This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
l
2 0 V V E K which shows that ( 4.17A) implies (4.19A) 2 0 . = 0 u-w > 0 V V E K-(0). I n f a c t it i s s u f f i c i e n t t o define
VVE K
Here a g a i n we t h e r e f o r e have a family where p E I4-l (n) i s given. of l i n e a r programming problems w i t h parameter p. The dual problem t o (4.19A) i s given by
Find X
E
;;* such
that
(4.20A)
t
VpE
ii*
By u s i n g a s u i t a b l e p o s i t i v i t y assumption on p , we s h a l l now show t h a t t h e above problems are e q u i v a l e n t . This w i l l r e s u l t from t h e f o l l o w i n g lemma, due t o Stampacchia / l A / , /2A/;
Optimisation algorithms
600
Lemma
4.1:
(APP. 2)
then
If v1 ,v2 E
l'l-v21 2
VI+V2
w = inf ( v l ' v2 ) ( = - - 2
)
also belongs t o K.
and also from
Lemma 4.2: There i s equivalence between problems (4.12A), ( b . r n ( 4 . 1 5 ~ and ) the variational inequality problem
(4.228)
IiiK
Vu*V(v-u)d%2
VVE
t
.
The proof o f Lemma 4.2 i s immediate. We are now i n a p o s i t i o n t o prove
There i s equivalence between problems ( 4.12A) , Theorem 4 . 1 : (4.13A), (4.15A) and the least element problem ( 4 . 1 7 A ) . If, i n
addition , we have
then the linear p r o g r m i n g problem (4.19A) i s equivalent t o (4.12A), (4.13A), ( 4 . 1 5 A ) , ( 4 . 1 7 A ) . Proof: 1) The equivalence between (4.12A), (4.13A) , (4.'15A) has a l r e a d y been proved elsewhere. W e s h a l l now prove t h e equivalence between (4.15A) and_(4.17A). L e t u be the solution of ( 4 . 1 5 A ) ; w e t h e n have U E K , and hence (see Lemma 4 . 1 ) : A
w = inf (u,v) which i m p l i e s , s i n c e
(4.24A)
E
K
VVE K ,
u-wzo (i.e. u-wEK),
<-Aw-f ,u-w>
2
0.
We a l s o have, s i n c e u-is t h e s o l u t i o n o f and s i n c e w e K c K
(4.1%)) (4.25A)
<-Au-f,w-u>
2
( 4 . 5 ) (and hence of
0.
By adding (4.24A) and (4.25A) w e t h u s have
(SEC.
601
CompZementarit y methods
4)
0 2 <-A (w-U) ,W-U> =
1, I
V (W-u)
I 2 dx
and hence I
VVE K ,u
=
w = inf(v,u)
which implies u < v Vv E K i.e. u is a solution of (4.17A). Conversely if u is a solution of (4.17A) we have _-
since
-Au-f t 0
U E
K
and n
v-u~OVVEK
,
and hence
-
Vu*V(v-u)dx
{ !ti,
*
=
<-AU-f,V-U>
2
0 VVEK
which shows, from Lemma 4.2, that u is a solution of (4.12A) ,
(4.15A). V-u t 0 V v
2)- If u is a solution of (4.17A) we have if p satisfies (4.23) we thus have E K ; n
.
Conversely, if u is a solution of (4.19A) we have n
VVE K ,w
CI
=
inf(u,v)
E
K
and hence (4.26A)
.
However ( 4.23A) implies, since u-w 2 0 ( i e. u-w (4.278)
2
0.
By adding (4.26A) , (4.27A) we obtain
1
2
,
0
and hence w = u, from (4.23A).
E
K)
,
602
(APP. 2)
Optimisation algorithms A
CI
W e t h u s hsve U E K, u = in€ (u,v) V v e K , and hence vv E K , which proves t h a t u i s a s o l u t i o n o f ( 4 . 1 7 A ) . v2 u theorem i s t h u s completely proved.
The
Remark 4.2: There i s no d i f f i c u l t y i n f i n d i n g p E H-'(Cl) such
that P by
1 dx V v e Ho(Q)
(4.28A)
where C i s a positive constant. 4.3
Discussion and r e f e r e n c e s
4.3.1
Discussion
From Section 4.2 we see t h a t it i s p o s s i b l e t o reduce t h e t a s k of s o l v i n g t h e o b s t a c l e problem (4.12A) t o t h a t of s o l v i n g an equivalent l i n e a r programming problem. From a p r a c t i c a l p o i n t of view a d i s c r e t i s a t i o n i s performed using finite differences or finite elements and t h e d i s c r e t e analogues of problems (4.12A) , ( 4 . 1 3 A ) , ( 4 . 1 5 A ) , (4.17A) , ( 4 . 1 9 A ) are considered; i n particular t h e d i s c r e t i s e d form of problem (4.lgA) can b e solved by a pivoting method of t h e simplex t y p e . I n t h i s case t h e equivalence Theorem 4.1 results from t h e f a c t t h a t t h e o p e r a t o r -A a s s o c i a t e d with D i r i c h l e t boundary c o n d i t i o n s obeys t h e maximum principze ( t h i s a l s o holds f o r more complicated second-order o p e r a t o r s and f o r o t h e r forms of boundary c o n d i t i o n ; s e e Stampacchia / l A / , /2A/; i n o r d e r t h a t t h e equivalence p r o p e r t i e s of Theorem 4 . 1 can be c a r r i e d over t o t h e d i s c r e t e case it i s necessary t h a t t h e operator approximating -A obey a discrete maximum principle (see CiarletRaviart / l A / ) . I n t h e case of t h e o b s t a c l e problem (4.12A) with Q c B2, d i s c r e t i s e d by a triangular finite-element method, t h e d i s c r e t e maximum p r i n c i p l e w i l l be s a t i s f i e d i f
(i) (i5)
w e use a f i r s t - o r d e r finite-element approximation ( i . e . g l o b a l l y continuous and piecewise a f f i n e ) a l l t h e angles of t h e t r i a n g u l a t i o n are
71 2
.
If some of t h e angles are obtuse and/or f i n i t e elements o f o r d e r 2 2 are used, t h e d i s c r e t e m a x i m u m p r i n c i p l e no longer applies.
We should a l s o p o i n t out t h a t a c e r t a i n number of o p e r a t o r s which are o f fundamental importance i n p r a c t i c a l a p p l i c a t i o n s , such as t h e b i h m o n i c operator $ +. A2$ with t h e boundary conditions
$1,
= gl
,
%Ir
= g2
,
and s i m i l a r l y t h e linear
(SEC. 5 )
Minimisation of quadratic functionals
603
e l a s t i c i t y operator do not s a t i s f y a maximum p r i n c i p l e . I n view of t h e above remarks, it would appear t h a t t h e s e compl e m e n t a r i t y methods by d e f i n i t i o n have a f a i r l y l i m i t e d range of a p p l i c a t i o n , a t least as f a r as t h e s o l u t i o n of v a r i a t i o n a l inequa l i t i e s i s concerned. A f u r t h e r d i s c u s s i o n o f t h e above t o p i c s can be found i n Cryer-Dempster / l A / . 4.3.2
References
Complementarity methods have been i n v e s t i g a t e d by numerous a u t h o r s , p a r t i c u l a r l y with r e g a r d t o t h e s o l u t i o n of v a r i a t i o n a l i n e q u a l i t i e s of t h e o b s t a c l e problem type. To attempt t o g i v e a l i s t of a l l t h e r e f e r e n c e s r e l a t i n g t o t h i s c l a s s of methods would be o u t of t h e question, and w e t h e r e f o r e r e s t r i c t ourselves t o mentioning only t h e r e f e r e n c e s below, t h e b i b l i o g r a p h i e s of which a r e a l s o worth consulting. Considering only works which a r e o r i e n t e d towards t h e s o l u t i o n o f free-boundary problems of t h e o b s t a c l e problem type, w e may mention among o t h e r s : Cottle-Sacher /1A/ , Cottle-Golub-Sacher / l A / , C o t t l e / 1 A / , /2A/ , Mosco-Scarpini / l A / , S c a r p i n i /1A/ and of course Cryer-Dempster,
loc. c i t . MINIMISATION OF QUADRATIC FUNCTIONALS OVER THE PRODUCTS OF INTERVALS. USING CONJUGATE GRADIENT METHODS
5.
5.1
Synopsis
In t h i s f i f t h s e c t i o n we s h a l l supplement t h e i n v e s t i g a t i o n s of Chapter 2 , Section 2.3 ( s e e a l s o t h e discussion i n Chapter 2 , S e c t i o n 6 ) with regard t o t h e c q j u g a t e g r a d i e n t method. We consider t h e model problem i n I R
Find u c K such that (5. IA) J(u)
5
J(v)
V
V E
K,
where (5.2A)
N K = ll i=l
Ki,
Ki = [ a
bilcR
i7
( ai ,bi f i n i t e or otherwise) ,
604
Optimisation algorithms
(UP. 2 )
where A is an N x N symmetric positive-definite matrix and b eRN ; as usual (in this b ok) ( - , * ) denotes the canonical Euclidean inner product of (and more generally of mp ) . In Section 5.2 we shall describe an algorithm of conjugate gradient type, which allows an efficient solution of (5.1A) - (5.3A), and does so i n a f i n i t e number of iterations (i.e. as i n the constraintfree case of Chapter 2 , Section 2.3).
IRa
5.2
Description of the method.
Convergence results
In this section we have followed the account of D.P. O'Leary /lA/ to which we refer for further information and numerical examples. 5.2.1
x
Let u = {Al,.
General remarks
.p
1 be the solution of (5.1A) - (5.3A), and let e de ined by
.N
(5.4A)
X-Au-b;
it can easily be shown that u i s characterised by
[
V i=l,...N, X.2 O i f
(5.5A)
1
we have
ui = ai'
X.< I
Xi = 0 i f a i < u i < b i
0
.
i f u.1
=
bi
,
Remark 5.1: The above characterisation contains X as a KuhnTucker multiplier (see e.g. Rockafellar /3, Section 2 8 / ) for the problem (5.1A) - (5.3A).
...
Remark 5.2: If V i = 1 , N , we have a. = 0, bi = + w then 1 the above characterisation reduces to the linear complementarity problem
(5.6A)
I
Find u e R N such that (Au-b,u) = 0 , N Au-b eR+
, u E R+N
the solution of which was the subject of Section Appendix.
4 of
this
We shall describe Polyak's /1A/ algorithm in detail in Section 5.2.2, but we first shall give a broad outline of this algorithm
(SEC. 5 )
Mixhisation of quadratic functionaZs
605
and attempt t o e x t r i c a t e i t s g e n e r a l p r i n c i p l e s . The algorithm n n u E K , and we generates a s e uence {u } nrO such t h a t V n, a d j u s t A"(= Au -b) i n such a way as t o s a t i s f y ( 5 . 5 A ) .
4
n
Given U O E K , for n 2 0 w e t h e n c o n s t r u c t u E K, and An s a t i s f y i n g ( 5 . 5 A ) ''as well as p o s s i b l e " , using a method which i s With regard t o t h e o u t e r i t e r a t i o n loop, with i t s e l f iterative. n u known w e f i r s t d e f i n e
I"
c {1
,...N)
n n as being t h e s e t o f i n d i c e s i f o r which {ui,Ai)
(5.5A),
i s c o n s i s t e n t with
2.e. n
(5.7A)
I
=
{;I.
n
1
.
with In and Jn (={1,. .N)
n uI = {uili b,: ,:b , A: In = 11,.
..
X i > O l u l i l u ~=
= a.1 and
-
n I ) we a s s o c i a t e t h e v e c t o r s
Jn ( w e s i m i l a r l y d e f i n e and U" = {uiIi In J We t h e n reorder t h e i n d i c e s i n such a way t h a t 1;). I n view Card ( I n ) } and Jn = {l+Card (I") . .N}.
,. .
of t h e above p a r t i t i o n i n g of {l , . . . N )
N
omposition of RN (which implies R we can w r i t e t h e r e l a t i o n
(5.8A)
bi and X i < O )
and t h e corresponding dec-
-- RCard(In.)gRCard(p))
Aun-b = A"
i n t h e form
n where, i n ( 5 . 9 A ) , AII definite matrices.
n
and AJJ
a r e square, symmetric, p o s i t i v e -
The b a s i c idea behind Polyak's method l i e s in modifying n u (u; remaining f i x e d ) so as t o attempt t o make h vanish; J J l e a d s t o t h e l i n e a r system ( 5 . 1 OA)
AYJvJ = b l
this
- AnJIunI .
Since t h e m a t r i x An i s symmetric and positive definite w e can JJ apply t h e conjugate gradient method of Chapter 2 , Section 2 . 3 for t h e s o l u t i o n of (5.10A); w e can t h u s solve (5.10A) exactly
;
606
O p t h i s a t i o n algorithms
(AFT. 2 )
i n a f i n i t e number of iterations (of the inner i t e r a t i o n loop for the overall algorithm). I n p r a c t i c e , it i s u n l i k e l y t h a t t h e exact s o l u t i o n of (5.10A) w i l l s a t i s f y t h e bounds a. <- v. < b.
(5.1 1A)
1
1
1
v i e J" ; we t h e r e f o r e have t o be content with s o l v i n g (5.10A) "as w e l l as p o s s i b l e " , w h i l s t keeping t h e i n t e r v a l c o n s t r a i n t s I n order t o do t h i s w e modify t h e conjugate (5.11A) s a t i s f i e d . g r a d i e n t method; i f during t h e descent phase o f t h e conjugate g r a d i e n t method ( s e e (2.15), ( 2 . 1 6 ) of Chapter 2, Section 2 . 3 ) some of t h e bounds (5.11A) are v i o l a t e d , we reduce the descent step (denoted by A i n ( 2 . 1 5 ) of Chapter 2 , Section 2.3) by as l i t t l e as possible t o ensure t h a t t h e bounds (5.11A) s t a y t h i s results i n some o f t h e bounds being s a t i s f i e d satisfied; n with e q u a l i t y ; t h e corresponding i n d i c e s are t h e n added t o I and t h e i n n e r i t e r a t i o n loop i s resumed with a new decomposition o f A and of t h e v e c t o r s . When t h e modified conjugate g r a d i e n t algorithm has converged, we know t h a t t h e v a r i a b l e s , now denoted by u?+l, of which t h e index i has remained i n Jn, s a t i s f y (5.11A) and t h a t t h e corresponding s c a l a r s A . a r e zero. 1
Using t h e modified conjugate g r a d i e n t method, w e have t h u s constructed a v e c t o r un+' E K ; i f I n + l = I n t h e n un+l s a t i s f i e s (5.5A) and w e t h e r e f o r e have un+l = u , where u i s t h e s o l u t i o n of (5.1A); i f In+1# In t h e i n n e r i t e r a t i o n loop i s repeated with In replaced by I n + l .
5.2.2
D e t a i l e d d e s c r i p t i o n o f Polyak's algorithm
We follow D.P. O'Leary's /lA/d e s c r i p t i o n ; phases of t h e algorithm a r e
A.
I n i t i a l i s a t i o n o f t h e o v e r a l l algorithm
(5.12A)
uo E K, given arbitrarily ,
(5.13A)
n = 0,
(5.14A)
I = {l,2,
B.
Outer i t e r a t i o n loop
For n 2 0, s e t
...N}.
t h e various
(SEC. 5 )
Minimisation o f quadratic functionals
(5.15A)
n + n + l , un
(5.16A)
I = I,
un-I,
607
= Aun-b,
and then define In by ( 5 . 7 A ) .
If In = In-' then un = u the solution of ( 5 . 1 A ) ;
i f I"
#
In-l
set (5.17A)
I = 1"
and s t a r t the inner i n t e r a t i o n loop. Inner i t e r a t i o n loop
C.
c* 1
n D e c o ~ E o s i t i o nof_A_an_d_~f_t_he_v~ct_ors-u_.blEot_ation
.
Let J = { 1,. . N } - I ; decompose and reorder A and u" ,b r e l a t i v e t o the partitioning I+J = {l,. .N}, giving
..
with AJJ s y m e t r i c and positive-definite. {w'}, {r'] r e s p e c t i v e l y , the sequence of We denote by (z'}, approximate solutions generated by the modified conjugate gradient algorithm (inner algorithm), the sequence of descent directions and the sequence of residuals rq bi AJJzq AJII
-
I
.
-
I n i t i a l i s a t i o n of t h e i n n e r a l g o r i t h m
C.2
Set (5.18A)
q = o
and
n
(5.19A)
zo =
(5.20A)
wo = yo
UJ
, I
by
- AJJz - AJ IunI 0
(UP. 2 )
Optimisation algorithms
608
c. 3
C a l c u l a t i o n of zq+l and rq+l ___--------_--_---__-----_-_
First determine the optimal descent step i n the direction of wq, namely P': =
(5.21A)
(r4,wq)
(rq,rq) (Ajjw4 ,W41 '
(Ajjw4 ,W4 )
and then the maximal descent step f o r which the bounds ( 5 . 1 1 A ) are s t i l l s a t i s f i e d , namely a -z4
b .-zq
fin
(5.22A)
j
J
J
The descent step f i n a l l y used i s then
and hence z q + l , rq+l are given by (5.24A)
zq+I = zq
(5.25A)
'+'r
C.4
pgwq
'
- p q ~ ~ ~. w q
Termination c r i t e r i o n for t h e i n n e r i t e r a t i o n looe
-If rq+' = loop. -If
= rq
+
{jlz!"
J
0,
n
put uJ = z q + l and r e s t a r t t h e inner i t e r a t i o n
-
-
0 go t o c.5. J put u? = zq+l and I =.{iluy = a i o r bi}. a. or b.) J
-Otherwise, I = {l Nl r e s t d t t h e outer i t e r a t i o n loop. the inner i t e r a t i o n loop.
,...
If Otherwise r e s t a r t
Alternating direction methods
6)
(SEC.
609
giving the new descent direction ( AJJ-conjugate t o t h e previous directions ) (5.27A)
wq+l
E
$+I
+ yqwq
.
Then replace q by q + 1 and go t o C. 3.
8
Remark 5 . 3 : We r e f e r t o O'Leary, ZOC. c i t . , f o r a number o f v a r i a n t s of t h e above algorithm, and a l s o p r a c t i c a l d e t a i l s of i t s implementation on a computer. 5.2.3
Convergence resuZts
I n O'Leary, loc. c i t . , t h e following theorem i s proved:
Polyak's algorithm of Section 5.2.2 converges Theorem 5.1: t o the solution o f problem ( 5 . 1 ~ )i n a f i n i t e number of iterations. 5.3
Discussion
A v a r i a n t ( c a l l e d t h e S.N. method) of Polyak's algorithm of S e c t i o n 5.2 i s given i n Tr6molieres /4, Chap. 7/. More s p e c i f i c a l l y , regarding t h e a p p l i c a t i o n of Polyak's algorithm t o t h e s o l u t i o n of variational inequality problems ( a f t e r s u i t a b l e d i s c r e t i s a t i o n using f i n i t e d i f f e r e n c e s o r f i n i t e elements) w e r e f e r t o O'Leary, ~ O C . c i t . , and O'Leary-Yang /1A/ where numerical a p p l i c a t i o n s t o t h e elasto-plastic torsion problem o f Chapter 3 can be found, i n t h e equivalent formulation ( 2 . 4 ) o f Chapter 3, Section 2.2 ( s e e a l s o Chapter 3, Section 3 ) .
6.
ALTERNATING D I R E C T I O N METHODS. APPLICATION TO THE SOLUTION OF NONLINEAR VARIATIONAL PROBLEMS
I n t h i s s e c t i o n we follow t h e d e s c r i p t i o n of P.L. Lions B. Mercier / l A / ; t h e n o t a t i o n i s t h a t of H. Br6zis 131, t o which we a l s o refer f o r t h e v a r i o u s d e f i n i t i o n s and p r o p e r t i e s connected with t h e concept of monotonicity used i n t h i s s e c t i o n .
@timisation aZgorithms
610
6.1
Formulation o f t h e problem.
(APP. 2)
Synopsis
L e t H be a r e a l H i l b e r t space of which t h e i n n e r product and We a s s o c i a t e d norm are denoted r e s p e c t i v e l y by ( , and consider t h e equation 0
(6.1A)
OE
)
I I.
C(u)
where C i s a monotone o p e r a t o r on H, which may p o s s i b l y be multivalued ( I ) ( i n which c a s e , i f V E H, C ( v ) i s a subset of H, p o s s i b l y reduced t o a s i n g l e p o i n t o r empty). O f p a r t i c u l a r i n t e r e s t i s t h e s o l u t i o n of
(6.1~)when
,
C = A+B (6.2A)
are maximal monotone.
A,B,C
L e t X > 0; t o s o l v e (6.1~) u s i n g t h e decomposition ( 6 . 2 ~ , ) we consider (as i n P.L. Lions-B. Mercier, loc. tit.) t h e following two algorithms : F i r s t algorithm:
(6.3A)
0
u given
n
and for n z O , u
known
Second algorithm:
(6.5A)
and f o r . (6.6A)
0
u given
n
nZO, u
known
un+'
.-
(I+AB)
-' (I+AA)-' [
(I-XB) +ABl un.
Remark 6.1: W e assume (for s i m p l i c i t y ) t h a t A,B,C are s i n g l e valued ( 2 ) o p e r a t o r s and we put
Translator's notes:
(l)
The terminology m l t i v o q u e i s sometimes used.
(2)
The terminology univoque i s sometimes used.
(SEC. 6 )
(6.7A)
611
Alternating direction methods
.
I2= (I+AA)-I (I-AB) un
U
Equation ( 6 . 7 ~ )i s equivalent t o ( I + X A ) U ~ + " ~ + X B ( U ~ ) allows us t o r e w r i t e t h e f i r s t algorithm i n t h e form
(6.8A)
u
0
n u , which
given
and f o r n z 0 , un known AA(un+l/2 )
(6.9A)
Un+1/2
(6.1 OA)
un+' +AB(u"+')
+
=
un
n+1/2 'U
-
XB(un)
,
AA( un+l I2 1 ;
l i k e w i s e t h e second algorithm i s equivalent t o
(6.11A)
u
0
given
n and f o r n z 0 , u known
(6.12A)
un+' /2+u(un+' 12)
(6. I3A)
n+ 1 u +AB(un+')
E
un-hB(un)
= un- AA(u
n+l/2
, ).
( r e s p . (6.11A)-(6.13A))algorithm has t h e appearance of an a l t e r n a t i n g d i r e c t i o n method of t h e Peaceman-Rachford /lA/ type ( r e s p . Douglas-Rachford /1A/ t y p e ) I n view of (6.8A)-(6.10A)
(6.31) , ( 6 . 4 A ) ( r e s p . (6.51)
, (6..6A))
.
I n Section 6.2 w e s h a l l g i v e some information on t h e converg( r e f e r r i n g t o P.L. Lions-B. ence of (6.3A), ( 6 . 4 A ) and ( 6 . 5 A ) , ( 6 . 6 A ) Mercier, Zoc. c i t . , and Gabay /lA/ f o r t h e p r o o f s ) . I n Section 6 . 3 w e s h a l l b r i e f l y d e s c r i b e t h e a p p l i c a t i o n o f (6.M) , (6.4A) and ( 6 . 5 ~ ,) ( 6 . 6 A ) t o t h e s o l u t i o n of t h e o b s t a c l e problem of Appendix 1, Section 3.
For f u r t h e r d e t a i l s regarding algorithms (6.3A), ( 6 . 4 A ) and ( 6 . 5 ~, ) (6.6A) , and a l s o for t h e i r implementation, w e refer t h e r e a d e r to t h e two r e f e r e n c e s c i t e d above, i n which various generali s a t i o n s a r e a l s o given. 6.2
Convergence of algorithms ( 6.3A)
, ( 6.4A)
and ( 6.5A)
, ( 6.6A)
W e follow P.L. Lions-B. Mercier /1A, Section 1/ t o which we r e f e r f o r t h e proofs o f t h e following r e s u l t s .
Optimisation algorithms
612
6.2.1
Asswnptions and additional notation.
(APP. 2)
Initialisation
We r e c a l l t h a t A,B,C are maximal (Assumption (6.2A)). We denote by D(A) t h e domain of A ( i . e . D(A) { v e H, A(v) c H, A(v) # 8 ) 1, and by R(A) t h e image of A ( i . e . R(A) = { v E H ? 3 w E H such t h a t v ~ A ( w ) } ) * We r e c a l l t h a t A i s monotone i f
-
(Y-z,u-v)
2
0
, VU E H,
y E A(u),
V V E H, z
E
A(v) ;
moreover t h e statement t h a t A i s maximal monotone i s equivalent t G saying t h a t t h e resolvent S? = (I+AA)-l ( a s i n g l e v a l u e d A o p e r a t o r ) i s a contraction defined on the whole of H. I n t h i s p r e s e n t s e c t i o n we s h a l l make t h e assumption t h a t (6.1~)admits a t l e a s t one s o l u t i o n , i . e .
(6.14A)
, 1
There e x i s t s
such t h a t
UE
H, a
E
A(u) , b E B(u) ,
a+b = 0 .
If A and B are multi-valued, it i s a p p r o p r i a t e t o d e s c r i b e algorithms (6.3A), (6.4A) and (6.5A) , (6.6A) i n r a t h e r g r e a t e r d e t a i l , i n p a r t i c u l a r with regard t o t h e i r i n i t i a l i s a t i o n . To i n i t i a l i s e (633A), (6.4~)and (6.5A), (6.6A) w e t a k e U ' E D ( B ) , then b E B(u ) , and we put
(6.15A)
v 0 = uo + Abo
A
uo = JB v
n We next d e f i n e t h e sequence { v }
n20
0
.
by
F i r s t algorithm ( ( 6 . 3 ~ (6.4A)) ~ (6.16A)
n+1 h A n v = (2JA-I)(2JB-I)v ;
Second algorithm ( (6.5Aj , ( 6.6A) ) (6.17A)
I n both cases we o b t a i n t h e sequence
(6.4A) or (6.5A), (6.6A)), s t a r t i n g from
{un} (from (6.3A), n} nrO n20' by
{V
(SEC. 6)
un = J
(6.18A)
6.2.2
613
Alternating direction vethods
p
. .
Convergence o f algorithm (6.3A), ( 6.4A)
We p u t = u+Xb
,w
= u+ha,
n n w n = 2 un- v n , b n = + -U , a We t h e n have ( s e e P.L. Lions-B. Proposition
n
n n+l w-w = r.
Mercier /1A, Section 11):
6.1: Assume (6.14A) t o be s a t i s f i e d ; we then
have (6.19A)
n n n n n the sequences u ,v ,w ,a ,b are bounded
( 6.20A)
lim re-
(bn-b,un-u)
(6.2 1A)
lim n+-
(an-a,
n+1
v
= 0
+wn
,
- u)
=
0.
The above p r o p o s i t i o n r e s u l t s i n t h e convergence p r o p e r t i e s given i n : Corollary 6.1:
I f B i s singleualued and s a t i s f i e s
For any sequence l x n j , x
(6.228)
lim
(Bx -Bx,x -x) n
D(B) Vn, such that
x weakZy and = 0, we have x = x
{Bx 1 i s bounded, xn *+Co
E
n
+
then we have (6.23A)
lim
n u = u
weakZy i n H ,
rrt+o3
where u i s the soZution of (6.1~)(unique, from (6.228)). Remark 6.2: Property (6.22A) i s s a t i s f i e d i n t h e following cases ( s e e P.L. Lions-B. Mercier, zoc. c i t . , f o r t h e ' p r o o f s ) : (i)
B i s coercive ( a l s o termed H - e l l i p t i c ) ,
i.e.
3ff
>O
such t h a t
Optimisation aZgorithms
614
(UP. 2)
(6.24A) I n t h i s case we a c t u a l l y have a s t r o n g e r c o n d i t i o n t h a t 66.23A), s i n c e ( 6 . 2 0 ~ ) md (6.24A) imply t h e strong convergence of {u 1 t o U.
(ii)
B-l
is coercive, i . e . ? B > O such t h a t
( 6.25A)
I n t h i s c a s e , i; a d d i t i o n t o
(6.23A), w e a l s o have t h e strong
convergence o f {Bu 1 t o Buy from (6.20~)and (6.258). ( i i i ) B i s s t r i c t l y monotone and weakly closed, i . e .
- v x , y ~ D ( B ) such t h a t (B(y)-B(x),y-x) = 0 we have y=x, - i f {xn is such t h a t xn ED(B) Vn, l i m xn = 'x weakly i n H and i f t h e r e e x i s t s y
n E Bxn with
i n H, then
Remark 6.3:
X E
D(B) and y = Bx.
If B i s l i n e a r , o r i f J
weakly closed.
Remark 6.4: t h a n B satisfies
If i n Corollary
n-
lim
y
= y
weakly
w n
B i s compact, t h e n B i s
6.1 w e assume t h a t A r a t h e r V"+ 1 +w"
(6.22~)~ then { 2 In converges weakly t o (6.1~). In f a c t everything s a i d i n
t h e unique s o l u t i o n of Remark
6.2 with regard t o {u"},,
6.2.3
a l s o holds f o r {
++I
+wn In 2
.
Convergence of aZgorithm ( 6.5A), (6.6A)
The n o t a t i o n i s t h a t of Sections 6.2.1 and 6.2.2; with regard t o t h e convergence of (6.5A), (6.6A), t h e following theorem i s proved i n P.L. Lions - B. Mercier /1A, Section 1.3/:
the I f (6.14A) i s s a t i s f i e d , then as n -t + Theorem 6.1: sequence {v") generated by (6.15A), (6.17A) converges weakZy t o v E H such t h a t u = J A v i s a soZutio; of (6.1~).Moreover f o r B by un = the sequence {u") defined , we have the following convergence properties:
J3
6)
(SEC.
-
I f B i s Zinear, u
- If
n
A and B are odd
A(x)
615
Alternating d i r e c t i o n .methods
= -A(-x)
converges weakly t o a soZution of (6.1~). (i.e.
VXED(A),
B(x)
V X E D ( B ) ) then {u")
= -B(-x)
converges strongZy t o a solution of (6.1~).
- If A +
B i s m d m a l monotone the weak c l u s t e r p o i n t s of
{ u n ) are soZutions of
(6.1~).
The f o l l o w i n g p r o p o s i t i o n s a r e a l s o proved i n P.L. M e r c i e r , loc. c i t .
Lions-B.
6.2: I f JBh i s weakZy closed and i f (6.14A) i s s a t i s f i e d , then u" converges weakly t o a solution o f (6.1~). Proposition
h P r o p o s i t i o n 6.3: I f JA i s compact and i f (6.14A)i s s a t i s f i e d , then un converges strongly t o a solution of (6.1~).
P r o p o s i t i o n 6.4: Assume t h a t B i s coercive and Lipschitz continuous, i. e . 3 a and M > 0 such t h a t Vx ,x E H we have 1
2
Under these conditions there e x i s t s a constant (6.28A)
Iv"-vl
,
Iun-uI
h
C
such t h a t
,
where u = J B v i s the unique solution o f (6.1A)and where 2Aa 112. k = (1( 1 +AM$ Remark 6 . 5 : The e s t i m a t e s (6.28~) a l s o h o l d for a l g o r i t h m
(6.3A), (6.4A)i f B s a t i s f i e s t h e n have Zinear convergence.
,
(6.26A), (6.278).
Both a l g o r i t h m s
,
Remark 6.6: We remark t h a t a l g o r i t h m (6.5A), (6.6A) h a s been i n v e s t i g a t e d by J. L i e u t a u d /1A/ who has e s t a b l i s h e d i t s convergence u n d e r l e s s r e s t r i c t i v e assumptions on A and B (which a r e assumed singZe-vaZued , however)
.
Remark 6.7: I n S e c t i o n 7 we s h a l l show t h e r e l a t i o n s h i p s which e x i s t between t h e above a l t e r n a t i n g d i r e c t i o n methods and augmented Lagrangtan methods.
616
(APP. 2 )
Optimisation algorithms
Application t o t h e s o l u t i o n of t h e o b s t a c l e problem
6.3
We follow P.L. Lions-B. Mercier /1A, S e c t i o n 31: l e t s2 be2& bounded open domain i n I R 2 , with r e g u l a r boundary, and f E L (a). The v a r i a t i o n a l i n e q u a l i t y
Find
u E H i ( Q ) n K such that
( 6 . 2 9A) Vu*V(v-u)dx
2
f (v-u)dx
VV
E
1 Ho(Q) n K,
where
2
K = {v E L (a), v(x)
(6.30A)
2
0
a. e. on Q),
The admits one and only one s o l u t i o n and we have u E H 2 ( n ) . s o l u t i o n u o f (6.29A) i s a l s o t h e s o l u t i o n o f t h e (multivoque ( * ) ) equation i n L ~ ( Q :)
( 6 . 3 1 A)
o ~ - A U
+ f +
aIKw ,
where 31 i s t h e sub-differential ( s e e BrCzis 131, Ekeland-Temam /1/ f o r !his concept) o f t h e indicator functional of t h e convex s e t K defined by (6.30A). Since t h e convex s e t K i s closed and it t h e n follows t h a t nonempty, I i s convex, proper and 1 . s . c ; K 31 i s maximal monotone. W e put H = L2(s2), A = aIK and we d e k n e B by
B(v) = -Av + f with D(B) = H
2
(a) n H o1( Q ) .
The domain $2 being bounded, w e have coercivity o f B s i n c e h l YV2
E
D(B)
where yo > 0 i s t h e s m a l l e s t eieenvalue of -A on H2 ($2) n H 1 (a). 0
h Moreover w e have JA = P where P is t h e p r o j e c t i o n o p e r a t o r K K onto K i n t h e L 2 ( Q ) norm, namely
(PKv)(x) = sup(O,v(x)), a.e. on il ~~
~
.
~
(*) Translator 's Note : The terminology multivoque equation r e f e r s t o an equation r e l a t e d t o a multivalued o p e r a t o r .
(SEC. 7 )
A.D. and augmented Lagrangian methods
617
K i s t h u s i n f a c t a truncation o p e r a t o r .
P
We can t h u s apply a l g o r i t h m s (6.3A), ( 6 . 4 A ) and ( 6 . 5 A ) , (6.6A) f o r t h e s o l u t i o n of (6.29A) , (6.31A) ; a t each i t e r a t i o n we have t o c a r r y o u t a t r u n c a t i o n o p e r a t i o n , which i s numerically t r i v i a l , and t o s o l v e a homogeneous D i r i c h l e t problem r e l a t i n g t o t h e o p e r a t o r I - A A , which i s a s t a n d a r d numerical p r o c e s s and nowadays poses few problems ( a t l e a s t i f s1 c R 2 ) . We r e f e r t o P.L. Lions-B. Mercier, loc. cit., f o r a comparison o f t h e performance o f t h e above two a l t e r n a t i n g d i r e c t i o n a l g o r i t h m s a p p l i e d t o t h e s o l u t i o n o f (6.29A) , ( 6 . 3 ~ )( a f t e r a s u i t a b l e d i s c r e t i s a t i o n ) ; it would appear t h a t for t h i s example ) t w i c e as f a s t as (6.5A), (6.6A). t h e a l g o r i t h m (6.3A), ( 6 . 4 ~ ~i s I n c o n t r a s t , however, examples a r e given i n Chan-Glowinski /1A/ r e l a t i n g t o t h e n o n l i n e a r D i r i c h l e t problems o f Appendix 1, S e c t i o n 6 , f o r which a l g o r i t h m (6.5A), (6.6A) appears much more e f f i c i e n t t h a n (6.3A), ( 6 . 4 A ) .
7.
RELATIONSHIP BETWEEN THE ALTERNATING DIRECTION METHODS AND AUGMENTED LAGRANGIAN METHODS
I n t h i - s s e c t i o n w e s h a l l supplement Remark 6.7 of S e c t i o n 6.2; w e s h a l l show t h a t t h e alternating direction methods o f S e c t i o n 6 a r e i n f a c t s p e c i a l c a s e s o f a more g e n e r a l f a m i l y of a l g o r i t h m s r e l a t e d t o t h e duality algorithms o f Chapter 2 , S e c t i o n 4 and t o t h e augmented Lagrangian methods mentioned i n Chapter 2, S e c t i o n 6, Chapter 3, S e c t i o n 10 and Chapter 5, S e c t i o n 9. For f u r t h e r d e t a i l s w e r e f e r t h e r e a d e r t o Bourgat-Way-Glowinski / 1 A , S e c t i o n 6.31 and Gabay / l A / .
7.1
A model problem i n H i l b e r t space
The n o t a t i o n i s t h a t o f S e c t i o n 6 ; f o r s i m p l i c i t y w e c o n s i d e r a p a r t i c u l a r model problem o f t h e t y p e ( 6 . 1 ~ ) . We t h e r e f o r e l e t H be a H i l b e r t space on IR w i t h i n n e r product and norm denoted by ( , ) and , r e s p e c t i v e l y . W e c o n s i d e r t h e problem
I I
(7.1A)
C(u) = 0 ,
where C : H + H i s a s i n g l e - v a l u e d o p e r a t o r . We assume ( a g a i n f o r s i m p l i c i t y ) t h a t C i s t h e d e r i v a t i v e ( i n t h e Frechet or Gateaux s e n s e ) o f a f u n c t i o n a l J ( i . e . C = J'), strictly conz)ex, such t h a t
lim
II VII
J(v) =
+a.
-++OD
It f o l l o w s from t h e p r o p e r t i e s o f J t h a t C i s s t r i c t l y monotone and t h a t t h e minimisation problem
aptimisation aZgorithms
618
Find
UE
( U P . 2)
H such t h a t
(7.2A) J(u)
I
Vv
J(v)
E
H,
admits one and only one s o l u t i o n c h a r a c t e r i s e d by consequently admits a unique s o l u t i o n .
(7.1A), which
We assume t h a t
(7.3A)
J = JA+JB,
where J ,J a r e a l s o convex, d i f f e r e n t i a b l e f u n c t i o n a l s ; A B
we
write :
A,B a r e monotone o p e r a t o r s and we have A 7.2
Decomposition-coordination augmented Lagranaian
+
B = C.
of (T.lA), (7.2A) using t h e
The problems (7.lA) , ( 7 . 2 A ) a r e c l e a r l y equivalent t o t h e minimisation problem
(7.5A)
where
(7.7A)
3=
v,q)
E
Hx H, v-q = 0).
We s h a l l handle t h e l i n e a r e q u a l i t y c o n s t r a i n t v-q = 0 by t o t h i s end w e introduce penalty and Lagrange muZtipZier; (with r > 0 ) t h e augmented Lagrangian dr : Hx Hx H + R defined by
(7.8A)
L,(v,q,p)
= j(v,q)
+
$11
v-ql\
+
bSv-4)
(SEC. 7 )
A.D.
619
and augmented Lagrangian methods
The f o l l o w i n g p r o p o s i t i o n may r e a d i l y be proved ( s e e e . g . Fortin-Glowinski /2A/, Glowinski /2A/) P r o p o s i t i o n 7.1:
Under the above assumptions on C , J , J A Y the augmented Lagrangian admits a unique saddle point B { u , p , A l on H x H x H and we have p = u , h = B ( u ) = -A(u), where u is the solution of ( 7 . 1 A ) , (7.2A).
%.
J
7.3
Solution of ( 7 . 1 A ) ,
(7.2A) v i a d u a l i t y a l g o r i t h m s f o r
dr
I n view o f P r o p o s i t i o n 7 . 1 it i s n a t u r a l t o e n v i s a g e s o l v i n g (7.2A) v i a t h e d e t e r m i n a t i o n o f t h e s a d d l e p o i n t s of d we shals' u s i n g t h e d u a l i t y a l g o r i t h m s o f Chapter 2 , S e c t i o n 4 ; r e s t r i c t o u r a t t e n t i o n t o Uzawa's a l g o r i t h m ( 4 . 1 2 ) , (4.13) of Chapter 2 , S e c t i o n 4 . 3 ; we t h u s have:
(7.1A),
(7.9A) then f o r An by
AOE
H given n
n 2 0, assuming that A n is known, determine u ,p
Find {un,pn)
(7.1 OA)
H x H such that V (v,q)
E
and
HxH
we have n n n dr(u ,p
(7.11A)
E
n
An+1
=
,A 1 Sdr(v,q,x") ,
An +p(u"-p")
,p>0
;
Rendering (7.10A) e x p l i c i t , we have
run+A(un)-rp"
=
- A",
rpn+B(Pn)-run
=
A".
(7.1 OA) '
The e s s e n t i a l d i f f i c u l t y i n t h e a p p l i c a t i o n o f (7.9A)-(7.11A) i s t h u s t h e s o l u t i o n o f t h e system o f two coupled e q u a t i o n s (7.lOA)'. A s p o i n t e d o u t p r e v i o u s l y i n Chapter 3, S e c t i o n 10 and Chapter 5 , S e c t i o n 9 i n a s i m i l a r c o n t e x t , it i s p o s s i b l e t o e n v i s a g e u s i n g block v a r i a n t s o f t h e relaxation methods of Chapter 2 , S e c t i o n 1 ( t h e convergence o f which h a s been e s t a b l i s h e d by Cea-Glowinski / 2 / u n d e r q u i t e g e n e r a l a s s u m p t i o n s ) t o i n t h e c a s e i n which o n l y a single r e l a x a t i o n s o l v e (7.10A)'; i t e r a t i o n i s performed, n a t u r a l l y u s i n g t h e r e s u l t s o f t h e p r e v i o u s i t e r a t i o n as i n i t i a l c o n d i t i o n s , we a r e l e d t o t h e f o l l o w i n g
Optimisation algorithms
620
( U P . 2)
algorithm (introduced by Glowinski-Marrocco 1 2 1 ) : (7.12A)
p 0 , x 1 given i n H,
then f o r n 2 1 , assuming that pn-l and An are known, determine un,pn and An" by
-
(7.13A)
n n- 1 ru + ~ ( u " )= r p
(7.14A)
rpn
(7.15A)
An+' = An + p ( un-p n) .
A*,
+ ~ ( p =~ run ) + A~,
A variant (due to Gabay /lA/, to which we also refer for the convergence results) is given by
(7.16A)
p 0 , ~ ' given i n H,
tenfor n 2 1 , assuming t h a t pn-l and An are known, detennine u ,p and by (7.17A)
run+A(un)
= rpn- 1 -An,
rpn+B(ph)
= run+An + l / 2
(7.18A) (7.19A)
9
= A
(7.20A)
n+l/2
+
p(u"-p")
.
Under "very reasonable" monotonicity and continuity assumptions for A and B y it is shown in Fortin-Glowinski / 2 A / , Glowinski /2A/ 0 that for any p ,A' E H and if (7.21A)
we have
p
E
10,
I + 6 rC 2
621
A . D. and augmented Lagrangian methods
(7.22A)
lim Ilp"-ull
\
lim
X"
=
= 0,
X weakZy in H.
TI++-
If JB is linear (or a f f i n e ) , it is proved in Gabay-Mercier /1/ that (7.22A) also holds if p E 10,ZrC
.
In fact the convergence proofs (based on energy Remark 7.1: methods) given in the above references also hold if A,B satisfy suitable monotonicity and continuity properties. without necessarily being the derivatives of convex functionals (and possibly if they are multivalued)
.
7.4
An "alternatina direction" interpretation of algorithms (7.12A)-(7.15A) and (7.16A)-(7.20A)
The case of aZgorithm (7.12A)-(7.15A): We assume that that
p =
r; it then follows from (7.14A), (7.15A)
1 = B(pn)
(and hence
)\"
= B(pn'l)
)
,
which combined with (7.13A) implies
(7.23A)
run +
A(U~)
n-1
= rp
-~(pn-1 1.
We have, from (7.14A), mn + An = rpn+B(pn), and hence, by using this in (7.13A)
(7.24A)
rpn+B(pn)
rp
n- 1 -A(un).
Putting pn-1/2 = un and r = ( 7.24A)
(7.25A)
Pn+1'2+
1 h,
XA(p n+1'2)
we finally deduce from (7.23A),
= pn-AB(pn)
,
622
(7.26A)
@timisation
pn+'+hB(pn+l)
a lgorithms
(APP. 2 )
pn-XA(p n+1/2
=
1.
R e l a t i o n s (7.25A), (7.26A) show t h a t f o r p = r , (7.12A)-(7.15A) i s i n f a c t e q u i v a l e n t t o t h e Douglas-Rachford Alternating Direction
algorithm o f S e c t i o n 6.1, Remark 6.1. The case of algorithm ( 7 . 1 6 A ) - ( 7 . 2 0 ~ ) : Here a g a i n we assume t h a t p = r; from (7.17A)-(7.2OA) t h a t 1 12 = -A(un),
An+'
it can t h e n r e a d i l y be deduced =
B(pn)
(hence
hn = B(pn-l 1) ,
and u s i n g t h i s i n (7.17A), (7.19A) g i v e s
(7.27A)
run+A(un)
= rpn'l-B(pn'l)
(7.28A)
rpn+B(pn)
= run
-
, A(un).
1 P u t t i n g p n - l I 2 = un and r = - we f i n a l l y deduce from (7.27A), A (7 . 2 8 ~
(7.29A)
rPn+1/2+A(p n+l/2
= rpn-B(pn),
(7.30A) It follows from (7.29A), (7.30A) t h a t , i f p = r , (7.16A)(7.2OA) i s i n f a c t e q u i v a l e n t t o t h e Peaceman-Rachford Alternating Direction algorithm o f S e c t i o n 6.1, Remark 6.1.
Remark 7.1: To t h e b e s t of o u r knowledge, t h e r e l a t i o n s h i p s which e x i s t between t h e alternating direction and augmented La_mangian methods were f i r s t demonstrated i n Chan-Glowinski /U/, /2A/, i n connection w i t h t h e numerical s o l u t i o n o f t h e n o n l i n e a r D i r i c h l e t problems o f Appendix 1, S e c t i o n 6.
Appendix 3 FURTHER DISCUSSION OF THE NUMERICAL ANALYSIS
OF THE ELASTO-PLASTIC TORSION PROBLEM
SYNOPSIS
1.
The aim of this appendix is to supplement Chapter 3 relating to the numerical analysis of the elasto-plastic torsion problem; we shall, in fact, restrict our attention to several supplementary results concerning the finite-element approximation of this problem and its i t e r a t i v e solution. More specifically, we shall return in Section 2 to the approximation using f i n i t e elements of order one (i.e. piecewise a f f i n e ) , previously investigated in Chapter 3, Sections 4 and 6; it will be shown that under reasonable assumptions we "almost" have = O(h1I2) (in
I I+,-uI
HL (52)
fact we have
IIuh-uII
1 Ho
= O(h) if R clR )
(a)
.
In Section 3,
which follows Falk-Mercier /lA/, it will be shown that by using an equivalent formulation it is possible to obtain an approximation error of optimal order, even if R c lR2 Finally, in Section 4, we shall give some additional information on the iterative solution of the above problem.
.
Let us conclude this first section by recalling (see Chapter
3, Section 1) that the problem under consideration is defined by Find u c K such that ( 1 .1A)
a(u,v-u)
2
L(v-u)
Vv
E
K
where 1
(1.2A)
K =
(1.3A)
a(v,w) =
( 1 .4A)
L(v) =
I V E H
0
(R),
1,
(VV~ 51
Vv-Vw dx
a.e. 1
, 1
VV,WEH (R),
1 VVEH~(R)
,f
EH-'(R)
1
= (Ho(R))'
.
624
Elas to-p l a s t i c torsion
(APP. 3 )
.
THE FINITE-ELEMENT APPROXIMATION OF PROBLEM ( 1 . 1 A ) (I) ERROR ESTIMATES FOR PIECEWISE-LINEAR APPROXIMATIONS
2.
This s e c t i o n , which follows Glowinski /2A, Chapter 2 , Section 3/ w i l l supplement t h e results of Chapter 3 , S e c t i o n 6.2. 2.1
One-dimensional case
2 Suppose t h a t n = lO,l[ and t h a t i n ( 1 . 4 A ) we have f E L (52). Problem ( 1 . 1 A ) can t h e n be w r i t t e n
( 2 . IA)
1;,
Find U E K = { V E H 01 ( O , l ) ,
du (-dv - &)dx du dx d x
2
f (v-u)dx
L e t N be an i n t e g e r > 0 and l e t h = N and f o r i = OJ,
...
e 1. =
[ X ~ - ~ , X ~ ] i, = 1 , 2
dv 1x 1
51
a.e.1 such t h a t
VV E K .
1 f; we consider xi = i h
,...N .
We t h e n approximate Hl(0,l) and K r e s p e c t i v e l y by 0
(2.2A)
Voh =
{ V h E C 0 c0,11,
vh(o)=vh(l)=o,
vhlei E P ~ , i = 1 , 2 ,
...N}
and
( w i t h , as u s u a l , P I = space o f polynomials of degree
51 ) .
The approximate problem i s t h e n defined by
1
Find \
6%
such that
Problem (2.4A.) c l e a r l y admits a unique solution. t h e approximation e r r o r IIuh-uII 1 we have H O W , 1)
Regarding
Finite-e Zement approximation
(SEC. 2) Theorem 2.1:
If
(2.5A)
II y,-uII
Proof:
Since y , r \c
f
I
625
\
Let u and
( 2 . U ) and ( 2 . h ) .
-
CE
be the r e s p e c t i v e soZutions of L2(0,1) we then have
= O(h).
K it r e s u l t s from (2.1A) t h a t
(2.6A) We deduce, by adding ( 2 . 4 A ) and (2.613) , t h a t
VvhE
$
and hence Vvhe
2 since f E L ( 0 , l ) implies t h a t Section 2 . 1 ) we have
UE
2 H (0,I)n K ( s e e Chapter 3,
1
(2.8A)
lodx !du
dx
(vh-u) dx =
We a l s o have ( t h e proof being l e f t as an exercise f o r t h e reader) :
which combined with ( 2 . 7 A ) , ( 2 . 8 ~ )implies vvhE K h
Let v r K ; we define t h e linear interpolate rhv by
Ih
r vrVoh
(2.1 OA)
(rhv) (xi)
=
v(xi)
, i=O,l,.
..N.
E Zasto-p lastic torsion
626
We have d (rhv)le. dx 1
-
X.
v(xi)-v(xi-l 1
1
h
h
(APP. 3 )
x
dv -dx, dx
i-1
and hence
d dx( rhv)
e.
1 1 since
1
dv I- dxl < 1 -
a.e. on J O , ~ C ;
we t h u s have
(2.11A)
rhVE%I
V V E K,
Replacing v by r u i n ( 2 . 9 A ) we t h e n have h h
The reguzarity property
u
E
H'(0,l)
and
imply
where C denotes v a r i o u s c o n s t a n t s independent of u and h. The e s t i m a t e (2.5A) then follows t r i v i a l l y from (2.12A)-(2.14A). 2.2
Two-dimensional case
Suppose t h a t R i s a bounded convex polygonal domain i n l R 2 with boundary r , and t h a t f E LP(n) with p > 2 (a reasonable assumption s i n c e f o r a p p l i c a t i o n s i n mechanics we have f = c o n s t . ) . we t h u s approxWe use t h e n o t a t i o n of Appendix 1, Section 3.6; imate HA(S1) and K r e s p e c t i v e l y by
(2.15A)
Voh = {vh E Co(E) ,vhIr = 0, vhlT E P I
VT
E
5)
Finite-element approximation
(SEC. 2 )
-
I
627
and
(2.16A)
Kh = K n V oh
'
g i v i n g the approximate problem
Find
\ such
I+,€
that
(2.17A) Vyl*V(vh-~)dx
2
.
VV~E
f(v,-yl)dx
Problem (2.l7A) admits a unique s o l u t i o n , and w i t h r e g a r d t o t h e convergence of t o u we have
5
Theorem 2 . 2 :
b e t a , by0,>Oas h and f we have
Suppose t h a t the angles of r h a r e bounded Then under t h e above assumptions on $2 + 0.
where u and u a r e t h e r e s p e c t i v e s o l u t i o n s of (1.1A) and (2.17A). h
Proof: (2.1 9A)
It r e s u l t s from Chapter 3, S e c t i o n 2 . 1 t h a t
u
E
d'P(Q).
By proceeding as i n t h e proof o f Theorem 2 . 1 , and u s i n g t h e fact that \ c K we o b t a i n
+a(u,vh-u)-
(2.20A)
*1 ' 71 IIVh-"Il Ho(Q>
1
(-Au-f)(vh-u)dx
Q
Vvh e
Kh'
Using t h e Halder i n e q u a l i t y we deduce from (2.20A)
\Yvhe\,
with -1+ - ' 1 P P
= 1 ( i . e . p'
=L). 1'P
L e t q be such t h a t 1 5 q + a ; t h e n suppose t h a t t h e assumptions o f Theorem 2.2 and t h a t p > 2. If
t,,satisfies
628
Ekzsto-plastic torsion
(APP. 3)
d Y p ( T ) c WISq(T) (with continuous i n j e c t i o n ) , t h e n it results from Ciarlet /1A/ and from SoboZev 's embedding theorem ( W2,P(T) c W1 ,OD(T) c Co(T) , with continuous i n j e c t i o n ) t h a t and Vv 6 WzsP(T)we have VT
E%
( 2 22A)
IIV('rrTv-v) I I
1 1 ChT1+2(--- p) IIvll$,p(T) L ~ ( T x) L ~ ( T )
I n (2.22A), I T V i s t h e linear interpolate of v at t h e t h r e e T v e r t i c e s of T, h i s t h e l e n g t h o f t h e l o n g e s t s i d e of T , and C L e t v ~ W ~ r P ( n )and l e t i s a constant inxependent of T and v. IT : H :(n) n C o ( n ) + Voh be defined by
h
s i n c e p > 2 implies ?''(a) C C o ( n ) , with continuous i n j e c t i o n , we can d e f i n e Thv( ) but i n contrast t o the one-dimensional case
we have i n general IThV
' Kh
i f
v
E
f ~ ? ' ~ ( an)K.
Since $"(a) cW""(~) with continuous i n j e c t i o n i f p > 2 , it follows from (2.22A) t h a t almost everywhere on SZ we have
Iv(Thv-v) (x)
I Irh1-2/p
vv
E
2 'qn)
from which we deduce t h a t
( (2.23A)
a h o s t everywhere on sz we have
1
t h e constant r i n (2.23A) i s independent of v and h. define rh ' Hi(Q) n?'P(Q) + Voh by
We t h e n
ITV
h
(2.24A)
(
rhv
l+rhl-2/p
We can, i n f a c t , d e f i n e lThv Vv
Y
E
K
since K
C W
1 '"(a)
C
Co(rr>.
Finite-element approximation
(SEC. 2)
-
629
I
it t h e n follows from (2.23A), (2.24A) t h a t (2.258)
rhv
Vv
%I
E
$'p(52)
n K.
Since u ~ $ ' ~ ( 5 2 )nK, it follows from (2.25A) t h a t w e can t a k e = r u i n (2.21A), g i v i n g "h h
which i m p l i e s
+ rh'-2'plI ull
2 ,p (52)
llu
II
LP ' (52) Since p > 2 we have Lp(n) C L P ' ( G ) , with continuous i n j e c t i o n ; it t h e n r e s u l t s from Strang-Fix /1/ and Ciarlet /1A/ t h a t under t h e assumptions on s t a t e d i n t h e Theorem w e have
p;n
(2*298)
I!nhu-ull 1
Ho (52)
' Chllull w29w
'
w i t h , i n (2.29A), (2.30A), C independent of h and u. (2.18A) t h e n r e s u l t s t r i v i a l l y from (2.26A)-(2.30A).
Estimate
Remadi 2.1: It follows from Theorem 2.2 t h a t i f f = constant (which i s t h e c a s e f o r a p p l i c a t i o n s i n mechanics) and i f 52 i s a convex polygonal domain, t h e n w e have an approximation e r r o r which i s l f p r a c t i c a l l y ' l of o(&) s i n c e U E w ~ , P @ )~p (<+I.
Etas to-plus t i c torsion
630 3.
(APP. 3 )
FINITE-ELEMENT APPROXIMATION OF PROBLEM (1.lA). (11) OPTIMAL ORDER ESTIMATES THROUGH THE USE OF AN EQUIVALENT FORMULATION I n t h i s s e c t i o n , which f o l l o w s t h e account o f Falk-Mercier
/lA/, we show t h a t t h e u s e o f an e q u i v a l e n t f o r m u l a t i o n e n a b l e s u s t o o b t a i n f i n i t e - e l e m e n t approximations which l e a d t o e r r o r e s t i m a t e s o f optimal order.
3.1
Equivalent f o r m u l a t i o n o f problem (1.1A)
The f o l l o w i n g e q u i v a l e n c e lemma forms t h e fundamental r e s u l t of t h i s t h i r d s e c t i o n : Lemma 3.1: Suppose t h a t fl i s a simpZy-connected bounded domain i n l R 2 ; there i s then equivaZence between problem (1.1A) and the variational probZem ( l )
Find p E A n n such that
I where
+
= {+ly+2}
i s an ( a r b i t r a r y ) solution of
and where (3.3A)
A = { q E L 2 (Q) X L2 ( a ) , lql < I
(3.4A)
n
2
= 19 E L (Q) X L
a.e. on a )
q*vw dx = 0
VWEH~(Q)}.
The soZutions u o f (1.1A) and p of (3.1A) are connected by the retation
(SEC.
Finite-element u p p o x h a t i o n
3)
-
11
631
P r o o f : ( i ) L e t u be t h e s o l u t i o n of (1.1A) with f s a t i s f y i n g ; w e use t h e n o t a t i o n
(3.2A) and with v E HA(,) (3.6A) Clearly we have (3.7A)
VEK=-+~EI\,
1
fv dx =
(3.8A)
v
$*q d x
v ~ H1 ~ ( a ) ,
s2
p'q d x
(3.9A) Moreover w e have,
by t h e d e n s i t y of vq =
I-av , ax2
(3.11A)
av
ax,
vw
E
v v ~ H1~ ( S 2 ) .
€I1 (a),
B ( n ) i n HA(Q), (3.10A) a l s o holds
1 ,
1 v6Ho(S2),
so t h a t
av , -
1 v € H O ( n ) 3 q = {ax2
By u s i n g (3.6A)-(3.9A), (1.1A) t h a t p = {.k
(3.11A) we can aU
e a s i l y deduce from } i s t h e s o l u t i o n o f (3.1A).
- ax,
ax2
( i i ) I t now remains t o prove t h e converse; l e t p be t h e s o l u t i o n of (3.1A) and l e t q E A n H The condition q E H i s i n f a c t equivalent (from Green's formula) t o
.
(3.12A)
Vaq = 0 a.e.
(3.13A)
q - n = 0 on
in
51,
r,
where n = (nl,n2) i s t h e u n i t normal p o i n t i n g outwards from Q ; t h e v e c t o r T = (n2,-nll i s t h u s t a n g e n t i a l t o .'l Conditions (3.12A), (3.13A) imply t h e e x i s t e n c e o f v E H
t h e simple c o n n e c t i v i t y of Q defined t o w i t h i n an
(a),
Eksto-pZastic torsion
632
(APP. 3)
a d d i t i v e constant , such t h a t (3.14A) (3.15A)
av = 0 on r ++ v a.r
= constant
on
r. 1
We can t h u s t a k e v = 0 on r , which combined with v e H (a) implies v E HI (a) ; i n view o f t h e above we t h e n c l e a r l y have 0
(3.16A)
qehnH W v e K .
Since t h e above r e l a t i o n s a l s o hold f o r p , we deduce from (3.2A), (3.14A) t h e e x i s t e n c e o f a u which satisf ies
(3.1A),
ueK
Vu*V(v-u)dx 2
I,
f(v-u)dx
i . e . u i s t h e (unique) s o l u t i o n of ( 1 . l A ) .
v EK,
fl
Remark 3.1: It results from Duvaut-Lions /1, Chapter 5 / t h a t (3.1A) i s i n f a c t t h e n a t u r a l mechanical formulation f o r t h e problem of t h e e l a s t o p l a s t i c t o r s i o n o f a c y l i n d r i c a l b a r under t h e p h y s i c a l assumptions o f Chapter 3, Section 1.2. Remark 3.2: If f = c o n s t . = C (which corresponds t o t h e p h y s i c a l s i t u a t i o n ) , it follows immediately t h a t Q = {Ql,Q2} defined by
satisfies condition (3.2A), VA (uniquely) determine uo E H;(Q)
-
E
IR
.
I f f is not constant, w e
from
Auo = f i n a , u putting
=
0 on
au0 ax,
9
r;
$2
au0 , it -ax,
i s c l e a r t h a t t h e function Q
t h u s defined sat isfies (3.2A).
Remark 3.3: The regularity results r e l a t i n g t o problem (1.1A) (proved i n Br6zis-Stampacchia /2/ and quoted i n Chapter 3, S e c t i o n 2.1) and r e l a t i o n (3.5A) imply t h a t if r i s s u f f i c i e n t l y regular,
Finite-element approx6nation
(SEC. 3 )
-
I1
633
t h e n we have f o r t h e s o l u t i o n p of problem (3.1A)
Remark 3.4: This remark concerns t h e e x i s t e n c e of a Lagrange m u l t i p l i e r , a s s o c i a t e d with t h e c o n d i t i o n p E H , for problem ( 3 . 1 A ) : it follows from ( 3 . 1 A ) , ( 3.4A) t h a t a n a t u r a l Lagrangian a s s o c i a t e d with problem (3.1A) i s & : (L2(n))2 X H 1 ( Q ) -C IR defined
by
which l e a d s t o t h e saddle-point problem
We t h e n have Proposition 3.1:
There i s equivalence between (3.20A) and
moreover i f { p y x } i s a solution of (3.201, (3.21A), then p i s the solution o f problem ( 3 . 1 ~ ) . Proof:
( i ) (3.20A)
(3.21A) :
From t h e left-hand i n e q u a l i t y
i n (3.20A) w e deduce t h a t
and hence
(3.22A)
I,
p*V(w-X)dxz 0
I,
p-Vw dx = 0
Vw E H
1
(a),
Vw E H I ( ~ )
~ E . H;
t h e right-hand i n e q u a l i t y i n (3.20A) implies (as is s t a n d a r d )
EZas t o p h s t i c torsion
634
Now
lim
(UP. 3)
4 p + t ( q - p ) ,XI- 2(P,X)
t+o
t
t#O
which with (3.23A) implies t h e i n e q u a l i t y i n (3.21A) ; i n view of (3.22A) we have t h u s proved (3.20A) (3.21A).
( i i ) (3.218) on t h e one hand
p€H+t(p,w) and hence
(3.20A) : This i s immediate since
=$I
a
2 Iql d x -
I
0 - q dx
n
On t h e o t h e r hand we have, by t h e COnVc?Xitg of
q
~ E H ~ ( Q ) ,
+
&(q,X),
which combined with ( 3.2l.A) implies
The double i n e q u a l i t y i n (3.20A) r e s u l t s from (3.24A)
, (3.25A).
(iii) It i s moreover, immediate t h a t (3.2l.A) implies t h a t p s a t i s f i e s (3.1A); it i s s u f f i c i e n t t o r e s t r i c t q t o h n H i n (3.21A) and t o note t h a t
Finite-element approximation
-
II
635
x
The e x i s t e n c e of a m u l t i p l i e r s a t i s f y in g (3.20A),(3.21A) i s a t r i c k y problem: however, it i s shown i n Duvaut-Lions /l/, u s i n g t h e results of Br6zis / 5 / , t h a t such a m u l t i p l i e r x E H1(Q) e x i s t s i n t h e case i n which f = c o n s t . ( t h e c a s e i n mechanics); it should be noted ( s e e Duvaut-Lions, l o c . cit.) t h a t , i n mechanics, i s i n t e r p r e t e d as a displacement. We note t h a t t h e m u l t i p l i e r d i s c u s s e d above i s defined only t o w i t h i n an a r b i t r a r y a d d i t i v e constant.
x x
3.2
Approximation of problem (3.1A) by a finite-element method
We s h a l l assume i n t h e following t h a t Q i s a bounded convex polygonal domain i n I R ~ .
3.2.1
Definition o f the approximate problem
Using n o t a t i o n similar t o t h a t o f Appendix 1, S e c t i o n 3.6, we approximate H1(Q), L 2 ( Q ) x L 2 ( Q ) , H a n d A r e s p e c t i v e l y by:
(3.26A)
Vh = {wh
(3.278)
Lh
E
Co(n),
2 { q h E L (1 '
whlT
E
xL2(n),
P1
VTE
eh},
qh T E P ~ X PV ~T E ~ ~ } 9 ( ~ )
We t h e n approximate problem ( 3.1A) by
( ' ) Po: space of constant real-valued f u n c t i o n s .
Elas to-plas t i c torsion
636
( U P . 3)
It i s easy t o prove t h e following
Proposition 3.2 : 3.2.2
Problem ( 3.30A) admits a unique solution.
Investigation of the convergence
We s h a l l assume i n t h e following t h a t f E L 2 ( n ) ; s i n c e $2 i s convex and bounded, t h i s implies ( s e e Chapter 3, Section 2.1) t h a t t h e s o l u t i o n u o f (1.l.A) s a t i s f i e s u E H2(S2), and hence f o r t h e s o l u t i o n p of (3.1A)
s i m i l a r l y i f Q i s obtained from f using t h e r e l a t i o n s of Remark 3.2, w e have
with
i n (3.31A), (3.33A), C denotes c o n s t a n t s . We a l s o assume t h e e x i s t e n c e of a m u l t i p l i e r t h a t {p,x) satisfies (3.20A), (3.21A).
x
E
H l ( S 2 ) such
I n o r d e r t o i n v e s t i g a t e t h e convergence, w e s h a l l need t h e following r e s u l t s : 2
2
Let -mh : L (Q) X L (Q) + 4, be the orthogonal projection operator onto Lh ( i n the norm L 2 ( n ) x L2(n)); we then hme the following propertzes : Proposition 3.3:
Finite-element approximation
(SEC. 3 )
('lrhq-q)-zh dx = 0
(3.36A)
vq
E
-
637
I1
L2(52) xL2(52)
,
Vzh
E
I,,,
Proof: P r o p e r t i e s (3.34A)-(3.36A) are almost immediate; w e s h a l l now prove (3.37A) : We have Vh c H1(Q), g i v i n g
q
E
Since Vwh H then
E
1 5 2
$
it follows from (3.36A) and (3.38A) t h a t i f
q*vwhdx = 0 'lrhq'Vw dx = h 1 5 2
Vwh EVh*'IThq
El#,
.H
Moreover, by u s i n g t h e r e s u l t s of Ciarlet / l A / , f o r example, we may prove t h e following p r o p o s i t i o n r e g a r d i n g 71 h:
We have
P r o p o s i t i o n 3.4:
(3*39A)
11*hq-qll
2
\I q E
H1(52) x H 1(52)
2 Ch 114Il
L (52) x L2 (a)
H1(a)X H' (52)
'
with C independent of h and q . Regarding t h e convergence of ph t o p , we have Theorem 3 . 1 ( Falk-Mercier / l A / ) : Lhzder the above asswrrptions on n , f ,x, ( t h e assumptions o n eh being those o f Theorem 2 . 2 ) we have the (optima2 order) error estimate
where , i n (3.40A) ,p i s t h e so2ution o f problem ( 3 . 1 A ) and ph that of the approximate prob2em ( 3.30A)
.
Proof: problem
We have, from t h e d e f i n i t i o n of t h e approximate
EZas to-plas tic torsion
638
and a l s o
By adding (3.41A) and ( 3 . 4 3 A ) , we o b t a i n a f t e r some s t r a i g h t forward manipulation, Vqh E Ah n %, Vwh E Vh:
I n t h e following w e s h a l l use t h e n o t a t i o n
t h e n deduce from (3.44A) ( v i a Schwarz's inequality and t h e r e l a t i o n 2IxIIyl
x2+y2 ~ x , y c n ) ,
VqhE\n%
,
vWhEvh
:
Finite-element approximation
(SEC. 3 )
We t h e n approximate p and rh
: Co($ i.e.
-f
x
by
TI
h
-
I1
639
p and rh x where
Vh i s t h e ( l i n e a r ) V -interpoZation o p e r a t o r on
r v EV h h
h
wVECO(Q,
(rhv)(P)=v(P) V P
v e r t e x of
T
E
%
;
it i s p e r f e c t l y a c c e p t a b l e t o d e f i n e rhx, s i n c e X E H 2 ( R ) cCo(n) i n t h e two-dimensional c a s e under c o n s i d e r a t i o n . We t h e n have
s i m i l a r l y we have ( s e e P r o p o s i t i o n 3.3)
(3.488)
ThP E % n %
(3.49A)
jRPh'(ThP-P)
9
dx = 0
Moreover, s i n c e p E H1(Q) x H1(Q) and x E H2(Q) ( s e e (3.39A) and Strang-Fix 111, C i a r l e t /1A/ f o r t h e following estimates) , we have
where i n (3.50A) , (3.51A) , C denotes c o n s t a n t s which a r e independe n t of h , p , and x. I n view of (3.47A), (3.488) w e can, i n (3.46A), t a k e q = vhp and w = rhx; w e t h e n deduce from (3.46A) (3.49A) , ( 3 . h A ) h
640
Elastoplastic t o r s i a
(APP. 3)
From Proposition 3.3, r e l a t i o n (3.36A) , w e have
I and hence
we then deduce from (3.31A)-(3.33Aly (3.39A) and from (3.50A), (3.52A), (3.53A)
which proves t h e estimate (3.40A) and renders it more p r e c i s e .
4.
FURTHER DISCUSSION OF ITERATIVE METHODS FOR SOLVING THE ELASTO-PLASTIC TORSION PROBLEM
4.1
General d i s c u s s i o n .
Synopsis
I n Chapter 3, v a r i o u s methods based on t h e formulation ( 1 . 1 A ) were described f o r t h e i t e r a t i v e s o l u t i o n of t h e e l a s t o - p l a s t i c t o r s i o n problem; without going i n t o g r e a t e r d e t a i l ( f o r which we refer t o Marrocco / l A / , Gabay-Mercier 111, Fortin-Glowinski / l A / , /2A/ , Glowinski /2A/ and Glowinski-Marrocco / l A / ) we can state t h a t t h e most e f f i c i e n t c a l c u l a t i o n methods c u r r e n t l y a v a i l a b l e are based on algorithm (10.5)-(10.7) o f Chapter 3, S e c t i o n 1 0 (of the augmented Lagrangian t y p e ) ; t h i s algorithm ( ) can be g e n e r a l i s e d i n a p a r t i c u l a r l y simple manner t o c a s e s i n which t h e cross-section of t h e b a r 2s mZtipZy-connected.
We s h a l l conclude t h i s f o u r t h s e c t i o n (and t h i s appendix) by i n v e s t i g a t i n g , i n Sections 4.2 and 4.3, t h e i t e r a t i v e sozution of (l)
Together with i t s v a r i a n t s f o r which c i t e t h e above r e f e r e n c e s .
(SEC. 4 )
641
I t e r a t i v e methods
(1.U) v i a the equivalent formulation (3.1A) , u s i n g d u a l i t y - t y p e algorithms based on t h e formulation (3.20A); i n Section 4.2 we d e s c r i b e a Uzawa-type algorithm and i n S e c t i o n 4.3 a v a r i a n t of conjugate-gradient t y p e .
4.2
S o l u t i o n of problem (3.1A) by a d u a l i t y method
4.2.1
Genera2 discussion.
Description of the a2gorithm
Given t h e p a r t i c u l a r s t r u c t u r e of problem (3.1A) , we s h a l l r e s t r i c t our a t t e n t i o n t o a d u a l i t y algorithm of t h e same t y p e as t h o s e considered i n Chapter 2 , S e c t i o n 4.3 ( s e e a l s o Appendix Using t h e d u a l i t y results i n Remark 3.4 of 2, S e c t i o n 3 ) . S e c t i o n 3.1 of t h i s appendix, w e s h a l l reduce t h e s o l u t i o n of (3.1A) (and t h e r e f o r e t h a t of ( 1 . 1 A ) ) t o t h e s o l u t i o n of t h e saddle-point problem (3.2OA) , which as we r e c a l l i s
with
which i s j u s t i f i e d s i n c e p i s i n t h i s case t h e solution of (3.1A). I n view of Chapter 2 , S e c t i o n 4.3, t h i s l e a d s t o t h e following (Uzawa-type) algorithm:
xo E HI
(4.3A)
then for n using
2
0,
(Q) given
(xo = o
xn E HI (Q) known,
f o r example),
determine p"
E
A and
xn+l E
H' (Q)
(APP. 3)
EZas to-p Zas t i c torsion
642
The p r a c t i c a l implementation o f (4.3A)-(4.5A) p r e s e n t s no major d i f f i c u l t i e s ; i n e f f e c t (4.4A) i s equivalent t o (4.6A)
p" = pA(@vxn)
S
2 2 2 PA : (L (f2))2 -P (L (62)) i s t h e orthogonaz projection operator onto h ( i n t h e norm L 2 ( Q ) x L2(Q) ) ; we t h e n have
where
(4.7A)
p"
NVX"
=:
SUP(1
Regarding
I
I@Vfl)
(4.6~)~ if we
define
(a,.
)Hl(Q) by ( ' 1
n+l n from x and pn ( v i a (4.5A)) reduces t h e n t h e determination of x t o t h e s o l u t i o n of a Newnann problem f o r t h e o p e r a t o r - A + I ; this problem i s well-posed s i n c e t h e l i n e a r mapping
w
-t
-
H1(62)
I,
P Vwep"dx
i s obviously continuous on H ' ( Q ) . It can t h u s be seen t h a t t h e implementation o f (4.3A)-(4.5A) ( i n p r a c t i c e , i t s finite-dimensi o n a l v a r i a n t s ) i s s t r a i g h t f o r w a r d provided t h a t e f f i c i e n t programs f o r t h e numerical s o l u t i o n of l i n e a r e l l i p t i c problems of o r d e r two a r e a v a i l a b l e .
(l)
o t h e r choices are p o s s i b l e
(2)
and hence
llwll
4' w
EH
1
(62).
4)
I t e r a t i v e methods
4.2.2
Convergence of algorithm ( 4.3A
(SEC.
Regarding t h e convergence o f algorithm Theorem
643
(4.3A)-(4.5A)
4.1: Suppose that the saddle-point problem (4.1A), is defined
(4.2A) h i t s a solution { p y x ) and that by (4.8A); then i f (4.9A)
w e have
0
we have f o r the sequence
defined by algorithm (4.3A)-
{p n
(4.5A) (4.1OA)
l i m Ilpn-pI( = 0 n++m L~(QxL~(s~)
vxo
CHI(,)
where, i n (4.10A), p i s the solution of (3.1A). This f o l l o w s t h e same g e n e r a l l i n e s as t h a t of Proof: Theorem 4:1 i n Chapter 2, S e c t i o n 4.3; d e s p i t e t h i s we s h a l l g i v e t h e proof i n full i n o r d e r t o demonstrate t h e convergence c o n d i t i o n
(4.9A). L e t { p , x ) be a s o l u t i o n o f (4.1A),.(4.2A); t h e n ( s e e Proposi t i o n 3.1) p must n e c e s s a r i l y be a s o l u t i o n o f (3.1A). I n view o f t h e f a c t t h a t p E H, w e have
I,
vw ~ H ' ( i 2 )
p * V w dx = 0
and hence
which, by d i f f e r e n c i n g w i t h
p"
=
Pn-P
9
2n
(4.5A) and w r i t i n g I
xn-x
,
leads t o
Moreover, by convexity and by t a k i n g account of right-hand i n e q u a l i t y i n (4.1A), we have
(4.4A) and t h e
644
EZas t o p Zastic torsion
( U P . 3)
we deduce, by adding (4.12A) and (4.13A)
A t t h i s s t a g e it i s convenient t o i n t r o d u c e defined ( u n i q u e l y ) by
f" E
H
1
(a),
7 E H1(Q)
¶
(4.1 5A)
=
H'(Q)
I
dx
n
W e t h e n have, from ( b . l l A ) ,
in+'
t
in
-
V w CHI(,).
(4.15A)
,
giving
II in+' I I
€2(a)
or alternatively
By p u t t i n g
w =
in
-n
i n (4.15A) w e deduce from ( 4 . 1 4 A ) , ( 4 . 1 6 A )
by now p u t t i n g w = y i n ( 4 . 1 5 A ) we thereby deduce, using Schwarz ' s i n e q u a l i t y and (4.8A)
(SEC.
4)
645
Iterative methods
and hence
It t h e n f o l l o w s from (4.17A)
,
(4.18A) t h a t
It i s c l e a r i n view o f ( 4 . 1 9 A ) '-n (4.10A) s i n c e p - pn-p.
, that
condition ( 4 . 9 A ) implies
We deduce from ( 4 . 5 A ) , (4.10A) and from t h e f a c t Remark 4 . 1 : t h a t p E H t h a t under t h e assumptions for which Theorem 4.1 above a p p l i e s , we have
I n f a c t w e know a g r e a t d e a l more about t h e behaviour of t h e n sequence {x }n20, s i n c e , by a p p l y i n g Theorem 3.1 o f Appendix 2 , S e c t i o n 3, it can be shown t h a t under t h e above assumptions we have
(4.21A)
lim
xn = x*
weakly in H~(G)
n+*
where x* ( E H I ( $ ? ) ) i s such t h a t { p y x ? i s a s o l u t i o n of t h e saddlep o i n t problem ( 4 . M ) , (4.2A). We n o t e ( s e e Lions-Magenes
/l/) t h a t (4.2lA) i m p l i e s
and hence, i n p a r t i c u l a r
Remark 4.2: The above can e a s i l y be "extended" t o t h e approximate problem (3.30A) v i a t h e s o l u t i o n of t h e a s s o c i a t e d saddlep o i n t problem
EZas to-pks tic torsion
646
(APP. 3)
i n p a r t i c u l a r , t h e convergence c o n d i t i o n ( 4 . 9 A ) s t i l l holds f o r finite-dimensional v a r i a n t s of algorithm ( 4 . ?,A)-( 4.5A) (provided, i s s t i l l defined by ( 4 . 8 A ) ) . of course, t h a t ( ,-) H1(Q)
W e n o t e t h a t (4.23A) always admits a saddle p o i n t ; i n f a c t (3.30A) admits a (unique) s o l u t i o n and t h e r e l a t i o n s d e f i n i n g Hh are linear and are finite i n number ( t h i s number being equal t o t h i s i s s u f f i c i e n t t o ensure (see Rockafellar 131) t h e dim V h ) ; e x i s t e n c e of a s o l u t i o n t o t h e saddle-point problem (4.23A) i n t h e finite-dimensional case.
4.3
On conjugate-gradient-type
v a r i a n t s o f algorithm ( 4 . 3 A ) -
(4.5A) 4.3.1
General discussion
It i s o f t e n advantageous ( l ) t o attempt t o accelerate the convergence of gradient-type algorithms by u s i n g a v a r i a n t of conjugate-gradient t y p e i n t h e sense of Chapter 2, S e c t i o n 2.3 (see a l s o Appendix 2, Section 5 ) ; t h i s i s particularly true for algorithms of t h e Uzawa t y p e , s i n c e t h e s e can o f t e n be i n t e r p r e t e d
as g r a d i e n t algorithms a p p l i e d t o a problem which i s t h e duaZ o f t h e o r i g i n a l problem ( t h e primal problem). The conjugate-gradient algorithm (2.23)-( 2.25) o f Chapter 2 , Section 2.3 w a s a p p l i e d t o t h e s o l u t i o n o f t h e problem
1J(u) < J ( v )
N VveIR
,
(4.24A) lU€RN, with
A t t h e expense of a c e r t a i n i n c r e a s e i n t h e complexity of t h e programming.
(SEC.
4)
647
Iterative methods
we a l s o mentioned a variant which can be applied to non-quadratic cases (in fact this variant is known as the Fletcher-Reeves method, see Pol& 111). The above algorithms can in fact be generalised to much more complicated situations, both finite- and infinitedimensional (see Daniel /I/,/2/, Pol& /1/ and the additional references given in Section 4.3.3); in particular, as we shall see in Section 4.3.2, we can define conjugate-gradient-type variants of algorithm (4.3A)-( 4.5A) (and of its finite-dimensional variants associated with the solution of the approximate problem (3.30A)). 4.3.2
Dual functional. Description of conjugate-gradienttype variants of algorithm (4.3A)-( 4.5A)
2 Let 4 : (L x H 1 (a) + IR be the Lagrangian defined by (4.2A): it is convenient to consider the functional : H1(Q) + IR defined by (4.268)
R(w) =
- Min
d(q,w).
qEA
If we denote by p(w) the solution of the problem
and hence
(4.29A)
+vw
dx
- -21
We deduce from (4.29A) that' (4.30A)
n(w) =
M(w) dx
n
with the integrand M(*) in (4.30A) defined by
+vw
dx
.
648
EZasto-plastic torsion
Starting from (4.26A)-(4.28A) easy to prove:
(APP. 3)
and (4.30A), (4.3lA), it is quite 1
: H (n) IR defined by The functional Lipschitz continuous and Gateaux differentiable; i t s Gateaux dzfferential R' i s also Lipschitz continuous, and i s defined by +
(4.32A)
=
I
p(w)=Vn dx
n
V W , ~E H ' ( ~ )
;
where, i n (4.3s) , p(w) i s defined by (4.27A) , (4.28A) and uhere <*,*>denotesthe bilinear form of the duality between (H1(Q))' and H1(Q). B Remark 4.3:
It follows from (4.26A) that the problem
is the dual of problem (3.1A) associated with the Lagrangian d ; moreover, algorithm (4.3A)-( 4.5A) is simply a ( fixed-step) gradient-methodapplied to the solution of the dual problem (4.33A). Problem (4.33A) is an infinite-dimensionaZ minimisation problem, non-quadratic but unconstrained; the generalisation of the conjugate-gradient algorithms of Chapter 2, Section 2.3 to this problem leads to the following algorithms: Stage
0:
(4.34A)
Initialisation
xo E HI (Q), given
then determine go by
(4.350
(SEC. 4)
I t e r a t i v e methods.
649
and put (4.36A)
z o = gO .
Next , f o r n 2 0 and assuming that xn,g n ,z n are known determine Xn+l , gn+l , zn+l using Stage 1:
Descent
Solve the onevariable minimisation problem F i n d An
E
IR such that
(4.37A)
m(Xn-Xnzn)
Stage 2 :
I
?7?(x"-Az")
v
A
E
IR
Construction of the new descent direction
Define gn+l by g"+I
E
(n) ,
HI
(4.39A) (gn+I ,w)
H (Q)
and then yn+'
by
( o r alternatively
and f i n a l l y
= <@'
(xn+I),w>
1
Vw E H (Q) ,
EZas t o p Zas t i c torsion
650
(4.41A)
z
n+l
n+l
= g
+
(APP. 3)
yn+lzn
The next s t e p , of course, i s (4.428)
n = n + l , go t o (4.37A).
The above algorithms call for a number of comments: The conjugate-gradient algorithm (4.34A)-(4.39A) , Remark 4.4: (4.40A) , (4.4I.A), (4.428) (resp. (4.34A)-(4.39A), (4.40A)2, of Fletcher-Reeves ( resp. Polak-RibiBre) type (see (4.42A)'is Pol& /1/ for the finite-dimensionaZ convergence of these algorithms). If 8 is quadratic it can be shown that the tUo algorithms coincide; however it appears that methods of the Polak-Ribisre type in general perform better than those of the Fletcher-Reeves type (for an explanation of this phenomenon, see Powell /lA/). rn The two non-trivial stages in the implementation Remark 4.5: of the two algorithms above are:
(i)
The solution of the onevariabze minimisation problem (4.37A); this problem can be solved (without calculating derivatives) using methods of dichotomy or Fibonacci type, etc... (see Pol& 111, Wilde-Beightler /lA/, Brent /lA/); it is also possible to use Newton or secant type methods. We should point out that it is not computationally expensive to I evaluate v ( w ) , vw E H (a), from relations (4.28A), (4.29A).
n+l requires the solution of (ii) The calculation of gn+l from x the Neumann problem (4.39A); we note that in view of (4.32A) we have, in (4.39A), (4.43A)
~ 7 =
I
pn+'*Vw dx
n
VwcH
1
(a),
where in (4.43A) we have put (see (4.28~))
In view of the above remarks it is clear that, Remark 4.6: as for algorithm (4.3A)-(4.5A) , an efficient method for solving Neumann problems will be a fundamental tool f o r the implementation of the two conjugate-gradient algorithms above; it will in fact
I t e r a t i v e methods
(SEC. 4 )
651
be finite-dimensional variants of these two algorithms which will be applied to problem ( 3 . 3 0 A ) , and under these conditions it will be advisable to factorise once and for all the (symmetric, positive definite) matrix associated with .the bilinear form Vh x Vh -+ IR defined by
to this end we shall employ either a Gauss or a ChoZesky factorisation. The above also holds, of course, for finite-dimensional W variants of algorithm ( 4 . 3 A ) -( 4.5k)
.
The convergence of the two algorithms ( 4 . 3 4 A ) Remark 4.7: ( 4 . 4 2 8 ) is a tricky problem, and to the best of our knowledge is still an open question. 4.3.3
Discussion.
Conclusion.
The algorithm ( 4 . 3 A ) - ( 4 . 5 A ) (and its finite-dimensional variants) falls within the class of gradient methods with a m i z i a r y operator, previously encountered in Chapter 1, Section 3 . 1 and Chapter 5, Section 6.4. A s regards the two algorithms of Section 4 . 3 . 2 above, these are
conjugate gradient methods with auxiliary operator (in the specialist literature these are usually referred to as conjugate gradient algorithms with preconditioning) ; such algorithms have been used in particular for the numerical solution of problems involving linear or non-linear partial differential equations, some of which ( see Bristeau-Glowinski-Periaux-Perrier-PironneauPoirier /1A/ , Bristeau-Glowinski-Periaux-Perrier- Pironneau /1A/ , Periaux /lA/and Le Tallec / l A / ) are much more complicated than those considered in this current section. In addition to the above references, further details may be found in Bartels-Daniel / 1 A / , Axelsson /U/, Douglas-Dupont /1A/ , Concus-Golub-0' Leary / 1 A / , GlowinskirPironneau / l A / , and their respective bibliographies. It would certainly appear that the algorithms discussed in this section, combined with the finite-element approximation methods (due to Falk-Mercier / l A / ) of Section 3, provide methods which are efficient and relatively easy to program for solving, via formulation ( 3 . 1 A ) , the problem of the elasto-plastic torsion of a cylindrical bar with simply-connected cross-section under the physical assumptions of Chapter 3, Section 1.2.
This Page Intentionally Left Blank
Appendix 4 FURTHER DISCUSSION OF BOUNDARY UNILATERAL I’ROBLEIG AND ELLIPTIC VARIATIONAL INEQUALITIES OF ORDER
4.
APPLICATION TO FLUID MECHANICS. 1.
SYNOPSIS
This appendix supplements Chapter 4 on boundary u n i l a t e r a l problems and on e l l i p t i c v a r i a t i o n a l i n e q u a l i t i e s of order 4. I n S e c t i o n 2 w e c o n s i d e r t h e approximation, u s i n g both conforming and non-conforming f i n i t e elements, of t h e u n i l a t e r a l problem
(1.2A)
K = { V E H1 ( a ) , v t g a.e. on
r}.
I n S e c t i o n 3 w e r e t u r n t o t h e method o f mixed f i n i t e elements for f o u r t h - o r d e r problems, which formed t h e s u b j e c t o f S e c t i o n 4.5 of Chapter 4; we supplement t h e approximation r e s u l t s and d e s c r i b e an a p p l i c a t i o n o f t h i s method t o t h e s o l u t i o n o f t h e problem o f the (fourth order) e l l i p t i c variational inequality
with
(1.4A)
2
K = {VEH~(Q), a
I AvIB
a.e. i n Q}.
I n S e c t i o n 4 we show t h a t t h e t e c h n i q u e s used f o r s o l v i n g fourth-order e l l i p t i c v a r i a t i o n a l i n e q u a l i t i e s f a c i l i t a t e t h e numerical t r e a t m e n t o f c e r t a i n problems i n f l u i d mechanics; as an example we have t a k e n t h e transonic p o t e n t i a l flow of a p e r f e c t
654
Unilateral problems and e Z l i p t i c inequalities
compressible f l u i d ;
(NP.
4)
f u r t h e r examples w i l l be given i n Appendix 6.
F i n a l l y i n Section 5 we give a supplementary bibliography r e l a t i n g t o t h e s u b j e c t s contained i n t h i s a?pendix, or t o c l o s e l y r e l a t e d subjects.
CONFORMING AND NON-CONFORMING APPROXIVATIONS OF THE BOUNDARY UNILATERAL PROBLEM ( l . l A ) , (1.2A).
2.
The numerical a n a l y s i s of problem ( l . l A ) ,
using
(1.2A)'l)
confomring f i n i t e eZements of order one and two w a s t h e s u b j e c t of Chapter 4, Section 3, i n which v a r i o u s i t e r a t i v e methods f o r solving t h e continuous problem and t h e corresponding approximate I n t h e following, w e supplement problems were a l s o i n v e s t i g a t e d . t h e above r e s u l t s by those of Brezzi-Hager-Raviart( 2, /1A/ , /2A/ regarding t h e finite-element approximation o f (1.lA), (1.2A) and i n p a r t i c u l a r t h e problem of o b t a i n i n g optimal order e r r o r e s t i mates f o r t h e approximation. I n Section 2 . 1 ( r e s p . 2 . 2 ) we cons i d e r t h e approximation of (1.1A), (1.2A) by first-order conforming ( r e s p . mixed-type non-conforming) f i n i t e elements. 2.1.
Approximat ion of t h e u n i l a t e r a l problem ( 1 . 1 A ) by f i r s t - o r d e r conforming f i n i t e elements.
,
(1.2A)
We suppose i n what follows t h a t R i s a bounded polygonal domain i n I R 2 and t h a t f E L P ( a ) ( w i t h p > l), g E C o ( r ) . 2.1.1.
The approximate problem.
We use t h e n o t a t i o n of Appendix 1, Section 3.6, namely
(2.1A)
ch
(2.2A)
Vh = { v , E C
= {P
E n ,
Chi,
P a vertex o f
T
E
(a),
v
Tech)
0 -
vhlTeP,
.
We then approximate t h e convex s e t K ( d e f i n e d i n (1.2A)) by
(2.3A)
(') (')
%=
vh,
vh(p) > g ( p )
With g = 0 i n (1.2A). Abbreviated h e r e a f t e r t o B.H.R.
VP
E
\ n TI
,
(SEC. 2 )
655
Conforming and non-conforming approximations
It is then c le a r t h a t P r o p o s i t i o n 2 . 1 : The approximate problem ( 2 . 3 A ) , (2.4A) admits one and only one solution. 2.1.2.
Convergence o f the approximate solutions. mates of optimal order.
Error e s t i -
A s r e g a r d s t h e convergence of t h e a2proximate s o l u t i o n s when h -+ 0 , we r e f e r t o Chapter 4, S e c t i o n 3.5 f o r t h e c a s e i n which t h e s o l u t i o n u i s not very r e g u l a r ( a n d g = 0 ) . I n t h e following we s h a l l e s t i m a t e t h e approximation e r r o r 1 using a y (Q) c e r t a i n number o f ( r e a s o n a b l e ) r e @ l a r i t y assumptions on u , g and t h e f r e e boundary ( i . e . t h e boundary between = {P E U(P) = g ( p ) l a d = {P E u ( ~> ) g(P)) )
II,-uII
r+
ro
.
r,
r,
I n o r d e r t o o b t a i n t h e s e e r r o r e s t i m a t e s we s h a l l make use of
Suppose that u
Lemma 2 . 1 :
(2.5A)
-h+u =
(2.6A)
-aU> O an -
aU
(2.7A)
Proof:
2 H ($2) ; then
f a.e. i n R,
a.e. on
(u-g)
E
r, r.
= 0 a.e. on
See Chapter 1, S e c t i o n 1.1.
Lemma 2 . 2 : Let u and (1.2A) and ( 2 . 3 A ) , (2.4A).
a(v,w) =
be the respective solutions of ( l . l A ) , We then have ( w i t h [Vv-Vw + vw] dx V v,w E H1 (Q) ) , v vh E%:
i,
a ( Y1-u 9 s - u )
(2.8A)
Proof:
'a (\-u
9
vh'u> +a(
3
"h-uh)
-
i,
f (Vh-\)
See t h a t of Lemma 3 . 2 of Appendix 1, S e c t i o n 3.6.
We t h e n have Theorem 2 . 1 : Suppose t h a t the solution u of ( l . l A ) , (1.2A) s a t i s f i e s u E W ~ , P ( Q )with p > 2, t h a t g E WI s o o ( r ) and t h a t the s e t I f the o f p o i n t s on t h e f r e e boundary ( i . e . 7 nF+) i s f i n i t e . angles of r h a r e bounded below by eo >OO, zndependent of h , we then have
(2.9A)
dx
.
656
VnilateraZ problems and eZZiptic inequazities
where
yn is
(MP.
4)
the soZution of the approzimate probZem (2.3A), (2.4A).
Proof: We follow B.H.R. / 1 A , ~emma~6.1/. From Green's formula and s i n c e u E W2,P(Q), we have , V v E H (n) ,
and hence
v
vh
EY,
(2.1 OA)
L e t IT^ be t h e V - i n t e r p o l a t i o n o p e r a t o r on ch (see Agpendix 1, h Section 3 . 6 ) ; w e have n cIR2 , and hence Wz,P(Q) c C l ( @ , with continuous i n j e c t i o n , i f p > 2; t h e conditions u E W2sP (n) and u Z g on r then imply t h a t 'rrhu E Kh W e t a k e vh = IT u i n ( 2 . 8 ~ ,) (2.10A) giving h
.
1
a(%-u,yl-u)
+
I
2
a(yl-u,rhu-u)
(-Au+u-f) (vhu-yl)dx +
n
If
(rhu-%)dI'
,
which i m - l i e s , i n view of (2.5A) .(2.1 1A)
a(yl-u, yl-u) 2 a(yl-u,rhu-u)
+
(rhu-%) dr
.
It can e a s i l y be deduced from (2.11A) t h a t
It r e s u l t s from C i a r l e t / l A / , p > 2 implies
under t h e assumptions on
f o r example, t h a t
f% s t a t e d
u
with EgSp(fl)
i n t h e theorem.
I n view of (2.12A), (2.13A) it w i l l s u f f i c e t o e s t a b l i s h
(SEC. 2) Conforming and non-conforming approximations
t o prove t h e e s t i m a t e
657
(2.9A).
be i t s Vh-interpolate Let i e C 0 ( n ) be a l i f t i n g of g and l e t IT h we denote by g t h e t r a c e of IT on r . This function % on Ch; i s i n f a c t t h e i n t e r p o p a t e ( ' ) o f g f r o b t h e values taken on r n ch We then have
.
(2.15A)
gh'%
On
which combined with
It then follows from
r,
(2.6~) implies
(2.7A), (2.16~) that
Let rOh ( r e s p . r ) be t h e s u b s e t of I' which i s t h e ucion of th e t h e s i d e s of t h e t r i a n g l e s of c h c o n t a i n e d i n To ( r e s p . r+). W denote by Sh t h e g e n e r i c element of t h e s e t of s i es o f t h e 9U t r i a n g l e s of %h l y i n g on r ; i f S h C r+h., t h e n - = O ( s e e an (2.7A)); i f s h c roh then u=g on Sh, whlch i m p h e s ~h = nhu on Sh. From t h e s e r e l a t i o n s w e deduce
i
(2.18A)
'h
an c(rhu--&)-(u-g)1 aU
dr = 0
V s h c roh
" r+h
'
I n view of t h e assumption on t h e f r e e boundary s t a t e d i n t h e theorem, we have
(2.19A)
I
rOhu
I'+his less than or equal t o the number of p o i n t s on the free boundary. the number of sides sh $
ro
u r + h t h e r e e x i s t s P E sh such t h a t u ( P ) = g(P). If sh # Since g and uyr belong t o W 1 * 0 3 ( r ) , we have (from Taylor's theorem and c e r t a i n standard i n t e r p o l a t i o n r e s u l t s f o r which w e r e f e r t o C i a r l e t /lA/) ( 1 ) piecewise l i n e a r on
r
65 8
Unilateral problems and e l l i p t i c i n e q u a l i t i e s
Since u
edYp(,) with
p > 2 implies u
E
C'
(a)we
(APP.
4)
have
(2.228) It then follows from (2.20A)-(2.22A) and from
dr = O(h) t h a t
(2.23A)
The r e q u i r e d r e l a t i o n (2.14A) then r e s u l t s t r i v i a l l y from ( 2 . 1 7 A ) , (2.18A), ( 2 . 1 9 A ) , (2.23A).
Remark 2.1: I t i s shown i n B.H.R. /1A/ t h a t t h e e s t i m a t e (2.9A) a l s o holds i f R i s a convex domain ( p o s s i b l y not polygonal) and t h e t r i a n g u l a t i o n 0: and t h e approximate convex s e t Kh a r e h s u i t a b l y chosen. 2.2.
Approximation o f t h e boundary u n i l a t e r a l problem ( l . l A ) , (1.2A) using non-conforming f i n i t e elements of mixed t y p e .
I n t h i s s e c t i o n , which follows B.H.R. /2A/, we consider t h e approximation of t h e boundary u n i l a t e r a l problem ( 1 . 1 A ) , (1.2A) using a mixed finite-element method v i a a dual formulation of ( l . l A ) , (1.2A); we adopt t h e n o t a t i o n of Appendix 1, Section 4 and we assume t h a t g , ~ 1 / 2 ( r ) . 2.2.1.
A duaZ formulation o f the bcundary unilateral problem (l.lA),
(1.2A).
I t i s c l e a r t h a t problem ( l . l A ) ,
( 1 . 2 A ) i s equivalent t o
(SEC. 2 )
Conforming and non-conforming approximations
659
With ( 2 . 2 4 A ) , (2.25A) w e a s s o c i a t e t h e Lagrangian
(2.268) and w e c o n s i d e r t h e dual problem o f ( l . l A ) ¶ (1.2A) r e l a t i v e t o k, n me l y
where
It i s q u i t e e a s y t o p r o v e : P r o p o s i t i o n 2.2:
The dual problem (2.27A) i s equivalent t o
where
(2.308)
c
(2.31A)
H(div,n)
= {q
E
q'n 2 0 on
H(div,R),
= cq
2
E
(L
,
(n))N, v * q E L2 @ ) I .
Conversely ( 2 . 2 9 ~ )(2.30A) ~ a h i t s a unique s o l u t i o n p such t h a t p = V u where u i s the s o l u t i o n of the boundary u n i l a t e r a l problem ( l . l A ) ¶ ( 1 . 2 A ) . Remark 2 . 2 : Remark 4 . 1 o f Appendix 1, S e c t i o n 4.2 a l s o h o l d s f o r (2.29A) (2.30A). Remark 2 . 3 :
Let
We t h e n have t h e f o l l o w i n g e q u i v a l e n c e
q
E
H(div,R),
(2.338)
0 Vp E A
,
660
h i Z a t e r a l problems and e l l i p t i c i n e q u a l i t i e s
4)
(WP.
where <*,*> denotes t h e b i l i n e a r form of t h e d u a l i t y between H 1 i 2 ( I-) and H-1/2( r). The following saddle-point result can then e a s i l y be proved: Theorem 2 . 2 : Suppose t h a t the solution u of ( 1 . 1 A ) , ( 1 . 2 A ) belongs t o H 2 ( i 2 ) ; then l e t (2.34A)
I
=
k(q,p)
2 (lq12+(V*ql )dx +
52
I,
f V*q dx
be the Lagrangian associated with ( 2 . 2 9 A ) , ( 2 . 3 0 A ) ; d &its unique saddle point (p,A} on H ( d i v , n ) x A such t h a t (2.35A)
p = Vu i n 51
(2.368)
X
= g-u on
Moreover Ip , A 1 (2.37A) (2.38A)
(2.39A) 2.2.2.
a
r.
i s characterised by
(p,X) EH(div,n)
XA
,
I,
[p*q+V*p V*q]dx +
E
H(div,Q)
,
.
An approximation t o the dual problem (2.29A),(2.30A) using mixed f i n i t e elements.
20nce again we assume t h a t Cl i s a bounded polygonal domain i n and t h a t ?& i s a t r i a n g u l a t i o n of R. We t h e n approximate H ( d i v , n ) , H 1 I 2 ( r ) , A , C r e s p e c t i v e l y by
%=
{qh
H(div,Q) 9 l,q
T
'k+l "k+l
and
(2.40A)
V'qhlT
E
VTEPP,,
pk
qh*nl
e p k V S a s i d e of T E
ch}
(n i s a u n i t v e c t o r , normal t o S ) (2.41A)
I,,
= {%EL
2
(r), p h I S ~ p k Vscr, s
a side o f T E C ~ } ,
( SEC
-
2
(2.43A)
Conforming and non-conforming approximations
ch = (qh
'%,
qh*n ph dr s o vph €Ah)
661
-
We t h e n approximate t h e d u a l problem ( 2 . 2 9 A ) , (2.30A) by
Find ph < C h such that vqh eCh we have [ph. (qh'ph)
+v'ph
Qf g(qh7h)'n Jr
dr
v* (qh'ph)
-
1,
lax
fV* (qh-Ph)dx
9
which i s t h e d i s c r e t e analogue o f ( 2 . 2 9 A ) .
I t i s clear that (2.44A) admits one and only one solution. Let h be t h e Kuhn-Tucker v e c t o r a s s o c i a t e d w i t h (2.43A); t h e h approximate d u a l problem (2.44A) i s t h e n e q u i v a l e n t t o t h e v a r i a t i o n a l system
Find {Ph,+,)
+
( 2.45A)
1r
ph'"(ph
E H h
\r
XAh such t h a t
(Xh-g)qh*n dr =
-X h ) dr
0
1, -1,
vphEAh
[Ph '9 h + V*ph V.qh]dx f V*qh dx v q h
h
when h
%'
,
which i s t h e d i s c r e t e a n a l o g u e of (2.37A)-(2.39A), s o l u t i o n of (2.44A). Regarding t h e convergence of p /2~/!' r e s u l t s a r e p r o v e d i n B.H.R.
E
-+
ph b e i n g t h e
0, t h e following
Theorem 2 . 3 : Suppose that when h + 0 the angles o f are Then i f k = 0 ,h i f bounded below by Oo> 0, independent of h . f € H1(n) n L"(Q) and i f the s e t u E H'(Q) n w 1 '"(Q) , g E W1 '"(r), of points on the f r e e boundary ( i . e . To nT+ ) i s f i n i t e , we have
B.1I.R. /2A/ i n c l u d e s an i n v e s t i g a t i o n of t h e c a s e i n which fi F u r t h e r m o r e , Remarks 4 . 3 and 4 . 4 of Appendix i s not polygonal. 1, S e c t i o n 4.3 a l s o h o l d f o r ( 2 . 4 4 A ) , (2.45A).
Unilateral problems and e l l i p t i c inequalities
662
3.
(APP.
4)
FURTHER DISCUSSION ON THE APPROXIMATION OF FOURTH-ORDER VARIATIONAL PROBLEM USING MIXED FINITE-ELEMENT METHODS
3.1
Synopsis
The a i m of t h i s s e c t i o n i s t o supplement Section 4 o f Chapter 4 concerning t h e approximation of c e r t a i n fourth-order v a r i a t i o n a l problems. Section 3.2 gives some information on t h e convergence in of t h e mixed finite-element method of Chapter 4, Section 4.5; Section 3.3 w e b r i e f l y d e s c r i b e c e r t a i n r e s u l t s of GlowinskiPironneau /1A/ concerning t h e s o l u t i o n of t h e approximate biharmonic problem and which g e n e r a l i s e t h o s e o f Chapter 4 , S e c t i o n
4.6. F i n a l l y , i n Section 3.4, w e apply t h e above methods t o t h e s o l u t i o n of t h e fourth-order v a r i a t i o n a l i n e q u a l i t y problem The n o t a t i o n i s t h a t of Chapter 4. defined by (1.3A), (1.4A). 3.2
F u r t h e r d i s c u s s i o n of t h e converpence of t h e mixed finite-element method of Chapter 4, S e c t i o n 4.5.
Let R be a bounded domain i n I R 2 with r e g u l a r boundary; homogeneous D i r i c h l e t problem f o r A2 i s then defined by
1
U'A
the
= f i n R,
(3.1A)
au
o
on
r.
I n Chapter 4, S e c t i o n 4 . 5 w e described an approximation u s i n g mixed f i n i t e elements of order k, f o r which w e s t a t e d t h e convergence result
due t o Ciarlet-Raviart 131; t h e estimate (3.2A) supposes t h a t U E Hk+2(n) and makes various r e g u l a r i t y assumptions on t h e family ch)h , f o r which we refer t o Chapter 4 , Section 4.5. I n f a c t it results from t h e works of Scholz / l A / , /2A/, Rannacher / l A / , /2A/ and Gb-ault-Raviart /1A/ t h a t under t h e same and with s u i t a b l e (and reasonable) regulassumptions on a r i t y assumptions on u, we have 'd k ? 1 :
q),
(3.3A)
II \-uI I
€2(Q)
= O(hk-€)
(with
E
0 '
i f k22
Mixed finite-element methods
(SEC. 3 )
II Uh-4
(3.4A)
=
2 L (52)
with
0(hk+"')
663
if k 22
E: = O
,
Indeed, it i s even proved i n Scholz /3A/ t h a t f o r k l l we have ( l )
52
v'occ
(3.6A)
11 Ph-(-Au) 1 I
=
O(hk*).
We remark t h a t t h e e s t i m a t e s (3.3A), ( 3 . 4 A ) ,
(3.6A) a r e of
optimal o r quasi-optimal order. 3.3
Discussion supplementing Chapter 4 , Section 4.6 on t h e s o l u t i o n o f t h e approximate biharmonic problem (4.72)
3.3.1.
Review of t h e approximate bihamonic problem
I n Chapter spaces
4, S e c t i o n 4.5.2
we d e f i n e d t h e following d i s c r e t e
0 -
(3.7A)
Vh = {vh(vh E C (521, vhl
(3.8A)
voh
=
{vhlvh
E
vh,
vhlr =
E
VT
Pk
01
=
vhn
cCh), 1
H~(Q),
and a l s o M~
;
complement of Voh i n Vh,
(3.9A)
~ ~+ € vhlT =5 o V T E ' C ~ ,a T n r Ml-, i s defined uniquely by (3.9A).
We next consider
(1)
RoCC52
#Eocn
.
=
8
;
664
Unilateral problems and e l l i p t i c i n e q u a l i t i e s
(UP.
4)
Problem (3.11A) admits one and only one s o l u t i o n . 3.3.2.
Solution of (3.11A) by reduction t o a variational problem i n 4 .
We have vh 3 voh @ M h ; l e t { Uhyph) be t h e Solution and l e t hh be t h e component of Ph i n % y i . e .
Of
The following theorem then r e s u l t s from Ciarlet-Glowinski
(3.11A)
12.1:
Theorem 3.1: Let {uh,ph) be t h e solution o f (3.11A) and l e e Ah be t h e component of ph i n {uhyph,hh) i s then t h e unique element o f Voh xVh x Mh such t h a t
s;
(3.14A)
1,
Vph*Vvhdx =
(3.15A)
\n
V\*Vvhdx
(3.1 6A)
n
a
vyl*vphdx
f vh dx
In
lzh%dx j$h+,
vvh
E
Voh, ph-Ah
vvh EVoh dx
\d \
3
Voh,
E
% EVoh
9
'%
z
L e t Ah€ M h a n d approximate D i r i c h l e
(3.17A)
I,
, $h
be t h e r e s p e c t i v e s o l u t i o n s of t h e problems
V%*Vvhdx
0
v vh E Voh ,
E
Vh, %-Ah
E
Voh
Mixed f i n i t e - e lernent met hods
(SEC. 3 )
V$h*Vvhdx = ln%vhdx
(3.18A)
We then define t h e b i l i n e a r form
665
vvh
y,
:
%xs
$h +
IR by
The following lemma i s proved i n Glowinski-Pironneau /lA/:
The b i l i n e a r form
Lemma 3.1:
definite.
%(*,*) i s symmetric and p o s i t i v e -
I
Now l e t uo and Poh be t h e s o l u t i o n s of t h e two agproximate D i r i c h l e t proklems
(3.20A)
(3.21A)
1
n
i,
VPoh'~hdx
I
VUoh'whdx
jKohvhdx
n
vh dx
vvh EVoh 9 poh EVoh 9
v vh EVoh,
Uoh EVoh ;
t h e fundamental r e s u l t concerning t h e s o l u t i o n of (3.11AXvia Mh, i s then Theorem 3.2: Let {uh,ph} be t h e solution of (3.11A) and i!et be t h e component o f ph zn %; Ah i s then the unique solution of t h e linear variational problem Find Ah \E such t h a t Ah
(3.22A)
%(\,%)
I:ohov%dx
-
]npoh'hdx
which i s equivalent t o a linear system with a symmetric positived e f i n i t e matrix. It can t h e n e a s i l y be shown t h a t algorithm (4.77)-(4.80) of Chapter 4, Section 4.6.1 i s a c t u a l l y a fixed-step gradient algori t h m a p p l i e d t o t h e s o l u t i o n of problem (3.22A); Glowinski-Pironneau /lA/ g i v e s ( l ) some algorithms f o r s o l v i n g (3.11A), v i a (3.22A), which a r e more e f f i c i e n t than t h e above algorithm, and i n p a r t i c u l a r some algorithms of t h e conjugate-gradient t y p e , which a r e no more complicated t o implement, each i t e r a t i o n r e q u i r i n g e s s e n t i a l l y t h e s o l u t i o n of two approximate D i r i c h l e t
( I ) See a l s o Vidrascu /1A/ for f u r t h e r d e t a i l s and numerous numerical experiments.
666
h i l a t e r a l problems mad e l l i p t i c i n e q u a l i t i e s
(APP.
4)
problems f o r - A .
3.4
Appiication t o t h e numerical s o l u t i o n of problem ( 1 . 3 A ) (1.h).
I n t h i s s e c t i o n we s h a l l consider t h e numerical s o l u t i o n of t h e problem of t h e ( f o u r t h o r d e r ) E l l i p t i c V a r i a t i o n a l I n e q u a l i t y (1.3A), ( 1 . 4 A ) . 3.4.1.
F o m l a t i o n of the continuous problem. results.
Regularity
L e t S2 be a bounded domain i n I R 2 with r e g u l a r boundary f E H - ~ ( Q ) = (HZ(L-2))' and l e t a,B E IR be such t h a t Q 5 6 .
r,
let
We t h e n consider t h e v a r i a t i o n a l problem:
Find u E K such that (3.23A) Au A(v-u) dx 2
~ V E K
where
(3.24A)
2 K = (vEH~(R)
,a
5
AvsB a.e. on SZl
and where <=,*> denotes t h e s t a n d a r d b i l i n e a r form of t h e d u a l i t y between H-2(S2) and Hg(S2).
Remark 3.1: (3.258)
We have ( c f . Green's formula)
Av dx =
1, $
dr = 0
tfv
E
H,(Q). 2
Hence it follows t h a t K = @ i f Q 0 o r 5 < 0; it a l s o follows from (3.25A) t h a t K = ( 0 ) i f Q = 0 o r 5 = 0. We s h a l l t h e r e f o r e assume h e r e a f t e r t h a t
(3.26A)
a
B.
Remark 3.2: There i s equivalence between (3.238) and t h e minimi s at ion problem
The mapping
v
+
d e f i n e s a norm i n Hg(S2) equivalent
t o t h a t induced by H2(S2); moreover i f K # @ t h e n K i s n e c e s s a r i l y From t h e s e p r o p e r t i e s it i s easy t o deduce: closed i n Hg(S2).
Mixed f i n i t e - e l e m e n t methods
(SEC. 3)
P r o p o s i t i o n 3.1: If K # and only one s o l u t i o n .
# ¶
667
then problem (3.23A) admits one
Regarding t h e r e g u l a r i t y o f t h e s o l u t i o n , it i s shown i n B r C z i s Stampacchia /2A/ ( s e e a l s o T o r e l l i /lA/) t h a t
We r e f e r t o Caffarelli-Friedman-Torelli /1A/ f o r a d e t a i l e d i n v e s t i g a t i o n o f t h e f r e e boundary a s s o c i a t e d w i t h problem (3.23A) n aQ+where (3.27A), i . e . t h e s e t
ano
Ro
= {x E Q ,
Av(x) = a o r Av(x) =
R+ = { x E R , a
61,
.
A d e n s i t y lemma.
3.4.2.
I n o r d e r t o i n v e s t i g a t e t h e convergence o f t h e f i n i t e - e l e m e n t approximations o f S e c t i o n 3.4.4 we s h a l l r e q u i r e
Lemma 3.2: (l)
domain;
Suppose t h a t a < 0 < fi and t h a t R i s a s t a r s h a p e d let = K n B(Q); we then have
x
X = K.
(3.29A) Proof:
We can always assume t h a t R i s a s t a r s h a p e d domain Let v r K and E >o. W e H2(IR2) by
with respect t o the origin ( 0 , O I . define
E
v(x) i f x e n (3.30A)
,
G(x) = O i f x
P Q.
We have (3.31A)
a SAG
We n e x t d e f i n e
(3.32A)
a.e. i n m 2 .
GE E H2(IR2)
GE(X) = G((l+E)x)
We n o t e t h a t (')
SB
by YX€lR
2
.
GE has compact support i n Q.
All convex domains a r e s t a r - s h a s e d .
668
Unilateral problems and e l l i p t i c inequalities
We next define v,
(3.33A)
=
VE
E H
2 (n)
0
1 -
(App.
4)
bY
..,
We then have
(3.348) (3.358)
v,
2 H0(W
E
9
= v strongly i n H ~ ( R )
l i m v, €+O
(3.368)
Av,
5
5
B a.e. i n n.
From (3.34A)-(3.36A) w e deduce t h a t t h e s e t
X,
has compact support i n
v
= {v E K ,
QI
i s dense i n K. Let v and l e t {pnIn be a r e p l a r i s i n g sequence ( s e e Remark 3.3 of Chapter 3 , S e c t i o n 3.3 f o r t h e d e f i n i t i o n of such sequences); we t h e n define a e H 2 ( l R 2 ) by (3.30A) and {G } n n' Gnc &(m2) t/n, by
(3.37A)
an
=
a*&.
We t h e n have
(3.38A)
lim
..,
v
c
=
2
2
strongly i n H (IR ) .
n++co
Moreover w e have
(3.39A)
A"", = G * P n
or
(3.40A)
AGn(x) =
I
,
A%y)P,(x-y)dy
V
XE
P2
We deduce from (3.4QA) and from u S we have
A; 56 a.e.
2 IR
.
that
VICE
2
Mixed finite-element methods
(SEC. 3 )
669
For n s u f f i c i e n t l y large w e have (3.42A)
SUPP(Gn)
=a
;
i f we d e f i n e v by vn = GQ1? , it follows from (3.38A), ( 3 . 4 1 A ) , (3.42%) t h a t " f o r n s u f f z c z e n t l y large we have
(3.44A)
lim v n++m
(3.45A)
OL
strongly i n H ~ , ( R )
= v
Av < B n
on R.
X1
I n view of t h e density of imply = K.
7
3.4.3.
i n K , r e l a t i o n s (3.43A)-(3.458)
Solution of (3.23A), (3.27A) by a d u a l i t y algorithm.
By analogy w i t h t h e v a r i o u s o b s t a c l e - t y p e problems encountered i n t h i s book it i s n a t u r a l t o a s s o c i a t e w i t h problem (3.23A), (3.27A) t h e Lagrangian : H 2 ( n ) X ( L 2 ( n ) ) 2 -+ IR d e f i n e d by
d(v,p) =
n
(3.46A) +
where
2 IAvl dx
jn
-
(Av-BIdx
IJ
+
j
p2(a-Av)dx
52
LI = ( p l , p 2 } .
We n e x t d e f i n e ( 3 .4 7 A )
2 L+@)
2
= {q E L
(a),
and
(3.48A)
.
2 2 A = L+(n) x L+@)
We t h e n have
q(x) 2 0 a.e.
i n R)
,
Unilateral problems and e l l i p t i c inequalities
670
(WP. 4 )
Theorem 3.3: Let {u,h} ~ H t ( 5 2 ) X A be a saddle point of d o n 2 H,(Q) x A ; we then have
(3.49A)
u i s the solution o f (3.23A) , (3.27A)
and
(3.518)
Proof:
I,
( a - h ) (p2-X2)dx
and
(3.548)
0
From t h e d e f i n i t i o n of a s a d d l e p o i n t , we have
R e l a t i o n s ( 3.50A) and imply
(3.53A)
5
a
I
5
n
Au
5
,
( 3 . 5 1 A ) a r e immediate consequences of ( 3.52A)
B a.e. on 52,
X1(AU-B)dx = 0
,
I
We put
it follows from (3.54A) t h a t
We have (see (3.52A), (3.56A))
X2(a-bu)dx = 0
n
(3.57A)
If v
671
Mixed f i n i t e - e Zement methods
(SEC. 3)
X I (Av-B)dx +
E
K we have ( s i n c e A
E
I,
X2(a-Av)dx
2 V V E Ho($2).
A)
and hence, i n view of (3.57A),
J(u) < J(v)
vv E K
a
which proves (3.49A).
I n view of Theorem 3.3, X = {Xl,X2} E A appears Remark 3.3: as a Kuhn-Tucker v e c t o r a s s o c i a t e d with problem (3.23A), (3.27A). Moreover it follows from (3.54A) and
(3.586)
A,(Au-B)
= X2(a-Au)
=
X
E t~h a t w e have
0 a.e. on Q.
Remark 3.4: The e x i s t e n c e of a m u l t i p l i e r X E A i s a t r i c k y t h i s would not be t,he case i L w e were t o seek a m u l t i problem; p l i e r a s s o c i a t e d with K i n (L ($2)): x (L (52)):
.
We r e f e r t o Remark 9.2 of Chapter 3, Section 9.1.4 f o r an analogous d i s c u s s i o n concerning t h e e l a s t o - p l a s t i c t o r s i o n problem. N a t u r a l l y t h e above d i f f i c u l t i e s vanish f o r t h e finite-dimensional v a r i a n t s of problem (3.23A) , (3.27A). I n view of Theorem 3.3 we can s o l v e problem (3.23A), (3.27A) u s i n g t h e d u a l i t y algorithms of Chapter 2 , S e c t i o n 4; i f we apply algorithm ( 4 . 1 2 ) , (4.13) of Chapter 2, Section 4.3 (with p n = p ) we a r e l e d t o
(3.59A)
Xo
=
{AoI ’ A’)2
then for n 20, An
E
A
E
A, given a r b i t r a r i l y ,
known, determine un and An”
from
672
(mp. 4 )
Unilateral problems and e l l i p t i c inequalities
(3.60A)
(3.61A)
We n o t e t h a t (3.60A) i s e q u i v a l e n t t o t h e s o l u t i o n i n H 2 ( Q ) of 0 t h e biharrnonic problem
(3.62A)
A
(3.63A)
u " = -a=~
~
=U f ~+ A(X~-X;)i n SZ,
an
"
0 on
r.
Concerning t h e convergence of (3.59A)-(3.61A) we have Theorem 3.4: Suppose that L admits a saddle point on 2 QXOE A and i f H,(Q)xA ; then
(3.644)
o
,
we have strongly i n H2~ ( Q )
(3.65A)
l i m u" = u n++=
(3.66A)
l i m . An = A* weakly i n L 2 ( Q ) n++ 00
x
L2(Q)
where u i s the solution of probZem (3.23A) (3.2'j'A) and where A * ( E A) i s such that (u,X*I i s a saddle point of 2 on H ~ ( Qx )A. 0
proof: L e t (u,XI be a saddle p o i n t of r e l a t i o n s ( 3.50A), ( 3.51A) imply
d
on
2
H0 (Q) x A ;
Mixed f i n i t e - e l e m e n t methods
(SEC. 3)
XI = CAI
673
p(AU--B)l+ ,
+
(3.67A)
X2
=
CX,
+ p(~r-Au)l+ ;
relation (3.52A) implies
(3.68A)
Au AV dx = < f ,v> +
(A2-Al)Av dx
2 v v E H,(Q) .
u"
1"
= An- A , = un-u ; since the mapping sup ( 0 , q ) is a contraction from L ~ ( Q )+ J~:(Q), then by subtracting (3.678) from (3.61A) (with 141 = IlqlI ) ve have L2 (Q)
We+put
q + q
=
IX1 -n+l I 2
5
I
[ A-n+l 2 2 s
I
]TI2+ 2p n 13l2- 2p I T
A;"dx A?dx
I ,
+ p 2 IAu -n 2 +
p 2 IAu - nI2
,
n and hence by addition
By subtracting (3.68A) from (3.60A) and putting v = deduce
]A;"/
=
I
n
(X;-XY)AGn
dx
in,we
,
which in combination with (3.69A) implies
If p ~ 1 0 , 1 [ the inequality (3.70A) clearly implies (3.65A); as regards (3.66A), this follows from Theorem 3.1 of Appendix 2, Section 3.
674
UniZateraZ problems and eZZiptic inequazities
3.4.4
(UP.
Approximation of t h e variationaZ probZem ( 1 . 3 A ) using a mixed finite-eZement method
4)
, (1.4A)
2
W e assume i n t h e following t h a t f E L ( a ) ; w i t h t h e notation of Chapter 4 , Section 4.3 ( l ) it can e a s i l y be shown t h a t t h e r e is equivalence between (1.3A) , ( 1 . 4 A ) and
where
7
(3.72A)
j(v,q) =
(3.73A)
x = {{v,q)
1n
(q12dx
E W,
-B
-
f v dx
n
.
q <-a a.e. on 0)( 2 )
Hereafter w e assume t h a t Q i s a polygonal domain i n IRL , and w e confine our a t t e n t i o n t o triangular f i n i t e elements o f order 2 ; i n view of t h e formulation (3.71A)-(3.73A) it i s n a t u r a l t o approxi m a t e problem ( 1 . 3 A ) , ( 1 . 4 A ) u s i n g t h e mixed finite-element method of Chapter 4 , Section 4.5, which i n t h e n o t a t i o n o f Chapter 4 , Section 4.5.2 and of Section 3.3.1 of t h i s appendix i s
where
with
(I) (*)
See ( 4 . 5 2 ) , i n p a r t i c u l a r , f o r t h e d e f i n i t i o n of W. We r e c a l l t h a t p = - Au.
(3.768)
a side of
675
Mixed finite-element methods
(SEC. 3)
Ch = {PIP e n , P a v e r t e x of T
TE'€'~I
.
E
ehor
the midpoint o f
It can e a s i l y b e shown t h a t i f a < 0 < 6 , the approximate
probZem admits one and only one solution.
3.4.5
Convergence o f the approximate solutions
We s h a l l assume i n t h e f o l l o w i n g t h a t Q i s a bounded, polygonal, I n o r d e r t o prove t h e convergence o f t h e approximate s o l u t i o n s { u h l p h ) t o t h e s o l u t i o n (u,-Au) o f (3.71A) when h + 0 , we s h a l l r e q u i r e t h e f o l l o w i n g lemmas:
convex domain i n IR2
.
Let ({vh,qh))hbe such t h a t
Lemma 3.3:
v h,
( 3 . 7 7A)
1vh
(3.78A)
l i m {vh,qhI = { v , q ) weakZy i n Ho(R)
9
qh) Xh
1
x
L2(Q),
h+O
eo
Then i f , when h + 0, the angles o f > 0 independent of h , we have
( 3 . 7 9A)
Proof: (3.80A)
{v,ql
E X
vhremain bounded below by
.
Since {vh,qh)
i,
V v h * V vhdx
E
=
Why
we have
lQqhvhdx
vvhEVh
*
L e t l~ E H 1 ( Q ) and l e t ph be t h e p r o j e c t i o n o f p on Vh i n t h e H 1 ( Q ) norm; we t h e n have
Under t h e assumptions on
lim h+O
IIY~-vII
h =
H1 (Q)
s t a t e d i n t h e lemma, we have
0.
676
Unilateral problems and e l l i p t i c i n e q u a l i t i e s
(mp. 4)
From t h i s w e deduce i n t h e l i m i t i n (3.80A) t h a t
which s i n c e
(3.8 1A)
( v , q ) EH:(!J) (v,q)
E
XL2(Q)
implies t h a t
w.
We s h a l l now show t h a t define
{v,q)
E
%
.
Let $
E
Co(n) ,$ 2 0 ; we
where, i n (3.82A)
GT i s the centroid of the triangle T, and
xT
i s the c h m a c t e r i s t i c function of the triangle T.
We have (uniform continuity of 4 on
1)
0 .
Moreover we have
where, i n (3.848), t h e mi are t h e midpoints o f t h e s i d e s o f t h e t r i a n g l e T; from t h e d e k n i t i o n o f 8, ( s e e (3.75A) ) we have i n (3.8W
B+qh(miT) 2 0
tf i = 1 , 2 , 3 ,
VT
6
rh,b'{vh,qh)
EX^ ,
giving, since 4 t 0 ,
(3.85A)
(6+qh)sh$ dx
2
0
d ' $ E Co(n) ,$ 2
2 0.
We have ( 3 . 8 3 ~ )and l i m qh = q weakly i n L (Q), and hence h-to
677
Mixed finite-eZement methods
(SEC. 3 )
i n t h e l i m i t of ( 3 . 8 5 ~ )w e o b t a i n :
R
v 4 E Co(@,
(B+q) 4 dx 2 0
4 50 ,
which i s e q u i v a l e n t t o
-6
I q
a.e. on Q ;
s i m i l a r l y it can be shown t h a t q <-a a . e . on Q , g i v i n g {v,q)
E
X ( i n view of ( 3 . 8 1 ~ ) ) .
x = K n J(Q) d e f i n e x* =
Let
We
u
(3.86A)
-
X*
= K.
AX ; it i s c l e a r t h a t
O
*
If we d e f i n e X
x*
; it follows from Lemma 3.2 t h a t
=
X by
IIv,q)
E
w,
v
E X
*
1
then it follows from (3.86A) and t h e d e f i n i t i o n of W t h a t 4
K =
(3.87A)
L e t {v,q)
E
x.
%*; w e d e f i n e
{rhv, rhq)
E
Wh
by
We then have Lemma 3.4: Suppose t h a t the assumptions on of Lema 3.3 are s a t i s f i e d , along with condition (4i73) of Chapter 4, Section 4.5.4. Then we have V {v,q) E XI (3.89A)
{r v,r q) h h
E
l$, f o r h s u f f i c i e n t l y small,
1
Unilateral problems and e l l i p t i c i n e q u a l i t i e s
678
(3.90A)
l i m {r v,rhql = {v,ql h h+O
strongly i n H 1 ( 0 ) 0
(APP. 4 )
.
XL2(S2)
Proof: Problem (3.88A) i s t h e s p e c i a l case o f problem (3.11A), (3.12A) which corresponds t o f = A2v, i . e . t h e approximate problem a s s o c i a t e d with t h e biharmonic problem (3.1A) when f = A2v; t h e s o l u t i o n of (3.1A) i s t r i v i a l l y equal t o v when f = A2v. We have {v,q) E giving
x*
(3.91 A) (3.928)
V E
&Q,
-B < q
= -Av
< -a
on a ;
it t h e n follows from Rannacher /2A/y and from (3.91A) , t h a t under s t a t e d i n t h e lemma we have ( w i t h C indept h e assumptions on endent o f v and h ) h
which proves (3.90A);
moreover we deduce from (3.93A) t h a t
and hence, i n view of (3.92A)
(3.94A)
-B < r q <-a h
for h s u f f i c i e n t l y small.
Property ( 3 . 8 9 ~ )t h e n r e s u l t s from (3.758)
, ( 3 . 8 8 ~ )and
(3.94A).
I n view of t h e two preceding lemmas, w e have
Theorem 3.5:
Lema 3.4 (3.95A)
With the same assuntptions on G)h as i n
we have l i m {\,ph)
= {u,-Au) strongly i n
1
Ho(n) xL2(52)
h+O
where i n (3.95A) { u h y p 1 i s the s o l u t i o n o f the approximate problem (3.74A) and u !!hat of problem (1.3A), ( 1 . 4 A ) . Proof: The proof follows t h e same g e n e r a l l i n e s a s t h a t o f Theorem 2.2 of Appendix 1, Section 2.3.
1)
679
Mixed finite-element methods
(SEC. 3 )
A p r i o r i estimates for
{\,ph}.
I n what f o l l o w s , C d e n o t e s v a r i o u s c o n s t a n t s ; since 0 < B w e have { O , O } c H h , which, on p u t t i n g {vh,qh) = { O , O } i n (3.74A) , g i v e s
CY
<
(3.96A)
1
1
lphI2dx
-
R
1
fy, dx10.
R
From (3.96A) w e deduce t h a t
From t h e d e f i n i t i o n o f W
h ( s e e (3.10A)) we have
(3.98A)
i,
phuhdx
\j ph
E
Vh.
which i n combination w i t h (3.97A) i m p l i e s
2)
bleak convergence
I n view o f ( 3 . 9 9 6 ) , (3.100A) w e can e x t r a c t from at } )t h ~ subsequence - a l s o denoted b y ' ( ~ ~ , p - ~such
(3.101A)
lim
u,, =
u*
weakZy i n H 1 o(Q)
h+O (3.102A)
l i m ph = p* h+O
S i n c e {%,ph}
Exh
vh
2
strongly i n L ( Q )
,
it f o l l o w s from Lemma 3 . 3
that
UniZateraZ probZems and eZtiptic inequalities
680
(3.103A)
{u*,p*)
E:
X
(UP. 4)
.
L e t {v,q} E: X*; it follows from Lemma 3.4, r e l a t i o n (3.89A), t h a t f o r h s u f f i c i e n t l y s m a l l w e have (rhv,rhq) e x h ; we then deduce from (3.72A) , (3.74A) t h a t f o r h s u f f i c i e n t l y s m a l l w e have v{v,q} E: X *
(3.104A)
I
lphI2dx
n
-
\nf\dxsT 1
I
(rhq12dx - Infrhv dx.
n
It t h e n r e s u l t s from (3.90A)2and from t h e (weak) lower semic o n t i n u i t y o f z + 211 2 : L (n) + IR t h a t
11
4
I n view o f H; ( 3.105A)
=
H
L
(a)
and t h e continuity of j ( , - ) w e deduce from
which combined w i t h (3.103A) shows t h a t {u*,p*} i s t h e s o l u t i o n o f ( 3 . 7 1 A ) , i . e . u* = u, p* = p = -Au where u i s t h e s o l u t i o n o f (1.3A) , (1.4A). The uniqueness of u implies t h a t t h e whole family {\,ph) + {u,p) and not simply an e x t r a c t e d subsequence. 3)
Strong convergence Since I\,ph1
E
Wh and {u,p}
It w a s shown e a r l i e r t h a t
E
W (with p = -Au), we have
Mixed finite-element methods
(SEC. 3)
(3.109A)
681
2
l i m p = p weukly i n L ( Q ); h h+O 1
from the compactness of the canonical injection from H ( Q ) into 0
L 2 ( Q ) we a l s o have
(3.1 IOA)
.
2 l i r n I+, = u strongly i n L ( Q ) h+O
We then deduce from (3.107A)-( 3.110A) that
I
lirn h+O
Q
lV%I2
dx = l i r n h+O
I
phI+,dx =
52
I,py dx =
which, in combination with the weak convergence of H;(Q) , implies
n
% to
lVul
2
dx
u in
It now remains to demonstrate the strong convergence of p to it follows from (3.74A) atd from (3.89A) that For h sufficiently small we have, \J {v,q) E K
p in L 2 ( n ) ;
It results from (3.90A) that, proceeding to the limit in (3.112A) we have, v{v,q} E X "
$ (3.1 13A) 5
I
2
1
lpl d x 5 T l i r n i n f n h + O
3
I
R
I
2
1
lphl d x 5 T l i r n sup n h + O
( q I 2 d x - 1,f (v-u)dx
2
52
lphl
dx
.
By density and continuity, (3.113A) a l s o holds we can thus put {v,q} = (u,p) in (3.l.13A) giving limIIPhlI 2 = llPll 2 h+O L L which combined with ( 3.109A) proves that
l i m 11 ph-p h+O
V{v,q)
11
E
X
= o L (52)
;
682
hilateral problems and elliptic inequalities
(A ~ P . 4)
and concludes t h e proof o f t h e theorem. In view of t h e proof o f Lemma 3.3, i f i n (3.75A) Remark 3.5: we merely imposed t h e c o n d i t i o n
-B ‘q (P) h
‘-a
a t t h e midpoints of t h e s i d e s of t h e T r e s u l t s of Theorem 3.5 would s t i l l apply.
E
ch
, the
convergence
I
Remark 3.6: An i n v e s t i g a t i o n o f o t h e r methods f o r approximati n g problem - ( 1 . 3 A ) , ( 1 . 4 A ) by f i n i t e elements can be found i n Glowinski-Marini-Vidrascu / 1 A / .
3.4.6
8
NwnericaZ solution of the approximate problem
I n o r d e r t o s o l v e t h e approximate problem (3.74A) we can u s e , a s w e do below, a f i n i t e - d i m e n s i o n a l v a r i a n t of algorithm (3.59A)(3.61A) of Section 3.4.3; f i r s t we define
where, i n ( 3 . 1 1 4 A ) , (note t h a t q E V +
h
(3.115A)
Ah =
h
C h i s a s defined i n S e c t i o n 3.4.4 by (3.76A) qh 2 0 on ?i s i n c e k = 2 ) . W e next d e f i n e
+ + vh X V h
9
and t h e n a new i n n e r product on Vh
, namely
-
( ,*),,
by
vyh,Zh E V h 9 where 5 i s t h e area of t h e domain c o n s i s t i n g o f t h e union of t h o s e t r i a n g l e s of Yh which have P as a common v e r t e x or as t h e midpoint of a common s i d e . Using t h e i n n e r product ( ,* l h , w e d e f i n e t h e symmetric positive-definite o p e r a t o r Sh: Vh -+ Vh, by ( ’ )
(l)
S i s i n f a c t an approximation t o t h e i d e n t i t y o p e r a t o r . h
683
Mixed finite-element methods
(SEC. 3 )
The d i s c r e t e analogue of a l g o r i t h m (3.59A)-( 3.61~)i s t h e n =
(3.1 16A)
then with An
h
E
A
h
{ ~ y ~ , ~ y ~given, } E\
n n k n o m , determine u,, E IToh, ph E
vh and
A:+'
E
\
from
( 3 . I 1 7A)
( 3 . 1 8A)
(3.1 9A)
Regarding t h e convergence o f a l g o r i t h m (3.116A)-(3.119A) can b e shown t h a t t h e r e e x i s t s a 6h > 0 such t h a t VA; E for a l l p s a t i s f y i n g
, it and
we have
where { y ~ , p ~is} t h e s o l u t i o n of ( 3 . 7 4 A ) . t h a t l i m bh = 1. h+O
It can a l s o be shown
684
UniZateraZ problems and elziptic inequalities
(Wp.
4)
Remark 3.7: The problem (3.117A) is simply an approximate mixed formulation of the biharmonic problem (3.60~); a formulation ivalent to (3.117A) is given by
For solving the approximate biharmonic problem (3.117A), (3.122A) each iteration. we refer to the discussion in Section 3.3 of this appendix and-to Chapter 4, Section 4.6; see also GlowinskiPironneau /lA/, Vidrascu /lA/, and Glowinski-Marini-Viarascu /lA/. 3.4.7
Application to the numerical solution of
a model problem
We shall now consider the particular case of the problem (1.3A), f = const., a = - 1, f3 = + 1. (1.h) in which ~ = ] O . , l [ X ] O , l [ , The triangulation used to define the approximation with finite elements of order tw is shown in Figure 1.10 of Chapter 4, Section 1.7, and consists of 128 triangles and 289 nodes; we thus have In implementing algorithm (3.116A)dim V = 289, dim Voh = 0225. (3.11$A), we have used Ah = { O , O ) ; furthermore, the optimum value for p , for various values of f, is close to 0.8. For f = 100, Figures 3.1-3.4 show the contours of pn corresponding to n = 0, 20, 40 and 240; the contours of % %e shown in Figure 3.5 (convergence is in fact virtually complete after 50 iterations).
5
Figures 3.6-3.10 show the contours of pn corresponding to n = 0, 60 and 180, for f = 1000; the conkours of % are indicated in Figure 3.11.
20, 40,
In the above figures the regions where ph ( = -Au) attains its limiting values are clearly visible; ph is equal to + 1 in the central region and - 1 in the four regions in contact with the edges. However, it should be noted that the contours of ph depend quite appreciably on especially near the free boundaries. h'
(SEC. 3 )
Mixed f i n i t e - e Zement methods
F i g . 3.1 (f = 100,
contours o f Po) h
Fig. 3.2 ( f = 100, contours o f p 1' h
686
Unilateral problems and elliptic inequalities
Fig. 3.3 (f = 100, contours of p 40) h
Fig. 3.4 (f = 100, contours
Of p
h
240
(APP.
4)
Mixed f i n i t e - e l e m e n t methods
(SEC. 3 )
\ F i g . 3.5 ( f = 100, contours o f u ) h
F i g . 3.6 ( f = 1000, contours of p:)
688
Unilateral probZems and eZZiptic inequazities
Fig. 3 . 7 (f = 1000, contours of p 20) h
F i g . 3.8 (f = 1000, contours of p ‘ 0 )
h
( U P . 4)
(SEC. 3)
Mixed finite-element methods
F i g . 3.9 (f = 1000, contours of p 6 0 ) h
F i g . 3.10 ( f = 1000, contours of p 180 h
Unilateral problems and e Z l i p t i c inequazities
690
(APP.
4)
/ F i g . 3.11 ( f = 1000, contours of
4.
y~)
NUMERICAL SIMULATION OF THE TRANSONIC POTENTIAL FLOW OF IDEAL COMPRESSIBLE FLUIDS USING VARIATIONAL INEQUALITY METHODS
4.1
Synopsis
A s we have a l r e a d y remarked i n Appendix 1, Section 6, t h e methodology of v a r i a t i o n a l i n e q u a l i t i e s can provide an e f f e c t i v e t o o l f o r t h e s o l u t i o n o f problems i n i t i a l l y formulated i n a more A f i r s t example has a l r e a d y been given i n t r a d i t i o n a l manner. Appendix 1, Section 6; i n t h e p r e s e n t s e c t i o n we s h a l l consider another example which is much more important from t h e a p p l i c a t i o n s point of view, but much more d i f f i c u l t mathematically, namely t h e numerical simulation of t h e .transonic potential f l o w of perfect compressible f l u i d s . Within t h e l i m i t e d scope o f t h i s appendix, it would be out of t h e question t o attempt t o provide a d e t a i l e d w e s h a l l t h e r e f o r e be content t o give account of t h i s s u b j e c t ; only an o u t l i n e of t h e material considered i n more depth i n BristeauGlowinski-Periaux-Perrier-Pironneau-Poirier ( ) /lA/, /2A/ (which a l s o contains a s u b s t a n t i a l bibliography on t h e s u b j e c t .
'
(1)
Abbreviated h e r e a f t e r t o B.G.4P.
4)
(SEC.
4.2 4.2.1
Transonic p o t e n t i a l f l o w
691
Mathematical formulation
The equation of c o n t i n u i t y
If R is the flow domain and r its boundary, it is shown in Landau-Lifchitz /1A/ that the flow satisfies (4.1A)
+
V*pu = 0 i n 1
with (4.2A) (4.3A)
+
u=V$,
where, in (4.1A)-(4.3A) a) b) c) d)
4.2.2
$ is the p is the
velocity potential d e n s i t y of the fluid
y is the ratio of specific heats ( y = 1.4 in air) &'is the c r i t i c a l speed of sound.
Boundary conditions
In the case of an a e r o f o i l such as B (see Figure 4.1), if we assume that the flow is uniform at infinity and tangential to the aerofoil surface r we have
B'
F i g . 4.1
692
UnilateraZ problems and elliptic inequalities
(4.4A)
(4.5A)
+
u =
+ U,
(APP. 4)
at infinity
san= O o n r B'
I n p r a c t i c e we bound R by p l a c e of (4.4A) w e use
roDas
shown i n Figure 4 . 1 and i n
It t u r n s out t h a t f o r t h e above c o n d i t i o n s t h e p o t e n t i a l 4 i s to determined only t o w i t h i n an a r b i t r a r y a d d i t i v e c o n s t a n t ; remedy t h i s s i t u a t i o n we can p r e s c r i b e a v a l u e of 4 a t some p o i n t i n R ; f o r example w e can use
(4.6A)
4.2.3
4
= 0 at the trailing edge
T.E. of B.
Lifting aerofoila and the Kutta-Joukowsky condition
The Kutta-Joukowsky c o n d i t i o n i s not p a r t i c u l a r t o t r a n s o n i c flows, as it a l s o a p p l i e s i n t h e flow of incompressible p e r f e c t f l u i d s and i n t h e subsonic flow o f compressible p e r f e c t f l u i d s . We r e f e r t o B.G. 4P /1A/ and Periaux /1A/ f o r t h e numerical treatment of t h e Kutta-Joukowsky c o n d i t i o n i n t h e c a s e of two-' and three-dimensional flows.
4.2.4
Shock-jwnp relations
The flow must s a t i s f y t h e Rankine-Hugoniot r e l a t i o n s a c r o s s a shock, namely
(4.7A)
(4.8A)
++
++
(pu*n)+ = (pu*n>-
+
(where n i s normaz t o t h e shock l i n e o r surface)
the tangential component of the ve tocity is continuous.
A s u i t a b l e v a r i a t i o n a l formulation of ( 4 .lA)-(4.3A) w i l l t a k e
(4.7A)-(4.8A)
i n t o account a u t o m a t i c a l l y .
(SEC. 4)
4.2.5
Transonic potential f l o w
693
Entropy condition
This can be formulated as follows (see Landau-Lifchitz /1A/ for more details):
There cannot be an increase i n the flow v e l o c i t y across (4.9A)
a shock as there would then be an associated decrease i n the entropy, which i s physically impossible.
The numerical implementation of (4.9A) will be discussed in Seetion 4.5.
Remark 4.1: Since the boundary between the subsonic region and the supersonic region is unknown, the problem to be solved i s in fact a free-boundary problem; the numerical treatment of this problem will take this into account. 4.3
Least-squares formulation of the continuous problem
In this section we shall not consider the practical implementation of (4.9A); we shall only discuss the variational formulation of (4.1A)-(4.5A), (4.7A), (4.8~~) and of an associated nonlinear least-squares formulation. 4.3.1
A variational formulation of the equation of continuity
We consider for simplicity the situation shown in Figure 4.2, representing a symmetric flow, subsonic a t i n f i n i t y , around a symmetric aerofoil; since the flow is symmetric, the KuttaJoukowsky condition is automaticalZy satisfied and the aerofo'il is non-li fting
.
F i g . 4.2.
694
Unilateral problems and e l l i p t i c i n e q u a l i t i e s
(UP.
4)
For p r a c t i c a l i t y ( a l t h o u g h o t h e r approaches a r e p o s s i b l e ) w e imbed t h e a e r o f o i l i n a " l a r g e " domain; u s i n g t h e n o t a t i o n o f S e c t i o n 4 . 2 , t h e c o n t i n u i t y e q u a t i o n and t h e boundary c o n d i t i o n s are
(4.1 On)
V*p($)V$
= 0 in R
with
and
(4.1 3A)
g=O on
rB,
+ +
g = prnuo3*nrn on
ra, .
We c l e a r l y have
(4.14A)
!:
p-=
g on
r
and
An e q u i v a l e n t v a r i a t i o n a l f o r m u l a t i o n o f (4.10A), (4.14A) i s
(4.15A)
The f u n c t i o n constant.
0
c a n b e d e t e r m i n e d o n l y t o w i t h i n an a r b i t r a r y
i s a n a t u r a l choice f o r 4 s i n c e Remark 4.2: The s p a c e dym(Q) physical f l o w s r e q u i r e (among o t h e r p r o p e r t i e s ) a p o s i t i v e density p; t h e r e f o r e from (4.11A) I$ h a s t o s a t i s f y
(SEC. 4)
Transonic p o t e n t i a l flow
695
(4.16A)
4.3.2
A least-squares formulation of (4.15A)
For a genuine transonic f z o w , problem (4.15A) i s n o t equivalent to a standard problem in the Calculus of Variations (as is the case for purely subsonic flows); to remedy this situation and - in some sense - "convexify" the problem under consideration, we introduce a nonlinear least-squares formulation of the transonic flow problem (4.15A), as follows:
Let X be a s e t of f e a s i b l e transonic flow s o l u t i o n s ; least-squares problem i s then (4.17A)
the
Min J(<>,
SEX
w i t-h (4.18A)
where, i n (4.18A) y(s) ( = y) i s a soZution o f the s t a t e equation Find y
E
HI (Q)
such t h a t
( 4 . 1 9A) p(c)V<*Vv dx
-
gv d r
v
E
.
H' (Q)
If the solutions of the transonic flow problem exist, then these are solutions of the least-squares problem and give the value zero to the objective function J.
4.4
Finite-element approximation and least-squares-conjugategradient solution of the approximate problems
We shall consider here only two-dimensional problems, although the following methods can also be (and have been) applied to threedimensional problems.
696
Unilateral problems and elliptic inequalities
4.4.1
(APP. 4)
Finite-element approximation of the nonlinear variat-.. ional equation ( 4 . 1 5 A )
We a g a i n c o n s i d e r t h e n o n - l i f t i n g s i t u a t i o n o f S e c t i o n 4 . 3 . 1 . The flow r e g i o n i s imbedded i n a l a r g e bounded domain R , which w e With a sta dard triapproximate by a p o l y g o n a l domain R we approximate H l h i R ) ( a n d i n f a c t W''p(R), angulation of R h' v p r l ) by
%
(4.20A)
€(, = {vhlvh
E
Co(Eh), vhlT E PI Y T E G,)
where, i n (4.20A), P i s t h e s p a c e o f polynomials i n two v a r i a b l e s 1 of d e g r e e I 1. We p r e s c r i b e t h e v a l u e z e r o f o r t h e p o t e n t i a l a t t h e t r a i l i n g edge; t h i s l e a d s t o
vh
(4.2 1A)
=
1 (
~
~
6
, %vh
(T.E.) = 0)
;
we c l e a r l y have 1 dim I#, = 1 + dim Vh = number of vertices of
(4.228)
rh.
We t h e n approximate t h e v a r i a t i o n a l e q u a t i o n ( 4 . 1 5 A ) by
Find @ 6 V h such that h (4.23A)
1
n
P(@h)V@h*Vvh dx
jnphvhdr
"hEvh
where, i n (4.23A)' gh i s a n a p p r o x i m a t i o n o f t h e f u n c t i o n g i n (4.13A). The above d i s c r e t e v a r i a t i o n a l f o r m u l a t i o n i m p l i e s t h a t = g i s a u t o m a t i c a l l y s a t i s f i e d "approximately".
1-an r
Nh
{wi)i=l be a v e c t o r b a s i s o f Vh; t h e n (4.23A) i s e q u i v a l e n t t o t h e nonlinear finite-dimensional system Let
=
(SEC.
4)
Transonic p o t e n t i a l flow
@ j = @(P.) v j = l , J set of the vertices of
where
...Nh
,
697
assuming that {F’j)?l
is the
different from T.E.
<
With the above choice of and V , there is no problem with Vvh, the numerical integration, since in ?4.23A), (4.24A), V$, Vwi (and therefore p ( +h) ) are piecewise constant.
4.4.2
Least-squares formulation of the discrete problem (4.23A).
Combining the results of Sections 4.3.2 and 4.4.1, we introduce the following least-squares formulation of the approximate problem (4.23A)
where, in (4.25A), and where
3 is the
set of feasible discrete solutions,
with yh ( = yh ( 5h ) ) the solution of the discrete variational state equation
Find y h e V h such t h a t (4 . 2 7A)
4.3.3
1,r
Vyh*Vvhdx =
-
p(~h)V~h*Vvhdx
ghvhdr
VV,
E
Vh.
Conjugate-gradient solution of the least-squares problem (4.25A)-(4.27A)
We follow B.G. 4P /lA/, /2A/ and Periaux /lA/; a preconditioned conjugate-gradient algorithm for’solving (4.25A)-(4.27A) - with % = Vh - is Step 0 :
(4.288)
Initialisation
@: 0
Evh
then compute gh from
given,
U n i l a t e r a l prob lems and e l Z i p t i c i n e q u a l i t i e s
698
(APP.
0
(4.29A) VgE*Vvh dx
=
<J'($h)0 ,vh>
~
V Vh~
,E
and s e t 0
(4.3 OA)
0
Z h = & .
Step 1: .Descent
Compute An = Arg min J ($"-Xz:)
(4.3 1 A)
XElR
h
h
,
(4.328) Step 2: Construction of the new descent direction n+l
Define gh
by
(4.338) '';gV then
h h *Vvhdx = <J'($"+')
,vh>
V V ~ EVh ,
4)
Transonic p o t e n t i a l flow
(SEC. 4)
699
n = n + l , go t o (4.31A). The two n o n - t r i v i a l s t e p s o f a l g o r i t h m s ( 4 . 2 8 ~ ) - 4.35A) ( are :
( i ) t h e s o l u t i o n o f t h e single-variable m i n i m i s a t i o n problem (4.31A); p a r t ( i ) o f Remark 4 . 5 i n Appendix 3, S e c t i o n 4.3.2 s t i l l h o l d s f o r ( 4 . 3 l A ) . I t should be noted t h a t each e v a l u a t i o n of J ( 5 ) , f o r a given argument ,C, r e q u i r e s t h e s o l u t i o k o? t h e l i n e a r approximate Neumann problem (4.27A) t o o b t a i n t h e corresponding y h . n+l n+l gh from , which r e q u i r e s t h e s o l u t i o n o f two l i n e a r approx'mate Neumann problems n+f and ( 4 . 3 3 A ) ) . ( namely ( 4.27A) with 5, - +h
( i t ) the calculation
Of
Calculation o f J ' ( S n
n
I n view o f t h e importance o f and g : h h s t e p n ( i i ) , we s h a l l now d e s c r i k e i n d e t a i l t h e c a l c u l a t i o n o f n J A ( E h ) and gh ( s u p p o s i n g f o r s i m p l i c i t y t h a t p 0 = 1 ) . We have by d i f f e r e n t i a t i o n
where 6yh i s , from ( 4 . 2 7 A ) , t h e s o l u t i o n o f
6yh€Vh (4.37A)
1
and V v € V h we have h
v6yh*Vvh dx =
s2
S i n c e p(ch) w e have
=
p,(l-K(Vch(
\
p(ch)V6ch*Vvhdx + R with K =
It f o l l o w s from ( 4 . 3 6 ~-() 4 . 3 8 ~ )t h a t
6p($)V~,*Vvhdx
1 y-l y+, - and
c*
a = I/(y-l),
.
Unilateral problems and e Z l i p t i c inequalities
700
(APE'.
4)
I I n f a c t <J'( ) T) > h k ' h functional
can be i d e n t i f i e d w i t h t h e l i n e a r
It i s q u i t e e a s y t o o b t a i n gn" h
from
n+l
, using
(4.33A), (4.40A).
Remark 4.3: An e f f i c i e n t d i s c r e t e Poisson s o l v e r w i l l form a fundamental p a r t of t h e method i f t h e above a l g o r i t h m (4.28A)(4.35A) i s used.
4.4.4
Numerical solution o f a t e s t problem
W e s h a l l now apply t h e above methods t o t h e numerical s i m u l a t i o n o f t h e flow around a d i s c , t h e f l o w b e i n g uniform and subsonic a t infinity. Owing t o t h e symmetry o f t h e flow, t h e Kutta-Joukowsky condition i s s a t i s f i e d automatically. If i s sufficiently small t h e flow i s p u r e l y subsonic and a v e r y good s o l u t i o n i s o b t a i n e d i n a v e r y small number o f i t e r a t i o n s of a l g o r i t h m (4.28A)(4.35A) (=: 5 i t e r a t i o n s ) . For g r e a t e r v a l u e s o f ~~~w~~a super-
llzwll
s o n i c pocket a p p e a r s , and i f t h e computed ( l ) Mach number d i s t r i b u t i o n on t h e s u r f a c e o f t h e body i s p l o t t e d , we o b t a i n t h e d i s t r i b u t i o n i n F i g u r e 4.3 showing a r a r e f a c t i o n (or expansion) shock ; t h e l a t t e r cannot e x i s t p h y s i c a l l y . The c o r r e c t Mach number d i s t r i b u t i o n i s shown i n Figure 4.4.
('1
The convergence i s s t i n very f a s t ( = 10 i t e r a t i o n s )
(SEC.
4)
Transonic potential fZow
Expans i o n shock
Physical
F i g . 4.3
Phys ica 1 shock
M <
< 1
F i g . 4.4
702
Unilateral problems and e l l i p t i c inequalities
(QP.
4)
From t h e above t e s t s it i s apparent t h a t w e have t o i n c o r p o r a t e i n our numerical procedure some device ( i n f a c t some d i s s i p a t i o n ) aimed a t suppressing t h e s e non-physical shocks which v i o l a t e t h e
entropy condition (4.9A). The numerical implementation of Section 4.5.
4.5
(4.9A) i s
discussed below i n
Numerical implementation o f t h e entropy c o n d i t i o n
4.5.1
General discussion.
Synopsis.
Several methods based on penalisation and/or a r t i f i c i a l v i s c o s i t y have been d i s c u s s e d and numerically t e s t e d i n B.G. 4P /lA/; w e introduce i n S e c t i o n 4.5.2 an i n t e r i o r penalty method which i s e f f e c t i v e i n suppressing r a r e f a c t i o n shocks and g i v e s a good approximation o f t h e s o l u t i o n i n t h e neighbourhood of p h y s i c a l shocks. If we were t o go back t o t h e example of S e c t i o n 4.4.4 and t r y t o r e p r e s e n t t h e corresponding l e a s t - s q u a r e s f u n c t i o n a l 5, + J (5 ) , it would+most probably look l i k e t h e graph i n Figure This f e e l i n g about 4.5 ( i v whe assume u,II s u f f i c i e n t l y - l a r g e ) . Figure 4.5 i s based on t h e f a c t t h a t 5 i s a very powerful a t t r a c t o r h f o r almost any i t e r a t i v e method, and i n p a r t i c u l a r f o r algorithm (4.28A)-(4.35A); i n c o n t r a s t t h e p h y s i c a l s o l u t i o n seems t o l a c k t h e s e a t t r a c t o r p r o p e r t i e s (except p o s s i b l y i n a very s m a l l neighbourhood of t h i s s o l u t i o n ) . Based on t h e s e o b s e r v a t i o n s , one p o s s i b l e i d e a c o n s i s t s of r e p l a c i n g t h e continuous curve i n Figure 4.5 by t h e discontinuous one, corresponding t o a f u n c t i o n a l -t J*(F 1, t a k i n g very l a r g e v a l u e s f o r - t h e non-physical s o l u t i o n h 5, and t a k i n g i t s minimal value c l o s e t o 5,.
11
4.5.2 4.5.2.1
An i n t e r i o r penalty method with truncation The p h y s i c a l motivation .......................
It i s known from Landau-Lifchitz
/1A/ t h a t
i n t h e case of a
weak shock w e have, following the streamlines,
(4.4 1 A)
@I
= O(Cvl3),
where i n ( 4 . 4 ~,) cg1 ( r e s p . [v] ) denotes t h e jwnp i n entropy ( r e s p . t h e jump i n V e l o c i t y ) a c r o s s t h e shock, with t h e s i g n o f opposite t o t h a t of [v] Now f o r a p h y s i c a l shock we must have
u]
.
(SEC. 4)
(4.42A)
Combining (4.43A)
Transonic p o t e n t i a l f l o w
703
C8120 ;
(4.41A), (4.42A) we shall use CVI
3
50
as entropy condition
.
T
‘h
‘h F i g . 4.5
‘h
704
Unilateral problems and elliptic inequalities
(APP.
4)
This choice is based on the fact that our finite element method gives us direct access to velocity variables.
Consider two adjacent triangles, like those shown in Fig. 4.6 (in fact the following method can be (and ha5 been) applied to three-dimensional problems); we denote by n the unit vector of the normal to their common side AB, directed from T into T 1 2' Since we are using linear elements, we have
(4.448) 0
Moreover since we are ysing C -conforming elements the component along AB of the velocity v = V + is continuous, unlike the normal h h component which is cleasly discontinuous; from these considerations the discontinuities of v are supported by the local normal components of the velocity. #,om these observations and in view of (4.44A) we introduce the functional % defined as ,follows
F i g . 4.6
(SEC.
4)
Transonic p o t e n t i a l f l o w
705
where, in (4.45A), the summation is carried out over the common sides of all the pairs of adjacent triangles in the triangulation 0 . being a coefficient which takes account of the l o c p size of the triangulation, and where the symbolic notation t is defined as follows:
ch
(4.46A)
t+ = max (0;t)
v t €IR .
Remark 4.4: We observe that (4.45A) is in fact very similar to the integral over Q of the sixth power of a truncated secondorder derivative; for homogeneity this suggests we take (4.478)
0. = 1
ci di
where, in (4.47A), d. is the length of the common side and where 1 a = -5 for one-dimensional problems, a = -4 for two-dimensional 8 problems and a = -3 for three-dimensional 'problems. Combining the above functional
%
and the approximate problem
(4.25A)-(4.27A) of Section 4.4.2, we obtain the following discrete problem, which incorporates a dissipative device aimed at SUPPressing non-physical shocks
where, in (4.48A), and where
3 is the
set of feasible discrete solutions
with r > 0 and y (=y (€, ) ) the solution of the discrete variath h ional state equakion
To solve (4.48A)-(4.50A) we can use a variant of the conjugate gradient algorithm (4.28A)-(4.35A) (with Jh replaced by Jrh).
706
u n i l a t e r a l problems and e l l i p t i c i n e q u a l i t i e s
(APP.
4)
The numerical results produced by the above methods are fairly good, the sonic transition from the subsonic region to the supersonic region being very well approximated, (non-physical "expansion shocks" having been suppressed); furthermore the computed compression shocks are located accurately and are very sharp; we refer to Section 4.6 and also to B.G. 4P /2A/ and Periaux /lA/, in which numerical results produced by the above methods are presented and discussed.
A practical and very important problem concerns the proper choice of r, since for a given aerofoil the optimal value of r , of seems to be a complicated and sensitive function of the angle of attack, etc.; we shall discuss in Section 4.5.2.3 a technique which we have recently discovered, which seems to be very effective in removing (or at least reducing) this sensitivity to the choice of r.
l~mll
Remark 4.5: We may supplement Remark 4.4 as follows: since F,(Eh) appears like the integral over R of the sixth power of a discrete truncated second-order derivative of Eh, we can, by differentiation, associate with E a discrete fourth-order nonlinear operator. Since % is a convex &nctional its differential is a monotone operator. From these properties the addition of r J may be interpreted as a non-linear fourth-order h
process.
Remark 4.6: We may justify the title of Section 4.5.2 by noting that the functional E which we have introduced to regularise our problem is in fact a ]Tmore complicated) variant of the i n t e r i o r penalty f u n c t i o n a l s discussed in Douglas-Dupont /2A/ and Wheeler
/1A/. Remark 4.7: We have performed computations using exponents other than 2 and 3 in (4.45A); these two exponents in fact appear to be the optimal combination, based on the quality of the computed solutions.
4.5.2.3
A---____--___ nonlinear12---_ weighted interior Eenaltx method ___-_------------- ---___-
From the comments made in Section 4.5.2.2 regarding the sensitivity to the choice of r in the definition of J - which is rh clearly related to the strong nonlinearity of our problem - it is very tempting to control of the regularisation process associated with 3+ ) 2 . To achieve this goal, we have introduced in the above functional I$, (defined in (4.45A)) a nonlinear weighting directly related to the local value of the
Transonic potentiaZ ' f z o w
(SEC. 4 ) density; by
more precisely, instead of using E
1 3 is
where, in ( 4 . 5 1 A ) ,
707 we use
% defined
a symbolic notation defined either by
Pi 1
(4.52A)1
1
1
1
T=T(K+z) Pi
or by
with
2 1 (4.538)
Pij
=(I-
where in (4.53A)
T. Ti$ being the adjacent triangles of si e o
th which have the i
the triangulation in common.
Remark 4 . 8 : Our computer experiments indicate that a "good" value for n in (4.51A) is n = 2. rn
7 5,
Replacing by we obtain a variant of the approximate problem ( 4 . 4 8 ~- ( 4 . 5 A ) which can be solved by the same type of iterative methods; computer experiments with Eh have shown that for a NACA 0012 aerofoil the same value of r was optimal (or nearly optimal) for the following conditions
708
Unilateral problems and elliptic inequalities
Angle o f a t t a c k (degrees)
(UP.
4)
Mm
0.6 0.78 0.8
6 1 0 0
0.85 Table 4.1
The c o r r e s p o n d i n g r e s u l t s a r e d e s c r i b e d i n S e c t i o n
4 5
-2 4 *
4.6.
An_jnt_er_i~r_Ee_nal_t_~-~e_t_h_o~_usjn_g_d~_nsit_~-i~~
The i n t e r i o r p e n a l t y method d i s c u s s e d i n S e c t i o n 4 . 5 . 2 . 3 two e f f e c t s :
( i ) It p e n a l i s e s e x p a n s i o n s h o c k s v i a
[vl
combines
+
( i i ) By v i r t u e o f t h e n o n l i n e a r w e i g h t i n g t h a t we have i n t r o d u c e d , t h e r e g u l a r i s a t i o n e f f e c t i s a m p l i f i e d i n r e g i o n s where t h e Mach number i s h i g h , s i n c e i n t h e s e r e g i o n s p i s " s m a l l " . It i s t h e r e f o r e n a t u r a l t o l o o k f o r a v a r i a n t of ( 4 . 5 1 A ) which combines t h e s e two e f f e c t s more c l o s e l y ; w e s t a r t by n o t i n g t h a t f o r a p h y s i c a l shock we must have ( s t i l l f o l l o w i n g t h e s t r e a m l i n e s )
T h i s jump c o n d i t i o n (4.54A) l e a d s t o t h e f o l l o w i n g v a r i a n t of t h e entropy f u n c t i o n a l s a n d % o f S e c t i o n s 4 . 5 . 2 . 2 and 4 . 5 . 2 . 3 ( t h e n o t a t i o n o f which h a s been r e t a i n e d )
%
(4.556) The n o t a t i o n i n (4.55A) i s s e l f - e x p l a n a t o r y , which i s d e f i n e d by
e x c e p t f o r w.
1
(SEC. 4)
Transonic p o t e n t i a l fZow
709
the indices j = 1,2 corggsponding to the two adjacent triangles side of the triangulation in common. which have the i of
ch
It is then-quite easy to formulate an approximate problem in is replaced by R ; moreover the same type of ods can be applie$ to this new approximate problem. Numerical experiments have yet to be carried out to check the validity of this new approach and also to determine an optimal choice for the two exponents 6 and n in (4.55A). 4.5.2.5
Further comments
The interior penalty methods with truncation that we have discussed in the above sections have been directly inspired by some of the methods used for the numerical treatment of variational inequalities (cf. Chapter 2, Section 3 and also Glowinski /2A/, In the present case the problem to be solved definitely /?,A/). lacks those monotonicity properties which are so useful in the theory and approximation of variational inequalities; however the least-squares formulation and a l s o the formulation of an entropy c b n d i t i o n as a set of inequality relations suggest very clearly a-methodology founded on techniques which have proved successful for simpler types of inequality problems.
4.6
Numerical experiments
In this section we shall present some of the numerical results obtained using the above methods,. The results of Section 4.6.1 relate to a NACA 0012 aerofoil, and those of Section 4.6.2 to the flow around a two-component aerofoil.
4.6.1
Simulation of flows around a NACA 0012 a e r o f o i l
As a first example we consider the flow around a NACA 0012 aerofoil at various angles of attack and various freestream Mach numbers. The corresponding pressure d i s t r i b u t i o n s are shown in Figures 4.7-4.11, in which the.isomach l i n e s i n t h e supersonic region are also shown. We observe that the physical shocks are quite well-defined and also that the computed transition from the subsonic region to the supersonic region is smooth and shock-free, implying that the entropy condition has been satisfied. The above numerical results lie very close to those obtained by various authors using finite difference methods (see particularly Jameson
/MI.
710
Unilateral problems and e l l i p t i c inequalities
(APP. 4 )
NACA 0012 Aerofoil M = 0.6 a = ' 6
CF
OI
A A
'
--
* - - - - - . . . , *
-L -L
Fig. 4.7
a
L I
A
iSEC. 4)
Transonic potential flow
711
NACA 0012 Aerofoil M, = 0.78
a = l
I J
F i g . 4.8
0
712
Uni Zateral problems and e 2 l i p t i c inequalities
( APP. 4)
CI NACA 0012 Aerofoil M m = 0.8 a =
Fig. 4.9
'0
(SEC.
4) Transonic potentiaZ flow
-i
rl
713
0 7
714
UnilateraZ probZems and eZZiptic inequazities
CI
I #
#
#
.
#
#
#
#
A
NACA ,0012 Aerofoil M, = 0.85 a =
00
F i g . 4.11
#
&
(APP.
4)
(SEC.
4)
715
Transonic potential fZow
Bi NACA 0012 M, = 0.6 Q = ' 6
CI
F i g . 4.12
hailateral problems and e l l i p t i c inequalities
716
4.6.2
(AFT. 4)
Flow around a two-component aerofoil
The two-component aerofoil investigated is shown on Figure 4.12; each component is a NACA 0012 aerofoil (the upper one being component No. 1). The pressure distribution and the isomach lines are shown on Figure 4.12. We observe that the region between the two aerofoils acts as a nozzle; we also observe two supersonic regions, one between the two aerofoils and one adjacent to the upper surface of body No. 1. 4.6.3
Concluding remark
It appears from the above numerical results that the method used leads to sharp shocks and to a smooth transition from the subsonic to the supersonic region.
5.
SUPPLEMENTARY BIBLIOGRAPHY
In Section 2 of this appendix we have already given various references relating to the approximation of second-order boundaryunilateral problems using the method of conforming or non-conforming finite elements; it is also appropriate to mention, amongst other references on this and related subjects: Hlavacek /2A/, /?A/, Haslinger /lA/, Hlavacek-Lovisek /lA/, Mosco /lA/, ScarpiniVivaldi /lA/, Kawohl /lA/, Johnson / 1 A / and also the monograph ( ) of Kikuchi-Oden /1A/ on the numerical analysis of contact problems. Regarding the numerical analysis of fourth-order variational inequalities, we cite Mercier /lA/, / 2 A / , Brezzi-Johnson-Mercier /lA/, Haslinger /2A/. The numerical simulation of transonic flows has given rise to a large number of works, and we shall therefore merely cite the references on this subject contained in B.G. 4P /lA/, /2A/, Jameson /lA/, Periaw /1A/ and Hunt /lA/.
( I ) The substantial bibliography of this work will also reward
investigation.
Appendix 5 FURTHER DISCUSSION OF T H E NUMERICAL ANALYSIS OF THE STEADY FLOW OF A BINGHAM FLUID IN A CYLINDRICAL DUCT 1.
SYNOPSIS
The aim of this Appendix is to supplement Chapter 5 on the Numerical Analysis of the ppoblem of the steady flow of a Bingham We shall give some supplementary fluid in a cylindrical duct. results on the finite-element approximation of this problem and on its iterative solution.
In Section 2 we shall return to approximation by finite elements of order one (i.e. piecewise affine), previously investigated in we shall show that under reasonable Chapter 5, Sections 3 and 5; assumptions we "almost" have 11 \-ull 1 = O(h) ( l ) . In Section 3, Ho (0) which follows Falk-Mercier flA/, it will be shown that the use of an equivalent formulation allows an approximation to be obtained which is of optimal order, even if SlclR? Finally, in Section 4, we give supplementary information on the iterative in particular we describe consolution of the above problems; jugate-gradient methods similar to those in Appendix 3, Section
.
4.3. To conclude this first section we recall (see Chapter 5, Section 1) that the problem under consideration is defined by
( 1 .IA)
where
I
Find u E H
1 0
(n)
such t h a t
a(u,v-u)+gj (v)-gj (u) 2 L(V-u) Vv
1
(1.2A)
j(v) =
(1.3A)
a(v,w) = PI vv*vw dx
(1.4A)
L(v) =
n
lVvl dx
E
I H,(Q
1
Vv~H~(fi), vv,w
n
1
v v eHo(n)
,f
E
1
Ho(n)
,
1 E H - ' ( ~ ) = (H,(n))'
,
(APP. 5 )
Numerical analysis of Binghum fluid flow
718
and g and p a r e p o s i t i v e constants.
2.
FINITE-ELEMENT APPROXIMATION OF PROBLEM ( 1 . 1 A ) . ESTIMATES FOR PIECEWISE-LINEAR APPROXIMATIONS
( I ) ERROR
I n t h i s s e c t i o n , which i n p a r t f o l l o w s Glowinski / 1 A l 3 /2A3 Chapter 2, S e c t i o n 6.71 and /3A/, w e s h a l l supplement t h e r e s u l t s o f Chapter 5, S e c t i o n 5 . 1 .
2.1
One-dimensional c a s e
We t a k e n = q O , l [ and assume t h a t i n ( 1 . 4 A ) Problem ( 1 . 1 A ) can t h e n b e w r i t t e n
Find
we have f
-du 1 dx Let N be an i n t e g e r >O and l e t h = N f o r i=O,l, N and
...
,xi]
L
2
such t h a t
u e H oI ( O , I )
ei =
E
,
i=l,2
dx
w e c o n s i d e r x. = i h 1
,... N.
1 We t h e n approximate H ( 0 , l ) by 0
(2.2A)
Voh =
{Vh
€C0CO,11, vh(o)=vh(l)=o
I
,
vh ei E P ~ ,i=1,2
,...N).
(l)
The approximate problem i s t h e n d e f i n e d by
P = s p a c e o f polynomials i n one v a r i a b l e o f d e g r e e I 1. 1
(a).
Finite-element approximation - I
(SEC. 2 )
Problem (2.3A) admits a unique s o l u t i o n . approximation error, w e have
719
Concerning t h e
Theorem 2.1: Let u and u be the respective solutions of If f E k 2 ( 0 , 1 ) then we have (2.1A) and ( 2 . 3 A ) .
Proof: We r e c a l l t h a t V c HL(0.I) t h e V o h - i n t e r p o l a t e of u, i .eoh1et
cC0[O,I 1 ; l e t
h
be
r UEV h oh (2.5A) rh'(xi)
= u(xi)
Vxi,
i-I ,2
,... N.
Proceeding as i n Chapter 5 , S e c t i o n 5 . 1 it can r e a d i l y be shown that
w e deduce from (2.6A) t h a t
a(yl-u,yl-u) la(%-u,rhu-u)+g(j OF
(rhu)-j (u))+a(u,r,u-u)
i n a more e x p l i c i t form ( a f t e r u s i n
Ho(O,l) and from t h e f a c t t h a t
Schwarz's i n e q u a l i t y i n
21x11y$Sx2+y2
vx,y E I R ) :
2 The c o n d i t i o n f E L (0,l) i m p l i e s ( s e e Chapter 5, S e c t i o n 2 . 1 and B r 6 z i s 161) t h a t
with i n f a c t
Nwne&caZ m Z y s i s of Bingham f Z u i d fZow
720
(APP. 5 )
(2.9A) t h e proof o f t h i s i s l e f t as an e x e r c i s e f o r t h e r e a d e r .
By i n t e g r a t i n g by p a r t s , we deduce from (2.7A)-(2.9A)
(2.1 OA)
I
I n view of (2.8A) we have
The e s t i m a t e (2.4A) w i l l t h u s f o l l o w from (2.10A)-(2.12A) i f we can succeed i n proving t h a t j ( rhu ) S j ( u ) Vh ; w e have
However, on
J X ~ - ~ , X ~we [
have
We deduce from (2.14A) t h a t , on
]xi-,,xi[
,
(SEC. 3 )
Finite-element approximation
-
I1
and hence by i n t e g r a t i n g t h e i n e q u a l i t y (2.15A)
which i s e x a c t l y t h e i n e q u a l i t y we were t r y i n g t o p r o v e .
2.2
Two-dimensional c a s e
2
If RclR , t h e n a somewhat more c o m p l i c a t e d argument (which among o t h e r t h i n g s makes u s e o f t h e c h a r a c t e r i s a t i o n ( 3 . 4 8 ) - ( 3 . 5 1 ) of C h a p t e r 1, S e c t i o n 3.4 and ( 7 . l ) , ( 7 . 2 ) o f Chapter 5, S e c t i o n 7.1) shows t h a t i f s u i t a b l e r e g u l a r i t y assumptions ( ’ ) . f o r u and f o r t h e f r e e boundary ( 2 ) a r e s a t i s f i e d , t h e n f o r t h e f i r s t - o r d e r f i n i t e - e l e m e n t a p p r o x i m a t i o n of C h a p t e r 5, S e c t i o n 3 , and u s i n g t h e same a s s u m p t i o n s on as i n Theorem 5 . 1 o f Chapter 5 , h S e c t i o n 5.1, we have
or “ a l m o s t ” O(h); we r e f e r t o Glowinski / l A / , d e r i v a t i o n of t h e e s t i m a t e ( 2 . 1 6 ~ ) .
3.
/2A/,
/3A/ f o r t h e
FINITE-ELEMENT APPROXIMATIONS OF PROBLEM (1.1A). (11) OPTIMAL-ORDER ERROR ESTIMATES THROUGH THE USE OF AN EQUIVALENT FORMULATION
In t h i s s e c t i o n we f o l l o w t h e a c c o u n t of Falk-Mercier / l A / ; w e show t h a t t h e u s e of an e q u i v a l e n t f o r m u l a t i o n e n a b l e s us t o o b t a i n f i n i t e - e l e m e n t a p p r o x i m a t i o n s which l e a d t o e r r o r e s t i m a t e s of optimal order. I n view of t h e a n a l o g i e s which e x i s t w i t h S e c t i o n 3 s a t i s f i e d i n p a r t i c u l a r i f s1 i s a d i s c and i f f = c o n s t .
( (
2,
i . e . t h e i n t e r f a c e between
R+ = (Xe52, lVu(x)I > O )
.
no
(X
en,
IVu(x)
I
= 0) and
Numerical analysis of Bingham f l u i d fZow
722
(APP. 5 )
of Appendix 3, many of t h e r e s u l t s w i l l be s t a t e d without p r o o f .
3.1
Equivalent f o r m u l a t i o n of problem ( 1 . 1 A )
The f o l l o w i n g e q u i v a l e n c e lemma forms t h e fundamental r e s u l t i t s proof i s a v a r i a t i o n o f t h a t of of t h i s t h i r d section; Lemma 3.1 of Appendix 3, S e c t i o n 3.1, t h e n o t a t i o n of which i s retained. Lemma 3.1: Suppose t h a t n i s a simply-connected bounded domain i n IR2 ; t h e r e i s then equivalence between problem ( 1 . 1 A ) and t h e v a r i a t i o n a l problem
where I$ = {1$1,~21i s an ( a r b i t r a r y ) soZution of
The s o l u t i o n s u o f (1.U) and p of ( 3 . 1 A ) are connected by t h e relation
Remark 3.1:
W e consider t h e vector
U = {O,O,u)
i n IR3 and
, "
!
m
a
a
--}
a
{ y * a x 29 ax3
; we t h e n have w
-,
6
VXU
- , , "
5
{-,au
ax2
I n view o f (3.4A) we can t h e r e f o r e r e g a r d p as b e i n g a vectorvalued v o r t i c i t y f u n c t i o n a s s o c i a t e d w i t h t h e v e l o c i t y f i e l d d e f i n e d by u.
Finite-e lement approximation - I1
(SEC. 3 )
723
Remark 3.2: Remark 3.2 o f Appendix 3, S e c t i o n 3.1 r e l a t i n g t o W t h e c o n s t r u c t i o n of C$ from f i s a l s o a p p l i c a b l e h e r e . The r e g u l a r i t y r e s u l t s r e l a t i n g t o problem ( 1 . 1 A ) Remark 3.3: (proved i n B r & z i s /6/ and r e f e r r e d t o i n Chapter 5, S e c t i o n 2.11, t o g e t h e r w i t h r e l a t i o n (3.4A), imply t h a t i f r i s s u f f i c i e n t l y r e g u l a r , t h e n f o r t h e s o l u t i o n p o f problem (3.1A) w e have
Remark 3.4:
This remark concerns t h e e x i s t e n c e o f Lagrange
m u l t i p l i e r s a s s o c i a t e d w i t h t h e c o n d i t i o n p E H f o r problem (3.1A); it f o l l o w s from (3.1A), (3. A) t h a t a n a t u r a l Lagrangian a s s o c i a t e d w i t h problem (3.1A) i s & : L2(n))2'XH1(s2) + IR , d e f i n e d by
which l e a d s t o t h e saddle-point problem
We t h e n have t h e f o l l o w i n g p r o p o s i t i o n , t h e proof of which i s an immediate v a r i a n t of t h a t of P r o p o s i t i o n 3.1 i n Appendix 3, S e c t i o n 3.1:
There i s equivaZence between (3.7A) and
P r o p o s i t i o n 3.1:
/
{pyx)
E
HXH'
(a) ,
moreover if {p,x1 i s a soZution of ( 3 . 7 A ) , (3.8A), then p is t h e s o l u t i o n o f problem (3.1A).
724
Numerical a n a l y s i s o f gingham f l u i d f l m
(UP. 5 )
I n c o n t r a s t t o problems (3.20A), (3.21A) of Appendix 3, S e c t i o n 3.1, which a r e formally similar, t h e e x i s t e n c e of x such t h a t (?,XI i s a s o l u t i o n of problems (3.7A) , (3.8A) poses no major d i f f i c u l t y . Hence w e have P r o p o s i t i o n 3.2: Using t h notation o f Proposition 3 . 1 above, we have the existence o f x E Hf ( Q ) , such that ( p y x } i s a solution of problems (3.7A) , ( 3 . 8 ~ ) .
Proof:
I f we assume t h e e x i s t e n c e of
of the dual problem
x,
then
x
i s a solution
the converse i s also true. We denote by p(w) t h e (unique) s o l u t i o n of t h e problem
it can e a s i l y be shown t h a t ( ' )
If w e d e f i n e
371 : H 1 ($2)
+
IR by
t h e n we may deduce from (3.6A), (3.9A)-(3.12A) t h a t t h e dual problem (3.9A) admits t h e formulation
(l)
w e use t h e n o t a t i o n
t
+
= sup(O,t),
v tcIR.
Finite-e lement approximation
(SEC. 3 )
-
I1
725
i s convex ( b u t not s t r i c t l y It f o l l o w s from (3.14A) t h a t convex) and continuous on H1(Q) ; moreover we have
(3.15A)
lim
Ilwll.~'
Mw)
= + m ,
H (52) 1 where, i n (3.15A), we have used t h e n o t a t i o n ;'(a) = H (n)/IR. imply t h e e x i s t e n c e o f s o l u t i o n s of t h e The above p r o p e r t i e s o f d u a l problem ( 3 . 9 A ) , t o w i t h i n an a d d i t i v e c o n s t a n t .
3.2
Approximation o f problem (3.1A) by a f i n i t e - e l e m e n t method
We assume h e r e a f t e r t h a t R i s a bounded, convex, polygonal domain i n IR2.
3.2.1
Definition of the approximate problem
Using t h e n o t a t i o n of Appendix 3 , S e c t i o n 3.1, we approximate (3.1A) by
I t can r e a d i l y be proved t h a t P r o p o s i t i o n 3.3:
3.2.2
Problem (3.16A) a h i t s a unique sozution.
Investigation of the convergence 2
We s h a l l assume h e r e a f t e r t h a t f E L ( a ) ; with Q convex and bounded, t h i s i m p l i e s ( s e e B r & z i s /6/)t h a t t h e s o l u t i o n u of ( 1 . 1 A ) s a t i s f i e s u E H2(R) w i t h
(3.17A)
IIuII
726
Nwnerical analysis of Bingham f l u i d fZow
(APP. 5 )
where y depends o n l y on Q. W e deduce from ( 3.&A), 0 t h e s o l u t i o n p of ( 3 . l A ) s a t i s f i e s
( 3.17A) t h a t
S i m i l a r l y i f $I i s o b t a i n e d from f u s i n g t h e r e l a t i o n s o f Remark 3 . 2 i n Appendix 3, S e c t i o n 3.1, t h e n
with
(3.20A)
1144
(n))2
11 11 L2 (a
We a l s o assume t h e e x i s t e n c e o f a m u l t i p l i e r t h a t { p y x ] s a t i s f i e s (3.7A) , (3.8A).
x
E
H
2
( a ) such
H e r e a f t e r we s h a l l use TI^ t o denote t h e o r t h o g o n a l p r o j e c t i o n o p e r a t o r onto L , i n t h e norm ( (L2(C2))2; we r e f e r t o P r o p o s i t i o n s 3.3 and 3.4 of fappendix 3, S e c t i o n 3.2.2 f o r t h e v a r i o u s p r o p e r t i e s o f TI , which a r e u s e f u l i n i n v e s t i g a t i n g t h e convergence o f t h e solukion p o f (3.16A) t o t h e s o l u t i o n p o f (3.1A). More s p e c i f i c a l l y , wikh r e g a r d t o t h i s convergence w e have Theorem 3 .I ( Falk-Mercier / l A / ) : Under the above assumptions on n , f ,x and with the same assumptions on r b as i n Theorem 3 . 1 of Appendix 3, Section 3 . 2 . 2 , we have the optzmal-order error estimate
where, i n (3.21A), p i s t h e s o l u t i o n o f problem (3.1A) and ph t h a t o f t h e approximate problem (3.16A).
Proof: Proceeding as i n t h e proof of Theorem 3 . 1 of Appendix 3, S e c t i o n 3.2.2, w e o b t a i n t h e e s t i m a t e
(SEC.
4)
727
Iterative methods
The theorem w i l l be proved i f
We have
,
but
where, i n (3.25A), m ( T ) = measure of T .
We t h u s deduce
The i n e q u a l i t y (3.23A) t h e n r e s u l t s t r i v i a l l y from (3.24A), (3.26~).
4.
SUPPLEMENTARY INFORMATION ON ITERATIVE METHODS FOR SOLVING THE PROBLEM OF THE STEADY FLOW OF A BINGHAM FLUID I N A CYLINDRICAL DUCT
4.1
General d i s c u s s i o n .
Synopsis
I n Chapter 5 w e d e s c r i b e d v a r i o u s i t e r a t i v e methods f o r s o l v i n g i n t h i s c a s e , t h e most problem ( 1 . 1 A ) i n i t s d i r e c t f o r m u l a t i o n ; e f f i c i e n t c a l c u l a t i o n methods a g a i n seem t o be t h o s e b a s e d on d g o r i t h m ( 9 . 6 ) - ( 9 . 8 ) of Chapter 5, S e c t i o n 9 ( o f t h e augmented f o r f u r t h e r d e t a i l s we r e f e r t o Marrocco /lA/, Lagrangian t y p e ) ;
hk.unerica1 analysis of B ~ h g h a mf l u i d fZm
728
(APP. 5 )
Gabay-Mercier /1/, Fortin-Glowinski /lA/, /2A/, Glowinski /2A/, Glowinski-Marrocco /lA/. Furthermore, it is extremely likely that we could improve the speed of convergence of algorithm (6.93)-(6.96) of Chapter 5 , Section 6.4 (which relates to the regularised problems (6.3)) by using a variant of the conjugate-gradient type (and thus with preconditioning in the sense of Appendix 3, Section 4.3.3) ; the algorithm used would then be similar to the algorithms (4.34A)(4.42A) of Appendix 3, Section 4.3.2. In Sections 4.2, 4.3 below, we shall conclude this fourth section with an investigation of the i t e r a t i v e solution of (1.lA) via the equivalent formulation (3.lA), using duality-type algorithms based on the formulation (3.7A); in Section 4.2 we describe a Uzawa-type algorithm, and variants of the conjugate-gradient type are described in Section 4.3.
4.2
Solution of problem (3.1A) by a duality method
The material discussed in this section is similar to that in Appendix 3, Section 4.2. 4.2.1
Description of the algorithm
In view of the duality results of Remark 3.4 of Section 3.1 of this appendix we shall reduce the solution of (3.1A) (and hence of (1.1A)) to that of the saddle-point problem (3.7A), namely Find { p , ~ ) E ( L 2 ( n ) I 2
XH'(Q)
such that
(4.1A) &,w)
Ap,x)
L(q,x)
v Cq,w)
E
( L 2 ( W 2 X H 1 (Q)
with
which is justified since p is then the soZution o f (3.1A). By analogy with Appendix 3,.Section 4.2.1, we are led to the following algorithm:
(SEC. 4)
I t e r a t i v e methods
then f o r n 20,
xn+' cH1(61)
xn E H1 (52)
729
known, determine p"
E
(L2(52))
2
and
by
w i t h , i n (4.5A),
P >
0.
The practical implementation of (4.3A)-(4.5A) does not pose any major difficulties; in fact (4.4A) is equivalent (see (3.11A) of Section 3.1) to (4.6A)
pn = p(x")
=
1 u (~f$+vx*~-g)+ 0.Vx" I4+vxnI
,
In connection with (4.5A), we refer to the comments in Appendix 3, Section 4.2.1. 4.2.2
Convergence of aZgorithm (4.3A)-( 4.5A)
By proceeding as in Appendix 3, Section 4.2.2, the following theorem on the convergence of algorithm (4.3A)-( 4.5A) can be proved.
meorem 4.1:
then if
Suppose t h a t (
,
0 )
(Q
i s defined by
730
Numerical a n a l y s i s of Bingham f l u i d flo w
n
(UP. 5 )
defined by algorithm (4.3A)-(4.5A)
then f o r the sequence {p we have
.
where, i n (4.8A), p i s t h e s o l u t i o n of (3.1~) Remarks 4.1, 4.2 and 4.3 of Appendix 3, Section 4.2.2 and 4.3.2 also hold for algorithm (4.3A)-( 4.5A)
.
4.3
On conjugate-gradient type variants of algorithm (4.3A)(4.5A).
As previously mentioned in Appendix 3, Section 4.3.1 in relation to a similar problem, we might expect to accelerate the convergence of algorithm (4.3A)-(4.5A) by using a variant of conjugate-gradient type. In fact this possibility is justified by 1
The f u n c t i o n a l r/l : H (52) + R defined by (3.14A) i s convex, L i p s c h i t z continuous and G a t e a u x - d i f f e r e n t i a b l e ; i t s Gateaux d i f f e r e n t ' i a l 711' i s a l s o L i p s c h i t z continuous and i s defined by Proposition 4.1:
(4.9A)
4'(w),?l>
=
p(w)*Vq
n
1
dx Vw,q E H (52)
w i t h ( s e e (3.11A))
i n (4.9A) denotes t h e b i l i n e a r form of t h e d u a l i t y between (H'(i2))' and H'(i2). <*,a>
By proceedjpg as in Appendix 3, Section 4.3.2, we are led to the following conjugate-gradient algorithms:
(SEC.
4)
Stage 0 :
I t e r a t i v e methods
731
Initialisation
xo E H1 ( a ) ,
(4.11A)
then determine g
0
given,
using
and put zo = go.
(4.13A)
Next, for n n+l
x
n+l
,g
n+l
,z
S t a g e 1:
2 0
and assuming t h a t
xn ,g n ,z n
are known, determine
using
Descent
So Zve tha one-variable minimisation problem
Find XncR such t h a t (4.14A) ~((X"-X"z") 5
S t a g e 2:
Define g
nC'(x"-Az")
vx
E
IR
C o n s t r u c t i o n of t h e new d i r e G t i o n o f d e s c e n t n+l
by
gn+'
E
H'
(a) ,
(4.1 6A) (gn+l ,w)
=
H1(a)
,w>
vw
E
H1( a ) ,
732
Numerical analysis of Bingham f l u i d flow
(up. 5)
and then yn+' by
(or alternative Zy by
and finally
(4.18A)
n+* 'g n+l+Yn+l2
.
Naturally, the next step is
(4.19A)
n = n + l , go to ( 4 . 1 4 A ) .
Remarks 4 . 4 , 4.5 and 4.6 o f Appendix 3, S e c t i o n 4 . 3 . 2 a l s o a p p l y t o t h e above a l g o r i t h m ( b . l l A ) - ( b . l g A ) ; i n particular n + l gn" i s determined from x v i a ( 4 . 1 6 A ) and t h e f o l l o w i n g relations
where
Appendix 6 FURTHER DISCUSSION OF THE NUMERICAL ANALYSIS OF TIME-DEPENDENT VARIATIONAL INEQUALITIES
1.
SYNOPSIS
This appendix is intended to provide a fairly brief supplement to Chapter 6 on the numerical analysis of time-dependent inequalIn Section 2 we give a number of references concerning ities. the approximation of time-dependent inequalities, mainly in the modelling of problems related to the mechanics of continuous Sections 3 and 4 supplement the discussion in Chapter 6, media. Section 11 concerning the time-dependent flow of incompressible Section 3 considers the case of the flow in a Bingham f l u i d s . cylindrical duct, and thus forms an extension to Chapter 5 and In Section 4 we return to the numerical Appendix 5 of this book. investigation of Chapter 6, Section 11, concerning the flow i n a two-dimensional c a v i t y ; by introducing a stream function we are led to a time-dependent variational inequality problem of parabolic type, which is of fourth order with respect t o the space variables, and which we shall discretise (spatially) by a method of mixed f i n i t e elements similar to that discussed in Chapter 4, Section 4.5 and in Appendix 4, Section 3. 2.
SUPPLEMENTARY BIBLIOGRAPHY
The numerical analysis of problems which arise in general from the mechanics of continuous media and which can be reduced to time-dependent inequalities has given rise to a number of works, among which we cite the following: a) Johnson /2A/, Berger /lA/, Berger-Falk /la/ concerning the approximation in space and time of the model time-dependent obstacle problem, which in the notation of Chapter 6, Sections 1 and 2 can be written
I (2.1A)
Find u(t) E K a.e. on IO,T[, ,v-U)
+
I,
Vu*V(v-u)dx
2 (f
such that a.e. on lO,T[
,v-u)
t/v
E
K,
(UP. 6)
Time-dependent variational i n e q u a l i t i e s
734
where
(2.2A) where
K
=
1
( V E H0 (Q), vrJ, a.e. on
J, E H ' ( S ~ ) nCo(n)
with JI 5 0 on
n)
an.
We assume t h a t 52 i s a bounded polygonal domain i n IR2 and t h a t a s t a n d a r d family of t r i a n g u l a t i o n s of R ; we t h e n , i n t k e standard way, approximate H1(R) and K by means o f a f i r s t 0 order finite-element method, g i v i n g
(eh) i s
voh
(2.3A)
where C
=
IVh E c0(El,vh
=
o
i s t h e s e t of v e r t i c e s of
oh
on
5
an, vh IT
E
VT E eh>,
p1
interior t o R.
This l e a d s t o t h e approximation of ( 2 . 1 A ) by - amongst o t h e r schemes - t h e following implicit scheme (with A t > 0 )
/
with
\ where u
oh
<+I E
<
6%
k n m , determine
,
n=0,1,2
xn+'by
<
,... ,-
Voh i s an approximation of u
= Uoh
0.
It i s shown i n Berger-Falk /1A/ t h a t under s u i t a b l e (and reasonable) assumptions on uO,f,$,u and u oh- u0 we have
q)h,
with, i n ( 2 . 6 ~ ) , and
E
> O a r b i t r a r i l y s m a l l (we have
E
= 0 i f R c IR)
(SEC. 2)
where
wn
SuppZementary bibliography
735
is the characteristic function of the interval l0,TC n l ( n -
1 T)At,
(n+
1 T)AtC
.
It is also shown in Berger-Falk, loc. cit., that the above estimate (2.6~)also holds for more explicit variants of scheme (2.5A) , provided a stability condition of the type At I Ch2 is satisfied. b) P.L. Lions-B. Mercier /lA/, which deals with the investigation of the convergence of implicit schemes of altemzating direction type (A.D.I.), applicable to the numerical integration of a large number of parabolic time-dependent inequa Zities.
c) Baiocchi-Pozzi /1A/ which investigates the finite-difference approximation, in space and time, of a free-boundary problem with one space variable, after first reducing it to a parabolic variational inequality. This problem has its origin in bio-mathematics This paper derives (diffusion-absorption of owgen in tissues). estimates of the approximation error, together with results on the convergence of the free boundary in the approximate problem towards that in the continuous problem. Comincioli-Torelli /1A/ which investigates the finite-element approximation of parabolic time-dependent inequalities in the modelling of the unsteady flow due to the seepage of an incompressible fluid in a porous medium. d)
e) Johnson /3A/, /4A/, Laborde /lA/, Mercier /1A/ and SamuelssonFroier /1A/ which investigate the finite-element approximation of time-dependent inequalities modelling nonlinear phenomena in the mechanics of continuous media (elasto-plasticity, visco-plasticity, hardening, etc.. )
..
f) L6tstedt /lA/-/kA/ which investigates the numerical solution of variational inequalities which are of second order in t, in the modelling of dynamic friction and contact problems in the Mechanics of Structures. a We also refer to Glowinski /2A, Chapter 31 which gives a description of various time-discretisation schemes for parabolic inequalities ("quasi" explicit, implicit, Crank-Nicolson, multistep schemes, etc ). We conclude this section by mentioning the use of techniques for the numerical integration of timedependent inequalities for solving nonlinear vibration problems
...
736
Time-dependent variational inequalities
(APP.
6)
i n incompressible or inextensible media ( l ) ; w e r e f e r t o Bourgath a y - G l o w i n s k i /1A/ f o r an a p p l i c a t i o n i n t h e study of large-displacement v i b r a t i o n s i n inextensible elastic pipelines.
3.
ON THE STEADY FLOW OF A BINGHAM FLUID I N A CYLINDRICAL DUCT. ASYMPTOTIC PROPERTIES OF THE CONTINUOUS AND DISCRETE PROBLEMS.
Following Glowinski /2A, Chapter 3, S e c t i o n 6 / ( s e e a l s o B r i s t e a u /1A/ and Bristeau-Glowinski /U/) w e consider t h e timedependent problem a s s o c i a t e d with t h e e l l i p t i c v a r i a t i o n a l inequa l i t y of Chapter 5 and Appendix 5 , and study i t s asymptotic properties along with t h o s e of a r e l a t e d approximate problem.
3.1
Formulatioe of t h e problem. results.
Existence and uniqueness
L e t Q be a bounded domain i n lR2 w i t h a r e g u l a r boundary r ( Q i s t h e cross section of t h e d u c t ) . Using t h e n o t a t i o n o f Chapters 5 , 6 and Appendix 5 , w e consider
. V = Ho(Q), 1 . a(v,w) = .A
H = L2 (Q), V' = H-'(Q),
Vv-Vw dx
I,
v v , w 6 H o1( Q ) ,
time interval [O,T], 0 < T <+-
. f E L2 (O,T;V'),
,
uo E H ,
(see Chapter 5 , S e c t i o n 1 . 2 f o r t h e mechanical i n t e r p r e t a t i o n o f P,t3).
( I)
The c o n d i t i o n s f o r i n c o m p r e s s i b i l i t y or i n e x t e n s i b i l i t y are expressed as nonlinear equality-type constraints a t each p o i n t of t h e deformable medium under c o n s i d e r a t i o n .
Bingham f l u i d flow i n a cylindrical duct
(SEC. 3)
737
We t h e n have t h e following theorem:
For every uo E H and every parabolic variational inequalzty Theorem 3.1:
au ,v-u) (at
+ ua(u,v-u) + g j (v)
a. e. i n t
(3.1A)
U(X,O) = u
E
-
2 f E L (0,T;V')
g j (u) 2 (f,v-u)
, the Vv
E
lO,TC, p
has a unique solution u such t h a t I
u
(3.2A)
E L
2
aU
=EL
(0,T;V) nCo(CO,T1;H),
2
(0,T;V').
For a proof of t h i s theorem s e e Duvaut-Lions
3.2
/1, Chapter 6 / .
On t h e asymptotic behaviour of t h e continuous s o l u t i o n
We assume t h a t f i s independent of t and t h a t f consider t h e following steady-state problem Pa(u,v-u)
(3.3A) u
+ gj(v)
- gj(u)
2
I
f(v-u)dx
E
L2(n).
We
\dvEV,
R
EV
t h e numerical s o l u t i o n o f which w a s d i s c u s s e d i n Chapter 5 and Appendix 5 . It i s proved i n Duvaut-Lions /1, Chapter 6 / t h a t
where
v
(UP. 6 )
Time-dependent variational inequalities
738
We then have t h e following theorem: Theorem 3.2: Suppose that f E L ~ ( Q )with i f u i s the solution of (3.1A) w e have
IIf 1 L2 (52)
1
where Xo i s the smallest eigenvalue o f -A i n Ho(S2) 2
1.1
Proof:
We use Since f HA(Q)-norm.
E
< Bg; then
(Ao >o).
II*II
f o r t h e L (Q)-norm and for the Loo(IR+;L2(S2)) it follows from Theorem 3.1
t h a t t h e s o l u t i o n of (3.1A) i s defined on t h e whole of IR+.
I
We now observe t h a t i f gf3 > If , t h e n zero i s t h e unique it t h e n follows from Theorem 3 . 1 t h a t i f s o l u t i o n of (3.3A); u ( t o ) = 0 f o r some to 2 0, t h e n
(3.7A)
Vt
u(t) = 0
2 to
a
Taking v = 0 and v = 2 u i n (3.1A), we o b t a i n
(3.8A)
aU
2 dv Since V E L (O,T;V), - E L
result) t h a t t d dv -lv12.= 2 ( dt
(3.W
fu dx IS2
( z , u ) + va(u,u) + g j ( u ) =
+
a.e. i n t .
2
(0,T;V') imply ( t h i s being a general dt ( v ( t ) I 2 is absozuteZy continuous w i t h
, ~v) , we
T1Z ~dU I
2
o b t a i n from ( 3 . 8 A ) t h a t
+ pa(u,u)
+
gj(u) =
Since a ( v , v ) 2 h O ( v l 2 V V E V ,
and
fu d x s 1 5 2
I f I IuI
a.e. i n t.
j(v) 2 B ( v l V V E V (from
(3.5A)) it follows from (3.9A) t h a t
(3*1OA)
1 d
~ I u 2I I - I X ~ ~ U I 2 +
Suppose t h a t u ( t )
f
+
< g B - l f l > l u l 2 0 a.e. i n t c IR+.
0 V t 1 0 . then, since t
-+
lu(t)I2 is
QbsohteZy continuous with [ u ( t ) l 7 0, t h i s i m p l i e s t h a t t +- lu(t)I is a l s o absoZuteZy continuous. Therefore from (3.10A) and from I d
d
we o b t a i n :
(SEC. 3 )
(3.11A)
Bingham f Z u i d fZow i n a cyZindricaZ duct
d dt
l u ( t ) l + p X o l u ( t ) l + (gB-
739
lfl) S O a . e . i n t
E
33,.
It follows from (3.11A) t h a t
d dt
(3.12A)
lu(t)l+
Define y by
I
I u w gB-
2 -pho
f~
a.e. in t
; t h e n y > 0.
y =
E
IR,.
It follows t h e n by
i n t e g r a t i n g (3.12A) t h a t (3.13A)
lu(t>l
+
Y
5
( I u o l + y ) e -PAo t
Vt€m+
(3.13A) i s c l e a r l y absurd f o r t s u f f i c i e n t l y l a r g e . have u ( t ) = 0 i f
Y 2
;
I n f a c t we
(1 uol +v)e -vXot ,
i.e.
which completes t h e proof of t h e theorem. 2 Remark 3.1: Let f E L ( R ) , p o s s i b l y w i t h If\ 2 gf3, and deno t e by u , t h e s o l u t i o n of (3.3A); it can be t h e n e a s i l y proved that
where u ( t ) is t h e s o l u t i o n of (3.1A).
3.3
Approximation of (3.1A). discrete solution.
Asymptotic p r o p e r t i e s of t h e
W e s t i l l suppose t h a t f E L'(S-2); t o approximate (3.1A) w e proceed as follows: assuming t h a t R i s a polygonal domain, we approximate V = HA(R) by
vh
= Cvh
~cO(i;i),
vh =
o
on
r-, V h l T
E P ~
V T €51,
Time-dependent variationa 2 inequa 1iti e s
740
(APP. 6 )
i . e . by means of a first-order finite-element method. approximate (3.1A) by t h e following implicit scheme
I
with
<
n=0,1,2, We assume t h a t
u
oh
known, determine <+I
We then
by
... ; u,, = uoh .
E
0
Vh \dh
, and
that
(3.1 6A) r
We a l s o assume t h a t f i s approximated by
J,
fhvhdx
{fhIh such
that
can be computed e a s i l y , and t h a t
Using t h e methods of Chapter
6 , it i s p o s s i b l e t o prove t h e
convergence ( f o r some topology) of t h e discrete solution t o t h e continuous one, as h -+ 0, A t +. 0 , i f w e assume t h a t t h e usual angle condition h o l d s as h +. 0. Concerning t h e asymptotic p r o p e r t i e s o f t h e d i s c r e t e s o l u t i o n , we have t h e following d i s c r e t e v a r i a n t of Theorem 3.2: Theorem 3.3: Suppose that I f ] < Bg; i f (3.16A), (3.17A) hold and i f h i s s u f f i c i e n t l y small, we have
( 3 . I8A)
<
=
o
for n s u f f i c i e n t l y large,
(an estimate being given i n (3.26A) below). Proof:
n+l Taking vh = 0 and vh = 2% i n (3.15A)
, we
obtain
(SEC. 3)
Bingham fluid f l o w in a cylindrical duct
741
using Schwarz's inequality in L2(Q), it follows from (3.19A) that V n 2 0:
Since l i m Ifh - fl = 0 we have h+O
-
gB
(3.21A)
Ifh] > O for h sufficiently small.
It then follows from (3.20A), (3.21A) that m
(3.22A)
=
o
n implies tj, = 0 for n l m if h is
sufficiently smatl. Suppose that
(3.23A)
<
# 0 Vn 2 0 ;
1 <+I I -I
I
+UXol<+l
We define yh by yh = gf3- Ifh[j
(3.248)
then (3.20A) implies
+ gB
- Ifh!
then
yh > O for h sufficiently small,
l i m yh = y = gB- l f l . h+O It follows from (3.23A) that
which implies that
Vn10.
Time-dependen t variations l inequalities
742
(APP. 6 )
Since y > 0 f o r h s u f f i c i e n t l y s m a l l , (3.25A) i s imposzible More p r e c i s e l y , we w i l l have y n = o f o r n s u f fhi c i e n t l y Large. if
which implies
If h i s s u f f i c i e n t l y small, then
<
= 0
r
(3.26A)
Log( 1 +vXoAt) Relation (3.26A) makes t h e statement of Theorem 3.3 more n p r e c i s e . Moreover, i n terms of time, (3.26A) i m p l i e s t h a t yn i s equal t o zero i f
(3.27A)
nAt
We note t h a t
lim h+O 3
t+o
<
Hence t a k i n g t h e l i m i t i n (3.27A) we o b t a i n a f u r t h e r proof converges t o u i n some topology) of t h e estimate ( 3 . 6 A ) (since given i n t h e statement of Theorem 3.2.
<
Remark 3.2: Let be t h e s o l u t i o n of t h e steady-state d i s c r e t e problem a s s o c i a t e d with f h (and ( 3 . 1 5 A ) ) , p o s s i b l y with W e t h e n have Ifh/ 2 Bg. (3.28A)
The above estimate (3.28A) i s t h e d i s c r e t e analogue o f t h e estimate i n Remark 3.1.
(SEC. 4 )
3.4
Bingham fluid flow in a 2-D
cavity
743
F u r t h e r remarks
We can g e n e r a l i s e Theorem 3.1 t o t h e case of a Remark 3.3: Bingham flow i n a two-dimensional bounded c a v i t y .
Numerical examinations of t h e above asymptotic Remark 3.4: p r o p e r t i e s are performed i n Glowinski /2/ , B r i s t e a u /1A/ , BristeauGlowinski /1A/ and Begis 131, and show them t o be c o n s i s t e n t with see a l s o Begis /1A/ i n which the theoretical predictions; numerical simulations of two-dimensional Bingham flows i n a c a v i t y are performed u s i n g t h e method described i n Section 4 below.
4.
NUMERICAL SIMULATION OF THE FLOW OF A BINGHAM FLUID I N A TWODIMENSIONAL CAVITY, USING A STREAM FUNCTION METHOD
4.1
Synopsis
The o b j e c t of t h i s s e c t i o n , which i n p a r t follows Begis / l A / , i s t o supplement Chapter 6, S e c t i o n 11, on t h e numerical a n a l y s i s of t h e flow of Bingham f l u i d s . A f t e r f i r s t reviewing t h e i n i t i a l formulation of t h e problem ( i . e . t h a t of Chapter 6, Section 11) i n S e c t i o n 4.2, w e show i n Section 4 . 3 t h a t t h e i n t r o d u c t i o n of a stream function enables t h e problem t o be reduced t o a paraboZic variational inequality, which i s of fourth order with respect to
the space variables. I n Sections 4.4 and 4.5 we examine t h e approximation of steadystate and time-dependent problems using mixed finite-eZement methods ( f o r t h e spatial approximation) and finite differences ( f o r t h e time approximation). Next, it i s shown i n Section 4.6 t h a t t h e methods of decomposition-coordination using an augmented Lagrangian, mentioned i n Appendix 2, S e c t i o n 7 (see a l s o Chapter 3, S e c t i o n 10 and Chapter 5 , S e c t i o n 9 1 , allow t h e above approximate problems t o be solved i n a p a r t i c u l a r l y simple manner. F i n a l l y , i n Section 4.7 w e p r e s e n t some numerical results obtained u s i n g t h e above methods, which enable us t o demonstate c e r t a i n p r o p e r t i e s of t h e Bingham f l u i d flows under c o n s i d e r a t i o n . 4.2
Review of t h e v e l o c i t y formulation of t h e Bingham flow problem
L e t R be a bounded domain i n 1R2 , with r e g u l a r boundary r . 1 i s a f u n c t i o n with v a l u e s i n B2 , w e put ( u s i n g e s s e n t i a d ; $he same n o t a t i o n as i n Chapter 6, Section 11.1)
If v = {v v
(UP. 6 )
Time-dependent variational inequalities
744
(4.2A)
(4.3A)
a(v,w)
= 2
f
i,j=l
(4.6A)
,
2 2 H = { v l v (a) ~ ~ X Z (Q), V * V = 0, van =
xH'/2(r)
If i n a d d i t i o n z € H i / 2 ( r )
(4.7A)
D. .(v)D. .(w)dx 1J 1J
z-n dr = 0
o
on
r).
with ( l )
,
w e a s s o c i a t e with z t h e a f f i n e space (which i s nonempty, see Cattabriga / l A / ) :
Hereafter w e s h a l l n e g l e c t t h e nonlinear terms a s s o c i a t e d with t h e t r i l i n e a r form b ( . , * , = ) defined by (11.5) i n Chapter 6, SecWe a r e t h e n l e d (see Duvaut-Lions /1, Chapter 6 1 ) t i o n 11.l. t o modelling t h e flow of a Bingham f l u i d i n R , s a t i s f y i n g u = z on r , by
( ' ) n:
u n i t normal v e c t o r p o i n t i n g outwards from R .
(SEC.
Bingham f l u i d f l o w i n a 2-D cavity
4)
\
2
~ ( 0 )= u 0 c H, f E L (0,T;V') 0
We recall that i n
745
.
(4.9A)
viscosity of the f l u i d , g is t h e p l a s t i c i t y threshold, ( i . e . t h e yield s t r e s s ) , f i s t h e density of the extermal ,forces. v i s the
Duvaut-Lions /1 , Chapter 6 / proves ( f o r z = 0 ) t h e existence and uniqueness o f a s o l u t i o n of problem (4.9A); t h e case z # 0, with z s a t i s f y i n g (4.7A), may be t r e a t e d i n similar fashion.
Remark 4.1: I n t h e above w e have assumed t h a t z ( = ul,) does n o t depend on t: i n f a c t t h e r e i s no e x t r a d i f f i c u l t y i n handl i n g such a c a s e numerically, u s i n g t h e following methods.
4.3
A stream-function formulation of t h e Bingham flow problem
I n t h i s s e c t i o n w e make t h e following two simplifying assumptions
(i)
i s simply connected,
(ii) z = uIr = 0; however, Remark 4.1 above s t i l l holds f o r s i t u a t i o n s i n which ( i ) and/or (ii)a r e not s a t i s f i e d . I n view of our a t t e n t i o n t h e condition ( t o within an
(4.1 OA)
t h e f a c t t h a t i n t h i s appendix we are r e s t r i c t i n g t o two-dimensional flows, it i s n a t u r a l t o e l i m i n a t e V-u = 0 by i n t r o d u c i n g a sti-eam function, defined a d d i t i v e c o n s t a n t ) by
u1
=
a9
ax2
a9
I - -
u2
*
Time-dependent variationaZ i n e q u a l i t i e s
746
The c o n d i t i o n u = 0 on
(4.11A)
J, =
(4.12A)
-=
(4.I 3A)
Vo;
r,
r;
0 on
r
w e s h a l l t a k e JI = 0 on above). E
implies
constant on
an
Let v
r
(which f i x e s t h e constant mentioned
with v w e t h e n a s s o c i a t e @
-
a$
v 1 - ax2
(APP. 6)
’
v2 =
E
2 Ho(Q) by
a$ - ax, ’
S u b s t i t u t i n g t h e f u n c t i o n s (4.10A), (4.1%) reduces (4.9A) t o t h e following paraboZic variational inequality (of f o u r t h o r d e r with r e s p e c t t o t h e space v a r i a b l e s )
(4.15A)
where
(4.16A)
(l)
I f , i n ( 4 . 9 A ) , (f,v) =
f * v dx
then
f =
af2 - af, . ax,
ax2
Bingham f l u i d f l o w i n a 27D c a v i t y
(SEC. 4)
i
(4.17A)
."
Remark 4.2:
747
- q)2] 2 1 I 2d x
) 2 + ($
C(2
R
axlax2
ax
ax
2
1
In fact we have
(4.18A)
in the following we shall use (4.16A) and (4.18A) simultaneously.
4.4
Approximation of the steady-state problem
4.4.1
Synopsis.
FormuZation of t h e ste a d y -sta te probZem
With a view to investigating the approximation of problem (4.15A) by a mixed finite-element method - we shall first investigate the.approximation of the corresponding steady-state problem, i .e. the fourth-order elliptic variational inequality ( )
( 4 . 1 9A)
where a and j are defined by (4.16A), (4.17A); we remark that (4.19A) is equivalent to the minimisation problem
(4.20A)
where, in (4.20A)
(')
Hereafter we shall omit the symbol
-.
748
(APP. 6 )
Time-dependent variational inequalities
-1 H e r e a f t e r w e s h a l l assume t h a t f E H (Q); however, t h e r e i s no d i f f i c u l t y i n considering t h e case i n which
(f,$) =
I
V$EHt(n)
f A$dx
n
; fcL
2
(a).
2 Since t h e form a ( = , * )i s Ho(R)-eZZiptic ( i . e . coer i v e ) from (4.18A) , and s i n c e j ( ) i s continuous and convex on Ho(R), problem ( 4 . 1 9 A ) , (4.20A) admits a unique solution.
5
Approzimation o f (4.19A),(4.20A) b y a method o f mixed f i n i t e elements
4.2.2
I n t h e following w e s h a l l assume t h a t R i s a convex polygonal denote a standard family o f t r i a n g d domain i n IR2 ; l e t We s h a l l approximate (4.19A), (4.20A) by a method a t i o n s of R . of mixed f i n i t e etements, a v a r i a n t ( i n s p i r e d by Miyoshi / l A / ) of t h e mixed method considered i n Chapter 4 , S e c t i o n 4 and Appendix 4, Section 3, of which we r e t a i n most of t h e n o t a t i o n . We t h u s have 0 -
( a ) , vhlT
(4.22A)
Vh = {vh E C
(4.23A)
Voh = Vh n Ho(!J)
L e t ,$
2 Ho(R);
v T reh>,
.
1
E
E P ~
f o r 1 S i, j 5 2 we define n
(4.246) We t h e n have
3%
qij = qji =
v 1.1
E
ax;axj
H' ($2)
(4.2 5A)
Conversely i f ,$ E H1 o ( R ) and q = {qij]lSi5j52 s a t i s f y (4.25A), 2 t h e n 4 E Ho(R) and q and ,$ are r e l a t e d by (4.24A). This l e a d s t o t h e i n t r o d u c t i o n of t h e space Wh c Voh x (Vh) defined by
3
(SEC. 4 )
Bingham f l u i d flow i n a 27D cavity
749
L e t a,B E l O , l [ be such t h a t a + 8 = 1; i n view of ( 4 . 1 6 A ) , (4.18A) we "approximate" t h e f u n c t i o n a l J of (4.20A), (4.2lA) by
(4.27A)
where
(4.28A)
We t h e n approximate t h e problem (4.19A),
(4.20A) by
(4.29A)
4.4.3
Solvability of the approximate problem (4.298)
Regarding t h e s o l v a b i l i t y of t h e approximate problem (4.29A) we have
The approximate problem (4.29A) adnits one and Theorem 4.1: onZy one solution. Boof: The f u n c t i o n a l j i s convex and continuous; moreh over i f we p u t p = 0, i n t h e r e l a t i o n s which d e f i n e Wh (see h (4.26A)), we have ( 9 )
7 50
Time-dependent variationaZ inequaZities
(AFT. 6 )
where, i n (4.30A), C i s independent of {+h,qh) and h , and where
I n view of t h e above p r o p e r t i e s it i s s u f f i c i e n t , i n o r d e r t o prove t h e e x i s t e n c e of a s o l u t i o n , t o show t h a t
with Co > 0 ;
it may t h e n r e a d i l y b e v e r i f i e d t h a t
(4.32A)
which i m p l i e s (4.3I.A) ( w i t h Co = 2 Min ( a , B ) ) . The i t e r a t i v e s o l u t i o n of (4.29A) w i l l form t h e s u b j e c t of S e c t i o n 4.6 below.
4.4.4
Convergence of the approximate soZutions
W e s h a l l c o n s i d e r only t h e c a s e k = 2 ( s e e Remark 4 . 3 below r e g a r d i n g t h e convergence of t h e approximate for k # 2); s o l u t i o n s as h + 0, we have
Suppose t h a t when h -+ 0 the angles of c h remain Theorem 4.2: bounded below, uniformZy i n , h , by 8 > 0 ; suppose also that condition (4.73) of Chapter 4 , Secteon 4.5.4 i s s a t i s f i e d . We then have
(SEC.
gingham fZuid flozl, i n a 2-D cavity
4)
7 51
where { $ , p 1 i s the soZution of the approximate probZem (4.29A), J, t h a t tke continuous problem (4.19A) , (4.201, and where a2* P ‘pij}l
04
j This i s a v a r i a n t of t h e proof of Theorem 2.3 of Proof: Appendix 1, Section 2.3.2 and t h a t of Theorem 3.5 of Appendix Section 3.4.5, so t h a t w e have:
4,
A p r i o r i e s t i m a t e s f o r {J,,,p,)
I)
I n t h e following, C denotes v a r i o u s c o n s t a n t s . Since i n view of E Wh we can t a k e (0 ,q 1 =(O,O) i n (4.29A);
{O,O)
h
jh(qh)
2
0 Vq,
E
(Vh)3
h
and ( 4 . 3 1 A ) w e t h u s deduce
(4.348)
I n combination with (4.30A) , r e l a t i o n (4.34A) implies
( 4 . 3 6A)
2)
lphl < C
Vh.
Weak convergence
I n view of (4.35A), (4.36A) w e can e x t r a c t a subsequence from ( C ( ~ ~ , p-~ all s) o~ denoted by ({$h,phl)h - such t h a t 1
(4.376)
$h
+
JI*
weakZy i n Ho(Q)
(4.38A)
ph
+
p*
weakZy i n
(L2(Q>)3.
It can be shown, u s i n g a v a r i a n t of t h e proof of Lemma 3.3 of Appendix 4, Section 3.4.5, t h a t
752
(APP. 6 )
Time-dependent variationat inequazities
we proceed as i n t h e proof It remains t o prove t h a t $* = JI; l e t us suppose t h e n of Lemma 3 . 4 of Appendix 4 , S e c t i o n 3 . 4 . 5 : t h a t $ E B(n) j we define {q$,rhql E wh by s o l v i n g ( u s i n g t h e mixed method of Chapter 4 , S e c t i o n 4 ) t h e approximate biharmonic problem
1 {r,$
1h
(4.41A)
,uh}
wfh
E
/nluhl 2 dx
/
-
and v{v,,w,l A2$ rh$ dx s-y 1
n
E
I Iw,~
we have 2dx
/
-
n
A2+ vhdx
n
where
* wh
{{vh,Wh} EVoh
xvh,
1,
problem (4.41A) i s w e l l posed.
(UniqUeZy) determine rhq
on
E
(V,)
Vvh*Vvhdx
dx
vv,
E
;
The f u n c t i o n rh$ being known, we
3
such t h a t {rh$,rhq)
E
Wh
, from
It then follows from Rannacher /2A/ t h a t under t h e assumptions (Pr;l)h s t a t e d i n t h e theorem, we have
*
(4.43A)
rh$
(4.44A)
(rhq)i j
Taking {$,,qh}
strongZy i n Ho(52). 1
$
-
*
axiax
strongty i n L 2 (n)
,
v 1 < i l j s-2.
j
{rh$,rhq)
i n (4.29A) w e deduce from (4.3711)-
(4.40A) and from ( 4 . 4 3 A ) , ( 4 . 4 4 A ) , by usiiig t h e weak tower semicontinuity of convex continuous f u n c t i o n a l s , t h a t
2 From t e density o f B(n) i n Ho(Q) and t h e continuity of J(*) on Ho(Q), (4.45A) a l s o h o l d s E H ~ ( Q ) which proves t h a t
B
v$
0
(SEC.
4)
Bingham f l u i d flotl i n a 2-D cavity
$* = $, p i j = P i j
=-.
a2+ axiax j
753
hence w e have convergence of t h e
e n t i r e family (I$h,ph))h. 3)
Strong convergence
Without going i n t o d e t a i l s , it can be shown, by using a v a r i a n t of t h e proof of Theorem 2.3 of Appendix 1, Section 2.3.2 and of Theorem 3.5 of Appendix 4, S e c t i o n 3.4.5, t h a t (4.46A)
l i m $, = $ strongly i n
Ho(n) 1
h+O
strongly i n L 2 (Q)
(4.478)
h+O
1
J
(4.48A)
(4.49A)
Remark 4.3: I n t h e above we have assumed t h a t k = 2; i n f a c t , similar convergence r e s u l t s would be obtained f o r approximations based on f i n i t e elements of o r d e r k 2 3 but given t h e limited regularity of t h e s o l u t i o n s (JI 4 H4(Q) n H0(Q), h i n general) t h e use of such high-order elements i s not j u s t i f i e d . Regarding t h e case k = 1, it follows from Miyoshi /1A/ t h a t t h e above convergence results also hold i f q ) h i s generated by 3 f a m i l i e s of p a r a l l e l s t r a i g h t l i n e s ; i n f a c t it i s reasonable t o c o n j e c t u r e t h a t t h e e s t i m a t e s of Scholz /2A/, Girault-Raviart /1A/ ( e s t a b l i s h e d f o r t h e mixed finite-element method of Chapter 4, S e c t i o n 4 ) can be g e n e r a l i s e d t o t h e Hermann-Miyoshi scheme ( s e e Miyoshi / l A / ) ; i f t h i s were t h e c a s e , t h e n Theorem 4.2 would hold f o r k = 1. (I)
4.4.5
Approximation using numerical integration
On t h e p r a c t i c a l l e v e l , it i s necessary t o use a numerical integration process t o approximate t h e f u n c t i o n a l J ( - , a ) i n (4.27A), h (4.29A); we s h a l l examine only t h e case k = 1. L e t Ch be t h e set of v e r t i c e s of PP we approximate on Vh t h e i n n e r product h ’
-
(l)
Very r e c e n t r e s u l t s o f L. Reinhart show t h a t t h i s c o n j e c t u r e is c o r r e c t .
754
Time-dependent variationa2 inequaZities
induced by L2(Q), i.e. {Ahyph?
(4.50A)
(Ah’Uh)h
=
7
c
-+
I,
Ahvhdx
(APP. 6)
, by
rn(P)Xh(P)Uh(P)
ch where m(P) is the sum of the areas of the triangles which have In view of (4.50A) we shall actually use P as a common vertex. in (4.29A) the functional Jh( , ) defined by Jh (@h 9 qh) aV
=
2
BV
(ql lh+q22h’ql Ih+q22h)h
+
2 c(2q12h’2q12h)h
(4.51A)
where f is an approximation of f . h Similarly, in place of using Wh defined by (4.268), if k = 1 we shall use Wh defined by
Using the relations in (4.52A), it is easy to express the ( P ) , v P E Ch, explicitly in terms of the values taken by ohJ$; we refer to Begis /1A/ for further details. q.
.
4.5 4.5.1
JIh
Approximation of the time-dependent problem (4.15A)
Semi-discretisation in time
Let k = At(> 0) be a time step; we then approximate (4.15A) by the following implicit scheme (where JIn = $(nk) and in which the -.have been omitted)
(SEC.
Bingham f l u i d f l o w i n a 2-D cavity
4)
1
with Jln knowz, determine qn+'
755
from
Using the above semi-discrete scheme we have thus reduced the solution of (4.15A) to that of a sequence of elliptic variational inequalities, equivalent to the sequence of minimisation problems (for n 2 0 )
(4.548)
where
-
v$"*v6 dx JR The solution of (4.55A) by mixed finite elements will form the subject of Section 4.5.2. -(f(n+l)k),6)
4.5.2 $
0
FUZZ d i s c r e t i s a t i o n of (4.15A)
The notation is that of Section 4.4.2; we approximate JI0 by Jlh0 E Voh, and then the semi-discrete scheme (4.53A) by:
=
n+l n+l with the function JlE E V known, obtain {Jlh , ph I by s o h ing the following minimisatton problem for n = 0, 1..
..
Find {9;+l,ph n+ll e w h such t h a t (4.568)
where (with the notation of Section
4.4.2)
Time-dependent variational inequalities
756
(APP. 6 )
(4.57A)
It can e a s i l y be shown t h a t problem (4.56A) admits one and moreover t h e comments i n S e c t i o n 4.4.5 on only one s o l u t i o n ; t h e numerical i n t e g r a t i o n a l s o hold f o r problem ( 4 . 5 6 ~ . ) Using t h e techniques developed i n Chapter 6, and under s u i t a b l e r e g u l a r i t y assumptions on JI ,f and $, it i s p o s s i b l e t o prove t h e 0 convergence of {$El t o $ as h, k -t 0, provided t h a t t h e assumpts t a t e d i n Theorem 4.2 are s t i l l s a t i s f i e d . ions on
q)h
4.6 4.6.1
S o l u t i o n of ( 4 . 1 9 A ) , methods
(4.54A) by augmented Lagrangian
Synopsis
I n t h i s s e c t i o n we s h a l l show t h a t it i s p o s s i b l e t o s o l v e t h e steady-state problem (4.19A), o r t h e sequence o f problems (4.54A) (obtained by t h e semi-discretisation in time of t h e time-dependent problem (4.15A)), by aueplented Lagrangian methods which are v a r i a n t s We s h a l l of algorithm ( 9 . 6 ) - ( 9 . 8 ) of Chapter 5, S e c t i o n 9. r e s t r i c t our a t t e n t i o n t o t h e case which i s continuous with respect t o t h e space v a r i a b l e s , b u t t h e extension t o approximate problems i n space and t i m e does not p r e s e n t any p a r t i c u l a r d i f f i c u l t i e s ( a p a r t from t h e manipulation of a somewhat cumbersome formalism). 4.6.2
The model problem. Lagrangian
Introduction of an augmented
Problems (4.19A) and (4.54A) l e a d us t o consider t h e minimisa t i o n problem
Bingham f l u i d fZm i n a 2-D cavity
(SEC. 4 )
7 57
1 and y 2 0 ( y = 0 i n t h e s t e a d y - s t a t e case, y = k i f (4.58A) The e s s e n t i a l d i f f i c u l t y i n t h e solo r i g i n a t e s from ( 4 . 5 4 A ) ) . u t i o n of (4.58A) arises from t h e non-differentiubze f u n c t i o n a l
hence, t a k i n g (with q = {ql,q2))
it i s c l e a r t h a t (4.58A) i s equivalent t o
where (with I q ( x ) ( )-=
j($,q)
=
)
)W12dx
n
+
I A o I ~ ~ x +.gJ
2 n
\q\dx
52
-
(f,$)-
It i s t h e n n a t u r a l t o a s s o c i a t e with (4.60A) t h e augmented
7 58
Time-dependent variational i n e q u a l i t i e s
dr
H f ( a ) x (L2(Q))2 x problem ( 4 . 5 8 A ) and on
4.6.3
(L2(f2)I2,
(PP. 6)
t h e n J, i s a s o l u t i o n o f
An augmented-Lagrangian algorithm
I n view of S e c t i o n 4.6.2 it i s n a t u r a l t o s o l v e (4.58A) by seeking saddle p o i n t s of dr on H i ( a ) X ( L 2 ( n ) ) 2 X ( L 2 ( a ) ) 2 ; by analogy with Chapter 2, S e c t i o n 4 , we are l e d t o t h e following (Uzawa t y p e ) algorithm: (4.61 A)
10E ( L (a) ~
then, for n 20, A"
E
given
2
(L (52))
2
known, determine $n,pn,Xn+l using
(4.628)
(4.63A)
( 4 .64A)
1
I
=
P+' = 2
;A + p(2 A2n
+
--
a2@
p(2
ax2
a2P- n -2 p 2 ) . ax 1
It t h e n follows from Fortin-Glowinski /1A, Chapter 3 1 , Glowinski /2A, Chapter 5 / and Theorem 3.1 o f Appendix 2, Section 3 t h a t r e g a r d i n g t h e convergence o f (4.61A)-(4.64A) we have Theorem 4.3:
Suppose t h a t dr admits a saddle point {$,p,A)
on Iit(Q)x ( L ~ ( Q ) ) x~ ( L 2 ( Q I 2 ; (4.6%)
0 < P <2r
(4.66A)
l i m JI" n++-
=
l i m p"
rn
(4.67A)
n++"
then i f
2
strongly i n H,(Q) p
strongly i n (L 2 (Q))2
(SEC.
4)
(4.68A)
Bingham f l u i d f l o w i n a 2-.D cavity
lim n++m
An
=
X weakly i n
759
( L2 ( a ) )2 ,
i s such that {$,p,A} i s a saddle point of 2 Ho(Q) x (L2(Q))2 x ( L 2 ( Q ) ) 2 .
where
dr on
It i s c l e a r t h a t t h e e s s e n t i a l d i f f i c u l t y i n t h e s o l u t i o n of , lies i n view of t h e i n s o l v i n g problem (4.62A) a t each i t e r a t i o n ; s p e c i a l s t r u c t u r e of w?, , we can s o l v e t h i s problem by a blockoverrelaxation method o f t h e type examined i n Cea-Glowinski 1 2 1 ; we r e f e r t o Fortin-Glowinski /1A, Chapter 3 1 , Glowinski /2A, Chapter 5 / and Bourgat-Dumay-Glowinski /1A/ f o r f u r t h e r d e t a i l s on t h e s o l u t i o n of problems of t h e t y p e ( 4 . 6 2 ~ )and on t h e optimal choice of t h e parameter r; t h e optimal choice f o r p appears (on t h e b a s i s of a l a r g e number of numerical experiments) t o l i e very close t o p = r.
( 4 . 5 8 ~ ,) v i a t h e intermediary of algorithm ( 4 . 6 1 A ) - ( 4.64A)
4.6.4
On variants of algorithm ( 4 . 6 1 A ) - ( 4 . 6 4 A )
I f , when s o l v i n g problem (4.62A) by block r e l a x a t i o n , we perform on-ly a s i n g l e i n n e r i t e r a t i o n , we are l e d t o t h e following v a r i a n t of algorithm ( 4 . 6 ~ ) - ( 4 . 6 4 A ): (4.69A)
I$-'
then, for
n 20,
pn,$n,An+l
from
,XO)
EH:(Q)
,A"}
x ( L * ( Q ) ) ~ given
known, successively determine
(4.70A)
(4.71A)
(4.72A)
Determine An+'
using ( 4 . 6 3 )
, ( 4.64A)
.
Time-dependent variational inequalities
760
( APP
. 6)
The convergence r e s u l t s of Theorem 4 . 3 a l s o hold (see FortinGlowinski, Glowinski, l o c . c i t . ) i f i n p l a c e of (4.65A) we have
(4.738)
O < p 1 +Js < 2 r.
It w i l l be seen t h a t t h e s o l u t i o n of problems (4.70A) , (4.7l.A) does not pose any d i f f i c u l t i e s ; i n f a c t problem (4.71A) i s equivalent t o s o l v i n g t h e following problem ( o f l i n e a r biharmonic type ( l ) ) :
which adnits one and only one s o h t i o n . Regarding ( 4 . 7 0 A ) , it can e a s i l y be shown t h a t t h i s problem admits a unique s o l u t i o n , given e x p l i c i t l y by
(4.75A)
p"
I
where Xn = IXy,X;)
X" rr
,
i s defined by
X nI
a2J;"-'
,
(4.76A)
n X1 =
(4.77A)
n a2p-l a2p'l X;=X 2 + r ( T - 2 ) * ax2
and where 1q1
- d x
+ 2r
ax, ax2
if' q = (q1*q2).
Once again it would appear t h a t t h e optimal choice f o r p i s close t o p = r ; t h e optimal choice f o r r , however, i s a more
('1
Relating t o t h e o p e r a t o r
-yA +
(V+T)A
2
Bingham fZuid flow in a 2-D cavity
(SEC. 4 )
761
complicated problem, s i n c e it i s apparent t h a t t h e optimal value f o r r i s a f u n c t i o n of - amongst o t h e r t h i n g s - v and g. To conclude t h i s s e c t i o n we should mention t h e v a r i a n t (due t o Gabay / l A / ) of a l g o r i i p (4.69A)-(4.72A) i n which, with (4.69A) , i s determined using (4.70A) unchanged, An
xn+If2
(4.78A)
=
A;
&E! - p;),
+ p ( 2 ax ax
1
1
2
and t h e n $n i s determined u s i n g
(4.80A)
n+1/2 in and f i n a l l An+1 i s obtained from (4.631, (4.64A) with h p l a c e of A We remark t h a t i n t h e above algorithm t h e v a r i a b l e s t h i s i s not t h e case i n algorithm L + and q play a symmetric r o l e ; (4.69A)-(4.72A) in which t h e o r d e r chosen i s governed by e l l i p t i c i t y c o n s i d e r a t i o n s ( f o r t h e d e t a i l s of which we r e f e r t o FortinGlowinski /1A, Chapter 3 / ) .
K
.
S e c t i o n 4.7 below p r e s e n t s t h e results of numerical experiments i n which t h e above algorithms ( a c t u a l l y t h e i r finite-dimensional v a r i a n t s ) have been a p p l i e d t o t h e s o l u t i o n of problems ( 4 . 1 5 A ) and (4.19A).
4.7
Numerical experiments
I n t h i s s e c t i o n w e s h a l l d e s c r i b e c e r t a i n numerical results of Begis / l A / , obtained by t h e methods described i n t h e previous t h e above r e f e r e n c e also g i v e s various comments and sections; o t h e r numerical experiments.
4.7.1
Formulation of the test probZem
Let = ]O,lCxlO,l[ flows i n 0 , f o r which
; we consider a family of Bingham f l u i d
(APP. 6 )
Time-dependent variational inequalities
762
(4.81A)
v=l ,
(4.828)
f=O
, = z = {z, * z 2 ] with z2 =
(4.838)
Zl(O,X2) = Zl(l,X2) = Z,(X1,1) =
0
0 Yx, E l 0 , l C
o
wx,
,
on E
r,
10,lC
,
z1(x1,0)= 1 vx, E 1 0 , l C .
These a r e t h u s problems of t h e sZiding wall t y p e ; that
z
E
r
z-n d r = 0, b u t a l s o t h a t
H S ( r ) x H S ( r ) with
4.7.2
s
1
< 2
-
€ 9
z f!H1’2(r)
xH1’2(I’)
we remark ( w e have
V € > O 1.
Numerical r e s u l t s
We r e f e r t o B6gis /1A/ f o r d e t a i l s of t h e a c t u a l implementation
of t h e approximation and i t e r a t i v e s o l u t i o n methods described i n t h e previous s e c t i o n s .
For various v a l u e s of g, Figures 4.1Steady-state cases: 4.5 show t h e r i g i d (hatched) and v i s c o - p l a s t i c ( b l a n k ) r e g i o n s , t o g e t h e r with t h e s t r e a m l i n e s . The growth of t h e r i g i d region with i n c r e a s i n g g can be observed. Time-dependent c a s e s : For various values of g , w e have examined t h e case i n which t h e medium f i l l i n g t h e c a v i t y n i s i n i t i a l l y a t rest (hence u(x,O) = 0 x $(x,O)= 0 V x ~ i l) * and i s
v
s e t i n motion by t h e s l i d i n g ( d e f i n e d by (4.83A)) of t h e lower w a l l of s2. When steady conditions have more o r less been a t t ained, we a r r e s t t h e motion of t h e lower w a l l i n o r d e r t o examine t h e r e t u r n t o t h e corresponding steady s t a t e , which i s u = 0 on
n
+$=o
onn.
For various v a l u e s of t h e behaviour of
Q
( i n c l u d i n g g = 0 ) , Figure 4.6 shows
(SEC. 4)
Bingham f l u i d f l o w i n a 2-D cavity
763
w e observe t h a t f o r g > 0 t h e r i g i d s t a t e i s attained a f t e r a t h i s i s i n agreement f i n i t e time which d e c r e a s e s as g i n c r e a s e s ; w i t h mechanical i n t u i t i o n .
F i g . 4.1 ( g = 0 . 5 )
Time-dependent variational inequalities
Fig. 4.2 (g = 1)
F i g . 4 .3 (g = 2.5)
(UP. 6)
(SEC.
4)
Bingham f l u i d f l o w i n a 2-D cavity
F i g . 4.4 (g = 5 )
Fig. 4 . 5 (g =
10)
765
766
Time-dependent variationaZ inequa Zities
II
0
t4
(UP. 6 )
c,
BIBLIOGRAPHY OF THE APPENDICES AXELSSON, 0. /1A/ A class of iterative methods for finite element equations. Comp. Meth. A p p l . Mech. E n g . , 9 (1976), 2, pp. 123-138. BAIOCCHI, C. /1A/ Sur un problsme 8. frontisre libre traduisant le filtrage de liquides travers des milieux poreux. Comptes Rendus Acad. Sc. Paris, 273A, (1971), pp. 1215-1217. /2A/ Free boundary problems in the theory of fluid flow through porous media. Proc. of the I n t . Congress of Math. (Vancouver 1974), 2, 1975, pp. 237-243. /3A/ Studio di un problema quazi-variazionale connesso a problemi di frontiera libera. Boll. U.M. I . 11, (1975), 4 (suppl. fasc. 3) pp. 589-613. BAIOCCHI, C., BREZZI, F., COMINCIOLI, V. /lA/ Free boundary problems in fluid flow through porous media. 2nd I n t . Symp. Finite Element Methods i n Flow Problems, Santa Margharita, 1976, pp. 407-420.
BAIOCCHI, c., CAPELO, A. /u/ Dissequazioni G'ariazionali e &uasiApplicazioni a problemi d i frontiera libera. variazionali Quaderni 4 e 7 dell' Unione Mathematica Italiana, Pitagor Editrice , Bologna 1978. BAIOCCHI, C., COMINCIOLI, V., VAGENES, E., POZZI, G.A. /1A/ Fluid flow through porous media; a new theoretical and numerical approach. Publicazioni 69,L.A.N. - C.N.R., Pavia (1974). BAIOCCHI, C., POZZI, G.A. /1A/ Error estimates and free-boundary convergence for a finite-difference discretisation of a parabolic variational inequality. Rev. Franc. Autom. Info. Rech. Gp. , Anal. Nwn. , 11, (1977), 4, pp. 315-340.
.
BARTELS, R., DANIEL, J . W . /lA/ A conjugate-gradient approach to nonlinear boundary-value problems in irregular regions; in
Conference on the Nwne,nicaZ Solution of Diffepential Equations , Dwzdee, 1973, G.A. Watson (ed.), Lecture Notes in Math., 363, Springer-Verlag, Berlin, 1974.
BEGIS, D. /1A/ Analyse Num6rique de 1'6coulement d'un fluide viscoplastique de Bingham par une m6thode de Lagrangien augment6. LABORIA Report 355, 1979. BENSOUSSAN, A., LIONS, J.L. /1A/ Nouvelle formulation de problsmes de contr6le impulsionnel et applications. Comp. Rend. Acad. Sc. P a r i s , 276A (19731,pp. 1189-1192. /2A/ Nouvelles mithodes en contr6le impulsionnel. A p p l . Math. & O p t . , 1 , (1975), 4, pp. 289-312. /3A/ Optimal impulse and continuous control: method of nonlinear quasi-variational inequalities. Trudy Mat. Inst. Steklov, 134 (1975),A.M.S. transl. pp. 7-25. /4A/ Contrale impulsionnel et ingquat-
768
Appendix ions quasi-variationnelles d'6volution.
S c i . P d s , 276A, (1973), pp. 1279-1284.
Compt. Rend. Acad.
BERGER, A.E. /1A/ The truncation method for the solution of a class of variational inequalities, Rev. Franc. A u t a . I n f . Rech. @. , Anal. N w ~ ., 10 (1976)3, pp. 29-42. BERGER, A.E., FALK, R.S. /1A/ An error estimate for the truncation method for the solution of parabolic obstacle variational inequalities. Math. of Comp. , 31 (1977), pp. 619-628. BOGOMOLNII, A., ESKIN, G., ZUCHOWISKII, S. /1A/ Numerical solution of the stamp problem. Comp. Meth. AppZ. Mech. Eng. , 15 (1978) 2, pp. 149-159. BOURGAT, J.F., DUMAY , J.M. , GLOWINSKI, R. /1A/ Large displacement calculations of flexible pipe lines by finite elements and nonlinear p r o g r d n g methods. SIAM J. Sc. and Stat. Computi n g , 1 , (1980), 1, pp. 34-81. BRENT, R. /1A/ Algorithms for ndnimisation without derivatives. Prentice Hall, Englewood Cliffs, N.J. , 1973. BRFZIS, H. /lA/ A new method in the study of subsonic flows. In Partial Differential Equations and Related Topics, J. Goldstein ( e d . ) , Lecture Notes in Math. , 446, Springer-Verlag, Berlin, 1975, pp. 50-60. BREZIS, H., STAMPACCHIA, G. /LA/ The hodograph method in fluid dynamics in the light of variational inequalities. Arch. Rat. Mech. Anal. 61, (19761, pp. 1-18. /2A/ Remarks on some fourth-order variational inequalities, Ann. Scu. Norm. Sup. Pisa, 4, (1977), 4, pp. 363-371. BREZZI, F., HAGER, W.W., RAVIART, P.A. /lA/ Error estimate for the finite-element solution of variational inequalities. (I) Primal theory; Nmerische Math. , 18, (1977), pp. 431-443. / 2 A / Error estimates for the finite element solution of variational inequalities. (11)Mixed Methods, Numerische Math. , 31 (1978), pp. 1-16. BREZZI, F., JOHNSON, C., MERCIER, B. /LA/ Analysis of a mixed finite-element method for elasto-plastic plates. Math. of Con@. , 31 (1977)140, pp. 809-817. BRISTEAU, M.O. /lA/ Application de l a msthode des dlgments f i n i s tr l a rSsolution d 'indquations VariationneZles d 'dvolution de type Bingham. Third-wcle Thesis, Universit6 Pierre et Marie Cufie, Paris, 1975. BRTSTEAU, M.O., GLOWINSKI, R. /LA/ Finite-element analysis of the unsteady flow of a viscous-plastic fluid in a cylindrical pipe; in Finite Element Methods i n F l o w Problems, J.T. Oden, O.C. Zienkiewicz, R.H. Gallagher, C. Taylor (eds.), Univ. of Alabama Press, Huntsville, Alabama, 1974, pp. 471-488.
Bibliography
.
.
769
.
BRISTEAU, M.0 , GLOWINSKI, R , PERIAUX, J , PERRIER , P . , PIRONNEAU, 0. /lA/ On the numerical solution of nonlinear problems in Fluid Dynamics by least-squares and finite-element methods. (I) Least-square formulations and conjugate-gradient solution of the continuous problems, Comp. Meth. AppZ. Mech. mg., 17/18 (1979), pp. 619-657. /2A/ Transonic flow simulations by finite elements and least-square methods; in Proc. of the Third C m f . on Finite Ezements i n Flow PPoblems, Calgary, Canada, June 1980. BRISTEAU, M.0., GLOWINSKI, R ., PEBIAUX, J . , PERRIER, P ., PIRONNEAU, O., POIRIER, G. /lA/ Application of Optimal Control and Finite Element Methods to the Calculation of Transonic Flows and Incompressible Viscous Flows; in Numerical Methods i n Applied Fluid Dynamics , B. Hunt (ed.) , Acad. Press, London, 1980 (and also LABORIA Report 294 (1978)). CAFFARELLI, L.A., FRIEDMAN, A., TORELLI, A. /lA/The free boundary for a fourth-order variational inequality. Pub. 227, Lub. d i Anal. N w n . del C.N.R. , Pavia, 1979. CAPRIZ, G. /lA/ Variational techniques for the analysis of a lubrication problem; in Mathematical Aspects of Finite Element Methods, I. Galligani, E. Magenes (Eds.), Lecture Notes in Math. , 606, Springer-Verlag, Berlin, 1977, pp 47-55. CHAN, T.F., GLOWINSKI, R. /1A/ Numerical methods for solving some mildly nonlinear elliptic partial differential equations. Stanford Report STAN-CS-674, Comp. Sciences Dept . , Stanford University, 1978. /2A/ Numerical methods for a class of mildly nonlinear elliptic equations. Atos do Decime Primeiro Coloquio BrasiZiero de Matematica, Vol. I, IMPA, Rio de Janeiro, 1978, pp. 279-318. CIARLET, P.G. /1A/ The f i n i t e element method for e l l i p t i c problems, North-Holland, Amsterdam, 1978.
.
CIARLET, P.G. RAVIART, P.A. /1A/ Maximum principle and uniform convergence for the finite element method, Comp. Meth. A p p l . Mech. Eng. , 2, (19731, pp. 17-31. CIAVALDINI, J.F., POGU, M., TOURNEMINE, G. /1A/ Une m6thode variationnelle non lin6aire pour l'6tude dans le plan physique d'6coulements compressibles subcritiques en atmosphCre infinie. Compt. Rend. Acad. Sc. Paris, 281 A, (1975), pp. 1105-1108. COMINCIOLI, V. /lA/ On some oblique derivative problems arising in the fluid flow in porous media. A theoretical and numerical approach. Applied Math. and @timisation (1975), pp. 313-336.
770
Appendix
COMINCIOLI, V. , TORELLI, A. /1A/ A new numerical approach t o a nonsteady f i l t r a t i o n problem, Cazcozo, 1 6 , (1979), 1, pp. 93-124.
CONCUS, P . , GOLUB, G.H., O'LEARY, D.P. /1A/ Numerical s o l u t i o n o f nonlinear p a r t i a l d i f f e r e n t i a l equations by a generalised conjugate-gradient method. Computing, 1 9 , (1977) , pp. 321-340. CORTEY-DUMONT, P. /1A/ Contribution 21 l ' 6 t u d e de l'approximation p a r l a mCthode des 6lCments f i n i s d ' i d q u a t i o n s quasi-variatCompt. Rend. Acad. Sc. Paris, ionnelles elliptiques 2S8A (1979) , p . 141-143.
.
COTTLE, R.W. / l A / Computational experience with l a r g e - s c a l e l i n e a r complementarity problems; i n Fixed Points: AZgor ithms and AppZications, S . Karamardian ( e d . ) , Acad. P r e s s , New-York , 1977 , pp. 281-313. /2A/ Numerical methods for complementarityproblems i n engineering and a p p l i e d science; i n Computing Methods i n AppZied Sciences and Engineering, 1977, 1, R . Glowinski, J . L . Lions ( e d s . ) , Lecture Notes i n Math., Vol. 704, Springer-Verlag, B e r l i n , 1979, pp. 37-52.
COTTLE, R.W., SACHER, R.S. / 1 A j On t h e s o l u t i o n o f l a r g e , s t r u c t u r e d l i n e a r complementarity problems: t h e t r i d i a g o n a l c a s e , AppZied Math. Optimiz. , 3 , (1977) 4, pp. 321-340. COTTLE, R.W., GOLUB, G.H., SACHER, R.S. /1A/ On t h e s o l u t i o n of l a r g e , s t r u c t u r e d l i n e a r complementarity problems: t h e block p a r t i t i o n e d case. Apptied Math. Optimiz. 4 , (1978) , 4, pp. 347-364.
CRYER, C.W., DEMPSTER, M.A.H. /1A/ Equivalence of l i n e a r complementarity problems and l i n e a r programs i n v e c t o r l a t t i c e H i l b e r t spaces, SIAM J . Control and Optimiz. , 18 (1980) 1, PP. 76-90. CXER, C.W., FETTER, H. / l A / The numerical s o l u t i o n of axi-symme t r i c free-boundary porous-flow well problems u s i n g v a r i a t i o n a l i n e q u a l i t i e s . M. R. C. TechnicaZ S m a r y Report 1761, U n i v e r s i t y of Wisconsin , Madison, 1977. DOUGLAS; J . , DUPONT, T. /1A/ Preconditioned conjugate g r a d i e n t i t e r a t i o n a p p l i e d t o Galerkin methods f o r mildly nonlinear D i r i c h l e t problem$; i n Sparse Matrix Computations , J . R . Bunch, D . J . Rose ( e d s . ) , Acad. P r e s s , New-York, 1976, pp.
333-348. /2A/ I n t e r i o r p e n a l t y procedures f o r e l l i p t i c and p a r a b o l i c Galerkin methods; i n Computing Methods i n AppZied Sciences , R. Glowinski , J .L. Lions ( e d s . ) , Lecture Notes i n Physics, Vol. 58, Springer-Verlag, B e r l i n , 1976, pp. 207-216.
Bibliography
771
DOUGLAS, J., RACHFORD, H.H. /lA/On the numerical solution of the heat conduction problem in 2 and 3 space variables. Trans. Amer. Math. Soc. , 82 (19561, pp. 421-439. ESKIN, G.I. /1A/ About a variational-difference method for solution of elliptic pseudo-differential equations. Uspeki Mat. Nauk. , 28, (19731, pp. 255-256. FALK, R.S. /1A/ Approximation of an elliptic boundary value problem with unilateral constraints. Rev. Franc. A u t a . Rech. Op. , Anat. N m . , R2, (1975), pp. 5-12. FALK, R.S., MERCIER, B. /U/Error estimates f o r elasto-plastic problems. Rev. Fr. Auto. Inf. Rech. Up., Anal. k. , 11,(1977), PP. 135-144. FORTIN, M., GLOWINSKI, R. /1A/ RDsoZution numgrique de probZ2mes a m limites p a r des m&thodes de Lagrangien augment&. Book in preparation. /2A/ Mhthodes de d6 compos ition-coordination par lagrangien augment&. Chapter 3 of R&solution num-
&Pique de p r o b l h e s a m limites p a r des mgthodes de lagrangi e n augment&, M. Fortin, R. Glowinski (eds.) (to appear). GABAY, D. /1A/ Rdsolution et dgcomposition des indquations variationnelles par des mgthodes de multiplicateurs; in ThOse d’Etat, Universit6 Pierre et Marie Curie, Paris, 1979. GIRAULT, V.,RAVIART, P.A. /lA/ An Analysis of a Mixed Finite Element Method for the Navier-Stokes Equations. Nwnerische Math. , 33, (19791, pp. 235-271. GLOWINSKI, R. /1A/ Introduction t o the approximation of variational i n e q u a l i t i e s . Report 76006, Laboratoire d‘ Analyse Numdrique , Universitg Pierre et Marie Curie, 1976. /2A/ Numerical Methods f o r Nonlinear Variational Problems. Lecture Notes, Tata Institute, Bombay, and SpringerVerlag, Berlin, 1980. /3A/ Finite elements and variational inequalities. Chapter 12 of The Mathematics of Finite Elements and A p p l i c a t i o n s , 111, MFELAP 1978, J.R. Whiteman (ed.), Acad. Press, London, 1979, pp. 135-171. /4A/ Sur l’approximation d’une ingquation variationnelle elliptique de type Bingham. Rev. Franc. Autom. I n f . Rech, Op. , Anal. N u m . , 10 (1976), pp. 13-30. GLOWINSKI, R., MARINI, D., VIDRASCU, M. /l/ Finite-element approximations and iterative solution of a fourth-order variational inequality (to appear). GLOWINSKI, R. , MARRACCO, A. /lA/ Numerical solution of two-dimensional magnetostatic problems by augmented Lagrangian methods. Cow. Meth. A p p l . Mech. Eng. , 1 2 (1977), pp. 33-46. /2A/ Chapter 5 of Rgsotution Nwngrique de Prob12mes a m Limites p a r des Mgthodes de Lagrangiens Augment&, M. Fortin, R. Glowinski (eds.) (to appear).
772
Appendix
GLOWINSKI, R., PIRONNEAU, 0. /1A/ Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Review, 21 (1979)2, pp. 167-212. GOURSAT, M., MAAREK, G. /1A/ Nouvelle approche des probl8mes de gestion de stocks. Comparaison avec les mgthodes classiques. LABORIA Report 148, March 1976. HANOUZET, B., JOLY, J.L. /1A/ Convergence uniforme des it6r6s dh finissant la solution d 1 ingquations quasi-variationnelles et application B la regularitb, N m . Funct. Anal. and G p t i m i z . 1, (19791, 4, pp. 399-414. HASLINGER, J. /1A/ Finite-element analysis for unilateral problems with obstacles on the boundary. Aplikace Matematiky , 22, (1977) 3, pp. 180-188. /2A/ On numerical solution of a variational inequality of the 4th order by finite element method. Aplikace Matematiky, 23, (1978) 5, PP. 334-345.
HLAVACEK, I. /lA/ Dual finite-element analysis for unilateral boundary value problems. Aplikace Matematiky , 22, (1977), pp. 14-51. /2A/ Dual finite-element analysis for elliptic problems with obstacles on the boundary. Aplikace Matematiky , 22, (1977), pp. 244-255. /3A/ Dual finite-element analysis for semi-coercive unilateral boundary value problems. Aplikace Matematiky , 23, (1978), pp. 52-71. HLAVACEK, I., LOVISEK, J. /1A/ A finite-element analysis for the Signorhi problem in plane elastostatics. Aplikace Matematiky, 22, (19771,pp. 215-228. HOFWNDER, L. , LIONS, J.L. /1A/ S u r la compl6tion par rapport 8. une intggrale de Dirichlet. Math. Scand. , 4 (1956), pp.
259-270. HUNT, B. (ed.) /1A/ Numerical Methods i n Applied FZuid Dyxurrics. Acad. Press, London, 1980. HUNT, C., NASSIF, N.R. /lA/ On a variational inequality and its application in the theory of semi-conductors. SIAM J . N m . Anal. , 12, (1975), 6, pp. 938-950. JAMESON, A. /lA/ Transonic flow calculations; in Numerical Methods in .Fluid Dynamics, H..J Wirz , J.J. Smolderen (eds ) , McGraw-Hill , New-York , 1978, pp. 1-87.
.
.
JOHNSON, C. /lA/ A n elasto-plastic contact problem. Rev. Franc. Aut. I n f . Rech. Gp. , Anal. Num. , 12, (19781, 1, pp. 59-74. /2A/ A convergence estimate for an approximation of a parabolic variational inequality. SIAM J . Nwn. Anal. , 13 (19%) , 4, pp. 599-606.
Bib tiography
773
/3A/ A mixed finite-element method for plasticity with hardening. STAM J. N w n . Anal. , 14 (1977), 4, pp. 575-583. /4A/ A finite-element method for consolidation of clay. Comp. Meth. AppZ. Mech. Eng. , 16, (19781, 2, pp.
177-184. KAWOHL, B. /1A/ On a mixed Signorini problem. N w n . E'unct. Anal. and Optimiz. , 1, (1979), 6, pp. 633-645. KIKUCHI, N. , ODEN, J.T. /lA/ Contact problems i n Elasticity. TICOM Report 79-8, Univ. of Texas at Austin, July 1979.
LABORDE, P. /lA/ On visco-plasticity with hardening. N m . Fwrc. Anal. and Optimiz. , 1, (1979), 3, pp. 315-339. UETSCH, T.H. /1A/ A uniqueness theorem for elliptic Q.V.I., J. Functional Analysis, 18, (1975), pp. 286-288. LANDAU, L., LIFCHITZ, E. /lA/ Mcanique des Fluides. Mir, Moscow, 1953 LE TALLEC, P . /lA/ Simulation nwndrique d 'kcoulements visquem incompressibtes p a r des mdthodes d 'dldments f i n i s mixtes. Third-Cycle thesis, Universit6 Pierre et Marie Curie, 1978. LIEUTAUD, J. /1A/ Approximation d'opdrateurs p a r des msthodes de d&composition. These d'Etat , Universit6 Paris VI , 1968. LIONS, P.L., MERCIER, B. bA/ Splitting algorithms for the sum of two nonlinear operators. SIAM J . Nwn. Analysis , 16, (1979), 6, PP. 964-979. LOTSTEDT, P. /1A/ Analysis of some difficulties encountered in the simulation of mechanical systems with constraints. Dpt. of Num. Anal. and Comp. Sci. , Royal Inst. of Tech. , Stockholm, TRITA-NA-7914 , 1979. /2A/ On a penalty function method for the simulation of mechanical systems subject to constraints. Dpt. of N w n . Anal. and Comp. S c i . , Royal Inst. of Tech. , Stockholm, TRITA-NA-7919, 1979.
-
/3A/ A numerical method for the simulation of mechanical systems with unilateral constraints. Dpt. of Nwn. Anal. and Comp. Sci. RoyaZ Inst. of Tech. , Stockholm, TRITA-NA-7920, 1979. /4A/ Interactive simulation of the progressive collapse of a building, revisited. D p t . of N w n . Anal. and Comp. S c i . , Royal Inst. of Tech. , Stockholm, TRITA-NA-7921,
-
1979
MARROCCO, A. b.A/ Expdriences numeriques sur des problemes non lindaires rCsolus par Cl6ments finis et lagrangien augmentb. LABORIA Report 309, May 1978.
774
Appendix
MENALDI, J.L. /1/ Sur le contrale impulsionnel et 1'I.Q.V. associge. Compt. Rend. Acad. S&. Paris , 284A (1977), pp. 1499-1502. MERCIER, B. /lA/ SUP Za Thdorie e t Z'AnaZyse Nwndrique de ProbZBmes de PZasticitg. Thkse d'Etat, Universitd Pierre et Marie Curie, Paris, 1977. /2A/ Computation of the limit load and elasto-plastic bending of thin plates. I n t . J. N w n . Math. Eng. , 14, (1979), pp. 235-250. MIYOSHI, T. /lA/ A finite-element method for the solution of fourth-order partial differential equations. Kunamoto J . S c i . (Math.), 9, (19731, pp. 87-116. MOSCO, U. /lA/ Error estimates for some variational inequalities; in MathematicaZ Aspects of Finite Element Methods, I. Galligani, E. Magenes (eds.) , Lecture Notes in Math. , 606, Springer-Verlag, Berlin, 1977, pp. 224-236. MOSCO, U., SCARPINI, F. /lA/ Complementarity systems and approximation of variational inequalities. Rev. Franc. Autom. I n f . Rech. Op., Anal. Nwn. , R-1 (1975), pp. 83-104. NATTERER, F. /1A/ Optimale L2-Konvergenz finiten Elemente bei Variationsungleichungen. Bonn Math. Schr. , 89, (1976), pp. 1-12.
NITSCHE , J. / l ~ /Lm-convergence of finite-element approximation; in tdathematicaz Aspects o f Finite Element Approximations , I. Galligani, E. Magenes (eds.) , Lecture Notes in Math. , 606, Springer-Verlag, 1977, pp. 261-274. O'LEARY , D.P. /1A/ A generalised conjugate-gradient algorithm for solving a class of quadratic programming problems. Stanford Report, Comp. Science Dept., STAN-CA-77-638, Dec. 1977. O'LEARY, D.P.? YANG, W.H. /1A/ Elasto-plastic torsion by quadratic programming. Comp. Meth. AppZ. Mech. Eng. , 16, (1978), 3, pp. 361-368. OPIAL, 2 . /lA/ Weak convergence of the successive approximations for non-expansive mappings in Banach spaces. Buzz. A.M.S. , 73, (19671,PP. 591-597. PEACEMAN, D.H., RACHFORD, H.h. /lA/ The numerical solution of parabolic elliptic differential equations. J . SOC. Ind. AppZ. Math. , 3, (1955), pp. 28-41. PERIAUX, J. /lA/ RdsoZution de queZques problames m n Zindaires en aSrodynamique p a r des mdthodes d'dZhents f i n i s e t de moindres carrgs fonctionnezs. Third-C'ycle thesis , Univers i t 6 Pierre et Marie Curie, 1979. POLYAK, B.T. /1A/ The conjugate-gradient method in extremal problems. U.S.S.R. Comp. Math. and Math. Phys. , 9 (1969), pp. 94-112.
Bib liography
775
POWELL, M.J.D. /lA/ Restart procedure for the conjugate gradient method. Math. P r o g r m i n g , 12, (1977), pp. 148-162. PUEL, J.P. /lA/ Existence, comportement B l'infini et stabilit6 dans certains problemes quasilingaires elliptiques et paraboliques d'ordre 2. Annali Scuola Normale Superiore , Pisa , CZ. d i Scienze, Serie I V Y 3 , (1976), 1, pp. 89-119. RANNACHER, R. /1A/ Punktweise Konvergenz der Methode der finiten Elemente heim Platten problem. Manuscripta Math., 19, (1976), pp. 401-416. /2A/ On nonconforming and mixed finite element methods for plate bending problems. The linear case. Rev. Franc. Autom. I n f . Rech. Op. , Anal. Nwn. , 1 3 , (1979), 4, pp.
369-387. ROUX, J. /lA/ R6solktion num6rique d ' u n probleme d'6coulement subsonique de fluide compressible. Rev. Franc. Autom. I n f . Rech. Op., Anal. N w n . 11 (1977), pp. 197-208. SAGUEZ, Ch. /lA/ ContrBZe de SystBmes h FrontiBre Libre. T h h e d'Etat, Universitg Technologique de Compiegne, 1980. SAMLJELSSON, A., FRdIER, M. /1A/ Finite elements in plasticity. A variational inequality approach. Chapter 9 of The Mathematics of Finite Elements and Applications, 111,MAFELAP 1978, J.R. Whiteman (ed.), Acad. Press, London, 1979, pp. 105-115. SCARPINI, F. /lA/ Some nonlinear complementarity systems algorithms and applications to unilateral boundary value problems. Fasc. 6, I s t i t u t o Matematico G. Castelnuovo , Universita degli studi di Roma, 1977-78. SCARPINI, F., VIVALDI, M.A. /1A/ Error estimates for the approximation of some unilateral problems. Rev. Franc. Autom. I f . Rech. Op. , Anal. Nwn. , 11 (1977) 2, pp. 197-208. SCHOLZ, R. /lA/ Approximation von Sattelpunkten mit finiten
Elementen. Math. Schriften, 89, (1976), pp. 53-66. /2A/ A mixed method for 4th order problems using linear finite elements. Rev. Franc. Autom. I n f . Rech., Anal. N w n . , 12, (19781,1, pp. 85-90. /3A/ Interior error estimates for a mixed finite element method. N m . Funct. Analysis Optimiz. , 1, (1979), 4, pp. 415-429.
STAMPACCHIA, G. /lAf Equations Elliptiques oh Second Ordre tt Coefficients Discontinus. Presse de l'Universit6-de Montr6d , 1965. /2A/ Le problhe de Dirichlet pour les 6quations elliptiques du second ordre B coefficients discontinus. Ann. I n s t . Fourier, GrenobZe, 15, (1965), pp. 189-258.
776
Appendix
TARTAR, L. /lA/Ingquations Quasi Variationnelles Abstraites. Compt. Rend. Acad. Sc. Paris, 278A, (1974), pp. 1193-1196. TORELLI, A. /1A/ Some regularity results for a family of variational inequalities. Ann. Scu. Norm. Sup. Pisa, to appear. VIDRASCU, M. /1A/ Sur la rksolution nwnkrique du probZBrne de D i p ichZet pour Z 'opkrateur biharmonique. Third-cycle thesis, Universitk Pierre et Marie Curie, Paris, 1978. WHEELER, M.F. /U/ An elliptic collocation finite-element method with interior penalties. SIAM J. N w n . A m Z . , 15, (19781, 1, pp. 152-161. WILDE, D.J. , BEIGHTLER, C.S. /1A/ Foundations of Optidsation. Prentice Hall, Englewood Cliffs, N.J., 1967. YOUNG, D.M. /1A/ I t e r a t i v e solution of large linear systems. Academic Press, New York, 1971.