DIVISOR THEORY I N MODULE CATEGORIES
This Page Intentionally Left Blank
NORTH-HOLLAND MATHEMATICS STUDIES
14
Nota...
53 downloads
913 Views
4MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
DIVISOR THEORY I N MODULE CATEGORIES
This Page Intentionally Left Blank
NORTH-HOLLAND MATHEMATICS STUDIES
14
Notas de Matematica (53) Editor: Leopoldo Nachbin
Universidade Federaldo Rio de Jarmiro and University of Rochester
Divisor Theory in Module Categories
W. V. VASCONCELOS Rutgers University
1974
NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM OXFORD AMERICAN ELSEVIER PUBLISHING COMPANY, INC. - NEW YORK
@ North-Holland Publishing Company - 1974 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form o r by any means, electronic, mechanical, photocopying, recording OF otherwise, without the prior permission of the copyright owner.
Lib1 auy of Congress Catalog Card Number: 74-84871 North-Holland ISBN for this Series: 0 7204 2700 2 North-Holland ISBN .for this Volume: 0 7204 2715 0 American Elsevier ISBN: 0 444 I 0 737 I
PUBLISHERS:
NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY, LTD. - OXFORD SOLE DISTRIBUTORS FOR THE U.S.A. A N D CANADA:
AMERICAN ELSEVIER PUBLISHING COMPANY, INC. 52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017
PRINTED IN THE NETHERLANDS
Preface Heuristically the divisor d ( E ) o f an A-module E i s t h e i d e a l o f A n a c k i n y t h e most i n f o r m a t i o n on E .
A nrime c a n d i d a t e
f o r t h i s r o l e , t h e a n n i h i l a t o r o f E , l a c k s decent f u n c t o r i a l p r o p e r t i e s . I n s t e a d , a g e n e r a l i z a t i o n of a n o t h e r o f t h e c l a s s i cal d i v i s o r s
n l a y s a more v i s i b l e r o l e i f one works i n t h e
f o l l o w i n g s e t t i n g . D e f i n e a d i v i s o r on a s u h c a t e y o r y C o f mod(R) a s an a d d i t i v e - w i t h r e s n e c t t o s h o r t e x a c t s e q u e n c e s mapping from C i n t o some s e m i - g r o u n S o f i d e a l s . An o u t s t a n d i n p example i s t h a t f o u n d i n t h e c a t e g o r y T o f f i n i t e l y g e n e r a t e d t o r s i o n modules o f f i n i t e p r o j e c t i v e d i m e n s i o n o v e r a N o c t h e r i a n r i n g A . I n t h i s c a s e one may d e f i n e a d i v i s o r f u n c t i o n from T i n t o t h e s e m i - g r o u p Inv(A) o f i n v e r t i b l e i d e a l s and o b t a i n an
e x a c t sequence
-
A
Ko(A)-
This d
d -
Ko(T)-
Inv(A)
i s d e f i n e d i n t h e u s u a l manner : Am
If
- - 4
E
A"
1.
0
i s a p r e s e n t a t i o n o f t h e module E , t h e d e t e r m i n a n t a l i d e a l F(E) g e n e r a t e d by t h e m i n o r s of o r d e r
n o f t h e m a t r i x 0 i s changed
into
For t h e l a r g e r category of a l l f i n i t e l y generated t o r s i o n modules t h i s f u n c t i o n i s a d d i t i v e o n l y i f t h e r i n g i s i n t e R r a l l y closed. In f a c t , i n t h i s c a s e , it i s t h e only a d d i t i v e d(A/xA)
mapping s a t i s f y i n g
=
xA.
D i v i s o r s a r i s e a l s o i n c a t e g o r i e s o f modules g e n e r a t e d by s p h e r i c a l modules
-
modules s h a r i n g c e r t a i n h o m o t o p i c p r o p e r V
Preface
VI
t i e s o f A o r t h e c a n o n i c a l modules o f bfacaulay r i n g s . S p e c i f i c a l l y we t a k e a module G s a t i s f y i n g : i) ii)
IIomA(G,G) = A , and i ExtA(G,G) = 0 f o r i > 0
and c o n s i d e r modules s u s c e n t i b l c o f a r e n r e s e n t a t i o n GmAs
r$
4l
c;"
-E -
0.
may be viewed as a m a t r i x , an a n p r o p r i a t e S c h a n u e l ' s lemma
w i l l make t h e c o r r e s n o n d i n q d e t e r m i n a n t a l i d e a l w e l l d e f i n e d . As e a r l i e r t h e d i v i s o r w i l l t a k e v a l u e s i n Inv(A) whenever
E
admits a f i n i t e G - r e s o l u t i o n . A consequence i s t h a t t h i s d i v i s o r does n o t depend on t h e s n h e r i c a l module u s e d i n t h e f i n i t e resolution. In t h e l a s t chapter a d i v i s o r i s defined i n the catepory
o f modules o f f i n i t e i n j e c t i v e d i m e n s i o n b u t u s i n g t h e symme t r i c a l notion of co-presentation. These n o t e s a r e a t r a n s c r i p t o f some l e c t u r e s on d i v i s o r t h e o r y g i v e n a t R u t g e r s I J n i v e r s i t y i n t h e S p r i n g o f 1974. I t was f e l t n e c e s s a r y t o i n c l u d e an e x p o s i t i o n o f t h e homoloyy of N o e t h e r i a n - which was t a k e n a s synonymous w i t h t h e t h e o r y o f blacaulay r i n g s - t o make t h e whole s u f f i c i e n t l v s e l f - c o n t a i n e d . O f c o u r s e t h e t i m e l i m i t s n r e c l u d e d any d i s c u s s i o n o f t h e i n t e -
r e s t i n g p o r t i o n o f t h a t t h e o r y d c a l i n c w i t h how ' l n c a u l a v r i n e s arise. ' l a j o r y o r t i o n s o f t ' i e s e n o t e s were j o i n t l y worked o u t w i t h
. J e f f r e y lfawson : t h i s i s a t l e a s t t h e c a s e f o r t h e w h o l e o f Chapter 5
and ( 3 . 1 5 ) , t h e main r e s u l t o f C h a n t e r 3 . These and
h i s ongoincr, r e s e a r c h oq h i q l i e r c l i v i s o r i a l i d e a l s will a l s o b e p a r t o f h i s t h e s i s . To J u d i t h S a l l v we a r e i n d e b t e d f o r
Preface v a l u a b l e comments on an e a r l i e r v e r s i o n o f t h e n o t e s and
VII
COT
-
r e c t i o n s o f some o f t h e most o f f e n s i v e e r r o r s . F i n a l l y , t h e f i n a n c i a l sunport of t h e National Science Foundation i s p r a t e f u l l y acknowledged.
This Page Intentionally Left Blank
Table o f Contents
Preface
V
Chapter 1 : 1.1 1.2 1.3 1.4
. .. .
Chapter 2 : 2.1 2.2 2.3 2.4 2.5 2.6 Appendix
.. . .. ..
Chapter 3 : 3.1 3.2 3.3 Appendix
.. ..
Chapter 4 :
4.1 4.2 4.3 4.4 4.5
.. .. .
Chapter 5 : 5.1 5.2 5.3
.
..
Bibliography Index
Local Algebra
...... 1 ............... 4 ................ 8 . . . . . . . . . . 13
Noetherian and Coherent Rings Local Rings Flatness F i t t i n g ' s Invariants Homology of Local Rings
. . . . . . . . . . . . 16 . . . . . . . . . . . . . . . . . 19 . . . . . . . . . . . . . 28
Koszul Complexes Depth Macaulay Rings P r o j e c t i v e and I n j e c t i v e Dimensions E u l e r C h a r a c t e r i s t i c s o f Modules Gorenstein Rings Rings o f Type One
.. .. .. 36 33 . . .. .. .. .. .. .. .. .. .. .. .. 4524
Divisorial Ideals
. . . . . . .. .. ... ... ... ....... ... ... ... 55 63 72 . . . . . . . . 80
Composition i n Id(A) Divisors Modules o f Dimension One Higher D i v i s o r i a l I d e a l s
S p h e r i c a l Modules and D i v i s o r s
.... . . .. .. .. ..
A Theorem o f Gruson Change of Rings and Dimensions S p h e r i c a l Modules Elementary P r o p e r t i e s R e s o l u t i o n s and D i v i s o r s
. . . . . . 82 .. ... ... ... ... ... 998404 . . . . . . 98
I-divisors
. . . . . . . . . . . . . .1 0 4 . . . . .1 0 7 . . . . . . . . . . .1 0 9 . . . . . . . . . . . . . . . . . . . . . 117 . . . . . . . . . . . . . . . . . . . . . 120
Construction E u l e r C h a r a c t e r i s t i c s o f Inj(A) D i v i s o r s on I n j (A)
IX
This Page Intentionally Left Blank
Chapter 1 Local A l g e b r a I n t h i s c h a p t e r - o f a s k e t c h y n a t u r e - a r e grouped some o f t h e b a s i c f a c t s o f commutative a l g e b r a t h a t s h a l l be u s e d throughout - Noetherian r i n g s , Krull dimension, f l a t n e s s , e t c . [6, 2 0 , -341 w i l l be s o u r c e s f o r t h e p r o o f s , which w i l l n o t , a s
a r u l e , be s u p p l i e d h e r e . 51.1
Noetherian and coherent r i n g s . Although some o f t h e n o t i o n s d i s c u s s e d i n t h e s e n o t e s do
not require t h e commutativity of the r i n g s involved, t h i s w i l l b e n e c e s s a r y f o r some c o n s t r u c t i o n s .
Thus we assume t h e b l a n k e t
c o n d i t i o n t h a t a l l r i n g s a r e commutative, w i t h 1, and t h a t modules are u n i t a l . Given a r i n g
A
-
and an A-module E w e s a y t h a t E i s
f i n i t e l y generated i f there is a s u r j e c t i o n $A-E. n summands
A n = A O
...
a r e t h e images o f t h e ' b a s i s ' e l e m e n t s Of A n , en v = ( x l , ...,xn) e An w i l l be c a l l e d a r e l a t i o n on t h e e i ' s i f
If
el,
9
The s e t o f s u c h e l e m e n t s i s a submodule K o f t o be f i n i t e l y p r e s e n t e d i f , b e s i d e s , K That t h e f i n i t e n e s s o f
K
Lemma.
E
is said
i s f i n i t e l y generated.
does n o t depend on how w e p r e s e n t
E f o l l o w s from:
(1.1)
An.
(Schanuel ' s lemma) 1
Let
2
Local A l e e b r a
be exact sequences with
P
and
P' A - p r o j e c t i v e s .
Then
K ' 8 P.
K 8 P'
Proof.
Well-known.
Definitions. submodule o f
An A-module
E
i s Noetherian i f every
i s f i n i t e l y generated, o r equivalently, i f
E
e v e r y a s c e n d i n g c h a i n o f submodules o f
is stationary.
E
As
s e v e r a l c o n s t r u c t i o n s on modules show a f i n i t a r y c h a r a c t e r , t h e f o l l o w i n g w i l l be u s e d a t times.
E
i s coherent i f every
f i n i t e l y g e n e r a t e d submodule i s f i n i t e l y p r e s e n t e d . A
The r i n g
i t s e l f i s N o e t h e r i a n i f i t is N o e t h e r i a n a s an A-module,
t h a t i s every i d e a l is f i n i t e l y generated.
Similarly f o r the
notion of coherent r i n g . (1.2)
Lemma.
If
E
i s a f i n i t e l y generated (resp.
f i n i t e l y p r e s e n t e d ) module o v e r a N o e t h e r i a n ( r e s p . c o h e r e n t ) ring
A
then
Proof. Remark.
E
i s Noetherian (resp. coherent).
[?I. Although N o e t h e r i a n r i n g s a r e c o h e r e n t t h i s i s
no l o n g e r t h e c a s e f o r modules a s c o h e r e n c e i s ' m o r e ' o f a relative notion. A c h a i n o f prime i d e a l s ( o r p r i m e s f o r s h o r t ) i n a f i n i t e sequence
A
is
Local Alnehra
o f d i s t i n c t prime i d e a l s o f
r
A.
3
is the length of the chain.
A , K-dim(A), i s t h e supremum o f t h e
The K r u l l d i m e n s i o n o f
The h e i g h t o f a prime
l e n g t h s o f a l l c h a i n s o f prime i d e a l s .
p,
h t ( p ) , i s t h e supremum o f t h e l e n g t h s o f c h a i n s w i t h e l e -
p.
ments c o n t a i n e d i n
If
I
i s an i d e a l , h t ( 1 ) i s d e f i n e d
a s t h e infimum o f t h e h e i g h t s o f p r i m e s c o n t a i n i n g (1.3)
Theorem.
p
The h e i g h t o f a prime
i n a Noetherian
r i n g i s f i n i t e and e q u a l t o t h e minimal number
xl,
...,xn
e p
Proof.
such t h a t
A
p i s a minimal prime i d e a l o v e r
zero-divisor for
E
E
p
if
The s e t o f z e r o - d i v i s o r s o f
e c E.
A s s ( E ) w i l l denote
z(E) =
Proposition.
If
i s Noetherian, each E.
0
# e c E
x c A with
w i l l be d e n o t e d
E
(1.4)
generated then Ass(E)
i s minimal o v e r an
E # 0 , an e l e m e n t
If
i f there is
h i l a t o r o f an e l e m e n t of
as a
A and a n A-module E, w e s a y t h a t
is associated t o
the s e t o f such primes.
...,xn
p.
i d e a l o f t h e form I = a n n i h i l a t o r o f
A
xl,
We s h a l l r e f e r t o t h e e l e m e n t s
Given a commutative r i n g
p
of elements
h a s a u n i q u e maximal i d e a l t h e n K-dim(A)
system of parameters f o r
a prime
n
[E, 341.
In p a r t i c u l a r , i f
is finite.
I.
u
xe = 0 .
z(E).
P .
pcAss (E)-
pcAss(E) i s a c t u a l l y t h e a n n i -
I f , besides,
is f i n i t e
is a
[z, 341.
E
is f i n i t e l y
L o c a l Algehra
4
(1.5)
Proposition.
If
such t h a t
Mi/Mi-l
- A/pi,
... s M n
C_
E~
=
= M,
= prime i d e a l .
[=I.
Proof.
11.2
sM1
there is a f i l t r a t i o n
A
u l e over t h e Noetherian r i n g 0
i s a f i n i t e l y g e n e r a t e d mod-
E
Local Rinvs. The J a c o h s o n r a d i c a l o f a r i n g
.J(A) o f t h e maximal i d e a l s o f h a s a u n i q u e maximal i d e a l
is the intersection
The r i n g
A.
m_
IJ;
A
equals
l y t h e s e t of n o n - i n v e r t i b l e elements of
A J(A)
A.
k- = A/m- w i l l be c a l l e d t h e r e s i d u e f i e l d o f Let module.
A
be a l o c a l r i n g and
i s a s e t of elements o f b a s i s , t h e submodule +
m_E.
(1.6)
That
F
of
E = F
E / m-E .
E
In t h i s c a s e A.
E,
v(E), is the
Indeed, i f
whose images i n
E
and i s p r e c i s e -
a f i n i t e l y generated A-
The minimum number o f g e n e r a t o r s o f
dimension of t h e k - v e c t o r space
E = F
E
i s local i f it
el,.
. . ,en
form a
E/gE
they generate i s such t h a t
i s a consequence of t h e u b i q u i t o u s
P r o p o s i t i o n . (Nakayama's lemma)
f i n i t e l y g e n e r a t e d A-module and
F
Let
E
he a
a submodule s a t i s f y i n g
E = F + J(A) E .
Then we have Pro0 f
.
F = E.
I f we l e t
G = E/F,
we have
G = JG
and w e
Local Algebra
h a v e t o show of
G.
G = 0.
. . ,gn
gl,.
Let
5
be a s y s t e m o f g e n e r a t o r s
There e x i s t elements a
1< i , j ~n
e J
ij
such t h a t
c
Pi =
aijgj
*
j
We have
det(6ij-a..)G 13
a e J , is invertible,
= 1 + a , with
det(sij-aij)
since
= 0;
G = 0.
R e p e a t e d u s e o f ( 1 . 6 ) w i l l b e made i n t h e f o l l o w i n g form: Let
-
b e a f i n i t e l y g e n e r a t e d A-module and
E
$ : Em
En
a homomorphism r e a l i z e d by m u l t i p l i c a t i o n by a m a t r i x 1 < i < m , 1:
ive then
j!
S
2 n , with e n t r i e s i n
S
of
x,y e S
and
i f f there is
x - y e S.
=-->
S-'E
z e S or
with
If
s t r u c t u r e and
i t s e l f i t endows
A
ES
€or
p.
As
p
S = A\p
E
x
(e,x) S/-
-
(f,y)
is
AS
with a ring
A
E
If
is c a l l e d t h e l o c a l i -
itself is not a multiplicative
s e t t h e r e w i l l b e no c o n f u s i o n when Viewed as a r i n g
by
S
i s an As-module i n t h e w e l l known way.
ES
at
x
z(ye-xf) = 0.
p i s a prime i d e a l , E
i s an A-module an
E E
set i f
and h a s a n a t u r a l g r o u n s t r u c t u r e .
ES
Applied t o t h e r i n g
zation of
4
is called a multiplicative
A
e q u i v a l e n c e r e l a t i o n i s d e f i n e d on
written
If
J.
E = 0.
A subset 0
j
(aij) is surject-
ES
is written
E
P'
h a s a s i m p l i f i e d prime i d e a l s t r u c t u r e :
Local Algebra
6
i t s primes a r e i n one-one correspondence w i t h t h e primes of contained i n
p.
ma1 i d e a l
.
PAP
In p a r t i c u l a r
A
A
i s a l o c a l r i n g w i t h maxi-
E
I t s r e s i d u e f i e l d w i l l be d e n o t e d by
k(p).
The u s e f u l n e s s o f t h i s c o n s t r u c t i o n , t h a t can be e x t e n d e d t o module homomorphisms r e s t s p r i m a r i l y on (1.7) i)
([c]):
Proposition. If
S
i s a m u l t i p l i c a t i v e s e t and f
E-+F-&G
i s an e x a c t s e q u e n c e o f m o d u l e s , t h e n
- fS
ES
FS
%
GS
is also exact. ii)
E = 0 iff E
E
= 0
f o r e v e r y prime i d e a l .
A p r o j e c t i v e r e s o l u t i o n o f an A-module E i s an e x a c t sequence P.
w i t h Pi n
:
Pn
.. . p1
A-projective.
(pdA E = n )
that
...
Pn+l = 0 .
E
fl
~
Po-E-O
i s s a i d t o have p r o j e c t i v e d i m e n s i o n
i f there is a resolution with
n
l e a s t such
I n t h i s c a s e i t f o l l o w s i m m e d i a t e l y from ( 1 . 1 )
t h a t whenever o n e s t a r t s b u i l d i n g a r e s o l u t i o n f o r E , t h e k e r n e l of Pn-l
f n - l , Pn-2
is a l w a y s p r o j e c t i v e .
If
E
is a
f i n i t e l y p r e s e n t e d module o v e r a c o h e r e n t r i n g t h e n from ( 1 . 2 ) one c o n c l u d e s t h a t E a d m i t s a p r o j e c t i v e r e s o l u t i o n w i t h f i n i t e l y g e n e r a t e d terms.
In t h e s e c a s e s a consequence o f (1.7) i s
t h a t pdA E = s u p (pdA A).
E
P E’
where
p
runs o v e r t h e primes of
7
Local Algebra
of A i s defined as
The g l o b a l dimension
s u p 1 pdAE,
f o r a l l A-modules 1. Theorem. ( H i l b e r t ' s s y z y g i e s theorem) I f A i s
(1.8) any r i n g
g l dim(A[t])
=
g l dim(A)
+
1,
where t i s a n i n d e t e r m i n a t e . I n p a r t i c u l a r t h e p o l y n o m i a l r i n g in
n
i n d e t e r m i n a t e s over a f i e l d h a s g l o b a l dimension An
sequence I'
with Ii
o f a module E i s an
injective resolution
: 0
-
0
E -1
...
-I1-
n.
exact
- 1" -
...
an i n j e c t i v e A-module. The n o t i o n o f i n j e c t i v e dimen -
s i o n i s s i m i l a r l y defined while t h e
g l o b a l dimension
'
of A
c o i n c i 4 e s w i t h t h a t d e f i n e d above. L e t A b e a N o e t h e r i a n l o c a l r i n g o f maximal i d e a l
m_
and
k . Among t h e numbers residue f i e l d -
K r u l l dim(A)
,
dim,(m_/m_')
and
g l o b a l dim(A) we have t h e f o l l o w i n g r e l a t i o n s : g l dim(A) K r u l l dim(A)
( [El1
.
(1.9)
Theorem.
i)
g l dim(A) <
ii)
L
dimk(m_//m2)
-
The f o l l o w i n g c o n d i t i o n s a r e e q u i v a l e n t : m
.
dirnk(m_/m_*) = K r u l l dim(A).
Moreover i n e i t h e r case one h a s e q u a l i t y o f a l l t h r e e dimensions
.
Local Algebra
8
A r i n g s a t i s f y i n g t h e s e c o n d i t i o n s will b e c a l l e d r e g u l a r .
34]): The f o l l o w i n g g i v e s a p i c t u r e o f r e g u l a r r i n g s ( [ -
(1.10)
Theorem.
Let
be a l o c a l r i n g .
A
r e g u l a r i f f t h e graded r i n g a s s o c i a t e d t o
m_
Then
A
is
i s a polynomial
ring.
xl,
Concretely, i f generating s e t f o r
m
...,xn
(n =
a r e t h e e l e m e n t s i n a minimal ) we h a v e a homomorphism
-
of graded r i n g s
with
k(Xi)
=
class o f
A is regular i f f
x 1.
g/g2. The a s s e r t i o n i s t h a t
in
i s an i s o m o r p h i s m .
This i s t h e c a s e , f o r
i n s t a n c e , w i t h t h e r i n g o f f o r m a l power s e r i e s i n
n
variables
over a f i e l d . The f o l l o w i n g change o f r i n g s r e s u l t w i l l be u s e d r e p e a t e d l y ([%]). (1.11) and
x
an e l e m e n t o f A
t o both for
i
Proposition.
'>
and
E.
Let
A
be a r i n g , E
t h a t i s a nonzero d i v i s o r with respect
A
We h a v e t h e n an isomorphism o f f u n c t o r s
0:
i+l Ext A (-,E)
E x t iA/ ( x ) ( - , E / x E )
i n t h e category o f R/(x)-modules.
§1.3
Flatness. Let
A
an A-module,
be a r i n g ,
E
an A-module and
Local Algebra
... M i + l
( E.1)
- - P.1
?Iiel
i
9
...
b e an a r b i t r a r y e x a c t s e q u e n c e o f A-modules.
. ..
( i\lQAE)
b.I Q E i A
Mi+l@AE
i s a l s o e x a c t , we s h a l l s a y t h a t
the right
exactness
n e s s o f E amounts t o : MQAE # 0
whenever
of
.. .
bli-l@AE
i s A -f l a t , o r simply f l a t
E
when t h e r i n g i s w e l l u n d e r s t o o d .
If
A s (-)eAE
already preserves the f l a t -
short exact seouences,
(-)BAE
preserves injections.
)I # 0 , t h e n
If also
w i l l be c a l l e d f a i t h f u l l y
E
flat.
... , a n ]
a = {al,
If
-
i s a sequence of elements of
A, t h e
module o f r e l a t i o n s on t h e a i l s i s t h e k e r n e l o f
0 : A" R
,.(a)
= ker(4t31E)
...,x n ) = c x i. a i ' { ( e l , ...,e n ) e E w i t h
A,
+ (x,,
is then
C aiei
= 0)
and w i l l be c a l l e d t h e module o f r e l a t i o n s on t h e a i l s w i t h coefficients in (1.12) A-module
E.
i)
E
ii)
E.
is flat. g
For e v e r y s e q u e n c e i ) =->
t h e elements i n
5. F
F
ii):
Let
e x a c t sequence
$81
a s above
(a)
-
RA(a)E =
RE(a).
be t h e i d e a l g e n e r a t e d by
C o n s i d e r t h e exact s e q u e n c e A
An
i s a f r e e module,
F Q E
RA(g)E C R E ( @ .
The f o l l o w i n g a r e e q u i v a l e n t f o r an
Proposition.
Proof.
where
Notice t h a t
An 8 E
A/(s)-
0
Tensoring with
- 0Q1
A Q E
E
we obtain the
A / ( a-) Q E
-
0.
Local Algebra
10
im($ 8 1 ) =
Since
R ~ ( & ) E , we have ( i i ) .
Actually, i n the
l a n g u a g e o f d e r i v e d f u n c t o r s , t h e argument shows t h a t Tor:(A/(z),E) i i ) =>
i):
where
@I
jective.
RE(%)/
=
RA(&)E
.
Consider t h e diagram
is i n j e c t i v e , With
P
L = k e r JI
i s a f r e e module and and
J,
is sur-
K = J,-’(cb(F)), w e o b t a i n t h e
diagram L @ E - P @ E - G @ E - O
T
T
w i t h o b v i o u s maps.
From i t f o l l o w s t h a t t h e v e r t i c a l map on
t h e r i g h t w i l l b e i n j e c t i v e i f t h e two maps e n d i n g i n are injective.
We may t h e n assume t h a t
I t i s a l s o clear t h a t
G
P 8 E
i s a f r e e module.
may b e assumed o f f i n i t e r a n k .
G
An
e a s y i n d u c t i o n on r a n k t a k e s c a r e o f t h e r e m a i n d e r o f t h e p r o o f , t h e s t a r t i n g c a s e b e i n g s u p p l i e d by t h e h y p o t h e s i s . I t i s c l e a r t h a t f r e e modules a r e f l a t a s a r e d i r e c t A b i t s u r p r i s i n g i s t h e converse
limits of f r e e modules. f l a t modules ([z]):
f r e e modules. amounts to
are d i r e c t l i m i t s of f i n i t e l y generated
The l o c a l i z a t i o n p r o c e d u r e o f 2 1 . 2 r e a l l y
ES = E 8 AS; c o n s e q u e n t l y
A criterion for flatness:
(1.13)
Theorem.
Let
2
: A
-
AS
B
i s a f l a t A-module.
be a l o c a l
Local A l g e b r a
11
homomorphism o f t h e l o c a l N o e t h e r i a n r i n g
B-module
E
(k(m_)c r ) .
(B,n_)
l o c a l coherent r i n g
is f l a t over
(A,m_)
A f i n i t e l y presented
iff
A
A Torl(A/m_,E) = 0
.
We b e g i n by r e m a r k i n g t h a t i f
Proof.
A g e n e r a t e d A-module t h e n Torl(M,E)
is a finitely
M
i s a f i n i t e l y generated B-
- - ... - - -
module.
Indeed, i f
( F)
.,.
F1
Fn
Fo
i s a p r o j e c t i v e r e s o l u t i o n of
M
EI
0
by f i n i t e l y g e n e r a t e d f r e e o f B-modules i s made up o f
F@ B
A-modules, t h e complex
into the
f i n i t e l y g e n e r a t e d c o h e r e n t modules and t h u s i t s homology groups a r e f i n i t e l y generated.
A c c o r d i n g t o ( 1 . 5 and 1 . 1 2 ) i t
A
i s enough t o show t h a t
Torl(A/p,E)
p.
then
If
K-dim(A/p) = 0
p
=
m_
Torl(A/p,E) Suppose t h a t
K-dim(A/E) > 0
A/p
0-
Tensoring with
E
and by h y p o t h e s i s
= 0
Let
a e m_
- .a
A/p
yields
T o r l (A/p,E)
5 T o r l (A/p,E)
But K-dim ( A / ( p , a ) ) < K-dim(A/E)
then
p; by i n d u c t i o n
Torl ( A / p , E )
= a.Torl
p
A/(p,a)
-
and c o n s i d e r t h e
-
0
.
T o r l (A&,a) , B )
.
and t h u s by ( 1 . 5 ) t h e f i r s t
module a d m i t s a f i l t r a t i o n w i t h f a c t o r s l y containing
.
and t h a t t h e s t a t e m e n t h o l d s f o r
a l l primes o f lower dimension. sequence
f o r each prime i d e a l
= 0
A/p',
Torl(A/(p,a),E)
(A/p,E)
,
with = 0.
p' p r o p e r But
which by Nakayama's lemma
Jmcal A l e e h r a
12
( 1 . 6 ) and t h e i n i t i a l remarks f o r c e s T o r l ( A / p , E ) Remark.
= 0.
Without r e l a t i v e f i n i t e n e s s c o n d i t i o n s t h e does n o t ensure t h e f l a t n e s s of
v a n i s h i n g o f Torl(A/m_,E) = 0 E as e a s y examples show.
Let
be a l o c a l N o e t h e r i a n r i n g and
fA,m_)
a finite-
E
l y g e n e r a t e d A-module. A t o p o l o g y i s i n d u c e d on E by d e c l a r r i n g t h e submodules m - E t o be a s y s t e m o f n e i g h b o r h o o d s f o r 'This w i l l be r e f e r r e d t o a s t h e m - -adic topology o f
0.
Theorem.
(1.14)
module o f
r
1
( A r t i n - R e e s ' lemma)
s > 0
T h e r e e x i s t s an i n t e g e r
E.
Let
E.
be a s u b -
F
such t h a t f o r
s , w e have
r-s.
Fn m -r * E = mProof.
See [ 34]
S
(Fn m_ * E ) .
f o r a s l i g h t l y more g e n e r a l s t a t e m e n t .
A s c o n s e q u e n c e s we c o n c l u d e t h a t t h e m_-adic t o p o l o g y o f
F
i s i n d u c e d from t h a t o f
derive
F = m_*F which by ( 1 . 6 ) i m p l i e s E
m-adic topology of *
Denote by A
-
*
A 8 E
E
=
n m-r * E r
F = 0 --i.e. the
E
with respect t o the
A
i s an A-module.
-
Actually the canonical
h
E
I:
i s Hausdorff.
t h e completion of
E
m_-adic t o p o l o g y ; map
E , a n d , by p u t t i n g
i s an isomorphism and
A
*
A
is a faith-
4]). f u l l y f l a t homomorphism ( [ 3The main f a c t a b o u t (1.15)
Theorem.
2
t h a t we s h a l l u s e i s
(Cohen's theorem)
image o f a power s e r i e s r i n g
R = D[[xl,
2
([k]):
i s a homomorphic
...,x n ] ]
where
i s e i t h e r a f i e l d o r a complete d i s c r e t e v a l u a t i o n r i n g .
D
13
Local A l g e b r a
§
Fitting's invariants.
1.4
Given a f i n i t e l y g e n e r a t e d A-module
E
we a t t a c h t o it
a s e q u e n c e o f i d e a l s which g e n e r a l i z e t h e c l a s s i c a l e l e m e n t a r y divisors.
Let A ( a ) L An --+
be a p r e s e n t a t i o n o f
0
-+
A(a)
with
E
E
a f r e e A-module o f u n d e t -
ermined rank. Definition. ideal
F (E)
r 4
matrix if
r
2
For an i n t e g e r
0 < r < n
we c a l l t h e
g e n e r a t e d by t h e m i n o r s o f o r d e r
the r-th Fitting ideal of
E.
n - r of t h e
We p u t
Fr(E) = A
n.
That
Fr(E)
d o e s n o t depend on t h e p r e s e n t a t i o n f o l l o w s
r a t h e r e a s i l y from ( 1 . 1 ) . i s t h e following:
+
If
-
Another manner o f d e f i n i n g : F
A-modules, d e f i n e t h e ' o r d e r ' o f
?(I$) = C f ( + ( F ) ) where
f
If
k
-
: A
4
o("-X 4 )
d e n o t e s t h e n - r e x t e r i o r power o f Remark.
i s a homomorphism o f
G
runs over
t h e n p u t i n t h e n o t i o n above
B
Fr(E)
t o be t h e i d e a l HomA(G,A). = Fr(E)
We c o u l d
where
'Ar
4
4.
i s a r i n g homomorphism and
E
i s a f i n i t e l y g e n e r a t e d A-module i t f o l l o w s i m m e d i a t e l y from the f i r s t definition that
h(Fr(E))-B. Fr(E gAB) = -
t h e f i r s t i n v a r i a n t i s viewed a s an i d e a l o f The p r o p e r t y t h a t
E
(Here
B obviously.)
be a p r o j e c t i v e module i s e a s i l y
expressed using F i t t i n g ' s i n v a r i a n t s .
Thus i f
E
i s a mod-
u l e of f i n i t e p r e s e n t a t i o n since i t s p r o j e c t i v i t y i s decided
L o c a l AlEebra
14
a t each l o c a l i z a t i o n
E
E
([c]):
w e may s t a t e
(1.16) P r o p o s i t i o n .
is projective i f f its Fitting's
E
i n v a r i a n t s have t h e p r o p e r t y t h a t a t each l o c a l i z a t i o n t h e y are e i t h e r 0
or
A
A
P
P'
Another p r o p e r t y o f t h e
Fr(E)'s
defined t o be t h e a n n i h i l a t o r of
c -
I1(E)"
E
F p )
is:
I1(E)
If
is
then
c_ I p )
*
More g e n e r a l l y w e c o u l d d e f i n e t h e i n v a r i a n t f a c t o r s o f E : Ir(E)
--
attached t o E
t h e no name i n v a r i a n t s o f
d e n o t e s t h e s e t o f submodules o f elements, then
r
and d e r i v e s i m i l a r
F i n a l l y we d e f i n e s t i l l a n o t h e r -set o f i d e a l s
relations.
by
E
being t h e a n n i h i l a t o r of
E
t h a t can be g e n e r a t e d
Kr(E) = C a n n i h i l a t o r
runs over t h e elements of
Ir
If
E.
E / F , where
F
r.
The r e l a t i o n s h i p between t h e p r i m e i d e a l s c o n t a i n i n g these F ' s ,
p at
1 ' s and K's i s n o t d i f f i c u l t t o d e t e r m i n e .
be a prime i d e a l and l e t
p.
Denote by v ( p ; E )
o f t h e A -module
E
P
(" ('IE) )
i) ii)
x(E/N)
. We
p
If
Conversely, i f r
E
t h e minimal number o f g e n e r a t o r s
I t f o l l o w s e a s i l y t h a t V(E:
P'
E) =
v(P;E) > r.
iff
,&
Kr,
where
Localizing a t
by
be t h e l o c a l i z a t i o n o f
P
have t h e n
p 2 Ir = 0,
E
Let
there is
i s a submodule g e n e r a t e d by
N
E w e conclude v(2;E)
e l e m e n t s and
x e Kr \ p such t h a t
5 r
E
P
= N
P
and
Thus
elements.
v(p:E) < r.
t h e r e i s a submodule
y # p, yE C N .
r
N
generated
Local Algebra
p 2 Kr iii)
iff
v(p;E) > r
Finally, let
and
IS
rad(Kr) = r a d ( I r + l ) .
p
p z F r ; by l o c a l i z i n g a t
and u s i n g
a p r e v i o u s remark w e may t a k e a minimal r e s o l u t i o n o f (i.e. the entries of
ring).
0 l i e i n t h e maximal i d e a l o f t h e l o c a l
The hypothesis then implies
verse is a l s o clear. TO sum up :
E
p 2 Fr
Thus
rad(Fr)
=
v(p;E)
iff
5 r.
v(p;E)
rad(Kr) = r a d ( I r + l ) .
The con-
'> r + l .
Chapter 2 Ilomology o f L o c a l Rings The p o i n t o f view t a k e n i n t h i s c h a p t e r i s t h a t t h e t h e o r y o f Macaulay - o r Cohcn-’lacaulay
- r i n g s i s almost
synonymous w i t h s t u d y i n g t h c homology o f l o c a l N o e t h e r i a n U n f o r t u n a t e l y l i t t l e s p a c e i s d e v o t e d t o g i v i n g ways
rings.
i n which s u c h r i n g s a r i s e i n a s y s t e m a t i c manner.
For some
o f t h e s c a s p e c t s we r e f e r t o [ lS, 301 and t h e b i b l i o g r a p h i e s there.
Koszul c o m p l e x e s .
52.1
Throughout
w i l l be a commutative r i n g .
A
W e begin
w i t h a d i s c u s s i o n o f what i s p e r h a p s t h e most i n t e r e s t i n g complex i n commutative a l g e b r a . Let of
b e an .\-module and
E
ential
d+
on
6
1
sends
h(E)
...
d (e A d+
+
For an e l e m e n t
E.
n AE
,
h(E)
e HomA(E,A)
i n degree
into
n-1 A E
one d e f i n e s a d i f f e r -
n , by t h e f o r m u l a
i he ) = c ( - l ) + ( e i ) e l A
n
the e x t e r i o r algebra
... h e i ~... h e n h
:
and, a s e a s i l y checked,
(db)’ = 0 . When
E
i s a f i n i t e l y g e n e r a t e d module we t a k e , h o w e v e r ,
an a l t e r n a t e a p p r o a c h . First w e r e c a l l t h e n o t i o n o f t e n s o r p r o d u c t o f c h a i n complexes o f A-modules.
Let
16
Homology o f L o c a l Rings
17
...
(X' ,dl):
be two c h a i n complexes
(Xi = 0 , i < 0 a l w a y s ) .
(X Q X ' ,
a)
i s defined as
Let
a
b e an e l e m e n t o f t h e r i n g
A
and l e t
Aa
be t h e
complex d e f i n e d a s (Aa)i
= 0
for
i # 0,l
= A
for
i = 0,l
= m u l t i p l i c a t i o n by
dl
a.
The Koszul complexes w e s h a l l be i n t e r e s t e d i n a r e b u i l t up o f s u c h p i e c e s and o f modules viewed a s comnlexes i n t h e u s u a l way.
Thus i f
i s an A-module we w r i t e
E
E a = (Aa) Q E
,
which h a s a s m e a n i n g f u l homology g r o u p s : HO(Ea) = E/aE of
a
in
A.
5
=
E = An
$(rl,
=
(0 : a ) = a n n i h i l a t o r E
Ix,,
. . . ,xn1
i s a sequence o f elements
The Koszul complex a s s o c i a t e d t o
K. K.(&;A)
H1(Ea)
E.
Suppose now in
and
(x;A) = Ax -
1
-
Q
..
8 A xn
i s defined a s
.
i s t h e n t h e e x t e r i o r a l g e b r a comp l e x as so c i a t e d t o and t h e map
...,r n )
=
1 rixi
@ : An
.
A
defined a s
Homology o f L o c a l R i n e s
18
F i n a l l y we s h a l l w r i t e
K.(&;E)
K.(x:A) -
for
e x p r e s s i o n s f o r two o f t h e homology g r o u n s o f easily written:
(5)
particular i f the ideal zero d i v i s o r s o f
E,
and
K.(x:E)
lln = (0 :
are
5).
E does n o t c o n s i s t e n t i r e l y o f
lIn = 0 , an o b s e r v a t i o n we s h a l l u s e
K. ( 5 ; - )
notice that (2.1)
i s an e x a c t f u n c t o r on A-modules.
Proposition.
Let
be a c h a i n complex a n d l e t
C.
b e a c h a i n complex o f f r e e modules w i t h
Fi = 0
for
There i s t h e n an e x a c t sequence 0
-
-
€1 (I1 ( C . ) Q F , ) o
q
Proof.
(1
- f
h
(FO).
-&
F.
h
h
g
H (C.@F.)
-+
H
1
(H
q-1
i > 1.
-
(C.)@F.)
0
C o n s t r u c t t h e s e a u e n c e o f complexes 0
with
In
B e f o r e we l i s t some t e c h n i c a l f a c t s on s u c h comnlexes
often.
F.
... , x n ) E
fiO = E / ( x l ,
The
Q E.
( F O ) O = F",
(F1).
-
0
h
(Fo)l = 0 ,
(Fl)o
= 0,
(F1)l
= F1,
f
and
t h e c o r r e s p o n d i n g i n j e c t i o n and p r o j e c t i o n mappings.
Tensoring with
C-
a n d w r i t i n g t h e homology s e q u e n c e we g e t
k[q(C.@(F1).)
-t.
Ha-l(C.@(FO).I
A
Note t h a t
H
(C.QP(F1).) = Hq(C.)@ F1,
q+l H (C.) Q F o and t h a t 9
cntial of
F..
a
Hq(C.@(FO).) =
i s , up t o a s i g n , j u s t t h e d i f f e r -
Taking a l l t h i s i n t o account w e o b t a i n t h e
d e s i r e d sequence. W r i t e f o r any complex
C,,
Cx = C , @ A x .
.
Homology o f L o c a l Rings
(2.2)
Proposition.
19
For any c h a i n complex
C.,
x H(Cx) = 0 .
Proof.
Consider
Ax
and
A
X ,x
= Ax Q A x .
Define chain
maps
f ( a ) = (a,O)
where
and
g ( a , b ) = a+b
i n dimension
1.
This
i m p l i e s a monomorphism
T e n s o r now
by
Cx
and t a k e t h e homology t o g e t t h e f o l l o w i n g s e q u e n c e
(2 . l ) :
f
Ilq(Cx)
As
f,
*
Hq(cx,x)
-
(-1 p - I x
H (I -1 (CX)
Hq-l(Cx)
i s a monomornhism, m u l t i n l i c a t i o n by
*
is the n u l l
x
map.
Depth.
52.2.
I n t h i s s e c t i o n we s h a l l d e f i n e a n u m e r i c a l i n v a r i a n t f o r i d e a l s which p l a y s a r o l e comparable t o t h a t o f i t s h e i r r h t . S p e c i f i c a l l y t h e s i t u a t i o n i s as follows: and
E
an A-module.
respect t o
E
If
x1 e I
w e can a s k w h e t h e r
zero d i v i s o r s o f
E/xlE.
Let
I
be an i d e a l
i s n o t a zero d i v i s o r with I
c o n s i s t s e n t i r e l y of
I n t h i s manner a s e q u e n c e
Homology o f L o c a l Rings
20
x1,x2,
xi
...
o f elements of
a r i s e s w i t h the property t h a t
I
is n o t a zero d i v i s o r f o r
E/(xl
,...,x
~ - ~ ) E . Given
. .. C ( x , , . .. , x i )
n o e t h e r i a n c o n d i t i o n s , t h e sequence
(x,) C
c...
w i l l consist e n t i r e l y of
s t a b i l i z e s and e v e n t u a l l y
x1 , x 2 , .
..
.., x i , . . . ) E .
E/(xl,.
zero d i v i s o r s of
I
We s h a l l r e f e r t o
as a r e g u l a r E - s e q u e n c e , o r s i m p l y E - s e q u e n c e .
A f i r s t q u e s t i o n h e r e i s w h e t h e r t h e maximal number one o b t a i n s i s i n d e p e n d e n t o f t h e c h o s e n s e q u e n c e . question is:
What i s t h i s n o t i o n good f o r ?
Another
We s h a l l answer
t h e f i r s t i n t h e a f f i r m a t i v e and g i v e some i n s t a n c e s where i t c a n be u s e d i n a r a t h e r n a t u r a l way. ( 2 . 3 ) Theorem.
in
A
Let
xl,.
..,xn
I.
Let
g e n e r a t i n g an i d e a l E # IE
t e d A-module w i t h
Let
i n g Koszul complex. Hq(K.) # 0 .
and l e t q
be a sequence o f elements
E
K.(x;E)
If
Proof.
be t h e l a r g e s t i n t e g e r f o r which
a
q
Since
HO(K.)
= E/IE,
If
q # n
p i c k an
which i s n o t a z e r o d i v i s o r o f
t h e e x a c t sequence 0
+
E.
are zero d i v i s o r s f o r
s a t i s f y i n g o u r assumption.
I
have
# 0 , we h a v e by a p r e v i o u s remark
H,(K.)
in
I
We c a l l t h i s number t h e I - d e p t h o f
(0 : I ) # 0 and s o a l l e l e m e n t s o f I E E. We u s e d e c r e a s i n g i n d u c t i o n on q .
element
be t h e c o r r e s p o n d -
Then a l l maximal r e g u l a r E - s e q u e n c e s i n
t h e same l e n g t h n - q .
there is a
be a f i n i t e l y g e n e r a -
E
-.a
E
E/aE + 0 ;
by t h e f u n c t o r i a l i t y o f t h e Koszul complex w e g e t
E.
Form
Homology o f L o c a l Rinqs
From t h i s s e q u e n c e we have a-I1 (K. ( 5 ; " ) = 0
By ( 2 . 2 ) Ilq
lli(K.
I n t h e s n e c i a l c a s e where A = grade o f
A If
and l c t
a +
Let
(K,(x:E/aE))
Theorem.
E
Let
tie an i d e a l o f a N o e t h e r i a n r i n g
.J
,JE f E .
b e a f i n i t e l y g e n e r a t e d .A-module w i t h A
then
(.T,a)-depth
.J-depth I:. F i r s t observe t h a t
C/(.J,a)E # 0
f o r otherwise
which would c o n t r a d i c t Nakayama's lemma.
= E/JE,
K. b e t h e K o s z u l complex o f
aenerators of
,J
and
Fa
=
K.
L
A Aa,
r e l a t i v e t o a system o f that is,
complex r e l a t i v e t o a s y s t e m o f g e n e r a t o r s o f
F.
i s a Koszul
(J,a).
Bv
we have
(2.1)
Let
=
(1+1
I.
Proof. a(E/.JE)
i > q+l.
we c a l l I - d e p t h
1: = A
i s i n t h e .Jacobson r a d i c a l o f
L < 1
I{
if
0
=
Induction ends i t .
(K. ( 5 : E ) ) .
(2.4)
(x;E/aE))
and t h u s
(1
'1
q
be t h e i n t e g e r which d e t e r m i n e s t h e . J - d e n t h of
t h e n have lemma.
Ho(Hq(K.)8Aa) = Hq(K.)/aHq(K.)
#
0
by Nakayama's
The c o n c l u s i o n now f o l l o w s from ( 2 . 3 ) as
' l o n g e r ' by one t h a n
E.
is
F.
K..
Assume f o r t h e r e m a i n d e r o f t h i s s e c t i o n t h a t N o e t h e r i a n and modules a r e f i n i t e l y g e n e r a t e d .
A
is
We
Homology o f L o c a l Rings
22
Corollary.
(2.5)
t h e Jacobson r a d i c a l of
. . ,xn)
I = (xl,.
Let
A
and l e t
E
be c o n t a i n e d i n
be an A-module.
If
I - d e p t h E = n , t h e n t h e x ' s , i n any o r d e r , form an E - s e q u e n c e . Let
Proof. J-depth E
. . , x , - ~ ) ; by
.J = ( x , , .
n - 1 and by i n d u c t i o n
=
E - s e q u e n c e i n any o r d e r .
Let
xl,
Iil(K.B.Ax
(2.1)
xn
n
. . .'Xn- 1
form a r e g u l a r
be t h e Koszul complex c o r -
K.
responding t o f i r s t n - 1 generators. that
t h e Drevious theorem
Our a s s u m p t i o n i n c l u d e s
) = 0 ( a c t u a l l y i t i s e q u i v a l e n t ) and s o , by
i s n o t a zero d i v i s o r of
E/JE.
Clearly t h i s
suffices. Remarks. If
i)
K.
i s t h e Koszul complex a s s o c i a t e d t o a sequence
x- and t h e A-module
E , f o r any A - a l g e b r a
B
we have
where t h e y ' s a r e t h e images i n K.(y;EBAB) = K.(x;E)BAB,
of the x ' s .
In p a r t i c u l a r , i f
H(K.(y;EBB))
= H(K.(x;E))B -
R
B
i s A - f l a t we h a v e
I f a p p l i e d t o t h e case o f
B.
l o c a l i z a t i o n s we h a v e I-depth E where
p
i n f 11 - d e p t h ED)
=
P
runs o v e r t h e primes such t h a t (E/IE)
P
#
0.
P r a c t i c a l l y t h i s s a y s t h a t i n c o m p u t i n g t h e d e p t h w e m i g h t as well r e s t r i c t ourselves t o local rings. ii)
From t h e p r e c e d i n g we see t h a t t h e g r a d e o f an i d e a l
does n o t decrease under l o c a l i z a t i o n s .
w e s h a l l refer t o Pp-depth
A
P
For a prime i d e a l
a s t h e l o c a l grade of
p.
p
Homology o f L o c a l Rings
23
S i m i l a r i t y with indeterminates : The s i m i l a r i t y between r e g u l a r ( i . e . A - )
s e q u e n c e s and
i n d e t e r m i n a t e s i s i l l u s t r a t e d by t h e f o l l o w i n g c o n s i d e r a t i o n s . A
Let
b e a l o c a l N o e t h e r i a n r i n g (more g e n e r a l l y a c o h e r e n t
ring) containing a f i e l d
xl,
and l e t
k-
. . . ,xn m_
A-sequence c o n t a i n e d i n t h e maximal i d e a l make
A
R = k -[ t l , .
an a l g e b r a o v e r k-, by l e t t i n g
ring over
ti-x.
t
t h e p r e m i e r example o f a r e g u l a r s e q u e n c e , k-.
R-projective resolution of K.(
t
;R) 8 A = K.(
o t h e r than
wise, the subring A
:R)
i s an
is A-regular,
k_[xl,
...,x n ]
A
of
Stated other-
i s isomorphic t o
R
i s f l a t over i t . Let
be an i d e a l o f
I
g e n e r a t e d by ' p o l y n o m i a l s ' i n t h e x i ' s w i t h c o e f f i c i e n t s i n
k ; then -
of
... , x n
a f l a t R-algebra.
A consequence is t h e following: A
(t
K.
being
R Tor 1( k- , A ) = 0 , which a c c o r d i n g
In p a r t i c u l a r
0.
xl,
... ,t n
x- ; A ) h a s t r i v i a l homology a t d i m e n s i o n s
t o ( 1 . 1 2 ) s u f f i c e s t o make A
and
As
We can
t h e polynomial
tl,
=
A.
of
..,tn 1 , -
1'
be a r e g u l a r
R.
pdAI I n .
Indeed,
- - ... - - -
By H i l b e r t ' s s y z y g i e s theorem t h e r e i s a r e s o l u t i o n 0
where t h e
Fn-l
Fils
A
algebra over
I.
Fo
are R-free.
jective resolution of If
i s an i d e a l
I.
I = IOA where
I.
Tensoring with
A
We c a n s e e t h a t
0
yields a pro-
pdRIO = pdAI.
d o e s n o t c o n t a i n a f i e l d w e can s t i l l make S = 22 [ t l ,
...,t n ] ,A)
TOT;(Z
If characteristic
A = p
n
, we
=
and s i m i l a r l y c o n c l u d e
o
for
i >
o
.
can s t i l l conclude
A
an
24
Homology o f L o c a l R i n g s
S
Tori(L,A) module. Tor:(iZ
Indeed
is a
A
/ p Z ,A) = 0
Z!
for
yields 0 = T o rS Z(L',A)
... , t n ]
[t,,
i > 1, i . e .
L-
0-
P
i s a Z - t o r s i o n f r e e S-
L
= 0 , i > 0 , whenever
n *P
-
L-
module and
f l a t dimSA < 1. L'-
T o r lS( L , A )
Then
0
n
*P
T o r lS( L , A )
and t h e d e s i r e d c o n c l u s i o n . Again a c o n s e q u e n c e i n t h i s c a s e i s t h a t i f ideal of
g s n e r a t e d by p o l y n o m i a l s i n t h e x i ' s w i t h i n t e g -
A
r a l c o e f f i c i e n t s , and such t h a t
S/Io
P
. . ,xn)A
i s ZZ - t o r s i o n f r e e , t h e n A = 0
then
could be # 0
Z
P
pdAI = p d S I o .
C A
but
T h e r e i s a c a s e , however,
Torl(L,A).
where we might e v e n d r o p t h e h y p o t h e s i s t h a t xl,.
. . ,xn
i n a commutative r i n g monomials i n t h e
xi's.
is
and t h u s i n f l u e n c e t h e
S
ZZ - t o r s i o n f r e e n e s s o f
Assume
S
I o , the corresponding i d e a l of
If characteristic
H n (x,,.
i s an
I
A
be c o h e r e n t .
form a r e g u l a r s e q u e n c e i n any o r d e r A
and l e t
I
b e an i d e a l g e n e r a t e d by
Assume a l s o t h a t
A
i2 - t o r s i o n
is
free. Theorem.
(2.6)
Let
I.
be t h e i d e a l o f
r e s n o n d i n g monomials i n t h e t ' s : t h e n over, i f
(xl
,...,xn)
S
pdAI < pdSIO.
in the corMore-
i s c o n t a i n e d i n r a d ( I ) , t h e n pdAI
=
pdSIO = n - 1 . We s h a l l g i v e a p r o o f t h a t i n c l u d e s t h e s t a t e m e n t s on t h e e q u a l i t i e s of dimensions i n t h e preceding d i s c u s s i o n .
Homology o f L o c a l Rings
Proof.
We show t h a t
S/Io
f a c t o r s t h a t a r e isomorphic t o S
Tori(S/IO,A) PdAI
for
= 0
2s
admits a f i l t r a t i o n w i t h I t w i l l follow then t h a t
ZZ.
and whence t h e f i n i t e n e s s o f
i > 0
The key t o t h e p r o o f i s t h e f o l l o w i n g (2.7)
Lemma.
Let
xl,.
an A - s e q u e n c e i n any o r d e r . monomials i n
x2,
... , x n .
Then
o f t h e monomials g e n e r a t i n g
i s g e n e r a t e d by monomials i n monomials i n
*
ing
x3,
...,xn.
Pass t o t h e r i n g
images o f
Let
x2,.
. . ,xn
be e l e m e n t s c o n s t i t u t i n g b e an i d e a l g e n e r a t e d by
J
txl e J
W e may assume t h a t
Proof.
v e L.
. .,xn
x2
x2,
,
c o n s t i t u t e an
u = wxl e (K,L)
say
and
.
v, u e K,
+
A/(xl)-sequence.
Next we s u b s t i t u t e f o r
txl
v
u*x$ e L*, whence
u
J
and deduce
in the equation
(t-wx2)x1 e L .
Since
x1,x3
i s a l s o an A - s e q u e n c e we have a g a i n by i n d u c t i o n on
t-wx2 e L , hence
Writ-
W e make i n d u c t i o n on t h e
w e (K,L).
and f i n d
K
j u s t bv
L
sum o f t h e d e g r e e s o f t h e monomials g e n e r a t i n g
= ux2 +
where
n o t i n g t h e homomorphic
f o r homomorphic image we have
u e (xl , L )
(J.
E
J = (x2K,L)
t x l = ux2
,
t
a c t u a l l y o c c u r s i n one
... ,xn
We have A/(xl)
implies
Write
.J.
([GI):
,...,xn
n,
t e (x2K,L) = .T.
Now u s e t h e t ' s f o r t h e x ' s i n t h i s lemma and assume a l l
t ' s e n t e r i n t h e composition o f where
L
IO.
i s g e n e r a t e d by monomials i n
I1 = ( t l , L ) .
Then
I1/Io
S/L.
proof of t h e f i r s t p a r t of ( 2 . 6 ) .
Say
I.
=
(tlK,L),
. . , tn .
t2,.
Let
Induction ends e a s i l y t h e
Homology o f L o c a l Rings
26
- ... - - -
Let u s now p r o v e t h e e q u a l i t y o f d i m e n s i o n s . 0
-+
Pr
be a S - p r o j e c t i v e r e s o l u t i o n o f ated.
Since
I = I.
I.
Po
Io, w i t h
Let
0
f i n i t e l y gener-
Pi
has a f i n i t e projective resolution
Q A
by f i n i t e l y g e n e r a t e d A - p r o j e c t i v e m o d u l e s , we have t h a t pdAI = Sup { p d
1
I
We may assume
ZZ [ t l , .
maximal i d e a l o f
., , t n ]
l o n g e r S - s e q u e n c e f o r any p r i m e g r a d e I.
a).
p e
...,t n
p,tl, As
n-3
the
pdSIO = n - 1 .
-...-
is a
pdS(S/Io)
and c o n s i d e r a minimal S - r e s o l u t i o n f o r 0-L-F
(n > 2
(as
( [ E l o r ( 2 . 2 4 ) ) we c o n c l u d e
pdAI < n - 1
S
a t t h e i n v e r s e image o f t h e
pdSIO f n - 1
A.
A.
running o v e r t h e prime i d e a l s ‘of
l o c a l t h e n and s t i l l w r i t e f o r
A
localization of
p
2
Assume I.
F o’Io’o
as l o w e r cases are e a s i l y c o n s i d e r e d ) ; t e n s o r i n g w i t h
A we g e t
S
Torl(L,A) 0-F
and
= 0
- 0F
n-1
L 8 A n-2
((1.16)). ideal of
L. L
Since a l l t h e e n t r i e s o f S however, t h i s makes
Fn-l
We g e t from t h e above
are all @
0
or
A
l i e i n t h e maximal Q A = Torl(L,A)
= 0,
which i s a c o n t r a d i c t i o n . (2.8)
Corollary.
If
s e q u e n c e i n any o r d e r t h e n
,...,xn) i s pdA(xl,. . . ,xn)’ (xl
Let
-L-0
be a minimal S - f r e e r e s o l u t i o n f o r t h a t the F i t t i n g ’ s invariants of
i s a f r e e A-module.
a r e g u l a r A= n-1.
27
Homology o f L o c a l Rings
Kelation w i t h Ext: I f A i s a commutative r i n g and I i s an i d e a l o f A , w e write V ( I ) , t h e v a r i e t y o f I , f o r t h e s e t o f primes of A c o n t a i n i n g I . I f M i s a module, Sunp(bl), t h e s u p p o r t o f bl, w i l l d e n o t e t h e
primes
hln # 0 . I f M i s f i n i t e l y g e n e r a t e d c l e a r l y
p f o r which
-
.
Suvp ( Y ) = V ( a n n (M) )
The f o l l o w i n g i s b a s i c : Lemma. I f M i s a f i n i t e l y g e n e r a t e d module o v e r t h e
(2.9)
Noetherian r i n g A , then
Ass (HomA(M,N)) = Supp(M)n A s s (N) Proof. I f
-
p E
Ass(HomA(M,N)), t h e n a s HomA(M,N)
HornA (M , N ) # 0 , p
E
Sunp(M). I f p- = a n n ( f ( M ) ) ,
submodule o f N
p
E
E E E
and
E
u n i q u e maximal i d e a l o f A . Thus i f
=
f(M) is a
Supp(M) n A s s ( N ) n
E
N
is the
i s such t h a t
p,
ann(n) =
0 E
P
Ass(N).
C o n v e r s e l y , w e may assume p
and E
.
# Hom(M/pM,An)&Hom(M,An)C
Hom(M,N)
Ass (HomA(M,N)).
(2.10)
C o r o l l a r y . Let A be a N o e t h e r i a n r i n g and l e t I be
an i d e a l o f A and l e t M be a f i n i t e l y g e n e r a t e d A-module. The following a r e equivalent: i)
Hom(N,M)
= 0
f o r a l l f i n i t e l y g e n e r a t e d A-modules
N with Supp(N)SV(I).
ii)
Hom(N,M) = 0 f o r some f i n i t e l y g e n e r a t e d A-module N
w i t h Supp(N) = V ( 1 ) . iii)
Ass(M)nV(I) = 0
.
flomology o f Local Rings
28
iv)
There e x i s t s t
E
such t h a t t i s M-regular.
I
An e a s y i n d u c t i o n y i e l d s , C o r o l l a r y . Let A be a N o e t h e r i a n r i n p , l e t 1 be an
(2.11)
i d e a l o f A, l e t b l be a f i n i t e l y g e n e r a t e d A-module and l e t n be an i n t e g e r . The f o l l o w i n g c o n d i t i o n s a r e e q u i v a l e n t : Exti(N,bl) = 0
i) N
with
Supp(N)C V(1)
ii) N
with
Exti(N,M) = 0 Supp(N) = V ( 1 )
iii)
f o r a l l f i n i t e l y g e n e r a t e d A-modules and a l l i n t e p e r s i < n . f o r some f i n i t e l y g e n e r a t e d A-module and a l l i n t e g e r s i < n .
There e x i s t e l e m e n t s t l , .
..,tn
E
I
f o r m i n e an
? > I - r e g u l a rs e q u e n c e . 52.3
Macaulay r i n g s . Assume A t o be a N o e t h e r i a n r i n g t h r o u g h o u t t h i s s e c t i o n .
Let I be an i d e a l o f A and l e t .J be an i d e a l g e n e r a t e d by a maximal A-sequence i n I :
then
I c z (A/J)
.
I n p a r t i c u l a r some
prime i d e a l c o n t a i n i n g I w i l l a l s o be c o n t a i n e d i n z ( A / J )
and
s o will have t h e same g r a d e as I . In o t h e r w o r d s , cgrade I
=
i n f { g r a d e p; p minimal o v e r I } ht(p)
2 g r a d e p, f o r i f
xl,
.
I n g e n e r a l , f o r a p r i m e E,
...,xn
i s a r e g u l a r sequence i n
p, p c o n t a i n s n r o p e r l y some prime i d e a l minimal o v e r t h e i d e a l g e n e r a t e d by n-l
x ~ , . . . , x ~ -b~u t: s u c h p r i m e h a s h e i g h t a t l e a s t
by i n d u c t i o n . D e f i n i t i o n . A Macaulay ( o r Cohen-Macaulay) r i n g A i s one
f o r which
h e i g h t = g r a d e f o r e a c h i d e a l . S i m i l a r l y an A-module
E i s s a i d t o be a Macaulay module i f
I-depth E = height(I/J)
Homology o f L o c a l R i n g s f o r every i d e a l I?ann(E)
= J;
29
h e r e I / J i s viewed as an i d e a l
of A / J . By t h e r e m a r k s above and t h e u s u a l d e f i n i t i o n o f h e i g h t o f an i d e a l we may r e s t r i c t c o n s i d e r a t i o n t o p r i m e i d e a l s . P r o p o s i t i o n . I f h t ( 2 ) = g r a d e 2 f o r e a c h maximal
(2.12)
i d e a l , t h e n A i s a Macaulay r i n g . P r o o f . I f 2 i s maximum among t h e p r i m e s w i t h g r a d e E h t ( p ) , l e t pcm_ = maximal i d e a l ; we may assume a l s o t h a t A i s a l o c a l r i n g . Let (2.4)
while
g r a d e (p,a)
a
E
ht(2,a)
m_\p. Then g r a d e ( 2 , a ) 5 l + g r a d e p l+ht(,)
thus contradicting
by
ht(p,a) =
.
(2.13)
Corollary. I f
pg9
a r e i m m e d i a t e p r i m e s ( i . e . no
p r i m e s i n - b e t w e e n ) i n a Macaulay r i n g A , t h e n h t ( q ) = h t ( p ) + l . I n p a r t i c u l a r two s a t u r e d c h a i n s o f p r i m e s b e t w e e n two f i x e d p r i m e s h a v e t h e same l e n g t h . Remarks. i ) L e t A b e a Macaulay r i n g . Then AS and A / ( x ) a r e a l s o Macaulay r i n g s i f S i s a m u l t i p l i c a t i v e s e t and x i s a n o n z e r o d i v i s o r . The power s e r i e s r i n g A [ [ t ] ]
i s Macaulay as t
l i e s i n t h e J a c o b s o n r a d i c a l . A s f o r A [ t ] t h e s i t u a t i o n i s more i n t e r e s t i n g : L e t m_ b e a maximal i d e a l o f B = A [ t ] and l o c a l i z e at
FfIA
=
2. Then
h t ( m ) = l + h t ( p ) and m_ = ( p , f ) , where f may
b e t a k e n t o b e monic. But t h e n i t i s c l e a r t h a t 2 - d e p t h A = 2 - d e p t h B/(f), ii)
s i n c e t h i s l a s t module i s A - f r e e .
The p r e m i e r example o f a Macaulay r i n g i s a r e g u l a r
r i n g A : I n t h i s c a s e f o r e a c h maximal i d e a l IJ, m_Am i s a c t u a l l y
-
Homology o f L o c a l Rings
30
g e n e r a t e d by a r e p l a r A m - s e q u e n c e . iii)
-
I f A i s a f i n i t e l v e e n e r a t e d domain o v e r t h e f i e l d k-,
by h ' o e t h e r ' s n o r m a l i z a t i o n t h e o r e m ( [ ZS]) R
k
isomorphic t o a polynomial r i n g over
f i n i t e l y g e n e r a t e d a s an R-module.
t h e r e is a subring such t h a t A i s
I t i s well-known
(e.g. (2.23))
t h a t A l l a c a u l a y amounts t o s a y i n g t h a t 4 i s R - p r o j e c t i v e .
Now we c o n s i d e r t h e n o t i o n o f type
o f a l o c a l Macaulay
r i n g . Let A be a N o e t h e r i a n r i n g and l e t E be an A-module. We q u o t e from [3 ] t h e f o l l o w i n g f a c t s on a minimal i n j e c t i v e resolution of E : E-
0-
Each
Ii = 0 I(A/p)epi(p)
envelope o f A / p
I0
- I 1 ... where
I(A/p)
is the injective
and p i ( p ) = dim,(n)Exti(A/p,E) L
P'
We s h a l l
w r i t e p i (p;E) when m e n t i o n o f t h e module becomes n e c e s s a r y . Observe t h a t i f E i s f i n i t e l y g e n e r a t e d t h e n a l l p i ( p ) f i n i t e . Also, i n t h i s c a s e , pi(@ = 0
are
f o r i < p-depth E
according t o (2.11). Assume now E = A , A
For a p r i m e
a d - d i m e n s i o n a l l o c a l Macaulay r i n g .
p t h e f i r s t nonzero pi(p)
W e shall c a l l the integer pr(p)
occurs a t i = h t ( p ) = r.
t h e z-type o f A o r t h e t y p e
o f A a t p. pd(m_) w i l l be s i m p l y c a l l e d t h e t y p e o f A . An i n t e r p r e t a t i o n o f t h e t y p e o f A i s o b t a i n e d i n t h e f o l l o w i n g manner: Let x l , . . . ,xd be a maximal A-sequence i n m; a s d Ext (A/m,A) = Hom (A/E,A/ (5) 3 P d ( E t A ) = 'Jo ( 5 ) ;A/ ( 5 ) ); A/
(53
b u t t h i s l a s t q u a n t i t y can be i n t e r p r e t e d a s t h e number o f i r r e d u c i b l e components o f t h e m-primary i d e a l ( 5 ) . (2.14)
P r o p o s i t i o n . Let A be a N o e t h e r i a n r i n g and l e t M
Homology o f L o c a l Rings
p be an e l e m e n t o f
be a f i n i t e l y g e n e r a t e d A-module. Let Ass(M),
31
l e t x be a n o n z e r o d i v i s o r r e l a t i v e t o M w i t h M/xM # 0 ,
and l e t m be a p r i m e minimal o v e r ( p , ~ ) .Then m - is associated
2l.1~ (m;M/xM).
and v0 (p;M)
t o M/xM
P r o o f . We may assume t h a t A i s l o c a l and m_ i s i t s maximal
O:p be t h e submodule o f M a n n i h i l a t e d by p. and
i d e a l . Let d e n o t e by
p*
the ideal
( p , x ) / ( x ) o f A/(x) = A*. S i m i l a r l y l e t
O:p* be t h e submodule o f
a n n i h i l a t e d by p. I n t h e
M/xM = M*
s u r j e c t i on M*-
M-
t h e elements of a = x a ' ; since
a
E
0:p map
x ( 0 : p ) . Thus we have (0
O:p*. I f
into
pa = xpa' = 0
0
and
a E O:p
maps i n t o 0 ,
x i s a nonzero d i v i s o r ,
an i n j e c t i o n
:El / x ( 0 :p)L(0 :p") *
View now t h i s embedding as a s e q u e n c e of A/p-modules. Moreover,
since
m_
i s minimal o v e r ( p , x ) , A / p
has
~ / pa s i t s o n l y n o n -
t r i v i a l p r i m e i d e a l and t h e modules a r e A r t i n i a n . We now compute approximately t h e i r l e n g t h s . (2.15)
Lemma. Let A b e a l o c a l r i n g w i t h maximal i d e a l
m
a n d l e t I be a n m-primary i d e a l . Then f o r any f i n i t e l y g e n e r a t e d module M , L ( 0 : I ) z L ( A / I ) * l ( O :m) M
M-
.
P r o o f . We u s e i n d u c t i o n on L ( A / I ) ; i f L(A/I) = 1, "_ = I and t h e r e i s n o t h i n g t o show. I n any e v e n t , A/I c o n t a i n s a sub-. module i s o m o r p h i c t o A/I 0
-
with&(A/I) = L ( A / J ) get
A/;
+ 1.
g i v i n g r i s e t o an e x a c t s e q u e n c e
- A/1
A/J
p p l y i n g Horn(- ,M)
-0 t o t h i s s e q u e n c e we
Homology o f L o c a l Rings
32
0
-
- ( 0 : I ) - (0:m)-
(0:J)
w i t h t h e a n n i h i l a t o r modules t a k e n i n h l and l ( 0 : I )
'<
l(0:J)
+
l(0:m -) . We a p p l y t h i s t o t h e c a s e o f V/xN p l a y i n g M and I = ( p , x ) - ) = .e(A/(n,x))uO(m:bZ/xFI). t o get : X(O:p)_i l ( A / ( p , x ) ) l ( O : m
(2.16)
Lemma. Let A be a o n e - d i m e n s i o n a l l o c a l domain and
l e t M be a f i n i t e l y g e n e r a t e d A-module. Assumc t h a t x i s n o t a z e r o d i v i s o r r e l a t i v e t o Pi. Then e(al/x?l) = L ( A / ( x ) ) d ( b l ) , where d(M) i s t h e d i m e n s i o n o f t h e v e c t o r s p a c e
B1
(0)
over K , t h e
f i e l d of quotients of A. P r o o f . Given E.l t h e r e i s a c h a i n ?I = M
= ... ? M y
'41
0-.1-
o f submodules s u c h t h a t
= 0
i s e i t h e r A o r A / m-. I t follows
b!i/bfi+l
e a s i l y t h a t t h e number o f f a c t o r s i s o m o r p h i c t o A i s p r e c i s e l y d(M). C o n s i d e r t h e d i a g r a m 0 0-
PI1-
.XJ.
Fil
-U/E.x - -A/p M0
.XJ.
?lo
where p = 0 , ~ .Assume f i r s t p =
m:
and
X(Ml/xFll)
A/=
-Ml/xFll -
= L ( M g / ~ ? 4 0 ) ,d(PI1)
0
s i n c e x i s a nonzero d i v i s o r
r e l a t i v e t o h i , we h a v e t h e s e o u e n c e 0 -
0
t
blO/~?lg
= d(?4,,).
-
A/m_--
0
The a n a l y s i s o f t h e
o t h e r c a s e i s s i m i l a r and an e a s y i n d u c t i o n c o m p l e t e s t h e p r o o f I f w e a p p l y t h i s t o O:p
i n t h e n o t a t i o n o f ( 2 . 1 4 ) w e can
c o m p l e t e t h e p r o o f o f t h e n r o p o s i t i o n a s l ( ( O : p-) / x ( O : p ) ) = l ( A / ( p , x ) ) . d ( O : n ) = L ( A / ( p , x ) ) .uO(p;W.
Homology o f L o c a l Rings (2.17)
33
C o r o l l a r y . The t y p e o f a Macaulay r i n g d o e s n o t
i n c r e a s e s under l o c a l i z a t i o n . Projective
92.4
&
i n j e c t i v e dimensions.
The e m p h a s i s i n t h i s s e c t i o n i s on h o m o l o g i c a l d i m e n s i o n s o f f i n i t e l y g e n e r a t e d modules o v e r a l o c a l N o e t h e r i a n r i n g A . m_ w i l l d e n o t e t h e maximal i d e a l o f A and k - i t s residue f i e l d .
We b e g i n w i t h some remarks on c o n n e c t e d s e q u e n c e s o f l i n e a r f u n c t o r s from mod(A)
,
A-
t h e category of f i n i t e l y generated
A-modules, i n t o mod(B), where B i s a l o c a l N o e t h e r i a n r i n g and B i s a l o c a l homomorphism. The f u n c t o r s we have m o s t l y
h-: A ->
i n mind a r e Ext ' s and T o r ' s . P r o p o s i t i o n . Let { T i ,
(2.18)
i > 0 1 be a c o n n e c t e d
s e q u e n c e o f ( c o ) c o n t r a v a r i a n t f u n c t o r s o f mod(A). F o r e a c h h1
E
mod(A)
s u p {d(M)l
write
d(M) = s u p { i
.
We s h a l l r e f e r t o a l s o write
d(M)
d(M) = T-dim(M) )
I
Ti(FI) # 0 )
.
Then
d(k) =
a s t h e T - d i m e n s i o n of M ( a n d w i l l and t o
d(k)
as t h e cohomologi-
c a l dimension o f T. P r o o f . We g i v e a p r o o f i n t h e c o n t r a v a r i a n t c a s e . I f d ( k -)
i s i n f i n i t e t h e r e i s n o t h i n g t o p r o v e . Assume d ( k ) f i n i t e a n d l e t n = s + l . Our c l a i m i s t h a t
= s is
Ti = 0 f o r i
2 n.
C l e a r l y by t h e h a l f - e x a c t n e s s o f t h e T ' s , Ti(M) = 0 f o r a module M o f f i n i t e l e n g t h and i
L n . Assume t h i s t r u e f o r modules o f
d i m e n s i o n l e s s t h a n r and l e t p be a p r i m e w i t h dim(A/p) = r . Pick
x
E
m_\p and form t h e e x a c t s e q u e n c e
Homology o f L o c a l Rings
34
Alp-
0 -
.x -
A/p
- A/(p,x)
.
- 0
By t h e c o n n e c t e d n e s s i t y i e l d s
-Tn+1( A / ( p , x ) )
T " ( A / ~ )3 T ~ w ~ )
= 0.
The l i n e a r i t y o f t h e T ' s and Nakayama's lemma f o r c e s Tn(A/p)=O. (2.19)
i > 0)
P r o p o s i t i o n . Let I T i ,
with
some T i # 0
be a c o n n e c t e d s e q u e n c e o f A - l i n e a r f u n c t o r s . I f T-dim(k) - < t h e n f o r any bl
E
mod(A), T-dim(F1)
m,
FI = T - d i m (k).
+ m-depth -
Proof. First observe t h a t i f m - i s a s s o c i a t e d t o t h e module M t h e r e is a sequence 0
and
T r ( k-) # 0
-k -F1-
C
-
for
r
-
0
( 2 . 1 8 ) , Tr(M) # 0 .
= T - d i m (k ) f o r c e s , by
I f , on t h e o t h e r h a n d , x i s a n o n z e r o d i v i s o r r e l a t i v e t o M , by Nakayama's lemma
we g e t
TS(Fl) # 0
s + l = T-dim(M/xM).
if
A f t e r t h e s e remarks i t f o l l o w s t h a t
-
T-dim(k) -
is
T-dim(b1)
p r e c i s e l y t h e l e n g t h o f a maximal M-sequence i n m. i Let E be a f i n i t e l y g c n e r a t e d module and p u t T i = ExtA(-,E].
Thus T - d i m (k) i s f i n i t e i f € E has f i n i t e i n j e c t i v e dimension. Since
T-dim(A) = 0 , we have i n t h i s c a s e (2.20)
C o r o l l a r y . idAE = m-depth A
=
T-dim(M)
+
m-depth P1
f o r any f i n i t e l y g e n e r a t e d module M . Now w e examine t h e p r o j e c t i v e d i m e n s i o n o f a f i n i t e l y g e n c r a t e d module r.1
u s i n g T o r ' s . Let
r
= pd >I
and l e t x l , . .
.
PXS
be a maximal ? I - s c q u e n c e i n 1 ' 1. I t f o l l o w s e a s i l y t h a t pd M/(x)M = r
(2.21)
+ s.
Proposition. I f
pd F I <
and
m_
E
Ass(PI),
then
Homology o f L o c a l Rings
35
pd M = m_-depth A . Proof. Let K. (&:A)
xl,
... , x n
he a maximal A-seouence i n
t h e c o r r e s p o n d i n F Koszul comnlex. But
= O:(x) - # 0 Hn(K.(x;A)PM) M
and t h u s
pd Y
m_
and
Tor, ( A / ( 5 ) ,‘I) =
n.
B e f o r e p r o v i n g t h e r e v e r s e i n e q u a l i t y we r e c a l l a b a s i c r e s u l t o f t h e l i n c a r a l g e b r a o v e r commutativc r i n g s
([El) :
P r o p o s i t i o n (McCoy’s t h e o r e m ) . L e t A b e a commutan be a homomorphism o f A-modules t i v e r i n g and l e t Q, : Mm --> M (2.22)
g i v e n by an
n x m matrix
(aij).
g e n e r a t e d by t h e m i n o r s o f o r d e r
Q, i s i n j e c t i v e i f f t h e i d e a l m
d o e s n o t a n n i h i l a t e a non-
z e r o e l e m e n t o f M. Back t o t h e p r o o f o f ( 2 . 2 1 ) = n
: Let M be a module w i t h pd M
and l e t
-
-
...
on Fo M0 Fn-l Fn be a minimal p r o j e c t i v e r e s o l u t i o n of M . Assume t h a t Fnhas rank 0-
t ; l e t I b e t h e i d e a l g e n e r a t e d by t h e m i n o r s o f $n
of order t .
We c l a i m t h a t I c o n t a i n s a r e g u l a r A-sequence o f n e l e m e n t s a t l e a s t . Let
x1
b e an e l e m e n t o f I which i s n o t a z e r o d i v i s o r
o f A ( a c h i e v e d t h r o u g h McCoy’s t h e o r e m ) . T e n s o r 0-
by
A/(xl)
Fn
- Fn-l @Il
...
F1
Im(+l)-
0
t o g e t a new e x a c t s e q u e n c e which r e p r e s e n t s
a
minimal p r o j e c t i v e r e s o l u t i o n o f t h e A/(xl) -module im(Q,l)BdA/(x,) I n d u c t i o n now e n d s t h e p r o o f . (2.23)
C o r o l l a r y ( E q u a l i t y of Auslander-Buchsbaum)
.
Let A
be a l o c a l N o e t h e r i a n r i n g and l e t M be a f i n i t e l y g e n e r a t e d
.
Homology o f L o c a l Rings
36
A-module w i t h pd hi < (2.24)
A. Y = m-depth -
Then pd bf + !-depth
m.
C o r o l l a r y . Let M b e a f i n i t e l y g e n e r a t e d module
o v e r t h e N o e t h e r i a n r i n g A and l e t
p
p
g r a d e p; m o r e o v e r , i f pd 1\1 i s f i n i t e , g r a d e P r o o f . pdAbi t h e proof t h a t
2 pdA M p P
depth A
A-sequence i n p. As 2
i s a prime
g?p, 1
P
= depth A =
P
=
=
l o c a l g r a d e E.
l o c a l grade
g r a d e p: Let
xl,.
pd M >
Then
Ass(M).
E
..,xr
p. Now
for
be a maximal
c o n s i s t s o f zero d i v i s o r s of A / ( & ) ,
E
Ass(A/(x)).
there
L o c a l i z i n g a t 9 wc c o n c l u d e
> pd M = d e p t h A pd E! = r 9 P P'
The argument a l s o shows t h a t p i s a c t u a l l y an e l e m e n t A s s ( A / ( x-) ) .
of
A d i f f i c u l t question i n t h i s a r e a i s t h e following
( A u s l a n d e r ) : D e f i n e t h e g r a d e o f a module t o be t h e g r a d e o f i t s a n n i h i l a t o r ; i s i t t h e c a s e t h a t g r a d e bl
+
K r u l l dim(M)
=
K r u l l dim(A)? S e e [ _ 1 7 ,30] f o r a deep d i s c u s s i o n o f t h i s nroblem.
§2.5
of
Euler c h a r a c t e r i s t i c s
modules.
Here a c l o s e r l o o k a t t h e n a t u r e o f f i n i t e p r o j e c t i v e r e s o l u t i o n s i s t a k e n . Let A b e a commutative r i n g and l e t 0-
Fn
...
F1
-
M-
Fo-
b e a f i n i t e f r e e r e s o l u t i o n o f t h e module M.
characteristic of M,
x(M), x(M)
=
C(-l)irank(Fi).
c'cpend o f t h e c h o s e n r e s o l u t i o n ( s e e
x that
Define t h e Euler
t o be t h e i n t e g e r
I t i s e a s i l y s e e n from S c h a n u e l ' s lemma
properties of
0
that
[El
x(M)
does n o t
f o r t h e elementary
w e s h a l l u s e ) . W i t h o u t f u r t h e r ado w e u s e
Homology o f L o c a l Rings t h a t x (M)
s t a y s t h e same f o r any f l a t change o f r i n g s .
Definition. I f $ : E
~
(
$
= 1sup{
$
is a
: E-F
uPlhl
I I$ +
r
E = M@)m
If
37
where
and
-F
i s a homomorphism o f A-modules,
03. F = M@)"
M-matricial
a r e A-modules, w e s a y t h a t homomorphism i f $ i s g i v e n
as
u : Am-An.
I n t h i s t e r m i n o l o g y t h e s t a t e m e n t o f McCoy's theorem i s : a m a t r i c i a l homomorphism $ : PIernrank($) = m
is injective i f f
Men
and t h e i d e a l g e n e r a t e d by t h e
m x m
minors of
u d o e s n o t a n n i h i l a t e a n o n z e r o e l e m e n t o f Y. F i n a l l y , u : Am
- An
minors of u , (2.25)
define
.
P r o p o s i t i o n . Let
0-
Fn
r x r
I ( u ) = i d e a l g e n e r a t e d by a l l
r = rank(u)
if
'n Fn-l -
...
Fo
- FI -
be a f i n i t e f r e e r e s o l u t i o n o f t h e module ? I .
If all
0
I(Oi) = A
t h e n M i s a p r o j e c t i v e module. The p r o o f p r o c e e d s by showing t h a t
Fn s p l i t s o f f
Fn-l
and i n d u c t i o n . Note t h a t t h e c o n v e r s e a l s o h o l d s . (2.26)
P r o p o s i t i o n . Let M b e a module a d m i t t i n g a f i n i t e
f r e e r e s o l u t i o n . Then
i) ii)
x(W 2
x(M)
0.
> 0
i i i ) x(M) = 0
(2.27)
i f f M is faithful. iff
ann(Y)
is faithful.
Lemma. Let 0-F-G-H
U
V
Homology o f L o c a l Rings
38
b e an e x a c t s e q u e n c e o f f r e e A-modules. Then r a n k ( u )
+
rank(v)
= rank((;).
P r o o f . T e n s o r t h e s e q u e n c e ( i . e . c h a n p t h e r i n g ) by A [ t ] =
p o l y n o m i a l r i n g i n t . Then I ( u ) b e i n g a f i n i t e l y g e n e r a t e d
f a i t h f u l i d e a l a c q u i r e s a nonzero d i v i s o r i n A [ t ] . Localize a t t h e powers o f a n o n z e r o d i v i s o r o f I ( u ) A [ t ] ; F h a A [ t l S t h e n s p l i t s
o f f G@A[tIS and r a n k ( v ) = r a n k ( ( ; ) - r a n k ( I m ( u ) ) . S i n c e t h e c h a n g e s o f r i n g s l e a v e t h e r a n k s u n c h a n g e d , we have t h e d e s i r e d equality. Proof o f ( 2 . 2 6 ) t h a t a l l I($i)
: P a s s t o A [ t ] ; t h e e a r l i e r argument shows
are f a i t h f u l i d e a l s - the case of I($n) being
t h e s t a t e m e n t o f McCoy's t h e o r e m . I f we now l o c a l i z e a t t h e s e t o f r e g u l a r e l e m e n t s o f A [ t ] , t h e s e q u e n c e s p l i t s D i e c e w i s e and i ) , i i ) and i i i ) f o l l o w . (2.28)
C o r o l l a r y . I f A i s a l o c a l N o e t h e r i a n r i n g and Eil
i s a f i n i t e l y g e n e r a t e d module o f f i n i t e p r o j e c t i v e d i m e n s i o n , t h e n M i s e i t h e r f a i t h f u l o r i t s a n n i h i l a t o r c o n t a i n s a nonzero divisor. We now c o n s i d e r some o f t h e same q u e s t i o n s f o r modules o f f i n i t e i n j e c t i v e dimension o v e r a l o c a l Noetherian r i n g A. (2.29)
P r o p o s i t i o n . L e t M b e a f i n i t e l y g e n e r a t e d module
o v e r A o f f i n i t e i n j e c t i v e d i m e n s i o n . Then M i s e i t h e r f a i t h f u l or its annihilator In Chapter 5
is faithful. w e s h a l l d i s c u s s an E u l e r c h a r a c t e r i s t i c f o r
M and a d i f f e r e n t p r o o f o f ( 2 . 2 9 ) . Now w e n e e d a few lemmas.
Homology o f L o c a l Rings
39
Let M be a n o n z e r o , f i n i t e l y g e n e r a t e d module o f f i n i t e i n j e c t i v e d i m e n s i o n o v e r t h e l o c a l r i n g A . We saw i d N = depth A which i s a l s o t h e maximum v a l u e f o r t h e d e p t h o f any f i n i t e l y g e n e r a t e d A-module a c c o r d i n g t o ( 2 . 2 0 )
(This f a c t has provided
H o c h s t e r w i t h an o p e n i n g f o r h i s s o l u t i o n o f v a r i o u s q u e s t i o n s 18]). In p a r t i c u l a r , i f on t h e homology o f N o e t h e r i a n r i n g s [i d M = 0 , A has a l s o Krull dimension 0 such a s A/p,
p
a s o t h e r w i s e a module
= minimal p r i m e , would p r o v i d e an example w i t h
depth > 0. (2.30)
i d bZ = 1, t h e n A i s a Macaulay r i n g .
Lemma. I f
P r o o f . From ( 2 . 2 0 ) i t f o l l o w s t h a t A may be assumed t o be c o m p l e t e ; i f p i s a minimal p r i m e w i t h
K-dim A = K-dim(A/p)
I
and B i s t h e i n t e g r a l c l o s u r e o f A/P- (which i s f i n i t e l y g e n e r a ([2 8 ] ) we have :
t e d a s an A/p-module
m-depth B > 2
if
> 2 by [ 3 4 ] . Thus A i s o n e - d i m e n s i o n a l . K-dim A -
(2.31)
Lemma [Abhyankar-liartshorne's lemma). Let I and J
be n o n z e r o i d e a l s i n a commutative r i n g A s u c h t h a t 1 - J = 0 . Then
grade ( I + J )
i s a t most o n e .
P r o o f . We can assume t h a t x E I
n.J,
r i n g . Let
then
i = r(i+j)
n,J
= 0
f o r otherwise, i f 0 #
x ( I + J ) = 0 . We can e v e n assume A t o be a l o c a l
x = i+j, i
is clear that
I
E
I and j
E
i # 0, j # 0 . Also,
yields
.J, b e a nonzero d i v i s o r : it i $
A ( i + j ) for an equation
( 1 - r ) i = r j , which i s a c o n t r a d i c t i o n i f
r i s 'a u n i t o r n o t . F i n a l l y , ( I + J ) i C _A ( i + j ) , t h a t is grade(I+J)
= 1.
I n o r d e r t o a p p l y t h i s t o o u r q u e s t i o n , l e t I be t h e a n n i h i l a t o r o f M , l e t J be t h e a n n i h i l a t o r of I and l e t J ' b e t h e
Homology o f L o c a l R i n g s
40
a n n i h i l a t o r o f J . By t h e lemma, g r a d e ( J + J ' ) < 1 , i n f a c t = 1. -
F o r o t h e r w i s e I and J would be c o n t a i n e d i n t h e same minimal nrime E o f A : Y
would t h e n be a n o n z e r o , n o n f a i t h f u 1 , i n j e c t i v e
P
! Let p t h e n be a e;rade
module o v e r t h e l o c a l A r t i n i a n r i n g A
?!. J + J ' ; it i s e a s i l y seen t h a t
one prime i d e a l c o n t a i n i n g h a s d e p t h o n e . We c l a i m t h a t
.J
n_
A
# 0 - t h u s implying t h a t I
which i s n o t t r i v i a l , c o n s i s t s o f z e r o d i v i s o r s . But t h i s indeed t h e case
,J' # A
as
P
E
i s c l e a r l y impossible. This
P
P' is
is
t h e r e q u i r e d r e d u c t i o n . We c a n make a f r e s h s t a r t and assume t h a t Fl h a s i n j e c t i v e d i m e n s i o n one o v e r t h e l o c a l r i n g .4 o f d i mension o n e . T h e r e a r e two c a s e s t o e x a m i n e .
m
i)
is not associated t o M.
Ilere t h e o n l y p r i m e s a s s o c i a t e d t o M a r e t h e minimal p r i m e s of A containing I . L e t
n
0-34-1
- I
1
be a minimal i n j e c t i v e r e s o l u t i o n o f h4.
- 0
I"
i s a d i r e c t sum
of
I ( A / 2 ) = i n j e c t i v e e n v e l o p e o f A/p, f o r t h e v a r i o u s 1 p r i m e s o f h e i g h t 0 c o n t a i n i n g I ; I i s a d i r e c t sum o f c o p i e s copies of
o f I (A/m). -
Let
pl,.
. . ,yr
be t h e above minimal p r i m e s . We can
t h e n p i c k x i n some o t h e r minimal prime (one c o n t a i n i n g J ) b u t n o t i n any o f t h e pi's. biap t h e s e q u e n c e i n t o i t s e l f v i a m u l t i p l i c a t i o n by x and u s e t h e s n a k e lemma t o g e t 0-
X
-
31
X
In
-
X
I1
-
M/xM
-In
/XI
o
-I
1 /XI1-&
S i n c e x i s n o t i n any o f t h e p i ' s , i t a c t s a s a u n i t i n I ( A / p i ) and t h u s
([?I)
= ?I/xPI. But
i s an i n j e c t i v e A/(x)-module
# 3l/xM
i s a f i n i t e l y generated i n j e c t i v e
and t h u s
0
Homology o f L o c a l Rings module o v e r
By an e a r l i e r remark
A/(x).
41
R/(x) i s then
A r t i n i a n r i n g , which i s a c o n t r a d i c t i o n a s x was t a k e n
an in
a
minimal p r i m e . ii)
m- i s a s s o c i a t e d t o Y .
We u s e t h e n o t a t i o n o f i ) . A minimal i n j e c t i v e r e s o l u t i o n o f M now l o o k s l i k e 0-
I 0 @ Et-
bl-
ES
-0
and t h e i n t e g e r s t a n d s a r e d e t e r m i n e d b y 1 t = dimk(Ilom(A/m,M)) and s = d i m k ( E x t (A/m,M)). Since is
E = I(A/m)
where
-
-
a s s o c i a t e d t o b l , t > 0 . Let p
be a prime n o t r e p r e s e n t e d i n
I o , t h a t i s a m i n i m a l prime o f J . A p n l y i n g
-
0-
Hom(A/p,M)
exact
1 a s Ext (A/p,M)
Hom(A/p,I* d E t ) for
= 0
fiom(A/n,-) we g e t
- Hom(A/p,ES) -
d e n t h A/E
0
= 1. A n o t h e r way
to
write t h i s l a s t sequence i s 0-
But 1'.
E
Io = 0 as
IcfP
p
P
I
0
d
Et-
P
ES-O.
P
i s n o t c o n t a i n e d i n any o f t h e p r i m e s o f
Thus we g e t
o r , i n o t h e r words, t h a t
bl
P
i s a n o n z e r o module o f f i n i t e
l e n g t h a n d i n j e c t i v e d i m e n s i o n o n e o v e r A l p . From t h e d u a l i t y theory of
[27] i t
Define g(C) g(C)
follows t h a t
t = s.
f o r any A-module C o f f i n i t e l e n g t h t o be = l e n g t h Hom(C,M)
I t is clear that g(-)
- length Ext1 (C,?I).
i s additive with respect t o short exact
sequences. Since g(k) = t - s = 0
and any module o f
finite
Homology o f L o c a l Rings
42
L's,
l e n g t h i s an e x t e n s i o n o f
we have g ( C )
= 0
f o r any s u c h
module. Let
be t h e l a r g e s t submodule o f f i n i t e l e n g t h o f PI.
)lo
Also l e t
be a n o n z e r o d i v i s o r o f A
x
i s not associated t o
M*
= ?l/b10
a g a i n we g e t 0
-?'lo -M-
But
X
xb!*
and
0
=
X
M*
xYO = 0 . m_
such t h a t
# 0 . UsinR t h e s n a k e lemma
- bIO
t h u s length(MO)
+
*
?I*/xM -0.
M/xbl
length(M*/xM*)
=
length(M/xbl). On t h e o t h e r h a n d t h e e a c t s e q u e n c e 'X
0-A-A-
yields that A/(x)
has
Hom(A/(x) , M )
A/(x) = \I0
and
-
0
E x t 1 ( A / ( x ) ,hi)
= M/xM.
As
f i n i t e l e n g t h , g ( A / ( x ) ) = 0 , which i m n l i e s
length(M*/xM*)
= 0 , c o n t r a d i c t i n g Nakayama's
lemma.
We now r e t u r n t o t h e e x a m i n a t i o n o f t h e i d e a l s
I(@i)
in
a f i n i t e f r e e r e s o l u t i o n . The b r o a d e s t s t a t e m e n t on t h e s e 7 , -3 0 ] ) : i d e a l s is contained i n the following ( [_ (2.32)
Theorem. Let A be a N o e t h e r i a n r i n g and l e t bf
be
a f i n i t e l y g e n e r a t e d A-module. L e t M.
...
:
VTk
@ k LI'k-1. . . -
be an M - m a t r i c i a l complex w i t h i s e x a c t ( i . e . Hi(M.) i)
ii)
= 0
€ o r l a r g e i . Then
>.I.
for i > 0) i f f
I ( @ k ) - d e p t h Fl > k; rank($k)
Proof. I f the ' l a s t '
= 0
ri
I(+)
M.
+
rank(@k-l) = rk-l.
i s e x a c t , p i c k i n g an
M-regular element i n
- it e x i s t s by McCoy's t h e o r e m - and l o c a l i -
z i n g a t t h e m u l t i p l i c a t i v e s e t i t g e n e r a t e s w e may r e d u c e t h e
Homology o f L o c a l Rings
43
l e n g t h o f t h e complex : i i ) would t h e n f o l l o w much a s f o r v e c t o r s p a c e s ; i ) i s a g a i n a d i r e c t c o n s e q u e n c e o f McCoy's theorem.
For t h e c o n v e r s e , t h e f i r s t t h i n g t o n o t e i s s i n c e t h e ideals
contain
I(+)
M-regular elements
it i s s t a b l e under
l o c a l i z a t i o n s . Let n b e t h e l a r g e s t i n t e g e r statement of
ii)
r a n k ( O n ) = rn
makes
rn # 0 ; t h e
with
and t h u s $n i s
injective BY P c k i n g an e l e m e n t t h a t i s M - r e g u l a r
statement ted
ii)
i m p l i e s t h a t t h e homology o f
in
I ( + k ) , the
M.
is annihila-
by an M - r e g u l a r e l e m e n t . We may assume A l o c a l and a l s o
t h a t t h e homology g r o u p s a l l have f i n i t e l e n g t h . We a r g u e by i n d u c t i o n on n : 0
Mrn
-
. . . M r 2 - L -0 ,
M'n-1
L = image ( + 2 ) , i s t h e n an e x a c t s e q u e n c e . I t a l s o f o l l o w s t h a t
as
> n , depth L > 2 . Let depth M -
c o n s i d e r t h e sequence 0 -L
If
K = kernel($1)
-
K-
II-
and
0.
x i s an e l e m e n t i n t h e a n n i h i l a t o r o f M t h a t i s P I - r e g u l a r ,
wc get 0
-tl -L / x L - K / x K -1-1 -0 ,
and t h e maximal i d e a l o f A w i l l b e a s s o c i a t e d t o L/xL, contradicting (2.33)
> 1, u n l e s s d e p t h L/xL -
11 = 0 .
C o r o l l a r y . Let
...
-
Fo-E-Q F1 be a f i n i t e f r e e r e s o l u t i o n o f t h e module E . Let M b e O-Fn
thus
a
Homology o f L o c a l Rings
44
f i n i t e l y g e n e r a t e d A-module w i t h t h e f o l l o w i n g p r o p e r t y : I f I
rc
i s an i d e a l o f g r a d e
n , t h e n I - d e p t h bl = r . Then t h e
sequence 0
-FnPF1
. ..
FIPP.l
-
I:O@Pl
-EPbl -
0
is also exact. Gorenstein r i n g s .
52.6
W e s t a r t b y l o o k i n g a t t h e s u n a o r t of a
f i n i t e l y genera-
t e d A-module o f f i n i t e i n j e c t i v e d i m e n s i o n ( A i s a N o e t h e r i a n local ring). (2.34)
P r o p o s i t i o n . i ) Sunn(b1)
s a t i s f i e s the equal chain
c o n d i t i o n - i . e . a l l maximal c h a i n s o f n r i m e s between two f i x e d p r i m e s have t h e same l e n g t h . ii)
K-dim(M) = d e p t h A - i n f { d e p t h A p , n - minimal o v e r
-
t h e a n n i h i l a t o r of Fl). P r o o f . Let = id M
P
p be an e l e m e n t o f
) = 1
1 s x c g\c, w e have Extr(A/p,M)
-
we claim t h a t
depth A
Extr+'(A/
= depth A
- with
( p , ~ ,&I)% )
P
= r+l. Indeed, i f
I I
- E x t r +1( A / ( ~ , X,)M )
5Extr(A/p,M)
Extr(A/p,Ft)p # 0 , we a l s o g e t
since
r
I f 1 i s a p r i m e immediate o v e r
by ( 2 . 2 0 ) .
K-dim(A /PA
Supp(b1) : t h e n
Extr(A/p,M)
1
#
;
0 and t h u s
# 0 by Nakayama's lemma. T h i s shows t h a t
> r+l. 9For t h e r e v e r s e i n e q u a l i t y w e b e g i n by showing t h a t
depth A
grade p = depth A
P
f o r any
p
E
Supp(bt). Let p be maximum w i t h
Homology o f L o c a l R i n g s with the property t h a t
depth A
P
> grade
be a maximal A-sequence i n p. Then t h e a s s o c i a t e d primes of A / ( x ) , Exti(A/(x),E.l)
-
grade p
9
= 0
E
p and l e t x l , . - .
xS
i s c o n t a i n e d i n one of
s a y 9. W e t h e n have
i > s . By ( 2 . 2 0 )
for
45
and t h u s by t h e p r e c e d i n g
s = depth A
9
=
1 = p.
I n p a r t i c u l a r i f 1\1 i s a f a i t h f u l module K-dim(b1) = dim(A) and A i s a Macaulay r i n g . A t t h i s p o i n t we i n s e r t B a s s ' s c o n j e c t u r e : I f a l o c a l r i n g A admits a nonzero f i n i t e l y g e n e r a t e d module M o f f i n i t e i n j e c t i v e d i m e n s i o n , t h e n A i s a Macaulay r i n g . T h i s q u e s t i o n h a s been s e t t l e d ( [ 1 7 , 3 0 ] )
for a l l local
r i n g s o f e q u a l c h a r a c t e r i s t i c and f o r s p e c i a l m o d u l e s . D e f i n i t i o n . A l o c a l Noetherian r i n g A i s s a i d t o be Gorenstein r i n g i f
idAA <
I t follows t h a t prime
A
2
a
a.
i s a l s o a Gorenstein r i n g f o r each
p. G l o b a l G o r e n s t e i n r i n g s c o u l d t h e n b e d e f i n e d i n t h e
same manner a s above o r a s b e i n g l o c a l l y G o r e n s t e i n ; c l e a r l y t h e s e d e f i n i t i o n s would a g r e e f o r r i n g s o f f i n i t e K r u l l dimension.
I f A is an
n-dimensional
(local) Gorenstein r i n g , then
Extn(A/m,A) -
i)
# 0
i s t h e o n l y n o n z e r o o f s u c h Ext m o d u l e s . To examine t h i s module l e t xl,
...,xn
be a r e g u l a r A-sequence; by changing t h e
r i n g ( i . e . u s i n g ( 1 . 1 1 ) ) we g e t Extl(A/m,A)
= HornA/
-
(A/m_,A/ (XI I and E x t i /
-
(A/m_,A/
(XI 1
= 0
Homology o f L o c a l Rings
46
f o r i > 0 . Thus A / ( x ) indecomposable
i s a s e l f - i n j e c t i v e r i n g . Since
i t must be t h e i n j e c t i v e e n v e l o p e o f e a c h o f
i t s nonzero submodules, i n p a r t i c u l a r o f iIomA/
-
(A/F,A/
We r e p l a c e
it is
( 5 )1
*
A;
= A / m-.
i)
(1
m
c g
.
Hence
by t h e c o n d i t i o n s
A i s a Macaulay r i n g ;
ii)
Extn(A/m,A) = A/!.
iii)
The meaning o f
iii)
becomes c l e a r i n a minimal i n j e c t i v e
r e s o l u t i o n o f A : t h a t f o r each prime i d e a l p of h e i g h t r , then I(A/p) summand o f
appears only once i n such r e s o l u t i o n - a s I r . Thus
a
A h a s c o n s t a n t t y p e = 1. S t i l l a n o t h e r
way o f i n t e r p r e t i n g i i i )
is :
the ideal
(x)
generated
by
any s y s t e m o f p a r a m e t e r s o f a G o r e n s t e i n r i n g i s i r r e d u c i b l e . Wc may e v e n p r o v e a c o n v c r s e : (2.35)
Theorem. Let A be a l o c a l N o e t h e r i a n r i n g s u c h
t h a t e v e r y s y s t e m of p a r a m e t e r s g e n e r a t e s an i r r e d u c i b l e i d e a l . Then A i s a G o r e n s t e i n r i n g . P r o o f . To make an i n d u c t i o n on t h e d i m e n s i o n d o f A
we
..
c o n t a i n s some n o n z e r o d i v i s o r . Let x l , . , n n x d be a s y s t e m o f p a r a m e t e r s and l e t I n = ( x l , . . , x d ) . Then Ind - 1 , that contradicts Inf I n - 1 f o r o t ~ i e r w i s e l y d = n n i s a l s o a system o f Nakayama's lemma. Now e a c h s e t x l , ,xd f i r s t show t h a t
m
.
...
p a r a m e t e r s and s o t h e i r r e d u c i b i l i t y of In
I n ' s a r e a l l i r r e d u c i b l e i d e a l s . Rut t h e implies t h a t
i d e a l s pronerly containing In. Since fI(In:!)
= O:;,
i.e.
In:m
is contained i n a l l
In = 0 , we have
0 =
m_ c o n t a i n s some n o n z e r o d i v i s o r , s a y x .
Homology o f L o c a l Rings
41
P a s s t o A / ( x ) ; t h e same h y p o t h e s i s f o r s y s t e m s of p a r a m e t e r s i s i n h e r i t e d by A / ( x ) . Remark. I t can be shown t h a t a l t h o u g h t h e number o f i r r e d u c i b l e components o f t h e i d e a l g e n e r a t e d by a s y s t e m o f p a r a m e t e r s i n a l o c a l Macaulay r i n g i s c o n s t a n t t h e c o n v e r s e d o e s n o t always h o l d . The s t a t e m e n t above s a y s t h a t i f t h i s constant is
one
t h e n t h e r i n g i s i n d e e d blacaulay.
I n t h e same s p i r i t o f ( 2 . 3 5 ) i s (2.36)
Theorem. Let A be a l o c a l N o e t h e r i a n r i n g
such
t h a t f o r e v e r y i d e a l I g e n e r a t e d by a s y s t e m o f p a r a m e t e r s
i s A / I - f r e e . Then A i s a blacaulay r i n g .
I/Iz
S i n c e i d e a l s g e n e r a t e d by A - s e q u e n c e s have t h i s ' i n d e p e n d e n c e ' p r o p e r t y , ( 2 . 3 6 ) i s a c h a r a c t e r i z a t i o n o f Macaulay rings. P r o o f . dim .4 = 1 : Let
x be a s y s t e m o f p a r a m e t e r s ( s . o .
p . f o r s h o r t ) ; t h e n xn f o r a l l i n t e g e r s n i s a l s o a s . 0 . p . .
assumption i s t h a t (x"). then
(xn)/(xn)'
= A/(xn),
that is
(x2")
The
: xn =
We c l a i m t h a t x i s n o t a z e r o d i v i s o r : i n f a c t , i f r x = 0 n r x = 0 and so r E (x") f o r a l l n . By t h e i n t e r s e c t i o n
theorem
r = 0.
dim A > 1 : Assume t h e s t a t e m e n t t r u e f o r r i n g s o f l o w e r d i m e n s i o n . Let
x l , ...,xd
be a s . 0 . p . .
Pass t o A ' = A/(xl);
it
i s c l e a r t h a t A ' i n h e r i t s t h e independence p r o p e r t y f o r i d e a l s g e n e r a t e d by s . 0 . p .
I s .
By i n d u c t i o n t h e n x j , .
.., x i
form an
A ' - s e q u e n c e . I n terms o f A t h i s means t h a t (x1):Xz = ( x i ) ,
...,
( X 1 , * * . 9 X d - l ) : X d= ( X 1 9 " ' 9 X d - 1 ) *
Ilomology o f L o c a l R i n e s
48
Since
. . 7 ~n d - 1 , x d i s
n xl,.
..
we have
theorem
, t h e r e l a t i o n s above
S . O . ~ .
we s u b s t i t u t e xn1' f o r i < d . F i n a l l y , i f r x d n n r E (x,,. , x ~ - ~ and ) again by the i n t e r s e c t i o n
h o l d i f f o r xi = 0
also a
r = 0
and
xd
i s a n o n z e r o d i v i s o r . The same c a n be
s a i d o f x1 and s o i f we add t o t h e r e l a t i o n s above
we c o n c l u d e t h a t t h e x i ' s
0:x
1
= 0,
form an A-sequence.
Canonical modules: (2.37)
Theorem. L e t A be a l o c a l G o r e n s t e i n r i n e . Then
any module o f f i n i t e i n j e c t i v e d i m e n s i o n a l s o h a s f i n i t e pmject i v e dimension. We g i v e a p r o o f f o r f i n i t e l y g e n e r a t e d modules o n l y ([2 4 ] ) . A c t u a l l y G o r e n s t e i n r i n g s can b e c h a r a c t e r i z e d by t h i s
19]. p r o p e r t y a s i n [-
Pro0 f
.
Let E be s u c h a module,map a f r e e module o v e r i t 0-L-F-E-0,
CS)
and n o t e t h a t I. a l s o h a s f i n i t e i n j e c t i v e d i m e n s i o n . I f
i s less than
depth of E
L = 1 m-depth
+
dim A , by ( 2 . 1 1 ) w e have t h a t
m-depth E . We can t h e n assume t h a t E h a s maxi-
mum d e p t h a l r e a d y . The c l a i m i s t h a t Hom(E,-) o f ( S ) w e g e t 0
-
Hom(E,L)
e x a c t . Since Ext'(E,L)
the
-
Hom(E,F)
-
(S) s p l i t s . T a k i n g
Hom(E,E)
m-depth E = dim A , from ( 2 . 2 0 )
-
1 E x t (E,L)
it follows t h a t
= 0.
Thus w e c o n c l u d e t h a t
H(A), t h e c a t e g o r y o f f i n i t e l y g e -
n e r a t e d module o f f i n i t e p r o j e c t i v e d i m e n s i o n , c o i n c i d e s w i t h
49
Homology o f L o c a l Rings I (A), s i m i l a r l y defined f o r t h e i n j e c t i v e dimension. H(A) n I ( A ) #
Conjecture : I f
for a local ring A , then
A i s a Gorenstein r i n g .
Given a l o c a l r i n g A , how t o f i n d modules o f f i n i t e i n j e c t i v e d i m e n s i o n ? In view o f B a s s ' s c o n j e c t u r e i t i s s a f e r
to
r e s t r i c t o u r s e l v e s t o Macaulay r i n g s . Let A h e a l o c a l Slacaulay r i n g ; an e a s y examnle i s o b t a i n e d i n t h e f o l l o w i n y manner. Let
5
h e a maximal A-sequence i n m_
i n j e c t i v e e n v e l o p e o f A/p1
and l e t E h c t h e
a s an .A/(&)-module: t h e n E i s
a
f i n i t e l y g e n e r a t e d A-module and t h e u s u a l chanEe o f r i n g s - v i z . ( 1 . 1 1 ) - shows t h a t i t has f i n i t e i n j e c t i v e d i m e n s i o n . What i s much h a r d e r i s t o f i n d examnles o f h i g h e r K r u l l d i m e n s i o n . There i s a ca se
however where t h i s can be done : Assume t h a t
A c a n he w r i t t e n
a s B/I, with R a l o c a l Gorenstein r i n g (e.g.
when A i s a l o c a l i z a t i o n o f an a f f i n e a l g e b r a ) (2.38)
n-d ExtB ( A , B )
Theorem. I f dim B = n
([El).
and dim A = d , t h e n R =
i s an A-module o f f i n i t e i n j e c t i v e d i m e n s i o n .
P r o o f . We p r o v e i n f a c t t h a t
d ExtA(-,Q) provides a d u a l i -
z i n g f u n c t o r f o r t h e c a t e g o r y o f A-modules o f f i n i t e l e n g t h . This f a c t , with
A = R , was i m p l i c i t i n o u r e a r l i e r d i s c u s s i o n
of Gorenstein r i n g s . S i n c e A i s a Flacaulay r i n g o f d i m e n s i o n d , we c a n f i n d a x
r e g u l a r R-sequence R
of length
n-d
i n I . Using ( l . l l ) ,
= €iomB/(x)( B / I , B / ( 5 ) ); -
dim A a s B/(&) i s a l s o a d G o r e n s t e i n r i n g . Then l e t T ( - ) = E x t A ( - , Q ) ' I f
we may t h u s assume t h a t dim B
=
HomoloFy o f L o c a l Rings
50 0
hq t
- - V" $!
0
is a s e q u e n c e o f f i n i t e l y g e n e r a t e d A-modules w i t h s u n n o r t i n
h), - we
may t a k e a s y s t e m o f p a r a m e t e r s = 0 . Notice t h a t (t)bI
such t h a t
t
t
= tl,.
..,td
in
m
i s a l s o R - r e g u l a r . Apply
t h e change o f r i n g s o f (1.11) t o have
T(M) = ExtA(M,fi) d As
fi/(E_>fi
HomB/ ( t I)
lifting
(t), B / ( t ' ),)w e
= fIomB,(tt) ( A /
( M , B / ( C t ) ) , where
t.
Since
B / (t')
= HomA/(t)
(?f,fi/(t)fi) *
f i n a l l y get
T(M) =
t t i s a system o f parameters f o r B
i s s e l f - i n j e c t i v e , w e a r e done.
fi w i l l be c a l l e d t h e c a n o n i c a l
module o f A .
In Chapter 4
w e d i s c u s s t h e b r o a d e r c l a s s o f s p h e r i c a l modules t o which R b e 1 o n g s . A more e x t e n s i v e t h e o r y o f ' c a n o n i c a l ' modules for r i n g s which a r e n o t n e c e s s a r i l y Macaulay i s f o u n d i n
[El.
C o r o l l a r y . I f A i s a ?facaulay r i n g t h a t i s a lJFD
(2.39)
and a homomorphic image o f a G o r e n s t e i n r i n g , t h e n A i s Gorenstein r i n g
a
([El).
P r o o f . Let R be t h e module c o n s t r u c t e d above - n o t needed h e r e t o assume A l o c a l . . S i n c e A i s a domain i t i s e a s i l y s e e n t h a t R may be i d e n t i f i e d t o an i d e a l o f A . As A i s a U F D $ dI
where
d
is the g.c.d.
o f n . Changing fi by I
=
we may
> 2 . But i n t h e e x a c t s e q u e n c e assume t h a t g r a d e R 0-n-A-
depth
= depth- A
A/Q-
0
( f o r any l o c a l i z a t i o n ) f o r c e s d e p t h A/fi
2
dim A - 1 , which i s a c o n t r a d i c t i o n . Thus R i s D r i n c i n a l and A
is a Gorenstein r i n g . Remark. The module R o f ( 2 . 3 8 ) i s as o b s e r v e d a hlacaulay
Homology o f L o c a l Rings
51
module o f t h e same d i m e n s i o n a s A . A n o t h e r P r o n e r t y i t e n j o y s is that
i > 0
Ilom(R,R) = A : t h i s f o l l o w s from and from
over A / ( t ) ,
Exti(R,n)
for
Q / (t ) Q b e i n g t h e i n j e c t i v e e n v e l o p e o f A / m-
whenever t i s a system o f p a r a m e t e r s .
([GI)t o
T h i s l a s t f a c t h a s been u s e d
show t h e c o n v e r s e ,
t h a t i s , i f R i s a Macaulay module s a t i s f y i n g
(t)( A / m-)
= 0
f o r some
s.0.p.
t,
n/(t)n
=
t h e n A i s a homomornhic image
o f a G o r e n s t e i n r i n g . P r o o f : Let B = A @ R be t h e t r i v i a l e x t e n s i o n o f A by R. The maximal i d e a l o f B
is
t h a t B i s G o r e n s t e i n , f i r s t o b s e r v e t h a t €3 i s a
m_
@ 9 . 'To show
Xacaulay A -
module; n e x t , by r e d u c i n g modulo a maximal A - s e q u e n c e w e may assume t h a t A i s an A r t i n i a n r i n g - R i s t h e n t h e i n j e c t i v e To c o m p l e t e t h e p r o o f i t i s enough t o d e t e r -
e n v e l o p e o f A/!.
mine t h e s o c l e o f B : a s 9 i s a f a i t h f u l A-module t h i s i s evidently
0:m) = B/(m_ 0 Q).
(0,
R-
How do G o r e n s t e i n r i n g s a r i s e ? : -P r a c t i c a l l y t h e o n l y way o f c o n s t r u c t i n g G o r e n s t e i n r i n g s
w e h a v e d i s c u s s e d i s by t a k i n g a r e g u l a r l o c a l r i n g B d i v i d i n g o u t by an i d e a l
I = (x,,
... , x r )
g e n e r a t e d by a r e q u l a r
B-se-
q u e n c e . I n p a r t t h i s d i f f i c u l t y i s germane t o t h e n a t u r e o f G o r e n s t e i n r i n g s as B/I w i t h B r e g u l a r which i s G o r e n s t e i n , must b e a c o m p l e t e i n t e r s e c t i o n i f t h e i d e a l I i s n o t l a r g e . Let A be a t w o - d i m e n s i o n a l Macaulay r i n g o f t y p e
Denote by v (M) (2.40)
u
(A).
t h e minimal number o f g e n e r a t o r s o f a module M .
P r o p o s i t i o n . I f I i s an i d e a l o f g r a d e 2 and
p r o j e c t i v e dimension 1,
u (A/I)
=
.JJ
(A) (v ( I ) - 1 ) .
Homology o f L o c a l Rings
52
I n p a r t i c u l a r , i f I i s i r r e d u c i b l e i t i s g e n e r a t e d by two e l e m e n t s and A i s a l s o a G o r e n s t e i n r i n g .
P r o o f . Let
0
- F1 a F g - I - O
be a minimal f r e e r e s o l u t i o n o f I . T a k i n g
exact with and a l s o
I$2
Ext 1 (&,I)
tiom(&,-) w e g e t
t h e t r i v i a l maps. Thus Ext 1 ( k , I ) =Ext 2 (k_,F1) = Hom(k,A/I) -
= (I:m -) / I
= k’(A’l). -
Finally
we g e t p ( A / I ) = p ( A ) - r a n k ( F 1 ) = p ( A ) ( v ( I ) - l ) . The s t a t e m e n t i s c l e a r l y s t i l l t r u e f o r Macaulay r i n R s o f h i g h e r d i m e n s i o n - b u t s t i l l w i t h g r a d e I = 2 , p d I = 1. The f o l l o w i n g i s o f a more d e l i c a t e n a t u r e : (2.41)
Theorem. Let B be a r e g u l a r l o c a l r i n g and l e t I
be an i d e a l o f h e i g h t t h r e e
such t h a t A = B / I i s a Gorenstein
r i n g . Then I i s m i n i m a l l y g e n e r a t e d by an odd ( n o t always t h r e e ) number o f g e n e r a t o r s . 8 ] o r [40]. P r o o f . See [ -
Appendix : Rings o f t y p e o n e . We may e x t e n d t h e d e f i n i t i o n o f t y p e o f a l o c a l i l a c a u l a y r i n g g i v e n e a r l i e r t o an a r b i t r a r y N o e t h e r i a n r i n g A , by ing that
t h e t y p e o f A a t a arime p
I t c a n be shown t h a t t h i s number
say-
is
1.
1
always
([GI).On
t h e o t h e r h a n d , we saw t h a t f o r G o r e n s t e i n r i n g s t h e t y p e i s
53
llomology o f L o c a l Rings 1 a t a l l primes. C o n j e c t u r e : Rings o f t y p e one a r e C o r e n s t e i n r i n g s . O f course t h e d i f f i c u l t y l i e s i n nroving t h a t such r i n g s
a r e Nacaulay. This i s v e r i f i e d h e r e i n i t s simplest case : be such a r i n g of t y p e o n e . I f
dim A = 1. Let (A,;)
0
0 - A - I
-1
1
i s a minimal i n j e c t i v e r e s o l u t i o n o f A , t h e h y p o t h e s i s means
lies
where t h e p i t s a r e t h e minimal p r i m e s o f A . The problem
i n proving t h a t 2 i s not a s s o c i a t e d t o A , i . e . t h a t Step 1 :
Write
I(A/m_)
= E ; a p p l y Horn(-,E) t o t h i s s e q u e n c e t o g e t
Hom(E,E) 0
a d i c completion of A
8 Hom(Q,E)
A
Call + ( i ) n i r = L; then
E-
Pi
,...,x r , f ) ,
embeds i n E . S i n c e
A
N o e t h e r i a n A-module
As Hom(E,E) = A = m-
O,$(a) = a(xl
ir/L
bm(A,E)-o A
's.
(fc]), we w r i t e
-
-
0 IlOm(Q,E)
where w e lumped i n Q t h e v a r i o u s
1'
0.
=
r 2 1.
f{orn(E,E)
A
r
ir/L
h
xic A .
is a
A
and E i s an A r t i n i a n A-module ( [ 2 7 1 ) , L
A
Ar/L
r
5
i s a module o f f i n i t e l e n g t h . T h i s c l e a r l y i m p l i e s t h a t 1
and, i f
r = 1 that
x = x1
i s n o t c o n t a i n e d i n any
h
minimal p r i m e o f A a s Step 2 :
LC
(x).
r = 0.
Let y be an e l e m e n t o f A
such t h a t
*
A
yA = xA ( p o s s i b l e a s
Homology o f L o c a l Rings
54 h
xA
A
i s an
EA-primary i d e a l ) . To t h e p r e s e n t a t i o n a p p l y
Hom(A/ ( y ) ,-1 t o g e t
Since
YA
E = x E , w e have
Y Hom(A/ ( y 2 ) ,- )
Y
A =
YE
Y
YE.
E . Now a p p l y t o t h e p r e s e n t a t i o n
to get 2A
0Y
and t h e n
- 'X
0-
-
Y
2E
- YZE 'X
2 A . T h i s i m p l i e s t h a t 0 :yr- A/(y) ; a s YA = Y i s an i n j e c t i v e A / ( y ) - m o d u l e , t h e i n c l u s i o n above s p l i t s .
E Y But a s
yA =
A/(y) i s indecomposable
possible.
(0:y)
+
(y) = A is
not
Chapter 3 nivisorial Ideals I n t h i s c h a p t e r w e s t u d y some s e m i - g r o u p s t r u c t u r e s on s u b s e t s o f i d e a l s o f a commutative r i n g A . The c l a s s i c a l examp l e i s t h a t of t h e d i v i s o r i a l i d e a l s of a completely i n t e g r a l l y c l o s e d domain s o s u c c e s s f u l l y u s e d i n t h e s t u d y o f t h e f a c t o r i a l i t y . For o t h e r r i n g s t h i s composition has r e c e i v e d s c a n t a t t e n t i o n and a p u r p o s e h e r e i s t o remedy somewhat t h i s s i t u a t i o n . Higher grade i d e a l s a l s o admit a composition b u t l a c k t h u s f a r any o f t h e p r o p e r t i e s o f g r a d e one d i v i s o r i a l i d e a l s i n the sense prescribed i n the Preface. I n t h e s e c o n d s e c t i o n t h e e m p h a s i s i s on t h e d i v i s o r o f
Auslander-MacRae-Mumford d e f i n e d on t h e c a t e g o r y o f f i n i t e l y g e n e r a t e d t o r s i o n modules o f f i n i t e p r o j e c ’ i v e
dimension.
An
e x a c t sequence r e l a t i n g t h e Grothendieck group o f t h i s c a t e g o r y to
Inv(A) = i n v e r t i b l e i d e a l s o f A
and
KO(A)
is useful
in
t h i s s t u d y and s e r v e s a s a model f o r t h e more g e n e r a l t r e a t m e n t of Chapter 4 . The l a s t s e c t i o n i s d e v o t e d t o c o m p u t a t i o n s o f t h e l e n g t h
of t h e t o r s i o n p a r t o f a module o f d i m e n s i o n o n e , t o c o n d i t i o n s e n s u r i n g t h e s p l i t t i n g o f s e q u e n c e s o f s u c h m o d u l e s , a n d t o an e x p o s i t i o n o f a r e s u l t o f Burch c h a r a c t e r i z i n g t h e
torsion-
f r e e modules o f r a n k one and p r o j e c t i v e d i m e n s i o n o n e . 53.1
Composition i n Id(A). L e t A be a commutative r i n g which w i l l b e a l t e r n a t i v e l y
N o e t h e r i a n o r c o h e r e n t and d e n o t e by I d ( A ) t h e s e t o f f i n i t e l y 55
Divisorial Ideals
56
g e n e r a t e d i d e a l s o f A t h a t c o n t a i n a r e g u l a r e l e m e n t . We w i l l be c o n c e r n e d w i t h v a r i o u s p a r t i a l c o m p o s i t i o n s i n I d ( A ) , t h a t
i s w i t h group s t r u c t u r e s - o r s e m i - g r o u p o n e s f a i l i n g t h a t t h a t may e x i s t f o r s u b s e t s o f I d ( A ) . A key remark w i l l show t h a t t h e r e a r e q u i t e a few o f t h o s e . I f I i s an i d e a l c o n t a i n i n g a r e p l a r e l e m e n t , HomA(I,A)
may be i d e n t i f i e d
with
1 - l = Ix
E
KI x I G A } , where K s t a n d s
( I - I ) - l may, i n t u r n , be I S ( I -1) -1
f o r t h e t o t a l r i n g of q u o t i e n t s o f A . and
i d e n t i f i e d t o an i d e a l of A
.
D e f i n i t i o n . An i d e a l I o f A i s s a i d t o be r e f l e x i v e d i v i s o r i a l i f I = ( I -1) -1
or
.
The r e a s o n f o r t h e f i r s t t e r m i n o l o g y i s c l e a r w h i l e t h e o t h e r w i l l soon become s o . N o t i c e t h a t a s A i s c o h e r e n t , 1 - l w i l l be a f i n i t e l y g e n e r a t e d f r a c t i o n a l i d e a l o f A . To p l a c e I
and I - '
on an e q u a l f o o t i n g we may t h e n e x t e n d t h e d e f i n i t i o n
o f Id(A) t o i n c l u d e a l l r e g u l a r f i n i t e l y g e n e r a t e d f r a c t i o n a l i d e a l s o f A . The d e f i n i t i o n above may t h e n be e x t e n d e d t o a l l such i d e a l s . For any i d e a l I , 1 - l
w i l l be r e f l e x i v e
and ( I
-1 -1 is )
the smallest reflexive ideal containing I . In o r d e r t o c o n s i d e r a c o m p o s i t i o n on D i v ( A ) , t h e s u b s e t of a l l d i v i s o r i a l i d e a l s i n Id(A), w e c o n s i d e r f i r s t a c l a s s o f prime i d e a l s o f A p l a y i n g a r o l e i n q u e s t i o n s
of
divisibility. Define ( a ) :b
P(A) =
ip
E
Spec(A)
I p
i s minimal o v e r an i d e a l
f o r some r e g u l a r e l e m e n t a ) . (3.1)
Lemma. Let I be a f i n i t e l y g e n e r a t e d i d e a l o f A
Divisorial Ideals I
c o n t a i n i n g a r e g u l a r element: i f
Q
51
f~o r any 2
P(A), 1-l =
E
A. The converse a l s o h o l d s .
Proof. I f
x
E
x = b/a, w i t h a regular, l e t
1 - l ' say
a prime i d e a l minimal over ( a ) : b . Then Conversely, l e t
1s p =
XISA i m p l i e s
minimal o v e r (a) :b
p. be
ICp.
and assume-
1 - l = A. There i s t h e n s $ p and an i n t e g e r n > 0 n n-1. s I E ( a ) : b . Pick n l e a s t ; t h e n ( s b / a ) I I C A and
such t h a t
&I-'& A , a contradiction.
(sbja) (3.2)
C o r o l l a r y . Let A be an i n t e g r a l domain o f q u o t i e n t
and l e t
field K
i s a prime i d e a l
fA[t]
iff
i s n o t c o n t a i n e d i n any E i n A[t]
if
(3.3)
a,b
... +
f = antn +
E
a.
be a polynomial i n t .
i s prime
fK[t]
P(A). In p a r t i c u l a r
...,a,)
and (a,, a+bt
i s prime
form a r e g u l a r A-sequence.
P r o p o s i t i o n . Two r e f l e x i v e i d e a l s i n Div(A) a r e
e q u a l i f f t h e y a g r e e i n each
A
E'
E
E
P(A).
P r o o f . Consider t h e map a s s o c i a t e d t o a r e f l e x i v e i d e a l I
Let
x
E
ker(0)
and l e t
L = {y
E
A Iyx
E
11. Notice t h a t A
b e i n g c o h e r e n t L i s a f i n i t e l y g e n e r a t e d i d e a l . Pass t h e equation
L = I:x
o v e r t o t h e polynomial r i n g
add t o x an element
b t with
A[t]. W e may now
b r e g u l a r i n I w i t h o u t changing
t h e e q u a t i o n , t h a t i s , w e may assume t h a t x i s r e g u l a r (No need t o assume a t t h i s p o i n t t h a t x-lL-'?
I - l ; b u t as L - l = A
A [ t ] is c o h e r e n t ! ) . x L C I by (3.1) w e conclude x
E
I . By f a i t h f u l l y f l a t d e s c e n t t h e c o n c l u s i o n f o l l o w s .
yields -1 -1 (I )
Divisorial Ideals
58
I f I i s an e l e m e n t o f Id(A) w e w r i t e D ( 1 )
.
f o r ( I -1) -1
By
g o i n g o v e r t o A [ t ] a s above we may assume f o r t h e p u r p o s e s h e r e t h a t e v e r y i d e a l i n Id(A) h a s a g e n e r a t i n g s e t c o n s i s t i n g o f r e g u l a r e l e m e n t s . Thus i f I - 1 = ( d l d,), di = r e g u l a r i n K ,
,...,
D(1) = A : I - ' t h a t says : D ( I )
=nAdil
is the intersection of a l l princinal ideals
c o n t a i n i n g I . S t r i c t l y s p e a k i n g we c a n assume t h e above o n l y a f t e r a f a i t h f u l l y f l a t chanpe o f r i n g s . For two e l e m e n t s I,.J E I ) i v ( A ) , d e f i n e I o J = D ( 1 J ) . (3.4)
Lemma. The c o m p o s i t i o n
'0'
is associative.
P r o o f . Let I J G A d ; t h e n I J d - l G A o r Jd-'C (I-')-';
also
D(ID(.J))
Ad _ > J J - ' d > J ( I - l ) - ' .
-1
and J - ' d
_>
T h i s s a y s t h a t D(1J) =
f o r any two i d e a l s . F i n a l l y a p p l y
t o get (D(I)oD(J))oD(K) = D ( 1 J K )
I
t h i s t o D(D(1J)K)
= D(I)o(D(J)oD(K)).
We s h a l l s t i l l n o t e by Div(A) t h i s s e m i - g r o u p s t r u c t u r e on t h e s e t o f d i v i s o r i a l i d e a l s . Let u s f i r s t d e s c r i b e i t s i n v e r t i b l e elements - A p l a y s t h e r o l e of t h e i d e n t i t y . IoJ
=
A implies ((IJ)-')-'
or that
= .4
( I J ) - l = A and
from ( 3 . 1 ) I J i s n o t c o n t a i n e d i n any prime p - E P(A). A
P
s a y s t h a t In i s an i n v e r t i b l e i d e a l o f A -
inverse; also (3.5) i f f ID
.J
=
I-'.
and J,, i s -
-
its
W e may summarize t h i s i n
Proposition. I
E
Div(A) i s i n v e r t i b l e ( i n D i v ( A ) )
i s an i n v e r t i b l e i d e a l o f A
L
P
(IJ)D =
n
f o r each p
E
P(A).
I n t h e n e x t s t a t e m e n t , i f A i s n o t a domain assume t h a t E i s an i d e a l .
I l i v i s o r i a1 I de a 1s
59
P r o p o s i t i o n . J,et A bc a c o h e r e n t l o c a l r i n g where
(3.6)
m
t h e maximal i d e a l
P(A).
E
Let I: lic a f i n i t e l y p r e s e n t e d
t o r s i o n - l e s s module ( i . e . 1, i s a submodule o f a n r o d u c t o f i f E * = Horn A (E,A) i s 4 - f r e e t h e n E i s A - f r c e .
copies of A ) :
P r o o f . Let .J = t r a c e ( E ) : .J i s a r e c u l a r i d e a l o f .A.
I f ,J
=
A , C will admit a summand i s o m o r n l i i c t o A and wc n r o c e e d hy
i n d u c t i o n on t h e rank o f I:.
-1 ,J f 1 8
of E ” ; but then
...
I f .T # .\, l c t -1 A .J fn
=
f 1 7 . . . 7 fn h e a b a s i s and , l - ’ = I.
F.”
C o r o l l a r y . I.ct :1 h c a X o e t h e r i a n r i n c r and l e t li he
(3.7)
a f i n i t e l y g e n e r a t e d t o r s i o n - l e s s m o d u l e . Then E i s A - n r o j e c tive i f f
I:*
i s A - p r o j e c t i v e a n d e v e r y r e g u l a r A-scauencc o f
two e l e m e n t s i s a l s o E - r e q u l a r . Proof. In t h e sequence
C
P
=
0
11
€ o r each
E
P ( A ) . Thus I = a n n ( C )
Apply Hom(A/I,-) t o g e t
lfom(A/I,C)
=
has q r a d e > 2.
1
Ext ( A / I , C ) = 0 by ( 2 . 1 1 )
t h a t i s c l e a r l v impossible i f I # A .
(3.8)
‘Theorem. ijiv(A) i s a c r o u p i f f
An
is a valuation
&
p
domain f o r e a c h
E
P(i\).
P r o o f . Write V f o r A
clear
that if all
II
and
“_ f o r
pA . . From above i t i s E
V ‘ s a r e v a l u a t i o n domains D i v ( 4 ) i s a
g r o u p . Let u s p r o v e t h e c o n v e r s e by f i r s t showing t h a t V i s a domain. L e t
x
E
V
and l e t
t h e i d e a l ( J , a ) i s by ( 3 . 6 )
.J = 0 : x ; i f a i s r e R u l a r i n
m_,
i n v e r t i b l e , s a y , (.J,a) = V c . J i s
t h e n = Lc and a s c i s r e p u l a r , ,T = L
and by Nakayama’s lemma
Divisorial Ideals
60
J = 0 - s i n c e A i s coherent
i s f i n i t e l y generated. m - i s , by
<J
t h e same argument a d i r e c t e d u n i o n o f p r i n c i n a l i d e a l s , t h a t i s , m- i s a f l a t i d e a l .
Lemma. L e t ( V , m-)
(3.9)
be a l o c a l c o h e r e n t domain w i t h p
a f l a t i d e a l . Then V i s a v a l u a t i o n domain. x , y be n o n z e r o e l e m e n t s o f m_: w i t h I = ( x , y )
P r o o f . Let
consider a presentation K-VL-I-
0-
S i n c e t h e mapping
IPm -
sequence K / mK -
0-
Im -
-
0.
is injective, we get the exact
(V/m)
2
- I/mI- - 0
showing t h a t a s K i s f i n i t e l y g e n e r a t e d I must be p r i n c i p a l . The n e x t q u e s t i o n t o c o n s i d e r i s t h a t when d i v i s o r i a l composition i s j u s t o r d i n a r y m u l t i p l i c a t i o n o f i d e a l s . This w i l l n o t be h a n d l e d h e r e e x c e p t i n t h e c a s e where Id(A) =
Div(A). The a d j u s t m e n t t o t h e more g e n e r a l c a s e i s n o t t o o d i f f i c u l t t o perceive. For an i d e a l I o f A we have t h e e x a c t s e q u e n c e 0
- - A
1-l
1 Ext (A/I,A)
which s a y s t h a t I i s r e f l e x i v e i f f
-
0
I i s the annihilator of the
module E x t l ( A / I ,A). I f x i s a n o n z e r o d i v i s o r i n I , by t h e 1 u s u a l change o f r i n g s Ext (A/I,A) = HomA/(x) ( M I ,A/ (XI 1 = a n n i h i l a t o r of
I / ( x ) i n A/ ( x ) . Thus i f e v e r y i d e a l i n Id(A) i s
r e f l e x i v e , A/ ( x ) h a s t h e f o l l o w i n g d o u b l e a n n i h i l a t o r p r o p e r t y : For e v e r y f i n i t e l y g e n e r a t e d i d e a l J o f A / ( x ) , O : ( O : J )
= J. In
t h e p a r t i c u l a r c a s e o f a N o e t h e r i a n r i n g , t h i s would f o r c e
D i v i s o r i a 1 I d e a1s
61
A/(x) t o b e an A r t i n i a n r i n g and a c t u a l l y a F r o b e n i u s r i n g . We s h a l l c o n s i d e r more g e n e r a l l y c o h e r e n t r i n g s . Assume, b y c h a n g i n g n o t a t i o n , t h a t A i s t h e r i n g A / ( x ) a b o v e . F o r an i d e a l I o f A w e h a v e t h e s e q u e n c e ann(1) = J
0-
f
If
E
-
Hom(I,A), J f = 0
I = (L,a)
f ( 1 ) C O : J = I . Let u s p r o v e
means
This i s c l e a r i f I i s a principal i d e a l ;
t h a t Hom(1,I) = A / J . if
- E x t 1(A/I,A) - 0 .
A -Hom(I,A)
assume t h a t t h e s t a t e m e n t h o l d s f o r L .
4(L)
an e l e m e n t o f lfom(1 , I ) , by t h e p r e c e d i n g b e realized by X
r
@(x) = rx
i.e.
x
for
t r i c t i o n o f $I t o ( a ) i s r e a l i z e d by A s . Xs(x)
and t h u s
r-s
( O : ( O : a ) ) = K , Thus q
E
0 : a . But t h e n X (3.10)
E
0:K. But O:(O:L
r-s
E
O : L + O:a, s a y
agrees with
r-p
Q
and may t h u s
L . Assume t h e r e s -
E
K = L n ( a ) , hr(x) =
On +
cL
I f 4 is
0 : a ) = (O:(O:L))
r-s = p+q, p
E
3 i'
0:L,
on b o t h L and ( a ) .
Theorem. L e t A be a l o c a l c o h e r e n t r i n g o f maximal
i d e a l F c o n t a i n i n g a n o n z e r o d i v i s o r . I f e v e r y i d e a l o f Id(A)
i s reflexive then A-module.
Exti(E,A) = 0 f o r every f i n i t e l y presented
I n p a r t i c u l a r e v e r y f i n i t e l y p r e s e n t e d A-module i s
reflexive. P r o o f . Let E be a f i n i t e l y p r e s e n t e d module. A p r e s e n t a tion 0-
with
L-
F-E-0
F f i n i t e l y g e n e r a t e d and f r e e l e a d s t o
Ext'(E,A).
Ext 1(L,A) =
Let x be a n o n z e r o d i v i s o r i n y; c o n s i d e r t h e map
i n d u c e d by m u l t i p l i c a t i o n by x on L : by Nakayama's lemma i t i s enough t o show t h a t
E x t L ( L / x L , h ) = 0 . L/xL a d m i t s a f i l t r a t i o n
.
L/xL = L O 1 L1 1 , . 2 L n = 0
Divisorial Ideals
62
w i t h f a c t o r s o f t h e form A / I , I a f i n i t e l y g e n e r a t e d i d e a l - a s A i s c o h e r e n t . As
x E I, I
I d ( A ) . The p r e v i o u s d i s c u s s i o n 2 t h e n i m p l i e s - v i a c h a n z e o f r i n g s - t h a t Ext (A/I,A) = 0 . E
l h e s t a t e m e n t on t h e r e f l e x i v i t y f o l l o w s : i f A'" i S
A
- -
An
E
a p r e s e n t a t i o n o f E and we w r i t e
0
D(E) f o r c o k e r ( H o m ( $ , l ) )
we g e t t h e well-known s e q u e n c e
1 Ext (D(E),A)-
0-
E
- E** - E x t 2 (D(E),A) -
0,
and t h e c o n c l u s i o n f o l l o w s . ( 3 . 1 0 ) c a n a l s o b e s t a t e d hy s a y i n g t h a t A h a s F P ( f o r finitely
p r e s e n t e d ) i n j e c t i v e d i m e n s i o n 1.
The f o l l o w i n g i s due t o Gruson i n a n o t h e r c o n t e x t :
sion
(3.11)
Theorem, Let A be a c o h e r e n t domain o f FP-dirnen-
1. I f
B = i n t e g r a l closure of A i s f i n i t e l y generated,
t h e n B i s a P r C f e r domain. P r o o f . Let C = HomA(B,A); C may be i d e n t i f i e d t o an i d e a l o f B and as HornB(-,C) = HomA(-PBB,A) = HomA ( - , A ) ,
HornB(-,C) i s
a d u a l i z i n g f u n c t o r on t h e f i n i t e l y g e n e r a t e d t o r s i o n - f r e e modules o v e r B (Note t h a t B i s a c o h e r e n t d o m a i n ) . Let I b e a f i n i t e l y g e n e r a t e d i d e a l o f B t h a t we want t o
prove i n v e r t i b l e . Let B
.J = IIomB(I,B)
and n o t e t h a t HomB(J,J) =
s i n c e B i s i n t e g r a l l y c l o s e d (Only u s e o f t h e i n t e g r a l l y
closed condition in proof). HomB(I,B) = HomB(IPC,C) = HomB(IC,C). Let T = I C HomB(IC,C)& C ; a s HomB(T,C) = HomB(ICBIIomB(IC,C) ,C) =
Hom(Hom(IC,C) ,Hom(IC,C)) = Iiom(Hom(1,B) ,Hom(I ,B)) = B , w e
Divisorial Ideals
63
conclude T = C. Let L = I * H o m ( I , R ) , t h e t r a c e i d e a l of I . L C = IC Hom(IC,C) = C
i m p l i e s I, = A and I i s i n v e r t i b l e .
I n t h e l a n g u a g e o f c a n o n i c a l modules: (3.12)
C o r o l l a r y . I f I i s a r e f l e x i v e i d e a l of a o n e - d i -
mension Macaulay r i n g and Ilom(1,I) = A , t h e n I i s i n v e r t i b l e . P r o o f . L e f t a s an e x e r c i s e . Remark. Let C be an e l e m e n t i n Id(A) s u c h t h a t Hom(C,C) = A.
I f we c o n s i d e r t h e s u b s e t
J = Nom(Hom(J,C) , C ) ,
DivC(A)
of a l l i d e a l s s a t i s f y i n e
t h e n v e r y much t h e same t h e o r y c o u l d bc i n s t e a d . T h i s phenomenon w i l l be p r e s e n t
d e v e l o p e d f o r DivC(A) i n t h e next chapter. 53.2
Divisors. L e t C be a f u l l s u b c a t e g o r y o f mod(A); we r e c a l l t h a t an
E u l e r c h a r a c t e r i s t i c on C
i s a d d i t i v e mapping
x:C-M
M an a b e l i a n g r o u p . E q u i v a l e n t l y ,
x
: Ko(C)
i s a g r o u o homomorphism
- M,
Ko(C ) t h e G r o t h e n d i e c k g r o u p o f C
To e n s u r e
x
.
more l a t i t u d e , w e might a l s o c o n s i d e r a d d i t i v e
mappings from C i n t o s e m i - g r o u p s . Definition. A divisor
on C i s an a d d i t i v e mapping
w i t h v a l u e s i n a semi-group of i d e a l s o f A.
x
on C
Divisorial Ideals
64
These mappings are v e r y r e l u c t a n t t o show up and i n t h e s e n o t e s w e s h a l l c o n s i d e r a few o f t h e more i n t e r e s t i n g o n e s t h a t a r e known. We b e g i n w i t h a d i s c u s s i o n o f a v e r y f r u i t f u l c a s e . i f it is annihila-
W e c a l l a module E o v e r A t o b e t o r s i o n
t e d by a r e g u l a r e l e m e n t o f A . Let T b e t h e c a t e g o r y o f f i n i t e l y g e n e r a t e d t o r s i o n modules o v e r A t h a t admit a r e s o l u t i o n 0-
- Pn-l
'n
...
Po
- E
by f i n i t e l y g e n e r a t e d p r o j e c t i v e modules. Let
0
KO(T) d e n o t e i t s
G r o t h e n d i e c k g r o u p . Among t h e e l e m e n t s o f T a r e t h o s e o f t h e f u l l s u b c a t e g o r y T1
E E T w e may ma? a f r e e
Notice t h a t i f E
-
o f modules o f p r o j e c t i v e dimension o n e . A/(x)-module Eo o n t o
x h e r e i s a r e g u l a r element i n t h e a n n i h i l a t o r of E
thus derive a resolution 0-E
w i t h E i E T1.
n
-
En_1
...
Eo
- E
We q u o t e i n f u l l t h e f o l l o w i n g
-
and
0
[z]:
Theorem. Let 4 be an a b e l i a n c a t e g o r y and l e t
(3.13)
P C M be f u l l s u b c a t e g o r i e s o f 4
s a t i s f y i n g t h e following :
i ) P and M a r e c l o s e d u n d e r f i n i t e d i r e c t sums. i i ) If M
t h e n M'
i s e x a c t i n 4 and M , M "
0-MI-M-M"-0 E
b4.
i i i ) I f M i s an o b j e c t o f M , t h e r e i s an e x a c t s e q u e n c e 0--Pd
with a l l
Pi
E
...
Po-M-O
P.
Then t h e i n c l u s i o n P G M i n d u c e s an isomorphism : K p )
KO(W
*
From t h e remarks above we t h e n have
Ko(T1)
Ko(T)
.
E
Div i s o r i a 1 I de a 1 s
65
Now a l o o k a t t h e t o r s i o n modules o f n r o j e c t i v e d i m e n s i o n o n e . Let O - K - A " - E - OU
be a p r e s e n t a t i o n o f E . As t h e a n n i h i l a t o r o f E c o n t a i n s a r e g u l a r e l e m e n t K h a s c o n s t a n t r a n k and i s t h u s a f i n i t e l y Ren e r a t e d module. Let
& ( E ) be t h e i d e a l q e n e r a t e d by t h e m i n o r s
of order n of u , that i s , f r e e of rank n , i.e.
&(E)
d(E)
d(E)
= FO(E).
Because K i s l o c a l l y
i s l o c a l l y zenerated by a r e g u l a r element,
i s an i n v e r t i b l e i d e a l of A.
(3.14)
Lemma.
: TI
-
A is additive.
P r o o f . Let
E'
0-
be an e x a c t s e q u e n c e i n T1.
Inv(A) = i n v e r t i b l e i d e a l s o f
-E -
To show
0
El'
& ( E ' ) *d(E") = d(E)
we
may assume t h a t A i s a l o c a l r i n g and c o n s t r u c t r e s o l u t i o n s
0-E'-E
10
with the F ' s
As
u ' and u"
det(u"),
10
- E"-
f r e e modules.The m a t r i x
0
10
u i s g i v e n by
a r e s q u a r e m a t r i c e s we have d e t ( u ) = d e t ( u ' ) .
as d e s i r e d .
d e x t e n d s t h e n t o an a d d i t i v e mapping a c t u a l l y d e f i n e d i n t h e manner :
:T
-
Inv(A)
Divisorial Ideals
66
If
...
En
0-
is a resolution of E
E
- -
E0
E
T by modules Ei
An i m m e d i a t e c o n s e q u e n c e i s t h a t homomorphism
T1 t h e n
E
.
d(E) = d ( E o ) - d ( E 1 ) - l . .
-
0
d(En) ( - 1 P
-
-
A
if
R
i s a Ting
w i t h B t o r s i o n - f r e e a s an A-module, t h e n we have = KO(T1(~))
KO(T(A))
where @ [ E l = [EfdB]
a -A
Inv(A)
and $ ' ( I ) = I B .
'This a p p l i e s e s p e c i a l l y t o l o c a l i z a t i o n s and n o l y n o m i a l extensions. (3.15)
Lemma. For p
T(A,)
P(A)
E
= T i
(A ) .
1
2
P r o o f . I t i s enough t o show t h a t i f 0-F-G-bl-0
U
i s an e x a c t s e q u e n c e i n mod(A
free
!?
3
with
F,G
f i n i t e l y generated
and I?l t o r s i o n - f r e e , t h e n i t s p l i t s . W e may assume t h a t
a l l t h e e n t r i e s o f u l i e i n t h e maximal i d e a l o f A
p
a r e g u l a r element such t h a t A/(x)
s o r i n g t h e sequence b y
i s minimal o v e r
we g e t
ufW/(x)
P'
Let x be
( x ) : b . Tenstill injective
t h u s c o n t r a d i c t i n g McCoy's t h e o r e m . I t follows t h a t
i d e a l of A
P
for
f o r each p
E
E
E
P(A).
T(A)
p
E
E
P(A),
A lrIc ( X I }
.
If p
a contradiction.
d(E)
",
This forces
i n t e g r a l i d e a l of A ( [ 3 2 ] ) : Write J = Cr
,
i s an i n t e g r a l
d(E)
d(E) = Ix-1
t o be a n
and l e t
i s a minimal p r i m e o v e r J we g e t
Divisorial Ideals
67
Remark. An a l t e r n a t e a p p r o a c h t o d e f i n i n g d on T when A i s
a c o h e r e n t r i n g and a v o i d i n g t h e d i r e c t u s e o f ( 3 . 1 3 ) i s t h e following : Define
d(E)
t o he t h e d i v i s o r i a l i d e a l o f A a s s o -
ciated t o the 0-th Fitting ideal of E , FO(E). the various A
P
it f o l l o w s t h a t
By g o i n g o v e r t o
d p r o v i d e s an a d d i t i v e mapping
from T i n t o t h e s e m i - g r o u p D i v ( A ) . U s i n g now i n d u c t i o n on t h e p r o j e c t i v e d i m e n s i o n o f t h e module i t w i l l f o l l o w t h a t t h e c o m p o s i t i o n i s j u s t p l a i n m u l t i p l i c a t i o n . The o f modules i n T t h e n show t h a t
'0'
T -resolutions
1 d ( E ) i s i n v e r t i b l e . The d i f f e -
r e n c e i n a p p r o a c h i s t h e n by d e f i n i n g
d(E)
= (F,(E)-')-'
one
s t a r t s o f f w i t h an i d e a l which w e know t o be an i n v a r i a n t o f E . (3.16)
C o r o l l a r y . L e t I be an i d e a l o f f i n i t e p r o j e c t i v e
d i m e n s i o n . Then t h a t is
I = d ( h / I ) - J , where J i s an o v e r d e n s e i d e a l ,
J - l = A.
P r o o f . I i s t h e 0 - t h F i t t i n g i d e a l o f t h e module A/I and d, by t h e d e f i n i t i o n o f -
a product
I
d(A/I).
c ( A / I ) J . T a k i n g i n v e r s e s twice
( I - l ) - l = d ( E ) * ( J -1) -1
-
(3.17)
We may t h e n e x p r e s s I a s
or
(J-l)-'
= A.
Theorem. L e t A b e a l o c a l c o h e r e n t r i n g i n which
every f i n i t e l y g e n e r a t e d i d e a l has f i n i t e p r o j e c t i v e dimension. Then A i s a G . C . D .
domain.
P r o o f . T h a t A i s a domain f o l l o w s from ( 2 . 2 6 ) . two n o n z e r o e l e m e n t s of t h e maximal i d e a l
m
Let a , b b e
o f A and w r i t e I
=
( a , b ) . A p p l y i n g t h e d e c o m p o s i t i o n above t o I we g e t -1 ( a , b ) = G(cr,B) where (a,f3) = A.6 i s t h e d e s i r e d gcd. T h i s i s e s s e n t i a l l y MacRae's t h e o r e m
([El)t h a t
says t h a t
Divisorial Ideals
68
i n a Noetherian r i n g every two-generated i d e a l has n r o j e c t i v e
-.
dimension 0 , l o r
I n p a r t i c u l a r it p r o v i d e s a g e n e r a l i z a t i o n
of t h e f a c t o r i a l i t y o f r e g u l a r l o c a l r i n g s .
We s h a l l d i s c u s s t h e e x t e n t t o which d - is universa1,that i s , an i s o m o r p h i s m . For t e c h n i c a l r e a s o n s we s h a l l assume A t o be N o e t h e r i a n a l t h o u g h w i t h a b i t more of c a r e t h e p r o o f s c o u l d be f i n e s s e d t o i n c l u d e c o h e r e n t r i n g s . We may t h e n t a k e A t o be connected - 0 , l a r e t h e only idempotents
of A.
. 1
Denote by
KO(A) t h e reduced Grothendicck g r o w of t h e
c a t e g o r y of f i n i t e l y g e n e r a t e d D r o j e c t i v e modules o v e r A. For [ P ] - [ A n ] (n = r a n k ( P ) ) , a g e n e r a t o r i n 'jTo(A), A
: KO(A)
-
where I$ : P-
An
A i s a group
by A ( [ P I - f A n l )
KO ( T )
define
[bf] - [A/Fo (M) 1
i s some embedding and
hl = c o k e r ( I $ )
.
That
homomorphism w i l l s o o n b e shown. Theorem. The f o l l o w i n g i s a n e x a c t s e q u e n c e
(3.18) N
KO(A)
h
KO(T)
6 -
Inv(A)
-
0.
Proof. W e b e g i n b y v e r i f y i n g t h a t A i s a group mapping: Let
0-
$(P)
0-
O(P)
- - -
-
be two embeddings o f P i n t o An. sor x
such t h a t
x$(P)s o(P)
An
M
0
A"-
N-
o
Since t h e r e i s a nonzero d i v i -
, we
have o n l y t o c o n s i d e r t h e
case $ ( P ) c a ( P ) . The s e q u e n c e s above l e a d t o a s e q u e n c e 0-
Notice t h a t
a(P)/$(P)
a(P)/$(P)
= P/$(P)
- - M
N
0.
f o r some $ : P C P .
We s h a l l u s e t h e f o l l o w i n g t h a t i s b a s e d on an i d e a
Divisorial Ideals
69
o f Kramer ( [ 22]): (3.19)
Lemma. I f
fl
i s exact with F f r e e , then
- - F -M 4
F
0
[MI = [A/detQ.A] i n K O ( T ) .
P r o o f . Let ( a . .) b e a n n x n m a t r i x r e p r e s e n t i n g Q i n t h e 17
c a n o n i c a l b a s i s of F . The i d e a l g e n e r a t e d by t h e column (all,
...,a n l )
i s r e g u l a r by McCoy's theorem. We r e c a l l P r o p o s i t i o n . Let ( a , J ) b e a r e g u l a r i d e a l o f t h e
(3.20)
N o e t h e r i a n r i n g A . T h e r e is t h e n a n o n z e r o d i v i s o r of t h e form a+j, j
J.
-E
[%I.
Proof.
Apply t h i s t o
J = (azl,.
a = all,
.., a n l ) .
We may t h e n
change t h e b a s i s o f F t o make a n o n z e r o d i v i s o r t o a p p e a r i n t h e upper l e f t c o r n e r o f t h e m a t r i x f o r 0. Assume t h e n a . ,
II
to
b e a n o n z e r o d i v i s o r . Let
ri 0
o
...
all...
0
0
........... 0 0 ...a l l and write 0
and
CI
= a-$
-
. We
colter(@)
have t h e e x a c t s e q u e n c e
- coker(0) - coker(a) - 0
det(u> = det(a).det(+).
c l e a r while
Rut [ c o k e r ( a ) ] = [A/deta.A]
is
[ c o k e r ( a ) ] = [A/detu.A] by i n d u c t i o n o n t h e r a n k
s i n c e t h e m a t r i x of a is e q u i v a l e n t t o o n e
having
a l l e l e m e n t s i n t h e f i r s t column z,ero b u t f o r t h e f i r s t o n e .
Divisorial Ideals
70
The completion of the proof that A is well-defined and a homomorphism is now clear. Since
{ o A = 0 , let u s show the
exactness of (3.18) by constructing a map 4
:
Inv(A)
- Kg ( T ) / imA
in the following manner: If I is an invertible ideal of A , pick x I C A . Put @(I)
x a regular element of A with in Ko(T)/imA.
[A/xI] -[A/xA]
=
That A is well-defined will again follow from the
proof that it is additive. Let I,J be integral invertible ideals of
A.
I/JI is a
rank one projective module over A/J. Let pl,.,.,& be the non-embedded prime ideals of J. Pick b a nonzero divisor in I such that
(b)pi
by letting
f(l*)
prime of Ass(A/J) we have
[A/J] 0
we have
I for all i t s . Define pi f I/JI A/J
=
-
=
b*. f is injective as it is s o at each
by construction. Let L [L]
+
=
=
coker(f) ; in KO(T)
[I/JI]. On the other hand, from
- I/JI - A/JI - A/I - 0
[A/JI]
=
[I/JI]
[A/I], and the additivity of
+
will follow from showing [L] Notice that
ann(L)c
J
E
4
imA.
and as an A/J-module it vanishes Since L is a
when we localize at the elements of Ass(A/J). module o f projective dimension finite over A/J
this means that
its annihilator contains a nonzero divisor and thus, as an Amodule, grade L 2 2 , and consequently d(L) If x is a nonzero divisor in ann(L), resolution 0
- M - Fn/xFn ..
,
FO/xFO
=
A.
we can find a
-L -
0
Divisorial Ideals with
Fi A-free
- that d
additivity of [A/&(M)]
=
A we get from the
d(M) is a principal ideal. This makes
rank(Fn) [A/xA]
-
d(L)
pd M < 1. Since
and
71
+
... =
0. Using this relation with
that derived from the sequence above we get [Ll = Z (-lli([Fi/xFi]-rank(Fi) [A/xA]) and [L]
E
(-l)n+l([M]-[A/&(M)]),
+
imA.
(3.21)
Corollary. If A is one-dimensional or a local
&
Noetherian ring, then
: KO(T)
- Inv(A)
Proof. The local case comes from
is an isomorphism.
-
KO(A)
=
0
and the one-
dimensional from the proof above. Remark. The following considerations were pointed out by H.Bass to show that
6
is not in general an isomorphism. Suppose
A is a commutative Noetherian ring of finite global dimension. Then we have a commutative exact sequence KO(T) I
Inv(A)
J
- KO@) -Pic(A) I
J
0
whence an epimorphism
0
0
0
ker(&)
- ker(det) -
0 . Now
ker(det) # 0 in general. For instance, if A = R[x,y,z], x 2 + y2 + z2 = 1, we have Pic(A) = 0 and KO(A) = 2/22. Let
now A be a coherent domain and C denote the category
of finitely presented torsion modules over A and let us search for the additive (3.22)
maps from C into Div(A).
Theorem. Let
: C
- Div(A)
be additive and
Divisorial Ideals
72
& ( A / ( x ) ) = ( x ) . Then A i s i n t e g r a l l y c l o s e d
such t h a t
d(M)
f o r each M
(F0(M)-')-'
=
Proof. I f M
E
C.
E
C there is a filtration
M = M 2M3.., ?Mn 0 - 1-
= 0
I i a f i n i t e l y g e n e r a t e d i d e a l . We t h e n
with
Mi/Mi+l
have
&(MI = & ( A / I O ) o . . . O ~ _ ( A / I ~ _ ~ ) .
A/Ii,
Lemma. I f I i s a n i n t e g r a l i d e a l i n D i v ( A ) , t h e n
(3.23)
d(A/I)
and
= I.
Proof. I = n A x i ; t h e r e i s XI =nAxxi
and a s
x
such t h a t
I
E
&(A/xI) = x d(A/I)
X X ~ EA .
Thus
w e may assume t h a t I i s
an i n t e r s e c t i o n of p r i n c i p a l i n t e g r a l i d e a l s . If
y
E
IGAx, t h e s u r j e c t i o n
t o (y) = d ( A / ( y ) ) = d ( A / I ) o d ( K ) h a n d , IS Ax forcing
=
The c o n c l u s i o n o f ( 3 . 2 2 ) argument above shows '0')
Since
&(A/I)
y A/I
( x ) . Thus
I
and
(FO(-)
-1 -1 )
Modules
of
dimension
leads
d ( A / I ) . On t h e o t h e r
-
-0
A/(x)
d(A/I)
= I.
now f o l l o w s from ( 3 . 8 ) : The
t o be i n v e r t i b l e i n Div(A) (under
agree
coincide globally. 53.3
E
- A/I - 0
AD i s a v a l u a t i o n domain f o r e a c h
and t h u s
A(-)
and
leads t o a surjection
d(A/I)cd(A/(x))
A/(y)
a t each A
E
p
E
P(A).
they
one.
These modules a r e s t u d i e d h e r e p a r t i c u l a r l y w i t h r e g a r d t o t h e i r t o r s i o n submodules. (a)
Length o f t h e t o r s i o n submodule:
Divisorial Ideals
73
Let L(M) d e n o t e t h e l e n g t h o f a module M o v e r t h e N o e t h e r i a n r i n g A . We b e g i n w i t h a consequence o f ( 3 . 1 8 ) (3.24)
[El:
C o r o l l a r y . Let A be a o n e - d i m e n s i o n a l N o e t h e r i a n
r i n g and l e t E b e a f i n i t e l y g e n e r a t e d t o r s i o n module o f p r o j e c t i v e d i m e n s i o n one. Then
L(E)
=
Proof. Since t h e elements of T(A)
L(A/d-(E)).
have f i n i t e l e n g t h ,
i s a n a d d i t i v e f u n c t i o n ; a s E i s e q u i v a l e n t t o A/d(E) in
L(-)
e(E) = L ( A / & ( E ) ) .
KO(T),
U n f o r t u n a t e l y t h e l e n g t h o f t h e t o r s i o n submodule o f a f i n i t e l y g e n e r a t e d module o f p r o j e c t i v e dimension one c a n n o t always be e x p r e s s e d i n t e r m s of F i t t i n g ' s i n v a r i a n t s . There a r e however a few c a s e s where t h i s i s p o s s i b l e ( [ 2 2 , 3 9 ] ) . i)
,ith
Let E be a module p r e s e n t e d a s
Q(1)
=
v = (al,.
.. , a n ) . $(u)
determined e a s i l y a s ment
x
with
by t h e a i l s ) .
xu = yv
E
and
The t o r s i o n submodule T(E)
T(E) c a n be
i f f there i s a regular ele-
y / x I S A ( I i s the i d e a l generated
I t follows t h a t
T(E)
I-'/A.
Note t h a t
I = F (E). n-1
ii)
A complementary c a s e i s t h a t a t o r s i o n module E w i t h
a presentation An+'
0 An - E -
0.
S i n c e E i s a t o r s i o n module, we may assume - c h a n g i n g t h e b a s i s of
An+'
i f necessary -
generated by
the first
that
$
r e s t r i c t e d t o t h e submodule
n b a s i s v e c t o r s of
An+l i s injective.
Divisorial Ideals
14
I f we c a l l L t h e image i n An o f t h i s submodule, we have
- A ~ / L- E -
$(A~+~)/L
0 -
If
all
...
a
anl
...
a nn
where
d
we have L(An/L) = &(A/dA) t h e d e t e r m i n a n t of t h e l e f t
0.
an , n + l i s a s i n t h e c a s e above
n x n b l o c k of 4 . + ( A n + l ) / L on t h e
o t h e r hand i s a c y c l i c module A / J w i t h J =
r
I
A
E
By C r a m e r ' s r u l e t h e n
r(al,n+l,.
. . , an , n + l)
J = (d):FO(E)
1.
E L
and f i n a l l y
l(E) =
C(A/dA) - l ( A / ( d ) : F O ( E ) ) = l ( ( d ) : F O ( E ) / ( d ) ) = l ( F 0 ( E ) - l / A ) . C o r o l l a r y . L e t A be a n o n e - d i m e n s i o n a l a f f i n e
(3.25)
domain o v e r a f i e l d o f c h a r a c t e r i s t i c 0 i n t e r s e c t i o n . If Qk(A)
which i s a c o m p l e t e
d e n o t e s i t s module of k - d i f f e r e n t i a l s ,
t h e n l ( T ( R k ( A ) ) ) = l ( A / J ) , where J i s i t s J a c o b i a n i d e a l . P r o o f . We know t h a t Rk(A) i s a module of p r o j e c t i v e dimension one o v e r A w i t h a r e s o l u t i o n ( l o c a l l y ) : 0
Note
-
F1(Qk(A))
=
An
0 An+'
J . Applying
-
nk(A)
-
0.
Horn(-,A) t o t h i s s e q u e n c e
+ Hom(An,A) - Ext 1( Q i ( A ) t
Hom(A"+l,A)
and
l(Ext'(Rk(A),A))
,A)
=
L(A/J).
Since
0,
A i s a complete i n t e r -
s e c t i o n - whence a G o r e n s t e i n r i n g - Ext'(-,A)
'reads' the
t o r s i o n submodule o f a module and t h e c o n c l u s i o n f o l l o w s .
Divisorial Ideals (b)
75
S p l i t t i n g t h e t o r s i o n submodule: Now we t a k e up t h e q u e s t i o n o f when t h e t o r s i o n p a r t of a
module o f p r o j e c t i v e d i m e n s i o n one s p l i t s . M a i n l y w e f o l l o w
[25].
Let
Am
4 An - E - 0
be a p r e s e n t a t i o n of E
...
and l e t
I o ~ I , ~ be t h e s e q u e n c e
o f F i t t i n g ' s i d e a l s o f E . L e t 1, b e t h e f i r s t n o n z e r o i d e a l and assume i t c o n t a i n s a n o n z e r o d i v i s o r o f A ; t h i s i s e q u i v a l e n t t o saying t h a t
i s a p r o j e c t i v e K-module, K t h e t o t a l r i n g
EBK
of q u o t i e n t s of A according t o (1.16). (3.26)
Proposition. If Ir is A-projective
then
pd E = 1
and i t s t o r s i o n submodule s p l i t s . P r o o f . We may assume t h a t A i s a l o c a l r i n g and i f
_.___
...
all
al m
f4= i s t h e m a t r i x of
i n the canonical bases,
r$
t e d by t h e minor
d
of t h e
upper l e f t c o r n e r . Let
el,
then Ir i s genera-
n - r x n-r submatrix s i t t i n g i n the
..., en
be t h e corresponding gene-
r a t o r s o f E ; from t h e r e l a t i o n s n C a . .e = 0 j = l 11 j
(j=1,
...,n-r)
w e g e t by m u l t i p l y i n g by t h e c o f a c t o r s of t h e h - t h column and adding de Since
dj
h
+
n C d.e
J j j-n-r+l
i s d i v i s i b l e by d
=
0
.
we get t h a t
Divisorial Ideals
76
eh
n +
c (dj/d)e j =n-r+l
j
i s a n n i h i l a t e d by d and hence l i e s i n T ( E ) . I t f o l l o w s t h a t t h e
...,
e n* o f t h e l a s t r e l e m e n t s g e n e r a t e E/T(E). e *n - r + l ' I f K i s t h e t o t a l r i n g of q u o t i e n t s o f A , a s o b s e r v e d ,
images
i s a f r e e module o f r a n k e x a c t l y r . Thus
(E/T(E))PK = EPK E/T(E)
i s A-free
and T(E) s p l i t s o f f E .
Remark. A c t u a l l y t h e h y p o t h e s i s t h a t I r b e a f i n i t e l y generated f a i t h f u l p r o j e c t i v e i d e a l s u f f i c e s t o ensure t h a t E h a s a f i n i t e p r e s e n t a t i o n . We would n e e d t o modify - f o r t h e c a s e o f a r b i t r a r y commutative r i n g - t h e d e f i n i t i o n o f t o r s i o n submodule : e
E
E is torsion i f f
ann(e) i s a f a i t h f u l i d e a l .
F u r t h e r d e c o m p o s i t i o n o f T(E) c o u l d p e r h a p s b e o b t a i n e d b y r e q u i r i n g t h a t some
Fi(E)
be a l s o p r o j e c t i v e f o r
i > r.
U n f o r t u n a t e l y o n l y i n t h e l o c a l c a s e o r when A i s N o e t h e r i a n o f dimension one t h i s c a n e a s i l y be c a r r i e d o u t . (c)
A_ c r i t e r i o n f o r s p l i t t i n g : Let A b e a o n e - d i m e n s i o n a l Macaulay r i n g and
be an e x a c t s e q u e n c e o f modules o f p r o j e c t i v e dimension 5 1. I f t h i s s e q u e n c e s p l i t s s o does t h e c o r r e s p o n d i n g s e q u e n c e (beware h e r e ) o f t o r s i o n submodules. (3.27)
T(E')
8 T(E")
Theorem. I f A i s a G o r e n s t e i n r i n g and T(E) t h e n t h e s e q u e n c e above s p l i t s .
A t t h i s t i m e w e c o u l d assume t h e s p l i t t i n g o f
Divisorial Ideals
or
T(E)
= T(E')
- T(E) - T(E")
T(E')
0-
0 T(E")
I7
a r i s e s i n some o t h e r way. O f c o u r s e
i f s u c h a d e c o m p o s i t i o n h o l d s t h e s e q u e n c e o f t o r s i o n submodu-
l e s i s e x a c t a t t h e r i g h t by l e n g t h c o n s i d e r a t i o n s . We assume t h e second case t o h o l d i n o r d e r t o p r e s e n t a p r e t t y r e s u l t of E i s enbud- Hamsher :
(3.28)
Theorem. Let
0-
E
-F - - 0 G
b e an e x a c t s e q u e n c e o f f i n i t e l y g e n e r a t e d modules o v e r t h e Noetherian r i n g A. I f
F
5
E 8 G , then t h e sequence s p l i t s .
P r o o f . According t o [ l , P r o p . 6 . 5 ] i t i s enough t o show t h a t MP(-)
m a i n t a i n s t h e s e q u e n c e e x a c t f o r any f i n i t e l y g e n e r a t e d
module M . We may assume t h a t A i s a l o c a l r i n g . I f M h a s f i n i t e
* (MPE) 8 (MPG)
length
MPF
C(MBG)
and t h u s MPE
s a y s t h a t L(MPF) = [(MPE) +
- - MPG MPF
0
must b e e x a c t on t h e l e f t . L e t now M be an a r b i t r a r y ( f . g . ) module and c o n s i d e r t h e s e q u e n c e s 0-L-MMPE-C-0 0-
C
-MPF - MPG - 0 .
T e n s o r b o t h s e q u e n c e s by A/mn -
by t h e f i n i t e l e n g t h c a s e . Thus i n t e r s e c t i o n theorem
Proof o f ( 3 . 2 7 )
(IJ
=
maximal i d e a l o f A) t o g e t
Lsm_".(MPE)
f o r a l l n . By t h e
L = 0. : The s e q u e n c e ( S ) s p l i t s i f t h e s e q u e n c e
Divisorial Ideals
78
- Ext 1( E , E ' )
1 Ext (E",E')
is exact
-
1 Ext ( - , A )
a t the l e f t . As
on t o r s i o n modules, t h e s e q u e n c e 0-
1 Ext (E",A)
-
1 Ext (E,A)
1 Ext ( E ' , E ' )
-0
is a d u a l i z i n g f u n c t o r
-
1 Ext (E',A)
-0
i s ' d u a l ' t o t h a t o f t h e t o r s i o n submodules and t h u s s p l i t s and t a k i n g i n t o a c c o u n t t h e n a t u r a l
a l s o . Tensoring with E ' equivalence
1
Ext (M,A)P( - )
- Ext 1(M,-)
f o r a module M
( f . g . ) o f p r o j e c t i v e d i m e n s i o n one we h a v e t h e d e s i r e d e n d . Q u e s t i o n : Does t h e same s t a t e m e n t i n Theorem ( 3 . 2 7 ) h o l d s for arbitrary (d)
Torsion
1 - d i m e n s i o n a l Macaulay r i n g s ?
free
modules
of p r o j e c t i v e
dimension one and r a n k
one : -
Here w e g i v e a n e x p o s i t i o n o f a theorem o f Burch d e s c r i b i n g s u c h modules. L e t A b e a commutative r i n g and l e t
0
-
P
9 An - E -0
b e a r e s o l u t i o n o f E; assume t h a t 0 i s t h e o n l y e l e m e n t k i l l e d by a f i n i t e l y g e n e r a t e d f a i t h f u l i d e a l o f A
and t h a t P is a
p r o j e c t i v e module o f rank n - 1 ( T h i s w i l l be t h e c a s e o f a f a i t h f u l i d e a l o f p r o j e c t i v e dimension o n e ) . By c o n s i d e r i n g a p a r t i t i o n o f t h e u n i t y ( [ 6-] )
tJ=
assume t h a t P = An-'
... ...
...
and w r i t e
a 1, n - 1 a
f o r t h e m a t r i x o f 6. We want t o r e l a t e E t o t h e i d e a l g e n e r a t e d by t h e minors o f o r d e r
n - 1 of 4 . Write
ei f o r t h e image i n E
Divisorial Ideals
19
of the
i - t h c a n o n i c a l b a s i s v e c t o r o f An. The r e l a t i o n s n E aijei = 0 ( j = l , n-1) i=l y i e l d by C r a m e r ' s r u l e
...,
d.e = d.e J i l j where di i s t h e minor o b t a i n e d by d e l e t i n g t h e i - t h row. L e t D = (dl,.
. . ,dn)
and t e n t a t i v e l y d e f i n e $
by + ( E r i d i ) zridi
=
D-E
F i r s t note t h a t
Eriei.
=
1
0 y i e l d s (cridi)ek
=
+
d k ( E r1. e 1. )
is well-defined as and t h u s Eriei
is
a n n i h i l a t e d by D , a f a i t h f u l i d e a l by McCoy's theorem. Thus
J,
is a n isomorphism and D h a s a l s o p r o j e c t i v e d i m e n s i o n o n e . (3.29)
Lemma. I n c a s e E i s an i d e a l o f A J, c a n be r e a l i -
zed by m u l t i p l i c a t i o n by an e l e m e n t o f A . Proof. A s
J,
E
Hom(D,A), t h e c l a i m w i l l b e e s t a b l i s h e d i f
we p r o v e t h a t t h e n a t u r a l
homomorphism
A
-
Hom(D,A) i s a n
isomorphism. To p r o v e e q u a l i t y change t h e r i n g t o A [ t ] . A s D h a s f i n i t e p r e s e n t a t i o n - b e i n g i s o m o r p h i c t o E - w e have ( D [ t ] , A [ t ] ) . I n A [ t ] however D [ t ] i s A[tI n an i d e a l c o n t a i n i n g a n o n z e r o d i v i s o r , s a y d l t + + dnt
HomA(D,A)PA[t] = Hom
...
We c a n now p r o c e e d a s i n [ E l
and assume t h a t D c o n t a i n s a
n o n z e r o d i v i s o r a l r e a d y . Hom(D,A)
i s t h e n D-'.
t e n s o r i n g t h e r e s o l u t i o n o f E by A/bA w e g e t $BA/bA 0 (A/bA)n-l (A/bA)n
-
-
-
If
E/bE
e x a c t . Using McCoy's t h e o r e m a g a i n , t h e F i t t i n g o r d e r one o f E / b E (3.30)
is s t i l l f a i t h f u l , forcing
Theorem. I f
0
.
-A n - l L
An-
a/b
E
D-l,
-0
i n v a r i a n t of
a
E
bA. 1-
0
Divisorial Ideals
80
i s e x a c t and I i s a n i d e a l o f A , t h e n I = dD
where D i s t h e
n - 1 x n - 1 minors of 4 .
i d e a l g e n e r a t e d by t h e
Appendix : Higher d i v i s o r i a l i d e a l s . For an i d e a l I o f g r a d e = 1 a t e d w i t h I can b e r e a l i z e d (1-l)
-'
=
the divisorial ideal associ-
as
ann(ExtA 1 ( A / I ,A))
.
This su g g e s t s t h e following c o n s t r u c t i o n f o r i d e a l s o f h i g h e r grade. D e f i n i t i o n . D(1) = a n n ( E x t i ( A / I , A ) )
-a
( 3 . 3 1 ) Lemma. I f then
D(I/(a))
=
where
grade I = r .
is a A-sequence o f l e n g t h r-1 i n I ,
D(I)/(a).
P r o o f . T h i s f o l l o w s i m m e d i a t e l y from t h e f a c t t h a t (A/ 1 , A / (a) 1
E x t i ( A / I ,A) = when
a
i s an A-sequence o f l e n g t h n c o n t a i n e d i n I .
Notice t h a t i f a i s an A-sequence of l e n g t h r-1 i n I , where g r a d e I = r , t h e n
D(I/(a>)
=
((I/(a))-')-'
which i s
an i n t e r s e c t i o n o f p r i n c i p a l f r a c t i o n a l i d e a l s o f A/(a)
-indeed
f i n i t e l y many o f them. With t h i s i n mind w e c o n s i d e r an
A-sub-
module o f t h e q u o t i e n t r i n g o f A L =
where
ai
i s a n A-sequence o f l e n g t h r
would l i k e t o show t h a t D(1)
since
9 ti-1(Zi) L = D(1)
D(1) = D ( D ( 1 ) ) .
and
t i l ( a i ) 31. We
and we may assume t h a t I =
Divisor i a l Ideal s
a
Suppose
81
i s an A-sequence i n I o f l e n g t h
( c / E ) (A/ (a)) i s a p r i n c i p a l f r a c t i o n a l i d e a l of ing
I/@),
then
i n v e r s e images o f
t
u,
and
aJt
A/ (a) - contain-
chosen
w i t h t chosen t o be a nonzero
d i v i s o r by prime avoidance. Moreover and e i t h e r
r-1. I f
/ I w i t h t and u s u i t a b l y
t-'(a,u)
-
=
5 , u i s an
A-sequence
i s an A-sequence o r t i s a u n i t . I f we
let
T be t h e i n t e r s e c t i o n o f a l l such f r a c t i o n a l i d e a l s o f A , t h e n T c o n t a i n s L. Furthermore, T n A / ( a ) = I / @ )
(5) i s c o n t a i n e d i n b o t h
r e f l e x i v e . But
since I/(a) i s
T n A and
I
so
T n A = I . Hence we would be through i f we could show t h a t L i s
contained i n A. I f any o f t h e components o f t h e i n t e r s e c t i o n f o r L
is
c o n t a i n e d i n A we a r e through, s o we assume t h i s i s n o t t h e a , u ) as above. Now i s an A-sequence c a s e . Consider t -1( -
a,t
and a g a i n by prime avoidance we can f i n d a nonzero d i v i s o r such t h a t v
=
a , v i s an A-sequenceJ V , E
t mod@).
v
i s an A-sequence, and
This l a s t c o n d i t i o n i n s u r e s t h a t
v
-1
( 5 , ~2 ) I . We
can a l s o f i n d a nonzero d i v i s o r o f t h e form s = v+b where bE (a) and v , s i s an A-sequence. Since t - l ( a , u ) 2 s - 1( a , u ) _>L, we f i n d t h a t ( v , s ) CL-'. (v,s)-'?
(L-')-'Z?L.
Taking i n v e r s e s a g a i n we o b t a i n
But ( V , S ) - ' = A
since grade(v,s) = 2 .
T h e r e f o r e we have proved t h a t L i s c o n t a i n e d i n A a s d e s i r e d , that is : (3.32)
Theorem. L
=
D(1).
Chanter 4 Snhc r i c a l ' f o d u l c s and
ivisors
One o f t h e aims o f t h i s c ! i a n t e r i s t o s t u d v t h e modules t h a t can be o h t a i r l e d a s ?iomomorn!iic imaTes o f d i r e c t sums o f c o n i e s of a f i x e d modulr C .
4 r e s u l t o f Cruson s a y s t h a t i f C
i s f i n i t e l v g c n e r a t c d and f a i t h f u l t h e c a t e e o r y
mod(A) comes
c l o s e t o h e i n n s o obtained, a s e a c h module '1 a d m i t s a f i n i t e f i l t r a t i o n w i t h f q c t o r s t h a t a r e imapes o f sums o f c o n i e s o f G . A p p l i c a t i o n s o f t h i s a r e made t o chanqe o f rinrzs and homoloeic a l dimensions. Calling
C(G)
t h e catecrory p e n e r a t e d by
I;,
we t u r n t o t h e
e x a m i n a t i o n o f t h e modules i n C ( G ) t h a t admit r e s o l u t i o n s by d i r e c t sums o f G I s , o r more e s n e c i a l l v f i n i t e r e s o l u t i o n s . The s i t u a t i o n becomes t h e n r i p e f o r a n p l y i n g t h e p r o c e d u r e o f Chapter 3
and a s s i g n i n E a d i v i s o r t o s u c h m o d u l e s . E x n e c t e d l y some
r e s t r i c t i o n s must be p l a c e d - t o o b t a i n a d e p r e e o f i n v a r i a n c e on t h e module G . A c l a s s o f modules - s n h e r i c a l o n e s - f o r which t h e p r o c e d u r e works o n t i m a l l y i s d i s c u s s e d . 54.1
A f Gruson. - t h e o r e m o-
(4.1)
Theorem. L e t E be a f i n i t e l y g e n e r a t e d f a i t h f u l
module o v e r t h e commutative r i n g A . Then e v e r y A-module a d m i t s a f i n i t e f i l t r a t i o n o f submodules whose f a c t o r s a r e q u o t i e n t s
of d i r e c t sums o f c o p i e s o f E . I t i s a s i f e v e r y f i n i t e l y g e n e r a t e d f a i t h f u l module 82
is
Snhe r i c a 1 ?fodul e s
83
‘ p i e c e w i s e ’ a g e n e r a t o r f o r t h e c a t e g o r y mod(A). P r o o f . I t i s enough t o show t h i s f o r A i t s e l f : Let I0 C I c - 1-
... G A
be a s e o u e n c e o f i d e a l s o f A s u c h t h a t f o r each
i there is a surjection
Let
Q
:
A(L)
?1
-”
-
0
be a p r e s e n t a t i o n o f t h e module
PI. Then t h e s e r i e s o f submodules o f ‘I q i v e n by
~ ( 1 ; ~ )h)a s
thc desired properties. For t h e p r o o f o f t h e r i n q A i t s e l f i n v a r i a n t s of E.
Let U
An
we u s e t h e F i t t i n p
-E -
0
be a f r e e p r e s e n t a t i o n o f E
and d e n o t e bv ( a - . ) , 1 5 j 5 n ,
i c L , t h e m a t r i x o f u. L e t
Fr(E) be t h e i d e a l g e n e r a t e d by
11
t h e minors of o r d e r n - r of t h i s m a t r i x . The s m a l l e s t i n t e g e r r s u c h t h a t
Fr f 0
nonzero; t h e s m a l l e s t i n t e g e r m such t h a t
m 2 r . We n o t i c e t h a t module ( ( 1 . 1 6 ) )
Fm = A
and i s
e x i s t s and
m = r means t h a t E i s a p r o j e c t i v e
and i n t h i s c a s e we a r e done. d = m-r.
We s h a l l r e a s o n by i n d u c t i o n on
Suppose
exists
d > 0. L e t
I = ann(E/FrE).
i n d u c t i o n h v p o t h e s i s t o t h e A/I-module is f a i t h f u l (xECIECFrE
implies
F i t t i n g i d e a l i s t r i v i a l and i t s
We have a l s o t h a t
InsF r .
x
E
We c a n a p p l y t h e
E/IE
: (a)
I ) , and (b)
t h i s module
its
r-th
m-th i d e a l i s A / I . This gives rise t o a f i l t r a t i o n
where e a c h f a c t o r i s a n A/I-module. Thus t o c o m p l e t e t h e p r o o f
S p h e r i c a l Modules
84
i t i s enough t o show t h a t
c o p i e s o f E . Let
Fr i s a q u o t i e n t o f a d i r e c t sum o f
ll be t h e d e t e r m i n a n t o f t h e
n - r = s minor
j , 1 5 k , t 5 s , and l e t u s l o o k f o r a l i n e a r k’jl form on E whose image c o n t a i n s D. One c h o o s e s an i n t e g e r t
d e f i n e d by
(ai
between 1 and n and d i s t i n c t from t h e i k ’ s : t h i s i s p o s s i b l e since
r > 0 . We c o n s i d e r t h e f o l l o w i n g l i n e a r form on An c
ail,jl det
a a L
As t h e m i n o r s o f o r d e r
s+l
.
s”1
.
it’ll
*..
a +is -
... . ... a i , J., ...
a. lt,js
x1
X
-
S
Xt -L
a r e z e r o , t h i s form i s t r i v i a l on
t h e image o f u : i t d e f i n e s t h e n , bv p a s s a g e t o t h e q u o t i e n t , a l i n e a r form on E . On t h e o t h e r h a n d , i t t r a n s f o r m s t h e
t-th
v e c t o r o f t h e c a n o n i c a l b a s i s o f An i n t o D. W e p o i n t o u t some immediate c o n s e q u e n c e s . (4.2)
C o r o l l a r y . Let F be a r i g h t e x a c t f u n c t o r which
commutes w i t h a r b i t r a r y d i r e c t sums and i s t r i v i a l on E : t h e n
F is t r i v i a l . (4.3)
C o r o l l a r y . Let
E be a f i n i t e l y g e n e r a t e d f a i t h f u l
module o v e r t h e commutative r i n g A If 54.2
and l e t kl be an A-module.
EPM = 0 , t h e n bl = 0 .
Change o f r i n g s and d i m e n s i o n s . The change o f r i n R s p r o b l e m i n h o m o l o g i c a l d i m e n s i o n
theory is the following:
Sphe r i c a l Module s
Let
f : A-
85
be a homomorphism o f r i n g s and l e t E be
B
a module o v e r B . How a r e
pdAE
and
pdBE ( o r some o t h e r d i -
mension) r e l a t e d ? I n g e n e r a l one h a s t h a t pdAE < pdAB
(1)
pdgE.
+
T h i s f o l l o w s , f o r i n s t a n c e , from t h e s p e c t r a l s e q u e n c e
Ep 7 q = Ext[(E ,Ext:(B 2
(2) where C
,C)
-
( [ lo])
Extl(E,C)
P
may be any A-module. I f
d = pdAB
b o t h f i n i t e , t h e r e are s e v e r a l i n s t a n c e s that
s e q u e n c e a l l o w s one t o c o n c l u d e
e = pdBE
and
where
Et'e
are
this spectral
# 0 , and h e n c e
e q u a l i t y i n (1) above. Here w e w i l l s t u d y t h e c a s e where €3 i s n o t o n l y f i n i t e l y s e n e r a t e d a s an A-module b u t a d m i t s a r e s o l u t i o n (3)
...
0 -Pd
PI -P
o-
B-0
where t h e P i ' s
a r e f i n i t e l y g e n e r a t e d p r o j e c t i v e modules. d I n t h i s c a s e t h e module ExtA(B,A) p l a y s a s i p n i f i c a n t
role
and we b e g i n w i t h an e l e m e n t a r y d i s c u s s i o n o f i t . A f i r s t
property t o notice
i s t h a t i f C i s any A-module
we have a
c a n o n i c a 1 i s omo r p h i s m ExtA(B,C) d
-5
ExtA(B,A)MAC. d
T h i s a r i s e s e i t h e r from a s p e c t r a l s e q u e n c e argument o r more s i m p l y from t h e f o l l o w i n g c o n s i d e r a t i o n s . As o n l v t h e module s t r u c t u r e o f B i s i n v o l v e d we may assume t h a t
pd B = 1. W r i t e
then a r e s o l u t i o n 0-
w i t h P o ,P1
-
p1
Po-
B-0
f i n i t e l y g e n e r a t e d p r o j e c t i v e modules. A m l y i n g
HomA(-,C) w e g e t
Sphe r i c a 1 "odul e s
86
HomA(Po,C)
1 -HomA(P1,C) - ExtA(B,C) -0 .
The r e s u l t now f o l l o w s from o h s e r v i n , e t h e n a t u r a l e q u i v a l e n c e as
HomA(Pi,-) = Horn A ( P i , A ) @ , , ( - ) , l y generated.
Pi
i s n r o j e c t i v e and f i n i t e -
We a r e g o i n g t o c o n s i d e r two t y n e s o f c o n d i t i o n s on B : f o r d n l a v s an e s s e n t i a l r o l e , and b o t h t h e module T = ExtA(B,A) which a r e , u n d e r g e n e r a l c i r c u m s t a n c e s , n e c e s s a r y f o r e q u a l i t y i n ( 1 ) . T h i s s i t u a t i o n we s h a l l , a t t i m e s , a b b r e v i a t e bv s a v i n g t h a t t h e r e i s chanpe of r i n g s .
(a)
bfacaulay e x t e n s i o n s : We assume h e r e t h a t
(Condition
h.0
i ExtA(B,A) = 0
for
i < d.
This r e s t r i c t i o n i s reminiscent of t h e condition a f a c t o r r i n g o f a r e g u l a r l o c a l r i n g must s a t i s f v t o be a Yacaulay r i n g .
In t h i s c a s e , i f we annly
IlomA(-,A) t o t h e s e q u e n c e ( 3 )
t w i c e , t a k i n g i n t o account the r e f l e x i v i t y of t h e p r o j e c t i v e m o d u l e s , and t h e maps between them, we o b t a i n t h a t d Ext,,(T,A) 2 B . I n p a r t i c u l a r , we c o n c l u d e t h a t T i s a f a i t h f u l module. (4.4)
Theorem. Let
B
be an e x t e n s i o n o f A s a t i s f y i n g
c o n d i t i o n s ( 3 ) and ( h r ) a b o v e . Then f o r any R-module E pdgE = e
<
-,we
have
pdRE = pdAB
+
with
ndBE.
P r o o f . According t o ( 2 ) i t w i l l b e enough t o show t h a t f o r some
C
= A (L)
E x t i ( E , E x t i ( B , C ) ) = Ext;(TaAC)
= ExtE(E,T(L))
#
0.
S p h e r i c a 1 \lo d u l e s
87
Remark. F o r t h e i n j e c t i v e and f l a t a n a l o g u e s o f ( 4 . 4 )
one
c a n p r o c e e d i n a s i m i l a r way t o show t h e e q u a l i t y i n t h e d i mension f o r m u l a
u s i n g t h e following s p e c t r a l sequences = Ext!(Tor
E;7q
A (B,C) , E ) 0
and = T o r B (E,Tor"(B,C))
E!7q
P
respectively
4
-Extt(C,E) n
-Tor, (C , E l A
D
.
L e t u s i n d i c a t e how t o p r o c e e d
i n t h e i n j e c t i v e c a s e (one
u s e s t h e same t y p e o f argument - and module - i n t h e f l a t c a s e . i Let !.I be an i n j e c t i v e A-rnodulc. Because ExtA(B,A) = 0 , i < d , much i n t h e same way as b e f o r e
it follows
HomA(T7M). Let ExtE(T,E) # 0 Let
0
ExtE(C,E) # 0
that
A
Tord(B,hi) =
f o r some B-module C : t h e n
also.
-T - M
Extpe(M,E) = 0
be an A - i n j e c t i v e e n v e l o p e o f T .
implies t h a t
ExtE(HomA(T,?I),E) = 0 . S i n c e
T i s f i n i t e l y g e n e r a t e d and f a i t h f u l as
a B-module, t h e r e i s
an e x a c t s e q u e n c e 0-B-
o b t a i n e d by mapping
1
Tn
- ( x l ,.. . , x n )
E
T",
where t h e
x 's i
form a g e n e r a t i n g s e t f o r T . But i n t h i s c a s e ExtB(HomA(B,M),E) e = 0 a l s o and t h e n Exti(HomA(B,T),E) = 0 .
As
there is a surjection HomA(B,T) g i v e n by $(f) = f ( 1 ) (b)
-T $
we c o n t r a d i c t
0
ExtE(T,E) # 0 .
F i n i t e l y g e n e r a t e d modules :
If E i t s e l f , i n the previous considerations, is f i n i t e l y
Sphe r i c a l Modules
88
g e n e r a t e d t h e r e i s n o t a n e e d t o impose s u c h a s t r o n g r e s t r i c t i o n on B . Theorem. Let A and B be r i n g s , w i t h B l o c a l and f i -
(4.5)
n i t e l y g e n e r a t e d a s an A-module. Assume t h a t B a d m i t s a f i n i t e r e s o l u t i o n by f i n i t e l y g e n e r a t e d p r o j e c t i v e A-modules.
Let E b e
a B-module a d m i t t i n g a f i n i t e f r e e r e s o l u t i o n o v e r B . Then pdAE
=
pdAB
+
pdRE.
T h i s r e s u l t , c o n t r a r y t o ( 4 . 4 ) h a s an e l e m e n t a r y v i a of a t t a c h t h r o u g h t h e d e v i c e o f minimal p r o j e c t i v e r e s o l u t i o n s . P r o o f . IJsing t h e n r e v i o u s n o t a t i o n n o t i c e t h a t
A( R , A ) ) = Ext; ( E ,R ) PBExtA d ( B ,A) Ext; ( E , E x t d a s E h a s a f i n i t e p r e s e n t a t i o n . S i n c e b o t h modules i n t h e p r o duct a r e nonzero
and t h e r i n g R i s l o c a l , t h e s t a t e m e n t
follows. (c)
Some
equalities of dimensions:
B e f o r e we d e r i v e o t h e r c o n s e q u e n c e s of ( 4 . 4 ) and ( 4 . 5 ) r e c a l l t h e d e f i n i t i o n of t h e f i n i t i s t i c p r o j e c t i v e d i m e n s i o n o f a r i n z A - FPD(A) f o r s h o r t - : FPn(A)
i s o b t a i n e d by t a k i n p
i n t h e d e f i n i t i o n of t h e g l o b a l d i m e n s i o n o f A o n l y t h o s e mod u l e s o f f i n i t e d i m e n s i o n . b l o r e o v e r , i f we o n l y c o n s i d e r t h e f i n i t e l y g e n e r a t e d modules we o b t a i n fPD(A). (4.6)
Theorem. Let A b e a c o h e r e n t l o c a l r i n g and l e t I
be a f i n i t e l y g e n e r a t e d i d e a l w i t h p d A I fPD(A) = pd,(A/I)
+
<w.
Then
fPD(A/I).
S n h e r i c a l hlodules
89
When A i s N o e t h e r i a n t h e r e i s a s i m n l e way - v i a t h e complementary n o t i o n of denth - t o v e r i f y t h i s e q u a l i t y . For t h e r e s t o f t h i s s e c t i o n we s h a l l assume a l l u n s D e c i f i e d A-modules t o be o f f i n i t e n r e s e n t a t i o n . (4.7)
Lemma. L e t (A,m) -
be a c o h e r e n t l o c a l r i n g and l e t
E be a f i n i t e l y p r e s e n t e d A-module. Then
A - # 0 Tor (E,A/m) n
pdAE = n i f f
A and Torn+l(E,A/m_) = 0 .
P r o o f . Observe t h a t t h e r e i s a r e s o l u t i o n
... F 7- where e a c h Fi $.
1
$1 F1-Fq-E-r) i s a f r e e module o f f i n i t e r a n k and t h e m a t r i x $2
has a l l of i t s e n t r i e s i n
m.
'The r e s u l t f o l l o w s i n j u s t t h c
same way a s i n t h e N o e t h e r i a n c a s e : s a y , d i m e n s i o n s h i f t i n c l and Nakayama's lemma. Proof of ( 4 . 6 ) f o l l o w s from A / I , Write
fPD(A) 2 ndA(A/I)
: That
+
fPD(A/I)
a s we o b s e r v e t h a t A/I i s a l s o c o h e r e n t .
d = pdA(A/I)
and l e t 1: b e an A-module o f f i n i t e
p r o j e c t i v e d i m e n s i o n and c o n s i d e r a minimal r e s o l u t i o n 0-
N -
Fd-l
...
Fg
- E
0,
where a pfii0fi.i s e v e r a l o f t h e t e r m s ahove c o u l d h e t r i v i a l . A s T o r 4h + i ( E , A / I ) = T o rAi ( N , A / I ) , T o r 4i ( N , A / I ) = 0 f o r i > 0 . Consider t h e s p e c t r a l senuence E2 P9
= 9
T o r A / ' (A/;,Tor:(N,A/I)) I,
Tor:"
(A/!,N/I?J)
n
Torn(A/m_,N) A
= Tor,(A/m,N) A -
.
S p h e r i c a l ?lodules
90
But t h i s isomorphism s a y s t h a t ndAN = pd pdAE > d
we c o n c l u d e
inequality (4.8)
fPn(A) 2
pdAE = d d
+
+
pd
A/ 1
(N/IN) and i f A/ 1 (N/IN) t o Eet h e o t h e r
fPD(A/I).
C o r o l l a r y . Let (A,m) - b e a c o h e r e n t l o c a l r i n g and
l e t I be a f i n i t e l y g e n e r a t e d i d e a l s u c h t h a t : ( a ) p d A I and ( b )
the radical of I is m -. Then
P r o o f . According t o ( 4 . 6 )
fPD(A) <
<
-,
m.
( by p a s s i n g t o t h e r i n g A / I )
we may assume t h a t A i s p r i m a r y r i n g . Suppose s a y t h a t @ O-F1-Fo-E-O
i s a minimal r e s o l u t i o n o f t h e module E . By McCoy's theorem t h e minors of rank t o r , impossible §4.3
rank(F1) o f @ have a
unless
nontrivial annihila-
F1 = 0 .
S p h e r i c a l modules. I n t h i s s e c t i o n we t a k e up t h e q u e s t i o n s t a t e d a t t h e
o u t s e t on when i s a module E a homomorphic image o f a d i r e c t
sum o f c o p i e s o f a f i x e d module G . We assume t h r o u g h o u t N o e t h e r i a n c o n d i t i o n s . Thus t h e s i t u a t i o n t r a n s l a t e s on w h e t h e r t h e n a t u r a l map
i s s u r j e c t i v e . A c t u a l l y o u r i n t e r e s t w i l l f o c u s on t h o s e mod u l e s E a d m i t t i n g r e s o l u t i o n s by sums o f c o p i e s o f G . I f s u c h r e s o l u t i o n s a r e g o i n g t o show any form o f i n v a r i a n c e t h e cond i t i o n i)
i ExtA(G,G) = 0
for
i
>
0,
s h o u l d be p r e s e n t . A companion r e s t r i c t i o n , i f t h e n o t i o n o f
Sphe r i c a l Nodule s
91
G-dimension i s t o be d e f i n e d , i s t h a t t h e module E b e s u c h t h a t i ExtA(G,E) = 0
ii)
for i > 0.
T h i s e v i d e n t l y a l l o w s f o r a form o f S c h a n u e l ' s lemma: i t w i l l appear q u i t e n a t u r a l l y . F i n a l l y , and in o r d e r t o a t t a c h a d i v i s o r t o modules t h a t admit f i n i t e G - r e s o l u t i o n s , we s h a l l n e e d iii)
HomA(G,G) = A .
In o r d e r t o m o t i v a t e t h e u s e f u l n e s s of t h i s c o n t e x t we d i s c u s s t h e following r e s u l t ( a l s o nroved by T.Culliksen)
P r o p o s i t i o n . Let (A,m) be a local Artinian r i n e
(4.9)
with
L
1
.
= 0 . Let G be a f i n i t e l y z e n e r a t e d A-module
that
s a t i s f i e s t h e con d i t i ons HomA(G,G) = A , ExtA(G,C) 1 = 0.
(a) (b) Then G
A
or G
I ( = i n j e c t i v e envelone o f
P r o o f . C o n s i d e r t h e man anplying t h e f u n c t o r Hom(1,I) 2
A
-$I : GPHom(G,I)
k
= A/!).
- I . By
€ { o m ( - , I ) we q e t
- Hom(GPHom(G,I) , I )
=
Hom(G,fiom(G,I) , I ) )
€?om(G,G). But t h e two e n d s o f t h i s s e r i e s
a r e isomorphic t o
and t h e combined map i s c l e a r l y t h e i d e n t i t y a f t e r t h e
a p p r o p r i a t e i d e n t i f i c a t i o n s ; we c o n c l u d e t h a t $ I
i s an
isomorphism. Denote now by
r(E)
(resp.v(E))
t h e dimension of t h e s o -
c l e o f t h e module E ( r e s p . minimal number o f g e n e r a t o r s o f E ) . Because
Horn(-,I)
isomorphism above
i s a s e l f - d u a l i z i n g f u n c t o r we g e t from t h e that
r(G).v(G) = v ( 1 )
= r(A) = v ( A ) ,
the
S p h e r i c a l Modules
92
t y p e o f t h e l o c a l r i n g A.
In p a r t i c u l a r t h i s e q u a l i t y says t h a t
i f A i s a G o r e n s t e i n r i n g o r more R e n e r a l l v t h e dimension o f t h e s o c l e o f A i s a ? r i m e number
then C
3
A or I.
Let us now g o back t o t h e c o n d i t i o n s o f t h e n r o n o s i t i o n . I’Jrite and
s(E)
€ o r t h e s o c l e o f t h e module F.. In o u r c a s e s ( A )
s ( G ) = EC
p
([El).
a s c a n h e e a s i l y s!iorm
be a minimal n r e s e n t a t i o n o f G. Innlyincr Ilom(-,C;) (1))
=
and u s i n n
we z c t t h c e x a c t s e q u e n c e
9 Since
-4 -
-I l o m ( L , G ) -
Gv(c)
LCmAu(G) -we g e t t h a t
Ilom(L/m_L,s(G)).
IIom(l,,G) = fIom(I,,m_G) iz
Noting t h a t
J , / m-L = Torl(l;,k_)
0. =
and t a l i i n n
lcngtlis o f t h e sequence w e g e t A
L(Torl(G,k)).r(G)
+
l ( 4 ) = r(G)-b(C).
A n o t h e r :*lay o f cornnutin? t h e l e n g t h o f t h e T o r i s v i a fl
-
A Torl(C,l;)
- GBm - - G/zG -
G
-0:
we g e t now A
l ( T o r l ( c ; , k-) ) = u ( C )
+
u(C)*r(%) - L(C).
Taking i n t o account t h e r e l a t i o n s :
we f i n d a f t e r
b(A) = r(A)
+ 1,
b(G)
+ r(C),
= v(G)
and
an e l e m e n t a r y s u b s t i t u t i o n t h a t 2 2 (r(G) - l ) ( u ( G ) - 1 ) = 0 .
Example. T o show t h e e x i s t e n c e o f a module s u c h a s G o v e r an A r t i n i a n r i n g t h a t i s n e i t h e r A o r I A = K[x,y],
K a f i e l d , (x,y)
L
= 0,
consider the case:
and I t h e i n j e c t i v e e n v e l o p e
S n h e r i c a l Plodules o f A/;;
I f A.
note
G = IR,I3.
93 3
Let I3 = . ' l [ u , v ] , ( u , v ) - = 0 , and l e t
G i s c e r t a i n l y n o t isomornhic t o t h e i n j e c t i v e
envelope of t h e r e s i d u e f i e l d o f B - a s t h e dimension o f t?ie socle of
C;
i s 2 . I t i s a l s o not isomornhic t o R .
D e f i n i t i o n . A f i n i t e l v g e n e r a t e d module i n n r i n g A w i l l be c a l l e d conditions
snherical
C;
over a Noether-
i f it s a t i s f i e s
i ) and i i i ) a b o v e . \\re write Snh(A)
the
for the
s o h c r i c a l modules o v e r A . Remarks. The f o l l o w i n g o b s e r v a t i o n s w i l l be u s e d i n
the
se quel without f u r t h e r ado. (i)
If G is a
p r o j e c t i v e A-module
t h e n IPG
it i s l o c a l l y isomorphic t o
l o c a l l y isomorphic
C;.
i s again a
s p h e r i c a l module a s
C o n v e r s e l y , i f G and G '
s p h e r i c a l modules
r a n k one p r o j e c t i v e module I
then
and c l e a r l y
( i i ) I f E i s a d i r e c t summand o f cellation E is
and I i s a r a n k one
s p h e r i c a l A-module
C;",
Hom(G,G')
IPG
are is a
= G'.
G s p h e r i c a l , by l o c a l c a n -
i s o m o r p h i c a t e a c h l o c a l i z a t i o n t o a Gm (m
p o s s i b l y v a r y i n g with t h e l o c a l i z a t i o n ) . Conversely, suppose E
i s l o c a l l y i s o m o r p h i c t o a Gm; t h e r e i s a p r e s e n t a t i o n @ Gn-E-0
w h i c h , we c l a i m , s p l i t s . Assume A l o c a l
and view 4 a s a m a t r i x
w i t h e n t r i e s i n A . As a l l o f i t s e n t r i e s c a n n o t l i e i n 2
by
Nakayama's lemma, w e e a s i l y g e t a s p l i t t i n g g o i n g . Problem. The d e t e r m i n a t i o n o f Sph(A)
Sph(A[t])
i n terms o f
looms a c h a l l e n g i n g q u e s t i o n i n view a l r e a d y o f t h e
difficulties
met i n t h e s i m p l e r
Pic(Alt1).
S p h e r i c a l Modules
94
Elementary p r o p e r t i e s .
54.4 (a)
If G is a
s p h e r i c a l A-module and
r i n g homomorphism
then
GPAR
is a
h: A -
-
is a flat
B
s p h e r i c a l R-module.(The
converse i s t r u e i f B i s f a i t h f u l l y f l a t . )
P r o o f . Immediate. (b)
A s Hom(C,,G) = A f o r a
s p h e r i c a l module G , A and
C,
have
Thus i f x i s a r e g u l a r
t h e same a s s o c i a t e d p r i m e s by ( 2 . 9 ) .
e l e m e n t o f A i t i s a l s o G - r e a u l a r . AnnlyinE Hom(G,-) t o .x O - G G G/xG 0
-
-
G / x C t o be s p h e r i c a l . C o n v e r s e l y , i f x i s an e l e m e n t
we g e t
i n t h e J a c o b s o n r a d i c a l o f A t h a t i s b o t h A - r e g u l a r and G-regular
then t h e converse h o l d s .
We can a l s o c o n c l u d e t h a t i f G i s S - s p h e r i c a l for a l o c a l ring A
then
m-depth G = d e p t h A .
Gorenstein l o c a l r i n g Given a
then A
I t follows t h a t i f A i s a
C,.
s p h e r i c a l module C; t h e modules s a t i s f y i n g i Ext (C,,E) = 0 € o r i > 0 ,
w i l l p l a y an i n t r i g u i n g r o l e l a t e r . F o r s u c h modules we define a f i l t r a t i o n
C II (G)
C(G) C as follows C(G)
= 1 E \ t h e n a t u r a l man $E : GPHom(G,E)-E
C(C)o
=
i s onto ?,
E [ w i t h O E an isomorphism I .
N o t i c e t h a t E b e l o n g s i n C(G) 0
-K -
Gn -E
i f i t c a n be w r i t t e n a s
-
0.
Sp h e r i c a 1 Modules I f we a p p l y Hom(G,-) diagram (?)
-
1
0-K
and f o l l o w w i t h GP(-) w e o b t a i n t h e
-
GPIIom(G,K)
95
GWIlom(G,Gn)
I
- GWHom(G,E) - GBExt(G,K) I
E-fl
Gn
where t h e u p p e r secluence b e g i n s w i t h an i n j e c t i o n and e n d s w i t h a surjection. If Thus
K
E
C(G)
Thus
E
E
C(C)o
E
E
C(G)o
and w e a l s o r e c o g n i z e ( ? )
E
G"-
S c h a n u e l ' s lemma : Suppose
(i)
Ext(G,K) = 0 .
a s Tor(C,,Ifom(I;,E)).
implies the existence of a nresentation G~---
(c)
we c o n c l u d e t h a t
0-
E
-n. cb
K-Gm-
and
C(G)o
E
- - c;" -
E-0
J,
(ii)
0
L
L
a r e two G - p r e s e n t a t i o n s o f E . Then
E-
F)
Gm
0
=
K 8 G".
P r o o f . As i n t h e p r o o f o f t h e S c h a n u e l ' s lemma n r o p e r
we define
(x,y)
X =
E
t h e e x a c t sequences 0
0-
- KL
Gm x G n
1
$ ( x ) = $ ( y ) l and have
- x -cmX
Gn-
0 0
t h a t s p l i t by t h e p r e c e d i n g r e m a r k s . C(G),
may now b e d e f i n e d a s c o n s i s t i n g o f t h e modules
a d m i t t i n g G - r e s o l u t i o n s o f a r b i t r a r y l e n g t h . I f we now e x t e n d t h e n o t i o n o f G - r e s o l u t i o n by a l l o w i n g d i r e c t summands o f GmTs t o p a r t i c i p a t e , we define
H(G)
a s c o n s i s t i n g o f modules w i t h
a f i n i t e G - r e s o l u t i o n . For t h e modules i n H ( G ) we s h a l l s e e i t h a t t h e c o n d i t i o n ExtA(G,-) = 0 , i > 0 , i s a u t o m a t i c a l l y satisfied.
S n h e r i c a l hlodules
96
Let G,G' b e s p h e r i c a l A-modules and x a n o n z e r o d i v i s o r i n
(d)
t h e <Jacobson r a d i c a l o f A . P r o o f . Apply
-
*
G1/xG1 then G
G'.
.x - c;' - T,'/xc;' -Hom(C,G') - Hom(G,G') - Hom(G,G'/xG')
Ext 1(G,G')
Since
*
Hom(G,-) t o
0
0
I f C/xG
0 :
C,'
X
EXt
Ext 1( G , G ' / x G ' ) A
1( G , G
= Ext 1 A/
)
-
XI
Ext 1 ( G , G ' / x G ' ) .
(G/xG,G'/xG')
and G/xG
2
GlxG'
1 s p h e r i c a l A / ( x ) - m o d u l e , Ext A ( C , G ' ) = 0 by Nakayama's lemma. Let now 6 EHom(G,G') b e s u c h t h a t i t i n d u c e s t h e
is a
isomorphism
C/xG
9
G'/xG';
surjective. Similarly
by Nakavama's
lemma a g a i n
@
is
i s a homomorphic imaqe o f GI. Thus
C,
G and G ' a r e i s o m o r n h i c by an s t a n d a r d a r g u m e n t .
(c)
On t h e number o f isomornhism c l a s s e s o f s n h e r i c a l m o d u l e s :
Let A be a l o c a l blacaulay r i n g : a c c o r d i n g t o ( d ) , t h e man Sph(A)
- Snh(A/x\)
o b t a i n e d by r e d u c i n p modulo a n o n z e r o d i v i s o r i s i n j e c t i v e . I n o r d e r t o e s t i m a t e ( a t l e a s t whether i s f i n i t e ) t h e c a r d i n a l i t y
o f Sph(A)/
-
t h e n t h a t A i s an A r t i n i a n r i n g .
we assume
Let I d e n o t e t h e i n j e c t i v e e n v e l o p e o f A/E. leads t o
G*
= IIom(G,I)
llom(G*,G*)
Sph(A) a l s o . I n d e e d
E
*
Then G;cSnh(A)
Ilom(G*PG,I)
s i n c e we saw i n (4.9) t h a t
G@G*
*
flom(1,I)
=
A.
I . A s A i s Noetherian
we
r e c a l l from [ E , C h a p . V I ] t h e isomornhism liomA(Exti(X,Y) , Z )
Tori(X,HomA(Y A ,Z))
when Z i s A - i n j e c t i v e and X f i n i t e l y g e n e r a t e d . FlakinR G
and Z = I
we get
X = Y =
S D h e r i c a l Modules i A ExtA(G*,G*) = Tori(G*,G)
97
A i = (ExtA(G,G)* for i * Tor.(C;,G*) 1
>
0.
I n t h i s f a s h i o n w e o b t a i n an i n v o l u t i o n a c t i n g on S?h(A). Q u e s t i o n . By an abuse o f n o t a t i o n s t i l l w r i t e Sph(A) f o r t h e isomorphism c l a s s e s o f s p h e r i c a l modules.
( a ) I s t h e number
o f e l e m e n t s i n S p h ( A ) , f o r a l o c a l Macaulay r i n g A , f i n i t e ? ( b ) I f Sph(A)
#
is
{A},
Sph(A)
an e v e n number? ( I t i s e a s y
t o s e e t h a t i f t h e r e s i d u e f i e l d o f A i s f i n i t e t h e n Sph(A) i s
.
finite ) The p r e c e d i n g o b s e r v a t i o n s a l s o s u g g e s t : (f)
I f A i s a l o c a l Flacaulay r i n g
module t h e n
Sph(A)
-
admittint! a canonical
is surjective, that i s ,
Snh(A/xA)
e v e r y e l e m e n t o f Sph(A/xA) i s l i f t a b l e . Althouqh we c a n n o t p r o v e t h i s y e t , p o r t i o n s o f ( e ) can b e e x t e n d e d t o h i g h e r d i m e n s i o n s . We u s e an argument o f [ 1 3 , 3 6 ] . (4.10)
P r o p o s i t i o n . Let G b e an s p h e r i c a l module o v e r
t h e N o e t h e r i a n r i n g A and l e t E be a module o f f i n i t e i n j e c t i v e d i m e n s i o n . Then $ E : GPHom(G,E)
-E
i s an isomorphism.
P r o o f . We assume E f i n i t e l y g e n e r a t e d . Again w e u s e t h e s p e c t r a l sequences of
[El Torn(G ,E.xtq (G,E)) and
E x t D ( E x t q ( G , G ) , E ) t h a t c o n v e r g e t o t h e same l i m i t . By ( 2 . 2 0 ) i Ext ( G , E ) = 0 f o r i > 0 s i n c e d e n t h C; = d e p t h A with r e s p e c t t o any i d e a l . T h e s e s e q u e n c e s t h e n y i e l d GPHom(G,E) (4.11)
Corollary. I f
module, t h e n Ifom(G ,n)
E
G
Sph (A).
E
2
E.
Sph(A)
and R i s a c a n o n i c a l
S p h e r i c a l Zlodules
98
P r o o f . F i r s t l y , Ilom(llom(G,R) , l f o m ( C ; , R ) )
=
Ilom(GPIIom(C,fi) , Q ) = llom(9,R) = A . \ i c x t , t o s ~ i o w E x t i ( l l o m ( ~ , ~,11om(C;,n)) ) = 0 for i > 0 : i\pply l i x t J ( - ,R) t o t h i s module and r e t s u c c c s s i v c l v LxtJ (Exti ( C k , G * ) ,G)
i
= T o r . (C,:$ ,T-.xt [C;*
1
,Q)
T o r . ( ( ; * , , T o r i ( f ; , I l o m ( n , R ) ) = 'Tor. ( C * , C ) J
(p,)
=
1
=
0,
C;*
=
Hom(G,R).
R e f l e x i v i t y o f s p h e r i c a l modules : Let C E Snln(;t):
i f C;
i s r e f l e x i v c and 2 i s a l o c a l 4 r t i n i a n r i n n , C = Ilom(llom(G, 2) , A )
yiclds the relation r(C) = ~(1lom(G,~'~))-r(A) in the n o t a t i o n o f ( 4 . 0 ) .
S i n c e w e have a l s o
we c o n c l u d e v(Iiom(C,A)) = 1
r(A) = r ( G ) - v ( G ) ,
and C i s A - f r e e .
4ssume now t h a t 4 i s a S , - r i n E .
I f G i s r e f l e x i v e we may
1
by t h e p r e c e d i n g i d e n t i f y G t o an i d e a l o f A . As A = Ilom(C,,C;) = End(Hom(Hom(G,A) , A ) ) ,
f o r e a c h l o c a l i z a t i o n a t a prime o f h e i e h t 1 w e c o n c l u d e IIom(G,A)
i s a f r e e A-module by ( 3 . 1 2 )
that
and h e n c e G i s A-free.
Thus we c o n c l u d e t h a t i f ,4 i s a S 2 - r i n g t h e n G i s r e f l e x i v e i f f it i s isomorphic t o a d i v i s o r i a l i d e a l t h a t i s p r i n c i p a l a t t h e nrimes o f P ( A ) . (4.12)
C o r o l l a r y . I f A i s an UFD
t h e n Sph(A) = { A ] .
T h i s c o u l d be viewed as a g e n e r a l i z a t i o n o f ( 2 . 3 9 ) . 54.5
Resolutions
and
Given a s p h e r i c a l
Divisors. module G , an E u l e r c h a r a c t e r i s t i c i s
Sph e r i c a 1 ?4odules
a t t a c h e d t o t h e modules i n l i ( G )
99
and a d i v i s o r t o t h e modules i n
H ( C ) w i t h t o r s i o n ; t h i s s u b s e t w i l l b e d e n o t e d by H(G)O and t h e
a s s o c i a t e d d i v i s o r runs p a r a l l e l t o t h a t o f Chapter 3. Assume A t o b e a c o n n e c t e d r i n g . F o r any module E which i s a d i r e c t summand o f a Gn w e may a t t a c h a u n i q u e r a n k i n any o f t h e two ways: i ) A s Hom(Gn,G) i s f r e e o f r a n k n t h e r a n k o f E i s r a n k o f t h e p r o j e c t i v e module i i ) E @ I: = G"
the
Hom(E,G).
implies t h a t a t each l o c a l i z a t i o n E i s
i s o m o r p h i c t o a d i r e c t sum o f r c o p i e s o f G - l o c a l c a n c e l l a t i o n ; t h a t r i s u n i q u e and a g r e e s w i t h t h e r a n k i n i ) . (a)
Euler c h a r a c t e r i s t i c : Let E b e a module i n H ( C ) . 0-G""
r c P
Let
...-I;
'1 - $1 G
0 - E - 0
be a f i n i t e G - r e s o l u t i o n . i
D e f i n i t i o n . x G ( E ) = C(-1) ri. T h i s i n t e g e r i s n o t d e p e n d e n t on t h e r e s o l u t i o n and i t s n u l l i t y i s r e l a t e d t o t h e e x i s t e n c e - j u s t as i n ( 2 . 2 6 ) -
of
n o n z e r o d i v i s o r s of A i n t h e a n n i h i l a t o r o f E . We show t h i s f a c t i n two d i f f e r e n t ways. Because
Hom(G,G)
= A, we
may view t h e r e s o l u t i o n a s a G -
m a t r i c i a l complex and a p p l y ( 2 . 3 2 )
i) ii)
I(+k)-depth G rank($k)
+
2
:
k;
rank(+k-l) = rk.
As e v e r y r e g u l a r A-sequence i s a l s o a r e g u l a r G - s e q u e n c e ,
Sn he r i c a l P4odule s
100
i f we a p p l y Hom(G,-) t o t h i s s e q u e n c e w e o h t a i n a f r e e complex t h a t i s a l s o e x a c t . I f we now t e n s o r t h i s l a s t comnlex hv G we o b t a i n t h e o r i g i n a l comnlex
9,
and
-E
: GBl[lom(C;,E)
i s an isomorphism. In p a r t i c u l a r t h e h y p o t h e s i s t h a t t h e mo-
dules i n H(C)
s a t i s f y the condition i n C(G)
T h i s shows t h a t t h e i n t e q e r x G ( E ) c h a r a c t c r i s t i c of Hom(G,E) t i v e d i m e n s i o n . Note t h a t
eouals
i s n o t needed.
0
t h e usual Euler
which i s a module o f f i n i t e p r o j e c Tori(G,flom(G,E))
= 0
for i > 0, a
remark t o he u s e d l a t e r . (4.13)
Hom(G,-) and G @ ( - ) a r e
C o r o l l a r y - . The f u n c t o r s
inverse equivalences o f the categories (4.14)
Corollary-. x G ( E )
2
ll(G)
and H ( A ) .
0 ; x G ( E ) = 0 i f f ann(E)
con-
t a i n s a n o n z e r o d i v i s o r o f A. S i m i l a r l y we c o u l d d e f i n e a G-dimension f o r t h e modules i n Ii(G)
: assume A t o be a l o c a l r i n g
l a s t i n t e g e r f o r which n o t h i n g new i s o b t a i n e d
and d e f i n e G-dim(E) a s t h e
E x t r ( E , C ) # 0 . I n t h i s c a s e however a s t h i s number i s j u s t
m-depth A -
m-depth E. Another a p p r o a c h i s t o use t h e S c h a n u e l ' s lemma o f 5 4 . 3 ~ t o g e t h e r w i t h t h e t e c h n i q u e s o f l o c a l c a n c e l l a t i o n and d e v e l o p a t h e o r y o f d i m e n s i o n and minimal r e s o l u t i o n s . Remark. Without much d i f f i c u l t y one can s e e t h a t i f i n a s h o r t e x a c t s e q u e n c e two modules a r e i n H ( G )
then
SO
is the
t h i r d one. (4.15)
Remark. Let G , G '
be two s p h e r i c a l modules. The
S n h e r i c a l llodules e v i d e n c e seems t o p o i n t t h a t
101
is rather sparse i f
Il(G)nli(G')
C; and G' a r e n o t l o c a l l y i s o m o r n h i c . Supnose 4 i s a l o c a l rincl
and l e t E b e a module w i t h G-dim(E) = 1: i f E
E
we must
lf(C')
GI-dim(E) = 1 , b y an e a r l i e r r e m a r k . Let
a l s o have t h a t
dl
0 -G1-
be a minimal C - r e s o l u t i o n o f E
E-!I
Go-
- i.e. the e n t r i e s of
C$
are in
t h e maximal i d e a l o f A . We o b t a i n 0
-
Hom(G' , G I )
-FIom(G' ,Go)-
Hom(C;' , E )
-
1 By Nakayama's lemma w e t h e n have Kxt ( G ' , C ) = 0 . T e n s o r now
t h e s e q u e n c e above w i t h C;' t o q e t t h e d i a e r a m
-p
0
-
yo
G'PHom(G' ,G1)
I
0 -
-
- G'PHom(G'
1
,Go)
- G'PMom(G' , E ) 11
0
n
E -
G1
-
where t h e m i d d l e h o r i z o n t a l s e q u e n c e i s e x a c t as t h e module Torl(G',Hom(G',E))
= 0.
we a l s o c o n c l u d e t h a t
From t h e
minimality o f t h e r e s o l u t i o n
r$G i s s u r j e c t i v e . K1
hand a r e d i r e c t sums of t h e k e r n e l o f them i s r e a l l y t h e ' m a t r i x ' 0
w e g e t t h a t r$G
.
$G
and K O on t h e o t h e r and t h e man b e t w e e n
lemma again
By Nakayama's
i s an i s o m o r n h i s m . C o u n t i n g m i n i m a l numbers o f
g e n e r a t o r s we h a v e
v
( G I )
* v (Hom(C; ' , G ) )
account t h e symmetrical r e l a t i o n
= v(G)
.
Takinp i n t o
we c o n c l u d e v(Hom(G' ,G)) = 1.
T h i s l a s t module b e i n g f a i t h f u l i t i s i s o m o r p h i c t o A and G
G'. (4.16)
Remark. A s t a t e m e n t more g e n e r a l t h a n 5 4 . 4 b i s t h e
S p h e r i c a l Modules
102
f o l l o w i n g : L e t G be a s p h e r i c a l A-module and l e t I be
a
G o r e n s t e i n i d e a l , t h a t i s , an i d e a l s a t i s f y i n g g r a d e I = pd A/I = r , and
i)
E x t i ( A / I , A ) = A/I.
ii) Then
G/IG
E
Sph(A/I).
P r o o f . We may assume t h a t A i s a l o c a l r i n g . C o n s i d e r t h e following convergent s p e c t r a l sequence E x t I / I ( G / I G , E x t 2 ( A / I ,G))-Exti(G/IG,G). S i n c e e v e r y r e g u l a r A-sequence i s G - r e g u l a r , Ext!(A/I,G) for
q < r
and
Exti(A/I,G)
Ext;(A/I,A)WC
2
= 0
G/IG. Thus we
g e t t h e isomorphism ExtP,/I (C/IG,G/IG) Let now
Fr- 4
0-
Fr-l
Ext!+r(G/IG,C).
. . . Fo
-
A/I-
0
be a minimal p r o j e c t i v e r e s o l u t i o n o f A / I . The c o n d i t i o n i i ) makes Fr
of rank 1
and $(1) = (al,
..., a n )
E
Fr-l
with t h e
a ' s a minimal g e n e r a t i n g s e t f o r t h e i d e a l I . T e n s o r t h i s i sequence w i t h G t o g e t a G - r e s o l u t i o n o f l e n g t h r f o r G/IG and c o n s e q u e n t l y Ext!+r(G/IG,G) Exti(G/IG,G) (b)
2
A/I
= 0
for
t o complete t h e proof.
Divisors : Now w e a t t a c h an i n v e r t i b l e i d e a l
module E i) tion
D > 0 . We a l s o g e t
E
H(G)
.
d(E)
t o any t o r s i o n
Let E be a t o r s i o n module i n C(G)(>; c o n s i d e r a p r e s e n t a -
Sphe r i c a 1 Mo du 1e s
G Define
d(E)
-E -
9 G"
= (F($)-')-',
where
I03
0.
d e n o t e s t h e i d e a l gene-
F(+)
r a t e d by t h e m i n o r s o f o r d e r n o f t h e m a t r i x . By t h e S c h a n u e l ' s
d(E)
lemma o f 1 4 . 4 ~ we g e t t h a t
does n o t depend on t h e
-
C;
presentation. ii)
Suppose now
E
obtain
:
H(G)
Gn
0-
(where G i
E
...
Go-
E-
0
i s a d i r e c t summand o f a Gm)
t h e module
Hom(G,E)
E
. Applying d(E)
and
H(A)
Hom(G,-) w e
is the divisor
d(E) i s an i n t r o d u c e d i n C h a p t e r 3 o f t h e module Hom(G,E). Thus invertible ideal. i i i ) Suppose now
0
# E
E
H(G)nH(G')
for d i s t i n c t s p h e r i c a l
modules. As w e r e m a r k e d , i t i s p l a u s i b l e t h a t H(G) = H ( G ' )
at
l e a s t i n t h e l o c a l case. Nevertheless t o o b t a i n t h e e q u a l i t y of t h e two r e f l e x i v e i d e a l s
i t i s enough t o
and $ , ( E )
$,(E)
compare them a t t h e l o c a l i z a t i o n s
c a s e we u s e ( 4 . 1 5 ) t h a t says E = 0 or G
E
p
Ap,
E
P
P(A).
But i n t h i s
G'
P'
To sum up : (4.17)
Theorem. Let Sph(A)
denote t h e s e t of s p h e r i c a l
modules o v e r A and l e t E be a module i n
H(G)O.
Then & ( E )
i s an i n v e r t i b l e i d e a l and d o e s n o t depend on G . R e s t r i c t e d t o a fixed
H(G) t h i s d i v i s o r i s a d d i t i v e .
Chapter 5 I -divisors A d i v i s o r i s a t t a c h e d t o f i n i t e l y g e n e r a t e d modules o v e r a
N o e t h e r i a n r i n g t h a t does n o t q u i t e a r i s e i n t h e manner o f C h a p t e r 4. I t i s o b t a i n e d by mimicking t h e c o n s t r u c t i o n o f t h e standard F i t t i n g ' s divisors but using i n j e c t i v e resolutions.
Thus i f A is a N o e t h e r i a n r i n g and E i s a f i n i t e l y gener a t e d module w e c o n s i d e r a r e s o l u t i o n 0-E-I w i t h 'I
and I1
o - I@
1
i n j e c t i v e modules. We assume f u r t h e r t h a t , f o r
e a c h prime p, I(A/p) a p p e a r s f i n i t e l y o f t e n o n l y i n t h e i n d e composable r e p r e s e n t a t i o n s o f I o and I1 - and t h i s can always b e a r r a n g e d by
[?I.
o
may t h e n b e viewed a s a m a t r i x and t h e
d e t e r m i n a n t a l i d e a l s formed much a s done e a r l i e r . To overcome s e v e r a l t e c h n i c a l d i f f i c u l t i e s - as these i d e a l s l i v e i n a p r o d u c t o f p - a d i c c o m p l e t i o n s - s h a l l b e assumed t h a t p r i m e s o f h e i g h t one and g r a d e one a r e t h e same. The g l u i n g c a n t h e n b e c a r r i e d o u t and d i v i s o r i a l i d e a l s i n A o b t a i n e d . A f t e r a summary e x a m i n a t i o n o f i t s p r o p e r t i e s t h i s d i v i s o r
i s a p p l i e d t o t h e c a t e g o r y o f modules o f f i n i t e i n j e c t i v e d i mension where i t t u r n s o u t t o be i n v e r t i b l e . 85.1
Construction. Let A be a N o e t h e r i a n r i n g o f t y p e S 2 - t h e g r a d e r e s t r i c -
t i o n above. T h i s i s a minor c o n s t r a i n t a s t h e modules o f f i n i t e injective
dimension a r e e f f e c t i v e l y d e f i n e d o v e r t h e s e r i n g s . 104
I -divisors
105
Let E b e a f i n i t e l y g e n e r a t e d t o r s i o n module and c o n s i d e r an i n j e c t i v e p r e s e n t a t i o n as above. In t h e s e t a t e d primes o f E c o n s i d e r t h o s e primes
pl,.
o f associ-
Ass(E)
. .,pn o f
height
o n e . I f t h e r e i s no s u c h prime i n Ass(E) w e p u t I - d i v i s o r o f E =
d i v ( E ) = A . Assume t h i s i s n o t t h e c a s e and l e t S be t h e mul-
t i p l i c a t i v e s e t n (A\P).
Localize the p r e s e n t a t i o n a t S t o g e t
over t h e one-dimensional semi0 1 The i n j e c t i v e modules ( I ) s and ( I ) s a r e d i r e c t
a n i n j e c t i v e p r e s e n t a t i o n o f ES l o c a l r i n g AS.
sums o f t h e I ( A / p i ) ' s t h e moment A i s AS.
o n l y . Change n o t a t i o n and assume f o r
The r e s o l u t i o n t a k e s a more e x p l i c i t form :
?
O-E-
I(A/pi)
I'.
1
We r e c a l l t h a t i)
@
(Ex]) :
HomA(I(A/p) , I ( A / p ) ) = Ap
5. 1
.
8 I ( A / ~ ~ ) i
(where
'
o v e r a module
denotes completion with respect t o the a d i c topology of t h e c o r r e s p o n d i n g maximal i d e a l ) . ii)
HomA(I(A/p),I(A/q))
f o r .incomparable p r i m e s p,g.
= 0
A l t o g e t h e r t h e s e remarks l e a d t o a view o f
where Bi Di(E)
of
ri x si block with e n t r i e s i n g e n e r a t e d by t h e minors o f o r d e r
i s ,an A
pi e a s i l y seen t o be a p . A 1
Pi
-primary; Localize
becomes a module o f f i n i t e l e n g t h functor sequence
( - ) * = Homi
pi
(-,I(A/pi))
-
as a matrix
@
A
Ei
ri
E a t pi
The i d e a l
,
o f Bi i s
-
and E
and a p p l y t h e d u a l i z i n g t o obtain the exact
pi
I-divisors
106
t ~ i^r Ai-Ai-E*-
(t=transpose)
0
pi
pi
and t h e i d e a l Di(E) j u s t d e f i n e d i s t h e 0 - t h F i t t i n g i d e a l o f E X . In p a r t i c u l a r it i s independent of t h e chosen i n j e c t i v e
presentation. There i s a unique primary i d e a l
of A such t h a t
gi
A
giApi = Di(E).
I t t h e n f o l l o w s t h a t we may f i n d an i d e a l q
i n A such t h a t
(%A
A
pi
)
=
Di(E)
f o r each of t h e pi's.
We now go b a c k t o t h e o r i g i n a l s i t u a t i o n b e f o r e t h e l o c a l i z a t i o n a t S . We p i c k an i d e a l Q i n A o n l y a s s o c i a t e d p r i m e s and w i t h (5.1)
Let
with
pl,.
. . ,E,
-
for its
QAS = 9.
D e f i n i t i o n . d i v ( E ) = (Q
-1 -1 )
=
D(Q).
Example. Let k b e a f i e l d and l e t t b e a n i n d e t e r m i n a t e . 3 4 3 4 5 B = k [ [ t , t ] ] L A = k [ [ t , t , t ] ] 6 k [ [ t ] ] . Notice t h a t
B i s a G o r e n s t e i n r i n g and t h a t
=
Homg(B,A)
is a canonical
module f o r A . I t i s c l e a r t h a t R = ( t 3 , t 4 ) . Let E b e t h e module
n/t5Q.
E has a presentation 2 W E 0-L-A
0 3 where L h a s f o r g e n e r a t o r s t h e e l e m e n t s ( t ,O), ( 0 , t 3 ) , ( t 4 , t5 ), 5 4 ( t , t ) and ( t 6 , t 5 ) . Thus t h e F i t t i n g d i v i s o r o f E , d(E) = 3 3 4 5 t ( t ,t ,t ). As for its I-divisor : 0 -
n
t 3L i - 2 - E - 0
leads t o 0-A-
F i n a l l y , as
.t
1 ExtA(E,n)
A-
- 0.
E x t i ( E , Q ) = HomA(E,I(A/m), - we c o n c l u d e t h a t 1 d(ExtA (E,R))
=
3 t A
=
div(E).
I-divisors 55.2
107
Euler c h a r a c t e r i s t i c s of I n j (.h). For a S o e t h e r i a n r i n c A we d e v c l o n a t h e o r y o f E u l e r c h a t h e c a t e p o r y o f f i n i t e l y i r e n e r a t e d mo-
racteristics for Inj (A),
d u l e s o f f i n i t e i n j e c t i v e d i m e n s i o n a s c o n s i d e r e d i n [_ 3 6 ,_ 35]. In t h e n e x t s e c t i o n a d i v i s o r t h c o r v f o r t h e s u b c a t e c o r y l n j c o n s i s t i n R o f t h e modules i n I n j ( A ) w i t h t o r s i o n w i l l
Inj(A)O
be d i s c u s s e d . Both depend c r u c i a l l y on i n some n a r t i a l d u a l i t y 30] e s t a b l i s h e d i n [-
between Ini(.4) and t h e modules o f f i n i t e
p r o j e c t i v e dimension. Without l o s s o f q e n e r a l i t y l e t 2 be a c o n n e c t e d r i n g . Let C b e a f i n i t e l y g e n e r a t e d module o f f i n i t e i n j e c t i v e d i m e n s i o n ,
and w r i t e 0
- E - I o - I 1 ...
f o r a minimal i n j e c t i v e r e s o l u t i o n o f E . w i t h d e p t h An = r
In
-0
F o r a p r i m e i d e a l n-
write
L
x(p:E)
=
Theorem. x(n_:E)
(5.2)
(-l)r-ipi(~:E).
C
i =
x(E)
t h a t does n o t denend on p. x ( E ) = 0
i s a non-neqative i n t e p e r
i f f t h e a n n i h i l a t o r of E
contains a r e p u l a r element. 'That
x
i s t h e n an E u l e r c h a r a c t e r i s t i c on I n j ( A ) f o l l o w s
from t h e meaning o f t h e p i t s . P r o o f . Because o f t h e c o n n e c t e d n e s s of A w e may assume t h a t A i s a l o c a l r i n g o f maximal i d e a l m_.
Let
r
= depth A:
h
let A
denote t h e m - - a d i c c o m n l c t i o n o f 4 . As I A ( A / ~ ) = I i ( A / m _ ) ,
in calculating
x(m_;E) we may a s ' w e l l assume t h a t .4 i s a com-
plete local ring.
I-divisors
108
The s e t t i n g i s now r e a d y f o r an a p p l i c a t i o n o f
([El):
Theorem. Let A be a c o m n l e t e l o c a l r i n R o f d e n t h r
(5.3)
and E b e a f i n i t e l y g e n e r a t e d module o f f i n i t e i n j e c t i v e dimens i o n . 'Then t h e module
b! = E x t i ( I ( A / m -) , E ) h a s t h e followincr
p r o p e r t i e s : i ) PI i s a f i n i t e l y p e n e r a t e d module o f f i n i t e i p r o j e c t i v e d i m e n s i o n ; i i ) Supp(fiI) = S u p p ( E ) : i i i ) ExtA(M,A) = Hom(W:-l(E) -
,I(,\/!)),
where
s t a n d f o r t h e l o c a l cohomo-
I{;(-)
-
logy groups. Proof of ( 5 . 2 ) Br-i(Fl)
where
: ( a ) I t w i l l b e f i r s t shown t h a t u i ( E )
B.(bf)
I
A
= dimk(Tor.(k,M)) j -
i n a minimal f r e e r e s o l u t i o n o f '1.
= rank o f t h e j - t h
=
term
In t h i s c a s e x ( n-: E ) would
equal t h e Euler c h a r a c t e r i s t i c defined i n 92.5: t h e statement
on t h e p o s i t i v i t y and r e l a t i o n t o t h e r e g u l a r i t y o f t h e a n n i h i l a t o r would f o l l o w from
i i ) a b o v e . To show t h e e q u a l i t y o f t h e
and c o n s i d e r t h e convergent s p e c t r a l sequences with i t h e same l i m i t 1-1
Tor (k ,Extq ( I ,E) ) P -
and
E x t P (Extq (k,I ) ,E) (I = I (A/m_) ) .
I n t h e p r o o f o f ( 5 . 3 ) i t emerges t h a t E x t i ( E , I ) i C o n s e q u e n t l y w e h a v e Torr-i(&,bf) = E x t ( k-, E )
= O for i <
r.
.
( b ) T h i s s t e p c o n s i s t s i n showing t h a t i f
i d e a l t h e n x(p:E) = x ( m _ ; E ) .
2 i s any nrime
In t h i s we may assume t h a t x(m_;E)
> 0 , t h a t i s , E i s a f a i t h f u l A-module. From ( 2 . 3 4 ) t h i s makes A a Eiacaulay r i n g .
I f A admjtted a canonical
- as is t h e case
h
f o r A - we would have QPHom(Q,E) A E Exti(Q,E) = 0 , i > 0
(4.10) (2.20)
and
I-divisors
109
and c o u l d t h e n b e g i n a r e s o l u t i o n
O-Lwith fiO
clo-E-fl
a d i r e c t sum o f c o p i e s o f 9
and I, a n o t h e r module o f
m-denth L
f i n i t e i n j e c t i v e dimension: a l s o ,
i n f f m-depth -
a,
m-depth E + 1 1 . We c o u l d t h e n f a s h i o n a r e s o l u t i o n
with
Ri
nr-l
K -
0-
= d i r e c t sum o f R ' s
b e i s o m o r o h i c t o some Q
n
...
R"
-E -
0
m-denth K = r . K would t h e n
and
and t h e c o n s t a n c y o f x ( 2 : E )
would
f o l l o w much a s i n 9 4 . 5 .
To a v o i d t h e u s e o f t h e c a n o n i c a l module we r e a s o n a s f o l l o w s : Let
p. Let
r,
also
(5.4)
be a minimal p r i m e i d e a l o f c\ c o n t a i n e d i n
be a minimal p r i m e o f A l y i n q ahovc nd. L e m m a . ( [ g ] ) J,et (A,?)
- (R,;)
homomorphism o f l o c a l N o e t h e r i a n r i n g s and l e t Vacaulay r i n g o f type A-module o f t y p e and
rg(B/m_B)
=
be a f l a t l o c a l B / m-B be a
r . Let F. be a ( f . ~ . )Vacaulav
r A ( E ) = s . Then EMB i s a ' l a c a u l a v R-module
rg(EBB) = r * s . I f w e u s e t h e 0 - d i m e n s i o n a l c a s e o f t h i s lemma t i e p e t x(m_;E) = x ( m _ ; E ) = x ( h : E )
= x(n+;E)
and f i n a l l y l e t
p p l a y t h e r o l e o f m_. 85.3
Divisors
on
I n j (A)'.
The c o n s t r u c t i o n o f d i v ( - ) i n 1 5 . 1
applied t o the torsion
modules i n I n j ( A ) y i e l d s a d i v i s o r i a l i d e a l which w i l l be shown t o b e i n v e r t i b l e . N o t i c e t h a t t h e - h y p o t h e s i s t h a t A he o f t y p e S2
i s f u l f i l l e d a s Bass's c o n j e c t u r e i s r e s o l v e d f o r r i n g s
I -divisors
110
o f l o c a l depth one. lie d i s c u s s f i r s t t h e change o f t h e i n j e c t i v e dimension o f
k
a module a f t e r a f l a t c h a n s e o f r i n g s
: A
-
B.
Next, w e
show t h a t u n d e r m i l d c o n d i t i o n s on t h e f i b e r s o f t h e morphism h t h e d i v i s o r introduced i n 5 5 . 1 behaves p r o p e r l y . Additional
f a c t s may be found i n [ _ 12,_ 37]. Let A h e a N o e t h e r i a n r i n p and l e t E be an A-module o f
h_ : A
f i n i t e i n j e c t i v e d i m e n s i o n . Now l e t
-B
be a f l a t
homomorphism o f r i n g s . W e are interested in the conditions that make
BBAE
a
B-module of f i n i t e i n j e c t i v e d i m e n s i o n . In t h i s
g e n e r a l i t y s i m p l e examFles show t h e n a t u r a l i t y of t h e f o l l o w i n g c o n d i t i o n s : ( a ) T h e K r u l l d i m e n s i o n s o f A and B a r e f i n i t e ; ( b ) The f i b e r s o f h-, i . e . t h e r i n g s Bt?,k(n_)
are
Gorenstein r i n g s . (5.5)
Theorem. IdB(BeAE) <
m
.
P r o o f . Let 0 - E - I
0
- 1
1
...
1n-o
be an i n j e c t i v e r e s o l u t i o n o f E . S i n c e t h e K r u l l d i m e n s i o n o f a r i n g bounds t h e ( f i n i t e ) i n j e c t i v e d i m e n s i o n o f modules ( [ 4-] ) and t h e I i
a r e d i r e c t sums o f indecomposable i n j e c t i v e s , we
may assume t h a t that
BRAE = B t?
E = I(A/p).
P AP
In c o n s i d e r i n g R a A E
we notice
E . We may t h e r e f o r e assume t h a t t h e r i n g s i n
q u e s t i o n a r e l o c a l r i n g s : (A,;),
(B,P4). I f
BPAI(A/m_), from t h e s t r u c t u r e o f
T(A/m). The p r o o f w i l l now
@ = B
we get 0 =
f o l l o w by i n d u c t i o n on t h e d i m e n s i o n o f t h e f i b e r B / m-B . (i)
e claim t h a t i n t h i s case dim B / m-B = 0 : W
BPE i s
I-divisors t h e i n j e c t i v e e n v e l o p e o f B/P!.
111
F i r s t n o t i c e t h a t BBE i s an
e s s e n t i a l e x t e n s i o n o f B/mB, a s fIomB(B/mB,BPE) = BPliom(A/m,E). -
AS B/mB - i s a G o r e n s t e i n rinp. o f d i m e n s i o n 0 , i t i s an e s s e n t i a l
e x t e n s i o n o f P,/P,l.
1Ve may t h e n w r i t e
0
- RPE
IB(B/?l).
To show e q u a l i t y above i t i s enough t o v e r i f y t h a t llomB(H/mnB,) -
t a k e s t h e same v a l u e on t h e two modules f o r e a c h n . T h i s r e d u ces t h e question t o t h e consideration of Artinian r i n p s , i . e . 1 1 t h a t ExtB(B/rnB,BOE) = 0 i m p l i e s ExtB(B/”I,BWE) = 0 . S u n n o s e wc want t o c o m p l e t e t h e diaernm
t h e r e s t r i c t i o n o f Q t o mB To p r o v e t h a t
can be l i f t e d t o a map I):B -BBE.
o may b e l i f t e d i t s u f f i c e s t o show t h a t
i s l i f t a b l e . A s i m p l e i n d u c t i o n on
!In
+
mB
0
-
u
leads t o the
desired result. dim B / m-B >
(ii)
I)
: Sunpose t h a t
idB(BhdE) =
m.
Among
a l l prime i d e a l s o f B l y i n g above m_ n i c k a minimal one s u c h that
i d B (BPE)Q =
Q
a.
Change t h e n o t a t i o n and assume Q = 31. Let
x b e a n o n z e r o d i v i s o r i n t h e r a d i c a l o f B/m_B; t h e n x i s a nonzero d i v i s o r i n B (S)
is exact
0
and B/xB i s A - f l a t . Thus t h e s e q u e n c e
-
BhdE
BBE
-
(B/xB)BE-O
and by t h e i n d u c t i o n h y p o t h e s i s idBlxB(B/xBBE) <
By t h e change o f d i m e n s i o n t h e o r e m for large n ( say
1
+
dim B )
E x t nB (-,EMF)
.x
idB(B/xB@E) <
we have n
m
m.
a l s o . Thus
I-divisors
112
and i n p a r t i c u l a r
n Extg(I%/M,I?@E) = 0. Suppose f o r some prime
i d e a l P o f C , Ext:(R/P,RWE) a
Thus ;\
'3:
n i c k P maximal and l e t
The sequence
M\P.
E
#
Exti(R/P,T?WE) i s d i v i s i b l e
(PnA)
u n i q u e l y bv e v e r y c l e m e n t i n
and s h o u l d be l e f t unchanged i f we l o c a l i z e a t t h e
multiplicative set
S = A\
( P n . 4 ) . But
BWT.6d.4S = 0 .
'The s i m p l e s t cxnmplc where ( 5 . 3 ) a p p l i e s i s
R = .A[t].
More p c n e r a l l y , i f
T? = A [ t ] / I
t i v e ideal of A [ t ]
and t h e c o n d i t i o n o n t h e f i b e r s i s automa-
t i c a l l y s a t i s f i e d . Suppose Gorenstein f i b e r s
I3
i s / \ - f l a t then I i s a p r o j c c -
= A[x,y]/T
i s A-flat with
and l e t us examine n i i i c k l y what t h i s
portends f o r I . IVe f i r s t remark t h a t ,J t h e i d e a l p c n e r a t e d 1)y t h e c o e f f i -
c i e n t s o f t h e v o l y n o m i a l s i n I i s e e n e r a t e d by onc i d e m p o t e n t ( [ 40]).
Without s a c r i f i c e o f g e n e r a l i t v we may assume .J = 4.
Suppose A t o be l o c a l w i t h maximal i d e a l 2. 'I'ensorinc! t h e sequence A[x,v]
O-I-
w i t h A/m
we g e t 0
I f R / m-R
- I/mI - A/;[x,y] -
-
-
€3
R / m-R
-
i s t o be a Gorenstcin rinn then e i t h e r
i s p r i n c i p a l , o r (11)
I/mT -
0.
( a ) I/mI -
i s q e n e r a t e d by two e l e m e n t s
w i t h o u t a common f a c t o r . We can e a s i l y c o n c l u d e
I -divisors
C o r o l l a r y . I i s an i d e a l o f p r o j e c t i v e d i m e n s i o n
(5.6) < 1 and -
113
B = K1 x R 2
i d e a l and B2
where
B1
a arojective 1 ( i . e . with f i n i t e f i b e r s ) .
quasi-finite
= A[x,y]/I1,
I
To have an i d e a o f more g e n e r a l f l a t e x t e n s i o n s o f f i n i t e t y p e o f a r i n g A we l o o k a t t h e f o l l o w i n g e x t e n s i o n o f t h e I i i l b e r t ' s syzygies theorem. Let A be a commutative r i n g - n o t n e c e s s a r i l y N o e t h e r i a n -
t] = and l e t E h e a module o f f i n i t e p r e s e n t a t i o n o v e r B = A [A[tl,
...,t n ]
- o r more g e n e r a l l y a f l a t A - a l p e b r a o f f i n i t e
presentation, with regular fibers. P r o p o s i t i o n . I f E i s a f l a t A-module
(5.7)
pdBE
5
n.
P r o o f . The key e l e m e n t i s t h e f a c t t h a t E - u n d e r t h e s e c i r c u m s t a n c e s - a d m i t s an i n f i n i t e f i n i t e p r e s e n t a t i o n a c c o r d a n c e w i t h [14,Prop.11.3.9.1] Pn-l
O-L-
with t h e P i ' s
:
...
PO
- E
in
O
f i n i t e l y g e n e r a t e d p r o j e c t i v e B-modules and L
f i n i t e l y p r e s e n t e d . L i s a l s o a f l a t A-module. Now we show t k a t L is a projective
B; l e t
p
= PnA.
a projective
B-module. We may l o c a l i z e a t a p r i m e P o f By I l i l b e r t ' s s y z y g i e s t h e o r e m ( L / P L ) ~
Bp/pBp-module. 0
-
K-
To c o n c l u d e F-
a minimal f r e e p r e s e n t a t i o n o f L p .
s t i l l exact
is
write
LpTensor w i t h
0
k(p)
s i n c e L i s A - f l a t . By Nakayama's lemma
t o get
K = 0.
Now we r e t u r n t o t h e c o n s i d e r a t i o n o f t h e f i n i t e l y g e n e -
I-divisors
114
r a t e d t o r s i o n modules o v e r a r i n g A and t h e i r d i v i s o r s . Suppose
-
h - : A
and l e t
E l i e s i n Inj(A)'
B
be a f a i t h f u l l y f l a t
homomorphism o f r i n g s w i t h f i n i t e K r u l l d i m e n s i o n and G o r e n s t e i n f i b e r s a t t h e maximal i d e a l s (The c a s e t o k e e p i n - and i t s c o m p l e t i o n ) . mind i s t h a t o f a l o c a l r i n g (A,m)
h_
P r o o f . We may assume t h a t l o c a l r i n g s . That as
Ext:(A/m,E) -
E
Inj(A)
F.
i s a l o c a l homomorphism o f
can be i n t e r p r e t e d f o r A l o c a l
f o r l a r g e n. The p r o o f o f ( 5 . 5 )
= 0.
Nakayama's lemma, t o t h e c o n c l u s i o n
RPE
E
leads, via
Inj(B).
Let Q be a p r i m e i d e a l of B , o f h e i g h t 1
and m i n i m a l o v e r -1 t h e a n n i h i l a t o r J O B o f BOE, where J = annAE. L e t P = h (Q)
.
Then P i s a l s o a h e i g h t 1 p r i m e minimal o v e r , J . Complete Ap and
B
Q
w i t h r e s p e c t t o t h e t o p o l o g i e s d e f i n e d by t h e maximal i d e a l s A
i n e a c h r i n g . As a resolution
0
Now i t f o l l o w s
-
a d m i t s a c a n o n i c a l module R t h e r e i s
Ap
-n
" L
R"-
i
-
by Nakayama's lemma - t h a t RRBO
of i n j e c t i v e d i m e n s i o n one and a l s o o f r a n k one
i s e x a c t , EBB
Q
E
maximal i d e a l o f h
f o r Bg.
Inj(l3 )
Q
h
B
Q'
0.
h
i s a module as
and t h e e n t r i e s o f +@l l i e i n t h e h
Thus
RPBO
i s a l s o a c a n o n i c a l module h
From t h i s i t f o l l o w s
that
div(EBB)
h
= d e t ( @ B 1 ) B Q=
A
det$*R
(2'
(5.9)
ideal.
Theorem. I f E
E
Inj(.\)
0
, d i v ( E ) i s an i n v e r t i b l e
I-divisors Since the d e f i n i t i o n of
115
d i v ( E ) 'commutes' w i t h l o c a l i z a -
t i o n , A may be assumed l o c a l : u s i n g now ( 5 . 8 ) w e may t a k e A t o be complete w i t h r e s p e c t t o t h e ;-adic
tonologv.
P r o o f . Let
M b e t h e module o f
(5.3).
1Ve show t h a t t h e
Fitting divisor
&(?I) = d i v ( E ) . Let
pl,... ,TI* h e t h e n r i m e s
o f h e i g h t one i n Supp(E) = S u p p ( V ) . To show t h e e q u a l i t y above s u f f i c e s t o check t h e l o c a l i z a t i o n s a t t h e s e n r i m e s .
Let R be a d - d i m e n s i o n a l r e g u l a r l o c a l r i n e mapping o n t o A . As t h e K r u l l d i m e n s i o n o f E i s
d e p t h A - 1 by ( 2 . 3 4 ) t h e r e
i s an i s o m o r p h i s m g i v e n by l o c a l d u a l i t y ExtA(bl,A) 1 with
ExtR d - r + l( E , R )
r = d e p t h A . Let P he one o f t h e
ti's
and 0 a n r i m e o f l?
l y i n g above P . L o c a l i z i n g t h i s i s o m o r p h i s m a t
Notice t h a t
d - r + l = K r u l l d i m e n s i o n RCf = t
0
we o b t a i n
and t h a t E p i s an
I1 -module o f f i n i t e l e n g t h . The s e c o n d module can a l s o be
Q
w r i t t e n , from t h e s n e c t r a l s e q u e n c e o f [ g , X V I . 5 ]
as
E x 2Ap ( E P , E x tRo t-l(Ap,Po)). Ext t - 1 ( A p , R Q )
Since
clude t h a t
':q
div(E)p
i s t h e c a n o n i c a l module f o r A p , we c o n -
i s t h e f l - t h F j t t i n q i d e a l o f t h e module
E x t l ( ? I , A ) . Rut i t i s c l c a r t h a t
?I
h a v e t h e same i n v a r i a n t s a s
= 1
Q
Ap
p
module.
ndATp
Q
and
=
and
?Ip
Ext'
AP
('In,Ap)
is a torsion
We may now s t a t e an i n t e r e s t i n g a p p l i c a t i o n . L e t E h e a
f i n i t e l y g e n e r a t e d module of f i n i t c i n j e c t i v e d i m e n s i o n o v e r t h e l o c a l r i n g A . Let
%J = a n n ( E ) .
I -divisors
116
C o r o l l a r y . I f g r a d e .J = 1 , t h e n A i s a 3lacaulay
(5.10)
ring, P r o o f . Write
Ad = d i v ( E )
and l e t p1
,...,qn
be t h e
p r i m e i d e a l s o f h e i 2 h t onc above ,J. By t h e p r o n e r t i e s o f d i v ( - ) t h e i d e a l Ad
s h a r e s a l l o f t h e s e p r i m e s and has no o t h e r
a s s o c i a t e d n r i m e s . Thus K r u l l dim (A/dA) = sup{ K r u l l dim ( A / p . ) -1 But i f
r
dimension
= depth A ,
a l l o f t h o s e modules
\/pi have K r u l l
r-1. S i n c e t h e K r u l l d i m e n s i o n o f A/dA
d i m e n s i o n o f A l e s s one
we g e t
r
1.
= dim A .
is t h e
B ih 1i o g r anhy
f11
F!.Auslander,
C o h e r e n t F u n c t o r s , i n Proc.Conf . C a t e g o r i c a l
Algebra, S p r i n g e r - V e r l a q , 1965, 189-231
-
- and D.Xuchsbaum, l l o m o l o g i c a l d i m e n s i o n i n l o c a l
r i n g s , Trans.Amer.~lath.Soc. 85 (1957), 390-405.
f 31
H.Bass, On t h e u b i q u i t y of G o r e n s t e i n r i n g s , Math. Z e i t s c h r . 82 ( 1 9 6 3 ) , 8 - 2 8 .
f41
-
-
,
I n j e c t i v e dimension i n Noetherian r i n g s , T r a n s .
Amer.Math.Soc. 151
f61
-
1 0 2 (1962), 18-29.
- , A . H e l l e r and P..G.Swan, T h e W h i t e h e a d Rroup o f a
p o l y n o m i a l e x t e n s i o n , Pub1 . r l a t h . I€IES 2 2 , P a r i s , 1964. N.Bourbaki,
\
Algebre Commutative, Chaps. T
- V I I , Hermann,
P a r i s , 1960-65. [71 81 [91
D.Buchsbaum and D . E i s e n b u d , What makes a complex e x a c t ? , J.Algebra 25 ( 1 9 7 3 ) , 2 5 9 - 2 6 8 .
-
-
- , Gorenstein i d e a l s of height t h r e e , P r e p r i n t .
I,.Burch, On i d e a l s o f f i n i t e h o m o l o g i c a l d i m e n s i o n i n
64 ( 1 9 6 8 ) ,
l o c a l r i n g s , Proc.Camh.Phi1.Soc.
941-348.
H.Cartan and S . E i l e n b e r g , HomoloEical AlRebra, P r i n c e t o n U n i v e r s i t y P r e s s , P r i n c e t o n , 1956. i H.-B.Foxbv, On t h e p i n a m i n i m a l i n j e c t i v e r e s o l u t i o n , Math.Scand.
20 ( 1 9 7 1 ) , 1 7 5 - 1 8 6 .
-
- , I n j e c t i v e modules under f l a t b a s e c h a n e e , P r e n r i n t .
-
- , On G o r e n s t e i n m o d u l e s a n d r e l a t e d m o d u l e s , V a t h .
Scand. 3 1 ( 1 9 7 2 ) , 267-281. A.Grothendieck, Eliments Flath.IHES
32, P a r i s ,
de
I
I
Geometrie A l g i b r i q u e , Publ.
1965.
T . H . G u l l i k s e n , On t h e l e n g t h o f f a i t h f u l m o d u l e s o v e r A r t i n i a n l o c a l r i n g s , Vath.Scand.
117
31 (1972), 78-82.
B i b 1i o e r anhy
118
. J . H e r z o g a n d C.Kunz,
&
k a n o n i s c h e '_ l o d_ u l -ei n e s Cohen
Placaulay R i n q s , L e c t u r e s N o t e s i n V a t h e m a t i c s S p r i n g e r - V e r l a c , B e r l i n , 1971.
-
238,
' l . i l o c l i s t e r , I)een l o c a l r i n v s , P r e n r i n t .
-
J . I , . R o b e r t s , A c t i o n s o f r e d u c t i v e q r o u p s on r e
- and
-
g u l a r r i n p s and Cohen - ' l a c a u l a y r i n o s , B u l l . h e r . ? l a t h . SOC. J 8
(1974), 181-284. On t h e v a n i s h i n c l o f l i m ' " ) ,
C.IJ..Jcnscn,
.J.AlFchra 15
(197O), 1 5 1 - 1 6 6 . I . K a n l a n s k v , Commutative A l g e b r a , A l l v n and B a c o n , B o s t o n , 1371. -
-
, R - s e o u e n c c s and h o m o l o g i c a l d i m e n s i o n , Yaqoya
ilat11.J.
g
( 1 9 h L ) , 135-200.
f l . Krgmer, L i n c g c Anwendunpen d c r G - F u n c t i o n von VacRae,
Arch.Yath. 2 2 ( 1 9 7 2 ) , 47Q-490. D.l,azar, Autour de l a n l a t i t u d e , Rull.Soc.Pfath.
France
37 ( 1 9 6 9 ) , 8 1 - 1 2 8 .
C,.Levin a n d W.V.\.asconcelos,
H o m o l o v i c a l d i m e n s i o n s and
25 ( 1 9 6 8 ) , 3 1 5 - 3 2 3 . 'lacaulay r i n E s , P a c i f i c 7.rlnth. .J.I,inman,
On t h e . J n c o b i a n i d e a l o f t h e module o f d i f f e -
r c n t i a l s , Proc.Amer.hlath.Soc. 2 1 (1960), 422-426. R.\facKae, On an a n n l i c a t i o n o f t h e F i t t i n e i n v a r i a n t s ,
2
,J . A l ~ e b r a
(1965)
,
153-163.
E . M a t l i s , I n j e c t i v e modules o v e r N o e t h e r i a n r i n e s , 8 (1')58), 511-528. P a c i f i c J.b!ath. I I . \ f a t s u m u r a , Commutative A l g e b r a , Renjamin,New Y o r k , l 0 7 0 . :r.P.%irthv,
A n o t e on f a c t o r i a l r i q e s , A r c h . " a t h .
15
(1964) , 4 1 S - 4 2 O . C . P e s k i n e and I , . S z n i r o ,
1)imension n r o j e c t i v e f i n i e e t
c o h o m o l o e i e l o c a l e , Puh1.Flath.IIlES 4 2 , P a r i s , 1973.
D.Rees, The g r a d e o f a n i d e a l o r m o d u l e , P r o c . C a m b . P h i 1 . SOC. 53 ( 1 9 5 7 ) , 2 8 - 4 2 .
R i h 1i o p r a p h y
D.E.Rush,
1 I9
The G - f u n c t i o n o f PlacRae, P r e n r i n t .
P.Samue1, On u n i q u e f a c t o r i z a t i o n d o m a i n s , T a t a I n s t i t u t e o f F u n d a m e n t a l I k s e a r c h , Bomhav, 1 9 6 4 . [34 1
.J. - P . S e r r e , A l g t b r e L o c a l e - ' l u l t i p l i c i t g s , L e c t u r e s
Notes i n 'lathematics
-
11,S n r i n e e r - V e r l a e ,
B e r l i n , 1965.
- , Sur lcs modules p r o j c c t i f s , Seminaire I h b r c i l ,
P a r i s , 1960-61. R . Y . S h a r p , F i n i t e l y g e n e r a t e d modulcs o f f i n i t e i n j e c t i v e d i m e n s i o n o v e r c e r t a i n Cohen - % l a c a u l a y r i n r s , P r o c . London f l a t h . S o c . 25 ( 1 9 7 2 ) , 3 0 3 - 3 3 8 .
-
- , The C o u s i n c o m p l e x a n d i n t e E r a l e x t e n s i o n s o f
Noetherian domains, Proc.Camb.Phil.Soc.
73 ( 1 ? 7 3 ) ,
407 - 4 1 5 . - , Gorenstein modules, : l a t h , Z e i t s c h r . 115 (197n), 117-139. ~
17. S t o r c h , Zur L 3 n q e n b e r c c h n u n e von V o d u l n , Arch .!lath.
34
(1973), 39-43. W.V.Vasconcelos, 105-107.
(1970),
-
-
3
Simnle f l a t e x t e n s i o n s , .J.Alpehra 16
-
The c o m m u t a t i v e r i n p s o f q l o h a l d i m e n s i o n
Seminar n o t e s , RutEers I l n i v e r s i t y , 1973.
e,
Index
Associated prime, 3 C a n o n i c a l module, 48 Coherent r i n g , 2 Depth, 1 9 D i v i s o r , 63 D i v i s o r i a l i d e a l , 56 F i n i t i s t i c d i m e n s i o n , 88 F l a t module, 9 G o r e n s t e i n r i n g , 44 Grothendieck group, 6 3 H i g h e r d i v i s o r i a l i d e a l , 80 I n j e c t i v e dimension, 7 Invariant factors, 14 Koszul complex, 1 6 K r u l l dimension, 3 Macaulay r i n g , 28 Macaulay e x t e n s i o n , 86 M a t r i c i a l complex, 37 No-name i n v a r i a n t , 1 4 P r o j e c t i v e dimension, 6 Regular r i n g , 8 S p h e r i c a l module, 9 3 S u p p o r t o f a module, 2 7 Type o f a r i n g , 30 V a r i e t y o f a module, 2 7 Zero d i v i s o r , 3
120