l
Thus ~(l,C[a],f) _~ Const(l + V~) We can apply this argument to
Ik.
III +
Z k=l
~(Ik,C[al,f).
Repeating this, we have
1 -[-+q-a(l, C[a], f) =< Const (i +V~),
88
which gives (2.49).
Lemma 2.5 and (2.49) yield (2.39).
This completes the proof
of (2.39).
§2.10.
Application of (2.38) As is well-known, Theorems B and C are applicable to the higher dimensional
Neumann problem~ pseudo-differential operators and the estimate of analytic capacity ([6], [I0]).
(See Chapter III.)
application of (2.38). ¢,
LP(F)
denotes the Banach space of functions
IIfIILP(F)
The Cauchy(-Hilbert)
We say that
lim S ~0
f l<-zl > s
LP(F)
Fixing
p
(lap<-).
f(~) <-z
Id~l
•
M
if,
where
~(z,~)
is the length of
F
We show
Let
F
z 0 6 F,
r= Let
with norm
to itself is denoted by
be a chord-arc curve with constant
IIHFIIL2(F),L2(F) a Const Proof.
F
F is a chord-arc curve with constant
g(z,~) a Mlz-~l,
and ~ .
Corollary 2.14.
in the complex plane
•
z, ~ 6 F, z
on
F
is defined by
H F as an operator from
IIHFII LP(F),LP(F)
f
f(z)IPldzl} I/p
H F f(z) = 1~
The norm of
for any
= { IF
transform on
(2.50)
between
In this section, we show an immediate
For a locally rectifiable curve
we parametrize
{z(t); t E m }
be an even function in
CO
,
F
M.
Then
M 2. so that
~(z0,z(t)) = Jtf.
such that 3
p(x) = 1
(la xaM),
~
Hp(k)rl =< Const,
k=O supp(p) c [-M-l, -1/2] U [1/2, M+l]. Put
h(z) = p(Izl)/z
we have, with
(z 6 ¢).
Since
Is-tl/M a Iz(s)-z(t)I
~ Is-tl (s,t 6 ~),
a(t) = Mz'(t)
1 z(s)-z(t)
= ~s-t
M s-t
h(s-~it fts
(Mz(s)-Mz(t))-I s-t
a(u)du)
( = M T¢[a,h](s,t), say).
69
We have
Iz'(t) I = 1
a.e.
and
HFf(z(s)) = (-~)
lira f l s _ ~ > g s -~ 0
= (-~) M T¢[a,h] {(faz)z'}(s) Hence
II~IIL2(F),L2(F )
= n M IIT~[a,h]II2,2.
F h(s + it) = f~= / ~
f(z(t))z'(t)dt
z(s)-z(t)
a.e.
Let
e-i(sx+tY)h(x + iy)dx dy •
Then Tc[a,h ] = Const ~_~ / ~ Fh(s+it) E[Re {a(s-it)}] ds dt = Const ~_~ f_=Fh(s+it) oo
since
~_~ /_
{E[Re {a(s-it) } ] + ~ H}
ds dr,
oo
Fh(s+it)ds dt = Const h(0) = 0. II E[Re {a(s-it)} ] + ~ H!I2, 2
Lemma 2.10 and (2.38) show that
Const fiRe a(s-it)llBMO Const
M Is+itl ,
and hence llTc[a,h ] N2,2 ~ Const M /_~ f_~ I Fh(s+it) I Is+itl ds dt. Integration by parts shows that, for
n = 2, 4,
I Fh(s+it) I = l(_is)-n f_~ f_~e-i(sx+ty)
n B n 8x
h(x+iy) dx dy I
Const/Isl n . In the same manner, [ Fh(s + it) l ~
I Fh(s + it) I &
Const/Is + itl n
® f ® IFh(s+it)[
Is+itj ds dt =
Const {ffls+itl ~ 1 Consequently,
Const/It[ n
(n = 2, 4).
Thus
(n = 2,4 ) . We have
Ills+itl ~
ds dt + f f Is+itl Is+itpl
i + ffls+itl > i ds dt Is+itl3 }
~
Const.
70
lIHr
llL2(r),L2(r)
= ~ M lIT¢[a,h]II2
Const M 2 f_Z f_Z
IFh(s+it) I Is+itl as at
This completes the proof of Corollary 2.24,
Const M 2 . Q.E.D.
CHAPTER III.
§3.1.
Relation between
ANALYTIC CAPACITIES
~'(.) and
H
In this chapter, we study analytic integralgeometry
OF CRANKS
capacity
y(.)
from the point of view of
and the Cauchy transform on graphs. We shall estimate
so-called cranks.
For a compact set
the Banach space of bounded analytic supremum norm
l!'il ~.
E
in the complex plane
functions
in
~
The analytic capacity of
E
~,
7(.)
H'(E c)
U {=} - E( = E c)
of
denotes
with
is defined by
H
(3.1)
T(E) = sup{If'(~) I ; Ilfll
~ l, f E H®(EC)},
H" where
f'(®) = lim z ~ ~ z(f(z) - f(=)),
the Taylor expansion at
~
i.e.,
([29, p.6]).
f'(')
If
g(z) = (f(z) - f(®))/(l - f(®) f(z)) satisfies
g(~) = 0,
IigIl ~ & i
is the 1/z-coefficient
f E H~(EC), II fll ~ ~ i, H
of
then
( E H=(Ee))
and
H
Ig'(®)I Hence, ~.
= I f'(~)I /(i - I f(~)l 2) _>_ If,(= ) I.
to estimate
y('), we can restrict our attention
The Cauchy transform of a complex measure i 2~i
C ~(Z) =
f~
~
d~(~) ----q-"z-~ i
in
¢
to functions vanishing at is defined by
(z ~ supp(~)).
We put (3.2)
y+(E)
i = sup{-~-
/ d~;
IIC~H ~
i,
~ ~ 0, s u p p ( ~ ) c
E} .
H
Since
(C~)'(')
i 2~i the open disk of center z IEIg = 2 inf
{D(Zk,rk)}k= 1 is defined by
Zk= I of
rk, E
f d~
we have
and of radius
Y(E) g T+(E). r.
For
Let
D(z,r)
denote
s > 0, we put
where the infimum is taken over all coverings
with radii less than
IEI = lim s ~ oIEls"
If
equals its 1-dimenslon Lebesgue measure.
s.
The generalized
length of
E c e, then the generalized We shall compare
T(-),
E
length of
Y+(-)
E
and
If. A set any
z £ F,
constant
M.
F c ¢
is called a locally chord-arc
there exists
E > 0
A locally chord-arc
a locally chord-arc
such that
Fn
curve with constant
D(z,e)
is a chord-arc curve with
curve is not, in general,
compact curve with constant
i00.
M, if, for
connected.
We define
Let
F
be
72
(3.3)
p(F) = inf y(E)/IEI,
p+(r) = inf y+(E)/IEI,
where the infimums are taken over all compact sets N'II (i ~ p < ~) L p (r)
be the same as in §2.10.
r
with supremum norm
on
F
li"IIL~(F)
and let
E
Let
L (r)
on
L~(F)
F .
Let
be the
LP(F), L"
space on
be the space of functions
f
with norm
NflIL(F)
=
If()l>
sup
The Cauchy transform
HF
on
operator from
to
LI(F)
LI(F)
F
>
;
is defined by (2.50).
HHFIIL1(F) ,L~(F) "
is denoted by
w relations among
p(F), o+(F)
HF
The norm of
as an
Here are
and IIHFIILI(F),LI(F)"
Theorem D.
(3.4)
C°nst/IIHFIrLZ(F),L~(F)
~ p+(F) ~ Const/llHrHLl(F), L~(F),
(3.5)
p+(F) ~ p(r) ~ Const p+(F)
1/3
.
We begin by showing the second inequality in (3.4). llfH
= i.
k > 0,
For
Let
f E L2(F),
- ~ < e ~ ~, we put
Ll(r) Ek, e = {z ~ F; HF f ( z ) ~ D(ke i e , k / 4 ) } , There exists a compact set
Fk~ 8
in
exists a non-negative measure
EX, ~
on
FX, e
d~ ~ H Since IIC~II
IFx,el ~ IEx,el/2.
such that
There
such that
y+(Fx,e)/2.
k,e
~ i,
d~ = hldz I
we can write
with
h 6 L~(F),
0 <_- h <_- 2~.
We
H ~
show that
IIHFhN
~ Const.
L~(F) For
zO ~ F
choose first i00.
such that
¢ > 0
Choose next
0 < e' < s
IHF h(z 0) where so that
so that
H F h(zo)
exists (in the sense of (2.50)), we
F n D(Zo,¢ )
is a chord-arc curve with constant
so that, for any
z E F c n D(Zo,¢'),
2i C~(z)[ g ]HF h(z O) - 2i C(hId~])(z)[
is the restriction of
h
to
F n D(Zo,g).
+ i,
Choose at last
0 < ¢" < g'
73
7,(,o)-~-
IHr Since
~"
F n D(z0,¢)
such that
[(<) r n D(z0,~") c
I
~ - z0
<-- J--
is a chord-arc curve with constant
s "'4 ~ =< I~o - z~'l<,=< ~"i2
i00, there exists
" r n D(%,i0 -i° ~') = ~.
and
IHr h(z O) - 2i C ~(z~) I ~ IHr ~(z o) - 2i c<~Id~l)l --<
I ~- m
=<
2 s
r n D(Zo,¢")C
+
IdOl
~ - z0
~-
rr
~ - z~
t=o - =6t r n (D(=o,~)-D(~o,~")) t ~ - =oi I~ - %t 1
21
z 0' ~ ¢
Thus we have
+ i
I<11+2
Idol
Id~l + 2 _<-Const.
F N D(Zo,~") Since
IIC~II =< i,
we have
IHF h(zo) [ -<- Const.
Since
~F h(z)
H" r,
TIHr h}i
~ Const. L~(F)
Sinc e 1
7+(Fk,e)
1 -~-
~
I Fk,e
hldzl - T + ( F k ' 9 ) '
we have k ~
Y+(Fx, e)
=< ~
I IF
k e i0 hldzll k,e
=<
i ~--
iiFk,@ (HF f) h Idzll
~2n
IIF f(H F
h)Idzll
Const IIfIILl + (r)
+
+ k 7
~
IFk,@ hldz 1
%(Fx,e)
k ~ T+(Fk,e) ,
which gives y+(Fk, e) ~ Const llfIILi(F)/k ~ Const/k . Since
IEk,@l ~ 21Fk,eI we have
~ 2 y+(Fk,e)/p+(r)
~ Const/(k p + ( r ) ) ,
exists a.e. on
74
Iz ~ r;
l~r f(z) l > k I ~_
~ {const/(X p+(r))}
Z
I U n=0
.4)n (g
=
i00 u E k=l
I (5/4)nk, 2nk/100
Const/(k p+(F)).
n=O
Since
k > 0
is arbitrary,
flIL~(r )~
IIHr
Const/ o+(r)
(f ~
L2(F),llfNLl(r) = i).
A standard argument shows that this inequality holds with g E LI(F),
IIglILI(F)
= i.
f
replaced by any
Hence the second inequality in (3.4) holds.
The proof of the first inequality in (3.4) was essentially given by Davie [21], Marshall
[37] and Davie-¢ksendal
[22].
Here is a tool for the proof.
Lemma 3.1 (the separation theorem [53, p. 108]). convex sets in the Banach space
II'IIL.(F). Then
C(F)
Let
P, Q
be two compact
of continuous functions on
there exists a complex measure
~ on
F
F
with norm
such that, for any
f E P, g E Q, Re fF f d~ >
Re fF g d~.
Since F is a locally chord-arc compact curve with constant i00, there exists F N D(z,s 0) is a chord-arc curve with constant i00 for any ~0 > O such that 8 z E F. Let H F (0 < s < SO/2) be an operator defined by
H r~ f(z) = ~i f
f(~l ~ - z
r n D(z,c) c
Id~I
We show that there exists an absolute constant C O (3.6)
Let
M F2g
s IIH FII ~ ~ LI(F) ,e~(F)
C0
F(z,~) = F N D(z,~). IIMISlILI(F ) i
For
such that (= C0m 0, say).
be a maximal operator defined by
MF2g f(z) = 0 < nsup~ 2s where
llHrllnl(r) ,L~(F)
(f e El(F))
f ~ LI(F)
with
~
,n (F)
~
~
i
/F(z,n)
if(~) i id~l
Then Const.
IIftlLl(F) ~ i,
we put
E = {z ~ F; IHF f(z) I =< k ' M2~F f
(f E LI(F)),
75 Then
l r - El ~ {tlHrltLl(r),L!(D
}/x NM~lld(r),L~(r)
+
(m0 + Const)/k Let
z0 E E.
Then, for any
IH~
IH~ f(z) I ~
< 1
z ~ E N D(ZO,e/2),
f(z) -
l
ifF(zo,8 )
Hrf(z)1 + IHr
f(z) I
Id~II + k
f(~)
=< 1w[ ]fF(Zo,g)-f(~)~- z -< ~i
Const mO/k.
~ f(<) -z
IdYll + Const M2Fg f(z)
+k
]d~] I + Const k .
Hence we have
[H~ f(z)[= lHr(~0,~) where
fo
Since
F(zo,g)
is the restriction of
fo(Z)[ f
+ C~ k
to
F(zo,S)
and
is a chord-arc cu=ve with constant
IJHF(zo,s)H LI(F),L~(F ) ~ Const.
Iz ~ E n r(z0,~12);
We choose a finite covering and
IH~ f(z)I
C O'
is an absolute constant.
i00, Corollary 2.14 shows that
> (% + l)xl
n {D(Zk,g/2)}k=l
llZk= n 1 XF(Zk,~)IIL.(£) =<
characteristic function of
n r(z0,~/2)),
(See also (2.10).) Thus
Iz E E 0 £(ZO,S/2); ]HF(zo,s)fo(Z)l
(i ~ k ~ n)
(z E E
F(Zk,S)°
g
Iz ~r; IHr f(zll > ( % + i ) ~- Iz ~E;PH~ f(z)I > ( % + l ) X l
> kI ~ of
Const,
r
(Const/k)IIfOllel(r(Zo,~))
so that where
zk E F XF(zk,g )
Then
xI +
n =~ Z ]z ( E fl F(Zk,S/2);IH F f(z) 1 > k=l
IF - E l
(% + 1)~J + Const mo/k
n _<- (Const/k) k=IZ IF(zk,e ) If(~)l Id~l +
Const mo/k
which gives (3.6). Given
0 < ~ < gO/2
is the
and a compact set
E c F,
we put
&
Const mo/k,
76
F = {f E L'(F); 0 ~ f(z) ~ i, IE f(z)IdzI ~ IEl/2,
where
P = {Hi f; f ( F},
Q
mo = NHFIILI(F),L]w(F)
and
P n Q # @.
Suppose that
supp(f) c E} ,
[Igile.(r )~
= {g E C(F); CO
P N Q = @.
d~ >
Taking the supremum of
Re
Since
Re IF g d~
IF
g d~
Como},
is the constant in (3.6). P, Q
We show that
are compact and convex in
C(F), Lemma 3.1 shows that there exists a measure Re /F HFs f
3
~
on
F
such that
(f E ~ g (Q)
over all
g E Q,
Re IF H F~ f d~ ~ 3 C0m 0 IFid~I
we have
(f E F)
which implies that - Re IF f go
IdzI { 3 Com 0
(f E F),
where
g0(z) =
(7 i r Id~l) -I fr, I< - zp > ~
By (3.6), we have, for any
h E LI(F)
Iz ( F;IH ~ h(z) I ~ Since the kernel of
H Fe
2 Como/IEiI ~
Iz E F; Igo(z)I ~
Then
~
with
IIhIILI(F) ~ i,
IEI/2.
fFld~I ~
2 Como/iEiI ~
F = {z E E; Igo(z) I ~
function.
d~(<).
is uniformly bounded, this inequality holds with
h Idzl replaced by any measure
Let
with
1
< - z
2 Como/iEl}
XF E F .
I.
Hence
XF
be its characteristic
IEI/2. and let
Hence we have
3 Com 0 _-< - Re fF XF go
fdzI --< IF Igo (z) I Idzl
2 Com 0 --< ~
fF Idz] =< 2 Como,
which is a contradiction. Since
P N Q # ~,
IIHF f¢ile®(F ) <= 3 tom O. ~i >-- e2 >-- "'''
Thus
P N Q # ~.
there exists Let
limn -~ ~ Sn
{On}n= I =
0
and
f~ E L'(F)
such that
fs E
F,
be a sequence of positive numbers such that {f
gn
IdzI}~=l
converges weakly (as a
77 sequence of measures). Idzl; we write by
IIHr
fOllL~(r )~
Const m O.
0 < 2s e < e k < SO/2.
Sk St 1% f %)I
+
Let
ISr, _ F(Zo,CoI2)
st fk
ek, e e
Id~lt
Z
1
(
1
1
1
~ - z
IdYll
fF_F(Zo,ao/2) f ~
-
ee
)
+ Const
(~)
IdYll
) fse(~)
fee(K)IdYll sO c~ M F f (Zo)
Idol
IdYll + Const {i + (ek/t~)Irl}.
fee(~) - r(zo,Ck)
~ - z
~ - z0
fee(<) ~ - z
F -F(z0,c k)
satisfy
z E F(ZO,ek/2),
e k < I~ - Z o l < eO/2 ( ~ - Z0
If
If r
and let
--
!
!
We show that
Imr_F
~ !
imr,
~
fO 6 ~
z0 E F
Then, for any
2 Const (ek / s0)
Let
We have
i
! -
Then the limit is absolutely continuous with respect to
fOidz I.
z
denote the restriction of
fee
to
F(Zo,ek).
Then, for any
z E F(ZO,ek/2), et
Id~ll = IHr f
!~ ifr- r(Zo,~k) ~ - z 3 Com 0 +
st
st
(z) - H r fk(z) l
~e ~e IHF fk (z) I
which shows that Ck t ~ I HF f (Zo) l ~
s~ s~ IHF fk (z) l
+
+
3 Com 0
Const {i + (%l~)Irl}
(z E F(Zo,Sk/2)).
By (3.6), we have st st Iz E r; IHr fk (z) I g
10-3 Ir(Zo,~k) I
103 Com 0 ] < 10 -3 st = rlfk NLI(F )
1 7 Ir(ZO'Sk/2)I "
This shows that the generalized length of is larger than or equal to
{z E F(z0,gk/2);
s t st IHF fk (z) I < 103Como }
IP(Zo,Sk/2) I/2. Hence the mean of
=
78 ¢g sg IHF fk (z) l
[Hr
over this set is dominated by
Const mo, which shows that
(Zo)l -<_ Const m0 + 3 C0m0 + Const {1 + ( 8 k / S 2 ) [ F I }
f
= /2 < Const {m0 + (¢k 80 ) Irl } " Since
z0 ( F
is arbitrary,
ii. " f"Jl Letting first
Const {m 0 + ( S k / g ~ ) ) F I } .
8
tend to infinity, and letting next
k
tend to infinity, we have
[[HF f 0 IIL.(F) ~ Const m 0. Now let
d~ 0 = f01dz [.
Since
f0( F,
[[Hr f0[[L.(F) ~ Const mo,
the
maximum modulus principle shows that
[[c~°lt H ® --
C1
~1
is an absolute constant. 00
I~
[EI/Cl'
fE d~° ~-
->_ O, supp(~ 00) c E,
Let
00
tlc~°°ll
supp(~ °) c E,
= O/(Clm0).
Then
< 1. =
H® Hence d, °° ,
which shows that
T+(E)/IE 1 ~ Const m 0.
Taking the infimum over all compact sets
E c F, we obtain the first inequality in (3.4). The first inequality in (3.5) is evident. inequality in (3.5).
Let
At last
f ~ L2(F), llfIILl(r) = i.
For
we show the second k > 0, - ~ < O ~ ~,
we put
EX, e = {z ~ F; H F f(z) ( D(ke i0, pk/4)} There exists a compact set exists
C
g (H
(Fk, 0)
Ilgll. H
We can write
~ z,
Since
in
EX, 0
such that
tFk,ol ~ IEk,o I/2"
such that
g ( - ) = 0,
g = C(hldzl)
llhllL~(r)< 2~,
FX, 0
(o = ~(r)).
with
Ig'(-)l
~ y(Fk,0)/2.
h (L~(F)
I1~'r hllL~(r) ~ Const,
satisfying supp(h) c Fk, 0
There
79 1
= ~2~ IfF>~,0 hldztI
Y(Fk, e) -~ [g'(~)l
=< Y(Fk,@)'
we have
k -<
1 2"--~ l [fFk,o
IfFk,e Xe ie hldzll
(Hrf) h Idzll
+ p% fFk, 0 lhlJdzl
--< 2T
Jfr
-< Const
llfllLl(r) + E 7(Fk,e),
which gives
f
HF h Idzll +
IFk, 0 1
k
y(Fk,o) ~ Const plflILl(r)/k = Const/k. IEx,0] ~
we have, with
21Fk,ol
~
Since
y(Fk,0)/p ~ Const/(pk),
q = (the integral part of
Iz ~ r; IHr f(z)l > xl
[U
103/p),
q U
n=0 k=l
E{l+(p/4)}n%,2~k/ql
Const/(p3k), which gives that IIH F ]ILl(F) ,L~(F)
=< Const/p(F) 3
This inequality and the first inequality in (3.4) immediately yield the second inequality in (3.5). §3.2.
Vitushkin's example, Garnett's example, Calder~n's problem and extremal problems
([5], [28], [46], [52])
Painlev~ showed that the analytic capacity of a compact set of zero generalized
l e n g t h i s e q u a l to z e r o ,
generalized
l e n g t h , we can c h o o s e a f i n i t e
that
Znk=l r k -< IEI"
1f' (~) ] =
Then, f o r any
covering
f ( H~(E c)
n Z k=l
rk _-
E of f i n i t e p o s i t i v e n {D(Zk,rk) }k=l of E so
with
i If f (~) d~ [ 2--~ 0 {Uk=ID(Zk,rk) } Const
which gives
For a compact s e t
IlfllH~ ~
1,
80
(3.7)
Y(E) =< ConstlE 1 .
This inequality immediately yields Palnleve's theorem. an example follows.
P Let
such that
Y(P®) = 0, IP I > 0.
P0 = [0,I].
[0,1/2], [i/2,1].
We divide
P0
Vitushkin [52] constructed
The set
P
is defined as
into two non-overlapping closed segments
Fixing their midpoints, we rotate these two segments so that
the resulting two segments are perpendicular to the x-axis. resulting segments are on divide each segment length.
(of
~.)
Let
P1 )
PI
discussion, we define
that
P
y(Q ) = O,
length
Pn;
into two non-overlapping closed segments of equal
Pn
nn= 0 Uk=nP k.
1/4
Let
The set
QI
in the four corners of
4 -n
2n
closed segments of length
Q~
is defined as follows.
Q~
2-n.
such
Let
be the union of four closed squares with sides of
with each component of
length
is a union of
Repeating this
Garnett [28] also constructed an example
IQ~I > 0.
Q0 = [0,I] x [0,i].
Qn-i
We
Fixing their midpoints, we rotate these four segments so that the
resulting four segments are perpendicular to the y-axis.
We put
(The midpoints of the
be the union of these two segments.
Qn-i
Q0"
In the same manner,
in the four corners of the component.
There are several proofs of Ahlfors function [29, p. 18] of
Qn
is defined from
replaced by four closed squares with sides of
y(Q ) = 0. Q
We put
Q~
= Nn=0 Qn"
Supposing that the non-trivial
exists, Garnett [28] showed a contradiction.
Using Besicovitch's set theory [i], Mattila [38] also gave an indirect proof.
A
direct proof from the point of view of the construction of Garabedian functions [29, p. 19] is given in [46].
This method is applicable to estimate
Y(')
of
various sets. It is sufficient to construct a sequence compact sets
Rn
and
f n (H=(R~)
so that
{(R n,fn )}n=10000~ R n o Qn'
of pairs of
fn(~) = i
and
78Rn [fn(Z) l Idzl ~ Const/(log n).
If such a sequence exists, we have, for any
g (H~(Q~),
IIgll
~ i, g(~) = 0,
H~
Ig'(~)l
=
2~i
i ~2-~ fDR
IfORn g(z) dz I
Ifn(Z) lldzl
2--~i I fSRn g(Z)fn(Z) dz I
~ Const/(log n),
n which shows that
y(Qn ) ~ Const/(log n) o
is constructed as follows. For a closed square
Q
We denote by
Thus m
y(Q ) = 0.
The pair
the integral part of
with sides parallel to the coordinate axes,
denotes its lower left corner and
g(Q)
Q+
Q
denote two closed squares in
(Rn,f n)
(log n)/2.
denotes the length of a side.
~(Q) Let
Q_,
with sides parallel to the coordinate axes
81
such that
2(Q_) = £(Q+) = 4-mg(Q),
g(Q_) = ¢(Q)
and the upper right corners of 4k Qk = U j=l Qk,j with
Q+ and Q are identical. For k > 0, we can write k components {Qk,j}4_1. Note that %(;Qk,j) = 4_k. We define inductively j-1 4m compact sets {Vk}k= 0 by V 0 = (Q0)_U (Q0)+, Vk = U where
E~ ~k (Qkm'~)-U
(Qkm'~)+
~k = {i -< ~ -< 4 km," Q k m , ~ N 4m (3.8)
(i < k < 4m),
(U k-i j=0 V j) = ~} . Let 4TM
Rn = {k=0 ~ V k} 0 Q(4m+l) m,
4m + 1
~0 = {i} . We now put
fn (z) = k=0~ %E~kHu(4km(z - E(Qkm,%))),
where u(z) = exp[e i~/4 4 -m { - - 1 + 1 }]~ z_(e i~/4 4-m/~) z_l_i+(e i~/4 4-m//~) Then
(Rn,fn)
satisfies the required conditions. (See [46].)
82
Calder~n [5] suggests to study
C[a]
for
a ~ L°° real"
This problem seems very hard;
in effect, Theorem D and Garnett's example immediately yield = o~
(See Remark 3.16.) Let
Qn.)
!
Then
Qn
is a union of
QnI 4n
=
{(2-i)z/3; z 6 Qn }. squares
V
4n
{Qn,j }j=l
{IIC[a]II2,2; a E Lreal}
(We rotate and contract with sides of length
(/5/3)4-n; the sides of Qn,j are not parallel to the coordinate axes. Let the projection of
Qn,j
to ~R and let
Qn,j
be the segment in
Qn,j
In, j be
whose n
projection to
~
colnsides with
In, j (i ~ j ~ 4n).
The intervals
{In,j}4=l
are mutually non-overlapping, the length of each interval is 4-n and their 4n ,,, [0,i]. Let F n = Uj= I Qn,j , where Qn~,j is the closed sub-segment
union equals of
Qn,j
of the same midpoint as
Qn,j
such that
is a locally chord-arc compact curve with constant IFn I = vr~-/6
and
Then
Fn
Since
y(Qn ) = (vr~/3)Y(Qn) , Theorem D shows that
IIHFnIL
l(rn) ,Llw(F n)
(3.9)
IQn,jl = IQn,jl/2. i.
~
Const/p (Fn) -_> Const/p(F n)
_a Const IFnl/Y(Fn) = Const/y(Fn) >= Const/Y(Qn) = Const/Y(Qn). We see that llHr IIi < n L (rn) ,Lwl(rn ) (See (3.18).)
Const {l]HFnlIL2(rn) ,L2(Fn ) ,,, 4 n {Qn,j}j= I
Since the projections of
we can define a graph {(x, An(X)); x 6 ~} A'n (= an) ~ Lreal." Since
an(X) = 1/3
IIHFnIIL2(Fn),L2(Fn ) ~
containing
+ i} .
to ~ Fn
are mutually disjoint, such that
a.e. on the projection of
Fn
to
~R,
Const llC[an]II2,2 .
Thus (3.9) shows that I/Y(Q n) ~ Since
Const{IiC[an]II2, 2 + i}.
lim n ~ Y ( Q n ) = y(Q ) = 0,
this gives that
{IIc[a]II2,2; a E L~eal}
=-.
It is very important to give various reasonable grounds to Vitushkin-Garnett's examples. Let
From this point of view, we consider the following extremal problem.
I 0 = [0,I).
For
s I, ..., s n E ~, we define
TSl ..... sn(X,y) = i/{(x-y) + i(Asl ..... an(X) - Asl ..... sn(Y) )} , where
83
(x ¢ I 0) As I ..... sn(X)
= I 0 sk
k-i
k
(--~-_~
x < n .
1 <- k < n) .
.
.
Our extremal problem is the following: ex(~(n) = max {~(Tsl ,...,sn); Sl, ..., sn ( m}
(n _~ i).
We see that (n ~ i).
Const iV~og(n+l) & ex (n) ~ Const ~ o g ( n + l ) (See Appendix I.) A~(x) = E 10m k= I
A0
We define a function
Sk(X)
(x 6 I0),
where
on
~
by
A~(x) = 0
(x ~ I0)
and
n
is the integral part of
m
(log n)/(log i0)
and 0 gk(X) =
Let
TAO(X,y)
(j-l)10 -k ~ x < j i0 -k, i ~ J ~ i0 k
i0-k be the kernel associated with
j
is
odd
j
is even.
A O.n Then
n
~(T 0 ) ~ Const I/~ = Const ~og(10m). An (See (3.14).)
Hence
r 0 = {(x, A~(x)); x ~ I0 }
is one of the worst graphs with
n
respect to
ex ( n ) . ~
The g r a p h
F0 n
is
similar
to
Qm"
Hence Theorem D suggests
that Problem 3.2.
Const T(F~) ~ min {T(Fsl .... ,Sn); s I ..... Sn6 ~} Const
where
§3.3.
T(F~)
(n g i),
Fsl,...,s n = {(x, A Sl"'''Sn (x)); x ( I 0} •
The Cauchy transform on cranks As a first step of harmonic analysis on discontinuous graphs, it is natural to
begin with worst graphs. M > 0
such that, for any
We say that a set
E c ¢
is thick, if there exists
z ( E, r > 0,
I/M ~ IE n D(z,r) I/r ~ M. The 1-dimension Caldergn-Zygmund decomposition is applicable to thick sets. thick sets are also natural objects.
From the point of view of §3.2 and
Hence
84
"thick sets", we define (thick) cranks. An interval
i
in
I 0 = [0,i)
is called a dyadic interval if
I
is
expressed in the form
I = [(j-l)2 -g, j2 -g) with integers g >-_ 0, 1 =< j =< 2g. A m R = {Ik}k= 1 of mutually disjoint dyadic intervals is called a m I0) if I 0 = Uk= 1 I k, For a positive integer q and two coverings
finite sequence covering (of n
~
R' = {lj}j=l,
m
= {Ik}k=l,
we write by
R'<
q
R
if each
I'~ J
is expressed as a
union of at least 2 q elements of R of same length. A segment I 0 is called a (thick) crank of degree
0.
For a positive integer
is called a (thick) crank of degree and
n
functions
(3.10)
AI, ..., A n
I 0
RI
~q
on
... 2
(ql .... , qn )
n, a graph
F = {(x, ~ ( x ) ) ; x
n, if there exist I0
~ qn
n
coverings
n
tuple
AF
(3.12)
on each element
For two positive integers
R
for some n
I
of
Rk,
Ak
is a constant and
(i ~ k ~ n). n, q
and two real numbers
=, ~
less than or equal to
i, we define a crank F(n,q,e,~) = {(x, ~(n,q,a,~)(x));
x E I0 }
by ~(n,q,~,~)
= A(q'~'~) + .... + A(q'a'~) n (x E [(j-l)2 -qk, j 2-qk), j
odd)
A(q,a,~)(x ) = I ~2-qk k
(~2_qk
(x E [(j-l)2 -qk, j 2-qk),
j
even).
We show
(3.13)
F
be a crank of degree
IIHFNL2(F)
s Const ,L2(F)
There exists an absolute constant (3.14)
n
such that
= A I + ...+ An,
)~(x) I ~ Ill
Let
R
of positive integers,
(3.11)
Theorem E.
E I0 }
R I, ...
lIHF(n)llL2(F(n )
~0
Then
V~.
such that, if
),L2(F(n))
(r(n) = r(n,q,~,~),
n.
~
Const V~n
n ~ i).
I~ - ~I 2 ~ D0/q,
then
85
In this section, we give the proof of the first half of Theorem E. For a crank
F
= {(x, AF(x)); x ~ I0}, we put
AF(x) = 0
outside
I0
and define a
kernel (x # y, x, y ~ ) .
TF(X,y) = I/{(x-y) + i(AF(x) - AF(Y)) } For
f E L2(F), we have H F f(x + i AF(X)) =
1
- ~
1
p.v.
f0 TF(x'Y)f(Y + i AF(y))dy
a.e. on
I 0,
and hence
(3.15)
IIHFIIL2(F) ~ ,L2(F)
!
lITFI12,2.
Here are three lemmas necessary for the proof of (3.13). Le~mma 3.3.
Let
F
be a crank of degree
NTFII2, 2 _-< Const Proof.
{~(TF) + I} .
ITF(x,Y) I =< i/Ix-yl
For any dyadic interval
(3.17)
ITF(x,Y) - TF(x',Y) I --
This is shown as follows. and let
.
I, we have
(x, x' 6 I, y ~ I
AI, ..., An
Then, for any
Let
k
R I, ..., Rn
(i =< k ~
I)).
= (the double of
be the coverings associated with
be the functions associated with
the smallest integer of I.
Then
Evidently, (3.16)
in
n.
n)
such that
AF. Rk
We denote by
has an element contained
x, x ~ 6 I, <
J
0
(i ~ k < m I)
=
I
2ml-k+l • III
(ml~ k
IAk(X ) - Ak(X')l ~ n).
Thus
ITr(x,y) - rr(x',y) 1 ~ Constl(x + i At(x)) - (x' + i Ar(x')) ! /Ix-yl 2 n
<= Const{Ix-x' I +
Z k=m I
IAk(X) - Ak(X')l} /Ix-yl 2
F
mI
ConstllI/Ix-yl 2.
86
The proof of this lemma is analogous play the same role as
el(.).
to the proof of Lemma 2.5;
(3.16) and (3.17)
In the same manner as in the proof of (2.9), we
obtain ~(T~) ~ Const {~(TF) + i}. J' = (x - (~/2), x + (e/2))
(Replace containing
x.)
(3.18)
where
Ix; T~ f(x) > 3 k, <
i
=
i00
J'
J~ f(x) ~ ~ k I
I x; T~ f(x) > k I
~ = C O {~(TF) + i}
{Ik}k= 1
by the largest dyadic interval in
Using this inequality, we obtain
and
CO
(f E L 2,
is a suitable constant.
by a suitable sequence of dyadic intervals.)
immediately yields
k > O) (Replace
Inequality
(3.18) Q.E.D.
IITFII2,2 ~ Const {~(T F) + i}.
For a non-negative
integer
o(n) = sup {~(TF);
F
we put
crank of degree
~(n) = sup {$(I O, TF,f); F
n,
& n} ,
f E Lreal, 0 ~ f a i,
crank of degree
~ n} .
We show Lemma 3.4.
For two positive integers
(3.19) Proof.
Let
satisfying
Let
(3.10)
F
with
g ~ n-l,
Without loss of generality we may assume that
be a crank of degree
and let
A I, ...
A '
(3.12).
g
~(n) ~ $(g) + ~(n -g - i) + Const ~(n). f E Lreal, 0 ~ f ~ i.
supp(f) c I 0.
n,
be
n, n
R 1 . . . . , Rn be
A F, = A 1 + ...+ An_g_l
,
m
Rn_ g Then
F'
= {Ik}k= I.
is a crank of degree
n - ~ - i.
We have
$(I 0, T F, f) = (TFf , TFf)fd x = ~(I0, TF,, f) + ((T r - Tr,)f, TFf)fd x + (TF,f, and
coverings
functions satisfying
n
Put F' = {(x, AF,(X)); x ~ I0} ,
n
(T r - TF,)f)fd x
(3.11)
87
((T F - TF,)f , TFf)fd x m
=
Z flk(T F - Tr,)(X ik f)(x) TF(Xlkf)(x) f(x)dx k=l m
Z flk(TF - TF')~Ik f)(x) T F ~ c f)(x) f(x)dx k=l Ik m E f c (rr - TF')(Xlkf)(x) rrf(x) f(x)dx k=l Ik ( = L I + L 2 + L3, Since
say).
TF,(x,y) = i/(x-y)
(x,y E I k, i _-< k =< m)
and
~(n) ->- Const, we have, by
Lemma 3.3, m
ILl1 ~
m
Z ~(I k, TF, f) + ~ % flk IH(Xlkf)(x) k=l k=l
Tr(Xlkf)(x)Idx
m
~(I k, TF, f) + Const IITFII2,2
Z k=l m
^
~(Ik, TF, f) + Const o(n).
E k=l
Extending coordinates, we see that, for each 0 ~ fk ~ i
and a crank
Fk
of degree
g
Ik,
there exist
fk ~ L ~real'
such that
$(I k, T F, f) = llkl ~(I 0 , TFk , fk ). Hence m
ILl1 ~
% llkl ~(I0, fk ) + Const o(n) k= I TF k ' ~(~) + Const a(n).
Recall (3.16) and (3.17). have, with
Since
x k = (the midpoint of
TF(X,y ) - TF,(x,y)
m
IL21 =
is anti-symmetric, we
Ik) , I *k = (the double of
I Z 7!k(T F - TF,)(Xlkf)(x) k=l
× {TF(× *c f)(x) - TF(× *c f)(xk)} Ik Ik
f(x) dx
Ik)
88 m
+
Z flk(TF - TF,)(Xlkf)(x) k=l
TF(× ,
Ik-Ik
f)(x) f(x)dx I
m Z Ilk I(TF - rF,)(Xlkf)(x)l Mf(x) dx
=<- Const
k=l m
+ k=iZ Ilk I(TF - TF,)(Xlkf)(x) I (/ik_lk ~
) dx
_-< Const lITF - TF,II2,2 =< Const ~(n). We have IL31 ~ j,k;j#kZ Iij {flk
ITr(x,y) - Tr,(x,Y) idY} ITFf(X) I dx
fi~cN lj {71, c j n Ik
z
j,k;j#k
ITF(X,y) - TF, (x,y)IdY}ITFf(x) I dx
+
Z {I * c I TF(x,y)-TF,(x,Y) IdY} ITFf(x) Idx j ,k;j#k $1kC*N I.J (lj -lj) N Ik
+
Z I , {Ilk ITF(X,Y) - TF,(x,y) IdY} ITFf(X)Idx j,k;j#k (Ik-Ik) N lj
= L31 + L32 + L33,
[L331
m
z f,
~
{flk ITF(X'Y) - Tr,(x,y) Idy} ITFf(x) idx
k=l Ik-Ik m
2
2
Z f , (flk ~ ) k=l Ik-Ik m Z k=l
ITFf(x)idx
~ ) 3 {f ,
Ik-Ik
(flk
dx}i/3
ITFf(x) I3/2 dx} 2/3 {I .
Ik-Ik
m
Const
Z Ilk II/3 {7 , k=l Ik
ITFf(x)I3/2 dx} 2/3
Const ( Zm llkl)1/3 { mE I . ITFf(x) I3/2 dx}2/3 k=l k=l Ik m llk 12 Const { I_~ ( Z ) ITFf(x) l3/2 dx} 2/3 k=l (X-Xk)2 +llk 12
89
m
( Z k=l
IIk 12 )4}I/6 {7 ~ITFf(x) l2 dx} I/2 T llk 12 (X-Xk)
Const
{f
Const
I[Trf][2 =< Const ][TF][2~2 =< Const ~(n), m
IL3,21 ~
Z {7 , ITF(x,Y) - TF,(x,y) IdY} ITrf(x) Idx j=l flj lj-lj m
z 7i j (7 , j=l I.-i.
=< 2
] ~dy
) ITrf(x) idx
J ]
Const IITFfll2 ~ Const o(n) and
IL311 Z
j,k;j#k
fI~
l~(x) - Ar,(x) I + IAF(y)-AF,(y) I dy}ITFf(x) Idx
{f *c c N lj ~,] n ~k
m Z 71. j=l 3
Ix - yl 2
n I Z A (x) l (71,c ~=n-g ~ . J
m
dy ) iTFf(x) idx Ix-yl 2
n
Z fik k= I c
{Tik I Z A (y) I/Ix-yl 2 dy} ITrf(x) Idx ~=n-g
m
Const
j=l flj
lljl (fl,c • ]
dy ) irFf(x) idx Ix_yl2
m
+ Const
Z J"Ik*c IIkl (7Ik k=l
dy 2 ) ITrf (x) idx Ix-Yl
m Const /i 0 ITFf(X)]dx + Const f ~ ( Z - k= I Const
llk 12 + Ilk 12 iX_Xkl 2
)ITFf(x) Idx
IITrfll2 ~ Const ~(n).
Thus IL31 ~ Censt ~(n). Consequently, l((r r _ rF,)f, rFf)fdxl
~ ILII + Ie21 + IL31 ~ ~(g) + Const ~(n).
90
In the same manner, we have
I(TF,f, (Tr - TF,)f)fdx[ m Ik=IZ Ilk Since
TF,(Xlkf)(x) (T F - TF,)(Xlkf)(x) f(x)dxl
+ Const ~(n).
TF,(x,y) = i/(x-y) (x,y E Ik, 1 ~ k ~ m), the first quantity in the right-
hand side is dominated by
Const ~(n).
Thus
3(10, Tr, f) ~ ~(Io, TF, , f) + $(g) + Const ~(n) ~(n - g -
I) + ~(g) + Const c(n), Q.E.D.
which gives (3.19). Lemma 3.5. Proof.
a(n) 2 ~ Const ~(n)
We see that, for any crank
(See(Second Step) in §2.8.) (3.20) Since
sup {$(Tr);
F ,
and let
a crank
FI
F
crank of degree
f E L~eal, 0 ~ f ~ i.
of degree
~ n
and
~(I, TF, f) = III $(I0, TFI,fI ). non-dyadic interval
such that
n} ~ Const $(n).
n = 0.
Let F
fI ~ LTeal' Hence
be a crank of degree
For any dyadic interval 0 ~ fI ~ 1
I, there exist
such that
(i/IIl) $(I, T F, f) ~ $(n).
For any
I c I0, there exist mutually disjoint two dyadic intervals
Jill
= tI21
~--~i$(I, TF, f) = ~ i ~
~(TF) 2 ~ Const $(TF).
Hence it is sufficent to show that
$(0) ~ Const, (3.20) holds for
n g 1
I I, 12
(n $ 0).
~2JII, ~ I
IUI
2
Then
3(11 U 12, T r, Xlf)
{3(11' T r, Xlf) + $(I 2, T r, Xlf)
+ 7i I (if2
dy )2 dx + 7i 2(7I 1
ix_y I
id)
ix_y I
2
dx}
Const {~(n) + i} ~ Const $(n). For any interval
I c ~, we have
1 $(I, TF,f) ~ ill Thus
1 $(I 0 N I, TF,f) + Const ~ Const ~(n).
$(TF) ~ Const ~(n), which gives (3.20). In the same manner as in Lemmas 3.4 and 3.5, we have
Q.E.D.
91
Lemma 3.6.
o(n) ~ ~(n-l) + Const
(n ~ i).
We now give the proof of (3.13). 3.6 show that
~(n) < -
any non-negative integer
for all
Since
n ~ i.
~(0) ~ Const,
Lemmas 3.4 and
By Lemmas 3.4 and 3.5, we have, for
m,
~(2 m) ~ ~(2 m-l) + $(2 m-I - i) + Const ~(2 m) _<- 2 $(2 m-l) + Const ~(2 m) =<... m =< 2m $(i) + Const Z 2m-k ~(2 k) =< 2TM $(i) + Const 2m ~(2 TM) k=l _<- Const 2m ~(2m) I/2, which shows that
$(2 m) -<_ Const 2 2m,
~(2 m) -_< 2m ~(i) + Const
Hence
mE 2m_k ~(k) I/2 k=l
m % 2m-k 2 k =< Const(m+l)2 TMk=l
-_< 2m $(I) + Const Consequently,
~(2 TM) <= 2m $(i) + Const
<_- 2m ~(i) + Const
For an integer 2m =< n < 2m+l .
m 2m_k ~(k) 1/2 Z k=l
m% 2 m - k ~ / - ~ k=l
2k/2 -<_ Const 2m.
n g i, we choose a non-negative integer
m
so that
Then
$(n) ~ $(2 m+l) & Const 2m+l ~ Const n, Consequently, Lemmas 3.3 and 3.5 yield (3.13).
§3.4.
Proof of the latter half of Theorem E The following idea is essentially due to David [18, Chap. III].
q, ~, ~,
we write F(n) = F(n, q, e, ~)
A n = A (q'~'~) n
We put T (x,y) = TF(n)(X,y) ~0 (n) = ~(I0' T0n'
XIO)
x-y
'
(ng
i).
(n e i). -
Fixing
92 Here are two lemmas necessary for the proof.
~0(I) ~ [~ - ~12/1o0.
Lemma 3.7. Proof.
Let
x ( [(k0-l)2-q, k02-q) (k0 (~)[
0
=
I T 1 ×i0
1710
- #12 -q
- ~12- q
=
f
Z k even Z
Then
1 { (x-y) + i(Al(X)-Al(Y))
Z k even >= ~ - ~12 -q I Re
is odd).
i ~} dy I x-y
dy [(k-l)2-q,k2 -q) {(x-y) + i(a-~)2-q}(x-y)
I
I
I [(k-l)2-q,k2 -q)
7
dy
k even
[(k_l)2-q,k2-q)
f2-q +I 2- q
dy y2 + (~_6)2' 2-2q
In the same manner, we have, for any IT~ XIo(X) I a
Is - ~I/lO.
~
0
......
(x_y)2 + (~_~)2 2-2q > I S _ BI/10. =
x ( [(ko-l)2-q, k02-q) (k0
is even),
Thus ~°(I) = $(I°' t1'
Lemma 3.8.
(~
= I[o
For two positive integers
(3.21) Proof.
XI0) >
)2 dx > Is - ~12/I00.
lO
=
n, g
with
Q.E.D.
g ~ n - i,
T0(n) e ~0(~) + ~0(n - g) - Const q-l~-~-.
We write Ik = [(k-l)2 -qg, k2 -qg )
(i ~ k ~ 2qg).
We have ~o(n)
=
Izo Ir~ ×~o(X) t 2 dx
+ fl0(T~- T ~ ) (XI x )0 = LI =
= ~o(~)
T n0 XI 0 (x) dx + fl 0 TZ0 Xl0(X) (T~ - T~) XI0(X) dx
T0(g) + L 1 + L 2, 2qg 0 T~(x,y)dy} dx k=iZ /ik {/ik(T~(x,y) - Tg(x,y))dy}{flk
03
2qg Z 0 flk {flk (T~(x,y) - T~(x,y))dy} {flo_lk T~(x,y)dy}dx k=l 2 q&
k=IE fl0-1 k {flk (Tn0(x'y) - TO(x'y))dY}
T0n XI O(x) dx
= LII + LI2 + LI3.
Note that
0 T~(x,y) = 0
(x, y EIk, 1 ~ k =< 2q~)n
T (x,y) = [(x-y) + i
Z = g+l
and
(A (x) - A (y))]-i
1 x-y
(x, y E Ik, i ~ k ----2qg) Hence, extending the coordinate axes, we have 2qg
2q&
LII = k=iZ flk [flk T~(x,y)dy] 2 ^
Let
p be the integer such that
integer. where Let
dx = k=iZ Ilk] ~0(n - L) = ~0(n - £).
~k
q4 < p ~ 2q4 and (log p)/log 2 is an For each i ~ k ~ 2qg, we write Ik = Ik, 1 U... U I , 2 k,p 2 P 1 are mutually disjoint dyadic intervals of length p-2 2q~ {Ik,j}j= denote the closed interval of the same midpoint as
Ik and of length
(i + p-l) Ilkl, and let Ik,j denote the closed interval of the same midpoint as Ik,j and of length (i + p-4) llk,jl . We have, with x k = (the midpoint of Ik) , Xk, j = (the midpoint of Ik,j), 2qg LI2 = k=iZ flk {fiE T~(x,y)dy}
{fl0_lk T~(x,y)dy} dx
2qg
k=iE
fl k {flk T~(x,y)dy}
{f(l0 N ~k)-Ik T~(x,y)dy}dx
2qg z k=l
% .(T~(x,y)-T~(Xk,Y))dy}dx flk {Ilk T~(x,y)dy} {fl0_(10 N ik)
= LI21 + LI22 ,
ILl211
2qg 2 k=iZ fie Iflk Tn0(X,y)dyI (fik_l k
dy ~
) dx
04 2q&
2 q8
Z ~(Ik ' TO )}i/2 { Z flk (f~k_lk ~ k=I n' XIk k=I
{f~
Const Const
)2 dx}i/2
log2
p-i/2 ~o(n _ ~)i/2
and 2qZ p2 Z Z SI {71 LI2 2 = k=l j=i k,j k,j 2q~ p2 Z j=l E k=l
rO(x,y)dy){fiO_(iOnik)(TOn(x,y)-TOn(~k,Y))aY> dx
f(lk N ZIk,j)-Ik,j {/Ik,j } {fI0-(l0 Nik)}
2qg p2
Z j=l Z k=l
f Ik 0 ~ck,j {fIk '3}
{fI0-(~0 n ik)}
= L1221 + L1222 + L1223 • Since
n 2 IX-Xk,j I +t ~ (A~(x>-A~(Xk,j)) 1 ~=~+I ...... ]TnO(x,y) - T0n(Xk,j, Y)] _-< [x_yI IXk,j - y] Cons¢ {p-2 2-q8 + 2-q(8+i)} / ]Xk,j _ y12 Const p-2 2-q%/iXk,j _ yi2
(x ( Ik,j, y £ ~),
(3.13) shows that 2qg p2 IL12211 = I Z Z
k=l
j=i
fik,j{fIk,j T~(x,y)dy}
× {fi0_(i0 fl Ik) 2q8 p2
Const
2q~ p2
Const
-2
P 2-qg dy) dx Z Z fI Ifik,jT~(x,y)dy] (f~ k=l j=l k,j ~ IXk,j-Y]2 p-i Z Z fIk,j]fI T~ (x'y)dyl k=l j =i k,j
95 Const p-i NT~H2,2 ~ Const p-i ff . Since ITnO(x,y) - TOn(xk,Y) I ~ Const p
2-q~llxk-y[2
(x E I k, y E ~k ) ,
[TO(x,y)] =< Const 2-q(g+l)/Ix-yl2<_- Const 2-q(e+l) p8 llk,j [-2 =< Const pl0 2-q/llk,jl
(x 6 leo ~C Ik,j, y ~ Ik,j)
we have [L1222] =< Const
2qg P2 ~-~ E Z f gIk,j-lk,j (flk'j )(flk k=l j=l
~_ Const p2 fol
P 2-q~ dy)dx IXk-y]2
log(l + p-4s-l) ds ~ Const/p
and 2qg p2 [L1223 [ =< Const Z Y k=l j=l =~ Const p14 2-q
f
~c (Const pl02-q)(f~ Ik 0 k,j k
p 2 -q~ 2 dy) dx
IXk-Y I
2q~ E flk dx =< Const p14 2-q . k=l
Thus, by (3.13), ILl21 ~ILI211 + IL12211 + IL12221 + IL1223I Const {p-i/2 ~0(n - ~)i/2 + p-i/~ + p-i + p14 2-q } =< Const p-i/2 {~o(n ~ - e)i/2 + V~ } ~ Const~/q. Since iT0n(X,y)
-
0 rg(x,y) I _~ Const 2-q(g+l)/ Ix-yl2
Const p2 2-q llkl/{iX_Xkl2 + llk12 } (x E I~Ck, y EIk), we have, in the same manner as in the estimate of 2qg ILl31 _-
( fie ~ )
IL331 in §3.3,
IT0nXlo(X) lax
96
+ Const p2 2-q
sz0
2q~ {%
k=l
ilkl 2
Ix-x~I2 + tlkl2
2qg Const { Z ~ ( ~ k=l fIk-I k IIk
n } LT°×I0 (x)ldx
)3 dx}i/3
2qg × { Z f~k IT0 X10(x) 13/2 dx}2/3 k= 1 n +
2qg Const p2 2-q {flo ( Z k=l Const
+
llkl 2 ) 2 2 2 dx}i/2{/io ITn~IO(x) 12dx}I/2 IX-Xkl + llkl
i, ~ ~i/3 { Z2q~ 7~k IT0 {fl0/P log3(l + s)aS~ n X10(x) 13/2 dx} 2/3 k=l
Const p2 2-q 1IT,ll2,2 Const (p-i/4 + p2 2-q)NT~II2,2 =< Const q-iVan
Thus L I ~ LII - ILl2 [ - ILl31 ~ ~o(n - g) - Const q-l~/~. In the same manner, 2qg
IL21 _~ Ik=iZ/ik {flk TO(x,y)dy} {flk(TO(x,y) - TO(x,y))dy} dxl + Const q-l~-~n. Since
T~(x,y) ~ 0
(x, y 6 Ik, 1 ~ k & 2q&), IL21 & Const q-l~nn.
Consequently,
~0(n) ~ ~O(g) + L I - IL21 ~ ~O(g) + ~o(n - g) - Const q-l~-~.
Q.E.D.
We now give the proof of (3.14). Lemmas 3.7 and 3.8 show that, for any positive integer m, ~0(2 m) ~ 2 ~0(2m-l) - Const q-i 2m/2 ~ ... 2m ~0(i) - Const q-I m~l k=0
2k 2(m_k)/2
2m {I~ - ~12/i00 - COnst/q} .
97
For any integer n ->_ 2, 2m- i < n ~ 2m . Then
we choose a positive integer
~0(n) >__ ~0(2 m-l) + ~o(n - 2m-l) - Const q
2m-I {I= - ~12/i00 - Const/q} ~V~{I~
- ~12/200 - Const/q}
Thus (3.14) holds if
~0
-i
m
so that
V~
- Const q - i V ~
.
is large enough.
This completes the proof of the
latter half of Theorem E. Corollary 3.9. If
For any crank
Is - fll2 ~ q0/q,
then
(F(n) = r(n,q,~,~), Proof.
n g i),
For any crank
F
F
of degree
where
~0
of degree
NHrII1
n ~ I,
1
~
is the constant in Theorem E.
n ~ i, we have
const HTFfILl
L (F),Lw(r) Since
~
p(F) ~ p+(r) ~ Const/~-~.
p(r(n)) I/3 ~ Const p+(r(n)) ~ Const/~-
,L~(~)" (~)
is a locally chord-arc compact curve with constant
valid for
F .
inequalities.
i, Theorem D is
Thus Theorem D, Lemma 3.3 and (3.13) yield the required
The latter half is also deduced from Theorem D, Lemma 3.3 and
(3.14).
Q.E.D.
David [18, Chap. III] showed that (2.39) is best possible in the following sense: (3.22)
sup {IIC[a]II2,2; a 6 Lreal,M }
This is deduced from Theorem E as follows.
IITF0(n) Xl0112 ->_ C o n s t V ~ where
IAnl ~ Const n.
A n = {(x, f0
(n > i) , ~0 ) , i, 0).
Fo(n), we define an arc
An
Adding some segments with endpoints
There exists a Lipsehitz graph
b (s)ds); x ~ I0}
IFo(n) U Amn - Fo(n) n A*n I ~ s, 0 < g < 1/2
(M ->_ 1).
We showed that
Fo(n) = F(n, i + (the integral part of
parallel to the y-axis to Then
>= Const I/M
is determined later.
such that
IA
where
is an absolute constant and
CO
We have
Sio Ib~(~)ldx ~ IA~I ----c o n
~ CO n
and
0
and
1.
98 Lemma 2.2 shows that there exists an open set
~ = Uk= 1 Ik
(I k = I~, k)
in
I0
such that
[~J ~ ~,
(Ib~l)ik & Con/8
Ib~(x) I ~ Con/8
(k a i),
a.e. on
I0 - ~ .
We put
C(x>= I and
An
* Ák (bn)
= {(x, f0 bn (s)ds); x ( I0}.
projection of
F0(n) N A n
to ~
:x( :o' we have
(x ( Ik, k ~ i)
IF1 ~ 2s.
Then
and let
(s> s
libn I]. N C 0 n/g . Let F - I 0 - E.
:o C (s>ds) = ),i
E
be the
Since
X
From the definition,
..,
C[b n ](x,y) = TF0(n)(X,y)
(x,y 6 E).
Hence T h e o r e m E s h o w s t h a t
{rE IC[b~*] ×E(x)]2dx}l/2
=
{rE Irr0(n> ×E(x)12 dx}l/2
=> {rE ITFo(n)×IO(x) 12 dx}i/2 - {fIoITpo(n) XF (x) 12 dx}i/2 {Const n - /F ITF0(n) Xl0(X) 12 dx}i/2 - Const V ~ V ~ . By (3.13) and (3.18), we have IITF0 (n )if4,4
~
Const{o( TF0 (n )) + l} ~ Const V~,
and hence,
7F ITFo(n) ×lo(X) l2 dx _-
{(i - ConstV~c )I/2 -
sufficiently small, we have
bn** (Lreal,C0n/e)
** ]112,2 >= Constq-f llC[bn
(n => i),
Const VT}.
99
which yields (3.22). §3.5.
Analytic capacities of fat cranks For
With
p > 0, z 6 ¢
0 ~_ ~ -<- i/i00
and
E c ¢, we write
and a segment
the closed segment
J(~)
J c ¢
[pE + z] = { ~ + z;
of the same midpoint as
and of length
(i + ~) IJl.
and a segment
J c C
~ 6 E}.
parallel to the x-axis, we associate J, parallel to the x-axis
With a positive integer
q ~_ 2,
0 ~ ~ --< I/I00
parallel to the x-axis, we associate 2q-i
J(q,~) = 2q {Jk}k= 1
where
U k=l
{[J2k_l(~) + i 2-qlJl]
are mutually non-overlapping segments on
these are ordered from left to right. segments of length of type
O.
2-q(l + ~) IJl.
For a finite sequence
less than or equal to
i/i00,
The set
({Jk}k=l£
F = for some 2.
J(q,~)
J
of length
is a union of
2q
2-qlJl; closed
A segment F 0 = [0,i] is called a crank n = {~j }j=0' ~0 0 of non-negative numbers
a finite union
F
of closed segments parallel to n {~j }j=O if there exists a crank
the x-axis is called a (fat) crank of type F' = Uk=l~ Jk
U J2k(@)} ,
are components of
F')
of type
n-i {~J }j=0
such that
U Jk(qk , ~n ) k=l
g-tuple
of positive integers larger than or equal to
(ql' "''' q~)
We write simply
T .
F'[(ql ' ...
, q&;~n ) Proposition 3.10.
(3.23)
Let
F
be a crank of type n Z
T(T) ~ Const {
U H
~=I j=0 At present, the estimate of
T(F)
{~j}~=O '
1
~0 = 0.
}-I.
(l+~j) from above is unknown.
[29, p. 87] and (3.8) do not yield satisfactory inequalities. proof of (3.23) is standard.
r0
We put
[ (. ;~i)
rI
Let
Then
n 0 {F }~=
[ ... [ (. ;~2) (. ;+n)
be
n+l
r n
The method in
The following
cranks such that
100
h (z) = j=0 (i + ~j) ' g (z) = Im ~I" hp(z) P h (~)
1
Id~I
= --~ Im p.v. /F where
Im
denotes the imaginary part.
Then
(z E r , 0 =< ~ ~ n),
go ~ 0.
We show that, for any
I--< ~ =< n,
(3.24)
ilg~II N L (F) -
F _ I = Uk= 1 Jk
We can write can write
F
fig i l l ~- L (Fp_l)
+
and let
z0
I ~i
{Jk}k= 1
~-tuple
be the point on
Ig (z0) - g~_l(Z~)
~ j=0 (i + ~j)
with components
= Uk= 1 Jk(qk , ~ ) with some
z0 E Jk0(qk0,~ )
const
Jk0
.
of
F
(ql' "''' q~)" nearest to
Im fJk0(qk0,~ )
and
i'
Let Then
z0.
~h (~)z0
h~_l(~)
i
,
Im fjk 0
Id~l I
- z0 1
+I 7
E k#k 0
{Im 7jk(qk,@~ )
= L (I) + L (2),
h(~)
h
~ _ z0-- ]d~I - Im 7Jk
~-±- z~
i(~)
Id~l~l
say.
We can write G0 U yj j=l
Jk0(qk0 '~) =
G0 {Tj }j=l ;
with its components
qk (G0 = 2 0)
these components are ordered so that the
x-coordinate of their midpoints are increasing. may assume that
cY0/2 z0 ~ Uj=I Y2j-I h Im fj
we have
Since
G0/2 {Y2j}j=I
i (~) -
k0
"
Without loss of generality, we
~-
Id~I z 0
are disjoint and
h (~)
.........
= Im /U°0/2j 1
I
Y2j-i
Z 0
Id~I
=
0,
101
h(~)
1
L (I)
--
IdIL
IIm I ~012
~ - z0
Uj=I T2j -i (~0 IJkol
f~
=< ! =
2
dx
-
- (x-Re z0) + (~011Jk01) 2
~
j=O
1
(i
+ ® _ j)
"
For 1 ~ k ~ g, 0 ~ v ~ ~ -i, 7k(V) denotes the component of Fv generating Jk" In particular, Yk(~-l) = Jk (i ~ k ~ g). We put
L(2)v = k Z( G
fJk
h (~) ~ -~ Zo--- Id~l
!fJk(qk'~b ). hb-l(~)-, Id~II ~ - z0
(i ~ v ~ W-I),
where Gv = {i ~ k & ~; k # k0, Yk(V-l) = Yk0(V-l), Tk(V) # 7k0(V)}. Then h (~) L (2) =< k#k0Z Ifjk(qk,@# > _ b_ z0 We now estimate L(2)'v Note that observation s h o w s t h a t , f o r a n y k (3.25)
h_l(~) Id~l . ./Jk . . ~ -----*--z 0 Id~ll = ~Zl v=l L(2)~"
ITk(V)I = IYk0(V) I ( G
dis(J k U Jk(qk,@ ), Jk0 U Jk0(qk0,@ )) ~ diS(Yk(V), Tk 0(v))
- 2 l~k0(~)l
{(1 + ~v+l )
2-2 +
+ (l+ ¢~,+l)(l+ @v+ 2)
3 => diS(Yk(V ), Yk0(~)) - ~
2-4 ~f
...
Tl (I + %j) 2-2(~-v) } j=v+l
=> diS(Yk(V), Yko(V)) - 2 IYko(V) I
Since
(k (Gv) . A geometric
,
IYko(V) l
1.01 { --7-
.i.01.2 + ~--#-~
+ "'" }
102
/jk(qk,¢~ ) h (~) Jd~ I = Ijk we have, with
zk = (the midpoint of
L (2) = Z v k (G
{
Z k ~G ~-i N j=O
Const
i * zk - z 0
Id~l
Qk = Jk U Jk(qk,@ ),
Ifjk(qk,¢~ ) { ~ -i Zo
IJk Const
Jk )'
i , zk - z 0
v
+
=
h_l(~)
} h
1
} h (~)Id~I
l(~ )
idol 1
~ - z0
{(JJkl + IJk01) dis(Q k, Qk0 )-2 7jk
i (i + Cj)
Z k E
G
h~-l(~)
{(IJk] + ]Jk01)IJkl
Id~l}
diS(Qk,Qk0)-2}. !
The segment length
Tk0(V - i)
generates
IYk0(V) I , where
We may assume that
' 2qv
components
2qv {km}m= 1
of
rv
q~ = log {(i + ~v) IYk0(V-l) I/ IYk0(V) l} /log 2.
k I = 7ko(V).
Let q' (2 ~ m ~- 2 v ) "
G v,m = {k ~ G v ; km = Yk(V) } q~
Then
Gv
2 v = Urn=2
Z k(G
G v,m .
We have
(IJkl + IJkol)IJkl v~m
~_ Ikil 2-2(~-i-v)
N (i + ¢j) j -< - ~-i
v<
=
Ik112 2-2(~-I-~)
~
Z IJkl k ( G v,m
(i + @j)2 _-< ikli2 2-(~-I-~) ,
v < j _ - < ~-i where
N
(i + ~j) v<
denotes
j _~ ~-i
observation and (3.25) show
that
i
if
v = D -i.
Hence a geometric
of
103
v
2qv L (2) =< Const
H
j=0
1 (i + ~j)
%
(IJkJ + IJk0l)IJkl diS(Qk,Qk0)-2
Z
m= 2
k #G
v,m
v
~-i -<_ Const
j=O
1 (i + @j)
~-i
1
j=0
(i + ~j)
Const ~-i H j=O
(i +i @j)
--< Const
--< Const
~-i H j=O
2qv % m=2
diS(km,)~l)-2
Z k ~G
2q~
i)VlI 2 2-(~-l-v )
y,
(IJkl + IJko I) IJkl v,m
dis(Xm,kl)-2
m=2
I~i 12 2 -(~-l-v)
1
Z k=l
(
1 IXll k
)2
2_(~_i_~).
( i + ~j)
Tbus *
Ig (z0) I ~-I g _l(zO) I + L
(i)
+
L(2)
E v= I
V
1 =< IIg~_IIIL~(F~ 1 )
+
_-< IIg~_lll ~ L (r _ I)
+ Const
_
Since
z0 ~ F
n
j=0
(l + ~j)
H j=0
+ Const
~-i H j=0
1 (i + ~j)
(i + ~j) "
is arbitrary, we obtain (3.24).
By (3.24) and llIm H F
go m 0,
we have
hnll n L°°(rn)
~
Const
n E ~=i
H 1 j=0 (i + ~j)
(= Const
~n'
say).
Evidently, fF
hn(~) n
Id~I
=
i,
IIhnli L°~(Fn)
Hence we can define a non-negative function
hn
on
rn
so that
104
Ir n
hn(<)
I d<[
80/
=
'
llhn*NL'(rn) + lllm"r h$1L~(r# S l, h:(<) = 0
is c o n t i n u o u s l y
h*(<) n where
60
at endpoints of each component of
is an absolute constant. ^* hn(Z) =
i 2~i
u (z) = Im n (3.26)
Then
f
n
fF
h:(z)
Vn(Z) = Re
'
Fn ,
Let
h (<) n ~ - z
Ii
along
Id
fn(Z) = {I - exp(h:(z))} /{i + exp(~:(z))}
is analytic outside :
Ifn (')I The
differentiable
F , n
12~
nontangential limit of
F fF
(z ~ Fn).
and
n
h:(<)
{d~ 1 :
n
60/(2
fUn(Z) I at each point on
Fn
is dominated by
llIm HFn h~llL~O(Fn) _< 1.
Since sup
fUn(Z) I
is subharmonic in
F c fUn(Z) [ =< i. z (
Fc n
Hence, for any
and continuous on
U {~},
we have
z ~ F n,
n 1 + exp(2 Vn(Z)) - 2 exp(Vn(Z))COS(Un(Z)) i,
Ifn(Z) I2 1 + exp(2 v (z)) + 2 exp(vn(Z))COS(Un(Z)) n which shows that
T(r n) a
IifnllH~~ i.
If'(-)I ~ n
Consequently,
601(2 ~n )
= Const{
This completes the proof of Proposition 3.10.
n Z ~=i
H I j=0 (i + _~j)
-i.
105
§3.6.
Analytic Let
equation NE(r,@)
capacity and integralgeometric
L(r,@)
(r > 0, -~ < e ~ ~)
x cos @ + y sin @ = r. = #{E N L(r,@)},
elements of
For
less
than
e.
Cr (E) =
and
we write
is the (cardinal)
0 < a ~ i,
finite
line defined by the
E C ~,
number of
we put
Na{u~=lD(Zk,rk)}(r,@)~
where t h e infimum i s t a k e n o v e r a l l radii
set
#{E A L(r,O)} e > 0
Cr(e)(E)~ = i n f f _ ~ { f ~
denote the straight
For a compact
where
E n g(r,8).
quantities
dr} dS,
coverings
{D(Zk'rk)
k=l
of
E
with
We p u t
lim
Cr(e)(E)
(0 < ~. < i),
~ + 0 Bu(E) = If
lim lim c÷Oa÷O
E c D(0,1),
then
is the probability I01 ! ~)
Bu(E)/2~
intersecting
to compare a compact
is called the Buffon needle probability;
(measured by
curve. Then Crofton's (3.7), we have
Cr ( ¢ ) ( E ) .
with
dr d@/2~)
E.
formula
Suppose
~(.) E
with
Cr (.)
such that
that
E
L(r,O)
is a locally
[49, p.13] shows that
T(E) ~ Const CrI(E ).
set
of needles
(and with
Bu(.)).
and
chord-arc
compact
CrI(E ) = Coust I E I.
From this point of view,
y(E) = 1
this
(0 < r < i,
By
it is interesting
It is known that there exists
Bu(E) = 0
(cf. Jones-Mural
[34]).
We shall show Theorem F. y(E) = 1
For any and
Kakutani,
The author expresses
(3.28),
Galton-Watson
and Professors
process
various
set
E
such that
Coifman,
integralgeometric
time of the sun's rays integralgeometric
= l)
P r o b ( X ~ = 0) = 1 - B H
to use the to Professor since
RSL is the first stopping to try to give an
C,
Cr (.).
For
= -1)
0 < ~ < I,
let
(X~}~= I
on the standard probabillty
such that = erob(X~
According
Hence it is interesting
random variables
(F 0 = [0,1])
Cr (.).
cancers outside bodies.
we study
sequence of independent
eroh(X~
Steger who suggested
formulae are used for surgeries,
(or needles).
proof of Theorem
In this section,
his thanks to Professor Kakutani who
[30] for the estimate of
X-rays react to, for example,
(PO,S,Prob)
there exists a compact
Cr (E) = 0.
Acknowledgement. communicated
0 < ~ < 1/2,
=
(n a 1 ) .
/2,
be a
space
106
We put S~0 = 0'
S~n = X~l + "''+ X~n
This is a model of random walks. (3.27)
Then
y0~(x) = i,
Prob(y~n >_-0) = i
(n > I).
We define a Galton-Watson process
y~n(X)= y~n_l(X)+ S~y~n_l(x)(X)
(n >_-0).
c (n) = 2~+I
{Yn}n= 0
(n ->-i, x E F0).
We put
fO/2 { Z
k s b~n)(t(e))}cos Od@
(n >__l, 0 ~ <~ < i),
k=l where b(kn)(6) = Prob(Y~n = k), t(8)
= ~
tan e
(0 ~ e < arctan i)
Itane- 2j I
(arctan (2j-l) i e < arctan(2j+l), j ~ i).
First we show Lemma 3.11.
ca(n ) _-
(n ~ i, 0 < ~ S 1).
The proof of this lemma is standard. {bk(J)(6)}k=O
is defined by
(3.28)
The generating function of Then
P~(x) = Zk= 0 b(J)(~) x k.
P~ (x) = P~j-I( ~2 + ( i - 6)x + ~2 x2 ).
In effect, (3.27) shows that, for any
k_a0, w
(3.29)
b(J)(~) = Prob(y~ = k) = =
where
Z(~)
Z b~(j-l) (6) ~=0
xk-eoeffieient of P~_I ( 3 +
P~(x) is J ( i - 6)x + ~ x 2 )
(3.28) holds.
Z Prob(y~_ I J =g) Prob(S p~ = k - g) g=O
z(~)
~'
Let
(~)h(1-~)~2(-~)~3,
el! g2 ! g3 !
is the summation taken over all triples
non-negative integers such that
by
(~i' g2' g3 ) of
~1 + g2 + g3 = g ' g2 + 2 g3 = k.
b~J)(x)
and the
The
xk-coefficient of
is equal to the last quantity in (3.29).
Thus
107
vj(~) = I 1 (i - x) -a 8-- P~ j(x) dx ~j(~) ~x where
(
n
{~j ~)}j=0
(0 ~ j ~ n)
are inductively defined by
~j(~) = ~ +(i-9)~j_l(X)+
40(~) = 0,
~ ~j_l(X)2
Since
fo1 a_
(i - x)-a(k x k-l) dx a Const
k~
i - ~
1 fl-(i/k) (i - x)-~(k x k-l) dx
(k ~_ 2),
we have Z ks bln)(~) ~ Const (i - a) v0(~). k=l Since
(l-~)-a = {i- (~ + ( 1 - ~ ) x +
~x 2)}-=
(o=~i),
(3.28) shows that vj(~) =
f~j(~) ( i - x)-~{(l-~) + ~x} ~
P~n_j_l(~2+(l-~)x + ~2 x2)dx
+ ~ ~-°~(~-~+ ~
~l ~l-(~ + ~-~ ~j (~)
~n-j-l~2~ +(~-~+ ~ d ~
= Vj+l(~), and
hence v0(~) ~ Vl(~) ~
...
~
1 = f~n(~ ) (i- x)-a ~%We have easily
Vn(~) p~0(x)dx = i i _
I1 - ~n(~) I -<- Const/( ~ n).
(i - ~n(~)) I-~.
Thus
Z k a b(kn)(~) <= Const/(~n) l-a k=l Consequently,
we have, with
e. = arctan j J
(j ~ 0),
108
c (n) _-
f 0/2 t(@) ~-I cos6
Const n cr-I { I081 (tan Q)a-lcos
Const n ~-I {
II
"
i
Z j=l
This completes Let
....
@ d@ +
" @2j+l j fl I 82j-I
Itan 8- 2j
I~-1
cos @ d@}
Y dy (i + y2) 3/2
0
+
d@
y~-i
I_ I
3/2 dy
~
Const/(~ nl-~).
{i + (y + 2j) 2}
the proof of Lemma 3.11.
F'
and
(the degree of
F
be two cranks such that
F') ~ i.
n = (the degree of
If there exist an n-tuple
(A I, ..., A n )
r)
-
of cranks
such that r' = A I
[
A2
[
(0-1; ") for some
(0`i' .... ~ ) '
n-tuple
integers, we write
---
F' [[ F
t
Cry(F)
=
= {q(~) }k~l g
For
crank
of degree
F* n (3.30)
where Proof. we put
of positive
and
,
i _-< ~ < n} .
F ,
0 ~ g ~ i, 0 ~ ~ ~ i, n
gO ~ 1
(0 ~ ~ ~ i). and
n ~ i,
there exists a
such that
r'n)=> g0'
~(F0'
r
of finite sequences
2~ I_~~ {I~ NF(r,0)~ dr} dG
Lemma 3.12.
An =
(Qn; ")
~(F',F) = gin {q~);{ 1 s k -< g Note that, for any crank
[
(0`2; ")
ICr~(r*n)-
C~ (n) l < C ,
F 0 = [0,i]. For a finite increasing sequence gap(~
0` = {qk}gk=l
= min {qk - qk-l; 1 =< k =< g} ,
~n = (0`1. . . . .
h),
~
= {qi~) }k~l
where
of positive integers, qo
= O.
Let
be an n-tuple of finite increasing
sequences of positive integers such that q~) ~i = i,
we put
~
= 2
gap(~n) = m i n { g a p ( ~ ) ;
q(~) + 2 2
q~) + ...+ 2
i ~ ~ ~ n} .
With
~-i
~n'
(2 --< ~ --< n),
we associate
n
cranks
109
r~ *
=
F(Q 1 . . . . .
Q)
*
(i)
(1 & ~ & n) ,0)
r I = FI(QI) = r0(q 1
has
gk
Let
Suppose that
components
r _i = Uk~
expressed in the form {ji~-1))~-i "k=l ;
( F 0 = [0,i]).
rk
been defined so that
as follows.
j ~1)
rl, r2, ..., r _ I
(1 N k N g - l ) .
Then
have
F _1
is
with its components
these are ordered so that the x-coordinates of their midpoints
are increasing. We put
,
,
r = r(%
. . . . .
%) =
g~-i
ji~_l) (qi~_l),o) "
u
k=l The set with
rn(~n)
is a crank of degree
0j = arctan j,
0 ~ 0j < ~/2
2-~ Cr~(rn*(@n)) "
Zj=l
( =
{I O.J 0j -i
" f-n{fo
I0
+I
n.
We now s~udy
Cr~(rn(~n)).
We have,
(j ~ 0),
Nr*(~n)n
(r,O) ~ dr} de
-eJ-i 70 } + i
s]
-Oj
Z {dj(~n ) + d j(~n )} j=l.
+ do(~n) , say).
i
tan 0 4
1-tan 0 tan 0 4 4
1-tan 0 4
L(x cos e,e)
For
0 < 6 < @i'
we put
Ix ~ r0;
~0)(@)
~,
= 0,
(x c o s e , e )
r(Q I . . . . . 0.~)
= kl
(k_>- 0, i < ~ =<- n).
110
Then
bk(~)(e) = 0
(k>= 2~ + 1 , 0 ~_ ~ ~ n).
We have
b~0)(e) = 1 = Prob(y0an 8 = i)
Let
bk(1)(e) = Prob(ylan @ = k)
( 0 --< k ~- 2).
2 ~ ~ ~ n.
V
1 ~ j ~ 2~-I,
there correspond
j
To a component
of
{x E F0; N ,
(x cosS, e)=j},
components
j(~-l) , ..-, j(~-l) of F* F~-I vI vj ~-I L(x cos 8,8) for all x E V; these are ordered so that the
which intersect with
x-coordinates of their midpoints are increasing.
If
(~)
is sufficiently
%1
large, then
Ix ~ V; # {j(~-l) ((~) -
,0) fl L ( x cos e , e ) }
=
k
%1.
~i
IV I Prob(Slan 8 = k _ l ) 1
is sufficiently small for all
0 =< k--< 2.
If
(~)
q(~) -
%l' ~2
(~)
%1
are
sufficiently large, then
-IvI
Prob(S~ an e = k - 2 )
I
is sufficiently small for all
0 ~ k & 4.
if
qVj
~
' ~V 2
- qv 1
.....
Repeating this argument, we see that,
- q(~)
are sufficiently large, then
~-i
.stanj8 = k-j)l llxv; {rnL<xcos0,e)=kl-lvIProb is sufficiently small for all
0 ~ k ~ 2j.
Hence, if
gap(Q)
is sufficiently
)
large, then , (x cos @,e) llX 6 F0; N F ~-i
j, N , F
(x cos
8,8)
kl
- bj~(~-l)(8) Prob(S tan3 8 = k - J)l is sufficiently small for all
0 -_< k =< 2j.
If
gap(Q)
is sufficiently large,
then I x ~ F0; NF, ~-I
(x cos e,e) = 0,
N , (x cos 8,e) >= i I F
111
( = JJx ~ £0; N , (x cos 8,8) = 0, F ~-i _ ~-i)(8
) Prob(s;an 0 >__ l) j)
is sufficiently small. if
gap(%) ~ p (@),
Jlx ~ F0;
Thus there exists a positive integer
, (x cos O,O) F_ 1
0 _~ k -~ 2j, 0 -~ j =< 2g-l. 2~-i z j=O
~tbk~)(e) _ K
p~(e)
such that,
then j,
k I
N , (x cos @,O) F
b(~-l)(0). Prob(S tan. @ = k - j)J 3 3
-
for all
N
N , (x cos 8,0) >_ 1 J £
=< g 2-3n3
This yields that
~(~-i) (e).
erob(stan O = k - J)Jl
]
I
3
2~-I j Z {ix E r0; N , (x cos 8,0) = j, N , (x cos 8,0) = kJ j=0 £ ~-i r _ ~-i)(%)
Prob(s~an 8 = k - j)}J
=< s(2 g-I + i)2 -3n3 -_< Const Put
p(O) = max{p (8); 1 _~ ~ =< n} . 2n Z k=0
If
Z
k=0
2 n-I J z j 0
(0 _<- k -<_ 2~).
gap(~ n) ->- p(8),
Ibk(n)(0) - bk(n)(tan 0) I = 2n
<=
s 2-2n3
then
2n E Ib(n)(o) - Prob(Yntan 8 = k) t k=0
~!n-l)(e) Prob(S.tan O = k - j )
2n-i Z Prob(Yn_itan8 = j)Prob(sjan 8 = k-j)
+ Const ~ (2 n + i)2 -2n3
j=0 2n-i _-< (2n+l)
~_...=<
~(n-l) _ , . tan 0 =j) Jbj (8) - wroD[Yn_ 1
Z j=0 n H ~=2
(2 ~ + i) n
+
Const ~=2
2 Z j =0
(2 ~ + i) .
+ Const 6(2n+I) 2-2n3
,. tan ~!l)(o) _ ~r°DiYl 3
. n +. i)} . (2
2_2n3
e
= j)j
3 < Const ~ 2-n ,
112 which
shows
that
If~ NF~(~n) (r,@) a
dr
-
Z
k ~ " (n)(tan @)cos
k=l
@ I
bk
2n
Iro"
N , (x cos @,9) g COS @
dx
kg
Z
F
b~n)(tan"e)eose
I
k=l n
2n = I
Z k=l
k~
~k~(n)(@)
- b~n)(tan
@)}
cos @I
3 =< There
Const
exists
s 2 ~n 2-n
a positive
~
integer
F = {0 < @ < @i; P(@) > Pl }
Idl(Qn)- fO01 @i If0
Const Pl
~ .
such that the measure s 2 -n"
is less than
Z" k=l
k ~ b. k(n)(tan
{/O N , (r,@) ~ dr - % F k=l
If
of
gap(~n)
then
~- PI'
@) cos @ d@ I
k s bk(n) (tan @) cos @} d@ I
n
l{f F + /(0,01)_ F} { Const For an integer integer
pj
2 ~n IFI + Const
s
j # I, we can choose,
such that,
if
8_1 = 0.
&
Const
that if
as above,
a positive
then
Z k ~ " (n)(t(@)) k=l ok
This shows
s .
in the same manner
gap(~ n) ~ pj,
81Jl Idj ( ~ ) - T e l j l _ l
where
} de I
gap(~n)
cos
@ del
< =
s /(i + j2),
is sufficiently
large,
then
(3.30)
holds. §3.7.
Q.E.D. Proof
of Theorem
F ([34])
Here are three lemmas necessary 0<
~<
Lemma
for the proof.
From now on, we fix
1/2. 3.13.
For
and a non-negative component
of
F n,
t O => 1 function
and
n >= i, w
n
on
there exist a crank F
n
such that
w
n
Fn
of degree
is a constant
n
on each
113
~(r0, r[) ~ ~0' cr(r[) ~ ClI(~ n~-~), (3.31) llWnll i * L (Fn)
I,
llWnll~ ~ L (r[)
where
C1
Proof.
Leamms 3 . 1 1 a n d 3 . 1 2 show t h a t
satisfying
C I, film H , w~lle.(F~ ) ~ Cn~'n~, Fn
is an absolute constant.
the first
there
two i n e q u a l i t i e s
in
exists
(3.31).
II~rn,
~
ConstV~-,
tlHFn,
~
Const V~.
IIL2(Fn),L2(Fn)
a crank
F
of degree n n ( 3 , 1 3 ) shows t h a t
Inequality
which yields
fiLl(m) ,L~(Fn )
Thus, in the same manner as in the proof of Theorem D, we obtain a non-negative f u n c t i o n on satisfying F* n mean o v e r e a c h c o m p o n e n t o f Lemma 3 . 1 4 .
and
w
Let
~0 ~ 1
and
three
m
~j = 0
such that
Fm.
n ~ 1.
in
the required
Let
F
m
(3.31).
function
Taking the w • n
be a c r a n k o f t y p e
rm
such that
Then there exists a crank
(ra+l N j N ~ - n )
Wm+ n
inequalities
we o b t a i n
be a non-negative function on
on each component of with
the last F , n
and a n o n - n e g a t i v e
mw
function
{ 6 j } ~0=_
is a constant
Fm+ n
is a constant on each component of
Q .E.D ,
•
of type wm+n
.m+n
16j~j= 0
on
Fm+n
Fm+ n,
rm [[ rm+n' c(rm' Fm+n) >= gO' Cr (Fm+n) -<- C 1 IFml/(~ n l-a ),
IlWm+nllL 1
(3.32) tl~m
=
(rm+n)
Hr
m+n where
C1
IlWml]L1 "
,
IlWm+nll
(Fm)
~ lllm
win+nil L'(Fm+n)
~ C 1 llWmll . L'(Fm+n)
L
HFmWmllL®(Fm)+ C2g-~ llwmll
is the constant in Lemma 3.13 and
C2
(rm)
'
. L (Fm)
is an absolute constant.
Proof. We can write g I Jk with its components {Jk}k= I. rm = Uk= g be the left endpoints of {j k}k=l, respectively. We put {Zk}k= 1
Let
,
114
g Fro+n =
U k=l
A k,
A k = [IJkIF n + Zk],
Wm+n(Z ) = Wn*((Z-Zk)/IJkl) Wm(Zk) where
F
n respectively.
and
w
n
Then
i -<_ k =< ~),
are the crank and the function in Lemma 3.13, m+n Fm+ n is a crank of type {~j }j=0 such that
F m [[ Fm+n, L(Fm, Fm+n) m gO"
Cr (rm+ n) -~
(z E A k,
The second inequality in (3.31) shows that
Z Cr (Ak) = k=l
Z IJkl Cr (rn*) --< C l Irml/(a nl-~). k=l Q.E.D.
In the same manner as in Proposition 3.10, we have (3.32). In the same manner, we have Lemma 3,15.
Let
g0 ~ i, n ~ i, rm
m {6j}j= 0 , w m
be a crank of type
be a
non-negative function on Fm such that w m is a constant on each component m+n of Fm, and let {~j}j=m+l be non-negative numbers less than or equal to m+n i/I00, Then there exist a crank of type {~j}j=0 and a non-negative function of
Wm+ n
Fm+n'
on
Fm+ n
Fm [[ Fm+n'
such that
Wm+ n
is a constant on each component
~(Fm' Fm+n) ~ g0'
llWm+nIILl(rm+n)
llWmllLl (Fm) ' m+n
llWm+nIIe.(Fm+n)
IIIm HFm+n
(I + ~
=<-IIWmI[e,(Fm) / #=m+l H
Wm+nll ~ -~ llIm H r Wmll ~ L (Fm+ n) m L (Fm) m+n
+ Elwll .
j
z
L (Fm)
{i/
j=m+l
~
and a positive integer
~0(i - e) > i.
Let
define a sequence
Pm
mk+ I = non~ + and define a sequence
E.
Choose a positive number
~0/2 < i - (i/n 0 ) and ~m be the integral part of (i01/i00) 0 (m >_- I).
{mk}k= 0
n o ->_ 2
(I+%)}
~=m+l
We now construct the required compact set ~0
),
so that
of non-negative integers by
Pn0mk
{~j}~=0
We
m 0 = 0, m I = n o
(k ~ i), of non-negatlve numbers by
115
Cj
Let
[ = {~k}k=i
(O < j -<- m I)
i/i00
(mk <
0
(n0n k < j =< ink+l, k>= i).
Using Lemma 3.14 with rml
rml,
and a non-negative function and
Wn0ml,
gO = ~i' n = m l,
and a non-negative functlOnn m
gO = &!' n = (nO - l)ml,
rn0ml
j _~ nomk) k->_ i)
be an increasing sequence of positive integers which will be
determined later. obtain a crank
0
wml Wn0ml
and
0 1 {¢j}j=ml+l,
we obtain a crank
rm2
{wmk}k=l
and
w 0 m i,
we obtain a crank t0
=
~2
)
n
rnoml = Pn0ml,
and a non-negative function {Fmk}~=l
we
Using Lemma 3.15 with
Using Lemma 3.14 with
•
Repeating this argument, we obtain a sequence sequence
wml"
F0
Wm2.
of cranks and a
of non-negative functions such that, for
k a 2,
r~ [[ r~+l, ~(r~, r~+ l) >-_~k' llwk IlLl(r~) IIIm HF~
i,
]i®
ilwmk L
wmk IiL'(r~)
k-i +
co / n (rk) -< ~=0
(]_ + ¢~),
,
=< C0 V~I
nomv Z j =mv+l
v CO
Z v=l
nomk, 1
k
=
k-i
j 11
{L/
(i + ¢ ) }
FL=O
+
nomv
v+lDv-6-----. ~
Z C0 ~=i
Pnomv/
(l
+
~=i
n0mk_ I Cra(r~) =< C O
where
£~ = rmk
and show that
m
nomv_ I
and
H ~=0
We put
C O = max{Cl, C2}.
T(E([)) ~ Const.
(v ~ 2)
(I + 4~ )/(~ PnOmk 1 ),
and
Let
m I = no,
k $ 2.
we have
Then mv
n0mk_ 1
Ilwm k I1. , L (rk) k =
Since
C0 (
~
k/ n (i + ¢9 c0 ~= mk-l+l
I01 )-(no-l)mk-i ~-~ ~
Const.
E([) = Nj= 1
uLj
Ilwmkllel(r~) = i.
Since
v no (v ~ l), and hence
¢~),
116
nom ~ ~Pnom---~/
n
.lOl.~onomv/2 uonst(l--~ )
(i + ~)
.i01 -(no-l)mv ~)
~=0 .i01. -{(l-(i/no))-(~O/2)}nomv Const (I--~)
(v >= i),
we have IIIm HF~ wmkllL®(F ~) ~ Const.
Thus, in the same manner as in (3.26), we obtain an analytic function
fk ~ H~(FI c)
such that
llfkllH~ ~ i, Since
k ~ 2
lfi(~)l
e
Const.
is arbitrary, we obtain an analytic function
f (H~(E([) c)
such that llfll _<- l, H~ which shows that
If'(-)l ->_ Const,
Y(E([)) ~ Const.
Let .101.(1-(l-a)~o)n0mk ~i--OO)
gk = (C0/~) Then
limk ~ ® gk = 0 Cr (F~)
(k ~ 2).
and i01 n0mk-i
(2c0/~)(i~)
.101.-(l-~)~0n0mk-i
~
2 gk_ 1 . We can inductively choose
~0 = {gk}k= I 0®
Cr(i/k)(E([0))~ ~ 2 gk-l'
which shows that
satisfies
Y(E) > 0
Remark 3.16.
and
Throughout
so that, for any Cr (E([0)) = 0.
the note, we use Theorem D to estimate
below.
Here is a weaker inequality than Theorem D. Then
(cf. [29, p. 19]).
I 7r f
dzI2/{Irfll 2(F)
E = E([ O)
Let
F
Y(')
from
be a locally chord-arc
+ llHr(f dz/Idzl)[l 2(r)
This is also useful to estimate
we can deduce (3.23) and
Thus
Cr (E) = 0.
curve.
Y(F) => Const
k ~ 2,
{IIC[a]I12,2; a ( ereal}
= ~
Y(r)
from below.
In effect,
from this inequality.
APPENDIX
For
I.
A N EXTREMAL PROBLEM
s I . . . . , s n E ~, w e define
Ts I,
..., s n
(x,y) = i/{(x-y)
+ i(Asl '
..., s n
(x) - A
s I'
--., s n
(y)},
where 0
A
x ~ I0 :
[0,i)
(x) s I, ..., s n
k-i k ( - -n =< x < -n'
Sk
1 =< k =< n).
Put
(4.1)
ex (n) = max {~(Tsl ' ..., s ); Sl'
.... s n E ~ }
•
n
(See (1.22).) Theorem G.
We show
Const
~TOg(n+l)
The first inequality a positive E c U~=_
integer
n,
[I 0 + ik/n],
to
I0
are mutually
by
x + iAE(X ) E E
the projection
of
TE(X,y)
~ ex (n) ~ C o n s t ~ g ( n + l ) is shown in §3.4.
F n E
denotes
For
(x E pr(E)) to
I O.
Let
such that
Proof.
and
T E''
and their projections
we define a function
AE(X)
= 0
AE(X)
(x ~ pr(E)), where
on
pr(E)
is
E E Fn on
for the proof.
and let WI
W I, W 2
and
be two disjoint
AE(X) ~ 0
f W 1 IrE(XW2f)(x)I 2 dx ~ Const
We define an operator
g Let
E E Fn,
For
such that
= i/{(x-y) + i(AE(X ) - AE(Y)) } .
AE(X) ~ 0
(4.2)
E c ~
We define a kernel by
Here are three lemmas necessary Lemma 4.1.
W e prove the second inequality.
the totality of sets
has a finite number of components
disjoint,
E
(n ~ i).
T E'
~ f_~ g(y)/{(x-y)
denote the adjoint
on
W 2.
Then,
IIXw2fiI~ .
by
- i A(y)} dy.
operator of
T E'
subsets of
Then we have
for any
pr(E) f E L2 ,
118
I T"g(x)I
< H*g(x) + Const Mg(x), nT~ llp ,P =< C P
which shows that
AE(X) - AE(Y) ~ AE(X) ~ 0
(p > i).
Hence
(x 6 W I, y 6 W2),
lIT~Ilp,p =< C P
we have,
(p > i).
Since
in the same manner as in
the proof of (2.9), I TE(Xw2 f)(x) I =< Const {M(T~f)(x) (x £ Wl),
+ IIrE[14/3,4/3' M(I Xw2fl 4/3)(x)3/4} which gives
(4.2).
Put 1
co
~(n) = sup {T'/UT-6TT'Ip~tLjl ~(E,f);
E E u~-' f 6 Lreal, 0 ! f <- i},
where ~(E,f) Lemma 4.2. Proof.
= /pr(E)
For any
For
n ~ I,
E £ FI,
(D = O, ±i,
...).
ITE(Xpr(E) f)(x)I2 ~(n) < ~.
we put
Then,
f(x)dx.
G = pr(E)
for any
'
G' = pr(E N {Im z = ~})
f 6 Lreal, 0 ! f ! I,
f(Y) dy - Z i I TE(XG f)(x) - fG~ x - y ~=-~ 1 + i(k-~) /G'~ f(Y) dyl Const
Z ~=-~ (k-~) 2 + 1
(x 6 G~, k = 0, ±i,
...).
Hence ~(E,f) ~ Const ( Z
fG
+
i
z
k=-~
IG
Const which shows that
llz
IH(x G f)(x)i 2 dx fG' f(y)dy] 2 +
~ {IGkl + IfG, f(y)dyl 2 k=-~
+
1 G~I }
E E Fn, f ~ Lreal,
0 ! f $ I,
we put
E k = {z - k; z 6 [n El, k ~ Re z < k+l}, ~.x + k. fk(x) = ~[--~---) Then
--< C o n s t
z U=- °° (k-~) 2 + 1
I G1,
~(i) ~ Const. co
For
z k =-oo
~=-~
(0 <_ k _< n-I).
G' = [n pr(E)],
}
119
~(E,f) = _111fG' I fG' n 1 { ~
<= n
2 f(~) dx f(y/n) ,d~ (x - y) + i(n AE(--Xn) - n AE(Y))
~(Ek,f k) + C n }.
k=l co
Since
E k E FI' fk E Lreal, 0 < f < i, The following Lemma is analogous
For
E E F22 n,
F =
U
F E F
(the projection of
.
(n ~ i).
we define
to the line Then
Q .E .D.
~(n) < co.
to Lemma 3.4.
~(22n) ~ 2 ~(2 n) + Const ~(22n) I/2
Lemma 4,3. Proof.
we have
E N {(k-l)2 -n ~ Im z < k 2 -n}
Im z = (k-l)2-n).
Let
2n G = pr(E), G. = pr(E [~ {(j-l)2 -n _< Re z < j 2-n}), j Gj, k = pr(E n {(j-l)2 -n _<_ Re z < j 2 -n, (k-l)2 -n < I m (j = 1 . . . . . We have, for
2 n, k = O, +i,
f 6 Lreal, 0 ~ f $ i,
~(E,f) = ~(F,f) + I G (T E - TF)(XGf)(x ) TE(XGf)(x)
f(x)dx
+ I G TF(XGf)(x)
f(x)dx
= ~(F,f)
(T E - TF)(XGf)(x)
+ L (I) + L (2)
and 2n L (I) = j=l 2n +Z
j=i
z < k 2-n})
IG (T E - TF)(XG f)(x) TE(XG f)(x) f(x)dx J 3 ] fG (TE - TF)(XG f)(x) TE(XG_G f)(x ) f(x)dx J J J
...).
120
2n Z j=l
IG_G. (TE -TF)(XG.f)(x) TE(XGf)(x) f(x)dx J J
L I + L 2 + L 3. For
i <_-j _<- 2n,
such that
there exists
E!j ( F2n, F'j E FI
and
f.3 E L "real, 0 =< fj =< 1
IEli = IF]I = 2niGjl,
IG" ITE(XG. f) (x) 12 f(x)dx = 2-n <(E],fj) J J fG. ITF(XG. f)(x) 12 f(x)dx = 2-n ~(F],fj). ] J Hence 2n _-< Z j=l
ILII
+
2n z j=l
IG ITE(XG.f)(x)I 2 f(x)dx j j
{IG. ITF(XG f)(x)i2f(X)dx}i/2{IG.ITE(XG.f)(x)i2f(x) dx} I/2 J J J J 2n % ¢(E',fj)j + j =i
2-n
2n Z j =i
<(2 n)
2-n
2n Z j =I
<(F~,fj) I/2 <(E],fj) I/2
IgjI + ~(i) I/2 ~(2n) I/2
2n Z j =i
IGjI
= IGI {~(2 n) + ~(i) I/2 <(2n) I/2} .
Since
F2n c F22n,
we have
<(2 n) ~ <(22n).
Thus Lemma 4.2 yields that
}LII ~ IGI {~(2 n) + Const <(22n) I/2} . Let
xj = (j-l)2 -n
Then, for any
and
Gj = Gj_ 1 U Gj U Gj+ I
(i ~ j ~ 2n),
x E G - G., J
I (T E -
2-n T F)(X Gjf)(X) I --< Const fG.3 (x_y)2 + 2-2n 2-niGj I _-< Const
For any
where
g E L 2, we have
(x-xj)2 + 2-2n
-.
f(y)dy
G O =~.
121
I~Z
2n Z j=l
2-nlGjl g(x)dxl (x-xj) 2 + 2-2n 2n ~ fG. j=l 3
Const
2-n {f ~ -
(x-Y)2 +
Const ~G M g(x) dx ~ Const ~
Ig(x) Idx} dy
2-2n llgll2 ,
which shows that 2n ii Z j=l
2-nl G4 j a 2_2n. iI2 _<_Const ~ (--xj)2 +
.
Thus 2n IL31-_<
{7G - ~ j
Z j=l
~ } I(TE_TF)(XG f)(X)TE(XGf)(x)l f(x)dx fGj-Gj j
+
2n
<= Const
j=l
2-nlcj j (x-xj) 2 + 2-2n
7G-Gj
iTE(XGf)(x)if(x)dx
2n +
2
%
+
2
2n % j=l
"
2n { Z j=l
-<_ Const fG
{fG.-G. 3 3
=< Const ~ ( E , f ) _-< Const ~ V ~
dy_ ) ITE(XGf)(x)I f(x)dx Ix-Y[
(~G3
~G.-G. J J
j=l
2-nlGj I ITE(XGf) (x) If (x)dx 2 (x-xj) + 2-2n-}
(fG
--~ J
I/2 + Const
)2dx}i/2 {fG,ITE(Xgf)(x)12 f(x)dx}i/2 3 2n E ~IGjl { ~ ITm(×Gf)(x)12f( x)dx}I/2 j=l 3
~(E,f) I/2 + Const ~
~(E,f) I/2
_<- Const IGI ~(22n) I/2 Let
G.3 ,k
= Gj
U
,k-i
Gj
,k
U Cj,k+ I
(j = 1 .... , 2n, k = 0, -+i, ...).
Then 2I% IL21 =< 2n + IZ j=l
I E
j=i
Z k=-~ fGj ,k
(TE-TF)(X G
f)(x) TE(X G ~ f)(x) f(x)dxl j ,k - J
f)(x) TE(XG_~ f)(x) f(x)dxl Z ~gj (TE-TF)(XG. U gj k=-" ,k 3 ,k-i ,k+l 3
122
2n IS j=l
Z fG (TE-TF)(XG _~" f)(x) TE(XG_~ f)(x) f(x)dx I k=-- j,k J ],k J
2n lj=iS /Gj (TE-TF)(XGjf)(x) TE(X~ f _G ) (Jx ) j
f(x)dx I
L21 + L22 + L23 + L24° We have 2n IL241 =< 2 Z j=l
{7G. I(TE-TF)(XG f)(x)l 2 f(xldx} I/2 3 3 dy
× {fg. (fG.-G. 3 J J Note that
)2 dx}i/2 ~ Const IGI ~(22n) I/2.
~(2 2n) ->_~(i) > Const.
Since
I(TE - TF)(XG _~" f)(x)l J J,k
_-< Const
" S g=-~
2nlGj ,~I 2 (k-u) + i
=< Const
(x ~ Gj ,k),
we have IL23 I ~
=
2n S j=i
Const
Const
, S ~G k=-j ,k
ITE(XG_~ f)(x) I f(x)dx j
2n E fg. ITE {(XG - XG.-G. - XG.)f}(x)l f(x)dx k=I J 3 J J
=< Const Igl
{~(22n) I/2 + i} -<_Const IGl ~(22n) I/2.
Lemma 4.1 shows that 2n IL221
~
{ E j=l
E fGj I(TE-TF)(XG UGj k=-,k j,k-i ,k+l
2n x { Z
Const
f)(x)l 2 dx} I/2
fG. ITE(XG-G. f)(x)12 f(x)dx}i/2
j=l
j
2n { Z j=l
S IGj U Gj f(x)2 dx}i/2 k=-,k-i ,k+l
× {~(E,f) +
2n Z j=l
j
f~, ITE(X~ f)(x)12f(x)dx} I/2 3 3
123
Const IGI ~(22n) I/2. Since
(TE-TF)(x,y)
fGj ,k For
is anti-symmetric, we have
(TE-TF) (XG
f) (x)f (x)dx = 0. j ,k
Gj, k # ~, we choose a point xj, k on G.j,k. Then IL211 = I Z (TE-TF)(XC. f)(x) j,k;Gj,k# ~ fGj,k j,k x {TE(XG_~j f) (x) - TE(XG_~.jf)(xj,k)} f(x)dx Const
Z /Gj,k I(TE-TF)(XG f)(x)If(x)dx j,k;Gj,k# ~ j,k
Const
IGl ~(22n) I/2.
Consequently, IL(1) I ~ Igl {~(2n) + Const ~(22n) I/2} . In the same manner, IL(2) I ~
2n j=l% 7GJ ITF(XGjf)(X)TE(XGjf)(x)If(x)dx + Const IGI ~(22n) I/2
Since the first quantity in the left hand side of the above inequality is dominated by Const IGI ~(22n) I/2, we obtain IL(2) l =< Const IGI ~(22n) I/2 Thus ~(E,f) ~ ~(F,f) + IGI
IGI {~(2n) + Const ~(22n) I/2}
{2 ~(2n) + Const ~(22n) I/2} ,
which yields the required inequality.
Q.E.D.
We now prove the second inequality in Theorem G. Lemmas 4.2 and 4.3 show that n ~(22n-i) n ~(22 ) =< 2 + Const ~(22 )1/2 2n
~(220)
Const
n-i 2k 2n-k 1/2 E ~(2 ) k=O n-i 2k ~(22n-k) i/2 } {2n + 7 k=O + Const
124
which yields that
~(22n) < Const 2 n.
(See the proof of (2.43).)
Let n
denote the integer satisfying
2 n
-<_ n < 2 n.
Then
n ~(2 n) =< ~(22
) =< Const 2 n _-< Const n. -g
For
E E Fn
and
f E Lreal, 0 ~ f ~ i,
g(x) = f(x 2 n/n).
Then
we put
F E F
F = [n2
n E]
and
Hence we have 2gn "
~(E,f)
-2- n ~(F,g) ~ Const
=
IF1 <(2 gn)
n
Const
IEI gn ~ Const
IEI log(n+l),
which gives that (4.3) For
~(n) ~ Const log(n+l)
s I, ..., sn E ~
(ng
i).
we put n
^
E(s I . . . . .
s n) =
U
k-1
{x + Sk, -n -
k
=< x < n },
k=i
where
~k = (the integral part of
I c I0
and
Then we have, for an interval
f E Lreal, 0 ~ f ~ i,
~(I, Tsl . . . . . Hence
nsk)/n.
Sn ,f) ~
(4.3) shows that
Const
{3(1, TE(~I ' ... , Sn ), f) + l l I }
$(I, T
,f) ~ Const
[I[ log(n+l).
• Since
s I, ..., s n Tsl . . . . .
sn(X,y) = i/(x-y)
(x, y ~ I0) ,
this inequality gives
^
~(Tsl ' .--, Sn) ~ Const log(n+l).
Consequently,
) ~ Const $(T °(Tsl, Since
..., s n
s I, ..., s n E ~
)1/2 ~ C o n s t ~ l o g ( n + l ) . s I, ..., s n
are arbitrary,
the second inequality in Theorem G holds.
This completes the proof of Theorem G. Let
BMO(F)
denote the Banach space of functions
f
on a finite union
F
of segments, modulo constants, with norm IIfIIBMo(£) = sup ~ £
1 N D(z,2r) I-
/£ N D(z,r)
If(z) - (f)r N D(z,r) IidzI
is the mean of f over r n D(z,r) where (f)r N D(z,r) and the supremum is taken over all z E ¢, r > O° Put
with respect to
'
Idzl
125
r
Sl' .... Sn
= {(x, A
Corollary 4.4.
Sl' .-., sn(X)); x E
II Sl, ..., s n
; s I, ..., s n ~ ~ } L (FSl '
), BM0(Fsl ' °°'~
=< Const ~log(n+l)
BM0(F).
Theorem G immediately yields
.
Const'~og(n+l)
max{IIH r
where
I 0)
IIHpII
SN
) °''~
S n
(n ~ i) ,
, L (F),BM0(F)
is the norm of
HF
as an operator from
L'(F)
to
APPENDIX II.
PROOF OF THEOREM B BY
P. W. JONES-$. SEMMES
Quite recently, P. w. Jones-S.Semmes gave a proof of Theorem B by complex variable methods.
The following note is their lecture in M~y, 1987.
(The author
expresses his thanks to P. W. Jones-S.Semmes who permitted the author to write here their proof (cf. P.W. Jones [33]). Lemma 4.5.
Let
F = {x + iA(x); x ( ~}
= {z 6 ~; Im z > A(Re z)} . extension, say simply
(4.4)
where
da
Here is a fact obtained by C. Kenig. be a Lipschitz graph and
Then, for any
g(z) (z ( ~ ) ,
to
g (L2(F)
having an analytic
~ ,
IIglIL2(F) ~ CM {ifzig'(z)I 2 dis(z,F)d~(z)} I/2,
is the area element and
CM
is a constant depending only on
M = IA'II. For
z ( ~,
z * = z - 2i(Im z - A(Re z)).
we write
Cf(z) = C(f d~IF)(z) (z £ ~) 1 2hi
~f(z) = For at
z ( F, z.
f(~) ~ - z
IF
we write by
~f(z)
z 6 F U ~,
we have
For
~f(z) = - i ~ 1 2~i
Cf(~)
(~ ~ ~ )
(Cf)"(z + i t ) t dt d~} dt
(Cf)'(w) --- - {Im w - A(Re w)} {~ + iA'(Re w)} do(w) (z - w*) 2
be a sequence of mutually disjoint cubes (with sides parallel to
the coordinate axes) such that 6(Qk )
the nontangentlal limit of
I~ {I F (If)'(< + it/2)t (z+(it/2) - ~)2
2
{Qk}i= 1
d~.
(Cf)i(z + i t ) d r = ~
~-y IIi Let
f 6 L2(F) , we put
For
, i.e.,
is the length of a side of
-
SSQk
~ = Ok=l Qk' Qk
and
dk/CM ~ Z(Qk ) ~ CMdk (k { i), where
d k = diS(Qk,F).
(Cf)'(w)
(= - w*) 2
Then
{Im w - A(Re w)}{~ + iA'(Re w)} do(w),
IfQk Ilm w - A(Re w) I do(w) ~ CM diS(Qk,F) 3
(k ! i).
127
Hence ~ " dk 2 ][CfIIL2(F) --
(4.5)
co
where the supremum is taken over all sequences [Ckl ~ d k, zk E Qk
(k ~ i).
Let
For two sequences function h(~) on
{Ck}k= I, {Zk}k= 1 C by
h(~) = Ck(Cf)'(z k) dk I/2
{Ck}k= 1, {Zk}k= 1 such t h a t denote the 2~dimension maximal operator.
M2
satisfying the above condition, we define a
( ~ E Qk' k ~ i), h(~) = 0
( ~ E ¢ - ~).
Then Lemma 4.5 shows that
"
(4.6)
dk
l[ Z C k ( ~ f ) ' ( z k) ( -- , k=l z - zk
=< CM
{ff~ ]ff¢h(~)] IN
CM
{ff~M2 h(z) 2
IIL2(F)
2 --dk * 3 12 dis(z,F) do(z)} I/2 (z - zk)
{ff~ Ik=El Ck(Cf)'(Zk)
CM
)2
~]I/211m ]z - ~*[3 z~I/2
{ffc lh(z) 12 d~(z)}I/2
d~(z)}i/2 ~ CM
CM { Z" l(~f),(Zk)i 2 a, 3k .)1 / 2 • k=l
CM { "Z ICk(Cf)'(z k) ]2 dk}i/2 ~ k=l Let G Then
denote the totality of sequences
da(~)12 da(z)}i/2
{~k}k= I
such that
k=l ~k~2dk = i.
.3~i/2 [ Z l(Cf)'(z k) 12 ak# k=l
(4.7)
=
2j '
sup {I Z (Cf)'(Zk) ak de k=l
Lemma 4.4 shows that, for any
{~k}k=l E G} .
{~k}k=l E G, 2 dk
(4.8) I k=iZ (Cf)'(Zk) ek dk2 I <
=
i 2~
IIftl
L2(F)
II z
k= I
< CM llf[IL2(r) { ff¢_f~
-
2~i [ f r
f(z)
Z k=l
~k
(Z - zk)
2
dz I
2 dk ek
(z
IkZ=l ~k
-
Zk )2
II L2(F)
2 dk (z - Zk )3
12 dis(z,F) do(z) }1/2
128
CMIlfllc2(r) {k=lZ
I~k 12 dk}l/2
Ilcfll
Thus (4.5)-(4.8> show that Theorem B.
ct~
<
=
~ cM Ilfll L2(F)
IlfllL~(n. ,
which yields
L2(F)
The proof of Lemma 4.5 by P.W.Jones-S.Se~nes is as follows. Put A = Ilgll~2(r), B = ff~ Ig'(z)I 2 dis(z,F) do,z).
Let
to one mapping form the upper half plane
~.
U
to
~(z)
be a conformal one
Then
A = f ~ Ig ° ~(x)1 2 I~'(x) i dx S = flu Ig'° ¢(z) 12 dis(¢(z),r) Koebe's i/4-theorem shows that
flu Since
l¢'(z) l2 do(z)
dis(~(z),F) ~ l~'(z) l(Im z)/4
(z 6 U),
and hence
Ig'° ~(z) 12 l~'(z) I3 y do(z) ~ Const B.
larg ~'(x) I ~ g/2 - (i/M)
(x ~ ~),
Green's formula shows that
A ~ CM [f_~ Ig o ~(x) I2 ~'(x) dx I
= CM [ffu A(Ig {flu
i CM
+ ffu
V E BMO
since
[g'° ~(z) 12 [O'(z) 13 y do(z)
](g'o ¢)(z)(g o
=< CM[B + We can write
o O(z) I2 ~'(z)) y do(z) I
Bl/2{fYuig °
~'(z) = e V(z) Im V ~ L~.
{flu Thus
~(z) 12[~'(z)l ~ (z) 2 y do(z) I/2].
with an analytic function
V(z)
in
U.
Then
Thus
I¢"(z)/¢'(z)l 2 y dy dx is a Carleson measure in
¢)(z)]l¢'(z)[ 2 ]¢"(z)] y do(z)}
U.
( = Iv'(s)I 2 y dx dy )
Since
g o @(z) eV(z)/2
is analytic in
~"(z) 2 }1/2 AI/2. [g ° ~(z) 12]~'(z)I ~ ( z ) y do(z) ~ CM
A g CM(B + BI/2AI/2),
which yields the required inequality.
U,
REFERENCES
[i] A.S.Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points (III), Math. Ann., 116 (1939), 349-357. [2] D.L.Burkholder and R.R.Gundy, integral,
Distribution function inequalities for the area
Studia Math., 44 (1972), 527-544.
[3] A.P.Calder6n, Commutators of singular integral operators, Proc. Nat. Acad. Sci. USA, 53 (1965), 1092-1099. [4] A.P.Calder6n, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. USA, 74 (1977), 1324-1327. [5] A.P.Calder6n, Commutators, singular integrals on Lipschitz curves and applications,
ICM Helsinki (1978).
[6] A.P.Calder6n, C.P.Calder~n, E.B.Fabes, M.Jodeit Jr. and N.M.Riviere, Applications of the Cauchy integral along Lipschitz curves, Bull. Amer. Math. Soc°, 84 (1978), 287-290. [7] R.R.Coifman, A.McIntosh and Y.Meyer, L'int~gral~de Cauchy d~finit un op~rateur borne sur L 2 pour les courbes lipschitziennes, Ann. of Math., 116 (1982), 361-387. [8] R.R.Coifman and Y.Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975), 315-331. [9] R.R.Coifman and Y.Meyer, Commutateurs d'int~grales singuli~res et op~rateurs multilin~aires, Ann. Inst. Fourier Grenoble, 28 (1978), 177-202. [i0] R.R.Coifman and Y.Meyer, "au-delN des op~rateurs pseudo-diff~rentiels", Ast~risque 57, Soc. Math. France,
1978.
[Ii] R.R.Coifman and Y.Meyer, Le th~or~me de Calder6n par les m~thodes de variable r~elle, C.R. Acad. Sc. Paris, 289 (1979), 425-428. [12] R.R.Coifman and Y.Meyer, Non-linear harmonic analysis, operator theory and P.D.E., in Beijing lectures in harmonic analysis (edited by E.M.Stein), 3-45, Princeton Univ. Press,
1986.
[13] R.R.Coifman, Y.Meyer and E.M.Stein, Un nouvel espace fonctionnel adapt~ l'~tude des op~rateurs d~finis par des int~grales singuli~res, in Harmonic Analysis, Cortona,
1-15, Lecture Notes in Math., 992, Springer-Verlag,
1982.
[14] R.R.Coifman, Y.Meyer and E.M.Stein, Some new function spaces and their applications to analysis, J. Funct. Anal., 62 (1985), 304-335. [15] R.R.Coifman, R.Rochberg and G.Weiss, Factorization theorems for Hardy spaces in Several variables, Ann. of Math., 103 (1976), 611-635.
130
[16] M.Cotlar, A unified theory of Hilbert transforms and ergodic theory, Rev. Mat. Cuyana,
1 (1955),
105-167.
[17] G.David, Op~rateurs
int~graux singnliers sur certaines courbes du plan
complexe, Ann. Sci. Ec. Norm. Sup., 17 (1984), 157-189. [18] G.David, Noyau de Cauchy et op~rateurs de Calderdn-Zygmund, Orsay,
Th~se d'Etat,
3193 (1986).
[19] G.David and J.L.Journ~, A boundedness Zygmund operators, Ann. of Math.,
criterion for generalized Calder6n-
120 (1984), 371-397.
[20] G.David, J.L.Journ~ and S.Semmes, Op~rateurs de Calder~n-Zygmund, para-accr~tives
et interpolation,
Rev. Mat. Iberoamericana,
fonctions
1-4 (1985),
1-56. [21] A.M.Davie, Analytic capacity and approximation problems, Trans. Amer. Math. Soc., 171 (1972), 409-444. [22] A.M.Davie and B.~ksendal,
Analytic capacity and differentiability
of finely harmonic functions, Acta Math., [23] A.Denjoy,
properties
149 (1982), 127-152.
Sur la continuit~ des fonctions analytiques singuli~res,
Bull. Soc.
Math. France, 60 (1932), 27-105. [24] E.B.Fabes,
N.M. Riviere and M.Jodeit Jr., Potential techniques for boundary
value problems on cl-domains, [25] C.Fefferman,
Acta Math.,
141 (1978), 165-186.
Recent progress in classical Fourier analysis,
ICM Vancouver
(1974). [26] R.Fefferman,
R.R.Gundy, M.Silverstein
and E.M.Stein,
Inequalities
for ratios
of functionals of harmonic functions, Proc. Nat. Acad. Sci. USA, 79 (1982), 7958-7960. [27] C.Fefferman and E.M.Stein, (1972),
H p spaces of several variables, Acta Math.,
129
137-193.
[28] J.Garnett,
Positive length but zero analytic capacity, Proc Amer. Math. Soc.,
21 (1970), 696-699. [29] J.Garnett,
"Analytic Capacity and Measure", Lecture Notes in Math., 297
Springer-Verlag, [30] T.E.Harris,
1972.
"The theory of branching processes",
Springer-Verlag,
1963.
[31] L.D.Ivanov, On sets of analytic capacity zero, in Linear and Complex Analysis-199
Research Problems,
Springer-Verlag,
[32] F.John and L.Nirenberg, Appl. Math., [33] P.W.Jones,
498-501, Lecture Notes in Math.,
1043,
1984. On functions of bounded mean oscillation,
Comm. Pure
14 (1961), 415-426.
in preparation.
[34] P.W.Jones and T.Murai, Positive analytic capacity but zero Buffon needle probability,
to appear.
131
[35] J.L.Journ~,
"Calder6n-Zygmund
Operators,
Pseudo-Differential
Operators and the
Cauchy Integral of Calder6n", Lecture Notes in Math., 994, Springer-Velrag, 1983. [36] P.G.Lemarie,
Continuit~ sur ]es espaces de Besov des op~ra~eurs d~finis par
des int~grales singuli~res, [37] D.E.Marshall,
Ann. Inst. Fourier Grenoble, 35 (1985), 175-187.
Removable sets for bounded analytic functions,
Complex Analysis-199 Springer-Verlag,
Research Problems,
in Linear and
485-490, Lecture Notes in Math.,
1043,
1984.
[38] P.Mattila, A class of sets with positive length and zero analytic capacity, Ann. Acad. Sci. Fenn. Ser. A I i0 (1985), 387-395. [39] P.Mattila,
Smooth maps, null-sets for integralgeometric
capacity, Ann. of Math.,
[40] A.McIntosh and Y.Meyer, Alg~bres d'op~rateurs singuli~res,
measure and analytic
123 (1986), 303-309. d~finis par des int~grales
C.R. Acad. Sc. Paris, 30] (1985), 395-397.
[41] Y.Meyer, Le lemme de Cotlar et Stein et la continuit~ L 2 des op~rateurs d~finis par des int~grales singuli~res, L.Schwartz,
115-126, Ast~risque
in Colloque en l'honneur de
131, Soc. Math. France,
1985.
[42] T.Murai, Boundedness of singular integral operators of Calder6n type (IV), Hiroshima Math. J., 14 (1985), 511-525. [43] T.Murai, Boundedness of singular integral operators of Calder6n type (V), Adv. in Math., 59 (1986), 71-81. [44] T.Murai, Boundedness of singular integral operators of Calder6n type VI, Nagoya Math. J., 102 (1986), 127-133. [45] T.Murai, Proof of the boundedness of commutators by perturbation,
Bull. London
Math. Soc., 18 (1986), 383-388. [46] T.Murai, Construction of H I functions concerning the estimate of analytic capacity, Bull. London Math. Soc., 19 (1986),
154-160.
[47] T.Murai, Comparison between analytic capacity and the Buffon needle probability,
Trans. Amer. Math. Soc., to appear.
[48] T.Murai and A.Uchiyama,
Good % inequalities
nontangential maximal function, [49] L.A.Santal6, [50] E.M.Stein,
for the area integral and the
Studia Math., 81 (1986), 251-262.
"Introduction to integral geometry", Harmann,
"Singular Integrals and Differentiability
Princeton Univ. Press, [51] P.Tchamitchian, lipschitziennes, [52] A.G.Vitushkin,
1953.
Properties of Functions",
1970.
La normede l'op~rateur de Cauchy sur les courbes in preparation. Example of a set of positive length but zero analytic capacity,
Dokl. Akad. Nauk. SSSR, 127 (1959), 246-249 (Russin). [53] K.Yoshida,
Functional Analysis Sixth Edition, Springer-Verlag,
[54] A.Zygmund,
Trigonometric series I, Cambridge Univ. Press,
1959.
1980.
SUBJECT INDEX
Ahlfors function analytic capacity Area integral BMO
Interpolation
80 y(E)
71
John-Nirenberg's inequality
2
locally chord-arc LP( -)
1
Buffon needle probability Bu(E)
21
105
T[a]
68
Lreal 31 L(r,0) i05
105
Calderdn commutator
71
L~(.) 72
1
Calder6n's problem
82
maximal operator
M
34
Calder@n's theorem
1
Mclntosh expression
13
Calderdn-Zygmund decomposition Carleson measure
33
6
C
chord-arc curve
HF
68
9
T-atom
Coifman-Meyer-Stein's theorem
Covering Lemma
32
crank
105
E
1.1
15
tent space
ii
T1 theorem
16
31
Vitushkin's example
Cra(E)
¥+(E)
105
108
I(F',F)
21
~(E,f)
83
o fat crank
99
Galton-Watson process Garabedian function Garnett's example
106
80 71
Good % inequalities
4
Hilbert transform
~(n)
118
p(F)
72 72
o-function
generalized length
Green's formula
118
p+(F)
80
aC(g)
OE(B)
61 52
~E(~) 55
7
integralgeometric quantity
35
61
$C(~,B)
5
105
80
71
8-standard kernel
51
ex (n)
74
T-atomic decomposition
Tn[a]
126
E[a]
ii
Tb theorem
83
Crofton's formula
3
105
separation theorem
Coifman-Meyer expression
17
Prob
Rising Sun Lemma 32
71
68
Cotlar's lemma
105
Poisson kernel
Cauchy-Hilbert transform Cauchy transform
NE(r,6)
o(l,K,f)
25
15
13
34
133
$(I,T,f)
39
@(I,T,f)
39
~(K)
25
~(n)
86
$0(T) 39 ~(T) 39 @(T)
39
3(T ;~-~) 39 ~0(n) 91 @(n) 86 co6(K)
16