Lecture Notes in Control and Information Sciences Edited by M.Thoma and A.VVyner
120 L. Trave, A. Titli, A. Tarras
Lar...
90 downloads
538 Views
10MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Lecture Notes in Control and Information Sciences Edited by M.Thoma and A.VVyner
120 L. Trave, A. Titli, A. Tarras
Large Scale Systems: Decentralization, Structure Constraints and Fixed Modes
Springer-Verlag Berlin Heidelberg New York London Paris Tokyo
Series Editors M. Thoma • A. Wyner
Advisory Board L D. Davisson • A. G. J. MacFarlane • H. Kwakernaak .I.L. Massey • Ya Z. Tsypkin. A. J. Viterbi Authors Louise Trave Andre Titli Ahmed Maher Tarras Laboratoire d'Automatique et d'Analyse des Systemes du Centre National de la Recherche Scientifique Toulouse France
ISBN 3-540-50787-6 Springer-Verlag Berlin Heidelberg NewYork ISBN 0-387-50787-6 Springer-Verlag NewYork Berlin Heidelberg Library of Congress Cataloging in Publication Data Trave, L. (Louise) Large scale systems : decentralization structure constraints and fixed modes L. Trave, A. Titli, A. Tarras. (Lecture notes in control and information sciences ; 120) Bibliography: p. Includes indexes. ISBN 0-387-50787-6 (U.S.) 1. System theory. 2. Control theory. I. Titli, Andre. I1. Tarras, A. (Ahmed). II1. Title. IV. Series. Q295.T73 1989 88-35984 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law. © Springer-Verlag Berlin, Heidelberg 1989 Printed in Germany Offsetprinting: Mercedes-Druck, Berlin Binding: B, Helm, Bedin 2161/3020-543210
PREFACE
The
growing
dimensions and
c o m p l e x i t y of
the
present
day
technological,
e n v i r o n m e n t a n d societal p r o c e s s e s is one o f t h e f o r e m o s t c h a l l e n g e s to s y s t e m t h e o ry.
Determining a
solution
for
the
problems
arising
in l a r g e
scale
systems
may
become e i t h e r v e r y uneconomical o r e v e n impossible if u s i n g t h e c l a s s i c a l mathematical tools d e v e l o p e d f o r s y s t e m a n a l y s i s a n d c o n t r o l .
T h e main r e a s o n i s t h a t classical
t h e o r i e s a r e n o t b u i l t for d e a l i n g with h i g h d i m e n s i o n a l i t y models. Now, t h e e s s e n t i a l c h a r a c t e r i s t i c s of l a r g e scale s y s t e m s a r e a h u g e n u m b e r of i n p u t a n d o u t p u t v a r i a b l e s on s u b s y s t e m s w h i c h a r e g e n e r a l l y g e o g r a p h i c a l l y d i s t r i b u t e d . T h e s e new f e a t u r e s i n v o l v e l a r g e a n d complex m o d e l s , problem
may
not
be
solvable.
Moreover,
we m u s t
face
though the
modelling
economical a n d
reliability
p r o b l e m s r e l a t e d to t h e i n f o r m a t i o n t r a n s f e r b e t w e e n c o n t r o l s t a t i o n s . For t h e s e r e a s o n s , t h e d e c o m p o s i t i o n , a g g r e g a t i o n a n d model r e d u c t i o n t e c h n i c s h a v e r e c e i v e d c o n s i d e r a b l e a t t e n t i o n in t h e l a s t t e n y e a r s . A g r e a t deal of t h e o r e t i c a l a n d p r a c t i c a l r e s u l t s c o n c e r n i n g t h e i r a p p l i c a t i o n s h a v e b e e n o b t a i n e d in t h e a r e a o f stability and decentralized control.
In p a r t i c u l a r ,
t h e p r o b l e m of s t a b i l i z a t i o n a n d
pole p l a c e m e n t with d e c e n t r a l i z e d dynamic c o m p e n s a t i o n is of g r e a t p r a c t i c a l i n t e r e s t . Despite the numerous advances around
this problem,
which are
materialized by
a
l a r g e n u m b e r of p a p e r s , t h e r e is n o n e s y n t h e t i c a l s u r v e y work e x c l u s i v e l y c o n c e r n e d with t h i s p r o b l e m a n d t h e v a r i o u s o t h e r o n e s which a r e r e l e v a n t . The main o b j e c t i v e of t h i s book is to p r o v i d e s u c h global s u r v e y b y p r e s e n t i n g t h e p r e s e n t d a y r e s u l t s which can b e u s e d f o r : -the
a n a l y s i s of stabiHzability a n d pole p l a c e m e n t u n d e r d e c e n t r a l i z e d c o n s -
traints, - t h e d e t e r m i n a t i o n of a c o n t r o l policy s o l v i n g t h e p r o b l e m of s t a b i l i z a t i o n o r pole p l a c e m e n t w h e n d e c e n t r a l i z e d dynamic c o m p e n s a t i o n fails { p r e s e r v i n g a d e c e n t r a l i z e d s c h e m e of c o n t r o l o r minimizing t h e c o s t a s s o c i a t e d to t h e i n f o r m a t i o n t r a n s fer), - t h e d e s i g n of t h e s e p r e s p e c i f i e d c o n t r o l l a w s .
IV By t h i s w a y ,
t h i s b o o k s u p p l i e s t h e tools for b u i l d i n g a m e t h o d o l o g y w h i c h
b r i n g s a s o l u t i o n to t h e complete p r o b l e m of c o n t r o l in t h e c o n t e x t of l a r g e systems.
Moreover,
the last part
scale
of t h e w o r k t a k e s i n t o a c c o u n t p a r a m e t r i c a n d
structural robustness constraints. C h a p t e r I p r e s e n t s an o v e r v i e w of t h e w e l l - k n o w n r e s u l t s a r o u n d t h e p r o b l e m o f s t a b i l i z a t i o n a n d pole a s s i g n m e n t of l i n e a r t l m e - i n v a r i a n t dynamic s y s t e m s s u b j e c t e d to c e n t r a l i z e d c o n t r o l (no s t r u c t u r a l c o n s t r a i n t s ) . T h e f u n d a m e n t a l c o n c e p t s of c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y are i n t r o d u c e d a n d t h e y a r e e x t e n d e d to t h e c o n cepts of s t r u c t u r a l
controllability and
observability,
which a r e
of major p r a c t i c a l
i n t e r e s t in t h e s t u d y of l a r g e scale s y s t e m s . I n d e e d , t h e s e p r o p e r t i e s a r e e s t a b l i s h e d from t h e s y s t e m s t r u c t u r e a n d t h e y do n o t d e p e n d on t h e p a r t i c u l a r c o n f i g u r a t i o n o f the parameters I values.
In t h i s f r a m e w o r k ,
t h e p r o b l e m r e d u c e s to one of b i n a r y
n a t u r e t h a t allows f o r t h e a p p l i c a t i o n of g r a p h - t h e o r e t i c c o n c e p t s . T h i s a p p r o a c h is t h u s specially a d e q u a t e for l a r g e scale s y s t e m s . The n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n s f o r t h e e x i s t e n c e of a s o l u t i o n to t h e problem of stabilization and cases
pole a s s i g n m e n t a r e
presented
for
the
following two
:
- centralized state feedback - centralized output feedback T h e y a r e s t a t e d in t e r m s of t h e c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y p r o p e r t i e s of the system. It is c l e a r t h a t a good u n d e r s t a n d i n g of t h e
c o n c e p t s of c o n t r o l l a b i l i t y and
o b s e r v a b i l i t y is i n d i s p e n s a b l e b e f o r e p r o c e e d i n g to t h e s t u d y of t h e a b o v e p r o b l e m with s t r u c t u r a l c o n s t r a i n t s on t h e c o n t r o l . T h i s p r o b l e m i s i n t r o d u c e d in C h a p t e r II, In t h e
c o n t r o l of l a r g e s c a l e s y s t e m s w h o s e e s s e n t i a l c h a r a c t e r i s t i c is t h e i r
high dimensionality, conventional techniques
fail to
give r e a s o n a b l e s o l u t i o n s w i t h
r e a s o n a b l e c o m p u t a t i o n a l e f f o r t s . The classical c o n t r o l t h e o r y g e n e r a l l y s t a n d s on t h e assumption of a centralized information pattern ; i.e., s y s t e m is available at a g i v e n c e n t e r ,
all t h e i n f o r m a t i o n on t h e
g e n e r a l l y a g e o g r a p h i c a l p o s i t i o n , w h e r e all
t h e c a l c u l a t i o n s can b e c a r r i e d o u t . F o r most l a r g e scale s y s t e m s , t h i s c e n t r a l i z a t i o n a s s u m p t i o n d o e s n o t h o l d d u e to t h e
g e o g r a p h i c a l d i s t r i b u t i o n of t h e
information.
This new constraint leads
economical a n d r e l i a b i l i t y p r o b l e m s r e l a t e d to t h e i n f o r m a t i o n t r a n s f e r .
to
This implies
t h a t t h e c o n t r o l s y s t e m s h o u l d b e made of a n u m b e r o5 local c o n t r o l l e r s t h a t a r e only allowed to u s e p a r t o f t h e whole i n f o r m a t i o n in o r d e r to g e n e r a t e p a r t of t h e whole
V c o n t r o l . In p a r t i c u l a r ~ t h e d e s i g n of f e e d b a c k c o n t r o l l e r s r e q u i r e s r e s t r i c t i o n s on t h e p a r t i c u l a r s y s t e m o u t p u t - i n p u t p a i r s t h a t t h e c o n t r o l l e r can c o n n e c t . When no t r a n s f e r of i n f o r m a t i o n b e t w e e n t h e d i f f e r e n t local s t a t i o n s is allowed, t h i s y i e l d s to a d e c e n t r a l i z e d s c h e m e of c o n t r o l .
When some b u t
n o t all t r a n s f e r s
( t h o s e of minimum c o s t for example) a r e allowed we o b t a i n a n o n s t a n d a r d r e d u c e d information p a t t e r n . It is c l e a r t h a t t h e d e c e n t r a l i z e d c o n t r o l s c h e m e i s t h e most economically a d v a n t a g e o u s s i n c e no t r a n s f e r of i n f o r m a t i o n for one g e o g r a p h i c a l location to a n o t h e r is r e q u i r e d : system inputs are
a s s i g n e d to a g i v e n s e t of local c o n t r o l l e r s ( s t a -
t i o n s ) , w h i c h o b s e r v e only local s y s t e m o u t p u t s . This is t h e r e a s o n t h e f i r s t s t u d i e s for t h e p r o b l e m of s t a b i l i z a t i o n a n d pole a s s i g n m e n t w e r e i n v e s t i g a t e d w i t h i n a d e c e n t r a l i z e d c o n t r o l s c h e m e . T h e r e s u l t s r e f e r i n g to t h i s s t u d y a r e p r e s e n t e d in t h e f i r s t p a r t of t h e c h a p t e r . T h e s e r e s u l t s w e r e t h e n e x t e n d e d to t h e more g e n e r a l case of a r b i t r a r i l y s t r u c t u r a l l y c o n s t r a i n e d c o n t r o l w h i c h is c o n s i d e r e d in t h e s e c o n d p a r t of t h e c h a p t e r . The main c o n c e p t to deal with t h i s k i n d of p r o b l e m is t h e new n o t i o n of f i x e d modes w h i c h is
f u n d a m e n t a l in t h e
s t u d y o f s t a b i l i z a t i o n a n d pole p l a c e m e n t with
s t r u c t u r a l l y c o n s t r a i n e d dynamic c o m p e n s a t i o n . I n d e e d t
t h e e x i s t e n c e o f a solution
d e p e n d s c r i t i c a l l y on t h e p r o p e r t i e s of t h i s finite s e t of n u m b e r s . T h e p r e s e n c e o f u n s t a b l e f i x e d m o d e s i n d i c a t e s t h a t s t a b i l i z a t i o n is i m p o s s i b l e while t h e p r e s e n c e of a n y s o r t of f i x e d modes r u l e s out a r b i t r a r y pole p l a c e m e n t . Due t o t h e t h e o r e t i c a l a n d p r a c t i c a l i m p o r t a n c e o f t h e notion of f i x e d m o d e s , t h e whole C h a p t e r 3 is c o n c e r n e d with t h e i r c h a r a c t e r i z a t i o n . T h e n u m b e r of d i f f e r e n t c h a r a c t e r i z a t i o n s which can b e f o u n d in t h e s c i e n t i f i c l i t e r a t u r e i s i m p r e s s i v e . Moreover, e v e r y one of them is e x p r e s s e d in t e r m s of i t s own a u t h o r s d e f i n i t i o n s a n d i n t r o d u c e d in a d i f f e r e n t w a y . presented
in two g r o u p s ,
With t h e main o b j e c t i v e of classifieation~
t h e time-domain a n d t h e
they
are
frequency-domain characteriza-
t i o n s . A p a r t i c u l a r a t t e n t i o n is g i v e n to show t h e e x i s t i n g e q u i v a l e n c e s . The a n a l y s i s of e v e r y one of them allows u s to p o i n t o u t t h e c o n d i t i o n s for t h e e x i s t e n c e o f f i x e d modes a n d to g i v e a d e a p i n s i d e into t h e i r i n t e r p r e t a t i o n r e l a t e d to t h e i r o r i g i n s . The d i f f e r e n t t y p e s of f i x e d modes a r e o u t l i n e d : no s t r u c t u r a l l y f i x e d modes w h i c h n e e d a q u a n t i t a t i v e a n a l y s i s of t h e s y s t e m a n d s t r u c t u r a l l y f i x e d modes for w h i c h a s t r u c t u r a l a p p r o a c h is more s u i t a b l e ( r e p r e s e n t a t i o n of t h e s y s t e m b y a g r a p h , u s e o f g e n e r a l c o n c e p t s of g r a p h t h e o r y ) . From
the
above
analysis,
the
different
results
concerning
the
problem
of
d e c e n t r a l i z e d s t a b i l i z a t i o n a n d pole p l a c e m e n t a r e u n i f i e d a n d e x p r e s s e d in t e r m s o f t h e d i f f e r e n t t y p e s of f i x e d m o d e s .
VI Whereas structure
Chapter
2 makes clear
(decentralized
the existence
that
for example)
of fixed modes,
the
choice a priori
can generate
Chapter
of a feedback
some problems
3 provides
control
if it gives
all t h e n e c e s s a r y
rise
to
t o o l s to a n a l y s e
and explain the situation.
As
a
different
natural
methods
consequence,
the
following
chapters
which are available to determine
are
concerned
an acceptable
with
the
control policy such
that stabilization or pole placement is possible. In the tralized
context
control
of large
structure
scale
(Chapter
systems,
allow
to
4 presents
avoid
fixed
a
class
modes
An original approach trol.
Vibrational
thods
(based
control
compatible presence
with
decentralized
too
consider
or
constraints
fixed modes.
From another
when
fixed modes. the
based
on
Chapter
the
an
can
-
the
system
origin.
vibrational
conventional
as
it
solves
point of view,
the
me-
of lack
method
is
problem
in
a particular
a method
con-
control
because
a stabilization
that
for the
applicadesign
of
or non-linear
control laws appears
to
of structurally
fixed modes,
we m u s t
which minimizes the cost
which is of immense practical
be
constraints
of Chapter
interest,
is
5 is to present
feedback
appropriate
more
Roughly
o n t h e c o n t r o l s e e m s to b e t h e m o s t
or pole placement
characterizations
is physically
geographical
and
a new control structure
stabilization
appropriate
s i t u a t i o n we a r e d e a l i n g w i t h .
different
in u s i n g
where
constitutes
in p r e s e n c e
the structural
different
3 : one
structural
which
5.
The purpose of
that
This problem,
to s o l v e t h e
design
a
) do n o t a p p l y
control
of time-varying
we a r e
transfer.
In fact, relaxing way
from
controllers
control laws.
the problem of determining
convenient
not
cases
principles
vibrational
the subject of Chapter
are
such
5).
time-varying
: it c o n s i s t s
in the
control is presented
of the information
for
developed
that
time-varying
difficult
they
or feedforward
When the implementation be
that
decentralization
of unstable
tion of vibrational
decentralized
a decen-
a new control structure
is minimum (Chapter
can be useful
It is shown the
i s to p r e s e r v e
laws are examined and compared.
is then
on feedback
of measurements.
of
provided
Several kinds of time-varying
objective
4) o r t o d e t e r m i n e
that the cost of the information transfer Chapter
the
the
control of
fixed
than
speaking,
partitioned
locations of the inputs
different
structure. modes
another two types
in several and
problem
methods
are
presented
depending
on
of situations
due
In this
of
available methods
These
which
stations,
outputs.
in presence
the
type
are in of
can occur
:
for example
to
case,
it is clear
Vll
that the decentralized structure
would b e t h e m o s t a p p r o p r i a t e .
O u r goal i s t h u s to
d e t e r m i n e t h e minimal i n f o r m a t i o n e x c h a n g e s b e t w e e n s t a t i o n s w h i c h g e t r i d of f i x e d modes.
The
optimality
criterion
can
be
chosen
as
the
number
of f e e d b a c k
links
b e t w e e n two d i f f e r e n t s t a t i o n s o r a s t h e c o s t a s s o c i a t e d with t h e i m p l e m e n t a t i o n of these feedback Hnks,
-
present
either the system does not reflect a prespecified partitioning or the stations the
particularity
that
the
cost
of local
f e e d b a c k s is n o t n e g l e c t a b l e w i t h
r e s p e c t to t h e c o s t of f e e d b a c k s b e t w e e n two d i f f e r e n t s t a t i o n s . I n t h e s e c a s e s , w a n t to d e t e r m i n e t h e minimal c o n t r o l s t r u c t u r e s
(if s e v e r a l )
we
for which t h e s y s t e m
h a s n o f i x e d m o d e s . T h e y do n o t g e n e r a l l y i n v o l v e all t h e local f e e d b a c k s .
Note
that
the
problem resulting
from t h e
second
s i t u a t i o n is more g e n e r a l .
I n d e e d , we a r e b r o u g h t b a c k to t h e f i r s t p r o b l e m b y s e t t i n g to z e r o t h e c o s t s a s s o dated
to t h e local f e e d b a c k s .
Therefore,
all t h e m e t h o d s w h i c h a r e p r e s e n t e d i n t h i s
g e n e r a l f r a m e w o r k c a n also b e u s e d f o r t h e p a r t i c u l a r c a s e .
As a logical following to t h e d e t e r m i n a t i o n of a d e q u a t e f e e d b a c k c o n t r o l s t r u c tures,
Chapter
structural techniques.
6 c o n s i d e r s t h e p r o b l e m of t h e
constraints.
It p r o v i d e s
synthesis
of f e e d b a c k
an o v e r v i e w of a p p r o p r i a t e
C o n s i d e r a t i o n s on the r o b u s t n e s s
gains under
near-optimal design
o f s u c h c o n t r o l l e r s a r e also i n c l u d e d ,
in t h e s e n s e t h a t u n c e r t a i n t i e s d u e to p a r a m e t e r v a r i a t i o n s o r e x t e r n a l d i s t u r b a n c e s are considered.
T h e e f f e c t s of s t r u c t u r a l
t u a t o r s , line c u t s . . . )
Chapter robustness.
7,
perturbations
( f a i l u r e of s e n s o r s
ac-
are studied later.
and
the
last
one,
approaches
indeed
the
problem
of
structural
The chapter extends the results concerning decentralized or structurally
c o n s t r a i n e d c o n t r o l s y s t e m s to s y s t e m s s u b j e c t e d to s t r u c t u r a l f a i l u r e s of s e n s o r s
or
actuators
S e v e r a l w a y s to c o n c l u d e on t h e r o b u s t n e s s are presented.
perturbations,
mamely
or c u t s of l i n e s i m p l e m e n t i n g f e e d b a c k - l o o p s .
n o t i o n s of s t r u c t u r a l l y r o b u s t c o n t r o l a n d s t r u c t u r a l l y r o b u s t structure,
or
of a c o n t r o l ,
The
modes are introduced.
knowing its prespecifled
T h e y a p p e a r a s a n e x t e n s i o n of w e l l - k n o w n r e s u l t s d e r i v e d
from f i x e d m o d e s c h a r a c t e r i z a t i o n s . At l a s t , a g r a p h - t h e o r e t i c
algorithm is presented
to d e t e r m i n e t h e i n f o r m a t i o n p a t t e r n o f a r o b u s t r e g u l a t o r w i t h minimum c o s t . Through ples
an the book,
which make easier
collection of p a c k a g e s book
their
e v e r y r e s u l t is i l l u s t r a t e d b y small s i g n i f i c a t i v e e x a m understanding.
corresponding
( e v a l u a t i o n of f i x e d m o d e s ,
trained structure
Moreover,
the
appendices
contain
to some i m p o r t a n t a l g o r i t h m s p r e s e n t e d
d e t e r m i n a t i o n of t h e i r
feedback matrices...).
type,
a
in t h e
c a l c u l a t i o n of c o n s -
Vlll T h i s b o o k i s t h e c o n s e q u e n c e o f an i n t e n s i v e r e s e a r c h a c t i v i t y of s e v e r a l y e a r s in t h e a r e a o f a n a l y s i s a n d c o n t r o l o f l a r g e s c a l e s y s t e m s a n d more p a r t i c u l a r l y in d e c e n t r a l i z e d c o n t r o l in t h e
Lahoratoire
d'Automatique et
d'Analyse des
Syst~mes
(LAAS). T h e a u t h o r s would like to e x p r e s s t h e i r g r a t i t u d e to all t h e c o l l e a g u e s of t h e i r r e s e a r c h g r o u p a n d to t h e D i r e c t o r of t h e LAAS, P r o f e s s o r A.
COSTES,
for their
scientific and financial s u p p o r t . The a u t h o r s s i n c e r e l y t h a n k Miss C.
FABRE f o r t y p i n g
all t h e s e p a g e s a n d
Mr. E. LAPEYRE-MESTRE for t h e d r a w i n g s of t h i s b o o k ,
Toulouse, January 1989
Louise T R A V E Andr~ TITLI Ahmed TARRAS
TABLE
OF
CONTENTS
INTRODUCTION
CHAPTER
1. C E N T R A L I Z E D
CONTROL
: STABILIZATION
AND
POLE
ASSIGNMENT
I.I. - Introduction 1.2. - Controllahility a n d observablllty
Stability
1 . 2 . I.
-
1.2.2.
-
Controllability
1.2.3.
-
Observability
1.2.4.
- Kalman's canonical form
1.2.5. - Practical importance of the concepts of controllability a n d B
observability
8
1.2.6.
-
Stabilization a n d pole a s s i g n m e n t
1.2.7.
-
Origins of uncontrollable a n d u n o b s e r v a b l e
10
modes
14
1.3. - Structural controllability a n d observability
15
I. 3. I. - Structural controllability 1.3.2. - General results o n structural controllability a n d observability
19
I. 3.3. - Computational
20
considerations
31
I. 4. - Conclusion
CHAPITER POLE
2. S T R U C T U R A L L Y
CONSTRAINED
CONTROL
• STABILIZATION
AND
ASSIGNMENT
2.1. - Introduction
33
2.2. - Decentralized structural constraints
34
2.2. I. - P r o b l e m
formulation
35
2.2.2. - Decentralized fixed m o d e s
37
2.2.3. - Decentralized stabilization a n d pole a s s i g n m e n t
39
X 2.3. - A r b i t r a r y
50
structural constraints
53
2.4. - Evaluation of fixed m o d e s
2.4.1.
- By
the spectra
comparing
of t h e o p e n - l o o p
and closed-loop dynamic
matrix
53
2.4.2.
- By
calculation of the s y s t e m
2.4.3.
- Concluding
modes
sensitivity
remarks
60
2. S. - C o n c l u s i o n
CHAPITER
61
3. C H A R A C T E R I Z A T I O N
OF
FIXED
MODES
3. I. - Introduction
62
3.2. - Characterization
in t e r m s of transmission
3.2.1.
- T a r o c k ' s results
3.2.2.
- Hu
and
66
and
67
Wiswanadham
70
results
71
- Seraji's results
3.2.5. - D a v i s o n 3.2.6.
63
zeros
Jiang results
B.2.3. - V i d y a s a g a r 3.2.4.
and
Wang
72
results
75
- Comments
3.3. - Algebraic characterizations
3.3.1.
- Matrix rank
3.3.2.
- Recursive
3.3.3.
- Particular cases
75
: time d o m a i n
75
test characterization
80
characterization
83 87
3.3.4. - C o m m e n t s
3.4. - A l g e b r a i c
3.4.1.
characterizations
- Necessary
- Transfer distinct
3.5.
: frequency
88
function matrix for 88
of f i x e d m o d e s
function matrix characterization
for systems with 91
poles
3.4.3.
- Polynomial matrix rank
3,4.4.
- General transfer
3.4.5.
- Interpretation
- Structurally
domain
conditions on the transfer
the existence 3.4.2,
54
fixed modes
test characterization
function matrix characterization
94 95 102
104
XI 3.5.1,
- Preliminaries
3,5.2,
- Controllability
104
information 3,5.3,
-
3.5.4.
- Evaluation
observability
under
decentralized
111
structure
Characterization
of structurally
of structurally
structural 3.5.5.
and
sensitivity
fixed
fixed
of the
modes
modes
modes
by
of the
I19
calculation
of the
system
130
- Comments
135 137
3.6. - Graph-theoretic characterization of fixed m o d e s
3.6.1.
- Preliminaries
3.6.2,
- Frequency
3.6.3.
- Time
3.6.4.
- Comments
137 domain
domain
graph-theoretic
graph-theoretic
137
characterization
characterization
141 147
3.7. - Conclusion
CHAPTER
FIXED
4,1.
- Introduction
4.2.
-
4.3.
- Use
4.5.
STABILIZATION
4. D E C E N T R A L I Z E D
STRUCTURALLY
4.4.
148
Sample
IN P R E S E N C E
OF
NON
MODES
150
and
hold
of time-varying
T52 controllers
156
4.3.1. - Piecewise constant f e e d b a c k laws
156
4.3.2. - Sinusoidal f e e d b a c k laws
158
4.3.3. - C o n c l u d i n g r e m a r k s
160
- Vibrational
161
control
4.4. i. - Vibrational control principle
161
4.4.2. - Stabilization b y vibrational control
167
4.4.3. - Vibrational f e e d b a c k control laws
169
175
- Conclusion
CHAPTER
5. C H O I C E
OF
FEEDBACK
CONTROL
STRUCTURE
TO
AVOID
FIXED
MODES
5.1.
- Introduction
177
Xll 5.2.
5.3.
5.4.
- Relaxing
prespecified
5.2.1.
-
Preliminaries
5.2.2.
-
llang
5.2.3.
- Armentano
and
feedback
and based
5.2.5. - S p e c i f i e d
approach
- Choice
of minimal
179
procedure
Singh'
5.2.4. - A p p r o a c h
- Concluding
178 178
Davison'
5.2.6.
constraints
182
procedure
on the for
system
modes
structurally
186
sensitivity
fixed
modes
of type
(i)
197
remarks
control
190
197
structures
5.3.1.
- Preliminaries
5.3.2.
- Senning's a p p r o a c h
198
5.3.3.
- Locatelli
202
5.3.4.
-
5.3.5.
- Concluding
197
et al.
Specified
approach
approaches
for
structurally
fixed
modes
205
remarks
227
- Conclusion
CHAPTER
227
6. D E S I G N
6.1.
- Introduction
6.2.
- The
TECHNIQUES
- PARAMETRIC
ROBUSTNESS
229
optimization
6.2.1.
- Dynamic
6.2.2.
- Static
6.2.3.
- Necessary
problem
229
controllers
230
controllers
231
conditions
for optimality
- Gradient
matrix
233
calculation
6.3.
6.4.
- Decentralized
control
with
parameter
6.3.1.
- The
algorithm
of Geromel
6.3.2.
- The
algorithm
of Jamshidi
optimization
and
236
Bernussou
236 241
6.3.3.
- Iterative
procedure
of Chen
6.3.4.
- Iterative
procedure
of Geromel
et al.
6.3.5.
- Comments
- Design
of robust
6.4.1.
- Controllers
6.4.2.
- Optimal
242
and
Peres
245 247
decentralized
with
control
controllers
a prescribed with
247
degree
performance
of stability
index
sensitivity
248
reduction
249
XlII 6.4.3. - R o b u s t
control with respect to large perturbations
i n the
system dynamics
6.5. - R o b u s t
255
decentralized s e r v o m e c h a n i s m
260
problem
6.5.1. - P r o b l e m formulation
260
6.5.2. - Existence of a solution
262
6.5.3. - R o b u s t
264
decentralized controller design
267
6.5.4. - Sequentially stable robust controller design 6.5.5. - R o b u s t
decentralized controller for u n k n o w n
systems
270
273
6.6. - Decentralized control via hierarchical calculation
6.6.1. - Three-ievel calculation algorithms
273
6.6.2. - Two-level calculation algorithm
279
6.7. - Calculation m e t h o d s using a n interconnection m o d e l
6.7. I. - T h e
general interconnecfion
282 282
model
285
6.7.2. - Model-following m e t h o d
6.8. - Decentralized control for s y s t e m s with overlapping
6.8.1. - E x p a n s i o n ,
contraction,
6.8.2. - O v e r l a p p i n g
information set
a n d inclusion
289
decomposition
291
295
6.9. - Conclusion
CliAPTER
289
7. S T R U C T U R A L
ROBUSTNESS
7.1.
- Introduction
7.2.
- Structural
perturbations
affecting
the system
297
7.3.
- Structural
perturbations
affecting
the control system
299
296
7.3.1. - S t r u c t u r a l
perturbations
7.3.2.
- Structural
robustness
7.3.3.
- Characterization
7.3.4.
- Example
7.3.5.
- Structurally
characterization
299 303
of structurally
robust
modes
304 310
robust
information pattern
control design
- T h e c h o i c e of t h e 313
XIV 7.4.
- Conclusion
318
APPENDIX
I, Multivariable system zeros
319
APPENDIX
2. A Fortran subroutine to evaluate the fixed modes using open-loop
321
and closed loop system poles
APPENDIX
3. A Fortran routine to evaluate the fixed modes using their sensitivity 330
A P P E N D I X 4. A n d e r s o n
and Clements'
A P P E N D I X 5. D e t e r m i n a t i o n using variations
A P P E N D I X 6, A F o r t r a n
test package
of the gradient
for real modes
m a t r i x of t h e p e r f o r m a n c e
340 index by
calculus
routine
with possible robustness
346
to d e t e r m i n e requirements
an optimal constrained
feedback
matrix 349
REFERENCES
368
AUTHOR
379
SUBJECT
INDEX
INDEX
382
I
CHAPTER
CENTRALIZED
STABILIZATION
CONTROL
AND
POLE
:
ASSIGNMENT
I.I. - I N T R O D U C T I O N
The
g e n e r a l i n t r o d u c t i o n p o i n t e d out
control p r o b l e m s are
characterized by
that,
very
structurally
often,
large
scale systems
constrained feedback patterns.
Before t a k i n g i n t o a c c o u n t t h e s e new r e q u i r e m e n t s , t h i s c h a p t e r p r e s e n t s an o v e r view of t h e w e l l - k n o w n r e s u l t s c o n c e r n e d b y t h e p r o b l e m of s t a b i l i z a t i o n a n d pole a s s i g n m e n t of a l i n e a r t i m e - i n v a r i a n t dynamic s y s t e m s u b j e c t e d to c e n t r a l i z e d c o n t r o l (no s t r u c t u r a l c o n s t r a i n t s ) .
The f u n d a m e n t a l c o n c e p t s of c o n t r o l l a b i l i t y a n d o b s e r -
vability a r e i n t r o d u c e d a n d e x t e n d e d to t h e c o n c e p t s o f s t r u c t u r a l c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y which a r e
of a major p r a c t i c a l i n t e r e s t
in t h e
study
of l a r g e
scale
s y s t e m s . I n d e e d , t h e s e p r o p e r t i e s a r e e s t a b l i s h e d from t h e s y s t e m s t r u c t u r e a n d do not d e p e n d on t h e p a r t i c u l a r c o n f i g u r a t i o n of t h e p a r a m e t e r s ' v a l u e s .
In t h i s f r a -
mework, t h e p r o b l e m r e d u c e s to one of b i n a r y n a t u r e t h a t allows f o r t h e a p p l i c a t i o n of g r a p h - t h e o r e t i c c o n c e p t s .
This
a p p r o a c h is t h u s
especially adequate
for
large
scale systems.
T h e n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n s for t h e e x i s t e n c e o f a s o l u t i o n to t h e problem of s t a b i l i z a t i o n a n d
pole
assignment are
presented
for t h e
following two
cases :
-
centralized state feedback
- centralized output feedback T h e y a r e s t a t e d i n t e r m s of t h e c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y p r o p e r t i e s o f the system. It is c l e a r t h a t a good u n d e r s t a n d i n g
of t h e c o n c e p t s of c o n t r o l l a b i l i t y a n d
o b s e r v a b i l i t y is i n d i s p e n s a b l e b e f o r e p r o c e e d i n g to t h e s t u d y of t h e a b o v e p r o b l e m with s t r u c t u r a l c o n s t r a i n t s on t h e c o n t r o l .
2 1.2. - C O N T R O L L A B I L I T Y
AND
OBSERVABILITY
(FOS-77)
(KAI-80)
C o n s i d e r t h e l i n e a r t i m e - i n v a r i a n t dynamic s y s t e m d e s c r i b e d b y t h e following s t a t e - s p a c e model : x(t) = A x(t) + B u(t)
y(t)
= c x(t)
where x ( t ) ~
(1.2.1)
R n, u(t) 6 R m a n d y(t) ~ R r are the state, input and output vectors
respectively, and A, B and C are invariant matrices of appropriate dimensions.
1 . 2 . 1 . - S t a b i l i t y (WIL-70) Definition I . I .
The a u t o n o m o u s s y s t e m ( 1 . 2 . 1 )
a n y g i v e n v a l u e e > 0, t h e r e e x i s t s a n u m b e r
]l X (to)]l (
($I ==> ]Ix(t) ] < E:
(i.e. ~l(e,
f o r all
with u ( t )
= 0) is s t a b l e if for
t0) > 0 s u c h t h a t :
t>t 0
The autonomous s y s t e m ( 1 . 2 . 1 ) is aymptotically s t a b l e if : (i) - it is s t a b l e
(ii)-~
x
(to),
x(t)
~ 0 t -==b0o
It is w e l l - k n o w n t h a t t h e s o l u t i o n of t h e e q u a t i o n s
(1.2.1)
with u ( t ) =
0 is
given by : x(t) = eA(t-t0 ) x 0 Given
{X1,
....
Xn}
t h e s e t of e i g e n v a l u e s o f A, s y s t e m ( 1 . 2 . 1 ) with u ( t ) = 0 is
a s y m p t o t i c a l l y s t a b l e if a n d o n l y if all t h e e i g e n v a l u e s of A h a v e a n e g a t i v e r e a l part. In the opposite case, the state space X can be split into the stable subspace X S which is generated b y the set of eigenvectors associated with the stable eigenvalues and the unstable subspace X U which is generated b y the set of eigenvectors
associated with the
unstable
c o n v e r g e s t o w a r d z e r o . For
eigenvalues.
For
x ( t 0) £ X S,
the system response
x ( t 0) ~ X U, the s y s t e m r e s p o n s e d i v e r g e s .
3 I. 2.2. - Controllability
Definition 1.2. A state x I is said to be controllable at time t O if for every initial state x 0 defined at time t0, there exists a control u(t) that transfers the system from the state x 0 to the state x I in a finite time If every said to be equivalent The are stated
state of the system that the pair
necessary
and
1.1.
The
system
following conditions
holds
(1.2.1)
generate 2. such
AB
-
conditions
Note that
is of rank
n
products n),
(1.2.1)
to b e c o n t r o l l a b l e
if a n d
only if either
of the
two
The columns of the controllability
matrix
:
rank
criterion <w i ,
~C = n . (KAI-80).
There
bj> a r e n o n z e r o ,
exists
j £
(1 . . . . .
m}
w h e r e bj i s t h e j t h c o l u m n
of A.
i s n o t U m i n i m a l ' . More o f t e n t h a n n o t ,
i t will t u r n
:
AB . . . . . for
system
are the left eigenvectors
KahnanWs c r i t e r i o n
out that the matrix
#C = (B,
....
for
is controllable
(KAL-62).
Popov-Belevitch-Hantus
(i=l,
is
this is
An-IB)
. . . . .
all t h e s c a l a r
of B and wi,
the system
(1.2.1),
:
a space of dimension n, i.e.,
that
t o may be, For system
:
1. - KalmanWs c r i t e r i o n ~C = ( B ,
controllable.
( A , B) i s c o n t r o l l a b l e .
sufficient
in the following theorem
Theorem
is controllable whatever
"completely controllable ~ or just to s t a t i n g
(tl-t0).
somev
A~-IB) less
than
n.
The
smallest
such
x),
say
~c'
will t h e n
be
called the controllability index.
Popov-Belevitch-Hantus may be restated The system
Rank
where
criterion
may be more convenient
in some cases since it
in the following form • (1.2.1)
(~I-A B) = n
is controllable if and only if :
V ~ E
o (A)
o (.) denotes the set of eigenvalues of (.).
(1.2.2)
In t h i s new formj t h i s c r i t e r i o n i n t r o d u c e s t h e d e f i n i t i o n o f a c o n t r o l l a b l e pole ( e i g e n v a i u e of A) as a pole f o r w h i c h c o n d i t i o n ( 1 . 2 . 2 ) h o l d s . The c o m p o n e n t s of e v e r y s t a t e x ~ X of t h e s y s t e m can b e p a r t i t i o n e d s u c h t h a t : x = x c ~ Xun c w h e r e x c G X C a n d Xun c ~ XUN C. X C (XuN C) is t h e c o n t r o l l a b l e ( u n c o n t r o l l a b l e ) s u b s p a c e g e n e r a t e d b y t h e e i g e n v e c t o r s a s s o c i a t e d to the controllable
(uncontrollable)
e i g e n v a i u e s o f A.
It
can t h e n b e s h o w n t h a t t h e
e q u a t i o n s ( 1 . 2 . 1 ) can t a k e t h e form :
L unc.j
[:llu
A22
k uncd w h e r e i t a p p e a r s t h a t t h e c o m p o n e n t s o f XUN C a r e n o t c o n n e c t e d to t h e i n p u t . From t h i s p o i n t of viewj P o p o v - B e l e v i t c h - H a n t u s c r i t e r i o n g i v e s a d e e p i n s i g h t i n t o t h e c o n t r o l l a b i l i t y p r o p e r t i e s of t h e s y s t e m .
K a h n a n ' s c r i t e r i o n is s u i t a b l e for
c h e c k i n g t h e global c o n t r o I l a b i l i t y o n l y .
1.2.3.
-
Observabllity
Definition 1 . 3 .
A s t a t e x ( t 0 ) = x 0 is said to b e o b s e r v a b l e at time t O if it can b e
d e t e r m i n e d from t h e k n o w l e d g e of t h e i n p u t u ( t ) a n d of t h e o u t p u t y ( t ) o v e r a finite i n t e r v a l of time ( t 0 , t 1) . I f e v e r y s t a t e of t h e s y s t e m is o b s e r v a b l e w h a t e v e r t o may b e , t h e s y s t e m i s s a i d to be "completely o b s e r v a b l e n o r j u s t o b s e r v a b l e .
For system (1.2.1),
t h i s is
e q u i v a l e n t to s t a t i n g t h a t t h e p a i r ( C , A ) is o b s e r v a b l e . The n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n s for s y s t e m
(1.2.1)
to b e o b s e r v a b l e
a r e s t a t e d in t h e following t h e o r e m ." T h e o r e m 1.2.
T h e system ( 1 . 2 . 1 )
is o b s e r v a b l e if a n d o n l y i f e i t h e r
of t h e
following c o n d i t i o n s h o l d s : 1. - K a h n a n ' s c r i t e r i o n ( K A L - 6 2 ) . T h e r o w s of t h e o b s e r v a b i L i t y m a t r i x :
two
~D - C A
n-1
generate
a space of dimension n, i.e.,
2.
- Popov-Belevitch-Hantus
such that and vi,
criterion
all t h e s c a l a r p r o d u c t s
(i=l,
ooo, n ) ,
¢O = n . (KAI-80).
There
a r e n o n z e r o ,
are the right
As for controllability,
rank
eigenvectors
i t will g e n e r a l l y
turn
exists
j ~ {1 . . . . .
r}
w h e r e cj i s t h e j t h r o w o f C
of A.
out that the matrix
:
EJ CA
~0
=
A v-
i s of r a n k
n
for
some ~ less
called the observability
than
n.
The
smallest
such
x~, s a y ~ , will t h e n 0
be
index.
In the observability
case,
Popov-Belevitch-Hantus
criterion
may be restated
in
the following form :
The system
(1.2.1)
is observable
if and only if :
IXI-A] = n
and an observable
Xun °
where
(unobservable) (unobservable) observability
of every
xo
subspace
E
state
XO and generated
eigenvalues puts
(1.2.3)
pole is defined as a pole for which condition
The components x0 ~
~4X~c (A)
equations
of A. (1.2.1)
of the system X u n ° ~"
can be partitioned
XUN O .
XO
by the eigenvectors The
(1.2.3)
decomposition
( X u N O) associated
of the
in the following form :
is
holds. such
that
x =
the
observable
to t h e
observable
system
with regard
to
:o]
rail
•u n ° /
LA21
y
[Oo] [] Xun
o
+
A22
= [C1
u
B2
O] [Xo0 Xun]
w h e r e it is clear t h a t t h e c o m p o n e n t s of XUN O a r e n o t c o n n e c t e d to t h e o u t p u t . The
obvious
analogy
between
theorems
between the concepts of controllability and
1.1
and
1.2 p o i n t s out
observability.
the
Two s y s t e m s a r e
duality called
dual if t h e y a r e d e f i n e d r e s p e c t i v e l y b y t h e e q u a t i o n s : = A x + B u
[x* =
A' x* + C' u*
S* :
S • y
C x
~y*
= B' x*
T h e s e s y s t e m s a r e s u c h t h a t , if S is c o n t r o l l a b l e , S* is o b s e r v a b l e a n d vice v e r s a . It is t h u s
p o s s i b l e to c h e c k t h e o b s e r v a b i l i t y of a s y s t e m b y e x a m i n i n g t h e c o n -
t r o l l a b i l i t y of t h e dual s y s t e m .
1.2.4. - K a l m a n ' s c a n o n i c a l form
(KAL-62)
In view of p a r a g r a p h s 1 . 2 . 2
a n d 1 . 2 . 3 , it follows t h a t t h e s t a t e - s p a c e X can
be decomposed into four s u b s p a c e s such that :
X = X1 • X2 • X3 • X4
where :
X 1 = X C n XUN O Xz = XC n XO x 3 = XUN C
n XUN O
X 4 = XUNC
n XO
(controllable and unobservable subspace) (controllable and observable subspace) (uncontrollable and unobservable subspace) (uncontrollable and observable subspace)
Kalman (KAL-62) s h o w e d t h a t t h e r e e x i s t s a r e a l , r e g u l a r t r a n s f o r m a t i o n m a t r i x s u c h that the system (1.2.1)
can be p u t in t h e following canonical form •
x2 x3
y
jail =
0 o 0
=[o
]
AI2
A13
A22
0
A2~ /
0
A33
A3~"[
o
0
A44J
C2
[Xl] x2
x3
B2
+
(1.2.4)
x4
I
x I x2 x 3
x4]
i l l u s t r a t e d b y f i g u r e 1.1 :
w
Fig. 1.1.
: C a n o n i c a l d e c o m p o s i t i o n of a l i n e a r t i m e - i n v a r i a n t s y s t e m
S t a r t i n g from t h e c a n o n i c a l f o r m , t h e t r a n s f e r
f u n c t i o n m a t r i x of t h e s y s t e m
is :
Y(p) W(p) = U(p) = C2 [pl- A22 ]-1 B2
(p : Laplace v a r i a b l e )
in w h i c h o n l y t h e s i m u l t a n e o u s l y c o n t r o l l a b l e a n d o b s e r v a b l e poles a r e p r e s e n t . Note t h a t t h e poles of t h e s y s t e m c o r r e s p o n d i n g to t h e e i g e n v a l u e s of A l l , a n d A44 ( t h e n o n s i m u l t a n e o u s l y u n c o n t r o l l a b l e a n d u n o b s e r v a b l e p o l e s ) condition :
rank
= n
easily d e r i v e d from t h e P o p o v - B e l e v i t c h - H a n t u s c r i t e r i o n ( 1 . 2 . 2 )
A22
verify the
and (1.2.3).
8 1 . 2 . 5 . - Practical importance of the c o n c e p t s of controllability a n d o b s e r v a b i l i t y (FOS-77) It is n o w i n t e r e s t i n g to e x a m i n e t h e c o n s e q u e n c e s o f t h e e x i s t e n c e of u n c o n t r o l l a b l e a n d u n o b s e r v a b l e m o d e s on t h e b e h a v i o u r of t h e s y s t e m .
T h e s e few follo-
wing r e m a r k s c o n s i d e r several cases and point out the practical importance of the c o n c e p t s of c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y .
Remark 1.1.
As s h o w n i n p a r a g r a p h
to t h e i n p u t .
p e n d e n t l y of t h e c o n t r o l i n p u t , Its
1 . 2 . 3 , a n u n c o n t r o l l a b l e mode i s n o t c o n n e c t e d
T h e r e s p o n s e a s s o c i a t e d w i t h s u c h mode will t h u s e v o l v e in time i n d e -
e v o l u t i o n will d e p e n d
w h e t h e r in o p e n - l o o p o r
closed-loop configuration.
o n l y on t h e mode d y n a m i c s a n d t h e c o r r e s p o n d i n g i n i t i a l
conditions.
Remark 1.2.
C o n s i d e r t h a t a n u n c o n t r o l l a b l e mode is u n s t a b l e .
t h e u n s t a b i l i t y will a p p e a r at t h e o u t p u t a n d will t h u s the
fact
that
the
If it is o b s e r v a b l e ,
be detectable.
Nevertheless,
mode is u n c o n t r o l l a b l e e x c l u d e s all p o s s i b i l i t y of s t a b i l i z i n g t h e
s y s t e m . What is r e q u i r e d is n o t a c o n t r o l law b u t a m o d i f i c a t i o n of t h e s y s t e m s t r u c ture.
Remark 1.3.
C o n s i d e r now t h e c a s e f o r w h i c h a n u n s t a b l e mode is n o t o b s e r v a b l e .
T h e u n s t a b l e d y n a m i c s of t h i s mode will n o t a p p e a r on t h e o u t p u t , s e e n in p a r a g r a p h e
s i n c e we h a v e
1 . 2 . 4 t h a t u n o b s e r v a b l e m o d e s a r e n o t c o n n e c t e d to t h e o u t p u t .
T h e s y s t e m m a y t h u s be o b s e r v e d a s s t a b l e . N e v e r t h e l e s s p t h e i n t e r n a l u n s t a b i l i t y of t h e s y s t e m may come to e i t h e r a b r e a k - u p
o f t h e s y s t e m o r t h e a p p e a r e n c e of a n o n
l i n e a r f u n c t i o n ( s a t u r a t i o n ) so t h a t t h e l i n e a r model is n o l o n g e r v a l i d . These
remarks
strength
the
importance
of
having
criteria
which
allow
the
d e t e c t i o n of u n c o n t r o l l a b l e a n d u n o b s e r v a b l e m o d e s w h e n c o n s i d e r i n g s y s t e m c o n t r o l
problems.
1.2.6. - Stabilization and pole assignment The
problem
system (1.2.1)
of
(i.e.,
stabilization
is
(BRA-70)
formulated
(WON-67) as
follows :
given
h a v i n g some p o l e s w i t h p o s i t i v e r e a l p a r t s ) ,
the
unstable
find a controller
o f t h e form : u = K y
(1.2.5)
such that the closed-loop system : x ( t ) = (A + B K C ) is s t a b I e ;
i.e.
(1.2.6)
x(t)
e v e r y e i g e n v a l u e of t h e c l o s e d - l o o p d y n a m i c m a t r i x (A + BKC) h a s a
negative re~ part.
1,2.6.a.
- State feedback control
First consider the case for which every
s t a t e of t h e s y s t e m
(1.2.1)
can b e
measured, what can be expressed by : C = I n ( I d e n t i t y m a t r i x of o r d e r n x n ) y=x T h e f e e d b a c k c o n t r o l t h e n t a k e s t h e form : u = K x
System
(1.2.1)
(1.2.7)
is s t a b i l i z a b l e u s i n g s u c h a c o n t r o l law if a n d o n l y i f t h e u n s t a b l e
s u b s p a c e X U ( s e e § 1 . 2 . 1 ) is i n c l u d e d in t h e c o n t r o l l a b l e s u b s p a c e X C ( s e e § 1 . 2 . 2 ) and every
pole of ( 1 . 2 . 1 )
can be arbitrarily
c o n t r o l l a b l e . T h i s is c l e a r l y u n d e r s t a n d a b l e However,
more o f t e n t h a n n o t ,
assigned
if a n d o n l y if
(1.2.1)
is
from t h e d e f i n i t i o n of c o n t r o l l a b i l l t y .
t h e s t a t e s a r e n o t d i r e c t l y a v a i l a b l e from t h e
measurements and additional conditions are required.
1.2.6.b.
- Output feedback control
With a c o n t r o l law of t h e (1.2.1)
(see
~2 ~3
form ( 1 . 2 . 5 ) ,
u s i n g t h e Kalman's c a n o n i c a l form of
1. Z. 4), t h e c l o s e d - l o o p s y s t e m is d e s c r i b e d b y : All
A12+BIKC 2
AI3
AI4+BIKC4 -
x1
o
A22 +B2K C 2
0
A24 +B2K C 4
x~
0
0
A23
A34
x3
0
o
0
A##
x~
I t is t h u s a p p a r e n t t h a t t h e c l o s e d - l o o p s y s t e m is s t a b l e if a n d o n l y if :
(i.z.8)
10 (i) t h e u n s t a b l e s u b s p a c e X U is i n c l u d e d in t h e c o n t r o l l a b l e s u b s p a c e X C a n d in t h e o b s e r v a b l e subspace X O ~ i . e . p
Stated in a different way,
the
e i g e n v a l u e s of A l l ,
A33 a n d
A44 a r e
stable.
this is equivalent to have all the unstable poles con-
trollable and observable. (ii) there exists a matrix K such that (A22 + B z K C z) is stable, what is expressed by : F2 = K C 2
and
rank (C2, F 2) = rank C 2
where F 2 is a stabilizing state feedback for the second subsystem that always exists since the second subsystem is controllable. W h e n considering arbitrary pole assignment, condition (i) is replaced by ." (i*) the system (1.2.1) is controllable and observable. When
condition (ii) cannot be verified, a dynamic output feedback control of
the form :
{
~(t) = S z(t) + R y(t)
(1.2.9)
u(t) = Q z(t) + K y(t) + v(t)
is required. Then, condition (i) is sufficient (and necessary) to stabilize the system (1.2.1) and arbitrary pole assignment is possible if and only if (1.2.1) trollable and observable (BRA-70)
showed
(condition
is con-
(i*)). In this latter case, Brasch and Pearson
that the minimal order of the required dynamic
achieve pole assignment is :min ( Vc-1 , ~o-1), where
x)c and
compensator to
~o are the controlla-
bility and observability indices, respectively.
1.2.7. - Origins of uncontrollable and unobservable modes In
order
to
show
the
mechanism
of
uncontrollability
and
unobservability,
c o n s i d e r t h e following simple example of a s i n g l e - v a r i a b l e s y s t e m t a k e n from (FOS-
77) : -2
0
-2
3
0 x +
I
l
1
1
1
0
0
(1.2.10) y
0
0
x
11 that can be r e p r e s e n t e d by t h e b l o c k - d i a g r a m of f i g u r e 1.2 :
xI
q +J
x2
x4
1.2.
Figure
Using conditions (1.2.2) and ( 1 . 2 . 3 ) , it can be easily c h e c k e d t h a t t h e mode ~1=1 is u n c o n t r o l l a b l e and ~2=-1 is u n o b s e r v a b l e :
o
0 3
o o
o
-2-1 3
-I
-1
0
0
0
-I
-1
o
2 rank [M-A
B]kl=l
:
rank
rank[1i-A
= rank
=-I
4
o
0
1
o
o
1
-1
-2
o
-1
-1
o
2
0
o
0,5
0.5
o 0 -
o
o
=3
<4
o
=3<4
This system is composed of two s u b s y s t e m s in cascade and can be r e w r i t t e n in the e q u i v a l e n t form of f i g u r e 1.3.
:
p+l
(p+~) (p-l)
(p+l) (p+2) F i g u r e 1.3.
~_4~ Y
12 where
it a p p e a r s
that
the
uncontroUability
cancellation of a pole of one transfer
and
the
unobservahiltty
result
from the
function by a zero of the other and vice versa.
In fact, if the cancellation is of the form : 1 - "zero upstream,
pole downstream",
2 - npole upstreamt
z e r o d o w n s t r e a m n, i t i n d u c e s
From this not appear
result,
it follows that
it induces
uncontrollability unobservability
the uncontrollable
as poles of the global transfer
a s f o r ~1=1. as for
and unobservable
function of the system
~,2=-1.
m o d e s do
:
l
Indeed, respect
the
uncontrollable
to t h e i n p u t - o u t p u t
and
relation
unobservable
since the
input and the second ones are disconnected It
is
clear
parameters'
that
this
situation
arises
first
¢ on the parameters
from
a31 a n d a 3 2 ,
the
special
of
two
with
from the
configuration
(1.2.10).
0
of
Introducing
the dynamic matrix becomes
-2
configuration
"transparent"
disconnected
from the output.
A
The
are
are
v a l u e s in t h e m a t r i c e s o f t h e m o d e l o f t h e s y s t e m
perturbation
figure
modes ones
the a
:
0
°°° 1
subsystems
in
1+¢
1
o
1
0
-3
cascade
is
1.4 :
x2
I p" I Figure
1.4
preserved
as
shown
in
13 or
e q u i v a l e n t l y in f i g u r e 1.5 :
u.__.~
(p+l)(p+2)
]
-"
[
(p+3)(p-l)
F i g u r e 1.5 In f i g u r e
1.5,
it is clear that
the p o l e - z e r o cancellation g i v i n g r i s e to the
u n o b s e r v a b i l i t y no l o n g e r o c c u r s for ~ ¢ 0. T h e r e f o r e ,
this u n o b s e r v a b i l i t y can be
avoided b y c h a n g i n g t h e v a l u e s of some a d e q u a t e components of the s y s t e m , C o n s i d e r now the case for which a31 and r e f l e c t i n g the i n t e r n a l i n t e r c o n n e c t i o n s t r u c t u r e entries
cannot be p e r t u r b e d
by
any
change
a41 in ( 1 . 2 . I 0 ) a r e fixed z e r o s , of t h e system ( i . e . , t h e s e zero
of the
components
values).
In
this
situation, the system is r e p r e s e n t e d b y f i g u r e s 1.6 and 1.7 below :
xI
x#
2 F i g u r e 1.6.
p+l ~ (p+3)(p- l)
u.l,+
Y
F i g u r e 1.7. and its t r a n s f e r function is :
Y=
where the pole ~2---1 is a b s e n t .
B(p+l) (p+2)(p+3)(p-- 1)
This r e s u l t is not s u r p r i s i n g since F i g u r e 1.6 shows
that the block - 2 / p + l is d i s c o n n e c t e d from the o u t p u t . s e r v a b l e mode.
X2=-I is t h e r e f o r e an u n o b -
14
The i n t e r e s t i n g p o i n t o f t h i s d i s c u s s i o n is t h a t t h e pole %2=-1 will n o t a p p e a r in t h e t r a n s f e r f u n c t i o n a n d will r e m a i n u n o b s e r v a b l e h o w e v e r t h e p a r a m e t e r s o f t h e system are changed.
This s i t u a t i o n a r i s e s from t h e i n t e r c o n n e c t l o n s t r u c t u r e o f t h e
s y s t e m . S u c h a pole is called s t r u c t u r a l l y u n o b s e r v a b l e . A similar d i s c u s s i o n could be
d o n e f o r u n c o n t r o l l a b i l l t y coming to t h e
c o n c e p t of s t r u c t u r a l l ) r
uncontroIlable
pole s . T h e s e c o n c e p t s p r e s e n t a g r e a t p h y s i c a l i n t e r e s t . I n d e e d , p r a c t i c a l l y , most of t h e e n t r i e s o f A, B a n d C in
(1.2.1)
are
k n o w n w i t h t h e a p p r o x i m a t i o n o f some
e r r o r s o f m e a s u r e m e n t s (it is e s p e c i a l l y t r u e f o r l a r g e scale s y s t e m s ) . Only some of t h e s e e n t r i e s a r e k n o w n w i t h 100 p e r c e n t p r e c i s i o n : t h i s h a p p e n s f o r t h e e n t r i e s that
are
equal
to
zero and
reflect
the
internal
interconnection structure
of t h e
s y s t e m . The c o n c e p t s of s t r u c t u r a l c o n t r o l l a b i l i t y a n d s t r u c t u r a l o h s e r v a b i l i t y t h e n makes t h e m e a n i n g of c o n t r o l l a b i l i t y and o b s e r v a b i l i t y more complete from t h e p h y sical p o i n t o f v i e w . T h e following p a r a g r a p h perties and
presents
t h e mathematical formulation o f t h e s e p r o -
some r e s u l t s e x p r e s s i n g t h e n e c e s s a r y a n d
s u f f i c i e n t c o n d i t i o n s for a
s y s t e m to b e s t r u c t u r a l l y c o n t r o l l a b l e a n d o b s e r v a b l e .
1.3. - S T R U C T U R A L
CONTROLLABILITY
These concepts were
AND
OBSERVABILITY
first introduced by
p r o v i d e t h e c o n d i t i o n s for s t r u c t u r a l
Lin in
1974
controllability (and by
(LIN-74).
His r e s u l t s
duality for s t r u c t u r a l
o b s e r v a b i l i t y ) of s i n g l e - v a r i a b l e s y s t e m s in a g r a p h - t h e o r e t i c a p p r o a c h .
They were
e x t e n d e d to m u l t i - v a r i a b l e s y s t e m s b y Shield a n d P e a r s o n in 1976 (SHI-76) b u t in a purely algebraic approach.
I n t h e same y e a r ,
Glover a n d Silverman (GLO-76) p r e -
s e n t e d a simple a l g e b r a i c solution a n d d e r i v e d a r e c u r s i v e algorithm f o r d e t e r m i n i n g structural
controllability
which
utilizes
Boolean
operations
only.
presents these results and establishes the equivalence between the
This
paragraph
graph-theoretic
and the algebraic approaches. C o n s i d e r t h e l i n e a r t i m e - i n v a r i a n t dynamic s y s t e m in t h e form :
{
~(t) = A x(t) + B u(t) y(t) C x(t)
(1.3.1)
where x C R n, u C R m and y ~ R r. A, B, and C are invariant matrices of appropriate dimensions in which the entries are either fixed zeros of undeterminate (arbitrary). Such a system is called a structured system and A, B and C are structured matrices (SHI-76). It is worth noting that the model class of systems.
(1.3.1) refers therefore to a
15 Definition
1.4.
The
triple
e q u i v a l e n t to) t h e t r i p l e
(~,
~,
~)
has
the
same
structure
as
(is s t r u c t u r a l l ~
(C, A, B) of t h e same d i m e n s i o n s if for e v e r y
e n t r y of t h e m a t r i x ( ~ ~ ~ ) ,
fixed zero
t h e c o r r e s p o n d i n g e n t r y of t h e m a t r i x (C A B) is also
a fixed zero, and vice versa. O b v i o u s l y , if t h e t r i p l e ( ~ , X , l~) is s t r u c t u r a l l y A, B ) ,
then the pairs
(~,
~) and
(~, g)
e q u i v a l e n t to t h e t r i p l e (C,
are structurally
e q u i v a l e n t to t h e p a i r s
(C, A) a n d (A, B ) , a n d t h e i n v e r s e i s also t r u e . Definition 1.5.
A pair
(A,
B)
((C,
A)) is s t r u c t u r a l l y
t h e r e e x i s t s a p a i r e q u i v a l e n t to (A, B) ( ( C ,
controllable
(observable)
if
A)) w h i c h is c o n t r o l l a b l e ( o b s e r v a b l e )
in t h e u s u a l s e n s e . 1.3.1.
-
1.3.1.a.
Structural controllability - A l g e b r a i c a p p r o a c h (SHI-76)
Definition 1 . 6 .
T h e m a t r i x (A B) h a s form I if t h e r e e x i s t s a p e r m u t a t i o n m a t r i x P
satisfying :
P' [A B]
F: 0] EAI 0 I
with A l l o f o r d e r t x t ,
1 .~ t ( n .
A21
A22
0] B2
We a s s u m e t h a t B 2 h a s a t l e a s t o n e n o n z e r o e l e -
merit. T h e m a t r i x (A B) h a s form II if : g r ( A B) ( n where gr (.)
d e n o t e s t h e g e n e r i c r a n k 1 of ( . ) .
1 C o n s i d e r a s t r u c t u r e d m a t r i x 1~ w i t h ~ arbitrary entries. Then the parameter s p a c e RV is a s s o c i a t e d w i t h ~ s u c h t h a t e v e r y d a t a p o i n t d ~ R v d e f i n e s a m a t r i x M=~(d). C o n v e r s e l y , a s t r u c t u r e d m a t r i x M is a s s o c i a t e d with e v e r y m a t r i x M s u c h t h a t M=~(d) for d ~ R V. T h e g e n e r i c r a n k of M o r of M is d e f i n e d as follows : g r ( M ) = g r ( ~ ) = m a x { r a n k ~ (d) } dew
16
T h e o r e m 1.3
(SHI-76).
The pair
( A , B) i s s t r u c t u r a l l y
controllable if and only if the
two f o l l o w i n g c o n d i t i o n s b o t h h o l d : 1 - t h e m a t r i x (A B) i s n o t o f f o r m I. 2 - t h e m a t r i x (A B) i s n o t o f f o r m I I ,
1.3.1.b.
- Graph-theoretic
The
structured
approach
nature
of the
(LIN-74) system
(1.2.5)
naturally
comes to
associate
a
digraph. A digraph edges
is a pair D=(V,E),
( v j , v i) d i r e c t e d
w h e r e V is a s e t o f v e r t i c e s
from t h e v e r t e x
vj to t h e v e r t e x
a n d E is a s e t o f
v i , I f ( v j , v I) E; E t h e n vj
is s a i d to b e a d i a c e n t to v i a n d v i a d j a c e n t from v j . T h e a d j a c e n c y r e l a t i o n d e f i n e s a square
binary
m a t r i x R=(~-ij) c a l l e d t h e a d i a c e n c y
a n d o n l y if ( ~ ,
vi)•
E0 A s e q u e n c e o f e d g e s
w h e r e all t h e
vertices
cides with Vl,
then
are distinct,
the path
(or interconnection)
{ ( v 1, v 2 ) ,
is called a path
is a cycle.
from v 1 to v k .
A digraph
m a t r i x ~..=11] i f
( v 2, v 3) . . . . .
(Vk_ 1, v k ) } When v k c o i n -
D is s a i d to b e
a c y c l i c i f it
contains no cycles.
If t h e r e i s a p a t h f r o m v i t o v i , t h e n we s a y t h a t v i is r e a c h a b l e
from vj.
a subset
vertex every
Similarly,
V£
c
V is r e a c h a b l e
from a subset
in V. i s r e a c h a b l e f r o m some v e r t e x in V . . We s a y t h a t V. 1
vertex
lity relation
,]
Vj c
J
c
V if every
V reaches
V. i f 1
i n V. r e a c h e s a t l e a s t o n e v e r t e x in V . . Like a d j a c e n c y , t h e r e a c h a b i ] 1 o n V c a n b e r e p r e s e n t e d b y a b i n a r y m a t r i x R=(r_.j)~ s u c h t h a t r .1j. = l i f
a n d o n l y if v. i s r e a c h a b l e f r o m v . . 1 j A pair of vertices c h a b l e from e a c h o t h e r .
of
D a r e s a i d to b e s t r o n g l y
A maximal s u b g r a p h
strongly connected is called a strong The
strong
components
components D1,...,DN, (i=l . . . . . k ) , performed
of
connected
if t h e y
are rea-
o f D in w h i c h e v e r y p a i r o f v e r t i c e s a r e
c o m p o n e n t o f D.
D are
uniquely
they can be ordered
i s r e a c h a b l e from a n y o t h e r
determined.
If
D has
N strong
s u c h t h a t f o r some 1 ~ k ~ N, n o n e Di ,
Dj, j>i. I f t h e c o r r e s p o n d i n g
o n t h e a d j a c e n c y m a t r i x o f D, i t a p p e a r s
permutation is
t h e n in a b l o c k - t r i a n g u l a r
form
where every block in the diagonal is the adjacency matrix of a strong component.
Let M be a rectangular associated adding
to M a s t h e
(q-p)
zero rows.
pxq structured
digraph
matrix and define the digraph
whose adjacency
m a t r i x is M', o b t a i n e d
D=(V,E)
from M by
17 Definition 1 . 7 .
A d i g r a p h D=(V,E)
c o n t a i n s a dilation if a n d only if t h e r e e x i s t s a
s e t S c V I (V I c V is t h e s e t of v e r t i c e s w h i c h a r e a d j a c e n t from at l e a s t o n e v e r t e x in V) of K v e r t i c e s s u c h t h a t t h e s e t T ( S ) c V
o f v e r t i c e s t h a t a r e a d j a c e n t to a v e r t e x
of S c o n t a i n s no more t h a n ( K - I ) e l e m e n t s . The dilation is d e n o t e d b y { S , T ( S ) } . This
d e f i n i t i o n i s a g e n e r a l i z a t i o n of t h e
c o n c e p t of dilation i n t r o d u c e d b y
(LIN-74) in t h e c o n t e x t of s t r u c t u r a l a n a l y s i s for s i n g l e - v a r i a b l e s y s t e m s . In p r a c t i c e ,
D c o n t a i n s a dilation if a s e t of K rows can be f o u n d in t h e
a d j a c e n c y m a t r i x of D s u c h t h a t t h e r e a r e no more t h a n ( K - l ) columns w i t h n o n z e r o e n t r i e s in t h e s u b m a t r i x formed b y t h e s e K r o w s . Given
the
triple
(C,A,B),
one
defines
{U= U l , . . . , u m} i s t h e s e t of i n p u t v e r t i c e s ,
a
d i g r a p h F = ( U v X u Y,E)
X={Xl,...,Xn}iS
where
t h e s e t of s t a t e v e r -
tices a n d Y={~/1 . . . . y r } is t h e s e t o f o u t p u t v e r t i c e s . E i s t h e s e t o f e d g e s s u c h t h a t (u i,
xj)£E
if a n d
only i f bji#0 i n
B , ( x i , x j) E: E i f a n d only if aji#0 in
A and
( x i , Y j ) ( E if a n d only if cji#0 i n C. In t h i s w a y , t h e d i g r a p h r c o m p l e t e l y d e s c r i b e s t h e s t r u c t u r e o f t h e s y s t e m . Definition 1.8 ( S I L - 7 8 ) . The s y s t e m ( C , A , B ) is s a i d to b e i n p u t r e a c h a b l e (or i n p u t c o n n e c t a b l e (DAV-77a)) if X is r e a c h a b l e from U a n d o u t p u t r e a c h a b l e
(or o u t p u t
c o n n e c t a b l e (DAV-77a)) if X r e a c h e s Y. A l t h o u g h Lints work (LIN-74) d e a l t only with s i n g l e - i n p u t s y s t e m s , it can b e d i r e c t l y e x t e n d e d to m u l t i - i n p u t s y s t e m s .
Consider the pair (A,B) and its associated digraph rl=(U v X,E I) obtained from r by deleting the set of output vertices and every edge from X to Y. Then, we h a v e t h e following r e s u l t : Theorem 1 . 4 .
The
pair
(A,B)
is s t r u c t u r a l l y
c o n t r o l l a b l e if and only if t h e
two
following c o n d i t i o n s b o t h hold : 1 - (A,B) is input reachable. 2 - F1 d o e s n o t c o n t a i n a d i l a t i o n .
1 . 3 . 1 . c . - E q u i v a l e n c e of t h e two a p p r o a c h e s It is now w o r t h v e r i f y i n g t h a t t h e o r e m s 1.3 a n d 1.4 a r e e q u i v a l e n t . C o n s i d e r t h e f i r s t p a r t s of t h e t h e o r e m s .
18
If matrix
(A B)
has
form I,
by
definition 1.6,
there
matrix P satisfying :
P' [A B]
with A l l o f o r d e r t x t ,
a
permutation
o]
=
i
exists
A22
LA21
B2
1 ~ t (n.
T h e f i r s t e q u a t i o n in ( 1 . 3 . 1 ) is t h u s r e w r i t e d v i t h a p a r t i t i o n e d s t a t e v e c t o r :
I17 [ °]Ix,][ °] =
)(2
+
A21
A22
X2
U
132
a n d t h e g r a p h a s s o c i a t e d with t h e p a i r ( A , B ) in t h i s form is g i v e n in F i g u r e 1.8.
F i g u r e 1.8. It is c l e a r t h a t t h e s t a t e v e r t i c e s in X 1 a r e n o t i n p u t r e a c h a b l e . The i n v e r s e also h o l d s : if t h e g r a p h of a p a i r
(A,B)
contains non-input-reachable state ver-
t i c e s , t h e m a t r i x (A B) can b e b r o u g h t to form I. T h e f i r s t p a r t s of t h e t h e o r e m s 1.3 a n d 1.4 a r e t h e r e f o r e e q u i v a l e n t . To p o i n t o u t t h e e q u i v a l e n c e of t h e s e c o n d p a r t s o f t h e t h e o r e m s , we n e e d t h e following r e s u l t due to Shield a n d P e a r s o n ( S H I - 7 6 ) . Theorem 1 . 5 .
(SHI-76).
Assume a r e c t a n g u l a r m a t r i x M of o r d e r p x q with p ~ q .
gr(M) ( t for some t , 1 ~ t ~ p , if for some k in t h e r a n g e q - t < k ~ q , M c o n t a i n s a z e r o s u b m a t r i x of o r d e r ( p + q - t - k + l ) x k . Theorem
1.5
following c o r o l l a r y :
a p p l i e d to M=(A B)
of o r d e r
nx(n+m)
obviously
leads
to t h e
lg Corollary
1.1.
m( k ~ n+m,
: gr(A
B)
Making the change gr(A
B)
submatrix
(n
(i.e,
(A B)
has
(A B) c o n t a i n s a z e r o s u b m a t r i x
: K=n+m-k+l,
of order
the digraph
of variables
Kx(n+m-K+l),
associated
range
(A,B)
if f o r s o m e k i n t h e
1 ~
contains
range
(n+m-k+l)xk.
corollary
1.1 becomes
K
which is equivalent,
with the pair
Figure 1.9 with an example
f o r m II)
of order
(A B)
contains
from definition
a dilation.
:
1.8,
a zero to h a v e
This is illustrated
by
: ¢.q.t..~K + 1
E
m
o
(
~
I
"/iv
o o iil
o
o
o
o
X
X
ii X
i
S = { x 1, x 2 , x 3 } =) K=3
T(S)=(u,
x 1} Figure
1.3.2.
- General results As far
study
as the
on structural
dual concept
controllability
of structural
could be done and the general
1.3.2.a.
1.9
results
Theorem 1.6.
The system
(1.2.5)
is concerned,
a similar
in the following theorems
represented
1 - ( A , B ) i s n o t o£ f o r m I. B)=n
(i.e,
=n ( i . e ,
by
the triple
(C,A,B)
:
is structurally
if a n d o n l y if t h e f o l l o w i n g c o n d i t i o n s h o l d :
2 - (A I, C I) i s n o t o f f o r m I.
4- gr
observability
are stated
- Algebraic approach
controllable and observable
3 - gr(A
and observability
(A B) i s n o t o f f o r m I I ) .
(A ~ C t) i s n o t o f f o r m I I ) .
20
1 . 3 . 2 .b. - Graph-theoretic Theorem
1.7. T h e
system
approach
(1.2.5)
controllable a n d observable
represented
by
i - (A,B)
is input reachable.
2 - (A,C)
is output reachable.
3 - The
digraph
associated with the pair (A,B)
4 - The
digraph
associated with the pair ( M ,
1.3.3.
- Computational
the triple
(C,A,B)
if a n d only if the following conditions hold
is structurally :
does not contain a dilation. G') does not contain a dilation.
considerations
T h e most p r a c t i c a l way to c h e c k s t r u c t u r a l
c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y of
a given system (C,A,B)
is to combine t h e a l g e b r a i c a n d g r a p h - t h e o r e t i c
Indeed,
output
the
input
and
reachability
can be easily tested
approaches.
a n d on t h e o t h e r
h a n d , a lot of e f f i c i e n t a l g o r i t h m s e x i s t to d e t e r m i n e t h e g e n e r i c r a n k of a m a t r i x .
l. 3.3. a. -Input and output reachability conditions T h e a d j a c e n c y m a t r i x of t h e d i g r a p h a s s o c i a t e d with ( C , A , B )
h a s t h e following
form : X
U
Y
o
o
U
C
o
y
(1.3.z)
:
where ~,B and ~ are obtained by replacing every undeterminate (arbitrary)
entry in
A , B a n d C b y 1. The reachability matrix,
w h i c h h a s t h e same d i m e n s i o n as ~ a b o v e is g i v e n
by :
I R =
X
U
Y
E
F
0
X
0
o
0
U
G
H
o
Y
(1.3.3)
21 R can be computed directly from ~ as s h o w n in (SIL-78). By the (SIL-78) output
;
sole observation
(CjA~B)
reachable
is
of R j
input
if a n d
- Generic rank
A number generic
rank
((SHI-76),
of authors
Among the (PRE-81)
the determination an
nxm
have
no zero columns j and
suggested
matrix.
no
zero
conditions rows,
it i s
it i s i n p u t - o u t p u t
rea-
we m e n t i o n
rank
the
were
the
one b y
of "nontaking
of
the
finding to
Prescott
(LIU-68).
of an nxm structured
zeros
for
shown
be
the
wrong
problem.
mathematics
of the maximum number where
algorithms
algorithms
a tricky
on combinatorial
of the generic
chessboard,
alternative
Several
revealing
algorithms,
based
that the evaluation
reachahiltty
if F h a s
zero rows nor zero columns.
(DAV-77a)),
efficient
(JAM-83)
on the
only
conditions
of a structured
(BUR-81),
if a n d
o n l y if G h a s
c h a b l e if a n d o n l y if H h a s n e i t h e r
1.3.3.b,
we c a n c o n c l u d e
reachable
matrix
and
Pearson
basic
idea is
matrix is equivalent
roots" are
The
to
that can be placed on
interpreted
as
forbidden
by Johnston
et al.
positions. Another
interesting
84) t h a t i s b a s e d matrix
is
disjoint rows
first
blocks
than
on the detection
brought appear
columns
simple procedure
algorithm was presented back
in
to
the
indicate
in a systematic a triangular
diagonal.
a possible
The rank
in ( E V A - 8 4 ) .
e q u a l to t h e
The algorithm
which
appropriate
t h a t we p r e s e n t
is specially reordering
suitable
that
have
deficiency,
fact that
of the
a greater
which
is
The initial
where
different number
determined
of
by
a
entries.
the
nonzero
refering
generic
diagonal
rank
of a matrix is
rank
of a matrix is
blocks
(see the next section)
to large
the global generic
to s m a l l e r d i m e n s i o n e d
way by
in ( J O H - 8 4 ) .
here
for application
of the matrix,
out in a sequential
of t h e a l g o r i t h m
blocks
form
to c o m p u t e t h e g e n e r i c
on the
dimensions
of any dilation.
(JOH-
constituting
the
matrix.
in t e r m s o f c o n d i t i o n s carried
It is based
sum of the
maximal permutation
86a)
manner
block-structure
examining the position of the nonzero
We m e n t i o n a l s o t h a t a n A P L r o u t i n e provided
recently
using,
at e a c h
scale systems.
rank
matrices.
step,
is the one in
(TRA-
Using
an
condition is expressed The checking
a slightly
is t h u s
modified version
22
1,3.3.c. - A sequential algorithm to conclude on structural controllability and observability of large scale systems (TRA-86a) When dealing with l a r g e scale s y s t e m s , c h e c k i n g t h e c o n d i t i o n s f o r s t r u c t u r a l c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y may c a u s e c o m p u t a t i o n a l d i f f i c u l t i e s a n d r e q u i r e h i g h calculation time. T h i s s e c t i o n p r e s e n t s t h e w o r k in (TRA-86a) which t a k e s a d v a n t a g e of t h e i n h e r e n t s t r u c t u r e of a c l a s s of l a r g e scale s y s t e m s which can be d e c o m p o s e d into hierarchically
ordered
interconnected irreducible
subsystems.
The
underlying
idea is to a c h i e v e computational a n d c o n c e p t u a l s i m p l i f i c a t i o n s b y s u b s e q u e n t l y s o l v i n g each subsystem.
This approach has been used to analyse systems stability in
(SEZ-81c) (MIC-78) and for estimators and controllers design in (PIC-83b). Although (PIC-83b) uses the property that each subsystem is structurally controllable and observable, the conditions guaranteing these properties have not been yet derived within this perspective.
This problem is considered in (TRA-86a)
and
sequential
conditions for structural controllability (observability) of the overall system
are
provided. A n iterative algorithm is proposed and its improvements with respect to an a l g o r i t h m u s i n g a global a p p r o a c h a r e d i s c u s s e d . An i l l u s t r a t i v e example is p r e s e n ted.
1. P r e l i m i n a r i e s In t h i s s e c t i o n , some new c o n c e p t s of g r a p h t h e o r y (TRA-86a) a r e i n t r o d u c e d , Definition 1.9. A G-dilation ( G e n e r a l i z e d dilation) i s d e f i n e d as a n y p a i r of s e t s { S c V ' , T ( S ) c V } s u c h t h a t e a c h v e r t e x of T ( S )
is a d j a c e n t to some v e r t e x o f S. The
o r d e r of a G-dilation is d = c a r d S - c a r d T(S)
w h e r e c a r d * d e n o t e s t h e n u m b e r of
s
e l e m e n t s in t h e s e t *. O b v i o u s l y , a dilation is a G - d i l a t i o n w h o s e o r d e r is p o s i t i v e . T h e n , it is c l e a r that
gr(M)=p
(full
generic rank)
if a n d
only if t h e
order
of all t h e
G-dilations
c o n t a i n e d in D i s - ~ 0 . We s a y t h a t a G - d i l a t i o n { S , T ( S ) }
of o r d e r
d s is maximal i f ,
for all p r o p e r
s u b s e t s L c ( V ' - S ) , t h e G-dilation {~¢=L,T(ScL)} is of o r d e r ~d s . T h e o r e m 1.8. M contains
( T R A - 8 6 a ) . I f t h e d i g r a p h D a s s o c i a t e d with a full g e n e r i c r a n k m a t r i x k
G-dilations {Si,T(Si)},
G-dilation of o r d e r 0 { ~ , T ( ~ ) } 0r i . e . ,
SiC fir T(Si) C T ( ~ ) ,
(i=l, . . . . k ) ,
of
order
0,
then
the
maximal
is u n i q u e a n d " i n c l u d e s " all t h e G - d i l a t i o n s of o r d e r
(i=l . . . . . k ) .
23
2. Seciuential c o n d i t i o n s for s t r u c t u r a l controllability C o n s i d e r the system
(1.2.1)
represented
b y the t r i p l e (C,A,B) and its a s s o -
ciated d i g r a p h F = ( U t K u Y , E) as d e f i n e d in section 1 . 3 . 1 . b . summarizes the r e s u l t s p r o v i d e d in (LIN-74) and (SHI-76) :
The following theorem
Theorem 1.9. The system (1.2.1) is s t r u c t u r a l l y controllable ( o b s e r v a b l e ) if and only if the two following conditions both hold : 1- ( A , B )
( ( C , A ) ) is i n p u t ( o u t p u t ) r e a c h a b l e (SIL-77)
2- gr(A B) = n (gr(A' C')= n)
From the computational p o i n t of v i e w , c h e c k i n g the above conditions r e q u i r e s the evaluation of the t e a c h a b i l i t y matrix of the d i g r a p h associated with ( A , B )
((C,
A)) and the d e t e r m i n a t i o n of the g e n e r i c r a n k of a matrix whose dimension is in the r a n g e of t h e o r d e r of the s y s t e m .
A l t h o u g h e f f i c i e n t algorithms a r e available
(see
(SIL-78) (BOW-76)) for t h e r e a c h a b i l i t y matrix and (JOH-84) (MOA-80) for t h e g e n e ric r a n k ) ,
some computational
difficulties may arise when dealing with l a r g e scale
systems. The s y s t e m is decomposed into t h o s e s u b s y s t e m s for which t h e s t a t e v a r i a b l e s c o r r e s p o n d to the s t r o n g components of F x = ( X , E x ) , o b t a i n e d from Yp and t h e c o r r e s p o n d i n g
edges.
If the s t r o n g
r b y deleting U,
components a r e a d e q u a t e l y o r d e r e d
and a f t e r t h e c o r r e s p o n d i n g p e r m u t a t i o n of the s t a t e v a r i a b l e s , system (1.2.1)
takes
the following form :
]A2L
A2~
Al ] I
~(t): / I:
",,,\,,
LA~, Y(t)=
where Aij ~ R n i x n j ,
[C l
B i E R nixm,
%,
C2 . . . .
x(t)+
2
LB~,J
u(t) (1.3.4)
Csl
Ci ~ R r x n i ,
(i,j=l . . . . . s t .
Elaborated p r o c e d u r e s
for
the d e t e r m i n a t i o n of the s t r o n g components of a d i g r a p h can be found in (HAR-65), (KAU -68).
24 2.i. - Reachabilit~, condition
Using
the above
decomposition,
the reachability condition of Theorem
1.9 is
very easily expressed at the level of each subsystem in (1.3.4).
Theorem 1.10 ( T R A - 8 6 a ) .
The s y s t e m (1.2.1)
(1.3.4)
is i n p u t r e a c h a b l e if and only
if : (B i Ail Ai2 . . .
(1.3.5)
(i=l ..... s)
Ai,i_ 1) ~[~ 0
This r e s u l t is s t r a i g h t f o r w a r d from the definition of s t r o n g components and the hierarchically
reordered
digraph
corresponding
o b s e r v a t i o n of the matrices in (1.3.4)
the
sole
allows to conclude on i n p u t r e a c h a b i l i t y .
to
(1.3.4).
Therefore,
The
dual r e s u l t for o u t p u t r e a c h a b i l i t y is o b t a i n e d b y r e p l a c i n g B i by C's_i+ 1 and Aij by A's_j+lps_i+ 1 in ( 1 . 3 . 5 ) .
2.2. - Generic r a n k condition Our main r e s u l t is p r e s e n t e d in this p a r a g r a p h .
C o n s i d e r t h e system
(1.3.4)
and define the matrices A*I and B*, (i=l . . . . . s) as follows :
A*I : A l l ' B * I : B I '
A~I']---
EAt1
[ --i Ai,i_ 1 t
....
s where A.*~Rni*xn~ and B.* C Rni*xm with n* = Y. i
I
j=l
I
B~i:
-
(1.3.6)
nj.
Theorem 1.11 ( T R A - 8 6 a ) . A n e c e s s a r y and s u f f i c i e n t condition to h a v e g r ( A B)=n is that gr
(A~ B~)
The problem
= n.*l for all (i=l . . . . . s) consists,
therefore,
(1.3.7) in
finding
the
conditions
to h a v e
gr(A* i
B~)=n~ assuming t h a t gr(A~_ 1 B~_ 1) =n~_ 1. Theorem 1.12 ( T R A - 8 6 a ) . Given the r e c t a n g u l a r p x q (p~q) matrix M and its a s s o c i a ted d i g r a p h D=(V,E), assume t h a t gr(M)=p and t h a t { ~ , T ( ~ ) )
is the maximal G-dila-
tion of o r d e r 0 in D. T h e n the n e c e s s a r y and s u f f i c i e n t condition to h a v e
25
gr
= gr (MN) =p+p', w h e r e
N1 N2 m a t r i x , is t h a t
:
I J M
gr
0
~'=V'-£
a n d ME
associated vertices
denotes
(1.3.8)
=p'+card ~"
T(~)
NT ( a )
where
N 1 is a p'xq matrix and N 2 i s a p ) x p )
N2
the submatrlx
c o m p o s e d b y t h e c o l u m n s of M w h o s e
do n o t b e l o n g to t h e s e t E.
T h i s s i t u a t i o n i s c l a r i f i e d w h e n t h e m a t r i x MN i s r e w r l t e d {£,T(~
)}
with respect
to
as follows -"
T( f~)
T(f~)
V2
I I
q£
V=T(~) u~(.~) u V2
I
MT(£)
V': £u~ u V2
I I
I
N
l~(a)t t
--
7(~)
T(n)
N1
I
N2
-i
V2
In o r d e r to a p p l y T h e o r e m 1.12 t o o u r s p e c i a l p r o b l e m ,
define
:
I'-'"-' o ] M l l = [ B I A l l ] , Mii = Ni,i-I
(1.3.9)
Nii
Ni,i_l=[Bi All Ai2 ... Ai,i_l], Nil = [A~I] Theorem
1.13
(TRA-86a).
The necessary
where A and B are given in (1.3.4),
and sufficient
is t h a t
conditions to have gr(A
B)=n
:
1 - gr[Mll]=nl
2 - gr
MT(g2 E-I) i-l,i-I
o
1 /
Ni,i-I
Nil
J
(1.3.10) :gr[F i]:ni +card"i_ l
(i=2,...,s)
26 where{~i_ 1, T ( ~ i _ l ) } Theorem
is t h e maximal G - d i l a t i o n of o r d e r 0 of Mi_l, i - l "
1.13 is
straightforward
1.12 to t h e m a t r i c e s Mii, ( i = l , . . . s ) ,
from t h e
successive
d e f i n e d in ( 1 . 3 . 9 ) .
a p p l i c a t i o n of T h e o r e m
The above result is streng-
t h e n e d b y t h e f a c t t h a t {ff2i, T ( ~ i ) } c a n also b e d e t e r m i n e d in a s e q u e n t i a l way. T h e o r e m 1.14 ( T R A - 8 6 a ) .
A s s u m e t h a t Mii h a s full g e n e r i c r a n k ,
G - d i l a t i o n of o r d e r 0 of Mii is { ~ i ' T (~i)} w i t h ~ i = ~i-1 u 6 i or(6i) w h e r e ( 6 i ' T ( d i ) } is t h e maximal G - d i l a t i o n of o r d e r
t h e n t h e maximal
a n d T ( ~ i ) = T ( ~ i _ 1) 0 of t h e m a t r i x F i
d e f i n e d in ( 1 . 3 . 1 0 ) . Dual r e s u l t s a r e easily o b t a i n e d for s t r u c t u r a l o b s e r v a b i l i t y b y r e p l a c i n g B i b y C's_i+ 1 a n d Aij b y A ' s _ j + l , s _ i + 1 in ( 1 . 3 . 9 ) . T h e a b o v e r e s u l t s p r o v i d e t h e b a s i s f o r an i t e r a t i v e a l g o r i t h m to c o n c l u d e o n structural
c o n t r o l l a b i l i t y ( o b s e r v a b i l i t y ) of l a r g e scale d y n a m i c a l s y s t e m s .
2.3. - Algorithm Since t h e
sequential
require any calculations, tions (1.3.10)
reachability
conditions
the subsequent
in T h e o r e m 1.13 o n l y .
(1.3.5)
in T h e o r e m
1.10 do n o t
a l g o r i t h m r e f e r s to t h e g e n e r i c r a n k c o n d i -
At e a c h s t e p i, we n e e d to v e r i f y w h e t h e r o r
n o t F., h a s a g e n e r i c r a n k d e f i c i e n c y a n d , if n o t , to d e t e r m i n e i t s maximal G - d i l a t i o n of o r d e r 0. T h i s c a n b e p e r f o r m e d b y u s i n g a s l i g h t l y modified v e r s i o n of t h e g e n e ric rank
algorithm in
(JOH-84).
The
first
step
is t h e
same as in
(JOH-84)
and
c o n s i s t s in a r e o r d e r i n g of t h e m a t r i x F i . Algorithm
REORDER
(M)
:
Step 1
i=0, j=0, d e l e t e t h e null c o l u m n s .
Step 2
F i n d t h e row with t h e minimal n u m b e r of n o n - d e l e t e d choice exists,
select
the
one with
entries
minimal n u m b e r of e n t r i e s
(say ~).
If
(deleted or
non-deleted). Step 3 Step 4
A s s o c i a t e t h i s row with i n d e x i a n d d e l e t e i t , i--i+l. A s s o c i a t e t h e columns w h i c h h a v e e n t r i e s i n t h i s row w i t h t h e i n d i c e s j + l , j+2 . . . . .
j + a a n d d e l e t e t h e m , j=j+a.
27 Step 5
If a n y row is l e f t , go to s t e p 2. O t h e r w i s e , w r i t e M o r d e r i n g t h e rows a c c o r d i n g to i n c r e a s i n g i n d i c e s from top to bottom a n d t h e columns a c c o r d i n g to i n c r e a s i n g i n d i c e s from l e f t to right, stop.
T h i s a l g o r i t h m p u t s t h e m a t r i x M in t h e following form :
I .....I-2-: R1
|
IRK Denote
the
number
of rows
and
columns
of
the
block
Ri
by
Pi
and
qi'
(i=l,... ,K). In a s e c o n d s t e p , t h e m a t r i x Fi is a n a l y z e d . If a dilation is d e t e c t e d , F i h a s a g e n e r i c r a n k d e f i c i e n c y . O t h e r w i s e , we d e t e r m i n e i t s maximal G-dilation of o r d e r 0. The p r o c e d u r e i s t h e same as i n {JOH-84), with t h e modification t h a t some r o w s a n d columns are memorized for t h e d e t e r m i n a t i o n of t h e maximal G-dilation o f o r d e r 0. Algorithm ANALYZE (M)
:
Step i
i=l.
Step 2
If p i - q i < 0 , go to s t e p 8. O t h e r w i s e , j = l , k=0.
Step 3
Tag
t h e qi+k f i r s t r o w s in Ri.
Also tag
all t h e
r o w s in
Ri w h i c h
have
e n t r i e s only in t h e same columns as t h e e n t r i e s of t h e t a g g e d r o w s . Step 4
Tag t h e columns w h i c h h a v e n o n z e r o e n t r i e s in t h e t a g g e d r o w s a n d
cal-
culate h i = n u m b e r of t a g g e d r o w s - n u m b e r of t a g g e d c o l u m n s . ] Step 5
If ~i > 0, M c o n t a i n s a d i l a t i o n , s t o p .
i
If 1~'=-0, memorize t h e t a g g e d r o w s a n d c o l u m n s . J Step 6
If all t h e r o w s a b o v e R i a r e t a g g e d , go to s t e p 7. The r o w s a b o v e
Ri w i t h e n t r i e s in t h e t a g g e d columns a r e now s c a n n e d .
Select t h e one with minimal n u m b e r of e n t r i e s in t a g g e d c o l u m n s . If choice e x i s t s , s e l e c t t h e one with minimal n u m b e r of e n t r i e s a n d tag i t , j=j+l, go to s t e p 4.
28 Step 7
If all t h e r o w s in t h e block Ri a r e t a g g e d , go to s t e p 8. O t h e r w i s e , d e l e t e all t h e t a g s , j=j+l, k = k + l .
Step 8
If i=K, s t o p , t h e maximal G - d i l a t i o n of o r d e r 0 of M i s g i v e n b y : : memorized r o w s
T(6)
. memorized columns
O t h e r w i s e , i----i+l, go to s t e p 2. A s s u m i n g t h a t (B A) h a s initially b e e n p u t in form ( 1 . 3 . 4 ) b y u s i n g a n y of t h e m e t h o d s p r o p o s e d in (SIL-78) (BOW-76), t h e global algorithm is t h e following : Step 1
i=l,
B = n u m b e r o f d i a g o n a l b l o c k s , M00=0.
Step 2
S u c c e s s i v e l y d e l e t e t h e r o w s with only one e n t r y
and
the
corresponding
columns. If no r o w is left, gr(B A)=n,
Step 3
stop.
If t h e row block i h a s b e e n d e l e t e d o r F. h a s only one row l e f t , go to s t e p 1
4. O t h e r w i s e , REORDER (Fi) , ANALYZE ( F i ) . If Fi c o n t a i n s a d i l a t i o n , g r ( A B ) < n , s t o p . Otherwise, Step 4
{6i, T( 6i)~
is r e t u r n e d b y t h e algorithm ANALYZE.
If i= B, g r ( A B ) = n , s t o p . Otherwise,
delete
the
columns
corresponding
to
T( 6i ) ,
delete
the
null
r o w s . Fi+ 1 i s o b t a i n e d b y a d d i n g t h e row b l o c k ( i + l ) . .Step 5
i=i+l, go to s t e p 2.
It is a well k n o w n r e s u l t t h a t a r e c t a n g u l a r p x q (p
{S 0,
T ( S 0) } d e f i n e s an i n d e p e n d e n t p e r m u t a t i o n
d e f i n e d b y S 0 h a v e n o n z e r o e n t r i e s only in the
submatrix.
Since t h e
~ columns d e f i n e d b y
g rows
T(S0),
the
n o n z e r o e n t r i e s of t h e final p e r m u t a t i o n m a t r i x (if any) a r e n e c e s s a r i l y l o c a t e d in t h e square
submatrix
d e f i n e d b y {S O,
T ( S 0) } .
It
is
then
clear
that
the
remaining
e n t r i e s in t h e columns T ( S 0) a r e n o t available a n y m o r e ( S t e p 4 ) . This
remark
has
also b e e n
used
to i m p r o v e
the
r e d u c t i o n of t h e whole matrix at e a c h i t e r a t i o n ( S t e p 2).
algorithm
by
a preliminar
29
2.4. - Example To i l l u s t r a t e form (1.3.4))
bI
b2
x x
F1
the algorithm,
described
by
1
let us consider
the system
(1.2.1)
8
II
(already
put in
(B A) a s f o l l o w s :
2
3
4
5
7
6
9
I0
12
13
14
ix
1
Ix
2 3 4
; Y/x× -
--'--'
.
.
.
.
×"
5
-'i
.
×
6
!
7
I
8
9
I I
x
xl
1!
Ix
x
I
,
This system
x
satisfies
x
the reachability
conditions
I
(1.3.5)
12
X
x IX
I
generic rank
10
X
of Theorem
i.I0.
algorithm is now applied.
* i=__!1, ~ = s . S t e p Z : R o w s 3, 4, 8, a n d c o l u m n s 2, 5, 9 a r e d e l e t e d .
* i--2 :
--
S t e p 3 : F 2 d o e s n o t n e e d to b e r e o r d e r e d .
ANALYZE F 2
( ~1={i,2}
--)
~T( Step 4 : These
rows and columns are deleted. b2
3
4
6
X
X
X
7
8
10
(B A) b e c o m e s 11
12
13
:
14 5 6 7 9 10 II
X X
12
X
X X
X
X ×
13 14
13 14
X
61)= { b1,1}
The
30 *
i=3
S t e p 2 : Rows 6, 7, 9, 10, 11 a n d columns b 2, 7, 8, 10, 11 are d e l e t e d . * i:5
:
(i=4 is j u m p e d s i n c e t h e row block 4 h a s b e e n d e l e t e d )
Step 3 : 3
~
6
X
X
X ,I
F5:
12 iI
13
3 5 REORD
X
I X I
18
12
X
13
12
4
X
l~ ~5= ( 12, 14}
I
13
X
X I
ix
a
6 12
x
S t e p 4 : Since i= 8 , s t o p : g r
14
X !
I
ANALYSE[F 5]
13 T(d5)={3,13} 5
I
(B A) = n .
T h e r e f o r e , t h i s s y s t e m is s t r u c t u r a l l y c o n t r o l l a b l e . Comments : It is c l e a r t h a t t h i s a l g o r i t h m d o e s n o t p r e s e n t a n y a d v a n t a g e f o r s t r o n g l y c o n n e c t e d s y s t e m s . Its a p p l i c a b i l i t y is t h e r e f o r e limited to l a r g e scale s y s tems w h i c h can be d e c o m p o s e d i n t o s e v e r a l h i e r a r c h i c a l l y o r d e r e d s u b s y s t e m s a n d it is i n t u i t i v e l y u n d e r s t a n d a b l e t h a t i t s e f f i c i e n c y i n c r e a s e s with t h e n u m b e r of s u b s y s t e m s . Some o t h e r a s p e c t s of t h e s y s t e m like t h e location of t h e dilations o r o f t h e i n d e p e n d e n t G - d i l a t i o n s of o r d e r 0 in (B A) m u s t also b e t a k e n i n t o c o n s i d e r a t i o n . It r e s u l t s t h a t t h e e f f i c i e n c y of t h e a l g o r i t h m may v a r y f o r e a c h p a r t i c u l a r c a s e so t h a t it is d i f f i c u l t to c a r r y out a n y m e a n i n g f u l q u a n t i t a t i v e c o m p a r i s o n w i t h o t h e r a l g o r i t h m s u s i n g a global a p p r o a c h . H o w e v e r , a q u a l i t a t i v e d i s c u s s i o n is p o s s i b l e . The a l g o r i t h m p r e s e n t e d h e r e m u s t be c o n s i d e r e d as a whole f o r t h e s t r u c t u r a l c o n t r o l l a b i l i t y p r o b l e m . If t h e g e n e r i c r a n k alone is of i m p o r t a n c e , t h e n a p p l y i n g t h e a l g o r i t h m in (JOH-84) to t h e global m a t r i x may b e a good c h o i c e . Solving t h e
structural
controllability problem without a decomposition scheme
requires : - T h e d e t e r m i n a t i o n of t h e r e a c h a b i l i t y m a t r i x of t h e
d i g r a p h of t h e
system
w h i c h is e q u i v a l e n t to t h e p r o b l e m of f i n d i n g all t h e p a t h s in t h e d i g r a p h of t h e s y s t e m . I f t h i s l a t t e r p r o b l e m is s o l v e d , it is c l e a r t h a t t h e s t r o n g c o m p o n e n t s a r e determined. Therefore, putting the system (1.2.1)
in form ( 1 . 3 . 4 )
i s an e q u i v a l e n t
t h e d e t e r m i n a t i o n of t h e g e n e r i c r a n k of (B A) b y u s i n g ,
for example, the
problem.
-
a l g o r i t h m of (5OH-84). T h e n , t h e f i r s t s t e p c o n s i s t s in r e o r d e r i n g (B A) i n t o a row
31 echelon form
(algorithm
REORDER),
which can
be
a
heavy
task
for
large
scale
s y s t e m s . This s t e p is a v o i d e d b y o u r algorithm w h i c h u s e s REORDER at t h e s u b s y s tem level. M o r e o v e r , w h e r e a s t h e algorithm in (JOH-84) c a r r i e s out t h e calculations on t h e whole r e o r d e r e d m a t r i x ,
t h i s algorithm p r o c e e d s to a r e d u c t i o n of (B A) at
each s t e p ( S t e p 2), w h i c h can c o n s i d e r a b l y r e d u c e t h e t a s k (see t h e e x a m p l e ) . O v e r t h e s c o p e of t h i s s e c t i o n , t h e algorithm may b e a d a p t e d for t h e s e q u e n tial d e t e r m i n a t i o n of minimal e s s e n t i a l i n p u t
(output)
s e t s which a r e f u n d a m e n t a l in
the p r o b l e m of d e t e r m i n i n g t h e minimal f e e d b a c k p a t t e r n s avoiding s t r u c t u r a l l y f i x e d modes (TRA-86b)
1.4.
-
( s e e C h a p t e r V, Section 5 . 3 . 4 b . 3 ) .
CONCLUSION This c h a p t e r p r o v i d e s an o v e r v i e w o f t h e i m p o r t a n t c o n c e p t s of c o n t r o l l a b i l i t y
and o b s e r v a b i l i t y t h a t play a f u n d a m e n t a l role in t h e p r o b l e m of s t a b i l i z a t i o n and pole a s s i g n m e n t of l i n e a r t i m e - i n v a r i a n t dynamic s y s t e m s . The
s o l u t i o n of t h i s
analysis of t h e
origins
p r o b l e m is e x p r e s s e d
of u n c o n t r o l l a b l e
and
in t e r m s of t h e s e
unobservable
concepts.
modes p o i n t s
i n t e r e s t for e x t e n d i n g t h e s e c o n c e p t s into a s t r u c t u r a l f r a m e w o r k .
out
An the
Structural con-
troUability a n d o b s e r v a b i l i t y a r e t h u s i n t r o d u c e d a n d a p p e a r as s t r o n g e r p r o p e r t i e s than c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y in t h e u s u a l s e n s e .
Using t h e s e c o n c e p t s , t h e
above p r o b l e m t u r n s to w h i c h of g e n e r i c s t a b i l i z a t i o n a n d g e n e r i c pole a s s i g n m e n t . The s t r u c t u r a l p r o p e r t i e s are e s t a b l i s h e d from t h e s t r u c t u r e o f t h e s y s t e m w i t h o u t any c o n s i d e r a t i o n of t h e p a r a m e t e r s ' v a l u e s of s y s t e m s .
Therefore,
this
approach
:
t h e y are in f a c t c o n c e r n e d w i t h c l a s s e s
allows d e a l i n g
with s y s t e m s w h o s e n o n z e r o
p a r a m e t e r s a r e k n o w n with i n c e r t a i n t i e s . It is w o r t h n o t i n g t h a t t h i s s i t u a t i o n o c c u r s f r e q u e n t l y in l a r g e scale s y s t e m s . The s t u d y
of t h e s e p r o p e r t i e s can be a c h i e v e d with a p u r e l y
p r o a c h or with a g r a p h - t h e o r e t i c a p p r o a c h .
s t r u c t u r a l c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y is b y Thus,
algebraic ap-
N e v e r t h e l e s s , t h e e a s i e s t way to c h e c k combinating the
two a p p r o a c h e s .
t h e c o n d i t i o n s to be e x a m i n e d involve b o t h t e a c h a b i l i t y of t h e g r a p h a s s o c i a -
t e d with t h e s y s t e m a n d g e n e r i c r a n k d e t e r m i n a t i o n . In s e c t i o n
1.3.3.c,
t h e a l g o r i t h m of (TRA-86a)
troUability a n d o b s e r v a b i l i t y is p r e s e n t e d . large scale s y s t e m s .
Indeed,
for c h e c k i n g s t r u c t u r a l c o n -
It is s p e c i a l l y s u i t a b l e f o r a p p l i c a t i o n in
b y u s i n g an a p p r o p r i a t e
decomposition of t h e s y s t e m
t h e global c o n d i t i o n s a r e e x p r e s s e d in t e r m s of s e v e r a l c o n d i t i o n s r e f e r i n g to smaller dimensioned s y s t e m s ( T R A - 8 6 a ) . tial way.
The c h e c k i n g can t h u s b e c a r r i e d o u t in a s e q u e n -
32 In the investigated require
next in
structural
chapter,
the
context
of large
constraints
We will s e e t h a t the introduction
the problem
the fact of taking control.
systems
and
pole assignment
whose
characteristics
these
new constraints
will b e generally
on the control.
of new concepts
the case of centralized
of s t a b i l i z a t i o n
scale
into account
which appear
as
an extension
of those
y i e l d s to defined
in
CHAPTER
STRUCTURALLY
2
CONSTRAINED
STABILIZATION
AND
POLE
CONTROL
•
ASSIGNMENT
2. I. - I N T R O D U C T I O N
In high
the
control
of
dimensionality,
reasonable assumption system
is
large
conventional
computational
efforts.
of a centralized available
For most large geographical
economical and
systems
techniques
whose fail
to
pattern
center,
control. particular
system
this centralization the
of
problems
information.
related
the design of feedback
When no transfer this yields
to
a
pairs
(those of minimum cost information pattern.
for
These
station 1
the
position,
2.1.a
with on the
on where
the all
example) situations
are
allowed
................
station i
- Decentralized
leads
This that
part
requires
to
implies are only
of the whole
restrictions
on the
can connect.
the different
are illustrated
transfer.
to g e n e r a t e
controllers
of control.
constraint
o f local c o n t r o l l e r s
in o r d e r
between
scheme
does not hold due
new
When
local s t a t i o n s
some but
we o b t a i n by Figure
................
not
structurally-constrained
is allowed, all t r a n s f e r s
a nonstandard 2.1 :
station S
L A R G E SCALE SYSTEM
Figure
stands
information
assumption This
that the controller
of information
decentralized
all
their
solutions
generally
to t h e i n f o r m a t i o n
of the whole information
output-input
reasonable
is
out.
scale systems,
In particular,
characteristic
a geographical
distribution
reliability part
give
~ i.e.,
generally
that the control system should he made of a number allowed to u s e
essential
The classical control theory
information
at a given
the calculations can be carried
to t h e
scale
control
reduced
34
l
i yll
[. . . .
station 1
.............
Controller 1
Controlleri I. . . . station i
ControllerS [
..............
station S
L A R G E SCALE SYSTEM
Figure
2.1.b.
It is clear vantageous
that
: system
which observe
for the
the
decentralized
since no transfer
is required tions),
- Example of arbitrarily
problem
centralized
inputs
second
paragraph
general
case of arbitrarily
of this
scheme
is the
are
to a
assigned and
refering
These
set
l o c a t i o n to a n o t h e r
o f local c o n t r o l l e r s
T h i s is t h e r e a s o n
pole assignment
The results chapter.
given
outputs.
results
the first
were investigated
to t h i s
structurally-constrained
control
most economically ad-
from one geographical
o n l y local s y s t e m
scheme.
control
of information
of stabilization
control
structurally-constrained
study
were
then
(stastudies
within
a de-
are presented extended
in the
to t h e
control which is considered
more in the
third paragraph.
2.2. - D E C E N T R A L I Z E D
Consider
a large
model. As pointed partitioning
The
scale
CONSTRAINTS
system
represented
o u t in t h e i n t r o d u c t i o n ,
of the
tion stations. particular
STRUCTURAL
control
and
reflect
a linear time-invariant
its geographical
the observation
models retained
by
this
in several situation
dynamic
decomposition results
in a
local c o n t r o l a n d o b s e r v a -
and
appear
in t h e
following
forms :
I-Frequency-domain model
Yl
"Wl I(P)
W I S(p)-
I I
I I I I I I
YS
u,! 1 i I
I I I !
wsl(P)
Wss(P)
uS
(2.2.1)
35 2-Time-domaln model
I
x(t) = A x(t)
+
S Z i=l
LYi(t) = C i x ( t ) where
x(t)
uiE:Rmi
~
Rn
(2.2.2)
(i=1 . . . . .
is
the
a n d Yi C R r i
observation station, R e m a r k 2.1.
Bi u i ( t ) S)
state.
The
input
are the input
specified
output
vectors
vectors
Note t h a t t h e s t a t e v e c t o r is n o t p a r t i t i o n e d ,
subsystems. for
are
partitioned
:
of the ith control and
(i=l . . . . . S t .
t h e s y s t e m i t s e l f is t a k e n a s a w h o l e I i . e . , results
and
and the output
The
following
"interconnected
systems"
reflecting
it is n o t d e c o m p o s e d
results
hold
will b e
in
this
presented
as
general
the
fact that
into several wellframework.
a particular
case
The in
a
further paragraph. Let u s d e f i n e : S m ~ iEI= m i
c, =
B = [131, ..., B S]
S r = i~l= I
,
.....
ri
%1
(2.2.37 y'
=
such that system
{
x(t)
u'= [u~ ,..., ~,]
[y~, ..., Y~]
(2.2.2)
= A x(t)
can be rewritten
in t h e following g l o b a l form :
+ B u(t)
(2.2.4)
y(t) = C x(t)
2.2.1.
- Problem
formulation
If a d e c e n t r a l i z e d with e a c h s t a t i o n .
Every
control structure
is desired,
local c o n t r o l l e r i s d e s c r i b e d
a local c o n t r o l l e r i s a s s o c i a t e d by the
following g e n e r a l m o -
del :
fui(t)
= Qi z i ( t ) + Ki Yi (t) + v i ( t ) (2.2.5)
! ~i(t)
S i z i ( t ) + R i Yi (t)
36
w h e r e z i ( t ) E R v i i s t h e s t a t e of t h e i t h c o n t r o l l e r a n d v i ( t ) ~ Rmi is t h e i t h e x ternal input. This control structure
associated with system
(2.2.2)
(2.2.4)
is r e p r e s e n t e d
b y F i g u r e 2.2 :
I
SYSTEM
F i g u r e 2.2 Let u s d e f i n e : S = block-diag.
(S1,...,Ss)
R = block-diag.
(R 1 . . . . ,R S)
Q = block-diag.
( Q I ' . . . . QS )
K = block-diag.
(K1,...,Ks)
z ' ( t ) = (z' 1 . . . . . z' s ) v'(t) = (v' 1 ..... V's)
t h e n , t h e global c o n t r o l l e r is d e s c r i b e d b y • l u(t) = Q z(t) + K u(t) + v(t)
(2.2.6) ~.(t) = S z ( t ) + R y ( t ) where the decentralization
appears
in t h e b l o c k - d i a g o n a l
structure
of t h e m a t r i c e s
S , R , Q a n d K. We c o n s i d e r
t h e p r o b l e m of s t a b i l i z i n g
the
s i g n i n g i t s p o l e s ) w i t h a c o n t r o l law s p e c i f i e d b y
system
(2.2.4)
(or a s -
(2.2.6).
T h i s p r o b l e m is
e q u i v a l e n t to t h e p r o b l e m of e x i s t e n c e of a s e t of m a t r i c e s S , R , Q
and K such that
the closed-loop system :
(2.2.5)
(2.2.2)
37
I 'c :°1
z(t)J
RC
is a s y m p t o t i c a l l y s t a b l e ( i . e . ,
2.2.2.
- Decentralized
Even if t h e (2.2.2)
(2.2.4)
fixed
[:l
[z(t)
v(t)
all i t s p o l e s h a v e a n e g a t i v e r e a l p a r t ) .
modes
conditions
for
the
stabilization
(or pole
h o l d with a c e n t r a l i z e d i n f o r m a t i o n p a t t e r n
assignment}
is n o t always s t a b i l i z a b l e (pole a s s i g n a b l e } with a d e c e n t r a l i z e d c o n t r o l . 78b1 p r o v i d e d
the
example
of a completely
controllable
of
system
(see § 1 . 2 . 6 1 , t h e s y s t e m interconnected
Wang (WANsystem
for
which e v e r y s u b s y s t e m ( A i i , B i ) was also c o n t r o l l a b l e s u c h t h a t t h e c o n d i t i o n s f o r i t s s t a b i l i z a t i o n b y m e a n s of c e n t r a l i z e d s t a t e f e e d b a c k w e r e s a t i s f i e d .
Nevertheless,
showed t h a t
constraints
the
system
could not
be
s t a b i l i z e d if d e c e n t r a l i z e d
he
were
imposed on t h e c o n t r o l . This means that additional conditions
are required.
e x p r e s s e d in t e r m s of t h e new c o n c e p t of d e c e n t r a l i z e d
These
conditions
f i x e d modes.
can b e
This concept
was i n t r o d u c e d b y Wang a n d D a v i s o n i n 1973 (WAN-73bl. Definition 2.1 (WAN-73b). G i v e n t h e t r i p l e ( C , A , B ) a s s o c i a t e d w i t h t h e s y s t e m (2.2.41 w i t h A g R n x n , B ~ R nxm a n d C g: R r x n l e t u s d e f i n e ~d as t h e s e t of block-diagonal matrices :
~d={KlK=block-diag. ( K 1 , . . . , K s I
, K i ~ Rm x r ,
( i : l , . . . . S}}
(2.2.7)
T h e d e c e n t r a l i z e d f i x e d polynomial of s y s t e m ( 2 . 2 . 4 ) is t h e n d e f i n e d as : (p,C,A,B
fld ) = g . c . d
(2.2.8)
{dot ( p I - A - B K C ) }
K ~ ~d Definition 2.2 (WAN-73bl. T h e s e t of f i x e d modes of s y s t e m t h e c o n t r o l law ( 2 . 2 . 6 ) A (C.A,B ~d ) =
(2.2.4)
with r e s p e c t to
( d e c e n t r a l i z e d f i x e d modes1 is g i v e n b y : n o(A + B K C )
Kc~ d w h e r e a ( . ) d e n o t e s t h e s e t of e i g e n v a l u e s of ( . ) .
(2.2.9)
38
It is c l e a r t h a t t h e d e c e n t r a l i z e d f i x e d modes a r e t h e z e r o s of t h e d e c e n t r a l i z e d f i x e d polynomial a n d can t h u s b e d e f i n e d as : h ( C , A , B , ~d ) = { p e ~ Note t h a t
A (C,A,B,
/
~d) c o (A)
s i n c e K--0 i s an element of ~d" T h e d e c e n -
t r a l i z e d f i x e d modes of t h e s y s t e m ( 2 . 2 . 4 ) that
cannot be
(2.Z.10)
~ (p,C,A,B, ~d ) = 0 }
a r e t h e r e f o r e t h e modes of t h e s y s t e m
moved with a decentralized control
(2.2.6),
i n d e p e n d e n t l y of t h e
p a r a m e t e r v a l u e s a s s i g n e d to t h e c o n t r o l l e r ( m a t r i c e s S , Q , R a n d K ) . T h e following f i g u r e i l l u s t r a t e s t h e s i t u a t i o n :
O ( A + B K 3 c) O (A+BI~ IC)
(A) h (C,A,B, ~d )
0 (A+BK
K 1,K 2 ,K 3 C ~d
F i g u r e 2.3
It is now i n t e r e s t i n g to n o t e t h a t t h e s e t o f f i x e d modes d o e s n o t d e p e n d on t h e dynamical o r n o n - d y n a m i c a l n a t u r e of t h e c o n t r o l . If a d e c e n t r a l i z e d s t a t i c f e e d b a c k c o n t r o l is u s e d i n s t e a d of ( 2 . 2 . 6 ) zero,
the
~ i.e.,
the matrices S and R are identically
s e t of d e c e n t r a l i z e d f i x e d modes r e m a i n s t h e same (WAN-73b).
only d e p e n d s on t h e p a r t i c u l a r o u t p u t - i n p u t p a t t e r n
This s e t
specified by the s t r u c t u r e
of
t h e m a t r i x K. From t h e i r d e f i n i t i o n , t h e d e c e n t r a l i z e d f i x e d modes a p p e a r i n t u i t i v e l y as an e x t e n s i o n of t h e w e l l - k n o w n u n c o n t r o l l a b l e a n d u n o b s e r v a b l e modes d e f i n e d in C h a p t e r 1. The r e l a t i o n s b e t w e e n t h e s e c o n c e p t s a r e c l a r i f i e d b y f u r t h e r d i s c u s s i o n . Consider
the
triple
(C,A,B)
associated
to t h e
canonical form
(1.2.4)
of a
g e n e r a l s y s t e m ( 1 . 2 . 1 ) . If t h e s y s t e m is c o n t r o l l e d b y c e n t r a l i z e d o u t p u t f e e d b a c k of t h e form ( 1 . 2 . 9 ) with K e R m x r , Wang a n d Davison (WAN-73b) s h o w e d t h a t : A ( C , A , B , R mxr) = o ( A l l ) u o (A33) V o (A44).
39 T h i s r e s u l t p o i n t s o u t t h a t t h e s e t of c e n t r a l i z e d f i x e d m o d e s i s t h e u n i o n o f t h e u n c o n t r o l l a b l e a n d u n o b s e r v a b l e m o d e s . T h e a n a l o g y is c l e a r w h e n we t h i n k t h a t uncontrollable and unobservable modes are those that cannot be moved by the control : it w a s s h o w n i n C h a p t e r
1 t h a t t h e f i r s t o n e s a r e d i s c o n n e c t e d from t h e i n p u t
a n d t h e s e c o n d o n e s from t h e o u t p u t .
From a n o t h e r h a n d ,
i f we d e n o t e t h e s e t o f
c e n t r a l i z e d f i x e d m o d e s b y Ac p t h e following d e f i n i t i o n h o l d s : h
c
= A (C,A,B,R mxr) =
where the analogy with the
n o (A + BKC) K ( Rmxr
definition
(2.2.9)
(2.2.11)
of d e c e n t r a l i z e d
fixed modes is ob-
vious.
Clearly,
from the
definitions
(2.2.9)
and
(2.2.11),
and since
~d c R m x r ,
the
s e t of c e n t r a l i z e d f i x e d m o d e s i s i n c l u d e d i n t h e s e t o f d e c e n t r a l i z e d f i x e d m o d e s : Ac c Ad
where hd =
(2.2.12)
h
fld).
(C,A,B,
We u n d e r s t a n d
intuitively that the modes that
cannot be moved u s i n g a c e n -
tralized control c e r t a i n l y c a n n o t be moved u s i n g a d e c e n t r a l i z e d control.
2 . 2 . 3 . - D e c e n t r a l i z e d s t a b i l i z a t i o n a n d pole a s s i g n m e n t
Due tralization, tralized
to
the
the
output
great
economical a n d
problem of stabilization feedback
76a,b) (FES-79)
(FES-80)
has
been
reliability and
pole
investigated
(POT-79)
by
advantages assignment
provided by
many authors
by
decen-
of
decen-
(AOK-72)
(COR-
means
(WAN-73a,b).
Only t h e m o s t r e l e v a n t r e s u l t s
are presented
here.
T h e r e s u l t s of Wang a n d
D a v i s o n (WAN-73b) t h a t c l e a r l y p o i n t o u t t h e i m p o r t a n c e of d e c e n t r a l i z e d f i x e d m o d e s in t h i s p r o b l e m a r e Morse ( C O R - 7 6 ) , complete s o l u t i o n .
presented
first.
Then,
we p r e s e n t
the study
of C o r f m a t a n d
who h a d a d i f f e r e n t a p p r o a c h to t h e p r o b l e m a n d p r o v i d e d a m o r e
40 2 . 2 . 3 . a . - Wang a n d Davison r e s u l t s (WAN-73b) The following t h e o r e m a n d c o r o l l a r y s t a t e t h e c o n d i t i o n s f o r t h e e x i s t e n c e of a s o l u t i o n in t e r m s of d e c e n t r a l i z e d o u t p u t
f e e d b a c k in o r d e r to s t a b i l i z e t h e s y s t e m
( o r to a s s i g n i t s p o l e s ) . Theorem (2.2.4) and
2.1
(WAN-73b).
Given
the
triple
(C,A,B)
associated
a n d ~d t h e s e t of b l o c k - d i a g o n a l m a t r i c e s d e f i n e d in
s u f f i c i e n t c o n d i t i o n for t h e
with
(2.2.7),
e x i s t e n c e of a c o n t r o l law
(2.2.6)
the
system
a necessary
such that the
c l o s e d - l o o p s y s t e m ( 2 . 2 . 7 ) i s a s y m p t o t i c a l l y s t a b l e is t h a t : h d = A ( C , A , B ~cl) c where
~-
Corollary
~-
(2.2.13)
d e n o t e s t h e l e f t h a l f p a r t of t h e complex p l a n . 2.1.
Under
the
same a s s u m p t i o n s
as in t h e o r e m
s u f f i c i e n t c o n d i t i o n f o r t h e e x i s t e n c e of a c o n t r o l law ( 2 . 2 . 6 )
2.1,
a necessary
and
s u c h t h a t all t h e poles
of t h e c l o s e d - l o o p s y s t e m a r e in ~) is t h a t : h d = h ( C , A , B ~d ) c ~ where
~
(2.2.14)
is a n a r b i t r a r y p r e s p e c i f i e d s y m m e t r i c r e g i o n of t h e complex p l a n .
As a r e s u l t of t h e a b o v e c o r o l l a r y , t h e p o l e s of t h e s y s t e m can b e a r b i t r a r i l y a s s i g n e d if a n d only if :
Ad= ~ The s i m i l a r i t y b e t w e e n t h e s e r e s u l t s and t h o s e p r e s e n t e d for c e n t r a l i z e d c o n t r o l in p a r a g r a p h e
1 . 2 . 6 e m p h a s i z e s t h e f a c t t h a t d e c e n t r a l i z e d f i x e d modes a r e t h e
g e n e r a l i z a t i o n of u n c o n t r o l l a b l e a n d u n o b s e r v a b l e m o d e s to d e c e n t r a l i z e d c o n t r o l .
[20o E'] II
Example 2.1. C o n s i d e r t h e following 2 - s t a t i o n l i n e a r t i m e - i n v a r i a n t d y n a m i c s y s t e m :
~(t) =
Yl(t) =
o
a
o
0
0
-I
~1
1
OJ
x(t) +
o
0
x(t)
ul(t)
+
u2(t)
41
where a is an a r b i t r a r y r e a l p a r a m e t e r . The d e c e n t r a l i z e d o u t p u t f e e d b a c k matrices K h a v e t h e following s t r u c t u r e
K =
F [ kl
L The
0
0
poles
:
k2 of t h e
system
det(kI-A)=(k.-2)(k+l)(),-a).
are
Since
the
zeros
~=2 is a z e r o ,
of
the
characteristic
polynomial :
the open-loop s y s t e m is u n s t a b l e
i n d e p e n d e n t l y of the s i g n of a. The poles of t h e closed-loop system are the z e r o s of the closed-loop c h a r a c teristic polynomial : det(kI-A-BKC)=(~-2-kl)
(k + l - k 2 ) (k-a)
From Definition 2.1, the d e c e n t r a l i z e d fixed polynomial is ()~-a) and t h e system has a d e c e n t r a l i z e d
fixed mode at
assigned by an a p p r o p r i a t e
k=a.
A l t h o u g h t h e pole
~=2 can be a r b i t r a r i l y
choice of k 1, the pole ;~ =a cannot be m o v e d , N e v e r t h e -
less, if a(0~ the system is stabilizable.
2.2,3.b.
- Corfmat and Morse r e s u l t s (COR-76)
The a b o v e problem was c o n s i d e r e d geometric a p p r o a c h
(COR-75)
by
Corfmat
and
Morse in
1976 u s i n g
a
(WON-74), The problem was a p p r o a c h e d by a n s w e r i n g
the following q u e s t i o n : "Is t h e r e a control law in the form of a s t a t i c d e c e n t r a l i z e d o u t p u t f e e d b a c k such that the system becomes controllable and o b s e r v a b l e by a single station ?" If the a n s w e r is p o s i t i v e ,
the s t a n d a r d
algorithms of c e n t r a l i z e d control can
then be u s e d for the design of an additional dynamic c o n t r o l l e r a s s o c i a t e d with this station s u c h t h a t t h e stabilization or pole a s s i g n m e n t is a c h i e v e d . For the system
(2.2.4),
this a p p r o a c h leads to t h e following control laws and
is i l l u s t r a t e d b y F i g u r e 2.4 :
I
t u i t) = Ki Yi (t) + v i ( t ) ~j(t) Sj z j ( t ) + Rj y j ( t )
/vj(t)
(i=l,...,s) j ¢
Qj zj(t) + Nj y j ( t )
{1 . . . . .
s)
(2.2.1s)
42
1 I I
vl+~ uj
[ I I [ I
~Yl ,] I UlLf
lY-
i
SYSTEM
vs
÷~'I~ ---~-~
I I I I I I
--~
I S I _.i
Observator F i g u r e 2.4 Of c o u r s e ,
the initial system
(2.2.4)
is s u p p o s e d
t o b e globally c o n t r o l l a b l e
and observable. Corfmat and (digraph)
Morse a n a l y s i s is b a s e d
to t h e s y s t e m .
on t h e a s s o c i a t i o n of a d i r e c t e d
graph
A n o d e is a s s o c i a t e d to e v e r y s t a t i o n a n d an e d g e e x i s t s
from t h e n o d e i to t h e n o d e j i f a n d o n l y if : Wij (p) = Cj ( p I - A ) - I Bi ~ 0 i.e.,
if t h e o u t p u t a t s t a t i o n j c a n b e a f f e c t e d b y t h e i n p u t at s t a t i o n t .
Example 2°2. C o n s i d e r t h e following s y s t e m d e s c r i b e d i n t h e f r e q u e n c y - d o m a i n b y :
w11(p) o oj W(p)= 21~p) w32Wz2(P)(p)wa3(P)o T h e a s s o c i a t e d g r a p h is t h e following :
43
3 Definition Z.3. A s y s t e m is s a i d to b e s t r o n g l y c o n n e c t e d if i t s a s s o c i a t e d d i g r a p h is strongly connected.
(Note t h a t t h i s does n o t n e c e s s a r i l y imply t h a t all t h e t r a n s f e r
matrices Wij(p) a r e # 0 ) . A non-strongly-connected
s y s t e m c a n always b e d e c o m p o s e d i n s e v e r a l s t r o n g l y
c o n n e c t e d subsystems c o n s t i t u t e d b y t h e s t a t i o n s a s s o c i a t e d with t h e n o d e s d e f i n i n g the s t r o n g c o m p o n e n t s of t h e d i g r a p h . In t h e e x a m p l e 2 . 2 ,
t h e s y s t e m is n o t s t r o n g l y c o n n e c t e d a n d c a n b e d e c o m -
posed in two s t r o n g l y c o n n e c t e d s u b s y s t e m s ,
Sl
- Yl = W l l ( P )
which are :
Ul
s2 Fy21222(P 2g(P ]
Definition 2.4 ( C O R - 7 6 ) .
A single station system given by the triple (C,A,B) is said
to be complete if :
i - C (pI-A) -I B # 0 ii - the remnant polynomial p (C,A,B) (COR-76) defined as the product of the n~ R (A nI.x n ) t o first invariant polynomials (ROS-70)of the matrlxl},IcA 0BI is equal
Remark 2 . 2 .
rank[
( C O R - 7 6 ) . C o n d i t i o n ii is e q u i v a l e n t to :
> n
for
Vk ~_o(A)
L
C
i.e.j
no p o l e of t h e s y s t e m is s i m u l t a n e o u s l y u n c o n t r o l l a b l e a n d u n o b s e r v a b l e
1.2.4).
(see §
44 Let u s i n t r o d u c e now a f u n d a m e n t a l d e f i n i t i o n in t h e
study
of m u l t i - s t a t i o n
s y s t e m s -" t h e c o n c e p t of c o m p l e m e n t a r y s u b s ) r s t e m s . Definition 2 . 5 . C o n s i d e r t h e S - s t a t i o n s y s t e m ( 2 . 2 . 2 ) . a n d the p a r t i t i o n
Ha= { i l , . . . , i k}
Define t h e s e t s ~ = { 1 , . . . , S }
, ~8 = {ik+l . . . . . i s } .
T h e s y s t e m is t h u s p a r d -
t i o n e d in two a g g r e g a t e d s t a t i o n s a a n d 8 • Define t h e following m a t r i c e s :
°o=
L % .....% ]
i,
C
58 =
(%
=
E B i k + l . . . . . BiS ]
Ii ik
L%J
H e n c e , t h e s e t of c o m p l e m e n t a r y s u b s y s t e m s of s y s t e m (2.2.2) is d e s c r i b e d by t h e t r i p l e s (C B , A , B a ) '
(k=l,...S-1).
T h e f i r s t r e s u l t of Corfmat a n d Morse d e a l s w i t h s t r o n g l y c o n n e c t e d s y s t e m s : Theorem 2.2 (2o2ol)
(COR-76b).
(2°2.2).
Consider the
globally c o n t r o l l a b l e a n d o b s e r v a b l e s y s t e m
T h e n , u s i n g t h e c o n t r o l laws s p e c i f i e d b y ( 2 . 2 . 1 5 ) ,
with a r b i t r a r y
j ¢ {1 .... s} * t h e s p e c t r u m of t h e s y s t e m c a n be a s s i g n e d a r b i t r a r i l y if a n d o n l y i f all i t s comp l e m e n t a r y s u b s y s t e m s a r e c o m p l e t e . T h i s is e q u i v a l e n t to :
i - C 6 (pI-A) -I B a #0
(k=l ..... S-1)
(2.2.1) (2.2.2) is strongly connected. ii - p ( C s , A , B a) = 1 (k=l ..... S-l) with 0 (C B ,A.Ba ) denoting the remnant polynomial of the complementary subsystem (C~ , A , B ). * t h e s y s t e m can b e s t a b i l i z e d if a n d o n l y if : - C o n d i t i o n (i) h o l d s . iii- p (C~ , A , B a) i s a s t a b l e polynomial, (k=l . . . . . S - l ) . Note
that
a necessary
c o n d i t i o n for t h e
e x i s t e n c e of a d e c e n t r a l i z e d s t a t i c
o u t p u t f e e b a c k t h a t makes t h e s y s t e m c o n t r o l l a b l e a n d o b s e r v a b l e b y a s i n g l e s t a t i o n , is t h a t t h e s y s t e m is s t r o n g l y c o n n e c t e d .
Example
2.3
(KAT-81).
Consider
the globally controllable and observable
described by the following matrices :
system
io,,
45
0 0 0
A:
o
o
I
BI=
0 0 0
'
~:[o
[
I
o
o
,
152= 0 I
o]
m a t r i x of t h e s y s t e m is :
o l p2(p_2)
Wll(p)
Wl2(P)]_
l
W21(P)
W22(P)J - p2 (p- l)(p-2)
Since W l Z ( P ) = C I ( P I - A ) - I B 2 strongly connected and condition
* Calculation of
p2 (p=2)
0
p2(p-2)
o
¢ 0,
t h e s y s t e m is
a r e ( C 2 , A , B I) a n d ( C 1 , A , B 2 ) .
O ( C 1 , A , B 2) :
I that can be p u t
p(p=l) _(p_l) 1
¢ 0 and W21(P)=C2(PI-A)-IB1 (i) of t h e o r e m 2.2 h o l d s .
The complementary subsystems
mials :
o
1
0
o
The transfer
=
0
oo oo 1 I o
CI =
W(p)
[, I°J
X
I=A Cl
B21 0
in Smith)s form
=
X
-I
-I
0
X
0
-I I 0
0 0
0 0
),-I 0
0 I 0 X-2 lj 1
l
0
0
i
0
0
(ROS-70)
0
0
0
0 0 1 0
I 0
0
0 0
to make a p p a r e n t
the invariant
polyno-
46 ! o I I 0
0
l !
0
1
I I I
0 0
-,1
=~
0 (CI,A,B 2) : 1
1
o
O.Q_
o
* Calculation o f
0(C2,A,B1)
:
C2
),
-I
-I
0
k
0
0
0
k-I
0
0
0
0
0
1
0 -I 0 k-2 0
a n d S m i t h ' s form is t h e following : i
E
I
1
9_
a
I
I
0 --
o
--
I I
l 0
I
=~
p (C2,A,131) : 1
k 2(I-2)
All t h e c o m p l e m e n t a r y s u b s y s t e m s a r e c o m p l e t e . A c c o r d i n g to T h e o r e m 2 . 2 , the s p e c t r u m of t h e s y s t e m can b e a r b i t r a r i l y a s s i g n e d b y u s i n g
first a static output
f e e d b a c k at s t a t i o n 2, w h i c h m a k e s t h e s y s t e m c o n t r o l l a b l e a n d o b s e r v a b l e b y s t a t i o n 1, a n d t h e n a p p l y i n g an a p p r o p r i a t e dynamic o u t p u t f e e d b a c k at s t a t i o n 1 f o r w h i c h s t a n d a r d d e s i g n t e c h n i q u e s can b e u s e d ( B R A - 7 0 ) . Example 2 . 4 . C o n s i d e r now t h e globally c o n t r o l l a b l e a n d o b s e r v a b l e s y s t e m d e s c r i b e d b y t h e following m a t r i c e s :
47 0
1
0
0
0
1
0
0
l
A =
Cl
0
O
1
0
0
0
0
1
I
o
o
o]
o
I
o
o
o
o
o
I
I
which is also s t r o n g l y
* C a l c u l a t i o n of
0
k-I
0
0
o
o
o
1
0
0
connected.
p (CI1,A,B2)
- 1
0
B2=
Bl=
=
-~,
[°1 il 0
:
o
o
0
0
X-I
0
o
o7
I I I I I I
~,-1
I I
I !
0 0
I
I
0
0
0
o
1
o
o So,
i
o
O
--~
tl J
o__
0 o_
p ( C . 2 ± A , B 1)
k-I
: 0
0
0
0 1 |
o
~.-I
o
o
o
o
o
X-I
O
o
1
l
0
P ( C 2 , A j B 1)
=X-i.
i
1
o
o
o
o
o
I [
o
1
--o
[I
o _
Consequentlyp
0 --
x-ll
-
i
l
Lj ]
0
o
not v e r i f i e d .
o
I
o
0 0 P(CI,~,B2) = 1
* Calculation o f
I I
I
I 1
I
o
I
_o
conditions
(ii)
x (x
and
(iii)
-t)
of Theorem
T h i s s y s t e m c a n n o t b e s t a b i l i z e d b y a c o n t r o l law o f t h e k i n d
2.2
are
(2.2.15)
since t h e mode k 1=1 c a n n o t b e m o v e d b y d e c e n t r a l i z e d c o n t r o l .
In the
case
cedure proposed
for which the
by Corfmat and
conditions of Theorem Morse leads
2.2 a r e
satisfied,
to all m e m o r i l e s s c o n t r o l l e r s ,
the
pro-
save one
48 of h i g h c o m p l e x i t y ( o r d e r n - l ) . s e n t s some d i s a d v a n t a g e s .
From a p r a c t i c a l p o i n t of v i e w , t h i s s i t u a t i o n p r e -
In p a r t i c u l a r ,
it g e n e r a l l y r e q u i r e s h i g h g a i n s : e v e n if
all t h e m o d e s of t h e s y s t e m a r e c o n t r o l l a b l e a n d o b s e r v a b l e a t o n e station~ some of them m i g h t h a v e a weak d e g r e e o f c o n t r o l l a b i l i t y o r o b s e r v a b i l i t y , t h a t n e e d s to be c o m p e n s a t e d b y h i g h g a i n s . It would be b e t t e r to s p r e a d t h e c o n t r o l c o m p l e x i t y more e q u a l l y among t h e local c o n t r o l l e r s , i . e . ,
to e n d o w e a c h local c o n t r o l l e r with some
d y n a m i c s . A r e s u l t in t h i s d i r e c t i o n was o b t a i n e d b y A n d e r s o n a n d L i n n e m a n n (AND84)
for
interconnected systems
(the
subsystems are
interconnected through
their
inputs and outputs). They showed that, t r o l l e r can b e t a k e n
for stabilization p u r p o s e ,
t h e o r d e r of t h e i t h local c o n -
at l e a s t e q u a l to t h e n u m b e r o f s t a b l e z e r o s of t h e i t h
sub-
s y s t e m , while t h e t o t a l o r d e r o f t h e d e c e n t r a l i z e d c o n t r o l l e r (sum of t h e o r d e r s o f t h e local c o n t r o l l e r s ) does n o t e x c e e d n - 1 . A l t h o u g h T h e o r e m 2.2 p r o v i d e s an i n t e r e s t i n g r e s u l t , t h e whole p r o b l e m is n o t solved yet.
The c o n d i t i o n s r e q u i r e d b y T h e o r e m 2.2
guarantee
t h e e x i s t e n c e of a
c o n t r o l law t h a t u s e s only one d y n a m i c c o n t r o l l e r at one s t a t i o n . T h e y a r e t h e r e f o r e much too c o n s t r a i n i n g
for
our
problem which
allows
dynamic
controllers
at
each
s t a t i o n . In t h e s e c o n d p a r t o f t h e i r w o r k , Corfmat a n d Morse (COR-76b) r e l a x e d t h e c o n s t r a i n t s of T h e o r e m 2.2 a n d t h e r e b y p r o v i d e d t h e complete s o l u t i o n of t h e p r o blem. Theorem
2,3.
Consider
the
globally
controllable
and
T h e n , with a d e c e n t r a l i z e d c o n t r o l s u c h t h a t ( 2 . 2 . 6 )
observable
system
(2.2.4).
:
* i t s s p e c t r u m can b e a r b i t r a r i l y a s s i g n e d if a n d o n l y i f t h e sum o f t h e d i m e n s i o n s of t h e s t r o n g l y c o n n e c t e d s u b s y s t e m s is e q u a l to t h e dimension of t h e whole system (2.2.4),
a n d if t h e s p e c t r u m o f e v e r y s t r o n g l y c o n n e c t e d s u b s y s t e m can b e
arbitrarily assigned. * the system spectra
of
the
(2.2.4)
strongly
c a n b e s t a b i l i z e d if a n d o n l y if t h e complement o f t h e connected
subsystems
with
the
spectrum
of . t h e
system
( 2 . 2 . 4 ) is s t a b l e , a n d if e v e r y s t r o n g l y c o n n e c t e d s u b s y s t e m can b e s t a b i l i z e d . Example matrix :
2.5.
Consider
the
2-station
system
described
by
the
following t r a n s f e r
49
W(p)=
[
1
p- 1
p-I-E
o
1 P
This s y s t e m is n o t s t r o n g l y c o n n e c t e d and the two s t r o n g l y c o n n e c t e d s u b s y s tems a r e , in t h i s c a s e , r e d u c e d to s l n g l e - s t a t i o n s y s t e m s .
T h e i r s p e c t r a can t h e r e -
fore be a r b i t r a r i l y a s s i g n e d . Both a r e of dimension 1. * Case 1 • E = 0. In this case,
the dimension o f the global system is 2 and it is
equal to t h e sum of the dimensions of the s t r o n g l y
connected subsystems.
Either
stabilization or pole a s s i g n m e n t a r e p o s s i b l e . * Case 2 : E~ 0. In this c a s e , the dimension of the global system is 3. The pole XI=I+E
c a n n o t be moved b y a d e c e n t r a l i z e d c o n t r o l .
of the system remains possible if Xl=l+c
2.2.3.c.
N e v e r t h e l e s s , the stabilization
is s t a b l e .
Comments
-
The r e s u l t s of Corfmat and Morse were c a r r i e d out using geometrical methods (WON-74) obtained
of system equivalent
theory. results
With the using
same a p p r o a c h ,
polynomial matrix
Fessas
methods
(FES-79) (ROS-?0)
(FES-80) (WOL-74).
Potter et al. (POT-79) also t r e a t e d the same problem in the case of 2 - s t a t i o n systems and p r o v i d e d e q u i v a l e n t conditions e x p r e s s e d in terms of a r a n k condition for the system matrix. T h e i r r e s u l t is s t a t e d in the following theorem :
Theorem 2 . 4 . .
C o n s i d e r a globally controllable and o b s e r v a b l e 2-station
system
(C 1
C 2, A, B 1 B 2) with C I ( P I - A ) - I B 2 ~ 0 and C 2 ( P I - A ) - I B 1 ~ 0 ( i . e . , the system is strongly c o n n e c t e d ) . T h e r e e x i s t s an r e a l - v a l u e d f e e d b a c k matrix K 2 of a p p r o p r i a t e dimension s u c h t h a t the system (C1,A + B2K2C2,B1) is controllable and o b s e r v a b l e if and only if :
I I-A
rank /
X
LC2
~ 11
n
~ % ~ o(A)
(2.2.16a)
50
rank [~I-A
~21
~ n
~ ~ ~ o (A)
(2.2.16b)
As it will b e s e e n in t h e n e x t c h a p t e r ,
conditions (2.2.16) present the interest
C 1
to b e t h e same as t h e c o n d i t i o n p r o v i d e d b y A n d e r s o n a n d Clements (AND-81a) characterize
decentralized
characterizations
fixed modes.
of f i x e d modes
The next
chapter
deals with t h e
to
different
in t h e t i m e - d o m a i n a n d in t h e f r e q u e n c y - d o m a i n .
T h e e q u i v a l e n c e b e t w e e n t h e r e s u l t s of Corrnat a n d
Morse a n d t h o s e of Wang a n d
D a v i s o n e x p r e s s e d in t e r m s of fixed modes will t h u s b e c l a r i f i e d . However,
a n immediate c o r r e l a t i o n c a n b e e s t a b l i s h e d from t h e following t h e o -
rem o b t a i n e d b y F e s s a s ( F E S - 8 0 ) . Theorem 2.5.
C o n s i d e r t h e globally c o n t r o l l a b l e a n d o b s e r v a b l e s y s t e m
suppose
i t is s t r o n g l y
that
connected.
This system
(2.2.4)
and
c a n b e made c o n t r o l l a b l e a n d
o b s e r v a b l e b y a s i n g l e s t a t i o n u s i n g a s t a t i c d e c e n t r a l i z e d c o n t r o l if a n d o n l y if t h e s y s t e m h a s no f i x e d m o d e s .
2.3. - A R B I T R A R Y
STRUCTURAL
CONSTRAINTS
As was p o i n t e d o u t in t h e i n t r o d u c t i o n , metimes allowed to s h a r e information pattern the controller structural
some i n f o r m a t i o n .
reflecting
can connect.
constraints
a particular
t h e d i f f e r e n t local s t a t i o n s a r e s o -
This yields
to a n o n - s t a n d a r d
c o n f i g u r a t i o n of o u t p u t - i n p u t
reduced pairs
that
T h e a n a l y s i s of t h e p r o b l e m of c o n t r o l with a r b i t r a r y
does not require
a model of t h e s y s t e m in w h i c h t h e p a r t i -
t i o n i n g in s p e c i f i e d s t a t i o n s is a p p a r a n t . T h e s y s t e m is now d e s c r i b e d b y t h e following g e n e r a l model : £(t)
= A x(t)
y(t)
C x(t)
+ B u(t)
(2.3.1)
w h e r e x ~ R n , u 6 R m, y ~ R r a n d : B = (b 1 . . . . . b m) E: R n x m CI= (c' 1 . . . . . c' r ) ~ R r x n The particular
information pattern
m a t r i x F of d i m e n s i o n m x r s u c h t h a t '
can b e a d e q u a t e l y
described
by a binary
51 f.. = 1 i f a f e e d b a c k Ij lf'j = 0 o t h e r w i s e . For every
input
is allowed from the output
ui(t),
(i=l,...,m),
j to t h e i n p u t i.
define the following indices set
:
. . . . . r } / fij = 1}
si = { j c { t
The dynamic
controller
(2.3.2)
corresponding
to t h i s i n f o r m a t i o n
pattern
is thus
des-
cribed as follows :
I ~_i(t) = Si zi(t) + ~ rij yj(t) j£3 i [ui(t )
where zi(t)• input.
q[ zi(t) ÷ Z
J~Ji
R ~i i s t h e
state
(i=l,...,m)
kij yj(t) + vi(t)
of t h e
ith controller
Si, qi a n d rij a n d kij a r e c o n s t a n t
matrices,
The concept of fixed modes introduced case of decentralized
Definition 2.6
constraints
(SEZ-81a).
Define the set
by Wang and
vi(t)
is
the
ith
external
and scalars. Davlson
( W A N - 7 3 b ) in t h e as follows :
:
f.. = 0} 1]
t h e n , t h e s e t o f f i x e d m o d e s of s y s t e m is
and
vectors
on the control can now be generalized
~* = {K ~ R m x r / k.. = 0 if 13
by ( 2 . 3 . 3 )
(2.3.3)
(2.3.1)
(2.3.4)
with respect
to t h e c o n t r o l l a w s g i v e n
:
A (C,A,B,
~*)
= K ~ n/ *
o (A + B K C )
(2.3.5)
where a (°) denotes the set of eigenvalues of (.). This definition is the extension an a r b i t r a r y
Note t h a t i f we c o n s i d e r
K1
o f D e f i n i t i o n 2.2 t o a s e t o f m a t r i c e s
structure.
K2 c
.....
the output
feedback
matrices
:
K having
82 with t h e following i n c l u s i o n r e l a t i o n :
the corresponding sets of fixed modes of system (2.3.1) are related by the inclusion relation : A (C,A,B
fl{) c... c A (C,A,B
f~)
c
O(A)
It is c l e a r t h a t if t h e s y s t e m h a s u n c o n t r o l l a b l e o r u n o b s e r v a b l e m o d e s , t h e y will b e p r e s e n t in a n y of t h e p r e c e d i n g s e t s . This s i t u a t i o n is i l l u s t r a t e d b y t h e following f i g u r e :
k
1 F i g u r e 2.5
It was s h o w n b y S e z e r a n d Siljak (SEZ-81a) t h e e x i s t e n c e of a s e t of c o n t r o l laws ( 2 . 3 . 3 )
(SIL-82b) t h a t t h e c o n d i t i o n s for
such that the system (2.3.1)
can be
s t a b i l i z e d (or h a v e all its p o l e s a r b i t r a r i l y a s s i g n e d ) a r e t h e same as t h o s e in T h e o rem 2.1 a n d C o r o l l a r y 2.2 b u t r e p l a c i n g t h e s e t A ( C , A , B , ~ d ) b y Remark 2.3.
h (C,A,B,
~ *).
C o n s i d e r t h e p a r t i c u l a r c a s e for which t h e g e o g r a p h i c a l d i s t r i b u t i o n of
t h e s y s t e m d e f i n e s S s p e c i f i e d c o n t r o l a n d o b s e r v a t i o n s t a t i o n s s u c h t h a t t h e model of t h e s y s t e m is g i v e n b y
(2.2.4).
The i n f o r m a t i o n t r a n s f e r is d e f i n e d b y t h e p h y -
sical c o n n e c t i o n s b e t w e e n s t a t i o n s a n d it can t h e r e f o r e b e a g g r e g a t e d at t h e level of the
stations
(ui(t)
dimension mi a n d r i ) .
and
Yi(t),
(i=l . . . . , S ) ,
are
no l o n g e r s c a l a r s
but
v e c t o r s of
53
The structurally
constrained
control is now represented
a binary
by
square
matrix F o f d i m e n s i o n s S x S : f..x] = 1 i f a f e e d b a c k i s a l l o w e d f r o m s t a t i o n j t o s t a t i o n i f.. = 0 o t h e r w i s e 13 a n d t h e s e t s t h a t w e r e a s s o c i a t e d to e a c h s c a l a r i n p u t
in ( 2 . 3 . 2 )
are now associated
to e a c h c o n t r o l s t a t i o n :
zi = {J E h . . . . .
s} ! ~j = 1}
0=1 . . . . .
The dynamic controller corresponding
~i (t) = Si zi(t) +
where
s)
to t h i s i n f o r m a t i o n p a t t e r n
)~ Qij yj(t) J Jr 3i
ui(t) = H i zi(t)
+ Z
Si,Qij,Hi,Kij
are
j¢3 i
is described
by •
(i=l,...,S)
Kij yj(t) + vi(t)
matrices
of
dimensions
(~)t,vi),
(~)i,rj),
(mi,~)i),
(mi,r j),
r e s p e c t i v e l y a n d v i i s t h e i t h e x t e r n a l i n p u t v e c t o r o f d i m e n s i o n mi . Finally, t h e s e t
~*
f~* is d e f i n e d a s :
= { K 1~ R m x r
2.4. - E V A L U A T I O N
This paragraph
OF
/ K=block (Kij),
FIXED
presents
of a s y s t e m w i t h r e s p e c t routines are provided
(i,j = 1 .....
S) a n d Kij = 0 i f
fij = 0}
MODES
two algorithms for determining
to a s p e c i f i e d c o n t r o l s t r u c t u r e .
in Appendices
2.4.1. - By comparing the spectra
the set of fixed modes
The corresponding
Fortran
2 a n d 3.
of the open-loop and
closed-loop dynamic matrix This algorithm was proposed decentralized (2.2.2)
control.
It
is
based
by Davison and Ozguner on
the
definition
g i v e n b y Wang a n d D a v i s o n ( W A N . 7 3 b ) .
of
( D A V - 7 6 a ) in t h e c a s e o f decentralized
fixed
modes
54 A l g o r i t h m 2.1 : (DAV-76a) T h e s e t of f i x e d m o d e s o f t h e s y s t e m ( 2 . 2 . 4 ) control
whose
structure
d e f i n e d in ( 2 . 2 . 7 )
is
specified
by
the
set
w i t h r e s p e c t to a d e c e n t r a l i z e d
of
output
feedback
matrices
~d
c a n be c o m p u t e d a s follows :
1 - C o m p u t e t h e e i g e n v a l u e s o f m a t r i x A : o (A) 2 - Choose an a r b i t r a r y
f e e d b a c k m a t r i x Kd
C
~d
( b y g e n e r a t i o n of p s e u d o -
r a n d o m n u m b e r s for e x a m p l e ) . 3 - C o m p u t e t h e e i g e n v a l u e s of (A + BKdC) : o (A + B K d C ) . 4 - T h e f i x e d m o d e s a r e t h e e l e m e n t s of t h e i n t e r s e c t i o n of t h e two s e t s a (A) and
a (A + BKdC) ( w i t h a p r o b a b i l i t y 1 ) .
It is c l e a r t h a t t h i s a l g o r i t h m c a n e a s i l y b e e x t e n d e d to t h e c a s e o f a r b i t r a r y structural constraints by replacing the set
~d by
~* d e f i n e d in ( 2 . 3 . 4 ) .
Example 2.6 ( D A V - S 3 ) . C o n s i d e r t h e S - s t a t i o n s y s t e m g i v e n b y t h e following t r i p l e :
ii]l
o Joo i-1ol
_L _2 _i o,i,ooiO,
Following t h e s t e p s of a l g o r i t h m 1, we h a v e : 1 -
o(A) = ( - 1 ( o r d e r
2), - 2 , - 3 }
2 - We c h o o s e a r b i t r a r i l y 3 -
: Kd = diag. (0.13, - 0 . 1 7 , - 0 . 1 )
o ( A + BKdC) = { - 0 . 0 1 , - 2 . 1 5 9 , - 2 . 1 , - 3 )
4 - T h e s e t of f i x e d m o d e s is g i v e n b y : Although our
example considers
c(A)
n
o (A + B K d C ) = { - B }
a s y s t e m of small d i m e n s i o n ,
this
algorithm
a p p l i e s e f f i c i e n t l y f o r l a r g e s c a l e s y s t e m s . For i n s t a n c e , i t w a s u s e d f o r a s h i p s t e a m generator,
w h i c h is a s y s t e m w i t h 119 s t a t e v a r i a b l e s a n d B c o n t r o l s t a t i o n s (DAV-
76a).
2 . 4 . 2 . - By calculation of the s y s t e m modes s e n s i t i v i t y (TAR-84) (TAR-85)
The
preceding
system which remain
paragraphs invariant
showed under
that
fixed
structurally
modes
are
constrained
the
modes
feedback,
of
the
indepen-
55 d e n t l y of t h e n u m e r i c a l of t h i s p r o p e r t y
values of the nonzero
to define
feedback
fixed modes in terms
gains.
of the
We c a n t a k e
concept
advantage
of eigenvalue
sensi-
tivity.
Definition 2 . 7
(TAR-84).
control whose
structure
d e f i n e d in ( 2 . 3 . 4 ) of s e n s i t i v i t y )
The is
fixed
modes of the
specified
by
the
set
are the modes of the closed-loop
with respect
to v a r i a t i o n s
on
the
system of
(2.3.1)
output
system nonzero
with respect
feedback
to a
matrices
which are insensible elements
of the
~* (void
feedback
matrix.
Consider
an arbitrary
problem of determining
the
real matrix variation
v a r i a t i o n dD o n t h e m a t r i x D . the quantities
d~r and
Faddeeva (FAD-63) dk
r
= w'
Where v r a n d
(D-
r
let us
by the
following
analyze
formula due
. v
of order
to F a d d e e v
. v
right
and
left eigenvectors
of D corresponding
:
(2.4.2)
= 0
(2.4.3)
= 1
r
From (2.4.1),
1, and
(2.~+.1)
r
the normalized
; i.e.
- XrI)
the
from a
~rI) v r = 0
W'r ( D
w'
and
kr o f D r e s u l t i n g
F o r t h e c a s e i n w h i c h Xr i s a n e i g e n v a l u e
dD a r e r e l a t e d
wr are
to Xr' r e s p e c t i v e l y
nxn
:
. dD
r
D of dimension
dkr of any eigenvalue
(2.4.4)
it c a n b e s h o w n
(MOR-66)
(ROS-65b)
that
:
Tr {Q (X r.).dD } d~'r=
Tr { Q ( ~ r ) }
(2.4.5)
w h e r e Q(~) i s t h e a d j o i n t m a t r i x o f ( X I - D ) Although
Morgan
formula (2.4.5), (ROS-65b) where
(MOG-66)
proposed
it m a y b e m o r e c o n v e n i e n t Q( ~r ) i s r e p l a c e d
: Q(p)
= adj (kI-D)
a n a l g o r i t h m to e v a l u a t e
dk r d i r e c t l y
to u s e t h e f o r m u l a g i v e n
by its explicit form (ROS-65a)
by
from
Rosenbrock
(GAN-79)
:
56 Tr {[
ir (D-X il)].dD} i(i#r)
(2,#,6)
d~.r= i(ilr)
Another with respect that
the
order
approach
(~ r-
consists
in
Xi)
determining
right
and
gradient
of
the
e i g e n v a l u e Xr
d.. o f t h e m a t r i x D . S i n c e L a n c a s t e r ( L A N - 6 4 ) s h o w e d 1l e i g e n v e c t o r s v r a n d w r a s s o c i a t e d w i t h a n e i g e n v a l u e Xr of
left
1 are continuous
dD ( ~
a t di.,j we d e r i v e
(2.4.2)
dv I) v r + (D-)trI) ~
dXr = d(dij)
B y m u l t i p l y i n g on t h e l e f t b y wr a n d u s i n g
dX
r 'd(dij)
= w' r
a n d we o b t a i n
:
= 0
(2.4.3)
and
(2.4.4)
we o b t a i n
:
dD v d(dij) r
In our particular system
the
to t h e e l e m e n t s
case,
the matrix
(2.4.7)
D is the
dynamic
closed-loop
matrix
: D = A + B K C = A + .E. b i k . . c . 1,] 1] ]
where
bi and
concerned only.
(2.4.7)
J
becomes
tJ
(2.4.8), w e
:
tJ
have
a D _ bi.c.
a kij
(2.4.8)
c. a r e t h e i t h c o l u m n o f B a n d t h e j t h r o w o f C , r e s p e c t i v e l y .
by the variation
8~ r : w' aD ak.. r ~ Vr
From
of the
j
:
o f Xr w i t h r e s p e c t
to v a r i a t i o n s
on the elements
We a r e kij o f K
57 a n d f i n a l l y , we o b t a i n
~X r ak..
:w'
:
(2.~.9)
bic. v I r
r
|J
If the
feedback
matrix
has
some fixed zero elements,
it i s c l e a r t h a t
equal to z e r o f o r k.. = 0. 1]
Definition (2.3.4)
2.8
(TAR-84).
and a feedback
Consider
a
control
structure
m a t r i x K C ~ *. T h e s e n s i t i v i t y
eigenvalue X of order
1 with respect
r
defined
the
is
set
~* i n
matrix of a closed-loop
matrix
to t h i s c o n t r o l i s g i v e n b y
by
~ r ~k.. II
•
SK r = ( s k i j ) i=l,...,m j=l .....
1 (2.4.10)
with
{~
'r
skij =
b i cj v r
Theorem 2.6 (TAR-84). ~*' kr
k. = 0 q
if
Given the system
(2.3.1)
i s a f i x e d m o d e if a n d o n l y if e i t h e r
and the set of feedback
matrices
of the two following equivalent
condi-
tions holds : 1 - the sensitivity 2 - Sr = W r { [ i ( i ~ r )
m a t r i x SK r d e f i n e d i n ( 2 . 4 . 1 0 )
(D-hi)
. dD}
is identically
zero (2.4.11)
= 0
w h e r e D--A+BKC, K E f~*, d D = B d K C a n d dK E: ~ * . This result
is straightforward
from Definition
(2.2.7)
and the relations
(2.4.6)
and (2.4.10).
Using Theorem
2.6,
the fixed modes of a system
poles) can be computed by the following algorithm
:
(not necessarily
with distinct
58 Al$orithm 2.2 (TAR-84).
1
Select
an
system modes
arbitrary
feedback
o(A+BKC)
matrix
K ~ ~*
such
that
the
closed-loop
are distinct.
2 - Compute the sensibility
matrix
SK r in ( 2 . 4 . 1 0 )
o r Sr in ( 2 . 4 . 1 1 )
for
~r ~ o ( A + B K C ) 3 - T h e f i x e d m o d e s a r e t h o s e f o r w h i c h SK r i s i d e n t i c a l l y Remark
2 . 4 : It i s b e t t e r
distinct poles. the
system
systems
Indeed,
has
to r e s t r i c t
the first
multiple
fixed
with multiple poles.
Example
2.7.
described
Consider
application
of Algorithm
step of this algorithm modes.
Obviously,
the
globally
this
controllable
2 to s y s t e m s
situation
is only possible
tI°0 tli
1° o
0
1
I
and
observable
2-station
0
I
0
0
I
l
i
to t h e d e c e n t r a l i z e d
control
:
K = diag.(k I, k 2) = d i a g . ( I , 5 ) The results
obtained
by applying
Algorithm 2 are the following :
Closed-loop
S SK
eigenvalue
-2
: ~,
I
r
:
-o.7645 0
-
1.088
0
--o.49 10-15 o
~Xr ;)K
r
for dK=K
0
1
-29.9999
- @1529
o 0.2177
for
subsequently.
•
1
with
m a y n o t h a v e a s o l u t i o n when
T h i s c a s e will b e d i s c u s s e d
by the following triple
submitted
the
z e r o o r Sr i s z e r o .
I
J
o - %32 10 -17
19.9999
I
J
0.666 10 - 1 4
system
59
T h e r e f o r e Xr = 1 is a f i x e d mode with an a c c u r a c y ) 10 -14. This a l g o r i t h m h a s b e e n u s e d f o r a s h i p s t e a m g e n e r a t o r model in ( T A R - 8 5 ) . The p r e c e d i n g a n a l y s i s is r e s t r i c t e d to simple f i x e d modes a n d t h e a p p r o a c h is specially a d e q u a t e for s y s t e m s w i t h simple m o d e s , w h i c h g u a r a n t e e t h a t t h e f i r s t s t e p of the algorithm c a n b e a c h i e v e d . The g e n e r a l i z a t i o n of t h i s a p p r o a c h to s y s t e m s w i t h multiple modes is n o t e a s y (TAR-85). I n d e e d , if Xr i s a multiple e i g e n v a l u e of o r d e r q o f a real m a t r i x D, i t s variations r e s u l t i n g from v a r i a t i o n s of t h e e l e m e n t s di] of D a r e g i v e n b y t h e s o l u tions of the following a l g e b r a i c e q u a t i o n of o r d e r q (PAR-74) :
q I [d k-I QCk)] X 1_ q~ {d q-I [Tr Q ( k ) ] A =X r } . d X r : Tr {k :E--~-, l
r
(2.4,12)
.dD}
with Q (~) = adj (XI-D). G e n e r a l l y , a multiple e i g e n v a l u e ~ r of o r d e r q g i v e s r i s e , a f t e r t h e p e r t u r b a tion dD,
to
(d~r)i, (i=l
q
. . . . .
simple e i g e n v a l u e s : Xr+
(d~r) 1 .
. . . .
kr+(dkr) i . . . . . ~ r + ( d ~ r ) q ,
where
q ) , a r e t h e s o l u t i o n s of e q u a t i o n ( 2 . 4 . 1 2 ) . From Definition ( 2 . 2 . 7 ) ,
~r is a f i x e d mode o f o r d e r q if ( d k r ) i = 0,
(i=l . . . . . q ) .
So,
from
(2.4.12),
the
following c o n d i t i o n m u s t h o l d :
q 1 s r = Tr { r ~ k=l
[dk-I
Q(X)] X= Xr
.dD}
=0
(2.4./3)
Remark 2.5. A s p e c i a l c a s e may o c c u r f o r w h i c h n o t all t h e v a r i a t i o n s ( d k r ) i , are zero b u t o n l y some of t h e m ,
s a y q' ( q .
Though
condition
(i=l . . . . . q ) ,
(2.4.13)
does not
hold, ~r is a f i x e d mode o f o r d e r q~. Since D=A+BKC, t h i s means t h a t a n o t h e r matrix K ~ ~* can be f o u n d w h e r e b y ~ is an e i g e n v a l u e of o r d e r q ' o f D. In t h i s situationp all the v a r i a t i o n s ( d ~ r ) i ,
(i=1 . . . . q ' ) , a r e z e r o a n d we a r e b r o u g h t b a c k t o t h e e a s e
for which c o n d i t i o n ( 2 . 4 . 1 3 ) h o l d s . The e v a l u a t i o n of S r r e q u i r e s t h e analytical calculation of t h e ad]oint m a t r i x of (~I-D) and of i t s v a r i a t i o n s from t h e o r d e r 1 to ( q - l ) ,
in o u r c a s e r e s u l t i n g from
6O t h e v a r i a t i o n s of t h e e l e m e n t s k.. of t h e f e e d b a c k m a t r i x K. 1] very heavy task.
Obviously,
t h i s is a
Like in t h e case o f simple f i x e d m o d e s t a n o t h e r a p p r o a c h c o n s i s t s in evaluating the
g r a d i e n t s o f kr w i t h r e s p e c t
to t h e
e l e m e n t s kij o f K. We can t h u s
u s e the
following t h e o r e m due to L a n c a s t e r (LAN-64). Theorem 2.7
(LAN-64).
Given ~r a multiple e i g e n v a l u e of o r d e r q of a real matrix
D(R) p w h e r e R is a p a r a m e t e r p c o n s i d e r t h a t t h e r i g h t a n d l e f t e i g e n v e c t o r matrices Vq a n d Wq a r e c h o s e n s u c h t h a t WWqQq=I, T h e n ,
t h e q d e r i v a t i v e s o f ~ r with r e s -
p e c t to R a r e t h e e i g e n v a l u e s of t h e matrix W d D / d R V . (For t h e c o n d i t i o n s of q q e x i s t e n c e of Wq a n d Vq, t h e r e a d e r i s r e f e r e d to ( L A N - 6 4 ) ) . In o u r
case,
D=A+BKC a n d t h e p a r a m e t e r
R must be taken
s u c c e s s i v e l y as
e a c h e l e m e n t k.. o f K. M o r e o v e r , as we h a v e a l r e a d y s e e n : 1]
~D a kij
(A ÷ )~ bikijcj) i,j a kij
:
= bic.= 0 }
a n d we h a v e t h e following r e s u l t : Theorem 2.8 ( T A R - 8 5 ) . Given t h e s y s t e m ( 2 . 3 , 1 ) a n d t h e s e t of f e e d b a c k m a t r i c e s ~*'.;~r is a f i x e d mode of o r d e r q if a n d only if all t h e e i g e n v a l u e s of e v e r y matrix WqbXCjVq,
(i,j
s u c h t h a t ki..j ~ 0 ) ,
are
e i g e n v e c t o r m a t r i c e s c o r r e s p o n d i n g to k
zero.
W'q
and
Vq a r e t h e l e f t a n d right
c h o s e n s u c h t h a t W' V = I. r q q
Note t h a t t h e a b o v e t h e o r e m is not e a s y to u s e , e i t h e r .
This r e q u i r e s ,
first,
t h e d e t e r m i n a t i o n o£ t h e e i g e n v e c t o r m a t r i c e s W a n d V a n d , t h e n , t h e computation q q of t h e e i g e n v a l u e s of ~ m a t r i c e s of dimension q x q ( w h e r e U is t h e n u m b e r of nonzero e l e m e n t s in t h e
feedback matrices
K ~ ~*).
The
c o n c l u s i o n is t h a t
the
approach
b a s e d on t h e s e n s i t i v i t y p r o p e r t i e s of e i g e n v a l u e s is n o t s u i t a b l e to d e t e r m i n e multipie f i x e d m o d e s .
2.4.3
-
Concluding
remarks
T h e two p r e c e d i n g a l g o r i t h m s a r e easily i m p l e m e n t e d . It is i n t e r e s t i n g to note t h a t t h e y can also be u s e d to c o m p u t e t h e u n c o n t r o l l a b l e a n d u n o b s e r v a b l e modes of a system by replacing the set
~* b y R m x r . T h e only p r o b l e m , w h i c h may i n d u c e a
61
difficult i n t e r p r e t a t i o n of t h e r e s u l t s , gorlthm, one h a s equal a n d ,
in t h e s e c o n d a l g o r i t h m ,
computer z e r o .
is t h e c o m p u t e r a c c u r a c y .
For t h e
first al-
to d e c i d e in w h i c h limits two e i g e n v a l u e s can b e c o n s i d e r e d as
However,
t h e p r o b l e m is to d e c i d e t h e a c c u r a c y of t h e
Davison e t a l .
(DAV-78b)
showed that
if a c l o s e d - l o o p
eigenvalue is ' v e r y close' to an o p e n - l o o p e i g e n v a l u e , t h e t r a n s f e r m a t r i x c o m p u t e d when c o n s i d e r i n g t h i s e i g e n v a l u e as a f i x e d mode is a good a p p r o x i m a t i o n of t h e t r a n s f e r m a t r i x of t h e s y s t e m .
2.5.
-
CONCLUSION This c h a p t e r d e a l s with t h e p r o b l e m of s t a b i l i z a t i o n a n d pole a s s i g n m e n t w h e n
a specified r e s t r i c t e d i n f o r m a t i o n p a t t e r n is r e q u i r e d , w h i c h c o n s t r a i n t s t h e f e e d b a c k control s t r u c t u r e . The
ap-
p r o a c h e s of Wang a n d Davison (WAN-73b) a n d of Corfmat and Morse (COR-76)
The c a s e o f a d e c e n t r a l i z e d s c h e m e of c o n t r o l is p r e s e n t e d
are
both c o n s i d e r e d .
the
Their
results
give,
in
different
terms,
the
first.
conditions
for
existence of a s o l u t i o n to t h e a b o v e p r o b l e m . The e q u i v a l e n c e o f t h e s e r e s u l t s will b e d i s c u s s e d in t h e n e x t c h a p t e r a n d we will s e e how t h e r e s u l t s of Corfmat a n d Morse can be e x p r e s s e d in t e r m s of t h e c o n c e p t of f i x e d modes i n t r o d u c e d b y Wang a n d Davison. It will also b e p o i n t e d o u t how t h e s e r e s u l t s a r e r e l a t e d to t h e c o n c e p t of controllability u n d e r d e c e n t r a l i z e d i n f o r m a t i o n s t r u c t u r e . The c a s e o f a r b i t r a r y s t r u c t u r a l c o n s t r a i n t s on t h e c o n t r o l is t h e n c o n s i d e r e d and t h e c o n c e p t of f i x e d modes is e x t e n d e d to t h i s g e n e r a l f r a m e w o r k . Finally, two a l g o r i t h m s f o r t h e e v a l u a t i o n of f i x e d modes a r e p r e s e n t e d . This c h a p t e r p o i n t s out t h e
f u n d a m e n t a l i m p o r t a n c e of f i x e d m o d e s .
Indeed,
the e x i s t e n c e of u n s t a b l e f i x e d modes i n d i c a t e s t h a t s t a b i l i z a t i o n is i m p o s s i b l e , while the p r e s e n c e of a n y k i n d of f i x e d modes r u l e s out a r b i t r a r y pole p l a c e m e n t .
Fixed
modes a p p e a r t h u s as a g e n e r a l i z a t i o n of u n c o n t r o l l a b l e a n d u n o b s e r v a b l e modes in the case of n o n - c o n s t r a i n e d c o n t r o l
(centralized control).
i n t e r e s t e d in t h i s p r o b l e m ( f o r a s u r v e y , different characterizations chapter.
of
fixed
see (TRA-84a))
modes,
which
will be
Many a u t h o r s
have been
and their r e s u l t s provide presented
in
the
next
The a n a l y s i s of t h e s e c h a r a c t e r i z a t i o n s , b o t h in t h e time a n d in t h e f r e -
quency domain,
will allow u s
to p o i n t out
the
situations
that
give r i s e
modes, and to g i v e an i n t e r p r e t a t i o n of f i x e d modes r e l a t e d to t h e i r o r i g i n .
to f i x e d
CHAPTER
CHARACTERIZATION
3
OF
FIXED MODES
3. I. - I N T R O D U C T I O N
The last fixed modes.
chapter Indeed,
pointed
out
the
fundamental importance
t h e e x i s t e n c e of a s o l u t i o n
for the
p l a c e m e n t p r o b l e m of a l i n e a r i n v a r i a n t s y s t e m r e q u i r i n g
of t h e
c o n c e p t of
stabilization or
some s t r u c t u r a l
t h e pole
constraints
on t h e c o n t r o l d e p e n d s c r i t i c a l l y on t h e p r o p e r t i e s of t h i s f i n i t e s e t of n u m b e r s . p r e s e n c e of u n s t a b l e f i x e d m o d e s i n d i c a t e s t h a t
The
s t a b i l i z a t i o n i s i m p o s s i b l e while the
p r e s e n c e of a n y s o r t of f i x e d m o d e s r u l e s o u t a r b i t r a r i l y pole p l a c e m e n t , The
first
important
problem
u n d e r some p r c s p e c i f i e d s t r u c t u r a l
of e v a l u a t i n g
fixed
modes
for
a
given
system
c o n s t r a i n t s on t h e c o n t r o l h a s b e e n t r e a t e d in the
l a s t c h a p t e r a n d two e f f i c i e n t a l g o r i t h m s h a v e b e e n p r e s e n t e d .
Our
present
o b j e c t i v e is to o b t a i n some i n s i g h t i n t o t h e b e h a v i o u r of t h e fixed
m o d e s . For t h i s p u r p o s e ,
t h e p r e s e n t c h a p t e r d e a l s w i t h t h e c h a r a c t e r i z a t i o n of fixed
m o d e s a n d a t t e m p t s to p r o v i d e an u n d e r s t a n d i n g of t h e i r o c c u r e n c e .
We will s u c c e s s i v e l y c o n s i d e r t h e c h a r a c t e r i z a t i o n s of f i x e d m o d e s w i t h a time ° domain a n d
a frequency-domain representation
t h e c o m p a r i s o n of t h e d i f f e r e n t
of t h e
characterizations,
the
system.
From t h e
reasons
of t h e
study
and
o c c u r e n c e of
f i x e d m o d e s a n d t h e c o n d i t i o n s f o r t h e i r e x i s t e n c e will b e p o i n t e d o u t . It will a p p e a r t h a t f i x e d m o d e s m a y o r i g i n a t e f r o m two d i s t i n c t s o u r c e s
: they may have a structu-
ral or
a c l e a r c l a s s i f i c a t i o n of the
a parametric origin.
different types
We will a t t e m p t to p r o v i d e
of fixed modes and
a whole p a r a g r a p h
will deal w i t h
the
specific
c h a r a c t e r i z a t i o n s of f i x e d m o d e s a r i s i n g from s t r u c t u r a l p a r t i c u l a r i t i e s .
The last paragraph
of t h i s
t e r i z a t i o n s of f i x e d m o d e s . I n d e e d ,
chapter
i s an o v e r v i e w of t h e
g r a p h s p r o v i d i n g a n e f f i c i e n t w a y to e x p l o r e v a r i o u s s t r u c t u r a l t h e c o n c e p t s of g r a p h - t h e o r y .
graphical charac-
dynamic s y s t e m s can be r e p r e s e n t e d
by directed
properties by using
N u m e r o u s r e s u l t s h a v e b e e n o b t a i n e d for t h e problem
of c h a r a c t e r i z i n g f i x e d m o d e s in t h i s g r a p h - t h e o r e t i c f r a m e w o r k .
63 3.2. - CHARACTERIZATION IN TERMS OF TRANSMISSION ZEROS This c h a r a c t e r i z a t i o n g i v e s an i n t e r e s t i n g i n s i g h t into t h e r e a s o n s of o c c u r e n c e of fixed modes a n d p r o v i d e s a simple e x p l a n a t i o n f o r t h e i r e x i s t e n c e in t e r m s of t h e familiar c o n c e p t o f s y s t e m p o l e s a n d z e r o s . I t was p r o v i d e d i n d e p e n d e n t l y b y s e v e r a l authors (HUJ-84)
(TAO-84)
and f o r m u l a t e d u s i n g
(DAV-85)
(SER-82)
different methods.
(VID-83) w h o s e r e s u l t s a r e p r o v e d
This c h a r a c t e r i z a t i o n can e q u i v a l e n t l y b e
i n t e r p r e t e d a n d u s e d e i t h e r in t h e f r e q u e n c y - d o m a i n c o n t e x t o r in t h e t i m e - d o m a i n context s i n c e
transmission
zeros are
a c o n c e p t as
well d e f i n e d b y
m e a n s of t h e
system m a t r i x as b y means of t h e t r a n s f e r f u n c t i o n matrix (see A p p e n d i x 1). A l t h o u g h t h e r e s u l t s a r e d e v e l o p p e d in a t i m e - d o m a i n f r a m e w o r k in (DAV-85a) and in a f r e q u e n c y - d o m a i n f r a m e w o r k in
(SER-82)
(VID-83), t h e i r e q u i v a l e n c e a p -
p e a r s c l e a r l y in (HUJ-84) a n d ( T A O - 8 4 ) . In all t h e p a p e r s b u t expression relating
the
(DAV-85),
t h i s c h a r a c t e r i z a t i o n is o b t a i n e d
c l o s e d - l o o p c h a r a c t e r i s t i c polynomial to t h e
using
an
controller pa-
rameters a n d z e r o polynomials of c e r t a i n c o n s t i t u a n t s u b s y s t e m s . C o n s i d e r t h e c l a s s of l i n e a r t i m e - i n v a r i a n t s y s t e m s d e s c r i b e d b y t h e following state=space r e p r e s e n t a t i o n :
{
~:(t) = A x ( t ) + B u ( t ) y(t)
(3.2.1)
C x(t)
where x ( t ) ~ Rn ,
u ( t ) ~ R m, y ( t ) ~ R r a r e t h e s t a t e , i n p u t a n d o u t p u t ,
respecti-
vely and A, B, C a r e real m a t r i c e s of a p p r o p r i a t e d i m e n s i o n s . Many l a r g e scale s y s t e m s a p p e a r to b e g e o g r a p h i c a l l y d i s t r i b u t e d or composed of an i n t e r c o n n e c t i o n of s u b s y s t e m s . T h e s e c h a r a c t e r i s t i c s can be t a k e n i n t o a c c o u n t in the model o f t h e s y s t e m b y a p a r t i t i o n i n g of t h e i n p u t a n d o u t p u t v e c t o r s r e s u l ting in s e v e r a l c o n t r o l a n d o b s e r v a t i o n s t a t i o n s :
{
~(t) : A x ( t ) +
S £ g i ui(t) i=l
Yi(t) = C i x(t)
(3.2,2) ( i=l,...,S )
which is r e l a t e d to ( 3 . 2 . 1 ) b y :
B = (B 1 ..... B S) C'= (C' 1 .... ,C' S)
64
u'(t)
= (U'l(t) ..... U's(t))
y'(t)
= (y'l(t) ..... y's(t))
w i t h u i ( t ) ~ Rmi, Yi(t) E R r i , S m = i Zl_
and
(i=1 . . . . .
S r = i Zl_
mi ,
S),
r i, w h e r e S is t h e n u m b e r
of control and observation
stations. In order traints
to p o i n t o u t t h e p r o b l e m s
on t h e c o n t r o l ,
arising
s p e c i a l l y from t h e s t r u c t u r a l
we make t h e a s s u m p t i o n
that
system
(3.2.1)
cons-
(3.2.2)
is g l o -
bally controllable and observable. The
following
development
is
taken
from
(TAO-84)
in
which
the
chosen
n o t a t i o n s c a n b e s i m p l y m a n i p u l a t e d a n d do n o t l e a d to h u g e f o r m u l a . Consider by
the
system
(3.2.1)
for which the transfer
function matrix
is g i v e n
:
= C
W(p)
(pI-A) -I B =
where N(p)=C adj(pI-A) is t h e c h a r a c t e r i s t i c The called
set
function
matrix
subscripts
q,s
(3.2.3)
B is t h e r x m n u m e r a t o r
polynomial of the system
of i-input
i-dimensional
N(p) ~(p)
i-output
subsystems
subsystems
and
denoted
transfer
function matrix and
@ (p)
(3.2.1). of by
(3.2.1), (Cq,A,B s)
(i=l . . . . . r a i n ( r e , r ) ) , or
by
their
are
transfer
Wi ( p ) = C i ( p I - A ) - l B i = W . i ( p ) , where for notation convenience the q,s q s j h a v e b e e n r e p l a c e d b y j." C lq, ( q = l , . . . , q c ) , are the set of submatrices
f o r m e d from i r o w s o f t h e m a t r i x C a n d Bis, ( s = l , . . . . S b ) , a r e t h e s e t o f s u b m a t r i c e s f o r m e d from i c o l u m n s o f t h e m a t r i x B, w h e r e
r'
qc : ( r - i )
m:
:i:
Sb - (m-i) 'i'
Wlj(p), (j--1 . . . . . ji ) , a r e t h e s e t o f i x i s u b m a t r i c e s o f W(p) a n d j i = q c . Sb . As
was
independent
pointed of the
out
dynamic
in
Chapter or
static
2,
we k n o w
nature
of the
that
the
s e t o f f i x e d m o d e s is
controller.
Therefore,
we will
c o n s i d e r a s t a t i c c o n t r o l law o f t h e f o r m "-
u = K y + v
(3.2.4)
65
where v is the mxl external any a r b i t a r y
input
The closed-loop characteristic
*c(p) where
[ "l
vector
and the
constant
mxr matrix
K can take
structure. p o l y n o m i a l is t h u s o b t a i n e d a s :
(3.2.5)
*(p) stands
for det (.).
The determinant
in
(3.2.5)
+
Z
can be expanded
in terms of the principal
minors
of ( - W ( p ) K) to g i v e :
•c(p) where hi(p)
= ~
(p) (1
is t h e
Cauchy formula
r
i=l
hi(p))
(3.2.6)
sum of principal
(GAN-79),
these
ith order
minors
minors can be written
of
(-W(p)
K),
From
Binet-
in t e r m s o f d e t e r m i n a n t s
of
s u b m a t r i c e s o f W(p) a n d K t a s : Ji
hi(p) = j : [
This r e s u l t
can equivalently
b e s t a t e d in a t i m e - d o m a i n f r a m e w o r k .
tion of t h e z e r o p o l y n o m i a l o f a s y s t e m i-dimensional subsystems
is g i v e n b y
From the defini-
(KWA-72), the set of zero polynomials of the
:
B si
I PI-A
q
where the roots of Z((p) are the set of transmission
zeros of the i-dimensional sub-
systems. From ( 3 . Z . 6 ) , - Frequency
c(P)
(3.2.7)
and
(3.2.8),
t h e two f o l l o w i n g r e s u l t s
are equivalent
:
domain :
(p) +
r
Ji
z
z
i=lj=l
(-l)ilKjl } ~(p)lWi(p)l J
(3.2.9)
66
- Time domain ;
r
¢c(p)=
Ji
qb(p)+ r. Z (-I) i [K';I ZI(p)
(3.2. l O)
i:l j:l
When i rows a n d i columns have b e e n selected in K' to form K]wi,Cqi and Bis denote the submatrices of C and B obtained by selecting the same rows and columns. The
subsystem
of (C,A,B)
or W(p)
corresponding
to the submatrix
K'~ is thus
denoted b y (Cq, i A,Bis) or e q u i v a l e n t l y Wi(p). Now, c o n s i d e r that the controller (3.2.4) is c o n s t r a i n e d to have the following decentralized s t r u c t u r e :
(3.2.11)
K = b l o c k - d i a g . ( K 1 . . . . . KS) where K. ~
Rmixri, (i=1 . . . . . S).
1
The fixed modes are easily c h a r a c t e r i z e d u s i n g the above development.
3 . 2 . 1 . - T a r o c k ' s r e s u l t s (TAO-84) Theorem 3.1.
The n e c e s s a r y a n d sufficient condition for a pole ~0 of t h e system
( C , A , B ) or W(p) to be a fixed mode with r e s p e c t to the controller K in (3.2.11) is that : [~,0 i- A
BSi ]
.
rank
LC'q
<
n+i ,
(i=l,...,min(rn,r))
(3.2.12)
0
or equivalently :
~(~o )
,J wj(~o)J--, 0 ,
(i=1 . . . . . rain (re,r))
(3.2.13)
67 where (Cio,A,B s) or We(p) are the subsystems of (C,A,B) corresponding to non-singular submatrices of K I. The above
theorem
states
t h a t )~0 is a f i x e d
m o d e of
respect to K in (3.2.11) if and only if all. the subsystems responding to non-singular submatrices K~1
(C,A,B)
or
W(p)
with
(Cq,A,B s) or W~(p) cor-
of K ~ have a common
transmission zero
corresponding to the system pole ~0" This result is straightforward from formulae (3.2.9) or (3.2.10).
3.2.2. - H u and Jiang results (HUJ-84) Hu a n d J i a n g
state
their
results
using
some p r e l i m i n a r y
definitions
presented
below. From the integers m i and ri specifying the controller structure in (3,2.11), define : i
m 0 = 0,
~i = j-_~0 mj~,
r 0 = 0,
i Fi = jZ= 0
such that the input
U
=
(i=l . . . . . rj ,
and output
!m
--
m = ~S
Ii] -'-"
r = ~S vectors
U
i
are partitioned
in t h e following w a y :
u~i_l+l =
,, ,,
u~ i YYi] 1 1 y =
y = r
Let n o n n e g a t i v e
integers
i_~is
1
s i a n d qi" ( i = l , . . . . S), s a t i s f y
S
0-~s i . < ~ i ,
S)
S
0
, 0,
i_E1 q~ 0
a n d j for s i ) 0 a n d qi ) O, d e f i n e t h e p o s i t i v e i n t e g e r s
:
the condition
:
68 f i ) j ' (j=l . . . . . s i)
(3.2.14)
gi,j) (j=l . . . . . qi ) "~i-1 +1 "~ fi,1 < "'" < f i , s i
x< ~ i
~i-1 +1 ~ gi,1 < "'" < g i , q i
~ Ti
The following set of s u b s y s t e m s of (C,A)B) or W(p) is now defined : (~,A,~)
(3.Z.l~)
W(p) = : ( p i - A ) - l ~
or
~i : [hfi,l ..... bf~,~i ] ")i
L~SJ
gi,q i
with :
=~=
--i tl
[i]
I!,1 =
Luf u fi,si
-1
I
Yg,i,l
-yi =
=
Ygi,qi
and = b l ° c k - d i a g ' ( ~ l . . . . ' ~ S )) Note that when s.=0, ~ i 1
~i
~i
~
Rsixqi'
(i=l . . . . . S)
d i s a p p e a r and when qi=0, ~ i
(3.2.16) ~i d i s a p p e a r . In
both c a s e s , Ki d i s a p p e a r s .
Definition 3.1. The s u b s y s t e m s ( C , A , B ) or W(p) in (3.2.15) a s s o c i a t e d with the controller ~ in (3.2.16) are called the normal s u b s y s t e m s of ( C , A , B ) or W(p). In p a r t i c u l a r ) when si=qi) t h e y a r e called the n o n s i n g u l a r l y normal s u b s y s t e m s .
69 The set of normal subsystems is denoted by N.sub.(C,A,B)
and the set of
nonsingularly normal subsystems by N.N.sub. (C,A,B). With t h e s e d e f i n i t i o n s , Hu a n d J i a n g s t a t e t h e following r e s u l t s : Theorem 3.2. ~0 i s a f i x e d mode of ( C , A , B )
with r e s p e c t to K i n ( 3 . 2 . 1 1 )
if ~0 is a f i x e d mode of all t h e n o r m a l s u b s y s t e m s
(C,A,B)
if a n d o n l y
with r e s p e c t
to ~ i n
(3.2.16) ; i.e. :
A(C,A,B,K) Theorem 3 . 3 .
(U,A,~) ~
The necessary
D
N.sub.(C,A,B)
h (~,A,B,K)
a n d s u f f i c i e n t c o n d i t i o n f o r a pole ~0 of t h e
system
( C , A , B ) or W(p) to b e a f i x e d mode with r e s p e c t to K i n ( 3 . 2 . 1 1 ) is t h a t •
rank
I°:
< n +
0.2.is)
1 si
0
or e q u i v a l e n t l y • d~(~0)
det ~
(X0) = 0
(3.2.19)
for all t h e n o n s i n g u l a r l y n o r m a l s u b s y s t e m s of ( C , A , B )
or W ( p ) .
T h i s t h e o r e m s t a t e s t h a t 10 i s a f i x e d mode of ( C , A , B )
o r W(p) i f a n d o n l y i f
~0 is a common t r a n s m i s s i o n z e r o of all t h e n o n s i n g u l a r l y n o r m a l s u b s y s t e m s
('C,A,~}
or ~ ( p ) w h i c h c o r r e s p o n d s with a pole of t h e s y s t e m . T h e s i m i l a r i t y of t h i s r e s u l t w i t h t h e o n e of T a r o c k is o b v i o u s . I n d e e d , it is 5 clear t h a t ( C , A , B ) or ~ ( p ) of d i m e n s i o n Z s. c o r r e s p o n d to t h e s u b s y s t e m s i=! 1 ( Ci , A ) ,B n o o r W~(p)j of d i m e n s i o n i while t h e m a t r i c e s Ki in (3.2o16) w i t h 8i=cli correspond
to
the
non
singular
matrices
t h e r e f o r e i d e n t i c a l to formula ( 3 . 2 . 1 2 ) equivalent.
and
K!. Formula ( 3 . 2 . 1 7 ) a n d ( 3 . 2 . 1 8 ) a r e l ( 3 . 2 . 1 3 ) a n d T h e o r e m s 3.3 a n d 3.1 a r e
T h e a d v a n t a g e of Hu a n d J i a n g f o r m u l a t i o n is t h a t t h e s u b s y s t e m s to b e
c o n s i d e r e d a r e s y s t e m a t i c a l l y d e f i n e d b y t h e s e t of i n t e g e r s in ( 3 . 2 . 1 4 } . T h e same r e s u l t was also p r o v i d e d p r e v i o u s l y b y S e r a j i ( S E a - 8 2 ) a n d V i d y a s a gar
a n d Wiswanadham (VID-83) i n a f r e q u e n c y - d o m a i n c o n t e x t .
b u t i o n s of t h e s e
papers
Though the contri-
p r o v i d e t h e same a b o v e e s t a b l i s h e d r e s u l t u s i n g t h e same
e x p a n s i o n of t h e c l o s e d - l o o p c h a r a c t e r i s t i c polynomial g i v e n i n ( 3 . 2 . 9 ) they differ by the notations and the formulations which are used.
and (3.2.10),
70 Their results concepts
are briefly presented
are pointed
in the two next paragraphs.
out and the originalities
The equivalent
which can be advantageously
exploited
are shown.
3.2.3.
- Vidyasagar
and Wiswanadham results
The main result polynomial,
whose
of t h i s p a p e r
zeros are the
the control structure
is presented
as a characterization
f i x e d m o d e s of t h e
system
(3.2.1)
of t h e f i x e d
with respect
to
specified by K in (3.2o11)o
D e f i n e t h e s e t s M= {1 . . . . . m} of elements
(VID-83)
of the
set
(*).
a n d R={1 . . . . , r )
If I = J,
then
and denote by
W[I3] d e n o t e s
*
the number
the minor of W(p)formed
,rom ,ho
'n
way and Z
=
(p) W 3 "
Theorem
3.4.
The
fixed
(3.2.11)
is g i v e n b y
polynomial
F(p)
of s y s t e m
(3.2.1)
with respect
to
K in
:
F(p) = g.c,d
(p) ,
Z
~2
S
L3ilU Ji2 u
u
(3.2.19)
is_]
with : Iij c Rj = {'~]-1 + 1 . . . . . ~]} Jijc
(i=l . . . . .
Mj = { ~ j - 1 + 1 . . . . . ~ j }
and [l~ijl} --]lJijl
,
It is obvious Jiang stated
that
in T h e o r e m s
I I i l u Ii2 u . . .
S)
(3.2.20)
(j=~ . . . . . s ) .
this
result
is equivalent
3.1 and 3.3.
to those
of Tarock
and
Hu a n d
Indeed,
u Iis 1
Z
! / L J i l u 3i2 u . . . v J i s J is a polynomial whose roots
_S [[ Iij[[ c ° r r e s p ° n d i n g j-~l to some 5 ( p )
z e r o s of some s u b s y s t e m
of dimensiol
to some nonsingular m a t r i x K [ I ] . T h i s p o l y n o m i a l c o r r e s p o n d s 3 notations.
in Tarockts
The subsystems Jiang result
are the transmission
to b e c o n s i d e r e d
b y t h e s e t s of i n t e g e r s
are
Jil a n d
specified Ill in
J
sets of integers
{fi,1 . . . . .
fi,s[ }
and
(gi,1 .....
i n a s i m i l a r w a y a s i n Hu a n
(3.2.20)
which correspond
J
gi,q~
in (3.2.14),
respectively.
to t h e
71 Note t h a t
this
work appeared
one year
before
the
two other
ones
in the lite-
rature.
3.2.4.
- Seraji's results This
result
main r e s u l t to b e
is even
is given
considered
The result
very
back
controller
that the controller
a
to t h e o n e o f V i d y a s a g a r
easily
controllers
determinated.
the general is treated
is brough
can thus
Consider
anterior
for diagonal scalar
is
o r i g i n a l i t y to b r i n g decentralized
(SER-82)
Then,
applying
into a diagonal scalar
whose
structure
is
Wiswanadham.
The
set of subsystems
approach
presents
situation.
a transformation
be applied on the transformed
controller
the
case to this particular
by
back
and
for which the
Any arbitrary
on the
structure
the
system
such
in the new basis.
system. specified
by
the
output
feedback
matrix in the following way :
Ks = block-diag.(k
1.....
k S)
ki ~ R
Seraji gives the following result Theorem
3.5.
system (3.2.1) subsystems
The
necessary
with respect
of dimension
and
(3.2.21)
(equivalent
sufficient
to K s i s t h a t
to the three
condition
anterior
f o r ~0 to b e
:
a fixed
X0 i s a c o m m o n t r a n s m i s s i o n
( i = l , . . . . S) f o r m e d s e l e c t i n g
ones)
the same inputs
mode of
z e r o o f all t h e and outputs
of
the system. Now,
if the
controller
r i ~ 1, S e r a j i a p p l i e s
used for the transformed Consider
K
structure
a transformation
by
K as in such
(3.2.11)
that
where
Theorem
m i ~, 1,
3.5 can he
system,
the transformation
=PK
is given
on the system
matrix P :
s
(3.2.22)
W(p) = Wt(p) P P = K diag.
1
l
{F- .... ' k--} "l S
The fixed modes of the system fixed modes of system Theorem 3.5.
Wt(p)
W(p)
with respect
with respect
to K a r e
then
given
to Ks , which can be determined
by
the
by using
72 Despite
of the
termination,
originality
from the original
z e r o s h a v e to b e c h e c k e d
3.2.5.
-
system,
Wang
by
approach,
is
of the subsystems
clear
that
the
direct
de-
for which the transmission
(DAV-85)
the same characterization using
it
s e e m s to b e m o r e c o n v e n i e n t .
Davison and Wang results
Recently, and
of this
a more
direct
of fixed modes was established
method.
Their
result
is
by
Davison
straightforward
to t h e
application of a lemma taken from (AND-82).
Lemma 3.1
(AND-82).
G i v e n M0 ~
e R n , a n d l e t qi b e a r e a l s c a l a r
Rnxn,
d e t M0 ~ 0, l e t Mi = b i e'.x
where
b i, c i
all d i s j o i n t v a l u e s
o f i 1,
; then
S
d e t (M 0 + i~l qi Mi) = 0
~tqi~: R, ( i : l , . . . , s )
if a n d o n l y if t h e f o l l o w i n g c o n d i t i o n s
det
M0
bi I
bi 2
• . .
bit
c!
0
0
...
0
0
0
. . .
0
0
0
...
0
t!
c!
are satisfied
:
= 0
• [2
c~ L tt
(i 1 = 1 , . . . , s )
;
(i 2 = 1 . . . . s )
;
...
;
(i t = 1 . . . . .
s)
for
i 2 . . . . ,i t ; ( t = l , . . . , s ) . Now, t h e s y s t e m
{ and
(3.2.1)
can be rewritten
~(t)
= A x(t)
y(t)
= (Cl,C 2 ..... Cr)' x(t)
the
controller
matrix K in
+ (bl,b 2 .....
information
b m) u ( t )
flow c o n s t r a i n t
(3.2.11) c a n b e r e p r e s e t e n d
{(il,Jl),
(i2,J2) .....
as :
(is,is) }
represented
by
the
output
by the following pairs of integers
feedback :
(3.2.33)
73 where i k 6 {1 . . . . . m } , jk ~ { 1 . . . . . r ) s e n t s a n o n z e r o e l e m e n t i n K. T h e f i x e d modes of ( 3 . 2 . 1 ) the p r o p e r t i e s ~0 ~
o
, ( k = l . . . . . s)
: i.e.,
each pair (ik,Jk) repre-
with r e s p e c t to K i n ( 3 . 2 . 1 1 )
(3.2,23)
have thus
: (A)
(3.2.24) S
det {A- XoI ÷ k__£1qk bi k Cik }
=0
V q k ~ R , (k=l . . . . . s)
a n d from Lemma 3.1, t h e following r e s u l t is s t r a i g h t f o r w a r d : Theorem 3.6 ( D A V - 8 5 ) . T h e n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n for XOE fixed mode of t h e s y s t e m ( 3 . 2 . 1 ) with r e s p e c t to K in ( 3 . 2 . 1 1 ) a t r a n s m i s s i o n z e r o of all of t h e following s u b s y s t e m s
(3.2.23)
o
(A) to b e a is t h a t k 0 is
:
Ik1 (
lk2 Lc, ,
, A , (b i
, bi kl
..... k2
bi
)
(3.2.25)
kt
]k t where ( k t = l , 2 , . . . , s + l - t ) )
( k 2 = k l + l , k l + 2 . . . . . s+Z-t) ; ( k t = k t _ l + l , k t _ l + 2 . . . . , s )
( t = l , 2 . . . . . rain ( m ) r ) ) I t is c l e a r t h a t
: for
(3.2.26) the above result
is e q u i v a l e n t
to t h o s e
stated
before.
The
o r i g i n a l i t y of t h i s a p p r o a c h s t a n d s on t h e f a c t t h a t it a r i s e s d i r e c t l y from t h e a p p l i cation of Lemma 3 . 1 . Example 3 . 1 .
Consider the linear dynamic system described in the frequency-domain
by t h e fo]lowing t r a n s f e r m a t r i x : l
p(p_ i )
0
0
p-I
0
0
0
0
p-I
i p,-I
- -
I
w(p)
i 1~1
1
0
74 for which
q ( p ) = p ( p - 1 ) 3.
T h e c o n t r o l l e r s t r u c t u r e i s s p e c i f i e d b y t h e following o u t p u t f e e d b a c k m a t r i x :
!Ii K =
Adopting
the
k12
k13
0
0
0
k24
0
0
k34
notations
of
and
Vidyasagar
I(' =
and
kll
0
0
k12
0
0
k13
0
0
0
k24
k34
Wiswanadham,
the
]
J
polynomial
Z
g i v i n g t h e t r a n s m i s s i o n z e r o s of t h e s u b s y s t e m s c o r r e s p o n d i n g to t h e n o n s i n g u l a r s u b m a t r i c e s of K' a r e t h e following : * One-dimensional subsystems •
zI:]0
* Two-dimensional subsystems :
All t h e s e s u b s y s t e m s h a v e a common t r a n s m i s s i o n z e r o at ~0=1 which c o r r e s p o n d s to a pole of t h e s y s t e m . T h e r e f o r e , k0=l i s a f i x e d mode.
75 3.2.6.
- Comments
From the above characterization of fixed modes, several interesting results can immediately be deduced. T h e y are summarized in the following corollaries.
Corollary 3.1 ( T A O - 8 4 ) .
C o n d i t i o n s (i) a n d (ii) below a r e n e c e s s a r y for a s y s t e m to
have a fixed mode a t ~0 : i- The
entries of W(p)
corresponding
to nonzero
elements of K' must have
pole-zero cancellations at P=~0"
ii - For the c a s e m = r, P=~0 must be a transmission zero of the entire system.
Corollary
,3,2
(TAO-84).
If a n y
submatrices of K' is minimum
of
the
phase,
subsystems
corresponding
to nonsingular
the system has no unstable fixed modes.
(All
transmission zeros of m i n i m u m phase systems lie in the open left half plan).
I t is i n t e r e s t i n g
to n o t i c e t h a t f o r s i n g l e - i n p u t s i n g l e - o u t p u t s y s t e m s a t r a n s -
mission z e r o is t h e f r e q u e n c e Therefore,
for which the transfer
function numerator
vanishes.
a f i x e d mode c a n b e v i e w e d as t h e f r e q u e n c e w h i c h c u t s t h e i n f o r m a t i o n
flow b e t w e e n t h e i n p u t a n d o u p u t of some s u b s y s t e m s .
T h i s can p h y s i c a l l y e x p l a i n
why a d e c e n t r a l i z e d c o n t r o l may fail in t h e s t a b i l i z a t i o n o r pole a s s i g n m e n t t a s k .
3.3.
ALGEBRAIC
The
CHARACTERIZATIONS
following
characterizations
: TIME-DOMAIN
are stated
by using
a state-space
represen-
tation of t h e s y s t e m .
3 . 3 . 1 . - Matrix r a n k t e s t c h a r a c t e r i z a t i o n First,
let u s c o n s i d e r a p a r t i t i o n e d s y s t e m in t h e form ( 3 . 2 . 2 )
a n d t h e follo-
wing d e c e n t r a l i z e d c o n t r o l i n a c c o r d a n c e with t h e d e c o m p o s i t i o n of t h e s y s t e m : I u i ( t ) = Qi z i ( t ) + Ki Yi ( t ) + v i ( t ) (i=l ..... S)
(3.3.1)
~i(t) = S i z i ( t ) + Ri Yi (t) where z i ( t ) is t h e s t a t e of t h e i t h c o n t r o l l e r a n d v i ( t ) is t h e i t h e x t e r n a l i n p u t ,
76 In this context,
the following interesting algebraic characterization of de-
centralized fixed modes was provided by Anderson and Clements (AND-81a):
Theorem 3.7.
Let be the s e t ~ { 1 , . . . , S }
s u b s e t s na = { i l , . . . , i
k}
and
B(I = [Bil .... , Bik]
C
L
" Define also the matrices :
B B = [Bik+ 1 ""'Bi s ]
cB:
O~
and define a p a r t i t i o n of ~ into disjoint
~8 = ( i k + l ' ' " ' i s }
I i ik+l
Lis J
'k
Consider t h e system
(3.2.2)
a n d the decentralized control ( 3 . 3 . 1 ) .
n e c e s s a r y a n d s u f f i c i e n t condition for A0
(3.2.2) is that t h e r e exists at least one complementary s u b s y s t e m 2.6, § 2 . 2 . 3 b , C h a p t e r II) s u c h that :
rank
Then, a
o (A) to be a decentralized fixed mode of (see Definition
( n
(3.3.2)
cB Remark 3.1. Condition (3.3.2) is e q u i v a l e n t to 0 (C fl , A , B a )#1 so t h a t an immediate connection a p p e a r s with the r e s u l t s of Corfmat and Morse (COR-76b) (see Theorem 2.2, C h a p t e r I I ) . Example 3.2. C o n s i d e r the following p a r t i t i o n e d system ;
A=
i1o ]
CI= [1
C3=
1
0
0
1
0
0
0
0
0
0]
EOo o1 o1 0,1
B1 =
[i] Iil
B2 =
B3
77 for w h i c h we c o n c l u d e d Example 2 . 1 , This
§ 2.2.3a,
result
by using Chapter
is v e r i f i e d
t h e d e f i n i t i o n o f Wang a n d D a v i s o n
II) t h a t i t h a s a d e c e n t r a l i z e d
by
using
I n d e e d , i f we c h o o s e ~a = {3} a n d
rank
i -A C1
the characterization
(WAN-73)
(see
f i x e d m o d e at X0 = I . stated
in T h e o r e m
3.1.
~ = { 1 , 2 } , we h a v e t h e f o l l o w i n g :
= 3 < 4
C2 which is s u f f i c i e n t to v e r i f y c o n d i t i o n
(3.3.2).
Moreover,
for this example,
we h a v e
also :
I-A
B1
B3
rank C2
0
0
II-A
B2
B 3-
rank c I
o
A Fortran
= 3 < 4
for
~a = { 1 ' 3 }
and
~B = (2}
= 3 < 4
for
~a = (2,3}
and
~'8 = ( 1
o
routine for detecting the real decentralized
which is b a s e d on A n d e r s o n a n d C l e m e n t s ' t e s t , This result
gives some insight
I n d e e d , it p r o v i d e s system
(3.2.2)
stations
a
and
}
into the reasons
an immediate interpretation
if t h e r e
exists
~ such
stations and unobservable
simultaneously
by the other one.
in A p p e n d i x 4.
of occurence
of fixed modes.
• )'O i s a d e c e n t r a l i z e d
a disjoint partition
t h a t ;~0 is
fixed modes of a system,
is p r o v i d e d
of the
system
uncontrollable
fixed mode of
in two a g g r e g a t e by
one
T h i s s i t u a t i o n is i l l u s t r a t e d
3.1 : Aggregate station %0
a
A g g r e g a t e station
uncontrollable a
U,
lI
•.'
Uik
13
X0 unobservable ~
Yi I "" Yik
Uik+ 1 "'" Uis
SYSTEM
F i g u r e 3.1
Yik+ l "'" Yis
4L
of by
these Figure
78 This interpretation is
simultaneously
l e a d s to t h e following i n t e r e s t i n g
controllable and
observable
by one
c o n c l u s i o n ". if k 0 ~ o (A)
single
station
i~{
1 . . . . . S),
then ~ is not a decentralized fixed mode of the system.
U n f o r t u n a t e l y t t h i s c h a r a c t e r i z a t i o n does n o t help p a r t i c u l a r l y in t h e c o m p u t a t i o n of f i x e d modes
s i n c e it r e q u i r e s
t h e e v a l u a t i o n of t h e r a n k
of 2S-2 m a t r i c e s
whose d i m e n s i o n s a r e s u p e r i o r to t h e o r d e r of t h e s y s t e m . A m e t h o d to o v e r c o m e t h i s d e s a d v a n t a g e is p r e s e n t e d
b y P e t e l a n d Misra (PET-B4) in t h e c a s e for w h i c h A h a s
a s u p e r i o r H e s e n b e r g form. T h e y p r o v i d e a c o n d i t i o n w h i c h is n u m e r i c a l l y e q u i v a l e n t to c o n d i t i o n
(3.3.2)
certain transfer
a n d in w h i c h f i x e d modes a p p e a r
functions.
They
apply
thus
their
as t h e t r a n s m i s s i o n z e r o s of
algorithm
for t h e
e v a l u a t i o n of
transmission zeros. C o n s i d e r now t h e g e n e r a l c a s e of a n o n p a r t i t i o n e d s y s t e m some a r b i t r a r y
feedback structure
(3.2.1)
constraints have been specified.
for which
For e a c h i n p u t
u i , we d e f i n e t h e i n d e x s e t : :Ii = {j ~ {1 . . . . . r} / t h e f e e d b a c k is allowed from yj to u i} As we a l r e a d y saw in p a r a g r a p h
(3.3.3)
2.3 of C h a p t e r I I , t h e l i n e a r t i m e - i n v a r i a n t dynamic
controller associated with these feedback constraints is given by : I
Z ~'i( t ) = Si z i ( t ) + j e J
rij y j ( t ) (i=l . . . . . m)
[ui(t)
q i' z i ( t ) + j ~Y' l
(3.3.4)
kij y j ( t ) + v i ( t )
w h e r e z i ( t ) is t h e s t a t e of t h e c o n t r o l l e r a n d v i ( t ) is t h e i t h e x t e r n a l i n p u t .
Sip Cli
a n d r.. a n d k.. a r e c o n s t a n t matrices~ v e c t o r s a n d s c a l a r s of a p p r o p r i a t e d i m e n s i o n s . 11
xl
In t h e g e n e r a l c o n t e x t ,
an e x t e n t i o n of t h e p r e v i o u s c h a r a c t e r i z a t i o n of d e c e n -
t r a l i z e s f i x e d modes was s t a t e d b y Pichai e t al. ( P I C - 8 4 ) p r o v i d i n g a g e n e r a l m a t r i x r a n k t e s t c h a r a c t e r i z a t i o n of fixed m o d e s . T h e o r e m 3 . 8 . For a n a r b i t r a r y s u b s e t
:
I = ( i 1 . . . . . i k } c M = (1 . . . . . m} define I = i ~r M - t
~i = {Jl" - - - , l "q }
w i t h Ji as d e f i n e d in ( 3 . 3 . 3 ) . the
complementary
(k--1,...,m-1).
subsystems
T h e n ~ similarly to t h e c a s e of d e c e n t r a l i z e d c o n t r o l , of
system
(3.2.1)
are
given
by :
(Cj,
A,
BI) ,
79 Then, (3.2.1)
a
with
necessary
respect
subsystem such that
rank
to
and the
sufficient control
condition
(3.3.4)
is
f o r X0
that
to
there
be
exists
a
fixed
mode
of
a complementary
:
[:o I' 1
< n
(3.3.5)
J
Example 3 . 3 . C o n s i d e r t h e f o l l o w i n g s y s t e m w i t h 3 i n p u t s
-1
A=
-2
B=
-3
C=
0
0
1
1]
1
0
0
0
0
1
0
1
for w h i c h t h e f e e d b a c k s t r u c t u r e
Jl = {2}
constraints
1
0
1
1
I
0
0
1
0
0
1
are given by
:
:
; J 2 = {1,3} ; J3 = {I}
c o r r e s p o n d i n g to t h e f e e d b a c k m a t r i x
0 K =
0
and 3 outputs
k21 Lk31
k12
0
0 0
k23 0
:
]
T h e n , if we c o n s i d e r t h e s u b s e t
I = {1,2} , we o b t a i n 5 = {1}
a n d we h a v e ,
for
kO=-3 : I rank
XO I-A
[c I
T h e r e f o r e , X0=-3 is a f i x e d m o d e . In t h i s g e n e r a l case of d e c e n t r a l i z e d tioning of t h e
system
case,
the interpretation
control.
Indeed,
does not appear
so clearly as for the
we h a v e to t a k e i n t o a c c o u n t t h a t t h e p a r t i -
in t w o a g g r e g a t e d
stations
I and
J is not
disjoint.
The
in-
80 t e r p r e t a t i o n can b e g i v e n as follows : a n e c e s s a r y c o n d i t i o n f o r X0 ~
o (A) to b c a
f i x e d mode is t h a t t h e r e e x i s t s a s u b s e t of i n p u t s w h i c h c a n n o t c o n t r o l X0 a n d that t h e s u b s e t of o u t p u t s i n v o l v e d in t h e f e e d b a c k c o n t r o l of t h e c o m p l e m e n t a r y s u b s e t o f i n p u t s c a n n o t o b s e r v e X0" This s i t u a t i o n is i l l u s t r a t e d b y F i g u r e
I UI X 0 uncontrollable Inputs Ul [ XO controllable ....
3.2.
Yj
1
SYSTEM
X0 observable Y3
Outputs
X unobservable 0
. . . .
F i g u r e 3.2
with UI v U~ = {u 1 . . . . . u m}
a n d Y j u Y~ = {Yl . . . . . Yr }
a n d ~ I : C o n t r o l l e r o f t h e s u b s e t o f i n p u t s UI ~T : C o n t r o l l e r of t h e s u b s e t of i n p u t s UT
3.3.2.
-
Recursive
characterization
Consider again decentralized
feedback
a
partitioned controller
s y s t e m in (3.3.1).
In
the
form
this
context,
(3.2.2)
t e r i z a t i o n o f f i x e d modes p r o v i d e d b y Davison a n d O z g u n e r
the
and
its
associated
following c h a r a c -
(DAV-83) p r e s e n t s
the
i n t e r e s t to s h o w e x p l i c i t e l y t h a t t h e e x i s t e n c e of f i x e d modes for a S - s t a t i o n system always r e d u c e s to t h e e x i s t e n c e of f i x e d modes f o r a s e t of 2 - s t a t i o n s y s t e m s (by r e c u r s i v e a p p l i c a t i o n of T h e o r e m 3.9 w h i c h b r i n g s b a c k S to ( S - l ) ) .
Theorem 3 . 9 . I - Given t h e S - s t a t i o n s y s t e m ( 3 . 2 . 2 ) d e c e n t r a l i z e d f i x e d mode of
(3.2.2)
with S )/ 3, t h e n X0 ~
~ (A) is n o t a
if a n d only if ~0 is n o t a d e c e n t r a l i z e d fixed
mode of a n y of t h e following ( S - 1 ) - s t a t i o n s y s t e m s :
81
C2
(2)
, A,
[[BI, B2], B3,-..,B $] )
, A,
[B 1, [B 2, B3],--., BS] )
[BI,...,Bs_ 2, [BS_I, BS~)
(s)
Cs-2 Cs
, A,
[BI,..., BS_3, [Bs_ 2, BS], BS_1 ])
L Cs_13
II - Given the S-station system (3.2.2) with S=2, then X0 ~ o (A) is not a decentralized fixed mode of (3.2.2) if and only if the two following conditions both hold :
|
2
rank
I
X I-A
>.. n C2
rank I X01-A
LCl
BII 0 121 >..n
82 Now, i t is o f i n t e r e s t to a n a l y s e t h e m e a n i n g of t h e c o n d i t i o n s (1) a n d (2) of p a r t II of T h e o r e m 3.9.
T h e s e c o n d i t i o n s c o r r e s p o n d to t h e s i m u l t a n e o u s r e q u i r e -
ments that : S t a t i o n 1 (or 2) can c o n t r o l t h e mode ~0
-
- Station 2 (or 1) can o b s e r v e t h e mode ~0 -
10 is n o t a t r a n s m i s s i o n z e r o of c e r t a i n s u b s y s t e m s of t h e s y s t e m .
In f a c t ,
these conditions are
e q u i v a l e n t to t h e condition ( 3 . 3 . 2 )
of Theorem
3.7 ( s e e § 3 . 3 . 1 ) for a 2 - s t a t i o n s y s t e m . It was a l r e a d y o b v i o u s in c o n d i t i o n (3.3.2) t h a t t h e e x i s t e n c e of d e c e n t r a l i z e d f i x e d modes for a S - s t a t i o n s y s t e m is r e d u c e d to t h e e x i s t e n c e of f i x e d modes f o r a s e t of 2 - s t a t i o n s y s t e m s s i n c e t h i s c o n d i t i o n shows a partition
of t h e
s y s t e m in
Z aggregated
stations a and
B.
It
stated
that
the
s y s t e m h a s no f i x e d modes if a n d o n l y if t h e following condition h o l d s f o r every possible partition .
rank
>~ n C
V )'0 6_ o"(A)
0 6
This is e q u i v a l e n t to c h e c k i n g t h e e x i s t e n c e of f i x e d modes for e v e r y 2-station
system ( B a B 6 ,
A,
Ca
C6), ~ a c ~ ,
~ u~ 6 = ~.
Note t h a t f o r a S - s t a t i o n s y s t e m , t h e n u m b e r o f p o s s i b l e p a r t i t i o n s is e q u a l to ES-2. By u s i n g t h e p r o c e d u r e p r o p o s e d b y Davison a n d O z g u n e r a n d d e s c r i b e d in Theorem 3.9, we o b t a i n t h e same t e s t s .
Nevertheless, the recursive characterization
of t h e s y s t e m s l e a d s to some r e d u n d a n c i e s .
Indeed,
it r e s u l t s in
(S!/Z)
2-station
s y s t e m s and it is c l e a r t h a t some a r e r e p e a t e d . Example 3 . 4 .
C o n s i d e r a 4 - s t a t i o n s y s t e m (C 1 C 2 C 3 C4, A, B 1 B 2 B 3 B 4 ) . Condi-
tion ( 3 . 3 . 2 ) m u s t be t e s t e d for t h e 7 following 2 - s t a t i o n s y s t e m s :
(c I (c z c 3 c 4)
A
B 1 (B 2 B 3 B4))
(z)
(c 2 (c I C 3 c 4)
A
B 2 (B 1 B 3 B4))
(3)
(c 3 (c I c 2 c 4)
A
B 3 (B 1 B 2 B4))
(4)
( c 4 ( c 1 c 2 c 3)
A
B 1 B z (B 3 B4))
(5)
(C 1 C z (C 3 C 4)
A
B 1 B 3 (B 2 B4))
(6)
(c I C 3 (c z C 4)
A
B 1 B 3 (B 2 B4))
(7)
(c I c 4 (c z c 3)
A
B 1 B 4 (B 2 B3))
(i)
83 By using the p r o c e d u r e in Theorem 3.9, we o b t a i n 12 Z-station systems b u t 5 of them are r e d u n d a n t :
((C 1 C 2, C 3) cAt, A, (B 1 B2 B3) BAt ) (1) ((C 1 C 2) C 3 C 4, A, (B 1 B2) B3 B4) ((C 1 C 2) (C 3 C4), A, (B 1 B2) (B 3 BAt)) (2) ((C 1 C 2 C 4) C 3, A, (B 1 B2 B4) B 3 ) (3)
(C 1 (C 2 C 3) C/4, A, B 1 (B2 B3)B4)
((C 1 C 2 C 3) CAt, A, (B 1 B2 B3) B4)
(4)
(C 1 (C 2 C 3 CAt), A, B 1 (B2 B3 B4))
(5)
((C 1 Co) (C2 C3), A, (B 1 BAt) (B2 B3)) (6)
((C 1 C 2) (C 3 Co), A, (B 1 B2) (B 3 BO)) (7) (C 1 C 2 (C 3 CO), A, B 1 B2 (B3 B4)) (C 1 (C 2 C 3 C4), A, B I (B2 B 3 B4))
(8)
((C i C 3 C 4) C 2, A, (B 1 B3 B4 ) B2 )
(9)
((C 1 C 2 C/fl C3, A, (B 1 8 2 B~.) B3 )
(10)
(C 1 (C2 C 4) C 3, A, B I (B2 B/4) B3) (C 1 (C2 C 4 C3), A, B l (B2 B4 B3))
(ll)
((C 1 C 3) (C 2 C4), A, (B 1 B3) (B2 B4)) (/2)
Systems (1) a n d (4) ; (5), (8) and (11) ; (3) a n d (10) ; (2) a n d (7) are the same.
However, this r e c u r s i v e method p r e s e n t s the a d v a n t a g e to p r o v i d e a systematic way to determine all the p a r t i t i o n s .
3,3,3,
-
3,3.3,a,
Particular
-
cases
Diagonal
systems
Consider the diagonal :
following 2 - s t a t i o n system in which the
Xl ~(t)
=
\
N\\
x(t) +
dynamic matrix A is
1 k%J VB] ul(t) +
LB,J
u2(t)
(..3.3.6)
84 Yl(t)
= (C I , C I ) x ( t )
Y 2 ( t ) = (C~, C 2) xCt) where u 1 ~ are
ml,
Rml'
u2 ~
R m 2 ' Yl ~
m2 row vectors,
Rrl
respectively
' Y2 ~ R r 2
a n d k i ~* ~ ' ( i = l ' ' " n ) "
a n d C 1, CZ, a r e
B1, B2
r 1, r 2 c o l u m n v e c t o r s ,
res-
pectively. Let B l = [b I , ..., b ml l ]
B2 : [b~ , ..., b 2
m2 ]
cI
c
'I Izl
CI=
C2=
cI rI
and
assume
that ki'
LCr2
(i=l . . . . , n ) ,
are
all d i s t i n c t
and
occur
in
complex
conjugate
pairs. Then,
by applying
Theorem
manipulations,
t h e following r e s u l t
Theorem
(DAV-83).
3.10
3.7 to this particular is obtained
~'0 i s n o t a d e c e n t r a l i z e d
a n d o n l y if t h e f o l l o w i n g c o n d i t i o n s
c a s e a n d w i t h some matrix
: fixed
m o d e of s y s t e m
(3.3.6)
if
hold :
[_c2 i.e.,
)t 0 i s n o t a c e n t r a l i z e d
f i x e d m o d e (it i s c o n t r o l l a b l e a n d o b s e r v a b l e ) .
ii - T h e f o l l o w i n g c o n d i t i o n s *B
do n o t s i m u l t a n e o u s l y
hold :
=0
*C~=0 * XO i s subsystems
ci
a
transmission
zero
of
all
the
following
single-input
:
,
l
tn-i
V j ¢ { 1,2,...,mq}
q-~l,2
single-output
85
Note t h a t this theorem can easily be e x t e n d e d to the case for which t h e system has more than 2 stations b y applying T h e o r e m 3.9 (DAV-83)
(see also (PET-84)).
3.3.3.b. - Interconnected systems This paragraph deals with a particular class of systems of type (3,2.2) consisring of a n u m b e r
of subsystems interconnected together.
These systems are repre-
sented in the state space b y the following set of equations : S
t ~i(t) : A i i xi(t) + j=l r. Aij xj(t) + Bi ui(t) jti
(i=1..... S)
(3.3.7)
[ Y i ( t ) = Ci x i ( t ) x i £ Rni ' ui £ Rmi ' Yi ~ Rri A=
{Aij, (i=1, .... S), (j=l..... S)} c R n x n (B 1 ..... BS) c
R nxm
C -- block.diag. (GI,...,Cs) c
R rxn
B = block.diag.
Aii, Aij, Bi and Ci, (i=l . . . . ~S), j~i, a r e i n v a r i a n t matrices of a p p r o p r i a t e dimension.
1 - Characterization with c o n s t r a i n e d i n t e r c o n n e c t i o n s Consider the class of i n t e r c o n n e c t i o n s in the form : Aij = Bij Lij Cij
(i,j=l . . . . . S)
jCi
(3.3.8)
where Lij is the matrix of i n t e r c o n n e c t i o n gains a n d Bij a n d Cij are a r b i t r a r y . T h e n , the following r e s u l t was d e r i v e d b y Davison (DAV-83) : Theorem 3.11. Given the system (3.3.7) with s t r u c t u r e ( 3 . 3 . 8 ) , if (Ci,Afi,B i) is controllable a n d o b s e r v a b l e for ~/ i=1,2 . . . . . S t h e n ( 3 . 3 . 7 ) (3.3.8) has no d e c e n t r a lized fixed modes for almost all i n t e r c o n n e c t i o n gains Lij, (i=l, . . . . S), (j=l . . . . , S ) , i~j, i.e. the class of n o n z e r o gains L.. for which (3.3.7) (3.3.8) has fixed modes is 1] either empty or lies on a s u b s e t of a h y p e r s u r f a c e in the p a r a m e t e r space of Lij. A more i n t e r e s t i n g r e s u l t is p r o v i d e d if it is assumed that the system (3.3.7) is i n t e r c o n n e c t e d b y the o u t p u t s ; i . e . :
86
Aij = Bi Lij Cj Note t h a t
(i=l . . . . . S ) ,
e v e n if t h i s
(j=l . . . . . S ) ,
(3.3.9)
j~i
c l a s s o f s y s t e m s s e e m s to
be
very
restrictive
with
r e s p e c t to t h e c l a s s of g e n e r a l s y s t e m s ( 3 . 2 . 2 ) , a lot of p h y s i c a l s y s t e m s h a v e this particular structure.
I n d e e d , t h e d e c e n t r a l i z e d s t a b i l i z a b i l i t y s t u d y f o r t h i s t y p e of
s y s t e m s was t h e p r o b l e m w h i c h m o t i v a t e d t h e e x t e n t i o n to more g e n e r a l s y s t e m s like ( 3 . 2 . 2 ) or ( 3 . 3 . 7 ) . Theorem 3.12.
The s y s t e m ( 3 . 3 . 7 )
with s t r u c t u r e
( 3 . 3 . 9 ) h a s no d e c e n t r a l i z e d fixed
modes if a n d o n l y i f • ( C i , A i i , B i) c o n t r o l l a b l e a n d o b s e r v a b l e for all (i=l
. . . . .
S).
For t h i s t y p e of s y s t e m s , t h e s e t of d e c e n t r a l i z e d f i x e d modes is e q u a l to the s e t of c e n t r a l i z e d f i x e d modes ( u n c o n t r o l l a b l e o r u n o b s e r v a b l e modes) which is itself equal to t h e union of t h e s e t s of c e n t r a l i z e d f i x e d modes of e a c h d i s c o n n e c t e d system.
This r e s u l t was also d e r i v e d b y
Saeks
(SAE-79)
a n d s t a t e d in t h e following
way ; Theorem 3¢12bis.The s e t of c e n t r a l i z e d f i x e d modes of ( 3 . 3 . 7 )
with s t r u c t u r e
(3.3.9)
is g i v e n b y : 5 Ad(C,A,B) = ~ ( C , A , B ) :
u
i=l
Ac(Ci,Aii,8 i)
T h e r e f o r e , f o r t h i s c l a s s of s y s t e m s , a d e c e n t r a l i z e d c o n t r o l is e q u i v a l e n t to a c e n t r a l i z e d c o n t r o l as f a r as t h e pole a s s i g n m e n t p r o b l e m is c o n c e r n e d .
2 - C h a r a c t e r i z a t i o n u s i n G t h e p r o p e r t y of b l o c k - d i a g o n a l dominance C o n s i d e r t h e s y s t e m ( 3 . 3 . 7 ) a n d t h e following s e t of local c o n t r o l l e r s :
ui = Kii Yi
(i=l . . . . . S) s u c h t t h a t K = b l o c k . d i a g . ( K l l , . . . . KSS)
The dynamic m a t r i x of t h e c l o s e d - l o o p s y s t e m is •
!/~I! A + BKC=
AI2 ........
AI5
'~22
' ' . ". " . . . ASI
" ~SS
87 where ~ii = Aii + Bi Kii Ci ' ( i = l , . . . , S ) . If the diagonal s u b m a t r i c e s ~.. a r e non s i n g u l a r a n d i f : 11
S
<
i-z_ II A i(I
v
j/~
then {A+BKC) i s s t r i c t l y b l o c k - d i a g o n a l d o m i n a n t .
.....
s
*
d e n o t e s a norm of t h e m a t r i x
(*), for i n s t a n c e :
I[*i =
l
1
laijl
The following w e l l - k n o w n r e s u l t : Theorem 3.13.
I f t h e m a t r i x (A + BKC) is s t r i c t l y b l o c k - d i a g o n a l l y d o m i n a n t , t h e n
(A + BKC) is n o n s i n g u l a r . leads to t h e s u b s e q u e n t c h a r a c t e r i z a t i o n of fixed m o d e s . Corollary 3.3 (ARM-82). If k0 ~ o (A) i s a d e c e n t r a l i z e d f i x e d mode of ( 3 . 3 . 7 ) , there e x i s t s i C { 1 , . . . , S }
then
such that :
s II(~ii-x° I)-lll-l~ j-~l [iAijll
for
VKii
e~
Rmixri
(3.3.1o)
j/i The i n t e r e s t o f t h i s c h a r a c t e r i z a t i o n will a p p e a r l a t e r (in C h a p t e r 5) s i n c e it is used by A r m e n t a n o a n d S i n g h to d e t e r m i n e a c o n t r o l s t r u c t u r e s u c h t h a t f i x e d modes are avoided.
3.3.4. - C o m m e n t s The c h a r a c t e r i z a t i o n s p r e s e n t e d in t h i s p a r a g r a p h
a r e s t a t e d in a t i m e - d o m a i n
framework. It is c l e a r t h a t t h e most r e l e v a n t is t h e m a t r i x r a n k t e s t c h a r a c t e r i z a t i o n which was p r o v i d e d b y A n d e r s o n a n d Clements (AND-81a) a n d , as it h a s b e e n p o i n t e d out, all the o t h e r o n e s a r e e q u i v a l e n t . This c h a r a c t e r i z a t i o n allowed u s to i n t e r p r e t e t h e f i x e d modes in t e r m s of t h e concepts of
controllability
and
observability
and
the
s u b s y s t e m s . We will f i n d a g a i n t h i s p a r t i t i o n i n g of t h e
d e f i n i t i o n of c o m p l e m e n t a r y s y s t e m in
two a g g r e g a t e d
88
s t a t i o n s in t h e
f r e q u e n c y - d o m a i n c h a r a c t e r i z a t i o n s w h i c h will give us t h e
tools to
i n t e r p r e t e in a d e e p e r way t h e r e a s o n s for t h e o c c u r e n c e o f f i x e d m o d e s . D e s p i t e t h e t h e o r e t i c a l i n t e r e s t of t h e m a t r i x r a n k t e s t c h a r a c t e r i z a t i o n , it is c l e a r t h a t it d o e s n o t seem to b e v e r y e f f i c i e n t from t h e c o m p u t a t i o n a l
p o i n t of view
s i n c e it r e q u i r e s to t e s t all t h e c o m p l e m e n t a r y s u b s y s t e m s . An
interesting
result
has
been
obtained
for interconnected systems
whose
i n t e r c o n n e c t i o n s a r e made b y t h e out-puts s i n c e t h e f i x e d modes of t h e s e s y s t e m s are j u s t t h e i r u n c o n t r o l l a b l e a n d u n o b s e r v a b l e modes.
3.4. - A L G E B R A I C
CHARACTERIZATIONS
This paragraph
matrix $ i.e.
DOMAIN
d e a l s with t h e c h a r a c t e r i z a t i o n o f f i x e d modes from t h e i n p u t -
output relations describing the system. nomial m a t r i c e s
: FREQUENCY
The s y s t e m is r e p r e s e n t e d e i t h e r b y poly-
( " m a t r i x f r a c t i o n d e s c r i p t i o n n) or
by
a rational
transfer
function
;
U(p) = W(p) Y(p)
(3.4.1)
w h e r e U a n d Y a r e t h e i n p u t a n d o u t p u t v e c t o r s of dimension m a n d r r e s p e c t i v e l y , a n d W(p) is t h e t r a n s f e r f u n c t i o n m a t r i x of dimension m x r . Let s - l ( p ) T ( p )
be a l e f t coprime f r a c t i o n d e s c r i p t i o n of W(p), t h e n t h e system
can be d e s c r i b e d b y •
s(p) Y(p) = T(p) U(p)
(3.4.2)
w h e r e S ( p ) a n d T ( p ) are polynomial m a t r i c e s with r a n d m c o l u m n s , r e s p e c t i v e l y .
3 . 4 . 1 . - N e c e s s a r y c o n d i t i o n s on t h e t r a n s f e r f u n c t i o n m a t r i x f o r t h e e x i s t e n c e of f i x e d m o d e s Before
presenting
the
general
frequency-domain
characterizations
of
fixed
m o d e s , t h i s p a r a g r a p h p r o v i d e s some n e c e s s a r y c o n d i t i o n s for t h e i r e x i s t e n c e , which are i n t e r e s t i n g b e c a u s e
they can b e c h e c k e d b y t h e sole examination of t h e t r a n s f e r
matrix. C o n s i d e r t h e s y s t e m d e s c r i b e d b y ( 3 , 4 . 1 ) with :
89 p) w(p) = N¢ ( (p)
(3.4.3)
where N ( p ) = C a d j ( p I - A ) B is a polynomial m a t r i x a n d ¢ (p) is t h e c h a r a c t e r i s t i c p o l y nomial of t h e s y s t e m . Now,
if we c o n s i d e r
the
c o n t r o l law in
matrix K can t a k e a n y a r b i t r a r y
structure,
(3.2.4)
where
the output
the closed-loop transfer
feedback
m a t r i x is g i v e n
by : Wc(P,K) = [ I - W ( p ) K ] - I w ( p )
(3.4.4)
= C(pI-A-BKC)-IB
which can b e r e w r i t t e n as : Nc(P,K )
Wc(P,K) =
(3.4.5)
where N c ( P , K ) = C a d j ( p I - A - B K C ) B
is a polynomial m a t r i x a n d
~(p,K)
is t h e c l o s e d -
loop c h a r a c t e r i s t i c polynomial. If t h e
system
has
fixed
modes,
it is c l e a r
that
the
fixed
polynomial F ( p )
divides t h e c l o s e d - l o o p c h a r a c t e r i s t i c polynomial s u c h t h a t we can w r i t e : $c(P,K)
=
F(p).P(p,K)
If we d e r i v e
~bc(P,K) with r e s p e c t to K :
,a¢c (p,K) ~) K
~ p(p,K) =
F(p)
8 K
and it is c l e a r t h a t if P=;~0 is a f i x e d mode, t h e n :
a~c (~ o' K)
(3.~.6)
=0 8K
C o n s i d e r now t h e following t h e o r e m • Theorem 3.14
(BIN-78)
(BER-81).
T h e J a c o b i a n m a t r i x of t h e c l o s e d - l o o p c h a r a c t e -
ristic polynomial qbc(P,K) with r e s p e c t to K is g i v e n b y :
~¢c(pJ<) - - N c (p,K) aK
(3.4,7)
90
w h e r e N ' c ( P , K ) i s t h e t r a n s p o s e of N c ( P , K ) i n
(3.4.5).
T h e o r e m 3 . 1 4 a n d f o r m u l a ( 3 . 4 . 6 ) l e a d to t h e following r e s u l t :
Theorem respect
3.15. to
A necessary
K in
(3.2.4)
is
condition that
the
f o r ~0 to be projection
a
fixed
of t h e
mode o f
(3.4.1)
with
closed-loop
transfer
matrix
parameter
v a l u e s in
K, it
n u m e r a t o r N c ( P , K ) on K ~ i s z e r o f o r P=~0" Since this
result
must
hold i n d e p e n d e n t l y
of t h e
m u s t in p a r t i c u l a r hold for K=0. T h e r e f o r e t h e following c o r o l l a r y d i r e c t l y follows :
Corollary
3.4.
A necessary
r e s p e c t to K in ( 3 . 2 , 4 )
condition
f o r X0 to b e
a
f i x e d mode of
is t h a t the projection of the t r a n s f e r
(3.4.1)
with
m a t r i x n u m e r a t o r N(p)
o n K t i s z e r o f o r P=~0" It is i n t e r e s t i n g same as the condition
to n o t i c e t h a t
the
c o n d i t i o n in
Corollary
3 . 4 i s e x a c t l y the
(i) ha C o r o l l a r y 3.1 w h i c h w a s o b t a i n e d f r o m t h e c h a r a c t e r i -
zation of f i x e d m o d e s i n t e r m s of t r a n s m i s s i o n z e r o s . T h i s r e s u l t c a n also be e x p r e s s e d in t h e following f o r m : Corollary 3.5. order
A m u l t i p l e mode of o r d e r q c a n b e a f i x e d mode if it i s n o t a pole of
s u p e r i o r to ( q - l )
f o r a n y s u b s y s t e m f o r m e d f r o m a n y local s u b s y s t e m n e i t h e r
f o r t h e c h a r a c t e r i s t i c p o l y n o m i a l of t h e p r o j e c t i o n of t h e t r a n s f e r m a t r i x on K w.
Remark 3.2.
As a c o n s e q u e n c e of C o r o l l a r y
complementary
Note t h a t structure
3.5,
the
f i x e d m o d e s a r e p o l e s o f the
subsystems. Theorem 3.15,
C o r o l l a r i e s 3.4 a n d
3.5 a r e v a l i d f o r a n y a r b i t r a r y
of t h e f e e d b a c k m a t r i x K ( n o t n e c e s s a r i l y b l o c k - d i a g o n a l a s in ( 3 . 2 . 1 1 ) ) .
For e x a m p l e , in t h e p a r t i c u l a r
c a s e of c e n t r a l i z e d c o n t r o l ,
we f i n d a g a i n from Co-
r o l l a r y 3.5 t h a t a s i m p l e u n c o n t r o l l a b l e a n d / o r u n o b s e r v a b l e mode d o e s n o t b e l o n g to t h e c h a r a c t e r i s t i c p o l y n o m i a l (minimal r e a l i z a t i o n ) , w h i c h i s a w e l l - k n o w n r e s u l t . E x a m p l e 3 . 5 . C o n s i d e r t h e s y s t e m d e s c r i b e d b y t h e following t r a n s f e r m a t r i x :
91 for w h i c h ¢
(p)--p(p-l) (p+Z)
If we c o n s i d e r
(p-Z).
a decentralized
c o n t r o l in t h e f o r m :
K = b l o c k - d i a g . ( k 1 , k 2 , k 3) the projection
of
W(p)
on
a c c o r d i n g to C o r o l l a r y Note
that
the
K'
is indicated
by
the
non
shaded
Therefore,
blocks.
3 . 5 , ~=2 a n d k =-Z a r e n o t f i x e d m o d e s . conditions
determine a structure
for
derived
the
feedback
in
this
matrix
paragraph such
that
can the
be
easily
system
used
to
has
no fixed
and observation
stations
mo de s •
3.4.2. - Transfer
function matrix characterization
for
systems with distinct poles Consider
the
system
such that its transfer
W(p)
| t
(3.4,1)
A0 P-
w h e r e A0~0 a n d ~ i ~ 0
+
~0
in the following form :
i
wsL(p)
.........
rixm i,
(i,j=l .....
At
i=i
P-~i
In t h e c a s e o f 2 s t a t i o n s ,
S),
and
assume
that
all i t s p o l e s a r e
as •
n-I
(i=l . . . . .
(3.~.s)
ws's(p)
W(p) c a n b e f a c t o r i z e d
VC(p) --
in S control
wi(p]
. . . . . . . . .
w h e r e Wij(p) i s o f d i m e n s i o n distinct ; i.e.
partitioned
function matrix appears
(3.4.9)
n-l). the time domain representation
( 3 . 3 . 6 ) a n d W(p) c a n b e r e w r i t t e n
as follows :
of (3.4.9)
is given in
92
CI +
Using
(3.4.10),
Davison
and
1 ~1
0 [}51
1£_
C2
B 2]
(3,t4.10)
p-kn_l
Ozguner
(DAV-83)
p r o v i d e d in
the
frequency
domain t h e t r a n s p o s i t i o n of t h e r e s u l t e s t a b l i s h e d b y T h e o r e m 3.10 in a time-domain framework.
The c a s e
for w h i c h t h e s y s t e m h a s more t h a n 2 s t a t i o n s is considered
b y a p p l y i n g t h e r e c u r s i v e c h a r a c t e r i z a t i o n of f i x e d modes g i v e n in T h e o r e m 3.9. T h e o r e m 3.16. l 0 i s n o t a d e c e n t r a l i z e d f i x e d mode of ( 3 . 4 . 1 )
( 3 . 4 . 8 ) i f a n d only if
n o n e of t h e following c o n d i t i o n s o c c u r with r e s p e c t to t h e m a t r i c e s :
W(p)
A0 a n d
or their respective
P= XO
-
transposes
.
C a s e 1 : (S=2)
(i)
AO =
and
(p) -
=
0
p=X 0
Case 2 : (5=3) (i)
(ii)
Ao =
AO=
0
X
0
0
0
and
~
and
(p) -
0
(iii)
A0 =
= P - XO
-P = XO
x0] 0
0
X
0
and
(p) -
= P = XO
i
X
X
X
0
0
X
0
X
X
0
X
X
L xx1 X
0
X
X
°.
I X
X
X
X o X o
f X
I
X
X:
I
o
~
X X X X
I
X
o
X
I X
X
X
I
o
X
X
I
o
~
X
!
x
X
X
I
X X X X X
X
I
X
X
X
~
~
X
X X X X
X
X
o
o
X
X
X
X
~
o
X
o
I X
X
X
~
X
:;,< ,I
X
o
X
>¢
X
o
X
X
X
X
X
o
o
I
o |
X
o
o
o
Ii
i
o
11
X
o
X
o
o
,r,
I
J
IR '
I
X
u
<
o
o
cr~
o
X
o
o
o
I
0
M
o
"0 r-' r~
0
~
I0
~
0
0 ,I
II
X
0
I
0
X
o
0
i
o
i
0
0 0
0
I
X
J
0
X
X
0
ii
0
X
'
'
o
Ii
Li t~
0
o
I
~:)
o
ii
i
0
o
0
X
0
o
X
l
ii e~
i
x
o
0 I
o
I
X I
H
'l 1
o
o
I
o
II
I
o
x
o
I
ii
i
X
'
0
X
H
&
I
o
>(
X
~:
I o
c)
0
I
o
X
0
I H
I
-0
o
X
0
o
X
o
0
o
X o
0
0
o
o X
C)
0
I
X X
0
0
I
X o
0
0
''
"o
I
c~
I
c~
X o
0
0
o
o
o
0
0
o
o
0
0
o
0
0
L
0
I
0
I
0
I
(D
I
0
I
0
<
0
0
II
4:'
0
I
0
II
A
IW
u
¢)
¢)
"O
im
r~
O
o
a
(J
t-
o
¢,
94 trollable and observable by a single station.
All t h e e l e m e n t s of ~ 2 1 ( P )
h a v e a zero
a t X0 a n d t h o s e of W12(p) h a v e a pole a t k0, w h a t p r o d u c e s a p a r a m e t r i c cancellation w h e n one local f e e d b a c k is a p p l i e d . T h i s will b e e x p l a i n in d e t a i l s in Paragraph 3.4.4. It is c l e a r t h a t
this
c o n d i t i o n is s t r i c t l y
e q u i v a l e n t to t h e
conditions
in
Theorem
3.10. A similar interpration can be given for the case S)2. Example 3.6.
C o n s i d e r a g a i n t h e s y s t e m in Example 3.5 a n d a s s u m e t h a t we want to
c h e c k if X0 =-1 is a f i x e d mode w i t h r e s p e c t to K = b l o c k - d i a g ( k l , k 2 , k 3 ) W ( p ) w r i t t e n in t h e form ( 3 . 4 . 9 )
w(p)
ii
o 0
o
L-~
o
o
3 i>-2
0
1
0
BS:
0
p-2
O
0
0
0
0
0
A0
]
w(p)- p-~
1
p(p-2)
1
0
[
X
p+l p ( p - 2)
1
p-2
0
p+2
a n d we h a v e : l 0
can be
•
x p=- l
0]
0
X
X
0
X
0
which s a t i s f i e s c o n d i t i o n (ii) for t h e case 2 (S=3). T h e r e f o r e X0=-I i s a d e c e n t r a l i z e d fixed mode.
3.4.3.
- Polynomial
matrix
rank
test
characterization
C o n s i d e r a l i n e a r t i m e - i n v a r i a n t s y s t e m p a r t i t i o n n e d in S c o n t r o l a n d o b s e r v a t i o n s t a t i o n s s u c h t h a t i t s m a t r i x f r a c t i o n d e s c r i p t i o n in ( 3 . 4 , 2 ) t a k e s t h e form : ($1(P) ..... Ss(P))
U(p) = (TI(P) ..... s(p))
Y(p)
(3.4.11)
95 where Si(p) and T i ( P ) , (i=1 . . . . . S), have r i and mi columns, r e s p e c t i v e l y p c o r r e s ponding to the number of o u t p u t s and i n p u t s of the ith s t a t i o n . In this framework, A n d e r s o n (AND-81a) gives the following c h a r a c t e r i z a t i o n of decentralized fixed modes : Theorem 3.17. X0 is a d e c e n t r a l i z e d fixed mode of system (3.4.2) (3.4.11) with respect to K in (3.2.11) if and only if t h e r e e x i s t s some nonempty s u b s e t { i l , . . . i , k } of {1 . . . . . S} such t h a t : k [Sil (~0), ..., Sik (~0), Ttl (~0), ..., Tik (~0)] i -~1 r iJ (3.4.12) k It we set .E r.. = ~3 , then the d e g r e e of the fixed mode ~0 is given b y the ]:l 11 largest positive i n t e g e r d such t h a t all ~ x 8 minors of the matrix in the left hand side of (3.4.12) have a zero at )0 of o r d e r at least d. rank
Note that this r e s u l t was r e c e n t l y p r o v e d in a d i f f e r e n t way b y Zheng (ZHE84).
3.4.4.
- General
transfer
function
matrix
characterization
This general c h a r a c t e r i z a t i o n of fixed modes is the most complete one in the frequency domain. It was d e r i v e d b y A n d e r s o n in 1982 (AND-82) using the r e s u l t that he obtained t o g e t h e r with Clement in 1981 (AND-81a) and which was p r e s e n t e d in the p r e c e d i n g p a r a g r a p h .
3.4.4.a. - P a r t i c u l a r case : 2x2 t r a n s f e r function matrix with simple pole at ~0 Consider the system (3.4.1) where W(p) is given by :
Wll(P)
Wl2(P) 1
w(p) =
O.4.13)
W21(P)
Suppose t h a t W(p) = s - l ( p ) T ( p ) S(p) = [
W22(P)
with :
Sll(P)
Sl2(P)
s21 (p)
s22(P)
1
96
T(p) =
I
tl l(P)
tl2(P)
t21 (p)
t22(P)
t
(3.4.10)
and S(p) and T(p) are left coprime. If we apply Theorem 3.17 to this particular case, there is a fixed mode at )~0 ff and only if, by reordering the inputs and outputs if necessary, the following condition holds :
rank
I SllJ(XO) s21(2' 0)
i.e.,
tll(XO) 1
( 1
t2l()~ 0)
sl 1(~0) =s21 (k0) =tll (k0) =t2l (k0) =0.
Wij(p) in (3.4.13) can easily be expressed in terms of sij(p) and tij(p) for i,j:l,2 and the following result follows : Theorem 3.18 (AND-82). k 0 is a decentrelized fixed mode of system (3,4.13) if and only if W(p) or W'(p) has the following form : I entry with no pole at k0
entry with pole at ~'0
1 (3.4.1s)
entry with zero at k 0
entry with no pole at X0
J
This result can easily be interpreted. Indeed) consider system (3.4.13) as illustrated by Figure 3.4a and suppose that we set u 2 -- k 2 Y2' producing thus a system with input u I and output Yl as illustrated by Figure 3.4h.
97
uI
~[
wII(P) ]
+~
~l
y,
j'.
,,
j
kl F i g u r e 3.4a
÷ ~C~y÷I
L
F i g u r e 3.4b
The t r a n s f e r f u n c t i o n o f t h e n e w
Yl u'-~
= Wll
system is given by :
k 2 W21
+ WI2
l - W 2 2 k2
If condition ( 3 . 4 . 1 5 )
h o l d s for W ( p ) , t h e p o l e - z e r o c a n c e l l a t i o n a r k 0 in t h e p r o d u c t
Wl2. WE1, a s s o c i a t e d with t h e f a c t t h a t Wll and W22 h a v e no pole at )'0 (k0 is not simultaneously controllable a n d o b s e r v a b l e b y a s i n g l e s t a t i o n ) ,
makes t h a t ( 3 . 4 . 1 6 )
is u n c o n t r o l l a b l e .
system
unobservable.
If c o n d i t i o n
Of c o u r s e ,
(3.4.15)
holds
for W ' ( p ) ,
then
(3.4.16)
is
t h e a p p l i c a t i o n of f e e d b a c k at s t a t i o n 1 (u 1 = k 1 y l ) do
not c h a n g e t h i s s i t u a t i o n a n d , in b o t h c a s e s , ~0 is a f i x e d mode o f s y s t e m ( 3 . 4 . 1 3 ) . Note t h a t T h e o r e m 3.18 a g r e e s with t h e r e s u l t of Davison a n d O z g u n e r (DAV81) given in
T h e o r e m 3.16
for t h e c a s e
1 and
also with
the n e c e s s a r y
condition
e x p r e s s e d in Theorem 3.15. M o r e o v e r , t h i s p a r t i c u l a r c a s e is a p e r f e c t i l l u s t r a t i o n o f Theorem 2.5 ( C h a p t e r 2) (FES-80) t h a i s h o w s a f i r s t r e l a t i o n b e t w e e n t h e r e s u l t s of Corfmat a n d Morse ( C O R - 7 6 a , b ) a n d t h e c o n c e p t of f i x e d m o d e s . In t h e case f o r w h i c h ~0 is n o t a simple p o l e , t h e above r e s u l t can be e x t e n ded as follows :
98
Theorem
3.19
( A N D - 8 2 ) . X0 i s a d e c e n t r a l i z e d
o n l y if t h e o r d e r
of X0 a s a p o l e i n @ l l ( P ) ,
f i x e d mode of s y s t e m
W22(p)
(3.4.13)
if and
a n d W(p) is l e s s t h a n t h e order
it h a s as a p o l e in W12(P) o r W 2 1 ( P ) . In
this
case,
a
pole-zero
cancellation
also
occurs
in
the
transfer
function
(3.4.16).
3.4.4.b.
- General case : systems
multi-input Consider
multi-output
now a general system
W ( p ) as in ( 3 . 4 . 8 ) matrix fraction For (i 1 .
. . . .
a
with more than 2
stations
or,
equivalently,
description
matrix
M,
of W ( p ) ,
M Jl ""
ik) and the columns
(3.4.1)
described
by (3.4.11),
by a transfer
where
and the decentralized
Jk
denotes
the
function
s-l(p)T(p)
minor
matrix
is a l e f t coprime
c o n t r o l in ( 3 . 2 . 1 1 ) . of M f o r m e d
(Jl . . . . . j k ) of M. B y r e o r d e r i n g
of i n p u t s
by
the
rows
a n d out-puts,
t h e s y s t e m is p u t in t h e following f o r m :
W(p) =
I w~a (P)
wc~IS (P)
wsts
Wisct (p) W(p) : [ S c ( ( p ) Sis
(p) y i
i = a
(P) (3-t+-lS)
in t h e form •
g
(3.4.19)
A s s u m e t h a t rc~ ( r IS) is t h e n u m b e r Was
(3.4.17)
[Tc, (p) TIS (p) ]
a n d we a s s u m e c o n t r o l s t r u c t u r e s U. = K . Y . 1 1 1
1
o f r o w s a n d m cL ( m i s ) t h e n u m b e r
of c o l u m n s of
(p) (WISIS(p)),
The number
of z e r o s a t )~0 o f IY }l
Jk
#= 0
)~0 is n e i t h e r
]t ( 0
)~0 i s a pole o f o r d e r
l/=
t h e m i n o r is i d e n t i c a l l y
oo
is denoted
by with :
J
a pole nor a zero - # zero
We h a v e m = mc~ + mis a n d r = rc~ + r B " A m o n g t h e f i r s t rc~ r o w s , the number
Jk
of r o w s w h i c h do n o t b e l o n g to t h e c o n s i d e r e d
minor by :
let us define
99
I, ...
Or
dered minor by
first columns,
the number
consi-
Jk
denotes the number
of elements of the set
In t h i s f r a m e w o r k ,
Anderson
(S a (~0) T a ( ) , 0 ) )
and the fixed mode exists
(*).
(AND-82) showed the following result
The following two conditions
2 - there
to t h e
1[)1' ""' )k } n {1, ..., m~)JJ
: Jl
1 - rank
of columns which belong
:
@c
Theorem 3.20.
{I , .... r(, }II
i k } u { i 1 . . . . ,Jr_ k } = {1 . . . . . m }
and a m o n g t h e m a
*
i' i_k} n
Jk
I
w h e r e • {i 1 . . . . .
II { i' i .....
=
are equivalent
:
:
(3.4.20)
< r a
0 has degree
d (see Theorem 3.17)
d such that 0 < d < D and such that,
#
whenever
0r+0 c > r a
~/(d-D) ÷ (Or + Oc - r a )
(3.~.21)
Jl "'" Jk
for all m i n o r s o f W ( p ) ,
Remark
3.3.
The
certain minors
D is the degree
preceding
have
theorem
~0 a s a z e r o
o f XO i n t h e c h a r a c t e r i s t i c
states
polynomial
q~ ( p ) .
t h a t ~0 i s a f i x e d m o d e of d e g r e e
of certain
minimum order
or
as a pole
d if
of limited
m u l t i p l i c i t y , w h i l e ~0 i s a t t h e s a m e t i m e a p o l e o f W ( p ) . We r e c a l l t h a t are n o t in t h e the first m a 0c-r a
is
the number
scrutiny
and
o f r o w s a m o n g t h e f i r s t rc~
0c i n d i c a t e s
c o l u m n s w h i c h a r e in t h i s s a m e m i n o r .
associated
nonnegative,
@r i n d i c a t e s
minor under
the
which t h i s q u a n t i t y
with
minor
the is
position
constrained
is negative,
of the by
the
minor
the number
Therefore, in W ( p ) .
inequality
the quantity
@r +
When
0c-r a
(3.4.2).
the minor is not cons,reined.
rows which
of columns among
Or + In
the
case
is for
100
Example
3.7.
Consider
function matrix
2-station
the
system
described
by
the
following
transfer
: 1 p(p-l)
0
0
1 p-1
0
0
0
1 p-I
1 p-I
0
W(p) :
1 p-I
for which
dp ( p ) = p ( p - 1 ) 3 . -
The dotted
lines
denote
the partition
tralized control has the following structure
: ra
2 stations
and
0
u l ikll
0
0
k 24
UI3
0
0
0
k 34
=
We h a v e
in
the
associated
decen-
:
Vct
kl2 k3 0
= 3, r B = 1, m ct = 1, m B = 2 a n d D=3. T h e m i n o r s v e r i f i y i n g
Or+Oc ) 3 a r e t h e f o l l o w i n g
:
wI:] (:] f:] {: :1 {: :] wi: :]wE::] w[: :1 {: :] From theorem such that
/'t
3 . 2 0 , ~0=1 i s a f i x e d m o d e o f d e g r e e
:
[1] 1
=- 1 ~ ( d - 3 )
1t
[] l
=-1
d if a n d
~ (d-3)+l
only
if t h e r e
exists
d
101
#
#
E:] I 1
=-1 ~ (d-3)
#
=-I
~ (d-3)+l
2
= ~ ) (d-3)
4/
=-2
I:l
#
~ (d-3)
= ~
#
),. ((t-3),1
= ~ ~,, (d-3)
l
l
#
;-2 LI
These
~ (d-3)
#
2
twelve
1
inequalities
fixed m o d e of d e g r e e
Theorem
3.20
are
satisfied
in i t s g e n e r a l
3.21
d=l.
Therefore,X
0=1 i s a
decentralized
complex.
Therefore,
s i m p l e f o r m if we c o n s i d e r
it i s i n t e r e s -
the case for which
is easily obtained
from condi-
3.20 when d=D=l.
(AND-82).
(3.4.8)
for
The following result
Under
the
t h a t ~0 i s a s i m p l e z e r o o f • ( p ) . (3.4.1)
3
form is rather
X0 is a s i m p l e p o l e o f t h e s y s t e m .
Theorem
~ (d-3)
1.
ting to n o t e t h a t it t a k e s a p a r t i c u l a r tion 2 of t h e o r e m
=-2
if and
Then,
o n l y if t h e r e
s u c h t h a t W(p) o r W ' ( p ) a p p e a r s
same assumptions
as in Theorem
~fl i s a d e c e n t r a l i z e d
exists
a partition
3.20,
assume
fixed mode of system
of the system
a s in
(3.4.17)
in t h e f o l l o w i n g f o r m :
m s
r~
no entry
has a pole
X0 i s a s i m p l e z e r o o f t h e characteristic
a t X0
polynomial
of this block
(3.4.2z)
r~
every
entry
has a zero
no entry
a t X0
Example 3.8.
Consider
has a pole
a t X0
the same system
p u t in f o r m ( 3 . 4 . 1 7 )
taking
station
and 3 as the second,
W(p) is partitioned
a s in E x a m p l e 3 . 5 a n d 3 . 6 .
1 as the
first
aggregated
as follows :
station
If the system is and
stations
2
102 3
!
0
p+l p(p-2)
I . . . . . .
W(p)-
L.
I I
1
1
1
p+2 I ! )
l
p(p-2)
1
0
p+2
a n d it is c l e a r t h a t W ' ( p ) h a s t h e form i n T h e o r e m 3 . Z l w i t h ~0=-1.
Therefore,
we
f i n d a g a i n a s in E x a m p l e 3.6 t h a t k 0 = - I i s a f i x e d m o d e . Theorem
3.Zl
is
Davison and Ozguner
strictly
equivalent
(DAV-83)
to
(see § 3.4.2)
Theorem
t h e s y s t e m w h i c h l e a d to f o r m ( 3 . 4 . 2 2 ) d e d u c e d from t h e s t r u c t u r e s A0
W(p) -
which
was
derived
for the case of simple poles.
d i f f e r e n c e c o n s i s t s in t h e f a c t t h a t in T h e o r e m 3 . 1 6 , o f t h e s t a t i o n s in 2 a g g r e g a t e d
3.16
by
T h e only
all t h e p o s s i b l e p a r t i t i o n i n g s of
in T h e o r e m 3.21 a r e l i s t e d y r i t h o u t r e o r d e r i n g
stations.
T h e two a g g r e g a t e d
stations
c a n e a s i l y be
of t h e m a t r i c e s A 0 o r
as follows
:
P-~O * rows r a (rfl) at
X
(0)
or
P-}'O P=)~°
: rows of A0 (W(p) ---
rows
o f W(p)
-
P=~O (AO)
w h e r e t h e r e is a b l o c k s p e c i f i e d
where
there
is no
block
s p e c i f i e d at
0 (X).
* c o l u m n s ma
(m13)
: c o l u m n s o f A 0 (W(p) - - - - ~ 0
s p e c i f i e d at X (0) o r c o l u m n s o f W(p)
P=
w h e r e t h e r e is n o b l o c k
I ,>0
- A'-~'O01 ~ p:},o(AO) w h e r e t h e r e
is a b l o c k s p e c i -
fied at 0 ( X ) . Note also t h a t
t h e two d i a g o n a l b l o c k s
agree with the necessary
for w h i c h
no entry
has
a p o l e at ~0
c o n d i t i o n f o r k0 to b e a f i x e d mode in T h e o r e m 3.15 ( s e e §
3.4.1).
3.4.5.
- Interpretation I t is i n t e r e s t i n g
function
matrix
to n o t e t h a t i n t h e r e s u l t s
characterization
again the partitioning
of the
of fixed modes
system
obtained
(Theorems
in two a g g r e g a t e d
for the general
transfer
3.20
we find
stations
and
3.21),
which
was already
103 p r e s e n t in t h e s t a t e = s p a c e c h a r a c t e r i z a t i o n of A n d e r s o n a n d Clements (see § 3 . 3 . 1 , Theorem 3 . 7 ) . This s i t u a t i o n can
be
intuitively
controlled in a d e c e n t r a l i z e d w a y ,
interpreted
as
follows.
When a
s y s t e m is
a s t a t i o n i can t r a n s m i t some i n f o r m a t i o n to a
station j t h r o u g h the t r a n s f e r c h a n n e l C j ( p I - A ) - I B i = Wii(p)., A similar s c h e m e h o l d s for a set of s t a t i o n s to a n o t h e r . The lack of i n f o r m a t i o n at one s t a t i o n o r at one s e t of s t a t i o n s , which r e s u l t s from the d e c e n t r a l i z a t i o n c o n s t r a i n t (only local v a r i a b l e s a r e a v a i l a b l e ) , can t h e r e f o r e be c o m p e n s a t e d b y
the information t r a n s f e r t h r o u g h the t r a n s f e r
f u n c t i o n s of t h e
interconnectton t e r m s . Hence, f o r a S - s t a t i o n s y s t e m , if all t h e s u b s e t s of s t a t i o n s {il)...,ik}
c {1,...,S)
can t r a n s m i t some i n f o r m a t i o n to t h e i r c o m p l e m e n t a r y s u b s e t s
of s t a t i o n s { i k + l ) . . . , i S} a n d vice v e r s a ,
t h e i n f o r m a t i o n is s p r e a d e d among all t h e
stations of t h e s y s t e m a n d a d e c e n t r a l i z e d c o n t r o l will s u c c e e d e i t h e r f o r t h e s t a b i = lization t a s k or for t h e pole a s s i g n m e n t t a s k . As we a l r e a d y
saw,
the
information
transfer
can
be
prevented
by
special
parametric c o n f i g u r a t i o n s , which r e s u l t in t h e e x i s t e n c e of f i x e d m o d e s . It is also clear t h a t t h i s t r a n s f e r is i m p o s s i b l e if t h e t r a n s f e r f u n c t i o n b l o c k s c o r r e s p o n d i n g to the i n t e r c o n n e c t i o n s : C a (pI~l) -I B B = WaB (p) and C B (pl-A) -I B a
= WBa(p)
are identically z e r o . In o r d e r to i l l u s t r a t e t h i s r e m a r k ,
c o n s i d e r again t h e case of a s y s t e m with
two s i n g l e - i n p u t s i n g l e - o u p u t s t a t i o n s . We saw in P a r a g r a p h 3.4.4a t h a t if t h e f e e d back u 2 = k 2 Y2 is a p p l i e d a t s t a t i o n 2, t h e t r a n s f e r f u n c t i o n of t h e r e s u l t i n g s y s t e m is given b y ( 3 . 4 . 1 6 )
Yl Ul
:
k2 = WII + WI2
W21
I-W22 k2
Assume t h a t t h e pole of t h e s y s t e m k 0 is not s i m u l t a n e o u s l y c o n t r o l l a b l e and observable b y a s i n g l e s t a t i o n ( W l l ( p ) a n d W22(p) h a v e no pole at ~0) .
However, k0
is controllable a n d o b s e r v a b l e b y t h e global s y s t e m (W12(p) or W21(p) h a v e a pole at ~0' say W 1 2 ( p ) ) .
104 We saw in P a r a g r a p h 3 . 4 . 4 . a t h a t i f ~0 i s a z e r o of W21(P), t h e p o l e - z e r o cancellation in t h e p r o d u c t fixed mode.
W12. W21 l e a d s to t h e u n c o n t r o l l a b i l i t y of ( 3 . 4 . 1 6 )
Now, if W21(p) = 0, it i s o b v i o u s t h a t
system
(3.4.16)
: t 0 is 2
is also uncon-
t r o l l a b l e a n d t0 i s also a f i x e d m o d e .
In t h e l a s t c a s e
(W21(p) = 0), l 0 i s a f i x e d mode i n d e p e n d e n t l y of t h e para-
m e t e r v a l u e s : t h i s t y p e of f i x e d m o d e s is called a s t r u c t u r a l l y f i x e d m o d e . In t h e f i r s t c a s e (W21(p) # 0 ) , ~0 i s a f i x e d mode d e p e n d i n g of t h e parameter values : a non s t r u c t u r a l l y fixed mode.
If we c o n s i d e r now t h e s p e c i a l c a s e f o r w h i c h ~0 = 0, t h e c o n d i t i o n for k0 to b e a f i x e d mode is also m e t f o r g e n e r i c v a l u e s of t h e p a r a m e t e r s e v e n w h e n W21(p) # 0. T h e f i x e d m o d e s at t h e o r i g i n e m a y t h u s b e a p a r t i c u l a r c a s e of s t r u c t u r a l l y
fixed
m o d e s.
T h e e x t e n t i o n of t h e p r e c e d i n g d i s c u s s i o n to t h e c a s e of m u l t i - s t a t i o n systems is e a s i l y d e r i v e d . ~0 is a s t r u c t u r a l l y f i x e d mode if Wa8 (p) or WB~ (p) i s identically zero a n d t h e c o n d i t i o n s of T h e o r e m 3.20 the system) hold.
(or T h e o r e m 3.21 if ~0 i s a s i m p l e pole of
If A0 = 0, t h e c o n d i t i o n s in T h e o r e m 3.20 a n d 3.21 m a y also hold
f o r g e n e r i c v a l u e s of t h e p a r a m e t e r s a n d A0 is also a s t r u c t u r a l l y
f i x e d mode in this
case.
T h e a n a l o g y w i t h t h e c a s e of c e n t r a l i z e d c o n t r o l b e c o m e s now m o r e p r e c i s e . As we s a w in C h a p t e r II,
f i x e d m o d e s a p p e a r a s an e x t e n t i o n of t h e c o n c e p t s of uncon-
t r o l l a b l e a n d u n o b s e r v a b l e m o d e s a n d it i s c l e a r t h a t s t r u c t u r a l l y blish
the
relation
1.3, C h a p t e r I).
with
structurally
uncontrollable
f i x e d m o d e s esta-
unobservable
modes
(see §
B o t h a r e d e f i n e d f o r g e n e r i c v a l u e s of t h e p a r a m e t e r s of t h e system
and are therefore structural properties. ral controllability and s t r u c t u r a l for s t r u c t u r a l l y
and
fixed modes.
A s i m i l a r s t u d y to t h e o n e made f o r s t r u c t u -
o b s e r v a b i l i t y in c h a p t e r
The next
paragraph
I can t h u s be
presents
the results
c a r r i e d out w h i c h have
b e e n o b t a i n e d on t h i s p u r p o s e .
3.5.
- STRUCTURALLY
3 . 5 . I.
FIXED
MODES
- Preliminaries
It h a s b e e n p o i n t e d o u t in t h e l a s t p a r a g r a p h from two d i s t i n c t s o u r c e s :
t h a t a f i x e d mode may originate
105 - a perfect
matching
nonzero parameters
can
in system
eliminate
parameters
the
(in t h i s c a s e ,
fixed mode)
a perturbation
: it is then
called
of the
a non
struc-
turally fixed mode, - the special
structure
however the nonzero
within the system
parameters
values
(in t h i s
are perturbed)
case the fixed mode remains = it i s t h e n
called a structu-
rally f i x e d m o d e . It w a s a l s o p o i n t e d o u t t h a t different origines,
though
structurally
- the lack of interconnections - the
fixed modes themselves
both are of a structural between
nature.
may have
They may result
the different
two
from :
stations,
special location of a mode at the origin.
The following example illustrates
Example 3 . 9 .
Consider
the following 2-station
0
1
0
1
1
0
0
0
1
C1 =
~0
o
l'l
C2 :
~1
o
ol
A =
which is globally
the above situations
controllable
BI=
system
l] 0
0
and
observable.
:
:
B2=
El
If a decentralized
control
law o f t h e
form :
u = K y
ol k2
is a p p l i e d to t h i s matrix :
system,
the resulting
closed-loop
system
has the following dynamic
106
I 0l
AK=A+BKC=
k2
and
d e t ( p I - A K) = ( p - l )
is independent
where
c
0
0
1
(p2-p-l-klk
010]
if o n e o f t h e n o n z e r o
1
1
0
0
0
I+E
is an arbitrary
2)
where
it a p p e a r s
that the eigenvalue
A0=I i s a d e c e n t r a l i z e d
entries
small constant,
d e t ( p I - A K) = p ( p - 1 ) ( p - ] and
k1
of k I a n d k 2. T h e r e f o r e ~
However,
A =
1 I
in A i s s l i g h t l y p e r t u r b e d
we h a v e
a t ~0=1
fixed mode. a s follows :
:
e)-(p-l-c)-klk2(P-1)
t h e f i x e d m o d e d o e s n o t e x i s t a n y m o r e : t h e f i x e d m o d e at ~0=1 w a s t h e r e f o r e
non structurally
Consider
n o w t h a t t h e d y n a m i c m a t r i x of t h e s y s t e m i s g i v e n b y
A =
such that
fixed mode.
: det
L! ' °l 0
0
0
0
( p I - A K) = p ( p 2 - 1 - k l k 2 ) .
In this case, of any perturbation Consider
:
the system
h a s a f i x e d m o d e a t )~0=0 w h i c h will r e m a i n r e g a r d l e s s
of the non zero elements of the matrices
also the following system
:
[ 00] [1 0
c~=[l
-1
oo3
[°]
0
~-=Eo 2
A,B1,B2,C 1 and
1
,
l-I
C 2.
a
107 We have : det (pl-kK)* = p(p-l-kl)(P+l-k 2) and the system (B~I,B2,A~*,CI,C 2 ) ** has also a fixed mode at k 0=0 which will remain however the nonzero elements of the are perturbed.
matrices
Neverthless, in the two above cases, the origin of the
structurally fixed mode at 10=0 is not the same. This appears clearly in the associated t r a n s f e r f u n c t i o n m a t r i c e s . Case 1 :
I wj(p)
System {BI,B2,A~,CI,C2~
I p-l
:
1 _
P
l
I I
0
I I" I I
p+l
I
1
It is now c l e a r t h a t t h e f i x e d mode at A0=0 a r i s e s from t h e lack of t h e i n t e r connection t e r m b e t w e e n station~ 1 a n d 2 w h i c h is s h o w n b y C ; ( p I - A * ) - I B ~ --- 0 in Wl(p). In t h i s c a s e , k0=0 will b e called a s t r u c t u r a l l y f i x e d mode of t y p e ( i ) .
Case 2
:
W2(p)
System ( B 1 , B 2 , A , C 1 , C 2 )
=
[
0
(p+P1)(p-1)
1
0
In W2(P), n o n e of t h e i n t e r c o n n e c t i o n t e r m s b e t w e e n the s t a t i o n s a r e m i s s i n g . The fixed mode at k0=0 a r i s e s from i t s s p e c i a l location at t h e o r i g i n t h a t r e s u l t s in a pole-zero cancellation a t k0=0 b e t w e e n t h e i n t e r c o n n e c t i o n t e r m s . This f i x e d mode is called a s t r u c t u r a l l y fixe mode of t y p e (ii). In b o t h c a s e s , it is c l e a r t h a t no p e r t u r b a t i o n of t h e n o n z e r o e n t r i e s in t h e matrices can c h a n g e t h e s i t u a t i o n . mode in c a s e parameter,
1 and
N e v e r t h e l e s s , t h e d i f f e r e n t o r i g i n s of t h e f i x e d
2 can be s i g n i f i c a n t l y s h o w n b y a f f e c t i n g a value
which r e s u l t s
in
to a zero
s h i f t i n g t h e pole ~0=0 w i t h o u t a f f e c t i n g the i n t e r e o n -
nection s t r u c t u r e of t h e s y s t e m s •
Case I :
108
10o] 0
2
0
0
0
-1
Case 2 :
The pole at the origin is now replaced
[0101 1
0
0
0
0
2
b y a p o l e a t Xl=2. I n c a s e 1, w e h a v e n o w :
p-I
Wl(p) =
where
nothing
turally
°1
I__
IF_
(p-2)
p+l
is c h a n g e d
with respect
f i x e d m o d e a t 40=0 i s r e p l a c e d
ting that the origin of the structurally On the contrary,
to t h e z e r o i n t e r c o n n e c t i o n by a structurally
term.
The struc-
fixed mode at ~ I=2,
reflec-
fixed mode is a lack of interconnections.
i n c a s e 2~ we h a v e
:
p-2
W2(p) = P
0
(p-2)(p- i )
where
the pole-zero
no fixed mode.
cancellation
Therefore,
in
a t ~0---0 i s n o l o n g e r
case
2,
the origin
possible
of the
; i.e.
the system
fixed mode was its
has
special
location at the origin. The
next
paragraphe
modes can be characterized Refering not understand consider
will
show
in d i f f e r e n t
to t h e a b o v e
discussion,
that
these
two
types
of
we w o u l d l i k e to p o i n t o u t t h a t
t h a t all f i x e d m o d e s a t t h e o r i g i n a r e o f a s t r u c t u r a l
the following system
:
structuralIy
fixed
ways. one
nature.
should Indeed,
[1]
109
0 0 0
A=
0 0 1 a22 0 0 2
c~:[0
i
13
c~:[J
0
01
where az2 i s a n a r b i t r a r y The transfer
g j :-
[° 1
0
-l
0
2
real paramater.
f u n c t i o n m a t r i x is g i v e n b y : P+2(l-a22)
P
where it is c l e a r t h a t t h e s y s t e m h a s a f i x e d mode at k0=0 i f a n d o n l y if a22 = 1 | t h e r e f o r e , in t h i s c a s e ~0=0 i s n o t a s t r u c t u r a l l y Note a l s o t h a t t h e l a c k o f i n t e r c o n n e c t i o n is n e c e s s a r y
for
a
fixed
mode
to b e
I n d e e d , c o n s i d e r t h e following s y s t e m
A =
fixed mode. t e r m s in t h e t r a n s f e r
structural
(of type
(i))
but
function matrix not
sufficient.
:
[010][ l
0
0
0
0
2
gl=
C! =
c2~ E,
-,
for which d e t ( p I - A K) The t r a n s f e r
, l =
(p-2)(p-2kl-1)(p-2kz+l).
~1=2 i s
f u n c t i o n m a t r i x o f t h i s s y s t e m is g i v e n b y :
therefore
a fixed mode.
110 2 p-I
0
l p'-2
2 p+l
W(p) :
which exibits a zero block. mode of t y p e cellation.
(i).
One could t h u s
t h i n k t h a t ~1=2 i s a s t r u c t u r a l l y
fixed
H o w e v e r , it m u s t b e n o t i f y t h a t t h e z e r o b l o c k r e s u l t s from a can-
Indeed,
if one
replaces,
for
example,
the
first
entry
in
B2 by
2,
the
transfer function matrix becomes :
2 p-I
1 p-I
w(p) :
which has
1
3
p-2
p+l
no m o r e z e r o b l o c k . ~ 1=2 i s no l o n g e r
a f i x e d mode s i n c e t h e r e
is no
a n d s u f f i c i e n t c o n d i t i o n s f o r a pole to b e a s t r u c t u r a l l y
fixed
p o s s i b l e c a n c e l l a t i o n in t h e p r o d u c t
l
p-2
The necessary
:
1
X
p-1
mode will b e p r e s e n t e d in t h e s u b s e q u e n t p a r a g r a p h s . As w a s p o i n t e d o u t in P a r a g r a p h
3.4.5,
f i x e d m o d e s a r e t h e e x t e n t i o n of the
c o n c e p t s of u n c o n t r o l l a b l e a n d u n o b s e r v a b l e m o d e s e x i s t i n g in c e n t r a l i z e d c o n t r o l and structurally
fixed modes establish the
relation with
structurally
u n c o n t r o l l a b l e and
u n o b s e r v a b l e m o d e s . T h e p r o p e r t i e s of c o n t r o l l a b i l i t y , o b s e r v a b i l i t y a n d t h e i r s t r u c tural
counterparts,
structural
controllability
and
structural
observability9
were
d e f i n e d in C h a p t e r I. In t h e d e c e n t r a l i z e d c o n t r o l c a s e , t h e s e p r o p e r t i e s w e r e s t a t e d a n d s t u d i e d i n (KOB-78)
(KOB-82) a n d
controllability and observability under
(MOM-83) w h i c h i n t r o d u c e d t h e c o n c e p t s of decentralized information structure
a n d their
structural counterparts. T h e s e p r o p e r t i e s a r e p r e s e n t e d in t h e n e x t p a r a g r a p h fixed modes appear e v e n more o b v i o u s .
clearly.
The analogy with the
a n d t h e i r r e l a t i o n s with
centralized
control
c a s e is then
111 Some o f t h e d e f i n i t i o n s ter I a n d t h e r e a d e r
used
in the following were already
will b e r e f e r e d
to it w h e n e v e r
3.5.2. - Controllability and observability decentralized
information structure
Consider
S-station
the
t h e form ( 3 . 2 . 4 )
system
Definition (3.2.4)
(3.2.2)
and
a decentralized
3.4.
The
system
structure
(3.2.2)
if there
which
i n t e r v a l of time T , i . e . , 3.5.
The
transfers
lability
system
to b e
defined in
et
al
under
under
appears
(3.2.2)
different
with t h e d i f f e r e n t
to
be
in
(MOM-83).
controllable
decentralized initial
is
if there
state
output x(0)
under
decentralized
feedback
to t h e
(KOB-82) information
information
from which
3.5.
glance,
said
Though
to
be
of the
origine
structurally
exists a structurally
decentralized
(KOB-78)
decentralized
Definition
said a
any
decentralized
importance at first
Definition 3 . 6 .
feedback
form
in a f i n i t e
x(T)=0.
1.3) w h i c h is c o n t r o l l a b l e u n d e r Kobayashi
is
exists
decentralized control structure
controllable
control
(3.2.11).
(3.2.11),
Definition
in C h a p -
under
T h e f o l l o w i n g d e f i n i t i o n w a s g i v e n b y Momen a n d E v a n s
information
introduced
it will b e n e c e s s a r y .
the
under
system
(see §
structure. provided
also
structure.
structure
defined
controllable
equivalent
in
the
in D e f i n i t i o n
differences
a definition
for
Nevertheless, sense 3.4
do n o t
of
and
seem
we will s e e t h a t t h e i r i n t e r p r e t a t i o n
the
a system control-
Kobayashi even to
from
be
et
al
which
of a major
is strongly
connected
types of fixed modes.
The
information s t r u c t u r e
system
(3.2.2)
is
said
to
be
controllable
(in t h e s e n s e o f K o b a y a h s i e t al) if t h e r e
under exists
decentralized a decentralized
control of t h e f o r m :
ui(t) = Fi Ii(t)
(i=1 . . . . .
S)
(3.5.1)
where I . ( t ) is t h e s e t o f a v a i l a b l e d a t a a t s t a t i o n i a t t i m e t : 1
Ii(t) = {yi(p), which t r a n s f e r s i . e . , x (T)=O.
ui(q), p ~ (0,t),
any initial state
x(O)
q ~ (0,t)) to t h e o r i g i n e
in a f i n i t e i n t e r v a l
o f time T ;
112 T h e d i f f e r e n c e b e t w e e n D e f i n i t i o n s 3.6 a n d 3 . 4 can b e f o u n d in t h e different types
of d e c e n t r a l i z e d
(3.2.4)
(3.2.11)
control
laws
which are
used.
Undeed,
the
h a s n o t t h e d e g r e e of freedom of t h e one in ( 3 . 5 . 1 ) .
under decentralized information structure more similar to s t r u c t u r a l
control
law in
Controllability
in t h e s e n s e of K o b a y a s h i et al i s , in fact,
controllability under
decentralized
information
structure
d e f i n e d in D e f i n i t i o n 3 . 5 . We will s e e t h a t t h e r e q u i r e d c o n d i t i o n s f o r a s y s t e m to h a v e t h i s p r o p e r t y are also of a s t r u c t u r a l
nature.
However,
a slight
difference
still r e m a i n s ,
b a s e d on t h e e x i s t e n c e of two d i f f e r e n t t y p e s of s t r u c t u r a l l y p o i n t e d o u t in P a r a g r a p h
3.5.2.a.
which is
fixed modes,
as was
3 . 4 . 5 a n d Example 3 . 9 .
- K o b a y a s h i e t al. a p p r o a c h (KOB-78) (KOB-82)
T h e a p p r o a c h of K o b a y a s h i e t al. is b a s e d on t h e o b s e r v a t i o n t h a t ,
in decen-
t r a l i z e d c o n t r o l s y s t e m s , a c o n t r o l s t a t i o n can t r a n s m i t n e c e s s a r y i n f o r m a t i o n to other control stations
through
the
state
space
by
using
signaling
strategies.
That
is,
s t a t i o n j c a n t r a n s m i t i n f o r m a t i o n to s t a t i o n i if ( a n d o n l y if) C i ( P I - A ) - I B ] = #0. In t h i s c a s e , s t a t i o n j can e n l a r g e i t s c o n t r o l l a b l e s u b s p a c e b y s e n d i n g information
to s t a t i o n
i and
station
i can e n l a r g e
its observable
i n f o r m a t i o n from s t a t i o n j . K o b a y a h s i et al. r e p r e s e n t m a t r i c e s C~i a n d Bi,* ( i = l , . . . , S ) ,
subspaee
by
receiving
t h i s s i t u a t i o n b y d e f i n i n g the
which are interpreted
as t h e o b s e r v a t i o n a n d the
d r i v i n g m a t r i c e s of s t a t i o n i u n d e r t h e c o o p e r a t i o n of t h e o t h e r s t a t i o n s :
B~ : [Bi, Bjl . . . . . Bjk ]
if Cj(pI-A)-IBi f 0
~ j e {Jl' "" Jk"}
C.1 C C.~ =
if
Ci(PI-A)-lB j I 0
Vj ~ {ql ..... qv }
C' qv
T h e n t h e y d e v e l o p , t h e i r s t u d y b y a s s o c i a t i n g with t h e s y s t e m t h e same directed
graph
as
Corfmat
and
Morse
(COR-76a,b),
which
was
defined
in
Paragraph
2 . 2 . 3 b of C h a p e r I I . Like Corfmat a n d Morse, t h e y decompose t h e s y s t e m in s t r o n g l y connected subsystems. For a system (3.2.2)
with N s t r o n g l y c o n n e c t e d s u b s y s t e m s ,
t h e s t a t i o n s p u t t h e s y s t e m in t h e following form :
t h e r e o r d e r i n g of
113
~(t) =
A
x(t) + B1 ~1 (t) + "'" M BN ~N (t)
~i (t) = "Gi x ( t )
with
(i=l . . . . . N)
~i = [Bjl ' " "
B'i'i ]
6.. Rnxmi
~
=
Jl L
E R '
Ji
where i l , _ . . , i k areN the stations b e l o n g i n g to the s t r o n g component i. Note t h a t the matrices B. and
C, a r e composed of the
1
1
driving
,~,
and
o b s e r v a t i o n matrices of the
,~
station within the ith s t r o n g component. Bi and C i a r e also the d r i v i n g and o b s e r v a tion matrices of e v e r y station with in the s t r o n g component t u n d e r the cooperation of the remaining stations within this same s t r o n g component. The r e o r d e r e d t r a n s f e r function matrix of the system a p p e a r s t h u s in a b l o c k triangular form : N
w(p) :
I
WII
!
.~
I I
W21
N
W22
I i i _1
I l
2 WNI . . . . . . . .
r~ ....
IiWNN I
_
where ~..*] is the t r a n s f e r function matrix from the s t r o n g l y c o n n e c t e d s u b s y s t e m i to the strongly c o n n e c t e d s u b s y s t e m j. The s y s t e m p u t in the above form is called t h e q u o t i e n t s y s t e m . Kobayashi et el give then the following theorem : Theorem 5,2Z
(KOB-82).
information s t r u c t u r e
The
system
(3.2.2)
is controllable
(in the s e n s e of Kobayashi et a l . ,
0nly if the q u o t i e n t system has no d e c e n t r a l i z e d
under
decentralized
see Definition 3.6)
if and
fixed modes vrith r e s p e c t
to the
decentralized control law : U = ~ Y
= block-diag,
(K1 . . . . . KN )
Ki ~ Rmixri
(3.5.2)
(i=l . . . . .
The f i x e d modes of the q u o t i e n t system c o r r e s p o n d modes of t y p e
(i) of t h e
system
(3.2.2).
Indeed,
none
N)
to the s t r u c t u r a l l y partition
of the
fixed
quotient
114
s y s t e m can be f o u n d s u c h t h a t t h e i n t e r c o n n e e t i o n t e r m b e t w e e n t h e f i r s t aggregated station and
the
s e c o n d is n o t i d e n t i c a l l y z e r o .
As we saw in P a r a g r a p h
3.4.5, if
Theorem 3.20 is s a t i s f i e d in t h i s c a s e , t h e f i x e d modes a r e s t r u c t u r a l a n d a r i s e from t h e lack of i n t e r c o n n e c t i o n s . The n o n s t r u c t u r a l l y f i x e d modes a n d t h e structurally f i x e d modes of t y p e (it) of t h e s y s t e m ( 3 . 2 . 2 ) in ( 3 . 5 . 2 )
(if a n y ) a r e s e t a s i d e b y t h e fact that
t h e c o n t r o l law a s s o c i a t e d to each s t r o n g l y c o n n e c t e d s t a t i o n (which may
contain s e v e r a l s t a t i o n s of t h e s y s t e m ( 3 . 2 . 2 ) ) is c e n t r a l i z e d . This l e a d s to t h e following c o r o l l a r y : Corollary
3.6.
The
structure
(in t h e
system
(3.2.2)
is c o n t r o l l a b l e
s e n s e of K o b a y a s h i et a l . )
under
d e c e n t r a l i z e d information
if a n d only if it has no structurally
f i x e d modes of t y p e ( i ) . An
interesting
c o n s e q u e n c e is
that
a strongly
controllable u n d e r d e c e n t r a l i z e d i n f o r m a t i o n s t r u c t u r e
connected
s y s t e m is
always
(in t h e s e n s e of Kobayashi et
al) and c a n n o t h a v e s t r u c t u r a l l y f i x e d modes of t y p e ( i ) . If we e s t a b l i s h t h e c o n n e c t i o n with the r e s u l t s of Corfmat a n d
Morse (COR-
76a,b) p r e s e n t e d in P a r a g r a p h 2 . 2 . 3 b of C h a p t e r IIp t h e f i x e d modes can b e charact e r i z e d in t e r m s of t h e r e m n a n t polynomials of t h e c o m p l e m e n t a r y s u b s y s t e m s (see Definition 2 . 6 ,
C h a p e r II) and the r e s u l t s of Corfmat a n d Morse can b e r e s t a t e d in
t e r m s of f i x e d modes. Theorem 2.2 l e a d s to t h e following c o r o l l a r y : Corollary
3.7.
The
system
(3.2.2)
with
S stations,
controllable,
o b s e r v a b l e and
s t r o n g l y c o n n e c t e d can be s t a b i l i z e d b y a c o n t r o l law of t h e form =
u i ( t ) = Ki Yi(t) + v i ( t )
f
zj(t)
Sj z j ( t ) + Rj y j ( t )
vj(t)
Qj zj(t) + Nj y j ( t )
(i=l . . . . . S) j e (1 . . . . . S}
if a n d only if t h e s e t of f i x e d modes (which c a n n o t b e s t r u c t u r a l l y f i x e d modes of t y p e (i)) is s t a b l e . The a r b i t r a r y pole p l a c e m e n t is p o s s i b l e if a n d only if t h e s e t of f i x e d modes is e m p t y .
(Note t h a t t h e control law u s e s a dynamic c o n t r o l l e r only at
one s t a t i o n s i n c e s t r o n g l y c o n n e c t e d s y s t e m s w i t h o u t f i x e d modes can b e made controllable a n d o b s e r v a b l e b y a s i n g l e s t a t i o n u s i n g s t a t i c d e c e n t r a l i z e d f e e d b a c k ) , For t h i s s y s t e m , t h e s e t of d e c e n t r a l i z e d f i x e d modes
( i n c l u d i n g n o n struc-
t u r a l l y f i x e d modes a n d s t r u c t u r a l l y f i x e d modes of t y p e (it)) is c h a r a c t e r i z e d b y the f i x e d polynomial :
115 F(p) = l.c.m.
P ( G a , A,BI3 )
k=l,...,S-1 ~a = { i l . . . . . ik}C
~
= {1 . . . . . S}
If we c o n s i d e r now t h e g e n e r a l case of n o n s t r o n g l y c o n n e c t e d s y s t e m s , T h e o rem 2.3 can be r e s t a t e d as follows : Corollary 3.8. The c o n t r o l l a b l e a n d o b s e r v a b l e s y s t e m ( 3 . 2 . 2 ) can be s t a b i l i z e d u s i n g a dynamic d e c e n t r a l i z e d c o n t r o l of t h e form ( 2 . 2 . 6 ) modes ( s t r u c t u r a l l y a n d non s t r u c t u r a l l y )
if a n d only if t h e s e t of f i x e d
is s t a b l e . T h e a r b i t r a r y pole p l a c e m e n t is
possible if and only if t h e s e t of fixed modes is e m p t y . For t h i s s y s t e m ,
t h e s e t of s t r u c t u r a l l y
f i x e d modes of t y p e
(i) is g i v e n b y
the set of poles of t h e s y s t e m which a r e n o t pole of a n y s t r o n g l y c o n n e c t e d s u b s y s tem (fixed modes of t h e q u o t i e n t s y s t e m ) . T h e r e m a i n i n g f i x e d modes ( i n c l u d i n g non structurally f i x e d modes and s t r u c t u r a l l y fixed modes of t y p e (ii)) a r e g i v e n b y t h e union of t h e s e t s of f i x e d modes of e v e r y s t r o n g l y c o n n e c t e d s u b s y s t e m . For each strongly c o n n e c t e d s u b s y s t e m , t h e y can be c h a r a c t e r i z e d as follows :
Fi(P)
= l.c.m ~iac
P(~ia 'A , ~i~)-
h (~i,A,~i,R~nix~i )
1Ti ~i = {Jl . . . .
Ji }
The e q u i v a l e n c e b e t w e e n the r e s u l t s of Wang a n d 2.2.3.a,
Davison
(WAN-73)
C h a p t e r II) a n d t h o s e of Gorfmat a n d Morse is now clear.
(see §
Note t h a t
the
results of Corfmat a n d Morse a r e more complete s i n c e t h e y i n c l u d e t h e d i f f e r e n t i a t i o n between s t r u c t u r a l l y a n d non s t r u c t u r a l l y f i x e d m o d e s .
3.5.2.b. - Momen a n d Evans approach (MOM-83) The a p p r o a c h of Momen and E v a n s is p u r e l y s t r u c t u r a l .
The p r i n c i p l e remains
the same as in K o b a y a s h i e t al. a p p r o a c h s i n c e t h e i r r e s u l t s are also b a s e d on t h e determination of t h e e n l a r g e d s t r u c t u r a l l y
c o n t r o l l a b l e a n d o b s e r v a b l e s u b s p a c e s of
every station u n d e r t h e collaboration of t h e o t h e r o n e s . Let Li , (i=l . . . . . S) be t h e s t r u c t u r a l l y c o n t r o l l a b l e a n d o b s e r v a b l e s u b s p a c e of station i a n d L.* t h e e n l a r g e d s t r u c t u r a l l y c o n t r o l l a b l e a n d o b s e r v a b l e s u b s p a c e o f 1 station i u n d e r t h e c o o p e r a t i o n of t h e o t h e r s t a t i o n s . T h e n , we h a v e t h e following result :
116 Theorem 3,23
(MOM-83).
The system
decentralized information structure S u i-1
The condition
(3.2.2)
is s t r u c t u r a l l y
controllable under
L~ = R n
(3.5.3)
the
( s e e D e f i n i t i o n 3 . 5 ) if a n d o n l y if :
(3.5.3)
m e a n s t h a t t h e u n i o n of t h e e n l a r g e d s t r u c t u r a l l y
con-
t r o l l a b l e a n d o b s e r v a b l e s n b s p a c e s o v e r all t h e s t a t i o n s is e q u a l to t h e s t a t e s p a c e of the
system.
observable
Note
that
under
if
condition
decentralized
(3.5.3)
holds,
information
the
s y s t e m is a l s o s t r u c t u r a l l y
structure.
The
connection
with
fixed
m o d e s is t h e n made in t h e following t h e o r e m : T h e o r e m 5.24 vable) under
(MOM-83). T h e s y s t e m ( 3 . 2 . 2 )
is s t r u c t u r a l l y
decentralized information structure
controllable
(and obser-
i f a n d o n l y if it h a s no s t r u c t u r a l l y
fixed modes. Therefore,
Momen
decentralized structure
and
Evans
(MOM-83)
(see Definition 3.4)
define
a
controllable
system
m o d e s of a n y t y p e a n d e x t e n d t h i s r e s u l t in a s t r u c t u r a l
w a y in D e f i n i t i o n 3.5 a n d
T h e o r e m 3,24 (As w a s p o i n t e d o u t in t h e e x a m p l e s g i v e n in P a r a g r a p h s y s t e m with s t r u c t u r a l l y
under
as a s y s t e m without decentralized fixed 3.5.1,
for a
f i x e d m o d e s of t y p e (i) or ( i i ) , n o n e s t r u c t u r a l l y e q u i v a l e n t
s y s t e m without fixed modes can be f o u n d ) .
The
difference between
tion s t r u c t u r e
and
structural
controllability
s e n s e of K o b a y a s h i e t a l .
controllability under
under
decentralized
c a n be f o u n d i n t h e f a c t t h a t ,
rally fixed modes include both structurally Indeed,
the
d e t e r m i n a t i o n of t h e
structurally
s u b s p a c e s is b a s e d on t h e c o n d i t i o n s for s t r u c t u r a l ( s e e T h e o r e m s 1.6 a n d
1.7,
Chapter
I).
in T h e o r e m 3 . 2 4 ,
f i x e d m o d e s of t y p e
enlarged
decentralized informa-
information structure
in
(i) a n d of t y p e
controllable
and
the
structu(ii).
observable
controllability and observability
These conditions involve both reachability
conditions and generic rank conditions. The teachability conditions t u r n into c o n n e c tivity
conditions
strongly
in
the
connected and,
The generic rank
case
of
therefore,
decentralized
in d e c e n t r a l i z e d c o n t r o l ,
f i x e d m o d e s of t y p e Remember that subspaces
were
i.e.,
the
the
s y s t e m m u s t be
f i x e d m o d e s of t y p e
conditions take into account the particular
o r i g i n w h i c h m a y a l s o lead to s t r u c t u r a l way,
control :
it h a s no s t r u c t u r a l l y
u n c o n t r o l l a b i l i t y or u n o b s e r v a b i l i t y .
s y s t e m is a l s o r e q u i r e d
(i).
c a s e of a pole a t t h e By this
n o t to h a v e s t r u c t u r a l l y
(ii). in
Kobayashi et
determined using
al,
the
connectivity
enlarged
controllable
conditions only :
and
this
is
observable why
their
117 controllability under decentralized information structure to h a v e s t r u c t u r a l l y
only requires the system not
f i x e d m o d e s of t y p e ( i ) .
It is c l e a r now t h a t d e c e n t r a l i z e d f i x e d m o d e s c a n be d e f i n e d a s t h e m o d e s t h a t are
uncontrollable
under
the
decentralized control in the
decentralized form
(2.2.6).
information However,
structure
using
an i n t e r e s t i n g
a
dynamic
remark
c a n be
made. F r o m T h e o r e m 3.24 a n d C o r o l l a r y 3.6 a n d t h e D e f i n i t i o n s 3.5 a n d 3 . 6 , we c a n d e d u c e t h e following r e s u l t : Corollary 3.9.
Non s t r u c t u r a l l y
f i x e d m o d e s a n d s t r u c t u r a l l y f i x e d m o d e s of t y p e (ii)
are controllable u n d e r the d e c e n t r a l i z e d information s t r u c t u r e
using a dynamic time-
v a r y i n ~ d e c e n t r a l i z e d c o n t r o l l e r in t h e form ( 3 . 5 . 1 ) . Structurally information
f i x e d m o d e s of t y p e
structure
even
if
the
(i)
are not controllable
time-invarience
constraint
under on
the
decentralized decentralized
c o n t r o l is r e l a x e d . This point
will be d i s c u s s e d
a g a i n in C h a p t e r
t a t i o n of t h i s r e s u l t will b e p o i n t e d o u t . 3.9 e x p r e s s e s
IV a n d t h e p h y s i c a l i n t e r p r e -
It is i n t e r e s t i n g
to m e n t i o n t h a t
Corollary
a major d i f f e r e n c e w i t h r e s p e c t to t h e c a s e of c e n t r a l i z e d c o n t r o l s i n c e
uncontrollable and unobservable modes remain uncontrollable and unobservable
even
if a d y n a m i c t i m e - v a r y i n g c o n t r o l l e r i s u s e d .
A l t h o u g h t h e a b o v e s t u d y w a s c a r r i e d o u t in a d e c e n t r a l i z e d i n f o r m a t i o n s t r u c t u r e f r a m e w o r k , it is c l e a r t h a t t h e r e s u l t s
c a n be e x t e n d e d
to t h e g e n e r a l c a s e of
arbitrary constrained information structure.
3.5.2.c.
- P o t e n t i a l pole a s s i g n m e n t u s i n g d e c e n t r a l i z e d
static output feedback The issue
of c o n t r o l l a b i l i t y
information structure concepts
of
fixed
modes.
( a b s e n c e of s t r u c t u r a l l y potential paragraph using
a
pole
and
structural
controllability
under
decentralized
h a s b e e n d i s c u s s e d in t h e p r e c e d i n g s e c t i o n a n d r e l a t e d to t h e It
has
been
pointed
out
that
f i x e d m o d e s ) is t h e n e c e s s a r y
assignment
using
a
decentralized
structural
controllability
a n d s u f f i c i e n t c o n d i t i o n for
dynamic
controller.
The
present
g i v e s t h e n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n f o r p o t e n t i a l pole a s s i g n m e n t decentralized
static
controller.
Of c o u r s e ,
a s s u r e t h a t t h e s y s t e m h a s no s t r u c t u r a l l y
this
condition
is
sufficient
f i x e d m o d e s b u t it is n o t n e c e s s a r y .
to
The
a p p r o a c h of E v a n s a n d K r u s e (EVA-84) i s o r i g i n a l in t h e s e n s e t h a t it d o e s n o t r e f e r e x p l i c i t l y to t h e
c o n c e p t s of c o n t r o l l a b i l i t y ,
t h e y a r e implied in t h e final r e s u l t .
observability or fixed modes,
although
118
The r e s u l t is c a r r i e d out b y a g r a p h - t h e o r e t i c m e t h o d u s i n g t h e work of Mason (MAS-56) w h i c h e s t a b l i s h e s t h e r e l a t i o n b e t w e e n t h e s t r u c t u r e of t h e d i g r a p h a s s o c i a t e d to a s q u a r e m a t r i x and i t s c h a r a c t e r i s t i c polynomial. Consider a nxn s u c h t h a t V=
matrix
Vl,...,v n
M=(mij)i,j= 1 . . . . n"
One
defines
the
digraph
D=(V,E)
is a s e t of n v e r t i c e s a n d E is a s e t of e d g e s from V to
V . ( v i , v j) E E if a n d only if mji#0 in M. T h e w e i g h t mji is a s s o c i a t e d with t h e e d g e ( v i , v j ) . The c h a r a c t e r i s t i c polynomial of M is g i v e n b y : ¢ (p) = d e t ( p I - M ) = p n + a n _ l P
n-l+
...
+
alP+a 0
then, the coefficients a 0 , . . . , a n _ 1 are given by :
an_ 1 =
Z ()~)
an_ z =
z [~
a1
= E In
n-1
(x)]
(x)]
a0 = r [~ (x)] in which
~[~
(l)]
d e n o t e s t h e sum o v e r t h e c y c l e s of l e n g t h j (or p r o d u c t
of disjoint c y c l e s w h o s e sum of l e n g t h s is j) of t h e p r o d u c t s of t h e w e i g h t s a s s o ciated to t h e e d g e s i n v o l v e d in e a c h c y c l e . The c o m p l e t e a s s i g n m e n t of all r o o t s o f ¢ (p) to some s e t of a r b i t r a r y v a l u e s can only b e a c h i e v e d if n o n e of t h e c o e f f i c i e n t s a o , . . . , a n _ 1 is zero. Consider the system (3.2.1)
and t h e c o n t r o l law : U=KY
w h e r e K is t h e o u t p u t f e e d b a c k matrix with an a r b i t r a r y s p e c i f i e d s t r u c t u r e .
Then,
from t h e a b o v e r e s u l t , p o t e n t i a l pole a s s i g n m e n t can be a c h i e v e d if : 1-All t h e c o e f f i c i e n t s in t h e c h a r a c t e r i s t i c polynomial of (A+BKC) can be a s s i g n e d i n d e p e n d e n t l y b y t h e e x i s t i n g cycle g a i n s of t h e a s s o c i a t e d g r a p h . 2 - S u f f i c i e n t cycle g a i n s can be a s s i g n e d i n d e p e n d e n t l y b y t h e f e e d b a c k g a i n s in K. U s i n g t h e a b o v e d i s c u s s i o n , E v a n s a n d K r u s e r ( E V A - 8 4 ) p r o v i d e d t h e following result :
119
Let ( k 1 . . . . , k q }
b e t h e s e t of f e e d b a c k g a i n s in K a n d {L1, . . . . L c} b e t h e s e t
of e x i s t i n g c y c l e s in t h e g r a p h a s s o c i a t e d with ( A + B K C ) . Define .
an_ 1
.-.
a0
L1 MLa= L c
s u c h t h a t m L a ( i , j ) = l if a n d only if Li is of l e n g t h j o r a p p e a r in a p r o d u c t
of d i s -
joint c y c l e s w h o s e sum of l e n g t h s is j, a n d m L a ( i , j ) = 0 o t h e r w i s e . Define also '
L 1 ....
Lc
MKL= i kq where
rnKL(i,j)=l
if a n d
only
if
k i appears
in
the
gain
of
the
cycle
Lj,
and
mKL(i,j)~0 o t h e r w i s e . Then,
the necessary
a n d s u f f i c i e n t c o n d i t i o n for p o t e n t i a l p01e a s s i g n m e n t is
that :
gr[MKL
* MLa] = n
w h e r e * d e n o t e s t h e b o o l e a n p r o d u c t of two b i n a r y m a t r i c e s . This result provides an interesting test, test
determination,
feedback.
f o r p o t e n t i a l pole
in t h e form of a simple g e n e r i c r a n k
assignment
using
F o r t h e p r a c t i c a l i m p l e m e n t a t i o n of t h e t e s t ,
decentralized
static output
Evans and Kruser
(EVA-84)
p r o v i d e d a n APL r o u t i n e w h i c h g i v e s t h e list of e x i s t i n g c y c l e s in a d i g r a p h .
3 . 5 . 3 . - C h a r a c t e r i z a t i o n of s t r u c t u r a l l y
f i x e d modes
Similarly to t h e case of c e n t r a l i z e d c o n t r o l , t h e c h a r a c t e r i z a t i o n of s t r u c t u r a l l y fixed modes ( a n d t h e r e f o r e of s t r u c t u r a l structure)
controllability under constrained information
can be carried out either within a pure algebraic framework or within a
graph-theoretic framework.
120
3,5,3,a.
Algebraic approach
-
Using (LIN-74)
the
results
(SHI-76)
characterization T h e o r e m 3.25
obtained
(see
§ 1.3,
of structurally (SEZ-81a).
for
Chapter
structural
controllability
I),
and
Sezer
Siljak
and
observability
derived
the
following
fixed modes :
The system
(3.2.2)
with S stations has
structurally
fixed
m o d e s if a n d o n l y i f o n e o f t h e f o l l o w i n g c o n d i t i o n s h o l d s : i
-
exists
There
matrix P such that A1 1
A31
L
P'g =
. . . .
I 0
Ct
o B
il - T h e r e e x i s t s a
permutation
2 Bet
(3.5.~)
~a o n =
{1 . . . . .
S}
fixed modes of type
can never
such that
n
(i) a r e c h a r a c t e r i z e d of the system
b e p u t in t h e form ( 3 . 5 . 4 ) ) .
m a t r i x A22. T h i s s i t u a t i o n i s i l l u s t r a t e d f i x e d m o d e s o f t y p e ( i ) . It a p p e a r s from t h e a g g r e g a t e d structure
by condition
(of course,
(i) w h i c h
a strongly
They are the eigenvalues
by Figure 3.5.
x = ( x l , x 2 , x 3) w h e r e x 2 a r e t h e s t a t e s
of the block-triangular
:
0
e x i b i t s a n o b v i o u s lack o f c o n n e c t i v i t y
fer is possible
a
g
C
3 subvectors
and
]
[A 0]
gr
ted system
( ~ a u ~B ---7)
I
g
Structurally
S}
133 C~
A32 i A33
[c 1
CP=
{1 . . . . .
II 0 0 t. . . . . I i .422 ~ 0 . . . . .
CP=
~a c ~ =
:
..... A21
P'AP :
a
connecof t h e
T h e s t a t e v e c t o r i s s p l i t e d in
associated with the structurally
c l e a r l y in t h e f i g u r e t h a t n o n e i n f o r m a t i o n t r a n s station
a to t h e
o f t h e m a t r i x A.
aggregated
station
B because
121
/
\
\
/
F i g u r e 3.5 S t r u c t u r a l l y f i x e d modes of t y p e (ii) a r e c h a r a c t e r i z e d b y c o n d i t i o n (ii) which is t h e s t r u c t u r a l c o u n t e r p a r t of c o n d i t i o n ( 3 . 3 . 2 )
( C h a r a c t e r i z a t i o n of f i x e d modes of
A n d e r s o n and Clement. see § 3.3.1~ C h a p t e r II) for a pole at t h e o r i g i n e . Note t h a t
a structurally
condition ( 3 . 5 . 5 )
f i x e d mode o f t y p e
(i)
at the o r i g i n s a t i s f i e s also
b u t it a r i s e s from t h e lack of c o n n e c t i v i t y of t h e s y s t e m a n d r e -
mains u n c o n t r o l l a b l e u n d e r dynamic t i m e - v a r y i n g d e c e n t r a l i z e d c o n t r o l . C l e a r l y , t h e i n v e r s e is n o t
true ; i.e.
if t0=0 s a t i s f i e s
(3.5.5),
condition
(3.5.4)
is
not
ne-
c e s s a r i l y satisfied. The similarity with s t r u c t u r a l l y u n c o n t r o l l a b l e a n d u n o b s e r v a b l e m o d e s a p p e a r s clearly s i n c e , as we saw in C h a p t e r I, t h e y may a r i s e from t h e lack of r e a c h a b i l i t y or from t h e i r s p e c i a l location at t h e o r i g i n .
The c o n n e c t i v i t y condition ( 3 . 5 . 4 )
cor-
r e s p o n d s to t h e r e a c h a b i l i t y c o n d i t i o n s ( C o n d i t i o n s 1 a n d 2 of T h e o r e m s 1.6 a n d 1.7 in C h a p t e r I) rank
and
conditions
the
generic rank
( C o n d i t i o n s 3 and
condition
(3.5.5)
4 of T h e o r e m s
c o r r e s p o n d s to t h e
1.6 a n d
generic
1.7 in C h a p t e r
I).
Of
c o u r s e , in t h e case o f d e c e n t r a l i z e d c o n t r o l , we have only t h e c o n c e p t of f i x e d mode ( i n s t e a d of t h e two dual c o n c e p t s of u n c o n t r o l l a b l e a n d u n o b s e r v a b l e mode in c e n tralized control) peration
since the
of s e v e r a l
stations
c o n t r o l l a b i l i t y of a mode is a c h i e v e d t h r o u g h by
using
the
feedback
from some o u t p u t
the
coo-
stations
in
which t h e o b s e r v a b i l i t y c o n c e p t is a l r e a d y i n v o l v e d . Note t h a t Theorem 3.25 can b e g e n e r a l i z e d to a r b i t r a r i l y c o n s t r a i n e d c o n t r o l : in t h i s c a s e , 3.3, § 3.3.1).
t h e s e t s nc~ a n d ~
are
replaced by
the
sets I and J
(see Definition
122
3.5.3.b.
-
Graph-Theoretic
approach
Similarly to t h e c a s e of c e n t r a l i z e d c o n t r o l , t h e c o n d i t i o n s f o r s t r u c t u r a l c o n trollability
under
decentralized information s t r u c t u r e
theoretic framework.
Several characterizations exist,
can
he
derived
d e p e n d i n g on t h e
in a g r a p h graph
that
one a s s o c i a t e s to t h e s y s t e m . The one w h i c h is p r e s e n t e d f i r s t is t h e e x a c t g r a p h i c a l c o u n t e r p a r t of t h e a l g r e b r a i e c h a r a c t e r i z a t i o n g i v e n in P a r a g r a p h 3 . 5 . 3 a .
1 - U s i n g t h e g r a p h of t h e c l o s e d - l o o p s y s t e m Given t h e s y s t e m ( 3 . 2 . l ) , U = {u 1 . . . . . ur~
vertices and Y = { y l , . . . , y r t h a t ( u i , xj)
one a s s o c i a t e s a d i g r a p h
is the set of input v e r t i c e s , }
r = ( u U X u Y, E), w h e r e
X = {x 1 . . . . . x }
is t h e s e t of s t a t e
t h e s e t of o u t p u t v e r t i c e s . E i s t h e s e t of e d g e s s u c h
E if a n d only if bji~0 in B , ( x i, xj) ~ E i f a n d only if aji ¢0 in A and
(xi,Yj) ~ E if a n d only if cji~t0 in C. Note t h a t t h i s d i g r a p h is t h e same as t h e one d e f i n e d in P a r a g r a p h
1.3.1.b
( C h a p t e r I) for the s t u d y of s t r u c t u r a l c o n t r o l l a b i l i t y
a n d o b s e r v a b i l i t y in a g r a p h i c a l f r a m e w o r k . N e v e r t h e l e s s , in o u r p r e s e n t s t u d y ,
we
add a s e t of e d g e s EK from Y to U which r e p r e s e n t s t h e p a r t i c u l a r s t r u c t u r e of t h e control.
(Yl'Uj) g E K i f a n d only if kji¢0 in t h e
a s s o c i a t e d to t h e s y s t e m a n d t h e c o n t r o l s t r u c t u r e
f e e d b a c k m a t r i x K.
The
digraph
is t h e r e f o r e I~K= (U u X u Y , E u
EK) • In t h i s g r a p h i c a l f r a m e w o r k , t h e following g r a p h i c a l c h a r a c t e r i z a t i o n of s t r u c t u r a l l y f i x e d modes was p r o v i d e d i n d e p e n d e n t l y b y L i n n e m a n n (LIE-83) a n d b y Pichai e t al. (PIC-84)
:
Theorem 3.26.
The s y s t e m ( 3 . 2 . 1 )
the arbitrarily
s t r u c t u r a l l y c o n s t r a i n e d control
h a s no s t r u c t u r a l l y (3.3.4)
f i x e d modes w i t h r e s p e c t to if a n d only if b o t h of t h e
following two c o n d i t i o n s hold : i - e a c h s t a t e v e r t e x x k c X is i n v o l v e d in a s t r o n g c o m p o n e n t of FK which i n c l u d e s an e d g e from EK. ii - t h e r e e x i s t s a s e t of d i s j o i n t c y c l e s t . k = ( V k , E k ) , ( k = l , . . , , c ) that
in FK
•
c
Xc (i.e.,
u Vk k=l
t h e whole s t a t e v e r t i c e s s e t is s p a n n e d b y a d i s j o i n t u n i o n of c y c l e s ) .
such
123
Condition condition (ii)
(i)
corresponds
to t h e
to t h o s e s of t y p e
(ii).
structurally
Obviously,
fixed
condition
e q u i v a l e n t to c o n d i t i o n (i) i n T h e o r e m 3.25 a n d F i g u r e c o r r e s p o n d i n g to x 2 a r e
not
modes of
c o n t a i n e d in a s t r o n g
type
(i)
(i) in T h e o r e m
3.5 s h o w s t h a t
component including
and
3.26 is
the
states
feedback
e d g e s w h e n f e e d b a c k is allowed from Ya to Ua a n d from Y~3 and U 6. The e q u i v a l e n c e of c o n d i t i o n (ii) in Theorem 3.26 and c o n d i t i o n (ii) in Theorem 3.25 i s n o t so o b vious. The p r o o f can he f o u n d in ( P I C - 8 4 ) . Example 3 . 1 0 . C o n s i d e r t h e two following c a s e s a l r e a d y t r e a t e d in Example 3.9 : Case 1 :
l . . . . . m
=
0
l
o 2
i
I.._ . . . . .
0
,=EI
o
J- . . . . .
0
!
o
I
0
Bl:
|1. . . . .
~
I
52-
-I
o ]
T h i s s y s t e m a l r e a d y a p p e a r s in t h e form ( 3 . 5 . 4 )
with B a =
B1, BB = B2, C a =
C 1 and C~3 = C 2. So, c o n d i t i o n (i) of T h e o r e m 3.25 is s a t i s f i e d . T h e r e f o r e , ), 0--2 is a s t r u c t u r a l l y f i x e d mode of t y p e
( i ) . It is e a s y to v e r i f y t h a t condition (ii) of T h e o -
rem 3.25 d o e s n o t h o l d I i . e . ,
the s y s t e m has no s t r u c t u r a l l y
(ii).
f i x e d modes of t y p e
The same c o n c l u s i o n s can b e s t a t e d b y c o n s i d e r i n g t h e d i g r a p h a s s o c i a t e d to
this s y s t e m :
ul /
klJ
~
Yi
~2 Y2
w h e r e it a p p e a r s c l e a r l y t h a t t h e v e r t e x x 2 is n o t c o n t a i n e d in a s t r o n g c o m p o n e n t i n c l u d i n g a f e e d b a c k e d g e . H o w e v e r , t h e s t a t e v e r t i c e s s e t is s p a n n e d b y a d i s j o i n t union o f c y c l e s as it is s h o w n below :
124
(~)
Ul ~
Yl
@
¢)
Therefore, condition (i) of Theorem 3.26 is satisfied but not condition (ii). Case 2 : I
0 1 0
1 0 0
0 0 0
1
Cl= E 0
0
l
]
A=
]'I:ll
No permutation matrix can be found to put the system in the form (3.5.4) i i . e . , the system has no structurally fixed modes of type (i). Nevertheless, condition (ii) of Theorem 3.25 holds since :
gr
A
BI ] =2<3
C2
0
I
The digraph of this system is the following :
uI
Yl
Y2
125
We
find that condition
(ii) of Theorem
contains no disjoint union of cycles such
3.26 does not hold since the graph
that all the state vertices are involved.
Therefore, this system has a structurally fixed mode of type (ii) at the origin. 2-Using t h e g r a p h of the open-loop This
characterization
was
system
also p r o v i d e d
by
P i c h a i et al
(the
it was p r e s e n t e d
same
characterization)
before.
from t h e c o m p u t a t i o n a l p o i n t of v i e w , it is m u c h
It will a p p e a r c l e a r l y t h a t ,
but
(PIG-83)
a u t h o r s as t h o s e of t h e p r e c e d i n g
one y e a r
l e s s i n t e r e s t i n g t h a n t h e p r e c e d i n g o n e . I n d e e d , it c o n s i s t s of a t e s t t h a t h a s to b e a p p l i e d to all t h e 2S-2 c o m p l e m e n t a r y s u b s y s t e m s of t h e s y s t e m while t h e c h a r a c t e r i z a t i o n g i v e n b e f o r e is s t a t e d in t e r m s of t h e whole s y s t e m . s e n t s t h e i n t e r e s t of c h a r a c t e r i z i n g b o t h s t r u c t u r a l l y
Nevertheless,
fixed modes of t y p e
it p r e -
(i) a n d of
t y p e (ii) in a s i n g l e t e s t . T h e d i g r a p h a s s o c i a t e d to t h e s y s t e m ( 3 . 2 . 1 ) is t h e s a m e as in t h e p r e c e d i n g p a r a g r a p h
For a given d i g r a p h ,
:
r=(uu
described by the triple
(C,A,B)
x u Y, E ) .
t h e foIlowing s p e c i a l s u b g r a p h s
are first defined :
Definition 3 . 7 ( P I C - 8 3 a )
Input
Stem : A p a t h
from a n i n p u t
vertex
(the root)
to a s t a t e v e r t e x
(the
to a n o u t p u t v e r t e x
(the
tip), or a single i n p u t v e r t e x . O u t p u t Stem : A p a t h from a s t a t e v e r t e x
(the root)
t i p ) , or a s i n g l e o u t p u t v e r t e x . Input-Output
Stem : A p a t h from a n i n p u t v e r t e x to a n o u t p u t v e r t e x .
S t a t e Stem : A p a t h b e t w e e n two s t a t e v e r t i c e s , o r a s i n g l e s t a t e v e r t e x . Cycle : Already defined (see § 1.3.1b,
Chapter I).
I n p u t c a c t u s : An i n p u t s t e m w i t h at l e a s t o n e s t a t e v e r t e x . tip of t h e i n p u t
s t e m a r e also t h e r o o t a n d
The root and the
t h e tip of t h e i n p u t c a c t u s .
An i n p u t
c a c t u s c o n n e c t e d to a c y c l e from a n y p o i n t o t h e r t h a n t h e t i p is a l s o an i n p u t c a c tus. O u t p u t C a c t u s : Similar d e f i n i t i o n to a n i n p u t c a c t u s . C h a i n : A g r o u p of d i s j o i n t c y c l e s c o n n e c t e d to e a c h o t h e r in s e q u e n c e ,
or a
single cycle. L i n k ~ An i n p u t s t e m c o n n e c t e d to t h e f i r s t c y c l e of a c h a i n other than the tip),
(from a n y p o i n t
t h e l a s t c y c l e of w h i c h is c o n n e c t e d to an o u t p u t
any point other than the root).
These special subgraphs
a r e i l l u s t r a t e d i n F i g u r e 3.6 :
stem
(from
126
(I) input stem
*--~---e---D,--*---~--O (2) output stem
(3) input=output stem
(4) state stem
© (5) cycle
(7) output cactus
(6) input cactus
(8) chain
(9) Link F i g u r e 3.6
A g e n e r a l i z e d c a c t u s is t h e n d e f i n e d as follows Definition
3.8
(PIC-83a).
Each
of t h e
following d i g r a p h s
is
called
a
generalized
cactus : - Disjoint u n i o n of one or more i n p u t - o u t p u t
s t e m s p l u s t h e same n u m b e r of
s t a t e s t e m s p l u s some (or n o n e ) c y c l e s , i n p u t s t e m s , o u t p u t s t e m s . -Disjoint
u n i o n o f a link with some
(or n o n e )
cycles, input
stems,
output
stems. - Disjoint u n i o n of i n p u t cacti and o u t p u t c a c t i . C o n s i d e r t h a t s y s t e m ( 3 . 2 . 1 ) is c o n t r o l l e d b y an a r b i t r a r i l y c o n s t r a i n e d c o n t r o l in
the
form
(3.3.4).
The
complementary
subsystems
( C j , A , B I)
r e s p e c t to ( 3 . 3 . 4 ) were d e f i n e d in Definition 3.3 ( P a r a g r a p h 3 . 3 . 1 ) .
of
(3.2.1)
with
127
Pichai e t al. (PIC-83) s t a t e d t h e following c h a r a c t e r i z a t i o n of s t r u c t u r a l l y f i x e d modes : Theorem 3.27.
The s y s t e m ( 3 . 2 . 1 )
the c o n t r o l law ( 3 . 3 . 4 )
h a s no s t r u c t u r a l l y
f i x e d modes with r e s p e c t to
if a n d only if e a c h d i g r a p h a s s o c i a t e d with a c o m p l e m e n t a r y
s y s t e m is s p a n n e d b y a g e n e r a l i z e d c a c t u s . Pichai e t aI.
(PIC-83a)
p r o v i d e d an algorithm to c h e c k w h e t h e r a d i g r a p h is
s p a n n e d b y a g e n e r a l i z e d c a c t u s , w h i c h i n v o l v e s only b i n a r y c o m p u t a t i o n s . T h e t e s t for t h e e x i s t e n c e of s t r u c t u r a l l y f i x e d modes r e q u i r e s to a p p l y t h i s algorithm to each "complementary s u b g r a p h " ,
i.e.
2S-2 times. This is d u e to t h e fact t h a t t h e s t r u c -
t u r e of t h e c o n t r o l is n o t i n v o l v e d in t h e g r a p h a s s o c i a t e d with t h e trarily
to t h e
case of t h e p r e c e d i n g
characterization),
system (con-
Consequently,
this charac-
t e r i z a t i o n r e q u i r e s an e n o r m o u s c o m p u t a t i o n a l t a s k .
3-Using t h e g e n e r i c r a n k of t h e p r o d u c t of s e v e r a l r e a l m a t r i c e s Recently,
Papadimitriou and
Tsitsiklis
(PAP-84) p r o v i d e d an i n t e r e s t i n g g r a -
phical r e s u l t to e v a l u a t e t h e g e n e r i c r a n k of t h e p r o d u c t of s e v e r a l r e a l m a t r i c e s . Its application to t h e d e t e r m i n a t i o n of s t r u c t u r a l l y f i x e d modes of t y p e
(ii) l e a d s to a
nice c o m p u t a t i o n a l a l g o r i t h m . Consider (i=l, . . . . k ) ,
the
sequence
of s t r u c t u r e d
matrices
(see
§ 1.3,
Chapter
I),
Mi,
a s s o c i a t e d to t h e s e q u e n c e of r e a l m a t r i c e s Mi & RPiXqi. We d e f i n e t h e
g r a p h G=(V,E) as follows : V = { v i : ( i = l . . . . . k ) , ( j = l . . . . . pi ) ; V~+l:
(j=l . . . . . qk+l)}
is a s e t of v e r t i c e s .
One v e r t e x is a s s o c i a t e d to e v e r y row of e v e r y matrix Mi, ( i = l , . . . , k ) .
The l a s t q k + l
v e r t i c e s a r e a s s o c i a t e d to t h e columns of t h e last m a t r i x Mk of t h e s e q u e n c e . T h e r e is an e d g e from t h e v e r t e x vlP to t h e v e r t e x viq+l if t h e ( p , q ) t h e n t r y of t h e matrix M. is n o n z e r o . 1
An i n f o r m a t i o n p a t h is d e f i n e d as a p a t h from a v e r t e x with s u b s c r i p t 1 to one with s u b s c r i p t k + l .
Two i n f o r m a t i o n p a t h s a r e s a i d to b e i n d e p e n d e n t if t h e y a r e
vertex-disjoint. T h e n , we h a v e t h e following r e s u l t : Theorem 3 . 2 7 b ( P A P - 8 4 ) . information p a t h s in G.
k gr[i~l
MiJ is e q u a l to t h e maximum n u m b e r of i n d e p e n d e n t
128
In o r d e r to a p p l y t h i s r e s u l t to t h e c h a r a c t e r i z a t i o n of s t r u c t u r a l l y f i x e d m o d e s of t y p e
(ii),
note that condition
(ii) in T h e o r e m 3.25 is e q u i v a l e n t to g r
n , w h e r e A, B, C a r e t h e s t r u c t u r e d
m a t r i c e s of s y s t e m ( 3 . 2 . 1 )
red matrix specifying the feedback information pattern.
(A+BKC) <
and K the structu-
Note m o r e o v e r t h a t (A+BKC)
can be r e w r i t t e n a s t h e p r o d u c t of t h r e e m a t r i c e s t
(A+BKC) with
:
= M I . M 2 . M 3
M 1 =
[I
B]
0
K
M2 =
I denotes the identity structured
173.5.6)
m a t r i x a n d 0 t h e n u l l m a t r i x of a p p r o p r i a t e d i m e n -
sion s.
T h e following c h a r a c t e r i z a t i o n of s t r u c t u r a l l y f i x e d m o d e s of t y p e (ii) r e s u l t s : T h e o r e m 3.28 with r e s p e c t
(PAP-84).
System (3.2.1)
to t h e f e e d b a c k p a t t e r n
information paths
in t h e
graph
h a s no s t r u c t u r a l l y specified by
associated
to
the
f i x e d m o d e s of t y p e
sequence
of s t r u c t u r e d
MI,M2,M 3 d e f i n e d in ( 3 . 5 . 6 ) is e q u a l to n . Example 3.11.
C o n s i d e r a g a i n t h e s a m e s y s t e m a s in t h e p r e c e d i n g e x a m p l e s :
0
1
0
1
0
0
0
0
0
=to
o
1]
0
0]
A =
C1
c211 and
K[kl0
BI=
(ii)
K i f a n d o n l y if t h e n u m b e r of
B2=
[°1 0
1
matrices
129
The s t r u c t u r e d matrix corresponding to
I
O X X
X 0 0
A+BKC is :
X 1 0 0
and can be written as the product M1.M2.M3 where :
[
o
X
L
0
0
0
0
0
0
0 0
X
0 ]
xoll
MI=0X
0 0 0 X
0
0
0
0
0 0
O0
LO0 0 0
0 0
X 0
M2~O0
J
0
x
0
0 0 X
x o
M3
L°xo
The graph associated with the sequence of matrices M1,M2,M3 is the following : l
[
v2
v3
2v
2
v
v# 3
V
l
~
5
__-- P~ v 3 ~ 5
--
v4
where there are only pairs of independent information paths : (P1,P2),
(P1,P3),
(P2,P4), (P3,P4). Therefore, the system has a s t r u c t u r a l l y fixed mode of type (li) at the origin. The i n t e r e s t of this characterization compared to the one given by condition (ii) in Theorem 3.26 is that the available algorithms to determine the vertex-disjoint information paths of a graph are more efficient than those to determine the v e r t e x disjoint cycles. Indeed, it is proved in (PAP-84) that the test can be carried out in time 0 (n 5/2).
130
3 . 5 . 4 . - Evaluation of s t r u c t u r a l l y f i x e d modes b y calculation o f t h e s t r u c t u r a l s e n s i t i v i t y of t h e modes o f t h e s y s t e m In P a r a g r a p h 2.4.2
( C h a p t e r I I ) , t h e f i x e d modes w e r e c h a r a c t e r i z e d u s i n g t h e
f a c t t h a t s u c h modes a r e t h e modes of t h e c l o s e d - l o o p s y s t e m which are i n s e n s i b l e to v a r i a t i o n s of t h e e l e m e n t s of t h e f e e d b a c k m a t r i x . A l t h o u g h t h i s c o n d i t i o n is v e r i f i e d e i t h e r by s t r u c t u r a l l y o r n o n s t r u c t u r a l l y f i x e d m o d e s , t h i s a p p r o a c h can b e u s e d to c h a r a c t e r i z e s t r u c t u r a l l y f i x e d modes if one a d d s t h e following s u p p l e m e n t a r y c o n d i tions
:
1 - S t r u c t u r a l l y fixed modes of t y p e (i) a r e only s e n s i b l e to v a r i a t i o n s of some p a r a m e t e r s of t h e s y s t e m : t h e s e p a r a m e t e r s a r e t h o s e of t h e matrix A22 d e f i n e d in ( 3 . 5 . 4 ) in Theorem 3.25. 2-Structurally
f i x e d modes
of t y p e
(ii)
are
i n s e n s i b l e to v a r i a t i o n s
of any
p a r a m e t e r of t h e s y s t e m . T h e s e c o n d i t i o n s r e f e r to t h e f a c t t h a t , t h o u g h t h e e x i s t e n c e of a s t r u c t u r a l l y f i x e d mode is i n s e n s i b l e to v a r i a t i o n s of t h e p a r a m e t e r s of t h e s y s t e m , t h e v a l u e of a structurally
f i x e d mode of t y p e
(i) is d e f i n e d b y t h e e i g e n v a l u e s of A22 and t h e
location of a s t r u c t u r a l l y fixed mode of t y p e (ii) is always at t h e o r i g i n . This s i t u a tion was a l r e a d y p o i n t e d out in Example 3.9. C o n s i d e r an
arbitrary
real
matrix
D of dimension n x n .
The
gradient
simple e i g e n v a l u e Xr of D with r e s p e c t to t h e e l e m e n t s o f D is g i v e n b y ( 2 . 4 . 7 ) § 2 . 4 . 2 , C h a p t e r II)
dXr d(dij)
where
wr
and
vr
of a (see
:
-W )
r
are
dD d-~
(2.~.7)
Vr
t h e left
and
right
e i g e n v e c t o r s o f D c o r r e s p o n d i n g to h r .
Assume t h a t t h e e l e m e n t s d.. a r e f u n c t i o n s of q p a r a m e t e r s and ~let P be one of t h e m . *j T h e n , we h a v e • 8D 8P ij
~..(P) 0
li, l. if d.. = 0 q
with
5ij(P) =
d..(P) q
(3,5,7)
131 w h e r e I t a n d L a r e t h e i t h column a n d j t h r o w o f t h e t i v e l y . So, ( 2 . 4 . 7 )
becomes '
i f d "": 0
0
U
i f d m": 0
q
w h e r e w. a n d v. a r e t h e i t h a n d j t h e n t r i e s j
sider now the
q parameters
respec-
5ij (P) w..v.t)
"
jij
matrix
{
¢$ (P) W'r "ll'l~v) r LaP
nxn identity
(PI,...,Pq),
of w
r
and v
the gradients
r
respectively.
I f we c o n -
of an eigenvalue
of D with
r e s p e c t to e a c h o f t h e m a r e •
[
: { 6i)(Pt) wi vj
a~, r l
8Pt. ] ij
0
if
i,j=l ..... n
d..=O U
(3.5.8)
t=l,...,q
S i n c e a t l e a s t o n e e l e m e n t dij i s f u n c t i o n o f e a c h p a r a m e t e r the derivatives
~j{Pt ) cannot be simultaneously
the variations of Pt if and only if wi.v.=0, ] following lemma : Lemma 3 . 1 .
The
necessary
real m a t r i x
D ~
Rn x n
and
sufficient
to b e i n s e n s i b l e
zero.
(i,j=l, .... n).
condition to t h e
Pt'
Therefore,
(t=l,...,q),
all
Xr i s i n s e n s i b l e
to
T h i s r e s u l t i s s t a t e d in t h e
for a simple eigenvalue k r of a
variations
of the
elements
o f D is
that : w..v.=0 1 l
(i,j=l
. . . . .
n)
w h e r e w., a n d v.] a r e t h e i t h a n d j t h e n t r i e s c o r r e s p o n d i n g to X , . D e f i n i t i o n 3.9
(TAR-84).
The structural
of the left and right eigenvectors
s e n s i t i v i t y m a t r i x SS
r
of D
of a simple eigenvalue
X r is d e f i n e d a s follows : SS r = ( s s i j ) i=l ..... n j=l,...,n with • ssij =
[ 1
i f w i . v ] t6 0
l
if d.. = 0 o r w . . v . = 0 11 i l
0
F r o m D e f i n i t i o n 3.9 a n d t h e a b o v e d i s c u s s i o n , structurally
f i x e d m o d e s follows :
(3.5.9)
t h e following c h a r a c t e r i z a t i o n
of
132
Theorem 3.29 ( T A R - 8 4 b ) .
Consider the system (3.2.1t
a n d an a r b i t r a r y c o n s t r a i n e d
f e e d b a c k p a t t e r n s p e c i f i e d b y K . A simple e i g e n v a l u e ~r o f t h e c l o s e d - l o o p f e e d b a c k m a t r i x (A+BKC) is a s t r u c t u r a l l y f i x e d mode of t h e s y s t e m if a n d only if one of t h e two following c o n d i t i o n s h o l d s : i - T h e s t r u c t u r a l s e n s i t i v i t y m a t r i x SS r
(with r e s p e c t to (A+BKC)) of ~r is
e q u a l to one of t h e s t r u c t u r a l s e n s i t i v i t y m a t r i c e s SS r of
{ ~l,...,~n
}
is the
s e t of e i g e n v a l u e s of D'
and
Xr' ( r = l , . . . , n ) ,
D' is s t r u c t u r a l l y
where
e q u i v a l e n t to
(A+BKC). ii - The s t r u c t u r a l s e n s i t i v i t y m a t r i x SS
r
(with r e s p e c t t o t (A+BKC)) of kr i s
identically zero. From t h e r e m a r k s
s t a t e d at
t h e b e g i n i n g of t h e p a r a g r a p h ,
it is clear that
c o n d i t i o n (it c h a r a c t e r i z e s t h e s t r u c t u r a l l y f i x e d modes o f t y p e (it a n d c o n d i t i o n (ii) t h o s e of t y p e ( i i ) . The f i x e d modes of s y s t e m ( 3 . 2 . 1 )
(with d i s t i n c t modest
with r e s p e c t to an
a r b i t r a r y f e e d b a c k p a t t e r n s p e c i f i e d b y K can be d e t e r m i n e d with d i s t i n c t i o n of t h e i r d i f f e r e n t t y p e s b y t h e following algorithm : Al$orith.m 3.1 (TAR-84) 1 - C h o o s e a n u m e r i c a l v a l u e for t h e n o n z e r o e n t r i e s of t h e f e e d b a c k m a t r i x K s u c h t h a t t h e e i g e n v a l u e s of (A+BKC) a r e d i s t i n c t . 2 - F o r all kr c a ( A + B K C ) , e v a l u a t e t h e s e n s i t i v i t y m a t r i c e s SK r ( s e e Definition 2.8, C h a p t e r I I ) . If SK r =0, t h e n ~ r is a f i x e d mode ; i . e . X r ~ h . 3-If
A = ~, STOP. T h e s y s t e m h a s no f i x e d m o d e s .
4 - F o r all ~
c A, c a l c u l a t e t h e
structural
sensitivity matrix
SS r .
If SSr=0,
t h e n kr is a s t r u c t u r a l l y f i x e d mode of t y p e (iit ; i . e . ~r ~ A $2"
s-fi
A-
2
If h 1 --At, go to 10. 5 - C h o o s e a m a t r i x D* s t r u c t u r a l l y e q u i v a l e n t to
(A+BKC)
and s u c h t h a t i t s
eigenvalues are distinct. ? - E v a l u a t e t h e s e t of f i x e d modes A~ of t h e new s y s t e m b y r e p l a c i n g (A+BKC) b y D' in s t e p 2. If
A* = ~ ,
ANS = A ] . G o to 10.
8 - F o r all ~ * q ~ h*, e v a l u a t e t h e s t r u c t u r a l s e n s i t i v i t y m a t r i c e s S S q . ?-For all~rEh
1, compare SS r
t h e r e e x i s t s one S S ' q e q u a l to SS r , (i) ; i . e . ,
~r • AS1"
with all t h e
SS*q d e t e r m i n a t e d at s t e p
t h e n )'r is a s t r u c t u r a l l y
8.
If
fixed mode of t y p e
133
10-STOP.
A : s e t of fixed modes. : set of s t r u c t u r a l l y fixed modes of t y p e (i). : set of s t r u c t u r a U y fixed modes of t y p e (ii). • set of non s t r u c t u r a l l y fixed modes.
AS1 AS2 ANS
Example 3.12. C o n s i d e r the following system :
Ii A=
03
00
00
01 ]
O 0 0
1 0 0
1 2 0
0 0 2
c 1 = (o
o
o
1
o)
Cz = (1
o
o
o
o)
c 3 = (o
1
1
o
o)
=
B2=
B3 =
i!oolj2
For K = d i a g . ( l , 2 , 1 ) ,
A+BKG
I] I]
gI =
4 0 0 0
we have :
1 1 0 0
O 1 2 0
0
The following r e s u l t s are o b t a i n e d : eigenvalues of (A+BKG)
SK
SS
1 ' _1
0_
0
0
0
0
0
0
0
0
0
0
0
0 0
1 0
0
0
0
0
0
0
0
0
0
0
134
-
-0.48 I
-0.24
-1
0.49 0.24 0
~
10-15
0 . 5 2
10-16
-0.39
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0 0 0 0 1
The fixed modes of the system
are therefore
v a l e n t m a t r i x to ( A + B K G ) is c h o s e n
:
I O 0 0 1.6 1.05
The eigenvalues tivity
matrix
of
0.65
0 l.Q 0 0
0 O.Q 0.6.5 0
0.2 0 0.7 1.9
0.25] 0 0 0
0
0
0
2.5
o f D* a r e is f o u n d
: {1.4, to
be
0.65)
The structural
0 0 0 0
zero.
A* -- {0.65}.
sensitivity
0 1 0 0
matrix of 0.65 is :
0 0 0 0
w h i c h i s t h e s a m e a s w h i c h o f 1. We o b t a i n t h e f o l l o w i n g r e s u l t s
:
h ={1,2}.
-0.245,
identically
D°O°I
modes of the new system is
:
2.62,
A structurally
2.024},
Therefore,
equi-
Only the sensithe
set
of fixed
135 = ( i , 2}
A
ANS =
~sl
(2 }
= { 1}
3.5.5. - Comments The
above
paragraph
was
concerned
with
the
concept
m o d e s . S t r u c t u r a l l y f i x e d m o d e s a r e r e l a t e d to t h e p r o p e r t y decentralized information structure
of s t r u c t u r a l l y
fixed
of c o n t r o l l a b i l i t y u n d e r
for which several definitions have been provided.
T h e d i f f e r e n c e s b e t w e e n t h e m h a v e b e e n c l a r i f i e d a n d r e l a t e d to t h e e x i s t e n c e of two t y p e s of s t r u c t u r a l l y f i x e d m o d e s .
S t r u c t u r a l l y f i x e d m o d e s of t y p e
(i) a r i s e f r o m t h e l a c k of c o n n e c t i v i t y of t h e
s y s t e m . T h e c h a r a c t e r i z a t i o n g i v e n b y S e z e r a n d Siljak t h e g e n e r a l i z a t i o n , in a s t r u c t u r a l ment (AND-81a)
(see § 3.3.1)
gated stations such that
(SEZ-81a)
f r a m e w o r k , of t h e r e s u l t s
( s e e § 3 . 5 . 3 a ) is
of A n d e r s o n
and Cle-
: t h e r e e x i s t s a p a r t i t i o n o f t h e s y s t e m in two a g g r e -
structurally
f i x e d modes of t y p e
c o n t r o l l a b l e b y o n e of t h e s t a t i o n s a n d s t r u c t u r a l l y
(i)
are
structurally
un-
unobservable by the other one.
It h a s b e e n p o i n t e d o u t t h a t t h e s e f i x e d m o d e s a r e n o t c o n t r o l l a b l e u n d e r
decentra-
lized i n f o r m a t i o n p a t t e r n e v e n if t h e time i n v a r i a n c e of t h e c o n t r o l l e r is r e m o v e d . Structurally origin.
f i x e d m o d e s of t y p e
(ii) a r i s e f r o m t h e i r
T h e y c a n be m a d e c o n t r o l l a b l e u n d e r
t i m e - v a r y i n g c o n t r o l l e r is allowed
special location at the
decentralized information pattern
( s i m i l a r l y to n o n
structurally
fixed modes).
if a The
s p e c i a l s i t u a t i o n of a f i x e d mode at t h e o r i g i n h a s b e e n c l a r i f i e d a n d c a n b e s u m m a rized a s f o l l o w s . G i v e n a s y s t e m w i t h a simple f i x e d mode a t t h e
origin,
two c a s e s m u s t b e
considered : Case 1 :
T h e t r a n s f e r f u n c t i o n m a t r i x c a n b e p u t in a b l o c k - t r i a n g u l a r form :
W(p)=
I We,c, (p) WaB (P)
o W88
] (p)
136 w h e r e t h e c h a r a c t e r i s t i c polynomial of Was (p) h a s a pole at t h e o r i g i n e . 1- T h e
z e r o b l o c k is d u e to t h e s p e c i a l s t r u c t u r e
of t h e s y s t e m : l 0=0 is a
s t r u c t u r a l l y f i x e d mode of t y p e ( i ) . 2- T h e z e r o b l o c k a r i s e s from a c a n c e l l a t i o n d u e to s p e c i a l v a l u e s of t h e s y s tem p a r a m e t e r s
Case 2
: ~ 0=0 is a n o n s t r u c t u r a l l y f i x e d mode.
:
The transfer
f u n c t i o n m a t r i x h a s no p a r t i c u l a r form ( t h e g r a p h of t h e s y s t e m
is s t r o n g l y c o n n e c t e d )
W(p) =
:
(P) Wag (P)
WSa(P) t WIBB(P)
I Waa
t h e c h a r a c t e r i s t i c polynomial of W Ba ( p ) h a s a pole a t p=0 a n d e v e r y e n t r y of Wcts(p) h a s a zero a t ~0=0. 1- One o r more e n t r i e s of Wa8 (p) h a v e a z e r o at p=0 b e c a u s e of p a r a m e t e r c a n c e l l a t i o n s ( a p + b - c with b=c for example)
: ~0=0 i s a n o n s t r u c t u r a l l y f i x e d mode.
2- T h e e n t r i e s of Was (p) h a v e a zero a t )~0=0 b e f o r e a n y c a n c e l l a t i o n : X0=0 is a structurally
f i x e d mode of t y p e
(ii).
T h i s f i x e d mode is i n d e p e n d e n t of t h e p a r a -
meter values but arises, as non structurally
fixed modes,
from a p o l e - z e r o c a n c e l l a -
t i o n of t h e i n t e r c o n n e c t i o n b l o c k s W B (p) a n d WBa ( p ) . Several
characterizations
of s t r u c t u r a l l y
fixed
modes
have
been
presented,
s p e c i a l l y in a g r a p h i c a l f r a m e w o r k s i n c e g r a p h s a r e v e r y a d e q u a t e f o r t h e s t u d y of structural properties. account
arbitrary
The graph-theoretic
structural
constraints
a p p r o a c h is more c o n v e n i e n t to t a k e into on t h e c o n t r o l ,
b u t o n l y i n t h e case
for
w h i c h t h e g r a p h is a s s o c i a t e d to t h e c l o s e d - l o o p s y s t e m . From t h e c o m p u t a t i o n a l p o i n t of v i e w , t h e a l g e b r a i c c h a r a c t e r i z a t i o n i s n o t v e r y convenient since it requires,
for structurally
f i x e d modes
of t y p e
(i),
to
find a
p e r m u t a t i o n m a t r i x s u c h t h a t t h e s y s t e m is p u t in t h e form ( 3 . 5 . 4 ) a n d , f o r s t r u c t u r a l l y f i x e d m o d e s of t y p e
( i i ) , to t e s t all t h e c o m p l e m e n t a r y s u b s y s t e m s .
t h e e x i s t e n c e of s t r u c t u r a l l y
f i x e d modes of t y p e
However,
(i) c a n e f f i c i e n t l y b e t e s t e d u s i n g
t h e g r a p h i c a l c o n d i t i o n g i v e n in T h e o r e m 3.26 : f i r s t , f i n d t h e s t r o n g c o m p o n e n t s of the graph state
FK,
vertices.
then check whether
t h e r e is a s t r o n g c o m p o n e n t c o m p o s e d only b y
T h i s can b e d o n e i n time O ( n 2)
(PAP-g4).
For structurally
fixed
modes of t y p e (fi), t h e c h a r a c t e r i z a t i o n u s i n g t h e g e n e r i c r a n k of s e v e r a l r e a l m a t r i -
137 ces seems
O(n 5/2)
to be
the
most
convenient
since the
test
can
be
carried
out in time
(PAP-84).
Finally, a c h a r a c t e r i z a t i o n in t e r m s of s t r u c t u r a l s e n s i t i v i t y h a s b e e n p r o v i d e d and t h e c o r r e s p o n d i n g algorithm for t h e d e t e r m i n a t i o n of f i x e d modes with d i s t i n c t i o n of t h e i r t y p e s h a s b e e n d e r i v e d . It is p a r t i c u l a r l y i n t e r e s t i n g f o r s t r u c t u r a n y f i x e d modes of t y p e
(i)
s i n c e it d o e s n o t only d e t e c t t h e i r e x i s t e n c e b u t
it d e t e r m i n e s
their value.
3.6. - G R A P H - T H E O R E T I C
CHARACTERIZATION
OF FIXED
MODES
3 . 6 . 1 . - Prel~min~'ies T h e g r a p h - t h e o r e t i c c h a r a c t e r i z a t i o n s r e f e r i n g to s t r u c t u r a l l y f i x e d m o d e s h a v e already b e e n
presented
in t h e
last
paragraph.
Graph-theoretic methods are
very
efficient f o r t h e a n a l y s i s of s t r u c t u r a l p r o p e r t i e s like t h a t s t r u c t u r a l c o n t r o l l a b i l i t y , structural observability and s t r u c t u r a l l y fixed modes. The a d v a n t a g e s of a g r a p h theoretic a p p r o a c h ,
s p e c i a l l y w h e n we h a v e to deal with l a r g e scale s y s t e m s ,
are
n u m e r o u s . I n d e e d , it allows t h e a p p l i c a t i o n of all t h e c o n c e p t s of g r a p h - t h e o r y a n d leads to c h a r a c t e r i z a t i o n p r o c e d u r e s w h i c h can b e e a s i l y i m p l e m e n t e d b y u s i n g existing set arbitrary
of a l g o r i t h m s .
control
structures.
Morever, It
is
it is
specially convenient when
now i n t e r e s t i n g
to
note
that
the
d e a l i n g with
graph-theoretic
methods can also be u s e d in t h e case for w h i c h t h e p r o p e r t i e s to a n a l y s e a r e n o t s t r u c t u r a l b u t p a r a m e t e r v a l u e d e p e n d e n t . The a n a l y s i s can b e c a r r i e d o u t b y a s s o ciating a w e i g h t to e v e r y e d g e of t h e g r a p h ; i . e . ,
a w e i g h t e d d i r e c t e d g r a p h is
a s s o c i a t e d to t h e s y s t e m . Two
general graph-theoretic
the distinction between
characterizations of fixed m o d e s exist, which allow
structurally a n d non structurally fixed modes.
is carried out in the frequency-domain ted to the transfer
~ i.e., a weighted
function matrix of the system.
study in the time-domain
The
; in this case, the weighted
The
directed graph second
first one is associa-
one results
from
a
directed graph is associated
with the state space representation of the system.
3.6.2. - Frequency-domain g r a p h - t h e o r e t i c characterization C o n s i d e r a Hnear t i m e - i n v a r i a n t s y s t e m with simple modes r e p r e s e n t e d b y i t s t r a n s f e r f u n c t i o n m a t r i x as in ( 3 . 4 . 1 )
:
138
u(p) = w(p) x(p) U ~ Rm with :
Y ~ Rr m
Yj(P) = i=l ~
wj'i(P) ui(p)
(j=l . . . . . r )
Wj pi(p) =cj (pI-A) - l b i The c o n t r o l s t r u c t u r e is d e f i n e d b y t h e following s e t of p a i r s : (j)i) ~ S
if
k . . # 0 in K 1,J
(3.6.11
w h e r e K is t h e o u t p u t f e e d b a c k m a t r i x . The g r a p h a s s o c i a t e d to (3.4.11 is D S = ( V s , L S) a n d it is d e f i n e d as follows :
V S i s a s e t of v e r t i c e s s u c h t h a t : V S = V1S u V2S V1S --- {i ] ( j ) i ) E S f o r some j} V2S = {j / ( j - m , i ) ~
S for some i}
L S i s a s e t of e d g e s s u c h t h a t : L S = L1SU L2S L1S = { ( i , j ) / (i,j) ~ V1S x V2S, Wj_m,i(p) # 0} L2S = { ( i , j ) / ( i - m , j ) ~ S t E v e r y v e r t e x r e p r e s e n t s e i t h e r an i n p u t or an o u t p u t of t h e s y s t e m w h i c h is i n v o l v e d at l e a s t in a f e e d b a c k loop a n d e v e r y e d g e r e p r e s e n t s
either a nonzero
t r a n s f e r function or a permitted feedback llnk. A t r a n s m i t t a n c e t i , j ( p ) is a s s o c i a t e d to e v e r y e d g e (i)j) ~ L S :
t i , j ( p ) = Wj_m)i(p)
f o r ( i , j ) E LIS
ti,j(p) = 1
for ( i , j ) ~ L2S
The t r a n s m i t t a n c e T p ( p ) of a n y p a t h P in D S i s d e f i n e d as t h e p r o d u c t of t h e t r a n s m i t t a n c e s a s s o c i a t e d with t h e e d g e s composing P . Using t h e a b o v e d e f i n i t i o n s ) Locatelli e t al.
(LOC-77)
give t h e following c h a -
r a c t e r i z a t i o n of f i x e d modes : Theorem 3.30. A pole X0 o f t h e s y s t e m ( 3 . 4 . 1 ) feedback structure
d e f i n e d b y S in ( 3 . 6 . 1 )
t r a n s m i t t a n c e a s s o c i a t e d with a c y c l e o f D S.
is a f i x e d mode with r e s p e c t to t h e
if a n d o n l y if X0 is n o t a pole of a n y
139
This
characterization
is
the
graph-theoretic
transcription
of
the
algebraic
c h a r a c t e r i s a t l o n o f fixed modes in t e r m of t r a n s m i s s i o n z e r o s p r e s e n t e d i n P a r a g r a p h 3.2. I n d e e d ,
a cycle of D S d e f i n e s a s u b s y s t e m
c o r r e s p o n d i n g s u b m a t r i x i n K' is n o n s i n g u l a r .
W! (p) (see § 3.2) for w h i c h t h e ] T h e s e t of r o w s s e l e c t e d in W(p) is
g i v e n b y t h e o u t p u t v e r t i c e s i n v o l v e d i n t h e cycle a n d t h e s e t of columns b y t h e s e t of i n p u t v e r t i c e s i n v o l v e d in t h e cycle.
T h e t r a n s m i t t a n c e a s s o c i a t e d w i t h t h e cycle
is t h u s e q u a l to t h e m i n o r W!(p). I t is c l e a r t h a t if t h e m i n o r W!(p) h a s no pole a t J J t h e n ¢ ( p ) . W { ( p ) h a s a zero at X0 a n d l 0 i s a t r a n s m i s s i o n zero of t h e c o n s i d e r e d ~0' J subsystem. Nevertheless, graph-theoretic
we h a v e to p o i n t o u t a f u n d a m e n t a l d i f f e r e n c e w h i c h m a k e s t h i s
characterization less powerfull than the algebraic one.
cycle a s s o c i a t e d with a s u b s y s t e m f o r w h i c h W~(p) h a s a t r i a n g u l a r c o r r e s p o n d s to a n o n s i n g u l a r s u b m a t r i x of K'.
T h e r e is n o
form e v e n if it
T h i s is w h y t h i s c h a r a c t e r i z a t i o n is
only v a l i d f o r t h e c a s e of s y s t e m s w i t h simple p o l e s .
Indeed,
consider the subsys-
tem :
W!(p)_IWi'i(P)0 1 }
LWi,j(p)
Wj,j(p)
and a s s u m e t h a t it c o r r e s p o n d s to a n o n s i n g u l a r s u b m a t r i x in K'. T h e n , it i s c l e a r t h a t Wi,i(p)
a n d Wj,j(p)
correspond
also to n o n s i n g u l a r s u b m a t r i c e s i n K'.
For a
s y s t e m w i t h simple p o l e s , two s i t u a t i o n s can a r i s e : * ~0 i s n e i t h e r
a pole of Wi,i(p)
n o r of Wj,j(p)
: consequently,
~0 is n o t a
pole of W~(p). * XO i s a pole of Wi,i(p) or of Wj,j(p) b u t n o t of b o t h : c o n s e q u e n t l y , ~ 0 is a pole of W~(p). Therefore,
all t h e i n f o r m a t i o n a b o u t WI(p) is c o n t a i n e d in Wi,i(p) a n d Wj,j(p)
and t h e s u b s y s t e m W~.(p) does n o t n e e d to b e t a k e n i n t o a c c o u n t . C o n s i d e r now t h a t ~0 i s n o t a simple pole b u t a pole of o r d e r t h a t it is a pole of o r d e r q' for W i , i ( p ) a n d of o r d e r q - q ' ,
~(h0 ) , Wi,i(¢0) = 0
and
q and assume
for W j , j ( p ) . T h e n :
qS(10). Wj,j{~ 0) = 0
i . e . , )~0 is a t r a n s m i s s i o n z e r o of t h e s u b s y s t e m s Wi,i(p) a n d W j , j ( p ) . B u t :
140
¢,(~o) wi< p)
$
o
a n d X0 i s n o t a t r a n s m i s s i o n z e r o o f W~(p). C o n s e q u e n t l y , X0 i s n o t a f i x e d mode. In t h i s c a s e , we n e e d to c o n s i d e r t h e s y s t e m wij(p) to d e r i v e t h e c o n c l u s i o n . Nevertheless, this characterization remains interesting.
In p a r t i c u l a r ,
it p r e -
s e n t s t h e a d v a n t a g e to t r e a t t h e c a s e s of an a r b i t r a r y c o n t r o l s t r u c t u r e v e r y e a s i l y . M o r e o v e r , it allows some d i s t i n c t i o n b e t w e e n t h e d i f f e r e n t t y p e s of f i x e d m o d e s . X 0 is a s t r u c t u r a l l y f i x e d mode of t y p e (i) if t h e r e is no e d g e w h o s e t r a n s m i t t a n c e h a s XO as a pole i n v o l v e d in t h e composition of a c y c l e . ~0 is a n o n s t r u c t u r a l l y f i x e d mode o r a s t r u c t u r a l l y f i x e d mode of t y p e (ii) i f at l e a s t o n e e d g e w h o s e t r a n s m i t t a n c e has ~0 as a pole c o m p o s e s one c y c l e a n d if ~0 is n o t a pole of t h e t r a n s m i t t a n c e of t h i s c y c l e d u e to a p o l e - z e r o c a n c e l l a t i o n . Note t h a t t h e d i s t i n c t i o n b e t w e e n n o n s t r u c t u r a l l y f i x e d m o d e s a n d s t r u c t u r a l l y f i x e d modes o f t y p e the
cancellations within the t r a n s f e r
(ii) is n o t p o s s i b l e s i n c e
f u n c t i o n s t h e m s e l v e s do not a p p e a r ,
b u t the
q u e s t i o n only a r i s e s f o r t h e c a s e of f i x e d modes at t h e o r i g i n . Example 3.13. C o n s i d e r t h e following s y s t e m with simple p o l e s : 3 p-2
W(p) :
0
_p+l p(p-2)
i
1
1
p-2
p+2
p(p-2)
l
[
p+ !
p+2
T h e p o l e s of t h e s y s t e m a r e { 0 , - 1 , - 2 , 2 }. The c o n t r o l s t r u c t u r e is g i v e n b y :
K =
f kll k22 k331
and S :
{ ( I , I ) ; (2,2) ; (3,3) }
The g r a p h DS= ( V s , L S) a s s o c i a t e d with t h i s s y s t e m is s h o w n in F i g u r e 3.7 :
141
3
6 F i g u r e 3.7
VlS = {1,2,3} VZS = {4,5,6} LIS = {(1,4);(1,5);(1,6);(2,5)1(2,6);(3,4);(3,5)} LZS = {(4,1);(5,2);(6,3)} T h e r e a r e 5 c y c l e s in D S w i t h t h e following a s s o c i a t e d t r a n s m l t t a n c e s :
l {
(1,o,1)
{ { )
(2,5,2)
{ 3 p-2
{ l
1
I
p~-2
I
(1,6,3,0,1) , (p+l)
l l
,..I
(p+~)
1
x p(p-2)
= p(p-2) - -
(2,6,3,5,2)
l
({,5,2,6,3,o,{)
I p(p-2)(p+2)
1 { I
p+l p(p+2) (p-2)2
l Among t h e p o l e s of t h e s y s t e m , X0 =-1 d o e s n o t a p p e a r as a pole of a n y t r a n s mittance.
This
(1,6,3,4,1).
situation
arises
T h e r e f o r e , X0=-I
is
from a non
the
pole-zero
structurally
cancellation f i x e d mode
for (it
cannot
s t r u c t u r a l l y f i x e d mode of t y p e (ii) s i n c e it is n o t l o c a t e d at t h e o r i g i n ) .
3.6.3. - Time-domain g r a p h - t h e o r e t i c c h a r a c t e r i z a t i o n The s y s t e m is now r e p r e s e n t e d b y i t s s t a t e - s p a c e model ( 3 . 2 . 1 )
the
:
cycle he
a
142 e(t)
= A x(t)
+ B u(t)
y(t) = C x(t) a n d we c o n s i d e r an a r b i t r a r i l y c o n s t r a i n e d c o n t r o l s p e c i f i e d b y t h e o u t p u t f e e d b a c k m a t r i x K° T h i s c h a r a c t e r i z a t i o n is i s s u e d from t h e w o r k of Mason (MAS-56) r e l a t i n g t h e s t r u c t u r e of t h e g r a p h a s s o c i a t e d w i t h a s q u a r e m a t r i x to its d e t e r m i n a n t . We c o n s i d e r an n x n m a t r i x M and we a s s o c i a t e a w e i g h t e d d i g r a p h c o n s i s t i n g o f n v e r t i c e s a n d a s e t of e d g e s .
T h e r e is an e d g e from t h e v e r t e x i to t h e v e r t e x j i f mji ~ 0
a n d t h e w e i g h t of t h i s e d g e is mji° T h e n , we h a v e t h e following :
det M :
[: m l q 1 m2q 2 ... mnq n even permutations
~: odd mlql permutations
m2q2
... m nqn
(3.6.2)
w h e r e ( q l ' . . . . q n ) is some p e r m u t a t i o n of (1 . . . . . n ) . Definition 3.10 (REI-83)
(REI-84a,b).
A cycle family is a s e t of d i s j o i n t c y c l e s . I t s
w e i g h t is g i v e n b y t h e p r o d u c t o f t h e
w e i g h t s o f all edges c o m p o s i n g t h e
cycle
family. Each t e r m ( m l q mzq . . .
mnq)
in
(3.6.2)
c o r r e s p o n d s t h u s to a c y c l e family
w h i c h t o u c h e s all n v e r t i c e s in t h e g r a p h . I f t h i s c y c l e family c o n s i s t s of f disjoint c y c l e s , t h e n t h e s i g n f a c t o r of i t s c o r r e s p o n d i n g s u m m a n d in ( 3 . 6 . 2 ) is (-1) n - f . The obtain a
approach
of R e i n s c h k e
graph-theoretic
(REI-84a)
c o n s i s t s in u s i n g
c h a r a c t e r i z a t i o n of t h e
polynomial of t h e c l o s e d - l o o p s y s t e m ,
(3.6.2)
coefficients of
the
in o r d e r to characteristic
Note t h a t t h i s a p p r o a c h was a l r e a d y u s e d b y
E v a n s a n d K r u s e r (EVA-84) to d e t e r m i n e t h e c o n d i t i o n s of p o t e n t i a l pole a s s i g n m e n t using decentralized static control (see § 3.5.2c)
a n d r e m e m b e r t h a t t h e y n e e d e d to
go t h r o u g h t h e calculation o f t h e c l o s e d - l o o p d y n a m i c m a t r i x (A+BKC).
This d i s a d -
v a n t a g e is a v o i d e d b y R e i n s c h k e b y u s i n g t h e following (n+m+r)x(n+m+r) m a t r i x :
M=
The
I! c 01
graph
A
B
0
0
associated
with
M
is
DK=(U u X u Y,
X = { X l , . . . . x n} i s t h e s e t of s t a t e v e r t i c l e s , Y = { y l p . . . , y ~ v e r t i c e s a n d U= { U l , . . . , u m} is t h e s e t of i n p u t v e r t i c e s .
E u E K)
where
is t h e s e t o f o u t p u t
E is a s e t o f e d g e s s u c h
143
that ( u i , x j) £ E if bji# 0 and bji is the weight of this e d g e , and aji is the weight of this e d g e ,
(xi,Y j) ~
edge. E K is a s e t of f e e d b a c k e d g e s s u c h t h a t (Yi' uj) ~ weight of this e d g e . Note
that
this
graph
is
the
same
(x i, xj) C E if aji¢0
E if cji~ 0 and cji is the weight of this
as
the
one
E K if kji#0 and kji is the
already
used
in
Paragraph
3.5.3.b-I.
Definition 3.11
(REI-84a).
The width of a cycle family in DK is d e f i n e d as the
number of s t a t e v e r t i c e s i n v o l v e d in it. Using
(3.6.2)
and Definitions 3.10 and 3.11,
Reinschke
states
the following
result : Theorem 3.31
(REI-84a).
The c o e f f i c i e n t s a i '
(i=] . . . . . n ) ,
of the closed-loop c h a -
racteristic polynomial : det ( p I - A - B K C ) = p n + a l p n - l +
. . . + an_ 2 p 2 + a n _ 1 p + a n
are given b y the sum of t h e w e i g h t s of all the cycle families of width i in D K multiplied by a sign factor (-1) d w h e r e d is the n u m b e r of disjoint c y c l e s in the cycle family u n d e r c o n s i d e r a t i o n . The c h a r a c t e r i z a t i o n Theorem 3.31,
of fixed modes is b a s e d on the following a r g u m e n t s .
t h e c h a r a c t e r i s t i c polynomial is g i v e n as a s e r i e s e x p a n s i o n
p=0 b u t a s e r i e s r e p r e s e n t a t i o n of t h e same polynomial is possible t0 ; i.e.
In
around
a r o u n d any value
:
det ( p I - A - B K C ) = d e t ( ( p - ~ O ) I - ( A - t o I ) - B K C )
=(p-10)n+(p-10)n-la l(10)+...+(p-10) an_l(10)+ an(l 0)
(3.6.3)
and the coefficientsai(l0) can be obtained using Theorem 3.31 where A is replaced by (A-101) when defining the graph DK, which will be denoted by D K (I0). E v e r y c o e f f i c i e n t a i ( t O) can be r e p r e s e n t e d as : ai(~0) : a ; ( t 0 ) wherea°(10),
+ gi (10'K)
(i=l,...,n),
(3.6.4)
a r e the coefficients of the open-loop c h a r a c t e r i s t i c p o l y -
nomial in the form of a s e r i e s e x p a n s i o n a r o u n d k 0.
144
P=~0 is a f i x e d mode if a n d only if it is a zero of t h e o p e n - l o o p a n d also of the closed-loop characteristic polynomials, i . e .
but
]-
a o ( x o) = 0
2-
an(),0 ) = 0
from
(3.6.4),
(2)
implies
ai(Ao)=O, (i=n . . . . . n - h + l ) ,
(1)
and
(2)
:
is
therefore
sufficient.
If
moreover,
b u t Oh_h(;~O)~ O, t h e m u l t i p l i c i t y of t h e f i x e d mode at P=~O
is of c o u r s e h . The g r a p h - t h e o r e t l c i n t e r p r e t a t i o n of t h e a b o v e d i s c u s s i o n l e a d s to t h e following r e s u l t : T h e o r e m 3.32
(REI-84a).
The s y s t e m
(3.2.1)
P=~0 with r e s p e c t to t h e c o n t r o l s p e c i f i e d b y
h a s a f i x e d mode of m u l t i p l i c i t y h at K i f a n d only if~ for j - - n p . . . , n - h + l
( b u t n o t f o r j - - n - h ) , one of t h e following two c o n d i t i o n s h o l d s : l - t h e r e a r e no cycle families o f w i d t h j in DK(R0). 2 - t h e r e e x i s t s two o r more cycle families of w i d t h j in DK(~,0) which c a n c e l each o t h e r n u m e r i c a l l y for all a d m i s s i b l e v a l u e s of t h e n o n z e r o e n t r i e s of K. It is c l e a r t h a t
condition
(2)
c o r r e s p o n d s to n o n s t r u c t u r a l l y
fixed modes.
F i r s t , n o t e t h a t t h e r e is a l e a s t one d i f f e r e n t e d g e b e l o n g i n g to E in two d i f f e r e n t c y c l e families. The cancellation of c o n d i t i o n (2) a r i s e s from t h e p a r t i c u l a r v a l u e s of t h e w e i g h t s a s s o c i a t e d to t h i s e d g e s .
It is c l e a r t h a t if t h e w e i g h t o f o n e of t h e
e d g e s i n v o l v e d i n one cycle family a n d n o t in t h e o t h e r is c h a n g e d , t h e c a n c e l l a t i o n will no l o n g e r o c c u r . T h e r e f o r e , t h i s f i x e d mode d e p e n d s on t h e v a l u e s of t h e p a r a m e t e r s of t h e s y s t e m a n d is n o n s t r u c t u r a l . satisfied,
the
conclusion r e q u i r e s
a deeper
In t h e case for w h i c h c o n d i t i o n (1) i s analysis.
Consider the
graph
DK(p)
a s s o c i a t e d with a s y s t e m of d i m e n s i o n n for a n o n s p e c i f i e d value of p a n d a s s u m e t h a t it c o n t a i n s N cycle families of w i d t h n : N is at l e a s t e q u a l to 1 s i n c e t h e r e is a s e l f - l o o p at e v e r y s t a t e v e r t e x with w e i g h t ( a f t - p ) . For c o n d i t i o n (1) to b e s a t i s f i e d , t h e a f f e c t a t i o n of a n u m e r i c a l v a l u e k0 to p m u s t eliminate some s e l f - l o o p s . T h i s will o c c u r w h e n k0 i s s e t to some aft. We o b t a i n t h u s a f i r s t i n t e r e s t i n g r e s u l t : Corollary 3 . ] 0 .
A
necessary
c o n d i t i o n for A0 to b e a f i x e d mode a r i s i n g from c o n d i -
tion (1) in T h e o r e m 3.32 is t h a t Since condition modes
)D i s e q u a l to some aii, i ~ ~I . . . . .
(2) of T h e o r e m
3.32 only characterizes non
(but not all of them), the following result directly follows :
n}. structurally fixed
145
Corollary 3.11.
A n e c e s s a r y c o n d i t i o n for a pole ~0 to b e a s t r u c t u r a l l y f i x e d mode
is t h a t i t s v a l u e a p p e a r s in t h e d i a g o n a l e l e m e n t s o f t h e d y n a m i c m a t r i x A. Now, c o n d i t i o n (1) of T h e o r e m 3.32 can b e s a t i s f i e d if t h e r e is a t l e a s t one s e l f - l ~ p with w e i g h t aii- p a n d afi=X0 in e v e r y cycle family of w i d t h n of D K ( P ) ° Two c a s e s can o c c u r : Case 1 : T h e r e is at l e a s t 1 s e l f - l o o p with w e i g h t ~ 0- p in e v e r y cycle family of w i d t h n of D K ( p ) w h i c h c o r r e s p o n d s to t h e same s t a t e v e r t e x . T h e n , w h e n we s e t p t o k 0, all t h e c y c l e families of w i d t h n become o f w i d t h { n - l ) • i n d e p e n d e n t l y of t h e p a r a meter v a l u e s of t h e s y s t e m ( w e i g h t s o f t h e o t h e r e d g e s ) . Case 2 : T h e r e is at l e a s t 1 s e l f - l o o p with w e i g h t k0- p in e v e r y cycle family of w i d t h n of DK(P)
a n d n o n e of them c o r r e s p o n d s to t h e same s t a t e v e r t e x .
p a r a m e t e r in t h e
T h e n , if a n y
diagonal of A c o r r e s p o n d i n g to t h e s e s t a t e v e r t i c e s is c h a n g e d ,
some c y c l e family of w i d t h n wilt r e m a i n . In t h i s c a s e , c o n d i t i o n (1) of T h e o r e m 3.32 d e p e n d s of t h e p a r a m e t e r v a l u e s , This d i s c u s s i o n can b e s u m m a r i z e d in t h e following c o r o l l a r y : Corollary 3.12,
~0 is a s t r u c t u r a l l y
f i x e d mode if a n d only if t h e r e is at l e a s t
1
self-loop with w e i g h t ~0- p in e v e r y cycle family of w i d t h n of D K ( p ) which c o r r e s p o n d s to t h e same s t a t e v e r t e x . The p a r t i c u l a r case of f i x e d modes at t h e o r i g i n d o e s n o t r e q u i r e a d i f f e r e n t a n a l y s i s : X0 i s s e t to 0 a n d t h e g r a p h to be c o n s i d e r e d is t h u s DK. T h e d i f f e r e n tiation b e t w e e n s t r u c t u r a l l y f i x e d modes of t y p e
(i) a n d
(ii) c a n b e c a r r i e d o u t b y
using c o n d i t i o n (i) of T h e o r e m 3,26 : k0 is a s t r u c t u r a l l y f i x e d mode o f t y p e (i) if it is not i n v o l v e d in a n y cycle family of a n y w i d t h i n c l u d i n g an e d g e of E K. This c h a r a c t e r i z a t i o n is of a g r e a t i n t e r e s t s i n c e if is t h e o n l y complete g r a p h t h e o r e t i c c h a r a c t e r i z a t i o n of f i x e d modes ( t h e one p r e s e n t e d in t h e p r e c e d i n g p a r a g r a p h is o n l y valid for s y s t e m s w i t h simple p o l e s ) . From (LIA-69)
the
computational p o i n t
(RAO-69)
of v i e w ,
the
well-known algorithms
for f i n d i n g p a t h s a n d c y c l e s can h e a d a p t e d
aided d e t e r m i n a t i o n of c y c l e families of p r e s c r i b e d w i d t h . Example 3.14. C o n s i d e r t h e following s y s t e m :
(KRO-67)
for t h e c o m p u t e r
[oooij A-=
3
0
0
0
0
Q
I
0
0
0
2
0
0
0
0
I
0)
C1 =
(0
0
0
1
C2 =
(1
0
0
0
0)
C3 =
(0
~
1
0
0)
146
I
I I 0
0
BI=
B2=
B3=
0 0
a n d a d e c e n t r a l i z e d c o n t r o l s p e c i f i e d b y : K=diag. ( k l , k 2 , k 3 ) .
The o p e n - l o o p c h a r a c -
t e r i s t i c polynomial is ,
det (pI-A)=(p-2)(p-4)(p-3)(pZ-p=l) The g r a p h DK(P) is s h o w n in F i g u r e 3 . 8 .
T h e r e a r e 6 cycle families of w i d t h 5 in
DK(P) w h i c h a r e g i v e n in F i g u r e 3 . 9 . -p
:'22
Fig. 3.8
Fig. 3 . 9 Case 1 : b = 4 In this case, there is no more cycle families of width 5 ; moreover, the selfloop with weight 4-p appears in every cycle family of width 5 in DK(p) and it corresponds to the same state vertex x3. Therefore X =4 is a structurally fixed mode 0 (of type ( i ) , of course). Case 2 : h0=2 In this case, the cycle families 1, 2, 3 and 4 are of width 4 and have not to be considered anymore.
The coefficient a5(hg=2) i s calculated from the cycle families 5 and 6 :
Therefore
3.6.4.
0
=2 is not a fixed mode.
- Comments The two graphical characterizations given in this paragraph present the advan-
tage of being complete in the sense that both structurally and non structurally fixed modes are characterized. This result is performed by using weighted directed graphs associated to the system, whose weights reflect the specific values of the system parameters.
The f i r s t one, which is stated in a frequency-domain
framework is,
unfortunately, only valid for systems with simple poles. Contrarily, the second one, stated in a time-domain framework, can be applied to the general case of systems
148 w i t h m u l t i p l e p o l e s a n d t h e m u l t i p l i c i t y of t h e f i x e d m o d e s is e a s i l y d e t e r m i n e d .
Both
c h a r a c t e r i z a t i o n s allow to c o n c l u d e on t h e t y p e of t h e f i x e d m o d e s i n a n e a s y w a y . From t h e c o m p u t a t i o n a l p o i n t of v i e w ,
they require
to d e t e r m i n e t h e
c y c l e s in t h e
d i g r a p h a n d , f o r t h e c a s e of l a r g e s c a l e s y s t e m s , e f f i c i e n t a l g o r i t h m s a r e n e c e s s a r y .
3.7.
- CONCLUSION
This chapter
presents
a n o v e r v i e w of all t h e d i f f e r e n t e x i s t i n g c h a r a c t e r i z a -
t i o n s of f i x e d m o d e s . T h e y c a n b e c l a s s i f i e d in f o u r g r o u p s :
- C h a r a c t e r i z a t i o n s in t e r m s of t r a n s m i s s i o n z e r o s of some s u b s y s t e m s of the s y s t e m : t h e s a m e r e s u l t c a n b e o b t a i n e d in a f r e q u e n c y o r in a t i m e - d o m a i n f r a m e w o r k s i n c e t h e c o n c e p t of t r a n s m i s s i o n z e r o s i s a s well d e f i n e d i n b o t h d o m a i n s . the
C h a r a c t e r i z a t i o n s in t h e t i m e - d o m a i n : t h e m o s t i m p o r t a n t o n e i s
f o r m of a m a t r i x r a n k
test which points out
complementary subsystems resulting gregated
stations.
the importance of the
s t a t e d in c o n c e p t of
from t h e p a r t i t i o n i n g of t h e s y s t e m in two a g -
This characterization reveals that fixed modes are simultaneously
uncontrollable by one aggregated station and unobservabie by the other one. -
Characterizations
in t h e
frequency-domain : these characterizations
d e e p i n s i g h t i n t o t h e r e a s o n s of o c c u r e n c e of f i x e d m o d e s . tioning of the
s y s t e m in two a g g r e g a t e d
representation
is
nection
between
terms
specially adequate
fixed modes may arise pattern.
the
aggregated
from d i f f e r e n t
out
the
stations. origins
This
importance approach
related
to
the
function matrix of t h e
intercon-
shows clearly
interconnection
that terms
T h e y c a n b e c l a s s i f i e d in two d i f f e r e n t t y p e s :
- structurally
fixed modes whose e x i s t e n c e is
v a l u e s of t h e s y s t e m a n d a r i s e f r o m t h e s t r u c t u r e -
We f i n d a g a i n t h e p a r t i -
stations and the transfer
to p o i n t
give a
non
structurally
fixed
modes
whose
independent
of t h e
parameter
of t h e s y s t e m .
existence
depends
on
the
parameter
v a l u e s a n d a r i s e from s o m e p e r f e c t p a r a m e t r i c c a n c e l l a t i o n s . T h e s e f i x e d m o d e s can be removed b y p e r t u r b i n g
t h e p a r a m e t e r s of t h e s y s t e m .
A differenciation between s t r u c t u r a l l y fixed modes t h e m s e l v e s is p o i n t e d out.
It is c l e a r t h a t s t r u c t u r a l l y than
non
leading
structurally
to n o n
fixed
structurally
fixed modes seem to h a v e a more p h y s i c a l reality
modes.
Indeed,
fixed modes have
the
perfect
a very
parametric
low p r o b a b i l i t y
cancellations in
practice.
M o r e o v e r , t h e y c a n b e c o n s i d e r e d a s e f f e c t i v e o n l y in t h e c a s e f o r w h i c h t h e m a t h e -
149
matical p a r a m e t e r s
involved
in
the
cancellations
correspond
to
the
same p h y s i c a l
p a r a m e t e r s . O t h e r w i s e , it i s c l e s r t h a t t h e l a c k o f a c c u r a c y i n t h e m o d e l i n g p r o c e s s makes i m p r o b a b l e
these
cancellations.
Nevertheless,
t h e s e c a n c e l l a t i o n s in a m a t h e m a t i c a l f r a m e w o r k . which close v a l u e s of t h e p a r a m e t e r s
it r e m a i n s i m p o r t a n t
They
reveal
may h a v e an a d v e r s e
controllability u n d e r c o n s t r a i n e d information s t r u c t u r e
modes a r e
to d e t e c t
s i t u a t i o n s in
e f f e c t on t h e d e g r e e o f
of a mode.
T h e i n t r o d u c t i o n of t h e c o n c e p t of c o n t r o l l a b i l i t y u n d e r tion s t r u c t u r e
critical
decentralized informa-
makes clearer t h e analogy with the case of centralized control.
the
Fixed
e x t e n s i o n of t h e c o n c e p t s of u n c o n t r o l l a b l e a n d u n o b s e r v a b l e m o d e s
and s t r u c t u r a l l y and u n o b s e r v a b l e
fixed modes establish the modes.
s t u d y of all s t r u c t u r a l
relation with
A graph-theoretic
properties,
approach
structurally
uncontrollable
is s p e c i a l l y a d e q u a t e
s o is f o r s t r u c t u r a l l y
for the
f i x e d m o d e s f o r w h i c h some
graph-theoretic characterizations are presented. -
Graph-theoretic
characterizations :
s t r u c t u r a l p r o p e r t i e s like s t r u c t u r a l l y titative d a t a if t h e y a r e w e i g h t e d .
graphs
can
U s i n g t h i s tool,
zati0ns of f i x e d m o d e s ( s t r u c t u r a l or n o t s t r u c t u r a l ) In
the
whole c h a p t e r , similar,
are u s e d to c a r r y
used
for
the
study
of
a particular
effort
two g r a p h - t h e o r e t i c
differing only by
o u t t h e final r e s u l t .
characteri-
are provided.
has
equivalences between the different characterizations, are p e r f e c t l y
be
f i x e d m o d e s b u t t h e y c a n a l s o deal w i t h q u a n -
been
made
to
point
out
the
It is s h o w n t h a t s o m e of t h e m
the notations and by the
definitions which
T h i s is t h e c a s e f o r t h e c h a r a c t e r i z a t i o n s in
term of t r a n s m i s s i o n z e r o s p r e s e n t e d i n P a r a g r a p h
3.2.
In P a r a g r a p h
3 . 3 , it a p p e a r s
t h a t all t h e t i m e - d o m a i n c h a r a c t e r i z a t i o n s a r e d e r i v e d from t h e s o - c a l l e d m a t r i x r a n k test characterization.
Finally,
those presented
in P a r a g r a p h
3.4
in
the
frequency
domain a r e all " i n c l u d e d " in t h e s o - c a l l e d g e n e r a l t r a n s f e r f u n c t i o n c h a r a c t e r i z a t i o n . I t h a s to b e n o t e d t h a t g r a p h - t h e o r e t i c c h a r a c t e r i z a t i o n s p r e s e n t to deal w i t h a r b i t r a r y
feedback structures
since t h e f e e d b a c k p a t t e r n is r e p r e s e n t e d
the advantage
as easily as with d e c e n t r a l i z e d s t r u c t u r e s in t h e g r a p h .
C h a p t e r II p o i n t e d o u t t h e p r o b l e m s a r i s i n g from t h e e x i s t e n c e o f f i x e d m o d e s in r e f e r e n c e to t h e p r o b l e m of s t a b i l i z a t i o n a n d pole a s s i g n m e n t . T h e two n e x t c h a p t e r s a r e c o n c e r n e d now w i t h t h e d i f f e r e n t m e t h o d s w h i c h c a n b e u s e d to a v o i d o r to eliminate f i x e d m o d e s p r e s e r v i n g
t h e o b j e c t i v e of a " r e d u c e d " i n f o r m a t i o n flow. T h e s e
m e t h o d s a r e b a s e d on t h e c h a r a c t e r i z a t i o n s p r e s e n t e d in t h i s c h a p t e r .
CHAPTER 4
DECENTRALIZED STABILIZATION
IN P R E S E N C E
4. I .
OF N O N
STRUCTURALLY
FIXED M O D E S
- INTRODUCTION
In the previous structurally structure.
chapter,
controllable
we h a v e s h o w n t h a t f i x e d m o d e s c a n b e c l a s s i f i e d in under
constrained
information
The controllable modes which are a consequence
of a p e r f e c t
m a t c h i n g of
system parameters
uncontrollable
modes
a r e w h a t we called n o n s t r u c t u r a l l y
f i x e d m o d e s of t y p e mation t r a n s f e r
and
(ii).
fixed modes and
structurally
T h e u n c o n t r o l l a b l e m o d e s w h i c h a r i s e f r o m a l a c k of i n f o r -
among the
stations
are
what
we c a l l e d
structurally
fixed
m o d e s of
type (i). In this chapter, information changing
structures
the
control
T h i s is a f u n d a m e n t a l system
are
even
I t is s h o w n
when
difference between
if
modes),
then
no matter
non dynamic,
distributed
if k0 i s s u c h
with controllable fixed modes under
considered.
nature
Indeed,
that
a
only systems
has
centralized
modes
w h a t c o n t r o l law is u s e d or finite-dimentional),
a mode,
the
decentralized
remain
modes
d i m e n s i o n a l c o n t r o l law i s u s e d
when
~ and
traint is removed without changing
in
constrained
eliminated by
are
decentralized or
(linear or non linear,
maintained. fixed modes. unobservable dynamic or
the fixed modes remain in the sense
arbitrary
(AND-81a)
the result.
can be
constraints
and
Wang a n d an
they
(uncontrollable
closed-loop response
to exp0~ 0 t ) .
78) a n d A n d e r s o n
structural
centralized
fixed
contains terms proportional fixed
the
that
for a suitable initial Davison linear, the
(WAN-73) invariant
condition
showed and
finite-dimensionality
Nevertheless,
Kobayashi et al.
a n d Moore ( A N D - 8 1 b ) p o i n t e d o u t t h a t b y u s i n g a g e n e r a l
that
finitecons(KOBcontrol
law of t h e f o r m :
ui(t) = K i (Ii(t)) with Ii(t) = {Yi (~)' u i(x)) ~ T~[0, t] ~ [ 0 ,
(4.1.I)
t] }
151
the controllable n a t e d in t h e
fixed modes
sense
that
under
such
constrained
controller
information
can bring
structure
any initial state
may be
elimi-
to t h e z e r o s t a t e
in a f i n i t e t i m e . Consequently, tralized
the
decentralized
fixed modes can be achieved
one of t h e p r o p e r t i e s
of linearity
An e a s y i n t e r p r e t a t i o n terization of Anderson
matrix
of t h i s r e s u l t
If t h e s y s t e m
(P)
~ I'
W12
t
W22 (
presence
of unstable
control
law,
decen-
provided
that
have been secrified.
is g i v e n
For simplicity,
(or its transpose)
I Wll W(p)
in
a decentralized
or time-invariance
(AND-82).
system with simple modes. its t r a n s f e r
stabilization by
by the frequency-domain let u s c o n s i d e r
has a decentralized
charac-
a 2-input
2-output
f i x e d m o d e a t t 0,
has the following form (AND-82)
then
:
(Pl
= !
entry
w i t h n o p o l e at k 0
entry
w i t h p o l e a t )'0
J
w i t h z e r o at )'0
entry
w i t h n o p o l e a t )'0
J
WCp) =
l entry Now, if t h e f e e d b a c k
c o n t r o l u 2 = k2Y 2 i s a p p l i e d at s t a t i o n
2, we h a v e
:
Yi(P) k2 Ul(P) = Wll (P) + Wl2 (P) • l_W22(P)k2 • W21 (P) If W12 ( p )
has
a p o l e at }~O ( a n d W21 ( p )
occurs resulting the
in a f i x e d m o d e .
cancellation
block
with
an
will
no longer
adjacent
(4.1.2)
h a s a z e r o at k 0 '
a pole-zero
B u t if k 2 i s a t i m e - v a r y i n g
occur
because
time-inveriant
one
block,
cannot
and
commute the
thereby
cancellation
or non linear element, juxtapose
time-varying a
cancelling
pole-zero pair.
Finally, originates
we n o t e t h a t if W12 ( p )
from the structure
o r W21 ( p )
of the system
lized c o n s t r a i n t s .
The nature
of the decentralized
the existence
such
mode.
of
relax the structural The system
fixed
constraints considered
In
this
is i d e n t i c a l l y
zero,
a n d it is u n c o n t r o l l a b l e case,
feedback the
only
is t h u s
the fixed mode under
without
possible
a n d is d e s c r i b e d
effect on
approach
on the control.
h e r e h a s S local s t a t i o n s
decentra-
by :
is to
152 5
l
;(t) = A x(t) +
~ B i ui i=l
tYi(t) = Cix(t)
where
x C Rn ,
(4.1.3)
(i=l,...,S)
u i ~ Rmi a n d Yi ~ R r i a r e
o u t p u t v e c t o r s o f t h e it h s t a t i o n .
the state
vector
a n d t h e local i n p u t
and
T h e g l o b a l d e s c r i p t i o n is g i v e n b y :
B LB1
Bs ]
with
(4.1.4)
Cx
C
~
.°.
4 . 2 . - SAMPLE AND HOLD Let
us
consider
the
system
(4.1.3)
exponential decay a and sampling period Then,
the resulting
and
put
a
general
sampler-hold,
T , in s e r i e w i t h e a c h i n p u t
d i s c r e t e - t i m e s y s t e m is d e s c r i b e d
with
of the system.
by :
S x ((k+l)T)=
r x(kT)
+ i-1 E
Gi u i ( k T )
(4.2.1) yi(kT)
= Ci x(kT)
(i = 1 . . . . .
S)
where F = e x p (AT) f T Gi = e x p ( - a T ) ~
[exp(A+aI)]
d t Bi
0 From ( W A N - g 2 ) , t h e s e t o f f i x e d m o d e s o f t h e d i s c r e t e - t l m e
system (4.2.1)
is defined
a s follows : S Ad = K. Cn Rr[xmO
(F + i=lZGiKIC i)
(4.2.2)
1
A sufficient
condition
for
the
existence
of a stabilizing
s e t o f local d i s c r e t e
time
d y n a m i c c o n t r o l l e r s is g i v e n b y t h e f o l l o w i n g t h e o r e m : Theorem
4.1
(WAN-82).
If t h e r e
exists
such that the fixed modes of (4.2.1) (4.2.1),
and hence
controllers.
(4.1.3),
a sampling
period
T and
a real number a
a r e c o n t a i n e d in t h e u n i t d i s c , t h e n t h e s y s t e m
c a n b e s t a b i l i z e d b y a s e t o f local d i s c r e t e - t i m e
dynamic
153 Wang (WAN-82) illustrated constructive
procedure
Consider the system
=
y=
this
to d e t e r m i n e
with
a simple example.
However,
no
a and T was proposed,
:
[0 oj io] -2
-3
0
0
0
1
O
0
11
-I
1
0
E
approach
x+
1
uI +
u2
0
x
which can also be represented
as follows :
i
sl
u 1_ _
p-I
p2 + p3 + 2
rI ,
[', S2
-~r
Yl
This system
has a fixed mode at
l,
F
which can be viewed
zero c a n c e l l a t i o n w h e n local f e e d b a c k i s a p p l i e d . each input
and apply
a unity
following c o n f i g u r a t i o n
vI _
_
feedback
u[
at s t a t i o n
as a result
2,
then the overall system
:
s a m p l e and LuI_DJ
p-I
[
. . . . . .
jI p2~p+~l
,o,d
1
S2
Y~
yl
77 /
of pole-
P u t a s a m p l e a n d h o l d in s e r i e w i t h
!
.old
~
Y2
has the
154
The pulse
transfer
functions
sampling period T are given by
o f S 1 a n d S 2 i n s e r i e w i t h a s a m p l e a n d h o l d of
:
hl(Z ) : z(-0.5 + 2 e = T - 1.5 e -2T) ÷ (- 1.5 e -T + 2 e - 2 T (z-
e-T) (z-
0.5 e -3T)
e-2T)
T h 2 /~z, ] _ e Z-
- 1 T e
and the pulse transfer has no pole-zero
f u n c t i o n b e t w e e n v 1 a n d Yl* i s e q u a l to h l ( 2 )
cancellation.
1 can easily be designed
Hence, a discrete-time
0) may b e n e c e s s a r y On systems
another with
dynamic compensator
so t h a t t h e o v e r a l s y s t e m is s t a b l e .
h o l d (a = 0) is s u f f i c i e n t in t h e a b o v e e x a m p l e ,
x h2(z),
which
at station
Although a zero-order
a sample and hold with decay
(a~
in some c a s e s .
hand,
distinct
the
poles.
validity
of
this
For example)
approach
the
seems
following system
to
be
restricted
provided
by
to
Wang
(WAN-82) c a n n o t b e s t a b i l i z e d u s i n g s a m p l e a n d h o l d t
1
0
x:
0
1
0
1
x +
uI +
0
u2
0
oo]x
y E:
1
0
0 -12~ x Y2 : E 0 This system has a simple fixed mode at 1 corresponding For the class of systems ...,
(4.1.3)
to t h e m u l t i p l e p o l e .
f o r w h i c h A h a s n d i s t i n c t e i g e n v a l u e s k i , i = 1, 2,
n and that can be transformed
as :
S
(4.2.3) Yi
= ~. 1
~
(i = 1 .....
w h e r e k = d i a g { k 1' ~ 2 . . . . .
s)
kn}
155
an i n t e r e s t i n g
result
der
system
that
the
sampling period
was provided (4.2.3)
T > 0 and
can b e d e s c r i b e d
by
latter
is
by Ozguner
controlled
a zero-order
by
hold.
and
Davison
a digital Then,
(OZG-85).
controller
the
with
resultant
Consi-
a constant
sampled
system
:
x ( t + T ) = e ~T ~ ( t )
S ~
+ r
Bi ~i
i:l
(4.2.4)
i = 1 ..... Yi ( t ) = ~ i ~ ( t ) w h e r e r = d i a g - ~ r 1, I"2 . . . . .
S
rn]
and
Fi = T
i f ~'i = 0
e TXi - l F =~
if ~i F 0
T h e n , we h a v e t h e f o l l o w i n g r e s u l t Theorem 4.2
(OZG-85).
Assume
:
that
the
a m o n g w h i c h t h e f i x e d m o d e s ~j (j = 1, (i). T h e n ,
the sampled system
(4.2.4)
system ....
(4.1.3)
(4.2.3)
has
ps ) are structurally
p
fixed
modes
fixed modes of type
h a s o n l y P s f i x e d m o d e s ek i T ,
j = 1.....
Ps'
for a l m o s t all T > 0.
The
interpretation
when fixed modes zero c a n c e l l a t i o n s sampling
has
on
of
(except
the
of a specific poles
results
structurally
and
kind
zeros
presented
in
this
fixed modes of type in
the
make
decentralized
that
the
section (i))
system.
cancellations
becomes
clearer
are viewed as poleThe
do n o t
effects occur
in
that the
model o f t h e s a m p l e d s y s t e m .
4 . 3 . - USE OF T I M E - V A R Y I N G C O N T R O L L E R S In
this
Purviance stabilize
section,
and linear
the particular
Tylee
I
the
that
systems
case of systems
with
results
use
a
of Anderson
decentralized
decentralized
+ B 1 ul(t)
and
Moore
tlme-varying
fixed
w i t h two c o n t r o l s t a t i o n s ,
a n d Moore to s y s t e m s
a controllable and observable
x (t) = A x(t)
Yi(t)
(PUR-82)
invariant
extension of Anderson Consider
we p r e s e n t
modes.
First
t h e n we d i s c u s s
(AND-81b), feedback
to
we p r e s e n t briefly
the
with S stations. two-station
system
described
by
•
+ B2 u2(t)
(4.3.1) Cixi(t)
(i = I , 2)
156 w h e r e x 6-R n ,
ui~
Rmi a n d YiE: Rri a r e t h e s t a t e v e c t o r a n d t h e local i n p u t and
o u t p u t of s t a t i o n i r e s p e c t i v e l y . dimensions.
Suppose
A, Bi a n d Ci a r e c o n s t a n t m a t r i c e s of a p p r o p r i a t e
also t h a t we a p p l y a p e r i o d i c
time-varying
control
law,
with
period T, at the second station : u 2 ( t ) = K z ( t ) Y2(t)
(4.3.2)
t h e n t h e r e s u l t i n g t i m e - v a r y i n g c l o s e d - l o o p s y s t e m is :
(t) =EA + BzKz(t) Ca] + BlUl(t) (4.3.3) Yl(t) = C I x(t) F o r t h i s s y s t e m , u n i f o r m c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y (KAI-80) m e a n s t h a t we can d e s i g n an o b s e r v e r a n d a l i n e a r s t a t e f e e d b a c k w h i c h will s t a b i l i z e t h e s y s t e m . d e n o t e b y ¢K2 ( t , T) t h e t r a n s i t i o n m a t r i x of s y s t e m
If we
(4.3.3),
then the observability
T @K2 (t,T) C 1 C 1 ¢K2(tJ) dt
(4.3.4)
grammian m a t r i x is :
OG(T , • + T) ~
fT+T
a n d t h e c o n t r o l l a b i l i t y grammian m a t r i x is
CG(~:, T+T) _/:+T
@K2 (T,t)
:
BIB l
T (T, t) dt
~2
(4.3.s)
T h e c o n d i t i o n of u n i f o r m c o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y is s a t i s f i e d if t h e m a t r i c e s CG (~, z+T) a n d OG (~, T+T) a r e s t r i c t l y p o s i t i v e - d e f i n i t e .
4.3.1.
-
Piecewise
constant
feedback
laws
A n d e r s o n a n d Moore (AND-81b)
p r o p o s e d to u s e a p e r i o d i c p i e c e w i s e c o n s t a n t
f e e d b a c k at t h e s e c o n d s t a t i o n . Given t h e two following a s s u m p t i o n s : - Centralized controllability and observability, trollable -
i.e.
[(B1B2),
A,
(C 1' C2')w] is
con-
and observable.
Connectivity
assumptions,
identicaly zero :
i.e.
the
transfer
matrices
between
stations
are
not
157
B2 # 0
(4.3.6)
C 2 ( P I - A ) -1 B 1 # 0
(4.3.7)
W12(p) = C l ( P I - A ) - i w21(p)
t h e i r r e s u l t s a r e e x p r e s s e d in t h e following t h e o r e m : Theorem 4.2
(AND-81b).
Consider the controllable and observable
sense) system given by (4.3.1).
(in a c e n t r a l i z e d
A p p l y i n g a p e r i o d i c f e e d b a c k u 2 ( t ) = K 2 ( t ) Y2(t) at
the s e c o n d s t a t i o n p t h e s y s t e m ( 4 . 3 . 2 ) is u n i f o r m l y c o n t r o l l a b l e a n d o b s e r v a b l e if t h e connectivity assumptions (4.3.6)
and (4.3.7)
hold a n d if K 2 ( t ) is p i e c e w i s e c o n s t a n t
taking at l e a s t l + m a x ( m 2 , r 2) d i s t i n c t v a l u e s o v e r one p e r i o d . Remark 4.1 : T h e a s s u m p t i o n s r e q u i r e d
b y t h e a b o v e t h e o r e m a r e e q u i v a l e n t to t h e
a s s u m p t i o n of c o n t r o l l a b i l i t y a n d o b s c r v a b i l i t y u n d e r d e c e n t r a l i z e d i n f o r m a t i o n s t r u c ture. T h i s r e s u l t c a n b e a n a l y s e d as follows : if t h e s y s t e m h a s a f i x e d mode d u e to a lack of o b s e r v a b i l i t y of s t a t i o n 1, t h e n b y t h e a s s u m p t i o n of c e n t r a l i z e d o b s e r v a bility,
station 2 observes
t h i s mode a n d t r a n s m i t s
r e l a t e d i n f o r m a t i o n to s t a t i o n 1
t h r o u g h t h e t r a n s m i s s i o n c h a n n e l W12. A dual a n a l y s i s can b e made if t h e f i x e d mode is c a u s e d b y a lack of c o n t r o l l a b i l i t y of s t a t i o n 1. T h e a b o v e t h e o r e m c a n b e similarly d e r i v e d Moreover,
and Moore (AND-81b) mentary
discrete
systems
(JAM-83).
~ t h e y s h o w e d t h a t if t h e c o n n e c t i v i t y a s s u m p t i o n s of comple-
subsystems
hold
(system
decentralized constraints), observable
from
station
structurally
controllable
and
observable
under
t h e n t h e s y s t e m c a n b e made u n i f o r m l y c o n t r o l l a b l e a n d 1 by
f e e d b a c k c o n t r o l law u . ( t )
applying
= Ki(t)
successively
Yi(t),
i = 2,
...
a periodic
piecewise
constant
S at t h e o t h e r s t a t i o n s .
For
l
each s t a t i o n i , K i ( t ) m u s t t a k e a t l e a s t period.
for
t h e c a s e of s y s t e m s w i t h S c o n t r o l s t a t i o n s was c o n s i d e r e d b y A n d e r s o n
~ 1+max(re., r . ) d i s t i n c t v a l u e s o v e r o n e j:2 l J I t is c l e a r t h a t t h e n u m b e r of d i f f e r e n t v a l u e s i n c r e a s e s d a n g e r o u l s y with
the n u m b e r of s t a t i o n s making d i f f i c u l t t h e p r a c t i c a l i m p l e m e n t a t i o n of t h i s a p p r o a c h . E,.xamIAe 4.1
(AND-81b).
Consider
a controllable
and
observable
stations given by : 1
0
0
0
1
0
0
0
2
yl=[O
0
[1
~=
X +
1
0
u1
f0 0
1
u2
system
with
two
158 The system has a decentralized
rank
Applying
F L c,
f i x e d m o d e a t X0 = 1 s i n c e
XI-A 2 . . . . . .
= 2 < 3
10j
the following time-varying
u2(t)
= K2(t)
for X = ~ 0 : 1
c o n t r o l at t h e s e c o n d
station
:
Y2(t)
with
K2t fl °ljl 1
or2k t 2kl
0 •
for 2k+l
t < 2k+2
k = 0,
the
observability
the
range
(2k,
...
and
controllability
grammian
matrices
2k+l)
f o r all k= 0,
1,
are positive
number 1 approximately (piecewise constant) These properties
1, 2,
equal
2,
to 100 a n d
gain K2(t)
provides
can be improved
...
6,
(calculated
respectively.
reasonable
definite So,
the
controllability
by choosing another
analyticaly)
over
with a condition use
of a periodic
and observability.
kind of time-varying
feedback
l a w s a s it i s s h o w n i n t h e f o l l o w i n g s e c t i o n .
4.3.2.
- Sinusoidal feedback Purviance
put
controllable
prete ting
Tylee
to s t a t i o n the
(PUR-82)
and observable
the observability
through K2(t).
and
laws
1 the
transfer
problem value
consider
system
resulting
of the
function
This problem is a standard
WI2,
the particular
with a decentralized
fixed via
case of a 2-input
2-out-
fixed mode.
inter-
They
in the fixed mode as which of communicamode the
is
observable
by
station
time-varying
(which
feedback
law
with
o n e in c o m m u n i c a t i o n s y s t e m
2) gain
analysis and a good
1The condition number (CN) of a rectangular m a t r i x w i t h full r a n k i s g i v e n b y t h e ratio between the maximal and the minimal singular values of the matrix (MOO-8]). H e n c e , it i s a g o o d m e a s u r e o f t h e e f f e c t i v e r a n k o f t h e m a t r i x , a n d of c o u r s e , it is i n o u r i n t e r e s t to h a v e a c o n d i t i o n n u m b e r a s c l o s e to 1 a s p o s s i b l e ( i f CN = 1, t h e n the effective rank equals the actual rank).
159 solution is to u s e
sinusoldal modulation
(feedback)
at a f r e q u e n c y m a t c h e d to t h e
f r e q u e n c y r e s p o n s e of t h e communication c h a n n e l W12 ( V A N - 6 8 ) , U s i n g a simple e x a m p l e , t h e y show t h a t if t h e s y s t e m v e r i f i e s t h e c o n n e c t i v i t y assumptions, trollability
t h e n b y u s i n g a s i n u s o i d a l f e e b a c k law,
and
observability
is
higher
(decrease
the resulting
of t h e
d e g r e e of c o n -
corresponding
grammian
condition n u m b e r ) t h a n b y u s i n g t h e b i n a r y f e e d b a c k law p r o p o s e d b y A n d e r s o n a n d Moore ( A N D - 8 1 b ) . Example
4.2
(PUR-82).
Consider
a
2-input
2-output
controllable
and
observable
system d e s c r i b e d b y :
x=
yl=[0
-1
0
0
-2
x+
I
,Ix
uI + Ii
u2
y2=Ll 0 07 x The t r a n s f e r m a t r i x of t h i s s y s t e m is :
0
(p+t) (p+2)
W(p) ~-
0
and it is c l e a r
that the system has a decentralized structurally
fixed mode of t y p e
(fi) (x 0 = 0 ) .
A p p l y i n g a s i n u s o i d a l f e e d b a c k c o n t r o l at t h e s e c o n d s t a t i o n K 2 ( t ) = k sin 0~t, the c o n d i t i o n n u m b e r of t h e o b s e r v a b i l i t y grammian m a t r i x of t h e c l o s e d - l o o p s y s t e m is shown b y F i g u r e 4 . 1 - a a n d F i g u r e 4 . l - b , of k .
f o r d i f f e r e n t v a l u e s of ¢0 a n d two v a l u e s
160 500
sO0
0
~
2
C
3
0
4
Figure
4.1-a
: Condition number
for k = 0.05
Forc0=c0c = / 2 W12 a n d when
we c o u l d
w = coc ) ,
central
expect
m a x i m u m f o r k = 1. energy
the
result
points
However, Figure
system
the
k
and
by
~
2
3
¢
: Condition number
of the bandpass
can be explained This number of
the
for 0~=~ c,
by
between the
fact
is required
2 and
that
condition
for
with
1
"large"
and
the
destroys
observability
a good observability.
consideration
the
function
station
characteristics
and to achieve
energy
of the transfer
grammian is minimum for k =
system's
balance
of
for k = 1 (from (PUR-82))
in
control
number
law
This
design.
of OG(100,
0)
(see
is 72.7.
To m a k e a c o m p a r i s o n proposed
1
optimal communication
modes.
importance
= 0.05
.
of the observability
This
a small condition
out
with
4.l-a)
frequency
fixed mode dominates
between
g r a m m i a n to h a v e
,
4. l - b
OG(t,0)
to a c h i e v e
0.05 and
balance
Figure
the condition number
feedback the
of
(from (PUR-82))
(c0c i s t h e
il
FrequencY~o (rad/sec)
Frequencg~0o {rad/sec) OG(t,0)
,
Anderson
following binary
and
feedback
with the case of piecewise constant Moore
(AND-81b),
with period
o
o.lt<
1
l,~t<2
let us apply
feedback
at the second
c o n t r o l law station
the
2 :
i
K2(t) =
The condition number yields
better
obtained
4.3.3.
by
observabi]ity
0) is 1 3 2 . 9 .
about
using
54 ~.
less
This example shows that the condition
Thus,
control
it s e e m s t h a t
energy.
sinusoidal
A similar
conclusion
feedback
laws can
feedback can
be
for controllability.
In this with
decentralized the
of OG(100,
decreased
~ Concluding
systems
ving
number
has been
remarks
section, fixed
we h a v e modes
constraints.
decentralized
that
shown are
Although feedback
that
time-varying
structurally this approach
structure,
some
controllable presents
the
difficulties
and
advantage are
stabilize
observable
under
of preser-
encountered
when
161
considering of v i e w ,
the practical
we t h i n k
feedback laws,
that
but
feedback
can be made using
Vibrational zation a p p r o a c h
controllers.
From the practical
laws are easier
result
vibrational
point
to implement than
has not been
extended
We will s e e in t h e f o l l o w i n g s e c t i o n t h a t
4.4. - VIBRATIONAL
feedforward
sinusoldal
of s u c h
the corresponding
more t h a n 2 s t a t i o n s . this approach
implementation
binary
to s y s t e m s
a possible
with
extension
of
control.
CONTROL
control
was introduced
in c a s e s w h e r e
cannot
be
in
1973 b y
conventional
used
because
Meerkov
(MEE-73)
control principles
of a lack
such
of available
as a stabili-
that
feedback or
measurements
on
the
system. The principle tions
(with
properties
zero
value)
control consists
on
the
of the system in a desired
Indeed, control
of vibrational
mean
vibrational
signals,
so
control signals disturbances
control
that
it
(vibrations)
does
proach
to s t a b i l i z e
trained ments,
feedback
systems fails.
its application
pattern
Vibrational
depend
upon
any and
the
constraints
vibrational
with
vibra-
modify
the
for
does
constraints
The
or
upon
variable
t.
as a lack of measu-
which not
additive
feedback)
s e e m s to b e a s u i t a b l e
control
of the
or
principles.
of the independent
fixed modes
vibrational
is i n d e p e n d e n t
(not
can be interpreted
control
unstable
measurement
feedforward
states
but are just functions
control
structurally
require
imposed
any
on
the
ap-
cons-
measureinformation
control principle
control is a method of stabilization
zero m e a n v i b r a t i o n s properties
of the
vibrations
into
achieved by factors,
require
do n o t
Because
of s u c h
which
(TRA-85).
4.4. ], - Vibrational
require
not
feedback
local s t a t i o n ,
parameters
manner.
from
(not feedforward),
at each
in the introduction
system
differs
Since the control structure rements
dynamic
(oscillations)
system,
systems
on t h e
in p a r t i c u l a r
that
are
not
etc...
Unlike
control matrix son, the design
nor
conventional
of deviations observation
control
parameters
stability.
mechanical
oscillation of the technological
measurement
system
its
consisting
but
of an
which that
arbitrary
by varying
techniques,
vibrational
to a p p e a r
i.e.
in t h e
method does not differ for autonomous
may
the
parameters,
and disturbances,
matrix
Note
in the introduction
modify the
introduction
of
nature
be
the
can
amplification
control
does
it d o e s n o t r e q u i r e system
model.
of
For
not
neither
this
rea-
or non autonomous systems.
162 C o n s i d e r t h e following t i m e - i n v a r i a n t , (t) = A x(t)
finite-dimensional linear system
:
x ~R n (4.4,1)
A
(aijl i , j = l . . . . . n
and introduce
p e r i o d i c z e r o m e a n v i b r a t i o n s on t h e e l e m e n t s o f m a t r i x A a c c o r d i n g to
t h e law :
V(t) = (vij(t))
i,j=l,...,n
(4.4.2)
where v i i ( t ) = a'lj s i n t~j t mij ~ t0sk The resulting
f o r ij ~ s k
time-varying
( t / = [A + V ( t ) ] Before describing
s y s t e m is -" x(t)
(4.4.3)
t h e d e s i g n m e t h o d , l e t u s come u p w i t h t w o q u e s t i o n s
:
1. Which s y s t e m s a r e v i b r a t i o n a l l y s t a b i l i z a b l e ( i . e ° b y m e a n s o f v i b r a t i o n a l c o n t r o l ) ? 2. How to d e t e r m i n e t h e v i b r a t i o n p a r a m e t e r s
(gains and frequencies1
?
T h e a n s w e r to t h e s e q u e s t i o n s is g i v e n b y t h e following : D e f i n i t i o n 4.1
(MEE-801.
System (4.4.11
is v i b r a t i o n a l l y s t a b i l i z a b l e if t h e r e
periodic zero mean matrix V(t) such that system (4.4.3) Theorem 4.3
(MEE-80).
( c , A) i s o b s e r v a b l e ,
Assume that there
then a necessary
exists
a vector-row
c such
The extension
that the pair
and sufficient condition for system
b e v i b r a t i o n a l l y s t a b i l i z a b l e is to h a v e t h e t r a c e o f m a t r i x A n e g a t i v e Remark 4.2.
exists a
is asymptotically stable.
to t h e c a s e T r A ~ 0 will b e c o n s i d e r e d
(4.4.11
to
( T r A ( 01. in a s u b s e q u e n t
paragraph. The analysis of the consequences tions V(t)
can be achieved applying
73) to s y s t e m
(4.4.31.
resulting
For this purpose,
a . . a n d c0.. ( s e e f o r m u l a ( 4 . 4 . 2 ) ) 15 1]
of the vibra-
s c h e m e (VOL-621
certain conditions are required
- the matrix V(t) has a quasi-triangular -
from t h e i n t r o d u c t i o n
the Volosov's averaging
(MEE-
:
form
are sufficiently large (see Theorem 4.41.
163
Volosov's
averaging
scheme
consists
in
determining
a time-invariant
system
such t h a t i t s motions d e s c r i b e in " a v e r a g e " t h e motions of t h e t i m e - v a r y i n g s y s t e m (4.4.3).
T h i s s y s t e m a p p e a r s in t h e following form •
(4.4.4)
(t) = (k + V) z(t)
where V is a c o n s t a n t m a t r i x d e p e n d i n g on v i b r a t i o n a m p l i t u d e s a n d f r e q u e n c i e s .
So,
the s t a b i l i t y
the
conditions
for
the
system
(4.4.3)
can
be
established
s t a b i l i t y c r i t e r i a for t i m e - i n v a r i a n t s y s t e m s o n s y s t e m ( 4 . 4 . 4 ) .
by
using
I n d e e d , t h e e n t r i e s of
d e p e n d o n a i j ' s a n d 0~ijrs : if t h e y a r e c h o s e n to v e r i f y t h e s t a b i l i t y c o n d i t i o n s for the t i m e - i n v a r i a n t s y s t e m ( 4 . 4 . 4 ) ,
t h e y will also e n s u r e s t a b i l i t y to s y s t e m ( 4 . 4 . 3 ) in
v e r t u e of t h e p r o p e r t y of Volosov~s a v e r a g i n g s c h e m e . Now,
assume
that
the
vibration
matrix
has
the
following
lower
(or
upper)
q u a s i - t r i a n g u l a r form 2 :
m 0
(%1 ~i.
~o21 t)
(ec31 sin m31 t)(a32 v(t)
I I I i
=
(anl
With t h i s
0_.
o. sin m32 t ) " " . . . I I I I
sin Wnlt)(an2
assumption,
0
(4,4.5)
sinmn 2 t)
- ( a n l , n _ 1 sinw n l , n _ l t )
0
t h e d e t e r m i n a t i o n of V a n d so of t h e t i m e - i n v a r i a n t s y s t e m
(4.4.4) c a n b e p e r f o r m e d b y t h e following simple p r o c e d u r e .
C o n s i d e r t h e following
system of d i f f e r e n t i a l e q u a t i o n s : ~¢ ( t ) = V ( t ) x ( t ) where
V(t)
is
the
(4.4.6)
quasi-triangular
matrix
given
by
(4.4.5).
Suppose
the
initial
conditions of ( 4 . 4 . 6 ) to b e :
xi(t 0) = x 0
(i=l . . . . . n)
i
Determine t h e s o l u t i o n of t h e f i r s t two e q u a t i o n s of ( 4 . 4 . 0 )
2V(t) is c h o s e n in q u a s i - t r i a n g u l a r any o t h e r form (MEE-80),
:
form b e c a u s e t h e s y s t e m c a n n o t be a n a l y s e d w i t h
164
x l(t) = x 0 x 2 ( t ) = x0 + I F 2 1 (t) - F21(t0) ] x~ where
F21(t)
is a z e r o mean p e r i o d i c
function
t h i r d e q u a t i o n a s s u m i n g t h a t F21(t0) = 0) i , e .
of t .
Determine
of t h e
:
0
xl(t)
= x1
x 2 ( t ) = x~ +
F21 ( t ) x ~
A p p l y an a n a l o g o u s p r o c e d u r e to e a c h ( i - l ) th s t e p of t h e p r o c e d u r e we f i n d : k-l j_El [ F k j ( t )
0
Xk=
Xk+
- Fkj(t0) ]
equation
x~
of
system
k-1 j~l
Xk = Xk0 + where Fij(t)
F k j ( t ) x j0
(k=l
a r e almost p e r i o d i c f u n c t i o n s
matrix E such that
(4.4.6),
then
at
the
(k=l ..... i-l)
T h e s o l u t i o n o f t h e i th e q u a t i o n is s o u g h t b y s u b s t i t u t i n g
triangular
the solution
. . . .
:
i-l)
of t with a z e r o mean.
Define the quasi-
:
E = (eij)i,j= 1 ..... n with
T
e..,] = ] i m T ÷¢o
Fij2(t ) dt
F i n a l l y , t h e m a t r i x V of ( 4 . 4 . 4 ) = H~ij{[i,j=l . . . . . n where
O denotes
(4.4.7)
0
is g i v e n b y :
= -(A'
O
element-by-element
E)
(¢.¢.8)
m u l t i p l i c a t i o n of t h e m a t r i c e s ,
i.e.
~..1j = -a..p .
e... II T h e o r e m 4.4 (MEE-80). such thataij
If t h e r e
exist sufficiently large positive constants
) cx0 and coij >coo for all ij, t h e n s o l u t i o n s
x(t)
of ( 4 . 4 . 3 )
a 0 and coo (4.4.5)
and
165
z(t) of ( 4 . 4 . 4 )
(4.4.8)
( d e f i n e d with i d e n t i c a l initial c o n d i t i o n s x ( t 0) = z ( t 0 ) )
are
related by the e x p r e s s i o n s :
~(t) = [I + F ( t ) ]
z(t)
to[0,
~[ (4.4.9)
llx(t) where F ( t )
- ~(t)ll
,~ 1/%
is t h e m a t r i x c o m p u t e d t h r o u g h t h e above p r o c e d u r e .
If t h e t i m e - i n v a -
rlant s y s t e m ( 4 . 4 . 4 ) is a s y m p t o t i c a l l y s t a b l e , r e l a t i o n ( 4 . 4 . 9 ) h o l d s for all t E [ 0 , ~[~ in t h e o p p o s i t e c a s e , it h o l d s o n l y f o r t £ [
0, a 0 [
T h e o r e m 4.4 s h o w s t h a t if t h e a m p l i t u d e s a n d f r e q u e n c i e s of t h e v i b r a t i o n s a r e sufficiently l a r g e , t h e n e q u a t i o n s ( 4 . 4 . 4 )
(4.4.8)
the t i m e - v a r y i n g s y s t e m ( 4 . 4 . 3 )
In p a r t i c u l a r ,
stable,
then system
(4.4.B)
has
(4.4.5). also t h e
d e s c r i b e in a v e r a g e t h e motions o f if ( 4 . 4 . 4 )
same p r o p e r t y .
is a s y m p t o t i c a l l y
Therefore,
stability c r i t e r i o n for t i m e - i n v a r i a n t s y s t e m s on s y s t e m ( 4 . 4 . 4 ) ,
applying any
one can o b t a i n t h e
stability c o n d i t i o n s for t h e t i m e - v a r y i n g s y s t e m and d e t e r m i n e t h e v i b r a t i o n s . It is o b v i o u s t h a t v i b r a t i o n a l c o n t r o l r e m a i n s w i t h o u t e f f e c t if ~ = 0 ~ in t h i s case, t h e d y n a m i c s of t h e initial a n d a v e r a g e d e q u a t i o n s do not d i f f e r . This r e m a r k motivates t h e i n t r o d u c t i o n of t h e following c o n c e p t (see Definition 3 a n d Theorem 3 of (MEE-80)) : v i b r a t i o n a l l y c o n t r o l l a b l e a r e t h o s e e l e m e n t s aij o f t h e m a t r i x A f o r which t h e r e e x i s t s an almost p e r i o d i c matrix V ( t )
(with a z e r o mean value) s u c h t h a t
V.. ¢ 0. In view of ( 4 ° 4 . 8 ) , v i b r a t i o n a l l y controllable a r e t h e r e f o r e t h o s e e l e m e n t s a.. 1] 1} of the matrix A for which i > j a n d aji ~ 0. From a p r a c t i c a l p o i n t of v i e w , t h e i n t r o d u c t i o n of v i b r a t i o n s is i m p l e m e n t e d b y making t h e t e c h n o l o g i c a l p a r a m e t e r s oscillate ] h e n c e , t h e i n t r o d u c t i o n of v i b r a t i o n s on zero e n t r i e s of m a t r i x A is n o t p h y s i c a l l y p o s s i b l e .
Consequently p vibrationally
controllable a r e t h o s e e l e m e n t s aij ~ 0 of A f o r w h i c h i > j a n d aji ~t 0. Remark 4 . 3 . 1. To e s t a b l i s h
the
analogy
between
vibrational
control
and
time-varying
feedback c o n t r o l c o n s i d e r e d in t h e p r e v i o u s s e c t i o n , we mention t h a t
output
for t h e s y s -
tem :
I~ = Ax + Bu Cx the i n t r o d u c t i o n of v i b r a t i o n s V ( t ) i n t o t h e matrix A h a s a similar e f f e c t as a t i m e varying o u t p u t f e e d b a c k c h a r a c t e r i z e d b y :
166
K(t)
B
G = V(t)
or
K ( t ) = B "[" V ( t )
G1
where B f and C+ are the pseudo-inverses 2. I n c e r t a i n the desired
cases,
there
is no need
effect can be achieved
of B and C.
to i n t r o d u c e
vibrations
with large
amplitudes
;
by using only small oscillations of the parameters.
See ( M E E - 7 3 ) .
3.
The
not
design
differ,
method
but
in the
in the
h a s to b e c o n s i d e r e d .
case of autonomous
case of non-autonomous Let the system be given by
:< = A x + B u
x~-R n
and
non-autonomous
systems,
systems
a supplementary
does
condition
:
and u ¢-R m
Suppose that the control ui, i = 1 .... , m , a r e s l o w f u n c t i o n s o f time i n t h e s e n s e du. ~l is bounded ; then the supplementary condition on the vibrations frequendt cies is :
that
t0
> > m a x (sup ~ I]
4.
The determination
tions.
But
in
controllable 84b)
the
element
(TAR-85)
vij(t)
l~
~ij
needs
case
per
the
row,
we h a v e
c o s coij t
then ~ H..2
and finally
~
particular
= a i j s i n ~ij t
13
13
(i,j: l ,...m) (% = l , . . . , m )
of matrix
; indeed
F..(t) = -
e..
)
£
-
2 co;~ 2 LJ
: a i j2
Vij = - aij eij = - aij 2wij
for
a heavy which
calculation :
integration
matrix
A has
of V b e c o m e s
of t r i g o n o m e t r i c only
one
relatively
func-
vibrationally simple
(TRA-
167 4 . 4 . 2 . - S t a b i l i z a t i o n b y v i b r a t i o n a l c o n t r o l (TRA-85) In t h i s s e c t i o n , we c o n s i d e r a c l a s s of s y s t e m s with u n s t a b l e f i x e d modes with r e s p e c t to a s t r u c t u r a l l y c o n s t r a i n e d f e e d b a c k c o n t r o l . T h e dynamic m a t r i x is s u p p o sed to v e r i f y t h e
c o n d i t i o n of T h e o r e m 4.3 so t h a t
the
systems are
vibrationally
stabilizable. To i l l u s t r a t e t h e a p p l i c a t i o n of v i b r a t i o n a l c o n t r o l , let us c o n s i d e r t h e following example • Example 4.3
(TAR-85).
Given t h e t w o - s t a t i o n c e n t r a l l y c o n t r o l l a b l e a n d o b s e r v a b l e
system :
x=
1
1
~1
-l
Y l = [0
0
'3
y2=[3
-1
03
x +
-I 2
uI +
[] 0 0
u2
(4.4.10)
x
its t r a n s f e r m a t r i x is :
: I 2p+5
1>-2 1
(p+l)(p+2)
W(p)
(p-l)(p+l)(p+2)
( ~ '
3p+2 (p+l)(p+2)
It is c l e a r t h a t t h e s y s t e m h a s an u n s t a b l e d e c e n t r a l i z e d f i x e d mode at ;~0 = 1, t h e n any d e c e n t r a l i z e d o u t p u t f e e d b a c k fails to stabilize t h e s y s t e m . C o n s i d e r t h e autonomous s y s t e m a s s o c i a t e d with s y s t e m (4.4.10)
k=Ax~
:
[2, :,I 1
1
I
-I
x
-
This s y s t e m is v i b r a t i o n a l l y s t a b i l i z a b l e , s i n c e f o r c = ( i 0 0 ) ' , t h e p a i r
(c, A) is
o b s e r v a b l e a n d T r A = -2 ( 0. The v i b r a t i o n a l l y c o n t r o l l a b l e e l e m e n t s of A a r e a21
168
a n d a3z (or a12 and a23) for a lower ( u p p e r ) q u a s i - t r i a n g u l a r v i b r a t i o n matrix, These c o n s i d e r a t i o n s lead to the following matrix :
V(t)
0
1 sinm21 t
0J
0
0
0
~2 sin ~2 t
0
r e s u l t i n g in the t i m e - v a r y i n g system : = [A + V(t)]
x
(4.4.11)
The determination of V can be performed b y a p p l y i n g the a v e r a g i n g scheme described in the p r e v i o u s section. Matrix A has only one v i b r a t i o n a l l y controllable element in each row, t h e n in accordance with Remark 4.3 of the p r e v i o u s section, the "averaged" system is :
z : (A+V)z =
I
-2 1 +V 21
1
O 1
1
1
z
(4.4.12a) 1
- 1 +~32
- 1
where a212 V-2l : - a 1 2 - 2~212
~ 2l 2 =-
2t021
2
<0 (4.4.12b)
~2 -
v32
=
~
-a23 2t0322
~2 2 =-
2t032
2
<0
The c h a r a c t e r i s t i c equation of the system (4.4.12) is : det ( p I - A - V ) = p3 + 2p2 _ (1+V21 + V32) P _ 2 - ~21 - 2~32 a n d the stability conditions for this system, e s t a b l i s h e d by u s i n g R o u t h ' s criterion, are :
~21 < 0 V32 < 0 V21 < - 2(1+~32)
169
v21
v32 -l
/'
/
Fig. ~.2
/
The domain D of admissible s o l u t i o n s for t h e s e i n e q u a l i t i e s is g i v e n b y F i g u r e 4.2. By c h o o s i n g Y21 ¢- D a n d V3Z~--D, t h e t i m e - i n v a r i a n t s y s t e m ( 4 . 4 . 1 2 ) i s made asymptotically s t a b l e .
Then,
chosen a c c o r d i n g to ( 4 . 4 . 1 2 b )
if t h e
amplitudes
and
frequencies of vibrations
are
a n d w i t h s u f f i c i e n t l y l a r g e v a l u e s (cf. T h e r o e m 4 . 4 ) ,
the t i m e - v a r y i n g s y s t e m ( 4 . 4 . 1 1 ) is made a s y m p t o t i c a l l y s t a b l e .
4.4.3. - Vibrational f e e d b a c k control laws
The
stabilization method used
in
the
last
section
is
based
on
introducing
v i b r a t i o n s on t h e p a r a m e t e r s of t h e s y s t e m model. From a p r a c t i c a l p o i n t of v i e w , this can b e p e r f o r m e d b y a c t i n g on t h e t e c h n o l o g i c a l p a r a m e t e r s of t h e s y s t e m . T h i s implies, f i r s t ,
that
one k n o w s t h e e x p l i c i t e x p r e s s i o n s of t h e model p a r a m e t e r s as
functions of t h e t e c h n o l o g i c a l p a r a m e t e r s and s e c o n d , t h a t some p h y s i c a l e n t i t i e s of the s y s t e m can b e d e s i g n e d so t h a t t h e y h a v e a v i b r a t o r y v a l u e . The f i r s t r e q u i r e ment is n o t g e n e r a l l y s a t i s f i e d s i n c e t h e s y s t e m model is o f t e n o b t a i n e d b y i d e n t i f i c a tion m e t h o d s . N e i t h e r is t h e s e c o n d r e q u i r e m e n t : a l t h o u g h it may b e c o n s i d e r e d to give a v i b r a t o r y value to an e l e c t r i c a l e n t i t y , ments.
The
domain of a p p l i c a t i o n of t h e
t h i s is i m p o s s i b l e for mechanical e l e -
a b o v e m e t h o d is
therefore restricted
to
specific c a s e s . The a p p r o a c h p r e s e n t e d in t h i s s e c t i o n u s e s at t h e same time v i b r a t i o n a l a n d feedback c o n t r o l t h e o r y . The a b o v e d i f f i c u l t i e s a r e t h u s
encompassed by introducing
the v i b r a t i o n a l c o n t r o l action t h r o u g h t h e f e e d b a c k ( R U N - 8 5 ) . Consider the system
(4.1.3)
and,
for s i m p l i c i t y ,
case of S>2 s t a t i o n s will be c o n s i d e r e d s u b s e q u e n t l y ) . controllability
and
observability
assumption,
make
the
case
S=2
(the
general
In addition to t h e c e n t r a l i z e d
the
following
connectivity
as-
sumption :
ClB 2 $ 0 ,
C 2 B 1 *0
(4.4.13)
170 which guarantees 81a)
that the system has no structurally
(COR-76a,b),
fixed modes of type
(i)
((SEZ-
see § 2.2.3)
Apply the following dynamic controller to the system
(4.1.3)
:
ul(t ) =ae K I (t) Yl(t) + Vl (t) u2(t ) - K 2 (-~ Y2(t) (t)
=
(4.4.14)
F (--t 6) ~(t) + G (--~ Yl(t)
~l(,) + H (t) ~;(t) + L (t) y~(t)
where
all t h e m a t r i c e s
have
almost periodic
entries
and
~ is t h e
state
of the
con-
t r o l l e r o f d i m e n s i o n v. T h e n t h e c o n t r o l l e d s y s t e m is :
~-
Ax + -a- Bl K 1 (~)ClX + B2 K 2 ~ ) C 2 x E
Yi : Cix
t
With ~ (~-)
being
+ B1 v1
(4.4.15)
i=1,2
a fundamental
matrix
t
f o r ~- B1KI(~-)_
C 1, d e f i n e t h e t r a n s f o r m a -
tion
x(t) = ~ (~) z (t) Consider
(4.4.16)
the almost periodic,
C1BI Q(t))
differentiable
m1 x r 1 matrix
O (t)
such
that
(I +
i s n o n s i n g u l a r f o r all t a n d : ¢
I
= Q (t) (I + C I B I Q
T h e n we h a v e
:~-I A~z4[B l B2]
I Pc'K2"K2c2B' B1Q Qpc, c2K2"K21I'Iz -12 Bivl (~.#.17)
171
where
p ( tc)
= _ Q (I)
(z + ClB 1 Q ( t ) ) - I
The c o n t r o l l e r in ( 4 . 4 . 1 4 ) is chosen as
= F ~+ G (I + CIB 1 Q ( t ) ) - 1 Yl
(4.4.18)
v I = (I + p(t) CIBI)-I H ~+ (I + P(~) CIBI)-I L (I + CIB 1 Q(t))-I Yl where F, G, H and L are constant matrices of appropriate dimensions. After some manipulations, (4.4.17) and (4.4.18) can be written as [PCI B2 K 2 C2 S 1 Q z
L
PC'B2K 1 VC]z
÷ BILCIZ+BIH (4.4.19)
/ K2C2BI Q
~:F~+GCIZ
Taking a v e r a g e s 3 in (4.4.19) gives the following time-invariant system :
(4.4.20)
= Ag + B1LCI~ + B1H : F 3 + c c1~
where~ = ~ +
1 2LF21 F22j
C2
1
3The average of an almost periodic matrix M (t) is given b y : M = lira .j../TF T ÷ooT.,'O
M (T) d'~
172
~" = ~ - 1
F
A ~= A + BI"~CIA + ABIQC 1 + B I P C I A B I ( ~ C 1
l
l
= PC1B2K2C2B1Q
r12 = PC1B2K2
F21 = K2C2B1Q
F22 = K 2
T h e a v e r a g e r can b e a s s i g n e d b y c h o o s i n g K1, a n d h e n c e Q, a n d K 2. I t is shown in
(RUN-85)
that an appropriate
trollable and observable.
choice of F c a n make t h e t r i p l e
Therefore,
(~,
u s i n g t h e r e s u l t s of ( B R A - 7 0 ) ,
B 1, C 1) con-
t h e m a t r i c e s L,
H, G a n d F ( w h e r e ~ i s of d i m e n s i o n ~ = rain (~)o-1, ~)c-1), ~)o(~c) b e i n g t h e o b s e r vability
(controllability)
index
of
(4.4.19))
can
be
chosen
such
that
the
system
( 4 . 4 . 2 0 ) is made a s y m p t o t i c a l l y s t a b l e . T h e n , u s i n g t h e r e s u l t s of (MEE-73) a n d
(BOG-61),
t h e main r e s u l t s h o w n in
(RUN-85) is t h a t ¢0 c a n b e s e l e c t e d so t h a t t h e s y s t e m ( 4 . 4 . 1 9 )
also b e c o m e s s t a b l e
for all 0 < c < E 0 a n d b y ( 4 . 4 . 1 6 ) so does t h e o r i g i n a l s y s t e m ( 4 . 4 . 1 5 ) . T h e following t h e o r e m s u m m a r i z e s t h e a b o v e d i s c u s s i o n T h e o r e m 4.5 ( R U N - 8 5 ) . A s s u m e t h a t ( 4 . 4 . 1 3 ) h o l d s . T h e n t h e r e e x i s t s a n ¢0 ) 0 and a c o n t r o l l e r of t h e form ( 4 . 4 . 1 4 )
t h a t e n s u r e s t h e a s y m p t o t i c s t a b i l i t y of t h e s y s t e m
( 4 . 1 . 3 ) for all 0 ( E-~ E 0. The subsequent
algorithm
(RUN-B5)
is t h e n p r o p o s e d
for t h e d e s i g n of the
controller (4.4.14). S t e p 1 : Choose
feedback matrices
controllability any Kl(t)
and
observability
any K2(t),
Step 2 : Design a linear,
and
K 2 ( ~t)
properties
(almost
K1 (!¢)
that achieve the desired any r and,
consequently,
works(POT-79)).
time i n v a r i a n t ,
dynamic f e e d b a c k c o n t r o l l e r for t h e a v e -
raged system (4.4.20). S t e p 3 : S u b s t i t u t e t h e p a r a m e t e r s of t h e c o n t r o l l e r from s t e p 2 i n t o t h e c o n t r o l l e r for t h e o r i g i n a l s y s t e m u s i n g ( 4 . 4 . 1 8 ) .
With c s u f f i c i e n t l y small, t h i s c o n t r o l l e r
e n s u r e s t h e a s y m p t o t i c s t a b i l i t y of ( 4 . 4 . 1 5 ) . Example 4.4 ( R U N - 8 5 ) . C o n s i d e r t h e following s y s t e m :
A =
173
°l
0 0
0 0
which h a s a s t r u c t u r a l l y
2
B1 :C
f i x e d mode of t y p e
1
(ii) at X0: 0. T h e s y s t e m is c e n t r a l l y
controllable a n d o b s e r v a b l e a n d C1B 2 = C2B1 = 1 ( c o n d i t i o n (4.4o13) is s a t i s f i e d ) . In t h i s c a s e , t h e s y s t e m ( 4 . 4 . 1 9 ) is g i v e n b y :
2]vc1 z iLcz iN
K2 : ~ - 1 A ~ z + [ B i B 2 ]2l qF "
"2 LC2]
LqK2 ~:
(4.4.21)
F { +GCIZ
Choose q = ¢~-sin
t E
' K2 =
"r+/~" B sin __t and therefore c
K 1 : q(l + CIBIq)-I
: 1'2"----~ac o s t g c
Since
::~-IA~=
[ 101 0 0
and t a k i n g a v e r a g e s in ( 4 . 4 . 2 1 ) , - a6
1
~0
1
=
0 0
0 0
: A,
0
the system (4.4.20) is given by :
2 - ~'a
1
0
0
y
0
a6
+ B I L C I g + BIH (4.4.22)
~"= F ~+ G CI :
Since the
triple (~,
B 1, C I) is controllable
and
observable
choose for example a = 6 = y = 1. The dynamic compensator order a (Vo = Vc = 3). Set the matrices :
for alla,6
and "¢,
for (4.4.22) must be of
174
oI
F = 0 then
(4.4.22)
The
,L=I
13 =
,
2
can be rewritten
compensator
i + j, -1,
h 2]
f2
I:l -
H = [h I
-1,
as :
-1
1
1-1
hI
h2
1
0
0
0
0
1
0
1
0
0
0
0
gl
fl
0
0
0
g2
0
F2
coefficients
are
I:]
chosen
to
have
the
closed-loop
eigenvalues
at
-2 :
fl = -3 +/5 1=-12
=- 0,764
/5
f2 = - 3 -
[-90/5"-" 1122)/5 10-5]
h i = g l =L
= - 5,236
= 0,106
[ 10,+0'7/,11~ The resulting
time-varying
0
1
1
0
system
_ 1 $2_2 E:2 c o s - t
6,850,
0
0
0
0
0
0
= 0,764
0
0
0,146
0
0
6)850
Therefore,
in
the original system
(4.4.23)
spite
existence
I:J
(4.4.23)
-5,236
0
is asymptotically
of the
has been
is
0,1o,6
0
Simulations show that
(4.4.15)
s t a b l e if ~ < 0 , 1 ( R U N - 8 5 ) .
of a d e c e n t r a l i z e d
stabilized by decentralized
unstable
vibrational
fixed
feedback
mode,
control.
175 Remark 4 . 4 . 1.
Although
the
above
control, i t s f e a t u r e (Kl(t)
stabilization
is t h a t
approach
combines
vibrational
t h e d e s i g n of the c o r r e c t i n g
and
feedback
vibrational control
action
a n d K 2 ( Et )) a n d t h e f e e d b a c k c o n t r o l law (L, H, G, F) can b e c o n d u c t e d
independently.
The f e e d b a c k c o n t r o l d e s i g n is d o n e for a much simpler l i n e a r time-
invariant system.
However,
in r e g a r d
to t h e o r i g i n a l s y s t e m , t h e v i b r a t i o n a l c o n t r o l
action t a k e s place t h r o u g h t h e f e e d b a c k . 2. In t h e g e n e r a l case of S ) 2 s t a t i o n s ,
(4.4.13)
m u s t b e r e p l a c e d b y t h e following
condition : 3 1 X ( ix( S s u c h t h a t GiBj $ 0 a n d CjBi 4: 0,
1,,( jx( S,
j $ i
(4.4.13')
and the c o n t r o l l e r ( 4 . 4 . 1 4 ) becomes : Pi = c* ~- Ki(_tc) y i ,
l..< i K s
vi
i<
pj = K} (t) Yi ¢=FO
¢+GOY
j /i
i 4s
(4.4.14')
i
vi = H (~ ¢+ L {~) Yi
Then T h e o r e m 4.5 r e m a i n s t r u e with ( 4 . 4 . 1 3 ' ) a n d ( 4 . 4 . 1 4 ' )
in place of ( 4 . 4 . 1 3 ) a n d
(4.4.14), respectively.
4.5. - CONCLUSION In t h i s c h a p t e r ,
it is s h o w n t h a t s y s t e m s with u n s t a b l e non s t r u c t u r a l l y
modes can b e s t a b i l i z e d b y u s i n g t i m e - v a r y i n g or n o n - l i n e a r f e e d b a c k which p r e s e r v e
the
feedback
structure
constraints.
The
use
fixed
c o n t r o l laws
of sample
and
hold
(WAN-82) ( O Z G - 8 5 ) , t h e a p p l i c a t i o n of piecewise c o n s t a n t o r sinusoTdal f e e d b a c k laws (AND-81b)
(PUR-82),
system p a r a m e t e r s
and
the
introduction
of
almost
periodic
vibrations
on
the
(TRA-85) or t h r o u g h t h e f e e d b a c k (P, UN-~5) a r e d i f f e r e n t s t a b i l i -
zing a p p r o a c h e s w h i c h e r e p r e s e n t e d in t h i s c h a p t e r .
176 Obviously,
t h e s a c r i f i c e of l i n e r e r i t y o r time i n v a r i e n c e of t h e c o n t r o l b r i n g s
d i f f i c u l t i e s in t h e a n a l y s i s of s u c h c o n t r o l l e d s y s t e m s ,
e v e n of small d i m e n s i o n a l i t y .
T i m e - v a r y i n g s y s t e m s a n a l y s i s m e t h o d s o r a v e r a g i n g s c h e m e s m u s t be u s e d . On a n o t h e r uneonvenient. constraints
hand
the
Consequently
i m p l e m e n t a t i o n of s u c h it
is
the
authors
control
believe
(if p o s s i b l e ) is a more r e a l i s t i c a p p r o a c h .
that
laws m a y be p r a c t i c a l l y relaxing
the
structure
T h i s a p p r o a c h is i n v e s t i g a t e d
in t h e following c h a p t e r a n d s e v e r a l a l g o r i t h m s a r e p r o v i d e d .
CHAPTER
CHOICE
OF FEEDBACK
5
CONTROL
STRUCTURE
TO
AVOID
FIXED MODES
5.1. - INTRODUCTION
Chapter origines.
III p o i n t e d
Fixed
modes
out that
arising
such as non structurally controllable under prevent
for t h e
design
since they systems.
of s u c h they
require
using
Moreover,
encountered resulting
when
from
(decentralization
laws
option,
which
for example),
allows
of a time-invariant, relaxed.
been
existence of structurally tion t r a n s f e r
between
Therefore,
to
Note
also
than
linear that
fixed modes of type
stations
relaxing
is
the
under
constraints
on
systems nonlinear
problems
way
can be
the total cost
law f o r w h i c h
(i) w h i c h a r i s e
chapter.
or
structural
only
of
methods
dimension
Consequently,
the
and are uncontrollable
the structural
and
specifications
the cost associated
control
this
small
some physical
laws.
constraints
the property
for time-varying
preserve
may be higher
and implementation have
control
values
(ii) r e m a i n
in t h e p r e v i o u s
for
tools
point of view,
such
traints
even
either
approaches
presented
analytical
from the practical implement
been
parameter
the structural
Different
difficulties
the
to t h e i r
of such fixed modes does not
[towever,
sacrified.
have
analysis
in
according
fixed modes of type
The existence
be
appropriate
trying
this
configurations
to t h e s y s t e m .
must
control
involve
classified
e c o n t r o l law s a t i s f y i n g
beheviour
o r of ] i n e a r i t y
Unfortunately,
special
constraints.
of f i n d i n g
which gives a satisfactory time-invariance
from
be
fixed modes or structurally
structural
the possibility
fixed modes can
to t h e d e s i g n
structure
to
cope
cons-
with
the
from a lack of informa-
structural
the control
constraints. seems
to b e
the
most c o n v e n i e n t
w a y to s o l v e t h e s t a b i l i z a t i o n o r p o l e p l a c e m e n t p r o b l e m in p r e s e n c e
of f i x e d m o d e s .
The
purpose
methods for the design are based
of this
chapter
of an appropriate
on t h e d i f f e r e n t
characterizations
is
feedback
to
present
the
different
control structure.
These
of fixed modes which were
available methods
presented
in
178 chapter
3 : one
can
be
more
appropriate
s i t u a t i o n we a r e d e a l i n g w i t h .
than
- t h e s y s t e m is p h y s i c a l l y p a r t i t i o n e d different
geographical
clear that
the
locations
decentralized
another
Roughly speaking,
of t h e
structure
in s e v e r a l
inputs
depending
and
w o u l d be
stations,
the
the
by
the
existence
of
of f e e d b a c k
fixed links
modes. between
The
optimality
two d i f f e r e n t
due
outputs.
the
type
of
f o r e x a m p l e to
In this
most appropriate.
will t h u s be to d e t e r m i n e t h e minimal i n f o r m a t i o n e x c h a n g e s
number
on
two t y p e s o f s i t u a t i o n s c a n o c c u r :
it is
purpose
between stations required
criterion stations
case,
Our
or
can
be
chosen
as the
cost
as
the
associated
w i t h t h e i m p l e m e n t a t i o n of t h e s e f e e d b a c k l i n k s .
either
-
present
the
respect
to t h e
the system does not reflect a prespecified
particularity
that
the
c o s t of a f e e d b a c k
c o s t of a local between
partitioning or the stations
feedback
two d i f f e r e n t
w a n t to d e t e r m i n e t h e minimal c o n t r o l s t r u c t u r e ( s )
is
not
neglectable
stations.
In this case,
with we
f o r w h i c h t h e s y s t e m h a s no fixed
m o d e s . T h e y will g e n e r a l l y a p p e a r w i t h o u t all t h e local f e e d b a c k s .
Note Indeed, costs
the
resulting
from
the
to t h e
local
feedbacks.
Therefore,
PRESPECIFIED
FEEDBACK
situation
is
more
all
the
methods
for the p a r t i c u l a r
general.
to z e r o the
which
will be
case.
CONSTRAINTS
- Preliminaries
Since t h e e x i s t e n c e of f i x e d m o d e s a r i s e s control structure,
the most natural
constraints
to
;
i.e.
introduce
x (t) = A x ( t )
f"
+
S Y: i=l
Yi(t) = Ci x ( t ) :
B = EB 1 .....
BS3
C' =Ec/ . . . . . % 3 u,{t)
= Eff{t
y'(t)
=
.....
Ey{(t) . . . . .
y~(t)']
from t h e
constraints
i m p o s e d on the
w a y to eliminate t h e m is to p a r t i a l l y r e l a x t h e s e
additional
C o n s i d e r the following s y s t e m ( C , A , B )
where
second
in t h e g e n e r a l f r a m e w o r k c a n also be u s e d
- RELAXING
5.2.1.
problem
f i r s t p r o b l e m c a n be f o r m u l a t e d in t h e s a m e w a y b y s e t t i n g
associated
presented
5.2.
that
the
information
exchanges
between
stations.
:
Bi u i ( t ) (i = 1 .
. . . .
S)
(5.2.1)
179 with x ( t )
~n and ui(t)
S m = [~1- mi'
p, mi , Yi(t)
S r = iE i,
ri
Rri,
and
i -- 1 . . . . .
S is t h e
S.
number
of c o n t r o l e n d
observation
stetions. If t h e
control
matrix K a p p e a r s
is
subject
to a d e c e n t r a l i z e d
with a block diagonal structure
ciated with a local f e e d b a c k
(K
l~d).
structure,
the
output
feedback
w h e r e e a c h d i a g o n a l b l o c k is a s s o -
Suppose
that
the set of decentralized
fixed
modes is n o t e m p t y ( A ( C , A , B , ~d ) # 0) ; t h e p r o b l e m is t h u s to d e t e r m i n e a n e w s e t fl* s u c h
t h a t f2d
C ~*
and A(C,A,B,~*)
=
0.
The
b e t w e e n some s t a t i o n j a n d some s t a t i o n i a p p e a r s nal block in t h e f e e d b a c k m a t r i x
additional
information
transfer
b y t h e a d j u n c t i o n o f an o f f - d i a g o -
:
f i.
.
.
.
•
"F"
K
C
.
fld
.
i
.
/
4- --_72 1t_ _J .
.
.
'
"
The new structure
"
P--
Cfl*
K
A (C,A,B ~d ) / /
'
A (C,A,B,~*)
is d e t e r m i n e d
with r e s p e c t
can be e i t h e r t h e n u m b e r of s u p p l e m e n t a r y
1
--
to an o p t i m 2 l i t y c r i t e r i o n w h i c h
feedback links between different
stations
or t h e i r a s s o c i a t e d c o s t ( s p e c i f i e d from p h y s i c a l c o n s i d e r a t i o n s ) .
5.2.2. - Wang a n d D a v i s o n p r o c e d u r e Given t h e s y s t e m
(5.2.1),
mining a c o n t r o l s t r u c t u r e
(WAN-78e)
Wang a n d D a v i s o n c o n s i d e r e d
t r a n s m i s s i o n c o s t . C o n s i d e r t h e following s e t o f m a t r i c e s I K(rij, i , j = l . . . . .
the problem of deter-
allowing the stabilization of the system and minimizing the
S) = {K/K = b l o c k {Kij} --
K . . C R m i x r j , r a n k K.. = r.. } 11 11 1]
:
KII
...
K. I 5 1
KS1
...
KSSJ
(5.2.2)
180 and
define
as
station j per
z.. the 2j
cost
of transmitting
unit of time. Each feedback
a time function cost resulting
5
The problem
Z
j=l
i:l
can thus
trices
i to
the transmission
of
hi C , A , B , K ( r i j ,
(5.2.3)
r.. z..
1]
p
be formulated
i,j=l .....
S)]
a s follows :
:~ (rij, i,j=l
rnin (mi,r j)
w h e r e f ~ - is t h e h a l f l e f t h a n d
°I(A)
law u i = Kii Yi r e q u i r e s
from station
S
Z
Min 0 ..< rij 4
Every
time function
w i t h r.. c o m p o n e n t s f r o m s t a t i o n j to s t a t i o n i . T h e t o t a l t r a n s m i s s i o n 1] from the implementation of u = K y, K K ( r i j , i,j--1 . . . . . S) i s :
~(rij, i,j=l ..... S) =
under
a scalar
c
..... S)
~-
(5.2.4)
side complex plane.
sub-matrix
K.. o f r a n k r.. c a n b e w r i t t e n a s t h e p r o d u c t o f t w o s u b m a i} Il : Kij = Lij Mij, w h e r e Lij is o f s i z e m i x rij a n d Mij i s o f s i z e rij x r j . If
= {~1 . . . . . kq}
is the set of unstable
is s a t i s f i e d if a n d o n l y if t h e r e
det
(k i I - A - B [ b l o c k
eigenvalues
of A,
e x i s t Lij a n d Mij s u c h t h a t
then
condition
(5.2.4)
:
(5.2.5)
{Lij Mij}] C)
~¢~i ¢ °i(A) is n o t i d e n t i c a l l y Condition
zero. (5.2.5)
mode with respect At t h i s apart
of the feedback
step,
iteratively
Wang a n d
the worse
is only a finite number be solved testing be
0)
means that
n o n e of t h e u n s t a b l e control u =
Davison
solutions
(WAN-78a)
of steps.
in c h o o s i n g Their
L.. M.. lJ 11
did
from the others.
of possibi]ites
in a f i n i t e n u m b e r
block
eigenvalues
not
y,
give
any
the choice of the
set
(rij,
i,j=l .....
S),
begining
by
lowest cost. This is illustrated Example 5.1.
Consider
by the following example
:
t h e f o l l o w i n g s y s t e m w i t h two s t a t i o n s
to set
that
minization problem
procedure
consists
all t h e p o s s i b i l i t i e s g i v e n b y t h e c h o i c e o f t h e c o n t r o l s t r u c t u r e and
criteria
Given the argument
rij ms, t h e
search
o f A i s a fixed
:
those
there can
c o a r s e l y in
( s o m e Kij can involving
the
181
0
0
0
0
yl:EO
[ 01
x t
0
l
0
0
ul
+
E°] 0
u2
i
o l]×
o o] Y2 =
1
0
x
end d e f i n e Z l l = z22 = O, z12 = 1 a n d z21 = 2 . 1. O b v i o u s l y ,
we c o n s i d e r
first the decentralized
feedback
represented
by the set
:
0 03_j
K 1 = K (rll
=
r22
=
1,
rl2 : r2l = 0)
[-kLl ;, ~_~2-1--I,. . . . .o. . . { i
The corresponding
F(p;
fixed polynomial of (c:,h,-,)
C , A , t 3 , K 1) = g . c . d
{det
oF<
,k..~R} lj
k32
is :
(pI - A - r~:c)}
= p
K£K I T h e r e f o r e w i t h local f e e d b a c k s ,
2. Now, c o n s i d e r
t h e s y s t c m h a s a f i x e d m o d e at t h e o r i g i n .
t h e c a s e in w h i c h we h a v e e t r a n s f e r
K2 = K ( r l l = r22 = r21 = 1, r l 2 = 0) :
and t h e c o s t is ~ ( r l l
= r 2 ] = r 2 2 = 1,
{
rl2
from station
1 to s t a t i o n
kll k21
0 0
0 0
k31
k32
k33
= 0) = 1. T h e
2 :
1 , k i j C R}
f i x e d p o l y n o m i a l is a l s o
equal to p ; K 2 i s n o t a n a d m i s s i b l e s o l u t i o n . 3, F i n a l l y ,
consider
t h e c a s e in w h i c h we t r a n s m i t
o b s e r v a t i o n a t s t a t i o n 2 to s t a t i o n
] :
a single linear combination of the
182 kll K 3 = K ( r l l =r22 = rl2=l, r21 = 0) = | k a l L 0
and the associated cost is
k12 k22 k32
k23
k,3l
kij
rank kI2
G R,
k22
k33
k23
( r l l = r21 = r22 = 1, r21 = 0) = 2.
The r a n k c o n s t r a i n t can be e x p r e s s e d by :
[,2,2 ,3kll [2] g
1
I1
where f l ' f2' g l and g2 are a r b i t r a r y real n u m b e r s .
I g.c.d
{det
Ii' gi' kij
The fixed polynomial is now :
P-flgl
-fig2
-kl 1 1
-I2g 1
p-f2g 2
-k21
-k33
p+2
-k32
}
= 1
i=1,2 such that the system has no fixed modes anymore. If we choose :
f l = f2 = k l l = 1 : gl = k21 = k33 = 0 ; g2 = k32 = - 1 all the poles of the system are located at - l . T h o u g h in the case of the example the solution is obtained in 3 s t e p s ,
it is
clear that the number of possibilities to be t e s t e d i n c r e a s e s rapidly with the dimensions of the system. In consequence~
this procedure cannot be used for large scale
systems which are effectively those requiring
structural constraints in the contro|
and minimization of the information transmission cost.
5 . 2 . 3 . - Armentano and Singh ' p r o c e d u r e (ARM-82) Armenteno and (5.2.1)
Singh p r o c e d u r e
called i n t e r c o n n e c t e d
For s u c h s y s t e m s ,
systems
is limited to the p a r t i c u l a r class of systems and s a t i s f y i n g
the specifications
in
(3.3.7).
t h e y g a v e a c h a r a c t e r i z a t i o n of fixed modes b a s e d on the block-
diagonal dominance p r o p e r t y (see § 3 . 3 . 3 . b - 2 - ,
Chapter III).
183 Given the system u = K y where
with
(3.3.7),
consider
matrices,
i c {1 . . . . .
of
Corollary
S} s u c h t h a t
[[ (Aii - k 0
t h e n we h a v e
3.3
to
(A
to t h e t w o c o n t r o l s t r u c t u r e s +
BKC),
K ~ ~F~
shows
Chapter
II).
~d and flF' the
that
there
exists
:
[I-' 4 ~!l[IAii +.
I)-1
:
(see § 2.2.2.,
c h ( C , A , B , ~d)
If k *0 i s a f i x e d m o d e w i t h r e s p e c t application
law o f t h e f o r m :
and ~d ~- ~F
K ~ 12F
9d is t h e s e t o f b l o c k - d i a g o n a l
A(C,A,B,~ F)
a feedbeck
(5.2.5)
B i Kij Cj II
j,q V
K.. E R m i x r i , n
Therefore, (i,j=l . . . . . S ) . = "S =
~ K.. ~ R m i x r j 1]
as a particular
Define the sets
case,
(5.2.5)
is a l s o v e r i f i e d
f o r Kii :
0, Kij -- 0,
:
{i ~ {1 .....
S} / ( 3 . 3 . 1 0 )
{i6{1
S} [ ( 5 . 2 . 5 )
.....
a n d i$j.
is satisfied)} is satisfied)}
then w h e h a v e S c: S .
Consider know t h a t
that k 0 is a decentralized
if k 0 r e m a i n s
fixed mode.
a fixed mode with respect
From the above
to a n o t h e r
discussion,
control structure,
we the
~d
K.. 's c a n b e s e t to z e r o f o r i 6 S w i t h o u t a f f e c t i n g t h e s i t u a t i o n . ~ t o r e o v e r , ( 5 . 2 . 5 ) 1j is s a t i s f i e d f o r a s u b s e t o f i n d i c e s of ,~. In o r d e r to e l i m i n a t e t h e f i x e d m o d e , A r mentano and
Singh propose
indices i ~ ~.
s u b s e t o f {1 . . . . . fixed m o d e ,
S}.
corresponding
: Consider
0
if the
system
can be used
has
replacing
more than
one
decentraIized
~ b y t h e u n i o n o f t h e s e t s ~i
the following system l
0
0
0
0
0
0
l
0
0
l
x22/
o
o
o
o
X3l
0
0 ~J 0
i
x32]
o
o :o
o
x12 / =
,' 0
to t h e
can be applied only when ~ is a proper
to e a c h f i x e d m o d e k i .
-"711 ] x21 /
the off diagonal submatrices
this strategy
Note a l s o t h a t
the same approach
corresponding Example 5 . 2
to a d d
It is c l e a r t h a t
0
0
Xll Ix 12
J 0 l 0
0 1
I
0
0
x22
!t
0
1
x3i
', o
o
x32
I
i 0 i 0 J i J 0 ! 0
o-
x21
*
o
:l,,O
0
: 0
! l
184
The decentralized
and,
control laws are of the form
w h e n a p p l i e d to t h e s y s t e m ,
:
the following closed-loop
m a t r i x is o b t a i n e d
:
I
A+BK
0
I
kll
k12
1
0
0
0
I 0 0 I I I 0 0 $. . . . . . . . . . . . . . I i I I
=
0
0
0
0
The system
has thus
I I ~I
0
l
k21
k22
0
1
0
0
a decentralized
Using the following matricial norm
IIAI]
0 0
I I I I
0
1
0
0
I I t ,
0
l
k31
k32
f i x e d m o d e a t t h e o r i g i n e X 0 = O.
:
£1aij l
= m a~x
= 0 satisfies
I 0 I I I 0 e . . . . . . . . . . .
j
(3.3.10)
for S =
[] ~i~ -'ll-I
2,3
:
• k,al max
It c a n e a s i l y b e v e r i f i e d
:
-kil
i
,:l
i:2,3
+ -1 kil ) ,
t h a t ~ 0 = 0 r e m a i n s a s a f i x e d m o d e f o r K* w h i l e it is
e I i m i n a t e d f o r K** :
K11 0
K*=
Though that
K22
K23
K31
K32
K33
the
it is b a s e d
01
K21
efficiency on
of the
a sufficient
[11 KIaK,3 K22 0
above
(and
K**=
not
procedure necessary}
cannot
0
K33
be
condition
contested, for
the
the absence
fact of
185
fixed m o d e s m a k e s rows
(indices
i)
it r o u g h . where
the
Indeed,
it o n l y allows t h e
addition
of
elimination of the fixed modes. or on t h e
number
ding example, suboptimal. subset
The
o f {1 . . . . .
off-diagonal that
can
by
any
using
this
be
concluded
I ) , in w h i c h c a s e n o n e i n f o r m a t i o n
tion is i l l u s t r a t e d
the following system
0
I 0
d ]--o I
Lx2.1L o
o
, o
Ly2JL o
o
i
With a d e c e n t r a l i z e d
the
on t h e i n d i c e s j
If we c o n s i d e r
O in K**,
the
procedure
is
the prece-
fixed mode is thus
obviously
c a s e f o r w h i c h ~ is a p r o p e r
after
the
evaluation
can be drawn
out.
of
(3.3.10)
This situa-
feedback
0
Xl
1
-
:
Ul 0 IFt /oi ..... [°Io
Lol
o
o
c o n t r o l law K = b l o c k
i.jLo=,
(Kll,K22),
the closed-loop
: 1
0
0
1
kll
kl2
0
0
1
0
k21
1
0
0
k22
0
A+BKC:
and the system
block-
certifies
by the following example :
Consider
m a t r i x is g i v e n b y
of the
matrices
information
submatriees.
i s l i m i t e d to t h e
only
determination
off-diagonal
if K13 r e m a i n s
obtained
its application
S} ( w h i c h
for e a c h i = l , . . . , S
Example 5 . 3 .
solution
Moreover,
the
It d o e s n o t p r o v i d e
of necessary
it i s e a s i l y v e r i f i e d
also e l i m i n a t e d .
all
has a fixed mode at the origin.
Unfortunately,
since
:
186
IIAII-III-I
1
'
m~×{l,
<= l
I. I 'kl2
IIA22 1[1 i
+ kij)} k12
l
=,
m a x {__1_1 k22
= {1,2}
5.2.4.
is n o t a p r o p e r
- Approach
based
The procedure fixed modes using
subset
of
{1,2} a n d t h e p r o c e d u r e
on the system
proposed
their
, (1 + k2------L)} k22
in t h i s
sensitivity,
modes sensitivity paragraph
cannot be applied.
(TAR-84)
is b a s e d
which was presented
(TAR-85)
on t h e c h a r a c t e r i z a t i o n in Paragraph
2.4.2,
of
chap-
t e r II a n d a p p l i e d to t h e i r e v a l u a t i o n . Given
a prespecified
closed-loop
eigenvalue
structural
which
constraint
remains
matrix
(see
on
insensible
Definition
the
to
entries
of the
feedback
2.7).
sitivity
matrix
SK r o f a m o d e )~r ( s e e D e f i n i t i o n 2 . 8 ) ,
control,
any
a fixed
variations
From the
of
definition
it w a s s t a t e d
m o d e is a the
nonzero
of the
sen-
t h a t ;~r i s a fixed
m o d e if a n d o n l y if SK subjected nonzero
to
is i d e n t i c a l l y z e r o ( s e e T h e o r e m 2 . 6 ) . If t h e c o n t r o l is not r structural constraint (i.e., full f e e d b a c k is a l l o w e d ) , t h e n the
any
entries
of the
sensitivity
matrix
matrix which may affect the corresponding Theorem
5.1
feedback
pattern
the feedback
K~ r and
SK
indicate the elements of the feedback r m o d e ~r" T h e f o l l o w i n g t h e o r e m c o m e s :
(TAR-85).
;~ i s n o t a f i x e d m o d e o f t h e s y s t e m w i t h r e s p e c t to a r K ~ flF if e n d o n l y if a t l e a s t o n e e l e m e n t o f t h e s e t K;~r a p p e a r s in
m a t r i x K , w h e r e KAr is d e f i n e d b y
:
= {kij ! ( S k r ) i j ~ 0 }
(Skr)ij This
are the entries theorem
feedback
links
Consider
that
provides
which
performs
the system
l i n k s K* m u s t s a t i s f y
of the sensitivity
:
has
a
simple the
way
m a t r i x SK r . to
elimination
q fixed modes,
determine of
the
the
fixed
set modes
of supplementary of the
then the set of supplementary
system. feedback
187 Card where
(K*
n Kxk)
K Xk = { k i j
I
(SKk)ij
evaluated with respect Remark 5.1.
>i 1
(k=l
. . . . .
¢ 0} a n d
q)
SK k i s t h e
sensitivity
matrix
of the
m o d e Xk
to a f u l l f e e d b a c k .
We r e c a l l t h a t t h e e v a l u a t i o n
is d i f f i c u l t to p e r f o r m
(see
§ 2.4.2).
of the sensitivity
This approach
matrix of a multiple mode
should
thus
be limited
to s y s -
tems w i t h s i m p l e m o d e s . Note t h a t sets KXK.
K* c a n
Indeed,
(K* n K,•)
)
generally
if K)d
1 so that
c
be determined
KAj , i#j a n d
Card
,,Fhj c a n b e s u p p r e s s e d ,
without
taking
into
account
all t h e
(K* n K)i ) >j1, it follows t h a t C a r d q ~ q sets
need
to b e
considered
i n s t e a d oF q . T h e p r o b l e m is t h u s Problem 5 . 1 . Card
the following
F i n d K* s u c h t h a t (K* n KX ) >/ I
:
: (i=l . . . . .
~ < q)
1
If we c o n s i d e r
that
is c l e a r t h a t o u r i n t e r e s t the t o t a l c o s t r e s u l t i n g
Consider
K• .
the
a different
cost
is to d e t e r m i n e from the feedback
set
of
elements
is a s s o c i a t e d
with every
feedback
K*. solution of Problem 5.1,
link,
it
and minimizing
l i n k s i n v o l v e d in K * .
constituted
by
the
union
of
all
retained
sets
:
l
Z =
q E K~,i i=l
Card
Z = z ~<
Remark 5.2. an i n p u t .
Every
So f a r ,
m
x r
element of Z represents the notation
the input i. For convenience, Associate
a c o s t c i ~/
lowing b o o l e a n v e c t o r
:
a feedback
link between
an
output
w a s k.. f o r a f e e d b a c k l i n k b e t w e e n t h e o u t p u t 11 t h e e l e m e n t s o f Z a r e r e n a m e d zi, (i--1 . . . . , z ) .
0 with
every
feedback
link
zi of Z a n d
define
and j and
the
fol-
188 W -- (w I . . . . . with
= ~ 1
Wr)' if z i
£
K*
Wi
L0
otherwise
Define also the following matrix
: /,
L = (1..)i=l . . . . . ~ *J j=l, . . . . , z
The problem tem has gram
with
if
1.. = l l U
to
of finding
z. 1
K )~i
otherwise
the minimum information
no fixed modes can thus
be formulated
pattern
K* s u c h
that
the sys-
by the following boolean linear pro-
: Z
Problem 5.2.
min
Y. c. w_ j-I l J
Z under
J=ZI
lij wj ~ 1
Now,
(i=l . . . . .
it i s i n t e r e s t i n g
well-known
"covering
terms of graphs Consider
set
9)
to n o t i c e
problem"
of
that
Problem
graph
5.2
theory
appears
which
can
in t h e be
form of the
reformulated
in
a s follows : the unidirectional
Z = {z 1 . . . . . Kx = {KxI
graph
G = [ Z,Ks,
h]
where
:
z z} .....
K q}
: set of parts
o f Z.
A : u n i v o c a p p l i c a t i o n f r o m K)~ to Z A ( z i) = { K x
/ zieK,
j}
(i=1 . . . . .
z).
J end the costs ci associated P r o b l e m 5 . 2 is t h u s
Prohlem 5.3.
Find
Hc
minimizing This
g ziEH
problem
in t h e l i t e r a t u r e
:
with each vertex brought
Z /
z i,
(i=l . . . . .
z).
b e c k to t h e f o l l o w i n g c o v e r i n g
set problem
:
u k (z i) = K)~ zi¢.. H
c. 1
can be solved
by
using
any
of t h e
following algorithms
existing
189 - Method of the covering - Branch
set
(KAU-68)
and Bound procedure
(ROY-70)
(KAU-68)
(ROY-70)
- Gomory's method (KAU-68) - Thiriezls
Example 5 . 4 .
method
Consider
modes : A= {kl=l,k
(THI-71)
again
the
The
2=2}.
example
associated
3.12
in
which
sensitivity
the
system
matrices
with
has
two
respect
Ioo-1131Ioool
fixed to
full
feedback are given by
SK l =
Then, we have
0
0
-I/3
0
0
0
SK 2 :
1/3
0
1/6
0
0
0
:
KXl = { k 1 3 , k23}
K~2 = { k 2 1 , k 2 3 } and
Z = {k]3, k23,
k21} = { Z l ,
z 2 , z 3}
L{: °1 In this example,
1. All t h e
costs
are
number of feedback
the boolean linear program
equal links)
to
1,
to s o l v e t a k e s t h e f o l l o w i n g f o r m :
c. = 1 ( i = 1 , 2 , 3 ) 1
(minimization with respect
to t h e
:
rain (w 1 + w 2 + w 3) w 1 + w 2 >/ 1 under
wi =If w 2 + w 3 )/
The solution
(i = 1 , 2 , 3 )
1
i s w = (0
1 0)'
and
the
addition
of k23 is sufficient
fixed modes.
2. T h e c o s t s a r e g i v e n b y c I = 1, c 2 = 3, c 3 = 2 :
to e l i m i n a t e t h e
190
min (w 1 + 3w 2 + 2w 3) w 1 + w 2 >/ 1 under
w. = 1
w 2 + w3 ) 1
{:
(i = 1 , 2 , 3 )
I n t h i s c a s e t h e p r o g r a m g i v e s two s o l u t i o n s : W = ( 1 0 1 )' corresponding
to t h e e l e m e n t s k13 a n d k21
IV = ( 0 1 0 ) ' c o r r e s p o n d i n g
to t h e e l e m e n t k23
Remark
5.3.
It is i n t e r e s t i n g
to n o t i c e t h a t
general
case for which a prespecified
minimal f e e d b a c k c o n t r o l s t r u c t u r e for every
this approach
structure
can thus
c a n also b e u s e d
in t h e
f o r t h e c o n t r o l is n o t i m p o s e d .
he obtained
by evaluating
The
the sets K
mode o f t h e s y s t e m a n d a p p l y i n g t h e s a m e o p t i m i z a t i o n p r o c e d u r e .
5.2.5 - Specified approach
for structurally
fixed modes of type
(i)
(TAR-B5)
(TRA-
84b) This type
paragraph
concerns
(i) a n d c h a r a c t e r i z e s
to a p r e s p e c i f i e d
only
the
feedback
pattern
in o r d e r
is b a s e d on t h e a l g e b r a i c c h a r a c t e r i z a t i o n a n d Siljak ( S E Z - 8 1 a )
5.2.5a.
-
Use
Sezer
of
and
systems
with
structurally
fixed
modes
of
t h e s e t of s u f f i c i e n t f e e d b a c k l i n k s w h i c h m u s t b e a d d e d to e l i m i n a t e t h e m .
This
of fixed modes of type
characterization
(i) g i v e n b y S e z e r
(see § 3.5.32).
S e z e r a n d Siljak c h a r a c t e r i z a t i o n Siljak
(SEZ-Bla)
system with structurally
showed
that
fixed modes of type
the
state
space
form :
:
+
B2 c( B3
L A31 C I
A32
0
I
a
0] X
representation
of a
(i) c a n b e p u t in t h e f o l l o w i n g s p e c i a l
I
I 'l I
°][] 0
6~
Uct UB
(5.2.6)
191 where the control and observation
stations
are partitioned
in two a g g r e g a t e d
stations
and B • The fixed modes with respect K = block-diag.
are the eigenvalues
(Ka ,
by the other
one,
observable
by
the
A22. T h e s e
c~ S i n c e t h e
fixed
modes
aggregated
whose addition is sufficient
are
system
station
B.
Lo If matrix
the at
reduced Theorem
l
K
i
K
-21
structure
of
station B are
(see Chapter
stations,
is s u p p o s e d by
the
Consequently,
III) a r e s i m u l -
hereB , and inobservable to b e g l o b a l l y aggregated the
set
controllable
station a
of
to e l i m i n a t e t h e f i x e d m o d e s i s g i v e n b y
matrix becomes
FK
modes
controllable
KaB = { k i j / ij s u c h t h a t u i c U c ~ a n d and the feedback
•
(5.2.7)
b y o n e of t h e a g g r e g a t e d
here
the
pattern
Kfl)
of the submatrix
taneously uncontrollable and observable,
to t h e f e e d b a c k
feedback
and links
=
yj c YB}
(5.2.8)
:
l
(5.2.9)
BJ
the
taken
control into
matrix
account,
at
station a and
it c o m e s t h a t
the
of
the
sufficient
observation set
can be
a s follows : 5.2.
Given
t h e s e t of s u f f i c i e n t
the
system
supplementary
K s u f = {ki] / i E
(5.2.6)
with
structurally
links is given by
(i),
which are not identically
zero
I, ] C - J }
w h e r e I (J) i s t h e s e t o f i n d i c e s o f t h e c o l u m n s ( r o w s ) in t h e m a t r i c e s
fixed modes of type
:
B* (C*), w i t h
:
c~
192 Remark 5.4.
When t h e c o n t r o l
(5.2.7)
is a p p l i e d to t h e s y s t e m ( 5 . 2 . 6 ) ,
t h e closed-
loop d y n a m i c m a t r i x t a k e s t h e following form :
D =
_
A l l + B2a A32 . . . . . . .
[
which has the
DzDIII
,
Ca C1
0
ri I
a
3 C1 + B B
+B3c~ K
'=
Ka
l
K B CB
0
A22
~
-]
/
0
- ", - - ;~ - - - ~FB-3 .... 3- -,
DI2D22]
(5.2.10)
same b l o c k - t r i a n g u l a r
form as t h e o p e n - l o o p
dynamic matrix
A and
w h e r e t h e b l o c k A22 is n o t a f f e c t e d b y t h e c o n t r o l : it r e s u l t s t h a t t h e e i g e n v a l u e s of A22 a r e fixed m o d e s . It is c l e a r
that
the
fixed modes
can be e l i m i n a t e d b y
which d e s t r o y s t h e b l o c k - t r i a n g u l a r s t r u c t u r e Now,
consider
the
feedback
any
control
feedback
of D b y a f f e c t i n g t h e b l o c k D]2.
matrix
K' in
K c2!B ~.B.s.
1 K ~ ~
(5.2.9).
The
closed-loop
dynamic
m a t r i x is :
/
~_
cI ~B_B
I
a
aB
L
a
czB B I c~ c~B
F~t
K
~ B' ' ~
F-~2-~--cl-J~J"K B
a
"":
aB
............
c2-'Sr
E
B I cz q~B
c 3] B .I Ir -o-' ~
~ -I Bj
L D'21
'! D'12] - - - IF %2
J
with :
where
it a p p e a r s
that
the
block-triangular
structure
has been
destroyed.
KaB is
t h e r e f o r e a s u f f i c i e n t s e t of f e e d b a c k l i n k s to eliminate t h e f i x e d m o d e s . To show t h a t KRB can b e r e d u c e d to K s u f , n o t e t h a t D'12 can b e w r i t t e n as :
193
=
IB:]
:
+ 13-
C*
(5.2.11) D'I2
where
:
DI2
r. i,j
+
(bi) *
kij
(bl) * is t h e i - t h column of B* and
The e x p r e s s i o n
(5,2.11)
shows
that
(c.)* I
(c.)* is t h e j - t h row of C* and kij
if (hi) *J o r
does not a f f e c t D'I2 and can be e l i m i n a t e d .
(c~)* a r e i d e n t i c a l l y
zero,
then
KcxB. ki]
T h e r e m a i n i n g kij~s a r e t h o s e s p e c i f i e d in
Ksu f" Remark 5.5. 1. Note t h a t the s e t Ksu f is n o t e m p t y . I n d e e d , s i n c e t h e s y s t e m is globally~ c o n trollable a n d o b s e r v a b l e , the r e a c h a b i l i t y c o n d i t i o n s impose t h a t B 1 # 0 and C~^g 0. C~
2. If t h e r e
is no p r e s p e c i f i e d
control
proach t h a t t h e f e e d b a c k s t r u c t u r e
K"
0
,,
KI3~
tt
by T h e o r e m 5.2 a n d K
Ct
it can be s h o w n
by t h e same a p -
:
K B
z I
allows to a v o i d s t r u c t u r a l l y
KB
structure,
0
f i x e d modes of t y p e
(i).
In t h i s s t r u c t u r e ,
K ~B is g i v e n
by :
K•a = {kij / ij s u c h t h a t u i , z U• and yj ~ Y } can be i d e n t i c a l l y z e r o in the p a r t i c u l a r case
for which
U
c o n t r o l s t h e whole
Ct
space a n d YI3 o b s e r v e s
t h e whole s p a c e .
Example 5.5.
the Example 3.12 w h e r e a55=2 is c h a n g e d b y 4 (which a v o i d s
Consider
the e x i s t e n c e of a non s t r u c t u r a l l y matrix
fixed mode at 2).
•
p =
f 0l
0¢)
00
0¢)
01 t
0
0
0
l
0
0
0
1
0
0
0
l
0
O
0
Given t h e following p e r m u t a t i o n
194 the system takes
the form :
0
1
0
1
/4
0
0
0
2
[
I
I i
P'AP =
I I
/ °
0
-o---o---/--~ 5-~_ 0
0
0
['0
0
I
yiJl Y3
and
the
0
system
decentralized
I 0
I
O]
o o" , Io ,
I
o/~
0
I
l
0 I I
From Theorem k23}.
5.2,
Then
k22,
both
guaranty
5.2.5b.
the
Sezer
k23 /
0
k33j
of fixed
of feedback
the aggregated
the and
: I = 0.2}
k22
- Use of the sensitivity
way when
a n d J={3} a n d ,
state Siljak'
paragraph space
k31
to t h e
consequently
Ksu f =
modes
characterization stations showed
that
representation
characterization.
This
be applied.
of structurally the
can
then
Ksu f can be obtained
of the system
(i)
Indeed,
choice
be
made
with
to
Unfortunately,
directly
the characterization
the
~3
a and8
f i x e d m o d e s of t y p e
cannot
and
k32
links for example.
with structurally
§ 3.5.4).
at 1 w i t h r e s p e c t
0
procedure (see
(i)
k33]
absence
The preceding by
f i x e d m o d e of t y p e
we o b t a i n t h e s e t s
to t h e n u m b e r
determine
Y13
:
K '=K ~K suf
respect
B
:
K = block Ekl],
{k13,
°/
c~
a structurally
control
°
I--°--- °- L-° .I
3
has
u3
k °~-~° :J21 u u
I
I
u2
p'B= 1_o___2____o_]
i
0
uI
do n o t a p p e a r difficulty
fixed modes based
structure]
in
sensitivity
has the
in
the form general
e very (5.2.6) case,
in t h i s f o r m a n d
can bc
encompassed
on t h e i r s e n s i t i v i t y
matrix
(see
simple
Definition
given systems
the above by
using
(TAR-84) 3.9)
allows
195 the determination result ; i.e.
the
the eigenvalues thoses
of the entries entries
of the dynamic matrix
o f t h e b l o c k A22 i n
o f A22 a r e u n s e n s i b l e
belonging
to
A22 i t s e l f .
U a i f it r e a c h e s
(5.2.6).
Taking
X2 ant
This
variations
Consequently,
fixed modes can be determinated. gated station
to a n y
A from which the fixed modes
the
states
into account
that
that
yj b e l o n g s
comes from the fact that
of the parameters
except
to
X2 corresponding
to
ui belongs
aggre-
to t h e
to t h e a g g e g a t e d
station
the Y~ if
it c a n b e r e a c h e d b y X2, we c a n d e t e r m i n e t h e " m i n i m a l " a g g r e g a t e d s t a t i o n s U m a n d m YB b y u s i n g t h e t e a c h a b i l i t y m a t r i x R ( s e e § 1 . 2 ) o f t h e s y s t e m w h i c h h a s t h e following f o r m :
R =
The reason YB' b u t control
rather
so-called
the
set
of the
loop.
This approach
is r e d u c e d Um a
0
U
G
H
0
Y
(5.2.12)
the aggregated
may belong teachability
fixed
gives thus
a n d YB m
1. C o n s i d e r
2.
0
by
to U cx (YB) patterns
applying
modes
stations
stations, without
of the Theorem
s i n c e it g u a r a n t i e s
a better
themselves,
U m¢~ a n d
Ua and
YB'm is t h a t
reaching
(being
other
state
5.2
with
that
X2 is i n v o l v e d
solution since the number
a
rea-
variables. Nero m U a a n d Y• is
of feedback
in a links
(K'su f ¢ Ksuf).
Algorithm 5.1
PSI = {~" i '
0
K'su f obtained
s u f f i c i e n t to e l i m i n a t e t h e
Y
"minimal" aggregated
variabIe
X2 because
vertheless,
U
w h y we do n o t o b t a i n the
(observation)
ched by)
X
can be determined
:
(TAR-84).
the set of structurally (i=l . . . . .
Determine
by the following algorithm
the
fixed modes of type
(i) of t h e s y s t e m s
(C,A,B)
:
r ) .} structural
sensitivity
matrix
corresponding
to
the
set
of
fixed
m o d e s AS 1 : SS = SS 1 + . . . where
SS i is t h e
+ SS i + . . .
structural
+ SS r
sensitivity
matrix of the
m o d e Xi
AS1 and
"+'
denotes
t h e "logic OR" o p e r a t o r .
3. D e t e r m i n e t h e s e t of s t a t e v a r i a b l e s
x i ~ X 2 if t h e r e
X2 corresponding
exists at least one nonzero entry
to t h e f i x e d m o d e s
:
in t h e r o w o r c o l u m n i o f SS
196 4. Determine the r e a c h a b i l i t y matrix of the system ( C , A , B ) 5. umct -- {uj
(see § 1.2).
/ t h e r e e x i s t s i s u c h t h a t x i ~ X 2 and fij = 1}
6. Y$m = ( y j / t h e r e e x i s t s i such t h a t x i K X 2 and gij = 1} 7. The set of s u f f i c i e n t s u p p l e m e n t a r y links is g i v e n by : K' s u f = {k i.J ! u i £ Example 5.6 : C o n s i d e r
Uc~ m and Y~I ~Ym~} again
the
Example 3.12 with the
same modification
as in
Example 5.5. The system has a s t r u c t u r a l l y fixed mode of t y p e (i) at X1=1.
1"/~Sl = {~1 = 1} 2. T h e structural sensitivity matrix corresponding to ~ 1=1 is :
Ii ss(~=
3.
1) =
00
00
00
00
0
1
0
0
0
0
0
0
0
0
0
0
x 2 = {x 3 }
4. In the r e a c h a b i l i t y matrix the row and column c o r r e s p o n d i n g are
to x 3 in F and G
:
u1 x 3 ['0
u2
u3
l
0 "1-4--- 3-rd row of F J
Y2 I °0 Yl Y3
1
L_ 3-rd column of G 5. Um ={u2} C~ m
6. Y B
_--
{Y3 }
7. KIsu f ={ k23 } . This leads to the following feedback s t r u c t u r e s
;
197
kll K' =
Remark 5.6.
0
0
0
k22
k23
0
0
k33
K"=
I
O 0
0 0
0 1 k23
k31
k32
0
Note t h a t if one w a n t s to d e t e r m i n e t h e a g g r e g a t e d
s t a t i o n s Uct a n d YB
( i n s t e a d of ( U ~ a n d Y ~ ) , t h i s c a n be p e r f o r m e d b y r e p l a c i n g t h e t e a c h a b i l i t y m a t r i x of
the
open-loop
(C,A+BKC,B),
system
(C,A,B)
by
the
one
of
the
closed-loop
w h e r e K is t a k e n as t h e p r e s p e c i f i e d c o n t r o l s t r u c t u r e ,
system
and applying
then s t e p s 5 a n d 6 of t h e a l g o r i t h m . We w a n t
to p o i n t o u t
that
t h e a d d i t i o n of t h e
feedback
links
determined
Ksu f ( K ' s u f) p r o v i d e s a s u f f i c i e n t c o n d i t i o n to eliminate t h e s t r u c t u r a l l y of t y p e
(i).
However,
the a b o v e a p p r o a c h
some of them may b e r e d u n d a n t
f i x e d modes
and therefore unnecessary
does n o t give a n y i n f o r m a t i o n at t h i s p u r p o s e .
in -
The interest of
the p r o c e d u r e can be viewed in t h e e a s y way Ksu f is d e t e r m i n e d once t h e s y s t e m is p u t in form ( 5 . 2 . 6 ) . 5. Z. 6. - C o n c l u d i n g r e m a r k s This paragraph
presents
different approaches
to eliminate fixed modes b a s e d
on the idea t h a t t h e s t r u c t u r a l c o n s t r a i n t s must b e r e l a x e d . Wang a n d Davison a p p r o a c h tems b e c a u s e
of t h e
obtaining the solution. connected systems.
high
(WAN-78a) is n o t c o n v e n i e n t for l a r g e s c a l e s y s -
number
of p o s s i b i l i t i e s
which
Armentano and Singh approach
must
be
checked
before
(ARM-82) is limited to i n t e r -
It p r o v i d e s o n l y a r o u g h s o l u t i o n in t h e s e n s e t h a t t h e s o l u t i o n
is b a s e d on a s u f f i c i e n t c o n d i t i o n to eliminate fixed modes a n d is t h e r e f o r e timal. T h i s is also t h e c a s e of t h e p r o c e d u r e p r o p o s e d i n p a r a g r a p h
subop-
5 . 2 . 5 for s t r u c -
turally f i x e d modes of t y p e ( i ) . T h e o n l y a p p r o a c h i n c l u d i n g a r e e l o p t i m i z a t i o n p r o c e d u r e is t h e one b a s e d on t h e mode s e n s i t i v i t y a n d p r e s e n t e d (TAR-84).
B u t s i n c e it r e q u i r e s
in p a r a g r a p h
t h e c a l c u l a t i o n of s e n s i t i v i t y m a t r i c e s ,
5.2.4
it can b e
applied only w h e n t h e s y s t e m h a s simple modes.
5.3. - C H O I C E
5.3.1.
-
OF MINIMAL
CONTROL
STRUCTURES
Preliminaries
The
approaches
presented
in this section deal with systems
for which
a pro-
198
specified control structure when
no
partitioning
of
is n o t a p r i o r i a d v a n t a g e o u s . the
(like g e o g r a p h i c a l d i s t a n c e )
input
and
output
This situation occurs
arises
from physical
either
considerations
o r w h e n t h e c o s t s a s s o c i a t e d w i t h local f e e d b a c k s
a r e in
t h e same r a n g e a s t h o s e a s s o c i a t e d w i t h f e e d b a c k l i n k s b e t w e e n d i f f e r e n t s t a t i o n s .
In this cases, the
system
has
t h e p r o b l e m is t h u s to d e t e r m i n e t h e f e e d b a c k p a t t e r n
no fixed
modes
(i.e.,
d y n a m i c c o n t r o l law in a c c o r d a n c e cost criterion
based
such
that pole a s s i g n m e n t
with the specified
on t h e n u m b e r
for which
is p o s s i b l e w i t h a
structure(s))
and minimizing a
of f e e d b a c k l i n k s o r t h e s u m o f t h e i r a s s o c i a t e d
costs.
As w a s p o i n t e d o u t in t h e g e n e r a l i n t r o d u c t i o n of t h i s c h a p t e r , more g e n e r a l
than
problem
be
can
the one stated
formulated
in
the
with a prespecified same
way
by
structure.
setting
to
t h i s p r o b l e m is
Indeed,
zero
the
this
costs
latter o f the
f e e d b a c k l i n k s w h i c h a r e i n v o l v e d in t h e initial s t r u c t u r e .
5.3.2.
- Senning's
Senning's terizations
approach
(SEN-79)
a p p r o a c h is t h e o n l y o n e w h i c h is n o t b a s e d on o n e o f t h e
of f i x e d m o d e s g i v e n in C h a p t e r
t h e f r a m e w o r k of o p t i m a l c o n t r o l t h e o r y
Consider partitioned
the
class
in s e v e r a l
of
systems
stations
and
B. T h e p r o b l e m is r a t h e r
charac-
c o n s i d e r e d in
for linear systems with a quadratic criterion.
in
(5.2.1)
assume that
where
the
no f e e d b a c k
input pattern
and
output
are
seems a priori
advantageous.
T h e p r o b l e m is f o r m u l a t e d in t e r m s o f t h e d e t e r m i n a t i o n o f a " f e a s i b l y
decentralized"
control.
Definition
(SEN-79).
5.1
the system is stebitizable
A control
structure
is s a i d
with this control structure
to b e f e a s i b l y d e c e n t r a l i z e d and the
if
c o s t o f i n f o r m a t i o n is
minimal.
T h e p r o b l e m is s t a t e d
in
such
a way
that
two
problems
are
solved
simulta-
neously :
- the
classic
parametric
optimization
problem
based
on
the
traditional
quadratic
criterion for linear s y s t e m s . -
the determination of an optimal control s t r u c t u r e
with respect
to a c r i t e r i o n t a k i n g
i n t o a c c o u n t t h e p a r t i t i o n i n g of t h e s y s t e m a n d t h e c o s t s of t h e f e e d b a c k l i n k s .
The solution provides a feasibly decentralized control in the form :
199
S ui = Kii Yi + j Z1
K ij
yj
(5.3.1)
i=l,...,S
jli
The
extended
E.O.C. with
ft
:
0
second
first
S X li=l
(i=l .....
S).
one
term
goes
part
of
in the
into
local i n f o r m a t i o n . the
measure
control
S
the norm
Ki
2
(5.3.2)
performance by
as the
index
a weighted vector
appropriated
from station
m
:
measure
function
scalars
j to station
wij,
(P.I)
norm
while
the
of the
non-
of the
non-
penalizing
more
or
i.
= II K, ~, v II
(5.3.3)
j/i
of a matrix
II~[I ~ = t r and with
considerations
~" u"ll:ll gi ~"J K,,, II
j/i where
S X i--I
classic
is defined by
as follows
S
:[I iS,
m[
is t h e
weighted
of information
is d e f i n e d
ti ~ R i u i) d t + t
E.O.C.
structural
This
less the exchange
criterion
(x t Q x +
Q ) O, R i ) O, The
local
optimization
I0
t
is d e f i n e d
as below
:
~'(t)M(t)dt
: ~ [ K i l , ...,
Yil
Ki,i_ 1 ,
O,
Ki, i+ 1 , ..-,
Kis
lr I
=_0
"°
Y i,i- 1
0 .3.4)
]
I
ri_ 1
0
W. ~ 1
Yi,i+l 0
I
ri÷l • -.,,°
Y i,S Ir S (s.3.5)
200 I
stands
r.
for the identity
matrix of dimension
r.
1
Consequently,
the E . Q . C ,
= P.I
E.O.C.
becomes
S Z IlK i r i i=l
+
r.. 1
:
y[[2
a n d we h a v e t h e f o l l o w i n g o p t i m i z a t i o n t a s k Find the optimal matrices
x
1
K{ . . . . .
E.O.C. (K~ . . . . . K~) < E . o . c .
:
K~ s u c h t h a t
•
(~1 . . . . . KS)
f o r all a d m i s s i b l e m a t r i c e s K 1 , . . . . K S. A necessary criterion
condition
with respect
d E.O.C. Senning which both
of optimality
to t h e f e e d b a c k
! d K. = 0
(i=l . . . . .
1
gives the expression
satisfy
a Lyepunov
is
the
vanishing
m a t r i c e s Ki ,
(i=l . . . . .
of S)
the
gradient
of
the
:
S)
of this gradient
equation
in t e r m s o f t w o m a t r i c e s
and he provides
P and X
t h e s o l u t i o n to t h e p r o b l e m
a s follows : Theorem
5.3
equations
:
(SEN-79).
The
optimal
solution
1. R i K i C X C' + K i Fi C X C ' Fi + t~' 1 S >: i=l
2. / ~ P + P A 0 + Q + C'
Ki ,
(i=l,...,S)
P X C = 0
(i=l
P
satisfies
the
following
. . . . S)
( K ' R i K i + r i ~, K i Fi) C = 0
3, A 0 X + X A~ + X0 = 0 4. A0 = A +
S E i=l
B. K. C *
1
The value of the optimal extended
E.O.C.
(K 1 . . . . .
criterion is given by
:
K S ) = t r (P X0)
X 0 = x 0 x~ a n d x 0 = x ( t 0) i s t h e i n i t i a l s t a t e . In
the
first
system
with
system
(including
feedback tralized
step
a dynamic both
(for details,
of
his
work,
compensator the plant see
and
(SEN-79)).
dynamic compensator
Senning is
shows
equivalent
to
the compensator The problem
can therefore
that the
the
control
control
dynamics)
of determining
be solved by appying
of using
of a linear
an
augmented
static output
a feasibly Theorem
decen-
5 . 3 to t h e
201
extended
system,
which makes this approach
in t h e f o l l o w i n g e x a m p l e Example 5.7
(SEN-79).
even
Consider i
-2
I .-I
3
'
2
0
I
-6
I
0
3
I
-3
4
i
6
-7
1 I I I
' J
5
I
-
I
i
7
9
-1
2
0
0
,3
',0
0
',0
o3
c2:[0
l i
I
I0
03
'
0
,i i
03
The
E0
0
,
weightings
namic c o m p e n s a t o r s
for the
state
of the plant
B1 =
and
:
ii iol M
-4
Cl~Ei
C3=
T h i s is i l l u s t r a e d
t h e f o l l o w i n g s y s t e m in t h e f o r m ( 5 . 2 . 1 )
-20 I -------~ A =
more powerfull.
;
those
for the state
of the
dy-
are choosen as :
(I00)
Qplant = diag
Q c o m p = d i a g (1) and the weightings
for the inputs
Ri = diag (1),
i=1,2,3
The
information
non-local
decentralized
to t h e p l a n t a n d to t h e c o m p e n s a t o r
is w e i g h t e d
by
a factor
of
30,
favorizing
control.
T h e optimization yields t h e compensators as below : U,
I
81.6
-56.6
-1.76
0.13
2.06
0.62
Yl
Z, ---i
I
146
-107
0.75
-0.12
-1.02
-0.31
zl
U~ I
0
0
552
0.19
0
Y2
-0.32
0.23
=1884
3.1
0
z2
0.4
-0.22
-1.9
-0.1 "I -232
Z~
I
0.3
-0.2
0.1
0
I
I 592 I
as :
-71.5
Y3
lgl
z3
complete
202 The
optimal
compensator
is
not
completely
decentralized
(i.e.,
c a n n o t b e a c h i e v e d w i t h a completely d e c e n t r a l i z e d c o n t r o l s t r u c t u r e ) t u r e s h o w s t h e following i n f o r m a t i o n p a t t e r n
*
~ ' S t a t i o n
1
~
7-[S t a t i o n 31
i S t a t i ° n 21
Scnning's
a p p r o a c h is s p e c i a l l y a t t r a c t i v e b e c a u s e n o t only t h e optimal s t r u c -
t u r e b u t also t h e optimal p a r a m e t e r s can a p p l y
stabilization and its struc-
either
for
the
case
are returned
of s t a t i c o u t p u t
by the optimization. feedback
either
M o r e o v e r , it
for t h e
d e s i g n of
dynamic c o m p e n s a t o r s b y c o n s i d e r i n g an a u g m e n t e d s y s t e m . A n o t h e r p o i n t of i n t e r e s t is t h a t it does n o t r e q u i r e to c h e c k ,
in a f i r s t s t e p ,
w e t h e r o r n o t t h e s y s t e m has
u n s t a b l e fixed modes for t h e f a v o r i z e d c o n t r o l s t r u c t u r e decentralized
structure).
This
is
possible
because
(in o u r e x a m p l e ,
the
optimization
includes the quadratic performence index and the structural is c l e a r t h a t if t h e structure,
5.3.3.
system has
no u n s t a b l e
completely
criterion
both
optimization c r i t e r i o n . It
fixed modes for t h e f a v o r i z e d
control
t h e optimal c o n t r o l will c e r t a i n l y h a v e t h i s same s t r u c t u r e .
- Locatelli e t al. a p p r o a c h : (LOC-77) T h e a p p r o a c h of Locatelli e t al.
graphical characterization
(LOC-77)
is b a s e d on t h e i r f r e q u e n c y
of fixed modes w h i c h was p r e s e n t e d
in P a r a g r a p h
domain 3.6.2.
C o n s i d e r t h e c l a s s of l i n e a r t i m e - i n v a r i a n t s y s t e m s with simple modes r e p r e s e n t e d the general frequency stations.
Then,
domain model ( 3 , 4 . 1 )
Locatelli et el s t a t e t h e following p r o b l e m : find t h e minimal s e t of
f e e d b a c k l i n k s S* c S (S as d e f i n e d in ( 3 . 6 . 1 ) ) = {~'1. . . . .
~h }
by
w h e r e t h e r e is no p a r t i t i o n i n g in s e v e r a l
co(A)
mode with r e s p e c t
can be arbitrarily
s u c h t h a t e v e r y mode in t h e s e t A*
assigned ; i.e.,
to t h e c o n t r o l s t r u c t u r e
d e f i n e d b y S*.
no mode i n A *
is a fixed
T h e optimization is p e r -
formed with r e s p e c t to t h e following cost c r i t e r i o n :
R(S) =
):
r.. l,l
(i,9 £ s w h e r e r . . is a cost a s s o c i a t e d with t h e allowed f e e d b a c k link from o u t p u t i to i n p u t j l,l ( ( i , j ) ~ S ) . It is c l e a r t h a t t h i s p r o b l e m h a s a s o l u t i o n if a n d o n l y if no mode in A* is a f i x e d mode with r e s p e c t to t h e c o n t r o l s t r u c t u r e
d e f i n e d b y S. T h e s o l u t i o n is
t h e n o b t a i n e d b y s o l v i n g t h e following l i n e a r boolean p r o g r a m :
203 rain
under
E r i - m , j qi,j ( i , j ) ~ L2S
: for g=l,...,h
Z
(Cgl)
(i,j) E LIS
j/(i,j) ¢~ L S
(cg)
zg ,< i,j
vgj
zg
i)j
i,j
>/
i/{j,i) ~ L S
(i,j)
qi, j
j,l
L25
with :
f
qi,j =
O
if
(i-m,j) ~ / S *
if
(i-m,j) £ S *
(i, j ) 6 L 2 s
and for g=l . . . . ,h if the edge (i,j) is involded in a cycle whose t r a n s m i t t a n c e has pole and whose selection minimize the c r i t e r i o n .
z,g.
l,l
I:
=
otherwise.
f!
vg
i,]
Xg as a
=
if for (i,j) ~ L1S, zero),
Wj_m,i(Xg) # O,
¢o (Xg is n e i t h e r
a pole nor
a
if for (i,j) ~ LIS, Wj_m,i(lg) = Qo (Xg is a p o l e ) . f if for (i,j) E L1S, lira P"~Xg
wJ-m'i(p) (p- ~.gJ f
= O, ¢=
(kg is a zero of order f).
From the definition of rig j, the c o n s t r a i n t (Clg) g u a r a n t i e s that at least one edge (i,j) whose t r a n s m i t t a n c e has Xg as a pole is selected and the c o n s t r a i n t (C~) guaranties that this edge belongs to a cycle ( i . e . , from Theorem 3.30, ~.g is not a fixed mode). The c o n s t r a i n t (C~) s e t s a p a r t the selected e d g e s which do not c o r r e s pond to f e e d b a c k links and do not affect the c r i t e r i o n .
204
The interest
of t h i s p r o g r a m is e n f o r c e d b y t h e f a c t t h a t it c a n b e u s e d ,
with
s l i g h t m o d i f i c a t i o n s , to p r o v i d e t h e s o l u t i o n of s e v e r a l p r o b l e m s o t h e r t h a n t h e one it w a s stated f o r :
i - D e t e r m i n a t i o n of t h e f i x e d m o d e s w i t h r e s p e c t
to t h e c o n t r o l s t r u c t u r e
specified
b y S u s i n g a s o l v a b i l i t y t e s t s u c c e s s i v e l y a p p l i e d to A* = {k i }, Xi E o ( A ) . 2 -
Minimization w i t h r e s p e c t
to t h e
number
of f e e d b a c k
links by setting
r i , j = 1,
S.
(i,j)
3 - D e t e r m i n a t i o n o f t h e minimal f e e d b a c k p a t t e r n s
avoiding fixed modes : by setting
S = {(j,i) /(j=l ..... r) ; (i=l ..... m)}
h* =
c~ (A)
4 - Determination
of the minimal
initial control structure
S = {(j,i) ri, j = 0 Example 5.8.
set of feedback
specified b y
I (j=l . . . . . r )
links which
must
S O to eliminate the fixed m o d e s
be
added
b y setting
; (i=l . . . . . m) }
for (j,i) E S O C o n s i d e r t h e s y s t e m in t h e e x a m p l e 3.13 w h i c h h a s a f i x e d mode at
X 0 = -1 f o r t h e d e c e n t r a l i z e d
control structure
specified by SO = {(1,1)~(2,2)~(3,3)} .
We w a n t to d e t e r m i n e t h e s e t o f f e e d b a c k l i n k s to a d d t o t h i s initial p a t t e r n to e l i m i n a t e
the
supplementary
fixed
links.
program by setting
A* = S
mode.
The
optimization
:
-i
= {(i,j)
/ i=1,2,3
~ j=lp2,3}
ri, j = 0
f o r (i,j)~E S O
ri, j = 1
for (i,j) ~ S - SO
min q42 + q43 + q51 + q53 + q61 + q62
(c])
•
z]6 ) ]
criterion
is
The solution of this problem can be
T h e p r o g r a m to b e s o l v e d is t h e following
under
to an :
taken obtained
as
the
by
in o r d e r
number
the
of
previous
205
rZl4 + z15 + z16 = z41 + z51 + z61 z25 + z26 = z4z + z52 + z62 z34 + z35 = z43 + z53 + z63 (Cz)' z41 + z42 + z43 = z14 + z34 z51 + z52 + z53 = z15 + z25 + z35 z61 + z62 + z63 = z16 + z26 (C3)
zij x< qij
i=4,5,6
j=1,2,3
We o b t a i n two optimal s o l u t i o n s :
s~ = { (z,1)} which c o r r e s p o n d to t h e following f e e d b a c k s t r u c t u r e s
I kll
:
0
k13
kll
kl2
0
k22
0
0
k22
0
0
k33
0
0
k33
5.3.4. - S p e c i f i e d a p p r o a c h e s for s t r u c t u r a l l y f i x e d modes The p r o c e d u r e s
presented
in t h i s p a r a g r a p h
a r e b a s e d on t h e g r a p h - t h e o r e t i c
a p p r o a c h e s l e a d i n g to c h a r a c t e r i z a t i o n s of s t r u c t u r a l l y c o n s i d e r e d h e r e from a s t r u c t u r a l by t h e s u b s e q u e n t they
are
not
procedures
concerned
by
fixed m o d e s .
p o i n t of view a n d t h e c o n t r o l s t r u c t u r e s
g u a r a n t y t h e a b s e n c e of s t r u c t u r a l l y those
T h e p r o b l e m is
fixed
modes
which
arise
returned
fixed modes b u t
from p a r a m e t e r
value
considerations. We c o n s i d e r l i n e a r s y s t e m s in t h e g e n e r a l form : S(t) = A x(t) + B u(t)
I
y(t)
where x ( t )
C x(t) Rn , u ( t )
(5.3.6) R m, y ( t )
R r a n d A, B, C a r e real m a t r i c e s of a p p r o p r i a -
te d i m e n s i o n s . We c o n s i d e r t h e g e n e r a l f e e d b a c k p a t t e r n
:
206
u(t) =K
y (t)
F and FK are respectively,
5.3.4.a.
the
(5.3.7)
digraphs
- Procedures
presented
based
structurally
Theorem l.
-
type
open
loop
and
closed-loop
sys terns,
characterization
modes
b e l o w a r e all b a s e d
provided
in
on t h e g r a p h i c a l
(LIE-83)
and
(PIG-84)
characterization
and
formulated
in
3.26.
Determination (i)
:
of the
(TRA-87)
condition
(i)
in
control
Theorem
3.26.
associated
the desired
brought
back
algorithms
to
exist
feedback
This
to
modes
condition
w a y s to s t a t e
the
well-known literature
approach,
"covering and
set
which was
the problem
avoid of is
structurally
type first
(i)
are
fixed
modes
of
characterized
expressed
in
terms
in F . I n a s e c o n d s t e p ,
the optimization problem
control structure.
in t h e
In a second
fixed
to a s t a t e v e r t e x
l a t i o n i s u s e d i n two d i f f e r e n t provides
structure
• Structurally
concept of "loop-set"
5.2.3.
the
3.5.3.b-1
presented
fixed
to
3.5.3b-1.
on the graphical
in Paragraph
The procedures of
associated
a s d e f i n e d in P a r a g r a p h
by
of the
this formu-
whose solution
In a first approach,
t h e p r o b l e m is
problem"
some
for
already
which
encountered
is solved by using
in
a successive
efficient
Paragraph "elimina-
tion" procedure. Definition 5.2 by
(TRA-87).
The loop-set
associated
with the state vertex
x k is defined
•
=
Kxk The which,
loop-set
associated
and an output
from the
graph
With t h i s d e f i n i t i o n , Corollary
5.1
following
condition
modes of type
card where
Xk, x k reaches to
xk
is
y j
therefore
the
set
of
implemented one at a time, are such that the vertex
to an input either
kij / in r e a c h e s
Therefore,
either
from the
is
Consider
sufficient
a feedback for
system
:
(K* , K
the loop-sets the
x k
) /~ 1
(k=l .....
K* = { kij / kij i s a n o n z e r o
entry
n)
o f K}
pattern (5.3.6)
derived
matrix
to
links
connected
of the system.
from Theorem
in t h e f o r m not
feedback
can easily be determined
teachability
t h e f o l l o w i n g c o r o l l a r y is d i r e c t l y
(TRA-87). (i)
vertex.
itself
those
x k is strongly
have
(5.3.7),
3.26 : then
structurally
the fixed
207
The c o n d i t i o n e x p r e s s e d in Corollary 5.1 i s t h e same as t h e one a l r e a d y d e rived in T h e o r e m 5.1 of P a r a g r a p h
5.2.3.
The only d i f f e r e n c e c o n s i s t s in t h e s e t s
we are dealing with : in T h e o r e m 5.1 we w e r e c o n c e r n e d with t h e s e t s K~r a s s o c i a ted with t h e
s e n s i t i v i t y m a t r i x of t h e
present case,
t h e s e t s are
(k=l, . . . . n ) .
fixed modes Xr ,
(r=l . . . . . q ) ,
t h e l o o p - s e t s Kxk a s s o c i a t e d to t h e s t a t e
while, in t h e v e r t i c e s Xk,
T a k i n g into a c c o u n t the a b o v e r e m a r k , t h e p r o b l e m to b e s o l v e d is also
Problem 5 . 1 . The same c o s t c r i t e r i o n as in P a r a g r a p h 5 . 2 . 3 can be a d d e d to Problem 5.1 in t h e p r e s e n t c a s e . This would lead to the boolean l i n e a r p r o g r a m f o r m u l a t e d in Problem 5.2 w h i c h has b e e n s h o w n to be a w e l l - k n o w n " c o v e r i n g s e t problem" of graph t h e o r y . Example 5.9. C o n s i d e r t h e s y s t e m w h o s e a s s o c i a t e d g r a p h is t h e following :
~
~
~
Y2 9
The l o o p - s e t s are g i v e n b y :
Kx I Kx 2
{kll ) =
Kx3={
{k12 } k l 2 , k22}
Note t h a t K c K , therefore K can be eliminated. If we c o n s i d e r an x2 x3 x3 optimization c r i t e r i o n b a s e d on t h e n u m b e r of f e e d b a c k l i n k s , t h e optimization p r o blem, w h i c h is t r i v i a l in t h i s c a s e , r e t u r n s t h e s o l u t i o n :
K* = { k l l , Remark 5.7.
kl2}
The c o n d i t i o n p r o v i d e d b y Corollary 5.1 is only s u f f i c i e n t ; i . e . ,
all
the admissible s o l u t i o n s a r e not c o n s i d e r e d to find t h e optimal solution of Problem 5.1. This r e m a r k is clarified b y t h e following g r a p h i c a l c o n f i g u r a t i o n :
208
°,©
Cyx2
°2© f o r w h i c h we h a v e
:
Kxl = {k21} and the unique
{kll,
Kx2
= {kl2
solution for problem
Nevertheless,
i f we c o n s i d e r
k22} insures
also
and an output
vertex
that
}
5 . 1 i s • K* = {k21 , k l 2 } the condition
x 1 and
x 2 are
,
(i) o f T h e o r e m
strongly
3.26, the choice
connected
to a n i n p u t
vertex
in D K .
The lack of necessity for some vertex
-©y2
x k,
of the condition of Corollary
condition
tation of more than
one
(i) of T h e o r e m
feedback
link and
5 . 1 i s d u e to t h e f a c t t h a t ,
3.26 can be verified
this possibility
by
the implemen-
is not taken
into account
in our formulation. Because is s h o w n in
of this restriction, (SEZ-83)
t i o n s to s a t i s f y
that
Condition
this approach
the number
may provide
of necessary
(i) o f T h e o r e m
and
a suboptimal
sufficient
3.26 is given by
solution.
feedback
It
connec-
:
~r = max (u r, yr ) where
u r is t h e m i n i m a l n u m b e r
of inputs
b i l i t y ) a n d Yr is t h e m i n i m a l n u m b e r an
output
inspection
In
(output
of the reachability
our
formulation,
the minimal number Therefore,
teachability).
to r e a c h e v e r y
of outputs Therefore,
such that ~r
can
state vertex every
easily
be
state
(input
teacha-
vertex
reaches
determined
by
the
matrix of the system.
a solution
of input-output
s p e c i f i e s ~r f e e d b a c k
paths
connections,
where
to c o v e r t h e w h o l e s e t o f s t a t e
~r is
vertices
X.
a s o l u t i o n i s o p t i m a l if a n d o n l y if :
r -~ ~ r Unfortunately, = card
K* ;
conditions
i.e.,
this general after
condition can be checked
solving
c a n b e o f h e l p in c e r t a i n
the
optimization
cases
:
problem.
after obtaining However,
the
K* a n d a r following
209 A s o l u t i o n is o p t i m a l if t h e n u m b e r
-
is e q u a l to u r .
(This
"cover" one loop-set
-
comes
from t h e
of loop-sets
fact
that
one
involved in the optimization
feedback
links s u p e r i o r
to
; i . e . ~ r = ~ r )"
A s o l u t i o n is s u b o p t i m a l i f t h e n u m b e r o f i n d e p e n d e n t
the o p t i m i z a t i o n
l i n k is s u f f i c i e n t
is s u p e r i o r
or
equal
to
~r"
o r e q u a l to u r is n e c e s s a r y
(In
this
l o o p - s e t s i n v o l v e d in
case,
a number
to " c o v e r '~ t h e i n d e p e n d e n t
some a d d i t i o n a l f e e d b a c k l i n k s a r e r e q u i r e d
of feedback loop-sets
and
to " c o v e r " t h e r e m a i n i n g o n e s ~ i . e . a r
~r ) •
In t h e c a s e o f E x a m p l e 5 . 9 ,
the solutions provided
by the above procedure
are
optimal. Though
the
s o l u t i o n may s p e c i f y a s u b o p t i m a l n u m b e r
approach presents
the advantage
covering set problem.
The degree
pensated by the reduced The
second
to b e s p e c i a l l y
(TAR-85)
which t h e o p t i m i z a t i o n c r i t e r i o n p r o b l e m is c a r r i e d
out starting
applying a successive Considering (Yi,ui). s u c h satisfy
this
is t h e
there
condition.
this com-
by the procedure.
presented number
b e l o w is r e s t r i c t e d of feedback
links,
to t h e c a s e f o r The optimization
from a n i n i t i a l n o n minimal s e t o f f e e d b a c k l i n k s a n d
elimination procedure
Condition
that
links,
formulation as a
o f s u b o p t i m a l i t y of t h e s o l u t i o n is t h e r e f o r e
efforts required
approach
of feedback
s i m p l e d u e to i t s
(i)
w h i c h u s e s two r u l e s .
in T h e o r e m
is n o i n p u t - o u t p u t Consequently,
3.26, path
it i s
clear
that
a feedback
from u i to yj i s n o t n e c e s s a r y
we d e f i n e a n i n i t i a l s e t o f " u s e f u l l "
link to
feedback
links a s follows : K 1 = (kij / a p a t h from u i to yj e x i s t s i n F} Obviously,
this
several input-output To e v e r y
/
is n o t
minimal
since
some
state
vertices
paths.
kij in K 1, a s s o c i a t e t h e following b o o l e a n v e c t o r
zij = E z i j ( 1 ) ' " z..(t)=
set
(5.3.8)
:
z i j ( n ) 3'
1
if kij i s a n e l e m e n t o f t h e l o o p - s e t o f x t ,
0
otherwise
1l
and l e t u s s t a t e t h e following d e f i n i t i o n s :
(t=l . . . . . n )
may
belong
to
210 Definition 5.3
(TAR-85).
The state vertex
x t i s s a i d to b e d i s j o i n t i f a n d o n l y if :
zij(t) = 1 zij(t)
AND Z q r ( t )
Definition 5.4
= 0
(TAR-85).
f o r all q r ~ ij s u c h t h a t k q r E K 1
The vector
zij(t) = 1 implies Zqr(t) As an extention
zij(t)
= 1 for
f o r all ( t = l . . . . .
of D e f i n i t i o n
minate the set of vectors
(t=l .....
= 1
z.. i s s a i d to d o m i n a t e t h e v e c t o r II
5.4,
the
set
z
qr
if :
n) of vectors
z..c xj
Z 1 is said
to do-
Zqr c Z2 if :
some
zij a Z 1 i m p l i e s
=
Zqr(t)
1 for
some
Zq r c Z2,
for
all
the absence
of
n).
Using Definition 5.4 and Corollary Corollary
5.2 - A set of feedback
structurally
fixed modes of type
K* = { k i j / t h e
5.1,
links
the following result
K* i s s u f f i c i e n t
comes :
to g u a r a n t y
(i) if :
set of vectors
{z..}l] d o m i n a t e s t h e w h o l e s e t o f v e c t o r s
associated
to K1} Therefore,
this
approach
is
concerned
with
determining
v e c t o r s { zij } w h i c h d o m i n a t e s t h e w h o l e s e t o f v e c t o r s The two following rules are used K 1 to d e t e r m i n e Rule vector
1 :
The
associated
the
minimal
set
of
to K 1.
in t h e e l i m i n a t i o n p r o c e d u r e
which starts
from
K* : feedback
link
kij E K 1 c a n
be
eliminated
from
Kl
if its
associated
zij is d o m i n a t e d b y a t l e a s t o n e v e c t o r Z q r . It is c l e a r t h a t i f Zqr d o m i n a t e s
the input-output
path
Yr" T h e r e f o r e ,
the presence
ted components
than the presence
Rule 2 : The
feedback
zij, t h e n e v e r y
f r o m u i to yj b e l o n g s of kqr
involves
state
vertex
a l s o to t h e i n p u t - o u t p u t more state
vertices
which belongs path
to
f r o m Uq to
in s t r o n g l y
connec-
of k... 1]
l i n k kij ~ K 1 i s n e c e s s a r y
if f o r s o m e t C {1 . . . . .
n},
zij(t) =
1 a n d x t is a d i s j o i n t s t a t e v e r t e x .
I f x t is a d i s j o i n t which,
taken
alone,
vertex
and
makes x t belong
zij(t)
= 1,
to a s t r o n g l y
then
kij i s t h e
connected
only
component.
feedback
link
211 Using these
rules,
the
following e l i m i n a t i o n
procedure
is p r o p o s c d
in
(TAR-
85 ) to d e t e r m i n e K* :
1 - Using the digraph
Y a s s o c i a t e d to t h e s y s t e m o r i t s r e a c h a b i l i t y m a t r i x
:
1.1 - D e t e r m i n e t h e s e t K] d e f i n e d in ( 5 . 3 . 8 ) 1.2 - F o r e v e r y Kij ~. K 1 d e t e r m i n e t h e a s s o c i a t e d v e c t o r zij. 2 - Set K* =
{0}
3 - Determine the subset K2 corresponding
to t h e d i s j o i n t s t a t e v e r t i c e s
:
K 2 = {kij / z i j ( t ) = 1 a n d x t is a d i s j o i n t s t a t e v e r t e x } I f K 2 = 0, go to 4, e l s e : 3.1 - Set K* = K* u K 2 3.2 - I f f o r all ( t = l , . . . , n ) , 3.3
- Set
Zqr(t)
K2 and kqr
OR z i j ( t ) ,
(t=l . . . . . n)
f o r all ij # q r s u c h
t h a t kij
K 1.
3.4 - K 1 = 3.5-k=
t h e r e e x i s t s z i j ( t ) = 1 f o r some kij C K*, go to 7
= Zqr(t)
K (K1 n K 2 ) 1 1 0
3.6 - K 2 =
4 - Determine K 3 c
K l such that the set of k vectors associated to the k elements of
K 3 dominates the set of remaining vectors associated to the elements in K I.
If K 3 = 0, go to 5. 4.1 - K* = K ' o K 3 (If K 3 i s n o t u n i q u e ,
t h e s o l u t i o n K* is n o t u n i q u e ) .
Go to
7. 5 - Determine
K4c
K 1 such
that
the
vectors
associated
to t h e
e l e m e n t s in K 4 a r e
dominated b y k v e c t o r s . I f K 4 = 0, go to 6. 5.1 - K 1 = CK (K I n K 4) ! 6 - k = k + 1, go to 3. 7 - STOP : K* v e r i f i e s C o r o l l a r y 5 . 2 .
Example 5.10 - C o n s i d e r t h e same s y s t e m a s in t h e p r e v i o u s e x a m p l e 5 . 9 . is g i v e n b y
: K 1 ={ k l l ,
kl2,
k22} a n d
x1
x2
x3
Zll =
[
1
0
0
]
z12 =
[
0
I
i
]
z22 =
[
0
O
0
]
Since t h e s t a t e
vertices
the s o l u t i o n K* = { k l l ,
x I and k l 2 }.
x 2 are
the associated vectors are
disjoint,
the
procedure
The set K1
:
is trivial
and
gives
212
Note that K 1 since
the
they
procedure
are
set
aside
doe~ n o t p r o v i d e in
step
5.
all t h e m i n i m a l s o l u t i o n s
However,
one
could
jump
i n c l u d e d in
over
step
5 if
desired. Of c o u r s e , by
using
the
we o b t a i n t h e s a m e s o l u t i o n a s i n E x a m p l e 5 . 9 w h e r e
first
approach.
optimization criterion quently 2 -
a control
sufficient been
of the
: a two s t e p
mining
in t h e
shown
the
procedure
case
(TRA-87)
avoiding
for which
§ 3.5,
structure
the
Chapter
III)
that
In the other the absence
approach
approach
consists
(i) a n d C o n d i t i o n
in
(ii).
may not be optimal.
the procedure In t h e graph
to g u a r a n t y
it u s e d .
Indeed, if t h e r e e x i s t s
the
The reader
it is clear
any
fixed
type
of type
Conse-
alternative,
condition
separately
of c y c l e
This (ii)
problems
derived
family and
are
(ii) o f T h e r o e m 3.26
fixed modes of type
the
is
s i n c e it has
(ii).
corresponding
clear that the solutions obtained
of the two procedures
fixed
by deter-
(i).
fixed modes of type
of structurally
solving
is refered
can thus
same
of structurally
has no modes at the origin
to
w i t h this
b y t h e s i m p l i c i t y of
in t h e l a s t s e c t i o n .
its width
in a g i v e n
a di-
to D e f i n i t i o n s 3 . 1 0 a n d 3 . 1 1 .
Condition
(ii) of T h e o r e m
in FK a c y c l e f a m i l y o f w i d t h ) n i n v o l v i n g
following procedure
on the
the optimization.
modes
structurally
It is thus
concept
that
it w a s d e r i v e d
based
O n e m o r e t i m e , t h i s is c o m p e n s a t e d
which uses either following,
are
- The first section was concerned
system
must be satisfied This
approaches
to a v o i d
structurally
always located at the origin.
Condition
two
5.3 still apply here.
control
structure
(see
fact,
a n d d i f f e r o n l y b y t h e w a y to p r o c e e d
the comments of Remark
Determination
modes
In
be proposed
3.26 is satisfied all t h e s t a t e
i f a n d only
vertices.
The
:
1 - i=0 2 - Consider
the digraph
F.define
F A = ( X , E A) a n d d e t e r m i n e 1 t h e s e t F n _ i = { f l , . . . , f e r v
of cycle families of width n-i. 3 - If F n _ i , ~ 0 go to s t e p 5. 4 - i = i + l , g o to s t e p
2.
5 - If i=0, go t o s t e p 8. O t h e r w i s e ,
select one fk ~ Fn-i and consider
the i vertices
{ x j ,1 . . . . xj}~ w h i c h a r e n o t i n v o l v e d i n t h i s c y c l e f a m i l y .
lThe determination of cycle families has been regarded a s a s t a n d a r d p r o b l e m of applied graph theory for many years. T h e w e l l - k n o w n m e t h o d s a n d a l g o r i t h m s for f i n d i n g p a t h s a n d c y c l e s ( L I A - 6 9 ) ( K R O - 6 7 ) ( R A O - 6 9 ) m a y b e c o m p a r a t i v e l y easily adapted for computed-aided determination of cycle families of prescribed width.
213
6 - Apply problem,
either
i.e.
by
of the taking
two p r o c e d u r e s
derived
only into account
and a d d i n g a n e w c o n s t r a i n t
to g u a r a n t e e
in
the state
the
last
vertices
section
to a r e d u c e d
determined
at s t e p
5,
disjoint cycles :
rain c a r d K 2 c a r d (K 2 n K i) > 1 V il, iz ~ {1,...s,}, klk such that
(i=l . . . . . r)
w i ! . w.,2 = 0 if s.1 l a n d
st2 c o r r e s p o n d
respectively
to k s v a n d
:
s = 1 and v#k or
s # 1 a n d v=k
7 - Consider
the
edges resulting
digraph
obtained
from
F=
(V,E)
by adding
the
from s t e p 6 a n d d e t e r m i n e t h e s e t o f c y c l e families o f maximal w i d t h .
If t h e r e is n o n e o f t h e s e c y c l e f a m i l i e s i n v o l v i n g all s t a t e v e r t i c e s , 8 - Discard the state vertices K 2.
Apply
problem,
set of feedback
either
i.e.
by
whose loop-set contains
of the
two p r o c e d u r e s
taking
only
into
derived
account
the
go t o s t e p 5.
a feedback edge belonging
in t h e
last
remaining
section
state
to
to a r e d u c e d
vertices.
Let
the
solution b e K 1 . 9 - T h e g l o b a l s o l u t i o n is g i v e n b y : K* = K 1 u K 2. Example 5 . 1 1 .
Consider
the same system
a s in E x a m p l e s
5.9 a n d 5.10 w h i c h h a s a
s t r u c t u r a l m o d e at t h e o r i g i n s i n c e t h e g e n e r i c r a n k o f i t s d y n a m i c m a t r i x is e q u a l to n-l=2.
The
observation
of its associated
digraph
FA s h o w s
that
F3=0 a n d
one c y c l e family o f w i d t h 2. x 3 i s t h e o n l y v e r t e x w h i c h is n o t i n v o l v e d . S i n c e Kx3
K~
{kl2, k2z}
K 2= z
= {klz }
we o b t a i n two s o l u t i o n s at s t e p 6 :
{kzz }
which r e s u l t in t h e two following c y c l e families o f w i d t h 3 :
x2
k12
\x ~.
x3
X'~G3
~~
At t h i s s t e p ,
x2
"I
2y2
u2 Q~
~
0
"~ ~ 2 "~22
C o n d i t i o n (it) o f T h e o r e m 3.26 is s a t i s f i e d .
=-
~ Y2
there
is
214
a) c o n s i d e r t h e solution K 21 = {kl2 }
T h e r e d u c e d s e t of s t a t e s for which the
l o o p - s e t s do not c o n t a i n k l 2 is {Xl~ In t h i s c a s e t h e solution is : K12 = { k l l ) 2 and t h e global solution is : K 1
= { k l l , kl2}
2 b) c o n s i d e r t h e solution K 2
= {k22} , the r e d u c e d s e t of s t a t e s is in t h i s case 2 {x 1, x 2 }. The s o l u t i o n is now Kl2 = { k l l , k l 2 } a n d the global solution is : K 2 ={kll ' . k12, k22} w h i c h is clearly w o r s e t h a n K 1 s i n c e K~ c K~. T h e r e f o r e , t h e solution K 1 is r e t a i n e d , Note t h a t we o b t a i n t h e same solution as in Examples 5.9 and 5.10 w h e r e only structurally
f i x e d modes of t y p e
(i) were c o n s i d e r e d .
This is due to t h e f a c t that
t h e cycle family of w i d t h 2 c o n t a i n e d in FA is only composed of s e l f - c y c l e s . In one of the
first procedures,
cycle t o g e t h e r
w h e n Condition
with x 2.
(i) is s a t i s f i e d for x3,
B e c a u s e of o u r
special configuration,
x 3 is i n v o l v e d in a we o b t a i n
a cycle
family of width 3 composed b y this cycle a n d the s e l f - c y c l e at x 1. T h e r e f o r e , Condition (ii) is also s a t i s f i e d . As a m a t t e r of f a c t , when a cycle family c o m p o s e d o n l y b y s e l f - c y c l e s e x i s t s in the
s e t of cycle families of maximal w i d t h
(Step
2),
the
g e n e r a l p r o b l e m can be
s o l v e d b y u s i n g one of t h e f i r s t p r o c e d u r e s as well. This a l t e r n a t i v e may be advant a g e o u s s i n c e t h e optimization t a s k is p e r f o r m e d in one s t e p . Remark 5 . 8 .
The d e g r e e of s u b o p t i m a l i t y of t h e s o l u t i o n s can be e v a l u a t e d as it is
s h o w n below. Define U I , . . . , U q cardinality ur (yr) Bu[
(i=l . . . . , q )
(YI,...,Yt)
as t h e s u b s e t s of i n p u t s
(outputs)
of minimal
s u c h t h a t t h e s y s t e m is i n p u t r e a c h a b l e ( o u t p u t r e a c h a b l e ) . Let
(Cjs, j = l , . . . , t )
be t h e m a t r i c e s c o m p o s e d b y t h e columns of B (rows
of C) c o r r e s p o n d i n g J t o t h e i n p u t s in Ui ( o u t p u t s in Yj) a n d d e f i n e t h e i n t e g e r s di, A (i=l . . . . . q)
(~,
j=l . . . . . t)
as the
generic rank
Define
d e f i c i e n c y of (A Bu. !
)
( Cy
). ]
also dm=m!n d i a n d 6m=m!n 6j- T h e n , we h a v e t h e following p r o p o s i t i o n , L
P r o p o s i t i o n 1 (TRA-87)
)
: Given t h e s t r u c t u r a l l y c o n t r o l l a b l e , s t r u c t u r a l l y o b s e r v a b l e
s y s t e m ( 5 . 3 . 6 ) the minimal n u m b e r of f e e d b a c k links s u c h t h a t s y s t e m ( 5 . 3 . 6 ) h a s no s t r u c t u r a l l y f i x e d modes is g i v e n b y :
215
6m)
= m a x ( u r + d m , Yr +
and t h e f o l l o w i n g c o r o l l a r y c a n b e s t a t e d
Corollary (5.3.6)
2 (TRA-87
assume that
It
is
clear
calculations.
) : Given
that
the
should
global
the
fixed
better
modes.
procedure
returned
For
- Sezer's
Sezer's pattern(s) approach,
procedure
systems
with
(5.3.7)
essential" input
Definition
provides
5.5
define t h e
BI
For
(C j )
a greet
amount
Therefore,
the
way
(5.3.6)
without at
m o d e s at t h e o r i g i n
to guaranty the
origin,
for
the absence it
will
he
of
of
more
in t h e f o l l o w i n g p a r a g r a p h .
which
requires,
the
subset
determine
the
h a s no s t r u c t u r a l l y costs
any
as
to
with respect
different
procedure
(SEZ-83).
~ = ur.
optimal.
modes
sets and the "minimal essential"
matrix
system
requires
presented
also
for which system
step
observable
(SEZ-83)
allow to c o n s i d e r
It is a t w o
and
is not necessarily
section suffices
the optimization is proceeded
and it d o e s n o t tions.
procedure
then
to s y s t e m s
of the first
c o n v e n i e n t to u s e o n e o f t h e p r o c e d u r e s
5.3.4.b.
controllable
generally
solution
be restricted
which o n e o f t h e p r o c e d u r e s structurally
structurally
Ur = m a x ( U r , y r ) = m a x ( m , p ) ,
Moreover,
this a p p r o a c h
the
:
I
output
(J)
In this
of feedback
the different first,
feedback
fixed modes.
to t h e n u m b e r
for
optimal
feedback
to d e t e r m i n e
the
"minimal
sets as defined below :
of
the
s e t {1 . . . . .
m} ( 1 .....
of
B
(C)
consisting
of
indices
I
(J)
is
submatrix
links
connec-
the
r ),
columns
(rows) w i t h i n d i c e s i n I ( J ) .
A subset (A,B I)
of inputs
((Cj,A))
((Cj,,A))
is
(outputs)
structurally
(observable),
said but
to
be
not
essential any
if
(A,BI,)
i f I' c I ( J ' c J ) .
The essential
input
(output)
are c a l l e d m i n i m a l e s s e n t i a l i n p u t For the Paragraph
with
controllable
definitions
1.3
(observable)
and
sets
of structural
we r e m i n d
that
the
if and only if :
1 - (A,B) is input
(output)
having
(output)
reachable.
a minimal number
of inputs
(outputs)
sets.
controllabillity system
and observability,
(C,ApB)
is
structurally
we r e f e r
to
controllable
216
[A] (gr[cj:o,.
(AB)=n
2-gr
Given
the
system
(5.3.6),
the
determination
can be performed
by using
1 -
procedure
(REI-81).
Consider
proceeded
such
the matrix
Reinsehke's
columns has been
wing block-triangular
Reinschke's
procedure,
that
I
A~ 1
that
a permutation
A of system
set
below.
of the
(5.3.6)
rows
and
h a s t h e follo-
components
in
the
(5.3.9)
'ANN]
w h e r e t h e d i a g o n a l b l o c k s of A a r e i r r e d u c i b l e
Several algorithms
which is presented
_.0 1
A22 ,,
ANI . . . . . . . . . .
connected
(output)
form :
All
gly
of a minimal input
digraph
e x i s t in t h e l i t e r a t u r e
matrices
for
which
(HAR-65)
(corresponding A is
the
(KAU-68)
to t h e s t r o n -
adjacency
(KEV-75)
matrix).
to p u t
A in
the above form. D e f i n e Z(A)
(A)
as the
as the submatrix The
and dz,
submatrix
consisting
d e f i c i t of g e n e r i c
respectively,
consisting
(structural)
and are given by
Zd = z - gr
Z(A)
d z = z - gr
(A) z
in t h e
z last right
c o l u m n s of A a n d
of t h e z f i r s t r o w s o f A . rank
o f Z(A)
and
(A)
z
are
denoted
by
Zd
:
(z=l,..,,n)
It is c l e a r t h a t n d = Assume the property
that
d
n
= n - gr
0 d = do = O. T h e n ,
Zd = ( z - 1 ) d
+ 1, w h e r e
d e f i n e d in a s i m i l a r w a y u s i n g
d z.
(A) = d. we d e n o t e b y
z
{I .....
n}.
1z , . . . ,
d z the d indices
The indices
zi,
(i=1,
. . . .
having d),
are
217
Example
5.12. dz
l ,, --l--]
l
o
zd
:
°o
l
i
2
1
1
,
T 1
z
Therefore, 1
we have 2
z = 1,
z 1 = 1,
Using results
z =4
z2 = 4
these
5.4.
definitions,
Given
irreducible, (A,B)
1 - the
d entries
2 - the
entries
If first
It
(REI-81)
(REI-83)
(A,B)
Theorem which
= n,
5.5.
1 - the the
provides
the
following
blocks
then
that
Given
entries
If gr(A)
the
are
be
form
a minimal
not
allowed
not
be
input
the
diagonal
blocks
matrix
B which
makes
n x d with
to be
all zero
identically
where
input
is of dimension
minimal not
Condition
the
pair
ci, of
= n,
hypercolumn
same
(C,A)
:
zero.
if all the
off-diagonal
blocks
zero.
matrix
B is
n
x
= n
and
1 where
the
entries
of
all zero.
1 implies
a
matrix
gr(A,B)
,d)
are
hypercolumn
then
A as in Theorem
structurally
i z (i=l ....
of A corresponding
the last
d < n,
2 implies
that
the
pair
reachable.
the
entries
hyperrow
of B must
clear
makes
= n -
controllable
to this
hyperrow
is input
A in a block-triangular
gr(A)
b (i=l ..... d) are z i ,i of a hyperrow of B must
gr(A)
is
with
structurally
of A corresponding
2 -
Reinschke
a matrix
and
the pair
the
:
:
Theorem are
d = 2 and
the
of C must
not
of
to this
observable
C
allowed must
minimal not
be
output
to be
not
hypercolumn
are
matrix
all zero,
5.4,
a minimal
is of dimensions
be
output
matrix
d x 1 with
C
:
zero. all
zero
identically
C is
if
all
the
off-diagonal
zero.
1 x d where
the
entries
of
218
Example 5.13.
F o r t h e m a t r i x A a s in E x a m p l e 5 . 1 3 ,
we o b t a i n :
d Z
I
I
!
X
i
A =
X
,
- - - 7 - ~ [__
zd
2
.
C =
L
! .
.
l
B:
__
X
X
l
1
2 1
I
.
/.
:
where X stands
-7 __
I'
for a nonzero
entry
and where the
shaded
r o w of B m u s t h a v e
at
least one n o n z e r o e n t r y .
Note t h a t t h e a b o v e p r o c e d u r e
2 - Determination of the
does not provide a unique solution.
minimal c o n t r o l s t r u c t u r e
(SEZ-83) - The following definitions are n e c e s s a r y
Definition
5.6
(SEZ-83).
k.. = 0 (F r e p r e s e n t s 1] 1 -
A structure
Define the b i n a r y
the structure
F is s a i d
modes with respect
to b e
avoiding structurally
fixed modes
to o u t l i n e t h e p r o c e d u r e
matrix
F s u c h t h a t f.. = 1 if a n d o n l y if 1] of the feedback matrix).
favorable
if t h e
system
has no structurally
4 -
fixed
to t h i s f e e d b a c k c o n t r o l s t r u c t u r e .
2 - G i v e n F 1 a n d F 2, F l i s s a i d to i m p l y F 2 if f.! = 1 i m p l i e s f 2 = 1. 1] ~j 3 - A f a v o r a b l e s t r u c t u r e F is s a i d to b e e s s e n t i a l if t h e r e is n o o t h e r structure
:
favorable
w h i c h i m p l i e s F.
Among all t h e
essential
favorable
structures,
the
o n e s w i t h minimal n u m b e r
of
n o n z e r o e n t r i e s a r e s a i d to be m i n i m a l .
We r e m i n d t h a t a s y s t e m to a c o n t r o l s t r u c t u r e
IA gr(M F) = gr
(C,A,B)
represented
B
h a s no s t r u c t u r a l l y
b y F if a n d o n l y if :
0
0
Im
F
C
0
Ir
= n+m+r
fixed modes with respect
219
and each state vertex
in t h e d i g r a p h
~
belongs
c o n t a i n i n g at l e a s t o n e e d g e c o r r e s p o n d i n g In the rally
following,
controllable
we m a k e t h e
and
observable,
to a s t r o n g l y
connected
component
to a f e e d b a c k l i n k .
assumption that
which
implies
the system
that
if g r ( A )
(5.3.6) = n
-
is s t r u c t u d,
then
d <
min (m, r ) .
Sezer stated
Theorem 5.6.
t h e following r e s u l t
:
C o n s i d e r t h e s e t s of i n t e g e r s
I = (i l . . . . . i k }
d < k < m
J = {Ji . . . . . Jq }
d ( q ( r
sucht that the system SIj = (BI,A,Cj)
and s u c h that g r ( A , B i , )
= n and gr
:
is s t r u c t u r a l l y
[:]
controllable and observable,
= n.
Y
If F is a s t r u c t u r e
such
that
gr
(FI,j,)
= d a n d s u c h t h a t FI_I, j _ j , c o n t a i n s
at l e a s t o n e n o n z e r o e n t r y in e a c h r o w a n d c o l u m n , t h e n F is a f a v o r a b l e s t r u c t u r e .
A favorable
structure
F
satisfying
Theorem
5.6
is
not
necessarily
essential
u n l e s s t h e s e t s I a n d J a r e c h o s e n to be t h e m s e l v e s e s s e n t i a l .
Moreover,
be minimal if we w a n t to o b t a i n
Given the matrices B
a n d C, S e z e r p r o p o s e s
a minimal e s s e n t i a l s t r u c t u r e .
to u s e R e i n s c h k e ' s p r o c e d u r e
e s s e n t i a l i n p u t s e t a n d a minimal e s s e n t i a l o u t p u t
Unfortunately, is n o t p e r f e c t l y tive p r o c e d u r e
Sezer structure
provides
set.
Reinschke's
to t h i s p r o b l e m a n d t h a t it fails in s o m e c a s e s .
will b e p r o p o s e d ,
tems s i n c e it p r o c e e d s
must
in o r d e r to d e t e r m i n e a minimal
it will b e s h o w n in t h e n e x t s e c t i o n t h a t
adequate
they
w h i c h is s p e c i a l l y
appropriate
for large
procedure An a l t e r n a scale sys-
in a s e q u e n t i a l w a y .
thus
the
following p r o c e d u r e
to
determine
.
1 - D e t e r m i n e a minimal i n p u t s e t I a n d a minimal o u t p u t
set J.
a minimal
essential
220
2 - C h o o s e I' c I a n d J ' c
gr
J such that gr (A,BI,) = n and
= n
3 - Construct
FI,j,
such
that
it
contains
exactly
d nonzero
entries
located
in
dif-
ferent rows and columns. 4 - Construct
FI_I, j _ j , s u c h
t h a t it c o n t a i n s e x a c t l y m a x
(k,q)-
d nonzero
entries
l o c a t e d n o t to l e a v e a z e r o r o w o r c o l u m n . 5 - Set all the other entries of F to 0.
From
Theorem
5.6,
F is a f a v o r a b l e
structure.
I t is a l s o e s s e n t i a l
since
for
some f.. : 1l -
if i a_ I - I t a n d j ~ J - Y t h e n t h e l o s s o f t h e f e e d b a c k e d g e ( y j , u i) l e a v e s a s t r o n g l y
c o n n e c t e d c o m p o n e n t in r K w i t h o u t f e e d b a c k e d g e . - if i ~ I a n d j ~ J ,
s i n c e I a n d J a r e minimal, t h e s y s t e m w i t h o u t t h e i n p u t u i a n d
t h e o u t p u t yj is n o t s t r u c t u r a l l y
Moreover, number
F is
of f e e d b a c k
c o n t r o l l a b l e n e i t h e r o b s e r v a b l e a n d fij i s n e c e s s a r y .
minimal s i n c e links
I and
o f a minimal
J
are
w h e r e k a n d q a r e t h e minimal n u m b e r o f i n p u t s tural controllability and observability
[0 0] c=[: 01,
Example 5.14.
0
minimal.
therefore
and outputs
equal
Note t h a t to
the
max(k,q),
which guaranty
struc-
to t h e s y s t e m .
B--
[ °] 0
I
We h a v e I = J = { 1,2 } a n d unique solution F = diag.
I' = J ' = {1 }, t h e r e f o r e
Sezer's
procedure
provides
the
•
i s a l s o f a v o r a b l e a n d minimal. C o n s e q u e n t l y , above
l
(1,1).
It h a s to b e n o t i c e d t h a t
The
is
C o n s i d e r t h e following s y s t e m :
A=
solutions.
themselves
structure
example
shows
that
this procedure a minimal,
does not provide
essential,
favorable
ell t h e
structure
22
t
d o e s n o t n e e d to c o n t a i n a s e t o f d f e e d b a c k
l i n k s f r o m Yi' j
J ' to u i , i
I'.
This
r
situation occurs
when
:
gr
= n + rain ( k , q ) Cj,
in w h i c h c a s e , Example 5.15.
A =
C =
g r ( M F) = n + m + r f o r all F p r o v i d e d Consider
that
now the system described
0 0
X 0
0 1 X
0
X
0
0
and
I ) = J' = {1,2}.
following s o l u t i o n s
The
above
III
I !___
I
"~----
I
no feedback
Therefore,
the
section),
all t h e
two
I: ]
first,
Beside
calculations.
fact that
which are
necessary
to initialise
o f 2n s u b m a t r i c e s
procedure
performs
Sezerts
optimization
with
provided
gr(Fi,j,)
all t h e
Nevertheless,
it f a i l s in s o m e c a s e s
the block-triangularization
rank
the
the
g r ( M F) = n + m + r u n l e s s solutions
=
minimal
detected.
itself does not require
luation of the generic
a n d it i s n o t a d e q u a t e
F verifies
gives
sets have been
procedure.
it n e e d s
pattern
procedure
and output
Sezerls procedure on Reinschkels
the
I1------I--I -I I I I l
1
I
essential input
provides
II I I------ I.
,l FI=
In this case,
procedure
:
I!.
d = 2.
:
°xox ooOX 1
O X
We h a v e I = J = { 1 , 2 , 3 }
= rain ( k , q ) .
by the following structure
ix x o J
I
gr(Fij)
of matrix
of A in order
procedure. respect
to
A and
must
the
number
in t h e c a s e f o r w h i c h e a c h f e e d b a c k
then,
to d e t e r m i n e
One
also of
it i s b a s e d
(see the next the eva-
the sets I,J
notice that feedback
link has a different
this links cost.
222
3 - Sequential 86b).
The
d e t e r m i n a t i o n of t h e minimal e s s e n t i a l i n p u t
d e t e r m i n a t i o n of t h e minimal i n p u t a n d o u t p u t
Sezer's procedure.
For this p u r p o s e ,
Sezer proposed
and output
s e t s is t h e
sets first
(TRAstep
of
to u s e R e i n s c h k e ' s p r o c e d u r e
( p r e s e n t e d in s e c t i o n 1 ) . However,
this
procedure
was
p r o b l e m of d e t e r m i n i n g a m a t r i x (minimal n u m b e r of i n p u t s lable
(observable).
r e m s 5.4 a n d 5 . 5 ) .
B
developed (C)
(outputs))
for
solving
the
slightly
such that the
It was s h o w n t h a t d i n p u t s
s y s t e m is s t r u c t u r a l l y
(outputs)
are
control-
T h i s r e s u l t a p p l i e s b e c a u s e t h e n o n z e r o e n t r i e s of B (C) c a n be
q u i r e d to fulfil t h e g e n e r i c r a n k not,
(rows)
sufficient (see Theo-
a r b i t r a r i l y l o c a t e d a n d can a l w a y s b e c h o s e n s u c h t h a t t h e d i n p u t s condition.
different
with a minimal n u m b e r of c o l u m n s
In t h e p r e s e n t
case,
(outputs)
re-
c o n d i t i o n s a t i s f y at t h e s a m e time t h e c o n n e c t i v i t y matrices B and C are
known and,
more often t h a n
t h e i r e n t r i e s a r e n o t l o c a t e d i n t h i s optimal w a y . T h e r e f o r e , more t h a n d i n p u t s
(outputs) are generally necessary. T h e s e s l i g h t d i f f e r e n c e s make t h a t the p r o c e d u r e
of (REI-81)
is not perfectly
s u i t a b l e for s o l v i n g t h i s p r o b l e m a n d it m a y fail in some c a s e s a s it i s s h o w n in t h e following e x a m p l e .
Example 5 . 1 6 . C o n s i d e r t h e following s y s t e m ( A , B )
:
-
--4--] x L__4__. , X
X'
'
"--i I I
A = X
B
X
P X
X
XI
X
I
X
XIX
X
×,,
X X
w h e r e A is a l r e a d y in t h e r e q u i r e d form a n d w h e r e d z i s i n d i c a t e d o n t h e r i g h t s i d e . From T h e o r e m 5 . 4 ,
the connectivity (teachability)
condition
(2) is s a t i s f i e d b y u 1,
a n d C o n d i t i o n (1) s p e c i f i e s t h a t a n o n z e r o e n t r y is r e q u i r e d in t h e f i r s t a n d l a s t row of m a t r i x B.
Since t h e l a s t row is e m p t y ,
not structurally
the wrong conclusion that the
controllable could be s t a t e d .
s y s t e m is s t r u c t u r a l l y c o n t r o l l a b l e a n d t h a t
s y s t e m is
N e v e r t h e l e s s ) it can b e s h o w n t h a t t h i s Ul,U 2
and
Ul)U 3
a r e minimal e s s e n t i a l
input sets. In t h i s s e c t i o n , mine t h e
we p r e s e n t
minimal e s s e n t i a l i n p u t
the sequential procedure (output)
sets
of a s y s t e m
of ( T R A - 8 6 b ) (5.3.6)
by
to d e t e r identifying
223 first,
t h e minimal i n p u t
(output)
s e t s which s a t i s f y t h e c o n n e c t i v i t y condition and
t h e n t h e minimal i n p u t ( o u t p u t ) s e t s which e n s u r e t h a t t h e g e n e r i c r a n k condition is satisfied. In t h e
s u b s e q u e n t d e v e l o p m e n t , t h e p r o b l e m is
approached
from t h e
inputs
p o i n t of v i e w . Dual r e s u l t s can be s t a t e d for t h e o u t p u t s . Define I C 1 , . . . , I c h
as t h e s e t s of i n d i c e s c o r r e s p o n d i n g to t h e minimal i n p u t
s e t s which s a t i s f y t h e c o n n e c t i v i t y condition for s y s t e m
(5.3.6)
and II 1 .
ITg as
. . . .
t h e s e t s o f i n d i c e s c o r r e s p o n d i n g to the minimal i n p u t s e t s to h a v e t h e g e n e r i c r a n k condition s a t i s f i e d . Theorem 5.7 ( T R A - 8 6 b ) . UI is a minimal e s s e n t i a l i n p u t s e t for s y s t e m ( 5 . 3 . 6 ) if and only if I=IciUIIj, i {1 . . . . . h} , j {1 . . . . . g} a n d i t s c a r d i n a l i t y is minimal. The a b o v e r e s u l t means t h a t t h e s e a r c h of t h e minimal e s s e n t i a l i n p u t s e t s can be p e r f o r m e d in two i n d e p e n d e n t s t e p s . algorithm d e r i v e d in
(TRA-86a)
For t h i s p r u p o s e ,
to c o n c l u d e on s t r u c t u r a l
bflity) of a g i v e n s y s t e m ( 5 . 3 . 6 ) .
we u s e t h e r e s u l t s and controllability
This algorithm can be a p p l i e d ,
(observa-
with some a d d i -
tional o p e r a t i o n s , to solve o u r p r o b l e m . In an initial s t e p , we p r o c e e d to a decomp o s i t i o n of t h e s y s t e m s u c h t h a t t h e new matrix A p r e s e n t s t h e b l o c k - t r i a n g u l a r form in ( 5 . 3 . 9 ) , each diagonal block c o r r e s p o n d i n g to t h e s t r o n g c o m p o n e n t s of t h e g r a p h a s s o c i a t e d with t h e
system
( t h i s initial s t e p
is t h e
same as in
t h e p r o c e d u r e of
(REI-81)). To a v o i d
trivialities,
we make t h e a s s u m p t i o n t h a t
t u r a l l y c o n t r o l l a b l e (and o b s e r v a b l e ) .
system
(5.3.6)
In the o p p o s i t e case h o w e v e r ,
is s t r u c -
t h e algorithm
below would d e t e c t t h e u n c o n t r o l l a b i l i t y and s t o p . T h i s p r e s e n t s t h e a d v a n t a g e t h a t no p r e l i m i n a r y c o n t r o l l a b i l i t y c h e c k i n g is r e q u i r e d . With
the
proposed
decomposition,
the
sets
IC1 . . . . , I c h
can
be
determined
without a n y calculations b y u s i n g t h e following r e s u l t • Theorem 5.8 ( T R A - 8 6 a ) . The s y s t e m ( 5 . 3 . 6 ) is i n p u t r e a c h a b l e if and only if :
EB i Ail Ai2 . . .
Ai,i_1~ $ 0
Vi = 1 . . . . . N
(5.3.9)
w h e r e the m a t r i c e s B. and A.. are t h o s e c o r r e s p o n d i n g to ( 5 . 3 . 9 ) . 1
I]
In a s e c o n d s t e p , t h e s e t s I ' l , . . . , I ' g (TRA-86a) a n d p r e s e n t e d in P a r a g r a p h trollable,
the algorithm r e t u r n s
a r e i d e n t i f i e d b y u s i n g t h e algorithm of
1.3.c.
When t h e s y s t e m is s t r u c t u r a l l y c o n -
the fpXfq (fp
224
w h o s e columns c o r r e s p o n d to some i n p u t a n d s t a t e v a r i a b l e s . I n d e e d , it is s h o w n in (TRA-86a)
that
the
generic rank
g e n e r i c r a n k for all (i=l,o0 . , N ) .
c o n d i t i o n is s a t i s f i e d if a n d only if F. h a s 1
full
The i n d i c e s of all t h e i n p u t s w h i c h a r e n o t r e p r e -
s e n t e d in F N c o n s t i t u t e a s u b s e t o f I' i,
(i=l . . . . . g)
( T R A - 8 6 a ) . F N c o n t a i n s all t h e
n e c e s s a r y i n f o r m a t i o n to d e t e r m i n e t h e r e m a i n i n g o n e s .
Since we h a v e
gr(FN)=fp,
f q - f p columns of F N can be eliminated p r o v i d e d t h a t at l e a s t one n o n z e r o e n t r y by row a n d b y column is p r e s e r v e d FN correspond
to i n p u t
( c o n d i t i o n of full g e n e r i c r a n k ) .
variables,
it may be
that
If some columns of
some of them can b e d e l e t e d .
Among all p o s s i b l e s o l u t i o n s , t h o s e which d e l e t e a maximal n u m b e r of columns c o r r e s p o n d i n g to i n p u t v a r i a b l e s
are
r e t a i n e d : the i n d i c e s of t h e r e m a i n i n g
"input co-
lumns" c o n s t i t u t e the r e m a i n i n g i n d i c e s of a s e t I ' . . 1
In o r d e r to d e t e r m i n e all t h e s e t s It 1 . . . . . I t g , t h e p r o b l e m is t h u s to i d e n t i f y all t h e p o s s i b l e s e t s of columns of F N which can be d e l e t e d w i t h o u t a f f e c t i n g t h e full generic rank,
The a p p r o a c h c o n s i s t s in d e t e r m i n i n g all t h e s q u a r e s u b m a t r i c e s of F N
h a v i n g full g e n e r i c r a n k • This is p e r f o r m e d in a g r a p h - t h e o r e t i c f r a m e w o r k . C o n s i d e r a p x q (p
at t h e bottom of M s u c h t h a t we o b t a i n a q x q s q u a r e
M. A s s o c i a t e to M a d i g r a p h
D=(V,E),
w h e r e V = { v l , . . . . Vq} is t h e
s e t of
v e r t i c e s a n d E is t h e s e t of e d g e s s u c h t h a t ( v i , v j) E if a n d only if mji~0. T h e o r e m 5.9 ( T R A - B 6 b ) . C o n s i d e r t h e m a t r i x M a n d t h e d i g r a p h D as d e f i n e d a b o v e . T h e n u m b e r of ( p x p )
s q u a r e s u b m a t r i c e s h a v i n g full g e n e r i c r a n k of M is e q u a l to
t h e n u m b e r of c y c l e families of w i d t h q of D. C o n s i d e r a n y cycle family o f w i d t h q of D.
T h e n , t h e columns a n d r o w s of M w h o s e e n t r i e s m.. c o r r e s p o n d to e d g e s 1l ( v j , v i) i n v o l v e d in t h e cycle family c o n s t i t u t e a s q u a r e ( p x p ) s u b m a t r i x of M h a v i n g
full g e n e r i c r a n k . The
above
theorem provides
m a t r i x F N to M a n d b u i l d F N a n d
the
key
for
solving
its a s s o c i a t e d g r a p h
the problem. D F.
Then,
Identify the
all t h e s q u a r e
s u b m a t r i c e s of F N h a v i n g full g e n e r i c r a n k a r e d e t e r m i n e d b y t h e s e a r c h o f all t h e cycle families of w i d t h fq of D F. At t h i s s t e p ,
we h a v e d e t e r m i n e d I C 1 , . . . , I c h
and I'1,..
•
, I ' g. U s i n g Theorem
5.7, we can t h e r e f o r e d e d u c e all the minimal e s s e n t i a l i n p u t s e t s a n d know for each of them w h i c h i n p u t s stem from I c i or from I ' . . A similar a n a l y s i s m u s t t h e n be made ]
for t h e o u t p u t s in o r d e r to obtain JC1 . . . . . J c k ' output sets.
J'l''"'J'f
a n d t h e minimal e s s e n t i a l
This p r o b l e m is easily b r o u g h t b a c k to t h e i n p u t p r o b l e m b y u s i n g t h e
d u a l i t y b e t w e e n o b s e r v a b i l i t y a n d c o n t r o l l a b i l i t y (TRA-86a) 86a) is a p p l i e d on t h e m a t r i x
(C' A ' ) p u t
: the algorithm of (TRA-
in t h e r e o r d e r e d form, T h e o r e m 5.6 can
225 thus
be
to o b t a i n
applied
the
set
of ell minimal e s s e n t i a l f e e d b a c k
patterns
for
(5.3.6). Example 5.17. C o n s i d e r a s y s t e m ( C , A , B ) w h e r e A a n d B a r e t h e same as in Example 5.16 a n d
C =
li
0
0
0
0
0
X1
0
0
0
0
0
0
0
0
X
0
0
0
U s i n g T h e o r e m 5.8 a n d t h e dual o n e for o u t p u t r e a c h a b i l i t y (TRA-86a)
(Theo-
rem 5 . 9 ) , we d e t e r m i n e :
Icl= {i} and JCl= {I} JC2 = {2} Now, we a p p l y t h e algorithm of (TRA-86b) ( s e e § 1 . 3 . 3 . c ) to t h e m a t r i x (B A) and we obtain t h e m a t r i x F 4 in a r e o r d e r e d form as follows :
u3 X
u2
X
~ I I
__
x u x j" l_ _ . . ,
E ' X
X X
L --X / '
I X
X
I
]
X
Since u I is n o t r e p r e s e n t e d in F4, it is clear t h a t all the s e t s I' i c o n t a i n t h e i n t e g e r 1. The r e m a i n i n g o n e s a r e d e t e r m i n e d by u s i n g T h e o r e m 5.9 w h i c h p r o v i d e s the k e y to e x t r a c t all t h e s q u a r e s u b m a t r i c e s of F 4 h a v i n g full g e n e r i c r a n k . Note t h a t s i n c e t h e t h r e e l a s t columns of F 4 are i d e n t i c a l , t h e y can be a r b i t r a r i l y i n t e r c h a n g e d a n d two of them can t h e r e f o r e be d e l e t e d . In o u r c a s e , none of them c o r r e s p o n d s to i n p u t
v a r i a b l e s so t h a t t h e
d e l e t i o n is a r b i t r a r y .
In a n o t h e r
c a s e , it is c l e a r t h a t t h e o n e s c o r r e s p o n d i n g to i n p u t v a r i a b l e s s h o u l d be d e l e t e d . We h a v e : u3
u2
K xL,
L
1
x I~ i_- 1
F I
/4
x x __ x
X
X
X
uX_t___[ --;-~--I X
X]
|
226 The number
inspection
of e d g e s
of DF shows three
associated
with input
cycle families of width 5 involving
columns (denoted
by dotted lines)
a minimal
:
V
t
Consequently, minimal essential If t h e get
we
obtain
:
I'1
= {1,2}
I' 2 = { 1 , 3 } .
We h a v e
therefore
two
i n p u t s e t s I i = I ' 1 a n d I2=I' 2.
same
problem
is n o w
approached
from
the
outputs
point
of view,
we
:
Ixx' /P
X
x
Ft.2=
x
--~
I X
I
. . . .
X
1
Y3
-
2--' I,_
__
L
.
.
I X
.
.
X
i
This means that
all t h e s e t s
columns of F 4 are identical, n e e d to go t h r o u g h
the one corresponding
the cycle families procedure
From Theorem system
J'i contain the indices
5.6,
we o b t a i n
] a n d 2. S i n c e t h e two l e s t
to Y3 i s d e l e t e d
to c o n c l u d e
four minimal essential
and
we
do n o t
that J'i=Jl={1,2}. feedback
patterns
for this
:
F 1=
[oo] [ixoI FOil [iox] 0
X
0
0
0
0
F2
0
0
F3 = 0
0
0
0
0
0
F# -
0
0
0
0
227 5.3.5. - Concluding remarks
The algorithms presented
in t h i s s e c t i o n p r o v i d e
mining t h e f e e d b a c k p a t t e r n ( s )
the f i x e d m o d e s c h a r a c t e r i z a t i o n s of C h a p t e r n u m b e r of f e e d b a c k and,
a s y s t e m a t i c w a y of d e t e r -
w h i c h g u a r a n t y t h e a b s e n c e of f i x e d m o d e s b y u s i n g III.
An o p t i m i z a t i o n c r i t e r i o n
as
the
l i n k s or t h e s u m of t h e i r a s s o c i a t e d c o s t s is g e n e r a l l y a d o p t e d
among all t h e a d m i s s i b l e f e e d b a c k p a t t e r n s ,
t h e o n e s which minimize t h e
cri-
terion are selected. Senning)s procedure the
parametric
and
the
(SEN-79) structural
is t h e o n l y o n e w h i c h c o n s i d e r s s i m u l t a n e o u s l y optimization
by
using
an
extended
optimization
c r i t e r i o n t a k e n a s t h e s u m of t h e c l a s s i c q u a d r a t i c c r i t e r i o n of l i n e a r s y s t e m s a n d a w e i g h t e d m e a s u r e of t h e n o n - l o c a l i n f o r m a t i o n . rithm provides
in o n e
optimal s t r u c t u r e . and the
step
Therefore,
t h e optimal g a i n s of t h e
t h e s o l u t i o n of h i s a l g o -
dynamic compensator and
its
All t h e o t h e r s a l g o r i t h m s p e r f o r m o n l y t h e s t r u c t u r a l o p t i m i z a t i o n
g a i n s m u s t be e v a l u a t e l a t e r
by
u s i n g one
of t h e p a r a m e t r i c o p t i m i z a t i o n
p r o c e d u r e s p r e s e n t e d in t h e n e x t c h a p t e r .
The
different
approaches
are
not
equivalent
and
one
must
choose
the
w h i c h is t h e m o s t a d e q u a t e to i t s p a r t i c u l a r p r o b l e m a n d s i t u a t i o n . I n d e e d ,
one
Locatelli
et al. a p p r o a c h (LOC-77) is o n l y valid f o r s y s t e m s with simple m o d e s a n d t h e p r o c e dures presented
in P a r a g r a p h
fixed modes.
However,
specially
large
for
5 . 3 . 4 do n o t g u a r a n t y t h e a b s e n c e of n o n s t r u c t u r a l l y
note t h a t
scale
these
systems)
limitations are
since
they
set
not
apart
the
too m u c h cases
constraining,
for w h i c h some
u n p r o b a b l e p e r f e c t p a r a m e t r i c m a t c h i n g s could o c c u r .
5 . 4 . - CONCLUSION T h i s c h a p t e r p r e s e n t s d i f f e r e n t a l g o r i t h m s w h i c h c a n be u s e d f o r t h e d e s i g n of the feedback control structure n u m b e r of f e e d b a c k l i n k s situations are
s u c h t h a t t h e s y s t e m h a s no fixed m o d e s a n d t h a t t h e
(or t h e
considered.
In
s u m of t h e i r a s s o c i a t e d c o s t s )
the
first
one,
an
initial
control
is m i n i m i z e d . Two structure
a r i s e from t h e p a r t i t i o n i n g of t h e s y s t e m d u e to p h y s i c a l c o n s i d e r a t i o n s . system
has
fixed
m o d e s with
respect
to t h i s
control
structure,
the
naturally When t h e
a l g o r i t h m s of
Section 5.2 allow to d e t e r m i n e t h e s u p p l e m e n t a r y i n f o r m a t i o n e x c h a n g e s w h i c h eliminate fixed modes. and
the
In t h e s e c o n d s i t u a t i o n , no initial c o n t r o l s t r u c t u r e
algorithms
(Section
5.3)
provide
all t h e
control
structures
is c o n s i d e r e d for
which the
s y s t e m h a s no f i x e d m o d e s . Since t h e p r o b l e m s o l v e d in t h e s e c o n d s i t u a t i o n is more general than the
first one,
the
corresponding
p a r t i c u l a r f r a m e w o r k of t h e f i r s t c a s e .
a l g o r i t h m s can also be
used
in t h e
228
At t h i s s t e p ,
we a r e g u a r a n t e d t h a t t h e s y s t e m is pole a s s i g n a b l e b y u s i n g a
dynamic c o m p e n s a t o r w h o s e s t r u c t u r e h a s b e e n d e t e r m i n a t e d b y one of t h e a l g o r i t h m s p r e s e n t e d in t h i s c h a p t e r . 79) h a s b e e n u s e d , is
c o n s i d e r e d in
E x c e p t in t h e case f o r w h i c h S e n n i n g ' s a l g o r i t h m (SEN-
the g a i n s of t h e c o m p e n s a t o r remain to d e t e r m i n e . This p r o b l e m
the
next
chapter
and
several
p a r a m e t r i c optimization a l g o r i t h m s
under structural constraints are presented. If one w a n t s to a c h i e v e pole a s s i g n m e n t u s i n g s t a t i c o u t p u t f e e d b a c k , tional c o n d i t i o n s o t h e r t h a n t h e a b s e n c e of f i x e d modes a r e g e n e r a l l y r e q u i r e d . problem was c o n s i d e r e d in P a r a g r a p h 3 . 5 . 2 c in w h i c h t h e control s t r u c t u r e s static controller are characterized their design chapter.
was p r o v i d e d
and
(EVA-84).
addiThis of t h e
H o w e v e r , no s y s t e m a t i c algorithm for
t h i s is w h y t h i s
c a s e was not i n t e g r a t e d in t h i s
CHAPTER
6
DESIGN TECHNIQUES - PARAMETRIC ROBUSTNESS
6. I . - I N T R O D U C T I O N
The previous
chapters
showed
that
the existence
tralized stabilization
(or pole placement)
problem
fixed
a
structure
modes.
When
given
feedback
depends
structure.
i s to s p e c i f y This
This problem was considered
numerical values
chapter
structural
considers
constraints
techniques.
that
actuator,
now the on t h e
uncertainties
are taken into account. line cuts...)
in
generally
unstable
fixed
in c h o o s i n g
in the last chapter.
of
modes,
a new feed-
The remaining
task
for the gain matrices.
and provides
Considerations
in t h e s e n s e
for the decen-
critically on the absence
results
s t a b i l i z a t i o n is i m p o s s i b l e a n d t h e s o l u t i o n c o n s i s t s back
of a solution
problem
of synthesis
and overview robustness
due
of such
to p a r a m e t e r
The effects of structural will b e s t u d i e d
of feedback
of appropriate
controllers
variations
design
are also included,
or external
perturbations
gains under
near-optimum
disturbances
(failure on sensors
or
in t h e f o l l o w i n g c h a p t e r .
6.2. - THE OPTIMIZATION PROBLEM Consider
x(t)
Yi(t) where vectors priate
a linear time-invariant
= A x(t)
+
Ci x(t)
x {E R n is t h e of the
it h
dimension.
system with S local control stations
:
S £ Biui(t) i:l (i=l . . . . . state
S)
vector,
local c o n t r o l Define )
(6.2.1)
u i ~= Rmi a n d
station.
A,
Bi,
Yi E R r i Ci are
are
the
constant
input matrices
and
output
of appro-
230
(6.2.2) then the equations
(6.2.1) b e c o m e :
~(t)
= A x(t)
y(t)
= C x(t)
+ B u(t)
(6.2.3 .a)
where the global number
of inputs
5
5
m=i~ ~
The the
mi
1
.
problem
global
system
performance
r=
Z i= 1
r
and outputs
(6.2.3.b)
is to f i n d
S local o u t p u t asymptotically
criterion
:
1
(6.2.3)
is
are given by
(or state) stable
and
feedback
controls
such
that
classical
quadratic
the
that
J is minimized.
co
J =
f
(x' O x + u' R u) dt
(6.2.4)
0 where
Q and
R are
weighting
nite and positive definite, Only thesis
static
feedback
of a dynamic
controller
matrices
of appropriate
dimensions, positive-semi
defi-
respectively. control
controller
for an augmented
can
system
will b e be
considered.
brougth
(SEN-79).
back
The to
reason
the
is that
synthesis
the
of
syn-
a static
T h i s i s s h o w n in t h e f o l l o w i n g s u b s e c -
tion.
6.2. I. - D y n a m i c
controllers
Assume that the controller ~(t) = A u(t)
where are
Z
given by
:
z(t) + G y(t)
(6.2.5.2)
= H z(t) + E y(t)
(6.2.5.b)
z £ R n 0 is t h e s t a t e a n d
constant
matrices
verifying
Az ( n o x n o ) ,
G {no x r ) ,
the
constraints
structure
H(m x n o ) and (Az,
G,
H,
E (mxr)
E are
block
d i a g o n a l m a t r i c e s if t h e c o n t r o l i s c o m p l e t e l y d e c e n t r a l i z e d ) .
Applying becomes
:
the
control
(6.2.5)
to the
system
(6.2.3),
the
closed-loop
system
231
[] [A+BEcBl[x ] GC This equation x*(t)
Az
z
can be rewritten
=
(A*
+
as
:
B* K* C*) X * ( t )
where
rA,, olo
A*4___t___l
r !ol.
,
Lo l O]no n
system
y*(t)
= C* x * ( t )
this
the
controllability
n
dynamic
I'E I~lm
no
LG
no
compensator
to s p e c i f y i n g
a static
I AzJ n o
1
(6.2.5)
compensator
n
(i.e.
0
the
matrices
u * = K* y * f o r t h e
the
+ B* u * ( t )
determination
of c h o o s i n g
order
no
l
:
= A* x * ( t )
the problem
6.2.2.
specifying
x*(t)
Note t h a t
ver
m
a n d A z) is e q u i v a l e n t
augmented
c*-- / - - - ' - - I Lo ','.1
L o l' J"o
no
Therefore, E,H,G
r iol
B-d-_.,-_ /
must
of the
augmented
the compensator
be
at
least
and observability
equal
order to
system
may be
delicate
because
n o is not completly solved yet.
min
(Uo' Uc ) '
whereu °
Howe-
a n d ~)c a r e
the
indices of the system.
- Static controllers
Suppose
now that
back with time-invari2nt u(t)
= K y(t)
the
control
feedback
u(t)
gains,
K s u b j e c t to
J =
i.e.
Y~(x' 0
Q x + u' Ru)
by
linear
static
output
feed-
:
= K C x(t)
(6.2.6)
the optimization problem can be formulated
rain
is generated
dt
as follows :
232
(6.2.7)
= Ax + Bu y=Cx u---Ky Applying
~(t) and x(t)
the control (6.2.6)
= (A + B K C ) x ( t ) is given by
x(t)
where ¢(t)
= [exp
(6.2.3),
the closed-loop system is :
(6.2.8)
= D x(t)
:
(A+BKC)t ] x(0)
is the transition
in the criterion
to t h e s y s t e m
x(O)
= ¢(t)
m a t r i x of t h e s y s t e m
expression,
(6.2.8).
Substituting
x(t)
and u(t)
we o b t a i n
c~
J(K)
= x'(0)
{f 0
@'(t)
J(K)
= x'(0)
P x(0)
Q + C ' K ' R KC
@ (t)
dr} x ( 0 )
(6.2.9)
or
(6.2.10)
where co
P = ~ ~'(t)
QI(K)
@(t) d t
Q I ( K ) = Q + C ' K f R KC If t h e plan,
matrix
D = A + BKC
has
all i t s
then P satisfies the matricial Lyapunov
eigenvalues
equation
in
the
(LEV-?0)
left
half
complex
:
f = D' P + PD + Q1 (K) = 0 It
is well k n o w n
condition of the solution
the solution
of this
state
x(0)°
To o v e r c o m e
this
for
a set
of initial
valuable
random
variable
identity
matrix,
(LEV-70) if x ( 0 )
Then taking
ioe.,
= T r (P X0)
where
X0 = E [ x(0)
with
given
is s u p p o s e d
the expectation
of the trace operator,
J(K)
that
x'(0) ]
tr(b'a)
problem
difficulty
conditions covariance
we
is depending and
consider
x(0)
X0 = E[x(0)
uniformly distributed
around
of both sides of (6.2.10) = tr (abt),
to o b t a i n as
on the initial a suboptimal a
zero
x ' ( 0 ) ] (X = 1 / n
mean I,
the origin).
and using
the properties
we g e t : (5.2.11)
I
233 The optimization problem
can be reformulated
in the following static
equivalent
f or m :
min J(K)
= Tr[
P X 0]
K subject to : f = D'P + PD + Q I ( K )
The
constraints
on
feedback matrices set
K
c
={K/K
where F(K)
F(K)
= 0
the
control
C Rmxr such that
indicates
the feedback
= K - block diag.(K 1.
F(K)
rain
introduced
defining
the
admissible
= 0}
. . . .
(6.2.12)
KS)
control.
the optimization problem can be rewritten
J(K)
by
loops that are not allowed.
in t h e c a s e of c o m p l e t l y d e c e n t r a l i z e d
Finaly,
are
•
= Tr [P
as
:
X0 ]
K~K
c s u b j e c t to : f = D*P + PD + Q I ( K ) QI(K)
(6.2.13)
= 0
= C'K'RKC + Q
D = A + BKC X0 = E [x(0)
x'(0)]
I n t h e c a s e of f u l l s t a t e
min
J(K)
= Tr [P
feedback
the problem
(6.2.13)
becomes
:
X O]
K~K ¢ s u b j e c t to : f = D ' P + PD + Q + KIRK = 0
(6.2.14)
D=A+BK x 0 = F: [ x(O) x ' ( O ) ]
6.2.3.
- Necessary gradient
The
conditions for optimality :
matrix calculation
gradient
matrix
can
be obtained
analytically
by applying
the perturbation
234 theory
on the criterion
(6.2.9)
(LEV-70)
provided by Geromel and Bernussou
Let respect
f(K)
to i t s
be
a
scalar
arguments.
function By
( s e e A p p e n d i x 5) b u t a s i m p l e r m e t h o d w a s
(GER-79b, BER-81,
of
the
definition,
matrix
the
BER-82).
K w h i c h is
matrix
gradient
differentiable
df/dK
is
the
with
matrix
whose elements are ~ f/Sk... 11 The static case Theorem 6.1.
:
Let f ( x ,
to all i t s a r g u m e n t s
G(x))
b e a s c a l a r f u n c t i o n w h i c h is d i f f e r e n t i a b l e w i t h r e s p e c t
; x and G(x) are matrices.
Then
:
d_~_~ ((x), G(x)) : a__L (x, y, z) dX ~}x where
y,
z are
the
matrices
obtained
s t a t i o n a r i t y of t h e L a g r a n g i a n f u n c t i o n
L
= f (x, y) + Tr {z'(G(x)
by
solving
the
necessary
conditions
for the
:
- y) }
T h e d y n a m i c c a s e : Let t h e o b j e c t i v e f u n c t i o n b e : T J(K) =
f 0
f(x,
K) dt + g ( x ( T ) )
where f and g are scalar functions
(differentiable with respect
x, K are matrices linked across the differential system
]~ = F ( x ( t ) ,
K)
;
x(0)
=
x0
Theorem 6.2. T d3
where H (x,
:
0f
~H ~
(x, z, K) dt
z, K) is t h e H a m i l t o n i a n f u n c t i o n
I! = f ( x , K) + T r [ z ' F ( x ,
and x,
K)]
z satisfy the conditions of stationarity 8H £ = -~Z = _8 FI 8x
x(0) = x 0 z(T) =
:
d~ d x(T)
:
:
to t h e i r a r g u m e n t s )
;
235 Applying
Theorem
gian function L = Tr
(6.1)
to our problem in its static
with
= 2 (RKC
g(K,X0) QI(K)
= DS
tions.
+ Q1
= C'K'RKC
Hence,
for
the initial (HOS-77)
This
this
result
is o b t a i n e d
K,
the
gradient
matrix
(Lyapunov
is a reasonable
by using
can be
equations),
task
even
the method of varia-
obtained
by
solving
one of them depending
for large
scale
system
two on (see
states
are measurable
then
u = Kx a n d t h e n e c e s s a r y
condi-
become :
f(K) = D'P + P D g ( K , X 0) = D S
where
5,
(DAV-68)).
] ~--J= 2 ( R K - B ' P ) S with
(6.2.15c)
X 0 = E [ x(0) x(0)']
a given
i f all t h e s y s t e m tions (6.2.15)
(6.2.15a) (6.2.15b)
(K) = 0
matricial equations
conditions. and
:
+ Q
and
6.1 - In Appendix
linear uncoupled
conditions
+ SD' + X 0 = 0
D = A ¢ BKC
Remark
with the Lagran-
- B'P) SC' = 0
f(K) = D'P + P D
where
(6.2.13),
(P X 0) + T r [ S ' f ]
we o b t a i n t h e f o l l o w i n g n e c e s s a r y d3
form
:
= 0
(6.2.16a)
+ Q + K'RK
+ SD
= 0
(6.2.16b)
+ X0 = 0
(6.2.16c)
D = A + BK
The optimal feedback
matrix,
in t h i s c a ~ e , i s g i v e n b y
:
K = - R -1 B I P
(6.2.17)
where P is the symetric
definite positive solution of the Riccati equation
A'P + PA - PBR-1B'p
Observe not depend In the problem
that
the
:
+ Q = 0
equation
(6.2.16c)
(6.2.18) becomes
unusefull
and
the
control
does
on the initial conditions. general
case,
the otpimisation
problem
is thus
which can be solved by using one of the design
following section.
reduced
techniques
to a p a r a m e t r i c presented
in the
236 6.B.
- DECENTRALIZED
CONTROL
This section provides blems
6,2.15
Some
use
or
6.2.16.
gradient
PARAMETRIC
OPTIMIZATION
a s o l u t i o n to t h e n e a r - o p t i m u m
The
matrix
BY
presented
techniques
algorithms (GER-79a,b)
others
do n o t ( G E R - 8 4 ) .
6.3.1.
- The algorithm of Geromel and Bernussou Geromel and Bernussou
propose
are
decentralized
based
on
(JAM-83),
control pro-
iterative and
schemes,
(CHE-84))
and
(GER-79)
a gradient
method
(ZOU-70)
which is summari-
zed below : 1 - Initialization by an admissible
gain matrix,
diagonal feedback
that the closed-loop system is stable.
matrices),
such
2 - Calculation of the gradient
i.e.
K E: K d
s e t of b l o c k
matrix.
3 -
Determination
of a feasible
direction
G (for which
and
the
constraint
verified)
and
structure
(K d i s t h e
is
of the
the
cost
function
decreases
s t e p a of p r o g r e s s i o n
in
this
direction. 4 - Convergence
test.
If the test is satisfied
: stop
; otherwise,
update
K by K -aG
a n d go to 2.
6.3.1.a
- Initialization of the procedure
The problem
of f i n d i n g
authers
(AOK-73),
76a,b),
(GER-79a,b),
tano and Singh
: Algorithm of Armentano
an admissible
(WAN-78b),
(FES-79),
(ARM-81)...
stabilizing (IKE-79),
Among those,
(ARM-SI) which always provides
and Stngh
gain was considered (SEZ-81b),
we p r e s e n t a solution
by many
(DAV-76a},
(COR-
the algorithm of Armen(of course,
if no unstable
fixed modes exist). The approach the
closed-loop
with respect
v and
The
to t h e f e e d b a c k
Q= ~kij
where
consists in minimizing the real part
system,
-W' b
i
gradient
of an eigenvalue
gains is given by
ci v
of the dominant eigenvalue k 0 of the
(see Chapter
closed-loop
of
system
3) :
i=l,...,m j: l,...,r
0
ilk.
w are the right
b i is t h e i t h c o l u m n o f B , a n d
=
U
0
and left eigenvectors
associated
c i is the jth row of C.
with the eigenvalue
)~0'
237
The (kij)
gradient
of the
can be expressed
gi] = Re
real
part
o f X0 w i t h
as a matrix G = (gij),
respect where
to
the
feedback
gain
K =
:
]
t. akij
j
The algorithm is the following : Step 1 : Choose an arbitrary Step 2 :
Compute
Otherwise,
the
eigenvalue
compute the right
Xd" Step 3 : Compute
the gradient
S t e p 4 : Do a s t e e p e s t -aG,
K E Kd .
dominant
where
matrix
of
A+BKC.
If
it i s
negative,
stop.
v d a n d w t a s s o c i a t e d to
G d.
descent
a is t h e s t e p
kd
and left eigenvectors
search
size.
in the direction
Go to s t e p
of -G and update
K = K
2.
Remark 6.2. a) If t h e d o m i n a n t e i g e n v a l u e
with positive
local m i n i m u m , t h e a l g o r i t h m m u s t b e s t a r t e d b)
The unidimensional
like q u a d r a t i c
search
or null real part
turns
again from a different
may be performed
by
using
o u t to b e a
matrix. efficient
algorithms
interpolation.
c) I f , a t a n y i t e r a t i o n ,
the dominant eigenvalue
is multiple,
perturb
slightly
K
( W A N - 7 3 a ) in s u c h a w a y t h a t it b e c o m e s s i m p l e .
6.3.1.b.
- Feasible direction
Assume
that
matrix is not zero. existence
K ~ K d is an
admissible
initial condition
T h e p r o b l e m i s to d e t e r m i n e
of a step length a such
t h a t J (K - a G )
a matrix
that
the
gradient
to g u a r a n t e e
( J (K) f o r all 0 ( a ( a
a ) 0. It is e a s y to s e e t h a t t h i s m a t r i x c a n b e o b t a i n e d 7 9 b , 82)
such
G in o r d e r
the
and some
by solving the problem
(GER-
:
min ~I
Tr[ (d3 ~
- G ) ' ( ~d3
- G)]
(6.3.1)
s u b j e c t to : F (G) = 0 If t h e c r i t e r i o n thogonal projection in (GER-79b)
is written
of dJ/dK
explicitly~
we e n d
up
on the linear set defined
with
the
problem
by the constraint.
of the
or-
It is shown
that the solution is "
G = block-diag. ( ~d3 )
(6.3.2)
238 Therefore,
the
o r t h o g o n a l p r o j e c t i o n onto
the
decentralization
set
is
easily
o b t a i n e d b y s e t t i n g all t h e o f f - b l o c k - d i a g o n a l t e r m s of t h e g r a d i e n t m a t r i x to z e r o . This
result
can
be
generalized
to a r b i t r a r y
structure
constraints
and
the
p r o j e c t i o n of t h e g r a d i e n t m a t r i x is g i v e n b y :
G = (gij)
The
=
/
d~0~ H
if
kij
if
kij = 0
e x i s t e n c e of a feasible
I
0
direction
(6.3.3)
matrix
is
guaranted
by
the
following
lemma: Lemma 6.1 (GER-82). The optimal s o l u t i o n of t h e p r o b l e m ( 6 . 3 . 1 ) is s u c h t h a t : a) if
IIo~
0 then
~ > 0 such that J(K - a G )
< J(K)
0~
a
~
~-
b) if [[G[[ = 0 t h e n the m a t r i x K s a t i s f i e s t h e K u h n - T u c k e r c o n d i t i o n s of t h e problem min J ( K ) w h e r e Kd r e p r e s e n t s t h e d e c e n t r a l i z a t i o n c o n s t r a i n t . KEK d This
lemma
guarantees
the
e x i s t e n c e of a
step
sizes
such
that
(K - a G )
s t a b i l i z e s t h e s y s t e m , b u t it does n o t give a n y i n f o r m a t i o n a b o u t its c h o i c e . At e a c h i t e r a t i o n , ¢z may b e f i x e d b y s o l v i n g t h e following s i n g l e v a r i a b l e optimization p r o b l e m along t h e s e a r c h d i r e c t i o n : rain
J (K - a G )
(6.3.4)
a~/0 H o w e v e r , in p r a c t i c e , it is g e n e r a l l y a d v a n t a g e o u s to a d o p t a h e u r i s t i c method of a d a p t a t i o n of t h e s t e p d u r i n g t h e i t e r a t i o n . In (GER-79a), t h e following a d a p t i v e rule is p r o p o s e d : Let i be t h e i t e r a t i o n i n d e x , t h e n : i+l =~ i i i a = Va
if
J ( K i - a iGi ) < J ( K i) a n d P (Ki-C~G i) > 0
otherwise
w h e r e ~ > 1 a n d 0 ( v ( l0 The initial value of a is a r b i t r a r y .
(6.~.5)
239 6.3.1.c
- The properties
of the algorithm
The algorithm presented
above has the two following properties
1 - The stability of the overall system is guaranted
The step size a must be chosen i)
at each iteration.
-"
(K - ( ~ G ) ~ K s w i t h K s =[ K f A + B K C s t a b l e ]
ii) J (K - a G ) It i s s h o w n
x( J ( K ) in
positiveness
of P, i.e.
with respect The
nonlinear
that
algorithm
X0 the
by means of the definite-
> 0.
t o a local o p t i m u m
optimization
problem
is summarized
routine,
P(K)
Since the algorithm requires
(i) c a n b e p e r f o r m e d
to K b u t t h e c o n v e r g e n c e
Fortran
X0] x( T r
s u c h c~ e x i s t s .
P, the test
P(K -~G)
2 - Uniforme convergence The
or Tr [P(K-aG)
(GER-79a)
calculation of the matrices
ponding
such that
:
is
I
here
is
not
to a local o p t i m u m i s e n s u r e d
by
provided
considered
the
organigram
in A p p e n d i x
of Figure
generally
(GER-79a). 6.1.
6.
A, B, C, X 0 '0
E
c~
i L
c o m p u t e an initial gain ~
K
Solve t h e Lyapunov e q u a t i o n s to g e t P a n d S
i
convex
The
corres-
240
..,
i
Compute the gradient matrix d J/d< =,
Gradient projection [ ~ G = ~ kij
i~ kij ~ 0 if kij : 0
I, 0
K : K - aG
YES
I
°-
] I
STOP
]
Figure 6.1 Example 6.1 ( G E R - 7 % ) . -
:
Consider the system (composed of three subsystems
I
I 0~5
I
I
i 0.6
0
1
I
l
0
I
-2
-3 I 1
0
-o~- - i - T o o o~ / z
2
I J
05
3 0
I 0 I I 0 I -3
0 1
1
0
I
1
0
0.5 I 0,5 I
0
~0
I I
--F7 o] X+
-#
I
and the quadratic cost : J =f 0
I
(x'x + uIu) dt
Consider the case of decentralized state feedback :
IO
# I I 3 I
: S=3) :
241
(K : b l o c k d i a g o n a l m a t r i x )
u--Kx
w i t h X¢~ = I a n d t h e i n i t i a l g a i n m a t r i x
,l l 0.',
K1
I
3.41
1
I1
14.96
0.06
I
With a 1 = 0 , 0 1 ,
~= 0,5
•21
I -
K 59
:
a n d ~ = 1 , 2 , we h a v e
0.35 1 -
-
-[
~
3-
--o.-;-~iI
I 0,87
2.46 I ~1.58
L
0.24
I
which satisfies
the convergence
:
1
test with e = 0,001.
T h e c o s t g o e s f r o m J ( K 1) = 8 , 7 6
to J (K 59) = 3.
6.3.2.
- The algorithm of Jamshldi
Instead by
using
of using
the
(JAM-83)
the feasible direction
well-known
method,
Davidon-Fletcher-Powell
The algorithm is the following
the problem
variable
metric
(6.2.16)
is solved
method
(FLE-63).
:
S t e p 1 : S e l e c t a n i n i t i a l m a t r i x K = K 0 a n d s e t i = O. Step 2 : Solve
the
Lyapunov
equations
(6.2.16b
and
c)
using
A,
B,
Q,
R,
X0,
K
a n d t h e a l g o r i t h m o f D a v i s o n a n d Man ( D A V - 6 8 ) . Evaluate
the gradient
~J/~K and the criterion
Step 3 : Use the Fletcher-Powel K i - n e w = Ki - o l d + a D i w h e r e Di is t h e s e a r c h Step 4 : Check
whether
a prespecified
m e t h o d to u p d a t e
direction
during
the convergence
tolerance
value.
J(K). the gain matrix Ki:
the ith iteration.
is achievedp
e.g.,
If the convergence
II~ 3 / ~ K i l
is reached,
g o to s t e p 2. The following example illustrates
the use of this algorithm
:
(¢, stop,
where E is otherwise
242
000 1
Example 6.2 (JAM-83).
-l
-2
Consider
a fourth-order
I 1
-~
-
~
X+
0,0.
-o,~ I o
o.2~
and the cost function
:
l .
.
.
.
.
]
0, /
L
-o.2
s y s t e m w i t h two s u b s y s t e m s
I
I A
:
co
J = 1/2 where
f 0
(x' Q x + u' Ru) dt
Q = 21 a n d
R = 21, T h e p r o b l e m i s to f i n d a s t a t e
matrix
:
k12 LI . 0. . . . 0
kl I
K =
feedback
0
0
[
k23
k24
such that J is minimized : Take X 0 = I, and consider
KO:
.l
0.1~l 0 0 i 0.I
these two initial values
0 0.I
f o r K0:
0 - - 6 2 I 3"-
KO
I
Then,
the
respectively.
algorithm
The resulting
of J a m s h i d i averaged
converges
.414 0.168II 0
K*=
0
in 7 and
13 i t e r a t i o n s
o p t i m a l g a i n K* i s f o u n d to b e
(¢ = 0 , 0 1 ) ,
:
01
I 0.35
0,58
I
with J(K*) = 1.0985. 6.3.3.
Iterative
procedure
of Chen et al.
The algorithm of Geromel and gence
and
excessive
block-diagonal
computation
feedback
(CHE-84)
Bernussou per
cycle
(see § 6.3.1) due
matrix at each iteration.
to t h e
suffers
requirement
of poor converof retaining
a
243
T h e following i t e r a t i v e p r o c e d u r e was p r o p o s e d to overcome t h e s e d e s a d v a n rages.
It p r e s e r v e s
t h e p r o p e r t i e s of u n i f o r m c o n v e r g e n c e to a local minimum and
g u a r a n t e e s t h e s t a b i l i t y of t h e global s y s t e m at e a c h i t e r a t i o n . The p r o c e d u r e c o n s i t s in s t a r t i n g t h e i t e r a t i o n s with an optimal s t a t e f e e d b a c k matrix (full m a t r i x g i v e n b y (6.2.17) a n d s e t t i n g s u c c e s s i v e l y t h e o f f - d i a g o n a l b l o c k s to z e r o . At e a c h i t e r a t i o n , an optimal f e e d b a c k m a t r i x is f o u n d u s i n g a c o n j u g a t e g r a d i e n t m e t h o d . The p r o c e d u r e is s u m m a r i z e d below : Step 1 : D e t e r m i n e P b y s o l v i n g t h e a l g e b r a i c Riccati e q u a t i o n ( 6 . 2 . 1 8 ) . Compute t h e full gain matrix K g i v e n b y ( 6 . 2 . 1 7 ) .
Set j=l a n d Kj = K.
Step 2 : a) write K j as : K
KJ::
l
K21
Kl2 ....... KIS
K22 . . . . . . . r
KSI
,,.
KS2 . . . . . .
KSS
b) D i s c a r d one block from Kj, s a y K1S :
Kll
KI2 . . . .
KI,S_ 1
K21
K22 . . . . . .
0 K2S
Ki=
,
KSI
KS2 . . . . . . . .
i:
j+l
~.Ks$
c) Calculate t h e e i g e n v a l u e s of the m a t r i x (A-BK i) . If t h e m a t r i x is s t a b l e , go to s t e p 3. O t h e r w i s e , c o n s i d e r Ki as t h e initial g a i n m a t r i x for t h e algorithm of Armentano and
Singh
(see
§ 6.3.1a).
Find a gain m a t r i x K (with t h e same
s t r u c t u r e as Ki) w h i c h s t a b i l i z e s ( A - B K ) . Set Ki = K. Step 3 : Using t h e t e c h n i q u e of Hoskins e t al.
(HOS-77), solve t h e L y a p u n o v e q u a -
t i o n s ( 6 . 2 . 1 6 b and c) and compute t h e g r a d i e n t
(6.2.16a).
Then, a conjugate
g r a d i e n t r o u t i n e with a q u a d r a t i c i n t e r p o l a t i o n in t h e o n e - d i m e n s i o n a l s e a r c h is u s e d to o b t a i n t h e minimum of t h e p e r f o r m a n c e i n d e x . Step 4 : D i s c a r d a n o t h e r block from Ki, s a y KS1 :
244
K
K i+l =
K 12 . . . . . .
11
K22,. K21 ! Ks_l~ 1 I I
K l,S-I
0 - K2S
"-.
,
, 2 - . KSS 0 K 8, S e t i=i+l a n d go to s t e p 2. T h e p r o c e d u r e
g o e s o n u n t i l Ki h a s a b l o c k - d i a g o -
nal form. E x a m p l e 6.3 ( C H E - 8 4 ) . Consider again the Example 6.1. The procedure
begins with : -
!
0.9004
0.2487
i
I 0.1887
0.1823
t[ 0.3117
0.04
0.4902
! 0.4006
0.1202
I
-r 0.2761
0.29
[
1.143
I I
K1 = 0,4608
I [
I 0.6536
0.2684
2,219
i 0.1366
i
--
0.3873
0.1207
I
After six iterations the procedure
-0.031
I
I
0.6068
[ 0.2878 I
1,184
0.32
0
0
I
gives
•
I
1.145
0.3162
I
0
0
1.264
0.4981
0
0
0.7892
2.224
0
0
1.366
0,2269
[ I
I
I
0
0
I
K6=
I I
0
0
I i
l
o
o
I
o
o
I
I
I I
T h e c r i t e r i o n v a l u e s a r e J ( K 1) = 2.718 a n d J(K 6) = 3 . 0 0 7 . Remark 6.3. 1. S i n c e t h e r e
is no constraint
a p p l i c a b l e f o r an a r b i t r a r y 2. T h e p r o c e d u r e initial
gain
(6.2.18))
matrix
in e l i m i n a t i n g
control structure
can be used
for output
K = R - 1 B I P C -1
and replace the equation
(P
feedback.
being
(6.2.16)
off-diagonal
blocks,
the
procedure
is
without modifications. the
I f ~1 e x i s t s , solution
by (6.2.15).
of the
one can take the Riccati
equation
If C -1 d o e s n o t e x i s t ,
then
245 the initial gain matrix
can be found by using
the algorithm
of Armentano
and
Singh
(see § 6.3.1a). 3. This procedure was compared with the algorithm of Geromel and B e r n u s s o u 6.3.1)
(CHE-84).
Both algorithms were implemented on a PDP-10
(see §
and the recorded
C P U times for Example 6.3 were :
Geromel a n d B e r n u s s o u
algorithm
Initial block-diagonalization of Geromel and Bernussou
by the technique (GER-79a) .............................
53.2 sec
suboptimal hlock-diagona lization..................................
101.26 sac
Procedure
o f C h e n e t al
Initialization
(optimal full gain matrix)
Suboptimal block-diagonallzation The numbers
6.3.4.
show a significant
Iterative
procedure
The problem
K
c
under
structural
= {K / K ~ R m x r s u c h t h a t
constraint
F ( K ) = K [ I - C' ( C C ' ) -1 C in t h e e a s e o f c e n t r a l i z e d
F(K)
output
= K - block-diag.
in t h e c a s e o f d e c e n t r a l i z e d We r e c a l l
that
g i v e n in ( 6 . 2 . 1 7 )
by
the
(GER-84)
constraints
T h e s e t of a d m i s s i b l e f e e d b a c k
where F(K) is the structure
Z.56 s e c 35.81 s e c
computational improvement.
of Geromel and Peres
(6.2.16)
and Peres in (GER-84).
~......................
............................
F(K)
was considered
= 0 }
given by
Geromel :
(6.2.11)
:
]
(6.2.12a)
feedback
(K1, K2,
by
matrices is defined by
,..,
control and
KN)
(6.Z.lZb)
control.
optimal
solution
for the
state
feedback
control
:
K* = R - 1 B ' p
where P is the symetric positive
solution of the Riccati equation
(6.2.18).
problem
is
246
A'P + P A
which can be,
- PBR-IB'p
+ Q = 0
for simplicity, written
as :
(P) = Q The iterative perty
procedure
of Geromel and
t h a t if a g a i n m a t r i x K s a t i s f i e s
Peres
(GER-84)
is based
on the pro-
:
K + L = R-1B'p
(6.3.6)
w h e r e P i s t h e p o s i t i v e d e f i n i t e s o l u t i o n of t h e R i c c a f i e q u a t i o n
:
(P) = Q + L ' R L
then,
the matrix
Since
(A-BK) is asymptotically
L is a r b i t r a r y ,
showed that L is given by
L = F
where
so
= (J-
chosen
such
that
K ~ K . Geromel and c
Peres
:
(6.3.8)
of suboptimality
J*)
J* i s t h e
(6.2.17)
it c a n b e
stable for any matrix L.
(R-IB'p)
The degree
d
(6.3.7)
o f t h e s o l u t i o n is d e f i n e d b y :
/ J*
cost value
corresponding
to t h e
optimal
full gain
matrix
given
by
step
5,
end J the cost value at the convergence.
The following procedure
was proposed
Step 1 : Set the iteration index
:
to z e r o : i=0.
Step 2 : Solve the Riccati equation
:
(Pi) = Q + Ll ' R L.l if i = 0, calculate also J* = 1[2 T r (P0) Step 3 : Calculate Li+l = F (R-1B'Pi).
S t e p 4 : If
|Li+ I
otherwise
Li~¢
(¢ b e i n g
a positive
s e t i = i+l a n d go to s t e p
S t e p 5 : C a l c u l a t e J = 1/2 T r The degree SO
of suboptimality
= (J - J*)/
J*
real
(Pi) a n d K ~ K c b y s e t t i n g
K = R - 1 B ' P i - Li+ 1 d
small
2.
is given by
:
•
number),
go
to
247
Remark 6 . 4 . 1. T h e p e r f o r m a n c e of t h e p r o c e d u r e
d e p e n d s m a i n l y on t h e n u m e r i c a l m e t h o d u s e d
to solve t h e R i c c a t i e q u a t i o n at s t e p 2. We p r o p o s e t h e a l g o r i t h m of K l e i n m a n (KLE-
68). 2. At t h e c o n v e r g e n c e we h a v e : (Pi) = Qi = Q + L'1 R L.1 Where Qi is a s y m m e t r i c s e m i - p o s i t i v e d e f i n i t e m a t r i x , viewed a s a l i n e a r - q u a d r a t i c
T h e m e t h o d c a n t h e r e f o r e be
d e s i g n which determines the weighting state
m a t r i x in
o r d e r to g e t K ~ K . c Because
Qi )
Q'
the
objective
function
increases,
and
the
control
will
be
n e a r - o p t i m a l . T h i s is t h e " p r i c e " for a n optimal c o n t r o l w i t h t h e d e s i r e d s t r u c t u r e . 3. T h e s o l u t i o n i s i n d e p e n d e n t
of t h e
initial c o n d i t i o n
X(0)
a n d is
such
that
the
closed-loop s y s t e m is a s y m p t o t i c a l l y s t a b l e . 4. It is e a s y to t a k e i n t o a c c o u n t a n a r b i t r a r y c o n t r o l s t r u c t u r e . 6.3.5. Comments
T h e d e s i g n t e c h n i q u e s p r e s e n t e d in t h i s s e c t i o n h a v e two d i s a d v a n t a g e s : - T h e y c o n v e r g e to a local minimum of t h e c r i t e r i o n .
T h e s o l u t i o n is t h e r e f o r e
su, o p t i m a l . - They are they are b a s e d
not a d e q u a t e for v e r y large scale s y s t e m s
on a n o p t i m i z a t i o n in t h e p a r a m e t e r
space
(e.g.
and
n=100).
require
Indeed,
calculations
i n v o l v i n g t h e global s y s t e m ( r e s o l u t i o n of m a t r i c i a l e q u a t i o n s ( L y a p u n o v o r R i c c a t i ) ) .
However,
for m a n y p r o b l e m of p r a c t i c a l i n t e r e s t ,
they represent
viable design
techniques.
6.4. - D E S I G N
OF
ROBUST
DECENTRALIZED
CONTROLLERS
T h i s s e c t i o n is c o n c e r n e d w i t h t h e s y n t h e s i s of d e c e n t r a l i z e d c o n t r o l l e r s w h e n u n c e r t a i n t i e s d u e to p a r a m e t e r v a r i a t i o n s m u s t b e t a k e n i n t o a c c o u n t . Three
aspects
of r o b u s t n e s s
cribed d e g r e e of s t a b i l i t y parameter variations
are
(AND-71),
(without
considered : control synthesis
and under
disturbances).
The
small ( T A R - 8 5 ) presence
with a p r e s -
or large
of e x t e r n a l
(PEK-83)
disturbance
s i g n a l s will b e c o n s i d e r e d in t h e n e x t s e c t i o n d e a l i n g w i t h t h e s t u d y of t h e " r o b u s t d e c e n t r a l i z e d s e r v o m e c h a n i s m p r o b l e m N.
248 6 . 4 . 1 . Controllers with a p r e s c r i b e d
degree of stability
T h i s s e c t i o n d i s c u s s e s t h e p r o b l e m of pole p l a c e m e n t in a p r e s c r i b e d the
complex
plane
which
p r a c t i c a l p o i n t of v i e w ,
is
more
it is n o t
closed-loop system but rather
general
than
the
stabilization
e s s e n t i a l to fix p r e c i s e l y
to e n s u r e
r e g i o n of
problem.
From a
t h e e i g e n v a l u e s of the
that these eigenvalues are within a certain
r e g i o n of t h e complex p l a n e . T y p i c a l d e s i r e d r e g i o n s a r e s h o w n in F i g u r e 6 . 2 . Im
Im
Re
Re t
Fig. 6.2.
Here,
we
are
v
J
j
"
/
•
Two c a s e s of p r a c t i c a l s t a b i l i t y m a r g i n s
concerned
by
regions
as
shown
in
Figure
6.2b
(For
details
c o n c e r n i n g F i g u r e 6 . 2 a , see ( K A W - 8 1 ) ) .
T h e o p t i m i z a t i o n p r o b l e m is : =o
rain
J =
K
f 0
{x'Qx + u'Ru) dt
s u b j e c t to x = Ax + Bu u=-Kx
a n d s u c h t h a t t h e e i g e n v a l u e s of t h e
c l o s e d - l o o p s y s t e m a r e l o c a t e d in t h e d a s h e d
r e g i o n of F i g u r e 6 . 2 b ( i . e . e i g e n v a l u e s h a v e r e a l p a r t s l e s s t h a n - a ) . A n d e r s o n a n d Moore (AND-71) s h o w e d t h a t t h i s p r o b l e m i s e q u i v a l e n t to : rain J* =
-]°~e2at ( x ' Qx + u ' R u ) dt
(6.4.1a)
s u b j e c t to x = A x + Bu U--Which c a n
itself
KX be
brought
following v a r i a b l e t r a n s f o r m a t i o n •
back
to
a standard
LQ-problem by
using
the
249 c~t
~=e x ~ = ec~t u
Then,
the problem becomes rain j r -
:
{ ~ ( ~ ' Q "~ + 91 RE) d t
K subject
to ~ = A ~ + B ~ ,
'I
A = A + c~I
~=-K~ Its solution must fulfill the following necessary
conditions
(6.4.1b)
(see § 6.Z).
~J = Z (RK - B' P) S ~K (A - B K ) ' S + S (A - BK) + K' RK + Q = 0 (A - B K ) P + P (A - BK) + X 0 = 0 The existence the pair
of a solution is guaranted
QIIz)
(A,
controllable and
(A,
is o b s e r v a b l e . Q1/2)
Anderson
is observable,
if t h e p a i r
( A , B) i s c o n t r o l l a b l e
and
showed
then
Moore
( A : B)
and
(A:
that
if
QI/2)
(A,
and B)
is
are also con-
trollable and observable.
the
solutions
U=-K~ ~ u = - Kx.
Observe
This
solution ensures
the original system,
and the corresponding
This
means
that
that
to
garanty
that
of
(6.4.1a)
the
closed-loop system is less than -a,
and
(6.4.1b)
with degree values
real
part
it s u f f i c e s
a,
are
of the criteria of the
same,
A by
i.e.
stability of
J and J'are
equal.
eigenvalue
of the
dominant
to r e p l a c e
the
the asymptotic
(A + a I) in t h e o r i g i -
nal o p t i m i z a t i o n p r o b l e m .
back
The above
result
control
the
region.
if
In this case,
to s o l v e e q u a t i o n s
6.4.2.
is still valid
system
has
for output
no
decentralized
(6.2.15)
after
changing
optimal
system
control
optimal f o r into a c c o u n t
parameters
determined
a different
for
set
the uncertainties
may
e set
arising
or
be
decentralized
modes
out
of
the
feeddesired
in t h e l a s t s e c t i o n
(A + a I ) .
reduction
uncertain
and
of nominal parameter This
for
presented
index sensitivity
vary
of values.
A by
or
fixed
we c a n u s e o n e o f t h e a l g o r i t h m s
Optimal control with performance
The
feedback
section
is
values
considers
from small parameter
it
(TAR-85)
that
the
not
generally
the problem
of taking
variations.
is
clear
250 In a s t o c h a s t i c approach Gaussian noises.
uncertainties
The control strategy
uncertainties but reduces variations.
the
are
m o d e l l e d in
general
by
white
p r o v i d e d in t h i s s e c t i o n d o e s n o t model the
t h e c r i t e r i o n s e n s i t i v i t y w i t h r e s p e c t to s y s t e m p a r a m e t e r
If a p a r a m e t e r d e v i a t e s from i t s n o m i n a l v a l u e , t h e r e d u c e d s e n s i t i v i t y of
t h e p l a n t p e r f o r m a n c e i n d e x e n s u r e s t h a t t h e p l a n t b e h a v i o u r will n o t c h a n g e d r a m a tically.
T h e m e a s u r e of t h i s s e n s i t i v i t y is o b t a i n e d b y
(TAR-85)
and alternate ap-
p r o a c h is in ( Y A H - 7 7 ) .
6 . 4 . 2 a . Formulation of the problem (TAR-85) Let q b e a s c a l a r p a r a m e t e r of t h e s y s t e m . I f q c h a n g e s to q + d q t h e p e r f o r m a n c e i n d e x c a n t h e n be a p p r o x i m a t e d b y : J (q + Aq) = J ( q ) + d J ( q ) Hence,
= J(q)
+ dq . dJ/dq
t h e v a r i a t i o n of J is p r o p o r t i o n a l
to t h e d e r i v a t i v e of J w i t h r e s p e c t
to q.
T h e s e n s i t i v i t y c a n be m e a s u r e d b y t h e n o r m of t h i s d e r i v a t i v e . C o n s i d e r t h e s y s t e m ( C , A , B ) of ( 6 . 2 . 3 )
and the optimization problem :
¢o
min
JI(A,B,C,K)
=
K
f ( x ' Q x + u ' R u ) dt 0
s u b j e c t to J¢ = (A - BKC) x = Dx
where Q and
R are
semi-positive and positive definite matrices, respectively.
It is
s h o w n ( s e e § 6 . 2 ) t h a t t h i s p r o b l e m c a n be w r i t t e n in t h e following s t a t i c form :
min
Jl
(A,B,C,K,P) = T r (PX 0)
s u b j e c t to : f (A,B,C,K)
(6.4.2)
= D'P + PD + Q1 = 0
w i t h Q1 = Q + C' K' RKC X0 = E (x(0) x ( 0 ) ' ) T h e s e n t i v i t i e s of J l c a l c u l a t e d u s i n g T h e o r e m 6.1 tions
(TAR-85),
this result
(A,B,C,K,P) w i t h r e s p e c t to s y s t e m p a r a m e t e r s c a n be (we o b t a i n t h e d e r i v a t i v e s u s i n g t h e m e t h o d of v a r i a is g i v e n i n A p p e n d i x
5).
T h e o r e m 6.1 a p p l i e d to t h e p r o b l e m ( 6 . 4 . 2 ) i s w r i t t e n :
LI(A,B,C,K,P,S)
= T r (PX0) + T r (S' f ( A , B , C , K ) )
The
L a g r a n g i a n f u n c t i o n of
251 T h e s e n s i t i v i t i e s of t h e p e r f o r m a n c e i n d e x c a n b e o b t a i n e d a n a l y t i c a l l y 831 3A = 8A a31 3B = a B
a L1 = 8A a L1 = a B
a Jl JC =
8C
= 2 PS
- - 2 PSC'K'
8I"1 = 8---C = 2 K ' ( R K C -
a 31 8L I JK = a K = a-K
:
B'P)S (6.4.3)
= 2 ( R K C - B'P)SC'
8 L1 a----5 = f (A,B,C,K,P) = D'P+PD + Q I ( C , K ) = 0 8 L1 8----P = g (A,B,C,K,S) =
S i n c e we w a n t to k e e p
theses
DS + SD + X 0 = 0
sensitivities
f o r m a n c e i n d e x J a s small a s p o s s i b l e ,
near
to z e r o a n d m a i n t a i n t h e
per-
we d e f i n e a n e w p e r f o r m a n c e i n d e x a s :
|
w h e r e L, M, E, F a r e s y m m e t r i c s e m i - d e f i n i t e m a t r i c e s o f a p p r o p r i a t e
Observing
that the equations
(6.4.3)
can be r e w r i t t e n
dimension.
as follows :
J A = 2 PS JB = - JA " C' K' w i t h JKC = (RKC-B'P)S
JC = K'. JKC JK = J K C " C'
we n o t e t h a t if JA = 0 ( o r 3 A < ¢ A ) a n d JKC = 0 ( o r J K C ~ E K C ) ties
are
zero
(or
sufficiently
small).
Therefore,
the
problem
can
c o n s i d e r i n g o n l y t h e s e n s i t i v i t i e s JAB a n d JKC o T h i s is e q u i v a l e n t
all t h e be
sensitivi-
simplified by
to a s s u m i n g
that
252
A a n d B in o n e h a n d , applying
Theorem
and K and
_
~'AB
~ 3
JAB
(JKc)
variations variations
of
is
A and
L and
(K
= 31 +~-
F are
and
= Tr
vary
simu taneously.
Then~
3A
B'P)$
of
C).
the
These
criterion results
with
are
1
weighting
Tr (JKC "
matrices.
respect
obtained
The new performance
Tr (3AB. L. 3',~ 3) +~-
appropriate
can then be formulated min J 3 ( K )
sensitivity
5 (TAR-85).
l
J3 (I<)
where
B
in Appendix
=
= 2 (RKC-
the
hand,
:
= 2 PS
3 A. ~ B.K.C
33 ~IKc = a (KC)
where
C, in the other
(6.1) we obtain
index J3'
F.
The
J'KC
to
by
simultaneous
the
method
is given by
of
:
)
global optimization
problem
a s follows : (PX 0) + T r
(SPLPS)
+ Tr
((RKC-B'P)SFS
(RKC-B'P)')
K subject
to f ( K ) = D ' P + PD + Q1 (K) = 0
(6.4.4)
g ( K , X 0) = DS + SD' + X 0 = 0 where
the matrices
is given by
A, B a n d
their nominal value.
The Lagrangian
function
:
L3 = J3 + T r Applying
C assume
( V ' f) + T r
Theorem
(6.1)
3L3 -
-
~K
~tL 3 ~
=
_
~ J3 3K _
(W' g )
to p r o b l e m
(6.4.4),
necessary
conditions of optimality are
2 [(RKC - B'P)V + R (RKC - B'P) SFS - B'WS]C'
: f(K,P) : D ' P + PD ÷ Ql (K) = 0
3L 3 ~---~ = g (K,S) : DS + SD' + X 0
0
(6.4.5a)
(6.t~-Jb)
(6.4.5c)
~L 3 ~---S = fl (K,P,S,W) ~ D'W + WD + Q2 (K,P,S) = 0
(6.t~.Sd)
3L 3 --= ~S
(6.zt.5e)
gl (K,P,S,V) : DV ÷ VD' + Q3 ( K ' P ' S ' X 0 ) ~ 0
:
253
whereD
= A - BKC
QI(K)
= Q + C' K' R K C
Q2(KjP,S)
= SPLP
+ PLPS
+ (RKC-B'P)'
(RKC-B'P)SF
+
F S ( R K C - B ' P ) '( R K C - B ' P ) Q3(K,P,S,X0)
= X 0 + SSPL
+ LPSS
- B(RKC-B'P)
SFS
- SFS
(RKC
- B'P)'B'
Particular case In
the
case of state
feedback
(C = I a n d
F = 0) t h e e q u a t i o n
(6.4.5)
beco-
mes : ~3 3
=
(RK
B'P) V - B ' W 5
~K
wheref(K,P)
= D'P + PD + Q + K ' R K = 0
g ( K , S , X 0) = DS + SD' + X 0 = 0 f l ( K p P , S p W ) = DIW + WD + SPLP + PLPS = 0 gl(K,P,S,V.X0)
= DW + VD' + X 0 + SSPL + LPSS = 0
T h e o p t i m a l f e e d b a c k m a t r i x , is g i v e n b y :
K o p t = R - I B ' p + R - I B ' w S V -I =
where K1
K 1
+
K 2
is t h e o p t i m a l s o l u t i o n f o r t h e n o m i n a l v a l u e s of A a n d
p a r t o f K o p t w h i c h minimizes t h e that Kopt depends
6.4.2b.
i.e.,
on t h e i n i t i a l c o n d i t i o n s t h r o u g h
B,
and
K2 is the
it minimizes (J3 - J1 ) '
Observe
X 0.
Solution of the problem (TAR-85)
The gradient admissible
solution of the technique feedback
system
• guess
an
matrices)
(6.4.5e),
and the gradient
of e q u a t i o n s
initial such
calculate P and S from ( 6 . 4 . 5 b ) and
sensitivttes,
and from
(6.4.5)
feedback
that
the
(6.4.5c)p
c a n be o b t a i n e d
matrix
closed-loop
K0 E K c system
(K c is
is
by the
stable.
using
a
set
of
We c a n
then calculate V and W from (6.4.5d)
( 6 . 4 . 5 a ) . The feedback matrix can be u p d a t e d 333 = ~ 0, g i v i n g a local m i n i m u m .
by successive iterations until the gradient
For this,
one of the algorithms presented
example, the algorithm of Geromel and Bernussou
in § 6.3 c a n b e u s e d . (see § 6.3.1)
:
Consider,
for
254 Step ] :
Find
K16
such that the c of Armentano and Singh
algorithm
K
Step 2 : Solve the Lyapunov
equations
(6.4.5b)
: f = 0 --'- P
(6.4.5c)
: g = 0 ---- S
(6.4.5d)
: fl = 0---
W
(6.4.5e)
: g l = 0 --~
V
and determine
Taking
The
K <-- K -aG
into account
nov equations
at step
gradient
(6.3.1b),
sou,
i.e.,
system tary
uniform
Lyapunov
projection
(6.4.5c),
G C K c . If ~ C ~ S T O P ,
by
using
the
(6.4.5d),
and
(6.5.4e)
:
otherwise
go t o 4.
s i z c ) a n d go to 2.
variations
on
in s e t t i n g
introduces
the
constraint
convergence
two supplementary
Ly~pu-
at Step
2.
Consider
stability
more CPU time because This
same as in section to k.. = 0 . " 11
as the algorithm of Geromel and Bernus-
is the
"price"
to t h i s a l g o r i t h m i s p r o v i d e d
(TAR-85).
3) i s t h e
corresponding
to a local m i n i m u m a n d
It requires
equations
(step
to z e r o all t h e t e r m s
has the same properties
corresponding
Example 6.4
stable
(see § VI.3.1a). (6.4.5b),
(u : step
parameter
at each iteration.
routine
is
2.
and consists
The algorithm
system
the matrix gradient
Step 3 : Find a feasible direction Step 4 : Update
closed-loop
closed-loop
for robustness.
in A p p e n d i x
again the Example 6.1,
of the
of the two supplemenA Fortran
6.
with the initial data
:
X0 = I , L = I, F = 0 a n d K1 g i v e n b y
(6.3.7). 1.549
E
K32 =
The
convergence
After 0,437
32 i t e r a t i o n s
we o b t a i n
l ~-I 1.5z6 jl 0.993
0.57 2.33
:
J
t 1t I 1.91
0.275
I
test
is satisfied
with
e=
0.001.
J
(K 1) = 8 . 9 3 5 ,
J1
(K32) =
3.049 and J3 (K32) = 3.232.
Comparing criterion
these
results
with
those
of
v a l u e J 3 ( K 32) i s 1 . 0 7 7 t i m e s s u p e r i o r
twice longer.
the
Example
to J
(K 59} a n d
6.1, that
we n o t e the
that
the
C P U time i s
255 Remark
6.5.
Performance
cribed degree
of stahility
index
sensitivity
If t h e f e e d b a c k c o n t r o l s t r u c t u r e tions
(6.4.1)
solved a f t e r
and
(6.4.2)
changing
reduction
can
be
achieved
with
a pres-
:
allows pole a s s i g n m e n t , t h e r e s u l t s of s e c -
can b e u s e d t o g e t h e r .
the
dynamic m a t r i x
A by
The
equations
A + aI,
(6.4.5)
w h e r e a is
the
must be desired
d e g r e e of s t a b i l i t y . 6 . 4 . 3 . R o b u s t c o n t r o l with r e s p e c t to l a r g e p e r t u r b a t i o n s in t h e s y s t e m d y n a m i c s This
s e c t i o n p r o v i d e s c o n d i t i o n s on t h e p e r t u r b a t i o n
bounds
such
that
the
s t a b i l i t y of d e c e n t r a l i z e d c o n t r o l s y s t e m is n o t a f f e c t e d . Consider again the system
(6.2.1)
with S c o n t r o l s t a t i o n s w h i c h is g i v e n in
compact form b y :
I
~}(t) = A x ( t ) + B u(t)
(S)
[y(t)
x ( t 0) = x 0 (6.4.6)
C x(t)
Let t h e d e c e n t r a l i z e d o u t p u t f e e d b a c k b e g i v e n b y : u(t) = K y(t)
(K = b l o c k - d i a g o n a l m a t r i x )
(6.4.7)
and s u p p o s e t h a t t h e c l o s e d - l o o p s y s t e m : £ ( t ) = (A + BKC) x ( t ) = D x ( t ) is s t a b l e . When t h e
decentralized control
(6.4.7)
is a p p l i e d to t h e s y s t e m
(6.4.6)
the
performance index : ff = 0f~(x ' QX + u' Ru) dt can be w r i t t e n as : J = x(0)' P x(0) where
P satisfies the matricial equation D'P + P D
with
:
+ Q1 = 0
(6.4.8)
D = A + BKC Q1 = C' K' R K C
+ Q
(6.4.9)
For c o n v e n i e n c e , it is a s s u m e d t h a t t h e matrix Q1 is a n o n s i n g u l a r m a t r i x ,
which
g u a r a n t e e s t h a t P is p o s i t i v e d e f i n i t e .
6 . 4 . 3 . a . Characterization of the p e r t u r b a t i o n s T h e model of t h e p e r t u r b a t e d modelling e r r o r s . . . ) ,
is t a k e n as :
s y s t e m a n d c o n t r o l (large p a r a m e t e r v a r i a t i o n s ,
256
P = A Xp + B Up + AP x P + B P Up p
(S*) u
x* (to) = x 0
(6.4.10a)
KC x p
w h e r e t h e m a t r i c e s A, B a n d C a r e t h o s e of t h e nominal s y s t e m ( S ) . All t h e p e r t u r b a t i o n s a r e lumped into t h e m a t r i c e s Ap a n d B p . One way to c h a r a c t e r i z e t h e p e r t u r b a t i o n s is (PEK-83, 84a,b)
to combine t h e
i n f o r m a t i o n c o n c e r n i n g t h e i r p h y s i c a l n a t u r e a n d t h e i r mathematical m o d e l i s a t i o n . One d e f i n e s t h e d i r e c t i o n s w h i c h a r e t h e most p r o b a b l e from t h e p h y s i c a l p o i n t of v i e w . The p e r t u r b a t i o n s a r e d e c o m p o s e d in two c o m p o n e n t s , one o f w h i c h lies along t h e g i v e n d i r e c t i o n in t h e s p a c e of all p e r t u r b a t i o n m a t r i c e s A A B
P
and B
:
P
= q ( t ) A* + dA
P
= q ( t ) B* + dB
P
where q(t)
is a s c a l a r
(6.4.10b) function,
and
dA a n d
dB r e p r e s e n t
the p e r t u r b a t i o n s
in
s y s t e m d y n a m i c s w h i c h lie o u t of t h e d i r e c t i o n s A* a n d B*. The
above
characterization
following his i n t u i t i o n a n d
can
experience,
be
motivated
has
enough
by
the
fact
that
a
designer,
i n f o r m a t i o n to s e l e c t t h e most
a p p r o p r i a t e d i r e c t i o n s in t h e s p a c e of all p e r t u r b a t i o n m a t r i c e s . O t h e r i n t e r p r e t a t i o n s can be g i v e n a n d f o r e x a m p l e , f o r weakly c o u p l e d s y s t e m s , the p e r t u r b a t i o n d i r e c t i o n s are d e f i n e d b y (PEK-79) : 0
A f t . . . . . . .AIN
A21
0 ......... : : ",
A ~':
0
BI2 . . . . . . . . Bib 0.. ..........
°'° :
ANI
,. •
BNI
AN2 . . . . . . 0
[0 0]
BN2 .......
:
a n d f o r s i n g u l a r l y p e r t u r b e d s y s t e m s b y (KOK-76) :
C* =
A21
A22
5* =
[:2]
A n o t h e r r e a s o n for c o n s i d e r i n g l a r g e p e r t u r b a t i o n s is t h a t it may be n e c e s s a r y to c h a n g e t h e p a r a m e t e r v a l u e s d u r i n g t h e o p e r a t i o n of t h e s y s t e m . In t h i s c a s e , t h e e x p l i c i t e x p r e s s i o n s of t h e m a t r i c e s A* a n d B* a r e g e n e r a l l y k n o w n .
257 6.4.3.b.
- Robustness
characterization
Before giving the general results, 1. - P a r t i c u l a r
case 1 (PEK-84a).
then the perturbation loop p e r t u r b e d
Xp
=
l e t u s c o n s i d e r some p a r t i c u l a r
Consider
the particular
matrices are given by : A
system becomes :
(A + BKC) Xp + (dA + dB.KC)
:
case for which q(t)
= dA a n d B
P
cases
P
= 0,
= dB a n d t h e c l o s e d -
Xp
(S*) = D x The
+ dD x
P
bounds
of t h e
= (D + dD) x
P
perturbations,
preserving
system are given by the following theorem Theorem 6.3.
If t h e p e r t u r b a t i o n
P the
stability
of the
perturbed
:
m a t r i c e s d A a n d dB s a t i s f y t h e i n e q u a l i t y
:
(6.4.11a)
Q1 - d D ' . P - P . dD > 0 w h i c h in t u r n is s a t i s f i e d if : d D . QI" dD' < 1/4 p - 1 Q1 p - 1 then the perturbed given by (6.4.8)
system
S* i s a s y m p t o t i c a l l y
and (6.4.9)
If the matrices dA and
Theorem
6.4.
dB a r e
unknown,
If the perturbation
matrices
lldDi S
n)
JldDl s~/[
<
one has
some k n o w l e d g e
about
dA a n d
dB s a t i s f y
one of the
following
Xrnin (Q 1)
2 lmax(P)
)'rain(p-l" QI" p-l) 4 ~max(Ql )
]I/2
f o r all t ~ [ 0, ~[, t h e n t h e p e r t u r b e d (6.4.8)
and
(6.4.9)
w h e r e U. R s , ; k m a x
(.)
eigenvalue of (.),
respectively.
Lemma
perturbation
6.4.
but
:
:
I)
are given by
(6.4.11b) The matrices P and Q] are
respectively.
their size, the following theorem can be used
inequalities
stable.
The
and~min
system remains asymptotically stable. DdD|s = ]dA|s
and
(.)
denote
bounds
defined
closed-loop pole of the nominal umperturbed JJdDJl s < - Re [X max ( D ) ]
2 The spectral norm is
IYl;Emax (W')]I/2.
spectral
in
P a n d Q1
+ UdB~Is - H K C | s n o r m , maximum
Theorem
6.4
and
system are linked through
and
the •
minimum
dominant
258 2. - P a r t i c u l a r c a s e 2 (PEK-84b)
: Suppose that the perturbation
m a t r i c e s Ap and
Bp lie a l o n g t h e d i r e c t i o n s A* a n d B*, i . e . dA = 0 a n d dB = 0. Now, t h e closed-loop perturbed (S~)
s y s t e m , s a y S~, c a n b e r e p r e s e n t e d b y :
xP = (A + BKC) x p + q ( t ) (A* + B*KC) x p = D = (D + q ( t ) D*) x
x
P
+ q ( t ) D* x
P
P
T h e n , t h e following t h e o r e m c a n b e e s t a b l i s h e d : T h e o r e m 6 . 5 . I f t h e following i n e q u a l i t i e s a r e s a t i s f i e d :
=£I
(H)
X ~ n (H) = qmin < q ( t ) < qmax max for all t ~ [ 0, co[, t h e n t h e p e r t u r b e d s y s t e m
(S*)
remains
asymptotically
stable.
q ( t ) is a m e m o r y l e s s , t i m e - v a r y i n g n o n l i n e a r i t y , a n d H = Q-1 (D,I p + p D*) P a n d Q1 a r e g i v e n b y ( 6 . 4 . 8 ) a n d ( 6 . 4 . 9 ) . C o r o l l a r y 6.1. If ~min (H) is n o t n e g a t i v e , t h e n t h e b o u n d qmin does n o t e x i s t a n d q ( t ) E: ] -co, q m a x ] - If Xmax (H) i s n o t p o s i t i v e , t h e n t h e b o u n d qmax d o e s n o t e x i s t a n d q ( t ) E [ q m i n ' + Qo[ Refering
to T h e o r e m 6 . 5 ,
Petkovski
(PEK-84b)
proposes
t h e following p r o c e -
d u r e to d e t e r m i n e t h e l a r g e s t p o s i t i v e n u m b e r qmax a n d t h e s m a l l e s t n e g a t i v e n u m b e r qmin s u c h t h a t t h e p e r t u r b e d
s y s t e m (S~) r e m a i n s s t a b l e :
S t e p 1 : U s i n g T h e o r e m 6.5 d e t e r m i n e ( q m i n ) 0 a n d (qmax)0 . Step 2 : C o n s i d e r t h e p e r t u r b e d s y s t e m (Sj) as u n p e r t u r b e d ,
i.e.
:
A = A + ( q m i n ) j _ l A* B -- B + (qmin )j -1 n* a n d d e t e r m i n e (qmin)j u s i n g T h e o r e m 6 . 5 . Step 3 • If t h e c l o s e d - l o o p s y s t e m (Sj) is s t a b l e , go to Step 2. O t h e r w i s e ,
J qmin - i=0 ( q m i n ) i " Step 4 : T h e s m a l l e s t qmin is g i v e n b y :
259 co
qmin = i-Z0 ( q m i n ) i Step 5 : c o n s i d e r t h e p e r t u r b e d
s y s t e m (~j) as u n p e r t u r b e d
i.e.
:
A = A + ( q m a x ) j _ l A* B = B + ( q m a x ) j _ l B* a n d d e t e r m i n e (qmax)] u s i n g T h e o r e m 6 . 5 . Step 6: If t h e c l o s e d loop s y s t e m (~]) is s t a b l e , go to s t e p 5. O t h e r w i s e ,
J --
Z
qmax = i= ~) ( q m a x ) i " Step 7 : T h e l a r g e s t q--max is g i v e n b y : co
q m a x = i=O Z (qmax)i T h e following lemma p r o v i d e s a n a l t e r n a t i v e e x p r e s s i o n for t h e b o u n d s of t h e scalar function q(t)
(observe the similarity with Theorem 6.4).
Lemma 6 . 5 . I f q ( t ) s a t i s f i e s t h e c o n d i t i o n : q(t)
.
for all t e l 0 ,
[[D* [ < ~ m i n (Q1) Is 2 kmhx (P) ~[ , t h e c l o s e d - l o o p p e r t u r b e d
s y s t e m is asymptotically s t a b l e . P and
Q1 a r e g i v e n b y ( 6 . 4 . 8 ) a n d ( 6 . 4 . 9 ) a n d
i[ D* lls --I[ A* ]Is + IIB* IIs like IIs T h e following lemma is t h e a n a l o g of Lemma 6 . 4 . Lemma 6 . 6 .
The perturbation
the nominal u n p e r t u r b e d
[q(t)]
.lID* ]Is • -
3. - G e n e r a l c a s e
P S*
Re[~max
(PEK-83).
closed-loop p e r t u r b e d
bounds
of q ( t )
a n d t h e d o m i n a n t c l o s e d - l o o p pole of
s y s t e m (S) a r e l i n k e d t h r o u g h
:
(D)]
In t h e
case of g e n e r a l p e r t u r b a t i o n s
s y s t e m S* is g i v e n b y :
= (A+BKG) x
+ q ( t ) (A* + B* KC) x + (dA + d B . K C ) x P P P = D x + q ( t ) D* x + dD . x P P P = (D + q ( t ) D* + dD) x P
T h e o r e m 6.6. If t h e p e r t u r b a t i o n m a t r i x dD s a t i s f i e s t h e i n e q u a l i t y ,
(6.4.10b),
the
260 Xmin[Ql - q(t) (D~'P + PD ~) 2 x (p) max
for all t g [ 0, ~ [ , t h e n t h e p e r t u r b e d
s y s t e m S* r e m a i n s a s y m p t o t i c a l l y s t a b l e . P and
Q1 a r e g i v e n b y ( 6 . 4 . 8 ) a n d ( 6 . 4 . 9 ) a n d IldD [Is = ]Id A Hs 4. -
R o b u s t n e s s c h a r a c t e r i z a t i o n with a p r e s c r i b e d
+ I]dB Hs
" ]]KC Hs
d e s r e e of s t a b i l i t y
(PEK-84b).
When t h e d e c e n t r a l i z e d c o n t r o l is d e t e r m i n e d s u c h t h a t t h e u n p e r t u r b a t e d
closed-loop
s y s t e m is a s y m p t o t i c a l y s t a b l e with d e g r e e a , 6.5, 6.6,
Lemmas 6 . 4 ,
6.5,
6.6,
the above results
a n d C o r o l l a r y 6.1)
( T h e o r e m s 6 . 3 , 6.4,
hold i f t h e m a t r i c e s P a n d Q1
are given by : (D+aI)' P + P (D + a I ) 01 = Q + C' K' R K C
+ Q + C' K' R K C
= 0
+ 2 aP
We can o b s e r v e t h a t i f t h e s y s t e m is s t a b l e with d e g r e e a , Therefore,
then
- Re IX max (D)]>~a
Lemma 6.4 (or Lemma 6.6) e s t a b l i s h e s a r e l a t i o n s h i p b e t w e e n t h e a c c e p -
table p e r t u r b a t i o n s
and
the
prescribed
degree
of
stability a.
Consequently,
the
p a r a m e t e r a , can be u s e d as a d e s i g n p a r a m e t e r .
6 . 5 . - ROBUST DECENTRALIZED SERVOMECHANISM PROBLEM This s e c t i o n g i v e s an o v e r v i e w of t h e r e s u l t s o b t a i n e d b y Davison in r e f e r e n c e to t h e so caUed " D e c e n t r a l i z e d s e r v o m e c h a n i s m p r o b l e m " , c o n s i d e r e d in v a r i o u s forms (DAV-76a,b,c,d,
77b,
78a, 79a, 82).
Our a t t e n t i o n f o c u s e s on t h e r e s u l t s o b t a i n e d
w i t h i n a r o b u s t c o n t r o l a p p r o a c h (DAV-76c, 77b, c o n s i d e r a t i o n can
be p e r t u r b a t e d
78a, 79a, 87).
The s y s t e m s u n d e r
b y l a r g e v a r i a t i o n s of t h e p l a n t p a r a m e t e r s and
d y n a m i c s a n d b y e x t e r n a l d i s t u r b a n c e s . The p r o b l e m c o n s i s t s in d e s i g n i n g a d e c e n tralized
controller
such that the closed-loop
perturbated
s y s t e m r e m a i n s s t a b l e and
that satisfactory tracking or regulation o c c u r s .
6 . 5 . 1 . - Problem formulation C o n s i d e r a l i n e a r t i m e - i n v a r i a n t s y s t e m , with S s t a t i o n s , d e s c r i b e d b y : S = A x + i=~i
Bi u i + E m
Yi = Ci x + Di u i + Fi t0 , y~-- C ~ x + D [ % + F['m , ei = Yi - YP
(i=1 . . . . . S) (i--1 . . . . . S) ,
(i=I . . . . .
S)
(6.5.1)
261
where x ~ Rn is the the output
to
disturbance reference
B
be
[
=
m
u i ~ R m i , Yi ~ R r i "
regulated,
vector
output
state,
and
at
which may or may not be measurable,
Yi
B I .....
measurable
-r. m t (rim~< r i) a r e
output
and the output
the
Yi E •
local e r r o r
station and
i.
the input, 00ERq i s t h e
ei are
the
desired
at station i. Define :
BS]
D = block-diag. (D I ..... D S) D m=
block-diag. (D~, .... D~S)
C =
Cm=
s
Fm :
F=
Los
and assume that ~ belongs
(6.5.2)
LFs
FFl IYll Ieli e =
yd =
to t h e f o l l o w i n g c l a s s o f s y s t e m s
:
Zl = A1 Zl (6.5.3)
= H1 z1 where
z 1 d= R n l
output arises
and
Zl(0)
may or may not
be
from the following class of systems
known,
and
the
desired
reference
:
~'2 = A2 z2 z y
where
d d
= H2 z 2
(6.5.4)
d
=Gz
z2 ~ Rn2
and
z2(0)
is known.
I t is a l s o a s s u m e d
without
loss of generality
that :
rank[El rank
and that
(H1,
tems (6.5.3)
The follows :
= rand
G = rank
A1) ,
and
"robust
H1 = q H 2 = dim (z d )
(H 2,
(6.5.4)
A 2) a r e
observable.
are unstable
decentralized
In addition,
we a s s u m e
that
the sys-
to a v o i d t r i v i a l i t y .
servomechanism
problem"
i s d e f i n e d in ( D A V - 7 6 c ) a s
262 Find a decentralized linear time-invariant controller
(S local c o n t r o l l e r s )
for
the system (6.5.1) - (6.5.4) such that • • The c l o s e d - l o o p s y s t e m is a s y m p t o t i c a l l y s t a b l e , • Asymptotic tracking,
in p r e s e n c e of d i s t u r b a n c e s , o c c u r s i n d e p e n d e n t l y of
all a r b i t r a r y p e r t u r b a t i o n s in t h e p l a n t model ( 6 . 5 . 1 ) or plant
dynamic i n c l u d i n g c h a n g e s in model o r d e r )
(e.g.
plant parameters
w h i c h do n o t a f f e c t the
s t a b i l i t y of t h e r e s u l t a n t c l o s e d - l o o p s y s t e m , i . e . lira e ( t ) = 0 V x ( 0 ) ~ R n , t->oo V z 1 (0) E R n l , V z 2 (0) E Rn2 a n d f o r all c o n t r o l l e r initial c o n d i t i o n s .
6.5.2.
-
Existence
of
a solution
The c o n d i t i o n s u n d e r w h i c h a r o b u s t d e c e n t r a l i z e d c o n t r o l l e r e x i s t s a r e p r o vided. 6.5.2.a.
- G e n e r a l c a s e (DAV-76c, 77b)
S r = i~ 1
Define
ri,
S = i~ 1
m
m i and
rm
S = i~ I
r[n, a n d
the
matric
Cm*
of
dimension ( r m + r ) x (n+r) as follows •
C*m :
c;.,, ct~, , "'"
%7
(6.S.Sa)
w h e r e t h e C~.'s are g i v e n b y : 1
"E:
Irl
0 ........
0
lr. ......
0
0 °
C2 =
0
........°1
C3=
0
....... i1 "'r
The minimal polynomials of A I a n d A 2 o f ( 6 . 4 . 3 ) a n d (P2(s).
The
(6.4.4)
l e a s t common multiple o f @1(s) a n d (pz(s)
a r e d e n o t e d b y %01(s)
(multiplicity i n c l u d e d )
is
given by : r i~l (s - l i ) = s g + p g s g - I + P g - I s g - 2 + " ' " + P2 s + P l where 11' !2 . . . . . ,
Ig a r e i t s z e r o s .
(6.5.6)
263
Theorem 6 . 7 (DAV-76c, 7 7 b ) . A s o l u t i o n to t h e r o b u s t d e c e n t r a l i z e d s e r v o m e c h a n i s m problem f o r t h e s y s t e m
(6.5.1)
-
(6.5.6)
e x i s t s i f a n d o n l y i f t h e following c o n d i -
t i o n s all h o l d : (i) T h e s y s t e m (C m, A, B) h a s n o u n s t a b l e d e c e n t r a l i z e d f i x e d m o d e s . (ii) T h e s e t of d e c e n t r a l i z e d f i x e d modes of t h e g s y s t e m s : respectively. (iii) T h e o u t p u t
Yi is c o n t a i n e d in y ~ ,
(i=l,...,S),
i.e.,
Yi is p h y s i c a l l y
measu-
rable. I n t h e c a s e f o r w h i c h mi = r i ,
(i=l,...,S),
C o r o l l a r y 6.2 ( D A V - 7 8 a ) . Assume t h a t mi = r i , tion to t h e
decentralized robust
we h a v e t h i s s i m p l e r c o n d i t i o n • (i=l,...,S),
servomechanism problem
then there exists a solufor t h e s y s t e m
(6.5.1)
-
( 6 . 5 . 6 ) if a n d o n l y if :
I
A = Xi I
rank
B1
C
=
n + r
(i:l,...,g)
D
T h e c o n d i t i o n of t h e a b o v e c o r o l l a r y m e a n s t h a t no e i g e n v a l u e )~] (]=1 . . . . . g) of ( 6 . 5 . 6 ) c o i n c i d e s with a t r a n s m i s s i o n zero of t h e s y s t e m (see A p p e n d i x 1).
6.5.2.b.
- P a r t i c u l a r c a s e of i n t e r c o n n e c t e d s y s t e m s
(DAV-76c,
79a).
The
c o n s i d e r e d h e r e is a composite s y s t e m , c o n s i s t i n g of i n t e r c o n n e c t e d s u b s y s t e m s
plant :
S
&i
=
Ai xi + Bi ui
+ Ei ~0 + i~ 1 /~ij xj
Yi = Ci xi + Di u i + Fi to
(6.5.7)
ym= C ~ x i + D~ i ui + F im d ei = Yi - Yi
( i = l . . . . S)
x i {~ R n*i is t h e s t a t e , a n d u i ' Yi' y~, Yid a n d m a r e d e f i n e d as i n t h e l a s t s e c t i o n . By a s s u m p t i o n t h e i n t e r c o n n e c t i o n m a t r i x is g i v e n b y t h e g e n e r a I model : where
A.. ~-H.. K . M..
1j
lj
ij
ij
( i , j = l . . . . . S)
i/j
(6.5.8)
264 w h e r e K,. lj d e n o t e s t h e i n t e r c o n n e c t i o n gain c o n n e c t i n g t h e s u b s y s t e m s i a n d j. i t h s u b s y s t e m is o b t a i n e d b y s e t t i n g Aij = 0, (j=l . . . . . S) a n d iCj, in ( 6 . 5 . 7 ) . T h e o r e m 6.8 (DAV-76c,
79a).
Assume that
there
exists
a solution
to
the
The
robust
c e n t r a l i z e d s e r v o m e c h a n i s m p r o b l e m (DAV-75) f o r e a c h s u b s y s t e m of ( 6 . 5 . 7 ) . (i) T h e n t h e r e e x i s t s a solution to t h e r o b u s t d e c e n t r a l i z e d s e r v o m e c h a n i s m problem f o r t h e c o m p o s i t e s y s t e m ( 6 . 5 . 7 ) if t h e i n t e r c o n n e c t i o n g a i n s K.. lj a r e "small e n o u g h " . (ii)
Assume,
in
(i=l,...,S),
addition,
that
(Cim, A,
Bi)
is
controllable
and
observable
for
t h e n t h e r e e x i s t s a solution to t h e r o b u s t d e c e n t r a l i z e d s e r v o m e c h a n i s m
p r o b l e m f o r t h e composite s y s t e m ( 6 . 5 . 7 ) f o r almost all i n t e r c o n n e c t i o n g a i n s Kij. (iii) Assume t h a t t h e i n t e r c o n n e c t i o n m a t r i c e s A.. o f ( 6 . 5 . 8 ) h a v e t h e p r o p e r t y t h a t 1] (i=l . . . . . S ) , t h e n t h e r e e x i s t s a solution to the
Hij = B i, Mij = Cj a n d Di = 0 f o r
r o b u s t d e c e n t r a l i z e d s e r v o m e c h a n i s m p r o b l e m for t h e composite s y s t e m ( 5 . 4 . 7 ) if and only if t h e r e e x i s t s a solution to t h e r o b u s t c e n t r a l i z e d s e r v o m e c h a n i s m p r o b l e m for e a c h s u b s y s t e m of ( 6 . 4 . 7 ) .
5.5.3. - Robust decentralized controller design 6 . 5 . 3 . a. - C o n t r o l l e r s t r u c t u r e Consider the system (6.5.1) lized c o n t r o l l e r ,
then any decentralized controller which regulates
following s t r u c t u r e
1
(6.5.1)
decentrahas the
(DAV-76c, 77b) :
u. = K. v. + K~. w. 1
a n d assume t h a t t h e r e e x i s t s a r o b u s t
1
1
1
(i=l . . . . . S)
(6.5.9)
w h e r e v i ~ Rris is t h e o u t p u t of a d e c e n t r a l i z e d s e r v o - c o m p e n s a t o r , and wi £ R is t h e o u t p u t of a d e c e n t r a l i z e d s t a b i l i z i n g c o m p e n s a t o r . Consider the system (6.5.1) for ( 5 . 5 . 1 )
- (6.5.4),
then a decentralized servo-compensator
(DAV-76c) is a c o n t r o l l e r with i n p u t e i E R r i
and output v i ~ R r (
given
by : ~r = ~. v. 1
1
+
~ . e. 1
(6.5.10)
1
~i = b l o c k - d i a g . ( ~ , , ~ , . . . .
~,)
i matrices
265
B--i = block-diag.
(~,, g, ..... ~,) w i matrices
~, and B , are the (rxr) companion matrix and the (qxl) matrix, defined below : .
0
1
0
0
I0 l
;
g. =
°'.°.
*
;
:
:
-Pl
-P2
o
O,
•
;
..
0
J
_l ]
-P3 . . . . . :'-Pg
Pi' (i=l . . . . . g), are given by (6.5.6). The decentralized stabilizing compensator and output wi, ( i = l , . . . , S ) , is given by :
(DAV-76c),
with inputs
Yi'm vi, ui
~'i = GO i zi + G1i Yim~ G2 vi (6.5.1H
wi = G~i zi + G~ yim+ Ghvii where Yi = Yim - Dmui"
mm
The controller s t r u c t u r e as described above is illustrated in Figure 6.3.
• he gain mat.ces "i" ~
• 00, old,
0[, ~:,
0: and. ~.~, can be determ'nated
through the decentralized stabilization scheme of Wang and Davison (WAN-73) in order to stabilize and give the desired behaviour to the following augmented s y s tern :
X
A
,}
FIC 1
;
0
.........
U 1 ........
0
X
0
V
= o •
_
%1 .J
•
BsC 5 0 . . . . . . . . . C S
4-
Iblock-Bd lag. (BI D I ' " ' g s D I ) ] "vD]
(6.5.12.a)
266 t0
! Ul ~ J
/ • ( ~i
iyf I I I
~ t i
Yl I I
"~
SYSTEM
~
\ y.
~Lc4;%%t°ri
'
' i~
t
~
!
t I
\
'---J
stabilizing compensator
1 I I
I
Yi
Fig. 6.3 : C o n t r o l l e r s t r u c t u r e
L c,x1 vi
The system
(i= 1 ,...,S)
(6.5.12b)
LVi
(6.5.12)
h a s d e c e n t r a l i z e d fixed modes e q u a l to t h e d e c e n t r a l i z e d
f i x e d m o d e s of (C m, A, B) (if a n y ) .
6.5.3. b. Controller optimization In g e n e r a l , guarentee :
t h e o p t i m i z a t i o n of t h e d e c e n t r a l i z e d
stabilizing compensator must
267 (i) f a s t r e s p o n s e (ii) low i n t e r a c t i o n in t h e s y s t e m , i . e . ,
when a r e f e r e n c e output signal c h a n g e s , the
o t h e r o u t p u t s s h o u l d remain as close as p o s s i b l e o f t h e i r p r e v i o u s v a l u e s . The p a r a m e t e r optimization m e t h o d p r o p o s e d b y Davison e t a l .
{DAV-73,
79a,
81, 825 minimizes a q u a d r a t i c p e r f o r m a n c e i n d e x of t h e form : J = E((x'
Q x + u' Ru) dt
w h e r e E d e n o t e s t h e e x p e c t a t i o n o p e r a t o r , s u b j e c t to any i m p o s e d e n g i n e e r i n g c o n s traints.
In
particular
Davison
and
Chang
(DAV-825
showed
that,
if
the
system
(6.5.15 is o p e n - l o o p s t a b l e a n d if Re (kit = 0, (i=l . . . . , g S , w h e r e t h e k.I1 s a r e g i v e n by (6.5.65,
(e.g.
we h a v e p o l y n o m i a l - s i n u s o i d a l t y p e of d i s t u r b a n c e s a n d r e f e r e n c e
s i g n a l s ) , t h e n t h e r e always e x i s t s an initial f e a s i b l e s t a r t i n g p o i n t f o r t h i s p a r a m e t e r optimization p r o b l e m .
6 . 5 . 3 . c . Some p r o p e r t i e s of t h e c o n t r o l l e r (DAV-76c) I. Using the robust controller described before, one can locate the eigenvalues of the dosed-loop
system
in any
(the decentralized
fixed modes
nonempty
of (Cm,
symmetric
A,B)
(if any)
region of the complex
plane
must be in the desired re-
gion). 2.
A robust
d e c e n t r a l i z e d c o n t r o l l e r e x i s t s g e n e r i c a l l y (WAN-73)
for
"almost
all" p l a n t s (6.5.15 p r o v i d e d t h a t : (i) m i )/ r i ( i = l . . . . .
S)
(ii) the output Yi is physically measurable at station i. If either (it or (lit do not hold, then a solution to the robust
decentralized
ser-
vomechanism problem never exists.
6.5.4. - Sequentialiy stable robust controller design A realistic
s i t u a t i o n is to c o n s i d e r t h a t
no
central
authority
is allowed f o r
c a l c u l a t i n g t h e local c o n t r o l l e r s , a n d t h a t a complete k n o w l e d g e of t h e mathematical model of t h e p l a n t is n o t n e c e s s a r i l y available at a n y c o n t r o l s t a t i o n . T h e p r o b l e m is thus
to
find
a
solution
to t h e
robust
decentralized
servomechanism problem
for
s y s t e m ( 6 . 5 . 1 ) u n d e r t h e two following c o n s t r a i n t s : (i)
The c o n t r o l l e r s y n t h e s i s must be c a r r i e d o u t in a s e q u e n t i a l s t a b l e way
(DAV-79bS, i . e . ,
t h e c o n t r o l l e r s can be c o n n e c t e d to t h e s y s t e m one a f t e r a n o t h e r
r e s u l t i n g a t a n y time in a s t a b l e c l o s e d - l o o p s y s t e m .
268 T h i s is m o t i v a t e d b y
physical
constraints
like time l a g s
c o n t r o l l e r s c o n n e c t i o n , lack of communication h a r d s t r u c t u r e . . , is a c h i e v e d w i t h a c o n n e c t i o n s e q u e n c e
41,2 . . . . . S ) ,
associated etc.
with the
If this property
t h e c o n t r o l l e r is s a i d to b e se__z-
cluentiall 7 s t a b l e w i t h r e s p e c t to c o n t r o l s t a t i o n o r d e r ( l p 2 p . . . , S ) . (ii) No c e n t r a l a u t h o r i t y m u s t b e u s e d in d e c e n t r a l i z e d d e c i s i o n m a k i n g ,
and
e a c h c o n t r o l s t a t i o n p o s s e s s e s o n l y a limited k n o w l e d g e of t h e m a t h e m a t i c a l model of the system
(typically,
e a c h s t a t i o n of a l a r g e
scale s y s t e m p o s s e s s e s
o n l y a local
model ( D A V - 8 2 ) ) .
6.5.4.a.
- E x i s t e n c e of a c o n t r o l l e r
C o n s i d e r t h e s y s t e m ( 6 . 5 . 1 ) withe0=0 a n d yd=0 g i v e n b y : = Ax + i=~l Bi u i Y~= Cir~x + I~i ui
(6.5.13)
Yi = Cix + D'mlu.1
(i=l . . . . . S )
Apply t h e c o n t r o l : Am ~ ~ o ui = Ki Yi + Ki v i ( i = l , . .o ,S) where a n d AmYi= y~n_ "~Ki R r i x r ? _ b~ ui,
(6.5.14a) a n d w h e r e t h e following c o n t r o l l e r s h a v e
a l r e a d y b e e n a p p l i e d to c o n t r o l s t a t i o n s (1,2 . . . . , i - 1 ) , i~2 : v °. = K. v. + K.~w. ]
J
J
J
J
(j=1,2 . . . . . i - l )
iE{2 ..... S)
(6.5.14b)
v. is t h e o u t p u t of a d e c e n t r a l i z e d s e r v o c o m p e n s a t o r g i v e n b y ( 6 . 5 . 1 0 ) a n d w. is t h e J ] o u t p u t of a d e c e n t r a l i z e d s t a b i l i z i n g c o m p e n s a t o r g i v e n b y ( 6 . 5 . 1 1 ) . T h e minimal s t a t e r e a h z a t i o n of t h e r e s u l t a n t applying the controller (6.5.14a,b)
closed-loop system obtained by
to t h e s y s t e m ( 6 . 5 . 1 3 )
for c o n t r o l s t a t i o n i (with
i n p u t v oi a n d o u t p u t y ? is c a l l e d t h e i t h s t a t i o n ' s local model of t h e s y s t e m . The
problem
of f i n d i n g
a robust
decentralized
servomechanism
control
with
s e q u e n t i a l s t a b i l i t y , w h e n e a c h s t a t i o n p o s s e s s e s o n l y a local model of t h e s y s t e m a n d w h e n t h e c e n t r a l d e c i s i o n m a k i n g a u t h o r i t y is n o t allowed i s called t h e local model robust decentralize d servomechanism problem. I t is a s s u m e d ces/reference criterion,
(DAV-79b,
signals poles, i.e.
here
stability
o r pole
82) t h a t e a c h c o n t r o l s t a t i o n k n o w s X] . . . . . ~g of ( 6 . 5 . 8 ) , assignability
modes, i f a n y ) of t h e c l o s e d - l o o p s y s t e m .
(except
the disturban-
a n d h a s t h e same p e r f o r m a n c e for
the
decentralized
fixed
269 Theorem 6.9
(DAV-82).
Consider the system (6.5.1)
in which A is a s s u m e d to b e
a s y m p t o t i c a l l y s t a b l e . T h e n t h e r e e x i s t s a s o l u t i o n to t h e local model r o b u s t d e c e n t r a l i z e d s e r v o m e c h a n i s m p r o b l e m if a n d only if t h e r e e x i s t s a solution to t h e r o b u s t decentralized s e r v o m e c h a n i s m p r o b l e m ( s e e T h e o r e m 6 . 7 ) .
6.5.4. b. - Controller synthesis A s s u m i n g t h a t T h e o r e m 6.9 h o l d s , t h e following algorithm p r o v i d e s a s y n t h e s i s procedure. Algortihm 6 . 1 . ( D e c e n t r a l i z e d s y n t h e s i s solution) (DAV-82). Step 1 : Apply t h e o u t p u t f e e d b a c k c o n t r o l : :
ui
~'m A~ ~ i Yi + Ki v °
(i=l
. . . . .
S)
A K. ~ R mi x r i,m K. ~: Rmixri
where
are
arbitrary
non
zero
I~i = r i, a n d w h e r e t h e Ki's a r e c h o s e n "small e n o u g h "
matrices
with
rank
so a s to maintain t h e
s t a b i l i t y of t h e c l o s e d - l o o p s y s t e m . Step 2 : Using a c e n t r a l i z e d s y n t h e s i s method (DAV-75) a n d t h e k n o w l e d g e of s t a tion l ' s local model of t h e s y s t e m , a p p l y t h e s e r v o c o m p e n s a t o r ( 6 . 5 . 1 0 )
with
i=l to t h e t e r m i n a l s of c o n t r o l s t a t i o n 1 a n d a p p l y t h e s t a b i l i z i n g c o m p e n s a t o r : O
v 1 = K 1 v I + K~ w 1 (v I is g i v e n b y (6.5.10) that
the resulting
c l o s e d - l o o p s y s t e m is
a n d w 1 is g i v e n b y ( 6 . 5 . 1 1 )
stable
and
has
a
desired
so
dynamic
r e s p o n s e . The r e s u l t i n g s y s t e m h a s t h u s t h e p r o p e r t y of h a v i n g Yl r e g u l a t e d , Step 3 : R e p e a t
sequentially step
2 for
(i=2,3,...,S)
until
all t h e
stations
have
regulated outputs. If pole a s s i g n m e n t is d e s i r e d ,
t h e a b o v e a l g o r i t h m can he modified as follow
(DAV-82). Algorithm 6.2. (Pole a s s i g n m e n t d e c e n t r a l i z e d s y n t h e s i s ) (DAV-82). Assume with no loss of g e n e r a l i t y t h a t t h e c o n t r o l s y n t h e s i s is p r o c e e d in t h e c o n t r o l s t a t i o n o r d e r 1, 2, . . . ,
S.
Step 1 : i=l Step 2 : Using a c e n t r a l i z e d s y n t h e s i s m e t h o d a n d t h e k n o w l e d g e of s t a t i o n i ' s local model of t h e s y s t e m ( i . e . t h e minimal r e a l i z a t i o n of t h e s y s t e m ( 6 . 5 . 1 3 ) a l r e a d y c o n t r o l l e d at s t a t i o n s ( 1 , 2 , . . . , i - 1 ) with r e s p e c t to t h e i n p u t u i a n d t h e o u t p u t ~m Yi ) ' a p p l y t h e s t a b i l i z i n g c o m p e n s a t o r ;
270
ui = Ki "~m Y i + K;zi m
(6.5.15)
;3 = Gi zi + Gi Yi to s t a t i o n i so t h a t : i
Z B.K .C. +j 1 j j ] G 1 C1
BIK 1 . . . . . . . GI: . . . . . . . . •
1
1
0
%.
•
G.*C.m
BjKT
*°.
0 ........
"LG
t
f:m
h a s all i t s e i g e n v a l u e s c o n t a i n e d in Cg ( e x c e p t t h e d e c e n t r a l i z e d f i x e d modes o f {
I • A , (B I . . . . . Bi))
which lie o u t s i d e of C~, if a n y ) . Cg is a s p e c i f i e d r e g i o n
LC] of ~-. This is always possible for almost all Kj, Gj, 0=1,2 .....i-l) (DAV-8Z). Step 3 : If i=S, s t o p , o t h e r w i s e , i=i+l, go to Step 2. Remark 6 . 6 . I.
If T h e o r e m 6.9 h o l d s , t h e n for almost all g a i n s c h o s e n in s t e p s I to 3 of
Algorithm 6 . 1 , it is always p o s s i b l e to c a r r y out t h e s y n t h e s i s (DAV-82). 2. If t h e s e q u e n t i a l s t a b i l i t y c o n s t r a i n t is r e l a x e d , t h e n Algorithms 6.1 and 6.2 are still a p p l i c a b l e for t h e case of u n s t a b l e o p e n - l o o p s y s t e m s • 3. Note t h a t t h e c o n t r o l l e r s o b t a i n e d b y A l g o r i t h m s 6.1 a n d 6.2 a r e , g e n e r a l l y , n o t u n i q u e with r e s p e c t to t h e c o n t r o l a g e n t s e q u e n c e . 4. I f Dral = 0, Di = 0 ( i = l , . . . , S ) ,
t h e n t h e r e s u l t s of t h i s s e c t i o n hold f o r t h e
g e n e r a l c a s e f o r w h i c h t h e i n f o r m a t i o n flow b e t w e e n c o n t r o l s t a t i o n s is a r b i t r a r i l y c o n s t r a i n e d ( n o t n e c e s s a r i l y d e c e n t r a l i z e d ) ( D A V - 8 2 ) . I n d e e d , as it is p o i n t e d o u t in (WAN-TBb), a r e o r d e r i n g of t h e o u t p u t s can always b e p e r f o r m e d to form an e q u i v a lent s t a n d a r d decentralized control problem•
6.5.5. - Robust decentralized controller for unknown systems In t h i s s e c t i o n , we c o n s i d e r t h a t t h e s y s t e m ( 6 . 5 . 1 )
t h a t we w a n t r e g u l a t e , is
n o t completly k n o w n . The only i n f o r m a t i o n on t h e s y s t e m is t h e following ; (i) The s y s t e m is d e s c r i b e d b y a finite dimensional l i n e a r f i m e - i n v a r i a n t model. (ii) T h e s y s t e m is o p e n - l o o p a s y m p t o t i c a l l y s t a b l e .
271
(iii) T h e d i s t u r b a n c e s a f f e c t i n g t h e s y s t e m a n d t h e t r a c k i n g r e f e r e n c e s i g n a l s are of polynomial/sinusoTdal t y p e , i . e . Re (Xi}=0, (i=l . . . . . g) in ( 6 . 5 . 6 ) . (iv) The s y s t e m i n p u t s can b e e x c i t e d , a n d t h e s y s t e m o u t p u t s to r e g u l a t e can m be m e a s u r e d , i . e . yi = Yi " With t h i s
sole i n f o r m a t i o n ,
it is
desired
to f i n d
a
decentralized controller
which
solves t h e r o b u s t s e r v o m e c h a n i s m p r o b l e m . T h e q u e s t i o n is to know w h e t h e r o r n o t t h e r e e x i s t s a f i n i t e s e t of e x p e r i m e n t s (taking into a c c o u n t n o i s y m e a s u r e m e n t s } to p e r f o r m on t h e p l a n t , necessary and
s u f f i c i e n t c o n d i t i o n s f o r t h e e x i s t e n c e of a
such that the
solution
to
the
above
problem can b e e x p r e s s e d in t e r m s of t h e s e e x p e r i m e n t s . If a solution e x i s t s , t h e following q u e s t i o n is to know w h e t h e r t h e r e e x i s t s a c o n t r o l l e r s y n t h e s i s p r o c e d u r e (using o n - l i n e t u n i n g
methods}
which satisfies the
decentralized controller tuning
s y n t h e s i s c o n s t r a i n t s above : (i) At a n y time, one c o n t r o l l e r can be i m p l e m e n t e d on one c o n t r o l s t a t i o n o n l y . (ii) A f t e r a c o n t r o l l e r h a s b e e n i m p l e m e n t e d on a g i v e n c o n t r o l s t a t i o n ,
this
c o n t r o l l e r is f i x e d a n d c a n n o t b e r e a c t u a l i z e d . (iii)
The
resultant
closed-loop system
must
remain
stable
any
time
of
the
controller s y n t h e s i s . This p r o b l e m is called t h e r o b u s t d e c e n t r a l i z e d s e r v o m e c h a n i s m p r o b l e m f o r u n k n o w n
systems.
6 . 5 . 5 . a . E x i s t e n c e of a s o l u t i o n Recall t h a t K d is t h e s e t of b l o c k - d i a g o n a l m a t r i c e s K d = { K]K = b l o c k - d i a g .
[K~ . . . . . Ks], K i e R m i = i
, (i=1 . . . . . S).
Definition 6.1 (DAV-78). 1. The s t e a d y - s t a t e t r a c k i n g gain p a r a m e t e r s T k ( i , j ) , of t h e s y s t e m ( 6 . 5 . 1 ) for t h e c a s e mi = r i , I Cj (Xk I - A) -1 Bi
(i=l,...,S),
(i,j=l . . . . . S ) , (k=l . . . . .
if i# j
Tk(i,j ) __a
(6.5.16) C i (Xk I - A } - I Bi + Di
2.
g)
are given by :
The
(k=l,...,g}, (i=l,...,S), given b y :
steady-state
tracking
of t h e s y s t e m (6.5.1} w h e r e r a n k Ki= r i ,
i f i=j gain
parameters
Tk ( i , j j K i ) ,
(i,]=l . . . . , S ) ,
w i t h r e s p e c t to t h e i n p u t m a t r i c e s K i E R m i x r i ,
(i=l . . . . . S ) ,
f o r t h e c a s e mi >/ r i,
(i=l . . . . . S ) , a r e
272 a [ C J (k k I - A ) - I Bi Ki
if i#j
=I
Tk(i'j;Ki)
(6.5.17)
Ci (k k I - A) -1 B i Ki + Di Ki
if i=j
It is clear that for the case Ki = I and mi = r i (i=l . . . . . S), T k ( i , ]) = T k ( i , j ; K i ) . It is worth noticing t h a t the s t e a d y - s t a t e t r a c k i n g gain p a r a m e t e r T k ( i , j) is equal to the t r a n s f e r function matrix between the i n p u t u i a n d the o u t p u t yj. Davison (DAV-76d, 78) s u g g e s t e d algorithms, called " e x p e r i m e n t s " , to evaluate the parameters T k ( i , j ) a n d T k ( i , j ; K i ) . Theorem 6.10 (DAV-78a). Consider the system (6.5.1) for which mi=ri,i {1. . . . . S), if i ~ ilp i 2 ) . . . , i d ,
a n d mi ) r i if i = i l , i 2 , . . . ) i d, a n d a set of mixr i i n p u t matrices Ki, with r a n k K.=r.. T h e n a n e c e s s a r y a n d sufficient condition for the
i=il,...,id,
1 1
existence of a solution to the r o b u s t decentralized servomechanism problem for u n k nown systems is t h a t t h e r e e x i s t s a list of d i s t i n c t i n t e g e r s (s 1, s 2 , . . . s S) (not n e c e s s a r i l y u n i q u e ) , si£ { 1 , . . . , S ) , such t h a t the following S successive r a n k conditions hold :
1.
rank[Tk(S 1, s I ;--Ksl )] = s I
2.
ran
[Tk(S , s2 ; ~ s 2 )
(k=l,...,g)
T k (s2, s I ;~'s2) ] [
= rsl = rs2
(k=l,...g)
~Tk(S I, s2 ;~'Sl) Tk(S1, s I ;~'Sl) J
rank[ Tk (Ss' sS ; ~ S s ) .... Tk (sS, C 1 ; ~ S s )
N.
S = ~ i=l
LTk (s I, s S ; ~ S l ) .... T k (s 1, s I ; ~ S l )
rs
l
(k=l,...g)
where
I
Irsi
s i ~ 11,...,, . .d
il
Ks i Ks.
if
. . si = ll)...,l d
I
Assuming t h a t carrying
out
the
Theorem 6.10 holds,
decentralized
controller
an algorithm is given in synthesis
T k ( i , j ) , u s i n g one dimensional o n - l i n e t u n i n g methods.
in
terms
(DAV-78)
of the
for
parameters
273
Remark 6 . 7 . 1.
I f mi
>/ r i,
(i=l . . . . . S),
Theorem
6.10
holds
for
almost all
(C~A,BtD)
s y s t e m s . On t h e o t h e r h a n d , if mi < r i f o r some i ~ {I . . . . . S}, t h e n T h e o r e m 6.10 does n o t h o l d , a n d no s o l u t i o n e x i s t s . 2. It is i n t e r e s t i n g to n o t e t h a t t h e local c o n t r o l l e r s s y n t h e s i s m u s t b e c a r r i e d out in s p e c i f i e d s e q u e n c e (not n e c e s s a r i l y u n i q u e ) . If t h i s s e q u e n c e is n o t r e s p e c t e d t h e n , in g e n e r a l , no c o n t r o l l e r s y n t h e s i s can b e p e r f o r m e d . H o w e v e r , t h i s is n o t t h e case if a s s u m p t i o n (it) is r e l a x e d in t h e t u n i n g s y n t h e s i s c o n s t r a i n t s ( D A V - 7 9 b ) .
6.6. - D E C E N T R A L I Z E D
CONTROL
BY
HIERARCHICAL
CALCULATION
T h i s s e c t i o n is c o n c e r n e d w i t h t h e h i e r a r c h i c a l calculation m e t h o d s of a d e c e n t r a l i z e d c o n t r o l for t h e c l a s s of l a r g e - s c a l e l i n e a r i n t e r c o n n e c t e d s y s t e m s . Two t y p e s of a l g o r i t h m s a r e p r e s e n t e d : t h r e e - l e v e l calculation a l g o r i t h m s (HAS-78a,b~ 79) a n d two-level c a l c u l a t i o n a l g o r i t h m s ( X I N - 8 2 ) .
6.6.1. - Three-level calculation algorithms
This subsection presents the algorithm of Hassan
a n d Singh
(HAS-78b)
a n d its
extension to the case of robust decentralized control (HAS-79).
6.6. l.a. - Decentralized near-optimal controller
(HAS-78b)
Consider the large-scale linear i n t e r c o n n e c t e d system described by : 5 xi = Ai xi + Bi ui + i--E1 A i j x j
(6.6.1)
orj in a compact form, b y :
I~ = Ax + Bu +
Cz
Lx
(6.6.2)
where A, B a n d C are appropriate block-diagonal
matrices with S blocks, a n d L is a
full matrix representing
the interconnections
trol t h e s y s t e m
b y d e c e n t r a l i z e d s t a t e f e e d b a c k minimizing a q u a d r a t i c p e r -
(6.6.2)
between
the systems.
formance i n d e x . The optimization p r o b l e m can b e w r i t t e n :
We
want to con-
274 7
rain
J = 1/2 f
( x ' Qx + u ' R u ) d t
K subject to : = Ax + Bu + Cz (6.6.3)
Z = Lx
u = -Kx where
Q a n d R are appropriate weighting matrices.
I t is s h o w n
in
(SIN-76)
that
the
solution of the
above problem has
the
fol-
lowing form •
u = - Gx - Tx where
G
equation,
is
a
block-diagonal
matrix
obtained
by
solving
the
decomposed
Riccati
a n d T is a full m a t r i x o b t a i n e d b y h i e r a r c h i c a l c a l c u l a t i o n .
Now, s u b s t i t u t i n g
(6.6.4)
into the criterion,
we o b t a i n
:
fT 0 ( x ' Qx + x ' W* x ) dt
Jopt = i/2 with
(6.6.4)
W* = ( G + T ) ' R ( G + T )
S i n c e it is d e s i r e d to o b t a i n a d e c e n t r a l i z e d matrix Td,
rain
control,
we c o n s t r a i n
T to b e a d i a g o n a l
and the optimization problem becomes : T J = 1/2 f0 ~ x ' Ox + x' Wx)]dt
Td s u b j e c t to £ = ( A - B G ) x + Cz - B T d x z = Lx
(6.6.5)
W = (G + T d ) ' R (G + T d ) w h e r e B is a n x n introduce
m a t r i x ( i f , in p r a c t i c e ,
B is o f l o w e r d i m e n s i o n t h a n n x n ,
we can
additional fictitious controls).
Let G d (Go) , A d ( A o ) ,
Qd(Q0),
a n d B d (B 0) be t h e m a t r i c e s c o m p o s e d o f t h e
d i a g o n a l ( o f f - d i a g o n a l ) e l e m e n t s o f t h e m a t r i c e s G, then the matrix W can be written
(A-BG),
:
W = (G d + T d ÷ GO)' R (G d + T d + G O) = (F + GO)' R (F + G O) w h e r e F = G d + T d is a d i a g o n a l m a t r i x .
The optimization problem can be rewritten
as :
Q, a n d B, r e s p e c t i v e l y ,
275
T = i/2 0/ [x' Q d x + x'F' R F x
rain J with
g (x,F,G0)
+ g (x,F,G o)] dt
= x' (Q0 + F' R G O + G O R F + G O ' R G O ) x
subject to : :~ = A d X with
(6.6.6.)
- B d T d x + y (x,z,T d)
y (x,z,T d) = A 0 x + Cz - B 0 T d X To s o l v e
which consists
this
problem,
in adding
the o p t i m i z a t i o n
problem
trajectories supplied a fixed point type
XCf
:
Hassan
certain into
and
additional
a number
by the second level.
algorithm.
Singh
(HAS-78b)
linear
constraints
of independent These
Let us introduce
use a prediction in o r d e r
subproblems
trajectories
to d e c o m p o s e for
are then
some fixed
improved
the additional linear constraints
using "
X
(6.6.7)
Td* = T d Substituting
(6.6.7)
rain J with
method
g (x*,
into (6.6.6),
the optimization problem becomes
:
T = 112 _~[ x ' Q d x + x * ' F' R F x * + g ( x * , F * , G O) ]
F * , G O) = x * ' (Q0 + F * ' R G O + G O' R F * + G O' R G O) x*
s u b j e c t to : ~¢ = AdX - B d T d x * + y ( x * , z , T d * ) z
= Lx
Td* = T d X*
with In order
---- X
y (x*,z, T d * ) = A 0 x * + Cz - B 0 T d * x * to s o l v e t h i s p r o b l e m ,
1 x' Qd x + ~1 x ~, H = ~-
+y ' [AdX-
let us write the Hamiltonian :
F' RF x * + ~1 g (x% F% G O) +
B d T d x ~ + y (x% z, Td~)] + ~ ' ( L x -
z) +
n
+ 13' ( x -
x ~) +
w h e r e ~ , B, v i a r e L a g r a n g e The necessary
Y: i:l
v[ (Td. - T~.) L
multipliers,
conditions
and y is the costate variable.
for optimality can be written
as :
dt
276 aH an
0
-
~
aH aT = 0 aH a6
z = Lx
--~
~ = C'
= 0
~
x* = x
= 0
---,,.
T*,.o
al-i aS'i
=
i
aH a
= 0 ~
T~
aH a x* = 0
(6.6.8) 5'
(6.6.9) (6.6.10) (6.6.11)
rd. ,
V = d i a g [(R G O x* - B'o 5" ) x * ' ]
(6.6.12)
B= ( F ' R F + Qo + F * ' R G o + C'o RG o) x* + (A o -
-'~
T~' B'o - T~j B~t ) ~" (6.6.t3)
Suppose then
the
now that x*,
Hamiltonian
can
be
Td*, 6 and V have been provided decomposed
such
that
each
b y t h e s e c o n d level,
subproblem
has
only
one
variable Tdi.
H aTd.
.-4,.
*2 x.t
or
Td"
_ Gd"
l
,
= 0
(Gd- + Td ) R i t i
Bd. Yi x~-t + vi = 0 t
l
-
-
-
1 .
R.
aaYiH = xi
= Ad i xi - Bd. [- Gd. l ~
I ~2 (vi - Bd. Y i xi)* ] x *i + Yi (x*, z, T *d) R-x. t gd" t i 2 Bd. % l
with
=-~.
i + vi)
X ~*
l
1
2 T I. = Ad i xi - Bd i Gd i x *i - - - -R.x.
3H 3xi
(- Bd.3'i
x- 2 1
v i - ' - ~i
Ti + Yi (x*, z, T d)
I
= Qd. xi * Ad.~'i + ki + 6 i l t
J
k. = L: ~. l
1
L e t Yi = Pi xi + h i '
l
t h e n a f t e r m i n o r m a n i p u l a t i o n s we o b t a i n
:
(6.6.1M
277 2 Bd.
Pi :
- 2
Ad. Pi ÷-'I~. P~l
Qi
wi'th Pi(T) = 0
(6.6• 15)
1
Bd. v i rli ) - Pi [Bdi Gd.1 x.*L + ' R I x ~•
P~. = (- Ad.l ÷
Ri
1
Hassan and singh
suggest
45
+ Yi (x , z, T d) ] - k i -
Bi(6.6.16)
1
the following three-level
algorithm.
Algorith m 6.3 (HAS-78b). Step 0 : G u e s s t h e i n i t i a l t r a j e c t o r i e s Step 1 :
Guess
the
initial
zh and k h at level 3 for the initial index h=l
trajectories
x *j,
T d * , B j,
vj
at
level
2,
and
set
the
iteration index j=l. Step 2 : U s i n g x *j, Td* J, B j, v j o b t a i n e d and (6.6.16), Step 3 : S u b s t i t u t e right the
sides
(BJ+I-BJ),
1, c a l c u l a t e P i ' n i f r o m ( 6 . 6 . 1 5 )
and
x and y obtained
a t l e v e l 1, Ir a n d
of ( 6 . 6 . 1 0 ) - ( 6 . 6 . 1 3 )
integral
from s t e p
x from ( 6 . 6 . 1 4 ) ,
of
and
the
norm
( ~ j + l _vj)
T (fromy=Px
to o b t a i n
of t h e
+ •).
x *]+1,
differences
C a l c u l a t e also T d .
z obtained
(x *iT1 -
are not sufficiently
small,
x'J),
the
decentralized
(k h + l
gain matrix,
- kh )
and
and
v j+l.
If
(Td*J÷l-Td*}),
go to s t e p
go to l e v e l 3 a n d c a l c u l a t e n e w k h + l a n d z h + l f r o m ( 6 . 6 . 9 ) n o r m of t h e d i f f e r e n c e s
at level 3 into the
Td~*J+l , B .3+1,
2.
and
Otherwise,
(6.6.8}.
If the
(z h + l - z h ) a r e s m a l l ,
otherwise
r e c o r d T d as h+l 1 using kh+l, z as the
go to s t e p
new guesses. Remark 6 . 8 . 1. T h e A l g o r i t h m be p r o v e d
using
for n o n l i n e a r
6.3 i s a p r e d i c t i o n
a similar technique
type
algorithm,
to t h e o n e u s e d
and its convergence
by Hassan
(HAS-76)
and only the decentralized
gains are
systems.
2. T h e e n t i r e
c a l c u l a t i o n is d o n e o f f - f i n e ,
u s e d o n - l i n e to c o m p u t e a n d i m p l e m e n t t h e o p t i m a l d e c e n t r a l i z e d 3.
The
desadvantage
a l t h o u g h it is n o t s e n s i t i v e
6.6.1.b.
- Robust
Hassan, to p r o v i d e prescribed and t a k e s
75,76).
can
and Singh
of
the
algorithm
to small v a r i a t i o n s
decentralized
near-optimal
S i n g h a n d Titli ( H A S - 7 9 )
a robust
decentralized
degree a (in the into account
control
sense
external
is
that
T d is
dependent
of t h e i n i t i a l c o n d i t i o n s .
controller
extended
(HAS-79).
the approach
which ensures
of A n d e r s o n
disturbances
control. initial-state
and and
of the above
exponential
Moore
structural
(AND-71),
stability see
perturbations
section with a § 6.4.1) (SIL-73,
278
Consider crlbed by
an interconnected
dynamical system
composed by
S subsystems
des-
: S
x i = Ai R'i * B i ~ i
*j
e.. 1J A.. D ~.J + ~.'
1
( i = I , . "" ,S)
where
t h e e. 2s a r e t h e e l e m e n t s o f t h e i n t e r c o n n e c t i o n m a t r i x E, w h i c h a r e i n t r o 1] d u c e d to i n c o r p o r a t e a n y s t r u c t u r a l p e r t u r b a t i o n w h i c h m a y o c c u r d u r i n g t h e o p e r a -
tion of the system.
E i s c o n t i n u o u s i n t i m e , w i t h 0 x< e l i ( t ) x( 1, ( i , j = l . . . . .
We s a w in s e c t i o n ( 6 . 4 . 1 ) a,
t h a t to e n s u r e
i t s u f f i c e s to c o n s i d e r t h e p e r f o r m a n c e
index
S).
t h a t t h e s y s t e m is s t a b l e w i t h d e g r e e :
5 i f = i__Z1 1/2 f0Te2c~t [ ( R i - ~ i ~ ' Qi ( ~ i -
~d)+
u--i, Ri ~ i ]
dt
w h e r e T e q u a l s a t l e a s t 4 t i m e s t h e time c o n s t a n t o f t h e s y s t e m . variable transformation, form, i.e.
"Linear Quadratic"
: 5
T
rain3 :
i
Qi
s u b j e c t to : with
With a n a p p r o p r i a t e
we c a n p u t t h i s p r o b l e m i n t o a s t a n d a r d
xi-
+ u i,
dt
S
~ i = Ai x i + Bi u i + jZ=l A. = ~. + a I l
e..H A.. i] x.] + d i ( t )
I
d i ( t ) = ~ii(t) e a t The optimal control for this system can be written as :
u1" G.
where
I
P. i s t h e I
system.
S Z
= - G,x 1
R7 ! I
e.. T., x, - s.
j=l
1]
E
]
1
B ) P. I
1
s o l u t i o n o f t h e local
(i.e.
decomposed)
Riccati equation
for the
it h
sub-
Let T =[e.. T . . ] , t h e n t h e o p t i m a l c o n t r o l , in i t s g l o b a l f o r m , b e c o m e s : 1] 11
u = - Gx - T x - S Now, w i t h t h e
same
approach
a n d n o t a t i o n s a s in t h e l a s t s e c t i o n ,
the optimi-
zation problem can be written T min J = 1]2 f0
(x-xd)'
Q(x-xd~
+ x'F' RFx + 2 X'Gd'RS +
+ 2 x ' T d ' RS + S' RS + g ( x , F , G O) s u b j e c t t o : ~ = AdX - B d T d X + y ( x , z , T d ) Z
---- L x
(6.6.17)
279 w h e r e g ( x , F , G 0) = (x-xd) ' O 0 ( x - x d )
+ x' F' R G 0 x + x'
+ x ' G O' R F x + x ' G O' RG0x y ( x , z , T d) = A0x + Cz - B 0 TdX + D D=d-BS
This p r o b l e m
is
similar
to
the
problem
(6.6.6)
and
can
be
solved
Algorithm 6.3 a f t e r c h a n g i n g t h e o p t i m a l i t y c o n d i t i o n s ( 6 . 6 . 8 ) - ( 6 . 6 . 1 6 )
by
using
the
by the appro-
priate ones.
6.6.2. - Two-level
calculation algorithm (XIN-82)
Xinogalas,Mahmoud
and
Singh
(XIN-82)
-
considered
the
following
optimization
problem : 1
rain Ki
S
3 =~- Z f (x! Qi xi + u! R i ui)dt i=l 0 l 1
subject
S xi : Aii xi + 5i ui + i=lZ Aij X.j
to
Ui = - K i x i
(i=l,...,S)
This p r o b l e m c a n b e w r i t t e n in a g l o b a l f o r m a s : co
min J = 1 / 2 f0
( x ' Qx + u ' R u )
dt
KEK d s u b j e c t to •
= Ax + Bu u=-
(6.6.19)
Kx
w h e r e B, Q a n d R a r e d i a g o n a l m a t r i c e s ,
and Kd is given by
K d = {K/K = b l o c k - d i a g . [ K 1 . . . . . K S ] , K i E R m i x r i
It is e a s y t o s h o w t h a t
min
(6.6.19)
can be b r o u g h t
:
, (i=l . . . . . S)}
b a c k to :
J = T r [ ( Q + K'RK) S ) ]
KCK d
subject to : g (S,x 0) = S (A-BK)' + ( A - B K ) S
+ X 0 =0
(6.6.20)
280
with
X0 = E [ x ( 0 )
Let
Ad = diag .(Aii)
x(0)']
= diag.
( x i)
A0 = A - A d An alternative
formulation of the optimization problem
(6.6.20)
is given by
:
rain J = T r [ (Q + K I R K ) S ] subject
K~K d to : + X0 +Z=0
g ( S , X 0) = S ( A d - n K ) t + ( A d - B K ) S Z = A O S + S A O'
The corresponding
Lagrangian
L = Tr [(Q + K'RK)S]
function can be formed as :
+ Tr[P
g (S,X0)]
For this static optimization problem,
tL --= '2 T
0
8L -0 8Z t___kL ~P
the necessary
--~
Z = A0P + PA"u
~
T-P
--4,-
(A d -
0
)__LL = ~ ~S
BK) S + S (A d -
(A d - BK)' T + T (A d -
D/., = 0 aK
~
K = R -1 B'
where
+ T r [T(AoS + SA 0' - Z ) ] conditions
for optimality are
:
(6.6.21)
BK)' + X0 ÷ Z = 0
(6.6.22)
BK) + Q + K ' R K + A~) P + PA 0 = 0
M d Sd 1
M d = diag. (T5) S d = diag.(S)
To s o l v e t h e 82) p r o p o s e
above optimality
conditions
Xinogalas,
Mahmoud and
Singh
(XIN-
the following tow-level algorithm.
Al~orithm 6.4 (XIN-82). Step 1 : Guess an initial value of the decentralized Step 2 : Compute have
negative
mentano
and
the eigenvalues
of the matrix
real parts,
step
Singh
g o to
(ARM-81)
(see
3.
g a i n m a t r i x Kq . (A d - B K q ) .
Otherwise,
§ 6.3.1.a)
use
to c o m p u t e
I f all t h e e i g e n v a l u e s the
algorithm
of A r -
a stabilizing
decen-
281
tralized
feedback
matrix
Kq ,
i.e.
such
that
(A d
-
BK q)
is
asymptoticaly
stable. Step 3 • S t a r t t h e t w o - l e v e l h i e r a r c h i c a l c o m p u t a t i o n s t r u c t u r e with g u e s s e d v a l u e s for t h e m a t r i c e s Zq a n d
Tq and send these values,
together with the
gain
m a t r i x K q , to t h e f i r s t level. Set q = l . Step 4 : At t h e f i r s t level, ( 6 . 6 . 2 1 ) Bartels and Stewart
(BAR-72).
a n d ( 6 . 6 . 2 2 ) a r e s o l v e d u s i n g t h e t e c h n i q u e of The m a t r i c e s S q a n d T q a r e c o n v e y e d to t h e
second level. Step 5 : New p r e d i c t i o n s of t h e m a t r i c e s Z, P a n d K a r e c a l c u l a t e d a c c o r d i n g t o :
Z q+l = A 0 S q + S q A 0' pq+l = Tq K q+] = R -I B' M q
(Sdq)-I
If the conditions : ~]HZ q+ll[- [[Zq[[ < ~Z k~llPq+l [[- ][Pq II < ep q [ [ K q + l ] [ - [[Kq[i <e K Kq+l are satisfied, regard
as
the
optimal
solution
and
finish the
iterative
s c h e m e . O t h e r w i s e , u p d a t e t h e m a t r i c e s Zq + l , p q + l a n d K q+l u s i n g t h e r u l e s : Zq+l = c 1 Zq + d I Zq+l = c2 p q + d2 p q + l Kq+l = c 3 K q + d 3 K q+l w h e r e t h e c o n s t a n t s c] a n d dj s a t i s f y cj + dj = 1 for j = 1 , 2 , 3 .
(The q u a n t i t i e s
eZ, ep, eK a r e small p r e s e l e c t e d t o l e r a n c e v a l u e s ) . Go to s t e p 2.
6.7. - CALCULATION METHODS USING AN INTERCONNECTION MODEL In t h i s s e c t i o n , we p r e s e n t an a l t e r n a t e a p p r o a c h to t h e optimization p r o b l e m , which u s e s
a
simple r e d u c e d
model
for
the
interactions
between
the
subsystems
(HAS-78a) (HAS-80) (CHE-81).
6.7.1. - The g e n e r a l i n t e r c o n n e c t t o n model (HAS-78a) The optimization p r o b l e m c o n s i d e r e d h e r e is : S
~o
min J = i/2 i__E1 0f [(xi - xd)' Qi (xl - xd) dt + u:,Ru.], dt subject to : ~i = Ai xi + Bi ui + Ci zi + di
(i=1 . . . . . S)
(6.7.1)
282
where
Qi ) 0,
Ri
tion vector
which
subsystems,
i.e.
z = Lx
0 are appropriate
>
is assumed
weighting
to b e
a linear
and
zi is the interconnec-
of the states
of the other
(L • f u l l m a t r i x )
The optimal control of each subsystem = _ ~1
ui
matrices,
combination
R'
is given
by
:
P. x . - R - I B . ' s. x 1 1 1
(6.7.2)
w h e r e P. i s t h e s o l u t i o n o f d e c o m p o s e d R i c c a t i e q u a t i o n ( i . e . R i c c a t i e q u a t i o n f o r the .th x 1 subsystem) a n d s i i s a s o l u t i o n o f a l i n e a r d i f f e r e n t i a l e q u a t i o n a n d d e p e n d s on the states
of the other
subsystems
(SIN-76)
:
S si
=
i~=l Wij xj + O i
If t h e i n t e r a c t i o n s
(j=l . . . . .
between
S)
the subsystems
(6.7.3) are ignored,
t h e c o n t r o l in
(6.7,2)
t
becomes
ui
= U l i = - R ~ I Bi' Pi xi - R i l =K . x. - w , 1
The control
I
(6.7.2)
Bi 0i (6.7.4)
I
is d e c o m p o s e d i n t o t w o c o m p o n e n t s
:
u i = Uli + u2i
(6.7.5)
where Uli is the control given by
(6o7.4),
a n d u 2 i will b e c o m p u t e d
as shown
in t h e
following. Now,
if
the
interconnections
optimization problem
are
can be written
as
considered
as
unknown
disturbances,
the
:
S "'-" J = subjecto
o
Qi ( " i -
+ *i
dt
to : ~ ' = A.* ~ . + I
with
(6.7.6)
C. ~ . + D.
I
1
I
I
A.* = A. - B,K. 1
1
1
1
D. = d. - B. w. 1
1
1
1
w h e r e ~i ( u 2 i , 5 2i ) i s a n a p p r o p r i a t e Let
the
v e c t o r Yi b e
Bi ui2 - CiY i, then
we h a v e
chosen :
function of the control ui2 and its derivative. to
minimize
the
Euclidean
norm
of
the
vector
283
Yi = (C'Ci)-1 Ci' Bi ui2 = ~ u2i Substituting
~i
B i u 2 i b y C i Yi' we h a v e
+ ci (B u2i + ~i ) + "~" = Ai* i + Ci Yi + Di Yi = B u2i + ~zi
with
=
(6.7.7)
Ai* ~i
where Axi is t h e a p p r o x i m a t e
Di (6,7.8) (6.7.9)
s o l u t i o n of t h e s t a t e s r e s u l t i n g
Let ~. b e a p p r o x i m a t e d
from these substitutions.
by the following linear differential
1
equation
:
~i = Azi Azi + dzi where Azi is t h e p a r t corresponds
of A G (A G i s t h e d y n a m i c m a t r i x o f t h e o v e r a l l s y s t e m ) ,
to t h e e l e m e n t s of 9 . . T h e d e r i v a t i v e
of ( 6 . 7 . 9 )
1
which
can then be written
-"
= Azi + IB fi2i - Azi IB u2i + dzi with
-- Azi Yi + vi + dzi
(6.7.10)
vi = ~ fi2i - Azi B u2i
(6.7.11)
D e f i n e t h e f u n c t i o n ~i in ( 6 . 7 . 6 )
as :
~i (u2i' u2i) = vi' Ri vi Then the optimal decentralized
control problem can be rewritten
S min J = 1]2 i=Z1 f0¢o(~'i - ~ d ) , Q i ( x~i _ .,sd .~i) + vi , R i v i s u b j e c t to : ~. = X. ~. + B. v. + D. 1
1
1
1
1
1
where
~i:
= Yi
[o:] ~L =
d
[: 0] aod
~i =
0
i
and t h e o p t i m a l s o l u t i o n of t h i s p r o b l e m is g i v e n b y
:
A. l
dt
as :
284
~7: B,
vi = - ~T1 ~i' ~i ~i = - Gil q
- Gi2 Yi -
~
~-ilB i.
~ i si
(6.7.12)
w h e r e ~ i is t h e s o l u t i o n of t h e R i c c a t i e q u a t i o n
a n d ~. is t h e s o l u t i o n of t h e l i n e a r - v e c t o r 1
=
-
Substituting
differential equation
I - Pi ~i
v i in ( 6 . 7 . 1 0 ) ,
6.7.11),
:
:
+ Qi ~d
we o b t a i n
:
~* = Ai* xi* + C i Yi* + D i
(6.7.13)
Y* = ( A z i - l G i 2 ) Yi* - Gil xi* + dzi* dzi* = - R~ ~ i ~ i + dzi
(6.7.14)
From t h e e q u a t i o n
(6.7.11),
we h a v e :
B u2i = v i + Azi IB u2i Again,
b y m a k i n g a similar a p p r o x i m a t i o n
calculating vectors
the
two v e c t o r s ai, ~3i w h i c h
to t h a t made in e q u a t i o n minimize t h e
Euclidean
(6.7.7),
norms
i.e.
of t h e
by two
•
IBa i - Azi ~B u2i and
BB i - v i
and substituting
them in e q u a t i o n
(6.7.8)°
we h a v e : (6.6.15)
u~i = Aui u~i - Hi xi* - Fi Yi* - Si with A
. = (13' ~ ) - I
B.' A I
Ul
. ~B. Zl
I
Hi = (13i' ]3) -1 ]Bi' Gil Fi
([Bi' B i ) - I 13i' Gi_~
Si
([Bil 13i)-i 13i' R i
and t h e d e c e n t r a l i z e d
[Bi' s i
c o n t r o l is g i v e n b y
(6.6.13)
g r a m of F i g u r e 6.5 s h o w s t h e c o n t r o l l e r s t r u c t u r e .
(6.6.14)
and
(6.6.15).
T h e dia-
285 Cizi*+Di
1
2 Fig.
6.7.2.
- Model-following method
(HAS-80)
Let the optimization problem be S
6.5
(CHE-81)
:
co
min J = 112 iZ__l Of (xi' Qi xi + ui' s u b j e c t to •
R i u i) d t
~c. = A. x. + B. u. + C. z. 1
~1
1
1
I
1
zi = j=~l
Lij xj
In order
to s o l v e t h i s
model o f i n t e r a c t i o n s
(6.7.16)
I
problem,
Hassan
and
."
z = Azi z i and the optimization problem can be rewritten 5
as :
¢o
rain J = I/2 iE__l Of (Yi' ~i Yi + ui' Ri ui) dt subject to : where
:
Singh
(HAS-80)
use the following
286
[xi] E:ic] [:ij I i]
Yi :
~i =
l
zi
~i :
and Qi =
Az i
The optimal solution of this problem is given by
:
ui = - R~ 1 ~ i Pi' Yi w h e r e P. is t h e s o l u t i o n o f t h e R i c c a t i e q u a t i o n . 1
T h i s c o n t r o l c a n b e w r i t t e n in the
form : (6.7.17)
u i = - K l i x i - K2i z i Now,
consider
the subsystem
m o d e l w h o s e i n p u t ~. is p r o v i d e d 1
by the inter-
connection model :
4.
1
= A. Ax. + B. u. + C. ~z. 1
1
1
w h e r e ~x.1 is t h e (from ( 6 . 6 . 1 7 ) ,
state
1
1
(6.6.18)
1
of subsystem
model.
Then,
a f t e r r e p l a c i n g z p a r Az) in ( 6 . 6 . 1 6 )
if we s u b s t i t u t e and (6.6.18)
u i by
its
we o b t a i n
value
:
-'xi = ~i ~i + Gi zi - Bi K2i~i
(6.6.19)
with ¢h1 = A i - B i K l i xi
= ~i~i
(6.6.20)
+ (Ci - Bi K2i) zi
w h e r e ~ is t h e i TM s u b s y s t e m 1
Substracting
Ai
,~
(6.6.20)
+
state resulting from ( 6 . 6 . 1 9 )
we g e t :
ci
where x i and zi are error vectors given by I
l
"~. = z . 1
I 1
I
-'~.
1
and the optimization problem is rewritten :
from t h e u s e o f ~z. i n s t e a d o f z . . 1
1
287 S
co
min J = 1/2 i=lZ °f subject to :
(x~i'Hi ~i + '~i'Si ~'i)dt
~". = ~. ~. + c. ~. 1
1
1
1
1
The optimal solution of this problem is given by : ~i* = = S~I C.' P.1 ×.1 1 where P.1 is the solution of the decomposed Riccati equation. Then we get : zi* = ~i - S~ 1C.' P. 1 1 1 and the decentralized control is given by :
~.i = <~i + Bi K2i s] I ci' Pi~ xi + ci "i - Bi K21 (~i + s~ I .~i = ~i Axi + (Ci - Bi Kzi) "~. = A .~z, I ml I
I
Figure 6.6 illustrates the control s t r u c t u r e . C i zi
[-Bi ,<,2! [
I C i - Bi K2i i z r~
4---
-I-
O
I _]
"1 , I_ s~l ci Pi IFig. 6.6
Cil Pi xi)
288 Choice of t h e i n t e r a c t i o n model It is c l e a r t h a t t h e choice of Azi p l a y s an i m p o r t a n t p a r t in t h e e x i s t e n c e of s u c h c o n t r o l l e r . H a s s a n a n d S i n g h (HAS-80) p r o p o s e d to choose A . a s t h e block of Zl
t h e global m a t r i x A c o r r e s p o n d i n g to t h e v e c t o r z i . To c l a r i f y t h i s i d e a , c o n s i d e r the following e x a m p l e . Let t h e o v e r a l l s y s t e m (with two s u b s y s t e m ) m a t r i x b e : -
1
all
a12
a21
a22
I
-
0
0
a15
a23
0
0
I
Then,
I I
A+CL=
a31
0
a41
o
0
0
I
I I
a33
a34
a35
a~3
a4~
a45
I I
a53
as~
a55
I
a c c o r d i n g with t h e p r o p o s i t i o n of Hassan a n d
S i n g h in
(HAS-80),
the
i n t e r a c t i o n model is :
ix I
zI =
x3
z2 = x I
,
Az2
AZl :
aa31
L a35
a33
= all
This r u l e for c h o o s i n g Azi t a k e s i n t o a c c o u n t t h e s p a r s i t y of t h e o v e r a l l d y n a mic matrix b y eliminating columns w h e r e t h e o f f - d i a g o n a l p a r t s a r e z e r o .
This p r o -
v i d e s a good model in t h e case f o r w h i c h t h e s e l e c t e d e l e m e n t s a r e t h e d o m i n a n t ones in t h e r o w s of A. H o w e v e r , if it is not t h e c a s e ,
t h i s choice may mean a l o n g e r
c o r r e c t i o n p e r i o d o n - l i n e a n d t h e Azi may be u n s t a b l e (MOO-81). To o v e r c o m e t h i s difficulty, Himn a n d S i n g h (CHE-81) p r o p o s e to choose Azi as a diagonal m a t r i x with n e g a t i v e e l e m e n t s , i . e . t h e y c h o o s e a s t a b l e A . o r , in o t h e r zl w o r d s , t h e y a s s i g n t h e p o l e s of t h e model in t h e l e f t h a l f complex p l a n e . H o w e v e r , t h e choice of t h e i n t e r a c t i o n model r e q u i r e s i n d e e d t h e j u d g m e n t of t h e d e s i g n e r . As a m a t t e r of f a c t , t h e r e is no simple, infallible way o f c h o o s i n g Azt. A n y w a y , for any choice of Azi ( s t a b l e ) , t h e e r r o r s b e t w e e n t h e s y s t e m s t a t e a n d t h e model s t a t e
will b e c o r r e c t e d to a l a r g e e x t e n t b y t h e f e e d b a c k c h a n n e l . Of c o u r s e ,
t h e a c c u r a c y will p a r t i a l l y d e p e n d on t h e f i g u r e s in Azi. F i n a l l y , n o t e t h a t t h e loop I
289 (see
Figure
6.6)
can
be
viewed
as
a
reference
input.
It
is
independent
of
any
control that could be applied.
6.8. - D E C E N T R A L I Z E D C O N T R O L F O R SYSTEMS WITH O V E R L A P P I N G I N F O R M A T I O N SET
In the previous tralized
systems
disjoint
information
control
stations,
regulation multiple
s e c t i o n , we h a v e c o n s i d e r e d
assuming sets,
overlapping
the
i.e.
there
tlowever9
(ISA-73).
control
that
power
systems
subsystems,
in
some s y n t h e s i s
a c t i o n s of t h e is
no
practice~
systems
sharing
many
(SIL-7g.
for
reliability
and
the
controllers
models,
CAr,-7g}.
of
carried
of information
system
enhpnc~,ment
sharing,
methods for decen-
are
among
for
information
are
among
using
the
example
economic systems (SIL-f~0}.
out
the
local traffic
(AOK-76),
constituted
of
controllers
is
absolutely essential.
O n e w a y of d e s i g n i n g n i q u e s of e x p a n s i o n
and
a c o n t r o l l e r f o r t h i s t y p e of s y s t e m s is to u s e t h e t e c h -
contraction.
The
idea
is
to e x p a n d
(under
certain
condi-
t i o n s ) t h e s t a t e s p a c e of t h e o r i g i n a l s y s t e m so t h a t t h e e x p a n d e d
s y s t e m c o n t a i n s all
the n e c e s s a r y
subsystems
as
disjoint.
troller
can
information about the original system Then,
be
conventional
used
for
the
techniques
expanded
for
the
system
and
and
that
design the
the
appear
of a d e c e n t r a l i z e d
resulting
controller
is
concon-
t r a c t e d f o r i m p l e m e n t a t i o n on t h e o r i g i n a l s y s t e m ,
6.8.1.
- Expansion,
contraction,
and inclusion
Consider the system S given by
S : ~ = Ax + Bu
w h e r e x ~ Rn , tant matrices.
x(0)
:
= x0
(6.g.1)
u ¢-R m are the s t a t e and
the input,
Associate the performance index
and
A, B a r e a p p r o p r i a t e
cons-
:
oo
a (x 0, u ) = 0-r
( x ' Ox + u ' R u ) dt
where Q ~ 0 and R > 0 are appropriate
Associate the
pair
(~,
~)
with
weighting matrices.
the
l,Mr
a s s o c i a t e d p e r f o r m a n c e i n d e x a r e g i v e n By :
{q,
D,
where
the
s y s t e m .'~ a n d i t s
290
:~=~+~u
~(o) :~x 0
o0
(z0, u~ = f0 (~' ~ ~ + u, ~u~ dt ~ 0 and R > 0 are appropriate weighting matrices, and T ~
R~ , ~ >~ n .
I n t r o d u c e t h e linear t r a n s f o r m a t i o n : = Tx where
T
~(t,~0,u)
is
(6.8.2) an
~xn
constant
matrix
with
full
column
rank.
Let
x(t,x0,u)
and
be t h e s t a t e s of t h e s y s t e m s S and ~ c o r r e s p o n d i n g to t h e initial condi-
t i o n s x o , ~0 a n d t h e f i x e d i n p u t u . The l i n e a r t r a n s f o r m a t i o n 46.8.2) c a n be u s e d to r e l a t e t h e p a i r s ( S , J ) a n d ( S , J ) in t h e c o n t e x t o f i n c l u s i o n as follows : Definition 6.2
(IKE-81).
The p a i r
(~,~)
includes the pair
(S,J)
if t h e r e e x i s t s a
m a t r i x T s u c h t h a t for any initial c o n d i t i o n x 0 of S, t h e choice ~0 = T x 0
(6.8.3)
of t h e initial s t a t e ~'0 o f ~ implies t h a t : f o r all t >/0
x ( t ; x 0, u) = T I x ( t I ~ 0 ' u)
J (x o, u) = ~ ' ( ~ 0 , for a n y i n p u t u ( t ) ,
u)
w h e r e T I is a g e n e r a l i z e d i n v e r s e of T.
If t h e p a i r (~',~) i n c l u d e s t h e p a i r ( S , J ) , sion of ( S , J ) , (S,J),
t h e n (~,~) is s a i d to be a n d e x p a n -
a n d ( S , J ) is called a c o n t r a c t i o n of ( ~ , ~ ) . Note t h a t if ( ~ , ~ ) i n c l u d e s
t h e n t h e optimization p r o b l e m c o r r e s p o n d i n g to ( ~ , ~ ) is e q u i v a l e n t to t h e one
for ( S , J ) p r o v i d e d t h a t 46.8.3) h o l d s . Now, u n d e r t h e t r a n s f o r m a t i o n
(6.8.2)
t h e m a t r i c e s of t h e e x p a n d e d s y s t e m
and the original system are related by ; = TAT I + MA,
N
B
= TB
+ NB,
= (TI) ' Q T I + MQ and ~ = R + N R w h e r e MA, NB, sion.
MQ a n d N R a r e c o n s t a n t c o m p l e m e n t a r y m a t r i c e s of p r o p e r
dimen-
291
Theorem 6.12 (IKE-81,
(i) MAT = 0,
or
The pair
N B = 0,
(~',~') i n c l u d e s
MQ MiA1 T = 0
MQ Mi - 1 N = 0 a n d N R = 0
(i=1,2 ..... ~)
are
Although must
be
such
that
out that
the conditions
two
different
the
choice of matrices
chosen
such
sets
that
it can be used
(6.8.4)
of conditions
the
T,
In
the
following,
on the original system Definition 6.3 tractible
for controller
system
we c o n s i d e r
(IKE-81,
expansion
no means unique design,
and
(IKE-81).
(IKE-80),
they
observable
(a d e t a i l e d s t u d y
and about
(MAL-85)).
design
problem
can be contracted
and
discuss
the
conditions
to u = - K x f o r i m p l e m e n t a t i o n
SIL-82a).
The control
u = - ~
(t; ~0'
u)
~t
of t h e e x p a n s i o n
~ is con-
S if ~ 0 = T x i m p l i e s t h a t
> 0
u.
6.13 ( I K E - 8 1 ) .
MAT = 0 a n d
If
NB = 0
then any control law u = - ~ given by
do n o t i m p l y e a c h o t h e r , and
S.
K x ( t ; x 0, u ) = ~
Theorem
the
(6.8.5)
is c o n t r o l l a b l e
or observer
:
(6.8.5)
to t h e c o n t r o l u = - K x f o r t h e o r i g i n a l s y s t e m
for any fixed input
(S,3) if either
(6.8.4)
contraction
MA, N B i s b y
expanded
which the control u = - ~
and
for
this choice is given by Malinowski and Singh
under
the pair
T I MQT = 0 a n d N R = 0
(il) MIMAT = 0, T MiA1 NB = 0,
We p o i n t they
SIL-SZa).
is contractible
to t h e c o n t r o l law u = - K x ,
and K is
:
K:~T
6 . 8 . Z. - O v e r l a p p i n g Consider
again
composed of three vely,
i.e.
:
decomposition the
system
subvectors
Xl,
(6.8.1), x 2 and
and
assume
that
x 3 of dimension
its nl,
state n 2 and
vector
x
is
n 3 respecti-
292
x = ( X l ' , x z' x3')'
and n = nI + nz + n3
Let t h e i n p u t b e decomposed i n t o two s t a t i o n s :
u = (u I' u2')' where u I E Rml,
u 2 ~ RmZ
and m = m I + m 2 .
With this representation the system S can be described as :
x2
I AI~21 L~A2"-2~; A23
x2
B2I
l B22 -- II
LA3,
×3
"~;1--
B32
',A~2
A33
t
(6.8.6)
w h e r e the submatrices correspond to the c o m p o n e n t s of the state and input vectors.
Let the state be zation to a n y n u m b e r
decomposed
of c o m p o n e n t s
into two
overlapping
is obvious)
components
(the generali-
non square
matrix defined
:
~1 = ( x l ' x 2 ' ) ' 9t2 = (x 2' x3')'
s u c h t h a t t h e new s t a t e v e c t o r is :
= (~'I' ~ 2 ' ) ' T h i s v e c t o r is r e l a t e d to x b y : ~=Tx where ~ ~ R~ a n d ~' = n 1 + 2n 2 + n 3 , by :
T=
I1 0 0 0
0 12 12 0
a n d T is a ~ x n
0}
0
0 13 •
293 i = 1,2,3.
where I i = i = 1,2,3 a r e u n i t y matrices of dimension n i x n i Define the e x p a n s i o n ~ :
where
~ = TAT I + M ,
~ = TB + N
Ikeda et al. (IKE-81) p r o p o s e the choice (not u n i q u e )
TI=
i o o o] I!
1
1
~- 12
~- x2
0
o
0
l
0
M =
: l
~ AI2
- ~ AI2
1
1
~ A22
0
- g A22
1
13
1
0 - ~ A22 0
which s a t i s f i e s the conditions ( g i v e n by p a r t
~ A22
I
I
- ~ A32
--~-A32
(i) of Theorem 6.12)
0 0
N=0
0 0
for ~ to be an
expansion of S. With the t r a n s f o r m a t i o n ( 6 . 8 . ? ) the e x p a n s i o n "S is g i v e n b y :
All
0
AI3
BII
II BI2
A22 11 0
A23
B21
1 B22
AI2 1I I
A21
I
w
x2J
A21
0
II
A22
A231
I
A31
0
iI
A32
By comparing the s y s t e m s S and ~
A33
23
(6.8.8}
I
B2i
I B22 I
331
1 B32
we see t h a t t h e o v e r l a p p i n g decomposition
of the system S r e s u l t s in a disjoint decomposition of the e x p a n s i o n ~ of S. S t a n d a r d d e c e n t r a l i z e d control t e c h n i q u e s can t h u s be u s e d to d e s i g n a c o n t r o l l e r for ~. The e x p a n s i o n ~ can be r e p r e s e n t e d as two i n t e r c o n n e c t e d s u b s y s t e m s :
: ;.Xl = ~1 ~1 + ~1 Ul + 12 ~2 + 12 u2 x2 ~2 ~2 + ~2 u2 + A21 ~1 + B21 Ul where t h e matrices of the d e c o u p l e d s u b s y s t e m s a r e g i v e n b y :
294
~
" Xl = AI'~I + L I Ul ,4, x2 ~2 ~2 + B2 u2
IF-AII
and •
Al2]
"~1
=
[ Bll
~l = . A21
A22.]
A22
A23
["
BI2
[] B22
A2 : A32 A33] and'~2 = 1332 The interconnection matrices are given by :
0
.%1
A23
0
[B22J
[B31]
Let us associate the following performance indices with the decoupled subsystems : (T10' Ul) =
(Xl ' ~1 ~1
Ul' ~1 Ul) dt
~ (xz0' u2) ~oo(~Z" Q2 ~2 + u2' ~2 u2) dt where ~10 and ~20 are the initial states of ~lD and ~SD2 and ~1' ~2' ~1 and '~2 weighting matrices of appropriate dimensions.
are
The global performance index can be written : N
00
J(%,u)=I 0 (~,~+u~.)dt
where
6 = diag. (~1' ~Z ) = diag. (~1' ~2 ) In virtue of part (i) of Theorem 6.12, the performance index ~ (~0' u) is a expansion of : co
J (x 0. u) = 0f (x' Qx + u' Ru) clt with Q = T I ~T
295
and J (Xo, u) is t h e p e r f o r m a n c e i n d e x a s s o c i a t e d to t h e o r i g i n a l s y s t e m . Now, t h e local c o n t r o l laws :
Ul = - K1 ~i u2 = - ~2 ~2 are c a l c u l a t e d to optimize t h e local p e r f o r m a n c e i n d i c e s f o r t h e local s u b s y s t e m s ~ p and ~
. The global c o n t r o l is t h e n w r i t t e n :
I
Ii
II "K23
K24
and t h e c o n t r o l to b e i m p l e m e n t e d on t h e o r i g i n a l s y s t e m is g i v e n b y t h e c o n t r a c tion : Kll
[
K
2
I K23
%v-----
K24 J
6.9. - CONCLUSION Decentralized
control
and
in
general
constrained
structure
control
induce
p a r a m e t r i c optimization p r o c e d u r e s for t h e s y n t h e s i s of a d e q u a t e c o n t r o l s t r u c t u r e s . In t h i s c h a p t e r , we h a v e p r e s e n t e d most o f t h e available t e c h n i q u e s f o r dealing with t h i s p r o b l e m , k i n d of p r o b l e m ,
In o r d e r to g i v e a more complete a n d r e a l i s t i c s o l u t i o n to t h i s we h a v e also c o n s i d e r e d t h a t t h e s y s t e m could b e p e r t u r b e d
small o r l a r g e p a r a m e t e r v a r i a t i o n s o r a f f e c t e d b y e x t e r n a l d i s t u r b a n c e s .
by
The s o l u -
tion p r o v i d e s a r o b u s t d e c e n t r a l i z e d c o n t r o l , Since
decentralized
control
remains
an
active
research
area
with
practical
impact in many fields of a p p l i c a t i o n , t h e p r e s e n t e d r e s u l t s s h o u l d b e c o m p l e t e d soon by other efficient techniques and algorithms.
CHAPTER
STRUCTURAL
7.1.
7
ROBUSTNESS
- INTRODUCTION The
problem
of designing
has no fixed modes and that Chapter
5.
Chapter
an
6 was then
which can be used
concerned
to d e t e r m i n e
disturbances
control
with
number which, every
the
studies
system have
in a d d i t i o n to p r o v i d e the
occurence
(ALB-83)
disturbances
to t h e
connection Siljak
of o n e
(SIL-75)
is concerned
In addressed thesizing
to
or
more
who
constrained
failures
number
(SIL-75)
(SIL-78)
concept
was
the
stability
importance A recent
of
(DAV-81)
sensor
(LOC-
structural
A structural
perturba-
as the
originally e
properties
system,
composite
class of structural
either
refering
regulators
of these
controlled
This
affecting
controller.
to t h e c o n t r o l l e d s y s t e m w h e n
a certain
The other
in
technics
constraints
synthesizing
of
for composite systems
considered
system
values.
perturbations.
of a n o p e r a t i n g
may be disconnected. controller
optimization
problem
perturbations
subsystems.
the
to s t r u c t u r a l
the
preserve
class is defined
that
it i s a l s o o f a r e a l p r a c t i c a l
some desirable properties working,
In presence
(SIL-78)
with
possible
dis-
introduced system
by when
perturbations
measurements,
actuator
or line cuts. (DAV-81), with
an
the
plant
the property (1,2 .....
j-l),
robust
additional
a decentralized
S-decentralized still has agents
first
subsystems
behaviour
parametric
can affect the plant itself or the control system.
tion related
certain
attention
of structure]
(ACK-84).
the
of the system parameter
can be subjected
paid
component is properly
under 83)
that
of
such
is m i n i m i z e d w a s c o n s i d e r e d
with the addition of robustness
and variations
When d e a l i n g w i t h l a r g e s c a l e s y s t e m s , to c o n s i d e r
structure
transfer
the gains of the structurally
This problem was also considered to e x t e r n a l
optimal
the information
decentralized reliability
controller
such
that
The
to s o l v e t h e r o b u s t
if t h e j - t h
that satisfactory Vj ~ {1,2 . . . . .
servomechanism
requirement. control
robust
problem
problem
servomechanism
agent
fails,
tracking/regulation
S} (sequential
reliability).
(DAV-76c)
consists
in
problem
the resulting occurs
is
synfor a
system
for control
297 Also in
(LOC-83),
t h e p r o b l e m of d e s i g n i n g
lator which performes robust preserves
zero-regulation
zero-error
of all t h e
chapter,
variables
the
consequences
using
of s t r u c t u r a l
structurally
fecting
the
sidered.
In
(Section
the
last
section,
which, besides preventing to h e
and the
subset)
is
a r e s p e c i f i e d in a d i f f e r e n t The study
stabilizability
control.
design
the i-th one when a failure
problem.
on
affecting
Both
the faced
of
conditions,
an
is f o c u s e d on
or pole a s s i g n a b i l i t y
structural
controller
some m o d e s of t h e s y s t e m
f i x e d m o d e s in n o r m a l o p e r a t i n g
another
structural
feedback
7.Z)
but
constraints
perturbations
constrained
plant
regu-
is d i s c u s s e d .
the robustness
way a n d we a r e c o n c e r n e d w i t h a p u r e
decentralized
r e g u l a t i o n in n o r m a l o p e r a t i n g c o n d i t i o n s a n d
error
o c c u r s in t h e i - t h f e e d b a c k loop ( r e l i a b i l i t y )
In t h e p r e s e n t
a completely
perturbations
(Section
optimal
7.3)
control
are
afcon-
structure
(the unstable ones for example)
guarantees
that
these
modes
(or
a r e n o t f i x e d m o d e s w h e n t h e s y s t e m is s u b j e c t e d to a p r e s p e c i f i e d
c l a s s of s t r u c t u r a l
perturbations
7.2. - S T R U C T U R A L
(affecting the controller).
PERTURBATIONS
AFFECTING
THE
SYSTEM
C o n s i d e r t h e following s y s t e m c o m p o s e d of S s u b s y s t e m s
(OZG-~2)
•
= Ax + Bu
(7.2.1)
All .........
AIS
A =
B =
1
132. `
O
I I i
ASI . . . . . . . . .
"
A55
where
A.. C R n i x n j a n d B. EE R n i x m i , ( i , j = l . . . . . *] 1 d e c e n t r a l i z e d s t a t e f e e d b a c k in t h e f o r m :
u = Kx
K = block-diag.[
K1 K2 ...
S).
This
BS
system
is
controlled
KS]
by
(7.2.2)
where K. ~ R m i x n i
, (i=l . . . . . S ) .
1
We a s s u m e
that
(7.2.1)
is s u b j e c t e d
to s t r u c t u r a l
in t h e d i s c o n n e c t i o n of o n e o r m o r e s u b s y s t e m s . system
(7.2.1)
c a n be
represented
by
perturbations
which consist
]'he interconnection structure
a digraph
G = (V,E).
Each
node
of the
v. ESV is 1
a s s o c i a t e d to a s u b s y s t e m
Si, i E
{1 . . . . . S }
and each edge
( e i , e j) 6- E r e p r e s e n t s
a
298 nonzero interconnection digraph
from Si to Sj w h i c h i m p l i e s t h a t
w a s a l s o u s e d in
G T = (V T .
(COR-76b),
see Chapter
ET) o f G is a c o l l e c t i o n of n o d e s
connecting
the nodes
V T in G.
t r i c e s of A a n d B c o r r e s p o n d i n g
2,
A.. $ 0 a n d v i c e v e r s a ( t h i s P Section 2.2.3.b). A subgraph
V T c_ V a n d
the set of edges
T h e m a t r i c e s AT a n d B T a r e d e f i n e d as t h e s u b m a to t h e s u b s y s t e m s
a s s o c i a t e d to V T .
T h e n t h e following r e s u l t p r o v i d e s s u f f i c i e n t c o n d i t i o n s u n d e r (7.2.1)
is p o l e a s s i g n a b l e u s i n g t h e c o n t r o l ( 7 . 1 . 2 )
Theorem Section
7.1
(OZG-825.
If for every
25 G T = (V T ,
system (7.2.1)
Remark 7.1.
ET),
(see
connected
subgraph are
T h e model ( 7 . 2 . 1 )
in
The results
2,
then
the
perturbations.
s o l u t i o n s to t h e
(OZG-825.
Chapter
controllable,
all s t r u c t u r a l
of d e c e n t r a l i z e d
( D A V - 7 6 c ) is a l s o d i s c u s s e d
~: = A x + B u
perturbations.
(A T , BT5
fixed modes under
which the system
structural
strongly
h a s no d e c e n t r a l i z e d
s e n t e d in t h i s r e m a r k .
under
the matrix pairs
T h e p r o b l e m of e x i s t e n c e
nism problem
E T c_ E
servomecha-
are briefly pre-
is m o d i f i e d a s follows :
+ Ew
(7.2.3)
y=Cx
ill[cc 0c201
E =
Es where
A
(i=l . . . . .
S).
and
Cs ] B
are
the
same
as
in
(7.1.15,
E. E Rni x~,
ei = Yi - Yi
ref
and
1
y= (Y'l Y ' 2 " " Y ' S )' is t h e o u t p u t to b e r e g u l a t e d
C. E: R P i x n i , 1
so t h a t t h e e r r o r s
(i=l,...,S)
t e n d to z e r o a s t -> co.
We a s s u m e t h a t t h e d i s t u r b a n c e
vector w satisfies :
~] = F 1 z 1 w where
(7.2.4)
= H1 z1
z 1 ~ R--1 a n d
where ref
reference input vector y
~2 = F2 z2
(H1,
F1)
satisfies
:
is o b s e r v a b l e
and
Zl(0)
is
not
known.
The
299
y
ref
= H2 z 2
(7.2.5)
/I
where
z 2 ~: Rn2
and
where
(H2,
F 2)
is o b s e r v a b l e a n d
y r e f is m e a s u r a b l e .
The
minimal polynomials of F 1 a n d F 2 a r e d e n o t e d b y h I (p) and h2 (p) a n d t h e i r l e a s t common multiple b y ~.(p). Let t h e z e r o s of A(p) (multiplicities included} b e g i v e n b y ~ 1 ' 1 2 ' . . . . Xq. A s y s t e m is said to b e d e c e n t r a l l y r e t u n a b l e u n d e r s t r u c t u r a l p e r t u r b a t i o n s if a f t e r any s t r u c t u r a l p e r t u r b a t i o n , d e c e n t r a l i z e d c o n t r o l l e r s can be d e s i g n e d so as to solve t h e s e r v o m e c h a n i s m problem for t h e p e r t u r b a t e d s y s t e m . We h a v e t h e following result : Theorem 4.2 (OZG-82}. If for e v e r y s t r o n g l y c o n n e c t e d s u b g r a p h G T = (VT, ET) (i) the m a t r i x p a i r s (A T , B T) a r e controllable (ii) the s u b s y s t e m s (CT, AT , B T) h a v e no t r a n s m i s s i o n zero coinciding with ), 1' )~2' . . . . ),q (C T is d e f i n e d in a similar way as AT a n d B T) t h e n t h e s y s t e m ( 7 . 2 . 3 ) is d e c e n t r a l l y r e t u n a b l e u n d e r all s t r u c t u r a l p e r t u r b a t i o n s .
7.3.
STRUCTURAL PERTURBATIONS AFFECTING THE CONTROL SYSTEM
-
(TRA-
84b ) In t h i s s e c t i o n , using
structurally
we a r e
constrained
s u p p o s e d to a f f e c t t h e
also c o n c e r n e d b y controllers
controller.
The
but
t h e p r o b l e m of pole a s s i g n a b i l i t y structural
perturbations
following s u b s e c t i o n
specifies the
p e r t u r b a t i o n s t h a t we c o n s i d e r a n d p r o v i d e s a model for the p e r t u r b a t e d
are type
now of
controlled
system.
7.3.1.
- S t r u c t u r a l p e r t u r b a t i o n s c h a r a c t e r i z a t i o n (TRA-84b) C o n s i d e r t h e c l a s s of l i n e a r t i m e - i n v a r i a n t s y s t e m s d e s c r i b e d b y t h e following
state-space representation
:
:~(t) = A x ( t ) + B u ( t ) y(t) = Cx(t) where x ( t ) ~
Rn ,
(7.3.]a) u ( t ) • Rm,
y ( t ) ~ Rr
are t h e s t a t e ,
input
and
r e s p e c t i v e l y a n d A, B, C are real m a t r i c e s of a p p r o p r i a t e d i m e n s i o n s . Define
B = [ b I . . . . . b m] C = [ c 1 . . . . . Cr ]l
output
vectors,
300
so that
the
written
:
equivalent
representation
of the
system
in t h e f r e q u e n c y
d o m a i n c a n be
(7.3.1b)
y(p) = w(p) u(p) with
m yi(p)
= i_E1 w j , i ( P )
w..(p)
= c (pI-A)-lbi
,1
Consider
(j=l . . . . . r )
ui(P)
j
the following feedback
c o n t r o l law f o r s y s t e m
(7.3.1)
:
u = K y
(7.3.2)
whose structure
is s p e c i f i e d b y t h e f e e d b a c k
K = (kij)i= 1
. . . . .
m
matrix K :
w i t h s o m e kii. c o n s t r a i n e d
to b e z e r o ,
j: 1,...,r We a s s u m e of t h e c o n t r o l l e r
that
the controlled
components
system
(sensors,
behaviour
actuators,
may be perturbed
lines).
These
by
failures
failures are specified
below : Definition 7.1. 1. If t h e i t h a c t u a t o r ,
2. If t h e i t h s e n s o r , The behaviour
ui(t) ;1 c~ i
~i(t)
=ct i ~ i ( t )
m} f a i l s a t t i m e x , t h e n u i ( t )
i ~{1 ..... p}
of t h e it h a c t u a t o r
if t h e a c t u a t o r
1 0 if
i ~" {1 . . . . .
f a i l s at t i m e T, t h e n can be expressed
= 0,
t ~,T
Y i ( t ) = 0, t ~/ z
b y "-
(i=l . . . . . m) is p r o p e r l y
(7.3.3) working
a failure occurs
is t h e c o n t r o l t h a t s h o u l d b e a p p l i e d to t h e s y s t e m
is e f f e c t i v e l y
and ui(t)
is t h e c o n t r o l t h a t
applied.
Similarly,
the behaviour
~i(t) =Bi Yi(t)
of t h e i t h s e n s o r
(i=l . . . . . r)
can be expressed
by
:
(7.3.4)
301
10 if t h e s e n s o r is p r o p e r l y
working
B i= if a f a i l u r e o c c u r s ~ i ( t ) is t h e m e a s u r e d v a l u e o f t h e r e a l o u t p u t Y i ( t ) . Line f a i l u r e s m u s t b e c o n s i d e r e d
differently
P r a c t i c a l c o n s i d e r a t i o n s l e a d to d i s t i n g u i s h 1. T h e p h y s i c a l
lines establishing
the
from a c t u a t o r
or sensor
t h e t w o following s i t u a t i o n s
feedback
from o n e o u t p u t
failures.
:
to o n e i n p u t
are
i s o l a t e d o n e from a n o t h e r . 2. T h e l i n e s e s t a b l i s h i n g inputs
(corresponding
unique
physical
tems
for
line.
which
s t a t i o n s Si,
c o n n e c t i o n s from a s e t o f o u t p u t s
to a g i v e n
geographical
station)
are put
This
situation
corresponds
to g e o g r a p h i c a l l y
is
a natural
partitioning
of inputs
there
(i=l . . . . .
the feedback
each
and
to a s e t o f
together
in a
distributed
sys-
outputs
in
several
S).
Definition 7.2. 1. I f t h e line a s s o c i a t e d to t h e f e e d b a c k c o n n e c t i o n b e t w e e n o u t p u t a n d i n p u t u i , i • { 1 . . . . . m} fails at time ~, t h e n ki] = O, 2. If t h e line a s s o c i a t e d S i, i , j ~ { 1 . . . . .
to t h e
feedback
S) fails at time t ,
then
(If a r e o r d e r i n g
of inputs
and outputs
t ~ ~ .
connection between
station
S. a n d J
station
:
k s v = 0 f o r all s , v s u c h t h a t u s e S i a n d Y v C
on t h e s y s t e m model ( 7 . 3 . 1 ) ,
Yi' ] C { 1 , . . . , r )
according
this corresponds
Sj.
to t h e s t a t i o n s h a s b e e n p e r f o r m e d
to s e t t i n g to z e r o t h e w h o l e b l o c k K.. q
in t h e f e e d b a c k m a t r i x K d e f i n e d in ( 7 . 3 . 2 ) ) . I n v i e w o f t h i s d e f i n i t i o n , we c a n d e f i n e a n e w f e e d b a c k m a t r i x ~ w h i c h t a k e s into a c c o u n t t h e line f a i l u r e s
1.~=
:
(lij kij) i=l ..... m j = 1 ..... r if there is a b r e a k
(7,3,5a) of the line j-i
lij = t °1 o t h e r w i s e 2, ~ . = b l o c k (Lij Kij) i , j = l Lij = / 0
.....
S
if t h e r e is a b r e a k o f t h e line b e t w e e n s t a t i o n Sj a n d s t a t i o n S i otherwise
(7.3.5b)
302 I f we d e f i n e
:
ct =
diag.[ a 1 . . . . .
=
diag.[ E 1 . . . . .
am ] E 8 p]
(7.3.6)
Rmxm
E Rrxr
we o b t a i n t h e f o l l o w i n g model f o r t h e p e r t u r b a t e d
system :
PLANT
State space
:
£(t)
= Ax(t)
+ B a ~(t)
,7(t) =~Cx(t) Frequency
(7.3.7a)
domain :
7(p) = 8w(p) ct~(p)
(7.3.7b)
CONTROL
~(t)
(7.3.8)
= ~ 7(0
The closed-loop s y s t e m ~7.3.7)
~ ( t ) = (A + B a ~
(7.3.8)
is given by
;
~ C) x ( t )
a n d i l l u s t r a t e d b y t h e following s c h e m e :
y(t) SYSTEM
Fig.
3. ]
Remark 7.2. 2. I n t h e c a s e o f d y n a m i c f e e d b a c k c o n t r o l a s :
= Sz + R y u = Qz + Ky + v
we s u p p o s e t h a t t h e s t r u c t u r e the
output
feedback
matrix
(7.3.9)
of t h e c o m p e n s a t o r is e o n d i t i o n n e d b y t h e s t r u c t u r e K (S,
R and
Q have
the
same s t r u c t u r e
than
K).
of The
303 existence
of a solution
tence of fixed be s o l v e d b y Chapter
7.3.2.
to t h e p r o b l e m
modes)
with
considering
the static
- Structural
liability...)
Therefore,
and
pole assignability
dynamic
feedback
of the
practical
considerations
compensation
same structure
(exis-
can
thus
((WAN-735,
see
robustness
make
a designer
perturbations
some
structural
generally
wants
which he considers
L e t Fa = {c~ 1 . . . . . c a } cx, a n d 8 a r e and
constrained
2, S e c t i o n 2 . 2 . 3 a 5 .
For a given controlled system, line
of stabilizability
structurally
defined
line failures.
in
Then
perturbations to r e s t r i c t
(like s e n s o r
more
the study
probable
technology, than
by specifying
others.
a class of
like t h e m o s t p r o b a b l e .
, F s = { 81 . . . . . 8 s} a n d FL = { ~ 1 . . . . . -~L}, w h e r e K',
(7.3.5)
and
P ={F a,
(7.3.6),
Fs,
represent
F L} s p e c i f i e s
a class of actuator,
a class
of structural
sensor, perturba-
tions. A controlled respect
system
(7.3.1)
within the
class
turally robust
P.
In this
with respect
case,
such
that
controller
perturbations
a 6F a, • ~ F s,
(see Chapter
Proposition
7.1.
The
controlled
respect
P
and
only
if
said
to
be
structurally
all p o s s i b l e (7.3.9)
robust
structural
with
perturbations
itself is said
P = {F a,
Fs,
to b e
F L} , we c a n
systems £p composed by the set of perturbated
m o d e s (WAN-73)
to
the
is under
struc-
to P .
To a c l a s s o f s t r u c t u r a l class of perturbated (7.3.85
(7.3.9)
to P if it r e m a i n s p o l e a s s i g n a b l e
and
K E F L.
Then
from
(7.3.9)
is
the
associate
systems
definition
a
(7.3.7) of
fixed
robust
with
2 ) , it c o m e s ;
if n o
system
(7.3.1)
perturbated
system
within
structurally the
class £p
has
fixed
modes. Introduce Definition turally,
7.3.
robust
the classFp
the following definition Given the controlled mode with respect
:
system
(7.3.15
(7.3.95,
k 0 ~ o (A)
to P if a n d o n l y if n o p e r t u r b a t e d
h a s X0 a s a f i x e d m o d e .
Using this definition,
Proposition
7.1 can be rewritten
is a s t r u c -
system
as follows :
within
304 Corollary respect
7.1.
The
controlled
system
(7.3.1)
(7.3.9)
to P if a n d o n l y if all t h e m o d e s o f ( 7 . 3 . 1 )
with respect
Remark
7.2.
I f we a r e
interested
the necessary
- Characterization In this section,
modes
(see
modes.
The
first
control,
i.e.
the
robustness
robust
of structurally
3)
two
to
provide
robust
(A) a r e s t r u c t u r a l l y
with robust
definitions
three
(7.3.9)
the
problem
of
7.1 must be replaced is s t a b l e " .
and the characterizations
characterizations
are
to
modes
given
in
matrix has a block-diagonal
feedback
reference
condition of Corollary
robust
characterizations
feedback
with
modes of (7.3.1)
we u s e t h e a b o v e
Chapter
be used for arbitrary
the
of
context
structure.
of fixed
structurally of
robust
decentralized
The third
one can
structures.
- In the state s p a c e
Consider ponding
by
and sufficient
by "the set of no structurally
7.3.3.a.
6o
structurally
to P .
stabilization,
7.3.3.
is
that
reordering
the of
system
(7.3.1)
inputs
and
is p a r t i t i o n e d
outputs
is
in
S stations.
performed,
we
If the
corres-
the
following
obtain
model : S £ = Ax + i~l
Bi u i
Yi = Ci x
with B = [B1, C. ~ R r i x n .
(i=l . . . . .
Bz .....
(7.3.10)
S)
BS 1
C = [ C ' 1,
C' 2 . . . . C ' S ] '
and
where
Bi ~ Rnxmi
and
1
The feedback
ui(t) The
structure
= Kii Y i ( t ) matrices
c~ a n d
failures are partitionned
is supposed
(i=l . . . . .
to b e d e c e n t r a l i z e d
:
(7.3.11)
S)
8 (defined
in
(7.3.6))
specifying
the
actuator
and
sensor
in the same way :
a = b l o c k - d i a g . [ XI,..., X S ]
X i = diag. [ Otil,... , aim. ]
i=l,...,S (7.3.12)
i
t3 = block-diag.[ rl,..., IS] F i = d i a g ' [ S i 1' " " ' 13i ] r. l
i=l,...,S
305 First, note that
in
t h e c o n t e x t of d e c e n t r a l i z e d c o n t r o l , t h e f a i l u r e of t h e line
a s s o c i a t e d to t h e f e e b a c k - l o o p at s t a t i o n i is e q u i v a l e n t to t h e elimination of s t a t i o n i in t h e s y s t e m model ( 7 . 3 . 1 0 ) remains identically zero). represented
( i n d e e d t h e r e is no more u s e made of Y i ( t ) ,
and ui(t)
A c o n f i g u r a t i o n of line f a i l u r e s K* E F L c a n t h e r e f o r e b e
b y d e f i n i n g t h e s e t Tr* =
{1 . . . . . S } -
{ i / L i i = 0} , Lii as d e f i n e d in
(7.3.5). T h e following c h a r a c t e r i z a t i o n is a s t r a i g h t f o r w a r d A n d e r s o n a n d C l e m e n t s (AND-82)
e x t e n s i o n of t h e r e s u l t of
(see C h a p t e r 3, Section 3 . 3 . 1 )
Proposition 7.2. Given the decentralized controlled system (7.3.10) ) , 0 ~ a (A) is a s t r u c t u r a l l y
: (7.3.11),
r o b u s t mode with r e s p e c t to P = { F a, F s ,
if a n d
F L}
only if : E
VB ~ F s ,
Fa,
I A
VIT* c o r r e s p o n d i n g to ~ * • F L,
X0I
-
BK a K l
rank
~ ~ - K Cw~-K
(7.3.13)
n
0
for all k s u c h t h a t K = { i l , . . . , i k }
c~*,
where : BK =[Bil ..... a K = Block-diag. 8~,_ K
C ~*-K =[C'i k+ l . . . . . C'is ] '
[×il , .., Xik ]
= block-diag. [rik+l
Proposition perturbated
Bi~
,..., riS]
7.2 means t h a t we u s e
system within
the matrix rank
test
(7.3.13)
for
every
P in o r d e r to c h e c k w h e t h e r o r not t0 is a d e c e n t r a l i z e d
fixed mode for some of t h e m . If we w a n t to c o n c l u d e w h e t h e r a d e c e n t r a l i z e d c o n t r o l is s t r u c t u r a l l y
robust,
a laborious task.
we m u s t c h e c k all t h e modes of t h e s y s t e m . T h i s is o b v i o u s l y
From a p r a c t i c a l p o i n t of view, t h e r e is no d o u b t t h a t t h e following
c h a r a c t e r i z a t i o n is more c o n v e n i e n t s i n c e t h e whole s e t of n o n s t r u c t u r a l l y
robust
modes (if a n y ) is d e t e r m i n e d in one s t e p . 7.3.3.b.
- In t h e f r e q u e n c y domain
T h i s c h a r a c t e r i z a t i o n is b a s e d on t h e f i x e d mode c h a r a c t e r i z a t i o n of V i d y a s a g a r
306
and Wiswanadham (VID-83) (see C h a p t e r 3, Section 3 . 2 . 3 ) . It p r o v i d e s a direct determination of the non s t r u c t u r a l l y
r o b u s t polynomial,
whose zeros are the non s t r u c t u r a l l y r o b u s t modes of the system. The same notations as in Section 3.2.3 are u s e d . C o n s i d e r the
partitioned
system
(7.3.10)
in a f r e q u e n c y
domain r e p r e s e n -
ration : y = [ Wll(p)
" ' " ~71s(P)]
u (7.3.14)
LWsI(P )
Wss(P) J
and the d e c e n t r a l i z e d feedback control ( 7 . 3 . 1 1 ) . We recall that the fixed polynomial c~(p) of the system are the d e c e n t r a l i z e d fixed modes of (7.3.14) , is g i v e n [ b; ; t e r i s t i c polynomial ~ ( p )
of (7.3.14)
(7.3.14),
the g . c . d ,
whose zeros of the c h a r a c -
and the minors W 1 of W(p) c o r r e s p o n d i n g
to
non s i n g u l a r s q u a r e submatrices of I( v (VID-83) : a(p):
g.od.
{ ¢ (P)'
W
[ f l u 12 U''" U I s ] } 3 IU 32u.,.
i-I I i c R i = {1£1.= r i + 1, ...,
3icMi
i-I Z :{j=l
IIliII
m: + 1, ..., /
u 3SJ
i=l j=lT' rj + r i }
i-I Z j:l
m + m } ! [
(7.3,15)
i=l,...,S
llJiU
Given a class of p e r t u r b a t i o n s P = {F a, F s, FL} , it is clear from Definition 7.3 that the non s t r u c t u r a l l y r o b u s t polynomial of (7.3.14) with r e s p e c t to P is equal to the 1.c.m.
of the
fixed polynomials of all the p e r t u r b a t e d
systems
withinEp.
Consider a s t r u c t u r a l p e r t u r b a t i o n a E F a, 8 ~ F s, and ~ ~ F L, (as defined in (7.3.6) and ( 7 . 3 . 5 ) ) t h e n the c o r r e s p o n d i n g p e r t u r b a t e d system is g i v e n b y ( ? . 3 , 7 ) (7.3.8)
:
7 ( p ) -- B w(p)
c~'(p)
307 The
matrix 8 W(p)a
responding
t o Bi =
j~{1
It
m}.
0,
is obtained
i~{I
follows
..... r}
that
the
f r o m W(p) and
any
minors
by setting
to z e r o a n y
columnr.1 J c o r r e s p o n d i n g
[BWc~] /11/
such
k~j
that
row i cortoc~j
i ~ I or
=
j~J
0, are
e q u a l to z e r o . From
another
hand,
~
b l o c k s Kii c o r r e s p o n d i n g the feedback
is
loop at s t a t i o n i ) .
K'
from there
K by
setting
to
zero
respect
7.3.
The
is s t r a i g h t f o r w a r d
non
to t h e s t r u c t u r a l ~(p) = g.c.d
singular.
JsJ
The following result Proposition
diagonal
submatrices
s u c h t h a t I i # O, Ji ~ fl a r e s t r u c t u r a l l y J1 u. • • uJiu. • .u
the
is a f a i l u r e o f t h e l i n e i m p l e m e n t i n g
It f o l l o w s t h a t t h e s q u a r e
IlU...UIiu...UIs ]
Ij=
obtained
to Lii = 0 ( i . e .
structurally
robust
perturbation
{ ~b ( p )
,
W
from the above discussion. polynomial
a , B , ~" i s g i v e n b y
[i:] ,
of
(7.3.14)
(7.3.11)
with
:
} (7.3.16)
I' = ( I ' l U
I' 2 u . . . u I ' S) -
J' = (J'lU
J ' 2 u ' ' ' U J ' S) - [ J"1 s u c h
I'.c
R'. = R. I
1
1
1
that
Lii = 0} L..11 = O}
{ k such that g k = 0 } "
3'. c M'. = M. - { k s u c h I
{ I' i s u c h t h a t
thatch.
K
1
= O} (i=1 . . . . .
II
s)
II = I1 i II
R. a n d M. a r e d e f i n e d i n ( 7 . 3 . 1 5 ) 1
1
Using respect
above proposition,
to a c l a s s of p e r t u r b a t i o n s
Proposition respect
the
7.4.
The
.....
robust
perturbations
polynomial P =
{ ~(p) }
As an example,
consider
the
problem of robustness
with
a s follows :
structurally
to t h e c l a s s of s t r u c t u r a l
~p(p) = 1 . c . m 7 P
i.e.
non
we c a n c o n s i d e r
of
(7.3.14)
{ F a , F s , F L}
(7.3.15)
is given by
with :
(7.3.17)
that
we a r e c o n c e r n e d
by the failure of one actuator,
P = {F a } , F a = { c x 1 = b l o c k - d i a g . [ 01...1] ..... a i = block-diag. [1..101..1] e ~x = b l o c k - d i a g . [ 1 . . . 1 0 ] } , t h e n t h e n o n s t r u c t u r a l l y r o b u s t p o l y n o m i a l is
given by
:
308
p(p)
= l.c.m.
{g.c.d.
¢ (r,), vl
}}
t
k=l .... m I P = I 1 u 12
I'. c R . 1
u ...
J, = 31 u J2 u . . . u 3S
IS
I
3'. c M'. = M. - ( k }
IIPi II = IIJ'i The problem of one sensor a similar
way
(TRA-84b).
o r o n e l i n e f a i l u r e c a n a l s o b e s i m p l y f o r m u l a t e d in
Although
the
with the number
of perturbations
interest
b a c k all t h e c a l c u l a t i o n s
to b r i n g
7 . 3 . 3 . c. - G r a p h - t h e o r e t i c This terization theoretic
characterization
decentralized).
t h a t We c o n s i d e r ,
of the
problem
grows
this characterization
obviously
presents
to t h e o r i g i n a l n o n p e r t u r b a t e d
the
system.
characterization derives
of Locatelli eta]. framework
complexity
from
(LOC-77)
a l l o w s to c o n s i d e r
The counterpart
the
(see
fixed
arbitrary
is t h a t
modes
Chapter
3,
feeback
the approach
graph-theoretic
Section
3.6.2).
structures
charac-
The
graph-
(not necessarily
is only applicable
for
systems
with simple modes.
The system
same
(7.3.1)
digraph
rS =
(V S .
and the same notations
LS)
as
in
R e f e r to t h e f i x e d m o d e s c h a r a c t e r i z a t i o n turally
robust
perturbation
mode
with
respect
does not result
to
Section
3.6.2
is
associated
to
the
a s in t h a t s e c t i o n a r e u s e d .
of Theorem
some structural
in t h e d c s a p p e a r a n c e
3.30.
Then~,0
perturbation
is a struc-
(a, 6,
o f all t h e e l e m e n t a r y
~)
if the
cycles of
FS f o r w h i c h ;k0 i s a p o l e . The perturbations ciated
to t h e o r i g i n a l
can be easily integrated system.
From Definitions
by 7.1
can be expressed
by the elimination of the vertex
be
the
expressed
line supporting
by
]" ~ 0
of t h e
kij c a n b e e x p r e s s e d
The following result Proposition
elimination
by
vertex
modifying and
7.2,
i ~ V1S,
the
digraph
the jth sensor
(j+m) ¢ . V 2 s ,
Fs a s s o -
t h e it h a c t u a t o r
and
the
the elimination of the edge
failure
failure can
failure
of the
(j+m, i ) ~
L2S.
comes.
7.5
is structurally
robust
with
respect
to t h e i t h a c t u a t o r
a n d o n l y i f ~0 i s a p o l e o f s o m e e l e m e n t a r y
(jth sensor)
f a i l u r e if
c y c l e o f t"S i n w h i c h t h e v e r t e x
i ~ VIS
(]+m ~ VS2) i s n o t i n v o l v e d . 2. X 0 i s s t r u c t u r a l l y
robust
with respect
to t h e
failure
of the line supporting
ki] if
309
and
only
if ~0 is
a
pole
of
some
elementary
cycle
of rS
in
which
the
edge
(j+m,i) ~ LS2 is n o t i n v o l v e d . For
a perturbation
(a, ~ ,
K')
involving
several
actuator,
sensor,
and
line
f a i l u r e s , it is c l e a r t h a t the s e t of c o n d i t i o n s of r o b u s t n e s s a r e g i v e n b y t h e i n t e r section of t h e c o n d i t i o n s c o r r e s p o n d i n g to e v e r y e l e m e n t a r y p e r t u r b a t i o n .
The same
is t r u e for a c l a s s of p e r t u r b a t i o n s , T h e following corollary p r o v i d e s some r e s u l t s r e f e r i n g to p a r t i c u l a r
c a s e s of
practical i n t e r e s t : Corollary 7.2. 1. k 0 is s t r u c t u r a l l y r o b u s t with r e s p e c t to one a c t u a t o r ( s e n s o r ) failure if and only if ~0 is a pole of at l e a s t two e l e m e n t a r y c y c l e s of FS s u c h t h a t t h e s e t s of v e r t i c e s V1S ( E : V 2 s ) i n v o l v e d in each cycle a r e d i s j o i n t . 2. k 0 is s t r u c t u r a l l y r o b u s t with r e s p e c t to one line f a i l u r e of if a n d only i f k 0 is a pole of at l e a s t two e l e m e n t a r y c y c l e s of FS s u c h t h a t t h e s e t s of e d g e s ~
L2S i n v o l -
ved in e a c h cycle a r e d i s j o i n t . 3. k0
is
structurally
robust
with
respect
to one
actuator,
s e n s o r or
line
failure
( o c c u r i n g one at a time) if and only if k0 is a pole of at l e a s t two e l e m e n t a r y disjoint cycles of FS. Remark 7 . 3 . T h i s g r a p h - t h e o r e t i c a p p r o a c h allows t h e d e t e r m i n a t i o n of t h e n a t u r e of the non s t r u c t u r a l l y r o b u s t
modes.
We c o n s i d e r t h e
d i g r a p h F' S a s s o c i a t e d to t h e
p e r t u r b a t e d s y s t e m (F~ is o b t a i n e d b y r e m o v | n ~ the v e r t i c e s a n d e d g e s c o r r e s p o n ding to t h e p e r t u r b a t i o n ) . ~0 is a non s t r u c t u r a l l y f i x e d mode (SEZ-81a)
for t h e p e r t u r b a t e d
s y s t e m if some
e l e m e n t a r y c y c l e s remain in rrS for which ~0 is n o t a pole d u e to a p o l e - z e r o c a n c e l lation in t h e c y c l e t r a n s m i t t a n c e s . k0 is a s t r u c t u r a l l y f i x e d mode (SEZ-81a) f o r t h e p e r t u r b a t e d s y s t e m if t h e a b s e n c e , due to t h e f a i l u r e , of e l e m e n t a r y c y c l e s for w h i c h k 0 is n o t a pole is not a c o n s e q u e n c e of p o l e - z e r o c a n c e l l a t i o n s , N e v e r t h e l e s s , some e d g e s ~ LIS f o r which k0 is a pole remain in FIS , k O is an uncontrollable or inobservable
mode
for the perturbated
system
(only for
actuator and sensor failures) if no edge ~- LIS for which ~0 is a pole remains in F~S. The following s c h e m e i l l u s t r a t e s t h e p o s s i b l e c o n s e q u e n c e s of a p e r t u r b a t i o n :
310
original
system 1
non fixed mode (~, I~) KV /
/
perturbatled system
X0 non structurally Iixed mode
l
1~,
- structurally fixed mode /
(a,•) /(a,13)
13~
/ ~0 uncontrollable or ~ ' /
unobservable
rood 1
Fig. 7.2
7.3.4.
- Example
Consider the B-station system described b y the following t r a n s f e r matrix : 3 p-2 W(p) :
0
p+l p(p'-2)
1
1
p-2
p+2
p+l
p+2
for which the c h a r a c t e r i s t i c
1
p(p-2)
polynomial is . ~ ( p )
= p(p+l)(p+2)(p-2).
Consider a
decentralized feedback s t r u c t u r e given b y the feedback matrix -" K = b l o c k - d i a g . [ k l l , k22,
k33 ]
Using one or the other of the fixed mode characterizations given in Theorem 3.4 or Theorem 3.30, we can determine that this system has a non s t r u c t u r a l l y fixed mode at X0 = -1. Now let us determine,
for example, the n o n s t r u c t u r a l l y r o b u s t modes with
r e s p e c t to one a c t u a t o r failure :
311 1. Using the f r e q u e n c y domain c h a r a c t e r i z a t i o n We h a v e : P1 = {1}
P2
M' I = { I } - { k }
(Proposition 7 . 4 ) .
= {2} P3 = {3 } M' z = {2}
- {k}
The non structurally robust polynomial is given by
I3 1
~p (p) : l.om.
{ g.c.d.
:,.,.m.
= 1.c.m.
{g.c.d.
{¢ (p), W
1
M' 3 = {3 } -{k} :
I2
13 ]
32
33
"t:J
}}
"[: '1',
{p(p+l)(p+2)(p-2);p(p+l)(p-2);0;(p+l)}
;
g . c . d . { p (p+l) (p+2) (p-2) ;3p (p+l) (p-2) ;0; (p+l) (p+2)} g.c.d. { p(p+l) (p+2) (p-2) ; 3p(p+l) (p-2) ;0; (p+l) (p+2) ; 3p (p+l) }} ;
= l.c.m.
{(p+l)
; (p+l)(p+2)
; p(p+l)}
~p(p)= p(p+l) (p+z) T h e r e f o r e the system has t h r e e non s t r u c t u r a l l y r o b u s t modes with r e s p e c t to one a c t u a t o r failure : ~0 -- - 1 ~'1 = 0, ~2 = -2. Obviously, the fixed mode ~0 = -1 a p p e a r s also as a non s t r u c t u r a l l y r o b u s t mode, 3. Using the g r a p h - t h e o r e t i c c h a r a c t e r i z a t i o n ciated to the system is the following :
(Corollary 7 . 2 ) .
The d i g r a p h r S a s s o -
312
f
..
2
/ ....
F S = (V S = { 1 , 2, 3 }
with
5
, L S)
Fig. 7.3.
VIS V2S ={4, 5, 6} LIS = {(1,4).(1,5),(1,6).(2.5),(2,6),(3,4),(3,5)} L2S = { ( 4 . 1 ) , ( 5 . 2 ) . ( 6 , 3 ) }
F S has five elementary
T
cycles for which the transmittances
I (p) = lY23
T
~'~ = (2,6,3,5,2) 1
It a p p e a r s
:
3 (p ) _ p +,_.l ' p(p--2) = p(p.-2) ... 1
~'5 = ( I , ~ , 2 , 6 , 3 , 4 , l ) p+l
=
T t~ (P) =p(p-2)(p+2)
consequence
T
1 2 (p) = p+2
are given below
T 5(p) p(p+2)(p_2)2
clearly that
of the pole-zero
~0 = - 1 i s a n o n s t r u c t u r a l l y c a n c e l l a t i o n in T
3(p),
there
fixed mode.
Indeed,
as a
is n o c y c l e f o r w h i c h
;~0=-1 i s a p o l e . N o w , we u s e t h e f i r s t r e s u l t robust
modes with respect
two e l e m e n t a r y disjoint is robust
in C o r o l l a r y 7 . 2 to d e t e r m i n e
to o n e a c t u a t o r
failure.
cycles such that the sets of vertices
X= 2.
These
modes with respect
two cycles
a r e "-~1 a n d ~4"
to o n e a c t u a t o r
the non structurally
T h e o n l y m o d e w h i c h i s a p o l e of
failure are
~ V l s i n v o l v e d i n e a c h c y c l e are Therefore, :
the non structurally
313 X0 = - 1
We
obtain
k l = 0
the
same
result
significant lower number
7.3.5.
k2=
- Structurally
as
- 2
using
the
frequency
domain
characterization
with
a
of calculations.
robust
control design
The choice of the information pattern A
significant
robustness
advantage
conditions
using binary
of
the
of Proposition
variables
associated
graph-theoretic
7.5
and
to t h e c o m p o n e n t s
way f o r s o l v i n g t h e p r o b l e m o f o p t i m a l s t r u c t u r a l l y Let
us
consider
the
system
(7.3.1)
characterization
Corollary
with
7.2
of the digraph. robust
the
is
that
can easily be
the
expressed
This provides
a
control design.
assumption
that
it
has
simple
poles. We s t u d y
the
same
which was presented
problem
in S e c t i o n
as
the
5.3.3
but
one
solved
by
L~catelli e t
we a d d r o b u s t n e s s
al,
(LOC-77)
constraints,
The
same
n o t a t i o n a s in S e c t i o n s 3 . 6 . 2 a n d 5 . 3 . 3 a r e u s e d . The problem consists of t h e
system
contained
defined as in (3.6.1)
(j,i)
E
by
r (i,j) ~
a minimal set
S* c S s u c h
that every
s e t A* = {)~1' . . . . ' ~ h * } i s s t r u c t u r a l l y
robust.
pole S is
:
S if k . . # 0 1,]
The optimization criterion
R(S*)
in d e t e r m i n i n g
in t h e
(i=l . . . . .
remains
m)
; (j=l . . . . .
r)
-"
S* r i , j
where r.. is a c o s t a s s o c i a t e d 1,j
to t h e
feeback
connection
from the
output
i to t h e
element
o f A* i s
input j. Of course, structurally
robust
the
problem
If we w a n t to d e t e r m i n e a unique
perturbation,
Section 5.3.3
for
has
with respect
the
the
a solution if and
a structurally simplest
perturbated
by e l i m i n a t i n g t h e c o r r e s p o n d i n g
o n l y if e v e r y
to S . robust
approach
system feedback
control structure
i s to s o l v e
(7.3.7).
The
connections
with respect
the problem
line failures
from S.
presented
are
to in
considered
314
N o w , i f we w a n t to t a k e i n t o a c c o u n t a c l a s s o f p e r t u r b a t i o n s , the program
remains
the same but
new constraints
expressing
the structure
the robustness
of
requi-
rement must be added.
Our study -
will b e r e s t r i c t e d
one actuator
- one sensor -
-
to t h e f o l l o w i n g c l a s s e s o f p e r t u r b a t i o n s
:
failure failure
one line failure one actuator,
which correspond Consider line failure
sensor,
or line failure
to t h e e a s e s c o n s i d e r e d first
the
in C o r o l l a r y
class of perturbations
(case 3 of Corollary
The constraint
( o n l y o n e at a t i m e )
(G g ) i s r e p l a c e d
v.g.
7.2). by
z.g.
>i Z
t h a t two e d g e s
(i,j)
1,J
1,]
Then,
7.2.
specifying
one actuator,
the original program
sensor,
or
i s e a s i l y modified,
:
(iij) £ LI 5 which assures
f o r w h i c h ~,g * i s a p o l e will b e r e t a i n e d ,
T h e two f o l l o w i n g c o n s t r a i n t s
(cg)
must be added
:
(i,j) E LIS i ¢ VIS] (k,i) G L25
which elimines
the
possibility
of a unique
cycle
for
which kg*
is a p o l e
of order
tWO.
(cg5)
~
~.g. ~ l
j/(i,j) ¢ L S
which
guarantees
sufficient
the variables
Remark
that
to a s s s u r e
7.4.
separately.
certifies
i ~v s
l,l
the
that
two
cycles
do
not
the two cycles are
involve
the
disjoint because
same
vertices.
the boolean
This
is
nature
of
that the two cycles are not composed by the same edges.
A significant Consequently,
advantage we c a n
of this approach impose
to
is that every
a m o d e Xi* to
be
m o d e is t r e a t e d
structurally
robust
315
whereas a n o t h e r mode Xj* is r e q u i r e d
not to b e fixed o n l y
(we modify C~ a n d a d d
C~, C~ o n l y ) . In t h e case for which we c o n s i d e r t h e c l a s s of p e r t u r b a t i o n s actuator f a i l u r e o r t h e c l a s s of p e r t u r b a t i o n s Corollary
7.2),
the
established above.
corresponding The
programs
two c y c l e s
are
not
specifying
one
s p e c i f y i n g one s e n s o r f a i l u r e ( c a s e 1 of are
particular
required
cases
of t h e
program
to b e d i s j o i n t = for a c t u a t o r
( s e n s o r ) f a i l u r e , t h e y a r e n o t allowed to i n v o l v e t h e same v e r t i c e s of V1S ( V 2 s ) b u t some v e r t i c e s
of V2S ( V 1 s )
c a n b e u s e d twice.
Therefore,
the constraint
(C~) is
relaxed as follows ; Actuator failure r. j(/(i,j) ~" L S
Finally,
zg i,j ~
consider
Sensor failure
I
Z j/(i,j) (~L S
i ~ VIS
the
case
of t h e
c l a s s of p e r t u r b a t i o n s
zg. l,) ~ I
specifying
i E.V2s
one line
failure ( c a s e 2 of C o r o l l a r y 7 . 2 ) . T h e two c y c l e s c a n n o t b e composed to b e t h e same e d g e s of L2S b u t an e d g e from L1S c a n b e l o n g to t h e two c y c l e s . T h i s p r o b l e m can be s o l v e d b y c o n s i d e r i n g some no boolean v a r i a b l e s o r , if we want to p r e s e r v e
the advantageous
boolean n~.ture of t h e p r o g r a m ,
b y a d d i n g some
redundant boolean variables. 1. The v a r i a b l e s zig,j, a s s o c i a t e d with t h e e d g e s (i, i) ~ LIS a r e n o t b o o l e a n = t 0 if ( i , j ) does not b e l o n g to t h e r e t a i n e d cycles ( i , j ) ~ : L 1 s , zlSj =
1 if (i,j) b e l o n g s to one r e t a i n e d c y c l e 2 if ( i , j ) b e l o n g s to two r e t a i n e d cycles
T h e p r o g r a m to b e s o l v e d is t h e same as t h e o n e a l r e a d y e s t a b l i s h e d b u t t h e c o n s t r a i n t (C~) m u s t b e r e m o v e d . 2. Two boolean v a r i a b l e s zlgj a n d x g j a r e a s s o c i a t e d to e a c h e d g e (i, i) ~ L1S T h e c o n s t r a i n t s Clg, C~ a n d C~ a r e modified as follows :
316
(c~)
z
(C2g)
zg i,j
j/(i,j)~ LS
(C4g)
(zgj
vg i,j
(i,j) E LIS
2
+ xg )~ i,j
xg + i,j
Z(i,j ) ~ L 1 S
(z~j
=
E
zg
j/(j,i) ~ Ls
+ x~j)
v~j
j,i
+ x~,
i ~
i
VS
Zkg,i ~ 2
i ~ V i s / ( k , i ) ~ L2 S
Moreover,
the constraint
As a n e x a m p l e , consider
C g is r e m o v e d . given
the
t h e following p r o b l e m
Find the feeback tions such that
same
system
as i n t h e
example
of S e c t i o n
7.3.3,
:
structure
S* c S w i t h a minimal n u m b e r
of f e e d b a c k
connec-
:
-X 1" = - 1 i s n o t a f i x e d m o d e -X 2* = 2 is specifying
structurally
one actuator,
Only the feeback are allowed,
sensor,
connections
and the associated
r..
1,J (i,j) E S
--
robust
with
respect
to t h e
class
of p e r t u r b a t i o n s
o r l i n e f a i l u r e ( c a s e 3 of C o r o l l a r y 7 . 2 ) .
specified
by
S = {(1,1),(2,1),(3,1),(2,2),(2,3),(3,3)}
costs are :
1
T h e s o l u t i o n is o b t a i n e d
b y s o l v i n g t h e following b o o l e a n l i n e a r p r o g r a m
:
rain w4,1 + w5,1 + w6,1 + w5, 2 + w5, 3 + w6, 3 (C~)
Z1l , 6 >/ 1
(C?)
z2 + z2 + z 2 z2 1,4 1,5 3 , 4 + 3,5 >/ 2 (~2 4 + z2 5 ) ( z g ,
1 + z2
z2 + z2 + z 2 1,4 1,5 1,6 ~< I
+
+
+
z~,3) ~ z
317
"~.5 ÷ q.6 ,< ( 8 5) z24,1 x( 1
z2,1 + 4,2 + z2,3 ~< 1 z2,1 + z2,3x< i and for g = 1,Z
z~, 4 + z~, 5 + z~, 6 = z~, 1 + z~, 1 + z~, 1 z~, 5 + z~, 6 = zsg 2 z~, 4 + z395 = z~, 3 + z6g, 3 (C~) z4g, 1 = z~, 4 + zig,4
z~.I + zsg,2+ z5g,3= zlg,5+ z2g,5+ z3g.5 z6g,1+ z6g,3= zlg,6+zZg,6 (c~)
z~,l '.< "%,1
z~,3 ( w5,3
z~,l < w6,,
z#3 ,< w6,3
There is
a u n i q u e optimal solution :
s* = { ( 1 , 1 ) , corresponding
=
(3,1))
to the following f e e d b a c k s t r u c t u r e kll
K
(z,3),
0 0
0 0 k32
kl3 ] 0 0
:
318
7.4.
- CONCLUSION When a controlled
the
controller
or
the controlled
system
of the
system.
for a good pursuit
is o p e r a t i n g ,
system
itself
it m a y h a p p e n
fails resulting
Such structural
perturbations
of the operations.
that
s o m e c o m p o n e n t of
in a s t r u c t u r a l
m o d i f i c a t i o n of
may be dangerously
As an example,
consider
detrimental
that the perturbeted
system is unstable. Two approaches one consists proceeding
can be used
in i m p l e m e n t i n g
to p r e v e n t
a system
for
to a r e a l t i m e r e c o n f i g u r a t i o n
mics of the proceeding
system,
this
solution,
unefficient.
The
second
approach
perturbations
in the
such
controller
some desirable
Such focuses
controller
on
the
assignability consider systems
properties
using
controller.
be
They
turally
robust
Section
7.3,
in t a k i n g
design
of the
preserves,
to t h e c o n t r o l l e d
of
structurally
structural
disconnected. is
the design
mizes the cost associated
feedback the
Section
7.2,
stem from actuator, modes
introduced
sensor, and
under
and
then
on the dyna-
new
components, and
the
control system.
robust.
affecting In
account
therefore
eventuality
of
The synthesis
is
structural
In this
perturbations
constrained
perturbations
Depending
installing
into
T h e first
diagnosis
perturbations,
system.
is s a i d to b e s t r u c t u r a l l y
consequences
structural may
the
situations.
and
controller.
may require
consists
some structural
that
detection
may be too much time consuming
then
performed
of the
(which
to n e w m e a s u r e m e n t s . . . )
such inacceptable
failure
structural
the
In
the
Section
sense
that
control feedback
structure
7.1, affect
The concept are
study o r pole we
some sub-
perturbations
characterizations
to t h e i n f o r m a t i o n t r a n s f e r .
chapter,
stabilizability
control. in
or line failures.
some
is f a c e d o f a r o b u s t
plant
on
the
of struc-
provided.
In
w h i c h mini-
1
APPENDIX
MULTIVARIABLE SYSTEM ZEROS
This
appendix
multivariable system.
is
concerned
by
the
different
types
of
zeros
appearing
in
Each t y p e of zero is d e f i n e d a n d some r e l a t i o n s h i p s a r e o u t -
lined. C o n s i d e r t h e following t i m e - i n v a r i a n t m u l t i v a r i a b l e s y s t e m :
= y
where
Ax
= Cx
+
Bu
+ Du
x C Rn ,
output
vectors,
u ~ R m,
and
respectively.
y ~ Rr A,
B,
(max C,
( m , r ) x( n) D are
are
constant
the
state,
matrices
of
input,
and
appropriate
d i m e n s i o n s . T h e polynomial m a t r i x :
[~
I A
B1
-
P(p)=
( n + r , n+m)
D
is called t h e s y s t e m m a t r i x
(ROS-70).
If r a n k
P(p)= q,
t h e n t h e SmithVs form of
P ( p ) is g i v e n b y :
S*(p)q,q
0q,n+m_ q
0n+r_q, q
0 n + r - q , n+m-c
S(p)= w h e r e S * ( p ) = diag ( S l , s 2 . . . . , Sq) a n d s i, (i=l . . . . . q) (s i d i v i d e s S i + l ) , a r e t h e i n v a r i a n t polynomials of P ( p ) . If Mj(p) d e n o t e s t h e g r e a t e s t common d i v i s o r of all j t h o r d e r m i n o r s of P ( p ) ,
sj(p)
=
t h e n t h e polynomial s.] is g i v e n b y :
M;(p) (j=1,2 . . . . . q )
320 with M0 = I , The t r a n s f e r f u n c t i o n m a t r i x of t h e s y s t e m is :
G(p) = C ( p I - A ) -1 B + D =
u~p]
and i t s Smith-Mc Millan form is g i v e n b y "
I~
*(P)qxq
M(s)=
0q'm-q
l
0r - q , m - q
Lr-q,q where .
M
E l (p)
c n(P)
.....
(p) = diag.( 7
~
)
and e i is t h e ith i n v a r i a n t polynomial of N(p) nomiallof G(p),
i.e. ~(p),
and
q = rank
divided by the characteristic poly-
G(p).
Note t h a t ¢i d i v i d e s ci+ 1 a n d ~ i + l
d i v i d e s ~i o The f i r s t c l e a r c l a s s i f i c a t i o n of t h e
z e r o s of l i n e a r m u l t i v a r i a b l e s y s t e m s was
g i v e n b y R o s e n b r o c k ( R O S - 7 0 ) . We f i n d t h e following t y p e s of z e r o s : Element Zeros ( E . Z . )
:
An e l e m e n t z e r o is a n y value of p f o r which t h e n u m e r a t o r of an e l e m e n t gi~(p) of G(p) v a n i s h e s . This
type
of
zero h a s
no
special meaning
in
multivariahle
systems
theory
b e y o n d i t s role in m o n o - v a r i a b l e s y s t e m t h e o r y . Decoupling Zeros ( D . Z . )
:
The d e c o u p l i n g z e r o s , i n t r o d u c e d b y R o s e n b r o c k ( R O S - 7 0 ) , a r e a s s o c i a t e d with t h e e x i s t e n c e of u n c o u p l e d modes. T h e y a r e d e f i n e d as t h e v a l u e s of p f o r w h i c h t h e matrices (pI-A These modes.
They
B) a n d / o r (picA)-- a r e r a n k d e f i c i e n t .
z e r o s are are
commonly k n o w n as
a s s o c i a t e d with
the
uncontrollable and/or
a p o l e - z e r o cancellation a n d ,
t h e y do n o t a p p e a r in the c o r r e s p o n d i n g t r a n s f e r f u n c t i o n .
unobservable
as a c o n s e q u e n c e ,
321 Three types of decoupling zeros can be defined
the input-decoupling
-
zeros (I.D.Z.)
- the output-decoupling -
the
So,
we
input-output-decoupling
have
which are the uncontrollable modes
zeros (O.D.Z.) zeros
uncontrollable and unobservable
:
which are the unobservable
(I.O.D.Z.)
which are
= I.D.Z.
n
O.D.Z.
D.Z.
= I.D.Z.
u
O.D.Z.
Transmission Zeros (T.Z.)
These
zeros
are
: (ROS-70)
defined
as
the
roots
of
the
numerator
Smith-Me Millan f o r m of G ( p ) .
In t e r m s o f t h e m i n o r s of G ( p ) ,
the
of all t h e q t h o r d e r
of the numerators
A transmission others.
properties
The
zero appears
(q = rank
a s a pole in s o m e e n t r i e s o f G ( p ) a n d a s a z e r o in
are
physically
associated
of the system
(see
(MAC-76)).
Note t h a t R o s e n b r o c k c a l l s t h e s e z e r o s t h e
matrix
Zeros (I.Z.)
with
the
transmission-blocking
(ROS-70).
:
system
zeros.
I n t e r m s of t h e m i n o r s o f P ( p ) ,
r o o t s of the monic g . c . d ,
Physically, behaviour
of the
frequency
for
non-square
G(p)).
a s t h e i r common d e n o m i n a t o r .
The roots of the invariant polynomials of the system matrix P(p) invariant
of the
T.Z.
zeros of the transfer
Invariant
polynomials
t h e y a r e t h e r o o t s of
minors of G(p)
Note t h a t t h e s e m i n o r s m u s t b e a d j u s t e d to h a v e ~ ( s )
some
simultaneously
modes.
:
I.O.D.Z.
g.c.d,
the
modes
the
system
system.
which
systems,
of all t h e m i n o r s o f P ( p )
the
invariant
They system
zeros
correspond output
t h e s e t of i n v a r i a n t
are called the
the invariant
zeros are the
of m a x i m u m o r d e r .
are
to t h e
associated
with
particular
values
is i d e n t i c a l l y
zero.
In the
z e r o s is c o m p o s e d b y t h e
the
zero-output
of the
complex
general
c a s e of
set of transmis-
sion zeros p l u s some decoupling z e r o s .
System
Zeros
(S.Z.)
The system
1
: (ROS-74)
zeros are
t h e r o o t s o f t h e monic g . c . d ,
of t h e f o r m P , I = {1,2 . . . . . n , obtained by selecting 0 ~ k ~ min(m,r).
the
n+i 1,
rows and
n+i 2 . . . . .
n÷ik},
of all t h e m i n o r s o f P ( p )
l
w h e r e PI d e n o t e s
columns corresponding
the minor
to t h e s e t I in P ( p )
and
322
R o u g h l y s p e a k i n g , t h e s e t of s y s t e m z e r o s is t h e u n i o n of t h e s e t o f t r a n s m i s s i o n z e r o s a n d t h e s e t of d e c o u p l i n g z e r o s : S,Z°
S.Z. = T.Z. u D.Z~ T.Z.
Note a l s o t h a t t h e s e t of i n v a r i a n t z e r o s
D.Z.
is i n c l u d e d in t h e s e t of s y s t e m z e r o s . These relationships are illustrated by Figure A1.1.
Figure A1.1.
When t h e
s y s t e m is c o m p l e t e l y c o n t r o l l a b l e
S.Z.,
I.Z. and T.Z.
G(p)
or P ( p ) .
and
completely o b s e r v a b l e ,
the
s e t s of
c o i n c i d e b e c a u s e t h e s e t of d e c o u p l i n g z e r o s is e m p t y .
So f a r , t h e v a r i o u s t y p e s of z e r o s h a v e b e e n d e f i n e d in t e r m s of t h e m i n o r s of Some a u t h o r s
g i v e e q u i v a l e n t d e f i n i t i o n s in t e r m s of t h e p a r t i c u l a r
f r e q u e n c y v a l u e s for w h i c h G ( p ) a n d P ( p ) loose r a n k
:
Z1 : Wolowich (WOL-73a) T h e z e r o s of t h e c o n t r o l l a b l e a n d o b s e r v a b l e s y s t e m (A,
B,
C,
D) a r e t h o s e
P0 s u c h t h a t r a n k P (p0) < r a n k P ( p ) . ZZ : D a v i s o n a n d Wang (DAV-74 et 76e) T h e t r a n s m i s s i o n z e r o s of t h e s y s t e m (A, B, C, D) a r e t h o s e c o m p l e x n u m b e r s P0 w h i c h s a t i s f y t h e following i n e q u a l i t y •
rank
Therefore, of
all
the
n+min(m,r),
P(po ) < n + min
(m,r)
t h e t r a n s m i s s i o n z e r o s ( m u l t i p l i c i t y i n c l u d e d ) a r e t h e r o o t s of t h e g . c . d . (n+min(m,r)) th then every
s a i d to b e d e g e n e r a t e d The T.Z.
order
minors
of
P(p).
Note
that
c o m p l e x n u m b e r is a t r a n s m i s s i o n z e r o
if and
rank the
P(s)
<
s y s t e m is
(DAV-74).
as d e f i n e d h e r e a r e t h e r o o t s
(including multiplicities) of the poly-
nomial o b t a i n e d b y m u l t i p l y i n g all n u m e r a t o r p o l y n o m i a l s of t h e Smith-McMillan form of G ( p )
( ( D A V - 7 6 e } , T h e o r e m 1 ) . It is c l e a r t h a t t h e p r e s e n t d e f i n i t i o n c o i n c i d e s with
Rosenbrock's definition.
Note t h a t
f o r t h e s p e c i a l c a s e of n o n d e g e n e r a t e d
systems
323
with D = 0, t h e T . Z . a r e t h e r o o t s of t h e t r a n s m i s s i o n p o ] y n o m i a l s of t h e s y s t e m (A, B, C) d e f i n e d b y Morse ( M O R - 7 3 ) . Z3 : Wolovich (WOL-73b), D e s o e r a n d S c h u l m a n (DES-74) T h e t r a n s f e r m a t r i x of t h e s y s t e m c a n be f a c t o r i z e d a s : G ( p ) = C ( p I - A ) - I B+D = V ( p ) T - l ( p )
where V ( p )
and
T(p)
are
relatively
+ D
r i g h t prime polynomial matrices.
The
z e r o s of
the s y s t e m (A, B, C, D) a r e t h o s e c o m p l e x n u m b e r s P0 s u c h t h a t
r a n k V(Po) ( r a n k V ( p ) It
is o b v i o u s
that
Z1 a n d
Z3 a r e
equivalent
and,
except
for m u l t i p l i c i t i e s ,
t h e s e d e f i n i t i o n s a r e e q u i v a l e n t to R o s e n b r o c k ' s d e f i n i t i o n of t r a n s m i s s i o n z e r o s .
APPENDIX
A FORTRAN
SUBROUTINE
OPEN-LOOP
AND
TO
2
EVALUATE
CLOSED-LOOP
THE
FIXED MODES
SYSTEM
USING
POLES
PURPOSE The system
FORTRAN
described
=
Ax
+
by
IV
subroutine
DATFM e v a l u a t e s
the
set
of fixed
modes
of a
:
Bu
y = Cx with respect
or
where
to t h e o u t p u t
or state
feedback
control.
set of admissible
feedback
matrices
u=Ky
K~'K F
u=Kx
KCK
KF is the
F specifying
the
feedback
struc-
ture. The based set
subroutine
DATFM u s e s
the algorithm
on the Definition 2.2 of fixed modes.
of open-loop
system
poles (eigenvalues
poles
(eigenvalues
of A+BKC) for three
described
It c a l c u l a t e s o f A)
different
and
in S e c t i o n 2 . 4 . 1
the intersection the
w h i c h is
between
set of closed-loop
v a l u e s o f K.
UTILIZATION The subroutine
statement
is :
S U B R O U T I N E D A T F M (N, M, L, A , B ,
INPUT ARGUMENTS N
Order
of the system.
C,
AK, EPS,
Z, J J ,
A A , WK, Z F ,
ZV)
the
system
325 M
L
N u m b e r of s y s t e m i n p u t s . N u m b e r of s y s t e m o u t p u t s .
T h i s p a r a m e t e r is s e t e q u a l to N in t h e c a s e of
state feedback. A,B,C
S y s t e m m a t r i c e s of d i m e n s i o n ( N , N ) ,
AK
Real m a t r i x of d i m e n s i o n (MxN) d e s c r i b i n g t h e d e s i r e d f e e d b a c k s t r u c t u r e , i.e.
EPS
(N,M) a n d ( L X N ) , r e s p e c t i v e l y .
AK ~ K F.
A c c u r a c y p o s i t i v e p a r a m e t e r u s e d to c o m p a r e t h e e i g e n v a l u e s .
OUTPUT ARGUMENTS JJ
N u m b e r of f i x e d m o d e s . JJ=0 m e a n s t h a t t h e s y s t e m h a s no f i x e d m o d e s w i t h respect
to t h e g i v e n f e e d b a c k s t r u c t u r e
K F a n d f o r an a c c u r a c y e q u a l to
EPS. Complex v e c t o r with
N components containing
the
set
of f i x e d
modes
(if
a n y ) in t h e f i r s t J J p o s i t i o n s .
"WORK AREA
ARGUMENTS
AA
Work a r e a of d i m e n s i o n ( N x N ) .
WK
Work a r e a of d i m e n s i o n N.
ZF
C o m p l e x w o r k a r e a of d i m e n s i o n N.
ZV
C o m p l e x w o r k a r e a of d i m e n s i o n NxN.
CALLED S U B R O U T I N E S EIGRF
Eigenvalues calculation subroutine,
d e s c r i b e d in :
"IMSL L i b r a r y
Manual",
Edition 8, 1980. GAUSS
S t a n d a r d IBM s u b r o u t i n e f o r r a n d o m n u m b e r s g e n e r a t i o n d e s c r i b e d in : 1130 scientific
subroutine
Package
(ll30-Cm-02X),
P u b l . IBM H20-0252-3, 1968. MULT
Two r e a l m a t r i c e s m u l t i p l i c a t i o n ( s e e l i s t i n g ) .
MULTS
T h r e e real matrices multiplication (see l i s t i n g ) .
Programmer's
Manual,
IBM,
326 SUBROUTINE D A T F M ( N , M , L , A , B , C , A K , E P S , Z , J J , A A , W K , Z F , Z V ) IMPLICIT REAL*8 ( A - H , O - Y ) , C O M P L E X * 1 6 ( Z ) , I N T E G E R ( I - N ) DIMENSION A ( N , N ) , B ( N , M ) , C ( L , N ) , A K ( M , N ) , Z ( N ) , Z F ( N ) DIMENSION AA(N, N), WK(N), ZV (N, N) NIT=3 IX=675543 *** OPEN-LOOP POLES CALCULATION *** IJOB=0 D O 26 I=I,N D O 26 J=I,N 26
AA(I,J)=A (I,J) C A L L EIGRF (AA, N, N, IJOB, Z,ZV, N,WK, IER) DO 70 I I = l , 3 I F ( I I . E Q . 2 ) IX=975 I F ( I I . E Q . 3 ) IX=79861 ***
FEEDBACK
MATRIX
SELECTION
***
D O 38 I=I,M D O 38 J=I,L I F C A K ( I , J ) . E Q . 0 ) GO TO 38 CALL G A U S S ( I X , 0 . 3 3 , O,V) AK(I,J)=V 38
CONTINUE *** C L O S E D - L O O P
POLES CALCULATION ***
I F ( L . N E . N ) GO TO 44 CALL MULT(B ,N,M, AK, N, N, AA, N, N, N, M, L) G O T O 50 44
CALL MULT3 ( B , N , M , A K , M , N , C , L , N, N , M , L , N , AA,N)
50
DO 52 I = I , N DO 52 J = I , N
52
AA(I,J)=A(I,J}+AA(I,J) CALL EIGRF (AA, N, N, IJOB, ZF, ZV, N,WK, IER) *** INTERSECTION OF THE SET OF CLOSED-LOOP POLES AND ***
327 *** THE SET OF OPEN-LOOP POLES ***
J J=0 NN=N NV=0 IF ( I I . EQ. 1) LI=N DO 68 I = I , L I IF ( N V . E Q . 0 )
GO TO 62
NN=NN-1 NV=0 62
DO
66 J = I , N N
XX=REAL(Z ( I ) ) VV=REAL(ZF(J) ) I F ( D A B S ( X X - V V ) . G T . E P S ) G O TO 56 YY=AIMAG
(Z (I))
WW=AIMAG ( Z F ( J ) ) I F ( D A B S ( Y Y - W W ) . G T . E P S ) G O TO 66 NV=I JJ=JJ+l
Z ( J J ) = Z (I) NNN=NN-I DO
64 K I = J , N N N
64
ZF(K1)=ZF(KI+I)
66
CONTINUE
68
CONTINUE
GO TO 58
IF (JJ. E Q . 0) R E T U R N LI=JJ 70
CONTINUE RETURN END
SUBROUTINE
MULT(A, NA, MA, B, NB, MB, C, NC, MC, N , M , L )
************************************************ * TWO
REAL
MATRICES
MULTIPLICATION
*
*
C=A*B
*
*
A
*
*
B (M,L)~
(NB,MB)
*
*
C ( N , L ) x < (NC,MC)
*
(N,M) ~ ( ( N A , M A )
328 IMPLICIT REAL*8(A-H,O-Y),
INTEGER(I-N)
DIMENSION A ( N A , M A ) ,B ( N B , M B ) ,C ( N C , MC) DO 1 I = I , N DO 1 J--1,L C(I,J)=0.D0 DO 1 K = I , M
C (I, J)=C (I, J)+A(I,K)*B
(K, J)
RETURN END
* T H R E E REAL MATRICES M U L T I P L I C A T I O N
*
*
*
QQ = A . B . C
*WITH
*
*
A(N,M)
~ (NA,NA)
*
*
B(M,L)
x((NB,MB)
*
*
C(L,K)
X((NC,MC)
*
* QQ(N,K) x((NQ,NQ) * ************************************************
S U B R O U T I N E MULT3 ( A , N A , M A , B , NB, MB , C , N C , M C , N , M,L, K, QQ, N 0 )
I M P L I C I T REAL*8 ( A - H , O - Y ) DIMENSION A ( N A , M A ) , B ( N B , M B ) , C ( N C , M C ) , Q Q ( N Q , N O )
DO Z I = I , N DO 2 J = I , K S=O DO 1 I I = I , M DO 1 J J = I , L S=S+A ( I , I I ) * B ( I I , J J ) * C (J J , J) QQ(I,J)=S CONTINUE RETURN END
SUBROU T I N E GAUSS (IX , S, AM, V) ***************************************************** * CALCUL DE D I S T R I B U T I O N NORMALE V
*
* DE VALEUR MOYENNE AM ET DE V A R I A N C E S * *****************************************************
329 A=0.0 DO
1 1=1,12
CALL
RANGE(IX,IY,Y)
IX=IY A=A+Y V=(A-6.0)*S+AM RETURN END
SUBROUTINE
R A N G E ( I X , IY, YFL)
* CALCULS * RANDOM
OF A UNIFORM VARIABLE
IY=IX*65539 IF (IY)5,6,6 IY=IY+2147433647+I YFL=IY YFL=YFL*0.4656613E-9 RETURN END
DISTRIBUTION
BETWEEN
0 AND
1
* *
APPENDIX A FORTRAN EVALUATE
This
appendix
sensitivity approach
is
FIXED MODES
concerned
with
3
ROUTINE
TO
USING THEIR SENSITIVITY
the
(see § 2.4.2 and 3 . 5 . 4 ) .
evaluation
of
fixed
c o m p u t e t h e f i x e d m o d e s of a s y s t e m u s i n g v a r i a t i o n c a l c u l u s . p o n d s to t h e A l g o r i t h m 2.2 i n P a r a g r a p h
modes
using
the
T h e A p p e n d i x 3.1 g i v e s a r o u t i n e to
2.4.2.
This routine corres-
The routine provided by Appendix
3.2 u s e s t h e e i g e n v a l u e s g r a d i e n t c a l c u l a t i o n a p p r o a c h a n d c o r r e s p o n d s to t h e A l g o r i t h m 3.1 in P a r a g r a p h e 3 . 5 . 4 .
A p p e n d i x B. 1 ROUTINE BASED ON VARIATION CALCULUS The FORTRAN s u b r o u t i n e
STFM1 c o m p u t e s t h e
fixed modes of a s y s t e m with
simple m o d e s . B a s e d on t h e A l g o r i t h m 2 . 2 , it c o m p u t e s t h e v a r i a t i o n s of t h e m o d e s of t h e s y s t e m r e s u l t i n g from c h a n g e s in t h e f e e d b a c k m a t r i x .
If t h e v a r i a t i o n is z e r o ,
t h e c o r r e s p o n d i n g mode is of c o u r s e a f i x e d mode. T h e s y s t e m is d e s c r i b e d b y :
£ = Ax + B u y=Cx
and the feedback structure is described by the set of admissible matrices K F.
UTILIZATION
T h e s u b r o u t i n e s t a t e m e n t is SUBROUTINE STFMI
(A,N,B,M,C,L,AK,EPSpMM,Z)
331
INPUT ARGUMENTS O r d e r of t h e s y s t e m . N u m b e r of s y s t e m i n p u t s . Number of system o u t p u t s .
This p a r a m e t e r is s e t e q u a l to N in t h e c a s e of
state feedback.
A,B,C
S y s t e m m a t r i c e s of dimension ( N , N ) , (N,M) a n d ( L , N ) , r e s p e c t i v e l y .
AK
Real
feedback
matrix
of dimension
(M,L)
with admissible s t r u c t u r e .
The
v a l u e s of i t s e n t r i e s a r e s u c h t h a t t h e c l o s e d - l o o p s y s t e m h a s simple modes. EPS
A c c u r a c y p o s i t i v e small p a r a m e t e r .
OUTPUT ARGUMENTS N u m b e r of f i x e d modes (if a n y ) .
MM
MM=0 means t h a t t h e s y s t e m h a s no f i x e d
modes with r e s p e c t to t h e f e e d b a c k s t r u c t u r e
K F and for an a c c u r a c y e q u a l
to EPS. Complex v e c t o r of l e n g t h N c o n t a i n i n g t h e s e t of f i x e d modes (if a n y )
in
the first MM positions.
REQUIRED MEMORY If N > 20 t h e dimension s t a t e m e n t must be modified a c c o r d i n g to : DIMENSION WK(N), Z 0 ( N , N ) ,
Z2(N,N), Z3(N,N),
ZI(N,N,N)
CALLED SUBROUTINES EIGRF
E i g e n v a l u e s calculation s u b r o u t i n e ,
described in:
Edition 8, 1980.
LISTING SU[I~OUTINE STFM1 (A, N, B,M, C , L , A K , E P S , MM, Z)
IMPLICIT REAL*8(A-H,O-Y) ,COMPLEX*I6(Z) DIMENSION A(N,N),B (N,M), C(L,N),AK(M,L), Z(N) DIMENSION WK(20),ZI(20,20,20)
"IMSL Library Manual",
332 DIMENSION
Z0(20,20),Z2(20,20),Z3(20,20)
NA=20 IF(L.NE.N) G O T O 40 D O 37 I=I,N DO
37 J=I,N
DD=0 D O 35 K=I,M 35
D D = D D + B (I oK) *AK (K, J) A(I, J)=A(I, J)+DD ZZ(I,J)=A(I,J)+(0.,I.)*0.
37
Z3(l, J)=DD+(0. , 1 . ) * 0 . G O T O 48
40
DO 44 I = I , N DO 44 J = I , N DD=0 DO 42 II=I,M DO 42 J J = I , L
42
DD=DD+B(I,II)*AK(II,JJ)*C(JJ,J) A (I, J ) = A ( I , J)+DD ZZ(I,J)=A(I,J)+(0.,I.)*0.
44 48
Z3 (I, J ) = D D + ( 0 . , 1 . ) * 0 . I JOB=0 CALL EIGRF(A, N , N , I J O B , Z, Z0,NA,WK,IER) MM=O D O 60 K=I,N D O 60 I=I,N D O 58 J=I,N
58
Z1 ( I , J , K ) = Z 2 ( I , J )
60
Z1 (I, I, K)=Z2 (I, I ) - Z ( K ) DO 100 K=I,N DO 55 I I = I , N DO 54 J J = I , N
54 55
ZO(ll,JJ)=(O. ,0.) zo(II,II)=(l.,0.) DO 70 J = I , N IF(J.EQ.K)
G O T O 70
D O 65 II=I,N D O 65 JZ=I,N
333
65
Z2 (I2, J2)=Z2 (I2, J2)+Z0 (I2, K 2 ) * Z I ( K 2 , J2, J) DO 67 I3=I,N DO 67 J 3 = I , N
67
Z0(I3,J3)=Z2 (I3,J3)
70
CONTINUE
ZZ=(O. ,0.) DO 75 I4=I,N DO 75 J4=I,N 75
ZZ=ZZ+Z0 (I4,34) * Z3 (J4, I4) RR=CDABS(ZZ) I F ( R R . G T . E P S ) GO TO 100 MM=MM+I Z(MM)=Z(K)
100
CONTINUE RETURN END
A p p e n d i x 3.2 ROUTINE BASED ON GRADIENT CALCULATION The FORTRAN r o u t i n e STFM2 p e r f o r m e s t h e same t a s k as STFM1. B a s e d on t h e algorithm
(3.1),
it c o m p u t e s t h e g r a d i e n t of t h e s y s t e m modes
with r e s p e c t to t h e f e e d b a c k m a t r i x . If t h e g r a d i e n t is zero ( s u f f i c i e n t l y small), t h e n t h e c o r r e s p o n d i n g mode is a f i x e d mode. In a d d i t i o n ,
STFM2 d e t e r m i n e s t h e t y p e of
t h e f i x e d modes b y d e t e r m i n i n g t h e s t r u c t u r a l s e n s i t i v i t y m a t r i x (see § 3 . 5 . 4 ) . The d a t a r e q u i r e d b y STFM2 a r e t h e same as t h e i n p u t a r g u m e n t s of STFM1 (see A p p e n d i x 3 . 1 ) .
CALLED SUBROUTINES EIGRF
See A p p e n d i x 3.1.
FIKT
Left e i g e n v e c t o r i n d e x s e a r c h (see l i s t i n g ) .
MODF
Calculation of t h e s e n s i t i v i t y with r e s p e c t to t h e f e e d b a c k m a t r i x ting)
ECRIV
Writing of a complex v e c t o r (see l i s t i n g ) .
(see lis-
334
LISTING
PARAMETER
(N=I2,M=3,L=3)
PARAMETER
(IK=2*N+I ,N2=N-2)
IMPLICIT REAL*8(A-H,O-Y) ,COMPLEX*I6(Z) DIMENSION ZM(N),Z(N,N),ZT(N,N) DIMENSION ZMT(N),ZMS(N) DIMENSION A(N,N), B (N,M) ,C (L,N) ,AK (M, N) DIMENSION WK(IK),AA(N,N),AS(N,N),AB(N,N) I N T E G E R S(N,N,N2),SS(N,N) READ(Z3,*) EPS DO 4 I = I , N
READ(23,*) (A(I,J),J=I,N) DO 5 I = I , N
READ(23,*) (B(I,J),J=I,M) IF(L.EQ.N) G O T O 7 D O 6 I=I,L R E A D (23,*) (C(I,J),J=I,N) DO 8 I--I,M
R E A D (23,*) (AK (I,J),J=l ,L) AL=0 I F ( L . E Q . N ) GO TO 40 DO 37 I = I , N DO 37 J = I , N AL=AL+0.05 DD=0 DO 35 K=I,M
35
DD=DD+B ( I , K ) * A K ( K , J ) A S ( I , J) =AL*A (I, J)+DD AB ( I , J ) = A ( I , J ) + D D
37
AA(J,I)=AB (l,J) GO TO 48
40
DO 44 I = I , N DO 44 J = I , N AL=AL+0.05 DD=0 DO 42 II=I,M DO 4Z J J = I , L
335
42
DD=DD+B (I, II)*AK (II, J J ) * C ( J J , J) AS(I,J)=AL*A(I,J)+DD AB ( I , J ) = A (I, J)+DD
44
A A ( J , I ) = A B (I, J) *** CLOSED-LOOP EIGENVALUES AND *** *** EIGENVECTORS CALCULATION
48
***
IJOB=I CALL E I G R F ( A B , N , N , I J O B , Z M , Z , N , W K , I E R ) IJOB=I CALL EIGRF(AA,N,N ,IJOB,ZMT ,ZT ,N, WK,IER) IR=0
IR2=0 D O I00 K=I,N C A L L FIKT(ZM, ZMT,K,KT, N) C A L L M O D F (B,AK, C,N, M,L, Z, ZT, K,KT, SK) IF(SK.GT.EPS) G O T O I00 IR=IR+ 1
ZM(IR)=ZM(K) IS=0 DO 70 I I = I , N DO 70 J J = I , N S (II,JJ,IR)=0 IF(A(II,JJ).EQ.0)
GO TO 70
ZZ=ZT(II,KT)*Z(JJ,K) RS=CDABS(ZZ) I F ( R S . L E . E P S ) GO TO 70 S ( I I , J J , IR)=I IS=IS+l 70
CONTINUE
IF(IS.GT.0) G O T O 100 IR2=IR2+I ZMS (IR2)=ZM(K) IR=IR- 1
I00
CONTINUE IRT=IR+IR2 IF(IRT.NE.0) G O T O 120 WRITE(6, ii0)
336 ii0
FORMAT(/,5X,,'THE
SYSTEM
H A S N O FIXED MODES',//)
STOP 120
WRITE(6,125)
125
F O R M A T ( / , 5 X , ' T H E FIXED MODES ARE : ' , / ) IRT=IR*IR2 IF(IRT.EQ.O) CALL
G O T O 140
ECRIV(ZM,IR, N)
C A L L E C R I V (ZMS,IR2, N) WRITE(6,130) 130
FORMAT(/,5X,'THE
STRUCTURALLY
FIXED M O D E S
O F T Y P E II A R E
C A L L E C R I V (ZMS,IR2, N) G O T O 160 140
IF(IR.NE.0)
G O T O 155
C A L L E C R I V (ZMS, IR2, N) WRITE(6,150) 150
FORMAT(/,5X,'ALL
T H E FIXED M O D E S
ARE
STRUCTURALW,II)
'OF T Y P E II',/) STOP 155
CALL E C R I V ( Z M , I R , N )
160
CONTINUE *** CALCULATION OF CLOSED-LOOP EIGENVALUES
***
*** AND EIGENVECTORS OF AN EQUIVALENT SYSTEM *** DO 170 I = I , N DO 170 J = I , N 170
AA(J,I)=AS(I,J) IJOB=I CALL EIGRF(AS,N,N,IJOB,ZMS,Z,N,WK,IER) IJOB=I CALL EIGRF (AA, N, N, I JOB, ZMT, ZT, N, WK, IER) IS=0 DO 230 K = I , N CALL F I K T ( Z M S , Z M T , K , K T , N ) CALL M O D F ( B , A K , C , N , M , L , Z, Z T , K , K T , SK) I F ( S K . G T . E P S ) GO TO 230 JS=0 DO 190 I I = I , N DO 190 J J = I , N
:',])
337
SS(II,JJ)=0 IF(A(II,JJ).EQ.0)
G O T O 190
ZZ=ZT(II,KT)*Z (JJ,K) RS=CDABS(ZZ) I F ( R S . L E . E P S ) GO TO 190 SS(II, JJ)=l JS=JS+I 190
CONTINUE I F ( J S . E Q . 0 ) GO TO 230 DO Z20 K K = l , I R DO 200 II--1,N DO 200 J J = l , N IF(SS(II, JJ).NE.S(II,JJ,KK))
200
GO TO 220
CONTINUE IS=IS+I ZMS(IS)=ZM(KK)
220
CONTINUE
230
CONTINUE IF(IS.EQ.0)
GO
TO
250
WRITE(6,240) 240
FORMAT(/,SX,'THE
STRUCTURALLY
FIXED M O D E S
OF TYPE I ARE
C A L L E C R I V (ZMS,IS,N) IF(IR.NE.IS) G O T O 950 STOP 250 260
WRITE(6,260) FORMAT(I,5X,'THE
NON
STRUCTURALLY
IF(IS.NE.0) T O G O 265 C A L L ECRIV(ZM,IR,N) STOP 265
D O 300 I=I,IR D O 290 J=I,IS ZZ=ZM(I)-ZMS(J) RX=DREAL(ZZ) RX=DABS(RX) I F ( R X . G T . E P S ) G O TO 270 RY=DIMAG(ZZ) RY=DABS (RY) I F ( R Y . L E . E P S ) GO TO 290
270
WRITE(6,280)
FIXED M O D E S
ARE
",/)
.l,/)
338
280
FORMAT(SX,'(',FI2.6,' +J',FI2.6,' )') G O T O 300
290
CONTINUE
3O0
CONTINUE STOP END ***
LEFT
EIGENVECTOR
INDEX
SEARCH
***
SUBROUTINE F I K T ( Z A , Z B , K , K T , N ) IMPLICIT R E A L * 8 ( A - H , O - Y ) ,COMPLEX*16(Z) DIMENSION ZA(N) , Z B ( N ) EPS=I.E-10 D O 5 II=I,N ZZ=ZA(K)-ZB (II) VA=DREAL(ZZ) VB=DABS(VA) IF(VB.GT.EPS) G O T O 5 WA=DIMAG(ZZ) WB=CDABS(ZZ) IF(WB.GT.EPS)
GO
TO
5
KT=II RETURN CONTINUE RETURN END
* CALCULATION * RESPECT
OF TO
THE
THE
SENSITIVITY
FEEDBACK
WITH
*
MATRIX
*****************************************************
S U B R O U T I N E MODF(B, AK,C, N, M, L, Z, ZT,K,KT, SK) IMPLICIT REAL*8(A-H,O-Y) ,COMPLEX*I6(Z) DIMENSION B (N,M) ,C(L, N),AK(M,N) DIMENSION
SK=0 DO 50 I=I,M
Z(N,N),ZT(N,N)
339
DO
50 J=I,L
ZSK=(O.,O.) IF(AK(I,J).EQ.0)
GO TO
50
XW=0 YW=0 DO
10 LL=I,N
XW=XW+DREAL(ZT(LL,KT))*B(LL,I)
10
YW=YW+DIMAG
(ZT (LL, KT) )*B (LL, I)
ZW=XW+(0., I.)*YW IF(L.EQ.N)
GO TO
30
XV=0
YV=O DO 20 LL=I,N XV=XV+C (J,LL)*DREAL (Z (LL, K) ) 20
YV=YV+C ( J , LL) ~'DIMAG ( Z (LL, K) ) ZV=XV+(0.,1.)*YV GO
30 40
TO
40
ZV=Z(J,K) ZSK=ZW*ZV SKI=CDABS(ZSK) SK=DMAX
50
l (SK, SKI)
CONTINUE RETURN END
* COMPLEX * Z (N)
SUBROUTINE
COMPLEX*f6
DO
VECTOR
* *
E C R I V (Z, N, N M A X )
Z (NMAX)
5 I=I,N
5
WRITE(6,10) Z(I)
I0
FORMAT RETURN END
WRITTING
N ~ NMAX
(I 5X,'(',FI2.6, ' +J',FI2.6,' )')
APPENDIX
ANDERSON
AND
CLEMENTS
FORTRAN
W subroutine
TEST
4
PACKAGE
FOR
evaluates
the
REAL
MODES
PURPOSE
The
ACTFM
f i x e d m o d e s of a N S - s t a t i o n s y s t e m d e s c r i b e d b y
set
of real
decentralized
:
NS = Ax + i__~1 B i u i (A4.1) Yi = Ci x Defining
(i=I,...,NS)
:
B =
(B 1 . . . . , BNS ) (A4.2) !
C =
(C ..... C'NS)'
the s y s t e m can be w r i t t e n
= Ax
:
(A4,3)
+ Bu
y=Cx
The
subroutine
ACTFM
d e s c r i b e d in s e c t i o n 3 . 3 . 1 .
uses
the
algebraic
characterization
UTILIZATION
The subroutine
s t a t e m e n t is :
S U B R O U T I N E ACTFM
of
Note t h a t ACTFM e x a m i n e s r e a l p o l e s o n l y .
(A,N,B,M,C,L,NS,IM,IR,EPS,Z,JJ)
fixed
modes
341
INPUT ARGUMENTS
N
Order
M
Number of the system inputs.
L
Number of the system outputs.
A,B,C
System matrices of dimension
NS
Number of the control stations.
IM
of the system.
Integer
vector
of dimension
(N,N),
(N,M)
and
(L,N),
respectively.
NS c o n t a i n i n g
the
number
of inputs
of the ith
of outputs
of the ith
s t a t i o n in t h e i t h p o s i t i o n . IR
Integer
vector
of dimension
NS c o n t a i n i n g
the
number
s t a t i o n in t h e i t h p o s i t i o n . EPS
Small p o s i t i v e r e a l n u m b e r
IT
Option parameter IT = 1 writting
defining
the zero accuracy.
: of the open-loop
poles.
IT # 1 no writting.
OUTPUT
JJ
ARGUMENTS
Number of real decentralized system
XX
Real
vector
any)
in t h e f i r s t JJ p o s i t i o n s .
CALLED
of length
J J=0 m e a n s t h a t
the
fixed modes.
N containing
the
real
decentralized
fixed
modes
(if
SUBROUTINES
EIGRF
See A p p e n d i x
DSVD
Subroutine
computing
rectangular
matrix,
GARBOW B . S . ,
2.
J.M.
"Matrix Eigensystem Lecture RANK
fixed modes of the system.
has not real decentralized
the
described BOYLE, Routines
notes in computer
Subroutine
Singular
determining
Value
Decomposition
arbitrary
real
in : J.J.
DONGARRA,
C.B.
MOLER
- EISPACK Guide Extension".
s c i e n c e n ° 51, S p r i n g e r - V e r l a g ,
the
of an
rank
of
2 real
matrix
of
New-York, dimension
1977.
(M,N)
by
calling DSVD.
REQUIRED
MEMORY
If N T = N + m a x ( M p L ) > 2 0 o r ged according
to :
NS>5,
then
the
dimension
statement
must
be chan-
342 DIMENSION II(NS), ZV(NT,NT), AA(NT,NT) DIMENSION WK(NT), U ( N T , N T ) ,
V(NT,NT),
RVI(NT)
LISTING SUBROUTINE ACTFM (A, N, B , M , C , L , N S , I M , I R , EPS, Z , J J , I T ) IMPLICIT R E A L * 8 ( A - H , O - Y ) , I N T E G E R ( I - N ) ,COMPLEX*16(Z) DIMENSION
A(N,N) ,B(N,M), C (L,N),IM(NS),IR(NS), Z(N)
DIMENSION
II(5),ZV(20,20),AA(20,20)
DIMENSION
WK (20), U (20,20) ,V (20,20), RV1 (20)
NT=20 *** O P E N - L O O P 15
16
P O L E S CALCULATION ***
IJOB=I DO
16 I=I,N
DO
16 J=l,N
AA(I,J)=A(I,J) C A L L EIGRF (AA, N,NT, IJOB, Z, ZV, N T , W K , IER) IF(IT.NE.I)
G O T O 25
WRITE(6,18) 18
FORMAT(5X,'THE
OPEN-LOOP
POLES ARE
D O 20 l=l,N 20
WRITE(6,22)
22
F O R M A T (5X,EI2.6,2X,EI2.6,/)
25
JJ=O
Z(1)
EPSI=10D-8 DO 90 J I = I , N YY=AIMAG (Z ( J I ) ) I F ( D A B S ( Y Y ) . G T . E P S 1 ) GO TO 90 XX=REAL(Z ( J I ) ) IF(JI.EQ.])
GO TO 40
JII=JI-1 DO 30 I = l , J I I YY=AIMAG (Z (I)) I E ( D A B S ( Y Y ) . G T . E P S 1 ) GO TO 30 XX I=REAL(Z (I))
',])
343 IF(DABS(XX-XXI).LT.EPS1) 30
GO TO 9~
CONTINUE *** B U I L D I N G OF THE MATRIX B L O C K - D I A G . ( ( A - S I ) , O )
40
DO 44 I = I , N DO 42 J = I , N
42
AA(I,J)=A (I,,I)
44
AA(I, I)=AA(I,I)-XX N I=N+ 1 IK=N+M IKI=N+L DO 46 I = N I , I K 1 DO 46 J = N I , I K
46
AA(I,J)=O. *** COMPLEMENTARY S U B S Y S T E M S SEARCH ***
MAX=2**NS-2 D O 90 N B = I , M A X II=O
NU=NB D O 48 I=I,NS ND=NU/2 NR=NU-ND*2 IF (NR.EQ'.0) G O T O 48 II=Ii+l
II(II)=I 48
NU=ND
*** B U I L D I N G OF THE T E S T E D MATRIX ***
56
Ii=l IP=N JP=N D O 68 IS=I,NS IC=0 JC=0 IK2=IS-I IF (IK2.LT.I) G O T O 60 D O 58 K=I,IK2 IC=IC+IR (K)
***
344
58
JC=JC+IM(K)
60
IF(IS.EQ.II(I1))
GO T O 64
IK3=IP+I IK4=IP+IR (IS) DO 62 I = I K 3 , I K 4 IC=IC+I DO 62 J = I , N 62
A A ( I , J ) = C (IC,J) IP=IP+IR (IS) GO
64
TO
68
IKS=JP+I IK6=JP+IM (IS) DO
66 J=IK5,IK6
JC=JC+l DO 66
66 I=I,N
A A ( I , J ) = B (I, JC) JP=JP+IM (IS) II=Ii+l
68
CONTINUE CALL
RANK(AA,IP,
IF(IRANK.LT.N)
GO T O 78
JP, N T , W K ~U,V, R V I , I R A N K ,
GO
TO
EPS)
78
90
JJ=JJ+l Z (J J)=Z (JI)
90
CONTINUE RETURN END
S U B R O U T I N E R A N K ( A , M , N , NM, W, U, V, R V 1 , I R A N K , EPS) ************************************* * DETERMINATION * A
OF
THE
RANK
OF
~*********~.****** ~*** A REAL
MATRIX
: MxN
* NM
= A
* REAL
* *
~M,~N
MATRICES
*
:
*
* W ( N M ) , U ( N M , NM) ,V (NM, NM) , R V 1 (NM)
*
* R E S U L T IN I R A N K * **** ~ * * * * * * * * * * * * * $ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * REAL*8 DO
A ( N M , N ) , W ( N ) , U ( N M , N ) ,V ( N M , N ) ,RVI(N)
1 I=I,NM
W(I)=O. CALL
DSVD(NM,N,M,A,W,.FALSE.,U,.FALSE.,V,IERR,RVI)
345
IRANK=0 MM=N I F ( M . G E . N ) GO TO 2 MM=M DO 3 I=I,MM IF (W(I).LT.EPS) G O T O 3 IRANK=IRANK+I CONTINUE RETURN END
APPENDIX 5
D E T E R M I N A T I O N OF T H E G R A D I E N T M A T R I X OF T H E P E R F O R M A N C E I N D E X BY U S I N G V A R I A T I O N C A L C U L U S
This appendix the performance
uses
variation
calculus
(LEV-70)
to determine
the derivatives
of
index.
AS. 1. P r e l i m i n a r i e s
The three
Theorem
AS.1
represents
(BEL-70).
the unique
Theorem number.
following results
A5.2
If the integral
s o l u t i o n of
(BEL-70).
K l e i n m a n ' s lemma ( K L E - 6 6 ) .
f(x+ ehx)
then
A5.2.
Development
Consider
£(t)
: A x(t) = c x(t)
Let f(x)
+ Trace M(x)
=M'(x)
(TAR-85)
the system
y(t)
matrix
:
+ B u(t)
{
e At
C
e]~t
exists
for
all C,
e (A+CB)t, in ~ as
where ~ is
a
small
:
B e As ds
be a trace
:
= f(x)
: dr(x)
the
to the first order
= e AL + ¢ 0 / t e A ( t - s )
e - - > 0, we c a n w r i t e
: x = -
development.
it
Ax + xB = C.
Consider
It can be approximated
e (A+CB)t
are useful in the subsequent
-
hx
function.
If,
f o r a]] x a n d f o r
real
347 2nd the
performance
index
.'
co
J = ~
Let the
(x'Q
control
x + u' Ru)
be
given
x = (A - B K C )
which has
the
Substituting get
by u = - Ky,
so that
the
closed-loop
system
is
:
x = Dx
solution
in
dt.
the
: x = e Dt x 0 ,
expression
of
y
x 0 = x(0)
and
using
the
trace
function
properties,
we
:
J(D)
= Tr
[ f0 e D '
t QI(K,C ) eDt dt X 0 ]
where X 0 = E [ x(0) x(0)' ] QI(K)
= Q + C' K' R K C
Suppose
that the s y s t e m matrices
A changes
where
~A _N
to B + e B . A B
C changes
to C + e C . AC
D changes
to D + e D . A D
CA,
£]3' e C a n d £ D a r e "~ ¢C
x(t)
with and
~- e D
" Then
small real the
numbers
elosep-loop
of the
system
same order,
becomes
i.e.
:
= (D + e . A D ) x ( t )
AD = AA - AB. K C - B . A K . C the
subjected to small perturbations, i.e. :
to A +e A . AA
B changes
eB
are
criterion
- B.K.
AC
: oo
J(D+
cAD)
By
developing
and
the
trace
one obtains
= Tr
this
[ ~
e (D+eAD)'t
expression
function
property
to
the
Tr(AB)
QI(K+e~K,
first
C+c~C)
order,
= Tr(BA)
using
e (D+cAD)t dt
Theorems
= Tr(A'B')
= Tr(B'A'),
:
J(D+~AD)
= J(D) + e T r
D'P + P D
+ Q + C'K'R KC
[2S(C'K'R-PB).A
with = 0
(KC)
A5.1
+ 2SP. A ( A , B ) ]
X0 ]
and
A5.2,
348 DS + SD + X 0 = 0
AD =
A(A,B)
A(KC) =
- B.
A (KC)
+ K. AC
AK.C
A(A,B) = AA -AB.
Two
1 -
cases
of variations
Simultaneous
KC
are
considered
variations
on
In this case, w e h a v e A(KC) Then
= 0 and
AD
:
A and
B
:
= A(A,B)
one gets : J [D+E.
A(A,B)]
and by application ~J
= J(D) + e T r
[2SP. A ( A , B ) ]
of Kleinman's l e m m a
:
-2PS
(A,B)
This
case
combines
two
situations
:
• variations
on
A only,
~T we get z-~ = 2 PS. ~A
• variations
on
B only,
~T w e g e t ~--Z-~ : ~B
2 -
Simultaneous
In
this
case,
A (A,B) The
criterion
J[
and
by
and
becomes
• variations
combines
on
B
n(KC)
:
= J(D)
+
lemma
e Tr
[ (2SC'K'R
-
:
- B'P) S
two situations
K only,
C
:
of Kleinman's
- 2 (RKC (KC)
case
K and
AD = -
B. A (KC)]
application
on
we have
= 0
D - e.
8 J
This
variations
- PSC'K'
we get
:
-B J : 2 K ' ( R K C
- B'P)S
3C • variations
on
C only,
we get
~J ~K
= 2 (RKC
- B'P) SC'
2SPB)]
(KC)
APPENDIX 6
A FORTRAN
ROUTINE
CONSTRAINED
TO
ROBUSTNESS
This
appendix
constrained
provides
= Ax
+ BU
AN WITH
REQUIREMENTS
a routine
x ~ R n,
and its sensitivities
State feedback
• Output
OPTIMAL POSSIBLE
for the
determination
of an optimal
:
u~R m
:
feedback
u
with respect
(see § 6.4.2).
=
to the classical quadratic
criterion
T h e r o u t i n e c o n s i d e r s two c a s e s
:
Kx
: u = K C x = Ky
T h e o p t i m i z a t i o n p r o b l e m is :
min
J3(K)
= Tr
(P V 0) + T r
(SPLPS)
+ Tr
[ (RKC-B'P)SFS(RKC-B'P)']
KEK F
subject to D'S + S D + Q + C ' K ' R K C DP
where R,Q,L,F
+ PD' + V 0
= 0
= 0
a r e w e i g h t i n g m a t r i c e s of a p p r o p r i a t e
T h e s o l u t i o n of t h i s p r o b l e m is g i v e n b y
B J3 = 2
with
[(RKC
= 0
DP
+ PD' + V 0 = 0
Du
+ uD' + F 2 ( K , P , S ) + F 3 (K,P,S)
= A + BKC
dimension.
:
+ B'S)~ + B' ~ P + R ( R K C + B ' S ) P F P ]
D'S + S D + FI(K)
D' X + X D whereD
(local)
y ~ Rr
T h e o p t i m i z a t i o n is p e r f o r m e d
•
MATRIX
f e e d b a c k m a t r i x K ~ KF f o r t h e l i n e a r s y s t e m
y = Cx
6.3.1)
DETERMINE
FEEDBACK
= 0 = 0
C'
(see §
350 FI(K) = Q + C'K'RKC F2(K,P,S) = V0 + PPSL + LSPP + B(RKC+B'S) PFP + PFP(RKC+B'S)'B' F3(K,P,S) = PSLS + SLSP + (RKC + B'S)' (RKC+B'S)PF +
+ FP(RKC+B'S)'(RKG+B'S) This problem tion)
to s a t i s f y
is solved by using
the
structural
the feasible direction
constraints
and
method
an adaptative
step
(gradient size
as
projecgiven
in
(6.3.6). The required
data are
:
SYSTEM DATA
N
Order
M
Number of inputs.
L
Number of outputs.
A,B,C
System matrices of dimension
IES
of t h e s y s t e m .
Option parameter
(N,N),
(N,M) and
(L,N),
respectively.
:
IES = 0 i f s t a t e f e e d b a c k IES ~ 0 i f o u t p u t
feedback.
OPTIMIZATION DATA
AL
Initial step
size.
PI
Real positive number
superior
ANU
Real positive number
such that
EPS
Accuracy
NI
Allowed maximum number
IT
Option parameter I T = 1,
to 1. 0 < ANU < 1.
positive small number
considered
as zero.
of iterations.
;
writing of the intermediate II i t e r a t i o n
number
F
norm
gradient
CR criterion
results
:
value
AL s t e p s i z e "VPD d o m i n a n t c l o s e d - l o o p
eigenvalue
of the matrix S.
I T ~ 1, n o w r i t t i n g . IGB
Option parameter
:
IGB=I for minimizing the reduced This
6.3.1)
case
corresponds
to
the
criterion algorithm
: J3 = T r [ P V ~ . of
Geromel
and
Bernussou
(see §
351
IGB=2 for minimizing t h e c r i t e r i o n : 33 = T r [PV0] + T r [SPLPS ] IGB#I a n d IGB#2 for s o l v i n g t h e g e n e r a l p r o b l e m d e s c r i b e d a b o v e . AK
Initial s t a b i l i z i n g f e e d b a c k m a t r i x s u c h t h a t AK ~ KF.
VO Q
Initial s t a t e c o n d i t i o n m a t r i x V0 = E Ix(0) x ( O ) ' ] .
R
I n p u t w e i g h t i n g m a t r i x of dimension (M,M).
PL
Weighting m a t r i x of dimension
S t a t e w e i g h t i n g matrix of d i m e n s i o n (N,N) (NxN)
f o r t h e s e n s i t i v i t y with r e s p e c t to A
a n d B. T h i s matrix is n e c e s s a r y if IGB~I. Weighting m a t r i x of d i m e n s i o n (N,N)
PF
for the
s e n s i t i v i t y with r e s p e c t to K
a n d C.
CALLED
MULT
SUBROUTINES
Two real m a t r i c e s multiplication (see l i s t i n g ) .
MULT3
T h r e e r e a l m a t r i c e s multiplication ( s e e l i s t i n g ) .
F1KC
Calculation of F I ( K )
(see l i s t i n g ) .
F2KSPV Calculation of F 2 ( K , P , S ) ( s e e l i s t i n g ) . F3KSPV Calculation of F 3 ( K , P , S )
(see listing).
RKCBS Calculation of QQ = ( R . A A + B ' S ) a n d of AB=QQ.P.
S t a t e f e e d b a c k : AA=K,
o u t p u t f e e d b a c k : AA = KC (see l i s t i n g ) . MST
Calculation of F - (A+A') ( s e e l i s t i n g ) .
LYAPUN L y a p u n o v e q u a t i o n s o l v i n g ( s e e l i s t i n g ) . MATBF C l o s e d - l o o p matrix calculation ( s e e l i s t i n g ) . PGV
D e t e r m i n a t i o n of t h e
smallest
(or
biggest)
e l e m e n t of a real
vector
(see
listin g ) . MEV
D e t e r m i n a t i o n of t h e
smallest r e a l p a r t of t h e e i g e n v a l u e s of a real matrix
(see l i s t i n g ) . CRIT
C r i t e r i o n calculation ( s e e l i s t i n g ) .
GRADK G r a d i e n t calculation (see l i s t i n g ) . EIGRF
Eigenvalue
calculation
subroutine,
described
in :
"IMSL L i b r a r y
Manual",
"IMSL
Manual",
Edition 8, 1980. LINV2F Real
matrix
inversion
subroutine,
described
in
Library
Edition 8, 1980. PRINT
Writing of a real matrix (see l i s t i n g ) .
REQUIRED MEMORY The d i m e n s i o n s t a t e m e n t s m u s t be modified if N > 15, M > 5, o r L > 5 a c c o r ding to :
352
DIMENSION A ( N , N ) , B ( N , M ) , C ( L , N ) , A K ( M , N ) , WK(IK), R(M,M) The same for all t h e o t h e r m a t r i c e s of dimension ( N , N ) . NA,MA,LA a n d IK m u s t b e s e t to : NA=N, MA=M, LA=L a n d I g >/ N2 + 3N
LISTING IMPLICIT REAL*8 ( A - H , O - Y ) , COMPLEX*I6(Z) COMMON /MATSS/ A(15,15) ,B(15,5) ,C(5,15),AK(5,15) COMMON / M A T P I / Q(15,15),R(5,5) COMMON /MATP2/ PL(15,15) ,PF(15,15) COMMON /MATLI/ S(15,15),P(15,15),VO(15,15) COMMON /MATL2/ PMU(IS,15),SLA(I5,15) COMMON /GRADS/ GA(15,15),GK(IS,]5) DIMENSION AF(15 ,15),AFF(15,15) ,G (15,15) ,D (15,15)
DIMENSION E(15,15),AA(15,15),AC(15,15),WK(270) DIMENSION ZV(15),Z(15,15)
NA=15 MA=5 LA=5 IK=270 *** SYSTEM MATRICES READING *** READ (19,*) N , M , L , I E S DO 12 I = I , N 12
READ (19,*) ( A ( I , J ) , J = I , N ) DO 17 I = I , N
17
READ (19,*) (B ( I , J ) , J=I,M) NL=N I F ( I E S . E Q . 0 ) GO TO 24 NL=L DO 20 I = I , L
20
READ (19,*) ( C ( I , J ) , J = I , N ) *** OPTIMIZATION DATA READING ***
24
READ (19,*) A L , P I , A N U , E P S , N I , I T , I G B
Also t h e p a r a m e t e r s
353
DO 26 I=I,M 26
READ (19,*) ( A K ( I , J) , J = I , N L ) DO 28 I = I , N
28
READ ( 1 9 , * ) ( V O ( I , J ) , J = I , N )
D O 32 I=I,N 32
READ(19,*) (Q(I,J),J=I,N) D O 36 I=l,M
36
READ(I9,*) (R(I,J),J=I,M) IF(IGB.EQ.1)
GO T O 52
DO 44 I = I , N 44
READ(19,*) (PL(I,J),J=I,N) IF(IGB.EQ.2)
GO TO 52
DO 48 I = I , N 48
READ(Ig,*) (PF(I,J),J=I,N) *** I T E R A T I O N S
52
IF(IT.NE.I)
BEGINING
***
G O T O 58
WRITE(6,56) 56
F O R M A T (6X,'II', 10X,'F', 10X,'CR', 10X,'AL', 10X,'VPD',/)
58
II=0
60
CONTINUE
*** CLOSED-LOOP MATRIX DETERMINATION
CALL
MATBF(N,
M, NL, NA,MA,
***
LA, AF)
*** SOLVING THE 1ST LYAPUNOV EQUATION
***
***
***
(CALCULATION OF S)
DO 65 I = I , N DO 65 J = I , N 65
A F F ( I , J ) = - A F ( I , J) CALL F1KC(N,NA,M,MA,NL,LA,AA,AC) CALL LYAPUN(AFF,N,NA,AC,NA,S,NA,P,G,ZV,Z,WK,IK) IF(IGB.NE.1)
GO TO 72
CALL C R I T ( N , M , I G B , C R ) IF(II.NE.0)
G O T O 72
WRITE(6,71) CR
354
71
FORMAT(LX,'INITIAL C R I T E R I O N VALUE=',EI2.6,/)
72
IF(II.EQ.0) G O T O 75 IF(IGB.NE.I) G O T O 73 IF(CR.GE.Y) G O T O 135
73
C A L L M E V (S, N,NA, G, ZV, Z,WK, IK, VPD) IF(VPD.LE.0) G O T O 135 ***
SOLVING
***
75
THE
2ND
LYAPUNOV
(CALCULATION
OF
EQUATION P)
*** ***
D O 76 I=I,N D O 76 J=I,N AFF(I, J)=-AF(J,I)
76
E(I,J)=-VO(I, J) G A L L L Y A P U N (AFF, N,NA,E, NA,P, NA,AC,G, ZV, Z,WK, IK)
C A L L R K C B S (AA,M, N,NA,MA,LA, E,GK) IF(IGB.NE.I) GO T O 90 IF(IES.EQ.0) G O T O 83 D O 80 I=I,N D O 80 J=I,L 80
AC(I,J)=C(J,I) C A L L M U L T (GK,NA, NA, AC, NA, NA, G, NA, NA, M,N, L) G O T O II0
83
D O 85 I=I,M D O 85 J=I,NL
85
G(I,J)=GK(I,J) G O T O 110
90
CALL MULT (S, NA, N A , P , NA, NA, GA, NA, NA, N, N, N) *** SOLVING THE 3RD LYAPUNOV EQUATION *** ***
95
(CALCULATION OF MU)
***
CALL F2KSPV(M,N,IGB,G,AFF,AA,NA,MA,LA)
D O 97 I=I,N D O 97 J=I,N 97
AFF(I, J)=-AF(J,I) C A L L L Y A P U N (AFF,N, NA, AA, NA,PMU, NA, G, AC, ZV, Z,WK, IK)
355
*** SOLVING THE 4TH LYPAUNOV E Q U A T I O N ***
***
(CALCULATION
OF L A M D A )
***
C A L L FBKSP(E,M,N,IGB,AFF, G , A A , N A , M A , LA) D O 103 I=I,N D O 103 J=I,N I03
AFF(I, J)=-AF(I, J) CALL LYAPUN(AFF,N,NA,AA,NA,SLA,NA,G,AC,ZV,Z,WK,IK) *** C R I T E R I O N
CALCUATION
***
C A L L CRIT(N,M,IG, CR) IF(II.NE.0) G O T O 107 WRITE(6,105) C R 105
FORMAT(LX,'INITIAL C R I T E R I O N VALUE=',E12.6,/)
107
IF(CR.GT.Y) G O T O 135
109
CALL
G O T O 109
GRADK(E,AA,AC,N,M,NL,NA,MA,LA,G)
*** G R A D I E N T P R O J E C T I O N ***
ii0
F=0 D O 115 I=I,M D O 115 J=I,NL D(I,J)=0 IF(AK(I,J).EQ.0) G O T O 115 D(I,J)=G(I,J) F I = D A B S (G ( I , J) ) F=DMAX 1 ( F , F1)
115
CONTINUE
Y=CR 11=11+1 IF(IT.NE.1)
GO TO 118
W R I T E ( 6 , 1 1 7 ) I I , F , C R , A L , VPD 117
118
F O R M A T (5X,13, IX,El2.6, IX,El2.6, IX,El4.8, IX,E12.6,/) IF(F.LT.EPS) G O T O 140 IF(II.GT.NI) G O T O 160
356
AL=PI*AL KL=I 120
DO 122 I=I,M DO 122 J = I , N L
122
A K (I,J) = A K (I,J)-AL*D (I,J) G O T O 60
135
CONTINUE IF(IT.NE.I)
G O T O 538
WRITE(6,136)CR,AL,VPD 136
FORMAT
138
D O 139 I=I,M DO
139
(22X, E12.6, IX, El4.8, IX,El2.6,/)
139 J=I,NL
A K (I,J) = A K (I,J)+AL*D (I,J) IF(KL.EQ. l) AL=AL/PI AL=AL*ANU IF(AL.LT.IE-10)
G O T O 160
KL=0 GO TO 120 540
WRITE(6,150) II
150
FORMAT(5X,'THE CONVERGENCE IS OBTAINED A F T E R ' , I X , I 4 , 1 X , ' I T E R A T I O N S ' , / , 5 X , ' T H E OBTAINED FEEDBACK MATRIX I S ' , / ) GO TO 170
160
W R I T E (6,165)II
165
FORMAT(5X,'THE
CONVERGENCE
,'ITERATIONS',/,5X,'THE 170
IS N O T
OBTAINED
OBTAINED
FEEDBACK
AFTER',I4
MATRIX
IS',/)
CALL P R I N T ( A K , M , N L , M A , 1) WRITE(6,180) Y
180
FORMAT(5X,'THE CRITERION VALUE= ' , E 1 2 . 6 , / / ) WRITE(6,190) F
190
FORMAT(5X,'THE GRADIENT NORM VALUE EPS = ' , E 1 2 . 6 , / ) STOP END
* CLOSED-LOOP *
AA=A+B.AK.C
MATRIX
DETERMINATION
IF O U T P U T
FEEDBACK
* *
357
* A=A+B.AK IF STATE FEEDBACK * ************************************************ SUBROUTINE MATFB ( N , M , N L , NA,MA,LA, AA) IMPLICIT REAL*8 ( A - H , O - Y ) COMMON /MATSS/ A ( 1 5 , 1 5 ) , B ( 1 5 , 5 ) , C ( 5 , 1 5 ) , A K ( 5 , 1 5 ) DIMENSION
AA(NA,NA)
I F ( N L . N E . N ) GO TO 4 CALL MULT(B,NA, MA, AK, MA, LA, AA, NA, NA, N, M, NL) GO TO 6 CALL
M U L T 3 (B,NA, MA, AK, MA,LA, C, LA, NA, N,M, NL, N,AA, NA)
D O 8 I=I,N D O 8 J=I,N A A (I,J)=A(I,J)+AA(I,J) RETURN END ********************************************************** * CALCULATION OF THE MATRIX QQ : * Q Q = -(Q+CIK~RKC) * QQ
=
-(Q+K'RK)
SUBROUTINE
IF O U T P U T IF S T A T E
FEEDBACK
* (NL=L)
FEEDBACK(NL=N)
F I K C ( N , N A jM,MA,NL,LA, BB, QQ)
IMPLICIT REAL*8 ( A - H . O - Y ) COMMON /MATSS! A ( 1 5 , 1 5 ) , B ( 1 5 , 5 ) , C ( S , 1 5 ) , A K ( 5 , 1 5 ) COMMON / M A T P I / Q ( 1 5 , 1 5 ) , R ( 5 , 5 ) DIMENSION QQ(NA, NA) ,BB (NA,NA) IF(NL.EQ.N)
GO TO 2
CALL MULT (AK, MA,LA,C t LA, NA, BB, NA, NA, M, NL, N) GO TO 6 2
D O 4 I=I,M D O 4 J=IpNL
4
B B (I,J)=AK(I,J)
6
DO
10 I=I,N
DO
I0 J=I,N
S=0 D O 8 II=I,M D O 8 JJ=I,M 8
S=S+BB (II,I)*R (II,J J) *BB (JJ, J)
I0
QQ(I,J)=-S-Q(I,J)
* *
358
RETURN END **********
~*****************************************
*SOLVING *
THE
A'Q+QA+C
*INPUT *
MATRIX
*
:
*
=0
*
ARGUMENTS
REAL
EQUATION
**** **
:
*
A(N,N)
N ~< N A
*
C(N,N)
N ~< N C
*
*
RI(N,N)
N ~< NA
*
*
R2(N,N)
N ~< N A
*
WK(IK)
I K >/ N * N + 3 * N
*
COMPLEX
*
* OUTPUT
*
*
REAL
Z(N,N),ZI(N) ARGEMENTS
*
N x< N A
*
:
*
Q(N,N) N ~< N Q
REFERENCE
* *
:
*
"THE
NUMERICAL
*
W.D.
HOSKINS,
*
IEEE T R A N S .
*
N. 5, O C T .
SUBROUTINE
SOLUTION D.S.
AUT.
OF
A'Q+QA=-C"
MEEK AND D.J.
CONT.,
VOL.
WALTON
AC-22,
1977, 882-883.
LYAPUN(A,
IMPLICIT R E A L * 8
N,NA,
C,NC,Q,NQ,RI,R2,
(A-H,O-Y)
A (NA, NA), C (NC, NC), Q (NQ, NQ)
DIMENSION
R I ( N A , N A ) ,R2(NA,NA) ,WK(IK) ZI(NA),Z(NA,NA)
K=0 K=K+I IF(K.GT.1O0)
G O T O 30
D O 3 I=I,N D O 3 J=I,N RI (I,J)=A(I,J) IJOB=0 CALL
EIGRF(R], N, NA, IJOB, Z], Z, NA, WK, IER)
D O 5 I=I,N W K (I)= R E A L (Zl (T)) II=0 C A L L P G V (WK,N,IK,PV,II) IF(PV.GT.0)
G O T O 12
* *
DIMENSION COMPLEX*f6
* *
ZI, Z,WK,IK)
359
DO
10 I=I,N
11=1+1 DO
9 J=11,N
Q(J,I)=0 9
l0
Q(I,J)=0
Q(z,I)=-I RETURN
12
II=i CALL
P G V (WK,N,IK,GV,II)
XX=(PV*GV)**0.5 X=I/(PV+XX)**2 ALPHA=2*PV*X BETA=PV*GV*ALPHA EPSI=X* (PV-X X) **2 DO 14 I = l , N DO 14 J = l , N 14
R2(I,J)=A(I,J) IDGT=0
CALL LINV2F(R2, N , N A , R I , I D G T , W K , IER) DO 17 I = I , N DO 17 J = I , N 17
Q(I,J)=RI(J,I) DO 20 I = l j N DO 20 J = I , N
2O
A (I, J)=ALPHA*A (I, J ) + B E T A * R l ( I , J) CALL MULT3 (Q,NQ, NQ, C , N C , N C , R 1 , NA, NAp N, N, N, N, R2, NA)
22
DO 24 I = l , N DO 24 J = I , N
24
C (I, J) =ALPHA*C (I, J) +B ETA*R2 (I, J) IF(EPSI.GE.1.E-07)
GO T O
1
DO 25 I = I , N DO 25 J = I , N 25
Q(1,J)=-0.5*C(I,J)
30
WRITE(6,32)
32
FORMAT
RETURN
RETURN END
II
(RX, ' I T E R A T I O N S
N U M B ER ( L Y A P U N O V ) = ' , 14, l ])
360 ********************************************************** * FINDING * THE
THE
REAL
* INPUT
VECTOR
*
Y REAL
K OPTION
*
K=0
*
K#0
ELEMENT
Y OF DIMENSION
ARGEMENTS
*
* USED
SMALLEST/BIGGEST
X
OF
N x< N M A X .
*
PARAMETER
:
SMALLEST
FOR
BIGGEST
AS AN
OUTPUT,
* DESIRED
* *
:
VECTOR
FOR
*
ELEMENT,
* ELEMENT
ELEMENT
*
K IS T H E
.I.E.
INDEX
OF
THE
X--Y(K)
* *
**********************************************************
SUBROUTINE
IMPLICIT
PGV(Y,N,NMAX,X,K)
REAL*8
(A-H,O-Z)
DIMENSION
Y(NMAX)
IF(K.NE.0)
GO
TO
2
K=I X = Y (i) DO
1 I=2,N
IF(Y(I).GE.X)
GO TO
1
GO
3
x=v(i) K=I CONTINUE RETURN K=I X=Y(1) DO
3 I=2,N
IF(X.GE.Y(I))
TO
X=Y(I) K=I CONTINUE RETURN END ********************************************************** * FINDING
THE
* EIGENVALUES *
WORKING
*
REAL*8
SMALLEST OF A REAL
AREA
:
AA(N,N),WK(IK)
REAL
PART
MATRIX
VPD
A(N,N).
OF THE
* * * *
361
*
COMPLEX*f6
*
N ~< NA,
SUB
ROU
TINE
IMPLICIT
ZV(N),Z(N,N)
*
IK >I N
MEV
(A , N , NA
*
, AA,
ZV
, Z , WK
, IK , VPD)
REAL*8 ( A - H , O - Y )
COMPLEX*16 Z V ( 1 5 ) , Z ( 1 5 , 1 5 ) DIMENSION A ( N A , N A ) , A A ( N A , N A ) , W K ( I K )
DO
2 I=I,N
DO
2 J=I,N
AA(I,J)=A(I, J) IJ O B = 0 CALL DO
E I G R F (AA,N, NA, IJ O B ,ZV, Z, N A , W K , I E R )
4 I=I,N
W K (1)=REAL (ZV (I)) II=O CALL
P G V (WK ,N, IK ,V P D ,II)
RETURN END
*** C R I T E R I O N
CALCULATION ***
SUBROUTINE C R I T ( N , M , I G B , CR)
IMPLICIT
REAL*8
(A-H,O-Y)
COMMON
/MATP2/
PL(15,I5),PF(15,15)
COMMON
]MATLI]
S(15,15),P(15,15),V0(15,15)
COMMON
]GRADS]
GA(15,15),GK(15,15)
CR=0 DO
2 I=I,N
DO
2 J=I,N
C R = C R + S (I, J) *V0 (J, I) IF(IGB.EQ. I) R E T U R N TR=0 D O 6 I=I,N SD=0 D O 4 II=I,N DO
4 JJ=I,N
362 4
SD=SD+G A ( I. II ) * P L ( I I , J J) * GA ( I, J J)
6
TR=TR+SD CR=CR+TR IF(IGB.EQ.2)
RETURN
TR=0 DO 10 I = I , N SD=0 DO 8 I I = I , M DO 8 J J = ] , M 8 10
SD=SD+GK ( I I , I) * P F ( I I , J J) *GK (J J , I) TR=TR+SD CR=CR+TR RETURN END ********************************************************** * C A L C U L A T I O N OF T H E M A T R I C E S *
QQ = R.AA
*
AB = ( R . A A + B ' . S ) . P
* AA= K . C
:
+ B'.S
* *
IF STATE FEEDBACK (NL=N)
*
* AA(M,N)
*
N ~< NA, M ,,< N A
* AB(M,N)
S U B R O U T I N E R K C B S ( A A , M, N, N A , M A , L A , Q Q , A B )
COMMON ] M A T S S / A(15,15),B(lS,]5),C(5,15),AK(5,15) /MATPI/
COMMON ] M A L T I /
Q(I5,]5),R(5,5) S(15,15),P(15,15),V0(15,15)
DIMENSION Q Q ( N A , N A ) , A A ( N A , N A ) , A B ( N A , N A ) DO 12 I = I , M DO 8 J = I , N SD=0 DO 4 I I = I , M S D = S D + R (I, II) * A A (II,J) SS=0 DO 6 K = I , N SS=SS+B (K,I)*S(K,J) QQ(I, J ) = S S + S D
* *
IMPLICIT REAL*8 (A-H,O-Y)
COMMON
*
I F OUTPUT FEEDBACK (NL=L)
* AA= K
* QQ(M,N),
*
363
D O I0 J=I,N SS=0 D O i0 K=I.N
SS=SS+Q Q (I, K) *P(K ,J) I0
AB(I,J)=SS
12
CONTINUE RETURN END
*** CALCULATION OF THE MATRIX -F2(K,S,P) ***
SUBROUTINE F2KSPV(M,N, IGB, G,AFF,F2, NA,MA, LA) IMPLICIT REAL*8 (A-H,O-Y) COMMON /MATSS/ A(15,15),B(15,5),C(5,15),AK(5,15) COMMON /MATP2/ PL(15,15),PF(15,IS) COMMON /MATLI/ S(15,15),P(15,15),V0(15,15) COMMON ]GRADSf GA(15,15),GK(15,15) DIMENSION F2(NA,NA),AF(NA,NA),G(NA,NA)
CALL M U L T 3 (PL, NA, NA, GA, NA, NA, P, NA, NA, N, N, N, N, AFF,NA)
D O 2 I=],N D O 2 J=I,N F2(I,J)=-V0(I,J) C A L L MST(AFF,F2,N,NA) IF(IGB.EQ. 2) R E T U R N C A L L M U L T (B ,MA,NA,GK.NA, NA,G, NA,NA, N,M, N) C A L L MULT3(G, NA, NA,PF, NA,NA,P,NA, NA, N, N, N, N, AFF, NA) C A L L M S T (AFF,F2,N, NA) RETURN END ***************
* ~****~***************
* CALCULATION OF F= F-(A+A')
*
*
WHERE
*
*
A(N,N), F (N,N), N ~< N A
*
*************************************
S U B R O U T I N E MST(A,F,N,NA) IMPLICIT REAL*8 (A-H,O-Y) D I M E N S I O N A(NA,NA) ,F(NA,NA)
364
D O 2 I=I,N D O 2 J=I,N A(I,J)=A(I, J)+A(J,I) A(J,I)=A(I,J) D O 4 I=I,N D O 4 J=I,N F (1,J) =F (I,J)-A (I,J) RETURN END
*** CALCULATION OF - F 3 ( K , S , P ) SUBROUTINE
***
F3KSP(E, M,N,IGB,AFF,D, F3,NA,MA, LA)
IMPLICIT REAL*8 ( A - H , O - Y ) COMMON / M A T S S / A ( 1 5 , I S ) , B ( 1 5 , 5 ) , C ( 5 , 1 5 ) . A K ( 5 , 1 5 ) COMMON /MATP2/ P L ( I 5 , I 5 ) o P F ( I S , 1 5 ) COMMON /MATL1/ S ( 1 5 , 1 5 ) , P ( 1 5 , 1 5 ) , V 0 ( 1 5 , 1 5 ) COMMON / G R A D S / G A ( 1 5 , 1 5 ) , G K ( 1 5 , 1 5 ) DIMENSION AFF (NA, NA), E (NA, NA). D (NA, NA ). F3 (NA, NA) CALL MULT3(S,NA,NA,PL,NA,NA,GA,NA,NA,N,N,N,N,AFF,NA) DO 2 I = I , N DO 2 J = I , N F3(I,J)=0 CALL MST ( A F F , F 3 , N , NA) IF(IGB.EQ.2)
RETURN
DO 4 I = I , N DO 4 J = I , M D(I,J)=E(J,I) CALL MULT 3 (D, NA, NA, G K, NA, N A, PF, NA, NA, N, M, N, N, AFF, NA) CALL MST ( A F F , F 3 , N , NA) RETURN END
*** GRADIENT CALCULATION *** SUBROUTINE G R A D K ( E , D , A C , N, M,NL, N A , M A , L A , G )
365
IMPLICIT REAL*8 ( A - H , O - Y ) COMMON /MATSS! A ( 1 5 , 1 5 ) , B ( 1 5 , 5 ) , C ( 5 , 1 5 ) , A K ( 5 , 1 5 ) COMMON /MATP1/ Q ( 1 5 , 1 5 ) , R ( 5 , 5 ) COMMON /MATPZ/ P L ( 1 5 , 1 5 ) , P F ( 1 5 , 1 5 ) COMMON / M A T L I / S ( 1 5 , 1 5 ) , P ( 1 5 , 1 5 ) , V 0 ( 1 5 , 1 5 ) COMMON /MATL2/ P M U ( 1 5 , 1 5 ) , S L A ( 1 5 , 1 5 ) COMMON / G R A D S / G A ( 1 5 , 1 5 ) , G K ( 1 5 , 1 5 ) DIMENSION AC (NA, NA) ,E (NA, NA), G (NA, NA) ,D (NA, NA)
CALL MULT ( E , N A , NA,PMU,NA, NA, G, NA, NA, M, N,N) DO 2 I=I,M DO 2 J = I , N A C (I,J)=B(J,I) C A L L M U L T 3 (AC,NA, NA, SLA,NA,NA,P,NA, NA, M, N, N, N,D, NA) D O 4 I=l,M D O 4 J=l,N G(I,J)=G(I,J)+D(I,J) IF(IGB.EQ.2)
GO TO 6
CALL MULT3 (R,MA, MA, GK,NA, NA, PF, NA, NA, M, M, N, N , A C , NA) CALL M U L T ( A C , N A , N A , P , N A , N A , D , N A , N A , M, N,N) DO 5 I=I,M DO 5 J = I , N G(I,J)=G(I,J)+D(I,J) IF(NL.EQ.N) R E T U R N D O 8 I=I,N D O 8 J=I,NL AC(I,J)=C (I,I) CALL MULT(G,NA,NA,AC, NA,NA,D,NA,NA,M.N,NL) DO 10 I=I,M DO 10 J = I , N L 10
G(I,J)=D (I,J) RETURN END
SUBROUTINE MULT (A, N A , M A , B , N B , M B , C , NC, MC, N, M,L) ********************************* ******************* ****** * TWO REAL MATRICES MULTIPLICATION : C=A.B *
A (N,M),
N x( N A ,
M ~< MA
* *
366 *
B
(M,L),
M ,,< NB,
L 4 MB
*
*
C
(N,L),
N k< NC,
L x< MC
*
IMPLICIT
(A-H,O-Y)
REAL*8
DIMENSION
A(NA,NA),B(NB,NB),C(NC,NC)
D O I I=I,N D O I J=I,L C(I,J)=0.D0 DO
I K=I,M
C (I, J ) = C (1, J)+A (I, K)*B
(K, J)
RETURN END
*************************************************************** * THREE * THE
REAL
MATRICES
MATRICE
MULTIPLICATION
DIMENSION
ARE
: Q
= A.B.C
:
* *
*
A(NpM),
N,
M x< MA
*
*
B ( M , L ) , M,
L ~ MB
*
*
C(L,K),
*
QQ(N,K), N ~
SUBROUTINE
L x< NC, K ,,< MC
*
NQ, K < N O
*
MULT3(A,NA,MA,B,NB,MB,C,NC,MC,
N,M,L,K,QO,NQ)
IMPLICIT R E A L * 8 (A-H,O-Y) D I M E N S I O N A (NA, MA), B (NB,MB),
C (NC, MC),
D O 2 I=I,N D O 2 J=I,K S=0 D O I II=I,M D O 1 JJ=I,L S=S+A (I,11)*B (II,J J) *C (JJ. J) QQ(I,J)=S CONTINUE RETURN END SUBROUTINE PRINT (A, M, N, MMAX, IT)
QQ(NO_,
NQ)
367 ********************************************************* * REAL MATRIX *
A:MxN
WRITING
SUBROUTINE
*
* MMAX M a x i m a l d i m e n s i o n * A as specified * the
*
Mx<MMAX
calling
in the
of the
dimension
rows
of the
statement
program.
of
matrix
* * *
* IT=] FOR WRITING * ********************************************************* R E A L * 8 A ( M M A X , 1)
IF (IT.NE.I) G O T O 6 K=(N-I)/I0+i D O 3 KK=I,K NN=I0 D O 2 I=I,M IF (N.GT.10*KK) G O T O l NN=N-10* (KK-I) CONTINUE WRITE(6,5) (A (I, (KK-I)*I0+J) ,J=l ,NN) WRITE(6,4) FORMAT(/]/) F O R MAT ( 10 ( D 1 2 . 4 ) ) RETURN END
REFERENCES
(ACK-84)
ACKERMANNp J .
(1984)
Robustness against sensor failures,
Automatica,
Vol. 20, n o . 2, 211-215. (ALB-83)
ALBERT,
J.
ALOS (1983)
Stabilization of a c l a s s of p l a n t s w i t h p o s s i b l e
loss of o u t p u t s o r a c t u a t o r f a i l u r e s , IEEE T r a n s . A u t . C o n t . , Vol. AC-28, no. 2, 231-233. (AND-71) ANDERSON, B . O . D .
and MOORE, J .
(1971) Linear optimal c o n t r o l , P r e n -
tice Hall. (AND-81a)
ANDERSON,
B.O.D.
and
CLEMENTS,
D.J.
zation of f i x e d modes in d e c e n t r a l i z e d c o n t r o l ,
(1981)
Algebraic characteri-
Automatica,
Vo].
17,
no.
5,
703-712. (AND-81b) ANDERSON, B . O . D .
a n d MOORE, J .
for d e c e n t r a l i z e d c o n t r o l , IEEE T r a n s .
(1981)
Aut.
T i m e - v a r y i n g f e e d b a c k laws
Cont.,
Vol. AC-26, n o .
5, 1133-
1139. (AND-82) ANDERSON, B . O . D .
(1982) T r a n s f e r f u n c t i o n matrix d e s c r i p t i o n of d e c e n -
t r a l i z e d f i x e d m o d e s , IEEE T r a n s . A u t . C o n t . , Vol. AC-27, no. 6, 1176-1182. (AND-84)
ANDERSON,
complexity
in
B.O.D.
and
decentralized
LINNEMANN, control
of
A.
(1984)
interconnected
Spreading the systems,
control
Systems
&
C o n t r o l L e t t e r s , Vol. 5, 1-8. (AOK-72)
AOKI,
M.
(1972)
On
feedback
stabilizability
of
decentralized
dynamic
s y s t e m s , Automatica, Vol. 8, no. 2, 163-173. (AOK-73)
AOKI,
M.,
LI,
M.T.
(1973)
Controllability and
s t a b i l i z a b i l i t y of d e c e n -
t r a l i z e d dynamic s y s t e m s , P r o c . of J o i n t Automatic C o n t r o l C o n f . ( J A C C ) , Ohio State University, U . S . A . , (AOK-76)
AOKI,
M.
(1976),
278-286.
On d e c e n t r a l i z e d s t a b i l i z a t i o n a n d dynamic a s s i g n m e n t
p r o b l e m s , J . o f I n t . Economics, Vol. 6, 143-171. (ARM-81)
ARMENTANO,
V.A.
and
SINGH,
d e c e n t r a l i z e d c o n t r o l l e r initialisation
M.G.
(1981)
problem,
8th
A new
approach
World C o n g r e s s
to t h e
of IFAC,
P a p e r 41.2, Kyoto, J a p a n . (ARM-82)
ARMENTANO,
decentralized
V.A.
fixed
and
modes
SINGH,
with
M.G.
reduced
(1982)
A procedure
information
exchange,
to
eliminate
IEEE T r a n s .
A u t . C o n t . , Vol. AC-27, no. 1, 258-260. (BAR-72)
BARTELS,
R.H.
and
STEWART,
G.W.
(1972)
AX + XB = C, Commun. ACM, Vol. 15, no. 9, 820.
Solution of m a t r i x e q u a t i o n
369
(BEL~70) BELLMAN,
R.
(1970) I n t r o d u c t i o n
to m a t r i x a n a l y s i s )
Me G r a w - H i l l ,
2nd
e dition. (BER-81) BERNUSSOU, J . a n d GEKOMEL, J . C .
(1981) An e a s y way to find g r a d i e n t
m a t r i x of composite matricial f u n c t i o n s ,
IEEE T r a n s .
Aut.
Cont.,
Vol. A C - 2 6 ,
n o . Z, 538-540. (BER-82)
BERNUSSOU,
CALVET,
J.L.
J. and TITLI, (1982)
A. w i t h t h e c o l l a b o r a t i o n of AUTHIE, G. a n d
Interconnected
dynamical
systems:
Stability:
Decom-
position and Decentralization, North-Holland. (BIN-78)
BINGULAC,
S.P.
(1978) C a l c u l a t i o n of d e r i v a t i v e s
nomials, IEEE T r a n s . (BOG-61)
BOGLIUBOV,
Aut. Cont.,
N.N.
of c h a r a c t e r i s t i c
poly-
Vol. AC-23, n o . 4, 751-753.
a n d MITROPOLSKY,
Yu.A.
(1961) A s y m p t o t i c m e t h o d s
in t h e t h e o r y of n o n - l i n e a r o s c i l l a t i o n s , New York : G o r d o n B r e a c h . (BOW-76) BOWIE, W.S. (1976) A p p l i c a t i o n of g r a p h t h e o r y in c o m p u t e r s y s t e m s , J . Com. a n d I n f . S c i . , (BRA-70) BRASCH,
F.M. a n d PEARSON,
c o m p e n s a t o r s ,IEEE T r a n s .
J.B.
Aut. Cont.,
(]970)
dynamic
(1981) A new a l g o r i t h m f o r d e t e r m i -
controllability, Int. J. Cont.,
(CAL-78) CALOVIC, M., DJOROVIC,
Pole p l a c e m e n t u s i n g
Vol. AC-15, 34-43.
(BUR-81) BURROWS, C . R . a n d SAHINKAYA M.N. ning structural
Int.
Vol. 5, 9-31.
Vol. 33, no. 2, 379-392.
M. a n d SILJAK,
D.D.
(1978) D e c e n t r a l i z e d a p -
p r o a c h to a u t o m a t i c g e n e r a t i o n c o n t r o l of i n t e r c o n n e c t e d p o w e r s y s t e m s , I n t e r national Conference
on L a r g e
High-volta.~e
Electric Systems
(CIGRE),
Paris,
Certain
consideration
France. (CHE-B1)
CHEN,
Y.
and
SING}I,
M.G.
(1981)
model-following m e t h o d of d e c e n t r a l i z e d c o n t r o l ,
practical
in
P r o c . IEE, Vol. 128, p a r t D . ,
no. 4, 149-155. (CHE-84)
CHEN,
Y.,
MAHMOUD, M.S.
diagonalization procedure
a n d qINGH,
M.G.
(1984) An i t e r a t i v e b l o c k -
for d e c e n t r a l i z e d optimal c o n t r o l , I n t . J .
Syst.
Sci.,
Vol. 15, n o . 5, 563-573. (COR-76a)
CORFMAT,
through
J.P.
and
specified input
MORSE,
channels,
A.S.
SIAM J .
(1976)
Control
Cont.
and Opt.,
of l i n e a r Vol.
I4,
systems no.
1,
163-175. (COR-76b)
CORFMAT,
J.P. and M O R S E ,
A.S.
(1976) Decentralized
control of linear
multivariable systems, Automatica, Vol. 12, no. 5, 479-495. (DAV-68)
DAVISON,
E.J.
and
MAN,
F.T.
(1973) The
numerical
solution
of
A'Q+QA =-C, IEEE Trans. Aut. Cont., Vol. AC-13, 448-449. (DAY-73)
DAVISON,
E.J., R A U ,
N.S. and P A L M A Y
tralized control of a power
system
F.V.
(1973) The optimal decen-
consisting of a number
of interconnected
synchronous machines, Int. J. Cont., Vol. 18, no. 6, 1313-1328. (DAY-74)
DAVISON,
transmission
E.J.
and
WANG,
W.H.
(1974) Properties
zeros of linear mu]tivariable time-invariant
Vol. 10, 643-658.
and
calculation of
systems,
Automatica,
370
(DAV-75)
DAVISON,
E.J.
and
GOLDENBERG,
general servomechanism problem:
A.
(1975)
The
robust
the servo-compensator,
control
of a
A u t o m a t i c a , Vol. 11,
461-471. (DAV-76a) DAVISON, multivariable
E.J.
(1976) D e c e n t r a l i z e d s t a b i l i z a t i o n a n d r e s u l a t i o n in l a r g e
systems,
optimization and
In
Direction
in
large scale systems
decentralized
(editors .. HO,
control, Many-person Y.C.
2rid M I T T E R
S.),
Plenum Press, 303-323. (DAV-76b)
DAVISON,
E.J. (1976) Multivariable tuning regulators • the feed-forward
and robust control of a general servomechanism
problem,
IEEE
Trans.
Aut.
Cont., Vol. AC-21, 35-47. (DAV-76c)
DAVISON,
E.J.
(1976) The
robust
decentralized
control of a general
servomechanism problem, IEEE Trans. Aut. Cont., Vol. AC-21, no. 1, 14-24. (DAV-76d)
DAVISON,
E.J.
(1976) The robust control of a servomechanism
for linear time-invariant multivariable systems,
IEEE Trans.
problem
Aut. Cont., Vol.
AC-21, 25-34. (DAV-76e)
DAVISON,
E.J. and W A N G ,
W.H.
(1976) Remark on multiple transmission
z e r o s of a s y s t e m , A u t o m a t i c a , Vol. 12, 195. (DAV-77a)
DAVISON,
E.J.
(1977)
Connectability
and
structural
controllability
of
composite s y s t e m s , A u t o m a t i c a , Vol. 13, ]09-123. (DAV-77b) DAVISON,
E.J.
(1977) T h e r o b u s t d e c e n t r a l i z e d s e r v o m e c h a n i s m p r o b l e m
with extra stabilizing control agents, IEEE
Trans.
Aut.
Cont.,
Vol. AC-22,
no. 2, 256-259. (DAV-78a) DAVISON,
E.J.
(1978) D e c e n t r a l i z e d r o b u s t
using tuning regulators, (DAV-78b)
DAVISON,
obtaining
E.J.,
IEEE T r a n s . GESING,
c o n t r o l of u n k n o w n
Aut. Cont.,
systems
Volo A C - 2 3 , n o . 2, 276-289.
W. a n d WANG, W.H.
(1978)
An a l g o r i t h m for
t h e minimal r e a l i z a t i o n of a l i n e a r t i m e - i n v a r i a n t s y s t e m a n d d e t e r -
mining if a s y s t e m is s t a b i l i z a h l e - d e t e c t a b l e ,
IEEE T r a n s .
Aut.
Cont.,
Vol.
A C - 2 3 , no. 6, 1048-1054. (DAV-79a)
DAVISON,
chanism
IEEE T r a n s . (DAV-79b)
E.J.
problem
(1979)
for
The robust
composite
systems
decentralized with
c o n t r o l of a s e r v o m e -
input-output
interconnections,
A u t . C o n t . , Vol. 24, no. 2, 325-327.
DAVISON,
E.J.
and
GESING,
W.
(1979)
Sequential stability and opti-
mization of l a r g e - s c a l e d e c e n t r a l i z e d s y s t e m s , A u t o m a t i c a , Vol. 15, 307-324. (DAV-81)
DAVISON,
E.J.
the
multivable
robust
m e t h o d s , IEEE T r a n s . (DAV-82) DAVISON, trollers
for
E.J.
the
a n d FERGUSON,
I.
servomechanism Aut. Cont.,
a n d CHANG,
robust
(1981) problem
T h e d e s i g n of c o n t r o l l e r s for using
parameter
optimization
Vol. AC-26, no. 1, 93-110. T.
(198Z) T h e d e s i g n of d e c e n t r a l i z e d c o n -
servomechanism
problem
m e t h o d s , A m e r i c a n Automatic C o n t r o l C o n f e r e n c e ,
using parameter
optimization
Arlington, Virginia, U.S.A.,
905-909. (DAV-83) D A V I S O N ,
E°J. and O Z G U N E R ,
U. (1983) Characterization of decentralized
fixed modes for interconnected systems, Automatica, Vol. 19, no. 2, 169-182.
371
(DAV-85)
DAVISON,
E.J.
and
WANG,
S.H.
(1985)
A characterization
t r a l i z e d f i x e d modes in t e r m s of t r a n s m i s s i o n z e r o s ,
IEEE T r a n s .
of d e c e n -
Aut.
Cont.,
Vol. A C - 3 0 , no. 1, 81-82. (DES-?4)
DESOER,
transfer
C.A.
and
SCHULMAN,
D.
(1974)
Zeros
function and their dynamical interpretation,
and
poles
IEEE T r a n s .
of
Circ.
matrix Syst.,
Vol. GAS-21, 3-8. (EVA-84)
EVANS,
F.J.
and
KRUSER,
M.
(1984)
Pole a s s i g n m e n t in d e c e n t r a l i z e d
s y s t e m s : A s t r u c t u r a l a p p r o a c h , P r o c . IEE, Vol. 131, p a r t D, n o . 6, 229-232. (FAD-63)
FADDEEV,
D.K.
and
FADDEEVA,
V.N.
(1963)
C o m p u t a t i o n a l m e t h o d s of
l i n e a r a l g e b r a , F r e e m a n , 288. (FES-79)
FESSAS,
P.S.
(1979) A n o t e on )An example in d e c e n t r a l i z e d c o n t r o l s y s -
t e m s ' , IEEE T r a n s . (FES-80)
FESSAS,
P.S.
Aut. Cont.,
Vol. A C - 2 4 , 669.
(1980) D e c e n t r a l i z e d c o n t r o l of l i n e a r d y n a m i c a l s y s t e m s via
polynomial m a t r i x m e t h o d s : I - Two i n t e r c o n n e c t e d Cont.,
Vol.
Cont.,
Vol. 32, n o . 1, 127-147.
30, n o .
(FLE-63) FLETCHER,
2, 259-276. I I - A r b t t r a r y
R. a n d PONELL, M . J . D .
m e t h o d for minimization, C o m p u t e r J . , (FOS-77) FOSSARD,
interconnected
systems,
Int.
J.
Int.
J.
(1963) A r a p i d l y c o n v e r g e n t d e s c e n d
Vol. 6, 163-663.
A. (1977) M u l t i v a r i a b l e s y s t e m s c o n t r o l , N o r t h - H o l l a n d .
(GAN-79) GANTMACHER, F . R . (GER-79a)
scalar systems,
GEROMEL,
J.C.
(1979) T h e t h e o r y of m a t r i c e s , C h e l s e a , N e w - Y o r k .
and
BERNUSSOU,
J,
(1979)
An a l g o r i t h m f o r optimal
d e c e n t r a l i z e d r e g u l a t i o n of l i n e a r q u a d r a t i c i n t e r c o n n e c t e d s y s t e m s , A u t o m a t i c s , Vol. 14, 489-491. (GER-79b)
GEROMEL, J . C .
(1979)
interconnect~s : Aspects
Contribution
~ P~tude
de d d c e n t r a l i s a t i o n ,
Th~se
des syst~mes
dynamiques
de D o c t o r a t d ' E t a t ,
Uni-
v e r s i t d Paul S a b a t i e r , Toulouse, F r a n c e . (GER-82)
GEROMEL, J . C .
of d y n a m i c s y s t e m s , (GER-84)
GEROMEL,
J.C.
a n d BERNUSSOU,
J.
(1982) Optimal d e c e n t r a l i z e d c o n t r o l
A u t o m a t i c s , Vol. 13, n o . 5, 545-557. and
PERES,
P.L.D.
(1985)
Decentralized load-frequency
c o n t r o l , IEE P r o c e e d i n g s , Vol. 132, P t . D, n ° 5, 225-230. (GLO-76)
GLOVER,
K. a n d SILVERMAN, L.M.
c o n t r o l l a b i l i t y , IEEE T r a n s . (HAR-65)
HARARY,
F.,
Aut. Cont.,
NORMAN,
R.Z.
and
(1976) Characterization of s t r u c t u r a l Vol. A C - 2 1 , 534-537. CARTWRIGHT,
D,
models : An i n t r o d u c t i o n to t h e t h e o r y of d i r e c t e d g r a p h s , (HAS-78a) for
HASSAN, linear
M.F.
a n d SINGH,
interconnected
M.G.
dynamical
(1978)
systems,
Robust Proc.
(1965)
Structural
Wiley, N e w - Y o r k .
decentralized controller IEE,
Vol.
125,
no.
5,
429-432. ( H A S - ? 8 b ) HASSAN, M . F . , tralized 483-488.
SINGH, M.G. a n d T I T L I ,
A.
(1979) N e a r optimal d e c e n -
c o n t r o l with a p r e - s p e c i f i e d d e g r e e of s t a b i l i t y ,
Automatics,
Vo]. 15,
372
(HAS-80)
HASSAN,
M.F.
and
SINGH,
M.G.
(1980)
Decentralized
controller
with
o n l i n e i n t e r a c t i o n t r a j e c t o r y i m p r o v e m e n t , P r o c . IEE, Vol. 127, p a r t D, n o . 3, 142-148. (HOS-77)
HOSKINS,
W.D.,
MEEK,
D.S.
s o l u t i o n of A T o + 0 A = - C,
and
WALTON,
IEEE T r a n s .
Aut.
D.J.
(1977)
Cont.,
The numerical
Vol. AG-15,
no.
5,
881-885. (HUJ-84)
HU,
Y.Z.
a n d JIANG,
W.S.
(]984)
f i x e d modes a n d t h e i r a p p l i c a t i o n ,
New c h a r a c t e r i z a t i o n
9th C o n g r e s s of I . F . A . C . ,
of d e c e n t r a l i z e d Budapest,
Hun-
gary). (IKE-79)
IKEDA,
ture, (IKE-80)
M. a n d SILJAK,
IEEE T r a n s .
IKEDA,
D.D.
Ant. cont.,
M. a n d SILJAK,
(1979)
C o u n t e r e x a m p l e s to F e s s a s c o n j e c -
Vol. A C - 2 4 , n o . 4, 670. D.D.
(1980) O v e r l a p p i n g
decompositions, expan-
s i o n s a n d c o n t r a c t i o n of d y n a m i c s y s t e m s , L a r g e Scale s y s t e m s , Vol. 1, 29-38. (IKE-81)
IKEDA,
M.,
SILJAK,
D.D.
a n d WHITE, D . E .
(1981) D e c e n t r a l i z e d c o n t r o l
with o v e r l a p p i n g i n f o r m a t i o n s e t s , J O T A , Vol. 34, n o . 2, 279-310. (ISA-73) ISAKSEN, L. a n d PAYNE, H . J . by augmentation Aut. Cont.,
with a p p l i c a t i o n
(1973) S u b o p t i m a l c o n t r o l of l i n e a r s y s t e m s to f r e e w a y
traffic
regulation,
IEEE T r a n s .
Vol. A C - 1 8 , 210-219.
(JAM-83) JAMSHIDI,
M. (1983) L a r g e - S c a l e s y s t e m s : Modeling a n d c o n t r o l ,
North-
Holland. N e w - Y o r k . (JOH-84) JOHNSTON, of t h e
R.D.,
generic rank
BARTON,
G.W. a n d BRISK,
of s t r u c t u r a l
matrices,
Int.
M.L. J.
(1984) D e t e r m i n a t i o n
Cont.,
Vol.
40,
no.
2,
257-264. (KAI-80) KAILATH, T . (KAL-62)
KALMAN,
(1980) L i n e a r s y s t e m s , P r e n t i c e - H a l l .
R.E.
(1962)
Nat. A c a d . Sci. U . S . A . , (KAT-81)
KATTI,
S.K.
Canonical
structure
of d y n a m i c a l s y s t e m s ,
Proc.
Vol. 48, 596-600.
(1981)
Comments on D e c e n t r a l i z e d
c o n t r o l of l i n e a r
multi-
v a r i a b l e s y s t e m s , A u t o m a t i c a , VoI. 17, no. 4, 665. (KAU-68) KAUFMANN, A. (1968) I n t r o d u c t i o n h la e o m b i n a t o r i q u e en r u e
des appli-
cations, Dunod, Paris, France. (KAW-81) KAWASAKI, N. a n d SHIMEMURA, S.
(1981) A m e t h o d of d e c i d i n g w e i g h -
t i n g m a t r i c e s in a n L Q - p r o b l e m to locate all poles in t h e s p e c i f i e d r e g i o n , w o r l d c o n g r e s s of I . F . A . C . , (KEV-75) KEVORKIAN, A.K.
(1975) S t r u c t u r a l a s p e c t s of l a r g e d y n a m i c s y s t e m s , 6th
w o r l d c o n s r e s s of I . F . A . C . , (KLE-66)
KLEINMAN,
Riccati e q u a t i o n ,
D.L.
8th
Kyoto, J a p a n .
(1966)
p a r t III. A, p a p e r 19.3, B o s t o n , U . S . A . On t h e l i n e a r r e ~ u I a t o r p r o b l e m a n d t h e m a t r i x
MIT E l e c t r o n i c S y s t e m s
Lab.,
Mass.
Tech.
Rept.
ESL-R271
(1978)
Controlla-
Cambridge, U.K. (KOB-78) KOBAYASHI, bility under
H.,
HANAFUSA,
H. a n d YOSHIKAWA,
decentralized information structure,
AC-23, n o . 2, 182-188.
T.
IEEE T r a n s .
Aut. Cont.,
Vol.
373
(KOB-82)
KOBAYASHI,
H.
and
YOSHIKAWA,
T.
(1982)
Graph-Thoeretic
to c o n t r o l l a b i l i t y a n d l o c a l i z a b i l i t y of d e c e n t r a l i z e d c o n t r o l , Cont., (KOK-76)
approach
IEEE T r a n s .
Aut.
Vol. A C - 2 7 , n o . 5, 1096-1108.
KOKOTOVIC,
P.V.,
O'MALLEY,
R.E.
a n d SANNUTI,
P,
(1976)
p e r t u r b a t i o n a n d o r d e r r e d u c t i o n in c o n t r o l t h e o r y • An o v e r v i e w ,
Singular
Automatica,
Vol. 12, 123-132. (KRO-67) KROFT, (KWA-72)
D. (1967) All p a t h s t h r o u g h a maze, P r o c . IEEE, Vol. 55, 88-90.
KWAKERNAAK,
Wiley I n t e r s c i e n c e , (LAN-64)
H. a n d SIVAN,
R.
(1972)
L i n e a r optimal c o n t r o l s y s t e m s
New-York.
LANCASTER,
P.
(1964) On e i g e n v a l u e s of m a t r i c e s d e p e n d e n t o n a p a r a -
m e t e r , N u m e r i s c h e M a t h e m a t i k , Vol. 6, 377-387. (LEV-70) LEVINE, W.S. a n d ATHANS, M. (1970) On t h e d e t e r m i n a t i o n of t h e optimal constant output Aut. Cont., (LIA-69)
LIN,
f e e d b a c k g a i n s for l i n e a r m u l t i v a r i a b l e s y s t e m s ,
Vol. AC-15, no. 1, 44-48.
P.M.
and
System Theory, (LIE-83)
IEEE T r a n s .
ALDERSON,
G.E.
Urbana, U.S.A.,
LINNEMANN,
A.
(1983)
(1969)
7th
Alberton
Conf.
Circuit and
196.
Fixed
modes
in
parametrized
systems,
Int.
J.
C o n t . , Vol. 38, no. 2, 319-335. (LIE-84) LINNEMANN,
A.
(1984) D e c e n t r a l i z e d c o n t r o l of d y n a m i c a l l y i n t e r c o n n e c t e d
s y s t e m , IEEE T r a n s . (LIN-74) LIN, C . T .
Aut. Cont.,
(1974) S t r u c t u r a l
Vol. A C - 2 9 , n o . 11, 1052-1054. controllability,
IEEE T r a n s .
Aut.
Cont.,
Vol.
AC-19, n o . 3, 201-208. (LIU-68) LIU, C . L .
(1968) I n t r o d u c t i o n to c o m b i n a t o r i a l m a t h e m a t i c s , C h a p t e r 11, Mc
Graw-Hill, N e w - Y o r k . (LOC-77) LOCATELLI, m e n t : role
A.,
and
SCHIAVONI,
choice of
the
N. a n d T A R A N T I N I ,
underlying
A.
information
(1977) Pole p l a c e -
pattern,
Ricerche
di
A u t o m a t i c a , Vol. 18, n o . 1, 107-126. (LOC-83)
LOCATELLI,
A.,
SCATTOLINI,
R.
a n d SCHIAVONI,
N.
(1983)
Two p r o -
blems in t h e d e s i g n of d i s c r e t e d e c e n t r a l i z e d c o n t r o l s y s t e m s s u b j e c t to finite perturbations, (MAC-76)
4 t h IMA C o n f e r e n c e , C a m b r i d g e , E n g l a n d .
MACFARLANE,
A.G.3.
and
KARCANIAS,
linear multivariable systems : a survey plex-variable theory, Int. J. Cont.,
N.
(1976)
of t h e a l g e b r a i c ,
Poles a n d
zeros
of
g e o m e t r i c a n d com-
Vol. 24, n o . 1, 33-?4.
(MAL-85) MALINOWSKI, K. a n d SINGH, M.G. (1985) C o n t r o l l a b i l i t y a n d o b s e r v a b i l i t y of e x p a n d e d s y s t e m w i t h o v e r l a p p i n g d e c o m p o s i t i o n s ,
A u t o m a t l c a , Vol. 21, no.
2, 303-308. (MAS-56)
MASON,
graphs,
S.J.
(1956)
Feedback
P r o c . I n s t . Radio E n g r . ,
theory-further
properties
of s i g n a l
flow
no. 44, 920-926.
(MEE-73) MEERKOV, S.M. (1973) V i b r a t i o n a l c o n t r o l , A u t o m a t i o n a n d Remote c o n t r o l , Vol. 31, 201-209. (MEE-80)
MEERKOV,
S.M.
(1980)
a p p l i c a t i o n , IEEE T r a n s .
Principle
Aut. cont.,
of
vibrational
control :
Vol. A C - 2 5 , n o . 4, 755-762.
Theory
and
374
(MIC-78) MICHEL, A . N . , interconnected IEEE T r a n s .
MILLER, R . K .
systems :
a n d TANG, W. (1978) L y a p u n o v s t a b i l i t y of
decomposition
Circ. Syst.,
(MOM-83) MOMEN, S. a n d EVANS, F . J . lized s y s t e m s ,
Part
into
strongly
connected
subsystems,
Vol. CAS-25, 799-809. (1983) S t r u c t u r a l l y f i x e d modes in d e c e n t r a -
I : Two c o n t r o l s t a t i o n s ,
Part
II : G e n e r a l c a s e ,
Proc.
IEE, Vol. 130, p a r t D . , no. 6, 313-327, (MOO-81)
MOORE,
B.C.
Controllability,
(1981)
Principal
observability
and
component
analysis
model r e d u c t i o n ,
in
linear
IEEE T r a n s .
systems :
Aut.
cont.,
Vol. A C - 2 6 , no. 1, 17-32. (MOG-66) MORGAN, B . S .
(1966)
Computational procedure
for t h e s e n s i t i v i t y of a n
e i g e n v a l u e , E l e c t r o n i c s L e t t e r s , Vol. 26, 197-198. (MOR-73) MORSE, A . S .
(1973) S t r u c t u r a l i n v a r i a n t s of l i n e a r m u l t i v a r i a b l e s y s t e m s ,
SIAM J. C o n t r o l , Vol. 11, n o . 3, 446-465. (MOA-80)
MORARI,
M.
and
STEPHANOPOULOS,
G.
(1980)
Part
II
a s p e c t s a n d t h e s y n t h e s i s of a l t e r n a t i v e f e a s i b l e c o n t r o l s h e m e s ,
:
Structural
A.I.
Ch.
E.
J 1 , Vol. 26, 245. (OZG-82) OZGUNER, U. a n d DAVISON, E . 5 . structural perturbations,
(1982) D e c e n t r a l i z e d r e t u n a b i l i t y u n d e r
A m e r i c a n C o n t r o l C o n f e r e n c e , A r l i n g t o n , VA, U . S . A .
(OZG-85) OZGUNER, U. a n d DAVISON, E . J .
(1985) Sampling a n d d e c e n t r a l i z e d fixed
modes, A m e r i c a n C o n t r o l C o n f e r e n c e , B o s t o n , MA, U . S . A . (PAP-84)
PAPADIMITRIOU,
structurally (PAR-74)
H.
and
J.
(1984),
fixed modes, Systems & Control Letters,
PARASKEVOPOULOS,
Eigenvalue
TSITSIKLIS,
P.N.,
TSONIS,
s e n s i t i v i t y of l i n e a r
e i g e n v a l u e s , IEEE T r a n s . (PEK-79) PETKOVSKI,
D.B.,
time-invariant
Aut. Cont., a n d RAKIC,
g a i n s for o u t p u t - c o n s t r a i n e d
C.A.
A simple c r i t e r i o n for
Vol. 4, 333-337.
a n d TZAFESTAS, control
systems
S.C. with
(1974)
repeated
Vol. AC-19, 610-612. M.
(1979) A s e r i e s s o l u t i o n of f e e d b a c k
regulators,
Int.
J.
Cont.,
Vol. 30, n o .
4, 661-
668. (PEK-83) PETKOVSKI,
D.B.
(1983) R o b u s t d e c e n t r a l i z e d c o n t r o l s y s t e m d e s i g n s w i t h
a p p l i c a t i o n to D C / A C p o w e r
systems,
IFAC/IFORS
Symposium on L a r g e - S c a l e
S y s t e m s : T h e o r y a n d A p p l i c a t i o n , Warsaw, P o l a n d , 11-15. (PEK-84a)
PETKOVSKI,
D.B.
linear perturbation tion T h e o r y ,
(1984) R o b u s t n e s s
of d e c e n t r a l i z e d c o n t r o l s u b j e c t to
in t h e s y s t e m d y n a m i c s ,
P r o b l e m s of c o n t r o l a n d I n f o r m a -
Vol. 13, n o . 1, 3-12.
(PEK-84b) PETKOVSKI,
D.B.
ling u n c e r t a i n t i e s ,
(]984) R o b u s t u n s s of c o n t r o l s y s t e m s s u b j e c t to model-
R.A.I.R.O.
A u t o m a t i q u e / S y s t e m s A n a l y s i s a n d C o n t r o l , Vol.
18, no. 3, 315-327. (PET-84)
PETEL,
R.V.
and
M-rSRA, P.
(1984)
z e r o s with a p p l i c a t i o n in c h a r a c t e r i z i n g
f e r e n c e on Decision a n d C o n t r o l ( G . D . C . ) , (PIC-83a)
PIGHAI,
structurally
V.,
SEZER,
A numerical
test
for
d e c e n t r a l i z e d fixed modes,
transmission 23rd C o n -
Las V e g a s , U . S . A .
M.E. a n d SILJAK, D . D .
(1983) A g r a p h i c a l t e s t for
fixed m o d e s , Mathematical Modelling, vol. 4, 339-348.
375
(PIC-83b)
PICHAI,
V.,
SEZER,
M.E.
and
SILJAK,
D.D.
(1983)
A graph-theoretic
a l g o r i t h m f o r h i e r a r c h i c a l d e c o m p o s i t i o n of d y n a m i c s y s t e m s with a p p l i c a t i o n to e s t i m a t i o n a n d c o n t r o l , IEEE T r a n s .
Syst.
Man. & C y b . ,
Vol. SMC-13, n o .
3,
197-207. (PIC-84)
PICHAI,
V.,
characterization
SEZER, of
M.
and
SILJAK,
D.D.
modes,
(1984)
structurally
fixed
ANDERSON,
B . O . a n d MORSE, A . S .
A
Automatica,
graph-theoretic
Vol.
20,
no.
2,
247-250. (POT-79) P O T T E R ,
J.M.,
c o n t r o l of a t w o - c h a n n e l s y s t e m ,
IEEE T r a n s .
Aut.
(1979) S i n g l e - c h a n n e l
Cont.,
Vol. A C - 2 4 ,
491-
492. (PUR-82) PURVIANCE, J . E . a n d TYLEE, J . L . in d e c e n t r a l i z e d
(1982) S c a l a r s t n u s o i d a l f e e d b a c k laws
control,
21th IEEE C o n f e r e n c e on Decision a n d C o n t r o l ,
Flo-
R.
PEARSON,
Rice
rida, U.S.A. (PRE-81)
PRESCOTT,
and
J.B.
(1981)
Private
V.G.K.
(1969)
Proc.
communication,
U n i v e r s i t y , H o u s t o n , TX. (RAO-69)
RAO,
En~rs., (REI-81)
V.V.B.
and
MURTI,
Inst.
Elec.
Electron.
Vol. 57, 700.
REINSCHKE,
K.J.
(1981) S t r u c t u r a l l y
complete s y s t e m s w i t h minimal i n p u t
a n d o u t p u t v e c t o r s , LarFe Scale S y s t e m s , Vol. 2, 235-242. (REI-83) REINSHKE,
K.J.
(1983) G r a p h - t h e o r e t i c a p p r o a c h to c o n t r o l s y s t e m s , T h i r d
C o n f e r e n c e on System S c i e n c e , L e r c h e n d a l , (REI-84a)
REINSCHKE,
K.J.
(1984)
Norway.
Graph-theoretic
in c e n t r a l i z e d a n d d e c e n t r a l i z e d c o n t r o l ,
Int.
c h a r a c t e r i z a t i o n of f i x e d modes J.
Cont.,
Vol. 39, n o .
4, 715-
729, (REI-84b)
REINSCHKE,
K.J.
(1984)
Graph-theoretic
characterization
of s t r u c t u r a l
p r o p e r t i e s of p a t h s a n d cycle families, 9th world c o n g r e s s of I . F . A . C . , pest, (ROS-65a)
Buda-
Hungary. ROSENBROCK,
H.H.
(1965)
Transfer
m a t r i x of l i n e a r d y n a m i c s y s t e m ,
E l e c t r o n i c s L e t t e r s , Vol. 1, n o . 4, 95-96. (ROS-65b) ROSENBROCK,
H.H.
(1965) S e n s i t i v i t y of a n e i g e n v a l u e to c h a n g e s in t h e
matrix, Electronics Letters, (ROS-70)
ROSENBROCK,
Vol. 1, n o . 10, 278-279.
H.H.
(1970) S t a t e s p a c e a n d m u l t i v a r i a b l e t h e o r y ,
H.H.
(1973) T h e z e r o s of a s y s t e m s ,
Nelson,
London. (ROS-74) 18,
ROSENBROCK, no.
2,
297-299.
(1974)
Correction
to
'The
zeros
Int.
J.
Cont.,
of a s y s t e m ' ,
Vol.
Int.
J.
C o n t . , Vol. 20, 525. (ROY-70)
ROY,
B.
(1970) A l ~ b r e
moderne et th~orie des ~raphes,
Dunod,
Paris,
France. (RUN-85) R U N O L F S S O N ,
T. and M E E R K O V
S.M. (1985) Vibrational-feedback control
of decentralized systems : a design algorithm, IFAC Errors, Boston, MA, U.S.A.
Workshop
on Model|in~
376
(SAE-79) SAEKS, R. (1979) On t h e d e c e n t r a l i z e d c o n t r o l of i n t e r c o n n e c t e d s y s t e m s , IEEE T r a n s . (SEN-79)
SENNING,
Aut. cont.,
M.F.
(1979)
dynamical
Vol. A C - 2 4 , n o . 2, 269-271.
Feasibly
decentrlaized
control,
Ph.
D.
Thesisp
ETH, Z u r i c h , S w i t z e r l a n d . (SER-82)
SERAJI,
H.
(1982) On f i x e d modes in d e c e n t r a l i z e d c o n t r o l s y s t e m s ,
Int.
J . Cont., Vol. 35, no. 5, 775-784. (SEZ-81a) SEZER, M.E. a n d SILJAK,
D.D.
(1981) S t r u c t u r a l l y f i x e d m o d e s ,
Systems
& C o n t r o l L e t t e r s , Vol. 1, n o . 1, 60-64. (SEZ-81b)
SEZER,
M.E.
a n d HUSEYIN,
O.
f e e d b a c k s t a b i l i z a t i o n ' , IEEE T r a n s . (SEZ-81c)
SEZER,
M.E.
stabilization
a n d SILJAK,
of l a r g e
scale
(1981)
Comment on ' D e c e n t r a l i z e d
Aut. Cont.,
D.D.
Vol. A C - 2 6 , no. 2, 547-549.
(1981) o n s t r u c t u r a l
systems,
IEEE
state
Trans.
Aut.
decomposition cont.,
Vol.
and
AC-26,
439-444. (SEZ-83) SEZER, M.E. (1983} Minimal e s s e n t i a l f e e d b a c k p a t t e r n s f o r pole a s s i g n m e n t u s i n g d y n a m i c c o m p e n s a t i o n , 22th IEEE C o n f e r e n c e on Decision a n d c o n t r o l . (SHI-76)
SHIELDS,
multi-input
R.W.
linear
and
PEARSON,
systems,
IEEE
J.B.
(1976)
Trans.
Aut.
Structural Cont.,
Vol.
c o n t r o l l a b i l i t y of AC-21,
no.
2,
203-212. (SIL-73)
SILJAK,
D.D.
perturbations, (SIL-75) SILJAK,
(1973)
On s t a b i l i t y of l a r g e - s c a l e
IEEE T r a n s .
D.D.
Syst.
Man & C y b . ,
system under
structural
415-147.
(1975) C o n n e c t i v e s t a b i l i t y of c o m p e t i t i v e e q u i l i b r i u m ,
Auto-
matica, Vol. 11, 389. (SIL-76) SILJAK, D.D.
a n d SUNDARESHAN, S . K .
l a r g e - s c a l e dynamic s y s t e m s , IEEE T r a n s . (SIL-77) SILJAK,
D.D.
(1976) A multilevel o p t i m i z a t i o n of
Aut. Cont.,
Vol. AC-21, 80.
(1977) On r e a c h a b i l i t y of d y n a m i c s y s t e m s ,
Int.
J.
Cont.,
(1978) L a r g e scale s y s t e m s : S t a b i l i t y a n d s t r u c t u r e ,
North-
Vol. 8, 321-338. (SIL-78) SILJAK, D.D.
Holland, N e w - Y o r k , (SIL-80) SILJAK D . D . Cont.,
U.S.A.
(1980) Reliable c o n t r o l u s i n g multiple c o n t r o l s y s t e m s ,
Int. J.
Vol. 31, 303-329.
(SIL-82a) SILJAK, D.D. a n d al.
(1982) T h e i n c l u s i o n p r i n c i p l e for d y n a m i c s y s t e m s ,
Final r e p o r t DE-ACO37 ET 29138-34, S a n t a Clara U n i v e r s i t y , U . S . A . (SIL-82b)
SILJAK,
analysis
of
D.D., dynamic
PICHAI,
V.
systems,
and
Report
SEZER,
M.E.
DE-ACO37
ET
(1982)
Graph-theoretic
29138-35,
Santa
Clara
University, U.S.A. (SIN-76)
SINGH,
large
M.G.,
HASSAN,
interconnected
M. a n d T I T L I ,
dynamical
systems
A. (1976) A f e e d b a c k s o l u t i o n for
using
the
prediction
principle,
IEEE
Trans. Syst. Man & Cyb., Vol. SMC-6, 223-239. (TAO-84) TAROKH, M. (1984) Fixed modes in decentralized control systems, First European Workshop on Real Time Control of Large Scale Systems, University of Patras,
Greece.
377 (TAR-84) TARRAS, A.M. and TITLI, of d e c e n t r a l i z e d
fixed
modes,
A. (1984) On a new a l g e b r a i c c h a r a c t e r i z a t i o n IEEE I n t e r n a t i o n a l
C o n f e r e n c e on
Computers,
S y s t e m s & Signal P r o c e s s i n g , B a n g a l o r e , I n d i a . (TAR-85)
TARRAS,
modes
fixes,
A.M.
(1985)
sensibilit6
et
Commande
decentralis~e
des
robustesse
param6trique
(in
grands
syst~mes :
French),
Doctorat
t h e s i s no. 5, U n i v e r s i t ~ Paul S a b a t i e r , T o u l o u s e , F r a n c e . (THI-71)
THIRIEZ,
M.
(1971)
proach, R.A.I.R.O., (TRA-84a)
TRAVE L . ,
The
set
covering problem : A group
theoretic ap-
Vol. 3, 84-103.
TARRAS A . M . ,
TITLI A . ,
"Some p r o b l e m s in d e c e n t r a l i z e d
c o n t r o l in p r e s e n c e of f i x e d m o d e s " , 9th world c o n g r e s s of I . F . A . C . ,
Budapest
( H u n g a r y ) , J u l y 1984. (TRA-84b)
TRAVE L . ,
Notion
de
modes
"Commande p a r
retour
de s o r t i e /~ s t r u c t u r e d ~ c e n t r a l i s ~ e :
fixes",
Th~se
de
Doeteur-Ing~nieur,
TARRAS
A.M.,
TITLI
I.N.S.A.
Toulouse
( F r a n c e ) , 1984. (TRA-85)
TRAVE
control
to
L., cancel
unstable
A.,
decentralized
"An
fixed
application
modes",
IEEE
of
vibrational
Trans.
Auto.
C o n t r . , vol. AC-30, n ° 3, p p . 283-286, 1985. (TRA-86a)
TRAVE, L. and TITLI,
structural
A.
(1986) A s e q u e n c i a l algorithm to c o n c l u d e on
c o n t r o l l a b i l i t y of l a r g e scale s y s t e m s ,
I n t e r n a l r e p o r t 85312,
LAAS
d u CNRS, Toulouse, F r a n c e . (TRA-86b)
TRAVE,
L.
and
TITLI,
A.
(1986)
S e q u e n c i a l d e t e r m i n a t i o n of minimal
f e e d b a c k p a t t e r n s avoiding s t r u c t u r a l l y f i x e d m o d e s , 25th IEEE C o n t e r e n c e on Decision and C o n t r o l , A t h e n s , G r e e c e . (TRA-87) TRAVE, L . , TARRAS, A.M. and TITLI, A. (1987) ~4inimal f e e d b a c k s t r u c ture
avoiding
structurally
fixed modes,
Int.
J.
Control.,
Vol.
46,
no.
1,
313-325. (VAN-68)
VAN TRESS,
H.L.
(1968)
Detection,
estimation
ana
moeiulation t h e o r y ,
P a r t I, J o h n Wiley & S o n s , N e w - Y o r k , U . S . A . (VID-83) VIDYASAGAR, M. and VIS~qANADHAM, N. (1983) A l g e b r a i c c h a r a c t e r i z a t i o n of d e c e n t r a l i z e d f i x e d modes, S y s t e m s & C o n t r o l L e t t e r s , Vol. 3, 69-73. (WAN-73a) WANG, S . H .
a n d DAVISON, E . D .
(1973)
P r o p e r t i e s of l i n e a r t i m e - i n v a -
r i a n t m u l t i v a r i a b l e s y s t e m s u b j e c t to a r b i t r a r y o u t p u t and s t a t e f e e d b a c k , IEEE T r a n s . A u t . C o n t . , Vol. AC-18, 24-32. (~/AN-73b) WANG,
S.H.
and DAVISON, E . D .
(1973)
On t h e s t a b i l i z a t i o n of d e c e n -
t r a l i z e d c o n t r o l s y s t e m s , IEEE T r a n s . A u t . G o n t . , Vol. AC-18, 437-478. (~qAN-78a) ~qANG, S . H . a n d DAVISON, E . D .
(1978) Minimization of t r a n s m i s s i o n cost
in d e c e n t r a l i z e d c o n t r o l s y s t e m s , I n t . J . C o n t . , Vol. 28, no. 6, 889-896. (~rAN-78b)
~ANG,
S.H.
(1978)
An example in d e c e n t r a l i z e d c o n t r o l ,
A u t . C o n t . , Vol. AC-23, no. 5, 938.
IEEE T r a n s .
378
(WAN-8Z)
WANG,
S.H.
time-varying
(1982)
controllers,
Stabilization IEEE T r a n s ,
of Aut.
decentralized Cont.,
control
Vol. A C - 2 7 ,
systems no.
3,
via 741-
744,. (WIL-70) ~ILLEMS, J . L .
(1970) S t a b i l i t y t h e o r y of d y n a m i c a l s y s t e m s ,
Nelson, Lon-
don. (~OL-73a) W O L O V I C H ,
BT.A. (1973) O n determining the zeros of state-space systems,
1EEE Trans. Aut. Cont., Vol. AC-18, 542-544. (WOL-73b) ~ O L O V I C H ,
W.A. (1973) O n the numerators and zeros of rational transfer
matrices, IEEE Trans. Aut. Cont. Vo]. AC-18, 544-546. (WOL-74) W O L O W I C H ,
W.A.
(1974) Linear multivariable systems, New-York : Sprin-
ger. (~ON-67) %VONHAM, W.M. (1967) On pole a s s i g n m e n t in m u l t i - i n p u t c o n t r o l l a b l e l i n e a r s y s t e m s , IEEE T r a n s . (WON-74)
WONHAM,
proach,
W.M.
Aut. Cont., (1974)
Springer-Verlag,
(XIN-82) XINOGALAS, T . C . ,
Vol. A C - 1 2 , 660-665.
Linear
multivariable
control :
A
geometric
ap-
Berlin. MAHMOUD, M.S. a n d SINGH, M.G.
(1982) H i e r a r c h i c a l
c o m p u t a t i o n of d e c e n t r a l i z e d gain for i n t e r c o n n e c t e d s y s t e m s ,
Automatica,
Vol.
18, no. 4, 473-478. (YAH-77) Y A H A G I ,
T. (1977) Optimal output feedback control with reduced perfor-
mance index sensitivity, Int. J. Cont., Vol. 25, no. 5, 769-783. (ZlIE-84) Z H E N G ,
Y.F. (1984) The study of local controllabi]ity and observability of
decentralized systems via polynomial models, Internal Report 84-002, Department of M a t h e m a t i c s , E a s t C h i n a Normal U n i v e r s i t y , (ZOU-70) ZOUTENDIJK, G. directions, J.L.
in N o n - l i n e a r P r o s r a m i n $
and RITTER),
Shanghai, China.
(1970) Some a l g o r i t h m s b a s e d on t h e p r i n c i p l e of feasib]e
Academic P r e s s .
( E d i t e d b y ROSEN,
J.B.,
MANGASARIAN
AUTHOR
INDEX
17, 21, 37, 38, 39,
ACKERMANN
296
ALBERT
296
40, 51, 53, 54, 61,
ALDERSON
212
63, 72, 73, 80, 82,
ALOS
296
84, 85, 92, 97, 102,
ANDERSON
39, 48, 50, 72, 76,
115, 150, 155, 175, 179,
87, 95, 98, 99,
180, 197, 235, 236, 260,
i01, 103, 135, 150,
265, 267, 2?0, 271, 2?2,
DAVISON
296, 297, 298, 299, 322
151, 155, 156, 157, 159, 160, 1?2, 175,
DESOER
323
247, 248, 249, 277,
DJOROVIC
289
305, 340
EVANS
21 110, 111, 115, 116, 117, 118, 119, 142, 228
AOKI
39, 236, 289
ARMENTANO
87, 182, 183, 197,
FADDEEV
55
236, 243, 245, 254,
FADDEEVA
55
280,
FERGUSON
97, 267, 296
ATHANS
234, 232, 346
FESSAS
49, 50, 236
BARTELS
281
FLETCHER
241
BARTON
21, 23, 26, 27, 30,
FOSSARD
31
GEROMEL
BOGLIVBOV
172
BRASCH
8, I0, 46, 172
GESING
2, 8, 10 233, 236, 237, 238, 239, 242, 245, 246, 253, 350 61, 267, 271, 272
BRISK
21, 23, 26, 27, 30,
HANAFUSA
110, 111, 112, 113, 150
31
HARARY
23
BURROWS
21
HASSAN
CALOVIC
289
CARTWRIGHT
23
HOSKINS
CHEN
242, 244, 245, 281,
HU
63, 67, 69, 70
285, 288
HUSEYIN
236
CHANG
260, 267, 270
IKEDA
236, 290, 291, 293
CLEMENTS
50, 76, 87, 95, 103,
ISAKSEN
289
135, 15o, 340
JAMSHIDI
20, 157, 236, 241
39, 41, 43, 44, 46,
JIANG
63, 67, 69, 70
48, 49, 50, 76, 77,
BERNUSSOU
233, 236, 237, 238, 239,
CORFMAT
235, 243
242, 245, 253, 380
87, 97, 112, 114, 115 170, 298, 305, 340
2?3, 275, 2??, 281, 282, 285, 288
JOHNSTON
21, 23, 26, 27, 30, 31
380 KAILATH
2, 5, 156
MORGAN
55
KALMAN
3, 4, 6
MORSE
39, 41, 43, 44, 46, 48,
KARCANIAS
321
KATTI
voir (KAT-81)
112, 114, 115, 170, 172,
KAUFMANN
189, 216
298, 305, 323, 340
KAWASAKI
248
MORARI
KERKOVIAN
216
MURTI
145, 212
KLEINMAN
247, 346, 348
NORMAN
23
KOBAYASHI
110, 111, 112, 113,
O'MALLEY
256
150
OZGUNER
80, 82, 84, 85, 92, 97,
49, 50, 76, 77, 87, 97,
23, 55
KOKOTOVIC
256
102, 155, 175, 297, 298,
KROFT
145, 212
299
KRUSER
21, Iii, 115, 117,
KWAKERNAAK LANCASTER
56, 60
PAYNE
289
LEVINE
234, 232, 346
PEARSON
8, I0, 14, 15, 18, Zl,
LI
236
LIN (C.T.)
14, 16, 17,23, 120
PERES
236, 245, 246
LIN (P.M.)
212
PETKOVSKI
247, 256, 257, 258
LINNEMANN
48, 122, 206
PETEL
78, 85
LIU
21
PICHAI
22, 52, 78, 122, 123,
LOCATELLI
138, 202, Z27, 296, 297, 308, 313
POTTER
39, 48, 172
321
POWELL
241
MACFARLANE
PALMAY
267
118, 119, 142, 228
PAPADIMITRIOU
127, 128, i36, 137
65, 248
PARASKEVOPOULOS
59
23, 46, 120, 172
125, 127, 206
242, 244, 245, 273
PURVIANCE
155, 158, 175
279, 280
PRESCOTT
21
MALINOWSKI
291
RAKIC
247
MAN
235
RAO
MAHMOUD
MASON
118, 142
RAV
MEEK
235, 243
REINSCHKE
MEERKOV
161, 162, 163, 164, 166, 169, 172, 174,
145, 212
267 142, 143, 144, 216, 217, 219, 222
ROSENBROCK
43, 45, 49, 55, 319, 320, 322, 323
175 MICHEL
22
ROY
MILLER
22
RUNOLFSSON
189 169, 172, 174, 175
MISRA
78, 85
SAHINKAYA
21
MITROPOLSKY
172
SANNUTI
MOMEN
110, III, 115, 116
SCATTOLINI
296, 297
MOORE
155, 156, 157, 158,
SCHIAVONI
138, 202, 227, 296, 297,
SCHULMAN
323
159, 160, 175, 247, 248, 249, 277, 288
308, 313
381 SEAKS
86
SENNING
199, 200, 202, 227, 228, 230
54, 55, 57, 58, 61, 131,
SERAJI
63, 69, 71
194, 197, 206, 212, 214,
SEZER
22, 51, 52, 78, 120, 122, 123, 125, 127,
233, 273, 274, 275, 277,
135, 170, 190, 206, 208, 215, 218, 219, 222, 236, 309
• TITLI
132, 161, 167, 175, 186, 215, 222, 223, 224, 225, 282
TRAVE
14, 15, 18, 21, 23, 120
SHIMEMURA
248
SILJAK
17, 21, 22, 23, 28, TSITSIKLIS 51, 52, 78, 120, 122, TSONIS TYLEE 123, 125, 127, 135, TZAFESTAS 180, 206, 236, 277, 289, 290, 291, 293, VAN TRESS VIDYASAGAR 296 14 VISWANADHAM WALTON 87, 182, 183, 197, WANG 236, 242, 242, 244,
SINGH
245, 254, 273, 274, 275, 277, 279, 280,
65, 248
SUNDARESHAN
277 STEPHANOPOULOS 23, 55 STEWART 281 TANG 22 TARANTANI 138, 202, 227, 308, 313 TARRAS 54, 55, 57, 58, 59, 60, 61, 131, 132, 161, 166, 167, 175, 186, 190, 194, 195, 197, 206, 209, 210, 211, 212, 214, 215, 247, 249, 250, 346 TAROKH 63, 64, 66, 69, 70, 75 THIRIEZ
189
190, 206, 212, 214, 215, 222, 223, 224, 225, 299 3O8 127, 128, 136, 137 59
155, 158, 175 59 159 63, 69, 70, 71, 74, 306 63, 69, 70, 71, 74, 306 235, 243 37, 38, 39, 40, 50, 51, 53, 61, 63, 72, 73, 115, 150, 162, 154, 175, 179, 180, 197, 236, 265, 267,
281, 282, 285, 288, 291 SIVAN
21, 22, 24, 25, 26, 31, 61, 161, 166, 167, 175,
SHIELDS
SILVERMAN
21, 22, 24, 25, 26, 31,
270, 271, 272, 303, 322 WILLEMS
2
WHTIE
290, 291, 293
WOLOVICH
49, 322, 323
WONHAM
8, 41, 49
XINOGALAS YAHAGI
273, 279, 280
YOSHIKAWA
110, 111, 112, 113, 150
250
ZHENG
95
ZOUTENDIJK
236
SUBJECT
cactus generalized
126, 127
input-
125
output-
125
INDEX
static-
64, 117, 228, 230. 231
time invariant
262
time v a r y i n g -
117, 155
cycle
16, 118, 122, 125, 129,
canonica] form
4. 6. 7
138, 139, 140, 148, 203,
chain condition number
125
213, 308, 309, 314
contraction
289, 290. 291, 295
158
control decentralized-
-family
142, 143, 144, 145, 212, 213, 214, 224
digraph
16, 17, 19, 20. 42, 118,
34, 35. 38, 40, 48.
122, 125, 126, 142, 148,
58 75. 78, 91. 98.
206, 211, 212, 216, 224,
I00. 103, 112, 116. 142. 151, 184, 194,
297. 298, 308, 313 dilation
236, 245, 255, 260, 274, 284, 289, 293, 296, 304 feasibly decen-
17, 19, 20, 21, 27, 30, 213
generalized-
22, 24, 26, 27. 28, 30
essential -input set
215, 220, 222, 223, 224
-output set
215, 220, 222, 223, 224
tra/ized
198
feedback-
111
expansion
289, 290, 291, 293, 294
optimal-
198, 278, 297
feedback control
38, 175, 177, 178, 206,
robust-
247, 255, 262, 264, 273, 313, 318
time-varyingvibrational-
218, 227, 230, 302, decentralized- 38, 44, iii, 114, 117,
117. 120, 156, 158,
151, 155, 181, 273, 297,
175
306
169, 175
gene~c rank
vibrational feedback-
15, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 116,
169, 174, 175
118, 120, 127, 136, 214,
controllability
216. 222, 223, 224
-index
3
inclusion
structural-
14, 19, 22, 23, 24,
information
30, 31, 104. 110,
transfer
117, 119, 137, 220
link125, 178, 179, 186, 187,
controller dynamic-
33, 318 190, 191, 195, 198, 202,
41, 48, 51, 53, 64, 114, 117, 152, 230
robust-
289, 290
206, 210, 214, 221, 227 matrix
247, 264, 267, 270,
adjacency-
16, 216
277, 295
gradient-
233, 234, 236, 237, 238, 254, 346
383
reachability-
20
sensitivity-
57, 186, 187, 195, 197, 207
optimization -parametric-
236, 295
overlappin g
structural
-decomposition 291, 293
sensitivity-
131, 132, 333
structured-
14. 128
path
transfer
7, 61, 63, 64, 88,
pole4, 7, 10, 14, 63, 69, 91,
function-
91, 95, 98, 113. 135,
115, 116, 120, 138, 140,
137, 148, 320
148, 154, 177, 248, 288,
-subsystems
289 16, 208, 21fl
mode
308, 309
centralized
pole assignment
8, 10, 31, 34, 37, 41,
fixed-
39, 84, 86, 150
75, 86, 103, 117, 118,
decentralized
37, 39, 40, 50, 76,
142, 198, 228, 255, 269
fixed-
77, 78, 80, 81, 82, 84, 86, 87, 92, 155, 179, 249, 263, 298. 340
fixed-
decentralized- 39, 269 polynomial c h a r a c t e r i s t i c - 41, 63, 64, 65, 69, 89,
90, 118, 119 131, 142, 143, 144, 306, 320
37, 50, 51, 52. 53, 54, 57, 58. 59. 60.
decentralized
63, 64, 66. 67, 69,
fixed-
37, 38, 41
70, 72, 73, 75, 90,
fixed-
70, 89, 114, 181, 182, 306
138, 144, 151. 155, 177, 227, 297, 324,
invariant-
43, 45, 319, 320, 321
330, 333
-matrix
88, 94, 319
non s t r u c t u -
104, 105, i13, 115,
non s t r u c t u -
rally fixed-
150, ]77, 309
rally r o b u s t -
306, 307
structurally
31. 104, 105, 107,
remnant-
43, 44, 114
fixed-
113, 115, 117, 129,
teachability input-
20, 24, 208
137, 145, 155, 177,
-matrix
20, 195, 196, 197, 206,
output-
20, 24, 208, 225
190, 205, 214, 309 structurally
303. 304. 305. 308.
robust-
314, 318
model frequencydomain
120
120. 125. 127, 132,
208, 211 robustness
229
parametric-
229, 296
structural-
296
sample and hold
152, 153, 154
state-space-
34, 88 2, 142
sen sitivity
33O
time-domain-
34, 75
eigenvalue-
55
mode-
54, 186
observability -index
5
structural-
20, 104, 110, 137,
stability
2, 22
220
stabilization
8, 31, 34, 37, 39, 41,
structural-
130, 137, 333
48, 75, 177, 248, 304
384
decentralized-
229, 265
station local-
33 126
stem input-
125
input-output-
125
output-
125
strongly connected -components
210, 216, 220
-subsystems
43
structural -constraint
151
-perturbation
296, 297, 298, 299, 303, 306, 307, 308, 318
-robustness
303
subsystems complementary- 44, 76, 78, 79, 90, 114, 125, 136, 148, 157, normal-
68, 69
overlapping-
289
strongly connected-
30, 43, 44, 48, 112, 115
system complete-
43, 44
large scale-
24, 30, 31, 33, 34, 63, 137, 148, 219, 227, 247, 268, 296
structured-
14
quotient-
113, 115
decoupling-
320 320 320 63, 321 63, 65, 67, 69. 70. 71, 72, 73, 75. 78,
zero elementinvariantsystemtransmission-
82, 84, 139, 140, 148, 149, 299, 321, 323.