Vestibular System Part 2: Psychophysics, Applied Aspects and General Interpretations By A . J . Benson • N . Bischof • W . E . Collins • A . R . Fregly • A . Graybiel F . E . Guedry • W . H . Johnson • L.B.W. Jongkees • H . H . Kornhuber • R. Mayne D . L . Meyer • E . Peitersen • W. Precht • K . P . Schaefer
Edited by
H . H . Kornhuber
With 198 Figure
S p r i n g e r - V e r l a g B e r l i n • H e i d e l b e r g • N e w Y o r k 1974
I S B N 3-540-06864-3
Springer-Verlag Berlin •Heidelberg • N e w Y o r k
I S B N 0-387-06864-3
Springer-Verlag N e w Y o r k •Heidelberg • Berlin
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher, (c) by Springer-Verlag, Berlin • Heidelberg 1974. Printed in Germany. Library of Congress Cataloging in Publication Data. Kornhuber, Hans. Vestibular System. (Handbook of Sensory Physiology, v. 6/1-2). Contents: pt. 1. Basic Mechanisms — pt. 2. Psychophysics, Applied Aspects and General Interpretations. 1. Vestibular Apparatus. I. Bagger-Sjöbäck. II. Title. III. Series. [ D N L M : 1. Vestibular Apparatus. 2. Vestibular Nuclei. WL700 H236 v. 6] QP351.H34 vol. 6/1-2 [QP471] 591.1'82'08s [591.1*82]. 74-14870. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting and printing: Roth sel. Ww., München; Binding: Brühlsche Universit&tsdruckerei, Gießen
Preface The function of the vestibular system is not as obvious as those of vision, hearing, touch or smell. Vestibular dysfunction, however, is clearly apparent where lesions are present. It is probably for this reason that the vestibular sense was not discovered until the nineteenth century and that clinicians have continued to play a major role in basic vestibular research right up to the present. The relationship between basic and clinical research is certainly stronger in the vestibular field than in that of tactile sensation, for instance, as testified by the work of clinicians as M E N I E R E ,
BREUER,
B Ä R Ä N Y , D E K L E I J N and F R E N Z E L .
In
this
respect the situation is similar in vestibular physiology and in endocrinology, and for the same reason. This second part of the vestibular volume of the Handbook of Sensory Physiology will be of interest to neurologists, otologists, neurosurgeons, ophthalmologists and physiotherapists on the one hand, and psychologists, physiologists, engineers and aviation specialists on the other. For a full understanding of Part 2, it is necessary to have assimilated the basic anatomy, physiology, and biochemistry of Part 1. Each sensory system has some motor aspects. Nociceptors, for instance, have a special relation to the spinal flexion reflex and to flexion spasticity after spinal cord lesions. Tactile afférents are strongly engaged in the regulation of voluntary finger, hand, lip, and tongue movements. However, there is no other sensory system where the motor aspects are as important as in the vestibular. The cerebellum has evolved out of the vestibular system ; the cerebellar nuclei are analogous (in function and in their connections to the cerebellar cortex) to the vestibular nuclei. The study of the role of vestibular mechanisms in body posture and eye movements has made a substantial contribution to the theory of the motor system. The simpler organization of active eye movements as compared to limb movements has facilitated understanding. This book takes these facts into account. It is hoped that this volume may represent a small step toward an understanding of this part of Nature's secrets and at the same time facilitate clinical knowledge about the vestibular system.
U l m , June 1974
HANS HELMUT KORNHUBER
L i s t of C o n t r i b u t o r s B E N S O N , A . J . , Neurobiology Section, R . A . F . Institute of Aviation Medicne, Farnborough, Hampshire, England B I S C H O F , N . , California Institute of Technolog}', Division of Biology, Pasadeia, Calif. 91109, U S A C O L L I N S , W . E . , Psychology Laboratory, Civil Aeromedicai Institute, P . O . l o x 25082, Oklahoma City, Oklahoma 73125, U S A F R E G L Y , A . R . , Naval Education and Training Support, Code N 213, Building 45, Naval Air Station, Pensacola, Florida 32508, U S A G R A Y B I E L , A . , Naval Aerospace Medical Center, Pensacola, Florida 32512, USA G U E D R Y , F . E . , Naval Aerospace Medical Center, Pensacola, Florida 32512, USA J O H N S O N , W . H . , Dept. of Otolaryngology and Physiology, University of Toronto, Toronto, Canada J O N G K E E S , L . B . W . , Academisch Ziekenhuis bij de Universiteit van Amsterdam, Keel-, neus-en oorheelkundige kliniek, Amsterdam-Oud west, Eerste Helmerstraat 104, Holland K O R N H U B E R , H . H . , Abt. f. Neurologie der Universität, D-7900 U l m , Steinhövelstraße 9, Germany M A Y N E , R., Arizona State University, Faculty of Electrical Engineering, Tempe, Arizona 85281, U S A M E Y E R , D . L . , Universitäts-Nervenklinik D-3400 Göttingen, Germany
v. Siebold-Str. 5,
P E I T E R S E N , E . , University E . N . T . Clinic, Rigshospitalet, Blegdamsvej, DK-2100 Copenhagen 0, Denmark P R E C H T , W . , Max-Planck-Institut für Hirnforschung, Neurobiologische A b t . D-6000 Frankfurt-Niederrad, Deutschordenstraße 40, Germany S C H A E F E R , K . P . , Universitäts-Nervenklinik, D-3400 Göttingen, v. Siebold-Str. 5, Germany
V e s t i b u l a r System P a r t 2: Psychophysics, A p p l i e d Aspects a n d G e n e r a l Interpretations Contents E . Psychophysics Chapter I Chapter II
Psychophysics of Vestibular Sensation. B y F . E . G U E D R Y . With 3 9 Figures 3 Optic-Vestibular Orientation to the Vertical. B y N . B I SCHOF. With 12 Figures 155
F. Applied Aspects Chapter I Chapter II Chapter III Chapter I V Chapter V Chapter V I Chapter V I I Chapter VIII
ChapterIX Chapter X
Chapter X I
Nystagmus and Related Phenomena in Man : A n Outline of Otoneurology. B y H . H . K O R N H U B E R . With 16 Figures Measurement of Otolith Function in Man. B y A . G R A Y B I E L . With 19 Figures Measurement of Vestibulo-Spinal Responses in Man. B y E . P E I T E R S E N . With 3 Figures Modification of the Response to Angular Accelerations by Linear Accelerations. B y A . J . B E N S O N . With 14 Figures Vestibular Ataxia and its Measurement in Man. B y A . R. F R E G L Y . With 11 Figures Arousal and Vestibular Habituation. By W . E . C O L L I N S . With 2 Figures Habituation of Vestibular Responses with and without Visual Stimulation. B y W . E . C O L L I N S . With 8 Figures Motion Sickness. Part 1. Aetiology and Autonomic Effects. B y W . H . J O H N S O N . With 5 Figures Part 2. Some Sensory Aspects. B y L . B . W . J O N G K E E S . With 4 Figures Pathology of Vestibular Sensation. B y L . B . W . J O N G K E E S . With 16 Figures Characteristics of Vestibular Neurons after Acute and Chronic Labyrinthine Destruction. B y W . P R E C H T . With 4 Figures Compensation of Vestibular Lesions. B y K . P. S C H A E F E R and D . L . M E Y E R . With 4 Figures
193 233 267 281 321 361 369 389 405 413
451 463
6. General Interpretations Chapter I Chapter II Author Index Subject Index
A Systems Concept of the Vestibular Organs. By R. M A Y N E . With 21 Figures 493 The Vestibular System and the General Motor System. By H . H . K O R N H U B E R . With 2 0 Figures 581 621 645
P a r t 1 : Basic Mechanisms Contents A. Introduction B y H . H . K O R N H U B E R . With 5 Figures
B. Comparative Morphology and Physiology Chapter I
The Perception of Gravity and of Angular Acceleration i in Invertebrates. B y H . M A R K L . With 27 Figures
Chapter II
Comparative Morphology and Physiology. B y O . E . Lo- W E N S T E i N . With 2 0 Figures
Chapter I
Morphology of the Vestibular Sense Organs. B y J . W E R - -
C. Peripheral Mechanisms S Ä L L and D . B A G G E R - S J Ö B Ä C K . With 6 0 Figures
Chapter II
The Functional Significance of Semicircular Canal Size. . B y G . M E L V I L L J O N E S . With 4 Figures
Chapter III
Histochemistry and Metabolism of the Inner Ear. By y G.F.
DOHLMAN
Chapter I V
Morphological Aspects of the Efferent Vestibular System. B y R . R . G A C E K . With 5 Figures
Chapter V
Physiological Aspects of the Efferent Vestibular System. B y W . P R E C H T . With 5 Figures
Chapter I
Anatomy of the Vestibular Nuclei and their Connections.
D. Central Mechanisms B y A . B R O D A L . With 4 5 Figures Chapter II
The Physiology of the Vestibular Nuclei. B y W . P R E C H T . \ With 15 Figures
Chapter III
Cerebello-Vestibular Interrelations. B y 0 . P O M P E I A N O . >. With 15 Figures
Chapter I V
The Vestibulo-Ocular Reflex Arc. B y B . C O H E N . W i t h h 20 Figures
Chapter V
Vestibulo-Spinal With 1 0 Figures
Chapter V I
Mechanisms.
B y B . E . G E R N A N D T . c.
Cortical Projections of the Vestibular Nerve. B y J . M . [. F R E D R I C K S O N , H . H . K O R N H U B E R and D . W . F .
Chapter V I I Author Index Subject Index
S C H W A R Z . With 1 0 Figures Vestibular Influences during Sleep. B y O. P O M P E I A N O . >. With 10 Figures
E. Psycliophysics
C h a p t e r II.
Optic-Vestibular Orientation to the Vertical By N . B I S C H O F , Pasadena, Calif. (USA) W i t h 12 F i g u r e s
Contents I. I n t r o d u c t i o n : O n Orientation
155
II. Directional Constancy a n d the Compensation Principle
157
A. O n Vertical Constancy
157
B. The Compensation Principle
157
C. E x t e r n a l a n d Internal C o m p e n s a t i o n
159
D . A l l o w a n c e for C o m p e n s a t o r y E r r o r s
160
E . Postural Direction Cues
163
F . T h e S i g n i f i c a n c e of V e s t i b u l a r D i r e c t i o n C u e s
164
I I I . Visual Direction Cues a n d the Reconstruction Principle
166
A . T h e C o n c e p t of P e r c e p t u a l R e c o n s t r u c t i o n
166
B . Visual Direction Cues
166
C. V i s u a l A u t o - C o m p e n s a t i o n
169
D. Feed-Forward and Feed-Back Compensation
173
I V . Optic-Vestibular Interaction a n d the Correction Principle
177
A . T h e U t i l i z a t i o n of " C o n v e r g e n t D e t e c t i o n "
177
B. Optic-Vestibular Equivalence
177
C. I n c o n g r u i t y of E q u i v a l e n t S i g n a l s
178
1. " C o m p r o m i s e " S o l u t i o n
178
2. " A l t e r n a t i v e " S o l u t i o n
178
3. " S i m u l t a n e i t y " S o l u t i o n
179
D. Error Detection and Error Correction
179
1. E r r o r D e t e c t i o n
179
2. E r r o r C o r r e c t i o n
180
E . D e t e r m i n a n t s of t h e O p t i c - V e s t i b u l a r W e i g h t R a t i o
180
References
185
I. I n t r o d u c t i o n : O n O r i e n t a t i o n B y "orientation" we mean the proper arrangement of an object within a frame of reference. U s i n g t h e t e r m " p r o p e r " t a k e s a c c o u n t of a c o n n o t a t i o n of v a l u e a t t a c h e d to t h e c o n c e p t of o r i e n t a t i o n i n c o m m o n language. I t m a y be u n d e r s t o o d
e i t h e r i n a m e r e l y formal
r e f e r r i n g t o a s p e c t s o f s y m m e t r y , e q u i l i b r i u m , a n d t h e l i k e , o r functionally: a n i m a l " w e l l " or " p o o r l y " o r i e n t e d if i t is a b l e o r u n a b l e t o
find
sense,
we m a y call a n
its w a y home after h a v i n g
b e e n d i s p l a c e d ; o r , g e n e r a l l y s p e a k i n g , i f i t s " a r r a n g e m e n t w i t h i n a f r a m e o f r e f e r e n c e " is s u c h as t o o p t i m i z e t h e a n i m a l ' s (or i t s s p e c i e s ' ) c h a n c e s of s u r v i v a l .
156
N . B I S C H O F : Optic-Vestibular Orientation to the Vertical
In humans, the "arrangement" may be understood to occur in the realm either of body activity or of perceptual organization, the "object" and the "frame of reference" beeing defined physically in the former case, and psychophysical^ in the latter. We therefore distinguish between body orientation and perceptual orientation. We speak of spatial orientation if the frame of reference is a spatial one. Within spatial orientation two general groups can be distinguished, with the frame of reference being the essentially horizontal map of life space, on one hand, and the vertical pull of gravity, on the other. The former group, including, for instance, the problem of homing and route perception, will not be discussed here, although both the eye (as in sun-orientation, cf. B R A E M E R , 1960) and the vestibular organ ( B E R I T O F F , 1962, 1963) seem to play an important part in these performances, too. Instead, we shall restrict discussion to orientation to the vertical where, as we shall see, optic and vestibular sense are substantially involved. Applying the dichotomy of " b o d y " and "perceptual" orientation to this case, we may distinguish between (1) postural equilibrium responses, i.e., motor activity serving to stabilize the intended posture of the body in the field of gravit}' (e.g., vestibular righting responses), and (2) perceptual space transformations, i.e., physiological processes monitoring the constancy of space perception in the presence of factors changing the position of sense organs. Perceptual space transformations will be called "external" if non-nervous processes like muscular mechanics are involved (as in the case of eye-movements), and "internal" if they are confined to pure nervous system activity (for further detail, see below, pp. 159 f.). Postural equilibrium responses and perceptual space transformations are by no means independent of each other ; instead, it is commonly felt that there is one and the same system producing both. In man, to be sure, much more sophistication has been invested in the study of the latter, at least in healthy subjects. The following chapter will therefore deal mostly with problems of perceptual orientation. This report shall be organized with a functional viewpoint. In a field of research where the data available are clustered on two widely different levels of complexity — reports of perceptual phenomena on one hand, and records of neuronal discharges on the other — a functional approach seems to be most promising to bridge the gap. It might, moreover, provide us with heuristic strategies for further research both in neurophysiology and in psychophysics. Three functional principles, i.e. three major types of information processing involved in orientational achievements, shall be distinguished below under the names of "compensation", "reconstruction", and "correction". Each of these principles has been introduced and discussed by a different group of authors: Compensation processes were first postulated by K . B Ü H L E R (1922) and form the core of the famous, though originally not quite consistently defined "reafference principle" of V O N H O L S T and M I Ï Ï E L S T A E D T (1950) ; the importance of reconstruction processes has been stressed by G I B S O N (1950, 1966) and M A C K A Y (1966); correction processes play an outstanding role in the perceptual theory of E . B R U N S -
The Compensation Principle
157
wiK (1934, 1956). A synopsis of these three principles has, connected with partial re-formulation, first been attempted by B I S C H O F (1966b, p. 357-399). They will serve as a frame of classification of the following report.
II. D i r e c t i o n a l C o n s t a n c y a n d the C o m p e n s a t i o n Principle A. O n Vertical Constancy j
When exposed to a laterally tiltable, fronto-parallel luminous line in a dark room, a normal subject is able to estimate the slope of the line with quite satisfactory approximation : the inclination of the perceived contour to the apparent vertical nearly corresponds to the inclination of the physical contour with respect to the field of gravity. The sensory datum referred to by the brain in this estimation apparently consists in the slant of the line's retinal image or, more precisely, in the angle between the retinal projection of the line and a given reference axis fixed to the retina. This retinal image (the so-called proximal stimulus) serves, as it were, as the causal bridge connecting the object of interest, namely the luminous line outside in the dark room (the distal stimulus), and the perceived inclination (the phenomenon). Moreover, unless the subject contacts the distal object via an additional sensory channel (e.g., b}' touching), it is the only causal bridge of this kind. Considering the latter we ought to be surprised that the relation between the retinal image and the distal object is by no means unique. A n y particular inclination of the proximal stimulus contour within the retinal frame of reference may occur in the presence of a given slope of the distal stimulus line, because of the interference of a further independent variable, namely, the head tilt. When, for instance, the head is laterally inclined, the picture of a vertical line will appear on a retinal meridian different from the one upon which it is projected with upright head position. If the brain, in anthropomorphic terms, were to " r e l y " solely upon the information conveyed to it via the optic channel, it would be entirely unable to distinguish this situation from one in which the body remained upright but the line was tilted. The fact is, however, that the central-nervous perceptive mechanism is quite capable of making this distinction. This performance is usually referred to as "vertical constancy". The analysis of vertical constancy, then, has to start from the fundamental biological problem common to all constancy performances (others being, e.g., color, brightness, size and shape constancy): How can a veridical correspondence between the perceptual phenomenon and the distal object be established despite the fact that the only causal bridge intervening between them, i.e., the proximal stimulus, is disturbed unpredictably by the interference of a further variable ?
B. T h e C o m p e n s a t i o n P r i n c i p l e The solution of this general constancy problem was found, after preparatory work by H E L M H O L T Z , H E R I N G , M A C H , and others, by K . B Ü H L E R and L . K A R D O S ( B Ü H L E R , 1922;
KARDOS,
1928,
1929;
B R U N S W I K and K A R D O S , 1929)
and later
158
N . B I S C H O F : Optic-Vestibular Orientation to the Vertical
restated by V O N H O L S T and M I T T E L S T A E D T (1950). The basic idea is this: the organism neutralizes the interference by repeating it with reversed sign. Since a process of this kind may aptly be called "compensatory", B I S C H O F (1966b) has proposed the term compensation principle to characterize this form of biological information processing. The compensation principle is illustrated by the flow diagram Fig. l a . The sensory channel S (generally the eye) is affected by a proximal stimulus, the latter
external processes
internal processes
F i g . 1. a ) C o n t r o l d i a g r a m o f t h e c o m p e n s a t i o n p r i n c i p l e . H e r e a n d i n a l l s u b s e q u e n t b l o c k diagrams arrows represent variables, a n d boxes represent operators. Orientation of arrows denotes
direction of causal influence. 0
i n t e r f e r e n c e f u n c t i o n ,
=
X
compensatory
function, S = m a p p i n g function of sensory channel, b) Interference function i n the perception o f v e r t i c a l l y . D i s t a l s t i m u l u s ( A c ) e q u a l s t h e sum o f i n t e r f e r i n g v a r i a b l e (a) a n d p r o x i m a l s t i m u l u s (AR), if o r i e n t a t i o n of angles is u n i f o r m l y defined (here: clockwise inclinations positive, when viewed from Subject)
depending upon a distal stimulus and an "interfering variable", according to an "interference function"
=
A G —
a..
The proximal stimulus is reported to higher central-nervous centers by means of afferent messages (IR). Making use of this information, now, the organism has to arrive at a psychophysical variable (Is) representing veridically the distal 1
1 B y the expression " a psychophysical v a r i a b l e " we denote a hypothetical central-nervous p r o c e s s t h o u g h t d i r e c t l y t o u n d e r l y a c o n s c i o u s l y e x p e r i e n c e d p h e n o m e n o n (cf. a l s o B I S C H O F , 1966a).
External and Internal Compensation
159
stimulus. This is done by means of a compensatory process consisting of the following two operations: (1) The organism ascertains in a suitable way a representation of the interfering variable, the "compensatory variable" (s). (2) This compensatory variable is fed into the afferent information flow in such a way as to compensate for the influence of the interfering variable ("compensatory function"). In F i g . l a the compensatory function is denoted by ( P , since it can easily be seen that in the ideal case it would have to be exactly the inverse of the interference function. In our case, consequently, the ideal compensatory function would be an addition : -1
h = ln +
s.
In connection with the compensation principle three main questions arise: (1) Where is the compensatory process performed? (2) How should the flow diagram be modified to take account of the compensatory errors recorded under experimental conditions and in every-day life? (3) Where does the organism obtain the information about the interfering variable needed to determine the compensatory variable? These problems will be discussed successively in the following sections, with respect to the special case of vertical constancy.
C. E x t e r n a l a n d I n t e r n a l C o m p e n s a t i o n As far as localization is concerned, two possible types of compensation are conceivable: (1) "external" compensation outside the boundary of neurophysiological processes, and (2) "internal" compensation within the central nervous system. Only the second possibility is taken into account in F i g . 1. The first is more obvious and easier to analyse. It consists in the so-called ocular countertorsion (rolling of the eyeballs around their sagittal axes). In the ideal case the amount of countertorsion should exactly equal the degree of lateral head tilt, thus leading to complete constancy of the retinal stimulus pattern. This, however, is never attained in any vertebrate species. In man, particularly, the countertorsion response can only be called vestigial (FISCHER, 1927, 1930a; W O E L L N E R and G R A Y B I E L , 1959; C O L E N B R A N D E R , 1964;
S C H Ö N E , 1962;
M I L L E R , 1962;
K E L L O C G , 1965;
M I L L E R and G R A Y B I E L ,
B R A N D T and
1963;
F L U U R , 1966,1967; U D O D E
H A E S , 1970; B I S C H O F and S C H E E R E R , 1970). When plotted against head tilt, ocular countertorsion shows a sinusoidal curve with extreme values ocurring at tilts of about 60°. Even at its extremes, the response seldom exceeds values of 6-8°, being, therefore, far too small to account for the compensatory achievements actually observed. Consequently, there remains only the alternative of assuming an " i n t e r n a l " compensation, i.e., a central-nervous processing of the optical afference according to Fig. 1. Formally, such a process could be conceived as a rotatory transformation of a functional coordinate system, the latter being the physiological correlate of phenomenal space. The anatomical localization of these processes is still open to speculation, although recent neurophysiological findings (cf. chapter F R E D R I C K S O N ,
160
N . B I S C H O F : Optic-Vestibular Orientation to the Vertical
K O R N H U B E R and S C H W A R Z , this volume), contradicting the earlier opinion that no vestibular afferences reach the cerebral cortex, may turn out to be a first step towards answering this obscure question.
D . A l l o w a n c e for C o m p e n s a t o r y E r r o r s The argumentation in favor of the compensation principle (see above pp. 158 f.) may sound somewhat artificial, as it starts from the fictitious presupposition of exact veridicality of directional perception. This presupposition is, indeed, only approximately fulfilled in every-day life, and even larger deviations occur under experimental conditions. I f t h e o p t i c a l s t i m u l u s field i s r e d u c e d t o a s i n g l e l u m i n o u s r o d i n a d a r k r o o m , a s u b j e c t ' s a p p a r e n t v e r t i c a l (as i n d i c a t e d b y h i s s e t t i n g o f t h e r o d ) w i l l e x h i b i t s y s t e m a t i c d e v i a t i o n s f r o m t h e p h y s i c a l p l u m b l i n e , e s p e c i a l l y i f t h e b o d y i s i n a t i l t e d p o s i t i o n (cf. F i g . 2 ) . L a r g e a m o u n t s of lateral b o d y tilt are u n d e r c o m p e n s a t e d ( A U B E R T ,
1861), i.e., t h e a p p a r e n t v e r t i c a l
deviates towards b o d y axis, whereas moderate a m o u n t s of tilt are sometimes o v e r c o m p e n s a t e d ( M Ü L L E R , 1916), i.e., t h e a p p a r e n t v e r t i c a l deviates i n t h e opposite d i r e c t i o n ( A a n d E p h e n o m enon, respectively: U D O
D E H A E S , 1970; S C H Ö N E a n d U D O
D E H A E S , 1971; for a review of
e a r l i e r i n v e s t i g a t i o n s , see B I S C H O F , 1 9 6 6 c , p p . 4 7 4 f . ) . E r r o r s of t h e s a m e o r d e r o f m a g n i t u d e occur w i t h f o r w a r d - b a c k w a r d b o d y tilt ( B R E C H E R a n d S C H U B E R T , 1934; S C H Ö N E , 1962, 1964; C O R R E I A et a l . , 1965). C o n s i d e r a b l e d e v i a t i o n s are also o b s e r v e d w h e n t h e s u b j e c t i s p r e s e n t e d w i t h a n optical stimulus pattern c o n t a i n i n g one o r more distinct m a i n axes besides the l u m i n ous r o d , p r o v i d e d t h a t none of the m a i n axes coincides w i t h the p u l l of g r a v i t y . T h i s p h e n o m enon has been called " R i c h t u n g s i n d u k t i o n "
( d i r e c t i o n a l i n d u c t i o n ) b y K L E I N T (1936). I t
o b t a i n s w i t h s u c h s t i m u l u s c o n f i g u r a t i o n s a s a field o f p a r a l l e l s t r i p e s ( H O F M A N N a n d B I E L SCHOWSKY, (BORING, PASSE Y,
1909; G I B S O N
1952; M A N N , 1950;
and R A D N E R ,
1937; B I S C H O F a n d S C H E E R E R ,
1952), or a l u m i n o u s f r a m e ( W I T K I N a n d A S C H ,
Y O U N G ,
1959;
NAYLOR,
1963, 1965; B E R T I N I ,
1970), a g r i d
pattern
1948; W I T K I N ,
1949 b ;
1964; M O R A N T
and
ARONOFF,
1966). U n d e r s u c h c o n d i t i o n s t h e s u b j e c t ' s a p p a r e n t v e r t i c a l , a s s h o w n b y h i s s e t t i n g s of t h e l u m i n o u s r o d , is " a t t r a c t e d " t o a certain degree b y t h e axes of t h e s t i m u l u s p a t t e r n . D i r e c tional
induction
effects
are strongest w i t h
stimulus
patterns that
are closely similar t o
natural environments except for their slanted bearing. Such situations are created when the
subject
1912;
observes
GIBSON
(KOHLER,
a natural
and M O W R E R ,
1951; O H W A K I ,
scene
1938;
through a suitable mirror
A S C H
1961; W I T K I N
and W I T K I N , and
Ascii,
1948a)
1948b;
or
S3^stem
through
WITKIN,
(WERTIIEIMER, prism
1949a),
or
spectacles if the
t u r a l scene is t i l t e d as a w h o l e , e.g., i n a r o t a t a b l e d u m m y r o o m ( " h a u n t e d s w i n g " , 1895;
TON
KLEINT,
1936; A s c i i a n d W I T K I N ,
1948b; M A N N ,
1 9 5 2 ) ; see a l s o H O W A R D
and
na-
WOOD,
TEMPLE-
(1966).
In the flow diagram (Fig. .1), three possible sources for deviations of this kind are conceivable: (i) the afference ?R may be a distorted image of the proximal stimulus configuration AR. (ii) The compensatory variable s may be an inaccurate representation of the interfering variable a. (iii) The compensatory function & may differ from a mathematically exact summation process. 1
In
t h i s c o n n e c t i o n t h e t h r e e v a r i a b l e s Z R , IS, a n d s m e r i t f u r t h e r c o n s i d e r a t i o n . F i r s t , 2
these q u a n t i t i e s are t o b e r e g a r d e d as " h y p o t h e t i c a l c o n s t r u c t s " i n t h e sense of t h e t e r m i n o logical differentiation proposed b y M C C O R Q U O D A L E a n d M E E H L
(1948); i.e., t h e y a r e m e a n t
to be not directly observable, b u t nevertheless physically existing, links of a n innerorganismic c a u s a l c h a i n . S i m u l t a n e o u s l y , h o w e v e r , t h e y a r e " i n t e r v e n i n g v a r i a b l e s " i n t h e s t r i c t e r sense defined b y t h e authors — v i z . , t h e y are conceived as products of a mere m e n t a l abstraction d r a w n o u t of (unknown) physiological entities likely to be i n fact m u c h m o r e c o m p l e x . T h e same holds for the above-mentioned compensatory operation 2 F o r m o r e d e t a i l e d d i s c u s s i o n , see B I S C H O F a n d S C H E E R E R
(1970).
Allowance for Compensatory Errors
161
F i g . 2 . A p p a r e n t vertical as a f u n c t i o n of lateral b o d y tilt for 1 3 Ss (according to U D O D E H A E S 1970).
Abscissa:
Clockwise body
tilt. Ordinate:
I n c l i n a t i o n of a l u m i n o u s r o d , set t o S s
a p p a r e n t v e r t i c a l , m e a s u r e d i n r e t i n a l c o o r d i n a t e s w i t h i n v e r t e d s i g n (for e x p l a n a t i o n , see b e l o w , p. 1 6 2 ) . D o t t e d line i n d i c a t e s ideal v e r i d i c a l i t y of d i r e c t i o n a l p e r c e p t i o n . E - ( M Ü L L E R ) P h e n o m e n o n : m e a s u r e d v a l u e above d o t t e d l i n e (as s h o w n i n s o m e S s w i t h b o d y t i l t o f 3 0 ° ) , A - ( A U B E R T ) p h e n o m e n o n : m e a s u r e d v a l u e below d o t t e d l i n e ( m o s t m a r k e d i n t h e m a j o r i t y o f Ss u n d e r b o d y t i l t of 1 5 0 ° )
With regard to the three alternatives listed above, B I S C H O F and S C H E E R E R (1970) arrive at the following proposition: If deviations from ideal veridicality in directional perception consist merely in rigid orthogonal rotations of phenomenal space without angular distortions occurring, they can be due solely to inaccuracy of the compensatory variable (alternative ii accepted), whereas the input-output characteristics of the optic channel and the compensatory summation process must be linear (i and iii rejected). 11
Hb. Sensory Physiology, Vol. VI/2
162
N . B I S C H O F : Optic-Vestibular Orientation to the Vertical I n t h i s case, a n i n d i r e c t m e a s u r e f o r t h e c o m p e n s a t o r y v a r i a b l e s c o u l d b e d e r i v e d f r o m
the
s e t t i n g o f a l u m i n o u s r o d t o t h e a p p a r e n t v e r t i c a l : I f (i) A R = IR, a n d ( i i i ) Is = IR -+- s, a n d
i f f u r t h e r t h e a p p a r e n t i n c l i n a t i o n Is AR
t h e r o d is zero ( = vertical), then w e s h o u l d arrive a t
= IR = Is-s = -s. T h u s t h e p r o x i m a l s t i m u l u s A R w i t h r e v e r s e d s i g n , a s p l o t t e d i n F i g . 2 ,
c o u l d s e r v e a s a n o p e r a t i o n a l m e a s u r e f o r s.
As to the premise of this proposition, G I B S O N and R A D N E R (1937, p. 464) state that the apparent vertical and horizontal "behave as if they were aspects of a single system for visual orientation"; the authors add, however, that both axes nevertheless "are not rigidly linked together; there is, as it were, a certain amount of 'play" or 'lost motion' between them". This angular distortion phenomenon was observed as an after-effect of prolonged exposure of an optical stimulus pattern containing (or consisting of) one predominating axis. Under these conditions, two factors seem to be involved in direction perception. They generate, respectively, (a) a so-called "normalization effect", which amounts to a rigid transformation of the phenomenal frame of reference as a whole (GIBSON, 1937a, b ; G I B S O N and R A D N E R , 1937), and (b) a "satiation effect", which only occurs in the vicinity of the stimulus axis, thus indeed impairing the orthogonality of space perception ( K Ö H L E R and W A L L A C H , 1944). The latter phenomenon can probably be accounted for in terms of adaptation or inhibition of orientation detectors in the visual channel S of F i g . 1 ( S U T H E R L A N D , 1961: C O L T H E A R T ,
1971: cf. also C A R P E N T E R
and B L A K E M O R E , 1974). Thus, possibility (i), as listed above, cannot be ruled out entirely. However, satiation seems to be a second order effect. B y factoring out the normalization effect be means of a "split-field technique", a magnitude of maximally 1.5° has been found for the satiation phenomenon ( M O R A N T and M I S T O V I C H , 1960; M O R A N T and H A R R I S , 1965).
These studies, to be sure, have only been performed with upright body posture. In a survey of the literature, unfortunately, no investigation dealing with the influence of body tilt on the orthogonality of space perception could be found. This leaves alternative (iii) undecided. Actually, some authors did record the apparent vertical and horizontal alternately in the same subjects as a function of head tilt, body tilt, or centrifuging, both with and without optical direction cues presented (GIBSON and M O W R E R , 1938; A S C H and W I T K I N , 1948a, b;
WITKIN
and A S C H ,
1948a, b ; B I T T E R M A N and W O R C H E L ,
1953, G R A Y B I E L
and C L A R K , 1962). However, these experiments yield no answer to our problem since they are not sufficiently precise for that aim or, as in the studies of the W I T K I N group, because of some peculiarities in the data analysis performed by the investigators. Nevertheless, the authors do not seem to have encountered a conspicuous decay of perceptual space orthogonality. Generally, one may presume that if body tilt and the like did produce startling angular distortions, this would have attracted the attention of some of the numerous investigators of vertical constancy during the past century, especially since under pathological conditions (cerebral lesions) or with inadequate stimulation (e.g., by electric currents) considerable distortions of the space coordinates have been repeatedly observed and reported under the name of metamorphosia or dysmorphosia by GELB
(1926), B E N D E R and J U N G
others.
(1948), H A L P E R N
(1949), D E R W O R T (1953) and
Postural Direction Cues
163
E. P o s t u r a l D i r e c t i o n Cues For the time being we may therefore assume that the errors of directional perception observed under physiological conditions are due virtually alone to the compensatory quantity s not precisely coinciding with the head inclination a. Thus the third problem stated above (see p. 159), namety, where the organism obtains a representation of a, becomes crucial. Clearly, the sources of pertinent information have to be looked for in the realm of stimulus parameters that are correlated with head and/or body tilt. Such parameters are hereafter referred to as "direction cues". The sensory systems thought to be capable of providing direction cues are usually classified into (1) optical and (2) postural groups. The postural group may be subdivided into (a) tactile, (b) kinesthetic, and (c) vestibular cues. (a) The distribution of pressure on the body surface may well be taken into account as a direction cue, as its maximum corresponds to the physical " d o w n " unless, to be sure, the support at the surface of contact is in a slanted position (GIBSON, 1966). The functional effectiveness of this factor at least for the "posture reflexes" has been demonstrated by M A G N U S (1924), its relevance for verticality perception follows from experiments of S C H Ö N E and U D O D E H A E S (1968, 1971). (b) Coping with gravitation necessitates a continuous tonic innervation of the whole skeletal musculature, the pattern of which has to reflect in fine gradations the distribution of forces acting upon the body. Therefore the combined messages of tension and position receptors in muscles, tendons and joints (see B I S C H O F , 1966 c) may well be used as a source of information about the arrangement of trunk, head, and limbs with respect to gravity. The importance of these factors is underlined by the fact that asymmetric body tonus brought about, for example, by means of additional weights is accompanied by changes of the apparent vertical ( K L E I N T , 1937; 1962;
S C H N E I D E R and B A R T L E Y , 1962;
KLIX,
W E R N E R et al., 1951).
(c) Wfiereas the two aforementioned sensory systems are primarily concerned with tasks apart from the perception of body posture in the gravito-inertial field, the vestibular apparatus appears to be constructed directly to serve this purpose. Among the vestibular cues, both ampullar and macular messages can be shown to contribute to human perception of verticality. In the maculae, phasic and tonic responses may be distinguished, according to L O W E N S T E I N and R O B E R T S (1950). There are few pertinent investigations deliberately involving stimulation of all vestibular portions mentioned (e.g., V O N H O L S T and G R I E S E B A C H , 1951; U D O D E H A E S and S C H Ö N E , 1970). In experiments with parallel swings ( J O N G K E E S , 1952; W A L S H , 1960, 1961 ; S C H Ö N E et al., 1967) the semicircular canals remain essentially unexcited. Devices providing steady-state head tilt, as employed by most investigators, additionally rule out phasic receptor activity in the maculae. This restricts stimulation to the tonic (non-adaptive) receptor system in the otolith apparatus, which may be considered the basic issue in postural control of vertical constancy, at least as far as the external compensatory mechanism (eye countertorsion, see above, p. 159) is concerned ( F I S C H E R , 1930a; M I L L E R , 1962; S C H Ö N E , 1962; F L U U R and M E L L S T R Ö M , 1970 a, b).
li*
N . B I S C H O F : Optic-Vestibular Orientation to the Vertical
164
F. T h e Significance of V e s t i b u l a r D i r e c t i o n C u e s The question as to whether vestibular afference has a direct access also to the internal mechanisms of perceptual space transformation is comparatively more intricate. The significance and even preponderance of the vestibular apparatus in this respect has been maintained by investigators like J O N G K E B S (1952), but denied by some earlier authors ( A L E X A N D E R and B A R A N Y , 1 9 0 4 ; B E C K , 1 9 1 2 ; S T I G L E R ,
1912; G A R T E N , 1920); partly, perhaps, since the latter expected (and failed) to encounter particular "postural sensations", reported by their subjects. These authors did not realize that a sense organ might well have the function of solely controlling perceptual coordinate systems rather than contributing new qualities to the perceptual world. There is, of course, great difficulty in assessing the relative importance of each of the three postural systems mentioned above, since they convey information about one and the same stimulus parameter and may mutually substitute for each other. Thus, it is in no way conclusive if, in the case of deficiency of one of them, the performance in question does not substantially decrease — especially if the subjects have been allowed to adapt to the loss. W h e n , e.g., G A R T E N
(1920) a n d A R N D T S
(1924)
could d e m o n s t r a t e t h a t t h e ability of
s u b j e c t s t o j u d g e t h e v e r t i c a l p o s i t i o n o f t h e i r b o d i e s r e m a i n s u n i m p a i r e d w i t h tactile
informa-
tion b e i n g c u t o i f b y l o c a l a n a e s t h e s i a , t h i s f i n d i n g n e v e r t h e l e s s c a n n o t d i s p r o v e t h e p o s s i b l e p a r t i c i p a t i o n of t a c t i l e d i r e c t i o n cues i n t h e s a m e p e r f o r m a n c e u n d e r n o r m a l c o n d i t i o n s o r after l a b y r i n t h loss. On
the other hand the same holds true for
b i l a t e r a l l o s s o f labyrinth function,
findings
according to which patients with
w h e n tilted laterally, are still able to set a luminous rod i n
a dark surround i n rather good alignment w i t h the physical vertical, o r even surpass the a c h i e v e m e n t o f s u b j e c t s w i t h o u t l a b y r i n t h m a l f u n c t i o n (cf. F I S C H E R , BORDOGNA,
1963; G I R O T T I ,
1963; M I L L E R
1930 b ; G I R O T T I a n d
a n d G R A Y B I E L , 1966; C L A R K a n d G R A Y B I E L ,
1966a;
G R A Y B I E L e t a l . , 1968). T h e s e e x p e r i m e n t s s h o w t h a t the a c t i v i t y of t h e v e s t i b u l a r a p p a r a t u s may
b e s u b s t i t u t e d b y o t h e r p o s t u r a l f a c t o r s , if necessary. B u t t h e y d o n o t tell u s a n y t h i n g
a b o u t t h e e r r o r o n e i s l i k e l y t o c o m m i t i f , a s a first a p p r o x i m a t i o n , o n e i g n o r e s t h e l a t t e r w h e n w o r k i n g w i t h h e a l t h y s u b j e c t s , a n d i n t e r p r e t s t h e results o b t a i n e d i n t h e a b s e n c e of o p t i c a l cues as a t t r i b u t a b l e m a i n l y t o t h e v e s t i b u l a r a p p a r a t u s .
There seems to be only one consistent method for determining whether in the postural system vestibular cues are of prior importance in the perception of verticality: one has to play the vestibular information off against other conflicting postural direction cues. Experiments with this particular aim show that there is little extra-otolith postural influence on verticality perception with body tilt up to 9 0 ° , whereas in body positions unlikely to occur in normal life, somesthetic factors do play a role which is, however, not very marked (SCHÖNE, 1962 ; S C H Ö N E and U D O D E H A E S , 1968, 1 9 7 1 : C O R R E L A et al., 1965).
Unfortunately, it is still an open question as to how the organism gathers information about the direction of gravitational force from the excitation patterns of utricle and saccule, separately. Within the framework of his "bicomponent theory", M I T T E L S T A E D T (1964, 1966) has called attention to the fact that the formula for rotatory transformation of a Cartesian coordinate system requires information about the sine and the cosine of the angle of rotation, and that the utricle and saccule, respectively, could well be understood to supply this information.
The
165
Significance of Vestibular Direction Cues
Actually, there is evidence that earlier views, according to which only the utricle, but not the saccule, has a static function at all (e.g., M A X W E L L , 1 9 2 3 ; V E R S T E E G H , 1927; M C N A L L Y ,
1 9 2 9 ; T A I T , 1932) are untenable at least for birds
and mammals and also for some fishes ( B E N J A M I N S and H U I Z I N G A , 1927 ; H A S E GAWA, 1950;
1935; P E R L M A N ,
1940; A D R I A N ,
SZENTAGOTHAI, 1952; HUIZINGA,
1942; JONGKEES, 1955; M E Y E R
1950; LOWENSTEIN,
ZUMGOTTESBERGE
and
P L E S T E R , 1965 ; F L U U R and M E L L S T R Ö M , 1970 b). Whether, however, in the percep-
tion of verticality saccular and utricular information is computed in the elegant way proposed by the bicomponent theory, remains to be investigated. (For pertinent theoretical considerations, see S C H Ö N E , 1 9 6 2 ; C O R R E L A et al., 1 9 6 5 ; Y O U N G and M E I R Y , 1 9 6 8 ; S C H Ö N E and U D O D E H A E S , 1970). The main difficulty
with a bicomponent transformation of perceptual-space coordinates is that it could in principle be independent of otolith weight. When, however, the amount of gravito-inertial force is actually changed by means of applying centrifugal forces ( S C H Ö N E , 1 9 6 2 , 1 9 6 4 ; C O R R E L A et al., 1 9 6 5 ; M I L L E R and G R A Y B I E L , 1 9 6 6 ; S C H Ö N E et al., 1967 ; S C H Ö N E and P A R K E R , 1 9 6 7 ; S C H Ö N E and U D O D E H A E S , 1970) marked
changes of the apparent vertical do occur, showing that the aforementioned independence does not exist . 3
F i g . 3. V e s t i b u l a r h e t e r o c o m p e n s a t i o n . C r o s s e d circles: O p e r a t i o n a l s y m b o l s f o r a d d i t i o n . I f a q u a d r a n t isb l a c k , t h e respective i n p u t v a r i a b l e iss u b t r a c t e d r a t h e r t h a n a d d e d . U p p e r b o x : Visual
system with
linear
input-output
characteristics. L o w e r
b o x : Otolith
system
with
nonlinear characteristics according to F i g . 2
3 W e are, of course, n o t referring here t o changes of t h e a p p a r e n t vertical due t o changes i n t h e direction ( r a t h e r t h a n t h e a m o u n t ) o f m e c h a n i c a l f o r c e d u r i n g c e n t r i f u g a t i o n . T h i s e f f e c t is a p h y s i c a l t r i v i a l i t y w h i c h n e v e r n e e d e d t o b e a u t h e n t i c a t e d b y p s y c h o p h y s i c i s t s , a n d which
certainly d i d n o t deserve a n y pretentious labelling ("oculogravic illusion").
Fora
c r i t i c i s m o f p e r t i n e n t e x p e r i m e n t s d e s i g n e d b y t h e G R A Y B I E L a n d W I T K I N g r o u p s , see H O W A R D a n d T E M P L E T O N (1966, p p . 197ff.) a n d B I S C H O F (1966c, p . 481).
166
N . B I S C H O F : Optic-Vestibular Orientation to the Vertical
While leaving this question to further analysis, we are free to characterize the function of the otolith apparatus in vertical constancy by the control diagram Fig. 3. In this diagram the A and E deviations result from the input-output characteristics of a single black-box labeled "otolith system", leaving aside intravestibular differentiations for the time being. The particular type of network presented in F i g . 3, in which the compensatory variable is provided via a sensory channel separate from the one conveying information about the proximal stimulus, will be referred to hereafter as "heterocompensation" (BISCHOF, 1966 b). A possible alternative, called "autocompensat i o n " of the optic message, shall be introduced in the next section.
III. V i s u a l D i r e c t i o n Cues a n d the R e c o n s t r u c t i o n A . T h e C o n c e p t of P e r c e p t u a l R e c o n s t r u c t i o n The idea that the eye itself should be able to mediate perceptual information about the position of the head with respect to gravity not only seems to contradict our statements above, concerning the independence of retinal and distal coordinates (see p. 157) ; it also does not fit into the theoretical framework of classical sensory psychology. For the latter it was a matter of tri vial self-evidence that a distal object could be immediately perceived (rather than inferred by logical reasoning) only in the presence of a proximal stimulus-pattern which to a sufficient degree "looks like" the distal object or, as G I B S O N (1950) characterized this view, which can serve as a "facsimile" of the object. Since, now, neither the subject's own head nor the field of gravity is portrayed on the retina, perceptual information about these features cannot be conveyed via the optic system, according to classical understanding. Modern perceptional psychology (cf. G I B S O N , 1950, 1966; A T T N E A V E , 1954; K Ö H L E R , 1961 ; M E T Z O E R , 1968) has abandoned this unreflected conception and arrived at the following principle: Although it makes sense to conceive of the perceptual phenomena as "images" of distal objects, it is entirely misleading to expect them to portray the proximal stimulus-configurations as well ; a particular percept may be established on the basis of any sensory process whatsoever, provided only that the proximal stimulus concerned is at least correlated to the distal object. In terms of information theory, the principle maintains that the perceptual system takes advantage of the redundancy within its physical surroundings in a manner that could be compared to the way one reconstructs the text of an abbreviated or distorted telegram. Therefore, B I S C H O F (1966b) has proposed the term "reconstruction processes" for this kind of stimulus elaboration.
B. V i s u a l D i r e c t i o n Cues Put in anthropomorphic terms the reconstruction principle states, in essence, that the organismic perceptual system "relies" on certain regularities "expected"' in its physical surroundings ( L O R E N Z . 1959).
167
Visual Direction Cues
Such "redundancy expectations" may be very concrete. It can be expected, for instance, that cigarette smoke rises opposite to the pull of gravity. One can show that such data, accumulated apparently in the course of individual lifeexperience, influence spatial perception without any noticeable intervention of higher cognitive processes (cf. K O H L E R , 1951, 1 9 5 3 ; K L O P P ,
1956).
In addition to these, however, there are redundancy expectations of a far more generalized and abstract nature. F o r these is would be difficult to determine whether they have been acquired in an individual learning process or whether they are part of the phylogenetically preadapted organization of the perceptual system. This question, to be sure, is rather irrelevant in the present connection. With regard to vertical constancy two general redundancy expectations are of particular significance.
F i g . 4. N a t u r a l r e d u n d a n c y : T e x t u r e g r a d i e n t s . E q u i d i s t a n t m a r k s o n a p l a n e s u r f a c e ( P ) p r o j e c t o n t h e r e t i n a i n s u c h a w a y t h a t (a) t h e p a i r w i s e d i s t a n c e b e t w e e n p r o x i m a l s t i m u l i d e c r e a s e s m o n o t o n i c a l l y i n a r e t i n a l m e r i d i a n (I) p e r p e n d i c u l a r t o P , b u t (b) d e c r e a s e s s y m metrically i n a meridian (II) orthogonal to the former. If the marks are n o t equidistant b u t d i s t r i b u t e d i n r a n d o m f a s h i o n , as t h e y a r e i n m o s t of t h e n a t u r a l surface t e x t u r e s , t h e a b o v e s t a t e m e n t s w o u l d still h o l d t r u e for t h e local average d e n s i t y of p r o x i m a l t r i b u t i o n ( F i g . 4 c ) . T h u s t h e gradient defining m a x i m a l
(g) o f p r o x i m a l - s t i m u l u s
stimulus
dis-
t e x t u r e (i.e., t h e v e c t o r
change of stimulus density) should coincide w i t h the physical p r o v i d i n g t h a t t h e surface r e g a r d e d is h o r i z o n t a l
vertical,
168
N . B I S C H O F : Optic-Vestibular Orientation to the Vertical
(1) The clarification of the first one has been pioneered by G I B S O N (1950). It consists of two mutually independent assumptions : (a) in a natural environment the texture of large surfaces is generally homogeneous, and (b) an approximately plain surface, filling large portions of the visual field, is likely to be of horizontal extension. From these two premises the following conclusion can be drawn: the mean gradient of retinal texture density, i.e., the direction in which retinal stimulation exhibits maximal average compression of its microstructure, will usually correspond to the projection of the physical vertical upon the frontal head plane (for explanation, see Fig. 4). (2) The second redundancy expectation, the biological utilization of which has been substantiated by many authors (like, e.g., K O F F K A , 1935), assumes that under natural conditions equilibrium-states are encountered with a probability higher than that of any other comparable states. Consequent^, objects of elongated shape should be likely either to stand upright (labile equilibrium), to hang down (stable equilibrium), or to lie horizontally on the ground (indifferent equilibrium), rather than to have any other preferential bearing. It can be shown by means of projective
F i g . 5. N a t u r a l r e d u n d a n c y : P r o m i n e n t
figurai
axes. S i x t e e n c o n t o u r s of e q u a l l e n g t h , a r b i -
trarily distributed on a horizontal surface, viewed f r o m above ( F i g . 5a). A m o n g the contours. 4 s t a n d u p r i g h t ( i n d i c a t e d b y l i t t l e c i r c l e s ) , a n d t h e r e m a i n i n g 12 l i e h o r i z o n t a l l y , o r i e n t e d i n s u c h a w a y a s t o p r o v i d e u n i f o r m a n g u l a r d i s t r i b u t i o n . W h e n t h i s a r r a n g e m e n t is v i e w e d f r o m a n a n g l e of 15 d e g r . ( F i g . 5 b ) , t h e a n g u l a r d i s t r i b u t i o n of t h e r e t i n a l s t i m u l u s c o n t o u r s , t a k e n i n s t e p s o f 10 d e g r . , a p p e a r s a s s h o w n i n F i g . 5 c . N o t e t h a t , a l t h o u g h t h e n u m b e r o f h o r i z o n t a l c o n t o u r s e x c e e d t h a t of v e r t i c a l c o n t o u r s b y a f a c t o r of t h r e e , i n t h e p r o x i m a l s t i m u l u s d i s t r i b u t i o n t h e p e a k r e s u l t i n g f r o m o r i g i n a l l y v e r t i c a l c o n t o u r s is s t i l l d o m i n a n t
geometry that the outlines of such objects, when projected on the retina, form a stimulus pattern containing two prominent figurai axes perpendicular to each other, and that one of these axes again corresponds to the projection of the plrysical vertical upon the fronto-parai lei plane (see F i g . 5). Whenever, therefore, the stimulus pattern impinging upon the retina contains a marked figurai axis (particularly if the prominence of this axis is due to many
Visual Auto-Compensation
169
single contours being parallel to each other), this axis tends to be accepted as a cue for either verticality or horizontality. It should be noted that the directional cue thus provided may be ambiguous. A t least it can easily be rendered so by proper experimental device. If exposed, for instance, to a striped field or a square frame, the optical system is left in absolute doubt as to (a) which of the two prominent axes is vertical, and (b) which end of the vertical axis is the upper. Experiments carried out by B I S C H O F and S C H E E R E R (1970) illustrate how the organism copes with this fourfold ambiguity. The authors investigated three (female) subjects who were tilted by means of a chair rotatable around the sagittal head axis. The subjects looked towards a stimulus pattern consisting of a circular field of twenty-five parallel stripes on a dark ground. Shining on to the surface of the striped field from a pivot at its center, was a narrow light beam, which was to be set continuously to the subject's apparent vertical. The stripedfieldwas automatically rotated with a constant angular velocity of no more than 0.5 degrees per second either clockwise or counterclockwise. In each trial, the field made one full revolution of 360 degrees (taking a time of 12 min), while body-tilt was held constant at one of seven values (0, 30, 60, 90, 120, 150, 180 degrees clockwise). The subject's settings of the luminous beam were automatically recorded on a time scale. The responses of one of the subjects are plotted in F i g . 6; they show that the apparent vertical is indeed entrained by both the direction of the stripes (referred to as the "primary axis" by the authors) and the axis perpendicular to the stripes ("secondary axis"). Each end of both axes, alternately, behaves as the upper one. Incidently, it can be seen that the "attractive power" of the primary axis exceeds that of the secondary axis to a noticeable degree. Applying a FouRiER-analysis to the curves shows that the primary axis is also dominant for body inclinations of a = 150 and 180 degrees, although this is not easily recognizable in the raw material, due to noise. These results are in substantial agreement with earlier findings of G I B S O N (1937a, b) and G I B S O N and R A D N E R (1937), who observed that in the presence of a single tilted line the apparent vertical deviates towards the line if the latter's tilt is moderate, but away from it if its inclination is nearing the horizontal (cf.
also C U X B E R T , 1954; M O R A N T and B E L L E R , 1965).
C. V i s u a l A u t o - C o m p e n s a t i o n When outlining in his 1966 publication what is basically the reconstruction principle, G I B S O N contrasts this idea with the compensation principle in the form proposed by V O N H O L S T and M I T T E L S T A E D T
(1950). According to G I B S O N , the
optical feed-back produced by displacement of the body is substantially different from an optical stimulation caused by changes in the distal environment. Thus the visual afference is not really "disturbed" by the body activity (a), and consequently no compensatory process is required. This consideration is felt to dispense with the concept of " a brain that copies, stores, compares, matches, and decides" (loc.cit., p. 39). This remark, however, is misleading. What really turns out to be dispensable from this point of view is what we have called "heterocompensation" (see p. 166). The need for a compensatory process as such still
170
Fig.
N . BISCHOF: O p t i c - V e s t i b u l a r O r i e n t a t i o n t o t h e V e r t i c a l
6. R a w d a t a of o n e S i n t h e e x p e r i m e n t s o f B I S C H O F a n d S C H E E R E R ( 1 9 7 0 ) . E a c h s i n g l e
d i a g r a m (a-g)
comprises
a b o u t 6 m e a s u r e m e n t s of t h e a p p a r e n t v e r t i c a l i n one p a r t i c u l a r
b o d y p o s i t i o n (a), t h e l a t t e r b e i n g s p e c i f i e d i n t h e u p p e r l e f t c o r n e r s . H a l f o f t h e c u r v e s f r o m c l o c k w i s e (solid lines), h a l f f r o m c o u n t e r - c l o c k w i s e r o t a t i o n of t h e s t r i p e d l i n e s ) . Ordinate:
field
A n g l e ( A G ) b e t w e e n g r a v i t y a n d l i g h t b e a m set c o n t i n e o u s l y to S's
v e r t i c a l . Abscissa:
apparent
A n g l e (/?G) b e t w e e n g r a v i t y a n d p r i m a r y a x i s of b a c k g r o u n d s t r i p e d
F u l l l e n g t h of a b s c i s s a =
360 degrees =
one r e v o l u t i o n of t h e s t r i p e d
field.
are
(dotted field.
Since the latter
rotates w i t h c o n s t a n t v e l o c i t y , the abscissa m a y also be u n d e r s t o o d as a t i m e scale (full l e n g t h =
12 m i n ) . I n t h i s c a s e , t h e a b s c i s s a r e a d s f r o m l e f t t o r i g h t f o r t h e s o l i d c u r v e s , b u t f r o m r i g h t
to left f o r t h e d o t t e d ones. R e c o r d i n g s i n m o s t cases b e g i n a b o u t 1 m i n after t h e s t r i p e d starts to rotate, in order of t h e s t r i p e d
field's
to
e l i m i n a t e onset
t r a n s i e n t s . Diagonals
p r i m a r y axis (solid diagonals)
or secondary
T h e u n d e r l y i n g white curves are simulations c o m p u t e d p.
184)
indicate axis
the
(broken
field
position
diagonals).
f r o m t h e m o d e l F i g . 12 (see
below,
172
N . BISCHOF: O p t i c - V e s t i b u l a r O r i e n t a t i o n t o t h e V e r t i c a l
remains. It may now be, however, of a different type, namely, what could be termed "auto-compensation". T h e essentials of a u t o - c o m p e n s a t i o n
a r e m o s t e a s i l y u n d e r s t o o d i n t h e case of
motion
constancy. L o o k i n g d o w n a t a n a n t - h e a p , e . g . , c a u s e s a g r e a t d e a l o f s t i m u l u s m o v e m e n t o n t h e r e t i n a . Suppose, n o w , t h a t t h e c e n t r a l n e r v o u s s y s t e m w o u l d s i m p l y average t h e messages of all t h eretinal m o t i o n detectors, t h u s c o m p u t i n g the v e c t o r s u m of the velocities of a l l p r o x i m a l s t i m u l u s elements. Since these e l e m e n t a r y vectors a r e v i r t u a l l y i n d e p e n d e n t of each other, t h e outcome
o f t h e c a l c u l a t i o n w o u l d m o r e o r less e q u a l z e r o . I f , h o w e v e r , t h e r e a f f e r e n t s t i m u -
l a t i o n of s m o o t h e y e m o v e m e n t — caused, e.g., b y p u r s u i n g o n e p a r t i c u l a r a n t — were superimposed
o n the retinal
stimulus-processes,
then
the average
taken
would
equal
with
c o n s i d e r a b l e e x a c t n e s s t h e e y e v e l o c i t y ( w i t h r e v e r s e d s i g n , t o b e s u r e ) a n d t h u s b e fit t o f u n c t i o n as a c o m p e n s a t o r y v a r i a b l e f o r m o t i o n c o n s t a n c y . T h i s p r o c e d u r e e v i d e n t l y is f o l l o w e d , e r r o n e o u s l y , i n cases o f s o - c a l l e d " i n d u c e d m o v e m e n t " ( s w i m m i n g u p - s t r e a m w i t h t h e b r i d g e , etc).
Speaking generally, in auto-compensation the compensatory variable is derived directly from the afferent (in our case visual) message contaminated by the interfering variable. It presupposes the existence of a filter mechanism that selects, utilizing redundancy-expectations, the reafferent component (a) out of the retinal message itself (cf. Fig. 7). How the filtering process is performed in the case of vertical constancy remains unknown. Presumably contour detection as described by H T J B E L and W I E S E L (1959) is involved, with subsequent averaging to compute the predominant
(CH Sensory channel
Filter
F i g . 7. F e e d - f o r w a r d a u t o c o m p e n s a t i o n . variable, corresponding to A
G
Compens. mechanism
A v a r i e t y of d i s t a l - s t i m u l u s c o n t o u r s
(left
input
i n F i g . 1) w h e n r e g a r d e d w i t h t i l t e d h e a d ( l o w e r l e f t i n p u t
v a r i a b l e , a) i m p i n g e s o n t h e r e t i n a i n o b l i q u e o r i e n t a t i o n . W h e n t h e r e s u l t i n g a f f e r e n t
mes-
s a g e (/ ) is " f i l t e r e d " i n s u c h a w a y as t o c o m p u t e t h e a n g u l a r d i s t r i b u t i o n o f c o n t o u r d i r e c R
tions
(according
to F i g . 5 c ) , t h e r e s u l t i n g m a i n a x i s of retinal
contour
elements
should,
w i t h sufficiently h i g h p r o b a b i l i t y , equal head i n c l i n a t i o n (with reversed sign). Consequently, i t c o u l d b e u s e d a s a c o m p e n s a t o r y v a r i a b l e (s, s y m b o l i z e d b y a c o o r d i n a t e f r a m e ) .
When
r e f e r r e d t o these coordinates, t h e r e t i n a l afference s h o u l d i n d e e d b e t r a n s f o r m e d i n s u c h a w a y as t o render a sufficiently v e r i d i c a l perceptive r e p r e s e n t a t i o n (right o u t p u t , Z ) of distal stimuli s
Feed-Forward and Feed-BackCompensation
173
proximal-stimulus axis, but for a definitive answer one must await further neurophysiological evidence. In this connection, moreover, neurophysiologists should also look for detectors sensitive to G I B S O N texture-gradients (cf. p. 168). Auto-compensation by a filter-mechanism can in some degree be compared to an adaptive process. The crucial difference between it and a genuine local adaptation is, however, that in the latter every site of the sensory field tends independently of the others to approach the zero-level of excitation; whereas in auto-compensation the zero-level of the entire stimulus field shifts uniquely, which has the important consequence that the differences appearing within the proximal stimulus pattern are preserved (cf. also M E T Z G E R , 1968, p. 167ff.). In the special case of verticality perception, adaptation and auto-compensation are exemplified, respectively, by the "satiation" and "normalization" effects mentioned earlier (see p. 162).
D. F e e d - F o r w a r d and Feed-Back Compensation In all cases of auto-compensation two fundamentally different ways of feeding the compensatory variable into the optic afference are available : the compensatory variable may enter after the branching point to the filter (feed-forward compensation, Fig. 7), or before it (feed-back compensation, F i g . 8). In terms of control theory the first model has been called a " m e s h " , the second one a " l o o p " ( M I T T E L S T A E D T , 1960). In feed-forward compensation, provided that the filter can reconstruct the head inclination without error, the compensatory variable has to equal the filter output in order to establish ideal space constancy. In feed-back compensation, on the other hand, veridicality requires that the compensatory variable
F i g . 8. F e e d - b a c k a u t o c o m p e n s a t i o n . D i f f e r i n g f r o m t h e s y s t e m o f F i g . 7 i n t h a t t h e p e r c e p t u a l o u t p u t (Z ) i t s e l f u n d e r g o e s t h e " f i l t e r i n g " p r o c e d u r e , a n d t h a t t h e c o m p e n s a t o r y c o o r d i n a t e s
f r a m e (s) is rotated a s l o n g a s t h e i n c l i n a t i o n o f t h e m a i n a x i s o f a p p a r e n t c o n t o u r d i s t r i b u t i o n differs f r o m zero
174
N . B I S C H O F : Optic-Vestibular Orientation to the Vertical
equal the time integral of the filter output. In the latter case, the magnitude of the compensatory variable will change as long as the filter output is different from zero: obviously, this process cannot come to rest with a steady value of s until the filter output has vanished, i.e., until the main axis of the perceptual field has turned apparently vertical. For a broader discussion see B I S C H O F and S C H E E R E R (1970).
Which of the two possibilities is actually realized in the organism can be readily answered in the case of "external" compensation (cf. p. 159). Here, by definition, the compensation takes place outside the boundary of neurophysiological] processes, whereas the compensatory variable comes from the filter that lies within this boundary. Thus, the ocular countertorsion and, incidentally, also all optokinetic reactions including nystagm, are examples for feed-back autocompensation. Much more difficulty arises when we try to answer the same question in the field of "internal" compensation, since here the entire network is hidden within the brain, inaccessible to direct analysis. However, B I S C H O F and S C H E E R E R (1970) could develop a method that allowed them to solve the problem in an indirect way. We can only outline their argumentation here; for a more thorough presentation, see the publication cited. Regarding the oscillations in Fig. 6, which are schematized in F i g . 9, it is easy to see that for each particular curve the abscissa could be partitioned into sections extending, respectively, between two successive extreme values of the oscillation of the apparent vertical. In F i g . 9a, one half of such a section is labeled as B . Each of these sections would then mark a range of stripe inclinations which have in common a particular dominance relation between the four main directions of the striped field. The abscissa of each extreme value denotes the critical inclination of the field at which one of its main directions starts or ceases to predominate over the other three in determining the apparent vertical. What, now, causes the dominance to shift from one main direction to the next ? Evidently, in the course of field rotation each particular main direction is alternately perceived to be more and more, and then less and less, likely to be a valid representative of the physical vertical. This, however, presupposes a standard reference with which the perceptual system may decide about accepting a given optical main direction as a cue for verticality (cf. also D A Y and W A D E , 1969). Presumably, the additional information required for this decision is supplied by the postural senses. However, this information appears in crucially different forms in feed-forward and feed-back compensation, respective^. (1) In feed-forward compensation (Fig. 7) the standard determining the dominance relations within the set of optical main directions would consist essentially of the vestibular compensatory variable (the "vestibular vertical") established according to Fig. 3. Thus, the inclination of a particular optical main direction with respect to the vestibular vertical decides about the acceptance of this direction as an optic cue for verticality. The vestibular vertical, however, depending as it does upon postural stimuli that are kept constant during each trial, should be expected to show limited systematic shifting at most, even when one allows for 4
4 P o s s i b l e o t h e r p o s t u r a l cues ( n o n - v e s t i b u l a r , n o n - o p t i c ) a r e b e i n g n e g l e c t e d h e r e ; this, h o w e v e r , is n o t r e l e v a n t i n t h e l i n e of a r g u m e n t .
Feed-Forward a n dFeed-Back
a
Compensation
175
threshold • ~y/~~
B
/
/ ini
b
thr
•••^
-/
\
B-A
\x / / /
F i g . 9. C o m p a r i s o n o f a l t e r n a t i v e c o m p e n s a t o r y vertical light beam. component
m e c h a n i s m s . Oscillations of a n a p p a r e n t l y
O r d i n a t e : A n g u l a r inclination of light b e a m
w i t h respect
to the D C
of oscillation (the latter representing t h e v e s t i b u l a r standard). A b s c i s s a : T i m e ;
solid lines: settings of light b e a m for different b o d y inclinations. B r o k e n diagonals : P o s i t i o n of o n e p a r t i c u l a r m a i n a x i s o f t h e s t r i p e d field, a ) Feed-forward field
axis h a s deviated f a r enough
compensation.
W h e n the striped
from the vestibular standard a n d reached a threshold
(horizontal d o t t e d line), t h e d o m i n a n c e w i l l be t a k e n over b y t h e n e x t axis. H e n c e t h e l i g h t b e a m w o u l d c e a s e f o l l o w i n g t h e first a x i s a n d t u r n b a c k t o m e e t t h e n e x t o n e . T h e c u r v e s should therefore show extreme values a t this point. Since this process o u g h t t o be i n d e p e n d e n t of b o d y t i l t , t h e m a x i m a s h o u l d a l l o c c u r a t t h e s a m e t i m e ( B ) i n t h e c y c l e , i r r e s p e c t i v e o f t h e a m o u n t ( A ) o f o s c i l l a t i o n , b) Feed-back compensation. field axis depends
upon
I f , however, t h ed o m i n a n c e of t h e s t r i p e d
its deviation from the apparent vertical, i.e., from t h e respective
light-beam curves, the threshold (dotted
l i n e s ) will v a r y w i t h t h e a m p l i t u d e o f o s c i l l a t i o n .
Thus allextreme values should n o w have a position such that their distance to the broken diagonal is constant. T h i s distance o u g h t t o be t h e difference between t h e abscissa v a l u e ( B ) and the ordinate value (A) for every
extremum
moderate changes due to system dynamics (transfer characteristics and the like) of the sensory systems concerned (cf. M Ü L L E R , 1916 ; M I L L E R and G R A Y B I E L , 1963 ; G E I S S L E R , 1 9 6 5 ; M C F A R L A N D and C L A R K S O N , 1 9 6 6 ; C L A R K and G R A Y B I E L , 1 9 6 6 b ;
S C H Ö N E and U D O D E H A E S , 1 9 6 8 ; U D O D E H A E S and S C H Ö N E , 1969). Hence the
ranges of influence of the four main directions in the striped field are distributed according to a standard reference direction that remains virtually fixed during
176
N . B I S C H O F : Optic-Vestibular Orientation to the Vertical
any given trial. To be sure, the reference direction will change from trial to trial, owing to there being different head inclinations, but within each of these it will remain essentially constant. This means, however, that we should find the sections of the abscissa apportioned by one and the same ratio regardless of head inclination, as indicated in Fig. 9a.
A 3020100-
B-A 3020
100-
Ó
30
60
90
120
150
180°
a Fig.
1 0 . E x p e r i m e n t a l s u p p o r t of f e e d - b a c k
of v e r t i c a l i t y ( f r o m B I S C H O F and
and SCHEERER,
autocompensation hypothesis in the perception 1 9 7 0 ) . C o m p a r i s o n of o r d i n a t e ( A : s o l i d lines)
a b s c i s s a ( B : b r o k e n lines) f o r e x t r e m e v a l u e s of
apparent vertical
(cf.
Fig. 9). Mean
v a l u e s of t h r e e s u b j e c t s , w i t h a v e r a g e v a r i a n c e of m e a n s s h o w n b y b a r s . B scale s h i f t e d so as to a c c o m p l i s h m a x i m a l
c o i n c i d e n c e of nation
curves. E v i d e n t l y , B
(abscissa), whereas B - A
is d e p e n d e n t
on head
incli-
is n o t
(2) Hypothesizing feed-back compensation (Fig. 8) yields quite different predictions. In this case the optic messages do not reach the filter mechanism before having undergone the (combined optic-vestibular) compensatory- process that transforms them into the final coordinate system of apparent space. It is thus the apparent inclination of the four optical main directions (rather than their inclination with respect to a postural standard) that determines the partitioning of their spheres of influence. In other words, with feed-back compensation the apparent vertical, as represented by the luminous beam controlled by the subject, serves as the reference required for the validation of the optical main directions. Defined in this fashion, however, the reference is no longer invariant during a trial, and it varies, moreover, in a different way with different head inclinations. With feed-
Optic-Vestibular Equivalence
177
back compensation, consequently, the abscissa sections between extreme values in F i g . 6 would not be apportioned independent of head inclination. Only if we refer the stripe inclination at every moment to the position of the apparent vertical, i.e., if we project the extreme values, as in Fig. 9b, parallel to the diagonal broken lines, rather than perpendicularly, should we obtain an invariant partitioning of the abscissa. B I S C H O F and S C H E E R E R (loc. cit.) could show, that, with this latter transformation carried out, the partitioning of ranges of influence among the four optical main directions in fact becomes invariant relative to head inclination (see Fig. 10). This indicates that the internal auto-compensatory system of visual perception of verticality is of the feed-back type.
I V . O p t i c - V e s t i b u l a r Interaction a n d the C o r r e c t i o n Principle A . T h e U t i l i z a t i o n of " C o n v e r g e n t D e t e c t i o n * The simultaneous occurrence of both (optical) auto- and (vestibular) heterocompensation in human vertical constancy sheds light on another peculiarity of perceptual information processing. Apparently, compensatory achievments are confined within the limits of precision of the mechanisms that provide the compensatory variable s. When, owing to possible shortcomings in information conveyance or computation, the compensatory variable does not exactly correspond to the interfering variable a, then s is unable to balance the effect of a exactly, and the interference is under- or overcompensated. The A and E phenomena described above (see Fig. 2) are examples of this. In order to minimize such errors, the organism often seeks to provide information about an interesting distal item by using, in parallel, a plurality- of sensory channels which are susceptible to different kinds of disturbing effects. Thus, the probability of error can be reduced by "convergent detection", as it were, a possibility that has been repeatedly discussed in psychological literature (cf. especially B R U N S W I K , 1934, 1940, 1956). For reasons that will be explained later (see p. 180), B I S C H O F (1966b) has proposed the term "correction principle" for this method of perceptual information processing.
B. O p t i c - V e s t i b u l a r E q u i v a l e n c e Separate sensory data which provide information about one and the same distal issue, and which are, accordingly, exchangeable with respect to their biological significance to the organism, will be referred to in the following as "equivalent signals". In this respect, a remarkably close relationship exists between optical and vestibular messages: for every particular output of the vestibular organs there exists an equivalent optical signal-parameter ; likewise, every motor or perceptual effect known to be controlled by vestibular inputs can also be elicited by proper optical excitation. More particularly, stimulation of the semi-circular canals is equivalent to visual excitation produced by uniform movement of the entire stimulus field. The perceptual results of the latter are usually referred to as "induced movement" 12
H b . Sensory Physiology, Vol. VI/2
178
N . BISCHOF: O p t i c - V e s t i b u l a r O r i e n t a t i o n t o t h e V e r t i c a l
(DUNCKER,
1929; L I N S C H O T E N ,
1952; cf. also G I B S O N ,
1950, 1954); the corre-
sponding motor reactions are known under the name of "optokinetic responses". The optical counterparts of stimulation of the otolith organs have been discussed in an earlier section (see pp. 166 ff.); their perceptual effect, viz., their influence on the apparent vertical, has been termed "directional induction" by K L E I N T (1936), with obvious reference to D U N C K E R . In labeling the corresponding motor reactions, it might be convenient to speak of "optostatic responses" in analogy to "optokinetics". The impairment of body balance while observing a slightly but uniformly slanted mountain meadow is an optostatic effect, as is the "dorsal light reaction" in fishes (VON H O L S T , 1950). The occurrence of optostatic eye countertorsion in man has been reported by G R E E N B E R G (1960) (cf. however H O W A R D and TEMPLETON,
1964b).
Note that optic and vestibular signals are not equivalent with respect to information concerning straight body movements. Here only the eye is able to convey reliable information (GIBSON, 1954), and not the vestibular apparatus, contrary to repeated speculations (e.g., by M A G N U S , 1924). Whether and how messages of the latter may yet play some role in this connection, will not be discussed here (cf. B I S C H O F , 1966C, p. 4 8 3 f ) .
C. I n c o n g r u i t y of E q u i v a l e n t Signals Like reconstruction processes, the method of convergent detection is also based on the utilization of redundancy — not, to be sure, within the domain of distal objects, but rather on the level of sensory messages referring to these objects : the organism tries to keep on the safe side by seeking information from different "warrantors". But what if those warrantors are at odds with each other; i.e., what if equivalent messages exhibit incongruity Ì I n general there are three possible organismic reactions in such a situation; all three do also appear in the special case of optic-vestibular incongruity.
1. "Compromise" Solution The
most usual organic reaction encountered with optic-vestibular incon-
gruity is the calculation of a weighted average of the competing messages. The weight factors involved in this type of information processing will be discussed below (see pp. 180ff.). Evidently, the results of the experiments of B I S C H O F and S C H E E R E R (1970), as depicted in Fig. 6, can be understood as compromise solutions of this type. V O N H O L S T (1950) and B R A E M E R (1957) obtained comparable results with fishes.
2. "Alternative" Solution A second possibility is that the organism takes account of only one of the competing signals while entirely blocking the others. The dominance may or may not flip-flop between the signals concerned. Here, again, weight factors are likely to play a role. Effects of this kind may be encountered if very suggestive optic direction cues, for instance a (tilted) dummy room, are viewed in upright body position. Some subjects of K L E I N T (1936) reported that under these circumstances the dummy room appeared to them alternately tilted and upright.
Error Detection and Error Correction
179
3. "Simultaneity" Solution Whereas the two previous solutions to the incongruity problem will always provide an unequivocal basis of orientation, there are cases in which the incompatible signals reach conscious perception simultaneously, without mutual suppression. It may be questioned, of course, whether we can speak of a "solution" here, as the resulting perceptual phenomenon is over-determined in a paradoxical way, unfit for being reacted to. If, for example, a subject remains stationary, surrounded by a dummy room that rotates slowly around a horizontal axis, he generally experiences his body at first to be somewhat tilted in the opposite direction; subsequently he feels that his body keeps rotating, yet that its position no longer changes : the experience of motion ("I am rotating with constant angular velocity") and the experience of position ("I never reach the head-down posture") break apart ( K L E I N T , 1 9 3 7 ; cf. also D U N C K E R ,
1940,
1929; OPPENHEIMER,
1935; METZGER,
1954, p. 150). — Even in the absence of visual information, some subjects
experience two possibilities of setting a luminous line to apparent verticality simultaneously under body tilt of about 1 5 0 ° . This would indicate a conflict within the postural cue system (FISCHER, 1 9 3 0 ; U D O D E H A E S and S C H Ö N E , 1 9 6 9 ; G R A Y B I E L and C L A R K , 1 9 6 2 ; M I L L E R and G R A Y B I E L , 1 9 6 6 ; cf. also below, p. 182).
D. Error Detection and Error Correction The practice of obtaining information about the same item through parallel channels is in some measure analogous to that of modern communication technique, which uses, for conveying a message over a single channel, a number of symbols that exceeds the theoretically required minimum. Both methods utilize signal redundancy, and both do so for the sake of the advantage that in case of error the receiver is supplied with at least (1) a warning that an error is present, but perhaps also (2) with cues for its correction.
1. Error Detection The receiving system can tell from certain irregularities in the signals received — in the case in point, from the incongruity of equivalent messages — at least that an error has occurred, although it may have no idea at which particular place. There is indication that the sensory systems react to this kind of " a l a r m " by forwarding only in a restricted form (with a proviso, as it were) the message likely to be erroneous. The corresponding phenomenal quality is often referred to by the subject with terms like "uncertain", "vague", "feeble", " f a i n t " , "unconvincing", " u n r e a l " , and the like (cf. M E T Z G E R , 1954, pp. 109f.). From experiments with the "haunted swing", for example, it is known that under conditions of strong optic-vestibular ambiguity a weakening, even a loss, of phenomenal verticality may result; in the extreme case, the subject may become unable to assign the terms " u p " and " d o w n " to any direction of his phenomenal space ( K L E I N T , 1936, 1940).
A particularly vigorous reaction of the organism to error warnings due to incongruities within the optic-vestibular domain consists, according to many authors, in the phenomenon of vertigo. Indeed, certain distinct features of this response, like anxiety and release of primitive security reflexes (clinging), may 12*
N . B I S C H O F : Optic-Vestibular Orientation to the Vertical
180
well be understood as emergency measures in the face of threatening decomposition of space orientation. For more details, see the chapters F . V I I I ; I X ; G . I . in this volume.
2. Error Correction In certain communication systems the receiver may not only be informed, by inconsistencies in the message, that an error has occurred, but also where it is probably sited and what the original text most likely was. We have reason to believe that the method of convergent ascertainment in the perceptual system also works as an error-correcting routine in this sense. That is why we have proposed the term "correction principle" here. Above (see p. 178) we introduced the notion of "weight factors" that control the relative power available to equivalent sensory messages when they compete with each other in the case of incongruity (cf. K L E I N T , 1936). The evidence obtained up to now allows us to conjecture that those weight factors tend to be computed according to the following rule : The less a signal is likely to convey an erroneous message (i.e., the more and the better cues speak in favor of its reliability) the higher is it weighted in competition with contradicting equivalent signals ( B R U N S W I K , 1 9 5 6 ; K L I X , 1962). Thus we may tentatively summarize the correction principle as follows : The organism reduces the probability of error in the perceptual processes by providing for equivalent messages through different sensory channels and then " r e l y i n g " exclusively or preferably upon those whose validity is supported by the better cues.
E. D e t e r m i n a n t s of the O p t i c - V e s t i b u l a r W e i g h t R a t i o In his classical investigations on the equilibrium responses of fish during conflicting optic and vestibular stimulation, V O N H O L S T (1950) coined the term "statisch-optische Verhältniszahl" (translatable as "vestibular-optic weight ratio") to refer to a specific parameter that expresses the degree to which the vestibular righting-response prevails over a conflicting dorsal light reaction (cf. also B R A E M E R , 1957). V O N H O L S T defined this coefficient as the cotangent of the angle between the dorso-ventral axis of the fish and the plumb line, recorded under conditions of horizontal light incidence. For the results to be interprétable the angle had to be measured when the fish was in a state of pl^siological equilibrium, i.e., after possible postural reflexes had ceased. Because of the latter condition V O N H O L S T ' S définition of the "vestibular-optic weight ratio" is suitable only for experimental situations in which the subject senses his body to be vertical. For perceptual experiments in which, by body fixation, every possible feed-back of the apparent vertical on body posture is blocked and in which, therefore, bod}' inclination and apparent vertical do not necessarily correspond, a different way of defining the weight ratio is advisable. For reasons to be elucidated below (see p. 182), B I S C H O F and S C H E E R E R (1970) suggest taking the average range of oscillation of the apparent vertical, under conditions of steady rotation of the optical pattern around the visual axis, as an index of the weight ratio discussed. In
d i s t i n c t i o n t o V O N H O L S T ' S t e r m , we feel it w o u l d be better to s p e a k of a n
"ojrtic-
vestibular w e i g h t r a t i o " h e r e , s i n c e t h e v a l u e o f t h e c o e f f i c i e n t —- t h e m e a n a m p l i t u d e o f o s c i l lation i n F i g . 6 — increases m o n o t o n i c a l l y w i t h optic predominance.
181
D e t e r m i n a n t s of t h e O p t i c - V e s t i b u l a r W e i g h t R a t i o
The factors governing the optic-vestibular weight ratio (however
denned)
have not yet been thoroughly investigated, partly because for years authors have engaged in a fruitless debate as to which of the two sensory channels, the optical or the vestibular, is * 'prior" or "more basic" to the perception of the vertical, instead of taking for granted that both are important and simply asking how they interact (for a critical review of this discussion, see G I B S O N , 1952). 1. As far as the optical determinants of the optic-vestibular weight ratio are concerned, we know this much: with labyrinthine stimulation constant,
the
induction of the apparent vertical by a striped field rises with the size of the latter and
with the number of parallel contours w ithin it; when patterns of higher T
complexity are used, the induction effect is enhanced according to the degree of their similarity to natural scenes (for references, see above, p. 160). These findings harmonize well with the correction principle, since each of the factors mentioned apparently makes it more probable — outside the laboratory situation — that the main direction of the retinal stimulus field coincides with the direction of gravity. 2. Less transparent is the biological advantage of certain intra-organismic factors influencing optic-vestibular competition. Between different fish species, for instance, considerable variation in the vestibular-optic weight ratio has been found by V O N H O L S T (1950) and B R A E M E R (1957). In man, typological differences
are asserted to occur : women and children give comparably more weight to visual stimuli than adult males, according to W I T K I N
et al. (1954). It is difficult to
see what all this should have to do with the "reliability" of optical or vestibular cues. Actual needs, moods, attention and the like can also influence the perceptual response in optic-vestibular conflict situations. V O N H O L S T (1948) could demonstrate that the body inclination of laterally illuminated fishes is markedly enhanced when objects of high motivational valence (e.g., food) are presented. The animal, as it were, becomes " a l l e3^es" and consequently rates the light source as a directional cue comparatively higher than he otherwise would, although the light source is not his object of attention at all and certainly has not become any more "reliable." The effect of light i n t e n s ^ upon the weight of optical directional cues ( C U R R A N and L A N E , 1962) may be mentioned in this connection. Findings like these suggest that the correction principle should not be understood as a general postulate, but rather as a heuristic principle. 3. The vestibular-somesthetic influences upon the optic-vestibular weight ratio are, again, interprétable in "reliabiiit}'" terms. According to observations of V O N H O L S T (1950), shaking the water in an aquarium, simulating surf, is apt to enhance considerably the optical component with some fish species. In this experiment, the laterally illuminated animals inclined their bodies more and more towards the light source, onty gradually returning to the previous position after the water movement had stopped. V O N H O L S T also noted that an increase in hydrostatic pressure tends to augment the weight of the vestibular component. This, too, can be understood teleonomically, since water pressure normally rises with depth and is thus positively correlated with the calmness of the water layer and,
consequently, with the reliability of the vestibular positional messages. The most important problem concerning vestibular control of the optic-
vestibular weight ratio is the dependence of the latter upon body inclination.
182
N . B I S C H O F : Optic-Vestibular Orientation to the Vertical
Information about this dependence has been provided for head tilts up to 40° by earlier authors ( H O F M A N N ,
WITKIN,
1949)
1910;
VERNON,
1935;
and extended to 180° by B I S C H O F
WITKIN
and A S C H ,
1948;
and S C H E E R E R (1970) and
S C H Ö N E and U D O D E H A E S (1971). According to the correction principle, the visual induction of the apparent vertical should be minimum in upright position, since with slight or no body tilt the precision of the statolith apparatus is maximal. This expectation was confirmed in all investigations cited. Additionally, however, one would predict a maximal visual induction effect in a body position of 150-180°, since in this range the A-deviation, the variance of the apparent vertical, the subjective uncertainty, and also the influence of various other directional cues, are all known to be maximal (cf. Q u i x and E I J S V O G E L , 1929; B R O W N , 1961; C O R R E I A and G U E D R Y , 1964; 1966;
S C H Ö N E , 1964;
S C H Ö N E and U D O D E H A E S , 1968,
G U E D R Y , 1965;
1971;
B E N S O N and B O D I N ,
U D O D E H A E S and S C H Ö N E ,
1969;
U D O D E H A E S , 1970). Actually, the results of S C H Ö N E and U D O D E H A E S (1971) seem to confirm this expectancy. They exposed to their subjects a stimulus pattern consisting of a single line and a striped field, both rigidly connected so that the stripes formed a fixed angle of either plus or minus 15 degrees with the line. The subject, that is, when adjusting the single line to his apparent vertical, had to move the striped field as well, which therefore kept appearing to him inclined by 15 degrees in clockwise, or counterclockwise direction. In both conditions, the settings for the apparent vertical differed, due to directional induction, and the angle between both settings turned out to be greatest with a body tilt of 150 degrees. However, the authors call attention to their method being rather susceptible to the well-known effect (cf. p. 179) that the vestibular vertical can be equivocal with extreme body tilt. If, say, with a = 150° the vestibular vertical has two different possible positions, it is difficult to tell from the data obtained by S C H Ö N E and U D O D E H A E S whether the visual induction of the apparent vertical was due to a flip-flop kind of effect, or to a greater tolerance of any one of both possible states against continuous deflection. This distinction can easier be made using the method of B I S C H O F and S C H E E R E R (1970). Actually, Fig. 6f (cf. p. 171) shows one case (lowest unbroken line) in which a temporary shift between two possible DC-states of the apparent-vertical might have occurred. Normally, however, there were no such shifts, and the optic-vestibular weight ratio, defined as the average range of oscillation, was most marked with body inclinations between 60 and 90 degrees (cf. Fig. 6). Surprisingly enough, the optic-vestibular weight ratio, when plotted against body tilt, rendered a curve that was highly correlated with the counter-torsion characteristic of the subject's e}^e (cf. Fig. 11).
F i g . 1 1 . M e a n r a n g e o f o s c i l l a t i o n o f l u m i n o u s b e a m s e t t i n g (y/ =
filled
d o t s a n d s o l i d lines)
a n d o c u l a r c o u n t e r t o r s i o n (p = e m p t y d o t s a n d b r o k e n l i n e s ) , p l o t t e d a g a i n s t b o d y t i l t (a) f o r three S s . R a w d a t a a n d m e a n v a l u e s ( f r o m B I S C H O F a n d S C H E E R E R , 1970). O r d i n a t e scale r a t i o if/ : p =
1 . 4 8 c a l c u l a t e d s u c h as t o m i n i m i z e square difference of m e a n s o v e r a l l t h r e e Ss.
N o t e t h a t t h e r e is n o t o n l y a s a t i s f a c t o r y p r o p o r t i o n a l i t y b e t w e e n y a n d p b u t t h a t e v e n t h e factor of p r o p o r t i o n a l i t y c a n b e t a k e n t o b e t h e same i n a l l three subjects: t h e S w i t h the highest a m o u n t of e y e c o u n t e r t o r s i o n ( V p H ) also shows t h e widest oscillations of t h e a p p a r e n t v e r t i c a l i n t h e presence of a r o t a t i n g s t r i p e d field. Considering t h e small n u m b e r of S s , the l a t t e r effect, of c o u r s e , s h o u l d n o t be g e n e r a l i z e d a t t h e m o m e n t
F i g . 1 2 . a) M o d e l o f o p t i c - v e s t i b u l a r o r i e n t a t i o n t o t h e v e r t i c a l . F r o m B I S C H O F a n d ( 1 9 7 0 ) . D o u b l e arrows represent
SCHEEREH
t w o - c o m p o n e n t v a r i a b l e s . C r o s s e d s q u a r e is m u l t i p l i c a t i o n
s y m b o l . F o r t h e r e m a i n i n g g r a p h i c s y m b o l s see t h e l e g e n d s o f F i g s . 1 a n d 3 . M : o c u l o m o t o r sj'stem; V i s : visual s y s t e m ; V e s t : vestibular system, split up into three subsystems U , V a n d W , w h i c h c a n be d i s t i n g u i s h e d f u n c t i o n a l l y b u t m u s t n o t necessarily be a n a t o m i c a l l y different. ( A G , ßc):
d i s t a l s t i m u l u s f i e l d , d e s c r i b e d b y t h e i n c l i n a t i o n o f l i g h t b e a m (A) a n d o f p r i m a r y
a x i s of t h e s t r i p e d
field
(ß) w i t h r e s p e c t t o g r a v i t y ( s u b s c r i p t G ) . ( A n , / ? R ) :
p r o x i m a l s t i m u l u s field i n r e t i n a l c o o r d i n a t e s ponentwise sponding
s u b t r a c t i o n o f h e a d i n c l i n a t i o n (a) a n d e y e
v i s u a l afference,
corresponding
( s u b s c r i p t R ) , r e s u l t i n g f r o m ( A c , ßo)
operationally defined
countertorsion
as a l i n e a r m a p p i n g of
a p p a r e n t i n c l i n a t i o n o f l i g h t b e a m a n d s t r i p e d field, i s s u i n g f r o m
(/>).
by
com-
(IR, Ò R ) : c o r r e -
( A R , / ? R ) . (h,
(IR, 6 R ) b y
ò ): s
componentwise
a d d i t i o n o f a c o m p e n s a t o r y v a r i a b l e (s, s). T h e l a t t e r c a n a l s o b e u n d e r s t o o d t o a c t l i k e a s u b j e c t i v e f r a m e o f r e f e r e n c e ( s u b s c r i p t S ) i n t o w h i c h (IR, ÒR) is m a p p e d t o y i e l d a p p a r e n t t o u r i n c l i n a t i o n s . A c c o r d i n g t o t h e m o d e l , s r e s u l t s f r o m arithmetic
a v e r a g i n g of
con-
vestibular
a n d o p t i c d i r e c t i o n cues, i.e., f r o m a l i n e a r s u p e r p o s i t i o n of t h e v e s t i b u l a r t i l t s i g n a l a ( e q u i v a l e n t t o s i n F i g . 3 ) a n d a q u a n t i t y q w h i c h i t s e l f is a p r o d u c t o f a v e s t i b u l a r w e i g h t f a c t o r /; a n d a n o p t i c a l i n d u c t i o n c o m p o n e n t h. T h e f a c t o r p is o p e r a t i o n a l l y m e a s u r e d b y t h e r a n g e o f o s c i l l a t i o n y/ a s p l o t t e d i n F i g . 1 1 . I t d e r i v e s f r o m t h e addition outputs r }
and r
2
and r,
average
vestibular
e a c h o f w h i c h r e a c t s s i n u s o i d a l l y t o h e a d t i l t t o o n e s i d e . T h e difference
of
r e s u l t s i n a c o m m a n d (r) f o r e y e c o u n t e r t o r s i o n (/?). T h e a p p a r e n t i n c l i n a t i o n s (fa,
bs)
x
r
of t w o
2
o f t h e c o n t o u r s i n t h e o p t i c field a r e " f i l t e r e d " b y a m e c h a n i s m F p r o d u c i n g a q u a n t i t y x w h i c h
References
185
The authors take this correlation as an indication that the optic-vestibular weight ratio as denned by them might be more than an arbitrary construction, and might refer to an actually existing physiological variable. 5
O n l y i n t h e u p r i g h t p o s i t i o n (a =
0 ° ) is t h e r e a s i g n i f i c a n t d i f f e r e n c e b e t w e e n t h e
two
c u r v e s i n F i g . 11, t h e c o u n t e r t o r s i o n b e i n g zero i n t h i s case ( a n d c h a n g i n g s i g n for n e g a t i v e a b s c i s s a v a l u e s ) , w h e r e a s t h e m e a n r a n g e of o s c i l l a t i o n does n o t v a n i s h e n t i r e l y ( a n d r e m a i n s positive when the body
is i n c l i n e d c o u n t e r c l o c k w i s e ) . T h i s d i s c r e p a n c y is a c c o u n t e d f o r
by
B I S C H O F a n d S C H E E R E R (loc. cit.) a s b e i n g t h e e f f e c t o f t h e s u b t r a c t i o n o r a d d i t i o n , r e s p e c t i v e l y , o f t w o s e p a r a t e o t o l i t h o u t p u t c o m p o n e n t s , one of w h i c h s i g n a l s c l o c k w i s e , t h e o t h e r c o u n t e r c l o c k w i s e h e a d i n c l i n a t i o n s ( f o r t h i s d i s t i n c t i o n , cf. a l s o M I L L E R ,
1962, 1966, 1970;
TERINS,
1971).
Relying upon these assumptions and on systems-analytic elaborations previously cited, B I S C H O F and S C H E E R E R summarize their theory about opticvestibular interaction in human perception of verticality in the flow diagram of Fig. 12. Because obtained from the investigation of only a limited number of subjects, this model can only claim the status of a preliminary hypothesis, the confirmation or refinement of which must be left to further research.
References ADRIAN,
E . D . : D i s c h a r g e s f r o m v e s t i b u l a r r e c e p t o r s i n t h e c a t . J . P h y s i o l . ( L o n d . ) 101,
389
(1942). A L E X A N D E R , G . , B A R A N Y , R . : P s y c h o p h y s i o l o g i s c h e U n t e r s u c h u n g e n über die B e d e u t u n g des S t a t o l i t h e n a p p a r a t e s für d i e O r i e n t i e r u n g i m R ä u m e a n N o r m a l e n u n d T a u b s t u m m e n , nebst Beiträgen zur O r i e n t i e r u n g mittels taktiler u n d optischer E m p f i n d u n g e n . Z. P s y c h o l . 37, 3 1 2 - 3 6 2 ; 4 1 4 - 4 5 6 ( 1 9 0 4 ) . ARNDTS,
F . : Z u r F r a g e n a c h der L a g e w a h r n e h m u n g d i e n e n d e n S i n n e s f u n k t i o n e n . Pflügers
A r c h . g e s . P h y s i o l . 204, 5 3 9 - 5 4 0 ASCH, S.E., WITKIN, displaced visual ASCH, S.E., WITKIN,
(1924).
H . A . : S t u d i e s i n s p a c e o r i e n t a t i o n . I . P e r c e p t i o n of t h e u p r i g h t w i t h fields.
J . e x p . P s y c h o l . 38, 3 2 5
(1948a).
H . A . : S t u d i e s i n space o r i e n t a t i o n . I I . P e r c e p t i o n of t h e u p r i g h t w i t h
d i s p l a c e d v i s u a l fields a n d w i t h b o d j ^ t i l t e d . J . e x p . P s y c h o l . 38, 4 5 5 ( 1 9 4 8 b ) . ATTNEAVE,
F . : S o m e i n f o r m a t i o n a l a s p e c t s o f v i s u a l p e r c e p t i o n . P s y c h o l . R e v . 61,
183-193
(1954). AUBERT,
H . : E i n e scheinbare bedeutende
D r e h u n g v o n O b j e k t e n b e i N e i g u n g des
n a c h r e c h t s o d e r l i n k s . V i r c h o w s A r c h . 20, 3 8 1 - 3 9 3
Kopfes
(1861).
B E C K , K . : U n t e r s u c h u n g e n über d e n statischen A p p a r a t v o n G e s u n d e n u n d T a u b s t u m m e n . Z.
P s y c h o l . 46, 3 6 2 - 3 7 8
BENDER, M.B., und
H i r n v e r l e t z t e n . A r c h . P s y c h i a t . N e r v e n k r . 181, 1 9 3 - 2 1 2
BENJAMINS, C.E., bei
(1912).
J U N G , R . : A b w e i c h u n g e n der subjektiven optischen V e r t i k a l e n bei Gesunden HUIZINGA,
(1948).
E . : U n t e r s u c h u n g e n über die F u n k t i o n des V e s t i b u l a r a p p a r a t e s
d e r T a u b e . P f l ü g e r s A r c h . g e s . P h y s i o l . 217, 1 0 5 ( 1 9 2 7 ) .
5 Interprétable p e r h a p s as t h e o u t p u t of t h e u t r i c l e s , w h i c h , d u e to t h e i r a n a t o m i c a l site, s h o u l d y i e l d a f f e r e n t m e s s a g e s r o u g h l y p r o p o r t i o n a l t o t h e s i n e o f h e a d t i l t (cf. V O N
HOLST,
1950). e q u a l s t h e a p p a r e n t i n c l i n a t i o n of t h e s t r i p e d
field's
p r i m a r y axis. The optical induction
q u a n t i t y /t, t h e n , i s a p e r i o d i c f u n c t i o n o f x. b ) T h e m o d e l p r e d i c t s t h a t one single f u n c t i o n h(x) m a y b e c a l c u l a t e d f r o m any g i v e n c u r v e i n F i g . 6 (see p . 1 7 0 — 1 7 1 ) b y : 1. r e a s s i g n i n g t h e o r d i n a t e v a l u e s t o t h e o b l i q u e c o - o r d i n a t e s y s t e m c o n s i s t i n g of t h e d i a g o n a l s a n d t h e abscissa i n F i g . 6 ; 2. n o r m a l i z i n g t h e t r a n s f o r m e d c u r v e t o t h e m e a n o s c i l l a t i o n l e v e l ; 3. d i v i d i n g t h e r e s u l t i n g c u r v e t h r o u g h i t s m e a n r a n g e of o s c i l l a t i o n . F i g . 1 2 b s h o w s t h a t t h i s p r e d i c t i o n is v a l i d . D r a w n are 6 c u r v e s c a l c u l a t e d as d e s c r i b e d a b o v e f r o m t h e m e a n - v a l u e curves for
one
S u b j e c t a t 6 d i f f e r e n t b o d y t i l t s . A s i s a p p a r e n t , o n e s i n g l e e m p i r i c a l c u r v e h(x) r e s u l t s . W h e n h(x) i s i n s e r t e d i n b l o c k II i n F i g . 1 2 a , t h e o r e t i c a l A c - v a l u e s y i e l d i n g a p e r m a n e n t h = be c o m p u t e d ; t h e y are s h o w n i n white i n F i g . 6
0 can
186
N . B I S C H O F : Optic-Vestibular O r i e n t a t i o n to the V e r t i c a l
B E N S O N , A . J . , B O D I N , M . A . : E f f e c t of o r i e n t a t i o n t o t h e g r a v i t a t i o n a l v e r t i c a l o n f o l l o w i n g r o t a t i o n a b o u t a h o r i z o n t a l a x i s . A c t a o t o - l a r y n g . ( S t o c k h . ) 61, 5 1 7
nystagmus (1966).
B E R I T O F F , J . S . : S p a t i a l o r i e n t a t i o n of m a n a n d a n i m a l s . 2 2 . I n t . K o n g r . P h y s i o l . S c i . E x c e r p t a Med.
I n t . C o n g r . S e r . 47, 3 ( 1 9 6 2 ) .
BERITOFF,
J . S . : Les
mechanism
nerveux
de
l'orientation spatiale
chez
l'homme.
Neuro-
p s y c h o l o g i a 1, 2 3 3 ( 1 9 6 3 ) . BERTINI,
M . : S t u d i o s u l l a n a t u r a dell'effeto
P s i c o l o g i a 58, 1 - 3 5 BISCHOF, In: H.
"frame"
nella percezione della verticale.
Riv.
(1964).
N . : Erkenntnistheoretische
Grundlagenprobleme
der
Wahrnehmungspsychologie.
H a n d b u c h d e r P s y c h o l o g i e , B d . 1/1, B e w u ß t s e i n u n d W a h r n e h m u n g . W . M E T Z G E R E R K E , E d s . p p . 2 1 - 7 8 . G ö t t i n g e n : V e r l a g f. P s y c h o l o g i e
and
1966a.
B I S C H O F , N . : P s y c h o p h y s i k der R a u m w a h r n e h m u n g . I b i d . P . 3 0 7 - 4 0 8 , 1966 b . B I S C H O F , N . : S t e l l u n g s - , S p a n n u n g s - u n d L a g e w a h r n e h m u n g . I b i d . P . 4 0 9 ^ 4 9 7 , 1 9 6 6 c. BISCHOF,
N., SCHEERER,
E . : Systemanalyse
der
optisch-vestibulären I n t e r a k t i o n bei
der
W a h r n e h m u n g d e r V e r t i k a l e n . P s y c h o l . F o r s c h . 34, 9 9 - 1 8 1 ( 1 9 7 0 ) . BITTERMANN,
M.E., WORCHEL,
P . : The phenomenological
a n d s i g h t e d s u b j e c t s . A m e r . J . P s y c h o l . 66, 5 8 8
vertical and horizontal in blind
(1953).
B O R I N G , E . G . : V i s u a l p e r c e p t i o n a s i n v a r i a n c e . P s y c h o l . R e v . 59, field.
141. T h e G i b s o n i a n v i s u a l
P s y c h o l . R e v . 59, 2 4 6 ( 1 9 5 2 ) .
B R A E M E R , W . : Verhaltensphysiologische
Untersuchungen a m optischen A p p a r a t bei Fischen.
Z . v e r g i . P h y s i o l . 39, 3 7 4 - 3 9 8 ( 1 9 5 7 ) . B R A E M E R , W . : A c r i t i c a l r e v i e w of the s u n - a z i m u t h h y p o t h e s i s . C o l d S p r . H a r b . S y m p . B i o l . 15, 4 1 3
B R A N D T , U . , F L U U R , E . : Postural perceptions respect to a presented force
field.
a n d c o m p e n s a t o r y d i s p l a c e m e n t s of the eye i n
A c t a o t o - l a r y n g . ( S t o c k h . ) 62, 2 5 2 - 2 6 4 ( 1 9 6 6 ) .
B R A N D T , U . , F L U U R , E . : Postural perceptions of a f o r c e
quant.
(1960).
field
a n d eye
displacements
during the variation
a c t i n g i n t h e m i d f r o n t a l p l a n e . A c t a o t o - l a r y n g . ( S t o c k h . ) 63, 4 9 - 6 4 ( 1 9 6 7 ) .
B R E C H E R , G . A . , S C H U B E R T , G . : Über optische L o k a l i s a t i o n u n d Augenstellung bei Vor-Rückw ä r t s n e i g u n g o d e r e x z e n t r i s c h e r R o t a t i o n d e s K ö r p e r s . Z . S i n n e s p h y s i o l . 65, 1 ( 1 9 3 4 ) . B R O W N , L . : O r i e n t a t i o n t o t h e v e r t i c a l d u r i n g w a t e r i m m e r s i o n . A e r o s p a c e M e d . 32,
209-217
(1961). B R U N S W I K , E . : W a h r n e h m u n g u n d Gegenstandswelt. B R U N S W I K , E . : T h i n g constancy
Leipzig, Wien: Deuticke
as m e a s u r e d b y c o r r e l a t i o n coefficients.
1934.
Psychol. Rev.
47,
68 (1940). B R U N S W I K , E . : P e r c e p t i o n a n d the representative d e s i g n of p s y c h o l o g i c a l e x p e r i m e n t s . l e y : U n i v e r s i t y of C a l i f o r n i a P r e s s
Berke-
1956.
B R U N S W I K , E . , K A R D O S , L . : D a s Duplizitätsprinzip i n der Theorie der
Farbenwahrnehmung.
Z . P s y c h o l . I l l , 315 (1929). B Ü H L E R , K . : D i e Erscheinungsweisen der F a r b e n . J e n a : CARPENTER, Exp.
R.H.S.,
B L A K E M O R E , C. : Interactions
1922.
between
orientations in h u m a n vision.
B r a i n R e s . 18, 2 8 7 — 3 0 3 ( 1 9 7 3 ) .
C L A R K , B., G R A Y B I E L , A . : Perception
of
the visual horizontal i n n o r m a l
and
labyrinthine
d e f e c t i v e s u b j e c t s d u r i n g p r o l o n g e d r o t a t i o n . A m e r . J . P s y c h o l . 79, 6 0 8 - 6 1 2 ( 1 9 6 6 a ) . C L A R K , B . , G R A Y B I E L , A . : Factors contributing to the delay i n the perception
of the o c u l o -
g r a v i c i l l u s i o n . A m e r . J . P s y c h o l . 79, 3 7 7 - 3 8 8 ( 1 9 6 6 b ) . C O L E N B R A N D E R , A . : E y e a n d otoliths: A centrifuge s t u d y on the ocular response to otolith s t i m u l a t i o n . A e r o m e d . A c t a ( S o e s t e r b e r g ) 9, 4 5 - 9 1 COLTHEART,
M . : Visual feature-analyzers
(1963-1964).
a n d after-effects of
tilt and
curvature.
Psychol.
R e v . 78, 1 1 4 — 1 2 1 ( 1 9 7 1 ) . CORREIA,
M.J., GUEDRY,
F . E . : Influence
of
labyrinth orientation relative to
gravity
on
responses e l i c i t e d b y s t i m u l a t i o n of t h e h o r i z o n t a l s e m i c i r c u l a r c a n a l s . U . S . N a v a l S c h o o l of A v i a t . M e d . N . A . S . A . j o i n t r e p o r t , P e n s a c o l a , F l a . , 1964. C O R R E I A , M . J . , H I X S O N , W . C . , N I V E N , J . : O t o l i t h shear a n d the visual perception direction. Discrepancies
and a proposed resolution. N a m i - 9 5 1 , N a s a Order R-93.
cola, F l a : N a v a l Aerospace M e d . Inst., CULBERT,
37, 8 1 - 9 3
Pensa-
1965.
S . S . : D i r e c t i o n a l after-effects f o l l o w i n g s y s t e m a t i c
J . Psychol. (Provincetown)
of force
(1954).
d i s t o r t i o n of t h e v i s u a l
field.
187
References
C U R R A N , C R . , L A N E , H . L . : O n t h e r e l a t i o n of some factors t h a t c o n t r i b u t e t o estimates of v e r t i c a l i t y . J . e x p . P s y c h o l . 64, 2 9 5 ( 1 9 6 2 ) . D A Y , R . H . , W A D E , N . J . : T h ereference for visual n o r m a l i z a t i o n . A m e r . J . P s y c h o l . 82,191-267 (1969). D E R
A.:
WORT,
Uber
vestibulär
induzierte
Dysmorphopsien.
Dtsch.
Z. Nervenheilk.
170,
2 9 5 - 3 2 5 (1953). D U N C K E R , K . : Ü b e r i n d u z i e r t e B e w e g u n g . P s y c h o l . F o r s c h . 12, 1 8 0 ( 1 9 2 9 ) . F I S C H E R , M . H . : Messende U n t e r s u c h u n g e n über die Gegenrollung des Auges u n d die L o k a l i s a t i o n d e r scheinbaren V e r t i k a l e n b e i seitlicher N e i g u n g des K o p f e s , des S t a m m e s u n ddes G e s a m t k ö r p e r s . I . N e i g u n g e n b i s z u 4 0 ° . G r a e f e s A r c h i v 118, 6 3 3 - 6 8 0 ( 1 9 2 7 ) . FISCHER, M . H . :
Messende U n t e r s u c h u n g e n über die Gegenrollung der A u g e n u n d die L o k a l i -
s a t i o n d e r scheinbaren V e r t i k a l e n b e i seitlicher N e i g u n g des Gesamtkörpers bis z u 360°. I I . U n t e r s u c h u n g e n a n N o r m a l e n . G r a e f e s A r c h i v 123, 4 7 6 - 5 0 8 ( 1 9 3 0 a ) . FISCHER,
M . H . :
beider
I I I .Untersuchungen
Vestibularapparate
a n einem
u n d einem
E r t a u b t e n m i t Funktionsuntüchtigkeit
einseitig
Labyrinthlosen.
Graefes
Archiv
123,
509-531 (1930b). FLUUR,
E . , M E L L S T R Ö M , A .: U t r i c u l a r stimulation a n d oculomotor reactions.
Laryngoscope
( S t . L o u i s ) 53, 1 7 0 1 - 1 7 1 2 ( 1 9 7 0 a ) . FLUUR,
E . , M E L L S T R Ö M , A . : Saccular stimulation a n d oculomotor reactions.
Laryngoscope
( S t . L o u i s ) 53, 1 7 1 3 - 1 7 2 1 ( 1 9 7 0 b ) . G A R T E N , S.: Über die G r u n d l a g e n unserer Orientierung i m R a u m . A b h . M a t h . P h y . Klasse, S a c h s . A k a d . 36, 4 3 1 ( 1 9 2 0 ) . G E I S S L E R , H . G . : Z u r A n a l y s e adaptiver Prozesse b e i der Orientierung i m R a u m . Z . P s y c h o l . 171,
(1965).
G E L B , A .: D i e psychologische Ber. GIBSON,
B e d e u t u n g pathologischer Störungen der Rau m Wahrnehmungen.
9 . K o n g r . f. e x p . P s y c h o l . M ü n c h e n . J e n a 2 3 - 8 0 , 1 9 2 6 . J . J . : A d a p t a t i o n , after-effect,
a n d contrast
i n the perception
S i m u l t a n e o u s contrasts a n d t h e areal r e s t r i c t i o n of t h e after-effect.
of t i l t e d lines. I I . J . e x p . P s y c h o l . 20,
5 5 3 - 5 6 9 (1937 a ) . GIBSON,
J . J . : Adaptation w i t h negative
GIBSON, J.J.: GIBSON,
T h e perspective
after-effects.
P s y c h o l . R e v . 44, 2 2 2 - 2 4 4
(1937b).
of t h e visual w o r l d . B o s t o n : H o u g h t o n Mifflin C o m p . 1950.
J . J . : T h e relation between
v i s u a l a n d postural determinants of the
phenomenal
v e r t i c a l . P s y c h o l . R e v . 59, 3 7 0 - 3 7 5 ( 1 9 5 2 ) . GIBSON, J.J.:
T h e v i s u a l perception of objective motion a n d subjective movement.
Psychol.
R e v . 61, 3 0 4 ( 1 9 5 4 ) . G I B S O N , J . J . : T h e senses c o n s i d e r e d as p e r c e p t u a l s y s t e m s . B o s t o n : H o u g h t o n M i f f l i n C o m p . 1966. G I B S O N , J . J . , M O W R E R , O . H . : D e t e r m i n a n t s of t h e perceived v e r t i c a l a n d h o r i z o n t a l . P s y c h o l . R e v . 45, 3 0 0 ( 1 9 3 8 ) . G I B S O N , J . J . , R A D N E R , M . : A d a p t a t i o n , after-effect l i n e s . J . e x p . P s y c h o l . 20, 4 5 2 - 4 6 7 ; GIROTTI,
G . :L a percezione
a n d contrast i n the perception of tilted
5 5 3 - 5 6 9 (1937).
dello spazio i n rapporto
alla neuropatologia.
I . Determinazione
d e l l a v e r t i c a l e v i s i v a e d e l v e r t i c e a c u s t i c o . A r c h . P s i c o l . N e u r o l . P s i c h i a t . 24,
175-336
(1963). G I R O T T I , G . , B O R D O G N A , A . : L a determinazione della verticale e del piano mediano visivi nelle c o m p r e s s i o n i v e s t i b u l a r i . R i v . P s i c o l o g i a 57, 3 0 1 - 3 3 9 ( 1 9 6 3 ) . G R A Y B I E L , A . , C L A R K , B . : P e r c e p t i o n of t h e horizontal or vertical w i t h head upright, o n t h e side,
a n d inverted
under
static
conditions,
a n d during exposure
to centripetal
force.
A e r o s p a c e M e d . 33, 1 4 7 - 1 5 5 ( 1 9 6 2 ) . G R A Y B I E L , A . , M D L L E R , E . F . I I , N E W S O M , B . D . , K E N N E D Y , R . S . : T h e effect of w a t e r
on perception
of t h e oculogravic
A c t a oto-laryng. (Stockh.)
illusion i n normal a n d labyrinthine-defective
immersion
subjects.
65, 5 9 9 - 6 1 0 ( 1 9 6 8 ) .
G R E E N B E R G , G . : V i s u a l i n d u c t i o n of eye torsion, as measured w i t h a n after-image
technique,
in relation to visual perception of t h e vertical. P h . D . D i s s . D u k e U n i v . , 1960. G U E D R Y , F . E . : O r i e n t a t i o n of t h e r o t a t i o n - a x i s relative to g r a v i t y : its influence o n n y s t a g m u s and
t h e sensation of r o t a t i o n . A c t a o t o - l a r y n g . (Stockh.)
HALPERN,
L . : Sensorimotor
( C h i c . ) 62, 3 3 0 - 3 5 4 ( 1 9 4 9 ) .
induction
i n disturbed
60, 3 0 ( 1 9 6 5 ) .
equilibrium. Arch.
Neurol.
Psychiat.
188
N . B I S C H O F : O p t i c - V e s t i b u l a r O r i e n t a t i o n to the V e r t i c a l
HASEGAWA,
T.:
Labyrinthreflexe nach Abschleuderung
der
Otolithenmembranen.
Pflügers
A r c h . g e s . P h y s i o l . 236, 5 8 9 ( 1 9 3 5 ) . H O F M A N N , F . B . : Über d e n Einfluß schräger K o n t u r e n a u f die optische L o k a l i s a t i o n bei seitl i c h e r K o p f n e i g u n g . P f l ü g e r s A r c h . g e s . P h y s i o l . 136,
(1910).
H O F M A N N , F . B . , B I E L S C H O W S K Y , A . : Über die E i n s t e l l u n g der scheinbaren H o r i z o n t a l e n u n d V e r t i k a l e n bei B e t r a c h t u n g eines v o n schrägen K o n t u r e n erfüllten Gesichtsfeldes.
Pflügers
A r c h . g e s . P h y s i o l . 126, 4 5 3 - 4 7 5 ( 1 9 0 9 ) . H O L S T , E . V O N : Q u a n t i t a t i v e U n t e r s u c h u n g e n über UmstimmungsVorgänge i m Zentralnervens y s t e m . I . D e r Einfluß des " A p p e t i t s " a u f das G l e i c h g e w i c h t s v e r h a l t e n b e i P t e r o p h y l l u m . Z . v e r g i . P h y s i o l . 31, 1 3 4 ( 1 9 4 8 ) . H O L S T , E . V O N : D i e A r b e i t s w e i s e d e s S t a t o l i t h e n a p p a r a t e s b e i F i s c h e n . Z . v e r g i . P h y s i o l . 32, 6 0 - 1 2 0 (1950). HOLST,
E . V O N , G R I E S E B A C H , E . : Einfluß des B o g e n g a n g s s y s t e m s a u f d i e " s u b j e k t i v e
Lot-
r e c h t e " b e i m M e n s c h e n . N a t u r w i s s e n s c h a f t e n 38, 6 7 - 6 8 ( 1 9 5 1 ) . H O L S T , E . V O N , M I T T E L S T A E D T , H . : D a s R e a f f e r e n z p r i n z i p . N a t u r w i s s e n s c h a f t e n 37, 4 6 4 ( 1 9 5 0 ) . H O W A R D , L P . , T E M P L E T O N , W . B . : T h e effect of s t e a d y
fixation
o n t h e j u d g e m e n t of r e l a t i v e
d e p t h . J . e x p . P s y c h o l . 16, 1 9 3 - 2 0 3 ( 1 9 6 4 a ) . H O W A R D , L P . , T E M P L E T O N , W . B . : V i s u a l l y - i n d u c e d eye torsion a n d
tilt adaptation. Vision
R e s . 4, 4 3 3 - 4 3 7 ( 1 9 6 4 b ) . H O W A R D , L P . , T E M P L E T O N , W . B . : H u m a n spatial orientation. N e w Y o r k : Wile}' HUBEL,
D . H . , W I E S E L , T . N . : Receptor
fields
of single n e u r o n s
1966.
i n the cat's striate
cortex.
J . P h y s i o l . ( L o n d . ) 148, 5 7 4 ( 1 9 5 9 ) . H U I Z I N G A , E . : T h e p h y s i o l o g i c a l a n d c l i n i c a l i m p o r t a n c e of e x p e r i m e n t a l w o r k o n t h e pigeon's l a b y r i n t h . J . L a r y n g . 69, 2 6 0 ( 1 9 5 5 ) . J O N G K E E S , L . B . W . : O n t h e f u n c t i o n o f t h e s a c u l e . A c t a o t o - l a r y n g . ( S t o c k h . ) 38, 1 8 - 2 6 ( 1 9 5 0 ) . JONGKEES, L.B.W.:
S o m e r e m a r k s o n t h e f u n c t i o n of t h e v e s t i b u l a r o r g a n . R e p o r t s of
the
I n s t i t u t e o f L a r y n g . O t o l . 2, 1 ( 1 9 5 2 ) . KARDOS,
L . : Dingfarben Wahrnehmung
KARDOS,
L . : Die " K o n s t a n z " phänomenaler D i n g m o m e n t e .
zur
Problemgeschichte
u n d Duplizitätstheorie. Z. P s y c h o l .
der Psychologie
108,
240
(1928).
I n : E . B R U N S W I K E d . Beiträge
(Bühler-Festschrift). J e n a :
1929.
K E L L O G G , R . S . : D y n a m i c c o u n t e r r o l l i n g of t h e eye i n n o r m a l s u b j e c t s a n d i n p e r s o n s w i t h b i l a t e r a l l a b y r i n t h i n e defects. N A S A Sp-77, 1 9 5 - 2 0 2 (1965). KLEINT,
H . : Versuche über die W a h r n e h m u n g .
Z . P s y c h o l . 138,
141, 9 ( 1 9 3 7 ) ; 142, 2 5 9 ( 1 9 3 8 ) ; 143, 2 9 9 ( 1 9 3 8 ) ; 148,
1 ( 1 9 3 6 ) ; 140,
1 4 5 ( 1 9 4 0 ) ; 149, 3 1
109
(1937);
(1940).
K L I X , F . : Elementaranalysen zur P s y c h o p h y s i k der R a u m w a h r n e h m u n g . V E B D t s c h . Verlag d. Wissensch., Berlin,
1962.
K L O P P , H . W . : Ü b e r die E n t w i c k l u n g u n d d e n A b b a u des a u f r e c h t e n B i l d e s . F o r t s c h r . N e u r o l . P s y c h i a t . 24, 2 7 ( 1 9 5 6 ) . K Ö H L E R , W . , W A L L A C H , H . : F i g u r a i after-effects. KOFFKA,
K . : P r i n c i p l e s of G e s t a l t P s y c h o l o g y .
P r o c . A m e r . P h i l . S c i . 88, 2 6 9 - 3 5 7 ( 1 9 4 4 ) . Routledge
and Kegan Paul: London,
K O H L E R , I . : Über A u f b a u u n d W a n d l u n g e n der W a h r n e h m u n g s w e l t . W i s s . 227,
Wien,
1935.
S i t z b e r . Österr. A k a d .
1951.
K Ö H L E R , L : Umgewöhnung i m Wahrnehmungsbereich.
D i e P y r a m i d e 3, 9 2 ( 1 9 5 3 ) .
K O H L E R , I. : Interne u n d externe Organisation in der W a h r n e h m u n g .
P s y c h o l . B e i t r . 6,
426
(1961). LINSCHOTEN,
J .:
Experimentelle
Untersuchung
der
sogenannten
induzierten
Bewegung.
P s y c h o l . F o r s c h . 24, 3 4 - 9 2 ( 1 9 5 2 ) . L O W E N S T E I N , 0.: Labyrinth and equilibrium. I n : Physiol. Mechanisms in A n i m a l Behav. exp. B i o l . S y m p . I V . Cambridge: U n i v . Press L O W E N S T E I N , O., R O B E R T S ,
T.D.M.:
Soc.
1950.
T h e e q u i l i b r i u m f u n c t i o n of t h e o t o l i t h o r g a n s of
T h o r n b a c k R a y ( R a j a c l a v a t a ) . J . P h y s i o l . ( L o n d . ) 110, 3 9 2 L O R E N Z , K . : G e s t a l t W a h r n e h m u n g als Quelle wissenschaftlicher
the
(1950). Erkenntnis. Z. exp.
angew.
P s y c h o l . 6, 1 1 8 ( 1 9 5 9 ) . M A C C O R Q U O D A L E , K . , M E E H L , P . E . : O n a distinction between hypothetical
constructs
and
i n t e r v e n i n g v a r i a b l e s . P s y c h o l . R e v . 55, 9 5 - 1 0 7 ( 1 9 4 8 ) . MCFARLAND, J.H.,
C L A R K S O N , F . : P e r c e p t i o n of o r i e n t a t i o n : A d a p t a t i o n t o l a t e r a l b o d y - t i l t .
A m e r . J . P s y c h o l . 79, 2 6 5 - 2 7 1 ( 1 9 6 6 ) .
189
References
M A C K A Y ,
D . M . : C e r e b r a l o r g a n i z a t i o n a n d t h e c o n s c i o u s c o n t r o l of a c t i o n . I n : B r a i n
conscious Springer
experience.
J.C.
ECCLES,
Ed.
422-445,
Berlin-Heidelberg-New
and
York:
1966.
MCNALLY, W.J.:
F i v e l e c t u r e s o n t h e p h y s i o l o g y o f t h e e a r . A n n . O t o l . 38, 1 1 8 0
M A G N U S , R . : Körperstellung. B e r l i n : Springer MANN,
pp.
C . W .: V i s u a l factors
i n the perception
(1929).
1924. o f v e r t i c a l i t y . J . e x p . P s y c h o l . 44,
460-464
(1952a). M A N N , C . W . : A n a n a l y s i s o f t h e o c u l o g y r a l e f f e c t . J . A v i a t . M e d . 23, 2 4 6 - 2 5 3 ( 1 9 5 2 b ) . M A X W E L L , S.S.: Labyrinth and Equilibrium.Philadelphia-London:
1923.
M E T Z G E R , W . : Z u r anschaulichen Repräsentation v o n Rotationsvorgängen u n d ihre D e u t u n g d u r c h G e s t a l t k r e i s l e h r e u n d G e s t a l t t h e o r i e . Z . S i n n e s p h y s i o l . 68, 2 6 1 M E T Z G E R , W . : Psychologie.
(1940).
D a r m s t a d t : Steinkopff 1954 ; 1968 . 2
3
M E Y E R Z U M G O T T E S B E R G E , A . , P L E S T E R , D . : N a c h w e i s der s t a t i s c h e n F u n k t i o n des
Sacculus
b e i m M e n s c h e n . A r c h . O h r . - , N a s . - , u . K e h l k . - H e i l k . 185, 2 5 4 - 2 5 8 ( 1 9 6 5 ) . MILLER,
E . F . I I . : C o u n t e r - r o l l i n g of t h e h u m a n e y e s p r o d u c e d
b y head tilt w i t h respect
to
g r a v i t y . A c t a o t o - l a r y n g . ( S t o c k h . ) 54, 4 7 9 - 5 0 1 ( 1 9 6 2 ) . M I L L E R , E . F . I L : Ocular counter-rolling. I n : R . J . W O L F S O N ,
E d . The vestibular system
its diseases. P h i l a d e l p h i a : U n i v . of P e n n s y l v a n i a P r e s s , 2 2 9 - 2 4 1 , MILLER,
E.F.IL:
measurements.
E v a l u a t i o n of o t o l i t h o r g a n f u n c t i o n b y
m e a n s of o c u l a r
counter-rolling
I n : J . S T A H L E , E d . V e s t i b u l a r function o n earth a n d i n space.
Pergamon Press, 97-111,
and
1966. Oxford:
1970.
M I L L E R , E . F . I L , G R A Y B I E L , A . : A c o m p a r i s o n of o c u l a r c o u n t e r - r o l l i n g m o v e m e n t s b e t w e e n normal
persons a n d
deaf
subjects w i t h bilateral l a b y r i n t h i n e defects. A n n .
oto-rhino-
l a i y n g . 72, 8 8 5 ( 1 9 6 3 ) . M I L L E R , E . F . I L , G R A Y B I E L , A . : R o l e of t h e o t o l i t h o r g a n s i n t h e p e r c e p t i o n of h o r i z o n t a l i t y . A m e r . J . P s y c h o l . 79, 2 4 - 3 7 ( 1 9 6 6 ) . M I T T E L S T A E D T , H . : T h e a n a l y s i s of b e h a v i o r i n t e r m s of c o n t r o l s y s t e m s . I n : B . S C H A F F N E R , Ed.
G r o u p Processes.
T r a n s a c t i o n s o f t h e 5. C o n f . o f t h e J . M a c y F o u n d . N e w Y o r k
45,
1960. M I T T E L S T A E D T , H . : B a s i c s o l u t i o n s to a p r o b l e m of a n g u l a r o r i e n t a t i o n . I n : R . F . R E I S S , N e u r a l Theory a n d M o d e l i n g , 259-272. Stanford U n i v . Press
Ed.
1964.
M I T T E L S T A E D T , H . : Grundprobleme der Analyse v o n Orientierungsleistungen. J a h r b . d. M a x P l a n c k - G e s . p. 121, MORANT,
1966.
R.B., ARONOFF,
J . C . : Starting position, adaptation, and visual framework
fluencing the perception
as i n -
o f v e r t i c a l i t y . J . e x p . P s y c h o l . 71, 6 8 4 - 6 8 6 ( 1 9 6 6 ) .
M O R A N T , R . B . , B E L L E R , H . K . : A d a p t a t i o n t o p r i s m a t i c a l l y r o t a t e d v i s u a l fields. S c i e n c e
148,
530 (1965). MORANT,
R.B., HARRIS,
J . : T w o different aftereffects of d i s p o s u r e t o v i s u a l t i l t s . A m e r . J .
P s y c h o l . 78, 2 1 8 - 2 2 6 ( 1 9 6 5 ) . MORANT,
R.B., MISTOVICH,
M . : T i l t after-effects b e t w e e n the v e r t i c a l a n d h o r i z o n t a l
P e r c e p t . M o t . S k i l l s 10, 7 5 - 8 1
axes.
(1960).
M Ü L L E R , G . E . : U b e T d a s A u b e r t s c h e P h ä n o m e n . Z . S i n n e s p h y s i o l . 49, 1 0 9 - 2 4 6 ( 1 9 1 6 ) . NAYLOR,
G . F . : Effects
17-28 NAYLOR,
of stress o n t h e p e r c e p t i o n
G.F.K.:
consistency.
15,
Subjective
j u d g e m e n t s of t h e v e r t i c a l : A n e s t i m a t e of t h e i r n a t u r e
field
and
A u s t r a l i a n J . P s y c h o l . 17, 1 8 8 - 1 9 2 ( 1 9 6 5 ) .
O I I W A K I , S. : A n i n v e s t i g a t i o n of tonic
of d i r e c t i o n . A u s t r a l i a n J . P s y c h o l .
(1963).
figurai
a d a p t a t i o n : a s t u d y w i t h i n t h e f r a m e w o r k of
t h e o r y . A m e r . J . P s y c h o l . 74, 3 - 1 6
sensory-
(1961).
O P P E N H E I M E R , E . : Optische Versuche über R u h e u n d Bewegung.
P s y c h o l . F o r s c h . 20,
1-46
(1935). P A S S E Y , G . E . : T h e p e r c e p t i o n of t h e v e r t i c a l . I V . A d j u s t m e n t to the v e r t i c a l w i t h n o r m a l a n d t i l t e d v i s u a l f r a m e s o f r e f e r e n c e s , J . e x p . P s y c h o l . 40, 7 3 8 - 7 4 5 ( 1 9 5 0 ) . P E R L M A N , H . B . : T h e s a c c u l e , o b s e r v a t i o n s f r o m a d i f f e r e n t i a t e d r e i n f o r c e d a r e a of t h e s a c c u l a r w a l l i n m a n . A c t a o t o - l a r y n g o l . ( S t o c k h . ) 32, 6 7 8 ( 1 9 4 0 ) . Q u i x , F . H . , E I J S V O G E L , M . H . : E x p e r i m e n t e ü b e r die F u n k t i o n des O t o l i t h e n a p p a r a t e s M e n s c h e n . Z . H a l s - , N a s . - u . O h r e n h e i l k . 23, 6 8 - 9 6 ( 1 9 2 9 ) .
beim
N. BISCHOF:
190
Uber
H.:
SCHÖNE,
O p t i c - V e s t i b u l a r O r i e n t a t i o n to the V e r t i c a l
den Einfluß der S c h w e r k r a f t auf die A u g e n r o i lung u n d auf die W a h r n e h -
m u n g d e r L a g e i m R a u m . Z . v e r g i . P h y s i o l . 46, 5 7 - 8 7 ( 1 9 6 2 ) . S C H Ö N E , H . : O n t h e R o l e o f g r a v i t y i n h u m a n s p a t i a l o r i e n t a t i o n . A e r o s p a c e M e d . 35,
764
(1964). SCHÖNE, H., PARKER,
D . E . : I n v e r s i o n of t h e effect of i n c r e a s e d g r a v i t y o n t h e
subjective
v e r t i c a l . N a t u r w i s s e n s c h a f t e n 54, 2 8 8 - 2 8 9 ( 1 9 6 7 ) . S C H Ö N E , H . , P A R K E R , D . E . , M O R T A G , H . G . : S u b j e c t i v e v e r t i c a l as a f u n c t i o n of b o d y p o s i t i o n a n d g r a v i t y m a g n i t u d e . N a t u r w i s s e n s c h a f t e n 54, 2 8 8 ( 1 9 6 7 ) . S C H Ö N E , H . , U D O D E H A E S , H . : P e r c e p t i o n of g r a v i t y - v e r t i c a l as a f u n c t i o n of h e a d a n d t r u n k p o s i t i o n . Z . v e r g i . P h y s i o l . 60, 4 4 0 - 4 4 4 ( 1 9 6 8 ) . S C H Ö N E , H . , U D O D E H A E S , H . : Space orientation i n h u m a n s w i t h special reference to i n t e r a c t i o n of v e s t i b u l a r , somaesthetic SCHNEIDER,
the
a n d v i s u a l i n p u t s . B i o k y b e r n e t i k 3, 1 7 2 - 1 9 1 ( 1 9 7 1 ) .
C . W . , B A R T L E Y , S . H . : A s t u d y o f t h e e f f e c t s of m e c h a n i c a l l y i n d u c e d t e n s i o n o f
t h e n e c k m u s c l e s o n t h e p e r c e p t i o n of v e r t i c a l i t y . J . P s y c h o l . ( P r o v i n c e t o w n )
54,
245-248
(1962). S T I G L E R , R . : Versuche über die Beteiligung der Schwereempfindung
a n d e r O r i e n t i e r u n g des
M e n s c h e n i m R ä u m e . Pflügers A r c h . ges. P h y s i o l . 148, 5 7 3 - 5 8 4 (1912). SUTHERLAND,
N.S.:
Figurai
after-effects
and
apparent
size. Q u a r t . J . e x p .
Psychol.
13,
2 2 2 - 2 2 8 (1961). SZENTÂGOTHAI,
J . : D i e R o l l e der einzelnen
Labyrinthreceptoren
A u g e n u n d K o p f i m Räume. Budapest: Akadémiai K i a d o
bei der
Orientation
von
1952.
T A I T , J . : I s a l l h e a r i n g c o c h l e a r . A n n . O t o l . ( S t . L o u i s ) 41, 6 8 1 ( 1 9 3 2 ) . T E R I N S , J . : C o u n t e r - r o l l i n g of t h e eyes i n s o m e u n i l a t e r a l v e s t i b u l a r disorders. I n : J . S T A H L E , Ed. UDO
V e s t i b u l a r function o n earth a n d i n space. O x f o r d : P e r g a m o n Press, 109-113,
D E HAES,
H . : S t a b i l i t y of a p p a r e n t v e r t i c a l a n d o c u l a r c o u t e r t o r s i o n
lateral tilt. Perception
& Psychophysics
1971.
as a f u n c t i o n
of
8, 1 3 7 - 1 4 2 ( 1 9 7 0 ) .
U D O D E H A E S , H . , S C H Ö N E , H . : Interaction between statolith organs a n d semicircular canals o n a p p a r e n t v e r t i c a l a n d n y s t a g m u s . A c t a o t o - l a r y n g . ( S t o c k h . ) 69, 2 5 - 3 1
(1970).
V E R N O N , M . D . : T h e p e r c e p t i o n o f i n c l i n e d l i n e s . B r i t . J . P s y c h o l . 25, 1 8 6 ( 1 9 3 5 ) . V E R S T E E G H , L . : Ergebnisse partieller L a b y r i n t h e x s t i r p a t i o n bei K a n i n c h e n . A c t a oto-laryng. ( S t o c k h . ) 11, 3 9 3 ( 1 9 2 7 ) . WALSH,
E . G . : P e r c e p t i o n of l i n e a r m o t i o n f o l l o w i n g u n i l a t e r a l l a b y r i n t h e c t o m y : v a r i a t i o n
o f t h r e s h o l d a c c o r d i n g t o t h e o r i e n t a t i o n o f t h e h e a d . J . P h y s i o l . ( L o n d . ) 153, 3 5 0 ( 1 9 6 0 ) . W A L S H , E . G . : R o l e of t h e v e s t i b u l a r a p p a r a t u s i n t h e p e r c e p t i o n of m o t i o n o n a p a r a l l e l s w i n g . J . P h y s i o l . ( L o n d . ) 155, 5 0 6 ( 1 9 6 1 ) . WERNER,
H . , W A P N E R , S., C H A N D L E R ,
K . A . : Experiments on sensory-tonic
field
theory
of
p e r c e p t i o n . I I . E f f e c t of s u p p o r t e d a n d u n s u p p o r t e d t i l t of t h e b o d y o n t h e v i s u a l p e r c e p t i o n o f v e r t i c a l i t y . J . e x p . P s y c h o l . 42, 3 4 6 ( 1 9 5 1 ) . WERTHEIMER,
M . : E x p e r i m e n t e l l e S t u d i e n über das Sehen v o n Bewegung.
Z. Psychol.
61,
1 6 1 - 2 6 5 (1912). W I T K I N , H . A . : T h e n a t u r e a n d i m p o r t a n c e of i n d i v i d u a l differences i n p e r c e p t i o n . J . P e r s o n a l i t y 18, 1 4 5 ( 1 9 4 9 a ) . WITKIN,
H . A . : S e x d i f f e r e n c e s i n p e r c e p t i o n . T r a n s . N . Y . A c a d . S o c . 12, 2 2 ( 1 9 4 9 b ) .
W I T K I N , H . A . , A S C H , S . E . : S t u d i e s i n s p a c e o r i e n t a t i o n . I I I . P e r c e p t i o n of t h e u p r i g h t i n the a b s e n c e o f a v i s u a l field. J . e x p . P s y c h o l . 38, 6 0 3 ( 1 9 4 8 a ) . WITKIN,
H . A . , A S C H , S . E . : Studies i n space orientation. I V . F u r t h e r experiments on percep-
t i o n o f t h e u p r i g h t w i t h d i s p l a c e d v i s u a l fields. J . e x p . P s y c h o l . 38, 7 6 2 ( 1 9 4 8 b ) . WITKIN,
H.A.,
LEWIS,
H.B.,
HERTZMAN,
M., MACHOVER,
Personality through perception. N e w Y o r k : Haper
K.,
MEISSNER,
P.B.,
W A P N E R ,
S.:
1954.
W O E L L N E R , R . C . , G R A Y B I E L , A . : C o u n t e r r o l l i n g of t h e e y e s a n d i t s d e p e n d e n c e o n t h e m a g n i t u d e of g r a v i t a t i o n a l o r i n e r t i a l f o r c e a c t i n g l a t e r a l l y o n t h e b o d y . J . a p p i . P h y s i o l .
14,
6 3 2 - 6 3 4 (1959). W O O D , R . W . : T h e " h a u n t e d - s w i n g " i l l u s i o n . P s y c h o l . R e v . 2, 2 7 7 - 2 7 8 ( 1 8 9 5 ) . YOUNG,
H . H . : P e r s o n a l i t y t e s t c o r r e l a t e s of o r i e n t a t i o n t o t h e v e r t i c a l : A t e s t of W i t k i n ' s
F i e l d d e p e n d e n c y h y p o t h e s i s . J . a b n o r m , s o c . P s y c h o l . 59, 1 8 8 - 1 9 2 ( 1 9 5 9 ) . YOUNG,
H . H . , MEIRI, J.L.:
(1968).
A r e v i s e d d y n a m i c o t o l i t h m o d e l . A e r o s p a c e M e d . 39,
606-608
Author Index P a g e n u m b e r s i n italics r e f e r t o t h e b i b l i o g r a p h y
A a r o n s , L . , s. L a c h m a n , J . 3 6 5 , 367
Angyal, A . , B l a c k m a n , N . 365, 366 A n s o m , B . J . 573
A b e n d , W . K . , s. F e r n a n d e z , C .
A o k i , M . , s. T o k i t a , T . 355
Thomas,
E . L . 3 9 9 , 402
H . W . , s. G e r n a n d t ,
B.
4 3 4 , 445 W.
R., Kado,
R.
T.,
A d r i a n , E . D . 6 9 , 7 1 , 136, 1 6 5 , 185, 2 8 5 , 315, 4 2 3 , 443, 4 5 2 , 4 5 4 , 460, 4 6 4 , 484, 5 1 7 , 573 A j u r i a g u e r r a , J . d e , s. H é c a e n , H . 2 1 8 , 230 A k e r t , K . , s. S c o l l o - L a v i z z a r i , G.612,
620
Albe-Fessard,
D.,
Donaldson,
C a l d w e l l , G . M . 357
S. J . , Cotzin, M . ,
C. J . , J r . , Ricciuti,
A . , Wendt,
G . R . 262,
A l l t u c k e r , D . S . , s. G u a l t i e r o t t i , T . 4 5 2 , 461, 4 6 4 , 486 Ambler, R . K . , Guedry, F . E . A m b l e r , R . K . , s. G u e d r y , F . E . 1 1 6 , 1 2 6 , 1 2 9 , 1 3 0 , 1 3 1 , 144 A m b l e r , R . K . , s. M a n n , C . W .
A n d e r s o n , A . , s. H e n r i k s s o n , N . G.36,145 A n d e r s s o n , S . , G e r n a n d t , B . 7, 136
4 7 7 , 489
S.,
Nilsson,
H . 8 2 , 8 6 , 136, H . , Delage,
160,
Y . 408,
A u b r y , M . , s. C l a u d e , H . 3 6 1 , A u s t i n , G . M . , s. M c C o u c h , G . P . 4 5 9 , 461 A u x t e r , D . M . 357
A r s l a n , M . , M o l i n a r i , J . A . 8,
Azzena,
G . B . 4 6 0 , 460,
470,
4 8 1 , 484
A r x , S . V . , s. P f a l t z , C . R . 3 7 8 ,
Azzena, G . B . , Giretti, M . L . , D e r i u , P . L . 4 7 5 , 484
A s c h , S. E . , W i t k i n , H . A . 160, Babinski, J . , Weill, G . A . 272, H . A.
160, 1 6 2 , 182,190 4 0 9 , 410, 4 1 9 , 4 2 5 , 4 2 6 , 443 Aschan, G . , Bergstedt,
M . 62,
136, 4 1 9 , 443 G.,
278 B a b i y a k , V . P . , s. K u r a s h v i l i , A . Y e . 3 0 3 , 318 Babkin, B . P . 400 Babkin, B . P . ,Bornstein, M .B . 4 0 0 , 402
Bergstedt,
M.,
B a b k i n , B . P . , D i v o r k i n , S. 400,
Aschan, G . M . , Bergstedt, M . ,
Babskii, E . B . , Gurfinkel, V . S.,
G o l d b e r g , L . 3 0 7 , 315 Goldberg,
L . , L a u r e l 1,
402 L.
Aschan,
G.,
R o m e i , E . L . 359 B a c h , L . 3 6 1 , 366
Bergstedt,
M.,
S t a h l e , J . 2 0 0 , 229
Bader,
W., Kornhuber,
2 2 2 , 229,
H . H .
587,615
A s c h a n , G . , F i n e r , B . L . , H a g - B a k e r , A . B . 2 2 7 , 229 G.,
Nylén,
C.
Baker, R . G . ,Mano, N . , ShimaO.,
z u , H . 4 5 8 , 460
S t a h l e , J . , Wersau, R . 2 9 ,
B a k h v a l o v a , T . D . 3 0 0 , 315
136, 4 2 9 , 4 3 0 , 443
Baldenweck,
Aschan,
G . , s. G r a n t , G . 2 0 5 ,
A.,
A s c h o f f , J . C . 2 1 7 , 229
G . 36,
Aschoff, J . C , Cohen, 5 9 7 , 5 9 8 , 615
Baldrighi,
L . 2 6 9 , 2 7 1 , 278
G . , s.
Von
Baum-
garten, R . J . 558, 559, 560,
230 E., Smith,
V . 604, 675 Aubert,
A r s l a n , M . 2 2 2 , 229
Aschan,
A m e s , A . 5 6 6 , 573
110,136
E. A.
b a r t h , K . E . 3 6 5 , 366
85,148
A t w o o d , R . P . , s. B r a i t e n b e r g ,
3 6 5 , 366
L . , s. S p i e g e l ,
3 0 7 , 315
126,136
Ruuth,
160,189
Aschan,
263
Andersson,
A r o n o f f , J . C , s. M o r a n t , R . B .
A s c h a n , G . 3 7 6 , 3 7 9 , 383, 4 0 6 ,
185, 4 3 5 , 443
A t t n e a v e , F . 1 6 6 , 185
410, 4 1 8 , 4 1 9 , 4 3 3 , 443
A s c h , S . E . , s. W i t k i n ,
A l e x a n d e r , G . , Bârâny, R . 164,
Kornhuber,
A t e m a , J . , s. V o n B a u m g a r t e n ,
Aubert,
162,185
A l e s s i , D . 2 1 3 , 229
Hill,
A r n d t s , F . 8 8 , 136, 1 6 4 , 185
Aronson,
J . C , s.
1 6 1 , 185, 2 4 1 , 263
387
Alden, F . D . , Horton, M . 0.,
E.
Y u . V . 353
136, 4 7 5 , 484
J . M . L . 6 0 9 , 615
Alexander,
hova, N . A . ,Grigoryev, Y u .
A r n o u l t , M . 2 2 , 136
R h o d e s , J . M . 2 6 1 , 263
B.,
R . J . 5 5 8 , 5 5 9 , 5 6 0 , 580
Arlaschenko, N . I., Bokhov, B .
G., P o l y a k o v , B . I . , Färber,
A d e s , H . , s. M i c k l e , W . 7, 8 , 1 4 9 Adey,
S . , s. F u k u d a , T . 3 7 6 ,
B., Busygin, V . Y e . , Volok-
70,142
Conrad,
H . H . 6 0 0 , 6 0 2 , 6 1 0 , 618
3 7 7 , 385
A d e s , H . W . , s. E n g s t r ö m , H . Ades,
Aokia,
C ,
2 1 0 , 229, 5 8 7 , 6 0 6 , 615 Aschoff,
A o k i , S . , s. T o k i t a , T . 355
Ackerman, U . , Johnson, W . H . ,
J .
K o r n h u b e r , H . H . 199, 208,
Abels, H . 369,370,383,425,443 5 3 2 , 575
Aschoff,
580 B . 587,
Bârany, J . W . , Ismail, A . H . , M a n n i n g , K . R . 359
Author Index
622
Bârâny,
R . 6 2 , 9 3 , 136,
220,
Batini, C , Moruzzi, G., Pom-
229, 2 6 9 , 2 7 0 , 2 7 1 , 2 7 4 , 2 7 6 ,
p e i a n o , O . 4 7 8 , 4 8 1 , 484
278, 3 0 3 , 315, 353, 357, 3 6 1 ,
Batini, C , Pompeiano, O. 478,
366, 3 6 9 , 383, 4 0 5 , 410, 4 1 5 , 4 1 8 , 4 2 1 , 4 2 7 , 444, 4 5 1 ,
460,
R.,
Wittmaack,
K .
Bârâny,
R . , s. A l e x a n d e r ,
G.
Barber, H . 0., Wright, G . 201, 2 0 6 , 229, 3 6 5 , 366 B a r b e y , E . 353 Barcroft,
Bauermeister,
M . 85, 89, 94,
H . , Edholm,
Von
0.
G.
Baumgarten,
Bender, M .B . ,Weinstein, E . A .
2 1 7 , 229, 5 9 0 , 615
J.,
H u k u h a r a , J . , Rocker,
M.
580
C. N . ,
V . B . , B r o m i l e y , R . B . 607, 615 B a r d , P . , s. T y l e r , D . B . 3 8 9 ,
Von Baumgarten, R . J . , BaldG., Atema,
J . , Shil-
B a r l o w , J . S . 6 , 7, 8 , 9 0 ,
136,
Barnes, G . R . 75, 112,115,136,
D.,
Kongehl,
290,311,312,
Bechinger,
D.,
Kongehl,
Barness, C. D . , P o m p e i a n o ,
0.
B a r n e s s , C . D . , s. P o m p e i a n o , B a r n o t h y , I . M . , s. T o r o k , N .
45, 72, 111, 115, 123, 127,
C . 5 9 4 , 615
137, 2 9 4 , 2 9 5 , 2 9 6 , 2 9 7 , 2 9 9 ,
D.,
Kriebel, J . ,
S c h l a g e r , M . 1 9 6 , 229 460, 4 6 3 , 4 6 4 , 4 6 5 , 4 6 6 , 4 6 8 , B e c k , K . 1 6 4 , 185,
484
B e c k , O . , B l a c h , P . 2 7 6 , 278 615 zinger,
B., Kornhuber,
B a r o n , J . B . , s. S o u l a i r a c , A .
Becker, W . , Fuchs, A . F . 591,
615 Becker,
356 B a r r é , J . A . 4 3 6 , 444 B a r r e r a , S . E . , s. N o r t h i n g t o n , P . 4 7 1 , 4 7 2 , 488 Barrett, G . V . , Thorton, C. L .
W . , Jürgens,
R . 595,
615 B e c k e r , W . , K l e i n , H . M . 199, Kennedy,
B e g b i e , G . H . 357
319
Behr,
B a r t e l s , M . 2 1 1 , 229 B a r t l e y , S . , s. G r a y b i e l , A . 2 5 , 58,143 B a r t l e y , S . H . , s. S c h n e i d e r , C . 163,190
K . , Preber,
3 6 5 , 366
112, 1 1 5 , 118, 123,137, 1 8 2 , 186, 2 3 4 , 2 5 6 , 263, 2 8 8 , 2 9 2 , 293, 294, 295, 3 0 9 , 3 1 0 , 3 1 1 , 316, 5 4 6 , 5 5 0 , 573 Benson, A . J . , B r a n d , J . L . 36, 137, 3 6 5 , 366 Benson, A . J . , Diaz, E . , Farrug i a , P . 7 5 , 1 1 1 , 1 1 3 , 137 Benson, A . J . , Goorney, A . B . , R e a s o n , J . T . 3 6 , 137, 3 6 5 , 366 Benson,
A . J . ,Guedry,
F. E.
4 5 , 5 3 , 5 4 , 1 1 3 , 1 2 8 , 137 A . J . , Guedry,
Melvill Jones,
F. E.,
G . 111, 112,
548, 549, 552, 553, 566, 567,
s k i o l d , D . F . 444
Benson, A . J . , Sternfeld 312 Benson, A . J . , Whiteside, T. C.
V o n B e h r m a n , W . 3 0 4 , 315
D . 2 6 2 , 263, 2 9 9 , 3 0 0 , 316,
B e i s c h e r , D . E . , s. G r a y b i e l , A .
5 5 0 , 573
575 4 2 7 , 448 V o n Békésy, G . 24, 25, 33, 34,
359
Benson, A . J . , B o d i n , M . 111,
574 L . , Silfver-
B e i s c h e r , D . E . , s. M e e k , J . C .
B a r u k , H . , s. C l a u d e , H . 3 6 1 ,
G. R.
290,311,312,
1 1 6 , 1 3 7 , 2 8 7 , 2 8 8 , 2 9 0 , 316,
B e e r e n s , A . J . J . 4 2 3 , 444
45, 5 2 , 5 3 , 54,148, 2 8 3 , 2 9 6 ,
A . J . , Barnes,
1 1 1 , 112,137,
Benson,
229 B e c k w i t h , F . D . , s. R . S . 3 4 5 , 352
119,136 B a r r y , W . , s. M e l v i l l J o n e s , G .
B a s s , R . L . 357
H .
K . , K o r n h u b e r , H . H . 600,
B a r o n , J . B . 356
B a s s , R . I . 353,
L . , Grö-
Becker, W . , Hoehne, O., Iwase,
B a r o n , J . 353
Benson, 316
357
W . , Deecke,
300, 3 0 1 , 3 1 0 , 3 1 1 , 3 1 2 , 3 1 3 , 3 1 4 , 316, 3 7 8 , 383, 5 5 0 , 573
W . v o n 451, 456,
5 9 6 , 615
2 2 0 , 232
165,186
Kornhuber, H .H . , Walther,
H . 601
0 . 5 8 5 , 619
Benjamins, C. E . , Huizinga, E . B e n s o n , A . J . 6, 1 4 , 3 9 , 4 2 , 4 4 ,
Becker,
5 8 5 , 615
232
G.,
Becker, W . 588, 592, 594, 596,
316
W.
G.,
K o r n h u b e r , H . H . 56,58,136
471, 472, 479,
2 9 0 , 3 1 2 , 3 1 5 , 315 B a r n e s , G . R . , s. B e n s o n , A . J . 1 1 1 , 112,137,
Bechinger,
Bechterew,
4 9 5 , 4 9 6 , 5 0 0 , 573
616 B e n d e r , M . B . , s. P a s i k , P . 2 1 7 , B e n f a r i , R . C . 1 1 9 , 137
Bechinger,
3 9 0 , 3 9 1 , 3 9 3 , 404
2 1 4 , 229 B e n d e r , M . B . , s. C o h e n , B . 5 8 6 ,
linger, G . L . 558, 559, 560,
Woolsey,
M . B . , J u n g , R . 162,
Von Baumgarten, R . J., Atema,
580
P.,
Bender,
Bender, M . B . , Shanzer, S. 216,
580
B a r d , P . , O r i a s , 0 . 6 1 0 , 615 Snider, R . S., Mountcastle,
B é l i e r , H . K . , s. M o r a n t , R . B .
186
B a r d , P . 6 1 0 , 6 1 2 , 615 Bard,
B e l a n g e r , F . , s. M a y n e , R . 5 1 7 ,
R . J . 555,
righi,
3 9 3 , 402
29,
169,189
Bauermeister, M . , Werner, H . ,
5 6 7 , 579,
1 6 4 , 1 8 5 , 4 3 5 , 443
R.
5 2 1 , 5 2 2 , 5 3 0 , 577
484
W a p n e r , S . 8 5 , 136
2 7 0 , 2 7 1 , 278
F., Mayne,
137, 573
136, 2 4 1 , 263
4 8 3 , 484, 5 9 0 , 615 Bârâny,
Belanger,
44, 6 8 , 7 4 , 7 5 , 106,153, 3 6 2 , 366, 4 1 6 , 4 2 7 , 4 2 9 , 4 3 2 , 444
B e n s o n , A . J . , s. G u e d r y , F . E . 128,144 B e n s o n , A . J . , s. R e a s o n , J . T . 36,150 B e r g m a n n , F . , G u t m a n , J . 364, 366
Author Index
Bergstedt,
M . 1 3 1 , 137,
256,
263, 2 9 1 , 3 0 0 , 3 0 3 , 3 0 4 , 3 0 7 , B e r g s t e d t , M . , s. A s c h a n , G . 6 2 , 229,301,315,419,
Bergstedt,
M . , s. F r e g l y , A . R .
3 4 7 , 351 Beritov,
I . S . 8 , 9 0 , 137,
156,
B e r m a n , A . J . , s. T a u b , E . 1 3 4 , 152 C. A . , Homick,
G. L.
4 0 2 , 402 C . A . , s. G r a y b i e l ,
A.
1 0 3 , 1 0 4 , 1 4 3 , 2 4 2 , 2 4 4 , 264 B e r r y , N . , s. M a n n , C . W . 8 8 , 147 N .
H . ,
s.
M a n n , C . W . 8 4 , 8 6 , 88,147 B e r t i n i , M . 1 6 0 , 186 Best, C. H . , Taylor, N . B . 400, 403 R . G . , s.
Mahoney,
J . L . 3 6 2 , 367, 3 7 4 , 386 Bielschowsky,
A . , s.
Hofmann,
E. B.160,188 B i l l i n g h a m , H . T . 5 5 4 , 5 5 6 , 574 B i l l i n g h a m , J . 2 9 8 , 316, 5 7 3 B i l l i n g h a m , J . , s. G r a y b i e l , A . 1 0 3 , 1 0 4 , 143, 2 4 2 , 2 4 4 , 264 B i r r e n , J . E . 9 5 , 137, 353,
357
B i r r e n , J . E . , s. F i s h e r , M . B . 358
Bischof, N . 157, 158, 159, 160, 163, 165, 166, 177, 178,186, 414,
444
Bischoff, N . , Scheerer, E . 117,
B r e u e r , 7, 1 7 , 6 8 , 2 3 5 Breuer,
316, 5 4 6 , 5 5 0 , 573 B . B . , s.
Arlaschenko,
Bitter mann,
M . E.,
Worchel,
H . L . , Wang,
S. C.
403 A . 463, 465, 468,
B l a c h , P . , s. B e c k , O . 2 7 6 , 278 B l a c k b u r n , L . H . , s. C o h e n , M . M.
Bornschein,
V. H . ,
Schubert,
G.120,137 Bornstein,
Blackman,
N . , s. A n g y a l ,
A.
3 6 5 , 366
Babkin,
B . P . 4 0 0 , 402
O , s. C a r p e n t e r ,
H . S . 162,186
R.
Walberg,
574, 5 8 9
Pompeiano,
O.,
F . 2 6 8 , 278, 5 6 5 ,
Brodai,
A . , s. P o m p e i a n o ,
O.
B r o d a i , A . , s. W a l b e r g , F . 2 6 8 , Bromiley,
R . B . , s. B a r d , P .
B ö r r y , W . , s. J o n e s , G . M . 4 2 9 , B r o w n , J . H . 4 1 , 4 2 , 4 3 , 4 6 , 5 9 , 138, 3 7 3 , 383, 574
447 B o s , J . H . 4 3 7 , 444
Brown, J . H . , Crampton, G .H .
P h i l i p s z o o n , A . J . 316 Bos, J . H . , Philipszoon, 4 1 0 , 410, 4 3 7 ,
A.J .
444
D . , s.
377, 380,
Brown, J . H . , Marshall, J . E . 3 7 0 , 383
B o u r d o n , B . 7 9 , 8 6 , 8 8 , 137 Bowsher,
6 1 , 6 2 , 1 3 1 , 138, 383
B r o w n , J . H . , Wolfe, J . W . 60,
Walberg,
F.
2 6 8 , 2 7 4 , 280
138 B r o w n , J . H . , s. M a r s h a l l , J . E .
B r a d y , J . F . , s. N e w s o m , B . D .
1 3 1 , 1 4 8 , 3 6 5 , 367, 3 7 6 , 3 7 7 , 3 8 1 , 387
354, 359 Braemer, W . 156,178,180,181,
B r o w n , J . L . 9 1 , 9 2 , 138, 2 3 5 , 2 4 9 , 263
186 B r a k e n b e r g , V . 6 0 4 , 615
B r o w n , K . R . , s. Y o r k , E . 359
Brakenberg, V . ,A t w o o d , R . P .
B r o w n , L . 1 8 2 , 186 B r o w n , M . B . , s. R i t v o , E . R ,
604, 675 Brakenberg,
V.,
Onesto,
N .
Brandt, T h . ,Dichgans, Th.,
Brandt,
Brown, R . H . , Imus, H . , Niven,
J . 118,
B r o w n , R . H . , s. G r a y b i e l , A .
J.
I . , G r a y b i e l , A . 2 3 , 138
7 5 , 8 2 , 1 0 7 , 143, J , .
Dichgans,
508, 542,
575 B r u c h e r , J . M . 6 1 1 , 6 1 2 , 616
E . , Dich-
B r u c k , A . 357 Brun,
J . 141,
4 0 1 , 403 B r a n d t , U . , F l u u r , E . 1 0 2 , 138, 1 5 9 , 4 1 6 , 444
F. E.
A.J .
Dichgans,
T h . , Wist, T h . , s.
R . H . , Guedry,
3 7 9 , 3 8 0 , 383
K o e n i g , E . 1 1 8 , 1 1 9 , 138 Brandt,
3 6 5 , 368 Brown,
6 0 4 , 616
B r a n d t , U . 4 2 6 , 444
5 8 7 , 5 9 9 , 620 Blakmore,
A.,
6 0 7 , 615
116, 117, 118, 1 1 9 , 125,
B l a i r , S . M . , s. W e s t h e i m e r , G .
Brodai,
2 7 4 , 280
M . B . , s.
g a n s , J . 1 1 9 , 1 2 5 , 138
107,140
F . 8 6 , 9 4 , 149, 2 4 1 , 264
2 6 8 , 280
484
Brandt,
B i z z i , E . 5 8 6 , 6 1 2 , 615
B r i n d l e y , B . G . S . 6 0 4 , 616
574
Bornhardt,
119,138
P.162,186
414, 416,
B r o d a i , A . 1 2 6 , 138,
187
399,
J . 2 7 6 , 278,
V a n d e n B r i n k , G . , s. M i l l e r , E .
B o r d o g n a , A . , s. G i r o t t i , G . 1 6 4 ,
Borison,
G.
4 2 5 , 444
3 6 , 1 3 7 , 3 6 5 , 366
185,186
G . A . , Schubert,
160,186
293, 294, 295, 309, 3 1 0 , 3 1 1 ,
137, 1 5 9 , 1 6 0 , 1 6 1 , 1 6 9 , 1 7 0 , B r a n d , J . J . 3 6 5 , 366 1 7 4 , 1 7 6 , 1 7 7 , 1 7 8 , 1 8 0 , 1 8 2 , B r a n d , J . L . , s. B e n s o n , 184,
Brecher,
186, 2 3 4 , 2 5 6 , 263, 2 8 8 , 2 9 2 ,
Bos, J . H . , Jongkees, L . B . W . ,
B e t h e , A . 4 6 6 , 484 Bickford,
360
M . E . , M y e r s , G . G . 2 1 3 , 229
B o r i n g , E . G . 1 6 0 , 1 8 6 , 5 6 6 , 574
B e r r y , C . 3 9 3 , 3 9 8 , 4 0 2 , 403
355,
316
N . L 353
Berthelow-Berry,
B r a u n , G . I . , s. H e l l e b r a n d t , F . A.
B o d i n , M . , s. B e n s o n , A . J . 1 1 1 ,
Bokhov,
186, 5 0 1 , 574 B e r k e l e y 571
Berry,
C.H .
112, 1 1 5 , 1 1 8 , 123,137, 1 8 2 ,
443
Berry,
A . , s. S a t t l e r ,
211,232
B o d i n , M . A . 295, 296, 310, 312, B r a y , P . F . , Ziter, F . A . , L a h e y ,
316, 351, 5 6 1 , 5 7 4 136, 2 0 0 ,
Blohmke,
623
E . , Knudson,
E . ,R a a -
s c h o v , F . 3 9 3 , 403 Brunia,
C.
H . M.,
Hoppen-
b r o u w e r s , T . 2 7 1 , 278 B r u n n e r , H . 4 2 8 , 444 B r u n s , O . 4 0 6 , 410,
444
B r u n s w i k , E . 156, 177, 180,186
624
Author Index
B r u n s w i k , E . , K a r d o s , L . 157, 186
Carpenter, R . H . S., B l a k m o r e , C. 162,186
B r y a n o v , I . I . , s. Y u g a n o v , E . M . 5 5 4 , 5 5 6 , 580
Cawthorne, pike,
B u d d e n b r o c k , W . v o n 4 6 5 , 484 B ü h l e r , K . 1 5 6 , 1 5 7 , 186
M . 3 6 1 , 3 6 5 , 366
T., D i x , M . , Hall-
C , Hood,
J . 43, 52,
138, 5 0 6 , 574 Cawthorne,
T . E . , Fitzgerald,
G., H a l l p i k e , C. S. 451, 454,
B u r k e , U . L . , s. M a x w e l l , S . S .
460, 4 7 2 , 4 8 3 , 485
3 7 1 , 3 7 2 , 3 7 3 , 387
4 3 7 , 444
B u s k i r k , W . C . 579
B u x t o n , C . E . , s. S e a s h o r e , R . B u y s , E . 62,138, 4 1 5 , 4 1 8 , 4 2 0 ,
5 0 6 , 575 M . 4 7 8 , 485
B y f o r d , G . H . 2 2 , 23, 35, 117, G . , s. H a l l p i k e , C . S .
C h a m b e r s , W . W . , s.
H . , s. H a l l p i k e , C . S .
r a , T . 1 1 9 , 1 2 5 , 140
1 6 3 , 190, 2 4 1 , 266
C o h e n , B . , s. G o t o , K . 3 6 2 , 367
Chow,
C o h e n , B . , s. U e m u r a , T . 2 0 3 ,
K . L . Riesen,
A. H.,
2 0 5 , 221,232,
C h u s i d , J . G . , Gutiérry-Mahon e y , G . G . d e 4 8 2 , 485 C h u t o r i a n , A . M . , s. S o l o m o n ,
V . , s. C a p o r a l e ,
R.
G . E . 2 1 3 , 232
C a m i s , M . 2 8 3 , 316,
470, 471,
C i t r o n , C , H a l l p i k e , C. S. 437, 444
484, 485 Vernon,
C l a r k , B . 2 3 , 2 5 , 7 2 , 8 2 , 86,138,
C a n e l l a , C . J . , s. M a n n , C . W .
Clark, B . , G r a y b i e l , A . 56, 72,
Candland,
D . K . , s.
139
J . A . 359
86, 90, 94, 9 6 , 1 0 7 , 1 0 8 , 1 1 0 ,
35,147 C a n n o n , W . B . 574
139, 1 6 4 , 1 7 5 , 1 8 6 , 2 4 7 , 2 4 9 ,
C a n n o n , W . B . , H a i m o vi ci, H .
263, 3 2 5 , 351, 353, 3 9 9 , 4 0 1 ,
Cannon,
W. B.,
Rosenblueth,
A . 4 5 9 , 460 C a n t r e l l , R . P . 357 Caporale, R . , Camarda, V . 376, 383 C a p p e l , K . 5 8 , 138, 5 0 8 , 574 Capps,
M . J . , Collins, W . E .
3 7 0 , 3 7 1 , 3 7 3 , 383 C a r l s t r o m , D . 1 6 , 138
Clark, B . ,Graybiel, A . , MacCorq u o d a l e , K . 2 5 , 139
C l a r k , B . , s. G r a y b i e l , A . 2 2 , 8 2 , 86,
9 3 , 9 5 , 1 3 1 , 143,
C o l e h o u r , J . K . , s. G r a y b i e l , A . 1 3 4 , 1 4 3 , 3 3 8 , 3 4 2 , 352, 5 6 7 , 575 C o l e n b r a n d e r , A . 100,140, 159, 186, 2 4 1 , 263 C o l l e w i j n , H . 5 8 8 , 5 9 9 , 616
Collins, W . E . 36, 44, 46, 66, 67, 115, 118, 124, 132, 134,140,
1 7 9 , 1 8 7 , 2 4 7 , 263, 3 9 2 , 403,
316, 3 6 3 , 3 6 4 , 3 6 5 , 366, 3 7 0 ,
5 6 7 , 575
371, 372, 373, 374, 375, 3 7 6 ,
C l a r k , L . B . 4 6 5 , 485 C l a r k e , M . , s. P r e c h t , W . 4 5 2 ,
R . H . S . 5 8 9 , 616
J . K . , Graybiel, A .
4 0 0 , 403
162,
Clark, W i l b u r , C. 573
Carpenter,
Colehour,
5 S 7 , 616 2 6 , 2 7 , 2 8 , 3 0 , 3 5 , 4 2 , 5 5 , 5 8 , C o l l i n s , V . D . , H o w e , E . C . 353, 5 9 , 6 3 , 1 1 7 , 139, 3 8 0 , 383 355
Carpenter, M . B . , Fabrega, H . , C a r p e n t e r , M . S . 358
Colehour, J . K . 401
Collewijn, H . , V a n der M a r k , F .
C a r p e n t e r , M . B . 616 G l i n s m a n n , W . 4 7 9 , 485
B l a c k b u r n , L . H . 1 0 7 , 140 Colbert, E . G . , Koegler, R . R . ,
Clark, B . ,Stewart, J . D . 23, 25,
C a r m i c h a e l , E . A . , D i x , M . R . , C l a r k , G . , L a s h l e y , K . S . 612,616 H a l l p i k e , C . S . 2 2 2 , 229
Cohen, M . M . , Crosbie, R . J . ,
C o l l a r d , M . , s. T h i é b a u t , F . 356
403, 5 4 2 , 574
4 5 9 , 460
4 7 5 , 489
C o h e n , L . A . 2 0 6 , 229, 5 8 4 , 616
M a r k h a m , C . H . 3 6 5 , 366
C i p r i a n i , A . 3 9 1 , 403
3 7 6 , 383
5 9 7 , 5 9 8 , 615
C h i n n , H . , S m i t h , P . 3 8 9 , 403
C a l d w e l l , G . M . , s. A l d e n , F . D .
Camarda,
S. 116,
C o h e n , B . , s. A s c h o f f , J . C . 5 8 7 ,
C h r i s t i a n , P . 2 5 , 138
C a l l a h a n , F . E . 358
B . , Takemori,
C h a n d l e r , K . A . , s. W e r n e r , H .
Cajal 217 357
Cohen,
Cohen, B . , Takemori, S . , U e m u -
N e w e l l , F . W . 2 1 1 , 229
576
Cohen, B . , Suzuki, J . , Bender,
Sprague,
9 4 , 154,
2 5 , 1 4 5 , 4 2 9 , 446
5 9 0 , 616 Cohen, B . , H i g h s t e i n , S. M . 115,
126,140
J . M . 4 7 8 , 489
138, 3 8 0 , 383
C o h e n , B . 229
M . B . 5 8 6 , 616
4 5 9 , 461
B u y s , E . , D o h l m a n 426
4 7 6 , 489
126,139
C h a m b e r s , W . W . , s. L i u , C . N .
444
3 0 5 , 316
C o h e n , B . , H e n n , V . 2 1 7 , 229,
C e r a n , S . J . , s. G u e d r y , F . E .
Chambers, W . W . , Sprague, J .
H . 356
Cairns,
V . , Fenu, G., Gab-
4 3 , 4 5 , 4 6 , 5 0 , 5 8 , 5 9 , 144,
k o , N . I . 353
Coats, A . C , S m i t h , S. Y . 304,
C o e r m a n n , R . R . 359
r i e l l i , L . 3 6 4 , 366
B u s y g i n , V . Y e . , s. A r l a s c h e n -
Byford,
Cenacchi,
72, 85,139
C o b b , S . , s. S c h a l t e n b r a n d , G .
C a w t h o r n e , T . , H a l l p i k e , C . S.
B u s e r , P . , I m b e r t , M . 6 0 0 , 616 Van
Clegg, W . C , Dunfield, N . M . C l y n e s , M . 5 7 1 , 574
B ü r g i , S . 353
B u r t t , N . E . 8 5 , 138
Claude, H . ,B a r u k , H . , A u b r y ,
461
383,
Collins, W . E . , Crampton, G .H . , P o s n e r , J . B . 3 6 2 , 366 Collins, W . E . , Guedry, F . E .
C l a r k s o n , F . , s. M c F a r l a n d , J . H.
378, 379, 380, 381, 382, 384, 4 2 5 , 444, 574
175,188
5 3 , 5 4 , 5 9 , 6 0 , 6 2 , 1 3 5 , 140, 3 6 3 , 366, 3 8 1 , 384, 4 2 3 , 444
Author Index
625
Collins, W . E . , Guedry, F . E . ,
C o r r e i a , M . J . , s. N i v e n , J . I . 7 5 ,
P o s n e r , J . B . 3 6 3 , 366, 3 7 5 ,
7 7 , 1 0 6 , 1 1 1 , 150, 3 0 8 , 3 1 0 ,
384
3 1 1 , 319, 391,404,
Collins, W . E . , Mertens, R . A . 3 7 8 , 3 8 0 , 384
C y o n , E . 4 6 3 , 4 6 5 , 485
578, 579 Corvera,
J . , Hallpike,
Schuster,
366 W . E . , Posner,
J . B.
C.
S.,
E . H . J . 1 7 , 140
C o t z i n , M . , s. A l e x a n d e r , S . J .
C o l l i n s , W . E . , S c h r o e d e r , D . J . , C o w e y , A . , s. L a t t o , R . 6 1 2 , 618 Gilson, R . D . ,Guedry, F . E .
C r a m e r , D . B . , s. F r e g l y , A . R .
C o l l i n s , W . E . , S c h r o e d e r , D . J . , C r a m e r , D . B . , s. G r a y b Ì 3 l , A . H i l l , R . J . 1 3 0 , 140
2 5 9 , 2 6 1 , 2 6 2 , 264, 3 3 3 , 352
C o l l i n s , W . E . , S c h r o e d e r , D . J . , C r a m e r , R . L . 3 3 , 1 4 0 , 5 1 7 , 574 M e r t e n s , R . A . 3 7 6 , 3 8 1 , 384
C r a m e r , R . L . , s. D o w d ,
Collins, W . E . , Schroeder, D . J . , N . , Mertens,
R. A.,
P. J .
C r a m e r , R . L . , s. G u e d r } ' , F . E . C r a m e r , R . L . , s. M a t h o g , R . H .
3 7 0 , 3 7 3 , 384
C o l l i n s , W . E . , s. C a p p s , M . J . C r a m p t o n , G . H . 2 8 6 , 2 8 7 , 3 0 0 , 3 7 0 , 3 7 1 , 3 7 3 , 383
1 3 5 , 1 4 4 , 1 4 5 , 3 6 3 , 3 6 5 , 367,
J . C.
675 Conraux, 223,
C , s. G r e i n e r , G . F . 230
C o n r a u x , C , s. T h i é b a u t , F . 356 C o r l e t t , B . M . A . , s. M o n e y , K . E . 2 8 5 , 2 8 8 , 3 0 8 , 319
C r a m p t o n , G . H . , s. C o l l i n s , W .
C o r r e i a , M . J . 8 5 , 140,
574
Correia, M . J . , Guedry,
E . 3 6 2 , 366 C r i c k m a r , S . D . , s. R o s s , H . E . 91,151 C r o s b i e , R . J . , s. C o h e n , M . M . 1 0 7 , 140
7 5 , 1 1 1 , 1 1 3 , 1 1 5 , 140, 1 8 2 ,
Crosby,
N i v e n , J . I. 98, 9 9 , 1 0 0 , 1 0 1 , M . J . ,Money,
K . E.
1 1 2 , 140, 3 1 2 , 316, 5 5 1 , 574 1 0 , 1 2 , 1 3 , 1 5 , 1 2 0 , 146 319
D. R.,
Goetzin-
g e r , C . P . 358 C u m m i n g s , M . , s. G u e d r y , F . E . 60, 6 3 , 64,145
C o r r e i a , M . J . , s. M c L e o d , M . E .
C u r e t o n , T . K . 358
H b . Sensory Physiology, Vol. VI/2
1 0 3 , 1 0 4 , 143, 2 4 2 , 2 4 4 , 264 D e L a g e 7, 4 0 8 D e l a g e , Y . , s. A u b e r t , H . 4 0 8 , Demanez,
J . P . , s. L e d o u x , A .
222,231 E . A . 4 5 1 , 4 5 6 , 4 6 2 , 4 7 5 , 489 D.
610, 611,
6 1 2 , 616 D e r i u , P . L . , s. A z z e n a , G . B . 4 7 5 , 484 A . J . 75,
111, 1 1 3 , 1 3 7 D i a z , E . , s. R e a s o n , J . T . 1 2 0 ,
141 C u n n i n g h a m , D . R . 358
C o r r e i a , M . J . , s. H i x s o n , W . C .
D e i t l e i n , L . F . , s. G r a y b i e l , A .
D i a z , E . , s. B e n s o n ,
Cullen, J . F . ,Harper, C. R . 104,
Cunningham,
H . 6 0 0 , 601,618 D e H a a n , P . 357
D e r w o r t , A . 162,187
C u l b e r t , S . S . 1 6 9 , 186
1 0 3 , 140, 1 6 4 , 1 6 5 , 186 Correia,
40
T.,
W . 6 1 2 , 617
Correia, M . J . , Hixson, W . C ,
304,
E . C , Humphrey,
C r o s b y , E . C , s. H e n d e r s o n , J .
574
D e e c k e , L . , s. K o r n h u b e r , H .
Denny-Brown,
L a u e r , E . W . 7, 8 , 141
186, 2 9 0 , 2 9 2 , 3 0 9 , 3 1 0 , 3 1 1 , 316, 3 6 5 , 367, 3 9 2 , 403, 5 4 6 ,
h u b e r , H . H . 6 0 0 , 616
D è m e t r i a d e s , T . D . , s. S p i e g e l ,
R . J . , s. G r a y , R . F .
2 9 9 , 317
F. E.
D e c h e r , H . 2 2 3 , 229
410, 4 1 8 , 4 1 9 , 4 3 3 , 443
C r i t c h l e y , M . 8 , 141
Crosbie,
Dearnaley, E . J . , Reason, J . T.,
D e e c k e , L . , s. B e c k e r , W . 6 0 1
119,140
383
B . , s. A s c h o f f ,
F . R . , s. G r a y b i e l , A .
Deecke, L . , Scheid, P . , K o r n -
J . 3 6 2 , 367, 3 7 3 , 384
1 9 9 , 2 0 8 , 2 1 0 , 229, 5 8 7 , 6 0 6 ,
D a y , R , H . , s. W a d e , N . J . 7 2 ,
D a v i e s , J . D . 3 7 8 , 384
C o l l i n s , W . E . , s. S c h r o e d e r , D . C r a m p t o n , G . H . , s. B r o w n , J . J . 130,151 H.61,62,131,755, 377,380, Conrad,
D a y , R . , Wade, N . 72,141,174,
3 4 2 , 352
575
Crampton, G. H . , Young, F . A .
C o l t h e a r t , M . 162,186
J . 3 7 8 , 384
153
Crampton, G . H . , Schwam, W .
3 7 0 , 3 7 1 , 3 7 2 , 3 7 3 , 387
D a v e y , P . R . 358
Deane,
140, 575
3 7 4 , 3 7 7 , 3 7 8 , 3 7 9 , 3 8 1 , 386 C o l l i n s , W . E . , s. M e r t e n s , R . A .
H . J . , s. M a n n , C .
W . 8 4 , 8 6 , 88,147
384, 4 0 0 , 403, 4 8 2 , 485, 5 0 8 ,
C o l l i n s , W . E . , s. G u e d r y , F . E . C r a m p t o n , G . H . , G a l l , K . 6 0 , 60,61,62, 65,118,131,132,
Dauterive,
316, 3 6 4 , 367, 3 7 0 , 3 7 1 , 3 7 3 , 5 5 0 , 5 5 2 , 5 6 5 , 574,
130,142
D a n d y , W . E . 353, 4 3 9 , 444
187
577
C o l l i n s , W . E . , s. G i l s o n , R . D .
616 D a l R i , H . , Schaefer, K . P . 479,
D a y , M . A . C . 359
6 1 , 6 3 , 64,145
Collins, W . E . , Updegraff, B . P .
P . 354
D a v i e s , J . D . , s. D e a r n a l e y , E .
3 7 7 , 384
K r a n z , G . 5 4 7 , 574
D a l l e n b a c h , K . M . , s. W o r c h e l ,
4SI, 485
3 2 2 , 351
130,140
D a i n , C . A . 358
Dallos, P . J . ,Jones, R . W . 589,
2 6 2 , 263
3 6 2 , 366
Rice,
187
506,561,
C o r s o , J . I . 3 6 , 140
Collins, W . E . , Poe, R . H . 365, Collins,
Curran, C. R . , L a n e , H . L .181,
125,132,150 D i c h g a n s , J . 118 D i c h g a n s , J . , B r a n d t , T h . 116, 1 1 7 , 1 1 8 , 1 1 9 , 125,141, 4 0 1 , 403 Dichgans, J . , Held, R . , Young, L . , B r a n d t , T h . 119,125,141
626
Author Index
D i c h g a n s , J . , J u n g , R . 117,141
D o u g l a s , W . K . 358
Dichgans, J . , Körner, F . , Voigt,
D o u g l a s , W . K . , s. M i n n e r s , H .
K.
117,141
A.
E i j s v o g e l , M . H . , s. Q u i x , F . H .
358
D i c h g a n s , J . , K o r n h u b e r , H . H . D o u g l a s s , C . G . , s. G r e e n , R . E . 208,
J . , s.
Brandt, T h .
D o w , R . S . 485
4 5 9 , 460 Draper,
Giorgio, A . M . , Manni,
Von
D i r i n g s h o f e n , H . 1 1 9 , 153
Von
Diringshofen, H . , Kessel,
Wrigley,
R . 126,142
H . , A d e s , H . W . 7 0 , 142
4 5 4 , 460, 4 6 4 , 4 6 9 , 485, 5 8 6 ,
Engström, H . , Wersäll, J . 69,
5 9 0 , 616
141
D u e n s i n g , F . , Schaefer, K . P . ,
E r i k s o n , J . H . , s. L a c h m a n , J .
T r e v i s a n , C . 4 8 4 , 486
3 6 5 , 367 E r i k s s o n , A . W . , s. V l i e t , A . G .
130,141
D i v o r k i n , S . , s. B a b k i n , B . P .
M . v a n 211,232
D u m o n t , S . 2 8 7 , 317
E r i k s s o n , L . , s. F l u u r , E . 2 0 0 ,
D u n c k e r , K . 1 7 8 , 1 7 9 , 187
4 0 0 , 402 D i x , M . R . , H a l l p i k e , C . S. 2 0 6 ,
230
D u n f i e l d , N . M . , s. C l e g g , W . C . 72, 85,139
230, 4 3 7 , 444 M . R., Hood,
J . D . 375,
D i x , M . R . , s. C a r m i c h a e l , E . A .
E s c h e r , F . 4 7 2 , 486 E v i a t a r , A . , s. R i t v o , E . R . 3 6 5 ,
D u n l a p , K . 3 7 1 , 3 7 3 , 384 D u s e k , E . R . 357,
3 7 6 , 3 7 7 , 384
Dzendolet,
368
358
E . 359,
E w a l d 430
555, 556,
E w a l d , J . R . 2 9 1 , 317, 4 5 1 , 4 5 2 , 460, 4 6 3 , 4 6 4 , 4 6 5 , 4 6 6 , 4 6 7 ,
575
222,229 M . , s. C a w t h o r n e ,
T. 43,
5 2 , 1 3 8 , 5 0 6 , 574
4 6 8 , 4 7 1 , 4 7 2 , 4 8 2 , 486 Eberhart, H . D., Inman, V . T.
D o c k e r a y , F . C , I s a a c s , S . 353 D o c k s t a d e r , S . L . 3 0 , 141 D o d g e , R . 2 5 , 5 8 , 1 4 1 , 3 6 1 , 367, 3 7 4 , 3 8 2 , 384, 4 1 8 , 4 3 4 , 444 D o d g e , R . , s. T r a v i s , R . C . 4 4 , 77, 78,152 460,
5 1 3 , 5 1 4 , 5 6 1 , 5 7 3 , 575
E c c l e s , J . C , I t o , M . , Szentâgothai, J . 604, 676 Eckel,
E y c k , M . 4 5 1 , 462
W . 2 8 5 , 317,
F a r b e r , Y u . V . , s. A r l a s c h e n k o ,
E c t o r s , L . , s. K e n n a r d , M . A .
Farmer, T. W . , Mustian, V . M .
N . 1. 353
6 1 1 , 6 1 2 , 617
353
E d h o l m , O . G . , s. B a r c r o f t , H . 3 9 3 , 402
D o l l e y , W . L . 4 6 5 , 485 D o l o w i t z , D . A . 4 2 0 , 4 2 5 , 445
J.
Dolowitz, D . A . , Forssman, B . ,
L . B . W . 4 2 5 , 4 3 0 , 445 Van
Fearing,
E g m o n d , A . A . J . , Groen, J . ,Hulk,
J . , Jongkees,
20, 2 5 , 2 8 , 29, 30, 33, 34, 4 4 ,
B . 3 7 4 , 3 7 8 , 3 8 0 , 385
6 0 , 1 2 1 , 153, 2 8 5 , 317, 4 1 5 ,
D o l o w i t z , D . A . , s. H e n r i k s s o n ,
420, 423, 425, 428, 430, 432,
N . G . 2 2 6 , 230, 2 6 9 , 279
445, 4 5 5 , 462, 4 7 2 , 4 8 3 ,
Domagk, G . F . , Zippel, H . P .
486,
5 0 2 , 5 0 6 , 5 0 7 , 579
4 8 2 , 485 J . M . L . , s. A l b e Hernàndez-
P é o n , R . 6 7 , 145 D o t y , R . L . 2 8 , 3 0 , 141, 5 8 2
Van
F . S . 355,
361,
367,
3 7 3 , 384, 4 2 1 , 445 Fearing, F . S., Mowrer, O. H . 3 6 1 , 3 6 7 , 3 7 3 , 384
E g m o n d , A . A . J . , Groen, J . J . , J o n g k e e s , L . B . W . 19,
D o l o w i t z , D . A . , s. F o r s s m a n ,
F a r r u g i a , P . , s. B e n s o n , A . J . 7 5 , 1 1 1 , 113,137
Van
F e s s a r d , D . 6 0 9 , 615
H . , s. C a r p e n t e r , M .
452, 454,
E d w a r d s , A . S . 355
H e n r i k s s o n , N . G . 2 6 9 , 278
Fabrega,
B . 4 7 9 , 485
460, 4 6 4 , 486
D o h l m a n , s. B u y s , E . 4 2 6
M . , s.
Van
359
D o b i e , T . B . 4 2 , 141
D o h l m a n , G . 220,230, 451,
H . , Lindeman, H .
6 9 , 141, 2 8 7 , 317, 4 5 2 , 4 5 3 ,
Duffy, F . H . , Lombrose, C. T.
Donaldson,
E m e l ' i a n o v , M . D . , s. G a l l e , R .
Engström,
D i t t l e r , R . 4 1 7 , 444
Donoso,
W.,
D u e n s i n g , F . , Schaefer, K . P .
1 1 7 , 1 5 3 , 3 8 0 , 384, 4 1 6 , 444, 579
Dix,
E i s n e r , W . 4 2 , 141 S.,
E n g e n , T . , R o s s , B . M . 4 0 , 141
G . , O s y p k a , P . 25,153 P . 8, 2 2 , 3 5 ,
C.
E l f t m a n , H . 359
D r e y f u s s , R . 4 6 9 , 485
V a n Dishoeck, H . A . E . , Spoor, A . , Nijhoff,
J . , s. K l i j n , J . A . J . 4 2 7 , 447
H o v o r k a , J . 4 9 6 , 575
E.
4 7 5 , 485
141,
E k v a l l , L . , s. G r a n t , G . 2 0 5 , 2 3 0
Drake, C. G., Stavraky, G. W .
6 0 7 , 620
Dix,
Ek,
384
D i G i o r g i o , A . M . 4 7 6 , 485
L . B. W.,
J . 23, 30, 58,
4 2 3 , 4 2 5 , 4 3 2 , 445
D o w d , P . J . , Cramer, R . L . 377,
146 D i c h g a n s , J . , s. S c h m i d t , C . L .
J . , Jongkees, Klijn,
D o w d , P . J . 3 6 4 , 3 6 5 , 367
118, 119, 125,138 D i c h g a n s , J . , s. K ö r n e r , F . 1 1 7 ,
Di
Ek,
353
211,229
Dichgans,
182,189 E i n s t e i n 103, 104
Fearing,
F . , s.
H a lstead,
W.
3 7 3 , 386 F e i l c h e n f e l d , H . 9 3 , 142 F e l d m a n n , H . 445 F e n d e r , D . H . , s. S t . - C y r , G . J . 5 8 9 , 620 F e n u , G . , s. C e n a c c h i , V . 3 6 4 ,
366 Egmond, A . A . J . , Jongkees, L . B . W . , Groen, J . J . Feoktistov, Y u g a t o v 556 4 2 8 , 445
E g y e d , J . , s. S p i e g e l , E . A . 8 , 152
F e r n a n d e z , C . 2 0 5 , 230 Fernandez, C , Fredrickson, J . M . 115, 126,142
Author Index
627
F e r n a n d e z , C , G o l d b e r g , J . M . F l u u r , E . 17, 102,142, 4 5 1 , 4 5 2 , 1 9 , 3 9 , 142,
507, 509, 510,
C., Lindsay, J . R . Schmidt,
R.
C , s.
Fredrickson,
Fernandez,
C . , s. G o l d b e r g , J .
6 0 , 6 2 , 143,
452,
461,
5 0 9 , 5 1 0 , 5 1 2 , 5 1 5 , 5 2 4 , 575 Fernandez,
C , s.
Henriksson,
C . s. R e d i n g , G . R .
F i g g e , U . , s. F r e d r i c k s o n , J . 8 ,
366 359 Fischer,
M . H . 9 3 , 142,
159,
163, 1 6 4 , 179,187, 4 1 7 , 4 1 8 , 4 2 5 , 4 3 5 , 445, 4 6 4 , 4 6 5 ,
471,
4 7 2 , 4 8 0 , 486 Fischer, M . H . , Veits, C. 418, 4 3 5 , 445 Fischer, M . H . , W o d a k , E . 269, 2 7 0 , 2 7 1 , 2 7 2 , 2 7 4 , 2 7 6 , 278, 4 2 9 , 4 3 3 , 445 Fischer, 270,
M . H . , s. W o d a k , E .
Fisher,
M . B . , Birren,
L e g g e t t , A . L . 355,
J . E.,
211,232 Forssman, Forssman,
146 Fitzgerald, G . , H a l l p i k e , C . S. 2 2 2 , 230 Fitzgerald,
Dolowitz,
D.
A . 374,
3 7 8 , 3 8 0 , 385 B . , s. D o l o w i t z ,
D.
Forssman,
B . , s.
Henriksson,
F o w l e r , E . P . , J r . , s. G l o r i g , A .
G . , s.
Cawthorne,
E . 4 5 1 , 4 5 4 , 460,
472,
4 8 3 , 485
W.
576 F . A . 2 7 6 , 279, 360 A . 356 221,230
Fredrickson,
I. E . , Hamburger,
C.
321,352 F r e g l y , A . R . , s. M c C l u r e , J . A . 3 9 9 , 404 F r e g l y , A . R . , s. M i l l e r , E . F . 8 6 , 9 3 , 9 4 , 9 5 , 9 6 , 149, 2 4 1 , 264, 3 2 5 , 352 F r e n c h , R . S . , s. N e w s o m ,
B.D.
354 F r e n z e l , H . 198, 200, 204, 221, 230, 4 3 8 , 4 3 9 , 445, 4 5 4 ,
460,
4 8 2 , 4 8 3 , 486
Scheid,
F r i e d b e r g , J . , s. M o n e y ,
K . E. 448
F r i e s , E . C , s. H e l l e b r a n d t , F . 360
F r i s i n a , R . 358 F u c h s , A . F . 5 8 9 , 616
J . , Figge,
P., Kornhuber,
U . , H .
8,142
Fuchs, A . F., Kornhuber, H . H . 5 8 6 , 5 9 8 , 5 9 9 , 616 Fuchs,
Kornhuber,
S c h w a r z 159
Fredrickson, J . M . , Schwarz, D .
A . F . , Luschei,
E . S.
5 8 6 , 5 9 0 , 617 F u c h s , A . F . , s. B e c k e r , W . 5 9 1 , 596, 675 F u c h s , A . F . , s. R o b i n s o n , D . A . 5 9 2 , 6 1 2 , 619
K o r n h u b e r , H . H . 230, 2 8 7 ,
F u j i m o t o , T . , s. T o k i t a , T . 3 5 5
317, 5 8 4 , 6 0 9 , 616
F u jita,
dez, C . 115, 126,142 F r e e d m a n , S . J . 1 3 4 , 142 A . R . , Bergstedt, M . ,
G r a y b i e l , A . 3 4 7 , 351 Fregly, A . R . , Graybiel, A . 250,
A . , H y d é n , H . 4 8 2 , 486
F r e g l y , A . R . , s. I g a r a s h i , M .
A.
Fredrickson, J . M . , Fernandez,
H.
352,
3 9 9 , 4 0 0 , 404, 4 0 7 , 411,
F r a n z e n , R . , s. M c F a r l a n d , R .
C.
3 3 3 , 3 3 8 , 3 4 2 , 3 5 0 , 351, 5 6 7 , 575
F r e u d 570,614
F r a n s e e n , E . B . , s. H e l l e b r a n d t ,
Fregly, 142,
358 Floberg,
F r a n k s , W . R . , s. J o h n s o n ,
F r e d r i c k s o n , J . M . , s. F e r n a n -
Fleishman, E . A . 72, 85,
263, 3 2 1 , 3 2 2 , 3 2 3 , 3 2 4 , 3 2 8 ,
Y.,
Rosenberg,
J . ,
S e g u n d o , J . P . 4 5 2 , 460 F u k u d a , T . 2 7 0 , 2 7 3 , 278,
354,
5 8 4 , 617 Fukuda, T.,Hinoki, M . , Tokita, T . 3 7 3 , 3 7 8 , 385 F u k u d a , T . , T o k i t a , T . 353,354, 357
330, 333, 336, 345, 3 4 6 , 3 5 0 , F u k u d a , T . , T o k i t a , T . , A o k i a ,
F l o c k , A . , Wersau, J . 5 1 9 , 575
351
Flourens, J . P . M . 291, 307, 317, 4 0 5 , 410, 445, 4 6 3 , 4 6 5 ,
Fregly,
40*
B . , Henriksson, N .
7 2 , 1 4 2 , 2 8 7 , 317
F i t t s , P . M . , s. J o n e s , R . E . 8 5 ,
486
B . 376, 378, 380,
Fredrickson, J . M.,Schwarz,D.,
358
F i s k e , D . 353
T.
134,143, 234, 2 3 5 , 2 6 1 , 2 6 2 ,
Fredrickson,
280
A . R., Smith, M . J . ,
W o o d , C. D . , Cramer, D . B .
263, 264, 3 2 1 , 3 2 2 , 3 2 3 , 3 2 4 ,
H . 3 9 0 , 3 9 1 , 3 9 2 , 403, 5 5 8 ,
F i s c h e r , J . J . 353
A . R., Smith, M . J . ,
G r a y b i e l , A . 3 2 2 , 3 3 8 , 351
F o r s i u s , H . , s. V l i e t , A . G . M .
353
F i n n e y , L . M . , s. W h i t e , W . J .
324,351
3 2 2 , 351
N . G . 2 2 6 , 230, 2 6 9 , 279
142 F i n e r , B . L . , s. A s c h a n , G . 3 6 5 ,
A.,
F r e g l y , A . R . , s. G r a y b i e l , A .
A . 2 6 9 , 278
F e r r e r i , G . 4 1 4 , 445
A . R., Oberman,
F o r d , F . R . , W a l s h , F . B . 353
Forssman,
261,265
R . S.
Graybiel, A., Mitchell, R . E .
Fregly, E . , s. B r a n d t , U . 1 0 2 ,
138, 1 5 9 , 4 1 6 , 444
G. ,
3 7 0 , 3 7 3 , 387 Fernandez
385
385, 4 2 6 , 445
N . G . 3 7 0 , 3 7 1 , 3 7 3 , 386 F e r n a n d e z , C , s. P r o c t o r , L . R .
Fregly,
Fregly,
F o e r s t e r , 0 . 6 0 9 , 616
J . M . 221,230 M.
263
Fluur,
370,385 Fernandez,
A . 69,
Fluur, E . ,Mendel, L . 374, 378,
4 0 8 , 4 1 0 , 445 C ,
E . , Mellström,
102,142, 1 6 3 , 165,187, 2 3 5 ,
A b e n d , W . K . 5 3 2 , 575
Fernandez,
Fluur,
Fregly, A . R., Kennedy, 344,351
F l u u r , E . , E r i k s s o n , L . 2 0 0 , 230
5 1 2 , 5 1 5 , 5 2 7 , 5 5 2 , 575 Fernandez, C , Goldberg, J .M . , Fernandez,
4 5 4 , 460, 486
S., W a t a n a b e , A.
R., Graybiel, A . ,
Smith, M . J . 322, 333, 338, 351
T., Hishida,
K . , Tashiro, K . , Miyata, H . , M a z u o k a , T J . 3 7 6 , 3 7 7 , 385 F u r u k a w a , R . , s. H o n j o , S . 357
628
Author Index
Gabrielli,
L . , s.
Cenacchi,
V.
3 6 4 , 366
Stockwell, R . , s.
Rupert,
A.
4 5 2 , 461
Collins, W . E . , Guedry, F . E . Gilson, R . D . ,Stockwell, C. W . ,
G a l l , K . , s. C r a m p t o n , G . H . 6 0 , 140, 575
Guedry,
F . E . 5 6 , 6 2 , 142
G i l s o n , R . D . , s. C o l l i n s , W . E .
Galle, R . R . , Emel'ianov, M .D . 126,142 Galle, R . R . , YemePyanov, M . D.359 J . 2 7 7 , 280, 5 8 4 , 619
W.
Garner, W . R . , H a k e , H . W . 56, 57,142 164,187
G a s t a u t , H . 2 1 5 , 230 W.
317,
4 2 6 , 445, 4 5 2 , 4 5 4 , 460, 5 8 6 ,
2 6 8 , 279, 4 5 2 , 4 5 4 , 460, 4 6 4 ,
7,136
A . 164,
Carpenter,
Glorig, A . , Fowler,
H.
E . P.,J r .
G o b l e , G . J . , s. N e w s o m , B . D .
Goetzinger,
C . P . , s.
Scanlon,
Goldberg, J . M . , Fernandez, C. 4 5 2 , 461, 5 0 9 ,
510,512,515, 524,575 C . 19, 39,142, 5 0 7 , 5 0 9 , 5 1 0 ,
G i b s o n , J . J . 1 5 6 , 1 6 2 , 1 6 6 , 168,
512, 515, 527, 532, 552, 575
Gibson, J . J . , Mowrer,
G o l d b e r g , L . 2 7 6 , 279, 355, 359 O. H .
1 0 9 , 1 1 9 , 142, 1 6 0 , 1 6 2 , 187 G i b s o n , J . J . , R a d n e r , M . 160, 162, 169,187 Gierke,
H . E . v o n , s.
Harris,
C . S . 358 G i e r k e , H . E . v o n , s. N i x o n , C . W . 359 G i l b r e t h , D . A . 575 Gildenberg, P . L . , Hassler, R . 4 7 5 , 486 G i l l i n g h a m , K . K . 3 6 5 , 367 G i l l i n g h a m , K . , s. M c C a b e , B . F . 4 2 6 , 448
G o l d b e r g , L . , s. A s c h a n , G . M . 307,315 G o l d b e r g , M . E . , s. W u r t z , R . H . 2 1 7 , 232, 6 0 4 , 620 Goltz,
D.
Graybiel,
A . , Clark,
B . , Zar353,
3 9 2 , 403, 5 6 7 , 5 7 5 Graybiel, A . ,Fregly, A . R . 234, 263, 3 2 1 , 3 2 2 , 3 2 3 , 3 5 0 , 351 Graybiel,
A . , Guedry,
F. E.,
Johnson, W . H . , Kennedy, R . 3 7 8 , 3 8 0 , 3 8 1 , 385 Graybiel, A . , H u p p , D . I. 22, 2 3 , 1 4 3 , 3 8 0 , 385 Graybiel, A . , Johnson,
W. H .
143, 2 6 2 , 263, 3 0 9 , 317, 3 2 5 , 351, 5 5 0 Graybiel,
A . , Kellogg,
R.
S.
Ì 0 3 , 143, 2 5 4 , 263, 5 5 5 , 5 7 5 Graybiel, A . , Kennedy, K n o b lock,
E. C ,
R . S., Guedry,
F. E . , Mertz, W . , McLeod, M.
E . , Colehour,
J . K.,
Miller, F . F . , Fregly, A . R .
E . 359
1 3 4 , 143, 3 3 8 , 352, 5 6 7 , 5 7 5
F . 463, 464, 465, 466,
Graybiel, A . , Kerr, W . , Hupp,
Goldfien,
G i e r k e 527
B.,Mac-
r i e l l o , J . J . 1 3 1 , 143,
353
G h e n t , L . , s. S o m m e s , J . 8 , 151 173, 178, 1 8 1 , 1 * 7
A . , Clark,
Cor quodale, K . , H u p p , 22,143
G o l d b e r g , J . M . , s. F e r n a n d e z ,
85,142
1 6 2 , 1 7 9 , 187,
2 4 7 , 263, 3 2 5 , 351 Graybiel,
W . , s.
6 0 , 6 2 , 143,
Gescheider, G . A . , W r i g h t , J .
8 2 , 1 0 7 , 143, 5 0 8 , 5 4 2 , 5 7 5 9 3 , 9 5 , 143,
G i r o t t i , G . 164,187
S . L . 359
G e r n a n d t , B . , s. A n d e r s s o n , S .
401,403,
Graybiel, A . , Clark, B . 82, 86,
617 354, 359 G e r n a n d t , B . , I g a r a s h i , E . M . , G o e t z i n g e r , C . P . 358 A d e s , H . W . 4 3 4 , 445 G o e t z i n g e r , C . P . , s. C u n n i n g Gernandt, B . E . , Thulin, C. A . h a m , D . R.358 486
165, 234,
Graybiel, A . , B r o w n , R . H . 75,
4 7 5 , 484
M . B . 4 7 9 , 485
G e r n a n d t , B . E . 7 2 , 142, 2 6 8 ,
G r a y b i e l , A . 7 5 , 143, 3 5 0 , 351, 3 9 0 , 3 9 2 ,
Glinsmann,
G e l d a r d , F . A . 7, 142
G r a y , R . F . , Crosbie, R . J . 299,
4 2 6 , 4 2 9 , 445, 5 7 3
187
G e l b , A . 162,187
L . 2 0 5 , 230
G i r e t t i , M . L . , s. A z z e n a , G . B .
Girotti, G., Bordogna,
G e i s s l e r , H . G . 1 7 5 , 187
G r a h e , K . 4 3 4 , 445
G i r e t t i , M . L . 4 7 6 , 4 7 8 , 486
488
360
G o t o , T . , s. T o k i t a , T . 355 Grahe 79
2 4 4 , 2 5 6 , 263, 3 2 4 , 3 2 5 , 3 3 0 ,
65,152
G i r e t t i , M . L . , s. M a n n i , E . 4 7 5 ,
G a z e n k o , O . 2 5 4 , 263
K . , Co-
317
J . 130,151 G i l s o n , R . D . , s. S t o c k w e l l , C .
G a r n e r , W . R . 5 7 , 142
Goto, K . , Tokumasu,
G r a n t , W . T . 355
4 5 , 5 3 , 5 6 , 108,145 G i l s o n , R . D . , s. S c h r o e d e r , D .
G a r c i n , R . , s. R a d e m a k e r , G . G .
279, 2 8 4 , 2 8 5 , 2 8 6 , 2 8 7 ,
Yuganov,
E . M . 5 5 4 , 5 5 6 , 580
Grant, G . , Aschan, G., Ekvall,
130,140 G i l s o n , R . D . , s. G u e d r y , F . E .
G e a r , R . J . , s. G r i e v e , D.
G o r s h i k o v , A . L . , s.
h e n , B . 3 6 2 , 367
130,142
G a l e b s k y , A . 6 , 142
G a r t e n , S. 8 8 , 90,142,
F. E.,
C . W . 1 3 1 , 142
G i l s o n , R . D . , S c h r o e d e r , D . J . , G o t o , K . 357
G a e f f k e , H . 5 9 2 , 5 9 3 , 617 Galambos,
Gilson, R . D . , Guedry,
A . , s. Y o r k ,
D . , B a r t l e y , S . 2 5 , 5 8 , 143
4 7 9 , 486 G o n s h o r , A . 1 3 4 , 6 0 4 , 617 Gonshor,
A . , Melvill Jones, G .
G. m ,
scher, D . E . , Riopelle, A .J . 575
131,143 Gonshor,
Graybiel, A . , Meek, J . C , B e i -
A . , s. M e l v i l l
Jones,
148
G o o d s o n , J . E . , s. M i l l e r , J . W . 119, 120,149 G o o r n y , A . B . , s. B e n s o n , A . J . 3 6 , 1 3 7 , 3 6 5 , 366
Graybiel, A . , Miller, E . F . 75, 143, 2 3 4 , 2 5 7 , 2 6 2 , 263, Graybiel,
A . , Miller,
264
E. F.,
Billingham, J . , Waite,
R.,
Berry, C. A . , Deitlein, L . F . 1 0 3 , 1 0 4 , 143, 2 4 2 , 2 4 4 , 264
Author
Graybiel,
A.,
Newsom,
Miller,
9 1 , 9 6 , 143, 247, 256, Graybiel,
1 6 4 , 187, 2 3 7 ,
A.,
Niven,
Graybiel, F., E.
J .
K .
J . L.
2 4 7 , 2 5 2 , 264 H .
A. R.,
Miller,
F . II.', M c L e o d ,
M . E.
2 3 5 , 264, 3 2 4 , 3 3 3 , 352 Graybiel,
A . , Smith,
Guedry, E.
F.
C.
R.,
F . E . , J r . , Miller, II., Fregly,
A . R.,
C r a m e r , D . B . 2 6 1 , 2 6 2 , 264, 333,
G r a y b i e l , A . , s. L a n s b e r g ,
M.P.
2 5 6 , 264, 3 0 0 , 3 0 2 , 318, 5 5 0 , 577 399,
352
Graybiel, A . , Stockwell, C. W . , Guedry, F . E . ,J r . 234, 262,
A . , s.
McMitchael,
G r a y b i e l , A . , s. M e e k , J . C . 4 2 7 , 448 G r a y b i e l , A . , s. M i l l e r , E . F . 8 6 , 93, 94, 95, 96, 100,103,149, 159, 1 6 4 , 165, 1 7 5 , 179,189, 234, 235, 239, 240, 241, 242, 251, 252, 257, 259, 262,
264,
G r a y b i e l , A . , s. M i n n e r s , H . A .
403
G r a y b i e l , A . , s. N i v e n , J . I . 2 6 2 ,
Miller,
A., Wood,
C.
E . F. II.,
Cramer,
D.,
D . B . 2 5 7 , 264 G r a y b i e l , A . , s. B r o w n ,
R. H .
23,138 G r a y b i e l , A . , s. C l a r k , B . 2 5 , 5 6 , 72, 86, 9 0 , 94, 96, 107, 108, 110,139, 1 6 4 , 175,186, 2 4 7 , 2 4 9 , 263, 3 2 5 , 351, 353, 3 9 9 , 401,403,
5 4 2 , 574
G r a y b i e l , A . , s. C o l e h o u r , J . K . 400,
Graybiel,
A . , s. F r e g l y ,
A. R.
2 5 0 , 263, 3 2 1 , 3 2 2 , 3 2 3 , 3 2 4 , 328, 330, 333, 336, 338, 3 4 5 , 346, 347,350,351 G r a y b i e l , A . , s. G u e d r y ,
3 7 3 , 3 7 7 , 3 7 8 , 3 8 1 , 3 8 2 , 386, 576
Graybiel,
G r a y b i e l , A . , s. W h i t e s i d e ,
T.D.
G r a y b i e l , A . , s. W o e l l n e r , R . C .
A . , s. H a r r i s ,
C. S.
3 9 9 , 403, 5 0 0 , 5 7 6
353
R . S.
G r a y b i e l , A . , s. K e n n e d y , R . S .
425,
4 2 8 , 4 3 0 , 4 3 2 , 445, 4 5 5 ,
462,
4 7 2 , 4 8 3 , 486, 5 0 2 , 5 0 6 , 5 0 7 , 579 G r o e n , J . J . , s. J o n g k e e s , L . B . W . 71, 73, 77, 78, 79, 80, 87,
G r e e n b e r g , G . 1 7 8 , 187 G r e e n e , D . , s. S m i t h , K . U . 360 Greiner,
G . F . , Conraux,
C ,
P i c a r t , P . 2 2 3 , 230 Griesbach,
E . , s. H o l s t , E . v o n
C . R . 3 6 1 , 367,
371,
677
Becker,
W.
Gualtierotti,
T . , A l l tucker,
D.
G u e d r y , F . E . 9, 2 3 , 4 8 , 5 6 , 6 0 , 61,
66, 74, 75, 77, 87, 92,
1 0 6 , 1 1 1 , 112, 113, 114, 115, 116,119, 120, 123, 124,125, 126, 127, 130, 1 3 1 , 132, 1 3 3 , 1 3 4 , 1 4 4 , 1 8 2 , 1 8 7 , 2 3 4 , 264, 290, 294, 295, 309, 310, 3 7 7 , 3 2 5 , 352, 3 6 5 , 3 6 7 , 3 7 3 , 3 7 5 , 376, 377, 378, 379, 380,
381,
3 8 2 , 385, 386, 3 9 2 , 403,
446,
Guedry,
F . E . , Ambler,
R. K .
1 1 6 , 1 2 6 , 1 2 9 , 1 3 0 , 1 3 1 , 144 Guedry,
F . E . , Benson, A . J .
Guedry,
F . E . , Ceran, S. J . 43,
575 Guedry,
F . E . , Collins, W . E .
60, 6 1 , 6 2 , 6 5 , 135,144, 3 8 1 , 386
Grigoryev,
Y u . G . , s.
Arla-
s c h e n k o , N . T. 353
Guedry, 377 Guedry,
J . , s. P r e c h t ,
F . E . , Collins, W . E . ,
G r a y b i e l , A . 1 3 1 , 1 3 2 , 145.
359 W . 458,
461 Groen,
B . , s.
4 5 , 4 6 , 5 0 , 5 8 , 5 9 , 144, 5 0 6 ,
G r i e v e , D . W . , G e a r , R , J . 360
Grippo,
Grözinger,
128,144
163,188 Griffith,
447,
576
541, 546, 576
378,381,356 F . E . , Collins, W . E . ,
S h e f f e y , P . L . 118,145, 3 6 3 , 365, 367, 374, 378, 379, 3 8 1 , 386
J . J . 6, 6 0 , 6 2 , 6 5 , 6 7 ,
4 0 8 , 410, 4 1 6 , 4 1 9 , 4 2 4 , 4 2 5 , 4 2 6 , 4 2 9 , 4 3 0 , 445,
318
3 4 5 , 352, 354
R . E . , Douglass, C. C.
1 2 0 , 1 4 3 , 1 4 4 , 2 9 4 , 2 9 6 , 317,
G r a y b i e l , A . , s. J o h n s o n , W . H . G r a y b i e l , A . , s. K e l l o g g ,
Green,
G r o e b b e l s , F . 4 6 5 , 486
3 6 5 , 367
304,
A. J .
G r i m e s , R . H . , s. W h i t e , W . J . F. E.
1 3 1 , 1 3 2 , 1 4 4 , 1 4 5 , 3 4 4 , 352, 567,
G r a y b i e l , A . , s. R o m a n ,
375,376, 378, 381,355,581,
403
153,
2 8 5 , 317, 4 1 5 , 4 2 0 , 4 2 3 ,
S . 4 5 2 , 461, 4 6 4 , 486
1 5 9 , 190, 2 3 9 , 266, 5 2 5 , 580
Graybiel,
30, 3 3 , 3 4 , 4 4 , 6 0 , 121,
601
358
M . 3 5 , 154, 2 5 6 , 266
Graybiel, A . , W o o d , C. D . 402,
Egmond,
516,
298,320
575
J . J . , s. V a n
578
Deane, F . R . , Fregly, A . R . ,
W. H .
Groen,
146, 4 1 7 , 4 1 8 , 4 1 9 , 4 3 6 ,
1 1 0 , 1 2 0 , 1 2 3 , 1 3 1 , 1 3 3 , 151
L . 3 4 2 , 352
446, 5 0 2 , 5 0 8 , 5 0 9 , 5 1 0 , 5 1 1 ,
265, 3 2 5 , 3 3 0 , 352, 5 2 5 , 5 2 6 ,
G r a y b i e l , A . , s. R e a s o n , J . T .
Graybiel, A . , Whiteside,
O.,
A . J . H . 19, 5 9 ,
A . A . J . 19, 20, 2 5 , 28, 29,
Graybiel, A . ,Thompson, A . B . , Colehour, J . K . , Ricks, E .
J . J . , Lowenstein,
Vendrick,
512, 518, 575
404
Graybiel,
265, 354, 4 7 2 , 4 8 3 , 488
264
Groen,
6 2 , 144, 2 8 3 , 317, 4 1 5 , 4 2 3 ,
A . E . 578
A . , Schuknecht,
Fregly,
I.,
299,
445
A . , Patterson,
8 5 , 143,
629
G r a y b i e l , A . , s. M c C l u r e , J . A .
317, 4 1 6 , 4 3 4 , 81,
F.,
264
MacCorquodale, Graybiel,
E.
B . , Kennedy, R .
Index
446
Groen, J . J . ,Jongkees, L . B . W . 25, 28, 2 9 , 3 1 , 3 4 , 4 4 , 4 5 , 46, 144, 3 6 2 , 367, 3 7 8 , 385, 4 2 1 , 446, 5 0 6 , 5 7 5
Guedry,
F . E . , Cramer,
R. L.,
K o e l l a , W . P . 6 1 , 6 3 , 64,145 Guedry,
F.
E . , Graybiel,
A.
131, 132,144, 3 7 3 , 377, 3 7 8 , 3 8 2 , 386, 5 6 7 , 5 7 6 Guedry, F . E . , Graybiel, A . , Collins, W . E . 377, 378, 381, 386
630
Author Index
Guedry, F . E . , Harris, C. S. 74, 7 7 , 8 7 , 1 0 5 , 1 0 6 , 1 0 7 , 145, 3 0 8 , 317, 5 4 1 , 576 Guedry,
F . E . , Holmes,
J . T.
72, 85,150
F . E . , J r . , Kennedy,
b i e l , A . 3 4 4 , 352
J . 130, 757 Guedry,
2 5 6 , 265,
Hamburger, C. A . , Hydén, H . 4 8 2 , 486
F . E . , s.
Stockwell,
C . W . 65, 108,109,110,152,
Guedry, F . E . , Lauver, L .S.44,
Halstead, W . , Yacorzynski, G . , F e a r i n g , F . 3 7 3 , 386
G u e d r y , F . E . , s. S c h r o e d e r , D .
R . S., Harris, C. S., Gray-
H a l p e r n , L . 1 6 2 , 187 H a l s t e a d , W . 3 7 3 , 3 8 2 , 386
2 2 , 1 1 7 , 148 G u e d r y , F . E . , s. P a s s e y , G . E .
130,145 Guedry,
G u e d r y , F . E . , s. M a n n , C . W .
Hamburger,
311,320
Hamersma,
5 8 , 5 9 , 60,145,363,367,381,
G ü n t h e r , W . 1 9 5 , 230
4 3 4 , 446
386
G ü t t i c h , A . 2 7 0 , 2 7 4 , 279, 4 3 7 ,
Guedry, F . E . , Montague, E .K .
446, 486
386, 5 2 7 , 5 5 4 , 576 Guedry, F . E . , Owens, G . G . , Cummings, M . , Norman, J . F . E . , Owens, G . G . ,
N o r m a n , J . W . 44, 49, 58, F . E . , Richmond, G.
H a r l a n , W . L . , s. M a h o n e y , J .
G u r f i n k e l , V . S . , s. B a b s k i i , E . B . 359 Gutierry-Mahonejr,
Guedry, F . E . , Stockwell, C. W . , G u t m a n , Gilson, R . D . 45,53,56,108,
104,141
G . G . de,
J . , s. B e r g m a n n , F .
3 6 4 , 366
G. 44, 47, 4 8 , 5 1 , 5 2 , 5 6 , 1 0 8 , 145 G u e d r y , F . E . , s. A m b l e r , R . K . 126,136 G u e d r y , F . E . , s. B e n s o n , A . J . 45,
53, 54, 111, 112, 113,
116, 128,137, 2 9 0 , 2 9 2 , 3 0 9 , 310,311,376,548, 549, 552, 5 5 3 , 5 6 6 , 5 6 7 , 574 G u e d r y , F . E . , s. B r o w n , R . H . 3 7 9 , 3 8 0 , 383 G u e d r y , F . E . , s. C o l l i n s , W . E . 53, 54, 59, 60, 62, 130, 135, 140, 3 6 3 , 366, 3 7 5 , 3 8 1 , 384, 4 2 3 , 444 G u e d r y , F . E . , s. C o r r e i a , M . J . 7 5 , 1 1 1 , 1 1 3 , 1 1 5 , 140, 1 8 2 , 1 8 6 , 3 6 5 , 367, 3 9 2 , 403, 5 4 6 , 574 G u e d r y , F . E . , s. G i l s o n , R . D . 5 6 , 6 2 , 1 3 0 , 1 3 1 , 142 G u e d r y , F . E . , s. G r a y b i e l , A . 1 3 4 , 1 4 3 , 2 3 4 , 2 6 1 , 2 6 2 , 264, 333, 3 3 8 , 352, 3 7 8 , 3 8 0 , 3 8 1 , 385, 5 6 7 , 575 3 6 5 , 367 M.
P . 2 5 6 , 264,
318, 5 5 0 , 577
300, 302,
F. E,
C. S., Sommer,
H . S.
H a r r i s , C . S . , s. G u e d r y , F . E .
H a b e r , R . N . 1 3 4 , 145 H a g b a r t h , K . E . , s. A s c h a n , G . 3 6 5 , 366 Haimovici,
H . , s. C a n n o n , W .
B . 4 5 9 , 460 Hakas,
P . , Kornhuber,
H .H .
2 2 2 , 230 H a k e , H . W . , s. G a r n e r , W . R .
74,
77, 87, 105, 106, 107,
145, 3 0 8 , 317, 3 4 4 , 352, 5 4 1 , 576 H a r r i s , C . S . , s. N i x o n , C . W . 359 H a r r i s , J . , s. M o r a n t , R . B . 1 6 2 , 189 Harrison,
56, 57,142
O , s. H a m p s o n , J .
5 9 8 , 6*77
H a l l g r e n , B . 353 H a l l p i k e , C . S . 2 9 1 , 317
H a s e g a w a , T . 1 6 5 , 188
H a l l p i k e , C . S . , C a i r n s , H . 576
H a s s l e r , R . 2 1 7 , 230
H a l l p i k e , C. S., H o o d , J . Ü. 35,
H a s s l e r , R . , s. G i l d e n b e r g , P . L .
4 3 , 5 2 , 6 3 , 64,145, 4 2 5 , 4 2 9 , H a l l p i k e , C. S., H o o d , J . ,B y ford,
4 7 5 , 486 H a u t y , G . T . , s. P e a r s o n , R . G .
446 G . 2 5 , 145,
4 2 9 , 446
H a l l p i k e , C . S . , s. C a r m i c h a e l , E . A . 2 2 2 , 229 H a l l p i k e , C , s. C a w t h o r n e , T .
72, 85,150 H a v i l l , C . D . , s. S a d o f f , M . 2 5 , 37, 757 Hawkins,
W . R . , s. M i n n e r s ,
H . A.358
4 3 , 5 2 , 138, 4 3 7 , 444, 4 5 1 ,
H a y g o o d , R o b e r t O , s.
4 5 4 , 460, 4 7 2 , 4 8 3 , 485, 5 0 6 ,
holm, Ernest 573
574 Hallpike,
C . S . , s. C i t r o n , C .
4 3 7 , 444 C . S . , s. C o r v e r a , J .
17,140 H a l l p i k e , C . S . , s. D i x , M . R .
G u e d r y , F . E . , J r . , s. L a n s b e r g ,
C. S., Guedry,
358
Hallpike,
G u e d r y , F . E . , s. H a r r i s , C . S .
358 Harris, Harris,
Guedry, F . E . , Stockwell, C. W . , N o r m a n , J . W . , Owens, G .
Harris, C. S., v o n Gierke, H . E .
G r a y b i e l , A . 3 6 5 , 367
G u t t i c h , A . 3 6 1 , 367
145
L . 3 6 2 , 367, 3 7 4 , 386 H a r p e r , C . R , , s. C u l l e n , J . F .
s. C h u s i d , J . G . 4 8 2 , 485
27, 28,145
O,
G u i l l e m e n , V . , s. T o r o k , N . 2 2 0 , H a n c o c k , J . A . 353 232 H a r d e n Jones, F . R . 559,560, G u l i c k , W . I . , s. V e r n o n , J . A . 576
G u r n e e , H . 7 7 , 7 8 , 145
145 Guedry,
J . , Harrison,
W o o l s e y , C . 5 9 8 , 617
359
W . 6 0 , 6 3 , 64,145 Guedry,
H . 2 2 2 , 230, 4 2 5 ,
H a m m e r , L . R . 1 0 3 , 145 Hampson,
1 2 0 , 1 2 3 , 1 2 4 , 1 4 5 , 3 7 8 , 3 8 0 , G u i g n a r d , J . C . 360
C . A . , s. F l o b e r g ,
I . E . 4 8 2 , 486
2 0 6 , 230, 4 3 7 , 444 H a l l p i k e , C . S . , s. F i t z g e r a l d , G . 2 2 2 , 230
Lind-
H e a d , H . 353, 358 H e a t h , S . R . 358 H e b b , D . O . 3 6 , 145 Hécaen, H . , Ajuriaguerra, J . de 2 1 8 , 230 H e i n , A . , s. H e l d , R . 1 3 4 , 145 H e l d , R , 1 3 4 , 1 3 5 , 145 H e l d , R , , H e i n , A . 134,775
Author Index
H e l d , R . , s. D i c h g a n s ,
J . 119,
631
H i l l , R , J . , s. C o l l i n s , W . E . 1 3 0 , H o o d , J . D . , s. H a l l p i k e , C . S . 140
125,141 Hellebrandt, F . A . ,B r a u n , G . I .
2 5 , 3 5 , 4 3 , 5 2 , 6 3 , 6 4 , 145,
H i l l , R . M . , s. H o r n , G . 1 3 0 , 1 4 6 H i l t z , F . F . 5 6 6 , 576
360 Hellebrandt,
F . A . , Franseen,
E . B . 2 7 6 , 279,
360
Hinchcliffe,
H o p p e n b r o u w e r s , T . , s. B r u n i a ,
R . 3 8 0 , 386,
434,
446
Hellebrandt, F . A . , Riddle, K .
4 2 9 , 446 C . H . M . 2 7 1 , 278 Horcholle-Bossavit,
H i n o k i , M . 354
Tyc-Du-
m o n t 586
S., L a r s e n , E . M . , Fries, E .
Hinoki,
M . , K i t a h a r a , M . 360
H o r n , G . , H i l l , R . M . 1 3 0 , 146
C . 360
Hinoki, M . , Kurosawa, R . 437,
H o r t o n , M . O . , s. A l d e n , F . D .
H e l m h o l t z 157 Hemingway,
446
A . 3 8 9 , 3 9 9 , 403
H e n d e r s o n , J . W . 3 7 1 , 386
3 7 8 , 385
Henderson, J . W . , Crosby, E .C. 6 1 2 , 617 H e n m o n , V . A . C . 353 5 9 0 , 616 420,446
D.
354
Howard, I. P . , Templeton, W . B . 7, 1 7 , 7 2 , 8 2 , 8 6 , 9 4 , 9 5 , 117, 1 1 9 , 120,146, 1 6 0 , 1 6 5 ,
H i t z i g 369
178,188 H o w e , E . C , s. C o l l i n s , V . D .
Hixson, W . C , Niven, J . I. 66, 1 2 8 , 146, 5 0 2 , 5 0 7 , 576
H e n r i k s s o n , N . G . 2 2 0 , 2 2 6 , 230 Henriksson,
N . G.,
A . , Forssman,
Dolowitz, B . 226,
230, 2 6 9 , 279
Hixson,
W . C , Niven,
B . , D o l o w i t z , D . A . 2 6 9 , 279 Henriksson, N . G . , Johansson,
J . I.,
Correia, M . J . 10, 12, 13, 15, 120,146
H u d s p a t h , W . J . 4 8 2 , 487
H i x s o n , W . C , s. N i v e n , J . I . 75, 77, 106, 111,
5 0 6 , 5 6 1 , 578,
150,
391,404,
579
F e r n a n d e z , C . 3 7 0 , 3 7 1 , 3 7 3 , H o e h n e , O . , s. B e c k e r , W . 6 0 0 , 386 615
D . A . 2 6 9 , 278 B . 3 7 4 , 3 7 8 , 3 8 0 , 385 36,150
Hernândez-Péon, M.
R.,
Donoso,
67,145
Hershey,
180, 1 8 1 , 185,188, 4 6 4 , 4 6 6 , Holst,
E . v o n , Griesbach,
H e r t z b e r g , O . E . 358
163,188 156, 158, 169,188, 4 1 6 , 4 2 6 , 446, 5 8 4 , 617
H e r t z m a n , M . , s. W i t k i n , H . A . 181,190
H o m i c k , G . L . , s. B e r r y , C . A . 4 0 2 , 402
Heschl 438
Honjo,
H e s s , W . R . 6 1 2 , 617
H o o d , J . D . 4 1 9 , 446
H i c k s , S . A . 358 H i g h s t e i n , S . M . , s. C o h e n ,
S., F u r u k a w a , R .
357
Hood, J . D . , Pfaltz, C. R . 362, B.
115,126,139 H i l d i n g , A . C . 2 5 , 146 H i l l , C . J . , J r . , s. A l e x a n d e r , S . J . 2 6 2 , 263
E.
Holst, E . v o n , Mittelstaedt, H .
D a n i e l , E d . 5 6 2 , 576
J . , s. V o n B a u m -
g a r t e n , R . J . 580 H u l k , J . , H e n k e s , H . E . 446 2 9 , 146, 4 0 6 , 410, 4 2 0 , 4 3 0 , H u l k , J . , s. V a n E g m o n d ,
A.
H u l k , J . , s. J o n g k e e s , L . B . W .
J . Q . 3 7 6 , 386
4 7 3 , 486, 5 8 1 , 5 8 2 , 6 1 2 , 617
H e r i n g 157
E.165,186 Hukuhara,
A . J . 4 2 5 , 4 3 0 , 445
V o n H o l s t , E . 6 8 , 9 8 , 153, 1 7 8 ,
H e n r i k s s o n , N . G . , s. N i l s s o n ,
H u i z i n g a , E . , s. B e n j a m i n s , C .
4 3 2 , 446
H o l m e s , J . T . , s. G u e d r y , F . E . Holsopple,
H u i z i n g a , E . 1 6 5 , 1 8 8 , 4 6 5 , 487
H u l k , J . , Jongkees, L . B . W .
Hofmann, F . B . , Bielschowsky,
130,145
H e n r i k s s o n , N . G . , s. F o r s s m a n ,
A.
H o f m a n , F . B . 1 8 2 , 188 A.160,188
H e n r i k s s o n , N . G . , s. D o l o w i t z ,
T. N .
H u d d l e s t o n , O . L . 3 7 1 , 373,386
3 0 8 , 3 1 0 , 3 1 1 , 319,
A n d e r s o n , A . 3 6 , 145
D . H . , Wiesel,
172,188
164, 165,186
H . 2 7 6 , 279, 360
A. , Tibbling, L . , Nilsson, A . ,
360
9 8 , 9 9 , 1 0 0 , 1 0 1 , 1 0 3 , 140,
66,
Henriksson, N . G . , Lundgren,
H u b b a r d , A . W . , Stetson, R . H . Hubel,
G . , Olsson, L . G . , Östlund, Henriksson, N . G . , K o h u t , R . ,
353, 355 H o w l a n d , H o w a r d , C. 573
H i x s o n , W . C , s. C o r r e i a , M . J .
Henriksson, N . G . , Forssman,
C. S.
H i s h i d a , K . , s. F u k u d a , T . 3 7 6 ,
H i x s o n , W . C . 3 9 , 146 P . E . 2 7 2 , 2 7 6 , 279,
J . , s. D r a p e r ,
4 9 6 , 575
3 7 7 , 385
H e n n , V . , s. C o h e n , B . 2 1 7 , 229,
H o u s e , W . F . 3 3 3 , 352 Hovorka,
H i n s d a l e , C . 356 H i r s c h , C . 2 7 2 , 2 7 3 , 279,
H e n k e s , H . E . , s. H u l k , J . 446
Hennebert,
357
H i n o k i , M . , s. F u k u d a , T . 3 7 3 ,
367, 3 7 3 , 386 H o o d , J . , s. C a w t h o r n e ,
7,
8,141
H u n t e r , J . , s. T a y l o r , N . B . J . 401,404 H u p p , D . , s. G r a y b i e l , A . 2 2 . 2 3 , 2 5 , 5 8 , 143, 3 8 0 , 385 H u s b a n d , R . W . 356 Hyden,
Holger,
E d . 566, 567,
576 Hydén,
H . , s. F l o b e r g ,
I. E .
4 8 2 , 486 H y d é n , H . , s. H a m b u r g e r , C . A . 4 8 2 , 486
T. 43,
5 2 , 1 3 8 , 5 0 6 , 574 H o o d , J . D . , s. D i x , M . R . 3 7 5 , 3 7 6 , 3 7 7 , 384
430, 4 3 1 , 4 4 7 H u m p h r e y , T . , s. C r o s b y , E . C .
I b i d 577 I g a r a s h i , E . M . , s. G e r n a n d t , B . 4 3 4 , 445
632
Author Index
I g a r a s h i , M . 1 7 , 146, 2 8 3 , 317, 5 0 7 , 5 1 0 , 5 1 6 , 576 Igarashi,
M . , Fregly,
A . R.,
T o k i t a , T . 3 2 1 , 352 Imamura, H.
H . , s.
mond,
3 9 0 , 3 9 1 , 3 9 2 , 403, 5 5 8 , 576
28, 29, 3 0 , 3 3 , 3 4 , 4 4 , 60,
M . , s. B u s e r , P . 6 0 0 ,
I m u s , H . , s. B r o w n , R . H . 2 3 , 138 I n m a n , V . T . , s. E b e r h a r t , H . D . 359 I r e l a n d , P . E . , s. N i t o , Y . 319 I r w i n , J . A . 4 0 5 , 410, 4 2 7 , 446 I s a a c s , S . , s. D o c k e r a } ' , F . C . 353 I s c h , F . , s. T h i é b a u t , F . 356 I s m a i l , A . H . , s. B â r â n y , J . W .
143, 2 6 2 , 263, 3 0 9 , 317, 3 2 5 , 351, 3 7 8 , 3 8 0 , 3 8 1 , 385, 5 5 0 J o h n s o n , W . H . , s. M o n e y , K . E . 2 8 5 , 2 8 8 , 3 0 8 , 319 J o h n s o n , W . H . , s. N i t o , Y . 319 J o h n s o n , W . H . , s. S u n a h a r a , F . A . 3 9 3 , 4 0 4 , 4 0 8 , 411, 449 J o h n s o n , W . H . , s. T a y l o r , N . B . J . 4 0 1 , 404
m o t o , M . 5 8 6 , 617 I t o , M . , Y o s h i d a , M . 5 8 7 , 617 Ito, M . , Yoshida, M . , Obata, K . 5 8 7 , 6 0 5 , 617 I t o , M . , s. E c c l e s , J . C . 6 0 4 , 616 I w a s e , K . , s. B e c k e r , W . 6 0 0 , 615
C. W .
James,
405,
410,
446 Janeke,
J . B . 294, 308, 310,
3 1 5 , 317 Janeke, J . B . ,Oosterveld, W . J . 3 0 2 , 317 Jansen,
J . , s. N y b y ,
O. 602,
619 Jatho,
K . 2 2 3 , 230,
Johansson,
G . , s.
4 3 9 , 446
Henriksson,
N . G . 2 7 6 , 279, 360 Johner, C. H . ,Perlman, H . B . 353, 3 6 5 , 367 Johnson, D . D . , Torok, N .375, 386 J o h n s o n , W . H . 3 9 2 , 4 0 0 , 403, 568 Johnson,
W . , Jongkees, L . B .
W . 427 Johnson, W . H . , Mayne, J . W . 403, 6 0 7 , 617 Johnson,
W . H . , Meek, J . C.,
G r a y b i e l , A . 3 9 9 , 403, 5 0 0 , 576
J . J . 25, 28, 29, 31, 34, 44, 4 5 , 4 6 , 144,
3 6 2 , 367, 3 7 8 ,
385, 421,446,
5 0 6 , 5 1 6 , 575,
576 J o n g k e e s , L . B . W . , s. H u l k , J . 2 9 , 146, 4 0 6 , 410, 4 2 0 , 4 3 0 , J o n g k e e s , L . B . W . , s. J o h n s o n ,
J o r d a n , P . 2 7 3 , 2 7 4 , 279,
615
G . M . , Börry, W . , K o -
w a l s k y , W . 4 2 9 , 447
J o n e s , G . M . , s. M i c h a e l , J . 5 8 9 ,
Jones,
R.
J u n g , R . 2 2 0 , 230, 4 8 2 , 487 Jung,
R., Kornhuber,
H . H .
2 1 2 , 2 1 6 , 231, 4 8 2 , 4 8 3 , 4 8 4 , 487, 5 8 7 , 5 8 9 , 617 J u n g , R . , s. B e n d e r , M . B . 1 6 2 , 186 J u n g , R . , s. D i c h g a n s , J . 1 1 7 , 141
E . , Milton,
J . L.,
F i t t s , P . M . 8 5 , 146 Jones,
354
J ü r g e n s , R . , s. B e c k e r , W . 5 9 5 ,
6 0 0 , 6 1 0 , 617 J o n e s , G . M . 4 1 5 , 447
R . W . , s. D a l l o s , P . J .
5 8 9 , 616 D e J o n g , J . M . B . V . 2 0 6 , 230, 4 3 6 , 4 3 7 , 447
J a n e k e , M . 5 5 1 , 576
J o n g k e e s , L . B . W . , s. G r o e n ,
J o s e p h , J . 360
J o n e s , I . H . 353
W . 9 0 , 146,
423, 425,
Jones, E . G . , P o w e l l , T . P . S.
619
J a m e s , s. N a g e l 7
3 0 , 5 8 , 141,
Jones, E . G . 611
617 2 9 8 , 317
23,
4 3 2 , 445
J o n s s o n , R . , S t e e n , B . 360
Jones, G . M . , Spells, K . E . 585,
J a c k s o n , M . M . , Sears,
J o n g k e e s , L . B . W . , s. E k , J .
W . 427
J o h n s t o n , J . B . 5 8 2 , 617
Jones,
445,
4 5 5 , 462, 4 7 2 , 4 8 3 , 486, 5 0 2 ,
4 3 2 , 446
J . R . 3 9 3 , 3 9 7 , 404
Ito, M . , N i s i m a r u , N . , Y a m a -
1 2 1 , 1 5 3 , 2 8 5 , 317, 4 1 5 , 4 2 0 ,
5 0 6 , 5 0 7 , 579
U . 3 9 9 , 402 J o h n s o n , W . H , s. G r a y b i e l , A .
J o h n s o n , W . H . , s. T a y l o r , W .
359 I t o , M . 6 0 4 , 617
A . A . J . 19, 2 0 , 25,
423, 425, 428, 430, 432,
J . 3 9 0 , 403 J o h n s o n , W . H . , s. A c k e r m a n ,
616
J o n g k e e s , L . B . W . , s. V a n E g -
Kelk, G. F., Franks, W . R. Johnson, W . H . , Taylor, N . B .
Takebayshi,
354
Imbert,
Johnson, W . H . , Stubbs, R . A . ,
K a d o , R . T . , s. A d e y , 2ßl,
W. R.
263
K a h n , A . , s. T o r o k , N . 2 7 1 , 280 Kamath,
R . , s. P f a l t z , C . R .
4 5 1 , 461
D e J o n g , R . N . 353
Kamei, T., Kornhuber, H . H .
J o n g k e e s , L . B . W . 1 7 , 146, 1 6 3 , 1 6 4 , 1 6 5 , 1 8 8 , 2 2 6 , 230,
K a r b o w s k i , K . 4 0 8 , 410,
291, 299, 304, 305, 306,
318,
2 0 0 , 2 0 1 , 2 0 4 , 231 447
K a r d o s , L . 157,188 Brunswik,
E.
157,186 Jongkees, L . B . W . , Groen, J . J . 7 1 , 7 3 , 7 7 , 7 8 , 7 9 , 8 0 , 8 7 , K a s y i a n , I . I . , s. Y u g a n o v , M . 5 5 4 , 5 5 6 , 580 146, 4 1 7 , 4 1 8 , 4 1 9 , 4 3 6 , 447
E.
353, 4 1 3 , 4 1 4 , 4 3 4 , 4 3 6 , 447
Jongkees, L . B . W . , H u l k , J .
Kardos,
L . , s.
K a t e , J . H . 5 0 8 , 576
K a t o , N . , s. S a i t o , I . 3 1 0 , 320
4 3 0 , 4 3 1 , 447 K e i d e l , P l a t t ig 5 9 6 , 6 0 3 , 606 J o n g k e e s , L . B . W . , K l i j n , J . A . K e l k , G . F . , s. J o h n s o n , W . H . J . 447 3 9 0 , 3 9 1 , 3 9 2 , 403, 5 5 8 , 576 Jongkees,
L. B. W.,
Philips-
zoon, A . J . 234, 258, 3 0 8 , 318, 3 6 4 , 367,
264,
447
J o n g k e e s , L . B . W . , s. B o s , J . H . 316
Keller, E . L . , Robinson, D . A . 5 8 6 , 617 K e l l o g g , R , S , 1 0 3 , 146,
159,
188, 5 2 5 , 5 2 6 , 5 2 8 , 5 3 0 , 5 3 1 , 5 5 4 , 576
Author Index
Kellogg,
R.
S., Graybiel,
A.
K l e y n , A . d e 4 3 7 , 4 6 8 , 487, 5 8 6 ,
3 0 4 , 318
K l e y n , A . de, M a g n u s , R . 284,
1 0 3 , 143, 2 5 4 , 263, 5 5 5 , 575 K e l l o g g , R . S . , s. M i l l e r , E . F .
K l e y n , A . de, Versteegh, C. 211,
2 6 2 , 265 K e l l y , C . F . , s. W i n g e t ,
C. M .
3 7 3 , 388 6 0 2 , 617
231, 4 3 9 , 447, 4 6 4 , 4 7 1 , 4 8 2 ,
Kleyn,
6 1 2 , 617
4 2 3 , 4 2 5 , 4 3 2 , 445
R . S., Graybiel, A . ,
McDonough,
R . C.,
Beck-
w i t h , F . D . 3 4 5 , 352 3 4 4 , 351 Kennedy,
9 1 , 9 6 , 1 3 4 , 143,
1 6 4 , 187,
2 3 7 , 2 4 7 , 2 5 6 , 264, 3 3 8 ,
352,
3 7 8 , 3 8 0 , 3 8 1 , 385, 5 6 7 , 575 Kennedy,
R . S . , s. G u e d r y , F .
E . 3 4 4 , 352
G.195,
K n a p p , H . 5 6 1 , 576 E . C , s. G r a y b i e l ,
25,153
K n o b l o c k , E . C . , s. M i n n e r s , H .
K o r n h u b e r , H . H . , s. B a d e r , W .
6 0 6 , 615 2 2 2 , 229, 5 8 7 , 615
A . 358 K n u d s o n , E . , s. B r u n , E . 3 9 3 ,
5, 1 3 5 , 1 4 6 K i m u r a , K . , s. O w a d a , K . 320 K i n g 291
M . , s. T a k e b a y s h i ,
H .
6 1 , 6 3 , 64,145 K o e n i g , E . , s. B r a n d t , T h . 1 1 8 , 119,138 J . 117,
Kislyakov, V . A . , Orlov, I. V . 318 K i t a h a r a , M . , S a t o , T . 357 K i t a h a r a , M . , U n o , R . 110,146,
Körner,
F . , s. S c h i l l e r , P . H .
4 1 4 , 447 K i t a h a r a , M . , s. H i n o k i , M . 360 K l e i n , H . M . , s. B e c k e r , W . 1 9 9 , 229 K l e i n k n e c h t , F . 8 5 , 146 K l e i n t , H . 160, 163, 178, 179,
Dich-
Kornhuber,
H . H . , s.
Fred-
r i c k s o n , J . 8 , 142, 1 5 9 , 230, 2 8 7 , 317
5 8 4 , 6 0 9 , 616
K o r n h u b e r , H . H . , s. F u c h s , A . F . 5 8 6 , 5 9 8 , 5 9 9 , 616 K o r n h u b e r , H . H . , s. H a k a s , P . 2 2 2 , 230 K o r n h u b e r , H . H . , s. J u n g , R . 2 1 2 , 2 1 6 , 231, 4 8 2 , 4 8 3 , 4 8 4 ,
I . 1 6 0 , 1 6 6 , 1 6 7 , 188
3 7 0 , 3 7 1 , 3 7 3 , 386 4 7 5 , 4 7 6 , 4 8 0 , 4 8 2 , 487
H . H . 5 6 , 57,153 5 6 , 5 8 , 136, 5 9 4 , 615
H . , Linclahl,
L.
119,146 K o w a l s k y , N . , s. M e l v i l l
Kongehl, G., Kornhuber, G . , s. B e c h i n g e r ,
487 Kottenhoff,
I . A . , s. Y u g a n o v , E .
M . 5 5 4 , 5 5 6 , 580
Kongehl,
g e h l , G . 5 6 , 5 7 , 153 K o r n h u b e r , H . H . , s. L a n g e , G . 2 0 4 , 231, 4 5 4 , 4 6 7 , 4 8 3 , 4 8 4 ,
G . 466, 467, 469, 473,
Kolosov,
K o r n h u b e r , H . H . , s. K a m e i , T . K o r n h u b e r , H . H . , s. V o n K o n -
K o h u t , R . , s. H e n r i k s s o n , N . G .
Von
H . H . , s.
g a n s , J . 2 0 8 , 2 1 1 , 229
2 0 0 , 2 0 1 , 2 0 4 , 231
K o f f k a , K . 1 6 8 , 188
Kolb,
H . H . , s. D e e c k e ,
487, 5 8 7 , 5 8 9 , 617
Kohler, 360
Becker,
L . 6 0 0 , 616
1
6 0 4 , 619
354
180,188
K o e l l a , W . P . , s. G u e d r y , F . E .
141
K i r s t e i n , R . 2 2 0 , 231
K i t a h a r a , M . 2 7 7 , 279,
K o e l l a , W . 292, 295, 296, 309,
K ö r n e r , F . , s. D i c h g a n s , J . 1 1 7 ,
K i o r b o e , F . 2 9 1 , 318
H . H . , s.
W . 6 0 0 , 6 0 1 , 615
Kornhuber,
146
K i n s b o u r n e , M . 1 3 0 , 146
Kornhuber, Kornhuber,
3 6 5 , 366
Körner, F . , Dichgans,
K i n g , B . G . 3 7 1 , 386
K o r n h u b e r , H . H . , s. B e c h i n g e r , D . 5 6 , 5 8 , 136, 5 9 4 , 615
403 K o c h , G . , s. S e a s h o r e , H . G . 354
3 1 0 , 318
Kimble, G . A . ,Perlmuter, L . C .
H . H . , s. A s c h o f f ,
J . C . 1 9 9 , 2 0 8 , 2 1 . 0 , 229, 5 8 7 ,
188
K h i l o v , K . L . 2 9 2 , 318
231
Kornhuber,
1 3 4 , 143, 3 3 8 , 352, 5 6 7 ,
A.
Köhler, W . , W a l l a c h , H . 162,
K e s s e l , G . , s. V o n D i r i n g s h o f e n ,
H . H . , Krejcova,
Kornhuber, H . H . , Waldecker,
K n a p p , E . 2 0 2 , 231
K e r r , W . , s. G r a y b i e l , A . 2 5 , 5 8 , K e s e r , H . 2 2 3 , 2 2 5 , 231
Kornhuber, H . H . , Deecke, L .
S c h m i d t 591
K o e g l e r , R . R . , s. C o l b e r t , E . G .
143
K o r n h u b e r , H . H . , Aschoff, J .
6 0 0 , 6 0 1 , 618
575
R . , s. G r a y b i e l , A .
606, 607, 608, 6 1 1 , 6 1 3 , 6 1 4 , 618
Kornhuber,
K l i x , F . 163, 180,188
Knoblock,
K e n n e d y , R . S . , s. F r e g l y , A . R .
598, 599, 602, 603, 604, 6 0 5 ,
C . 6 0 0 , 6 0 2 , 6 1 0 , 618
B . W . 447
K l o p p , H . W . 1 6 7 , 188
Kennedy,
487, 5 6 6 , 5 7 3 , 576, 5 8 3 , 5 8 4 , 585, 587, 588, 589, 590, 596,
K l i j n , J . A . J . , E k , J . 4 2 7 , 447
146
R . S . , Graybiel, A .
354
Kishi,
R.
K l i n k e , R . , S c h m i d t , C . L . 119,
K e n n e d y , R . S . 6 7 , 110,146
H.
A . , s. M a g n u s ,
K l i j n , J . A . J . , s. J o n g k e e s , L .
K e n n a r d , M . A . , Ectors, L . 611,
209,210,211,212,213,214,
410, 447 De
5 8 , 141,
K e n n a r d , M . A . 6 1 2 , 617
146,
216, 218, 219, 220, 225, 226,
K l i j n , J . A . J . , s. E k , J . 2 3 , 3 0 ,
K e m p i n s k y , W . H . 8 , 146
H . H . 126,
231, 2 7 7 , 279, 3 0 7 , 318, 4 0 7 ,
4 6 4 , 4 6 5 , 4 7 1 , 4 7 2 , 488
K e m p , J . M . , P o w e l l , T . P . S.
Kornhuber,
197, 198, 203, 2 0 5 , 206, 2 0 7 ,
318
103,149, 2 3 9 , 2 4 0 , 2 5 2 , 2 5 7 ,
K o p a n e v , V . I . , s. Y u g a n o v , E . M . 5 5 4 , 5 5 6 , 580
618
K e l l o g g , R . S . , s. G r a y b i e l , A .
Kennedy,
633
Jones,
G . 4 5 , 5 2 , 5 3 , 5 4 , 148, 2 8 3 , 2 9 6 , 319
D.
K o w a l s k y , W . , s. J o n e s , G . M . 4 2 9 , 447
634
Author Index
K r a g h , J . 2 6 9 , 2 7 1 , 279
L a u r e n s , H . , M i l e s , A . 4 7 2 , 487
K r a n z , G . , s. C o l l i n s , W . E . 5 4 7 , L a u v e r , L . S . , s. G u e d r y , F . E . 574
4 4 , 5 8 , 5 9 , 6 0 , 1 4 5 , 3 6 3 , 367,
Kreidl,
A . 9 5 , 147,
358, 4 0 5 ,
410, 447, 4 7 0 , 487
3 8 1 , 386
591
G . J . M . 6 1 2 , 618
J . , s.
Bechinger,
D.
1 9 6 , 229
M . 5 5 4 , 5 5 6 , 580
3 6 5 , 368
2 8 4 , 2 8 5 , 2 8 7 , 318, 4 5 2 , 461 Ledoux,
K r i j g e r , R . 4 0 6 , 4 0 8 , 410, 4 2 5 , 448 Kurashvili,
A . Ye., Babiyak,
V . P . 3 0 3 , 318
A . , Demanez,
J . P.
F . S . 4 6 3 , 487, 5 6 0 , 577
354 T . , s.
Takebayshi,
H . 354
3 9 1 , 3 9 9 , 4 0 0 , 4 0 1 , 404
K u r o d a , W . , s. T o k i t a , T . 355
L e o n a r d , J . A . 358
Kurosawa,
L e t k o , W . , Stone,
R . , s. H i n o k i , M .
Kuypers,
R . W . 554,
1 1 3 , 152, 5 4 4 , 5 4 5 , 5 4 6 , 579
K u y p e r s , H . G . J . M . , s. P a n - L e v i n , P . M . 354, 4 8 2 , 487 dya,
D . N . 600, 610, 612,
L e w i s , H . B . , s. W i t k i n , H . A .
619
Van
W.
D . , s.
Lachman, J . ,Aarons, L . , Eriks o n , J . H . 3 6 5 , 367 L a h e y , M . E . , s. B r a y , P . F . 2 1 3 , 229 L a n e , H . L . , s. C u r r a n , C . R . 181, i ^ r G., Kornhuber,
H . H .
2 0 4 , 231, 4 5 4 , 461, 4 8 3 , 4 8 4 , 487 L a n g e l a a n , J . V V . 4 2 6 , 448 L a n g o v a , J . 356 Lansberg,
M . P . 77, 78, 106,
120, 126,147 Lansberg, M . P., Guedry, F . E . , Jr.,
G r a y b i e l , A . 2 5 6 , 264,
3 0 0 , 3 0 2 , 318, 5 5 0 , 577 L a r s e n , E . M . , s. H e l l e b r a n d t , F . A . 360 L a s h l e y . K . S . , s. C l a r k , G . 6 1 2 , 616 L a t t o , R . , C o w e y , A . 6 1 2 , 618 L a u e r , E . W . , s." C r o s b y
E . C.
L a u r e l 1, L . , s. A s c h a n , 3 0 7 , 315
G.M .
586, 675 O., Thornhill, R .
A . 4 9 6 , 577 L o w e n s t e i n , O . , s. G r o e n , J . J . 19,
5 9 , 6 2 , 144,
2 8 3 , 317,
4 1 5 , 4 2 3 , 446, 5 0 2 , 5 0 8 , 5 0 9 ,
Lidvall,
Ludvigh,
H . F . 3 6 2 , 3 6 3 , 367,
374, 3 7 8 , 3 8 0 , 3 8 1 , 3 5 6 , 406, 4 1 0 , 411, 448
E . , s. M i l l e r ,
J . W.
130,149 L ü d t k e , H . 4 6 5 , 488
L i l l y , J . C . 6 0 9 , 618
L u m p k i n , R . C. 371, 356
L i n d a h l , L . , s. K o t t e n h o f f , H .
Lundgren,
119,146 L i n d e m a n , H . H . 6 9 , 147, 2 9 0 , 318 Lindeman, Lindholm,
H .
H . , s.
Ernest,
Haygood,
L i n d s a y , J . R . , s. F e r n a n d e z , C . D . B . , Schreiner, L .
H . , M a g o u n , H . W . 4 7 8 , 487 L i n s c h o t e n , J . 1 7 8 , 188 C. N . , Chambers,
W. W.
4 5 9 , 461 L i u , C . Y . , s. M c C o u c h , G . P . 4 5 9 , 461 L l i n â s , R , , P r e c h t , W . 6 0 7 , 618 J . W . 599,
6 0 8 , 618
L o e b , J . 4 6 6 , 487
4 0 8 , 4 0 9 , 411, 4 2 6 , 448 M a c C o r q u o d a l e , K . 2 5 , 147 K . , Meehl, P .
E . 1 6 0 , 755 MacCorquodale,
K . , s.
Clark,
MacCorquodale,
K . , s.
Gray-
b i e l , A . 2 2 , 143,
L i u , C . N . , s. M c C o u c h , G . P .
461
Maanen, J . C. D . v a n405, 406,
B . 2 5 , 73.9
4 5 9 , 461
Llinâs, R . , Wolfe,
L u s c h e i , E . S . , s. F u c h s , A . F . 586, 590, 6 7 7
MacCorquodale,
4 0 8 , 410, 445
Liu,
Henriksson,
Eng-
Robert, C. 573
Lindsley,
A . , s.
N . G . 36,145
L l i n â s , R . , s. P r e c h t , W . 4 5 2 ,
7, 8 , 1 4 1
O., Sand, A . 283,
L u c i a n i , K . 4 7 7 , 488
s t r ö m , H . 7 0 , 142
L a n g e , B . 4 7 7 , 4 7 8 , 487 Lange,
5 3 1 , 5 4 5 , 5 5 9 , 577
L i c k l i d e r , J . C . R . 3 6 , 147
Oosterveld, W . J . 298, 302, 3 0 4 , 3 0 6 , 319
520, 522, 524, 525, 526, 530,
5 1 0 , 5 1 1 , 5 1 2 , 5 1 8 , 575
181,190
der Laarse,
M . 1 8 , 6 9 , 71,147, 1 6 3 , 7 5 5 ,
Lowenstein,
L e t k o , W . , s. S t o n e , R . W . 1 1 2 ,
r e n c e , D . G . 6 1 2 , 618
5 7 3 , 577
2 8 4 , 319, 4 5 2 , 461, 4 6 4 , 487,
577
H . G. J . M . , Law-
7 5 5 , 2 8 2 , 2 8 4 , 2 8 5 , 2 8 7 , 318,
Lowenstein,
L e i r i , E . 4 1 3 , 448
4 3 7 , 446
L o w e n s t e i n , 0 . 1 5 , 60,147, 1 6 5 ,
2 8 3 , 2 9 0 , 319, 5 1 7 , 5 1 8 , 5 1 9 ,
355, 358 L e h m a n , P . , s. M c E a c h e r n , D .
Kuriyama,
L o r e n z , K . 1 6 6 , .755
Lowenstein, O., Roberts, T . D .
L e g g e n h a g e r , K . 4 0 0 , 403 L e g g e t t , A . L . , s. F i s h e r , M . B .
K u r i h a r a , M . , s. T a k e b a y s h i , H .
d e N ó , R . 2 1 7 , 231,
2 8 4 , 3 0 9 , 318, 4 2 8 , 448, 4 5 1 ,
448, 4 6 6 , 4 7 2 , 487, 5 5 2 , 5 5 3 ,
2 2 2 , 231 Le3,
D e L o n g , M . R . 6 0 8 , 618
461, 4 6 9 , 487, 5 9 0 , 6 7 5
L e d o u x , A . 6 0 , 6 2 , 69,147, 2 8 3 ,
K r i e g e r , H . P . , s. P o l l a c k , M .
130,141
L o r e n te
L e b e d e n , V . L , s. Y u g a n o v , E .
Kriebel,
L o m b r o s e , C . T . , s. D u f f y , F . H . L o n g , G . M . 1 0 9 , 1 1 0 , 147
L a w r e n c e , D . G . , s. K u y p e r s , H .
K r e j c o v a , s. K o r n h u b e r , H . H .
L ö w e n b e r g , D . 4 7 7 , 487
2 9 9 , 317,
4 1 6 , 4 3 4 , 445 M a c h , E . 7, 1 7 , 2 4 , 2 5 , 3 0 , 3 1 , 68, 74, 75, 76, 77, 78, 79, 9 5 , 1 0 4 , 1 4 7 , 1 5 7 , 319, 4 1 4 , 4 1 6 , 4 2 9 , 4 3 5 , 448 M a c h o v e r , K . , s. W i t k i n , H . A . 181,190 MacKay,
D . M . 1 5 6 , 75.9, 1 9 7
Maekawa, K . , Simpson, J . E . 590, 604, 675
Author Index
M a g n u s , R . 6 8 , 147,
163, 178,
189, 4 3 7 , 4 5 1 , 4 5 6 , 461, 4 6 4 , 468, 469, 4 7 0 , 4 7 1 , 4 7 2 , 4 7 3 , 474, 475, 477, 478, 481, 4 8 2 , 488, 618
Marchiafava, P . L . , Pompeiano,
M c C l u r e , C . L . 4 9 6 , 578 M c C l u r e , J . A . 3 9 9 , 404
O.130,148 V a n d e r M a r k , F . , s. C o l l e w i j n ,
McClure, J . A . , Fregly, A . R . , Molina,
H . 5 8 7 , 616 M a r k a r y a n , S . S . 2 9 2 , 3 0 2 , 319
Magnus, R . , D e K l e y n , A . 464,
E . , Graybiel,
A.
3 9 9 , 404
W.,
M c C o l l o m , I . N . , s. S e a s h o r e , R .
van Leeu-
M a r k h a m , C . H . , s. C o l b e r t , E .
McCouch, G . P.,Austin, G . M . ,
R . , s. K l e y n , A . d e
M a r k h a m , C . H . , s. P r e c h t , W .
4 6 5 , 4 7 1 , 4 7 2 , 488 Magnus, R . , Storm
C. H . , Precht,
H . 356 L i u , C. N . , L i u , C. Y . 459,
G . 3 6 5 , 366
2 8 4 , 318
452, 453, 454, 455, 456, 4 5 7 ,
M a g o u n , H . W . , s. L i n d s l e y , D . B . 4 7 8 , 487
4 5 8 , 4 5 9 , 461, 4 6 5 , 4 7 5 , 4 7 9 ,
R . G . 362,
367,
3 7 4 , 386
M a r k h a m , C . H . , s. R i t v o , E . R .
1 3 1 , 1 4 8 , 3 6 5 , 367, 3 7 6 , 3 7 7 ,
Malcolm, R . , Melvill Jones, G .
U . 360 R . S . 3 4 5 , 352 D . , Morton,
G.,
L e h m a n , P . 391, 399, 400,
Marshall, J . E . , Brown, J . H .
M a k o t o 516
M c D e r m i d , C . D . , s. S m i t h , K .
McEachern,
3 6 5 , 368 M a r r , D . 6 0 4 , 619
M a i t l a n d , T . G . 4 0 0 , 403
461
M c D o n o u g h , R . C , s. K e n n e d y ,
488
Mahoney, J .L . ,H a r l a n , W . L . , Bickford,
Markham,
S h i m a z u , H . 4 5 9 , 461
w e n , W . 5 8 4 , 618 Magnus,
635
4 0 1 , 404 McFarland, J . H . , Clarkson, F .
3 0 6 , 319, 5 0 8 , 5 0 9 , 5 1 0 , 5 1 2 ,
175,188 3 8 1 , 387 M a r s h a l l , J . E . , s. B r o w n , J . H . M c F a r l a n d , J . H . , W a p n e r , S . , W e r n e r , H . 8 9 , 148 3 7 0 , 383
5 1 5 , 5 1 6 , 5 5 2 , 577
M a r t i n e z , A . , s. R i e s c o -
4 2 , 5 6 , 6 0 , 6 2 , 6 4 , 147, 2 9 6 ,
M a l e c k i , J . 4 2 7 , 448 M a n n , C. W . 24, 72, 84, 89, 90, 93,
9 4 , 9 6 , 1 1 0 , 147,
160,
189, 354 Mann, C. W . , Berthelow-Berry, N . H . , Dauterive, H . J . 84, 86, 88,147 147 84, 88,147
t e s b e r g e , A . 4 7 2 , 4 8 3 , 488
M a n n , C. W . , Passey, G . E . 72, G. E.,
Reston,
C. 371, 372, 373,
M a y n e , J . W . , s. J o h n s t o n , W .
M a n n , C. W . , R a y ,J .T . 25, 26, 27, 7 2 , 85,147 Manni, E . , Giretti, M . L . 475, 488 M a n n i , E . , s. D i G i o r g i o , A . M . 4 7 5 , 485
5 6 0 , 5 6 6 , 5 6 8 , 577, 5 8 5 , 619 R . , Belanger,
W.
G . 3 9 0 , 404
F . 517,
5 2 1 , 5 2 2 , 5 3 0 , 577 M a y n e , R . , M e a d , R . 5 6 6 , 577 M a y n e , R . , s. B e l a n g e r ,
F . 29,
137, 573 Mazuoka,
M a n n i n g , G . 3 9 1 , 404
U . , s.
Fukuda,
T.
3 7 6 , 3 7 7 , 385 McCabe,
B . F . 3 0 8 , 319,
376,
387, 448
M a n n i n g , K . R . , s. B â r â n y , J . W . 359
McCabe, B . F . , Gillingham, K . 4 2 6 , 448
M a n o , N . , s. B a k e r , R . G . 4 5 8 , 460 M a r a n t , R . B . , s. W a p n e r ,
528, 529, 530, 533, 554, 5 5 5 , Mayne,
M a n n , L . 354
Manning, G . W . , Stewart,
M a y n e , R . 5 , 6, 2 0 , 2 2 , 3 8 , 148, 2 8 1 , 319, 4 9 5 , 5 0 1 , 5 0 2 , 5 0 7 ,
A m b l e r , R . K . 8 5 , 148
23,153
291,
H . 403, 6 0 7 , 617
85, 88,147 C. W . , Passey,
S . S . 1 6 5 , 189,
319
387
R a y , J . T . 2 2 , 1 1 7 , 148
Mann,
577
M a x w e l l , S. S., B u r k e , U . L . , F. E.,
McCabe, B . F . , R y u , J . H .475, 4 7 9 , 4 8 3 , 488
S.
McCabe,
M c l n t y r e , A . K . 5 8 6 , 619 M c L e o d , M . E . , Correia, M .J .
25, 37,151 Mathog, R . H . , Cramer, R . L .
Maxwell,
M a n n , C. W . , Dauterive, H .J .
M c G i l l , T . E . , s. V e r n o n , J . A . 359
368
M a u r e r , W . , s. M e y e r z u m G o t -
M a n n , C. W . , Canella, C. J .35,
C. W . , G u e d r y ,
356
M a s o n , A . , s. R i t v o , E . R . 3 6 5 , M a t h e s o n , F . A . , s. S a d o f f , M .
M a n n , C . W . , B e r r y , N . 88,147
Mann,
McFarland, R . A . , Franzen, R .
M a c C l u r e , J . S . 2 2 1 , 232
B . F . , R y u , I. H . ,
S e k i t a n i , T . 4 5 3 , 4 5 9 , 461
3 0 4 , 319 M c L e o d , M . E . , Meek, J . C.324, 352 M c L e o d , M . E , , s. G r a y b i e l , A . 1 3 4 , 1 4 3 , 2 3 5 , 264, 3 2 4 , 3 3 3 , 3 3 8 , 352, 5 6 7 , 575 McMitchael, A . E . , Graybiel, A . 578 M c N a l l y , W . H . , Stuart, G . 389, 404 McNally,
W . J . 6 8 , 148,
165,
189 McNally, W . J . , Stuart, E . A . 7, 1 7 , 6 8 , 1 1 5 , 1 4 8 M c N a l l y , W . J . ,T a i t , J . 277, 279, 4 6 6 , 488, 5 8 4 , 619 M c N a l l y , W . J . , s. T a i t , J . 5 4 3 , 579 M c N a l l y , W . S . , s.
McNaugh-
t o n , I . P . S . 5 5 9 , 578 M c N a u g h t o n , I . P . S., M c N a l l y , W . S . 5 5 9 , 578 M e a d , R . , s. M a y n e , R . 5 6 6 , 577 Meda,
E . 1 2 0 , 148,
3 8 1 , 387,
3 9 2 , 404 Meehl,
P . E . , s.
MacCorquo-
d a l e , K . 160,188 Meek, J . C , Graybiel, A . , B e i scher, D . E . ,Riopelle, A .J . 4 2 7 , 448
636
Author Index
M e e k , J . C , s. G r a y b i e l , A . 575
M e y e r , D . L . , s. S c h a e f e r , K . P .
M e e k , J . C , s. J o h n s o n , W . H .
469, 473, 474, 476, 478, 480, 4 8 1 , 4 8 2 , 488
3 9 9 , 403, 5 0 0 , 576 M e e k , J . C . , s. M c L e o d , M . E .
Meyer
Meiry, J . L . 25, 27, 28, 30, 68, 7 1 , 7 3 , 7 4 , 7 5 , 7 9 , 9 8 , 148, 2 0 6 , 2 2 3 , 2 2 5 , 231, 2 8 3 , 319 M e i r y , J . , s. Y o u n g , L . 7 1 , 7 4 ,
Meyer
A.,
W . 4 7 2 , 4 8 3 , 488
zum
Gottesberge,
M i l t o n , J . L . , s. J o n e s , R . E . 8 5 ,
Michael, J . , Jones, G . M . 589,
Minners, H . A . , Douglas, W . K . ,
146 Knoblock, E . C , Graybiel,
619 M i c k l e , W . , A d e s , H . 7, 8 , 149
5 3 0 , 5 3 9 , 5 4 6 , 580
M i e h l k e , A . 2 0 6 , 231
M e l l s t r ö m , A . , s. F l u u r , E . 6 9 ,
M i l b l e d , G . , s. N a y r a c , P . 356
102,142, 1 6 3 , 165,187, 2 3 5 ,
M i l e s , W . R . 2 7 6 , 279,
M i l l e r , E . F . I I . 159, 163, 185,
356
189, 2 3 4 , 2 3 5 , 2 3 9 , 2 4 0 , 264,
1 2 7 , 1 4 8 , 2 8 5 , 319, 5 0 2 , 5 2 7 ,
3 2 4 , 3 3 3 , 352, 5 2 5 , 5 2 6 , 5 3 1 ,
5 4 7 , 5 5 3 , 5 6 5 , 5 7 3 , 578
578
Melvill
Jones,
G., Barry,
W.,
K o w a l s k y , N .45, 52, 53, 54,
Van Miller,
E . F . , Fregly, A . R., den Brink,
G., Gray241,264
E . F . , Fregly, A . R.,
G r a y b i e l , A . 93, 94, 95, 96,
131,148 Melvill Jones, G . ,M i l s u m , J . H . 3 8 , 6 0 , 148,
285,
319,
5 0 2 , 5 1 0 , 578
E . C , G r a y b i e l , A . 358 M i s h k i n , M . , s. T e u b e r ,
H . L.
8,152 M i s o v i c h , M . , s. M o r a n t , R . B . 162,189 M i t c h e l l , R , E . , s. F r e g l y , A . R .
b i e l , A . 8 6 , 94,149,
148, 2 8 3 , 2 9 6 , 319 Melvill Jones, G . , Gonshor, A .
19,
Miller,
Douglas, W . K . , Knoblock, M i n s k y , M . 578
487
263 M e l v i l l J o n e s , G . 6, 2 0 , 6 9 , 7 1 ,
A . , H a w k i n s , W . R , 358 Minners, H . A . , W h i t e , S. C ,
M i l e s , A . , s. L a u r e n s , H . 4 7 2 ,
181,190
G . 1 9 , 3 8 , 6 0 , 1 4 8 , 2 8 5 , 319, 5 0 2 , 5 1 0 , 578
A.,
P l e s t e r , D . 1 6 5 , 189
154, 1 6 5 , 190, 5 0 2 , 5 2 4 , 5 2 5 , M e i s s n e r , P . B . , s. W i t k i n , H . A .
2 9 0 , 319 M i l s u m , J . H . , s. M e l v i l l J o n e s ,
z u m Gottesberge,
Maurer,
3 2 4 , 352
Milsum, J . H . , Melvill Jones, G .
149, 2 4 1 , 264, 3 2 5 , 352 Miller, E . F . , G r a y b i e l , A . 86, 9 3 , 9 4 , 1 0 0 , 149,
159, 164,
324,351 M i t t e l s t a e d t , H . 1 6 4 , 1 7 3 , 189, 4 6 5 , 488 Mittelstaedt,
H . , s. H o l s t , E .
v o n 1 5 6 , 1 5 8 , 1 6 9 , 188, 4 1 6 , 4 2 6 , 446, 5 8 4 , 617 Mittermaier, R . 428, 433, 434, 448, 4 5 1 , 461, 4 6 4 , 4 8 3 , 488 M i y a t a , H . , s. F u k u d a , T . 3 7 6 ,
Melvill Jones, G . , Spells, K . E .
1 6 5 , 1 7 5 , 1 7 9 , 189, 2 3 4 , 2 3 5 ,
5, 3 8 , 148, 5 0 2 , 5 0 8 , 578
239, 240, 2 4 1 , 2 4 2 , 2 5 1 , 2 5 7 ,
M e l v i l l J o n e s , G . , s. B e n s o n , A .
2 5 9 , 2 6 2 , 264, 265, 3 2 4 , 3 3 0 ,
M i z u t a n i , T . , s. T o k i t a , T . 355
3 3 3 , 3 3 8 , 352, 5 2 5 , 5 2 6 , 578
M o f f e t , R . , s. S p i e g e l , E . A . 8 ,
J.
I l l , 1 1 2 , 1 1 6 , 137, 2 8 8 ,
2 9 0 , 316, 5 4 8 , 5 4 9 , 5 5 2 , 5 5 3 , 5 6 6 , 5 6 7 , 574 Melvill
Jones,
G . , s.
Gonshor,
A . 131,143
Graybiel, A . ,
152
K e l l o g g , R . S . 103,149, 2 3 9 ,
Molina,
Miller,
E.
F.,
Kellogg,
R . S., O'Donnell,
R . 4 2 , 5 6 , 6 0 , 6 2 , 6 4 , 147,
R . D . 2 5 2 , 2 5 7 , 2 6 2 , 265
2 9 6 , 3 0 6 , 319, 5 0 8 , 5 0 9 , 5 1 0 ,
Miller, E . F . I L , Pulec, J . L . ,
5 1 2 , 5 1 5 , 5 1 6 , 5 5 2 , 577 M e l v i l l J o n e s , G . , s. M i l s u m , J . H . 2 9 0 , 319 579 Mendel,
L . , s. F l u u r ,
Wilcox, J . G., Graybiel, A . 2 3 5 , 265
E . 374,
3 7 8 , 385
9 1 , 9 6 , 1 0 3 , 1 0 4 , 1 3 4 , 143,
2 6 2 , 263, 264, 5 6 7 , 575
149
M e r t z , W . , s. G r a y b i e l , A . 1 3 4 ,
M i l o j e v i c , B . 2 0 0 , 231
M e t z g e r , W . 1 6 6 , 1 7 3 , 1 7 9 , 189
Money, K . E . , Scott, J . W . 308, Money,
K .
E . , SokolofL M . ,
W e a v e r , R . S . 319
M i l l e r , J . W . , L u d v i g h , E . 130, M i l l e r , N . E . 5 7 2 , 578
F . A . 6 0 8 , 6 1 1 , 619
Money, K . E . , Johnson, W . H . ,
319, 5 4 3 , 5 4 4 , 5 6 1 , 578
119, 120,149
3 7 6 , 3 7 8 , 3 8 0 , 3 8 1 , 384, 5 4 7 , 574
Mettler,
K . E . , Friedberg, J .
3 9 9 , 4 0 0 , 404, 4 0 7 , 411, 448 Corlett, B . M . A . 285, 288,
Miller, J . W . , Goodson, J . E .
M e s h m a n , V . F . 1 3 0 , 149
5 6 8 , 5 6 9 , 5 7 3 , 578
3 0 8 , 319
Mertens, R . A . , Collins, W . E .
143, 3 3 8 , 352, 5 6 7 , 575
K . E . 3 1 0 , 319, 3 8 9 ,
3 9 1 , 3 9 9 , 4 0 1 , 404, 5 5 0 , 5 5 1 ,
244, 247, 256, 257, 259, 261, M i l l e r , G . A . 5 7 , 5 8 , 149
M e r t e n s , R . A . , s. C o l l i n s , W . E .
136, 4 7 5 , 484 Money,
164,187, 2 3 4 , 2 3 5 , 2 3 7 , 2 4 2 ,
M e n z i o , P . 4 7 6 , 488 3 7 0 , 3 7 1 , 3 7 2 , 3 7 3 , 387
M o l i n a r i , J . A . , s. A r s l a n , M . 8 ,
Money,
M i l l e r , E . F . , s. G r a y b i e l , A . 7 5 ,
M e l v i l l J o n e s , G . , s. S u g i e , N .
E . , s. M c C l u r e , J . A .
3 9 9 , 404
240,265 Miller, E . F . I L , Graybiel, A . ,
M e l v i l l J o n e s , G . , s. M a l m c o l m ,
3 7 7 , 385
M o n e y , K . E . , W o o d , J . D . 126, 149 M o n e y , K . E . , s. C o r r e i a , M . J . 1 1 2 , 140, 3 1 2 , 316, 5 5 1 , 574
M i l o j e v i c , B . , V o o t s , R . J . 3 0 4 , M o n e y , K . E . , s. N i t o , Y . 319 319 Milojevic,
M o n n i e r , M . , s. M o n t a n d o n , P . B., Watson,
2 7 3 , 279, 354
J . L.
130,149 M o n r a d - K r o h n , G . H . 354
Author Iudex
Montague, F.
E . K . , s.
Guediy,
E . 120, 123, 124,
145,
3 7 8 , 3 8 0 , 386, 5 2 7 , 5 5 4 , 576 Montandon,
A . , Russbach,
A.
P . , Monnier,
M .
W . 4 0 5 , 411, 4 2 0 ,
317, 4 1 6 , 4 3 4 , 445
N a k a y a m a , S . , s. T o k i t a , T . 355 Nashnei,
L . M . 2 5 1 , 265,
360
360 Morant, R . B . , Aronoff, J . C.
M . 3 5 , 1 5 4 , 2 5 6 , 266
P . , Milbled, G., Par-
Morant,
R . B . , Bélier, H . K .
G i e r k e , H . E . 359 N o b l e , R . L . 3 8 9 , 3 9 0 , 3 9 1 , 404
N e l s o n , J . G . 8 8 , 90,149
Noble, R . L . , Taylor, N . B . J .
N e l s o n , J . R . 3 3 3 , 352
M o r a n t , R . B . , H a r r i s , J . 162,
N e w e l l , F . W . , s. C h o w , K . L .
R.
B . , Misovich, M .
Morrison, A . R . , Pompeiano, O.
256,
M o r s h , J . E . 357
1 6 4 , 187, 2 3 7 , 2 4 7 ,
H . G . , s. S c h ö n e , H .
4 0 7 , 411, 4 2 6 ,
9 9 , 1 0 0 , 1 0 5 , 1 0 6 , 151, 1 6 3 ,
Nieuwenhys,
165,190
N i j hoff,
G . , s. M c E a c h e r n ,
391, 399, 400, 401,
D.
M o r u z z i , G . , s. B a t i n i , C . 4 7 8 ,
579
25, 35,151 36,150
M o s s , F . S . 357 M o u n t c a s t l e , V . B . , s. B a r d , P . 6 0 7 , 615
N i l s s o n , A . , s. A n d e r s s o n , S . 3 6 , 110,136
V . , s. W a l z i , E .
8,153
Moushegian,
3 8 0 , 384, 4 1 6 , 444,
Nilsson, A . , Henriksson, N . G .
484
N i l s s o n , A . , s. H e n r i k s s o n , N . G . 36,145
G . , s. R u p e r t ,
A.
Nisimaru,
N . , s. I t o , M . 5 8 6 ,
677
4 5 2 , 461 Mowrer, O. H . 27, 118,149,361, 3 6 2 , 367, 3 7 1 , 3 7 3 , 3 7 5 , 3 7 6 , 387, 4 5 2 , 461, 4 6 4 , 488 M o w r e r , O . H . , s. F e a r i n g , F . S .
Nito,
Y.,
Johnson,
W.
H.,
Money, K . E . , Ireland, P . E .
1 7 5 , 1 8 9 , 2 4 1 , 265 Mulder,
W . 3 0 , 149,
J . I., Hixson,
W.
C ,
C o r r e i a , M . J . 7 5 , 77, 106, 4 1 5 , 448
M u s k e n s , L . J . J . 2 1 7 , 231, 4 1 3 , 448
111,756,308,310,311,325, 3 9 1 , 404, 5 0 6 , 5 6 1 , 578, Niven, J . I., Whiteside,
M u s t i a n , V . M . , s. F a r m e r , T . W.
Niven,
353
M y e r s , G . G . , s. B r a y , P . F . 2 1 3 , 229
O b a t a , K . , s. I t o , M . 5 8 7 , 6 0 5 , 617 Oberman,
A . , s. F r e g l y , A . R .
3 2 4 , 351 O ' D o n n e l l , R . D . , s. M i l l e r , E . F . I I . 2 5 2 , 2 5 7 , 2 6 2 , 265 ö s t l u n d , H . , s. H e n r i k s s o n , N . G . 2 7 6 , 279, 360 O h m , J . 2 1 0 , 231 O h w a k i , S . 1 6 0 , 189 O k u b u , K . , s. O w a d a ,
579
T . C.
D . , G r a y b i e l , A . 2 6 2 , 265
K . 320
O l s s o n , L . G . , s. H e n r i k s s o n , N . G . 2 7 6 , 279, 360 O m a n , C . M . , s. Y o u n g , L . 4 2 , 5 6 , 6 4 , 154,
319 N i v e n , J . I . , G r a y b i e l , A . 354,
3 6 1 , 3 6 7 , 3 7 3 , 384 4 7 2 , 4 8 3 , 488 M o w r e r , O . H . , s. G i b s o n , J . J . N i v e n , J . L , H i x s o n , W . C . 6 6 , 1 0 9 , 1 1 9 , 142, 1 6 0 , 1 6 2 , 187 150 M ü l l e r , G . E . 8 6 , 149, 1 6 0 , 1 6 1 ,
136, 4 2 9 , 4 3 0 , 443
R . 5 8 2 , 619
P . , s. V a n D i s h o e c k ,
N i j h o f f , P . , s. R o g g e v e e n , L . J .
404
O . , J a n s e n , J . 6 0 2 , 619
N y l e n , C . O . 2 0 4 , 231
N y m a n , H . 2 7 0 , 2 7 7 , 279
448
H . A . E . 8, 2 2 , 3 5 , 117,153,
M o r t o n , D . J . 360
Nyby,
N y l é n , C . O . , s. A s c h a n , G . 2 9 ,
264
Nieuwenhuysen, J . H . 405, 406,
M o r s h , J . R . 357
Mountcastle,
4 7 1 , 4 7 2 , 488 359
N e w s o m , B . , s. G r a y b i e l , A . 9 1 , 9 6 , 143,
130,149
451,
Northington, P . , Barrera, S. E .
359
Newsom, B . D., Brady, J .F., 354
M o r i m o t o , M . 319
Morton,
N o r t h i n g t o n , P . 4 8 2 , 488
S h a f e r , W . A . , F r e n c h , R . S . N y b e r g , J . W . , s. W h i t e , W . J .
162,189
Mortag,
44, 47, 48, 4 9 , 5 1 , 5 2 , 56, 58, 60, 6 3 , 6 4 , 108,145
Newsom, B . D., Brady, J .F . , G o b l e , G . J . 354,
189 Morant,
3 9 3 , 404 N o r m a n , J . W . , s. G u e d r y , F . E .
211,229
169,189
N i x o n , C. W . , H a r r i s , C. S., v o n
N e a l , M . 6,149
N e w e l l , A . 578
160,189
10, 12, 13, 15, 6 6 , 120, 1 2 8 , N i v e n , J . I . , s. W h i t e s i d e , T . D .
N a y lor, G . F . 160,189 Nayrac,
N i v e n , J . I . , s. H i x s o n , W . C . 146, 5 0 2 , 5 0 7 , 576
q u e t , P h . J . 356
448 M o o r e , J . W . , s. P e z z o l i , J . A .
7,
N i v e n , J . I . , s. G r a y b i e l , A . 2 9 9 ,
N a g e l , W . A . 8 9 , 149
N a y l o r , G . F . K . 189
130,149 Montandon,
Nagel, James 7
N a u t a 612
2 5 , 1 4 9 , 2 2 3 , 231 Montandon,
637
2 9 6 , 3 0 6 , 320,
5 0 9 , 5 1 5 , 5 1 6 , 580 O m w a k e , K . T . 357 O n e s t o , N . , s. B r a i t e n b e r g , V . 604, 676 O o s t e r v e l d , W . J . 3 0 7 , 319 Oosterveld,
W.
J . , V a n der
Laarse, W . D . 298, 302, 304, 3 0 6 , 319 O o s t e r v e l d , W . J . , s. J a n e k e , J . B.302,317
N i v e n , J . I . , s. B r o w n , R . H . 2 3 , O p p e n h e i m e r , E . 1 7 9 , 189 138 N i v e n , J . L , s. C o r r e i a , M . J . 9 8 ,
M y g i n d , S . H . 6 8 , 1 4 9 , 2 6 9 , 279
9 9 , 1 0 0 , 1 0 1 , 1 0 3 , 140, 1 6 4 ,
M y k l e b u s t , H . R . 359
165,186
O r i a s , O . , s. B a r d , P . 6 1 0 , 615 O r l o v , I . V . , s. K i s l y a k o v , V . A . 318 O r m a , E . J . 356
Author Index
638
O r n i t z , E . M . 6 , 1 2 6 , 150, 3 6 5 ,
Pendleton,
O r n i t z , E . M . , s. R i t v o , E . R . 3 6 5 , 368 P.,
Zilstorff,
Terkildsen,
P e n f i e l d , W . 7 , 8 , 1 5 0 , 4 3 8 , 448
K . 375, 376,
Osypka,
353, 3 6 5 , 367
P . , s.
V o n Dirings-
Outerbridge,
J . S. 19, 29, 59,
P e r l m u t e r , L . O , s. K i m b l e , G .
O w a d a , K . , O k u b u , K . 320 Owada, K . , Shiizu, S., K i m u r a , K . 320 151 O w e n s , G . G . , s. G u e d r y , F . E . 44, 47, 48, 49, 5 1 , 5 2 , 56, 58, 60, 6 3 , 64, 108,145
P o r t m a n , M . 579 P o s n e r , J . B . , s. C o l l i n s , W . E .
4 6 7 , 4 7 3 , 4 8 0 , 489 Peterson,
3 6 2 , 3 6 3 , 366, 3 7 5 ,
B . W . 4 5 2 , 461
P e z z o l i , J . A . , M o o r e , J . W . 360
P o w e l l , T . J . 5 5 4 , 579
P f a l t z , C . R . , A r x , S. V . 378,
P o w e l l , T . P . S . , s. J o n e s , E . G . 6 0 0 , 6 1 0 , 617
387 Pfaltz, C. R . , K a m a t h , R . 451,
P o w e l l , T . P . S . , s. K e m p , J . M . 6 0 2 , 617
461
P a i n e , R . S . , s. P e n d l e t o n , M . E . 3 6 2 , 368 Pandya, D . N . , Kuypers, H .G . J . M . 6 0 0 , 6 1 0 , 6 1 2 , 619 P a r k e r , D . E . , s. S c h ö n e , H . 9 9 , 1 0 0 , 1 0 3 , 151, 1 6 3 , 1 6 5 , 190 P a r k e r , D . M . 120,150 P a r q u e t , P h . J . , s. N a y r a c , P . 356 R . D . 40, 41, 42, 43,
50, 56, 63,150 Pasik, P . , Pasik, T . 216, 218, 232, 6 1 2 , 619 Pasik, P . ,Pasik, T . , Bender, M . B . 2 1 7 , 232 P a s i k , P . , s. P a s i k , T . 2 1 6 , 232 P a s i k , T . , P a s i k , P . 2 1 6 , 232 P a s i k , T . , s. P a s i k , P . 2 1 6 , 2 1 7 ,
367, 3 7 3 , 386
L . 3 7 8 , 387, 4 0 6 , 411,
448
Pfeiffer, H e n r y , M a r c h 573
P r e b e r , L . , s. B e h r , K . 444
P h i l i p s z o o n , A . J . 4 1 0 , 411, 4 1 4 ,
Precht,
P h i l i p s z o o n , A . J . , s. B o s , J . H . P h i l i p s z o o n , A . J . , s. J o n g k e e s , L . B . W . 2 3 4 , 2 5 8 , 264, 3 0 8 , 318, 3 6 4 , 367, 447
Precht, W . , Richter, A . , Gripp o , A . 4 5 8 , 461 Precht,
P i c a r t , P . , s. G r e i n e r , G . F . 2 2 3 ,
W . , Shimazu, H . 459,
461 Precht, W . ,Shimazu, H . , M a r k -
230
ham,
P i c h l e r , H . J . 4 2 4 , 448 F . H . , s. W i l s o n ,
468,
P r e c h t , W . , Llinâs, R . , C l a r k e 4 5 2 , 461
316, 4 1 0 , 410, 4 3 7 , 444
Pike,
W . , Grippo, J . , Rich-
t e r , A . 4 5 8 , 461
448
T. G.
C. H . 452, 453, 454,
455, 456, 457, 458, 459, Precht,
P i l z , G . F . 3 7 1 , 387 P l a t t i g , s. K e i d e l 5 9 6 , 6 0 3 , 6 0 6 P l e s t e r , D . , s. M e y e r z u m G o t t e s b e r g e , A . 1 6 5 , 189
W . , s. L l i n â s , R . 6 0 7 ,
618 P r e c h t , W . , s. M a r k h a m , C . H . 4 5 9 , 461 P r e c h t , W . , s. S h i m a z u , H . 6 0 , 151, 2 9 0 , 320, 4 5 2 , 4 5 3 ,
P a s s e y , G . E . 8 8 , 150, 1 6 0 , 189
Poe,
Passey,
3 6 5 , 366 P r e s c o t t , J . W . 6 , 1 2 6 , 150 P o l l a c k , M . , K r i e g e r , H . P . 3 6 5 , P r i b r a m , K . H . 6 1 1 , 619 368 P r i c e , R . H . 3 6 , 150 Pollak 7 P r o c t o r , D . F . 4 0 0 , 404
G . E . , Guedry,
F. E.
72", 8 5 , 1 5 0 Passey,
G . E . , s. M a n n , C . W .
72, 8 5 , 88,147,148 Patterson, J o h n , D . 573 P a t t e r s o n , J . L . , s. G r a y b i e l , A . 8 1 , 8 5 , 143, Pearson,
2 4 7 , 2 5 2 , 264
R . G., Hauty, G. T.
72, 85,150
R , H . , s. C o l l i n s , W . E .
P o l l a k , J . 4 0 5 , 411, 448
P e i t e r s e n , E . 2 7 3 , 2 7 4 , 2 7 5 , 279, Peitersen,
E . , s.
Zilstorff-Pe-
d e r s e n , K . 2 7 3 , 274,280,355
2 3 5 , 265 P u r k i n j e , J . E . 1 1 9 , 150, 2 6 7 ,
5 8 5 , 619
Pompeiano,
C.
P u l e c , J . L . , s. M i l l e r , E . F . I I .
E . , Zilstorff-Peders e n , K . 2 7 2 , 2 7 4 , 2 7 5 , 2 7 6 , P o m p e i a n o , O . , s. B a r n e s s , C . D . 5 8 5 , 615 280, 355
Peitersen,
L . R . , Fernandez,
3 7 0 , 3 7 3 , 387 Pruyser, P . W . 573
N . I . 353 P o m p e i a n o , O . 2 6 8 , 280
Pompeiano, O., Brodai, A .268, 280
354,355
454,
4 5 7 , 4 5 9 , 462, 4 6 4 , 4 8 9
Proctor,
P o l y a k o v , B . I . , s. A r l a s c h e n k o ,
Pompeiano, O., Barness, C D .
P e i p e r , A . 1 2 3 , 150
461,
4 6 5 , 4 7 5 , 4 7 9 , 488
490
P l o o g , D . 6 1 2 , 619
2 1 8 , 232, 6 1 2 , 619
384
P o u l t o n , E . C . 4 0 , 150
P f a l t z , C . R . , s. H o o d , J . F . 3 6 2 , P r e b e r ,
P a d d e n , D . A . 9 0 , 150
E.M.
P o r t m a n , G . 5 6 1 , 579 R . 466,
P e t o , A . 6 , 1 2 6 , 150
O w e n , E . P . , s. R o s s , H . E . 9 1 ,
Parsons,
G . , s. T h a u e r ,
P o p o v , N . I . , s. Y u g a n o v , 5 5 4 , 5 5 6 , 580
P e r r i n , F . A . C . 359 Peters,
R.130,149 P o p o v , A . P . 3 0 0 , 320
A . 5, 135,146
150
P o m p e i a n o , O . , s. M a r c h i a f a v a , P o m p e i a n o , O . , s. M o r r i s o n , A .
P e r l m a n , H . B . , s. J o h n e r , O H .
h o f e n , H . 25,153
O . , s. B r o d a i , A .
P . L . 130,148
P e r l m a n , H . B . 1 6 5 , 189
3 7 7 , 387
Pompeiano,
2 6 8 , 278, 5 6 5 , 574
P e n m a n , K . A . 356
Osterhammel, K.,
M . E . , Paine, R . S.
3 6 2 , 368
368
O . , s. B a t i n i ,
4 7 8 , 4 8 1 , 484
C.
280, 291,320,
4 0 8 , 411, 449
Q u i x , F . H . 17, 6 8 , 80,150, 4 0 5 , 4 0 6 , 411, 4 3 5 , 4 3 6 , 449 Quix, F . H . , Eijsvogel, M . H . 182,189
Author Index
R a a s c h o v , F . , s. B r u n , E . 3 9 3 , R a d e m a k e r , G . G . J . 354, 5 8 4 , G . G . J . , Garcin,
Ritvo,
R â d m a r k , K . 2 7 7 , 280 M . , s. G i b s o n ,
J . J .
1 6 0 , 1 6 2 , 169,187 R a i k o v i t s , K . , s. S z e n t â g o t h a i , J . 4 7 5 , 489 R a s h b a s s , C . 5 9 0 , 619 F . , Riggs,
L . A . 199,
R a u c h , S . 5 0 7 , 579 R a w l i n s o n , H . E . 4 0 0 , 404 R a y , J . T . , s. M a n n , C . W . 2 2 , 2 5 , 2 6 , 2 7 , 7 2 , 8 5 , 1 1 7 , 147, R e a s o n , J . T . 3 6 , 1 2 0 , 150 Reason, J . T . , Benson, A . J . 36, J . T . , D i a z , E . 120,
125,132,150 R e a s o n , J . T . , G r a y b i e l , A . 110, 1 2 0 , 1 2 3 , 1 3 1 , 1 3 3 , 151 R e a s o n , J . T . , s. B e n s o n , A . J . 3 6 , 1 3 7 , 3 6 5 , 366 R e a s o n , J . T . , s. D e a r n a l e y , E . J . 3 7 8 , 384 Reding,
G . R . , Fernandez, C.
2 6 1 , 265 Reston,
O , s. M a x w e l l , S . S .
3 7 1 , 3 7 2 , 3 7 3 , 387 R e y n o l d s , B . 357 R h o d e s , J . M . , s. A d e y , W . R . 261,263 R i c a l d o n i , M . A . «357 R i c c i u t i , E . A . , s. A l e x a n d e r , S . J . 2 6 2 , 263 R i c e , N . , s. C o l l i n s , W . E . 5 4 7 , 574
H., Brown, M . B., Mason, A . 3 6 5 , 368
2 7 , 28,145 R i c h t e r , A . , s. P r e c h t , W . 4 5 8 , 461 E . L . , s. G r a y b i e l , A .
R i d d l e , K . S . , s. H e l l e b r a n d t , F . A . 360 Riesco-MacClure, J . S., M a r t i n e z , A . 2 2 1 , 232 R i e s e n , A . H . 2 1 1 , 232 R i e s e n , A . H . , s. C h o w , K . L . 211,229
488 R u u t h , E . , s. A n d e r s s o n , S . 3 6 , 110,136 I . H . , s. M c C a b e , B . F .
Roberts,
T . D . M . 1 8 , 9 5 , 151
4 5 3 , 4 5 9 , 461, 4 7 5 , 4 7 9 , 4 8 3 ,
Roberts,
T . D . M . , s.
488
stein^.
Lowen-
18,69,71,247,163,
519, 520, 522, 524, 525, 526, 5 3 0 , 5 3 1 , 5 4 5 , 5 5 9 , 577
Sadoff,
M . , Matheson,
F. A.,
H a v i l l , C . D . 2 5 , 3 7 , 151 Saito, L , W a d a , H . , Y a g u r a , S.,
Robinson, D . A . 586, 587, 588,
K a t o , N . 3 1 0 , 320
5 8 9 , 5 9 0 , 5 9 1 , 5 9 2 , 6 0 4 , 6 1 2 , S a l a , O . 2 8 5 , 320, 3 7 3 , 387 619
S a n d , A . , s. L o w e n s t e i n , O . 2 8 3 ,
5 9 2 , 6 1 2 , 619
2 8 4 , 319, 4 5 2 , 461, 4 6 4 ,
487,
5 8 6 , 618
R o b i n s o n , D . A . , s. K e l l e r , E . L . S a n d s t r ö m , J . 2 0 5 , 2 0 7 , 232 S a s a k i , K . 4 5 8 , 461
R o b i n s o n , D . A . , s. R o n , S . 5 9 1 , 5 9 9 , 619 A . A . 5 8 9 , 620 Rocker,
Roggeveen,
S a t o , T . , s. K i t a h a r a , M . 357 Sattler, C. H . , B l o h m k e , A . 211,
M . , s. V o n B a u m g a r -
t e n , R . J . 580
232 Scanlon, S. L . , Goetzinger, O P .
L . J . , N i j hoff, P .
25, 35,151
359 S c h a e f e r , K . P . 4 5 8 , 461
R o h r e r , F . 58,151
Schaefer, K . P . , Meyer, D . L .
Roman, A . J . , Warren, B .H . , G r a y b i e l , A . 2 9 8 , 320 R o m b e r g , M . H . 2 7 6 , 280,
469, 473, 474, 476, 478, 480, 4 8 1 , 4 8 2 , 488
354
R o m e i , E . L . , s. B a b s k i i , E . B .
Schaefer,
K . P . , Weimer,
H .
4 8 2 , 488 S c h a e f e r , K . P . , s. D a l R i , H .
359 R o n , S., R o b i n s o n , D . A . 599,
479,
481,485
S c h a e f e r , K . P . , s. D u e n s i n g , F .
619 Ron,
S a t o , G . , s. S p i e g e l , E . A . 4 5 1 , 4 5 8 , 462
R o b i n s o n , D . A . , s. S k a v e n s k i ,
S.,
Robinson,
Skavenski,
D.
A.,
A . A . 5 9 1 , 619
R o s e n b e r g , J . , s. F u j i t a , Y . 4 5 2 ,
485,
5 8 6 , 5 9 0 , 616 G . , Cobb,
S.
4 7 6 , 489 S c h e e r e r , E . , s. B i s c h o f f , N . 1 1 7 ,
B . 4 5 9 , 460 R o s s , B . M . , s. E n g e n , T . 4 0 ,
137, 1 5 9 , 1 6 0 , 1 6 1 , 1 6 9 , 1 7 0 , 174, 176, 177, 1 7 8 , 180, 184,
141
185,186
Ross, H . E . , C r i c k m a r , S. D . , Sills, N . V . , O w e n , E . P . 91,
S c h e i d , P . , s. D e e c k e , L . 6 0 0 , 616 S c h e i d , P . , s. F r e d r i c k s o n , J . 8 ,
151
142
R o s s , J . A . 4 5 2 , 461 R o s s u m , A . v a n 4 0 8 , 411, 4 2 9 , A . , Moushegian,
Schierbeek,
P . 4 0 6 , 411, 4 3 0 ,
449
4 3 2 , 449 Rupert,
6 9 , 141, 2 8 7 , 317, 4 5 2 , 4 5 3 , 4 5 4 , 460, 4 6 4 , 4 6 9 , 4 8 4 , Schaltenbrand,
460
R o s s , D . A . 2 8 3 , 2 8 4 , 320
3 4 2 , 352
Russell, P . E . 573
Ryu,
R o s e n b l u e t h , A . , s. C a n n o n , W .
R i c h m o n d , G . , s. G u e d r y , F . E .
Ricks,
A . , M a r k h a m , C.
5 8 6 , 617
150 Reason,
Eviatar,
Robinson, D . A . , Fuchs, A . F .
148
Montandon,
R u t t i n , E . 4 3 5 , 449, 4 7 2 , 4 8 3 ,
E . R . , Ornitz, E . M . ,
188, 2 8 3 , 2 9 0 , 319, 5 1 7 , 5 1 8 ,
232 R a t n e r , S . C . 3 8 2 , 387
A . , s.
A . 2 5 , 1 4 9 , 2 2 3 , 231 R ü s s e l , I . S . R . 4 8 1 , 4 8 2 , 488
R i o p e l l e , A . J . , s. M e e k , J . C . 4 2 7 , 448
R . 2 7 7 , 280, 5 8 4 , 619
R u s h m e r , R . F . 3 9 7 , 404 Russbach,
R i o p e l l e , A . J . , s. G r a y b i e l , A . 575
619 Rademaker,
Ratliff,
R i g g s , L . A . , s. R a t l i f f , F . 1 9 9 , 232
403
Radner,
639
G.,
G a l a m b o s , R . 4 5 2 , 461 R u p p e r t , J . 3 6 1 , 368, 3 6 9 , 387
S c h i e r b e e k , P . , s. D e V r i e s , H l . 25,141 S c h i l d e r , P . 6,151
Author
640
S c h i l l e r , P . H . 2 1 7 , 232,
612,
Schiller, P . PI., Körner, F . 604, 619 D.
S c h m a l t z , G . 2 2 2 , 232,419,
434,
160,186
A.
2 3 5 , 264,
C. L . , Wist,
E . R.,
D i c h g a n s , J . 6 0 7 , 620 S c h m i d t , C . L . , s. K l i n k e ,
R.
3 2 4 , 3 3 3 , 352
J . 1 7 , 140
S c h m i d t , R , S . 2 8 5 , 320, 6 0 7 , Schmitt, F . 0., Worden, F . G . 602, 606, 607, 611, 613 Schneider, C. W . , B a r t l e y , S. H .
S h i r a k i , T . , s. T o k i t a , T . 355 Shubert, E . 85,151
W . J . , s. C r a m p t o n ,
S i l f v e r s k i o l d , D . F . , s. B e h r , K .
S c h w a r t z , R . P . , V a e t h , W . 360 M.
7 2 , 142,
1 5 9 , 230, 2 8 7 ,
S c h o c k , G . J . D . 2 4 8 , 265 L . 6 9 , 151,
4 5 2 , 461,
4 6 4 , 4 6 6 , 4 7 2 , 489 Schöne, H . 68, 86, 91, 92, 93, 98, 99, 100, 103, 109,
151, 1 5 9 , 1 6 0 , 1 6 3 , 1 6 4 , 1 6 5 , 1 8 2 , 1 9 0 , 2 3 5 , 2 4 1 , 265, 4 3 5 , 449, 4 6 5 , 489 Schöne, H . , M o r t a g , H . G . 105, 106,151 Schöne, H . , P a r k e r , D . E . 99, 1 0 0 , 1 0 3 , 151, 1 6 5 , 190 Schöne, H . , Parker, D . E . , M o r t a g , H . G . 9 9 , 1 0 0 , 151, 1 6 3 , 165,190 Schöne, H . , U d o de Hacs, H . 7 2 , 8 5 , 1 0 0 , 1 0 9 , 1 2 5 , 151, 160, 163, 164, 165, 175, 182, 190 S c h ö n e , H . , s. U d o d e H a e s , H . 9 2 , 1 0 9 , 153, 1 6 3 , 1 7 5 , 1 7 9 , 1 8 2 , 1 9 0 , 2 9 4 , 320 Schreiner,
L . H . , s. L i n d s l e y ,
D . B . 4 7 8 , 487 Schroeder,
D . J . 3 6 5 , 368, 3 7 8 ,
3 7 9 , 387 Schroeder, D . J . , Gilson, R . D . , Guedry, F . E . , Collins, W . E . 130,151 S c h r o e d e r , D . J . , s. C o l l i n s , W . 1 3 0 , 140, 3 7 6 , 3 8 1 , 384,
5 4 7 , 574
444 S i l l s , N . V . , s. R o s s , H . E . 9 1 , 151 S i m p s o n , J . E . , s. M a e k a w a , K .
S c h w i c k h a r t , s. T i t o v 5 5 7
5 9 0 , 6 0 4 , 618
S c o l l e y , C . M . 2 4 9 , 265
Sinecori 119
Scollo-Lavizzari, G . , Akert, K .
S i n g l e t o n , G . T . 1 1 5 , 1 2 6 , 151,
6 1 2 , 620
163,190
453, 454, 455, 456, 457, 4 5 8 ,
S c h w a b , R . S . 4 0 1 , 404
317, 5 8 4 , 6 0 9 , 616
619
4 5 9 , 461 S h i m a z u , H . , s. P r e c h t , W . 4 5 2 ,
Schwam,
S c h w a r z , D . , s. F r e d r i c k s o n , J .
3 7 0 , 385
H . , s. B a k e r , R . G .
4 5 9 , 461, 4 6 5 , 4 7 5 , 4 7 9 , 488
G . H . 3 6 2 , 367, 3 7 3 , 384
119,146 S c h m i d t , R . , s. F e r n a n d e z , C .
Shimazu,
S h i m a z u , H . , s. M a r k h a m , O H .
S c h u s t e r , E . H . J . , s. C o r v e r a ,
591 Schmidt,
W . 60,
4 5 8 , 460
S c h u k n e c h t , H . F . , s. G r a y b i e l ,
S c h m i d t , s. K o r n h u b e r , H . H .
H . , Precht,
151, 2 9 0 , 320, 4 5 2 , 4 5 3 , 4 5 4 , 4 5 7 , 4 5 9 , 462, 4 6 4 , 489
S c h u k n e c h t , H . F . 2 9 1 , 320
449, 5 0 2 , 5 0 6 , 579 S c h m i d t 79
E.
H . 1 2 0 , 137 S c h u b e r t , G . , s. B r e c h e r , G . A .
1 9 6 , 229
580 Shimazu,
S c h u b e r t , G . , s. B o r n s c h e i n , V .
S c h l a g e r , M . , s. B e c h i n g e r ,
S h i l l i n g e r , G . L . , s. V o n B a u m garten, R . J . 558, 559, 560,
S c h u b e r t , G . 1 2 0 , 1 5 1 , 4 0 8 , 411, 449
S c h i l p p , P . A . 1 0 4 , 151
94,
D . J . , s. G i l s o n , R .
D.130,142
619
Schoen,
Schroeder,
Index
S c o t t , J . W . , s. M o n e y ,
4 2 5 , 449 K . E.
3 0 8 , 319, 5 4 3 , 5 4 4 , 5 6 1 , 578 S e a r s , C . W . , s. J a c k s o n , M . M .
Sirkis, M u r r a y , D . 573 S j ö b e r g , A . A . 2 6 2 , 265, 4 0 5 , 411, 449, 5 5 5 , 579, 6 0 7 , 620 Skavenski, A . A . ,Robinson, D .
2 9 8 , 317 Seashore,
H . G . 356, 357,
Seashore,
H . G . , K o c h , G . 354
359
A . 5 8 9 , 620 Skavenski,
A . A . , s. R o n , S .
5 9 1 , 619
S e a s h o r e , R . H . 356
S e a s h o r e , R . H . , B u x t o n , C . E . , S k o g l u n d , J . E . 356 S l a t e r - H a m m e l , A . T . 357 M c C o i l o m , I . N . 356 S e g u n d o , J . P . , s. F u j i t a , 4 5 2 , 460
Y .
S e k i t a n i , T . , s. M c C a b e , B . F . 4 5 3 , 4 5 9 , 461 S e l l e r s , E . A . , s. T a y l o r , W . J . R . 3 9 3 , 3 9 7 , 404 J . , Winestein,
S.,
G h e n t , L . , T e u b e r , H . L . 8, 151
Smith,
C . R . , s. G r a y b i e l , A .
261,262, 267,333,
352
S m i t h , G . , s. A n d e r s s o n , S . 3 6 , S m i t h , K . U . , Greene,
D . 360
Smith, K . U . , M c D e r m i d , C.D . , S h i d e m a n , F . E . 360 S m i t h , K . U . , S m i t h , W . M . 6,
S h a f e r , W . A . , s. N e w s o m , B . D . 354
134,152 S m i t h , M . J . , s. F r e g l y , A . R .
S h a m e s , I . H . 13,151 Shanzer,
3 7 0 , 3 7 3 , 388 S m i t h , C . R . 3 3 0 , 352
110,136
S e l y e , H . 5 7 1 , 579 Semmes,
S m i t h , A . H . , s. W i n g e t , C . M .
S . , s. B e n d e r ,
3 2 2 , 3 3 3 , 3 3 8 , 351 M . B.
2 1 6 , 2 1 7 , 229, 5 9 0 , 615 S h a r p l e s s , S . K . 1 3 5 , 151 S h e f f e y , P . L . , s. G u e d r y , F . E . 1 1 8 , 1 4 5 , 3 6 3 , 3 6 5 , 367, 3 7 4 , 378, 379, 381,356 S h e r r i n g t o n , C . S . 579 S h i d e m a n , F . E . , s. S m i t h , K . U . 360 S h i i z u , S . , s. O w a d a , K . 320
S m i t h , P . , s. C h i n n , H . 3 8 9 , 403 Smith,
S . Y . , s. C o a t s ,
A . C.
3 0 4 , 3 0 5 , 316 S m i t h , W . M . , s. S m i t h , K . U . 6, 1 3 4 , 1 5 2 S m y t h i e s , J . R . 1 2 6 , 152 S n i d e r , R . S . , s. B a r d , P . 6 0 7 , 615 S o k o l o f f , M . , s. M o n e y , 319
K . E.
641
Author Index
Sokolovski,
A . 3 6 5 , 368,
429,
S t e i n , S . v o n 2 7 7 , 280,
Suzuki,
357
S t e i n e r , F . A . , s. W e b e r , G . 5 8 6 ,
449 S o l o d o v n i k , F . A . , s. Y u g a n o v , E . M . 5 5 4 , 5 5 6 , 580 M . 2 1 3 , 232
4 1 5 , 449, 5 0 2 , 5 0 4 , 5 1 3 , 579 Stenger,
S o m m e r , H . S . , s. H a r r i s , C . S . 358
H . H . 2 0 4 , 2 0 6 , 232,
4 3 7 , 449, 4 5 1 , 4 5 8 , 462, 4 8 2 , S t e r n f e l d , s. B e n s o n , A . J . 3 1 2
Spamer, C. 463, 464, 465, 477,
S t e t s o n , R . H . , s. H u b b a r d , A . W.
S t e v e n s , S . S . 3 9 , 4 3 , 152
S p e l l s , K . E . 2 8 9 , 320
S t e w a r t , J . D . , s. C l a r k , B . 2 3 , Jones,
5 8 5 , 617
58, 5 9 , 6 3 , 1 1 7 , 1 3 9 , 380,383 S t e w a r t , W . G . , s. M a n n i n g , G .
S p i e g e l , E . A . 3 9 2 , 404,411,
W . 3 9 0 , 403
489
S p i e g e l , E . A . , A r o n s o n , L . 4 7 7 , S t i g l e r , R . 8 8 , 9 1 , 9 3 , 152, 1 6 4 , 489
190
Spiegel, E . A . , Dèmètriades, T . D . 4 5 1 , 4 5 6 , 462,
Stockwell, C. W . , Gilson, R . D . ,
4 7 5 , 489
Spiegel, E . A . , E g y e d , J . ,Sze-
G u e d r y , F . E . 6 5 , 152 Stockwell, C. W . . Guedry, F . E .
k e l y , E . 8 , 152 Spiegel,
1 0 8 , 1 0 9 , 1 1 0 , 152, 2 5 6 , 265
E . A . , Sato,
G . 451,
Stockwell, C. W . , Turnipseed,
4 5 8 , 462
G. T., Guedry,
Spiegel, E . A . , Szekely, E . G . , M o f f e t , R . 8 , 152
S t o c k w e l l , C . W . , s. G i l s o n , R . D . 5 6 , 6 2 , 131,142 S t o c k w e l l , C . W . , s. G r a y b i e l ,
489 S p o e n d l i n , H . H . 17, 69,
152,
2 9 0 , 320, 5 1 5 , 5 1 7 , 5 1 8 , 579
A . 2 3 4 , 2 6 2 , 264 S t o c k w e l l , C . W . , s. G u e d r y , F .
S p o o r , A . , s. V a n D i s h o e c k , H . A.
E . 8, 2 2 , 3 5 , 1 1 7 ,
3 8 0 , 384, 4 1 6 , 444,
579 W.
W . 4 7 8 , 489 Sprague,
J . M . , s.
E . 44, 45, 47, 48, 51, 52, 53,
153,
Sprague, J . M . ,Chambers,
Chambers,
W . W . 4 7 8 , 485
56, 108,145 Stone, R . W . , L e t k o , W . 112, 1 1 3 , 152, 5 4 4 , 5 4 5 , 5 4 6 , 579 S t o n e , R . W . , s. L e t k o , W . 5 5 4 , 577 Storm
S t a h l e , J . 2 9 1 , 2 9 4 , 2 9 6 , 320 S t a h l e , J . , s. A s c h a n , G . 2 9 , 1 3 6 , 2 0 0 , 229, 4 2 9 , 4 3 0 , 443 Stark, L . , Vossius, G . , Y o u n g ,
W.,
68,115,148
D. H .
576 620
B . , s. J o n s s o n ,
R.
360
S u g i e , N . , M e l v i l l J o n e s , G . 579
S t e e r , R . W . 112,152, 5 0 7 , 5 1 0 , S u n a h a r a , F . A . , J o h n s o n , 5 4 8 , 5 5 0 , 5 5 2 , 579
H.,
41
S u t h e r l a n d , N . S . 162,190 H b . Sensory Physiology, Vol. VI/2
W.
Taylor, N . B . G . 393,
404, 4 0 8 , 411, 449
Steer, R . W . , J r . 288, 310, 311,
Imamura, H . , Kurihara, M . , K i s h i , M . 354 T a k e m o r i , S . , s. C o h e n , B . 1 1 6 , 119, 1 2 5 , 126,140 T a k e u c h i , T . , s. T o k i t a , T . 355 T a l p i s , L . 2 7 0 , 280 T a s h i r o , K . , s. F u k u d a , T . 3 7 6 , 3 7 7 , 385 T a u b , E . 1 3 4 , 1 3 5 , 152 T a u b , E . , B e r m a n , A . J . 134, 152 Taylor, N . B . J . ,Hunter, J . , J o h n s o n , W . H . 4 0 1 , 404 T a y l o r , N . B . , s. B e s t , C . H . 4 0 0 , 403 T a y l o r , N . B . J . , s. J o h n s o n , W . H . 3 9 0 , 403 3 9 3 , 404 F . A . 3 9 3 , 404, 4 0 8 , 411, 449 H . , Sellers, E . A . 393, 397, T e m p l e t o n , W . B . , s. H o w a r d , 117, 1 1 9 , 120,146, 1 6 0 , 1 6 5 , 178,188 T e r B r a a k , J . W . G . 2 8 4 , 320 T e r i n s , J . 1 8 5 , 190
S u g a n u m a , Y . , s. T o k i t a , T . 355
404
279, 4 6 6 , 488, 5 8 4 , 619 Takebayshi, H . , Kuriyama, T.,
T e n K a t e , J . H . 5 9 , 152
S t u t e v i l l e , P . , s. W e l c h , K . 6 1 2 ,
Steele, J . E . 120, 123,152, 4 0 1 ,
579 T a i t , J . , s. M c N a l l y , W . J . 2 7 7 ,
I . P . 7, 1 7 , 7 2 , 8 2 , 8 6 , 9 4 , 9 5 ,
S t u b b s , R . A . , s. J o h n s o n , W . H . 3 9 0 , 3 9 1 , 3 9 2 , 403, 5 5 8 ,
5 8 9 , 620
Tait, J . , M c N a l l y , W . J . 543,
404
S t u a r t , G . , s. M c N a l l y , W . H .
G . 4 5 9 , 460
T a i t , J . 1 6 5 , 190, 211, 280
Taylor, W . J . R . , Johnson, W .
3 8 9 , 404
S t a v r a k y , G . W . , s. D r a k e , C .
4 7 5 , 489
T a y l o r , N . B . G . , s. S u n a h a r a ,
S t u a r t , E . A . , s. M c N a l l y , W . J .
5 9 4 , 620
320
s.
S t r u p p l e r , A . , s. W i g a n d , M . E .
7,17,
S t a r k , L . , s. Y o u n g , L . R . 5 8 7 ,
St.-Cyr, G . J . , Fender,
v a n Leeuwen,
M a g n u s , R . 5 8 4 , 618
L . R . 5 8 9 , 620
Szentâgothai, J . , R a i k o v i t s , K .
T a y l o r , N . B . J . , s. N o b l e , R . L .
2 7 6 , 280
S t a r k , G . 2 2 3 , 2 2 5 , 232
S teen,
F . E . 311,
320
Spiegel, E . A . , Teschler, L .477,
152 S z e n t â g o t h a i , J . 6 9 , 152, 1 6 5 ,
6 0 4 , 616
25, 26, 27, 28, 30, 35, 42, 55,
G . 5, 3 8 , 148, 5 0 2 , 5 0 8 , 578,
S z e k e l y , E . , s. S p i e g e l , E . A . 8 ,
S z e n t â g o t h a i , J . , s. E c c l e s , J . C .
360
Speers 503 S p e l l s , K . E . , s. M e l v i l l
S w e t s , J . A . 3 6 , 152
190, 232, 2 9 1 , 320
4 8 3 , 4 8 4 , 489
S o u l a i r a c , A . , B a r o n , J . B . 356 489
G . 374,
S u z u k i , J . , s. C o h e n , B . 5 8 6 , 616
620 S t e i n h a u s e n , W . 6 9 , 7 0 , 71,152,
Solomon, G . E . , Chutorian, A .
J . , Totsuka,
387
T e r k i l d s e n , K . , s. O s t e r h a m m e l , P . 3 7 5 , 3 7 6 , 3 7 7 , 387 Teschler,
L . , s. S p i e g e l , E . A .
4 7 7 , 489 T e u b e r , H . L . 7, 8 , 5 2 , 9 4 , 1 3 0 , 152, 4 7 0 , 489
642
Author Index
T e u b e r , H . L . , M i s h k i n , M . 8,
Travis, R . C., Dodge, R , 44, 77,
152
V e n d r i c k , A . J . H . , s. G r o e n , J . J . 1 9 , 5 9 , 6 2 , 144, 2 8 3 ,
78,152
T e u b e r , H . L . , s. S e m m e s , J . 8 ,
Trevisan,
151
C , s. D u e n s i n g ,
Trincker,
4 7 3 , 4 8 0 , 489
Vernon, J . A . , McGill, T . E . ,
D . 15, 68, 69,
K.359 V e r n o n , M . D . 1 8 2 , 190
4 5 4 , 462
M . , C o n c r a u x , C . 356 2 7 6 , 280
Gulick, W . L , Candland, D .
152,
4 2 4 , 4 2 7 , 4 2 9 , 4 3 2 , 449, 4 5 2 ,
Thiébaut, F . , Isch, F . , Collard, Thomas, D . P . , Whitney, R . J .
5 1 0 , 5 1 1 , 5 1 2 , 5 1 8 , 575
F.
4 8 4 , 486
Thauer, R . , Peters, G . 466, 467,
Tschermak,
A . 4 0 8 , 411, 4 1 6 ,
V e r s t e e g h , O , s. K l e y n , A . d e 211,231,
4 3 3 , 449
T h o m a s , E . L . , s. A c k e r m a n , U . 3 9 9 , 402 T h o m p s o n , A . B . , s. G r a y b i e l , A . 3 4 2 , 352
T s u i k i , Y . 4 2 9 , 449
V e r s t e e g h , L . 165,190
Tullio 426
Vilstrup, G . , Vilstrup,T . 69,70,
Turnipseed,
T h o r n h i l l , R . A . , s. L o w e n s t e i n ,
G . T . , s.
153 Stock-
w e l l , C . W . 3 1 1 , 320
V i l s t r u p , T . 5 1 4 , 5 1 5 , 579 V i l s t r u p , T . , s. V i l s t r u p , G . 6 9 , 70,153
T y c - D u m o n t , s. H o r c h o l l e -
0 . 4 9 6 , 577
Bossavit 586
T h o r n v a l , A . 2 7 0 , 280
V a n d e r V i s , K . 4 3 2 , 449
T y l e r , D . B . , B a r d , P . 3 8 9 , 3 9 0 , V i s s e r , S . L . 2 0 0 , 2 0 1 , 232
T h o r p e , W . H . 3 8 2 , 387 T h o r t o n , C . L . , s. B a r r e t t , G . V .
3 9 1 , 3 9 3 , 404
Vliet, A . G . M . v a n , Waardenburg,
119,136 T h u l i n , C . A . , s. G e r n a n d t , B . E . 2 6 8 , 279, 4 5 2 , 4 5 4 , 460, 4 6 4 , 486 T i b b l i n g , L . 6 , 152 G . 36,145 T i m m , C . 2 8 4 , 320 T o k i t a , T . 355,
V o g e l s a n g , C . J . 3 8 0 , 387 H . , Schöne, H .
9 2 , 1 0 9 , 153,
V o g t , C , V o g t , O . 6 0 9 , 620
1 6 3 , 1 7 5 , 1 7 9 , V o g t , O . , s. V o g t , C . 6 0 9 , 620 Vogts 609
356, 4 3 4 , 4 3 5 ,
E., Shiraki, T., Kuroda, W . , T.,
Nakayama,
S., F u j i m o t o , T . , A o k i , M . , T.,
Mizutani,
T.,
S u g a n u m a , Y . 355 353,
354, 357, 3 7 3 , 3 7 6 , 3 7 7 , 3 7 8 , 385 T o k i t a , T . , s. I g a r a s h i , M . 3 2 1 , 352 T o k u m a s u , K . , s. G o t o , K . 3 6 2 , 367 365,
368,
3 7 4 , 3 7 5 , 387 Guillemen,
V.,
B a r n o t h y , L M . 2 2 0 , 232 Torok,
N . , K a h n , A . 2 7 1 , 280
Torok,
N . , s. J o h n s o n ,
D. D.
3 7 5 , 386 T o t s u k a , G . , s. S u z u k i , J . 3 7 4 , 387 T o y n e , M . J . , s. W i l s o n , M . E . 5 9 6 , 620 T r a v i s , R . C . 356
141
1 6 0 , 1 6 3 , 1 6 4 , 1 6 5 , 1 7 5 , 1 8 2 , V o l d r i c h , L . 5 6 2 , 579 Volokhova, N . A . , s. 190 Uemura,
T., Cohen,
2 0 5 , 2 2 1 , 232, 4 7 5 , 489
V o l y n k i n , Y u . , K . , s. V a s i l ' y e v , P . V . 2 5 4 , 266
U e m u r a , T . , s. C o h e n , B . 1 1 9 ,
V o o g d , J . 4 3 4 , 449
125,140 U f f e n o r d e , K . 4 8 4 , 490
Voots,
R . J . , s. M i l o j e v i c , B .
3 0 4 , 319 V o s s i u s , G . , s. S t a r k , L . 5 8 9 , 620
291,320 U n g a r , G . 4 8 2 , 490
D e Vries, H l . 25, 33, 69, 70, 71, 7 2 , 7 5 , 141,
U n o , R . , s. K i t a h a r a , M . 1 1 0 , 146, 4 1 4 , 447 Unterberger,
Arla-
s c h e n k o , N . I . 353
B . 203,
U l r i c h , H . 6 8 , 6 9 , 7 0 , 7 5 , 153,
T o k i t a , T . , s. F u k u d a , T .
N . 2 2 1 , 232,
V o i g t , K . , s. D i c h g a n s , J . 1 1 7 ,
7 2 , 8 5 , 1 0 0 , 1 0 9 , 1 2 5 , 151,
T o k i t a , T . , A o k i , S., Y o n e k u r a ,
N.,
de Haes,
U d o d e H a e s , H . , s. S c h ö n e , H .
449
Torok,
V o g e l , K . 4 8 4 , 490
1 8 2 , 190, 2 9 4 , 320
T i t o v , S c h w i c k h a r t 557
Goto,
P . J . , Forsius, H . ,
E r i k s s o n , A . W . 2 1 1 , 232
356
U d o de H a e s , H . 159, 160, 161, Udo
T i b b l i n g , L . , s. H e n r i k s s o n , N .
Torok,
U c h y t i l , B . 2 7 6 , 280, 182,190
Takeuchi,
2 7 7 , 279, 3 0 7 , 318,
4 0 7 , 410, 447
T s c h i a s s n y , K . 3 7 7 , 387
T u m a r k i n , L A . 25,153
T h o m p s o n , Truet, B . 573
317,
4 1 5 , 4 2 3 , 446, 5 0 2 , 5 0 8 , 5 0 9 ,
T r e n d e l e n b u r g , W . 4 7 9 , 489
S . 2 2 6 , 232, 2 7 2 ,
De
4 3 2 , 4 3 3 , 449
Vries, H l . , Schierbeek, P . 25,141
2 7 3 , 280, 355, 490 U p d e g r a f f , B . P . , s. C o l l i n s , W . E . 3 7 0 , 3 7 3 , 384
Waardenburg, A. a
P . J . , s.
Vliet,
M . 2 1 1 , 232
W a d a , H . , s. S a i t o , I . 3 1 0 , 320 V a e t h , W . , s. S c h w a r t z , R . P . 360 V a g l i n i , F . 354 V a l l e n s t e i n , E . S . 580
W a d e , N . J . 7 2 , 153 W a d e , N . J . , D a y , R . H . 72,153 W a d e , N . , s. D a y , R , 7 2 , 141, 174,187
V a n d e r w o l f , C . H . 6 1 2 , 620
Wagman,
Vasil'yev, P . V . , Volynkin, Y u . ,
W a i t e , R . , s. G r a y b i e l , A . 1 0 3 ,
K . 2 5 4 , 266 V a z u k a , F . A . 354 V e i t s , C . 2 2 2 , 232, 4 1 5 , 4 2 7 , 449
I . H . 232,
6 0 9 , 620
1 0 4 , 143, 2 4 2 , 2 4 4 , 264 Walberg, F . ,Bowsher, D . , B r o d a i , A . 2 6 8 , 2 7 4 , 280
V e i t s , C , s. F i s c h e r , M . H . 4 1 8 , W a l b e r g , F . , s. B r o d a i , A . 2 6 8 , 4 3 5 , 445
278, 5 C 5 , 574
643
Author Index
Waldecker,
G . , s.
Kornhuber,
W a l l a c h , H . , s. K ö h l e r , W . 1 6 2 , W a l s h , E . G . 8, 7 1 , 7 3 , 7 4 , 7 7 , 7 8 , 7 9 , 8 0 , 8 2 , 8 7 , 153, 1 6 3 , W a l s h , F . B . , s. F o r d , F . R . 353 C . , s. B e c h i n g e r ,
D.
W a l z l , E . , M o u n t c a s t l e , V . 7, 8, W a n g , S . C . , s. B o r i s o n , H . L .
153
S., Werner,
r a n t , R . B . 2 3 , 153
6 0 7 , 620
W e r s ä l l , J . , s. E n g s t r ö m , H . 6 9 , 141
Wapner,
S . , s.
Bauermeister,
575
W a p n e r , S . , s. M c F a r l a n d , J . H .
136, 4 2 9 , 4 3 0 , 443
154, 1 6 3 , 190, 2 4 1 , 266 S . , s. W i t k i n ,
H . A.
1 8 1 , 1 9 0 , 356
Watanabe,
5 8 7 , 5 9 9 , 620
3 7 6 , 3 7 7 , 385 W a t s o n , J . L . , s. M i l o j e v i c , B . 2 7 3 , 279, Weaver,
354
R . S . 1 2 0 , 153,
392,
404 W e a v e r , R . S . , s. M o n e y , K . E . 319 Weber, G . , Steiner, F . A . 586, 620 4 8 2 , 488
359
278
358 White, P . D . ,Grimes, R . H . , F i n n e y , L . M . 359
V o n W e i z ä c k e r , V . 4 1 6 , 449 Welch, K . , Stuteville, P . 612, 620 W e n d t , G . R . 7, 6 6 , 153, 3 6 2 , 368, 3 7 4 , 3 7 5 , 3 7 6 , 3 8 2 , 3 8 9 , 3 9 0 , 391,404,
388,
4 2 6 , 449,
450 W e n d t , G . R . , s. A l e x a n d e r , S . J . 2 6 2 , 263 Werner, H . ,Wapner, S., C h a n d l e r , K . A . 9 4 , 1 5 4 , 1 6 3 , 190, 2 4 1 , 266 41'
J . I . 2 6 2 , 265 A . , N i v e n , J . I . 35,154, 2 5 6 , 266 W h i t e s i d e , W . H . , s. G r a y b i e l , A . 575 W h i t n e y , R . J . , s. T h o m a s , D . P . 2 7 6 , 280 172,188 2 7 6 , 280
W o d a k , E . , Fischer, M . H . 270, Wodak,
E . , s. F i s c h e r , M . H .
278, 4 2 9 , 4 3 3 , 445 Woellner,
R . C , Graybiel, A .
1 5 9 , 190, 2 3 9 , 266, 5 2 5 , 580 W o j a t s c h e k , W . 4 0 5 , 411,
450
368 W o l f e , J . W . , s. B r o w n , J . H . 60,138 W o l f e , J . W . , s. L l i n â s , R . 5 9 9 , 6 0 8 , 618 W o o d , C . D . 4 0 2 , 404 322,351 Wood,
D . J . 4 3 7 , 4 3 8 , 450 M .J .
5 9 6 , 620 Wilson, T . G . , Pike, F . H .468,
C . D . , s. G r a y b i e l , A .
2 5 7 , 264, 4 0 2 , 403 W o o d , J . D . , s. M o n e y , K . E . 126,149 W o o d , R . W . 1 6 0 , 190 W o o l s e y , C . N . , s. B a r d , P . 6 0 7 ,
490 W i n e s t e i n , S . , s. S e m m e s , J . 8 , 151
615 Woolsey,
C. M . , Smith, A . H .
3 7 0 , 388 Winget,
E . 2 6 8 , 2 7 2 , 2 7 5 , 280,
4 1 8 , 450
W o o d , C . D . , s. F r e g l y , A . R .
W i l c o x , J . G . , s. M i l l e r , E . F . I I .
M . E . , Toyne,
2 7 0 , 2 7 1 , 278
Wolfe, J . W . 115,126,154,364,
W h i t n e y , E . 359
Williams,
W i t t m a a c k , K . , s. B â r â n y , R .
269, 270, 271, 272, 274, 276,
Whiteside, T . D . M . , Graybiel,
Winget,
S.
280
W h i t e s i d e , T . C . D . , s. N i v e n ,
Wilson,
H . A . , s. W a p n e r ,
D e W i t , G . 353, 3 9 0 , 403, 4 0 6 ,
Wodak,
2 3 5 , 265
B . 2 1 4 , 229
Witkin,
4 0 8 , 411, 4 3 0 , 450
White, W . J . , Nyberg, J . W.,
W i g g e r s , C . J . 5 7 0 , 580
W e i n s t e i n , E . A . , s. B e n d e r , M .
n e r , S. 181,190 W i t k i n , H . A . , W a p n e r , S . 356
356
Wigand, M . E . , Struppler, A .
W e i l l , G . A . , s. B a b i n s k i , J . 2 7 2 ,
M . , M a c h o ver,
Meissner, P . B . , W a p -
160,162,185
W i e s e l , T . N . , s. H u b e l , D . H .
W e h n e r , H . , s. S c h a e f e r , K . P .
H . A . , Lewis, H . B . ,
W i t k i n , H . A . , s. A s c h , S . E .
W h i t e , H . E . 1 1 , 154
5 5 0 , 573
T . , s. F u k u d a , T .
Witkin, K.,
W a r r e n , B . H . , s. R o m a n , A . J . W h i t e s i d e , T . C . D . , s. B e n s o n , A . J.262,263,299,300,316, 2 9 8 , 320 W a t a n a b e , I . 354
W i t k i n , H . A . , A s c h , S. E . 160,
Hertzman,
W h i t e , S . C , s. M i n n e r s , H . A .
89,148 W a p n e r , S . , s. W e r n e r , H . 9 4 ,
154,
162,182,190
W h i t e , P . D . , s. W h i t e , W . J .
M . 85,136
H . A . 109, 110,
160, 1 6 2 , 1 6 5 , 182,190, 2 4 1 , 266
H . , M a - W e s t h e i m e r , G . 5 9 0 , 620 Westheimer, G . , Blair, S. M .
W a p n e r , S . , W i t k i n , H . A . 356
W i s t , E . R . , s. S c h m i d t , C . L . Witkin,
W e r t h e i m e r , M . 1 6 0 , 190
3 9 9 , 403
Wapner,
W e r n e r , H . , s. W a p n e r , S . 2 3 ,
W e r s ä l l , R . , s. A s c h a n , G . 2 9 ,
153
E . , s. B r a n d t , T h . 1 1 9 ,
125,138
W e r s ä l l , J . , s. F l o c k , A . 5 1 9 ,
5 9 4 , 615
Wapner,
W i r t h , G . 354
Wernicke 585,614
190, 4 3 6 , 449
W i n s t o n , J . 4 8 2 , 490
W e r n e r , H . , s. M c F a r l a n d , J . H . W i s t , 89,148
188
Walther,
W e r n e r , H . , s. B a u e r m e i s t e r , M . 85,136
H . H . 1 9 5 , 231
C. M . , Smith, A . H . ,
K e l l y , C . F . 3 7 3 , 388 W i n k l e r , C . 4 6 8 , 490
C ,
s. H a m p s o n , J .
5 9 8 , 617 Worchel, P . , Dallenbach, K . M . 354 W o r c h e l , P . , s. B i t t e r m a n n , M . E . 162,186
644
Author Index
Worden,
F . G . , s. S c h m i t t , F .
O. 602, 606, 607, 611, 613 W r e n n , L . G . 573 Wright,
York, E . , Brown, K . R., Goldfien,
A . 359
Y o s h i d a , M . , s. I t o , M . 5 8 7 , 6 0 5 ,
G . , s. B a r b e r ,
H . O.
2 0 1 , 2 0 6 , 229, 3 6 5 , 366 W r i g h t , J . H . , s. G e s c h e i d e r , G . A . 85,142 W r i g l e y , W . , s. D r a p e r , C . S .
Y o u n g , F . A . , s. C r a m p t o n , G . 119,140
Wulfften Palthe, P . M .v a n 406, 411, 4 2 5 , 450
G . , s.
Halstead,
W . 3 7 3 , 386
L . , M e i r y , J . 71, 74,
154, 5 3 0 , 580 L . R., Meiry, J . L . , T . L i . 502, 524, 525,
5 3 0 , 5 3 9 , 5 4 6 , 580 Y o u n g , L . , O m a n , C. M .42, 56,
Y a g u r a , S . , s. S a i t o , I . 3 1 0 , 320
6 4 , 154, 2 9 6 , 3 0 6 , 320, 5 0 9 ,
Yamamoto,
5 1 5 , 5 1 6 , 580
M . , s. I t o , M . 5 8 6 ,
Young,
617 Y a o , T . L i , s. Y o u n g , L . R . 5 0 2 , 5 2 4 , 5 2 5 , 5 3 0 , 5 3 9 , 5 4 6 , 580 Yemel'yanov,
M . D . , s. G a l l e ,
R . R.359 Y o n e k u r a , E . , s. T o k i t a , T . 355
N . L ,
Solodovnik,
F . A . 5 5 4 , 5 5 6 , 580 Y u g a t o v , s. F e o k t i s t o v 5 5 6
320, 5 3 0 , 580
Yao, Yacorzynski,
I. A . , K o -
Popov,
Young,
2 1 7 , 232, 6 0 4 , 620
L , Kolosov,
Y o u n g , H . H . , M e i r i , J . L . 165,
Young,
Wurtz, R . H . , Goldberg, M .E .
L., Kasyian, I. L , Bryanov, I.
panev, V . L , Lebeden, V . L ,
Y o u n g , L . R . 109,154, 2 8 2 , 2 8 5 ,
W ü s t , H . 223,232
3 9 3 , 4 0 2 , 404
Y o u n g , H . H . 160,190 190
4 9 6 , 576
Y u g a n o v , Y e . M . 2 9 8 , 3 0 6 , 320, Yuganov, E . M . , Gorshikov, A .
617 H.
Y o u n g e r m a n n , W . M . 2 0 2 , 232
L . R . , Stark, L . 587,
5 9 4 , 620 Y o u n g , L . , s. D i c h g a n s , J . 1 1 9 , 125,141 Y o u n g , L . R . , s. S t a r k , L . 5 8 9 , 620
Z a r r i e l l o , J . J . , s. G r a y b i e l , A . 1 3 1 , 1 4 3 , 353, 3 9 2 , 403, 5 6 7 , 575 Zustorf!,
K . , s.
Osterhammel,
P . 3 7 5 , 3 7 6 , 3 7 7 , 387 Zilstorff-Pedersen,
K . , Peiter-
s e n , E . , 2 7 3 , 2 7 4 , 280, Zilstorff-Pedersen,
K . , s.
355 Pei-
tersen, E . 272, 274,275,276, 280, 355 Z i p p e l , H . P . , s. D o m a g k , G . F . 4 8 2 , 485 Z i t e r , F . A . , s. B r a y , P . F . 2 1 3 , 229
Subject Index abducens motoneurons
458
—, nystagmus rhythms —
paralysis
accelerators, horizontal, experiments
586
8
a c c e l e r a t o r y s t i m u l i , n o m e n c l a t u r e of
ability to indicate vertical
91
- , r e s o l u t i o n of
ablation experiments a n d compensation a b n o r m a l eye m o t i o n s —
fatigable
r e s p o n s e s of
475
239
oculomotor syndrom
abnormally
patients,
vestibular
252,
254
—
of v i s i o n d u r i n g r o t a t i o n
116 270,
530
nystagmus
and
a c c e l e r a t e d free f a l l
400
a c c u r a c y of m e a n j u d g m e n t s A c h i l l e s t e n d o n reflex
555
angular,
84
angular
accelera-
acoustic
tion
333,
— , centrifugal
417
— , centripetal
79,
299, 302, 498, — , Coriolis-
— 82,
107,
282,
286,
287,
542
neuroma
499
— , g r a v i t a t i o n a l , see g r a v i t a t i o n a l
trauma
accelera-
107 105,
543, 548, 557,
8
a c u t e a l c o h o l a t a x i a a n d i n t a c t n e s s of adaptation
173,
106
— , homolateral 105
561
425 425
—
to angular acceleration
5 8 ff
—
i n the caloric response
306
— , l i n e a r , see l i n e a r a c c e l e r a t i o n
—
of c a n a l n e u r o n s
—, multiplanar
—
of c a n a l signals
—
to constant rotation
—
for constant velocity
—
of c o n t r o l of b o d y m o v e m e n t s
—
effects
392,
—, rotatory
415
— , spurious
432
— , sustained
393
7, 9, 1 0 7 , 2 9 8 ,
— , tangential
282, 283,
— , time varying linear — , transient
304
286 308,
312
— , measurement
of
— , p e r c e p t i o n of
499,
514
554
— , o t o l i t h response to
533
— , r o t a t i n g l i n e a r v e c t o r of — , s i n u s o i d a l i n p u t of step stimulus receptors
—
registrography
—
vectors, angular , linear
—
model
548
523 563
20, 24, 523
282
—
of n y s t a g m u s
—
to sea-sickness
277,
359
515
134, 508, 406,
510
408 506,
508
296, 297,
315
to tilt
72, 90
—
time constant
—
of t u r n i n g sensation
—
i n vestibular organs
134 369, 423, 424,
coupling, semicircular canal
adiadochokinesis 548
510
515
A D H d u r i n g m o t i o n sickness
12, 15
12, 286, 289, 290, 546,
512
339
flow/cupula
—
adaptive
552
64
— , Steinhausen model 546,
dependent o t o l i t h signals —
510,
294, 508, 509,
42, 45, 50
—, endolymph
540
vesti-
350
369
— , heterolateral
, discrimination from tilt
— , illusory
614
a c u i t y , v i s u a l , see v i s u a l a c u i t y
255
linear, changing
324,
336
bular apparatus
—, horizontal
229,
335
a c t i o n s , s h i f t i n g focus of
tion — , high-magnitude linear
410
211
196, 222, 228,
activity, vestibular cortical
120, 283, 298, 315,
401,
276
achromatopsia, nystagmus i n
see
turning
134
acetylcholine a n d m o t i o n sickness
a c a p n i a a n d m o t i o n sickness
—,
of
563
530
496, 498, 520,
sensation
271
520, 522,
503, 520,
accommodation
520
563
— , differentiating — , linear
88
A b w e i c h r e a k t i o n , caloric stimulation
—, —
359
— , integrating
of p o s i t i o n sense
10
13
23, 496, 498, 503, 515,
— , conventional
361
a b s e n c e of g r a v i t y
accelerometer — , angular
207
—
acceleration,
with
106
adjustment 4 6 4
605
401
567 296
Subject
646
a d j u s t m e n t of n y s t a g m u s a n d t u r n i n g s e n s a tion
Index
amphetamine,
134
adrenaline a n d m o t i o n sickness — , r e c o v e r y of n y s t a g m u s b y a d versi ve seizures
397,
410
362
215
—
a n d m o t i o n sickness
—
and nystagmus
—
aerobatic pilots, vestibular habituation aerospace flight a n d m o t i o n
sickness
376
—
travel
—
390
acceleration
by
584 —
from mechanoreceptors
—
— , spinoreticular
202
125, 225, 226,
61
, adaptation to
58
a n d cupula deflection
419
281, 284,
418, 419 438
21
2 1 , 24, 26
linear
acceleration
312 16
linear acceleration
236, 237
, pendular eye deviations d u r i n g
211,
and
nystagmus
62,
220,
291,
302,
377
601, 608, 609
of v e s t i b u l a r
—
and vertigo
258
437, 438
— , effect o n v i s u a l a c u i t y
130
aftereffects o n n y s t a g m u s induced ataxia
202
346, 350
ingestion a n d stepping test intoxication
116
accelerometer
23, 496, 498, 503, 515,
520
— , effect o n o t o l i t h o r g a n f u n c t i o n
nystagmus
223
vector
482
—
23ff
a n d v e s t i b u l a r responses
211
alcohol a n d compensation
—
, t h r e s h o l d s of p e r c e p t i o n
613
A l a n d eye disease
275
—
displacement estimation
—
distortion phenomenon impulse
—
m o m e n t u m , changes i n
2 0 , 121, 122
—
m o t i o n a n d m o t i o n sickness
—
oscillation in the y a w
—
position relative to g r a v i t y
, whole-body
1 2 0 , 121
127
374
—
sensors
alertness control
362
—
velocity, canal-generated
Alexander's L a w
308 401
18
500, 501
, constant 117
391
312, 313
alerting stimulus
alkali reserve d u r i n g m o t i o n sickness
4 4 , 4 9 , 51 162
—
130, 205, 425 307, 365
A m e s M C R P devices
by
2 8 1 ff
212
538
akinetic mutism
—
sickness
, m o d i f i c a t i o n of t h e response to -
a i r p l a n e a u t o p i l o t , d e t e r m i n a t i o n of t h e v e r t i -
—
with
, m a g n i t u d e of
429
a i r c r e w , see a s t r o n a u t s
—
362,
16
, interaction
agravitoinertial forces
lesions
282,
223 223
433
29
agoraphobia and vertigo
akinesia
motion
, unidirectional , a x i s of
after-sensations, phasic secondary
cal
15, 27,
, simple, subjective reactions to
371
cupulogram
12,
24
, pendular 106
after-reaction, p r i m a r y
of r o t a t i o n
242
392
afternystagmus, optokinetic
—
of t i l t
, multi-planar, and
92
—
361 425
, constant
370
118,119
afterimages, visual
—, rhythmic
induced head nystagmus a n d vestibular sensation
515
481
African parrot, nystagmus
— , rotation -
438
angular acceleration
479
aftereffect of a l c o h o l o n n y s t a g m u s — , optokinetic
302
398
a n g l e , p h a s e - , see p h a s e a n g l e
605
584
— , somato-sensory
responses, s u p p r e s s i o n of and vertigo
283
306
anesthesia, effect o n h a b i t u a t i o n of r o t a t i o n -
290
—, primary
291
anaemia, cerebral —
284 598
from limb joints
— , neck-
—
primary, stimulation
afférents, eye m u s c l e —
287
, stimulationb y linear acceleration , thermal stimulation
neurons,
—, macular
163
282, 312
stimulus
392
linear
receptors
402
364, 365
, g r a v i t a t i o n a l acceleration as adequate
494
aetiology of m o t i o n sickness afferent
compensatory
, first- a n d s e c o n d o r d e r n e u r o n s o f
398,
400, 401, 402 navigation
on
482
a m p u l l a r messages
A - e f f e c t , see A u b e r t e f f e c t
—
influence
processes
, subjective
122, 515
113 44, 47, 421, 422
, — , d i r e c t measures of
43
Subject
angular velocity, subjective, and information theory
impulses
39 ff
area 8 (frontal eye
66
20
information, otolith system transducers
112
, p e r c e p t i o n of
502 21, 421
arm tonus reaction
362
arousal
— , labyrinthine-defective
nystagmus
501
w i t h inoperative canals
— , m o t i o n sickness i n
4 6 3 ff
5 4 3 ff
370
543, 544 397, 401
585 402,
in
557 425
235
vestibular
nuclei
influences
614
— , residual 614 242
d i s p l a c e m e n t of v i s u a l t a r g e t
—
horizontal
—
motion, reversal i n
380
—
68
344
vestibular
197, 242, 380,
119 86, 160, 162, 169, 170, 174, 176,
as a f u n c t i o n of l a t e r a l b o d y t i l t
—
i n normals test battery
—
test m e t h o d s , b i b l i o g r a p h y of
—
tests
in
324 322
labyrinthine-defective
ataxiametric methods
248, 249
athetosis
599, 600 217 218
appropriate s t i m u l u s for semicircular canals 415 of v e s t i b u l a r o r g a n a r c of u n c e r t a i n t y , see a l s o U
414
355
608
atrophy, cerebellar
226
— , cerebellocortical
583, 596, 598, 603, 604
— , Friedreich's
598
— , t r a n s n e u r o n a l , of o c u l o m o t o r n e u r o n s
— , visual i n p u t to
a t t a c k s of v e r t i g o
440
— , visual
deg 604
6 0 7 ff
598
410
1 9 5 ff
attention to vestibular sensations
84, 85, 86, 88, 89
archicerebellum a n d m o t i o n sickness
subjects
355
atropine a n d m o t i o n sickness
arachnoiditis and vertigo
352
336, 344, 345, 346, 347
161,
ataxiagraphic methods
— , oculomotor
218
324, 325
324, 326, 327, 328, 329, 330, 331, 333, 335,
242
— , gaze -
3 2 1 ff
of v i s u a l l y g u i d e d h a n d m o v e m e n t s
—
178, 179, 180, 1 8 1 , 182, 241
apraxia
324, 336, 350
— , effect of age a n d sex o n
593
i n o r o u t of w a t e r
350
— , vestibular, measurement in m a n
162, 2 4 1 , 558
of the e n v i r o n m e n t
328
338,
345
— , spontaneous
—
346, 350
vestibular
—, rotation-induced
a p p a r e n t a n g l e of t i l t
oculomotor
277
—, induced vestibular
614
— , Wernicke's
on
455
— , compensated
— , Broca's
vertical
207 599
ataxia, alcohol-induced
614
—
196
104, 244, 254, 261, 290, 298, 324,
— , cerebellar
aphasia, frontal
438, 443
205
— , vestibular sensations —
sickness
3 6 1 ff
artherosclerosis a n d vertigo
asymmetry index
179
tilt
261, 363
— , see a l s o p i l o t s
268 motion
270 270
66
association cortex
410, 570
—
nystagmus
402, 555, 556,
antidiuresis a n d m o t i o n sickness
apathy
—
astronauts
anticompensatory reactions
anxiety
effects
208
7
362
—
— , vertebro-basilar
207
a n o m a l y of f o v e a l v i s i o n
and
227, 227,
artery, vertebral 211
— , vestibular habituation in
8 599
arteriosclerotic lesions
405, 427
— , spontaneous nystagmus i n
antigravity muscles
218
— , vestibular responses to
— , c o m p e n s a t i o n of v e s t i b u l a r lesions
s t r e t c h reflex
609, 610
— , s t r i a t e , d e s t r u c t i o n of
Armtonusreaktion
594
antihistamines
—, Rolandic
611, 612
— , sensory association -
424
animals, foveate a n d nonfoveate,
anisometropia
588
areas, c o r t i c a l , a n d v e s t i b u l a r sensations
13, 18, 56, 125
, s e n s a t i o n of
field)
— , pretectal
the vesti-
590
— , vestibular projection -
and cupula deflection
animal hypnosis
105,
20
, canal responses to
—
c o n t r o l of
b u l a r - o c u l a r reflex arc
, —, and nystagmus
—
647
archicerebellum, visual
56
, — , m a g n i t u d e e s t i m a t i o n of
in
Index
67
612
—
habituation
—
shifts a n d linear displacement estimation 106
135, 136
Subject
648
A u b e r t effect
audiogyral illusion —
phenomena
audiometry
birds, nystagmus
86, 94, 96, 161, 241
Aubert-Fleischl paradox
birth trauma
—
169
blindfolded observers reference
for a p o i n t source of l i g h t
in
242
194 392
nervous system a n d m o t i o n sickness
avitaminosis a n d vertigo
399
135
axis, p r i m a r y
169, 170
— , secondary
169, 170
—
587
a n d m o t i o n sickness
—
a n d vestibular sensation
607 426
blood acetylcholine a n d m o t i o n sickness flow a n d m o t i o n sickness
—
in the perilymph, nystagmus
206
—
pressure a n d m o t i o n sickness
393, 395
and vertigo blurred vision
16
196, 438 228
195
B o d e p l o t of c a n a l responses Babinski sign
218
b o d y , see a l s o
balance, poor, d u r i n g s w i m m i n g —
reactions
—
tests
barbecue rotation experiments barbiturate anesthesia
548
584
barbiturates, intoxication by
205, 590
423, 427
basal ganglia
, lesions i n
601
control and vestibular system
—
inclination
—
m o v e m e n t s , i l l u s i o n s of
608
—
orientation
156 perceived
498
463, 472, 473, 474,
compensatory nystagmus
456, 457, 483,
position
changes
in
170
, s t a b i l i z a t i o n of
500
484
r o t a t i o n , p e r c e p t i o n of
—
reference versus visual reference
—
surface, pressure on
—
-sway motion
—
tilt
, influence
nystagmus
perception
441
Bereitschaftspotential
—
600
106
163
253 83
on
orthogonality
of
163
588, 601
persons
—
damage and spontaneous nystagmus
( B L - D s ) 324, 326, 327, 328, 329, 330, 331,
—
disease, s q u a r e - w a v e jerks
bilateral
labyrinthine
defective
336, 338, 344, 345, 346,
— , i s c h e m i a of
347
loss of l a b y r i n t h f u n c t i o n
164
— , lesions of
—
loss of v e s t i b u l a r f u n c t i o n
332
brain tumors and vertigo
Biperiden birds,
215
—, of
463, 465, 472, 477, 479
vestibular
196, 202, 216, 226
Broca's aphasia
215
compensation
lesions
field
—
614
614
b u l b a r lesions
212
204
—
binocular coordination
space
162
tonus, asymmetric
brainstem
164
118
182, 242
, e s t i m a t e of positional
194, 583
—
530
bicomponent theory
563
111
, unexpected
475, 476
437, 439,
500
181
125
Bechterew compensation
paroxysmal
251
110
—
608
p r i n c i p l e s of i n e r t i a l n a v i g a t i o n
bending
-axis dependence
—
as r a m p generator
benign
—
602
basic c o m p o n e n t s of a n inertial s y s t e m
—
angle m o t i o n s , f r e q u e n c y s p e c t r a of
, p a t h of
, inputs from motor cortex
85
—
614
, diseases of
—
87
— , orientation relative to
608
Bârâny test
169
— , f o r c e field o n
90
ballism
505
whole-body
— , d i s p l a c e m e n t of
91
277
401
394, 395
supply, vertebrobasilar
of a n g u l a r a c c e l e r a t i o n
movements
210
—
—
438
a w a r e n e s s , c o g n i t i v e , of v e s t i b u l a r i n f o r m a tion
272
— , i n v o l u n t a r y spontaneous eye
242
a u t o n o m i c effects of m o t i o n sickness —
blindfold walking
80, 242, 436
90
blindness a n d eye position
28, 36, 117, 118
automatic holding
417
of the o t o l i t h i c organs
a u t o g y r a l effect of b o d y a n d v i s u a l
—
218
s p o t s of t h e l a b y r i n t h s
176
165
440
blind, cortically
365
166, 172, 173
autokinesis, rotatory
373,
202
blepharospasm
234
autocompensation
370, 371, 372,
— , s t a t i c f u n c t i o n of o t o l i t h o r g a n s
432
autistic children, nystagmus i n
—, visual
219,
378
52
417
— , feed-back -
Index
484
palsy, progressive
228
440
202
Subject b u o y a n c y cues
91
649
c a n a l s , l a t e r a l , a d a p t a t i o n of the s i g n a l f r o m
b u t t o c k s , a n e s t h e t i z i n g of butyryperazine
Index
87
294
481
— , — , c e n t r a l s u p p r e s s i o n of t h e s i g n a l s f r o m 294
caffein
481, 482
— , vertical, pathology
c a l c i u m , content d u r i n g m o t i o n sickness caloric habituation
401
372, 373
ness
—
i r r i g a t i o n of t h e e a r
115
—
n y s t a g m u s , see n y s t a g m u s ,
—
responses
caloric
401
cardiazole
196
c a t , c o m p e n s a t i o n of v e s t i b u l a r lesions
306
472, 474, 476,
220, 221 fixation
, misinterpretations
221
—, nystagmus in
222
544
211, 371, 372,
220, 269, 270, 272, 276, 362,
catecholamines,
—
s t i m u l i , m e a s u r e m e n t of v e s t i b u l o - s p i n a l
cells a t t h e a p e x of t h e c r i s t a
responses to
— , canal-dependent
ness
381, 418, 434, 435 274
, h e m i s p h e r i c lesions in
115, 220
222
—, Ewaldian
286, 288 603, 605 288
— , o t o l i t h i c , see o t o l i t h i c —, Purkinje-
222, 226, 303
c a n a l , see a l s o s e m i c i r c u l a r c a n a l , c a n a l s
— , rotation-dependent central compensation
—
afférents, p o s i t i o n a l responses , p r i m a r y , a c t i v i t y of
—
-dependent cells
284,
549
responses, s u p p r e s s i o n of —
function, subjective c a n t s of
factors, habituation
—
n e r v o u s s y s t e m , response to linear acceleration
112
a n d objective
indi-
295
-generated angular velocity
—
i n p u t s , c o n v e r g e n c e of
122
—
m o d e l , see S t e i n h a u s e n m o d e l
—
neurons, p r i m a r y
-otolith interactions receptors
—
response to a n g u l a r v e l o c i t y
502 295
to g r a v i t a t i o n a l acceleration
292
during head tilts
132
, m a t h e m a t i c a l m o d e l of , postrotational
92
, s u p p r e s s i o n of
296
to weightlessness
stimulus
—
studies
centripetal
to gravireceptor s t i m u l a t i o n 132
—
—
cortex
296
acceleration
79,
302, 498,
82,
107,
sickness
s y s t e m , n a t u r a l f r e q u e n c y of
—
u n i t s , a c t i v i t y of
277
226 588
, r e m o v i n g of
262
, step generator
33
287 vector
289 canals, horizontal, vestibular neurons 543
583,
454
602
599
—
disease, square-wave
—
encephalopathy, paraneoplastic
—
e x t i r p a t i o n i n pigeons
—
inhibition
—
n o d u l u s , lesions of
—
nuclei
603
598 605
587
, s a c c a d i c f u n c t i o n of
, responses to l i n e a r a c c e l e r a t i o n
282,
542
, eye muscle afferent projection to
298
—
121
79
cerebellar a t a x i a atrophy
550
111, 549
, p e r i p h e r a l m o s s y afférents t o
—
— , inoperative, in animals
235
95, 96, 235, 239
286, 287, 299, —
417
8 1 , 8 3 , 96, 97, 107, 110, 111, 242,
259, 299, 392, 416, 435,
121, 256, 259
438
165
—, counterrotating
251
after h a b i t u a t i o n
forces
centrifuge
509, 510, 552
—
and vertigo
c e n t r i f u g a l a c c e l e r a t i o n , s e n s a t i o n of centrifugation under water
287
—
381
548 diseases
—
—
— , lateral
— 123
units, velocity information b y
549, 567 of v e s t i b u l a r f u n c t i o n
460
285
287
cells
587, 603, 605, 608
— , cross-section of
507
515, 553
549
—, non-Ewaldian
subjects
483
, m e t h o d s of
401
—, granular
labyrinthine-defective
331, 335,
361
content during motion sick-
stimulation
test, head- a n d b o d y position
548
c a t a t o n i c p a t i e n t s , v e s t i b u l a r responses
204
—
—
374
— , response to linear acceleration
and recovery nystagmus
470,
478
— , w i t h defective canals
, influence of v i s u a l
393
482
carotid obstruction 222, 333, 335
, a d a p t i v e m e c h a n i s m s of , e v a l u a t i o n of
432
cardiac action a n d m o t i o n sickness
113, 229
, acoustic neuroma
of
carbon dioxide, content during motion sick-
jerks
453 205
477
212 213
Subject Index
650
cerebellar nuclei, analogy vestibular nuclei
in function
586, 587, 588
—
—
step a n d holding functions
—
t u m o r a n d saccades
—
i n guinea-pigs and nystagmus
—
a n d saccades
units
478
—
in direction
—
in the distal environment
583, 596, 598,
velocity
angle,
neuroma
chorea 115, 116, 217, 475, 582, 588, 614
— , c o m p e n s a t i o n of v e s t i b u l a r f u n c t i o n — , diseases of b a s i c g a n g l i a i n e m o t i o n a l processes
of v e s t i b u l a r
sensation
587
123,
125
179
clopenthixol
1 9 5 , 197
596
cochlear s y m p t o m s
589
195
Cogan's syndrome a n d vertigo
390
a n d v i s u a l i n h i b i t i o n of v e s t i b u l a r n y s t a g -
cognitive tion
116
cerebral a n a e m i a d u r i n g aerospace flight
398
awareness
of
211 217
—
concussion
—
contusion
—
c o r t e x , influence o n c o m p e n s a t i o n of v e s t i -
commissural
b u l a r lesions
—
i n h i b i t i o n , c o m p e n s a t i o n of
—
pathways
colliculus, superior
204 4 7 5 ff
, influence o n postural functions
475,
, influence on vestibular functions
475,
, influence o n visual functions
475
, v i s u a l r e g u l a t i o n of eye p o s i t i o n —
deficiency, c o m p e n s a t i o n of
—
hemispheres, v a s c u l a r lesions i n
—
lesions, space coordinates
—
potentials
preceding
compensation
move442
195, 336
removal
of,
and
compensation
cervical nystagmus root lesions
—
vertigo
436
436
206, 584
173,
174
177
—, Ruttin -
472 177, 4 5 1 , 460
—
of c o m m i s s u r a l i n h i b i t i o n
—
of l a b y r i n t h e c t o m y
—
of v e s t i b u l a r lesions
— , t i m e - c o u r s e of
—
1 5 9 , 174
173, 176
472
—, vestibular
475
463, 472, 473, 474, 475, 476
— , feed-back -
—, optical
162
voluntary
—
principle
4 6 3 ff 4 6 3 ff
465
157, 158, 169
compensatory errors —
459
217
—, external and internal
— , latent
457
156
— , feed-forward 484
600, 601
insuffiency
cerebrum,
587
475
cerebrovascular accidents a n d vertigo —
217, 596, 612 c u t t i n g of
290
—, Bechterew -
603
ments
fibers,
commissure, posterior
477, 588
440
vestibular informa-
135
colorblindness collicular lesions
204
215
481
coarse saccade
596, 598
— , second vestibular integration
ad-
604
clonic u p w a r d eye m o v e m e n t s
— , nuclear and cortical functions in
mus
—
438
action, parametric gain
clinical h i s t o r y of v e r t i g o
602
226, 228
— , vestibular tracts in
fiber
justment via clinging
a n d saccades
258, 364, 410
claustrophobia and vertigo
126
compensation
211
364, 481
608
cinnarizine climbing
4 7 7 ff
— , lesions of
—
460
601
— , inputs from motor cortex
—
chlorpromazine
401
427
— , spontaneous nystagmus
440
acoustic
228
lesions
5 6 , 57
chimpanzee, m o t i o n sickness
605
cerebellopontile arachnoiditis
— , influence on
105,
" c h a n n e l c a p a c i t y " for p e r c e p t i o n of a n g u l a r c h e m i c a l a s p e c t s of m o t i o n sickness
cerebello-nuclear lesions
—
169
106, 107
589, 597, 605
cerebellum
120
111
changing horizontal linear acceleration
599 599
cerebello-pontine
18, 9 0 , 112
72
changes i n a n g u l a r m o m e n t u m
440, 441
603, 604 lesions
90
information
604
596
cerebellocortical a t r o p h y —
90, 92
, m e m o r y of
199, 217
584, 586, 589
—
527
105
in-position
210
, lesions of, a n d n y s t a g m u s
and vertigo
223
-in-orientation information, otolith system
6 0 5 ff
, i n t o x i c a t i o n of
cerebellectomy
cervico-ocular reflex
change of g r a v i t y , response t o
a n d eye m o v e m e n t s , f u n c t i o n of
with
607
eye m o v e m e n t s
160 225, 234
459
Subject
compensatory —
function
nystagmus
oculogyral illusion r i g h t i n g reactions
—
variable
—
v e s t i b u l a r responses
— , cingulate
380, 381
—
277, 543
1 7 3 , 177
concomitant squint
567
198,
conjugate deviation
202,
208,
209,
454
425 398
conscious perception
418
consistent position signaling constancy, directional
112
172
—, vertical
157, 166,
—
of space perception
—
of v i s u a l space
—
problem
172 156
angular velocity
s t i m u l u s of g r a v i t y
—
velocity rotation
s t i m u l a t i o n , influence on n y s t a g m u s
—
vestibular
of
600 fibers,
lesion of
content
563 in-
—
402 68, 525, 526,
527,
68, 94,
103, 226, 234, 235,
239,
afférents
286
nerve,
111, 549
convulsive disorders
195
reaction, vestibular
stimuli, vestibular
124,
133
of
123
— , response to g r a v i t y
—
n y s t a g m u s test
—
torque stimulus
527
t i o n of space
— , somatosensory
545
8 8 , 9 0 , 9 1 , 9 3 , 94, 113
— , vestibular a n d non vestibular, reduced
120
c o r n e o r e t i n a l p o t e n t i a l , d r u g effect o n c o r p u s c a l l o s u m , s e c t i o n of
1 6 3 ff
— , somesthetic, eliminated
133
direc-
241
— , postural direction
339
377, 381, 382, 527, 563
—• v e s t i b u l a r r e a c t i o n
554
91
— , nonvisual, a n d visually perceived
408
5 5 3 ff
stimulation
-
284
119, 120, 1 2 1 , 125, 131
s t i m u l a t i o n of the canals
— , kinesthetic
423
284
284
— , stimulation b y linear acceleration
cues, b u o y a n c y
119, 120, 125, 131, 553, 607
a n d m o t i o n sickness
515
c r o s s - c o u p l i n g effect
125
, perceptual phenomena
—
14
cristae, a d e q u a t e s t i m u l a t i o n of
120, 283, 298, 315, 4 9 9
sickness
515, 553
— , t y p e I I cells 164
178
motion
390
to
— , t y p e I cells
coordinate systems, perceptual
159, 174,
eighth, and
crista ampullaris 177, 178
563
525, 526
on a centrifuge
cranial
610
—
sick-
401
counterrotation
217
convergent detection
cross-coupled
611
587
during motion
252, 259, 517, 525, 526, 554,
vestibular
Coriolis acceleration
612
reflex arc
countertorsion, ocular
cortex
fibers
—
— , static
—
principle
218 from the striate cortex
— , ocular
172
and
477
7
528, 546
259 f
refractory nystagmus
correction
representation
connections
113
canal and gravireceptor
somatic
2 1 6 , 217
—
111, 288
—
illusion
—
counterrolling, dynamic
287
—
9
lesions a n d gaze paralysis
cosmos sickness
conventional accelerometers
—
evoked potentials
—
7
c o s m o n a u t s , see a s t r o n a u t s 24
113
—
forces
—
corticosteroids,
—• s p e e d o f f - v e r t i c a l r o t a t i o n
—
599
corticofugal
30
—
—
association areas
ness
angular acceleration
effect
—
157
—
475
cortical areas a n d v e s t i b u l a r sensations
cortico-cortical association
197
constant, Mulder's
—
611 zones of
cortically blind
157
—, motion
—
— , tempero-basal
426
i n aerospace flight
motor
609
611
— , nystagmogenic
nystagmus
c o n v e r g e n c e of
126, 613
— , striate
568
210, 211, 219, 228,
—
—, orbital
207, 208
contour detection
611
217, 600, 602, 609, 610
— , sensorimotor
c o n d i t i o n i n g of a single n e u r o n
puts
196
35
cortex
cortex
611,614
— , motor -
of t h e v e r t e b r a l a r t e r y
consciousness
596
614
frontal
— , infero-temporal 295
c o n c e p t of t h r e s h o l d
—
— , c e r e b r a l , see c e r e b r a l
456, 457, 463
—
congenital
594,
c o r t e x , c e r e b e l l a r , see c e r e b e l l a r
—
conflict theory
651
correction saccades
158, 159
310
, Bechterew^
compression
Index
216
156 177, 180, 181, 182
364
cue s y s t e m , p o s t u r a l cupula
179
14
— , d e n s i t y of — , e l a s t i c i t y of
285, 552, 553 506, 508
90
652
Subject
cupula, hysteresis i n
419
deceleration, sensations d u r i n g
— , m e a s u r e m e n t of acceleration — , m e a s u r e m e n t of v e l o c i t y — , m o d e l of
deep reflexes to v e s t i b u l a r s t i m u l i 285
— , t i m e c o n s t a n t of deflection
a n d angular acceleration
21,
324
—
sensibility
88
—, utriculopetal
by gravity
ness
294
b y linear acceleration
15
15
o f t h e c u p u l a , see
dehydrogenase,
286
284, 285, 286,
cupula-deflection
, peak -
268
301
displacement
—
dynamics
—
's e l a s t i c r e s t o r i n g f o r c e
25
—
19
canals
recovery, w o r k i n g equations
38
—
sensory cells, a s y m m e t r i c a l response
of
angular 177,
— , displacement -
stimulus,
quantitative
514
estimation
427 28,
29,
30,
31,
35, 408,
409,
420, 422, 433 and adaptation
429
— , after-sensation —, nystagmus -
429
421, 430
— , sensation -
421, 422, 423, 428
— , working equations
movements
38
—, rotation -
acceleration 178
—
of d i s p l a c e m e n t
—
of l i n e a r v e l o c i t y
5 3 8 ff
—
of v e l o c i t y a n d p o s i t i o n
—
of t h e v e r t i c a l
538ff 4 9 7 ff
5 3 4 ff
deviations from ideal veridicality
161
diabetes a n d vestibular sensation
432,
tumor
203, 214 34 520, 522, 563
diphenylhydantoin, intoxication by 433
c u t t i n g of c o m m i s s u r a l cyclic modulation
diplopia and vertigo fibers
457
direction, perverted,
111,113
of
caloric
nystagmus
402
— , visually perceived, i n space — , changes i n
111 104
238, 241
damped spring system
19, 33, 38
— , m e m o r y of
dancers, nystagmus i n
369, 376, 377
—
of linear a c c e l e r a t i o n
—
of space, n o n v i s u a l l y p e r c e i v e d
—
of s p o n t a n e o u s n y s t a g m u s
—
of t h e v e r t i c a l , s e n s e d
—
-reversing nystagmus
—
cues, k i n e s t h e t i c
data processing deaf c h i l d r e n —
man
—
mutes
425
500 436
90, 95 7
a n d m o t i o n sickness
390, 405
deafferented t y pe I vestibular neurons deafness, h e r e d i t a r y — , long-standing
, optical
336
, tactile 62, 111,
123
378, 548
542 113
163 178
163ff 163
, vestibular 113
81
163, 166,
»postural
deceleration from off-vertical rotation — , nystagmus after
459
436
d e c a y of t h e n y s t a g m u s
205
438
221
cyclizine, a n d m o t i o n sickness
— , vestibular sensations i n
438
214
differentiating accelerometer
after-reactions
the
34
difference l i m e n s
66
by
d e t e r m i n a t i o n , see a l s o p e r c e p t i o n , s e n s a t i o n
—
415
218
203
34
diencephalic lesions
419, 420, 428, 429, 434
— , sinusoidal
eye
509
— , convergent
29
cupulometry
of t h e v e s t i b u l a r n e r v e
detection
31, 38, 415
return
cupulogram
nucleus a n d spontaneous
d e s t r u c t i o n of one s t r i a t e a r e a 29
—
— , clinical
213
213
—
cupular
213
dentate nuclei, demyelination
47, 502, 503
endolymph loop
604 85
demyelination, dentate nuclei —
37
—
system
fibers
in the initial tilt position
and sustained nystagmus
sick-
401
Deiters' nucleus
38
, threshold methods and working equations
459
content during motion
delay time, cerebellar cortex
287
426
276
d e g e n e r a t i o n of s y n a p t i c e n d i n g s
21
b y centripetal acceleration
—
sea divers
—
24, 26, 27, 29
—
—
deflection, utriculofugal
285
and angular velocity
426
decerebration a n d vestibular sensation
514
513
— , specific g r a v i t y of —
22
decerebellation a n d vestibular sensation
514
289
— , m o t i o n of
Index
163,
for h o r i z o n t a l i t y for v e r t i c a l i t y
164 169 169
202
249
Subject
directional asymmetry 157
—
difference i n d y n a m i c vision in nystagmus
129
127, 129
—
induction
—
p r e d o m i n a n c e of n y s t a g m u s
—
sensitivity
519, 520, 525,
69, 71
dysfunction, labyrinthine
239, 257
dysmetria
613
206
— 195
336
—
displacement, angular
of
434
87
609
saccadic
eye
movement
596,
598,
603
disorientation due to head movements
556
of s t e p m o v e m e n t s
dysmorphosia
605
162
dystrophy, ocular muscle -
4 4 , 4 9 , 51
215
106
— , perceived — , target -
E 600
106
— , tangential
70 106
106
442 169
— , i n n e r , diseases of
of t h e o t o l i t h m e m b r a n e
—
of o t o l i t h s
—
detection
—
measures, subjective
17
69, 71
18
—
115
48
158
— 162
d i s t u r b a n c e of eye m o v e m e n t s
257, 262
—
324
equivalence
elasmobranchs,
330
principle
canal
— , o t o l i t h responses
— , spontaneous nystagmus dorsal light reactions
211
104 508,
nucleus,
178, 180 afférents
284
e l a s t i c i t y of t h e c u p u l a
479, 584 from
thalamus and limbic system
hypo-
506, 508
electric s t i m u l a t i o n a n d vertigo
438
electrobasometer, force plates -
359
electronystagmography electrooculogram
612
200
199, 200
elevator, m o t i o n sickness
195
d r a m a m i n e a n d m o t i o n sickness
—
410
illusion
391
262
ellipse of u n c e r t a i n t y , h e a d - u p p o s i t i o n
612, 613
emesis
195
396, 401
emotional processes, cerebellum i n
212
encephalitis, square-wave jerks 215
—
d r u g s a n d c o m p e n s a t i o n of v e s t i b u l a r l e s i o n s 481
and vertigo
439,
endolymph
364, 365
— , effect o n o t o l i t h o r g a n f u n c t i o n
— , d e n s i t y of
258
— , s u p p r e s s i o n of m o t i o n sickness b y
401,
285, 552, 553
— , r e d i s t r i b u t i o n of
402, 410 356
213
14
— , p r o t e i n c o n t e n t of — , specific g r a v i t y of
212
442
— , viral, and ocular myoclonus encephalopathy, cerebellar
— , effect o n n y s t a g m u s
dynabalometer
502,
519
— , vestibular receptors
drug intoxication
103,
responses
509, 510, 552 471,
472, 479
drowsiness
91
p o s i t i o n i n g of t h e l i n e r e l a t i v e t o t h e b o d y
Einstein's
d o g , c o m p e n s a t i o n of v e s t i b u l a r lesions
drop-attacks
285
95
123
119, 369, 438, 443
double vision
362
362
egocentric orientation ability
218
d i s t u r b a n c e s , reflex v e s t i b u l a r
and nystagmus
efferent v e s t i b u l a r s y s t e m
215
of o p t o k i n e t i c n y s t a g m u s
drive to act
589
299
E E G , angular accelerations a n d —
d i v i n g , s e n s a t i o n of
rotation
E - e f f e c t , see M ü l l e r - e f f e c t surface
163
divers, deep-sea -
115
eccentric gaze positions
d i s t r i b u t i o n of p r e s s u r e o n t h e b o d y
dorsomedial
reference, otolith-detected , vision-detected
distortion, angular
roots
195
earth, reflex actions r e l a t i v to
34
distal stimulus
202, 275
— , — , vascular lesion
5 3 8 ff
—
— , episodic
115
— , c h r o n i c p r o c e s s e s i n t h e -, a n d v e r t i g o
of t h e b o d y
dizziness
482
ear, c a l o r i c i r r i g a t i o n of -
— , d e t e r m i n a t i o n of
—
68
dysacousis a n d caloric s t i m u l a t i o n
disorders, convulsive
—
responses of o t o l i t h i c cells
d y n a m i c s of t h e o t o l i t h s
452
d i s i n h i b i t i o n of p r i m i t i v e d r i v e s
—
otolith stimuli
—
532, 533
290
disequilibrium, postural
— , true
—
160, 178, 182
— , psychogenic
68, 525, 526, 527,
528, 546
constancy
disk protrusion
653
dynamic counterrolling
290
—
— , linear
Index
562 288 16, 303
213
126
89
Subject
654
e n d o l y m p h , v i s c o s i t y of —
displacement
—
flow,
—
pressure, pathology
eye-hand coordination
507, 562
502, 552
utriculopetal and utriculofugal
—
fluids
453
-head-body incoordination
—
m o v e m e n t s , see a l s o n y s t a g m u s , s a c c a d e s , abnormal
ness
sickness
epilepsy, petit m a l epileptic nystagmus vertigo
— , postural
215
, rapid
234, 250, 261, 333,
in lunar walk
— , o r g a n s of
, vestibular
559
, voluntary
principle, Einstein's
equivalent signals
, d i s o r d e r of
82
in
484
179 160
, seeing d u r i n g 44, 49,
—
muscles
106
—
of p l a n e of t h e u t r i c l e
98
—
of b o d y t i l t
—
of v e r t i c a l i t y
VIII
nerve
cortex
83, 84 220,
221
—
599
cerebellar
586
position in blind m a n
587
, optokinetik a n d vestibular regulation
430, 472, 514
of 362
e x c i t e m e n t , v e s t i b u l a r responses to
197 , s t a b i l i z a t i o n of
361,
362
194,
587
c o n t r o l , n e u r a l m e c h a n i s m s of —
251
extensor plasticity
439
598
stretch
286, 288
e x p l o r a t i o n of s p a c e
130
, proprioceptive feedback from
83
excitation and nystagmus
p o s t u r e s , v e s t i b u l a r s t a b i l i z a t i o n of
588 583,
585, 587, 588
585
—
tracking, predictive
589
268
external compensation
159, 174
—
ophthalmoplegia
—
s p a t i a l reference s y s t e m nerve palsy
f a i n t i n g fits a n d v e r t i g o
275
f a l l , a c c e l e r a t e d free
e x t r a o c u l a r muscle palsies
241
fastigial nuclei
215
fear of h e i g h t s 238, 261
e y e , see a l s o o c u l a r deviations, pendular
—
disease, A l a n d
211, 212
211
f r o n t a l , f u n c t i o n of tonic
215
479
—
reaction
1 2 5 , 131 169
— , proprioceptive, f r o m eye muscles — , visual
5 8 6 , 5 9 2 , 6 1 1 ff
361, 369
195
feed-back, optical
—
443
555
fatigue a n d v e s t i b u l a r responses
215
e x t r a p e r s o n a l s p a c e , p e r c e p t i o n of
field,
451
the
afférents, p r o j e c t i o n t o t h e
e v a l u a t i o n of c a l o r i c responses
fits,
of
588
, nuclei for
51
—
neurotomy
451
of l i n e a r d i s p l a c e m e n t
—
586
560
after l a b y r i n t h e c t o m y
—
—
fish
after
e s t i m a t i o n of a n g u l a r d i s p l a c e m e n t
tonus
583
, e x t r a o c u l a r m u s c l e afférents
179
errors, compensatory
—
211
313
177
177, 178
Erholungsnystagmus
Ewald's law
215, 217
and angular oscillation in the yaw
103, 104
erect position, thresholds
213
6 0 0 , 601
, — , in blindness 156
equivalence, optic-vestibular
E w a l d i a n cells
and myorhythmia 201
, visual guided
250
495
detection
203
, spontaneous,
254
error correction
216, 590, 591, 600
, seesaw
346
352
responses, p o s t u r a l
587,
202
, saccadic
— , — , b i b l i o g r a p h y of
— , m a i n t e n a n c e of
199, 215, 216, 219,
362
, rotatory
168
— , f u n c t i o n of l a g e n a
212
588
196, 439, 441
equilibrium, labile
blind-
199
, —, smooth
196
in
210
, pursuit
402
215
— , t e m p o r a l lobe -
—
spontaneous,
, nonnystagmic
401
—
197
, involuntary
e p h e d r i n a n d m o t i o n sickness
—
225, 234
, involuntary
289
561, 562
eosinophils, content during motion
—
215
, compensatory
s y s t e m s , m o d e l of c a n a l w i t h
612
239
, clonic u p w a r d
561
562
e n d o l y m p h a t i c u s sac
—
612
—
562
endolymphatic cavity, hydrops in —
Index
587
—
autocompensation
—
compensation
176
173, 176
599
Subject
feed-forward compensation fenestration operations F e r r i s w h e e l effect
173, 174
f o r c e field d e p e n d e n c e magnitude
112, 113, 545, 548,
550,
connections
between
cerebral
see f o r c e - f i e l d , v i s u a l
forces,
—
potentials, vestibular nuclei
fighter
inertial
pilots high-pass
459 376, 377,
process, o t o l i t h organs
536
271, 608 m o d e of r o t a t i o n t e s t
342
342
behavior a n d vestibular organs of
178, 180
560
527
509, 510, 514,
responses
502,
211
196, 198, 199, 208, 209, 210,
paraplegia
flight,
aerospace -
585
103, 235, 237, 252, 254,
298,
304, 416, 555, 556
—
281
104 connections
126
function
on
115, 116,
126
s t a n d i n g tests
353
of
vestibular
afferent
substance
lesions
543
neurons
and
linear
284
frontal
aphasia
eye
field
614
—
lesions, Müller effect after
—
lobe syndrome
586, 592, 611 94
614 94
599, 602, 603, 613
353
236 o n t h e b o d y , c h a n g e of o n t h e h e a d , c h a n g e of
galvanic methods, ataxia
359
—
nystagmus
220
—
stimulation
220, 270, 272
—
tests, c l i n i c a l v a l u e of
435
479
479
g a n g l i a , b a s a l , see b a s a l g a n g l i a gastric motility d u r i n g m o t i o n sickness ulcer and vertigo
438
gastritis and vertigo
438
g a s t r o i n t e s t i n a l effects a n d m o t i o n
, effective, i n a near-weightless field
31
71
—
—
f o r c e e n v i r o n m e n t , m a n i p u l a t i o n of
—
system
70
466, 467, 473, 475, 480
spindle loops
vestibular
426
w a l k i n g test
508
598
compensation
gamma-motoneurons
126, 5 9 0
, inhibitory
floor
canals
398, 400, 401, 402
— , spatial disorientation in
flocculus
199,
33
response of t h e u t r i c l e
function generator
237, 254, 298
flocculo-nodular
198,
f r o n t o p a r i e t a l lesions, Müller effect a f t e r
268
personnel
fish
cupula-endolymph
acceleration
587 tonus
of s t i m u l a t i o n of
—, primary
222
— , c e n t r a l r e g u l a t i o n of
flexor
594
and nystagmus
— , w i t h extirpated canals 496, 558
nystagmus
587
208
200, 201, 202, 204, 221, 483
508,
552
— , vestibular organs
organs
F r e n z e l ' s glasses
frog,
607
lobe
v i s i o n , a n o m a l y of
Friedreich's atrophy
284
— , vestibular nerve
—
—
70
— , semicircular canal
—
smooth p u r s u i t eye m o v e m e n t s
f r i c t i o n , i n t e r n a l , of t h e g e l a t i n o u s
165, 517, 519,
— , p o s i t i o n a l tests
587
—
—
— , otolith organs
— , parabolic
fixation
234
— , — , of t h e s a c c u l u s
526
523
visual
508
555
— , o t o l i t h i c cells
— , orbital
foveal
— , — , of
— , ocular counterrolling
flexion
587, 599
— , n a t u r a l , of c a n a l s y s t e m
— , f r e q u e n c y of c a n a l s t i m u l a t i o n
—
r e t i c u l a r i s , see r e t i c u l a r f o r m a t i o n
frequency
— , inverted position
599
foveate animals, nystagmus i n
5 5 8 ff
466, 472 — , eye movements
236 vestibulo-reticulo-cere-
215, 216, 218, 222, 228, 475
fovea
l a b y r i n t h i n e lesions
— , dorsal light reactions
fixation,
lesions
four-pole swing
172
— , compensation
—
formatio
- v e r t i c a l m o d e of r o t a t i o n test
fish,
379
536
finish-horizontal
236, 237, 247, 261
forebrain, relation to
536, 562
test
236
bellar system
filter,
mechanism
165
—, gravitoinertial
379
— , low-pass
finger-nose
— , centrifugal
359
236, 237
— , inertial i m m a n e n t
skaters a n d nystagmus
—
plates electrobasometer
—, gravitational
236
figure
filtering
cortex,
602
field
—
—
—
110
9 7 , 101
forces, a g r a v i t o i n e r t i a l
cerebellum and basal ganglia field,
655
430
567 fiber
Index
87 87
235 vehicle
400
sickness
400 gaze, conjugate —
apraxia
215
217
—
centers, s u b c o r t i c a l
—
nystagmus 587, 605
216
196, 198, 199, 214, 216,
219,
Subject
656
gaze paralysis
215
, horizontal , vertical
gravity-orientation information, otolith
216
tem
Grunddrehung
596
guidance system, inertial
paresis
218,
—
positions, eccentric
589
— , hysterical pseudopalsy
of
215
Gerlier's disease a n d vertigo
gyroscope 613
438,
habituation
441
— , caloric
408
— , vestibular
259
goal-directed movements texture
density
605
287 295
generally distributed
282
1 3 0 , 1 3 4 f f , 3 6 1 ff 425,
of o t o l i t h o r g a n s
282
282,
283
381
—
to constant r o t a t i o n
—
to Coriolis s t i m u l a t i o n
—
of C o r i o l i s v e s t i b u l a r r e s p o n s e s
—, nystagmus -
and habituation
381
342 377,
gravitational acceleration
287, 291,
responses to
to sea-sickness
—
of t u r n i n g s e n s a t i o n
a n d lateral canals , s e n s a t i o n of
542
rotation
134,
379
a n d ocular counter rolling stimulus and otolith activity
—
vertical
hair cells, s e m i c i r c u l a r canals
432
239
—
429,
241
haltères of insects
283
of r o t a t i o n
hand movements,
439 433
500 goal-directed
, v i s u a l l y g u i d e d , a t a x i a of
gravitoinertial force environments, u n n a t u r a l
haunted swing illusion
—
forces
—
horizontal
236, 237, 247,
—
vertical
245,
252
—
upright
247,
255
247,
h e a d , f o r c e field o n
261
119, 160,
612 218 179
87
— , i l l u s o r y r o t a t i o n of
248
515
69
hallucinations
236
257
379
of v e s t i b u l a r r e s p o n s e s a n d v i s u a l s t i m u l i
Hallpike's nystagmus
417
—
557
— , orientation to g r a v i t y a n d otolith system 16, 537 254
— , r o t a t i o n of
— , c o n s t a n t s t i m u l u s of
259f
— , stimulus vector relative to -
16
— , c u p u l a deflection b y
294
— , vestibulospinal reactions i n
269
g r a v i t y , a b s e n c e of
252,
— , l u n a r s t a n d a r d of — , measurement
of
— , orientation to
240, 254,
16, 293, 305, 527,
— , position relative to — , specific, of c u p u l a — , — , of e n d o l y m p h — , — , of o t o l i t h s — , t i l t e d relative to — , z e r o - , see
255
—
309
533
18, 68
axes
121
10, 537
fixed c o n d i t i o n s d u r i n g h a b i t u a t i o n
499
— , o t o l i t h response to
374
133
410
in the utricle
forces
380
3 6 9 ff 291
292
—
382
131, 134, 361, 370,
—
—
373
132
—, room illumination during
282
261,
426
f r o m caloric to r o t a t o r y s t i m u l a t i o n
— , oculomotor responses after
282
— , somatesthetic
, effect o n
366 366
— , c e n t r a l factors of
168 603,
s t i m u l a t i o n , canal responses to
— , nonvestibular
—
373
— , canal responses after
g r a v i r e c e p t o r i n p u t s , c o n v e r g e n c e of
— , vestibular
382
136
— , vestibular sensation —
583
g r a n u l a r cells i n cerebellar c o r t e x
—
401
357
gravireceptors,
372,
—, situational
244
loading, increased
135,
— , psychological
561
glucose, content d u r i n g m o t i o n sickness
—
8
362, 369,
—, attention -
glass m o d e l a n d m o t i o n sickness
gradient for retinal
480
498
gyrus, postcentral
172
glaucoma, labyrinthine
goniometers
564
134
Gibson texture gradients
g level, increasing
494, 495,
469, 470, 473, 474, 476, 478, 479, 70
599, 602, 603,
geometric displacement
469
g u i n e a p i g , c o m p e n s a t i o n of v e s t i b u l a r lesions
g e l a t i n o u s s u b s t a n c e , f r i c t i o n of generator, function -
sys-
105
217
—
—
Index
orientation to the vertical —
-free c o n d i t i o n s
—
inclination
—
movements 121,123,124,197,537,538,539
285
172,
during habituation 176,
, disorientation by
16
269 556
a n d m o t i o n sickness 96
558
and nystagmus reduction
weightlessness
during rotation 563
—
planes
10
371
177
, caloric s t i m u l a t i o n
16, 303
dependent o t o l i t h signals
371
537
381
377
Subject head
p o s i t i o n , r e g u l a t i o n of other than vertical
—
return
—
tilt
211 204,
200, 201, 204
159, 172,
h y p e r v e n t i l a t i o n a n d m o t i o n sickness
122
203,
—
tremor
208
—
-turning vertigo
—
-up judgements
132
hypnosis, animal
204
— 196 89 195, 206
195,
heart rate a n d m o t i o n sickness
395
hemineglect
217, 218 452, 453, 454
215 in animals
476
hemispheric lesions, subcortical , unilateral hen, nystagmus
218, 222
211
Höhenschwindel
169
557
72,
100,
194,
197
—, optogyral
604 583, 603, 606 the
rotating
en-
342
156
563
162, 2 4 1 , 558
543, 548, 557, 561
—
d i r e c t i o n of t h e v e r t i c a l
—
linear sensation
—
r o t a t i o n of t h e h e a d
—
s e n s a t i o n s of m o v e m e n t
imbalance
247, 248
vation
86
556
563
of
557 540
91
a c c e l e r a t i o n a t l u n a r s t a n d a r d s of g r a v i t y
87
i n " p o l y c e l l " cellulose paste
—
in water
accelerators
—
c a n a l s , v e s t i b u l a r n e u r o n s of
106
—
gaze paralysis
—
linear acceleration, sustained oscillation
impulse, angular 454
— 79,
107
83, 315
h u m a n centrifuge
169
83, 95, 235, 239, 259, 392,
416
stimuli to w a l k
hyoscine
438, 439, 561
364
inclination, body -
hypermetria
240
604
Hb. Sensory Physiology, Vol. VI/2
98
— , postrotatory —, swaying — , uphill
181
1 7 2 , 1 7 6 , 177
— , subjective
h y p e r g r a v i c forces
195
195
— , perceived
hydrops, labyrinthine
122
20
inattention to visual stimuli — , head -
545
21
i n a b i l i t y to s t a n d —
203, 207, 303, 483, 590
h o r i z o n t a l i t y , d i r e c t i o n a l cues for
20, 121,
— , angular velocity
216
87
87, 89, 90, 91, 92, 93, 96,
234, 235, 247, 248, 259, 544,
—
inner-
453
—
255
128, 129
vestibulo-oculomotor
immersion in liquids
— , p e r c e p t i o n of
429,
104
image velocity a n d visual acuity
— , gravitoinertial
125,
22
illusory acceleration
211, 227, 605, 606, 609
nystagmus
104,
22, 299, 339, 380, 416,
— , somatogravic
postural, to
75, 95,
432
195
horizontal, apparent
42
of a m a g n i t u d e
547, 551, 556, 558, 562,
251
of v e s t i b u l a r s y s t e m
—
119
254, 262, 555, 556
— , oculogyral
holding f u n c t i o n , cerebellar
527
112, 113, 545, 548, 550, 567
165, 234, 245, 252, 257, 259, 262, 416, 542,
165
h i s t o r y , c l i n i c a l , of v e r t i g o
563
of f a l l i n g f o r w a r d
— , oculogravic
higher center commands
— , visual
262
—
436 166,
432
—, haunted swing
373, 378
heterocompensation
vironment
— , elevator
— , inversion-
h e r e d i t y of n y s t a g m u s — , vestibular
5 5 3 ff
— , ferris wheel
217
h e r e d i t a r y deafness
homeostasis,
419
of b o d y m o v e m e n t s
— , Coriolis —
hemispherectomy
—
illusion, audiogyral —
hemilabyrinthectomy
tremor
613 612
hysteresis i n the cupula
215, 218
—, homonymous
homing
441
398
613
196
hemianopsia
—
stimulation
hypothalamus
hearing impairment, vertigo with loss
h y p o t h a l a m i c lesions —
439
397
596, 598, 604
hypotension, orthostatic 89
365
a n d motion sickness
h y p o m e t r i a of saccades
p o s i t i o n , ellipse of u n c e r t a i n t y headache, occipital
362
a n d nystagmus suppression
hypocapnoea
a n d vertigo
397,
400
, canal responses d u r i n g trauma
399
407,
408
182
—
—
207
h y p e r s a l i v a t i o n d u r i n g m o t i o n sickness hypersensitivity to m o t i o n sickness
s h a k i n g test
—
657
hyperphoria
537
122
, lateral
Index
276 98
276 97
612
112,
658
Subject
i n c o n g r u i t y of e q u i v a l e n t signals —, optic-vestibular indication time
reactions
nystagmus sway
—
v e s t i b u l a r responses effect
202, 212, 275, 322
i n e r t i a l field f o r c e s
interference function
220
236 236
—
guidance system
—
n a v i g a t i o n , b a s i c p r i n c i p l e s of
494, 495, 564
, three-dimensional 496,
—
pallidum
—
spatial reference s y s t e m
241
i n t e r n a l i s a t i o n of a t t e n t i o n
261
500 499 438
flow
215 112
107 interactions
104
inversion illusion
18, 9 0 , 112
164 awareness
of
135
—
of o p t o k i n e t i c n y s t a g m u s phenomenon
208, 219
92
invertebrates, compensatory
mechanisms
602,
inverted position
82, 555
i n v o l u n t a r y eye m o v e m e n t s and
subjective
angular
velocity
—
i n h i b i t i o n of c a l o r i c n y s t a g m u s
222
197, 210
reflex c o u n t e r - m o v e m e n t s
i s c h e m i a of t h e b r a i n s t e m
— , cerebellar
197 204
ischemic disorders a n d vertigo
440
453
—, commissural
459
jerk nystagmus
— , c o n t r a l a t e r a l , of t y p e I v e s t i b u l a r n e u r o n s 459
jerks, coarse
202, 203, 207, 210, 215, 228 fixation
—, square-wave
— , Schiff-Sherrington -
481
joint receptors
of v i s u a l m o t i o n p e r c e p t i o n
innervation, parasympathetic —, vestibulo-oculomotor
197 400
, step —, labyrinthine
212
212 282
joints, sensory inputs f r o m
95
— , intra vertebral, information from
453
j u d g e m e n t of a n g u l a r d i s p l a c e m e n t
i n p u t of a c c e l e r a t i o n , s i n o s u i d a l
523
— , head-up —
of p o s t u r a l p o s i t i o n s
87
—
of v e r t i c a l i t y
90
84
— , s e n s o r y , see s e n s o r y i n p u t s
j u d g e m e n t s , m e a n , a c c u r a c y of jumbling
86, 87, 89
437 44
89
523
— , somatosensory —, visual
in
465
d i a g r a m of v o l u n t a r y actions
theory
110
254, 262, 555, 556
—
57
56
—
583 275
i n t r o v e r s i o n - e x t r o v e r s i o n scales
613 —
438
intra vestibular conflict, visual vertical d u r i n g —
information, angular velocity
—
160
130, 205, 210, 219, 223,
i n t r a c r a n i a l diseases
213
— , vestibular, cognitive
158,
229, 438, 441
inferior olive a n d spontaneous eye m o v e m e n t s
— , change-in-position -
217
intracerebellar nuclei
562
infectous diseases a n d v e r t i g o
70
608
i n t o x i c a t i o n effects
, t h r e e - d i m e n s i o n a l case of
influenza, spasms i n -
174
intestinal worms and vertigo
516
vector, change i n
159,
f r i c t i o n of t h e g e l a t i n o u s s u b s t a n c e
intervening variable
499
s y s t e m , basic c o m p o n e n t s of
content
158
—
interstitial nucleus 498
and
312
158, 177
internal compensation
160, 178, 182
forces, i m m a n e n t
—
2 3 , 104
time-varying linear accelerations
interfering variable
—
— , tactile
of
angular accelerations
181
system
177, 185
— , visual-vestibular —
251
induction, directional
—
dis-
1 7 2 , 177
—
—
to
126
—
566
— , optic-vestibular
in
stimuli
121, 256
104
— , n e u r o n - g l i a l cells 520
induced movement
—
interaction, canal-otolith — , intra vestibular
72
differences
cordant
178
178
i n d i c a t o r of p o s i t i o n individual
Index
84
439
86
insensi ti v i t y of t h e p o s i t i o n sense insufficiency, cerebro-vascular —, vertebrobasilar
195, 196, 207, 228
integrating accelerometer i n t e n s i t y of n y s t a g m u s intention tremor
88
195, 336
503, 520, 530 201
609
i n t e r a c t i o n of a n g u l a r a n d l i n e a r a c c e l e r a t i o n 281, 284, 291, 312
ketones, content d u r i n g m o t i o n sickness k e y s y m p t o m s for topical diagnosis kinesthesia, T P K - r e c e p t o r system kinesthesis receptors k i n e s t h e t i c cues
kinocilium hair
237
262
163, 527
kinetic type I vestibular neurons kinocilia, utricle
227
17, 518 517
457
401
Subject Kippdeviationen
212
Körperdrehreflexe
Index
659
lag-effects
272
Körperneigungsreflexe
82
, oculogravic 272
l a g e n a , fish -
75, 107, 109,
—, function in equilibrium l a b y r i n t h , loss of
582
Lage-Nystagmus
—
bleeding and vertigo
438
—
hydrops a n d vertigo
438,
—
inflammation and vertigo
—
malfunction
—
tonus
—
trauma
Lagerungsnystagmus 438
latency, somatogyral —, "threshold" —
438, 439
labyrinthectomy
309
a n d eye m o v e m e n t s
451
—
a n d m o t i o n sickness
607
— , unilateral
a n d vertigo
(LD)
individuals
87,
90,
94,
— , M e n i e r e ' s disease
326,
327,
39, 41
L D , see l a b y r i n t h i n e d e f e c t i v e
, acute
268
, c h r o n i c 4 5 1 ff , vestibular neurons after —
disorder a n d vertigo
—
dysfunction fistula
learning, habituation
4 5 1 ff
438
, p a t h o l o g y of 87,
—
of t h e b r a i n s t e m
—
of t h e cerebellar n o d u l u s
—
of
the
cerebellar
164, 196, 197, 321, 324
— , cerebello-cortical —
of c e r e b e l l u m
— , cerebral
93, 106, 111, 113,
114,
310
—
glaucoma
—
inputs
87
561
—
lesions
195, 196, 203, 206, 4 5 2 ,
— , cortical 463ff
472 f 4 6 5 f, 4 8 3
, compensation
of
- in man
4 8 2 ff
452
589,
216, 217
—
of t h e c o r t i c o f u g a l
—
of the d i e n c e p h a l o n
—
of t h e
—
on the
—
of t h e f o r e b r a i n
fibers
flocculo-nodular floor
463
— , frontoparietal
94
—, hypothalamic
613
—
signals
—
t i l t i n g reflexes
439, 440, 441
l a b y r i n t h s , b l i n d s p o t of
417
— , electrical s t i m u l a t i o n of
220
— , m a i n t e n a n c e of e q u i l i b r i u m b y
7
lactate, content d u r i n g m o t i o n sickness l a g i n the p e r c e p t i o n of t i l t i n the perception
42*
of
195,
196,
203,
206,
4 6 3 ff, 4 8 2 f
276
108,
401
110
the visual
vertical
221 228
94
—, labyrinthine 585
590
215, 216, 218, 222,
277 584,
lobe
of t h e f o r t h v e n t r i c l e
r i g h t i n g reflexes 85
587
214
pathophysiology
— , frontal
605
206
—
108
587,
217
—
—
217,
162
o r g a n s , t o n i c a c t i o n of
a n d vertigo
199,
226, 228
—
labyrinthitis
226
205
nuclei
of c e r v i c a l r o o t s
— , collicular
—
—
608 196, 202, 216,
484
430 164
, man without
, unilateral
205
605
f u n c t i o n , loss of -
, bilateral
611
in the basal ganglia
206, 437
, unilateral
373, 378
—
—, bulbar
87
382
leghorns, n y s t a g m u s — , arteriosclerotic
4 5 1 ff
215
111
lesions of a r e a 8
destruction
269
30
l e a d effect
324,
607
269
L - d o p a , oculogyric spasms
548
in-
271
260, 390, 418, 501, 528, 546, 547, a t a x i a tests
vestibular
130
— , Stevens' power
347
—
on
9 5 , 114, 239, 240, 242, 247, 248, 2 5 1 , 259, and
—
neurons,
geniculate
law, Mulder's 336
329, 330, 331, 333, 335, 336, 344, 345, 346, —
lateral
laterotorsion, caloric s t i m u l a t i o n 454, 458
437
labyrinthine artery occlusion defective
37
198, 207, 211, 219
lateral-line stream receptor
— , — , effect o n v e s t i b u l a r n e u r o n s —
30
latent nystagmus
lateropulsion 464, 483
484
27, 28
of v e s t i b u l a r response
fluence
235
— , — , c o m p e n s a t i o n of
437
lamina quadrigemina syndrome
164
—
559
437
440
464
125
559
—
of l o b u l e s V I a n d V I I
—
of t h e M L F
—
of t h e m e d u l l a o b l o n g a t a
—
of t h e o p t i c t r a c t
—
of t h e o r b i t a l c o r t e x
—
of o t o l i t h s
214,
598
228 202
218 613
206
—
i n the p a l l i d u m
—
of p a r a v e r m i s
608
—
of p o n t i n e t e g m e n t u m
598 203, 217
452,
660
Subject
lesions i n the posterior c o m m i s s u r e —
of t h e p o s t e r i o r fossa
—
of t h e roof n u c l e i
—
of t h e s i x t h n e r v e
—
of t h e s p i n a l c o r d
— , subcortical
478
v e l o c i t y , d e t e r m i n a t i o n of , p e r c e p t i o n of
218,
222
sensation
585
608
18, 68, 72, 77, 82, 8 7 ,
215
, unilateral hemispheric
217
lobe,
126, 426,
flocculo-nodular 8
lobuli V to V I I , a n d saccades
, — , of t h e i n n e r e a r
195
, — , of t h e t h a l a m u s
484
484
— , gamma-spindle loss of a l a b y r i n t h —
463
of t h e v e s t i b u l a r n e r v e
—
of v e s t i b u l a r n u c l e i
196
—
of t h e v e s t i b u l a r s y s t e m
—
195, 203, 205,
215,
221
19
479 582
of l a b y r i n t h i n e f u n c t i o n 321, 324, 326,
—
of v e s t i b u l a r f u n c t i o n
Louis-Bar syndrome —
walk
164,
196,
197,
344 332,
430
583, 598
l u n a r s t a n d a r d of g r a v i t y 198
599
223
loop, cupula-endolymph -
598
598,
130
long rotation technique
-, i n cerebral hemispheres
590
8
locate-and-see
214
112 87
— , temporal 195
106,
liquids, immersion in — , parietal
of t h i r d n e r v e n u c l e i
of t h e v e r m i s
5 3 8 ff
546
106
484
— , vestibular
500, 516
, m e a s u r e m e n t of
, t r a u m a t i c , of the statoacoustic n e r v e
—
—
478, 480
in the thalamus
, vascular
sensors
217
— , tegmental
563
—
215
— , subcortical hemispheric
—
linear sensation, illusory
205
— , supramesencephalic —
217
Index
240, 254, 255
254, 261
L e u c h t b r i l l e , see F r e n z e l s g l a s s e s lightheadedness, orthostatic limbic system
126,
336
macula, saccular
l i m b j o i n t s , afférents f r o m —
proprioception
—
reflexes, t i l t i n g
Mach-Breuer-Brown theory
612 584
— , utricular
91
—
194
80, 268, 282, 518, 543
epithelium
517
m a c u l a e , d i r e c t i o n a l p o l a r i z a t i o n of cells
limbs, sensory inputs from
95
— , vestibular innervation
268
— , vestibulospinal
283
282, 516
reactions
— , otolithic
520
416
— , utriculara n d saccular, relative to the head
in
269,
270,
272
17 m a c u l a r afférents, c y c l i c a l a l t e r a t i o n i n e x c i -
l i n e of r e g a r d , u p h i l l i n c l i n a t i o n of linear acceleration
97
tability
12
, c l i n i c a l v a l u e of
435
, constant, stimulation b y , d i r e c t i o n of
550
163
—
receptors
252, 290, 312
—
greater t h a n 1 g
546
299
, interaction with angular
acceleration
281, 284, 291
of l i n e a r a c c e l e r a t i o n
—
of t h e r e s u l t a n t
—
of s t a t i c force
—
e s t i m a t e s of
, m a g n i t u d e of
111
malaise
by
2 8 1 ff
83 field
9 6 , 101
subjective
, m o d i f i c a t i o n of t h e r m a l responses
velocity
115
m a m m a l s , s t a t i c f u n c t i o n of o t o l i t h
by
m a n , see a l s o o b s e r v e r ,
a n d m o t i o n sickness and nystagmus
390
299, 300,
and otolith function , sustained horizontal
— , deaf 301
79,
587
90, 95
— , c o m p e n s a t i o n of l a b y r i n t h i n e lesions
6 7 ff, 4 1 5 107
4 8 2 ff — , measurement
226
of o t o l i t h f u n c t i o n
in
2 3 3 ff
r o t a t i o n of
309, 546,
—
accelerometer
—
displacement estimates
—
m o t i o n a n d m o t i o n sickness
—
oscillation
308
organs
patients
— , b l i n d , eye p o s i t i o n in
vector,
angular
165
303
tests
16
111
39ff
, m o d i f i c a t i o n of the response to a n g u l a r acceleration
messages
m a g n i t u d e of a n g u l a r a c c e l e r a t i o n
81
, effect o n s e m i c i r c u l a r c a n a l s
290
—
496, 498, 520,
548
— , m e a s u r e m e n t of v e s t i b u l a r a t a x i a
530
— , measurement
390
— , nystagmus in
106
ses
of v e s t i b u l o - s p i n a l
3 2 1 ff respon-
2 6 7 ff 193ff
— , vestibular-defective
234, 252, 253
Subject
man, vestibular habituation in
374ff
—
w i t h l i t t l e or no v e s t i b u l a r f u n c t i o n
—
without
labyrinthine function
111, 113,
93,
migraine attacks and vertigo
441
miner's nystagmus
208, 210,
219
106,
mislocation, visual
197
M L F , see m e d i a l l o n g i t u d i n a l f a s c i c u l u s 235
model, adaptation-
353
mapping function
158
marche en étoile
—
of
594
of
with
— , m e c h a n i c a l , of
otolithic
509
"endolymphatic"
organs
of a c c e l e r a t i o n
•— o f g r a v i t y
504
499, 514
499
otoliths and
of o t o l i t h f u n c t i o n
—
of p o s t u r a l v e r t i c a l
—
of v e l o c i t y
—
of v e s t i b u l a r a t a x i a
—
of v e s t i b u l o s p i n a l r e s p o n s e s
—
of v i s u a l v e r t i c a l
measures, city
2 3 3 ff
— , m a t h e m a t i c a l , of c a n a l r e s p o n s e
3 2 1 ff 2 6 7 ff
288
— , Steinhausen-
503, 504, 506,
b y t h e p o s i t i o n senses
—
of s e m i c i r c u l a r c a n a l a c t i v i t y
velo-
semicircu-
529
medianoreceptors
, l e s i o n of
214, 228
syndrome
, otoneurology
nystagmus upon 219
—
optokinetic stimulation
219
of c h a n g e - i n - p o s i t i o n
—
of c h a n g e s i n o r i e n t a t i o n
—
of d i r e c t i o n
—
of d y n a m i c sensory d a t a
—
dependence
17
391
— , apparent
90
— , linear
86
68, 593 390
—, orbital
391
—, orbiting 111
391
— , p a s s i v e , r e c e p t i o n of
110 614
—
constancy
—
experience
1 1 7 , 1 9 5 f,
196, 229, 235, 269, 277, 324, 333, 334, 336,
—
perception
— , basal, and vestibular sensation
179
—
sickness
432
114 77
, visual
91,438
34
172
, perceived
439, 440, 463, 483
— , tuberculous, a n d vertigo
197, 592, 593 74, 119, 120, 126, 130, 234,
443
414, 415, 425, 427
324, 326, 327, 330,
and archicerebellum
6 0 7 ff
and head movements
— , luetic, and vertigo
laterotorsion
269
a n d mental tasks
443
mental tasks and nystagmus
, s e n s o r y aspects of 362, 363,
nuclei and nystagmus
tegmentum, gaze center
216,
228
374
4 0 5 ff
, suppression by drugs
590
theories
558
365 401, 402
568
—
of the c u p u l a
mesencephalon
203
—
of the e n v i r o n m e n t , a p p a r e n t
metamorphosia
162
—
in yaw
methods, velocity-matching
43, 44
239,
2 5 7 , 2 5 8 , 2 6 2 , 3 3 3 , 3 3 9 , 3 4 5 , 3 4 7 , 3 8 9 ff,
331 meningoencephalitis,
cerebellar
605
m o t i o n , see a l s o m o v e m e n t
104
M e n i e r e ' s desease ( s y n d r o m e )
207
123
— , angular
m e m b r a n e , o t o l i t h , d i s p l a c e m e n t of
mesencephalic
fixation,
cortex
227
and vestibular ataxia
532
m o s s y afférents, p e r i p h e r a l , to t h e 202
471,
516, 518
optokinetik nystagmus
458
m e d u l l a o b l o n g a t a , lesions of
—, long-term
of v e s t i b u l a r lesions
—
M o r o reflex
214
rectus motoneurons
detection
472, 474
monocular 214, 228, 268,
586, 588
meningitis
angular acceleration
— , otolith structure
603, 605
medial longitudinal fasciculus
126
1 2 0 , 121
— , o t o l i t h responses 68ff
92
509, 510 — , compensation
of o t o l i t h s a n d
506
111
—
monkey, angular
43
lar canals
512
19, 24, 30, 33, 4 1 , 56
momentum, angular
82
m e c h a n i c s of o t o l i t h s y s t e m
memory
— , roller p u m p -
modulation, cyclic
502, 514, 546
mechanical model
296
528ff
m o d i f i c a t i o n of t h e S t e i n h a u s e n m o d e l
82, 84
d i r e c t , of s u b j e c t i v e
semicircular
529
— , torsion pendulum
—
and
289
— , p h y s i c a l , of t h e o t o l i t h of t h e S t e i n h a u s e n m o d e l
—
canal
canals
treatment
measurement
—
a
" p e r i l y m p h a t i c " systems
521
—
of c a n a l a d a p t a t i o n
324,326
mathematical
64
— 272
m a s k i n g of v i s u a l i n f o r m a t i o n mastoiditis
661
95
114,310,418
m a n i p u l a t i o n of force e n v i r o n m e n t M a n n test
Index
513
295
m o t i v a t i o n centers
612
197
662
Subject
motoneurons, abducens—, gamma
nausea
— , medial rectus-
— , inertial three-dimensional —
602
, lesions of
, s e n s o r y afférents
learning
—
610 8, 6 1 0
of the R o l a n d i c
fissure
610
604
—
m a p of c e r e b r a l c o r t e x
—
system, general
609
afférents
contribution to eye stabilization ligaments, deep, information from
—
proprioception
—
reflexes after l a b y r i n t h i n e lesions
, tonic — 46
126
—,
— , relativ, between observer a n d target, v i sual acuity during
126
603
nerves, sympathetic
392 210,
399
neural
vestibular
integrator
and
589
m e c h a n i s m s of eye p o s i t i o n c o n t r o l
—
o r g a n i z a t i o n of t h e s t r a t e g y of a c t i o n
588
612ff neurasthenics, vestibular responses
361
n e u r i t i s of t h e e i g h t h n e r v e a n d v e r t i g o
588
vasodilatation and motion
— , v i r a l , of t h e v e s t i b u l a r n e r v e
277
neuroblastoma, thoracic
sickness
441
195, 203
213
n e u r o l e p t i c d r u g , i n t o x i c a t i o n b y 215, 481
398 muscles, antigravity—, extraocular —, ocular
neuroma, acoustic
268
neuron-glial cell interactions
215, 588
mutism, akinetic
163
neuronitis, vestibular
215
—, canal-
myoclonus, ocular
212
—, eye
movements
425
31, 33, 34, 70 46
287
598
of o t o l i t h o r g a n s , responses f r o m
518,
519 —
481
natural frequency
a n d s e c o n d order, of a m p u l l a r recep-
—, oculomotor
narcosis a n d compensation of v e s t i b u l a r lesions
284
509, 510, 552
130 496
—
a n d vestibular sensation
566
— , lateral geniculate, v e s t i b u l a r influence o n
213
vestibular organs
firsttors
438
myorhythmia, palatal, and spontaneous movements
324,
195, 336, 442
neurons, afferent, p r i m a r y
613
myasthenia gravis m y o p y and vertigo
196, 222, 228, 229,
333, 335
215
musculature, skeletal, tonic innervation
—
between
—
606
585
and vestibular stimulation
—
400
nervous system, autonomic oculomotor nuclei
198, 199, 2 0 7 , 2 0 8 ,
212, 214, 219, 220, 226, 228, 229,
Myxine,
215
195, 196, 203, 275, 285, 459,
464
86, 94, 96, 241, 244
spindles
215 195
119
m u s c l e afférents, g r o u p e - I a
—
— , statoacoustic
610 30
m u l t i p l e sclerosis
439, 440, 441, 442
215
— , vestibular
multi-planar angular acceleration
—
— , t u m o r s of 4 3 9 , 4 4 0 , 442 — , and vertigo
540
30, 415
Müller effect
—, —,
— , t h i r d , lesions of n u c l e i
of v i s u a l s u r r o u n d i n g s
390, 405
— , n e u r o t o m y of 451
— , s i x t h , lesion of 609
104
— , t a c t i l e c o n t r o l of
law
194
589, 600, 601, 602, 608,
— , i l l u s o r y s e n s a t i o n s of
—
204
— , extrocular
—, vestibularly induced
Mulder's constant
torsion
585
271, 437
nerve, eighth, a n d m o t i o n sickness
— , "pre-programmed" skilled
—
469,
213
90, 135
—, whole-body
437
n e o p l a s m , p a r a n e o p l a s t i c c o n s e q u e n c e of
—, natural, stimuli approximating
—, voluntary
206
225, 479
, symmetrical
582
583
— , saccadic-type
269
584
471
172, 177
— , passive
237, 251, 261
—
5 8 1 ff
, m e t h o d for analysis
—, induced
496, 516
—
m o v e m e n t , see a l s o m o t i o n — , goal-directed
498
499
neck, vestibulospinal reactions i n
609ff
, v e s t i b u l a r afférents —
system, inertial
near-weightlessness
217
, tactile adjustment
fields
167, 168
116,119,125,131,133,390,392,557
n a v i g a t i o n , i n e r t i a l , basic p r i n c i p l e s of
458
600
, input from
—
natural redundancy
458
479
motor cortex
Index
of t h e p u t a m e n
— , tonic
608
586
— , vestibular, activity during recovery — , — , after labyrinthine destruction
454 4 5 1 ff
Subject
neurons, v e s t i b u l a r , responses to acceleration stimuli
285,290 454
454, 456, 457, 458, 459
—, —, type II
453, 454, 457
nodulus
flexion
reflex
426
196, 198, 199, 208, 209, 210
fixation-
220
196, 198, 199, 214, 216, 219,
for h e a d axes a n d planes responses
—, induced
256
202, 212, 275
of t h e j e r k y t y p e latent
198,207,211,219
miner's
204
ocular spontaneous
439
optokinetic 583
587, 5 9 0 , 593
— , mesencephalic
590
—
217, 605
—, vestibular
monocular
116, 195, 203, 205, 215, 221,
otolith
68
paretic
216
261, 268, 285, 287, 290, 453, 459, 464, 479,
pendular
587, 589
219, 606
nucleic acids
482
—
nucleus, dorsomedial
612
— , interstitial, a n d gaze
217
reflexes
i n opposite directions
269 371
454
—
paroxysmal
—
peripheral
n y s t a g m o g e n i c zones of c o r t e x 199,
200,
475
205
202,
— , a n d vertigo
220,
221,
222
positioning
205 437, 439, 441
196, 202, 205
— , p a t h o g e n e s i s of 36, 59, 60, 6 2 , 1 1 2 , 1 1 4 ,
115,122,
postrotatory
206
115,
225,
— , see a l s o e y e
movements
285,
292,
— , d u r a t i o n after l a b y r i n t h e c t o m y
455
primary
198, 199, 208, 210, 219
—, alcohol-
307, 365
recovery-
—, arousal-
261, 363
retractory
—, Bechterew's
compensatory
456,
457,
60, 118 203, 204, 221, 484 228
reversing
548
474, 477, 483, 484
rotating
caloric
— , of t h e p e n d u l a r t y p e
115, 116, 202, 204, 2 2 1 , 303, 304,
— , — , h a b i t u a t i o n of — . — , i n h i b i t i o n of
—, congenital
—.direction-reversing
seesaw
60, 63, 118, 508 214,215
semicircular canal217
spontaneous
116, 302
113, 195, 197, 198,
199,
200, 204, 210, 218, 227, 228, 454, 456, 483
339
—. direction-changing
210,
361
214,483
secondary
310
198, 202, 207, 208, 209,
211, 219, 228, 426 —, Coriolis-
322
— , e f f e c t of a n e s t h e s i a o n rotatory
—. convergence retractory
2 0 3 , 207
472,483
rotation-induced
372, 376 222
436
—. compensatory
202,228
rotational
305, 306, 307, 322, 472, 587
—, cervical
269,
294, 302, 453
127, 129, 257 —, acquired
206
205, 437, 439, 441
— , due to tumor
nystagmography
205
— , cervical proprioceptive
363
—
300,
561
— , of t h e c e n t r a l t y p e
r e a c t i o n , M e n i e r e ' s disease
—
587, 605 195, 196, 201, 204, 290,
— , p a t h o l o g y of
217
—
nystagmus
fixation
211,
3 0 1 , 3 0 7 , 336, 365, 590
217
nystagmic dysrhythmia
208, 219
198, 207, 208, 209, 210,
positional
— , precommissural, a n d gaze — , prestitial, a n d gaze
219
— , i n v e r s i o n of
216, 455, 458, 589
482
125, 174, 207, 215, 216, 4 8 4 ,
— , intracerebellar
— , pontine
202
208, 210, 219
neck-torsion-
586, 587, 605
479
— , oculomotor
202, 203, 207, 210, 215,
long-lasting central
439
for t h e eye muscles
204
203, 207, 301, 483, 590, 593
228
162, 173
n o s o l o g y of v e r t i g o
— , fastigial
—
594
257
n o r m a l s y s t e m - b o u n d responses
nuclei, cerebellar
—, horizontal
10
10
animals, nystagmus in
n o r m a l i z a t i o n effect
228,
587, 605 —, head-shaking
non-system-bound
—
215
—,
585
115
nonfoveate
214
128
— , epileptic
— , gaze-
n o m e n c l a t u r e of acceleratory s t i m u l i —
nystagmus, dissociated
—, galvanic
n e w b o r n s , v e s t i b u l a r s e n s a t i o n of nociceptive
663
—, downward
— , —, second order —, —, type I
Index
302, 310, 561 113
—
alternating
—
pathological
226 198, 201, 202
664
Subject
nystagmus, spontaneous peripheral - physiological
n y s t a g m u s a n d lesions of
199, 201
, —, in animals
be
211
, — , d i r e c t i o n of
204
288
—
and linear acceleration stimuli
—
in man
—
a n d Meniere's disease
—
and mental tasks
362, 363,
, upward-
128
—
a n d mesencephalic
nuclei
113, 127,
590
116, 118, 194, 198, 2 1 2 ,
218, 452, 586, 590, , — , experimental •— , peripheral
216,
197
— , produced
127, 128,
, a d a p t a t i o n of
211
—
and angular acceleration
—
during backward pitch
510
362, 363 62
and barbiturate intoxication
—
and cortical stimulation
590
stimuli
124,
554 477
378, 548 head
292 — , d i r e c t i o n a l difference i n
129
— , directional predominance
of 452
549 506
accelerations
308 116
469
—
diagnosis
—
habituation
—
intensity
594
310 211
of indefinite d u r a t i o n and
548
l a b y r i n t h i n e lesions
296,
429
131, 134, 370,
374
201
modification,
induced
—
reduction rhythm
—
suppression
by
visual-vestibu-
132
377 586 35, 116, 118, 126,
—
127,
128,
376
425
v e l o c i t y , d e c a y of
o b j e c t i v e angle of t i l t
62, 111,
123
242
—
i n d i c a n t s of c a n a l f u n c t i o n
—
vertical
295
242
o b s e r v e r s , see a l s o m a n , p a t i e n t s
128
i n foveate a n d nonfoveate animals
—
66
294, 295,
202
—
—, blindfolded
deaf, o r i e n t a t i o n
—
immersed i n " p o l y c e l l " cellulose paste
—
i m m e r s e d i n w a t e r , see w a t e r
—, labyrinthine-defective 452, 453,
thine-defective
454,
455, 456, 458, 472, 483, 546
ability
87
immersion
( L D ) , see l a b y r i n -
individuals
—
w i t h s p i n a l lesions
—
a n d lesions i n different b r a i n regions
484
—
with unilateral labyrinthine function
—
a n d lesions of t h e c o r t i c o f u g a l
587
occipital headache
fibers
of
90
— , g e n e s i s of, r o l e of o t o l i t h s a n d c a n a l s i n -
—
261
421, 430
a n d sensation 293,
309
— , h e r e d i t y of
548
407
130, 302, 305, 362, 365, 370,
— , effect of o r i e n t a t i o n to g r a v i t y o n
during forward pitch
-cupulogram
c u r v e , m e t h o d s of
lar interaction
— , d e p e n d e n c e o n o r i e n t a t i o n of t h e
— , fast p h a s e of
—
377
— , effect of t i m e - v a r y i n g l i n e a r
546, 48
and subjective angular velocity
—
—
113
369, 376,
291,
297
527 and Coriolis illusion
— , effect of v i s i o n o n
a n d sensed r o t a t i o n
— , t i m e c o n s t a n t of d e c a y of
203
cross-coupled
—
305,
i n sea-sickness 405,
—
128
of the c o n t r a l a t e r a l side
after deceleration
—
—
—
— , cyclic modulation
592
acceleration
— , d u r i n g s t i m u l a t i o n of y - a x e s a n d z - a x e s 52
296
—
—
angular
— , s t i m u l u s of g r a v i t y d u r i n g
d u r i n g alertness
i n dancers
to
— , S t e i n h a u s e n m o d e l of
134
—
—
— , response
laby-
310
— , response to linear acceleration
134
134, 508,
, a d j u s t m e n t of
by a rotating vector and
— , reversal d u r i n g deceleration
, a d a p t a t i o n t i m e c o n s t a n t of
Coriolis
129
131
214
in achromatopsia
111
302
302
-, a n d v i s u a l a c u i t y
of
207
— , r a p i d phases of 217, 586, 588, 590,
220
, — , v i s u a l c o n t r o l of , accommodation
374 590
fixation
rinthine function
197, 199, 201
tory stimulation
— by
upon monocular
during off-vertical rotation
— , p l a n e of
, — , induced b y caloric, galvanic a n d rota-
, voluntary
—
592
550
195
—
272
, — , spontaneous
than 1 g
1 9 3 ff
276
•vertical
—
greater
, swaying
, vestibular
lo-
300
300, 301
- unidirectional
—
flocculo-nodular
590
— , and linear acceleration
202
, — , following head trauma , sustained
202
Index
87
195, 206
87
Subject
ocular counterrolling
68, 94, 103, 226,
234,
optic-vestibular weight ratio
countertorsion
—
disorders a n d vertigo
—
displacement, fluences
on
159, 174, 178
102
muscle dystrophy
—
myoclonus
—
nystagmus, spontaneous
215
212
o c u l o g r a v i c effect illusion
—
utricular a n d saccular i n -
—
—
optical compensation
438
of
weight ratio
181
—
d i r e c t i o n cues
—
feed-back
the
— 100,
104,
125,
1 6 3 , 166, 178 22
afternystagmus
118, 119 125
165,
—
disturbance
234, 245, 252, 257, 259, 262, 416, 542, 547,
—
nystagmus
—
reactions
—
r e g u l a t i o n of eye p o s i t i o n
—
roll component
—
stimulation
551, 556, 558, 562, 563 delay l a g effect
7 5 , 107, 109,
—
response
96
—
tilt
—
crises
125
82 215 2 2 , 117
illusion
22, 299, 339, 380, 416, 429, 432
—
reactions, thresholds estimated from
oculogyric spasms
35
215
oculomotor apraxia —
control
130
—
effectors,
t o n i c c o n t r o l of
—
n e u r o n s , a t r o p h y of
—
nuclei, premotor apparatus
454
219
—
nucleus
—
response to accelerations
—
responses
—
flight
—
motion
— 216 589
291
133
—
syndrom, abnormal
—
system a n d m o t i o n sickness
126, 613
237, 254, 298 391
spacecraft
—, body-
315
155 156
—
to gravity
—
of t h e h e a d to g r a v i t y
293, 305, 309
—, perceptual
207
16, 292 86
156
— , optic-vestibular, to the vertical
v e s t i b u l a r s y s t e m , species
401 differences
583
—
relative to the b o d y
85
—
relative to the earth
112
—, spatial r o t a t i o n , responses
to
111,
113,
234, 235, 262
to the vertical under water
—
a b i l i t y , egocentric
249
91
of b l i n d f o l d e d deaf observers 213
o r t h o g o n a l i t y of space p e r c e p t i o n
ophthalmoplegia, external — , internuclear
275
orthostatic hypotension
214, 228, 229
ophthalmoscope
207
212,213
—
light-headedness
—
vertigo
— 216
439, 441 127, 312, 313
—
c h i a s m a , s e c t i o n of
—
p o s t u r a l reflexes after l a b y r i n t h i n e lesions
— , horizontal linear
471
—, linear 217, 588, 604, 612
, s t i m u l a t i o n of, a n d s a c c a d e s
77, 8 3 , 105, 106, 315
308 432
— , rotatory, clinical methods
218
180
509
— , p h a s e r e v e r s a l s of 592
398
of t h e a p p a r e n t v e r t i c a l
—, damped
90 162
336
oscillation, angular
o p t i c , see a l s o v i s u a l
155ff
156, 194
—
401
olive, inferior
tectum
390
103, 391
— , m e m o r y of c h a n g e s i n
during horizontal oscillation
178
178
orientation
455,458,
214
, after h a b i t u a t i o n
401
orbiting without rotation
598
, v e s t i b u l a r influences on
opsoclonus
1 1 5 , 1 1 6 , 1 1 7 , 1 1 8 , 1 1 9 , 127
optostatic eye countertorsion orbital cortex
218
197, 199
127
a n d m o t i o n sickness
—
oliguria
174, 178
, monocular
o c u l o g y r a l effect
off-vertical
587 125, 174, 207, 208, 215, 216,
2 1 8 , 219, 484, 587
542
—
—
optic-vestibular
169
o p t o k i n e t i c aftereffect
96
72, 75, 95,
177
determinants
optogyral illusion 482
180, 181, 182,
185
235, 239, 252, 259, 517, 525, 526, 554, 563 —
665
Index
432
—
t r a c t , l e s i o n of
—
-vestibular ambiguity
179
— , sinusoidal, thresholds estimated from
conflict situations
181
— , vertical linear
— , side-to-side
87
equivalence
177
oscillatory after-reactions, periodically
incongruity
178
—
shear vectors
—
stimulation
interaction
177, 185
orientation to the vertical
155ff,
184
oscillopsia
30
77 88
76, 77
208,210
434
666
Subject
osteochondrosis otitis media otoconia
206
o t o l i t h i c cells, p o l a r i z a t i o n of
440
, responses f r o m
517
o t o l i t h , p h y s i c a l m o d e l of
5 2 8 ff
, t y p e s of
activity and gravitational stimulus
—
apparatus
and
241
vertical constancy
163,
166 canal interactions
256
detected e a r t h reference function
115
86
and gravity in m a n
234
m e m b r a n e , d i s p l a c e m e n t of
—
nystagmus
—
organ function and alcohol
17
68 258
258
, gravi receptors
80, 242, 436 282
516
— , p l a n e s e n s i t i v i t y of
96
— , role i n h a b i t u a t i o n
373
—
a n d r o t a t i o n of t h e b o d y
—
i n sea-sickness
—
a n d semicircular canals,
254
complementary
543 16
193ff 275, 430, 431 241
56, 58
o v e r s t i m u l a t i o n of v e s t i b u l a r organs 521, 530
, p e r c e p t i o n of s p a c e
237, 261, 282
, p r i m a r y n e u r o n s of
518
paleocerebellum,
linear
acceleration
228
— , extraocular muscle-
, left a n d r i g h t , r e l a t i v e f u n c t i o n
of
— , extraocular nerve-
235
215 215
—, post-traumatic pseudobulbar
—
sickness
262
—
signals, acceleration-dependent
parabolic
, gravity-dependent , processing of stimulation
563
paradox, Aubert-Fleischl parallel
391, 408
and ocular counterrolling —
stimuli, dynamic
—
S3'stem, acceleratory stimuli
—
525, 526
—
68
fibers
-swing rotation
, angular velocity information
— 105
, change-in-orientation information
6 8 ff
, oculogravic illusion
86, 87
8
fiber
439
action
adjustment
via
climbing
604 cerebellar
encephalopathy
213
245
and postural equilibrium
106, 163, 416,
562
482
gain
paraneoplastic
235
, o r i e n t a t i o n of t h e h e a d t o g r a v i t y thresholds
105
604
215, 216
parametric
, gravity-orientation information
261
of c r a n i a l nerves a n d v e r t i g o
— , vestibular
105 , m e c h a n i c s of
52
swings, experiments w i t h
— , gaze-
237,
549
paralysis, abducens16
235,
556
of t h e c e r e b e l l u m
418, 435, 436, 541,559,
68, 261
336
103,
p a r a d o x i o a l phase of sleep
86
, m o d e of s t i m u l a t i o n
flights
252, 254, 298, 304, 416, 555,
5 3 3 ff
a n d m o t i o n sickness
, static
563
(aircraft)
126
608
palsy, b u l b a r progressive 531
401
126
m o t i o n sickness a n d
p a l l i d u m , lesions i n
415
568
oxygen, content d u r i n g m o t i o n sickness paleo-cerebellar connections
517
, t r a n s f e r f u n c t i o n of
543
405, 407
over-compensation overshoot
, stimulation by
206
as l i n e a r sensors
otosclerosis near-weight-
237
, responses f r o m
6 9 , 71
559
otoneurology
, m a t h e m a t i c a l t r e a t m e n t of
—
fish-
547
6 9 , 7 0 , 71
— , specific g r a v i t y of
536
, g r a v i t o i n e r t i a l forces i n in lunar walk
112
a n d d e t e r m i n a t i o n of r o t a t i o n
w o r k i n g of
process of
540
18, 121
— , utricular
517
, b l i n d s p o t of-
—
signal processing
—
178
lessness
—
242
416
— , lesions of 75
—
, a n a t o m y of
i n p u t , s t a b i l i z a t i o n of v i s u a l s p a c e b y maculae
—,
2 3 3 ff
and drugs
—
— , d y n a m i c s of 6 7 ff
, threshold stimuli for
filtering
525,
515, 519, 520, 524, 525, 527,
— , d i s p l a c e m e n t of
235
and linear acceleration
,
520 524,
—
—
, e x p e r i m e n t a l m e t h o d s of
organs
519,
529, 531, 532, 533, 547
otoliths
and attenuated vestibular and
n o n v e s t i b u l a r cues
—
518,
518,
527, 529, 532, 533, 547
—
—
Index
261
16
paraoxon
482
parasympathetic innervation and sickness
motion
400
p a r a s y m p a t h o l y t h i c a c t i o n of d r u g s
402,410
Subject
p a r a v e r m i s , lesions of paresis, gaze-
perception a n d the vestibular system
598
accelerations
8
Parinaud's syndrome parkinsonism
paroxysmal positional nystagmus
pastpointing
90, 135
239,271
patellar reflex
276
p a t h of b o d y m o v e m e n t ,
perception during
off-vertical rotation —
205
196
passive m o v e m e n t
111
of p a s s i v e m o v e m e n t
105
perceptual coordinate systems
217, 228
215,608
vertigo
5 6 6 ff
perceptions during changing horizontal linear
218, 596
parietal lobe
667
Index
90
—
orientation
—
reconstruction
—
space orthogonality
—
space transformations
166 162 156, 164
perilymph, blood in
206
perilymphatic
562
—
164
156
fluids
s y s t e m s , m o d e l of a c a n a l w i t h
289
p e r i p h e r a l m e c h a n i s m s of h a b i t u a t i o n
373
periodically oscillatory after-reactions
434
p a t i e n t s , see a l s o m a n , o b s e r v e r s
perphenazine
— , abnormally fatigable
persistent rotation experience
112
personal space, p e r c e p t i o n of
2 3 8 , 261
— , schizophrenic — , catatonic
361
365
361
p e r s o n a l i t y , u n i t y of
pattern building, vestibular sensation pattern-copy
—
lesions
accelera-
stimulus velocity
Pensacola
503
—
81 Slow
Rotation Room
338,
339,
432
photographic methods, ataxia photophobia pains
364
perceived inclination m o t i o n experiences
—
position
Picrotoxin
114
83
pigeon,
of a c c e l e r a t i o n
—
of
5 2 8 ff
481
compensation
of
vestibular
— , vestibular h a b i t u a t i o n 371, 372, 373
554
acceleration,
thresholds
of-
p i l o t s , see a l s o a s t r o n a u t s — , d e t e r m i n a t i o n of t h e v e r t i c a l
2 3 ff, 4 3 2 —
of a n g u l a r v e l o c i t y
—
of b o d y r o t a t i o n
—
of d i s p l a c e m e n t
—
of h o r i z o n t a l
—
of l i n e a r v e l o c i t y
—
of m o t i o n
—
of o r i e n t a t i o n r e l a t i v e to t h e e a r t h
—
of space
—
o n starting the head m o v e m e n t
—
of t i l t
— , vestibular habituation
18, 56, 125
p i t c h , f o r w a r d , s e n s a t i o n of
118 106
91, 97 18, 7 2 , 7 7 , 8 2 , 8 7 , 106
77 112
156, 162, 164, 237, 238 121
18, 68, 77, 8 1 , 96, 102, 108,
of u p r i g h t of v e l o c i t y
—
of v e r t i c a l l y
axes
—
errors
68, 75, 82, 90, 9 1 , 97, 103,
108, 109, 163, 164, 177, 185
127, 128
platforms, elevated
359
357
plugging experiments, semicircular canals 543 239, 268, 270, 271
215
pontine angle t u m o r
213
—
nuclei
—
reticular formation
605, 614
—
t e g m e n t u m , gaze center
, gaze paralysis
104, 238 21
123
89
nystagmus
polyneuritis 110,
538
376, 379
302
pointing experiments
125 —
—
— , tilting
592, 593
—
lesions
463, 465, 472, 477, 479
p e r c e p t i o n , see a l s o d e t e r m i n a t i o n , s e n s a t i o n —
357
440
p h y s i c a l m o d e l of t h e o t o l i t h
98
—
angular
sickness
401
482
pentobarbital
433
481
phosphorus, content during motion
340, 343, 344
, visual
r e v e r s a l s of t h e o s c i l l a t i o n s
phénobarbital
and
33
phasic secondary after-sensations
415, 420, 502
pentetrazole
38, 73
between the response m a g n i t u d e
198, 2 0 3 , 207, 2 0 8 , 209, 210,
2 1 1 , 2 1 9 , 587
— , torsion-
221
4 8 1 ff
phase angle, s t i m u l u s response-
pendulum, overdamped
399 257
p h a r m a c o l o g y of c o m p e n s a t i o n s of v e s t i b u l a r
211,212
—, spring-
614
110
p e r v e r t e d d i r e c t i o n of c a l o r i c n y s t a g m u s 223
deviations during angular
nystagmus
dimensions
p e r t u r b e d s y s t e m - b o u n d responses
4 1 3 ff
38
pendular angular acceleration tion
—
perspiration d u r i n g m o t i o n sickness
peak c u p u l a deflection eye
424
426,427
p a t h o l o g y of v e s t i b u l a r s e n s a t i o n
—
481
, lesions of
217 214, 586, 590
2 0 3 , 217
216, 228
668
Subject
pontine tuberculoma position, angular
590
test b a t t e r y 82
83
— , e x p e r i e n c e of
179
relativ to gravity
18, 68
— , seated, thresholds of — , static
homeostasis to the rotating environment
—
positions
—
reflexes
342
82, 555
— , perceived
156
234, 250
—
89
—, inverted
—
postural e q u i l i b r i u m responses
18
— , erect, thresholds — , head-up-
Index
81
18, 92
— , d e t e r m i n a t i o n of
497 f
88, 90 113, 163, 471, 472
—
sensations
—
stability, rigid
164, 174
—
standard
—
sway
—
tilt
251
176
251 76
—
indicator
520
—
tremor
—
receptors
163
—
upright
249
—
sense, absence of
—
vertical
82, 83, 84, 90, 109, 125, 249
vertigo
336
88
, i n s e n s i t i v i t y of
88
—
, modulation by
92
p o s t u r e , b i b l i o g r a p h y of
, s e n s i t i v i t y of
89
—
sensing units
—
signaling, consistent
potassium,
71 112
positional change indicator nystagmus
111
600
39, 41, 56
290, 300, 301, 307, 336, 365, 437, 439, 441,
p r a c t i c e , effect o n v i s u a l a c u i t y precommissural nucleus
test
—
vertigo
284
egocentric
95
nystagmus
196, 202, 205, 206
body,
203 nuclei
n e u r o n a l a p p a r a t u s of o c u l o m o t o r
163
90
—
receptors
237, 262, 282
prestitial nucleus 82
pretectal area
94
—
88
217
588
region, gaze center
216, 228
primary after-reaction
positivity, pre-motion
600
—
post-acceleration p r i m a r y reaction postcaloric sensation postcentral gyrus
prisms, right-left reversing
133 217
procain a n d vertigo
341, 343
prolonged rotation 9 2 , 119
— , neck-
—
responses, t i m e c o n s t a n t of d e c a y of s e n s a t i o n of t u r n i n g
postrotatory inclination
297
proprioceptive cervical nystagmus
206
—
599
—
s e n s a t i o n , a d a p t a t i o n of
302, 455
equilibrium
330
276
115, 225, 269, 285, 292, 294,
—
—, nonvestibular —
nystagmus
disequilibrium
91, 584
225, 479
115
—
d i r e c t i o n cues
8
344
proprioception, limb-
427
134
134
437
projection area, vestibular
—
—
131, 604
— , distorted visual input by-
205
reactions, secondary
—
60
160
— , d i s p l a c e m e n t o f v i s u a l field b y
postrotational c a n a l responses
postural cue s y s t e m
61
post-acceleration reaction
p r i s m spectacles
435
posterior c o m m i s s u r e , lesions i n p o s t r o t a t i o n effects
60
8
p o s t h a b i t u a t i o n tests fossa, lesions of
126
pressure o n the b o d y surface, d i s t r i b u t i o n of
88,90
— , s i d e - d o w n , thresholds of —, starting
premotor apparatus for eye r o t a t i o n —
pre-programmed skilled movement somatosen-
— , a n d reduced vestibular and nonvesti-
—, standing
600
216
positions, postural, a n d reduced
b u l a r cues
438
pre-motion positivity
196, 206
130
217
pregnancy and vertigo
201, 284
p o s i t i o n i n g of t h e l i n e r e l a t i v e t o t h e
—
power law
561, 590
sory cues
sickness
600, 601
— , readiness-
195, 196, 201, 204, 205, 206,
responses i n c a n a l afférents
—
vements
520
—
—,
352
during motion
potentials, cerebral, preceding v o l u n t a r y mo-
—
—
content
401
during off-vertical rotation —
609
429
179
582
feedback f r o m the eye muscles
—
inputs
—
mechanisms, nonvestibular
338
p r o t e i n c o n t e n t of e n d o l y m p h
1 6 3 ff
d u r i n g m o t i o n sickness
239, 257
250, 261, 333, 346,
and vestibular system
proximal stimulus 352
p s e u d o - C o r i o l i s effect
158 119,401
344 562 401
Subject
pseudopalsy, hysterical
215
redundancy
p u l s a t i o n s of blood-vessels
—
cells
—
effect
251
reflex, A c h i l l e s tendon-
599
— , cervico-ocular
119
—, Moro-
p u t a m e n , n e u r o n s of
199, 219, 587, 588 608
compensation
of
196
vestibular
371, 372, 373
rail a t a x i a test
327
—
method
—
test b a t t e r y
357 250
movements, voluntary
r a p i d eye m o v e m e n t s
608 441 502
—
response gains
—
vestibular disturbances
60
257, 262
—
172
—
sensory signals
—
volleys, rapid movements b y
271, 437, 584
268
after l a b y r i n t h i n e lesions of h e a d p o s i t i o n
rejection
605
271
268
267, 268, 277
r e g u l a t i o n , c e n t r a l , of
156
reafferent c o m p o n e n t
194, 584
— , vestibulo-spinal —
600
reafference p r i n c i p l e
179 276
— , vestibulo-ocular 18
28
readiness potential
277
— , vestibulo-autonomic 21
606
282, 283, 291, 312
251
syndrome,
motion
R E M sleep
representation, cortical vestibular residual a t a x i a
252, 282, 290, 312
— , position-
282
— , somatosensory
251
282
d e c l i n e of s e n s a t i o n
—
duration, working equations
—
latency, threshold methods
—
magnitude,
163
426
phase
stimulus velocity
angle
237, 282
—
234, 235, 237, 244, 245, 249, 251,
responses, n o n - s y s t e m - b o u n d
reduction, habituation
— , normal system-bound
reconstruction
156
— , perturbed-system-bound
— , perceptual
166
—
43
52 ff
166,169
neuronal vestibular activity dur454
Hb. Sensory Physiology, Vol. VI/2
s t i m u l a t i o n of
resting discharge —
tremor
608
286
between-
and
33
—, T P K -
to
38 and working
37
— , touch 261
400 27
—
equations
401
7
572
response curves, s u p r a l i m i n a l
— , s t i m u l a t e d b y linear a n d angular acceler— , tension-
568,
345
respiration a n d m o t i o n sickness 248
163
— , pressure
ing
sickness
261,364
r e p u g n a n c e , t h e o r y of
— , n o n o t o l i t h , loss of cues f r o m
recovery,
211
211
renal resorption d u r i n g m o t i o n sickness
282
principle
469,471,472
fixation
570
7
receptors, a m p u l l a r
—
276
454
— , vestibular, i n the t r u n k
62
— , — , to semicircular canal s t i m u l a t i o n
ation
197
251
584, 585
— , tonic neck-
— , subjective, to angular acceleration
— , macular
291, 586, 590
113, 163
—, tendon— , tilting
285
— , s e c o n d a r y , as s i g n of a d a p t a t i o n
— , joint
18
600
, vestibulo-ocular
— , security-
reaction, post-acceleration p r i m a r y
— , canal-
counter movements, involuntary
— , postural
519
labyrinth, time constant
reafTerents
—
—, nystagmic
362
— , o t o l i t h responses
time
arc, cortico-cortical
— , labyrinthine righting
589, 608
r a y , canal responses to a n g u l a r v e l o c i t y
—
actions relativ to the earth
—
—, labyrinthine
R a m s a y - H u n t syndrome a n d vertigo
—
585
276
reflexes, deep, t o v e s t i b u l a r s t i m u l i
r a m p generator, basal ganglia —
123
—
lesions
468,473
585
223
— , nociceptive flexion — , patellar
p y k n o l e p s i a , p e t i t m a l a t t a c k s of
522
276
— , antigravity stretch
pursuit eye m o v e m e n t s
— , nystagmus
167, 168, 172
reference axes, o t o l i t h organs
217
514
167, 168
— , expectations
587, 603, 605, 608
rabbit,
203, 204, 221, 484
167, 178, 179
— , natural 158,159
pupillary light reaction
nystagmus
r e c r u i t m e n t of c u p u l a sensory cells
438
psychophysical variable
Purkinje axons
361
336
and vertigo
669
recovery
p s y c h i c states, v e s t i b u l a r responses psychogenic disorder
Index
382 257
256 257
semicircular
canals
670
Subject Index
restoration, vestibular
451
rotating nystagmus
r e s t o r i n g force, e l a s t i c , of c u p u l a r e s u l t a n t , m a g n i t u d e of —
29
—
83
force, t i l t e d to 96
retardation, viscous
29
reticular formation
257, 261, 426, 459, 469,
475, 479, 584, 586, 589 , pontine —
, step generator
room
surrounds
338, 339, 340, 3 4 3 , 344, 392
—
water tank
118
601
—, continuous
217
550
—, earth-horizontal
system, interplay w i t h vestibular system
— , eccentric — , off-vertical
268
retinal image velocity
339
111, 288
— , — , of the l i n e a r acceleration vector
34 reticulospinal tract
545
269
— , constant velocity-
599
of t h e t e g m e n t u m —
— —
rotation
202, 203, 228
131, 133
— , constant, adaptation to
214, 586, 590
n u c l e i of b r a i n s t e m
platform
299 111, 113, 234, 235, 262
— , parallel-swing
117
—, prolonged
549
344
—
message
172
—
stimulus
field
—
texture density, gradient for
—
velocity, vision during vestibular nystag-
—
of t h e b o d y a n d o t o l i t h r e s p o n s e
mus
—
of t h e b o d y i n s p a c e
— , reversed, sensation of 181
— , steady 168
retractory nystagmus
228
r e t u r n to u p r i g h t , speed of reverie a n d nystagmus phenomenon
reversing prisms
363, 365
stimulations
68
160
eration 277
277
eration
251
610 117
302 89
, unipodic
field
478
338, 339, 340, 3 4 3 , 344, 392 379
117 223
132
, postural homeostasis to
—
aftereffects
—
-dependent cells
92
—
detection
—
experience, persistent
549, 567
34
linear acceleration vector
286, 546,
548
112
344 322
tests, c l i n i c a l v a l u e of s e n s a t i o n i n 415
—
autokinesis
—
e x c i t a b i l i t y tests
—
eye m o v e m e n t s
—
nystagmus
—
oscillations, clinical methods
—
stimulation
—
vertigo
242 220 202
214, 483 220, 272
437
route perception
342
170 113
rotatory acceleration
353
r o t a t i n g c h a i r , c l i n i c a l use of
—
about a tilted axis
nystagmus
479, 584
environment
—
—
336, 353
rotatable chambers —
accel-
12
of t h e s t r i p e d
288
250, 273, 276, 322
illumination during habituation
roots, dorsal
sustained
16, 115, 4 1 8 , 419, 4 2 3 , 4 2 7 ,
induced ataxia
roof n u c l e i , lesions of room, rotating
t o - , effect of
—
127
roller p u m p model
—
219
609, 610
, classical
546,
547, 549, 550
fissure
R o m b e r g ' s test
290,
298
— , s e n s a t i o n of
482
nystagmus
562
291
— , responses
— , r i g h t - h a n d r u l e of
r o l e of e x p e c t a t i o n errors
544,
— , responses to-, effect of g r a v i t a t i o n a l a c c e l 12
rodents, optokinetik nystagmus
—
121
548
482
R o l a n d i c area
547
of a l i n e a r a c c e l e r a t i o n v e c t o r
425, 426
116
429, 433
—
608,609
roll axes
of t h e e n v i r o n m e n t of the h e a d
rigid postural stability
Rolandic
—
115, 116
of i m m e r s e d subjects
reflexes, l a b y r i n t h i n e
Risatarun
about an earth-vertical axis
—
righting reactions, compensatory
R N A
—
—
Richtungsinduktion
rigidity
about an earth-horizontal axis
604
r i g h t - h a n d rule of r o t a t i o n —
547
—
— , h a l l u c i n a t i o n s of
419
543
547
477
r h y t h m i c after-sensations —
51
85
reversal i n apparent m o t i o n —
418, 419
— , d e t e r m i n a t i o n of
retrospective displacement estimation
56
180
— , aftersensation of
128
309
234
156
R u t t i n compensation
472
432
427
Subject
saccade
197,588,605,611
— , see a l s o e y e — , coarse
671
s e m i c i r c u l a r c a n a l , see a l s o c a n a l
movement
a c t i v i t y , m o d u l a t i o n of
596
function
— , fast-phase-
128
— , correction-
— , h y p o m e t r i a of
nystagmus 597
586
, visual acuity during 596,
598,
stimuli and habituation
603
, unnatural , f u n c t i o n a l c r o s s i n g of t h e
nisms for
mecha-
—
216 nystagmus
a n d angular acceleration as a n g u l a r sensors , appropriate stimuli
tex
, d i s t u r b a n c e of
602
pulse generator reaction time
594 603
lessness tor b y
—
macula
—
— , relative to the head
282, 516 17
1 0 2 ff
—
sac
—
shear
—
s i g n a l s , t e m p o r a l p a t t e r n i n g of
—
units, responses f r o m
103 517
of
82, 102, 103 112
533
— , s e n s i t i v i t y of
16
fish
164, 165
, turntable stimulation , velocity transducer 399 442
5 2 ff s e n s a t i o n , see a l s o d e t e r m i n a t i o n , p e r c e p t i o n
81 481
479
schizophrenic patients, nystagmus secondary nystagmus
365
63
r e a c t i o n s as s i g n of a d a p t a t i o n
s e c t i o n of c o r p u s c a l l o s u m of o p t i c c h i a s m a
62
216
216
of a n g u l a r v e l o c i t y
—
of c e n t r i f u g a l acceleration
—
of c h a n g e of p o s i t i o n
424
for d i v i n g
—
for f o r w a r d p i t c h
—
of g r a v i t a t i o n a l a c c e l e r a t i o n
—
of l i n e a r m o v e m e n t s
130
123 123
rotation
16, 56,
417
418 426 115, 418, 419,
423,
427, 550
203
214, 215 215
self-rotation, inducing vestibular ataxia
of
417
418
—
—
130
during vestibular stimulation
seesaw eye m o v e m e n t
—
— , response d e c l i n e of
179
seeing d u r i n g eye m o v e m e n t
504
, v e r t i c a l , response t o s t i m u l a t i o n of
402
3 6 9 , 4 0 5 ff, 4 3 0
phenomenon
14 18
5 2 ff
scopolamine a n d m o t i o n sickness
Schiff-Sherrington inhibition
549
, h o r i z o n t a l , response t o s t i m u l a t i o n of
162, 173
sclerosis, d i s s e m i n a t e d , a n d vertigo
seated position, thresholds
509,
20
, t h r e e c o p l a n a r p a i r s of
salivation d u r i n g m o t i o n sickness
seizures, a d versi ve
502, 508,
of - i n
, stimulus wave forms
s a c c u l u s , see s a c c u l e
s e c u r i t y reflexes
543
, responses
a n d sea-sickness 405, 407
87
— , static function
543 , plugging experiments
, response to linear acceleration
235
— , n a t u r a l f r e q u e n c y of
43*
505
510, 514
16, 17, 7 1 , 9 8 , 102
nystagmus
529
a n d otoliths, complementary working
— , equilibrial function
—
54
, n o r m a l range of o p e r a t i o n
plane
vec-
116
, m e c h a n i c a l m o d e l of
—
—
585
237
, m a t c h e d sets
as t i l t i n d i c a t o r
—
415
, l o c a t i o n of a n g u l a r a c c e l e r a t i o n
102
sea sickness
503, 509
, g r a v i t o i n e r t i a l forces i n near-weight-
type movements
s a t i a t i o n effect
546,
202, 206
, frequency response
596
saccular influence o n ocular displacement
saccule
14,
501, 502, 509
f u n c t i o n , d i s c o n t i n u o u s , of cerebellar cor-
—
—
135
551
a n d r a p i d p h a s e s of
—
116, 177 132
canals, acceleratory stimuli to
590 —
126
and visual information
d y s m e t r i a of
to
18
603
eye m o v e m e n t s ,
119
stimulation, subjective reactions
592, 593
saccadic burst a c t i v i t y
108
116,302
response, postrotational
596, 598, 604
— , refractory period for duration
126
2 0 , 106
information, conflicting
594, 596
— , horizontal spontaneous
—
Index
338
—
of t u m b l i n g
—
o f t u r n i n g , see t u r n i n g s e n s a t i o n
—
d u r i n g t u r n i n g acceleration a n d deceleration
21
119
672
Subject
sensation, climbing
123, 125
— , i l l u s o r y , of m o v e m e n t — , linear velocity— , postcaloric
— , tilting
cupulograms
4 1 3 ff
28, 406, 408, 409, 421, 422,
cupulometry
429
c u r v e , m e t h o d s of
—
threshold
429
2 0 1 , 211
— , s t i m u l u s of g r a v i t y d u r i n g
261
—
a n d vestibular sensation
s o m a t o g y r a l effect 88
sensorimotor cortex sensors, a n g u l a r
290 609
425
500, 501
400
282, 283
104
2 2 , 2 6 , 117
—
latency
—
reactions, thresholds estimated from
—
thresholds
27, 28
afférents, influence o n
p e n s a t i o n of v e s t i b u l a r lesions 18
sensory anchoring
244
—
cues
arrangement
134
—
aspects of m o t i o n sickness
—
association areas
—
d a t a , d y n a m i c , m e m o r y of
—
inputs from joints
, reduced, 405 ff
91
a n d postural positions
—
d i s c r i m i n a t i o n of t i l t
110
—
fields
fissure
—
inputs
—
mechanisms
—
receptors
interactions on vestibular habituation
—
signals
8 5 , 112
130
—
system
83, 89, 94, 96, 121, 234
signals, reafferent
shear, saccular —, utricular
95 244
605
6 8 , 102
, beyond 1 g
102
, saturation
effect
—
vectors, oscillatory
18
disorders a n d vertigo
—
factors
—
sensors
1 0 0 , 101
164 a n d d e t e r m i n a t i o n of
space, extrapersonal
517
— , personal 88
— , phenomenal
570
237, 238, 261
159, 179
— , e x p l o r a t i o n of 499
197
251
— , n o n v i s u a l l y p e r c e i v e d d i r e c t i o n of
side-down positions, thresholds to-side oscillation
82
— , visually perceived direction i n
87
s i g n of a d a p t a t i o n , s e c o n d a r y r e a c t i o n s
as
—
coordinates a n d cerebral lesions
—
p e r c e p t i o n , c o n s t a n c y of
62
, o r t h o g o n a l i t y of
signal detection theory redundancy
36
, otolith organs
179
signals, synergistic, f r o m a m p u l l a r a n d m a c u lar receptors
312
sinusoidal cupulometry —
oscillation, thresholds
—
stimulus
66 estimated
30
from
—
platforms
—
sickness
162
117
situation, adaptation to
—
transformation, perceptual
spacecraft, horizontal
—
557 156, 164
244
237 215
spatial disorientation i n 427
162
156
402, 554ff
spasms, oculogyric
234
249
2 3 8 , 241
237, 261
—
— , weightless 21
skaters, after-sensation
rotation
237, 238, 261
— , v i s u a l , c o n s t a n c y of
Shuller tuning
545
438
547
530
S I S I tests
261 251
—
100
, tangent function movement
shock
102
610
86, 87, 89
somesthetic cues, e l i m i n a t e d
82, 85, 87, 89, 98, 99, 100,
—
of the R o l a n d i c
, and otoliths
8 2 , 102
component
sheer
111
95
from T P K system
88,
90
599
from the limbs
com-
479 ff
93, 9 4 , 1 1 3
, attenuated
—
35
26
somato-sensory
500, 516
— , static position-
—
261
— , spontaneous nystagmus i n -
somatogravic illusion
430
sensibility, deep
—
261
somatesthetic gravireceptors
sensitivity, directional
—
393, 399
sleepiness d u r i n g m o t i o n sickness
—
—
282
483
— , p a r a d o x i a l p h a s e of
7
p a t h o l o g y of
linear
pallor a n d m o t i o n sickness
sleep, R E M 133, 380
423, 428
—
88
skull fractures
87
— , vestibular
—
163
skin, anesthesia a n d postural judgement —
63
— , vertiginous
376, 377, 379
skeletal musculature, tonic innervation — , touch a n d pressure receptors
164, 174
— , secondary
—
112
435
— , postural
—,—,
skaters, nystagmus i n
540
72, 106,
Index
movement patterns
flight 604
281
Subject spatial orientation
156, 194
perception, conflicts i n
—
reference s y s t e m , internal a n d external
555
— — 16, 303
discrimination
614
of t u r n i n g
614
—
234 85
Steinhausen Model generator
4 7 9 ff 478, 480
— —
87
472, 473 604
599, 603
m o v e m e n t s , d y s m e t r i a of
stepping in situ
, observers w i t h
fish
4 9 5 , 5 0 3 ff, 5 0 4 , 5 0 6 , 5 1 2
step f u n c t i o n , cerebellar
268 , influence o n c o m p e n s a t i o n of v e s t i b u -
test
605
273
226, 272, 273, 275, 354
stereocilia
17,517
—
regulations
585
Stevens' power law
39, 41
—
transection
585
stimulation, caloric
220, 269, 270, 272,
spinocerebellar connections s p i n o r e t i c u l a r afférents spontaneous 199,
—
481
nystagmus
200,
481, 603
201, 202,
203,
204,
210,
— , e l e c t r i c a l , of l a b y r i n t h s
211,
— , galvanic
spring pendulum —
—, —
system, damped
19
Sprungbereitschaft
—, rhythmic
212
squint, concomitant
s q u i r r e l m o n k e y , d e t e c t i o n of eration
509, 510 427
, o t o l i t h responses
532
S R , s h a r p R o m b e r g , see
Romberg
—, "impulse" —, —
stabilization, high-frequency
251 postures
s t a n d a r d reference d i r e c t i o n
stimulus, acceleration-step — , distal
174, 175
—
o n a leg eyes closed on the moon
—
on rails
—
positions
— , gravitational 250, 323
—, proximal
555
133 241
157, 158
— , sinusoidal
556
20
79
— , Coriolis torque
250, 323
standing on the head
21
—
patterns, typical
357
—
response phase angle
94
—
variables, otolith function
20 234 16
38, 73
starting positions
88
—
vector relative to the head
star w a l k i n g test
353
—
velocity, phase
static counterrolling
525, 526
—
f o r c e field, i n f l u e n c e o n t i l t p e r c e p t i o n
—
otolith stimuli
—
position
91, 92
68
123,
157, 158
— , centrifuge-
250, 323
eyes o p e n
589
124,125
499, 564
—
68
68
— , vestibular Coriolis cross-coupling
194, 5 8 3 , 5 8 5 , 5 8 7 , 588 stable-platform system
static
46
126
21
— , unpredictable
251
— , v e s t i b u l a r , of eye- a n d b o d y
—
1 0 , 13
— , otolith dynamic
251
s t a n d eyes closed
220
— , discordant, reactions to
356
— , low-frequency
18
429
— , approximating natural movements
516, 518
stability, rigid
— , sinusoidal
stimuli, acceleratory
, otolith structure stabilimeter
220, 272
—, thermal
, m o t i o n sickness
76, 77
— , semicircular canalangular accel-
127
219
425, 426
—, rotatory
207, 208
115, 116, 117, 118, 119,
monocular
— , oscillatory
407
square-wave jerks
613
—, optokinetic
81
220
220, 270, 272
—, hypothalamic
80, 242, 417, 436
274
550
377, 383, 382, 527, 563
198,
218, 226, 228 spot, b l i n d
b y constant linear acceleration
— , Coriolis
113, 195, 197,
195
290
356
statolith elimination,
s p i n a l c o r d , effect of v e s t i b u l a r s t i m u l a t i o n o n
lesions
180
p l a q u e , t o r s i o n of 2 9 0 , 312
statokinesimeter
21, 22
lar lesions
81
s t a t o c o n i a l m a s s , m o t i o n of
s p e e d of r e t u r n t o u p r i g h t —
tilt relative to gravity
s t a t o a c o u s t i c n e r v e , t r a u m a t i c lesions of
s p e e c h , n e u r a l o r g a n i z a t i o n of —
519, 520, 525,
statisch-optische Verhältniszahl
16
s p e a k i n g , s t r a t e g y of
18
responses of o t o l i t h i c cells 532, 533
241 specific g r a v i t y of e n d o l y m p h g r a v i t y of o t o l i t h s
673
static p o s i t i o n sensor
—
—
Index
angle between-
ponse magnitude 96
—
of g r a v i t y , c o n s t a n t , loss of
strabismus
262 207, 215
33 259 f
and
res-
674
Subject
strain gauges
359
sustained
strapped-on system
499, 564 599,
612ff, 613 614 324, 333, 334
—
a n d vertigo
438
—
intoxication
197, 223, 309, 431, 482
cortex
striola
571
218
275
276
swing, four-pole
481,482
— , parallel 196
399
—
white matter
s u b g r a v i t y levels
234
106,163,416,435,436,
541, 549,
559, 562
216, 217
lesions a n d gaze p a r a l y s i s
— , torsion-
217, 218,
222
223, 425, 427, 429
— , two-pole
391
228
—
235
sympathetic nerves a n d m o t i o n sickness
subjective angle estimation angular velocity
424
39ff, 43, 4 4 , 4 7 , 54, 421,
illusion, haunted
119, 160,
—
cupulogram
—
displacement measures
402
s y n a p t i c e n d i n g s , d e g e n e r a t i o n of
459
—
inclination
— , Gerlier's
421,422 48
400
440
438, 441
—, Louis-Bar-
98
179
s y m p a t h o m i m e t i c a c t i o n of d r u g s syndrome, Cogan's
422
583, 598
— , M e n i e r e ' s , see M e n i e r e ' s d i s e a s e
—
i n d i c a n t s of c a n a l f u n c t i o n
—
linear velocity
—
reactions to semicircular canal s t i m u l a t i o n
—
reactions to simple angular
295
—, M L F -
68
214
— , oculomotor abnormal —, Parinaud's
acceleration
— , rejection- ( =
441
m o t i o n sickness)
— , subclavian steal-
21 in relation to otolith dynamics
207
217, 228
—, Ramsay-Hunt
18
responses
subjects
91 602
subcortical gaze centers
—, Wallenberg's
568, 570
196
202,
203,
227,
228,
442,
484
71 —
r o t a t i o n aftereffects
—
tilt
—
velocity estimates
—
vertical
—
vestibular reactions
syphilis
92
214,438
syphilitic interstitial keratitis
80
syringobulbia
379
440
202, 215, 226, 227, 228, 443,
483
100 378
s u b j e c t s , see m a n , p a t i e n t , submarine navigation superior colliculus
t a b e s d o r s a l is
observer
296
—
of a m p u l l a r r e s p o n s e s
—
of c a n a l - d e p e n d e n t responses
—
of n y s t a g m u s
302 123
35,116,118,126,127,
128,
130, 302, 305, 362, 365, 370, 376, 425 —
of sensations of t u r n i n g
—
of v i s u a l b r i g h t n e s s p e r c e p t i o n
295, 296 197
— , c e n t r a l , of t h e s i g n a l f r o m l a t e r a l
canals
—
d i r e c t i o n cues
—
information
164
234
s u p r a l i m i n a l response curves
282, 283, 286
—
component
83
—
displacements, otoliths
target displacement oscillation
27
tegmental lesions
585
127
217, 588, 592, 604, 612 484
t e g m e n t u m , r e t i c u l a r n u c l e i of
93
sustained accelerations, caloric tests
70
106
127
tectum opticum
supramesencephalic lesions
353
tangential acceleration
targets, observer-fixed
240
610
163
t a n d e m w a l k i n g test
—
294
suspension by straps
599, 602, 613
t a c t i l e c o n t r o l of m o v e m e n t s
217, 596, 612
supragravity range
276, 438
t a c t i c s of a c t i o n
494
suppression, m e c h a n i s m of
states
nystagmus
sweating d u r i n g motion sickness
530
—
—
motion, and vestibular-defective
swimming, without orientation sensitivity
subclavian steal syndrome
—
251 251
swaying inclination —
strio-nigro-pallidum
—
401,
611
strychnine
7 9 , 107
252
585
s t r i a t e a r e a , d e s t r u c t i o n of —
responses
288, 300, 301
— , postural —
stress effects a n d m o t i o n s i c k n e s s stretch reflex
nystagmus
sway, induced
streptomycin and ataxia
effect o n
298
, horizontal linear —
of s p e a k i n g
accelerations,
to rotation
s t r a t e g y of a c t i o n , n e u r a l o r g a n i z a t i o n —
Index
— , mesencephalic 304
—, pontine
216, 228
216, 228
217
Subject
t e m p o r a l c o o r d i n a t i o n of m o v e m e n t s —
lobe
605
8
epilepsy
196 604
Index
675
tilt, postural
76
—
relative to the force
—
relative to g r a v i t y
—
movement patterns
—
p a t t e r n i n g of u t r i c u l a r a n d s a c c u l a r
— , subjective
signals
— , adaptation to
— , static
112
t e n d o n reflexes a n d v e s t i b u l a r s t i m u l i tension receptors test pilots
163
, retinal
—
602,
484
—
164
a n d high-magnitude linear and oculogravic
modification
by
linear
—
chair
306
Thorner ophthalmoscope
87, 88
, tilting on
213 207
8 3 , 169
—
devices
—
i n f o r m a t i o n , saccule
35
93
, u t r i c u l a r shear
—
acceleration, w o r k i n g equations
—
determination b y centripetal
38
acceleration
79
—
positions, static
—
rooms
27
oscillatory
by sustained eration
stimulation
horizontal
linear
by tilt relative to gravity
of l i m b s
accel-
82
30
357
reflexes, l a b y r i n t h i n e
77
79
, vestibular sensations
87, 392
—
on the tilt chair
latency
—
shifts over t i m e
—
stimuli for otolith function
75
tinnitus
—
stimulus, cupula deflection
284
tipping reactions
— —
time constant
8 3 , 169
285, 294, 295, 296, 297,
v a r y i n g linear accelerations
26
—
195,
table
196 269, 277
277
tone, vestibular
rons
t o n i c a c t i o n s of l a b y r i n t h i n e o r g a n s
453
of e l e c t r i c a l v e s t i b u l a r n e r v e
stimulation
for f r e q u e n c y rons
response of v e s t i b u l a r n e u -
454
—, otolith-
86
—
for the p e r c e p t i o n of a c c e l e r a t i o n
—
of p e r c e p t i o n
of a n g u l a r
432
of p o s i t i o n s
—
of s o m a t e s t h e t i c
8 1 , 82
and angular acceleration tilt, apparent
— , head— , initial
119
83, 162,
—, dynamic
283
c o n t r o l of o c u l o m o t o r effectors eye
fits
i n n e r v a t i o n of s k e l e t a l m u s c u l a t u r e
—
n e c k reflexes
—
neurons
586 227,
flexor-
268 268
asymmetries
in the vestibular
system
484 Tonus-Labyrinth 182
464
topical diagnosis, key s y m p t o m s torsion dystonia
82
457
270
163
— , extensor—,
163
271, 437
, type I, vestibular
—
106
— , oculogravic
454
215
—
182
122, 132, 159, 172, 85
for linear
452
—
—, body-
gravireceptors
452
a c t i v i t y of v e s t i b u l a r n e u r o n s
tonus, a r m -
—
452
—
acceleration
2 3 ff, 2 2 3
—, body-
—
315
308, 312
for electrical e x c i t a t i o n of v e s t i b u l a r n e u -
459 —
585
584
—
34
584,
194
—
thresholds, somatogyral
91
110
tilting platforms —
98 98
110
tilted buildings e x t r a p o l a t i o n of s u p r a l i m i n a l res-
96
106
88
, padded
thoracic neuroblastoma
with
107
249, 435
, hard
220
ponse curves
l a g effect
— , u n d e r e s t i m a t i o n of
of a m p u l l a r r e c e p t o r s
by
accelerations
125
37, 40
t h r e s h o l d , c o n c e p t of
from
— , — , i n f l u e n c e o f s t a t i c f o r c e field o n
303
stimulation
110
— , p e r c e p t i o n of 18, 68, 77, 8 1 , 102, 108, 110,
36
— , torsion pendulum
—
106,
107
608
theory, bicomponent-
responses,
72, 90
242
105
612
t h a l a m u s , v a s c u l a r lesions of
accelerations
— , a n g l e of
172
168
— , signal detection
80
— , d i s c r i m i n a t i o n of l i n e a r a c c e l e r a t i o n
t h a l a m i c afférents t o a r e a 8 — , ventro-lateral
9 6 , 97
106
— , d i s c r i m i n a t i o n of
232, 425
texture gradients, G i b s o n
thermal
276
field
8 1 , 82, 9 6 , 98
—
pendulum
608 415, 420,
502
for
227
676
Subject
torsion p e n d u l u m model (theory)
19, 24, 28,
Index
unilaterial labyrinthine defective
30, 31, 33, 37, 40, 41,56 —
swing
223, 425, 427, 429
units, canal-dependent
touch, receptor system
237, 262, 282
T P K
234,
receptor
system
235,
237,
244,
tract, vestibulo-spinal
—, gravitoinertial
20
— , postural — , r e t u r n to
531
t r a n s f o r m a t i o n of s p a t i a l i n t o t e m p o r a l
trauma, acoustic
treading test
—, kinocilia
272
—
t r u n k , v e s t i b u l a r reflexes
271
— , vestibulospinal reactions i n tuberculoma, pontine
269, 271
shear plane
—
macula
otoliths, angular velocity
—
sac
—
shear, lateral
119
17, 80, 2 6 8 , 2 8 2 , 5 1 8 ,
203,
205,
82, 85, 87, 89, 98, 99
hypothesis 438, 439, 440, 441, 442 2 1 , 22
115,299
, a d a p t a t i o n of
—
134
, a n d angular acceleration
291
, d e f i n i t i o n of the s t i m u l u s
40
, effect of v i s i o n o n , h a b i t u a t i o n of
116
flow
15
453
flow
15
453
variable, compensatory
295, 296
158, 160
—, psychophysical
438
173, 177
158, 177
—, intervening
390
U deg, postural vertical
endolymph
— , interfering
158, 159
vascular changes, m o t i o n sickness —
—, visual vertical
endolymph
84, 85
86
Umkehrphänomen
477
u n c e r t a i n t y , a r c of,
see a r c o f
collapse
Udeg
—
disturbances a n d vertigo
—
lesions
438
195, 214, 484
vector, inertial
under-compensation
—
u n d e r e s t i m a t i o n of a n g u l a r d i s p l a c e m e n t
49
106
unilateral labyrinthectomized patients
562
analysis a n d static response of units
532
— , acceleration89
— , shear235
398
vasovagal syndrome, vestibular stimulation 398
— , e l l i p s e o f , see e l l i p s e o f u n c e r t a i n t y 241
393
195
vasoconstriction a n d m o t i o n sickness uncertainty,
underwater two-axis gimbals system
112
533
u t r i c u l u s , see u t r i c l e
134, 379
, s u p p r e s s i o n of
signals, t e m p o r a l p a t t e r n i n g of units, responses f r o m
utriculopetal deflection
134, 296
turntable, secondary
— — —
134
102
99, 102
utriculofugal deflection
, a d j u s t m e n t of
of t i l t
100
, p h y s i o l o g i c a l l i m i t s of
207, 2 1 3 , 2 1 4
, a c c o m m o d a t i o n of
543
information
517 component
tumor and positional nystagmus
typhus a n d vertigo
displacement
112 443
426
t u m b l i n g sensations
—
164, 165
85
—
590
tuberculous meningitis and vertigo
sensation
17
102
272
a n d vertigo
71
utricular influence o n ocular
227, 605, 606, 608, 609
t u r n i n g , s p e e d of
98
69
— , static function 402, 410
401
1 4 , 16
— , h a i r cells i n
195
359
t r e a t m e n t of m o t i o n sickness
—
438
— , frequency response
203, 206
of s t a t o a c o u s t i c n e r v e
T u l l i o effect
104, 238
85
— , e s t i m a t e d p l a n e of
336
t r a u m a t i c lesions of l a b y r i n t h s
—
239, 247, 255
uremia a n d vertigo utricle
540
97
239
urine d u r i n g m o t i o n sickness
transient acceleration
tremor
pat-
604
Tretversuch
614
249
— , p e r c e p t i o n of
381 f u n c t i o n of o t o l i t h organs
treadmill
71
upright, gravitational
479
transfer f r o m caloric to rotational s t i m u l a t i o n
terns
72
u p h i l l i n c l i n a t i o n of t h e l i n e of r e g a r d
244
transducers, angular velocity
—
— , position sensing u n i t y of p e r s o n a l i t y
sensory input, astronauts
112
— , change i n position-
245, 249, 251, 261, 262 —
(UL-Ds)
324,333, 335, 336
12, 15, 79
87, 88
vegetative symptoms
195
otolithic
Subject Index
velocity, angular
18, 20, 21, 112, 113,
122,
vertigo
125, 515
179,
194,
515
18, 6 8 , 1 0 6 , 1 1 2 ,
— , — , p e r c e p t i o n of
—, acute
—, chronic
62
440
439, 442
—, concentration-camp-
497 f
— , m e a s u r e m e n t of
436
—, childhood-
72, 77, 82, 87, 106
— , d e t e r m i n a t i o n of
—, continuous
502, 514
— , epileptic
379
196, 439, 441
estimates, subjective
—
information, b y canal-dependent units
—, head-turning
112
—, long-lasting
matching procedures —
perceptions
—
ramps
—
step
—
triangle
196 195
—, nonvestibular
43, 44
— , orthostatic
2 1 , 77
—, positional
439, 440 196, 206, 437, 441
—, positioning
21
ventricle, f o u r t h , lesions i n
Verhältniszahl, statisch-optische
180
veridicality, ideal, deviations from a n d saccades
196, 437, 441
—, posttraumatic
221
vermis a n d m o t i o n sickness
438
439, 441
—, paroxysmal
20, 2 1 , 24 21
161
—, postural
336
—, rotatory
437
442
— , spontaneous
607
— , a t t a c k s of
598, 599
437 195ff
v e r t e b r a l a r t e r y , c o m p r e s s i o n of
196
—
vertebrobasillary circulation and
vertigo
— , c l i n i c a l h i s t o r y of
440
—
insufficiency
195, 196, 207, 228
vertical, apparent
86,
160,
162,
169,
170,
— , — , as a f u n c t i o n of l a t e r a l b o d y t i l t —, gravitational — , objective
248, 249
245, 252
82, 83, 84, 90, 109, 125, 249
— , subjective
100
84
—, vestibular —, visual
107, 108, 109, 125 5 3 4 ff
— , i l l u s o r y d i r e c t i o n of
due to general disorders
—
w i t h o u t hearing disorders
441, 442
—
w i t h hearing impairment
441
—
of l a b y r i n t h i n e o r i g i n
155ff
—
canals, p a t h o l o g y of
—
constancy
432
—
gaze paralysis
—
i n d i c a t i o n , a b i l i t y of
—
linear oscillations
—
nystagmus
—
w r i t i n g test
— , e s t i m a t e of
8
—
apparatus, phylogenetic connections
with
—
ataxia, measurement in m a n
—
compensation
—
C o r i o l i s c r o s s - c o u p l i n g effects Coriolis cross-coupled reaction
—
Coriolis cross-coupling stimuli
—
cortical activity
77
169
133 124, 125
8
cues a n d o t o l i t h f u n c t i o n
86 90
234, 252, 253
—
defects, o t o l i t h f u n c t i o n
—
d i r e c t i o n cues
—
excitability, diminished
—
eye movements,
234
163, 164 212
visual inhibition
of
201
68, 75, 82, 90,
vertiginous sensations
120,
610
defective subject
84
vertige de l'enfance
119,
131
, reduced, a n d postural positions
83, 84
109, 163, 1 6 4 , 1 7 7 ,
3 2 1 ff
177, 451
—
—
270
— , p e r c e p t i o n of
477
projections
113, 127, 590
— , j u d g e m e n t of
369, 567
afférents, p r o j e c t i o n t o m o t o r c o r t e x
91
v e r t i c a l i t y , d i r e c t i o n a l cues for
196, 438
—
157, 166, 172 217
438
439
vestibular adaptation
121,125,
540, 542, 562
196
—
556
— , optic-vestibular o r i e n t a t i o n to — , sense of
— , general criteria
cerebellum
174
72, 82, 85, 92, 93, 95, 9 7 , 1 0 0 , 1 0 1 ,
— , d e t e r m i n a t i o n of
196, 438 194, 197
d u e t o disorders of t h e v e s t i b u l a r s y s t e m
— , n o s o l o g y of
242
—, postural — , true
161
261, 283
—, gravitoinertial
a n d blood pressure
438
174, 176, 178, 179, 180, 181, 182, 2 4 1 , 242 — , — , i n o r o u t of w a t e r
438
195
—
—
324,
439
—, cervical
546
— , slow-phase, nystagmus
—
197, 205, 206, 227,
336, 337, 392, 396, 414, 438
— , constant, adaptation for — , linear
677
91,103,108,
—
frequency response to a n g u l a r acceleration
—
f u n c t i o n , c o m p e n s a t i o n of
223
185 440 133, 380
, effect of p o i s o n s
481
460
678
Subject
v e s t i b u l a r f u n c t i o n , loss of , men without
332, 430
gravireceptors
—
habituation
vestibular paralysis by streptomycin
95, 332
, systems approach to —
565 ff
282 134, 361 ff
, m e c h a n i s m s of in man
Index
134ff
projection area
—
receptors i n elasmobranchs
—
reflexes i n t h e t r u n k
—
r e g u l a t i o n of eye p o s i t i o n
—
release to u n i d i r e c t i o n a l a n g u l a r accelera-
—
representation, cortical
—
response r e d u c t i o n
374
tion
, sensory interactions on
130,134
—
heterocompensation
165, 166
—
influences o n oculomotor nuclei
455
o n lateral geniculate neurons —
i n f o r m a t i o n , c o g n i t i v e awareness of i n n e r v a t i o n of l i m b s
—
input-output relations
—
lesions, c o m p e n s a t i o n of
135
sual-vestibular interactions
269
—
model
n e r v e , see a l s o n e r v e , e i g h t h
541
r i g h t i n g responses
—
sensations
—
destruction
195, 203 — —
181
s t a b i l i z a t i o n of b o d y p o s t u r e
194, 583
s t i m u l a t i o n , effect o n s p i n a l c o r d
195, 336, 442
neurons, activity during recovery
454
after l a b y r i n t h i n e destruction
—
— , seeing d u r i n g
285,
18
—
s t i m u l i a n d deep reflexes
—
structures, acceleratory stimuli to
276
—
system and body control
—
— , efferent
, pattern and counterpattern
290 , second order , type I nuclei
451 454
454, 456, 457, 458, 459
, type II
, interplay
261, 285, 584, 587, 589 268, 287, 290, 453, 479
, analogy
in function
with
system
, field p o t e n t i a l s i n , lesions of
459
—
—
and optokinetic stimulation , spontaneous activity i n
and perception
5 8 1 ff
, pathological disorders
, visual feedback to
285
464
116, 118, 127, 128, 129, 131,
—
t i l t i n g reflexes
—
tone
584
194, 197, 1 9 8 , 1 9 9 , 2 1 2 , 216, 220, 272, 477,
—
tracts in the cerebellum
—
vertical
—
vertigo
reflex s y s t e m
126
130
a n d m o t i o n sickness
501
390, 408 568
, self-adapting system
195
v e s t i b u l o - a u t o n o m i c reflexes —
cerebellum
4 9 3 ff
194
268
604
o c u l a r reflex a r c 291, 586, 590
426
, specific s t i m u l i of 414 , s y s t e m s c o n c e p t of
390
174
vestibularly induced movements
o r g a n s as a n i n e r t i a l s y s t e m , o v e r s t i m u l a t i o n of
484
604
452
586, 590 -oculomotor pathology
560 582
, tonus asymmetries in
116
activating
5 6 6 ff
, proprioception and-
, responses to acceleration s t i m u l i nystagmus
583 reticular
198
— , motor functions
459
10
500
34
— 195, 203, 205, 215, 221
, negative waves in
with
, lesions of
cerebellar
607
426
285
, holding functions
453, 454, 457
, medial nuclei
268 393
130
a n d subjective responses
4 5 1 ff
, responses to acceleration s t i m u l i , tonic activity
stimuli
b y m u l t i p l a n a r accelerations
—
—
4 1 3 ff
of e y e p o s i t i o n 194, 5 8 3 , 5 8 5 , 5 8 7 , 5 8 8
196
neuronitis
—
, p a t h o l o g y of
sensors, r e s o l u t i o n of a c c e l e r a t o r y
464
—
—
67
somesthetic influences
203
fibers, s p o n t a n e o u s a c t i v i t y i n
—
7
, attention to
13
438
, viral neuritis
156, 180
7ff
, direct and indirect 285
104
451
—
482
, t h r e s h o l d of e l e c t r i c a l s t i m u l a t i o n 459
lesions
restoration
275
and vertigo
295
220
, modulation by intravestibularand v i -
4 6 3 ff
—
, recordings from
7
361
, h a b i t u a t i o n of- a n d v i s u a l s t i m u l a t i o n
254
, f u n c t i o n a l loss of
197
3 6 9 ff, 3 7 3 , 3 7 7
—
, diseases of
284
271
223
, induced
268
and laterotorsion
8
—• r e s p o n s e s , c o m p e n s a t o r y
130
—
482
—
reflexes
268
oculomotor innervation, imbalance 453
of-
Subject
vestibulo-oculomotor symptoms —
-reticulo-cerebellar system
—
-spinal disequilibrium
, m a s k i n g of
269
269, 272
in upper limbs
269, 270
and semicircular canal stimulation —
269
—
responses, c l a s s i f i c a t i o n s of 2 2 6 , 2 6 7 ff
tract
268, 479
of t h e a r c h i c e r e b e l l u m
269
134
mechanisms a n d somatosensory
input
—
mislocation
—
p a t h w a y to the cerebellum
—
p e r c e p t i o n of m o t i o n
—
—
—
p o s t u r a l reflexes, c o m p e n s a t i o n of loss of
—
reference versus b o d y reference
—
space, s t a b i l i z a t i o n b y otolithic i n p u t
126
213 507, 562
vision, blurred — , double
109
195
195
— , absence of, d u r i n g r o t a t i o n
constancy
129
208 116
— , effect o n n y s t a g m u s a n d t u r n i n g tions —
during vestibular nystagmus
—
-detected e a r t h reference
sensa-
acuity, dynamic
197 587
still-fixation and nystagmus
3 7 5 , 378
—
s t i m u l a t i o n a n d h a b i t u a t i o n of v e s t i b u l a r 369ff, 3 7 3 , 377
and vestibular Coriolis cross-coupling 127, 128
115
effects
125
—
stimuli, inattention to
—
suppression
130
612
117
of c a l o r i c n y s t a g m u s
, effect of a l c o h o l o n -
130
, effects of p r a c t i c e o n
130 —
s u r r o u n d i n g s , m o v e m e n t of
—
system
128, 129
460
—
attention
—
autocompensation
612
—
brightness perception,
— 169
vertical
72, 82, 85, 92, 93, 95, 97,
suppression
of
during intravestibular conflict vestibular interactions
c o n t r o l of v e s t i b u l a r n y s t a g m u s
131
interplay
of t h e v e s t i b u l o - o c u l a r reflex a r c —
feedback
—
field,
590
visually
166
587, 604
104, 109
influence on caloric
response
222 f r a m e , effect o n the v i s u a l v e r t i c a l holding function
—
horizontal image,
—
movements, cortical organization
—
nystagmus
—
ramp movements
during head
2 1 1 , 600, 601
214 589, 608
125, 131, 133, 195, 569
w a l k eyes open —
588 movement
—
323
o n floor e y e s c l o s e d
— , heel-to-toe
86, 97
fixation
238,
613
eye movements
109
109
—
direction in space
—
vomiting of reference
127
perceived
voluntary actions 134
104, 109, 1 1 0 , 117
independence
107
23, 104, 132
241
displacement by prisms dependence
100,
1 0 1 , 1 0 8 , 109, 1 2 5 , 177
197
d i r e c t i o n cues
119
234
, c o m p e n s a t i o n of v e s t i b u l a r f u n c t i o n
106
—
35,126,127,
128,130
during semicircular canal stimulation and image velocity
116
of v e s t i b u l a r n y s t a g m u s
126ff
fixation,
106
—
401
v i s u a l , see a l s o o p t i c
502
472
s t a b i l i z a t i o n of e y e p o s i t i o n
responses
a n d m o t i o n sickness
afterimages
177
—
116
—
—
of v e r t i c a l i t y
604
197, 592, 593
242
— , d y n a m i c , directional difference i n — , foveal
197
both labyrinths
29
v i s i b l e s u r r o u n d s , t i l t i n g of
—
604
, distorted, by prisms
-vegetative disorders a n d m o t i o n sickness
viscous retardation
—
201
86
402 viral encephalitis
—
376
244
v i s c o s i t y of e n d o l y m p h
—
input
2 6 7 ff —
vibration, whole-body
—
i n h i b i t i o n of n y s t a g m u s
of v e s t i b u l a r eye m o v e m e n t s
267, 268, 277
tests
116
594
116
269, 271
, m e a s u r e m e n t of
182
information and apparent rotation about an earth-vertical axis
in t i p p i n g reactions
—
—
226
in lower limbs
reflexes
visiual induction
227 599
reactions in head a n d neck
in trunk
679
Index
a line eyes closed
— , lunar
323
323
254, 261
323
600
680
Subject
walk a straight line walking, blindfold —
deviation
—
experiments
—
at night
—
on rails
250
Wernicke's posture
272
w h e e l effect
272
Wallenberg's syndrome
202, 203, 227,
228,
442,484 272, 354
—
movement
—
vibration
126
weightless spacecraft
357
—
detection d u r i n g constant speed off-verti-
—
meter
cal r o t a t i o n
113
357
yaw, angular oscillation in 459
237
104, 234, 237, 244, 262, 298,
—, motion in —
312, 313
295
-nystagmus
127
y a w n i n g d u r i n g m o t i o n sickness
307, 308, 398, 402, 545, 555 — , caloric tests
304
Wernicke's aphasia
z e r o g r a v i t y , see 614
106
104
248, 249
390
waves, negative, i n vestibular nuclei weightlessness
displacement relative to the earth
87, 89, 90, 91, 92, 93, 96,
and apparent vertical
127
—
wobble board
112, 234, 235, 247, 259, 544, 545, 562 wave machine
228
whole-body angular oscillation
357
water immersion
585
112, 113, 5 4 5 , 548, 550, 567
white matter, subcortical
268, 272, 353, 357
321
w a l t z i n g test
Index
—
-g experiments
weightlessness 103, 555
400