Smithsonian Physical Tables Ninth Revised Edition
Prepared by WILLIAM ELMER FORSYTHE
Norwich, New York 2003
PREFACE T O THE N I N T H REVISED EDITION This edition of the Smithsonian Physical Tables consists of 901 tables giving data of general interest to scientists and engineers, and of particular interest to those concerned with physics in its broader sense. The increase in size over the Eighth Edition is due largely to new data on the subject of atomic physics. The tables have been prepared and arranged so as to be convenient and easy to use. The index has been extended. Each set of data given herein has been selected from the best sources available. Whenever possible an expert in each field has been consulted. This has entailed a great deal of correspondence with many scientists, and it is a pleasure to add that, almost without exception, all cooperated generously. When work first started on this edition, Dr. E. U. Condon, then director of the National Bureau of Standards, kindly consented to furnish any assistance that the scientists of that institution were able to give. The extent of this help can be noted from an inspection of the book. Dr. Wallace R. Brode, associate director, National Bureau of Standards, gave valuable advice and constructive criticism as to the arrangement of the tables. D. H. Menzel and Edith Jenssen Tebo, Harvard University, Department of Astronomy, collected and arranged practically all the tables on astronomy. A number of experts prepared and arranged groups of related data, and others either prepared one or two tables or furnished all or part of the data for certain tables. Care has been taken in each case to give the names of those responsible for both the data and the selection of it. A portion of the data was taken from other published sources, always with the.consent and approval of the author and publisher of the tables consulted. Due credit has been given in all instances. Very old references have been omitted. Anyone in need of these should refer to the Eighth Edition. It was our intention to mention in this preface the names of all who took part in the work, but the list proved too long for the space available. We wish, however, to express our appreciation and thanks to all the men and women from various laboratories and institutions who have been so helpful in contributing to this Ninth Edition. Finally, we shall be grateful for criticism, the notification of errors, and new data for use in reprints or a new edition. W . E. FORSYTHE Astrophysical Observatory Smithsonian Institution January 1951 EDITOR’S N O T E The ninth edition of the Physical Tables was first published in June 19.54. I n the first reprint (1956), the second reprint (1959), and the third (1964) a few misprints and errata were corrected.
iii
CONVERSION TABLE
TABLE 1.-TEMPERATURE
The numbers in boldface type refer to the temperature either in degrees Centigrade or Fahrenheit which it is desired to convert into the other sale.
If converting from degrees Fahrenheit to Centigrade, the equivalent will be be found in the column on the left, while if converting from degrees Centigrade to Fahrenheit the answer will be found in the columr! on the right.
- 559.4 to 28 /
-273 -268 -262 -257 -251 -246 -240 -234 -229 -223 -218 -212 -207 -201 -196 -190 -184 -179 -173 -169 -168 -162 -157 -151 -146 -140 -134 -129 -123 -118 -112 -107 -101 - 95.6 - 90.0
29 to 140
-459.4 -450 -440 -430 -420 -410 -400 -390 -380 -370 -360 -350 -340 -330
-320 -310 -300 -290 -280 -273 -270 -260 -250 -240 -230 -220 -210 -200 -190 -180 -170 -160 -150 -140 -130
150 to a90
900
t o 1650
1660 to 2410
A .
r
C
... ...
...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .,.
-459.4 -454 -436 -418 -400 -382 -364 -346 -328 -310 -292
-274
-256
-238 -220
-202
-1.67 -1.11 -0.56 0 0.56 1.11 1.67 2.22 2.78 3.33 3.89 4.44 5.00 5.56 6.11 6.67 7.22 7.78 8.33 8.89 9.44 10.0 10.6 11.1 11.7 12.2 12.8 13.3 13.9 14.4 15.0 15.6 16.1 16.7 17.2
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
2420 to 3000
L
F
I
L
84.2 86.0 87.8 89.6 91.4 93.2 95.0 96.8 98.6 100.4 102.2 104.0 105.8 107.6 109.4 111.2 113.0 114.8 116.6 118.4 120.2 122.0 123.8 125.6 127.4 129.2 131.0 132.8 134.6 136.4 138.2 140.0 141.8 143.6 145.4
F
'C
66 71 77 82 88 93 99 100 104 110 116 121 127 I32 138 143 149 154 160 16G 171 I77 182 I88 193 199 !04 210 216 221 !27 232 ?38 !43 !49
150 160 170 180 190 200 210 212 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480
302 320 338 356 374 392 410 414 428 446 464 482 500 518 536 554 572 5% 608 626 644 662 680 698 716 734 752 770 788 806 824 842 860 878 896
c 482 488 493 499 504 510 516 521 527 532 538 543 549 554 560 566 571 577 582 588 593 599 604 610 616 621 627 632 638 643 649 654 660 666 671
F900 910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240
1652 1670 1688 17Ot 1724 1742 176C 1778 1796 1814 1832 185C 1868 1886 1904 1922 1940 1958 1976 1994 2012 2030 2048 2066 2084 21 02 2120 2138 2156 2174 2192 2210 2228 2246 2264
904 910 916 921 927 932 938 943 949 954 960 966 971 977 982 988 993 999 1004 1010 1016 1021 1027 1032 1038 1043 1049 1054 1060
1066 1071 1077 I082 1088 1093
1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
302( 3031 30% 307d 309; 311( 3121 314 316' 318; 320( 321t 3236 3254 327; 32% 3301 3326 3344 3362 338C 3398 3416 3434 3452 3476 3488 3506 3524 3542 3560 3578 3596 3614 3632
'
'c 1327 1332 1338 1343 1349 1354 1360 1366 1371 1377 1382 1388 1393 1399 1404 1410 1416 1421 1427 1432 1438 1443 1449 1454 1460 1466 1471 1477 1482 1488 1493 1499 I504 IS10 1516
2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700 2710 2720 2730 2740 2750 2760
.
F 4388 4406 4424 4442 4464 4478 44% 4514 4532 4550 4568 4586 4604 4622 4640 4658 4676 4694 4712 4730 4748 4766 4784 4802 4820 4838 4856 4874 4892 4910 4928 4946 4964 4982 SO00
--- 84.4 78.9 73.3 -- 62.2 67.8 56.7 --- 51.1 45.6 -- 40.0 34.4 -- 28.9 23.3 17.8 - 17.2 - 16.7 16.1 - 15.6 - 14.4 15.0 13.9 13.3 12.8 12.2 11.7 - 11.1 - 10.6 10.0 9.44 8.89 8.33 7.78 722 - 6.67 6.11 - 5.56 - 5.00 - 4.44 -- 3.89 3.33 -- 2.78 2.22
-120 -110 -100 90 - 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8
-
-
-
9 I0
17.8 18.3 18.9 19.4 20.0 20.6 -94 21.1 76 21.3 58 22.2 -40 22.8 22 23.3 - 4 23.9 14 24.4 32 33.8 25.0 35.6 25.6 37.4 26.1 39.2 26.7 41.0 27.2 42.8 27.8 44.6 28.3 46.4 28.9 48.2 29.4 50.0 30.0 51.8 30.6 53.6 31.1 55.4 31.7 572 32.2 59.0 32.8 60.8 33.3 62.6 33.9 64.4 34.4 66.2 35.0 68.0 35.6 69.8 36.1 716 36.7 739 37.2 75.2 37.8 77.0 43 78.8 49 80.6 54 82.4 60 -184 -166 -148 -130 -112
-
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 110 120 130 140
147.2 149.0 150.8 152.6 154.4 156.2 158.0 159.8 161.6 163.4 165.2 167.0 168.8 170.6 172.4 174.2 176.0 177.8 179.6 181.4 183.2 185.0 186.8 188.6 190.4 192.2 194.0 195.8 197.6 199.4 2012
254 260 266 271 277 282 288 293 299 304 310 316 321 327 332 338 343 349 354 360
366
37 1 377 382 388 393 399
490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690
700
471 477
7 10 720 730 740 750 760 770 780 790 800 810 820 830 840 850 860 870 880 890
Ptcr-red by Alfred Sauveur; uud by the kind permiuion of bfr.
Sanveur.
11 12 13 14 15 16 17 18 19 20 21
23 23 24 25 26 27 28
203.0 204.8 206.6 208.4 210.2 212.0 230 248 266 284
404
410 416 421 427 432 438 443 449 454
460 466
914 677 932 682 950 688 968 693 986 699 1004 704 1022 710 1040 716 1058 721 1076 727 1094 732 1112 738 1130 743 1148 749 1166 754 1184 760 1202 766 1220 771 1238 777 1256 782 1274 788 1292 793 1310 799 1328 804 1346 810 1364 816 1382 821 1400 827 1418 832 1436 838 1454 843 1472 849 1490 854 1508 860 1526 866 1544 871 1562 877 1580 882 1598 888 1616 893 1634 899
1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650
2282 2300 2218 2336 2354 2372 2390 2408 2426 2444 2462 2480 2498 2516 2534 2552 2570 2588 2606 2624 2642 2660 2678 2696 2714 2732 2750 2768 2786 2804 2822 2840 2858 2876 2894 2912 2930 2948 2966 2984 3002
1099 1104 1110 1116 1121 1127 1132 1138 1143 1149 1154 1160 1166 1171 1177 1182 1188 1193 1199 1204 1210 1216 1221 1227 1232 1238 1243 1249 1254 1260 1266 1271 1277 1282 1288 1293 1299 1304 1310 1316 1321
2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2110 2120 2130 2 140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410
3650 3668 3686 3704 3722 3740 3758 3776 3794 3812 3830 3848 3866 3884 3902 3920 3938 3956 3974 3992 4010 4028 4046 4064 4082 4100 4118 4136 4154 4172 4190 4208 4226 4244 4262 4280 4298 4316 4334 4352 4370
1521 1527 1532 1538 1543 1549 1554 1560 1566 1571 1577 1582 1588 1593 1599 1604 1610 1616 1621 1627 1632 1638 1643 1649
2770 2780 2790 2800 2810 2820 2830 2840 2850 2860 2870 2880 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000
5018 5036 5054 5072 5090 5108 5126 5144 5162 5180 5198 5216 5234 5252 5270 5288 5306 5324 5342 5360 5378 5396 5414 5432
Interpolation factor#
c
0.56 1.11 1.67 2.22 2.78 3.33 3.89 4.44 .. . .
5.00 5.56
1 2 3 4
5 6 7 8 9 10
F 1.8 3.6 5.4 7.2 9.0 10.8 12.6 14.4 16.2 18.0
Contents (For detailed breakdown of tables, see index.) Front Matter Temperature Conversion Table (Table 1) Preface to the Ninth Revised Edition Introduction Units of Measurement Conversion Factors and Dimensional Formulae Some Fundamental Definitions (Table 2) Part 1. Geometrical and Mechanical Units Part 2. Heat Units Part 3. Electrical and Magnetic Units Fundamental Standards (Table 3) Part 1. Selection of Fundamental Quantities Part 2. Some Proposed Systems of Units Part 3. Electrical and Magnetic Units Part 4. The Ordinary and the Ampere-turn Magnetic Units The New (1948) System of Electric Units (Table 6) Relative Magnitude of the Old International Electrical Units and the New 1948 Absolute Electrical Units (Table 5) Relative Values of the Three Systems of Electrical Units (Table 6) Conversion Factors for Units of Energy (Table 7) Former Electrical Equivalents (Table 8) Some Mathematical Tables (Tables 9-15) Treatment of Experimental Data (Tables 16-25) General Physical Constants (Tables 26-28) Common Units of Measurement (Tables 29-36) Constants for Temperature Measurement (Tables 37-51) The Blackbody and its Radiant Energy (Tables 52-57) Photometry (Tables 58-77) Emissivities of a Number of Materials (Tables 78-84) Characteristics of Some Light-source Materials, and Some Light Sources (Tables 85-102) Cooling by Radiation and Convection (Tables 103-110) Temperature Characteristics of Materials (Tables 111-125) Changes in Freezing and Boiling Points (Tables 126-129) Heat Flow and Thermal Conductivity (Tables 130-141) Thermal Expansion (Tables 142-146) Specific Heat (Tables 147-158) Latent Heat (Tables 159-164) Thermal Properties of Saturated Vapors (Tables 165-170) Heats of Combustion (Tables 171-183) Physical and Mechanical Properties of Materials (Tables 184-209) Characteristics of Some Building Materials (Tables 210-217)
i ii iii 1 1 2 4 4 7 10 13 13 15 16 18 19 20 20 21 22 23-36 37-45 46-55 56-69 70-78 79-86 87-97 98-101 102-111 112-116 117-130 131-135 136-144 145-154 155-164 165-167 168-178 179-186 187-228 229-231
Physical Properties of Leather (Tables 218-223) Values of Physical Constants of Different Rubbers (Tables 224-229) Characteristics of Plastics (Tables 233-236) Properties of Fibers (Tables 233-236) Properties of Woods (Tables 237-240) Temperature, Pressure, Volume, and Weight Relations of Gases and Vapors (Tables 241-253) Thermal Properties of Gases (Tables 254-260) The Joule-Thomson Effect in Fluids (Tables 261-267) Compressibility (Tables 268-280) Densities (Tables 281-295) Velocity of Sound (Tables 296-300) Acoustics (Tables 301-310A) Viscosity of Fluids and Solids (Tables 311-338) Aeronautics (Tables 339-346A) Diffusion, Solubility, Surface Tension, and Vapor Pressure (Tables 347-369) Various Electrical Characteristics of Materials (Tables 370-406) Electrolytics Conduction (Tables 407-415) Electrical and Mechanical Characteristics of Wire (Tables 416-428) Some Characteristics of Dielectrics (Tables 429-452) Radio Propagation Data (Tables 453-465) Magnetic Properties of Materials (Tables 466-494) Geomagnetism (Tables 495-512) Magneto-optic Effects (Tables 513-521) Optical Glass and Optical Crystals (Tables 522-555) Transmission of Radiation (Tables 556-573) Reflection and Absorption of Radiation (Tables 574-592) Rotation of Plane of Polarized Light (Tables 593-597) Media for Determinations of Refractive Indices with the Microscope (Tables 598-601) Photography (Tables 602-609) Standard Wavelengths and Series Relations in Atomic Spectra (Tables 610-624) Molecular Constants of Diatomic Molecules (Tables 625-625a) The Atmosphere (Tables 626-630) Densities and Humidities of Moist Air (Tables 631-640) The Barometer (Tables 641-648) Atmospheric Electricity (Tables 649-653) Atomic and Molecular Data (Tables 654-659) Abundance of Elements (Tables 660-668) Colloids (Tables 669-682) Electron Emission (Tables 683-689) Kinetic Theory of Gases (Tables 690-696)
232-233 234-238 239-240 241-245 246-258 259-267 268-277 278-281 282-290 291-305 306-308 309-317 318-336 337-353 354-374 375-396 397-403 404-420 421-433 434-450 451-467 468-502 503-508 509-534 535-548 549-556 557-560 561 562-567 568-585 586-591 592-595 596-605 606-613 614-617 618-624 625-629 630-634 635-637 638-624
Atomic and Molecular Dimensions (Tables 697-712) Nuclear Physics (Tables 713-730) Radioactivity (Tables 731-758) X-rays (Tables 759-784) Fission (Tables 785-793) Cosmic Rays (Tables 794-801) Gravitation (Tables 802-807) Solar Radiation (Tables 808-824) Astronomy and Astrophysics (Tables 825-884) Oceanography (Tables 885-899) The Earth's Rotation: Its Variation (Table 900) General Conversion Factors (Table 901) Index
643-650 651-671 672-691 692-705 706-709 710-713 714-718 719-727 728-771 772-779 780 781-785 787
lNTRODUCTION U N I T S OF MEASUREMENT The quantitative measure of anything is expressed by two factors-one, a certain definite amount of the kind of physical quantity measured, called the unit; the other, the number of times this unit is taken. A distance is stated as 5 meters. The purpose in such a statement is to convey an idea of this distance in terms of some familiar or standard unit distance. Similarly quantity of matter is referred to as so many grams ; of time, as so many seconds, or minutes, or hours. The numerical factor definitive of the magnitude of any quantity must depend on the size of the unit in terms of which the quantity is measured. For example, let the magnitude factor be 5 for a certain distance when the mile is used as the unit of measurement. A mile equals 1,760 yards or 5,280 feet. The numerical factor evidently becomes 8,800 and 26,400, respectively, when the yard or the foot is used as the unit. Hence, to obtain the magnitude factor for a quantity in terms of a new unit, multiply the old magnitude factor by the ratio of the magnitudes of the old and new units ; that is, by' the number of the new units required to make one of the old. The different kinds of quantities measured by physicists fall fairly definitely into two classes. In one class the magnitudes may be called extensive, in the other, intensive. T o decide to which class a quantity belongs, it is often helpful to note the effect of the addition of two equal quantities of the kind in question. If twice the quantity results, then the quantity has extensive (additive) magnitude. For instance, two pieces of platinum, each weighing 5 grams, added together weigh 10 grams; on the other hand, the addition of one piece of platinum at 100" C to another at 100" C does not result in a system at 200" C. Volume, entropy, energy may be taken as typical of extensive magnitudes; density, temperature and magnetic permeability, of intensive magnitudes. The measurement of quantities having extensive magnitude is a comparatively direct process. Those having intensive magnitude must be correlated with phenomena which may be measured extensively. In the case of temperature, a typical quantity with intensive magnitude, various methods of measurement have been devised, such as the correlation of magnitudes of temperature with the varying lengths of a thread of mercury.
Fundamental units.-It is desirable that the fewest possible fundamental unit quantities should be chosen. Simplicity should regulate the choicesimplicity first, psychologically, in that they should be easy to grasp mentally, and second, physically, in permitting as straightforward and simple definition as possible of the complex relationships involving them. Further, it seems desirable that the units should be extensive in nature. I t has been found possible to express all measurable physical quantities in terms of five such units : first, geometrical considerations-length, surface, etc.-lead to the need of a length ; second, kinematical considerations-velocity, acceleration, etc.-introduce time ; third, mechanics-treating of masses instead of immaterial points-inSMITHSONIAN PHYSICAL TABLES 1
2 troduces matter with the need of a fundamental unit of mass ; fourth, electrical, and fifth, thermal considerations require two more such quantities. T h e discovery of new classes of phenomena may require further additions. As to the first three fundamental quantities, simplicity and good use sanction the choice of a length, L, a time interval, T , and a mass, M. F o r the measurement of electrical quantities, good use has sanctioned two fundamental quantities-the dielectric constant, K , the basis of the “electrostatic” system, and the magnetic permeability, p, the basis of the “electromagnetic” system. Besides these two systems involving electrical considerations, there is in common use a third one called the “absolute” system, which will be referred to later. F o r the fifth, or thermal fundamental unit, temperature is generally ch0sen.l
Derived units.-Having selected the fundamental o r basic units-namely, a measure of length, of time, of mass, of permeability o r of the dielectric constant, and of temperature-it remains to express all other units for physical quantities in terms of these. Units depending on powers greater than unity of the basic units are called “derived units.” Thus, the unit volume is the volume of a cube having each edge a unit of length. Suppose that the capacity of some volume is expressed in terms of the foot as fundamental unit and the volume number is wanted when the yard is taken as the unit. T h e yard is three times as long as the foot and therefore the volume of a cube whose edge is a yard is 3 x 3 x 3 times as great as that whose edge is a foot. T h u s the given volume will contain only 1/27 as many units of volume when the yard is the unit of length as it will contain when the foot is the unit. To transform from the foot as old unit to the yard as new unit, the old volume number must be multiplied by 1/27, o r by the ratio of the magnitude of the old to that of the new unit of volume. This is the same rule as already given, but it is usually more convenient to express the transformations in terms of the fundamental units directly. I n the present case, since, with the method of measurement here adopted, a volume number is the cube of a length number, the ratio of two units of volume is the cube of the ratio of the intrinsic values of the two units of length. Hence, if I is the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of volume is k . Similarly the ratio of two units of area would be 12, and so on for other quantities.
CONVERSION FACTORS A N D D I M E N S I O N A L F O R M U L A E F o r the ratio of length, mass, time, temperature, dielectric constant, and permeability units the small bracketed letters, [ 1 J , [ m ] , [ t ], [ 01, [ K ] , and [ p ] will be adopted. These symbols will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. W h e n the values of the numbers represented by these small bracketed letters as well as the powers of them involved in any particular unit are known, the factor for the transformation is at once obtained. Thus, in the above example, the value of 1 was 1/3, and the power involved in the expression for volume was 3 ; hence the factor for transforming from cubic feet to cubic yards was P o r 1/33 o r 1/27 These factors will be called conversion factors. 1 Because of its greater psychological and physical simplicity, and the desirability that the unit chosen should have extensive magnitude, it has been proposed to choose as the fourth fundamental quantity a quantity of electrical charge, e . T h e standard units of electrical charge would then be the electronic charge. For thermal needs, entropy has been proposed. While not generally so psychologically easy to grasp as temperature, entropy is of fundamental importance in thermodynamics and has extensive magnitude. (Tolman, R. C., The measurable quantities of physics, Phys. Rev., vol. 9, p. 237, 1917.)
SMlTHSONlAN PHYSICAL TABLES
3 T o find the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities, length, mass, time, etc., are involved. Thus a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or [ L / T ] ,and acceleration by a velocity number divided by an interval-of-time number, or [ L I T 2 ]and , so on, and the corresponding ratios of units must therefore enter in precisely the same degree. The factors would thus be for the just-stated cases, [Z/t] and [ 1 / t 2 ] . Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called dimensional equations. Thus [ E l = [ML2T-'] will be found to be the dimensional equation for energy, and [ M L 2 T 2 ]the dimensional formula for it. These expressions will be distinguished from the conversion factors by the use of bracketed capital letters. In general, if we have an equation for a physical quantity, Q = CLaMbTc, where C is a constant and L , M , T represent length, mass, and time in terms of one set of units, and it is desired to transform to another set of units in terms of which the length, mass, and time are L1,M 1 , T 1 ,we have to find the value of L,/L, M , / M , 1',/T, which, in accordance with the convention adopted above, will be 1, m, t, or the ratios of the magnitudes of the old to those of the new units. Thus L,=Ll, M,=Mnz, T,=Tt, and if Ql be the new quantity number, Q l = CL,ahllbTIC, = CLalaMbmbTCtC= Qlambtc, or the conversion factor is [lambtc], a quantity precisely of the same form as the dimension formula [LaMbTC]. Dimensional equations are useful for checking the validity of physical equations. Since physical equations must be homogeneous, each term appearing in theni must be dimensionally equivalent. For example, the distance moved by a uniformly accelerated body is s=n,t +atz. The corresponding dimensional equation is [ L ]= [ ( L / T )1'3 [ ( L / T 2 )T 2 ] each , term reducing to [ L ] . Dimensional considerations may often give insight into the laws regulating physical phenomena.2 For instance, Lord Rayleigh, in discussing the intensity of light scattered from small particles, in so far as it depends upon the wavelength, reasons as follows :
+
+
The object is to compare the intensities of the incident and scattered ray; for these will clearly be proportional. T h e number (i) expressing the ratio of the two amplitudes is a function of the following quantities:-V, the volume of the disturbing particle; r, the distance of the point under consideration from i t ; A, the wavelength; c , the velocity of propagation of light ; D and D', the original and altered densities : of which the first three depend only on space, the fourth on space and time, while the fifth and sixth introduce the consideration of mass. Other elements of the problem there ar e none, except mere numbers and angles, which do not depend upon the fundamental measurements of space, time, and mass. Since the ratio i, whose expression we seek, is of no dimensions in mass, it follows a t once that D and D' occur only under the form D : D', which is a simple number and may therefore be omitted. It remains to find how i varies with V ,r, A, c. Now, of these quantities, c is the only one depending on time ; and therefore, as i is of no dimensions in time, c cannot occur in its expression. W e are left, then, with V ,r, and A ; and from what we know of the dynamics of the question, we may be sure that i varies directly as V and inversely as Y , and must therefore be proportional t o V t A?, V being of three diBuckingham, E., Phys. Rev., vol. 4,p. 345,1914 ; also Philos. Mag., vol. 42,p. 696, 1921. Philos. Mag., ser. 4, voI. 41, p. 107, 1871. See also Robertson, Dimensional analysis, Gen. Electr. Rev., vol. 33, p. 207, 1930. SMITHSONIAN PHYSICAL TABLES
4 mensions in space. In passing from one part of the spectrum to another h is the only quantity which varies, and we have the important law: When light is Scattered by particles which are very small compared with any of the wavelengths, the ratio of the amplitudes of the vibrations of the scattered and incident light varies inversely as the square of the wavelength, and the intensity of the lights themselves as the inverse fourth power.
The dimensional and conversion-factor formulae for the more commonly occurring derived units are given in Table 30. T A B L E 2.-SOM
E F U NDAM E N T A L DEFl N ITIONS
P a r t 1.-Geometrical
Activity (power).-Time Angle ( 4 j .-The the radian. -4ngstrom.-Unit
and mechanical units
4
rate of doing work; unit, the watt.
ratio of the length of its circular arc to its radius ; unit, of wavelength=
Angular acceleration
z)
(
a= -
.-The
meter. (See Table 522.) rate of change of angular velocity.
Angular momentum ( ZW) .-The product of its moment of inertia about an axis through its center of mass perpendicular to its plane of rotation and its angular velocity. Angular velocity.-The
time rate of change of angle.
Area.-Extent of surface. Unit, a square whose side is the unit of length. The area of a surface is expressed as S = CL', where the constant C depends on the contour of the surface and L is a linear dimension. If the surface is a square and L the length of a side, C is unity ; if a circle and L its diameter, C is x/4. (See Table 31.) Atmosphere.-Unit
of pressure. (See Table 260.)
English normal= 14.7 lb/in.*=29.929 in.Hg= 760.1s mmHg ( 3 2 ° F ) U. S.=760 mmHg (0°C) =29.921 in.Hg= 14.70 Ib/in.' Avogadro number.-Number cules/mole.
of molecules per mole, 6.0228 x loz3mole-
Bar.4"-International unit of pressure lo6 dyne/cni'. Barye.-cgs pressure unit, one dyne/cm2. Carat.-The diamond carat standard in U. S.=200 mg. Old standard= 205.3 mg=3.168 grains. The gold carat: pure gold is 24 carats; a carat is 1/24 part. Circular area.-The square of the diameter = 1.2733 x true area. True area = 0.785398 x circular area. Circular inch.-Area
of circle 1 inch in diameter.
Cubit = 18inches 4*
For dimensional formula see Table 30, part 2. Some writers have used this term for 1 dyne/cm2.
SMITHSONIAN PHYSICAL TABLES
5 Dalton (atomic inass unit R/I,).--Unit of mass, 1/16 inass of oxygen (801e) g (Phys. scale). (See Table 26.) atom, 1.66080 x Density.-The mass per unit volume. The specific gravity of a body is the ratio of a density to the density of a standard substance. Water and air are commonly used as the standard substance. in. ; 1/12 the apparent diameter of the sun or moon. *Diopter.-Unit of “power of a lens.” The diopter = the reciprocal of the focal length in meters. Digit.-3/4
Dyne.-The cgs, unit of force = that unbalanced force which acting for 1 second on body of 1 gram mass produces a velocity change of 1 cm/sec. Energy.-The work done by a force produces either a change in the velocity of a body or a change of its shape or position or both. In the first case it produces a change of kinetic energy, in the second, of potential energy. Erg.-The cgs unit of work and energy = the work done by 1 dyne acting through 1 centimeter. Fluidity.-Reciprocal Foot-pound.-The standard g.
of viscosity. work which will raise 1 pound. body 1 foot high for
Foot-pounda1.-The 1 foot.
work done when a force of 1 poundal acts through
Force ( f ) .-Force is the agent that changes the motion of bodies and is measured by the rate of change of momentum it produces on a free body. Gal = gravity standard = an acceleration of 1 cm set?. Giga = lo9. Gram.-The
standard of mass in the metric system. (See Table 31.)
Gram-centimeter.-The Gram-molecule.-The its molecular weight. Gravitation constant.-( cm2 g-2.
cgs gravitation unit of work. mass in grams of a substance numerically equal to
G, in formula F = Gnz,wz2/rZ) = 6 . 6 7 0 ~lo-*dyne
Gravity (g).-The attraction of the earth for any mass. It is measured by the acceleration produced on the mass under standard conditions. This acceleration g equals 980.665 cm sec-* or 32.17 ft sec-*. Horsepower.-A unit of mechanical power. The English and American horsepower is defined by some authorities as 550 foot-pounds/sec and by others as 746 watts. The continental horsepower is defined by some authorities as 75 kgm/sec and by others as 736 watts. Joule.-Unit of work (energy) = lo7 ergs. Joules = (volts2 x sec)/ ohms = watts x sec = amperes2 x ohms x sec = volts x amperes x sec. Kilodyne.-1
,OOO dynes. About 0.980 gram weight.
SMITHSONIAN PHYSICAL TABLES
6
mv2 energy associated with the motion = - in ergs if 2 m i s in grams and v in cni/sec. Kinetic energy.-The
(
Linear acceleration
a= $).-The
rate of change of velocity.
Table 32.
Liter.-See
Loschmidt number.-The number of molecules per cm3 of an ideal gas at 0°C and normal pressure = 2.6S70 x 10l9molecules/cm3. Megabaryes.-Unit of pressure = 1,000,000 baryes = 1 bar = 0.957 atmosphere. Meter.-See Table 31. Micro.-A Micron
prefix indicating the millionth part. (See Table 901.) (p)
= one-millionth of a meter = one-thousandth of a millimeter.
Mil.-One-thousandth Mile.-Statute Mil1i.-A
of an inch.
= 5,280 feet; nautical or geographical = 6,050.20 feet.
prefix denoting the thousandth part.
Modulus of elasticity.-Ratio of stress to strain. The dimension of strain, a change of length divided by a length, or change of volume divided by a volume, is unity. Mole or mo1.-Mass
equal numerically to molecular weight of substance.
Momentum ( M = mv) .-The quantity of motion in the Newtonian sense ; the product of the mass and velocity of the body. Moment of inertia ( I ) of a body about an axis is the 2mr2,where m is the mass of a particle of the body and r its distance from the axis. Newton.-The 3, part 2.)
unit of force in the MKS system = lo5 dynes. (See Table
Pound weight.-A force equal to the earth's attraction for a mass of 1 pound. This force, acting on 1 lb mass, will produce an acceleration of 32.17 ft/sec2. Pounda1.-The ft-lb sec unit of force. That unbalanced force which acting on a body of 1 lb mass produces an acceleration of 1 ft/sec2.
Pi (~)=3.1416. (See Table 11.) Power.-Activity
(p ="d) is the time rate of doing work.
Radian.-An angle subtended by an arc equal to the radius. This angle equals 180°/r= 57.29578" = 57" 17'45" =206265'! Resilience.-The work done per unit volume of a body in distorting it to the elastic limit or in producing rupture, (32.17 lb) acquiring acceleration 1 ft s e P when continuously Slug.-Mass acted upon by force of 1 lb weight. SMITHMNIAN PHYSICAL TABLES
7 Strain.-The mension.
deformation produced by a stress divided by the original di-
Stress.-The tion.
force per unit area of a body that tends to produce a deforma-
Tenth-meter.-lO-l,O
meter = 1 angstrom.
Torque, moment of a couple, about an axis is the product of a force and the distance of its line of action from the axis. Volume.-Extent of space. Unit, a cube whose edge is the unit of length. The volume of a body is expressed as V = CL8. The constant C depends on the shape of the bounding surfaces. Velocity (v=
%) is distance traversed per unit time.
Viscosity.-The property of a liquid by virtue of which it offers resistance to flow. The coefficient of viscosity is the tangential force that must be applied to the upper surface of a 1-cni cube of the liquid on an edge to produce a velocity of 1 cm/sec in the face when the lower face is at rest. W o r k (W).-The work done by an unbalanced force is the product of the force by the component of the resulting displacement produced in the direction of the force. Young's modulus.-Ratio of longitudinal stress within the proportional limit to the corresponding longitudinal strain. Part P.-Hert
Unit85
Blackbody.-A body that absorbs all the radiation that falls upon it. From this definition and certain assumptions it can be shown that its total radiation = uT' (Stefan-Boltzmann Law) and that the spectral distribution of the radiation is given by the Planck Law : 5a
Brightness temperature (S).-The temperature of a non-blackbody determined from its brightness (with an optical pyrometer, see Table 77) as rf it were a blackbody. Such temperatures are always less than the true temperatures. British thermal unit (Btu).-The amount of heat required to raise 1 pound of water at 60"F,1°F. This unit is defined for various temperatures, but the general usage seems to be to take the Btu as equal to 252 calories. (See calorie. See Table 7.) Calorie.-The amount of heat necessary to raise 1 gram of water at 15"C, 1o r I L.
5
For dimensional formulas see Table 30, part 2.
m An
easier way to write this exponential term is:
This form will be used hereafter. SMITHSONIAN PHYSICAL TABLES
8 There are various calories depending upon the interval chosen. Sometimes the unit is written as the gram-calorie or the kilogram-calorie, the meaning of which is evident. There is some tendency to define the calorie in terms of its mechanical equivalent. Thus the National Bureau of Standards defines the calorie as 4.18400 joules. At the International Steam Table Conference held in London in 1929 the international calorie was defined as 1/860 of the international watt hour (see Table 7), which made it equal to 4.1860 international joules. With the adoption of the absolute system of electrical units, this becomes 1/859.858 watt hours or 4.18674 joules. The Btu was defined at the same time as 251.996 international calories. Thus, until such a time as these differences are taken care of, there will be some confusion. Celsius temperature scale.-The present-day designation of the scale formerly known as the Centigrade scale. C entigrade temperature scale.-The temperature scale that divides the interval between the ice point, taken as O'C, and the boiling point of water with 100". Coefficient of thermal expansion.-Ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal), to the change of temperature. Color temperature ( T s ).-The color temperature of a non-blackbody is the temperature at which it is necessary to operate the blackbody so that the color of its emitted light will match that of the source studied. Emissivity.-Ratio of the energy radiated at any temperature by a nonblackbody to that radiated by a blackbody at the s a n e temperature. The spectral emissivity is for a definite wavelength, and the total emissivity is for all wavelengths. Entha1py.-Total energy that a system possesses by virtue of its temperature. Thus, where U is the internal energy, then the enthalpy = U PV where PV represents the external work.
+
Entropy.-A unavailable.
measure of the extent to which the energy of the system is
Fahrenheit temperature scale.-A scale based on the freezing point .of water taken as 32" and the boiling point of water taken as 212". Graybody.-A
body that has a constant emissivity for all wavelengths.
Heat.-Energy transferred by a thermal process. Heat can be measured in terms of the dynamical units of energy, as the erg, joule, etc., or in terms of the amount of energy required to produce a definite thermal change in some substance, as for example the energy required per degree to raise the temperature of a unit miLss of water at some temperature. The mechanical unit of heat has the dimensional formula of energy ( M L 2 T 2 ) .The thermal unit ( H ) ,as used in many of these tables, is ( M e ) where 0 denotes a temperature interval. Joule's equivalent (J) o r the mechanical equivaient of heat.-Conversion factor for changing an expression of mechanical energy into an expression of thermal energy or vice versa (4.1855 J/cal). 6Gen. Electr. Rev., vol. 47, p. 26, 1944. SMITHSONlAN PHYSICAL TABLES
9 Kelvin temperature scale.-Scale of temperature based on equal work for equal temperatures for a working substance in a carnot cycle = Celsius (Centigrade) scale 273.16.
+
Langley (ly).-A new unit of radiation, surface density, has been suggested which equals 1 calorie ( lS°C) per cm?. L a t e n t heat.-Quantity of matter. Pyron.-A
of heat required to change the state of a unit mass
unit of radiant intensity = 1 cal cniP inin-l.
Radiant energy.-Energy
traveling in the form of electromagnetic waves.
Radiant temperature.-The temperature obtained by use of a total radiation pyrometer when sighted upon a non-blackbody. This is always less than the true temperature. R a n k i n temperature scale.-Absolute scale 459.7.
+
Fahrenheit scale = Fahrenheit
R e a u m u r temperature scale.-A scale based upon the freezing point of water taken as 0"R and the boiling point of water taken as SOOR. Specific heat.-Ratio of the heat capacity of a substance to the heat capacity of an equal mass of water. When so expressed, the specific heat is a diniensionless number. Standard temperature.-A temperature that depends upon some characteristic of some substance, such as the melting, boiling, or freezing point, that is used as a reference standard of temperature. T h e r m a l capacitance.-The
heat capacity of a hody is the limiting value,
as T approaches zero, of the ratio
A 0
L* where A T is the rise in temperature AT resulting from the addition to the body of a quantity of heat equal to A Q .
T h e r m a l conductivity.-Quantity of heat, Q , which flows normally across a surface of unit area per unit of time and per unit of temperature gradient normal to the surface. In thermal units it has the tliinensional forinula ( HO-lL-lT-l)or (ML-'T-'), in mechanical units ( I I ~ L T - ~ O P ) . Thermodynamic temperature.-See Thermodynamics.-Study
Kelvin teinperature scale.
of the flow of heat.
Thermodynamic laws : Zeroth ln.iu.-Two systems that are in thermal equilibrium with a third are in thermal equilibrium with each other. First low: When equal quantities of niechanical effect are produced by any means whatever from purely thermal effects, equal quantities of heat are put out of existence or are created. S'ccoizd lnzw: It is impossible to transfer heat from a cold body to a hot body without the perfornlance of mechanical work. Third lnzv: I t is impossible by any means whatever to superpose only the images of several light sources to obtain an image brighter than the brightest of the source. 7
Aldrich et al., Science, vol. 106, p. 225, 1947.
SMITHSONIAN PHYSICAL TABLES
10 Part 3.-Electric
and Magnetic Units
A system of units of electric and magnetic quantities requires four fundamental quantities. A system in which length, mass, and time constitute three of the fundamental quantities is known as an “absolute” system. There are two abso1u:e systems of electric and magnetic units. One is called the electrostatic, in which the fourth fundamental quantity is the dielectric constant, and one is called the electromagnetic, in which the fourth fundamental quantity is magnetic permeability. Besides these two systems there will be described a third, to be known as the absolute system, that was introduced January 1, 1948. (See Table 4.) I n the electrostatic system, unit quantity of electricity, Q, is the quantity which exerts unit mechanical force upon an equal quantity a unit distance from it in a vacuum. From this definition the dimensions and the units of all the other electric and magnetic quantities follow through the equations of the mathematical theory of electromagnetism. The mechanical force between two quantities of electricity in any medium is
Q Q’ F= -
KrZ ’
where K is the dielectric constant, characteristic of the medium, and r the distance between the two points at which the quantities Q and Q‘ are located. K is the fourth quantity entering into dimensional expressions in the electrostatic system. Since the dimensional formula for force is [ M L T 2 ] ,that for Q is [M’LZ T ’ K ’ ] . The electroinagnetic system is based upon the unit of the magnetic pole strength (see Table 466). The dimensions and the units of the other quantities are built up from this in the same manner as for the electrostatic system. The mechanical force between two magnetic poles in any medium is m d F= pr2 ’
in which p is the permeability of the medium and Y is the distance between two poles having the strengths m and m‘. p is the fourth quantity entering into dimensional expressions in the electromagnetic system. I t follows that the dimensional expression for magnetic pole strength is [M’L:T 1 p * ] . The symbols K and p are sometimes omitted in tlie dimensional formulae so that only three fundamental quantities appear. There are a number of objections to this. Such formulae give no information as to the relative magnitudes of the units i n the two systems. The omission is equivalent to assuming some relation between mechanical and electrical quantities, or to a nlechanical explanation of electricity. Such a relation or explanation is not known. The properties I< and p are connected by the equation I / V / K p = v , where v is the velocity of an electromagnetic wave. For empty space or for air, K and p being measnred in tlie same units, 1VKp=c, where c is the velocity of light in vacuo, 2 . 9 9 7 7 6 ~10’O cni per sec. It is sometimes forgotten that the omission of the dimensions of K or p is merely conventional. For instance, magnetic field intensity and magnetic induction apparently have the same dimensions when p is omitted. This results in confusion and difficulty in understantling the theory of magnetism. The suppression of p has also led to the use of the “centimeter” as a unit of capacity and of inductance ; neither is physically the same as length. SMITHSONIAN PHYSICAL TABLES
11 ELECTROSTATIC SYSTEM
Capacitance of an insulated conductor is proportional to the ratio of the quantity of electricity in a charge to the potential of the charge. The dimensional formula is the ratio of the two formulae for electric quantity and potential or [M'L:T-lK'/M'L'T-'K-'] or [ L K ] . Conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the current flowing through it to the difference of potential between its ends. The dimensional formula is the ratio of the formulae for current and potential or [M'L;T-2K'/M'L'T'K-i] or [ L T - l K ] . Electrical conductivity, like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is [ M ' L g T ' K 4 / L 2 ( M 4 L *TT-'Ki / L ) T ] or [ T ' K ] . Electric current (statampere-unit quantity) is quantity of electricity flowinn through a cross section per unit of time. The dimensional formula is the raTio of tKe formulae for electric quantity and for time or [ M * L > P K ' / T or ] [M3L;T2K'], Electric field intensity strength at a point is the ratio of the force on a quantity of electricity at a point to the quantity of electricity. The dimensional formula is therefore the ratio of the formulae for force and electric quantity or [ M L T-2/M L 2 T-lK' ] or [ h14L-3 T-lK-' I . Electric potential difference and electromotive force (emf) (statvoltwork = 1 erg) .-Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is the ratio of the formulae for work and electrical quantity or [ML2Z'2/M'L;T1K4]or [MiLiT-'K-']. Electric surface density of an electrical distribution at any point on a surface is the quantity of electricity per unit area. The dimensional formula is the ratio of the formulae for quantity of electricity and for area or [ M'L-' T ' K ' ] . Quantity of electricity has the dimensional formula [ M' LZT' K ' ] , as shown above. Resistance is the reciprocal of conductance. The dimensional formula is EL-'TK-']. Resistivity is the reciprocal of conductivity. The dimensional formula is [ TK-'1 . Specific inductive capacity is the ratio of the inductive capacity of the substance to that of a standard substtnce and therefore is a number. Exs.-Find the factor for converting quantity of electricity expressed in ft-grain-sec units to the same expressed in cgs units. The formula is Im*lgt-'k'], in which m=0.0648, 1 = 30.48, t = 1, k = 1 ; the factor is 0.06483 X 30.481, or 42.8. Find the factor reauired to convert electric ootential from mm-mp-sec units to CPS units. The formula is [ m ' l * t - l / d ] ,in which m =b.OOl, 1 = 0.1, t = 1, k-= 1 ; the factor is 0.001, x 0.14, or 0.01. Find the factor required to convert electrostatic capacity from ft-grain-sec and specificinductive capacity 6 units to cgs units. The formula is [Ikl in which I = 30.48, k = 6; the factor is 30.48 X 6 , or 182.88. Y
SMITHSONIAN PHYSICAL TABLES
12 ELECTROMAGNETIC SYSTEM
Many of the magnetic quantities are analogues of certain electric quantities. The dimensions of such quantities in the electromagnetic system differ from those of the corresponding electrostatic quantities in the electrostatic system only in the substitution of permeability p for K. Conductance is the reciprocal of resistance, and the dimensional formula is [L-'Tp-11. Conductivity is the quantity of electricity transmitted per unit area per unit potential gradient per unit of time. The dimensional formula is [M'L'p-'/ L2(MfLgT-2p.1/L) TI or [L-*Tp-']. Current, I (abampere-unit magnetic field, Y = 1 cm), flowing in circle, radius r, creates magnetic field at its center, 2 ~ l / r .Dimensional formula is product of formulae for magnetic field intensity and length or [M'L'Fp-'I. Electric field intensity is the ratio of electric potential or electroinotive force and length. The dimensional formula is [M'L*T L p ' ] . E le ctric potential, or electromotive force (emf) (abvolt-work- 1 erg), as in the electrostatic system, is the ratio of work to quantity of electricity. The dimensional formula is [ML2T-'/M'L'p-'] or [M'LI T ' p ' ] . Electrostatic capacity is the ratio of quantity of electricity to difference of potential. The dimensional formula is [ L-'T2p-']. I n t e n s i t y of magnetization ( I ) of any portion of a magnetized body is the ratio of the magnetic moinent of that portion and its volume. The dimensional formula is [MfLgT-1pL1/L3] or [M'L-'?"'p*]. Magnetic field str e n g t h , magnetic i n t e n s i t y or magnetizing f o r c e ( I ) is the ratio of the force on a magnetic pole placed at the point and the magnetic pole strength. The dimensional formula is therefore the ratio of the formulae for a force and magnetic quantity, or [MLT2/M'LzT-'p']or [M*L-'T-'p-*]. Magnetic flux (a) characterizes the magnetized state of a magnetic circuit. Through a surface enclosing a magnetic pole it is proportional to the magnetic pole strength. The dimensional formula is that for magnetic pole strength. Magnetic induction ( B ) is the magnetic flux per unit of area taken perpendicular to the direction of the magnetic flux. The dimensional formula is [ M'Lz T-'p4/L2]or [M'L -*T-'p']. Magnetic moment ( M ) is the product of the pole strength by the length of the magnet. The dimensional formula is [M'LzT'lp.l]. Magnetic pole s t r e n g t h or q u a n t i t y of magnetism been shown to have the dimensional formula [M'L;T-'p'].
(11%)
has already
Magnetic potential or magnetomotive force at a point is measured by the work which is required to bring unit quantity of positive magnetism from zero potential to the point. The dimensional formula is the ratio of the formulae for work and magnetic quantity [ M L 2 T 2 / X i L ~ T - ' por * ][M'L'T-'p-*]. Magnetic reluctance is the ratio of magnetic potential difference to magnetic flux. The dimensional formula is [ L ? p - l ] . SMITHSONIAN PHYSICAL TABLES
Magnetic susceptibility ( K ) is the ratio of intensity of magnetization produced and the intensity of the magnetic field producing it. The dimensional formula is [M'L-'T-'p'/M'L-'T-' P 1 or [PI.
-'
Mutual inductance of two circuits is the electromotive force produced in one per unit rate of variation of the current in the other. The dimensional formula is the same as for self-inductance. Peltier effect, coefficient of, is measured by the ratio of the quantit,ppf heat and quantity of electricity. The diinensional formula is [ML2T2/M1L p '1 or [M*L~T-'p*], the same as for electromotive force. Q u a n t i t y of electricity is the product of the current and time. The diniensional formula is [M'L1p-+]. Resistance of a conductor is the ratio of the difference of potential between its ends and the constant current flowing. The dimensional formula is [ll,f1L T-?p1/M4L1T-1p -& ] or [ L T - l p ] . Resistivity is the reciprocal of conductivity as just defined. The dimensional formula is [ L 2 T 1 p ] . Self-inductance is for any circuit the electromotive force produced in it by unit rate of variation of the current through it. The dimensional formula is the product of the formulae for electromotive force and time divided by that for current or [ M 1 L 8 T 2 p 1 ~ T ~ M ' L ' T - 1 p - or 1] [ L p ] . Thermoelectric power is measured by the ratio of electromotive force and temperature. The dimensional formula is [ M'L2T-'pW1]. Exs.-Find the factor required to convert intensity of magnetic field from ft-grain-min units to cgs units. The formula is [ m ~ / - ~ f - l p;&~n l = 0.0645, 1 = 30.48, t = 60, and p = 1 ; the factor is 0.0648: X 30.45-:, or 0.046108. How many cgs units of magnetic moment make one ft-grain-sec unit of the same quantity? The formula is [ m i l t-'p!I ; 1% = 0.0648. 1 = 30.48, f = 1, and p = 1 ; the number is 0.06481 x 30.48a, or 1305.6, If the intensity of magnetization of a steel bar is 700 in cgs units, what will it be in mm-mg-sec units? The formula is [ ? t z + l ~ f - * p; *m ] = 1000, 1 = 10, t = 1, p = 1 ; the intensity is 700 x 1000' X ,lo', or 70000. Find the factor required to convert current from cgs units to earth-quadrant-lO-= gram-sec units. The formula is [ ~ n * l + t - ' p - ;~ Inz = lo", 1 = lo-@,p = 1 ; the factor is 10V x lo-!, or 10. Find the factor required to convert resistance expressed in cgs units into the same expressed in earth-quadrant-10"' gram-sec units. The formula is [ I t P p l ; I = lo-', t = 1, p = 1 ; the factor is lo-'. TABLE 3.-FUNDAMENTAL
Part 1.-Selection
STANDARDS
of fundamental quantities
The choice of the nature of the fundamental quantities already made does not sufficiently define the system for measurements. Some definite unit or arbitrarily chosen standard must next be taken for each of the fundamental quantities. This fundamental standard should hzve the qualities of permanence, reproducibility, and availability and be suitable for accurate measures. Once chosen and made it is called the primary standard and is generally kept at some central bureau-for instance, the International Bureau of Weights and Measures at Scvres, France. A primary standard may also be chosen and made for derived units (e.g., the new absolute (1945) ohm standard.), when it is simply a standard closely representing the unit and accepted for practieal SMITHSONIAN PHYSICAL TABLES
14 purposes, its value having been fixed by certain measuring processes. Secondary or reference standards are accurately compared copies, not necessarily duplicates, of the primaries for use in the work-of standardizing laboratories and the production of working standards for everyday use.
Standard of length.-The primary standard of length which now almost universally serves as the basis for physical measurements is the meter. I t is defined as the distance between two lines at 0" C on a platinum-iridium bar deposited at the International Eureau of Weights and Measures. This bar is known as the International Prototype Meter, and its length was derived from the ''metre des Archives," which was made by Eorda. Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten-millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In 1795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Barcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the meter bar was made by Corda. The meter is now defined as above and not in terms of the meridian length ; hence, subsequent measures of the length of the meridian have not affected the length of the meter. S t a n d a r d of mass.-The primary standard of mass now almost universally used as the basis for physical measurements is the kilogram. It is defined as the mass of a certain piece of platinum-iridium deposited at the International Bureau of Weights and Measures. This standard is known as the International Prototype Kilogram. Its mass is equal to that of the older standard, the "kilogram des Archives," made by Borda and intended to have the same mass as a cubic decimeter of distilled water at the temperature of 4" C. Copies of the International Prototype Meter and Kilogram are possessed by the various governments and are called National Prototypes. unit of time universally used is the mean solar S t a n d a r d of time.-The second, or the 86400th part of the mean solar day. It is based on the average time of one rotation of the earth on its axis relatively to the sun as a point of reference= 1.002 737 91 sidereal second. S t a n d a r d of temperature.-The standard scale of temperature, adopted by the International Committee of Weights and Measures ( 1887), depends on the constant-volume hydrogen thermometer. The hydrogen is taken at an initial pressure at 0" C of 1 meter of mercury, 0" C, sea-level at latitude 45". The scale is defined by designating the temperature of melting ice as 0" and of condensing steam as 100" under standard atmospheric pressure. Thermodynamic (Kelvin) Scale (Centigrade degrees).-Such a scale independent of the properties of any particular substance, and called the thermodynamic, or absolute scale, was proposed in 1848 by Lord Kelvin. The temperature is proportional to the average kinetic energy per molecule of a perfect gas.
International temperature scale.-See
Table 37.
Numerically different systems of units.-The fundamental physical quantities which form the basis of a system for measurements have been chosen and the fundamental standards selected and made. Custom has not however SMITHSONIAN PHYSICAL TABLES
15 generally used these standards for the measurement of the magnitudes of quantities but rather multiples or submultiples of them. For instance, for very small quantities the niicron ( p ) or one-millionth of a meter is often used. The following table gives some of the systems proposed, all built upon the fundamental standards aIready described. The centimeter-gram-second (cni-g-sec o r cgs) system proposed by Kelvin is the only one generally accepted. proposed systems o f units
Part 2.-Some
Length . . . . . Mass . .. .... Time
... . . ..
Giorgi
Weber and Gauss
Kelvin
MKS
France 1914
B. A. Corn.,
Practical
( R . A. Corn.,
ces
Moon 1891
(Prim. Stds.)
nim mg
cm R
dm Kg
m Kg
m
m
lO'cm
loeg
g
lo-" g
lO'cm lo-' g
sec
sec
sec
sec
sec
sec
sec
S
1863
1873)
Strout 1891
S
10
Further, the choice of a set of fundamental physical quantities to form the basis of a system does not necessarily determine how that system shall be used in measurements. In fact, upon any sufficient set of fundamental quantities, a great many different systems of units may be built. The electrostatic and electromagnetic systems are really systems of electric quantities rather than units. They were based upon the relationships F = QQ'/Kr' and 112712'/p~~,respectively. Systems of units built upon a chosen set of fundamental physical quantities may differ in two ways: ( 1 ) the units chosen for the fundamental quantities may be different ; (2) the defining equations by which the system is built may be different. The electrostatic system generally used is based on the centimeter, gram, second, and dielectric constant of a vacuum. Other systems have appeared, differing from this in the first way-for instance using the foot, grain, and second in place of the centimeter, gram, and second. A system differing from it in the second way is that of Heaviside which introduces the factor 4x at different places than is usual in the equations. There are similarly several systems of electromagnetic units in use. Gaussian systems.-"The complexity of the interrelations of tlie units is increased by the fact that not one of the systems is used as a whole, consistently for all electromagnetic quantities. The 'systems' at present used are therefore combinations of certain of the systems of units." Some writers on the theory of electricity prefer to use what is called a Gaussian system, a combination of electrostatic units for purely electrical quantities and electromagnetic units for magnetic quantities. There are two such Gaussian systems in vogue-one a combination of cgs electrostatic and cgs electromagnetic systems, and the other a combination of the two corresponding Heaviside systems. 1Vhen a Gaussian system is used, caution is necessary when an equation contains both electric and magnetic quantities. A factor expressing tlie ratio between the electrostatic and electromagnetic units of one of the quantities has to be introduced. This factor is the first or second power of c, the number 8 Circular 60 of the National Bureau of Standards, Electric Units and Standards, 1916. The subsequent matter in this introduction is based upon this circular. For example, A. G. Webster, Theory of electricity and magnetism, 1897; J. H. Jeans, Electricity and magnetism, 1911 ; H. A. Lorentz, The theory of electrons, 1909; and 0. W. Richardson, T h e electron theory of matter, 1914.
SMlTHSONIAN PHYSICAL TABLES
16 of electrostatic units of electric charge in one electromagnetic unit of the same. There is sometimes a question as to whether electric current is to be expressed in electrostatic or electromagnetic units, since it has both electric and magnetic attributes. I t is usually expressed in electrostatic units in the Gaussian system. It may be observed from the dimensions of K given in Table 2, part 3, that [ I / K p ]= [ L 2 / T 2 ]which has the dimensions of a square of a velocity. This velocity was found experimentally to be equal to that of light, when K and p were expressed in the same system of units. Maxwell proved theoretically that l/V/Kp is the velocity of any electromagnetic wave. This was subsequently proved experimentally. When a Gaussian system is used, this equation becomes c / V K i = z * . For the ether K = 1 in electrostatic units and p= 1 in electromagnetic units. Hence c=v for the ether, or the velocity of an electromagnetic wave in the ether is equal to the ratio of the cgs electromagnetic to the cgs electrostatic unit of electric charge. This constant c is of primary importance in electrical theory. Its most probable value is 2.99776 x 1O’O centimeters per second. Part 3.-Electrical
and magnetic units
Absolute (“practical”) electromagnetic system (1948).-This electromagnetic system is based upon the units of lo9 cm, g, the sec and p of the ether. The principal quantities are the resistance unit, the ohm= lo8 emu units; the current unit, the ampere= lo-’ emu units; and the electromotive force unit, the volt = lo8 emu units. (See Table 6.)
The International electric units.-The units used before January 1, 1948, in practical electrical measurements, however, were the “International Units.” They were derived from the “practical” system just described, or as the latter is sometimes called, the “absolute” system. These international units were based upon certain concrete standards that were defined and described. With such standards electrical comparisons can be more accurately and readily made than could absolute measurements in terms of the fundamental units. Two electric units, the international ohm and the international ampere, were chosen and made as nearly equal as possible to the ohm and ampere of the “practical” or “absolute” systeni.1° Q U A N T I T Y O F ELECTRICITY
The unit of quantity of electricity is the coulomb. The faraday is the quantity of electricity necessary to liberate 1 gram equivalent in electrolysis. It is equivalent to 96,488 absolute coulombs (Birge). Standards.-There are no standards of electric quantity. The silver voltameter may be used for its measurement since under ideal conditions the mass of metal deposited is proportional to the aiiiount of electricity which has flowed. CAPACITY
The unit used for capacity is the microfarad or the one-millionth of the farad, which is the capacity of a condenser that is charged to a potential of 1 volt by 1 coulomb of electricity. Capacities are commonly measured by comparison with standard capacities. The values of the standards are determined by 1OThere was, however, some slight error in these values that had to be taken into account for accurate work. (See Table 5.) SMITHSONIAN PHYSICAL TABLES
17 measurement in terms of resistance and tiiiie. T h e standard is some form of condenser consisting of two sets of metal plates separated by a dielectric. T h e condenser should be surrounded by a metal shield connected to one set of plates rendering the capacity independent of the surroundings. A n ideal condenser would have a constant capacity under all circumstances, with zero resistance in its leads and plates, and no absorption in the dielectric. Actual condensers vary with tlie temperature, atmospheric pressure, and the voltage, frequency, and time of charge and discharge. A well-constructed air condenser with heavy metal plates and suitable insulating supports is practically free from these effects and is used as a standard of capacity. Practically, air-condenser plates must be separated by 1 mrn or more and so cannot be of great capacity. T h e more the capacity is increased by approaching the plates, the less the mechanical stability and the less constant the capacity. Condensers of great capacity use solid dielectrics, preferably mica sheets with conducting plates of tinfoil. A t constant temperature the best mica condensers are excellent standards. The dielecti ic absorption is sinall but not quite zero, SO that tlie capacity of these stantlards found varies with different methods of measurement, so for accurate results care must be taken. INDUCTANCE
T h e henry, the unit of self-inductance and also the unit of mutual inductance, is the inductance in a circuit when the electromotive force induced i n this circuit is 1 volt, while the inducing current varies at the rate of 1 ampere per second.
Inductance standards.-Inductance standards are measured in international units in terms of resistance and time or resistance and capacity by alternate-current bridge methods. Inductances calculated froni dimensions are in absolute electroniagnetic units. T h e ratio of the international to the absolute henry is the same as the ratio of tlie corresponding ohms. Since inductance is measured i n terms of capacity and resistance by the Iiridge method ahout as siinply and as conveniently as by comparison with standard inductances, it is not necessary to maintain standard inductances. They are however of value i n magnetic, ~lternating-current, antl absolute electrical measurenients. A standard inductance is a circuit so wound that when used i n a circuit it adds a definite ainount of inductance. I t must have either such a form o r so great an inductance that the mutual inductance of tlie rest of the circuit upon it may he negligible. I t usually is a wire coil wound all in tlie saiiie direction to make sel f-induction a iiiaxiniuiii. X standard. tlie inductance of which may be calculated from its dimensions, should be a single layer coil of very simple geometrical form. Stantlards of very siiiall inductance, calculable from their tliiiiensions, are of soiiie simple device, such as a pair of parallel wires or a single turn of wire. With such standards great care must be used that tlie mutual inductance upon them of tlie leads and other parts of tlie circuit is negligil)le. Any intluctance standard should be separated by long leads from the measuring bridge or other apparatus. It must be wound so that the distributed capacity between its turns is neg1igil)le ; otherwise the apparent inductance will vary with tlie frequency. POWER A N D ENERGY
Power and energy, although mechanical antl not primarily electrical quantities, are nieasural)le with greater precision I)y electrical methods than in any SMITHSONIAN PHYSICAL TABLES
18 other way. The watt and the electric units were so chosen in terms of the cgs units that the product of the current in amperes by the electromotive force in volts gives the power in watts (for continuous or instantaneous values). The watt is defined as the energy expended per second by an unvarying electric current of 1 ampere under an electric pressure of 1 volt. Standards and measurements.-No standard is maintained for power or energy. Measurements are always made in electrical practice in terms of some of the purely electrical quantities represented by standards. MAGNETIC U N I T S
Cgs units are generally used for magnetic quantities. American practice is fairly uniform in names for these units : the cgs unit of magnetomotive force is called the gilbert; magnetic intensity, the oersted; magnetic induction, the gauss; magnetic flux, the waxwell, following the definitions of the American Institute of Electrical Engineers ( 1894). Oersted, the cgs emu of magnetic intensity exists at a point where a force of 1 dyne acts upon a unit magnetic pole at that point, i.e., the intensity 1 cm from a unit magnetic pole. Maxwell, the cgs emu magnetic flux is the flux through a cm2 normal to a field a t 1 cm from a unit magnetic pole. Gauss, the cgs emu of magnetic induction has such a value that if a conductor 1 cm long moves through the field at a velocity of 1 cm/sec, length and induction mutually perpendicular, the induced emf is 1 abvolt. Gilbert, the cgs emu of magnetomotive force is a field such that it requires 1 erg of work to bring a unit magnetic pole to the point. A unit frequently used is the ampere-turn. It is a convenient unit since it eliminates 4~ in certain calculations. It is derived from the “ampere turn per cm.” The following table shows the relations between a system built on the ampere-turn and the ordinary magnetic units.” 11
Dellinger, International system of electric and magnetic units, Nat. Bur. Standards
Bull., vol. 13, p. 599, 1916. P a r t 4.-The
ordinary and the ampere-turn magnetic units Ordinary magnetic units
Quantity
Magnetomotive force ....... 3 Magnetizing force .......... H
+
Magnetic flux .............. Magnetic induction ......... B Permeability ............... p Reluctance ................. R Magnetization intensity ..... J Magnetic susceptibility ...... K Magnetic pole strength. . . . . . m
SMITHSONIAN PHYSICAL TABLES
{
gilbert gilbert per cm maxwell maxwell per cm2 gauss oersted
Ampere-turn units
ampere-turn ampere-turn per cm maxwell maxwell per cm2 {gauss
{
ampere-turn per maxwell maxwell per cm‘ maxwell
Ordinary units in 1 ampereturn unit
4s/10 4s/10
1 1
1 4s/10 1/4s 1/4s
1 /4s
19 T A B L E 4.-THE
NEW (1948) S Y S T E M O F E L E C T R I C A L U N I T S 1 2
In pursuance of a decision of the International Committee on Weights and Measures, the National Bureau of Standards introduced, as of January 1, 1948, revised values of the units of electricity. This consummated a movement, initiated in 1927 by the American Institute of Electrical Engineers, asking that the National Bureau of Standards undertake the additional research necessary in order that the absolute ohm and absolute ampere based on the cgs electromagnetic systein and the absolute volt, watt, and other units derived from them could be legalized in place of the international ohm and ampere and their derived units. This work was done, and the magnitude of the old international units in terms of the adopted absolute units is given in Table 5. This means that the electrical units now in use represent, as nearly as it is possible to make them, exact multiples of the cgs emu system, with the numerical relations shown in Table 6. Units of the new systeni will actually be maintained, as were the old international units, by groups of standard resistors and of standard cells, and consequently the change to be made is most simply represented by stating the relative magnitudes of the ohms and of the volts of the two systems. During the period of transition to the new units, in order to avoid any doubt as to the units used in giving precise data, the International Committee on Weights and Measures recomnlended that the abbreviations int. and abs. be used with the names of the electrical units. In a few years this will be unnecessary, except when referring to old data. The international units were intended to be exact multiples of the units of the centimeter-gram-second electromagnetic system, but to facilitate their reproduction, the ampere, the ohm, and the volt were defined by reference to three physical standards, namely (1) the silver voltameter, ( 2 ) a specified column of mercury, and (3) the Clark standard cell. This procedure was recommended by the International Electrical Congress of 1893 in Chicago and was incorporated in an Act of Congress of July 12, 1894. However, modifications of the international systeni were found to be necessary or expedient for several reasons. The original proposals were not sufficiently specific to give the precision of values that soon came to be required, and the independent definitions of three units brought the system into confiict with the customary simple form of Ohm’s Law, Z=E/R. Furthermore, with the establishment of national standardizing laboratories in several of the larger countries, other laboratories no longer needed to set up their own primary standards, and facility of reproduction of those standards became less important than the reliability of the units. I n preparation for the expected change in units, laboratories in several countries made absolute measurements of resistance and of current. The results of these measurements and the magnitudes of the international units as maintained in the national laboratories of France, Great Britain, Germany, Japan, the U.S.S.R., and the United States were correlated by periodic comparisons of standard resistors and of standard cells sent to the International Bureau of Weights and Measures. Nearly all the absolute measurements at the National Bureau of Standards were carried out under the direct supervision of Harvey L. Curtis, and the results of such measurements at the Bureau accepted by the International Committee on Weights and Measures at its meeting in Paris in October 1946 are as follows : 1 mean international ohm = 1.00049 absolute ohms 1 mean international volt = 1.00034 absolute volts 12Nat. Bur. Standards Circ. C-459, 1947. SMITHSONIAN PHYSICAL TABLES
20 The mean international units to which the above equations refer are the averages of units as maintained in the national laboratories of the six countries (France, Germany, Great Britain, Japan, U.S.S.R., and U.S.A.) which took part in this work before the war. The units maintained by the National Bureau of Standards differ from these average units by a few parts in a million, so that the conversion factors for adjusting values of standards in this country will be as follows : 1 mean international ohm U.S. = 1.000495absolute ohms 1 mean international volt U.S. = 1.000333 absolute volts
Other electrical units will be changed by amounts shown in Table 5. The factors given should be used in converting values given in international units in National Bureau of Standards certificates to the new absolute system. T A B L E 5.-RELATIVE M A G N I T U D E OF T H E OLD I N T E R N A T I O N A L E L E C T R I C A L U N I f T S A N D THE N E W 1948 A B S O L U T E ELECTRICAL UNITS
1 1 1 1 1 1 1 1 1 1
mean international ohm = 1.00049 absoiute mean international volt = 1.00034 absolute international ohm (U.S.) = 1.000495 absolute international volt (U.S.) = 1.00033 absolute international ampere = 0.999835 absolute = 0.999835 absolute international coulomb = 1.000495 absolute international henry international farad = 0.999505 absolute international watt = 1.000165 absolute = 1.000165 absolute international joule
T A B L E 6.-RELATIVE
Quantity
Symbol
VALUES O F T H E T H R E E SYSTEMS O F ELECTRICAL UNITS
Absolute unit
Electromagnetic system emu
Current strength ... Potentialdifference.. Resistance ......... Energy ............ Power ............ Capacitance ....... Inductance ........
I E R W P C L
1 ampere = 1 volt = = 1 ohm 1 joule = 1 watt = 1 farad = 1 henry =
lo-' 10' 10" lo' 10' 10'
............
Q
1 coulomb =
10" abcoulornb =
Charge
ohms volts ohms volts ampere coulomb henries farad watts joules
abampere abvolts abohms ergs ergs/sec abfarads loQ abhenries
= = = -
=
=
=
Electrostatic system esu
3 x 10' statampere 1/300 statvolt (1/9) X lo-" statohm 10' ergs 10' ergs/sec 9 X 10" statafarad (1/9) X lo-" statahenry 3 X 10" statcoulomb
'Where 3 occurs it is to be taken as 2.99776 (from velocity of light). Where 9 occurs (not as an exponent), it is the sauare of this number.
SMITHSONIAN PHYSICAL TABLES
T A B L E 7 . 4 O N V E R S I O N F A C T O R S FOR UNITS O F ENERGY
*
-
g mass (energy equiv.)
Units
1 II mass (energy equiv.) 1 joule I
1 cal 1 I.T. cal t 1 Btu
1 kw-hr
= = = = =
= = =
1 hp-hr 1 ft-lh (wt.) 1 ftq-lb (u.t.).!in.' = 1 liter-atm = 1 quantum ( A = 5 9 ) = 1 Mev = 1 amu5 = m a s(energy equiv.) joule cal I.T. c a l t Btu
g.
3.72505 x lo-' 1.558562 x 1.559582X 3.9300s X i0-l 1.341020 1 5.05051 X 10.' 7.27273 x lo4 3.77452 X 1.23286 X lo-" 5.96751 X lo-"
h r l n p t e d from National Burearl of
t Definition of calorie and Rto.
8.98656 X loz3 1 4.1840 t 4.18674 1.055040 x lo3 t 3.6 x loG 2.681525 x 10' 1.355821 1.952382 X 10' 1.013278 x 10' 3.3096 x i m o jX 1.49208 x lo-'' ft-lb (wt.)
= 3.34754 x 10'
1 = 1 = = 1 1 = 1 kw-lir = 1 hp-hr = = 1 ft-lh ( W . ) 1 f N h (wt.)/in.' = 1 liter-atm = 1 quantum(h = . l i p ) = 1 Mev = ~~~
x
hphr
Units
1
1 1.112772 X lo-'' 4.65584 x lo-" 3.65888 X lo-" 1.174019 x lo-" 4.00598 x lo-* 2.98727 X 1.50872 X lo-" 2.17256 x I&" 1.127548 x lo-'* 3.6829 X lo-" 1.78270 10Y 1.66035 X lo-"
6.62814 x loL3 0.737561 3.08595 3.08797 7.78156 x 10' 2.655218 10° 1.98000 .X 10' 1 1.44 x 10' i4.735i 2.44116 x 1.18157 x lo-'' 1.10046 x lo-'"
Standards Taliles
t: . \ s defined for Intermtionnl Steam Tables. P Vnit atnmic weight enerfr; erluivalent.
x
I.T. cal
cal
joule
2.14784 x 0.239006 1 1.000654 2.52161 X 8.60421 X 6.41617 X 0.324049 46.6630 24.2179 7.91021 X 3.82891 X 3.56616 X
f t9-11, (wt.) /in."
4.60287 x 10" 5.12195 x 10P 2.14302 x lo-' 2.14343 x lo-' 5.40386 1.843902 X 10' 1.3750 X lo' 6.91444 x 1 0.518W6 1.69531 x lo-?' 8.20535 x lo-'' 7.64208 x lo-''
10'
105 105
lo-" lo-" lo-"
2.14664 x 10" 0.238849 0.999346 1 2.519% x 10' 8.59858 x 1Iy 6.41197 x lo5 0.323837 46.6325 24.2021 7.90504 x lo-3.82644 x lo-'' 3.56379 x lo-"
1iter.atm
8.86880 x 10" 9.86896 x lo-* 4.12917 X lo-' -1.13187 x lo-' 10.41215 3.55281 x l(r 2.64935 x 10' 1.338054 X lo-' 1 . 9 ~ 7 9 7. . I 3.264520 X lo-'' 1.58100 x lo-'" 1.147247 x lo-'' ~~
Btu
quantum (A
8.51775 X 10" 0.947831 X lo-' 3.96573 x 10-3 3.96832 x lo-' 1 3.41220 X 10' 2.54448 x lo3 1.285089 X lo-' 0.185OS29 0.09604 16 3,13676 X lo-'? 1.51815 x lo-'' 1.41422 x lo-''
= .6p)
2.71503 X lo" 3.02125 X 10'' 1.26109 X 10"' 1.26191 x 10'" 3.18754 x 10" 1.08765 X loz5 8.11062 X 10'' 4.09627 x 10'' 5.89862 2 10"
jIOiij6 j i l o w 1 4.84001 X 1 0 4.50776 X 10'
Mev
5.60961 X 10" 6.24222 X 10" 2.61175 X 10" 2.61346 X 6.58580 X 10'' 2.24720 X 10"' 1.67574 X lo'$ S.46334 X 10'' 1.21872 6.32519 j i loll 2.06593 x 10' 1 9.31354 X 10'
kw-hr
2.4%27 x 10' 2.77778 x lo-' 1.16222 X lo* 1.162983 x lo4 2.93065 x lo-' 1 0.745701 3.76614 X lo-' 5.42328 loJ 2.81466 X lo4 9.19342 x lo-" 3.44998 x 4.14453 x lo-"
x
amu
6.02308 x 101" 6.70232 x 1P 2.80425 x 10'" 2.80608 x 10" 7.07121 X lo'* 2.41283 x 10'" 1.79926 x 10" 9.0871 1 X 10' 1.30855 10" 6.79131 X 10" 2.21839 x 10-B 1.07371 X lo4 1
x
T A B L E 8.-FORMER
22
ELECTRICAL EQUIVALENTS
*
Abbreviations : int., international ; emu, electromagnetic units ; esu, electrostatic units ; cgs, centimeter-gram-second units. RESISTANCE: 1 international ohm = 1.00051 absolute ohms 1.0001 int. ohms (France, before 1911) 1.00016 Board of Trade units (England, 1903) 1.01358 B. A. units 1.00283 “legal ohms” of 1884 1.06300 Siemens units 1 absolute ohm = 0.99949 int. ohms 1 “oractical” emu io8c g S emu 1.11262 X lo-’’ cgs esu CURRENT : 1 international ampere = 0.99995 absolute ampere 1.00084 int. amperes (U. S. before 1911) 1.00130 int. amperes (England, before 1906) 1.00106 int. amperes (England, 190608 ) 1,00010 int. amperes (England, 190910) 1.00032 int. amperes (Germany, before 1911) 1.W2 int. amperes (France, before 1911) 1 absolute ampere= 1.00005 int. amperes 1 “practical” emu 0.1 cgs emu 2.99776 x lo9 esu
ELECTROMOTIVE FORCE : 1 international volt =
1.00046 absolute volts 1.00084 int. volts (U. S. before 1911) 1.00130 int. volts (England, before 1906) 1.00106 int. volts (England, 1906-08) 1.00010 int. volts (England, 1909-10) 1.00032 int. volts (Germany, before 1911) 1.00032 int. volts (France, before 1911) 1 absolute volt = 0.99954 int. volt 1 “practical” emu lo8 cgs emu 0.00333560 cgs esu
OF ELECTRICITY : QUANTITY (Same as current equivalents.) 1 international coulomb = 1/3600 ampere-hour 1/96494 faraday
: CAPACITY 1 international farad = 0.99949 absolute farad 1 absolute farad= 1.00051 int. farads 1 “practical” emu 10.” cgs emu 8.98776 X 10” cgs esu
1NDUCTANCE 1 international henry = 1.00051 absolute henries 1 absolute henry = 0.99949 int. henrv 1 “practical” emu log emu 1.11262 X lo-’’ cgs esu A N D POWER : ENERGY (standard gravity = 980.665 cm/sec-’) 1 international joule = 1.00041 absolute joules 1 absolute joule= 0.99959 int. joule lo’ ergs 0.737560 standard foot-pound 0.101972 standard kilocram-meter 0.277778 X kilowakhour
: RESISTIVITY 1 ohm-cm = 0.393700 ohm-inch = 10,000 ohm (meter, mmz) = 12,732.4 ohm (meter, mm) = 393,700 niicrohm-inch = 1,000,000 microhm-cm =6,015,290 ohm (mil, foot) 1 ohm (meter, gram) = 5710.0 ohm (mile, Dound) QCANTITIES : MAGNETIC 1 int. gilbert = 0.99995absolu.tegilbert 1 absolute gilbert = 1.00005 int. gilberts 1 int. maxwell = 1.00046 absolute maxwells 1 absolute maxwell = 0.99954 int. maxwell 1 gilbert = 0.7958 ampere-turn 1 gilbert per cm = 0.7958 ampere-turn per cm = 2.021 ampere-turns per inch = 1 line 1 maxwell = 10.’ volt-second 1 maxwellpercmZ= 6.452 maxwells per in?
*This table is now superseded by the adoption of the new system of electrical units in January 1948
and
IS
given for reference only.
SMITHSONIAN PHYSICAL TABLES
T A B L E S 9-15.-SOME
MATHEMATICAL T A B L E S
T A B L E 9.-DERIVATIVES
d ax
=a d r
AND INTEGRALS
- X"" -,~ + = logx
J.r"dr
J$
, unless
tc
=-I
Jc'dx
J r"'ds J.r"'Pdx
d c= d rn=
= r= d.r = o ra'dx
Jli
d 1og.r
1 = 7d.r
J(a
.rr
= .r' ( 1
ti
Slog x d x dv
+ Dx)"dx
+ log, x ) d.r
+ .r2)-'dx
= cos .r dx
J(n'
= - sin x d x
J(a' - x')-'dx
d tan .r
= secz x dx
J(a' - x')-+dx
d cot .r d sec x d csc x d sin-' .r d cos-' x d tan-' x
= - csc'x d x = tan x sec x d x
Jx(a' -C x')-fdx
d sin x ti
cos .r
d cot-' x d sec-' x d csc-' x d sinh x d cosh x d tanh x d coth x d sech .r d csch .r
- - cot x ' csc x d x = ( 1 - x p ) - *d x -- (1-x2)-*dx = (1 x*)-'dx = - (1 + x l ) - ' d x = c' (2- 1)-* dx - - A = * (x z - 1) -4 dx = cosh x dx = sinh x d x = sech' .r d r - - csch'x dx - - sech .r tanh x d.r - - csch x.coth x d s
+
d sinh-lx = ( 2
+ 1 ) - * d.r
d cash-' x = ( x z - 1) -4 d.r d t a n h - ' x = (1 - x Z ) - ' d x d coth-'x = (1 - x 2 ) - ' d x d sech-' x = - .r-' ( 1 - x ' ) -4 d.r d csch-' .r = (x' I ) - * d.r
+
SM!THSON!AN
PHYSICAL. TABLES
1 n + r -_ log __ 2a a-x
= & (a' & x z ) * - - $ cos x sin x Jsin' x d x 1.= sin x cos x fx Jcos' x d x = 1 sin'x .[sin x cos x d x J(sin x cos x)-'dx = log tan x Itan x d x - -logcosx
+
Jtan' x d x Jcot x d x .fcot' x d x Jcsc x d x Jx sin x d x Jx cos x d x Jtanh x d x Jcoth x d.r Jsech x d x
+
= tan .r - x = !og sin x = - cot x - x = log tan i x = sin -p - x cos x
= cos .r + .r sin x
= log cosh I = log sinh x = 2 tan-'cz = ,9d 11
.fcsch x dx
= log tanh 3 2
.[.r sinh x d x Jscosh x dx Jsinh' x dx .fcoshax dx
= r cosh x - sinh x = x sinh x - cosh x = $ (sinh x cosh x - x )
Jsinh
.T
= (sinh x cosh r cosh x d x = icosh ( 2 x )
+x)
23
24
T A B L E 10.-MATHEMATICAL (x
+y)"=
+ fx"-'y
x"
$.
-
~
n ( n 1) 2!
xn-syp
+.. .
n ( n - 1 ) . .. ( n - m m!
( 1 f2)" = 1 2 nx
+ n ( n -2l!) x l
SERIES
+ 12_ X"-
n(n-1)(n-2)x2 3!
ym
+ .. .
+...+ (r1 ) % ! x k (n- k ) ! k !
+...
n ( n + l ) xzT n ( n + l ) ( n + Z ) ~ " (l+z)"=lTwX+---2! 3! ( n k - 1)x'" (%-1)!k!
+
+2 T X J + +,. . + 32x 1 ~ 4 +~ '5 2 , 6r6+.. . h2 h" f ( x + I c ) = f ( x ) + h f ' ( x ) + 5 f " ( X ) +.. .+ 2 f'"'(X)
(1 f x ) - ' = 1 T (1 k x)" = 1
X
X'TXJ
~
X2
f(x)=f(o) +fP(o) +fl."(o)
x2
x'
x3
l+x+a+j-j+a
a'=
l+xloga+----
log (1 f. x )
( x log u ) 2 +
( x log a)8
3!
2!
(x-
= x - f r 2 + 4 x8 - a .z'
f...
+...
e'=
= ( x - 1) -4
X"
+... ,t?f'"'(o)
+. . .
+....
+ 3 ( x - 1)s -.
..
+.. ..
x3 x6 x' 1 )=x--+---+ ... sin x = 2i (e'= - e"" 3! 5 ! 7! 1 x2 x' xe cos x = - (e'" e-'=) = 1- - - - ..= 1 - versin x 2 2 ! 4! 6 ! x3 2x6 1 7 2 62 tanx= x -xD . . 3 15 315 2835 7r x3 1 3 x 6 1 3 5 x T - - cos-'x = x + - + -. - . -+-. - .2 6 2 4 5 246'+.. 7r 1 1 1 tan-lx = - - cot-'x = x - - x8 -2 --x' . 2 3 5 7 1 1 1 - 2r ;+3x'52
+
+
+ +-
+-+
+.
+.
+. .
+
-+...
-_-
1 x3 x6 XT sinhx=-(e'-e-") =x+-+--f-+ ... 2 3 ! 5! 7 ! 1 xz x' xe coshx= - ( e a e-)) = 1 - 4-- i- .. 2 2! 4! 6! (contiwued)
+
SMITHSONIAN PHYSICAL TABLES
+
+.
(Y'
<x')
T A B L E 10.-MATHEMATICAL
1 tanh .r = z - - r3 3 .
25
17 + --125 .r6- r7 + . . . 315.
-_. . .
1 1 1 2 2.f' 2 1 1 1 cosl1-'.r= IO~~.I'------------2 2.r' 2 1 1 tanlir'x = .r - ra - r5 5. 3 . 1 1 gd.r=@=.r-.r 3 + -21
3 1 1 3 5 1 7' --4 4.r' 2 4 6 6.r' 3 1 1 3 5 1 4 4 2 2 4 6 6.P + -71 -r7 + . . . 61 .r5 5040 .z'+.. .
= IOg2.r+------
+
S E R I E S (concluded)
+
'' '
( x small)
-__.
1 sechS.r 1 3 sech'~ - - - secli. .I' - - ____ - - - _ _ -
2 4 5 ... 1 61 - & __ @'+. .. 24 5040
2
3
( x large)
+ + 1 77r.r f ( x ) = b" + bl cos - + b* cos f.. . 2 7rn 27rn + sin +- azcos +. . . (-c < x < c) lr,r a, = +Jk ~ ( ssin ) -dx x
1 = gd-'@ = @ + @3 6 7r.r
-
a1
111
b,=
+J'f- f ( x ) cos-d.z
iii7r.r
T A B L E 11.-MATHEMATICAL
CONSTANTS Numbers
e = 2.71828 18285 c? = 0.36787 94412 111= logloe= 0.43429 44819
(Af)-'=
Logarithms
= 3.14159 26536 7r2 = 9.86960 44011 1 7r = 0.31830 98862
0.49714 98727 0.99429 97454
7r
9.50285 01273
= 1.77245 38509
0.24857 49363
431 13
_ v7r - 0.88622 69255 2
9.94754 49407
loglo2= 0.30102 99957
1 = 0.56418 95835 V7r
9.75142 50637
log2 = 0.69314 71806
_ - 1.12837 91671 v7r -
0.05245 50593
= 1.25331 41373
logelo = 2.30258 50930
10gio I O ~ , O = C 9.63778
v7r
'
10gio.z = M . I o ~ ~ x
4;
0.09805 99385
logSx = log,x.logoe
d$
= 0.79788 45608
9.90194 00615
+ log,B
?? 4 -- 0.78539 81634
9.89508 98814
= 1.14472 98858
v?r - 0.44311 34627 --
9.64651 49450
= 4.18879 02048
0.62208 86093
-5 - 1.08443 75514 \/2H
0.03520 45477
= l0g.x log.7r p
= 0.47693 62762 *
log p = 9.67846 03565 Probable error, modulus of precision. SMITHSONIAN PHYSICAL TABLES
+7r
T A B L E 12.-FACTORI
26
ALS
P a r t 1.-Numerical 1 n:
n
1 2 3 4 5 6 7
8 9 10 11 12 13 14 15 16 17 18 19 20
1. 0.5 .I6666 .04166 .00833 0.00138 .00019 .WOO2 .OOOOO .OOOOO 0.00000
66666 66666 33333 88888 84126 48015 27557 02755 00250 .ooooo 00020 .ooooo 00001 .00000 00000 .ooooo 00000 0.00000 00000 .ooooo 00000 .ooooo 00000 .ooooo 00000 .ooooo 00000
n:=
1.2.3.4
...n
n
1
66666 66666 33333 88888 98412 87301 31922 73192 52108 87675 60590 11470 00764 00047 00002 00000 00000 00000
66666 66666 33333 88888 69841 58730 39858 23985 38544 69878 43836 74559 71637 79477 81145 15619 00822 00041
66667 66667 33333 88889 26984 15873 90653 89065 17188 68099 82161 77297 31820 33239 72543 20697 06352 10318
8 130 2092 35568 6 40237 121 64510 2432 90200
3 36 399 4790 62270 71782 76743 27898 74280 37057 04088 81766
2 6 24 120 720 5040 40320 62880 28800 16800 01600 20800 91200 68000 88000 96000 28000 32000 40000
1 2 3 4 5 6 7 8 9 10 11 ~~
12 13 14 15 16 17 18 19 20
Part 2.-Logarithmic Logarithms of the products 1.2.3.. . . . ..rt, n from 1 to 100. n
1
2 3 4 5 6
7
8
9 10 11
12 13 14 15 16
17 18 19 20 21
22 23 24 25
log (n!)
n
log (n!)
n
log (n!)
n
0.000000 0.301030 0.778151 1.380211 2.079181 2.857332 3.702431 4.605521 5.559763 6.559763 7.601156 8.680337 9.794280 10.940408 12.116500 13.320620 14.551069 15.806341 17.085095 18.386125 19.708344 21.050767 22.412494 23.792706 25.190646
log ( n 0
26
26.6056 19 28.036983 29.484141 30.946539 32.423660 33.915022 35.420172 36.938686 38.470165 40.014233 41.570535 43.138737 44.718520 46.309585 47.911645 49.524429 51.147678 52.781147 54.424599 56.077812 57.740570 59.412668 6 1.093909 62.784105 64.483075
51
66.190645 67.906648 69.630924 71.363318 73.103681 74.851869 76.607744 78.371 172 80.142024 81.920175 83.705505 85.4978% 87.297237 89.103417 90.916330 92.735874 94.561949 96.394458 98.233307 100.078405 101.929663 103.786996 105.650319 107.519550 109.394612
76
111.275425 113.161916 115.054011 116.951638 118.854728 120.763213 122.677027 124.596105 126.520384 128.449803 130.384301 132.323821 134.268303 136.217693 138.171936 140.130977 142.094765 144.063248 146.036376 148.014099 149.996371 151.983142 153.974368 155.970004 157.970004
27 28 29 30 31
32 33 34 35 36
37 38 39 40 41
42 43 44 45 46 47 48 49 50
-
SMlTHSONlAN PHYSICAL TABLES
52 53 54 55 56
57 58 59
60 61
62 63 64 65 66
67 68 69 70 71
71 73 74 75
77 78 79 80 81
82 83 84 85 86
87 88 89 90 91
92 93 94 95 96
97 98 99 100
27 T A B L E 13.-FORMULAS F OR M O M E N T S O F I N E R T I A , R A D I I O F G Y R A T I O N , A N D W E I G H T S O F VARIOUS SHAPED SOLIDS
I n cacli case the axis is supposed to traverse the center of gravity of the body. T h e axis is one of symmetry. T h e mass of a unit of volume is zw.
nody
.\xis
Weight
Square of radius of gyration pus
Moment of inertia I"
Sphcrc of radius r . ....... Diameter
4r7err3 -
2P -
Spheroid of revolution. pcilar axis 217.equatorial tliameter 2r ............. Polar axis
87rwr5 15
4waP
8mwar'
3
15
2r' -
3
4mwabc
Ellipsoid, axis 20. 26, 2 c . . Axis 20
3
Sphcrical shell. extcrnal ratlius r , internal r'. ...... 1)ianicter
4xw(rJ - r") 3
15
5
2 ( r6 - r") 5(rS-r") 2r2 3 r' 2 1J2 c2 4
15
4mr2dr
Circular cylinder, length 20, Longitudinal radius r ............... axis&
2mmr2
xzvar'
2rwabc
mhc(b2 2
Longitudinal axis 20 I-ongi tudinal axis
+ c2)
2rtcw ( r 2- 1")
m m ( r ' - r")
4 mwa rdr
4mwar'dr
Transverse diameter
2rzwarZ
Elliptic cylinder. length 20, T r a n s v e r s e axis 211 transvcrse axes 2a, 21). . .
2rwabc
Hollow circular cylintler. length L o . external ra- T r a n s v e r s e diameter dius r . internal r ' . ......
a t ~ ~ l r ~ ( 3 r4a2) ' 6 mlahc ( 3c2 4a2) G
2rzva(r2 - r'2)
Ditto, insensi1)ly thin. thick- T r a n s v e r s e diameter ness dr ...............
4rtuardr
Rectangular prism, dimensions 20. 2h, 21.. . . . . . . . . Axis2a
+ cz
8mv ( r5 - r") 8rten;'dr 3
Longitudinal axis 2a
5
+
Imwabc ( b2 c 2 ) bP -~
Ditto. insensibly thin, radius r . tliickncss d r . . . . . Iliameter
Elliptic cylinder. Icngth 20, transverse axes 217. 2c. .. Hollow circular cylinder. length 20, external radius r , internal r ' . ...... Ditto, insensibly thin, thickness d r . . . . . . . . . . . . . . . Circular cylindcr, length 20. radius r . . . . . . . . . . . . . . .
5
+
r2
+ r" 2
+ +
r w a ( 2r3
+ 43 a2r)dr
r2
-
a2
2+3
+ +
+
8zuabc (1)' c2) b2 c2 3 3 Khombic prism, length 20, 2ZWflbC( b2 C 2 ) b2 c2 diagonals 2h. 2c.. ...... Axis 2a 4wabc 3 6 2wabc(c2 2a2) c2 a2 Ilitto ................... Diagonal 21) 4wabc +3 3 6 F u r iurt!icr niathematical data see Smithsonian Mathematical Tables, Becker and Van Orstrand ( Hyperbolic. Circiilar and Exponential Functions) ; Smithsonian Mathematical Formulae and Tables of Elliptic Fulictl,iiss. Adams and Hippisley ; Smithsonian Elliptic Functions Tables. Spenceley ; Smitlisonian Logaritlimic Tahles. Spenceley and Epperson ; Functionentafeln. Jahnke und Emde (xtgx, x-ltgs. Roots of Traiir;cciitlcntal Equations, a bi and rcRi, Exponentials, Hyperbolic Functions, 8wabc
+
+
11 /": 2
9 drr,
+
dtr,
dii,
Fresnel
Integral,
Gamma
Function,
Gauss
Integral
\
~ - ~ ' d . Pearson t-. Function c - ~ " "
sin' c"'d.r,
Elliptic Integrals and Functions, Spherical and
Cylindrical Functions, etc.). For further references see under Tables, Mathematical, in the 16th ed. Encyclopaedia Britannica. See also Carr's Synopsis of P u r e Mathematics and Mellor's Higher Mathematics for Students of Chemistry and Physics. SMITHSONIAN PHYSICAL TABLES
TABLE 14.-LOGARITHMS
28
P.P. N
0
oooo
1
2
3
04.1 0492 0086 0128 0453 0SSi
4
5
6
1
8
9
1
2
3
4
5
0212 0607 0969 1303 1614
0253 0645 1004 1335 1644
0294 0682 1038 1367 1673
0334 0719 1072 1399 1703
0374 0755 1106 1430 1732
4 4 3 3 3
8 8 7 6 6
12 11 10 10 9
17 15 14 13 12
21 19 17 16 15
0414 0792 1139 1461
0828 0864 0899 1173. 1206 1239 1492 1523 1553
0170 0569 0934 1271 1584
1761 204 1 2304 2553 2788
1790 2068 2330 2577 2810
1818 2095 2355 2601 2833
1847 2122 2380 2625 2856
1875 2148 2405 2648 2878
1903 2175 2430 2672 2900
1931 2201 2455 2695 2923
1959 2227 2480 2718 2945
1987 2253 2504 2742 2967
2014 2279 2529 2765 2989
3 3 2 2 2
6 5 5 5 4
8 11 14 8 11 13 7 10 12 7 912 7 911
3010 3222 3424 3617 3802
3032 3243 3444 3636 3820
3054 3263 3464 3655 3838
3075 3284 3483 3674 3856
3096 3304 3502 3692 3874
3118 3324 3522 3711 3892
3139 3315 3541 3729 3909
3160 3365 3560 3747 3927
3181 3385 3579 3766 3945
3201 3404 3598 3784 3962
2 2 2 2 2
4 4 4 4 4
6 6 6 5 5
8 11 8 10 8 10 7 9 7 9
3979 4150 4314 4472 4624
3997 4166 4330 4487 4639
4014 4183 4346 4502 4654
4031 4200 4362 4518 4669
4048 4216 4378 4533 4683
4055 4232 4393 4548 4698
4082 4249 4409 4564 4713
4771 4914 5051 5185 5315
4786 4928 506s 5198 5328
4800 4942 5079 5211 5340
4814 4955 5092 5224 5353
4829 4843 4857 4969 4983 4997
sios sii9 si3i
5237 5250 5263 5366 5378 5391
4871 4886 4900 5011 5024 5038 Siis 5159 5172 5276 5289 5302 5403 5416 5428
1 1 1 1 1
3 3 3 3 3
4 4 4 4 4
6 6 5 5 5
7 7 7 6 6
36 37 38 39
5441 5563 5682 5798 5911
5453 5575 5694 5809 5922
5465 5587 5705 5821 5933
5478 5589 5717 5832 5944
5490 5611 5729 5843 5955
5502 5623 5740 is55 5966
5514 5635 5752 5866 5977
5527 5647 5763 5877 5988
5539 5658 5775 5888 5999
5551 5670 5786 5899 6010
1 1 1
2 2 2
4 4 3
5 5 5
6 6 6
1
2
3
4
6
40 41 42 43 44
6021 6031 6138 6128 .~~~ 6232 6243 6335 6345 6435 6444
6042 6149 6253 6355 6454
6053 6160 6263 6365 6464
6064 6170 6274 6375 6474
6075 6180 6284 6385 6484
6085 6191 6294 6395 6493
6096 6201 6304 6405 6503
6107 6212 6314 6415 6513
6117 6222 6325 6425 6522
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5
45 46 47 48 49
6532 6628 6721 6812 6902
6542 6637 6730 6821 6911
6551 6646 6739 6830 6920
6561 6656 6749 6839 6928
6571 6665 6758 6848 6937
6580 6675 6767 6857 6946
6590 6684 6776 6866 6955
6599 6693 6785 6875 6964
6609 6702 6794 6884 6972
6618 6712 6803 6893 6981
1
2
3
4
4
50
6990 7076 7160 7243 7324
6998 7007 7084 7093 7168 7177 7251 7259 7332 7340
7016 7ioi 7185 7267 7348
7024 7110 7193 7275 7356
7033 7042 7118 7126 7202 7210 7284 7292 7364 7372 (continued)
7050 7135 7218 7300 7380
7059 7143 7226 7308 7388
7067 7152 7235 7316 7396
1
2
3
3
4
10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35 ~~
51 52 53 54
SMITHSONIAN PHYSICAL TABLES
4099 4116 4133
426s 428I 4298
4425 4440 4456 4579 4594 4609 4728 4742 4757
12556
T A B L E 14.-LOGARITHMS
29
(continued)
P.P. N
0
1
2
3
4
5
6
55
7404 7482 7559 7634 7709
7412 7490 7566 7642 7716
7419 7497 7574 7649 7723
7427 7505 7582 7657 7731
7435 7513 7589 7664 7738
7443 7520 7597 7672 7745
7451 7528 7604 7679 7752
7459 7466 7536 7543 7612 ,7619 7686 7694 7760 7767
7782 7853 7924 7993 8062
7789 7860 7931 8000 8069
7796 7868 7938 8007 8075
7803 7875 7945 8014 8082
7810 7882 7952 8021 8089
7818 7889 7959 8028 80%
7825 7896 7966 8035 8102
7832 7903 7973 8041 8109
8129 8195 8261 8325 8388
8136 8202 8267 8331 8395
8142 8209 8274 8338 8401
8149 8215 8280 8344 8407
8156 8222 8287 8351 8414
8162 8228 8293 8357 8420
8169 8235 8299 8363 8426
8451 8513 8573 8633 8692
8457 8519 8579 8639 8698
8463 8525 8585 8645 8704
8470 8531 8591 8651 8710
8476 8537 8597 8657 8716
8482 8543 8603 8663 8722
8751 8808 8865 8921 8976
8756 8814 8871 8927 8982
8762 8820 8876 8932 8987
8768 8825 8882 8938 8993
8774 8831 8887 8943 8998
9031 9085 9138 9191 9243
9036 9090 9143 9196 9248
9042 90% 9149 9201 9253
9047 9101 9154 9206 9258
9294 9345 9395 9445 9494
9299 9350 9400 9450 9499
9304 9355 9405 9455 9504
9542 9590 9638 9685 9731
9547 9595 9643 9689 9736
9777 9823 9868 9912 9956
9782 9827 9872 9917 9961
56 57 58 59 60
61 62 63 64 65
66 67 68 69 70
71 72 73 74 75
76 77 78 79 80
81 82 83 84 85
86 87 88 89 90
91 92 93 94 95
%
97 98 99
1
8
9
7474 7551 7627 7701 7774
i 2 1 2 1 2 1 2 1 1 1 1
3 2 2 2 2 2
4 3 3 3 3 3
s 4 4 4 4 4
7839 7910 7980 8048 8116
7846 7917 7987 8055 8122
1 1 1 1 1
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 3 3 3
8176 8211 8306 8370 8432
8182 8248 8312 8376 8439
8189 8254 8319 8382 8445
1 1 1 1 1
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
3 3 3 3 3
8488 8549 8609 8669 8727
8494 855s 8615 8675 8733
8500 8561 8621 8681 8739
8506 8567 8627 8686 8745
1
1
2
2
3
1 1 1
1 2 1 2 1 2
2 2 2
3 3 3
8779 8837 8893 8949 9004
8785 8842 8899 8954 9009
8791 8848 8904 8960 9015
8797 8854 8910 8965 9020
8802 8859 8915 8971 9025
1 1 1 1 1
1 1 1 1 1
2 2 2 2 2
2 2 2 2 2
3 3 3 3 3
9053 9106 9159 9212 9263
9058 9112 9165 9217 9269
9063 9117 9170 9222 9274
9069 9122 9175 9227 9279
9074 9128 9180 9232 9284
9079 9133 9186 9238 9289
1 1 1 1 1
1 2 1 2 1 2 1 2 1 2
2 2 2 2 2
3 3 3 3 3
9309 9360 9410 9460 9509
9315 9365 9415 9465 9513
9320 9370 9420 9469 9518
9325 9375 9425 9474 9523
9330 9380 9430 9479 9528
9335 9385 9435 9484 9533
9310 9390 9440 9489 9538
1 1 0 0 0
1 2 1 2 1 1 1 1 1 1
2 2 2 2 2
3 3 2 2 2
9552 9600 9647 9694 9741
9557 9605 9652 9699 9745
9562 9609 9657 9703 9750
9566 9614 9661 9708 9754
9571 9619 9666 9713 9759
9576 9624 9671 9717 9763
9581 9628 9675 9722 9768
9586 9633 9680 9727 9773
0
1
2
2
0 0
1 1
1 2 1 2
2 2
9786 9832 9877 9921 9965
9791 9836 9881 9926 9969
9795 9841 9886 9930 9974
9800 9805 9845 9850 9890 9894 9934 9939 9978 9983 (continued)
9809 9854 9899 9943 9987
9814 9859 9903 9948 9991
9818 9863 9908 9952 9996
0 0 0 0 0
1 1 1 1 1
1 2 1 2 1 2 1 2 1 2
2 2 2 2 2
SMlTHSONlAN PHYSICAL TABLES
i i Z 2 3
0
1
1 1
2
2
0 i i Z Z
TABLE 14.-LOGARITHMS
30 N
0
100
0000 0013
101 102 103 104 10S
106 107 108 109 110
111 112 113 114 115
116 117 118 119 120
121 122 123 124 125
126 127 128 129 130
131 132 133 134 135
136 137 138 139 140
141 142 143 144 145
146 147 148 149
(continued)
4
5
6
7
8
9
10
0086
0128 0170
0004 OOO9 0013 0048 0052 0056 OO90 0095 0099 0133 0137 0141 0175 0179 0183
0017 0060 0103 0145 0187
0022 0065 0107 0149 0191
0026 0069 0111 0154 0195
0030 0073 0116 0158 0199
0035 0077 0120 0162 0204
0039 0082 0124 0166 0208
0043 0086 0128 0170 0212
0212 0253 0294 0334 0374
0216 0257 0298 0338 0378
0220 0261 0302 0342 0382
0224 0265 0306 0346 0386
0228 0269 0310 0350 0390
0233 0273 0314 0354 0394
0237 0278 0318 0358 0398
0241 0282 0322 0362 0402
0245 0286 0326 0366 0406
0249 0290 0330 0370 0410
0253 0294 0334 0374 0414
0414 0453 0492 0531 0569
0418 0457 0496 0535 0573
0422 0461 0500 0538 0577
0426 0465 0504 0542 0580
0430 0434 0438 0469 0473 0477 0508 0512 0515 0546 0550 0554 0584 0588 0592
0-241 n44.5 n449
0519 0523 0527 0558 D561 0565 0596 0599 0603
0453 0492 0531 0569 0607
0686 0689 0693 0722 0726 0730 0759 0763 0766
0622 0660 0697 0734 0770
0626 0663 0700 0737 0774
0630 0667 0704 0741 0777
0633 0671 0708 0745 0781
0637 0674 0711 0748 0785
0641 0678 0715 0752 0788
0645 0682 0719 0755 0792
0799 0803 0835 0839 0871 0874 09M 0910 0941 0945
0806 0842 0878 0913 0948
0810 0813
0934
0795 0831 0867 0903 0938
0846 0881 0917 0952
0849 0885 0920 0955
0817 0853 0888 0924 0959
0821 0856 0892 0927 0962
0824 0860 0896 0931 0966
0828 0864 0899 0934 0969
0969 1004 1038 1072 1106
0973 1007 1041 1075 1109
0976 1011 1045 1079 1113
0980
0983 1017 1052 1086 1119
0986 1021 1055 1089 1123
0990 1024 1059 1092 1126
0993 i028 1062 1096 1129
0997 io3i 1065 1099 1133
inno
io14 1048 1082 1116
1069 1103 1136
1004 1038 1072 1106 1139
1139 1173 1206 1239 1271
1143 1176 1209 1242 1274
1146 1179 1212 1245 1278
1149 1183 1216 1248 1281
1153 1186 1219 1252 1284
1156 1189 1222 1255 1287
1159 1193 1225 1258 1290
1163 1196 1229 1261 1294
1166 1199 1232 1265 1297
1169 1202 1235 1268 1300
1173 1206 1239 1271 1303
1303 1335 1367 1399 1430
1307 1339 1370 1402 1433
1310 1342 1374 1405 1436
1313 1345 1377 1408 1440
1316 1348 1380 1411 1443
1319 1351 1383 1414 1446
1323 1355 1386 1418 1449
1326 1358 1389 1421 1452
1329 1361 1392 1424 1455
1332 1364 1396 1427 1458
1335 1367 1399 1430 1461
1461 1492 1523 1553 1584
1464 1495 1526 1556 1587
1467 1498 1529 1559 1590
1471 1501 1532 1562 1593
1474 1504 1535 1565 1596
1477 1508 1538 1569 1599
1480 1511 1541 1572 1602
1483 1514 1544 1575 1605
1486 1517 1547 1578 1608
1489 1520 1550 1581 1611
1492 1523 1553 1584 1614
1614 1644 1673 1703 1732
1617 1647 1676 1706 1735
1620 1649 1679 1708 1738
1623 1652 1682 1711 1741
1626 1655 1685 1714 1744
1629 1658 1688 1717 1746
1632 1661 1691 1720 1749
1635 1664 1694 1723 1752
1638 1667 1697 1726 1755
1641 1670 1700 1729 1758
1644 1673 1703 1732 1761
0607 0645 0682 0719 0755 0792 0828 0864 0899
1
2
3
0611 0615 0618 0618 0652 0656
(continued)
SMITHSONIAN PHYSICAL TABLES
048i 0484 0488
i0%
TABLE 14.-LOGARITHMS
(concluded)
31
N
0
1
2
3
5
6
7
8
9
1764 1793 1821 1850 1878
1767 1796 1824 1853 1881
1770 1798 1827 1855 1884
1772 1801 1830 1858 1886
1775 1804 1833 1861 1889
1778 1807 1836 1864 1892
10
150
1761 1790 1818 1847 1875
4
1781 1810 1838 1867 1895
1784 1813 1841 1870 1898
1787 1816 1844 1872 1901
1790 1818 1847 1875 1903
1903 1931 1959 1987 2014
1906 1934 1962 1989 2017
1909 1937 1965 1992 2019
1912 1940 1967 1995 2022
1915 1942 1970 i998 2025
1917 1920 1945 1948 197.3 1976
2028 2030
1923 1951 1978 2006 2033
1926 1953 1981 2009 2036
1928 1956 1984 2011 2038
1931 1959 1987 2014 2041
2041 2068 2095 2122 2148
2044 2071 2098 2125 2151
2047 2074 2101 2127 2154
2049 2076 2103 2130 2156
2052 2079 2106 2133 215Y
2055 2082 2109 2135 2162
2057 2084 2111 2138 2164
2060 2087 2114 2140 2167
2063 2090 2117 2143 2170
2066 2092 2119. 2146 2172
2068 2095 2122 2148 2175
2175 2201 2227 2253 2279
2177 2204 2230 2256 2281
2180 2206 2232 2258 2284
2183 2209 2235 2261 2287
2185 2212 2238 2263 2289
2188 2214 2240 2266 2292
2191 2217 2243 2269 2294
2193 2219 2245 2271 2297
2196 2222 2248 2274 2299
2198 2225 2251 2276 2302
2201 2227 2253 2279 2304
2304 2330 2355 2380 2405
2307 2333 2358 2383 2408
2310 2335 2360 2385 2410
2312 2338 2363 2388 2413
2315 2340 2365 2390 ?415
2317 2343 2368 2393 2418
2320 2345 2370 2395 2420
2322 2348 2373 2398 2423
2325 2350 2375 2400 2425
2327 2353 2378 2403 2428
2330 2355 2380 2405 2430
2430 2455 2480 2504 2529
2433 2458 2482 2507 2531
2435 2460 2485 2509 2533
2438 2463 2487 2512 2536
2440 2465 2490 2514 2538
2443 2467 2492 2516 2541
2445 2470 2494 2519 2543
2448 2472 2497 2521 2545
2450 2475 2499 2524 2548
2453 2477 2502 2526 2550
2455 2480 2504 2529 2553
2553 2577 2601 2625 2648
2555 2579 2603 2627 2651
2558 2582 2605 2629 2653
2560 2584 2608 2632 2655
2562 2586 2610 2634 2658
2565 2589 2613 2636 2660
2567 2591 2615 2639 2662
2570 2594 2617 2641 2665
2572 2596 2620 2643 2667
2574 2598 2622 2646 2669
2577 260 1 2625 2648 2672
2672 2695 2718 2742 2765
2674 2697 2721 2744 2767
2676 2700 2723 2746 2769
2679 2702 2725 2749 2772
2681 2704 2728 2751 2774
2683 2707 2730 2753 2776
2686 2709 2732 2755 2778
2688 2711 2735 2758 2781
2690 2714 2737 2760 2783
2693 2716 2739 2762 2785
2695 2718 2742 2765 2788
2788 2810 2833 2856 2878
2790 2813 2835 2858 2880
2792 281.5 2838 2860 2882
2794 2817 2840 2862 2885
2797 2819 2842 2865 2887
2799 2822 2844 2867 2889
2801 2824 2847 2869 2891
2804 2826 2849 2871 2894
2806 2828 2851 2874 2896
2808 2831 2853 2876 2898
2810 2833 2856 2878 2900
2900 2923 2945 2967 2989
2903 2925 2947 2969 2991
2905 2927 2949 2971 2993
2907 2929 2951 2973 2995
2909 2931 2953 2975 2997
2911 2934 2956 2978 2999
2914 2936 2958 2980 3002
2916 2938 2960 2982 3004
2918 2940 2962 2984 3006
2920 2942 2964 2986 3008
2923 2945 2967 2989 3010
151 152 153 154 155
156 157 158 159 160
161 162 163 164 165
166 167 168 169 170
171 172 173 174 175
176 177 178 179 180
181 182 183 184 185
186 187 188 189 190
191 192 193 194 195
196 197 198 199
SMITHSONIAN PHYSICAL TABLES
Zoo0 2603
Radians
- G-%z
( TRIG O NO ME TRIC ) FU N C TI ON S *
T A B L E lB.-CIRCULAR
32 Degrees
Sines
5Fxz .oooo 03
Cosines
Nat.
Log.
Tangents
.oooo
Cotangents
Nat.
Log.
343.77 171.89 114.59 85.940 68.750
2.5363 .2352 .0591 1.9342 .8373
90"OO' 50 40 30 20 10
1.5708 1.5679 1.5650 1.5621 1.5592 1.5563
.0175 8.2419 .OM4 .3089 .0233 .3669 11262 .4isi .OZG ~ 6 3 8 .0320 SO53
57.290 49.104 42.%4 38.188 34.368 31.242
1.7581 .6911 .6331 S819 S362 .4947
89"OO' 50 40 30 20 10
1.5533 1.5504 1.5475 1.5446 1.5417 1.5388
.99949.9997 .9993 ,9997 .9992 ,9996 .9990 .9996 .9989 .9995 .9988 .9995
.03198.5431 .0378 S779 .0407 .6101 ,0437 .6401 .0465 .6682 ,0495 .6945
28.636 26.432 24.542 22.904 21.470 20.206
1.4569 .4221 .3899 .3599 .3318 .3055
88"00' 50 40 30 20 10
1.5359 1.5330 1.5301 1.5272 1.5243 1.5213
.0523 8.7188 . O W .7423 .0581 ,7645 .0610 ,7857 .0640 .8059 .0669 .8251
.99869.9994 ,9985 9 9 3 .9983 .9993 .9981 .9992 .9980 .9991 ,9978 ,9990
.05248.7194 .0553 ,7429 .0582 .7652 .0612 ,7865 .0641 ,8067 .0670 ,8261
19.081 18.075 17.169 16.350 15.605 14.924
1.2806 ,2571 ,2348 ,2135 .1933 .1739
87"OO' . 50 40 30 20 10
1.5184 1.5126 1.5097 1.5068 1.5039
0.0698 4"OO.' 0.0727 10 0.0756 20 0.0785 30 0.0814 40 0.0844 50
.06988.8436 .0727 ,8613 .0756 .8783 .0785 .8946 .0814 ,9104 ,0843 ,9256
.9976 9.9989 .9974 .9989 .9971 ,9988 .9969 .9987 .9967 .9986 .9964 .9985
.06998.8446 .0729 ,8624 .0758 3795 .0787 .8960 ,0816 .9118 ,0846 ,9272
14.301 13.727 13.197 12.706 12.251 11.826
1.1554 .1376 ,1205 .lo40 .0882 .0728
86"OO' 50 40 30 20 10
1.5010 1.4981 1.4952 1.4923 1.4893 1.4864
0.0873 5"OO' 0.0902 10 0.0931 20 0.0960 30 0.0989 40 0.1018 50
.08728.9403 .99629.9983 .9959 3982 I0629 ,9682 .9957 .9981 ,0958 .981h ,9954 .9980 .0987 ,9945 ,9951 .9979 .lo169.0070 .9948 .9977
.0875 8.9420 ,0904 .9563 .O934 -97.01 10963 ,9836 .0992 .9966 .lo229.0093
1 1.430 1.0580 11.059 .0437 10.712 .0299 10.385 ,0164 10.078 .0034 9.78820.9907
0.1047 6"OO' 0.1076 10
.lo45 9.0192 ,1074 .0311 .1103 .0426 ,1132 .0539 .1161 .0648 .1190 .0755
.9945 9.9976 .9942 .9975 .9939 .9973 .9936 ,9972 .9932 .9971 .9929 ,9969
.lo51 9.0216 ,1080 .0336 ,1110 .0453 ,1139 .0567 .1169 ,0678 .1198 ,0786
9.51440.9784 9.2553 ,9664 9.0098 .9547 8.7769 .9433 8.5555 .9322 8.3450 .9214
84"OO' 50 40 30 20 10
0.1222 7"OO' 0.1251 10 0.1280 20 0.1309 30 0.1338 40 0.1367 50 0.1396 8"OO' 0.1425 10 0.1454 20 0.1484 30 0.1513 40 0.1542 50
.I2199.0859 .1248 ,0961 .1276 ,1060 .1305 ,1157 .1334 .1252 .1363 .1345 .1392 9.1436 .1421 .1525 .1449 .1612 .1478 ,1697 .1507 .1781 .1536 .1863
.9925 9.9968 ,9922 ,9966 ,9918 ,9964 .9914 ,9963 .9911 ,9961 ,9907 .9959
.1228 9.0891 .1257 ,0995 .1287 ,1096 ,1317 .1194 .1346 .1291 .1376 .1385 .1405 9.1478 .1435 .1569 .1465 ,1658 ,1495 .1745 .1524 ,1831 .I554 .1915
8.1413 0.9109 7.9530 .9005 7.7704 ,8904 7.5958 ,8806 7.4287 .8709 7.2687 .8615
83"OO' 1.4486 50 1.4457 40 1.4428 30 1.4399 20 1.4370 10 1.4341
7.1154 0.8522 6.9682 .9431 6.8269 .8342 6.6912 .8255 6.5606 .8169 6.4348 ,8085
82"OO' 50 40 30 20 10
0.1571 9"OO'
.15649.1943 .9877 9.9946 ,15839.1997
6.31380.8003
81"OO' 1.4137
0.0000 0"OO' 0.0029 10 0.0058 20 0.0087 30 0.0116 40 0.0145 50
.OOL9 7.4637 .0058 ,7648 .0087 .9408 .01168.0658 .0145 .1627
1.oOoo .moo
1.0000 .OoOo 1.0000 .oooo .9999 .oooo .99f9 .moo
.0029 7.4637 .0058 ,7648 .0087 ,9409 .0116 8.0658 .0145 .1627
0.0175 1"OO' 0.0204 10 0.0233 20 0.0262 30 0.0291 40 0.0320 50
.0175 8.2419 .0204 .3088 .0233 .3668 .0262 ,4179 ,0291 .4637 ,0320 SO50
.99989.9999 .9998 .9999 .9997 .9999 .9997 .9999 .9996 .9998 .9995 .9998
0.0349 2"OO' 0.0378 10 0.0407 20 0.0436 30 0.0465 40 0.0495 50
.03498.5428 .0378 ,5776 .0407 ,6097 .0436 .6397 ,0465 .6677 ,0494 .6940
0.0524 3"OO' 0.0553 10 0.0582 20 0.0611 30 0.0640 40 0.0669 50
'
0.1105
20
0.1134 0.1164 0.1193
30 40 50
1.00000.0000
.nwi .9545
Nnt.
T.oa.
=z-
-
.99039.9958 ,9899 .9956 .9894 .9954 ,9890 ,9952 .9886 ,9950 .9881 ,9938 Nnt.
T.oa.
y Sines
03
Kat. r.og. \-
Cotangents
* Taken from R. 0. Peirce's Short table of intcurals. Ginn S. Co. (C O I l t ill lt cd SMITHSONIAN PHYSICAL TABLES
0 3 E X )
Iiat.
1.5155
85"OO' 1.4835 50 1.4806 40 1.4777 A n 1.4748 20
ii4ii9
10 1.4690 1.4661 1.4632 1.4603 1.4574 1.4544 1.4515
1.4312 1.4283 1.1251 1.4224 1.4195 1.4166
LOR.
L7_J
Tangents
De-
grees
Radians
T A B L E 15.-CIRCULAR Radians
Degrees
Sines Nat.
Log.
(TRIGONOMETRIC) FUNCTIONS (continued) Cosines Nat.
Log.
Tangents Nat.
Log.
33
Cotangents
5icxT
0.1571 9'00' 0.1600 10 0.1629 20 0.1658 30 0.1687 40 0.1716 50
.1564 9.1943 .I593 .2022 .1622 .2100 .1650 2176 .1679 .2251 .I708 .2324
.98779.9946 ,9872 .9944 .9868 .9942 .9863 .9940 .9858 3938 .9853 .9936
.15849.1997 .1614 .2078 .1644 ,2158 .1673 ,2236 .1703 .2313 .1733 2389
6.31380.8003 6.1970 ,7922 6.0844 ,7842 5.9757 .7764 5.8708 ,7687 5.7694 ,7611
81"OO' 50 40 30
0.1745 10"OO' 0.1774 10 0.1804 20 0.1833 30 0.1862 40 0.1891 50
.1736 9.2397 .1765 .2468 .1794 .2538 .I822 .2606 .1851 2674 .1880 .2740
.98489.9934 .9843 .9931 .9838 .9929 .9833 .9927 .9827 ,9924 .9822 .9922
.I763 9.2463 ,1793 ,2536 .1823 .2609 .1853 .2680 .1883 2750 .1914 .2819
5.67130.7537 5.5764 .7464 5.4845 .7391 5.3955 .7320 5.3093 .7250 5.2257 .7181
80"OO' 1.3%3 50 1.3934 40 1.3904 30 1.3875 20 1.3846 10 1.3817
0.1920 1"OO' 0.1949 10 0.1978 20 0.2007 30 0.2036 40 0.2065 so
.19089.2806 .1937 2870 .1965 -29.34 .1%4 .2997 ,2022 .3058 2051 .3119
.9816 9.9919 ,9811 .9917 .9805 9 1 4 .9799 .9912 .9793 .9909 .9787 .9907
.19449.2887 ,1974 .2953 .2004 .3020 ,2035 .3085 .2065 ,3149 .2095 .3212
5.14460.7113 5.0658 .7047 4.9894 .6980 4.9152 ,6915 4.8430 .6851 4.7729 .6788
79"OO' 1.3788 50 1.3759 40 1.3730 30 13.701 20 1.3672 10 1.3643
0.2094 2"OO' 0.2123 10 20 0.2153 0.2182 30 0.2211 40 0.2240 50
2079 9.3179 2108 .3238 2136 .3296 2164 .3353 2193 .3410 .2221 .3466
.9781 9.9904 .9775 ,9901 .9769 ,9899 .9763 .98% .9757 .9893 .9750 .9890
.2126 9.3275 .2156 .3336 .2186 .3397 2217 .3458 2247 ,3517 .2278 .3576
4.70460.6725 4.6382 .6664 4.5736 .6603 4.5107 .6542 4.4494 ,6483 4.3897 .6424
78"OO' 50 40 30
0.2269 13"W i._ n 0.238 . 0.2327 20 0.2356 30 0.2385 40 50 0.2414
.22509.3521 ,2278 .3575 2306 ,3629 2334 .3682 .2363 .3734 .2391 .3786
0.2443 14"OO' 0.2473 10 0.2502 20 0.2531 30 0.2560 40 0.2589 50
.24199.3837 .2447 .3887 .2176 ,3937 .2504 .3986
.97039.9869 .96% ,9866 .9689 .9863 ,9681 .9859 :2532 .4035 .%74 .9856 .2560 .4083 ,9667 .9853
.2493 9.3968 .2524 .4021 ,2555 .4074 .2586 .4127 .2617 .4178 .2648 .4230
4.01080.6032 3.9617 .5979 3.9136 .5926 3.8667 ,5873 3.8208 3 2 2 3.7760 S770
76"OO' 50 40 30
0.2618 15"OO' 0.2647 10 0.2676 20 0.2705 30 0.2734 40 0.2763 50
.25889.4130 .2616 .4177 ,2644 .4223 2672 .4269 .2700 .4314 ,2728 .4359
.96599.9849 .9652 .9846 .9644 ,9843 .9636 ,9839 .9628 .9836 .9621 .9832
2679 9.4281 ,2711 ,4331 .2742 .4381 .2773 .4430 2805 .4479 .2836 .4527
3.7321 0.5719 3.6891 S669 3.6470 S619 3.6059 S570 3.5656 ,5521 3.5261 S473
75"OO' 50 40 30
0.2793 16"OO' 0.2822 10 0.2851 20 0.2880 30 3.2909 40 1.2938 50
2756 9.4403 -2784 __. - . .-4447 . . .. .2812 .4491 .2840 .4533 .2868 .4576 2896 .4618
.96139.9828 .9605 .9825 .9596 .9821 .9588 .9817 .9580 .9814 .9572 .9810
.28679.4575 .2899 .4622 .2931 .4669 . 2 w .4% .2994 .4762 .3026 .4808
3.4874 0.5425 3.4495 .5378 3.4124 .5331 3.3759 ~ 2 8 4 3.3402 S238 3.3052 S192
74"OO' 1.2915 50 1.2886 40 1.2857 30 1.2828 20 1.2799 10 1.2770
0.2967 17"OO' 0.29% 10 0.3025 20 0.3054 30 0.3083 40 50 0.3113
2924 9.4659 2952 .4700 .2979 .4741 .3007 .4781 .3035 .4821 .3062 .4861
.95639.9806 .9555 .9802 .9546 .9798 .9537 .9794 .9528 .9709 .9520 .9786
.30579.4853 .3089 ,4898 .3121 .4943 .3153 .4987 .3185 .SO31 .3217 SO75
3.27090.5147 3.2371 S102 3.2041 .SO57 3.1716 .SO13 3.1397 .4969 3.1084 .4925
73"OO' 1.2741 50 1.2712 40 1.2683 30 1.2654 20 1.2625 10 1.2595
0.3142 18"OO'
.30909.4900 .95119.9782 .32499.5118 3.07770.4882
72"OO' 1.2566
Nat.
Log.
-ELF
.9744'9.9887 ,23099.3634 4.33150.6366 -9737 -9884 2339 3691 4.2747 ,6309 .2370 .3748 4.2193 ,6252 ,9724 .9878 .2401 .3804 4.1653 .6196 .9717 ,9875 2432 .3859 4.1126 .6141 .9710 .9872 .2462 ,3914 4.0611 .6086
3736 :9881
Nat.
Log.
sir;es
-Nat.
Cotangents
(continued) SMITHSONIAN PHYSICAL TABLES
Log.
Nat.
20
10
20
10
1.4137 1.4108 1.4079 1.4050 1.4021 1.3992
1.3614 1.3584 1.3555 1.3526 1.3497 1.3468
77"OO' 1.3439 50 1.3410 40 1.3381 30 1.3352 20 1.3323 10 1.3294
20
10
20
10
1.3265 1.3235 1.3206 1.3177 1.3148 1.3119 1.3090 1.3061 1.3032 1.3003 1.2974 1.2945
Log.
Tangents
Degrees
Radians
34 Radians
T A B L E 15.-CIRCULAR Degrees
( T R I G O N O M E T R I C ) F U N C T I O N S (continued)
Sines Nat.
Log.
Cosines Nat.
Tangents
Cotangents
Log.
0.3142 18"OO' 0.3171 10 0.3200 20 0.3229 30 0.3258 40 0.3287 50
.3090 9.4900 .3118 .4939 .3145 .4977 .3173 ,5015 ,3201 .5052 .3228 .5090
.9511 9.9782 ,9502 .9778 ,9492 .9774 .9483 ,9770 .9474 .9765 .9465 .9761
.32499.5118 .3281 .5161 ,3314 .5203 .3346 .5245 .3378 .5287 .3411 .5329
3.07770.4882 3.0475 .4839 3.0178 .4797 2.9887 .4755 2.9600 ,4713 2.9319 .4671
72"OO' 50 40 30 20 10
1.2566 1.2537 1,2508 1.2479 1.2450 1.2421
0.3316 19"OO' 0.3345 10 0.3374 20 0.3403 30 0.3432 40 0.3462 50
.32569.5126 .3283 .5163 .3311 ,5199 .3338 ,5235 .3365 5270 ,3393 .5306
-94559.9757 19446 -:97si ,9436 ,9748 .9426 .9743 .9417 ,9739 .9407 .9734
3443 9.5370 .3476 __541.1. .3508 .5451 .3541 .5491 .3574 .5531 .3607 .5571
2.90420.4630 2.8770 .4589 n2 .4549 2.85"._._ 2.8239 .4509 2.7980 ,4469 2.7725 .4429
71"OO' 50 49 36 20
1.2392 1.2363 123.~
0.3491 2O"OO' 0.3520 10 0.3549 20 0.3578 30 0.3607 40 0.3636 50
.34209.5341 .3448 .5375 .3475 .5409 ,3502 .5443 .3529 .5477 ,3557 S510
-93979.9730 .9387 .9725 ,9377 ,9721 ,9367 ,9716 .9356 .9711 ,9346 .9706
.3640 9.5611 -3673 .5659 ,3706 .5689 ,3739 ,5727 .3772 .5766 ,3805 .5804
2.7475 0.4389 2.7228 .4350 2.6985 .43ii 2.6746 ,4273 2.6511 .4234 2.6279 .4196
7O"OO' 1.2217 SO 1.2188 40 1.2159 30 1.2130 20 1.2101 10 1.2072
0.3665 21"OO' 0.3694 10 20 0.3723 0.3752 30 0.3782 40 0.3811 50
.35849.5543 .3611 .5576 ,3638 ,5609 .3665 ,5641 .3692 ,5673 .3719 .5704
.93369.9702 .9325 .9697 .9315 .9692 .9304 .9687 ,9293 .9682 .9283 .9077
,38399.5842 .3872 .5879 .3906 ,5917 .3939 .5954 .3973 .5991 .4006 .6028
2.6051 0.4158 2.5826 .4121 2.5605 .4083 25386 ,4046 2.5172 .4009 2.4960 .3972
69"OO' 50 40 30 20 10
1.2043 1.2014 1.1985 1.1956 1.1926 1.1897
0.3840 22"OO' 0.3869 10 0.3898 20 0.3927 30 0.3956 40 0.3985 50
.37469.5736 .3773 5767 :38@ .5798 ,3827 .5828 .3854 .5859 .3881 ,5889
.92729.9672 .9261 .9667 -9250 -9661 .... .9239 .9656 .9228 .9651 ,9216 .9646
.4040 9.6064 .4074 ,6100 .4108 6136 .4142 .6172 .4176 .6208 .4210 .6243
2.4751 0.3936 2.4545 .3900 2.4342 .3864 2.4142 .3828 2.3945 .3792 2.3750 .3757
68"OO' 50 40 30 20 10
1.1868 1.1839 1.1810 1.1781 1.1752 1.1723
0.4014 23"OO' 0.4043 10 0.4072 20 0.4102 30 0.4131 40 0.4160 50
,39079.5919 .3934 .5948 ,3961 .5978 .3987 .6007 .4014 .6036 .4041 .6065
.9205 9.9640 .9194 .9635 .9182 .9629 .9171 .9624 .9159 .9618 ,9147 .9613
.42459.6279 .4279 .6314 .4314 .6348 .4348 .638,3 .4383 .6417 ,4417 .6452
2.35590.3721 2.3369 .3686 2.3183 .3652 2.2998 .3617 2.2817 .3583 2.2637 .3548
67"W 1.1694 50 1.1665 40 1.1636 30 1.1606 20 1.1577 10 1.1548
9.4189 24"OO' oki8 10 0.4247 20 0.4276 30 0.4305 40 0.4334 50
.40679.6093 ,4094 .6121 .4120 .6149 .4147 .6177 .4173 .6205 .4200 .6232
.91359.9607 .9124 .9602 .9112 .9596 .9100 .9590 .9088 .9584 .9075 .9579
.44529.6486 .4487 .6520 .4522 .6553 .4557 .6587 .4592 .6620 .4628 .6654
2.2460 6.3514 2.2286 .3480 2.2113 .3447 2.1943 .3413 2.1775 .3380 2.1609 .3346
66"OO' 50 40 30 20 10
1.1432 1.1403 1.1374
0.4363 25"OO' 0.4392 10 0.4422 20 0.4451 30 0.4480 40 0.4509 50
.42269.6259 .4253 .6286 .4279 .6313 .4305 .6340 .4331 .6366 .4358 .6392
9063 9.9573 90.51 .9567 9038 .9561 .9026 .9555 9013 .9549 .9001 .9543
,46639.6687 .4699 ,6720 .4734 .6752 .4770 ,6785 .4806 .6817 .4841 ,6850
2.14450.3313 2.1283 .3280 2.1123 .3248 2.0965 .3215 2.0809 .3183 2.0655 .3150
65"OO' 50 40 30 20 10
1.1345 1.1316 1.1286 1.1257 1.1228 1.1199
0.4538 26"W 0.4567 10 0.4596 20 0.4625 30 0.4654 40 0.4683 50 0.4712 27"OO'
.43849.6418 .4410 .6444 ,4436 .6470 ,4462 ,6495 .4488 .6521 .4514 .6546 .45409.6570
.89889.9537 .8975 .9530 .8962 .9524 ,8949 .9518 3936 .9512 .8923 .9505 .8910 9.9499
.4877 9.6882 ,4913 .6914 ,4950 .6946 .4986 ,6977 .5022 .7009 .5059 .7040 .SO95 9.7072
2.05030.3118 2.0353 ,3086 2.0204 .3054 2.0057 .3023 1.9912 2991 1.9768 .2960 1.9626 0.2928
64'00' 50 40 30
Nat.
Nat.
Nat.
Nat.
Log.
-2L-
SMITHSONIAN PHYSICAL TABLES
Log.
Sines
Log.
Cotangents
- -
Log.
Tangents
10
i:2505 1.2275 1.2246
1.1519 1.1490
1,1461
1.1170 1.1141 1.1112 1.1083 20 1.1054 10 1.1025 63"OO' 1.0996 Degrees
Radians
T A B L E 15.-CIRCULAR Radians
Degrees
Sines Nat.
Log.
( T R I G O N O M E T R I C ) F U N C T I O N S (continued) Cosines Nat.
Log.
Tangents Nat.
Log.
35
Cotangents Nat.
Log.
0.4712 27"OO' 0.4741 10 0.4771 20 0.4800 30 40 0.4829 0.4858 50
.45409.6570 ,4566 A595 ,4592 .6620 .4617 ,6644 .4643 .6668 .4669 .6692
,89109.9409 ,8897 .9492 ,8884 ,9486 ,8870 .9479 .8857 ,9473 3843 .9466
.SO959.7072 S132 ,7103 S169 .7134 ,5206 ,7165 ,5243 .7196 S280 .7226
1.96260.2928 1.9486 ,2897 1.9347 .2866 1.9210 .2835 1.9074 .2804 1.8940 ,2774
63"OO' 50 40 30 20 10
1.0996 1.0966 1.0937 1.0908 1.0879 1.0850
0.4887 28"OO' 0.4916 10 0.4945 20 0.4974 30 0.5003 40 0.5032 SO
,46959.6716 ,4720 .6740 ,4746 6763 ,4772 ,6787 .4797 ,6810 .4823 ,6833
,88299.9459 ,8816 ,9453 3802 ,9446 .8788 .Y439 3774 .9432 ,8760 .9425
.5317 9.7257 ,5354 .7287 5392 ,7317 ,5430 ,7348 ,5467 ,7378 ,5505 ,7408
1.88070.2743 1.8676 ,2713 1.8546 .2683 1.8418 ,2652 1.8291 ,2622 1.8165 .2592
62"OO' 50 40 30 20 10
1.0821 1.0792 1.0763 1.0734 1.0705 1.0676
0.5061 29"OO' 0.5091 10 0.5120 20 0.5149 30 0.5178 40 0.5207 50
,48489.6856 ,4874 .6878 ,4899 .6901 .4924 A923 .4950 .6946 .4975 ,6968
,87469.9418 ,8732 ,9411 ,8718 ,9404 ,8704 ,9397 3689 .9390 ,8675 ,9383
,55439.7438 ,5581 ,7467 S619 ,7497 ,5658 ,7526 5696 ,7556 S735 .7585
1.80400.2562 1.7917 ,2533 1.7796 ,2503 1.7675 ,2474 1.7556 ,2444 1.7437 .2415
61"OO' 50 40 30 20 10
1.0647 1.0617 1.0588 1.0559 1.0530 1.0501
0.5236 30"00' 0.5265 10 0.5294 20 0.5323 30 0.5352 40 50 0.5381
S O 0 0 9.6990 ,5025 .7012 SOSO ,7033 .SO75 .7055 ,5100 .7076 S125 .7097
3660 9.9375 ,6646 ,9368 ,6631 ,9361 ,8616 .9353 ,8601 .9346 ,8587 ,9338
S774 9.7614 3312 ,7644 SS51 .7673 ,5890 .7701 ,5930 .7730 SY69 ,7759
1.7321 0.2386 1.7205 ,2356 1.7090 ,2327 1.6977 ,2299 1.6864 ,2270 1.6753 .2241
6O"OO' 1.0472 50 1.0443 40 1.0414 30 1.0385 20 1.0356 10 1.0327
0.5411 31"OO' 0.5440 10 0.5469 20 0.5498 30 0.5527 40 0.5556 50
,51509.7118 S175 .7139 S200 .7160 S225 ,7181 ,5250 .7201 S275 .7222
3572 9.9331 .8557 ,9323 23542 .9315 A526 .9308 .8511 .9300 I3496 ,9292
.60099.7788 .6048 ,7816 ,6088 ,7845 ,6128 .7873 .6168 .7902 .6208 .7930
1.66430.2212 1.6534 2184 1.6426 ,2155 1.6319 ,2127 1.6212 .2098 1.6107 ,2070
59"OO' 50 40 30 20 10
0.5585 32"OO' 0.5614 10 0.5643 20 0.5672 30 0.5701 40 50 0.5730
S299 9.7242 5324 .7262 .5348 .7282 S373 ,7302 ,5398 ,7322 .5422 .7342
3480 9.9284 .9276 .8450 ,9268 3434 .9260 3418 .9252 3403 .9244
,62499.7958 ,6289 ,7986 .6330 3014 .6371 ,8042 .6412 3070 h453 .SO97
1.60030.2042 1.5900 2014 i15798 3 8 6 1.5697 ,1958 1.5597 ,1930 1.5497 ,1903
58"W 1.0123 50 1.0094 40 1.0065 30 1.0036 20 1.0007 10 0.9977
0.5760 33'00' 10 0.5789 0.5818 20 0.5847 30 0.5876 40 0.5905 50
S446 9.7361 S471 .7380 ,5495 .7400 S519 .7419 S544 ,7438 S568 .7457
.83879.9236 3371 ,9228 ,8355 .9219 3339 .9211 3323 .9203 3307 .9194
.6494 9.8125 .6536 3153 .6577 .81N ,6619 .8208 .6661 3235 .6703 A263
1.53990.1875 1.5301 .1847 i.5204 .is20 1.5108 ,1792 1.5013 .1765 1.4919 .1737
57"OO' 50 40 30 20 10
0.5934 34"CO' 0.5963 10 0.5992 20 0.6021 30 0.6050 40 0.6080 50
S592 9.7476 ,5616 .7494 S640 .7513 .5664 .7531 5688 .7550 S712 .7568
,82909.9186 3274 .9177 3258 .9169 ,8241 .9160 ,8225 .9151 3208 .9142
.67459.8290 ,6787 3317 ,6830 ,8344 .6873 ,8371 .6916 ,8398 .6959 3425
1.48260.1710 1.4733 .1683 1.4641 .1656 1.4550 .1629 1.4460 .1602 1.4370 .1575
56"OO' 0.9774 so 0.9745 30 20 10
0.9687 0.9657 0.9628
0.6109 35"OO' 0.6138 10 0.6167 20 0.6196 30 0.6225 40 0.6254 50
,57369.7586 S760 .7604 S783 .7622 .5807 .7640 ,5831 ,7657 S854 .7675
3192 9.9134 ,8175 ,9125 ,8158 ,9116 .8141 .9107 ,8124 .9098 3107 .9089
.70029.8452 .7046 3479 .7089 ,8506 .7133 ,8533 ,7177 .8559 ,7221 .8586
1.3281 0.1548 1.4193 ,1521 1.4106 .1494 1.4019 .1467 1.3934 ,1441 1.3848 .1414
55"00'
0.9599 0.9570 0.9541 0.9512 0.9483 0.9354
0.6283 36"OO'
.8465
,58789.7692 3090 9.9080 .72659.8613 1.37640.1387 Nat.
Log.
coi,s
Nat.
Log.
SiAes
Nat.
Cotangents
(continucd) SMITHSONIAN PHYSICAL TABLES
Log.
Nat.
1.0297 1.0268 1.0239 1.0210 1.0181 1.0152
0.9948 0.9919 0.9890 0.9861 0.9832 0.9803
40 0 3 i i
SO 40 30 20 10
54"OO' 0.9425
Log.
Tangents
Degrees
Radians
36 Radians
T A B L E 15.-CIRCULAR Degrees
Sines Nat.
Log. ,
( T R I G O N O M E T R I C ) F U N C T I O N S (concluded) Cosines Tangents * * Nat. Log. Nat. Log.
Cotangents
0.6283 36"OO' 10 0.6312 0.6341 20 0.6370 30 0.6400 40 50 0.6429
S878 9.7692 ,5901 .7710 5925 ,7727 ,5948 ,7744 ,5972 .7761 ,5995 .7778
,80909.9080 3073 .9070 .8056 .9061 3039 .9052 3021 ,9042 .8004 9033
.7265 9.8613 .7310 .8639 ,7355 .8666 .7400 .8692 ,7445 .8718 .7490 3745
1.37640.1387 1.3680 .I361 1.3597 .1334 1.3514 .I308 1.3432 .1282 1.3351 .I255
54"OO' 50 40 30 20 10
0.9425 0.9396 0.9367 0.9338 0.9308 0.9279
0.6458 37"OO' 0.6487 10 0.6516 20 0.6545 30 0.6574 40 0.6603 50
.6018 9.7795 ,6041 .7811 .6M5 .7828 .6088 ,7844 .6111 .7861 A134 ,7877
.79869.9023 .7969 .9014 .7951 .9004 ,7934 .8995 .7916 .8985 .7898 ,8975
,75369.8771 .7581 .8797 ,7627 2-824 .7673 3850 .7720 3876 .7766 3902
1.32700.1229 1.3190 ,1203 1.3111 .I176 1.3032 ,1150 1.2954 .1124 1.2876 .lo98
53"W 50 40 30
0.9250
10
0.9221 0.9192 0.9163 0.9134 0.9105
0.6632 38"OO' 0.6661 10 0.6690 20 0.6720 30 0.6749 40 0.6778 50
,61579.7893 .6180 ,7910 ,6202 .7926 .6225 ,7941 .6248 ,7957 ,6271 .7973
.7880 9.8965 .7862 ,8955 ,7844 3945 .7826 ,8935 ,7808 2925 .7790 ,8915
'7813 9.8928 .7860 3954 ,7907 ,8980 ,7954 ,9006 ,8002 ,9032 ,8050 .9058
1.27990.1072 1.2723 .lo46 1.2647 .lo20 1.2572 ,0994 1.2497 .0968 1.2423 .0942
52"OO' 50 40 30 20 10
0.9076 0.9047 0.9018 0.8988 0.8959 0.8930
0.6807 ~ ~ 3 .9 .0 .0 .0 .' 0.6836 10 0.6865 20 0.6894 30 0.6923 40 0.6952 50
6293 9.7989 .6316 -:SO04 ,6338 3020 .6361 .SO35 .6383 ,8050 ,6406 3066
,77710.8905 ,7753 ,8895 '.7735 3884 .7716 .8874 ,7698 ,8864 ,7679 3853
,80989.9084 A146 .9110 3195 ,9135 ,8243 ,9161 ,8292 .9187 .8342 ,9212
1.23490.0916 1.2276 .0890 1.2203 ,0865 1.2131 .0839 1.2059 .0813 1.1988 .0788
51"W 0.8901 50 40 30 20 10
0.8872 0.8843 0.8814 0.8785 0.8756
0.6981 4O"OO' 0.7010 i.n. ... .-. 0.7039 20 0.7069 30 40 0.7098 50 0.7127
.64289.8081 ,76609.8843 -6450 A096 . 7 w .8832 3472 i i i i .8821 .6494 3125 .7604 .8810 .6517 3140 ,7585 ,8800 ,6539 .8155 .7566 ,8789
3391 9.9238 .844i .9264 i849I Z89 .8541 .9315 .8591 ,9341 3642 ,9366
1.1918 0.0762 1.1847 07.36
1.1708 .0685 1.1640 ,0659 1.1571 .0634
50"00' 50 40 30
'10
0.8727 0.8698 0.8668 0.8639 0.8610 0.8581
0.7156 41"OO' 0.7185 10 0.7214 20 0.7243 30 0.7272 40 50 0.7301
.6561 9.8169 ,6583 ,8184 .6604 ,8198 .6626 .8213 .6648 ,8227 .6670 .8241
.75479.8778 ,7528 ,8767 .7528 .7509 .7509 3756 ,7490 .8745 .7470 .8733 .7451 3722
,86939.9392 ,8744 .9417 .8744 ,8796 .9443 ,8847 .9468 ,8899 .9494 A952 .9519
1.1504 0.0608 1.1436 .058.3 ,0583 i.1369 .OSS7 1.1369 .0557 1.1303 .0532 1.1237 ,0506 1.1171 .0481
49"W 50 40 30 20 10
0.8552 0.8523 0.8494 0.8465 0.8436 0.8407
0.7330 42"OO' 0.7359 10 0.7389 20 0.7418 30 0.7447 40 0.7476 50
.6691 9.8255 ,6713 3269 .6734 3283 .6756 ,8297 .6777 A311 .6799 .8324
.7431 9.8711 .7412 3699 .7392 3688 .7373 3676 .7353 ,8665 .7333 ,8653
,90049.9544 ,9057 ,9570 ,9110 .9595 .9163 .9621 .9217 .9646 .9271 ,9671
1.1106 0.0450 1.1041 .0430 1.0977 ,0405 1.0913 ,0379 1.0850 ,0354 1.0786 .0329
48"OO' 50 40 30
0.8378 0.8348 0.8319 0.8290 0.8261 0.8232
0.7505 43'00' 0.7534 10 0.7563 20 0.7592 30 0.7621 40 0.7650 50
.68209.8338 .6841 3351 .6862 ,8365 .6884 3378 .6905 .8391 ,6926 .8405
.73149.8641 .7294 A629 .7274 3618 .7254 3606 .7234 ,8594 .7214 .8582
.93259.9697 .9380 .9722 ,9435 .9747 .9490 ,9772 .9545 .9798 .9601 .9823
1.07240.0303 1.0661 .0278 1.0599 .0253 1.0538 .0228 1.0477 .0202 1.0416 .0177
47'00' 50 40 30
0.7679 44"OO' n77n9 10 . -. _. 0.7738 20 0.7767 30 0.7796 40 0.7825 50
.69479.8418 .6967 3431 .6988 ,8444 .7009 A457 .7030 ,8469 .7050 3482
.71930.8569 .7173 .8557 ,7153 .8545 .7133 ,8532 .7112 ,8520 .7092 .8507
.96579.9848 ,9713 .9874 ,9770 ,9899 .9827 .9924 ,9884 .9949 .9942 ,9975
1.03550.0152 1.0295 .0126 1.0235 .0101 1.0176 .0076 1.0117 .0051 1.0058 :OO25
46"OO' 50 40 30 20
0.7854 45"OO'
.7071 9.8495
1.00000.0000
45"Oo' 0.7854
~~
Nat.
Log.
Cosines
SMITHSONIAN PHYSICAL TABLES
III77S :oiii
- ,70719.8495 1.0000 0.0000
Nat.
Log.
Sines
Nat.
Log.
Cotangents
Nat.
Log.
Tangents
20
20
20
10
20
10
10
De. grees
0.8203 0.8174 0.8145 0.8116 0.8087 0.8058 0.8029 0.7999 0.7970 0.7941 0.7912 0.7883 Radians
T A B L E 16,-METHODS
OF AVERAGING DATA
LVlien a number of measurements are made of any quantity variatioils \vill he found. The question is: \Vhat is tlie best represcnt3t:ve value for the quantity thus mea.wrctl : and how shall the precision oi the iiieasiireiiiciits be stated? The arithmetic iiicaii of all the readings is generally taken a s the hest value. T o tell soiiictliiiiK almut tlie Iwecision of the final result any one of five measures of variation which arc tliscu.sctl i n hooks dealiiip with this subject may be given. These measures of deviation arc': fi = probable error a = the average deviation (from the arithmetic nicaiil u = the standard deviation 1/11 = the reciprocal of tlie modulus of precisicm k / z v = the reciprocal of the "precision constant"
Of these precision indexes the standard deviation. u. is most easily computctl. For the set of observed values .rl, .r2..x,, of equal weight. the u for a siiiqlc observation is given hy Z(.r - .r)?
=
$1
and for the mean by u=
-1
-:4 =
v I1
~
4
-(.I' r
I Z(.r-.r)?
--(X--.i-)*
Il(11-1)
I,.r):
-
v
112
The ratios of these precision indexes to one another for a iiornial (or Gaussian) distribution are : p : t i : u : 1 11 : i: 'it' : : 0.376936 : 1 *\; : \,-) : 1.000 : \'r or roughly as p : n : u : 1/11 : k i t ' : : 7 : 8 : 10 : 14 : 25 Most experimental data can be represented by an equation of sonic form. One (it' thc recommended methods for determining the coefficients oi such equations is the use of a least-squares solution. This means that an attempt is niadc t o find values icir the coefficients such that the sum of the squares of the deviations oi tlie cxpcriniciital points irom the resulting curve has the least possible value. Certain tahles arc of help in making such solutions (Tables 16-26), and reference shouitl be made to books or pspers on this suhjcct for their use. Xri example of one niethod of finding tlic cocfiicients of such sclcctctl equations (based on "Treatment of Experimental Data," by \Vorthing and Gefiner. published h>- \\-ilcy. 1933) follows. P a r t 1,-Least
squares adjustment of measurements of linearly related quantities
Let, Q,, Q,. . . QI. be the k adjusted, but initially unkno\vn, values of the lincarly related quantities. Let S,, S2.. . S,, be I i (> 1:) measured values oi Q's or o i linear combinations of two or more, Q's. Let &, &. . . A , $ be the adjustments or corrections that m i s t be applied to tlic iiieasii~cd s ' s to yield consistent least-squares values for the Q's. See below for a simple illustration. As O / J S C ~ P * O ~ ~cqircitiorrs OII we have
................................
+.
+
n,,Q, /bQ2 . ./:,,QI. - s,,= A,, of which n i . O i . . . k i are constants. whose values are ircquciitly 1. - 1. or 0. ~ r r s foriiied. For equally \veiglitccl From the observation equations k riorrrrol c . ~ ] l / ~ i l i ~ are observed values of S.they arc r ~ r o l l c ) Ir o i n i i ~ . r 1 7 , c - i ~ ~ ~ 2. . illt/;,ic)k- rll,.yii = o ">,lli1Qj [Fil!$lQ2i! ! ~ , c , l c : l. +. . I / l , / : i l ~ ) I . - r 1 7 , S j l = 0 (2)
+ +
+
+
+.
....................................................... r k i ~ i l ( _+ ) l r/:ir~ilQ,+ i i ~ i ~ ~ ; +. l c ).. .i/:rl:ilch l -rk,sil =0
SMITHSONIAN PHYSICAL TABLES
OF AVERAGING D A T A (continued)
T A B L E 16.-METHODS
38
of which, as representative bracketed L 1 coefficients, we have [atat] = alal azaz a3a3 .. .a,,a, [acbrl= a161 a262 a3b3 . .anBn [ a l X l l = a,X, azXz aaX3 . .anXn
+ + + + + +. + + +.
(3)
..................................... [ktatl = klal + hzaz + k3a3+ ...knan Solutions of equation (2) yield'the least-squares adjusted values of
Qi,
Qz...ex.
For unequally weighted values of X , that is wl, wz,. . .wnfor X , X z . . .Xn, the rrornral equations become
+ +
[ w t a ~ a t l Q ~ [wtatbtlQ2 [ ~ i b c a < l Q i [wtDtbtlQZ
+ [zvtatctIQ3+.. . [ W C ~ ~ -~ ~[wcatXtl I Q X =0 + [ ~ , b t ~ i l Q+.. 3 .[ ~ r b t l ~ ~ l [Q~ ~t b t X i= l 0
(4)
.....................................................................
+
+
+.
~w~k~aclQ [ wl l h ~ b t l Q z I W ~ ~ ~ C ..~twthtktlQkI Q ~ of which
[ w t a d = zphalal [zv~acbtl = walbl
+ w z ~ a+z w3a3a3+ ...wnana8, + zfia2bY+ w3a3b3+. . .twnanbn
IwtkcXtl = 0
(5)
............................................ [wtk+atl= wlklal + wIkza2+ w3ksar+. . .wnknan The weights wl, m . . .w,, associated with the Xi, X Z . . . X , and with the successive observation equations are taken as inversely proportional to the squares of the probable errors (or of the standard deviations) of the corresponding X's. It is customary to take simple rounded numbers for the proportional values. A precise set of 28, 50, 41, and 78 may be rounded to 3, 5, 4, and 8. As a simple application, consider the elevations of stations B, C, and D above A. Let those elevations in order be Q1, Q2,and Q3. Let the quantities measured and the observed elevations be such as to yield the following observation equations :
Qz - Q 3 -12 ft = A5 Qi - Q3 - 5 ft = A6 Th coefficients al, b ~ and , are obvious. Substitution
are seen to be 1, 0, and 0. The values of the other coefficients equation (2) yields for the normal equations 3Qz- Q a Q36ft=O (7) - Qi 3 Q 2 - Q 3 - 39 ft = O - Qi - Q z 3Q3 13 ft = 0
+
+
+
Solutions of equation ( 7 ) yield 91 ft, 174 ft, and 44 ft for the elevations of B, C, and D above A. P a r t 2.-Least-squares
+ bx,
equations of the type y = a observed (x,y) values
to represent a series of
For equally weighted pairs of (x,y) of which the errors of measurement are associated with the determinations of the y's
of which
SMITHSDNIAN PHYSICAL TABLES
T A B L E 16.-METHODS
OF A V E R A G I N G D A T A (concluded)
39
The probable errors of the a and the b of equation (8) are given by
For unequally weighted measurements of which the errors of measurement are associated with the determinations of the y's, Z w l x i l Z w , y i - Z w ix & v i xt y i a= Z z w Z w l x l z - (Zzehxr ) Z
Where the erroi s of measurement are associated with the x-determination only, the corb'y can be obtained by merely responding coefficients of an equation of the type x = a' interchanging x and y in equation ( 8 ) . Where the errors of measurement are associated with both the x - and the y- determinations, the expressions are complicated."
+
Worthing, A. G . , and Geffner, J., Trcatment of experimental data, p. 259, John Wiley and Sons, New York, 1943. Used by permmion.
+
+ cxz + dx3 to
equation of the type y = a bx series o f observed (x, y ) values
P a r t 3.-Least-squares
represent a
For the general case involving irregularly spaced x-values, the formulae for a, b, c , etc., are very complex." However, for the case of equally weighted observations with errors of measurement associated entirely with the y-values in which succeeding x-values are equally spaced, the mechanics of the computations for least-squares constants are very greatly simplified, thanks to tables computed by Baily and by Cox and Matuschak.Ia The procedure requires a change of the x-variable to yield a new X-variable with a zero-value at the midpoint of the series. I n case of an even number of terms, the shift is given by x-x 4x
-
X,= -
(11)
of which Ax is the even spacing between successive x-values; and, if the number of terms is odd, the shift is given by -
x o = x4x/2 --x
(12)
The further procedure consists in determining the appropriate summations indicated in Table 17, the appropriate k-terms given as a function of the number of terms n in Tables 19 and 20, combining the appropriate summations and k-terms, to give parameters for the equation y = f ( X ) , and finally transferring the function to the original coordinate system to yield y = f i ( x ) . How to apply the simplified procedure to determine the coefficient of x2 in the leastcxz to represent the xy values of the first two columns of squares equation y = a bx the following tabulations is shown in the remainder of the tabulation.
+ +
X
L
(set)
(cm)
3 6 9 12 15 18
12.0 20.6 33.7 51.1 72.9 99.1
_-
x
-5 -3 -1 1 3
+ + +5
289.4
-X2Y (cm)
300.0 185.4 33.7 51.1 656.1 2477.5
-__
3703.8
C' = k5ZX2y - krZy n=6 k5 = 16,741,071 X k 4 = 19,531,250X lo-* kJZX2y= 6.2005 cm krZy = 5.6523 cm c' = 0.5482 cm Ax = 3 sec c = 4c'i ( A x ) = 0.244 cm/sec2
67, 1YZI; Worthing, A. G . , I4 Birge, R . T., and Shea, J. D., Univ. California Puhl. Math., vol. 2, and Geffner. J., Treatment of experimental data, p. 250, John Wiley and gins, New York, 1943. Baily, J. L., Ann. Math. Statistics, vol. 2, p. 355, 1931. '"Cox, G. C., and Matuschak, Margaret, Journ. Phys. Chem., vol. 45, p. 362, 1941.
SMITHSONIAN PHYSICAL TABLES
40 T A B L E 17.-SHOWING T H E MAKE-UP O F T H E CONSTANTS O F T H E LEASTSQUARES EQUATION O F T H E T Y P E y = a bx cx2 dxS FOR EQUATIONS OF VARYING DEGREES W H E N T H E ABBREVIATED M E T H O D O F BAILEY AND O F COX AND MATUSCHAK IS U S E D *
+ +
+
This method is applicable only when succeeding values of x have a common difference and a r e equally weighted. T h e independent variable, changed if necessary, must have a zero value at the midpoint of the series with succeeding values differing by unity if the number of terms is odd and by two if even. Values for the various k's, as computed by Cox and Matuschak, are to be found in Tables 14 and 20.
.
J'or
references, see footnotes 15 and 16, P. 39.
L U ES O F P =
TABLE 18.-VA
s
P, the probability of an observational error having a value positive or negative equal to hZ or less than x when h is the measure of precision, P = e-'"''zd(hx) * I t a = (tntax') v'T 0 where nz = no. obs. of deviation A x . hx 0.0
.I .2 .3 .4 0.5
.6 .7 .8 .9 1.o
.1
.2 .3 .4 1.5
.6 .7 .8
.9 2.0
.I .2 .3 .4 2.5
.6 .7 .8
.9
0
1
4
,01128 .02256 .03384 .04511 ,05637 ,06762 .11246 ,12362 .I3476 .I4587 .I 5695 .16800 .I7901 ,22270 .23352 24430 .25502 .26570 .27633 .28690 .32863 .33891 .34913 .35928 .36936 ,37938 ,38933 .42839 .43797 .44747 .45689 .46623 .47548 ,48466
7 8 9 .07886 .09008 .lo128 .I8999 .20094 .21184 ,29742 ,30788 ,31828 ,39921 .40901 ,41874 ,49375 .SO275 51167
2
3
5
6
.52050 ,60386 .67780 .74210 .79691
.52924 .61168 ,68467 .74800 .80188 ,80677
3 4 9 4 .56332 ,57162 .63459 ,64203 ,64938 .70468 .71116 .71754 .76514 ,77067 .77610 ,81156 .81627 32089 ,82542
,57982 ,58792 .59594 ,65663 .66378 ,67084 .72382 ,73001 ,73610 ,78144 ,78669 .79184 ,82987 .83423 ,83851
.84270 .88021 .91031 .93401 ,95229
.84681 .85084 .a353 .88679 .91296 .91553 ,93606 .93807 .95385 .95538
3.5478 .85865 188997 .89308 .91805 .92051 .94002 .94191 .95686 ,95830
.86977 90200 .92751 .94731 ,96237
.86244 ,89612 ,92290 ,94376 .95970
,86614 .89910 .92524 ,94556 ,96105
.96611 ,96728 ,97635 .97721 .98379 .98441 .98909 .98952 39279 ,99309
.96841 .97804 .98500 .98994 .99338
.96952 .97884 .98558 .99035 ,99366
.97059 .97962 .98613 .99374 .99392
,99532 .99702 ,99814 .99886 .99931
.99572 ,99728 ,99831 .99897 .99938
99591 .99741 .99839 .99902 .99941
.99609 ,99626 .99642 9 7 5 3 .99764 ,99775 ,99846 .99854 ,99861 .99906 9 9 11 9 9 1 5 .99944 .99947 .99950
,99552 ,99715 .99822 .99891 .99935
,97162 .97263 .98038 .98110 ,98667 .98719 ,99111 ,99147 .99418 ,99443
.87333 ,90484 ,92973 .94902 .96365
,87680 90761 ,93190 .95067 .96490
,97360 ,97455 ,97546 .98181 ,98249 ,98315 .98769 .98817 .98864 ,99182 .99216 ,99248 ,99466 .99489 ,99511 ,99658 .99785 .99867 .99920 ,99952
,99673 ,99795 ,99874 .99924 ,99955
.99688 ,99805 ,99880 .99928 .99957
99.59 ,99961 .99963 .99965 .99967 ,99969 .99971 .99972 .99974 .99975 99976 .99978 ,99979 .99980 .99981 .99982 ..99983 .99984 ,99985 .99986 9 9 8 7 .99987 ,99988 .99989 .99989 .99s50 . 9 W 1 ,99991 ,99992 .99992 .99992 .99993 ,99993 .99994 .99994 .99994 .99995 .99995 .99995 ,99996 99996 S9996 999% .99997 ,99997 .99997 .99997 ,99997 .99997 .99998
.99998 3.0 -
.99999
.99999 1.00000
SMITHSONIAN PHYSICAL TABLES
v)
5
4
B
T A B L E 19.-VALUES O F T H E CONSTANTS, k,, E N T E R I N G LEAST-SQUARES SOLU TION S, U SIN G T H E A B B R E V I A T E D M E T H O D O F B A I L Y A N D O F COX A N D M A T U S C H A K , W H E N T H E N U M B E R OF TER MS, n, IS O D D *
z
z D Q
5
T h e numbers in parentheses show the negative powers of 10 by which the adjacent numbers must he multiplied in order to obtain appropriate 12"'s.
To illustrate, 1 : ~for I G = 13 is 54,945,055 x lo-''.
ka 4
D
I Im (D
3 - 5 n 7 9 11
k4
kx
h
kG
3333 3333(8) 2000 0000 1428 5714 1111 1111 9090 9091(9)
so00 OOOO(8) 1000 0000 3571 4286(9) 1666 6667' ' 9090 9091(10)
1000 OOOO(7) 4857 1429(8) 3333 3333 2554 1126 2074 5921
1000 0000(7', 1428 5714(6, 4761 9048(9) 2164 5022 1165 5012
1500 OOOO(7) 7142 8571(9) 1190 4762 3246 7532(10) 1165 5012
9027 7778(8) 2625 6614 1143 3782 6037 9435(9)
2361 3240 8277 2881
1111(8) 7407(9) 2166(10) 3779
6944 4444(9) 4629 6296(10) 7014 5903(11) 1618 7516
13 15 17 19 21
7692 6666 5882 5263 4761
5494 5055 3571 4286 2450 9803 1754 3860 1298 7013
1748 2517 1511 3122 1331 2693 1189 7391 1075 5149
6993 0070(10) 4524 8869 3095 9752 2211 4109 1634 5211
4995 0050(11) 2424 0465 1289 9897 7371 3696(12) 4457 7848
3584 6098 2304 5899 1570 2041 1118 3168 8248 9 7 0 ( 10)
1214 0637 5830 6799 ( 11) 3081 6420 1752 5617 1056 2015
4856 2549(12) 1745 7125 7166 6093(13) 3257 5497 1605 1694
23 25 27 29 31
4347 8261 4000 0000 3703 7037 3448 2759 3225 8065
9881 7692 6105 4926 4032
9813 9024 8352 7774 7270
6646(9) 1546 4904 0700 7048
1242 2360 %51 8357(11) 7662 8352 6179 7058 5056 1230
2823 2637 1858 0453 1263 1047 8828 1512(13) 6320 1537
6259 4862 3852 3104 2538
6672 4382 2974 2076 1485
8445 4692 2728 1650 1032
33 35 37 39 41
3030 2857 2702 2564 2439
3342 2460 2801 1204 2370 7918 2024 2915 1742 1603
6828 6437 6088 5775 5493
6552 3464 5061 5692 2589
4189 3510 2970 2535 2181
4620 6166 3441 1799 2605 2658 2001 6066 1558 2829
2102 4471 1760 7811 1489 3734 1271 0408 1093 4097
1084 7991 8073 4407(13) 6108 7522 4691 0081 3650 4910
6655 2091(15) 4402 0942 2979 8791 2059 2661 1449 7581
43 45 47 49 51 -
2325 5814 2222 2222 2127 6596 2040 8163 1960 7843
1510 1178 1317 5231 1156 3367 1020 4082 9049 7738(12)
5237 5004 4790 4595 4414
2849 1234 8525 0295 5960
1890 7166 1649 3485 1447 3875 1277 1066 1132 5285
1227 7380 9778 7451 (14) 7866 2362 6385 5329 5227 0545
9474 8263 7250 6396 5671
2875 1015 2289 2527 1841 0171 1494 1103 1222 7830
1037 9428 7545 3288( 16) 5561 9852 4152 6134 3136 9497
3077 6667 3529 1579 9048
3030 1429 7027 1026 0244
4229( 11) 3077 0061 1084 2581
For references. see footnotes 15 and 16. 1). 39
3590 0035 0030 3684 5961
0791 3545 7423 7316 6983
1490(11) 1159 1033 2170 3855
0719(12) 3595 5336 4076 0296
6606(14) 0337 9299 5625 7049
P
N
3 !
T A B L E 20.-VALUES OF T H E CONS T ANT S , k,, E N T E R I N G LEA ST-SQU A R ES SOLU TION S, U S I N G T H E A B B R E V I A T E D M E T H O D O F B A I L Y A N D OF COX A N D M A T U S C H A K , W H E N T H E N U M B E R O F T E R M S , n, IS E V E N *
z z P -0
The numbers in parentheses show the negative powers of 10 by which the adjacent numbers must be multiplied in order to obtain appropriate kn's.
I
d
4
E
n
b r01 Im n
4 6 8 10
2500 OOOO(8) 1666 6667 1250 0000 1000 0000
5000 1428 5952 3030
0000(9) 5714 3810(10) 3030
6406 3945 2890 2289
12 14 16 18 20
8333 3333(9) 7142 8571 6250 0000 5555 5556 5000 0000
1748 1098 7352 5159 3759
2517 9011 9412(11) 9587 3985
22 24 26 28 30
4545 4545 4166 6667 3846 1538 3571 4286 3333 3333
32 34 36 38 40
3125 2941 2777 2631 2500
42 44
2380 2272 2173 2083 2000
-4
46 48 50 -
kz
k3
ks
k4
7812 1953 7812 3906
5030(9) 1250 5000(10) 2500
1562 1674 3720 1183
1897 3214 1621 0938 1415 5506 1256 5104 1129 7349
2232 1395 9300 6510 4734
1429 0893 5952( 4167 8485
4682 8172(12) 2146 2912 1094 1877 6046 8266( 13) 3560 0365
2823 2637 2173 9130 1709 4017 1368 3634 1112 3471
1026 9402 8675 8052 7513
2784 3164(9) 3091 8846 9509
3551 1364 2731 6434 2146 2912 1717 0330 1395 0893
2205 1425 9539 6578 4655
OOOO 1765 7778 5789 0000
9164 7634 6435 5471 4690
2229( 12) 4194 0064 0581 4315
7042 6627 6258 5927 5630
7390 2213 0624 9058 8741
1148 9574 8062 6853 5774
8971 1423(12) 4358 0703 0602
3369 1996 2486 7902 1867 7458 1424 7547 1102 0751
9524 7273 9130 3333 OOOO
4051 3523 3083 2713 2400
5355 6081 5646 8515 9604
5362 5118 4895 4690 4503
2160 0477 1643 8968 0048
5073 4411 3859 3396 3004
0520 3495 9309 7392 8077
8632 6839 5475 4424 3607
For references, see footnotes 15 and 16, p. 39.
2500(8) 3125 6250 0625
SOOO(9) 1071(10) 2381(11) 7121
6748 2052 0720(14) 6704 4704
5332 ( 15) 3016 0792 7580 2121
7118 055619) 4870 756iiio) 9732 7441(11) 2964 3389
8683 2411 2630 5058
5556( 10) 2654(11) 4714( 12) 5988(13)
1149 4485 7125 6741(10) 4725 9399
1146 6157 5186 5517( 2622 0143 1440 7871 8448 3844( 3)
1348 4463 1722 7465 3540
9597 4695(14) 7426 2181(15) 8149
1790 1375 1079 8629 7006
5616 4794 5940 5508( 11) 8080
5218 8071 3364 5781 2248 0302 1548 2276 1094 4042
1805 8156 9775 0702( 16) 5561 6779
5767 4803 4043 3436 2944
1532 7846 7597 0952 4203
7913 5836 4380 3339 2582
1009(14) 2361 6481 8722 2837
1290 8811 8431 4304(17) 5643 7105 3861 1239 2693 8074
2542 3116 2210 2564 1933 6316 1701 3314 1504 8177
2021 1601 1281 1035 8439
9092 3580 5606 4426 3542(15)
1912 8753 1380 2431 1010 5351 7497 7742( 18) 5631 4922
6336 1126 4196 2040
8056(8) 7499 3534(9) 1329
jjoi iiig
2031 9424
T A B L E 21.-VALUES e=
log e‘
1.0157 .0317 .0645 .lo52 .1175
0.00679 .01357 .02714 .04343 .04825
0.98450 .%923 .93941 .SO484 39484
1/3 1/2 3/!
1.1331 .1536 .1814 .2214 .2840
0.05429 .06204 .07238 .08686 .lo857
0.88250 .86688 .84648 .81873 .77880
3!2 7/;
E
1/64 1/32 1/16 1/10 1/9
:$ 1/6 1/5 1/4
43
O F ex A N D e-’ A N D T H E I R L O G A R I T H M S e-’
9/4 5/2
e-=
1.3956 .6487 2.1170 .7183 3.4903
0.14476 .21715 .32572 .43429 .54287
0.71653 .60653 .47237 .36788 .28650
4.4817 5.7546 7.3891 9.4877 12.1825
0.65144 .76002 .86859 .97716 1.08574
0.22313 .17377 .13534 .lo540 .08208
5/4
T A B L E 22,-FURTHER
log @
e*
X
V A L U E S OF P
This table gives the values of the probability P, as defined in Table 18, corresponding to different values of X / Y where r is the “probable error.” The probable error Y is equal to
0.47694/12.
Y
0
1
2
3
4
5
6
7
8
9
0.0
.OooOo
.05378 .lo731 .16035 .21268
.01076 .06451 .11796 .17088 .22304
.01614 .06987 .12328 .17614 .22821
.02 152 .07523 .12860 .18138 .23336
.02690 .08059 .13391 .18662 .23851
.03228 .08594 .13921 .19185 .24364
.03766 .09129 .14451 .19707 .24876
.04303 .09663 .14980 .20229 .25388
.04840
0.1 0.2 0.3 0.4
.00538 ,05914 .11264 .16562 .21787
.15508 .20749 .25898
0.5
.26407 .31430 .36317 .41052 .45618
.26915 .31925 .36798 .41517 .46064
.27421 .32419 .37277 .41979 .46509
.27927 .32911 .37755 .42440 .46952
.28431 .33402 .38231 .42899 .47393
.28934 .33892 .38705 .43357 .47832
.29436 .34380 .39178 .43813 .48270
.29936 .34866 .39649 .44267 .48705
.30435 ,35352 .40118 ,44719 .49139
.30933 .35835 .40586 .45169 .49570
1.o
.50000 .54188 .58171 .61942 165498
.50428 .54595 .58558 .62308 .65841
so853 .55001 .58912 .62671 .66182
.51277 55404 .59325 .63032 .66521
.51699 .55806 .59705 .63391 .66858
.52119 .56205 .60083 .63747 .67193
,52537 .56602 .60460 .64102 .67526
,52952 .56998 .60833 .64454 .67856
.53366 .57391 .61205 .64804 .68184
.53778 .57782 .61575 .65152 .68510
1.5
.68833 .71949 .74847 .77528 .79999
.69155 .72249 .75124 .77785 30235
.69474 .72546 .75400 .78039 30469
.69791 .72841 .75674 .78291 30700
.70106 .73134 .75945 .78542 .80930
,70419 ,73425 .76214 .78790 .81158
.70729 .73714 .76481 .79036 31383
.71038 .74000 .76746 .79280 .81607
.71344 .74285 .77009 ,79522 .81828
.71648 .74567 .77270 .79761 .82048
,82266 .84335 .86216 .87918 29450
32481 .84531 .86394 88078 .89595
32695 34726 A6570 ,88237 ,89738
32907 .84919 .86745 38395 .89879
.83117 .85109 .86917 ,88550 .90019
A3324 A5298 37088 ,88705 .90157
,83530 .85486 .87258 ,88857 .90293
33734 35671 .87425 39008 .90428
.83936 .85854 .87591 39157 .90562
.84137 .86036 .87755 .89304 .90694
,90825 92051 .93141 .94105 ,94954
.90954 .92166 .93243 .94195 .95033
.91082 .92280 .93344 .94284 .95111
.91208 .92392 .93443 .94371 .95187
.91332 .92503 ,93541 .94458 .95263
.91456 ,92613 .93638 .94543 ,95338
.91578 .92721 .93734 .94627 .95412
.91698 .92828 .93828 .94711 .95484
.91817 ,92934 .93922 .94793 .95557
.91935 ,93038 .94014 .94874 .95628
0
1
2
3
4
5
6
7
8
9
X
0.6 0.7 0.8 0.9
1.1 1.2 1.3 1.4 1.6 1.7 1.8 1.9
2.0
2.1 2.2 2.3 2.4 2.5
2.6 2.7 2.8 2.9 3
4
5
.95698 .%346 .96910 .97397 .97817 .99302 99431 .99539 .99627 ,99700 .99926 . 9 m 3 .99956 .99966 . w 7 4
SMlTHSONlAN PHYSlCAL TABLES
50197
.98176 .98482 .98743 .98962 .99147 .99760 .99808 .99848 .99879 .99905 .99980 .99985 .99988 .99991 .99993
44
TABLE 23.-VALUES
OF T H E FACTOR 0.67454=
This factor occurs in the equation ra = 0.6745 observation, and other similar equations. I2
0
1
2
3
d..s -
5
4
1
for the probable error of a single
6
7
8
9
10 20 30 40
0.2248 0.2133 .1547 .1508 .1252 .1231 .lo80 .lo66
0.6745 0.4769 0.3894 .2034 ,1947 ,1871 .1472 .1438 .1406 . E l 1 .1192 ,1174 .I053 .lo41 ,1029
0.3372 0.3016 0.2754 0.2549 0.2385 .1803 .1742 .1686 .1636 .1590 .1377 .1349 .1323 ,1298 .1275 .1157 .1140 .1124 .1109 .lo94 .lo17 .lo05 .W94 .0984 ,0974
50
0.0964 0.0954 0.0944 0.0935 0.0926 .0878 .0871 .0864 ,0857 ,0850 .0812 .0806 .(I800 .0795 .0789 .0759 .0754 ,0749 .0745 ,0740 ,0715 .0711 ,0707 .0703 ,0699
0.0918 0.0909 0.0901 0.0893 0.0886 .0843 .0837 ,0830 .0824 .0818 .0784 .0779 .0774 .0769 ,0764 ,0736 .0732 .0727 .0723 ,0719 .0696 .0692 .0688 .0685 .0681
00
60 70 80 90
TABLE 24.-VALUES
OF T H E F A C T O R 0.6745
This factor occurs in the equation ro = 0.6745 arithmetical mean. n
1
40 50
60 70 80 90
3
4
___ 1) for the probable error of the
5
6
7
a
9
0.4769 0.2754 0.1947 .0587 .0540 .0500 .0314 .0300 .0287 .0214 .0208 .0201 ,0163 .0159 .0155
0.1508 0.1231 0.1041 0.0901 0.0795 .0465 0435 .OM9 .0386 .0365 .0275 .0265 .0255 .0245 0237 .0196 .0190 .0185 .0180 .0175 ,0152 .0148 .0145 .0142 .0139
0.0136 0.0134 0.0131 0.0128 0.0126 .0113 .0111 .0110 .OlO8 ,0106 .0097 .OW6 .0094 .0093 .0092 .0085 .0084 .0083 .0082 .0081 ,0075 .0075 .0074 .0073 ,0072
0.0124 0.0122 0.0119 0.0117 0.0115 ,0105 .0103 .0101 .0100 .0098 .0091 .0089 ,0088 .0087 ,0086 ,0080 .0079 .0078 ,0077 .0076 .0071 ,0071 .0070 .0069 .0068
00
10 20 30
2
4
0.0711 0.0643 .0346 .0329 .0229 .0221 .0171 .0167
SMITHSONIAN PHYSICAL TABLES
T A B L E 25.-LEAST
45
SQUARES
of the factor 0.8453
Part 1.-Values
This factor occurs in the approsimate equation
Y
zlvl for the probable = 0.8153 ___ d n ( n - 1)
error of a single observation. 1
11
2
3
5
4
6
7
8
9
10 20 30 40
0.0891 0.0806 .0434 .0412 .0287 .0277 .0214 .0209
0.5978 0.3451 0.2440 .0736 .0677 ,0627 .0393 .0376 .0360 ,0268 .0260 .0252 .0204 .0199 .0194
0.1890 0.1543 0.1304 0.1130 0.0996 .0583 ,0546 .0513 .0483 .0457 ,0345 ,0332 ,0319 .0307 .0297 .0245 ,0238 .0232 .0225 .0220 ,0190 .0186 .0182 .0178 .0174
50
0.0171 0.0167 0.0164 0.0161 0.0158 .0142 ,0140 .0137 ,0135 .0133 .O 122 .0120 .0118 ,0117 .0115 .0106 .0105 .0104 .0102 .0101 .0094 .0093 .0092 ,0091 .0090
0.0155 0.0152 0.0150 0.0147 0.0145 .0131 ,0129 .0127 .0125 .0123 ,0113 ,0112 .0111 .0109 .01M .0100 .0099 .0098 .0097 .OW6 .0089 .0089 .0088 .0087 .0086
00
60
70
80 90
1
---=== ndn -1 This factor occurs in the approximate equation yo = 0.8453 z(v( for the probable Part 2.-Values
of 0.8453
ndgi
error of the arithmetical mean. 1
I1
2
3
4
5
6
-1 7
8
9
10 20 30 40
0.0282 .0097 .0052 ,0034
0.4227 0.1993 0.1220 0.0243 ,0212 ,0188 .0167 .0090 .0081 ,0078 .0073 ,0050 ,0047 .0045 .0043 .0033 .0031 .0030 .0029
0.0845 0.0630 0.0493 0.0399 0.0332 .0151 ,0136 .0124 .0114 .0105 .0369 .0065 .0061 .0058 .0055 .0041 .0040 .0038 .0037 .0035 .0028 .0027 .0027 .0026 .0025
50
0.0024 0.0023 0.0023 0.0022 0.0022 .0018 .0018 .0017 .0017 .0017 ,0015 ,0014 ,0014 .0014 ,0013 .oo12 .oo12 .oo11 -0011 .oo11 ,0010 ,0010 .0010 .0009 .0009
0.0021 0.0020 0.0020 0.0019 0.0019 .ON6 ,0016 .0016 .0015 .0015 .0013 .0013 .0013 ,0012 .0012 .oo11 .0011 .0010 .oo10 .0010 .0009 ,0009 ,0009 ,0009 .a009
00
60 70 80 90
SMlTHSONlAN PHYSICAL TABLES
46
TABLES 26-28.-GENERAL
PHYSICAL CONSTANTS
Some of the most important results of physical science are embodied in the numerical magnitudes of various universal physical constants. The accurate determination of such constants has engaged the time and labor of many of the most eminent scientists. Some of these constants can be evaluated by various methods. The experiments used to study and measure these constants, in many instances have yielded some function of two or more of the constants (see Table 26) such as h/e, e/m, F / N , h/m, m N , F ( e / m ) , e " / ( m / h ) , etc., rather than the direct value of the constant. Each of the many relations has been investigated by various experimenters at various times, and each investigation normally produces a result more or less different from that of any other investigation. Under such conditions there arises a general and continuous need for a searching examination of the most probable value of each important constant. This makes necessary some comparison and analysis of all these experimental data to arrive at the most probable value. An important factor in such work is that there are but few of the constants that do not require for their evaluation a knowledge of certain other constants. These relations are so extensive that most of the physical constants can be calculated from the value of five or six of the selected principal constants and certain ratios. Many such critical reviews of these natural constants and conversion factors have appeared in the last 30 to 40 years. The data and discussion given here for the constants and their probable errors are the values arrived at by three physicists, R. T. Birge,17 J. W. DuMond, and J. A. Bearden, and their associates, who have made some very careful reviews and critical studies of the published experimental data on these general physical constants and have published several papers giving what they consider as the most probable value. Reference should be made to their original papers for details. Birge says in his 1941 paper that as a result of such critical work the situation in respect to these constants has vastly improved over values of about 10 years ago, and again one can say that such studies have resulted in more work and thus a more accurate set of constants. In 1941 Birge published a very extended list of physical constants and gave calculated values of many other physical constants that depend upon the fundamental constants. Because of the extent of this list, and also because so many of the relations among these constants are given therein, this 1941 list is given here. Almost all these constants in this table (Table 26) are accurate within the limits given. DuMond and Cohen18 prepared a table of some of these constants for the Atomic Energy Commission. A part of this appeared in the July 1953 issue of the Review of Modern Physics. Table 27 gives their values of a number of these physical constants. Bearden and Watts in 1950 made a study of values of a number of physical constants, using some new values in their calculations. They are continuing this work and are now lSboffering some new and more accurate values. Table 28 contains their 1950 values (corrected for their newer values) and newer calculated values of some additional constants. A comparison of the final values of these fundamental physical constants arrived at by these physicists shows in a real manner the accuracy that may now be claimed. A number of the principal radiation constants were taken from these tables (Tables 26-28) and are given in Table 53. These values have been used for the calculations in the tables in this book since they were available when the work was started and since the newer values would make no practical changes. 1' Phys. Rev. Suppl., vol. 1, p. 1, 1929; Rev. Mod. Phys., vol. 13, p. 233, 1941 ; Amer. Journ. Phys., vol. 13, . 63, 1945. 1sPhys. Rev., vol. p. 457, 1940; Rev. Mod. Phys., vol. 20, p. 82, 1948. '*'Bearden, J. A., and Watts, H. M., Phys. Rev., vol. 81, p. 73, 1951. l a b Bearden, Earle, Minkowski, and Thomsen, private communication from J. A. Bear-
38,
den. SMITHSONIAN PHYSICAL TABLES
47 T A B L E 26.--OENERAL
PHYSJCAL CO NS TANTS ACCORDING T O BIRGE *
P a r t 1.-Principal
constants and ratios
Velocity of light.. . ...............c = (2.99776 -t- O.OOO04) x 10" cm sec-' Gravitation constant ............. . G = (6.670 fO.005) X 10-sdynecm'g-2 Liter (= 1000 ml). . ............... I = 1000.028 3- 0.002 cm' Volume of ideal gas (O"C, A,) . . . .V o= (22.4146 f.0.0006) X 105 cms atm-' mole" V', = 22.4140 0.0006 I atm-' mole-' ..V,, = (22.4157 -t 0.0006) X 10' cmaatm-'mole-' Volume of ideal gas (O'C, As). Va5= 22.4151 f0.0006 1 atm-' mole-' Atomic weights (see Part 2). Standard atmosphere ........... .A0 = 1.013246 2 0.000004) X 108 dyne cm-' 45" atmosphere . . . . . . . . . . . . . . . .A,s . = (1.013195 f.0.000004) x 10'dyne cm-' Ice-point (absolute scale). ...... ..To = 273.16 2 0.01"K Joule equivalent .................Jls = 4.1855 2 0.0004 abs joule/calla Toule eauivalent (electrical). .... .J',3 = 4.1847 2 0.0003 int joule/calls Faraday constant (1) Chemical scale ...........F = 96501.2 t 10 int coul/g equiv. = 96487.7 f 1.0 abs coulla eauiv. = 9648.772 1.0 abs emu/g equiv. F' = Fc = (2.89247 2 0.00030) X 1O"abs esu/g equiv. (2) Physical scale ...........F = 96514." f 10 abs coul/g equiv. = 9651.4, k 1.0 abs emu/g equiv. F' = Fc = (2.89326 f.0.00030) X lo" abs esu/g equiv. Avogadro number (chemical scale). N o = (6.0228s -t 0.001 1) X 1 p molecules/mole Electronic charge .................e = F / N o = (1.602033 f0.00034) X lo-" abs emu e' = ec = (4.80251 2 0.0010) X lo-'' abs esu Specific electronic charge. ......e / m = (1.7592 0.0005) X lo7abs emu/g e'/m = ec = (5.2766 f.0.0015) x 10" abs esu/g (see Part 4) Planck's constant .................h
*
P a r t 2.-Atomic
weights
Physical scale (0'"= 16.0000) iH' = 2.01473 -t O.oooO1p 1H' = 1.00813 f0.00001~ iH = 1.00827s 2 O.OoOO17 (from H'/H2 abundance = 6900 k 100) ,He4 = 4.00389 -C 0.00007 ,C'" = 13.00761 % 0.00015 ,C" = 12.00386 2 0.0004 C = 12.01465 zk 0.00023 (from C"/C" abundance = 92 f.2) 7N" = 15.0049 f 0.0002 ,N1' = 14.00753 2 0.00005 N = 14.01121 f.0.00009s (from N1'/Nm abundance = 270 f 6) ,O" = 16.0000 = 17.0045 80" = 18.0049 0 = 16.004357 t 0.00008a [from abundance Ole : 0" : 0" == (506 5z 10) : 1 : (0.204 2 0.008) I Chemical scale (0 = 16.0000) Ratio physical to chemical scale : r = (16.004357 2 0.000086)/ 16 = 1.00272 4 0 . 0 0 0 ~ 5 H1 1.00785, 3- O.OOOOIs (from physical scale) H2= 2.0141& f.0.00002, (from physical scale) H = l.008002 2 O.OO0Ol8 (from physical scale) He' = 4.00280 2 0.00007 (from physical scale) C = 12.01139 f 0.00024 (from physical scale) N = 14.00740 2 0.00012 (from physical scale) N = 14.0086 rt 0.0007 (direct observation) Na = 22.994 t 0.003 CI = 35.457 f0.001 Ca 40.080 2 0.005 Ag = 107.880 f 0.002 I = 126.915 -t- 0.004 .Unless otherwise specified, all quantities in this table that involve the mol or the gram equivalent are on the chemical scale of atomic weights.
(contiwed)
SMITHSONIAN PHYSICAL TABLES
48 T A B L E PB.-GENERAL Part 3.-Additional
P H Y S I C A L CONSTANTS ACCORDING T O BlRGE (continued)
quantities evaluated or used in connection with Part 1
..........
Ratio of esu to emu (direct). c' = (2.99711 f 0.0001) X l(Yo cm'/' set"/' ohm'/* = (2.9978, 2 O.OOOlo) X 10" cm/sec Ratio of esu to emu (indirect). ...... .c' = c = (2.99776 f0.0004) X 10'' cm/ser Average density of earth.. ............6 = 5.517 f0.004 p/cm' Maximum density of water. ....am(H20) = 0.999S2 2 0.000002 g/cm' Acceleration of gravity (standard). ... .go = 980.665 cm/sec' Acceleration of gravity (45"). ........ g = ~ 980.616 cm/sec? Density of oxygen gas (OOC, A ) .... .L1= 1.42897 f0.0003 g/liter Limiting density of oxygen gas (OOC, A K ) L t i m = 1.427609 2 0.000037 g/liter Factor converting oxygen (O'C, All) to ideal gas.. ..................1 - a = l.OOO953s2 0.000009, Specific gravity of H g (O'C, Ao) referred to air-free water at maximum density .......................... .po = 13.59542 f 0.00005 Density of Hg (0°C. A ) .............DO= 13.59504f 0.00005, g/cm8 Electrochemical equivalents (chemical scale) : Silver (apparent) .............EA, = (1.11800 -t0.00012) x 10-'g/int coul (corrected) .............E A , = (1.11807 2 0.00012) x g/abs coul Iodine (apparent) ..............E I = (1.315026 fO.oooO25) x lo-*g/int coul (corrected) ..............E I = (1.31535 f0.00014) x lo-* g/abs coul Effective calcite grating space ( W C ) d"a = 3.02904 X lo-' cm Siegbahn system True calcite grating space (20°C). .. . # Z O = 3.029512 X 10.' cm Siegbahn system True calcite grating space (20°C). . . .dm = (3.0356742 0.00018) X 10-'cm cgs system Ratio of grating and Siegbahn scales of wavelengths ...................X I / L = 1.002034 f0.000060 Density of calcite (20°C). ............. p = 2.71029 U0.00003 g/cm* Structural constant of calcite (20°C). . = 1.09594 2 0.00001 Molecular weight of calcite (chemical - - - - - - -. naos - --.M = inn.091.f scale) ........................... Rydberg constant for hydrogen (HI). .RH = 109677.5812f 0.007, cm-' (LA. scale) Rydberg constant for deuterium (H') . .RD= 109707.419af0.0076 cm-' (I.A. scale) Rydberg constant for helium.. ......R I I ,= 109722.263 -C 0.012 cm-' (I.A. scale) Rydberg constant for infinite mass. ...R, = 109737,303& 0.017 cm-' (LA. scale\ or f 0.05 cm-' (cgs system)
.*
SMITHSONIAN PHYSICAL TABLES
49 P H Y S I C A L C O N S T A N T S A C C OR D IN G T O B I R G E (continued)
T A B L E 26.-GENERAL
list o f derived quantities
P art 4.-Partial
,= {
Planck's constant :
{
27r7Fs }1/3 R,No (e/+iz)
........... = (6.62422 0.002,)
R
It/e
=
h/e'
= I t / ( e c ) = Rx N2r2F2 o ' ( C / tit)
1/3.
{
'I3
erg sec
X
z (4.134g02 0.00071)
x
lo-' erg sec abs emu-'
= (1.3793, 2 0.0002,)
x
lo-'' erg sec abs esu-'
Atomic weight of electron : ...........E = F / ( c / n z ) (Physical scale) ..................= (5.4862, 2 0.0017) X lo-, (Chemical scale) ..................= (5.48175 f 0.0017) X lo-' Band spectra constant connecting wave number and moment of inertia :
1"(8*2r) =
..... = (27.98,,
{
2 O.Ol0) X lo-'' g c m
Boltzmann constant :
I< = Ro/.Vo= Y o A U / ( T o N o........ ). = (1.38047, 2O.ooO26) X lO-"'erg/deg
Charge in electrolysis of 1 gram of H
F/H = 9572.1,,
f 1.0
abs. emujg
Charge in electrolysis of one gram of H' ........................... c/M,,' = I; H' = 9573.5,f
1.0 abs emu/g
Compton shift at 90" :
Energy i n ergs of one abs volt-electron: E o = 106c = 108F/Zio .............. = (1.60203, 2 0.00034) X lo-'* erg Energy in calories per mole for one abs volt-electron per molecule: F(abs coul/gram-equiv.) ........... = 23052.85 2 3.2 call:, mole-' J15(absjoules/cal) Fine structure constant : a
{
= 2x(e')'/(hr) = 4aRxF(c'1r2'} N O
= (7.2976, f 0.0008.) x lo-' l / a = 137.030, & 0.016 'a = (5.3255 2 0.0013) X
Gas constant per mole: Ro = I'oA,/T, . . . . . . . . . . . . . . . . . . . = (8.31436 f 0.00038) X 10' erg deg-' mole-' RIo= K,, x 10-'/115 . . . . . . . . . . . . . . . = 1.98646, 2 0.00021 call:, deg-' mole-' 1 atm deg-' mole-' R'Io= Iv',/To..................... = (8.20544, & 0.00037) X R"' - RolAu= V , / T , ............ = 82.0566; f 0.0037 cms atm deg-' mole-' also :
ROTo= I'oA, .....................
= (2.27115"f 0.00006) X 10'" erg mole-'
Loschmidt number (O"C, A0)riu= hro/V0.= (2.6870,t hfagnetic moment of one Bohr magneton : p1
* 0.00050)X 10'" molecules/cm3
= (Iz/4a)(e/m) = = (0.9273,,
2 O.CO03,) X lo-% erg/gauss
Magnetic moment per mole for one Bohr magneton per molecule :
{
}
1 2 7 r ' ~ ~ F ~ ( ~ / i' Ii 3 i )...... ~ = 5585.2, f 1.6 erg gauss-' mole-' ,u1!V0= 4n Rr No' Mass of a-particle. . M a = ( H e - 2E)/No = (6.61422 f 0.0012) X lo-'' g (corttirlurd) SMITHSONIAN PHYSICAL TABLES
50 T A B L E 26.-GENERAL
P H Y S I C A L CONSTANTS ACCORDING (concluded)
TO BlRGE
Mass of atom of unit atomic weight, Mo = 1/No = (1.66035 2 0.00031) X lo-" g Mass of electron ; m = e/(e/m) = (F/No)/(e/m) = (9.1066, f 0.0032) X lo-" g Mass of H' atom.. ...... . M H = ~ H'/No = (1.673393 0.0031) X lo'" g Mass of proton.. ... . M P = (H'- E)/No = (1.672482f 0.00031) X lo-" g
*
Ratio mass H' atom to mass electron: MHl/m = (e/m)(H'/F) ........... = 1837.5,, f 0.5, Ratio mass proton to mass electron : M,/m = ( e / m (H') ( T E) ) . ........
= 1836.56, 2 0.56
First radiation constant. ....cl** = 8rhc = (4.9908 f 0.0024) X lo-'' erg cm = hcP = (0.59542 f 0.0024) >( 10.' erg cm2 sec-' =2 ~ h = 2 (3.7403 0.0024) x lo-' erg cm2 sec-' Second radiation constant : cz
{
= hc/k = -
*
2rF6
VoAo RmNo(elm)
= 1.43848 f 0.00034 cm deg
}1/3
Specific charge of a-particle : 2F ................. = 4522.3s 2 0.5, abs emu/g 2e/M aHe-2E ~
Specific charge of proton :
e/Mp =
F
................... = 9578.77 f 1.0 abs emu/g
Radiation density constant,
a = 8r6k'/(15c'hs)
=
4rraNoRm(e/m) ............ - (7.56942f0.004#) X lo-= erg cm-' deg-'
(?) 15c'F Stefan-Boltzmann constant : t
VoA ......... = (*)
rsNoR,(e/m) 15( F C ) ~ = (5.67283f 0.003,) X 10.' erg cm-' deg-' sec-' Wien's displacement-law constant. ... . A = c2/4.965114= 0.28971, 2 0.00007 cm deg Wavelength associated with 1 abs volt. ko = 10-'c2(h/e') = c2 2
{
C2
4
>;,
{
Zeeman displacement per gauss ( e / m ) / ( 4 ~ c )= 4.669g1 f 0.0013) X lO-'cm/gauss **. may I,be defined in several ways and this determines the value of cl. If J,dX gives the energy density of unpolarized radiation in range dX, then c l = 8nhc. If J,dX gives the emission of linearly polarized light, in range dX per unit solid angles perpendicular to the surface, then c1= hc'. If this expression J,dX denotes the emission of radiation in range dX, per unit surface from one side i n all directions (2n solid angle) then cl = 2ahcz. See Table 53. t For 2a solid angle.
Part 5.-Birge's
1944 values o f 3 constants
e, Electronic charge.. .................. = (4.8021 f 0.0006) X lo-" abs esu Nu, Avogadro number.. ................ = (6.02338 f 0.00043) X 10" molecules mole-' (chemical scale) F, Faraday constant.. .................. = 96487.7 f 10 abs coul (chemical scale)
SMlTHSONlAN PHYSICAL TABLES
51 T A B L E 27.-TABLE O F L E A S T S Q U A R E S A D J U S T E D O U T P U T V A L U E S OF P H Y S I C A L C O N S T A N T S ( B Y D u M O N D A N D ASSOCIATES)
(November 1952) Part 1.-Auxiliary
constants used
These auxiliary constants are quantities which are uncorrelated (observationally) with the variables of the least-squares adjustment. Rydberg wave number for infinite mass. RE= 109737.309 f 0.012 cm-' Rydberg wave numbers for the light nuclei RH= 109677.576 f 0.012 cm-' RD = 109707.419 f 0.012 cm-' RH= , ~109717.345 f 0.012 cm-' Rne4= 109722.267 f 0.012 cm-' Atomic mass of neutron.. ............. n = 1.008982 f0.000003 Atomic mass of hydrogen.. ...........H = 1.008142 2 0.000003 Atomic mass of deuterium.. .......... D = 2.014735 f 0.000006 Gas constant per mole (physical scale). R, = (8.31662 f 0.0003S) X 10' erg mole-' deg-'C Standard volume of a perfect gas (physical scale) ...................Y o= 22420.7 f 0.6 cms atmos-' mole-' Part 2.-Least-squares
adjusted output values
(The quantity following each f sign is the standard error by external consistei;cy) Velocity of light.. .................... c = 299792.9 f 0.8 km sec-' Avogadro's constant (physical scale). ..N = (6.02472 f 0.00036) X 10'' (molecules mot)-' Loschmidt's constant (physical scale). . . . Lo= N/V0 = (2.68713 f 0.00016) x 10'Dmoleculescm-' Electronic charge .................... . e = (4.80288 2 0.00021) X lO-'Oesu e' = e / c = (1.60207 f0.00007) j ( emu Electron rest mass. ...................m = (9.1085 f0.0006) X lo-" g Proton rest mass. . . . . . . . . . . .mp = M,/N = (1.67243 2 0.00010) x lo-" g Neutron rest mass.. ..........m, = ?1/N = (1.67474 f 0.00010) x lo-'' g erg sec Planck's constant .................... h = (6.6252 t 0.0005) X erg sec 4i = h / ( 2 * ) = (1.05444 2 0.00009) x Conversion factor from Siegbahn X-units to milliangstroms .............. .Xl/h, = 1.002063 f 0.000034 Faraday constant (physical scale) I; = N e = (2.89360 f0.00007) X 10" esu (g mot)" F' = N e / c = (9652.01 -C 0.25) emu (gm mot)-' Charge-to-mass ratio of the electron. . e / m = (5.27299 2 0.00016) x 1O''esu g-' e'/m = e / ( m c ) = (1.7588 2 0.00005) x lO'emu g-' h / e = (1.37943 C 0.00005) X lo-'' erg sec (em)-' Ratio h / e .......................... Fine structure constant ...... a = e2/(%r)= (7.29726 t 0.00008) x l / a = 137.0377 2 0.0016 a j 2 r = (1.161396 f 0.000013) X a* = (5.32501 f0.00012) X 1 - (1 - a')? = (0.266254 2 0.000006) X
Atomic mass of the electron (physical scale) ........................... N m = (5.48760 2 0.00013) X lo-' Ratio of mass of hydrogen to mass of proton a
H/H'=
[ 1 - N-(Hm
1 - $ a Z ) ] - l = 1.000544610 f 0.000000013
Atomic mass of proton.. ............H' = 1.007593 f0.000003 Ratio of proton mass to electron mass.. . H+/Nni = 1836.13 C 0.04 Reduced mass of electron in hydrogen atom .................... p = mH+/H = (9.1035 f 0.0006) X Schrodinger constant for a fixed nucleus
g
2ndV = (1.63844 f 0.00016) x 10" erg-' cm-' Schrodinger constant for the hydrogen atom ......................... . 2 p / V = (1.63755 f 0.00016) x 10" erg-' cm-' First Bohr radius.. ........ao = P/(me') = (5.29171 2 0.00006) X IO-'cm = a/(47rRE) * T h e binding energy of the electron in the hydrogen atom has been included in the quantity. The mass of the electron when f o u n d in the hydrogen atom is not m but more correctly m ( 1 - 1 / 2 a'+ ' .).
(continued) SMITHSONIAN PHYSICAL TABLES
52 T A B L E 27.-TABLE
O F LEAST-SQUARES A D J U S T E D O U T P U T V A L U E S O F P H Y S I C A L C O N S T A N T S (continued)
Radius of electron orbit in normal H', referred to center of mass.. .......... a' = ao(l - a')* = (5.29157 2 0.00006) X lo-' cm Separation of proton and electron in norma1 H' ..............&" = &' R,/RII = (5.29445 2 0.00006) X 10-Ocm Compton wavelength of the electron.. . . . . X,. = h / ( m c ) = (24.2625 2 0.0006) X lo-" cm = a'/(2Rm) X,. = h c , / ( 2 r ) = (3.86150 2 0.00009) X lO-"cm = a2/(4rRm) Compton wavelength of the proton. ..... Xe, = h/m,c = (13.2139 f 0.0004) X lo-'' cm X,, = AeP/(27r)= (2.10307 2 0.00007) X lo-'' cm Compton wavelength of the neutron.. ... Xc. = h / n w = (13.1958 f 0.0004) X lo-'' cm X,. = X,./(ZR) = (2.10017 2 0.00007) X lO-"cm Classical electron radius.. . .ro= e'/(mc') = (2.81784 -C 0.00010) X 10''scm = a3/(4rR,) r0*= (7.9402 2 0,0005) cm' 8 cm' Thompson cross section.. ......... - ~ ~ =0 (6.65196 2 -C 0.0005) X 3 Fine structure doublet separation in 1 hydrogen ....................... AE - -Raa' 1 (85 - 5.946 a'] 'I16 = 0.365869 -f. 0.000008 cm-' = 10968.49 -C 0.25 Mc sec-' Fine structure separation in deuterium.. . A E D= AEII RD/RIi : 0.365969 0.000008 cm-' = 10971.48 -C 0.25 Mc/sec-' Zeeman displacement per gauss. ........ (c /m c )/(4~ c )= (4.66879 2 0.00015) X lO"cm-'gauss-' Boltzmann's constant .........k = Ro/N = (1.38042 -C 0.00010) XlO-''ergs deg-' k = (8.6164 2 0.0004) 10"ev deg-' I l k = 11605.7 -C 0.5 deg ev-' erg cm First radiation constant. ......c1 = 8 R hc = (4.9919 2 0.0004) X Second radiation constant. .....c2 = hc/k = (1.43884 -C 0.00008) cm deg Atomic specific heat constant. .......c z / c = (4.79946 2 0.00027) X lo-'' sec deg Wien displacement law constant '. .X,,.,T = cJ(4.96511423) = 0.28979 2 0.00005 cm deg Stefan-Boltzmann constant . ,. .......... u = (w2/60)(k'/Rc') = (0.56686 rfr 0.00005) X lo-' erg cm-' deg-' sec-' 5 Sackur-Tetrode constant ......... .So/Ro=2 1 n { (2rR0)"' h-' N-'1 - _ 5.57324 f 0.00011 So= - (46.3505 2 0.0017) X 1O'erg mole-' deg-' Bohr masneton ....................... 1 erg gauss-' p3 7he/(4n mc) = - e X.. = (0.92732 2 0.00006) X 2 Anomalous electron moment correction. .. 1 - 2.973 a' = p./po = 1.001145356 C 0.000000013
x
[ + +
7)
*
x
+
[ +2
73 R
Magnetic moment of the electron. ..... p a = (0.92838 2 0.00006) X lo-" erg gauss-' Nuclear magneton ..................... p. = hc/(4rmpc) =poNm/H+= 0.505038 -C 0.000036) X lo-= erg gauss-' Proton moment ..................... . p = 2.79277 -C 0.00006 nuclear magnetons = (1.41045 2 0.00009) X lo-" erg gauss-' Gyromagnetic ratio of the proton in hydrogen (uncorrected for diamagnetism) y' = (2.67520 k 0.00008)X 10' radians sec-' gauss-' Gyromagnetic ratio of the proton (cor.y = (2.67527 -C 0.00008) X10' radians sec-' gauss-' rected) ........................... Multiplier of (Curie constant)* to give (erg mole deg-')* magnetic moment per molecule. (3k/N)4 = (2.62178 k 0.00017) X b
The numerical constant 4.96511423 is the root of the transcendental equation
(continued)
SMITHSONIAN PHYSICAL TABLES
I=
5 (1
-e+).
53 T A B L E 27.-TABLE
O F LEAST-SQUARES A D J U S T E D O U T P U T V A L U E S P HY S ICA L C O N S T A N T S (concluded)
OF
Mass-energy conversion factors. .....1 g = ( 5.60999 C 0.00025) X 10%Mev 1 electron mass = 0.510984 0.000016 Mev 1 atomic mass unit = 931.162 2 0.024 Mev 1 proton mais = 938.232 2 0.024 ?\lev 1 neutron mass = 939.526 0.024 lfev Quantum energy conversion factors.. 1 ev = (1.60207 C 0.00007) X lO-''erg E / i =T (1.98620 2 0.00016) X lo"* erg cm E A, = (12397.8 f 0.5) X lo-' ev-cm E A, = 12372.2 f 0.4 k volt-x units E / v = (6.6252 f0.0005) X erg sec E / v = (4.13544 f 0.00015) X ev-sec C/E = (5.0347 2 0.0004) X lOI5 cm-' erg-' ;/E = ( 8065.98 C 0.30) cm-' ev-' v/E = (1.50938 2 0.00012) X 10" sec'' erg-' v / E = (2.41812 2 0.00009) x 10" sec-' ev-' de Broglie wavelengths, AD of elementary particles Electrons ..................... . A D , = (7.27373 2 0.00016) cm2sec-'/v = (1.55226 2 0.00008) x 10-13cm( e r g ) + / \ / x = (1.226377 2 0.000032) X lo-' cm (ev)+/V E Protons ...................... . A D , = (3.96145 0.00013) X lo-' cm' sec-'/v = (3.62261 2 0.00020) X 10-"cm (erg)*/\/ E = (2.86208 0.00012) X lO-'cm ( e v ) * / \ / x . A D , = (3.95599 2 0.00013) X cm' sec-I/v Neutrons ..................... = (3.62005 C 0.00020) X cm (erg)+/\/ E = (2.86005 f 0.00012) X 10-O cm ( e v ) * / \ / y Energy of 2200 m/sec neutron. ......EZ1W = 0.0252977 2 0.0000006 ev Velocity of 1/40 ev neutron.. ...... .VO.OU= 2187.017 0.028 m/sec The Rydberg and related derived constants R , = 109737.309 f 0.012 cm-' R,c = (3.289847 -C 0.000008) X 10'' sec-' R,hc = (2.17961 f 0.00018) X lo-" ergs Rzhc2 lo: = 13.6050 C 0.0005 ev Hydrogen ionization potential. ....... . I 0 = 13.5978 C 0.0005 ev = R Hhc' p[ 1 x lo-'
* *
*
-
*
*
+ $+. . ]
c These formulas apply only to non-relativistic velocities. If the velocity of the particle is not negligihle compared to the velocity of light, c. or the energy not negligible compared to the rest mass energy, 2 ) ]-I/' where XC i s the appropriate Compton wavelength and E is the kinetic we must use XD = &[E(E energy measured in units of the particle rest mass.
+
SMlTHMNlAN PHYSICAL TABLES
54 TABLE 28.-GENERAL
PHYSICAL CONSTANTS ACCORDING T O BEARDEN A N D ASSOCIATES *
P a r t 1 t (atomic weights according t o the physical scale unless otherwise indicated)
Least-squares adjusted values of the fundamental atomic constants Atomic mass of hydrogen .............H = (1.008142 f .000003) Atomic mass of deuterium ............ D = (2.014735 f .000006) Atomic mass of deuteron ..............d = (2.014186 f .000006) Atomic mass of proton ...............M = (1.007593 .000003) Atomic mass of electron ............ N m = (5.48756 f .00018) x lo-' Electron mass ...................... .m = (9.10818 f .00079) x lo-= g Reduced electron mass in hydrogen atom # = (9.10322 f .00072) X lO-=g Ratio proton mass to electron mass. ..... M / m N = (1836.139 2.054) Ratio of Siegbahn X-unit to milliangstrom A,/X, = (1.002058 f .000039) Ratio of physical to chemical scales of atomic weights ..................... r = ( 1.0002783 2 .0000005) Faraday ............................ F = (9652.14 2 . 3 3 ) emu (g-equiv)-' Electron charge ..................... .e = (4.80283 f ,00022) X lo-" esu Specific electronic charge .......... . c / m = (5.27309 f.00024) X lo" esu g-' Planck's constant .................... h = (6.62509 .00059) X lo-" erg sec erg sec Planck's constant X 1/2 7r . . . . . . . . . . . . .d = (1.05442 f.00009) X h / e = (1.37941 2 .00006) X lO-''erg sec (em)-' h/m = (7.27377 2.00017) cm' sec-' Avogadro's number .................N = (6.02487 .00045) X 10" molecules (g-mol)-' Boltzmann's constant ..........k = (1.38039 f .OOOlO) X lO-'"erg deg-' ..........no = (2.68719 f .OOOZO) x 10'' molecules cm-a Loschmidt's number . Rydberg for infinite mass ............R, = (109737.311 k.012) cm-' Rydberg for hydrogen ..............RH = (109677.578 & ,012) cm-' Rydberg for deuterium ...............RD= (109707.419f ,012) cm-' Gas constant per mole.. ..............R,= (8.31665 2 ,00034) X IO'erg mol-'deg-' Molar volume ...................... V@= (2.23207 -C .00004) X lo' cms mol-' Fine structure constant.. ............. .a = (7.29729 2 .oooO8)X lo4 l/a = (137.0371 2 ,0016) Velocity of light. .................... .c = (2.997925 .000008) X 10"' cm sec-' . . . ..c, = ;4.99175 1:.00044) X lO-'"rg cm First radiation constant. .... .....cz = ( 1.43884 k .00004 cm deg Second radiation constant. .. Stefan-Boitzrnann constant ...........u = (5.66858 f .00053) X IO-'erg cm-'deg-' sec-' Wien displacement law constant. . .A,,, T = (289789 .000009) cm deg .fro = (.927313 2.000055) X lo-" erg gauss-' Bohr magneton ...................... Theoretical magnetic moment of electron p. = (.928375 f .000055) X lo-" erg gauss-' .................ao= (5.29173 f .00006) X lO-'cm Conversion factor for atomic mass units to Mev ........................... E , = (9.31145 2.0032) X lo2Mev (amu)-' Conversion factor for grams to Mev.. .E, = (5.61003 2 .00026) X lomMev g-' Wavelength associated with 1 ev.. ... . A 0 = (1.23976 f .00005) X lo-' cm Wave number associated with 1 ev. ... .PO = (8.05611 f.00035) X lo3cm-' ev-' _+
*
*
*
*
For reference see footnote 18a p. 46. t Private comm;nication by J. .4'. Bearden. Data presented at May 1953 meeting of Physical Society at Washington by Bearden, Earle, Minkowski, Thomsen, Johns Hopkins University.
Part 2$
Multiplier of (Curie constant)"' to&e magnetic moment per molecule. V 3k/N = (2.62173 f .00009) X lo-" (erg mol deg-')* Atomic specific heat constant. .......h/k = (4.79903 f .00023) X lo-" sec deg Schrodinger constant for fixed nucleus. . 2m/hz = (1.638995 f .000045) X lon erg-' cm" Schrodinger constant for H' atom. .29/hZ= (1.638103 f .000045) X lon erg-' cm-' Energy associated with unit wave number .............................. .El= (1.985698 i..000048) X 10-"erg Speed of 1 ev electron., ..............VO= (5.931098 2 .000045) X IO'cm sec-' (c o n t i w e d )
t For
reference, see footnote 18a, p. 46.
SMITHSONIAN PHYSICAL TABLES
55 T A B L E 28.-GENERAL
P H Y S I C A L C O N S T A N T S ACCORDING T O B E A R D E N A N D ASSOCIATES (concluded)
Energy equivalent of electron mass.. .711C2 = (S10969 .000009) Mev Energy associated with 1°K.. .......... ( R , / F ) X lo-'= (8.61632 2.00042) x lO-'ev Temperature associated with 1 ev.. ...Tn = (11605.9 2 .6) deg K Grating space calcite at 20°C. ....... .dm = (3.03567 2 .OOOOS) x lO-'cm Density of calcite at 20°C. . . . . . . . . . . . . . p = (2.71030 2 .00003) g cm-' Compton wavelength of electron.. . . h / r i i c = (2.426045 2 .00002S) X 10-lacm Zeeman displacement per gauss c/(4rrirrc) = (4.668885 2 .00008) X 10-5cm-'gauss-' Doublet separation in hydrogen. . . . . . . . . . - R,r a' = (.3649900 k .0000037) cm-' 16
SMITHSONIAN PHYSICAL TABLES
TABLES 2 9 - 3 6 . 4 O M M O N U N I T S OF MEASUREMENT
56
T A B L E 29.-SPELLING
AND ABBREVIATIONS O F T H E COMMON U N I T S W E I G H T A N D MEASURE
OF
The spelling of the metric units is that adopted by the International Committee on Weights and Measures and given in the law legalizing the metric system in the United States (1866). The use of the same abbreviation for singular and plural is recommended. It is also suggested that only small letters be used for abbreviations except in the case of A for acre, where the use of the capital letter is general. Unit
acre are avoirdupois barrel board foot bushel carat, metric centare centigram centiliter centimeter chain cubic centimeter cubic decimeter cubic dekameter cubic foot cubic hectometer cubic inch cubic kilometer cubic meter cubic mile cubic millimeter cubic yard decigram deciliter decimeter decistere dekagram dekaliter dekameter dekastere dram dram, apothecaries' dram, avoirdupois dram, fluid fathom foot firkin furlong
gaily
grain gram hectare hectogram hectoliter hectometer hogshead hundredweight inch
Abbreviation
A a av bbl bd ft bu C
ca W
cl cm ch cm' dm' dkm' ft8 hm' in." km' ma mi' mm' yd' da dl dm ds dka dkl dkm dks dr dr ap or 3 dr av fl dr fath ft fir fur gal gr g
ha hg hl hm hhd CWt in.
SYITHSONIAN PHYSICAL TABLES
Unit
kilogram kiloliter kilometer link liquid liter meter metric ton micron mile milligram milliliter millimeter mi I leimic roil minim ounce ounce, apothecaries' ounce, avoirdupois ounce, fluid ounce, troy peck pennyweight pint pound pound, apothecaries' pound, avoirdupois pound, troy quart rod scruple, apothecaries' square centimeter square chain square decimeter square dekameter square foot square hectometer square inch square kilometer square meter square mile square millimeter square rod square yard stere ton
ton, metric troy yard
Abbreviation
kn
kl
km li. liq 1
m t
P
mi mg ml mm mCc min. or 0.2
oz a p or J oz av fl oz oz t pk dwf
r;
Ih ap Ih av Ibt qt rd savor 3 cm2 ch' dm2 dkm' ft' hm2 in? km2 m2 miz mm2 rd' yd2 S
tn t t yd
57 T A B L E 30.-DIMENSIONAL
EQUATIONS O F FUNDAM ENTAL A N D DERIVED UNITS
Conversion factors.-The dimensional formulas given in this table have many uses. One is to assist in changing a quantity from one system of units to another (see page 2 ) . A simple scheme for transforming an expression from one set of units to another is given in Weniger's text, "Fundamentals of College Physics." Place the known number of the quantity with its units properly given, equal t o a n unknown number, x , of the same quantity properly expressed in the desired units. Proceed to cancel, treating the units just like algebraic quantities. Suppose it be desired to express 60 meters per second in miles per hour. Write : fiOm - x m i see hr Cancel scc and hr and write 3600 near the larger unit. Cancel m and mi and write 1609.3 near the larger unit. This gives : 26.82 1609.3 60 m - x mi sec hr 3600 Solving, X = 134, and the desired expression is 134 mi/hr. More complicated expressions are handled in a similar manner. In a heat-flow problem, suppose it becomes necessary to express 15 Btu hr" f t P with a temperature gradient of 1 ° F per f t in terms of cal sec-' cm-' with a gradient of l"C/cm. Write: cm 15Btu ft = x c a l hr ft2 F seccm2 T Cancel ft in numerator and denominator, and cin similarly. Remember that 1 Btu is 252 cal, and cancel. A scc goes into 1 hr 3600 times. Cancel cm and f t and write 30.48. Remember that, 9 ° F equal 5°C. Solving, x = 0.062. (See Table 2.) If the numeric before the known quantity is unity, x comes out as the conversion factor for these units. The dimensional formulre lack one quality which is needed for completeness, an indication of their vector characteristics ; such characteristics distinguish plane and solid angle, torque and energy, illumination and brightness.
P a r t 1.-Fundamental
units
The fundamental units most commonly used a r e : length [I1 ; mass [nzl; time [ t l ; temperature [el ; and for the electrostatic system, dielectric constant [ k l ; for the electromagnetic system, permeability [b]. The f o r m u k will also be given for the International System of electric and magnetic units based on the units length, resistance [ r l , current lil, and time. When writing fractions, using the solidus, care is required to make the meaning definit; : i.e.,, Btu/hr/ft'("F/m), or Btu/(hr)(ft*)("F/m) is not clear, but Btu/[hr X ft2 X ( " F / m l is definite.
(contin i
SMlTHSONlAN PHYSICAL TABLES
d )
58 T A B L E 30.-DIMENSIONAL E Q U A T I O N S OF F U N D A M E N T A L A N D D E R I V E D U N I T S (continued) Part 2.-Derived
units (geometric and heat)
Conversion factor
Name of units
[rn"/~'t*] &
Name of unit
X
Y
Z
(Ireat and liaht)
x
y
z
u
0 0 0
2 3 0
0 0 0
1 0
Solid angle . . . . . . . . . Curvature . . . . . . . . . . Angular velocity . . . . .
0 0 0
0
0 0
Quantity of heat: thermal units . . . . . thermometric units. dynamical units . . .
1
0 0 3 0 2-2
1 1 0
0
0
Linear velocity . . . . . . . Angular acceleration . . Linear acceleration . . .
0 0 0
Area, surface .... ..... Volume . . . . . . . . . . . . . . Angle .. . . . . . . . . . . . .
..
..
.
.
Density . . . . . . . . . . . . . Moment of inertia.. . . . Intensity of attraction.
1 1 0
Momentum . . . . . . . . . . Moment of momentum. Angular momentum ..
1
Force . . . . . . . . . . . . . . . M o m e n t of c o u p l e , torque . . . . . . . . . . . Work. energy ........
-1
-3
-1
1 0 1
-1 -2 -2
2 1
0 0
-2
Coefficient ,of thermal cxpansion . . . . . .
0 1
2-1 1 -3
Thcrnial capacity . . .
1
0
0
0
0 0
0 0 2 -2
1 0
0
2 -2
1
0
1
2 -2
1 1
-1 -1 -1
Latent heat : thermal units . . . . . dynsniical units . . .
1
1
-2
Joulc's equivalent. . . .
1
2 2
-2 -2
2
-3 -2 -2
Entropy : hcatinthermalunits. heat in tlynamical units . . . . . . . . . . .
1 -1 -1
.
1 -1 -1
2
-2 -1
0-1
Tliernial conductivity : thermal units . . . . . thermometric units or diffusivity . . . . tlynamical units . . .
1 2 2
Power, activity . . . . . . . 1 Intensity of stress.. . . . 1 Modulus of elasticity. . 1 Compressibility . . . --1 Resilience . . . . . . . . . . . . 1 Viscosity . . . . . . . . . . . . 1
.
0
Imninous intensity . . 0 Illuniinaticin . . . . . . . . 0 Brightness . . . . .. . . . 0 Visibility . . , . . . . _ _ . .-1 Luniinous efficicucy. . -1
0
-2 -2 -2 -2
0
-1
1 -1
-1
0
-1 0
0 1
0 0 0 3 3
1* 1*
1* 1* 1*
For these formula: the nunibers in the last column arc the exlionents of F where I; rrfers to the luminous flux. For definitions of thest. quantities see Tables 70 and 72.
(cotlfi?tlred)
SMITHSONIAN PHYSICAL TABLES
T A B L E 30.-DIMENSIONAL EQUATIONS O F FUNDAMENTAL AND D E R I V E D U N I T S (concluded) P a r t 3.-Derived
59
units (electrical and magnetic) Conversion f w t o r
Electrostatic system
I-lectroniaanetic
ml/.vr*k r
N a m e of u n i t
m=/'f:/*
Symbol *
I.
7
r
\
2
I.
;
0 --I. 0 --; 0 - 5
2 1
-
Electric field intensity. .... F Electric potential . . . . . . . . . V Electromotive force . . . . . . E
?
0 0 0
1 0 0
Current . . . . . . . . . . . . . . . . . I Electric conductivity ..... y Resistivity ............... p
$
0
! - 2 0-1
Conductance ............. g Resistance . . . . . . . . . . . . . . . R Magnetic pole strength. ... m
0 1 - 1 1 0 -1 1 -1
Quantity of magnetism. ... m Magnetic flux ............ Magnetic field intensity. ... H
;
0
t t
0 0 0
0
1 1 0
f 1 1-1
t
0-4 0 - $
;
4
$ - 2
0
-L
0 -1 0 -2 0 0
4
i -1
0
2 -1
0 -2
0 0
CP
--f 1 -1
C C2
-j
-1
-f
-1
-3 -3
3 -1 I -1
-!
3
$
-1
1 1 -1
t
+
-1
-1
-;$ -$$
1 2 1 2
'
2
-2
' -2
2
4 t
1,!c l/c C
1 1
1 1 1
1 0 0
0 0 0
0 0 0 -1 0 0
0 1 0
1 0 0 -1 0 1
0 0 0
0 0 1
0 0 0
0 0 1
1 1
0 0
1 1 0
0 -1 1 0
0 0
1
0
0
1
1
1 1 1
-1 -1
-1
0 1
1 1 0
C C C
f
1/c
i 1 /c
-1 0 0
f
Thermoelectric power$ , . . Peltier coefficient$ . . . . . . . -
1 0 1 -2 1 -2
0
-4
-1
; -1
-+
0 0 0
C'
1 1/c'
-
Self-inductancc . . . . . . . . . . 2 Mutual inductance . . . . . . . $)]I Magnetic reluctance . . . . . . $R
?'
l c l c
2 -1 2 -1 0 0
1 -1
$
Magnetic susceptibility . . . K Magnetic permeability . . . p Current density . . . . . . . . . . -
3 ;
-1
5
-3
;
r
0 0 0
c' 1 -1 -1 0 -1 1 1 -1 1 1 /c2 0 2I 1 ; -1 f 1/ c
Magnetizing force . . . . . . . H Magnetic potential . . . . . . . 0 Magnetomotive force . . . . . :i Magnetic moment . . . . . . . . Intensity magnetization . . . J Magnetic induction . . . . . . . B
C C C
; 1 'c
j -2 ! -2 ; -2
Electrostatic capacity . . . . . c Dielectric constant . . . . . . . K Specific inductive capacity. -
0 0
-4
t
1.'c
1 1
1/c' l/c' C
t
0 -1
1 -2
1 -2
1 1 0
0 -1
i'
1
1 1 0
0 -1 1 -2
0 1 1 ic? 1 1 0 1 1/c' c" 0 -1 -1
0
0 1 0 1 0 -1
1 1
1 1
0 0
+$ l / c t$ l / c
. A s adopted by .\merican Institute of Electrical E n g i n e e r s , 1915. t c is the velocity of a n electromagnetic wave i n the e t h e r = 3 x 1O'O ap'proximately. t T h i s conversion factor should include [#-'I.
SMITHSONIAN PHYSICAL TABLES
~
i -
Quantity of electricity.. ... Q Electric displacement ..... 1) Electric surface density.. . D
+
emu esu t
..
systrm
0 0
O$ O$
T A B L E 31.-FUNDAMENTAL
U N I T S OF L E N G T H , AREA, V O L U M E , A N D MASS
(As established by administrative action, National Bureau of Standards) ~
Part 1.-Some
definitions and legal relations
1 in.* = (U0.3937) cm = 2.54000508cm 1 Ib * = 453.5924277 g 1 gal * = 231 in? = 3.785329 liter 1 I.T.cal t = 4.18674 ioules = I.OOOSS~calls 1 Btu t = 251.996 I.T. cal = 252.161 calls Part 2 . 4 o n v e r s i o n factors, units of length cm
1cm= 1m= 1 in. = 1 ft= 1 yd=
1
100 2.5400051 30.480061 91.440183
in.
ft
rd
0.3937
0.032808333 3.2808333 0.083333333 1 3
0.010936111 1.0936111 0.027777778 0.33333333 1
m
0.01 1
0.025400051 0.30480061 0.91440183
39 _ _ 37
1 12 36
Part 3.-Conversion cm2
1 cm'= 1 mz= 1 in.'= 1 ft' = I yd2=
1 10' 6.4516258 929.03412 8361.3070
10-4
1 6.4516258 x lo-' O.WZ903412 0.83613070
cm3
1 ft'= 1 ml= 1 liter = 1 gal =
1
16.387162 2.8317017 x 10' 1.000028 1.000028 X lo3 3.7854345 X 10'
in.=
kg
g
1
1 kg= 1 lb= 1 metric ton= 1 ton=
1.0.3
Legal relation.
4.5359243 X 10' 1oe 9.0718486 x lo5
10.' 1
0.45359243
103
907.18486
1.0763867 x 10.763867 6.9444444 x lo-' 1 9
yd'
1.1959853 x lo-* 1.1959853 7.7160494 x lo-' 0.11111111 1
factors, units o f volume ft3
0.061023378 1 1.728 x lo" 0.06102509 61.OX09 231
3.5314455 X 5.7870370 x lo-' 1
3.531544 X lod 0.03531544 0.13368056
Part 5.-Conversion
1g =
ft2
0.15499969 1549.9969 1 144 1296
Part 4.-Conversion
1 cm3= 1 in?=
factors, units of area
in.2
m2
ml
0.9999720 16.38670 2.831622 x 10' 1 10" 3.785329 x 10'
liter
0.9999720 x 10.' 1.638670 x lo-' 28.31622 0.001 1 3.785329
factors, units o f mass lb
2.2046223 x lo-' 2.2046223 1 2204.6223 2000
t As defined by International Steam Table Conference, London, 1929.
metric ton
lo-' 10'' 4.5359243 X 1 0.90718486
ton
1.1023112 X 101.1023112 x 10" 0.0005 1.1023112 1
gal
2.6417047 X lo-' 4.3290043 x lo-* 7.4805195 2.641779 0.2641779X lo-' 1
61 FOR CONVERTING U. S. WEIGHTS AND MEASURES*
TABLE 32.-TABLES
t o customary
P a r t 1.-Metric
Capacity
7 Linear l$eters to inches
Meters to feet
hleters to Kilometers yards to miles
litersor cut+ centi. meters tofluid drams
Centiliters to fluid ounces
Decaliters to gallons
Liters to quarts
Hectoliters tu hshek
1 39.3700 3.28083 1.093611 2 78.7400 6.56167 2.187222 3 118.1100 9.84250 3.280833 4 157.4800 13.12333 4.374444 5 196.8500 16.40417 5.468056
0.62137 1.24274 1.86411 2.48548 3.10685
2 3 4
5
0.27 0.54 0.81 1.08 1.35
0.338 0.676 1.014 1.353 1.691
1.0567 2.6418 2.8378 2.1134 5.2836 5.6756 3.1701 7.9253 8.5135 4.2268 10.5671 11.3513 5.2836 13.2089 14.1891
6 7 8 9
3.72822 4.34959 4.97096 5.59233
6 7 8 9
1.62 1.89 2.16 2.43
2.029 2.367 2.705 3.043
6.3403 7.3970 8.4537 9.5104
236.2200 275.5900 314.9600 354.3300
19.68500 22.96583 26.24667 29.52750
6.561667 7.655278 8.748889 9.842500
1
>
1
Milligrams to grains
Kilo. grams to grains
Hectograms to ounces avoirdupois
Kilograms to wunds avoirdupois
0.1550 0.3100 0.4650 0.6200 0.7750
10.764 21.528 32.292 43.055 53.819
1.196 2.392 3.588 4.784 5.980
2.471 4.942 7.413 9.884 12.355
1 2 3' 4 5
0.01543 0.03086 0.04630 0.06173 0.07716
15432.36 30864.71 46297.07 61729.43 77161.78
3.5274 7.0548 10.5822 14.1096 17.6370
2.20462 4.40924 6.61387 8.81849 11.02311
0.9300 1.0850 1.2400 1.3950
64.583 7.176 75.347 8.372 86.111 9.568 96.875 10.764
14.826 17.297 19.768 32.230
6 7 8 9
0.09259 92594.14 0.10803 108026.49 0.12346 123458.85 0.13889 138891.21
21.i644 24.6918 28.2192 3 1.7466
13.22773 15.43236 17.63698 19.84160
Quintals to pounds av.
Milliers or tonnes to pounds av.
Iiilograms to ounces troy
Cubic
6 7 8 9
17.0269 19.8647 22.7026 25.5404
Mass
Square Squafe centiSquare Square meters meters meters to square to square to square Hectares tuacres feet yards inches
2 3
15.8507 18.4924 21.1342 23.7760
Mazs
Cubic centimeters to cubic inches
Cubic decimeters to cubic inches
meters to cubic feet
Cubic meters to cubic yards
0.0610 0.1220 0.1831 0.2441 0.3051
61.023 122.047 183.070 244.094 305.117
35.314 70.269 105.943 141.258 176.572
1.308 2.616 3.924 5.232 6.540
1 2 3 4 5
220.46 440.92 661.39 881.85 1102.31
2204.6 4409.2 6613.9 8818.5 11023.1
32.1507 64.3015 96.4522 128.6030 160.7537
0.3661 0.4272 0.4882 0.5492
366.140 427.164 488.187 549.210
211.887 247.201 282.516 317.830
7.848 9.156 10.464 11.771
6 7 8 9
1322.77 1543.24 1763.70 1984.16
13227.7 15432.4 17637.0 19841.6
192.9045 225.0552 257.2059 289.3567
Cubic
I n the United 5t:;tes since 1893 all units in the above table have been derived from the same standards c i h:gth a:!d mass. Therefore all equivalents (except those ii?volving the liter) depend oiily [ i n :iurrierical definitions. T h e liter is the volume of one kilogram of pure water at ttie tFmpcratcre of its maximum density and under a pressure equivalent t o 760 millitneters of nir;cury. T h e liter was determined by the International :3ureau of Weights arid Measures in 1910 to equal 1.000027 dm3. (National Bureau of Standards.) .Quoted
from sheets issued by the Kational Bureau of Standards
(corttinzred)
SMITHMNIAN PHYSICAL TABLES
62 TABLE 32.-TABLES
FOR C0NVERTI:NG U. S. WEIGHTS AND MEASURES (continued)
Part 2.-Cuetornary
to metric Capacity
Linear Inches to millimeters
Yards to meters
Miles to kilometers
3 4 5
25.4001 0.304801 50.8001 0.609601 76.2002 0.914402 101.6002 1.219202 127.0003 1.524003
0.914402 1.828804 2.743205 3.657607 4.572009
1.60935 3.21869 4.82804 6.43739 8.04674
6 7 8 9
152.4003 1.828804 5.486411 177.8004 2.133604 6.400813 203.2004 2.438405 7.315215 228.6005 2.743205 8.229616
9.65608 11.26543 12.87478 14.48412
1
7
L
Feet to meters
1
i
3 4 5 6
7
8 9
Fluid drams to milliliters or cuhic centimeters
Fluid ounces to miililiters
Liquid quarts to liters
Gallons to liters
3.71) 7.39 11.09 14.79 18.48
29-57 59% 88.72 118.29 147.87
0.94633 1.89267 2.83900 3.78533 4.73167
3.78533 7.57066 11.35600 15.14133 18.92666
22.18 25.88 29.57 33.27
177.44 207.01 236.58 266.16
5.67800 22.71199 6.62433 26.49733 7.57066 30.28266 8.51700 34.06799
Square
Mass
Square inches to square centimeters
Square feet to s uare iecimeters
1 2 3 4
5
6.452 12.903 19.355 25.807 32.258
9.290 18.581 27.871 37.161 46.452
0.836 1.672 2.508 3.345 4.181
0.4047 0.8094 1.2141 1.6187 2.0234
6 7 8 9
38.710 45.161 51.613 58.065
55.742 65.032 74.323 83.613
5.017 5.853 6.689 7.525
2.4281 2.8328 3.2375 3.6422
1 2 3 4 5
64.7989 129.5978 194.3968 259.1957 323.9946
28.3495 56.6991 85.0486 113.3981 141.7476
0.45359 0.90718 1.36078 1A1437 2.26796
31.10348 62.206% 93.31044 124.41392 155.51740
6 7 8 9
388.7935 453.5924 518.3913 583.1903
170.0972 198.4467 226.7962 255.1457
2.72155 3.17515 3.62874 4.08233
186.62088 217.72437 248.82785 279.93133
Square yards to Acres square to meters hectares
Cuhic
1 2 3 4 5 6 7 8 9
Grains to milligrams
Avoirdupois ounces to grams
Cuhic inches to cuhic centimeters
Cuhic feet to cuhic meters
Cuhic yards to cuhic meters
Bushels to hectoliters
16.387 32.774 49.161 65.549 81.936 98.323
0.02832 0.05663 0.08495 0.11327 0.14159 n.16990
0.765 1.529 2.294 3.058 3.823 4.587
131.097 147.484
0.22654 0.25485
6.116 6.881
0.35239 0.70479 1.05718 1.40957 1.761% 2.11436 2Z675 2.81914 3.17154
iii7To 0:iGSii 5.352
Avoirdupois pounds to kilograms
Troy ounces to grams
1 mile (statute) = 5280 feet 1 mile (nautical) = 6080.20 feet 1 Gunter’s chain = 20.1168 meters 1 sq. statute mile = 259.000 hectares 1 fathom - 1.829 meters = 1853.25 meters 1 nautical mile 1 foot - 0.304801 meter 1 avoir. pound = 453.5924 grams 15432.356 grains = 1.000 kilogram = 1000.028 k .004 cm’ 1 liter
The length of the nautical mile given above, and adopted by the U. S. Coast and Geodetic Survey many years ago, is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke’s Spheroid of 1866).
(continued)
SMITHSONIAN
PHYSICAL TABLES
63 T A B L E 32.-TABLES
FOR C O N V E R T I N G U. S. W E I G H T S A N D M E A S U R E S (concluded)
P a r t 3.-Miscellaneous
equivalents of U. S. and metric weights and measures"
(For other equivalents than those below, see Tables 30, 31, and 33.) LINE.\R MEASURES
1 mil (.001 in.) =25.4001 p 1 in. = .000015783 mile 1 hand (4 in.) = 10.16002 cm 1 link (.66 ft) = 20.11684 cm 1 span (9 in.) = 22.86005 cm 1 fathom (6 ft) = 1.828804 m 1 rod (55 yd) (25 links) = 5.02910 m 1 chain (4 rods) = 20.11684 m 1 light year (9.5 X 10" km) = 5.9 X 10" miles 1 parsec (31 X 10" km) = 19 X 10'' miles ilk in. = .397 mm in. = .794 mm &in. = 1.588 mm 4 in. = 3.175 mm 4 in. = 6.350 mm 3 in. = 12.700 mrn 1 angstrom unit = .0000000001 m 1 micron ( p ) = B00001 m = .00003937 in. 1 millimicron ( m p ) = .000000001 rn 1 m =4.970960 links = 1.093611 yd = .198838 rod= .04970% chain SQU.\RE MEASURES
1 sq. link (62.7264 in?) = 404.6873 cm2 1 sq. rod (625 sq. links) = 25.29295 m2 1 sq. chain (16 sq. rods) = 404.6873 m' 1 acre (10 sq. chains) = 4046.873 m2 1 sq. mile (640 acres) = 2.589998 km2 1 km2= .3861006 sq. mile 1 m2= 24.7104 sq. links = 10.76387 ft2 = .039537 sq. rod = .00247104 sq. chain CUBIC ME.\SURES
=2359.8 cma 1 cord (128 ft*) = 3.625 ma
1 board foot (144 in.")
CAPACITY MEASURES
1 minim (Q) = .0616102 ml 1 fl. dram (60 = 3.69661 ml 1 fl. oz (8 fl. dr) = 1.80469 in."
n)
=3.5729 ml 1 gill (4 fl. oz.) = 7.21875 in." = 118.292 ml 1 liq. pt (28.875 in?) = .473167 1 1 liq. qt (57.75 in.") = 946333 1 1gallon (4 qt, 231 in?) = 3.785332 1 1 dry pt (33.6003125 in.") = S50599 1 1 dry qt (67.200625 in.") = 1.101198 1 1 pk (8 dry qt, 537.605 in?) = 8.80958 1 1 bu (4 pk, 2150.42 in.") = 35.2383 1 1 firkin (9 gallons) = 34.06799 1 1 liter = 264178 gal = 1.05671 liq. qt = 33.8147 fl. oz =270.518 fl. d r 1 ml. = 16.2311 minims. 1dkl. = 18.1620 dry pt = 9.08102 dry qt = 1.13513 pk = .28378 bu
MASS ME.\SURES Avm'rdupois weights
1 grain = .064798918 g 1 dram av. (27.34375 gr) = 1.771845g 1 oz av. (16 dr av.) = 28.349527 E 1 Ib av. (16 oz av..or 7000 gr) = 14.583333oz ap. (3) or oz t. = 1.2152778or 7000/5760 lb ap. or t.
__
=453S924277 . u
1 kg = 2.204622341 1s av. 1 g = 15.432356gr = .5643833 dr av. - = .03527396 Oz av. 1 short hundred weight (100 Ib) = 45.359243 kg 1long hundred weight (112 lb) = 50.802352 kn 1 short ton (2000 lb) = 907.18486 kg 1 long ton (2240 Ib) = 1016.04704 kg 1 metric ton = 0.98420640 long ton = 1.1023112 short tons T r o y weights
1 pennyweight (dwt 24 gr) = 1.555174 g gr, oz, pd are same as apothecary ' 4 fiothrcaries' wrig hts
1 g r = 64.798918 mg 1 scruple ( 3 , 2 0 gr) = 1.2959784 g 1 dram (3.3 3 = 3.8879351 e 1 oz (QS) ' = 31.103481 1 Ib (125,5760 gr) = 373.24177 g 1 g = 15.432356 gr = 0.771618 3 = 0.2572059 3 = .03215074 j 1 kg = 32.150742 3 = 2.6792285 lb
1 metric carat = 200 mg = 3.0864712 gr U. S. 3 dollar should weigh 12.5 g and the smaller silver coins in proportion.
-Taken from Circular 47 of the National Bureau of Standards, 1915, which see for more complete tables. .
SMlTHSONIAN PHYSICAL TABLES
64 O F METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES *
TABLE 33.-EQUIVALENTS
(For U. S. Weights and Measures, see Table 32.) Part 1.-Metric
t o imperial
LINEAR MEASURE
}=
(.001 m) 1 centimeter (.01 m) = 1 decimeter (.l m) = METER(^)
1 dekameter 1 hectometer ('Om)
. . .} . .= } . .=
0.39370 in. 3.93701 in. 3.280843 ft 1.09361425 yd 10.93614yd 109.361425yd
1 kilometer
1 micron
MEASURE O F CAPACITY
1 milliliter (ml) (.001 liter) 1 centiliter (.OI liter) 1 deciliter (.1 liter) 1 LITER (1,000 CU.} centimeters or 1 cu. decimeter) 1 dekaliter (10 liters) 1 hectoliter (100 '' ) 1 kiloliter (1,ooO " )
0.62137 mile
. . . . .
~ . ~ ~ ~ ~ 4 g i ~ /
= 0.176 pint = 1.75980pints = 2.200 gallons = 2.75 bushels = 3.437 quarters
APOTHECARIES' MEASURE
6.21372 miles 0.001 mm
-
={
0.0610 in?
1 cm'
0.03520 fluid ounce 0.28157 fluid drachm 15.43236 grains weight - 0.01693 minim
w't) 1 mm'
AVOIRDUPOIS WEIGHT
(mg) . .= 0.01543 grain (.Ol gr:m) = 0.15432 grain 1.54324 grains (.l )= - 15.43236 grains (10 gr!ys) = 5.64383 drams (100 )= 7 ' 5 2 3 i b 1 KILOGRAM (1,000 " ) = rrreins 1 myriagram (10 kg) = 22.046% Ib 1 quintal (100 " ) = 1.96841 cwt 1 millier or tonne .= 0.9842 ton (1,000 kg)
1 milligram 1 centigram 1 decigram GRAM . 1 dekagram 1 hectogram
SQUARE MEASURE
1 cm' .
.
. . . .-
0.1531 in.'
. . . . .-
1
1.
CUBIC ME.\SURE
1 em8 (1,000mm8). 1 dm' (1,000 cm') 1 ma or stere (l,OOOdma)}'
.=
.= '
=
{
0.0610in.a 61.024 in? 35.3148 ft' 1.307954 yda
TROY WEIGHT
1CRAM.
.
.={
0.03215 oz troy. 0.64301 pennyweight 15.43236 grains
APOTHECARIES' WEIGHT
0.25721 drachm
NoTE.-The METERis the length, at the temperature of O"C, of the platinum-iridium bar deposited at the International Bureau of Weights and Measures at SGvres, near Paris, France. The present legal equivalent of the meter is 39.370113 inches, as above stated. The KILOGRAM is the mass of a platinum-iridium weight deposited at the same place. The LITERcontains 1 kilogram weight of distilled water at its maximum density (4"C), the barometer being at 760 millimeters. In accordance with the schedule adopted under the Weights and Measures (metric system) Act. 1897.
(continued)
SMITHWNIAN PHYSICAL TABLES
65 T A B L E 33.-EQUIVALENTS O F M E T R I C AND BRITISH I M P E R I A L W E I G H T S AND MEASURES (continued)
(For U. S. Weights and Measures, see Table 32.) P art 2.-Metric
t o imperial, multiples Measure of capacity
Linear measure ~
Millimeters to inches
Meters to feet
Meters to yards
Liters to pints
Kilometers tomiles
1 2 3 4 5
0.03937011 3.28084 1.09361 0.07874023 6.56169 2.18723 0.11811034 9.84253 3.28084 0.15748045 13.12337 4.37446 0.19685056 16.40421 5.46807
0.62137 1.24274 1.86412 2.48549 3.10686
1 2 3 4 5
6 7 8 9
0.23622068 0.27559079 0.31496090 0.35433102
3.72823 4.34960 4.97097 5.59235
6 7 8 9
19.68506 22.96590 26.24674 29.52758
6.56169 7.65530 8.74891 9.84253
Dekaliters to gallons
Hectoliters to bushels
Kiloliters to quarters
1.75980 2.19975 2.74%9 3.43712 3.51961 4.39951 5.49938 6.87423 5.27941 6.59926 8.24908 10.31135 7.03921 8.79902 10.99877 13.74846 8.79902 10.99877 13.74846 17.18558 10.55882 12.31862 14.07842 15.83823
13.19852 15.39828 17.59803 19.79778
16.49815 19.24785 21.99754 24.74723
20.62269 24.05981 27.49692 30.93404
Square measure <
A
Weight (Avoirdupois)
Square centimeters to square inches
Square meters to square feet
Square meters to square yards
Hectares to acres
1 2 3 4 5
0.15500 0.31000 0.46500 0.62000 0.77500
10.76393 21.52786 32.29179 43.05572 53.81965
1.19599 2.39198 3.58798 4.78397 5.97996
2.4711 4.9421 7.4132 9.8842 12.3553
1 2 3 4 5
0.01543 15432.356 2.20462 0.03086 30864.713 4.40924 0.04630 46297.069 6.61387 0.06173 61729.426 8.81849 0.07716 77161.782 11.02311
6 7 8 9
0.9300 i.08500 1.24000 1.39501
64.58357 7.17595 75.34750 8.37194 86.11143 9.56794 96.87536 10.76393
14.8263 i7.2974 19.7685 22.2395
6 7 8 9
0.09259 92594.138 13.22773 11.81048 0.10803 108026.495 15.43236 13.77889 0.12346 123458.851 17.63698 15.74730 0.13889 138891.208 19.84160 17.71572
CCibic measure
' Cubic
decimeters to cubic inches
CCubic ubimeters c'
'
f?
grains
Apothecaries' measure
meters to cubic feet
to cubic yards
Cubic centimeters to fluid drachms
1.30795 2.61591 3.92386 5.23182 6.53977
Milligrams
Kilograms
'?
grains
Kilograms to pounds
Avoirdupois
(cont.)
Troy weight
1
Quintals to hundredweights
1.96841 3.93683 5.90524 7.87365 9.84206
Apothecaries' weight
Milliers or tonnes to tons
Grams to ounces troy
Grams to pennyweights
Grams to scruples
1 2 3 4 5
61.02390 122.04781 183.07171 244.09561 305.11952
35.31476 70.62952 105.94428 141.25904 176.57379
0.28157 0.56314 0.84471 1.12627 1.40784
1 2 3 4 5
0.98421 1.%841 2.95262 3.93683 4.92103
0.03215 0.06430 0.09645 0.12860 0.16075
0.64301 1.28603 1.92904 2.57206 3.21507
0.77162 1.54324 2.31485 3.08647 3.85809
6 7 8 9
366.14342 427.16732 488.19123 549.21513
211.88855 7.84772 1.68941 247.20331 9.15568 1.97098 282.51807 10.46363 2.25255 317.83283 11.77159 2.53412
6 7 8 9
5.90524 6.88944 7.87365 8.85786
0.19290 0.22506 0.25721 0.28936
3.85809 4.50110 5.14412 5.78713
4.62971 5.40132 6.17294 6.94456
(continued)
SMITHSONIAN PHYSICAL TABLES
66 TABLE 33.-EQUIVALENTS O F BRITISH IMPERIAL A N D METRIC WEIGHTS AND MEASURES (continued)
(For U. S. Weights and Measures, see Table 32.) Part 3.-lmperial to metric MEASURE OF CAP.\CITY
LINEAR MEASURE
1 inch . . 1 foot ( i 2 in.) 1 YARD (3 ft) 1 pole (54 yd)
. . = 1.42 deciliters . .= 0.568 liter . . = 1.136 liters . .= 4.5459631liters . . . = 9.0921iters . .= 3.637 dekaliters . .= 2.909 hectoliters
. .z . .= . .=
1 gill . 1 pint (4 g'illi) . 1 quart (2 pt) . 1 GALLON (4 qt) 1 peck (2 gal) 1 bushel (8 gal) 1 quarter (8 bu)
. .={
1 grain . 1dram . 1 ounce (16 dr)
25.400 millimeters 0.30480 meter 0.914399meter = 5.0292 meters (" yd Or = 20.1168 meters 100 links) 1 furlong (220 yd) = 201.168 meters 1 mile (1,760 yd) .= 1.6093 kilometers 1420210. X CdrX lyard . . (Tutton 1932)
.
in.2 ....
.
AVOIRDUPOIS WEIGHT
. .
S Q U a R E MEASURE . . . . . - 6.4516 -. .- .- rm2 -.-.
. . .
fts YD'
. .
. .= 1.772 grams . = 28.350grams
p o ~ ~ & ( l ~=r ~0.45359243 f ~ ~ kg 1 stone (14 lb) . = 6.350 kg 1 quarter (28 Ib) = 12.70 kg 1 hundredweight (112 lb) = G:%%quintal 1.0160 tonnes or 1016 kilo.= 1 ton (20 cwt) grams
ft2 (144 in.zj . = 9.2903 dm2 0.836126 m2 YD2 (9 ft2) . perch (304 yd2) = 25.293 m2 rood (40 perches) = 10.117 ares ACRE (4840 yd2) = 0.40468 hectare mi2 (640 acres) = 259.00 hectares in?
. . .= 64.8 milligrams .
}
.
CUBIC M E ' S U R E
. .= 16.387cm' (1728 in?) = (,,,,,l7 msor 28.317 (27 ft*). .= 0.76455m8
TROY WEIGHT
troy OUNCE (480 grains av) 1 pennyweight (24 grains)
APOTHECARIES' MEASURE
i
= 31.1035 grams = 1,5552grams
NoTE.-The troy grain is of the same weight as the avoirdupois grain.
1 fluid ounce, f 5 drachms) 1 fluid drachm, f 3 = 3.5515 c m ~ (60 minims) lminim, 1 (0.91146 = 0.05919 grain weight)
APOTHECARIES' WEIGHT
.
1 ounce (8 drachms) . = 31.1035 grams 1 drachm, 3i (3 scruples) = 3.888 grams 1 scruple, 3i (20 grains) = 1.296 grams
1 1
NoTE.-The a othecaries' ounce is of the same weight as t i e troy ounce. The apothecaries' grain is also of the same weight as the avoirdupois grain.
NoTE.-The apothecaries' gallon is of the same capacity as the Imperial gallon. ~
NoTE.-The YARDis the length at 62"F, marked on a bronze bar deposited with the Board of Trade. The POUND is the weight of a piece of platinum weighed in vacuo at the temperature of O"C, and which is also deposited with the Board of Trade. The GALLONcontains 10 Ib weight of distilled water at the temperature of 62"F, the barometer being at 30 inches. (continued)
SMITHSONIAN PHYSICAL TABLES
67 T A B L E 33.-EQUIVALENTS OF BRITISH I M P E R I A L A N D M E T R I C W E I G H T S A N D MEASURES (concluded)
(For U. S. Weights and Measures, see Table 32.) P a r t 4.-lmperial
t o metric, multiples
Linear measure Feet to meters
Yards to meters
Miles to kilo. meters
1 2 3 4 5
2.539998 5.079996 7.619993 10.159991 12.699989
0.30480 0.60960 0.91440 1.21920 1.52400
0.91440 1.82880 2.74320 3.65760 4.57200
1.60934 3.21869 4.82803 6.43737 8.04671
6 7 8
15.239987 17.779984 20.319982 22.859980
1.82880 2.13360 2.43840 2.74320
5.48640 6.40080 7.31519 8.22959
9.65606 11.26540 12.87474 14.48408
Square inches to square centimeters
Square feet t o square decimeters
9
Measure of capacity
-.
Inches to centimeters
Quarts to liters
1 2 3 4 5
1 2 3 4 5
32.25794
46.45144
6 7 8 9
38.70953 45.16112 51.61271 58.06430
55.74173 65.03201 74.32230 83.61259
27.27578 31.82174 36.36770 40,91367
6 6.81894 7 7.95544 8 9.09193 9 10.22842
1 2 3 4 5 6 7 8 9
Grajns to milliarams
Acres to hectares
Pounds to kilograms
Ounces to grams
Hundredweights to quintals
4.18063 2.02342
0.50802 1.01605 1.52407 2.03209 2.54012
5.01676 5.85288 6.68901 7.52513
6 7 8 9
388.79351 453.59243 518.39135 583.19026
3.04814 3.55616 4.06419 4.57221
2.42811 2.83279 3.23748 3.64216 Apothecaries' Measure
Avoirdupois (cat.)
Cubic yards to cubic meters
Fluid drachms tocubic centimeters
81.93511 0.14158 3.82276 4.58732 5.35187 6.11642 6.88098
SMITHMNIAN PHYSICAL TABLES
170.09716 198.44669 226.79621 255.14574
2.72155 3.17515 3.62874 4.08233
Troy weight
Apothecaries' weight
~
Tons to milliers or tonnes
1 1.01605
98.32213 0.16990 0.i9822 131.0%17 0.22653 147.48319 0.25485
17.45650 20.36591 23.27533 26.18475
64.79892 28.34953 0.45359 129.59784 56.69905 0.90718 194.39675 85.04858 1.36078 259.19567 113.39811 1.81437 323.99459 141.74763 2.26796
Ounces to grams
17.75767
31.10348 62.20696 3 3.04814 93.31044 4 4.06419 124.41392 5 5.08024 155.51740
21.30920 24.86074 28.41227 31.96380
6 7 8 9
2 2.03209
ii4.709is
21.82062 25.45739 29.09416 32.73093
Weight (avoirdupois)
~
Cubic feet to cubic meters
to
hecto. liters
1 2 3 4 5
Cubic measure kubic inches to pubic centimeters
Quarters
1.13649 4.54596 3.63677 2.90942 2.27298 9.09193 7.27354 5.81883 3.40947 13.63789 10.91031 8.72825 4.545% 18.18385 14.54708 11.63767 5.68245 22.72982 18.18385 14.54708
Souare measure Square yards to square meters
Bushels to dekaliters
Gallons to liters
6.09628 7.11233 8.12838 9.14442
Pennyweights to grams
Scruples to grams
1.55517 3.11035 4.66552 6.22070 7.77587
1.29598 2.591% 3.88794 5.18391 6.47989
186.62088 9.33104 7.77587 217.72437 10.88622 9.07185 248.82785 12.44139 10.36783 279.93133 13.9%57 11.66381
68 TABLE 34.-VOLUME O F A GLASS VESSEL FROM T H E WEIGHT O F ITS EQUIVALENT VOLUME OF MERCURY OR WATER
If a glass vessel contains a t t"C, P grams of mercury, weighed with brass weights in air a t 760 mmHg pressure, then its volume in cm'
P at the same temperature, t : V = P R = P-J d
P
+
at another temperature, f l : V = P R , = P d (1 Y (ti - f ) ) p = t h e weight, reduced to vacuum, of the mass of mercury or water which, weighed with brass weights, equals 1 gram; d = the density of mercury or water at t"C, and y the cubical expansion coefficient of glass. Ternpe ra ture
-
Water
Mercury L
t
R
= 10"
R1,tl = 20"
0" 1 2 3 4 5
1.001192 1133 1092 1068 1060 1068
1.001443 1358 1292 1243 1210 1193
1.001693 1609 1542 1493 1460 1443
0.0735499 5633 5766 5900 6033 6167
0.0735683 5798 5914 6029 6144 6259
0.0735867 5982 6098 6213 6328 6443
6 7 8 9 10
1.001092 1131 1184 1252 1333
1.001192 1206 1234 1277 1333
1.001442 1456 1485 1527 1584
0.0736301 6434 6568 6702 6835
0.0736374 6490 6605 6720 6835
0.0736558 6674 6789 6904 7020
11 12 13 14 15
1.001428 1536 1657 1790 1935
1.001403 1486 1582 1690 1810
1.001653 1736 1832 1940 2060
0.0736969 7103 7236 7370 7504
0.0736951 7066 7181 7297 7412
0.0737135 7250 7365 7481 7596
16 17 18 19 20
1.002092 2261 2441 2633 2835
1.001942 2086 2241 2407 2584
1.002193 2337 249 1 2658 2835
0.0737637 7771 7905 8039 8172
0.0737527 7642 7757 7872 7988
0.073771 1 7826 7941 8057 8172
21 22 23 24 25
1.003048 3271 3504 3748 4001
1.002772 2970 3178 33% 3624
1.003023 3220 3429 3647 3875
0.0738306 8440 8573 8707 8841
0.0738103 8218 8333 8449 8564
0.0738288 8403 8518 8633 8748
26 27 28 29 30
1.oO4264 4537 4818 5110 5410
1.003862 4110 4366 4632 4908
1.004113 4361 4616 4884 5159
0.0738974 9108 9242 9376 9510
0.0738679 8794 8910 9025 9140
0.0738864 8979 9094 9210 9325
R1,tl = 10' R,.t?- = 20' _I
SMITHSONIAW PHYSICAL TABLES
R
R1,tl
O F AIR ON WEIGHING
T A B L E 35.-EFFECT
69
Reductions of weighings in a i r to vacuo
When the weight M in grams of a body is determined in air, a correction is necessary for the buoyancy of the air equal to M6(l / d - I/&) where 6 = the density (wt. of 1 cms in grams = 0.0012) of the air during the weighing, d the density of the body, d~ that of the weights. 6 for various barometric values and humidities may be determined from Tables 631-632. The following table is computed for 6 = 0.0012. The corrected weight =
M
+ kM/1000.
Densitv of hod; weighed d
.5 .6 .7 .75 .80 .85 .90 .95 1.00 1.1 1.2 1.3 1.4 1.5
Correction factor. k , Brass 'Pt. Ir. Quartz or weights Al. weights weights d,= 21.5 8.4 2.65
+ 2.34 + 1.94 + 1.66 + 1.55 + 1.44 + 1.28 1.36 + + 1.21 + 1.14 + 1.04 + 0.94 + .87 + .SO + .75
+ 2.26 + 1.95 + 1.86 + 1.55 + 1.57 + 1.26 + 1.46 + 1.15 + 1.36 + 1.05 + 1.27 + 0.96 + 1.19 + .88 + 1.12 + .81 + 1.06 + .75 + 0.95 + .64 + .86 + .55 + .78 + .47 + .71 + .40 + .66 + .35
T A B L E 36.-REDUCTlONS
Correction factor, k
Density of body weighed d
A.
Pt. Ir. weights d,= 21.5
+ 0.69 + .65
1.6 1.7 1.8 1.9 2.0 2.5 3.0 4.0 6.0 8.0 10.0 15.0 20.0 22.0
+ .62 + .58 + .54 + .43 + .34 + .24 + .14 + .09 + .06 + .03 + .004 - .001
Brass weights
Ouartz or
8.4
2.65
+ 0.61 + .56 + .52 + .49 + .46 + .34 + .26 + .16 .06 + .01 + - .02
+ 0.30 + .25 + .21 + .18 + .15 + .03
-
- .06 - .08
-
,
Ai.weights
.09
.05 .15 .25 .30 .33 .37 .39 .40
O F D E N S I T I E S I N A I R TO VACUO
(This correction may be accomplished through the use of the above table for each separate weighing.) If s is the density of the substance as ca!culated from the uncorrected weights, S its true density, and L the true density of the liquid used, then the vacuum correction to be applied to the uncorrected density, s, is 0.0012 (1 - s/L). Let W. = uncorrected weight of substance, W I= uncorrected weight of the liquid displaced by the substance, then by definition, s = LW./Wz. Assuming D to be the density of the balance of weights, W.{1 0.0012(1/S - l/D)} and Wt{l 0.0012 (1/L - l/D)} are the true weights of the substance and liquid respectively (assuming that the weighings are made under normal atmospheric corrections, so that the weight of 1 cm' of air is 0.0012 gram).
+
+
+ +
W,{1 0.0012(1/s- 1/D)} Wl{1 O.O012(1/L - 1/D)} But from above WJWI = s/L, and since L is always large compared with 0.0012, s- s = 0.0012( 1 - s / L ) The values of 0.0012(1 - s/L) for densities up to 20 and for liquids of density 1 (water), 0.852 (xylene), and 13.55 (mercury) follow : Then the true density S =
Density of substance z
0.8 0.9 1. 2. 3. 4.
5.
6. 7. 8. 9. 10.
-,
Corrections
L=l Water
+ 0.00024
+
.00012 0.0000 - .0012 - .0024 - .0036 - .0048 - .0060 - .0072 - .0084 - .0096 - .0108
L
= 0.852
Xylene
L = 13.55 Mercury
-
- 0.0002
- .0016 - .0030
-
.0044
- .0058 - .0073
-
.0087 .0101 .0115 - .0129
SMITHSONIAN PHYSICAL TABLES
+ 0.001 1 + + .0010 .om9 + .0008 + .oO08 + + .0007 .om
+ + +
.om5
.OM4 .0003
Density of suhStance S
11. 12. 13. 14. 15. 16. 17. 18. 19. 20.
Corrections
L=13.5r; L=l Water
-0.0120 - .0132 - .0144 - .0156 - .0168 - ,0180 - .0192 - .0204 - .0216 - .0228
Mercury
+0.0002 .OOO1
+
O.oo00
0.0000 - .0001
- .0002 - .OW3 - .OW4 - .OW5 - .0006
70
TABLES 37-51.-CONSTANTS FOR TEMPERATURE MEASUREMENT T A B L E 37.-THE
I N T E R N A T I O N A L T E M P E R A T U R E SCALE O F 1948
The International Temperature Scale that was adopted in 1927 was revised duzing 1948 and is designed to conform as nearly as practicable to the thermodynamic Celsius (Centigrade) scale as now known. This 1948 International Temperature Scale incorporates certain refinements based on experience to make it more uniform and reproducible than its predecessor. The new scale is essentially the same as the one it displaces, but it was improved by changing certain formulas and values for temperatures and constants. Only three of the revisions in the definition of the scale result in appreciable changes in the numerical values assigned to measured temperatures. The change in the value for the silver point from 960.5”C to 960.8”C changes temperatures measured with the standard thermocouple. The adoption of a different value for the radiation constant cz changes all temperatures above the gold point, while the use of the Planck radiation formula instead of the Wien formula affects the very high temperatures. (See Table 40 for the magnitude of the changes due to these two causes for high temperatures.) The 1948 temperature scale, like the 1927 scale, is based upon six fixed points (Table 38) and upon specified formulas for the relations between temperature and the indications of the instruments calibrated at these fixed points. Temperature on the 1948 scale will be designated as “C, or “C (Int. 1948) and denoted by the symbol t. The means available for interpolation between the fixed points lead to a division of the scale into four parts : (a) From 0°C to the freezing points of antimony the temperature t is defined by the formula Rr = Ro( 1 At Bt2) where R I is the resistance, at temperature t , of a standard platinum resistance. thermometer. (b) From the oxygen point (Table 38) to 0°C the temperature t is similarly defined by the formula Rr = Ro[1 At Btz+ C ( t - 100)PI (c) From the freezing point of antimony to the gold point (Table 38) the temperature t is defined by the formula E = a bt ct*, where E is the electromotive force of a standard thermocouple of platinum and platinumrhodium alloy, when one junction is a t 0°C and the other at temperature t. Recommendations are given for the construction, calibration, and use of these two types of measuring devices. (d) Above the gold point the temperature t is defined by the formula
+ +
+ +
+ +
where 1, and J A are ~ the radiant energies per unit wavelength interval a t wavelength A, emitted per unit time by unit area of a blackbody at temperature t, and at the gold point t ~respectively. ~ , R is 1.438 cm degrees. To is the temperature of the ice point in “K. X is a wavelength of the visible spectrum. e is the base of Naperian logarithms.
Secondary fixed points.-In addition to the six fundamental and primary fixed points (Table 38), a number of secondary fixed points are available and may be useful for various purposes. Some of the more constant and reproducible of these fixed points and their temperatures on the International Temperature Scale of 1948 are listed in Table 41. The relation between this new temperature scale and the thermodynamic Celsius scale is discussed in this paper also. The resulting changes in the 1927’International Temperature Scale below the gold point (1063°C) to correct it to the 1948 International Temperature Scale are given in Table 39. The use of the Planck formula and a wavelength interval within the visible spectrum to determine temperatures presupposes the use of a n optical pyrometer. (See Table 77.) “Nat Bur Standards Journ Res vol. 42 p. 209 1949. ’ *I The‘ General Conference, hhd in’ Octobe; 1948, hecided to discontinue the use of ‘the words “Centesimal” and “Centigrade” and to replace them by “Celsius.” See also Nat. Bur. Standards Techn. News Bull.. vol. 33. I). 110. 1949. See footnote 5a; p. 7.
SMITHSONIAN PHYSICAL TABLES
71 T A B L E 38.-FUNDAMENTAL A N D PRIMARY F I X E D POINTS U N D E R T H E STANDARD PRESSURE O F 1013250 DYNES/CM2 Temterature
C
Temperature of equilibrium between liquid oxygen and its vapor (oxygen point) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature of equilibrium between ice and air saturated water (ice point) firidameirtol fixed point. . . . . . . . . . . . . . . . . . . . . . . . .. . . Temperature of equilibrium between liquid water and its vapor (steam point) fzritdaineirtal fixed j b i n t . . . . . . . . . . . . . . . . . . . .. . . . . . Temperature of equilibrium between liquid sulfur and its vapor . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (sulfur point) Temperature of equilibrium between solid and liquid silver (silver .... .......................... point) .......................... Temperature of equilibrium between solid and liquid gold (gold point) .................. ..... ............. ........ ............
..
.
- 182.970
.
..
0 100
.
444.600 960.8 1063.0
T A B L E 39.-DIFFERENCES B E T W E E N T H E I N T E R N A T I O N A L TEMPERAT U R E SCALES O F 1948 A N D 1927 I N T H E THERMOCOUPLE RANGE Temperature
"C (Int. 1948)
"C (Int. 1948) minus "C (Int. 1927)
.oo
630.5 650 700 750
" C (Int. 1948)
"C (Int. 1948) minus 'C (Int. 1927)
800 839.5 850 900
.42 .43, (max.) .43 .40
+.08 .24 .35
"C (Int. 1948) minus "C (Int. 1948) "C (Int. 1927)
950 960.8 1000 1050 1063
.32 .30 .20 .05
.oo
T A B L E 40.-CORRESPONDING T E M P E R A T U R E S ON T H E I N T E R N A T I O N A L T E M P E R A T U R E SCALES O F 1948 AND 1927 Corresponding Fahrenheit temperatures o r
o r
(Int. i948) (Int. ib27)
(1948)
L_7
(1927)
630.50 650 700 750
630.50 649.92 699.76 749.65
1166.9 1202 1292 1382
1166.9 1201.9 1291.6 1381.4
800 850
799.58 849.57 899.60 949.68
1472 1562 1652 1742
1471.2 1561.2 1651.3 1741.4
900
950 960.80 lo00 1050 1063.00
960.50 999.80 1049.95 1063.00
1761.4 1832 1922 1945.4
1760.9 1831.6 1921.9 1945.4
1100 1200 1300 1400 1500
11m2 1200.6 1301.1 1401.7 1502.3
2012 2192 2372 2552 2732
2012 2193 2374 2555 2736
1600 1700 1800 1900 2000
1603.0 1703.8 1804.6 1905.5 2006.4
2912 3092 3272 3452 3632
2917 3099 3280 3462 3644
SMITHSONIAN PHYSICAL TABLES
"C "C (Int. 1948) (Int. 1927)
Corresponding Fahrenheit temperatures -7)
2100 2200 2300 2400 2500
2107 2208 2310 241 1 2512
'3812 3992 4172 4352 4532
3825 4007 4189 4372 4554
2600 2700 2800 2900 3000
2613 2715 2816 2918 3020
4712 4892 5072 5252 5432
4736 4919 5102 5285 5468
3100 3200 3300 3400 3500
3122 3223 3325 3428 3530
5612 5792 5972 6152 6332
5651 5834 6018 6202 6386
3600 3700 3800 3900 4Ooo
3632 3735 3837 3940 4043
6512 6692 6872 7052 7232
6570 6754 6939 7124 7309
4100 4200 4300
4146 4249 4353
7412 7592 7772
7495 7681 7867
72
T A B L E 41.-SECONDARY
F I X E D POINTS Temperature "C (Int. 1948)
Temperature of equilibrium between solid carbon dioxide and its vapor. . - 78.5 tp = - 78.5
Co
+ 12.12
)
-- 1 - 6.4
-Co
1 )?
.
Temperature of freezing mercury.. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature of equilibrium between ice, water and its vapor (triple point) ........................................................... Temperature of transition of sodium sulfate decahydrate.. . . . . . . . . . . . Temperature of triple point of benzoic acid.. . . . . . . . . . . . . . . . . . . . . . . , . . Temperature of equilibrium between naphthalene and its vapor.. . . . . . . . .
.
.
t p = 218.0
+ 44.4(:
-:(
- 1) - 19
1)
122.36 218.0
(i-T ... .. . . . . . . . ... .
231.9 305.9
+ 48.8 (i0 - - 1 - 21 )
Temperature of freezing cadmium.. . . . . . . . . . . . . . . . . .. Temperature of freezing lead .... ........... ....... .................. Temperature of equilibrium between mercury and its vapor.. . . . . . . . ,.
.
t p = 356.58
+ 32.38 0.0100
'
Temperaure of freezing tin .................. ................ ........ Temperature of equilibrium between benzophenone and its vapor. . . . . . . .
t p = 305.9
- 38.87
+ 55.552 ("-
(&- 1)'
1) -23.03
PO
.
4-14.0
(*-
1)'
.
Temperature of freezing zinc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature of freezing antimony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature of freezing aluminum . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . ., .. Temperature of freezing copper in a reducing atmosphere . . . . . . . . . . . . . . Temperature of freezing nickel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature of freezing cobalt . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . Temperature of freezing palladium . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . Temperature of freezing platinum . . . . . . . . . . . . . . . . . . ... ... . . . .... . . . . Temperature of freezing rhodium . . . . . . . , , . . . . . . . . . . . . . . . . . . . . . . . Temperature of freezing iridium . . . . . . . . . . . . . . . . . . . . . . . .... .. . .. . Temperature of melting tungsten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
. . .. . .
.
. ..
320.9 327.3 356.58
419.5 630.5 660.1 1083 1453 1492 1552 1769 1%0 2443 3380
T A B L E 42.-CORRESPONDING TEMPERATURES ON T H E INTERNATIONAL T E M P E R A T U R E SCALE OF 1948 A N D R E S U L T S U S I N G W I E N ' S E Q U A T I O N t , "C (Int. 1948)
1063 1500 2000
t".,
"C
1063.0 1500.0 2000.0
T A B L E 43.-CORRECTION
t,
"C
(Int. 1948)
2500 3000 3500
tw,
"C
2500.2 3000.7 3502.1
t,
"C
(Int. 1948)
4500 5000
tw,
"C
4511.3 5021.5
FOR T E M P E R A T U R E O F E M E R G E N T M E R C U R I A L THERMOMETER THREAD
When the temperature of a portion of a thermometer stem with its mercury thread differs much from that of the bulb, a correction is necessary t o the observed temperature unless the instrument has been calibrated for the experimental conditions. This stem correction is proportional t o @ ( T - f ) , where I I is the number of degrees in the exposed stem, j3 the apparent coefficient of expansion of mercury in the glass, T the measured temperature, and t the mean temperature of the exposed stein. For temperatures up t o 1OO"C, the value of j3 is for Jena 16''' or Greiner and Friedrich resistance glass, 0.000159, for Jena 59"', 0.000164, and when of unknown composition it is best to use a value of about 0.000155. The formula requires a knowledge of the temperature of the emergent stem. This may be approximated in one of three ways : (1) by a "fadenthermometer" ; (2) by exploring the temperature distribution of the stem and calculating its mean temperature; and (3) by suspending along the side of, or attaching to, the stem, a single thermometer. SMITHSONIAN PHYSICAL TABLES
73 T A B L E 44.-STEM
CORRECTION FOR CENTIGRADE T H E R M O M E T E R
Values of 0.000155rz(T - t )
10°C 20 30 40 50 60
7
20"
30'
40"
50"
60'
70"
80"
0.02 0.03 0.05 0.06 0.08
0.03 0.06 0.09 0.12 0.16
0.05 0.09 0.14 0.19 0.23
0.06 0.12 0.19 0.25 0.31
0.08 0.16 0.23 0.31 0.39
0.09 0.19 0.28 0.37 0.46
0.11 0.22 0.33 0.43 0.54
0.12 0.25 0.37 0.50 0.62
0.09
0.19 0.22 0.25 0.28 0.31
0.28 .~. 0.33 0.37 0.42 0.46
0.37 .. 0.43 0.50 0.56 0.62
0.46 0.54 0.62 0.70 0.78
0.56 0.65 0.74 0.84 0.93
0.65
0.74 0.87 0.99 1.12 1.24
0.i 1
70 80
0.12 0.14 0.16
90 100 22
(T -t)
,10"
n
0.76
0.87 0.98 1.08
Taken from Smithsonian Meteorological Tables.
T A B L E 45.-REDUCTION
O F GAS T H E R M O M E T E R S T O T H E R M O D Y N A M I C SCALE
The final standard scale is Kelvin's thermodynamic scale, independent of the properties of any substance, a scale resulting from the use of a gas thermometer using a perfect gas. A discussion of this is given by Buckingham,2** "The thermodynamic correction of the centigrade constant-pressure scale at the given temperature is very nearly proportional to the constant pressure a t which the gas is kept" and "the thermodynamic correction to the centigrade constant-volume scale is approximately proportional to the initial pressure a t the ice point." These two rules are very convenient, since from the corrections for any one pressure, one can calculate approximately those for the same gas a t any other pressure. The highest temperature possible is limited by the container for the gas. Day and Sosman carried a platinum-rhodium gas thermometer up to the melting point of palladium. For most work, however, the region of the gas thermometer should be considered as ending at about 1000°C (1273°K). NOTE:All corrections in the following table are to be added a/.qcbruica//y.
273.16"K (ice point) Constant vol., po = 100 cm, t o = 0°C
Constant pressure = 100 cm Tzmp.
-
-
.++
C
240 200 100 50 25 50
$ 1; + 200
+ 450 + 1000 + 1500 22a
I -
He
+0.13 .04 .012 - ,003 - .003 - ,003 .007 .01
+ +
+ +
++
0:: -
H N + 1.0 + .26 + .03 + 0.40 + .02 + .12 .020 - .003
- ,003 - .003 .01 .02 0.04
+ ++
-
- ,025 - .017 .04 .I1
+ + + + 1.7.5
+ 3.
Bull. Nat. Bur. Standards, vol. 8, p. 239, 1912.
SMITHSONIAN PHYSICAL TABLES
I
He
H
+ 0.18 + .01 + .06 .ooo + .010 .OOO + .004 .OOO .ooo .OOO .ooo + 0.02
,000
+ .ooo .OOO 0.00 -
.000
N
0.06 .02 - .006 - .006 - .004 .Ol .04 .2 .7 1.3
+ +
+ .001 + + .002 + + 0.01 + + +
74 T A B L E 46.-SOME
O L D T H E R M O E L E C T R I C T E M P E R A T U R E SCALES
*
Comparlsons
Prior to the adoption of the 1927 International Temperature Scale, the Pt-PtlO% Rh thermocouple was almost universally used for scales 450" to llOO'C, and defining equations were quadratic or cubic depending upon the number of calibration points. The scale based on the work of Holborn and Day was calibrated at the freezing point of Zn (419.0°C), Sb (630.6"C), and Cu (1O84.l0C), and a quadratic equation, E = a vt ct', for interpolation. This was almost universally used from 1900-1909. Work of Waidner. Burgess, 1909, and Day, Sosman, 1910-1912, necessitated a readjustment. In 1912 the Bureau of Standards redefined its scale, assigning values determined with the resistance thermometer to the Zn and Sb points, while the freezing point of Cu was taken as 1083.0"C. This 1912 scale, used from 1912-1916, will be called the Zn, Sb, Cu temperature scale. A scale proposed by Sosman and revised by Adams was realized by using a standard reference table, giving the average t-emf relation for thermocouple used by Day and Sosman. A deviation curve, determined by ally other couple by calibration a t several points would be plotted relating the difference between observed emf and the emf from the reference table against the obs. emf of the couple. This scale, although very convenient, is not completely defined and no comparison is made here. I n 1916, the Physikalische-Technische Reichsanstalt adopted a scale with the couple calibrated at the Sd point (320.9"C), Sb (630"C), Au (1063"C), and P d (1557°C). No comparison will be made here. A scale adopted by the Bureau of Standards in 1916 was defined by calibration a t the Zn and Al points with a Cu point (1083.0"C). This was used from 1916-1926 and is here designated the Zn, At, Cu scale. The scale adopted by the P.-T.R. and the Bureau of Standards in 1924 was calibrated a t Zn and Sb points (determined by resistance thermometer), the Ag point (960.5"C), and the Au point (1063.0"C). I t will be designated the Zn, Sb, Ag, Au scale. The 1927 7th Annual Conference of Weights and Measures (31 nqtions) unanimously adopted what is between 660" and 1063°C the Zn, Sb, Ag, Cu scale with the Zn point omitted. The table below shows a comparison of the various scales. The following values for the freezing points were used: Au 1063.0 C Zn419.47"C A1 659.23"C Cu (reducing atm') 1083.0"C Ag 960.5"C Sb 630.52"C
+ +
Temperature differences between 1927 I.T.S. and various older scales "C
600
1.T.S.ZnShCu
1.T.S.- 1.T.S.ZnAl- ZnSbCu Ag.\u
--".08 O.00 700 - .16 - .08 750 - .24 - .16 800 - 28 - .20 850 - 2 9 - 2 2
--".04 - .08 - .09 - .08 - .C6
"C
1.T.S.- 1.T.S.- 1.T.S.ZnSh- ZnAl- ZnShCU Ag.\u Cu
900 --".26 -".21' --".03 950 - .23 - .I8 - .01 960.5 - .21 - .16 .OO 1000 - .15 - .12 .01
"C
1.T.S.ZnSb-
CU
1.T.S.- 1.T.S.ZnAl- ZnShAgAu CU
1050 --".04 -".03 ".OO 1063 - .01 .OO .OO 1083 .04 .03 - .01 1100 .08 .08 - .03
+ +
+ +
R E F E R E N C E T A B L E S FOR T H E R M O C O U P L E S =
The emf developed by thermocouples of the same materials, even very carefully made, differ slightly for the same temperature. It has been found convenient to compare the emf of a couple being calibrated with that of a standard thermocouple of the same materials. If the differences in emf's between the standard and the calibrated couple be plotted against the temperature, the temperature for an observed emf can be read very accurately. Reference tables for three types of thermocouslcs follow. 9 l'hese values are now superseded hf the introduction of the 1948 International Temperature Scale and are given for reference only. 29 Taken from Nat. Bur. Standards Res. Papers RP 1080. RP 767, and RP 530.
SMITHSONIAN PHYSICAL TABLES
T A B L E 47.-REFERENCE
m
5
7
(Emf's are expressed in microvolts and temperatures in "C. Cold junctions at 0°C)
I
H5 -
E micro-
I 0
volts
0
1000
2000
<
0 100 200 300 400
0 17.7 34.4 50.2 65.4
146.9 159.4 171.7 183.8 195.8
264.9 373.6 477.6 276.1 384.1 487.8 287.2 394.6 498.0 298.2 405.1 508.1 309.2 415.6 518.2
500 600 700 800 900
80.0 94.1 107.8 121.7 134.1
E
0
?
2 m
T A B L E FOR P t T O Pt-10 P E R C E N T Rh T H E R M O C O U P L E
1000
3000
207.5 320.1 426.0 219.2 330.9 436.4 230.8 341.6 446.7 242.3 352.3 457.0 253.6 363.0 467.3
146.9 264.9
373.6
477.6
4000
7000
8000
9000
10,000
11,000
12,000
13,000
14,000
15,000
16,000
17,000
578.0 675.2 587.9 684.8 597.7 694.3 607.5 703.8 617.3 713.3
5000
769.7 779.0 788.2 797.4 806.6
861.2 870.2 879.2 888.2 897.2
950.2 959.0 ,967.8 976.5 985.2
1037.0 1045.6 1054.1 1062.2 1071.1
1121.8 1130.2 1138.6 1147.0 1155.3
1205.4 1213.7 1222.1 1230.4 1238.7
1288.5 1296.8 1305.1 1313.5 1321.8
1371.8 1380.2 1388.5 1396.9 1405.2
1455.4 1463.8 1472.2 1480.6 1489.0
1539.5 1547.9 1556.4 1564.8 1573.3
1624.0 1632.5 1641.1 1649.6 1658.1
528.3 627.0 722.8 538.3 636.7 732.2 548.3 646.4 741.7 558.2 656.0 751.1 568.1 665.6 760.4
815.8 824.9 834.0 843.1 852.2
906.1 914.9 923.8 932.6 941.4
993.9 1002.6 1011.2 1019.8 1028.4
1079.6 1088.1 1096.6 1105.0 1113.4
1163.7 1247.0 1330.1 ,1172.0 1255.3 1338.4 1180.4 1263.6 1346.8 1188.7 1271.9 1355.1 1197.1 1280.2 1363.5
1413.6 1421.9 1430.3 1438.6 1447.0
1497.4 1505.8 1514.2 1522.6 1531.0
1581.7 1590.2 1598.6 1607.0 1615.5
1666.6 1675.1 1683.6 1692.1 1700.6
578.0
861.2
950.2
1037.0 1121.8 1205.4
1371.8 1455.4
1539.5
1624.0
1709.1
675.2
6000
769.7
T A B L E 48.-REFERENCE
1288.5
T A B L E FOR P t T O Pt-10 P E R C E N T Rh T H E R M O C O U P L E
(Emf's are expressed in microvolts and temperatures in "F. Cold junctions at 32°F) E
microVOlLS
0
1000
2000
3000
4000
5000
6000
10.000
11.000
12.000
13,000
14,000
15,000
16,000
17,000
0 100 200 300
400
32.0 63.9 93.9 122.4 149.7
296.3 318.8 340.9 362.7 384.3
508.9 529.0 549.0 568.9 588.7
704.5 723.5 742.4 761.2 780.0
891.7 910.1 928.4 946.6 964.7
1072.3 1090.0 1107.7 1125.4 1143.0
1247.4 1264.6 1281.8 1290.0 1316.1
1417.4 1434.1 1450.7 1467.3 1483.9
7000
1582.2 1598.4 1614.6 1630.7 1646.8
8000
1742.5 1758.3 1774.0 1789.8 1805.4
1898.8 1914.2 1929.6 1945.0 1960.3
2051.3 2066.4 2081.5 2096.6 2111.7
2201.9 2216.8 2231.7 2246.7 2261.7
2351.5 2366.4 2381.4 23%.4 2411.4
2501.4 2516.5 2531.6 2546.6 2561.6
2652.1 2667.1 2682.2 2697.3 2712.5
2803.5 2818.7 2833.9 2849.1 2864.3
2955.6 2970.9 2986.2 3001.6 3016.9
500 600 700 800 900 lo00
176.0 201.4 225.9 249.9 273.3 296.3
405.6 426.6 447.5 468.2 488.6
608.3 627.6 646.9 666.2 685.4
798.8 817.5 836.1 854.7 873.2
982.8 1000.8 1018.8 1036.7 1054.5
1160.5 1178.0 1195.5 1212.9 1230.2
1333.1 1350.0 1366.9 1383.8 1400.6
1500.4 1516.9 1533.3 1549.6 1565.9
1662.8 1678.8 1694.8 1710.7 1726.6
1821.1 1836.7 1852.3 1867.8 1883.3
1975.6 1990.8 2006.0 2021.1 2036.2
2126.7 2141.8 2156.9 2171.9 2186.9
2276.6 2291.5 2306.5 2321.5 2336.5
2426.4 2441.4 2456.4 2471.4 2486.4
2576.6 2591.7 2606.8 2621.9 2637.0
2727.6 2742.8 2758.0 2773.1 2788.3
2879.5 2894.8 2910.0 2925.2 2940.4
3032.2 3047.6 3063.0 3078.4 3093.8
508.9
704.5
891.7 1072.3 1247.4 1417.4 1582.2 1742.5 1898.8 2051.3 2201.9 2351.5 2501.4 2652.1 2803.5 2955.6 3109.2
9000
76 T A B L E 49.-CORRESPONDING V A L U E S O F T E M P E R A T U R E A N D ELECTROM O T I V E F O R C E F O R IRON-CONSTANTAN T H E R M O C O U P L E S
(Reference junctions at 0°C)
T$rnp.
C
Electromotive force mv
C
C
Electromotive force mv
10 20 30 40
.oo
Electro. motive force mv
.52 1.05 1.58 2.12
400 410 420 430 440
22.06 22.61 23.16 23.71 24.26
800 810 820 830 840
45.68 46.33 46.99 47.65 48.30
50 60 70 80 90
2.66 3.20 3.75 4.30 4.85
450 460 470 480 490
24.81 25.36 25.91 26.46 27.01
850 860 870 880 890
48.96 49.62 50.28 50.94 51.59
100 110 120 130 140
5.40 5.95 6.51 7.07 7.63
500 510 520 530 540
27.57 28.13 28.69 29.25 29.81
900 910 920 930 940
52.22 52.84 53.43 54.02 54.61
150 160 170 180 190
8.19 8.75 9.31 9.87 10.43
550 560 570 580 590
30.38 30.95 31.52 32.10 32,68
950 960 970 980 990
55.21 55.80 56.39 56.99 57.59
1000
58.19
Ttmp.
C
0
Electromotive force mv
Tzmmr,.
- 200 - 190 - 180 - 170 - 160
- - 8.27 8.02 - 7.75 - 7.46 - 7.14
200 210 220 230 240
10.99 11.55 12.11 12.67 13.23
600 610 620 630 640
33.26 33.85 34.44 35.02 35.62
- 150 - 140 - 130 - 120
- 6.80 - 6.44 - 6.06 - 5.66 - 5.25 - 4.82 - 4.38 - 3.93 - 3.47 - 3.00
250 260 270 280 290
13.79 14.35 14.90 15.45 16.00
650 660 670 680 690
36.22 36.82 37.43 38.04 38.66
300 310 320 330 340
16.55 17.11 17.66 18.21 18.76
700 710 720 730 740
39.28 39.90 40.53 41.16 41.80
50 40 30 20 10
- 2.52 - 2.03 1.53 - 1.03 - 0.52
350 360 370 380 390
19.31 19.86 20.41 20.96 21.51
750 760 770 780 790
42.45 43.09 43.74 44.39 45.04
0
.oo
400
22.06
800
45.68
- 110
- 100 - 90 - 80 - 70 - 60
--
-
SMITHSONIAN PHYSICAL TABLES
Teyp.
77 T A B L E 50.-CORRESPONDING VALUES OF T E M P E R A T U R E A N D ELECTROM O T I V E FORCE FOR IRON-CONSTANTAN THERMOCOUPLES
(Reference junctions at 32°F) Electromotive force mv
Tenill. "F
F
Electromotive force mv
0 - .92 10 - .63 20 - .35 30 - .06 .23 40
500 510 520 530 540
14.35 14.65 14.96 15.27 15.57
1000 1010 1020 1030 1040
29.69 30.00 30.32 30.63 30.95
1500 1510 1520 1530 1540
46.70 47.06 47.43 47.79 48.16
50 60 70 80 90
.52 .82 1.11 1.41 1.70
550 560 570 580 590
15.88 16.19 16.49 16.80 17.11
1050 1060 1070 1080 1090
31.27 31.59 31.91 32.23 32.55
1550 1560 1570 1580 1590
48.52 48.89 49.25 49.62 49.98
100 110 120 130 140
2.00 2.30 2.60 2.90 3.29
600 610 620 630 640
17.42 17.72 18.03 18.33 18.64
1100 1110 1123 1130 1140
32.87 33.19 33.52 33.85 34.17
1600 1610 1620 1630 1640
50.35 50.71 51.08 51.45 51.81
150 160 170 180 190
3.50 3.81 4.11 4.42 4.72
650 660 67C 680 690
18.94 19.2s 19.55 19.86 20.17
1150 1160 1170 1180 1190
34.50 34.83 35.16 35.48 35.82
1650 1670 1680 1690
52.17 52.51 52.84 53.17 53.50
- 7.87 - 7.75 - 7.55 - 7.38 - 7.20
200 210 220 230 240
5.03 5.34 5.64 5.95 6.26
700 710 720 730 740
20.47 20.78 21.08 21.39 21.69
1200 1210 1220 1230 1240
36.15 36.48 36.82 37.16 37.50
1700 1710 1720 1730 1740
53.83 54.16 54.48 54.81 55.14
- 7.02
- 6.63 - 6.43 - 6.22
250 260 270 280 290
6.57 628 7.19 7.50 7.81
750 760 770 780 790
22.00 22.30 22.61 22.91 23.22
1250 1260 1270 1280 1290
37.84 38.18 38.52 38.86 39.21
1750 1760 1770 1780 1790
55.47 55.80 56.13 56.46 56.79
- 200 - 190 - 180 - 170 - 160
- 6.01 - 5.79 - 5.57 - 5.34 - 5.11
300 310 320 330 340
8.12 8.43 8.75 9.06 9.37
800 810 820 830 840
23.52 23.83 24.13 24.44 24.74
1300 1310 1320 1330 1340
39.55 39.89 40.24 40.59 40.94
1800
57.12
- 150 - 140 - 130 - 120 - 110
- 4.87 - 4.63 - 4.38 - 4.13 - 3.88
350 360 370 380 390
9.68 10.00 10.31 10.62 10.93
850 860 870 880 890
25.05 25.36 25.66 25.97 26.28
1350 1360 1370 1380 1390
41.30 41.65 42.01 42.36 42.72
- 100 - 90 - 80 - 70 - 60
- 3.63 - 3.37 - 3.1 1 - 2.85 - 2.58
400 410 420 430 440
11.24 11.56 11.87 12.18 12.49
900 910 920 933 940
26.58 26.89 27.20 27.51 27.82
1400 1410 1420 1430 1440
43.08 43.44 43.80 44.16 44.52
- 50 - 40 - 30 - 20 - 10
- 2.31 - 2.04 - 1.76 - 1.48 - 1.20
450 460 470 480 490
12.80 13.11 13.42 13.73 14.04
950 960 970 980 990
28.13 28.44 28.75 29.06 29.38
1450 1460 1470 1480 1490
44.88 45.24 45.61 45.97 46.33
0
- 92
500
14.35
1000
29.69
1500
46.70
Elecyromotive force mv
TSmp.
F
Temp.
"F
+
- 300
- 290 - 280 - 270 - 260 - 250 - 240 - 230 - 220 - 210
- 6.83
SMITHSONIAN PHYSICAL TABLES
Electro. motive force mv
Temp.
"F
Electromotive force mv
Teyi.
1660
78 T A B L E 5 1 . 4 T A N D A R D F A H R E N H E I T T A B L E FOR C H R O M E L - A L U M E L T H E R M O C O U P LE S Electromotive force in millivolts (reference junction at 32'F)
Tynp.
F
0
10
20
60
70
80
90
100'
2.43 4.74 6.98 9.20 11.47
.62 2.89 5.19 7.42 9.66 11.93
.84 3.12 5.42 7.64 9.88 12.16
1.06 3.36 5.64 7.87 10.11 12.39
1.29 3.59 5.87 8.09 10.33 12.62
1.52 3.82 6.09 8.31 10.56 12.85
13.55 15.89 18.23 20.60 22.97
13.78 16.12 18.47 20.84 23.21
14.01 16.36 18.71 21.08 23.44
14.24 16.59 18.94 21.31 23.68
14.48 16.83 19.18 21.55 23.92
14.71 17.06 19.42 21.79 24.15
14.94 17.30 1.9.65 22.02 24.39
15.18 17.53 19.89 22.26 24.63
25.10 27.46 29.80 32.10 34.39
25.34 27.69 30.03 32.33 34.61
25.58 27.92 32.56 34.84
25.81 28.15 30.49 32.79 35.07
26.05 28.38 30.72 33.02 35.29
26.28 28.62 30.95 33.25 35.52
26.52 28.86 31.18 33.48 35.74
26.76 29.10 31.41 33.70 35.97
26.99 29.34 31.64 33.93 36.19
36.41 38.65 40.83 42.99 45.11
36.64 38.87 41.05 43.21 45.32
36.86 39.09 41.27 43.42 45.53
37.09 39.31 41.48 43.63 45.74
37.31 39.53 41.70 43.84 45.95
37.54 39.75 41.91 44.05 46.16
37.76 39.96 42.13 44.27 46.37
37.99 40.18 42.34 44.48 46.58
38.21 40.40 42.56 44.69 46.79
38.43 40.62 42.78 44.90 47.00
47.21 49.25 51.25 53.20
47.41 49.46 51.45 53.39
47.62 49.66 51.65 53.58
47.83 49.86 51.84 53.78
48.03 50.06 52.04 53.97
48.24 50.26 52.23 54.16
48.44 50.46 52.43 54.35
48.65 50.66 52.62 54.54
48.85 50.86 52.81 54.73
49.05 51.06 53.01 54.92
- .68
600 700 800 1000
12.85 15.19 17.53 19.89 22.26
13.08 15.42 17.76 20.13 22.50
13.31 15.65 18.00 20.37 22.73
1100 1200 1300 1400 1500
24.63 26.99 29.34 31.64 33.93
24.86 27.22 29.57 31.87 34.16
1600 1700 1800 1900 2000
36.19 38.43 40.62 42.78 44.90
2100 2200 2300 2400 2500
47.00 49.05 51.06 53.01 54.92
1.52 3.82 6.09 8.31 10.56
40
.40 2.66 4.97 7.20 9.43 11.70
0 100 200 300 400 500
900
*
30
- .47 - .26 - .04 1.74 1.97 2.20 4.05 4.28 4.51 6.31 6.53 6.75 8.53 8.76 8.98 10.79 11.02 11.25
' Hoskins Thermocouple.
SMITHSONfAN PHYSICAL TABLES
+ .18
30:26
50
79 TABLES 52-57.-THE BLACKBODY AND ITS RADIANT ENERGY T A B L E 5 2 . 4 Y M B O L S A N D D E F I N I N G EXPRESSIONS FOR R A D I A N T ENERGY m
Radiant energy is energy traveling in the form of electromagnetic waves. It is measured in units of energy such as ergs, joules, calories, and kilowatt hours. Some units, symbols, and abbreviations used in discussing radiant energy are as follows : Designation
Radiant energy
.......
Spectral radiant energy. Radiant energy density. Radiant flux
Symbol and defining expression
......
dU U,= -&
......
u=-
dU dV dU
.......... +(P)= 7
..
Radiant flux density. Radiant intensity of a source ..............
Unit
U
W=-- d+ dA J=*
dw
dJ Spectral radiant intensity JA= dx Radiant flux density of a source per unit solid dW angle ............... B, (N)=
erg/cm’ watt, erg/sec watt/cma watt/steradian
Proposed term 01.
Radiant energy Spectral radiant energy Radiant energy density Radiant flux (radiance *) Radiant flux density (radiancy *) Radiant intensity
-
watt/steradian
Spectral radiant intensity
do
watt/(steradian cm’)
Steradiancy *
Radiant intensity of a source per unit area.. Radiant flux per unit area
B = - dJ Steradiancy * watt/(steradian cm’) dA Irradiancy ............... E = - dd+A ...... The standard radiator is the blackbody, which may be defined as a body that absorbs all the radiation that falls upon it, i.e., it neither reflects nor transmits any of the incident radiation. From this simple definition and some very plausible assumptions it can be shown that the blackbody radiates more energy than any other temperature radiator when both are at the same temperature. The total amount of energy (i.e., for all wavelengths) radiated by a blackbody depends upon the temperature raised to the fourth power and a constant u that had to be measured: W = uT4 If a blackbody is radiating to another blackbody it will at the same time receive radiation from the second blackbody and, under the proper geometrical conditions, the net radiation lost by the first blackbody is W = U ( Ti4- Ta‘) The spectral distribution of this radiation is given by the Planck equation : J X5 cAd/[exp(cr/AT) - 11 t For values of the product AT less than 3OOOp deg, the Wien equation J X= cAd/[exp (cr/AT)l gives values that are correct to better than 1 percent. The values of a number of the radiation constants have been selected from Table 26 and are given in Table 53. AAI the blackbody calculations given were made with these constants. Some calculated results for the total radiation W for a series of temperatures and of JX for a range of temperatures and for wavelengths have been calculated and are given in Tables 54-56. These terms apply only to a source. The term “radiance” a . Rev. Sci. Instr., vol. 7. p. 322, 1936. is not recommended as a substitute for radiant flux; however, if a single term is desired to express the radiant flux from a source, the word “radiance” is suggested as the most logical. t See footnote 5a. p. 7. ad For a more extensive list of values of J , reference should be made to two papers by Parry Moon: Journ. Math. and Phys., vol. 16, p. 133. 1937; Publ. Electr. Eng., Massachusetts Institute of Technology, 1947. SMITHSONIAN PHYSICAL TABLES
SO
T A B L E BS.-RADIATION
CONSTANTS
Velocity of light.. ............................ Planck's constant ............................. Boltzmann's constant ......................... Stefan-Boltzmann constant * .................. Wien's displacement law.. ..................... The principal corollaries are : L
c = 2.99776 x 10" cm sec-' h = 6.6242 x erg-sec k = 1.3805 X lo-'' erg deg-' u = 5.673 X lo-" erg cm" deg-' sec-' = Ac1A4F(AT) T =6
Jm -AT6 - 'I
The first corollary is sometimes given as the Wien's displacement law, and 6 as the displacement constant. Wien displacement constant.. .................. 6 = 0.2897 cm deg First radiation constant t All lengths in cm, d A = 1 cm.. ............. c1 = 3.740 X erg sec-' cm2 Area cm', A in p, d A = 0 . 0 1 ~............... . CI = 3.740 >( 10' erg sec" cm2 Second radiation constant. ..................... cz = 1.4380 cm deg The unit of energy chosen for the above values is the erg. Any other unit of energy (or power) may be used if the proper conversion factor is used (Table 7). Values of cz used at different times.-This second radiation constant has been determined many times in the last 40 years. Shown below are the values used at different times. [ A new determination of the value of cz by G. A. W. Rutgers (Physica, vol. 15, p. 985, 1949) gives two values : 14325. & 20 and 14310. & 20 p deg.1 Date
1911.. .................................. 1915.. .................................. 1917.................................... 1922.................................... 1925.................................... 1936.................................... 1944.................................... 1949.. .................................. For 27r solid angle.
National Bureau of Standards
14.500~"K 14350 14320g 143206 14320 I/ 14320 14380
Nela Park
14500p "K 14460 14350 14350 14320 14320 14320
-
i For the general case, c1 may be written in the following symbolic form:
(wavelength unit)" x power unit area x wavelength interval x solid angle this case 5 . This form shows that the value of the numeric depends upon the several units used-in If I , is the normal intensity, i.e., per unit solid angle perpendicular to the surface, sJAo gives the radia2ion per 2 8 solid angle. T h e energy radiated within a unit solid angle around the normal, is 0.92 Jo. T h e above values are for a plane blackbody; for a spherical blackbody the radiation for 2a solid angle equals 2aJ0. For calculations the use of the radiation constants u and c2 a s given follows directly and causes but little trouhle. T h e numeric for c2 must be expressed in the unit of wavelength times the absolute temperature. If the wavelength is expressed in 11 the numeric hecomes 14380. When Planck's equation is used for calculations, it may be written as follows for blackbody of area A: J,dX = ( A c i P / [exp ( c 2 / X T ) - 1I)dX where dX is the wavelength interval for which the radiation is to he calculated. T h e first value of c1 given in the table is for all dimensions in centimeters-a condition almost never met in practice. T h e second value is for the wavelength expressed in microns and d X = 0.01fl. If this second value of c2 be used in calculation with Planck's equation and summed step by step, the results will be the total energy per second, per 2a solid angle, per unit area for the wavelength interval covered X expressed in u. t I . , G Priest: in January 1932, used cp= 14350 in his work on color temperature. I J. F. Skogland, in 1929, used c t = 14330 in his tables of spectral energy distrihution of a blackbody. 11 D. U. Judd, in 1933, used cI= 14350 in his calculations related to the T.C.I.standard observer. c1 = numeric
SYITHSONIAN PHYSICAL TABLES
T A B L E 54.-RADIATION IN ERGS ( W X 10") A N D GRAM-CALORIES ( W ' X 10"') P E R CM' P E R SEC, F O R 2 a S O L I D ANGLE, FROM A P E R F E C T R A D I A T O R A T t o F R O M -27OoC T O +56"C A N D FOR T F R O M 300°K T O 5500°K I Q
i5
B
r D -4 D W r
rn
v)
Tzmp.
C
-270 -250 -200 -190 -180 -160 -150 -140 -130 -120 -110 -100 -90 - 80 - 70 - 60 - 50 - 40 - 30 - 20 - 10 - 8 - 6 - 4 - 2 0 2
-
u = 5.672
erg cm-2 sec-1
W
5.656 1.632 1.625 2.713 4.272 9.301 1.305 1.783 2.382 3.121 4.020 5.100 6.383 7.896 9.662 1.171 1.407 1.676 1.983 2.330 2.720 2.804 2.890 2.977 3.067 3.158 3.252
n
-3
1 3 3 3 3 4 4 4
4
4 4 4 4 4
5
5 5
5
5 5 5
5 5
5 5 5
Energy radiated from values given in the table.
cal cm-z sec-1
5r-2 1.351 3.899 3.883 6.482 1.021 2.222 3.118 4.261 5.693 7.458 9.605 1.219 1.525 1.887 2.309 2.798 3.361 4.006 4.738 5.567 6.500 6.700 6.904 7.114 7.327 7.546 7.769
OO( "K
ir
-10 -7 -5 -5 -4 -4 -4 -4 -4 -4 -4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3
Temp.
x lo-'
erg cmP deg-4 sec-'
erg cm-2 sec-1
"C
57----- n
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
3.347 3.445 3.545 3.646 3.751 3.857 3.965 4.076 4.189 4.305 4.423 4.543 4.666 4.791 4.919 5.049 5.182 5.317 5.455 5.596 5.739 5.885 6.034 6.186 6.341 6.498 6.658
44 46 48 50 52 54 56
5 5 5 5
5
5 5 5
5
5
5
5 5 5 5 5 5 5 5 5 5 5
5
5
5
5 5
be obtained from the value for this temp rature
cal cm-2 sec-*
erg cm-2 sec-1
7.998 8.231 8.470 8.713 8.962 9.216 9.475 9.740 1.001 1.029 1.057 1.086 1.115 1.145 1.175 1.206 1.238 1.271 1.304 1.337 1.371 1.406 1.442 1.478 1.515 1.553 1.591 )J
cal cm-2 sec-'
Temp.
W' ---7
"K
-3 -3 -3 -3 -3 -3 -3 -3 -2 -2 -2 -2 -2 -2 -2 -2 -2 --L
~~
300* 4.5944 373.16 1.0998 400 1.4520 500 3.5450 600 7.3509 700 1.3619 800 2.3233 900 3.7214 1 00 5.6720 ._.. 1500 2.8715 2000 9.0752 2500 2.2156 3500 8.5115 ~... 4500 2.3259 5500 5.1902
5 6 6 6
1.0978 2.6280 3.4700 8.4707 1.7565 - ~. 3.2542 5.5515 8.8922 1.3553 6.8614 2.1685 5.2942 2.0338 5.5577 1.2402
6
7 7 7 7 8 8 9 9 10 10
-2 -2 -2 -2
-1
-1 -1 -1 0 0
1
1 2 2 3
,.
-2 -2 -2 -2 -2 -2 -2 -2 -2
multiplying it
)J
10'.
Likewi e
01
th :I
p ratu
!:
th t are 10 jmes the
T A B L E 55.-CALCULATED S P E CTRAL I N T E N S I T I E S JA FOR A RANGE OF W A V E L E N G T H S FOR A BLACKBODY O F U N I T A R E A FOR A RANGE OF T E M P E R A T U R E S FROM 50°K T O 25,000°K*
82
3740 micron' watts These values have been calculated for c1= . cz = 14380~: deg; dA = cm' dh 2n solid angles ' O.lp, /A = tabular JAx 10" watts for cm2 for 2n solid angle per 0.1~. 50"
x
*
75"
-
150-
1000
2000
4.675 2.6529 4.133 4.186 3.5716
-122 - 81 - 61 - 49 - 41
2.0145 1.5131 2.7124 1.8865 2.6982
-80 -53 4 0 -32 -27
1.3224 1.1427 6.949 4.005 2.344
-59 -39 -30 -24 -20
8.679 8.634 1.7803 8.501 2.0377
-39 -26 -19 -16 -13
3.5 4.0 5.0 6.0 7.0
1.4652 2.1714 1.2515 7.326 3.1917
1.1519 5.564 2.6566 6.367 2.8304
-23 -21 -17 -15 -13
1.0214 8.906 3.8701 1.8773 2.6652
-17 -16 -13 -11 -10
9.057 1.4255 5.638 5.534 2.5096
-12 -10
8.0 9.0 10.0 12.0 14.0
2.7831 8.386 1.2094 5.867 8.3288
4.455 3.5449 1.7620 1.7294 7.843
-12 -11 -10
1.7823 7.288 2.1269 9.391 2.4062
16.0 18.0 20.0 25.0 30.0
5.570 2.2775 6.647 3.8640 1.0564
40.0 50.0 75.0 100.0
2.7563 3.8137 3.4809 2.2338
- 35 - 31 - 25 - 22 - 19 - 17 - 16 - 14 - 13 - 12 - 11 - 10 - 10 - 9 - 8 - 8 - 8 - 8 - 8
273.16"
2.2284 4.682 8.022 1.7882 2.5801
3.0513 2.6437 1.3255 6.445
n
JA
5.132 2.8227 4.329 2.7422 3.6847
3.5 4.0 5.0 6.0 7.0
2.0910 7.029 3.2026 7.443 1.2065
8.0 9.0 10.0 12.0 14.0
1.5856 1.8307 1.9447 1.8931 1.6573
16.0 18.0 20.0 25.0 30.0
1.3798 1.1229 9.057 5.309 3.2185
40.0 50.0 75.0 100.0
1.3385 6.414 1.5488 5.398
- 20 - 13 - 10 - 8 - 7 - 6 - 6 - 5 - 5 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -- 4 - 5 - 5 - 5
-
-8 - 8 -7 -7 -7 -7 -7 -7
4.458 6.716 8.820 1.2204 1.2857 1.0313 7.148 2.7160 1.1788
5 6 6 7
For reference. see footnote 23.
SMITHSONIAN PHYSICAL TABLES
JA
6.870 3.4290 5.009 7.741 4.061
5.698 6.520 4.562 1.8043 1.7710
-18 -12
8.031 2.2819 8.215 1.6321 2.3657
-6
-5 -5 -4 -4
2.3911 5.383 7.825 9.085
2.8600 3.0957 3.1245 2.8201 2,342.5
-4 -4 -4 -4 -4
9.310 8.875 8.102 6.312 4.736
1.8770 1.4838 1.1703 6.600 3.9044 1.5780 7.442 1.7613 6.081 I).
-9
-7 -6
-4
-4 -4 -5 -5
-5 -6 -6 -7
-9
-9 -8 -8 -7 - 7
-7 - 7
-6
-6 -6 -7 -7 -7
373.16'
300'
x 1.0 1.5 2.0 2.5 3.0
-9 -9 -8
n -28 -19 -14 -11 -10
'A
A '
A '
1.0 1.5 2.0 2.5 3.0
1.1772 .- _ _
3.5255 2.6366 1.9919 1.0432 5.890 2.2537 1.0306 2.3463 7.954
74.
(contirtued)
n -14
-9 -7 -6 -5 -4 -.4 -4
-4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -5 -5 -5 -6 -7
7.131 1.4984 2.5671 5.100 7.393 8.937 9.674 9.763 8.458 6.571 3.6674 2.0625 6.084 2.3256
2.2235 7.503 2.8499 1.2384 6.007
-9 -8 -7 -7 -6 -6 -6 -6 -6 -6
-6 -6 -6 -6 -6 -7 -
7
* 500'
JA
1.2094 2.3203 6.647 3.8640 1.0564
It
-9 -6
-5 -4 -3
A'
1.4597 5.667 7.302 2.6287 5.223
-7 -5 -4
-3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -4 -4 -4 -4 -5 -5
-3 -3 -3 -3
6.007 4.748 3.7449 2.3601 1.5319
7.085 5.021 3.6384 1.7735 9.570
-4 -4
-4
1.0272 7.103 5.049 2.3814 1.2584
6
-7 -7
600"
3.2227 2.7040 2.2338 1.5050 1.0224
-
-5 -6 -6
7.570 9.152 9.9983 9.024 7.496
-5 -5 -6
-5 -5 -5 -5 -5
7.255 3.7257 9.800 3.5536
-3 -3 -3 -3
3.4705 1.5393 3.3726 1.1225
-6 -5 -5 -5 -5
4.032 3.7137 3.3001 2.2874 1.5411
-3
-4 -5
- 6
1.4265 2.1492 2.8224 3.7662 4.115
1.9230 2.7563 3.8137 4.018 3.7175
-3
-9 -8 -7
8.529 5.703 6.806 3.0050 7.701
4.451 1.9460 4.189 1.3811
-3 -3
-6 -6
-
T A B L E 55.-CALCULATED S P E C T R A L INTENSlTllES JA FOR A RANGE OF W A V E , L E N G T H S FOR A BLACKBODY O F U N I T A R E A FOR A RANGE O F T E M P E R A T U R E S F R O M 50°K TO 25,000"K (continued) 800"
A .10 20 .30 .40 .45
.so
.55 .60 .65 .70
A'
3.2241 1.0851 1.4647 1.1129 9.103
2.9182 4.759 4.692 3.1506 1.5675
.90 1.oo 1.50
6.1514 1.9924 1.3423 5.840 3.0769
2.00 2.50 3.00 4.00 5.00
1.4607 2.8902 3.8565 4.129 3.3793
.75 .80
10.00 50.00 100.00
JA
1.3224 6.949 2.3444 8.906 2.6834
-54 -2 5 -15 -1 1 -9
3.3883 1.1123 6.9122 3.5633 5.517
10 9 8 7
3.8701 3.2828 1.8773 7.950 2.6652
-
8 7 6 6 5
4.671 2.5627 1.0193 3.1748 8.178
-
6 6 5 5 3
7.475 1.7823 7.288 2.1269 3.3803
-
5 4 4 3 2
1.8135 3.5650 1.0450 2.3367 1.6712
-
-2
- 32 - 20 - 14 - 13
- 11
-
.10 20 .30 .40 .45
- 1
-
1:2204 1.2857 1.0313 7.148
-1 -1 -2
2.9286 3.1995 2.8888 1.9221 1.1984
-
3 5 6
1.1643 3.5918 2.4184
-2 -5 - 6
1.6158 4.419 2.9379
-
--7.429 2.7665 1.8994
7.543 5.249 4.190 7.740 3.9513
22000
2000"
It
A'
-27 -11
-6
-4 -3 -2 -2 -2 -1
.50 .55 .60 .65 .70
1.3771 3.6546 7.935 1.4810 2.4599
.75
.90 1.00 1.50
3.7284 5.254 8.845 1.2691 2.4072
-1 -1 -1
2.00 2.50 3.00 4.00 5.00
2.1930 1.6350 1.1538 5.735 3.0360
10.00 50.00 100.00
3.0578 6.908 4.497
.so
JA
2 2 2 2 2
1800'
x
12000 7
n -44 -19 -12 - 8 -7
- 70
-
1000~ & I1
n
2.2235 2.8499 6.007 5.703 2.3321
J,
-23
- 9
-5 -3 -2 -2 - 1 -1 -1
1.5338 -20 7.485 - 8 5.308 -4 2.9228 - 2 -2 9.967
-
4 3 3 3
3 3 2 2 1
1.7774 3.0296 7.001 1.2943 5.236
-
2 2 2 1
-1 -1 -1 -1
- 1 -1
-1
6.916 6.398 5.185 3.0340 1.7597
-1 -1 -1
1.3213 1.0814 8.100 4.318 2.3772
-2 -5 -6
2.0858 5.2487 3.4566
-2 -5 -6
2.5678 6.0751 3.9787
* 2400'
J,
0 0 0 -1 - 1
4.626 3.025 1.964 8.855 4.439
0 0 0 1 1
6.151 3.8351 2.4167 1.0518 5.171
- 2 - 5 - 6
4.054 8.570 5.537
3.3001 2.2874 1.5411 7.255 3.7257
-2
3.5536 7.7413 5.020
0
-
-2 -5
-6
(continued)
n
3.5592 -18 1.1402 - 6 3.2616 - 3 1.1408 - 1 3.3440 - 1
0
0 0 0 1 1
SMITHSONIAN PHYSICAL TABLES
1.4334 5.761 1.7677 4.421 9.435
5.348 6.382 8.146 9.371 9.241
0 0
-5 -6
6 5 4 4 4
0 0 0
0 0 0 0 0
A'
-37 -16 -9 -6 -5
2.5864 3.2297 4.444 5.430 6.391
1.0817 1.4265 2.1492 2.8224 4.115
-
-
JA
7.477 1.3800 2.2141 3.1988 4.267
2.5154 5.126 8.932 1.3838 1.9592
1600"
n
9.2178 5.8022 2.0790 2.5732 2.4766
1 1 1 0 0
6.806 1.5618 3.0050 5.0622 7.701 - 1
-1
n
-
1400" &
83
4.558 9.401 6.062
-
4
1.8689 5.947 1.5023 3.1867 5.907 9 847 ..
1.5079 2.9157 4.674 1.2341
-1
2600'
JA
3.5731 1.1424 1.5160 3.6108 9.313
-16
-
5
-2 -1 -
1
1 0 0 0 0
1.8796 3.1902 4.773 6.502 8.244
0 0
9.890 1.1360 1.3606 1.4880 1.2651
0 1
7.852 4.707 2.8935 1.2233 5.917
0 0
0 0
0 0
-
--
3.4723 3.5613 1.5016 6.376 4.295
0 0 0 1
-2 - 5
-6
5.064 1.0229 6.573
0
0
0 0
0
1
1 1
0
- 01 -2 -4 -6
-31 -13
-7
- 45 -3 -3 -2
-2 -2 -3 -1 -1 -1 0
0 0
-1
-1 -1 -2 -5 -6
2800" * A'
1.8569 -14 8.235 -5 5.657 -2 9.695 -1 2.2404 0 4.142 6.543 9.222 1.1941 1.4500
0 0 0 1 1
1.6755 1.8625 2.1128 2.2133 1.6591
1
9.709 5.631 3.3905 1.3989 6.674
0 0
5.571 1.1061 7.097
1 1 1 1
0
0
-1 -2
4 -6
54
T A B L E 55.-CALCULATED S P E C T R A L INTENSlTliES JA FOR A RANGE OF W A V E L E N G T H S FOR A BLACKBODY OF U N I T A R E A FOR A RANGE OF T E M P E R A T U R E S F R O M 50°K T O 25,000'K (concluded)
-
3000"
3200'
x
n '
.10 20 .30 .40 .45
5.698 4.562 1.7710 2.2819 4.795
-13 -4 -1 0
0
JA 1.1396 2.0402 4.807 4.825 9.330
.50 .55 .60 .65 .70
8.215 1.2195 1.6321 2.0227 2.3657
0 1 1 1 1
1.4957 2.1028 2.6895 3.2083 3.6313
1
.75
1
.90 1.00 1.50
2.6465 2.8600 3.0957 3.1245 2.1026
2.00 2.50 3.00 4.00 5.00
1.1703 6.600 3.9044 1.5780 7.442
1 0
10.00 50.00 100.00
6.081 1.1897 1.9581
JA
.so
1 1 1 1
-
0 0
1
-2
-4 -5
Ji
1.3165 1.2903 1.1884 1.0561 4.9320
2 2 2 2
2 2
1
3.4810 3.2227 2.7040 2.2338 8.487
0 1
2.3215 1.1922 6.650 2.5076 1.1372
1 1 0 0 0
3.6384 1.7735 9.570 3.4705 1.5393
-6
8.657 1.6064 1.0219
1 0 0
-
1.7181 9.178 5.247 2.0369 9.391
6.593 1.2732 8.130
- 2 - 4 - 6
A '
1 1 1
0 0 0 1
7.361 1.3978 8.926
1 1 1 1 1
1 1 1
-2 -4
- * 10,000"
Jh
15,000~
?I
'A
-8 -1
1.1225 2.0216 1.2808
-2 -4
-5
-4 0
2 2 2
3 1
1 1 0 0 0
-1 -4
-5
25,000°
20,000~ JA
n
I,
II
5 5
6 5 5 5 4
3 3 3 3
2.1268 8.820 1.2857 1.0313 8.653
2 3 4 4 3
2.5671 9,763 6.571 3.6571 2.7323
4 4 4 4 4
2.8224 3.3001 1.5411 7.255 5.1415
4 4
1.1917 6.981 2.6523 1.1370 7.825
3.3793 2.9415 2.5311 2.1601 1.8485
3 3 3 3 3
7.148 5.869 4.816 3.9614 3.2718
3 3 3 3 3
2.0625 1.5762 1.2201 9.563 7.586
4 4 4 3 3
3.7257 2.7563 2.0780 1.5936 1.2456
4 4 4 4 4
5.542 4.026 2.9907 2.2654 1.7461
4 4 4 4 4
2 2 2 2 2
1.5780 1.3494 9.945 7.429 2.1278
3 3 2 2 2
2.7160 2.2670 1.6067 1.1643 3.0625
3 3 3 3 2
6.084 4.931 3.3311 2.3256 5.505
3 3 3 3 2
9.800 7.836 5.178 3.5536 8.008
3 3 3 3 2
1.3667 1.0845 7.078 4.810 1.0537
4 4 3 3 3
1 1
8.024 3.6391 1.8756 6.438 2.7665
1 1
2 1 1 0 0
1.9004 8.194 4.088 1.3487 5.664
2
2.7017 1.1494 5.684 1.8549 7.741
2 2
0 0
1.1106 4.926 2.5026 8.443 3.5918
3.5077 1.4804 7.280 2.3625 9.818
2 2 1 1 0
1.8994 3.2700 2.0663
-1 4 -5
2.4184 4.099 2.5793
2.00 2.50 3.00 4.00 5.00
5.049 2.3814 1.2584 4.451 1.9460
10.00 50.00 100.00
1.3811 2.4375 1.5391
1 0 0
-4 -5
2 2 2 2 2
1 .
.90 1.00 1.50
-1
3.8137 4.004 4.018 3.9080 3.7175
1.3818 7.607 4.432 1.7598 8.217
6.728 6.007 4.748 3.7449 1.2494
.so
1 2 2 2 2
1
2 2 2 2 2
.7s
9.032 1.0789 1.2052 1.2825 1.3168
6.611 6.754 6.662 6.248 3.4032
9.9983 9.6424 9.024 8.279 7.496
.so
.55 .60 .65 .70
0 1 1
0 1 1
1 I 1 1 1
1 2 2 2
-2
0 0
3.9491 4.164 4.327 4.228 2.5919
0
1.4597 7.302 5.223 9.152 9.906
-1
1.2094 6.647 1.0561 2.7563 3.4034
9.1199 1.8251 9.616 4.565 6.877
-10 - 2
1
5.840 1.4607 3.8565 4.129 3.8032
.10 20 .30 .40 .45
5.3650 1.3998 1.7358 1.2640 2.1962
-11 - 3
& J, n
$1
1
8000"
n
4000'
JA
3.2321 4.237 5.113 5.807 6.303
* 6000"
x
3500"
&
n
SMITHSONIAN PHYSICAL TABLES
1
-1 -4 -5
3.7177 6.185 3.8748
1
1 1 0 -1
-4 -5
5.020 8.254 5.194
5
1 1
0 -1
-3 -5
6.318 1.0318 6.448
-1 -3 -5
T A B L E 56.-BLACKBODY
85
SPECTRAL INTENSITIES
Auxiliary table for a short method of calculating JX for any temperature. (Menzel, Harvard University.) Let J o = intensity for To= 10,000 OK; for another temperature T " K : J / J o = CAf(exp ( @ d o ) - l)I/[A6(exp ( a / A T )- 111 For ease of calculation To was taken as 10,000 OK. = tabular JAX 10" watts, for cm* for 2* solid angle per 0.1~. Choose A = k T o / T ; then JX= Jo( T/T0)'. As an example find JX for 0 . 5 ~and 6oOO "K ~ 1.2857 X lo'. JA from value of JAfor 0 . 3 ~given in Table 55. 0 . 5 ~= 0 . 3 ~10,000/6000. JX for 0 . 3 = for A = 0 . 5 ~= 1.2857 X lo4 X (6,000/10,000)6 = 9.998 X 10'. 10,000~
A
J,
.OLOO .0150 .0200 .0250 .0300
1.3224 1.1427 6.949 4.005 2.3444
-49 -29 -20 -14 -10
.1450 .15m .1600 .1700 .1800
2.8776 3.3806 4.458 5.586 6.716
3 3 3 3 3
.5500 .6000 .6500 .7000 .7500
.0350 .0400 .0450 .0500 .0550
1.0214 8.906 2.6833 3.8700 3.2828
-7 -6 -4 -3 -2
1.8773 7.950 2.6652 7.427 1.7823
-1
.0950 .lo00 .lo50 .1100 .1150 .1200 .1250 .1300
7.805 8.820 9.735 1.0536 1.1215 1.1769 1.2204 1.2524 1.2739 1.2859 1.2895 1.2857 1.2601 1.2163 1.1606
.1350 .1400
3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3
.8000 .8500 .9000 .9500 1.000
.0600 .0650 .07OO .0750 .0800 .0850
.1900 .2000 .21# .2m .2300 .2400
5.869 4.816 3.9614 3.2718 2.7160 2.2670 1.9031 1.6067 1.3641 1.1643 8.613 6.494 4.980 3.8782 3.0625 2.4487 1.9805 1.6183 1.3348 1.1106 7.867 5.724 4.262 3.2372 2.5026 1.4015 8.443
A
J,
n
A
J,
U
1.2894 2.1269 3.3049 4.881 6.899 9.391 1.2365 1.5819
1 1 2 2 2
.2900 .3000 .3200 .3400 .3600
2 2 2 3 3
.3800 .4200 .4400 .4600
1.0977 1.0313 9.640 8.977 8.335
1.9732 2.4062
3 3
.4800 so00
7.724 7.148
3.7891
O . m 7.288
SMITHSONIAN PHYSICAL TABLES
.4OOo
1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 2.000 2.200 2.400 2.600 2.800 3.000
3.500 4.000
-
A
J ,
3 3 3 3 3
4.500 5.000 6.000 7.000 8.000
5.383 3.5918 1.7761 9.756 5.797
3 3 3 3 3
9.000 10.00 12.00 14.00 16.00
3.6548 2.4184 1.1807 6.433 3.7904
2 2 2 2 2
18.00 20.00 25.00 30.00 35.00
2.3790 1.5667 6.4692 3.1346 1.6954
2 2 2 2 2
40.00 45.00 50.00 55.00 60.00
9.979 6.236 4.099 2.8042 1.9793
1 1 1 1 1
65.00 70.00 80.00 90.00 100.00
1.4390 1.0698 6.306 3.9340 2.5793
1 0
n
-1 -1 -1 -1 -1 -2 -2 -2 -2 -3 -3 -3 -4 -4 -4 -4 -4 -4 -4
0 0 0
-5 -5 -5
86
T A B L E 57.-CHANGES
DUE T O A C H A N G E IN c2
The adoption of a new value for cz changes the calculated values for J A by an amount that varies indirectly' with both the wavelength and the temperature for values of AT <3000, as follows: d h - -d ~ z JA AT that is, a larger value of c;. results in a smaller value of JA. Values of this correction factor for this change in cz have been calculated and are given in the tables for five temperatures and a range of wavelengths that cover the visible spectrum. As these percentage correction factors are given they are the percentage of the J A for 14320, deg that must be subtracted from it to give J ~ ~ J S O . A change in cz also results in a different value of the extrapolated temperature as measured with an optical pyrometer for a definite ratio of brightness. Thus
To the accuracy necessary for most work, values for other wavelengths, other temperatures, or other values of cz within these ranges can be found by interpolation. P a r t 1.-Percentage
change in J, for a change in c, from 14320 to 14380, degrees
Xins
2200 K
2300
"K
2:OO K
2200 K
.32 .34 .36 .38 .40 .42 .44 .46 .48 .SO .52 .54 .56
9.8 9.2 8.7 8.2 7.8 7.4 7.0 6.7 6.4 6.2 5.9 5.7 5.5
8.5 7.9 7.5 7.1 6.7 6.4 6.1 5.8 5.6 5.3 5.1 4.9 4.8
7.5 7.0 6.6 6.3 5.9 5.7 5.4 5.1 4.9 4.7 4.5 4.4 4.2
6.7 6.3 5.9 5.6 5.3 5.0 4.8 4.6 4.4 4.2 4.1 3.9 3.8
O 3:O
K
Ainu
6.0 5.7 5.3 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.7 3.5 3.4
.58 .60 .62 .64 .66 .68 .70 .72 .74 .76 .78 .80
2!00 K
2:OO
5.3 5.1 4.9 4.8 4.6 4.5 4.4 4.2 4.1 4.0 3.9 3.8
4.6 4.4 4.3 4.1
K
4.0
3.9 3.8 3.7 3.6 3.5 3.4 3.3
2:OO K
4.1 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9
2200
K
3zOO K
3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.8 2.7 2.6
3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.6 2.5 2.4 2.3
P a r t 2 . 4 h a n g e in temperatures, AT, extrapolated from 1336 to the temperature T given, c2 changed from 14320 to 14380, degrees T"K
AT
1500'K
-.6
1800°K
-2.4
SMITHSONIAN PHYSICAL TABLES
2000°K
2500°K
3000°K
3500°K
4000'K
5000°K
-4.1
-8.7
-15.5
-22.3
-33.0
-56.4
TABLES 58-77 -PHOTOhIETRY
87
Photometry is the measurement of light, and light has been defined by the Illuminating Engineering Society as radiant energy evaluated according to its capacity to produce visual sensations. T A B L E %.-THE
EYE AS A MEASURING I N S T R U M E N T FOR RADIATION Part 1.-Theory
As a measuring instrument for radiation, the eye is very selective, that is, it does not respond equally to radiation of various wavelengths. The data in Part 2 give the relative sensitivity of the eye to radiation of different wavelengths. Another peculiarity of the eye is that its relative sensitivity changes with the intensity of the radiation that falls upon it. This is shown by the data in Table 59. Also the absolute sensitivity of the eye varies with the intensity of the radiation that falls upon it. This is shown by the data given in Table 60. The data p6 on which Table 60 is based are not very extensive, but inasmuch as there is now some active work on this subject by Lowry of the Eastman Kodak Co. there should soon be available data for a wider range of field brightness. The data in Table 59 show that the sensitivity of the eye to radiation of lower intensity increases faster toward the blue end of the spectrum than in the red end. This is called the Purkinje effect. For light measurement a t very low brightness care must be taken as to the standards used. From the data given in Table 59 it can be shown that sources giving light of different colors that were rated as equal by the average eye adapted to a field brightness of about 1 to 2 millilamberts would be rated quite differently for low field brightness, that is, for niillilamberts. the eye adapted to a field brightness of If the brightness given by two sources such as daylight and a carbon lamp be set equal for a field brightness 1 to 2 niillilamberts and then these brightnesses both reduced mechanically to about 10" millilamberts, the field of the daylight source would seem to be about 2) times as bright as that of the carbon lamp. Manchard, Phys. Rev., vol. 11, p. 81, 1918; Stiles and Crawford, Proc. Roy. SOC.London, ser. B. vol. 112, p. 428, 1933; Lowry, Journ. Opt. SOC. Amer., vol. 18, p. 29, 1929.
P a r t 2.-Relative
luminosity factors 9 [ K,] (unity a t wavelength of maximum luminosity)
~
X in mp 380 390 400 410 1-70 430 4-10
450 460 470 480 490 500 510 520 530 540
550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760
Values interpolated at intervals of one millimicron
Standard factors .00004 .00012 .0004 ,0012 .0040 ,0116 .023 .038 .060 .091 ,139 .208 .323 ,503 .710 .862 .954 . . .995 .995 ,953 ,870 .757 ,631 .SO3 .381 ,265 .175 .lo7 .061 ,032
ni7
1 .000045 .000138 .00045 ,00138 .00455 ,01257 ,0243 .0399 .0627 ,0950 .1448 ,2173 .3382 .5229 ,7277 ,8739 .9604 ,9969 ,9926 .9455 .8600 ,7449 .6183 .4905 ,3690 .2548 ,1672 ,1014 ,0574
7
.OOOOJ9 .000155 ,00049 .00156 ,00515 ,01358 .0257 ,0418 .0654 ,0992 ,1507 ,2270 .3544 .5436 ,7449 ,8851 ,9661 .9983 ,9898 .9386 ,8496 ,7327 ,6054 ,4781 .3570 ,2450 ,1596 ,0961 ,0539 ,0280 ,01477 .ooin5 ,00355 .00181 .000907 .000447 .000214 ,000103 .000052
4 3 .000059 .000054 ,000193 .000173 ,00059 .00054 ,00195 ,00174 .00651 .00581 ,01571 ,01463 ,0284 ,0370 .0459 ,0438 ,0709 ,0681 ,1080 .lo35 ,1629 ,1567 ,2476 ,2371 .3890 ,3714 ,5865 .5648 ,7776 ,7615 ,9056 .a956 ,9760 .9713 1.0000 ,9994 ,9828 ,9865 ,9235 .931 ,8277 ,8388 ,7076 ,7202 .5797 ,5976 ,4535 .-I658 ,3329 ,3449 ,2261 2354 ,1452 .1523 ,0862 ,0910 ,0475 ,0506 ,0247 ,0263 ,01281 .01376 .on612 ,00656 .00310 ,00332 ,001587 ,001699 ,000845 ,000788 .000387 .000415 .000198 .000185 .000096 .onno90 .000048 .000045
5 6 .000071 .000064 .000241 .000215 .00064 .00071 ,00118 ,00244 ,00726 .00806 ,01684 ,01800 ,0298 ,0313 .0480 .0502 ,0739 .0769 ,1126 ,1175 ,1693 ,1761 ,2586 ,2701 ,4259 ,4073 .6082 .6299 ,7932 .808? ,9149 ,9638 ,9803 ,9840 1.0002 1.0001 .9786 .9741 ,9154 ,9069 .8163 ,8046 ,6949 ,6822 ,5668 ,5539 .1412 ,4291 .3210 ,3092 ,2170 ,2082 ,1382 ,1316 ,0816 ,0771 ,0446 ,0418 ,0232 ,0219 ,01192 .01108 ,00572 .00536 ,00291 ,00273 . n o i - 1 ~ 3 .001387 ,000736 ,000688 . n o o ~ n .on0335 .onni72 .no0160 .noon84 .on0078 .000042 .000039
7 .000080 .000272 .00080 .00274 .00889 .01920 .0329 .0525 ,0802 ,1225 .1833 .2823 .4450
,6511 ,8315 .9320 ,9873 ,9995 ,9691 .8981 ,7928 ,6694 ,5410 .4 170 2977 .1996 .1251 ,0729 ,0391 ,0206 ,01030 ,00503 ,00256 .001297 ,000644 .onn313 .ooni-19 .000074 ,000037
8 .000090 .000308 .00090 ,00310 ,00976 .02043 .0345 .0549 ,0836 ,1278 ,1909 ,2951 ,4642 ,6717 ,8363 ,9398 ,9902 ,9984 .9638 ,8890 ,7809 ,6565 ,5282 ,4049 ,2864 ,1912 ,1188 ,0688 ,0366 ,0194 ,00956 ,00471 ,00241 ,001212 ,000601 .000291 .000139 .000069 .000035
9 .000104 .000350 .00104 ,00352 .01066 ,02170 .0362 .0574 ,0872 .1333 .1991 .3087 ,4836 ,6914 ,8495 ,9471 ,9918 ,9969 ,9581 ,8796 ,7690 ,6437 ,5156 ,3929 .2755 .1830 ,1128 .0648 ,0343 , ,0182 ,00886 ,00440 .00225 .001130 .000560 .000170 .000130 .000064 .000032
I.E.S.Nomenclature and photometric standards, .\merican Standards Association. ASA C-42. 1941. SMlTHSONlAN PHYSICAL TABLES
88 T A B L E 59.-RELATIVE
LUMINOSITY DATA FOR VARIOUS F I E L D BRIGHTNESSESn
(Logarithms of field brightness in first line) Wavelength ICI mlt 350 360 3 70 380 .bbooi 390 .00012 400 .0004 410 .0012 420 ,0040 430 .0116 440 .023
-0.5
.......... .... .. .. iboo
.0001 .0004 .0014 ,0044 ,0121 .0240 .0395 .0627 .0960 .146
450 460 470 480 490
.208
500 510 520 530 540 550 560 570 580 590 600 610 620 630 640
.323 .SO3 .710 .862 ,954 .995 ,995 .952 ,870 .757 .631 .SO3 .381 .265 ,175
.340 .524 ,726 ,872 ,959 .997 ,992 .944 .860 .742 ,616 .490 .366
650 660 670 680 690 700 710 720 730 740 750 760 770
.lo7 .061 .032 ,017 .0082 ,0041 .0021
.0990 .0560 ,0303 ,0153 ,0076 .0038 .0019 .a010
.00052 ,00025
,0005 .0002
,00012
.0001
27
,038 .060 .091 .139
220
2.50
,162
.ooios
.00006 .00003
.. . . ....
-1.0
.. .. .. ..
-1.5
.... ....
....
-2.0
.... ....
.oooi
.0002 .0008
.0002 .0008 .0022
,0008 .0023 .0069 .0165 ,0300 .0490 ,0775 .118 .180 ,274
.0022
.0059 .0140
.0002
,416 .617 .792 ,910 .979 1.000 .973 ,907 ,802
,673 .544 ,416 ,296 .197 .122 .0710 .0390 ,0206 .0103 .0052
,0026 ,0014 ,0007 .0003 .0002
....
.... ....
.0062 .0152 .0292 .0496 ,0810 .127 .191 .288
.426 .603 ,766 .894 .972 1.000 .971 .898 .782 ,648 .SO9 ,374 .257 .168 ,102 ,0590 .0327 ,0174 ,0090 .0046 ,0024 .0012 ,0006 ,0003
.0280
.0505
.0850
.136 ,202 .301 ,432 .592 .744 .876 .965 1.000 .969 .886 ,760 .617 .468 ,333 ,224 .142
,0845
.0480 .0270 .0147 ,0078 ,0041 .0022
.0011 ,0006 ,0003 ,0001
,0001
.... .... .... ....
....
.... .... ....
....
-2.5
-3.0
-3.5
-4.0
.0005
,0003 .0009
.0004 .0013 ,0034 .0083 ,0185 .0370 .0690 ,118 .I83 268 .376 .510 .649 .782 .902 .977 .988 .924 .796 .642 .478 ,330 ,218 ,137 ,0830 .0488
,0007 .0018 .0045 .0104
.... ....
,0015 ,0040 .0098 ,0227 .0427 .0755 ,123 .187 ,277 .394 ,540 .688 .826 .935 .992 ,982 .909 .785 .640 .485 .340 227 ,145 .0870 .0504 .0282
,0146 ,0084 ,0045 .0024 ,0014 .0007 ,0003 .0002
.... .... .... .... ....
....
....
,0025
.0063 ,0147 ,0305 ,0580
,101 ,160 .237 .339 ,467 .604 .734 .864 ,962 ,999 .951 .842 .698 .543 ,384 .259 .166 .lo1 ,0600 ,0344 ,0194 ,0107 ,0058
.0031 ,0017 .0009 ,0004 .0002
.0001
.... .... ....
.... .... ....
....
,0280
,0156 ,0085
.0046 ,0025
.0013 .0007 ,0003 .0002
....
.... .... .... .... .... ....
-4.187. .000265 .00073 .0019 .0048 .0112 .0228 .0243 .0452 .0485 .087 .0820 .145 .138 .216 .225 .310 .321 .423 .434 ,551 .560 .685 .695 314 .827 ,930 .932 .992 ,997 .974 .963 .871 .883 .744 .734 .583 .555 .419 ,390 281 ,263 .182 .167 .112 .lo2 .0670 .0613 .0388 .0366 .0212 .0225 ,0127 .0118 .00653 .0070 .0037 .00353 .00189 .0020 .0011 .00098 .no050 ,0006 .0003 .00025 ,00016 ,00013 .0002
.... .... .... .... .... .... ....
.. . . ........ .. . . ...... .. .. . .
-4.50 -5.00 .0003 ,0003 .0008
.0020 .0051 ,0119 .0253 .0500
.0900 ,149 ,230 .326 .441 ,568 ,702 .830 ,941 ,997 .960 .862 ,715 ,552 .388 .260 ,164 ,101 .060 ,0348 .0202
.0008 .0022 .0055
.0127 .0270 .0530 .0950 .157 239 .339 ,455 .576 .714 .842 ,948 .999 ,953 ,848 .697 ,531 .365. 243 .155 ,0945 ,0560 ,0324 .0188 ,0105
.0114 ,0062 .0034 .0018 .0010
,0032 .0017 .0009
.0002
.0002
.OGOl
,0001
.ooos
........ ........ .... . . .. ....
,0058
.ooos
.... ........ .... .... .. .. , . ..
L. A. Jones, pi-ivate communication.
* Average of Weaver and Hecht's values. T A B L E 60.-BLANCHARD'S DATA RELATING INSTANTANEOUS T H R E S H O L D T O F I E L D B R I G H T N E S S ** Field brightness millilamherts
100. 10.
Instantaneous threshold t
.......... . .... 1.9 x 10-l . . _ . . . . . . . ... .. 4.2 y 10.'
1. ............... 8 . 9 , ~ .I . . . . . . . . . . . . . . 1.9 x lo-' .032 . . . . . . . . . . . . 8.9 X lo-' .01 . ... ... ... ... 4.2 y .0032 . . . . . . . . . . . 1.9 X .ooi . ....... .... 8.9 y 10-5 .0001 . . . . . . . . . . . 1.9 X .00001 . . . . . . . . . . 4.2 X lo-' .o ............ .. 1.8 x 10-7II
Relative sensitivity $ (n)
.047 21
1.o
4.67 10.0 21.4 46.7 100.0 467.0 2140. 48600.
Ratio
4.6 4.7 4.7 4.6
... 4.7
...
4.7 4.6
...
...
5
Relative value of maximum
.04/ .21 1.oo 4.95 12.0 29.5 7010 161.0 822.0 3900. 88500.
** For reference, see footnote 25, p. 87. * T h e field brightnesses are values ohtained hy mechanically increasing or reducing values measured
t Taken from smooth curve drawn through Blanchard's data. The unit will at photopic levels. depend upon definition. As these figures stand they are brightnesses for this radiation measured at photopic levels and reduced mechanically to values given. $ For radiation from a source at a color temperature of 2680 'K. l T h i s is the ratio of the e y e sensitivity to that of the eye adapted to the 11 Minimum threshold from Taylor's value. next lower (one-tenth) field brightness for this radiation. SMITHSONIAN PHYSICAL TABLES
89
SENSIBILITY O F THE E Y E *
T A B L E 61.-THE Part 1.-Contrast
o r photometric sensibility
For the following table the eye was adapted to a field of 0.1 millilambert and the sensitizing field flashed off. A neutral gray test spot (angular size a t eye, 5 X 2.5") the two halves of which had the contrast indicated ( f transparent, f covered with neutral screen of transparency = contrast indicated) was then observed and the brightness of the transparent part measured necessary t o just perceive the contrast after the lapse of the various times. One eye only used, natural pupil. Values are log brightness of brighter field in millilamberts. Time in seconds
Contrast: 0.00.. . . 0.39.. . . 0.67.. . . 0.87.. .. 0.97.. ..
0
1
2
-2.80 -2.63 -2.40 -2.10 -1.20
-3.47 -3.36 -3.00 -2.46 -1.57
-3.82 -3.58 -3.13 -2.49 -1.67
5
10
-4.30 -3.74 -3.22 -2.48 -1.69
Part 2.-Glare
40
20
-4.49 -3.85 -3.21 -2.55 -1.59
-4.60 -3.97 -3.33 -2.54 -1.63
60
-4.89 -4.06 -3.46 -2.67 -1.73
-5.03 -4.23 -3.48 -2.73 -1.78
Sensibility
When an eye is adapted to a certain brightness and is then exposed suddenly to a much greater brightness, the latter may be called glaring if uncomfortable and instinctively avoided. Observers naturally differ widely. The data are the means of three observers, and are log brightnesses in millilamberts. The glare intensity may be taken as roughly 1700 times the cube root of the field intensity in millilamberts. Angle of glare spot, 4". -1.0 -4.0 -2.0 Log. field . . . . . -6.0 2.90 1.90 2.60 Log. glare . . . . 1.35 Part 3.-Rate
.O
3.28
+1.0 3.60
2.0 3.90
3.0 4.18
4.0 4.48
of adaptation of sensibility
This table furnishes a measure of the rate of increase of sensibility after going from light into darkness, and the values were obtained immediately from the instant of turning off the sensitizing field. Both eyes were used, natural pupil, angular size of test spot, 4.9", viewed at 35 cm. Retinal light persists only 10 to 20 minutes when one has been recently in darkness, then in a dimly lighted room ; it persists fully an hour when a subject has been in bright sunlight for some time. A person who has worked much in the dark "gets his eyes" quicker than one who has not, but his final sensitiveness may be no greater. Sensitizing field White 0.1 ml ... 1.0ml 10.0ml ... 100.0 m l . . Blue 0.1 ml ... Green 0.1 ml ... Yellow 0.1 ml ... Red 0.1 ml ...
...
Logarithmic thresholds in millilamberts after n
I
Osec -2.79 -2.20 -1.60
. -0.90
-2.82 -2.69 -2.61 -2.32
1 sec -3.82 -2.99 -2.30 -1.66 -3.92 -4.08 -3.84 -2.69
2 sec -4.13 -3.27 -2.53 -2.00 -4.36 -4.39 -4.17 -2.98
5 sec -4.50 -3.79 -3.08 --2.46 -4.91 -4.82 -4.41 -3.37
10 sec 2 0 s e c -4.75 -4.96 -4.15 -4.51 -3.54 -3.94 -2.64 -2.88 -5.53 -5.27 -5.11 -5.26 -4.78 -4.65 -3.57 -3.65
40 sec -5.16 -4.82 -4.31 -3.20 -5.68 -5.43 -5.02 -3.73
60 sec -5.32 -5.06 -4.61 -3.84 -5.81 -3.56 -5.09 -3.80
5 min -5.68 -S.52
-5.22 -4.76 -6.23 -5.80 -5.39 -4.02
30min 60min -5.91 -6.06 -5.86 -6.04 -5.83 -6.01 -5.77 -5.97
-
-
-
-
For reference, see footnote 25, p. 87.
T A B L E 62.-MINIMUM
ENERGY NECESSARY T O PRODUCE T H E SENSATION OF L I G H T
. . . . ..38 X lo-'' e y sf;c . . .. 7.7 X lo-'' . . . . 19.5 X lo-'' . . . .12.6 X lo-'' . . . .Minimum threshold
Ives . Russell Reeves Buisson Taylor
Hecht
..
"
"
"
"
for dark-adapted eye, a surface, a t a brightness of 1.8 x lo-' millilamberts, source color temperature 2850 OK. . . .2.2-5.7 X lo-'' ergs at cornea, considering losses the amount of energy that reaches the retina is such that I quanta is absorbed by from 5-14 retinal rods.
SMITHSONIAN PHYSICAL TABLES
Astrophys. Journ.,vol. 44, p. 124, 1916. Astrophys. Journ., vol. 45, p. 60, 1917. Astrophys. Journ.,vol. 46, p. 167, 1917. Journ. de phys., vol. 7, p. 68,1917. Journ. Opt. SOC.Amer., vol. 32, p. 506, 1942. Journ. Opt. SOC.Amer., vol. 32, p. 42, 1942.
90 T A B L E 63.-APPARENT
DIAMETER O F P U P I L AND F L U X DENSITY A T RETINA
Flashlight measures of the pupil (both eyes open) viewed through the eye lens and adapted to various field intensities. For eye accommodated to 25 cm, ratio apparent to true pupil, 1.02, for the unaccommodated eye, 1.14. The pupil size varies considerably with the individual. I t i s greater with one eye closed; e.g., it was found to be for 0.01 millilambert, 6.7 and 7.2 mm; for 0.6 ml, 5.3 and 6.5; for 6.3 ml, 4.1 and 5.7; for 12.6 ml, 4.1 and 5.7 mm for both eyes and one eye open respectively for a certain individual. At the extreme intensities the two values approach each other. The ratio of the extreme pupil openings is about A,whereas the light intensities investigated vary over 1,000,000-fold. Field millilamberts
8 mm 7.6 6.5 4.0 2.07
.00001 .001
.1
10 1000
x obs.
Effective area
8.96 mm 8.51 7.28 4.48 2.35
64 mm’ 57 42 16 4.3
(1.14/ 1.02)
Observed
TABLE 64.-MISCELLANEOUS
Flux at retina, lumens per mmz
x lo-’* lo-’’ x lo-* x 10-O 5.8 x 10-5
8.4 7.6 x 5.6 2.1
E Y E DATA
Light passing to the retina traverses in succession ( a ) front surface of the cornea (curvature, 7.9 mm) ; ( b ) cornea (equivalent water path for energy absorption, 0.06 cm) ; ( c ) back surface cornea (curv., 7.9 mm); ( d ) aqueous humour (equiv. HzO, 0.34 cm, $2 = 1.337) ; ( e ) front surface lens (c, 10 mm) ; ( f ) lens (equiy. H20,0.42 cm, n = 1.445) ; (g) back surface lens (c, 6 mm) ; ( h ) vitreous humour (equiv. H,O, 1.46 cm, n = 1.337). An equivalent simple lens has its principal point 2.34 mm behind ( a ) , nodal point 0.48 mm in front of (g), posterior principal focus 22.73 mm behind ( a ) , anterior principal focus 12.83 mm in front of ( a ) , curvature, 5.125 mm. At the rear surface of the retina (0.15 mm thick) are the rods ( 3 0 x 2 ~ )and cones (10 (6 outside fovea) p long). Rods are more numerous, 2 to 3 between 2 cones, over 3,000,000 cones in eye. Macula lutea, yellow spot, on temporal side, 4 mm from center of retina, long axis 2 mm. Central depression, fovea centralis, 0.3 mm diameter, 7000 cones alone present, 6 X 2 or 3p. In region of distinct vision (fovea centralis) smallest angle at which two objects are seen separate is 50” to 70”=3.65 to 5 . 1 4 ~at retina; 50 cones in lOOp here; 4p between centers, 3p to cone, I+ to interval. Distance apart for separation greater as depart from fovea. No vision in blind spot, nasal side, 2.5 mm from center of eye, 15 mm in diameter. Persistence of vision as related to color and intensity is measured by increasing speed of rotating sector until flicker disappears : for color, 64p, 0.031 sec ; 0.45p, 0.020 sec ; 0.5p, 0.015 sec; 0.57p, 0.012 sec; 0.68~,0.014 sec: 0.76p, 0.018 sec; for intensity, 0.06 metercandle, 0.028 sec; 1 mc, 0.020 sec; 6 mc, 0.014 sec; 100 mc, 0.010 sec; 142 mc, 0.007 sec. Sensibility to small differences in color has two pronounced maxima (in yellow and green) and two slight ones (extreme blue, extreme red). The sensibility to small differences in intensity is nearly independent of the intensity (Fechner’s law) as indicated by the following data due to Konig : 1,000,-
1/10 000 d I / l , white .... ,036 .6Op....
.sow.... .43/L....
-
100,000 10,000 ,019 ,018 ,024 ,016 ,018
-
-
1000 .018 ,020 .018 .018
100 .030 ,028 ,024 ,025
50 ,032 .038 ,025 ,027
10 .048 ,061 .036 .040
5
1
0.1
,059 ,103 ,049 ,049
.123 ,212 ,080 ,074
,377
-
.I 3 3 .I 37
Ioinmc ,00072 ,0056 .00017 .00012
T A B L E 65.-DISTRIBUTION COEFFICIENTS FOR EQUAL-ENERGY § T I M U L U S 1931 I.C.I. standard observer za
The fact that almost any color can be produced by the proper mixture of red, green, and blue light, has been used as a basis of a system of color specifications that has been adopted by the International Commission on Illumination. In the system adopted by that Commission in 1931, the primaries are called the X,Y,and 2 stimuli. The properties of the standard observer are given by his tristimulus specifications of the spectrum stimuli as a function of wavelength. This table gives this specification for the equal energy spectrum. Judd, D. B., Journ. Opt. SOC.Amer., vol. 23, p. 359, 1933.
(continued) SMITHSONIAN PHYSICAL TABLES
91
T A B L E 65.-DISTRIBUTION COEFFICIENTS FOR EQUAL-ENERGY S T I M U L U S (concluded) Coefficients
Coefficients
Wavelength (md
f
.om1 .mo1 .0002
.0065 .0105 .0201 .0362
580 585 590 595
.9163 .9786 1.0263 1.0567
3700 3163 .7570 .6949
.0017 .0014 .0011 .0010
.0143 .0232 .0435 :0776 21344
.0004 .0006 .0012 .0022 .0040
.0679 .1102 .2074 .3713 .6456
600 605 610 615 620
1.0622 1.0456 1.0026 .9384 3.544
.6310 S668 SO30 .4412 .3810
.0008
425 430 435 440 445
t2148 .2839 .3285 .3483 .3481
.0073 .0116 .0168 .0230 .0298
1.0391 1.3856 1.6230 1.7471 1.7826
625 630 635 640 645
.7514 .6424 S419 .4479 .3608
.3210 .2650 .2170 .1750 .1382
450 455 460 470
.3362 .3187 .2908 .2511 .1954
.0380 .0480 .0600 .0739 .0910
1.7721 1.7441 1.6692 1.5281 1.2876
650 655 660 665 670
.2835 .2187 .1649 .1212 .0874
.lo70 .08 16 .0610 .0446 .0320
475 480 485 490 495
.1421 .0956 .0580 .0320 .0147
.1126 .1390 .1693 .2080 .2586
1.0419 A130 .6162 .4652 .3533
675 680 685 690 695
,0636 .0468 .0329 .0227
.0232 .0170 .0119 .0082 .0057
500 505 510 515 520
.0049 .0024 .0093 .0291 .0633
.3230 .4073 SO30 .6082 ,7100
.2720 .2123 .1582 .1117 .0782
700 705 710 715 720
.0114 .0081 ,0058
.0041 .0029 .0021
525 530 535 540 545
.lo96 .1655 .2257 .2904 .3597
.7932 3620 .9149 ,9540 .9803
.0573 .0422 .0298 .0203 .0134
725 730 735 740 745
0020 ,0014 .0010 .OW7 .0005
550 555 560 565 570
.4334 S121 .5945 .6784 .7621
.9950 1.0002 .9950 .9786 .9520
.0087 .0057 ,0039 .0027 .0021
750 755 760 765 770
.0003 .0002 .0002 .0001 .om1
575 580
3425 .9163
.0018 .0017
775 780 -
.OOOO
Wavelength
x
9
380 385 390 395
.0014 .0022 .0042 .0076
.moo
400 405 410 415 420
465
.9154 3700
Totals. . . .. . .
.....
T A B L E 66.-RELATIVE Units
1..-.l1rx
-
Lux 1
1 phot = 10,000 1 milliphot = 10 1 foot-candle 10.76
SMITHSONIAN PHYSICAL TABLES
2
___
.....
...
.om
.0041 .0029
.oooo
21.3713
i
3
.0006 .0003 .om2 .0002 .0001 .0000
.moo .OOOO .om0 .OOOo
.woo .oooo .oooo .woo .om0 .moo .moo .oooo .0000
.om0
.oooo
.oooo .moo
,0015 .0010
.0000
.oooo
.oooo .moo .oooo .om0 .oooo .oooo .moo .oooo .oooo .oooo
.OOOO
.0000
.0007
.om5
.OM4 .Om3 .0002 .0001 .om1 .0001
.OOOO
.oooo
.om0
21.3714
21.3715
MAGNITUDE OF UNITS OF ILLUMINATION Phot
.mi
1. .001 .001076
Milliphot
.1 ' 1000. 1. 1.076
Foot-candle
.0929 929. .929 1.
T A B L E 67.-VISUAL
92
RANGE
OF W H I T E L I G H T S ? ”
Candlepower c candles at, visual threshold of steady point sourcc of white light seen against white l~ackgronndbrightncss b milliiiiicrolaml~ert (tiipL) at range r sea miles tlirougli an atmosplitm of attenuation LI per sca mile is given by C’ = 3.7 x 10-:’(1 h ) !,Pa-’, \vhicii is valid withill a factor of 3 for I ) frcrm total darkness to full daylight. For practical signaling or navigation multiply (. by at lcast 100.
+
Threshold c candles, B
Ranae c sen mile
1
tl
...................
=1 .04 .15 .33 .91
.05 .23 .65
2 ................... 3 ................... 5 ................... 7 ................... 1.8 10 ................... 3.6 111 Knoll,
11.
.\.. Touse?. K.. and
= 100 mfi I,, at night A = 0.8 a = 0.6
a
2.9
8.6 34
Hullnirt. 1’.
T A B L E 68.-THE
.06 .41 1.5 12 .~
62 610
-.
a = 0.4
.09 .9 5.2 90 1100 35000
0.. Journ. Opt. SOC.Amer.. vol. 36, p. 480, 1946
BRIGHTNESS O F T H E S U N
From the definition of a lumen, the lumen output from a point source within a unit solid angle is numerically equal to the candlcpower of the source. This also holds for any radiating source that behaves as a point, such as a spherical blackbody,* or any spherical radiator of uniform brightness that obeys the Lambert cosine law of radiation, providing the measurements are made at such a distance from the source that the inverse square law is obeyed. (See Table 74.) As an example of this, consider the brightness of the sun. The sun when directly overhead on a clear day gives an illumination of about 10,000 footcandles. This is equal to 10,000 lumens per ft.* (See Table 73.) To change this to lumens for a unit solid angle, multiply by the radius of the earth’s orbit squared (i.e., 2.41 X loz3 ft?). Thus, the candlepower of the sun is 2.41 x 10”. To get the brightness per cmz divide this by the projected area of the sun in cm’ (i.e., 1.52 X lo“), which gives about 160,000 c/cm2 for the brightness of the sun as observed at the earth’s surface. This, of course, assumes that the sun’s surface is of uniform brightness and that its radiation obeys the Lambert cosine law. The data (Table 813) on the distribution of energy of the solar spectrum give a brightness of the sun of 146,000 c/cm2. * T h e lumens within a unit solid angle around the normal from a plane blackbody is equal to 0.92 times the normal intensity.
T A B L E 69.-SOME
OBSOLETE PHOTOMETRIC STANDARDS
(In use prior to 1948.) I n Germany the Hefner lamp was most used; in England the Pentane lamp and sperm candles; in France the Carcel lamp was preferred; in America the Pentane and Hefner lamps were used to some extent, but candles were largely employed in gas photometry. For the photometry of electric lamps, and in accurate photometric work, electric lamps, standardized a t a national standardizing institution, were employed. The “international candle” designated the value of the candle as maintained by cooperative effort between the national laboratories of England, France, and America ; and the value of various photometric units in terms of this is given in the following table (Circular No. 15 of the Bureau of Standards) : 1 international candle = 1 Pentane candle. 1 international candle = 1 Bougie decimale. 1 international candle = 1 American candle. 1 international candle = 1.11 Hefner unit. 1 international candle = 0.104 Carcel unit.
1. 2. 3. 4.
Standard Standard Standard Standard
Pentane lamp, burning pentane ............. 10.0 candles, Hefner lamp, burning amyl acetate.. ........ 0.9 candles. Carcel lamp, burning colza oil.. ............ 9.6 candles. English sperm candle, approximately. ....... 1.0 candles.
The international candle was in reality taken from the candlepower of a number of incandescent lamps, operated under definite conditions and kept at the standard laboratories of France, Britain, and the United States. SMITHSONIAN PHYSICAL TABLES
T A B L E 70.-PHOTOMETRIC
93
DEFINITIONS AND U N I T S
(Adapted from Reports of Committee on Nomenclature and Standards of Illuminatiiig Engineering Society, 1942.) Apostilb = 0.1 millilambert. Brightness of a luminous surface may be expressed in two ways : (1) 61 = d I / d A cos e where 0 is the angle between normal to surface and the line of sight; normal brightness when 8 is zero. (2) b F = d F / d A assuming that the surface is a perfect diffuser, obeying cos law of emission or reflection. Unit, the lambert. Candle per cm2 = 3.1416 lamberts = 1 stilb. Candle per in? = .4868 lambert = 486.8 millilamberts. Foot-candle = 1 lumen incident per ft' = 1.076 milliphots = 10.76 lux. Illumination on surface = E = flux density on surface = d F / d A ( A is surface area) = F / A when uniform. Units, meter-candle, foot-candle, phot, lux. Lambert, the cgs unit of brightness, is the brightness of a perfectly diffusing surface radiating or reflecting one lumen per cm'. Equivalent to a perfectly diffusing surface with illumination of one phot. A perfectly diffusing surface emitting one lumen per ft' has a brightness of 1.076 millilamberts. Brightness in candles per cmz is reduced to lamberts by multiplying by H. Lambert = 1 lumen emitted Der cm' of a Derfectlv diffusing - surface. Lambert = .3183 candle per cm' = 2.054 candles-per in'. 1.unien is emitted hy .07958 spherical candle. Lumen emitted per ft2 = 1.076 millilamberts (perfect diffusion). Luminous efficiency = F/+ expressed in lumens/watt. Luminous flux=!: or .k= rate of flow of radiation measured according to power to produce visual sensation. Although strictly thus defined, for photometric purposes it may be regarded as an entity, since the rate of flow for such purposes is invariable. Unit is the hllzeiz, the flux emitted in a unit solid angle (steradian) by a point source of unit candle power. Luminous intensity of (approximate) point source = I = solid-angle ( w ) density of luminous flux in direction considered = d F / d w , or F / w when the intensity is uniform. Unit, the cmidle. Luminosity factor of radiation of wave-length X = K A = ratio of luminous to radiant flux for that A, = Fx/+A. Lux = 1 lumen incident per m2 = ,0001 phot = .1 milliphot. Mechanical equivalent of light = ratio of + / F for the X of max. visibility expressed in (ergs/sec)/lumen or watts/lumen ; it is the reciprocal of max. luminosity. See Table 58. Millilambert = .929 lumen per ft' (perfect diffusion). Milliphot = .001 phot = ,929 foot-candle. Phot = 1 lumen incident per cm2 = 10,000 lux = 1000 milliphots. Photon = small bundle of energy ( I t . ) , also called a quantum. Radiant flux = = rate of flow of radiation as energy, measured as ergs per second or watts. Specific luminous radiation, E' = luminous flux density emitted by a surface, or the flux emitted per unit of emissive area, expressed in lumens per cm'. For surfaces obeying Lambert's cosine law, E' = ~ 6 , . Spectral luminous flux at wavelength A = ( K x ) ( + ~ ) Spectral . luminous curve expresses this as a function of X and is different for various sources. One spherical candle emits 12.57 lumens. Uniform point source of one candle emits 47r lumens.
+
TABLE 71.-RELATIVE
Units
Candle per cm' (Stilh)
1 candle per cm2 = 1. = ,3183 1 millilambert = .000318 1 candle per in? = ,1550 1 foot-lambert = .NO342
1 lambert
MAGNITUDES O F UNI,TS O F BRIGHTNESS
Iambert
3.142 1. .001 .487 .OO 1076
3142. 1000. 1. 487. 1.076
1 candle per ft.2 = 3.142 foot-lamberts. 1 stilb = 1 candle per cm2 1 apostilb = 0.1 millilambert. SMITHSONIAN PHYSICAL TABLES
Milli-
Lamhert
Can$$ per in.
6.452 2.054 .00205 1. .00221
Footlambert
2919. 929. ,929 452. 1.
94 TABLE 72.-THE
WAIDNER-BURGESS STANDARD
OF LIGHT
INTENSITY
This standard of light intensity is the brightness of a blackbody at the temperature of freezing platinum. The blackbody used was made of thorium oxide and was immersed in the melting platinum : very pure platinum (99.997 percent) was used. Reproducible to 0.1 percent, the brightness was found to be 58.84 international candles per cm.S This \Vaidner-Burgess standard, taking the brightness of the blackbody at the freezing poillt of platinum as 60 candles per cmy, was adopted by the International Committee on Weights and Measures in 1937 as the new unit of light intensity and was put into effect January 1, 1938.5' The light from the blackbody at the temperature of freezing platinum is not greatly different in color from that given by carbon-filament standard lamps, as the color temperature of the lamp filaments is about 2100 "K, whereas the freezing point of platinum is 204.2 "K. I n this range of color the new unit of intensity is about 1.9 percent smaller than the old international candle, and sources of light are correspondingly given higher numerical ratings. However, when light sources of higher color temperature are compared with these basic standards, the accepted spectral luminosity factors give slightly lower values for the "whiter" sources than were obtained by visual measurements when the present international units were established. The difference between the two scales therefore grows less as the color temperature of the sources measured is increased. and for sources in the range of ordinary vacuum tungsten-filament lamps, around 2500 OK. the new scale crosses the international scale as used in the United States. Furthermore, when the range of standards was extended to gas-filled tungsten-filament lamps and other new types, the measurements were made by methods nearly in accord with the luminosity factors. Consequently the present ratings of tungsten-filament lamps in this country will be practically unaffected by the change. no type being changed by more than 1 percent. 90 31
IVensel, Roeser, Barhrow. and Caldwell. Nat. Bur. Standards Journ. Res., vol. 6, p. 1103, 1931. Nat. Bur. Standards Circ. C-159. 1947.
TABLE 7 3 . C Y M B O L S AND DEFINING EXPRESSIONS FOR .PHOTOMETRY *
Designation
Luminous flux
..................
Luminous intensity (candlepower).
.
Symbol and defining equation
F dF
I =dw
dF ................... E = dA light.. ............... Q = F d t
Illumination t Quantity of
f
= time in hours
Unit
Proposed term
Lumen
Im
Candle
C
Foot-candle Lux, Phot Lumen-hour
ft-c Ix, ph Im-hr
c/in.' Candle per unit area c/cma Stilb sb = c/cmy The mechanical equivalent of light 111 is the least amount of mechanical energy in watts necessary to produce 1 lumen. This energy must, of course. produce light at the wavelength (A = 0.556,1~) where the average eye has its maximum sensitivity. Suppose B , is the brightness of a blackbody in candles per em', then
Brightness t
.....................
dl
B = ___ d A cos @
where K i is the relative luminosity factor (Table 58). The integration is taken over the visible spectrum. The constant rl is to be so chosen as to give the energy per unit wavelength for a 2 r solid angle, then $11 is the mechanical equivalent of light. Using the new value of the brightness of the blackbody at the platinum point (60 candles/cm*) and making the above calculation for the platinum point (2042.16 OK) using the new radiation constants (Table 53). gives 111 = 0.00147 watts/lumen. The reciprocal of this, 680 lumens/ watt, is the value generally given. Equivalents and conversion f a c t o r s f o r photometry.-The total flux from a source of unit spherical candlepo\ver is 12.57 lunien~. 1 lux = 1 lunien incident per ni' 1 phot = 1 Inmrn incident per cni' 1 foot-candlc = 1 lumen incident per ft2 For reference. see footnote 16. 1'. S7. SMITHSONIAN PHYSICAL TABLES
t See Talde 66.
$ See Talile 71.
95 T A B L E 74.-APPARENT
CANDLEPOWER O F DISK OR L I N E SOURCE A T VARIOUS DISTANCES
d = distance ; L = length or diameter of (disk) source. Candlepower, percent
d/L
5 10
Line
........ 99.31 ........ 99.83
Candlepower, percent
Disk '
d/L
99.0 99.74
12 15 20
T A B L E 75.--SPECTRA
Line
Disk
........ 99.88 ........ 99.94 . . . , . . . . 99.98
99.83 99.90 99.95
L LU M I NO US I N T E N SI TI ES
From Planck's equation and constants given in Table 53 and the relative luminosity factors (Table 58) the spectral luminous intensities were calculated for a series of wavelengths (dA = .Olp), and for a number of temperatures and then reduced to equal total luminous intensities. These relative values for the brightness (photometric) of the blackbody a t different temperatures hold for measurements made with a field brightness above about 1 millilambert but do not hold for measurements made for low field brightness. Some time ago some engineers engaged in photometry found a need for agreement for a standard for low intensity. It was then decided to use a source a t a color temperature of 2360 "K. Recently s1 the International Committee on Weights and Measures adopted the blackbody at the freezing point of platinum (2042°K) as the standard for low-intensity brightness in photometry. 0 ! 3 h in fi .38 .39 .40 .41 .42 .43 .44 .45 .46 .47 .48 .49 .50 .51
.52 .53 .54 .55 .56 .57 .58
.59 .60 .61 .62 .63 .64 .65 .66 .67 .68 .69 .70 .71 .72 .73 .74 .75 .76 Relative li~ht output: Xmax:
K
.ooooo .00000 .ooooo .ooooo .ooooo .ooooo .00000 .ooooo .00000 .ooooo .ooooo .ooooo .ooooi .ooooi .~~~~~ ,00000
.00000
.ooooo .ooooo .ooooo .ooooo .ooooo .00000 .00000 .ooooo .ooooo .ooooo .ooooo .oooon .ooooo .ooooo .ooooo .ooooo .ooooo .ooooo .ooooo .ooooo .ooooo .ooooo .ooooo .00001
.ooooi .ooooi .ooooi .ooooi .noon2
.00002 .00002 .00002 .00008 .00008 .00009 .00019 .00021 .00023 .00041 .00044 .00049 .00083 ,00088 .00096 ,00157 ,00167 .00180
.00003 .00004 .00011 .00013 .00028 ,00033 .00057 ,00065 .00111 .00125 .00204 ,00228
,00544 .01024 .01915 ,03217 ,04609 .05972 ,07240 .08356 ,09167 .09545 .09408 .08833
,00570 .01067 ,01983 ,03313 ,04721 ,06086 .07341 .08432 ,09207 .09544 .09366 ,08757
.00606 .01125 .02075 .03442 ,04871 ,06236 .07473 ,08528 .09255 ,09539 .09307 .08654
,00667 .01223 ,02329 ,03654 .05112 .06475 .07678 .08675 ,09323 ,09518 .09203 .08483
,06663 .05143 ,03752 .02523 .01576 ,00902
.06554 .05039 .03663 ,02455 ,01538 ,00872
.06409 ,04904 ,03547 .02366 .01466 .00833
.06178 .04689 ,03366 .02228 ,01371 ,00773
.no002
.00005 .00018 .00042 .00083 .00155 ,00276
.00006 .00007 .00020 .00023 ,00047 .00053 ,00093 .00102 ,00171 .00186 .00301 .00325
,00738 ,01318 ,02376 ,03853 ,05336 ,06692 ,07861 ,08800 ,09374
,00845 .01501 ,02652 ,04220 .05739 .07072 ,08168 ,08996 ,09433 ,09405 ,08889 .08013
.00902 ,01587 .02780 .04387 ,05919 ,07238 ,08297 ,09073 ,09449 .09358 ,08786 .07873
.00957 ,01670 .02903 .04545 ,06087 .07390 .08412 .09139 .09457 ,09307 .08686 .07739
.01011 .01750 .03019 .04694 .06243 .07530 .08517 .09198 .09459 ,09256 .08591 ,07611
.05966 ,04495 ,03204 .02107 ,01287 .00721
,05774 ,05595 ,04323 .0416? .04018 ,03061 .02930 .02813 .02000 ,01904 .01818 ,01215 .01150 ,01092 .00677 ,00637 ,00602
,03886 ,09708 ,01741 ,01041 .00571
.05141 .03765 .02610 .01671 ,00995 .00544
.00004 .00015 ,00037 ,00074 .00140 .00252
.ooonz
.00007 .00008 .00025 .00028 .00058 .00064 .00111 .00121 .00202 .00217 .00372
......
,00786 .01411 .01517 ,04042 .05544 .06890 ,08022 .08905 .09409 .09488 .09449 ,09098 .08992 ,08319 ,08163
.01063 .01827 .03131 .04834 .06388 .07659 .08613 .09243 .09455 .09203 .08498 ,07491
...
...
..
:00227 ,00209 ,00262 .00141 .00133 ,00121 .00111 .00077 ,00073 .00066 .00060 .00041 ,00039 .00035 ,00032 .00022 .00020 .00018 ,00016 .00012 .00011 .00010 .00009 .00008 .00006 .oono6 .00005 .00005 .00004 .00003 ,00003 ,00003 ,00002 .00002
.002TZ .00147 .00081 .00044 ,00023
,775 1.000 .5825 ,5820
.....
.00194 .00181 .00102 ,00095 .00055 .on051 ,00029 ,00026 .00015 ,00014 .00007 .00007 .00004 .00003 .OOOO? ,00002
.05012 .03654 ,02522 .01608 .00953 .00519
.00002
.00009 .00030 ,00069 .00131 .00233 .00396 .00673 .01114 .01901 .03237 .04967 .06524 .07776 .08695 .09284 .09447 .09150 .08409 ,07379 ,06173 ,04893 .03552 ,02442 .01550 .00916 .00497 .00272 ,00135 .00069 .00037 .00019 ,00009
.00169 .00159 .00150 .00142 ,00088 ,00083 ,00078 .00073 ,00047 .00044 .00041 ,00039 ,00024 ,00023 .00021 .no020 .00013 .00012 .00011 .00010 ,00006 .00006 .ooons .00005 .no005 .00003 .00003 .on003 .00002 .ooonz .00002 .00001 .00001 .00001 .00001
1.399 2.398 3.927 6.178 9.383 13.810 19.765 27.594 37.661 50.372 .5805 ,5785 .5270 ,5755 3745 .5730 .5715 .5705 .5695 .5685
'"'enver, K. S., Journ. Opl. Soc. Amer., vol. 38. p. 278. 1949; vol. 40, p. 60, 1950. Terrien, Journ. Opt. Soc. Amer.. vol. 39, p. 888, 1949. l'lntitium point.
SMlTHSONlAN PHYSICAL TABLES
96 TABLE 76.-BRIGHTNESS O F BLACKBODY, CROVA WAVELENGTH, MECHANICAL EQUIVALENT OF LIGHT, LUMINOUS INTENSITY, AND LUMINOUS EFFICIENCY OF BLACKBODY
T h e values of the luminous intensity I in candles and the luminous flux I; in lumens have been calculated using Planck's equation and the values of the luminosity factors KA given in Table 58. The basis of these values is the value of the Waidner-Burgess standard of light intensity. T h e following equation is used :
Bo =
'S
/(AT)KhdA,
where Be = 60 candles per cm', T = 2042.16 "K, and i x = the minimum mechanical equivalent of light expressed in watts per lumen. T h e radiation constants (Table 53) used in these calculations and the value given in the table as the brightness of the blackbody a t this temperature (2042.16) give for the reci~5rocal of the mechanical equivalent of light 680 luiricirs pcr zuntt. This means that 1 watt of radiated energy at about A = 0.555~will give 680 lumens. White light has sometimes been defined as that emitted by a blackbody at a temperature of 6000 "K. T h e crova wavelength for a blackbody is that wavelength A,, at which the spectral luminous intensity varies at the same rate as the total lun~inousintensity varies for a change in the temperature. Temperature
"K
1200 1400 1600 1700 1800 1900 2000 2042.16 2200 2500 2700 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 10,000
.
Total intensity watts/cm2
11.16 21.79 37.18 47.38 59.55 73.92 90.76 98.65 1.3288 X 2.2158 x 3.0146 X 4.5946 x 8.5122 X 1.4521 X 2.3260 x 3.5453 x .s.i906 x 7.3514 X 1.0126 x 1.3619 X 1.7948 X 2 3234 X 5.6724 x
Brightness candles/cm2
.0140 .245 2.145 5.28 11.78 24.23 46.47 60.00 t 1.439 X 10' 5.628 X 10' 1.186 X 10' 3.021 X lo" 1.031 X 10' 2.52s x 104 5.158 X lo' 9.164 x 10' 1.4705 X 10" 2.186 x 10' 3.065 X 10' 4.103 X 10' 5.294 x 10" 6.630 X lo5 1.3221x 10" ~
10' 10' 1Oa 102 loz 10' 103 103 10% 10' 104 10' lo' 10' 10'
deg-'. Calculated, u = 5.6724 x 10-12, watts Waidner-Burgess standard. See Table 69.
t Brightness,
SMITHSONIAN PHYSICAL TABLES
Lurnens/crnz
.04 .77
Lumens/watt
Crova wavelength
0035
6.74 .
16.57 37.00 76.1 1 1.460 X 10' 1.885 x 1o2 4.520 x 10' 1.7679 X 10' 3.726 x 10' 9.491 x 10' 3.183 X 10' 7.932 X lo' 1.620 X 10" 2.879 x lo5 4.620 x lo5 6.868 x lo5 9.629 x 10' 1.289 X 10' 1.663 x 10" 2.083 x 10" 4.153 X 10'
3.40 7.98 12.36 20.7 37.4 54.6 69.7 81.2 89.0 -. .93.4 95.1 94.6 92.7 89.6 73.2
.572 .568 .564 .562 .560 .558 -5.57 .557 .556
.555 .555
.554
T A B L E 77.-OPTICAL
PYROMETER
97
An optical pyrometer is a device for measuring the temperature of a high-temperature radiating body by comparing its brightness for a selected wavelength interval (within the visible spectrum to be sure) with that of some standard selected source. The wavelength, or wavelength interval, is generally selected by the use of a red glass in the eycpiece. This gives rise to the tern1 effective wavelength. (See Table 562.) The effective wavelength of a monochromatic screen for a definite temperature interval has been defined as the wavelength for which the relative brightness, as calculated from Wien’s equation for this temperature interval, is the same as the ratio of the integral luminosities for these two temperatures, as measured through the red screen. Various devices are used to make these comparisons, and different devices have been used as the comparison source. It seems that most users of the optical pyrometer today prefer to use the disappearing-filament type, which has a small filament as the comparison source. The optical pyrometer as generally calibrated gives the true temperature of blackbodies but not of other radiators. If one radiating characteristic of any other radiator-e.g., its emissivity-is known, true temperatures can be determined of such radiators, e.g., an incandescent tungsten filament, by the use of the optical pyrometer. The emissivities of a number of sources are given in Table 78. The ttxe temperature T of a non-blackbody may be determined from its brightness temperature, SA (the apparent temperature), and its emissivity CA from the following relation :
1 T
1
xi
- Xloge~ l-zlogc
For some calculated values see Table 79. This entire subject is extensively treated in “Temperature, Its Measurement and Control,” a report of a symposium on this subject published by the Reinhold Publishing Co. in 1941.
SMITHSONIAN PHYSlCAL 1ABLES
98 TABLES 78-S4.-EMISSIVITTES T A B L E 78.-NORMAL
OF A NUAIBER OF MATERIALS
SPECTRAL E M l S S l V l T l ’ E S FOR SOME E L E M E N T S A N D ALLOYS
The emissivity, spectral or total. of any non-hlackbody shows the relation between the intensity of its radiation and that of the blackbody when both are a t the same temperature. Spectral emissivities have been measured for a number of materials for different temperatures and different wavelength intervals and are shown in Part 1. Part 1.-At
temperatures generally above 1000
O K ”
Room temperature values are given in a few instances where they, along with values a t higher temperatures, form a connected series and where the values given for the higher. temperatures depend on those given for low temperatures. Emissivity I
Tempyature
Material
.........
Konal
p
cx
&
eA
p
Remarks
ex’
1600 2500
.66 .66
39 .84
1500
.66 .66 .66 .66 .66
.lo5 .120 ,150 .I40 .I3
Solid Solid Liquid Liquid Liquid
1000 1480-1500
.66 .65
.27 .37
Solid Solid and liquid
..........
1200
.665
.43
....
300 1300 2000 2750
.665 .665 ,665 .665
.420 ,378 .353 .332
Carbon
Iron
K
-
Green Blue * * h in X in A in Red
...........
Molybdenum
.......... 1200-1650 .665
Nickel
Tantalum
.......
300 1400 2100 2800
.665 .665 ,665 .665
,375
.467 .467 .467 .467 .535
.425
,493 .442 .415 .390
.425 .395 .380 .365
,460
.450
.467 .467 .467 .467
.565 .505 .460
Solid
...
% Worthing, A. G., Temperature radiation emissivities and emittances, Temperature, Its Measurement and Control, p. 1184, Reinhold Publishing Co., 1941.
P a r t 2.-Emissivity
(CA
x = .55&
5zG&G Beryllium ..... 61 81 Chromium ..... 53 .. Cobalt . . . . . . . . . . . . Copper ........ 38 36 Erbium . . . . . . . . . 30 Gold ..........<38 <38 Iridium . . . . . . . . . . . Iron . . . . . . . . . . . . . . Manganese . . . . . . . . Molybdenum . . . . . . . Nickel ........ 44 46 Metal
expressed in percent)
X = .65& f-----7
Solid Liquid
61 39 36 10 55 14 30 37 59 43 36
61 39 37 15 38 22
..
37 59 40 37
Metal
A = .55& A- , 6 5 1 ~ Solid -7,-1,iquld Solld Llquld
Niobium ..... 61 Palladium .... 38 Platinum ..... 38 Rhodium ...... Silver ........<jS Thorium ..... 36 Titan.ium ..... 75 Uranium ..... 77 Vanadium ._.. 29 Ytterbium . . . . . Zirconium . . . . .
International Critical Tables.
(continucd) SMITHSONIAN PHYSICAL TABLES
-
o f a number of metals a t their melting points
..
..
..
<ji
..
75
..
.. ... ...
49 33 33 29 4 36 63 54 35 35 32
40 37 38 30
7 40 65 34 32 35 30
9 T A B L E 78.-NORMAL
S P E C T R A L E M I S S I V I T I ~ E SFOR SOME E L E M E N T S A N D A L L O Y S (concluded) Part 3.-Emissivities
Tempe!ra. ture I ,301.~ .38 "K ,495 .SO3 I200 ,502 .so0 ,498 ,496 ,493 ,492
1500 1x00 2000 2200 2500 2600 2700 2x00
.491
,490
.4x9 ..
'900
3000 3200 3400 3(1
.4XX .486 .484
Wavelength -h
-
~
.-I92 .4xx .4x5 .AX3
.477 ,476 ,475 ,473 ,472 ,470 ,468 ,465
,467 ,482 ,476 ,472 ,469 ,466 ,463 ,460
,665 ,452 .445 ,439 .435 ,431 ,425 ,423
.8 ,428 .422 .417
.459 ,458
,421
,401
,419 ,417
,399 .39x ,396 ,392 ,388
,456 ,455 ,452 .450
of tungsten *I'
,414 ,410
.-lo5 ,403
,415 .4 11
,407
1.0 ,390 .385 .386 .3xo .378
,375
,373 ,372 ,371 .370 .36X ,366 ,363
1.5 275 .2XO ,284 .2x7 ,290 ,295 ,297 .29x ,299 ,300 ,302
,305 ,308
1.8 .I77 .I91 ,206 ,215 275 ,240 ,245 ,149 .?54
,259 ,264 ,273 ,283
-7
.I80 ,191 .201
2.5 .127 .145 .I61 ,170 .I80
,217
.I95
,222 ,228
200
2.0 ,148 ,164
,205
,233 ,239 ,245
,255 ,265
4.0
3.0 .116 ,132 .I48 ,158 ,167 ,180 .184 .I 88 ,192 ,197 ,200
,210 ,215 220 ,231 ,241
.loo
,138
.I15
,192
.I27 ,135 ,144
.236 .259 .278 .301 .309 .315 .321 .329 .334 ,341 .348
,155 .I59 ,163 ,167 ,170 .I73 ,180 ,186
,208 ,216
To!al emissivity
Forsythe, W.E., and Ailanis. E. Q.. Joui-n. Opt. SOC..\mer., vol. 35, p. 108. 1945. For X
= 1.27s
Part 4.-Emissivities
X in I.L
Element
Ch ronii um . . . . .66 Cobalt . . . . . . . . Iron a . . . . . . . .
. . .. . . .. Molybdenum . , Nickel . . . . . . . Niobium . . . . . Y
i .. . . . .. .
the spectral emissivity is constant and equals 0.335.
of some metals specially prepared by heat-treating and out-gassing 3i Eniissivity
Teniperatiire "K
.334 .327 .342 .344 .325 .337 .382 .350 .374
1050-1560 1240-1378 1378-1450 below 1178 1178-1677 1677-1725 1300-2100 1200-1400 1300-2200
Element
X in /I
Palladium . . Platinum . . . Rhodium . . . Tantalum
Thoiiun; Tungsten Uranium
..
. .. .. . ...
Temperature
Emissivity
,311 .291 .295-.310 ,242 .439-384 .. ,380 .46 .6605 .453 .416
"K 1200-1400 1200- 1400 1200-1800 1300-2000 1200-2400 1300-1706 1200 2200 1180-1320 1325-1370
si Private communication from Wahlin, taken from data hy Wahlin and Knop, I,. V. Whitney, Wahlin and Wright, Worthing, Fiske, Phys. Rev.
T A B L E 79.-CORRECTlONS I N ' C T O ADD T O B R I G H T N E S S T E M P E R A T U R E READINGS, FOR D I F F E R E N T E M I S S I V I T Y , T O O B T A I N T H E TRUE TEMPERATURE *
Emissivity
.10 20 .30 .40 .50 .60 .70 .80 .85
.90
.95
,
Pyrometer using red light, wavelength, X = .665p, and cI temperatures degrees Kelvin. of
= 14380s
"K at observed
A.
1000
1100
1200
1300
1400
1500
1600
1700
1800
119.2 80.4 59.0 44.2 33.1 24.2 16.8 10.4 7.5 4.9 2.4
145.9 98.1 71.8 53.8 40.2 29.3 20.3 12.6 9.3 5.9 2.9
175.8 117.7 85.9 64.3 48.0 35.0 24.2 15.1 10.9 7.1 3.4
208.9 139.3 101.4 75.8 56.5 41.2 28.5 17.7 12.6 8.3 4.0
245.3 162.8 118.3 88.3 65.8 47.9 33.1 20.5 14.9 9.6 4.7
285.1 188.5 136.7 101.8 75.8 55.1 38.0 23.6 17.1 11.0 5.3
328.6 216.3 156.5 116.4 86.5 62.9 43.4 26.9 19.5 12.6 6.1
375.7 246.2 177.7 132.0 98.0 71.1 49.0 30.3 22.0 14.2 6.9
426.8 278.4 200.5 148.6 110.2 79.9 55.1 34.1 24.7 15.9
7.7
*The values given in this table also give the correction for a window having a transmission given in column 1 for different temperatures of the source when this window is used between the source and the pyrometer.
(continued)
SMITHMNIAN PHYSICAL TABLES
100 T A B L E 79.-CORRECTIONS I N "C T O A D D T O B R I G H T N E S S T E M P E R A T U R E READINGS, FOR D I F F E R E N T E M I S S I V I T Y , T O O B T A I N T H E T R U E T E M P E R A T U R E (concluded) Pyrometer using red light, wavelength, X = , 6 6 5 ~ .xnd rl temperatures degrees tielvin, of Em+ SlVltY
.10 .20 .30 .40
.so
.60 .7n ... .80 .85 .90 .95
.= 14380~'K
at olisrrvecl
1900
2000
2200
2400
2600
2800
3000
3600
481.9 312.9 224.8 166.3 123.2 89.3 61.5 38.0 27.5 17.7 8.6
541.2 349.8 250.6 185.2 137.0 99.2 68.2 42.1 30.5 19.7 9.5
673.0 430.7 307.0 226.1 166.9 120.6 82.8 51.1 37.0 23.8 11.5
823.9 521.9 370.1 271.7 200.0 144.2 98.9 60.9 44.1 28.4 13.7
995.2 623.8 440.0 330.4 236.4 170.1 116.5 71.6 51.8 33.3 16.1
1189.5 737.2 517.2 377.0 276.1 198.3 135.6 83.3 60.2 38.7 18.7
1408.3 862.5 601.6 436.9 319.2 228.9 156.2 95.9 69.2 44.5 21.5
2237.8 1317.6 902.4 648.0 469.6 334.6 227.2 138.9 100.1 64.2 31.0
T A B L E 80.-COMPUTATION OF T O T A L E M l S S l V l T Y V A L U E S FOR V A R I O U S GLASS S A M P L E S A T L O W T E M P E R A T U R E S Iyl
Sample Vused quartz Corex D Nonex
Apprfnt. emissivtty Thick-. - -A- , ne w 200 ;ZO to0
.....
......... ...........
(mm) 1.96 3.40 1.57
c
c
c
.78 .SO .82
.SO
.75 .76 .78
.80
.82
Computed transmittance
t
Temperature differential t
Coyre5ted emlsslvlty
G,266 .I13 .I45
,134 .041
,023 ,002
,041
.004
19 49 31
8 18 12
1 2 1.5
.67 .91 .X2
.76 .90 .87
,775 .83 335
Dissipating of energy b y l a m p bulbs.-The bulb of a 120-volt 500-watt lamp dissipates 18.5 percent of the input energy to the lamp. About 10 percent is lost by radiation and 8.5 percent by conduction and convection by the surrounding air. The losses from other similar lamp bulbs probably agree with this. %B arn e s , B . T., Forsythe, W. E . , , a n d Adams, E . Q. Journ. Opt. SOC.Amer., vol. 37, p. 804, 1947. Assuming no radlatton transmltted through sample from heater and no temperature gradtent. $ Between front and back surfaces. t Assuming all of sample at heater temperature.
T A B L E 81.-RELATIVE
Emissive power of blackbody at 600 "C.
+
E M l S S l V l T l E S F OR T Q T A L R A D I A T I O N
= 1. Receiving surface platinum black at 25°C; oxidized Temperature, "C
Silver ........................................ Platinum (1) ................................. Oxidized zinc ................................. Oxidized aluminum ............................ Calorized copper, oxidized.. .................... Cast iron ..................................... Oxidized nickel ............................... Oxidized monel ............................... Calorized steel; oxidized.. ...................... Oxidized copper .............................. Oxidized brass ................................ Oxidized lead ................................. Oxidized cast iron ............................. Oxidized steel ................................
' 200
400
600
.020 .060 .113 .180 .210 369 .411 521 .568 .610 .631 .643 .790
.030 .086 .153 .185
.038 .110 .192 .190
.424 .439 547 .568 .600
.478 .463 .570 .568 .589
.710 .788
.777 .787
110
-
-
-
-
For radiation properties of bodies at temperatures so low that the radiations of wavelength greater than 2Op or thereabouts are important, doubt must exist because of the possible and perhaps probable lack of blackness of the receiving body to radiations of those wavelengths or greater. For instance, see Tables 568 and 573 for the transparency of soot. SMITHMNIAN PHYSICAL TABLES
101 E M l S S l V l T Y V A L U E S OF VARIOUS MATERIALS A T LOW T E M P E R A T U R E S *
T A B L E 82.-TOTAL
Material
.
Alleghany alloy No. 66.. . . . . . . Alleghany metal . . . . . . . . .. . . Aluminum . . . . . . . . . . . . . . . . . Aluminum .................... Aluminum . . . . . . . . .. . . .. . . .. Aluminum paint . . . . . . . . . . . . . . Brass . . . . . . . . . . . . . . . . . . . . . . . .
.. . .. .
Chromium
.
.. . ... ..............
Iron ......................... Iron . . . . . . . . . . . . . . . . . . . . . . . . Lamp black . . . . . . . . . . . . . . . . . . . Molybdenum . . . . . . . . . . . . Nickel . . . . . . . . . . . . . . . . . . . . . . . Nickel-silver . . . . . . . . . . . . . . . . . Radiator paint, black ..... Radiator paint, bronze . . . . . . . . . Radiator paint, cream . . . . . . . Radiator paint, white . . . . . . . . . . Silver . . . . . . . . . . . . . . . . . . . . . Stainless steel . . . . . . . . . . . . . . . . Steel . . . . . . . . . . . . . . . . . . . . . . . . Tin . . . . . . . . . . . . . . . . . . . . . . . . . .
. . .. ..
.
Zinc
Condition
......
.........................
320'C
500°C
.77 .75
.72 .71
.ll .13 .09 .095 .18 .29 ,059 .77 .76 .075 .052 ,059 .31 .27 .84 ,071 .072 .135 .84 .51 .77 .79 .052 ,074 .066 .06Y .084 .066 .21
Polished Rough plate Rough plate Polished Polished Polished Dark gray surface Roughly polished Rough deposit Polished Polished Polished
. .. . .
.
At 100°C
Polished No. 4 polish Commercial sheet Polish Rough polish
......
...... Polished Polished Polished Polished Commercial coat Polished coat Commercial coat
.78
For reference, see footnote 38, p. 100.
T A B L E 83.-PERCENTAGE True temperature " C
E M l S S l V l T l E S O F M E T A L S A N D OXIDES
500
600
700
800
906
1000
1100
1200
60 Fe0.40 FezOz Total = Fe heated in air ......... . . A = .65p
85
85
86
87
87
88
88
89
-
-
-
98
97
95
93
92
...............Total
-
-
54
62 98
68 96
72 94
75 92
81 88
86 87
NiO
..............h =
.65p
Platinum : True temp. ZC ... 0 100 200 300 400 500 750 1000 App.* temp. C . . . - - - - - 486 Total emiss. Pt.. . 3 1 4.0 5.1 6.1 7.0 8.0 10.3 12.4 Oxides : = .65p NiO Co:tO, Fe:%O,Mm0. TiOr ThOs Y?Os B e 0 Splid ...... .... 89 77 63 .. 52 57 61 37 Liquid ........ 68 63 53 47 51 69 .. ..
.
1200 1400 1600 1700 630 780 930 1005 14.0 15.5 16.9 17.5 KhOx Vp0s Cr20s
71
..
69
..
60
..
1-30s
30 31
As observed with total radiation pyrometer sighted on the platinum.
T A B L E 84a-TOTAL
R A D I A T I O N F R O M B A R E A N D SOOT-COVERED NICKEL sa
(watts/cm2) "K
400
Soot-covered Ni ..... ... ,096 Poli:hed initial heat. . ,0092 after above.. .0066
500
600
700
800
900
1000
1-700
1400
.28 .032 .023
.59 .079 .058
1.87 .166 .123
3 .31 .24
3 .55 .44
4.8 .91 .76
2.ij
4.49 4.49
sa Barnes, Phys. Rev., vol. 34, p. 1026, 1929.
SMITHSONIAN PHYSICAL TABLES
2.04
ul
2
T A B L E 85.-CHARACTERISTICS
O F TUNGSTEN
I
w
x
r
111
Y
7: .t: E
a
5*
.">.a ."2 ; m.-
ha
ZEQ
300
400 500 600 700 800 900 loo0 1100 1200
i300
1400 1500 1600 1700 1800 1900 2OOO 2100 2200 2300
2400
2500 2600 2700 2800 2900 3000
.464
966 .463 1058 -462 1149 i460 1240 .459 1330 .457 1420 ,456 1509 .455 1597 .454 1684 .453 1771 .452 1857 .450 1943 .449 2026 .448 2109 .447 2192 .446 2274 .444 2356 .443 2437 .442 2516 .441 2595 .eu, 2673
1006 1108 1210 1312 1414 1517 1619 1722 1825 1933 2044 2151. 2261 2371 2479 2584 2690 2797 2905 3013 3121
581 659 738 819 905 991 1080 1167 1254 1342 1428 1514 1601 1688 1775 1859 i945 2031 2116 2202 2286
1.om0 1.0005 1.0010 1.0014 1.0018 1.0023 1.0028 1.0032 1.0036 1.0041 1.0046 1.0052 1.0057 1.0063 1.0069 1.0075 1.0081 1.0088 1.0094 1.0101 1.0108 1.0116 1.0124 i.Oi32 1.0140 1.0149* 1.016* 1.017+
.84t .87 t .90 t .93 .% .99 1.01 1.04 1.07 1.09 1.11 1.13 1.15 1.17 1.19 1.21 1.23 * 1.25 * 1.27 *
6.20 6.35 6.50 6.65 6.80 6.95 7.10 7.25 7.40 7.55 7.70 7.85 8.00 8.15 8.30 8.45
-18 -20 -22 -24 -26 -28 -30
5.65 8.00 10.48 13.07 15.75 18.5: 21.53 24.26 27.23 30.26 33.29 36.37 39.49 42.65 45.84 49.05 52.30 55.58 58.89 62.23 65.60 68.99 72.41 75.85 79.32 82.81 86.32 89.85
Ed0
.g
--..
%: B
52 % $ .22
E
.I
aJ
I=
Qh
h1Q
5s g spd:
1.209 1.209 1.209 1.209 1.209 1.209 1.209 1.209 1.209 1.195 1.195 1.195 1.195 1.195 .94 1.195 2.27 1.195 5.06 1.195 10.19 1.195 19.54 1.195 35.0 1.195 59.1 1.195 97.00 1.195 151.0 1.195 226.0 1.195 333 1.195 480 1.195 665 1.195 910 1.195 1215
z2
$\k -cl
52
h
.5 2 EE
am
15.2 14.4 13.7 13.0 12.3 11.7 11.2 10.8 10.3 9.9 9.6 9.2 8.9 8.6 8.3
.00110 .00495 .0150 .0385 .0850 .1730 .333 .600 1.01 1.63 2.54 3.82 5.54 7.72 10.53 14.05 18.30 23.45 29.55 36.75 45.10 54.90 66.1 79.2 93.8 110.0 129.5 151.0
5.47 5.50 5.51 5.53 5.53 5.52 5.48 5.41 5.31 5.18 5.02 4.89 4.80 4.73 4.68 4.64 4.61 4.59 4.57 4.56 4.55 4.54 4.53
.09 .20 .40 .71 1.15 1.86 2.74 3.89 5.38 7.13 9.21 11.46 14.01 16.93 20.03 23.20 26.60
r;,IP
1%
11.8 10.8 10.0 9.3 8.7 8.1 7.5 6.9 6.4 6.0 5.6 5.3 5.0 4.7 4.4 4.1 3.8
hla
3.6 1.81 5.75 1.29 2.09 2.59 2.55 2.04 1.36 7.86 3.94 1.75 6.98 2.44 8.20
-20 -18
-17..
-15 -14 -13 -12 -11 -10 -10 -9 -8 -8 -7 -7
67 63 59 56 53 50 48 46
44 42 40 38 36 35 34
m
MForsythe, W. E., and Adams, E. Q., Journ. Opt. Soc. Amer., vol. 35, pp. 108-113, 1945. Data given in this table ap ly to aged tungsten filament. For emissivities. see Table 78. B SurrounLd by a blackbody at O O K u = 5.67 watts em* degr. room temperatures.
t These
values are extrapolated.
$ These depend on the dimensions at
103 A N D O T H E R PROPERTIES O F T A N T A L U M ''
T A B L E 86.-RADIATION
Temperature Emissivity
.-.463;
"K
300
1000
2400 2600 2800 3000 3300 l'
.493 .459 :450 .442 .434 .426 .418 .411 .404
.665fi
.52
.51 SO .49 .48 .47 .46 .45
Color
Radiation
OK
"K
....
....
.56
Resistivitv Radia____ _, tion fi-ohmwatt/ cm cm2
,
Brightness
~~
.... .... ....
966
1149 _ - ._
1329 1506 1680 1851 2018 2180 2339 2495
1642 1859 2075 2288 2497 2705 291 1
2647 2870
....
....
~
....
.... .... ....
.... .... ....
1062 1222 1390 1556 1730 1901 2080
Tdn ndT
....
....
....
....
....
....
....
67.6 74.1 80.5 86.9 92.9 99.1 105.0
7.3 12.8 21.2 33.4 50.7 75 106
4.80 4.80 4.80 4.80 4.80 4.80 4.80
....
....
....
.... ....
.... ....
~~
....
....
Tziz! sivity
.... .... .... .... .194 .213 .232 .251 .269 .287 .304
..
....
Worthing, A. G . , Phys. Rev., vol. 28, p. 190, 1926.
-
T A B L E 87.-RADIATION
A N D O T H E R PROPERTIES O F MOLYBDENUM Temperature
7
Emissi\rity 1
"K
.475/.L
.420 273 .390 1000 .375 1400 1600 .367 1800 -.__.360 .353 2000 .347 2200 .341 2400 .336 2600 2800 .331 2895 ,328
.425 .403 .393 .388 .383 .379 .375 .371 .368 .365 .363
Brightness -S.m&I
Color
"K
"K
....
....
1004 1411 1616 1823
958 1316 1489 1658 1824 1986 2143 2297 2448 2519
_2i)32 ___
2244 2456 2672 2891 2997
Radia. tion
"K
....
Resistivity p-ohmcm
5.14 23.9 35.2 41.1 47.0 53.1 59.2 65.5 71.8 78.2 81.4
557 864 1024 1187 1354 -.. 1523 1693 1866 2039 2122
Brightness normally candled cma
Radiatjon In-
tensity watts/ cma
...
.... ....
.0001 .55 .089 3.18 .765 6.30 11.3 4.13 15.9 19.2 48.5 30.7 47.0 123 .... 270 69.5 540 98 730 116
*
Luminous efficiency lumens/ watt
.... .... .093
.40 1.22 2.75 5.28 8.70 13.0 18.4
..
For reference, see footnote 41, above.
T A B L E 88.-RELATION B E T W E E N BRIGHTN ESS T E M P E R A T U R E A N D COLOR T E M P E R A T U R E FOR VARIOUS SUBSTANCES Brightness temperature
1400°K 1500 1600 1700 1800 1900 2000 2200 2400 2600 3000
Corresponding color temperature forL
Untreated carbon
1414 1515 1616 1718 1820 1923 2028 2240
.... .... ....
Gem
....
i
1735 1852 1962 2064 2255
.... .... ....
SMITHSONIAN PHYSICAL TABLES
Platinum
1568°K 1692 1821 1952 2086
.... .... .... .... .... ....
Nernst glower
1538 1642 1747 1852 1954 2053 2146 2310
....
.... ....
Osmium
Tantalum
1562 1680 1799 1919 2045 2168 2427 2688
1507 1631 1758 1883 2010 2137 2265 2500 2785
....
....
1444
....
....
Tungsten
1492 1607 1723 1841 1961 2082 2206 2457 2718 2988 3564
104 T A B L E 89.-COLOR
M I N U S B R I Q H T N E S S T E M P E R A T U R E FOR CARBON
Brightness temp. 'I< .... 1600" Color-brightness . .. . 2
1800" 12
1700" 7
.
1900" 16
2000" 22
2100" 28
2200" 33
T A B L E 90.-RELATIVE B L U E BRIGHTNESS, B, A N D BRIGHTNESS I N CANDLES P E R CM2 C, O F SOME I N C A N D E S C E N T O X I D E S A T VARIOUS R E D (0 . 6 65 ~) BRIGHTNESS T E M P E R A T U R E S , Sh S = 1500 Material
.. .
B
1700
C
B
1800
C
B
C
Blackbody . . . . . . . . . . . . . . . . .026 .91 .27 5.3 .74 12.0 Tungsten . . . . .. . . . .. .. . . .. .038 .84 .41 5.9 1.11 14 Urania, gas air and oxy-gas.. . .028 1.02 .31 6.6 .84 15 Ceria, pure: Oxy-gas ... . .. ,035 1.08 .32 6.3 .83 14 yellow: " . . . . . . . .032 1.04 .32 7.1 .85 17 brown: " . . . . . . . .033 1.15 .30 6.7 .83 15 Oxides of Ce group : Oxy-gas. .031 .97 .34 6.3 .92 14 Neodymia : Oxy-gas . . .. . . . .. .032 1.17 133 619 .92 15 Lanthana: . . . . . . . . . ,033 1.11 .34 6.6 .89 15 Erbia : . . . . . .. .047 1.71 .45 8.1 1.17 16 Yttria, pure : Oxy-gas. . . . . . . . .067 1.18 .61 7.3 1.56 17 95%pure: " . . . . . . .047 1.20 .46 7.3 1.19 16 Zirconia : Oxy-gas . . . . .. .. .058 .73 .55 3.6 1.43 8 Thoria : .......... .033 1.44 5 6 7.5 1.40 16 Alumina: .......... .076 1.45 187 K4 2.5 22 Beryllia : .......... .086 1.62 .99 9.7 2.8 22 Magnesia: " .......... .21 2.4 1.31 11.0 2.8 22 Thoria 1% ceri?: Oxy-gas.. . . .078 1.45 .70 8.6 1.71 19 1% urania : " .069 1.33 .67 8.3 1.77 19 trace urania: " .... .059 1.33 .68 8.3 i.93 i b 1% neodymia : " .... ,046 1.43 .43 7.1 1.14 15 1% Mn oxide : " .... .035 1.13 .37 6.1 1.01 13
.
.. .. . . . . .
1:
::
~~
..
.. ..
....
B
1900 C
1.80 2.7 2.0 1.9 2.0 1.68 2.3 2.3 2.1 2.7 3.6 2.8 3.3 3.1 6.1 6.9 5.6 4.1 4.1 4.8 2.6 2.4
24.0 33 35 31
40 33 33 33 33 33 32 36 15 32 49 49 43 43
44 44 29 28
2000
B
C
3.9 6.3 4.5 4.0 4.0 3.5 5.0 5.0 4.5 5.6 7.3
47.0 74 78 62 88 68 71 64 64 63 63 75 30 63 103 104 79 90 93 93 56 56
5.9
7.0 6.3 13.6 15.4 10.2 8.4 8.7 10.5
5.5
5.3
T A B L E 91.--COLOR T E M P E R A T U R E , BRIGHTNESS T E M P E R A T U R E , A N D B R I G H T N E S S OF VARIOUS I L L U M I N A N T S Source
Te
Gas flame: Batswing . . . . . . . . . . . . . . . . .. . . . . . Candle shape about 10 cm high.. . . Hefner as a whole.. . . . . . . . . . . . . . . . . . Candle : Sperm ......................... Paraffin ........................ Pentane 10-cp. std .................... Kerosene : Flat wick .. .. . . . . . .. . ... .. .. . . . Round wick .................... 4 wpc carbon ........................ 3.1 wpc treated carbon.. . . .. . . . . . . . . . . 2.5 wpc gem.. . . . . . . . . . . . . . . . . . . . . . . 2 wpc osmium.. . . . . . . . . . .. . . . . . . . . . . . 2 wpc tantalum.. . . . .. . .. .. . . . . . . .. . . Acetylene as a whole.. .. .. . . . . .. . . . . . One spot _ . . .. .. .. .. .. Mees burner . .. . ... .. .. . .. . . . .. . 1.25 wpc tungsten .... ...... .......... 2.3 wpc Nernst.. . . . . . . .. . .. . .. .. . .. . Sun : Outside atmosphere . . . . . . . . . . . At earth's surface.. .. . .. . . . . . .. .. Clear sky ........................... Moon .............................. Welsbach mantle .. . . . . . . . . . . . . . . . . . .
.
.
.
. . .. . ....
.
SMITHSONUN PHYSICAL TABLES
.
S(X = .665)
Brightness c/cd
2160 1875 1880 1930 1925 1920 2055 1920 2080 2165 2195 2185 2260 2380 2465 2360 2400 2400 6500 5600
....
.... .. ..
;500 1530 2030 2065 2130 2035 2000
1.27 1.51 54.9 70.6 78.1 60.8 53.1
1660 1730 2150 2320
6.69 10.8 125 258 224000 165000 .4 .5 9.0
T A B L E 9 2 . 4 H A R A C T E R l S T l C S O F SOME CARBON ARCS
*
105
Low intensity and high intensity carbon arcs Positive carbon
Low-intensity carbons 10 mm low intensity..
. . . . . . .. .......... '' .......... High-intensity projection carbons 6 mm "suprex".. .... . . .. . . .. 7 .............. 8 .. . . ... . .. . . .. 9 rotating positive ...... ...... 11 ' ...... 13.6 '' ...... ...... ' ...... 16 High-intensity searchlight carbons 10 mm rotating positive.. . . .. 12 ...... 16 ...... 16 ...... 12 " 13 ''
"
"
"
"
"
"
"
"
"
"
I'
"
"
"
"
"
"
"
Lower
+"Ph2to WF
20 32 40
55 55 55
14.9 15.7 16.3
40 50 70 85 115 125 150 170 225
37 37 40 58 55 68 78 75 75
35.0 33.6 32.2
100 120 150 195
75 75 78 90
32.3 33.0 32.0 31.5
Arc volts
Amperes
4"WF
40 40 40 40
Pheto $
$
Lumens per arc watt
Vertical trim ac and dc flame arcs
Carbons Upper
Arc t volts
Amoeres
f" 2F 0
Upper polarity
Lumens per arc watt
-
39 ..
-
55 50 44
+ + -
55 ac 55 dc 55 dc 55 dc
Alternating-current high-intensity carbon arcs Carbon
Amperes
Arc volts
7 mm 8 mm 9 mm
65 80 95
26 ac 29 ac 26 ac
t
Data furnished by W. W. Lozier of National Carbon Co. tional" white flame photographic carbons, rare earth cored.
T A B L E 93.-EFFICIENCIES
.411 direct-current power.
$ "Na-
O F SOME E A R L Y INCANDESCENT LAMPS O F ABOUT 60-WATT SIZE '*
.,
. ... .
. .
Lumens per watt
.
..
.
. .. . . .
1.8 3.2 4.0 5.0 4.9 4.9 7.8 14.0
'=Forsythe, W. E., and Adams, E. Q., Bull. Denison Sci. Lab., vol. 32, p. 70, 1937.
SMlTHSONlAN PHYSICAL TABLES
60.5 61.5 68.5
5 "National" 2F carbon, neutral cored.
Edison's early carbon lamp.. . . . . .. . . . . .. .. . . ... . .. . .. Treated carbon lamp.. . . . . . . . . . . . ... . . . . . . .. . . , . . . .. Gem lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . Nernst glower .............................. ......... Tantalum lamp ................. . .................... Osmium lamp .. .. ... . . . . . .. . . . ... . . . . . . . . . Tungsten lamp (1907) ............ .................... Tungsten lamp (1949) coiled coil ......................
..
Lumens per arc watt
Life
600 h r 600 600 600 900 1,000 1,Ooo
106 T A B L E 94.-lNCREASE
I N T U N G S T E N L A M P E F F I C I E N C Y OVER A PERIOD O F YEARS
Lamp
.
100-watt squirted filament . . . . . . . . . . . . . . . 100-watt drawn wire . . . . . . . . . . . . . . . . . . . . 100-watt drawn wire . . . . . . . . . . . . . . . . . . . . . 100-watt gas-filled . . . . . . . . . . . . . . . . . . . . . . . 100-watt gas-filled .. . . . . . . . . . . . . . . . . . . . . . 100-watt gas-filled . . . . . . . . . . . . . . . . . . . . . . . 100-watt gas-filled * . . . . . . . . . . . . . . . . . . . . . . 100-watt gas-filled * coiled coil. . . . . . . . . . , . .
.
750 hours life.
t Vacuum
Date measured
Temgerature
Efficiency in lumens per watt
1908 t 1909 t 1915 t 1921 1932 1936 1936 1948
2,355 2,360 2,475 2,740 2,800 2,845 2,855 2,860
8.8 9.3 10.3 12.6 14.3 14.9 15.5 16.3
K
lamps.
T A B L E 95.-TEMPERATURE A N D E F F I C I E N C Y O F SOME T U N G S T E N F IL AME NT LAMPS
*
General service Lamp watts
Life (hrs)
*
6$ 25 40 60 coiled coil 100 coiled coil 500 1000 1500 Lamp
Volts
Studio or airport lighting Floodlight
Monoplane Biplane Coiled coil 4 seg. 3 seg. 3 seg. Photoflood No.1 R2 4
10 kw.
50 kw.
120 120 120 120 120 120 120 120 120
Area II 151 65 135
120 120 120
19 41 55
120 120 120 120 120
Max. bare bulb t TEmp. C
2400 2585 2750 2770 2850 2940 3000 3050
6.9 ...
10.5 11.9 14.0 16.3 20.3 21.0 22.0 Life (hrs)
Base t T$mp. C 31 f
34 4.3 127 122 127 198
42 105
90 94 100
Tzmp.
Candlepower7
Lumens
1PW
K
1000 6000 6000 15,000
16.0 19.2 20.1 21.0 13.6 21.8 32.7 32.7 17.6 20.8
2870 2940 2995 3010 2840 3030 3350' 3350' 2925 3170
13,250
26.5 26.0 27.6
3270' 3270' 3360'
1545 1700 4045
SO 790 SO 1850 loo SO 4240 200 Photographic lamps 250 2 8650
15.8 19.2 21.2
2920 2950 2985
80 185 390
Current Watts
6.6 6.6 20.0 20.0
K
IPW
1500 ~. ~.
1000 1000 1000 750 1000 1000 1000
Street series
cx
Temgerature
ZOO0 2000 2000 2000 60 500 500 500 5000 75 10,000 75 500 800 1500 800 Projection lamps 500 500 1000
50 25 25
50
500 1000
6 10
3430 ' 3350 a 3410
33,500
Two large lamps (monoplane) 280,000 83.3 '10,000 50,000 1,400,000 416
28 28
3300 3300
33,000 166,000
Data furnished by W. E. Forsvthe and E. M. Watson. of the General Electric Co. t These t Vacuum lamps, all others are gas-filled. 8 Temvalues furnished by W. H. Fisher, Nela Park. 11 Area of coil in mma. 1 Candlepower in direction used. perature at junction of base and bulb. Color temperature.
(continued)
SMITHSONIAN PHYSICAL TABLES
107 T A B L E 95.-TEMPERATURE A N D E F F I C I E N C Y OF S O M E T U N G S T E N F I L A M E N T L A M P S (concluded)
Lamp for type B Kodachrome Lamp
Volts
Current
Watts
Life (hr)
Lumens
500 1500 5000
60 100 150
13,300 41,000 138,000
120 120 120
Temp.
lpw
OK
Candlepower7
3200 a 3200 * 3200 a
Some small lamps Sewing machine Sign (clear) ... Photocell exciter
120 120 10 10 8.5 8 4
Lamp
122 80 1000 1600 680 160 30
Volts
Flashlight PR2 ............ Flashlight PR3 ............ Flashlight 136 ............. Flashlight 31 .......... Hand lantern 248 ....... Flashlight 605 ......... Radio Panel No. 44.. ....... 6.15 Grain-0-wheat surgical ..... 1.5 Christmas tree ............. 120
2345 2400" 3100 3100 a 3200 2660 2935 '
Candle. power
Watts per spherical candle
.60 .028 4.7
1.5 6.0 1.o
2400 2115 2625
1.32 1.27 1.01 .80 .99
2820 2810 2915 2980 2870
Automobile lamps Rear, instrument bd. ........ 6.85 2.9 Step, aux. headlight ......... 13.5 2.9 Dome, panel ............... 6.9 6.3 Signal ..................... 6.75 14.4 Dome, panel ............... 13.5 6.3
T A B L E 96.-SOME
7.5 8.0
CHARACTERISTICS O F FLUORESCENT CHEMICALS
Phosphor
Calcium tungstate ...... Magnesium tungstate ... Zinc silicate ............ Calcium halophosphates. . Cadmium silicate ....... Cadmium borate ........ B L phosphor BaSilOs with
Lamp color
blue blue-white green white yellow-pink pink
Pb .................. blue ultra Calcium phosphate with Ce and Mn. .......... red
Exciting range,t
Sensitivity peak. A
Emitted range, A
2200-3000 2200-3200 2200-2960 2000-2600 2200-3200 2200-3600
2720 2850 2537 2500 2400 2500
3100-7000 3600-7200 4600-6400 3500-6800 4800-7400 5200-7500
2200-2700
2500
3100-4100
3500
2200-3400
3130
5600-8100 plus uv
6500
A
Data furnished by H. C. Froelich, of Nela Park.
SMITHSONIAN PHYSICAL TABLES
*
Emitted peak, A
4400
4800 5250 4800, 5800 5950 6150
t 2200 A was lower limit of measurements.
TABLE 97.-ENGINEERING
Number of lamp 4015 4509 4510 4515
Bulb PA$-36
lSOPAR/SP 150PAR/FL
PAS-38
4012A 4013 4412A 4435 4523 4535 4537 4570
PAE46
4030 4430 200PAR 250PAR
PAR-56
4560 300PAR64/2
PAR-64
DATA ON SOME LAMPS O F T H E INTEGRAL, ALL-GLASS SEALED BEAM T Y P E *
Watts 35 100 25 30
Design life (brs) 300 25 300 100
15'0
2,4y
28 6.4 13 28
35 25 35 30 250 30 100 150
300 300 300 100 25
6.4 12.8 30 12.5
45/35 50/40 200 250
300/500 300/500 500 100
600 300
25 100
Design volts 6.2 13.0 6.4 6.4
I?? 6.2 6.4
1;.8
28 115
100
25 300
Approx. max.t beam cp. 8,000 110,000 600 50,000
t
Approx. spread to 10% max. (degrees) & Hor. Vert. 5 40 12 5 80 20 5k 44 6o 30
30 60
8,800 800 8,000 85.000 225,000 90,000 200,00.0 30,000
40 80 40 6 17 51 12 50
5 20 5 6 11
32,000 P 29,000 200,000 80,000
:3 12 36
600,000 200,000
11
10,500
3,400 $
12
Filament shield1ng
C
None None B
Nye
C
None
C B
A
B
10
A None
5
NyFe
9 7 9 9
Service Auto fog Airplane landing Auto utility Auto spot General service spot General service flood Auto fog (amber) Tractor Auto fog (amber) Auto spot Airplane landing Auto spot Airplane landing Airplane taxiing Se$ed bezm hea$amp Locomotive headlamp Airport approach
A None
Airplane landing Flashing signal
* Data furnished by Application Engineering Department, Lamp Division, General Electric Co. Nela Park, Cleveland, Ohio. t Individual lamps may vary from the values listed. $ Approx. initial mean cp. in 10' cone. 9 Driving beam (major'filament). A, 120" cylindrical shield to side of filament. B, Hemispherical shield in front of filament masking all direct light. C, 90" spherical shield in front of filament masking all upward direct light.
TABLE 98.-MERCURY
....................... ....... ............ Lumens at 100 hours ...................... Lumens (approx. initial). .................. Lamp Ipw at 100 hours. .................... Initial Ipw ...... ................... Over-all lumens per watt (singleJamp trans.) .................... Lamp watts (rated) Watts, with single-lamp transformer.. Watts, with tulamp transformer.
-I P r W
rn v)
Rated life hours (see note). Rulh ..
...............
.:................................. .................................. .................................... ......................... Max. over-all length, inches. ............... Light center length, inches.. ............... Pressure, atm. ...........................
Finish Base Burning position
Number of electrodes..
Lamp operating volts..
....................
.................... amps.. ..............
Lamp starting current, Lamp operating current, amps..
RS 275
3300
... 33 ...
reflector type lamps not rated inlumens
268
...
AZil
... R-40
...
clear admed. any
3
.................... .............. ..........................
s-1 400 500
I
... ... 7200 ... 18
14.4
PS-22 I.F. reI.F. flector type medium mogul base up any
3
1.3
50-90 3 min 3 min
(50-60) cycles AC 3.2 2.5 110-125 no trans. 90. 3 rnin 5 min
B-H4 100 120
... ...
black light bulb
...
General lighting lamps
*
C-H4(Spot) ' ' GH4(Flood) A-H4 100 100 123 120
...
not rated m lumens
...
...
3300
A-H1 D-HI A-H5 E-H1 B-HI 400 250 450 450 290 452 280/lamp 438/lamp 438/lamp 11,000
35
... 44 ...
27.5
39.3
...
...
1000 1000 1000 PAR-38 T-10 T-16 natural alum. reflector clear red pur le & clear lens admex admed. skt. any any admed. any
15,000
...
20,000
37.5
... 50 ...
34.2
45.6
...
A-H6 1000 1085
...
14 9.5 30 115 33 50 Smin 0
A-H9 3000 3165
...
120,000
... 40
65,bbO
... 65
...
59.8
4000 T-18
4000 T-16
3000 T-20
75 T-2
clear mogul any
clear mogul (see note)
clear mogul any
clear %a'' s!eeve horiz.
37.8 5000 T-9 i clear term. any
S.C.
55
67/16 5 .9 2
110-125
130
.9 ............. Supply voltage (primary volts). ............. 118-236 Transformer secondary open circuit voltage.. 245 Power factor percent.. Starting time' to full output.. Restarting time
... ...
*
Blacklight lamps
Sunlight lamps s-4 100 120
ARCS
.. 2
130
130
130
135
1.3 .9
1.3 .9
1.3 .9
2.9 2.1
118-236 245 50-90 3 rnin 3 min
118-236 245 50-90 3 to 8 m i n 3 to 8 min
118-236 245 50-90 3 rnin 3 min
118-236 250 50-90-95 10min 4 min
135 5 3.2
135 5 3.2
840 2.5 1.4
118-236 118-236 118-236 220 220 1200 60-9F95 60-90-95 ... 7 rnin 8min 4 sec 7 min 5 rnin 2 sec
.7
535 9.3 6.1 230-46&575 850 90 8min 7 min
NOTE.-Rated lives of black-light and general-lighting lamps listed above are based on specified test conditions with the lamps turned off and restarted no oftener than once every 5 burning hours. T h e life rating of the A-HI, B-HI, a n d A-H9 lamps is 6,000 hours for 10 hours per start. At 10 hours per start the rated life of the A-H5 is 5,000 hours, and the E-Hi 4,000 hours. I f the A-H9 lamp is started once every 144 burning hours (six 24-hour days) theIlife rating is 10.000 hours. T h e life of S-4, RS, and S-1 lamps i s estimated t o he 1,000, 600, and 800 applications respectively. A-Hi is for base-up'burnlng. B-HI base down. Prepared by C. L. Amick, General Electric Co., Nela Park.
T A B L E 9 9 . 4 H A R A C T E R I S T I C S O F SOME FLUORESCENT L A M P S
110
*
Dimensions, electrical data 15
Nominal lamp wattst Nom. length $. Diameter Bulb Lampam s S Lamp vofrst
....... 4 ... 8''6" ........ ........... T-5 .... ,125 .... 36
6 9"
8 ";1
,145 48
4.5 .16 57
q-5
13 21"
gii\ 5
15
14 15"
(T-8) (T-12) 18" 18" It" 1 la'' T-12 T-8 T-12 j\95 l:i .33 46
40 20 24" 14'' T-12 .36 59
25 33"
IL"
T-12 .52 53
Lumen output and b r i g h t n e s s 4 5 0 0 white lamps 11 310 545 460 585 555 860 1380 2100 39 42 33 39 37 43 46 53
............... 200 .......... 33 ......... 2500 ......... 5.5
Lumens Lumens/watt Brightness : Footlamberts Candles/in.2
Nominal length, inches 42
Dim. inches
9
Bulb T-6
64
9
T-6
72
1
T-8
96
1
T-8
2770 6.1
2520 5.6
1310 2.9
1980 1250 4.4 2.8
1360 3.0
40
30 (T-12) (T-17) 36" 48" 60" 1 zg" T-8 ?-:2 T-17 .355 .42 .40 98 106 110
2120 4.7
2100 53
1610 920 3.6 2.0
4500 white slimline lamps for multiple operation Lamp Nominal Rec. min. Footlamberts current, lamp Lamp starting and Ma watts volts voltage (candles/in.2) 120 18 175 450 1570(3.5) 200 25 150 ZOgO(4.7) 300 33 130 2570(5.7) 120 27.5 270 600 1580(3.5) 200 39 230 2170(4.8) 300 51 200 2620(5.8) 120 26 240 600 lZOO(2.7) 200 38 220 1700(3.8) 300 51 200 ZZOO(4.9) 120 34 320 1200(2.7) 750 1700(3.8) 200 51 295 300 69 265 2200(4.9)
100 60" zii" 24" T-17 T-17 1.6 1.50 57 71 85 60"
4000 4000 47 40 1760 1760 3.9 3.9
Lumen output and Ipw 990(55) 1320(53) 1620(49) 1570(57) ZlSO(S5) 2600(57) 1590(61) 2250(59) 2850(56) 2100(62) 3050(60) 39 5 0 (5 7)
Data taken from reports by General Electric Lamp Department and from reports by Sylvania Electric $ Nominal length includes the lamp and two standard lampProducts. t Add auxiliary watts for total. holders. Approximate. 11 See Table 96.
s
T A B L E lOO.-CHARACTERISTICS
........... S M SF Medium ........ 5
Fast
Press 25 0 11 Press 40 22 L
Slow
.......... 50 3
Focal plane
..... 6
Blue for color photography
26 31 2A
. . 5B
Press25B 11B Press40B 22B 2B SOB 3B
3 3-9 3 3-9 3-125 3 3-125 3-125 3-125 3-125 3-125 3
6 6 21 20 20 21 20 21 20 30 30
*
OF T Y P I C A L PHOTOFLASH LAMPS
7
5 13 14 14 13 17 14 18 17 -.
.....
.. ..
18 30 24 53 64
3 3-9
21 20 21 20 21 20 30 30
13 14 14 17 14 18 17 18
3 3-9
..... .....
3-125 3-125 3-125 3-125
..
4.7 $ .90I .80 16 1.2 20 1.25 20 1.2 30 1.8 30 1.6 63 4.0 62 3.0 95 5.0 110 5.0 16 .62 15 .60 77 1.5 77 1.0
5.0
7.5 8.0 13.0 14 29 28 43 50
.55 .SO
.82 .75 1.8 1.35 2.3 2.25
3300 3400 3800 4000 4000 3800 4000 3800 4000 3800 4000 3800 3800 3800
A19 A2 1 A23 B11
....
S.S.Ray S.C.Bay S.C.Bay S.C.Bay Medium Medium 4 3 *&? Medium Medium 5 Medium 42 54 Medium 6% Medium 2% S.C.Bay
..
........
4000
A21 A21
59
53
Medium Medium
6OOO 6000 6000
B11 B12
28 29
S.C.Bay S.C.Bay
5
6OOO
A19 A19 A21 A23
42 59 63
Medium Medium Medium Medium
6000 6000 6000 6000
.............. ..............
The data given for the li ht and time characteristics and for the color temperature of the lamps are average values for a large number o f lamps. Individual lamps may differ considerably from these averages. Prepared t Milliseconds. $ x 10s. D x IW. by Adelaide Easley, General Electric Lamp Division.
SMITHSONIAN PHYSICAL TABLES
111 T A B L E 101.-PHYSICAL A N D ELECTRICAL CHARACTERISTICS O F FLASHTUBES A N D FLASHLAMPS DESIGNED P R I M A R I L Y FOR PHOTOGRAPHIC APPLICATIONS
*
4-
&a .I 40
!i
a
h
FT-210.. FT-214.. FT-220.. FT-403.. FT-503..
Approx. helical source dimen.
P
0
3
...........
0
m
T-10 IF
Octal 3-Pin Giant 5-Pin 3-Scr. Term. Large 3-Pin Large 3-Pin
T-124 PAR-46 T-18 I F T-18 IF
Flashlamps $
Bulb diameter
18" 13 1% 2d 1% 2 i
It" 1t
:$
Base
5804X ............. la" 48U4X ............ 2Q 68N9T- ............ If 88P9M ............ If 1TZ .................
2,000 2,000 2,000 2,000 4,000
200 7,000 200 7,000 7.000 200 480 18:OoO 2,000 t 100,000
Maximum energy input watt-sec.
100 600 200 300 1000
4 Pin 4Pin 5Pin 5 Pin Special
300 300 300 475 700
25.0 25.0 . 25.0 45.0 150.0
Light duration milli-sec
Volts
2250-2850 " 1'
900-1000 2000-2500 2000-2850
200 200
2_ M_ -
350 550
Peak lumens
.09- .19 .27- .7 .3 -1.2 .12- .6 2. -4.
40million 62 30 45 35
Data furnished by L. R . Benjamin, General Electric Co., Nela Park, Cleveland,, Ohio. t With approxi$Data taken from mately 0.5 millihenry of inductance in series with each 100 microfarads of capacity. circular of Amglo Corporation, Chicago, Ill.
T A B L E 102.-COLOR
Source
O F L I G H T E M I T T E D BY VARIOUS SOURCES Color, percent white
Sunlight .................... Average clear sky ............ Standard candle .............. Hefner lamp ................. Pentane lamp ................ Tungsten glow lamp, 1.25 wpc. Carbon glow lamp, 3.8 wpc.. .. Nernst glower, 1.50 wpc.. ..... N-filled tungsten, 1.00 wpc. ....
SMITHMNIAN PHYSICAL TABLES
100 60 13 14 15 35 25 31 34
Hue
-
472 593 593 592 588 592 587 586
Source
Color, percent white
N-filled tungsten, .SO wpc ..... N-filled tungsten, .35 wpc ..... Mercury vapor arc.. .......... Helium tube ................. Neon tube ................... Crater of carbon arc, 1.8 amp.. Crater of carbon arc, 3.2 amp.. Crater of carbon arc, 5.0 amp.. Acetylene flame (flat) .........
45 53 70 32 6 59 62 67 36
Hue
584 584 490 598 605 585 585 583
586
112 TABLES 103-110.-COOLING
BY RADIATION AND CONVECTION
T A B L E 103.-AT ORDINARY PRESSURES
T A B L E 104.-AT DIFFERENT P R E S S U R ES
According to McFarlane the rate of loss of heat by a sphere placed in the center of a spherical enclosure which has a blackened surface, and is kept a t a constant temperature of about 14" C, can be expressed by the equations e = .000238 3.06 X 10-9 - 2.6 X 10-'t', when the surface of the sphere is blackened, or e = .000168 1.98 X 10-'t - 1.7 X 10-'fz, when the surface is that of polished copper. In these equations, e is the amount of heat lost in cgs units, that is, the quantity of heat, small calories, radiated per second per square centimeter of surface of the sphere, per degree difference of temperature t, and t is the difference of temperature between the sphere and the enclosure. The medium through which the heat passed was moist air. The following table gives the results.
Experiments made in Tait's Laboratory show the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept at about 8°C.
+
Polished surface
7---et--
+
Difference of temperature t
5 10 15
20 25 30 35 40 45 ~~
50 55 60
,
Value of e
Polished surface
Blackened surface
Ratio
.000178 .000186 .000193 .no0201 .000207 .000212 .000217 .000220 BOO223 .000225 .000226 .000226
.000252 .000266 ,000279 ,000289 .OW298 .OW306 .000313 .OW319 .OW323 .OM326 .000328 .000328
,707 .699 .692 .695 .694 .693 .693 .693 .690 .690 .690 .690
SMITHSONIAN PHYSICAL TABLES
Blackened surface &
t
et
Pressure 76 cmHg
63.8 57.1 50.5 44.8 40.5 34.2 29.6 23.3 18.6
,00987 ,00862 .00736 .00628 .00562 .00438 .00378 .00278
67.8 61.1 55 49.7 44.9 40.8
.00492 .OM33 .00383 .00340 .00302 .00268
65 60 50 40 30 23.5
.00388 .00355 .00286 .00219 .00157 .00124 -
.00210
61.2 50.2 41.6 34.4 27.3 20.5 -
-
.O 1746 ,01360 .01078 .00860 .00640
.00455 -
-
Pressure 10.2 cmHg
62.5 57.5 53.2 47.5 43.0 28.5
.01298 .01158 .01048 .00898 .00791 ,00490
Pressure 1 cmHg
-
-
62.5 57.5 54.2 41.7 37.5 34.0 27.5 24.2
.01182 .01074 .01003 .00726 .00639 .00569 .00446 .00391
113 T A B L E 1 0 5 . - C O O L I N G O F P L A T I N U M W I R E I N COPPER E N V E L O P E
Bottomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attainable the following numbers : temperature of enclosure 16" C. t = 408" C, et = 378.8 X ' " 17" C. t = 505" C, et = 726.1 x lo-', I t was found a t this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure. Temp. of enclosure 16' C, t
= 408' C
Temp. of enclosure 17' C, t -
Pressure in mm
et
8137.0 x 7971.0 " 7875.0 " 7591.0 " 6036.0 " 2683.0 " 1045.0 " 727.3 " 539.2 " 436.4 " 378.8 "
740. 440. 140. 42. 4. ,444 .070 ,034 .012 .0051 .00007
T A B L E 106.-EFFECT
= 505'
C
a
Pressure in mm
ft
.094 .053 .034 .013 .0046 .00052 .00019 Lowest reached but not measured
1688.0 X lo-' 1255.0 " 1126.0 920.4 831.4 " 767.4 " 746.4 " 726.1 "
1:
}
O F PRESSURE ON LOSS O F H E A T A T D I F F E R E N T TEMPERATURES
The temperature of the enclosure was about 15" C. The numbers give the total radiation in calories per square centimeter per second. Pressure in mmHg Temp. of wire in "C
100 200 300 400
500
600 700 800 900
10.0
1.0
.25
.025
.14 .31
.ll 24 .38 .53 .69 .85 -
.05 .ll .18 .25 .33 .45 -
.01 '.02 .04 .07 .13 .23 .37 .56 -
.so
.75 -
-
-
-
About' .1 IL
.005 .0055 .0105 .025 .055 .13 .24 .40 .61
Tu'0TL-h interesting feature (because of its practical importance in electric lighting) is the effect of difference of surface condition on the radiation of heat. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed" with coating of hard carbon, was found to be as follows : Dull blaEk filament, 57.9 watts. Bright " 39.8 watts.
SMITHSONIAN PHYSICAL TABLES
114
T A B L E 1 0 7 . 4 O N D U C T I O N O F H E A T ACROSS AIR SPACES (ORDINARY T E M P E R A T U R E S )
Loss of heat by air from surfaces takes place by radiation, conduction, and convection. The two latter are generally inextricably mixed. For horizontal air spaces, upper surface warm, the loss is all radiation and conduction; with warm lower surface the loss is greater than for similar vertical space. Vertical spaces: The following table shows that for spaces of less than 1 cm width the loss is nearly proportional to the space width, when the radiation is allowed for; for greater widths the increase is less rapid, then reaches a maximum, and for yet greater widths is slightly less. Heat conduction and thermal resistances, radiation eliminated, a i r space 20 cm high
Air space, cm
.5
1 .o 1.5 2.0 3.0
Heat conduction cal hr-1 cm-10 C-1 Temperature difference
,-
A
I
10"
15"
20"
25"
.46 .24
.46 .24 .172 .178.196
.46 .24
.46 .24
200 208
.217 217
.la ~ .
.
.161 .172
~~
-182
Thermal resistance Reciprocal of conductance Temperature difference
100
2.17 4.25 6.25 ~. 6.20 5.80
.192 ~~
~
A
15"
20"
25"
2.17 4.20 5.80 - -_ 5.60 5.10
2.17 4.15 5.50 .. 5.00 4.80
2.17 4.10 5.20 4.60 4.60
Variation with height of air space: Max. thermal resistance = 4.0 at 1.4 cm air space, 10 cm high; 6.0 at 1.6 cm, 20 cm high; 8.9 at 2.5 cm, 60 cm high.
T A B L E 108.-CONVECTION O F H E A T ItN AIR A T ORDINARY TEMPERATURES *
I n very narrow layers of air between vertical surfaces at different temperatures the convection currents, in the main, flow up one side and down the other, with eddyless (streamline) motion. It follows that these currents transport heat to or from the surfaces only when they turn and flow horizontally, from which fact it follows, in turn, that the convective heat transfer is independent of the height of the surface. I t is, according to the laws of eddyless flow, proportional to the square of the temperature difference. and to the cube of the distance between the surfaces. As the flow becomes more rapid (e.g., for a 20" difference and a distance of 1.2 cm) turbulence enters, and the above relations begin to change. For the dimensions tested, convection in horizontal layers was a little over twice that in vertical. Heat transfer, in t h e usual cgs unit, i.e., calories per second per degree of thermal head per cm* of flat surface a t 22.8O mean temperature Where two values are given, they show the range among determinations with different methods of getting the temperature of the outer plate. It will be seen that the value of the convection is practically unaffected by this difference of method. 8 mm gap
Thermal head
4.95"
9'89" 19.76"
12 mm gap
'
.Om 111 .OW 001 112 {.OOO 113
.OOO 003 003
.OOO 116 .OOO 007
See Table 80.
SMITHSONIAN PHYSICAL TABLES
Total
('ooo
oEf
A
24 mm gap
Convectiod
Convection
!g 87)
.OOO 090 over .OOO 025
oil}
.OOO 106 over .OOO 040
107 109 47 .OOO 024 026}
.OOO 126 over .OOO 060
'Oo0
.OOO 093 95 7 .OOO .mo 010
{.OOO
Total
115 T A B L E 109.-CONVECTION A N D C O N D U C T I O N OF H E A T BY GASES A T HIGH TEMPERATURES
The loss of heat from wires at high temperatures occurs as if by conduction across a thin film of stationary gas adhering to the wire (vertical and horizontal losses very similar). Thickness of film is apparently independent of temperature of wire, but probably increases with the temperature of the gas and varies with the diameter of the wire according to the formula b log ( * / a ) = 2B, where B = constant for any gas, b = diameter of film, a, of wire. The rate of convection (conduction) of heat is the product of two factors, one the shape factor, s, involving only a and B, the other a function of the heat conductivity of the gas. If W = the energy loss in wattdcm, then W = s ( b - +I), s may be found from the relation
+
where k is the. heat conductivity of the gas at temperature T in calories/cm" C. +Z is taken at the temperature T , of the wire, c1at that of the atmosphere. The following may be taken as the conductivities of the corresponding gases at high temperatures:
+ +
+ +
... . . .. . ..
For hydrogen . . . .. . k = 28 X 104VF{(l .0002T)/(1 771"')) air . . . ... . . k = 4.6 x 10"V?;((l .0002T)/(l 124T-I)} mercury vapor k = 2.4 x lO-'V~{l/(l 96OT-')}. To obtain the heat loss : B may be assumed proportional to the viscosity of the gas and inversely proportional to the density. For air [see Table 110 part 21 B may be taken as 0.43 cm; for H2, 3.05 cm; for Hg vapor as 0.078. Obtain s from Part 1 below from a / B ; then from Part 2 obtain eZand c1for the proper temperatures ; the loss will be - 91) in watts/cm.
. ..
+
P a r t s,1
.O
.5
1.o 1.5 2.0 2.5 3.0 3.5 4.0 4.5
5.0
T oK
5.O 5.5 6.0 6.5 7.0 7.5 . .-
.O
.735 x lo-' .584 x lo-* .725 x lo-* 2.75 x lo-* .0644 .1176 .185 .265 .354 .453 P a r t 2.-Table H 2
.moo
.453 .558 .671 .288 .908
8.0 8.5
of
26
28
30
+ in watts
Air
500 ... 700 900 1100 1300
.0329 .1294 .278 .470 .700 i.26i 1.%1 2.787 3.726
1500
4.787
.744
SMITHSONIAN PHYSICAL TABLES
10 12 14 16 18 20 22 24 -.
9.0 9.5 10.0
.om0 .0041 .0168 .0387 .0669 .lo17 .is9 .297 .426 .576
0 100 200 300 400
as function of a/B
4.040 4.645 5.263 5.877. 6.505 7.122 7.738
30 32 34 36 38
40 42
44 46 48 50
per cm as function of absokute temp. H?
Air
.744 .. . . .931 1.138 1.363 1.608 1.871 -
.0941 .1333
2500 2700 2900 3100 3300
4.787 ... _. 5.945 7.255 8.655 10.18 11.82 13.56 15.54 17.42 19.50
.1783
3500
21.79
Hg
-
-
.0165 .0356 .0621
TO K 1- s- n_n-o
1700 1900 2100 2300
-
10.87 11S O 12.14 12.77 i3.14 14.03
(OK) Hg
.1783 _. 228 .284 .345 .411 .481 .556 .636 .719 .807 .898
116
TABLE 110m-HEAT
Diamerer wire, cm
LOSSES FROM INCANDESCENT FILAMENTS
of platinum sponge served as radiators to room-temperature surroundings
Part 1.-Wires
Observed heat losses in watts per cm Absolute temperatures 900"
.0690 .0420 .0275 .0194
1.70 1.35 1.12 .92
.0690 .0420 .0275 .0194
.91 .87 .80 .70
.0690 .0420 .0275 .0195
.79 .48 .32 .22
.0420 .0275 .0195
.42 .18 .06
.0420 .0275 .0195
.45 .62 .64
1000'
1100"
1200'
1300'
1400'
1500'
1600" 1700'
1800"
1900'
2000"
2.26 3.01 3.88 4.92 6.18 7.70 9.63 12.15 15.33 19.25 23.75 1.75 2.26 2.84 3.53 4.29 5.33 6.60 8.25 10.20 12.45 14.75 1.40 1.76 2.23 2.73 3.23 3.91 4.67 5.72 7.00 8.64 10.45 1.15 1.39 1.74 2.12 2.54 3.04 3.64 4.32 5.10 6.10 7.35 Heat losses corrected for radiation, watts per cm (A-C) 1.05 1.23 1.36 1.45 1.51 1.54 1.66 2.00 2.56 3.40 4.30 1.02 1.17 1.31 1.42 1.45 1.57 1.76 2.08 2.43 2.80 3.26 .92 1.05 1.22 1.35 1.37 1.46 1.50 1.67 1.91 2.32 2.70 .81 .89 1.03 1.15 1.23 1.31 1.40 1.47 1.51 1.64 1.88 Computed radiation, watts per cm, u = 5.61 X lo-'* * 1.21 1.78 2.52 3.47 4.67 6.16 7.97 10.15 12.77 15.85 19.45 .73 1.09 1.53 2.11 2.84 3.74 4.84 6.17 7.77 9.65 11.85 .48 .71 1.01 1.38 1.86 2.45 3.17 4.05 5.09 6.32 7.75 .34 SO .71 97 1.31 1.73 2.24 2.85 3.59 4.46 5.47 Conduction loss by silver leads, watts per cm .46 .49 .61 .75 .88 1.00 1.07 1.13 1.22 .67 21 28 .35 .43 .60 .48 .55 .57 23 - 22 .08 .08 .09 .ll .14 .15 .12 Convection loss by air, watts per cm .56 .68 .70 .67 .57 .59 .69 .95 1.21 .71 .77 .92 .89 .87 .93 1.07 1.24 .91 .73 .81 .94 1.04 1.11 1.17 1.25 1.29 1.30 -
*This value is lower than the presently (1950) accepted value of 5.67.
Part 2.-Wires
Diameter wire, cm
.0510 .02508 .01262 .00691 .00404
.Oslo .02508 .01262 .00691 .00404 .Oslo .02508 .01262 .00691 .00404 .0510 .025Q8 .01262 .00691 .00404 Means
of bright platinum 40-50 cm long served as radiators to surroundings at 300" K
Observed energy losses in watts per cm Absolute temperatures A
500"
700" *
900'
.52 .39 .31 29 24
.90 .68 .53 .48 .41
1100"
1300'
1500°
1700"
1900'
1.42 2.03 2.89 4.10 5.65 1.02 2.00 2.68 3.55 1.45 .79 1.11 1.95 2.71 1.46 .72 1.33 1.79 2.48 99 1.54 2.13 .61 .84 1.14 Energy -. radiated in watts per c m * .002 .013 .049 .137 .323 .67 1.25 2.15 .001 .007 ,024 .067 .159 .33 .62 1.06 .001 .003 .012 .034 .080 .17 .31 .53 .ooo .002 .007 .019 .044 .09 .17 29 .OOO .001 .004 .05 .011 .026 .10 .17 "Convection" losses in watts Der cm 22 .51 .85 1.28 1.7i 2.22 2.85 3.50 .17 .38 .66 .95 1.29 1.67 2.06 2.49 .13 .31 .52 .75 1.03 1.29 1.64 2.18 .12 29 .47 .70 .95 1.24 1.62 2.19 .ll 24 .41 .60 .81 1.09 1.44 1.96 Thickness of theoretical conducting- air film in cm 28 .30 .33 .33 .36 .37 .35 .36 Means.34 .30 .37 .37 .41 .45 .45 .5 1 .56 .43 .42 .42 .44 .49 .56 .69 .69 .47 .54 .31 .32 .38 .40 .43 .47 .38 26 .37 27 .43 .43 .47 .56 .47 .40 25 .41 .31 .37 .39 .42 .49 .49 .47 .38 .43t with u = 5.32, hlackbody efficiency of elatinurn as follows (Lummer and Kurlbaum) : .22 .17 .13 .12 .ll
Computed 492"K, ,039; 654',
,060;795',
SMITHSONIAN PHYSICAL TABLES
,075; 1108O, .112; 1481 , .154; 1761"K, .180.
t Weighted mean.
117
TABLES 111-125 -TEMPERATURE CHARACTERISTICS OF MATERIALS T A B L E 111.-MELTING
A N D BOILING POINTS O F T H E CHEMICAL E L E M E N T S
(Metals in boldface type are often used as standard melting points.) Symbol and atomic No.
Element
Actinium .......Ac Aluminum .....A1 Antimony ....'.Sb Argon .........Ar Arsenic ........As Astatine ........At Barium ........Ba Beryllium ..... .Be Bismuth ........ Bi Boron .......... B Bromine .......Br Cadmium Cd Calcium ........ Ca Carbon .........C Cerium ........Ce Cesium .........Cs Chloriye .......C1 Chromium ...... Cr Cobalt ........CO Copper ........ CU Dysprosium ....Dy Erbium ........E r Europium ......Eu Fluorine ....... F Francium ......Fr Gadolinium .....Gd Gallium ........Ga Germanium .....Ge Gold ..........Au Hafnium .......Hf Helium ........He Holmium ....... H o Hydrogen ...... H Indium .........In Iodine .......... 1 Iridium .......I r Iron ...........Fe Krypton .......Kr Lanthanum .....La Lead ..........P b Lithium ........ Li Lutetium .......Lu Magnesium ....Mg Manganese .....Mn Mercury ....... Hg Molybdenum ...Mo
......
89 13 51 18 33 85 56 4 83 5 35 48 20 6 58 55 17 24 27 29 66
Melting point
"C
1197 660.1 630.5 - 189.37 817 710 1283 271.3
-
7.20 321.03 850
804 28.64 - 100.99 1903 1492 1083.0 1500 68 1500 63 9 - 219.61 87 64 1420 31 29.80 32 938 79 1063.0 72 2220 2 67 1500 1 - 259.19 49 156.61 53 113.6 77 2443 26 1535 36 - 157.3 57 920 82 327.3 3 180.55 71 1700 12 650 25 1244 80 38.87 42 2610
-
Boiling point "C
2450 1637 185.86 613
.
Melting point
83.9" K . 106.4 -~ 126.3 144.9 161.9 177.8 192.9
Symbol and atomic No.
Neodymium .....Nd Neon .......... Ne Nickel ........Ni Niobium .......Nb Nitrogen .......N Osmium .......0 s Oxyge? 0 Palladium .....Pd Phosphorus ....P Platinum ...... P t Plutonium ......P u Polonium ..... . P o Potassium ......K Praseodymium . . Pr Promethium .... Pm Protactinium .. . P a Radium ........ Ra Radon ......... Rn Rhenium ...... .Re Rhodium Rh Rubidium ......Rb Ruthenium .....Ru Samarium ......Sm Scandium ......Sc Selenium ....... Se Silicon ......... _Si. Silver .........Ag Sodium ........ N a Strontium ...... Sr Sulfur .........S Tantalum ......T a Technetium ....T c Tellurium ......T e Terbium .......T b Thallium ....... T1 Thorium .......T h Thulium ....... Tm Tin ............Sn Titanium ...... .Ti Tungsten ......W Uranium .......U Vanadium ......V Xenon .........Xe Ytterbium ......Yb Yttrium ........ Y Zinc ..........Zn Zirconium ......Zr
........
1637 2480 1560 59 765 1492
2900 685 .34.06 2640 3150 2580 2300 2600
. 188.44 2240 2800
n o 0
5200
. 269.93 . 252.76 2000 183 2900
. 153.35 3370 1750 1331
1120 2050 356.57
T A B L E llP.-MELTING Pressure. kg/cmZ
Element
......
do
.0238 .0211 .0192 .0178 .0165 .0155
A= (cmS/g)
.07% 1.000 .0555 2.000 .0425 3. 000 .0340 4. 000 .0280 5.000 .0240 6.000 .0146 .0210 a Bridgman. P. W., Proc . Amer . Acad. Arts and Sci., vol . 70. p. 25. 1935 . 1
SMITHSOMAN PHYSICAL TABLES
Boiling point
"C
1024 60 248.59 10 . 28 1453 41 2480 209.97 7 . 2700 76 218.79 8 . 1552 46 44.2 15 1769 78 94 639 254 84 63.2 19 935 59 61
"C
. 246.08
2850 5000 . 195.80 4400 . 182.97 3100 280 3800 960 766 3000
91
700 88 71 86 . 3150 75 1960 45 38.8 37 2400 44 1050 62 1400 21 217.4 34 14 1410 . 47 960.8 11 97.82 38 770 16 119 2980 73 43 450 52 1450 65 303.6 81 1695 90 1650 69 231.91 50 22 1675 3380 74 1132 92 23 1890 54 . 112.5 70 824 39 30 419.50 40 1852
PARAMETERS O F ARGON dT .
Melting point
.62 5600 3960 701 4000 1600 3900 684.8 2190 890 1370 444.60 5500 990 1460 4250 2600 3300 5500 4000 3400 . 108.1
"
Latent beat ka.cal / a .
280 280 279 277 275 276 277
908 4400
118 T A B L E 113.-MELTlNG
Pressure kg/cm2
Ethyl alcohol
n-Butyl alcohol
0 -117.3"C 5,000 - 76 10,000 - 39 15,000 - 5 20,000 25 25,000 54 30,000 82 35,000 109 40,000 ..
Ethyl bromide
-893°C -33 +12 +49 +80 108 132 155
+
T E M P E R A T U R E S I N "C FOR A N U M B E R O F L I Q U I D S AS P FUNCTION O F PRESSURE" n-Propyl bromide
-119°C - 70 - 29
-110OC - 56 - 8
+ 5 + 34 + 34 + 71 58
105 138 169 197
80
.. ..
..
Chloroform
Carbon bisulfide
- 63.5"C -111.6"C 10 - 51 76 0 +137 46 +192 1; 243 .. 170 .. 209
+
+
+ +
..
Chlorobenzene
- 45.2"C
Methylene chloride
+ 25
:::I*
+130 +166 222
..
.. ..
..
-%.7"C -46 0 +42 +82 120 157
..
Water
.. ..
.. +52.5" +72.8 102.8 137.1 166.6 192.3
Bridgman, P. W., Journ. Phys. Chem., vol. 9, p. 795, 1941. Second modification of the solid.
T A B L E 114.-VOLUME-PRESSURE
R E L A T I O N FOR ARGON
*
Volume, cm* Pressure kg/cmz
+55"C
-
700 800 1,000 1,300 1,600 2,000 2,500 3,500 4,500 5,500 6,000 10,000 12,000 15,000
-
-
.a0 .831 .772 .730 .698 .685 .617 .5% .573
+25"C
0°C
1.262 1.175 1.060 .962 .898 .846 .808 .751 .712
1.179 1.105 1.006 .920 .864 .818 .785 .733 .697 .669 -
For reference, see footnote 43,
P
.
1 1,000 2,000 3,000 4,000 5,ooO 6,000
Melting point
63.2" K 82.3 98.6 113.0 125.8 137.8 149.2
For reference, see footnote 43, p. 117.
SYITHSONIAN PHYSICAL TABLES
-
--101.4"C
' C -153.5"C
-
-
.661 .641 .624
.724 .697 .677 .657
.687 .656 .632
-
p. 117.
T A B L E 115.-MELTING Pressure kg/cm'
-90°C
PARAMETERS O F NITROGEN dT -
AV
dfi
(cm*/g)
.0209 .0176 .0153 .0135 .0124 .0117 .0112
.072 .058 .047 .040
.033 .029 .026
* Latent heat kg cal/g
218 271 302 334 335 342 346
T A B L E 116.-VOLUME-PRESSURE
R E L A T I O N FOR N I T R O G E N
* 119
Volume, cm8 Pressure kg/cm2
+23.5'C
3,000 4,000 5,000 6,000
0°C
-50°C
-100°C
1.1422 1.0881 1.0451 1.0117
1.2069 1.1391 1.0870 1.0487
1.2374 1.1615 1.1061 1.a52
-140°C
1.0754 1.0327 .9997 .9729
1.0226 .9876 .9613 .9412
For reference, see footnote 43, p. 117.
T A B L E 117.-EFFECT
Substance
Melting point at 1 kg/cm2
Highest experimental pressure kg/cm2
at 1 kg/cma
-38.85 59.7 97.62 271.0 231.9 270.9 320.9 327.4
12,000 2,800 12,000 12,000 2,000 2,ooo 2,000 2,000
.00511 .0136 .00860 -.00342 .00317 -.00344 .00609 .00777
2 ................. ................
Na Bi Sn Bi Cd Pb
O F PRESSURE ON M E L T I N G P O I N T
................ ................. ................. ................. . . . . . .. . . ... . . . . .................
At (observed) for 1000 kg/cm'J
dt/dO
5.1 * 13.8 +12.3 - 3.5 t 3.17 - 3.44 6.09 7.77
+
At (observed) for 10,000 kg/cm2 is 50.8". t Na melts at 177.5" at 12,000 kg/cm*; K at 179.6"; Bi at 218.3". Pb at 644'. Luckey obtains melting point for tungsten as follows: 1 atm, 3623°K; 8, 3594; 18, jsn; 28, 3564.
T A B L E 118.-EFFECT Pressure kg/cm2
OF PRESSURE O N F R E E Z I N G O F W A T E R *
Freezing point
Phases in equilibrium
.o
1 1,000 2,000 2,115 3,000 3,530 4,000 6,000 6,380 8,000 12,000 16,000 20,000
Ice Ice Ice Ice Ice Ice Ice Ice Ice Ice Ice Ice Ice
- 8.8
-20.15 -22.0 -18.40 -17.0 -13.7 - 1.6 .16 12.8 37.9 57.2 73.6
+
I-liquid I-liquid I-liquid I-ice 111-liquid 111-liquid 111-ice V-liquid V-liquid V-liquid V-ice VI-liquid VI-liquid VI-liquid VI-liquid VI-liquid
(triple point) (triple point) (triple point)
For reference, see footnote 43, p. 117.
T A B L E 119.-EFFECT Metal
Bi Bi Bi Bi Bi
Pressure
... 10.2cmHg
... 25.7cmHg ... 6.3atm . . . 11.7atm ... 16.5atm A g .. 10.3cmHg
C
1200 1310 1740 1950 2060 1660
SMITHSONIAN PHYSICAL TABLES
Metal
O F PRESSURE O N B O I L I N G P O I N T Pressure
Ag .. 26.3cmHg
Cu Cu Sn Sn Pb
.. 10.0cmHg .. 25.7cmHg .. 10.1 cmHg . . 26.2cmHg .. 10.5cmHg
O
C
1780 1980 2180 1970 2100 1315
Metal
Pb Pb Pb Zn Zn Zn
Pressure
.. 20.6cmHg .. 6.3atm .. 11.7atm .. 11.7atm .. 21.5atm .. 53.0atm
C
1410 1870 2100 1230 1280 1510
120 TABLE 120.-DENSITIES
Substance
AND M E L T I N G AND BOILING POINTS INORGANIC COMPOWNDSf
Chemical formula
Density atmut Melting point, "C 2O'C
Aluminum chloride ....... AICls ................ 2.44 nitrate ........ AI(NO& 9 H 2 0 .... oxide ......... ALOS ................ Ammonia ................ N H J .................... Ammonium nitrate ....... NH,N03 ............. 1 phosphite .... N H I H ~ P O S........... sulfate ....... (NHJzSO, ........... 1 SbCL ................ 2.35 Antimony pentachloride trichloride ..... SbCIs ................ 3.14 Arsenic hydride ......... ASH$ ................... trichloride ...... AsCL ................ 2.20 Barium chloride ........ BaCI, ................ 3.86 nitrate .......... Ba( NO& ..... . 3.24 .... perchlorate ...... Ba(C104)z ..... . 4.75 Bismuth trichloride.. .... BiCL .......... Boric acid .............. HJBOa ............... 1.46 anhydride ........ B,O, ................. 1.79 Borax (sodium borate .... NazB40, .............. 2.36 Cadmium chloride ....... CdCL ................ 4.05 nitrate ......... Cd( NO,), 4HzO . . . 2.45 Calcium chloride ......... CaClz . . . . . . . . . . . . . . . . 2.26 chloride ......... CaCL 6Hz0 .. nitrate .......... Ca (N0 3 ) , nitrate .......... Ca(N03)? oxide ........... CaO .... Carbon tetrachloride ..... CCL .... dioxide .......... CO, ............. disulfide CSZ .................. 1.26 monoxide ........ CO trichloride ....... CLls ....... HCIO, ............... 1.764 Chloric (wr) acid Chlorine dioxide ......... CIOz .................... 12 Hi0 .. 1.83 Chrome alum ............ KCr(SO,), nitrate .......... Crz(N03)s 18 H20 . . . . . Chromium oxide ......... CrO, ................. 5.21 . 3.710 Cobalt sulfate ............ CoSO, ...... Cupric chloride .......... CuCL ................ 3.05 nitrate ............ Cu(NO3)S 3 H20 ....2.05 Cuprous chloride ......... Cu,Clz ................ 3.7 ....... Hydrogen bromide ....... H B r ........ chloride ....... HCI .................... fluoride ....... H F .................. .99 iodide ......... H I ...................... peroxide ....... H20, ................. 1.5 phosphide ..... PH3 .................... sulfide ......... H,S ..................... Iron chloride ............ FeCh ................. 2.80 9 H,O . . . . 1.68 nitrate ............. Fe(NO& sulfate ............. FeSO,+ 7 H 2 0 ....... 1.90 Lead chloride ............ PbCL ................ 5.8 Magnesium chloride ...... MgCL ................ 2.18 oxide ........ M g O ................. 3.4 6 HzO . . . 1.46 nitrate ....... Mg(NO,), sulfate ....... MgSO. .............. 2.66 Manganese chloride ...... MnCL 4 HzO ....... 2.01 6 H20 ... 1.82 nitrate ....... Mn(NO& sulfate ....... MnSO, .............. 3.25 Mercuric chloride ........ HgCL ................ 5.42
+
..
+
+
.........
~-
I
........
+ +
+
+
+
+
t
+
190 t 70.0 2050 - 77.7 169.6 123 146.9 2.8 73.4 -113.5 - 18 962 592 505 232.5 185 450 741 561 59.5 774.0 29.6 561 42.3 2570 - 24 - 56.6 f -111.6 -207 184 -112 - 59 89 37 1990 989 498 114.5 421 - 88.5 -111.3 - 92.3 - 50.8 - 2 133.5 - 82.9 282 47.2 64 501 708 2800 100 1124 t 58 26 700 276
Prepared by F. C. Kracek, Geophysical Laboratory, Carnegie 5 At 5.2 atm pressure. $ At 2.5 atm pressure. Decomposes.
(contimed)
SMITHSONIAN PHYSICAL TABLES
OF
Boiliy point, C
Pressure mmHg
182.7 134t 2580 - 33.35 210t 145 t ... t 140 223 - 54.8 130.2 1560
752
... ... 447 ...
15io t
...
... ...
200
... ...
2850 76.7 - 78.5 46.2 -192 185 39 t 9.9
... 170 ...
...
t 170t 13662 - 67.0 - 83.7 19.4 - 35.7 152.1 - 87.4 - 62 315
53
760
... ... ...
68 760 760 760 760
... ... 760 ... ... ... ... ... ... ... ... ... ...
760 subl. 760 760
...
56 731
...
760
...
... ...
760 760 760 755 755 760 47
...
... t ...
... ... ... ... 760 ... ... 760 ...
129t 850t 302
... ...
t t
9502 1412
Institution
...
t
of
760 760
Washington.
121 T A B L E 120.-DENSITIES AND M E L T I N G A N D BOILING POINTS O F INORGANIC COMPOUNDS (concluded) Substance
Chemical formula
Density about Meltitg 2O'C Doint. . . C 7.10 302&
Mercurous chloride ....... Hg2CIz ............... Nickel carbonvl ......... NiC.0, ............... 1.32 nitrate- ........... NI((Nb3)Z 6 H,O . . . 2.05 oxide ............ N i 0 ................. 6.69 Nitric acid .............. H N 0 3 ................ 1.502 anhydride ......... N z 0 5 ................. 1.64 oxide ............. N O ..................... peroxide .......... N z 0 4 ................. 1.49 Nitrous anhydride ....... N20, . . . . . . . . . . . . . . . . . 1.45 oxide ........... N 2 0 .................... Phosphoric acid (ortho) ... H3P04 ............... 1.83 Phosp:iorous acid ........ H3P03 ............... 1.65 disulfide ..... P3SB .................... oxychloride POCL ................ 1.68 pentasulfide .. PZSS ... trichloride PCls trisulfide .... P,S3 ...... Potassium acid phosphate.. KHZPO. .. carbonate ..... K2C03 .... chlorate ....... ............... 2.34 chloride ....... KC1 .......... 1.99 chromate ..... K2CrOI .............. 2.72 cyanide ....... K C N ................ 1.52 dichromate K2Cr201 .............. 2.69 hydroxide ..... K O H ................ 2.04 nitrate ........ KNO, ............... 2.10 perchlorate .... KClO, ........... 2.52 ........... 2.66 ........... 5.56 3 ............... 4.35 perchlorate ........ AgCIOI .............. 2.81 phosphate ......... Ag3POI .............. 6.37 metaphosphate ..... A g P 0 3 . . . . . . . . . . . . . . . . . sulfate ............ AgSO, ............... 5.45 Sodium carbonate ........ NaZCO3 .............. 251 chlorate ......... NaC103 .............. 2.48 chloride ......... NaCl ................ 2.17 hydroxide ....... N a O H ............... 2.13 hyposulfite ....... NaLL 2 H,O . . . . . . . . . . .
+
..
..
....
+
metaphosphate ... nitrate .......... perchlorate ...... pyrophosphate ...
NaP03 . NaNO? . NaClO, .............. 2.53 NarPzOl .............. 2.45
tetraborate ....... Na2B,01 .............. 2.36 Sulfur dioxide ........... SO2 .................... trioxide .......... SO,a .... Sulfuric acid ............ H S O a ................ 1.83 acid ............ H S O , H20 ........ 1.79 acid (ovro) ..... .............. 1.89
+
nitrate sulfate
............. Zn(NC ............. ZnSO,
/I At 10.5 mmHg pressure.
SMITHSONIAN PHYSICAL TABLES
Boiling point, "C
384 - 25 43 56.7 136.7f 2090 ... - 42 86 48 t 30 4 6 3 . 6 -151.8 - 9.3 21.3t -102 3.5t -102.4 3.5t 42.45 ... 73.6 ... 298 337 II 1.3 108 276 514 - 91 75.5 172.5 407.5 252.6 t ... 891 ... 368.4 400 t 776 1500 t 968.3 634 ... 398 ... 360 1320 334 400 f 610 410 t t 1076 455 550 212 444 t 486 t ... 849 ... 482 ... 652 085 t t 851 t 248 801 1413 318 ... t 52 t subl. 640 >I100 310 380 t t 482 t 880 ... 884 t 32.88 ... 741 1570 - 72.7 - 10 16.8 44.9 10.5 338t 8.61 290t 35 t
Pressure mmHg
...
760 760
...
760 760 760 760 760 760
... ...
760 760 760 750 760
... ... ...
760
... ...
...
760
...
760
... ... ... ... ... ... ... ... ... 760 ...
760
... ... ... ... ... ...
760 760 760 760 760
...
760 760 760 760 760
...
122 TABLE lPl.-DENSITIES
Substance
Chemical formula
AND M E L T I N G AND BOILING POINTS OF ORGANIC COMPOUNDS
Density g/cms
Paraffin series : C,H2.+2. Methane ........... CH4 . . . . . . . . . 415 . Ethane ............ CZHe . . . . . . . . .546 Propane ........... CaHs . . . . . . . . .595 Butane ............. c4H10 . . . . . . . . .6011 Pentane ........... C5H12 . . . . . . . . .631 Hexane ........... C.H.. . . . . . . . . .660 Heptane ........... ClHle . . . . . . . . .684 Octane ............ GH18 . . . . . . . . .704 Nonane ............ CgHz0. . . . . . . . .718 Decane ............ C1OH22 . . . . . . . .747 Undecane ......... CIlH24 . . . . . . . .741 Dodecane .......... CIZHZO. . . . . . . .768 Tridecane ......... C I ~ H Z. . . . . . . .757 Tetradecane ....... c~H30. . . . . . . .765 Pentadecane ....... C15H32 . . . . . . . .772 Hexadecane ....... CieHa, . . . . . . . .775 Heptadecane ....... CiIHae . . . . . . . .778 Octadecane ........ C,sH, ........777 .Nonadecane ....... C&40 . . . . . . . .777 Eicosane .......... C20H42 . . . . . . . .778 Heneicosane ....... C21H44 ........775 Docosane .......... c22H48 ........778 Tricosane ......... C23H48 . . . . . . . .779 Tetracosane ....... C Z ~ ........ H ~ ~ 779 Pentacosane ....... C&52 . . . . . . . .779 Hexacosane ....... C2,H5, . . . . . . . .779 Heptacosane ....... C2,H5, . . . . . . . .779 Octacosane ........ C2aH, ........779 Nonacosane ....... CmHeo ........780 Triacontane ....... C3&2 . . . . . . . .780 Hent riacontane .... C3, HOr . . . . . . . . 781 Dotriacontane ..... C32HW . . . . . . . .775 Tetratriacontane ... CrHTo . . . . . . . .781 Pentatriacontane ... C36H72 . . . . . . . 782 . Hexatriacontane ... CJuH7, . . . . . . . .782
C
Melting pfint
C
Boiling point "C
Normal compounds only -164 -184 -161.4 . 88 -172.0 . 88.3 . 44 . 42.0 -189.9 0 -135.0 .6 20 36.2 -138.0 . 94.3 20 69.0 . 90.0 20 98.4 . 56.5 17 124.6 . 53 150.6 20 . 32.0 174 20 20 . 26.5 197 20 . 12 216 20 . 6.2 234 20 5.5 252.5 20 270.5 10 20 20 287.5 22.5 20 303 28 20 317 32 32 330 38 37 205 40.4 45 215 44.4 44 224.5 47.7 48 320.7 61 54 324 20 284 54 20 296 60 59.5 60 270 65 20 318 63.6 20 348 70 20 235 68.1 68 302 75 310 79 76.5 255 20 331 74.7 75 265 76.5 76
Pressure 1 atm unless otherwise stated
+ +
+
+
15 mmHg 15 mmHg 15 mmHg
40 mmHg 40 mmHg 15 mmHg 40 mmHg 40 mmHg 1.0 mmHg 15 mmHg 15 mmHg 1.0 mmHg 15 mmHg 1.0 mmHg
Olefines or the Ethylene series : CnH2... Normal comDounds only -169.4 -103.8 -102 - 47 . 47.0 -185.2 - 13.5 20 36.4 -139 - 98 69 0
.......... C2H. . . . . . . . . .566 ......... C3He . . . . . . . . .609 .......... C.H. .........635 .......... C. HI. . . . . . . . . .651 ......... CeHu . . . . . . . . .67 Heptylene ......... C7Hl, . . . . . . . . .703 Octylene .......... CsHie . . . . . . . . .722 Nonylene .......... CBHl6 . . . . . . . . .73 Decylene .......... CloHm . . . . . . . .763 Undecylene ........ CllH22 . . . . . . . .763 Dodecylene ........ CI2H2, . . . . . . . .762 Tridecylene ........ CIIHZ8. . . . . . . .80 Tetradecylene ...... CX4H26 . . . . . . . .775 Pentadecylene ...... c15HW . . . . . . . .814 Hexadecylene ...... CieHaz . . . . . . . .789 Octadecylene ...... C16H38 . . . . . . . .79 1 Eicosylene ......... CmH40 . . . . . . . .871 Cerotene .......... C27Hs ....... Melene ............ C30HW ........890 Ethylene Propylene Butylene Amylene Hexylene
Tzmp.
+
20
. 10
17 15 0 20 15 0 20
104
20 20 0
20 (continued)
SMITHSONIAN PHYSICAL TABLES
. 87 . 31.5
. 12
+ 4 + 19 58 63
9699 123 149.9 172 193 96 232.7 246 247 274 179 395 380
15 mmHg
15mmHg
123 T A B L E 121.-DENSITIES A N D M E L T I N G A N D BOILING POINTS OF ORGANIC COMPOUNDS (continued)
Substance
Chemical formula
Density g/cm3
Tpmp.
C
Melting pzint C
Boiling yint C
Pressure 1 atm unless otherwise stated
Acetylene series : CnHzn.z. Normal (:ompounds only Acetylene ......... CzHz .........613 - 80 . 81.8 . 83.6 Allylene ........... C3Hl .........660 - 13 -104.7 . 27.5 Ethylacetylene ..... CIHs .........668 0 -130 18.5 Propylacetylene CsH8 .........722 0 . 95 40 Butylacetylene ..... CBHlo ....... -150 71.5 Amylacetylene ..... CIHlz ........738 13 . 70 110.5 Hexylacetylene .... C8Hlr ....... 270 0 125 Undecylidene ...... 213 Dodecylidene ...... .810 - 9 - 9 Y'mHg 105 Tetradecylidene .... 306 6.5 6.5 134 160 " " " Hexadecylidene 304 20 20 " " " 184 Octadecylidene ..... 302 30 30 Monatomic alcohols : C,,H,.+,OH. Normal communds only Methyl alcohol ..... CH30H . . . . . .792 20 64.5 . 97.8 Ethyl alcohol ...... CzHsOH .....789 20 78.5 -117.3 Propyl alcohol ..... CsH, O H 804 20 97.8 -127 Butyl alcohol ...... C. HDOH .....810 20 117.7 . 89.8 Amy1 alcohol C5Hl10H .....817 20 137.9 . 78.5 Hexyl alcohol ..... C.H. O H .....820 20 155.8 . 51.6 175.8 Heptyl alcohol GHlsOH .... 317 22 34.6 Octyl alcohol GH.. O H . . . . .827 20 194 . 16.3 Nonyl alcohol ...... CoHlpOH .....828 20 215 - 5 231 Decyl alcohol ...... CIoH2,O H ... 329 20 + 7 Undecyl alcohol .... C,,H, O H ... 333 20 146 30 mmHg 19 24 Dodecyl alcohol C..H, O H ... 331 20 259 Tridecyl alcohol .... C13HnOH . . . .822 31 15 mmHg 156 30.5 Tetradecyl alcohol .. C.. HmOH . . . .824 38 38 167 15 mmHg Pentadecyl alcohol .. ClSH, OH ... 46 49.3 Cetyl alcohol ...... C16HmOH . . . .798 79 344 Octadecyl alcohol .. C18Hs10H ... 312 59 58.5 210.5 15 mmHg
+ +
....
+
....
+
....
...... ..... .......
+
....
Dimethyl ether ..... Diethyl ether ...... Dipropyl ether ..... Di-n-butyl ether Di-sec-butyl ether Di-iso-butyl ether Diamyl ether ...... Di-iso-amyl ether Dihexyl ether ...... Diheptyl ether ..... Dioctyl ether .......
... .. .. ..
Alcoholic ethers : C. H.0 .......6606 GHIDO .......714 C.H,,O .......747 C8H180 .......769 'I .756 'I .762 CloHZ20 ......774 " .783 C..H, 0 ..... C..H, 0 ......815 C..H, 0 ......820
C.Hm+zO 20 -138 20 -116.3 20 -122 20 21 20 20 12
0 0
Ethyl ethers : C.Hzn+20 20 Etbyl-methyl ...... C3H80 .......73 -propyl ....... C5HlzO .......747 20 <- 79 -isopropyl .745 0 .n . butyl ...... C.H.. 0 .......752 20 -iso-butyl ..... .751 20 .is,. amyl ..... CrHlaO .......764 18 .n . hexyl C8Hls0 .......63 .n . heptyl ..... CDHzoO.......790 16 .n . octyl ...... ClnHpO . . . . . .794 17 (continued)
.. .. .. .
......
.....
SMITHSONIAN PHYSICAL TABLES
. 24.9
+ 34.5
89 149 121 122.5 190 172.2 208.8 260 291.8
+
7.9 61.4 54 91.4 80 112 137 166.6 183
8-123.3
b. pt
.
124 T A B L E 12l.-DENSITIES AND M E L T I N G AND BOILING POINTS O F ORGANIC COMPOUNDS (concluded)
Miscellaneous Substance
Densitv and terny i a t u r e
C
Chemical formula
Acetic acid ........... C H L O O H ............. 1.115 0 Acetone .............. CH3COCHa ..............792 0 Aldehyde ............. CIHIO . . . . . . . . . . . . . . . . . .783 . 0 Aniline ............... CoH6NHz ............... 1.038 0 Beeswax ...................................... 9 6 2 ... Benzene .............. CeHs .................... 879 20 Benzoic acid .......... GHeO, ................. 1.293 4 Benzophenone ........ (C.H.). CO .............. 1.090 50 Butter ......................................... 90 ... Cainphor ............. CioHieO . . . . . . . . . . . . . . . . 99 . 10 Carbolic acid ......... C.H. O H ................ 1.060 21 Carbon bisulfide ...... CS. .................... 1.292 0 tetrachloride .. CCl, .................... 1.582 21 Chlorobenzene ........ CeHrCl ................. 1.111 15 Chloroform ........... CHCI. .................. 1.4989 15 Cyanogen ............ CZNz . . . . . . . . . . . . . . . . . . . . . . . . . . Ethyl bromide ........ CzHaBr ................. 1.45 15 chloride ........ CzHsCl . . . . . . . . . . . . . . . . . .918 8 ether ........... C. HioO ..................716 0 14 iodide .......... CzHsI .................. 1.944 Formic acid .......... HCOOH ............... 1.242 0 Gasoline ....................................... 6 8 2 ... Glucose .............. CHO(HCOH).CH, O H .. 1.56 ... Glycerine ............. C.H.O. ................. 1.269 0 Iodoform ............. CHI3 ................... 4.01 25 Lard .......................................... 90 ... Methyl chloride ....... CH. C1 ...................0992 -24 iodide ........ CHJ ................... 2.285 15 Naphthalene .......... CaH,.C,H4 .............. 1.152 15 Nitrobenzene ......... C.H.O. N ............... 1.212 7.5 Nitroglycerine ........ C.H.N.0, ............... 1.60 ... Oleomargarine ................................ .92-. 93 20 Olive oil ...................................... 92 ... Oxalic acid ........... C2H,04.2Hz0 ........... 1.68 ... Parafin wax. soft .................................. hard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pyrogallol ............ CBH.(0H), ............. 1.46 40 Spermaceti .............. . . . . . . . . . . . . . . . . 95 . 15 Starch ............... C.H. ................ 1.56 ... Stearine .............. ( C.gH3.0.),C3H. . . . . . . . . . .925 65 Sugar. cane ........... C..H..O.. ............... 1.588 20 Tallow. beef ................................... 94 15 mutton ................................ 94 15 Tartaric acid ......... C.H.O. ................. 1.754 ... Toluene .............. CoH6CHI ............... 322 0 Xylene ( 0 ) ........... CRH4(CH3)2. . . . . . . . . . . . . 863 . 20 (m) .......... C.H.(CH.). . . . . . . . . . .864 20 (P) ........... CeH. ( CHI) . . . . . . . . . .861 20
.
SMITHSONIAN PHYSICAL TABLES
Melting point
Boi!ing
16.7 - 94.6 -124 - 6 62 5.48 121 48 25 176 41 -108 - 28
118.5 56.1 20.8 183.9
“C
-40
- 63.3 - 35
-117 -141.6 -116 108 8.6
...
146 17 119 29k . 98
. 64
80 5
3 35-38 20 t 190 35-52 5256 133 45 k none 71 160 27-38 32-41 170 . 92 . 28 54 15
point
“C
...
80.2 249 305.9
...
209 182 46.2 76.7 132 61.2 -21 38.4 12 34.6 72 100.8 70-90
...
290
... ...
-24.1 42.3 218 211
...
3002 35b-390 390-430 293
... ... ... ... ... ...
iiO.31 142 140 138
TABLE 122.-MELTING
POINT OF MIXTURES
OF METALS
125
Melting points, "C Percentage of metal in second column
6
Metals
Pb Sn Bi Te Ag Na Cu Sb Al Sb Cu Au Ag Zn Fe Sn Sb Bi Ag Sn Zn Ni Sn Na Bi Cd Cd Ag
.... .... .... .. . .... .... .... .... .... . .. .
Zn Au Cu Ag Pt K Na
.... ...
T1
?f Cu Ni Ag Sn Zn Ag Zn Sn Na Ha
....
.. .. . .. .
....
....
.... .... .... ....
...
.... .... ....
10
327 327 327 327 327 327 327 660 660 660 660 660 660 660 631 631 631 631 1453 97.5 97.5 321 321 321 1063 1063 1063 63 63 63 1083 1083 1083 1083 961 %1 97.5 ~~~
30
20
40
60
(0
TABLE 123.-MELTlNG
80
70
262 240 20 190 276 - 179 145 126 790 600 880 917 760 545 705 620 650 590 370 400 420 330 290 920 925 945 950 955 275 490 330 440 395 840 925 950 970 945 580 610 560 600 540 970 800 855 915 740 615 580 590 575 600 620 600 580 560 530 1015 1110 1145 1145 1220 635 605 590 625 620 540 575 590 520 555 570 545 520 500 505 430 395 570 525 480 ~. 540 570 565 510 540 1290 1200 1235 1290 1305 720 645 690 520 590 330 185 245 285 325 610 520 700 760 805 270 262 285 258 245 295 327 340 270 313 975 925 895 905 890 1061 1058 1054 1049 1039 1190 1250 1320 1380 1455 11 -10 26 5 -3.5 - 90 110 220 133 165 188 205 215 1180 1240 1290 1320 1335 1380 1035 990 945 910 870 830 630 725 755 680 1005 890 900 1040 995 930 880 820 690 660 630 850 755 705 450 550 870 750 630 495 22 60 90 80 70 45
295 290 710 460 360 870 250 750 630 675 625 640 861) 645 610 595 600 555 1380 425 125 420 300 280 910 1062 1125 17.5
185 200 168 205 410 480 840 775 250 200 985 1005 560 525 1000 1040 930 755 1025 1055 650 570 510 475 1315 1425 570 560 405 470 545 680 310 350 52s . ~ .510 ... 1230 1060 730 715 340 360 850 895 210. 230 355 370 1025 1025 1006 1530 1610 41 58 135 162 280 240 1410 1430 814 788 530 580 780 700 6io 570 375 420 95 55
90
216
-
425 905 130 1020 600 1010 1055 675 750 425 1500 540 330 850 255 470
8nrl -__
570 390 940 235 390 1060 982 1685 77 265 305 1440 875 440 580 505 300 215
GO 232 271 452 %1 97.5 1083 630 630 1083 1063 961 419 1533 232 271 961 232 419 232 271 321 961 303 419 1083 ~ . 96 1 1769 97.5
-
303 1453 961 232 419 419 232
POINT "C O F LOW-MELTING-POINT ALLOYS
*
Percent
Cadmium .. . . . . ... . Tin . . . . . . .. . . . . . . . . Lead . . . . . . . . . . . . . . Bismuth . .. . . .. . . . . Solidification at
10.8 14.2 24.9 50.1
. . .. 65.5"
10.2 14.3 25.1 50.4
14.8 7.0 26.0 52.2
13.1 13.8 24.3 48.8
6.2 9.4 34.4 50.0
7.1
6.7
39.7 53.2
43.4 49.9
-
-
67.5" 68.5" 68.5" 76.5" 89.5" 95" Percent
Lead . . . . . . . . . . . . . . 32.0 Tin . . . . . . . . . . . . . . . . 15.5 Bismuth . . . . . . . . . . . 52.5 Solidification a t
....
96"
See Table 201.
SMITHSNIAN PHYSICAL TABLES
~~
25.8 25.0 43.0 19.8 15.0 14.0 54.4 60.0 43.0 101" 125" 128"
33.3 33.3 33.3 145"
10.7 500 23.1 33.0 66.2 17.0 148" 161"
35.8 52.1 12.1 181"
20.0 60.0 20.0 182"
70.9 9.1 20.0
234"
.
~
T A B L E 124.-REVERSIBLE
126
TRANSITIONS I N CRYSTALS *
Values are given, for the more important crystals, of the inversion temperature in "C, the heat of inversion in cal/g and the inversion volume change in cm*/g. No monotropic inversions have been included. h,, inversion temperature on heating ; m, metastable inversion temperature ; e, estimated ; g, gradual inversion (not to be confused with slow retarded inversions).
Transition Pressure atm t'C
Phases
Substance
AgClOI ............... AgBrO, ............... AgI ...................
AgzS .................. Ag&e ................. AgzSOr ............... &Nos ............... AlBr3 ................. AS203 ................. AszSz ................. AS& ................. Bit03 ................. BaCL ................. BaClOr ................ BaSO, ................ BaC03 ................ Br30s .................
co ...................
CH, ................... CHxOH ............... CClr ..................
....
158 98.5
....
1-11 1-111 11-111
....
.... .... ....
red-black red-yellow
.... .... ....
.... .... I
I
0
1-11 11-IT1 1-111
CBr,
..................
1-11 1-111
CHzIi
.................
CHrNz0 (Urea)
..............
CHZCOOH
............
11-111 L-1-11 L-11-111 I-11-IV 11-IIT-IV 1-11 1-111 11-111 L-I
L-I1 CHaCONH, ........... (Acetamide) (CH3)zCO Z ........... C2Cla ................. (Perchlor ethane) GH,NO, (IJrethane) ...
1-11
L-I L-I1 1-11 1-11 1-11 11-111 L-I L-I1 L-I11 1-11
11-111 1-111
{%.4 99.4 99.4 175 133 412 159.5 70 275 267 170 704 t 924 284 1149 811 & 982 - 35 -212.8 -252.7 -112
5!1{-:
115 115
{lE 112.6 112.6 8.6 42.8 9.4 38 102.3 102.3 102.3
....
1 2720 2720 2720
.... .... .... .... ....
.... .... .... ....
.... .... .... .... .... .... ....
1 8460 8460 8460 1 2110 2110 21 10 180 1930 325 1825 6535 6535 6535 1 203 1
55.7 55.7 127 127 127 -140 to -150 71.1 42.7
{ :2:z {% 76.8 { 22:; { 25.5
z:
2033 2033 5220 5220 5220
....
1
1
1
2270 2270 4090 4090 2270 3290 4990 3290 3290
Transition heat cal/g
.... ....
Transition volume change Cms/K
....
....
5.72 4.95 4.22 .76 3.85 5.65
.OO% .0101 .014 .0241
3.37
.0025
....
.... 6 .... .... .... .... .... .... .... .... 5.4
1.15
4.8 7.1 9.8 .9 10.7 5.04 4.58
....
....
....
.... ....
.... .... .... .... .... .... .... .... ....
....
....
4.66
.026" .0173 ,0054 .0227 .0205 ,0150 .0029 .0121
2.34 10.14 7.80 45 46.4 48.2 1.85 60.9 58.5 2.41
,0480 .0486 .0006 .I560 .0862 .0992 .0130 .0319 .0649 .0330
.25
.... .... ....
<.5
6.93 2.63 40.7 37.9 35.9 34.4 40.6 2.07 1.64 6.12 5.50 3.87
.... .... .... ....
....
,0280 .0097 .0599 .0253 .0355 .0184 ,0640 .o102 ,0092 .0456 .0482 .0574
' Arranged by F. C. Kracek, Geophysical Laboratory, Cnrnegie Institution. All other footnotes at end of table. (Corltinllctf)
SMITHSONIAN PHYSICAL TABLES
127 TRANSITIONS I N CRYSTALS (continued)
T A B L E 124.-REVERSIBLE
CBH6(Benzene)
Transition Pressure t"C atm
Phases
Substance
........
L-I1 L-I L-I1
.....
{ 46?9
1-11
L-I
CH,C,H40H (o.Creso1). Camphor 5 ............. CeHiiOH ............ CeHaNHzHNOs ...... CaSO, ................ CaCO.,* Ca0.Si02 ............. 2Ca0.Si02 ............ c o ....................
L-I1 1-11 1-11
1-11
.... 1-11 .... ....
...............
c o o .................. CoOH ................ CSCl .................. csc104 ................ cs2s0, ................ CsNOa ................ Cs2Ca2( .......... Cu2Brl ................ cu212 ..................
cu2s .................. CulSe ................. Cu2Te ................. Fe ....................
Curie point 1-11 11-111
.... .... .... ....
.... .... cur'ik'&int
B-r y-8
................. Curie point 11-111 ................. 1-11 .... Fe S ................... FeS2 .................. pyrite, marcasite .... Fe2P .................. .... Fe3P .................. .... FeTiO, ................ red-yellow HgIz .................. HgzIz ................. {green- y ellow HgS .................. cinnabar metacinnabar ICI ................... ruby-brown .... KOH ................. 1-11 FerO, Fe203
KCIO,
................
KCIO, ................ K2S ................... KNO,
.................
&I,
11680 11680 1 {21i4 11680 218 11680 1 2015 64 2015 64 2015 1 {li% 5900 103.2 5900 103.2 5900 1 87.1 -9 1 ... 97.6 1193 .... 970 high COZ 1 1 9 0 a 1 0 .... 1420,675 .... -1100 .... 1015 .... 400 .... 3 5 0 2 1 0 .... 223 .... 460 .... 219 .... 660 .... 153.5 1 722 .... 390,470 .... 402,440 1 200 9600 100 11560 91 .... 110 .... 351,387 .... 730 .... 920 .... 1400 .... 5702 .... --163 to -148 .... 500a ..,. 140 ....
{i!:
1-11
L-I C,H,OH (Phenol)
....
80 440 215 127.5
....
3862
....
.... .... .... .... ....
....
8.68 7.73 30.2 33.25 * 25.5 29.8 24.8 30 5.2 33.8 34.2 35 .8 .25 9.38
.... .... ....
Transition volume change cms/g
.0105 .0132" .1317 .0369" ,0501* .0567 .0270 .0825 .0555 .0838 ,0317 .0555 .0238 .00187
.... .... .... ....
.... ....
.... .... .... .... .... .... .... .... .... .00405 .... .... ....
....
.... .... ....
Cn. 10
.... 1.3 .... .... ....
11.8 8
.... .... 4.3
1.091 .948 5.6 5.4
6.7 2 6.7 2 2
.... 2.25
.... .... .. .... ....
1.3 .5 -t
.... ....
.... ....
....
....
lOC/o,675
.00485 .00535
.... .... .... .... .... ....
.... .... .... .... ....
.00342
.... ....
.... 27.1 248 5500 .... .... 255 11-111 P = 5500 +'io.st = .02510 - 2 . 2 X lo-' A h , = .165 at 00, 281 at 200" ....
1-11
t = 146.4
1-11 1-111 11-111 111-IV 11-IV
128 {?.3 21.3 21.3
(continurd) SMlTHSONlAN PHYSICAL TABLES
Transition heat caVg
+
1 .0124P 1
81 81 81 2840 2840 2840
.765
10.5 10.3 5.6 4.7 1.3 5.1 3.8
....
.OW95 .00481 .0049 .0138 .0089 .0156 .0284 .0440
T A B L E 1 2 4 . 4 3 EVER SlBLE T R A N S ITIO NS IN CRYSTALS (continued)
Substance
KzSOI KHSO,
................ ...............
rransition Pressure t"C atm
Phases
1 1773
1-11
1
11-111
11-IV I-IV
.............. .............. .............. .. ..............
KCNS K*Pb(SO, ) z ........... K*CdI, .. .............. KzCrO, . .............. K,Cr*O, . .............. KzMoOi . .............. KZWO, . .............. KZCa2(S0& ........... K 3 r( ............ KLiSO, ............... KSOZ ................. K,O( SiO,), ............ 2KzO(AlZO3)(SiOl)~". LiCI03 ................ LiSO, ................ (&O)?(B;03)sMgCI ... MgO.SIOz ............ M n ................... MnSO, ................ MnOz ................. MnO . . . . . . . . . . . . . . . . . . N* .................... NH,Cl ................
.
................ XH41 ................. NH,ClO, .............. KHIBr
............. (NH,)3H(SO,)z ....... NH,CNS ............. NH,NOj ..............
NHIHSOI
111-IV
....
....
.... .... .... ....
....
1
....
.... ....
.... .... .... ....
1-11
{lz: 290 714 41.5,99 580 266
.... .... ....
.... ....
74i,'ii9i
.... .... .... .... 1-11 .... 1-11 ....
860 -185 to -175
-153 to -163 -237.6 -30.5' 184.3 -38'
1-11
1-ii:I-11 11-111-IV
....
1-11 11-111 L-I 1-11
11-111
111-IV 11-IV IV-VI IV-v
.... .... ....
.... .... ....
937 775 435
I-VI
SMITHSONIAN PHYSICAL TABLES
....
.... ....
11-VI
NaOH ................ NaClO. ............... NaC103 ............... Na2S0, ...............
....
450 278 410 143
IV-I11 111-1
137.8 -42.5' -17.6 240 126.2 176.9 134 120 87.7 169.5
{;% 186.7
{igz:!
{ 3.!: { 2g.3 {I;:
169.2 -18 300 308 248 185 24 1
(continued)
1
E
.... ....
.... .... .... .... .... .... ....
.... .... .... .... .... . ...
1
..., 1
....
Transition heat caVg
13 .71 2.29 3.61 3.30 .166 .134 2.03 3.44
.... .... .... 3.10 .... ....
12.6 1.40
.... 8.2 1.6
.... .... ....
11.7 7.15
.... .... ....
55*1 1.8
..>. .... .... .88
2.08 1.9'
...
16.3
....
....
1 1
1 8730 8730 8870 8730 1 830 1 830 830 8870 8870 1
....
.... .... .... ....
....
.00066 .00197 .00566 .00570
.... ....
.... .... .... .... .... ....
,00306
.... .... ....
.0315 .0378
.... ....
.... .... .... .... .... ....
.... ....
.... ....
.0985
....
7.78
.0647
4.80
,0561
....
.. .. .. ....
....
1800 5480
....
Transition volume change cmS/g
10.36 16 12.9 12.6 12.3 .27 .33 4
2.48 4.67 4.03 6.51 11.84 12.1 1.6 24.7
....
8.6 15.5
.... ....
.0409 .051
,01351 .00475 .00855
.00309 .00380 .00758 ,00925 ,02026 .02135 .01210 .01267 .00958 .017
.... .... ....
.0034
.0070
129 T A B L E 124.-REVERSIBLE
Phases
Substance
NaF.NaZSO4 ........... NazCOs ............... NaNO, ............... NaaAlFa .............. NazMoO, ............. NazWO, .............. NaAlSiO,
.............
NaCzHoOI ............ Ni .................... NisSz ................. NisAsz ................ Oxygen ............... Phosphorus
...........
PbO .................. PbSO, ................ PbCrO, ............... PtiWO, ............... RbOH ................ RbCIO, ............... RbSO, ............... RbCa,( SO,), .......... RbLiSO, .............. RbNOj ................ RbCl .................. RbBr ................. RbI ................... Sulphur ...............
................. ................. .................. ................. .................
SbzOa SbCI, SiO, SiO, SiO, SiO,
..................
.................... SnO, .................. SrSO, ................. SrCO, ................ TlClOi ................ T1I ................... TIN03 ................ TI picrate ............. Sn
TI .................... TiBr, .................
wzc .................. ZnS 4 ZrOz
TRANSITIONS I N CRYSTALS (concluded)
.................. ..................
....
.... ....
....
I-L 11-1 111-11 neph.-carn. carnegieite
....
Curie point
.... ....
1-11 11-111
Transition Pressure t"C atm
105 430 275' 568 424,585,623 581.6 .588.8 695.5 1250 226,650-690 198' 355 545 970 -229.5 -249.5
L-I 1-11 red-yellow
.... .... .... .... .... ....
1-11 11-111
.... .... .... ....
1-11 L-1-11 rhomb.-reg. 1-11-111 1-11 1-11 1-11 11-111 0,
L
0,
r
a,
r
.... .... .... .... .... .... ....
1-11 11-111
... ... .... .... ....
....
{587 68::
.... ....
.... .... .... .... .... ....
.... .... .... .... .... .... .... ....
1 6000 6000 12000
....
Transition heat caV8
.... ...
(8&2) 59
....
25.1 3.3 19.4
.... cal .... .... .... ....
6.2 .75 4.90 6.53 43.9 55.2
....
13.4 .... 870 .... 707,783 .... 877 16.8 .... 245 .... 279 .... 653 .... .... 787,915 .... .... 142 .... 219 7.12 1 164.4 5810 5.93 218.6 5525 .... 50 4925 .... 50 .... 4050 50 2.7 1 95.5 1410 .... 155 .... .... 570 .... .... 65,69.5 2.6 .... 573 2.7 .... 215 .63 .... 150h .96 104 .... 8.7 867 .... 25 .... 1250 7.5 1470 .... .2 161 .... 4.4 18 .... .... 430,540 .... 1152 .... .... 925 high COZ .... 226 .... .... .... 173 .... 2.86 1 144.6 .89 1 75 .... 44 .... .3 k 230 .... .... .... -15 .... 2400 .... 1020 .... .... ca 1000
.... .... ....
Transition volume change cmS/g
....
.... .... ....
(.0081) .018
.oo
.035
.... .... .... .... .... ....
.0193 .0120 .00846 .00684
.... .... .... .... .... .... ....
.... .... ....
.00688 .00434
.... .... .... .... .... .... .... .... .... .... .... .... ....
.... .... .... .... ....
small
.... ....
.00244 .OW73 .018
.... .... .... .... ....
D Five other modifications; not accurately f: Acetone. modification at room temperature. ll Very heautiful for demonstration purposes. a Leucite. b Probably pentamorphic, inv. located. c Acetate. d Sluggish. e Quartz. f Cristobalite. g Zincblende and at 1150" and 1300°C. wurtzite. h Tridymite. t Third
SYITHSONIAN PHYSICAL TABLES
130
-
TABLE 125.-TRANSFORMATION AND M E L T I N G TEMPERATURES OF LIMEA L U M l N A S l L l C A COMPOUNDS AND EUTECTIC M I X T U R E S * Percent
Substance
CaO
casioa .......... 48.2 CaSi03 .......... 48.2
_ _
SiO?
-
51.8 51.8 35. 35. 35. 41.8 26.4
37.8 52.2 64.6 75.2 62.8 36.6 37.2 30.9
37.1 43.3 22.0 18.2
AI..O:t
.......... 65. .......... 65. .. ........ 65. Ca3SizOl . ........ 58.2 Ca3SiOs .. ........ 73.6 Ca3AlzOa . ........ 62.2 CasAlsO14 ........ 47.8 CaALO. . ........ 35.4 CarAIloOls ....... 24.8 AlzSiOs .. ........ CaAlzSizOa ....... 20.1 CazAlzSiOl ....... 40.8 CaaAlzSiOa ....... 50.9 CazSiO, "
-
Eutectics
Percent
Crystalline phases
} }
} CaALSizos } SiOz CaAlzSizos } SiOz,CaSiOa CazA1zSiO1} CazSi0, A1203 CaAlzSiSO8 } *lzSiOs,>iOJ CaA1zSizos
} Ca3AlloOl~ CazA1zSiO1 } Ca ALO. CazAISlO1
CazAlzSiOl CaALO. CasAlloO18 CaA1.Siz08 CazAlzSiOl CaZAlzSiO, Ca3SizOl CaSi03 CazAlaSio' CaSiOa
Melting
}
1 }
Percent
CaO
AI2O3 SIOZ
"??
37 54.5
63. - 45.5
1436 14552
Ca AlzSi20s
- 32.5 13. 87. 64. 36. 34.1 18.6 47.3
20652 1610 1810 1299
10.5 19.5 70.
I359
23.2 14.8 62.
1165
49.6 23.7 26.7
1545
19.3 39.3 41.4
1547
9.8 19.8 70.4
1345
-
67.5
-
35.
50.8 14.2
552
37.8 52.9
9.3
512
37.5 53.2
9.3
505
302 36i3 33'
385
47.2 11.8 41.
1310
45.7 13.2 41.1
1316
Temp. "C
Eutectics Crystalline phases
, -A- t
CaSiO~,Si02 Ca,Si03 3Ca0,ZSiOZ CazSiOl CaO. A1,SiOs,SiOz AlzSiOs,AlzO. CaALSizos CaSi03
-
Transformation
Melting t .......................... 154022 a to p and reverse .................. 120022 Melting ........................... 2130210 y to p and reverse .................. 67525 p to a and reverse .................. 142022 Dissociation into CaSiO, and liquid.. 1475f5 Dissociation into CazSiO, and CaO. . 1 9 0 0 5 Dissociation into CaO and liquid.. .. 1 5 3 5 5 Melting ........................... 145525 Melting ........................... 1600*5 Melting ........................... 1720*10 Melting ........................... 1816r+10 Melting ........................... 1550*2 Melting ........................... 1590k2 Dissociation into CazSiO,+CazAlzSi01 and liquid ..................... 133525 > -A- - ,
CaO A1-03
SMITHSONIAN PHYSICAL TABLES
Melting teomp. C
1265 1380
AlzOa CazSiO, CaALO. CaJAlsOl,
6.8
1335
48.2 11.9 39.9
1335
48.3 42.
9.7
1380
15.6 36.5 47.9
1512
31.2 44.5 24.3
1475
49.5 43.7
Quintuple points CazA.lzSiOl CaaSilOl CazSiOI CazAlzSiO, Ca.Si0. CaklzO. CaAlzSizOa AlzO? AlzSlOs CasAlloOls CazAlzSiOl A1zOa
i
Quadruple points
The majority of these determinations are by G. A. Rankin. accuracy of the melting paints is 5 to 10 units. (Geophysical Laboratory.)
t The
s10z
1475
TABLES 126-129.-CHANGES I N FKEEZING A N D BOILING P O I N T S T A B L E 126.-LOWERING
131
O F F R E E Z I N G P O I N T S BY S A L T S I N S O L U T I O N
In the first column is given the number of gram-molecules (anhydrous) dissolved in 1000 g of water ; the second contains the molecular lowering of the freezing point ; the freezing point depression is the product of these two columns. After the chemical formula is given the molecular weight. Temperatures in "C.
-ag a';
gmol
1OOOgH20
ig
g mol 1000 g HnO
2'
Pb(N03)z, 331.0 .000362 5.5" .001204 5.30 .002805 5.17 .005570 4.97 .01737 4.69 .5015 2.99 Ba(NO,),, 261.5 .OW383 5.6" .001259 5.28 .002681 5.23 .005422 5.13 .008352 5.04 Cd(NO,)z, 236.5 .00298 5.4" .00689 5.25 .01997 5.18 .04873 5.15 A g N O , 167.0 .1506 3.32" .5001 2.96 .8645 2.87 1.749 2.27 2.953 1.85 3.856 1.64 .0560 3.52 .1401 3.58 .3490 3.28 K N O , 101.9 .0100 3.5 .0200 3.5 .0500 3.41 .lo0 3.31 200 3.19 .250 3.08 .500 2.94 .750 2.81 1.000 2.66 NaNO,, 85.09 .0100 3.6" .0250 3.46 .0500 3.44 .zoo0 3.345 .500 3.24 .5015 3.30 1.000 3.15 1.0030 3.03 NHINO,, 80.11 .0100 3.6" .0250 3.50
.lo00 3.42 .2000 3.32 .500 3.26 1.000 3.14 LiNO,, 69.07 .0398 3.4" .1671 3.35 .4728 3.35 1.0164 3.49 AIz(SO,),, 342.4 .0131 5.6" .0261 4.9 .0543 4.5 .lo86 4.03 217 3.83 CdSO,, 208.5 .000704 335" .002685 3.05 .01151 2.69 .03120 2.42 .1473 2.13 .4129 1.80 .7501 1.76 1.253 1.86 KSO,. 174.4 .00200 5.4" ,00398 5.3 ,00865 4.9 .0200 4.76 .0500 4.60 .lo00 4.32 .200 4.07 .454 3.87 CUSO,, 159.7 .000286 3.3" .OW843 3.15 .002279 3.03 .006670 2.79 .01463 2.59 .lo51 2.28 2074 1.95 .4043 1.84 8398 1.76 MgSO,, 120.4 .OW75 3.29 .002381 3.10 .01263 2.72 ,0580 2.65 .2104 2.23
.4978 .8112 1.5233 BaCl,, 208.3 .00200
.750 CdCl,, 183.3 .00299 .00690 .0200 .0541 .0818 214 .429 .858 1.072 CuClz, 134.5 .0350 .1337 .3380 .7149 CoCl,, 129.9 .0276 1094 .2369 .4399 .538 CaCl,, 111.0 .0100 .05028 .lo06 .5077 ,946 2.432 3.469 3.829 .0478 .153 .331 .612 .998
(continued)
SMITHSONIAN PHYSICAL TABLES
.
-2 g g.5 25 Ci-
2.02" 2.01 2.28 5.5" 5.2 5.0 4.95 4.80 4.69 4.66 4.82 5.03 5.21 5.0" 4.8 4.64 4.11 3.93 3.39 3.03 2.71 2.75 4.9" 4.81 4.92 5.32 5.0" 4.9 5.03 5.30 5.5 5.1" 4.85 4.79 5.33 5.3 8.2 11.5 14.4 5.2 4.91 5.15 5.47 6.34
-2r.;g mol 1000 g HsO g
00
ag
x-
MgCL, 95.26 5.1" .0100 4.98 .0500 4.96 .1500 5.186 .3000 5.69 .6099 KCl, 74.60 3.54" .02910 3.46 .05845 3.43 .112 3.41 .3139 3.37 .476 3.286 1.om 3.25 1.989 3.25 3.269 NaCl, 58.50 3.7" .00399 3.67 .0100 3.55 .0221 3.51 .04949 3.48 .lo81 3.42 2325 3.37 .4293 3.43 .700 NHaC1, 53.54 ! 3.6" .0100 3.56 .0200 3.50 .0350 3.43 .loo0 3.396 .zoo0 3.393 .4000 3.41 .7000 LiCl, 42.48 3.7" .00992 3.5 .0455 3.53 .09952 3.50 2474 3.61 .5012 3.71 .7939 BaBr,, 297.3 5.1" .loo 4.9 .150 5.00 200 5.18 .500 AlBr,, 267.0 1.4" .0078 1.2 .0559 1.07 .1971 1.07 .4355
132 T A B L E lPB.-LOWERING
OF F R E E L I N Q P O I N T S BY S A LTS I N S OLU TI ON (concluided)
-2:a';
-: : a'c
gmol 1000gHzO
CdBr,, 272.3 .00324 .00718 .03627 .0719 .I122 220 ,440 ,800 CuBr,, 223.5 .0242 .0817 ,2255 6003
$E-i
5.1" 4.6 3.84 3.39 3.18 2.96 2.76 2.59
KOHr56.16 .00352 .00770 .02002 .05006 .lo01 2003 230 .465
.0871 5.1" .1742 5.18 .3484 5.30 S226 5.64 MgBr,, 184.28 .0517 5.4" .lo3 5.16 207 5.26 .517 5.85 KBr, 119.1 '.0305 3.61' .1850 3.49 .6801 3.30 250 3.78 3 56 ,500 CdI,, 366.1 4.5" .00210 .00626 4.0 .02062 3.52 .04857 2.70 .1360 2.35 2.13 .333 2.23 .684 .888 2.51
KI,166.0
,0100 .0301 2018 1.046 3.41 6.200
.000402 1.67" ,004993 1.67 .0100 1.81 .02892 1.707 .0705 1.85 ,1292 1.829 2024 1.832 .5252 1.834 1.0891 1.826 1.760 1.83 3.901 1.92 7.91 2.02 11.11 2.12 18.76 1.81 .0173 1.80 .0778 1.79 KzCO,, 138.30 .0100 5.1" .0200 4.93 .0500 4.71 .loo 4.54 ,200 4.39 N a z C 0 3 ,106.10
.0100 .0200 .0500 .lo00 2000
SrL, 341.3
454
.iO8
216 .327
5.1" .~
5.2 5.35 5.52
N a O H , 40.06 .02002 3.45"
.05005 .lo01 .2000
1.8" 1.82 1.811 i.861.88 1.944
CZHsOH, 46.04
3.5" 3.50 3.42 3.37
5.1" 4.93 4.64 4.42 4.17
N a S O , , 126.2
,1044 .3397 .7080
4.51" 3.74 3.38
NazHPO,, 142.1
3.45 3.41 3.407
SMITHSONIAN PHYSICAL TABLES
.01001 .02003 .05008 .loo2
8u
a: z-
N a z S i 0 3 ,122.5
3.60" 3.59 3.44 3.43 3.42 3.424 3.50 3.57
C H I O H , 32.03
5.1" 5.1 5.27 5.89
CaBr,, 200.0
.0651 .2782 6030 1.003
g mol 1000 g H?O
5.0" 4.84 4.60 4.34
.01052 .05239 .lo48 2099 S233 HCl, 36.46 .00305 .OM95 .nioo .01703 .!I500
.lo25
.zoo0
.3000 ,464 .516 1.003 1.032 1.500 2.000 2.115 3.000 3.053 4.065 4.657 HNOa, 63.05 .@2004 .05015 .Oslo .lo04 .lo59 .2015 .250 so0 1.ooo 2.000 3.000 HjPOz, 66.0 .1260 2542 S171 1.071 HaPOs, 82.0 .0745 .1241 2482 1.oo H3PO,, 98.0
.0100 .02oo .0500 .I000 2000
6.4" 5.86 5.28 4.66 3.99 3.68" 3.66 3.6 3.59 3.59 3.56 3.57 3 612 3.68 3.79 3.95 4.10 4.42 4.97 4.52 6.03 4.w 5.67 6.19 3.55" 3.50 3.71 3.48 3.53 3.45 3.50 3.62 3.80 4.17 4.64 2.90" 2.75 2.59 2.45 3.0" 2.8 2.6 2.39 2.8" 2.68 2.49 2.36 2.25
.472 .944 1.620
2.20" 2.27 2.60
(COOH),, 90.02
.01002 .02005 .05019 .lo06 .2022 .366 .648
3.3" 3.19 3.03 2.83 2.64 2.56 2.3
C,Hs(OH)a, 92.06
.0200 ,1008 2031 .535 2.40 5.24
1.86" 1.86 1.85 1.91 1.98 2.13
(CzHs)zO, 74.08 .0100 . . ~ ~ .1.6"
.0201 .lo11 2038
1.67 1.72 1.702
Dextrose, 180.1
.0198 1.84" .0470 1.85 .1326 1.87 .4076 1.894 1.102 1.921 Levulose, 180.1 .0201 1.87" 2050 1.871 .554 2.01 1.384 2.32 2.77 3.04 Ci,HzsOn, 342.2
.OW332 .001410 ,009978 .0201 .1305 HzSO,, 98.08 .00461 .0100
.Om
,0461 .lo0 .ZOO .400 1.000 1.500 2.000 2.500
1.90" 1.87 1.86 1.88 1.88
4.8" 4.49 4.32 4.10 3.96 3.85 3.98 4.19 4.96 5.65 6.53
133 OF BOILING P O I N T PRODUCED BY SALTS DISSOLVED
T A B L E 127.-RISE
I N WATER
This tables gives the number of g of the salt which. when dissolved in 100 g of water. will raise the boiling point by the amount stated in the headings of the different columns The pressure is supposed to be 76 cmHg.
.
7"
5"
1°C
2"
39
15.0 6.0 12.0 4.7 6.0
31.1 11.5 25.5 9.3 12.0
47.3 16.5 39.5 13.6 18.0
63.5 (71.6 gives 4O.5 rise of 25.0 32.0 41.5 21.0 53.5 68.5 101.0 152.5 17.4 20.5 26.4 34.5 31.0 44.0 63.5 24.5
............... 9.2 . . . . . . . . . . . . . 11.5 ............. KCIO, ............. 13.2 KI ................. 15.0 KNO, .............. 15.2 K.C.H.O. +$H20 ... 18.0 KNaCIHIOn ........ 17.3 KNaC,H, Oa+4Hz0 . 25.0 LiCl ............... 3.5 LiC1+2Hz0 ........ 6.5 MgClz+6H20 ...... 11.0 MgS0, +7Hz0 ..... 41.5 NaOH ............. 4.3 NaCl ............... 6.6 NaN0, ............. 9.0
16.7 22.5 27.8 30.0 31.0
23.4 32.0 44.6 45.0 47.5
29.9 40.0 62.2 60.0 64.5
36.0 34.5 53.5 7.0 13.0
54.0 72.0 51.3 68.1 84.0 118.0 10.0 12.5 19.5 26.0
NaC2HaOz+3HZO... Na2S20%............ NazHP04 .......... Na,C,H, Oo+2Hz0 . . Na2S,0,+5Hz0 .....
30.0 27.0 34.4 44.4 50.0
Salt
BaClz+2Hz0 ....... CxClz .............. Ca(NO,), +2Hz0 ... KOH .............. KCzH30z ........... KCI
K.CO.
~~
~
14.9 14.0 17.2 21.4 23.8
4"
22.0 33.0 44.0 87.5 138.0 196.0 8.0 11.3 14.3 12.4 17.2 21.5 18.5 28.0 38.0 46.1 62.5 39.0 49.5 51.4 68.4 68.2 93.9 78.6 108.1
36.2 47.5 ~
10"
15"
~~
185.0 338.5
90.0 126.5 182.0 284.0 84.8 119.0 171.0 272.5 157.0 266.0 554.0 5510.0 15.0 20.0 26.0 35.0 32.0 44.0 62.0 92.0
(220gives 18O.5)
390.0
510.0
42.5 123.0
50.0 160.5
241.0
334.5
22.4 30.0 41.0 51.0 33.5 (40.7 gives 8".8 rise) 68.0 99.5 156.0 222.0
60.1
77.0 110.0
170.0
79.7 118.1 194.0 480.0 6250.0 59.0 77.0 104.0 152.0 214.5 85.3 121.3 183.0 (237.3 gives 8".4 rise) 139.3 216.0 400.0 1765.0
NaXO..C1OH.O .... 34.1 Na.B.0. +lOHzO ... 39. NH4Cl ............. 6.5 NH,NO, ........... 10.0 (NH,),SO, ......... 15.4
86.7 177.6 369.4 1052.9 93.2 254.2 898.5 (5555.5 gives 4".5 rise) 29.7 39.6 56.2 88.5 12.8 19.0 24.7 52.0 74.0 108.0 172.0 248.0 20.0 30.0 41.0 71.8 99.1 (115.3 gives 108.2) 30.1 44.2 58.0
SrC12+hH20 ....... S r ( N 0 , )z .......... C, HnOn ............. CzH,O, + 2 H z 0 ..... C,H,O,+H, 0 ......
40.0 45.0 34.4 40.0 58.0
Salt
20.0 24.0 17.0 19.0 29.0
40°C
60"
60.0 81.0 63.6 81.4 52.0 70.0 62.0 86.0 87.0 116.0 80"
100'
103.0 97.6 87.0 112.0 145.0 120'
CaCL .......... 137.5 222.0 314.0 K O H .......... 92.5 121.7 152.6 185.0 219.8 NaOH . . . . . . . . . 93.5 150.8 230.0 345.0 526.3 N H 4 N 0 3 . . . . . . . 682.0 1370.0 2400.0 4099.0 8547.0 C,HaO, ......... 980.0 3774.0 (infinity gives 170)
SMITHSONIAN PHYSICAL TABLES
84.5 443.5 67.3 171.5
48.4 (57.4 gives a rise of 8O.5) 60.5 78.5 103.5 127.5 152.5
74.0 99.5 134. 82.0 120.5 188.5
55.0 262.0 17.0 25.5 48.0
25"
200
temp.) 55.5 69.0 240.0 331.5 47.0 57.5 98.0 134.0
150.0 234.0
524.0
123.0 177.0 169.0 262.0 208.0 320.0
272.0 374.0 540.0 1316.0 553.0 952.0
140"
160'
180'
311.0
337.0
484.0 50000.0
200"
263.1 312.5 375.0 444.4 800.0 1333.0 2353.0 6452.0 03
240"
623.0
-
134
TABLE 128.-FREEZING
MIXTURES
Column 1 gives the name of the principal refrigerating substance, A the proportion of that substance, B the proportion of a second substance named in the column, C the proportion of a third substance, 1 7the temperature of the substances before mixture, E the temperature of the mixture, F the lowering of temperature, G the temperature when all snow is melted, when snow is used, and H the amount of heat absorbed in heat units (calories when A is grams). Temperatures are in "C. Substance
.
...
HzO-100 " " "
"
"
"
I'
"
'I
'I
"
I'
" "
50 "
"
"
"
"
"
I'
"
'4
+
1
+ GHzO I 1
srlpw O!l "
"
"
"
"
"
I'
"
"
"
'I
'I
1.097 " 1.26 " 1.38 " 2.52 '' 4.32 " 7.92 " 13.08 " .35 .49 " .61 " .70 " .81 " 1.23 " 2.46
( !!
Alcohol at 4" Chloroform ........ Ether ............. Liquid SO1 ........
NHINOa
1 1 1 1 1 1 1 1 1 1
Lowest temperature obtained.
SMITHSONIAN PHYSICAL TABLES
.'
/J
C 9 2 s$id '1
I'
"
"
" " "
.94 " "
Snow " HzO-1.20 Snow HzO-1.31 Snow " HzO-3.21 Snow 'I
10.7 13.3 13.2 10.7 10.8 10.8 13.6
' NH4C1-25 " 'I
' l
CaCL
NH.NOr25
I'
'I
HzSO, HzO (66.1% HzSO,)
.D
C
B
A
NaCzH3OZ(cryst.) . 85 NHICl ............ 30 NaNOs ............ 75 Na2Sz03 (cryst.). ... 110 K I ................ 140 CaCL (cryst.) ...... 250 NH4NOa .......... 60 (NH,),SO, ........ 25 NH,CI ............ 25 CaCL ............. 25 KNOI ............. 25 NazSO, ........... 25 N a N 0 3 ........... 25 K S O , ............ 10 20 NazCOJ (cryst.) KNO. ............. 13 CaCL ............. 30 NH,CI ............ 25 NH,NOa .......... 45 NaN03 ........... 50 NaCl .............
"
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0
E
15.4 18.4 18.5 18.7 22.5 23.2 27.2 26.0 22.0 20.0 - 20.0 19.0 17.0 - 1.9 .9 - 2.0 1.o - 2.85 1.85 -10.9 9.9 -15.4 14.4 -16.75 15.75 -17.75 16.75 -21.3 20.3 -37.0 36.0 -36.0 35.0 -35.0 34.0 -30.0 29.0 -25.0 24.0 19.0 -20.0 -16.0 15.0 -
-
0
-
20 20 10 5 0 10 0 10 0 10 0
-30.0 -72.0 -77.0 -77.0 -82.0 5.0 - 4.0 - 4.0 - 4.0 - 4.0 -14.0 -14.0 -17.51 -17.5* - 8.0 - 8.0
0
0 0
F
H
G
4.7 - 5.1 - 5.3 - 8.0 -11.7 -12.4 -13.6 -
.O
.O
-19.7 -39.0 -54.9*
17.0 27.0 133.0 273.0 553.0 967.0 52.1 49.5 40.3 30.0 46.8 88.5 192.3 392.3
-
33.0 21.0 34.0 40.5 122.2 17.9 129.5 10.6 131.9 .4 327.0
T A B L E 129.-ANTIFREEZlNG
SOLUTIONS
*
135
(For automobile radiators, etc.) Percent by volume in water with freezing points a n d specific gravities
10
Percent by volume
20
30
40
50
Typical commercial methanol antifreeze ............... - 5.2"C .986 Sp. gr. at 15"C/15"C ........
- 12.0"C ,975
- 21.1"C ,963
-3 2 . 2 ~ .950
- 45.0"C
Typical commercial ethanol antifreeze ............... -3.3"C Sp. gr. at 15"C/15"C.. . . . . . . ,988
- 7.7"C .977
- 14.2"C
-2Z.O"C .955
-30.6"C
.967
Commercial glycerine t antifreeze ............... Sp. gr. at 1S0C/15"C. . . . . . . . . .
1.6"C 1.023
- 4.7"C 1.048
- 9.5"C I .074
- 15.4"C 1.101
-23.0"C 1.128
Tvoical _ . commercial ethvlene glycol t antifreeze ........ -32°C Sp. gr. at 15"C/15"C ........ 1.015
- 83°C 1.030
- 15.5"C 1.045
-24.3"C 1.060
-36.5"C 1.074
-
.935
.938
T h i s table was prepared f r o m data furnished by F. G. Church of the National Carbon Co., and A. J. Kathman, of Procter Sr Gamble Co. t Glycerine and ethylene' glycol a r e practically nonvolatile. All types must be suitably inhibited to prevent cooling-system corrosion. Commercial antifreeze solutions based on ethylene g!ycol (Prestone) and on glycerine (Zerex) a r e in use a t the present time.
SMITHSONIAN PHYSICAL TABLES
136 T A B L E S 130-141.-HEAT
FLOW A N D T H E R M A L CONDUCTIVITY
T A B L E 130.-CONVERSION
FACTORS B E T W E E N U N I T S O F H E A T F L O W
-
joules sec cmz or watts/cmz
cal ___
1 watts/cm2 = 1
2390
cal - 4.185 sec cm2 -
1 -
1
hr mz
1
h r ft'
1 watt/in.2
8602.
1
3171.
1
= 3.153 X lo-' 7.535 x
2.713
3.704
x lo-'
1 2546.
1333.
P a r t 1.-Various
491.5
27.00
1.448 X lo-'
7.500 x 10.'
3.928 x 10-4
2.035
1
5.179
x
1
,1931
Substances
Substance, temperature 'C
kt
cgs Lime
.000112 ,0111 ,012 .00050
6.452
C O N D U C T I V I T Y OF V A R I O U S S U B S T A N C E S
T A B L E 131.-THERMAL
Substance, temperature "C Aniline B P 183, - 160.. Carbon gas ........... Carbon' graphite ...... Carborhndum .........
.3687
6905.
.I918
watts/in.*
hp/ft*
1.246
1.327 x 10' 5.212
36000.
= 1.163 x lo-' 2.778 x
= 8027 = .I550
1 hp/ft2
Btu hr ft2
k?oca! hr m2
sec cm2
kr cgs
. . . . . . . . . . . . . . . ..00029
Substance,o temperature C Q y r t z 1 to axis, -190.
kt cgs ,0586
Quartz I1 to axis, Rock salt. 30.. . . . . . . . . ,0150 Rubber, vulcanized, -160
Fire-hrick ............ ,00028 Fluorite, -190 ........ .093 Fluorite, 0 ...... Glycerine, -160
. .00068
Naphthol, 0 . . . . . . . . . . ,00062 Nitrophenol M P 114, -160
. . . . . . . . . . . . ,00106
Nitrophenol. 0 . . . . . . . . ,00065 Paraffin M P 54, -160.. ,00062 Paraffin, 0 ............ .a0059
P a r t 2.-Rocks
..
23.RxlO-3 15.9 27.9
500 0
sn
26.2
loo 200
Zi:?
... ...
23.0 28-18 27.2
0 100
31.6 29.2 22-18
Granite Granite Quartz ite,
gneiss.. schist.. monzonCalif.. .
Basalt
...........
'6
cmdea
.00026
'5
Temp. watts Rock "C cm deg Limestone: Japan ......... 25 to 9 x 10-3 Penna. II to bed . . . 0 34.5 1 to bed.. . 0 25.5 9.2 Chalk . . . . . . .; Marble (17 varieties) ..... 30 32.21 Black ....... 124 16 White ...... 125 14 Sandstone, Boreland bore . . 17 41.8 Soapstone . . . . . . . . 34
Typ. %
Barre, Vt..
Snow! fresh, dens.=.ll. Vaseline. 20 Vulcanite . . . .
Conduc. tivity, K
Conductivity, K Rock C Granite ....... 100
. . . . . . . . . . . . ,00033
Rubber, 0 . . . . . . . . . . . . ,00037 Rubber, para
Conductivity, K T$mp. 2 !%5 C cmdeg
Slate: 30 2 0 ~ 1 0 - ~ Wales ... Penna. I to bed . . . 0 19.4 Madoc ...... 120 16 Shale ......... . . . 17-10 Silty clay ..... 17 15.4 Fireclay, Boreland bore . . 17 18.3 Rocksalt. Holford . . . . . . 17 72
Birch, Francis, Handhook of physical constants, Geological Society of America, 1942. Used by permission.
T A B L E 132.-THEAMAL k! Substance "C
cgs
0
.OOlSO
20
.00143
SMITHSONIAN PHYSICAL TABLES
C O N D U C T I V I T Y OF W A T E R A N D S A L T S O L U T l O N S Solution in water CuSO,
KCI
N:CI
Density
"C
kt cgs
1.160 1.026 1.178
4.4 13. 4.4 26.3
,00118 ,00116 .00115 ,00135
-
Solution in water H??O. Zn?04
kt Density 1.054 1.180 1.134 1.136
"C 20.5 21.
4.5 4.5
cgs .00126 .00130 .00118 .00115
TABLE 1 3 3 . 4 O N V E R S I O N FACTORS B E T W E E N UNITS O F H E A T FLOW FOR DIFFERENT GRADIENTS cal cm -see cmz "C
1Calcm= seccm* "C 1
%= cm' "C
1
kR1!!!= hrm' "C
1 - Btu ft_=
ft'hr "F
1
1 1
k &= ft' "C
hnft= fta "F
-
1. .23%
"C
kgcal m -hr m ' "C
hp &.
Bto f t ft* hr 'F
4.185
360
241.9
1.
86.02
57.78
ft* "C
2.053 .4907
hp f t -ft' "F 9.503 x 10"
2.271 x
lo-'
x 10-4
1.163 X lo-*
1.
6.720 x lo-'
5.703 X lod
2.640
4.134X lod
1.730 x 10"
1.488
1.
8.487 x lo-*
3.929 x lo-'
117.8
1.
4.629 x lo-'
2546.
21.60
212.0
1.8
.4871 10.52
ft* "F
1 watts in.-- 9.407 x 10-'
C
c d
2.778 X lo-*
hp &= 8764
in.
watts Em __-
2.039 44.03 3.668 .3937
175.4 3787. 315.5 33.87
22.76
.1931
1. 8.333 x lo5 8.939 X lod
watts in. in.' 'C
hp in.
F"F 1.141
10.63
.2727
2.540
3.170
lod
4.717 x lo-* .5558 12.00 1. .lo73
2.953 x lo-' 4.394 5.178 111.8 9.316
1.
c
w v
135
TABLE 134.-THERMAL
CONDUCTIVITY, METALS AND ALLOYS
T h e coefficient k is the quantity of heat in small calories which is transmitted per second through a plate one centimeter thick per square centimeter of its surface when the difference of temperature between the two faces of the plate is 1°C. T h e coefficient k is found t o vary with the absolute temperature of the plate, and is expressed approximately by the equation kr = ko[l a ( t - t o ) ] . ko is the conductivity at to, the lower temperature of the bracketed pairs in the table, k r that at temperature t, and a is a constant. kr in g-cal per degree C per sec across cm8 = 0.239 X kt in watts per degree C per sec across cm'.
+
t"C
Substance
....... -190 ....... 30 76.4 AntiTony ....... 100" Bismuth ......... -186 Aluminum
......... ......... B y ........... ........... , yellow.. ... I'
" , red. . . . . . . Cadmium, pure
.....
Constantan ... (60 C u + 4 0 Ni Copper,* pye . 1
17 0 0 -160
kr
kl
a
cgs
-
.497 .497 .550
+.0030
:%I.025
-.OO 104 -70021 +.0024 +.0015
.260 .204 ,246 .239
-
$$} -.00038
,.
18 ,0540 .. 100 .0640} _ _ -160 1.079 18 .. .... 100 0 .070 German silver .... G:ld ............ -190 .793 17 ,705 17 .037 Graphite ........ 17 .141 Iridium ......... 18 Iron,+- pure ...... ...... 100 .152 Iron, wrought .... -160 Iron, 30 .173 polycrystalline . . Iron, polycrystalline . . 100 Iron, polycrystalline . . 200 .147 .163 Iron, polycrystalline . . 800 18 I r y , sfFel, lc% $. . .. 100 Lytd, y e ....... -160 18 ....... " ....... 100 .376 Magnesium ...... .035 -160 M y g a n i n ....... 18 (84 Cu 4 100 Ni 12 M n ) . .
:;a
:El
+'00227 -.00013 +.0027 -.00007 +.0003 -.0005 -.0008
1
i
'(
"1;)
+
t
-.0008
-.0001 -.0001 -
+.0026
Substance
........
0 ........ 50 17 Molybdenum ..... Nickel .......... -160 ' .......... 18 0 .......... ' 100 Meyry
CRS
.346 .129 .1420
a
+.Go55 --.0001
-
-.00032 :E>
:E5)-.00095
200 700 ...... 1000 .064 ...... .......... 1200 .05Rl 18 Palhdium ....... ....... 100 18 Platinum ........ ........ 100 17 .074 P t 10% I r ........ 17 .072 P t 10% Rh ....... 18 .060 Platinoid ........ 5.0 Pot?;sium ....... ....... 57.4 17 .210 Rhodium ........ .998 Silver, pure ...... -160 18 1.006 .......... 100 .992> 5.7 Sodium .......... .......... 88.1 18 .110 Steel ............ 17 .130 Tant$um ........ ........ I700 .174 ........ 1900 ........ 2100 0 Tin ............. 100 .192 pure ....... -160 17 .476 Tungsten ........ . . . . . . . . 1600 ........ 2000 ........ 2400 ........ 2800 .319 Wood's alloy ..... Zinc, pure ....... -160 Zinc, 0 polycrystalline . . Zinc, .250 200 ~.polycrystalline . . Zinc, polycrystalline . . 400 231 Zinc, liquid ...... 500 .144
--.00047
:E31+.0010 :El +.00051 +.0002 .E}
:%I
...
Copper: 100.197"C, kr = 1.043; 100-268",0.969; 100-370', 0.931; 100-541°,0.902. Iron: 100-727"C,k t = 0.202; 100-912",0.184; 100-124S0,0.191.
SMITHSONIAN PHYSICAL TABLES
t"C
+.0002
-
-.0013 -.0010
-
-.00017 -.0012
-
-.0001
:El +.ON32 :3-.00069 -.0001 +.Om23
:%> +,0001 ::% I- 6
1
-
-
-
T A B L E 135.-THERMAL
C O N D U C T I V I T Y OF I N S U L A T I N G
139 M A T E R I A L S .* Conductivity A
Material
Air, 76 cmHg ... ................. Ashzstos w:d . . . . . . . .. .. .. . . ...
.
.................... .................... with 85 percent M g O . . . . . . Br;jck, very porous, dry ........... "
machine-made, dry . . . . . . . . " moist, 1.2%
vol. . . . . . . . . . . . . . . . ........... Calorox, fluffy minera matter. . . . Celluloid, white . . . . . . .... ... . ... Cement mortar . . . . . . .. ......... Chalk . . . . . . . . . . . . . . . ........... Charcoal . . . . . . . . . . . . . . . . . . . . . . . Coke dust ........... ........... Concrete . . . . . . . . . . . . ........... Cork . . . . . . . . . . . . . . . . ...........
............................ ............................ ............................
Cotton, tightly p:cked.
.. . .. . . . ... .............
.............
Cotton wool, tightly packed.. . . . . . . Diatomite (binders may increase
100%)
........................
Diat;mite, dip0 . . . . . . . . . .. . . . . . . . Ehonite . . . . . . . . . . . . . . Fzlt,
......................... ......................... flax fibers.. . . . . . ...
,'
.
hair . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . ... .. . . wool "
.
"
.......................
Flannel . ................... Fuller's earth . . . . . . . . . . . . . . . . . . . . G l y , lead . ....... ..............
Density g/cm3
.00129 .40 .40 .40 .3 .71 .54
t"C
0
- 100 0
+ 100 30 20 0
50 30 30 90
,064 1.4 2.0
joule/ (cm'sec "C/ cm)
cal/ (cmZsec "C/ cm)
.00023 .00068 .00090 .00101 .00075 .00174 .00038
.OW055 .000162 .000215 .00024 .000179 .00042 .000091
.OW96 .00032 .ow21 ,0055 .0092 .00055 .0015
.00023 .000076 .000050 .0013 .0022 .00013 .00036 .002 .000076 .000098 .000146 .000189 .000091 .OW133 .00018 .00010
.18 1.0 1.6 .OS .. . .05 .35 .35 .08 .08 .08 .08
20 20 0 0 100 0 100 - 150 0 150 30
.20
0 400 0 400 - 190 - 78 0 30 30 40 30
.00052 .OW94 .OW86 ,00157 .00138 .00157 .00160 .00047 .00036 .00063
30 15 20 100 50 100 200 300 40 40 40 20 0 85 85 30 20 20 50
.00101 .0060 .0072 ,0076 .00042 .00050 .00065 .00081 .0018 .0038 .0129 ,00051 .022 .00063 ,00176 .0016 .OW86 .00080 .0050
.20
.so .so
1.19 1.19 1.19 .18
.27 .15 .33 .53
. . . . . . . . . . . . . . . . . . . . . . 2.59 2.59 ..................... w;ol . . . . . . . . . . . . . . . . . . . . . . .22 ...................... .22 ...................... .22 ' .22 ...................... GraEhite, 100 m:sh.. .... ......... .48 40 ............... .42 20 to 40 mesh. .. . . . . . . . .70 Horsehair, compressed . . . . . . . . . . . .17 Ice . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .92 Lea$er, chamois . . . . . . . . . . . . . . . . cowhide . . . . . . . . . . . . . .. . ' sole . . . . . . . .. . . . . . . .. . . . 1.o Linen ........................... Linoleum, cork . . . . . . . . . . . .. . . . . . .54 Mica, average ................... s$a
'I
.
+
.008
.00032 .00041 .00061 .00079 .00038 ,00056 .00076 .00042
.00052
Compiled from the International Critical Tables, which see for more complete data.
(continued)
SMITHSONIAN PHYSICAL TABLES
.00012
.00022 .00021
.00037
.0w33
.00038 .00038 .00011 .000086 .000151 .000124 .000023 .00024 ,00143 .00172 ,00182 .000100 .000120 .000155 .000195 .00044 .00093 ,0031
.000122 .0053 .OW151 .000421 .00038 .00021 .000191 .0012
140 C O N D U C T I V I T Y OF I N S U L A T I N G M A T E R I A L S (continued)
T A B L E 135.-THERMAL
Conductivity Density
Material
. .. . . . . . .. . . .. . ... . . . . . . Mi;eral wzol . . . . . . . . . . . . . . . . . . . . .15 . . .. ... . . . . . . . . . . . . . .30 Paper, rice . . .. . . . ... .. . .. .. . .. . . blotting . . . . . . . . . . . . . . . . . . . Paraffin wax . . . . . . . . . . . . . . . . . . . . .89 Py:t, dry . . . . . . . . . . . . . . . . . . .. . . . . .19 blocks . . . . . . . . . . . . . . . .. . . . . .84 Poreclain . . . . . . . . . . . . . . . . . . . . , . . Rubber, rigid sponge, hard ........ .09 sponge, vulcanized . . . . . . . .22 cornrnercial, 40% rukber . . .
dcm3
Micanite
"
"
...
92%
. . . . . . . .. .. .. . . .. .. . .
.
Si!k . . . . . . . . . . . . . . . . . . . . . . . . . . . . scrap from spinning mill.. . . . " 'I
. .. . . ..... Snow . . . . . . . . . . . . . . . . . . . . . .. . . . , Steel wool . .. . . . . . . .. . .. . .. . . . .. . . .. . . . .. .. . . . .. .. .. . . . Wool, pure ... ................... very loose packing.. . , . Woods: Azh 1 t; gr:in. .. . . . . .. II .. .. . . . . . Balsa 1 to grain.. . . . . . . Boxwood . . . . . . . . . . . . . . . Cedar 1 to grain ....... Cypress 1 to grain.. .... Fir 1 to grain.. . . . . . . . II to grain.. . . . . . . . L i g y m v$ae .. .. . . .. . . . . . . . . . .. ,. . Mah:gany, 1 to grain,. . II to grain.. . Oak, 4 to grain.. . . . . . . II to grain ... . .. . . Pine, pitch, 1 to grain.. . Virginia, ditto.. . . . . white, ditto,. . . . . . . . II to grain.. . . Sprdce, 1 to grain ...... Teak, 1 to grain ....... ' 11 to grain ....... Walnut, 1 to grain.. . . . Rocks: Basalt . . . . . .. . . . . . . . . . . . Chalk . . . . . . . . . . . . . . . . . . . Granite ................. Limestone, very variable.. Sl;te, 1 to cleavage ... . . , It to cleavage. . . . . . Sadgtone, air-dried . . . . . . freshly cut. . . . . I'
1'
I'
"
I'
"
I'
"
I'
I'
'I
'
I'
1'
"
"
"
" 'I
joule/
'I
" "
.....
30 30 40 20 30 30 20 90 25 20 25 25 30
.10 .10
-200 - 100
.10 .25
50 0
.lo
.15 .08
.09 .04 .74 .74 .ll .90 .48 .46
.54 .54 1.16 1.16 .70 .70 .82 .82 .55 .45 .45 .41 .64 .64 .65 2.8 2.0
0
55
55 30 30 20
20 30 20 30 20 20 20 100 20 20
15 15 30
30
60 60
15
15
20 20 20
95 95 2.2 2.3 (continued)
SMITHSONIAN PHYSICAL TABLES
t"C
20
20
cal/
(cmP sec "C/ cm)
(cm2 sec "C/ cm)
.0021.0042 .OW42
.00050.00010 .00010 .00012 .OQO11 .00015
.00052
.00046 .00063 .0023 .00052 .0017 .0104 .00037 ,00054 .0028 .0016 .00060
.0023 .00040 .00023 .00037 .000495 .00056 ,0016 .00080
.00055
.00012 .0w41 .0025 .000088 .OOO13 .00067 .00038 .OW143
.0006
.00045
.00010 .000055 .000088 .000118 .OOO134 .00038 .000191 .00022 .000086 .00010 .00041 ,00074 .000084
.0015 ,0011 .OOO% ,0014 .0035 .0025
.00027 .00023 .00033 .00081 .00060
.00090
.OW36 ,00042 .0017 ,0031
.0m36
.0030
.0w72
.0016 .0031 .0021
.00038 .00074 .00050 .00086 .00036 .00033
.0036
.0015 .0014 .0011 .0026 .0011 .00175 ,0038 .0014 ,020
.om
.022 .010 ,014 .025 .013 .017
.00026 .00062
.00026 .00042 .00091 .00033
.0048 .0022 .0053
.0024 .0033 .0m50 .0031
.0041
141 T A B L E 135.-THERMAL
CONDUCTIVITY OF INSULATING MATERIALS
(concluded) Substance
Asbestos fiber
. . . . .. . . .. . . .
Density g/cmS
201
'C
kc cgs
500
.00019
{ i!
85% magnesia asbestos.. . . . . 216 Co;!on . . . . . . . . . . . . . . . . . . . .021 100 ............ ..... ... .lo1 '' Eideidown . . . . . . . . . . . . . . . . . ,0021 150 . . . . . . . . . . . . . . . . .lo9 " Lampblack, Cabot number 5. ,193 Quartz, mesh ZOO ... ........ 1.05 500 Poplox, popped NazSiO,. . . . . .093
.
.
{k:!
:{
Substance
.
Asbestos paper . . . . . . BOO43 Blotting paper . . . . . . . . .00015 Portland cement . . . . . . .00071 Chalk . . . . . . . . . . . . . . . . .0020 Ebonite. t . 49" ...... ... .OOO37 Glass, mean . . . . . . . . . . ,002 Ice . . . . . . . . . . . . . . . . . . . .0057 Leather, cow-hide . . . . . .00042 ' chamois. . . . . . . .OW15 Linen . . . . . . . . . . . . . . . . .0002 1 Silk . . . . . . . . . . . . . . . . . .OOOOY5 Caen stone. limestone. . .0043 Free stone, sandstone. . ,0021
.OW16
.mi7 .OW1 11 .000071
,
.00015
.000046 .OW074 .000107 .00024 .OW091 .000160
I
kt
Density g/cm3
Substance
Brick, fire . . . . . . Carbon, gas . . . Ebonite . . . . . . . . Fiber, red . . . . . . Glass, soda . . . . . Silica, fused .. . .
.
1.73 1.42 1.19 1.29 2.59 2.17
kl
,?'!A, at 20 C
at 100 C
.00110 .0085 .OW14 .00112 .00172 .00237
.00109 .0095 .00013 .00119
.0@182
.00255
CFS
Density g/cm3
Substance
Boxwood . . . . . . . Greenheart . . . . . Lignumvitae . . . . Mahogany .. . . . . Oak . , . . . . . . . . . Whitewood . . . . .
0.90 1.08 1.16 0.55 0.65 0.58
,00036 ,00112 .00060 .00051 .00058 .Om41
Air-cell asbestos . . . . . . . . . . , . . . . . . . . Cork, ground . . . . . . . . . .. . . . . . . .. . Diatomite .. .. . . . . . . . . . . . . . . . . . . . . . Infusprial ear!h, natural. . . . . . . . . . . . . h'd pressed blocks.. . Magnesium carbonate . . . . . . . . . . . . . . Vitribestos . . . . . . . . . . . ... . . . . . . . . .
..
.
T A B L E 136.-THERMAL
2 31 .168 .326 .SO6 .321 .450 .362
.00034 .OW15 .00028 .00034 .00030 .OW23 .00049
300°C
200°C
.0@043 .00019 .00032 .00032 .W029 .00025 BOO66
400°C
500°C
Safe temp.
.00037 .00042 ,00046 ,00040 ,00033 .00036 ,00025 .00079 .00090 .00102
.00050
-
C O N D U C T I V I T Y OF V A R I O U S SUBSTANCES
.
k
320 180 600 400 300 600
'"
Temperak Material ture "C cgs .028-,003 Brick: carborundum . 150.1200 ,0032-.027 buildina . . . . . 15-1 100 .0018..0038 .ow araphite . . . . . 300-700 ,024 ,129 Concrete : light diatomite. 200-600 .00025-00032 insulating 250-750 ,00045-.00051 magnesia . 50-1130 .0027-,0072 sand cement.. 400-900 ,0025-,0031 Glass silk: density .055..... 15 .000096 Graphite (artificial). 100-390 .338 .083..... 17 .000092 100-914 .291 .16 ...... 9 .000071 2800-3200 ,002 .21...... 10 .000075 son-700 .31-.22 Limestone 40 .0046-,0057 Granite ............ 100 .004~-.oo~n Stoneware mixtures.. 70-1000 ,0029-.0053 Percent composition TitaCalMagnium Ferric cium nesium Alkali Density k, Description Silica oxide Alumina oxide oxide oxide oxides g/cm3 cgs Fireclay, pottery quality.. . . 56.46 1.81 36.79 2.58 .38 .60 1.24 2.0 .0025 Fireclay, fine quality.. . ... . 56.46 1.84 36.79 2.58 .38 .60 1.24 2.05 ,0020 2.0 ,0028 Aluminous ............... 52.0 2.7 41.3 2.5 Silica .......... ...... . . . . 95.16 .57 1.46 .85 1.96 .08 21 1.81 .0036 Material Amorphous carbon..
Temperature "C 37-163 100-360 100-842
100°C
.00041 .00110 ,00072 .00060 ,00061 .00045
,
h
g/cms
at 100 C
at 20 C
Conductivity Substance
kr cgs
cgs
........ .....
...
.
..........
_
'6
Griffiths, E., Journ. Inst. Fuel, vol. 15, p. 111, 1942.
SMITHSONIAN PHYSICAL TABLES
_
142 C O N D U C T I V I T Y OF ORGANIC M A T E R I A L S A N D W A T E R
T A B L E 137.-THERMAL
Part 1 kr
kt Substance Acetic acid . . . . . . . Alcohols: methyl. . ethyl., . . amyl. , . Aniline . . . . .. Benzene . . . . . . . . .
... . .
"C
0 0
cgs .Ox472 ,0352 .0,,46 .0:$345 .03434
9-15
.0::333
9-15 11
11
Substance Carbon disulfide . Chloroform . . .. Ether . . .. . . . . Glycerine . . . . . . . . Oils: petroleum . . turpentine ..
. ..
Part 2 Conductivity a t 1 atm Temp. watt cm-1 "C deg-1 Substance Normal pentane. 30 1.347x10-*
cgs .03387 .03288 .03303 ,0368 .03355 ,03325
9-15 9-15 25 13 13
Conductivity a t 1 atm Temp. watt cm-1 Substance "C deg-l Carbon disulfide. 30 1 . 5 9 9 ~10"
1.285
75
1.51s
30 75
1.377 1.347
Petroleum ether. 30 75
1.306 1.264
....... 7530
1.795 1.687
Kerosene
30
1.494 1.394
......
Substance Oils: olive
"C
.. . . . . . castor . . . . . Toluene . . . . . . . . . 0 Vaseline . . . . . . . . . 2 5 Xylene . . . . . . . . . . 0
kr cgs ,02395 ,08425 ,03349 ,0344 .03343
*
75
Sulfuric ether.. Acetone
"C 0
.. .
75
Substance
ConducTemp. tivity at "C 1 atm watt cm-1 deg-l
Water
. . .. . . . .
Water
.... .. . .
30 75
6.026~10-~ 6.445
0 10 20 30 40 50 60
5.524 5.692 5.859 6.026 6.191 6.361 6.529 6.696 6.863
70
80
* For reference, see footnote 45, p. 136.
T A B L E 138.-THERMAL
C O N D U C T I V I T Y O F GASES
T h e conductivity of gases, k r = f ( 9 7 - 5)pC,, where y is the ratio of the specific heats, C,/C., and p is the viscosity coefficient (Jeans, Dynamical theory of gases, 1916). Theoretically k r should be independent of the density and has been found to be so by Kundt and Warburg and-others within a wide range of pressure below one atrn. It increases with the temperature. Gas I,$"
.....
.....
.....
.. .. .. .. .. .. .. . . .. . . . co ...... A,
t0C
kr cgs
-191 0 100 -183 0 100
kr t"C Gas CO? ..... 100 C?H, .... 0 H e ...... -193
...... 0 . . . . . . 100 ...... -192 ...... 0 . . . . . . 100 CH, ..... 0
cgs
"
.onooso9
0
co:! . . ... - 78 0 .....
''
H.I
*Air: k A = 5.22 (10-5) cal cm-1 sec
SMITHSONIAN PHYSICAL TABLES
-l
,000133 .000416 .000499 .0000720
Gas Hg
......
t"C
Tv? ......
203 -191
.....
0
0 ...... ...... 100 -191 0: ...... 0 ...... ...... 1008 NO . . . . .
NzO
deg C-l; 5.74 at 22': temp. coef.
= .0029.
kr cgs .0000185 .0000183 .0000568 .0000718 .0000172 ,0000570 ,0000743 .000046 .0000353
143
T A B L E lJO.-DIFFUSIVITIES
The diffusivity of a substance = hZ= k / c p , where k is the conductivity for heat, c the specific heat and p the density (Kelvin). The values are mostly for room temperatures, about 18" C. Material Aluminum Antimony
Diffusivity ,860 .135
.. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .. .. .. .. .. .. .. ..
... ..
..
. ..
T A B L E 140.-THERMAL
Liquid
"C
1 Methyl alcohol . . . . 2 Ethyl alcohol . . . . 3 Isopropyl alcohol .. . . 4 Normal butyl alcohol . . . . 5 Isoamyl alcohol . . . . 6 Ether .. ... ..
30 75 30 75 30 75 30 75 30 75 30 75 30 75 30 75 30 75 30 75 30 75 30 75 30 75 30 75 75
.W0505 .000493 .OW430 .000416 .OM367 .OW363 .000400 .000391 .OW354 .OW348 .000329 .000322 .OW429 .000403 .OOO382 .000362 .000286 ,000273 .000265 .000261 .00144 .00154 .000364 .000339 .000322 .OW307 .000312 .000302 .o00333
7 Acetone . . . . . 8 Carbon bisulphide . . 9 Ethyl bromide ... 10 Ethy! iodide . . . . . 11 Water . . . . . . 12 Toluol ...... 13 Normal pentane . . . 14 Petroleum ether . .. . . 15 Kerosene .. .. 47
Wood (pine with g r a i n ) .
,0052 ,0044
CONDUCTIVITY-LIQUIDS,
Conductivity a t Okg/cmz (cgs)
No.*
. . ... . ... ...
. .. . . .... . . . .. .. .. .. . . . .. . . . ..
. . . .. . . . . ... . .. . .. . .
. . .. ... . .. .. . . . . . . .
Brick (average fire). . . . . . . . . . . . . . Brick (average building). . . . . . . . . . .
.............................
..
. ..
Iion (cast also 1% carbon steel). . . .121 Lead . . . .' . . . . . . . . . . . . . . . . . . . .24S Maanesium . . . . . .932 Mercury .......................... .45 Nickel . . . . . . ... . . . . . . . . . ,155 Palladium . . . . . . . . . .. . . ,261 Platinum . . . . . . . . . . . . . . . . . . . . . ,243 Silver ............................ 1.700 T i n .............................. ,407 Zinc ............................. ,413 Air 1 a t m . .
.. .
Material 1>iff usivity Coal .002 Concrete (cinder) . . . . . . . . . . .0032 Concrete (stone) . . . . .. . . . . .0048 Concrete (light s l a g ) . . . . . . . . . . . . . .006 Cork (ground) . . . . . . . . . ... . .0017 Ebonite . . . . . . . . . . . . . . . . . .0010 Glass (ordinary) . . . . . . . . . . . . . . . ,0057 Granite . . . . . . . . . . . . . . . . . . . . ,0127 Ice ............................... ,0112 Limestone ........................ ,0081 Marble (white) . , . . . . . . . . . . . . . . . . . . . . .0097 Paraffin . . . . . . . . . . . . . . . . . . . . . . .00098 Rock material (earth aver.). . . . .0118 .0064 Rock material (crustal rocks). . . . . Sandstone . . . . . . . . . . . . . . . .. ,0113 Snow (fresh) . . . . .. . . . . . . . .0033 Soil (clay or sand, slightly damp). ,005 Soil (very d r y ) . . . . . . . . .. . . .. .. . . ,0031
. . . . . .. . . . ..
SMITHSOMIAN PHYSICAL TABLES
,0023
PRESSURE EFFECT'7
Conductivity relative to unity (0 kg/cm*) a s function of pressure in kg/cmZ I
1000
2000
4000
6000
8000
10000
1.201 1.212 1.221 1.233 1.205 1.230 1.181 1.218 1.184 1.207 1.305 1.313 1.184 1.181 1.174 1.208 1.193 1.230 1.125 1.148 1.058 1.065 1.159 1.210 1.281 1.319 1.266 1.268 1.185
1.342 1.365 1.363 1.400 1.352 1.399 . 1.307 1.358 1.320 1.348 1.509 1.518 1.315 1.325 1.310 1.366 1.327 1.390 1.232 1.265 1.113 1.123 1.286 1.355 1.483 1.534 1.460 1.466 1.314
1.557 1.601 1.574 1.650 1.570 1.638 1.495 1.559 1.524 1.557 1.800 1.814 1.511 1.554 1.512 1.607 1.517 1.609 1.394 1.442 1.210 1.225 1.470 1.573 1.777 1.855 1.752 1.780 1.502
1.724 1.785 1.744 1.845 1.743 1.812 1.648 1.720 1.686 1.724 2.009 2.043 1.659 1.738 1.663 1.789 1.657 1.772 1.509 1.570 1.293 1.308 1.604 1.738 1.987 2.112 1.970 2.026 1.654
1.864 1.939 1.888 2.007 1.894 1.%2 1.780 1.859 1.828 1.868 2.177 2.231 1.786 1.891 1.783 1.935 1.768 1.907 1.592 1.671 1.366 1.379 1.716 1.872 2.163 2.335 2.143 2.232 1.792
1.986 2.072 2.014 2.152 2.028 2.093 1.900 1.985 1.955 1.998 2.322 2.394 1.900 2.024 ~. 1.880 2.054 1.858 2.022 1.662 1.757 1.428 1.445 1.987 2.325 2.543 2.279 2.409 1.925
11000 12000
2.043 2.097 2.133 2.191 2.070 2.122 2.217 2.278 2.091 2.150 2.154 2.211 1.955 2.008 2.043 2.099 2.013 2.069 2.063 2.126 2.388 2.451 2.469 2.537 Freezes 2.083 2.137 1.923 1.962 Ti07 2.154 1.895 1.928 2.073 2.121 1.694 1.724 1.799 1.837 1.456 Freezes 1.476 i s 0 6 (2.394t) 2.039 2.089 2.404 2.481 2.642 2.740 2.333 2.379 2.488 2.561 1.990 2.054
Bridgman P. W. Proc. Amer. Acad. Arts and Sci., vol. 59, p. 158, 1923. 2 6 8 '12 13'extreme purity. 3, 4, 5 7 9 10 11 very pure' 14 15 commercial. at'9900 kg/cmz at'30". T d e k g i r e kt l i 0 0 0 is for'the'solih.
1
t Tol;ol'fr;eze6
.. .. ... .....
144 T A B L E 141.-THERMAL
R E S I S T I V I T I E S A T 20°C EXPRESSED IN F O U R I E R S FOR A cm8
The fourier is defined as that thermal resistance that will transfer heat energy at the rate of 1 joule per sec (1 watt) for each degree (C) temperature difference between the terminal surfaces (equivalent roughly to a prism of Ag or Cu 4 cm long by 1 cmz cross section). .239 Silver .......... Copper ......... 258 Aluminum . . . . . . .49 Brass (30% Zn) . .93 Iron ............ 1.6 Nickel ......... 1.7 Steel (l,% C) . . . 2.1 Constantan ..... 4.4 Mercury ....... 12.0 [Ice a t OOC]. .... 45 Glass ......... 133 Concrete * ...... 140
Water ............. 170 Mica * ( 1to laminations ...... 200 Firebrick * . . . . . . . . 200 [Firebrick 25°C to lOOO’C] ....... 90 Brick masonry * .... 250 Leather* .......... 600 Hydrogen .......... 600 Hard rubber ....... 610 Helium ............ 690
Rubber* (over
90%) . ‘ . ’ : ’ ~ ’ ‘ ’ ’ ’700 Wood (Virginia pine across grain) .......... 710 Paper* . . . . . . . . . . . 1000 Asbestos * (wool). 1100 Cork* . . . . . . . . . . . . 2000 Cotton batting (loose) ......... 2500 Wool (loose) ..... 2500 Air ............... 4100 Carbon dioxide .... 6700
:Harper, D. R . Journ. Wrshington Acad. Sci. rol. 18 p. 469 1928. Substances ma;ked with the asterisk vary widely in thermal Lonductivity according to composition. For limits of such variation, consult International Critical Tables, vol. 2. The figure listed above for any such material represents the author’s estimate of the “best guess” for use in those cases where the composition of the material is not specified. In preparing this tahle, the author has consulted vol. 2, I.C.T. For still other materials, grateful acknowledgment is made to the staff of the National Bureau of Standards for advice in selecting mast probable values in the light of present information.
SNITHSONIAN PHYSICAL TABLES
TABLES 142-146.-THERMAL T A B L E 142.-EXPANSION Part 1.-Coefficients
Element Aluminum
Antimony $
Coefficient Temperature of linear thermal or temoerature expansion x per range C "C 18.0 -191 to 0 23.8 20 to 100 25.7 20 to 300 28.7 20 t o 600
... +
.. -190 to 20 + 20 to 100 20 to 300
. . . . . . 40 ... . . . 0 to 300 Beryllium . . . . -120 to 0 + 20 to 100 Arsenic
Barium
20 to 300 20 to 700 1200
. . .. . . . Cadmium . . . .
-190 t o 17 - 15 to 100 i75 to 265
0 b.
5
8. t o 10. 8.4 to 11.0 9.2 to 11.4 9.5 to 11.6
43.6
5.6
7
0 t o 1000 0 t o 1700
8
8.1 12.3 14.0 16.8 23.7
9,lO
13. to 17. 13. to 14. 17.4
5.11
13.4
-150 - 50
18.0 20.9 22.5 25.2 22.0
8,14, 15
16.17, 18
....
4.1 5.1 5.7 to 8.3 7.8 to 8.9 9.1 t o 10.3
1920
Cobalt Copper
.......
-216toO -100 to 0 0 t o 100 0 to 300 0 to 700 20 t o 100 20 to400
12.4 14.0
....... - 2 5 3 t o 1 0 -191 to 16 + 25 to 100
Germanium
11.7 14.1 16.8 25 t o 3 0 0 17.8 0 to 500 18.2 0 to 1000 20.3
...
20 to 230 230 t o 4 5 0 450 to 840
6.0 7.3 7.5
........ ... . ..
Magnesium
.4 1.2 2.8 4.5 .6 to 4.3 1.3 to 4.8 1.8 to 5.3
Chromium
......... -182toO
Lithium
Carbon . . . . . . . - 180 to 0 0 to78 Diamond ... 0 to 400 0 to 750 Graphite 20 t o 100 20 t o 4 0 0 20 to 800
...
Iron
Lead
12
20.6 27.4 29.7 31.8
0 to 300
Coefficient Temperature of linear or thermal temperature expansion range xlyper "C C -190to 16 13.1 0 t o 100 14.2 0 to400 14.9 0 to 700 15.8 0 to 900 16.5
...... - 1 8 0 t o 2 0 + 20 to 100 . . . . .. -183 to 19 + 1 8 t o 100
Iridium
18.1 to 21.0
-220 -160 10 20 to 100
+ 20 30 to 100
Element Gold .........
Indium
8.3
+
......
<
1,3*'
20 to 750
Boron
Calcium
.-+x
lg
....
OF T H E ELEMENTS *
of linear t thermal expansion of chemical elements (Polycrystalline)
20 to 500
Bismuth 3
145
EXPANSION
.. .
Molybdenum
125, 26,27, 28.29, 30
Neodymium Nickel
31
5
... . .. ..
b.
<
1,5, 30,32
33 5,34
9.1 10.4 11.6 12.1 13.4 14.7 15.0
1,35 30,36
-190 t o 2 0 20 to 100 20 to 200 20 to300
+
26.7 29.2 30.0 31.3
2,5, 37.38, 39,40, 41,42
-178 - 98 - 3 0 to95
17.0 36.3 45.7 56.
43.44
-190 to 20 20 to 100 20 to 300 20 to 500
21.3 25.9 28.0 29.8
5,30. 32,39, 45,46, 47
. -190 -100 ..
5.7 6.6 7.9 8.7
42
-100 t o 0 0 to20 20 to 100 20 to 300 20 to 600 20 to900
Manganese : Alpha phase. -190 to 0 -183 to 0 0 to 20 0 to 100 0 to 300 Beta phase.. -183 to 0 0 to 20 Gamma phase. - 7 0 t o O 0 to 20
21,22
26.7 30.5
.-x 5
to 0 to0 20 to 100 25 to 500 27 to2127 100 to260
-253 to 10 -192 to 16 Oto 100 0 to 300 25 to 600 25 to 900
46,48 15.9 17.6 22.3 22.8 25.2 12.8 to 20.4 18.7 to 24.9 13.6 14.8 4.2 4.8 3.7 to 5.3 4.7 to 5.8 7.2 .4 8.1 10.0 13.1 14.4 15.5 16.3
2.19, 46, 49, 50. 51 52 25 26 1.36, 27 46,<3a,' 118
'Compiled hy Peter Hidnert and H. S . Kridcr, of the National Bureau of Standards. t T h e coefficient of cubical expansion of a n isotropic solid element may be taken a s 3 times the coefficient of linear expansion within a high degree of approximation (See P a r t 3 for determined coefficients of cubical expansion of some chemical elements.) ** Numbers refer to authorities given a t end of table. t The coefficients of expansion depend upon the orientation of the constituent crystals. 5 The coefficients of expansion depend upon coarseness of grains and treatment of metal.
(continued)
SMITHSONIAN PHYSICAL TABLES
O F T H E E L E M E N T S (continued)
T A B L E 142.-EXPANSION
146
Element Niobium
Temperature or temperature r y e
.... . -212 -100
C
...... 40 Palladium . . . . -191 to 16 + 1 6 t o 100
Potassium Rhodium
.. ...
Rubidium
4
<
6.6
14,23, 24
10.3 12.4 12.8 13.8
226, 54.55
-191 to 16 - 90toO 0 to 100 0 to 300 0 to 500 0 to 1000
8.0 8.7 9.0 9.2 9.6 10.2
226, 30,32, 54,56
85.
57
.... O t o 5 n , . . . . -174 - 92
5.0 7.4 7.9 8.4 0 to 100 9.7 0 to 500 0 to 1000 10.8 0 to 1500 12.1
71 -"
... . . - 98 to 19 ... + 40 13 t o 3 2 50
66. 6.8 9.6 9.9
... . .. -+ 78 to 19 20 to 100 205 Amorphous.. - 78 to 0 to 21 0
19.58, 59.60
100 500 1000
Silver
.. ...... -191 -250toO to 16
Oto 100 20 to 300 20 to 500 0 to 900
Tellurium Thallium
40 0 to 100 0 to 200
..... +-21620 toto 20 100 20 to 300 20 to 600
Tin
... . . . ... . +-18318 toto 20 100
61
.... . +-19520 toto 200 20 20 to 400
20 to 600 20 to 800
.
Tungsten . . . . -190 to 0 (Wolfram) -100 to 0 0 to 100 0 to 300 0 to 650 27 to 1000 27 to 1750 27 to 2400 Vanadium Zinct
. . ..
.
......
14.58, 64
-183 t o 0 0 to 40 -183 to 18
+ 20 to 100 2 0 t o 200 20to300
Zirconium 2.30, 39 26,65, 66,67
(continued)
SMlTHSONlAN PHYSICAL TABLES
.. . . .....
7,62
2.0 3.0 3.3
14.9 17.0 19.4 20.2 20.7 22.4
.... -190 0 + 2 0 tt oo 2100
20 to 300 20 to 500 27 to 1400 27 to 2400
Titanium
Amorphous, melted & cast Silicon
Coefficient Temperature of linear or thermal temperature expansion ryge xlyper C C -193 t o 0 59.8 0 to 17 68.2 0 to 50 70. Oto95 71.
25 to 200
20.3 22.9 45.2 42.7 48.7
. .... -160toO 37.3 0 43.9 . . .... . -172 +-0.42.4.9 - 87 + 20 to 50
. .....
Thorium
63,37
Selenium : Polycrystalline
Element Sodium
Tantalum
7
16 to 500 16 to 1000
-
Ruthenium
,G
C
to0 5.8 to 0 6.9 7.2 0 to 100 0 to300 7.5 20 to 1500 10.0
Osmium
Platinum
Coefficient of linear thermal expansion x 1 y per
. . ..
-183 t o 0 0 to 20 20to200 20 to400 20 to 700
+
6.2 6.6 6.6 6.6 7.3 7.8
,= 2 4 k
44,68 69
2.46, 51.70
16.8
7
29.4 30.0
64
9.8 11.3 12.1 13.7
14,71, 72
15.8 to 22.6 23.8 to 27.0 24.
4,5. 73,74
6.8 8.9 9.4 9.9 10.1
14,72, 75,76, 77
3.8 4.2 4.4 4.6 4.6 4.7 5.2 5.8
2 46 7b.7'9, 80,81
6.6 7.8
14
9. 17. 30. 34.
to 10. to 40. to 40. to39.
4.0 to 5.1 4.6 to 5.9 5.4 6.1 7.1
5.13. 32,38. 47,82 83 14,19, 72
T A B L E 142.-EXPANSION P a r t 2.-Coefficients
Temperature or temperature range
"C
Element
Coeffiicent of linear thermal expansion per "C 'Parallel to axis 16.0~10-0 15.6 16.8
...
...
. .. . .. ......... . , . .
Arsenic
..... .. . .. . ... ...
Bismuth
.... . . . . . . . . .. . . . .
Cadmium Carbon Graphite
Cobalt Indium
.......... .. . . . . . ..... . . .. . . .......
.. . . . . .. . . ..... . . . ................
Tellurium
. . . . .. ... ......... .................
Thallium
..................
Selenium
Tin
Zinc
. . . . . . . . . . .. . . .. . . . . . . .
......................
....... . .........
8.4 8.1
.. .
62
15.9 16.2 16.5
10.5 11.6
19,86,87
20 to 240
...
... 12.0
-190 to 18 20 to 100
48.2 50.4
18.5 18.9
13,88,89,90
+-14020 30 to 260 +
... ...
4.8
19.9 1,92
to 0 0 to 40 0 to 500 0 to 1000 0 to 1500 0 to 2300 20 to 870
17.2 18.8 20.7 23.1 26.7
...
33 to 100
16.1
12.6
89
56. 45.0
13. 11.7
93 94
26.4 27.7
25.6 26.6
95
42.6 47.0 49.6
33.4 37.5 37.5
96.97
5.8 6.6 8.3
4.0 4.6 5.8
98
20 to 1917
12.4
4.7
99
50
8.8 9.8 11.7
5.9 6.4 7.6
98
- 17 t o 9 23 to 87
+
20 to 100 20 to 200 -190 to -160 -188 to -79 -120
250 559
15 t o 55 20 to 60
-17.9
20 20 to 60
-
32 t o 91
+72.
6.6 1.3 1.8 2.0 2.4
...
...
74.1
1.6 1.7
27.2 27.0 9.
100 100,101 94
-195 to 20 0 to 20 14 to 25 34 to 194
14.1 15.8 16.8 25.7
19,94,102
+
25.9 29.0 32.2 45.8
18 +-190200 tototo 250 100
49.5 64.0 56. 59.
11.3 14.1 15. 16.
13,32,88,103,104
4.
13.
89,105
20 to 400
Zirconium
6,7,19,84
19.85
5 00
Ruthenium
Authority
7.0x10-0
... ... 2.8 11.7 15.0 15.7
. . ........... ...... +250 50
Rhenium
Perpendicular to axis
1.6 8.6 10.4 13.1
Magnesium
Osmium
3.2 to 6.8
30 to 75
... ..... . . . .. . . .. -195
. . .. .. . .. .... . .. . . . . . . . . . . . . . . .. .. .. .. ..
Mercury
147
OF T H E E L E M E N T S (continued)
of linear 1 thermal expansion of chemical elements (crystals)
0 to 100
1If there is random orientation of the crystals in a polycrystalline element such as antimony or cadmium, the
coefficient of linear expansion of the polycrystalline element may be computed from the following equation: 1 a = 7 (all 2al)
+
where all is the coefficient of linear expansion of the crystal parallel to its axis, and a l is the coefficient of linear expansion of the crystal in the direction perpendicular to its axis. (See Part 1 for determined coefficients of linear expansion of polycrystalline elements.)
(continued) SMITHSONIAN PHYSICAL TABLES
TABLE 142.-EXPANSION
148
Element Cadmium
....
Carbon: Diamond Cesium Cobalt Gallium Iodine
Lithium Nickel
...
...... .......
Coefficient Temperature of cubical OK thermal temperature expansion range xlyper "C C 100 91. 210 105. 250 110. 27 25 to650
3.2 9.1
0 to 23
291.
100 300
...... - 780 toto 29.6 18 ....... -195 to25 + 10 t o 4 0 .....
.......
Phosphorus
0 to 100 Oto 178 100
200 300
.. -273 -195
to 19 to 19
- 79 to 19
0 to44
O F T H E ELEMENTS (concluded)
of cubical thermal expanrlon of chemical elements
Part 3.-Coefficlents
.-x 6
9
4
106
107 108
35.6 39.4
106
53. 55.
109, 110 111, 112, 113
162. 170.
114
38.2 41.9 46.5
106
112, 115
....
.... .
Rubidium
Selenium : Compressed Not compressed Sodium
204. to251. 264.
317. 398. 362. 372.
Element Potassium
Coefficient Temperature of cubical or thermal temperature expansion range xlpper "C C Oto 5 5 240
0 to 38 0 to 100
.. 0 to 100 ...... - 1 8 6Oto53 to17 Oto79 20to95
Sulfur Rhombic
...
Tin
..... ..........
Zinc
.........
Crystallized Sicilian
-273 t o 1 8 -195to 18 - 7 9 t o 18 0 to 100 0 to 100
-
."0x L.
B
i 57, 108, 114
270
108
175
116
198
186 207 208 226
111, 69. 114,
139 164
112 116
180
108.
117
354 260
80 140 190
68 78 89
106
50 200 300
a9 104 110
32, 106
Authorities
1. Nix and MacNair, 1941; 2. Nix and MacNair, 1942; 3. Hidnert, 1923; 4. Dorsey, 1907; 5. Griineisen, 1910; 6. Hidnert, 1935; 7. Fizeau, 1869; 8. Cath and Steenis, 1936; 9. Hidnert and Sweeney, 1927; 10. Losana, 1939; 11. Jacobs and Goetz, 1937; 12. Dupuy & Hackspill, 1933; 13. Griineisen & Goens, 1924 ; 14. Erfling, 1942 ; 15. Bastien, 1934; 16. Rontgen, 1912 ; 17. Joly, 1898; 18. Hidnert, 1934; 19. Erfling, 1939; 20. Hidnert, 1941; 21. Schulze, 1927; 22. Masumoto, 1931; 23. Hidnert and Krider, 1933; 24. Matthies, 1936; 25. Krupkowski, 1929; 26. Henning, 1907; 27. Aoyama and Ito, 1939; 28. Hidnert, 1922; 29. Dittenberger, 1902; 30. Esser and Eusterbrock, 1941; 31. Nitka, 1937; 32. Austin, 1932; 33. Hidnert and Blair, 1943; 34. Holborn and Valentiner, 1907; 35. Hidnert, 1942; 36. Souder and Hidnert, 1922; 37. Dorsey, 1908; 38. Lindemann, 1911; 39. Ebert, 1928; 40. Rauramo and Saarialho, 1911; 41. Friend and Vallance, 1924; 42. Hidnert and Sweeney, 1932; 43. Simon and Bergman, 1930; 44. Bridgman, 1936; 45. Hidnert and Sweeney, 1928; 46. Disch, 1921; 47. Schulze, 1921; 48. Erfling, 1940; 49. Schad and Hidnert, 1919; 50. Hidnert and Gero, 1924; 51. Worthing, 1926; 52. Jaeger, Bottema, and Rosenbohm, 1938; 53. Souder and Hidnert, 1922; 53a. Hidnert, 1930; 54. Scheel. 1907; 55. Holzmann, 1931 ; 56. Scheel and Heuse, 1907; 57. Hagan, 1911 ; 58. Valentiner and Wallot, 1915; 59. Sweeney, 1929; 60. Ebert, 1938; 61. Hume-Rothery and Lonsdale, 1945; 62. Bridgman, 1933; 63. Borelius and Paulson, 1946; 64. Schulze, 1930; 65. Keesom and Jansen, 1927; 66. Scheel, 1921; 67. Owen and Roberts, 1939; 68. Siege1 and Quimby, 1938; 69. Hagan, 1883; 70. Hidnert, 1929; 71. Hidnert and Sweeney, 1933; 72. Kroll, 1939; 73. Grube and Vosskiihler, 1934; 74. Bochvar and Maurakh, 1930; 75. Hidnert, 1943; 76. Greiner and Ellis, 1948 ; 77. Adenstedt, 1949 ; 78. Hidnert and Sweeney, 1924 ; 79. Dodge, 1918 ; 80. Forsythe, 1927; 81. Worthing , 1917; 82. Souder and Hidnert, 1924; 83. Bauer and Sieglcrsehmidt, 1929; 84. Bridqman, 1924; 85. Kossolapow and Trapesnikow, 1936: 86. Roberts, 1924; 87, Goetz and Hergenrother, 1932; 88. McLennan and Monkman, 1929; 89. Shinoda, 1934; 90. Kossolapow and Trapesnikow, 1935; 91. Pierry, 1946; 92. Backhurst, 1922; 93. Frevel and Ott, 1935; 94. Shinoda, 1933; 95. Goens and Schmid, 1931 ; 96. Hill, 1935; 97. Griineisen and Sckell, 1934; 98. Owen and Roberts, 1937; 99. Becker, 1931; 100. Straumanis, 1940; 101. Bridgman, 1925; 102. Ievens, Straumanis, and Karlsons, 1938; 103. Staker, 1942; 104. Owen and Iball, 1933: 105. Pfaff. 1859; 106. Uffelmann, 1930: 107. Krishnan, 1944; 108. Hackspill, 1913; 109. Klemm, 1931; 110. Richards and Boyer, 1921; 111. Dewar, 1902; 112. Sapper and Biltz, 1931; 113. Straumanis and Sauka, 1942; 114. Bernini and Cantoni, 1914; 115. Leduc, 1891; 116. Spring, 1881; 117. Griffiths and Griffiths, 1915; 118. Schad, 1927.
SMITHSONIAN PHYSICAL TABLES
149 TABLE'143.-COEFFICIENTS OF LINEAR THERMAL EXPANSION OF SOME ALLOYS *
C
Coefficient X of linear thermal expansion X 1W per "C
20 to 100 20 to 500
22.4 to 17.8 26.6 to 22.2
1 **
20 to 100 20 to 300 20 to 100 20 to 300
22.0 23.8 19.7 20.8
2
.................. ..................
20 to 100 20 to 300 20 to 100 20 to 300
21.9 23.7 18.2 19.5
2
Aluminum-silicon, 4.2 to 12.6 Si..
.......... 19.7 Si .................. 40 Si ...................
20 to 100 20 to 300 20 to 100 20 to 300 20 to 100 20 to 300
22.2 to 19.4 24.8 to 22.1 18.5 19.0 14.7 17.1
3,2
Aluminum-zinc, 0 to 50 Zn ................
20 to 100
23.6 to 26.5
4
.......................
25 to 100 25 to 300
16.9 to 19.7 17.7 to 21.2
5
Bronze, 4.2 to 10.1 Sn. ....................
25 to 100 25 to 300
17.1 to 17.8 17.8 to 19.0
5
...............................
20 to 100 20 to 400
8.7 to 11.1 11.5 to 12.7
6
20 to 60
-1.1 to +1.7
7
20 to 100 20 to 300
15.9 to 17.3 16.4 to 17.4
8
13.0 14.7 11.8 13.7
9
Alloy
Temperature or temperatureorange
t
Aluminum-beryllium, 4.2 to 32.7 Be. ....... Aluminum-copper, 9.9 Cu
.................
33.2 Cu
.................
Aluminum-nickel, 3.4 Ni 19.5 Ni
Brass, 3 to 40 Zn..
Cast iron
Cobalt-iron-chromium, 53.0 to 55.5 Co, 35.0 to 37.5 Fe, 9.0 to 10.5 Cr.. ............. Copper-beryllium, 3.0 Cu..
................
Copper-nickel, 19.5 Ni
....................
49.8 Ni
....................
-182 to 0 0 to 40 -182 to 0 0 to 40
Authority
Copper-tin (see Bronze) Copper-zinc (see Brass) Dumet : Axial Radial
................................. ................................. Duralumin ...............................
6.1 to 6.8 8.0 to 10.0
20 to 100 20 to 500
21.9 to 23.8 25.4 to 27.6
10 3
.............
25 to 300
5.0
11
...................... .5 to 10.5 Al. .............. 1 to 40 Cr.. ...............
0 to 100
0 to 2
12
20 to 100
11.6 to 12.2
13
20 to 100
12.4 to 9.4
12
Fernico, 54 Fe, 31 Ni, 15 Co.. Invar, 64 Fe, 36 Ni.. Iron-aluminum, Iron-chromium,
20 to 300 20 to 300
*Compiled by Peter Hidnert and H. S. Krider National Bureau of Standards. t.Chemica1 composition is given in percent by keight. $Coefficient of expansion varies with composition and treatment. ** Numbers refer to authorities given at end of table.
(continued)
SMITHWNIAN PHYSICAL TABLES
150 T A B L E 143.-COEFFICIENTS OF L I N E A R T H E R M A L E X P A N S I O N OF SOME A L L O Y S (continued)
Alloy
Iron-cobalt 9.9 to 49.4 Co. .................
Temperature or temperaturqrange C
30 to 100
Coefficient of linear thermal expansion X 106 per "C
Authority
11.2to 9.3
14
Iron-manganese, 2.8 to 14.4 Mn ............
20 to 100
12.7 to 16.9
13
Iron-nickel, 3.6 Ni ....................... 34.5 N; ....................... 36 Ni ........................ 40 to 50 N i . . ..................
20 to 20 to 0 to 30 to
10.9 3.7 0 to 2 4.1 to 9.7
15,12, 14
8.7 to 18.4 13.1 to 20.6
16
Iron-nickel-chromium, 6.6 to 74.7 Fe, 1.3 to 70.1 Ni, 4.9 to 26.7 Cr ................. Iron-nickel-cobalt, 62.5 to 64.0 Fe, 30.5 to 34.0 Ni, 3.5 to 6.0 Co.. ................ 61.3 Fe, 31.8 Ni, 6.0 Co.. ................ 58.7 Fe, 32.4 Ni, 8.2 Co ..................
100
100 100 100
20 to 100 20 to 1000 20 20 to 100 20 to 240 20 to 200 20 to 295
.o to
.5
14,17
.9 2.4 1.7 2.6
Iron-silicon, 1.0 to 8.4 S i . . .................
20 to 100
12.2 to 11.3
13
Kanthal (A, A-1, and D) 5
20 to 100 20 to 900
11.4 to 11.7 13.9 to 15.1
18
Lead-antimony, 2.9 to 39.6 S b . . ............
20 to 100
28.2 to 20.4
8
Magnesium-aluminum, 10.4 Al..
........... 30 A1 ..............
20 to 100 20 to 200 0 to 100 0 to 200
25.9 27.2 23.7 25.1
19,20
Magnesium-tin, 20.4 Sn.. ..................
24.3 24.7 21.1 21.3
21
...................
30 to 100 30 to 300 30 to 100 30 to 300
Magnesium-zinc, 20 Z n . . .................. 50 Zn ...................
40 to 100 40 to 100
29.5 30.2
22
20 to 100 0 to 400 0 to 800
18.1 18.9 21.1
23,a
25 to 100 25 to 600
13.5 to 1425 15.9 to 16.7
15,13
20 to 100 20 to lo00 20 to 100 20 to 1000
13.0 17.2 13.5 17.7
16,25
14.8 to 15.4 16.8 to 17.4
26
................
Kovar (see Fernico)
46.3 Sn
Manganin
...............................
Monel Metal
.............................
Nickel-chromium, 20.4 Cr..
................
47.7 Cr..
................
Nickel silver, 62.0 to 63.2 Cu, 10.0 to 20.2 Ni, 17.4 to 27.1 Zn ........................
0 to loo 0 to 400
I Composition of Kanthal: A : 68.5 Fe, 23.4 Cr, 6.2 Al, 1.9 Co, 0.06 C ; A-1: 69.0 Fe, 23.4 Cr, 5.7 Al, 1.9 CO, 0.06 C ; D: 70.9 Fe, 22.6 Cr, 4.5 Al, 2.0 Co, 0.09 C.
(continued)
SMITHSbNIAN PHYSICAL TABLES
151 T A B L E 143.-COEFFICIENTS O F L I N E A R T H E R M A L E X P A N S I O N O F SOME A L L O Y S (concluded)
Alloy
Platinum-iridium, 20 Ir ....................
Platinum-rhodium, 20 Rh..
................
Temperature or temperature range "C -,190 to
Coefficient of linear thermal expansion x 108 per "C
Authority
0 0 to 100 0 to 1000 0 to 1600
7.5 8.3 9.6 10.5
27
0 to 500 0 to 1000 0 to 1400
9.6 10.4 11.0
28
..................... S A E stainless chromium irons. ............. Speculum metal ..........................
20 to 100 20 to 100
16.0
29
Stainless steel, 12 C r . . ....................
20 to 100
10.0
30,16
20 to 100
16.4
20 to 100 20 to 600
11.0 to 14.1 13.6 to 16.5
S A E carbon steels 11..
18 Cr, 8 Ni ................
Stellite, 55 to 80 Co, 20 to 40 Cr, 0 to 10 W, 0 to 2 c .............................. Tantalum carbide
.........................
9.4 to 10.7
12 12
31
8.2
32
............... ................
20 to 100 20 to 403 20 to 100 20 to 400
4.5 5.2 5.2 6.0
33
...................
20 to 100 20 to 200 20 to 100 20 to 200
26.0 28.3 26.5 27.6
+13.0 Co
50 Al
8.8 to 14.4
20 to 2377
Tungsten carbide +5.9 Co..
Zinc-aluminum, 22.6 Al.
20 to 100
.....................
3.4
I1 Coefficients of expansion of other S.ZE steels (free.cutting. manganese, nickel, nickel-chromium, molybdenum, chromium, chromium-vanadium and chromiummickel austenitic steels) are g i v e n in Metals Handbook of the American Society for Metals. Authorities 1. Hidnert and Sweeney, 1927; 2. Kempf, 1933: 3. Hidnert, 1925; 4. Schulze, 1921 ; 5. Hidnert, 1921 ; 6. Bolton, 1936; 7. Masumoto, 1934; 8. Hidnert, 1936; 9. Aoyama and Ito, 1938; 10. Hull and Burger, 1934; 11. Hull, Burger, and Navias, 1941; 12. Various; 13. Schulze, 1928; 14. Masumoto, 1931 ; 15. Souder and Hidnert, 1922; 16. Hidnert, 1931 ; 17. Scott, 1930; 18. Hidnert, 1938; 19. Hidnert and Sweeney, 1928; 20. Takahasi and Kikuti, 1936; 21. Grube and Vosskuhler, 1934; 22. Grube and Burkhardt, 1929; 23. Schulze, 1933 ; 24. Ebert, 1935 ; 25. Dean, 1930 ; 26. Cook, 1936 ; 27. Physikalische-Technische Reichanstalt, 1920; 28. Day and Sosman, 1910; 29. Scheel, 1921; 30. Hidnert, 1928; 31. Souder and Hidnert, 1921; 32. Becker and Ewest, 1930; 33. Hidnert, 1937; 34. Hidnert, 1924.
SMITHSONIAN PHYSICAL TABLES
152 T A B L E 1 4 4 . 4 O E F F I C I E N T S O F L I N E A R T H E R M A L EXPANSION OF SOME MISCELLANEOUS M A T E R I A L S * Temperature or temperatGre range “C
Material Alum: Ammonium Ammonium chrome .... Potassium Thallium ....
........
....... ..
....... -
Concrete
-
Dental amalgam. Glass: Miscellaneous. Pyrex
.......
9.5 10.6 11.0 13.1
Marble
........
3 4
10 to + 4 0
3.0 to 12.4
5
Oto500 0 to 1000 0 to 1800 13 to + 2 7 13 to 88
7.3 8.4 9.2 6.8to 12.7 7.5 to 14.0
6
+
20 to 50
22 to 28
7 8
0 to 300 20 to 100 20 to 300
4.8 to 8.3 -6.1 .8 16.8 33.9 45.6 52.7
11
20 to 500 12.4 20 to 1000 13.7
6,12, 13
25 to 100
+
5 to 16
106
14
8to25
15
2 0 t o 200
1.6 to 19.6
.... ......
.....
axis
....
Rocks (American) : Igneous Sedimentary.. Metamorphic..
.....
Slate
.........
Tooth: Root . . . . . . . . Across crown . Root and crown ..... Wood: Along grain. Across grain.
13.5
14
15 3 16
Quartz, crystalline 11 to axis
1to
Oto 100
A? thority
8.5
Porcelain
Ruhber (hard) t .
3
20to300
x
per “ C
1 to 179
....
10
Oto 100
Coefficient of linear thermal expansion
2 0 t o 100
.....
Quartz, fused (silica)
.8 to 12.8 3.1 to 3.5 3.0 to 3.6
Temperat u r e or temperature range “C
Mica, phlogopite: 11 to cleavage plane Ito cleavage planet
9
0
......
2
2 1 to 33
Material Mica, muscovite: Parallel to cleavage plane Perpendicular to cleavage p l a n e t ....
......
. 3 to 1.6
- 2 0 to 60 ........... - 250 - 200 -150 - 100 - 50
Magnesia
Authority
2 0 to 100
Granites (American) ...... Ice
108
53
20 to 6 0
.........
Beryl Brick, clay building Carhorundum
20 to 50 2 0 to 50 20 to 50 20 to 50
0 to 50
.......
Bakelite
x
per “ C
1’.
.. ...
Amber
Coefficient of linear thermal expansion
. .
0 to 100 0 to 300 0 to 500 0 to 100 0 to300 Oto 500 20 to 100 20to1OOO
8.0
9.6 12.2 14.4 16.9 20.9 .5
.5
9
17 20 to 100 20 to 100 20 to 100
5 2 0 t o 100
3.4 to 11.9 2.7 to 12.2 2.3 to 11.0
50 to 84 6.3 to 8.3
20 to 50 2 0 t o 50
11.4
20 to 50
7.8
’
8.3
1 to 11 32 to 73
9
17
8
9
-Compiled hy Peter Hidnert and H. S. Krider, National Bureau of Standards. ** Numbers refer to t With load of 30 lb/in.* authorities given below. $ includes terms “ebonite” and “vulcanite.” P Various temperature ranges between O’C and 1OO’C.
Authorities
1. Klug and Alexander, 1942; 2. Sweeney, 1928; 3. Souder and Hidnert, 1919; 4. Geller and Insley, 1932; 5. Ross, 1941 ; 6. Ebert and Tingwaldt, 1936; 7. Koenitzer, 1936; 8. Souder and Peters, 1920; 9. Various; 10. Hockman and Kessler, 1950; 11. Jakob and Erk, 1928; 12. White, 1938; 13. Austin, 1931; 14. Ebert, 1935; 15. Hidnert and Dickson, 1945; 16. Compiled by Sosman, 1927; 17. Griffith, 1936.
SMITHSONIAN PHYSICAL TABLES
T A B L E 145.-CUBICAL
EXPANSION O F LIQUIDS
+
153
If V , is the volume at 0" then at t o the expansion formula is V t = V O(1 at 4@ P + y t 3 ) . The table gives values of a, j? and 4 and k, the true coefficient of cubical expansion, a t 20" for some liquids and solutions. A t is the temperature range of the observation. Liquid
!,;
.
Acetic acid . . . . . . . . . . . . . Acetone . , . . . . , . . . . . . . . . Alcohol : Amy1 ................... .. -15-80 Ethyl, 30% by vol. . . . . . . . . . 18-39 " 50% . . . . . . . . . 0-39 " 99.3% . .... . . .. 27-46 " 500 atm press ........ 0-40 " 3000 " " .. . . . . . . 0-40 Methyl ... ..... ........... 0-61 1,"
1.0630 1.3240
.12636 3.8090
.900 1 .2928 .7450 1.012 .866 524 1.1342 1.17626 1.06218
k 108 at 20'
1.0876 - .87983
1.071 1.487
1.18458 -11.87 .730
.902
-
-
-
1.12
-
-
.07878 .42383 1.13980 .940 .581 1.18384 1.10715 1.S 1324 .4853
4.2742 .8571 1.37065
1.91225
.250 .458 1.218
,89881 4.66473 2.35918 .4895
1.35135 - 1.74328 4.00512 -
1.236 1.273 1.656 505
.4460 .18182 .a21 1.4646
.215 .0078 1.1405 3.09319
- .539 1.6084
.2695 .8340
2.080 .lo732
.4446
24-120
.8994
1.396
-
.955
0-29
,3640
1.237
-
.414
11-40
.3599
1.258
-
.410
0-30
.2835 S758 .9003 .06427
2.580 - .432 1.9595 8.5053
0-33 0-100
Potassium chloride :
-
SMITHMNIAN PHYSICAL TABLES
.6573 10.790 1.85 2.20
Y 108
1.199 1.237 1.132
.
Petroleum : Density ,8467 . . . . . . . . . . .. . . Sodium chloride : 20.6% solution .......... . . Sodium sulfate : 24% solution . . . . . . . . . . . , . . Sulfuric acid : 10.9% solution . . . . . . . . . . . . 100.0% . . . . . . . . . . .
6 108
.8741 .80648 .30854
Calcium chloride 5.8% soly;ion .. .... . . . . .. 18-25 40.9% . . . . . . . . . . . . 17-24 Carbon disulfide . . . . . . . . . . . . . -34-60 500 a:m ' pressure ..... . ... 0-50 3000 . . . . . . . . . 0-50 Carbon tetrachloride . . . . . . . . 0-76 Chloroform . . . . . . . . . . . . . . . . 0-63 Hydrochloric aci 33.2% solution ....... .... . Mercury . . . . . . . . . . . . . . . . . . . .
a 108
1.3635 1.27776 1.87714
-
-
- .44998 - 6.7900
-
.455 .18186 .721 1.608 .353 1.090
,387 .558 .973 .207
TABLE 146.-THERMAL
154
EXPANSION O F GASES
Temperatures in 'C Coefficient at constant volume Pressure cmHa
Substance
.6 ............... 1.3 ............... ............... 10.0 ................ 25.4 ................ 75.2 0'-100" .......... 100.1 ................ 76.0 ................ 200.0 ................ 2000. ................ 1oooO. 51.7 Argon ............. 76.0 Carjon diozide ..... ..... 51..68 ..... ..... 74.9 0"-20".. 51.8 4,ir
. "
" '1
'I
6'
I1
"
'I
"
" "
'
I'
" "
oo-400.. 0"-100". 0"-20".. 0"-100".
0"-100". Carbon monoxide ... Helium ............ HydLogen 16"-132".. 4'
I'
" " "
Nitr;pgen I' (1
I1
15"-132".. 12"-185". .
.......... ..........
..........
. 13"-132"... 0"-100'.
9"-133". .. 0"-20".... 0"-100"...
...........
Oxxgen 11"-132". ... 'I 61
II
9"-132".... 11 "-132"....
............ ............ ............
Nitrous oxide ....... Sulfur dioxide SO,. .
X
100
.37666 .37172 .36630 .36580 .36660 3744 .36650 36903 .38866 .4100 .3668 .36856 .36753 ... 36641 .37264 .36985 .36972 51.8 51.8 .36981 99.8 .37335 .37262 99.8 100.0 .37248 76. .36667 .3665 56.7 .0077 .3328 .025 ,3623 .47 3 5 6 .93 .37002 .36548 11.2 3504 76.4 .36626 100.0 .3021 .06 .53 .329Q .36754 1oQ.2 3744 100.2 .36682 76. .007 .4161 .3984 .25 .3831 .51 3683 1.9 .36690 18.5 .36681 75.9 3676 76. .3845 76.
SMITHSONIAN PHYSICAL TABLES
Coefficient at constant pressure
Cpefficient
Substance
4,ir ................
.
................
0'-100"
..........
HydEogen 0"-100"... "
'
.......... .......... .......... ..........
Pressure cmHg
76. 257. 100.1 100.0 200 Atm. 400
"
600 " 800 " Ca$mn dio:ide ..... 76. oo-2o0.. 51.8 " I< n o 4 0 - .- . 51.8 I' " 0"-100" 51.8 " '' 0"-20". 99.8 I 99.8 " 0'-100" 137.7 " 0"-20". I " O~-lOO~. 137.7 ' " 0"-7.5".. 2621. 64"-100". 2621. 76. Carbon monoxide ... 76. Nitrous oxide ....... Su!fur diozide ....... 76. 98. 76. 76. Water-vapor 0"-162" 76. ~0"-200" 76. 10"-247" 76. 'I
1'
"
C?Cfficient X
100
.3671 .3693 .36728 .36600 .332 295 .261 .242 .3710 .37128 .37100 .37073 .37602 .37410 .37972 .37703 .lo97 .6574 .3669 .3719 .3903 .3980 .4187 .4189 .4071 .3938 .3799
Thoinson has given (Encycl. Brit. "Heat") the following for the calculation of the expansion, E, between 0" and 100°C. Expansion is to be taken as the change of volume under constant pressure : Hydrogen, E = .3662(1- .00049 V / v ) E = .3662(1- .0026 V / V ) Air, Oxygen, E = .3662(1 - .0032 V / v ) Nitrogen, E = .3662(1 - 4031 V / v ) CO, E = .3662(1- .0164 V / V ) V / v is the ratio of the actual density of the gas at 0°C to what it would have at 0°C and 1 atm pressure.
TABLES 147-158.-SPECIFIC T A B L E 147.-SPECIFIC
HEAT
H E A T O F T H E CHE,MlCAL E L E M E N T S
When one temperature is given the true specific heat is given, otherwise the mean specific heat cal "C-'g-' between the given limits. t"C
Element
. . . . . . . . . . -250
Aluminum
-200 -150 -100 - 50 0 100 300 600 16, 100 Antimony . . . . . . . . . . . -207.1 -150 -100 - 50
n
18 Barium .... . .. -185, +20 Beryllium . . . . . . . . . . . -202 45, 50 0, 100 Bismuth .... .... .... -150 -100 - 50 n
26 fluid Boron
. . . .. . ... . . ... ....
Bromine, (s) (s)
...
...
100 297
(S)
........ -
73.1
i s j ............... - 13.1 (I) . . .... .... . .... 13, 45
........ . ..
-263 -203.1 -103.1 27.9 107.9 277 Cesium . . . . . . . . . . . . . 0, 26 Calcium .. . ......... 24 100 300 600 Carbon, graph.. -191, -79 -76. 0
Cadmium
S p ht
t"C
Element
.0039 Cerium .... .. -253, -196 .076 20, 100 .1367 Chlorine . . . . . . . . . . . . 0, 24 .1676 Chromium . . . . . . . . , . -150 .1914 -100 .2079 50 .225 0 .248 100 .277 500 .212 600 .0322 18, 100 ,0412 Cobalt . . ..... . ...... -150 ,0448 -100 .0476 - 50 .0494 0 ,0477 20 ,0504 100 .054 200 ,032 Copper ............. -189 .0666 -150 .078 -100 .068 - 50 ,017 0 .445 100 ,425 900 .0264 18, 100 .0273 18, 600 .0282 Gallium . . . . . . . . . . . . -258.1 .0291 -213.1 ,0294 - 73.1 .0304 Germanium ....... .. 0, 100 ,0292 Gold . . . . . . . . . . . . . . . -258.1 ,287 -252.8 ,472 -209.5 .510 -150 .168 -100 .307 - 50 ,0205 0 .0659 18 .080 .088 100 ,107 Indium . . ........... 0, 100 .0019 Iodine . . . . . . . . . . . . . . -263.2 .0415 -255.9 .0518 -221.1 .0552 -90, +17 .0569 Iridium ..... .. -186, +18 .060 18, 100 ,0482 Iron, pure . . . . . . . . . . -256.2 .168 -240.7 .1625 -214.0 .1832 -172.6 .188 - 67.5 .057 0 .126 a, p, y ............. 100 .0025 500 .053 760 .112 1000 .177 y ................ 100 .454 700 .lo44 1000 .264 Lanthanum . . .. . . . 0, 100 .428 (conitinwcd)
..
SMITHMNIAN PHYSICAL TABLES
Sp ht
.033 .0511 .226 .0599 .0797 .0941
.1044
.112 .150 .187 .111 .0672 ,0809 ,0914 .1028
.iooi
.1067 .1134 .0506 .0674 .0783 ,0862 ,0910 .0939 .1259 ,0928 ,0994 .0049 ,044 .084 .074 .0018 .0040 .0211 .0266 .0281 .0293 .0302 .0312 ,0314 .057 .0037 .0118 ,0353 ,0485 ,0282 .0323 .00067 .00355 .0194 ,0512 .0939 .1043 .115 .163 .320 .162 .127 .157 .162 .0448
156 TABLE 147.-SPECIFIC
H E A T O F T H E CHEMICAL E L E M E N T S (continued) t"C
Element
Lead
.. . .. . .. .. . .... -270
-267 -259 -150 -100 - 50 0 100 300 (1) ......_........ 360 500 Lithium . . . . . . . . . . . . . -183 -100 50 +190 Magnesium . . . . . . . . . -150 -100 - 50 0 100 300 600 (1) ............. 650, 775 Manganese .... -188, -79 -79, +15 60 325 20, 100 -100 0 100 . . . . .. . -263.3 Mercury(s) -267.2 -259.8 -245.6 -220.2 -163.7 - 81.4 - 43.1 (1) .. . . . . . . . . . . . . - 33.1 - 3.1 17 Molybdenum . . . . . . . . -257 -239.1 -181.5 -152.7 - 34.5 0 5.3 +loo 250 Nickel .. ............ -258 -247.9 -201.2 -150 -100 - 50 n
..
.
+ +
0 100
500 900 1500 SMITHSONIAN PHYSICAL TABLES
Sp h t
.00001 .00086 .0073 ,0279 .0283 .0289 .0297 .0320 .0356 .0375 .0370
t'C
Element
. -136 - 40 + 9 ..... -136 - 40
Phosphorus, yellow.. red
+ 9
.3 ..
0 500 750
.600 .96 1.374 .1767 .2025 ,2228 .2316 .257
-279 __. -201.3 .311 - 53.1 .284 3.4 .0820 (1) ............... 90 .lo91 181 .1211 Rhenium ............ 0, 20 .1783 Rhodium ....... .... 10, 97 .1211 Rubidium (s) . . .. .. . 0 .0979 (1) . .... .......... 50 .lo72 Ruthenium . . .. . . . . . . 0, 100 .1143 Selenium ........... 3 .00552 16.5 .00620 20.5 .00783 29.5 .0172 32 ,0255 38 .0298 41.7 .0324 20 .0337 Silicon . . . . . . ...... -212 .0338 -143.3 .0335 - 86.2 ,0333 + 13.9 .0004 18.2, 99.1 .0034 18.0. 900.6 .0300 Silver . . . . . . . .... -238 .0399 -150 .0561 -100 .0589 - 50 .0589 0 ,0612 100 .0632 300 ,0008 900 ,0024 20-900 ,0363 20-1200 .0660 Sodium . . . . . . . . . . . . -256.1 .0817 -238.5 .0940 -155.5 .lo32 (1) .._............ 100 ,1146 Sulfur .. ...... -188, +18 .1270 (1) ............. 115, 160 .1413 rhom ............ 15, 96 ,0311 . . . . . . . . 0, 52 monoclinic .0528 Tantalum . . . . . . . . . . . -201.7 .0538 +380 .0564 900 .0653 1100 .0717 1400 .0766 (continued)
+
.
. .
.
.
SIIht
.124 .165 .189
.107
.182 .190 .0012 .0073 .0211 .0261 .0307 .0316 .0349 .0365 ,0381 ,0400 .0319 .0346 .032 .045 .140
.172
.177
.zoo
.196 .035 .058 4802 .0908 .0611 .072 .075 .077 .085 .127 ,131 .130 .09 ,029 ,087 .126 .~ ,168 .181 ,210 .0146 ,0461 .0505 ,0537 .n557
.0564 .0601 .0685 .0650 .0880 .026
.108
.245 .32 .137 ,220 .176 .181 .0205 .035 .036 .043 .044
157 T A B L E 147.-SPECIFIC Element
H E A T OF T H E C H E M I C A L E L E M E N T S (concluded) t"C
..... -188,
+18 15, 100 15, 200 Thallium ........... -135 28 20, 100 Thorium ..... -253, -196 0. 100 Tin ................ -203.5 -186.7 -150 -100 - 50 0 25 100 1100 Titanium ...... -185, +20 0, 100 Tellurium
+
S p ht
.047 .0483 .0487 .288 .311 .0326 .0197 .0276 .0385 .0422 .0450 .0483 .0512 .0536 ,0548 .0577 .0758 .082
.1125
T A B L E 148.-FORMULAE
Sp ht
t"C
Element
3012 .0098 .0205 4288 .0321 .0320 .0344 .0367 ,0390 ,0280 .1153 .095 .0071 ,0573 .0740 .OM4 .0871 .0913 .0957 .lo43 .lo89
-247.1 -218.4 -173.1 - 73.1 26.9 100 500 1000 1500 Uranium . . . . . 0, 98 Vanadium ... ....... 0, 100 Zinc ......... ....... 0.100 -252.4 -201.3 -150 -100 - 50 0 100 300 400
Tungsten
+
FOR T R U E SPECIFIC HEATS Range
Element
Antimony .............................. Bismuth ................................ Chromium ............................. Cobalt ................................. Copper ................................. Iron ................................... Lead ................................... Magnesium ............................. Nickel ................................. Platinum ............................... Silver .................................. Tin .................................... Zinc ................................... T A B L E 149.-HEAT
+ + + + + + + + + + +
.0493 .0292 ,1055 .lo00 .0915 .lo60 .0295 2370 + .lo20 .03162 .0556 .0525 ,0913 +
"C
.000012 t .000012 t .00010 t - .00000015 t Z .000067 t .000024 t ,000096 t
0-500 0-200 0-400
.000142 t - .0000001 t2 .000118 t - .00000006 t Z 1o .00000617 t 2.33 X 10- t .000008 t .000052 t .000044 t
0400
0-400
.00002 t
+
0-300 0400 0-300
0-300 0-1625 0400
0-200 0-300
CAPACITIES, T R U E A N D M E A N SPECIFIC HEATS, AND L A T E N T H E A T S A T FUSION
+ + +
The constants a, b, and c of the equations for the heat capacity: W = a bt ct'; for the mean specific heat : s = at-' b ct; and for the true specific heat : s' = b 2ct; the latent heats at fusion are also given.
+ +
Element Cr ..
Mo . .
w .. Pt .. Sn
..
Bi
..
Cd Pb
.. ..
Zn
..
Sb
..
A1
..
Temperature range
"C
0-1500 0-1500
0-1500 0-1500 0-232 232-1000 0-270 270-1000 0-321 321-1000 0-327 327-1000 0-419 41 9-1000 0-630 630-1000 0-657 657-1000
a
-
14.33 10.31 -
6.30
6.07 14.34 39.42 102.39
Latent heat b c x l O e cal/g .lo233 33.47 ,06162 10.99 1.07 .03325 .03121 3.54 13.8 .06829 .07020 -18.30 10.2 5.22 ,03141 5.41 ,03107 .05550 10.8 6.28 .06952 6.37 5.47 ,03591 11.47 ,02920 - 3.30 23.0 .08777 43.48 .13340 -16.10 38.9 3.00 ,05179 2.96 .05090 .22200 38.57 94.0 24.00 21870
-
Temperature range
Ele. ment Ag
"C
.. 961-1300 0-961
Au
Cu
.. 0-1064 1064-1 300 .. 0-1084
Mn..
53.17
130.74 - 7.41 3.83 26.35
1084-1300 0-1070 1130-1210 1230-1250 0-320 330-145 1 .41 1451-1520 50.21 0-950 1100-1478 22.00 57.72 1478-1600 0-725 1.63 785-919 18.31 919-1404 1405-1528 -77.18 1528-1600 70.03
Ni
..
Co
..
Fe
a -
..
-
b ,05725 .00710 ,03171 ,01420 .lo079 -.04150 .12037 .17700 ,19800 ,10950 .12931 ,13380 .09119 .11043 ,14720 ,10545 .1592 ,14472 .21416 ,15012
Latent heat cxl00 cal/g 5.48 26.0 28.30 15.9 1.30 8.52 41.0 3.05 65.6 36.6 25.41 24.14' 52.40 .ll
56.1 1.33*
40.77 14.57
58.2 14.70'
56.84 -
Allotropic heat of transformation: Mn, 1070-1130°; Ni, 320-33O0; Co, 950-1100°; Fe, 725-785'; 1404.5" f 0.5. SMITHSNIAN PHYSICAL TABLES
.05
49.4 6.56' 6.67* 1.94.
919" f 1;
158
H E A T O F VARIOUS SOLIDS
T A B L E 150.-SPECIFIC
Part 1
Alloys : Bell metal
Temperature
Solid
....................
"C
..........................
80 C u + 2 0 Sn ............................ C o n s p t a n . 60 Cu. 40 Ni ...................................
... ...
............... ....... .................................
German silver . . Lipowitz alloy : 24 10.13 Cd 50.66 Bi 14.24 Sn .... Lipowitz alloy ............................................ Manganin: 84 Cu. 4 Ni. 12 Mn ..............................
+
+
15-98 0 0 14-98
18 0-100 5-50
' I
+
+
+ + + +
+
+
+
............................. ' ........... ............................................. "
.............................................
India rubber (Para) ......................................... Mica .................. .................................. ... Payffin ..................................... .................................................... "
'
Woods
.................................................... ....................... ....................... ..................................................... .......................
(continued)
SMITHSOMIAN PHYSICAL TABLES
.0858 .0899 .0883 .0862 .0977 .1018
100
100-150 18 .............................. 100 Monel metal .............................................. 20-1300 Rose's alloy: 27.5 P b 48.9 Bi 23.6 Sn - 77-20 ...................... 20-89 Wood's alloy : .43 Bi 14.73 Sn . . . . . . 5-50 Wood's alloy : (fluid) ...................................... 100-150 Miscellaneous alloys : 17.5 S b 29.9 Bi 18.7 Zn 33.9 Sn ....................... 20-99 10-98 37.1 Sb 62.9 Pb ......................................... ........ 16-99 39.9 P b 60.1 Bi ............................ ........ 20-99 63.8 Bi 36.2 Sn ............................ 20-99 46.9 Bi 53.1 Sn ......................................... Gas coal .................................................... 20-1040 .......... 19-100 Glass, normal thermometer 16"'. ............... French hard thermometer .................................. crown ....................................... 10-50 flint ......................... ...................... 10-50 Ize ............................. ...................... - 80
+
S ecific teat c a l / k "C)
.0946
.0345 .0426 .0973 .1004 .127 .0356 .0552 .0352 .0426 .0566 .0388 .0316 .0400 .0450 .3145 .1988 .1869 .161 .117 .350
?-I00
20
+
203 19- +20 0-20 3540 60-63
20
.622 .712 .327
T A B L E 150.-SPECIFIC
H E A T O F V A R I O U S S O L I D S (continued)
159
Part 2 * C , (joules per gram) for temperatures i n "C I
Compound
Mineral
-200'
A L 0 3 ........... corundum ... .069 ALSi20r.2HzO * . kaolin . . . . . . . . . . 2(AIF)O. SiOz .. topaz . . . . . . . . . . Be3Al,SiaOls ..... beryl . . . . . . . . . . . CaA1,Si20s ...... anorthite . . . . . . . C a C 0 3 .......... calcite . . . . . . . .28 CaFz ............ fluorite . . . . . . .22 CaMgSizOa ...... diopside . . . . . . . . C a S 0 4 * 2 H z 0.... gypsum ...... ,322 CaWO. ......... scheelite . . . . . . . . Fe203 ........... hematite . . . . . . . . F e S ............ a troilite . . . . . ,238 4 troilite . . . . . . . . FeSz ............ pyrite ....... .075 H,O ............ ice .......... ,653 H g S ........... a cinnabar . . . . . . KCI ............ sylvite ....... .418 K N 0 3 .......... a niter ....... .326 p niter . . . . . . . . . . liquid . . . . . . . . . . Mg3Al2Si30~2.... garnet ;. . . . . . . . . M g C 0 3 ......... magnesite ... ,161 MgO ........... periclase ..... ,066 Mg3H2Si,Ol1 .... talc . . . . . . . . . . . . NaCl ........... halite ....... ,466 liquid . . . . . . . . . . Na2B401.10H20 borax . . . . . . . . . . PbS ............ galena ....... .142 SiO, ............ a quartz ..... .173 p quartz . . . . . . . . a cristobalite . .186 p cristobalite . . . . glass ........ ,184 ZnS ... a wurtzite .430 p sphalerite
.
....
}
0"
(.i6i at 35oj" .207 .698
...
.69
...
.70 .45
* F o r reference, see footnote 45, p. 136.
(conthziied)
SMITHSONIAN PHYSICAL TABLES
200"
.72 1.00 .99 1.17 (.83 at 50") ( 3 4 at 50") .70 .95 .793 1.00 .85 .89 .69 .98 1.03 (.40 at 50")' ' ' .61 .79 ... ,606 ... .635 .SO0 .594 ... 2.06 .214 ,227 .682 .715 ... ... 1.19 ... 1.22 (.74'at 58") 264 ... ,870 1.09 ( 3 7 at 59") .855 .915 ,221 .969
...
1.01
...
.95 .53
400"
800"
12009
1.10 1.35
1.19
1.26
1.05 1.13 .93 1.06
1.17
... ... ...
...
.90
...
.66 .69
...
.240 .749
...
... ...
... ... 1.16 ... .975
...
...
,235 1.129
... ...
... (..
1.01 1.15
...
... 1.08 ... .71 ... ... ... ... ... ... ... ... ...
1.24
...
1.095 1.14
... ... ...
...
1.174
1.074 1.06 .56
1.171 1.21 337
...
...
... ... 1.27 ...
...
1.10 1.20
... ... ... ... ... ...
... ... ... ...
... ... ...
... ... ... ... ... ... ... 1.327 ... 1.30
1.21 1.34
...
160
H E A T O F V A R I O U S SOLIDS (concluded)
T A B L E 150.-SPECIFIC
Part 3 C , (joules per gram) for temperatures in "C A,
c
Rock
2000
400"
800'
1200"
.65
.95
1.07
1.13
...
.....................
.85
1.04
1.145
1.32
1.49
Metamorphic Gneiss ............................
.74
1.01
...
...
...
1.13
1.51
...
0'
Igneous Granite : 65% orthoclase 25% quartz 9% albite 1% magnetite Basalt : Syracuse Aetna Kilauea
1
1
..................
Sandstone : ........................ Micaceous ....................... Japanese (mean of 4 ) . . . . . . . . . . . . . English (mean of 8 ) . . . . . . . . . . . . . .
.93 at 59") .73 at 50") .81 at 65") .81 at 50")
( ( ( (
Clay, amorphous . . . . . . . . . . . . . . . . . . .
.75
.94
Limestone ......................... (1.00at 58") English (mean of 3 ) . .............. (' .68 at 50") Japanese (mean of 10). ........... ( .83 at 65")
T A B L E 151.-ATOMIC
4-
Li . . . . .1924 Ee . . . .0137 PJ . . . . ,0212 C** ... ,0137 cp . . . . .0028 S a . . . .1519 Mg . . . .0713 A1 . . . ,0413 Si8 . . . .0303 Si' . . . ,0303 P, yel. . ,0774 P, red.. ,0431 S . . . . .0516 C1 . . . . ,0967 K . . _ .,1280 Ca . . . ,0714 Ti . . . . .0205 Cr . . . . .0142 Mn . . . ,0229 * cal g-1 " C - 1 .
H E A T S ( 5 0 " K ) , SPECIFIC H E A T S (50"K), A T O M I C V O L U M E S OF T H E ELEMENTS
.-
1.35 .125 24 .16 .03 3.50 1.74 1.12 .86 .77 2.40 1.34 1.75 3.43 5.01 2.86 .99 .70 1.26
13.0 4.9 4.5 5.1 3.4 23.6 14.1 10.0 14.2 11.4 17.0 13.5 16. 24.6 44.7 25.9 10.7 7.6 7.4
t
*
-g<-
.-0 5: 2"
V E
i B
<>
cal g atom-'
SMITHSONIAN PHYSICAL TABLES
U
15, u u Urn
2s
.... .0175 .... .0208 co . . . ,0207 cu ... ,0245 Zn . . . .0384 Fe Ni
As Se Br Rb Sr' Zr
. . . .0258 . . . .0453
. . . . .0361
. . . ,0711 . . . .0550
. . . . .0262
Mo ... .01.41 Ru ... ,0109 Rh . . . ,0134 P d ... ,0190 Ag ... ,0242 Cd ... .0308 Sn ... ,0286 "C-1.
* * Graphite.
.-"
.u B
2s
22
2"
.98 1.22 1.22 1.56 2.52 1.94 2.86 3.62 6.05 4.82 2.38 1.36 1.11 1.38 2.03 2.62 3.46 3.41
7.1 6.7 6.8 7.1 9.2 15.9 18.5 24.9 55.8 34.5 21.8 9.3 9.0 8.5 9.2 10.2 13.0 20.3
2.89 4.59 3.68 6.82 4.80 4.60 4.64 1.75 1.49 1.92 2.63 3.16 4.65 4.80 4.96 4.54 4.58 3.30
gz
0
1: Diamond.
.U
'g 5
€1
.... .0099 .... ,0135 ... .0160 Hg ... .0232 TI .... .0235 Ir Pt Au
P b ... .0240 Bi .... .0218 T h ... .0197 U .... .0138 8 Fused.
li Crystallized.
0
E
%
2*
18.2
25.7
21.2 71.0 36.0 22.6 20.3 9.8 8.5 8.6 9.2 10.2 14.8 17.2 18.3 21.3 21.1 12.8
II Impure.
T A B L E 1 5 2 . 4 P E C I F I C H E A T O F W A T E R A N D MERCURY'O
161
(1 cat = 4.1840 J ) Specific heat of water
c, Temp. "C
c,
ctl 8-1 C-1
Temp. "C
0
5 10 15 16 17 18 19
1.0004 1.0002 1.oooo 998 .9996 .9995 .9993 .9992 .9991
20 21 22 23 24 4s
30 35 40 45 50 55 60 65
990
CP
c$l g-1
Temp. "C
.9989 989 .9988 987 .9987 .9987 .9986 .9987 .9989 .9992 .9996 1.0001 1BOO6
70 75 80 85 90 95 100 120 140 160 180 200 220
C-1
Specific heat of mercury
,
h
I
~~~
CP
c$l g-1
Typ.
C-1
C
1.0013 1.0021 1.0029 1.0039 1.0050 1.0063 1.0076 1.0162* 1.0223* 1.0285* 1.0348* 1.0410, 1.0476*
0
5 10 15 20 25 30 35 40 50 60 70 80
CP
c:l g-1
Temp. "C
c$l g-1 C-1
.03346 90 .03340 100 .03335 110 .03330 120 .03325 130 ,03320 140 ,03316 150 . ~ ~ .03m i70 .03308 190 .03300 210 ,03291 .. . .03289 . .. .03284
.03277 .03269 .03262 .03255 .03248 ,03231 ~.0324 . .0322 .0320 .0319
c-1
... ... ...
Nat. Bur. Standards Journ. Res., R P 1228, vol. -73. p. 197, 1939. Barnes-Regnault.
TABLE 153.-SPECIFIC
TFmp
C
Liquid
.......... -20 - .... ...... 0
Alcohol. ethvl " ' L'
'
'
:.. ...... ...... ......
mepyi '
"
'I
('
I'
'I
"
'I
"
"
'.
I'
.464 .482
"
"
SMITHSONIAN PHYSICAL TABLES
.548
53 65
....... u . .. . . .. +20 1.26.. . . . . . -20 ....... 0 ....... +20 "
....... ....... ....... .... ....
CIS
.so5
12-15 12-14 12-17
. ..
1'
Spec heat
.648 .590 .601 .514 .520 .529 .340 ,423 .482 .764 .775 .787 .695 .712 .725 .651 .663 .676 .848 .951 .975
40
5-10 15-20 A$in . . . . . . . . ...... 15 ...... 30 ................. 50 Benf;ole, Ce,H6 . . . . ...... 10 . . . . ...... 40 ...... 65 ...... -15 . . . . .. . 0 " 'I " I' . . . . . . . +20 " " " 1.20. . . . . . . -20 n " I' " " Alc;hol,
H E A T O F V A R I O U S LIQUIDS
C
Spec heat cgs
85 20-52 20-52
.529 .576 .876 .975 .942 .983 .791 .978 ,396 .409 .350 .362 .434 .438 .471 ,387 .411 .511 .980 .938 .903 .364 .490 .534 .842 .952
Tpp
Liquid
Ethyl ether ............ 0 Glycerine . . . . . . . . . . 15-50 KOH +30 H,O ........ 18 " 100 " ........ 18 NaOH 50 HZO . . . . . . 18 " +loo" ...... 18 N a C l + 10 H,O . . . . . . . , 18 " +200 (' ........ 18 Napht!alene, CIoHs . . . . . 80-85 . . .. . . . . . .. 90-95 Nitrobenzole . . . . . . . . . . . 14 .. . . . . . . . 28 Oils: Castor . . .. . . . . . . . Citron ..... .... .. 5.4 6.6 Olive . . . . . . . . . . . . Sesame . . . . . . . . . . Turpentine ...... . 0 Petroleum . . . . . . . . . . . . . 21-58 Sa: w:Fer, y. 5;. 1.0043. 17.5 1.0235. 17.5 'I 'I " " 1.0463. 17.5 ToIuoI, CaHs ... .... .... 10 ' . . . . . . . . . . . .. . . .. 65
.
+ +
.
ZnSO, "
.
. . . . . . . . . . .. . . . . . + 50 HA0 . . . . . . + 200 . . .. . .
162
T A B L E 154.-SPECIFIC H E A T OF L I Q U I D A M M O N I A U N D E R S A T U RAT1ON CON D l T l O N S
Expressed in calories2oper gram per degree C Temp
"C
-40 -30 -20 -10 -0 + O
+lo +20 +30 40
+
0
1
2
3
4
5
6
7
8
9
1.062 1.070 1.078 1.088 1.099 1.099 1.112 1.126 1.142 1.162
1.061 1.069 1.077 1.087 1.098 1.100 1.113 1.128 1.144 1.164
1.060 1.068 1.076 1.086 1.097 1.101 1.114 1.129 1.146 1.166
1.059 1.067 1.075 1.085 1.096 1.103 1.116 1.131 1.148 1.169
1.058 1.066 1.074 1.084 1.094 1.104 1.117 1.132 1.150 1.171
1.058 1.065 1.074 1.083 1.093 1.105 1.118 1.134 1.152 1.173
1.057 1.064 1.073 1.082 1.092 1.106 1.120 1.136 1.154 1.176
1.056 1.064 1.072 1.081 1.091 1.108 1.122 1.137 1.156 1.178
1.055 1.063 1.071 1.080 1.090 1.109 1.123 1.139 1.158 1.181
1.055 1.062 1.070 1.079 1.089 1.110 1.125 1.141 1.160 1.183
T A B L E 155.-HEAT
CONTENT O F SATURATED LIQUID AMMONIA
Heat content = H = E Temperature "C ... -50" H = BV . . . . . . -53.8
+
-40" -43.3
+ pv, where -30" -32.6
T A B L E 156.--SPECIFIC
Substance
Andalusite . . . . . . . . . . . . . Anhydrite, CaSO, . . . . . . . Apatite . . . . . . . . . . . . . . . . Asbestos . . . . . . . . . . . . . . Auqite . . . . . . . . . . . . . . . . Barite, BaSO, . . .. ... ... Beryl . . . . . . . . . . . . . . . . . . Borax, Na2B10, fused.. . Calcite. CaCOa . . . . . . . . .
.
,Cassiterite S n 0 2 . . . . . . . . Chalcopyrite . . . . . . . . . . . Corundum . . . . . . . . . . . . . Cryolite, ALFo.6NaF . . . Fluorite, CaF? . . . . . . . . . . Galena, P b S . . ... .. .. ... Garnet . . . . . . . . . . . . . . . . Hematite, Fe203 . . . . , , . . Hornblende . . . . . . . . . . . . Hypersthene . . . . . . . . . . . Labradorite . . . . . . . . . . . . Magnetite . . . . . . . . . . . . . . Malachite, CuKO,H20 . . Mica (Mg) ............ ( KJ
.. . . ... ..
Oligoclase . . . . . . . . . Orthoclase . . . . . . . . . Pyrolusite. MnOl . . . Quartz, Si02 . . . . . ..
Tempera. ture "C
0-100 0-100 15-99 20-98 20-98 10-98 15-99 16-98 0-50 0-100 0-300 16-98 15-99 9-98 16-99 15-99 0-100 16-100 15-99 20-98 20-98 20-98 18-45 15-99 20-98 20-98 20-98 15-99 17-48 12-100 n
358 400-1200
-20" -21.8
is the internal or intrinsic energy.
E
-10" -11.0
+SO" -57.4
H E A T O F M I N E R A L S A N D ROCKS S ecific Reat cgs
.168 .175 .190 .195 .193 .I13 ,198 .238 .188 .200 .220 ,093 .129 .198 .252 .215 ,047 .175 ,164 .195 .191 ,195 .156 .176 ,206 ,208 .205 ,188 .159
.188
,174 ,279 ,305
m a a t . Bur. Standards Journ. Res., vol. 38, p. 593. 1947. SMITHSONIAN PHYSICAL T4BLES
0" +lo" +20" +30" $40" 0.0 +ll.l +22.4 -33.9 -45.5
Substance
Rock-salt . . . . . . . . . . . . . . Serpentine . . . . . . . . . . . . . Siderite . . . . . . . . . . . . . . Spinel ... .. . . . . ........ Talc .. ... . . . . ...... .... Topaz . . . . . . . ... . . ... . . Wollastonite ........... Zinc blende, ZnS. .. . . . .. Zircon . ... . . .. ......... Rocks : Basalt, fine, black. . . . .
.
.
.
Dolomite . . , ,. , , , , .. Gneiss . . . . . . . . . . . . . .
.
Granite . . . . . . . . . . . . . . Kaolin ... .... . . ..... . Lava, Aetna . . ....... . Kilauea . . . . . . . . Limestone . , . . . . . . . . . . Marble .... .... ..... . Quartz sand . ...... . .. Sandstone . . . . . . . . . . . . Aluminum oxide (Corundum) . . . . . . . . .
Tempera. ture ' C
Specific heat cgs
13-45 16-98 9-96 15-47 20-98 0-100 19-51 0-100 21-51
,219 ,259 .193 ,194 .209 ,210 ,178 ,115 .132
12-100 20-470 470-750 750-880 880-1190 20-98 17-99 17-213 12-100 20-98 23-100 31-776 25-100 15-100 0-100 20-98
.200 .199 .243 ,626 .323 .222 .196 .214 .192 224 .201 ,259 .197 ,216 .21 ,191
-
0 100 200 300 400 500 600 700 800 900
.n
.1731 ,2157 .2438 ,2611 .2719 .2799 ,2865 .2919 2960 .2995
T A B L E 157.-HEAT
CAPACITY O F GASES AND VAPORS**
163
Part 1
Gases
Density g/liter (normal)
Air ................. 1.2920 Ammonia . . . . . . . . . . . 7598 . Argon* ............. 1.782 Bromine ............ 7.1308 Carbon dioxide ...... 1.9630 Carbon monoxide .... 1.2492 Chlorine ............ 3.1638 Fluorine ............ 1.6954 Helium * . . . . . . . . . . . . .1785 Hydrogen * H . . . . . . . .045 Hz . . . . . . .0899 Hydrogen bromide ... 3.6104 Hydrogen chloride .... 1.6269 Hydrogen fluoride .... A926 Hydrogen iodide ..... 5.7075 Hydrogen sulfide ..... 1.5203 Iodine ............... 11.3250 Krypton * ........... 3.7365 Mercury* Hg ....... 8.9501 Hgz ...... 17.9003 Neon * . . . . . . . . . . . . . . .9005 Kitric oxide . . . . . . . . . 1.3388 Nitrogen ............ 1.2499 Nitrous oxide 1.9638 . . ........ Oxygen ............. 1.4277 Phosphorus pentaoxide. 6.3371 Potassium * K ....... 1.744 Kz ...... 3.4889 Sodium'* Na ........ 1.026 Na2 ........ 2.052 Sulfur .............. 2.8607 Sulfur dioxide . . . . . . . 2.858 Water .............. Xenon* ............. 5.8579
Heat capacity. C . in J / g Temperature "C
0
400
1200
1.004 1.057 1.16 2.06 2.74 3.86 .521 .521 .521 225 .232 .236 .82 1.12 1.32 1.04 1.103 1.245 .497 .511 337 .774 .818 .906 5.2 5.2 5.2 20.6 20.6 20.6 14.23 14.87 16.14 .363 .381 .416 .795 A34 .911 1.431 1.50 1.634 .234 .245 .266 1.025 1.21 1.527 .15 .15 .15 25 .25 25 .104 .104 .104 .094 .094 .094 1.03 1.03 .03 .142 1.047 1.00 1.037 1.08 .21 .85 .954 .162 .143 .916 1.025 - 1.084 .084 .532 .532 .532 .482 .482 .482 .904 .904 .904 .82. .82 .82 .565 .573 .589 .79 .875 .61 1.847 2.052 2.478 .158 .158 .158
Constants in
Cp=a
f
bT-cT-2
J/g Temperature = absolute
-7-G-GT .968 .132
1.822 .521 223 .894 .980 .488 .744 5.2 20.6 13.796 .352 .769 1.384 .227 .962 .1s .25 .101 .094 1.03 .968 .962 .779 .944 1.084 332 .482 .904 32 .56 .762 1.69 .158
0
0
0
SMITHSONIAN PHYSICAL TABLES
0-2000 0-1 500 00-1400 0-2000 0-2000 0-1700 0-2700 000-2000 0-1700 0-1 700 0-1700 0-1 700 0-1500 0000-
0 0 1.59 0 0 .434 .096 0 .169 0 .027 0 .385 .0314 0 0 0 0 0 0 0 0 0 0 0.118 0 0-2000 .167 -.021 0-1500 .26 0-2000 0 .136 .0486 0-2000 0 360-1 100 0 0 0 00 0 0-1 700 0 0 00 0 0.0196 0 30-2000 .082 .132 0-2000 .535 -.008 0-2000 0 0 0-
.
(continued)
s102 0 0 .197 0 0
45. p . 1 3 6. The heat capacity of an ideal monatomlc gas (at constant pressure) is equal to ( 5 / 2 ) R
* * For reference. see footnote
0
1.395 0 .01 .7 .18 .033 .11
Temperature range "C
T A B L E 157.-HEAT
164
C A P A C I T Y O F GASES A N D VAPORS (concluded) Part 2 Range of temperature "C
Substance
Specific heat (cgs) constant pressure C,
&lean ratio of specific heats
Range of temperature "C
C,/C,
Acetone, C3Ho0
.3468
Alcohol,
................. 26-110 C*H,OH ............... 108-220
.4534
53 100
1.133 1.134
................ 101-223
.4580
100
1.256
Alcohol, CHJOH
Benzene, CRH, ...................
34-1 1s 35-180 116-218
2990 ,3325 .3754
20 60 99.7
1.403 1.403 1.105
..............
27-118 28-189
,1441 .1489
22-78 99.8
1.102 1.150
...................
69-224 25-1 11
,4797 ,4280
42-45 12-20
1.029 1.024
Hydrochloric acid, HCI.. ......... 13-100 22-214
.1940
Chloroform, CHCI, Ether, C,H,,O
........................ ..............
Mercury
Water vapor, H,O.
.1867 ,4655 ,421 .51
0 100 180
T A B L E 158.--SPECIFIC
Silicate
" glass . . . . . . . . . . ,1977 Amphibole, Mg silicate. ,2033 " glass . . . . . 2043 Ande$ne . . . . . . . . . . . . . ,1925 glass ........ ,1934 Anorthite . . . . . . . . . . . . ,1901 elass . . . . . . . ,1883 Cris tobal it; ..-. . . . . . . . . .1883 Diopside . . . . . . . . . . . . . .1924 glass . . . . . . . . .1939 Microcline . . . . . . . . . . . ,1871 -elass . . . . . . .1919 Pyroxene ............ ,2039 Quartz . . . . . . . . . . . . . . . ,1868 Silica glass . . . . . . . . . . . .1845 _ Wollastonite .......... glass . . . . . .1852 " pseudo ... .1844 I'
* 0"-1100".
t
0"-12500.
SMITHSONIAN PHYSICAL TABLES
,256 ,241 ,264 246 ,266 247 233 ,252 ,261 229 ,248 ,230 242 ,256 ,231 ,250 233 .226 245 232 ,251 ,248 ,237 ,259 ,230 ,251 - ,234 ,220 217 ,232
310
1.666
78 94 100
1.274 1.33 1.305
True-specific heats at
rO"C
~~
................ ,1948 236
1.389 1.400
H E A T O F SILICATES
Mean specific heats cgs 0" c to
Albite
20 100
-
.273* -
100"
500'
1000°
211 219 -
269 ,279 ,265 260 -
,294 .304
,247 268 260t -
.259* .264* ,244
1300"
-
-
,262 -
,171 ,174
,201 ,206
,258 ,244
,279 ,299
.168 ,146
,204 ,202
,294 ,246
285 29
-
_ _
,171
_
_ -
.197
_
-
243
-
-
262
-
-
-
272
TABLES 159-164.-LATENT T A B L E 159.-LATENT
165
HEAT
H E A T O F FUSION A N D VAPORIZATION
''
(Kg cal/inol) Part 1
Metals
.
Im
Ionic sullstances
L"
A1 ...... .2.55 . . . . . 67.6 Ag ..... .2.70 . . . . . 69.4 Au ..... ..3.03.. . . . 90.7 Bi . . . . . . . 2.51 . . . . . 47.8 Cd .......1.46. . . . . 27.0 Co . . . . . . .3.66. . . . . . . . Cr . . . . . . .3.93 . . . . . 89.4 Cs . . . . . . . .50 ..... 18.7 Cu . . . . . . .3.11 ..... 81.7 Fe . . . . . ..3.56. .... 96.5 Ga ...... .1.34 . . . . . . . . H g . . . . . . . 58 . . . . . 15.5 In ....... .78. . . . . . . . K ........ .58 . . . . . 21.9 Mg ......1.16 ..... 34.4 Mn . . . . . . 3.45 ..... 69.7 Na . . . . . . .63 . . . . . 26.2 Ni ..... . .4.20. .... 98.1 P b ... ... 1.22. . . . . 46.7 Pt ..... . .5.33 . ... .125 . R b .... ... .53. .... 20.6 S b .... .. .4.7 7. . . . . 54.4 Se .... . . .1.22. . . . . . . . Sn ...... .1.72. . . . . 68.0 TI ....... .76 . .... 43.0 Zn .... .. .1.60. .. .. 31.4
L"
Lni
A '~~ r R r . . . . . 2.18. . . . . . . . AgCi . . . . . .3.1 5 . . . . . . . . AgNO., ... .2.76 . . . . . . . . RaCL ..... .5.75 . . . . . . . . CaCI, . . . . . .6.0 3. . . . . . . . HgRr. . . . . .4.62 . . . . . . . . HgI, . . . . . .4.50 . . . . . . . . KBr . . . . . . .2.81. . . . . 159 .6.41 . . . . . 165 KCI . . . K2CrrOi ... .8.77. . . . . . . K F . . . . . . . .6.28 . . . . . 190 KNO:, . . . . .2.57 ........ K O H .. . . . .1.61 ........ IiNO.. . ... .6.06 . . . . . . . . NaCl .. . . . .7.22 . . . . . 183 N a F . . . ... .7.81 . . . . . 213 NaCIO 3 . . . .5.29 . . . . . . . . NaNOx . . . .3.76 . . . . . . . . N a O H . ... .1.60 . . . . . . . . PbBrr . . . . .4.29 . . . . . . . . PhCL .. ... .5.65. . . . . . . . PbI. . . . . . . .5.18. . . . . . . . TlBr .. ... .5.99 ........ TIC1 ... ... .4.26 ........
~~
~
Molecular sulistances
L"
Lm
A . . . . . . . . . . .. .280 ...... 1.88 CCI. . . . . . . . . . .577 . . . . . . 8.0 CH. . . . . . . . . . .224 ...... 2.33 CnHo . . . . . . . . .2.35 . . . . . . 8.3 CH..COOH . ..2.64 ..... . 10.3 CH:tOH .... . . .525 . . . . . . 9.2 C.H. O H . . . . . 1.10 ..... .10.4 CI. . . . . . . . . . . . 1.63 . . . . . . 7.43 co . . . . . . . . . . .200 . . . . . . 1.90 co. .......... .99 . . . . . . 6.44 H. . . . . . . . . . . . .028. . . . . . .22 H R r ......... .hZO ...... 5.79 HCI ......... SO6 ...... 4.85 H. 0 . . . . . . . . . .43 . . . . . . 11.3 N. . . . . . . . . . . . .218 ...... 1.69 NH. . . . . . . . . . .84 . . . . . . 7.14 S51. ..... 3.82 N O ..... .096 ...... 2.08 0. ......
Part 2 1.m Suhstance
+ + + +
Composition
AIlovs : 30.5Pb 69.5% .................... . 36.9Pb 63.1Sn .................... 63.7Pb 36.3Sn .................... 77.8Pb 22.2Sn .................... Britannia metal. 9% 1Ph . . . . . . . . . . . . . . . . . . Rose's alloy, 24Pb 27.3sn 48.7Bi .......... Wood's alloy 25.8Ph 14.7Sn 52.4Bi + 7Cd} .............. Ammonia ................................... Benzole .................................... Ice ........................................
{+
.
+
+ +
+
........................................
(from sea water) ........................
PhSnl PbSn. PbSn PbzSn
....
.... NH3 COHO HZO
+ 3.535 {HZO of solids C..H.
Naphthalene ................................ Potassium nitrate ........................... KNO:I Phenol ..................................... GHOO Paraffin ........................................ Sodjum .................................... Na nitrate .............................. NaN03
{NE:Pl
'' phosphate ........................... Spermaceti ..................................... Wax (bees) .................................... 61 From
T"C
Cal/n
183 179 177.5 176.5 236 98.8 75.5 -75 5.4 0 0 - 8.7 79.87 333.5 25.37 52.40 97 305.8 36.1 43.9 61.8
17 15.5 11.6 9.54 28.01 6.85 8.40 108 30.6 79.63 79.59 54.0
35.10 31.7 64.87 66.8 36.98 42.3
Slater. John C., Introduction to chemical physics. McCraw-Hill Book Co., copyright 1939 . Used
by permission.
SMITHSONIAN PHYSICAL TABLES
166
T A B L E 160.-LATENT
Element
HEAT
t"C
Sb ............ A ........... .. Ba .......... .. Bi .......... . . Br .......... .. Cd ........... . Ca . . . . . . . . . . . .
755 1 atm. 1537 920 602 778 143.9 c1 . . . . . . . . . . .. - 63 F ........... . . - 188.2 He ........... . - 271.3 H, . . . . . . . . . . .. - 253
T A B L E 161.-LATENT
CaVg
H E A T O F VAPORIZATION OF LIQUIDS
................... ..................
Formula
t"C
CzHoO
78.1 0 100 150 64.5 0 100 150 200 238.5 184 80.1
CH4O
Aniline ........................... CsHiN Benzene .......................... CsH, Carbon dioxide, solid ............. coz liquid ............
.................. cs,
Chloroform ....................... Ether ............................
CHCL C4Hio0
Ethyl bromide .................... chloride .................... iodide ...................... Heptane .......................... Hexane .......................... Octane ........................... Pentane .......................... Sulfur dioxide ....................
CnHaBr CzHaCI CzHJ CiHis CoH14 CsHia C5Hr2
Toluol ........................... Turpentine .......................
GHx CmHio
SMITHSONIAN PHYSICAL TABLES
24 28 175 511 136 71 47.6 50.9 410 25.1 475
H g ........... 358 N ............ - 195.6 Oz ............ - 182.9 Sr ............ 1336 Xe ............ - 108.6 Zn ............ 918
"
disulfide
CaVg
............. 174 Kr ............ - 151 Pb ............ 1170 Li ............ 1336 Mg ........... 1110
<
Methyl
t"C
Element
I
320 37.6 308 190 43 240 101 63 40.5 5.6 108
Substance
Alcohol : Ethyl
OF VAPORIZATION O F E L E M E N T S
so,
...
-25
0 12.35 22.04 30.82 46.1 0 100 60.9 34.5 0 50 120 38.2 12.5 71 90 70 130 30 0 65 111 159.3
Latent heat vaporization caVg
205 236
...
...
267 289 246 206 152 44.2 110 92.9
...
72.23 57.48 44.97 31.8 3.72 83.8 90
...
58.5 88.4 94
... ... 60.4 ...
47 77.8 79.2 70.0 85.8 91.2 68.4 E6.0 74.04
Total heat from 0°C cal/g
255 236 267 285 307
... ... ... ... . .. ...
127.9 138.7
... ... ... ... ...
94.8 90 100.5 72.8 107 94 115.1 140
... 98 ... ...
167 T A B L E 162.-LATENT
A N D T O T A L H E A T O F V A POR IZA TION , F O R M U L A E
Y = latent heat of vaporization at t o C ; H =total heat from fluid at 0" to vapor at T orefers to Kelvin scale. Same units as preceding table.
+ +
...
......
H = 140.5 .36644t - .000516t' = 139.9 .23356t + ,00055338t' r = 139.9- .27287t + ,0001571t' aenzene, C,H, . . . . . . . . . . . ... H = 109.0 + .24429t - .0001315t2 'I = 118.485(31- t ) - .4707(31 - t ) 2 Carbon dioxide ........... Carbon bisulfide, CS,. . . . . . ... fi 90.0 .14601t - .0001123/' H = 89.5 .16993t - .0010161t2+ .0;342t3 r = 89.5 - .06530t - ,0010976t' + .0j342ta Carbon tetrachloride, CCL. . . . H = 52.0 ,14623 - ,000172t' H = 51.9 .17867t - .0009599t2+ .0;3733t3 r = 51.9 - .01931t - ,0010505t' + .0,3733t1 Chloroform, CHCI, ... H = 67.0 .1375t 67.0 .14716t - .0000937t' H Y = 67.0 - .08519t - ,0001444t' Ether, C,H,,O ........... . . . H = 94.0 .45000t - ,0005556t' r = 94.0 - .07900t - .0008514t2 Molybdenum . . . . . . . . . . . . . . . . r = 177000 - 2.57(cal/g-atom) Nitrogen, N2 . . . . . . . . . . . . . r = 68.85 - .2736T Nitrous oxide, N,O. . . . . . . ... r' = 131.75(36.4- t ) - .928(36.4 - t)' Oxygen, O2 .............. r = 69.67 - .20801' Platinum . . . . . . . . . . . . . . . . ... r = 128000 - 2.57'(cal/g-atom) Sulfur dioxide ........... ... r = 91.87 - .3812t - .000340t2 Tungsten ................ . . . r = 217800 - 1.8T(cal/g-atom) Water, H z O ............. . . . N = 638.9 .3745(t - 100) -.00099(t - 100)' r = 94.210(365 - t)""'" (See Table 165)
Acetone, C,H,O
...
+ + + + + + +
- 3" to -3 -3 7 -25 -6 -G -6 8 8 8 -5 -
147" 147 147 215 31 143 143 143 163 163 163 159 159 159 121 121
_--
-20
---
36
0
-- 20
+
T A B L E 163.-LATENT
5
-5 -4 -4
t o C.
-0
100
H E A T O F VAPORIZATION O F AMMONIA
Calories per gram "C
0
1
2
3
4
5
6
i
8
-40 -30 -20 -10 -0
331.7 324.8 317.6 309.9 301.8
332.3 325.5 318.3 310.7 302.6
333.0 326.2 319.1 311.5 303.4
333.6 326.9 319.8 312.2 304.3
331.3 327.6 320.6 313.0 305.1
334.9 328.3 321.3 313.8 305.9
335.5 329.0 322.0 314.6 306.7
336.2 329.7 322.7 315.3 307.5
336.8 330.3 323.4 316.1 308.3
337.5 331.0 324.1 316.8 309.1
+0
301.8 293.1 283.8 273.9 263.1
300.9 292.2 282.8 272.8 262.0
300.1 291.3 281.8 271.8 260.8
299.2 290.4 280.9 270.7 259.7
298.4 289.5 279.9 269.7 258.5
297.5 288.6 278.9 268.6 257.4
296.6 287.6 277.9 267.5 256.2
295.7 286.7 276.9 266.4 255.0
294.9 285.7 275.9 265.3 253.8
294.0 284.8 274.9 264.2 252.6
+10 +20 +30 $40
T A B L E 164.-''LATENT
9
H E A T O F PRESSURE VARIATION" O F LIQUID AMMONIA
When a fluid undergoes a change of pressure, there occurs a transformation of energy into heat or vice versa, which results in a change of temperature of the substance unless a like amount of heat is ahstracted or added. This change expressed as the heat so transformed per unit change of pressure is the "latent heat of pressure variation." I t is expressed below as J g-' kg-' cm'. Temperature " C . -44.1 Latent heat
....
-39.0
- .055 - .057
SMITHSONIAN PHYSICAL TABLES
-24.2
-
-2
.068 --.088
+16.5
+26.5
- .lo7
-
+35.4
.123 - .140
+40.3
-
.150
168
TABLES 165-lfO.-THERMAL PROPERTIES OF SATURATED VAPORS
T A B L E 165.-THERMAL
P R O P E R T I E S OF S A T U R A T E D W A T E R A N D S T E A M
Accuracy: I t is estimated that there is only 1 chance in 100 that the values given for H differ from the truth by as much as 1 part in 2000; it is equally unlikely that the values for L and H' are as much as 1.5 joules/g from the truth in the range of the experiments. 100"-270"C . H e a t cont e n t of liquid. H joules/g
EntropyT.atent heat. L joules/g
H e a t cont e n t of vapor. H' joules/g
2494.02
2494.02
10............. 42.02 20 ............. 83.83 30 125.59 40 . . . . . . . . . . . . . 167.34 50 . . . . . . . . . . . . . 209.11
2472.26 2450.17 2427.73 2404.90 2381.64
2514.28 2534.00 2553.32 2572.24 2590.75
.1511 .2962 .4363 .5719 .7032
8.884 8.656 8.446 8.253 8.074
60 . . . . . .
2357.91 2333.65 2308.32 2283.38 2257.24
2608.81 2626.40 2643.48 2660.03 2675.99
.8335
80 . . . . . . . . . . . . . 90 . . . . . . . 100.......
250.90 292.75 334.66 376.65 418.75
-954.3 1.0746 1.1918 1.3064
7.909 7.756 7.613 7.480 7.356
110............. 120 ....... 130............. 140............. 15c .............
460.97 503.36 545.93 588.71 631.75
2230.35 2202.65 2174.04 2144.44 2113.76
2691.32 2706.01 2719.97 2733.15 2745.51
1.4177 1.5268 i .6335 1.7381 1.8407
7.240 7.130 7.027 6.929 6.837
160............. 675.06 718.66 170.... 762.72 180.... 190............. 807.15 200 ............. 852.02
2081.89 2048.72 20 14.10 1977.89 1939.93
2756.95 2767.38 2776.82 2785.04 2791.95
1.9416 2.0406 2.1384 2.2348 2.3299
6.749 6.664 6.584 6.506 6.430
210 ............. 897.35 220 ............. 943.24 230 ............. 989.75 240 ............. 1036.97 250 ............. 1084.97
1900.00 1857.89 1813.33 1766.02 1715.59
2797.35 2801.13 2803.08 2802.99 2800.56
2.4239 2.5169 2.6091 2.7007 2.7919
6.357 6.285 6.213 6.143 6.072
260 ............. 1133.87 270 ............. 1184.32
1661.60 1603.51
2795.47 2787.83
2.8828 2.9746
6.000 5.927
Temperature
"C
0 .............
0
SMITHMNIAN PHYSICAL TABLES
7
~
-
of liquid
of vapor
joules/g"C
joules/g"C
I>
0
....
w
9.132
T A B L E 166.-PROPERTIES
169
OF SATURATED STEAM
Metric and common units, 0" t o 220°C
Heat of liquid, q, heat required to raise 1 kg (1 lb) to corresponding temperature from 0°C. Heat of vaporization, r, heat required to vaporize 1 kg (1 lb) at corresponding temperature to dry saturated vapor against corresponding pressure. Total heat, H = r q.
+ e
e e-, uu
9
2k
gt
Heat of the liquid
Pressure r
-
mmHz
kg/cme
0 5 10 15 20
P 4.579 6.541 9.205 12.779 17.51
.00k23 .00889 .01252 .01737 .02381
25 30 35 40 45
23.69 31.71 42.02 55.13 71.66
50 55 60 65 70
lb/in.a
4
4
Heat of vaporization
5s--iz GrK i -b L 4
.oo
Heat equivalent
of
internal works
'kgcal
Btu'
Bh * Y ) u !+u o
p&
g.2
P
P
t
.o
1071.7 1067.1 1062.3 1057.6 1052.8
565.3 562.2 559.0 555.9 552.7
1017.5 1011.9 1006.2 1000.5 994.8
32.0 41.0 50.0 59.0 68.0
4
.1265 .1780 ,2471 .33%
5.04 10.06 15.06 20.06
9.1 18.1 27.1 36.1
595.4 592.8 590.2 587.6 584.9
.03221 .04311 .05713 .07495 .09743
.4581 .6132 ,8126 1.0661 1.3858
25.05 30.04 35.03 40.02 45.00
45.1 54.1 63.1 72.0 81.0
582.3 579.6 576.9 574.2 571.3
1048.1 1043.3 1038.5 1033.5 1028.4
549.5 546.3 543.1 539.9 536.5
989.7 983.4 977.6 971.7 965.7
77.0 86.0 95.0 104.0 113.0
92.30 117.85 149.19 187.36 233.53
.12549 .16023 .20284 .2547 .3175
1.7849 2.279 2.885 3.623 4.516
49.99 90.0 54198 9910 59.97 108.0 64.98 117.0 69.98 126.0
568.4 565.6 562.8 559.9 556.9
1023.2 1018.1 1013.1 1007.8 1002.5
533.0 529.7 526.4 523.0 519.5
959.6 953.5 947.5 941.3 935.0
122.0 131.0 140.0 149.0 158.9
75 80
85 90
289.0 355.1 433.5 525.8
.3929 .4828 S894 ,7149
5.589 6.867 8.383 10.167
74.99 80.01 85.04 90.07
135.0 144.0 153.1 162.1
554.0 551.1 548.1 544.9
997.3 991.9 986.5 980.9
516.0 512.6 509.1 505.4
928.8 922.6 916.3 909.9
167.0 176.0 185.0 194.0
91 92 93 94
546.1 567.1 588.7 611.0
.7425 .7710 .8004 .8307
10.560 10.966 11.384 11.815
91.08 92.08 93.09 94.10
163.9 165.7 167.5 169.3
544.3 543.7 543.1 542.5
979.8 978.7 977.6 976.5
504.7
Soio
907.2
908.5
906.0 904.7
195.8 197.6 199.4 201.2
95 96 97 98 99
634.0 657.7 682.1 707.3 733.2
.8620 .8942 .9274 .9616 .9970
12.260 12.718 13.190 13.678 14.180
95.11 96:lZ 97.12 98.13 99.14
171.2 173.0 174.8 176.6 178.5
541.9 541.2 546.6 539.9 539.3
975.4 974.2 973.1 971.9 970.8
501.9 501.1 500.4 499.6 498.9
903.4 902.1 900.8 899.4 898.2
203.0 204.8 206.6 208.4 210.2
100 101 102 103 104
760.0 787.5 815.9 845.1 875.1
1.0333 1.0707 1.1093 1.1490 1.1898
14.697 15.229 15.778 16.342 16.923
538.7 538.1
969.7 968.5
102.2 103.2 104.2
180.3 182.1 183.9 185.7 187.6
537:4 96713 536.8 536.2
966.2 %5.1
498.2 497.5 496.8 496.1 495.4
896.9 895.5 894.1 892.9 891.6
212.0 213.8 215.6 217.4 219.2
105 106 107 108 109
906.1 937.9 970.6 1004.3 1038.8
1.2319 1.2752 1.3196 1.3653 1.4123
17.522 18.137 18.769 19.420 20.089
105.2 106.2 107.2 108.2 109.3
189.4 191.2 193.0 194.8 196.7
535.6 534.9 534.2 533.6 532.9
964.0 %2.8 %1.6 960.5 959.3
494.7 493.9 493.1 492.4 491.6
890.3 889.0 887.6 886.3 885.0
221.0 222.8 224.6 226.4 228.2
110 111 112 113 114
1074.5 1111.1 1148.7 1187.4 1227.1
1.4608 1.5106 1.5617 1.6144 1.6684
20.777 21.486 22.214 22.962 23.729
110.3 111.3 112.3 113.3 114.3
198.5 200.3 202.1 203.9 205.8
532.3 531.6 530.9 530.3 529.6
958.1 956.9 955.7 954.5 953.3
490.9 490.2 489.4 488.7 487.9
883.6 882.3 880.9 879.5 878.2
230.6 231.8 233.6 235.4 237.2
115 116 117 118
1267.9 1309.8 1352.8 1397.0 1442.4
1.7238 1.7808 1.8393 1.8993 1.9611
24.518 25.328 26.160 27.015 27.893
115.3 207.6 116.4 209.4 ii7.4 Zii.2 118.4 213.0 119.4 214.9 (continued)
528.9 528.2 527.5 526.9 526.2
952.1 950.8 949.5 948.4 947.2
487.1 486.3 485.5 484.8 484.0
876.8 875.4 873.9 872.6 871.3
239.0 240.8 242.6 244.4 246.2
119
SMITHSOPIAN PHYSICAL TABLES
.O&
100.2
i0i.Z
503.3 502.6
170
O F S A T U R A T E D S T E A M (continued)
T A B L E 166.-PROPERTIES
Metric and common units, 00 t o 220°C
If A is the reciprocal of thc mechanical equivalent of heat, p the pressure, s and u the specific volumes o f the liquid and the saturated vapor, s - u, the change of volume, then the heat equivalent of the external work is Apii = A p ( s - a). Heat equivalent of internal work, p = r - APu. Entropy = d Q / T , where dQ =amount of heat added a t absolute temperature T .
e
e
,lu c .vI l.0 u w
-
l i 50
z4
Ileat equivalent of external work
Zh Wntrrqiy of the liquid
of eyapo-
ration
Specific volume
r -
‘m”/kg
.0!100 ,0183 .0361 .0537 ,0709
2.1804 2.1320 2.0850 2.0396 1.9959
206.3 147.1 106.3 77.9 57.8
59.0 59.9 60.9 61.8 62.7
.0878 .lo44 .1207 ,1368 ,1526
1.9536 1.9126 1.8725 1.8341 1.7963
43.40 32.95 25.25 19.57 15.25
35.4 35.9 36.4 36.9 37.4
63.6 64.6 65.6 66.5 67.4
.1682 .1835 .1986 2 1 35
1.7597 1.7242 1.6899 1.6563 .2282 1.6235
12.02 9.56 7.66 6.19 5.04
75 80 85 90
38.0 38.5 39.0 39.5
68.5 69.3 70.2 71.0
,2427 ,2570 .2711 ,2851
1.5918 1S609 1s307 1.5010
4.130 3.404 2.824 2.358
91 92 93 94
39.6 39.7 39.8 39.9
71.3 71.5 71.6 71.8
,2879 2906 ,2934 ,2961
1.4952 1.4894 1.4836 1.4779
95 96 97 98 99
40.0 40.1 40.2 40 3 40.4
72.0 72.1 72.3 72.5 72.6
,2989 .3016 .3043 .3070 ,3097
100 101 103 104
40.5 40.6 40.6 40.7 40.8
72.8 73.0 73.2 73.3 73.5
105 106 107 108 109
40.9 41.0 41.1 41.2 41.3
110 111 112 113 114 115
kycal Apu
Dtu Apu
0 5 10 15 20
30.1 30.6 31.2 31.7 32.2
54.2 55.2 56.1 57.1 58.0
25 30 35 40 45
32.8 33.3 33.8 34.3 34.8
50 55 60 65 70
t
102
1 I6
117 118 119
B
T
GW,
Densitv
Entropy
S
ft:j,‘lh S
- u w
w ^I-
kg/ma
IlI/fP
1 -
1 -
S
S
2
DL
u’ b -
t
,00485 ,00680 ,00941 .01283 ,01730
.000303 ,000424 ,000587 .000801 .001080
32.0 41 .O 50.0 59.0 68.0
695. 528. 404.7 313.5 244.4
,02304 .03035 ,03960 ,0511 .0656
,001439 ,001894 ,002471 ,003190 ,004092
77.0 86.0 95.0 104.0 113.0
192.6 153.2 122.8 99.2 80.7
,0832 ,1046 .1305 ,1615 ,1984
,00519 ,00653 ,00814 ,01008 .01239
122.0 131.0 140.0 149.0 158.0
66.2 54.5 45.23 37.77
,2421 ,2938 ,3541 ,4241
.01510 ,01835 ,02211 ,02648
167.0 176.0 185.0 194.0
2.275 2.197 2.122 2.050
36.45 35.19 31.00 32.86
,4395 .4552 ,4713 ,4878
,02743 ,02842 ,02941 .03043
195.8 197.6 199.4 201.2
1.4723 1.4666 1.4609 1.4552 1.4496
1.980 1.913 1.849 1.787 1.728
31.75 30.67 29.63 28.64 27.69
,505 ,523 .541 .560 .579
,03149 ,03260 ,03375 ,03492 .036ll
203.0 204.8 206.6 208.4 210.2
.3125 ,3152 .3179 ,3205 ,3232
1.4441 1.4386 1.4330 1.4275 1.4220
1.671 1,617 1.564 1.514 1.465
26.78 25.90 25.06 24.25 23.47
,598 ,618 ,639 ,661 .683
,03734 .03861 .03990 .04124 ,04261
212.0 213.8 215.6 217.4 219.2
73.7 73.8 74.0 74.2 74.3
,3259 .3286 .3312 ,3339 .3365
1.4165 1.4111 1.4057 1.4003 1.3949
1.419 1.374 1.331 1.289 1.248
22.73 22.01 21.31 20.64 19.99
,705 .728 .751 ,776 .801
,04400 .04543 ,04692 .04845 ,0500
221.0 222.8 224.6 226.4 228.2
41.4 41.4 41.5 41.6 41.7
74.5 74.6 74.8 75.0 75.1
.3392 .3118 .3445 .3471 ,3498
1.3895 1.3842 1.3789 1.3736 1.3683
1.209 1.172 1.136 1.101 1.068
19.37 18.77 18.20 17.64 17.10
.827 ,853 ,880 ,908 ,936
,0516 .0533 ,0550 ,0567 .0585
230.0 231.8 233.6 235.4 237.2
41.8 41.9 42.0 42.1 42.2
75.3 75.4 75.6 75.8 75.9
,3524 ,3550 .3576 .3602 ,3628
1.3631 1.3579 1.3527 1.3475 1.3423
16.59 ,965 16.09 ,995 15.61 1.026 15.16 1.057 14.72 1.089
,0603 ,0622 .Oh41 .0659 ,0679
239.0 240.8 242.6 244.4 246.2
SMITHSONIAN PHYSICAL TABLES
1.036 1.005 ,9746 ,9460 ,9183 (continued)
3304. 2356. 1703. 1248. 926.
T A B L E 166.-PROPERTIES
OF S A T U R A T E D S T E A M (continued)
171
Metric and common units, 0" to 220°C
e
u
LI
eu
Heat equivalent
nL mU
Q t i 0
$2
Heat of the liciuid
Pressure 7
Ueat of vworization
kr: cal
ci0 rvl
g2
::
mmHg
kg/cm2
lli/in.z
P
P
4
P
P
t
1586 1636 1688
F 2.024 21089 2.156 2.224 2.294
28.79 29.72 30.66 31.64 32.64
120.4 121.4 122.5 123.5 121.5
216.7 218.5 220.4 222.2 224.1
525.6 524.9 524.2 523.5 522.8
946.0 944.8 943.5 942.3 941.0
483.4 482.6 481.8 481.0 480.2
870.0 868.6 867.1 865.8 864.3
248.0 249.8 251.6 253.4 255.2
125 126 127 128 129
1740 1795 1850 1907 1966
2.366 2.440 2.516 2.593 2.673
33.66 31.71 35.78 36.88 38.01
125.5 126.5 127.5 128.6 129.6
225.9 227.7 220.5 231.4 233.3
522.1 521.4 520.7 520.0 519.3
939.9 938.6 937.3 936.1 934.8
479.4 478.6 477.8 477.0 476.3
863.0 861.6 860.2 858.8 857.4
257.0 258.8 260.6 262.4 264.2
130 131 132 133 I34
2026 2087 2150 2214 2280
2.754 2.837 2.923 3.010 3.100
39.17 40.36 41.57 42.81 44.09
130.6 131.6 132.6 133.7 134.7
235.1 236.9 238.7 240.6 242.4
518.6 517.9 517.3 516.6 515.9
933.6 932.3 931.1 929.8 928.5
475.5 474.7 474.0 473.3 472.5
856.0 854.6 853.2 851.8 850.4
266.0 267.8 269.6 271.4 273.2
135 136 137 138 139
2348 2416 2487 2560 2634
3.192 3.285 3.382 3.480 3.581
45.39 46.73 48.10 49.50 50.93
135.7 136.7 137.7 138.8 139.8
244.2 246.0 247.9 249.7 251.6
515.1 514.4 513.7 513.0 512.3
927.2 925.9 524.6 923.3 922.1
471.6 470.8 470.1 469.3 468.5
848.9 847.5 846.1 844.6 843.3
275.0 276.8 278.6 280.4 282.2
140 141 142 143 144
2710 2787 2866 2948 3030
3.684 3.789 3.897 4.008 4.121
52.39 53.89 55.43 57.00 58.60
140.8 141.8 142.8 143.9 143.9
253.4 255.3 257.1 259.0 260.8
511.5 510.7 510.1 509.3 508.6
920.7 919.3 918.1 916.7 915.4
467.6 466.8 466.1 465.3 464.4
841.8 840.2 838.9 837.4 835.9
284.0 285.8 287.6 289.4 291.2
145 146 147 148 149
3115 3202 3291 3381 3474
4.236 4.354 4.474 4.597 4.723
60.24 61.92 63.64 65.39 67.18
145.9 i46:9 148.0 149.0 150.0
262.7 264.5 266.4 268.2 270.1
507.8 507.1 506.4 505.6 504.9
914.1 912.8 911.5 910.1 908.8
463.6 462.8 462.0 461.2 460.4
834.5 83ii 831.6 830.1 828.7
293.0 294.8 296.6 298.4 300.2
150 151 152 153 154
3569 3665 3764 3865 3968
4.852 4.984 5.118 5.255 5.395
69.01 70.88 72.79 74.74 76.73
151.0 152.1 i53.i 154.1 155.1
271.9 273.8 275.6 277.4 279.2
504.1 503.4 502.6 501.9 501.1
907.4 c)~.i 904.7 903.3 901.9
459.5 458.7 457.9 457.1 456.3
827.2 825.7 824.2 822.7 821.2
302.0 303.8 305.6 307.4 309.2
155 156 157 158 159
4073 4181 4290 4402 4517
5.538 5.684 5.833 5.985 6.141
78.76 80.84 82.96 85.12 87.33
156.2 157.2 158.2 159.3 160.3
281.1 283.0 284.8 286.7 288.5
500.3 499.6 498.8 498.1 497.3
900.5 899.2 897.8 896.5 895.1
455.4 454.6 453.8 453.0 452.1
819.6 818.2 816.7 815.3 813.7
311.0 312.8 314.6 316.4 318.2
160 161 162 163 164
4633 4752 4874 4998 5124
6.300 6.462 6.628 6.796 6.967
89.59 913 9 94.25 96.65 99.09
161.3 162.3 163.4 164.4 165.4
290.4 292.2 294.1 295.9 297.7
496.5 495.7 494.9 494.2 493.4
893.7 892.3 890.9 889.5 888.1
451.2 450.4 449.5 448.7 447.9
812.2 810.7 809.2 807.7 806.2
320.0 321.8 323.6 325.4 327.2
165 166 167 168 169
5253 5384 5518 5655 5794
7.142 7.320 7.502 7.688 7.877
492.6 299.6 491.9 301.5 491.1 303.3 490.3 305.1 489.5 307.0 (continued)
886.7 885.4 883.9 882.5 881.O
447.0 446.3 445.4 444.6 443.7
804.7 803.3 801.7 800.1 798.5
329.0 330.8 332.6 334.4 336.2
* 120 121 122 123 124
1489
is37
101.6 104.1 106.7 109.4 112.0
SMITHSONIAN PHYSICAL TABLES
kg cal
166.5 167.5 168.5 169.5 170.6
Iltu 4
r
Iltu
of
internal works & kgcal Btu
zcr
r
k.
172
O F S A T U R A T E D S T E A M (continued)
T A B L E 166.-PROPERTIES
-
Metric and common units, Oo t o 220°C u
2V nvl L u u U
g&
Heat equivalent of external work
Entropy of evaporation r -
Density
z
25 * uu o
2&
t
APu
AW
Entropy of the liquid 8
120 121 122 123 124
42.2 42.3 42.4 42.5 42.6
76.0 76.2 76.4 76.5 76.7
.3654 .3680 .3705 .3731 .3756
1.3372 1.3321 1.3269 1.3218 1.3167
,8914 .8653 3401 3158 .7924
14.28 13.86 13.46 13.07 12.69
1.122 1.156 1.190 1.226 1.262
.0700 .0721 .0743 .0765 .0788
248.0 249.8 251.6 253.4 255.2
125 126 127 128 129
42.7 42.8 42.9 43.0 43.0
76.8 77.0 77.1 77.3 77.4
.3782 .3807 ,3833 ,3858 .3884
1.3117 1.3067 1.3017 1.2967 1.2917
.7698 .7479 .7267 .7063 .6867
12.33 11.98 11.64 11.32 11.oo
1.299 .337 .376 .416 ,456
.0811 .0835 .0859 .0883 .0909
257.0 258.8 260.6 262.4 264.2
130 131 132 133 134
43.1 43.2 43.3 43.3 43.4
77.6 77.7 77.9 78.0 78.1
.3909 ,3934 .3959 .3985 .4010
1.2868 1.2818 1.2769 1.2720 1.2672
6677 .6493 ,6315 .6142 .5974
10.70 10.40 10.12 9.839 9.569
.498 .540 ,583 ,628 ,674
.0935 .0961 .0988 .lo16 .I045
266.0 267.8 269.6 271.4 273.2
135 136 137 138 139
43.5 43.6 43.6 43.7 43.8
78.3 78.4 78.5 78.7 78.8
.4035 ,4060 .4085 .4110 .4135
1.2623 1.2574 1.2526 1.2479 1.2431
,5812 ,5656 .5506 S361 .5219
9.309 9.060 8.820 8.587 8.360
1.721 1.768 1.816 1.865 1.916
.I074 .1104 .1134 .1165 .I196
275.0 276.8 278.6 280.4 282.2
140 141 142 143 144
43.9 43.9 44.0 44.0 44.2
78.9 79.1 79.2 79.3 79.5
.4160 .4185 .4209 .4234 .4259
1.2383 1.2335 1.2288 1.2241 1.2194
.5081 ~4948 .4819 ,4694 .4574
8.140 7.926 7.719 7.519 7.326
1.968 2.021 2.075 2.130 2.186
.1229 .1262 .I296 .I330 .I365
284.0 285.8 287.6 289.4 291.2
145 146 147 148 149
44.2 44.3 44.4 44.4 44.5
79.6 79.7 79.9 80.0 80.1
.4283 .4307 .4332 .4356 .4380
1.2147 1.2100 1.2054 1.2008 1.1962
.4457 .4343 .4232 .4125 .4022
7.139 6.957 6.780 6.609 6.443
2.244 2.303 2.363 2.424 2.486
.1401 .1437 .1475 .1513 .1552
293.0 294.8 296.6 298.4 300.2
150 151 152 153 154
44.6 44.6 44.7 44.8 44.8
80.2 80.4 80.5 80.6 80.7
,4405 .4429 .4453 .4477 ,4501
1.1916 1.1870 1.1824 1.1778 1.1733
.3921 .3824 ,3729 .3637 .3548
6.282 6.126 5.974 5.826 5.683
2.550 2.615 2.682 2.750 2.818
.1592 .I632 .1674 .I716 .1759
302.0 303.8 305.6 307.4 309.2
155 156 157 158 159
44.9 45.0 45.0 45.1 45.2
80.9 81.0 81.1 81.2 81.4
.4525 .4549 .4573 .45% .4620
1.1688 1.1644 1.1599 1.1554 1.1509
.3463 ,3380 .3298 .3218 .3140
5.546 5.413 5.282 5.154 5.029
2.888 2.959 3.032 3.108 3.185
.1803 .1847 .1893 .1940 .I988
311.0 312.8 314.6 316.4 318.2
160 161 162 163 164
45.3 45.3 45.4 45.5 45.5
81.5 81.6 81.7 81.8 81.9
.4644 .4668 .4692 .4715 .4739
1.1465 1.1421 1.1377 1.1333 1.1289
,3063 2989 .2920 .2855 .2792
4.906 4.789 4.677 4.571 4.469
3.265 3.345 3.425 3.503 3.582
.2038 .2088 .2 138 .2188 .2238
320.0 321.8 323.6 325.4 327.2
165 166 167 168 169
45.6 45.6 45.7 45.7 45.8
82.0 82.1 82.2 82.4 82.5
.4763 .4786 ,4810 .4833 .4857
.2729 1.1245 1.1202 .2666 .2603 1.1159 1.1115 .2540 1.1072 .2480 (continued)
4.368 4.268 4.168 4.070 3.975
3.664 3.751 3.842 3.937 4.032
.2289 ,2343 .2399 .2457 .2516
329.0 330.8 332.6 334.4 336.2
g%
& kg cal Btu
SMITHSONIAN PHYSICAL TABLES
T
Soecific volume ms/kg S
fta/lb S
kg/ma
lb/fta
-1
1 -
S
S
g% t
TABLE 166.-PROPERTIES
OF S A T U R A T E D S T E A M (continued)
173
Metric and common units, 0" t o 220°C
2
2
ZV m v0) L.u 0
$2 r"4
Heat of the liquid
Pressure
&
Heat of vaporization
Heat equivalent of internal works
a
k'g cal
Btu
ec rJu)
0 0 1.0
22 &4
t
P
4
r
P
5937 6081 6229 6379 6533
P 114.8 117.6 120.4 123.4 126.3
4
170 171 172 173 174
P 8.071 8.268 8.469 8.673 8.882
kg cal r
171.6 172.6 173.7 174.7 175.7
308.9 310.7 312.6 314.5 316.3
488.7 487.9 487.1 486.3 485.5
879.6 878.3 876.9 875.4 873.9
442.8 441.9 441.1 440.2 439.4
797.0 795.6 794.1 792.5 790.9
338.0 339.8 341.6 343.4 345.2
175 176 177 178 179
6689 6848 7010 7175 7343
9.094 9.310 9.531 9.755 9.983
129.4 132.4 135.6 138.8 142.0
176.8 177.8 178.8 179.9 180.9
318.2 320.0 321.8 323.7 325.6
484.7 483.9 483.1 482.3 481.4
872.4 871.0 869.5 868.1 866.6
438.5 437.7 436.8 436.0 435.0
789.3 787.8 786.2 784.7 783.1
347.0 348.8 350.6 352.4 354.2
183 181 182 183 184
7514 7688 7866 8046 8230
10.216 10.453 10.695 10.940 11.189
145.3 148.7 152.1 155.6 159.2
181.9 183.0 184.0 185.0 186.1
327.5 329.3 331.2 333.0 334.9
480.6 479.8 479.0 478.2 477.4
865.1 863.6 862.2 860.7 859.2
434.2 433.3 432.5 431.6 430.8
781.5 779.9 778.4 776.9 775.3
356.0 357.8 359.6 361.4 363.2
185 186 187 188 189
8417 8608 8802 8999 9200
11.44 11.70 11.97 12.24 12.51
162.8 166.5 170.2 174.0 177.9
187.1 188.1 189.2 190.2 191.2
336.8 338.6 340.5 342.4 344.2
476.6 475.7 474.8 474.0 473.2
857.7 856.3 854.7 853.2 851.7
429.9 429.0 428.0 427.2 426.3
773.7 772.2 770.5 768.9 767.4
365.0 366.8 368.6 370.4 372.2
190 191 192 193 194
9404 9612 9823 10038 10256
12.79 13.07 13.36 13.65 13.94
181.8 185.9 190.0 194.1 198.3
192.3 193.3 194.4 195.4 196.4
346.1 347.9 349.8 351.7 353.5
472.3 471.5 470.6 469.8 468.9
850.2 848.7 847.1 845.6 844.1
425.4 424.5 423.6 422.8 421.9
765.8 764.2 762.5 761.0 759.4
374.0 375.8 377.6 379.4 381.2
195 196 197 198 199
10480 10700 10930 11170 11410
14.25 14.55 14.87 15.18 15.51
202.6 207.0 211.4 216.0 220.6
197.5 198.5 199.5 200.6 201.6
355.4 357.3 359.2 361.1 362.9
468.1 467.2 466.4 465.6 464.7
842.5 841.0 839.5 838.0 836.4
421.0 420.1 419.2 418.4 417.4
757.7 756.1 754.6 753.4 75 1.3
383.0 384.8 386.6 388.4 390.2
200 20 1 202 203 204
11650 11890 12140 12400 12650
15.84 16.17 16.51 16.85 17.20
225.2 230.0 234.8 239.7 244.7
202.7 203.7 204.7 205.8 206.8
364.8 366.7 368.5 370.4 372.3
463.8 462.9 462.1 461.2 460.3
834.8 833.8 831.8 830.2 828.6
416.5 415.6 41 4.8 413.8 412.9
749.7 748.1 746.6 744.9 743.3
392.0 393.8 395.6 397.4 399.2
205 206 207 208 209
12920 13180 13450 13730 14010
17.56 17.92 18.29 18.66 19.04
249.8 254.9 260.1 265.4 270.8
207.9 208.9 2io.o 211.0 212.0
374.1 376.0 377.9 379.8 381.6
459.4 458.6 457.7 456.8 455.9
827.0 825.4 823.8 822.2 820.6
412.0 411.1 410.2 409.3 408.4
741.6 740.0 738.3 736.7 735.1
401.0 402.8 404.6 406.4 408.2
210 21 1 212 213 214
14290 14580 14870 15170 I5470
19.43 19.82 20.22 20.62 21.03
276.3 281.9 287.6 293.3 299.2
213.1 214.1 215.2 216.2 217.3
383.5 385.4 387.3 389.2 391.1
455.0 454.1 453.2 452.4 451.5
819.1 817.4 815.8 814.3 812.7
407.5 406.6 405.7 404.9 404.0
733.6 731.9 730.2 728.7 727.1
410.0 411.8 413.6 415.4 417.2
215 216 217 218 219
15780 16090 16410 16730 17060
21.45 21.88 22.31 22.74 23.19
305.1 311.1 317.3 323.5 329.8
218.3 219.3 220.4 221.4 222.5
392.9 394.8 396.7 398.5 400.4
450.6 449.6 448.7 447.8 446.9
811.0 809.3 807.7 806.1 804.5
403.1 402.1 401.2 400.3 399.4
725.4 723.7 722.1 720.5 718.9
419.0 420.8 422.6 424.4 426.2
220
I7390
23.64
336.2
223.5
402.3
446.0
802.9
398.5
71 7.3
428.0
mmHg
kgcal
Btu
(contitwed) SMITHSONIAN PHYSICAL TABLES
Btu
P
t
174
T A B L E 166.-PROPERTIES
O F S A T U R A T E D S T E A M (concluded)
Metric and common units, 00 to 220°C
ta v ?u 3u
$& g%
Heat equivalent of external work
Entropy of the liquid
) I
kg cal
Btu'
Entropy of evaporation r -
T
u :k m m u u c
Density Specific volume __h_7
m3/kg
fP/lh
r_JL_
kg/ms 1 -
lb/fts -1
g&
($
t
A P ~
APu
B
S
S
5
S
170 171 172 173 174
45.9 46.0 46.0 46.1 46.1
82.6 82.7 82.8 82.9 83.0
.4880 .4903 .4926 .4949 .4972
1.1029 1.0987 1.0944 1.0901 1.0859
.2423 .2368 ,2314 .2262 ,2212
3.883 3.794 3.709 3.626 3.545
4.127 4.223 4.322 4.421 4.521
,2575 ,2636 ,2696 .2758 .2821
338.0 339.8 341.6 343.4 345.2
175 176 177 178 179
46.2 46.2 46.3 46.3 46.4
83.1 83.2 83.3 83.4 83.5
,4995 SO18 SO41 ,5064 SO87
1.0817 1.0775 1.0733 1.0691 1.0649
.2164 .2117 ,2072 ,2027 .1983
3.467 3.391 3.318 3.247 3.177
4.621 4.724 4.826 4.933 5.04
.2884 .2949 ,3014 ,3080 .3148
347.0 348.8 350.6 352.4 354.2
180 181 182 183 184
46.4 46.5 46.5 46.6 46.6
83.6 83.7 83.8 83.8 83.9
.5110 ,5133 ,5156 ,5178 S201
1.0608 1.0567 1.0525 1.0484 1.0443
,1941 .1899 ,1857 .1817 .1778
3.109 3.041 2.974 2.91 1 2.849
5.15 5.27 5.38 5.50 5.62
.3217 .3288 ,3362 ,3435 .3510
356.0 357.8 359.6 361.4 363.2
185 186 187 188 189
46.7 46.7 46.8 46.8 46.9
84.0 84.1 84.2 84.3 84.3
S224 S246 S269 ,5291 S314
1.0403 1.0362 1.0321 1.0280 1.0240
,1740
,1666 ,1632 .1598
2.787 2.727 2.669 2.614 2.560
5.75 5.88 6.00 6.13 6.26
.3588 ,3667 ,3746 .3826 .3906
365.0 366.8 368.6 370.4 372.2
190 191 192 193 194
46.9 47.0 47.0 47.0 47.0
84.4 84.5 84.6 84.6 84.7
,5336 S358 S381 S403 ,5426
1.0200 1.0160 1.0120 1.0080 1.0040
,1565 ,1533 .1501 ,1470 ,1440
2.507 2.456 2.405 2.355 2.306
6.39 6.52 6.66 6.80 6.94
.3989 .4072 ,4158 ,4246 .4336
374.0 375.8 377.6 379.4 381.2
195 196 197 198 199
47.1 47.1 47.2 47.2 47.3
84.8 84.9 84.9 85.0 85.1
S448 S470 ,5492 5514 ,5536
1.0000 .9961 ,9922 ,9882 ,9843
,1411 .1382 .1354 ,1327 ,1300
2.259 2.214 2.169 2.126 2.083
7.09 7.23 7.38 7.53 7.69
,4426 .4516 ,4610 .4704 ,4801
383.0 384.8 386.6 388.4 390.2
200 201 202 203 204
47.3 47.3 47.3 47.4 47.4
85.1 85.2 85.2 85.3 85.3
S558 ,5580 S602 S624 ,5646
.9804 .9765 ,9727 ,9688 .9650
.1274 .1249 ,1225 .1201 .1177
2.041 2.001 1.%2 1.923 1.885
7.84 8.00 8.16 8.33 8.50
,4900 .4998
.510 ,520
.531
392.0 393.8 395.6 397.4 399.2
205 206 207 208 209
47.4 47.5 47.5 47.5 47.5
85.4 85.4 85.5 85.5 85.5
,5668 S690 .5?12 .5733 ,5755
.9611 .9572 ,9534 ,9496 .9458
.1153 ,1130 ,1108 .1086 ,1065
1.847 1.810 1.774 1.739 1.705
8.67 8.85 9.03 9.21 9.39
,541 .552 ,564 ,575 337
401.0 402.8 404.6 406.4 408.2
210 211 212 213 214
47.5 47.5 47.5 47.5 47.5
85.5 85.5 85.6 85.6 85.6
,5777 ,5799 3320 ,5842 3363
,9420 ,9382 ,9344 .9307 .9269
.lo44 .I 024 ,1004 4984 ,0965
1.673 1.640 1.608 1.577 1.546
9.58 9.77 9.96 10.16 10.36
.598 610 ,622 ,634 .647
410.0 41 1.8 413.6 415.4 417.2
215 216 217 218 219
47.5 47.5 47.5 47.5 47.5
85.6 85.6 85.6 85.6 85.6
,5885 S906 ,5927 ,5948 ,5969
.9232 ,9195 .9157 ,9120 .9084
,0947 ,0928 .0910 ,0893 ,0876
1.516 1.486 1.458 1.430 1.403
10.56 10.78 10.99 11.20 11.41
,660 .673 ,686 ,699 .713
419.0 420.8 422.6 424.4 426.2
220
47.5
85.6
S991
.9047
,0860
1.376
11.62
.727
428.0
t
SMITHSONIAN PHYSICAL TABLES
.1702
T A B L E 167.-PROPERTIES
175
OF SATURATED STEAM
Common units, 400" to 7OO0F
Abridged from Steam tables and Mollier's diagram, by Keenan. Printed by permission of the publisher, The American Society of Mechanical Engineers. For detailed discussion see Mechanical Engineering, February, 1929, v, specific vol., fts/lb ; h, total heat, enthalpy, Btu/lb; s, entropy, Btu Ib-' OF-'. The strict definition of total heat (internal energy 144/J) is adhered to; zeros of both h and s are arbitrarily placed on the sat. liq. line at 32°F. No internal energy values are tabulated but may be easily found by subtracting 144 @/Ifrom the total heat, The energy unit, the Btu, is 778.57 ft-lb ( I ) is 1/180 of the change in total heat along the saturated liquid line between 32" and 212°F.
+
Specific volume Ttmp. F
t
Abs. #. Ib/in.'
400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 610 620 630 640 650 660 670 680 690 700 705 706.1
247.25 261.67 276.72 292.44 308.82 325.91 343.71 362.27 381.59 401.70 422.61 444.35 466.94 490.40 514.76 540.04 566.26 593.47 621.67 650.87 681.09 712.40 744.74 778.16 812.72 848.43 885.31 923.39 %2.73 1003.4 1045.4 1088.7 1133.4 1179.7 1227.6 1276.7 1327.2 1379.2 1432.7 1487.8 1544.6 1663.2 1788.8 1921.9 2062.8 2211.4 2368.6 2534.2 2709.7 2896.8 3096.4 3202.0 3226.0
Evap.
Sat. vapor
vt
viI
VI
.ON65 .01873 .01880 .01888 ,01896 .01904 .01911 .01919 .01928 ,01936 .0195 .0195 .0196 .0197 .0198 ,0199 .0200 .0201 .0202 .0204 .0205 .0206 .0207 .0209 .0210 .0211 .0213 .0214 .0216 .0218 .0219 .0221 .0223 .0225 .0227 .0229 .0231 .0234 .0236 .0239 .0241 .0247 .0254 .0261 .0269 .0278 .0290 .0304 .0322 .0347 .0394 .0462 .0522
1.8421 1.7428 1.6493 1.5615 1.4792 1.4022 1.3295 1.2610 1.1965 1.1356 1.0782 1.0241 .9730 .9249 3793 3361 .7951 .7563 .7195 .6847 .6516 ,6201 ,5903 ,5618 ,5347 SO90 ,4845 .4614 .4394 .4184 .3982 .3789 .3605 .3429 .3261 .3101 .2949 .2804 .2664 .2530 .2401 .2159 .1933 ,1721 .1522 .I331 .1148 ,0966 ,0781 .0589 .0353 .0135 0
1.8608 1.7615 1.6681 1.5804 1.4982 1.4212 1.3486 1.2802 1.2158 1.1550 1.0977 1.0436 .9927 .9446 3991 .8560 3151 ,7764 .7398 .7050 .6721 .6408 .6110 326 .5557 ,5301
SMITHSONIAN PHYSICAL TABLES
Entropy
Total heat
Sat. liq.
SO58
.4828 .4610 .4401 .4201 .4010 .3828 .3654 .3488 .3330 .3180 .3037 .2900 .2769 .2642 .2406 ,2186 .1982 .1791 .1610 .I437 .1269 .1102 .0936 .0747 ,0597 .0522
Sat. liq. hf
375.0 380.4 385.9 391.3 396.8 402.4 407.9 413.5 419.1 424.7 430 436 442 447 453 459 465 471 477 483 489 495 502 508 514 521 527 533 540 547 553 560 567 574 580 587 594 602 609 616 623 638 653 670 687 705 725 748 773 803 846 888 925
Evap. h,,
826 821 816 811 806 801 796 790 785 779 774 768 762 756 750 744 738 731 725 718 711 704 697 690 682 675 667 659 651 643 634 626 618 609 600 591 581 572 562 552 542 521 499 475 448 417 384 344 299 241 157 73 0
Sat. vnp.
Sat. liq.
Evap.
ho
st
Sf9
1200 1201 1202 1202 1203 1203 1203 1204 1204 1204 1204 1204 1204 1204 1204 1203 1203 1202 1202 1201 1200 1199 1198 1197 1196 1195 1193 1192 1191 1189 1188 1186 1184 1182 1180 1178 1176 1173 1171 1168 1166 1160 1153 1144 1135 1122 1109 1092 1071 1044 1003 962 925
.5668 ,5730 .5792 ,5854 ,5916 .s978 .-.. .6039 .6101 .6162 .6224 .6284 .6346 .6407 .6468 .6530 .6592 6654 .6716 .6779 .6842 .6904 .6968 .7031 .7094 .7158 .7222 .7286 .7350 .7414 .7478 ,7543 .7607 .7672 .7737 .7802 .7867 .7932 .7998 SO64 3131 .8198 .8332 3470 .8612 .8763 .8924 .9097 .9287 .9499 .9755 1.0117 1.0472 1.0785
,9602 .9491 .9381 .9271 ,9161 .go52
.8942
3833 2724 ,8616 ,8507 A398 .8290 .8180 3071 .7962 .7852 .7742 ,7632 .7521 .7410 .7299 .7187 .7075 .6963 .6851 .6738 .6625 .6512 ,6399 .6285 .6170 .6056 S940 3325 S709 S592 .5474 .5356 S237 S118 .4875 .4623 .4358 ,4073 .3764 .3426 .3049 .2619 .2098 .1354 .0630 0
Sat. vapor So
1.5270 1.5221 1.5173 1.5125 1.5077 1.5029 i.4982 1.4934 1.4887 1.4839 1.4792 1.4744 1.4696 1.4649 1.4601 1.4554 1.4506 1.4458 1.4410 1.4362 1.4314 1.4266 1.4218 1.4170 1.4121 1.4073 1.4024 1.3975 1.3926 1.3877 1.3828 1.3778 1.3728 1.3677 1.3626 1.3576 1.3524 1.3472 1.3420 1.3368 1.3316 1.3208 1.3093 1.2970 1.2836 1.2688 1.2523 1.2336 1.2119 1.1852 1.1471 1.1102 1.0785
T A B L E 168.-PROPERTIES
176
O F SUPERHEATED STEAM *
Common units. 212" to 3000°F
.
Abs . P Ib/in.z q a t. t . F)
14.696 (Zl2.00) 50 (281.01) 100 (327.83) 150 (358.43) 200 (381.82)
300 (417.33) 400 (444.58) 500
600 (486.17) 700 (503.04) 800 (518.18) 900 (531.95) 1000 (544.58) 1500 596.08) 2000 (635.61) 2500 (667.98) 3000 (695.25)
Sat . water
v
.02
h s
.3119
180.0
.017 250.0 .4111 .018 298.3 .4742 .018 330.4 S140 .018 355. .543 .0189 394. .5883 .0194 424. .622 .0198 450. .649
Sat . steam
:on
F
too F
26.82 27.16 30.52 34.65 1150.2 1154. 1192. 1239. 1.7564 1.762 1.815 1.873 8.78 10.06 V 8.514 1184. 1234. h 1173.5 S 1.672 1.734 1.6580 d .... 4.93 4.426 I1 . . . . 1227. 1186.6 . . . . 1.651 S 1.6022 V . . . . 3.22 3.010 h .... 1219. 1194. S . . . . 1.599 1.569 . . . . 2.358 V 2.285 h . . . . 1210. 1198. s . . . . 1.559 1.545 V 1.541 h 1202. S ........ 1.510 V ........ 1.160 It ........ 1204. S ........ 1.484 V = sp. vol . .926 h = total heat 1204. S = entropy 1.463 500 F
.0202
.768 .792 472. 1202. 1215. .673 1.445 1.458 .0206 .653 V
493. .694 .0209 512. .714 .0213 530. .731 .0217 546. .747 .0239 618. 215 .0265 679. .870 .0301 743. .925 .0367 823. .992
$00
F
1200. 1.429 .565 1197. 1.414 .497 1193. 1.401 .442 1190. 1.388 274 1168. 1.336 .188 1139. i.290 .130 1096. 1.238 .084 1026. 1.168
h
S
V
h S V
h S
V
h S
.... .... ....
:so
F
$00
F
$50
F
500
F
38.75 1286. 1.925 11.30 1283. 1.787 5.58 1278. 1.708 3.68 1273. 1.659 2.722 1268. 1.623 1.765 1257. 1.569 1.283 1244. 1.528 .991 1230. 1.491 coo F
V
h s
........
........ ........ ........
........ ........
........ ........
........
.532
.791
280. .508 .675 1270. 1.486 .584 1260. 1.466 .511 249. .446 .279 174. .342 V
h 7
... ...
1.561 349 1313. 1.539 .729 1305. 1.519 .636 1297. 1.500 .560 1289. 1.483 .330 1240. 1.403 .204 1169. 1.317 V
h S
V
It S
1.587 .904 1345. 1.567 .779 1338. 1.548 .682 1332. 1.530 .6C4 1325. 1.514 .368 1287. 1.444 247 1241. 1.389 .168 1178. 1.310 .0983 1066. 1.203
!OO
F
F
42.83 46.91 50.97 1334. 1382 1432. 1.972 2.016 2.057 12.53 13.74 14.93 1331. 1381. 1431. 1.836 I .880 1.922 6.21 6.83 7.44 1328. 1378. 1429. 1.757 1.802 1.844 4.1 1 4.53 4.94 1324. 1376. 1427. 1.710 1.756 1.799 3.06 3.38 3.69 1321. 1373. 1426. 1.676 1.723 1.766 2.002 2.224 2.438 1313. 1368. 1422. 1.626 1.675 1.719 1.474 1.647 1.812 1304. 1362. 1418. 1.588 1.640 1.685 1.156 1.301 1.436 1297. 1357. 1414. 1.558 1.611 1.659 !SO :no 8.5 0 !OO
.
F
F
.873 .943 1.008 1.069 . . . . 1.186 1255. 289. 1323. 1351. . . . . 1409.
1.499 .725 1242. 1.472 .613 1229. 1.446 .523 1214. 1.421 .450 1197. 1.395
too
TOO F
$00
F
.... ....
.... .... .... ....
....
.... .... ....
.645 1358. 1.538 .40 1 1327. 1.478 .278 1291. 1.423 202 1250. 1.371 .1476 1199. 1.316
1.636 1.006 1405. 1.617 .872 1400. 1.599 .768 1396. 1.583 .684 1391. 1.569 .432 1365. 1.509 .305 1337. 1.460 .227 1306. 1.416 .1 742 1271. 1.374
F V
h S
....
....
....
.916 1430.
1.623 207 1427. 1.607 .720 1423. 1.593 .459 1402. 1.537 .327 1380. 1.493 .248 1357. 1.456 .1947 1331. 1.420
F
1.295 1466. 1.679 1.103 1463. 1.661 .958 1460. 1.645 345 1457. 1.630 .755 1454. 1.617 .484 1438. 1.564 .349 1421. 1.524 .267 1404. 1.491 212 1384. 1.460
55.03 1483. 2.096 16.14 1482. 1.961 8.04 1481. 1.884 5.34 1479. 1.838 4.00 1478. 1.806 2.646 1475. 1.760 1.970 1472. 1.727 1.566 1469. 1.701 !SO
F
1200
F
59.09 1535. 2.133 17.34 1534. 1.998 8.64 1533. 1.921 5.75 1532. 1.876 4.30 1531. 1.8438 2.849 1529. 1.798 2.125 1527. 1.766 1.690 1525. 1.740 ipo
F
. . . . 1.400 .... 1523.
. . . . 1.720 .... 1.193 .... 1521.
. . . . 1.702
.998 1489. 1.666 .882 1487. 1.652 .788 1484. 1.639 .508 1472. 1.589 .367 1459. 1.552 .282 1446. 1.521 .227 1432. 1.494
1.037 1519. 1.686 .917 1517. 1.672 .820 1515. 1.660 .530 1505. 1.612 .384 1495. 1.577 .298 1484. 1.548 .240 1473. 1.523
Abridved f w m Steam tables and hlollier's diagram. hy Keenan. 1930. Printed by permission of publisher. The American Society of Mechanical Engineers.
SMITHSONIAN PHYSICAL TABLES
T A B L E 169.-PROPERTIES
O F M E R C U R Y VAPOR
177
402" to 1000" F Heat of liquid ahove Iltu
Heat of vaporization Btu
Total heat lltu
1.o 1.5 2.0 4.0 6.0 8.0
402 444 458 485 505 558 591 617
13.81 15.36 15.89 16.90 17.65 19.62 20.87 21.81
128.15 127.24 126.92 126.33 125.89 124.72 123.99 123.43
141.96 142.60 142.81 143.23 143.54 144.34 144.86 145.24
.0209 .0227 .0233 .0244 .0251 .0271 .0283 .0292
.1487 .1408 .1383 .1337 .1305 .1226 ,1179 ,1147
10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
637 676 706 730 751 769 785 799
22.58 24.04 25.15 26.05 26.81 27.49 28.08 28.62
122.98 122.12 121.46 120.93 120.48 120.08 119.73 119.42
145.56 146.16 146.61 146.98 147.29 147.57 147.81 148.04
,0299 ,0312 .0322 .0330 ,0336 .0342 ,0346 .0351
50 60 70 80 90 100 110 120 130 140
812 836 857 875 892 907 921 934 947 958
29.11 29.99 30.75 31.44 32.06 32.63 33.16 33.66 34.12 34.55
119.13 118.61 118.15 117.75 117.38 117.05 116.74 116.44 116.17 115.92
148.24 148.60 148.90 149.19 149.44 149.68 149.90 150.10 150.29 150.47
150 180
969 1000
34.96 36.09
115.67 115.01
150.63 151.10
Pressure (abs.) Ib/in.P
.4 .8
Temperature 'F
32
"F
SMITHSONIAN PHYSICAL TABLES
Entropy Entropy of liquid of Total ahove vnpori32 'F zation entropy
Specific volume ft3/lb
Weight Ib/ft'
.1696 .1635 .1616 ,1581 .1556 .1497 .1462 .1439
114.50 59.72 48.45 33.14 25.32 13.26 9.096 6.9630
.008733 .016745 .02064 .03017 .03948 .07540 .lo993 .14361
.1121 .lo75 ,1042 .lo16 ,0995 .0977 ,0962 .0949
.1420 .1387 ,1364 .1346 .1331 .1319 ,1308 .1300
5.6610 3.8923 2.983 2.429 2.053 1.7815 1.5762 1.4147
.0355 .0361 .0367 ,0372 .0377 .0381 .0385 .0389 .0392 .0395
.0936 ,0915 ,0898 .0882 ,0870 .0856 .0845 ,0835 .0826 .0818
,1291 .1276 .1265 ,1254 ,1247 .1237 .1230 .1224 ,1218 ,1213
1.284 1.086 ,9436 3349 ,7497 .6811 ,6242 S767 S360 SO12
.0398 ,0406
.0809 .0788
.1207 .1194
.17664 .25691 .3352 .4117 ,4871 .5613 .6344 .7069 .7788 .9204 1.0597 1.1977 1.3338 1.4682 1.6020 1.7340 1.8656 1.9952
.4706 2.125 ,3990 2.506
TABLE 170.-PROPERTIES
178
- 100” to
O F LIQUID A M M O N I A
+ 250°F Latent heat I3tu/lb
Latent heat of pressure variation Btu/ll) Ib/in.*
L
1
Saturation
Temp.
“I’
Pressure (abs.? Ib/in.
t
P
-100 - 90 - 80 - 70 - 60 - 50 - 40 - 30 - 20 - 10
+ 100 +
:: 40 50 60 70 80 90
+loo 125 150 175 200 250
Volume ft*/lb
Density I b/ f t3
-1
Specific heat Bt?/lb F
V
V
C
7.67 10.41 13.90 18.30 23.74
.02197 .02216 .02236 .02256 .02278 .02299 ,02322 .02345 ,02369 .02393
45.52 45.12 44.72 44.32 43.91 43.49 43.08 42.65 42.22 41.78
(1.040) (1.043) (1.046) (1.050) 1.054 1.058 1.062 1.066 1.070 1.075
30.42 38.51 48.21 59.74 73.32 89.19 107.6 128.8 153.0 180.6
.02419 .02446 .02474 .02503 ,02533 .02564 .02597 .02632 .02668 .02707
41.34 40.89 40.43 39.96 39.49 39.00 38.50 38.00 37.48 36.95
1.080 1.085 1.091 1.097 1.104 1.112 1.120 1.129 1.138 1.147
,02747 ,02860 .02995 .03160 .03375 .0422
36.40 34.96 33.39 31.65 29.63 23.7
1.24 1.86 2.74 3.94
5.55
211.9 307.8 433.2 593.5 794.7 1347
SMITHSONIAN PHYSICAL TABLES
Heat content Utu/lb
k
(-63.0) (-52.6) (-42.2) (-31.7j -21.18 -10.61
x 10”
(2) -I(””) ap
I
v
ap t
(633) (628)
$3
+10.66 +21.36 32.11
610.8 604.3 597.6 590.7 583.6 576.4
--.0016 --.0017 -.0018 -.0019 --.0020 --.0021
,0026 ,0026 .0025 .0025 .0024 ,0023
4.4 4.6 4.8 5.1 5.4 5.7
42.92 53.79 64.71 75.71 86.77 9793 109.18 120.54 131.99 143.54
568.9 561.1 553.1 544.8 536.2 527.3 518.1 508.6 498.7 488.5
-.0022 -.0024 --.0025 --.0027 --.0029 --.0031 --.0033 -.0035 -.0038 -.0041
.0022 ,0021 .0020 .0019 .oo18 .0017 .0015 ,0013 ,0011 .0009
6.0 6.4 6.8 7.3 7.8 8.4 9.1 10.0 10.9 12.0
155.21 1.156 (1.189) (185) (1.23 ) (216) (1.29 ) (248) (1.38 ) ( 283) (1.90 ) (365)
477.8 (449) (416) (377) (332) (192)
-.0045
.0006
13.3
.oo
179
OF COMBUSTION
TABLES 171-183.--HEATS
T A B L E 1 7 1 . 4 O M B U S T I O N C O N S T A N T S O F S O M E SUBSTANCES 62
Substance
Heat of combustion
Reciprocal of density m*/100kg
Formula
Spec. gravity air = 1.000
....
Carbon .................. C Hydrogen ............... Hz Oxygen ................. 0 2 Carbon monoxide ........ co
1172. 73.7 84.4
P Btu/ft*
kg cnl/mJ
275.0
7840.* 2445.
321.8
2860.
913.1 1641. 2385. 3105.
8120. 14,600 21,200 27,600
1513.2 2186. 2869.
13,450 19,400 25,500
3601. 4284. 4980.
32,000 38,100 44,300
.9 107 4.4208 1.1052 1S890 S961
1448. 5654. 768.0 1450.5 365.1
1.1898
5%.
12,870 50,300 6830. 12,900 3245. 2210.* 5300.
6:959x 10.' 1.1053 .%72
Paraffin series : C.H,.,, 147.0 ,5543 Methane ................. CH, 77.6 1.04882 Ethane .................. C2H" 1.5617 52.2 Propane ................. C.Ha 39.5 2.06654 Isobutane ................ CIHw
.... ....
....
Olefin series: C.HZ. Ethylene Propylene Isobutene Benzene Toluene Xylene
................ ............... ................
-9740 1.4504 1.9336
8.7.6
56.3 42.2
Aromatic series : C.H,.-, 30.3 2.6920 25.6 3.1760 22.2 3.6618
................. CoHo ................. CiHR .................. GHio
Miscellaneous gases 89.5 Acetylene ............... CZH, 18.4 Naphthalene ............. CwH, 73.7 Methyl alcohol ........... C H I O H 51.3 Ethyl alcohol ............ C,H,OH 136.5 Ammonia ................ NHa .... Sulfur .................. S 68.5 Hydrogen sulfide ......... HZS
....
....
.
62
Shnidman, Louis (ed.), Gaseous fuels, p. 118, Amer. Gas Assoc., 1948. Expressed in cal/g.
T A B L E 172.-FLAME
T E M P E R A T U R E S AS M E A S U R E D B Y V A R I O U S METHODS *
Gas
Amy1 acetate
City gas City gas
............................
............................ .................................
+ air ...........................
Bunsen ............................ .1420 Meker (center flame) ...............1700 Meker Bunse Blast "
+ 1070 0) + air ............. ++20% 0) + air ............. 25% 0) +,air ............ + 40 H z ) + air .............. + 94 Hz)+ air .............. .............................. + 20 G H z ) + air ............. (15 CH, + 85 GHZ) + air .............
10% (90 CHI 16% (80 CH, 10.8% (75 CH, 22% (60 CH, 32% (26 CH,
Pittsburgh natural gas with a i r . . .......... Butane-air ............................... Oxy-hydrogen ........................... Oxy-acetylene ........................... See also Table 175.
SMITHSONIAN PHYSICAL TABLES
Temp "C
Burner
"
"
" "
(' " " " " " "
............................ ,1680 ...............1760
.............................. .......................... ..........................
.......................... .............................. .......................... .............................. .............................. .............................. .............................. ......................... ......................... ..............................
..............................
.1985
.2005 .2015 ,2045 .1970 .2275 1950 2000 .2800 .3500
180 TABLE 173.--HEATS
O F COMBUSTION
OF
SOME CARBON
COMPOUNDS
Given in kg calls at constant pressure per gram-molecular weight in vacuo . When reterred to constant volume the values should be 0.58 kg calls smaller (at about 18°C) for each condensed gaseous molecule . Combustion products are CO,. liquid H,O. etc. Benzoic acid was adopted at Lyons as a primary standard. its heat of combustion. 6324 g cal15per gram in air. 6319 in vacuo . This is tacitly assumed as heat of isothermal combustion at 20.C . In absolute joules. 26.466 and 26.445 respectively The following ratios may be taken as standard : Naphthalene/benzoic acid = 1.5201 (air) ; benzoic acid/sucrose = 1.6028 (air) ; naphthalene/sucrose = 2.4364 (air) .
.
Molecular weight 5s 86.11 100.13 114.14 142.18 226.27 282.34 70 84.10 26.02 40 47 78.05 128.06 50.5 85.0 ll'B.5
kg calls per I mol 283.4 990.6 1143.6 1304.2 1610.2 2559.1 3183.1 803.4 952.6 312.0 469 496.8 782.8 1231.4 168.7 106.8 89.2 70.3
(I) .............. Carbon-tetrachloride ( v ) .............. Ca:mn di-su!fide (I) .
154.0
37.3
Ally1 alcohol Formaldehyde (p.) Acetone (b) . .I. Camphor (s) ........ Sucrose: cane (s) milk (s) anhd ..... malt ( 5 )
58.05 30.02 58 152.13 342.18
44.5 394.5 246.6 442.4 134.1 435.8 1411 1349.6
''
1350.8
Compound Isobutane ( g ) n-Hexane n-Heptane n-Octane ........... Decane Hexadecane (s) ..... Eicosane ( 5 ) ........ Amylene ........... Hexylene Acetylene (9) ....... Allylene (9) Trimethylene (9) Benzene ............ Naphthalene (s) ..... MethyLchloride ( g ) Methylene-chloride (v) Chlorqform (1)
....... ........... ..........
.............
........... ........ ....
... (v) ....... Carbon-tetrachloride .......
...... ........ c,?
...
.....
.... .
Karasch.
yp.0
MolecFor . ular Compound mula weight Starch ............. Glvcoaen ........... CeiIuIGse Formic a;jd CH?02 46.02 60.03 ......... C2H102 Acetic 74.05 C?HsOz Propionic asjd n.butyric ....... C.HaO 88.06 n-valeric 102.08 CaHiodi Palmitic 256.26 (5) CiaH3eOn Stearic (s) C I L H ~ O Z 284.29 90.05 Lactic (s) .... C-HROI Aniline . . ........... CnH7O 60.05 60.05 Krea (s) ........... C H I N ~ O 162.13 Nicotine . ........... C,.H,,N. 52.0 Cyanogen (9) C$.. . Trinitrotolyne (s) C T H K N ~ O227.06 ~ 60.06 w row1 ( I ...... CnHEO 74.08 n-puty~ 116.13 11-heptyl 130.14 Octyl 242.27 Cetyl " (s) . . 156.16 Menthol (s) 94.05 Phenol (s) ......... 150.11 Thymol ............ 46 Dimethyl e t I y (8) 60 Methylethyl (v) 74.08 Diethyl (V)
........... ......... .......
..
......... .... ....
::
....... ... ...... ..... ..... .......
.
1351 .... Nat . Bur . Standards Journ . Res., vol . 2. p . 359.
T A B L E 174.-HEATS
..
gmol 4178.8 4186.8 4180.8 62.8 208.2 367.2 524.3 681.6 2391 2700 326.0 151.6 151.6 1427.7 260.0 826 482.0 639.4 1104.9 1262.0 2504.5 1508.8 732.2 1353.4 347.6 503.4 660.3
"
1929.
O F COMBUSTION OF MISCELLANEOUS COMPOUNDS Calories
Substance
Asphalt ......... .. . Butter ......................... Carbon : amorphous ............
9530 9200 8080 8100 7860 graphite .............. 7900 590 Copper (to CuO) ................ Dynamite. 7570 . . . . . . . . . . 1290 Egg. white of . . . . . . . . . . . . . 5700 Egg. yolk of . . . . . . . . . . . . . . . . . . . 8100 Fats. animal . . . . . . . . . . . . . . . . . . . 9500 Hemoglobin . . . . . . . . . . . . . 5900 Hydrogen . . . . . . . . . . . . . . . 33900 Iron (to Fe203). . . . . . . . . . . . . . . . 1582 Magnesium (to MgO) ........... 6080 Oils : cotton-seed ............... 9500 lard ..................... 9300 olive ..................... 9400
SMITHSONIAN PHYSICAL TABLES
.
kg calls per
Calories Substance
Oils : petroleum : crude ...................... light ....................... heavy ...................... rape ......................... sperm ........................ Paraffin (to CO.. Ha0 I) ......... Paraffin (to CO.. Hz0 g ) ......... Pitch .......................... Sulfur. rhombic ................. Sulfur. monoclinic .............. Tallow ......................... Woods: beech. 13% H'O ........ birch. 1Wo H, 0 ........ oak. 13% H, 0 .......... pine. 12% H, 0 .........
11500 10000 10200 9500 10000 11140 10340 8400 2200 2240 9500 4170 4210 3990 4420
T A B L E 175.-HEAT
VALUES AND ANALYSES O F VARIOUS FUELS
181
P a r t 1.-Coals
c
c
Coal
Low grade .... Lignite High grade ... Low grade .... Sub:bituHigh grade ... minous Low grade .... Bituminous [High grade ... Sem.i-bitu- Low grade .... High grade ... minous Semi-anthr ........... AnthraLow grade .... cite High grade ... Oven Low grade .... coke High grade ...
38.81 33.38 22.71 15.54 11.44 3.42 2.7 3.26 2.07 2.76 3.33 1.92 1.14
25.48 27.44 34.78 33.03 33.93 34.36 14.5 14.57 9.81 2.48 3.27 1.58 .04
27.29 8.42 .97 7.09 37.45 .so 29.62 9.56 .94 6.77 41.31 .67 36.60 5.91 .29 6.14 52.54 1.03 46.06 5.37 .58 5.89 60.08 1.05 43.92 10.71 4.94 5.39 60.06 1.02 58.83 3.39 .58 5.25 77.98 1.29 .99 4.58 80.65 1.82 75.5 7.3 78.20 3.97 .54 4.76 84.62 1.02 78.82 9.30 1.74 3.62 80.28 1.47 82.67 12.69 .54 2.23 79.22 .68 84.28 9.12 .60 3.08 81.35 .79 _ _ 88.87 8.99 1.18 - 94.66 3.57 .69 -
Part 2.-Peats Vol.
Ash
Peats : Franklin County, N. Y . . . 67.10 28.99 3.91 Sawyer County, W i s . . .. 56.54 27.92 15.54
-
-
-
-
.37 .29 .37
Part 3.-Liquid Fuel
.
-
0
\ M
I
m
45.57 40.75 34.09 27.03 17.88 11.51 4.66 5.09 3.59 4.64 5.06 -
V
b
3526 3994 5115 5865 6088 7852 7845 8166 7612 6987 7417 7946 8006
6347 7189 9207 10557 10958 14134 14121 14699 13702 12577 13351 14300 14410
and Woods (air dried)
hydro- Fixed carbon carbon
Woods : Oak, dry ................ Birch, dry .............. Pine, dry ...............
c:
Btu Sul- HydroNitro- Oxy- Calories per fur gen Carbon gen gen perg pound
.15
.29 -
-
-
57.17 51.00
1.48 31.36 5726 10307 1.92 26.54 4867 8761
6.02 50.16 6.06 48.88 6.20 50.31
.09 43.36 4620 .10 44.67 4771 .04 43.08 5085
8316 8588 9153
fuels *
Gravity API t
...................... 68 Motor gasoline ......................... 58 Kerosene .............................. 42 Domestic fuel oil ........................ 32 Diesel fuel oil .......................... 28 Medium industrial fuel oil. ............... 18 Heavy industrial fuel oil ................ 11 Petroleum ether ........................ .68$
Aviation gasoline
Alcohol, fuel or denatured with 7-Wo water and denaturing material. ...............
5.93 4.71
.82$
Btu per pound
Btu per gallon
20,420
120,700
20,120
125,800
19,810
134,700
19,450 19,350
141,200 143,100
18,930
149,400
18,590
153,900
22,000
12,2209
11,600
6,4501
Prepared by E. W. Dean, Standard Oil Co. of New Jersey. t A P I (American Petroleum Industry) unit = sp.g.60',600 '.'41 - 131.5. $ Spec. gravity 15°C. 0 Calories per gram.
(continued)
SMITHSONIAN PHYSICAL TABLES
T A B L E 175.-HEAT
VALUES AND ANALYSES (concluded) P a r t 4.-Gases
Substance
Natural gas
.......................
OF V A R I O U S F U E L S
**
Spec. gravity Air = 1.000
Heat of combustion !lame temperature C (no excess air) kg cal/ma
.60- 1.29
8040-17. 400
Propane (commercial) natural gas ... 1.55
20.950
Propane (commercial) refinery gas .. 1:77
20. 600
Butane (commercial) natural gas .... 2.04
26. 350
Butane (commercial) refinery gas .... 2.00
26. I00
1965 2015 .
2005 .
........................ Oil gas ............................ Coal gas ...........................
1.16
4590.
37
4535.
2000
47
4320.
1980
.......................
86
1182.
1655
...........................
57
2330.
Butane-air
Producer gas Blue gas
.
.
** For reference. see footnote 52. p . 179.
Part 5.-Gross
calorific values of crude petroleum
Density Area
Density Area
Btu/lb
......... 898
CaVg
19.370
10.760
California
............863
18.800
10.490
Ohio
Japan
20. 670
11.480
Oklahoma
. . . . . . .886
19.420
10.790
Poland
20.010
11.120
Pennsylvania
19.780
10.990
18.920
10.510
Texas
. . . . .828 . . . ........943
18.950
10.520
19.420
10.790
Argentina
. . . . . . .989
18.540
10.300
18.180
10.100
Patagonia
........948
18.970
10.540
18.360
10.200
20"/4"C
Borneo India
...........925 .......... 299 Rumania .........936 Canada ..........855 Mexico ..........966 Trinidad .........941
20"/4"C Btu/lb
CaVg
. . . . . . . .960
18.590
10.330
........... 338
19.710
10.950
Science of Petroleum. vol . 2 .
P a r t 6.-Sugars Sugar
kg cal/mol
8-d-Levulose
................
671.70
a-d-Galactose
................
666.76
a-d-Glucose
8-Maltose monohydrate a-Lactose monohydrate
......
a-Monopalmitin
............. 2788.30 Ascorbic acid ................ 560.60 a-D-Glucose pentaacetate ..... 1718.62
1360.50 1349.00
8-D-Glucose pentaacetate
.
by G. Stegeman. University of Pittsburgh
SMITHSONIAN PHYSICAL TABLES
.......... 666.73 ............. 2778.78
@-Monopalmitin
....... 1354.66
....................
1 Prepared
kg cal/mol
................. 669.58
a-d-Glucose hydrate
.................. 1345.47
B-Lactose
Sucrose
Sugar
................... 670.30
I-Sorbose
7
.....
1722.63
T A B L E 176.-NONFLAMMABLE
LIQUIDS
183
FOR CRYOSTATS
Liquid .......... CClr CHCla 4" CzH5Br 32 39* No.40 Freezing point .... "C -23 -63 -81 -119 -139 -145 -150+ Compositions : * No. 4 ; CCI,, 49.4% ; CHCL, 50.6%. No. 32; CHCls, 19.7%; CzHaBr, 44.9%; C2HzCL, 13.8% ; CZHCIS, 21.6%. No. 39; CHCL, 14.5%; CzH5Br, 33.4%; CZHZCIZ, 10.4%; CzHC13, 16.4% ; CH,CL, 25.3%. No. 40 ; CHCls, 17.9% ; CzH,Cl, 9.3% ; CzHaBr,40.7% ; CzH2CIz,12.5% ; CzHCla, 19.6%.
C2H5Br .... 1.81 No. 32 . . . . . . . . No. 34 ..... 1.97 No. 40 . . . . . . . .
Viscositiesin centipoises:
2.25 3.03 2.57 2.88
2.89 4.57 3.69 3.89
3.86 7.4 5.6 5.9
.........
5.6 13.7 10 10.2
29.3 22.3 22.5
81 85 71
242 1480 170 631
Because of volatility and oxidation of some, these liquids should be kept in well-stoppered bottles when not in use.
T A B L E 177.-DATA
ON EXPLOSIVES Calculated temperatire
Val. gas Explosive
per g in cma =V
Calories per g=Q
280 741 923 871 888 817 877
738 1652 931 1242 1031 1349 810
Gunpowder ............................... Nitrodvcerine ............................ -u Nitrocellulose, 13% Nz. .................... Cordite, Mk.I. (NG, 57; NC, 38; Vaseline, 5). Cordite, MD (NG, 30; NC, 65 ; Vaseline, 5). . Ballistite (NG. 50: NC. 50: Stabilizer., 5). ... , Picric acid (Lyddite). ...................... d
.
,
I
I
,
Coeffi- Coefficient cient GP = QV - 1 t 1000
207 1224 859 1082 915 1102 710
1 6 4.3 5.2 4.4 5.3 3.4
Q/C
C, sp. ht. gases
- .24 2240" C 6880 3876 5175 4225 5621 3375
Shattering power of explosive = vol. gas per g x cals/g x V, x density where V, is the velocity of detonation. Trinitrotoluene: V, = 7000 m/sec. Shattering effect = .87 picric acid. trinitrotoluene, T N T ) : V, = 4500 m/sec. Amatol (ammonium nitrate Ammonal (ammonium nitrate, T N T , Al) : 1578 cal/g; 682 cma gas; V, = 4000 m/sec. Sabulite (ammonium nitrate, 78, T N T 8, Ca silicide 14) : about same as ammonal.
+
T A B L E 178.-TIME Temperature Time
"C
Black powder ......... Smokeless powder A . . .. Smokeless powder B . . .. Celluloid pyroxylin .... Collodion cotton ....... Celluloid* ............ Safety matches ........ Parlor matches ........ Cotton wool ...........
OF H E A T I N G FOR EXPLOSIVE DECOMPOSITION 170
180
190
200
220
sec
sec
sec
sec
sec
n
n 195 130 60 165 100 340 n
n 130 67 60 240
n 45 90 21 56 50 150
n
600 190 170 870 160 n n -
-
n -
590
-
23 25 9 18 30 60
480 -
Ignition temperature "C t "C t
-
440 (300 300 590
450
900
-
-
-
n failure to explode in twenty minutes. *'The decomposition of nitrocellulose in cellulojd com,mences at about 100: C ; above that the heat of decomposition may raise the mass to the ignition point if loss of heat is prevented. Above 170°, decom asition occurs with explosive violence as with nitrocellulose. Kate of combustion is 5, to 10 times t Measured by contact wlth porcelain that o f poplar, pine, or paper of the same size and conditions. $ Measured by contact with molten lead. Average. tube of given temperature, Average.
SMITHSONIAN PHYSICAL TABLES
184 TABLE 179.-CHEMICAL
AND PHYSICAL PROPERTIES O F F I V E D I F F E R E N T CLASSES O F EXPLOSIVES
kg/cm*
g
m/sec
m/sec
In.
In.
E
B
88.4 79.7 14.5
25
(A) Forty percent nitroglycerin dynamite. 1.22 1221.4
(B) FFF black blasting
..........
8235
227*
4688
.358
24.63
12
1.25
789.4
4817
374t 458*
469.4z 925.
54.32
- 154.4 126.9 4.1 1I
(C) Permissible explosive ; nitroglycerin class ............ 1.10
760.5
5912
301*
3008
.471
27.79
explosive ; ammonium .97 nitrate class
4 103.9 65.1 15.4
992.8
7300
279*
34386 .483
25.68
1
89.8 27.5 75.5
(E) Permissible explosive;hydratedclass. 1.54
610.6
6597
434*
2479
17.49
3
86.1 Over 56.0 1000 33.0
powder
(D) Permissible
......
.338
25
1000
800
Chemical analyses
(A) Moisture ...................... .91 Nitroglycerin ................. 39.68 Sodium nitrate ................ 42.46 Wood pulp .................... 13.58 Calcium carbonate ............. 3.37
............. .23 ............. 83.10 ............. .46 ............. 2.61 .............
(B) Moisture ........ Charcoal ...................... Sulfur ........................
17.74 10.89
(C) Moisture ..................... 7.89 Nitroglycerin .................. 24.02 Sodium nitrate ................ 36.25 Wood pulp and crude fiber from 9.20 grains ...................... Starch ........................ 21.31 Calcium carbonate ............. .97 Magnesium '' ............. .36
SMITHSOMIAN PHYSICAL TABLES
1.89 2.54 2.64 6.53
.....................
2.34
(E) Moisture
" O n e pound of clay tamping used. t Two pounds of 1%in. diam. I1 For 300 grams.
8 Cartridges
Poisonous matter ......... Manganese peroxide ...... Sand .........................
Nitroglycerin .................. 30.85 Ammonium nitrate ............ 9.94 Sand ......................... 1.75 Coal .......................... 11.98 Clay ......................... 7.64 Ammonium sulfate ............ 8.96 Zinc sulfate (7HO). ........... 6.89 Potassium sulfate .............. 19.65 clay tamping used.
$ R a t e of burning.
T A B L E 180.-THERMOCHEMISTRY.
185
C H E M I C A L ENERGY DATA
The total heat generated in a chemical reaction is independent of the steps from initial to final state . Heats of formation may therefore be calculated from steps chemically impracticable . Chemical symbols now represent the chemical energy in a gram-molecule or mol(e); treat reaction equations like algebraic equations : CO + 0 = CO. 68 k g cal ; subtract C 2 0 = C o t 97 kg ca!. then C 0 = CO 29 kg cal . W e may substitute the negative values of the formation heats in an energy equation and solve MgCL 2 Na = 2 NaCl Mg x kg cal ; - 151 = - 196 + x ; x = 45 kg cat . Heats of formation of organic compounds can be found from the heats of combustion since burned to H, 0 and COz. When changes are at constant volume. energy of external work is negligible ; also generally for solid or liquid changes in volume . When a gas forms a solid or liquid at constant pressure. or vice versa. it must be allowed for . For N mols of gas formed (disappearing) at T K O the energy of the substance is decreased (increased) by 0.002.N.T~ kg cal Hz 0 = HzO 67.5 kg cal at 18°C at constant volume; 1(2 HZ 0, 2 HZO = 135.0 0.002 x 3 x 291 = 136.7) = 68.4 kg cal . The heat of solution is the heat. + or liberated by the solution of 1 mol of substance in so much water that the addition of more water will produce no additional heat effects . Aq signifies this amount of water; HzO. one mot ; N H + Aq = N H 4 0 H . A q 8 kg cal .
+
+
+
+
+
+
+
+
Part 1.-Heats
-.
+
+
+
.
+
of formation from elements in kilogram-calories
At ordinary temperatures
Compound
Heat of formation
ALOs ..... 380. AgZO . I . .. 6.5 BaO ...... 126. BaOz ..... 142. Bi203 ..... 138. COam .... 29.0 COdi ..... 26.1 COzam ... 97.0 COzgr .... 94.8 COzdi .... 94.3 CaO ...... 152. CeOz ..... 225. C1zOg .... -16.5 CoOam ... 50.5 CoOcr ... 57.5 CorOi ..... 193.4 C r 0 3 ..... 140. CSZO ..... 91.3 Cu.0 ..... 42.3 CuO ...... 37.2 FeO ...... 65.7 Fez03 ..... 196.5 Fe304 . . . . . 270.8 HzOggl . . 68.4 HzOzggl .. 46.8 HgzO . . . . . 22.2 H g O ..... 21.4 KzO ...... 91. La203 ..... 447. Lion ...... 141.6 MgO ..... 143.6 MnO ..... 90.8 MnOz ... . 123. Mn304 . . . . 325. MoOz ..... 143. MOO3 ..... 174. NzOggg .. -18.2 N O ggg . . . -21.6 8.1 NO, ....... NazOI ..... 2.6
Compound
Heat of formation
Compound
CuCl ..... 34.1 FeCL ..... 82.1 FeCL . . . . . 96.0 HCIggl ... 22. HgCl ..... 31.3 HgClz .... 53.3 di = diamond: c r = crystal;
Compound
Heat of formation
Li2S0, .......... 334.2 KCI ....... 105.7 (NH4)zSOi ...... 283. LiCl ....... 93.8 Na2SOr ......... 328.3 MgClz ...... 151.0 MgSOi .......... 301.6 MnClz ...... 112.3 PbSO. .......... 216.2 NaCl ...... 97.8 NdCL ...... 250. TlzSOi .......... 221.0 NHiCl ..... 76.3 ZnS04 .......... 229.6 NiCL ...... 74.5 CaC03 .......... 270. PbClz ...... 83.4 c u c o 3 .......... 143. PdClz ...... 40.5 FeC03 .......... 179. PtCL ...... 60.4 KzCOI .......... 280. SnCL ...... 80.8 MgC03 ......... 267. NazC0 . . . . . . . . . . 272. SnCL ...... 128. SrCL ...... 185. ZnCOl .......... 194. ThClr ...... 300. AgN03 ......... 28.7 TIC1 ....... 48.6 Ca (NO3). ....... 209. RbCl ....... 105.9 C~(N03)z6HzO . 92.9 ZnCL ...... 97.3 NHOI gggl ...... 41.6 H B r g l g .... 8.6 KNO. ........... 119.2 NHIBr ..... 66. IdNO, .......... 112. H I gsg .... .- 6.2 NH.NO. ........ 88.3 H F g g g .... 38. NaN03 ......... 111.0 AR,S ....... 3.3 TINO. .......... 58.2 CS, sgg ... .-2 6.0 CH4 sgg ......... 20. CaS ....... 90.8 CzH. Sgg ........ 25. (NH,), S ... 66.2 CzHz S ~ B ........ -53. C u S ....... 18.3 H C N di gsgg .... -30.5 CuS ....... 11.6 N H x g ~ g . . . . . . . . 12.0 HzSgsg .... 2.73 C a ( 0 H L ........ 230. ILS ....... 103.4 NH. O H ........ 88.8 MgS ....... 79.4 NaOH .......... 102. NazS ....... 89.3 Na*H,O.Aq-H . 44.* PbS ....... 19.3 +(2 Na.O.HzO) . 68.* f(Na,O.HpO-Aq). 30.* CaSO. . . . . . 262. CuSOi ..... 111.5 K O H ........... 103.5 HzSO4Sggg . 193. K-HzO' Aq-H ... 45.* -SOx*HzO* . 21.3 $(2 K*O*HzO) . . 69.* HgzSO4 .... 175. f(KzO.HzO.Aq) . . 35.5* HgSOi ..... 165. K2SO. . . . . . 344.3 g = gas; gr = graphite; I = liquid; rh = rhombic (sulfur);
am = amorphous: s = solid; y = yellow (gold) . Heats of formation not from elements but as indicated
.
(contintled) SMITHSONIAN PHYSICAL TABLES
Heat of formation
186 T A B L E 180.-TH
E R MOC H EMISTRY. C H EMI CA L E N E R G Y D A T A (concluded) of formation of ions i n kilogram-calories
P a rt 2.-Heats
+
and - signs indicate signs of ions and the number of these signs the valency. For the ionization of each gram-molecule of an element divide the numbers in the table by the valency, e. g., 9.00 g AI = 9.00 g AI' 40.3 kg cal. When a solution is of such dilution that further dilution does not increase its conductivity, then the heats of formation of substances in such solutions may be found as follows : FeCI2Aq= 22.2 2 X 39.1 = 100.4 kg cal. CuSOaAq = - 15.8 214.0 = 198.2 kg cal.
+
+
+
+++ +
Ag A1 Co+ Ca+ Cd+
Cu+
+ +
+ +
+
+ 16.0 +108.8 50.2 4.0 +625.0
++ + + + SSrn + + +++ $11;: TI + + 1.7 Zn+ + + 35.0
- 9.3 0.0 - 19.8 61.8 62.8
+ +
+
+ 32.7 + + 37.5 + 57.3
Mn Pb+ Rb+
+
F He++ + + Hg K+ Li
NH4+ NH40 Na+
+121.0 +170.0 +133.? 18.4 - 16.0 - 15.87 22.2
+
++
cu Fe+
- 25.3
+
ASOi--BrBr0,CO,-C1CIOCIOaclo4~~~~~
HP0,- HP04-HS N0z NOa -
I-
T A B L E 18l.-lGNl1TlON
+ +
10,-
+ +
szoa--
+215.0 28.2 11.2 +160.8 39.1 26.0 23.4 38.7 +163.0 +143.9 +229.6 +304.8 1.2 + 27.0 48.9 13.1
+ 55.8 + 46.5 + 54.4
1 0 4 -
OHPo,---
+298.0 +1386 +2782 +260.8 +151.0 +214.0 - 35.6 +119.6 +144.8 - 34.8 77.0 98.4 - 12.6
SzOe-S,Oe--
+ -
SOa- -
SO,--
Se-Se0,-SeO,-Te- TeOs- TeO, - S--
+ +
+
+ +
T E M P E R A T U R E S O F GASEOUS M I X T U R E S
Ignition temperature taken as temperature necessary for hot body immersed in gas to cause ignition; slow combination may take place at lower temperatures. Gases were mixed with air. Practically same temperatures as with 0,. Benzene and air.. ............. 1062" C Coal gas and air.. ............. 878 CO and air .................... 931
T A B L E 182.-HEATS
Ether and air.. ................ 1033" C Ethylene and air ............... 1000 Hydrogen and a i r . . ............ 747
O F N E U T R A L I Z A T I O N IN K I L O G R A M C A L O R I E S
The heat generated by the neutralization of an acid by a base is equal, for each gram-molecule of water formed, to 13.7 kg cal plus the heat produced by the amount of un-ionized salt formed, plus the sum of the heats produced in the completion of the ionizations of the acid and the base. Base
KOH.aq ......... NaOH.aq ........ N H 4 0 H . a q ....... f Ca(OH)z.aq . . . . . 1 Zn(OHI2.aq ..... 3 Cu(OH),.aq .....
HC1.aq
HNOa,aq
H2S04.aq
HCN%q
CH3COOH-aq
HnCOraq
13.7 13.7 12.4 14.0 9.9 7.5
13.8 13.7 12.5 13.9 9.9 7.5
15.7 15.7 14.5 15.6 11.7 9.2
2.9 2.9 1.3 3.2 8.1
13.3 13.3 12.0 13.4 8.9 6.2
10.1 10.2 8. 9.5 5.5
T A B L E 183.-HEATS
-
-
O F D I L U T I O N O F H,SO,
I n kilogram-calories by the dilution of 1 gram-molecule of sulfuric acid by m gram molecules of water. m ....... 1 kg cal ... 6.38
2
9.42
SMITHSONIAN PHYSICAL TABLES
3 11.14
5 13.11
19 16.26
49 16.68
99 16.86
199 17.06
399 1599 17.86 17.31
187 TABLES 184-209.-PHYSICAL A N D M E C H A N I C A L P R O P E R T I E S OF M A T E R I A L S Introduction and definitions.-The mechanical properties of most materials vary between wide limits ; the following figures are given as being representative rather than what may be expected from an individual sample. Figures denoting such properties are commonly given either as specification or experimental values. Unless otherwise shown, the values below are experimental. Credit for the information included on metals is due to the National Bureau of Standards 5 5 and the publications of the Aluminum Co. of America," the American Brass Co., and the Chase Brass & Copper C O . ~ ~ Most of the data shown in these tables are as determined at ordinary room temperature, averaging 20°C (68°F). The properties of most metals and alloys vary considerably from the values shown when the tests are conducted at higher or lower temperatures. The following definitions govern the more commonly confused terms shown in the tables. In all cases the stress referred to in the definitions is equal to the total load at that stage of the test divided by the original cross-sectional area of the specimen (or the corresponding stress in the extreme fiber as computed from the flexure formula for transverse tests). Brinell hardness numeral (abbreviated B. h. n.).-Ratio of pressure on a sphere used to indent the material to be tested to the area of the spherical indention produced. The standard sphere used is a 10-mm-diameter hardened steel ball. The pressures used are 3000 kg for steel and 500 kg for softer metals, and the time of application of pressure is 30 seconds. Values shown in the tables are based on spherical areas computed in the main from measurements of the diameters of the spherical indentations, by the following formula : B. h. n. = P t d D =P +TD (D/2- VD2/4-d2/4). P=pressure in kg, t-depth of indentation, D=diameter of ball, and d = diameter of indentation-all lengths being expressed in mm. Erinell hardness values have a direct relation to tensile strength, and hardness determinations may be used to define tensile strengths by employing the proper conversion factor for the material under consideration. Elastic limit.-Stress which produces a permanent elongation (or shortening) of 0.001 percent of the gage length, as shown by an instrument capable of this degree of precision (determined from set readings with extensometer or compressometer). In transverse tests the extreme fiber stress at an appreciable permanent deflection. Erichsen value.-Index of forming quality of sheet metal. The test is conducted by supporting the sheet on a circular ring and deforming it at the center of the ring by a spherical pointed tool. The depth of impression (or cup) in mm required to obtain fracture is the Erichsen value for the metal. Erichsen standard values for trade qualities of soft metal sheets are furnished by the manufacturer of the machine corresponding to various sheet thicknesses. Alloy steels are commonly used in the heat-treated condition, as strength increases are not commensurate with increases in production costs for annealed alloy steels. Corresponding strength values are accordingly shown for annealed alloy steels and for such steels after having been given certain recommended heat treatments of the Society of Automotive Engineers. The heat Everhart, Lindlief, Kanegis, Weissler, and Siegel, Nat. Bur. Standards Circ. C-447, 19i3. Selected from Nat. Bur. Standards Circ. C-447, Mechanical properties of metals and alloys, and from Alcoa's circular, Aluminum and its alloys. I' Chase Brass & Copper Co.'s circular, Copper and commercially important copper alloys, 1948; American Brass Co., Copper and copper alloys, 1945. SMITHSONIAN PHYSICAL TABLES
188 treatments followed in obtaining the properties shown are outlined on the pages immediately following the tables on steel. It will be noted that considerable latitude is allowed in the indicated drawing temperatures and corresponding wide variations in physical properties may be obtained with each heat treatment. The properties vary also with the size of the specimens heat treated. The drawing temperature is shown with the letter denoting the heat treatment, wherever the information is available. Modulus of elasticity (Young’s modulus).-Ratio of stress within the proportional limit to the corresponding strain-as determined with an extensometer. NOTE.--AII moduli shown are obtained from tensile tests of materials, unless otherwise stated. Modulus of rupture.-Maximum stress in the extreme fiber of a beam tested to rupture, as computed by the empirical application of the flexure formula to stresses above the transverse proportional limit. Proportional limit (abbreviated P-limit).-Stress at which the deformation (or deflection) ceases to he proportional to the load (determined with extensometer for tension, compressonieter for conipression, and deflectometer for transverse tests). Shore scleroscope hardness.-Height of rebound of diamond-pointed hammer falling hy its oum weight on the object. The hardness is measured on an empirical scale on which the average hardness of martensitic high carbon steel equals 100. On very soft metals a “magnifier” hammer is used in place of the commonly used “uni\wsal” liainmer and values may be converted to the corresponding “universal” value by iiiultiplying the reading by 4/7. The scleroscope hardness, when accurately tlt.terminetl, is an index of the tensile elastic limit of the metal tested. Ultimate strengt h i n tension o r compression.-Maximum stress developed in the Inaterial during test. Yield point.-Stress at which markrtl incrcase in tleforination (or deflection) of specimen occurs without increase i l l loarl ( tleterniined usually by drop of beam or with dividers for tension, conipression. or transverse tests). T A B L E 184.-lNDUSTRIAL
W O V E N - W I R E SCREENS *
Industrial wire cloth may be specified in any malleable metal, the physical characteristics of which will permit of its being commercially drawn into wirc and woven into cloth. This industrial wire screen is manufactured with openings from about 15 inches to a very fine wire cloth with openings of .0017 inch, using for larger screens rods 2 inches in diameter and for the smaller-opening cloth, wire ,0014 inch ie diameter. Industrial wire cloth specification, market grade Mesh per lineal inch
1 x 1.. .... 2 x 2 . . .... 3 x 3.. .... 4 X 4.. . . . .
Wire diameter inch
,080
,063 .054 .047 5 x 5 . . .... .041 6 X 6 . . . . . . .035 8 8.. . . . . .028 10 x 10.. ... .025 12 X 12.. ... ,023 14 X 14.. . . . ,020 16 x 16.. ... ,018 18 x 18.. . . . ,017 20 x 20.. . . . .016 24 x 24.. ... .014
x
0,penIng
inch
Percent open area
.920 .437 279 203 .159 .132 .097 .075 ,060 .051 ,0445 .0386 .0340 .0277
84.6 76.4 70.1 65.9 63.2 62.7 60.2 56.3 51.8 51.0 50.7 48.3 46.2 44.2
* Data furnished hy the W. S. Tyler Co., Cleveland. SMITHSONIAN PHYSICAL TABLES
Mesh per lineal inch
Wire diameter inch
Opening inch
Percent open area
,013 ,011 ,010 .009 .0075
.0203 ,0176 .0150 .0110 ,0092 ,0070
37.1 37.9 36.0 30.3 30.5 31.4 30.3 30.7 37.4 34.7 33.6 36.0 32.2 30.0
30 x 30.. ... 35 x 35.. ... 40 X 40.. . . . 50 X 50.. ... 60 x 60.. . . . 80 X 80.. . . . 100 i<‘ 100.. .. 120 x 120.. .. 150 x 150.. .. 180 X 180.. .. 200 x 200.. .. 250 x 250.. .. 270 x 270.. .. 325 X 325.. ..
,0055 ,0045 ,0037 .0026 ,0023 ,0021 .0016 .0016 .0314
.0055
.0046 .0041 ,0033 .0029 .0024 .0021 .0017
TABLE 185.-SOME
Element
Rela. tive hard. ness
...
Aluminum ................. 2.9 Antimony .................. 3 Argon ........ ...... . . . Arsenic .................... 3.5 Barium .................... ... Beryllium .................. 3 Bismuth ................... 2.5 Boron ...................... 9.5 Bromine ................... . . . Cadmium .................. 2.0 Calcium .................... ... Carbon (graphite) .......... 10" Cerium .................... 2.5 Cesium .................... .2 Chlorine ................... ... Chromium .................. 9 Cobalt ..................... 5 Copper ..................... 3.0 Fluorine ................... ... Gallium .................... 1.5 Germanium ................ 6.2 Gold .................. 2.5 Hafnium ................... ... Helium ..................... ...
..................... Iridium .................... Iron ....................... Indium
...
1.2
...
6.5 4
Density at 20°C dcm'
Melting pzint
C
PHYSICAL PROPERTIES O F T H E ELEMENTS Specific heat at r.4. ctl g-1
C-'
... ... 1197* 2.70 660.1 2.1 226 6.62 630.5 f . 1 .049 1.6626" -189.37k.5 ,125 5.73 8178 .082 .068 710 f 2 0 3.5 .425 1283 k40 1.82 .029 271.3 2 . 1 9.80 2300 2300 .309 2.3 ,070 -7.202.2 3.12 .055 321.032.1 8.65 .157 850 220 1.54 3700 2100 .165 2.22 .05 864 2 5 0 6.9 .052 28.64&2 1.9 ,,, -101.9922 .226 7.14 1903 2 5 0 .12 8.9 1492 5 2 0 ,099 8.96 1083.0 2 . 1 .092 ... -219.61flO ... 5.91 29.80k.02 .079 938 2 1 0 .073 5.36 19.3 1063.0 2.0 .03i 11.4 2220* ... IW -271.4 2 . 2 1 1.25 ._-. n8.17qd -259.19~.1 3.415 . ~. - 7.31 156.61k.1 .057 4.93 113.6 ki .052 2443 2 3 .032 22.4 7.87 1535 +3 .lo8
Coeff. of Latent linear heat thermal expansion f 2 o n o c at r.-t. cal/g X 10%
......
93 38.3 6.7
22.9 8.5-10.8tt
... ... 4.7 ......
ii.5 ...
16.2 13.2
11.4 13.3 2
29.8
... 25 ... .6-4.311 ... 3.8 9 7 ' 23.0 ... 75.6 58.4 50.6 10.1 19.2
6.2 12.3 16.5
i6.i
14.2
15.0
...
is'
...... ......
isi
...
65
t Value depends on the crystal orientation in polycrystalline material. Computed. d X 10-9. e X 10-4. Diamond.
(coittinrted)
33 93 6.5 11.7
Thermal conductivity at r.4. watts crn-1
Electrical resistivity microhm-cm
Modulus of elasticity kg/mmP
Tensile strength kg/mm2
2.65(2OoC) 39.O(O0C)
7250 7900
6.3 (annealed) 1.05 (wire)
......
2.18 9!. 1./0"
... ...
1.64 .084
...
... .91 ... 24 ... ...
.720 ' .69 .69 3.94
...
35(2OoC)
...
$ From 20" to 60°C.
...... ...... ...
30660 5.88(0"C) 3200 106.8(0°C) 1.8~10'2(00C) ... 6.83(0°C) 3.43(OoC) 1375(0°C) 78(20"C) 18.83(0"C)
...
14.1(2OoC) 5.60 (0" C) 1.67(2OoC)
...
...
5500 2100 500
7.2 5.7 (extruded)
21066 11000
24.4 (cast) 22.5 (annealed)
... 9.05 (rolled) ... ... ... ...... ...
...... ......
......
7300
11.5 (rod cast)
......
......
......
8.37(OoC) ... 1 . 3 10*5(2o~c) ~ 5.3(2OoC) SZi60 9.71 (20°C) 20000
8 At 36 atm.
12.0 (chill cast)
...
... ... ...
...
...... ... 53.4(OoC) ... 89X1Oa(O0C) 2.96 2.19(OoC) ......
13.9' 17.0" 24 43.5 .59 .79
......
I/ From ?On to
.30 (cast)
... ...
20.5
1OO'C.
7 A t 30 atm.
zl \o
c \o
TABLE 1 8 5 . 4 O M E PHYSICAL PROPERTIES O F T H E ELEMENTS (continued) S ecific
Element
Krypton .................... Lanthanum ................. Lead ....................... Lithium .................... Magnesium ................. Manganese ................. Mercury ................... Molybdenum ...............
Relative hardness
... ...
1.5 .6 2 5.0 1.5 6
Neodymium ................... Neon .......................... Nickel ..................... 5 Niobium ...................... Nitrogen ...................... Osmium ................... 7.0 Oxygen ....................... Palladium .................. 4.8 Phosphorus (yellow) ........... Platinum ................... 4.3 Polonium ..................... Potassium .................. .5 Praseodymium ............. ... Protactinium .................. Radium .................... ... Radon ......................... Rhenium ...................... Rhodium ................... 6 Rubidium .................. .3 Ruthenium ................. 6.5 b
At -62'C.
C
Density at 20'C g/cmS
Melting p?int
3.488d 6.15 11.34 .53 1.74 7.44 13.55 10.2
-157.3 f . 5 920 k 5 327.3 2 . 1 180.55'-e 5 650 2 2 1244 f20 -38.87k.02 2610 250
7.05 .8387' 8.9 8.57 1.1649' 22.48 1.3318' 12.0 1.82 21.45
1024 2 4 0 -248.59~3 1453 z1 2480 f 5 0 -209.972.3 2700 2200 -2 18.79k .3 1552 -~ k1 44.2 k . 1 1769 2 1 254* 63.2 '-el 935 *so 300* 700 - 71 3150* 1960 2 3 38.8 f 1 2400 &lo0
...
.86 6.63
...
5.0 4.40 20 12.44 1.53 12.2
C
%eat at r.-t. cal g-1
*c-1
...
.045 .030
.n
249 .lo7 .033 .065
Coeff. of Latent linear heat thermal expansion of fusion "C at r.-t. x 100 cal/g
...
6.3 159 70.0 64.8 2.7
...
28.7 56 25.2 23
.045
... ... 4.911 ......
.iiz
73.8 ii.ill
... ...
.247 .031 .218 .059 .177 .032
...
.i77 .458
... ... ...
.035
,060
.080 .061
...
7.1
Thermal conductivity at r.4. watts cm-1
.89 a
...
.35 .71 1.55
...
.w
1.46
...
4.57 .90
...
...
2.51
3.3 34.2 ii.8 5.0 125 27.1 8.9
2.47 .70
6.2
...
1'4.5
6.1
83.
...... ...... ...... ...... ...... ... 6.1
...
From 20" to SO'C.
(continued)
8.1' 90 9.1
...
...
.69
... .99 ... ... ...
... ...
.88
... ...
Electrical resistivity microhmcm
...
59(18"C) 20.65(20°C) 8.S5(O0C) 4.33( 18'C)
...
94.1(OoC) 5.17(OoC)
0
Modulus of elasticity kg/mma
... ... 1.33 1800 ... ...
4600 16000
35660
1O.8(2O0C) 1oi7(11oc) 9.81(OoC)
...
6.15(OoC) 88(18"C)
... ... . ..
4.3(0°C) 12.5(20"C) 10( 18"C)
9.15 (sand cast) 39.0 (annealed)
iZ0 (annealed
...
79( 18"C)
... 6.84(20°C) ... ... 9.5(2OoC) ...
...
Tensi 1e strength kg/mm2
21b%
wire)
...
32.3
... ... ... ... ... ... ...
12Iii 1so00
14.0 (annealed)
...
16 (annealed)
... ... ... ... ... ... ... ... .. ... ...
30000
... ... ... ...
T A B L E 1 8 5 . P O M E P H Y S I C A L PROPERTIES OF T H E E L E M E N T S (concluded)
si; F
-I
$
Element
..................... ..................... Selenium ................... Silicon .....................
Relative hardness
Samarium
; Scandium Silver
.....................
2.0 7.0 2.7
Sodium .................... .4 Strontium .................. 1.8 Sulfur (rhombic) ........... 2.0 Tantalum ................... 7 Technetium ................... Tellurium .................. 2.3 Terbium ...................... Thallium ................... 1.2 Thorium ...................... Tin ........................ 1.8 Titanium ................... 4.0 Tungsten .................. 7 Uranium ...................... Vanadium .................. ... Xenon ........................ Ytterbium ..................... Yttrium ....................... Zinc ....................... 2.5 Zirconium .................. 4.5
Densit at 2008 dcm'
7.7 2.5 4.81 2.4 10.49 .97 2.6 2.07 16.6
... 6.24 ...
11.85 11.5 7.30 4.54 19.3 18.7 5.68 5.49Sd
...
5.51 7.14 6.4
Melting point
"C
>lo50 1400 217.4 k5 1410 220 960.8 2 . 0 97.822.2 770 2 1 0 119 2 . 2 2980 2100 2700* 450 2 1 0 1450 2 5 303.6 2 3 1695 2150 231.912.1 1675 2100 3380 2 2 0 1132 2 1 1890 2 5 0 -112.5 2 1 824 1490 &200 419.50k.l 1852 2700
Specific heat at r.4. cal g-1
oc-l
... ...
.084 .176 .056 .295
...
.175 .036
...
.047
...
.031 .028 .054 .142
.034 .028 .115
... ... ...
.09 .066
coeff. of
Latent linear heat thermal of Sxpansion fusion C at r.-t. cal/g x 1(P
... ... ... ... ... 37 ...
24.3 27.5 25 9.3
...
... 7.2
44
... ...
...
.84 4.08
71
1.35
64t
26.4 * .54
... 6.6
28 11.1t 23 8.5 4.3
... ...
... ... ... ...
... 24.1 ...
... ...
2.8-7.3 18.9
... ... 16.8t ... ...
... 14.4 ...
Thermal conductivity at r.4. watts cm-1
if%t 5.6
Electrical resistivity microhmtm
... ...
1.20(20°C) 85X1P(20°C) 1.62(2OoC)
.060
... .39 ... .64
... ...
1.99
...
14.6(18"6)
... ... ...
17.65(0" C) 18.62(20"C) 11.S(2OOC) 80(0°C) 5.5(20"C) 60(18"C)
5.19"
... ...
... 1.1 ...
5.92 (20°C) 41.O( O°C)
...
... ... ... ...
ll&i 7200
Tensile strength kg/mm'
...
...
15.1 (rod, annealed)
... ... ...
... ...
Modulus of elasticity kg/mmP
... ...
19660 2ih
...
...
50 (wire)
...
1.12 (wire)
... ... 4ijOO 8500 35000
56.0 (wire) 1.4
iio (wire) ... ... ... ... ... ... ... ...
8400 7500
10.5 30.0 (rod, annealed)
-
TABLE 186.-MECHANICAL
In
PROPERTIES O F ALUMINUM AND ALUMINUM ALLOYS
E
-
**
\D
N
4
iz
z >
I P
< i
In
... .8.
8
c
VI* VI
4 .D W I -
rn
In
22
. I
c
z
't(
8
6
V
cgs
0
F!
;m:
...
0
P u r e and commercial aluminum ... A1-99.95 Annealed cu-4.5 Sand-cast ; h.-t. and aged 2.75 (195-T6) Al (commercial) Hard-drawn (93% red) 2.71
cgs
cgs
kg/mmz
kg/mmt
...
.33
2.8 3.45
i2.8
7200
.53
3.75
23.6
. ..
.. . ...
.37
4.3
23.5
7200
.. .
Aluminum-copper-magnesium-manganese alloys Cu-4.0, Mg-.5, Wrought: annealed 2.79 .41 Mn-.5 (17s-0)
3.8
23.5
7200
...
Cu-4.32. Mg-1.44, Plate, &in. w.-q. from 920" F (24s-T) Mw.48, Fe-.16
Aluminum-copper-magnesium alloys Cu-2.5, Mg-.3 Wrought; h.-t. and aged 2.74 (A17S-T)
Rod, 4 in. diam. h.-t. Cu-4.4, Fe-.81, Mg.67, Mw.64, and aged Si-22 Forged; h.-t. and aged (14s-T)
Cu-4.4, Mn-.8, Si-.S, Mg-.4
Sheet, h.-t. and coldC ~ 4 . 5 Mg-1.5, , worked (24s-RT) Mn-.6 Aluminum-comer-nickel allovs Cu-4.0, Ni-2.0, Sand-cast : aged Mg-1.51 (142-TS71)
..
h general
2.1 (2% offset) 15.5 (.2% perm.)
...
kg/mrnP
34
15 80
2 (2 in.)
..
..
9.5 t
70
7.0 (.2% perm.)
18
22* (2 in.)
7.7t
45
34.0
48
20
29.4 (.l% perm.)
42.0
19.7 (4VG)
...
...
. ..
. ..
...
. ..
7600
26.4
2.80
.37
23.0
7200
...
39
(2% perm.)
49
.. .
...
23.2
7200
. ..
39
(2% perm.)
49
2.78
.32
22.5 , 7200
. ..
20
(2% perm.)
22
56 p. 187. to all' wrought forms except large-sized extrusions; elongations apply to $ in. diameter test specimens.
(continued)
4.6t
27*
23.2
5.1
60 (2 in.) 5 (2 in.)
30
5.7
...
kg/mmz
(.2% perm.)
17
.29
4.3
percent
6.3 25
2.77
** For reference see footnote Values apply
.70
kg/mm,
18
120
..
..
14 (2 in.)
llt
135
13 (2 in.)
..
116
5.6f
85
.5 (2 in.) t
5x108.
TABLE 186.-MECHANICAL
Ill
PROPERTIES O F A L U M I N U M AND ALUMINUM ALLOYS (continued)
5
2g
U M
&J%
d ra
F
D 4 W
rn r
cgs
cgs
Aluminum-copper-silicon alloys Cu-4.0, Si-3.0 Sand-cast (108)
2.73
.29
5.6
Cu-4.5, Si-2.5
Chill-cast : h.-t. (B 195-T4)
2.78
.33
4.9
Cu-7.0, Si-2.0, Zn-1.5, Fe-1.2
Sand-cast
2.85
. ..
Aluminum-copper-zinc alloys Cu-7.0, Zn-1.7, Sand-cast (1 12) Fe-1.2
2.85
.29
Aluminum-magnesium alloys Mg-1.0, Si-.6 Wrought ; ann. Cr-.25, Cu-25 (61s-0)
2.70
Mg-1.3, Si-.7 Cr-.25 Mg-2.5, Cr-.25
VI
cgs
kg/mmz
22.0
7200
kg/mmz
kg/mmz
kg/rnmz
percent
kg/mmz
22.0
7200
... ...
.. .
7200
.. .
9.8 (.2% offset)
5.7
22.0
7200
...
10.5 (2% perm.)
17
1.5 (2 in.)
6.3t
70
.41
3.8
23.5
7200
.. .
5.6 ( 2 % perm.)
13
22 (Zin.)*
5.6t
30
Wrought ; h.-t. and aged 2.69 (53s-T)
.37
4.3
23.5
7200
.. .
23
(2% perm.)
27
20 (2in.)*
7.7t
80
Wrought ; hard (52s-H)
.33
4.9
23.7
7200
...
25
(.2% perm.)
29
8 (2in.)* 14.5t
85
8.4 (.2% perm.)
2.68
...
10 13
(.2% perm.)
(2% perm.)
15
2 (2in.)
6f
55
26
10 (2in.)
6.7t
75
13-16
0-1.5 (2 in.)
6.0t
55-80
Mg-3.8
Sand-cast (214)
2.61
.33
4.9
23.9
7200
9 (2 in.)
3.9t
50
Chill-cast (A 214)
2.66
.32
23.9
...
11
(.2% perm.)
19
5 (2in.)
..
60
Mg-10.00
Sand-cast h.-t. (220-T4)
2.52
21
5.1 8.2
... ...
18
Mg-3.8, Zn-1.8
24.5
7200
. ..
18
(.2% perm.)
32
14 (2in.)
4.9t
75
3.4
23.6
7200
. .. ...
4.2 (.2% perm.)
11 18
40 (2in.)*
4.9t
28
20 (2in.)
9.8
45
Auminum-manganese alloys Mn-1.2 Wrought; ann. (3s-0)
2.73
.46
Mn-1.25, Mg-1.0
2.72
...
Annealed
... . ..
,
..
(continued)
c(
I
5
L w
Density
C
k
Endurance limit and cycles
Hardness number
4 p
*
B8 Elongation
2
\
Tensile 9 strength
og k
au
Yield strength
43
a,
3 limit
P6T
v
P
lv
P
3
s C
0
<
0
r r
D
x
C
z -z
C
r
D
O
z
3 D
-zs ? Proportional
r
D
0 1
cn
C
pansion x 108
--mI
;[I
m
P
3 0
-0
Fr
-z
D
0
m I
I z
F
A Q)
m r m
D
i
'Modulus of 3 elasticity 3.
E
P
o Thermal ex-
Resistivity microhm-cm
3 Thermal conductivity
9
Condition
Composition
S318Vl lV3ISAHd NVINOSHIINS
T A B L E 187.-MECHANICAL
v)
5
PROPERTIES
OF BRASSES A N D BRONZES *
c
0 C
n u)
.V
-2
s
. I
eo V
4
kg/mma kg/mma percent
Yellow brass
... .. . . . . . . .. Cu-66; Zn-34
Cartridge brass, 70%. .... . Cu-70; Zn-30
Low brass, 8076..
Jewelry bronze
...... .. . Cu-80;
211-20
... .... .... Cu-87.5 ; Zn-12.5
Commercial bronze, 90%. . Cu-90; Zn-10
.040” strip; hot-rolled .040” strip ; cold-rolled .040” strip; .025mm ann. .040” strip; .070mm ann. .040” strjp; hard (37%) .040” strip; spring (60%) .loo” wire; rivet (10%) .loo‘‘ wire; spring (84%) .MO”strip; .025mm ann. .040” strip; .070mm ann. .040” strip; hard (37%) .040” strip; spring (60%) .100“ wire; spring (84%) .W strip; .015mm ann. .040” strip; .050mm ann. .040” strip; hard (37%) .040” strip; spring (60%) .loo“ wire; spring (84%) .040” strip; .015mm ann. .040” strip; .030mm ann. .040” strip ; hard (37%) .040” strip; spring (60%) .040” strip ; .015mm a m . .040“ strip; .030mm ann. .040” strip; hard (37%) .040“ strip; spring (60%)
For reference, see footnote 57, p. 187.
8.48
.294
8.47
.277
6.38
2.O2X1Od
8.52
.294
6.25
1.98x10-6
8.67
.335
5.38
1.91X10d
8.77
.413
4.20
1.85X10d
8.80
.45
3.E
1.84XlOd
14.1 42.2
38.0 56.2
14.1 10.5 42.2 45.7 31.6 47.8 14.1 10.5 42.2 45.7 47.8
36.5 32.3 52.7 63.2 42.2 87.8 36.6 32.3 53.4 65.4 90.0
12.6 10.5 42.2 45.7 47.8 17.6 9.15 40.1 44.3 21.1 -8.43 38.7 44.3
33.1 30.2 51.3 63.2 84.3 30.2 28.1 47.1 55.5 28.8 26.7 43.6 51.3
No.
45 5
F 80
56
F 73 F 60
64 7
B80
3 30
B 88
..
... ...
56 64 7 3
F 73 F 60 B 83 B90
47 55 7 3
F 75 F 60 B 83 B 90
42 46 5 3 42 45 5 3
F 68 F 61 B 73 B 82 F 65 F 58 B 70 B 78
..
..
...
...
I--
(continued)
%
ul
T A B L E 187.-MECHANlCAL
3:
I
P R O P E R T I E S O F BRASSES A N D BRONZES (continued)
E ..0
8 .-
V
u
I
I
n
*m
m
0
g/cmS
percent
-I
7
G
Gilding, 95%
.... ........ Cu-95;
Zn-5
ul
Conductivity bronzes 80% conductivity bronze.. 65% conductivity bronze..
. .
55% conductivity bronze..
.OM'' strip ; .015mm ann.
8.86
3.08
.040" strip; .030mm ann. .040" strip; hard (37%) .040" strip; spring (6Wo)
kg/mm2 kg/mm2 percent
1 . 8 0 ~ 1 0 - ~ 7.03 5.62 33.7 40.1
..
...
...
63.3
..
...
_ ..
43.6 49.2 38.7 40.1 44.3 49.2 52.8 37.3 59.8
40 17 50 45 40 28 20 70
B 60 B 75 B 55 B 50 B 57 B 78 B 82 F 75 B 88
31.6 40.1 44.0 7.03
33.4 42.2 49.2 28.1
12.5
B 55 B 70 B 78 F 70
8.88
3.13
...
8.42
.278
6.62
2.17X10-'
21.1 40.8 17.6 17.6 21.1 35.2 37.3
8.52
.265
6.89
2.02X10-'
...
8.80
.45
4.53
1.84XW
Cu-99.5; Sn-.5
8.88
. Cu-98.7 ; Cd-.8;
Hard-drawn
.040" strip ; light ann. .040" strip; quarter hard (11%) So" striu: as hot-rolled 1" rod; ;oft ann. 1" rod; light ann. 1" rod; quarter hard (9%) 1" rod; half hard (18%) l"X.05" tube ; .025mm ann. l"X.05" tube; hard (35%)
Sn-.5
2.15
5
No.
F 60 F 52 B 62 B 72
..
... ...
8.88
Hard-drawn
42 44 6
58.6
2.65
Hard-drawn
26.7 25.3 38.6 44.3
52.8
... ... ...
Cu-99; Cd-1.0
Soecial brasses Naval brass ............. cu-60 ; Zn-39.25 ; Sn-.75
cgs
cgs
.55
.._ ... ...
-1
.............. Cu-71; Zn-27.97 ............... Sn-1 ; Sb-,035 bronze .......... Cu-90 ; Zn-9.5 ;
Antirnonial Admiralty Bushing
Sn-.5
.040" strip; half hard hard extra hard light ann.
15
5
2.5 40
ln
$I
T A B L E 187.-MECHANICAL
ln 0
PR OPER TIES O F BRASSES A N D B R ON ZES (concluded)
zD
z I 0
..-*YI
0
r -4
m D Im
ln
C
.-
0 ..-
P
B 2
V
E
6
G
percent
Tin bronzes Phosphor bronze 5% (grade A) . . . ..
.. .
. . . . . Cu-95 :
Sn-4.75 ;
P-25
Phosphor bronze 8% (grade C) ..
. .. . . . . . . .. Cu-92 ;
Sn-7.75 ;
. . . .... . ...... Cu-88 ; Sn-4 ; Zn-4; Pb-4
Olympic bronze - Olympic bronze, type A . . . Cu-96; Si-3 ; Zn-1
Special engineering alloy Tellurium copper . . . . . . . . Cu-99.5 ; Te-.5
.
58,
,040'' strip; .0351nm a m .
x
.= a"2
2m -5
E.2
c"'
g/cd
bV cgs
8.85
,157
m
E . xc? =E
.040" ,040'' .040" .loo''
strip ; .035mm ann. strip; hard (37%) strip; spring (60%) wire; spring (68%)
-.- 8
Z'G
gg
2"s "qc .-&,
cgs
kg/nimz kg/mms percent
,2
12.28
;:
1.78X10-5
OM2
2 c m
~ _ O L
8.80
.120
15.65
1.82)<10-5
,040" strip; .070mm ann. ,040'' strip; spring (60%) 1" rod; extra hard (50%) .1W" wire; hard (60700) .loo" wire ; spring (80%)
8.52
.087
894
,848
9.07
24.6
YI YI
8
-z
% I
sc
$
W"
No.
58
52.7 56.2
56.9 70.3 98.2
10 4 2
16.9 50.6
40.8 65.4 78.7 98.2
65 10 3
F-80; B-50 B 93 B 98
. ..
,206
22 g""
.E2 . i
34.5
...
8.88
f -UcM
14.1
.. .
.040" strip ; .035mni aim. 1" rod; hard (20%)
Q" rod, f hard (20%)
Fz 6
$ ;.
,040'' strip; hard (37%) .040" strip ; spring (60%) .loo" wire; spring (84%)
P-25
444 Bronze
u
N
$5
C
d*
b.' 0
..
F B B B
75, 28 87 93
...
...
1.72x10-5
.. .
31.6 45.7
55 20
F 65
1.80X10-"
14.75 39.4 43.8 77.3 42.2 75.9 45.7 87.9 49.3 102.0
63 4 13
F 75 B 97 B 95
3
... ...
28.8
15
...
1.915 1.79)<10-"
...
30.9
5
T A B L E 188.-MECHANICAL
v)
3:
PROPERTIES O F COPPER A N D COPPER ALLOYS **
c.
\o
03 0 C ..-
0
2 s P r ~
-8
v) rn
percent
P u r e and commercial copper Oxygen-free copper Rod, 3 in. diam., cold-drawn (29% (OFHC) ; cu-99.997 red) from .125mm grain size Oxygen-free copper Rod, 4 in. diam., (OFHC) ; cold-drawn (36% cu-99.9% red) f r y .135 mm grain size Oxygen-free copper Rod, hard-drawn (OFHC) ; cu-99.99 cu-99.95 Sheet, .020 in., soft Sheet, ,020 in., coldworked (21% red) (3-99.94; 0-.030 Rod, drawn (37% red) Electrotough-pitch Rod, 1 in. diam., copper hot-rolled Electrotough-pitch Cold-rolled copper Copper-aluminum alloys A1-3.% Cast, annealed ' Forged, annealed A1-8.0
Sheet or plate, soft Sheet or plate, hard
'
** For references, see footnotes 55 and 5 7 , X 10-0.
t 2 in.
cgs
cgs
8.95
.93
kg/rnnG
kg/mm?
1.706* 17.6'
12,500
...
...
......
12,300
......
......
13,000
...... ......
......
......
... ...
4.8 11.0
......
......
12,100
3.4
.93
1.706* 17.6*
9,300
...
......
......
...... ......
8.92
...... 7.78
.17 11.8*
......
p. 187.
t Alternating torsion.
cgs
17.8*
......
..
3.45
... 7.0 4.30 5.75
... 10,500
0 4Varea. (con h u e d )
..
kg/rnmZ
kg/mrn?
percent
kg/rnrn2
34.5(.5% extn.)
36.0
lilt
12.O(3X1O8) Ro37
33 (.5% extn.)
33.5
20t
...
...
12.7(.01%)
29.0
290
...
...
... ...
22.0 31.2
35t 7.87
7.7(108) 9.1(1OS)
Re 33
10.0(.01%)
26.0
320
...
...
4.55(.01% perm.) 15 (.Ol% perm.)
22.0
59t
2.8
41
36.5
13t
11.0
...
6.1(.5% extn.) 8.8(.5% extn.) 17 (.5% extn.) 42 (.5% extn.)
24.3 33.0 42 84
84t 81t 60t 4t
...
...
...
...
...
RR30 R R99
T A B L E 188.-MECHANICAL
PROPERTIES O F COPPER A N D COPPER ALLOYS (continued) E
C
..-c
xu
.z >-c E .-0
HE
.'" :
2.E
6
percent
cgs
A1-9.78
Cast; w.-q. from 1650"F, 1 hr at 1200"F, f.c.
AI-10
Cast
AI-10.06, Fe.13
Extruded to 1% in. diam., w.-q. from 1650°F at 1150"F, f.c.
Copper-aluminum-iron alloys AI-5.39, Fe-5.14 Forged AM. Fe-2.5
Rod, soft
A1-8.6, Fe-2.9
Sand-cast
A1-9, Fe-3
Forged
cgs
... ...
7.5
...
7.57
...
... ... ... ...
kg/rnm?
kg/mm?
13,600
17.5
8,500- 7 4 10,500 14,000 11.9
kg/mm2
14-17.5
(3% perm.) ...
kg/rnm?
percent
54.5
1411
18.O(7X1O7) 142
kg/mm2
42-53
15-257
...
54.5
3611
24.O(6X1O7) 128
90-100
...
...
34.0(yld. pt.)
61.0
32t
...
119
... ... ...
...
20.2(.5% extn.)
51
50 t
Rn 52
...
... ...
...
...
... ...
...
...
...... ......
15-19
42-50
22-27t
... ...
23.6(yld. pt.)
60.0
427
...
130
...
12.3(yld. pt.)
39.0
52t
...
69
...
22.5(.15%
63.0
10t
...
...
25.2(yld.pt.)
51.0
347
...
130
54.5(.1% perm.)
82
115
...
...
39-42
67-72
10-1st
...
190-217
9.8 12.6
109-1 24
perm.)
......
... ...
...
......
... ...
13,200
...
... ...
...
7.75
...
... ... ... ... ... ... ... ...
...... 7.75
Copper-aluminum-iron-manganese alloys A1-7.18, Fe.62, Sand-cast ... Mn-.58 AI-9.9, Fe-3.2 Round bar, die-cast 7.42 Mn-2.9 at 2155°F Copper-aluminum-iron-nickel alloys AI-5.0, Fe-3.07, Rod, 11 in., diam., Ni-1.91, Mn-.33 forged (75% red) AI-9.73, Fe-5.42, Rod, 4 in. diam., Ni-4.97 forged A1-10.7, F e 4 , N i 4 Forged, h.-t.
cgs
......
It 8 in.
(coltfirrued)
... 3.8 21
s
T A B L E 188.-MECHANICAL
8
s
.=0sc
c"r gz percent
Copper-aluminum-manganese alloys A1-7, Mn-1 Sheet, .2 in., coldrolled (50% red) A1-10, Mn-1 Chill-cast Copper-aluminum-nickel alloys AI-7, Ni-1 Sheet, .2 in., coldrolled (50% red) A1-9.4, Ni-7.4, Rod, 1 in. diam., Fe-4.1 chill-cast AI-10.1, Ni-7.6, Rod, 1 in. diam., Si-.4 chill-cast Copper-aluminum-silicon aliovs A1-7.2, Si-1.88, Rod, 1 in. square, Fe-.ll chill-cast from 2055°F Al-7.2, Si-1.88, Rod, f in. diam., Fe.11 forged Copper-aluminum-zinc alloys A1-8.89, Zn-1.40, Rod, in. diam., exFe-.15 truded and drawn Copper-arsenic alloys As-.33, Ag-.10 Rod, k in. diam., drawn (7% red) " Rod, k in. diam., drawn (7% red) ann. 100 hr at 390°F
' 1.3 in.
cgs
8
P R O P E R T I E S O F COPPER A N D COPPER ALLOYS (continued)
cgs
cgs
kg/mm2
kg/mm2
kg/mm2
......
......
...
......
...
......
...... ......
7.57
...
......
...
...
4.03(.15% perm.)
7.58
...
......
...
...
......
......
...
...
......
...
......
......
12,300
......
......
......
......
kg/mm2
.-
;
: 5
percent
aJ
c
0
:,<.?
28 2
= - v
$b
-- c E?
-
$2
I
kg/mm2
...
74
12t
...
...
25.0(yld. pt.)
62.5
25t
...
...
80.0
6t
...
...
67
5t
...
188
44 (.15% perm.)
63.5
2t
...
...
22.0(yld. pt.)
53.0
19"
...
139
...
42 (yld.pt.)
69.5
25"
...
186
12.4
29.3(.01% perm.)
25.2
379
...
...
...
20.4
7.7(.01% perm.)
25.2
47s
...
. .
...
10.4
24.7
465
...
...
54.0
... 60.0
...
I
.
.
TABLE 188.-MECHANICAL
In
5
I 2 ..71 8 0
d
2 m Im v)
PROPERTIES O F COPPER AND COPPER ALLOYS (continued)
.->, !!
a"
percent
Copper-beryllium alloys 8.6 Be-1.0 Quenched " Quenched and workhardened ... Be-2.2 Cast " Cast, quenched from 1470"F, aged at 645°F Copper-beryllium-cobalt alloys ... Be-2, Ce.2 Soft, annealed ... " " Heat-treated I' ... Rolled (21% red), h.-t. ... Ii 11 Rolled (37% red), h.-t. Copper-beryllium-nickel alloys ... Be-2.16, Ni-22, Rod, in. diam., Fe-.ll quenched from 1515"F, colddrawn (15% red) Rod, 4 in. diam., ... Be-2.16, Ni-.22, Fe-.l 1 quenched from 1515"F, colddrawn (15% red) 3 hr at 570°F ... Sheet, .040 in., w.-q. Be-2.14, Ni-.28 Fe.06 from 1470"F, coldrolled (37% red) 2 hr at 525°F 1'
7
10 diam.
... ... ... ... ...
...... ...... ......
... ...
...... ...... ...... ......
...
......
11,900
...
......
13,000
...
......
12,900
...
...
......
...
...
...
14.7(yld.pt.) 71.5(yld. pt.)
30-35 75
50-557 67
... ...
... ...
30.0 66.1
44.0 83.5
14t 1t
46.5 123 135
50t 8t 4f
...
...
... ... ...
12,600 13,300 12,700
60.5 83
18.3(.2% extn.) 102 (.2%extn.) 121 (.2%extn.)
12,600
73
126 (.2%extn.)
141
3t
... ... ... ...
...
56.0(.5%extn.)
77
llt
...
...
64.5(.5%extn.)
150
2.8t
...
...
136
2.0f
19.5
(corzfinued)
12.6
39.0
65-70 200 109 400
..I
... ...
... ...
Ro 104
ln
2 ?z3
*z I V
3 0
5 ln
T A B L E 188.-MECHANICAL
.-.-.-8 v1
0
2 s
P R O P E R T I E S O F COPPER A N D COPPER A L L O Y S (continued) ,
X
-
E
8 .-..
9 -35
a
percent
cgs
cgs
cgs
kg/mm* kg/mmz
W M
EL
sv1
Ti2
cz
kg/rnmz
kg/mm*
9
Copper-cadmium alloys Cd-B Wire, cold-drawn Copper-chromium alloys Cr-.88, Si-.O9 Rod, 4 in. diam., cold-worked (92% red) Copper-chromium-beryllium alloys Cr-.4, Be-.l Rod, 1 in. diam., cast, quenched from 1700"F, aged 1 hr at 935°F Copper-cobalt-beryllium alloys C0-2.6, Be-.4 Rod, 1 in. diam., cast, 1 hr at 1650"F, w.-q. 2-4 hr at 930°F Co-2.6, Be.4 Rod, forged, 1 hr at 1650"F., w.-q. 2-4 hr at 930°F 't " Quenched, workhardened, h.-t. Copper-iron alloys Fe-25 Wire, .040 in. diam., cold-drawn (96% red) Fe-50 Wire, .040 in. diam., cold-drawn (96% red) (6 Sand-cast
-.a 95
......
...... ......
......
......
...
10.511.5
...
21-25
10-15
...
......
......
12,000
31.6
...
63.0
10 t
...
......
......
12,000
31.6
...
70.3
20 t
......
......
11,500
57.5(yld.pt.)
75
15q
...
210
......
......
...
......
97
...
...
...
......
......
...
......
136
...
...
...
......
......
...
...
25 t
...
130
......
12,700
......
71
13,900
...
46.5(.5% extn.)
51.0
(continued)
...
22.5(yld.pt.)
39.0
... 75t
...
...
18.1(3XlOS)
RB73
1 . .
220
220
T A BLE 188,MECHANlCAL
..
PROPERTIES OF COPPER AND COPPER ALLOYS (continued)
3
.-8 ."
. I
.-> EZ hg
am
g E
6
f
h'
percent
... ...
7,650
...
...
... ...
6,000
...
... ...
8.83
...
Sand-cast from 1750- 8.9 1900°F Copper-manganese alloys Soft 7.2 Mn-13 ;A1-9 " 'I Hard-rolled ... Copper-nickel alloys Rod, 3 in. diam., Ni-30.48, Mw.22, cold-drawn (15% Fe.07 red) from .033 mm grain size Ni-30.48, Mn-.22, Rod, 2 in. diam, Fe.07 cold-drawn (15% red) from .030 mm grain size 2 hr at 840°F Constantan Sand-cast 8.6 Ni-45 Ni-45, Mn-51.0, Fe-.27, C-.05 Ni4.77, Mw.89, Fe.66, C-.078 Ni-44.77, Mn-.89, Fe.66, C-.C78
Rod, ann. 4 hr at 1400°F Rod, 1 hr at 1450" F, f.-c. Rod, cold-rolled
2.z
kg/mmz
cgs
Pb-10; Sn-10
:
'i: 2u
kg/mrnZ
cgs
Copper-lead-tin alloys Pb-S.61, 51-5.36, Cast from 2040°F 211-232, Sb.34, Ni-.14
E
22c!
cgs
... ...
6.78.1
kg/mm*
percent
10.3(.1% offset)
21.4
17t
13-14
19-23
kg/mmz
......
7-12t
kg/mm*
...
52
...
50-70
19
...
300
......
95.5
1
...
510
67
... ... ... ... ... ...
15,200
...
44.8(.5% extn.)
47.3
23t
...
...
... ...
... ...
15,600
...
38.4(.50/0extn.)
46.2
30t
...
...
... ... ...
... ... ... ...
... ...
... ... ... ...
...
... ...
14.8(.20/0 offset)
39.4
32t
17,400
14.2
18.3(yld. pt.)
46.8
46t
... ...
Rn 54
...
14.8
17.8(.010/0 perm.) 38.5(.010/0 perm.)
48.6
48t
19.6
86
72.5
1st
3O.2(4X1O7)
...
...
(continued)
...
...
80
159 N 0
w
T A B L E 188.-MECHANICAL
VI
E
P R O P E R T I E S O F COPPER A N D COPPER A L L O Y S (continued)
N P
0
C
.c B
9 0
g= 4
D W r Ln m
percent
Copper-nickel-beryllium alloys Ni-2.0, Be-.2 Quenched from 1650"F, cold-drawn, (5670 red) ' ,' Quenched from 1650"F, hr at 930°F. cold-drawn (56% 'red) Copper-nickel-manganese alloys Ni-13.5, Mn-5, Rod, 1 in. diam., A1-1.5 extruded, colddrawn (10% red) " Rod, 1 in. diam., cold-drawn, 2 hr at 1110°F
cgs
kg/mm? kg/mm*
kg/mm2
kg/mm2
percent
kg/mm*
...
...
......
...
......
46.8
4.3t
...
...
...
...
......
...
......
85.5
2.5t
...
...
...
...
...
12.6
35.4(.2%)
48.6
36 t
...
V 157
... ...
......
...
49.0
60.0(.2%)
77.0
21 t
...
V 240
Copper-nickel-silicon alloys Cu-94.15, Ni-5.14, Sheet, .020 in., soft Si-rem.
... ...
......
11.500
37.4
...
72.5
4.0t
Copper-nickel-tin alloys Ni-29.08, Sn-.95, Rod, 1 in. dihm., Fe-25, C-.07 cold-drawn
...
...
......
15,000
...
39.0(.01% perm.)
61.3
3.8t
...... ...... ......
...
... ... ... ...
...
13,300 14,600
... ...
14.0(.5% extn.) 30.2(.5% extn.) 32.0(.5% extn.)
35.1 60.0 41.0
+
Copper-nickel-zinc alloys Ni-20, Zn-5 Sheet or plate, soft " I' Sheet or plate, hard Ni-20.22, Zn-5.26, Rod, 3 in. diam.. Mn-25, Fe-.08, colddrawn (15% Mg-.06 red) from .060 mm grain size, 2 h r at 840°F
8.86
(con h u e d )
35 t 5t 32 t
9.8(108)
...
23.5(5><10')
143
...
RB25 RB88
...
...
...
v)
E
T A B L E 188.-MECHANICAL
=i I m
0 2
."cx
2 I V
r
z.I m r v) m
.-x > ._ 2; E2 1
F
zF
P R O P E R T I E S O F COPPER A N D COPPER A L L O Y S (continued)
e
(0
a percent
kg/mm2
percent
...
48.0(.5%extn.)
61.8
10t
21.4(3x1Os)
R~86
...
17 (.5%extn.)
42
65t
...
R r 45
1.9
...
24.2
51 1
...
...
14.000
5.7
...
24.1
51 1
...
...
......
13,600
3.16
...
32.4
338
...
...
...
......
13,800
20.2
...
31.6
371
...
...
...
...
......
12,400
17.3
40.2(.1%extn.)
43.5
331
15.5(5x1O7)
138
...
...
......
10,500
...
42.0(.5% extn.)
57.5
8f
...
RB90
...
...
......
12,300
...
51.4
22t
...
RB80
cgs
kg/mm?
...
...
......
12,000
8.53
...
..
10,500
...
...
......
...
Rod, 1 in. diam., drawn (10% red) 2 h r at 570°F
... ...
......
Rod, 1 in. diarn., drawn (10% red)
...
...
Rod, 1 in. diam., drawn (10% red) 2 hr at 570°F
...
Rod, 3 in. diarn., drawn 3 hr at 525°F
Copper-silver alloys Ag-.093, Fe-.007 Rod, 1 in. diam., drawn (10% red)
SII-4.23, P-.13
kg/mm2
cgs
C6S
Copper-silicon-manganese alloys Si-1.41, Mn-21, Rod, f in. diam., Fe-.06 cold-wsrked (72% red) Si-3, Mn-1 Sheet, ,040 in., ann.
Copper-tin alloys Sn-.48
kig
Copper-tin-lead alloys Sheet, .04 in. hard Sn-5.0, Pb-1, P-.l Copper-tin-nickel alloys Sn-3.88, Ni-2.33, Sheet, cold-rolled, S.58, P-.37 quenched from 1470"F, aged 1 hr at 930°F
kg/mm?
26.6
kg/mm2
206
h
U S
-
S
.-S V
Y
cn
>
s -I
a LT W
n n. 0 0 0
z a 0: W
P
n 0 0 IL
0
cn
!!! la n
W
n
LT
0 -I
a 0 z a W
0
I
I
I m 6 7
W -I
m l-
a
ioqurnu ssaupieH
.:
...
.:
...
x
v
.: +x
n
c
Y
. :z 0
N
4
0
c
.. .
. ..
. ..
. . . . . .. .. .. .. .. . ..
* * . * .. . . .. .. 3* 2 2 . 2 " . *
V
r!
E
r?
$ N
A
2
A
N
SMITHSONIAN PHYSICAL TABLES
V
0
. ..
cn
n
m
:
... 0 d -9 y
2
. ..
..
.
. ..
..
..
.
. ..
..
..
..
..
.. .
. ..
.
.
.
..
.. .
.
.. .
=.
T A B L E 188.-MECHANlCAL
I r;
PROPERTIES OF COPPER A N D COPPER ALLOYS (concluded)
I n 0
E
P 2 0
I
2 z I-
+
% 6 v)
0 c ..-*
v
.-8
5
B
v c
T;C
V
5;"
t-";
kg/mm2
kg/mm2
percent
0 v1
sB percent
sb
8
cgs
CL.
.8
5 0
3
C
$2 5 E K
P
I&
42 $2
kg/mm2
cgs
kg/mm*
......
......
10,900
...
57.0
62.0
127
...
8.26
...
......
10,000
9.15
...
49.0
3311
12.O(2.5X1O8) 93
7.79
...
......
...
...
44.0(.15% perm.)
66.0
7t
......
......
13,900
31.3
...
63.5
......
......
12,100
26.2
...
60.5
......
......
9,800
33.8
...
98.5
8.65
...
......
...
Sheet, ann.
8.53
...
10,500
Rod, 3 in. diam.,
8.42
...
...... ......
11.2-12.6 (dd. pt.)
8.47
...
......
...
rolled Die-cast
10,800
kg/mm2
5 Urn
cgs
Copper-zinc-iron alloys Zn-38.48, Fe-1.21, Rod, 4 in., hardSn-.72, AL.1, drawn Pb.09 Cu-56.85, Fe-1.50, Cast Sn-.32, AL.23, Mn-.20, Zn-rem. Copper-zinc-manganese alloys ZnI3-3.1, Mn4.2, - Round bar, die-cast AI-3.5 from 1930°F Copper-zinc-nickel alloys Zn-9.89, Ni-2.32, Sheet, .020 in., Si-.57 quenched from 1470"F, aged 1 hr at 930°F Zn-19.8, Ni-2.37, Sheet, .020 in., Si-.57 quenched from 1470"F, aged 1 hr at 930°F Zn-30.12, Ni-2.36, Sheet, .040 in., Si-.66 hard-rolled Copper-zinc-tin alloys Zn-6, Sn-6 Sand-cast
Admiralty brass : Zn-28, Sn-1 Naval brass : Cu-61.20, Sw.43, Pb.10, Zn-rem. Zn-41, Sn-1
to
44
178
...
187
14t
13.0(108)
R~86
22t
11.2(108)
Re85
2.5t
...
RB98
25-30
30-60
...
......
31.6
60t
...
...
...
48.0
27
14.8(108)
...
21-25(yld.pt.)
39-42
15-20t
...
120-130
... 23.5
...
50-65
8 \1
208
TABLE 1 8 9 . 4 O P P E R W I R E 4 P E C I F I C A T I Q N VALUES
Copper wire : Hard-drawn (and hard-rolled flat copper of thicknesses corresponding to diameter of wire). Specification values. (A. S. T. M. B1-15, U. S. Navy Dept.) Specific gravity 8.89 a t 20°C (68°F).
Diameter
Minimum tensile strength
Minimum elongation, percent in 254 mm (10 in.)
k K z i e - z z
mm
11.68 10.41 9.27 8.25 7.34 6.55 5.82
.460 .410 .365 .325 .289 .258 .229
34.5 35.9 37.1 38.3 39.4 40.5 41.5
49,000 51,000 52,800 54,500 56,100 57,600 59,000
5.18 4.62 4.12 3.66 3.25 2.90 2.59 2.31 2.06 1.83 1.63 1.45 1.30 1.14 1.02
.204 .182 .162 .144 .128 .I 14 .I02 491 .081 .072 .064 .057 .051 .045 .040
42.2 43.0 43.7 44.3 44.8 45.2 45.7 46.0 46.2 46.3 46.5 46.7 46.8 47.0 47.1
60.100 61:200 62:lOo 63,000 63,700 64,300 64.900 65;400 65,700 65,900 66,200 66,400 66,600 66,800 67,000
2.75 3.25 2.80 2.40 2.17 1.98 1.79 in 1524 mm (60 in.) 1.24 1.18 1.14 1.09 1.06 1.02 1.oo .97 .95 .92 .90 .89 37 .86 .85
NoTE.-P.limit of hard-drawn copper wire must average 55 percent of ultimate tensile strength for four largest-size wires in table, and 60 percent of tensile strength for smaller sizes.
T A B L E 190.-COPPER
WIRE-MEDIUM
HARD-DRAWN
(A. S. T. M. B2-15) Minimum and maximum strengths. Tensile strength Diameter
Minimum & kg/mm2 Ib/in.Z
----T mm
Maximum kg/mmz
Ib/in.Z
11.70 6.55
.460 .258
29.5 33.0
42,000 47,000
34.5 38.0
49,000 54,000
4.12 2.59 1.02
.162 .lo2 .040
34.5 35.5 37.0
49,000 50.330 53;OOO
39.5 40.5 42.0
56,000 57.330 60;OOO
Elongation, minimum percent in 254 mm (10 in.)
3.75 2.50 in 1524 mm (60 in.) 1.15 1.04 .88
NOrE.-Representative values only from table in specifications are shown above. hard-drawn copper averages 50 percent of ultimate strength.
T A B L E 191.-COPPER
WIRE-SOFT
P-limit of medium
OR A N N E A L E D
(A. S. T. M. B3-15) Minimum values. Diameter mm
in.
11.70 to 7.37
.460 to .290
Minimum tensile strength P kg/mm2 Ib/in.2
25.5
36,000
Elongation in 254 mm (10 in.), percent
35
7.34 to 2.62
,289 to ,103
26.0
37,000
30
2.59 to -53
.lo2 to .021
27.0
38,500
25
.51 to .08
,020 to .003
28.0
40,000
20
Nor&-Experimental results show tensile strength of concentric-lay copper cable to approximate 90 percent of combined strengths of wires forming the cable. SMITHSONIAN PHYSICAL TABLES
T A B L E 192.-MECHANICAL
Composition percent
Condition
Aluminum steel C-.30-.40, AL.90-1.40, Cr-.90-1.40, Mn-.40-.60, Mo-.15-.25
quenched from 1750"F, tempered at 1100°F
Carbon steels
C-.08,
Mn-.41 (open-hearth rim- strip, .lo4 in., rolled
PR O PER TIES OF IR O N A N D S T E E L ** Modulus of elasticity kg/mm*
Proportional limit kg/mm2
Yield strength kg/mm2
-
-
96
-
-
ming)
C-.12, Mn-34, S-.12, P-.099 (free- bar, I& in. diam., cold-rolled cutting steel)
C-. 15.25, Mn-.30-.50 C-.27, h h . 7 2 , Si-21 "
C-.45, Mn-.77, Si-.21
rod, & in., cold-drawn wrought, ann., at 1450°F; f.-c. wrought, w.-q. from 1600"F, tempered a t 1100°F normalized 1 hr a t 1600°F; room :
- 40°F
-108°F 'I
3
hr at 1475"F, w.-q., tempered 1 hr at 1000°F; room :
- 40°F
-108°F C-.57, Mw.65, Si-.17 C-.91, Mw.38, Si-.16 hearth)
C-1.04, Mw.36, Si-.16
oil-quenched from 1490"F, tempered at 860°F (acid open- oil-quenched from 1575"F, tempered at 940°F
3
+* For reference, see footnote 55, p. 187.
hr at 1550"F, quenched in oil at 120"F, tempered 4 hr at 800°F Reversed torsion.
t Zero
Tensile strength kg/mm2
27.0 ( d d . pt.) (.OOl% offset)
Elongation percent
-
310
37.0
35(2 in.)
-
Re 55
58.5 81.5 47.4
18(2 in.) 11( 10 in.) 46(2 in.)
-
V 205
-
53.4 76.0 26.4
20,800
-
38.6
64.0
20,500
-
44.4
79.5
-
52.0
91.5
16(2 in.)
88
95.0
-
20,200
-
-
21,200
-
21,000
-
20,000
20,800
-
-
-
Hardness number
15(2 in.)
109
21,400 21,100 19,300
-
Endurance limit kg/mm2
-
-
37.3
-
-
153
42(2 in.)
-
191
17(2 in.)
-
Rc 16 Rc 20 Rc 22
-
Rc 27 Rc 29 Rc 29 293
12(2 in.)
-
106.5 102.5
14(2 in.) 16(2 in.)
159 101.5 (.Ol% perm.) 126 (.2% perm.) 101.5 166.5 (.Ol% perm.) 136.5 (2%perm.)
7(2 in.)
56.2 36.5* 71.7t
441
5(2 in.)
68.8 86.9
430470
95.5 68.5 ( d d . pt.1
t o maximum torsion.
(continued)
N
s
TABLE 192.--MECHANlCAL Composition percent
Chromium steel C-.20, Cr-.75, Mn-.57, Si-.21 C-59, Cr-.62, Mn-.83, Si-.35 Chromium-niobium steels C-.O9, Cr-5.62, Nb-1.04 Chromium-comer - _ steels C-.ll, Cr-.53, Cw.37, Si-.82,
P-.088
Chromium-molybdenum steels C-.08, Cr-5.81, Mo-.45 C-.lo, Cr-12.75, Mo-.35, Mn-.Q Si-.40, S.30, Ni-25
Chromium-titanium steels C-.ll, Cr-5.41, TL.75 Chromium-tungsten steels C-.46, (3-11.94, W-4.80, Si-2.89, Mn-.49 Chromium-vanadium steels C-.58, Cr-.73, V-.18, Mw.68
C-.52, Cr-.88, V-.21, Mn-.66
N -
PROPERTIES OF IRON AND S T E E L (continued)
Condition
+
Modulus of elasticity kg/mmP
Proportional limit kg/mm'
0 Yield strength kg/mm'
Tensile strength kg/mmP
bar, in. diam., normalized at 1700°F forged
-
-
39.4
53.5
-
-
60.0
101.5
bar, 1 in. diam., rolled
-
-
69.0
77.3
bar, 1 in. diam., normalized
-
bar, 3 in. diam., 4 hr at 1380"F, a.-c. annealed
-
-
-
-
heat-treated
-
-
bar, 1 in. diam., rolled 4 hr at 1380"F, a.-c.
-
oil-quenched from 1875"F, tempered at 1470°F annealed at 1500°F water-quenched from 1650"F, tempered at 1050°F j hr at 1600"F, quenched in oil at 130"F, tempered 1 hr at 810°F
Elongation percent
Endurance limit kg/mm*
Hardness number
-
131
7(2 in.)
-
286
16(2 in.)
-
192
29(2 in.)
-
-
35
39.4 Wd. Pt.) 32.0 (.2% perm.) 58.0 (.2% perm.)
60.5
29(2 in.)
-
149
52.7
30(2in.)
30.3
152
73.8
20(2 in.)
39.0
217
-
19.7
43.0
37(2 in.)
-
112
-
71.0
-
90.6
5(2 in.)
-
300
-
34.8
98.5
65.0 127.5
28(2 in.) 14(2 in.)
-
-
-
163 351
21,200
-
(continued)
98.5 167 (.01% perm.) 16.1 (.01% perm.)
ll(2in.)
73 52.7* 90.0t
477-488
T A B L E 192.-MECHANICAL Compcsition percent
P R O P E R T I E S O F IRON A N D S T E E L (continued)
Condition
Modulus of elasticity kg/mma
Proportional limit kg/mmz
Yield strength kg/mm2
Tensile strength kg/mm2
Endurance limit Elongation percent
kg/mm2
Hardness number
Copper steels C-.08, Cu-25, Mn-.38
sheet, .062 in., rolled
-
-
29.8
36.0
31(8 in.)
-
RB60
Graphitic steel C-1.50, Si-1.0, Me.25
annealed
-
-
34.8 Wd. pt.)
59.4
25(2 in.)
-
197
14.1
-
6.60
159
17.0
270
Iron TC-3.41, GC-2.85, CC-.56, Si-2.44, P-.63, Mn-.57, S-.070, Ti-.10 Alloy cast iron: TC-2.61, GC-1.73, CC-.88, Si-2.38, Ni-1.08, Mn-.77, S-.105, Cr-.O9 Alloy cast iron: TC-2, Ni-18, 5-5, Cr-2, Mn-1, P-.OI, S-.l Malleable cast iron : TC-1.75-2.30, Si-.85-1.20, Mn-<.40, P-<.20, s-<.12 Pure iron: Fe-99.99 Wrought iron : C-.017, P-.084 Wrought iron: C-.017, P-.084 Manganese steels C-.35, Mn-1.71, Si-.30
cast cast
Molybdenum steels C-.23, M'w.17, Mn-.67, Si-.52, cu-.lo C-.24, Me.22, Mw.85, Si-.19 C-.39, Cr-..86, Me.17, Mn-.56
-
-
-
17,550
-
20,000
-
-
-
transverse
-
-
cast
-
annealed at 1650°F
cast cast, annealed
rod, 4 in., swaged ann. 4 hr at 1600°F S.122, longitudinal Si-.lZ,
5,620 (at f load) 11,400 (at 1 load)
plate, Q in., rolled oil-quenched from 1625"F, tempered at 500°F
-
-
-
110-170
12.9
1-4(2 in.)
40.0
22(2 in.)
5.7-6.1 20-21 (.2% offset) 21.0 33.0
36-46(2 in.)
-
60
15(2 in.)
21.5
-
20.1
32.9
17(2 in.)
19.7
-
27.4
-
56.8
2.1 (2 in.)
22.5
179
-
-
38.0
57.8
31(5 diam.)
-
-
42.5 (yld. pt.1 116.5
62.0
30(2in.)
(continued)
-
26.3 Wd. Pt.1
149
6.5(2 in.)
17.6-18.6
110-145
T A B L E 192.-MECHANICAL
Composition percent
P R O P E R T I E S O F I R O N A N D S T E E L (continued) Modulus of elasticity kg/mmz
Condition
Nickel steels C-.43, Ni-3.47, Mn-.64, SL.20
Proportional limit kg/mmz
-
wrought, f.-c., from 1450°F
21,000
wrought, 0.-q., from 1450"F, tempered at 1100°F
19,800
bar, 2 in. diam., wrought; ann. at 1550°F: 70°F 800°F
-
41.4
20,000
-
-
-
C-.36, Ni-1.33, Mn-.60, Cr-.56, bar, 4 in. diam., wrought; Si-.26, (basic open-hearth, deoxi1 hr at 1550"F, 0.-q. tempered at 1000"F, grain dized with Si and Al) size 7-8 (ASTM std.), normal : 85°F
-
83.0
900°F
-
1000°F
-
1200°F
-
Nickel-chromium-molybdenum steel C-.32, Ni-1.92, Cr-.86, Me.30, wrought, f.-c., from 1450°F Mn-.60, Si-.16
20,200
-
C-.32, Ni-1.92, Cr-.86, Mn-.60, Si-.16
20,000
-
'
"
C-.42, Ni-3.41, Mn-.66, Si-21
1000°F Nickel-chromium steels C-.37, Ni-1.28, Cr-.52, Mn-.55 C-.37, Ni-1.33, Si-.18
Cr-.65,
Mn-.75,
bar, 1& in. diam., h.-t. hot-rolled
Me.30, wrought, 0.-q. from 1530"F, tempered at 1100°F
(continued)
14.0 7.73
r? tu
Yield strength
Tensile strength
kg/mm2
kg/mm2
Elongation percent
Hardness number
37.3
66.4
33(2 in.)
187
57.8
82.2
34(2 in.)
226
44.3 (yld. pt.) 27.3 W d . pt.) 17.6 (rld. pt.)
70.0
26(2 in.)
195
55.0
30(2 in.)
32.7
39(2 in.) 18(2 in.)
-
81
25(2 in.)
-
99
19(2 in.)
285
62.5
22(2 in.)
43.6
20(2 in.)
21.3
51(2 in.)
34.9
67.6
37(2 in.)
202
73.8
98.5
32(2 in.)
229
17.6 92 (.OOl% offset) 52.1 (dd. pt.)
92.0 (2%perm.) 12.3 36.8 (2%perm.) 3.87 17.9 (2%perm.) .70 5.27 (2%perm.)
T A B L E 192.-MECHANICAL
Composition percent
Modulus of elasticity
Condition
Nickel-molybdenum steels C-.41, Ni-1.96, Me.31
'
PROPERTIES O F IRON A N D S T E E L (continued)
'(
Nickel-copper steels C-.08, Nil200, Cu-1.00, Mn-.55, Si-<.3 Silicon steels C-.07, Si-1.17, Mn-.32
Proportional limit
oil-quenched from 1525"F, tempered at 1200°F
67.7
quenched from 1525°F into lead at 840°F (austempered)
42.8
Yield strength
Tensile strength
Elongation percent
Endurance limit kg/mmP
Hardness number
85.0
91.5
23
47.2
252
74.0 ( d d . pt.)
90.0
19
-
-
25 (8 in.)
28.1
-
30(3 in.)
-
130
W. pt.)
plate, 4-4 in., rolled
rolled
-
oil-quenched from 1600"F, tempered at 970°F
-
102.5 139 (.l% perm.)
15(2 in.)
67.7
-
3 hr at 1600"F, quenched in
-
92.8 166 (.010/0 perm.) 148 (.l%perm.)
12(2 in.)
78.7 97.07
438-457
Stainless steel C-.17, Cr-18, Ni-8
water-quenched from 1100°F
21.1
68(2 in.)
26.7
170
C-.07, Cr-18.95, Ni-7.69
bar, # in. diam., cold-rolled
9.14
Zl(1.5 in.)
59.8
302
bar, 1 in. diam., rolled
-
Silicon-manganese steels C-52, Si-1.95, Mn-1.05, Cr-.05 C-S3, Si-1.96, Mn-.83
oil at 130"F, tempered 1 hr at 860°F
C-.13,
Cr-24.5,
Ni-20.3,
C-.ll, Cr-16.2, Ni-11.5
Si-.85,
water-quenched from 2010°F ; room :
- 85°F -292"
33.4
47.5
-
65.4
-
100.5
28.1 ( d d . pt.)
61.8
40(2 in.)
-
RB92
48(2 in.)
-
-
55(2 in.)
-
T A B L E 192.-MECHANICAL
Composition percent
PROPERTIES OF IRON A N D S T E E L (concluded)
Condition
Modulus of elasticity kg/mm2
Proportional Yield limit strength kg/mm2 kg/mm2
Tensile strength kg/mm2
Elongation percent
Endurance limit
59(2 in.)
-
Hardness number
air-cooled from 1920°F
-
C-.07, Cr-18.2, Ni-9.42, Nb.51
water-quenched from 2100°F
-
26.8 25.3
60.8
-
62.9
60(2 in.)
137
C-.40, Cr-15.21, Si-.59, Ni-.18
bar, 1 in. diam., 1 hr at 1650"F, w.-q., tempered 1 hr at 1200°F
-
36.4
-
81.5
20(2 in.)
-
C-20, Cr-16.17, Mn-1.06, Si-.30
oil-quenched from 1740"F, tempered 3 hr at 840°F
23,100
35.7
62.5
lO(2 in.)
357
C-.15, Cr-13.50, Si-.ll
oil-quenched from 1740"F, tempered at 1110°F
22,000
57.8
77.3
92.8
21 (2 in.)
285
oil-quenched from 1740"F, tempered at 1290°F
22,200
42.3
50.7
68.5
28(2 in.)
206
sheet, .18 in., hot-rolled
-
-
73.0
93.5
sheet, .18 in., ann.
-
-
34.5
49.2
20(8 in.)
18.5
31.3
56.9
28(2 in.)
-
C-.08, Cr-18.58, Ni-9.68, Ti-.42 Mn-28,
"
C-.09, Cr-16.53
' C-20, Cr-27.37, NG.19
Mw.32,
Si-28,
C-.08, Cr-5.81, Mo-.45 Tungsten steels C-.71, W-17.30, Cr-3.86, V-.75
annealed
133
4.5(8 in.)
RB103 RB82
bar, t in. diam., 4 hr at 1380"F, a.-c.
-
60.4
29(2 in.)
149
normalized a t 1740°F ; tempered -at 1470°F
-
92
19(2 in.)
-
T A B L E 193.-STE
E L W I R E-S
215
P EC I FICAT10 N VA L U ES
S. A. E. carbon steel, No. 1050 or higher number specified (see carbon steels above). Steel used to be manufactured by acid open-hearth process, to be rolled, drawn, and then uniformly coated with pure tin to solder readily. American or B. a n d S. wire gage
Req'd Weight twists Spec, minimum tensile strength in 203.2 & Req'd bends 7 lb/100 mm or kg/100 lb kg/mmz lb/in.Z thru 90" kg m ft 8 in.
Diameter
~
5-GY-Z
6 7 8 9 10
4.115 3.665 3.264 2.906 2.588
.162 .144 .129 .114 .lo2
16 !9 21 23 26
10.44 8.28 6.55 5.21 4.12
7.01 5.56 4.40 3.50 2.77
5 6 8 9 11
2040 1680 1360 1135 910
4500 3700 3000 2500 2000
154 161 164 172 172
219,000 229,000 233,000 244,000 244,000
11 12 13 14 15
2.305 2.053 1.825 1.628 1.450
.091 .081 .072 .064 .057
30 33 37 42 47
3.28 2.60 2.06 1.64 1.30
2.20 1.74 1.38 1.10 .87
14 17 21 25 29
735 590 470 375 300
1620 1300 1040 830 660
179 177 179 181 182
254,000 252,000 255,000 258,000 259,000
16 17 18 19 20
1.291 1.150 1.024 .912 312
.051 .045 .040 .036 .032
53 60 67 75 85
1.03 .81 .65 .51 .41
.69 .55 .43 .34 27
34 42 52 70 85
245 195 155 125 100
540 425 340 280 225
186 188 190 193 197
264,000 267,000 270,000 275,000 280,000
21
.723
.028
96
.32
22
105
80
175
200
284,000
Nom.-Number of 90" hends specified above to he ohtained by hendins sample about 4.76 mm (.188 in.) radius, alternately, in opposite directions.
T A B L E 194.-STEEL
WIRE-EXPERIMENTAL
VALUES
Data from tests at General Electric Co. laboratories. Commercial steel music wire (hardened). Ultimate strength tension kg/mm2 Ib/in.z
Diameter
---z mm
w
12.95 11.70 9.15 7.60
226.0 249.0 253.0 260.0
.051 .046 .036 .030
Diameter
i n mm . '
321,500 354,000 360,000 370,000
For 4.55 mm wire drawn cold to indicated sizes. H, a t 850°C.
-
T A B L E 195.-PLOW-STEEL
6.35 .025 4.55 .018 2.55* .010 1.65* .0065 4.557 .OM t For 4.55 mm (.018
Ultimate strength tension kg/mmz Ih/in.z 7 -
262.0 265.5 386.5 527.0 49.2
372,500 378,000 550,000 750,000 70,000
in.) wire annealed i n
H O I S T I N G ROPE ( B R I G H T )
Wire rope to be of best plow-steel grade, and to be composed of 6 strands, 19 wires to the strand, with hemp center. Wires entering into construction of rope to have an elongation in 203.2 mm or 8 in. of about 24 Dercent. Diameter
; mm n : 9.5 12.7 19.0 25.4
3 f 2
1
Spec. minimum strength kg
5,215 9,070 20,860 34,470
SMITHSONIAN PHYSICAL TABLES
11,500 20,000 46,000 76,000
Diameter
--in.'
mm
38.1 50.8 63.5 69.9
14 2 23 23
Spec. minimum strength
-----Tkg 74,390 127,000 207.740 249,350
164,000 280,000 458,000 550,000
216
T A B L E 196.-STEE
L-WI R E ROPE-SPEC1
F l C A T l ON V A L U E S
Cast steel w i r e to be of hard crucible steel with minimum tensile strength of 155 kg/mm2 or 220,000 lb/in.2 and minimum elongation of 2 percent in 254 mm (10 in.). Plow s t e e l w i r e to be of hard crucible steel with minimum tensile strength of 183 kg/mmz or 260,000 lb/in.2 and minimum elongation of 2 percent in 254 mm (10 in.). A n n e a l e d s t e e l w i r e to be of crucible cast steel, annealed, with minimum tensile strength of 77 kg/mm2 or 110,000 lb/in.' and minimum elongation of 7 percent in. 254 mm (10 in.). Type A : 6 strands with hemp core and 19 wires to a strand (= 6 x 19), or 6 strands with hemp core and 18 wires to a strand with jute, cotton, or hemp center. Type B : 6 strands with hemp core, and 12 wires to a strand with hemp center. Type C : 6 strands with hemp core, and 14 wires to a strand with hemp or jute center. Type AA : 6 strands with hemp core, and 37 wires to a strand (= 6 X 37) or 6 strands with hemp core and 36 wires to a strand with jute, cotton, o r hemp center. Diameter
steel, Galv. cast " 'I
"
"
"
'I
Galv. cast steel, " 1'
"
1'
"
"
Galv. cast steel, '1.
1'
"
"
"
'1
A ........... 9.5 ........... 12.7 ........... 25.4 ........... 38.1 AA ......... 9.5 12.7 25.4 ......... 38.1 B ........... 9.5 ........... 12.7 ........... 25.4
...........
2:: 41.3
Galv. cast steel, "
c. . . . . . . . . . .
Galv. plow steel,
A ........... 9.5 . . . . . . . . . . . 12.7 ........... 25.4 ........... 36.5 AA ......... 9.5 ......... 12.7 ......... 25.4 ......... 41.3
ti
"
G:!v.
"
"
"
I'
"
plow steel, "
"
"
"
"
I'
Approx. weight + lb/ft kg/m
ZfT?
Description
T A B L E 197.-STE
7
4
Jz
1 If
I 4
1 14
3 3
1
:&
1"
0 Jz
1 17%
4 4
1 12
E L-W I R E ROP E-EXP
.31 .55 2.23 5.06 .35 .58 2.23 5.28 .25 .42 1.68 3.94 1.59 4.35 .31 .55 2.23 4.66 .33 33 2.35 6.18
.21 .37 1.50 3.40 .22 .39 1.50 3.55 .17 .28 1.13 2.65 1.07 2.92 .21 .37 1S O 3.13 .22 .39 1.58 4.15
Minimum strength 7
kg
Ih
3,965 6,910 27,650 63,485 3,840 7,410 27,650 59,735 2,995 5,210 20,890 47,965 18,825 51,575 4.690
8,740 15,230 60,960 139,960 8.460 16,330 60,960 131,690 6,600 11,500 46,060 105,740 41,500 113,700 10.340
E R I M E N T A L V A L U ES
Wire rope purchased under Panama Canal Spec. 302 and tested by National Bureau of Standar'ds, Washington, D. C. Description and analysis
Plow steel, 6 strands x 19 wires C .90, S .034, P .024, Mn .48, Si ,172. . . . . . . . . . . . . . . . Plow steel, 6 strands X 25 wires C .77, S ,036, P ,027, Mn .46, Si ,152 ................ Plow steel, 6 X 37 plus 6 X 19 C 2%. S .032. P ,033. Mn .41. Si .160.. .............. Monito; plow steel, 6 X 61 plus 6 X 19, C .82, S .025, P .019, Mn .23, Si .169 ............
Diameter
.-
Ultimate strength (net area)
Ultimate strength kg
lh
k
m
50.8
137,900
304,000
129.5
184,200
69.9
314,800
694,000
151.2
214.900
82.6
34
392,800
866,000
132.2
187,900
82.6
3$
425,000
937,000
142.5
202,400
Recommended allowable load for wire rope running over sheave is one-fifth of specified minimum strength.
SMlTHSONIAN PHYSICAL TABLES
T A B L E 198.-MECHANICAL
z
UI
PROPERTIES O F MISCELLANEOUS ALLOYS **
i
i4
zz
Composition percent
D
0
2
Condition
Cadmium alloys
Density g/cmS
Modulus of elasticity kg/mm2
...
5,600
Proportional limit kg/mmz
...
Cu-1.5; Mg-.95
Cast
Zn-5.0
Rod, 1 in. diam., chill-cast from 660°F; aged one month at r.-t.
8.55
...
Cast, ann. 2 hr at 1,650"F
...
20,800
8.76
24,900
...
...
...
...
...
9,140
...
...
...
...
...
...
ID
-I
c I-
m
Cobalt alloys Fe-1.4; Ni-1.1; C-24 C d 5 - 5 5 ; Cr-30-35 ; W-12-17
Cast
Gold alloys Cd-4.6 ; Cu-2.8 ; Zn-1.0 CU-6.3 ; Ag-2.1
Strip, 4 in., ann. 3 hr at 1365°F
CU-15.6 ; Ag-6.0 ; Pt-2.78 ; Rod, Q in. diam., cast, w.-q. from 1290°F Zn-2.38 ; Ni-1.98 Sheet, .050 in., rolled (50% Cu-17.95 ; Ni-17.60; red) 4 hr at 1290"F, a.-c. Zn-6.0 ; Mn-.4 Sheet, .045 in., rolled (50% Cu-34.9 ; Ni-12.14 ; red), ann. 4 hr at Ag-11.11 1300"F, a.-c. Sheet, .05 in., rolled (50% Ni-17.0 ; CU-16.0 ; red), 3 hr at 1380"F, Zn-8.65 a.-c. ** For reference, see footnote 5 5 , p. 187.
...
Yield strength kg/mm2
Tensile strength kg/mm2
5.48
15.77
8.8( 10 diam.)
3.8
42
9.2(rate of strain 6%/minute)
6.5(1.25 in.)
...
32
...
...
...
O(2 in.)
...
Rc 61
...
44
Elongation percent
Hardness number
(.02% offset) 9.84 (2%offset)
...
... ...
45.7
... ...
30.8
55(2 in.)
13.2
32.1
35
37.6
...
48.5
9.28
Endurance limit kg/mm2
45.0 ( d d . pt.1 49.3 (yld. pt.) 45.3 ( d d . pt.1
...
...
...
4(3 in.)
...
...
72.4
44(2 in.)
...
...
63.5
lg(1.25 in.)
...
RB94
73.8
43(2in.)
...
...
TABLE 198.-MECHANlCAL
LO
z
PROPERTIES O F MISCELLANEOUS ALLOYS (continued)
ri I VI 0
I 2
I
p rn
In
Composition percent
Condition
Density g/cma
Modulus of elasticity kg/mm’
Proportional limit kg/mm2
Yield strength kg/mm2
Tensile strength kg/mmz
Pd-16.1; Pt-7.0; Ir-1.2; Zn-.07
Strip, .006 in., w.-q. from 1290°F
...
Pt-9.3 ; Ag-.l ; Zn-.O2 ; Ni-.Ol
Strip, .006 in., w.-q. from 1290°F
...
7,000
Ag-10.0; Pt-6.l; (3-5.9; Ir-.l
Rod, & in. diam., cast, w.-q. from 1290°F
...
7,700
Cable sheath, 1 in. 0.-d. x Q in. wall, extruded, aged 131 days a t r.-t.
...
...
...
...
Linotype : Sb-11.5 ; Sn-4.4 ; Cw.08
Cast
...
...
...
...
8.22
Monotype : Sb-15.3 ; Sn-8.3
Cast
...
...
...
8.4
Bi-.065; Cu-.013; Sb-.0015
Cable sheafh, 2.87 in. 0.-d. X .159 In. wall (ring specimen)
...
...
...
...
1.34
Rod, extruded from 2 E in. to 3 in. diam. at 350400°F Cast, h.-t. and aged
1.77
4,290
9.48
...
...
4,570
...
Rod, 1 in. diam., hot-rolled
...
4,640
...
12,240
Lead alloys Sb.80
Magnesium alloys A1-4.40 : Mn-26 AI-10; Mn>.l ; Si<.5 ; Zn<.3 CU-13 Manganese alloys Cu-18; Ni-10
....
14,050
35.1 6.32 15.8
5.2
...
(continued)
E
CQ
...
61.8
Elongation percent
4.6(8 in.)
Endurance limit kg/mma
...
Hardness number
...
... ...
...
.722( 10‘)
v 10
9.0(2 in.)
...
21
4.0(2 in.)
...
22
...
24.6
24(8 in.)
...
33.7
18(3 in.)
3.09(rate 32(2.5 in.) of strain) .1 (in./in.)/min
47
...
...
3.9
27.4
16(8in.)
10.5(10*)
58
13.4 25.3 (2%offset) ... 27.4
2 ( 2 in.)
6.3 (5 x 10a)
69
2.5(4V/a)
...
...
6.5
,..
...
77.0
T A B L E 198.-MECHANICAL
P R O P E R T I E S O F MISC ELLA N EOU S A L L O Y S (concluded)
I 0
< I?
Composition percent
F
c)
4
g I -
g
Nickel alloys A1-4.78: Mn-.26; C-.17; Fe-.07 : Si-.05
Condition
Density g/cm3
Modulus of elasticity kg/mm2
Proportional limit kg/mmz
Rod, i; in. diam., hot-rolled, ann. 2 hr at 1650°F. slowly cooled
.. .
21,500
Ni-80 ; Cr-13 ; Fe-rem.
Sheet ann.
...
21,800
...
Cr-20
Wrought
8.4
21,800
. ..
Cu-29; Fe-1.5; Si-1.25; Mn.9; C-.2; S<.O15
Sand-cast
8.80
18,300
...
Ni-60; Cr-15; Mo-7; Be-6-1.0 ; Fe-rem.
Quenched
8.3
15,500
. ..
Mo-30; Fe-5
Cast
9.24
21,600
.. .
Silver alloys CU-5.75 ; Cd-1.75
Sand-cast
Tin allow Sb-6.87: Cu-5.69 ; Pb.19; Fe.03 ; As-.02
...
Cast
SblO.01; Cu-9.88; Pb.19; Cast Fe.08
...
9.4
3.6
Yield strength kg/mm2
Tensile strength kg/mm2
18.75 61.6 (.Ol% offset)
...
55.0
44.5 77.4 (yld. pt.1 24.5 49.0 (.2% offset)
Elongation percent
Endurance limit kg/mm*
Hardness number
43 ( 4 v K a )
...
...
...
...
30( 10 in.)
... ...
...
30(2 in.)
...
140 195 190-230
88.0
30(4 in.)
53-58
6-9(2 in.)
... ...
9.9
20.7
40(2 in.)
...
73
41.8 (yld. pt.) 38.5-40.0 (yld. pt.)
6,120
...
5.76 (.2% off set)
8.4
5.2(10 diam.)
2.39
23
5,980
...
6.88 (.2% off set)
7.5
.6( 10 diam.)
2.32
27
T A B L E 199.-PHYSICAL
P R O P E R T I E S O F SOME SPECIAL-PURPOSE A L L O Y S
*
N N
0 Composition percent
Density
Resistivity microhmscm
Temperature coeff. of resistance
Thermal conductivity cgs
Alloys for strength with lightness Duralumiii (A 17 S) Al 97, Cu 2.5, Mg .3.. 2.74 4.3
.37
Super duralumin (24 S) A1 93, Cu 4.5, Mn .6 Mg 1.5 ........... 2.77
.29
Dow metal Mg 92, Al 8.. ....... 1.81 Beryllium alloys Beryllium t ........... 1.83
5.7
7200
70
50
7200
120
23
4.6 90-110
.O-2.5
81.
63.
1.26X1O3
C23-28
10-15
112.
63.
.30
115.
98.
1.33Xlo3
C37-42
12.7
.I6
49.
21.
1 . 1 2109 ~
C85-95
7.0
03
Be 2.60, Ni 1.10, Bal Cu ............... 7.6
7.8
.18
Be 2.0, Co .5, Bal Cu cast .............. 8.1
6.5
.......... 8.21
Alloys f o r sealing t o glass 42% nickel iron 5 Fe 57, N i 42, Mn 1.. 8.1
wrought
30
Elongation 2 in. percent
2.6X10'
.SO
Be 2.0, Co .3, Bal Cu
Hardness number Rockwell
Yield strength kg/mm?
18.7
3.4
.......... 8.75
Young's modulus kg/mm2
Tensile strength kg/mni'
35
.385
wrought
20-200" 12.9x10-0
13 4.3
Alloys t Be .45, Co 2.6, Bal Ca
Thermal expansion per "C
20-200" 1 2 . 4 lo-' ~
20-200" 17~10-~
C38
.35-.50
~~
.
0-200 5.4x10-'
70.3
14.7X103
(Specific heat cgs .12)
For reference, see footnote 5 5 , p. 187. For low-melting-point alloys, see Table 201; for special magnetic alloys, see Tables 470.476. t Annealed and heat treated. -4 number of alloys with beryllium a r e made by different manufacturers with aliout these .same compqsiJions and properties.. These alloys are valuable due to their endurance and wear resistance, for a noninagnetic mateial, and, in addition. good heat and electrical conductlvlty and corrosion resistance. Most of the data a r e taken from a special :\merican Machinist report, McCraw-Hill.
(rori f i i r urd)
T A B L E 199.-PHYSICAL
E .-. v)
P ROPER TIES OF SOME SPECIAL-PURPOSE A LLOYS (continued)
S -4 v) 0
z
Composition percent
I
9 z
2 52
Ez
F
-,
-
P
Density
Chrom iron Fe 70-72, Cr 28-30, hln S . 8 .......... 7.8
Resistivity microhmscm
...
Temperature coeff. of resistance
Thermal conductivity, cgs
...
..............
Yield strength kg/mm2
Young's modulus kgjmm?
Hardness number Rockwell
7.6
Dumet core Ni 42, Fe 58, Cu 20-30 total weight . . . . . . . . . .
Miscellaneous Constantin D Cu 53.3, Ni 45, Mn 1, Fe .6 ............. 8.4 Manganin 5 Cu 84, Mn 12, Ni 4 . . 8.5 Nichromc 8 * 59.9 Ni, 25 Fe, 15 Cr, .1 C .............. 8.08 Invar Fe 63.8, N i 36, C 2 . . 8.05
6.4
...
...
...
.06
...
20-100" 10.3X1O-'
15
49
8x10-'
44
18
100
4x10-'
12
81
1 . 0 8 lo-' ~
23
53.0
20.3x lo3
(Specific heat cgs .15)
70
25.000
100
Radial 8.01oxlO-8 Axial 6.16.5)<10"
1.6
17.900
80
21.000
160 (Specific heat cgs .12)
5 There a r e several alloys of ahout this same composition that are made by different manufacturers. They all have aLou1 the same characteristics. Uses: a
b (I
a f
8
b
Elongation 2 in. percent
100-500" 4.2-5.4X lo-'
h
Sealmet
Tensile strength kg/nim?
20600" 11.4X10-'
Fernico Fe 54, Ni 28, Co 18..
v)
Thermal expansion per "C
Heater and resistance. Standard resistances. I.ow thermal expansion. Thermocouples. Mirrors. is a n exceedingly hard untarnishable metal. Mirrors'and reflecting gratings; takes good polish and does not tarnish easily. .\n alloy sometimes used a s a getter for clearing off last traces of gas in a n evacuated vessel. Used for making special casting and in a r t work.
(contirrrted)
N N N
ln
5
ln t
TABLE 199.-PHYSICAL
-Fz 0
PROPERTIES
z
Density
Tensile strength kg/mm2
8.73
67
8.60
60
0
Composition percent
I <
! i 0 > I-
G!
Chrome1 R S d 90 Ni, 10 Cr, other elements
IW -
AlumelSd 94.1 Ni 3, hln 2, A1 and other elements Stellite Z Co 59.5, Mo 7.25, Cr 10.8, Fe 31, Mn 2, C .9, Si .8
OF SOME SPECIAL-PURPOSE ALLOYS (continued) Linear thermal expansion per "C
Specific heat cas
Resistivity microhmcm
Thermal conductivity cgs
Temperature coeff. of resistance
13.1x10-O 20-100" c
.lo7
4.25
1.92 watts
3.2 20-100
12x10-0 20-100"c
.125
25.
.297 watts
24.5
Brinell hardtiess-512 at 3000 kg
8.3 Spectral reflecting factor : h .15, 20. .30, S O , .75, 1.00, 2.00, 3.00, 4.00, 5.00, 8.00 .32, .42, S O , .64, .67, .689, ,747, .792, 3 2 5 , 348, ,880
Speculum metal Cu 67, S n 33
Spectral reflecting factor : h .188, .200, .251, .288, .305, ,357, .385, .420, .450, SO0 .23, .25, .299, ,377, .417, .51, S31, ,564, .600, .632 .600, .650, .700, 1.00, 1.50, 2.00, 3.00, 4.00, 5.00 .64, .648, .654, .668, .705, .750, ,804, .862, 385, 391
h S O ,
h 7.00, 9.00, 11.00, 14.00
Misch metal 8 Ce 50-70, Fe 1-5, La, Nd P r
.%1, .922, ,929, 936
Pewter 85 Sn, 6.8 Cu, 6 Bi, 1.7 Sb t
Hoskins Thermocouple (see Table 5 1 ) .
(contirid)
SMlTHSONlAN PHYSICAL TABLES
+E
r
<
m 0
N
223
I 0
< I?
F 2
TABLE 199.-PHYSICAL
c)
PROPERTIES OF SOME SPECIAL-PURPOSE ALLOYS (concluded)
Carboloy cemented carbides
I W -
Ln m
Grade designation
44A 55A 77B 78B 831
Composition I
wc
co
94 87 57 82 61
6 13 16 10 7
TaC
Tic
...
...
... 27 ... ...
Hardness Rockwell A 60 kg load
... ...
8 32
Heat-treated steel SAE 1095-.9 C, .3 MI], .04 P, .05 S H.S.S.-17 W, 4 Cr. 1 V
Density g/cmz
Traverse rupture strength Psi
Young's modujus Psi
Thermal expansion in.' in.-' "F-1 70"-1292"
Ultimate limit in compression Psi
Torsion modulus PS'
91.0 88.2 85.0 90.5 92.5
14.95 14.2 13.55 12.55 9.1
240 340 285 225 165
84.5' 79.0 88.0
2.8 3.38 4.03
700 610 610
36.0' 32.5
88.5
3.89
725
36.0
39Rc 64R,
7.8 8.6
...
30 32.5
8.2 7.1
172 600
11.5 5.0
...
...
...
...
...
Hardness versus temperature, "F 5 Grade
80°F
200
400
600
800
1000
1100
12OOOP
831 78B 77B 44A 55A
92.8 91.O 87.4 S0.9 88.0
93.7 90.1 87.0 90.5 88.0
92.3 90.4 85.8 90.0 87.1
90.6 89.0 82.8 88.0 85.5
89.5 86.0 82.5 86.5 83.0
84.3 82.5 79.0 85.5 79.5
83.3 80.8 77.9 84.1 77.0
81.7 ,79.8 76.1 81.8 75.2
' For comparison.
J
X los.
X 106.
X
B Prepared by N. A. Waldrop, Carboloy Co.
T A B L E 200.-MECHANICAL
Metal or alloy approx. comp. percent
PROPERTIES O F TUNGSTEN AND ZINC
Condition
'Ingot sintered, D.= 5.7 mm or 2 2 in. ............ 18.0 1124 Swaged rod, D = .7 mm or .03 in. ............
-
.00114 in. ...... Swaged and drawn hot 97.5% reduction ........... Same as above and equiaxed at 2000" C in H t t ......
!
Zinc,$ Zn :
-
225
_
-
12.7
18,000
0.0
0.0
-
-
- 151.0
- 215,000
4.0 28.0
-
-
-
-
-
-
- 415.0
- 590,000
-
-
-
- 164.0
- 233,500
3.2 14.0
- -
- 118.0
- 168,000
- - -
_
Cast ............ Coarse crystalline. Fine crystalline ... Rolled (with grain or direction of rolling) ........ Rolled (across grain or direction of rolling) ........ Drawn hard ..... 7.1
I
-
7.0 -
-
65.0
0.0
0.0
-
(Impurities Pb, Fe,and Cd) 2.8to 4,000t0 - 8.4 - 12,000
-
-
-
42to 8to 48 10
-
2.0
19.0
2,900
27,000
-
-
- -
-
4.1
25.3 7.0
5,800 -
36,000 10,000
-
-
- - -
437 -
-
443
-
Commercial composition for some incandeseent electric lamp filaments containing thoria ( T h o 2 ) approx. 0.75 percent. t Ordinary annealing treatment makes W,brittle, and severe working, below recrystallization or equiaxing temperature, produces ductility. W rods which have been worked and recrystallized a r e stronger than sintered rods. T h e equiaxing temperature of worked tungsten, with a 5 m i n exposure, varies from 2200°C for a work rod with 24 percent reduction, to 1350°C for a fine wire with 100 percent reduction. Tungsten wire, D = 0.635 mm or 0.025 in. $ Compression on cylinder 25.4 mm (1 in.) by 65.1 mm (2.6 i n , ) , at 20 percent deformation: For spelter (cast zinc) free from Cd, av. 17.2 kg/mm2 or 24,500 ll)/in.z %-or slielter with Cd 0.26, av. 27.4 kg/mmY or 39,000 Ib/in.' Modulus of rupture averages twice the corresponding tensile strength. Shearing strength: rolled, averages 13.6 kg/mm* or 194,000 Ib/in.' Modulus of elasticity: cast, 7,750 kg/mm' or 11,025,000 Ib/in.Z Modulus of elasticity: rolled, 8450 kg/mm' o r 12,000,000 Ib/in.z
T A B L E PO~.-LOW-MELTIING ALLOYS
*
Composition, percent r
Name
Bi
Anatomical alloy ......... 53.5 Wood's alloy ............ 50 Quaternary eutectic alloy.. 49.5 Fusible alloy ............. 38.4 Eutectic alloy (Bi-Cd-Pb). . 51.6 Alloy for fine castings.. .... 50 Rose's alloy .............. 50 Bismuth solder .......... 40 Eutectic alloy(Bi-Sn) .... 57 Eutectic alloy(Bi-Cd) .... 60 Eutectic alloy(Bi-Pb-Sn) . 13.7 Eutectic alloy(Cd-Sn) .... Eutectic alloy(Pb-Sn) .... -
.
See also Table 123.
SMITHSONIAN PHYSICAL TABLES
Cd
-
12.5 10.10 15.4 8.1
40 -
32 -
PI)
17 25 27.27 30.8 40.2 32.2 28 40
-
44.8 38
Sn
Melting point Other
19 Hg10.5 12.5 13.13 15.4 17.8 22 20 43 41.5 68 62
' "F
140 154.4 158 159.8 1%.7 212 212 235.4 280.4 291.2 320 350.6 361.4
"C
60 68 70 71 91.5 100 100 113 138 144 160 177 183
226 TABLE 202.-MECHANICAL
P R O P E R T I E S O F W H I T E M E T A L B EA R IN G A L L O Y S (BABBITT M E T A L )
Experimental permanent deformation values from compression tests on cylinders 31.8 mm (1: in.) diam. by 63.5 mm (23 in.) long, tested at 21°C (70°F). (Set readings after removing
loads.)
Permanent deformation
*
Formula, percent
Pouring temp.
Weight A
@ 454
2;
7.34 7.39 7.46 7.52 7.75
Tin Base 458 .OOO 461 .OOO 465 .025 469 .013 484 .025
6 20.0 15.0 1.5 63.5 337 638 9.33 7 10.0 15.0 - 75.0 329 625 9.73 8 5.0 15.0 - 80.0 329 625 10.04 5.0 10.0 - 85.0 319 616 10.24 9 10 2.0 15.0 - 83.0 325 625 10.07 11 - 15.0 - 85.0 325 625 10.28 12 - 10.0 - 90.0 334 634 10.67
Lead Base 582 .038 607 .025 627 .051 640 .lo2 629 .025 642 .025 666 .064
1 91.0 2 * 89.0 3 83.3 4 5
SI) Cu
4.5 7.5 8.3 75.0 12.0 65.0 15.0
Ph
4.5 - 440 3.5 - 432 8.3 - 491 3.0 10.0 360 2.0 18.0 350
824 808 916 680 661
kg
= IOOOlb
c%
Alloy , -&- , No. Sn
-m
@ 2268
kg
< 4536kg' ~ 1 0 , 0 0 0Ib
= 5000 Ih
Hardness
@, 21°C
zz7-
.02s .038 .0010 ,114 .0005 .064 .0010 ,076 .OOOO .OOOO
.0015 .0010 .0020 ,0040 .0010
.127 .127 .229 .305 254 .0010 254 .0025 .432
.om
.oiso
28.6 28.3 34.4 29.6 29.6
12.8 12.7 15.7 12.8 11.8
.0050 .457 .0180 24.3 .0050 ,583 ,0230 24.1 .0090 1.575 .0620 20.9 .0120 2.130 .0840 19.5 .0100 3.910 .1540 17.0 .0100 3.020 ,1190 17.0 .0170 7.240 .2850 14.3
11.1 11.7 10.3 8.6 8.9 9.9 6.4
.OOlS .0045 .0025 .0030
,380
.3os .olio .180 .0070 ,230 .0090 230 .0090
OU. S . . N a v y Spec. 46M2b (Cu 3 to 4.5, S n 88 t o 89.5, Sb 7.0 to 8.0) covers manufacture of antifrictionmetal castings. (Cornposltlon W . )
T A B L E 203.-RIGIDITY
M O D U L U S FOR A N U M B E R O F M A T E R I A L S
If t o the four consecutive faces of a cube a tangential stress is applied, opposite in direction on adjacent sides, the modulus of rigidity is obtained by dividing the numerical value of the tangential stress per unit area (kg/mm2) by the number representing Ihe change of angles on the nonstressed faces, measured in radians. Rigidity Substance modulus Aluminum .............. 3350 cast 2580 Cr2ss 3550
.......... ...................
....................
3715
cast, 60 C u f l 2 S n . . Bismuth, slowly cooled Bronze cast 88 Cu+12 S n . Cadmidm, c&t Co$er, cast 'I
3700 .... 4060 1240
........... 2450 ............. 4780 ............. 4213 ............. 4450 ............. 4664 CEId .................... 2850 .................... 3950 Iron, cast ............... 5210
SMITHSONIAN PHYSICAL TABLES
Substance Iron. cast
Rigidity modulus
............. 6706 ............. 7975 ............. 6940 ............. 8108 .............7505 Magnesium, cast ....... 1710
................ 7820 ....... 4359 ........... 2888 ........... 2380 Silver ................ 2960 . . . . . . . . . . . . . . . . . . 2650 . . . . . . . . . . . . . . . . . . 2566 '' hard-drawn ..... 2816 Steel ................. 8290 Nickel Phosphor bronze Quytz f iby
Rigidity Sulistance modulus Steel cast ............. 7458 " cast, coarse g r . . ... 8070 '' silver- ........... 7872 Tk, cast ...... 1730
Platinum
..............
1543
..............
6630
...... 6220
............. 1770 1280 ............... 1190 ................. 2290
Clay rock Granite ............... Marble Slate
227 O F THE R I G I D I T Y M O D U L U S W I T H T H E T E M P E R A T U R E
T A B L E 204.-VARIATION
n , = no (1 - at - pt' - #), where t = temperature Centigrade Sulistance
B';tss
no
...... 2652
...... 3200 Cocper ..... 3972 ..... 3900
0108
a106
2158 455 2716 572
Copper .... 4.37* a=.00039 Copper (commercial) . 3.80 .00038 Iron ...... 8.26 .00029 Steel ...... 8.45 .00026
Substance
.y10'0
48 36 -23 28
no
. . . . . . . 8108 ....... 6940 Platinum ... 6632 Silver ...... 2566 Steel ....... 8290
32
Irp
47 -
; t t * = t ~ i e [ l - ~ ( t - 15)l Platinum .. 6.46* a=.00012 Gold ...... 2.45 .00031 Silver ..... 2.67 .00048 Aluminum . 2.55 .00148
a108
BlOe
cylO1O
206 483 111 387 187
19 12 50 38 59
-11
Tin ....... Lead ...... Cadmium . . Quartz ....
-8 11 -9
1.50* a.=.00416 .00164 .80 .0058 2.31 .00012 3.00
Modulus of rigidity in 10" dynes per cm?.
T A B L E 205.-i"TERlOR
FRICTION A T LOW TEMPERATURES
C is the damping coefficient for infinitely small oscillations; T, the period of oscillation in seconds; N , the modulus of rigidity dynes/cm*. Substance ................... Cu Length of wire in cm.. ........ 22.5 Diameter in mm.. ............ .643 100°C c ............ 21.1 I ............ 2.381 N x lo-" ............ 3.32 0°C c ............ 5.88 1 ............ 2.336 N x lo-'' ............ 3.45 -195°C ............ 3.64 I ............ 2.274 N x lo-" ............ 3.64
Ni 22.2 .411 1.34 3.831 7.51 ,417 3.754 7.85 ,556 3.577 8.65
rp
2
T A B L E 206.-RATIO,
Au
22.3 .609 27.5 3.010 2.55 4.82 2.969 2.62 6.36 2.902 2.74
Pd 22.2 .553 1.67 2.579 5.08 1.25 2.571 5,12 .744 2.552 5.19
Pt 23.0 ,812 2.98 1.143 5.77 4.60 1.133
-
3.02 1.111 6.10
Ag 17.2 .601 55.8 1.808 2.71 7.19 1.759 2.87 1.64
1.694 3.18
Quartz 17.3 .612
4.69 1.408 2.26 1.02 1.425 2.20
p, O F TRANSVERSE CONTRACTION T O LONGITUDINAL E X T E N S I O N U N D E R T E N S I L E STR ESS
(Poisson's Ratio) Metal p p
Ph
Au
Pd
Pt
Ax
Cu
Al
Ri
Sn
Ni
Cd
Fe
.45
.42
.39
.39
.38
.35
.34
.33
.33
.31
.30
28
for: marbles, 2 7 ; granites, .24; hnsic-intrusives, . 2 6 ; glass, .23.
T A B L E 207.-A
S CAL E O F H A R D N E S S BASE D U P O N T H E R E L A T I V E H A R D N E S S OF SELECTED MATERIALS
Each material will scratch the m e following it in the table.
10 Diamond 9 Corundum
8 Topaz
6 Feldspar
4 Fluorite
7 Quartz
5 Apatite
3 Calcite
SMITHSONIAN PHYSICAL TABLES
2 Rock salt or gypsum 1 Talc
22s
T A B L E 208.-RELATIVE
........
Agate 7. 1.7 Alabaster Alum ..... .2- 2.5 Aluminum 2.9 Amber .... .2- 2.5 Andalusite 7.5 Anthracite ...2.2 Antimony 3.3 Apatite ...... 5. Aragonite . ...3.5 Arsenic 3.5 Asliestos 5. Asphalt ... .l-2. Augite 6.
.... ... ...
....
...... ..... .......
....... ....
Barite 3.3 Iiellmetal 4. Beryl 7.8 Ijisniuth ...... 2.5 Ijoric acid ....3. I3rass .3- 4. Calamine 5. Calcite 3. Copper .. .2.5- 3. Corundum 9. Diamond ... . I 0. Dolomite . . 3 . 5 - 4. Feldspar 6. Flint 7.
........
..... ..... ....... ....
......
........
T A B L E PO%-RELATIVE
* c . ... .l0. B . .... 9.5 Cr .... 9. T a . . . . 7. 0 s .... 7. W .... 7. Si .... 7. RU .... 6.5
.
Ir ..... 6.5 Ge ..... 6.2 Rh ..... 6 Mo .... 6 ? Mn .... 5. c o ..... 5. Ni ..... 5. Pd ..... 4.8
Diamond .
SMlTHSONlAN PHYSICAL TABLES
.
Zr Pt Ti Fe As Sb Be Cu
HARDNESS
Fluorite ...... 4. Galena .......2.5 Garnet 7. Glass ... .4.5- 6.5 Gold .... .2.5- 3. Graphite ..5- 1. Gypsum .1.6- 2. Hematite .....6. Hornl)lende 5.5 Iridium ...... 6.5 Iridosmium . . .7. Iron .4- 5 . Kaolin ....... 1. Loess (0") 3 Magnetite ....6.
....... ..
.
...
......
.....
Marble ... .3. 4. Meerschaum 23. . Mica ........2.8 Opal .4- 6. Orthoclase 6. Palladium 4.8 Phosphorbronze 4. Platiniridium 6.5 Platinum ..... 4.3 Pyrite .......6.3 7 Quartz Rock-salt 2.
.......... ....
..... ....
....... .
....
Ross' meta1.2.5-3.0 Serpentine .3. 4. Silver .2.5. 3. Silver chloride 1.3 Steel .5- 8.5 Stibnite ...... 2. Sulfur .1.5- 2.5 Talc ......... 1. Tin 1.5 Tonaz ....... 8. Tourmaline 7.3 Wax (0') 2 Wood's metal ..3.
... .........
..
.........
... ......
HARDNE S S OF T H E E L E M E N T S ( M E A N S )
..... 4.5 ..... 4.3 ..... 4.0 ..... 4. ..... 3.5 ..... 3. ..... 3. ..... 3.0
A1 . . 2.9 Ag ..... 2.7 Zn . .... 2.5 Au .... 2.5 Ce . .... 2.5 Bi .... 2.5 T e . .... 2.3 2.0 S
.
MP .... 2.0 Se' ..... 2.0 Cd ..... 2.0 Sr . . . . . 1.8 S n ..... 1.8 P b ..... 1.5 Ga ..... 1.5 Hg .... 1.5
In ..... TI ..... Li ..... K ...... Na .... Rb .... c s .....
1.2 1.2 .6 .5 .4
.3 .2
O F MASONRY MORTARSGB
T A B L E 210.-PROPERTIES
Proportions by weight
Proportions by volume I \
T y p e of cement in mortar
Portland ....................... Portland ....................... Portland ....................... Masonry ....................... Slag ........................... 68
Cement
Lime hydrate
1 1 1 1 1
.2 1 2 0 .5
Brick assemblage Bond Compressive strength Water strength in ten+on retentivity percent PSI li Psi
I
Sand
Cement
3 6
1 1 1 1 1
9 3 4.5
Lime hydrate
.1 .5 1 0 .3
Sand
2.5 5 7.5 3.5 4.5
6400 1900 800 1200 1100
Shrinkage, 180 days in a i r percent
73 81 83 80 83
69 49 40 40 24
.12 .15 .16 .14 .23
Watstein and Seese,. 'Amer. SOC.Test. Mat. Gull., August 1947, p. 77 Strength developed in actual buikljng ,practice will tend to. b e lower than these lahoratory values.
TABLE~Zll.--COMPR€SSIVE A N D T E N S I L E STRENGTH O F CONCRETES M A D E W I T H VARIOUS T Y P E S O F CEMENTSB Tensile strength
Compressive strength * (Ib/in.Z) atType of cement
1 day
Normal Portland (average of 5 brands). ............... Moderate heat Portland (average of 4 brands). .............. Portland-Pozzolan (average of 2 brands) ............... High-early strength Portland (average of 3 brands). ............... 1100 High Alumina ........................ 4000
3 days
1 day
3 days
7 days
28days
3mo.
1 yr
180
260
360
360
360
By Normal Portland (average of 5 brands). ............... Moderate heat Portland (average of 4 brands). ............... Portland-Pozzolan (average of 2 brands). ............... High-early strength Portland (average of 3 brands) ................ 1700 4600 High Alumina ........................ _ .
:!,
1200
2 s days
3 mo.
By weight-1 part cement to 6 parts sand and gravel 5900 1500 2500 4600 5400
_ .
7 days
1yr
(Ih/in.*) at-
5400
6300
-
170
260
390
400
440
-
150
230
360
340
380
160 300
320 330
440 290
480 280
400
-
400 220
part cement to 4.5 parts sand and gravel 3600 5700 6500 7500 -
260
390
490
490
490
2200
4200
1000
2000
3800
4700
5000
2900 4300
4000 5000
5700 5500
-
5700 4100
weight-1 2300
-
M
1900
3300
5500
6600
7800
-
260
390
500
500
530
1600
2700
5000
5700
6100
-
220
310
440
440
490
3600 -
4800 5200
6100 6300
-
7300 4600
220 380
400 440
500 440
510 350
480 -
480 305
Schunian and Tucker, Nat. Bur. Standards Journ. Res., vol. 31, p. 107, 1943. Strenfith developed in actual building practice will tend to he lower than these lahorntory values.
0 r
n c!
i=
a Y
230 T A B L E 212.-EFFECT
O F QUANTITY OF M I X I N G W A T E R ON STRENGTH OF CONCRETE"
W/C ratio, U. S. al. per sack of cement (944f) .......... 5.0 Compressive strength at 28 days-lb/in.l .............. 5000.0
5.5
6.0
6.5
7.0
7.5
4500.0
4100.0
3600.0
3300.0
2900.0
"Portland Cement Association, Design and control of concrete mixtures, 9th ed., p. 7.
T A B L E 213.-COMPARISON
O F S T R E N G T H A N D E L A S T I C PROPERTIES O F CONCRETEB1
Modulus of elasticity psi X lo-' Compressive strength psi *
Modulus of rupture psi
Compressive (secant)
Flexural (secant)
Dynamic (sonic)
2000 4000 6000 8000
400 600 750 850
2.5 4. 5.5 6.5
3.5 5. 6. 6.5
4.5 5.5 6.5 7.
Values given are approximations only since the ratios between the different properties depend on age, aggregates, cement, and other factors. 61 Stanton, T. E., Amer. SOC.Test. Mat. Bull. No. 131, p. 17, 1944; Witte and Price, ibid., p. 20; Schuman and Tucker, Nat. Bur. Standards Journ. Res., vol. 31, p. 107, 1943; Connerman and Shuman, Proc. Amer. SOC.Test. Mat., vol. 28, p. 527, 1928. As determined on specimens with length to diameter ratio of 2.
T A B L E 214.-EFFECT
O F E N T R A I N E D AIR ON COMPRESSIVE S T R E N G T H OF CONCRETEB2 Percent change in s t r e n g t i d u e to 5 percent added air
Cement Sacks per yd8
7-day
28-da;
4.5 5.5 6.5
+ 9 -12 -17
+ 4 -16 -20
Walker and Bloem Journ. Amer. Concrete Inst., vol. 42, p. 629, 1946. given ar; for mixes in which full advantage was taken of the sand and water-content reductions made possible by the increased workability resulting from entrained air. B2
* Strengths
T A B L E 215.-WEIGHTED AVERAGE S T R E N G T H A N D W A T E R ABSORPTION FOR H A R D A N D SALMON BRICKS M A D E I N U. S. A.Compressive strength psi .'iverage
Range
Weighted average all samples . . . . . 7250 H a rd samples . . 7430 (16,0004000) Salmon . .. .. . . . .. 4090 ( 6.500-2300)
..
cold
cold
boiling
1150 1180 (2350-740) 680 (1440-300)
10 10 16
11 11 17
14 13.5 19
McBurney and Lovewell, Proc. Amer. Sac. Test. Mat., vol. 33, p. 1. 1933.
SMITHSONIAN PHYSICAL TABLES
Water ahsorption percent
hIorlulus of rupture 1)si & Average Range
T A B L E 216.-ULTIMATE Brick strength Ib/in.a
Cement mortar lC:l/$ L:3S
Cementlime mortar lC:lL;6S
8000+ 4500-8000
2000 1000
1200
800
Lime mortar 1L:3S
Brick strength Ib/in.Z
800 400
25004500
Cement Cementlime mortar lC:l/$ mortar L:3S IC:lL;6S
700 500
1500-2500
Nat. Bur. Standards Res. Pap. R P 108. C-portland cement; L-Lime; S-sand. proportions by volume. ciations Building Code Requirements for Masonry (A41.1-1944).
T A B L E 217.-STRENGTH
231
S T R E N G T H S O F BRICK M A S O N R Y
560 400
Lime mortar 1L:3S
275 150
See American Standard Asso-
AND STIFFNESS O F AMERICAN BUILDING STONE
*
(All values in pounds per square inch.)
Stone Granite
Compressive Flexure Density strength. (dry) strength Ib/fta PSI PSI 165 24500 (7700-53,OOO)t 2810 (1430.5190) (116 samples) (5 samples)
. ..
..
148 2600-28,400
640-2000t 470-19009
. .. .
170 7850-29,530
900-4270
Limestone Marble
. 135 ...... 170
Sandstone Slate
4470-34,900f
830-3840t 800-3100$
700,00010,400,000$
Compressive modulus of
elasticity
PSI 4,545,000-8,333,000 1,600,000-11,200,000$
1,840,00011,780,000
260-6570+ 500-14,100
Furnished by Herbert Insley, National $ Perpendicular to bed. 5 Parallel to bed.
SMITHSONIAN PHYSICAL TABLES
Flexural modulus of Shear elasticity PSI PSI 4350 (3900-4600) 2,526,000(4 samples) 12,950,000
Bureau of
9,800,000-
18,000,000
Standards.
t Wet
samples
12
percent
less.
232 TABLES 21S-223.--PHYSICAL PROPERTIES OF LEATHER
*
Most physical properties of leathers not only depend on the kind of skin and method of tannage but also vary widely from one hide to another of the same kind, from one location to another within the same hide, and in local random fashion. For example, the tensile strength of vegetable-tanned cattle hides shows coefficients of variation of G percent among bends (from different hides), 9 percent among locations (within a hide), and 11 percent for local random fluctuations.'5 The Federal Specificatioiis Board in the United States requires that at least 7 pieces of leather he sampled for most physical tests."6 I n any use of a physical property of leather, such as designing an experiment or acceptance testing for commercial purchase, these variations and the consequent statistical precautions must be observed. The figures helow, then, are illustrative, not precise values for any given type of leather.
* Prepared by
R. Hobbs, National Bureau of Standards. Beek, J., and Hobbs, R. B., Journ. Amer. Leather Chem. Assoc., vol. 36, p. 190, 1941. Federal specification for leather and leather products, Kr-L-311. Government Printing Office, Washington, D. C., March 1945. 66
T A B L E 218.-TENSILE
Kind of leather
S T R E N G T H A N D E L O N G A T I O N O F L E A T H E R O7
Thickness 1/64 in.
Belting, vegetable-tanned steer.. ..... 11 Calfskin, chrome-tanned ............. 3 Calfskin, vegetable-tanned ........... 3 Cordovan, horsehide butt ............. 3 Deerskin, chrome-tanned ............ 5 Garment, chrome-tanned horse.. ..... 4 Kangaroo, chrome-tanned ........... 2 Kid, chrome-tanned ................. 2 Sheepskin, shearling ................ 3 Shoe upper, chrome retan ............ 6 Sole, vegetable-tanned steerhide. ...... 13 8'
Iclongation, percent
Tensile strength Ib/in.*
at 1000 Ib/in.2
6000 4500 6000 2000 6500 6000 7000 5000 1500 4500 3500
at break
6 8
25 36 29 28 58 60 40 59 38 40 15
5
22 26 14 15 19 25
15 4
Wilson, J. A,, Modern practice in leather manufacture, Reinhold Publishing Co., New York, 1941.
T A B L E 219.-DIFFUSION C O N S T A N T S O F W A T E R VAPOR T H R O U G H L E A T H E R , AS F R A C T I O N S O F T H E D I F F U S I O N C O N S T A N T T H R O U G H A I R (20°C) eR Heavy chrome upper
Box calf
Glove capeskin
Patent leather
Vegetable-tanned insole
.I-.2
.21-.26
.17-.26
,004
.09
Progress in leather science, 1920-1945, British Leather Manufacturers' Res. Assoc., London, 1948.
SMITHSONIAN PHYSICAL TABLES
233 T A B L E 220.-REAL
AND APPARENT DENSITIES O F L E A T H E R (70°F AND 65 PERCENT, R E L A T I V E H U M I D I T Y ) ao
Kind af leather
..
iipparent density
.. . . . . .
Raw bated skin ... . . . . . . . . . . .. . . . . . . . . . . . . . Formaldehyde tanned buckskin . . . . . . . . . . . .. . . . . . Chrome-tanned shoe upper. . . . . . . . . . . . . . . . . . . . Vegetable-tanned sole .. . .. . . ... . . . . . . . .. . . . . . .. Chrome-tanned sole , . . . . . . . . . . . . . . . . . . . . . . , . . . . Formaldehyde-tanned suede . . . . . . . . . . . . . . . . . . . . . Vegetable-tanned goatskin .. . . . . . ., . . . . . . . . . .. . .
.
.
Real density
.41- .45 .56 .88 1.03-1.15 1.17 SO- .58 .65
1.43 1.52 1.34 1.46-1.49 1.46 1.55-1.62 1.52
mKanagy, J. R., and Wallace, E. I.., Journ. Amer. 1,eather Chem. Assoc., vol. 38, p. 314, 1943; Rose, II., ibid., p. 107.
T A B L E 221.-COEFFICIENT
O F CUBICAL EXPANSION O F L E A T H E R
(Measured in water between 25" and 75°C) Chrome
496-565 X 10."
"
Chrome-vegetable
Vegetable
Alum-vegetable
339-298 X 10."
502-543 X lo-'
590-599 X 10.'
Iron
Formaldehyde
592 x 10.'
Tendon collagen
532 x 10.'
538 x lo-'
ConzpressiDility.?'-The lower limit of the coefficient of compressibility of vegetabletanned sole leather has been estimated a t 33 X lo-" bar-'. Commercial sole leathers subjected to 3000 Ib/in.* pressure for 3 minutes were compressed from 4 to 17 percent. 70
71
Weir C. E., Journ. Amer. Leather Chem. Assoc., vol. 44, p. 79, 1949. Weir: C. E., Journ. Amer. Leather Chem. Assoc., vol. 40, p. 404, 1945.
O F R E L A T I V E H U M I D I T Y OF ATMOSPHERE AT ON PROPERTIES O F LEATHER'*
T A B L E 222.-EFFECT 2l.C Percent relative humidity
Tensile strength lb/in.2
0 33 52 76 97
4630 5210 5220 5280
n
3170 4550 4840 5080 5420
Stretch at 2000 Ib/in.z percent
Increase In area percent
Increase in thickness percent
Vegetable-tanned calfskin
-
.o
.O 2.3 2.9 4.6 9.6
6.4 7.3
.O 1.6 1.9 4.2 14.0
7.8 8.9 10.2 14.0
5.2 5.7
Chrome-tanned calfskin
3j 52 76 97 '2
16 19 19 21 21 19 25 23 24 25
.O
Evans, W. D., and Critchfield, C. L., Nat. Bur. Standards Journ. Res., vol. 11, p. 147, 1933.
T A B L E 223.-THERMAL
CONDUCTIVITY O F L E A T H E R
*
cal cm-' sec-' "C-' Vegetable sole leather
4.2
x 104
Calfskin upper
2.0 x lo-'
l'or reference, see footnote 68, p. 232.
SMITHSONIAN PHYSICAL TABLES
Kid suede
1.5 x lo-'
Hide bellies
2.3 x 10-4
234 TABLES 224-229.-VALUES OF PHYSICAL CONSTANTS OF D I F F E R E N T RUBBERS * Where a range is given, there are available several observations that differ. In most cases the differences are thought to be real, arising from differences in the rubber rather than from errors of observation. Where a single value is given, it is either because no other observaticns are available or because there seems to be no significant disagreement among values within the errors of observation. The latter values are marked with an asterisk (*). Where no values are given, no data have been found. Where dashes are shown, either the physical measurement is impossible or the values obtained are not significant. Values at 25°C and 1 atmosphere pressure. Since these data were compiled from a number of sources, no specific references are given. A list of references follows : BALL,J. M., and MAASEN,G. C., American Society for Testing Materials Sympsium on the Applications of Synthetic Rubbers, March 2, 1944. BEKKEDAHL, NORMAN, Natural rubbers-a general summary of their composition, properties, and uses, India Rubber World, vol. 116, p. 57, 1947 ; also in Compounding ingredients for rubber, published by India Rubber World, New York, 1947. BEKKEDAHL, N., and ROTH,F. L., Unpublished observations of density and expansivity, 1948. BOONSTRA, B. B. S. T., Properties of elastomers, chap. 4 of vol. 3 of Elastomers and plastomers, their chemistry, physics, and technology, edited by R. Houwink, Elsevier Publishing Co., New York, 1948. DAWSON, T. R., and PORRITT,B. D., Rubber physical and chemical properties, Research Association of British Rubber Manufacturers, Croydon, England, 1935. DILLON,J. H., PRETTYMAN, I. B., and HALL,G. L., Hysteretic and elastic properties of rubberlike materials under dynamic shear stresses, Journ. Appl. Phys., vol. 15, p. 309, 1944; Rubber Chem. Techn., vol. 17, p. 597,1944. HAMILL,W. H., MROWCA, B. A., and ANTHONY, R. L., Specific heats of hevea, GR-S, and GR-I stocks, Ind. Eng. Chem., vol. 38, p. 106, 1946; Rubber Chem. Techn., vol. 19, p. 622, 1946. KEMP, A. R., and MALM,F. S., Hard rubber (ebonite), chap. 18 in Chemistry and technology of rubber, edited by C. C. Davis and J. T. Blake, Reinhold Publishing Corporation, New York, 1937. PRETTYMAN, I. B., Physical properties of natural and synthetic rubber stocks, Handbook of Chemistry and Physics, 30th ed., p. 1301, Chemical Rubber Publishing Co., Clevelaad, Ohio, 1947. RANDS,ROBERTD., JR., FERCUSON, W. JULIAN,and PRATHER, JOHNL., Specific heat and increases of entropy and enthalpy of the synthetic rubber GR-S from 0" to 330" K, Nat. Bur. Standards Journ. Res., vol. 33, p. 63, 1944 (RP1595). SELKER,ALANH., SCOTT, ARNOLD H., and MCPHERSON,ARCHIBALD T., Electrical and mechanical properties of the system Buna S-Gilsonite, Nat. Bur. Standards Journ. Res., vol. 31, p. 141, 1943 (RP1554). WILDSCHUT,A. J., Technological and physical investigations on natural and synthetic rubbers. Elsevier PubWOOD,LAWRENCE A., BEKKEDAHL, NORMAN, and ROTH, lishing Co., New York, 1946. FRANK L., The measurement of dersities of synthetic rubbers, Nat. Bur. Standards Journ. Res., vol. 29, p. 391, 1942 (RP1507) ; Ind. Eng. Chem., vol. 34, p. 1291, 1942; Rubber Chem. Techn., vol. 16, p. 244, 1943. WOOD,L. A., and TILTON,L. W., Refractive index of natural rubber a t different wavelengths, Proc. Second Rubber Techn. Conf., p. 142 (Institution of the Rubber Industry, London), 1948; Nat. Bur. Standards Journ. Res., vol. 43, p. 57, 1949 (RP2004). WOOD,LAWRENCE A., Synthetic rubbers: a review of their compositions, properties, and uses, Nat. Bur. Standards Circ. C427, 1940 ; Rubber Chem. Techn., vol. 13, p. 861, 1940; India Rubber World, vol. 102, p. 33, 1940. WOOD, LAWRENCE A., Values of the physical constants of rubber, Proc. Rubber Techn. Conf., p. 933 (Institution of the Rubber Industry, London), 1938; Rubber Chem. Techn., vol. 12, p. 130, 1939.
* Prepared
by Lawrence A. Wood, National Bureau of Standards.
SMITHSONIAN PHYSICAL TABLES
T A B L E 224.-PROPERTlES
Density
.................
Expansivity (l/V)(dV/dT)
Unit g
cmJ
........ (deg C)-'
Thermal Thermal conductivity Specific heat
..... cal sec-' cm-' (deg C)-' ............. calg-'
O F N A T U R A L RUBBER ( H E V E A )
Unvulcanized
Pure-gum vulcanrzatc
Vulcanizate containing about 33% carbon black
235 Ebonite (hard rubber)
.906-.916
.92-1.0
1.12-1.I 5
1.13-1.18
67x10-'
66x10-'
53x10-'
19X1Od
32)<10-'
34x10-'
39-45XlO-'
39-42><10-'
.45
.44-.51
.36
.34
9.61X1Os
7.92XlOS
(deg C)-'
Heat of combustion.. ..... cal g-' Second-order transition temperature ........... deg C
10.82x 10'
10.63X 10'
-69 to -74
-72
Optical Refractive index, nD.. ..... dnD/dT .................. (deg C)-'
1.5191 -37X lo-'
1.5264 -37x10-'
2.37-2.45
2.7
2.8-2.9
.002 2-40X
.002
.005
Electrical Dielectric constant (1000 cps) ............. Loss factor, tan (goc-@ (1000 cps) ............. Conductivity (1 min) ..... mho cm-' Mechanical Compressibility ( I N ) (dV/dP) ........ Shear modulus ........... Initial slope of stress-strain curve ................. Ultimate elongation ...... Tensile strength ......... Complex dynamic shear moda'+ i a" ulus (6ocps), -
+80
lo-''
lo-'?
bar-' dynes cm-'
51X10d 4x10'
37X10d 20x10'
24X10d
dynes cm-' percent kg cm-'
10-2ox 106 750-850 170-250
30-6OX10" 550-650 250-350
55x10'' 3-8
;......... dynescm-'
3-1OX1O8
25X10"
.3-.6X 10' 75
3x10'
I..
Real part G',
a'
a"
Imaginary part G", - .... dynes cm-' Resilience (ball rebound). . percent
SMITHSONIAN PHYSICAL TABLES
75
45-55
600-800
236 T A B L E 225.-PROPERTIES
OF GR-S (HYDROCARBON O F ABOUT 23.5 P E R C E N T BOUND S T Y R E N E C O N T E N T ) Vulcanizate containing about 33% carbon black
Unvulcanized
Pure-gum vulcanizate
.9325-.9335 66x10-'
.961 66X10-6
1.15 53X10-6
Thermal Specific heat ....................... cal g-' (deg C)-' Second-order transition temperature. . deg C
.45 -59 to -64
.43
.36
Optical Refractive index, nD ................. dnD/dT ............................ (deg C)-'
1.534-1.535 -37x10-'
Unit
Density ............................ g cm-' Expansivity (1/V) (dV/dT) ......... (deg C)-'
Electrical Dielectric constant (1000 cps) ........ Loss factor, tan (90"-0) (1000 cps). .
2.85 .003
Mechanical Shear modulus ..................... dynes cm-' Initial slope of stress-strain curve., . dynes cm-' Ultimate elongation ................ percent Tensile strength .................... kg cm-' Complex dynamic shear modulus ' u' +i u" (60 CPS), 7 .................
.
Real part G',
7 .................... U'
__ __ -__
dynescm-'
Un
Imaginary part G", - .............. dynescm-' Resilience (ball rebound).
........... percent
T A B L E 226.-PROPERTIES
---
10-20x10" 400-600 14-28
25x10" 30-60x10" 400-600 170-280
5x108
55x10"
1-2x10"
9x10"
65
40-50
O F NEOPRENE (CHLOROBUTADIENE POLYMER)
Unit
Density ................................ g cm-3 Expansivity (1/V) (dV/dT) ............. (deg C)-'
Thermal Second-order transition temperature..
..... deg C
Unvulcanized
1.23
Pure-gum vulcanizate
Vulcanizate containing about 33% carbon black
1.30 61~10-~
-38 t o -41
0p t ica I
Refractive Index nD ...................... dnD/dT ................................ Mecha&al Shear modulus .......................... Initial slope of stress-strain curve. ....... Ultimate elongation ..................... Tensile strength ........................ Complex dynamic shear modulus (60 cps), u' i u"
+ €
Real part
............................... G', 7 ......................... 0'
U"
(deg C)-'
14x10"
dynes cm-* dynes cm-' percent k g cm-'
15-3OXlO" 800- 1000 250-375
dynescm-'
6x10'
30-36X 10"
1x100 65
6x10' 40-50
Imaginary part G", ................... dynes cm-* Resilience (ball rebound). ................ percent
SMITHSONIAN PHYSICAL TABLES
1.558 -36X10-'
237 T A B L E 227.-PROPERTIES
O F GR-1 ( B U T Y L RUBBER, ISOBUTENE-ISOPRENE COPOLYMER) Valcani-rate . -.. _ ~ ~
Unit
Unvulcanized
Density ................................ g cm-' Expansivity (1/V) (dV/dT) ............. (deg C)-'
Thermal Second-order transition temperature.. Optical Refractive Index
nD
Electrical Dielectric constant
Pure-gum vulcanlzate
.93 57x10-'
.92
..... deg C
containing about 33% carbon black
1.13 46X10-'
-67 to -73
......................
1.5091
......................
2.1-2.6
Mechanical Shear modulus .......................... Initial slope of stress-strain curve. ....... dynes cm-' Ultimate elongation ..................... percent kg cm-' Tensile strength ........................ Complex dynamic shear modulus (60 cps),
*.................................
-_ --_ -_
7-15X10" 750-950 180-210
18Xloa 30-40X 10' 650-850 180-210
4-1Ox1Oa
36x10"
€
Real part G',
U'
T .........................
dynes cm-*
a"
................. dynes cm-' Imaginary part G", t.. Resilience (ball rebound).
................ percent
T A B L E 228.-COMPRESSION
2-3X10a
16x10'
8
7
O F RUBBER'3
Commercial soft-packing, black, density about 1.9 g/cm3 and
V O= 1 cm3
'r
A Pressure kg/cma
20°C
5,000 10,000 15,000
.1300 .1800 2146
-78.8"C
.0794 .I235 .1538
Pressure kg/cm2
20°C
-78.8"C
20,000 25,000 30.000
.2345 .2535 2700
.1772 .1958 2119
Pressure kg/cm*
20°C
-78.8"c
35,000 40,000 45,000 5O;OOO
2845 2960 .3050 .3124
2254 2364 2460 2540
Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vo1. 74, p. 50, 1940.
SMITHSONIAN PHYSICAL TABLES
N
w
00
I 0
< I? c)
TABLE 2 2 9 . 4 O M P R E S S I O N O F S Y N T H E T I C AND N A T U R A L RUBBERS 74
AV/Vo
F
4 W D
2 Ln
Buna S No. 8774
Ameripol D-7700
1.376 .0465 .0872
1.370 .0367 .0715
.1567 .--_ .1793 .1990
.1493 .i715 .1903
.1304 .1507 .1686
4,800
6,300
4,900
Koroseal Neoprene P k r p ~ ~ / D e n s i t Y Duprene No. 89023 No. 832
1.589 .0302 .M15
2000 5000
is:ooo
20,000 25,000
-.. .
1198
.1301 .1462
1.250 .0511 .0967 -1679 __ .1891 2060 ~
Pressure of dis3,500 continuity Amount of discontinuity 2.0XlO~
AVIVo a t discontinuity
74
Goodrich Goodrich Goodrich D-402 D-420 D-453
Goodrich D-453
Butyl gum
Butyl tread
Hevea gum
Hevea tread
1.176 .0407 .0792
1.193 .0422 .0837
1.350 .0385 .0745
1.514 .0329 ,0636
1.309 .0432 .0842
.967 .0519 .0945
1.125 .0423 .0807
.950 .0535 .lo17
1.122 .0462 .0870
.1445 .1663 .1840
.1454 .1670 .1847
.1378 .1587 .I769
.1162 .1347 .1513
.1480 .1692 .1862
.1543 .1744 .1920
.1334 .1510
.1697 .1929 2116
-1490 .1707 .1900
5.3X1Od 3.4X10" 1.5X10"
.0516
Ratio of width of hysteresis loop to maximum displacement .083
1.357 .0460 .0956
Hood 844A
,059
.0939
.lo12
.0707
.082
.087
.064
Bridgman, P. W., PIN. Amer. Acad. Arts and Sci., vol. 76, p. 22, 1942.
.067
.1667
4,800
6,200
6,500
3x10-'
5x104
2x10-6
.0851
.lo83
.lo26
.072
.080
.lo3
.077
.083
.090
.074
.073
T A B L E 23O.-CHARACTERlSTlCS
. . . . . . .. . . .. . . . . . . . . . .. .. . Polyvinyl formal . . . . . . . Ally1 and polyester ... ... Cellulose nitrate . . ..... . Polysterene .... . . .. . .. . Phenolic molding . . . . . . . Ethyl cellulose .. . . . . .. . Acrylic plastic
1.18-1.19 .91
Nylon
1.14-1.09 1.2-1.3 1.10-1.46
.. .
1.485-1.500 1.53
.85-.91 1.5
.. .
7.7
1.53-1.56
1.35-1.40 39-.92 1.49-1.51 1.05-1.06 1.3-1.5 1.12-1.14
.. . . .. ...
9 10
1.59-1.60
... 1.47
4-6 5.8 3.7
OF A N U M B E R O F PLASTICS'6
.35
>loi5
450-500 3.5-4.5 11000-14000 3.3-4.5 M88-M92
.4
4.5X10's
385
300-600 3.6-3.7 9000-17000 26 380 3.4-5. 21000-230007 3-8.2
...
4.1
8.0-10. 4.8-5.0
26-.55
>4X10i4
8.-12. 5.5
.3-.4
10-15X1010 300-600 7.-7.-5
6.-8.
.32
10"-1010
2.4-3.3
500-700 2.4-2.6
3.-4.5 4.7
.35-.40 1-10O)<1Oi1
...
5.-9.
10-20 3.8-7
.3-.75
350-500
.. .
10'2-10''
'75Taken from Technical data on plastics, Plastic Mfg. Assoc., Inc., May 1948. For trade names see original reference. Compression. t To fracture.
13000
4
R-118 M80-M90 M85-MI19
6000-11000 1.9-2.2 R95-Rl15 11000-16000 4.-5.
...
8.-12.
M85-M95 M110-Ml20
11000-13000t 1.3-3.5 R100-R110
$ w
+ 3 M
z
rn
2 rl
rn
240
T A B L E 231.-PROPERTIES
Name
.................... Benzyl mellacrylate .................... 4-cyctolaxyl-cyclohexyl metharcylate .... Menthyl metharcylate .................. Ethylene dimethacrylate ................ Methyl methacrylate ................... Styrene .............................. 0-chlorostyrene ....................... Pentachlorophenol methacrylate ........ Vinyl naphthalene ..................... Ally1 methacrylate
O F SOME O P T I C A L Monomer
Polymer & NDrn v*
1.5196
49.0
1.5680 1.5250 1.5064 1.5063 1.490 1.5916 1.6098 1.608 1.6818
36.5 53. 54.5 53.4 56.25 31.0 31.0 22.5 20.9
NDrn
B o i l i y point C V
1.4340 at 23" 1.514 1.4913
233 111/1 mm
1.4547 1.417 1.5434 1.567
9 2 j j mm 100 146 47/37 mm
... ...
55/30 mm
( M P 88.5'C)
92-95/mm
Polaroid .Corporation, NDKC Report, Library of Congress P B 28553. See Table 523.
T A B L E 232.-GENERAL Cyclohexylmethacrylate
Sterene
Index N d 0 " C .. 1.50645 1.59165 Index tolerance . +.0015 +.0015 v "
values ....... 56.9 " tolerance. +.5
31.0 +.3
Partial dispersion
NF-NC ....... ND-No ....... NF-ND .......
,00895 ,00258 .00638
SMITHSONIAN PHYSICAL TABLES
.01920 .00536 .01384
P R O P E R T I E S O F O P T I C A L PLASTICS
Thermal exp. coeff.. .. Thermal conductivity.
Cyclohexylmethacrylate
9.0X10-5/"C 2.31 X lo-'
(cgs) Index charge per "C.. -.000131 Max. operating temp.. 150°F Density ............. 1.095 gjcm' Moles hardness ...... 2-3 Over-all visual transmittance through sample # in. thick.. .... 99.1%
Sterene
8.0X10-6/oC 2.21x lo-' cal sec-' cm-'OC
-.000136 150"F
1.049 g/cmS 2-3 99.9%
T A B L E S 233-236.-PROPERTIES
OF F I B E R S *
241
The values of the properties of natural fibers are influenced by their source, extent of processing or purification, age, temperature and moisture content when tested, and method of test. Those of man-made fibers not only reflect these influences but they can be and commonly are varied to meet the requirements of use by suitable niodifications in composition and manipulation of the fibers during production. These facts and the lack of strictly comparable data for all the principal fibers led to the decision to show in the tables the range in values of the properties reported in recent literature rather than selected values. The azlons, made from different proteins, are lumped together and so are the ordinary, medium, and high-tenacity rayons and the several varieties of resin fibers of each kind. References to literature giving more information and more detailed information are as follows : Textile World’s synthetic fiber table, 1949 rev., compiled by C. W. BENDIGO,editor, Textile World, September 1949. Chemical engineering materials of construction, Ind. and Eng. Chem., 2d ed., vol. 40, p. 1773, 1948; 3d ed., vol. 41, p. 2091, 1949. Fiber properties chart-1948, Plastics Catalogue Corporation, New York. SMITH,H. DEWITT, Textile fibers-an engineering approach to an understanding of their properties and utilization, Proc. Amer. SOC.Test. Mat., vol. 44, p. 543, 1944. A. S. T. M. standards on textile materials. Amer. SOC.Test. Mat., October 1949. Die Unterscheidung der Textilfasern, F. F., Some comparative data on the 2d ed., Verlag Leeman, Zurich, 1949. MOREHEAD, cross-sectional swelling of textile fibers, Textile Res. Journ., vol. 17, p. 96, 1947. PRESTON, J. M., The temperature of contraction of fibers as an aid to identification, Journ. Texfile Inst., vol. 40, p. T767, 1949. ARBOTT, N. J., and GOODINGS, A. C., Moisture absorption, density, and swelling properties of nylon filaments, Journ. Textile Inst., vol. 40, p. T232, 1949. HUTTON, E. A., and GARTSIDE, JOAN, The moisture regain of silk, Journ. Textile Inst., vol. 40, p. T161, 1949. HUTTON,E. A., and GARTSIDE, JOAN,The adsorption and desorption of water by nylon at 25” C, Journ. Textile Inst., vol. 40, p. T170, 1949. MACMILLAN, W. G., MUKHERJEE,R. R., and SEN, M. K., The moisture relationships of jute, Journ. Textile Inst., vol. 37, p. T13, 1946. ALBRIGHT,J. G., “Spider Silk,” Science Teacher, October 1944.
* Prepared
by W. D. Appel, of the National Bureau of Standards.
SMlTHSONlAN PHYSICAL TABLES
N
v)
2
T A B L E 233.-PHYSICAL
R
PROPERTIES O F N A T U R A L FIBERS
I v) 0
zD 2 I 0
2
c)
F
4 W D
2 Ln
Jute
Ramie
Silk f
Wool
1.50
1.48
1.48
Refractive index : epsilson ................... 1.573-1.581 omega .................... 1.529-1.534
1.594-1.596 1.528-1.532
1S85-1.591 1.526-1.530
1.577 1.536
1.51 1.595-1.599 1.527-1.540
1.25-1.35 1.591-1.595 1.538-1.543
Tensile strength (1000 lb/in.2) .................
... ... ... ...
...
... ...
... ... ... ..
45-83 2.9-5.2 75-95 13-31
1.28-1.33 1.553-1.556 1.542-1.547 15-28 1.0-1.7 76-97
... ... ...
...
...
...
... ... ...
270 6
200 4
185 2
167 8
2 92 20 33 15 40
2 99 20 63 4 20
Moisture regain at 65% R. H. and 70°F (% of bone-dry weight) ........................ 6.0-8.5
8.0
10.6-13.6
6.0
8.1-15.5
13.0-16.2
Swelling in water, cross-section swelling (%) ...
...
...
37
19
26
...
... ...
...
Does not contract
240
..
... ...
Density (g/cm*)
.............................
Cotton
1.50-1.55
42-125
Tenacity: dry (g/denier *) .................. 2.1-6.3 wet (% of dry) .................... 110-130 Elongation to break (%) ..................... Recovery from strain Elongation (%) ............................ Recovery ............................ Elongation ............................ Recovery ............................
1:
Average stiffness f Toughness index$
........................... ...........................
3-10 2 74 5 45 57 14
Flax
...
7.0-8.5 (8.-11. mercerized) 21 47
Heat stability : temperature “C at or above which fiber contracts .................................. loses strength ............................... softens ............................ ... . . . . . . melts ...................................... decomposes .................................
... ... ... ... ...
Hemp
... ... ...
... ... ...
...
...
... ...
...
... ... ...
...
chars
20-50
chars
t T h e value for stiffness is a measure of the ability of the fiber substance to resist deformation. “Denier” is the weight in grams of 9,000 meters of the fiber. Spider silk has a density of 1.30-1.37 and tensile strength of 60 (from $ T h e toughness index is a measure of the ability of the fiber substance to absorb work. golden garden spider).
PROPERTIES O F RESIN A N D RAYON FIBERS
T A B L E 234.-PHYSICAL
Resins ~~
Acrylic
Vinyl chloride acetate copolynier t
Vinyl chlorideacrylonitrile copolymer t
Vinylidine
1.17
1.33-1.36
1.22-1.28
1.68-1.75
1.539-1.550 1.514-1.523
... ...
1.536 1.536
1.536 1.536
1.60-1.63 1.60-1.63
136138 7.0 85
29-88 1.540 44-65
59-75
... ...
34-80 2.0-4.4 100
65-75
... ...
15-60 1.1-2.9 100
Elongation to break ( 7 c ) . ................ 10-17
6
9-30
...
1435
...
15-30
Recovery from strain ....................... Elongatioii (70). Recovery ........................ Elongation " ........................ Recovery " ........................
5 48 15 32
2 82 5 67
2 82 15-20 30-37
... ... ...
2 99 20 63
... ...
14
105
10-23
7-22
18
13
19
17-20
... ...
... ...
... ... ... ...
25-30
...
56
9.8-1 1.5
11.5-16.6
.9-2.0
[email protected]
.0-.5
.O
22
35-66
...
.24.3
...
.O
... 100 ... ... ...
... 130 ...
Does not contract
66-83
70-145
71-155
170 190-200
iikm
i ji-204
77 200-260
chars
Rayons Cupraammonium
........................ 1.52-1.54 Refractive index : epsilon ............... 1.548-1.552 omega ............... 1S20-1.527 Tensile strength (1000 Ib/in.*). ........... 33-42 Tenacity : dry (g denier t ) . .............. 1.7-2.3 Density (g/cm3)
wet (70of dry) ............... 59
'I
Average stiffnessD Toughness index II
...................... .......................
Moisture regain at 65% R. H. and 70°F (% of bone-dry weight). ........... 11.0-12.5 Swelling in water, cross-section swelling
(YO) ..............................
41-62
Heat stability; temperature "C at or above which fiber contracts .............................. loses strength .......................... softens ................................ melts ............................... 149 decomposes ............................
Saponified acetate
Viscose
1.50-1.52
1.50-1.54
1.547 1.513
...
125 235
...
...
...
...
... ...
150-160
...
Including regular and high-tenacity varieties. t Including several varieties. 't "Denier" is the weight in grams of 9000 meters of the fiber fi T h e value given for stiffness is a measure of the ability of the fiber substance to resist deformation. It The toughness index is a measure of the ability of the fiber substance to * Staple 10-17. At 60% R.H. absorb work.
e
244
T A B L E 235.-PHYSICAL
PROPERTIES O F MISCELLANEOUS FIBERS Acetate (cellulose)
............. 1.3S1.35 index : epsilon .... 1.476-1.478
Density (g/cma)
Azlon (casein. soybean pro. tein, zein
Glass
Nylon
t
Polyethylene
1.25-1.31
2.54-2.56
1.14
.92
1.537-1.545 1.537-1.545
1.541-1.548 1.541-1.548
1.570-1.580 1.520-1.530
... ...
Tensile strength (1000 Ib/in.2). 20-30
10-19
204-220
65-1 17
11-30
Tenacity : dry (g/denier 1) ... 1.2-1.5 wet (70of dry). ... 60-65
.6-1.0 35-50
6.3-6.9 99
4.5-8.0 85-90
Elongation to break (%) ...... 23-50
12-15
2.0-3.7
14-25
Recovery from strain Elongation (%).. . . . . . . . . . . 2 Recovery " ............. 94 Elongation ............. 20 Recovery ............. 23
5 60 20 30
3 100
2 100 20 75
Refractive
omega
..... 1.470-1.473
:
...
...
...
... ...
... ... ...
...
2
290
22-41
14
6
45
... ...
Moisture regain a t 65% R. H. and 70'F (% of bone-dry weight) ............... 6.0-6.5
10.0-15.5
.o
3.54.5
.O
Swelling in water, cross-section swelling (%) ......... 7.9
5.c-10.0
.O
3.2
...
...
Does not contract
74
Average stiffness 0
...........
Toughnens index II
........... 16-32
3-7
Heat stability ; temperature "C at or above which fiber contracts ................... loses strength ........... 90-107 softens .................. 177-208 melts ...................... decomposes ................
i00-171
...
232-246
316 816
... ...
140 220
... ...
... ... ...
104
Acetate rayon or estron. t Including regular and high-tenacity varieties. $ "Denier" is the weight in grams of 9000 meters of the fiber. $ The value given for stiffness is a measure of the ability of the fiber substance to resist deformation. ll T h e toughness index is a measure of the ability of the fiber substance to absorb work.
SMITHSONIAN PHYSICAL TABLES
-
T A B L E 236.-MECHANICAL Linen yacht rope
.--
r--f---
Manila bolt rope __h_
u s
.I
Y
w +.
$:
"A
ge
A"
__
__
2.02 2.98 4.42 6.00 8.00 10.3 12.4 15.4 19.0 23.2 27.3 32.9 37.8 43.5
925 1400 1950 2425 3200 4050 4920 5910 7075
fu
l%"
ti;,, 3" Y B"
1:. +$''
A"
1: l&" 14" 14" 133'' 14" 13'' 2" 2$" 24" 3" 34"
Nylon yacht rope
ec,
3 b
a .
P R O P E R T I E S OF F I B E R ROPES *
tie 2%
10,020 11,000 12,300 14,500
Saran rope
-
.-
$5 ..--
-fi
8460
t * '2 .*
gs 1.27 1.71 2.32 3.56 5.59 7.05 8.61 11.0 13.0 -. ..
16.2 19.2 23.0 27.0 31.8 36.9 42.5 53.5
460 605 1045 1400 1925 2920 3800 4850 5950 .. .. 7150 8470 9900 11,550 13.200 14;850 16,500 20.400
.929 1.66 2.59 3.75 5.15 6.71 8.41 10.2 15.0 17.7 20.3 27.0 30.0 34.0 41.0 --
--
-_
__ __ __ __ __
850 1200 1900 2700 3700 4700 6000 7500 11,000 13,300 15,600 19,000 23,000 26,000 32,030
-__ __ __ __ -_ -_ -_
1.47 2.73 3.93 5.66
--
-A
5%
-
.-d e
E"
260 560 730 990
--
1770 2630 3120 4020
32.0 42.5
5700 8000
__ _67.0 __ __ __ __ __ _-_ _-
Sisal rope
*E
10.3 14.0 17.7 23.2
__
245
1.47 -. .. 1.96 2.84 4.02 5.15 7.35 10.2 13.1
360 .._
480 800 1080 1400 2120 2760 3520
__
__
----_ -_ __ __ __ __
12,000
*Data from the Plymouth Rope Co. and Mr. Axelsson of Columhian Rope Co. Data on cotton rope furnished by Mr. Moss, Southeastern Cordage Co. t Excellent resistance to acids, alkalis, and most chemicals.
SMITHSONIAN PHYSICAL TABLES
N
v)
5
T A B L E 237.-MECHANICAL
P
P R O P E R T I E S O F H A R D WOOD S G R O W N IN U N I T E D S T A T E S "
o\
I 0 ln
z
Static bending
% I V
*-
d
5
g
I
c)
-ID
g 222
. I
:<
3
ig
&.;Z
m D
26
$2
2:
A
2:
g&
.@ mo>
2% 3-
-I
r
Common and botanical name
Place of growth material testedof
Alder, red (Alnus rubra) . .. Wash. 98 Apple (Malris @mila var.). . Va. 45 Ash, Biltmore (Fraxims biltmoreana) Tenn. 42 Ash, black (Fraxinus nigra) Mich., Wis. 85 Ash, blue (Fraxinus quadrangulata) . . Ky. 39 Ash, green (F. pennsylvanica lanceolata) La., Mo. 48 Ash, Oregon (Fraxinus oregona) Oreg. 48 Ash, pumpkin (Fraxinus profunda) Mo. 51 Ash, white (Fraxinus americana) . ..... Ark.. N. Y., W. Va.. Vt., 42 Mass. Aspen, bigtooth (Populus graiididentata) . Wis., Vt. 99 Aspen, quaking (Populris tremuloides) . Wis., N. Mex. 94 Basswood, American (Tilia americana) ............ Wis., Pa. 105 Beech, American (Fagits grairdifiolia) . Ind., Pa., Vt. 54
v a
P O
. ::- zg -. .-
,a
10."
e\
a :a P
22
bending
n.
02
.5
-5:ao
2
1 0 0
3"
. Impact
.u* -. c
EY
.
C .-
f! * .!i .-
Compression , -A- ,
d
.-a
E d
m .q
--sf! .E 0 ;
-d
._ -€ d
:5 aa
.-E
-i
s* 3.2
.;> a"
.2&
$:.ay &&
a
.. . .......... . . . . .... . . . .... .. ........... . .. .. .......... ......... ..
.41
28
9,800
1,380
1.85
11,600
4,530
540
1,080
420
w
.67
47
12,800
1,270
2.31
15,700
3,120
1,300
1,740
-
2 P
.55
38
13,000
1,600
2.97
16,500
5,670
1,510
1,680
710
I
.49
34
12,600
1,600
1.57
-
4,520
940
1,570
700
.57
40
13,800
1,400
2.68
18,400
5,460
1,760
2,030
-
.56
40
14,100
1,660
2.72
16,400
5,120
1,620
1,910
700
.55
38
12,700
1,360
2.08
13,300
4,100
1,540
1,790
720
. .. . ... . ...
. . . . ... . .
36
11,100
1,270
1.91
13,600
3,950
1,800
1,720
770
.60
42
15,400
1,770
2.60
17,000
5,790
1,410
1,950
940
.39
27
9,100
1,430
1.25
11,400
4,090
560
1,080
390
.38
26
8,400
1,180
1.53
9,000
3,040
460
850
260
.37
26
8,700
1,460
1.37
9,800
3,800
450
990
350
.64
45
14,900
1,720
2.63
16,000
4,880
1,250
(continued)
P
0
a
M H
M
rJ7
.52
Data taken from Forest Service Bull. 479. U. S. Dept. Agr.
tQ
2,010 1,010
s0 0
tl W
T A B L E 237.-MECHANICAL
Static bending
u-
2 Place of growth of material tested
Birch, Alaska paper (Betula papyrifera neolaskana) Alaska Birch, gray * (Betula populifolia) N. H. Birch. DaDer (Bet& pbpyrifera) Wis., N H. Birch, sweet ( B e t d a lenta) Pa.. N. H. Birch, yellow ' (Betula lutea) Pa., Vt., Wis. Black-mangrove * (Avicen&a nitida) Fla. Buckeye, yellow (Aesculus octandra) Tenn. Buckthorn, cascara * (Rhamnus pwshiana) Oreg. Bustic, willow * (Dipholis salicifolia) Fla. Butterbough * (Exothea. paniculata) . .. " Butternut (Juglans cinerea) Tenn., Wis. Button-mangrove* (Gonocarpus erectus) Fla. California-laurel (Umbelldaria californica) Oreg. Catalpa, northern (Catalpa speciosa) Ind.
.
.......... .. ......... ............... ............... ........... .......... ........ ....... .. .... .. ............. ......... .... ...........
8 2s c
0
'.6- mmm0
B
:ts 2; .z 8
$4 g .z c a
_"g
58
.55
63
8
Common and botanical name
-
P R O P E R T I E S O F HARDWOODS GROWN I N U N I T E D S T A T E S (continued)
;?;
BB
t3
.-tQg u p-d > g & 20 z?-
Impact bending
.ON.
.-
I .
\
u.0
:;
-E
;a.
wo
I
:,x
$8
g?
z-,$
38
13,600
.51
35
65
.55
53
zg 1 L
N.
.E
4 ?. .
. *. b<
.il
-d
L
Compression
.*d
0
cI
t d 92 M ;.
-- .* 2.E
fL. c E
59
u +*
w*
2;
&Mil
2.5%
'B 6
'B
1,900
1.85
13,700
5,290
820
1,400
660
9,800
1,150
1.46
10,400
2,670
920
1,340
-
38
12,300
1,590
1.80
12,400
3,610
740
1,210
-
.65
46
16,900
2,170
2.72
24,800
6,330
1,340
2,240
950
67
.62
43
16,600
2,010
2.89
17,200
6,130
1,190
1,889
920
42
.83
58
16,400
2,090
2.03
-
141
.36
25
7,500
1,170
1.26
10,OOO
3,010
440
960
520
61
.52
36
8,700
960
2.14
10,200
3,460
1,310
1,610
-
44
.88
62
-
-
-
18,400
4,950
56
.so
56
14,900
1,910
2.34
-
4,520
2,530
2,260
-
104
.38
27
8,100
1,180
1.59
11,200
4,200
5,110
1,170
440
47
.71
50
10,260
1,580
1.70
70
.55
39
8,000
940
1.85
10,700
3,520
1,400
1,860
870
72
.41
29
9,400
1,210
1.08
11O , OO
2,740
570
1,130
570
E
Meager data, may not be fully representative of species.
(continued)
'c:
-
-
-
2,360
-
1,630
- -
- -
- -
v)
2
TABLE 237.-MECHANICAL
Cherry, black (Prunus serotina) .. . . Cherry, pin (Pruxus pennsylvanica) . Chestnut, American (Castanea dentata) . . . . . . Chinquapin, golden (Castampsis chrsofihylla) Cottonwood, eastern (Populus deltoides) . . . Cottonwood, northern black (Popidus trichocarpa hastata) . Cucumber tree (Magnolia accuminata) . , Dogwood, flowering (Cornus florida) ,.. Dogwood, Pacific (Cornw nuttallii) Doveplum * (Coccolobis laurifolia) Elder, blueberry * (Sambucrcs glauca) ... Elm, American (Ulmus americana) . . . . Elm. rock (Ulniits thomasi) ., .. Elm, slippery (Ulniirs fulva) . . .. . . . Eucalyptus, bluegum (Eucalyptus globidus) . . . .. ..
..
PROPERTIES O F HARD WOODS GROWN I N U N I T E D STATES (continued)
...... Pa. . . .... Tenn. . .... Md., Tenn. ... .. Oreg. . . ...... Mo. Wash.
. .... Tenn. .......... '' ... ......... Oreg. . ... .... Fla. .. ...... . . .... N. H., Pa., Wis. . ........ Wis. .. . . . . . . Ind.. Wis. . Calif. "
55
.so
35
12,300
1,490
3.11
13,600
5,960
850
1,700
560
3,900
520
1,030
320
3,780
760
1,080
460 -
46
.39
27
8,500
1,270
1.51
10,100
122
.43
30
8,600
1,230
1.78
10,700
134
.46
32
10,700
1,240
3.11
10,900
4,150
680
1,260
111
.40
28
8,500
1,370
1.39
7,300
3,490
470
930
580
132
.35
24
8,300
1,260
1.25
9,800
3,270
370
1,020
330
80
.48
33
12,300
1,820
1.98
14,700
4,840
710
1,340
660
1,920
2,260
-
4,300
1,650
1,720 1,040
4,640
2,920
3,860
760
4,030
850
1,510
660
4,700
1,520
1,920
-
62
.73
51
14,900
1,530
3.10
14,600
52
.64
45
10,500
1,470
2.02
10,500
-
52
.78
55
13,000
1,290
2.67
124
.52
36
9,200
1,030
1.56
89
.so
35
11,800
1,340
2.53
-
-
10,500
-
- -
48
63
44
14,800
1,540
2.45
85
.53
37
13,000
1,490
2.35
15,300
4,760
1,010
1,630
530
.74
52
16,000
2,370
3.28
20,500
8,190
1,720
1,840
-
79
(continued)
v)
2
T A B L E 237.-MECHANICAL
PROPERTIES OF HARDWOODS GROWN I N U N I T E D STATES (continued)
-I
I v) 0
Static bending
zD
g
2
-. ." \
I <
I?
5g g&
$jYI 0.0
Lc
F
zg
ti? 2P o,sg
22
0
$e"Z
c)
-I
D m I m Ln
Place of growth of material tested
.-:$
LGZ
$g .gel
g L ,C%Z Eugenia, redberry * (Ezcgenia confusa) .. . Fla. 41 .87 False-mastic (Sideroxylon foetidissimirm) .. " 39 .93 Fig, Florida strangler * (Ficus surca) .. . .. '' 88 .44 Gumbo-limbo 'I (Bursera simaruba) . , . . . . . 99 .31 Hackberry (Celtis occidentalis) . . . . . . ... Ind., Wis. 65 .53 Hawthorn, pear * (Crateagtrs calpodendron) . .. Wis. 63 .68 Hickory, bitternut Ohio 66 .66 (Carya cordifonnis) . Hickory, mockernut .72 Pa., Miss., W. Va. 59 (Carya tomentosa) . . .. . Hickory, nutmeg .60 74 (Carya myristicaefonnis) .. . Miss. Hickory, pignut (Carya glabra) .. . .. W. Va., Miss., Ohio, Pa. 54 .75 Hickory, shagbark Miss., Ohio, W.Va., Pa. 60 .72 (Carye ovata) Hickory, shel!bark .69 Ohio, Miss. 61 (Carya lacmniosa) Hickory, water * .62 80 (Carya aqriatica) .. Miss. Holly, American 82 .57 (Ilex opaca) ................. Tenn. Honeylocust 63 Ind., Mo. (Gleditsia tricanthos) Common and botanical name
. . .. . . . .
. ...... . . . .
. .. . .. . . . . .. ... . ... .. .. . . . . . . ... ............... .. .. . ....... ... . . ..... . ........ .
-
Impact bending
2". .-C
* Compression
YI."
OJ\ -
.e
N.
$2
g2
61
16,200
2,040
.-E 2 i .d -
65
10,200
1,780
1.39
14,100
31
7,200
800
1.03
-
-
-
- -
21
4,800
740
.85
6,300
1,720
560
800
360
37
11,000
1,190
1.72
13,700
3,710
1,100
1,590
580
:---:g 'L
'O -3-
V o$
z-
E ." \ e
-
-
2,790
1,850
-
3,940
2,830
1,470
710
.-*E -.d
-
47
14,600
1,270
2.50
46
17,100
1,790
2.73
23,600
51
19,200
2,220
3.41
20,200
-
-
1,580 2,070 2,140 1,930
- -- 1,740
42
16,600
1,700
2.04
52
20,100
2,260
3.23
25,200
-
2,450
2,150
50
20,200
2,160
3.01
19,300
-
2,170
2,430
48
18,100
1,890
2.29
22,800
-
2,220
2,110
43
17,800
2,020
2.88
-
5,400
1,910
40
10,300
1,110
1.88
12,500
3,380
1.130
-
14,700
1,630
2.74
15,400
5,250
2,280
(iontinued)
-
- -
2.250
680 900
TABLE 237.-MECHANICAL
-
N
PROPERTIES OF HARDWOODS GROWN I N U N I T E D STATES (continued) Static bending 7 -
Impact bending DI
E .\
sp U
Compression
e
.-&
Y
Common and botanical name
Hophornbeam, eastern (Ostrya virginianu) Wis. Hornbeam, American * (Carpinus caroliniana) Mass. Leadwood * (Krugiodendron ferrezlm) Fla. Locust, black (Robinia pseudoacacia) Tenn. Madrone, Pacific (Arbutus menriesii) ... Calif., Oreg. Magnolia, Fraser (Magnolia frareri) Tenn. Magnolia, southern * (Magnolia grudifiora) La. Mangrove * (Rhizob h r a manole) Fla. - . Maple, b;gleaf Wash. (Acer mucrofihyllum) Maple, black * (Acer nigrurn) Ind. Maple, red (Acer ru b rm) ............... N.H., Pa., Wis. Maple, silver (Acer sacchwiwm) Wis. Maple, striped * (Acer bennrv~vanicunt) Vt. Maple, sigar (Acer sacchururn) Ind., Pa., Vt., Wis. Mountain-laurel* Tenn. (Kalmia latifolia)
... ....... .......
52
.70
49
14,100
1,700
2.96
14,200
5,780
1,500
48
.70
49
12,200
1,080
.77
10,300
3,330
2,000
.....
32
1.15
81
18,200
2,980
1.02
16,500
3,400
2,860
2,410 - 1,790
....... .......
40
.69
48
19,400
2,050
4.62
21,100
6,800
2,260
2,480
640
68
.65
45
10,400
1,230
2.46
10,400
4,040
1,620
1,810
-
...........
89
.44
31
10,100
1,400
1.86
13,800
4,180
620
1,150
660
105
.so
35
11,200
1,400
1.90
13,600
3,420
1,060
740
39
.96
67
21,700
2,950
3.80
-
1,530
6,170
3,300
2,860
-
-
4,790
930
1,730
540
....... ......... ........ ...............
-
.d
Place of growth of material tested
.......... .......
............ ..... .......
72
.48
34
10,700
1,450
1.66
65
.57
40
13,300
1,620
2.39
13,500
63
.54
38
13,400
1,640
2.84
-
66
.47
33
8,900
1,140
1.90
12,400
35
.46
32
10,900
1,360
1.08
11,400
58
.63
44
15,800
1,830
2.76
20,600
.68
48
11,100
1,200
3.44
14,300
62
(continued)
4,600
1,250
1,820
670
4,650
1,240
1,850
-
4,360
910
1,480
500
800
1,320
-
1,810
2,330
-
5.390
-
1,820
TABLE 2 3 7 1 M E C H A N l C A L PROPERTIES
-
OF HARDWOODS GROWN IN U N I T E D STATES (continued) Static bending
2
1
C
8
?&? Place of. growth of material tested
Common and botanical name
Oak, black (Quercus nigra) ............. Oak, black (Quercus velutino) ... ... Oak, bur (Quercus macrocarba) . . .. Oak, California black (Quercus Kelloggii) . . . . . . . . . Oak, canyon live (Quercus chrysolepsis) . . . . . . Oak, chestnut . (Quercus montana) . . . . Oak, Gambel (Quercus gambelli) . Oak, laurel .. (Quercus laurifolia)
ai .zg
g!i
8 + .-ST $2Y *Lorn
G 6%
0
B
lu) 0-J LC
us GZ 5 =.M28g-
g:a
Vl0’
* d Compression
-. .\
:;
-4Y
a”
zg
5.2
g?
.-
g2
0 *
-22
OE
2
-2 .<4
e.5.i Ern\
L
.z
a ’+ ZkM
k&
&!is
81
.63
44
15,400
2,020
2.24
18,800
3,960
1,260
2,020
920
80
.61
43
13,900
1,640
2.15
14,400
4,750
1,150
1,910
-
70
.64
45
10,300
1,030
2.37
14,600
3,580
1,480
1,820
680
106
.57
40
8,700
990
2.28
8,800
3,300
1,440
1,470
770
Calif.
62
.77
54
12,900
1,610
3.15
13,000
6,110
2,260
2,290
-
.. . . . Tenn. .... . ..... Ariz. . . . .... La. Oak, live (Qiiercus virginiane) .. ....... Fla.
72
.66
46
13,300
1,590
2.88
18,600
4,420
1,040
1,490
-
61
.73
51
8,500
680
2.30
14,100
-
84
.63
44
12,600
1,690
2.02
14,700
4,640
1,310
1,830
50
.89
62
18,400
1,980
2.19
21,300
5,120
3,510
2,660 1,010
........... Ark.,
80
.63
44
14,300
1,820
2.33
17,600
4,580
1,250
1,780
800
72
.72
50
10,300
1,100
2.28
11,900
3,960
2,110
2,020
830
75
.63
44
14,000
1,730
2.22
12,300
4,620
1,260
2,080 1,050
69
.67
47
13,200
1,510
2.25
17,600
3,700
1,760
1,840
780
65
.67
47
17,400
1,910
2.92
16,100
5,550
1,380
1,890
870
90
.59
41
10,900
1,490
1.44
15,300
2.910
1,080
1,390
510
...
.. Ark., Wis.
. . ..
.
.
Oak, northern red (Quercus borealis)
La.
Wis. Oreg., Calif.
Ind., La., N.H., Tenn.
Oak, Oregon white (Quercus garryana) .. . .. Oak, pin (Quercus palzistris) . , . . .... Oak, post (Querczis stellata) . . . . . .. .. . Oak, scarlet (Querctrs coccinea) . . . Oak, southern red (Quercus falcata) . ... . .
.... . Oreg. . . Mass. . Ark., La. .. . . .. .. Mass. . . ... . La.
(continued)
2,070
- 790
~
cn
c.
N N
u)
OZI'I
000'6
(pdilflf/U03)
IC
P6
002'9
88
oos's
18'2
OOP'L 1
OIO'Z
6VC
OOP'81
LC
009'01
W'I
SZI
CZ
008'9
001'1
86'
000'8 -
000'11
OII'I
OC'Z
-
161
009'01
OFL7 OS8
09s
00L'LI OOL'CI OOC'S
OOL'P
OP
ZS
9P PZ LZ
SP' LS.
CF'
CS. PL' 99
tC' 6'2'
-
L9 66 ZII
11 8s
C9
I8 PCI
IC
891
000'61
60's
006'FZ
882
OOE'ZZ
LZZ
OOI'LI
19'Z
009'51
006'1 08L'I
WS'P1
OOZ'SI
001'81
08Z'Z
OOL'LI
osoz OLL'I
006'CI
8P
8P 0s
LP LP
69
89' ZL' 89' L9'
5 -
P6
89 PL 8L 9L
9 E.z
'p
sa
82
0
>.
0
2
3
-5 Fiu1puq pedq
( P ~ n u ! W o ~S32Vl.S )
0311Nn NI NMOtlF) SClOOMCltlVH A 0 SZlIl.tl3dOkld l V 3 I N V H 3 3 N - - ' L E Z
318Vl.
lo
5
T A B L E 237.-MECHANICAL
Static bending
-0
I
t!
5
$1;; p :
:&?
$&i$ sf
25; *C
2 r, ".
-
PROPERTIES OF HARDWOODS GROWN I N U N I T E D S T A T E S (concluded)
H i z s
SZ
r W
Place of.growth material testedof
Common and botanical name
Serviceberry, downy (Ainelanchier arborea) Silverbell, Carolina (Halesia Carolina) ... . Sourwood (Oxydendrum arboreum) Sugarberry (Celtis laevigata) , Sumach, staghorn * (Rhus typhina) . . .. . . Sweetgum (Liquidambar styraciflua) Sycamore, American (Platanus occidentalis) Tupelo, black ; blackgum (Nyssa sylvatica) . . .. Tupelo, water (Nyssa aquatica) ..... Walnut, black ( J ~ g l a n snigra) . . , . .. . . Walnut, little * (Jiiglans rupestris) . .. . Willow, black (Salix nigra) ......... ....... Willow, Pacific (Salix lasiaiadra) .. ..... Witch-hazel * (Hamamelis virginiana) . .. . Y ellow-poplar (Liriodeitdron tulipifera) ....
. . ... . . Tenn. ....... .... . '' .. ......... Mo. . . .. .... Wis. .... Mo. .... . .. Ind., Tenn. .. . . .... Tenn. ....... La., Mo. . . .... KY. ....... Ariz. . ... .. .
.
"
MA'
gg
*.
.\
.i*. *C y1.-
a\
.-E'
:;- 2g -e o
-a
04
ze
a *
2 J
Impact bending N
Compression
c:
0
c
C .\ e .._ -dE
4 g g&
.e g5
.sg
-52
g?
-g1->;
.'ii
$0,
$2
-u f
48
.74
52
16,900
1,880
3.44
21,000
6,340
1,790
1,590
-
70
.45
32
8,600
1.320
1.46
13,300
3,580
680
1,180
480
69
.55
38
11,600
1,540
2.44
17,200
4,400
1,080
1,500
520
62
.51
36
9,900
1,140
2.18
11,600
3,970
1,240
1,280
-
z.z
2
I
-
45
.47
33
10,200
1,190
2.81
-
81
.49
34
11,900
1,490
2.57
16,800
4,700
860
1,610
800
83
.49
34
10,000
1,420
1.66
10,500
3,710
860
1,470
720
55
34
9,600
1,200
2.54
14,500
3,470
1,150
1,340
500
97
.so .so
35
9,600
1,260
2.41
12,500
4,280
1,070
1,590
700
81
.55
38
14,600
1,680
3.70
16,400
5,780
1,250
1,370
6990
67
.57
40
14,200
1,480
2.60
11,100
-
-
Mo., Wis.
139
.37
26
6,200
720
1.94
7,700
2,020
480
1.050
460
Oreg.
105
.44
31
8,500
1,310
1.37
11,000
3,120
630
1.160
530
. Tenn.
70
.61
43
15,200
1,460
3.17
-
61
.40
28
9,200
1,500
1.43
13,500
1,100
520
Ky., Tenn.
3,550
1,010
- -
1,370 580
lu
Ul
G,
v)
2
T A B L E 238.-MECHANICAL
P RO PER TIES
OF S O F T WOODS G R O W N I N U N I T E D S T A T E S **
I v) 0
z
'
Static bending Impact bending
D 2
Common and botanical name
Compression , -A- f
Place of growthof material tested
Alaska-cedar (Chaniaecgparis noofkatensis) Alaska, Oreg. Baldcypress (Taxodium distichrim) La., Mo. Douglas-fir (coast type) (Pseudotsiiga taxifolia) .. . Wash., Oreg., Calif. Douglas-fir (intermediate type) (Pseitdotsiiga taxifolia) .... . Mont., Idaho, Calif. Douglas-fir (Rocky Mountain type) (Pseudotsiiga taxifolia) . . . Wyo., Mont. Fir., aloine = (Abies lasiocarpa) . . . . Colo. Fir, balsam (Abies balsamea) . . .. .. .. Wis. Fir, California red (Abics magtzijica) . .. .. Calif. Fir, corkbark (Abies lasiocarpa arisonica) . N. Mex. Fir, grand Mont., Oreg. (Abies grandis) . . . . Fir. noble (jlbies procera) . . . . Oreg. Fir, Pacific silver (Abies amab i l k ) . .. . Wash. Fir, white (Abies concolor) ... ...... Calif., N.Mex. Hemlock, eastern (Tsicga cartadensis) . . . . . Wis., Tenn., N.H., Vt.
. . . ...... . . .. ..
. . .. .... .... .... . . . .... ..
. . . . ...... . ........ .... . . . ...
38
.44
31
11,100
91
.46
32
36
.48
34
48
.44
31
38
.43
47
1,420
2.06
12,200
5,210
770
1,130
360
10,600
1,440
2.15
10,400
4,470
900
1,000
270
11,700
1,920
1.96
12,700
6,450
910
1,140
300
11,200
1,640
1.87
11,600
5,540
920
1,130
340
30
9,600
1,400
1.60
12,100
4,660
820
1,070
330
.33
23
7,100
900
-
7,000
3,740
600
1,020
117
.36
25
7,600
1,230
1.23
7,800
3,970
380
710
180
116
.39
27
10,800
1,540
1.48
10,900
4,160
650
1,090
390
62
.30
21
6,900
1,030
1.09
8,200
3,820
470
840
280
94
.40
28
9,300
1,630
1.22
12,000
4,420
620
930
240
36
.38
26
10,100
1,580
1.59
11,200
4,960
640
980
220
66
.38
27
9,400
1,530
1.40
11,400
4,660
490
1,050
-
115
.37
26
9,300
1,380
1.72
10,800
3,590
600
930
260
111
.40
28
8,900
1,200
1.79
10,700
4,020
800
1,060
* * For reference, see footnote 7 7 , p. 246.
(continued)
lA
5
TABLE 238.-MECHANICAL
PROPERTIES OF SOFT WOODS GROWN
IN UNITED STATES (continued)
-I
I
Static bending P
0 lA
I z D
c
i
3
I '0
<
32s
K? 0
F
2:
-I
D r m m
lA
Place of growth of material tested
Common a n d botanical name
Hemlock, mountain (Tsuga wcrteitsiaiia) . . . . . . . . Hemlock, western (Tsiiga hctcropltylla) . . . . . . . . Incense-cedar, California (Libocedriis decurrens) .. . . . . . Juniper (Junifirrzts pachyphloea) . . . . Larch. western ( L a r k occidciitalis) . . . Pine, eastern white ( P h i s strobits) . . ... .... ... Pine, jack (Piitits baiiksiaiia) . . Pine, Jeffrey (Piizirs j r ffrey i ) . . . . . . Pine. limber * (P'iriirs flcxilis) . . .. . .. ... . . Pine, loblolly (Piriiis tacda) . . . . . . . . . . . . . . . . Pine, lodgepole ( P h i s c,oiifor.tnlatifolio) . . . . Pine, longleaf (Piriifs pa[itsfr-is) . . . . . . . . . . . . . Pine, pitch (Piriits rigido) . . . . . . . . . . . . . . .
.
.
:
SZ+ .+my) $22
5a y ) o L a E
$4:
* c 2; 'y0:
'Zga
255 0.E E
25%
r;' .;; *.-
&a
I J
..
C O
.r*
--
2
I
6.-
E ._.
-S Fic
Compression
..E
urn
L.S;
Impact bending
g"eX> w*-
2 E c c';
5! m
r
EEf
c.-x
$2.. &'3.5
.;
ccg> t-"**-
SL
&>"
Mont., Alaska
62
.47
33
11,200
1,320
2.36
13,300
4,620
1,030
1,230
320
Wash., Alaska, Oreg.
74
.42
29
10,100
1,490
1.82
12,400
5,340
680
1,170
310
108
.37
-
8,000
1,040
1.67
9,600
4,760
730
880
270
40
.51
36
6,700
650
2.74
5,600
58
.55
38
13,900
1,960
1.99
15,600
5,620
980
1,410
430
73
.35
25
8,600
1,240
1.51
9,700
3,670
510
900
310
60
.43
30
9,900
1,350
1.43
12,200
3,380
600
1,170
420
101
.40
28
9,300
1,240
2.43
12,500
4,240
790
1,210
380
68
.40
28
9,100
1,170
2.13
11,400
-
720
800
220
Fla., Md.. N. C., S. C., Va. \$'yo., colo., Mont.
81
.51
36
12,800
1,800
1.92
12,100
4,820
980
1,370
470
65
.41
29
9,400
1,340
1.97
9,600
4,310
750
880
290
La., Jliss., Fla., S. C.
63
.58
41
14,700
1,990
2.44
15,400
6,150
1,190
1,500
470
Tenn., Mass.
79
.49
31
10,800
1,430
1,62
12,600
3,960
1,010
1,360
480
Oreg., Calif.
. . Ariz. . . . . . . . Mont., Idaho, Wash. .. Wis., Minn.. N. H. . . . .. . .. . . Wis., Minn. . . . . .... Calif, .. N. Mex. ..
.9
0
* Nenger data, may not be fully representative of species.
(cortfiitircd)
d
-
1,700
- -
v)
L
TABLE 238.-MECHANICAL
PROPERTIES
OF SOFT WOODS GROWN IN U N I T E D STATES (continued)
tu
C n
Static bendins! L
zD 2
u
B
c 0
.-;g
'Z Er
-uir c0"
*
$
CI
Place of growth of material tested
Common and botanical name
Pine, pond (Piriirs rigida scrotina) . . . . . Fla. Pine, ponderosa (Piiiirs poriderosa) . . . . . . . . . . Colo., Wash., Ariz., Mont.. Calif. Pine, red (Piriirs rcsiriosa) . . . . . . . . .. Wis., Minn. Pine, sand (Piiiirs clairsa) . . . . . . . . . . . . . . . Fla. Pine, shortleaf (Piitirs cschinata) . . . . . . .. .. . . . Ark., La., N. C., N. J., Ga. Pine, slash (Pitrirs caribaea) . . . . . . . . . . . . Fla., La, Pine, sugar (Piriiis laiiibcrtiaiza) . . . . . . . . . Calif. Pine. Table-Mountain (Piriiis piirigeiis) . . . . . . . Tenn. Pine, western white (Pitiits iiiotificola) . . . . . . . . . . . Mont., Idaho Pinyon (Pintis cdirlis) . . . . . . . . . . . . . Ariz. Port-or ford-cedar (Charriardgparis lawsottiaria) Oreg. Redcedar, eastern (Jiiitipcriis virgittiaiia) , . . . . . . . Vt. Redcedar, southern (Jztriijcriis silicic,ola) . . . . . . . . Fla.
gL
& 2; 04 g G
egg
in
2% L C gg r t
c
-i
25
N
..
.-d
-=
:I
$2
ak 22 g:
.-
Compression , -
.. .
56
.54
38
11,600
1,750
2.21
13,200
6,300
1,120
1,380
360
91
.40
28
9,200
1,260
1.85
9,800
4,060
740
1,160
400
.. .
92
.44
31
11,000
1,630
1.77
13,400
4,160
650
1,210
460
36
.48
34
11,600
1,410
1.83
12,400
3,900
1,030
1,100
300
81
.51
36
12,800
1,760
1.93
13,600
5,090
1,000
1,310
470
66
.61
43
15,900
2,060
2.76
15,800
6,280
1,390
1,730
570
137
.36
25
8,000
1,200
1.53
10,700
4,140
590
1,050
350
75
.52
36
11,600
1,550
2.30
14,200
4,260
1,210
1,200
360
54
.38
27
9,500
1,510
1.47
11,900
4,480
540
850
-
60
.51
36
9,400
1,100
1.64
12,100
3,400
990
1,510
580
43
.42
29
11,300
1,730
1.97
13,500
5,890
760
1,080
400
35
.47
33
8,800
880
1.01
8,500
26
.44
31
9,400
1,170
1.88
10,200
. .
.
U
* m a .-*sz $ 22
C
n
DI m I-
Impact bending
c
. . .... . . .. .
(continiced)
5,190
1,140
- -
1,000
750
-
ln
TABLE 238.-MECHANICAL
PROPERTIES O F SOFT WOODS GROWN IN U N I T E D STATES (concluded) Static bending
g
42
Eo
-I
m D I -
Ln m
Place of growth of material tested
Common and botanical name
Redcedar western (Thuja plicata) .. .. Mont., Alaska, Wash. Redwood (second growth, openly grown) (Seqitoia sempervireiis) Calif. Redwood (second growth, closely grown) Calif. (Scqiroia sempervireiu) Redwood (virgin) Calif. (Sequoia sentpcrvivens) .. . . Spruce, black * (Picea maviaiia) .. N. H. Spruce, Engelrnann (Picea eiiaclmannii) . . . . . Mont.. Idaho. Colo. Spruce, red(Picca rrtbeiis) . . . . . .. Tenn., N. H. Spruce, Sitka Wash., Alaska, Oreg. (Picea sifcheirsia) . .. Spruce, white (Picea glarica) . . .... ... ...... N. H., Alaska, Wis. Tamarack fLarix laviciiia ) . . . . . . . . Wis. White-cedar, Atlantic (Chanaecvbaris thy,oides) . . . . N. H., N. C. White-ceda;,. northern Wis. f Thti ia occideictalis) . . . . . . yew, P x i f i c (Taxits brcvifolia) . . . . . Wash.
8 .-G , C'ylyl
$22
h? : ? < z% c5
.'" w
& ;
3 ed C E gg
:>"z .&g
go>
$2
.. .......
37
.33
23
7,700
1,120
1.44
8,600
... .. ..
146
.30
21
6,400
760
1.35
6,800
2,660
550
860
240
112
.34
24
8,300
1,120
1.50
9,100
3,750
640
930
280
112
.40
28
10,000
1,340
2.04
10,200
4,550
860
940
240
38
.40
28
10,300
1,530
1.34
13,400
4,520
650
1,030
--
80
.34
24
8,700
1,280
1.34
10,400
3,589
540
1,030
350
43
.38
28
10,200
1,520
1.73
11,900
4,610
580
1,080
350
42
.40
28
10,200
1,570
1.62
11,400
4,780
710
1,150
370
50
.40
28
9,800
1,340
1.76
10,300
3,700
570
1,080
360
52
53
37
11,600
1,640
2.19
12,500
4,780
990
1,280
400
35
.32
23
6,800
930
1.46
7,600
2,740
500
800
220
55
.31
22
6,500
800
1.72
7,100
2,630
380
850
240
44
.62
44
15,200
1,350
3.59
12,100
4,730
2,110
2,230
-
.. .. ... ... . . . . . . .. . ... . ... . . . . . . .. . . . . . . . .. .
. .. . . . . .... . . . .. . .
N cn
U
255 I N g/cm3 A N D I N Ib/ft3 O F D I F F E R E N T K I N D S O F WOOD
T A B L E 239.-DENSITY
Wood is to be seasoned and of average dryness. See also Tables 237 and 238. WlIOll
g/cm'J
A 1tle r .............. .42. .68 A111)le .............. .66- .84 Ash ................ .65- .85 Balsa ...............
.
Ebony
.............. 1.1 1-1.33
................ .54- .60 Hazel ..........
E I in
Juniper . . . . . . . . . . . . . .56 Laburnum . . . . . . . . . . .92
T A B L E 240.-DENSITY
Ib/ft3
2642 41-52 40-53 19-25 43-56 32-48 62 59-72 65 24 30-35 43-56 14-16 47 69-83 34-37 58-65 3749 37-58 47 64 35 57
Wood
.
.......
42-62 73-83 20-37 42-44
57
41 53 39-47 37-56 38-45 22-3 1 31-35 52-53 3044 27-33 3044 23-37 4149 22-31 59 24-37 61 41-55 4043 62 24-37
(g/cm3) O F S O M E F O R E I G N WOODS O N T H E AMERICAN M A R K E T
Almon ....................... 464 Balsa ........................ 11 Boxwood. West Indian ........ .83- .88 Bullet.wood, Guiana ......... 1.03-1.23 Carreto ...................... 84 Cedar, Spanish . . . . . . . . . . . . . . 38 . 1.20 Cocobola .................... Cocus ....................... 1.25 F i s t ic ........................ 68 Koa .......................... 83 Lauaan, red . . . . . . . . . . . . . . . . . . .41 Mahogany, African . . . . . . . . . . . .55 Mahogany, .E. Indian . . . . . . . . . . .38 Mora ........................ 1.07-1.09 Oak. English ................ .60- .78
*
....... . . . . . . . . . . . . 94 . Padouk ...................... .89- 1.29 Prima Vera . . . . . . . . . . . . . . . . . . . 58 Purple-heart ................. .72- .97 Quebracho ................... 1.25 Rosewood, Brazil ............. 77- 3 4 Rosewood. Honduras ......... 1.09-1.23 Olive
Sabicu ...................... Snakewood . . . . . . . . . . . . . . . . . . Tamarind .................... .......... Tanguile .... Wallaba ..................... Zebrawood ..................
Table prepared I)y W . N . Watkins. U . S. National Museum
SMITHSONIAN PHYSICAL TABLES
a/cni''
Lancewood . . . . . . . . . .68-1 .00 Lignum vitae ....... 1.17-1.33 Linden or limetree .. .32- .59 Locust ............. .6 7- 71 Logwood ............91 Mahogany, Honduras . .65 Mahogany, Spanish . . .85 Maple .............. .62- .75 Oak ................ .6 0- .90 €'car-tree ........... .61- .73 Pine, eastern white ... .35- S O Pine, larch .......... SO- .56 Pine. pitch .......... .83- .85 Pinc, red ........... .48- .70 Pinc, Scotch ........ .4 3- .53 Pine, spruce ........ .48- .70 Pine, yellow ........ ,37- .60 Plum-tree .......... .C6- .78 Poplar ............. .35- .5 Satinwood . . . . . . . . . . .95 Sycamore ........... .40- .60 Teak, African . . . . . . . . 98 Teak, Indian ........ .66- .88 Walnut ............. .6 4- .70 Water gum ......... 1.00 Will ow ............. .40- .60
.
.90- .96 1.05-1.33 1.32 .47- .51 .93- .94 1.03
259 TABLES 241-253.-TEMPERATURE, PRESSURE, VOLUME, AND W E I G H T RELATIONS OF GASES AND VAPORS T A B L E 241.-SIMPLE
GAS L A W S
Any amount of gas completely fills the space in which it is confined. The pressure it exerts upon the confining walls depends upon the temperature. A quantity of gas can not be specified by volume only ; all three factors-volume, temperature, and pressuremust be stated. The relations between these three factors are expressed by means of the following equation, @=KT (1) in which p , n, and T represent simultaneous values of the pressure, volume, and absolute temperature of any definite quantity of gas, while K is a constant, the numerical value of which depends upon the quantity of gas considered and the units in which pressure, volume, and temperature are measured. While the behavior of gases at atmosphcric pressure closely approximates the equation ( l ) , the relation is not exact. The expansion of air is nearer one-272d of its volume at 273.16"K per degree. For most practical purposes such errors may be neglected. If we take weights of gases proportional to their molecular weights, a new relation of the greatest importance develops: The .zalitc of tke constotit in eqirafiott (1) is t h e sattie for each gas. I t is customary to use as the unit of quantity, the mol, the number of grams of gas equal to the molecular weight. When 1 mol is the quantity considered, the resulting value of K is designated R. V a l u e s of R i n P V = R T f o r one mol of i d e a l gas.-1 bar = 10" dyne/cm2= 0.987 atm. 1 kg/cmZ=0.968 atm. Gram molar volume of ideal gas a t O"C=22,414.1 cm3. Pound molar volume of ideal zas at 32"F=359.05 ft'. Ice point, O0C=273.16"K; 3 2 ° F = 491.7"R. 1 liter = 1000.027 cm'. Temperature in degrees Kelvin, " K (per gram mol) Pressure
"C
+ 273.16"
Volume
atm atm bar kg/m2 kg/cm2 mmHg
cm' 1 1 1 1 1
Temperature in degrees Rankin,
"F + 459.7"
Energy
calories abs joules
Pressure
Volume
.08315
847.87 .084787 62.365
"R (per pound mol) Energy
Btu hp-hr kw-hr atm cmHg inHg Ib/in.' abs Ibl'in.2 abs
ft3 f tS
ft8 f t3 in?
R 1.98719 8.3144 82.057 .08206
R
1.98588 .00078047 ,00058189 .73008 55.486 21.845 10.729 18540.2
With the mol the unit of quantity, N the number of mol of gas, equation (1) becomes fiv = NRT
(2)
By the use of equation (2), the above table, and a table of molecular weights, the solution of any problem involving volumes, temperatures, pressures, and weights of gases is very simple. M i x t u r e s of gases.-Any quantity of gas fills the space in which it is confined and exerts a pressure upon the confining walls. If an additional quantity is added, the pressure is increased in direct proportion to the quantity added. One can regard the pressure exerted by each portion of the total quantity of gas as independent of the presence of the rest. This is true if the second portion of gas is different chemically from the first (Dalton's law), provided the gases do not react chemically. (continired) SMITHSONIAN PHYSICAL TABLES
260
GAS L A W S (concluded)
T A B L E 241.-SIMPLE
Vapor pressure and the effect of vapor pressure upon the measurement of gas.If a volatile liquid is introduced, a portion evaporates and exerts a pressure on the confining walls. The amount evaporated and the pressure exerted are independent of the presence of any other gas. If there is enough so that not all evaporates and if time is allowed for equilibrium, the pressure is independent of the volume of space and of the amount of liquid left unevaporated; but it does depend upon the temperature. For each volatile liquid there is therefore a definite saturation pressure o r vapor pressure corresponding to every temperature. See Tables 360-369. When any gas is in contact with a volatile substance, the measured pressure is the pressure exerted by the gas plus the vapor pressure of the volatile material. With no change of temperature, this vapor pressure remains constant no ,matter how we change the total pressure. Hence for the purposes of volume conversion the saturated gas may be considered as a dry gas, the pressure of u-hich is the partial pressure of the gas, or its equivalent, the difference between the total pressure and the saturated vapor pressure of the volatile material.
CONVERSIONS, FACTOR 2, FOR H I G H PRESSURES *
T A B L E 242.-VOLUME
In the measurement of gases at high pressures the quantity PV is no longer constant at constant teicpcrature but varies with the pressure by amounts that differ for each gas. Consequently the relation 1- pzvzno longer holds. As a correction factor, 2 = Vl'
RTi
~
RTa
PV RT
is given for different values of some one or more of the variables. The values of Z for different gases as given i n the table a r e for different pressures and temperatures. The values extend to pressures of 100-200 atm and to temperatures of 200°C. Values of this factor of hydrogen for temperatures ranging from 16°K to 600°K and for pressures rangin.- from a small fraction of an atmosphere (.01) to 100 atm are given in Table 254. P a r t 2?7b The value of this factor can be calculated for a wide range of pressures using the data given i n some of the following tables. This tables gives values of volumc correcting factor Z ( V = 1 at 1 atm pressure and 0°C). Air
Argon
Neon 0°C
7
0°C
Atm
50°C
.9952 .9997 .9877 .9987 .9782 .9996 .9722 1.002 .9712 1.0077
'0
23
50 75 100
100°C
200°C
50°C
1.0021 1.0044 1.0100 1.0191 1.0253
1.0C61 1.0084 1.0177 1.0277 1.0382
.9921 .9784 .9577 .9403 .9262
.9973 1,0000 9 1 8 ,9984 .9842 ,9971 .9783 .9971 .9746 .9990
Helium 100'C
' 0°C
10 25 50 75 100 200
1.0050 1.0129 1.0260 1.0392 1.0524 -
1.0042 1.0108 1.0218 1.0329 1.0440
1.0035 1.0092 1.0185 1.0279 1.0372
1.0062 1.0156 1.0316 1.0480 1.0646 1.1333
-
Nitrogen
Atm
100
150 200 '8
1.0023 1.0044 1.0084 1.0138 1.0197
1.0045 1.0119 1.0235 1.0358 (1.0492)
Oxygen
A
50°C
10 50
200°C
Hydrogen
7 -
0°C
Atm
1OO'C
-
-
0°C
50°C
100°C
.9975 .9835 .9835 1.0015 -
1.0015 1.0035 1.0145 1.0385 1.0686
1.0035 1.0125 1.0295 1.0546 1.0836
,
50°C
100'C
1.0056 1.0051 1.0141 1.0127 1.0285 .1.025.5 1.0429 1.0384 1.0575 1.0514 1.1168 1.1036
200°C'
'0°C
1.0042 1.0105 1.0209 1.0315 1.0419 1.0839
,9908 .9933 .9965 .9771 .9835 . W 8 ,9562 .9685 .9831 .9378 - .9771 .9231 - .9733
_
20°C
-
50°C
-
Methane A
0°C
50°C
1OO'C
200°C
.978 .883 .781 (.730) -
,989 .941 ,896 .873 .873
.993 .971 .951 .943 .950
.999 .997 ,998 1.004 1.020
Adapted from data furnished hy J. Hilsenrath. National Eureau of Standards. Woolley, Scott, and Brickwedde, Nat. Bur. Standards Res. Pap. R P 1932, vol. 41, 1948.
SMITHSONIAN PHYSICAL TABLES
100 C
.9993 .9980 .9968 .9971 .9983
-
26 1 T A B L E 243.-RELATIVE
GAS V O L U M E S A T V A R I O U S PRESSURES
(Deduced by Cochrane, from the pv curves of Amagat and other observers.) Relative volumes when the pressure is reduced from the value given at the head of the column to 1 atmosphere; see also Nat. Bur. Standards Circ. 279. Relit:ve v o h m e the gas will occupy when the pressure is reduced to atmospheric from
Gas (Temp. = 16°C)
/-----
1 atm
“Perfect” gas ............. Helium ................... Hydrogen ................ Nitrogen .................. Air ...................... Argon ...................... Oxygen .................. Oxygen (at O”C).. ......... Carbon dioxide ...........
1 1 1 1 1 1 1 1
, L _
50atm
50
...
48.5 50.5 50.9
... ...
52.3 69
100atm
120atm
150atm
100 94.6 93.6 100.6 101.8 106.3 105.2 107.9 477”
120 112.5 111.3 120.0 121.9 127.6
150 141 136.3 147.6 150.3 161
128.6 485*
161.9 498*
...
...
200atm
200
...
176.4 190.8 194.8
...
212.6 218.8 515*
Carbon dioxide is liquid at pressures greater than 90 atmospheres.
T A B L E 244.-VAN
D E R WAAL’S C O N S T A N T S FOR I M P E R F E C T GASES .iD
Van der Waal developed an equation to represent the pressure, temperature, and volume relation of a real gas. One form of this equation is
[ P + u(+)
’1
(V - nb) = nRt n = number of molecules ( V - n b ) = effective voluxe a = internal pressure constant [(dynes/cmz) X (cm3/mol) 1 b = reduction in effective volume ( V ) per molecule (cma/mol)
P (dynes/cm*), V (cm3/mol), R, and T have their usual meanings. The value of these constants ( a and 6) for various gases are given in the table. If Van der Waal’s equation were correct, V,/3 = 6 ( V , critical volume). 79 Slater, J. C., Introduction to chemical physics, page 408, 1939, McCraw-Hill Book Co. Used by permission of the publishers.
(continued)
SMITHSONIAN PHYSICAL TABLES
262 T A B L E 244.-VAN
D E R WAAL'S C O N S T A N TS F O R I M P E R F E C T GASES (concluded)
Formula
Gas
Neon .............. N e Helium ............ H e Hydrogen ......... H2 Nitric oxide ....... NO HzO Water Oxygen ............ 0 2 Argon ............. A Ammonia .......... KH3 Kit rogen .......... Na Carbon monoxide ... co Krypton ........... K r Hydrogen chloride . . HCl Nitrous oxide ...... NZO Carbon dioxide ..... COI Methane ........... CH. Hydrogen sulfide ... H S Hydrogen bromide . H B r Xenon ............. Xe Acetylene .......... C.H. Phosphine ......... Chlorine ........... Sulfur dioxide ..... Ethylene ........... Silicon hydride ..... Methylamine ....... Ethane ............ Methyl alcohol ..... Methyl chloride .... Methyl ether ....... Carbon hisulfide .... Ilimethylamine ..... Propylene ......... Ethyl alcohol ....... Propane ........... Chloroform ........ Acetic acid ........ Trimcthylamine .... iso-Butane ......... Benzene ........... ti-Butane .......... Ethyl ether ........ Triethylamine ..... Naphthalene ti-Octane .......... Decane ............
.............
.......
SMITHSONIAN PHYSICAL TABLES
a
0.21x10'2 .035 0.25 1.36 5.53 1.40 1.36 4.22 1.36 1.50 2.35 3.72 3.61 3.64 2.28 4.49 4.51 4.15 4.43 4.69 6.57 6.80 4.46 4.38 7.23 5.46 9.65 7.56 8.17 11.75 9.77 8.49 12.17 8.77 15.38 17.81 13.20 13.10 18.92 14.66 17.60 27.5 40.3 37.8 49.1
b
17.1 23.6 26.5 27.8 30.4 32.2 32.2 36.9 38.3 39.7 39.7 40.7 41.1 42.5 42.6 42.7 44.1 50.8 51.3 51.4 56.0 56.1 56.1 57.6 59.6 63.5 66.8 64.5 72.2 76.6 79.6 82.4 83.8 84.1 102 106 108 114 120 122 134 183 193 236 289
Vc/3
14.7 20.5 21.6 19.1 18.9 24.8 26.1 24.2 30.0 30.0 36.0 29.8 32.3 32.8 32.9 38.0 37.5 37.7 41.0 41.0 42.3 47.6
39.0 45.4 67.5 41.0 77.1 57.0 85.5 94.0 1G2
Molecular volume of liquid
16.7 27.4 26.4 23.7 18.0 25.7 28.1 24.5 32.8 32.7 38.9 30.8 44.0 41.7 49.5 35.4 37.5 47.5 50.2 49.2 41.2 43.8 49.3 47 44.5 54.9 40.1 49.2 59.0 66.2 69.0 57.2 75.3 80.2 56.1 89.3 96.3 86.7 96.5 100 139 112 162 195
Electric moments
ox10-'8
0 0
1.85 0 0 1.44 0 0.10 0 1.03 .25 0 0 .93 .78 0 0 .55 0 1.61 0 0 1.31 0 1.73 1.97 1.29 0 1.63 0 1.05
0 0 1.2 .69
0 0
263 T A B L E 245.-CORRECTING FACTORS: S A T U R A T E D GA S V O L U M E T O V O L U M E A T 760 mmHg A N D 0 ° C "
Multiply observed volumes of saturated gas by factor to correct to volumc of dry gas at 760 mmHg pressure (0°C) Tempera-
Iy)
Pressure mmHg A
715
720
725
730
735
740
745
750
755
760
765
770
.922 .918 .914 .910 .906
.928 .924 .920 .916 .912
.935 ,931 .927 .923 .919
.942 .937 .933 .929 .925
.948 ,944 .940 .936 .932
.954
6 7 8 9
.916 .912 .908 904 .900
.967 .963 .959 .955 .951
.974 ,970
,946 .942 ,938
.961 .957 .952 .948 .944
.961 -957
.965
.980, .976 .972 967 .963
.986 .982 .978 .974 .970
10 11 12 13 14
396 .892 .888 .884
,908 .904 .900 .896 ,892
.915 .911 .907 .903 .a99
.921 .917 ,913 .909
.880
.902 398 394 290 .886
.928 .924 ,919 .915 .911
.934 .920 ,925 .921 ,917
.940 ,936 .932 .928 .924
.946 .942 .939 .934 .930
.953 .949 .945 .940 .936
.959 .955 ,951 .947 .942
.966 .962 .957 .953 .949
15 16 17 18 19
A76 ,872 368 .864 .85Y
382 278 374 370 265
,888
395 .890
901 396 ,892
,913 .939 .YO5 .900 396
.920 .915 ,911 ,907 .902
.925 .921 .917 .913 .908
.932 .928 .923 .919 .915
.938 .934 .929 .925 .920
.944 ,940 .936 .931 .927
20 21 22 23 24
.a55
.851 .a47 .842 .838
361 .a57 .a53 248 344
.867 363
398 .a93 .884 .880
.888
.904 .a99 394 390 386
.910 .906 .901 297 392
.916 .912 ,907 .903 .898
.922 .918 .913 .909 .904
25 26 27 28 29
.a33 329 324 320 .815
.881 ,877 ,872 367 .862
388 383 378 ,873 368
393 389 384 379 374
399 395 .890
30 31 32 33 34
310
.869 364 359 .a53 348
375 .870 365 360 354 .a49 343
5"
.905
.950
.882 378
.888 ,884
.907 .903 298 394 390
.858 .a54 349
.a74 .869 ,865 360 .856
279 ,875 271 ,866 .862
,886 381 ,877 ,872 .868
.892 387 .883 378 .a74
239 835 330 825 321
.a45 341 336 331 326
,851 347 .842 .a37 .832
357 .a53 ,848 ,843 238
263 .a59 ,854 .a49 344
,869 ,865 ,860
350
A75 371 366 261 356
222 317 312 207 301
328 323 318 ,813 307
233 .829 323 318 313
340 .a35 330 A24 219
245 ,840 335 ,830 ,825
,851 ,846 .84 1 .836 231
357 .852 347 342 ,837
,863
.a00 .795 .790
316 .811 .SO6 .so 1 .796
35 36 37 38 39
.785 .780 .774 .769 .763
.790 .785 .780 .774 .768
.796 .791 .785 .780 .774
.a02 .797 .791 .786 .780
.SO8 302 .797 .791 .785
314 303 ,796 .790
.819 ,814 ,809 ,803 .7Y7
225 220 214 .SO9 .SO3
331 $26 320 .814 A09
337 332 326 314
.a43 .836 832 .826 220
40 41 42 43 44
.756 .751 .745 .739 .733
.763 .757 .751 .745 .738
.768 .762 .756 .750 .744
.774 .768 .762 .756 ,750
.780 .774 .768 ,762 .755
,786 .780 ,774 .767 .761
,792 .786 ,779 .773 .766
.797 .791 .785 .779 .772
.SO3 .797 ,791 .784
.778
,809 .803 .796 .790 .784
A14 .SO8 .a02 .796 .789
320 314 .508 802 .795
45 46 47 48 49
.726 .720 .713 .706 .700
.732 .725 .719 .712 .705
.737 .731 .724 .717 .710
.743 .737 .730 .723 .716
.749 .742 .735 .728 .721
.754 .748 .741 .734 .727
.760 .754 .746 ,739 .732
.766 ,759 .752 .745 .738
.771 .765 ,758 .751 .744
.777 .770 .764 .756 .750
.783 .776 .760 .762 .755
.788 .782 .775 .768 .761
.a05
.884 ,880 275 .871
.886
,808
Abridged from Nat. Bur. Standards Circ. 279, 1926.
SMITHSONIAN PHYSICAL TABLES
355
.858 .a53 .848 242
320
.885 .880
.838 ,832 .826
264
T A B L E 246.-COMPRESSlBILlTY
P a r t 1.-Ordinary
OF GASES
temperatures
As a measure of the compressibility, it is customary to use a coefficient, 1 A = ~ , V O / P I V I , ~ O V Obeing at 0°C.
+
H* Nz
1
+A =
co
.99939 k .03001 1.00044 .00001 1.000094 .000013 .99948 .000005 .99951 .000025 1.00099 .000026
0 2
He
Ne A
P a r t 2.-Low
1
cot
+ A = 1.00081 1.OM68 1.00747
Nz0
temperatures
pv = 1 for O"C, 1 atmosphere Helium
Hydrogen
A
t"C
.oo
-103163 -269.69 -270.52 "
A
P atm 26.66 38.95 58.58 24.13 49.96 .232 .353 .0308 .0649
OU
Density
1.0146 1.0196 1.0294 ,6337 .6479 .01126 .01041 ,00911
26.28 38.20 56.91 38.07 77.08 20.63 33.92 3 381 7.535
.00858 Neon
t"C .n ._ " "
-200.1 -217.5
' '
P
PV
Density
23-06
i.nn~9
21 -237
30.79 84.66 61.66 79.92 49.93 64.97 79.42
1.0147 1.0408 ,2337 .2293 .1393 .I269 .I256
atm
.OO "
-103.57
.58
-204.70
-257.26
30.34 81.35 763.8 348.6 358.5 511.8 632.2
atm
.O "
-102.51 -130.38 -155.62 -149.60
atm
pu
Density
20.58 31.57 14.86 45.09 62.24 1277 11.99 11.15
.9856 .9774 .5813 .4706 .3939 .4663 .4262 .3821
20.88 32.30 25.57 95.80 158.01 27.39 28.12 29.18
Nitrogen
A
0
- 80.03 "
-116.01
'
"
P
atm
20.92 49.79 21.01 34.18 61.88 22.30 43.95 55.05
r
PU
.9813 .9573 .6550 .6213 ,5464 .4835 .3541 .1667
SMITHSONIAN PHYSICAL TABLES
Density
A.
t"C
P
Oxygen t"C
PU
32.313 1.0188 31.715 44.119 1.0266 43.284 38.41 .6376 38.41 51.49 .6433 80.04 16.75 .2404 69.68 .2316 159.7 37.00 .2300 194.0 44.63 ,06698 .05783 1.1582 .I3153 .057104 2.3031 Argon
,
A
r
t"C
P
Density
21.32 52.01 32.09 55.02 13.23 46.12 124.1 330.2
P
t"C
atm
PU
0
33.14 43.08 58.63 30.17 45.47 56.71 22.92 30.14 36.49
,9886 .9860 .9834 .6516 .6270 .6109 .3340 .2656 .lo58
- 81.10 -146.32
Density
33.52 43.70 59.62 46.13 72.52 92.84 68.62 113.48 344.5
265 T A B L E 247.-RELATlVE V O L U M E S FOR 0,AIR, N, A N D H A T V A R I O U S PRESSURES A N D T E M P E R A T U R E S
(Volume at 0°C and 1 atm being taken as 1,000,000) Oxygen Atm
100 200 300 400 500 600 700 800 900 1000
Air
w-990.5 1990.5 0'
7000 4843 3830 3244 2867 2610 2417 2268 2151
9265 4570 3208 2629 2312 2115 1979 1879 1800 1735
-
-
SOSO
519s
2360 5170 4170 3565 3180 2904 2699 2544 2415
9730
9095 6283 4930 4100 3570 3202 2929 2718 -
Nitrogen
5-%G%z 3658 3036 2680 2450 2288 2168 2070 1992
0"
win
9430 6622 5240 4422 3883 3502 3219 3000 2828
Hydroge
v 0-
99O.5 199O.6
7445 5301 4265 3655 3258 2980 2775 2616
3786 3142 2780 2543 2374 2240 2149 2068
9532 6715 5331 4515 3973 3589 3300 3085
5690 4030 3207 2713 2387 2149 1972 1832 1720
- -
990.3 200'.5
7567 5286 4147 3462 3006 2680 2444 2244 2093
9420 6520 5075 4210 3627 3212 2900 2657
V A L U E S O F PV FOR E T H Y L E N E
T A B L E 248.-RELATlVE
pv at 0'C and 1 atm = 1 7-
-
Atm
00
46 48 50 52 54 56 100 150 200 300 500 1000
.176
-_
.310 .441 ,565 A06 1.256 2.289
30"
-
.629 .598 .561 .524 .360 .485 .610 .852 1.308 2.354
.731
.403 .515 .638
.471 .551 .669
--
.878 1.337 2.387
30 50 80 110 140 170 200 230 260 290 320 Atm
50 100 150 300
500
1000
-_ .847 .776 .838 1.048 1.500 2.566
198O.5
-
-
1.192
1.374
1.652 -
1.005 .924 .946 1.133 1.578 2.643
1.247 1.178 1.174 1.310 1.721 2.795
-
-
1.580 1.540 1.537 1.628 1.985
Relative values of pv at-
,
A
18.2'C
35.1
40.2
liquid
2360 1725 750 930 1120 1310 1500 1690 1870 2060 2240
2460 1900 825 980 1175 1360 1550 1730 i920 2100 2280
-
625 825 1020 1210 1405 1590 1770 1950 2135 I
.908 1.367 2.422
.668 .649 ,744 .972 1.431 2.493
137O.5
V A L U E S O F PV FOR CARBON D I O X I D E
T A B L E 249.-RELATIVE Pressure in metersof mercury
-
100'
80'
60'
.814
.684
,562 ,508 ,420 ,240 .229 227 .331 .459 .585 .827 1.280 2.321
40"
-
20'
10'
-
50.0
2590 2145 1200 1090 1250 1430 1619 ixno ~ . 1985 2170 2360
60.0
2730 2330 1650 1275 1360 1520 1705 1x90 . ~
2070
2260 2440
70.0
80.0
2870 2525 1975 1550 1525 1645 1810 i99n
2995 2085 2225 1845 1715 1780 1930 2090 2265 2440 2620
Ziki
2340 2525
1OO.O"C
90.0
3120 3225 2845 2980 2440 2635 2105 2325 1950 2160 1975 2135 2075 2215 2340 2210 ~~~. 2375 2490 2550 2655 2725 2830
Relative values of pv: fiv at 0°C and 1 atm = 1
Oo
10'
20"
30"
40"
60'
80"
100'
137'
198'
258"
,105 202 295 .559 391 1.656
.114 .213 ,309 .578 .913 1.685
,680 229 .326
.775 .255 ,346 .623 .963 1.748
.750 .309 ,377 .649 .990 1.780
,984 .661 .485 .710 1.054 1.848
1.096 373 ,681 ,790 1.124 1.921
1.206 1.030 378 ,890 1.201 1.999
1.380 1.259 1.159 1.108 1.362 -
-1.582 1.530 1.493 1.678
-1.847 1.818 1.820 --
299 .938 1.716
SMITHSONIAN PHYSICAL TABLES
-
-
2G6
OF SULFUR DIOXIDE
TABLE 250.-COMPRESSIBILITY
Original volunic 100000 under one atmosphere of prcssure and the temperature "C of the cspcrinicnts as indicated at the top of the different columns. I'rcs9,ure in atmospheres for ex. iwrlnienls at leni~~erature-
C w r e \ i w d i n g voliinie for exi n t i iniciits :it temperature-
10
I2
14 16 18 ~.
s'x0.o 8560 0360 4040
20
24 28 32 36 40 50 60 70 80 90 100
WO.6
9140 7800 6420 5310 4405 4030 3345 2780 2305 1935 1450 -
120
140 160
183O.i
99".6
SX".O
Volunle
9.60 10.40 11.55 m n __ 12.30 ._ 13.15 5000 14.00 4000 14.40 3500 3000 2500 2000 1500 1000 500
10000 9000 8000 7000 3180 2640 2260 2040 1640 1375 1130 930 790 680 545 430 325
9.60 10.35 11.85 13.05 14.70 16.70 20.15 23.00 26.40 30.15 35.20 39.60 -
-
183O.2
'
-
-
29.10 33.25 40.95 55.20 76.00 117.20
TABLE 2 5 1 . P O M P R E S S l B l L l T Y O F AMMONIA
Original volume 100000 under one atmosphere of pressure and the temperature "C of the cxperiments as indicated at the top of the different columns. ('t,rrcsiinnding vnlume for exIrrinients at temperature-
Pressure in atmospheres for experiments at temperatureVolume
46O.6
10
12.5
15 LO 25
.3() 35 10
4s
SO 55 60 70 80 90
9500 724s 5880
99O.6
7635 6305 4645 3560 2875 2140 2080 1795 1490 1250 975
100
SMITHSONIAN PHYSICAL TABLES
183O.6
4875 3835 3185 2680 2345 2035 1775 1590 1450 1245 1125 1035 950
loo00 9000 8000 7000 6000 5000 4000 3500 3000 2500 2000 1500 1000
30O.2
46O.6
8.85 9.60 10.40 11.05 11.80 12.00 -
9.50 10.45 11.50 13.00 14.75 16.60 18.35 18.30 -
-
-
-
99O.6
183".0
12.00 13.60 15.55 18.69 22.70 25.40 29.20 34.25 41.45 49.70 59.65
19.50 24.00 27.20 31.50 37.35 45.50 58.00 93.60
-
267
T A B L E 2 5 2 . P O M P R E S S l B l L l T Y O F GASES U N D E R H I G H P R E S S U R E S
Actual volumes rest upon Arnagat's doubtful values at 3000kg/cma. Densities at highest pressures indicate that the molecules or atoms are very nearly in contact in the sense of the kinetic theory. Hydrogen
,
Vol. change cm3 g from 3000 kg/cmz
kg/cmz
3000
4000
5000 7000 10000 13000 15000
->..30°C
.on
1% 1.84 2.77 3.63 4.32
Volume cma/g
.oo
...
pv
r-/L-
65°C
iii4 1.88 2.88 3.68 4.21
Nitrogen
30'C
65'C
2.3.47 ZIl21 19.76 17.88 16.15 14.76
3.18
3183
i0.52 ii.03 9.80 10.29 8.87 9.29 8.01 8.49 7.32 7.96
4.50 5.65 7.29 8.66
. .. . ..
...
Helium 7
kg/cm2
Total Vol. vol. change change cm3/g 30.95O cd/g 65°C
3000 4000 5000 7000 10000 13000 15000
.OO .77 1.23 1.77 2.22 2.48 2.60
7
Volume at A ,-r
,613 .598 .589 ,581 ,576 .572 .570
PV
cm3/
5.54 4.77 4.31 3.77 3.32 3.06 2.94
24-53 22124 20.74 18.73 17.12 16.05
Volume at
C d /
at
.no
1.290
36.13 . .- .
,152 .234 ,308 .357 .382
2:49 4.25 6.56 8.61 10.00 10.70
1.138 1.056 .982 .933 .908
33.61 31.88 29.57 27.52 26.13 25.43
:O89
i2oi
kg/cmz
1.96 3.39 5.34 7.18 8.34 8.94
1000 2000 3000 5000 7000 10000 12000
65°C
cm3/g
22.16 19.08 17.24 15.08 13.27 12.24 11.76
2.31 2.64 2.99 3.66 4.60 5.52 6.11
,000 .049 .085 .134 .180 .209 .224
6$C
.om
cm3/ gatom
mol
pv
cm3/g
mol
. ..
68'C
,-*,
4.58 .. . .. 5.82' 6.89 8.95 11.91 14.70 16.50
Ammonia
Vol. change at 55°C
65°C
cm3/g
+-. cd/g
68C
i i . ~12.17
...
Vol.cm'/mol
Vol. change at 68°C
Vol. change at 30°C
.oo
cd/g
cm3/mol
-327 -14.1 -.217 - 3.70 .000 .oo 3.41 +.200 ,310 5.28 ,409 6.97 7.85 ,461
+
"Bridgman, P. W., Proc. Amer. Acad. . l r t s and Sci., vol. 59, p. 173, 1924.
T A B L E 253.-GAGE Ib/in.Z
0
100 200 300 400 500 600 700 800
900
1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000 2,100 2,200 2,300 2,400 2,500 2,600 2,700 2,800 2,900
0
1.oo 7.80 14.61 21.41 28.22 35.02 41.83 48.63 55.44 62.24 69.04 75.85 82.65 89.46 96.27 103.1 109.9 116.7 123.5 130.3 137.1 143.9 150.7 157.5 164.3 171.1 177.9 184.7 191.5 198.3
P R E S S U R E (Ib/in.z) T O A T M O S P H E R E S ( A B S O L U T E ) * 10
1.68 8.48 15.29 22.09 28.90 35.70 42.51 49.31 56.12 62.92 69.73 76.53 83.34 90.14 96.95 103.8 110.6 117.4 124.2 131.0 137.8 144.6 151.4 158.2 165.0 171.8 178.6 185.4 192.2 199.0
20
2.36 9.17 15.97 22.77 29.58 36.38 43.19 49.99 56.80 63.60 70.41 77.21 84.01 90.82 97.63 104.4 111.3 118.0 124.8 131.6 138.4 145.2 152.1 158.9 165.7 172.5 179.3 186.1 192.9 199.7
30
40
50
60
70
80
3.04 9.85 16.65 23.45 30.26 37.r)G 43.87 50.67 57.48 64.28 71.09 77x9 84.70 91.50 98.31 105.1 111.9 118.7 125.5 132.3 139.1 145.9 152.7 159.5 166.3 173.2 180.1) 186.8 193.6 200.4
3.72 10.53 17.33 24.14 30.94 37.74 44.55 51.35 58.16 64.96 71.77 78.57 85.38 92.18 98.98 105.8 112.6 119.4 126.2 133.0 139.8 146.6 153.4 160.2 167.0 173.8 180.6 187.4 194.2 201.1
4.40 11.21 18.01 24.82 3 1.62 38.42 45.23 52.03 58.84 65.64 72.45 79.25 86.06 92.86 99.67 106.5 113.3 120.1 126.9 133.7 140.5 147.3 154.1 160.9 167.7 174.5 181.3 188.1 194.9 201.7
5.08 11.89 18.69 25.50 32.30 39.1 1 45.91 52.71 59.52 66.32 73.13 79.93 86.74 93.54 100.3 107.1 114.0 120.8 127.6 134.4 141.2 148.0 154.8 161.6 168.4 175.2 182.0 188.8 195.6 202.4
5.76 12.57 19.37 26.18 32.98 39.79 46.59 53.39 60.20 67.00 73.81 80.61 87.42 94.22 101.0 107.8 114.6 121.4 128.2 135.0 141.9 148.7 155.5 162.3 169.1 175.9 182.7 189.5 196.3 203.1
6.44 13.25 20.05 26.86 33.66 40.47 47.27 54.08 60.88 67.68 74.49 81.29 88.10 94.90 101.7 108.5 115.3 122.1 128.9 135.7 142.5 149.3 156.1 162.9 169.8 176.6 183.4 190.2 197.0 203.8
Taken from Nat. Bur. Standards Circ. 279, 1926. SMITHSONIAN PHYSICAL TABLES
90
7.12 13.93 20.73 27.54 34.34 41.15 47.95 54.76 61.56 68.36 75.17 81.97 88.78 95.58 102.4 109.2 116.0 122.8 129.6 136.4 143.2 150.0 156.8 163.6 170.4 177.2 184.0 190.8 197.7 204.4
268
PROPERTIES O F G A S E S
T A B L E S 254260.-THERMAL
The properties given in Tables 254 and 256-255 are taken from a series of tables of thermal properties of gases heing compiled at the National Bureau oi Standards at the suggestion of and with the cooperation of the National Advisory Committee for Aeronautics. T h e functions in these tables have been expressed in dinlensionless form in order that they may be converted readily to any system of units. Conversion factors are listed for the most often used units. F o r more extensive data on various gases reference should be made to these Adapted from NBS-NACA Tables on thermal properties of gases, July 1949. Joseph Hilsenrath, Heat and Power Division, National Bureau of Standards. T A B L E 254.-PROPERTIES
OF MOLECULAR HYDROGEN
Part 1.-Density,
T "K/P
.C1 a:m
20 50 100 150
.13679 ,054671 ,027333 .018222
200 250 300 350
.013666 ,010933 .ow1110 ,0078094
400 450 500 550 600
.0068332 .0060740 .0054666 .0049696 .0045555
100atm
T "R
59.510 27.379 18.117
258.83 168.78
36 90 180 270
1.3657 1.0927 ,91055 ,78055
13.574 10.863 9.0575 7.7682
127.01 102.35 85.896 74.086
360 450 540 630
.68298 ,60715 S4644 .49676 .45541
6.8006 6.0474 5.4448 4.9518 4.5400
65.165 58.185 52.563 47.941 44.070
720 810 930 990 1080
.1 atm
1 atm
1.3792 ,54710 ,27333 .18220
5.5112 2.7338 1.8211
.13665 .lo932 .091100 .078086 .068332 .060740 .054666 .04%96 .045555
PIP0
10atm
to
having the dimensions indicated below
P
g cm-'
To convert tabulated value of
p/po
multiply by
8.98854)<10-~ 39888 3.24734)<10-' 5.61 140x 1O-'
liter-'
g
lb in.-' lb ft-' Part 2.-Compressibility
factor, 2
=PV/RT 100 atm
T 'R
.9186 .9983 1,0058
1.0560 1.0796
36 90 180 270
1.0007 1.0006 1.0006 1.0005
1.0068 1.0065 1.0059 1.0053
1.0760 1.0682 1.0607 1.0541
360 450 540 630
1.0005 1.OM4 1.OW4 1.0004 1.0003
1.0048 1.0044 1.W40 1.0036 1.0034
1.0486 1.0439 1.0400 1.0366 1.0377
720 810
T "K/P
.01 atm
.1 atm
1 atm
10 atm
20 50 100 150
.9991 .9999 1.0000 1.oooo
9909 992 1.ow0 1.0001
.9919 998 1.0006
200 250 300 350
1.woo 1.OoOo 1.0000
1.OM0
1.ooo1 1.0001 1.oO01 1.0001
1.om0 1.oooo 1.oooo 1.0000 1.0000
1.OoOo 1.oooo 1.0000
400 450
500 550 600
1.moo
1.OoOo
(continued)
SMITHSONIAN PHYSICAL TABLES
900
990 1080
269 T A B L E 254.-PROPERTIES
of R for hydrogen for temperatures in OK
P a rt 3.-Values Pressure Density
g/cm3 mole/cm3 mole/liter Ib/ft3 Ib molejft3
OF M O L E C U L A R H Y D R O G E N (concluded)
atm
kg/cm2
mmHg
40.7027 82.0567 .0820544 .651994 1.31442
42.0551 84.7832 .0847809 .673658 1.35809
30934.0 62363.1 62.3613 495.515 998.959
T A B L E 255.-DENSITY
O F GASES A N D VAPORS
Ib/im2
598.167 1205.91 1.20557 9.58171 19.3167
**
The following table gives the density as the weight in grams of a liter (normal liter) of the gas at 0a.C. 76 cmHg pressure. also the weight in Ib/ft3. and standard gravity 930.655 cm/sec' (sea level. 45" latitude). the specific gravity referred to dry. carbon-dioxide-free air. and to pure oxygen. Dry. carbon-dioxide-free air is of remarkably uniform density ; Guye. Kovacs. and Wourtzel found maximum variations in the density of only 7 to 8 parts in 10.000. For highest accuracy pure oxygen should be use 3. as the standard gas for specific gravities. Observed densities are closely proportional to the molecular weights . Weight of normal
Gas
Formula
Molecular weight
26.036 Acetylene ............. CaH. Air ................... . 17.032 Ammonia ............. NH3 39.944 -4rgon ................ A 77.93 Arsene ............... ASH^ 58.12 Butane-iso ............ G H m 58.12 Butane-n ............. CIHm 44.01 Carbon dioxide ........ co. 28.010 Carbon monoxide ...... co 60.076 Carbon oxysulfide ..... cos 70.914 Chlorine .............. c12 86 914 Chlorine monoxide .... c120 30.065 Ethane ............... CaHa 28.052 Ethylene .............. CaHI 38.00 Fluorine .............. F2 4.003 Helium ............... H e 2.016 Hydrogen ............ H2 50.924 Hydrogen bromide ..... H B r 36.465 Hydrogen chloride .... HCI 127.93 Hydrogen iodide ....... HI 80.976 Hydrogen selenide ..... H S e 34.082 Hydrogen sulfide ...... Has 83.7 Krypton .............. K r 16.042 Methane .............. CH. 50.491 Methyl chloride ....... CHsCl Methyl ether .......... (CHx3)ZO 46.068 34.034 Methyl fluoride ....... CHzF 31.058 CHsNHa Mono methylamine 20.183 Neon ................. Ne 30.008 Nitric oxide ........... N O 28.016 N. Nitrogen (chem.) Nitrogen (atm) 65.465 Nitrosyl chloride ...... NOCl 44.016 Nitrous oxide ......... NaO 32.000 Oxygen ............... 0 2 34.004 Phosphine ............ PH3 44.094 Propane .............. C ~ H P 104.06 Silicon tetrafluoride ... SiF. 64.066 Sulfur dioxide ......... so* Xenon ................ Xe 131.3
....
..... .......
.
* * For reference. see footnote 4 5 . p 136 * A t 710 mmHg.
SMITHSONIAN PHYSICAL TABLES
liter in grams
1.173 1.2920 .7598 1.782 3.48 2.673 2.519* 1.9630 1.2492 2.72 3.1638 3.E9 1.3566 1.2604 1.6954 .1785 .08985 3 6104 1.6269 5.7075 3.670 1.5203 3.7365 .7152 2.3076 2.1098 1.5452 1.396 .9005 1.3388 1.2499 1.2568 2.992 1.9638 14277 1S294 2.020 4.684 2.858 5.8579
ft3 in pounds
.07323 .0835 .04742 .1112 .217 .1669 .15725* .1225 .0779 .170 .1974 .243 .08469 .07860 .1058 .01114 .005611 .2252 .1016 .3562 .229 .0949 .2332 .0446?
.1440
.13171 .09646 .08715
.05621
.0836 .07803 .07846
.1868 .123255 .08915 .09548 .1261 .2924 .1784 .3657
Specific gravity Air E 1
02= 1
.912
.825 .9047 25395 1.2482 2.434 1.870 1.8868* 1.3834 .8750 1.90 2.249 2.721 .9493 .8820 1.187 .1249 .06290 2.5503 1.1471 4.052 2.568 1.077 2.595
1.000 .5963 1.3787 2.69 2.067 2.085* 1S29O .9671 2.10 2.486 3.01 1.0493 .9749 1.311 .1381 .06952 2.8189 1.2678 4.480 2.839 1.190 2 868 .5544 1.7825 1.6318 1.1951 1.080 A963 1.0366 .9672 .9722 2.314 1.5297 1.10527 1.1829 1.562 3.623 2.2638 4.525
5016
1.6125 1.4764 1.0813 .9769 .63004 .9378 .8751 .8795 2.094 1.3840 1.0000 1.0702 1.414 3.278 2.0482 4.094
270 T A B L E 256.-THERMAL Specific heat
CP"
En th a l p y
PROPERTIES
OF D R Y AIR ( I D E A L GAS S T A T E ) Specific heat
Entropy
( H a- E," )
CPO
S" -
R
E nthalpy
Entropy
( H "-E,' )
s. R
"K
R
12.0382 14.4622 15.8748 16.8832
400 410 420 430 440
3.5305 3.5349 3.5397 3.5447 3.5499
5.1182 5.2476 5.3771 5.5067 5.6366
24.9301 25.0173 25.1026 25.1859 25.2675
.6353 ,7631 .89W 1.0188 1.1466
17.6633 18.2990 18.8367 19.3034 19.7145
450 460 470 480 490
3.5555 3.5613 3.5673 3.5735 3.5799
5.7667 5.8969 6.0274 6.1581 6.2891
25.3473 25.4255 25.5022 25.5773 25.6511
3.4913 3.4914 3.4914 3.4914 3.4914
1.2744 1.4022 1.5300 1.6578 1.7856
20.0824 20.4152 20.7190 20.9984 21.2572
500 510 520 530 540
3.5865 3.5933 3.6003 3.6075 3.6149
6.4202 6.5517 6.6833 6.8153 6.9475
25.7235 25.7946 25.8644 25.9330 26.0005
150 160 170 180 190
3.4915 3.4916 3.4916 3.4917 3.4919
1.9134 2.0413 2.1691 2.2969 2.4247
21.4980 21.7234 21.9351 22.1346 22.3234
550 560 570 580 590
3.6224 3.6300 3.6377 3.6456 3.6535
7.0799 7.2127 7.3456 7.4790 7.6126
26.0669 26.1323 26.1966 26.2599 26.3223
200 210 220 230 240
3.4922 3.4924 3.4927 3.4932 3.4937
2.5526 2.6804 2.8083 2.9362 3.0641
22.5026 22.6729 22.8354 22.9907 23.1394
600 610 620 630 640
3.6615 3.6696 3.6778 3.6860 3.6943
7.7465 7.8807 8.0152 8.1500 8.2851
26.3838 26.4444 26.5041 26.5630 26.621 1
250 260 270 280 290
3.4945 3.4953 3.4963 3.4975 3.4989
3.1920 3.3199 3.4479 3.5759 3.7040
23.2820 23.4191 23.5510 23.6782 23.8009
650 660 670 680 690
3.7027 3.71 11 3.7195 3.7279 3.7363
8.4205 8.5562 8.6922 8.8285 8.9651
26.6785 26.7351 26.79 10 26.8461 26.9006
300 310 320 330 340
3.5005 3.5024 3.5044 3.5068 3.5093
3.8321 3.9603 4.0885 4.2169 4.3453
23.9196 24.0344 24.1456 24.2535 24.3582
700 710 720 730 740
3.7447 3.7531 3.7614 3.7698 3.7782
9.1021 9.2393 9.3768 9.5147 9.6528
26.9544 27.0076 27.0601 27.1121 27.1634
350 360 370 380 390
3.5122 3.5153 3.5186 3.5224 3.5263
4.4738 4.6024 4.7312 4.8601 4.9891
24.4600 24.5590 24.6553 24.7492 24.8408
750 760 770 780 790
3.7865 3.7947 3.8030 3.81 12 3.8194
9.7913 9.9301 10.0692 10.2085 10.3482
27.2142 27.2644 27.3141 27.3632 27.4118
400
3.5305
5.1182
24.9301
800
3.8275
10.4882
27.4599
"K
R
10 20 30 40
3.5009 3.4941 3.4926 3.4918
.1238 .2518 .3796 SO75
50 60 70 80 90
3.4915 3.4914 3.4914 3.4913 3.4913
100 110 120 130 140
RT.3
RTO
Conversion factors To convert tahulated value of
to
C,"/R, S"/R
C,".S"
having t h e dimensions indicated below
multiply by
cal mol-' 'K-'(or OC-') cal g-' OK-' (or "C-') joules g' OK-' (or "C-') Btu (Ih mol)-' "R-' (or O F - ' ) Btu Ib-' "R-' (or OF-')
1.98719 .0686042 ,287040 1.98588 .0685590
(continited)
SMITHSONIAN PHYSICAL TABLES
27 I T A B L E 256.-THERMAL Specific heat
Enthalpy ( H '-Eo" )
P R O P E R T I E S OF D R Y A I R ( I D E A L GAS S T A T E ) (concluded)
'K
R
800 850 900 950 1000
3.8275 3.8670 3.9049 3.9409 3.9750
10.4882 11.1924 11.9037 12.6218 13.3463
1050 1100 1150 1200 1250
4.0070 4.0371 4.0653 4.0917 4.1166
14.0769 14.8131 15.5547 16.3013 17.0525
1300 1350 1400 1450 1500
4.1398 4.1615 4.1820 4.2012 4.2193
17.8082 18.5679 19.3315 20.0988 20.8695
29.3953 29.5519 29.7036 29.8507 29.9935
1550 1600 1650 1700 1750
4.2364 4.2525 4.2678 4.2823 4.2962
21.6434 22.4203 23.2001 23.9826 24.7678
1800 1850 1900
4.3093 4.3218 4.3337
25.5553 26.3453 27.1375
CPO
Specific heat
Entropy
S" R
"K
27.4599 27.6931 27.9152 28.1273 28.3303
1900 1950 2000 2050 2100
C," -
Enthalpy (HO-E,") ~
Entropy S" R
R
RTO
4.3337 4.3452 4.3561 4.3666 4.3767
27.1375 27.9318 28.7281 29.5264 30.3267
31.0047 31.1 175 31.2276 31.3353 3 1.4407
4.3864 4.3958 4.4048 4.4135 4.4219
31.1287 31.9324 32.7379 33.5449 34.3536
31.5438 31.6147 31.7436 312405 31.9355
2400 2450 2500 2550 2600
4.4301 4.4380 4.4456 4.4530 4.4602
35.1637 35.9754 36i7884 37.6028 38.4186
32.0287 32.1201 32.2099 32.2980 32.2845
30.1321 30.2669 30.3979 30.5255 30.6499
2650 2700 2750 2800 2850
4.4672 4.4740 4.4807 4.4871 4.4933
39.2357 40.0540 40.8735 41.6943 42.5162
32.4695 32.5531 32.6353 32.7160 32.7955
30.7711 30.8893 31.0047
2900 2950 3000
4.4994 4.5053 4.5109
43.3392 44.1633 44.9884
32.8737 32.9507 33.0264
RTO
Conversion factors T o convert tabulated value of
to
( H "-Eo" ) /RTo
(H"--Eo")
having the dimensions indicated below
cal mol-' cal g-' joules g-' Btu (lb mol)-' Btu lb-'
SMITHSONIAN PHYSICAL TABLES
multiply by
542.821 18.73% 78.4079 976.437 33.7098
T A B L E 257.-THERMAL
272
Specific heat
"K
CPO R
Enthalpy
(Ho -E,") RTo
PROPERTIES O F MOLECULAR N I T R O G E N ( I D E A L GAS S T A T E ) Entropy
Specific heat
S" R
"K
c,o R
400 410 420 430 440
Enthalpy (H"-E,")
Entropy
RTO
S" K
3.5179 3.5206 3.5237 3.5270 3.5306
5.1257 5.2546 5.3835 5.5126 5.6417
24.0598 24.1467 24.2316 24.3154 24.3956
10 20 30 40
3.5019 3.5006 3.5004 3.5003
.1246 ,2527 .3809 SO90
11.1440 13.5707 14.9903 15.9970
50 60 70 80 90
3.5003 3.5003 3.5003 3.5004 3.5004
.6372 .7653 3934 1.0216 1.1497
16.7781 17.4163 17.9559 18.4233 18.8355
450 460 470 480 490
3.5344 3.5386 3 5430 3.5476 3.5526
5.771 1 5.9005 6.0301 6.1599 6.2899
24.4750 24.5527 24.6289 24.7035 24.7767
100 110 120 130 140
3.5004 3.5005 3.5005 3.5005 3.5006
1.2779 1.4060 1.5342 1.6623 1.7905
19.2043 19.5380 19.8426 20.1227 20.3822
500 510 520 530 540
3.5578 3.5632 3.5688 3.5747 3.5808
6.4200 6.5504 6.6809 6.8117 6.9427
24:8486 24.9191 24.9883 25.0563 25.1232
150 160 170 180 190
3.5006 3.5007 3.5007 3.5007 3.5008
1.9186 2.0468 2.1749 2.3031 2.4312
20.6237 20.8496 21.0519 21.2619 21.4512
550 560 570 580 590
3.5871 3.5936 3.6003 3.6072 3.6142
7.0739 7.2053 7.3370 7.4689 7.6011
25.1890 25.2537 25.3173 25.3800 25.4417
200 210 220 230 240
3.5008 3.5009 3.5010 3.5010 3.5012
2.5594 2.6876 2.8157 2.9439 3.0721
21.6308 21.8016 21.9645 22.1201 22.2691
600 610 620 630 640
3.6214 3.6287 3.6362 3.6437 3.6514
7.7335 7.8662 7.9992 8.1325 8.2660
25.5025 25.5625 25.6215 25.6798 25.7372
250 260 270 280 290
3.5013 3.5015 3.5017 3.5021 3.5025
3.2002 3.3284 3.4566 3.5848 3.7130
22.4120 22.5493 22.6815 22.8088 22.9317
650 660 670 680 690
3.6591 3.6670 3.6749 3.6829 3.6909
8.3998 8.5339 8.6683 8.8030 8.9379
25.7939 25.8498 25.9050 25.9595 26.0133
300 310 320 330 340
3.5030 3.5036 3.5044 3.5054 3.5065
3.8412 3.9695 4.0978 4,2261 4.3544
23.0505 23.1654 23.2766 23.3845 23.4891
703 710 720 730 740
3.6990 3.7071 3.7152 3.7234 3.7316
9.0732 9.2088 9.3446 9.4808 9.6172
26.0665 26.1190 26.1709 26.2222 26.2729
350 360 370 380 390
3.5078 3.5094 3.51 11 3.5131 3.5154
4.4828 4.6113 4.7398 4.8683 4.9970
23.5908 23.6896 23.7858 23.8795 23.9707
750 760 770 780 790
3.7398 3.7480 3.7562 3.7643 3.7725
9.7540 9.8910 10.0284 10.1660 10.3040
26.3231 26.3727 26.4217 26.4702 26.5183
400
3.5179
5.1257
24.0598
800
3.7806
10.4423
26.5658
Conversion factors To convert tabulated value of
Cpo/R, S"/R
to dimensions indicated below
cal mol" OK-' (or "C-') cal g-' OK-' (or "C-') joules g' OK-' (or "C-') Btu (Ib rnol)-' OR-' (or O F - ' ) Btu lb-' OR-' (or O F - ' ) (continired)
SMITHSONIAN PHYSICAL TABLES
multiply tlY
1.98719 ,0709305 .296774 1.98588 .0708837
T A B L E 257.-THERMAL PROPERTIES O F MOLECULAR NITROGEN ( I D E A L GAS S T A T E ) (concluded) Specific beat
Enthalpy ( H "-Eon)
Specific heat
Entropy
Entbalpy (HO-E,")
273
Entropy
"K
R
RTO
se R
"K
R
RTO
S" R
800 850 900 950 1000
3.7806 3.8207 3.8596 3.8970 3.9326
10.4423 11.1380 11.8409 32.5508 13.2674
26.5658 26.7962 27.0156 27.2253 27.4261
2900 2950 3000 3050 3100
4.4460 4.4503 4.4545 4.4585 4.4624
43.0145 43.8287 44.6437 45.4595 46,2759
31.9327 32.0088 32.0836 32.1573 32.2298
1050 1loo 1150 1200 1250
3.9664 3.9982 4.0281 4.0562 4.0825
13.9904 14.7193 15.4539 16.1939 16.9388
27.6188 27.8040 27.9824 28.1544 28.3206
3150 3200 3250 3300 3350
4.4663 4.4699 4.4735 4.4770 4.4804
47.0931 47.9109 48.7295 49.5486 50.3684
32.3013 32.3716 32.4409 32.5093 32.5766
1300 1350 1400 1450 1500
4.1072 4.1303 4.1518 4.1720 4.1909
17.6883 18.4422 19.2002 19.9621 20.7275
28.4812 28.6366 28.7872 28.9333 29.0751
3400 3450 3500 3550 3600
4.4836 4.4868 4.4900 4.4930 4.4960
51.1888 52.0098 52.8314 53.6535 54.4762
32.6430 32.7085 32.7731 32.8368 32.8996
1550 1600 1650 1700 1750
4.2086 4.2252 4.2408 4.2554 4.2692
21.4963 22.2682 23.0430 23.8206 24.6008
29.2128 29.3467 29.4769 29.6037 29.7273
3650 3700 3750 3800 3850
4.4988 4.5016 4.5044 4.5071 4.5097
55.2994 56.1232 56.9474 57.7722 58.5974
32.9617 33.0229 33.0834 33.1431 33.2020
1800 1850 1900 1950 2000
4.2821 4.2943 4.3057 4.3166 4.3268
25.3834 26.1684 26.9554 27.7446 28.5356
29.8477 29.9652 30.0799 30.1919 30.3013
3900 3950 4000 4050 4100
4.5123 4.5148 4.5173 4.5197 4.5221
59.4231 60.2493 61.0759 61.9030 62.7306
33.2602 33.3177 33.3745 33.4306 33.4861
2050 2100 2150 2200 2250
4.3365 4.3457 4.3544 4.3627 4.3705
29.3285 30.1232 30.9194 31.7172 32.5165
30.4083 30.5129 30.6152 30.7154 30.8135
4150 4200 4250 4300 4350
4.5245 4.5268 4.5290 4.5312 4.5334
63.5585 64.3868 65.2156 66.0448 66.8745
33.5409 33.5951 33.6487 33.7017 33.7541
2300 2350 2400 2450 2500
4.3780 4.3852 4.3920 4.3985 4.4047
33.3172 34.1192 34.9225 35.7270 36.5327
30.9097 31.0039 31.0963 31.1869 31.2759
4400 4450 4500 4550 4600
4.5356 4.5377 4.5398 4.5419 4.5440
67.7045 68.5349 69.3657 70.1968 71.0284
33.8059 33.8572 33.9079 33.9581 34.0077
2550 2600 2650 2700 2750
4.4106 4.4163 4.4218 4.4270 4.4320
37.3395 38.1473 38.9562 39.7661 40.5769
31.3631 31.4488 31.5330 31.6157 3 1.6970
4650 4700 4750 4800 4850
4.5460 4.5480 4.5500 4.5520 4.5540
71.8603 72.6927 73.5253 74.3583 75.1917
34.0569 34.1055 34.1536 34.2013 34.2484
2800 2850 2900
4.4369 4.4415 4.4460
41.3886 42.201 1 43.0145
31.7769 31.8554 31.9327
4900 4950 5000
4.5559 4.5579 4.5598
76.0255 76.8497 77.6941
34.2952 34.3415 34.3873
C*O
CPO
Conversion factors To convert tabulated value of
( H"-L" ) /RTo
SMITHSONIAN PHYSICAL TABLES
to dimensions indicated below
cat mot-' cal g-' joules g" Btu (Ib mol)-' Btu lb-I
multiply bv
542.821 19.3754 81.0699 976.437 34.8528
TABLE 258.-THERMAL PROPERTIES O F MOLECULAR OXYGEN ( I D E A L GAS STATE)
274
Specific heat
C""
Enthalpy
Entropy
(H '-Eo") ~
S" -
Specific heat
Enthalpy
CP"
(HO-E,") ___
R
RTO
so R
Entropy
R
"K
,1222 ,2513 ,3798 ,5081
12.7490 15.1937 16.5980 17.6256
400 410 420 430 440
3.6212 3.7322 3.6435 3.6550 3.G668
5.1542 5.2869 5.4201 5.5537 5.6877
25.7140 25.8036 25.8912 25.9771 26.0612
3.5029 3.5023 3.5019 3.5016 3.5015
.6364 .7646 3928 1.0210 1.1492
18.4116 19.0461 19.5837 20.0535 20.4656
450 460 470 480 490
3.6787 3.6907 3.7029 3.7151 3.7274
5.8222 5.Y571 6.0924 6.2282 6.3644
26.1438 26.2248 26.3043 26.3823 26.4591
100 110 120 130 140
3.5014 3.5013 3.5013 3.5013 3.5013
1.2774 1.4056 1.5337 1.6619 1.7901
20.8348 21.1684 21.4732 21.7534 22.0129
500 510 520 530 540
3.7396 3.7520 3.7613 3.7765 3.7887
6.5011 6.6382 6.7758 6.9138 7.0523
26.5345 26.6087 26.6817 26.7535 26.8242
150 160 170 180 190
3.5013 3.5015 3.5017 3.5020 3.5025
1.9183 2.0464 2.1 746 2.3028 2.4310
22.2545 22.4804 22.6927 22.8929 23.0823
550 560 570 580 590
3.8008 3.8129 3.8248 3.8366 3.8483
7.1912 7.3306 7.4701 7.6106 7.7513
26.8938 26.9624 27.0300 27.0966 27.1623
200 210 220 230 240
3.5032 3.5042 3.5056 3.5073 3.5095
2.5593 2.6875 2.8158 2.9442 3.0726
23.2619 23.4329 23.5959 23.7518 23.9011
600 610 620 630 640
3.8599 3.8713 3.8826 3.8937 3.9047
7.8924 8.0339 8.1758 8.3181 8.4609
27.2271 27.2910 27.3540 27.4162 27.4776
250 260 270 280 290
3.5122 3.5155 3.5193 3.5238 3.5288
3.2012 3.3289 3.4586 3.5875 3.7166
2410444 24.1822 24.3150 24.4430 24.5668
650 660 670 680 690
3.9155 3.9262 3.9367 3.9470 3.9571
8.6040 8.7476 8.8915 9.0358 9.1805
27.5383 27.5981 27.6572 27.7156 27.7733
300 310 320 330 340
3.5344 3.5407 3.5476 3.5551 3.5631
3.8459 3.9754 4.1051 4.2351 4.3654
24.6865 24.8025 24.9150 25.0243 25.1305
700 710 720 730 740
3.9672 3.9770 3.9866 3.9961 4.0054
9.3255 9.4709 9.6167 9.7628 9.9093
27.8303 27.8867 27.9424 27.9974 28.0519
350 360 370 380 390
3.5717 3.5807 3.5902 3.6002 3.6105
4.4960 4.6269 4.8782 4.8898 5.0218
25.2340 25.3347 25.4329 25.5288 25.6224
750 760 770 780 790
4.0145 4.0235 4.0323 4.0409 4.0494
10.0561 10.2032 10.3507 10.4985 10.6466
28.1057 28.1589 28.2116 28.2637 28.3152
400
3.6212
5.1542
25.7140
800
4.0577
10.7950
28.3662
"K
R
RTO
10 20 30 40
3.5424 3.5145 3.5077 3.5044
50 60 70 80 90
Conversion factors T o convert tahulated value of
c.",s" R R
multiply t o dimensions indicated helow
cal mol-' OK-' (or OC-') cal q-' OK-' (or "C-') joules g-* OK-' (or "C-') Rtu Ilh mol)-' OR-' (or O F - ' ) Btu lb-' OR-' (or OF-')
(continued)
SMITHMNIAN PHYSICAL TABLES
by
T A B L E 258.-THERMAL PROPERTIES OF MOLECULAR OXYGEN ( I D E A L GAS S T A T E ) (concluded) S ecific teat
Enthalpy (HO-E,')
275
Entropy
Specific heat
Enthalpy
CP'
-
( H " -Eo")
R
RTO
S" R
Entropy
R
R=O
-R
1000
4.0577 4.0970 4.1327 4.1652 4.1948
10.7950 11.5414 12.2946 13.0541 13.8193
28.3662 28.6134 28.8486 29.0729 29.2874
2900 2950 3000 3050 3100
4.7824 4.7944 4.8062 4.8177 4.8291
45.2601 46.1366 47.0152 47.8961 48.7790
34.0470 34.1289 34.2096 34.2891 34.3675
1050 1100 1150 1200 1250
4.2219 4.2469 4.2698 4.2912 4.3112
14.5896 15.3647 16.1442 16.9278 17.7151
29.4927 29.6897 29.8790 30.0611 30.2367
3150 3200 3250 3300 3350
4.8402 4.8512 4.8619 4.8724 4.8827
49.6640 50.5509 51.4398 52.3307 53.2236
34.4449 34.5212 34.5965 34.6708 34.7442
1300 1350 1400 1450 1500
4.3300 4.3479 4.3651 4.3815 4.3975
18.5059 19.3002 20.0976 20.8981 21.7016
30.4062 30.5700 30.7284 30.8819 31.0307
3400 3450 3500 3550 3600
4.8929 4.9028 4.9125 4.9220 4.9312
54.1183 55.0148 55.9130 56.8132 57.7150
34.8166 34.8881 34.9587 35.0285 35.0974
1550 1600 1650 1700 1750
4.4130 4.4282 4.4431 4.4578 4.4724
22.5080 23.31 71 24.1290 24.9437 25.7609
31.1751 31.3155 31.4519 31.5848 31.7142
3650 3700 3750 3800 3850
4.9403 4.9491 4.9578 4.9662 4.9744
58.6183 59.5233 60.4301 61.3384 62.2482
35.1654 35.2327 35.2992 35.3649 35.4299
1800 1850 1900 1950 2000
4.4868 4.5011 4.5153 4.5295 4.5436
26.5809 27.4036 28.2288 29.0565 29.8869
31.8404 3 1.%36 32.0838 32.2013 32.3161
3900 3950 4000 4050 4100
4:9825 4.9903 4.9979 5.0054 5.0126
63.1594 64.0721 64.9862 65.9022 66.8193
35.4941 35.5576 35.6204 35.6826 35.7441
2050 2100 2150 2200 2250
4.5576 4.5715 4.5854 4.5993 4.6130
30.7198 31.5554 32.3935 33.2341 34.0771
32.4285 32.5385 32.6462 32.7518 32.8553
4150 4200 4250 4300 4350
5.0197 5.0265 5.0332 5.0397 5.0460
67.7371 68.6561 69.5765 70.4983 71.4217
35.8049 35.8650 35.9245 35.9835 36.0418
2300 2350 2400 2450 2500
4.6267 4.6404 4.6540 4.6674 4.6808
34.9227 35.7709 36.6217 37.4747 38.3302
32.9568 33.0565 33.1543 33.2504 33.3449
4400 4450 4500 4550 4600
5.0521 5.0580 5.0638 5.0693 5.0746
72.3461 r/3.2715 74.1976 75.1246 76.0528
36.0995 36.1566 36.2132 36.2691 36.3246
2550 2600 2650 2700 2750
4.6940 4.7071 4.7200 4.7328 4.7454
39.1882 40.0487 40.9114 41.7765 42.6440
33.4377 33.5289 33.6187 33.7071 33.7940
4650 4700 4750 4800 4850
5.0797 5.0847 5.0896 5.0943 5.0987
76.9827 77.9135 78.8445 79.7760 80.7086
36.3794 36.4338 36.4876 36.5410 36.5938
2800 2850 2900
4.7579 4.7703 4.7824
43.5138 44.3858 45.2601
33.87% 33.9640 34.0470
4900 4950 5000
5.1028 5.1068 5.1109
81.6423 82.5770 83.5122
36.6461 36.6980 36.7493
0
'K
800 850 900 950
cp-
~
S"
'K
Conversion factors To convert tabulated value of
H"-EQ" RTo
SMITHSONIAN PHYSICAL TABLES
to dimensions indicated below
cal mol-' cal g-' joules g-' Btu (Ib mol)-' Btu lb-'
multiply by
542.821 16.9632 70.9742 976.437 30.5137
276 T A B L E 259.-CRITICAL
Substance
T E M P E R A T U R E S . PRESSURES. A N D D E N S I T I E S OF GASES** Critical temperature
(0°C)
Acetvlene .............. 36 Air ................... -140.7 Alcohol ( C2HeO) ...... 243.1 Alcohol (CH. 0 ) 240.0 Allylene ............... 128 Ammonia 132.4 Argon -122 Benzene 288.5 Bromine 302 iso-Butane 134 n-Butane .............. 153 Carbon dioxide ......... 31.1 Carbon disulfide ....... 273 Carbon monoxide ....... -139 Chlorine ............... 144.0 Chloroform ............ 263 Cyanogen .............. 128 Ethane ................ 32.1 Ether (ethyl) .......... 193.8 Ethyl chloride .......... 187.2 Ethylene ............... 9.7 Helium -267.9 Hydrogen ............. -239.9 Hydrogen bromide 90 Hydrogen chloride ..... 51.4 Hydrogen iodide ....... 151 Hydrogen sulfide ....... 100.4 Iodine ................. 553 Krypton ............... -63? Mercury ............... 1460k20 Methane ............... -82.5 Methyl chloride ........ 143.1 Neon .................. -228.7 Nitric oxide ........... -94? Nitrogen .............. -147.1 Nitrous oxide 36.5 Oxygen -118.8 Phosgene 182 Propane 95.6 Radon ................. 104 -3.5 Silicon hydride ......... Sulfur ................. 1040 Sulfur dioxide ......... 157.2 Sulfur trioxide ......... 218.3 Water ................. 374.0 Xenon ................. 16.6
62 37.2 63.1 78.7
...... .............. ................. ............... ............... .............
...
115.5 49.7 47.7 ... ...
37 36 75.5 76 36.2 78.7
...
59 48.8
35.5 52 50.9 2.34 13.2 84 84.5 82
................ .....
92
...
56? 164050 47.4 65.8 26.8 65 34.7 71.7 51.4 56 43 64.1 49.7
.......... ............... .............. ...............
.
.
* * For reference. see footnote 45. p 136 'Plait point . t Critical point of contact
SMITHSONIAN PHYSICAL TABLES
...
80.1 86.5 224.9 60.2
.
.231
.35*
.31t .2755 .272
...
.235 .531 .304 1.18
... ...
.46
...
.311 .573 .516
...
.21? .2625 .33 .2159 .0693 .0310
... ... ... ...
.42
.78? .5 .162 .37? .484 .52? 3110 .45? .430 .52
.
...
... ...
...
.52? .630 .4 1.155
I 0
< I?
T A B L E PIO.-CONVERSION
c)
r D
FACTORS FOR V A R I O U S P R E S S U R E U N I T S
*
(Equivalent value in various units)
4
D
B in
=1
10-0
mmHg in.Hg 0°C 0°C millibars 7 5 0 1 ~ 1 0 - ' 2 . 9 5 3 ~ 1 0 - ~ 10-3
1 bar
=loo
1
7 . 5 0 0 6 ~109 29.53
1CP
14.51
2.0883 x 103
1 . 0 1 9 7 ~ 1 0 3 1.0216~108
4.022 x lo2
.9869
1 mmHg (Tor)
=1.3332~103
1.3332~10-3 1
3.937 x 10-2
1.3332
1.9339 x 10-2
2.7847
1.3594
1.3620
.5363
1.3157~104
Ln
dyne/cmt
1 dyne/cm2 (barye)
bar
cm water in. water Ib/in.2 Ib/ft2 g/cm2 20°C 20°C 1.4506~10-5 2.0883~10-3 1.0197~10-31.0216~10-3 4.022~10-'
atm 9.869xlO"
1 in.Hg
=3.386x104
3.386 x 10-2
25.400
1
33.864
.4912
70.732
34.530
34.590
13.620
3.3417~10"
1 millibar
=lo3
10-3
.7501
2.953 x 10-2
1
1.4506~10-2 2.0888
1.0197
1.0216
.4022
9.869 x 10-4
1 Ib/in.2
=6.894xlO4
6.894~10-2
51.71
2.0368
68.95
1
1.44x102
70.30
70.43
27.731
6 . 8 0 4 ~10-2
1 Ib/ft2
=4.788x 102
4 . 7 8 8 ~10-4
.3591
1.414~10-2
.4788
6.945~10-a
1
,4882
,4891
.1926
4.725 x 1 0 4
1 g/cm2
=9.807x 102
9 . 8 0 7 ~10-4
.7356
2.8961 x 10-1
.9807
1.4226~ 10-2
2.0484
1
1.0018
.3945
9 . 6 7 8 ~10-4
1 cm water 2O"C=Y.789x1O2
9 . 7 8 9 ~10-4
.7342
2.891~10-2
,9789
1.4 198 x 10-2
2.0446
.Y981
1
,3937
9.661 x 10-4
1 in. water 2OoC=2.486xlO3
2.486 x 10-3
1.865
7.343x 10-2
2.486
3.607~10-2
5.193
2.535
2.5400
1
2.453 x lo-*
1.01325
7.60 x 102
29.921
1.0133~103
14.70
3.1164 x 103
1 . 0 3 3 2 ~10s 1.0351 x 103
4 . 0 7 5 8 ~102
1
1 atm
= 1 . 0 1 3 2 5 ~108
* T h e table is based primarily upon the following data and assumDtions: a, One atm pressure equals 760 mmHg a t 0°C under standard gravity of 980.665 crn/sec?. b, The density of mercury a t 0°C is 13.5951 g/cmS. c, T h e density of water a t 20°C is .99820.
N
v v
278 JOULE-THOMSON E F F E C T I N FLUIDS *
T A B L E S 261-267.-THE
The Joule-Thomson effect is defined as the ratio of the change in temperature to the drop in pressure of a fluid driven by the drop in pressure through a porous partial blockage in the fluid flow tube. The space between the reading thermometers on each side of the porous obstruction is to be isolated as to exchange of heat energy but not as to work energy. Nor must the fluid gain a significant amount of directed kinetic energy between the thermometers. Under these circumstances the Joule-Thomson effect,
p=
where h = u - p v =
($)h,
enthalpy, and since p is a function of both t and p , the steps are preferably represented as infinitesinials. Since Ap is always negative, p is positive when At is negative. For all the gases yet measured, p is zero along a line in the fp plane called the inversion line.
* The material on the Joule-Thomson effect was supplied by J. R. Roebuck, of the University of Wisconsin. T A B L E 261.-THE p o/t
1 atm 20 '* 60 loo
"
140 180 220
" " "
P/t
1 atrn 20 40 60 80
100 120 140 160 180 200 220 -
JOULE-THOMSON EFFECT ON AIR (WATER AND CARBON DIOXIDE F R E E ) 83
as a function of t and p . t in "C, p in atm, p in "C/atm.
0'
25"
50"
75"
100"
1250
150"
.2746 .2577 ,2200 .1822 .1446 .1C97 .0795
.2320 .2173 .1852 .1550 .1249 .0959 .0697
,1956 .I830 .1571 .1310 ,1070 .0829 .0609
.I614 ,1508 .1293 .I087 .OR39 ,0707 .0536
.1355 ,1258 .lo62 .0884 ,0726 .0580 .0449
.I140 .I060 .0886 .0731 .0599 .0474 .0366
.0961 .0883 ,0732 ,0600 .0482 ,0376 .0291
-150'
-140'
.0710 .0450 ,0295 .O 185 t.0045 -.0070 --.0145 .-.0255 -.0330 -.0405
1.0755 1.0240 .4600 .1125 .0685 .0440 .0265 ,0120 +.0015 -.0115 -.0205 --.ON
-120.3
.7370 .7155 .6945 .5150 .2855 .1535 .0940 .05m .0375 .0200
+.0080 -.0030
-100'
3395 S700 .5370 .4820 .3900 .2775 .1955 ,1360 ,0950 .0655 ,0440 .0265
2500
2000
280"
.0645 .0409 .0303 .0580 .0356 ,0255 ,0453 .0254 .O 162 ,0343 .0165 .0073 .0250 ,0092 +.0008 .0174 +.0027 -.0058 ,01115 -.0025 -.0111
-75"
-50"
-25"
0"
.4795 .4555 .4235 .3835 .3360 .2880 .2325 .1855 ,1435 .1136 ,0855 .0630
,3910 .3690 .3480 .3195 .2830 .2505 ,2165 .1825 .I525 ,1270 ,1065 .0880
.3225 ,3010 .2805 .2610 2385 .2130 .I905 ,1650 .1420 .1240 .low .0950
.2745 ,2580 .2375 .2200 .2105
.1820
.i620 ,1450 .1250 ,1100 .0950 .0825
a Proc. Amer. Acad. Arts and Sci., vol. 60, p. 535, 1025; vol. 64, p. 287, 1930 (both corrected).
T A B L E 262.-THE p
t'C
as a function to t (and independent of pressure up to 200 atm), f in "C, -/LXlO?
t"C
-px10'
t"C
100
6.45 6.38
75
6.35
50 25 0
300
5.97
150
250 200
6.29 6.41
@
JOULELTHOMSON EFFECT ON H E L I U M
Phys. Rev., vol. 43, p. 60, 1933 (corrected).
SMITHSONIAN PHYSICAL TABLES
in "C/atm.
-fix102
t"C
6.31
- 50
6.05
6.24
-100
5.03 4.12
6.16
-140
5.84 5.40
-155 -180 -190
3.80
--pXlO?
t"C
p
@
-pXlOZ
T A B L E 263.-THE p
85
as a function of t and p , t in "C, p in atm,
1 atm
t/P
300" 250 200 150 125 100 75 50 25 0 - 25 - 50 - 75 - 87.5 -100 -112.5 -125 -137.5 -150 -160 -170
.0643 .0980 .1377 .1845 .2105 .2413 .2695 .3220 .3720 .4307 SO45 S960 .7100 .7780 .8605 .9680 1.112 1.333 1.812 2.385 3.017
20
0507 .0910 .1280 .1720 .1980 .2277 .2557 .3015 .3490 .4080 .4805 S720 .6895 .7610 .8485 .9560 1.102 1.342
60
in "C/atm.
140
100
.0530 .0785 .1102 .1485 .1707 .I975 2285 .2650 ,3077 .3600 .4210 .4963 S910 .6450 .6900 ,6530 .1250 +.0210 -.0025
p
.0445 .0665 .0950 .1285 .1480 .1715 .1993 .2297 .2628 .3010 .3460 .3970 .4225 .3910 .2820 .1240 +.0415 -.0020 -.0277
.0370 .0555 .0823 .1123 .1300 .1490 .1710 .1947 .2213 .2505 ,2763 .2840 .2480 .1903 A137 .0515 +.0090 --.0203 -.0403
180
.0370 .0485 .0715 .0998 .1153 .1320 .1505 .1700 .18SO .2050 .2140 .2037 .1537 .lo27 ,0560 +.0198 -.0100 -.0350 -.0595
200
.0276 .0468 .0675 .0945 .1100 .1255 .1415 .1580 .1745 .1883 ,1950 .1860 .1215 .0773 .0395 +.0087 -.0165 --.0402 -.0640
Phys. Rev., vol. 46, p. 785, 1934 (corrected).
T A B L E 264.-THE p
t/P
300°C 250 200 150 125 100 75 50 25 0 - 25 - 50 - 75 - 87.5 -100 -112.5 -125 -137.5 -150 -160 -170 -180 88
279
JOULE-THOMSON E F F E C T O N ARGON ed
1 atm
JOULE-THOMSON E F F E C T IN N I T R O G E N 86
as a function of t and p , t in "C, p in atm, p in "C/atm. 20
.0140 .0331 .0558 .0868 .lo70 .1292 .1555 .1855 .2217 .2656 .3224 .3968 SO33 ,5710
.0096 ,0256 ,0472 .0776 .0973 .1173 .1421 .1709 .2060 .2494 .3013 .3734 .4671 S247 S958 .6490 .6841 ,7430 .7948 .8557 9972 .9364 1.2659 1.1246 1.6328 +.0724 2.0048 --.0108 2.3923
33.5
.0050 .0230 .0430 .0734 .0904 .1100 .1336 .1621 .1961 .2377 .2854 .3467 .4318 .4854 .5494 .6208 .7025 .7964 .1704 +.0311 -.0382
60
-.0013 +.0160 .0372 .0628 .0786 .0975 .1191 .1449 .1729 .2088 .2528 ,3059 .3712 .4096 .4506 .4923 .4940 .2364 .0601 t.0068
Phys. Rev., vol. 48, p. 45, 1935 (corrected)
SMITHSONIAN PHYSICAL TABLES
100
-.0075 +.0071 .0262 .0482 .0621 .0768 .0941 .1164 .1400 .I679 .2001 .2332 .2682 .2808 .2754 .2254 .1314 .0638 +.0202 -.0088
140
-.0129 +.0009 .0168 .0348 .0459 .0582 .0740 .0915 .1105 .1316 .1506 .1676 .1735 .1619 .1373 .0932 .0498 +.0177 -.0056 -.0175
180
--.0160 -.0037 +.0094 ,0248 .0347 .0462 .0583 .0732 ,0874 .lo15 .1101 .1120 .lo26 .0933 .0765 .0488 +.0167 -.0181 --.0211 -.0263
200
--.0171 -.0058 +.0070 .0228 .0326 .0419 .0543 .0666 .0779 .0891 .0932 .0909 .0800 .0733 .0587 .0346 +.0032 -.0175 -.0284 -.0315
280 TABLE 265.-THE
t "C/#
250 200 150 100 50 0 - 50 -100
JOULE-THOMSON EFFECT ON M I X T U R E S O F H E L I U M AND ARGON ( p x lo*)
p
as a function of t and
1
Mixture No:l; 20
-5.95 5.66 5.24 4.61 3.76 2.57 - .92 +2.82
-5.83 5.55 5.1 1 4.47 3.61 2.40 - .69 +3.37
p , t in "C, p in atm, p in "C/atm.
H e 75.8 percent, A 24.2 percent 60 100 140
-6.56 6.34 5.99 5.45 4.68 3.65 2.21 - .14
-6.37 6.13 5.77 5.18 4.40 3.30 -1.75 + .79
-6.15 5.90 5.52 4.91 4.08 2.92 -1.32 +1.87
180
200
-6.77 6.55 6.21 5.72 5.01 4.03 2.66 .65
-
4.85 6.63 6.34 5.88 5.19 4.22 2.82 - .78
-4.33 3.55 2.56 -1.32 + .14 1.99 4.53 +6.90
-4.34 3.57 2.62 1.48 - .07 +1.57 3.63 t5.40
- .38
-1.68
-1.68 - .38
5.41 7.93 9.63 10.07
+2: 5.01 6.88 7.73 7.10
1.20 3.00 5.20 7.70 10.65 14.50 17.55 11.35
.95 2.60 4.60 7.05 9.55 13.05 15.60 8.00
Mixture No. 2; H e 50.6 percent, A 49.4 percent
250 200 150 100 50 0 - 50 -100
-2.81 1.67 - .13 1.84 4.50 8.19 13.84
250 200 150 100 50
+1.34
-3.19 2.07 - .67 +1.15 3.66 7.20 12.61
+
0 - 50 -100
2.94 5.05 7.80 12.12 18.40 27.90 43.30
250 200 150 100 50 0 - 50 -100
5.75 8.45 11.70 15.50 21.05 29.85 44.15 70.80
-3.65 2.71 -1.50 + .ll 2.37 5.51 10.27 +17.79
-4.04 3.15 2.01 - .59 +1.39 4.12 8.14 +14.17
-4.21 3.40 2.32 -1.01 .70 2.96 6.28 +10.36
+
Mixture No. 3; H e 33.5 percent, A 66.5 percent
+ .72
2.32 4.41 7.10 11.28 17.18 25.82 41.15
-1.03 + .45 2.22 4.55 7.73 12.05 17.96 27.20
- .38 +1.25 3.23 5.69 9.40 14.43 21.93 34.30
-1.48 - .13 +1.41 3.63 6.32 9.88 13.83 17.55
+2.86 .92
Mixturc No. 4 ; H e 16.6 percent, A 83.4 percent
87
5.15 7.63 10.80 14.50 20.10 28.43 41.80 66.10
3.85 6.05 8.95 12 60 17.75 25.00 36.15 51.00
2.70 4.75 7.45 10.80 15.35 21.15 30.10 29.95
1.90 3.85 6.10 9.05 13.00 17.35 22.90 19.75
Journ. Chem. Phys., vol. 8, p. 627, 1940.
TABLE 266.-THE p
JOULE-THOMSON EFFECT I N CARBON DIOXIDE
as a function of t and p, t in "C, p in atm, p in "C/atm.
t/fi
1 atm
20
300 250 200 150 125 100 90
.2650 .3075 .3770 ,4890 S600 .6490 .6900 .7350 .7855 .8375 A950 .9575 1.0265 1.1050 1.1910 1.2900 1.6500 2.4130
.2425 ,2885 .3575 .4695 S450 .6375 ,6785 .7240 .7750 3325 39.50 .9655 1.0430 1.1355 1.2520 1.4020
80
70 60
so ..
40 30 20 10 -25 -50 -75
0
.OOOO
--.0140 --.0200
60
.2080 2625 .3400 ,4430 S160 .6083 ,6507 ,6955 ,7465 .8060 .8800 .9705 1.0835 .1435 .0720 .0370 -.&I28 --.0150 --.0200
73
.2002 .2565 .3325 .4380 SO65 .5920 .6303 .6725 ,7175 .7675 ,8225 ,8769 .2870 ,1075 .0578 ,0310 -.0039 --.0165 -.0232
Journ. Amer. Chem. Soc., vol. 64, p. 400, 1942. SMITHSONIAN PHYSICAL TABLES
100
.1872 .2420 .3150 .4155 .4750 .5405 S680 S973 .6192 ,6250 ,5570 .2620 .1215 .0700 .0407 .0215 --.0050 -.0160 -.0228
140
.1700 .2235 .2890 ,3760 .4130 .4320 .4290 .4050 .3505 2625 .1720 .lo75 .0678 .0420 .0235 .0115 -.0062 --.0183 -.0240
180
200
.1540 2045 2600 ,3102 .3230 .3000 .2738 .2343 .1875 A405 ,1025 .0723 ,0495 ,0320 ,0187 .0085
.1505 .1975 .2455 2910 .2915
-.0080
-.0228 -.0250
25.55
2300 .1960 .1600 I245 .0930 .0660 .0445 .0272 .0142 .0045 -.0115 -.0248 -.02M)
28 1 T A B L E 267.-THE p as a
t "C/P
250 200 150 100 50 0 - 50 -100 -125
1 atm
-6.95 6.52 6.03 5.44 4.67 3.62 -1.98 +l.Ol 3.61
JOULE-THOMSON E F F E C T I N M I X T U R E S O F H E L I U M A N D NITROGEN ( p 10') 8o
x
function of t and p, t in "C, p in atm,
p
in "C/atm. 180
20 60 100 140 Mixture No. 1; H e 75.5 percent; N) 24.5 percent
-6.90 6.51 6.10 5.58 4.84 3.79 -2.19 .52 2.72
+
-6.84 6.53 6.20 5.76 5.18 4.22 2.72 - .33 +1.45
4.83 6.53 6.21 5.83 5.28 4.46 3.13 -1.13 23
+
-6.80 6.53 6.22 5.85 5.36 4.61 3.55 -1.96 1.02
-6.77 6.53 6.28 5.90 5.47 4.81 3.90 -2.69 1.89
-6.66 6.48 6.24 5.96 5.55 4.98 4.17 3.15 -2.52
+5.20 4.79 4.22 3.46 2.25 .71 +1.29 3.19
-5.23 4.89 4.37 3.67 2.56 1.14 .76 2.50
-4.18 3.22 2.1 1 .74 + .75 2.62 4.77 6.63
-4.18 3.37 2.36 1.14 .28 1.84 3.69 5.26
-2.26 1.27 .ll 1.78 3.89 6.29 9.47 12.10
-2.34 1.43 .30 1.24 3.10 5.33 7.98 10.26
Mixture No. 2; He 51.0 percent; NI 49.0 percent
250 200 150 100 50 0 - 50 - 87.5
-4.98 3.80 2.43 .83 1.25 4.06 8.28 13.44
250 200 150 100 50 0 - 50 - 87.5
-2.34 .96 81 3.07 6.20 10.62 18.00 27.53
+
-4.93 3.84 2.60 1.07 .89 3.50 7.42 118 3
+
-5.06 4.14 3.10 1.74 .06 2.50 5.96 9.37
+
-5.06 4.39 3.54 2.40 .86 +1.22 4.00 6.75
-5.08 4.58 3.88 2.95 1.63 .14 2.55 4.78
+
200
+
Mixture No. 3 ; He 33.2 percent; Nz 66.8 percent
250 200 150 100 50 0 - 50 - 87.5
+
+ .27
2.25 4.54 7.57 11.77 17.97 28.52 42.02
-2.51 1.27
-3.12 1.92
2.59 5.49 9.66 16.31 24.74
+1% 4.10 7.60 12.91 19.14
.--
I , 38
39
-3.69 2.65 1.28 .51 2.83 5.99 10.22 14.75
+
~
~~
-3.93 2.94 1.65 .20 +1.80 4.34 7.68 10.80
Mixture No. 4; H e 16.6 percent; N2 83.4 percent
- .04 +1.78 4.03 6.86 10.88 16.77 26.18 37.86
- .8Z 2.76 5.32
-1.51 .06 +1.61 4.00
14.04 21.46 28.95
11.30 16.80 21.75
+ .78
8 87 -.-.
.7.1 ._1 _
Journ. Amer. Chem. Soc., vol. 60, p. 341, 1938 (corrected).
SMITHSONIAN PHYSICAL TABLES
-2.05 .72 .78 2.78 5.38 8.59 12.56 15.89
+
+
+
+
252
TABLES 268-280.-COMPRESSIBILITY T A B L E 268.-COMPRESSIBILlTY Part 1.-Relative Ethyl alcohol CzHsOH
Isobutyl alcohol CIHoOH
Ether (C2Hs)zO
.9782 .9479 .9059 3760 A517 3149 ,7888 .7671 .7485
1.0319 .9922 .9380 .9025 .8756 3354 .SO61 .7830 .7648
Phosphorus trichloride PCla
volumes n-Proply alcohol C:,H,OH
Amy1 alcohol CaHiiOH
Ethyl iodide CzHsI
1.0315. - 1.0173 1.0865 1.0181 1.0814 1.0214 1.0935 .9668 1.0369 ,9770 1.0305 .9788 1.0288 .9774 1.0351 .9337 .9874 .9483 .9913 .9511 .9915 .9475 .9946 .8850 .9189 .9124 .9424 .9138 .9427 .9070 .9397 .8503 .8776 ,8876 .9120 3869 .9110 3777 .9034 A246 A481 .8677 .8893 3658 3877 3555 3760 .7883 3070 .8365 .8548 3348 3531 .8207 3381 .7613 .7779 3138 3301 .8116 A273 .7937 3099 .7380 .7535 ,7958 .8114 .7918 .SO60 .7725 .7877 .7178 .7326 .7814 .7952 ,7754 .7902 .7554 .7706
1 1.0212 1.0934 1.0195 1.0880
500 1000 2000 3000 4000 6000 8000 10,000 12,000
O F LIQUIDSm
.9740 .9470 .9078 .8798 .8575 3242
1.0262 .9883 .9385 .9052 .a02 3433 .SO01 .8181 .7802 .7976 .7631' .7799 Methyl alcohol CHJOH
Ethyl chloride CzHsCl
Carbon disulfide
Ethyl hromide CzH6Br
Acetone (CH3)Z co
a P , 5 i c G ? 5 i ? ? T z ~ & - ~ 1 1.0234 1.1037 1.0238 1.1005
500 1000 2000 3000 4000 6000 8000 10,000 12,000
.9852 .9577 .9184 3902 ,8679 3348 ,8105 .7902 .7741
1.0443 1.0040 .9531 .9192 .8933 .8561 3292 3077 ,7898
.9811 .9494 .9064 3763 .8523 ,8163 .7907 .7696 ,7527
1.0400, .9993 .9429 .GO65 3782 3381 .8102 .7875 .7709
.9696 .9253 3749 .8415 3167 .77% .7533 .7320 .7148
Part 2.-p
Substance
Benzene
Temp "C
Pressure megaharyes
17 20 20 20 20
200 400 200 400
......
...
Chloroform
.
Glycerine . . . . 15 Kerosene . .. . _20 20 20 Mercury . .... 20 22 00
5
5
1,000 12,ooo 300
500
Compressibility per megabaryes
Bx 1CN
89 77 57 83 70 22 55 45 8 3.95 3.97
- 1.0235 1.1092 1.0275 - 1.0279 1.0358 .9854 1.0458 .9776 - .9818 .9797 .9567 1.0061 .9460 .9988 .9526 1.0082 .9128 .9151 .9525 .9022 .9381 .9076 .9467 .8715 3852 .9154 ,8714 .9020 A748 .9073 2422 .8620 3870 2479 3742 .8504 .8786 .SO08 3265 3468 .8131 3339 A143 A370 .7728 .79% .8188 .7868 ,8056 .7866 .SO66 .7501 .7774 .7962 .7656 .7825 freezes .7821 '' .7617 .7301 .7609 .7758 .7495 .7648
= (l/V,)(dV/dP)
Pressure megaTemp "C baryes
Substance
........... 22 22 almond ...... 15 castor ....... 15 linseed .. . . . .. 15
Mercury Oils:
olive ......... 15 rapeseed ..... 20 Toluene . ....... .. 20 20 Turpentine ....._...20
..
1,OOO 12,000 5 5
5 5
200
400
-
Compressibility per megabaryes B x 108
3.91 2.37 53 46 51
55
59 74 64 74
Bridgman, P. W., Proc. Amer. Acad. Arts and Sci.. vol. 47, p. 345, 1911; vol. 48, p. 309, 1912; vol.
49, p. 3, 1913.
SMITHSONIAN PHYSICAL TABLES
283 T A B L E 269.-RELATIVE VOLUMES O F W A T E R FOR D I F F E R E N T PRESSURES
T A B L E 27O.-RELATIVE VOLU M E S O F E T H E R FOR DIFF E R E N T PRESSURES u1
Temperatures Pressure kg/cmz
<
0 500 1,000 1,500 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000
1.oOoo .9771 .9567 .9396 .9248 .8996 .8795 .8626
01
0°C
50°C
.9741 .9582 .9439 .9201 .€a97 A824 ,8668 .8530 .8407 .8296 .8192
Temperatures Pressure kg/cmz
95°C
A (-
30°C
110495 .9761 .9364 9085 A858 .8671 .8511 .8255 A055 .7888 .7742 .7616 .7504 .7399 .7305 .7225
0 500
984 .9812 .9661 .9409 .9194 .9009 .8849 .8705 3577 .8461 .8352 .8256
1,000 1,500 2,000 2,500 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000 12,000
75°C
.8909 .8726 8446 .8225 .8038 .7884 .7747 .7629 .7519 .7418 .7329
Bridgman, P. W., Proc. Amer. h a d . Arts and Sci., vol. 66, p. 219, 1931.
TABLE 271.-COMPRESSIBILlTY
O F SOLIDS
If Y is the volume of the material under a pressure P megabaryes and YOis the volume at atmospheric pressure, then the compressibility j3 = - ( ~ / V O )( d V l d P ) . Its unit is cm'/megadynes (reciprocal megabaryes). IO'ij3 is the bulk modulus in absolute units (dynes/cm'). The following values of j3, arranged in order of increasing compressibility, are for P = 0 and room temperature. 1 megabarye = 10' dynes/cma = 1.020 kg/cm' = 0.987 atm. Compression per unit vol. per megaharye x 106
Substance
Tungsten . . . . . . . . . . Boron .. .. . . . . . . . Silicon . . . . . . . . . Platinum . . . . . . . . , Nickel . . .. . . . . . Molybdenum . .. . Tantalum . . . . . . . . Palladium . . . . . . . . Cobalt . . . . . . .. Nichrome . . . . . . . Iron . . . . . . . .. . Gold . . . . . . . . . .. . Pyrite . . . . . . . . . . . . . Copper . , . . . . . . . . . . Manganese . . . . . Brass .. . . . . ... . . Chromium . . . . . . Silver . . . . . . . . Mg. silicate, crys.. Mg. silicate . . . . . . . . Aluminum ......... Calcite ............ Tin ...... ... . .....
. . . . . .. .. .
.
.. .. . .. . . .. .. .. .
.
..
.
.. . .. . .. . .
.27 .3 .32 .38 .43 .46 .53 .54 .55 .56 .60 .60 .7 .75 .84 .89 .9 .99 1.03 1.21 1.33 1.39 1.89
SMITHSONIAN PHYSICAL TABLES
Bulk modulus, dynes/ cmzx 10"
3.7 3.0 3.1 2.6 23 2.2 1.9 1.9 1.82 1.79 1.67 1.67 1.4 1.33 1.19 1.12 1.12 1.01 .91 .82 .75 .72 .53
Compression per unit vol. per megabarye
Substance
. . ... . . .. . .. .
x 1w
Gallium . . . . . . 2.09 Cadmium ... . .. . .. . 2.17 Plate glass . . . . . . 2.23 Lead . . . . . . . . . . . . 2.27 Thallium . . . . . . 2.3 Antimony ......... 2.4 Quartz ............ 2.7 Magnesium ........ 2.9 Bismuth . .. ........ 3 0 Graphite . . ....... 3.0 Silica glass ....... 3.1 Arsenic ... . .. . ... 4.5 Calcium . . . . . . .. 5.7 Strontium . . .. . . . . 8.4 Phosphorus red) . . 9.2 Selenium .. . ....... 12.0 Ice ...... .. .. . .. 120 Sulfur ........ ..... 12.9 Iodine ............. 13.0 Sodium ............ 15.6 H a r d rubber ....... 19.4 Phosphorus (white). 20.5
.
.
Bulk modulus, dynes/ cmzx 1012
.48 .46 .45 .44 .43 .42 .37 .34 .33 .33 .32 .22
.175
.120 .109 .0k3 .083 .078 .077 .064
.049
284 TABLE 272.-COMPRESSIBILITY AND T H E R M A L EXPANSION O F PETROLEUM OILSa2
I t was found that the compressibility and thermal expansion of two samples of the same specific gravity, but from different sources, differed more than 30 percent at the higher temperatures, whereas oils of the same specific gravity and the same viscosity had the same compressibility and thermal expansion within rather narrow limits. I n other words, with a knowledge of the specific gravity and viscosity of the oils, it was possible to represent all the measured volumes within less than .5 percent over the entire range of temperature and pressure covered by the measurements. Kinematic Specific viscosity gravity Pressure 100°F, cgs 60"/60"F kg/cm*
.020
.so
.85
.!?o' .050
.so 3.5 .90
.loo
.85 .95
.500
.85 " .95
1.ooo
.85 .95
2.000
.85 .95
5.000
.85 .95 '
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50
210"F, cgs 60"/60"F kg/cm2
.loo
.90 "
'I
.95
"
1.00
200
.90
'
1.00
.440
.!XI
1.oo 1.100
.?O 1.00
a2 Jessup,
0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50
Relative volumes
0°C
20"
50"
100"
200"
300'
1.000 ,996 1.000 .997
1.018 1.014 1.017 1.014 1.017 1.013 1.017 1.013 1.016 1.013 1.016 1.012 1.016 1.012 1.015 1.012 1.015 1.012 1.014 1.012 1.015 1.012 1.014 1.011 1.014 1.011 1.014 1.011 1.014 1.011 1.013 1.011
1.045 1.041 1044 1.040 1.043 1.038 1.043 1.038 1.041 1.037 1.040 1.036 1.040 1.036 1.038 1.034 1.038 1.034 1.036 1.033 1.037 1.034 1.035 1.032 1.036 1.033 1.035 1.032 1.035 i.032 1,034 1.031
1.096 1.089 1.093 1.086 1.090 1.084 1.089 1.083 1.087 1.081 1.084 1.078 1.083 1.078 1.079 1.074 1.078 1.073 1.074 1.070 1.076 1.071 1.073 1.068 1.075 1.070 1.071 1.067 1.073 i.068 1.069 1.065
1.222 1.205 1.213 1.197 1.204 1.191 1.202 1.189 1.194 1.182 1.188 1.176 1.185 1.174 1.174 1.164 1.170 1.161 1.161 1.152 1.165 1.157 1.157 1.149 1.162 1.153 1.153 1.145 1.157 1.149 1.148 1.141
1.422 1.370 1.396 1.352 1.375 1.337 1.369 1.333 1.349 1.318 1.331 1.304 1.325 1.299 1.297 1.276 1.289 1.269 1.269 1.252 1.279 1.260 1.261 1.244 1.270 1.253 1.254 1.239 1.261 1.245 1.244 1.229
.ooo
.997
.ooo
.997 .OW .997 ,000 .997
.ooo
.997 .000 .997 .Ooo ,997
.WO .998
.ooo
997 1.ooo .998 1.ooo ,998 1.ooo .998 1.om .998
1.ooo .998 0°C
20"
50"
100"
200"
300"
1.000 .998 1.000 .998 1.000 .998 1.ooo .998 1.mo .998
1.014 1.011 1.014 1.01 1 1.014 1.011 1.014 1.011 1.013 1.011 1.013 1.01 1 1.012 1.010 1.013 1.010 1.012 1.010
1.036 1.032 1.035 1.032 1.034 1.031 1.035 1.031 1.033 1.030 1.034 1.031 1.032 1.029 1.033 1.030 1.031 1.028
1.074 1.070 1.071 1.067 1.070 1.066 1.072 1.067 1.067 1.064 1.070 1.066 1.066 1.063 1.068 1.065 1.063 1.060
1.161 1.152 1.154 1.147 1.149 1.142 1.155 1.147 1.144 1.137 1.151 1.143 1.140 1.134 1.146 1.139 1.134 1.128
1.269 1.252 1.256 1.241 1.247 1.232 1.258 1.241 1.237 1.223 1.248 1.234 1.228 1.214 1.241 1.225 1.218 1.205
R. S . , Nat. Bur. Standards Journ. Res., vol. 5, p. 985. 1930.
SMITHSONIAN PHYSICAL TABLES
400"
....
(1.63) (1.71) (1.58) (1.67) (1.55) (1.71) (1.56) ( 1.63) (1.51) (1.56) ( 1.48) (1.54) (1.47) ( 1.47) (1.43) (1.45) (1.41) (1.40) (1.37) (1.43) ( 1.39) (1.39) ( 1.36) (1.41) (1.37) (1.37) (1.35) (1.39) (1.36) (1.36) (1.33) 400'
(1.41) (1.37) (1.38) (1.35) (1.37) (1.34) (1.39) (1.35) (1.35) (1.32) (1.36) (1.34) ( 1.33) (1.31) (1.35) (1.33) (1.32) (1.29)
285
OF T H E E L E M E N T S
T A B L E 273.-COMPRESSIBILITY
.AV/V, = UP. bP2, where P is in bars (10' dyne/cm2) and Y Ois the volume at 1 atm and 30°C (or room temp.). Pressure range. 1 - 12.000 bars uxless otherwise noted a = pn = initial compressibility. See also Table 271.
.
. 75°C
30°C I
Element
ax107
Aluminum .................. 13.65 31.6 Arsenic ..................... 7.95 Beryllium ................... Bismuth .................... 29.70 Boron ...................... 5.58 Cadmium (20°C) ........... 22.5 Carbon (diamond) (25°C) 1.8 Carbon (graphite) (20°C) ... 30 Cerium (below 4000 bars) ... 46.49 5.25 Chromium .................. Cobalt ...................... 5.46 7.29 Copper ..................... Germanium ................. 14.35 5.84 Gold ....................... Hafnium ................... 9.15 Iodine (20°C to 500 bars) .... 127 Iridium ..................... 2.69 Iron ........................ 5.949 Lanthanum ................. 35.78 Magnesium ................. 30.08 Manganese ................. 8.03 Molybdenum ................ 3.63 5.35 Nickel ..................... 5.77 Niobium .................... Palladium .................. 5.34 Platinum ................... 3.63 3.64 Rhodium ................... Ruthenium .................. 3.48 Silicon (20°C to 500 bars) .... 3.1 Silver ...................... 10.02 Tantalum ................... 4.84 Thallium ................... 35.5 18.50 Thorium .................... Titanium ................... 8.09 Tungsten ................... 3.20 Vanadium .................. 6.17 Zinc ........................ 16.93 Zirconium .................. 11.15
....
Steel (20°C) ............... Manganin (20°C) ...........
6.42 8.41
bx 1012
ax107
b x 1012
-
13.98
4.9
2.2 22 .8
8.06 30.44
2.3 31
4.9
.
. . .
. . .
-169
.
45.88 5.37 5.54 7.44 14.63 5.77 8.94
.9 .8
1.6 4.8 2.0 1.1
-
.
0
.83
13.9 27.5 4.2 - .3 .9 .9 .9 .3 1.5 1.7
.
-
12.0 -1.5 .1 1.35 8.6 6.3
.9 .8 1.6 5.7 .8 1.1
.
.9 .83 16.4 24.0 3.6 ..4 .8 .9 .8 .3 1.5 1.7
10.20 4.98 37.4 18.78 8.81 3.20 6.20
3.1 -1.0
-
11.24 -
3.2 6.5
-159
2.82 6.007 35.65 30.02 8.20 3.64 5.41 5.85 5.37 3.67 3.73 3.51
.
3.7 -1.1
. . . .
.
-
12.5 3.3 .2 1.35 6.8
-
Pressure. kg/cmz Element
Temp '' C
4000
8000
30 75 30 75 20 20 30
.0190* .0189
.0342*
.01485*
.0158 .02754*
Phosphorus ................. red ....................... Phosphorus ................. black ..................... Mercury (liquid) ........... Gallium (solid) ............. (liquid) ............ .AV/Vo
.
SMITHSONIAN PHYSICAL TABLES
.0095 .0095
.0344 .0158
j3n = 20 X 10"
pn = 40 X lo-'
12. 000
.0469* .0476 .0205 .0209 .03795*
286 T A B L E 274.-VARIATION
2,500 5,000 10,000 15.000 20,000 25,000 30,000 35,000 40,000
,0334 .0624 .1115 .1511 .1836 ,2111 .2350 .2559 ,2740
.0204 ,0389 .0715 .loo5 .1261 ,1485 .1689 .1872 ,2040
.0677 .1152 .1862 .2374 .2772 .3093 .3360 .3584 ,3774
.0696 .I224 .1982 .2506 2920 ,3254 .3530 .3760 ,3954
(AV/V,) O F THE V O L U M E OF A N U M B E R OF M E T A L S W I T H PRESSURE as
.0999 .1585 .2392 .2981 .3442 .3908* ,4261 ,4559 .4816
,0024 ,0047 ,0094 ,0139 .0181 .0219 ,0256 ,0294 ,0329
,0027 .0052 .0099 ,0143 .0185 ,0224 .0261 ,0297 ,0332
,0040 ,0079 .0154 ,0225 .0293 .0358 .0420 ,0480 .0537
,0040 .0078 .0152 .0213 .0268 ,0323 .0375 ,0426 .0476
,0026 ,0054 ,0111 ,0168 .0220 ,0267 ,0312 .0356 ,0399
,0100 ,0194 ,0370 ,0526 ,0665 .0827t .0952 ,1072 ,1189
.0109 ,0234 .0549 .1655$ .I864 ,2027 ,2154 .2257 ,2342
.0090 .0174 .0329 .0471 .0604 .0729 ,0848 .0961 .I069
.0024 ,0048 .0095 ,0139 .0181 .0219 .0255 .0858 .0290 ,0955 .0324 .0078
,0152 .0289 ,0416 ,0536 ,0650 ,0757
YBridgman P. W. Proc. Amer. Acad. Arts and Sci., vol. 76, p. 75, 1948. Transitiod a t 23,JbO. Compressions ,3716 and ,3776. t Transition at 23,370. Compressions ,0755 and ,0781. $ Transition at 12,430. Compressions ,0736 and ,1504.
T A B L E 275.-VARIATION O F THE V O L U M E (AV/Vo) FOR A N U M B E R O F COMP O U N D S W I T H PRESSURE FOR T W O T E M P E R A T U R E S " * NHiCl Pressure kg/cm2
cm3/1.536 g 'ZO'C
-78.8"C
5,000 .0269 ,0217 10,000 .0489 .0395 15.000 .0668 .0545 zo;ooo .0818 .0675 25,000 .0949 .0794 30,000 .lo70 .0906 35,000 .1176 .lo10 40,000 .1278 .1111 45,000 .1372 .1207 50,000 .I462 .1301 NaCl cm3/2.163 R
Pressure kg/cmz
20'
5,000 10,000 15,000 20.00 2s;ooo 30,000 35,000 40.000 45,000 50,000
.0192 .0365 .0523 .0664 .0798 .0919 .lo29 .1130 .1223 .1309
-78.8"C
.0177 .0341 .0494 .0634 .0763 .0880 .0987 .lo84 .1172 .1250
NHIBr cm3/2.548 g
NHJ cm3/2.887 g
AgCl cm3/5.589 g
5EGiz E G E z GF2iTz
,0257 ,0487 .0694 .0880 .I049 .1203 .1340 .I465 .1576 .1676
.0244 .0462 .0656 .0829 .0984 .1124 .1250 .I364 .1466 .1557
NaBr cms/3.205 g
.0316 .0590 .0822 .I019 .1188 .1332 .1456 .1570 .1676 ,1775
.0321 ,0582 .0804 .0989 .1144 .I279 .I397 .1504 .1608 .1702
NaI cm8/3.667 g
.0113 .0107 .0216 .0207 ,0312 .0301 .o401 .0389 .0484 ,0471 ,0562 .0549 .0634 .0621 .0704 ,0690 .0772 .0755 ,0838 .0818
AgBr cmS/6.548 g & 20°C -78.8"C
,0111 ,0215 .0313 .0404 .0496 ,0584 .0665 .0743 .0818 .0890
KCl cm3/1.988 g
,0103 .0202 .0297 .0386 .0476 .0562 .0641 .0716 .0789 .0858
KBr cm8/2.75 g
5GGz ZCGz G c k z 5 G G z .0228 .0430 .0610 .0771 .0916 .lo47 .1166 .1274 .1373 .1464
.0216 .0413 .0594 .0756 .0904 .lo37 .1157 .1263 .1357 .1439
.0296 .0553 .0778 ,0974 .1145 .1294 .1424 .1538 .1638 .1728
.0290 .0547 .0772 .0%6 .I139 .1288 .1421 .1538 .1642 .1738
.0257 .0478 .0667 ,0841 2111 2225 2324 2419 ,2501 .2579
.0241 .0452 .0645 ,0807 2055 2158 .2255 2340 2418 ,2497
.0295 .0547 .0758 .I989 ,2138 .2267 2379 ,2479 2569 ,2650
.0272 .0511 .0720 .1933 .2078 .2202 2308 .2399 .2481 .2552
G-i%iGc
.1769* .1753* .1896 .1868 .zoo1 .i969 2095 2061 2180 ,2145 .2257 ,2222 .2326 2291 .2396 .2362 .2462 2428 2525 .2490 KI cm3/3.123 g
5 czz .0351 .0335 .0648 .0905 .1970 2149 2296 2421 .2532 2629 .2715
.0623 .0868 .I932 .2105 2244 .2363 2466 .2554 .2630
Transitions Pressure : 20,060 20,590 18,430 19.400 18,200 19,010 A V : .1133 .I120 ,1052 .lo44 .0850 .0872 wBridgman, P. W.,Proc. Amer. Acad. Arts and Sci., vol. 74, October 1940. Transition below this point.
SMlTHSONlAN PHYSICAL TABLES
T A B L E 2 7 6 . 4 O M P R E S S I B I L I T Y O F C R Y S T A L S ** Part l.---aV/V,
287
= aP - bP* where P is in bars (lo8 dyne/cm*) and V, is the volume at 1 atm and 30°C (or room temp.)
Pressure range, 1-12,000 bars 0°C
Crystal and formulae
System
Andradite : 3Ca0.Fe2O3-3SiO2 ..... Cubic Apatite : 3Ca3P208-CaF2. . Hexagonal Argentite : A E ~ S......... Cubic Bahte : Bas&:. ......... Orthorhombic Beryl : 3BeO-AIz03.6SiOa Hexagonal Calcite : CaC03 .......... Trigonal Cobaltite : C0As.S ....... Cubic Fluorite : CaF2 ........... Hexagonal Galena: PbS ............. Cubic Garnet (pyrope) : 3MgO.AL03.3Si02 .... Cubic Halite (Rock Salt) : NaCl. Cubic Hanksite : KCl.2NazC03*9Na.S04 . Hexagonal Jeffersonite .............. Monoclinic Lithium fluoride : LiF ..... Cubic Lithium iodide : LiI ....... Cubic Magnetite : FeaO, ......... Cubic Orthoclase: KAI*Si30e ... Monoclinic Periclase : MgO .......... Cubic Potassium bromide: KBr Cubic Potassium fluoride: K F ... Cubic Potassium iodide: K I Cubic Pyrite: FeSa ............. Cubic Quartz: a SiOa ........... Trigonal Rochelle salt (see end of part 1 ) Sapphire (synthetic) : A~zOS Sphalerite : ZnS .......... Cubic Spodumene: LiAI*SiaOe ... Monoclinic Sylvite : KCI ............. Cubic Tourmaline (black) ...... Trigonal Topaz ................... Zircon: Zr02*SiO2 .......
.
. ....
Rochelle salt : C4HlOaKNa :
bxlOU’
a x 107
-
6.73 10.91
.86 4.1 11.9 .94 3.9 1.88 6.49 7.43
6.70 11.09 25.1 17.92 5.407 13.93 7.79 12.59 18.97
.86 3.8 33.5 12.6 .94 4.2 1.88 6.61 8.41
5.45 42.60
.91 51
5.51 44.26
.91 52.6
24.57 9.088 15.20 60.0 5.47 21.23 5.98 67.0 33.0 85.3 6.80 27.06
24.5 3.94 5.5 110. .82 14.5 1 105.3 31.9 155.4 .87 24.0
25.54 9.551 15.91
26.7 5.56 5.7
5.45 21.16 6.06 68.8 33.2 87.7 6.82 27.54
.82 13.9 1 105.2 31.9 155.4 .87 24.7
3.8 3.36 12.9-12.2 13.03 7.033 56.2 8.16 6.109 8.6
-
-
-
1.28 1.49 75.1 1.95 1.06
12.79 7.073 57.5 8.62 6.075
1.26 2.28 75.1 2.15 1.06
-
-
7. 67
12.6 12.26 19.5-19.7 18.69 -
5.4-5.7 7.2 -
7.1 -
moo
.01080 .02016 .02885 .03716 .04501 .05237
* * For reference, see footnote 45, p. 136.
(continued)
SMITHSONIAN PHYSICAL TABLES
-
30 17.1-18.1 17.60 5.7 5.403 13.5 13.67
- A V/V,
4000 6000 8000 10,000 12,000
75°C
ax107
Pressures kg/cma _. .
30°C
ax107
-
-
-
b x 1012
-
-
T A B L E 276.-COMPRESSIBILlTY
288
OF CRYSTALS (concluded)
constants of rocks at ordinary pressure and temperature.
Part 2.-Elastic
E = Young's modulus, in dynes cm-' G = Modulus of rigidity, in dynes cm-' u = Poisson's ratio, dimensionless The density is given, when known, in parentheses in the first column.
E Rock
dynes cm-2
Granite, coarse gray, Quincy, Mass. ................... 4.64)<101' Quincy, Mass. from 100 ft depth (2.67) .................. 3.48 Basalt, Ostritz
....................
Diabase Westfield, Mass. (2.95) Marble Proctor, Vt. (2.71)
(1.92) X 10"
11.15
I 7
Stress or stress range kg em-2
.215
70600
... ...
... ...
11.2 100-900
..........
8.00*
_..
...
...
..............
3.43 4.60 4.95*
...
.141 .I90
11.2 56
(2.48) (2.50)
.251 .252
70-600 70-600
3.23
...
Limestone Knoxville, Tenn. ................ 6.21 Montreal ....................... 6.35 Dolomite, Pennsylvznia (2.83)
.....
7.10*
Sandstone Quartzitic, Penna. (2.66) ........ 6.36 Feldspathic, Ohio ................ 1.58 Slate, Pennsylvania, I I to cleavage plane ......................... Shale (2.63)
G dynes cm-2
......................
i.ii
(
...
...
...
... ... ...
1-6
4.65
.3-3.6
... ...
...
Ice
.917*
,336
(.365)
................ ....................... (.917) -5°C ..................
.
11.2 70-600
... 200
...
...
Tuff, Japan
Schist, Mica, Japan
...
.115 290
2)
4.4 dry 1.9 wet
11.29*
...
... ... ...
Dynamical measurements.
T A B L E 277.-RELATIVE
Pressure kg/crn*
1
25,000 30,000 40,000 50.000 60;OOO 70,000 80,000 90,000 100,OOO
V O L U M E O F QUARTZ CRYSTALS A N D SIX GLASSES FOR D I F F E R E N T PRESSURESns
Quartz __h__
crystal
1.000 .946 .939 .926 914 .902 .892 383 ,875 .868
glass
i.mo
,923 .909 385 ,864 247 332 .819 308 ,798
Glass A*
1.000 .934 .923 .905 390 375 ,862 349 A38 328
Pyrex glass
Glass C t
Glass D
.921 .907 385 ,867 351 .838 .827 .817 309
.945 .936 ,920 .905 .891 .878 366 354 2342
1.000 .932 .924 .909 .894 .880 .867 .855 .844 A34
fooo
1.ooo
t
Borax glass
1.ooo
377 .866 ,845 .825 308 .792 .778 .765 .753
nx Bridgman P. W. Proc. Amer. Acad. Arts and Sci. vol. 76, p. 68, 1948. Glass A i.. a potish lead silicate of very high lead content. 1 Glass C is a soda potash lime $ Glass D is a lead zinc borosilicate. silicate.
SMITHSONIAN PHYSICAL TABLES
T A B L E 278.-COMPRESSIBILITY
O F GLASSES
289
Av/vo Pressure kg/cni2
Quartz glass
Pyrex
A*
Ct
5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000
.0141 .0295 .0452 .0610 .0772 .0933 .I068 .I194
.0153 .0308 .0465 .0622 ,0786 .0920 .I032 .1133
.0159 .0300 .0425 .0535 .0656 .0770 .0866 .0964
.0121 .0239 .0352 .0449 .0549 .0654 .0742 ,0830
Borax glass
DS .0144 .0281 .0411 .0542 .0678 .0806 .0927 .lo49
.1228
.n76
.I518 .1648
Bridgman, P. W., Proc. Amer. Acad. Arts and Sci.. vol. 73, p. 74, 1938. t Glass C is a soda potash lime Glass A is a potash lead silicate of very high lead content. silicate. $ Glass D is a lead zinc borosilicate.
G R A V I T I E S CORRESPONDING TO
T A B L E 279.-SPECIFIC
T H E B A U M E SCALE
The specific gravities a r e for 15.56"C (60°F) referred to water at the same temperature as unity. For specific gravities less than unity the values arecalculated from the formula: Degrees Baumt = specific gravity -130. For specific gravities greater than unity from : Degrees Baumt = 145 -
145 specific gravity
.
Specific gravities less than 1 Specific
.OO
gravity
.02
.01
.03
.04
.05
.06
,07
.08
.09
82.12 54.21 32.79 15.83
78.95 51.82 30.92 14.33
75.88 49.49 29.09 12.86
72.90 47.22 27.30 11.41
.06
.C7
.08
.09
8.21 20.00 29.92 38.38 45.68 52.05 57.65 62.61
9.49 21.07 30.83 39.16 46.36 52.64 58.17 63.08
10.74 22.12 31.72 39.93 47.03 53.23 58.69 63.54
11.97 23.15 32.60 40.68 47.68 53.80 59.20 63.99
Degrees BaumC I
.60 .70 .80 .!XI 1.00
103.33 70.00 45.00 25.56 10.00
99.51 67.18 42.84 23.85
95.81 64.44 40.73 22.17
Specific gravity
.OO
.01
.02
92.22 61.78 38.68 20.54
88.75 59.19 36.67 18.94
85.38 56.67 34.71 17.37
Specific gravities greater than 1 .03
.04
.05
Degrees BaumC
1.50 1.60 1.70 1.80
.OO 13.18 24.17 33.46 41.43 48.33 54.38 59.71 64.44
1.44 14.37 25.16 34.31 42.16 48.97 54.94 60.20 64.89
2.84 15.54 26.15 35.15 42.89 49.60 55.49 60.70 65.33
SMITHSONIAN PHYSICAL TABLES
4.22 16.68 27.11 35.98 43.60 50.23 56.04 61.18 65.76
5.58 17.81 28.06 36.79 44.31 50.84 56.58 61.67 66.20
6.91 18.91 29.00 37.59 45.00 51.45 57.12 62.14 66.62
290 T A B L E 280.-DEGREES
A P I CORRES P ONDI NG T O SPEC IFIC G R A V I T I E S 60°/600F
(15-56"/15.56"C) for petroleum oils. In order to avoid confusion and misunderstanding the American Petroleum Institute, the Bureau of Mines, and the National Bureau of Standards have agreed that a scale based on the modulus 141.5 shall be used in the Unitcd States Petroleum Industry and shall be known as the A P I scale. The United States Baume scale based on the modulus 140 will continue to be used for other liquids lighter than water. 141.5 - 131.5. Calculated from the formula, degrees A P I = sp. gr. 60"/60" F Degrees
API
60'/6OoF
.6 .7 .8 .9 1.0
.OO
.02
.03
.04
.05
.06
.07
.08
.09
96.73 65.03 44.06 22.30
93.10 62.34 38.98 20.65
89.59 59.72 36.95 19.03
86.19 57.17 34.97 17.45
82.89 54.68 33.03 15.90
79.69 52.27 31.14 14.38
79.59 49.91 29.30 12.89
73.57 47.61 27.49 11.43
.01
104.33 100.47 70.64 67.80 45.38 43.19 25.72 23.99 10.00
SMITHSONIAN PHYSICAL TABLES
TABLES 281-295.-DENSITIES TABLE PSl.-DENSITY
29 1
O F T H E ELEMENTS, LIQUID OR SOLID
Thc density may depend considerably on prcvious treatment. To reduce to Ib/ft3 multiply by 62.4. Element Aluminum
"C' 20"
Physical state
.. commercial .. liq;idh'd d'n ..
3.43 2.29 6.61R 6.691
vacuo-distilled .... ditto.com. pressed amorphous .. liyid .. Argon ......
Antimony "
.
6.22 6.55 1.40 1.65 5.73 3.70
...... solid ..... crystallized br.. ..... amorph. hlack ..... yellow Barium .... sol id neryllium .. solid
Arsenic
.... electrolytic vacuo-distilled .... .... liquid solid .... nqr;on ...... crvstal amorph. pure ...... Bromine ... liquid solid
3.88 3.7x 3.85 9.717 9.781
nismuth
inm
9.67 2.535 2.45 3.12 4.2 X.67 8.648 8.37 7.99 1.54 3.52 2.25 6.79 7.02 1.R73 1.836 1.507 2.2 6.52-6.73 6.93 R.71 8.30-8.95 8.89 8.89 8.9326 8.9376
... wrought ... vacuo-distilled ... solid ... liquid ... Calcium .... diamond Car* ..... ..... graphite Cerjjlm .... electrolytic .... nure Cesjpm ..... solid liquid ..... C h l y i n e ... liquid solid ... C h r p i u m .. pure .. Cobalt ..... CoEper ..... cast annealed ..... ..... hard drawn Ca4yium
Erhium Fluorine
..... vacoo-distilled ditto-com..... pressed liquid ..... ....
... solid ... liauid ....
Gallium Germanium
. ....... cast vacuodistilled ....... ....... ditto-compressed Haf,nium ... solid liquid H:!ium .... .... solid Hy$rogen .. liquid .. solid Indium ..... Iodine ..... .... liquid Iridium .... I r z n ....... pure gray cast ....... cast ....... wrought ....... white Gold
....... Iiqzid ....... .... .... solid Lanthanum . L:,ad ....... vacuo-distilled ....... ditto-compressed Krxpton
8.217 4.77 1.14 1.5 5.93 5.46 19.3 18.88 19.27 13.3 .I5 .I9 .070 ,0763 7.28 4.940 3.71 22.42 7.86 7.03-7.13 7.58-7.73 7.80-7.90 6.88 6.91 2.16 3.4 6.15 11.342 11.347
740 1000 30
20 63 1 -186 -233 14
20
27 1 271
-273 20 31R 31R
Elenient Ixad
Physical state
....... solid ....... T.ithium .... Magnesium . Manganese . M e y u r y ... liqoid ... ... ... solai> ... \lolvlidenum. Seodymium . Sen11 ...... Sickcl ..... Siolrium ... Sitrogen ... liq:;id ... ... solid . . . . . . . . . liq!!id
Osmium Oxygen
... .... .... 1iquid
.... .... T':ill;idium . . I'hasphorus
I'lati;um I'otassium
30 27
- 33.6 -273
25 21. 20 20 20 20
-200 -273 23 20 20 20 -269 -273 -252 -260 20 184 17
1200 -146 -273 20 20
.. ..
SOI'i'd
white red metallic Mack
.... ... ... . . Mack solid
Praneorlymium Rhoilium I
.... I iq
.. ... .. .. .. ... . .. cryst. nmorph. ..... S i l y r ..... c a s t ..... v:iciio-distilled ..... vacuo-compressed liquid ..... Sodium .....
.... .... .... Strontium .. Sulfur ..... Tantalum Telly:ium Thallium Thorium Tin
....
.. ... ...
........ ........ ........ ........ ........ Titanium ... Tungsten .. Uranium ... Vanadium .. Seiion ..... Yttrium .... Zip
....... ....... ....... ....... ....... ..
Zirconium
"C' 325 400 850 20 0 20
- 38.8 - 38.8 -188 -245
88
8.4 .810 354 1.0265 1.14 22.5 1.132 1.426 1.568 12.16
15
-195 -205 -252.5 -273 -1 83.6 -252.5 -273
1 .R1
2.20 2.34 2.69 21.37 2.70 ,870
.a51 ,830
1s 20 20 62.1 62.1
6.48 12.44
25
1.532
20
12.1 7.7-7.8 4.82 2.42 2.35 10.42-10.53 10.492
10.503 9.51 .9712 solid .9519 liquid ,9287 1.0066 solid 2.60 2.0-2.1 liquid 1.811 16.6 crystallized 6.25 amorphous 6.02 11.86 11.00 white, cast 7.29 wrought 7.30 " solid 7.184 liquid 6.99 5.8 gray 4.5 19.3 18.7 5.6 liquid 3.52 3.8 cast 7.04-7.16 solid 4.32 vacuo-distilled 6.92 ditto-com7.13 pressed liquid 6.48 6.44
Where the temperature is not given, ordinary temperature is understood.
SMITHSONIAN PHYSICAL TABLES
II id
fi/cma 11.005 10.597 10.078 .534 1.741 7.3 13.596 13.546 13.690 14.193 14.383 9 ni .._. 7.00 1.204
19 20
15 20 20 20 97.6 97.6 -188 113 20 17 226 226 18 13 I09 -273 20 20
292
TABLE 282.-DENSITY
I N g/cms AND Ib/ft3 O F VARIOUS SOLIDS
Nox-The density of a specimen depends considerahly on its state and previous treatment ; especially is this the case with porous materials . Material
g / cma
Agate ............ 2.5 -2.7 Alahaster : Carbonate ...... 2.69-2.78 Sulphate ........ 2.26-2.32 Alhite ............ 2.62-2.65 Amher ........... 1.061.11 Amphiboles ....... 2.9 -3.2 Anorthite ......... 2.74-2.76 Anthracite ........ 1.4 -1.8 Asbestos ......... 2.0 -2.8 Asphalt .......... 1.1 -1.5 Basalt ............ 2.4 -3.1 Beeswax ......... .96- .97 Beryl ............ 2.69-2.7 Biotite ........... 2.7 -3.1 Bone ............. 1.7 -2.0 Brick ............ 1.4 -2.2 Butter ............ 36- .87 Calamine ......... 4.1 -4.5 Camphor . . . . . . . . . 99 . Caoutchouc ....... .92- .99 Celluloid ......... 1.4 Cement, set ....... 2.7 -3.0 Chalk . . . . . . . . . . . . 1.9 -2.8 Charcoal, oak . . . . . 5 7 pine .... .28- .44 Chrome yellow . . . 6.00 Chromite ......... 4.324.57 Cinnahar ......... 8.12 Clay ............. 1.8 -2.6 Coal, soft ......... 1.2 -1.5 Cocoa butter ...... 39- .91 Coke ............. 1.0 -1.7 Copal ............ 1.04-1.14 Cork ............. .22- .26 Cork linoleum . . . . . .55 Corundum ........ 3.9 -4.0 Diamond : Anthracitic ..... 1.66 Carbonado ...... 3.01-3.25 Diorite ........... 2.52 Dolomite ......... 2.84 Ehonite .......... 1.15 Emery . . . . . . . . . . . 4.0 Epidote ........... 3.25-3.5 Feldspar .......... 2.55-2.75 Flint ............. 2.63 Fluorite .......... 3.18 Gamboge ......... 1.2 Garnet ........... 3.15-4.3 Gas carbon ....... 1.88 Gelatine .......... 1.27 Glass, common .... 2.4 -2.8 " flint ........ 2.9 -5.9 Glue ............. 1.27 Granite ........... 2.64-2.76 Graphite .......... 2.30-2.72
SMITHSONIAN PHYSICAL TABLES
Ih/ft3
156-168 168-173 141-1 45 163-165 66- 69 180-200 171-1 72 87-1 12 125-175 69- 94 150-190 60- 61 168-168 170-190 106-125 87-137 53- 54 255-280 62 57- 62 87 170-190 118-175 35 18- 28 374 270-285 507 122-1 62 75- 94 56- 57 62-105 65- 71 14- 16 34 245-250 104 188-203 157 177 72 250 203-2 18 159-172 164 198
7s
I9?-268 117 180 150-175 180-370 80 165-172 144-170
Material
g/cm3
Gum arabic ....... 1.3 -1.4 Gypsum .......... 2.31-2.33 Hematite . . . . . . . . . 4.9 -5.3 Hornblende ....... 3.0 . Ice . . . . . . . . . . . . . . .917 Ilmenite . . . . . . . . . . 4.5 -5 . Ivory ............ 1.83-1.92 Lahradorite ....... 2.7 -2.72 L?ya, hasaltic ..... 2.8 -3.0 trachytic .... 2.0 -2.7 Le:fher, dry . . . . . . .86 greased . . 1.02 Lime, mortar ..... 1.65-1.78 " slaked ...... 1.3 -1.4 Limestone ........ 2.68-2.76 Litharge : Artificial ....... 9.3 -9.4 Natural ........ 7.8 -8.0 Magnetite ........ 4.9 -5.2 Malachite ........ 3.7 -4.1 Marble ........... 2.6 -2.84 Meerschaum ...... .99- 1.28 Mica . . . . . . . . . . . . . 2.6 -3.2 Muscovite . . . . . . . . 2.76-3.00 Ochre . . . . . . . . . . . . 3.5 0 I igoclase ........ 2.65-2.67 Olivine ........... 3.27-3.37 Onal . . . . . . . . . . . . . 2.2 Oithoclase ........ 2.58-2.61 Paper ............. 7 -1.15 Paraffin .......... 37- .91 Peat . . . . . . . . . . . . . .84 Pitch ............. 1.07 Porcelain ......... 2.3 -2.5 Pornhvrv ......... 2.6 -2.9 Pyrite ............ 4.95-5.1 Quartz ........... 2.65 Quartzite ......... 2.73 Resin ............ 1.07 Rock salt ......... 2.18 Ruhher hard ...... 1.19 ' soft ...... 1.1 Rutile ............ 4.2 Sandstone ........ 2.14-2.36 Serpentine ........ 2.50-2.65 Slag. furnace ..... 2.0 -3.9 Slate . . . . . . . . . . . . . 2.6 -3.3 Soapstone ........ 2.6 -2.8 Starch ........... 1.53 Sugar ............ 1.61 Talc ............. 2.7 -2.8 Tallow ........... 91- .97 Tar .............. 1.02 Topaz ............ 3.5 -3.6 Tourmaline ....... 3.0 -3.2 Wax, sealing ..... 1.8 Zircon ........... 4.68-4.70
..
.
Ib/fta
80- 85 144- 145 306330 187 57.2 280-310 114120 168-1 70 175-185 125-168 54 64 103-111 81- 87 167- 171 580-585 490-500 306-324 231-256 160-177 62 -80 165-200 172-225 218 165-1 67 204-210 137 161-163 44- 72 54- 57 52 67 143-156 162-181 309-318 165 170 67 136 74 69 260 134-147 156-165 125-240 162-205 162-175 95 100 168-174 57- 60 66 2 19-223 190-200 112 292-293
Alloy
t 30Zn, cast ............................... rolled .............................
dcm3
8.44 8.56 ' drawn ............................. 8.70 8.60 ' red, 90Cu lOZn ........................ 8.20 " white, 50Cu + 50Zn ................. ............. 8.78 B r o y e s : 90Cu lOSn ....................... 8.89 85Cu + 15Sn ............................. 8.74 " 8OCu 20Sn .................................. 8.83 " 75Cu 25Sn ... ................................. 36.6Zn + 36.8Ni . . . . . . . . . . . . . . . . 8.30 German silxer : Chinese, 26. Berlin (1 ) 52Cu 26Zn 22Ni ................... 8.45 " I' " 8.34 (2) 59Cu 30Zn l l N i ....... " (3) 63Cu 30Zn 6Ni ................... 8.30 8.77 " nickelin .............................. 10.60 Lead and tin: 87.5Pb -k 12.5% ....................... " " 10.33 84Pb 16Sn ..................................... 10.05 " '' " 77.8Pb + 22.2Sn . .......................... " 9.43 " 63.7Pb 36.3Sn ....................... 'I 'I 8.73 46.7Pb + 53.3Sn ............................... 8.24 " " 30.5Pb + 69.5Sn .......................... Bismuth, lead, and cadmium : 53B b + 7 C d .................. 10.56 Wood's metal : 50Bi + 25Pb + 12.5Cd + 12.5Sn ................... 9.70 . . . . . . . . . . . . . 7.70 Cadmium and tin : 32Cd 68Sn ............. 18.84 Gold and co?per : 98Au 2Cu " ............. 18.36 " " 17.95 94Au 6Cu ...................... " " ,' ...................... 90Au+lOCu . 17.16 " " 16.47 86Au 14Cu .................................. 7.69 Aluminum ad: coqper : lOAl 9OCu ......................... 8.37 5A1 + 95Cu ............................. " 8.69 2.80 Aluminum and zinc : 91A1+ 9Zn ................................. 21.62 Platinum aRd : 90Pt lOIr ............................... 21.62 85Pt 15Ir ............................... " ', 21.87 14.3 Carboloy ........... 8.88 Constantan : 60Cu + 40Ni .............................. 2.0 Magnalium : 70A1 + 3 . . . . . . . . . . . . . . . 8.5 Manganin : 84Cu 12 8.87 Monel metal .................................................... 9.0 Platinoid : German silver + little tungsten. ........................ Stellite: Co 59.5;Mo 22.5; Cr 10.8; Fe 3.1; Mn 2.0; C .9; Si .8. ..... 8 3
Brasses : ye!!ow,
70Cu
+
+ + +
+ + +
+ + +
+ +
'I
I'
I'
' I
+ + + +
' I
'I
1'
+
I'
+ +
iricllium +
T A B L E 284.-PHYSICAL
293
IN g/cma AND Ib/ft3 O F V A R I O U S A L L O Y S
T A B L E 283.-DENSITY
Ib/fta
527 534 542 536 511 548 555 545 55 1 518 527 520 518 547 661. 644 627 588 545 514 659 6115 480 1176 1145 1120 1071 1027 480 522 542 175 1345 1348 1364 895 554 125 530 554 560 518
P R O P E R T I E S O F S O M E LIGHT H Y D R O C A R B O N S o 7 E
Methane ...... CH, Ethylene ..... CzH, Ethane ....... CzHn Propylene .... C3He Propane ......C3H8 Butadiene-1,3.. GH, Butene-1 ...... C4H8 cis-Butene-2 . . C,Hn trans-Butene-2. C;H* Isobutylene ...CaH, Isobutane ..... C4Hin n-Butane ..... CiHtn "7
"C
16.04 28.05 30.07 42.08 44.09 54.09 56.10 56.10 56.10 56.10 58.12 58.12
82.1 9.72 32.3 91.4 96.8 152.0 143.9 160 155.0 144.7 i33.7 152.2
atm cal g-1
45.8 50.9 48.2 45.4 42.0 42.8 39.2 41.5 40.5 39.5 36.5 37.5
.526 .363 ,409 .363 .388 .349 .371 ,350 ,376 .375 .387 ,397
oc-1
.400 .296 ,347 .316 .343 .312 ,334 .315 .342 ,335 .348 .361
,555 .977 1.048 1.476 1.550 1.922 1.998 2.004 2.004 1.998 2.077 2.084
,678 1.19 1.282 1.805 1.892 2.35 2.44 2.45 2.45 2.44 2.54 2.55
Shnidman, Louis (ed.), Gaseous fuels, p. 34, ~ l m e r i c a nGas Assoc., 1948.
SMlTHSONlAN PHYSICAL TABLES
atm
kg/m3
_-
kilo cal/ma
9,000 14,350 15,900 38.3 21,100 10.3 22,800 8.45 26,400 2.45 28,200 2.6 18.5 1930 28,300 28,200 2.00 28,100 2.57 3.06 1900 30,000 2.13 1895 30,100
__
294.2 289 268 267 246 255.5 249.0 245.5 222 229.5
"C
1880 1975 1895 1935 1925 --
294 T A B L E 285.-DENSITY
O F V A R I O U S N A T U R A L A N D A R TI’FIC IA L M I N E R A L S
“C
Name and formula
Density in
s p . Val.
g/cms
cm3/g
Oxides
.
Corundum A1203* .. . . . . .. . . .. . .. . . . .. . . . Lime C a O * .............................. Magnesia MgO * . . . . . . . . . . . . . . . . . . . . .. . . . Ferrous oxide FeO * . . . . . . . . . . . . . . . . . . . . . . Hematite Fe203 . .. . ... . . . . . . . .. . . . . . . . . Magnetite Fe304 . . . . . . , . , . . . . . . . . . . . . . . . Quartz Si80zt ......................... ...
( 0)
Vitreous silica . ....... . . ....... . . . . ...... Rutile TiO, . . . Ilinenite (FeTi)203 .......................
( 0)
..
..
Silicates Silhmanite Al,03.Si0, . Mullite 3AI2O3-2SiO2* Albite NaA1Si30.* . . . . Anorthite CaAl2Si3Ox* . Nephelite NaAlSiOl* . . Lahradorite Abr8An5J . Oligoclase AbllAnpS . . . . . . . . . . . . . . . . . . . . .. Orthoclase KAISi,O, . . . . .. . . . . . . . . . . . . . . adularia . . . . .. . . . . . . . . . . .. . . . . Microcline . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .
( 0)
.1905 .1933 ,3775 .3776 .4301 .4539 .2353 .1965
(25) (15) (15) (25)
3.247 3.156 2.62 2.757 2.619 2.695 2.638 2.554 2.566 2.557
.3080 .3169 .382 .3627 .3818 .3711 .3791 .3915 .3897 .3911
(25) (25) (25)
3.26 3.27 2.965
,307 .306 .3373
2.904 2.906 3.257 3.265 3.165 3.254 3.415 3.223 4.28 3.544 4.160 3.328
,3444 .3441 .3070 .3063 .3159 .3073 .2928 .3103 .234 .2822 .2404 .3005
2.27 2.932 2.7102 3.180 3.516 2.1632 2.664 2.697 1.984 5.012 4.873
.440 .3411 .3688 .3145 .2844 .4623 .3754 .3708
.
.
.249 .292 .2775
4.02 3.42 3.603 5.7 5.25 5.172 2.649 2.648 2.325 2.203 4.250 5.088
(25) (25) (20) (20) ( 0) (20)
.175
Calcium orthosilicates
.. . .... - Ca.Si04 . . . . . . . . . . . . . . . . . . . . ... p - Ca.Si04 . . . . . . . . . . . . . . . . y - CazSiO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a
Calcium metasilicates
.. . ..
. . . . . . . . . . . . . . . . . . (31) almandite .. .. . . . . .. ... (31) Jadeite . .. . . . . .. . . .. . . . . Misccllaneous substances Borax, anhydrous, Na,R C a C 0 3 ; aragonite .. . . . C a C 0 3: calcite . . . . . . . . CaF,: fluorite ........................ . . .. (10) Diamond . . . . . . . . . . . . . . . . . . . . . . . . . . NaCI: rock salt . .. .... rdite* , . ........ .. . ...... (25) .......................... (25) . . . . . .. . . . .. . (30) ... ......... (25) ... ....................... (25) .\rtificial.
t Natural.
SMITHSONIAN PHYSICAL TABLES
$ .\ti
= alhite: An = Anorthite
5040
.1995 .2052
TABLE 286.-DENSITY
295
OF LIQUIDS
Density or mass in g/cma and in Ib/ft* of various liquids . Liquid
g/cma
Acetone ................................. 792 Alc;hol. ethyl ........................... 807 methyl ......................... 810 Aniline ................................ 1.035 Benzene ................................. 899 Bromine ................................ 3.187 Carbolic acid (crude) .................... 950- .965 Carbon disulfide ........................ 1.293 Chloroform ............................ 1.489 Cocoa butter ............................ 857 Ether ................................... 736 Gasoline ................................ 66 - .69 Glycerine .............................. 1.260 Japan wax .............................. 875 Mercury ............................... 13.595 Milk ................................... 1.028-1.035 Naphtha (wood) ....................... .848- .810 Nanhtha (Detroleum ether) . . . . . . . . . . . . . . .665 .. .800 O i h : Amber ........................... 9 6 Anise-seed ....................... .931- 938 Beef-tallow ....................... .91 - .92 Butterfat ......................... Camphor ......................... .910 .969 Castor ........................... 1.04 -1.06 Clove ............................ 925 Cocoanut ......................... .92 - .93 Cod-liver ......................... 926 Cottonseed ....................... 1.040-1 .100 Creosote ......................... .82 Kerosene ......................... Lard ............................. .920 Lavender ......................... 377 .844 Lemon ........................... Linseed (boiled) .................. .942 .913- 917 Neat's-foot ....................... Oleomargarine ................... .92 - .93 .918 Olive ............................ Palm ............................ 905 .650 Pe?;tane ..........................
.
.
..........................
.623 .90 - .92 .878 .795- A05 .850- .860 .924 .915 .913 .955 .88 .919 .906 ........................ Train or whale ................... .918- .925 .873 Turpentine ....................... .%5 Valerian ......................... 1.18 Wintergreen ..................... Pyroligneous acid ....................... .800 1.000 Water ................................. Peppermint ...................... PetrEleum ........................ (light) ................. Pine ............................. Poppy ........................... Rayseed (crude) ................. (refined) ............... Resin ............................ Sperm ........................... Sqya-b$y ........................
Sea water
........................
SMITHSONIAN PHYSICAL TABLES
1.025
Ib/fta
Temp. "C
49.4 50.4 50.5 64.5 56.1 199.0 59.2-60.2 80.6 93.0 53.5 45.9 41.0-43.0 78.6 54.6 849 64.2-64.6 52.9-50.5 41.5 49.9 62.1 58. 56. 56.8 60.5 65. -66. 57.7 58. 57.8 64.9-68.6 51.2 57.4 54.7 52.7 58.8 57.0-57.2
200 0 0 0 0 0 15 0 20 100 0
57.3 56.5 40.6 38.9 56-57 54.8 49.6-50.2 53.0-54.0 57.7 57.1 57.0 59.6 55. 57.3 56.5 57.3-57.7 54.2 60.2 74. 49.9 62.4 64.0
15
...
...
0 100 0
... 0
15 15 16
... ... ... 15 25 15
...
16 15
...
15 16 16 15
... ... 15 0 25 25 0 15 15
...
15 15 15 25 30 90 15 16 16 25 0 4
...
296 TABLE 2 8 7 i D E N S l T Y
OF P U R E W A T E R F R E E FROM AIR, 0" T O 41'C
Under standard pressure (76cmHg) at every tenth part of a degree from 0" to 41"C, in g/ml.* Degrees
C
Tenths of degrees
,
0 1 2 3 4
.999 8681 9267 9679 9922 1.000 0000
5 6 7 8 9
.999 9919 9682 9296 8764 8091
10 11 12 13 14
2
1
3
4
5
8747 8812 8875 8936 8996 9315 9363 9408 9452 9494 9711 9741 9769 9796 9821 9937 9951 9962 9973 9981 9999 9996 9992 9986 9979
6
7
9053 9109 9534 9573 9844 9866 9988 !%94 9970 9960
8
9
,
9163 9216 9610 9645 9887 9905 9998 0000 9947 9934
Mean differences
++ 4159 + 24
2:
9884 9864 9842 9617 9582 9545 9201 9151 9100 8641 8577 8512 7940 7863 7784
9819 9795 9507 9468 9048 8994 8445 8377 7704 7622
9769 9427 8938 8308 7539
9742 9385 8881 8237 7455
9713 - 24 9341 - 39 8823 - 53 8165 - 67 7369 - 81
7282 7194 7105 7014 6921 6331 6228 6124 6020 5913 5248 5132 5016 4898 4780 4040 3912 3784 3654 3523 2712 2572 2431 2289 2147
6826 6729 5805 5696 4660 4538 3391 3257 2003 1858
6632 5586 4415 3122 1711
6533 5474 4291 2986 1564
6432 5362 4166 2850 1416
- 95 -108 -121 -133 -145
9902 9650 9249 8703 8017
15 16 17 18 19
1266 .998 9705 8029 6244 4347
1114 9542 7856 6058 4152
0962 9378 7681 5873 3955
0809 0655 9214 9048 7505 7328 5686 5498 3757 3558
0499 0343 0185 8881 8713 8544 7150 6971 6791 5309 5119 4927 3358 3158 2955
0026 8373 6610 4735 2752
9865 8202 6427 4541 2549
-156 -168 -178 -190 -200
20 21 22 23 24
2343 0233 .997 8019 5702 3286
2137 1930 0016 9799 7792 7564 5466 5227 3039 2790
1722 1511 9580 9359 7335 7104 4988 4747 2541 2291
1301 9139 6873 4506 2040
1090 8917 6641 4264 1788
0878 8694 6408 402 1 1535
0663 8470 6173 3777 1280
0449 8245 5938 3531 1026
-21 1 -221 -232 -242 -252
25 26 27 28 29
0770 0513 0255 .996 8158 7892 7624 5451 5176 4898 2652 2366 2080 .995 9761 9466 9171
9997 7356 4620 1793 8876
9736 7087 4342 1505 8579
9476 6817 4062 1217 8282
9214 8951 8688 6545 6273 6000 3782 3500 3218 0928 0637 0346 7983 7684 7383
8423 5726 2935 0053 7083
-261 -271 -280 -289 -298
30 31 32 33 34
6780 3714 0561 .994 7325 4007
6478 3401 0241 6997 3671
6174 5869 3089 2776 9920 9599 6668 6338 3335 2997
5564 2462 9276 6007 2659
5258 4950 4642 2147 1832 1515 8954 8630 8304 5676 5345 5011 2318 1978 1638
4334 1198 7979 4678 1296
4024 0880 7653 4343 0953
-307 -315 -324 -332 -340
35 36 37 38 39
0610 .993 7136 3585 .992 9960 6263
0267 9922 6784 6432 3226 2866 9593 9227 5890 5516
9576 6078 2505 8859 5140
9230 5725 2144 8490 4765
8883 8534 8186 5369 5014 4658 1782 1419 1055 8120 7751 7380 4389 401 1 3634
7837 7486 -347 4301 3943 -355 0691 0326 -362 7008 6636 -370 3255 2876 -377
40 41
2497 .991 8661
2116
1734
1352 0971
0587
0203
9818 9433 9047 -384
According to P. Chappuis, Bureau International des Poids et Mesures.
SMITHSONIAN PHYSICAL TABLES
297 T A B L E 288.-VOLUME ItN cms A T VARIOUS TEMPERATURES O F A cm* O F W A T E R F R E E FROM AIR A T T H E T E M P E R A T U R E O F M A X I M U M DENSITY, 0" to 36°C Ttmp.
.1
.2
.3
.5
.6
.7
.8
.9
0 1 2 3 4
1.000132 073 032 008 000
125 069 029 006 000
118 064 026 005 000
112 059 023 004 001
106 055 020 003 001
100 051 018 002 002
095 047 016 001 003
089 043 013 001 004
084 039 011 000 005
079 035 009 007
5 6 7 8 9
008 032 070 124 191
010 035 075 130 198
012 039 080 137 206
014 042 085 142 214
016 046 090 149 222
018 050 095 156 230
021 054 101 162 238
023 058 106 169 246
026 062 112 176 254
029 066 118 184 263
10 11 12 13 14
272 367 476 596 729
281 377 487 609 743
290 388 499 623 757
299 398 511 636 772
308 409 522 649 786
317 420 534 661 800
327 430 547 675 815
337 441 559 688 830
347 453 571 702 844
357 464 584 715 859
15 16 17 18 19
873 1.001031 198 378 568
890 047 216 396 588
905 063 233 415 606
920 080 252 433 626
935 097 269 452 646
951 113 287 471 667
967 130 305 490 687
983 147 323 510 707
998 164 341 529 728
015 182 358 548 748
20 21 22 23 24
769 981 1.002203 436 679
790 002 226 459 704
811 024 249 483 729
832 046 271 507 754
853 068 295 532 779
874 091 319 556 804
895 113 342 581 829
916 135 364 605 854
938 158 389 629 879
960 181 412 654 905
25 26 27 28 29
932 1.003195 467 749 1.004041
958 22 1 495 776 069
983 248 523 806 100
010 275 550 836 129
036 302 579 865 160
061 330 607 893 189
088 357 635 922 220
115 384 663 951 250
141 412 692 981 280
168 439 720 011 310
30 31 32 33 34
341 651 968 1.005296 631
371 682 001 328 665
403 713 033 361 698
432 744 066 395 732
464 777 098 427 768
494 808 132 461 802
526 840 163 496 836
557 872 197 530 871
588 904 229 562 904
619 936 263 597 940
35
975
009
044
078
115
150
185
219
255
290
C
.O
T A B L E 289.-INFLUENCE kg/cmz
1 500 1,000 2,000 3,000 5,000 6,000
0°C
1.moo .9771 .9578 ,9260 .9015 .8632 3480
Cf. Tahle 269.
SMITHSONIAN PHYSICAL TABLES
.4
O F PRESSURE ON VOLUME
000
OF W A T E R *
20°C
40°C
kg/cmz
20°C
40°C
1.0016 .9808 .%30 .9327 .9087 ,8702 .8545
1.0076 .9873 .9700 .9403 ,9164 A778 3623
7,000 8,000 9,000 10,000 11,000 12,000 12,500
.8404 327.5 .8160
.8485 A360 A249 3149 ,8056 .7966 .7922
-
-
-
298
TABLE 290.-DENSITY
AND VOLUME OF WATER -10"
T O +250°C
The mass of 1 cm' at 4°C is taken as unity. T:mp.
C -10
-
9 8 7 6
Density
Volume
.98573 324 059 .97781 489
1.01448 705 979 1.02270 576
.97183 .96865 534 192 .95838
1.02899 1.03237 590 959 1.04343
.9510 ,9434 .9352 .9264 .9173
1.0515 1.0601 1.0693 1.0794 1.0902
021
28 29
1.00013 007 003 001 1.00000
30 31 32 33 34
.99568 537 506 473 440
.00434 465 497 530 563
35
.99406 371 336 300 263
,00598 633 669 706 743
59225 187 147 107 066
1.00782 821 861 901 943
170 180 190 200
57% I. 23973 3866 37.50 23628
1.1019 1.1145 1.1279 1.1429 1.1590
99025 .98982 940 8% 852
1.00985 1.01028 072 116 162
210
350
220 230 240 250
.837 ,823 .809 .794
1.177 1.195 1.215 1.236 1.259
nu
5
.99w 997 993 988 981
1.00001 003 007 012 019
99973 963 952 940 927
1.00027 037 048 060 073
.99913 897 880 862 843
1.OOO87 103 120 138 157
16 17 18 19
Volume
1.01207 254 301 349 398
,00293 320 347 375 404
999 1.ooooo
15
Density
.98807 762 715 669 621
99708 682 655 627 598
3 4
11 12 13 14
C
780 757 733
993 +; .99987 997
10
T:mp. Volume
802
0%
2
Density
99823
1.00070 055
6 7 8 9
C
99815 843 869 892 912 99930 945 958 970 979
- 5
- 4 -3 -2 -1
Te,mp.
SMITHSONIAN PHYSICAL TABLES
25
26 27 -.
36 37 38 39 40
41 42 43 44 45
46 47 48 49
55
60 65 70 75 80
85
90 95 100 110
120 130 140 150 160
T A B L E 29l.-DENSITY
A N D VOLUME
OF MERCURY -10" T O +360°C
299
Density or mass in g/cm3 and the volume in cm3 of 1 g of mercury. Temp.
"C -10
-9 -8 -7 -6 - 5
-4 -3 -2 -1 - 0
1
2 3 4
5
6 7 8 9 10
11 12 13 14 15
16 17 18 19
Mass g/cm3
Volume of 1 g in cm3
13.6198 6173 6148 6124 6099
.0734225 4358 4492 4626 4759
13.6074 6050 6025 6000 5976
.0734893 5026 5160 5293 5427
26 27 28 29
13.5951 5926 5901 5877 5852
.0735560 5694 5828 5%1 6095
31 32 33 34
13.5827 5803 5778 5754 5729
.0736228 6362 6496 6629 6763
36 ~. 37 38 39
13.5704 5680 5655 5630 5606
.0736893 7030 7164 7298 7431
13.5581 5557 5532 5507 5483
.0737565 7699 7832 7966 8100
100 110 120 130
SMITHSONIAN PHYSICAL TABLES
Temp.
"C 20
Mass g/cma
Volume of 1 g in cm3
Ttmp.
C
13.5458 5434 5409 5385 5360
.0738233 8367 8501 ~..8635 8768
150 160 ~ . 170 180
13.5336 5311 5287 5262 5238
.0738902 9036 9170 9304 9437
200 210 220 230
13.5213 5189 5164 5140 5116
,0739572 9705 9839 9973 40107
250 260 270 280
13.5091 5066 .... 5042 5018 4994
.0740241 0374 0508 0642 0776
50
13.4969 4725
70 80
4240 3998
.0740910 2250 3592 4936 6282
90
13.3723 3515 3279 3040 2801
.0747631 8981 50305 1653 3002
21 22 23 24 25
30
35
40
6 0 4 4 8 2
Mass g/cm8
Volume of 1 g in cma
13.2563 2326 2090 . 1853 1617
.0754354 5708 7064 8422 9784
13.1381 1145 0910 0677 0440
.0761149 2516 3886 5260 6637
3.0206 2.9972 9738 9504 9270
.0768017 9402 7090 2182 3579
310 320 330
2.9036 8803 8569 8336 8102
.0774979 6385 7795 9210 80630
340 350 360
12.7869 7635 7402
.0782054 3485 4921
140
190
240
290 3nn -__
TABLE 292.-DENSITY
300
OF AQUEOUS SOLUTIONS
The following table gives the density of solutions of various salts in water . The numbers give the weight in g!cm3 . F o r brevity the substance is indicated by formula only . Weight of the dissolved substance in 100 parts by weight of the solution
5
25
50
60
d
p
KzO ............... 1.047 K O H ............. 1.040 NaaO .............. 1.073 N a O H ............ 1.058 NHZ ...............978
10
15
20
1.098 1.082 1.144 1.114 .959
1.153 1.127 1.218 1.169 .940
1.214 1.176 1.284 1.224 .924
1.284 1.229 1.354 1.279 .909
NHdCI ............ KCI ............... NaCl .............. LiCl ............... CaCIz ........ , .....
1.015 1.031 1.035 1.029 1.041
1.030 1.065 1.072 1.057 1.086
1.044 1.099 1.110 1.085 1.132
1.058 1.135 1.150 1.116 1.181
- - - 1.191 1.147 1.181 1.255 1.232 1.286 1.402
CaCL+6HZ0 ...... AICIJ .............. MgCIa ............. MgCIz+6Hz0 ...... ZnCL ..............
1.019 1.030 1.041 1.014 1.043
1.040 1.072 1.085 1.032 1.089
1.061 1.111 1.130 1.049 1.135
1.083 1.153 1.177 1.067 1.184
1.105 1.196 1.226 1.085 1.236
CdCIa .............. S r C h .............. SrClrf6HaO ....... BaCL ............. BaC12+2Hz0
1.043 1.044 1.027 1.045 1.035
1.087 1.092 1.053 1.094 1.075
1.138 1.143 1.082 1.147 1.119
1.193 1.198 1.111 1.205 1.166
CUCIZ ............. 1.044 NiCL .............. 1.048 HgCIa ............. 1.041 F e K h ............. 1.041 PtCI, .............. 1.046
1.091 1.098 1.092 1.086 1.097
1.155 1.221 1.157 1.223
.653 1.887 - .317 - - - 1.273 - . 1.291 1.360 1.527 - 1.299 - - - - - - - -
1.130 1.179 1.232 1.25% 1.413 1.545 1.153 1.214 1.285 1.362 1.546 1.785
SnCL+2Ha0 ...... SnCl4+5HSO LiBr .............. K B r .............. NaBr .............
1.032 1.029 1.033 1.035 1.038
1.067 1.058 1.070 1.073 1.078
1.104 1.089 1.111 1.114 1.123
1.143 1.122 1.154 1.157 1.172
1.185 1.157 1.202 1.205 1.224
1.229 1.193 1.252 1.254 1.279
1.329 1.274 1.366 1.364 1.408
1.444 1.580 1.365 1.467 1.489 - 1.563
............. 1.041 ............. 1.043 ............. 1.041 ............. 1.042 ............. 1.043
1.085 1.091 1.088 1.087 1.C90
1.135 1.144 1.139 1.137 1.142
1.189 1.202 1.197 1.192 1.199
1.245 1.263 1.258 1.250 1.260
1.308 1.328 1.324 1.313 1.327
1.449 1.473 1.479 1.459 1.483
1.623 1.648 1.678 1.639 1.683
- 19.5 373 19.5 - 19.5 - 19.5 - 19.5
SrBr. . . . . . . . . . . . . . 1.043 1.089 1.140 1.198 1.260 1.328 1.489 1.693
.953 19.5 .732 19.5
Substance
......
......
MgBr, ZnBra CdBra CaBrz BaBra
-
-
30
1.354 1.286 1.421 1.331 396
40
1.503 1.410 1.557 1.436 --
1.072
-
1.254 1.257 1.042 1.269 1.217
1.128 1.241 1.278 1.103 1.289
b
1.659 1.538 1.689 1.539
.809 15. .666 15. 329 15. .642 15. .-16.
-
. 15.
- . 15. - . 15. - . 15. . 15.
1.176 1.225 1.276 18. -- 15. -1.340 - 15. 1.141 1.183 1.222 24. 1.417 1.563 1.737 19.5
-
1.319 1.469 1.321 1.174 1.242
-
KI ................. 1.036 1.076 1.118 1.164 1.216 1.269 1.394 1.544
LiI ................ 1.036 1.077 1.122 1.170 1.222 1.278 1.412 1.573 N a I ............... 1.038 1.080 1.126 1.177 1.232 1.292 1.430 1.598 ZnIl ............... 1.043 1.089 1.138 1.194 1.253 1.316 1.467 1.648
19.5 15. 15. 15. 21.
17.5 17.5 20. 1.668 17.5
- 15. 15.
19.5 19.5 19.5
.775
19.5
373
19.5
.808 19.5
CdIz ............... 1.042 MgIi .............. 1.041 CaIz ............... 1.042 SrIa ............... 1.043 BaIz ............... 1.043
1.086 1.086 1.088 1.089 1.089
1.135 1.137 1.138 1.140 1.141
1.192 1.192 1.196 1.198 1.199
1.251 1.252 1.258 1.260 1.263
1.317 1.318 1.319 1.328 1.331
NaCIO3 ........... N a B r 0 3 ........... K N O j ............. N a N 0 3 ............ AgNOa ...........
1.068 1.081 1.064 1.065 1.090
1.106 1.127 1.099 1.101 1.140
1.145 1.176 1.135 1.140 1.195
1.188 1.229 1.180 1.255
19.5 19.5 15. - 20.2 1.222 1.313 1.416 1.322 1.479 1.675 1.918 15.
1.035 1.039 1.031 1.031 1.044
(colltinllrd)
SMITHSONIAN PHYSICAL TABLES
1.474 1.472 1.475 1.489 1.493
1.678 1.666 1.663 1.693 1.702
-- 19.5 1.913 19.5 1.908 19.5 1.953 19.5 1.968 19.5
- - - -
1.233 1.329 1.287
-
30 1
OF AQUEOUS S O L U T I O N S (concluded)
T A B L E 292.-DENSITY
Weight of the dissolved substance in 100 parts by weight of the solution Substance
NHINO, .......... 1.070 Zn(NOs)z ......... 1.048 Zn(N03)z+6Hz0 .. Ca(NOs)z ......... 1.037 C u ( N 0 s ) ~ ......... 1.044
10
15
20
1.041 1.095 1.054 1.075 1.093
1.063 1.140 1.118 1.143
1.085 1.201 1.113 1.162 1.203
1.107 1.263 1.211 1.263
1.131 1.325 1.178 1.260 1.328
SI-(NO,)~ ......... Pb(N0a)z ......... Cd(NO3)z ......... CO(N0s)z ......... N i ( N 0 3 ) Z .........
1.039 1.043 1.052 1.045 1.045
1.083 1.091 1.097 1.G90 1.090
1.129 1.143 1.150 1.137 1.137
1.179 1.199 1.212 1.192 1.192
-1.262 1.283 1.252 1.252
- -1.332 1.355 1.536 1.759 1.318 1.465 1.318 1.465 -
Fez(N03)e......... Mg(N03)2+6HzO Mn(N03)2+6H20 . KzCO, ............. KzC03+2H20 .....
1.039 1.076 1.038 1,025 1052 1.044 1.092 1.037 1.072
1.117 1.060 1.079 1.141 1.110
1.160 1.082 1.108 1.192 1.150
1.210 1.105 1.138 1.245 1.191
1.261 1.129 1.169 1.300 1.233
NaZCO310H20 ..... (NH,)zSO, ........ Fe(SO.), ......... FeS04+7Hz0 ..... MgSO, ............
1.019 1.027 1.045 1.025 1.051
1.038 1.055 1.096 1.053 1.104
1.057 1.084 1.150 1.081 1.161
1.077 1.113 1.207 1.111 1.221
1.098 1.142 1.270 1.141 1.284
1.118 - 1.170 1.226 1.287 1.336 1.489 1.173 1.238 -
-
- -
MgS0,+7Hz0 ..... NaZS04+10Hz0 ... CuSO.+SH,O ..... MnS04+4Hz0 , , . . ZnSOl+7Hz0 .....
1.025 1.019 1.031 1.031 1.027
1.050 1.039 1.064 1.064 1.057
1.075 1.059 1.098 1.099 1.089
1.101 1.081 1.134 1.135 1.122
1.129 1.102 1.173 1.174 1.156
1.155 1.124 1.213 1.214 1.191
.215 1.278
5
. 1.018
.
25
30
1.373 1.179 1.235 1.417 1.320
1.058 1.082 1.071 ... 1.028 1.059 ... 1.025 1.053
1.090 1.127 1.108 1.092 1.070
5
10
15
-
30
1.229 1.282 17.5 1.597 - 17.5 1.329 - 14. 1.482 1.604 17.5 - - 17.5
40
1.496 1.657 17.5 1232 - 21. 1.307 .386 8. 1.543 - 15. 1.415 .511 15.
-
15. 19. 18. 17.2 - 15.
- 17.5
60
-
1.426 - 80
............... 1.040 SO, ............... 1.013 NzO5 .............. 1.033 CdHeOa ............ 1.021 GH,O, ............ 1.018 Cane sugar ........ 1.019 HCI ............... 1.025 HBr .............. 1.035 H I ................ 1.037 H S O , ............. 1.032
1.084 1.028 1.069 1.047 1.038
1.132 1.045 1.104 1.070 1.058
1.179 1.063 1.141 1.096 1.079
1.277 1.217 1.150 1.123
1.389 1.564 1.840 - - 1.294 1.422 1.506 1.207 - 1.170 ,273 -
1.039 1.050 1.073 1.077 1.069
1.060 1.075 1.114 1.118 1.106
1.082 1.101 1.158 1.165 1.145
1.129 1.151 1.257 1.271 1.223
1.178 1.200 1.376 1.400 1.307
HzSiFo ............ 1.040 P205 .............. 1.035 Pz05+3H,O ....... 1.027 H N 0 3 ............. 1.028 C2H,0Z ............ 1.007
1.082 1.077 1.057 1.056 1.014
1.127 1.119 1.086 1.088 1.021
1.174 1.167 1.119 1.119 1.028
1.273 1.271 1.188 1.184 1.041
1.385 1.264 1.250 1.052
SMITHSONIAN PHYSICAL TABLES
- 19.5 - 17.5 - 17.5 - 17.5 - 17.5
.188 1.287 1.454 17.5
- - 1.122 1.154 1.191 1.174 1.225 1.279 ,397 - - - 1.126 - - 1.113 - - -
20
9
,303 1.398 - 15. ,269 1.351 1.443 20.5
3HzO ........... 1.031 1.064 1.100 1.137 1.177 1.220 1.315 2NaOH+AszOa +24HzO ........ 1.020 1.042 1.066 1.089 1.114 1.140 1.194 so3
60
- 15. - - - 15. - - - 18.
1.032 1.066 1.101 1.138
... 1.028 ... 1.039 ... 1.035 Pb { C’,H30:) Z+
1.178 1.456 1.250 1.367 1.471
50
-
KSO,+ Fez( 24HzO .......... 1.026 1.045 1.066 1.088 1.112 1.141 Crz(SO,),-KZSO,+ 24H20 .......... 1.016 1.033 1.051 1.073 1.099 1.126
...
40
c: b
15. 19. 19.5 19.5 15. 13. 15. 14.
100
-
15. 4. 15. 15. 15.
- - - - - -
.289
17.5 15. 14. 13. .Sol 1.732 1.838 15.
-
-
- - 1.676 1.438 - 1.373 1.459 1.528 1.068 1.075 1.055
-
17.5 17.5 15. 15. 15.
302 O F M I X T U R E S OF E T H Y L ALCOHOL AND WATER IN g/ml
T A B L E 293.-DENSITY
The densities in this table are numerically the same as specific gravities at the various temperatures in terms of water at 4°C as unity. Based upon work done at the National Bureau of Standards. Percent
CrHsOH
Ternoeratures
by weight
10°C
15'C
25°C
30°C
35°C
40°C
0 1 2 3 4
.99973 785 602 426
.W13 725 542 365 195
,99823 636 453 275 103
.99708 520 336 157 .98984
9568 379 194 014 .98839
99406 217 031 .98849 672
.99225 034 .98846 663 485
5
098 .98946 801 660
524
032 .98877 729 584 442
.98938 780 627 478 331
817 656 500 346 193
670 507 347 189 031
501 335 172 009 .97846
311 142 ,97975 808 641
10 11 12 13 14
393 267 145 026 .97911
304 171 04 1 .97914 790
187 047 .57910 775 643
043 .97897 753 61 1 472
,97875 723 573 424 278
685 527 371 216 063
475 312 150 .%989 829
15 16 17 18 19
800 692 583 473 363
669 552 433 313 191
514 387 259 129 .96997
334 199 062 .%923 782
133 .%W 844 697 547
.96911 760 607 452 294
670 512 352 189 023
20 21 22 23 24
252 139 024 .96907 787
068 .%944 818 689 558
864 729 592 453 312
639 495 348 199 048
395 242 087 .95929 769
134 .95973 809 643 476
.95856 687 516 343 168
25 26 27 28 29
665 539 406 268 125
424 287 144 .95996 844
168 020 .95867 710 548
.95895 738 576 410 241
607 442 272 098 .94922
306 133 .94955 774 590
,94991 810 625 438 248
30 31 32 33 34
.95977 823 665 502 334
686 524 357 186 011
382 212 038 .94860 679
067 ,94890 709 525 337
741 557 370 180 .93986
403 214 02 1 .93825 626
055 .93860 662 461 257
35 36 37 38 39
162 .94986 805 620 431
.94832 650 273 079
494 306 114 .93910 720
146 93952 756 556 353
790 591 390 186 .92979
425 221 016 .92808 597
051 .9?843 634 422 208
40 41 42 43 44
238 042 .93842 639 433
.93882 682 478 27 1 062
518 314 107 .92897 685
148 .92940 729 516 301
770 558 344 128 .91910
385 170 .91952 733 513
,91992 774 554 332 108
45 46 47 48 49
226 017 .92806 593 379
.92852 640 426 21 1 .91995
472 257 041 .91823 604
085 .91868 649 429 208
692 472 250
90805
291 069 .90845 621 396
90884 660 434 207 A9979
50
162
776
384
,90985
580
168
750
6 7 8 9
258
464
20°C
(continued) SMITHSONIAN PHYSICAL TABLES
028
303 OF M I X T U R E S OF ETHYL A L C O H O L A N D W A T E R
T A B L E 293.-DENSITY
I N g/ml (concluded) Percent C2HsOH by weight
50 51 52 53 54
55
Temperatures ~~
10°C
15OC
ZO'C
25°C
30°C
35°C
40°C
.92162 .91943 723 502 279
.91776 555 333 110 .90885
.91384 160 .90936 711 485
.90985 760 534 307 079
.90580 353 125 .89896 667
90168 ,89940 710 479 248
.89750 519 288 056 .88823
56 57 58 59
90831 607 381 154
055
659 433 207 ,89980 752
258 031 ,89803 574 344
.89850 621 392 162 28931
437 206 38975 744 512
016 .88784 552 319 085
589 356 122 .87888 653
60 61 62 63 64
,89927 698 468 237 006
523 293 062 .88830 597
113 .88882 650 417 183
699 466 233 .87998 763
278 044 .87809 5 74 337
.87851 615 379 142 .86905
417 180 .86943 705
65 66 67 68 69
,88774 541 308 074 .87839
364 130 ,87895 660 424
.87948 713 477 241 004
527 291 054 .86817 579
100 .86863 625 387 148
667 429 190 .85950 710
227 .85987 747 507 266
70 71 72 73 74
602 365 127 ,86888 648
187 .86949 710 470 229
.86766 527 287 047 .85806
340 100 .85859 618 376
.85908 667 426 184 ,84941
470 228 .84986 743 500
025 ,84783 540 297 053
75 76 77 78 79
408 168 .85927 685 442
.85988 747 505 262 018
564 322 079 .84835 590
134 .84891 647 403 158
698 455 21 1 .83966 720
257 013 .83768 523 277
.83809 564 319 074 .82827
80 81 82 83 84
197 .84950 702 453 203
.84772 525 277 028 .83777
344 096 ,83848 599 348
.83911 664 415 164 32913
473 224 .82974 724 473
029 .82780 530 279 027
578 329 079 .81828 576
85 86 87 88 89
,83951 697 441 181 .82919
525 271 014 .82754 492
095 ,82840 583 323 062
660 405 148 .81888 626
220 ,81965 708 448 186
.81774 519 262 003 .80742
322 067 .80811 552 291
90 91 92 93 94
654 386 114 .81839 561
227 .81959 688 413 134
.81797 529 257 ,80983 705
362 094 .80823 549 272
.80922 655 384 111 .79835
478 21 1 .79941 669 393
028 .79761 491 220 .78947
95 96 97 98 99
278 ,80991 698 399 094
.80852 566 274 .79975 670
424 138 .79846 547 243
.79991 706 415 117 .78814
555 271 .78981 684 382
114 .78831 542 247 .77946
670 388 100 .77806 507
100
.79784
360
.78934
506
075
641
203
SMITHSONIAN PHYSICAL TABLES
466
304 T A B L E 294.-DENSITY
Methyl alcohol
O F A Q U E O U S M I X T U R E S O F M E T H Y L ALCOHOL, C A N E SUGAR, OR S U L F U R I C A C I D Sulfuric acid
Percent
Methyl alcoiyl
Sulfuric acid 20"
Percent by weight of substance
D 4a C
0 1 2 3 4
.99913 ,99727 .99543 9370 9198
.998234 1.002120 1.006015 1.009934 1.013881
.99823 1.00506 1.01178 1.01839 1.02500
50 51 52 53 54
.91852 .91653 .91451 .91248 .91044
1.229567 1.235085 1.240641 1.246234 1.251866
1.39505 1.40487 1.41481 1.42487 1.43503
5 6 7 8 9
9029 .98864 ,98701 .98547 .98394
1.017854 1.021855 1.025885 1.029942 1.034029
1.03168 1.03843 1.04527 1.05216 1.05909
55 56 57 58 59
.90839 .90631 .90421 .90210 .89996
1.257535 1.263243 1.268989 1.274774 1.280595
1.44530 1.45568 1.46615 1.47673 1.48740
10 11 12 13 14
.98241 .98093 .97945 .97802 .97650
1.038143 1.042288 1.046462 1.050665 1.054900
1.06609 1.07314 1.08026 1.08744 1.09468
60 61 62 63 64
,89781 .89563 ,89341 ,89117 ,88890
1.286456 1.292354 1.298291 1.304267 1.310282
1.49818 1.50904 1.51999 1.53102 1.54213
15 16 17 18 19
.97518 .97377 .97237 .97m .96955
1.059165 1.063460 1.067789 1.072147 1.076537
1.10199 1.10936 1.11679 1.12428 1.13183
65 66 67 68 69
,88662 .88433 ,88203 ,87971 37739
1.316334 1.322425 1.328554 1.334722 1.340928
1.55333 1.56460 1.57595 1.58739 1.59890
20 21 22 23 24
,96814 .96673 .%533 .96392 .96251
1.080959 1.085414 1.089900 1.094420 1.098971
1.13943 1.14709 1.15480 1.16258 1.17041
70 71 72 73 74
,87507 A7271 ,87033 ,86792 .86546
1.347174 1.353456 1.359778 1.366139 1.372536
1.61048 1.62213 1.63384 1.64560 1.65738
25 26 27 28 29
.96108 .95%3 .95817 ,95668 .95518
1.103557 1.108175 1.112828 1.117512 1.122231
1.17830 1.18624 1.19423 1.20227 1.21036
75 76 77 78 79
,86300 .86051 .85801 ,85551 .85300
1.378971 1.385446 1.391956 1.398505 1.405091
1.66917 1.68095 1.69268 1.70433 1.71585
30 31 32 33 34
.95366 .95213 .95056 .94896 .94734
1.126984 1.131773 1.136596 1.141453 1.146345
1.21850 1.22669 1.23492 1.24320 1.25154
80 81 82 83 84
,85048 .84794 .84536 A4274 24009
1.411715 1.418374 1.425072 1.431807 1.438579
1.72717 1.73827 1.74904 1.75943 1.76932
35 36 37 38 39
.94570 .94404 .94237 .94067 .93894
1.15 1275 1.156238 1.161236 1.166269 1.171340
1.25992 1.26836 1.27685 1.28543 1.29407
85 86 87 88 89
33742 .83475 33207 ,82937 ,82667
1.445388 1.452232 1.459114 1.466032 1.472986
1.77860 1.78721 1.79509 1.80223 1.80864
40 41 42 43 44
.93720 .93543 .93365 .93185 .93001
1.176447 1.181592 1I86773 1.191993 1.197247
1.30278 1.31157 1.32043 1.32938 1.33843
90 91 92 93 94
.82396 32124 .81849 3 1 568 .81285
1.479976 1.487002 1.494063 1.501158 1.508289
1.81438 1.81950 1.8240; 1.82790 1.83115
45 46 47 48 49
92815 .92627 .92436 .92242 .92048
1.202540 1.207870 1.213238 1.218643 1.224086
1.34759 1.35686 1.36625 1.37574 1.38533
95 96 97 98 99
.80999 .80713 ,80428 .80143 ,79859
1.515455 1.522656 1.529891 1.537161 1.544462
1.83368 1.83548 1.83637 1.83605
50
.91852
1.229567
1.39505
100
,79577
1.551800
15"
Caue sugar 200
SMITHSONIAN PHYSICAL TABLES
D
20" y 4
C
by weight
of substance
D +1 C 5
Cane sugar 200
C,D
4
305 T A B L E 295.-DENSITY,
BRIX, AND BAUME DEGREES, O F CANE-SUGAR SOLUTIONS
Degrees Brix, specific gravity, and degrees BauniC of sugar solutions. Degrees Brix = percent sucrose by weight.
20" C. 20 The relation between the specific gravity and degrees Baume is given by degrees Baum6 = 145 145 specific gravity Specific gravities and degrees BaumC corresponding to the degrees Brix are for
Degrees Brix or percent sucrose by
weight
Specific gravity at 200/20'C
Degrees BaumE (modulus 145)
.oo
Degrees Brix or percent sucrose
by
weight
Specific gravity at 20"/20"C
Degrees Baurne (modulus 145
21.97 22.50 23.04 23.57 24.10 24.63 25.17 25.70 26.23 26.75
80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0
1.41421 1.42088 1.42759 1.43434 1.44112 1.44794 1.45480 1.46170 1.46862 1.47559
42.47 42.95 43.43 43.91 44.38 44.86 45.33 45.80 46.27 46.73
PY
Specific gravity at
Degrees IlaumE (modulus 145)
1.17853 1.18368 1.18887 1,19410 1.19936 1.20467 1.21001 1.21538 1.22080 1.22625
weight
20'/200C
Degrees Brix or percent sucrose
7
1.o 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
1.00000 1.00389 1.00779 1.01172 1.01567 1.01965 1.02366 1.02770 1.03176 1.03586
.56 1.12 1.68 2.24 2.79 3.35 3.91 4.46 5.02
40.0 41.O 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0
10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0
1.03998 1.04413 1.04831 1.05252 1.05677 1.06104 1.06534 1.06968 1.07404 1.07844
5.57 6.13 6.68 7.24 7.79 8.34 8.89 9.45 10.00 10.55
50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0
1.23174 1.23727 1.24284 1.24844 1.25408 1.25976 1.26548 1.27123 1.27703 1.28286
27.28 27.81 28.33 28.86 29.38 29.90 30.42 30.94 31.46 31.97
90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0
1.48259 1.48963 1.49671 1.50381 1.51096 1.51814 1.52535 1.53260 1.53988 1.54719
47.20 47.66 48.12 48.58 49.03 49.49 49.94 50.39 50.84 51.28
20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0
1.08287 1.08733 1.09183 1.09636 1.10092 1.10551 1.11014 1.11480 1.11949 1.12422
11.10 11.65 12.20 12.74 13.29 13.84 14.39 14.93 15.48 16.02
60.0 61.O 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0
1.28873 1.29464 1.30059 1.30657 1.31260 1.31866 1.32476 1.33090 1.33708 1.34330
32.49 33.00 33.51 34.02 34.53 35.04 35.55 36.05 36.55 37.06
100.0
1.55454
51.73
30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0
1.12898 1.13378 1.13861 1.14347 1.14837 1.15331 1.15828 1.16329 1.16833 1.17341
16.57 17.11 17.65 18.19 18.73 19.28 19.81 20.35 20.89 21.43
70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0
1.34956 1.35585 1.36218 1.36856 1.37496 1.38141 1.38790 1.39442 1.40098 1.40758
37.56 38.06 38.55 39.05 39.54 40.03 40.53 41.01 41.50 41.99
.O
SMITHSONIAN PHYSICAL TABLES
OF SOUND *
TABIAES 296-300.-VELC)CITY
O F S O U N D I N GASESD8
T A B L E 296.-VELOCITY Tzmp
Gas
Air. dry. 1 atm ......... 25 . . . . . . . . . . . " 50 ........... " 100 .........
C
.
0 0 0 0 " " 100 " ................ 500 ................ 1000 Ammonia .............. 0 Argon ................. 0 Carbon dioxide ......... 0 Carbon monoxide ....... 0 Chlorine ............... 0 Ethane ................. 10 Ethylene ............... 0 Helium ................ 0 Hydrogen (heavy) ...... 0 Hydrogen (light) ....... 0
.... .. ................ 1'
1' I'
I'
Velocity m/sec
C
Hydrogen bromide ...... Hytlrogen chloride ...... Hydrogen iodide ........ Hydrogen sulfide ....... Illuminating gas ........ Methane ............... Neon .................. Nitric oxide ............ Nitrogen .............. Nitrous oxide .......... Oxygen ................ Silicon tetrafluoride .... Sulfur dioxide .......... Vapors : alcohol .............. ether ................ water ................
331.7 332.0 334.7 350.6 386 553 700 415 319 259 338 206 308 317 965 890 1284
................
"
O8
T:mp
Gas
.
Velocity m/sec
0 0 0 0 0 0 10 0 0 0 0 0
200 296 157 289 490.4 430 435 324 334 263 316 167 213
0 0 0 100
230.6 179.2 401 404.8
0
Tables 296 and 298-300 prepared by Urick and Weissler. Naval Research J.ahoratory. Bergmann. Ultrasonics. 3d ed., p . 223. Edwards Brothers. 13nn Arbor. Mich., 1944 .
OF S O U N D I N S O L I D S
TABLE 297.-VELOCITY ~
T h e velocity of sounds in solids varies as V E / p . where I< is Young's modulus of elasticity and p the density . These constants for most materials vary through a somewhat wide range . The numbers can be taken only as rough approximations to the velocity in any particular case . When temperatures are not marked. between 10" and 20" is to be understood . Substance
.................. .................. .................. A1 ....................... Au h";d .................. ' .................. Cd ....................... co ....................... (2 ..................... ..................... ..................... 2 ..................... ................... Ash. along the fiber ........ across the rings ....... along the rings ....... By:ch. along the fiber ...... across the rings .... along the ringo ..... Elm. along the fiber ........ across the rings ....... along the rings ....... Fir. along the fiber ......... Mahogany. along the fiber .. Maple. along the fiber ...... Oak. along the fiber ........ Pine. along the fiber ........ Poplar. along the fiber ..... Sycamore. along the fiber ... hyd
"
'I
I'
"
"
. "
Y
t"C
m/sec
20 100 200
2678 2640 2480 5104 1743 1720 2307 4724 3560 3290 2950 5130 5300
20 100 20 100 200 20 100
4670 1390 1260 3340 1840 1415 4120 1420 1013 4640 4135 41 10 3850 3320 4280 4460
Substance
m/sec
F]: ....................... ............... ........... M g ...................... Ni ....................... P b ...
200 20 100
....................... .......................
100
4720 4990 4920 4790 4602 4973 1322 3150 2690 2570 2460 2500 3700
Pd ... P t ... " "
Sn
.......................
20 200
Cork ........ Granite ...................
...........
Slate ..................... Tallow ........ Tuff ..................... Glass . . . . . . . . . . . . . . Ivory .................... Vul . rubber (black) ........ " (rzdd) ........ t'
W$X
SMITHSONIAN PHYSICAL TABLES
V
t°C
........ ..................... 'I
......................
15 16
0
70 17 28
3652 3480 500 3950 3810 1304 4510 390 2850 5000 6000 3013 54 31 69 34 880 441
T A B L E 298.-VELOCITY
OF SOUND IN L I Q U I D S m
Temper- Sound velocity Density at,;, m/sec a/ml C
Liquid
Acetone' ............ Alcohol, abs. ethyl . . Alcohol methyl a ..... Alcohol, &n-dodecyl . . Benzene ............ Carbon disulfide . . . . Carbon tetryhloride '. Chlor2form .. ... . .. Ether .... . . ........ Ethylene ~ l y c o l . . . . Glycerine .......... Heptane' ... .. ...... Heptened . ... ........ Heptyne' .. . . . .. . . .. Hexadecafluoroheptane" ...... .... Mercuryb ...... . ... . Methylene iodide . . . .
'.
.
30 30 30 30 30 23 30 20 30 30 30 30 30 30
1146 1127.4 1088.9 1388.0 1276.4 1149 905.8 1002 949 1643.5 1905 1112 1082 1159.3
30 20 20
528.8 1.64 1451 13.595 973.3 3.325
Liauid
DC 5&-5.0 is'.. . .. 30 DC 500-50 cs '. . . . . . 30
Sorbitol, 8:70 solution . . . .. . .. 30 in water TurDentine . . . . , . . . . 27 Water (distilled) ' . . . 0
. .
10 20 30 40 50 60 70 80 86 94
LIJ References: a Weissler A. Journ. Amer C k m . V. A. Del Grosso. 'b Bergminn 'L. Ultrasonics' 3d ed. c, Rao, M. 'R.,Ind. journ. Phys.: voi. 14, p. 109,'1940. d, 247, 1948; Journ. Amer. Chem. Soc., vol. 70, p. 2994, es., vol. 8, p. 95, 1932.
T A B L E 299.-VELOCITY
Temper- Sound a t y e velocity Density C m/sec g/ml
Silicon tetrachloride a . 30 Silicone DC 500-.65 C S ' . . .. . 30
.7788 .7809 .7816 3269 3685 1.258 1.5746 1.488 .7019 1.1068 1.2553 .6751 .6910 .7243
307
766.2 1.4622 873.2 953.8 981.6
.7535 .9083 .9540
2040 1.31 1280 .893 1403.5 1448.0 1483.1 1509.9 1529.5 1543.5 1551.5 1555.3 1554.6 1552.4 1549.0
SOC. 1948 and 1949. also unpublished work with Edwards Brothers Ann Arbor Micb 1944. Lagemann, R. J., et al., Jburn. Chem. k'hys., Pol. 16, 1948. e, Randall, C. R., Nat. Bur. Standards Journ.
p. l i S
OF SOUND I N SEA WATER
(From various tables and formulae)
in
Br. Adm.
Br. Adm. 1939
Kuwahara
-
1445 1484 1515 1538
1440.3 1481.9 1514.3 1539.0
1440.2 1481.9 1514.3 1538.9
1440.3 1482.0 1514.3 1539.1
35
1450 1489 1514 -
1450 1488 1519 1543
1445.3 1486.6 1518.6 1543.0
1445.4 1486.7 1518.7 1543.1
1445.5 i486.8 1518.7 1543.2
0 10 20 30
35
1454 1492 1518 -
-
-
1452.6 1493.8 1525.8 1550.3
1452.7 1493.9 1525.9 1550.4
1452.8 1494.1 1525.9 1550.6
0
31 35
1490 1498
-
1494.7 1499.7
1494.6 1499.8
1494.4 1499.8
Sal. ppt
Heck & Service
1445 1482 1508
meters
"C
0
0 10 20 30
31
0
0 10 20 30
400
3000
.
Meters per second
Depth
SMITHSONIAN PHYSICAL TABLES
Wood
--
1927
308
TABLE 300.-VELOClTY
OF SOUND I N SEA WATER-DEPTH = O (From Kuwahara) Meters per second
= 31 ppt 1442.9 47.4 51.9 56.4 60.6
s = 35 ppt
s = 37 ppt
s = 39 ppt
1445.5 50.0 54.5 58.9 63.1
1448.1 52.6 57.1 61.4 65.6
1450.7 55.2 59.6 64.0 68.1
0 1 2 3 4
= 31 ppt 1440.3 44.8 49.4 53.8 58.1
5 6 7 8 9
1462.3 66.5 70.5 74.5 78.3
1464.8 68.9 73.0 76.9 80.7
467.3 71.4 75.4 79.3 83.1
469.8 73.9 77.9 81.7 85.5
1472.3 76.3 80.3 84.2 87.9
10 11 12 13 14
1482.0 85.7 89.2 92.7 96.0
1484.4 88.0 91.6 95.0 98.3
1486.8 90.4 93.9 97.3 1500.6
1489.2 92.8 96.3 99.6 1502.9
491.6 95.1 98.6 502.0 05.2
15 16 17 18 19
1499.3 1502.5 05.6 08.6 11.5
1501.6 04.7 07.9 10.8 13.7
1503.9 07.0 10.1 13.0 15.9
1506.2 09.3 12.3 15.2 18.1
1508.5 11.5 14.6 17.5 20.3
20 21 22 23 24
1514.3 17.2 19.8 22.4 25.0
1516.5 19.3 22.0 24.6 27.1
1518.7 21.5 24.1 26.7 29.2
1520.9 23.7 26.3 28.8 31.3
1523.1 25.9 28.4 31.0 33.5
25 26 27 28 29
1527.5 29.9 32.3 34.6 36.9
1529.6 32.0 34.3 36.6 39.0
1531.7 34.1 36.4 38.7 41.0
1533.8 36.2 38.5 40.8 43.1
1535.9 38.3 40.6 42.9 45.1
1539.1
1541.2
1543.2
1545.3
1547.3
“C
30
S*
Salinity (parts per thousand).
SMITHSONIAN PHYSICAL TABLES
S
TABLES 301-310A.-ACOUSTICS
*
T A B L E 301.-RELATIVE POWER AND FREQUENCY O F OCCURRENCE O F V O W E L AND CONSONANT SOUNDS'm
Vowels Vowel indicated by italics in words
see ............ sit ............. hate ........... let ............. sat ............ father .........
Relative power
Relative frequency of occurrence
220 260 370 350 490 600
6.4 10.3 4.8 6.6 6.9 6.5
Vowel indicated by italics in words
Relative frequency of occurrence
Relative power
saw ............ tone ........... foot ........... soon ........... sun ............
680 470 460 310 510
4.2 4.7 3.0 6.3 4.1
Initial and final consonants
Consonant
............ ............ k ............ g ............ t .............
Relative power
6 7 13 15 15 d ............ 7 f ............. 5 v ............ 12 th (voiced) ... 11 th (unvoiced) . 1 p b
Relative frequency of occurrence Consonant
2.5 4.6 5.6 4.3 7.9 6.2 5.0 1.3 6.7 6.7
1.2 .4 2.9 .4 14.3 4.4 12.5
9.2 1.3 1.3
Relative power
............. 16 ............. 16 zh (azure) ... 20 sh ............ 80 m ............ 52 n ............ 36 ng ........... 73 1 ............. 100 r ............. 210 Fh ........... 42 J ............. 23 s
z
Relative frequency of occurrence
5.5 .3 .02 1.7 5.9 5:O
3.1 6.0 .01 .3 5.5 12.5 3.6 8.4 13.1
...
4.3 2.8 .6
.5
.8
.1
Data selected and arranged by Cyril M. Harris Bell Tele hone Laboratories. lWFletrher, H., Speech and hearing, p. 7 4 , D. ganNostranB, 1929. French, Carter, and Koenig, Bell System Tecbn. Journ., vol. 9, p. 290, 1930.
T A B L E 302.--SOUND
L E V E L S O F NOISE I N VARIOUS LOCATIONS
It is customary to compare the pressure of all sounds in air with 0.0002 dynes/cm'. The soutid-pressure level of waves having a r.m.s. sound pressure of p dynes/cmz is defined as 20 logto (p/0.0002) decibels.? The following table gives some typical values of sound levels of noise in the locations indicated :
Location
Electric power station, generating room ............... Boiler factory .................... Subway station, train passing.. .... Streetcar ........................ Factory ........................ Large store ......................
Sound level in db
120 110 100 85 75 65
Location
Sound level in db
Average office .................... Average residence with radio.. Average residence without radio.. . Quiet residence ................... Radio broadcast studio ............ Reference level, .0002 dynes/crn'.
.... ..
55 50 43 35 30 0
t The be1 is a dimensionless unit for expressing the ratio of two values of power, the number of bels being the logarithm to the base 10 of the power ratio. The decibel, abbreviated db, is one-tenth of a hel. When conditions are such that scalar ratios of pressure amplitudes or particle velocities are the square roots of the corresponding power ratios, the number of decibels by which the corresponding powers differ is expressed by 20 log (fill&) db where fil/fi2 represents the scalar ratio. This relationship is frequently applied where the scalar ratio is not the square root of the corresponding power ratio, but such usage should be accompanied by a specific statement of application.
SMITHSONIAN PHYSICAL TABLES
310
TABLE 3OPA.-SPEECH
POWER (Fig. 1)
In a study conducted by Dunn and White,” the “long-time-interval average” power of speech, obtained by averaging data over time intervals of more than a minute of continuous speech, for the average of a group of male speakers was found to be 34 microwatts. The corresponding value for female speakers was 18 ‘microwatts. At least 1 percent of the &second intervals had an average power in excess of 230 microwatts for men and 150 microwatts for women, and a peak power in excess of 3600 microwatts for men and 1800 microwatts, for women. The figure shows how the total power of average conversational speech is distributed with respect to frequency. These data give the power per cycles versus frequency and also the percentage power lying below a given frequency.
m -10
Q
Z -
rr
y-2 0 V
2. V
E-30
a U
L
2
O
r $50 W
a Y) -J
5-6 0 0
FIG.1.-Speech power for men (continuous curves) and women (dotted curves) given in percentage power below any frequency. Curves A and B, power per cycle, curves C and D. 0 db = 1 microwatt. lrn Dunn,
H. K., and White, S . D., Journ. Accoust. SOC.Amer., vol. 11, p. 278, 1940.
TABLE 303.-PEAK Watts
Orchestra, 75 pieces ....... 70 Bass drum, large.. 25 Pipe organ ....... 13 Snare drum ...... 12 lo‘
POWER O F MUSICAL INSTRUMENTS”’ Watts
Cymbals ......... 10 Trombone ........ 6 Piano ............ .3 Trumpet ......... .3 Bass viol ......... .2
Piccolo .......... Flute ............ Clarinet .......... French horn ...... Triangle .........
Watts
.08
.06 .OS .05
.05
Sivian. L. J., Dunn, H. K., and White, S. D . , Journ. Acoust. SOC.Amer., vol. 2, p. 330, 1931.
SMITHSONIAN PHYSICAL TABLES
311
T A B L E 304.-CHARACTERIiSTlC R E S O N A N C E V A L U E S OF S P O K E N VOWELS1M
The "pitch" of one's voice, i.e., his fundamental frequency, fluctuates considerably during conversational speech, and there is a great deal of variation from individual to individual. The average fundamental frequency for the average male voice in conversational English speech is in the neighborhood of 130 cps, while the corresponding value for the female voice is 230 cps. The vocal cords, housed in the larynx, emit a pressure wave that is essentially "sawtooth" in character. The numerous harmonics that result from this complex wave form are selectively transmitted to the open air. The throat, mouth, nose, and constrictions formed by the tongue and lips are most important in determining the freqaency characteristics of the transmission system. The pressure spectrum of speech has many peaks. Apparently vowel sounds are distinguished by the position of these resonant peaks. The following table gives representative frequencies of the first two principal resonant peaks for different vowel sounds spoken by the average male adult :
Vowel indicated by italics in the words
Frequency of 1st principal .resonant peak CPS
Fre uency 94 2d principal resonant peak
290 440 585 725 780
2375 2050 1875 1675 1125
see ............. sit ............. let ............. sat ............. father ..........
CDS
Vowel indicated by italics in the words
Fre uency 94 1st principal resonant peak CPS
Fre uency 94 2d principal resonant peak
600 500 330 650 475
900 1050 900 1225 1375
saw ............ foot ............ soon ........... sun ............ str .............
CPS
'OSPotter, R . K., and Peterson, G . E., Journ. Acoust. SOC.Amer., vol. 20, p. 528, 1948.
T A B L E 305.-APPROXIMATE R A N G E OF F U N D A M E N T A L F R E Q U E N C Y ON 0 RC H E S T R A L I N S T R U M E N T S
The values given are for average instruments in tune with A440 cps. The lower frequency limits of some special instruments are indicated in brackets. Frequency range rn
Frequency range In
CPS
YLP~
CPS
&
Instrument
Lower limit
Violin .................. 195 Viola .................. 131 Cello ................... 65 Bass ............... (32) 41 Piccolo ................. 587 Flute ................... 261 Oboe ................... 233 English horn ............ 164 Clarinet ........... (138) 146 Bass clarinet ....... (65) 73 Bassoon ................ 58 Contra bassoon .......... 30 Eb alto saxophone ...... 138
SMITHSONIAN PHYSICAL TABLES
2093 1318 880 262 4186 2013 1397 934 1568 467 623 175 831
Instrument
& Lower limit
..... 103 . 69 Trumpet ............... 164 French horn ............ 61 Trombone .......... (51) 82 Bass tuba ............... 41 Piano .................. 27 Organ ............. (16) 32 Harp ................... 32 Soprano voice .......... 261 Tenor voice ............. 123 Alto voice .............. 174 Baritone voice .......... 98 Bass voice .............. 65 Bb tenor saxophone
Eb baritone saxophone..
~ P F 623 416 1047 699 524 234 4186 4186 3136 1568 1174 933 416 294
312
MUSICAL SCALES
The following definitions and Tables 307 and 308 are taken from the -4merican Standard Acoustical Terminology 224.1, 1949. Just scale.-A just scale is a musical scale such that the frequency intervals are represented by the ratios of small integers.
Equally tempered scale.-An equally tempered scale is a series of notes selected from a division of the octave (usually) into 12 equal intervals. Equally tempered semitone (half-step).-An equally tempered semitone is the interval between two sounds whose basic frequency ratio is the twelfth root of two. NoTE.-The interval, in semitones, between any two frequencies is 12 times the logarithm on the base 2 of the frequency ratio. Cent.-A cent is the interval between two sounds whose basic frequency ratio is the twelve-hundredth root of two. NoTE.-The interval, in cents, between any two frequencies is 1200 times the logarithm on the base 2 of the frequency ratio. Thus, 1200 cents = 12 semitones = 1 octave.
T A B L E 306.-FREQUENCY R A T I O S A N D I N T E R V A L S FOR J U S T A N D E Q U A L L Y T E M P E R E D SCALES Just temperament
Interval from starting point
Frequency ratio from starting point
Unison ........................ 1 :I Minor second or semitone. ....... 16:15 Minor tone ..................... 10:9 Major second or whole tone.. .... 9:s Minor third .................... 6:5 Major third .................... 5:4 Perfect fourth .................. 4 :3 Augmented fourth .............. 45 :32 Diminished fifth ................ 64 :45 Perfect fifth ................... 3 :2 8:5 Minor sixth .................... 5:3 Major sixth .................... Harmonic minor seventh.. ....... 7:4 Grave minor seventh ............. 16:9 Minor seventh .................. 9:5 Major seventh .................. 15:s Octave .................... .;... 2:l
SMITHSONIAN PHYSICAL TABLES
,
Equal temperament
Cents from starting point
Frequency ratio from starting point
0 111.731 182.404 203.9 10 315.641 386.314 398.045 590.224 609.777 701.955 813.687 884.359 958.826 996.091 1017.597 1088.269 1200.000
1 :1 1.059463 :1
0 100
1.122462:l 1.189207:1 1.259921 :1 1.334840:1 1.414214:l 1.414214 :1 1.498397 :1 1.587401 :1 1.681793:1
200 300 400 500 600 600 700 800 900
1.781797:l 1.887749 :1 2:l
Cents from starting point
-
1000 1100 1200
T A B L E 307.-FREQUENCIES O F T H E T O N E S O F T H E U S U A L E Q U A L L Y T E M P E R E D SCALE, ARRANGED BY CORRESPONDING P I A N O K E Y NUMBERS, A N D C A L C U L A T E D ACCORDING T O A M E R I C A N S T A N D A R D P I T C H Note name
4 D
E , Ln m
Key Freq. No. cps
Key No.
Freq. cps
Key No.
Key No.
Freq. cps
Freq. cps
Key No.
Freq. cps
Key No.
Freq.
Key No.
cps
Key No.
Freq. cps
Freq. cps
Note name
A A#-Bb B
1 27.500 2 29.135 3 30.868
13 55.000 14 58.270 15 61.735
25 110.000 26 116.541 27 123.471
37 220.000 38 233.082 39 246.942
49 440,000 50 466.164 51 493.883
61 62 63
880.000 932.328 987.767
73 1760.000 74 1864.655 75 1975.533
85 3520.000 86 3729.310 87 3951.066
A A#-Bb B
C C#-Db D
4 32.703 5 34.648 6 36.708
16 65.406 17 69.296 18 73.416
28 130.813 29 138.591 30 146.832
40 261.626 41 277.183 42 293.665
52 523.251 53 554.365 54 587.330
64 1046.502 65 1108.731 66 1174.659
76 2093.005 77 2217.461 78 2349.318
88 4186.009
C C#-Db D
D#-Eb E F
7 38.891 8 41.203 9 43.654
19 77.782 20 82.407 21 87.307
31 155.563 32 164.814 33 174.614
43 311.127 44 329.628 45 349.228
55 622.254 56 659.255 57 698.456
67 1244.508 68 1318.510 69 1396.913
79 2489.016 80 2637.021 81 2793.826
D%Eb
F#-Gb G G#-Ab
10 46.249 11 48.999 12 51.913
22 92.499 23 97.999 24 103.826
34 184.997 35 195.998 36 207.652
46 369.994 47 391.995 48 415.305
58 739.989 59 783.991 60 830.609
70 1479.978 71 1567.982 72 1661.219
82 2959.955 83 3135.964 84 3322.438
F#-Gb G G#-Ab
E F
F I E L D A R O U N D THE H U M A N H E A D D U R I N G S P E E C H lM
T A B L E 308.-PRESSURE
The following data describe the pressure field around the head of a speaker a t a radius of 30 cm from the speaker’s lips. The sound-pressure level is given for 13 frequency bands, and for all the bands, i.e., “whole speech,” in d b above the sound-pressure level in the same bands at the point (30 cm, 0, 0). These data give the pressure distribution in the horizontal plane Z = 0, and the relative pressures overhead. Altitude
Azimuth
Degrees
rh r
, -A- (
0 45 90 135 180
-
0 0 0 0 0
+90
Wholespeech
.O
- .1 - .4
-3.0 -4.9 -2.6
Band No. 2 -62.5125
.o
- .1 - .2 - .2 - .6 -1.6
Band No. 3 125250
.O
+ .6 - .3 -2.5 -4.6 -1.9
Band No. 4 250. 500
Band No. 5 500700
.O
.O .O .3
+ .1
-1.2 -3.6 -5.3 -2.4
+
-1.5 -3.3 -2.4
Band No. 6 700-
1000
.O
.O
+1.4
-1.7 -3.8 -2.3
Band No. 7 10001400
Band No. 8 14002000
-1.2 -3.7 -4.3 -5.1 -3.0
- .8 - 4.1 - 5.4 -12.4 - 4.5
Dunn, H. K., and Farnsworth, D. W., Journ. Acoust. SOC.Amer., vol. 10, p. 184, 1939.
.o
.O
Band No. 9 20002800
Band No. 10 28004000
Band No. 11 40005600
.O
+- 2.5.O.6
- 2.9 - 5.2
- 2.5 - 7.9 - 9.1 -14.8 - 3.2
-12.6 -17.2 - 2.0
.O
-14.9 -18.6 - 7.7
Band No. 12 56008000
+- 3.5..5O -12.7 -21.3 - 5.2
Band No. 13 8000-
12000
.O
- 2.4 - 4.9 -14.6 -16.1
-
.9
w c w
314
TABLE 309.-SENSITIVITY
O F T H E EAR (FIG. 2)
The minimum effective sound pressure of a specified signal that is capable of evoking an auditory sensation is called the threshold of audibility for that signal. The characteristics of the signal, the manner in which it is presented to the listener, and the point at which the sound pressure is measured must be specified. Two classes of ear-sensitivity determinations are shown in figure 2. M.A.P. is just-audible sound pressure measured at the observer’s ear drum. M.A.F. is the sound pressure level that is just audible to an observer in an acoustical field free of reflecting surfaces (the sound-pressure level is measured after the observer’s head is withdrawn from the field) ; the observer faces the source of sound and listens binaurally. These curves were derived by Sivian and White from measurements on young adult observers all having. very good hearing.’” The average person cannot detect pressures as low as those given. H e will have a threshold curve displaced upward on the chart. (See Table 3G9A for data on hearing losses.)
FREQUENCY IN CYCLES PER SECOND FIG.2.-The variation of two classes of ear sensitivity. Curve 1, Monaural M.A.P. The ordinate for curve 1 is 20 log,, p/po where p = M.A.P. at ear drum (dyne/cm*) and PO = 2)<10-’ (dyne/cma). Curve 2, Binaural M.A.F. Observer facing source. (0 db = lo-‘’ watts/cm2). The term “differential sensitivity of frequency and intensity” refers to the. smallest changes in frequency and intensity, respectively, that can be perceived by an observer with normal hearing. The values depend to some extent on the method of presentation of the test stimuli. For pure tones above 500 cps having levels greater thafi 40 db above threshold, the measurements of Shower and Biddulph indicate that the smallest perceptible difference in frequency has the approximate constant value of 0.3 percent. For levels greater than 40 db above threshold and for frequencies between 200 and 7000 cps, the measurements of Riesz and others indicate that the smallest perceptible difference in intensity varies from one-quarter to three-quarters of a decibel. The range of frequency perceived by the average ear varies considerably ; however, the figures of 20-20,000 cycles are frequently quoted as covering the range heard by the average of a group of young adults having no hearing impairments Sivian, L. J., and White, S . D., Journ. Acoust. SOC. Amer., vol. 4, p. 228, 1933.
SMITHSONIAN PHYSICAL TABLES
315 O F LOSS OF H E A R I N G A C U I T Y
T A B L E 309A.-DISTRIBUTlON
loo
The following data are part of the results of the hearing tests conducted by the Bell System a t the New York and San Francisco World's Fairs in 1939. The first four columns indicate the percentages of the population having hearing losses of 25 db or more a t various frequencies. A person having a loss of 25 db a t all frequencies below 2000 cps may experience difficulty in understanding unamplified speech, as in an auditorium or church. The second four columns indicate the corresponding percentages for losses of 45 db or more. A person having such a loss experiences difficulty in understanding ordinary conversational speech at distances greater than 2 or 3 feet. 25-db loss Frequency in cps Age group
I
440;880
10-19 men ........... 1.7 women ........ 1.8
20-29 men ........... 1.1 women ........ 1.8
45-db loss Frequency in cps r
1760
3520
704;
440;880
1760
3520
1.6 1.2
4.5 1.2
8.0 2.5
.6 .6
.6 .4
1.8 .3
1.2 I .6
7.0 2.2
9.5 3.5
.4
.I
.3 .3
2.7
.3 1.2
.6 .8
6.0 1.6
.7
30-39 men ........... 1.8 women ........ 3.5
3.5 3.5
15. 5.5
19. 10.
40-49 men ........... 5.5 women ........ 7.0
9.5 7.0
32. 11.
39. 24.
1.4 2.1
2.6 1.5
16.
48. 22.
58. 43.
2.6 4.0
6.0 3.0
27.
50-59 men ........... 9.5 women ........ 13.
17. 14.
3.
7.
am Steinberg, Montgomery, and Gardner, Journ. Acoust. SOC. Anier., vol. 12, p. 291, 1940.
T A B L E 310.-ARCHITECTURAL
ACOUSTICSam
Planning for good acoustics in a building requires careful consideration of noise control. This includes consideration of the selection of a site, the arrangement of the rooms within the building, the selection of the proper sound-insulation constructions, and the control of noise sources within the building. The design of a room where people gather to listen to speech or music should be such that its shape and size will ensure the most advantageous flow of properly diffused sound to all auditors. Absorptive and reflective materials and constructions should be selected and distributed to provide the optimum conditions for the growth, decay, and steady-state distribution of sound in the room. The reverberation characteristics of the room are controlled by the amount and placement of the absorptive material. Reverberation t i m e calculations.-Because of the importance of the proper control of reverberation in rooms, a standard of measure called reverberation time has been established. This is the time required for a specified sound to die away to one-thousandth of its initial pressure, which corresponds to a drop in sound-pressure level of 60 db. The reverberation time of a room is given by the following equation : 0.049Y 6 T= -2.30 S loglo (1 4mV
c)+
where Y is the volume of the room, S is the total surface area in square feet, and average absorption coefficient for the room given by - CKx Si C X S z + K a S3 ..... - acc= S1+ SI Sa ....... S
+
+ +
+
is the
-
where El is the absorption coefficient of the area St, etc. The second term in the denominator, 4mV, represents the effective absorption in the room contributed by the air. The attenuation coefficient m a t each frequency depends upon the humidity and temperature of the air. Except in very large rooms the absorption in air can be neglected below about 2000 cps. The values of m for a temperature 68°F are given in figure 3 as a function of relative humidity for a number of frequencies. 107 Taken from Acoustical designing in architecture, by V. 0. Knudsen and C. M. Harris, John Wiley & Sons, 1949. Used by permission of the publishers.
(corttinued) SMITHSONIAN PHYSICAL TABLES
316
T A B L E 310.-ARCHITECTURAL
FIG.3.-Attenuation
T A B L E 310A.-OPTIMUM
ACOUSTICS (concluded)
coefficient nz per foot as a function of humidity.
R E V E R B E R A T I O N T I M E (FIGS. 4 A N D 5 )
T h e following figures give the recommendations of Knudsen and Harris for optimum reverberation time for different types of rooms as a function of room volume. The optimum times for speech rooms, motion-picture theaters, and school auditoriums are given by a single line ; the optimum time for music by a broad band. Th e optimum reverberation time is not the same for all kinds of music. F o r example, slow organ and choral music require more reverberation than does a brilliant allegro composition played on woodwinds, piano, or harpsicord. The optimum reverberation time vs. frequency characteristic for a room can be obtained from these charts in the following manner : After having specified the volume and purpose of the room, determine the optimum reverberation time at 512 cycles from the upper chart. Then, to obtain optimum reverberation time a t any other frequencies multiply the 512-cycle value by the appropriate ratio R which is given in the lower chart. Note that R is unity for frequencies above 500 cycles, and is given by a band for frequencies below 500 cycles. The ratio R for large rooms may have any value within the indicated band; preferred ratios for small rooms are given by the lower part of the band. (corztinued)
SMITHSONIAN PHYSICAL TABLES
T A B L E 310A.-OPTIMUM
FIG.4.-Optimum
REVERBERATION T I M E (FIGS. 4 A N D 5) ' < c o d I Ub&)
317
reverberation time as a function of volume of rooms for various types of sound for a frequency of about 512 cycles per second.
1.6 1.6
1.4
4:
...
0 1.2 1.2 L
5
L
a! 1 1..c0I 0e 0I 00 100
FIG.S.--Ratio
200
so0 400
600 8001000
2000 3000
5000
10.000
FREQUENCY IN cYcLea PER SECOND of the reverberation time for various frequencies as a function of the reverberation for 512 cycles per second.
SMITHSONIAN PHYSICAL TABLES
318
TABLES 311-338.-VISCOSITY
OF F L U I D S A N D S O L I D S *
The coefficient of viscosity of a substance is the tangential force required to move a unit area of a plane surface with unit speed relative to another parallel plane surface from which it is separated by a layer of the substance a unit thick. Viscosity measures the temporary rigidity it gives to the substance. Fluidity is the reciprocal of viscosity expressed in poises. Kinematic viscosity is absolute viscosity divided by density. Specific viscosity is viscosity relative to that of some standard substance, generally water at some definite temperature. The dimensions of viscosity are J4L-lT-l. It is generally expressed in cgs units as dyne-second per cm2 or poises. The viscosity of fluids is generally measured by one of several methods depending on the magnitude of the viscosity value to be measured. For vapors and gases as well as for liquids of low viscosity, measurements of viscosity are made by the rate of flow of the fluid through a capillary tube whose length is great in comparison with its diameter. The equation generally used is T],the
viscosity, -
- 12852 (I+ A )
where y -is the density (g/cm3), d and I are respectively the diameter and length in cm of the tube, Q the volume in cm3 discharged in t sec, h the Couette correction to the measured length of the tube, h the average head in cm, m the coefficient of kinetic energy correction, mvu2/g, necessary for the loss of energy due to turbulent, in distinction from viscous, flow, g being the acceleration of gravity (cm/sec2), 2, the mean velocity in cm/sec. (See Herschel, Nat. Eur. Standards Techn. Pap. Nos. 100 and 112, 1917-1918, for discussion of this correction and h . ) For liquids of medium and high values of viscosity measurements are made by Margule's method of observing the torque on the inner of two concentric cylinders while the outer is rotated with constant angular speed with the viscous liquid filling the space between, or by noting the rate of fall of a solid sphere through the liquid. For the method of concentric cylinders the equation is K8(R12--R Z 2 ), q, the viscosity, = 4&R,' R2, L where K denotes the elastic constant of the torsion member supporting the inner cylinder of radius R, cm and length L cm, .8is the angular displacement of the inner cylinder from its position of equilibrium, R the angular speed of the outer rotating cylinder of radius R , cm in the corresponding units employed to measure 8. The necessary corrections due to end effects of cylinders of finite length are given in the reference.'O" For the falling sphere method, the equation is that of Stokes law as modified by R. G. Hunter: l o g
1 . R 2.2s )
T], the
('-71,
2 R2(d,-d2) viscosity, = 9 (1+3.3:)
'
where y denotes the radius in cni of the crucible containing the liquid of density d , (g/cni3), to a depth of Iz cni, R the radius in cm of the sphere of density d , (g/cm3), and Y the velocity (cni/sec) of the falling sphere. * T h e data on viscosity were selected and arranged by George V. McCauley, Corning Glkss Works. Lillie, H . R., Journ. Amer. Cer. SOC., vol. 12, p. 505, 1929. looHunter, R. G.. Journ. Amer. Cer. SOC., vol. 17, p. 123, 1934; Ann. d. Phys., ser. 4, vol. 22, p. 287, 1907; vol. 23, p. 447, 1907. SMITHSONIAN PHYSICAL TABLES
319 For very viscous materials, measurements of viscosity are made by noting the rate of elongation of fibers under load or by observing the aperiodic inotioii of an elastic system displaced from its position of equilibrium and damped by the viscous material. The formula for the rate of elongation of fibers as employed by H. R. Lillie is Lxgxk 7, the viscosity, = 37rR2E ' where R is the radius in cni of the fiber of effective length, L (cm), g the mass in grams of the attached load, k the acceleration of gravity (cm/sec2), and E the rate of elongation in cm/sec. For the aperiodic motion of the system consisting of the suspended inner cylinder of Margule's apparatus described above, the formula is K(t,-t,) log e R Z 2 - R l 2 7 , the viscosity, = el R12RZZ 4XL log,, -
)'
(
0,
where t2 and t , denote the times in seconds of angular positions O2 and 8, of the suspended system from its position of equilibrium. The other characters have the same significance as in the formula above for the rotating cylinder method of measuring viscosity. (For reference, see footnote 105.) The viscosity of solids may be measured in relative terms by the damping of the oscillations of suspended wires (see Table 323). Ladenburg (1906) gives the viscosity of Venice turpentine at 15.3" as 1300 poises; Trouton and Andrews (1904) of pitch at O o , 51 x lo'", at 15") 1.3 x 1O'O; of shoemaker's ~ of soda glass at 575", 11 x lo'*; Deeley (1908) of glacier wax at 8", 4 . 7 lo6; ice as 12 x 1013. "'Lillie, H. R., Journ. Amer. Cer. SOC.,vol. 14, p. 502, 1931.
T A B L E 311.-VISCOSITY
OF W A T E R I N C E N T I P O I S E S
(Temperature variation) Part 1.-Low Vi?
CP
"C
Viscos1ty cp
"C
20 21 22 23 24
1.0050 .9810 .9579 .9358 .9142
30 31 32 33 34
,8007 .7840 .7679 .7523 .7371
25 26 27 28 29
.8337 3737 ,8545 .8360 .8180
35 36 37 38 39
,7225 .7085 .6947 .6814 .6685
"C
cos1ty CP
"C
Viscosity cp
"C
0 1 2 3 4
1.7921 1.7313 1.6728 1.6191 1.5674
10 11 12 13 14
1.3077 1.2713 1.2363 1.2028 1.1709
5 1.5188
15 16 17 18 19
1.1404 1.1111 1.0828 1.0559 1,0299
6 7 8 9
1.4728 1.4284 1.3860 1.3462
Viy cosrty
temperature
(continued)
SMITHSONIAN PHYSICAL TABLES
Viy cos1ty
cp
"C
Viscosity cp
,5494 ,5404 S315 ,5229 S146
60 65 70 75 80
.4688 .4355 .4061 .3799 .3565
Vis. cos1ty
cp
"C
40 41 42 43 44
.6560 .6439 ,6321 .6207 .6097
50 51 52 53 54
45 46 47 48 49
S988 .5883
55 .SO64 56 .4985 57 .4907 58 .4832 59 .4759
.5782 .5683 S588
85 .3355 90 3165 95 .2994 100 2838 153 .181
320 O F W A T E R I N CEN TIPOIB ES (concluded)
T A B L E 311.-VISCOSITY
Pa rt 2.-High viscosity cp
"C
130 135 140 145 150 "'Based
... ...
...
.I99 .191
temperature"'
"C
viscosity cp
"C
cp
"C
155 160 165 170 175
.184 .178 .173 .I66 .I60
180 185 190 195 200
.I55
205 210 215 220 225
Vi,s-
Vis-
COSItY
COSltY
.I51 .146 .I43 .139
cp
.136 .134 .131 .129 .128
on measurements by Shugayev, V., Journ. Exp. and Theoret. Phys. ( U . S . S . R . ) , vol. 4,
p. 760, 1934.
P a rt 3.-Viscosity
o f heavy water in centipoises
9.65% DzO; dn" = 1.10495
"c 4
5
6 7 112
Via-
Viy cos1ty CD
"c
COS'tY CD
2.25 2.10 1.99 1.90
8 9 10 11
1.81 1.73 1.67 1.61
"C
Viy cos1ty cp
"c
12 13 14 15
1.56 1.51 1.46 1.41
16 17 18 19
VisCOSltY CD
1.37 1.33 1.29 1.25
Data by Lemond, Henri. Cornpt. Rend., vol. 212, p. 81, 1941.
T A B L E 312.-VISCOSITY
O F AL COHOL -W AT E R
M I X T U R E S I N CENTlPOlSES
(Temperature variation) Percentage by weight of ethyl alcohol
"C
0
5
10
is
20
--
-
0
10
20
30
35
40
45
50
60
70
80
90
100
1.792 1.519 1.308 1.140 1.005
3.311 2.577 2.179 1.792 1.538
5.319 4.065 3.165 2.618 2.183
6.94 5.29 4.05 3.26 2.71
7.25 5.62 4.39 3.52 2.88
7.14 5.59 4.39 3.53 2.91
6.94 5.50 4.35 3.51 2.88
6.58 5.26 4.18 3.44 2.87
5.75 4.63 3.77 3.14 2.67
4.762 3.906 3.268 2.770 2.370
3.690 3.125 2.710 2.309 2.008
2.732 2.309 2.101 1.802 1.610
1.773 1.623 1.466 1.332 1.200
2.35 2.00 1.71 1.473 1.284 1.124
2.35 2.02 1.72 1.482 1.289 1.132
2.39 2.02 1.73 1.495 1.307 1.148
2.40 2.02 1.72 1.499 1.294 1.155
2.23 1.93 1.66 1.447 1.271 1.127
2.037 1.767 1.529 1.344 1.189 1.062
1.748 1.531 1.355 1.203 1.081 968
1.424 1.096 1.279 1.003 1.147 .914 1.035 ,834 .939 .764 348 .702
.a5
.893 .727 .601
.907 .740 .609
,913 .740 .612
,902 .729 .604
.856 .695 -
.789 .650 -
25 30 35 40 45 50
394 1.323 1.815 2.18 301 1.160 1.553 1.87 .722 1.006 1.332 1.58 .656 .907 1.160 1.368 .599 312 1.015 1.189 .549 ,734 907 1.050
60 70 80
.469 .406 .356
.609 .514 .430
.736 .608 SO5
SMITHSONIAN PHYSICAL TABLES
,834 .683 .567
,725 .598
,704 .589
.592 504
- -
T A B L E 313.-VISCOSITY
32 1
O F GLUCOSE 'I3
(Temperature variation) Viscosity values given as logloq (poises) Tzmp.
C
LO&"
22 24 26 28 30 32 34 36 40 45
T y .
TEmp.
n
C
13.96 13.41 12.86 12.34 11.82 11.32 10.83 10.35 9.44 8.40
70 75 80 85
90 95
C 100 ~. 105 110 115 120 125 130 135 140 145
Log10 t
4.80 4.29 3.82 3.40 3.02 2.69
Log10 0
2.40 2.15 1.90 1.70 1.so 1.32 1.16 1.01 .B .75
As with other liquids in the temperature interval of high viscosities, measured values for glucose depend on the thermal treatment to which the sample is subjected prior to and during measurement. Prolonged holding at a given temperature followed by rapid cooling to a lower temperature a t which viscosity is measured will result in increasing values with time. Decreasing viscosity values with time will result from the reverse temperature treatment. At temperatures of high viscosity, constant, or equilibrium, viscosity values will be found only after long holding a t the given temperature or after slow and controlled cooling from conditions of low viscosity to the desired temperature. 1'3
Barton, Spaght, and Richardson, Journ. Appl. Phys., vol. 5, p. 156, 1934.
T A B L E 314.-VlSCOSlTY
A N D D E N S I T Y O F GLYCEROL I N AQUEOUS SOLUTION A T 20°C *
76 Gly.
Density a/cn13
Viscosity in centipoises
Kinematic viscosity t in centistokes
5 10 15 20 25 30 35
1.0098 1.0217 1.0337 1.0461 1.0590 1.0720 1.0855 1.0989 1.1124
1.181 1.364 1.580 1.846 2.176 2.585 3.115 3.791 4.692
1.170 1.335 1.529 1.765 2.055 2.411 2.870 3.450 4.218
cerol
45 40
R Gly-
Density g/cmq
Viscosity in centipoises
Kinematic viscosity t in centistokes
50 55 60 65 70 75 80
1.1258 1.1393 1.1528 1.1662 1.1797 1.1932 1.2066 1.2201 1.2335
5.908 7.664 10.31 14.51 21.49 33.71 55.34 102.5 207.6
5.248 6.727 8.943 12.44 18.22 28.25 45.86 84.01 168.3
cerol
90 85
OTahles 314 and 3 1 5 txken from Nat. Rur. Standards Techn. Pap. No. 112. 1918. Glycerol data. THl)le 314, from Archlptt. Deeley, and Gerlack; castor oil data, Tahle 315. from Kahlharim and Raher. Archhutt and Deeley give f o r the density and viscosity of castor oil a t 656°C. 0.9284 a n d 0.605, respectively: at 100°C, 0.9050 and 0.169. t T h e kinematic viscosity is the ordinary viscosity in cgs units (poises) divided by the density in g/cm3. T h e cgs unit of kinematic viscosity is the stoke.
SMITHSONIAN PHYSICAL TABLES
322
T A B L E 315.-VISCOSITY
A N D D E N S I T Y O F CASTOR O I L
(Temperature variation) Density g/cms
"C
5 6 7
.9707 .9700 .9693 .9686 .9679 .9672 .9665 .9659 .9652 .%45 .9638 .9631 .9624 .9617 .9610 .%03 .9596 .9589
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22
Kinematic viscosity in stokes
Visco?ity in poises
37.6 34.5 31.6 28.9 26.4 24.2 22.1 20.1 18.2 16.61 15.14 13.80 12.65 11.62 10.71 9.86 9.06 8.34
38.7 35.5 32.6 29.8 27.3 25.0 22.8 20.8 18.9 17.22 15.71 14.33 13.14 12.09 11.15 10.27 9.44 8.70 ~
T A B L E 316.-VISCOSITY
"C
Density g/cmS
Viscosity in poises
Kinematic viscosity in stokes
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
.9583 .9576 .9569 .. .. .9562 .9555 .9548 .9541 .9534 .9527 -9520 i9513 .9506 .9499 .9492 .9485 .9478 .9471 .9464
7.67 7.06 6.51 6.04 5.61 5.21 4.85 4.51 4.21 3.94 3.65 3.40 3.16 2.94 2.74 2.58 2.44 2.31
8.00 7.37 6.80 6.32 5.87 5.46 5.08 4.73 4.42 4.14 3.84 3.58 3.33 3.10 2.89 2.72 2.58 2.44
O F GLYCERINE-WATER M I X T U R E S
(Temperature variation) Viscosity in centipoises
C Glycerol 0 10
Sp. gravity
1.00000 1.02370 1.04840 1.07395 1.loo40 1.12720 1.15460 1.18210 1.20925 1.23585 1.26201 lI4
20 30 40 50 60
70 80 90 100
I
20°C
30°C
393 1.153 1.542 2.157
300 1.024 1.360 1.876 2.731 4.247 7.312 14.32 34.92 115.3 624.
5.o4i
8.823 17.96 45.86 163.6 945.
Landolt and Bornstein, 1935. Data by Sheely, Ind. Eng. Chem., vol. 24, p. 1060, 1932.
T A B L E 317.-VISCOSITY
OF GASOL I NE A N D K E R O S E N E I N C EN TIPOISES"6
Sp. gr. Gasoline No.
15.6' 15.6'
1 2 3 4 5 6 7 8
.757 .748 .743 .726 .722 ,717 .716 .708
9
10 11 12 13 Kerosene 118
25'C
1.005 1.31 1 1.769 2.501 3.750 6.050 10.96 22.94 62.0 234.6 1499.
.702 ._
.701 .699 .694 .680 313
Temperature r---
5°C
15°C
25°C
35'C
45°C
55°C
.690 .769 .775 .495 ,529 ,568 .508 .493
.603 .663 .641 .429 .457 .481 .461 .435
,518 ,588 .541 .379 .410 .418 .391 .389 .338 .349 .327 .317 .274 1.64
.472 .516 .493 .341 .360 .361 .346 .336 .312 .300 ,299
.426 ,467 .441 .309 .325 .339 .312 .301 .279 .268 .269 .259 .227 1.19
,382 .412
-429
283
.435 .429 ,399 .347 2.57
.382 .372 ,350 .310 2.13
Herschel, Nat. nilr. Standards Techn. Pap. No. 125, 1919.
SMITHSONIAN PHYSICAL TABLES
,283
.242 1.41
...
.278 .293
...
.294 .278 .250 .251 .236 .234 .211
...
T A B L E 318.-VISCOSITY
323
O F ORGANIC LIQUIDS
(Temperature variation) Compiled from Landolt and Bornstein. 1923. Based principally on work of Thorpe and Rogers. 1894-1897 . Viscosity given in centipoises . One centipoise = 0.01 dyne-second per cmz. Viscosity in centipoises Liquid
Formula
I
0°C
10°C
40°C
20°C
50°C
70°C
100°C
Acids : Formic Acetic ........... Acetic (anhydrous) ... Propionic ........ Propionic (anhydrous) ... Butyric .......... i-Butyric ........
CHzOt CzH.0,
solid 2.247 1.784 1.460 1.219 1.036 solid solid 1.222 1.040 .905 .796
C.H. 0. CzHeOz
1.245 1.053 .907 1.521 1.289 1.102
.792 .960
.699
.623
.752
.780 .549 .631 .465 SO7 .387 .607 .495
GHeOz C. H.O. C.H. 0 2
1.610 1.330 1.119 .961 2.286 1.751 1.540 1.304 1.887 1.568 1.318 1.129
.836 .121
.735
.584
Alcohols : Methyl .......... Ethvl ........... Prgpyl .......... i-Propyl ......... Butyl ............ i-Butyl .......... Ally1 ............
CH.0 CSHoO C:.H.0 C3Hs0 CIHIOO C.H. 00 C3HeO
.817 1.772 3.883 4.565 5.i86 8.038 2.145
Aromatics : Benzene ......... Toluene ......... Orthoxylene ..... Metaxylene ...... Paraxylene ...... Ethyl Benzene ...
CsHe CTHS CwHlo C.H. C.H,, C.H.
.906 .763 .654 367 .772 671 590 .525 1.105 .937 .810 .709 .806 .702 .620 .553 solid .739 .648 .574 .877 .761 .671 .595
Bromides : Ethyl ............ Propyl .......... i-Propyl ......... i-Butyl .......... Ally1 ............ Ethylene .........
CZH3Br C3H7Br C?H;Br C. HoBr CIH3Br CzHIBr
.441 .402 .368 651 582 .524 .475 .433 .397 611 .545 .489 .443 .403 .368 .828 .726 .643 .575 .518 .470 .626 .560 .504 .458 .419 .381 2.438 2.039 1.721 1.475 1.286 1.131
Br
1.267 1.120 1.005
..........
Bromine
...........
Ch€orides: Propyl .......... i-Prowl ......... i-Butii .......... Ally1 ............ Methylene ....... Ethylene ......... Chloroform ...... Carbon-tetra .....
. .
C3H,CI C3H7C1 CIH. CI C?HaCI CHLI C2H. CL CHCL CCI.
Ethers : Diethyl ........ Methyl-Propyl . Ethyl-Propyl . Methyl-iso-Butyl Dipropyl ...... .. Ethyl-iso-Butyl ..
.. . ..
.690 1.451 2.918 3.246 3.873 5.548 1.705
.596 1.194 2.256 2.370 2.948 3.907 1.363
. .
.442 .408 .568 .413
.487
.498
.444
.510 .761 .646 .930 .976 .553
.911
.831
.326 .299
299
.338 .390 .328 .903
.761
.268 .285 .360 .346 .479 .430
.245 .223 .260 .237 .324 .294 .268 .245 .313 .284 .260 .239 .425 .381 .344 .311 .260 .384 .345 .311 .284 .237
.406 .736 .519 .848
.540 .527
.359
.359 .329 .462 .337 .444 .839 .571 .975
.414 .307
.438 .551 501
.471 .426 .354 .278 .627 .560 .458 .352 .497 .451 .375 .297 .513 .463 .383 .300 .532 .481 .399 .311
.396 .365 .519 .372 .488 .966 .633
(codntred)
SMITHSONIAN PHYSICAL TABLES
1.757 .331 1.029 2.267 2.782 1.411 2.864 2.122 1.611 1.168 .914 .763
.
.543 1.132 .706 1.351 1.138
.295 .314 .402 .387 .544
.980
.975 .760 .862 .683
.520 .4'57 .403 9 2 .831 .701 1.779 .405 1.131
..
.487
.845
.373 283 .373 .652 .474 .746
.339 .584 .435 562
.479 .534
.679
324
T A B L E 318.-VISCOSlTY
O F ORGANIC LIQUIDS (concluded)
(Temperature variation) Viscosity in centipoises Liquid
r
Formula
Esters : Methyl-formate Ethyl-formate Propyl-formate Methyl-acetate . . Ethyl-acetate . ... Propyl-acetate . . Methyl-propionate. Ethyl-propionate . Methyl-butyrate . Methyl-isobutyrate . . . . .
30°C
40°C
.355 .409 .521 .388 .4S5 585 .460 .537 .580
.325 .369 .465 .352 .407 3 6 .414 .477 .513
.336 .417 .320 .367 .460 .375 .428 .459
.308 .378 .293 .333 .414 .341 .387 .413
.523
.466
.419
.375
.315
606 548 . _ .SO0 .727 .654 .593 .944 .833 .744 384 .781 697 1.166 1.001 .875 .936 .826 .734
.460 .540 .669 .627 .777 .660
.424 .495 .607 .568 .697 .597
.456 .552 .516 .629
.544
.391 ,466 .435 .522 .459
.369 .330
,338
.287
2.248 1.783 1.487 1.272 1.071
.926
.728
.. CZH,OZ .... CaH.OZ ... C4HsOz . CPHBOZ CHs02 . C;H;oO, .
C4HsOz CsHioOZ CSHio02
. . CsHioOs Iodides : Methyl . . . .. . .. .. CHJ Ethyl . . . . . . . . ... CzHsI Propyl . ... . . ... . CaHTI i-Propyl . . . .. ... . CIHII i-Butyl . .. . ... ... G H J Ally1 . ........... CPHPI
0°C
10°C
.436 .510 .672 .484 .583 .773 .587 .697 .763
.391 .454 .589 .431 .512 .669 .517 .608 ,661
.676
.591
20°C
Paraffins : * 'la Pentane .. Octane .. . . Hexane ......... Heptane . . ...
. .. . ... . . . .. . . . ..
Sulfides : Methyl .. ........ GHeS Ethyl ........... C4HioS Carbon di ..... .. CSZ Turwntine
. .. . .. .. .
.361 .563 .438
,329 .SO1 .405
.274 .707 .382 .521
.227 vapor .542 .429 .308 .254 .411 .333
.301 .450 .376
.277 .407 .352
50°C
70°C
100°C
.314 .279 .341 .286 .321 .341
.259 265
.371 .406 ,365
' Very
pure. 118 Geist, J. M., and Cannon, M. R., Ind. Eng. Cheni., anal. ed., vol. 18, p. 611, 1946.
T A B L E 319.-VISCOSITY
OF SODIUM SILICATES *''
(Temperature variation) Loglo7 (poises) at Wt. 5%
Na..O
18.4 21.91 24.89 25.78 26.57 26.79 28.46 29.79 31.74 32.91 33.24 33.77 34.27 34.92 36.73 39.2 39.74 52.1
900°C
4.55 4.29 4.22 4.19 4.18 4.07 3.98 3.84 3.76 3.74 3.71 3.70 3.66 3.57 3.46 3.34
1000°C
3.83 3.62 3.55 3.52 3.49 3.41 3.32 3.21 3.15 3.12 3.08 3.08 3.04 2.94 2.81 2.74 1.66
1100°C
1200'C
1300°C
3.28 3.08 3.02 2.98 2.97 2.90 2.81 2.70 2.64 2.62 2.58 2.59 2.54 2.45 2.33 2.25 1.21
3.15 2.82 2.63 2.58 2.55 2.54 2.48 2.39 2.28 2.23 2.21 2.18 2.16 2.15 2.05 1.93 1.86 .91
2.77 2.44 2.26 2.22 2.19 2.18 2.12 2.03 1.93 1.88 1.87 1.83 1.82 1.80 1.70 1.56 1.51 .66
1400°C
2.47 2.11
1.95
1.91 1.88 1.87 1.79 1.72 1.62 1.57
1.55
1.52 1.53 1.50 1.40 1.20 .47
11' Babcock, C. L., Journ. Amer. Cer. Soe., vol. 17, p. 319, 1934. Lillie, H. R., Journ. Amer. Cer. SOC., vol. 22, p. 367, 1939.
SMITHSONIAN PHYSICAL TABLES
O F D I M E T H Y S I L O X A N E POLYMERS
T A B L E 320.-VISCOSITY
325
(Temperature variation) Based on data by Dow Corning Corporation for DC 200 fluids. Fluid, designation (centistokes at 25' C)
1 2 5 10 20 50
200 500 1000 12500 30000 200,000
Viscosity in poises I -
-25°C
O'C
25°C
.0118 .0163 .0287 .0472 .077 .145 .159 .323 .184 .328 .683 .467 .820 2.39 -94 1.61 3.22 .. . 1.92 3.40 6.70 4.84 8.15 15.9 9.70 17.00 34.4 119.3 183.7 368.5 517. 291.5 1035. 1940. 3265. 5820.
T A B L E 321.-VISCOSITY
50°C
75'C
100°C
1500C
.0079 .0173 .032 .062 .153 .285 .580 1.36 2.80 39.7 90.2 604.
.0056 .0116 .026 .040 .094 .172 .346 .82 1.57 24.3 50.7 345.
.0052
.om
.I05 .298 .59 i.iS 2.89 6.04 73.9 186.2 1256.
.0221 .043 .082 .208 .398 .798 .. .1.94 4.02 53.0 126.4 839.
I N T H E SYSTEM ORTHOCLASE-ALBITE
(Temperature variation) Values given as loglo q , where q =viscosity in poises. Wt. o/c Orthoclase Wt. o/c Albite
100 0
1300°C i 350" C 1400°C 1450°C
80 20
60 40
40 60
20 80
6.30 5.88 5.51
6.18 5.81 5.40
6.00 5.65 5.26
0 100
6.04.
7.00 6.00
6.23 5.85
T A B L E 322.-VISCOSITY
5.63 5.26
O F S.lLlCON DIOXIDE1"
(Temperature variation) Values given as loglo q ; q = viscosity in poises. Temperature "C Log10 q
1250 13.40
1300 12.19
1350 11.46
1400 10.69
1450 10.02
UVolarovich, M. P., and Leontieva, A. A., Journ. Soc. Glass Techn., vol. 20. p. 139, 1936.
SMITHSONIAN PHYSICAL TABLES
1500 9.42
326 TABLE 323.-VISCOSITY
OF MISCELLANEOUS MOLTEN OXIDES
(Temperature variation) Values given as loglo 7 , where Material
1100°C
Silica ............. 15.57 (Si02) Wollastonite . . . . . . . . . ( CaSiOa) Diopside . . . . . . . . . . . . . ( CaMgSi.00) Akermanite . . . . . . . . . . (Ca.MgSi.0,) Monticellite . . . . . . . . . . ( CaMgSiO,) Albite . . . . . . . . . . . . . . . ( NaA1Si308) Orthoclase . . . . . . . . . . . (KAISi308) Anorthite . . . . . . . . . . . . ( Ca ALSi.Os) Gehlenite . . . . . . . . . . . . ( CazAISiOr)
7
= viscosity in poises.
1200°C
1300°C
1400°C
1500°C
13.68
12.06
10.66
9.20
... ... ... ...
...
...
.486
.387
1.52
1.43
.267
.079
7.17
... ... ...
1600°C
...
1.48
.656
.362
.I46
...
...
.241
.053
5.82 6.04
...
...
...
4.60 5.25 7.0
6.2
...
2.32
1.78
...
...
.911
... 1.40 .549
119 Birch, Handbook of physical constants, 1942. Measurements by: Volarovich and 'Leontieva, Trans. McCaffery, Trans. Amer. Inst. Min. and Met. Eng., vol. 100. SOC.Glass Techn., vol. 20, p. 139 1936. Bdwen, Trans. Anier. Geophys. T'nion, pt. 1. p. 249, 1934. Kani, Proc. pp. 64 86 122 125 1932. Kani and Kuzu, Proc. Imp. Acad. (Tokyo), vol. 11, p. 383, Imp. &ad. (TAkyo)', vol. 11, p. 334, 1935.
1935.
T A B L E 324.-VISCOSITY
O F BORON TRlOXlDE
120
(Temperature variation) Login 'I (poises)
Temperature "C
300 400
500
600 700 800 900
1000 ~~~~
1100 1200
...
...
4.59 3.68 2.93 2.42 2.08 1.87 1.63
...
t 9.64 6.20
...
t
...
...
...
4.40 ...
... ... ...
...
...
...
...
...
f
.. ... ... ...
2.90 2.53 2.27 2.10 1.92
...
II
...
6.30 4.47 3.49 2.89 2.49 2.19 1.96 1.78 1.62
120 Dane a n a Birch, Journ. Appl. Phys., vol. 9, p. 669 1938, have shown that for pressures not in excess of 2000 kg/cm* the viscosity of boron trioxide is' given for various pressures by the relation 7= c a p . and at 359OC, a = 15.10-' cm*/kg, and at 516"C, a = 4.6 x 10-4 cm*/kg. Data from Birch, Hanjbook bf physical constants, 1942, and from unpublished measurements by H. R. Lillie.
Observers of data by columns: 13, p. 578, 1907. 6, p. 67 1935.
11 Lillie, unpublished data.
SMITHSONIAN PHYSICAL TABLES
Soc. GI& Techn vol. 18, p. 209, 1934. Phys. (U.S.S.R.j: vol. 6, p. 393, 1937.
327 T A B L E 325.-V
ISCOSl T Y I N TH E SYSTEM DIOPS I DE-A L B IT E-AN0 R T H I T E *
(Temperature variation) Values given as loglo 7 , where Wt. % diopside Wt. %albite
1.60
Wt. % diopside Wt. % anorthite
40 60
20 80
0 100
1.93
2.45 2.04
3.99 3.20 2.64
5.08 4.30 3.63
6.04 5.26
40 60
40
80 20
3.77 2.00
2.18 1.96
1.92
60 40
40 60
20 80
80 20
20 80
1300°C 1400°C 1500°C
60
2.04
Wt. %albite Wt. % anorthite
80 20
1300°C 1400°C 1500°C 1555°C
5.51 4.63
4.67 3.89
3.40 2.66
Wt. % diopside Wt. o/c albite Wt. % anorthite
60 20 20
40 40 20
40 20 40
1200°C: 1300°C 1400°C
2.23 1.99
3.65 2.92 2.36
2.67 2.11
~~
~
= viscosity in poises.
60 40
100 0
1200°C 1300°C 1400°C
7
~
0 100
2.28 2.1 1
2.04 20
20
40 40
20 20 60
4.83 3.88 3.18
3.57 2.79
2.56
20 60
For reference, see footnote 45, p. 136.
-
T A B L E 326.-VISCOSITY
OF M O L T E N METALS"'
(Temperature variation) Tin
Temp.
"C 300 350 400 450 500
550
600 650 700 750 800
Lead
...
2.58 2.33 2.07 1.84 1.58 1.38
... ... ... ...
t
1.73 1.58 1.43 1.30 1.20 1.14 1.08
...
... ... ...
1.67 1.51 1.38 1.27 1.18 1.11 1.05 -99 .94 .91 .87
Tynp. C
Antimony
650 700 750 800 850
1.50 1.26 1.16 1.08 1.05
Tzmp. C
Copper
1100 1150 1200
3.33 3.22 3.12
Landolt and Barnstein,, 1935. Based on data by Esser, Greis, and Brundgart, Arch. Eisenhiitten, vol. 7, P. 385 1934. Viscosity in centipoises. Data on tin by Stott, Proc. Phys. SOC., vol. 45, p. 530, 1933. included. Esser, Greis, and Brundgart. t Stott.
.
SMITHSONIAN PHYSICAL TABLES
T A B L E 327.-VISCOSITY
328
O F MISCELLANEOUS LIQUIDS
Viscosities are given in cgs units, dyne-seconds per cm*, or poises. Liquid
"C
.. . .. . . . . 0. . . .... . .. 10. .. .. . . . . . 20. Air . . . ... . . . . . . . . . . . . -192.3 An$ne . . . . . . . . . . . . . . . 20. ............... 60. Bisyuth .. . .. . . . .. . . . . 285. .............. 365. Black treacle , .. . . . . . . 12.3 Copal lac . .. . .. . .. . . .. 22. Acetal$hyde
Hydrogen, liquid . . . . . . 14.9 Menthol, solid . . .. . . . . liquid . . . . . 56.9 Metcury .... .. . . . .. . -20.
.. .
.
.............. .............. ..............
'I
..............
"
Oils : z Dogfish-lixer ,923 "
..
_.. _ .918 . ~. .. .908 ..
"
.. . .. ..
Linseed .925..
.922 ......... " .914 ......... SDindle oil .885. . . . . "
*
1'
"
I'
'I
.. ... . ..
.. .... ..
* Light machinery .907$ .. .... .. . .. ..
.00231 .00172 .04467 .0156 .0161 .0146 .400 4.81)
30. 50. 50. .. 90. 30. 50. 90. 15.6 37.8 100.0
.414 .211 .080 .331 .176 .071 .453 .162 .033
..
~~
..
..
red" engine "
"
"
*"Galya" azle
.'~. ...
.. * Hqfvy machinery . . .. ,
15.6 37.8 100.0 15.6 37.8 15.6 37.8
. . .. .. . . ... ... ' .914 . . . . . . . Olive ,9195. . . . . . . . . . .............. .9130.. . . . . . . . . .9065. . . . . . . . . . .9000. . . . . . . . . . .8935. . . . . . . . . . .8800.. . . . . . . . . 7 Rape .. . . . . . . . . . . . ............. ............. (another) . . . . (another) . . . . * Soya bean .919 . . . . . .915 ..... ,906 . . .. . t ST;m . . . . . . . . . . . . ............ ............ Phyol ............... ............... Sulfur . . . . .. . . . . . . . . . ' ............... ............... ' ............... ' ............... ' ............... ' ............... ............... ............... ............... Sulfuric acid (p = 1.03) t Tal!pw . ... . . .. . .... ............. Zinc ' . . .. .. . .. . .. .. . .. Linseed .925 ' .922
" "
.711 .070 4.366 .909 6.606 1.274
"
"
"
"
"
"
"
.................
1
2 4 6 8
t
30.0
18.3 90.0 170. 180. 187. 200. 250. 300. 340. 380. 420. 448.
25.
66. 100. 280. 357. 389.
Viscosity
2.406 .187 4.224 .240 7.324 .341 11.156 .451 .331 .176 .071 1.38 1.075 .840 .540 .363 .258 .124 1.118 .422 .080 1.176 .085 .406
.0126 320.0 550.0 560.0 500.0 104.0 24.0 6.2 2.5 1.13
80
.00973 .176 .078 .0168 .0142 .0131
Based on water as per 1st footnote.
O F VISCOSITY A T H I G H T O T H A T A T ATMOSPHERIC PRESSURE
Pressure
kR/cmZ.
tons/inz
....
.... .... *"Extra L. L." .. .. . . " " " ......
American mineral oils: based on water as .01028 at 20°C. $ Densities.
TABLE 328.-RATIO
cylirder
37.8 100.0 37.8 100.0 37.8 100.0 37.8 100.0 30. 50. 90. 10. 15. 20. 30. 40.
"
*"Bayyne" engine ,,. . . *"Qu:ens'
* Dyk
.. .. ... ..
I'
..
'L
"C
Liauid
Oils : * FilLered cylil;lder
"
1.138 .342 .049 1.915
...
"
.00252
.01661 .01547
*"Solar red" engine.. " 1
.00275
0. 20. 34. 98. 193. 299.
* Light mach$ery . .. I'
Viscosity
Bayonne oil (mineral)
157.5 315. 630. 945. 1260.
SMITHSONIAN PHYSICAL TABLES
1.3 2.0
4.0 7.8 16.1
FFF cylinder (mineral)
1.4 2.0 4.5 8.9
-
Rape Trotter (animal)
1.2 1.6 2.4 3.5 . 5.0
Castor
L-y---J
(vegetable)
1.1 1.4 2.3 3.5
-
1.2 1.6 2.7 4.2
5.8
Sperm (fish)
1.2 1.5 2.4 3.5
-
329 O F L I Q U E F I E D P U R E GASES A N D VAPORSm
T A B L E 329.-VISCOSITY
Viscosities in millipoises. (Temperature variation) 2mp.
Tzmp.
K
CsH4
... ... ... ...
85 90 95 100 105 110 115 120 125 130 135 140 145 150 155
6.60 5.60 4.86 4.24 3.73 3.32 . .~ 2.96 2.66 2.43 2.22 2.03 1.86 1.71 1.58
i6o
165 170
CzHs
... ... ...
9.15 7.48 6.37 5.66 5.06 4.52 4.00 3.58 3.23 2.92 2.66 2.44 2.27 2.12 2.00
C3HO
CnHe
K
125.5 72.5 45.5 31.1 22.3 17.0 13.3 11.1 9.4 8.2 7.2 6.2 5.6 5.0 4.5 4.0 3.5
118.5 74.2 52.5 38.3 29.0 22.3 18.2 15.2 13.2 11.6 10.3 9.3 8.2 7.3 6.5 5.5 5.0 4.5
66 68 70 72 74
...
76
78 80
2.49 2.26 2.08
1.93 1.80 1.h7 1.56 1.47
TFmp.
K
CH4
95
1.82 1.53 1.34 1.21
__
100 105 110
"PGerf, S. F., and Galkov, G . I., Journ. Techn. Phys. (U.S.S.R.), vol. 10, p. 725, 1940.
T A B L E 330.-VISCOSITY
O F P U R E HYDROCARBONS
Viscosities in centipoises ; densities referred to water at 4°C. Propane, C:gHa
T:mp. C
Density
Viscosity
n.Butane, CIHlo Density
Viscosity
.657
-70 -60 -50
-40 -30 -20 -10
0 +10 +20 30 +40
+
iso-Butane, C4Hm i)ensityViscosit;
.556 ,543 .531 .517 so2
.487 ,471
.168 .152 .138 .126 .116 .lo8 .099
.632 622 .611 ,601 .590 .579 .567
.555
.281 .253 229 .209 .191 .174 .159 .146
.647 .637 .626 .615 .605 .593 .582 .571 .559 .547 .534
Lipkin. M. R.. Davison, J. A,, and Kurtz, S. S . , Ind. Eng. Chem., vol. 34, p. 976, 1942.
SMITHSONIAN PHYSICAL TABLES
-533 . .455 .393 .343 .301 267 .239 .215 .195 .176 .160 .146
~
~
OF GLASS
TABLE 331.-VISCOSITY
330
(Temperature variation) Part 1.
Loglo? (poises) at Glass
500°C
600°C
700°C
80OOC
900°C
1000°C
1 2 3 4
13.76
9.85
7.03
...
...
15.20 13.82
12.35 10.85
9.82 8.55
5.42 5.84 5.38 5.74 7.87 6.81
3.60 5.52
... ... ... ... ... ... ... ...
4.37 4.79 4.29 4.48 6.48 5.68 1.55 2.17
... ... ... ... ...
... ... ... ... ...
... ... ...
...
...
...
... ... ...
9.49
... ... ... ...
1200°C
1300°C
4.16 3.65
.69 1.16
... ... ...
...
... ...
4.71
6.02 5.70
5.79 4.48
... ...
...
7.30
1100°C
3.89 .. 4.06 3.97 3.70
3.34 3.47
2.91 3.01 2.89 2.60
2.67 2.31 2.40
ZnO
PbO
A1203
Part 2.
Composition (weight percentages) Glass
SiO.
1
69.73 72.6 70.12 67.3 81.O 75.0 65.0 60.0
8
B&
...
1.43 ...
2.00 13.00 15.00
... ... ... ...
9
10 11 12 13 147 15
10" 7.5
56 73.18
...
Na20
K20
20.96 16.0 21.1 14.0 4.00 5.0 7.5 5.0 15.30 15.30 16.88 7.50 10 4 19.35
trace
CaO
... 1.7 ...
.68 trace
... ... ...
...
...
5.0
...
... *..
...
3.57 .I8 .35
5.69 9.03 8.79
10
...
.21
6.26
Part 3.-Commercial
... ... ...
...
... ... ...
6.70
... 7.0 ... ... ... ... ... ... ...
...
... ... ...
7.5
... ...
9.05 6.40 8.77 7.0
...
.18* 1.0 * .02 2.50 2.0
... ...
... ...
5.0 20.0 30.0
...
.91* .85* 1.72* 1.30* 5 2.5 1.19*
... ... 22.00 ... ... ...
glass t
Loglnq (poises) at 7.00
Glass desiunatinn
Manufactiirrr . ..
C$e
..
c
0010-Potash soda lead. Corning Gl:ss W y k s 6.51 0120-Potash soda lead. ,, ,, ,, . . 6.62 1710-Hard !ime . . . .. " <' " 7720-I3oros~l~cate.... 'I ..... " " '' 7740-Pyrex " . 9.82 Plate glass Blue Ridfi-e Glass Corp.. . . . Window glass ....., Libby-Owens-Ford "
...... .........
...............
......
8.00
c
.
5.35 5.41 10.45 6.80 7.87
........
8.35
...
9.00
c
4.52 4.57 7.95 5.66 6.48 5.00 5.06
1;OO
1JOO
10200
IjOO
3.86 3.89 6.28 4.82 5.52 4.03 4.14
3.36 3.36 4.93 4.16 4.77 3.41 3.41
2.91 2.91
2.53 2.53 3.22 3.20 3.67 2.46 2.48
c
c
c
3.92 ....
3.65 4.16 2.87 2.90
c
1n:o C 2.22 2.22 2.62 2.86
...
2.07 2.14
'2'Babcock, C. L., Journ. Amer. Cer. SOC. vol. 17, p. 329 1934. English Journ. SOC.Glass Techn., vol. 7, p. 25, 1923; vol. 8, p. 205 1924. vol. 9. p. 83.' 1925; vol. 10, <. 52, i926- Lillie H. R Journ. Amer. Cer. SOC., vol. 14. p. 502, 1931: Huther, Jburn. .\mer. Cer. Soc., vol. 17, p. 121, 1634; L h e , H:'R., unpublished data. t Glass 14 contains 20 perH,Os. Glasses 11 and 12 contained 0.50 and 0.34 percent BaO, respectively.
'
crnt IlaO.
$ Data by H.
R. Lillie, Corning Glass Works Laboratory.
SMITHSONIAN PHYSICAL TABLES
TABLE 332.-VISCOSITY
OF GASES
33 1
Variation of viscosity with pressure and temperature
According to the kinetic theory of gases the coefficient of viscosity 7 = j ( p c l ) , p being the density, 7 the average velocity of the molecules, I the average path. Since 1 varies inversely as the number of molecules per unit volume, p l is a constant and q should be independent of the density and pressure of a gas (Maxwell's law). This has been found true for ordinary pressures ; below %o atmosphere it may fail, and for certain gases it has been proved untrue for high pressures, e.g., C 0 2 a t 33" and above 50 atm. See Jeans, "Dynamical Theory of Gases." If B is the amount of momentum transferred from a plane moving with velocity U and parallel to a stationary plane distant d, and s is a quantity (coefficient of slip) to allow for the slipping of the gas molecules over the plane, then 7 = ( B / U ) (d+2s) ; s is of the same magnitude as I, probably between .7 (Timiriazeff) and .9 (Knudsen) of it; at low pressures d becomes negligible compared with 2s and the viscosity should vary inversely as the-pressure. c depends only on the temperature and the molecular weight. c v a r i e s as the V F , but q has been found to increase much more rapidly. Meyer's formula, vt = vo(l a t ) , where a is a constant and 7 0 the viscosity a t O"C, is a convenient approximate relation. Sutherland's formula
+
is the most accurate formula in use, taking into account the effect of molecular forces. It holds for temperatures above the critical and for pressures following approximately Boyje's I law. I t may be thrown into the form T = K T / q - C which is linear of T and T'/q, with a slope equal to K and the ordinate intercept equal to -C. Onnes (see Jeans) shows that this formula does not represent helium a t low temperatures with anything like the accuracy of the simpler formula v = vo( T/273.1)" = AT". The following table'*5 contains the constant a of Meyers formula, C and K of Sutherland's formula, n and A of the exponential formula, and the temperature range for which the constants of the latter two are applicable. Gas
Temperature range 'C
Air .................. 23 Ammonia ............. - 77 Argon ................ -183 Benzene .............. 0 Carbon dioxide ........ - 98 Carbon monoxide ...... Chloroform ........... Ethylene .............. Helium ............... -258 Hydrogen ............ -258 Kiypton .............. Mercury .............. -218 Methane .............. 18 Neon ................. Nitrogen ............. -191 Nitrous oxide ......... Oxygen .............. -191 Water vapor .......... 0 Xenon ...............
to to to to to
750 441 827 313 1052
., . ... ...
to 817 to 825
...
to 610 to 499
to
... 825 ...
to 829 to 407
...
a x 108
2.90
...
1.78
...
3.48 2.69
...
3.50
...
...
... ...
2.69 3.45
C
117.9 472 133 403 233 102 454 226 97.6 70.6 188 996 155 252 102 313 110 659 252
Kxlw
tI
AXlW
14.82 15.42 19.00 10.33 15.52 13.5 15.9 10.6 15.13 6.48
.754 .041 .766 .974 .868 .74
2.490 .274 2.782 .299 1.057
.653 .678
4.894 1.860
63.00 9.82
1.082 .770
.573 1.360
13.85 17.2 16.49 18.31
.702 .93 .721 1.116
3.213
...
...
...
... ... ...
...
...
... ... ...
...
... ...
3.355 .170
...
125 Dushman. S., Vacuum technique, p. 37, John Wiley & Sons, New York, 1949; Banerjea, G. B., and Plattanaik, B., Zeit. Physik. vol. 110, p. 676, 1938: Partington, J. R., Phys. Zeit., vol. 34, p. 289, 1933; Fisher, Phys. Rev., vol. 24, 1907.
SMITHSONIAN PHYSICAL TABLES
OF GASES A N D V A P O R S
T A B L E 333.-VISCOSITY
332
P a r t 1.-Viscosity
of vapors
The values of 7 given in the table are 10' times the coefficients of viscosity in cgs units. Substance
Acetone ............... Alcohol, Methyl . . . . . . . Alcohol, Ethyl . . . .. . . Alcohol, Propyl, norm.. Alcohol, Isopropyl . . . . . Alcohol, Butyl, norm.. . . Alcohol, Isobutyl . . . . . . . Alcohol, Tert. butyl. . . . . Ammonia .............. Ben;ene . . .. .. . . .. . . . ..
.
.
Temp. "C
. . .
18.0 66.8 78.4 97.4 82.8
116.9 108.4 82.9 20.0 0. ............... 19.0 ............... 100.0 Carbon bisulfide . . . . . . . 16.9 Carbon monoxide . . . . . . 20.0 Chlorzform ,........... 0.0 ............. 17.4 ' ...... ....... 61.2 Ether ................. 0.0
.
Substance
7
Ether . . . .
78. 135. 142. 142. 162. 143. 144. 160. 108.
16.1 ................. 36.5 Ethyl chloride . . . . . . . . . 0. Ethyl iodide .......... 72.3 Ethylene . .. . . . .. . 0.0 270.0 Mercurv . . . . . . . . , . ..._...........300.0 1 .............. 330.0 ' .............. 360.0 .............. 390.0 Methane . .. . . . .. . . . . . 20.0 Methyl chlyide . . . . . . . . 0.0 . . . . . . . 15.0 . . . . . . . . 302.0 Methyl iodide . . . . . , 44.0 Wafyr v a y r .......... 0.0 ...... .... 16.7 " .......... 100.0
..
70.
.. . . ...
.
79. 118. 92.4 184.0 95.9 102.9 189.0 68.9
P a r t 2.-Viscosity
.. . . . . . . . . . ..
Temp. "C
. . . . ..
7
73.2 79.3 93.5 216.0 96.1 489. 532. 582. 627. 671. 120.1 98.8 105.2 213.9 232. 90.4 96.7 132.0
of gases and vapors'w
(Temperature variation) Viscosity in millipoises T:mp.
C
-200 -150 -100 - 50 0 50 100 150 200
250 300 350 400 500 600 ... 700 800 900 1000 1100
Air
Argon
.053 ... ... .081 .111 ... .139 ... .175 ... .193 .241 .216 .269 .297 .237 .256 .321 .346 .275 .367 .293 .389 .310 .410 .327 .357 .450 384 .488 .~ .521 .411 .554 .437 .463 ... ,499 ... .511 ...
Carbon dioxide
... ...
.087 .112 .135 .159 .181 .203 ,225 ,245 ,262 .280 .299 .331 .362 .391 .417 .421 .465
Chlo- , Hydrorine .HeliumI gen
...
...
... ... ...
.147 .167 .189 .208 .228
...
... ... ... ... ... ... ... ... ...
... ... ...
... ...
.207 .228 .247 .267 .285 .305 .323 .341 .375 .408 .438 .467
...
...
.033 .047 061 .073 .083 .093 .lo2 .111 .120 .129 ,137 .145 .153 .167 ,181 .195 .208
... ... ...
Nitrogen Oxygen
... ... ... ...
...
.189 .207 226 .245 .263 .280 .296 .311 .341 .367 .391 .414
... ... ...
... ... ... ... ...
.217 .241 .264 .287 .309 .330 .349 ,368 .403 .435 .466 ,494
, Xenon
.222 (15°C) Nitric oxide .179 (O'C) Nitrous oxide .138 (0°C) Krypton .246 (15°C) Carbon monoxide .163 (0°C) Ammonia .096 (0"C)
... ... ...
'=Based on data from Landolt and BGrnstein, 3d supplementary vol., pt. 1, p. 184, 1935.
SMITHSONIAN PHYSICAL TABLES
333 T A B L E 334.-PRESSURE
E F F E C T O N VISCOSITY O F P U R E LIQUIDS'n
This table gives logloof the relative viscosity as a function of pressure and density, the viscosity at 30°C and atmospheric pressure taken as unity. For each compound first line log at 30°C, second line at 75"C, third line q30/q,E. Pressure kg/cmz Substance
'
Methyl alcohol
. . . . . . . . ..
Ethyl alcohol
. . . . . . . .. .
n-Propyl alcohol
. . .. . . . . . .
n-Butyl alcohol . . . . . . . . .
.
n- Amy1
.
alcohol . . . . . . . . .
n-Pentane
. . . . . . . ..
n-Hexane
.. .... ....
Ethyl chloride . . . . . Ethyl bromide Ethyl iodide Acetone Glycerine CCl,
....
,
,
. .. . . . .. .,
. . . . . . . .. . ., .. . . . . . . .. .. .. . .. . . .
. ...............
Chloroform
.. . . . ....
cs, . . . . . . . . . . . . . , . ,
Ether
. . . . . . .. . . .. ..
Benzene
. . .. . ... .. ..
Toluene
. . . . . . . . . . ..
Eugenol
. . . . . . . . ..
1
500
1000
2000
4000
6000
8000
10000
.094 .167 .286 .471 .616 .750 .874 9.769 9.862 9.933 .043 .208 .334 .448 .555 1.702 1.706 1.714 1.750 1.832 1.914 2.004 2.084 .OOO ,107 .200 .363 .617 329 1.023 1.211 9.657 9.772 9.873 .045 .289 .473 .634 .778 2.203 2.163 2.123 2.080 2.128 2.270 2.449 2.710 .ooo .151 .283 .494 .836 1.131 1.402 1.667 9.598. 9.754 9.880 .on .368 .6io .827 1.033 2.523 2.495 2.529 2.630 2.938 3.319 3.758 4.305 .OW .175 .321 .554 .934 1.289 1.609 1.912 9.548 9.724 9.867 ,089 .312 .690 .941 1.172 2.845 2.838 2.858 2.932 3.343 3.991 4.679 5.521 .ooo ,188 .341 ,607 1.060 1.448 1.811 2.164 9.540 9.723 9.871 .lo5 .466 .772 1.049 1.313 2.884 2.917 2.951 3.177 3.926 4.742 5.781 7.096 .OOO ,181 .315 .524 .847 1.112 1.360 1.615 9.811 .014 .163 .380 .676 .908 1.119 1.313 1.545 1.469 1.419 1.393 1.483 1.600 1.742 2.004 ,000 ,184 .332 .561 .914 1.224 1.514 1.803 9.803 .028 ,171 .379 .701 .961 1.198 1.426 1.574 1.432 1.449 1.521 1.633 1.832 2.070 2.382 .OOO .134 .242 .405 .649 .837 1.008 1.172 9.850 ,017 ,131 285 .514 .683 334 .977 1.413 1.309 1.291 1.318 1.365 1.426 1.493 1.567 .om .121 ,222 .387 .631 .854 1.043 1.223 9.806 9.959 .072 .235 .472 .653 .816 .978 1.567 1.452 1.413 1.419 1.442 1.589 1.687 1.758 .OOO .115 218 .385 .656 .888 1.108 1.330 9.837 9.954 .057 227 .467 .672 .854 1.030 1.455 1.449 1.445 1.439 1.545 1.644 1.795 1.995 .OOO .135 226 .373 60.5 304 .987 1.160 9.895 ,017 .113 245 .445 .610 .762 .898 1.274 1.312 1.297 1.343 1.445 1.563 1.679 1.828 .OOO .134 .260 .497 .936 1.346 1.741 2.133 8.810 8.920 9.023 9.204 9.529 9.818 .094 .369 15.49 16.37 17.26 19.63 25.53 33.73 44.36 58.08 .ooo .190 .351 .493 (1500) h c m a 9.760 9.949 ,100 .349 .542 1.738 1.742 1.782 .ooo .110 211 .386 .660 .884 9.858 9.985 .094 ,251 .480 .691 .914 1.141 1.387 1.334 1.309 1.365 1.514 1.560 ,000 ,090 .160 .307 SO9 .674 .840 1.010 9.875 9.972 .051 .180 .372 .527 .671 .808 1.334 1.312 1.285 1.340 1.371 1.403 1.476 1.592 .OOO .189 .324 .514 ,792 1.042 1.261 1.469 9.878 ,024 ,149 .344 ,601 306 ,986 1.155 1.324 1.462 1.496 1.479 1.552 1.722 1.884 2.061 .OOO ,173 ,347 9.765 9.938 .081 ,308 .498 innnni \kg/cn 1.718 1.718 1345 ,000 .145 .274 .497 .897 1.285 1.699 2.177 9.796 9.939 .065 .267 .597 .896 1.186 1.504 1.607 1.618 1.698 1.995 2.449 3.258 4.710 ,288 .541 1.081 2.273 3.007 1.652 (3000) (5000) kg/cm* 9.429 9.616 9.810 .143 ,805 1.520 2.343 3.724 4.699 5.383 8.670 29.38 .000
Bridgman, P. W., Proc. tlcad. Arts and Sci., vol. 61, p. 59, 1926. SMITHSONIAN PHYSICAL TABLES
12OOb
.998 .655 2.203 1.390 .919 2.958 1.915 i.223 4.920 2.208 1.396 6.518 2.495 1.562 8.570 1.846 1.493 2.254
130
.00520 .01003 .01779 ,02237
.00220
1.646
.00296
1.323 1.111 1.633 1.400 1.123 1.892 1.549 1.200 2.234
.00368
1.031 .628
.00540 .00285 3.8
.00845 .00519 1.189 .946 1.750 1.670 1.311 2.286
.00352 .00212 .00566
1.832
.00523
T A B L E 335.-VISCOSITY
334
O F OILS IPB
The SAE viscosity numbers constitute a classification of crankcase lubricating oils in terms of viscosity only. Other facts of oil quality or character are not considered. Part 1.-Crankcase
oil classification
S A E recommended practice Viscosity range, Saybolt univ., sec At 210" F
At 130' F
SAE
rMa.
viscosity number
90
10 20 30 40
... *..
Part 2.-Automotive
Max.
............. .............
...
... ... ...
.............
............. ............. .............
...
60 70
Min.
Less than 120 " " 185 " I' 255
120 185 255
50
r
.............
L y s t h y 80
80
105 125
"
I'
"
"
105 125 150
Manufacturers' viscosity classification
SAE general information Viscosity range at O"F, Saybolt univ., sec Viscosity number
rMin.
low
Max.
6,000 12,000
2ow
12,000 48,000
S A E Handbook, 1949 ed., p. 580, SOC. Automot. Eng., New York.
T A B L E 336.-EFFECT Temperature Substance
i-Pentane Acetone
CS,
............. ..............
..................
......... Petroleum ether ....... Kerosene ............. Sulfuric ether
Water
................
Mercury
.........
C
OF
Absolute viscosity at 1 atm centipoises
30 75 30 75 30 75 30 75 30 80 30
,198
0
1.792 1.297 .801 .380 284 1.516 1.340
xn -_
10.3 30 75 100 30 75
__ -.352 __ .212 __ __ __ -_ __
285
PRESSURE U P O N VISCOSITY Relative viscosity Pressure in kg/cm*
1
1000
4000
8000
1.0 .662 1.o .785
2.208 1.560 1.683 1.297 1.445 1.125 2.109 1.409 1.995
7.834 5.188 4.027 2.786 3.228 2.355 6.194 3.990 8.51 3.63 5.13
.658 .302
26.98 15.10 9.705 5.781 6.918 4.688 18.24 9.683 38.9 11.5 -75.9 freezes 1.152 .923 .445
1.097 2380
1.202 .877
1.o
.750 1.0 .755 1.0 -1.0
--
.779 .488 222
2.88 .921 .743 .514 239
1.0 384
1.023 .883
1.o
8.13 - ~.
1.111 .842
Bridgman, P. W., The physics of high pressure. Macmillan, New York, 1931.
SMITHSONIAN PHYSICAL TABLES
12,000
88.51 38.55
-
10.74 15.45 8.83 46.77 20.46 151.4 30.9
1.206 -
631
1.324 .876
T A B L E 337.-LU
335
B R IC A N T S
With very few exceptions present-day lubricants are petroleum products or blends of petroleum products with various compounding or addition agents such as fatty oils, diversified types of soap, and in rare instances solid materials such as graphite. Addition agents are more costly than petroleum derivatives; hence they are used as sparingly as possible. The addition agents are generally employed when conditions of use require greater “oiliness’’ (higher film strength) than is attainable with unblended petroleum oils. The latter usually deteriorate more slowly in service than blended products, which is an advantage supplementing that of low relative cost. There are a few jobs of lubrication for which fatty oils have never been entirely supplanted, as for example the use of porpoise-jaw oil in fine watches.
Lubricants for Cutting Tools
Various types of oils have been used as lubricants for cutting tools. These are fatty oils, kerosene, turpentitle, mineral oils and various blends of these oils. Sulfur has been combined with some of these oils to increase the film strength. Such mixtures and blends are furnished by the various manufacturers under their trade names such as Pennex, Dortan, Fanox, and Kutwell by the Standard Oil Co. of New Jersey. Ferrous (more than Severity 1 (greatest) 3 2 3 4 4
5
7 8 9
I9O
Type of operation Broaching, internal Tapping, plain Threading pipe Threading: plain Gear shaving Gear cutting Driiling, deep Boring, multiple head Hiah-soeed. liahtfeed; automitic screwmachines Turning; singlepoint tool, form tools
70%)
Ferrous
Ferrous (less than
(50-65%)
Em Sulf Sulf Sulf Sulf Sulf L Sulf M L E m Em M L Sulf Em
Sulf Sulf Sulf Sulf Sulf Sulf Sulf Sulf
Sulf Em M L Em Sulf M L
Em ML
L
40%)
Sulf Sulf Sulf Sulf Sulf Sulf Sulf Sulf
Em
L ML
Nonferrous (more than 100%)
MO Em E m Dry
Em -
Sulf
Nonferrous (less than 100%)
Sulf MISulf M L Sulf Sulf
-
Em
MO M L E m K Dry E m
Sulf M L Sulf M L Sulf Em
Sulf Em M L
Sulf M L E m
E m Dry M L
Sulf
E m Sulf M L
Em Sulf M L
Em Dry M L
Em Sulf
Em Em
Metals Handbook, 1948 ed., p. 69, American Society for Metals, Cleveland.
Symbols: D i y = no cutting fluid, E m = soluble or emulsifiable oils and compounds, K ML = mineral-lard oils, M O = mineral oils, Sxlf = sulfurired oils.
SMITHSONIAN PHYSICAL TABLES
= kerosene, L = lard
oil,
336
T A B L E 338.-FRICTION
The required force F necessary to just move an object along a horizontal plane = f N where N is the normal pressure on the plane and .f the "coefficient of friction." The angle of repose (tan = F / N ) is the angle at which the plane must be tilted before the object will m6ve from its own weight . The following table of coefficients was compiled by Rankine from the results of General Morin and other authorities and is sufficient for ordinary purposes .
+
+
f
Material
Wood on wood. dry ............................. I' soapy. ........................... Mepls o ; o:k. dry .............................. wet .............................. " " " soapy ............................ " " elm. dry .............................. Henip on oak. dry ............................... I' '1 wet ............................... Leather on oak ................................. " metals. dry .......................... " wet .......................... greasy ....................... " oily .......................... Metals on metals. dry ........................... " " " wet ........................... Smooth surfaces. occasionally greased ............. continually greased .............. " best results ..................... Stzel 9!1 a p e . dry .............................. oiled ............................. Iron on stone ................................... Wood on stone ................................. M a s y r y ?!I brkk w y k , dry ..................... damp mortar ............ " " dry clay ............................ " I' moist clay .......................... Earth on earth ................................. dry sand. clay. and mixed earth ... " I' " damp clay ...................... " " 81 wet clay ........................ 'I " " shingle and gravel ............... '1
t'
'1
6 '
' I
'1
'I
.
......
SMITHSONIAN PHYSICAL TABLES
.25-. 50 .20 .50-. 60 .24-. 26 .20 .20-. 25 53 .33 .27-. 38 .56 .36 .23 .15 .15-. 20 .3 .07-. 08 .05 .03-. 036 .20 .107 .3&. 70 About .40 .60-. 70 .74 51 .33 .25- 1.00 .38-. 75 1.00 .31 31-1.11
.
.
1/ f 4.00-2.00 5.00 2.00-1.67 4.17-3.85 5.00 5.00-4.00 1.89 3.00 3.70-2.86 1.79 2.78 4.35 6.67 6.67-5.00 3.33 14.3-12.50 20.00 33.3-27.6 5.00 9.35 3.33-1.43 2.50 1.67-1.43 1.35 1.96 3.00 4.00-1 .00 2.63-1.33 1.00 3.23 1.23-.9
m
14.0-26.5 11.5 26.5-31.0 13.5-14.5 11.5 11.5-14.0 28.0 18.5 15.0-19.5 29.5 20.0 13.0 8.5 8.5-11.5 16.5 4.0-4.5 3.0 1.75-2.0 11.5 6.1 16.7-35.0 22.0 33.g35.0 36.5 27.0 18.25 14.0-45.0 21.0-37.0 45.0 17.0 39.0-48.0
TABLES 339-346A.-AERONAUTICS TABLE 339.-DYNAMIC
*
337
PRESSURE A T DIFFERENT A I R SPEEDS
The force on a body moving through a fluid may be expressed in the form F=Cpq A where F is the force, CF a nondimensiona: force coefficient, q the dynamic pressure ( q = jpV', definition), and A a n area. In general, the value of the coefficient CF is dependent on several nondimensional parameters. When the medium is air, CF depends on the VlP V Reynolds number -, the Mach number -' the body shape and attitude to the relative r) a wind, the relative surface roughness, and the degree of turbulence of the air stream. The quantity p denotes the fluid density, V the velocity of the body relative to the fluid, q the coefficient of fluid viscosity, 1 a linear dimension of the body fixing the scale, and a the speed of sound in the ambient fluid. The table gives values of dynamic pressure q for a wide range of speeds. In conjunction with the values of the force coefficient in subsequent tables, this table can be used for computation of lift, drag, and moment under specified conditions. T h e values in the table are computed for standard air density: dry air, normal CO, content, 15"C,one atmosslugs metric slugs or 0.002378 --.For standard gravity, phere. Standard air density is 0.12497 ft8 ma the weight of one metric slug (MKS) is 9.807 kilograms and the weight of one slug is 32.174 pounds. For other densities the values must be multiplied by the ratio of the actual density to the standard density. Tables 339 to 346 and figures 6 to 1 5 were prepared under the direction of C. H. Helms, assistant director of aeronautical research, National Advisory Committee for Aeronautics.
(continued)
SMITHSONIAN PHYSICAL TABLES
w w
03
T A B L E 339.-DYNAMIC
PR ESSU R E A T D I F F E R E N T A I R SPEED S (concluded)
Dynamic pressure, q kg/m2
Air speed m/sec
Dynamic pressure, q Wm2
Air speed m/sec
D y n a m ic pressure, q kg/m2
Air speed m/sec
.0625 .2499 S624 .W8 1.562 2.249 3.062 3.999 5.061 6.248
12 14 16
35 4c 45 50
60 65 70 75 80
76.54 99.98 126.5 156.2 189.0 224.9 264.0 306.2 351.5 399.9
85 90 95
20 22 24 26 28 30
8.998 12.25 16.00 20.24 24.99 30.24 35.99 42.24 48.99 56.24
;2ir speed ft/sec
Dynamic pressure, q lb/W
Air speed ft/sec
Dynamic pressure, q Ib/ft*
Air speed ft/sec
1 2 3 4 5 6 7 8 8 10
.0012 .0048 .0107 .0190 .0297 .0428 .0583 ,0761 .0963 .1189
20 30
,4756 1.0701
Air speed m/sec
1 2
18 .~
Dynamic pressure, q kg/m2
1no
1
4.280 5.826 7.610 9.631 11.890 14.39
Dynamic pressure, q
kdm*
110 120 130 140 150 160
451.4 506.1 563.9 624.8 756.1 899.8 1056.0 1225 1406 1600
170 180 190 200 250 350 400 450 500
1806 2024 2256 2499 3905 5624 7654 9998 12653 15621
Dynamic pressure, q lb/ft2
Air speed ft/sec
Dynamic pressure, q lb/ft2
Air speed ft/sec
Dynamic pressure, q Ib/ft2
120 130 140
17.12 20.09 23.30
220 230 240
57.55 62.90 68.49
160 170 180 190 200 210
30.44 34.36 38.52 42.92 47.56 52.43
300 350 400
107.01 145.6190.2 240.8 297.2 359.7
600 650 700 750
428.0 502.4 582.6 668.8 761.0
5s ._
100
..
60 70 80 90
Air speed m/sec
.-"
AW
500 550
3nn .__
800
1500
2675
339 T A B L E 340.-FORCES
O N T H I N F L A T P L A T E S A T A N G L E S T O T H E WIND (FIG. 6)
For plates at angles to the wind (angle of attack, a) the force is usually resolved into components at right angles and parallcl to the direction of the relative wind. Th e components, termed the lift and drag, respectively, are expressed in the form of coefficients, the forces being divided by the product of the dynamic pressure and the area of the plate (not the projected area on a plane normal to the wind). The ratio of the distance between the leading edge and the center of pressure to the chord length is called the center of pressure coefficient, CP. The center of pressure is defined as the intersection of the line of action of the resultant force, F , with the plate. T h e forces on a plate vary with “aspect ratio,” a term defined for a rectangular plate as the ratio of the span to the chord length. The lift ( C L ) , drag ( C D ) ,and center of pressure coefficients ( C P ) are given as functions of angle of attack a for thin plates of aspect ratio 1, 3, and 6.
I .2 C L -0
c D .4 0
I .2 .8 CL
cD
.4
0 1.2 .8 CL
cD
.4
0 0
10 2 0 30 40 50 60 70 80 ANGLE OF A T T A C K , a , DEGREES
90
FIG.6.-The lift coefficient (CL), the drag coefficient ( C D ) , and the center of pressure (CP)for thin plates for aspect ratios 1. 3, and 6, as a function of the angle a with the wind. (See small figure in upper center.) D = C d q , L = C d q , X = CP x c. (continued)
SMITHSONIAN PHYSICAL TABLES
340 T A B L E 340.-FORCES
O N T H I N F L A T PLATES A T ANGLES T O T H E W I N D (FIG. 6) (concluded) Conditions of experiments Aspect ratio 1
t4
12 12 .17 200 55
12 12
-
120 42
45 7.6 15 2.5 . 3 .025 150 60 126 10
36 12 .17 200 55
'
Aspect ratio 6
Aspect ratio 3
vm--
Authority 131 '5 an, cm ........... 25 30.5 ord cm ........... 25 30.5 Thickhess, cm ........ .3 .32 Tunnel diam., cm .... 150 nu Reynolds No. x 10-3 . 210 382
90 15 .3 150 126
7
.72 30.5 30.5 45.7 to91.4 12 5.08 5.08 7.6to 15.2 .17 .117 .129 200 137 137 152.4 55 64 64 153 ~
'31Authorities: 1 Eiffel G., Resistance de I'air et l'aviation, 2d ed., p. 231, Dunod et Pinat, Paris. 2. Dines. Proc. Rov. soc. London. A. Math. and Phvs. Sci.. vol. 48. n. 233. 1890. 3.FOool. Tahrb. Motorluftschiff-Studie;lgesellsch., vol.'4, 'p. 51, 1910. 4,- Riahouchinski, 'Bull. Inst. Aerodynam.' a e Koutchino, Petrograd vol. 4, p. 113. 1912. 5, Stanton, T. E., Air resistance of lane surfaces, Minutes of Pfoc. Inst. Civii Eng., vol. 156, p. 78, 1903. 6 and 6a, National Bureau of g a n d a r d s , private communication. 7, Knight, Montgomery, and Wenzinger, Carl J., Wind tunnel tests on a series of wing models through a large angle of attack range, P t . 1, Force tests. NACA Rep. No. 317, 1929.
T A B L E 340A.-VALUES O F DRAG C O E F F I C I E N T C D FOR F L A T P L A T E S O F D I F F E R E N T ASP E CT R A T I O N O R M A L T O T H E W I N D (,=goo)
Values of CDfor circular disks are practically the same as for a square plate. Aspect ratio
CD
2
3
4
5
6
7
8
(u
1.18
1.22
1.24
1.26
1.28
1.30
1.32
2.00
1
1.12
T A B L E 340B.-FORCES
ON NONROTATING CIRCULAR CYLINDERS (FIG. 7) M
The drag coefficient CD for cylinders whose axes are perpendicular to the relative wind, the area A being taken as the product of the length L and diameter d , depends to a marked
L
degree on the aspect ratio -' the Reynolds number R, and the Mach number M . The d figure shows the variation of the drag coefficient CDwith R for cylinders of infinite aspect ratio at very low Mach numbers. The drag coefficient C D varies with Mach number in a manner quite similar to that of the sphere on Table 340C (figures 8 and 10). 3
n U
+-
z
w2
v la.
L W
0 UI
u 4
a
n 0
10
103 lo4 10' REYNOLDS NUMBER, R
102
lo6
FIG.7.-The
drag coefficient C D as a function of the Reynolds number R at low Mach numbers for cylinders of infinite aspect ratios with axes perpendicular to the wind.
Vdp V Drag = C d q , Reynolds number, R = - Mach number, M = -. 7 a 339, V = air speed, p = air density, 7 = coefficient of air viscosity. J
For q see Table
Relf, E. F.. 132 Wieselberger, C., New data on the laws of fluid resistance. NACA T N No. 84, 1922. Discussion of the results of measurements of the resistance of wires with some additronal tests on the Wieselsberger, resistance of wires of small diameter. R. & M. No. 102, British ACA, March 1914. Further information on the laws of fluid resistance. NACA T N No. 121, December 1922.
c.,
(continued) SMITHSONIAN PHYSICAL TABLES
341 T A B L E 340B.-FORCES
O N N O N R O T A T I N G C I R C U L A R C Y L I N D E R S (FIG 7)
(concluded) The variation of CII with aspect ratio for Reynolds number of 80,000 is as follows. Aspect ratio
L
d
1
.63
CO
2
.69
3
5
10
20
40
00
.75
.75
.83
.92
1.00
1.20
If the axis of the cylinder is inclined to the wind direction, the force remains approximately at right angles to the axis of the cylinder, its magnitude falling off approximately as the square of the sine of the angle of the axis to the wind. T A B L E 340C.-FORCES
ON S P H E R E S (FIGS. 8-10)"'
For spheres, the linear dimension I is taken as the diameter of the sphere d and the area A as sd". For values of Reynolds number between 80,000 and 400,000 at low values of 4 Mach number the value of the drag coefficient CO depends in large measure on the turbulence of the air stream. As the Reynolds number is increased in this range the drag coefficient of the sphere and the pressure coefficient at the rear of the sphere decreaserapidly. The pressure coefficient is equal to the ratio of the difference between free stream stagnation pressure and local static pressure to the dynamic pressure q. The Reynolds number a t which the pressure coefficient a t the rear of the sphere is 1.22 is defined as the critical Reynolds number, RcT.This value of pressure coefficient corresponds very nearly to C D = .3. The value of R,, represented by point d in the figure is considered to be typical of turbulence-free air.
FIG. 8.-The
drag coefficient C D on spheres as a function of the Reynolds number.
Vdp Drag, D = C D AR~ = -9
Sphere tests in wind tunnels indicate different values of R,, for different sphere sizes. Correlation of the data may be obtained if values of
";
- (+)*= ( K ) are
plotted as a
function of Rcr. The value V g is the root-mean-square of the fluctuation velocity in the direction of the relative wind, 'I the velocity of the relative wind, d the sphere diameter, and L is the scale of the turbulence as defined in the reference. The figure shows a correlation ( K ) obtained with two sizes of spheres and several values of L. 133 Allen, H. S. The motion of a sphere in a viscous fluid Phil. Mag., vol. 50 p. 323, 1900. Wieselherger C. Further information o n the laws of fiuid resisiance NACA T N No.' 121, Decemher 1922. Miilikah C. B., and Klein A. I-., The effect of turbulence Aircraft Eng., vol. 5, p. 169. 1933. Platt, Robert C., kurhulence factor; of NACA wind tunnels as dedrmined by sphere tests NACA Re No. 558 1936. Dryden, Hugh L., Schuhauer, C. B. Mock, W. C.. Jr., and Skranktad, H. Measudments of intensity and scale of wind-tunnel turdulence and their relation to the critical Reynolds number of spheres NACA Rep. No. 581, 1937. Ferri, Antonio, The influence of Reynolds numbers at high Mach nAmbers, Atti di Guidonia, n. 67/69, Mar. 10. 1942.
2;
SMITHSONIAN PHYSICAL TABLES
(contimed)
342 TABLE 340C.-FORCES
O N SPHERES (FIGS. 8-10) (concluded)
.I 0
.O8 .O 6
K .04
.o 2 0
FIG.9.-The
1.0
1.2
value of
1.4 1.6 1.8 2.0 2.2 CRITICAL REYNOLDS NUMEER,R,,
7
- (f)&= K
2.4
2.6 2.8X105
plotted as a function of the critical Reynolds
number, Rcr. A t Mach numbers greater than about 0.3 the drag coeflicient C Ddepends on the values of both Reynolds number and Mach number.
.7
.6
.5
A CD
.3
.2 .I
0 FIG.10.-The
2
3
4 5 6 REYNOLDS NUMBER
7
8x1
5
R
drag coefficient for a sphere as a function of the Reynolds number for several Mach numbers.
SMITHSONIAN PHYSICAL TABLES
T A B L E 341.-FORCES
O N M I S C E L L A N E O U S BODIES
343
The values of the drag coefficients in this table are based on the area of the projection of the body on a plane normal to the wind direction. Where this projection is a circle, the diameter is used as the linear dimension 1 in the Reynolds number. Where the projection is rectangular, the shortest side of the rectangle is taken as 1. Reynolds number
CD
Body
Streamline bodies of revolution. ........................... .05- .06 1.56 Rectangular prism 1 X 1 x 5 normal to 1 X 5 face.. ........ Rectangular prism 1 x 1 x 5 , long axis perpendicular to .92 the relative wind and 1 X 5 face at 45". ..................
.............................................. Cone, angle 60", point to wind, solid.. ..................... Cone, angle 30", point to wind, solid ....................... Hemispherical cup, open back. ............................ Hemispherical cup, open front ............................. Sphero-conic body, cone 20" point forward.. ............... Sphero-conic body, cone 20" point to rear .................. Cylinder 120 cni long, spherical ends with axis parallel to the relative wind.. .......................
Automobile
T A B L E 341A.-SKIN
3,000,000 180,000 254,000 [about 300,000
]
.78 .51 .34 .41 1.40 .16 .09
270,000 100,000 100,000 135,000 135,000
.19
100,000
F R I C T I O N O N F L A T P L A T E S (FIGS. 11, 12)
If the flat plate is in a uniform stream of fluid and the flow is parallel to the plate the skin VLP The skin friction coefficient, Cf, is dependent mainly on the Reynolds number, R = -. t)
D
friction coefficient CI = Awhere Dr is the friction drag per unit width of one side of the qL plate, q the dynamic pressure (see Table 339), and L the length from the leading edge of the plate. For laminar flow 1.328 c f == (Blasius) VR For turbulent flow (Schlichting) The Reynolds number for transition from laminar to turbulent flow depends on the roughness of the plate and the turbulence of the airstream. The figure shows the variation of the skin friction ( C f ) with R for laminar and turbulent flow. 1% Tetervin, Neal, A method for the rapid estimation of turbulent boundary-layer thickness for calculating profile drag, NACA ACR No. L4C14, July 1944
(cmi tinrced)
SMITHSONIAN PHYSICAL TABLES
344 T A B L E 341A.-SKIN
.o
F R I C T I O N ON F L A T P L A T E S (FIGS. 11, 12) (continued)
I0
.006
.OO 4
.oo 2 CF
.oo I .OOO 6
.ooo 4 .0002*,
.s
1.0
T h e local skin-friction coefficient2
5.O
2.0
29
10
may be approximated by a power function of the
@'.I
Reynolds number based on the momentum thickness, Re = layer is laminar
1
[2.5 log, 0=
When the boundary
Re
When the boundary layer is turbulent 70 The momentum thickness
9
- 0.2205
TO
29
2q
20x10~
2.5( 1-5 d70/29)
s:
+ 5.51 '
( 1- $)dy,
where ZI is the local velocity inside the boundary layer, V the local velocity outside the boundary layer, and 6 the boundary-layer thickness. The local skin-friction coefficient is plotted against Reynolds number for the case of a turbulent boundary layer. (CO?ZtiWCd)
SMITHSONIAN PHYSICAL TABLES
345 T A B L E 3 4 1 A . 4 K I N FRICTION ON F L A T PLATES (FIGS. 11, 12) (concluded)
.0032 I-
z
w .002 8 9 L
L
$ .0024 z 0
ua .0020 I-
LL
z.0016 Y
cn -I
4.0012
s
'
-0008 203
FIG. 12.-The
I
500
I
I
I
I
I
1000 2000 5000 l0,OOO 20,000 REYNOLDS NUMBER R e
I
50,000 IO0,OOO
local skin-friction coefficient on a flat plate plotted against the Reynolds number for a turbulent boundary layer. T A B L E 342.-STAN
DARD ATMOSPHERE
Standard atmospheric values are given up to altitudes of 65,000 feet, and quantities that have been found to be of use in the interpretation of airspeed and related factors are included (Table 343). These quantities are the pressure p in pounds per square foot, the pressure p in inches of water, the speed of sound a, the coefficient of viscosity q , and the kinematic viscosity Y . The values for the coefficient of viscosity q and the kinematic viscosity Y are not standard values since a standardization of air viscosity has not been agreed upon as yet. The values listed for q and Y are believed to be sufficiently accurate, however, to be useful in calculations requiring viscosity of air. The coefficietit of viscosity q was computed from the formula 2.318 Ta12 q=7------10 T + 2 1 6 The kinematic viscosity of air Y was obtained from the definition Y = 3 The quantity P l/VT is given to facilitate the computation of the true airspeed V from the equivalent airspeed V e . 1
v=-VY,
VO The speed of sound in miles per hour is computed from a=33.42VT where T is the temperature in degrees Fahrenheit absolute. A value of y = 1.4 was assumed to hold throughout the temperature range. The values of the standard atmosphere are based upon the following values : Sea-level pressure po = 29.921 inHg = 407.1 inH,O = 2116.2 lb/ft' Sea-level temperature t o = 59°F Sea-level absolute temperature TO= 518.4"F abs Sea-level density po = 0.002378 slug/ft" Gravity g = 32.1740 ft/sec2 Temperature gradient dT - 0.00356617"F/ft dh The altitude of the lower limit of the isothermal atmosphere = 35,332 i r Specific weight of mercury at 32°F = 848.7149 lb/ftn Specific weight of water at 59°F = 62.3724 Ib/ft8
-
'SAiken William S. Jr. Standard nomenclature far airsneeds with tables and charts for use in Warfield, Calvin N., Tentative tables for the propcalculation'of airspeed NACA Ren. No. 837 1947. erties of the upper atmosphere, NACA T N ' N o . 1200, January 1947.
(continued) SMITHSONIAN PHYSICAL TABLES
346
T A B L E 342.--STANDARD
ATMOSPHERE (concluded)
U p to the lower limit of the isothermal atmosphere (-67°F corresponding to 35,332 ft) the temperature is assumed to decrease linearly according to the equation dT T=To--h dh Further, the atmosphere is assumed to be a dry perfect gas that obeys the laws of Charles and Boyle, so that the mass density corresponding to the pressure and temperature is p=po--
P To
Po
T
The pressure and altitude are related by h = ---log.Po T m P a To The harmonic mean temperature T , is given by
Po
P
where Taui,TaUz, . . . are the average temperatures for the altitude increments Ahi, Ahz, . . . The NACA Special Subcommittee on the Upper Atmosphere, at a meeting on June 24, 1946, resolved that a tentative extension of the standard atmosphere from 65,000 to 100,000 feet be based upon a constant composition of the atmosphere and an isothermal temperature which are the same as standard conditions a t 65,000 feet. This tentative extended isothermal region (Table 344) ends at 32 kilometers (approximately 105,000 ft). It is possible that as results of higher altitude temperature soundings become available and the standard atmosphere is extended to very high altitudes the present recommendations may be modified. The Subcommittee also recommended that the values of temperature given in the following table be considered as maximum and minimum values occurring for the given altitudes with the variations between the specified points to be linear :
-
Temperature ("C abs)
Altitude (km)
20 25 45
Minimum
Maximum
180
250 250 380
--
200
A tentative extension of the standard atmosphere computed from the equations using the recommended isothermal temperature and constant gravity altitudes from 65,000 to 100,000 feet are included in the table. Calculations have been made- by assuming that the acceleration of gravity varies inversely as the square of the distance from the center of the earth. Up to 100,000 feet this assumption does not greatly affect the tabulated values.
SMITHSONIAN PHYSICAL TABLES
OF THE S T A N D A R D A T M O S P H E R E *
T A B L E 343.-PROPERTIES
AltiPressure, p tude, h , ft Ib/ft* inHpO inHg
n 2116
Density Density ratio
a=
slu:S/fta
f
1 -
Temperature,
T V T "F nhs 518.4 1.030 511.2 1.061 504.1 1.094 497.0
s
Coefficient of
~ viscosity, d
sound,
7
Kinematic viscosity, Y
mi/hr
ft-sec
ft2/sec
760.9 755.7 750.4 745.1
3.725X10-' 3.685. . 3.644 3.602
1.566)<10-' 1.644 1.725 1.812
4,000 1828 6,000 1696
407.1 378.5 351.6 326.2
29.92 27.82 25.84 23.98
.002242 -.9428 .002112 .8881 .001988 .8358
1572 1455 1346 1243
302.4 279.9 258.9 239.1
22.22 20.58 19.03 17.57
.001869 .001756 .001648 .001545
.7859 ,7384 .6931 ,6499
1.128 1.164 1.201 1.240
489.9 482.7 475.6 468.5
739.7 734.3 728.8 723.4
3.561 3.519 3.476 3.434
1.905 2.004 2.109 2.223
16,000 1146 220.6 18.000 1056 203.2 20.000 972.1 187.0 22;000 893.3 171.9
16.21 14.94 13.75 12.63
.001448 .001355 .001267 ,001183
.6088 .5698 .5327 .4974
1.282 1.325 1.370 1.418
461.3 454.2 447.1 439.9
718.7 712.2 706.6 701.1
3.391 3.348 3.305 3.261
2.342 2.471 2.608 2.756
,001103 .001028 BOO957 .000889
.4640 .4323 .4023 .3740
1.468 1.521 1.577 1.635
432.8 425.7 418.5 411.4
695.3 689.5 683.7 677.9
3.217 3.173 3.128 3.083
2.916 3.086 3.268 3.468
2,000
1968
8,000 10,000 12,000 14,000
157.7 11.59 144.5 10.62 132.2 9.720 120.8 8.880
347
24,000 26,000 28.000 30,000
819.8 751.2 687.4 628.0
32,000 34,000 35,332 36,000
572.9 110.2 521.7 100.4 489.8 94.24 474.4 91.31
8.101 7.377 6.926 6.711
.000826 .000765 .OW727 .O00705
,3472 .3218 .3058 ,2963
1.697 1.763 1.808 1.837
404.3 397.2 392.4 392.4
672.0 666.0 662.0 662.0
3.038 2.992 2.962 2.962
3.678 3.911 4.073 4.204
38.000 40.000 42.000 44;OOO
431.1 391.9 356.2 323.7
82.97 75.44 68.56 62.29
6.098 5.544 5.038 4.578
.000MO ,000582 .000529 .000480
2692 .2448 .2225 2021
1.927 2.021 2.120 2.224
392.4 392.4 392.4 392.4
662.0 2.962 662.0 2.962 662.0 2.962 662.0 2.962
4.625 5.089 5.599 6.161
46.000 48,000 50,000 52,000
294.2 267.4 243.1 220.9
56.63 51.46 46.78 42.52
4.162 3.782 3.438 3.124
.000437 ,000397 .000361 .000328
.1838 .1670 .1518 .1379
2.333 2.447 2.567 2.692
392.4 392.4 392.4 392.4
662.0 662.0 452.0 662.0
2.962 2.962 2.962 2.962
6.773 7.459 8.206 9.028
54,000 56,000 58,000 60,000
200.8 182.5 165.9 150.8
38.64 35.12 31.92 29.01
2.840 2.581 2.346 2.132
.000298 .000271 .000246 .000224
1.1254 .1140 .lo36 .09415
2.824 2.962 3.107 3.259
392.4 392.4 392.4 392.4
662.0 662.0 662.0 662.0
2.962 2.962 2.962 2.962
9.933 10.93 12.02 13.23
62,000 64,000 65,000
137.1 124.6 118.7
26.37 1.938 .000203 .08557 3.419 392.4 662.0 2.962 23.96 1.761 .000185 ,07777 3.586 392.4 662.0 2.962 22.85 1.679 .000176 .07414 3.672 392.4 662.0 2.962
14.56 16.02 16.80
For metric values see Table 628.
T A B L E 344.-PROPERTIES
OF T H E T E N T A T I V E S T A N D A R D - A T M O S P H E R E EXTENSION
Altitude h ft
Pressiire, p
Density, slu:/ft3
Density ratio.
1 -
\/a
Coefficient Tern- Speed of perof viscosity, Kinematic ature, sound, sl:xs viscosity, "F%s
mia/hr
65,000 118.7 22.85 1.679 .000176 ,07414 3.672 392.4 662.0 70,000 93.53 17.99 1.322 .000139 ,05839 4.138 392.4 662.0 75,000 73.66 14.17 1.042 .000109 ,04599 4.663 392.4 662.0 80,000 58.01 11.16 .8202 .0000861 .03621 5.255 392.4 662.0 85.000 45.68 8.789 ,6460 .OW0678 .02852 5.921 392.4 662.0 90:OOO 35.97 6.921 .5086 .0000534 .02246 6.672 392.4 662.0 95,000 28.33 5.451 .4006 .0000421 .01769 7.519 392.4 662.0 100,000 22.31 4.293 .3156 .0000331 ,01394 8.472 392.4 662.0 SMITHSONIAN PHYSICAL T A B L E S
f=
ft'ysec
2.962)<10~'16.80X10~4 2.962 21.33 2.962 27.09 2.962 34.39 2.962 43.67 2.962 55.45 2.962 70.41 2.%2 89.41
348
T A B L E 345.-COMPRESSIBLE
F L O W TABLES FOR AIR'*
I n high speed research, use is frequently made of the theoretical relationships existing between the Mach number and various flow parameters. Two types of flow are tabulated : isentropic flow and normal-shock flow. Isentropic flow is generally valid for a subsonic or supersonic expanding flow and may be used for subsonic compression flow. Normal-shock How is valid for supersonic compression flow when the deviation of the flow through the shock is zero. Oblique-shock flow may be obtained from the normal-shock flow by superimposing a velocity tangential to the shock. The assumption that air is a perfect gas with a value of y of 1.400 is valid for the conditions usually encountered in the subsonic and lower supersonic regions for normal stagnation conditions. For Mach numbers greater than about 4.0 or for unusual stagnation conditions, however, the behavior of air will depart appreciably from that of a perfect gas if the liquefaction condition is approached, and caution should be used in applying the results in the table at the higher Mach numbers. The formulas for isentropic flow are:
and the formulas for normal-shock flow are:
'::a
But-cher. Marie A . , Compressilde flow tables for air, N.\C.\ TN No. 1592, August 1948.
(continued) SMITHSONIAN PHYSICAL TABLES
349 T A B L E 345.-COMPRESSIBLE
F L O W T A B L E S FOR A I R (concluded)
where a = speed of sound in air. A = cross-sectional area of the stream tube. A , , = cross-sectional area of the stream tube for MI = 1.0. F , = compressibility factor, increase in pressure above the static pressure set UP in a tube whose open end is pointed into the relative wind divided by the dynamic pressure.
M = Mach number
(9
Mach angle, degrees. p = absolute pressure. T = temperature, "F absolute. V = airspeed, feet per second, computcd for T o =520°F absolute and na= 1117.372 feet per second. y = ratio of specific heats, taken as 1.400. Y = expansion angle required to change Mach number from 1.0 to Mi,degrees. p = mass density of air. @=
Subscripts :
0 = stagnation conditions before shock. 1 = air stream conditions before shock. 2 = air stream conditions behind shock. 3 = stagnation conditions behind shock. ISENTROPIC
tt+---0
I CR (MCR 1.0)
=
--
SUBSONIC STREAM-TUBE
FLOW ISENTROPIC .DIFFUSION
1
ISENTROPIC EXPANSION
1
I
ISUSSONIC I
0
SUPERSONIC
CR (MCR 1.0)
=
SUBSONIC STREAM-TUBE M = 1.0
I
Idl/J
NORMAL] V3= 0
i lli ; 1
-4-
. ,SUBSONIC
2
; I
;
3
FLOW
I
TWO-DIMENSIONAL SUPERSONIC FLOW AROUND A CORNER
FIG.13.-Illustrating SMITHSONIAN PHYSICAL TABLES
three types of flow.
T A B L E 346.-RELATION
ul
2
z
=
V
< I? c) r -I
D r m m
ln
G, 3 z
I
-h
P1
0 ul
zP
BETWEEN MACH NUMBER AND VARIOUS FLOW PARAMETERS
n
MI
Y
.05 .lo .15 20 .25 .30 .35 .~ .40 .45 ~
.so
Po
T1 To
PO
1.000 .9983 .9930 .9844 .9725 .9575 .9395 .9188 .8956 .8703 .8430
..ooo
.9988
9950 .9888 .9803 .9694 .9564 .9413 .9243 .9055 .8852
Ax A i
1.000 .9995 .9980 .9955 .9921 .9877 .9823 .9761 .9690 .9611 .9524
0
.0%3 .1718 .2557 .3374 .4162 .4914 S624 .6288 .6903 .7464
3
( T o =v5 12 0 0 F
a0
abs.)
1.ood .9998 . . .. 9990 .9978 .9960 .9938 .9911 ,9880 .9844 .9803 .9759
F.
0 55.85 ~. 111.6 167.2 222.6 277.6 332.2 386.4
MI
1.Ooo
~
440.0
492.9 545.2
1.001 ~.~ 1.003 1.006 1.010 1.016 1.023 1.031 1.041 1.052 1.064 ~
.so
.55 .60 .65 .70 .75 .80 .85
.90 .95 1.00
T i
P1
P1 -
Po
Po
To
.8430 .8142 .7840 .7528 .7209 .6886 .6560 .6235 ,5913 .5595 S283
.8852 3634 .8405 .8164 .7916 .7660 .7400 .7136 .6870 .6604 .6339
.9524 .9430 .9328 .9221 .9107 .8989 .8865 .8737 .8606 .8471 .8333
Aer A i
.7464 .7969 .8416 .8806 .9138 .9413 .9632 .9797 912 .9979 1.0000
2
( T o =V1 520' F
00
abs.)
F.
.9759 .9711 .9658 .9603 .9543 .9481 .9416 .9347 .9277 ._ . .9204 .9129
545.2 596.8 647.5 697.4 746.4 794.5 841.7 887.8 932.9 . 977.0 1020.0
1.064 1.078 1.093 1.110 1.129 1.149 1.170 1.194 1.219
1.246 1.276
P1
M1
1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 8.10 3.20 3.30 3.40
Po
S283 .4a4 .4124 .3609 .3142 .2724 2353 .2026 .1740 .1492 .1278 .lo94 .09352 .07997 .06840 .05853 .05012 .04295 .03685 .03165 .02722 .02345 .02023 .O 1748 .01512
.6339 S817 S311 .4829 .4374 .3950 .3557 .3197 .2868 2570 2300 2058 .1841 .1646 .1472 .1317 .1179 .lo56 .09463 .08489 ,07623 .06852 .06165 .05554 .05009
.8333 .8052 .7764 .7474 .7184 .6897 .6614 .6337 .6068 S807 .5556 S313 SO81 .4859 .4647 .4444 .4252 .4068 .3894 .3729 .3571 .3422 .3281 .3147 .3019
1.000 1.008 1.030 1.065 1.115 1.176 1.250 1.338 1.439 1.555 1.688 1.837 2.005 2.193 2.403 2.637 2.896 3.183 3.500 3.850 4.235 4.657 5.121 5.629 6.184
.9129 .8973 .8811 .8645 3476 .8305 .8133 .7961 .7790 .7620 .7454 .7289 .7128 .6971 ,6817 6667 .6521 .6378 .6240 .6106 S976 S850 S728 S609 5495
1020 1103 1181 1256 1326 1392 1454 1512 1567 1618 1666 1710 1752 1791 1828 1862 1894 1924 1952 1979 2003 2026 2048 2068 2088
90.00 65.38 56.44 50.28 45.58 41.81 38.68 36.03 33.75 31.76 30.00 28.44 27.04 25.77 24.62 23.58 22.62 21.74 20.92 20.17 19.47 18.82 18.21 17.64 17.10 (corltinlrrd~
0 1.34 3.56 6.17 8.99 11.91 14.86 17.81 20.73 23.59 26.38 29.10 31.73 34.28 36.75 39.12 41.41 43.62 45.75 47.79 49.76 51.65 53.47 55.22 56.91
1.000 1.245 1.513 1.805 2.120 2.458 2.820 3.205 3.613 4.045 4.500 4.978 5.480 6.005 6.553 7.125 7.720 8.338 8.980 9.645 10.33 11.05 11.78 12.54 13.32
S283 S831 .6241 .6514 .6662 .6697 .6635 .6493 .6289 .6037 S751 S444 .5125 .4802 .4482 .4170 .3%9 .3581 .3309 .3053 2813 2590 .2383 2191 .2015
1.000 ,9989 9928 .9794 .9582 .9298 .8952 .8557 .8127 .7674 .7209 .6742 .6281 S833 S401 ,4990 .4601 .4236 .3895 .3577 .3283 .3012 2762 2533 ,2322
1.000 1.169 1.342 1.516 1.690 1.862 2.032 2.198 2.359 2.516 2.667 2.812 2.951 3.085 3.212 3.333 3.449 3.559 3.664 3.763 3.857 3.947 4.031 4.112 4.188
1.000 .9118 .8422 .7860 .7397 .7011 .6684 .6405 .6165 S956 S774 S613 S471 5344 ,5231 S130 SO39 .4956 .4882 .48:4 .4752 .4695 .4643 .4596 .4552
1.OOO .8554 .7454 6598 S918 S370 .4922 .4550 .4239 .3975 .3750 .3556 .3388 .3242 .3113 .3000 .2899 .2810 2730 26.58 .2593 .2534 .2480 2432 2388
2
I m 0
f 2 I 0
< I?
c)
F
4
D
2
B E T W E E N M A C H NUMBERS A N D VARIOUS F L O W PARAMETERS (concluded)
T A B L E 346.-RELATION
m
Mi
3.50 3.60 3.70 3.80 3.90 4.00 4.20 4.40 4.60 4.80 5 .OO 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00 7.20 7.40 7.60 7.80 8.00 8.20 8.40 8.60 8.80
9.00 9.20 9.40 9.60 9.80 10.00
P1 Po
.01311 .01138 .009903 .008629 .007532 ,006586 .005062 .Oil3918 .003053 .002394 .001890
Pl -
TI
P2
TO
.04523 ,04089 .03702 .03355 .03044 .02766 .02292 .01W .01597 .01343 .01134
2899 2784 2675 ,2572 2474 .2381 ,2208 2053 .I911 .1783 .1667 .1561 .1464 .1375 .1294 .1220 .1151 .lo88 .lo30 .09758
A! A C ,
.0001207 .001589
.09259 .08797 .08367 .07%7 .07594
6.790 7.450 8.169 8.951 9.799 10.72 12.79 15.21 18.02 21.26 25.00 29.28 34.17 39.74 46.05 53.18 61.21 70.23 80.32 91.59 104.1 118.1 133.5 150.6 169.4
.0001024 .00008723 .00007454 .00006390 .00005494
.07246 .06921 ,06617 .06332 .06065
190.1 212.8 237.8 265.0 294.8
.OW4 .05578 .05356 .05146 .04949 .00002356 .OM4948 .04762
327.2 362.5 400.8 442.3 487.3 535.9
.OOiSoi .001200 .0009643 .0007794 .0006334 .0005173 .OW4247 .0003503 .0002902 .0002416
.0096zo
.008197 .007012 .006023 .005194 .004495 .003904 .003402 .002974 .002609
.001414 .001260 .001126 .001009 .0009059
.OOOO4739 .0008150 .00004099 4007348 .00003555 .OW6638 .00003092 ..0006008 .00002696 .OW5447
v1
P2 -
P3 -
Y
P2 -
PI
PO
Po
P1
MI
2106 2122 2138 2153 2168 2181 2205 2227 2247 2265 2281 2295 2308 2320 2331 2341 2350 2359 2366 2373
58.53 60.09 61.60 63.04 64.44 65.78 68.33 70.71 72.92 74.99 76.92 78.73 80.43 82.03 83.54 84.96 86.29 87.56 88.76 89.90
14.13 14.95 15.81 16.68 17.58 18.50 20.41 22.42 24.52 26.71 29.00 31.38 33.85 36.42 39.08 4 1.83 44.68 47.62 50.65 53.78
2129 .1953 .I792 .1645 .I510 .1358 .1173 .09948 .08459 .07214 .06172 .05297 .04560 .03938 .03412 .02965 .02584 ,02259 .01981 .01741
4.261 4.330 4.395 4.457 4.516 4.571 4.675 4.768 4.853 4.930 5.000 5.064 5.122 5.175 5.224 5.268 5.309 5.347 5.382 5.415
.45 12 .4474 .4439 .4407 .4377 .4350 .4299 .4255 .4217 .4183 .4152 .4125 .4101 .4079 .4059 .4042 .4025 .4011 .3997 .3985
2347 .2310 .z75 2244 .2215 .2188 ,2139 2097 2060 2028 2000 .1975 .1952 .1932 .1914 .1898 .1a3 .1870 .1858 .1847
2380 2386 2392 2397 2402
8.21 7.98 7.77 7.56 7.37
90.97 92.00 92.97 93.90 94.78
.3974 .3963 .3954 .3945 .3937
.1837 .1827 .1819 .1811 .1804
7.18 7.00 6.84 6.68 6.53
95.62 96.43 97.20 97.94 98.64
.01535 .01357 .01202 .01068 .009510 .008488 .007592 ,006806 .OM114 .005504
5.444 5.472 5.498 5.522 5.544
2406 2411 2414 2418 2422
57.00 60.31 63.72 67.22 70.81 74.50 78.28 82.15 86.12 90.18
.1852 .1702 .1565 .1439 .1324 .1218 .lo33 .08783 .07485 .06396 .05481 .04711 .04061 .03512 .03046 .02650 .023 12 .02022 .01774 .01561 .01377 .01218 .01080 .009594 .008547 .007631 .006828 .006123 .005503 .004955
,3929 .3922 .3915 .3909 .3903
2425 2428 2431 2433 2436 2438
6.38 6.24 6.11 5.98 5.86
99.32 99.97 100.6 101.2 101.8 102.3
.004470 .004040 .003659 .003319 .003016 ,002745
.1797 .1791 .1785 .1779 .1774 .1770 .1765 .1761 .1757 .1753
5.74
94.33 98.58 102.9 107.4 111.9 116.5
5.565 5.585 5.603 5.620 5.636 5.651 5.665 5.679 5.591 5.703 5.714
( T o= 520' F abs.)
.5384 .5276 S172 .SO72 .4974 .4880 .4699 .4531 .4372 .4223 .4082 .3950 .3826 .3708 .3597 .3492 .3393 .3298 .3209 .3124 .3043 ,2966 2893 2823 2756 .2692 .2631 ,2572 2516 2463 2411 2362 2314 2269 .2225 2182
VZ
82 Q 16.60 16.13 15.68 15.26 14.86 14.48 13.77 13.14 12.56 12.02 11.54 11.09 10.67 10.29 9.93 9.59 9.28 8.99 8.71 8.46
00
a1 -
.004964 .004486 .004061 .003683 .003346 .003045
.3898 .3893 .3888 .3884 .3880 .3876
V1
.1750
$
352 T A B L E 346A.-FORCES
O N AIRFOILS A T ANGLES T O THE W I N D (FIGS. 14, 15)
By suitably proportioning the thickness distribution over the chord of a plate, an airfoil may be derived around which the flow will adhere even when the angle of attack is large. Because the flow remains attached to the airfoil, high lift coefficients may be obtained with low drag coefficients. The flow around a particular airfoil a t a given angle of attack depends on the Reynolds number, R, the Mach number, M , and the degree of surface roughness. The main effect of increasing the Reynolds number is to change the maximum-lift coefficient and the minimum-drag coefficient. When the surface of the airfoil is made rough, simulating the surface of an actual airplane wing, the flow breaks away from the upper surface of the airfoil at a smaller angle of attack and therefore results in a considerably smaller value of maximum-lift coefficient. A rough surface increases the percentage of the chord over which the flow is turbulent and tends to make the drag coefficient much higher (see figure 11). As the Mach number is increased the variation of the local velocity from the stream velocity is increased. On figure 14 are shown the force coefficients for two symmetrical NACA airfoils of infinite aspect ratio plotted against angle of attack, a, for a Reynolds number of 6 x 10'. Methods exist (see Method for calculating wing characteristics by lifting-line theory using nonlinear section lift data, by James C. Sivells and Robert H. Neely, NACA T N No. 1269, April 1947) for converting infinite aspect ratio data to finite wing characteristics. The force coefficients of a 21-percent thick airfoil in the smooth condition and a 12-percent thick airfoil in both the rough and smooth conditions are given. Figure 15 shows the variation in the force coefficients with Mach number for a symmetrical 9-percent thick airfoil at an angle of attack of 2" and at Reynolds numbers from .35 x loa to .75 x loo. 181 Abbott Ira H. von Doenhoff Albert E. and Stivers Louis S., Jr. Summary of airfoil data. NACA Re;. No. 82i. 1945. Stack', John, and von Doenhoff: Albert E., Tists of 16 related airfoils at high speeds, NACA Rep. No. 492, 1934.
(continried)
SMITHSONIAN PHYSICAL TABLES
353 T A B L E 346A.-FORCES
ON AIRFOIILS A T A N G L E S T O T H E WIND (FIGS. 14, 15) (concluded)
0 --
0 NAC, v)
NACA 644-021 AIRFOIL-
641-012 AIRFOIL
SMOOTH-
w W U
ROUGH-
---no32
Y0
.024
24
t3 y
V
CD -016
le
Q
I-
.ooa
I - e
a
LL
o c
0
0
W
J
0 -g Z
.20
<
CP -I€
.40
-24
I
FIG.14.-Force
1.2
1.2
1.4 0 .4 .8 LIFT COEFFICIENT CL
1.6
coefficients for two symmetrical airfoils of infinite aspect ratio plotted against angle of attack, a, for Reynolds number 6 X 10'.
l -
NACA 0009 AIRFOIL
.08
.8
.6
.06
co
CL
.4
.04
.2
.02
0
0
0
.2
.4 .6 .8 M A C H NUMBER, M
1.0
FIG.15.-The force coefficients, CL,CD,and CP, plotted against Mach number for a 9-percent thick airfoil at an angle of attack of 2" and Reynolds number from .35 X 10" to .75 x loo.
SMITHSONIAN PHYSICAL TABLES
354 TABLES 347-369.-DIFFFUSION, SOLUBILITY. SURFACE TENSION. AND VAPOR PRESSURE T A B L E 347.-DIFFUSION
O F A N AQUEOUS S O L U T I O N I N T O P U R E W A T E R
If k is the coefficient of diffusion. d S the amount of the substance which passes in the time dt. a t the place x . through q cm2 of a diffusion cylinder under the influence of a drop of concentration dcldx. then dc d S 1-kq - d t dx
k depends on the temperature and the concentration . c gives the gram-molecules per liter. T h e unit of time is a day. to
Suhstance
c
"C
12. 12. 17. 10.14 19.2 12. 19.5 17.5 13.5 12. 15.0 14.8 13.5 8. 10.1 12. 15.0 14.8 12. 15.23 12. 10.14 12. 7. 10. 12. 15.0 14.3 ...... 12. " hydroxide .... 10. " iodide ........ Sugar ............... " 12. Sulfuric acid ......... " 12. Zinc sulfate .......... " 14.8 Acetic acid ........... 2.0 12. Calcium chloride ...... " 10. Cadmium sulfate ...... " 19.04 12. Hydrochloric acid .... Sodium iodide ........ 10. Sulfuric acid ......... 12. Z$c ace!fte .......... " 18.05 .04 ......... Acetic acid ........... 3.0 12. Potassium carbonate .. " 10. I' hydroxide . " 12. Acetic acid ........... 4;o 12. 10. Potassium chloride ....
Bromine . . . . . . . . . . . . . .1 Chlorine ............. " Copper: sulfate ........ " Glvcerine ............ " Hidrochloric acid . . . . " Iodine ............... Nitric acid ........... " Potassium chloride .... " " hydroxide . . " Silver nitrate ........ " Sodium chloride ...... " Urea ................ " Acetic acid . . . . . . . . . . . .2 Barium chloride ...... " Glycerine ............ " Sodium acetate ....... " ' chloride ...... " Urea ................ Acetic acid ........... 1.0 Ammonia ............ " Formic acid .......... " Glycerine ............ " Hydrochloric acid .... " Magnesium sulfate .... " Potassium bromide . . . " hydroxide . Socljum c h l y i d e ...... I'
I'
::
.
'L
::
:: 'I
SMITHSONIAN PHYSICAL TABLES
.8
Substance
k
1.22 .39 .357 2.21 ( .5) 2.07 1.38 1.72 .985 .94 .97 .77 .66 3.55 .67 .94 .969 .74 1.54 .97 .339 2.09 .30 1.13 1.72
Calcium chlyide
-59 ...
d8 246 2.21 .90 1.16 .210 .120 .68 .60 1.89 .66 1.27
364
...
Copper sulfate
Glycerine
1.22 .060 .047 1.95
..... ..... .95 ..... .30 ..... .005
......... ......... .........
2/8 6/8 10/8 ......... 14/8 Hydr%hloric a$ . 4.52 3.16 ' .945 .387 Magnesium sulfate
.
Potassium hydfpxide "
nitrate
.. ..
..
.94
.964 1.11 .80 .254 1.12 .236
to
C
.
. .. .
"
sulfFte
..
Silver nitrate . . Sodium
...... ...... chlyide ... . . ..
...
Sulfuric acid
... ... ...... ...... ...... ...... ...... ......
250
2.18 .541 3.23 .402 .75 49 .375 3.9 1.4 .3 .02 .95 .28 .05 .02 3.9 .9 .02 2/8 4/8 6/8 10/8 14/8 9.85 4.85 2.85 .85 .35 .005
.
"C
k
.70 .72 .64 .68 .23
8.5 9. 9. 9. 17. 17. 17. 17. 10.14 10.14 10.14 10.14 11.5 11. 11. 11. 11. 5.5 5.5 10. 10. 12. 12. 12. 17.6 17.6 17.6
2.93 2.67 2.12 2.02 1.84 .28 .32 27 .34 1.72 1.70 1.70 .89 1.10 1.26
17.6
1.28
i9.6 19.6 19.6 19.6 12. 12. 12. 14.33 14.33 14.33 14.33 14.33 18. 18. 18. 18. 18. 18.
-.79 .86 .97 1.01 .535 .88 1.035 1.013 .996 .980 .948 .917 2.36 1.90 1.60 1.34 1.32 1.30
.26 .33
.47 .345 .329 .30C
.354
TABLE 348.-DIFFUSION
355
OF VAPORS
Coefficients of diffusion of vapors in cgs units. The coefficients are for the temperatures given in the table and a pressure of 76 c m H g.
. Acids : FoI;mic . . . . . . . . . . . . . . . . 0. ................ 65.4 ................ 84.9 Ac$c . . . . . . . . . . . . . . . . .0.
Temp "C
Vapor
................. 65.5 ................. 98.5 Isovaleric . . . . . . . . . . . . . . 0. .............. 98.0 "
Alcohols : Methyl
.......... . . . .0
......... .... 25.6 ......... .... 49.6 Ethyl ........... . . . . .0 ............... 40.4 . . . . . . . . . . ..... 66.9 Prqpyl .......... . . . . .9 ........... . . . 66.9 .......... . . . . 83.5 Butyl ............ . . . .0 ............ . . . 99.0 Amy1 ........... . . . . .0
. . . . . . . . . . . .... 99.1
........... . . . .0 .............. 99.0 B e y e n e ........................ 0 ....................... 19.9 ....................... 45.0 CaLbon disulfide ................ 0 He'Tyl
...............19.9 ............... 32.8 Esters : Mefbyl acef:te . . . . . . . . . 0 . "
......... 20.3 Ethvl . . . . . . . . . .0 ......... 46.1 MeF)yl b u t y a t e . . . . . . . .0 ....... 92.1 Ethyl '''' . . . . . . . .0 ....... 96.5 . . . . . . . . .0 ' v a l y a t e .......... 97.6 ......................... 0 ........................ 19.9 ......................... 0 ........................ 49.5 "
"
"
Ether Water 'I
"
........................
SMITHSONIAN PHYSICAL TABLES
92.4
kr for vapor diffusing into hydrogen
S131
.7873 8830 .4040 .6211 .7481 2118 .3934
.5001
.6015 .6738
.3806 SO30 S430 .3153 .4832 .5434 .2716 SO45 2351 .4362 .1998 .3712 2940
.3409 .3993 .3690 .4255 .4626 .3277
.3928 2373 .3729 .2422
.4308 2238
.4112 .2050 .3784 2960 .3410 6870 1.0000 1.1794
kr for vapor diffusing into air
.1315 .2035 2244 .1061 .1578 .1965 .0555 .1031 .1325 .1620 .1809 .0994 .1372 .1475 .0803 .1237 .1379 .0681 .1265 .0589 .1094 .0499 .0927 .0751 .0877 .1011 .0883 .1015 .1120 .0840 .1013 .0630 .0970 .0640 .1139 .0573 .1064 .0505 .0932 .0775 .0893 .1980 2827 .3451
k i for vapor diffusing into carbon dioxide
.0879 .1343 .1519 .0713 .1048 .1321 .0375
.0696 .0880 .1046 .1234 .0693 .0898 .1026 .0577 .0901 .0976 .0476 .0884 .0422 .0784
.0351 .0651 .0527 .0609
.0715
.0629 .0726 .0789
.0557
.0679 .0450
.0666 .0438 .0809 .0406 .0756 .0366 .0676 .0552
.0636
.1310 .1811 2384
356 T A B L E 349.-COEFFICIENTS
Gas or vapor diffusing
O F DIFFUSION FOR VARIOUS GASES AND VAPORS
Gas or vapor diffused into
.................. Hydrogen ........................... ................... Oxygen .............................. Carbon dioxide ........ Air ................................. ........ .................................. ........ Carbon monoxide ..................... ' ........ ..................... ' ........ Hydrogen ............................ ' ........ Methane ............................. ' ........ Nitrous oxide ........................ ' ' ........ Oxygen .............................. Carbon disulfide ....... Air .................................. Carlpn morfpxide ...... Carbon dioxide ....................... ...... !
"
"
"
"
"
"
"
TABLE 350.-DIFFUSION
Coefficient of diffusion
Temp. "C
.661 .1775 .1423 1360 1405 .1314 .5437 1465 .0983 .1802 .0995 .1314 .101 .6422 .1802 .1872 .0827 .3054 .6340 5384 .6488 .4593 4863 .6254 .5347 .6788 .1787 A357 .7217 .1710 .4828 2390 .2475 .8710
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 18 18
. .
.
.
O F METALS I N T O METALS
2
dPv ; where x is the distance in direction of diffusion; v. the degree of concentra. . k p tion of the diffusing metal; t. the time; k . the diffusion constant= the
quantity of metal in grams diffusing through a cm' in a day when unit difference of concentration (g/cm*) is maintained between two sides of a layer one cm thick .
Diffusing metal
Dissolving metal
Tempernture " C
........ Lead .... 555 ........ . . . . . . 492 , ........ ' ........ .. .. .. .. .. .. 251 200 ........ . . . . . . 165 ........ . . . . . . 100
G?!d
'I
"
''
Silver
........ Bismuth . 555 ........ Tin ..... 555 .......
...... 555
SMITHSONIAN PHYSICAL TABLES
k
3.19 3.00 03 .008 .004 .oooO2 4.52 4.65 4.14
.
Diffusing metal
Dissolving metal
Temperature "C
.... 492
Platinum .... Lead Lead ........ Tin ..... Rhodium .... Lead .... Tin ......... Mycury Lead ........ ,' Zinc ......... . . Sodium ...... " Potassium ... " Gold . . . . . . . . . .
. . . .
555 550
15 15 15 15 15 15
k
1.69 3.18 3.04 1.22 1.0 1.0 45 .40 .72
.
T A B L E 351.-SOLUBlLlTY
O F INORGANIC SALTS I N W A T E R
357
(Temperature variation) The numbers give the number of grams of the anhydrous salt soluble in 1000 g of ! water at the given temperatures . Temperature OC I
Salt
L
AgNO3 ......... 1150 Alz(SO4)a ....... 313 AIzK*(SO,), .... 30 Ala(NHI)a(SOd)r . 26 BzOa ........... 11 BaCL .......... 316 Ba(N03), ....... 50 CaCL ........... 595 CoClz .......... 405 CsCl ........... 1614 CsNOz ......... 93 CszSOi ......... 1671 818 Cu(N03) . . . . . . CUSO, ......... 149 _FeClz ........... FezCls .......... 744 FeSO, .......... 156 HgCL .......... 43 KBr ........... 540 KzCOa ......... 1050 KCI ............ 285 KC103 .......... 33 K L - 0 , .._..... 589 KzCrZO1 ........ 50 KHCO, ........ 225 K I ............. 1279 KNOI .......... 133 KOH .......... 970 KzPtCla ........ 7 KzSOI .......... 74 LiOH .......... 127 MgClz .......... 528 MgSO, .... (7aq) 260 " ....(6aq) 408 NH, Cl ......... 297 NH,HCO, ...... 119 NHINOz ..... , 1183 (NH, )zSOI 706 NaBr .......... 795 NazBIOr . . NazC03 ... (lOaq) 71 ....(7aq) 204 NaCl ........... 356 NaC103 . _...... 820 NazCr04 ........ 317 NazCrzO, ....... 1630 NaHC03 ....... 69 NazHP04 ...... 25 NaI ............ 1590 N a N 0 3 ......... 730
_
..... ........
10
0
20
30
40
50
7
60
70
80
90
1600 2150 2700 3350 4000 4700 5500 6500 7600 335 362 404 457 521 591 662 731 808 . . . 8 4 . . 248 - . . . 45 66 91 124 159 211 270 352 . . 15 22 40 62 . . 95 . . 333 357 382 408 436 464 494 524 556 70 92 116 142 171 203 236 270 306 650 745 1010 1153 - 1368 1417 1470 1527 450 500 565 650 935 940 950 960 1747 1865 1973 2080 2185 2290 2395 2500 2601 149 230 339 472 644 838 1070 1340 1630 1731 1787 1841 1899 1949 1999 2050 2103 2149 . . 1250 - 1598 . . 1791 - 2078 . . - . . 255 295 336 390 457 535 627 _685 - . . 820 - . . 1040 1050 819 918 - - 3151 - - 5258 208 264 330 402 486 550 560 506 430 66 74 84 96 113 139 173 243 371 . . 650 . . 760 . . 860 - 955 . . - 1140 1170 1210 1270 1330 1400 1470 312 343 373 401 429 455 483 510 538 50 71 101 145 197 260 325 396 475 609 629 650 670 690 710 730 751 771 85 131 - 292 . . 505 - 730 . . 277 332 390 453 522 600 . . . . . . 1361 1442 1523 1600 1680 1760 1840 1920 2010 209 316 458 639 855 1099 1380 1690 2040 1030 1120 1260 1360 1400 1460 1510 1590 1680 18 9 11 14 22 26 32 38 45 92 111 130 148 165 182 198 214 228 153 127 128 129 130 133 138 144 535 545 . . 575 . . 610 . . 660 309 356 409 456 . . . . . . . . . . 422 439 453 . . 504 550 596 642 689 333 372 414 458 504 552 602 656 713 159 210 270 . . . . - ...... . . . . 2418 2970 3540? 4300? 5130? 5800 7400 730 754 780 810 844 880 916 953 992 845 903 - 1058 1160 1170 . . 1185 . . 16 39 . . 105 200 244 314 408 126 214 409 . . . . . . . . . . . . 263 335 435 (laq) 475 464 458 452 452 357 358 360 363 367 371 375 380 385 890 990 . . 1235 . . 1470 - 1750 502 900 - 960 1050 1150 - 1240 . . 1700 1800 1970 2200 2480 2830 3230 3860 . . 82 96 111 127 145 164 - - . . 39 93 241 639 . . . . 949 - . . 1690 1790 1900 2050 2280 2570 - 2950 . . 805 880 %2 1049 1140 1246 1360 1480 1610 (continued)
SMITHSONIAN PHYSICAL TABLES
100
9100 891 1540
.
157 588 342 1590 1030 2705 1970 2203
._
735 1060 5357
.
540 1050 1560 566 560 791 1020
.
2090 2460 1780 52 241 175 730
. .
738 773
. .
8710 1033 1205 523 .
452 391 2040 1260 4330 . .
988 3020 1755
358 T A B L E 351.-SOLUBlLlTY
OF INORGANIC S A L T S IN W A T E R (concluded) Temperature "C
Salt
NaOH ..... NaPz0, .... NazS03 ......... Na&04 ... (10aa) " ... ..(7adj NazSz03 ........ NiCL .......... NiS04 .......... PbBrz .......... Pb(N0z)z ...... RbCl ........... RbNO, ......... RbzSOI ......... RbzS01 SrCll ........... SnIz ............ Sr (NO3), ........ T h (. S 0 4.L . (9au) . .(4aq) TI CI ........... TIN03 ......... TLSO4 ......... Yba(SO4)r ...... Zn( NO& ....... ZnSO4 ..........
.
0
20
10
30
40
50
515 1090 1190 1290 39 62 99 135 __ 287 __ 495 90 194 400) 482 305 447 __ 610 700 817' 1026 -- 600 640 680 720 -_ 425 __ 272 12 15 5 6 8 365 444 523 607 694 770 844 911 976 1035 195 330 533 813 1167 364 426 482 535 585 442 483 539 600 667 -- 12 14 10 395 549 708 876 913 14 7 20 30 10 --- _40 2 2 5 6 3 33 96 143 209 62 62 76 37 27 49 _- 442 -_ --_ -__ 2069 948 __ -_ __ __ 700 420 32 141 50 196 525
I
T A B L E 352.-SOLUBlLlTY
60
1450 1740 174 220
__ __
70
-
80
3130 255 300 - _-
90
100
-
330 427 2660 776 48 1270 1389 4520 818 1019 40 1011
- __ _-
468 455 445 437 429 1697 2067 - 2488 2542 - -760 810 -502 548 594 632 688 24 33 28 20 787 880 977 1076 1174 1093 1155 1214 1272 1331 1556 2000 2510 3090 3750 631 674 714 750 787 744 831 896 924 962 30 34 21 25 17 926 940 956 972 990 -_ __ -51 16 11 __ __ 25 16 20 13 8 10 304 462 695 1110 2000 92 109 127 146 165 - 104 72 69 58
-
__ __
__ __ --
-_
768
__ __4140 __
890
860
920
47 785
O F A F E W ORGANIC S A L T S IN W A T E R
(Temperature variation "C) Salt
0
10
20
30
50
40
60
70
80
90
100
Hz(COz)2 ....... 36 53 102 159 228 321 445 635 978 1200 -69 106 162 244 358 511 708 - 1209 H1(CHz*COz), .. 28 45 Tartaric acid 1150 1260 1390 1560 1760 1950 2180 2440 2730 3070 3430 Racemic " ... 92 140 206 291 433 595 783 999 1250 1530 1850 K(HC0x) ...... 2900- - 3350 - 3810 -- 4550 -- 5750 -- 7900 57 69 9 13 18 24 32 45 3 4 6 KH(C4H40,) ...
__.
T A B L E 353.-SOLUBILITY
O F GASES IN W A T E R
(Temperature variation 'C) The table gives the weight in grams of the gas which will be absorbed in 1000 g of water when the partial pressure of the gas plus the vapor pressure of the liquid at the given temperature equals 760 mmHg. Gas 0 2
Hz Nz Brz C 2 -1~CO, H,S NH, SO2
0
10
20
30
40
50
60
70
80
.0705 .0551 ,0443 .0368 ,0311 .0263 .0221 .0181 .0135 .00192 .00174 .GO160 .00147 .0013fj .00129 .00118 .00102 .GO079 .0293 .0230 .O 189 .0161 .0139 .0121 .0105 .0089 ,0069 431. 248. 148. 94. 62. 40. 28. 18. 11. 9.97 7.29 5.72 4.59 3.93 3.30 2.79 2.23 3.35 2.32 1.69 1.26 .97 .76 .58 7.10 5.30 3.98 _ 987. 689. 535. 422. _ 228. 162. 113. 78. 54.
SMITHSONIAN PHYSICAL TABLES
OF S O L U B I L I T Y PRODUCED BY U N I F O R M PRESSURE
T A B L E 354.-CHANGE
ZnS04.7H20 at 25" C &
CdS048l3H20 at25 C
& d L
-s:
E
2
E
a=
d
c .-
-d5i
B
$k
F,
UZrn
; "
10
5-4 %gz
*
u MZ
d
d
500
76.80 78.01
g NC 0M U u g 57.95
+1.57
57.87
-.14
1000
78.84
+2.68
57.65
-32
1500
-
2 1,
1
2:q
u
M
e
$32
u
1:
-
359
.I
-
-
0
-
-
T A B L E 355.-COMMONLY
-
Mannite at 24.05' C
-ds:
0
M
5ii
2 2%
u.-
9F g ?OM
B
f
NaCl at 24.05" C &
-d5i
D 10
::
?!&
u
M u
2 be
m +
u-
oum
. 4
e
+g M
u
z d
,-. 35.90
d
21.14
+2.32
36.55
+1.81
21.40
+3.57
37.02
+3.12
21.64
+4.72
37.36
+4.07
V
t s
20.66
6G MOo
-
b.
-
U S E D ORGANIC S O L V E N T S *
Arranged in the order of their boiling points
Name
.
. . .
B oi 1in g point "C
Ethyl ether . . . . . . . . . . . . . . . . . 34.54 Carbon disulfide ................ 46.25 Acetone ........................ 56.08 Methyl acetate . . . .. . . . . . . . . . . . 57.1 Chloroform . . . . . . , . . . . . . . . . . . . 61.2 Methyl alcohol .. . .. . ... . ... . .. . 64.5 Carbon tetrachloride . . . . . . . . . . . 76.74 Ethyl acetate . . .. . . . . . . . .. . . . 77.15 Ethyl alcohol ................... 78.32 79.6 Benzol ......................... Isopropyl alcohol . . .. . . . . . . . . . . . 82.26 Ethylene dichloride .. . .. .. . .. . . . 83.5 Trichlorethylene ................ 87 Ethyl propionate .. . . .. . .. . . . . . . 99.1 Toluene . . . . . . . . . . . . . . . . . . . . 110.7 Butyl alcohol (n) ................ 117.7 Ethyl butyrate .. . . . . . . . . . . . . . . . 121.3 Methyl cellosolve .. . . . . . . . . . .. . . 124.5 Diethyl carbonate . . . . . . . . . . . . . 125.8 Butyl acetate . .. . . . . . . . . . . . .. . . 126.5 , . . . . . . . . . . 130 Tetrachlorethane Cellosolve . . . . .. . . . . . . . . . . . . . 135.1 Ethyl benzene . . . . . . . . . . . . . . . . 136.1 Amy1 alcohol (n). . . . . . . . . . . . .. 137.9
. .
.
.
. .
.
.. .
.
.
.
.
..
Table by
5. W.
..
. . . .
. . . .
Boiling point "C
Name
Xylene (0) ..... ... ............. 144 Amy1 acetate ...... ... ... ... .... 147.6 Ethyl lactate ..... .............. 154 Cellosolve acetate . . . . . . . . . . . . . . 156 Cyclohexanone . . . . . . . . . . . . . . .. 156.7 Furfural .. . . . . .. . .. . . . . . . . . .158-162 Butyl cellosolve . . . . . . . . . . . . . . . . 170.6 Ethyl acetoacetate . . . . . . . . . . . . . 180.0 Diethyl oxalate . . . . . . . . . . . . . . . . 186.1 Ethylene glycol . . . . . . . . . . . . . . . 197.2 202 Carbitol ........................ Benzyl alcohol .. ... . . _ .. . . .. . ... 205.8 Ethyl benzoate . . . . . . . . . . . . . . . . 213.2 Butyl stearate . . . . . . .. . . .223 (25mm) Butyl carbitol .................. 230 Diethylene glycol . . .. . . . . . ... . 245 Triphenyl phosphate . . . . .245 (llmm) Triacetin .. . . . . . . . .. . .. . .. 259 Diacetin . .. . .. .. . . . . . .. . .. ... . 261 Dimethyl phthalate . ... . . . .. 282 Diethyl phthalate . . . . .. . . . . . 296 Dibutyl phthalate . . . . . . . . . . . . . . 340 Diamyl phthalate . . . . . . . . . . . . . 344
.
. .
. . .
.. .
. . .. .
. . . . . ... . . . .. . ..
H. Randall, reprinted with permission of Chemical Catalog Co.
SMITHSONIAN PHYSICAL TABLES
360 T A B L E 356.-ABSORPllON
O F GASES A N D VAPORS BY LIQUIDS *
Absorption coefficient, at, for gases in water Carbon dioxide
Temperature " C
Carbon monoxide
cot
1.797 1.450 1.185 1.002 .901 .772 SO6 .244
0 5 10 15 20 25 30 40 50 100
Nitric oxide
Nitrous oxide NtO
.02399 .02134 .01918 .01742 .01599 .01481 .01370 .01195 .01074 .01011
.0738 .0646 .0571 .0515 .0471 .0432 .0400 .0351 .0315 ,0263
1.048 3778 .7377 .6294 .5443
Hydrogen H
Nitrogen N
.0354 .0315 .0282 .0254 .0232 .0214 .0200 .0177 .0161 ,0141
.02110 .02022 .01944 .01875 .01809 .01745 .01690 .01644 .01608 .01600
co
NO
Oxygen 0
.04925 .04335 .03852 .03456 .03137 .02874 .02646 .02316 .02080 .01690
-
Temperature "C
Ammonia NH3
Chlorine
Ethylene C&
Methane CHI
Hydrogen sulfide HzS
Sulfur dioxide
Air
0 5 10 15 20 25
.02471 .02179 .01953 .01795 .01704 -
1174.6 971.5 840.2 756.0 683.1 610.8
3.036 2.808 2.585 2.388 2.156 1.950
2563 .2153 .1837 .1615 .1488
.05473 .04889 04367 .03903 .03499 .02542
4 371. 3.965 3.586 3.233 2.905 2.604
79.79
CI
-
so:!
67.48
56.65 47.28 39.37 32.79
Absorption coefficients, ar,for gases in alcohol, C2HaOH A
Carbon dioxide Ethylene Methane Hydrogen Nitrogen COz CzHi CHa H N
Temperature "C
4.329 3.891 3.514 3.199 2.946 2.756
0
5
10 15 20 25
3.595 3.323 3.086 2.882 2.713 2.578
S226 SO86 .4953 .4828 .4710 .4598
.0692 .0685 .0679 .0673 .0667 .0662
.1263 .1241 .I228 .1214 .1204 .I196
Nitric oxide NO
.3161 .2398 ,2861 2748 2659 ,2595
Nitrous Hydrogen oxide sulfide NzO HzS
Sulfur dioxide SOz
4.190 3.838 5.525 3.215 3.015 2.819
328.6 251.7 190.3 144.5 114.5 99.8
17.89 14.78 11.99 9.54 7.41 5.62
* This tahle contains the volumes of different gases, supposed measured a t 0°C and 76 cmHg pressure. which unit volume of the liquid named will absorb a t atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption coefficient for the gases in water, or in alcohol, a t the temperature t and under 1 atm of pressure.
T A B L E 357.-VAPOR
PRESSURE OF S O M E E L E M E N T S
(Over liquid unless otherwise noted.) Hydrogen
Helium
b K m Z z2iz 20.48 20.36 19.65 18.03 16.49 14.10
787 760 611 552 192 59.5
-
5.16 16680 4.9 1329 4.20 758 3.52 360 1.48 4.2
.....
. ..
Radon
Oxygen
OK mmHg
GGzG-
377.5 364.4 321.7 290.3 262.8 212.4 202.6
62 53 26.4 13.2 6.6 1.05 .66
62.37 68.57 71.71 77.59 86.18 90.13 90.47
9.59 36.1 64 162.2 493 760 786.6
SMlTHSONlAN PHYSICAL TABLES
Neon
Argon
Krypton
--7
"K
41.38 36.27 31.32 27.17 20.4 15.6
G m 17.43 90.35 7.97 87.31 2.98 83.93 1.00 77.48 12.8mm 69.43 2.4 65.49
atm
Nitrogen
'"KG
77.33 76.65 74.03 72.39 70.42 67.80 63.65
760 700 500 400 300 200 100
H g 1026 746 512 201 48.0 22.0
Chlorine atni
"C +lo0 20
210.5 41240 201.5 31620 170.9 11970 112.7 387 88.6 17.4 84.2 9
Bromine
0
287.7 255.6 244.2 231.4 237.4 183.2
F , C mmHg
41.7 $58.75 6.62 51.95 3.66 40.45 - 33.6 7 6 0 m m 23.45 - 50 3 5 0 m m 8.20 - 70 118mm- 7.0 - 80 62 mm--12.0 - 88 37mm--16.65
+
Xenon
Ozone
G m H g
760 600 400 200 100 45 30 20
44110 21970 15870 11130 13500 2020
Iodine
'2245 40 35 30 15 0
3.084 2.154 1.498 1.025 .699 .469 .I31 .030
Radon -70.6 -60.8 +17.1 +91.2
.66 1.05 13.2 52.8
361 T A B L E 3 5 8 . 4 U R F A C E T E N S I O N OF LIQUIDS P a r t 1.-Water
and alcohol in contact with moist a i r
Values represent means. See I.C.T. and L. and B. for more elaborate tables. Tension ( 7 ) in dynes/ cm. "C
HZOCZHsOH
-5
76.4 0 75.6 5 74.8 10 74.2 15 73.4 20 72.7 25 71.9 30 71.1
24.0 23.5 23.1 22.7 22.3 21.8 21.4
"C HzOCzHsOH
35 40 45 50
55 60 65 70
70.3 69.5 68.7 67.9 67.0 66.1 65.7 64.3
21.0 20.6 20.2 19.8 19.4 19.0 18.6 18.2
'C
Hz0
75 80 85 90 95 100
64.3 62.5 61.6 60.7 59.8 58.8
...... ......
Part 2.-Miscellaneous liquids in contact with air Y
Dynes
Liquid
'C per cm
Acetone ............ 20 Acetic acid ......... 20 Amy1 alcohol ....... 20 Aniline ............ 20 Bei7ene ............ 0
............20
Bromoform ........ 20 Butyric acid ....... 15 20 Carbon disulfide Carbon tetrachloride. 20 Chloroform ........ 20 Ether .............. 20 20 Ethyl chloride 18 Glycerine Methyl alcohol ..... 20 Olive oil ........... 18 25 Petroleum Phenol ............. 20 Propyl alcohol ...... 20 Silicon tetrachloride 19 20 Toluene Turpentine ......... 20
....
...... ..........
.........
. ............
SMITHSONIAN PHYSICAL TABLES
23.7 27.6 24 43 27 28.9 41.5 26.7 32.3 26.8 27.2 17.01 16.2 63 22.6 33.1 26 41.0 23 17.0 28.4 27
Formula
(CHs)iCO CHsCOiH CaHiaO GHTN CH. CHBrx CHs(CH2)rCOrH
cs, cci,
CHCIx C,HiaO CHsCI CsHs(0H)a CHsOH
...
...
T A B L E 359.-SURFACE TENSION O F SOLUTIONS O F SALTS I N W A T E R
Salt
"C
Dynes per cm
0
30 30 30 30 30 20 20 20 30 30 18 18 18 18 18 18 30 30 30 30 30 30 30 18 18 18 30 30 30 30 30 18 18 18 18 18 18 18 20 20 20 20 20 20 20 18 18 18
71.1 75.6 71.1 75.7 86.4 73.0 72.0 70.7 71.1 76.8 77.7 72.4 74.8 76.9 72.5 74.9 71.1 89.4 107.2 71.1 73.9 76.5 80.6 72.6 74.5 75.4 71.1 78.4 82.8 71.1 74.1 72.8 73.5 76.7 71.2 63.6 72.7 74.6 73.1 65.4 59.4 72.8 77.3 85.8 95.1 72.8 74.1 75.5
BaCla
....
CaCL
....
24.6
HCI
.....
0
0
12.3 31.9
15 25 KCI ...... 0 23.3 21.1 NaCl .... 0 7.6 13.7 NH,CI ... 0 11 KXO, .... 0 39.4 53.6 NalCOs
..
NaNOx
...
cuso,
... ...
0
10.5 24.4 63.1 KNOS .... 0 15.2 21.5
HaSO,
0
35.6 50.9 0 25.4 0
12.7 47.6 80.3 90 KsSO, .... 0 9.1 HNOs .... 7.2 50 70 NaOH ... 0 10 20
KOH
...
%
Salt
....
30 0 3.8 7.8
T A B L E 360.-SURFACE
362
TENSION O F LIQUIDS Surface tension in dynes per cm of liquid in contact withSpecific gravity
Liquid
I
Water ............................... 1.0 Mercury ............................. 13.595 1.2687 Bisulfide of carbon .................... Chloroform .......................... 1.498 Ethyl alcohol ........................ .807 Olive oil ............................ .918 .873 Turpentine .......................... .870 Petroleum ........................... 1.10 Hydrochloric acid .................... Hyposulfite of soda solution. .......... 1.1248
T A B L E 361.-SURFACE Temperature of solidification
Su1)stance
"C
Platinum .......... 2000 Gold .............. 1200 Zinc .... .......... 360 Tin ..... .......... 230 Mercury ........ .. -40 Lead .... ........ .. 330 Silver ... ........ 1000 265 Bismuth . ........ Potassium ....... 58 Sodium . . ........ .. 90
T A B L E 362.-VAPOR
Mo mmHg
"K
1800 2000 2200 2400 2600 2800 3000 3200 3500
.0,643 .00789 ,04396 .a1027 .0160 .1679
W mmHg
--
.Oil645 .0849 .Or492 .Oa151 .0,286 -.03362 .02333 3890" 760 rnm} .0572
Air
75.0 513.0 30.5 (31.8) (24.1) 34.6 28.8 29.7 (72.9) 69.9
n
Water
Mercury
(3;2)
.O 392.0 41.7 26.8
(387)
';$'
__
18.6 11.5 (28.9) --
317 241 271
G;;)
_-
TENSION O F LIQUIDS A T SOLIDIFYING POINT Surface tension in dynes per cm
1691 1003 877 599 588 457 427 1390 371 258
Suhstance
Tempernture of solidificaJion C
Antimony ......... 432 Borax ............. 1000 Carbonate of soda .. 1000 Chloride of sodium . -Water ............ 0 Selenium .......... 217 Sulfur ............ 111 Phosphorus ....... 43 Wax .............. 68
Surface tension in dynes per cm
249 216 210 116 87.9 71.8 42.1 42.0 34.1
PRESSURE A N D R A T E O F E V A P O R A T I O N Evaporation rate g cm-? sec-1
Platinum h
'OK
.Ox863
.0~100
.O&O .04120 .O3179 .01181 -
-_-
--
.on114 .Om144 ,09798 h236 .06429 .Oa523 .OA67 .OJ69
1000 1200 1400 1600 1800 2000 4180
mm
.0ir324 . O J 11
.om .om
.Oa35O .Oslo7 760 mm
g cm-2 sec-1
.Oi832 .01260 .n,,4ni .n.9~
.Ox667 .0,195
-
fi = K.T-fe-ho'RT dynes/cm2 (Egerton). Zn, h,= 3.28 x lo' ; K = 1.17 X lo" ; Cd, ha= 2.77 X lo' ; K = 5.27 X 10"; Hg, ho = 1.60 X lo'; K ~ 3 . 7 X 2 10" (Knudsen).
SMITHSONIAN PHYSICAL TABLES
OF M E T A L S *
T A B L E 363.-EVAPORATION
363
For the range of pressures for which the corresponding values of t"C are given in the table (Part 2), the pressure as a function of T(=t 273) may be represented to a satisfactory degree of approximation by the relation logp=A-BB/T. (1) Part 1 gives values of A and B used in calculating the values of t"C in Part 2, where p is expressed in microns of mercury. The symbols (s) and ( I ) refer to the solid and liquid states, respectively. The rate of evaporation is given by the relation
+
+
+
log W = 3.7660 0.5 log M log p - 0.5 log T (2) = c log p - 0.5 log T, (3) where W is expressed in g cm-' sec-', and f~ in microns. E x p l a i d o n of data b t Pavt 2.-The first row for each metal, which is designated t , gives the temperatures in "C corresponding to the pressures in microns a t the head of each column. These were calculated by means of equation 1. The second row, designated W , gives the rates of evaporation (in a good vacuum) in grams per square centimeter per second ( g cm-' sec-'), at the values of t immediately above in the same column. These were calculated by means of equation 3. In addition to the values of t given in the first row, which are to be regarded as, in the writer's opinion, the more reliable, there are also given, in the case of a number of the metals, a series of other values of f, which have been observed by some investigators: The fact that for the same value of the vapor pressure in microns two or more values of t are quoted by different authorities indicates the degree of uncertainty that exists for some of the data given in the tables. For metals for which the data are very questionable, it has not been considered worth while even to calculate values of W . The column headed t , gives the melting point in degrees C, and pm gives the vapor pressure in microns a t the melting point. For values of t below tm, the metal is obviously in the solid state, and for values of t above t,, the metal is in the liquid state.
+
Prepared by Saul Dushnian, General Electric Research Laboratory, Schenettady, N. Y.
P a r t 1.-Constants Metal
Li ......... Na ........ K ......... Rb ........
A
10.50(1) 10.71 (1) 10.36(1) 10.42(1) [ 10.53(1) Cs ........ 9.86(1) [ 10.02(1)
........
Cu
10-3 x B
7.480 5.480 4.503 4.132 4.2911 3.774 3.8831
in relations for evaporation of metals c+4
.1867 .4468 S621 ,7319
... .8278 ...
12.81(s) 11.72(1) ........ 12.28is) 11.66(1) ........ 11.65(1) ........ 12.99(s) 11.95(1) ....... 11.82(s)
18.06 16.58 14.85 14.09 18.52 18.22 16.59 7.741
.6678
........ 11.30(s) ........ 11.13(s) ........ 10.88 ........ 11.94(s) ........ 11.78(s) B ......... 14.13(s) A1 ........ 11.99(1) s c ........ 11.94 Y ......... 12.43
9.055 8.324 8.908 6.744 5.798
S675 .7373 .8349 .6737 .7914
Ag Au
Be Mg Ca Sr Ba Zn Cd
La
Ce Ga In
TI C
........ 11.88(1)
........ ........ .........
......... .........
13.74(1) 10.79(1) 10.93(1) 11.15(1) 14.06(s)
...
.7825
...
.9135 .2436
...
.4590
21.37 15.63 18.57 21.97 18.00
.2831 .4814 S931 .7405 .8374
20.10 13.36 12.15 8.92 38.57
.8392 .6877 .7959 .9212 .3056
SMITHSONIAN PHYSICAL TABLES
13.20(s) 12.55(1) 11.25Csj 11.98(1) 12.38(s) 13.04(1) 12.52(1) 10.94(1)
xB 19.72 18.55 18.G4 20.11 25.87 27.43 28.44 15.15
9.97(1) 10.69(1) 13.32 14.37(s) 13.00(s)
13.11 9.60 26.62 40.40 40.21
.8032 .9242 .6195 .7500 ,8947
Sh, ........ 11.42 Bi ......... 11.14(1) Cr . . . . . . . . 12.88(s) Mo ........ 11.80(s) W ........ 12.24(s)
9.913 9.824 17.56 30.31 40.26
.9592 .9260 .6240 17570 .8983
......... 12.88(1) ........ 12.25(s) ........ 12.63(s) 13.41 (I j Co ........ 12.43 Ni ........ 13.28(s)
25.80 14.10 20.00 21.40 21.96 21.84 20.60
........ 13.50 ........ 13.55 ........ 11.46 0 s ........ 13.59 I r ......... 13.06 Pt ........ 12.633
33.80 30.40 19.23 37.00 34.11 27.50
hfetal
Si
.........
Ti
.........
Zr
........
Th Ge
........ ........ ........ ........
Sn Pb V ......... Nh ........ Ta . . . . . . . .
A
U
Mn Fe
12.55(1)
Ru Rh Pd
(coritirtrrcd)
10-8
CS-4
.4900 .4m .6061
... ...
.7460 .9488 .6965
.9544 .6359 .6395 .65 12 5503 ,7696 ,7722 .7801 .9056 .9089 .9112
T A B L E 363.-EVAPORATION Part 2.-Temperatures
O F M E T A L S (continued)
for given values p i n microns of mercury and rates of evaporation (W, g cm-2 sec-I)
p(pHg)
10-2
10-1
100
1000
tm
roc:
.P
439 5 . 7 6 lo-" ~ 467
514 5.48x10-5 541
607 5.18x10-' 632
725 4.87x10-' 745
9x10-'
W . . .: t "C:
377 6.03x10-' 406
179
b
325 6.28x lo-* 353
Na
..........a
roc:
64
9.8x lo-'
88.5 2.84x10-e 99 74 3.61X10d 79 1035 1.29X10" 848 1.81XlOd
265 1.57x10-3 217 2 . 4 3 lo-' ~ 230 207 3.07~10-3 211
437 1.05x 10-2 338 1.48x10-*
59.4 2.%X 10-T 70 45 3.77xlO-' 50
29 1 1.18X lo-4 207 1.67x 10.' 165 2.58xlO-' 177 153 3.18x10-' 158
8.2x lo-'
t"C :
238 1.24x 10" 161 1.75x10-5 123 2.71 x 10.' 135 110 3.44x 115
98
...........a
195 1.29XlOd 123 1.83x 10."
356 1 . 1 21~o - ~
K
158 1.35x10-T 91 1.91x10-T
38.5
1.5XlOA
29
1.5x104
1141 1 . 2 4 lo-' ~
1273 1.18X 10-4
1432 1 . 1 3lo-' ~
936 1.74~10-~ 1316 2.05x 10-6 1130 4.68x lo-' 383 1.12x 10-~ 528 1.31x10-5 594 475 2.00x 10"
1047 1 . 6 7 lo-' ~ 1465 1.96x lo-' 1246 4.49x10-5 443 1.08X lo-4 605 1 . 2 5lo-' ~ 680 549 1.91x lo-'
1184 1.59x10-' 1646 1.87x10-3 1395
Metal
Ref.'"
.......... .a
Li
Rb Cs
..........d
W:
U7 :
t "C:
W:
C
t"C :
......... .e
t "C:
U' :
C
t "C:
cu ....... . f , c
roc:
..........a
roc:
Au
......... .a
roc:
1083 2.22~10-7
Be
........c, g
t"C :
Mg
.........a
t "C:
942 5 . 0 310.' ~ 287 1.21xio-'
Ca
..........a
t "C:
h
t"C :
Sr
..........c
Ag
1%
W: W:
W:
W:
W:
W:
roc: W:
For references, see p. 367.
946 1.33x lo-' 767 1.88xIo-T
1 . 4 2 10.' ~ 462
1190 2.14 x 1029 4.86x lo-' 331 1.17 x lo-' 463 1.37x 523
361 2.17x10-'
413 2.08x10"
408
1
10
(corrtinried)
515 1.02~10-3 700 1.19x 10-8 784 639 1.81x10-*
283 2.29)<10-' 297 277 2.87)<10-' 280 1628 1.07x lo-' 1353 1.50x lo-'
1083
.31
%1
1.78
1867 1.77~10-~ 1582
1063 1284
6x10-3 19.5
605 9.71x 10-3 817 1.12x lo-?
651
2.2~103
810
8.75x102
750 1.71x lo-'
771
1.44x109
...
T A B L E 363.-EVAPORATION Metal
Ref.
......... .c
Ba
I
j
P(/rHg)
10-2
10-1
O F M E T A L S (continued)
1
10
100
1000
t"C: W: t"C: t"C :
418 2 . 6 0 10-7 ~ 485 476
476 2.5ox 10-6 549 544
546 2.39~10-5 625 626
629 730 858 2 . 2 8 ~ 1 0 - ~ 2 . 1 6 ~ 1 0 - ~ 2.03X10-' 861 716 829 726 85 1 ...
t"C : :
211 2.15x
248 2.07x10-a
292 1.98)<10-'
343 1.90x lo-'
405 1.81 lo-'
h
tn
717
76.
Zn
.......... a
Cd
..........a
roc: W:
148 180 3 . 0 1 ~ 1 0 - ~ 2.91)<10-"
220 2.79x
264 2.67x 10.'
321 2.54x10-'
.........k
t"C: IY:
-23.9 -5.5 5 . 2 3 ~ 1 0 - ~ 5.5ox 10-6
18.0 4.84x10-'
48.0 4.6ix10-~
82.0 4.39~10.~
126 4.14X lo-'
-38.9
2.5X104
B
...........c
t"C: IY:
1052 5.27x lo-'
1239 4.94X10"
1355 4.76x lo-'
1489 4 . 5 7 ~10-4
1648 4.38>(10-'
20002080
...
Al
......... .a
724 805 9.60x10-' 9.21 ~ 1 0 - 7 843 929 9 . 0 7 ~ 1 0 - ~ 8.74>(10-'
889 8.88x lo-' 1030 8.40X lod
996 8.51 x10-' 1148 8.04x10-s
1123 8.11 x10-' 1291 7.66x10-'
1279 7.69XlO4 1465 7.27X10J
660
1.2x
c, 1
t"C : IV: t"C :
660
1.8x 10.'
......... .c
t"C :
W:
1058 1.07~
1161 1282 1 . 0 4 ~ 1 0 - ~ 9.94~10-"
1423 9.51~10-'
1595 9.07~
1804 8.40x10-'
1397
Y
...........c
t"C : It.':
1249 1.41>(10-'
1362 1 . 3 6 lo-" ~
1494 1.31x
1649 1.25~
1833 1.2ox10-9
2056 1.14X lo-'
1477
La
........ ..c
t"C: W:
1023 1.91
1125 1.81x10-".
1242 1.77x10-5
1381 1.69x10-'
1549 1.61 lo-'
x
1754 1.53x10-'
887
2.3x10'
Ce
..........c
t"C :
W:
1004 1 . 9 3 lo-' ~
1091 1 . 8 7 lo-' ~
1190 1 . 8 0 lo-' ~
1305 1.74x10-'
1439 1.67X104
1599 1 . 6 0 lo-* ~
785
5.5x10-6
W:
t"C:
771 1.51x10-'
859 1.45x 10-O
1093 1.32x
1248 1.25x lo4
1443 1.18x lo-'
30
0
1.38x10-'
t"C : W:
667 2.04x lo-'
746 1.96X 10"
840 1.87x1O4
952 1.79x10-'
1088 1.69~10-'
1260 1.60x lo-*
157
0
t"C:
405 3 . 2 0 lo-' ~
461 3.08XlO-'
527 lo-' 2.95~
606 2.81X1O4
702 2.67X1O4
821 2.52x
304
5.Ox lo-'
Hg
sc
Ga
..........c
tn
........c, m
TI
..........a
1v
W:
W:
1140 5.11x10-'
965
x
...
... ... ...
419
1.6X102
321
1
.ox102
6.6 .76
G,
(continwd)
G
v)
2
I v) 0
zD2
T A B L E 363.-EVAPORATION
I 0
< I?
Ref.
Metal
c ...........c
D m r Ln m
10-2
10-1
1
10
100
1000
1V:
2129 4.1 3x 1O-'
2288 4 . 0 0 10.' ~
2471 3.86x lo-'
2681 3.72x
2926 3.58X104
3214 3.42X 10'
tn
Si
...........c
PC :
w:
1024 8.58x10-*
1116 8 . 2 9 10-7 ~
1223 7.99X 10.'
1343 7.68x1O4
1485 7.37~10-4
1670 7.01X10-8
1410
31.6
Ti
......... .c
PC:
1134 1.08xlO-'
1249 1.04 10-'
x
1384 9.92X10-8
1546 9.47~
1742 9.0Ox lo-*
1965 8.53X10-3
1727
84.3
Zr
......... .c
w: roc: w:
1527 1.31x10-'
1660 1.27><10"
1816 1.22x10-6
2212 2001 1 . 1 7 ~ 1 0 - ~ 1 . 1 2 10-3 ~
2459 1.07x lo-*
2127
40.7
Th
......... .c
t"C :
w:
2.01
1831 1 . 9 4 lo-' ~
1999 1.86~
2196 1.79x10-'
2431 1.71x lo-'
2715 1.63><10-2
1827
9.3x lo-*
Ge
..........c
PC :
w:
897 1.45
x
996 1 . 4 0 10. ~'
1112 1.34X10"
1251 1 . 2 7w4 ~
1421 1.21x 10.'
1635 1.14X lo-*
959
4.5x10-*
Sn
..........c
t"C. W:
823 1.92x 10-
922 L84x 10.'
1042 1.75x
1189 1.66><10-'
1373 1.57X1O5
1609 1.47x10-*
232
0
Pb
.......... a
t"C :
483 548 3 . 0 5 ~ 1 0 ~ ~2.93x10-'
625 2 . 8 0 10-5 ~
718 2.67x10-'
832 2.53x lo-'
975 2 . 3 8 lo-' ~
328
5.4x10-'
w:
1465 1 . 0 10-7 ~
1586 9.6x
1725 9.3X10"
1888 8.9X104
2079 8.6x10-4
2207 8.2x 10"
1697
.65
PC:
2194 1.16x10-7
2355 1.08~10-'
2539 1.06X
2500
.6
2407 1.55x 10"
2599 1.48x10-'
2820 1.41x lo-'
2996
5.0
466 3.35x
525 3.22x10-'
595 3.09x 10"
678 2 . 9 5 lo-' ~
779 2.81x lo-'
904 2.65X
630
2.82
474 3 . 0 8 10-7 ~
536 296x104
609 2.84XW
698 2.71x
802 2.57x lo-'
934 2.43X lo-"
271
1 . 2 0 10-7 ~
907 1 . 2 210-7 ~
992 1.18x lo-'
1090 1.14X
1205 1.09~
1342 1.05xlo-"
1504 1.oox10-2
1900
6.35X104
c)
r P
4
P(PHSJ roc:
OF M E T A L S (continued)
v .......... .c Nb
.......... n
Ta
.......0, p
Sbz
......... C
Bi
......... .C
Cr
........c,
1
w: roc: W: t"C: W: t"C : W: t"C: W:
roc: W:
1686 x 10-7
(cotltinued)
T A B L E 363.-EVAPORATION fl(pHg)
in
10-1
10-2
O F M E T A L S (concluded)
1
10
100
1000
h
tm
t"C : W:
1923 1.29~10-7
2095 1.18X10"
2295 1.12 10-6
x
2533 1 . 0 5 lo-' ~
2622
22.0
t"C:
l,v:
2554 1 . 4 7 lo-' ~
2767 1.46x10-'
3016 1.45 lo-'
x
3309 1.43x lo-'
3382
17.5
t"C :
1461 2.16x10-'
1585 2 . 0 9 lo-' ~
1730 2.01x10-6
1898 1.93x 10"
2098 1.85xlo-'
2338 1.76x lo-'
1132
3.24~10-'
W:
t"C : W:
717 1.38x10-'
791 1 . 3 2 10.' ~
878 1.27x
980 1 . 2 2lo-' ~
1103 1.17 x 10.'
1251 1.11x 10-2
1244
9.O4X1O2
f
t"C:
W:
1094 1.29x lo-'
1195 1.20x10-'
1310 l.lOx10-~
1447 1.02~10-4
1602 1.01x10-~
1783 9 . 6 lo-' ~
1535
co . . . .. . .. . .c
t"C:
W:
1249 1.15 10"
x
1362 1.11x lo-'
1649 1494 1 . 0 6 ~ 1 0 - ~ 1.02~10-4
1833 9.76x10-'
2056 9.28X10J
1478
.76
Mn
Fe
.... ... . . c . . ... . . . c ,
37.2
Ni
. .... ...c,
q
t"C :
W:
1157 1 . 1 8 10.' ~
1257 1.14x10-'
1371 1. l o x 10-6
1510 1 . 0 610-4 ~
1679 1.01x lod
1884 9.62~10-'
1455
4.37
Ru
.. . ... .. . .c
t"C: W:
1913 1.26x10-'
2058 1.22x10-6
2230 1.18x10-'
2431 1.13>(104
2666 1.08)<10-'
2946 1.04x lo-*
2427
9.8
Rh
..... .. . .. c
roc:
1681 1.34x10-'
1815 1.29x10-'
1971 1.25x10-5
2149 1.2ox 10-4
2358 1.15x10-a
2607 1.1ox 10-2
1967
1.0
W:
Pd
. . . . . . . . . .c
t"C:
1156 1.59x lo-'
1271 1.53x10-'
1405 1.47x 10.'
1566 1.41x lo-'
1759 1.34x lo-*
2000 1.26x 10.'
1555
8.71
W:
0 s
. . . . .:. . . .c
t"C: :
cv
2101 1.65x lo-'
2264 1.60X 10"
245 1 1.54X lo-'
2667 1.48x10-'
2920 1 . 4 2 lo-' ~
3221 1.36~10-~
2697
Ir
.... .... . .. c
t"C : W:
1993 1.70~
21 54 1.65xlo-'
2340 1.59x 10.'
2556 1.52x10-'
281 1 1.46x lo-'
31 18 1.39XlO-'
2454
3.55
Pt
... . . ... ..c
t"C :
1606 1.BX 10-7
1744 1.81X10"
1904 1.75x10-6
2090 1.68X1O4
2313 1.60x10-'
2582 1.52~10-~
1774
.16:
W:
References: a, Kelley, K. K., Bur. Mines Bull. 383, modynamic and physical properties of the elements, Repi f , M, Langmuir. I.. Phys. Rev., vol. 51, p. 753, 1937. R., and Garrett A. B., Journ. .\mer. Chem. Soc., vol. J. A. M., Rec. h v . Chem. d. Pays-Bas. vol. 55. p. 461 Tables, vol. 3, p. 306, 1928. I. Baur, E.. and Bruner, n, Reimann, A. L., and Grant, C. K.. Philos. Mag., vol. Rev. vol. 61, p. 513 1942. q. Johnston, H. L., and s, Jones, G. M. J., Phys. Rev.,'vol. 30, p. 201, 1927.
13.5
c. Brewer, T h e therh, Ditchhurn, R. W., and Gilmour, J..C., Rev. Mod. Phys., vol. 13. p. 310, 1941. e, Taylor, J. B., and for the Manhattan Project, 1946. d, Killian, T. J., Phys. Rev., vol. 27, p. 578, 1926. g. Schumann, hall, A. L., Dornte, R. W., and Norton, F. J., Journ. Amer. Chem. Soc., vol. 59. p. 1161, 1937. i. .Van Liempt. h, Rudberg, E., Phys. Rev., vol. 46, p 763. 1934. p. 442, 1944. vol. 67. p. 2279, 1945. k, Int. National Critical j, RLdherg, E., a n d Lempert, J., Journ. Chem. Phys., vol. 3. p. 627, 1935. 1936. m, Anderson, J. S.. Journ. Chrm. Soc. (London), vol. 141. 1943. ., Hev. Chim. Acta, vol. 17. p. 958, 1934. o, Langmuir, D. B., and Maker, L., Phys. Rev., vol. 55. p. 748. 1939. p, Fiske, M. D.. Phys. !, p. 34 1936. r, Jones, H. A., Langmuir, I., and Mackay, arshall.' A. L., Journ. Amer. Chem. Soc., vol. 62. p. 1382, 1940. A,, and Langmuir, I., Gen. Electric Rev., vol. 30. p. 354, 1927. 35.
TABLE 364.-VAPOR
368
PRESSURE OF ORGANIC LIQUIDS
The vapor pressures on this page are in mmHg over a liquid phase unless distinguished by the subscript .. They are generally means from various determinations.
"C
-90 -57 -40 -30 -20 -10
Benzine Camphor CaHe CioHisO
Acetone CaHeO
.02
...
...
...
... ... ...
... ... 116 ...
0
+li 15 20 30 40 50 60 70 80 90 100 110 120 130 140 150
185 283 422 612 860 1190 1860 2140 2800 3590 4550 5670 6970
... ...
200 Ethylene CiHi "C
-150 -190 -145 -135 -130 -120 -110 -103
14.9 45.6 26.7 74.4 117.2 260 519 792
... ... ... .06 ... .10 ...
.J
...
14 26.5 34 45 59 75 .15 119 26 182 .60 269 1.30 390 2.6 548 4.6 750 9.2 ... 1010 1340 26 1740 ... 2200 2800 ... ... 3500 4300 170
...
...
"C
118 24 161 6.5 175 13 190 32 220 100 260 385
-70; ,
... ...
119 212 353 559 848 1229 1720
form
CIICI.
i:*8 -70";') l9 ...
-241
0
25.4 49.75 80.1 99.9 125.9
-101.3" .058> -
,l:;"> 61.0 - 75" ... 1500 ... 100
...
160 247 370 540 750 1025 1400 2130 2420
...
3900 4000 6000 7300
Methyl ether (CHa)iO "C
- 67 - 60 - 41.4 - 30.9
Ethyl Ethyl Turpen. ether Iiromide tine C,HloO C2HaBr CioHo
Ethane C2Hs
10900
(continued)
SMITHSONIAN PHYSICAL TABLES
Chloro-
} -60:-} 8. -l&} .14 390
-50:9z} ,341 ... ... 80 33 127 43 160 198 56 71 244 298 90 433 141 213 617 315 855 348 1170 1570 620 843 2040 2620 1120 1460 3000 1880 4160 2390 5150 3000 3700 4500 9100
-25"
Methane CHI "C
-180 -175 -170 -165 -160 -155 -150
Carbon tetrachloride CCI.
...
...
625
c(Iyly;e
Carbon bisulfide CS2
78 120 326 524 782 2.52 atm 6.05 " 11.2 " 22.1 " 32.1 " 51 "
186.1
...
291.8
... ... ... ... ... ... ... ...
...
442.4 648 921 1276 1728 2294 2991 3840 4860
...
... ...
... ...
...
... ...
...
7500
. ..
11080
g;}
180"' 218001 Naphthalene CI& "C
o
.oz.
20 .06. 50 .81, 4.0, 70 80 10 90 13 100 20 110 29 120 43 150 119 200 490
... ...
59 102 166 207 257 317 386 564 802 1113 1510 2015 2640 3400 4310 5390 6660 8120 9780
... ...
... ...
... ... .2
...
.3 .3 .4 .7 1.1 1.7 2.6 4.1 6.1 9.0 13.1 18.6 25.7 34.9
...
...
...
...
...
Ethvl chloride CTHaCI "C
--3n -20 -10 0 10 20 30 50 75 100
iin
iSS
302 465 691 1000 1400 2850 4980 8720
T A B L E 364.-VAPOR "C
-50 -30 -25 -20 -15 -10 -5
0
+1; 15 20 25 30 35 40 45 50 60 70 80 90 100
Ammonia NHa atm
.403 1.180 1.4% 1.877 2.332 2.870 3.502 4.238 5.090 6.068 7.188 8.458 9.8% 11.512 13.321 15.339 17.580 20.060 25.80 32.69 40.90 50.56 61.82 Cragoe 1920
Carbon dioxido
co2 atm
Hydrogen Ethyl , sulfide acetate HIS mm mm
... ... ...
...
6.74 14.10 16.61 19.44 22.60 26.13 30.05 34.38 39.16 44.41 50.17 56.50 63.45 71.4
... ... ...
...
...
... ...
... ... ...
... ...
4100
12.9
5720
24.3
7750
...
...
...
... 42.7 ... 72.8 ...
108.5
1216 2840
6.5
... ...
41.5 53.5 68.6
(I.C.T. 1928)
369
PRESSURE OF ORGANIC LIQUIDS (concluded)
Ethyl iodide C2Hd mm
...
lOi00 14000
... 167.6 ...
119
17500
...
186
...
22000
282 415 ... 596 . _ . 833 ... 1130 ... 1515
27500
...
250
362 510
Methyl chloride CHsCl mm
...
579 718 883 1079 1310 1579 1891 2250 2660 3134 3667 4267 4940 5700 6650
...
8510 10900 40400 14300 . . _ 16800 ... 21000
Napthalin CioHs mm
... ... ... ...
... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ...
9.6 13.0
Sulfur dioxide
so2
mm
Toluol CIOHS & "C mm
-91.9 -81.7 -77.4 -67.5 . .. -57.7 760 -38.0 . . . -24.2 1155 - 2.9
.002 .005 .007 .020
86 286 379 474
iji4
. .. ...
2460
3420
46%
0
+KO +25.8
. .. ... ... ...
.060
.39 1.47 5.72 6.86 16.8 28.7
... ...
...
...
...
6210 8150 10540
...
...
{1;E;
T A B L E 365.-VAPOR
PRESSURE A T L O W TEMPERATURES
Many of the following values are extrapolations made by Langmuir by means of plots of log p against I/T. 1 barye = 0.000000987 atm = 0.000750 mmHg. Gas
"C
0,
. .......... -182.9
Nt
. .......... -195.8
-211.2
-210.5
co .......... -190 -200 CH, .......... -185.8 -201.5 A . .......... -186.2 -194.2 CzH, .......... -175.7 -188 -197 -205 CsHa .......... -150 -180 -190 -198
SMITHSONIAN PHYSICAL TABLES
mmHg
Gas
760 7.75 760 86 863 249 79.8 50.2 760 300 .76 .076 .0076 .00076 7.6 .076 .0076 .00076
COs
...........
"C
-148 -168 -182 -193 Ice ............ - 60 - 75 - 89 -100 -110 Hg
- 40 - 78 -180
Baryes
100 1 .01 .0001 9.6 1.o .1 .01 .001
3.7 1.6 .65 .25 .087 .029 .0023 4.3 x lod 2.3 x lo-%
T A B L E 366.-VAPOR
370
Y $ G 0
10 20 30 40
50 60 70
1
0
2
PRESSURE O F E T H Y L ALCOHOL
3
4
5
6
7
8
9
Vapor pressure in mmHg at 0°C
12.24 23.78 44.00 78.06
13.18 25.31 46.66 82.50
14.15 27.94 49.47 87.17
15.16 28.67 52.44 92.07
16.21 30.50 55.56 97.21
133.70 220.00 350.30 541.20
140.75 230.80 366.40 564.35
148.10 242.50 383.10 588.35
155.80 253.80 400.40 613.20
163.80 265.90 418.35 638.95
17.31 32.44 58.86 102.60
18.46 34.49 62.33 108.24
19.68 36.67 65.97 114.15
20.98 38.97 69.80 120.35
22.34 41.40 73.83 126.86
172.20 181.00 278.60 291.85 437.00 456.45 665.55 693.10
190.10 305.65 476.45 721.55
199.65 319.95 497.25 751.00
209.60 334.85 518.85 781.45
From the formula log p = ~ + b a ‘ + c Ramsay ~~ and Young obtain the following numbers :
Y $
10
0
20
30
40
50
60
70
80
90
Vapor pressure in mmHg at 0°C
r”
0 12.24 23.73 43.97 78.11 133.42 219.82 350.21 540.91 811.81 1186.5 100 1692.3 2359.8 3223.0 4318.7 5686.6 7368.7 9409.9 11858. 14764. 18185. 200 22182. 26825. 32196. 38389. 45519.
T A B L E 367.-VAPOR
Y
0
1
2
PRESSURE O F M E T H Y L ALCOHOL
3
4
5
6
7
8
9
Vapor pressure in mmHg at 0°C
0
10 20 30
40 50 60
29.97 53.8 94.0 158.9 259.4 409.4 624.3
31.6 57.0 99.2
33.6 60.3 104.7
35.6 63.8 110.4
37.8 67.5 116.5
40.2 71.4 122.7
42.6 75.5 129.3
45.2 79.8 136.2
47.9 84.3 143.4
50.8 89.0 151.0
167.1 271.9 427.7 650.0
175.7 285.0 446.6 676.5
184.7 298.5 466.3 703.8
194.1 312.6 386.6 732.0
203.9 327.3 507.7 761.1
214.1 342.5 529.5 791.1
224.7 -358.3 552.0 822.0
235.8 374.7 575.3 --
247.4 391.7 599.4
SMITHSONIAN PHYSICAL TABLES
--
37 1 T A B L E 368.-VAPOR
PRESSURE O F A N U M B E R OF LIQUIDS (mmHg)
Carbon disulfide, chlorobenzene, brorntbenzene, and aniline T:mp.
C
0
10 20 30 40 20
30 40 50
60 70 80 90 100
110 120 130
0
1
2
60 70 80 90
6
Carbon disulfide 127.90 133.85 140.05 146.45 153.10 160.00 167.15 198.45 207.00 215.80 224.95 234.40 244.15 254.25 298.05 309.90 322.10 334.70 347.70 361.10 374.95 434.60 450.65 467.15 484.15 501.65 519.65 538.15 617.50 638.70 660.50 682.90 705.90 729.50 753.75 8.65 14.95 25.10
9.14 15.77 26.38
9.66 16.63 27.72
Chlorobenzene 10.21 10.79 11.40 17.53 18.47 19.45 29.12 30.58 32.10
12.04 20.48 33.69
7
8
9
174.60 182.25 264.65 275.40 389.20 403.90 557.15 576.75 778.60 804.10
190.20 286.55 419.00 596.85 830.25
13.42 22.69 37.08
14.17 23.87 38.88
12.71 21.56 35.35
49.05 51.35 40.75 42.69 44.72 53.74 56.22 58.79 61.45 46.84 73.11 76.30 79.60 64.20 67.06 70.03 83.02 86.56 90.22 94.00 97.90 101.95 106.10 110.41 114.85 119.45 124.20 129.10 134.15 139.40 201.15 144.80 150.30 156.05 161.95 168.00 174.25 181.70 187.30 208.35 215.80 223.45 231.30 239.35 247.70 256.20 265.00 274.00 283.25 292.75 302.50 402.55 415.10 542.80 558.70 718.95 738.65
-16.00 26.10 41.40 63.90 96.00
16.82 27.36 43.28 66.64 99.84
344.15 468.50 626.15
355.15 482.65 643.95
366.65 497.20 662.15
378.30 512.05 680.75
390.25 527.25 699.65
Bromobenzene -12.40
13.06
13.75
14.47
15.22
20.50 33.00 51.60 78.60 116.40
21.52 34.56 53.88 81.84 120.86
22.59 36.18 56.25 85.20 125.46
23.71 37.86 58.71 88.68 130.20
24.88 39.60 61.26 92.28 135.08
312.50 322.80 333.35 427.95 441.15 454.65 575.05 591.70 608.75 758.80
40 50
5
4
3
17.68 18.58 19.52 28.68 30.06 31.50 45.24 47.28 49.40 69.48 72.42 75.46 103.80 107.88 112.08
110 120 130 140
140.10 198.70 274.90 372.65 495.80
145.26 150.57 205.48 212.44 283.65 292.60 383.75 395.10 509.70 523.90
156.03 219.58 301.75 406.70 538.40
161.64 226.90 311.15 418.60 553.20
167.40 234.40 320.80 430.75 568.35
173.32 242.10 330.70 443.20 583.85
179.41 250.00 340.80 455.90 599.65
185.67 258.10 351.15 468.90 615.75
192.10 266.40 361.80 482.20 632.25
150
649.05
666.25
701.65
719.95
738.55
757.55
776.95
796.70
816.90
24.00 37.30
25.14 38.90
26.32 40.56
27.54 42.28
28.80 44.06
100
80
90 I00
110 120 130 140 150
160 170 180
683.80
Aniline 18.80 19.78 20.79 21.83 22.90 30.10 31.44 32.83 34.27 35.76 45.90 47.80 49.78 ... . . .... 51.84 53.98 68.50 71.22 74.04 76.96 79.98 100.40 104.22 108.17 112.25 116.46 144.70 149.94 155.34 160.90 166.62 204.60 211.58 218.76 226.14 233.72
56.20 58.50 60.88 63.34 65.88 83.10 86.32 89.66 93.12 96.70 120.80 125.28 129.91 134.69 139.62 172.50 178.56 184.80 191.22 197.82 241.50 249.50 257.72 266.16 274.82
283.70 386.00 515.60 677.15
331.70 447.10 592.05 771.50
292.80 397.65 530.20 695.30
302.15 311.75 321.60 409.60 421.80 434.30 545.20 560.45 576.10 713.75 732.65 751.90
(cojztinired)
SMITHSONIAN PHYSICAL TABLES
342.05 460.20 608.35
352.65 473.60 625.05
363.50 487.25 642.05
374.60 501.25 659.45
372 PRESSURE O F A N U M B E R OF L I Q U I D S (mmHg) (concluded)
T A B L E 368.-VAPOR
Methyl salicylate, bromonaphthalene, and mercury
Methyl salicylate Tzmp.
c
70
80 90 100
110 120 130 140 150
160 170 180 190 200
210 220 110
120 130 140 150
160 170 180 190 200
210 220 230 240 250
260 270 270
280 290 300
310 320 330 340 350
360
o 2.40 4.60 7.80 12.60 19.80 30.25 45.30 66.55
5
6
7
8
2.58 4.87 8.20
2.77 5.15 8.62
2.97 5.44 9.06
3.18 5.74 9.52
3.40 6.05 9.95
3.62 6.37 10.44
3.85 6.70 10.95
4.09 7.05 11.48
4.34 7.42 12.03
13.20 20.68 31.52 47.12 69.08
13.82 21.60 32.84 49.01 71.69
14.47 22.55 34.21 50.96 74.38
15.15 23.53 35.63 52.97 77.15
15.85 24.55 37.10 55.05 80.00
16.58 25.61 38.67 57.20 82.94
17.34 26.71 40.24 59.43 85.97
18.13 27.85 41.84 61.73 89.09
18.95 29.03 43.54 64.10 92.30
99.00 102.50 95.60 134.25 138.72 143.31 184.70 190.48 196.41 249.35 256.70 264.20 330.85 340.05 349.45
106.10 148.03 202.49 271.90 359.05
109.80 152.88 208.72 279.75 368.85
113.60 157.85 215.10 287.80 378.90
467.25 600.25 761.90
1
2
3
530.40 677.25
543.80 693.60
BrcBmonaphthalene 4.22 4.40 4.05 6.51 6.80 6.23 10.15 10.60 9.71 16.20 14.92 15.55
4.59 7.10 11.07 16.87
4.79 7.42 11.56 17.56
5.00 7.76 12.07 18.28
5.22 8.12 12.60 19.03
23.11 33.23 46.50 64.06 87.10
24.92 35.60 49.64 68.19 92.47
25.86 36.83 51.28 70.34 95.26
26.83 38.10 52.96 72.55 98.12
27.83 39.41 54.68 74.82 101.05
116.81 120.20 154.57 158.85 202.00 207.35 261.20 267.85 334.55 342.75
123.67 127.22 130.86 163.25 167.70 172.30 212.80 218.40 224.15 274.65 281.60 288.70 351.10 359.65 368.40
134.59 176.95 230.00 295.95 377.30
424.45 533.35 663.55
444.65 455.00 557.60 570.05 692.40 707.15
465.60 582.70 722.15
476.35 595.60 737.45
455.35 585.70 744.35
3.60 5.45 8.50 13.15
3.74 5.70 8.89 13.72
3.89 5.96 9.29 14.31
19.80 28.85 40.75 56.45 77.15
20.59 29.90 42.12 58.27 79.54
21.41 30.98 43.53 60.14 81.99
22.25 32.09 44.99 62.04 84.51
104.05 107.12 110.27 113.50 138.40 142.30 146.29 150.38 181.75 186.65 191.65 196.75 235.95 242.05 248.30 254.65 303.35 310.90 318.65 326.50 414.65 521.50 649.50
24.00 34.40 48.05 66.10 89.75
434.45 545.35 677.85
Mercury 123.92 126.97 130.08 133.26 136.50 139.81 157.35 161.07 164.86 168.73 172.67 176.79 198.04 202.53 207.10 211.76 216.50 221.33 246.81 252.18 257.65 263.21 268.87 274.63 304.93 311.30 317.78 324.37 331.08 337.89 373.67 381.18 388.81 396.56 404.43 412.44 454.41 463.20 472.12 481.19 490.40 499.74 548.64 558.87 569.25 579.78 590.48 601.33 658.03 784.31
669.86
681.86
SMITHSONIAN PHYSICAL TABLES
125.66 129.90 173.56 179.06 235.15 242.15 313.05 321.85 410.30 421.20
517.25 661.25
443.75 571.45 727.05
395.60 405.05 498.55 509.90 622.10 635.70
117.51 121.53 162.95 168.19 221.65 228.30 296.00 304.48 389.15 399.60
9
504.35 645.55
432.35 557.50 710.10
386.35 487.35 608.75
4
694.04
706.40
718.94
143.18 146.61 150.12 153.70 180.88 185.05 189.30 193.63 226.25 231.25 236.34 241.53 280.48 344.81 420.58 509.22 612.34
286.43 351.85 428.83 518.85 623.51
292.49 359.00 437.22 528 63 634.85
298.66 366.28 445.75 538.56 646.36
731.65
744.54
757.61
770.87
373 T A B L E 369.-VAPOR
P R E S S U R E O F SOLUTIONS O F S A L T S IN W A T E R
The first column gives the chcmical forniula of the salt . The headings of the other columns give the nuinher of gram-molecules of the salt in a liter of water . The numbers i n these columns give the lowering of the vapor pressure produced by the salt at the temperature of boiling water under 76 cmHg . 0.5
10
.
2.0
3.0
AL(S0. ) a ........ AICI. ............ Bas206 .......... Ba(OH)z ........ Ba(NO& .......
12.8 22.5 6.6 12.3 13.5
36.5 61.0 15.4 22.5 27.0
179.0 34.4 39.0
318.0
Ba(CIO& ....... BaCL ........... BaBra ........... CaSzOI .......... Ca(N(3d2 ........
15.8 16.4 16.8 9.9 16.4
33.3 36.7 38.8 23.0 34.8
70.5 77.6 91.4 56.0 74.6
108.2 150.0 106.0 139.3
204.7 161.7
205.4
CaCI . . . . . . . . . . . .. .. .. CaBrz ........... CdSO4 .......... CdL ............ CdBrz ...........
17.0 17.7 4.1 7.6 8.6
39.8 44.2 8.9 14.8 17.8
95.3 105.8
166.6 191.0
241.5 283.3
319.5 368.5
33.5 36.7
52.7 55.7
80.0
CdCL ........... . . . Cd (NO3) z ....... Cd(C1OX). ....... COSOr ........... COClZ ...........
9.6 15.9 17.5 5.5 15.0
18.8 36.1
36.7 78.0
57.0 122.2
77.3
10.7 34.8
22.9 83.0
45.5 136.0
186.4
CO(N03)z ....... F e S 0 4 ........... H I B O ~ .......... HzPO, .......... H ~ A s O ......... ~
17.3 5.8 6.0 6.6 7.3
39.2 10.7 12.3 14.0 15.0
89.0 24.0 25.1 28.6 30.2
152.0 42.4 38.0 45.2 46.4
218.7
282.0
332.0
51.0 62.0 64.9
81.5
HSO, ........... KHzPO, ......... KNO, ........... KCIO, ........... K B r 0 3 ..........
12.9 10.2 10.3 10.6 10.9
26.5 19.5 21.1 21.6 22.4
62.8 33.3 40.1 42.8 45.0
104.0 47.8 57.6 62.1
148.0 60.5 74.5 80.0
KHSO, ......... KNOz ........... KClO, .......... KCI ............. KHCOI .........
10.9 11.1 11.5 12.2 11.6
21.9 22.8 22.3 24.4 23.6
43.3 44.8
65.3 67.0
48.8 59.0
K I .............. KzCzOr .......... KZWO, .......... K,CO, .......... K O H ...........
12.5 13.9 13.9 14.4 15.0
25.3 28.3 33.0 31.0 29.5
KzCr04 .......... LiN03 .......... LiCl ............ LiBr ............ LizS04 ..........
16.2 12.2 12.1 12.2 13.3
LiHSO, ......... LiI .............. Lii3iFe .......... LiOH ........... Li2Cr04 .........
12.8 13.G 15.4 15.9 16.4
Sulistance
10.0
103.0
146.9
189.5
198.4 733 88.2
247.0 85.2 102.1
343.2 126.3
148.0
85.5 90.0
107.8 110.5
129.2 130.7
170.0 167.0
198.8
74.1 77.6
100.9 104.2
128.5 132.0
152.2 160.0
210.0
255.0
52.2 59.8 75.0 68.3 64.0
82.6 94.2 123.8 105.5 99.2
112.2 131.0 175.4
141.5
171.8
225.5
278.5.
i5i.o
140.0
226.4 209.0 181.8
258.8 223.0
350.0 309.5
387.8
29.5 25.9 25.5 26.2 28.1
60.0 55.7 57.1 60.0 56.8
88.9 95.0 97.0 89.0
122.2 132.5 140.0
155.1 175.5 186.3
188.0 219.5 241.5
253.4 311.5 341.5
309.2 393.5 438.0
27.0 28.6 34.0 37.4 32.6
57.0 64.7 70.0 78.1 74.0
93.0 105.2 106.0
130.0 154.5
168.0 206.0
264.0
357.0
445.0
120.0
171.0
18 1
(ronfimred)
SMITHSONIAN PHYSICAL TABLES
5.0
8.0
4.0
6.0
99.0
374 T A B L E 369.-VAPOR Sulistancc
PRESSURE O F SOLUTIONS (concluded)
OF S A LTS IN W A T E R
0.5
1.0
6.5 16.8 17.6 17.9 18.3
12.0 39.0 42.0 44.0 46.0
24.5 100.5 101.0 115.8 116.0
47.5 183.3 174.8 205.3
298.5
M n C L ........... NaHzPOI ....... N a H S O......... NaNO, ..........
6.0 15.0 10.5 10.9 10.6
10.5 34.0 20.0 22.1 22.5
21.0 76.0 36.5 47.3 46.2
122.3 51.7 75.0 68.1
167.0 66.8 100.2 90.3
209.0 82.0 126.1 111.5
96.5 148.5 131.7
126.7 189.7 167.8
157.1 231.4 198.8
NaC103 ......... (NaP03)s ....... K a O H .......... N a N O Z .......... NaZHPO, .......
10.5 11.6 11.8 11.6 12.1
23.0
48.4
73.5
98.5
123.3
147.5
196.5
223.5
22.8 24.4 23.5
48.2 50.0 43.0
77.3 75.0 60.0
107.5 98.2 78.7
139.1 122.5 99.8
172.5 146.5 122.1
243.3 189.0
314.0 226.2
N a H C 0 3 ........ N a z S 0 4 ......... NaCl ............ NaBrO, ......... N a B r ...........
12.9 12.6 12.3 12.1 12.6
24.1 25.0 25.2 25.0 25.9
48.2 48.9 52.1 54.1 57.0
77.6 74.2 80.0 81.3 89.2
102.2
127.8
152.0
198.0
239.4
111.0 108.8 124.2
143.0 136.0 159.5
176.5 197.5
268.0
N a I ............. Na.PzOr ......... NazCOn ......... Na&O .......... Na2W0, ..........
12.1 13.2 14.3 14.5 14.8
25.6 22.0 27.3 30.0 33.6
60.2
99.5
136.7
177.5
221.0
301.5
370.0
53.5 65.8 71.6
80.2 105.8 115.7
111.0 146.0 162.6
Na.PO .......... 16.5 (NaPO& ....... 17.1 NH'NO, (NH s.F'. ...... 12.8 4 z 1 6 ...... 11.5 NH, C I .......... 12.0
30.0 36.5 22.0 25.0 23.7
42.1 44.5 45.1
62.7
82.9
103.8
121.0
152.2
180.0
69.3
94.2
118.5
138.2
179.0
213.8
NH,HSO, ....... ...... (NH.),SO. NH.Br .......... NH.1 ........... NiSO, ..........
11.5 11.0 11.9 12.9 5.0
22.0 24.0 23.9 25.1 10.2
46.8 46.5 48.8 49.8 21.5
71.0 69.5 74.1 78.5
94.5 93.0 99.4 104.5
118. 117.0 121.5 132.3
139.0 141.8 145.5 156.0
181.2
218.0
190.2 200.0
228.5 243.5
N i C L ........... N i ( N O & ........ Pb(N03)z ....... Sr(SO& ........ S r ( N 0 3 ) z ........
16.1 16.1 12.3 7.2 15.8
37.0 37.3 23.5 20.3 31.0
86.7 91.3 45.0 47.0 64.0
147.0 156.2 63.0
212.8 235.0
97.4
131.4
SrCL ............ 16.8 17.8 SrBrz ZnSO 4.9 ZnCL 9.2 Zn(NO3)I 16.6
38.8 42.0 10.4 18.7 39.0
91.4 101.1 21.5 46.2 93.5
156.8 179.0 42.1 75.0 157.5
223.3 267.0 66.2 107.0 223.8
M g S O4 .......... M g C L ........... ...... Mg(NO,), MgBrz .......... MgHz(SO4)z .....
MnSO.
..........
~
........... .......... ...........
........
SMITHSONIAN PHYSICAL TABLES
2.0
3.0
4.0
277.0
5.0
6.0
8.0
10.0
377.0
52.5
281.5 153.0
195.0
375 TABLES 370-406.-VAKIOUS ELECTRICAL CHARACTERISTICS OF MATERIALS The fundamental electrical and magnetic definitions and the values of the practical units of current, voltage, and other electrical quantities, have been given (Tables 2-5). Some data will now be presented on electrical characteristics of various materials. T A B L E 370.-THE
EFFECT O F ELECTRIC CURRENT ON T H E H U M A N BODY'@*
Some thought must be given to the electrical characteristics of the human body, since careless handling of electric circuits is very dangerous. The regular 120-volt circuit is dangerous, and any voltage above this increases the hazard. No bare contacts should be permitted where anyone might come in contact with them. A C (60cycles) DC Threshold of perception ....................................... 1 ma ...... 5 ma muscular decontrol .............................. 15 ......<70 danger to life .................................. 20 ...... 80 fibrillation (almost certain death). ................ 100 ........
Since the resistance of the human body for direct current (hand to foot or hand to hand), neglecting the contact resistance, is 5,000-10,000 ohms, good contact with electric circuits must be avoided. For alternating current the resistance is much lower. Bell Laboratories Rec., 'sea Cromwell. J. C., Origins and prevention of lahoratory accidents, 1950; p. 318. June 1936; Johns Hopkins University, Report of Electrician, November 1934; Journ. Franklin Inst., vol. 215, p. 1, 1933.
T A B L E 371.-TRIBOELECTRlClTY Part 1.-The
tribo-electric series
The following table is so arranged that any material in the list becomes positively electrified when rubbed by one lower in the list. The phenomenom depends upon surface conditions and circumstances may alter the relative positions in the list. 1 Ashestos (sheet). 2 Rahhit's f u r hair ( H g ) . 2 Glass (com6n. tubing). 4 Vitreous silica, oppossum's fur. 5 Glass (fusn.). 6 Mica. 7 Wool. 8 Glass (pol.), quartz (pol.), glazed porcelain. 9 Glass (broken edge), ivory. 10 Calcite. 11 Cat's f u r . 12 Ca, Mg, Pb, fluorspar, borax.
Part 2.-Triboelectric
................ .+17
............... ...+ 15
cu
..................+
................. +
24 25 26 27 28
29 30 31 32 33 34
Amber. Slate chrome-alum. ShellHc, resin, sealing-wax. Ebonite. Co. Ni, Sn, Cu, As, Bi, Sh, Ag, Pd, C, Te, Eureka, straw, copper sulfate, brass. Para rubber, iron alum. Guttapercha. Sulfur. Pt. Ag. Au. Celluloid. Indiarubber.
series in voltage o f a number of metals as compared with silica (as 0 ) lrn
Au Pt
Bi
13 Silk. 14 Al. Mn, Zn, Cd. Cr, felt, hand, wash-leather. 1 5 Filter paper. 16 Vulcanized fiber. 17 Cotton. 18 Magnalium 19 K-alum, rock-salt, satin spar. 20 Woods, Fe. 21 Unglazed. porcelain, salammoniac. 22 K-hichromate, paraffin, tinned-Fe. 23 Cork, ebony.
9.3 8.5
Ni Ph Fe Cr co
TI
.................. +
7.8
.................. + .................. +
1.4
.................+ 7 .................. + 4.8 .................. + 3.3 .6
Zn Sn Se
......... 0. ......... .1 .................- 3 ................. - 7.3 .................- 7.7
'rn Shaw, P. E., and Leavey, E. W. L., Proc. Roy. SOC.,vol. 138, p. 506, 1932.
SMlTHSONlAN PHYSICAL TABLES
376
TABLE 372.-CONTACT
DIFFERENCE O F POTENTIAL I N VOLTS
*
Solids with liquids and liquids with liquids in air
Temperature of substances during experiment about 16°C C
-!.01
............
to
Cu
I:e
269 tn
148
Pt
Pb
Sn
[ .285 1
X
.\malg. Zn
Zn
Brass
Distilled water
(-.lo5
q
. . . . . . . . . . . . . . . sp.gr. 1.087 . . . . . . . .lo3 . . . . . . ... . . . . . . . . . . . . . . . CuSO, satsol. . . . . . . .070 ...... Sea salt sol. . . . -.435 . . . --.856 -.334 -.565 1.18 at 20°C . . . . . . . --.475 -.605 ... -.348 ,059 --.364 -.h37 N H L I . sat.sol. . . . . . . -.396 -.h52 -.189 ZnSO, sol. 1.125 . . . . . . -.238 ...... at 4°C . . . . . . . . . . . . . . . . . . . . . . . .. --.430 -.284 . . . -,200 ...... ZnS04 sat.sol. . . . . . . . . . . One part H 2 0 ... . . . . . . -.444 ...... 3, sat. ZnSO. . . . . . . . . Strong HzSO, in water : . . . . . . -.344 . . . . . . . . . . . . 1 to20 by wt. . . . . . . . . . . . about 1 to 10 by VOI. ....{-,035 ... ... . . . . . . . . . . . . . . . -358 ... . . . . . . . . . .429 ... I t 0 5 by wt. ...... . . . . . . ......
+
5 t o 1 by wt.
......
...
. . . -.120
. . . -.25
......
-.016
{ ?.:
1.3 to . . . . . . ,848 ... 1.298 1.252 1.6 Con. HNO, . . . . . . . . . . . . . . . . . . ,672 . . . . . . . . . . . . ... Mercurous sulfate paste, Hg, + ,475. Sat.CuS04sol., H,O, - .043 ; sat.ZnS04sol., ,095 ; 1 pt. H20,3 pt. ZnSOI ,102. 1.298; sat.aluin.sol., + 1.456 ; CnS04sat.-t1.269 ; ZtiSO.sat.sol., Concentrated H,S04, H,O, 1.699.
Con. HSO,
......
{
.55 to .85
1.113
...
+
+
+
+
Everett, Units and physical constants: Table of Ayrton and Perry's results, prepared by Ayrton.
TABLE 373.-THERMAL
ELECTROMOTIVE FORCE OF A L U M I N U M VERSUS P L A T I N U M 'O
Tcmperature versus emf "C
0
20 40 60 80 100 120 140
i 60
180 200 220 '40
mv
.ooo
+.062 .135 .218 ,312 .416 .529 .651 .781 .919 1.064 1.216
Nat. Bur. Standards Circ. 346, 1927.
SMITHSONIAN PHYSICAL TABLES
"C
mv
"C
mv
240
1.374 1.538 1.708 1.884 2.065 2.252 2.444 2.641 2.843 3.050 3.262 3.480
480 500 520 540 560 580 600 620 640 660
3.703 3.931 4.164 4.403 4.647 4.896 5.150 5.409 5.673 5.942
360 380 400 420 440 460
377 T A B L E 3 7 4 . 4 O M P O S I T I O N A N D ELECTROMOTIVE FORCE OF VOLTAIC CELLS
The electromotive forces given in this table approximately represent what may be expected from a cell in good working order, but, with the exception of the standard cells, all of them are subject to considerable variation. Part 1.-Double Negative pole
Name of cell
Runsen
Dartjell
Grove
"
I'
I'
t'
I'
"
I.'
'I
'I
"
"
I'
"
"
"
'I
'1
"
' I
1'
"
'I
"
"
'1
"
'I
I'
Partz
Positive pole
Solution
1,HxSOd ;12,H20
Am;lg.?p
Chromate
fluid cells
Part 2.-Single
1-eclanche Amalg. ?p Chaperon Etlisoii-Ixlande " Z 11 AgCI Law Dry cell
Fuming HNO, H N O , ; dens. 1.38 1,HzSOI ; 12,HzO
C
12,K,Crz0, ; 25,HzSO, ; 100,HzO I,H,SOI ; 12,HzO 1.H&O, : 4.H2O 1;H;S04; 12,HzO 5% sol.ZnSO4 ;6H,O 1NaCl ; 4 parts Hz0 IHZSO,; 12Hz0 Sol.ZnSO4 H z S 0 4sol. ; dens. 1.136 HzSO, ; dens. 1.134 H 2 S 0 4sol. ; dens. 1.14 H & 0 4sol. ; dens. 1.06 NaCl sol. SOI.MKSOI
emf in volts
Solution
12,KzCrz0,:100,HzO 2.03 Sat.sol.CuS0. ; 5 , H ~ 0 1.06 1.09 1.08 1.05 Fuming HNO, 1.93 HNO, ; dens. 1.33 1.66 1.93 Concent. H N O:, HNO.: dens. 1.33 1.79 HNO,; dens. 1.19 1.64 " 1.61 1.33 1.88 Sol.KzCrzOi 2.06
cu Pt
1:
::
I'
I'
fluid cells
Carbon * Coqper +
Sol.NH,CI Sol.KOH
1.46
.98 .70 1.02 1.37 1.3
I'
Poggydorff
$yialg. Zn
Regnault Volta coude
Zn
"
"
23% sol.NH,Cl 15%
' I
Silver i Cat-mi
"
1 1)t. 2110,1 1)t. NH,CI, 3 pts. plaster of paris, 2 nts. ZnCL and water to make a paste Sol.KzCrrOi ; 25HA0, : 12KzCr201 100,HzO lHzSO,; 12HzO; lCaSO4 Cd
(2)
Main Edison
H,SO, sol. of density 1.1 CUSo,; HzS04
Amalg.Zn
Z n S 0 4 sol.
"
Fe
H S O , : dens. about 1.1 K O H 20% sol.
Pl$L
2.25 1.hl, to .85
i; H;:OJ
2.36 2.50 1.1 mean
A nickel oxide
$ F. Streintz gives the following value o f the ternlwrature v:iri;itions
emf d E / d t X 10"
1.9223
140
1.9828 228
2.0031 335
2.0084
285
& d!t
;It different stages uf charge:
min5 255
Dolezalek gives the following relation hetween emf and acid concenti-ntion: Percent H S O , 64.5 52.2 35.3 21.4 emf "C 2.37 2.25 2.111 2.00
(contintled) SMITHSONIAN PHYSICAL TABLES
% Depolarizer: Silvcr
cells
Ph Cu
"
.34 .98
t Dcpo1:irizer: CuO.
Part 3.-Secondary
"
1.08 2.01
cu
HZO
Deliolarizer: Manganese peroxide with powdered carhon. chloride.
Ph accumulator Regnier (1)
1.94 1.86 2.00
2.0779 130 5.2 1.89
2.2070 73
378 T A B L E 374.-COMPOSITION
A N D E L E C T R O M O T I V E FORCE O F V O L T A I C C E L L S (concluded) Part 4.-Standard
Clark
Z n + Hg
ZnSO.
Weston /I
Cd-tHg
CdSO4
1I V e r y
cells
1.434
Paste HzSO*+Hg Paste CdSO4+Hg
1.0185
low temperature coefficient.
T A B L E 375.-DIFFERENCE O F POTENTllAL B E T W E E N M E T A L S I N SOLUTIONS O F SALTS
The following numbers are given by G. Magnanini for the difference of potential in hundredths of a volt between zinc in a normal solution of sulfuric acid and the metals named at the head of the different columns when placed in the solution named in the first column. T h e solutions were contained in a U-tube, and the sign of the difference of potential is such that the current will flow froin the more positive to the less positive through the external circuit. S t r e n g t h of the solution i n g r a m molecules ner liter
Cadmium
Zinc
No. of molecules
Salt
.5
HzSO, NaOH KOH
1.o 1.o
.5
1.o
.5 ,251 ,167 1.o 1.o
.5 ,125
1.o .2 ,167
.5
1.o
.5 .5
.
Copper
Silver
36.6 19.5 15.5 35.6 24.1
51.3 31.8 32.0 50.8 45.3
51.3 .2 -1.2 51.4 45.7
100.7 80.2 77.0 101.3 38.8
121.3 95.8 104.0 120.9 64.8
11.8t 11.5 23.9f 72.8 1.8
31.9 32.3 42.8 61.1 34.7
42.6 51.0 41.2 78.4 51.0
31.1 40.9 40.9 68.1 40.9
81.2 95.7 94.6 123.6 95.7
105.7 114.8 121.0 132.4 114.8
- .5 - 6.1 41.0: - 1.2 4.5
37.1 33.6 80.8 32.5 35.2
53.2 50.7 81.2 52.8 50.2
57.6t 41.2 130.9 52.7 49.0
101.5 -t 110.7 52.5 103.6
125.7 87.8 124.9 72.5 104.6 8
14.8 21.9 -t 15-lot 13-20?
38.3 39.3 35.6 39.9 40.7
50.6 51.7 47.5 53.8 51 3
48.7 52.8 49.9 57.7 50.9
103.0 109.6 104.8 105.3 111.3
119.3 121.5 115.0 120.9 120.8
2.9 2.8 2.3 -
32.4 22.5 31.9 31.7 32.1
51.3 41.1 51.2 47.2 51.6
50.9 50.8 50.3 52.5 52.6
81.2 61.3 80.9 73.6 81.6
101.7 61.5 101.3 82.4 107.6
- 8.2 18.4 5.5 4.1 - 7.9
28.7 41.6 39.7 41.3 31.5
41.0 73.1 61.3 61.6 51.5
31.0 70.6t 54.4z 57.6 42-47
68.7 89.9 104.6 110.9 100.8
103.7 99.7 123.4 125.7 119.7
.5 .5 .5
-3
Tin
.o
-32.1 -42.5 1.4 - 5.9
1.o 1.o
1.o 1.o 1.0 1 .o 1.o
Lead
Difference of potential in centivolts
NH*CI KF NaCl KBr KCI NazSO. NaOBr C,HaOn C,H,Oe C4H4KNaOs
Amalgamated. t Not constant. corresponding to N a O l l = 1.
SMITHWNIAN PHYSICAL TABLES
t A f t e r some time.
$ A quantity of
hromine was used
T A B L E 376.-THERMOELECTRIC
379
E F F E C T O F ALLOYS
The thermoelectric effect of a number of alloys is given in this table, the authority being Ed. Becquerel. They are relative to lead, and for a mean temperature of 50°C. I n reducing the results from copper as a reference metal, the thermoelectric effect of lead to copper was taken as -1.9. I
.E
0-2
' 0 -
g.:
2%; rn b.2.O 2 % gb€ .;E
4
Substancr
Antimony Cadmium Antimony Cadmium Zinc Antimony Cadmium Bismuth Antimony Zinc Antimony Zinc Bismuth Antimony Cadmium Lead Zinc Antimony Cadmium Zinc Tin
z:}
Substance
4
227
2) 146 1 121
137
E} 95
22r
8.1
121
'} 1
76
1
f) 1
46
Antimony Zinc Tin Antimony Cadmium Zinc Antimony Tellurium Antimony Bismuth Antimony Iron Antimony Magnesium Antimony Lead Bismuth Bismuth Antimony
Bismuth Antimony Bismuth Antimony Bismuth Antimony Bismuth Antimony Bismuth Tin Bismuth Selenium Bismuth Zinc Bismuth Arsenic
:}-33.4
T A B L E 377.-THERMOELECTRIC
:}-51.4 !}-63.2 !'}-68.2 ':}-66.9
:> 6o
1;}-24.5
:'}-31.1 ':}-46.0
'>
Bismuth sulfide 1
68.1
EFFECT
A measure of the thermoelectric effect of a circuit of two metals is the electromotive force produced by 1"C difference of tempcrature between the junctions. The thermoelectric Bt, effect varies with the temperature, thus. thermoelectric effect = Q = d E / d t = A where A is the thermoelectric effect at O"C, B is a constant, and t is the mean temperature of the junctions. The neutral point is the temperature at which d E / d t = 0, and its value is - A / B . When a current is caused to flow in a circuit of two metals originally a t a uniform temperature, heat is liberated at one of the junctions and absorbed at the other. The rate of production or liberation of hcat at each junction. or Peltier effect, is given in calories per second, by multiplying the current by the coefficient of the Peltier effect. This coefficient in calories per coulomb = QT/T, in which Q is in volts per degree C, T is the absolute temperature of the junction, and 7 = 4.19. Heat is also liberated or absorbed in each of the metals as the current flows through portions of varying temperature. The rate of production or liberation of heat in each metal, or the Thomson effect, is given in calories per second by multiplying the current by the coefficient of the Thomson effect. This coefficient, in calories per coulomb = BTsIT, in which B is in volts per degree C, T is the mean absolute temperature of the junctions. and 0 is the difference of temperature of the junctions. ( B T ) is Sir W . Thomson's "Specific Heat of Electricity," The algebraic signs are so chosen in the following table that when A is positive, the current flows in the metal considered from the hot junction to the cold. When B is positive, Q increases (algebraically) with the temperature. The values of A , B , and thermoelectric effect in the following table are with rcsprct to lcad as the other metal of the thermoelectric circuit. The thermoelectric effect of a couple composed of two metals, 1 and 2, is given by subtracting the value for 2 from that for 1 ; when this difference is positive, the current flows from the hot junction to the cold in 1. In the following table, A is given in microvolts per degree, B in microvolts per degree per degree, and the neutral point in degrees. The table has been compiled from the results of Becquerel, Matthiessen and Tait; in reducing the results, the electromotive force of the Grove and Daniel1 cells has been taken as 1.95 and 1.07 volts. The value of constantan was reduced from results given in LandoltBornstein's tables. (coiitinued)
+
SMITHSONIAN PHYSICAL TABLES
380
EFFECT (concluded)
TABLE 377.-THERMOELECTRIC
Substance
A
B
Microvolts
Microvolts
Aluminum ..................... - .76 Antimony, comm'l pressed wire.. axial ................ equatorial ............ A r g y t a n ...................... -1 1.94
-
......................
Arsenic ....................... Bismuth, comm'l pressed wire.. . ' pure ... ' crystal, axial ......... " equatorial ..... Cadmium ...................... 2.63 fused ................ Calcium ....................... Cobalt ........................ Constantan .................... C o q p r ........................ 1.34 commercial ............ ' galvanoplastic .......... Gallium ....................... Gold .......................... 2.80 Iron .......................... +17.15 '' pianoforte wire ............ " commercial ............... ............... Lead .......................... Magnesium .................... 2.22 Molybdenum ................... Mercury ...................... Nickel ........................ " (-18" t o 175") ........... -21.8 " (250"-300") ............. -83.57 " (above 340") ............. - 3.04 Palladium ..................... - 6.18 Phosphorus (red) .............. Platinum ...................... " (hardened) ........... 2.57 '' (malleable) ........... - .60 wire ................. ' another specimen ...... Platinum-iridium alloys : 85% P t 15% I r ........... 7.90 90% P t 10% Ir ........... 5.90 5% I r ........... 6.15 95% P t Selenium ....................... Silver ......................... 2.12 " (pure hard) .............. " wire .................... Steel .......................... +11.27 Tantalum ...................... T e l l y i u m * p .................. -
+.0039
-.0506
-
+
+
+
+ + +
a
++ +
Thallium ...................... Tin (commercial) ..............
........................... ........................... Tungsten ...................... Zinc ..........................
.
I'
pure pressed.. .............
- .43 2.32
+
-
+.0101 -.0482
-
-
.oooo
--.0094 -
-.0506 +.2384 -.0506 -.0355 -.0074 -.0109
-
+.0062 -.0133 .0055
+
-.0325 +.0147
-
+.0055 f.0238 -
Electrical conductivity of Tea = 0.04, Tea = 1.7 emu.
SMITHSONIAN PHYSICAL TABLES
-
.68
+ 6.0 + 22.6 + 26.4 - 12.95
13.56 - 97.0 - 89.0 - 65.0 - 45.0 3.48 -
-
- 22
-
..................
20°C
+
+
+
-
Thermoelectric effect at mean temp. of junctions (microvolts)
-
+ 1.52 + .10 + 3.8 - .2 + 3.0 + 16.2 + 17.5-
++ + -
-
.oo
2.03 5.9 .413 -
- 22.8 - 6.9 29.9
+ ++
.F
2.42 - .818 -
+ 8.03 + 5.63 + 6.26 +807. + 2.41 + 3.00+ 10.62
- 2.6 +500. +160.
+
.8
+-
.I
-
+
+
-
.33 2.0 2.79 3.7
50°C
-
.56 -14.47 -12.7 -
Neutral point
--AB
+ 195 -
- 236
-
-
+ 4.75 + 2.45 + 8.9-19.3 1.81 3.30 +14.74 +12.10 9.10
+
+
+ .oo + 1.75
-
- 3.30 -15.50 -24.33
-
- 143
[-
+ +
+ 8.21 + 5.23 + 6.42 + 2.86 + 2.18
2771
+ 356
-
+ 236 [-
-
- 7.96 2.20 - 1.15 .94 - 2.14
62
-
4311 174
347 - 55 -12741 444 -11181 - 144
-
+ 9.65-
.33 - .16 3.51 -
+
+
347 -
38 1 T A B L E 378.-THERMAL
E L E C T R O M O T I V E FORCE O F M E T A L S A N D A L L O Y S VERSUS P L A T I N U M
(millivolts)
+
indicates that the current flows from the 0" One junction is supposed to be at 0°C; junction into the platinum. The rhodium and iridium were rolled, the other metals drawn. Temperature, "C
-185 - 80 +loo +200 +300 +400 +SO0 +600 +700 +800
+900 +lo00 +1100 +(1300) +(1500)
Au
Ag
- .15 - .16 - .31 - .30 .74 .72 +1.7 +1.8 +3.0 +3.0 +4.5 +4.5 +6.2 +6.1 +8.2 +7.9 +9.9 +10.6 +12.0 +13.2 +14.3 +16.0 -+16.8 --
90%Pt+ 100,hPd
+
+
--
-
- .ll
- .09
+ .26
+
.62 +1.0 +1.5 +1.9 +2.4 +2.9 +3.4 +3.8 +4.3 +4.8
- -
1WOPt+ 90"/uPd
90%Pt+ 90070 P t f 10C/ORu 10%Rh
Pd
+ .24 + + .77 .39 + .15 - .19 - .56 - .31 - .37 - .35
-1.20 -2.0 -2.8 -3.8 -4.9 -6.3 -7.9 -9.6 -11.5 -13.5
- .18
+ .12 + .61 +1.2 +2.1 +3.1 +4.2
--
-
T A B L E 379.-THERMOELECTRIC
Ir
Rh
- - .53 - .28 - .24 - - .39 - .32 - .31 -+ .73 + .65 + .65 - +1.6 +1.5 +1.5 +2.6 +3.6 +4.6 +5.7 +6.9
+2.3 +3.2 +4.1 +5.1 +6.2 +7.2 +8.3 +9.5 +10.6 +13.1 +15.6
+8.0
+9.2 +10.4 +11.6 +14.2 +16.9
+2.5 +3.6 +4.8 +6.1 +7.6 -9.1 f10.8 +12.6 +14.5 +18.6 +23.1
+2.6 +3.7 +5.1 +6.5 +8.1 +9.9 +11.7 +13.7 +15.8 +20.4 +25.6
PROPERTIES A T L O W TEMPERATURES"'
Thermoelectric emf per "K against silver alloy "C
cu
Ag
Au
-255 -240 -220 -200 -180 -160 -140 -120 -100 - 80 - 60 - 40 - 20 0 20
+.07 .45 .90
-.lo +.37 .39
.44
.20
-1.20 - .05 .24 .30 .30 .33 .3f .40 .44
+
1'1
Pd
+ .75
2.10 3.40 3.48 2.14 .54 -1.06 -2.52 -3.92 -5.27 -6.52 -7.80 -9.05 -10.32 -11.6
+
.47 ..
.51
.55
.58 .53 .56
.62 .65
.21 .22
Pt
Pb
Fe
+.05 1.40 4.80 8.45 11.5 14.0 15.8 16.9 17.5 17.5 17.3 16.9 16.2 15.8 15.3
+1.54 3.60 5.24 5.40 4.36 3.02 1.72
.so
- .70
-1.76 -2.80 -3.80 -4.72 -5.62 -6.56
-1.06 -1.19 -1.25 -1.29 -1.33 -1.42 -1.54 -1.67 -1.79 -1.92 -2.05 -2.17 -2.29 -2.42 -2.54
Borelius, Keesom, Johansson, Linde, Com. Phys. Lab. Leiden, No. 206, 1930.
T A B L E 380.-PELTIER
E F F E C T , FE-CONSTANTAN, NI-CU, 0" -560°C 20'
130"
240'
320"
560°C
Fe-Constantan
3.6
4.5
6.2
8.2
12.5
NiCu
2.15
2.45
2.06
1.91
Temperature
00
. . . . . . . . 3.1 ............ .... 1.92
SMITHWNIAN PHYSICAL TABLES
2.38
382 "K
20 25 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 200 220 240 260 280 300
E F F E C T IiN MICROVOLTS P E R DEGREE
T A B L E 381.-THOMSON AK
cu
4-.59 1.04 1.22 1.03 .67 .18 - .29 - .46 - .48 - .45 - .37 - .26 - .13 .02 .17 .31 .46 .59 .79 .96 1.10 1.24 1.38 +1.52
+
Au
$1.40 1.23 .85 .24 - .02 - .17 - .24 - .25 - .17 - .03 .12 .25 .35 .44 .52
.05
.17 .32 .45 .56
+
.66 .75 .83 .9 1 .99 1.06 1.19 1.31 1.43 1.54 1.66 +1.77
.59 .66 .72 .84 .96 1.08 1.20 1.32 +1.44
T A B L E 382.-T
Pt
Pa
+1.9 2.6 3.1 3.2 2.5 1.0 -1.5 -4.6 -6.6 -7.8 -8.7 -9.3 -9.7 -10.1 -10.3 -10.6 -10.9 -11.2 -12.1 -13.3 -14 6 -15.8 -17.0 -18.2
+2.S3 2.09 1.58 .88 .45 .19 .07
Fe
f3.2 3.6 3.9 3.8 2.7 1.o -1.1 -3.3 -5.1 -6.5 -7.5 -8.0 -8.2 -8.2 -8.3 -8.4 -8.5 -8.7 -9.1 -9.8 -10.6 -11.4 -12.3 -13.2
$1.3 2.7 4.1 6.7 9.0 10.8 11.9 12.6 12.9 13.0 13.0 12.8 12.2 11.0 8.9 6.1 2.6 - .2 -3.5 -4.5 -4.8 -5.2 -5 6 -5.9
Ni
co
... ...
...
Pb
... ... .00
...
-4 5 -5.4 -5.0 -4.5 -4.1 -4.0 -4.0 -4.5 -5.3 -6.4 -7.4 -8.3 -9.0 -9.7 -10.3 -10.9 -12.1 -13.3 -14.5 -15.7
- .2 - .3 - .8 -2.0 -3.7 -5.5 -7.0 -8.4 -9.8 -11.1 -12.4 -13.5 -14.6 -15.7 -16.7 -17.6 -19.6 -21.5 -23.4 -25.4
-.04 -.06 -.09 -.12 -.15 -.18 -20 -.23 -26 -29 -.32 -.34 -.37 -.40 -.42 -.46 -.49 -9 -274
... ...
...
...
-55
-.57
H E RM 0 E L E C T R I C E F F E C T S ; P R ESSU R E E F F E C T S
The following values of the thermoelectric effects under various pressures are taken from Bridgman. A positive emf means that the current at the hot junction flows from the uncompressed to the compressed metal. The cold junction is always at 0°C. The last two columns give the constants in the equation E =thermoelectric force aqainst lead (0" to 100°C) = ( A t Bt') X lo-" volts; a t atmospheric pressure, a positive emf meaning that the current flows from lead to the metal under consideration at the hot junction.
+
Thermal emf, volts X lo9 Pressure, kg/cm* 2000
4000
Temperature, I
Metal Bi .......... Zn . . . . . .
50"
100'
.... TI . . . . . . . . . . Cd . . . . . . . . . . Constantan . . Pd . . . . . . . . . . Pt . . . . . . . . . . w .. . . . . . . .,
..__...... . . . . .. . . . .......... . . . . . . .... . . . ... . . . cu .. . . .. . ,. A1 . . . . . . . . . . Mo . . . . . . . . . Sn . . . . . . . . . .
Ni Ag Fe Pb Au
100" 185,000 28500 20:290 14,380 11,810 8,800 7,310 4,990 3,400 3,720 3,250 2,120 2,051 1,216 294 278
+ins
... . ......
-452 -362 --692
Manganin MK ......... c o . ..
a, --.0s56ta; b, -.0d36ta,
50'
12,000
8000
50" 255,000 26100 17:170 10,960 11,530 8,630 7,370 4,690 3,230 3,350 5,300 1,860 1,791 1,124 32 375 +70 -489 --395 -630
1000
425,000 58,100 37,630 28,740 23,790 17,690 14,350 10.120 7,190 7,190 5,820 4,210 3,974 2,420 929 555 +292 -894 -791 -1,360
annealed ingot iron; c, -.0a166ta;
SMITHSONIAN PHYSICAL TABLES
-
Formula coefficients
"C 50" 1000 20" 185,000 452,000 710,000 14,400 38,500 87,400 8,780 23,750 52,460 6,680 19,180 45,560 6,750 17,200 35,470 5,090 12,970 26,520 3,880 11,030 21,570 7,050 15,140 2,700 5,140 11,440 1,880 4,950 10,560 +1,900 7,680 220 -990 281 6,330 +880 5.760 2,627 +990 1,616 3,546 +596 1,962 312 -68 833 5 62 +146 +390 -182 +lo -719 -1,314 -308 -648 -1,296 -259 -352 -937 -2,061
d. -.0,1t8;
e. -.0,25ts;
' A -74.42 +3.047 +1.659 +12.002 -34.76 -5.496 -3.092 +1.594 -17.61 +2.556 +16.18
-
+2.899 +2.777 -.416 +5.892 +.230 +1.366 -.095 -17.32
f , -.04112t8
B
f.0160 --.00495 -.OO 134' +.1619 --.0397 -.01760 -.01334 f.01705 -.0178 +.00432b -.0089b
-
+.00467e f.00483 +.00008d
+.02 1670 --.00067 +.000414f +.00004 -.0390
T A B L E 383.-PELTIER
383
A N D T H O M S O N H E A T S ; PRESSURE E F F E C T S
The following data indicate the magnitude of the effect of pressure on the Peltier and Thomson heats. They refer to the same samples as for the last table. The Peltier heat is considered positive if heat is absorbed by the positive current from the surroundings on flowing from uncompressed to compressed metal. A positive dZE/dtzmeans a larger Thomson heat in the compressed metal, and the Thomson heat is itself considered positive if heat is absorbed by the positive current in flowing from cold to hot metal. Same reference as footnote 141, and notes as for preceding table. Peltier heat,
Thomson heat 108 X J X coulomb-; 'C-1
1W x Joules/coulomb Pressure kg/cmP
6000
Pressure kg/cm*
6000
12,000 Temperature "C
I
00 50' 1000 0' 50" Metal Bi - +25W +2810 +lo70 +I210 Zn 4-140 3.190 +98 +190 +278 TI +95 +124 +I12 4-17] +66 Cd +71 4-118 +81 4-148 +19 Constantan 4-46 4-57 +70 4-90 f114 Pd .......... +35 4-43 +52 +68 +86 Pt +45 +76 +23 +37 4-35 w .......... 4-17 4-25 +32 +36 +49 Ni .......... 3-11 4-17 +23 +24 +37 Ag +34 Fe -38 +38 Pb .......... 4-10 +16 4-14 +20 A u ......... 4-10 +14 +13 +18 c u ......... 4-4 +6 A1 .......... Mo Sn Manganin ... -2 -2 -2 -4 -4 Mg -16 -a1 -35 -42 -18 co -23 -33 -44 -46 -67
-
0"
1000
.......... .......... .......... .......... .. ..........
-
+llSO
$412 4-229 4-221 +I40 +lo3 4-65
+lo9
......... ..........
+44 +36
+4 +79
+30
+2
......... .......... ......... ..........
T A B L E 384.-THERMAL
12,000 Temperature "C
50" +650 +48
$:!
+28 +74 +6
+S
100'
+56 +26 +63 +6
50" 100' -405 +133 +220 +63 +SO +lo5 +92 4-93 f13 +14 4-17 +9 +8 +17 +59 +14 +20 +15 4-10 +16 +lo 4-7 +8 -347 +lZO -194 +20 +6 +8 +6 4-7 +6 0'
-520 +63 +79
+' -$ +-'4-76 -% ' + " 9" +8 +6 +9 4-7 +8
+6S
+so +25
+5
+SS +6 +4
+4
+la
2: +2
+6 -121 $10 +5
+2
+;+6 +A
4-0
-4
4 8
-14
-90
-11
+29
-11 +2
-2
+o"-1 -10
-20
-24
-28
-5
+A +;
+o"
E L E C T R O M O T I V E FORCE O F C A D M I U M VERSUS P L A T 1NUM
Temperature versus emf "C
mv
"C
+.171 .378 620 .898
125 150 175 200 225
.ooo
0 25 50 75 100
mv
"C
1.211 1.559 1.940 2.351 2.790
T A B L E 385.-PELTIER
mv
250 275 300 315
3.255 3.740 4.238 4.539
EFFECT
The coefficient of Peltier effect mav be calculated from the constants A and R of Table 377, as there shown. With Q (see Table 377) in microvolts per "C and T = absolute temperature ( K ) , the coefficient of Peltier effect = QT cal per coulomb =O.O0086 QT cal 42 per ampere-hour = QT/1000 millivolts (= millijoules per coulomb). Experimental results, expressed in slightly different units are here given. The figures are for the heat production at a junction of copper and the metal named in calories per ampere-hour. The current flowing from copper to the metal named, a positive sign indicates a warming of the junction. Calories per ampere-hour Sb.
-
13.02
Sb commercial t Bi pure
-
$8
-
19.1
Bit
-
Cd
-.62
25.8
.46
German silver
-
Ni
Pt
-3.61
Fe
4.36
.32
2.47
2.5
-
-
*Becquerel's antimony is 806 parts Sb+406 arts Z n + 121 parts Bi. t Becquerel's bismuth i s 10 parts Bi 1 part gb.
+
SMITHSONIAN PHYSICAL TABLES
Ag
-.41
-
Zn
-.58 .39
TABLE 386.-RESISTIVITY
384
OF METALS AND SOME ALLOYS
The resistivities are the values of p in the equation R = pl/s, where R is the resistance in microhms of a length I cm of uniform cross section s cmz. The temperature coefficient is a, in the formula Rt = R.[1 a,(t - t , ) ] . The information of column 2 does not necessarily apply to the temperature coefficient.
+
TemperaSubstance
Remarks
Advance ........... see constantan Aluminum ......... -......... c.p.
'
.........
'
.........
......... AntiFony .......... -_ __ .......... .......... liquid Arsenic ............ __ Beryllium ......... __ Bisrffuth . . . . . . . . . . . __ __ ........... Brass ............. __ Cadmium .......... drawn .......... .......... .......... liquid Calcium ........... 99.57 pure Calido ............. see nichrome Cesium ............ -__ ............ ' ............ ' ............ liquid solid } Chromium ......... __ Climax ............ __
Cobalt ............. 99.8 pure Comfantan ........ 60% Cu. 40% Ni
__ ........ __ ........ __ ........ __ ........ C o y e r ............ annealed ............ hard-drawn ' ............ electrolytic ............ . . . . . . . . . . . . . pure . . . . . . . . . . . . . very pure, ann'ld Eureka ............ see constantan _Excello ............ Gallium ........... __ German silver ...... 18% Ni Germanium ........ __ Gold .............. 99.9 pure __ .............. .............. pure, drawn . . . . . . . . . . . . . . . . 99.9 pure Ia Ia .............. see constantan Ideal ................ Indium ............ Iridium ............ __ ............ __ ............ Iron ............... 99.98% pure pure, soft ' ............... ............... ............... " "
"
"
"
"
"
"
"
tpe
C
20 -189 -100
0 $100 400
n
-190
+860 0 20 18 100 20 -160 18 100 318 20
_-
-187 0 27 30 0 20 20 20 --
cm
2.828 .64 1.53 2.62 3.86 8.0 39.1 10.5 120 35 10.1 119.0 160.2 7
2.72 7.54 9.82 34.1 4.59 5.25 19 22.2 36.6 13 87 9.7 49
a,
t*
__
-18" 25 100 500
+.0039 +.0034 +.0040 +.0050
__ __
+.0036 -
__ -_ +.004 __ 20 20
+.W2 +.0038 -
__ --
+.0036 -
__ __
-
+.0007
20 12 25
+.oooOO8
+.000002
-
-.000033 -.000020 +.WOO27 +.00393 +.00382 +.0038 .0042 +.0062 -
-
+.00016 +.0004 -
__ __ 20 20 -206 +205 400 20 20 0 20 0
-183
0 20 194.5
1.724 1.77 .I44 2.92 4.10 1.692 92 53 33 89000. .68 2.22 2.44 3.77
2 "
100 400
+
1000
20
20
-
20 100 an;'ld
500 1000
"
-186
0
0
+l2
-205.3 - 78 0
lntinued)
SMITHWNIAN PHYSICAL TABLES
Temperature coefficient
Microhm-
8.37 1.92 6.10 8.3 10
,652 5.32 8.85
__ __ 20 0
25 100
+.0050 +.OM2 +.0052 +.0068
TemperaSubstance
............
............ ... ............ ............
C
+ 98.5
soft
'I
"
"
"
196.1 400 0 100 20 -183 - 78 0 90.4 196.1 318 -187 0 99.3 230 20 -183 - 78 0 -+98.5 400
electrolytic
_........... ... ........... ... cs!d pre:sed ' ........... ... ........... ........... ... __ ........... ... solid Lithium ........ ' ........ ... ........ ... ........ ... liquid __ Magnesium ..... ... ' ..... ... free from '
Le;d
tye
Remarks
............... pure,
1r:n
+
1'
..... ... ........
"
..... ...
.. ...
'I
Manganese Manganin 'I
' " 1'
"
Meryry
' ' ' "
'
..... ...
...... ...
......... .. ... ......... ......... .........
........... ........... ........... ........... ........... ........... ........... ........... ........... ........... ...........
Molybdenum
"
"
<:
"
"
t'
,'
I.'
"
pure
__ solid
'
liquid
....... very pure __
__ -__ __
.......
............. very pure ............. pure ............. ............. ............. __ ............. __ Osmium ........... _Pall+um ......... ......... very pure 'I
Platinum
"
_-
_-
84 Cu, 12 Mn, 4 Ni
Monel metal ....... Nichrome .......... Nickel .............
......... ......... ......... .......... .......... wire .......... .......... .......... .......... I'
' I
"
"
'I
'I
20 --
_-
Temperature coefficient
Microhmcm
17.8 21.5 43.3 10.0 14.41 22 6.02 14.1 19.8 28 36.9 94 1.34 8.55 12.7 45.2 4.6
11.9 5.02 44
_95.783 6.97 15.04 21.3 25.5 80.6
135.5 5.14
20 20 20 20 -182.5 - 78.2 0 94.9
42 100 7.8 7.236 1.44 4.31 6.93 11.1
20 20 -183 - 78 0 98.5 0 -203.1 - 97.5 0 100 400
9.5 11 2.78 7.17 10.21 13.79 9.83 2.44 6.87 10.96 14.85 26
--
__
n
500 1000
+.0147 +.0050 -
-
~~
20 -183.5 -102.9 - 50.3 - 39.2 - 36.1 0 50 100 200. 350 0
(continued) SMITHSONIAN PHYSICAL TABLES
385
I T Y O F M ETALLS AND SOME ALLOYS (continued)
T A B L E 386.-RESISTIV
__
__ _-
I
-
20 0 25 100 500 600
+.004 +.no38
+.0100
12 25 100 250 475 500 20 0
--.000052 --.OOOO00 -.OOoll +.00089 +.OW88
+
Rt = Ro(1 .00089t .ooOoOl t')
+
25 100 1000 20 20 20 0 25 100 500 1000
-
20 0
-
__ _-
+.0033 +.0034 ,0048 +.0020 +.OW4 +.006
+
-
+.0062 +.0043 ,0043 +.0030 +.0037
+
--
+.0033 +.0035
---
+.003 +.0037
TABLE 386.-RESISTIVITY
386
Substance
O F METALS AND SOME ALLOYS (continued)
Remarks
-......... -......... ......... R h o F m .......... --.......... _.......... ' .......... -Rub$lium .......... sofJd .......... ' .......... ' .......... liquid Silicium ........... -Silver ............. 99.98 pure ............. e1ect;olytic ............. ............. ............. ' ............. ............. Sodium ............ so!id ............ ............ Potassium "
"
"
"
"
"
"
"
"
............ ............ liquid Stzel .............. E. B.B. .............. B.B. .............. Siemens-Martin .............. manganese .............. 35%Ni, "invar." .............. piano wire .............. terffp. glass, hard .............. , yellow .............. , blue .............. , soft Strontium ......... "
'I
''
" "
"
" " "
" "
Tantalum .......... Tellurium* ........ -Thallium .......... pure "
.......... .......... ............... ............... ............... ...............
" "
Tin "
..........
'
--
--
............... .......... .......... .......... ' .......... .......... ' .......... .......... Z i y ............... trace ............... ............... ............... ............... ............... liquid Titanium Tunpen
'I
'6
"
'I
"
'I
"
* See note to Table 377.
SMITHSONIAN PHYSICAL TABLES
Temperatye
C
- 75
0 55
-186 - 78.3 0 10 -190 0 35 40 20 18 -183 - 78 0 98.15 192.1 400 -180 - 75 0 55 116 20 20 20 20 20 0 0 0 0 0 20 20 19.6 -183 - 78 0 98.5 20 -184 - 78 0 91.45
Temperature coefficient Microhmcm
4 6.1 8.4 .70 3.09 5.11 6.60 2.5 11.6 13.4 19.6
-
582
1.629 .390 1.021 1.468 2.062 2.608 3.77 1.o 2.8 4.3 5.4 10.2 10.4 11.9 18 70 81 11.8 45.7 27 20.5 15.9 24.8 15.5 200,000 4.08 11.8 17.60 24.7 11.5 3.40 8.8 13 i8.z 55 20 5.51 727 25.3 1227 41.4 1727 59.4 2727 98.9 3227 118 -183 1.62 3.34 - 78 0 5.75 92.45 8 10.37 191.5 440 37.2
--
20 25 100
+.0038 +.0030 +.0036 ,0044
+
500
?? y c$. ?' " "
'1
"
'I
I'
"
'I
-
0 see col. 2 '1
"
"
"
+.05 +.04 +.03 +.001
-
+.0032 +.0016
-
+.0033
-
+.0031
-
18 500 1000
387 O F M E T A L S A N D S O M E A L L O Y S (concluded)
T A B L E 386.-RESISTIVITY
Resistance temperature coefficient for a number of metals and alloys of high purity. (R,m-Rfl)/ 100Rfl
Ni . . . . . . . . . . . . . Zn ~...... . .. ... Cd . . . . . . . . . . . . P t . . . .. . ... . . .. Rh . . . . . . . . . . . .
T A B L E 387.-SOME
cu
Au A1 Cr Ti Na Ca Mg Rh W
.00215 ,00169 .00140 ,00144 ,00194 .00260
R.h.. -
Rh Rh Rh Rh Rh
E L E M E N T S A R R A N G E D I N OR D ER O F I N C R E A S I N G R E S I S T I V I T Y (ohm-cmxlO-a, 20°C)
5 2
Mn
1.468 1.59 2.22 2.6 2.6 3.2 4.3 4.3 4.35 4.69 5
Ag
Pt595 .. . 90 Pt-10 80 Pt-20 60 Pt-40 40 Pt-60 20 Pt-80
.00667 .00419 .00423 ,003925 .00436
(y& 6.10
Mo Zn Ir I< Ni Cd In Li Fe co
T A B L E 388.-THERMAL
Pd Pt Rh Sn Ta TI Cs Ph Sr As Sb
6.1 6.93 7.04 8.37 8.55 8.8 9
10.21 10.96 13 13 14.6 17.6 19 20.4 (23.5) 35 39
Ga
53 56 94.07 110 Graphite 8x10' Carbon 3x10' Te 2X10' P 10" B 8X10" Se 10'" S 1017 0s
2
E L E C T R O M O T I V E F ORC E O F PLA TllN U M-R H OD IU M ALLOYS VERSUS P L A T I N U M
emf (mv) Percent rhodium T:mp.
C
0 100 200 300 400 500 600 700 800 900 1000 1100 1200
.5
.oo
+.I0 20 29 .39 .48 .58 .67 .76 .85 .94 1.03 1.13
1.0
.oo
+.I8 .37 .57 .76 .94 1.12 1.30 1.48 1.66 1.84 2.02 2.20
5.0
10.0
.oo
.oo
+.54 1.16 1.82 2.49 3.17 3.86 4.55 5.25 5.96 6.68 7.42 8.16
20.0
40.0
80.0
100.0
+.63 1.44 2.40 3.47 4.63 5.87 7.20 8.59 10.06 11.58 13.17 14.84
.00 +.65 1.52 2.55 3.70 4.97 6.36 7.85 9.45 11.16 12.98 14.90 16.91
+.62 1.49 2.55 3.77 5.12 6.60 8.20 9.92 11.76 13.73 15.81 17.99
+.70 1.61 2.68 3.91 5.28 6.77 8.40 10.16 12.04 14.05 16 18 18.42
.oo
+.64 1.43 2.32 3.25 4.22 5.22 6.26 7.33 8.43 9.57 10.74 11.93
.oo
.oo
O F T E N S I O N ON T H E RESISTANCE OF M E T A L S
T A B L E 389.-EFFECT Li
Recip. Young's mod. X 10' . . . . . . 20 Poisson ratio . . . . . . .42 Tens. coef. spec. resist. x 10" . . . . .+11
SMITHSONIAN PHYSICAL TABLES
Ca
4.75 .30
+.8
Sr
7.5 .36 -21.2
Sb
Bi
Manganin
1.25 .30 ?
4.2 .37
.72 .33
+3.0
-3.65
-.60
Co
.5 .30 +.I9
388 T A B L E 390.-VARIATION O F THE E L E C T R I C A L R E S I S T A N C E W I T H PR ESSU R E FOR T W O T E M P E R A T U R E S O F A N U M B E R O F M E T A L S " 2 Copper-AR/R, Pressure kg/cma
~~~~~c
5,000 10,000 15,000 20,000 25,000 30,000
.0096 .0186 .0271 .0354 .0434 .0513
Silver-AR/R,
,0094 ,0185 .0271 .0354 .0435 .05 14
.0174 .0338 .0492 .0637 .0774 0904
,0176 .0311 .0497 .0644 .0784 .0916
Gold-AR/R,
.015 1 ,0293 .0429 .0559 ,0684 ,0806
Iron-AR/R,
.0154 ,0299 .0437 .0570 ,0698 ,0824
,0121 .0234 ,0341 ,0444 .0542 .0637
Lead--AR/R,
,0118 .0232 .0341 .0447 ,0548 ,0646
,0686 ,1266 ,1770 ,2214 ,2611 ,2959
,0691 .I277 .I791 ,2242 ,2643 2998
'WBridgman, Proc. Amer. Acad. Arts and Sci., vol. 72, p. 174, 1938.
T A B L E 391.-RELATIVE E L E C T R I C A L R E S I S T A N C E W I T H PR ESSU R E FOR T W O TEMPERATURES OF A NUMBER OF M E T A L S * Zinc Lithium 'R/R. R/R.' Pressure (0. 30 ) (0, 75 ) kg/cm2 30°C 75°C
0 2.500 $000 7,500 10,OOO 12,500 15,000 17,500 20,000 22.500
-_
1.0175 1.0354 1.0539 1.0727 1.0920 1.1117 1.1318 1.1524 1.1735 25:OOO 1.1919 27:SOO 1.2169 30,000 1.2394
Strontium
Barium
R/R(O, 30')
R / R ( @ , 30")
Calcium
__
1.0172 1.0351 1.0537 1.0730 1.0928 1.1131 1.1339 1.1553 1.1770 1.1992 1.2221 1.2453
R/R(O,300) 30
c
1.0000 1.0237 1.0490 1.0764 1.1069 1.1407 1.1772 1.2164 1.2582 1.3025 1.3491 1.3983 1.4500
75
c
1.1688 1.1922 1.2187 1.2485 1.2816 1.3178 1.3571 1.3998 1.4460
1.4959 1.5485 1.6033 1.6603
h
30°C
75°C
1.0000 1.1141 1.2448 1.3922 1.5562 1.7364 1.9333 2.1467 2.3767 2.6273 2.8905 3.1695 3.4665
1.0974 1.2140 1.3451 1.4908 1.6510 1.8258 2.0153 2.2195 2.4377 2.6703 2.9187 3.1805 3.4585
-
n
2,500 5.000 7:500 1o:ooo 12,500 15,000 17.500 2o;ooo 22,500 25,000 27,500 30,000
30"
1.nnnn
.664 .491 .378 .303 253 219 .197 .1821
-_
.1719 -.1778
750
__ __
.615 .467 ,372 ,310 ,269 242 ,224
__ ___
__
1.0030 ,807 .812 ,884 1.005
-1.046 1.117 1.260
_-
4.509
.216
For reference, see footnote 142, above.
SMITHSONIAN PHYSICAL TABLES
1.156 1.130 1.114 1.107 1.106 1.108 1.113 1.123 1.140 1.161 1.184 1.211 1.241
Cesium R/R(O, 30")
Potassium R/R(O, 30')
Pressure kg/cm2
1.0000 .98? ,971 ,967 .970 ,976 ,984 .995 1.008 1.025 1.044 1.066 1.092
Axis 87" to length R/Ro (0, 30 )
1,0000 .9868 ,9744 ,9638 ,9518 .9416 .9321 ,9233 ,9150 ,9072 ,8998 ,8926 ,8855
1.1627 1.1488 1.1355 1.1228 1.1107 1.0991 1.0880 1.0776 1.0677 1.0582 1.0498 1.0420
_-
Axis 17" length R/Ro (0,3@1
to
1.0000 .9758 ,9525 .9300 ,9081 .8882 ,8686 .8500 ,8321 ,8153 ,7990 .7835 .7687
1.1650 1.1352 1.1062 1.0809 1.0562 1.0325 1.0103 .9890 ,9687 ,9495 .9310 ,9129
.8959
R/R(O, Sodium 30")
Rubidium R/R(O, 30")
1.om0 A529 ,7537 ,6762 ,6171 ,5708 ,5341 SO49 .4813 ,4619 ,4456 ,4324 .4223
1.oo00 .615 ,471 ,407 .371 .354 ,350 ,358 .376 .404 ,447 ,504 .57G
389
T A B L E 392.-THERMAL E L E C T R O M O T I V E FOR C E O F N I C K E L VERSUS P L A T I N U M
Temperature versus emf "C 0
400 425 450 475 500 525 .~~ 550 575 600 625 650 675 700 725 750 775
-.350 .710 1.ow 1.485 1.880 2.285 2.695 3.105 3.505 3.870 4.255 4.590 4.880 5.110 5.290
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375
mv
"C
5.450 5.580 .. ~ 5.745 5.960 6.165 6.360 6.585 6.800 7.040 7.290 7.550 7.825 8.105 8.415 8.720 9.030
800 825
"C
mv
.ow
.
mv
9.350 9.675
850 875 900 925 950 975 1000 1025 1050 1075 1100
11.045 11.400
13.625
Nat. Bur. Standardz Journ. Res., vol. 5, p. 1291, 1930.
3 ' 1
T A B L E 393.-AVERAGE PRESSURE COEFFICIENTS * O F ELECTRICAL R E S I S T A N C E U P T O 7000 kg/cr.z AS A F U N C T I O N O F T E M P E R A T U R E " '
Temperatures Metal
.
Lead . . . . . . . . . . . Magnesium . . . . . . Aluminum . . . . . . . Silver . . . . . . . . . . . Gold . .... . . .. . . Copper . . . . . . . . . Nickel . . . . . . . . . . . Iron . . . . . . . . . . Palladium . . . . . Niobium . . . . . . . . Platinum . . . . . . . . Rhodium . . . . . . . Molybdenum . . . . . Tantalum . . . . . . . Tungsten . . . . . . . .
.
.
.
.. . . . . .
-182.0OC
-78.4"C
-12.76 -5.89 -9.16 -4.09 -3.27t -3.09 -1.88 -2.44 -2.82 - .so -2 31 -2.26 -1.91 -1.17 -1.36
-12.88 -4.49 -4.71 -3.46 -2.97 -2.14 -2.00 -2.27 - 2.32 - .98 -1.97 -1.86 -1.29 -1.42 -1.42
0°C
30°C
-12.99 -4.39 -4.28 -3.45 -2.94 -1.88 -1.85 -2.34 -2.13 -1.18 -1.93 -1.64$ -1.30 -1.45 -1.37
75°C
-9.3
-9.2
-3.0 -2.6 -1.7
-3.0 -2.7 -1.7
XI00 13ridgman. P. W., Proc. Anier. .\cad. A r t s and Sci., vol. 67, p. 342, 1932. Maximum pressure 4300. $ On a less pure sample.
144
t
O F M E R C U R Y A N D MA N GA N IIN U N D E R P R E S S U R E
T A B L E 394.-RESISTIVITY Pressure, kg/cmz
K (p , R(p, * Hg K(p,
-
500
-75 ') Hg . . .91S6 .9055 25") Hg . . . . 1.OOOO ,9836 . . . . . . . . . . . . 1.0030 ,9854 125") H g . . . 1.0970 1.0770
1003
1500
2000
2500
3000
4000
5000
6000
6500
3930 .9682 .9716 1.0583
.8818 ,9535 .9588 1.0400
,8714 .9394 .9462 1.0230
.8582 ,9258 .9342 1.0070
3478 .9128 ,9228 ,9908
3268 ,8882 ,9010 .9614
,8076 ,8652 .8806 ,9342
,7896 3438 3616 .9086
.7807 3335 ,8527 .8966
This line gives the specific mass resistance at 25" the other lines, the specific volume resistance. T h e use of mercury as ahove has the advantage of bklng perfectly reproducible so that at any time a pressure can be measured without recourse to a fundamental standard. However. a t 0°C mercury freezes a t 7500 kg/cmz. Manganin is suitahle over a much wider ranKe. Over a temperature range 0 to 50°C the pressure resistance relation is linear within %o percent of the change of resistance u p to 13.000 kg/cmz. T h e coefficient varies slightly with the saniple. Gridgmau's samples (German) had values of ( A R / b R " ) x 109 from 2295 to 2325. These a r e instead of -, a s with most of the ahove metals.
+
SMITHSONIAN PHYSICAL TABLES
390 E L E C T R O M O T I V E FORCE O F Z I N C VERSUS P L A T 1N U M
T A B L E 395.-THERMAL
'Temperature versus emf "C
"C
mv
100 125
150 175 200 225 250 275
.758 1.005
T A B L E 396.-CON
mv
"C
mv
1.276 1.572 1.894 2.240 2.610 3.002
300 325 350 375 400 415
3.417 3.853 4.310 4.786 5.290 5.604
DUCT1V l T Y A N D R E S l S T l V l T Y O F M I S C E L L A N E O U S A L L O Y S
Temperature coefficients
1 Conductivity in mhos or = y * = yO(l- at ohms-crn =pt =p0(1 + a t ht2). ~
Metals and alloys
Gold-copper-silver I<
" "
+ b t 2 ) and resistivity in microhm - cm YO 10'
Composition by weight
......
58.3 Au 66.5 Au 7.4 Au
...... ......
+ 16.5 Cu + 15.2 Ag + 15.4 Cu + 18.1 Ag + 78.3 Cu + 14.3 Ag
Invar ............................................. Welding iron .......... 0.05% Cu . . . . . . . . . . . . . . . . . . Woods metal . . . . . . . . . .. 56 Bi, 17 Cd. 14 Pb, 13 S n . . . . Brass ................. Various .................... ' hard drawn . . . . . 70.2 Cu+ +29.8 Zn ......... ' annealed . . . . . . . . ........... German silver .......... Various .................... (60.16 Cu 25.37 Zn 1 " 14.03 Ni .30 Fe with trace of cobalt and manganese Aluminum bronze .................................. Phosphor bronze ................................... Silicium bronze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Manganese-copper ...... 30 Mn 70 Cu . . . . . . . . . . . . . Nickel-manganesecopper ............... 3 Ni 24 Mn 73 Cu .... ., f 18.46 Ni 61.63 Cu I Nickelin 19.67 Zn 0.24 F e . 0.19 Co 0.18 Mn J 25.1 Ni 74.41 Cu Patent nickel ............ 0.42 F e 0.23 Zn [ 0.13 Mn trace of cobalt I 53.28 Cu 25.31 Ni Rheotan ............... 16.89 Zn 4.46 Fe 0.37 Mn Rheotan ............... 53 Cu, 25 Ni, 17 Zn, 5 F e . . . . Copper-manganeseiron ................. 91 Cu 7.1 Mn 1.9 F e . . . . Copper-manganeseiron ................. 70.6 Cu 23.2 Mn 6.2 F e . . Cqpper-manganeseiron .................. 69.7 Cu 29.9 Ni 0.3 Fe .. Therlo ................ 85 Cu, 13 Mn, 2 Al .......... Manganin ............. 84 Cu 12 Mn 4 N i ...... Constantan ............ 60 Cu 40 Ni ..............
..........
I
...............
{ \
1
+ +
+
+ + + + + + + ++ + + + + + + + + + + + + +
*bX
10" = 924.
t
b X 10" = 93.
SMITHSONIAN PHYSICAL TABLES
+
+ +
+
b
x
10" = 7280.
r
i
1
i
7.58 6.83 28.06 1.33 6.25 1.93 12.2-15.6 12.16 14.35 3-5
a X 100
574* 529'1 1830t Zoo0 6000 2900 1-2+103
PO
__ -
13.2 14.6 3.6 75 18 52 6.4-8.4 8.2 7.0 20-33
3.33
360
30
7.5-8.5
600
41 1.oo
--
10-20
2.10
--
_-
40 -30
12-13 5-10 2.4 100 48
3.01
300
33
2.92
190
34
1.90
410
53
2.24
280
45
4.98
120
20
1.30
22
77
2.60 2.24 2.3 2.04
120 10 6 8
38 46.5 44 49
391
C O N D U C T I V I T Y O F ALLOYS
T A B L E 397.--ELECTRICAL
This table shows the conductivity of alloys and the variation of the conductivity with temDerature. The conductivitv is given as C, = CO(1 -at bt'), and the range of tern' perature was from 0 0 to IOO*C. The table is arranged in three groups to show (1) that certain metals when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the comoonents. (2) the behavior of those metals alloyed with others, and (3) the behavior of the metals'alloyed together.
+
-
Part 1 Weight %
Volume %
of first named
Alloys
SnsPb ........,......... S a C d ............ ..... SnZn ... ............... FbSn . . . . . ... . ... ZnCdl . . ............... SnCd, ................. . CdPb, . . . . . .
.....
. . . . . . . . ..
77.04 82.41 78.06 64.13 24.76 23.05 7.37
83.96 83.10 77.71 53.41 26.06 23.50 10.57
C" 10'
7.57 9% 10.56 6.40 16.16 13.67 5.78
a X 1P
3890 4080 ~~. 3880 3780 3780 3850 3500
b X 109
8670 11870 8720 8420 8000 9410 7270
Part 2 Volume %
Weight 5%
C" 104
a x 100
5.60 8.03 13.80
_3630 ___
b X loo
94.64 46.90 30.64
1960 1990
7960 3100 2600
90.32 79.54
5.20 3.03
3080 2920
6640 6300
7.59 8.05 5.57 6.41 7.64 12.44 39.41
3680 3330 547 666 691 995 2670
8130 6840 294 1185 304 705 5070
of first'named
Alloys
I
Lead-silver (PhoAg) . .. 95.05 Lead-silver (PbAg) . . 48.97 Lead-silver (PbAgr) . 32.44
.. .. Tin-g:!d (Sn12Au) . ... . 77.94 (SnaAu) . .. ... 59.54 Tin-coppr . . . ... . ... ... 92.24 . . ... . . . . .. . . 80.58 ............. 12.49 ............. 10.30 . . .. ... . ..... 9.67 . . . . .. .. ..... 4.% .............
1.15
93.57 83.60 14.91 12.35 11.61 6.02 1.41
. . . . . .. . . ... . . . . . . .. ... . .. Zinc-copper . . . . . ... .... . . . . . .. . .... ............ . .. ......... '
91.30 53.85
96.52 75.51
7.81 8.65
3820 3770
8190 8550
36.70 25.00 16.53 8.89 4.06
42.06 29.45 23.61 10.88 5.03
13.75 13.70 13.44 29.61 38.09
1370
1340
"
I'
"
I'
"
"
"
'I
"
I'
Tin-silver '> " " I'
"
"
"
............
NoTE.-Barus has pointed out that the temperature variation of platinum alloys containing less than 10% of the other metal can be nearly expressed by an equation y =? -fi:,
z
where y is the temperature coefficient and x the specific resistance, m and n being constants. If a be the temperature coefficient at 0°C and s the corresponding specific resistance, s(a m ) =n For platinum alloys Barus's experiments gave nt = -.000194 and n = .0378. For steel in = -.U00303 and n = ,0620. Matthiessen's experiments reduced by Barus gave for Gold alloys m = -.000045, n = .00721. Silver m = -.000112, n = .00538. Copper m = -.000386, n = .00055.
+
::
(cn?tt;?tlled)
SMITHSONIAN PHYSICAL TABLES
392 TABLE 397.-ELECTRICAL
CONDUCTIVITY O F ALLOYS (concluded) Part 3
Weight "/o
L
Alloys
Gold-copper Gold-silver 'I
"
I'
'I
"
'1
'I
'I
I'
"
Volume 7%
of first named
...........
99.23 90.55
........... ............ 87.95 ............ 87.95 ............ 64.80 ............ 64.80 ............ 31.33 ............ 31.33 ...........
GEld-coqper
34.83
............ 1.52 Platiym-silver ........ 33.33 ' ........ 9.81
..co
104
a X 108
b X lon
98.36 81.66
35.42 10.16
2650 749
4650 81
79.86 79.86 52.08 52.08 19.86 19.86
13.46 13.61 9.48 9.51 13.69 13.73
1090 1140 673 721 885 908
793 1160 246 495 531 641
19.17 .71
12.94 53.02
864 3320
570 7300
4.22 11.38 19.96
330 774 1240
208 656 1150
........
5.00
19.65 5.05 2.51
Palladium-silver
25.00
23.28
5.38
324
154
Copper-silver
....... ..........
98.08
98.35 95.17 77.64 46.67 8.25 1.53
56.49 51.93 44.06 47.29 50.65 50.30
3450 3250 3030 2870 2750 4120
7990 6940 6070 5280 4360 8740
.............. ..............
13.59 9.80 4.76
27.93 21.18 10.96
1.73 1.26 1.46
3490 2970 487
7010 1220 103
.46 -
24.51
1550
2090
4.62 14.91
476 1320
145 1640
.
3.97 8.12 38.52
516 736 2640
989 446 4830
'
"
"
"
"
Iron-gold "
"
.......... 94.40 .......... 76.74 .......... 42.75 .......... 7.14 .......... 1.31
.............. . . . . . . . . . . . . .40 Phosphorus-copper ..... 2.50 "
"
Iron-copper "
"
Arsenic-copper
'
"
. . . . . .95
......... .........
.........
5.40 2.80 trace
SMITHSONIAN PHYSICAL TABLES
. .
-
T A B L E 398.-RESISTIVITIES
A T HIGH AND L O W T E M P E R A T U R E S
393
The electrical resistivity ( p , ohm-cm) of good conductors depends greatly on chemical purity, Slight contamination even with metals of lower p may greatly increase p . Solid solutions of good conductors generally have higher p than components. Reverse is true of bad conductors. I n solid state allotropic and crystalline forms greatly modify p . For liquid metals this last cause of variability disappears. The temperature coefficients of pure metals is of the same order as the coefficients of expansion of gases. For temperature resistance ( t , p ) plot at low temperatures the graph is convex toward the axis of t and probably approaches tangency to it. However for extremely low temperatures Onnes finds very sudden and great drops in p, e.g., for mercury, P J . ~ K<4 X 1O-'Op0 and for Sn, pJ.m
+
+
+
Silver P
Copper
"C -258.6 -252.8 -189.5
PI
-200. -150.
-100. - 76.8
- 50.
0.
100.
500. 750. 1000. 1083. 1083. 1200. 1400. 1500.
Mercury "C
PI
5.38 -200. 10.30 -150. -100. 15.42 - 50. 21.4 - 30. 91.7 0. 9 4 . 1 50. 98.3 100. 103.1 200. 114.0 300. 127.0
5.08 7.03 9.42 10.20 21.30 22.30 23.86 24.62
Potassium V pt -
"C
Po
.057 .I09 .I64 .227 .975 1.000
1.045 1.096 1.212 1.350
-200. -150.
--loo. - 50. 0. 20. 60. 65. 100. 120.
Manganin
PI P,
Po
1.720 2.654 3.724 5.124 7.000 7.116 8.790 13.40 15.31 16.70
,246 ,379 ,532 ,732 1.00 1.016 1.256 1.914 2.187 2.386
-200.
37.8 38.2 38.5 38.7 38.8 38.9 38.3
-150. -100. - 50. 0.
inn. ...
400.
1500.
,009 .014 ,334 .357 .638 ,916 1.040 1.212 1.506
2.15 2.80 3.46 6.65 8.4 16.6 17.01 19.36 21.72 23.0
.0057 ,0090 .222 .237 .424 ,608
.690 ,805 1.00 1.43 1.86 2.30 4.42 5.58 11.0 11.3 12.9 14.4 15.3
Pn
...974.
,985 ,992 ,997 1.000 1.003 ,987
"C -200. -150. -108. -- 50.
0.
100.
Pt
27.9 28.7 29.3 29.7 .30.0 33.1
,930 .957 .977 .990 1.000 1.103
"C
PI
,605 1.455 2.380 - 50. 3.365 4.40 0. 4.873 20. 93.5 6.290 9.220 100. 120. 9.724 140. 10.34
-200. -150. -100.
"C -200.
--150. -100.
- 50.
0. 100. 400.
(continued)
SMITHSONIAN PHYSICAL TABLES
Zinc
P,
42.4 43.0 43.5 43.9 44.1 44.6 44.8
Po pt
"C -252.9
-200. -191.1 -150. -100. - 77.8
- 50.
0. 100. 300. 415. 427. 450. 500. 600. 700. 800. 850.
P, ,0511
1.39 1.23 2.00 2.90 3.97 4.04 5.75 7.95 13.25 17.00 37.30 37.08 36.60 35.90 35.60 35.60 35.74
,0089 242 ,214 .348 .SO4 ,691 .703 1.00 1.38 2.30 2.96 6.49 6.46 6.36 6.25 6.19 6.19 6.21
I ron PI Po
,137 ,330 .541 ,764 1.000 1.107 1.429 2.095 2.209 2.349
Constantan
Pt Pa
-
Sodium P
-252.7 -200. -192.5 -100. - 75.1
- 50.
0. 100.
-
200.
400.
.011 .57 ,844 5.92 6.43 8.15
10.68 16.61 24.50 43.29
.0010
.053 ,079 .554 .602 ,763 1.00 1.554 2.293 4.052
90%, Pt 10% R h P
I
pt
P.
200. 400. 750. 960. 960. 1000. 1200. 1400.
German silver
A
'C
3.22 4.46 5.97 6.47 13.5 14.1 15.1 15.6
PI Po
PI Po
,961 ,975 ,986 ,995 1.000 1.012 1.016
"C -200.
-150. -100. 50. 0. 100.
-
PI
14.49 16.29 18.05 19.66 21.14 24.20
PI Po
,685 .770 .854 .930 1.000 1.145
394 T A B L E 398.-RESISTIVITIES
A T HIGH A N D L O W T E M P E R A T U R E S (concluded)
(Ohm-cm unless stated otherwise.) Platinum
-
Cadmium
Bismuth
Lead
P:
pt -
"C
P:
"C -252.9
Po
P:
-200. -190.2 -183.1 -139.2 -100. 0. 300. 325. 350. 400. 500. 700.
Tin
"C
P:
-zoo. -100.
0. 200. 225. 235. 750.
.
2.60 7.57 13.05 20.30 22.00 47.60 61.22
Carbon, graphite p: Po
,199 ,580 1.00 1.55 1.69 3.65 4.69
"C
> 107; 1380",
T"K
9.22 7.2 5.2 4.4 . . . . 4.3 Hg . . . . . . . . . . . . . . 4.15 Sn . . . . . . . . . . . . . . . 3.71
= niegohmsan
> 200,000,000.
20. 800.
20,000,000.
2oo.ono. 30.000. m.
900. 1000. 1100. 1200. 1600.
30. about 20.
>9X10a 30800. 13600. 7600. 6500. 2300. 190.
O F SOME M E T A L S T"K
Metal
............... .... .... Ta . . . . . . . . . . . . . . . Nh
F p i n o h cm mr:
7.5 X 105.
T A B L E 399.-SUPERCONDUCTIVITY Metal
p
15. 230. 300. 350. 450. 700. 850.
Diamond 1030"C, p
Alundum cement
Fused silica
p in ohms-crn
PO
,0218 ,214 2.58 ,286 ,464 ,619 1.00 2.13 4.35 4.33 4.35 4.40 4.62
.I7 1.66 2.00 2.22 3.60 4.80 7.75 16.50 33.76 33.60 33.70 35.22 35.78
Metal
u ...............
I n . . . . . . . . . . . . . . . 3.38
0s
.75
. . . . . . . . . . . . . . . .71
Zr . . . . . . . . . . . . . . .
.54*
Ti . . . . . . . . . . . . . . . .53t Ru . . . . . . . . . . . . . . . .47 Hf . . . . . . . . . . . . . . . .35
Al . . . . . . . . . . . . . . . 1.15
Zn
T"K
. . . . . . . . . . . . . . .95t
s ' 1 Smith Thomas S., Ohio State University, private communication. D a u n t . ' J . G., and Smith. T . S. t Daunt, J . G., and Heer. C. V.. Phys. Rev., vol. 76, pp. 719 and 1324, 1948.
T A B L E 400.-SUPERCONDUCTIVITY
NhC . . . . . . . TaC ....... Ph-As-Bi .. Ph-Ri-Sh .. P b S n - B i .. 14"
10.1"K 9.2 9.0 8.9 8.5
Ph-As alloy. MoC . . . . . . . NiPh ..... BioTI, . . . . . . ShzTIT . . . . . TaSi .......
8.4"K 7.7 7.2 6.5
5.5
OF SOME ALLOYS A N D COMPOUNDS"e
PhS ....... Hg5T17. . . . . ZrR . . . . . . . WC . . . . . . . MozC . . . . . .
4.1"K 3.8 2.82 2.8 2.4
4.2
Smith, G . I f . . an(l LVilhelm. J. 0.. Rev. hlod. Phys., vol. 7 , p. 240, 1935
SMITHSONIAN PHYSICAL TABLES
W,C . . . . . . . AulBi . . . . . . CuS ....... T i N ....... V N ........ T i c ........
2.05"K 1.84 1.6 1.4 1.3 1.1
395 T A B L E 401.-VOLUME
A N D SURFACE RESISTANCE
OF SOLID DIELECTRICS
The resistance between two conductors insulated by a solid dielectric depends both upon the surface resistance and the volume resistance of the insulator. T h e volume resistivity, p, is the resistance betweeii two opposite faces of a centimeter cube. The surface resistivity, u, is the resistance between two opposite edges of a centimeter square of the surface. The surface resistivity usually varies through a wide range with the humidity. u ; megohms 50% humidity
Material
Amber . ....... ... . ...... .... . .... Beeswax, yellow . . . . . . . . . . . . . . . . . . Celluloid . . . . . . . . . . . . . . . . . . . . . . . . . Fiber. red ........................
Sulfur . . . . . . . . . . Wood, paraffined mahogany
6x10' 6x10" 5X 10: 2x10
. . . . . . . . 4x10'
u ; megohms 70% humidity
u : megohms 9 0 1 humidity
2 x 10' 6x10' 2x104 3X103 6% 10 4X103 1x10' 1x103 3><10* 2x10' 4x10" 7x10' 7X103 2X1O3 3x10' 6x10' 3x10' 3x10 4x10' 5X 10'
1x10~ 5x10' 2x103 2X1O2 2x10 1x103 2 x lo= 3x10 5x10" 2x10 8x10' 6x10'' 5X'02 2x10 2x10' 9x10' 7 x 103 1x10 1x10' 1x103
P
Megohm-cm
5x10" 2x10~ 2 x 10' 5x10' 2x10. 8x10' 1x1012 2x102 2x100 1x10' 2x1011 1x10'0 3x10'
5x
5x10'0 8x10' 1x10'0 1x102 1x1011 4><10'
T A B L E 4OP.-ELECTRICAL RESISTIVITY OF SOME OXIDES AND MISCELLANEOUS MINERALS
*
Resistivity ohm-cm
Material
Graphite, commercial electrodes (density = 1.5) ,001-,0013 Hematite, Fez03,m-ineral. . .35-.7 Iron. metallic. meteoric . . . 2.4-3.2X6-'? Rock salt, pure .... . . .. .. 10"-lo' impure ....... 10'
Material
Resistivity ohm-cm
Sulfur . . . . . . . . . . . . . . . . .>lo" PbOz, synthetic . . . . . . . . . . .OOOO92 MnOl, synthetic .... ...... 6 W20s . . . . . . . . . . . . . . . . . . . ,00045 wo, . . . . . . . . . . . . . . . . . . . 2x106
* F o r reference, see footnote 45, p. 136.
T A B L E 403.-ELECTRICAL
Igneous rocks
Granite . . . . . . . . . . . . . . . . . . . . Lava flow (basic) . . . . . . . . . . . Lava, fresh . .... . ... . ..... .. Quartz vein, massive . . . . . . .
.
Metamorphic rocks
Marble, white ... ........... Marble . . . . . . . . . . . . . . . . . . .. Marble, yellow . . . . . . . . . . . . . Schist, mica . ... ... ... . . ... . Shale, Nonesuch . . . . . . . . . . . Shale, bed .............. ...
.
Resistivity ohm-cm
107-1 09 108-10' 3 x 106-10'
>I00 Resistivity ohm-cm
1O'O 4x10'
loio 107
104 106
*For reference, see footnote 4 5 , p. 136.
SMITHSONIAN PHYSICAL TABLES
RESISTIVITY O F ROCKS A N D SOILS * Sedimentary rocks
Limestone . . . . . . . . . . . . . . . . . . Limestone, Cambrian . . . . . . . Sandstone, eastern . . . . . . . . . . Sandstone . . . . . . . . . . . . . . . . . . Limestone . . . . . . . . . . . . . . . . .
.
Unconsolidated materials
Clay, blue . ... ... .......... Clayey earth . .............. Clay, fire ... . .... .... ... . .. Gravel . , . . . . .. . . .. . , ,. , . .. Sand, dry . ... .... ... ....... Sand, moist ... .............
Resistivity ohm-cm
10' 104-106 ' 3 X 10x-10 1O6 106 Resistivity ohm-cm
2x10' 10'-4X 10'
2x105
1O6 1O6-l0' 105-100
396 T A B L E 404.-RESISTIVITY OF SOILS A N D SEA W A T E R M E A S U R E D W I T H HIGH-FREQUENCY ALTERNATING CURRENT
*
Material
Frequency Resistivity kilocvcles/sec ohm/cm
Soil, very dry .. 1 to 10,000 Topsoil, dry .... 37,000
Loam, dark (moisture, 60%)
10' 7,000
Frequency Resistivity kilocycles/sec ohm/cm
Material
Clay, dry ....... Chalk (moisture, 24%) Sea water
100 1,200 10,Ooo
2,600 2,300 1,500
37,000
60,000
100 1.200 10:660 100 1,200 10,000
33,000 22.000 141000 21 21 16.5
For reference, see footnote 45, p. 136.
T A B L E 405.-ELECTRICAL Material
RESISTIVITY OF NATURAL WATERS Resistivity ohm-cm
Very fresh distilled waters ...... 2x10' Mine waters ................... 500
*
Resistivity ohm-cm
Material
Potable ground waters ......... 108-106 Surface waters ................ 10'
For reference. see footnote 15, p. 136.
T A B L E 406.-RESISTIVITY OF S O M E GLASSES A T T H R E E TEM PE RATURES Log 10
Volume resistivity (ohm-cm) /-
Glass
Principal use
Potash soda lead ...... Lamp tubing Soda lime ............ Lamp bulbs Potash soda lead ...... Lamp tubing H a r d Lime ........... Cooking utensils Borosilicate ........... Kovar sealing Borosilicate ........... Low loss electrical Borosilicate ........... Baking ware Pyrex ................ General Vycor ................ Low expansion ultraviolet transmission Fused quartz ..........
Density
25°C
250°C
2.85 2.47 3.05 2.53 2.28 2.13 2.24 2.23
17.+ 12.4 17.+ 17.+ 17. 17.+ 15. 15.
8.9 6.4 10.1 11.4 9.2 11.2 8.2 8.1
7.0 5.1 8.0 9.4 7.4 9.1 6.7 6.6
2.18 2.20
17.+
11.2
9.2 10.48
350°C
1" Corning Glass Co. publication, Properties of selected commercial glasses, 1949. General Electric Co. publication, Fused quartz, 1947.
SMITHSONIAN PHYSICAL TABLES
TABLES 407-415.-ELECTROLYTIC CONDUCTION
397
O F ELECTROLYTIC SOLUTIONS
T A B L E 407.-CONDUCTlVITY
I n these tables m represents the number of gram molecules to the liter of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangement. The results are for 18"C, and relative to mercury at 0" C, the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one percent of the true value. The tabular numbers were obtained from the measurements in the following manner : Let Kla = conductivity of the solution at 18°C relative to mercury at 0°C. KWls= conductivity of the solvent water at 18°C relative to mercury a t 0°C. Then K1n- KmI8= /zls = conductivity of the electrolyte in the solution measured. _kin- p = conductivity of the electrolyte in the solution per molecule, or the m "specific molecular conductivity." P a r t 1.-Value
of k,, for a few electrolytes
This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved. KCI
m
1216 2.434 7.272 12.09
.OOOol .om02 .00006 .om1
NaCl
AgNO,
1.024 . .~ 2.056 6.162 10.29
-1 nxn ___ 2.146 6.462 10.78
P a r t 2.-Electrochemical
K,SO,
KC,H,Oa 939 ._
__
M6S04
1.275 2.532 7.524 12.49
1.886 5.610 9.34
1 nsh
2.104 6.216 10.34
equivalents and normal solutions
The following table of the electrochemical equivalent numbers and the densities OX approximately normal solutions of the salts quoted in Table 499 may be convenient. They represent g per cm' of the solution at the temperature given. Salt dissolved
g
per 1
KCI ........ 74.59 NHICl ...... 53.55 NaCl ....... 58.50 LiCl ........ 42.48 fBaC12 ...... 104.0 fZnCL ...... 68.0 K I ......... 165.9 KNOa ...... iOi.17 NaNOa ..... 85.08 AgN03 ..... 169.9 3Ba(NO& .. 65.28 KClOa ...... 6129 KCaHaOa ... 98.18
m
1.o 1.OM9 1.o 1.0 1.o 1.012 1.o 1.o 1.o 1.o .5 .5 1.oO05
Temp. " C Density
15.2 18.6 18.4 18.4 18.6 15.0 18.6 18.6 18.7
1.0457 1.0152 1.0391 1.0227 1.0888 1.0592 1.1183 1.om1 1.0542
-
--
18.3 1.0367 18.6 1.0467
T A B L E 408.-TEMPERATURE
Salt dissolved 4KeSOA . . . . . ........ .
i N a S O , .... fLizSO4 ..... fMgSO, . . . . fZnS04 ..... j c u s o 4 ..... fKaC03 . . . . . +Na2C03 . . . . K O H ....... HCI ........ HNO, ...... fHzSO, .....
g per 1
87.16 71109 55.09 60.17 80.58 79.9 69.17 53.04 56.27 35.51 63 13 49.06
m
1.o
i ,0003
1.0007 1.0023 1.o 1.001 i.0006 1.o 1.0025 1.0041 1.0014 1.om
Temp. "C Density
18.9 18.6 186 186 5.3 18.2 18.3 17.9 18.8 18.6 18.6
1.0658 1.0602 1.0445 1.0573 1.0794 1.0776 1.0576 1.0517 1.0477 1.0161 1.0318 18.9 1.0300
COEFFICIENTS O F CONDUCTIVITY
The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. The following table gives the temperature coefficient for solutions containing 0.01 gram molecule of the salt. Salt
KCI ....... NH,CI ..... NaCl ...... LiCl ....... fBaCll ..... fZnC1. ..... 3MgCIa ....
Tem coeL
.On1 .0226 .0238 .0232 .0234 .0239 .0241
Salt
Tern coeZ
KI ........ .0219 K N 0, ..... .0216 NaN03 .... .0226 AgNOa ......0221 fBa(N0.). . .0224 KClOa ..... .0219 KCzHtOi ... .0229
SMITHSONIAN PHYSICAL TABLES
Salt
3KzSO. .... f N a & 0 4 ... 4Li1S04 . . . . fMgSO, ... fZnSOI .... fCuS01 ....
-
Temp. coeff.
.0223 .0240 ,0242 .0236 .0234 .0229
--
Salt
Temo. coeff.
fK?COa .... ,0249 3Na2COa ... .0265 K O H ...... ,0194 HC1 ....... .OIs9
:+H,SO, $&, . ::
::;$
f o r m = .001{ '0159
398 TABLE 409.-SPECIFIC
MOLECULAR CONDUCTIVITY O F SOLUTIONS
Mercury = 108/(ohm-cm) Salt dissolved
m = 10
. &K.SO. ............. KCl ................ . K I ................. . NHiCl .............. . KNOs .............. .
5
3
1
. .
.
.
827 900 825 . 572
919 %8 907 752
770 752
4BaCI . . . . . . . K c l o ; .............. fBaN200 ............ fCuSO. ............. AgNO, . . . . . . . . . . . . .
. . . . . . . . . 351
fZnS0, . . . . . . . . . . . . . fMgSO. . . . . . . . . . . . . f NaSO. . . . . . . . . . . . . fZnClz . . . . . . . . . . . . . . NaCl . . . . . . . . . . . . . . .
. . .
.5
.1
.05
.03
.01
672 958 997 948 839
736 1047 1069 1035 983
897 1083 1102 1078 1037
959 1107 1123 1101 1067
1098 1147 1161 1142 1122
861 927 755 424 886
904 (976) 828 479 936
939 1006 1006 1053 (870) 951 537 675 (966) 1017 556 685 587 715 ... 828 966 851 915 (920) 962
487
658
150 448
241 635
725 799 531 288 728
82 82
146 151
180 398
280 528
249 270 475 514 695
30? 330 559 601 757
431 474 734 768 865
500 532 784 817 897
NaNOs ............. . . 430 617 381 KCzHSOz ............ 594 240 30 .. . . 254 427 &Na2C03 . . . . . . . . . . . . fHsSO4 . . . . . . . . . . . . . 660 1270 1560 I820 12 CZH. 0 . . . . . . . . . . . . . . .5 2.6 5.2
694 671 510 1899 19
817 784 682 2084 43
855 820 751 2343 62
877 841 799 2515 79
907 879 899 2855 132
1420 2010 2780 301 7 1470 2070 2770 2991 160 170 200 250 990 1314 1718 1841 12 .5 2.4 3.3 8.4
3244 3225 430 1986 31
3330 3289 540 2045 43
3369 3328 620 2078 50
3416 3395 790 2124 92
60
.
.
. .
.
. .
~
600 610 148 423
.006
.002
.001
.0006
.0002
.0001
00006
.00002
fKZSO4 ............. KCI . . . . . . . . . . . . . . . . K I ................. NHaCI . . . . . . . . . . . . . . KNO. . . . . . . . . . . . . . .
.00001
1130 1162 1176 1157 1140
1181 1185 1197 1180 1173
1207 1193 1203 1190 1180
1220 1199 1209 1197 1190
1241 1209 1214 1204 1199
1249 1209 1216 1209 1207
1254 1212 1216 1215 1220
126t 1217 1216 1209 1198
1275 1216 1207 1205 1215
fBaCI, . . . . . . . . . . . . . . KCIO, . . . . . . . . . . . . . . 4BaN.O . . . . . . . . . . . . . $CuSOl . . . . . . . . . . . . . AgNO. . . . . . . . . . . . . .
1031 1068 982 740 1033
1074 1091 1033 873 1057
1092 1101 1054 950 1068
1102 1109 1066 987 1069
1118 1119 1084 1039 1077
1126 1122 1096 1062 1078
1133 1126 1100 1074 1077
1144 1135 1114 1084 1073
1142 1141 1114 1086 1080
fZnSO, . . . . . . . . . . . . . 3MgSOd . . . . . . . . . . . . $NazS04 . . . . . . . . . . . . tZnCI2 .............. NaCl . . . . . . . . . . . . . . .
744 773 933 939 976
861 881 980 979 998
919 935 998 994 1008
953 967 1009 1004 1014
1001 1015 1026 1020 1018
1023 1034 1034 1029 1029
1032 1036 1038 1031 1027
1047 1052 1056 1035 1028
1060 1056 1054 1036 1024
NaNOt . . . . . . . . . . . . . KCzH. 0. . . . . . . . . . . . . fNa2COI . . . . . . . . . . . . 3H.SO. ............. GH.0 . . . . . . . . . . . . . .
921 891 956 3001 170
942 ...
913 1010 3240 283
952 919 1037 3316 380
956 923 1046 3342 470
966 933 988 3280 796
975 934 874 31 18 995
970 935 790 2927 1133
972 943 715 2077 1328
975 939 697* 1413* 1304*
HCI . . . . . . . . . . . . . . . . HNO, . . . . . . . . . . . . . . fHaPO, . . . . . . . . . . . . . KOH ............... NH, ................
3438 3121 858 2141 116
3455 3448 945 2140 190
3455 3127 968 2110 260
3440 3408 977 2074 330
3310 3285 920 1892 500
3170 3088 837 1689 610
2968 2863 746 1474 690
2057 1904 497 845 700
1254. 1144* 402* 747* 560*
Salt dissolved
Acids and alkaline salts show peculiar irregularities.
SMITHSONIAN PHYSICAL TABLES
399 T A B L E 410.-LIMITING
V A L U E S O F 1.1, T H E SPECIFIC MOLECULAR CONDUCTIVITY
This table shows limiting values of culated from Table 409. Salt
fKzSO4 ..... KCI ........ K I ......... N H L l ..... K N 0 3 ...... -
B
-
k
= -.lo8
for infinite dilution for neutral salts, cal-
m
B
Salt
fBaCL ..... jKCl0, .... fBaNzOe ... fCuSO, .... AgNOa ..... $ZnS04 ....
1280 1220 1220 1210 1210
TABLE 411.-THE
p
lL
Salt
fMgSO4 .... fNatSO4 .... fZnCl2 ..... NaCl ... . . . . NaNOa ..... KzC2HaOz ..
1150 1150 1120 1100 1090 1080
Salt
lL
~ H z S O I.... 3700 HCI ....... 3500 HNOJ ...... 3500 jHsPO, .... 1100 K O H ...... 2200 fNazCOs ... 1400
1080 1060 1040 1030 980 940
E Q U I V A L E N T CONDUCTIVITY O F T H E SEPARATE IONS D'C
18'
25'
50'
75"
100'
128"
156"
40.4 26 40.2 32.9 33 30 35
64.6 43.5 64.5 54.3 55' 51' 61
74.5 50.9 74.5 63.5 65 60 72
115 82 115 101 104 98 119
159 116 159 143 149 142 173
206 155 207 188 200 191 235
263 203 264 245 262 252 312
317 .~ 249 319 299 322 312 388
CI .................. 41.1 NO3 ................. 40.4 CzH302 .............. 20.3 4.50, ................ 41 $C,O, ................ 39 jCsHsOI ............. 36 aFe(CN)e ............ 58
65.5 61.7 34.6 68' 63' 60 95
75.5 70.6 40.8 79 73 70 111
116 104 67 125 115 113 173
160 140 96 177 163 161 244
207 178 130 234 213 214 321
264 222 171 303 275
318 263 211 370 336
350 192
465 284
565 360
644 439
722 525
777 592
Ion
K ................... Na .................. NH, ................. Ag .................. 4Ba ................. fCa ................. jLa .................
H ................... 240 OH ................. 105
T A B L E 412.-HYDROLYSIS
Tempera- Percentage ture hydrolysis
t
0°C 18 25
loo,,
Ionization constant of water
x
K,
101'
.089 .45 .82
SMITHSONIAN PHYSICAL TABLES
314 172
O F AMMONIUM ACETATE A N D IONIZATION O F WATER Hydrogen.ion concentration ..~ in pure water Equivalents per liter ~~
C,
H ydrogen-ion
Ionizaconcentration . ........... ...........
~~~
x 107 .30 .68 .91
Temperature
t
.lOO"C 156 218 306
Percentage hydrolysis
100,
4.8 18.6 52.7 91.5
tion in pure water constant Equivalents of water per liter
K, X 101'
48. 223. 461. 168.
C,x 101
6.9 14.9 21.5 13.0
400 T A B L E 413.-THE
E Q U I V A L E N T CONDUCTIVITY O F SALTS, ACIDS, AND BASES I N AQUEOUS SOLUTIONS
I n the following table the equivalent conductance is expressed in reciprocal ohms. The conccntration is expressed in milli-equivalents of solute per liter of solution at the temperature to which the conductance refers. (In the cases of potassium hydrogen sulfate and phosphoric acid the concentration is expressed in milli-formula-weights of solute, KHSO, or HJ'O,, per liter of solution, and the values are corrcspondingly the modal, or "formal," conductances.) Except in the cases of the strong acids the conductance of the water was substracted, and for sodium acetate, ammonium acetate and ammonium chloride the values have been corrected for the hydrolysis of the salts. g equivalents Concentration in 1OooI . reciprocal ohm-cm Equivalent conductance in g equivalents per cm' * Equivalent conductance at the following " C temperatures Concentration
Substance
.. ... ... ... Sodium chlqfide. . . . . ..... ..... ' ..... Silver nitrate. . . ' ... . .. . .. .. ' .. .. .... ........ ... . .. . . . . . Sodium acetate. .. ... ' ' ...... ...... ' ...... M a g n + m sulpte. . . ' ... ' ... ' ' ... ... Pota;sium chloridc.
...
'I
'L
'I
"
I'
"
"
"
I'
"
"
"
"
"
' '
"
'
... ... ... ..
Ammonium chlqfide. . "
.. .. Ammonium acetate.. . ... ' ... Barium nitrate.. . . . .. " "
'
"
. . . .. . . . . .. . .. . . .. . .. . . . . . .. . . . . .. .
0 2 10 80 100 0 2 10 80 100 0 2 I0 20 40 80 100 0 2 10 80 0 2 10 20 40 80 100 200 0 2 10 30 0 10 25 0 2 10 40 80 100
$8.
2 5 O
50"
75"
130.1 (152.1) (232.5) (321.5) 126.3 146.4 122.4 141.5 215.2 295.2 113.5 112.0 129.0 194.5 264.6 _ 109.0 _ 105.6 102.0 - _ 93.5 92.0 - 115.8 112.2 108.0 105.1 - 101.3 96.5 94.6 - 78.1 74.5 - 71.2 63.4 114.1 94.3 76.1 67.5 59.3 52.0 49.8 43.1 131.1 152.0 126.5 146.5 122.5 141.7 118.1 (99.8) 91.7 88.2 116.9 109.7 101.0 88.7 81.6 79.1 (continued)
SMITHSONIAN PHYSICAL TABLES
100"
414 393 377 342 336 362 349 336 301 296 367 353 337 326 312 294 289 285 268 253 22 1 426 302 234 190 160 136 130 110
(34;)
382 286 385 352 322 280 258 249
128'
218"
625 588 560 498 490 555 534 511 450 442 570 539 507 488 462 432
825 1005 1120 779 930 1008 741 874 910 638 723 720
450 421 396 340 690 377 241 195 158 133 126 109 (628) 601 573
_
(523) 456 426 600 536 481 412 372
281"
-
156"
306'
760 722 685 500
970 1080 895 955 820 860 674 680
780 727 673 639 599 552
965 1065 877 935 790 818 680 614
680 604
660 578 542 452 1080 260 143 110 88 75
-
924 801 702
(841) 801 758
- (1176) - 1031 - 925 - 828
-
-
840 1120 1300 715 828 824 618 658 615 507 503 448 449 430
401 E Q U I V A L E N T C O N D U C T I V I ~ T YO F SALTS, ACIDS, A N D BASES IN A Q U E O U S S O L U T I O N S (concluded)
T A B L E 413.-THE
Equivalent conductance at the following "C temperatures Substance
Potassium sulfate..
..
....
.... ....
"
.... .... Hydrochloric acid. ... ' .... .... ' .... .... Nitric acid.. ........ "
.......... .......... .......... .......... Sulfyric add. ........ ......... ......... ......... ......... Postassium hydrogen sulfate .......... "
PhosEhoric ac,id.. ....
...... ...... ...... ...... A g t i c acid.. ........ .......... .......... .......... .......... SocIjum hydroxide. .. '
... ... ... Barium hydrexide. ... '
'
....
' 'I
Ammonium hydroxide
.
....
.... ....
.......
Concentration (8'
0 L.
10 40 80 100 0 2 10 80 100 0 2 10 50 100 0 2 10 50 100 2 50 100 0 2 10 50 100 0 10 30 80 100 0 2 20 50 0 2 10 50 100 0 10 30 100
132.8 124.8 115.7 104.2 97.2 95.0 379.0 373.6 368.1 353.0 350.6 377.0 371.2 365.0 353.7 346.4 383.0 353.9 309.0 253.5 233.3 455.3 295.5 263.7 338.3 283.1 203.0 122.7 96.5 (347.0) 14.50 8.50 5.22 4.67 216.5 212.1 205.8 200.6 222 215 207 191.1 180.1 (238) 9.66 5.66 3.10
h
25"
-
75"
-
421.0 413.7 406.0 393.3 385.0 (429) 390.8 337.0 273.0 251.2 506.0 318.3 283.1 376 311.9 222.0 132.6 104.0 -
-
-
-
\
128'
455 402 365 320 294 286 850 826 807 762 754 826 945 806 919 786 893 750 845 728 817 891 (1041) 571 551 446 460 384 417 369 404 784 773 422 446 375 402 730 839 498 508 308 298 168 158 128 120 (773) 25.1 14.7 9.05 8.10 594 582 559 540 645 (760) 591 548 664 478 549 443 503 (647) (764) 23.2 13.6 7.47 -
-
570 559 548 528 516 (591) 501 406 323 300 661.O 374.4 329.1 510 401 273 157.8 122.7
-
-
-
-
-
256 389 - 359 235 342 215.1 308 204.2 291 (271) (404) -
-
100'
-
-
-
3.62 5.35
These values are at the concentration 80.0.
SWITHSONIAN PHYSICAL TABLES
50"
706 690 676 649 632 (746) 561 435 356 336 754 403 354 631 464 300 168.6 129.9
-
-
(520) 4 449 399 373 (526) 6.70
-
-
156'
218'
605 537 455 415
806 672 545 482
1085 1265 1048 1217 1016 1168 946 1044 929 1006 1047 (1230) 1012 1166 978 917 880 1176 1505 536 563 481 533 448 502 435 483 754 477 435 930 489 274 142 108 (980)(1165) 22.2 14.7 13.0 8.65 8.00 5.34 - 4.82 835 1060 814 771 930 738 873 847 722 593 531 (!%8)(1141) 22.3 15.6 13.0 7.17 4.82
281"
893 687 519 448
306'
867 637
466 396
1380 1424 1332 1337 1226 1162 1046 862
- (1380 - 1156 - 454* - (20;) -
474*
- (1268) -
1.57
-
(1406)
-
1.33
402 T A B L E 414.-THE
E Q U I V A L E N T C O N D U C T I V I T Y O F SOME A D D I T I O N A L S A L T S I N AQUEOUS S O L U T I O N Equivalent conductance at the following " C temperature
Substance
. . . .. ... . . . . . . .. . .. . . .. . . . . ... ... ox?late. . . . . .
Potassium nitrate.. I'
"
"
'1
Potassium I'
'1
" " I'
Calcium nitKate "
"
. . .. . . .. . . . . . . .. .. . . . .. . ..... .. .. . .. .
.
"
' '1
'
. . .. .... .... CaI2ium ferroranide . . . ... ... ' Barium ferro;yanide
'
"
' '
' '
Potassium cit;$te
' " " " "
Lant,lynum nitrate 'i
"
"
"
0 2 12.5 50 100 0
...... 2 ...... 12.5 ...... 50 ...... 100 ...... 200
Potassium ferrotyanide
"
Concen. tration
...
... ... ...
. .... .
...... ...... ...... ...... ...... ......
......
...... ...... ...... ...... ......
......
0 2 12.5 50 100 200 0 .5 2 12.5 50 100 200 400 0 2 12.5 0 2 12.5 50 100 200 400 0 0.5 2 5 12.5 50 100 300 0 2 12.5 50 100 200
SMITHSONIAN PHYSICAL TABLES
0"
18'
80.8 78.6 75.3 70.7 67.2 79.4 74.9 6913 63 59.3 55.8 70.4 66.5 61.6 55.6 51.9 48.3 98.4
126.3 122.5 117.2 109.7 104.5 127.6 119.9
916
84:s
71 58.2 53 48.8 45.4 91 46.9 30.4 88 47.1 31.2 24.1 21.9 20.6 20.2 76.4
__
71 67.6 62.9 54.4 50.2 43.5 75.4 68.9 61.4 54 49.9 46
25'
145.1 140.7 134.9 126.3 120.3 147.5 139.2 iii:i i29.2 101 116.5 94.6 109.5 88.4 102.3 112.7 130.6 107.1 123.7 98.6 114.5 88.6 102.6 82.6 95.8 76.7 88.8 159.6 185.5 -- 171.1 158.9 137 113.4 131.6 93.7 108.6 84.9 98.4 77.8 90.1 72.1 83.3 176 150 86.2 75 48.8 56.5 171 146 75.5 86.2 49.9 57.4 38.5 44.4 35.1 40.2 32.9 37.8 32.2 37.1 124.6 144.5 120.1 139.4 115.4 134.5 109.9 128.2 i o i . 8 ii8.7 87.8 102.1 80.8 93.9 69.8 81 122.7 142.6 110.8 128.9 98.5 114.4 86.1 99.7 79.4 91.8 72.1 83.5
50"
75"
100"
128"
156"
219 212.7 202.9 189.5 180.2 230 215.9 199.1 178.6 167 155 202 191.9 176.2 157.2 146.1 135.4 288
299 289.9 276.4 257.4 244.1 322 300.2 275.1 244.9 227.5 210.9 282 266.7 244 216.2 199.9 184.7 403
384 370.3 351.5 326.1 308.5 419 389.3 354.1 312.2 288.9 265.1 369 346.5 314.6 276.8 255.5 234.4 527
485 460.7 435.4 402.9 379.5 538 489.1 438.8 383.8 353.2 321.9 474 438.4 394.5 343 315.1 288
580 551 520.4 476.1 447.3 653 587 524.3 449.5 409.7 372.1 575 529.8 473.7 405.1 369.1 334.7
243.8 200.3 163.3 148.1 135.7 124.8 277 127.5 83.1 271 130
335.2 271 219.5 198.1 180.6 165.7 393 166.2 107 386
427.6 340 272.4 245 222.3 203.1 521 202.3 129.8 512
534 457.5 383.4 315.8 282.5 249.6
651 549 447.8 357.7 316.3 276.2
64.6 81.9 58.4 73.7 84.1 68.7 77.5 55 67.5 76.2 54 320 420 228 210.1 198.7 183.6 157.5 143.7 123.5 223 200.5 176.7 152.5 139.5 126.4
293.8 276.5 254.2 215.5 196.5 167 313 279.8 243.4 207.6 189.1 170.2
381.2 357.2 326 273 247.5 209.5 413 363.5 311.2 261.4 236.7 210.8
T A B L E 415.-ELECTROCHEMICAL
EQUIVALENTS
403
Every gram-atom involved in an electrolytic change requires the same number of coulombs. or ampere-hours of electricity. per unit change of valency . This constant is 96487.7 coulomb/g.atom. or 26.801 ampere-hours per g-atom hour. corresponding to an electrochemical equivalent of silver of 0.0011810 g sec.’amp.‘. It is to be noted that the change of valence of the element from its state before to that after the electrolytic action should be considered. T h e valence of a free. uncombined element is to be considered as 0. The same current will electrolyze “chemically equivalent” quantities per unit time. The valence is then included in the “chemically equivalent” quantity . Element
.................... .................... ...................... ...................... ....................... c u .................... ...................... Au .................... ...................... H ..................... P b .................... ...................... .................... Hg .................... ...................... Ni .................... ‘( .................... .................... 0 ..................... ....................... Pt .................... ...................... .................... K ..................... Ag .................... N a ....................
Change of valency
3 1 3
Al CI
“
“
“
.................... ...................... Zn .................... Sn
5
7 1 2 1 3 1 1 2 4 1 2 1 2 3 2 4 2 4 6 1 1 1 2 4 2
Mg per coulomb
.09317 3749 .12250 .07350 .05250 .6585 .3293 2.044 .6813 .0104472 2.1476 1.07379 .53690 2.0792 1.0396 60828 .3041 .20276 .082914 .041457 1.01171 SO585 .33724 A052 1.11810 .23835 .61512 .30756 .33881
Coulombs per me
10.733 2.7212 8.1633 13.605 19.048 1.5186 3.0367 .4892 1.468 95.719 .46564 .93128 1.8625 .48095 .961908 1.6440 3.2884 4.9319 12.0607 24.1214 .98843 1.97687 2.9652 2.4679 .894374 4.1955 1.6257 3.2514 2.9515
G per amp hour
.3354 1.3230 .4410 .2646 .1890 2.3706 1.1855 7.358 2.453 .0376099 7.7314 3.8656 1.9328 7.4851 3.7426 2.1898 1.0948 .7299 .298490 .14945 3.6422 1.82107 1.2140 1.4587 4.02516 35806 2.2144 1.1072 1.21972
The electrochemical equivalent for silver is 0.00111810 g sec-’ amp-’. For other elements the electrochemical equivalent = (atomic weight divided by change of valency) and this divided by 96487.7 coulomb/g-atom .
SMITHSONIAN PHYSICAL TABLES
404
TABLES 416-42S.-ELECTRICAL AND MECHANICAL CHARACTERISTICS OF WIRE
T A B L E 416.--INTRODUCTION T O W I R E T A B L E S ; MASS A N D V O L U M E R E S I S T I V I T Y OF COP P E R A N D A L U M I N U M
The following wire tables are abridged from those prepared by the Bureau of Standards at the request and with the cooperation of the Standards Committee of the American Institute of Electrical Engineers. The standard of copper resistance used is "The International Annealed Copper Standard" as adopted Scptember 5, 1913, by the International Electrotechnical Commission and represents the average commercial high-conductivity copper for the purpose of electric conductors. This standard corresponds to a conductivity of 58X10-6emu, and a density of 8.89, at 20°C. In the various units of mass resistivity and volume resistivity this may be stated as
0.15328 ohm (m, g ) a t 20°C 875.20 ohms (mi, Ib) at 20°C 1.7241 microhm-cm at 20°C 0.67879 microhm-in. a t 20°C 10.371 ohms (mil, ft) at 20°C The temperature coefficient for this particular resistivity is aZo= 0.00393, or cro = 0.00427. The temperature coefficient of copper is proportional to the conductivity, so that where the conductivity is known the temperature coefficient may be calculated, and vice versa. Thus the next table shows the temperature coefficients of copper having various percentages of the standard conductivity. A consequence of this relation is that the change of resistivity per degree is constant, independent of the sample of copper and independent of the temperature of reference. This resistivity-temperature constant, for volume resistivity and Centigrade degrees, is 0.00681 microhm-cm, and for mass resistiyity is 0.000597 ohm (m, g). The density of 8.89 g per cm3 at 2O"C, is equivalent to 0.32117 Ib per in? The values in the following tables are for annealed copper of standard resistivity. The user of the tables must apply the proper correction for copper of other resistivity. Harddrawn copper may be taken as about 2.7 percent higher resistivity than annealed copper. The following is a fair average of the chemical content of commercial high conductivity copper : Copper ........ 99.91% Silver ......... .03 Oxygen ........ .052 Nickel . . . . . . . . . trace Arsenic ........ .002 Lead .......... Antimony ...... .002 Zinc ........... The following values are consistent with the data above : Conductivity a t O"C, in emu.. ...... ......... 62.969 x 10" Resistivity at O"C, in microhm-cm . . ......... 1.5881 Density at 0°C .................... 8.90 Coefficient of linear expansion per degree C .000017 "Constant mass" temperature coefficient of resistance at 0°C ............................ .00427 The aluminum tables are based on a figure for the conductivity published by the National Bureau of Standards, which is the result of many thousands of determinations by the Aluminum Co. of America. A volume resistivity of 2.828 microhm-cm and a density of 2.70 may be considered to be good average values for commercial hard-drawn aluminum. These values give : Conductivity at 0°C in emu.. ..................... 38.36 X lo-' MZIS resistivity, if oh'ys (m, g ) a t 20°C ........... .0764 (mi, lb) at 20°C.. ........ 436. Mass percent conductivity relative to copper . 200.7% Volume resistivity, in microhm-cm at 20°C . 2.828 " in microhm-in. at 20°C ........ 1.113 Volume percent conductivity relative to copper.. .... 61.0% Density, in g/cm* ............................... 2.70 Density, in Ib/in? ............................... .0975 The average chemical content of commercial aluminum wire is Aluminum ..................................... Silicon .......................................... Iron ...........................................
SMITHSONIAN PHYSICAL TABLES
99.57% .29 .14
T A B L E 417.-TABULAR
Gage
No.
American American wire gage wire gage (B.P (B. & mils mm
5.)
S.)
7-0
64 5-0
COMPARISON O F W I R E GAGES
Steel wire gage t mils
Steel wire gage t mm
Stubs,’ steel wire gage mils
(British) standard wire gage mils
Birmingham wire gage (Stubs’) mils
405
Gage
No.
7-0
490.0 461.5 430.5
12.4 11.7 10.9
500. 464. 432. 400. 372. 348.
454. 425. 380.
40
6-0 5-0
3-0 2-0
460. 410. 365.
11.7 10.4 9.3
393.8 362.5 331.0
10.0 9.2 8.4
0 1 2
325. 289. 258.
8.3 7.3 6.5
306.5 283.0 262.5
7.8 7.2 6.7
227. 219.
324. 300. 276.
340. 300. 284.
0 1 2
3 4 5 6 7 8
229. 204. 182. 162. 144. 128.
5.8 5.2 4.6 4.1 3.7 3.3
243.7 225.3 207.0 192.0 177.0 162.0
6.2 5.7 5.3 4.9 4.5 4.1
212. 207. 204. 201. 199. 197.
252. 232. 212. 192. 176. 160.
259. 238. 220. 203. 180. 165.
3 4 5 6 7 8
9 10 11 12 13 14
114. 102. 91. 81. 72.
64.
2.91 2.59 2.30 2.05 1.83 1.63
148.3 135.0 120.5 105.5 91.5 80.0
3.77 3.43 3.06 2 68 2.32 2.03
194. 191. 188. 185. 182. 180.
144. 128. 116. 104. 92. 80.
148. 134. 120. 109. 95. 83.
9 10 11 12 13 14
15 16 17
57. 51. 45.
1.45 1.29 1.15
72.0 62.5 54.0
1.83 1.59 1.37
178. 175. 172.
72. 64. 56.
72. 65. 58.
15 16 17
18 19 20
40. 36. 32.
1.02 .91 .81
47.5 41.0 34.8
1.21 1.04 .88
168. 164. 161.
48. 40. 36.
49. 42. 35.
18 19 20
21 22 23
28.5 25.3 22.6
.72 .62 .57
31.7 28.6 25.8
.81 .73 .66
157. 155. 153.
32. 28. 24.
32. 28. 25.
n
24 25 26
20.1 17.9 15.9
.51 .45 .40
23.0 20.4 18.1
.58 .52 .46
151. 148. 146.
22. 20. 18.
22. 20. 18.
24 25 26
27 28 29
14.2 12.6 11.3
.36 .32 .29
17.3 16.2 15.0
.439 .411 .381
143. 139. 134.
16.4 14.8 13.6
16. 14. 13.
27 28 29
30 31 32
10.0 8.9 8.0
.25 .227 .202
14.0 13.2 12.8
.356 .335 .325
127. 120. 115.
12.4 11.6 10.8
12. 10. 9.
30 31 32
33 34 35
7.1 6.3 5.6
.180 ,160 .143
11.8 10.4 9.5
,300 .264 241
112. 110. 108.
10.0 9.2 8.4
8. 7. 5.
33 34 35
36 37 38
5.0 4.5 4.0
.127 .113 .lo1
9.0 8.5 8.0
.229 .216 .203
106. 103. 101.
7.6 6.8 6.0
4.
36 37 38
4-0
3-0 2-0
21
23
* T h e American wire gage sizes have been rounded off to the usual limits of commercial accuracy. They are given to four significant figures in Tables 420 to 423. They can be calculated with any desired accuracy, being based upon a simple mathematical law. The diameter of No. 0000 is defined as 0.4600 inch and of No. 36 as 0.0050 inch. The ratio of anv diameter to the diameter of the hext
that has been known by the various names: “Washburn and Moen ” “Roebling ” “American Steel and Wire Co.’s.” Its abbreviation should be written “Stl. W. G.” to disiinguish it from “S. W. G.,” the usual abbreviation for the (British) Standard Wire Gage.
(continued)
SMITHMNIAN PHYSICAL TABLES
406 T A B L E 417.-TABULAR American ware gage
COMPARISON OF W I R E GAGES (concluded)
Gage NO.
(B.,& $.)
American wire gage (B. & mm
39 40 41
3.5 3.1
.090 .080
mils
S.)
Steel wire gage t mils
Stubs’ Steel wire steel wire gage gage t mils mm
.I91
7.5 7.0 6.6
Birming(British) ham wire standard wire, age
99.
.178 .I68
97. 95.
mit
(mils ~ Ts’) Gage NO.
5.2 4.8 4.4
39 40 41
.I57
92.
.I52 .147
88. 85.
4.0 3.6 3.2
42 43 44
47
5.2 5.0
.140 .132 .127
81. 79. 77.
2.8 2.4 2.0
45 46 47
48 49 50
4.8 4.6 4.4
.I22 .117 .I12
75. 72. 69.
1.6 1.2 1.o
48 49 50
6.2 6.0 5.8
42 43 44
5.5
45
46
T A B L E 418.-TEMPERATURE C O E F F I C I E N T S O F COPPER F O R D I F F E R E N T I N I T I A L TEMPERATURES (CENTIGRADE) A N D DIFFERENT CONDUCTIVITIES Ohms (m, g ) at 20°C
Percent conductivity
a.
am
Qm
am
.003 77
.003 67 .003 70
,003 60 .003 64
.003 36 .003 39
,003 89 .003 90
.003 81 .003 82
.003 74 .003 75
.003 67 .GO3 68
.003 42 .003 43
.004 17 .004 22
.003 93 .003 97
.003 85 .003 89
.003 78 .003 82
.003 71 .003 74
.003 45 .003 48
.044 27 .004 31
.004 01 .004 05
.003 93 .003 97
.003 85 .003 89
.003 78 .003 82
.003 52 .003 55
Qi6
.I61 34 .I59 66
95% 96%
.004 03 .004 08
.003 80
.003 73
.003 85
.I58 02 .157 53
97% 97.3%
.004 13 .004 14
.156 40 .I54 82
98% 99%
.153 28
100% 101%
.151 76
NoTE.-The
QW
fundamental relation between resistance and temperature is the following : Rr = R tl(l atl[t - t i ] ) , where at1 is the “temperature coefficient,” and tl is the “initial temperature” or “temperature of reference.” The values of a in the above table exhibit the fact that the temperature coefficient of copper is proportional to the conductivity. The table was calculated by means of the following formula, which holds dor any percent conductivity, n, within commercial ranges, and for centigrade temperatures. (n is considered to be expressed decimally: e.g., if percent conductivity = 99 percent, n .=0.99.)
+
at1
SMITHSONIAN PHYSICAL TABLES
=
1
1 1t(0.00393) 4-
(‘l-
‘O)
407
T A B L E 419.-REDUCTION OF OBSERVATIONS T O STANDARD T E M P E R A T U R E (Copper) Factors to reduce resistance to 20°C A
Corrections to reduce resistivity to 20°C TemperMicrohmMicrohmatye, Ohm cm C in. (mi, Ib) Ohm (m,9)
For96 percent conductivity
For98 percent conductivity
For 100 percent Temperconduc. ature, tivity "C
+.053 58 +.040 18 +.026 79
1.0816 1.06oO 1.0392
1.0834 1.0613 1.0401
1.0853 1.0626 1.0409
10
+.024 11 +.021 43 +.018 75
1.0352 1.0311 1.0271
1.0359 1.0318 1.0277
1.0367 1.0325 1.0283
11 12 13
+.016 07 +.013 40 +.010 72
1.0232 1.0192 1.0153
1.0237 1.0196 1.0156
1.0242 1.0200 1.0160
14 15 16 17 18 19
5
10
+.011 94 +.008 96 +.005 97
+.I361 +.lo21 +.0681
11 12 13
+.005 37 +.004 78 +.004 18
+.0612 +.0544 +.0476
14 15 16
+.003 58 +.002 99 +.002 39
+.0408 +.0340 +.0272
+ 68.20 + 51.15 + 34.10 + 30.69 + 27.28 + 23.87 + 20.46 + 17.05 + 13.64
17 18 19
+.001 79 +.001 19 +.000 60
+.0204 +.0136 +.0068
+ 10.23 + 6.82 + 3.41
+.008 04 +.005 36 +.002 68
1.0114 1.0076 1.0038
1.0117 1.0078 1.0039
1.0119 1.0079 1.0039
20 21 22
0 -.COO
0 --.OM8 -.0136
0 - 3.41 - 6.82
0 -.002
-.001
60 19
1.0000 .9962 ,9925
1.0000 9962 .9924
1.0000 ,9961 .9922
23 24 25
--.001 79 -.002 39 -.002 99
--.0204 -.0272 -.0340
26 27 28
-.003 58 -.W 18 -.004 78
-.0408 -.0476 -.0544
29 30 35
-.m5 37
-.005 97 -.008 96 -.011 -.014 -.017
0
0
5
,
20 21 22
-.005
68 36
-.008 -.010 -.013
04 72 40
.9883
~.
.9851 .9815
,9848 .9811
.9845 .9807
24 25
- 23.87 - 27.28
--.016 07 -.018 75 --.021 43
.9779 .9743 ,9707
,9774 .9737 .9701
,9770 .9732 .9695
26 27 28
-MI2 -.0681 -.I021
- 30.69 - 34.10 - 51.15
-.024 11 -.026 79 --.040 18
.9672 ,9636 .9464
.%65 .9629 .9454
.9658 ,9622 .9443
29 30 35
94 93 92
-.I361 -.1701 -.2042
- 68.20 - 85.25 -102.30
-.053 -.066 -.080
58 98 37
,9298 .9138 ,8983
.9285 .9122 .8964
.9271 .9105 ,8945
40 45 50
60 65
55
--.020 90 -.023 89 -.026 87
-.2382 -.2722 -.3062
-119.35 -136.40 -153.45
-.093 76 --.lo7 16 -.la 56
,8833 3689 A549
.8812 3665 .8523
.8791 .8642 3497
55 60 65
70 75
-.029 86 -.032 85
-.3403 -.3743
-170.50 -187.55
-.133 -.I47
,8413 A281
.8385 .8252
.8358 .8223
70 75
40 .-
45 50
SMITHSONIAN PHYSICAL TABLES
- 10.23
- 13.64 - 17.05 - 20.46
95 34
.9888 .~~.9886 .. ~
. . ._.
23
408
TABLE 420.-WIRE TABLE, STANDARD ANNEALED COPPER American wire gage (B. dr 5 . )
Diameter Gage in mils. No. at 2o0C
oooo
Ohms per 1000 ft
Cross section at 20°C Circular mils
0°C (=32'F)
in.'
20°C
(~68°F)
50°C
(= 122'F)
75°C
(= 167°F)
00
460.0 409.6 364.8
211 600. 167 800. 133 100.
.1662 .I318 .lo45
.045 16 M 6 95 .07181
.049 01 .06180 .077 93
.054 79 .069 09 .087 12
.059 61 .075 16 .094 78
0 1 2
324.9 289.3 257.6
105 500. 83 690. 66 370.
.082 89 .065 73 .052 13
.090 55 .I142 .I440
.098 27 .I239 .I563
.I099 ,1385 .I747
.1195
3 4
5
229.4 204.3 181.9
52 640. 41 740. 33 100.
.04134 .032 78 .026 00
.I816 .2289 .2887
.I970 .2485 .3133
.2203 .2778 .3502
.2396 ,3022 .3810
6 7 8
162.0 144.3 128.5
26 250. 20 820. 16 510.
.020 62 .016 35 .012 97
.3640 .4590 .5788
.3951 .4982 .6282
.4416 S569 .7023
.4805 .6059 ,7640
9 10 11
114.4 101.9 90.74
13 090. 10 380. 8234.
.010 28
.008 155 .006 467
.7299 .9203 1.161
.7921 .9989 1.260
.8855 1.117 1.408
.%33 1.215 1.532
12 13 14
80.81 71.96 64.08
6530. 5178. 4107.
.005 129 .004 067 .003 225
1.463 1.845 2.327
1.588 2.003 2.525
1.775 2.239 2.823
1.931 2.436 3.071
15 16 17
57.07 50.82 45.26
3257. 2583. 2048.
.002 558 .002 028 .001609
2.934 3.700 4.666
3.184 4.016 5.064
3.560 4.489 5.660
3.873 4.884 6.158
18 19 20
40.30 35.89 31.96
1624. 1288. 1022.
.001276 .001012 .OOO 802 3
5.883 7.418 9.355
6.385 8.051 10.15
7.138 9.001 11.35
7.765 9.702 12.35
21 22 23
28.45 25.35 22.57
810.1 642.4 509.5
.000 636 3 ,000 504 6 .000 400 2
11.80 14.87 18.76
12.80 16.14 20.36
14.31 18.05 22.76
15.57 19.63 24.76
24 25 26
20.10 17.90 15.94
404.0 320.4 254.1
.000 317 3 .000251 7 .OOO 199 6
23.65 29.82 37.61
25.67 32.37 40.81
28.70 36.18 45.63
31.22 39.36 49.64
27 28 29
14.20 12.64 11.26
201.5 159.8 126.7
.000 158 3 .ooO 125 5 .000 099 53
47.42 59.80 75.40
51.47 64.90 81.83
57.53 72.55 91.48
62.59 78.93 99.52
30 31 32
10.03 8.928 7.950
100.5 79.70 63.21
.000 078 94 ,000 062 60 .OOO 049 64
95.08 119.9 151.2
103.2 130.1 164.1
115.4 145.5 183.4
125.5 158.2 199.5
33 34 35
7.080 6.305 5.615
50.13 39.75 31.52
.OOO 039 37 .OOO 031 22 .OOO 024 76
190.6 240.4 303.1
206.9 260.9 329.0
231.3 291.7 367.8
251.6 317.3 400.1
36 37 38
5.000 4.453 3.965
25.00 19.83 15.72
.OOO 019 64 ,000 015 57
.ooo 012 35
382.2 482.0 607.8
414.8 523.1 659.6
463.7 584.8 737.4
504.5 636.2 802.2
39 40
3.531 3.145
12.47 9.888'
.,000 007 766 966.5
,000 009 793
766.4
831.8 1049.
929.8 1173.
000
(continued)
S U ~ u I N l A NPHYSICAL TABLES
.1507 .1900
1012. 1276.
409 T A B L E 420.-WIRE
T A B L E , S T A N D A R D A N N E A L E D C O P P E R (continued) American wire gage (B. & S.) ft/ohm
No.
Diameter in mils. at 20°C
0000 000 00
460.0 409.6 364.8
640.5 507.9 402.8
1.561 1.968 2.482
22 140. 17 560. 13 930.
20 400. 16 180. 12 830.
18 250. 14 470. 11480.
16 780. 13 300. 10 550.
0 1 2
324.9 289.3 257.6
319.5 253.3 200.9
3.130 3.947 4.977
11 040. 8758. 6946.
10 180. 8070. 6400.
9103. 7219. 5725.
8367. 6636. 5262.
3 4 5
229.4 204.3 181.9
159.3 126.4 100.2
6.276 7.914 9.980
5508. 4368. 3464.
5075. 4025. 3192.
4540. 3600. 2855.
4173. 3309. 2625.
6 7 8
162.0 144.3 128.5
79.46 63.02 49.98
12.58 15.87 20.01
2747. 2179. 1728.
2531. 2007. 1592.
2264. 17%. 1424.
2081. 1651. 1309.
9 10 11
114.4 101.9 90.74
39.63 31.43 24.92
25.23 31.82 40.12
1370. 1087. 861.7
1262. 1001. 794.0
1129. 895.6 710.2
1038. 823.2 652.8
12 13 14
80.81 71.96 64.08
19.77 15.68 12.43
50.59 63.80 80.44
683.3 541.9 429.8
629.6 499.3 396.0
563.2 446.7 354.2
517.7 410.6 325.6
15 16 17
57.07 50.82 45.26
9.858 7.818 6.200
101.4 127.9 161.3
340.8 270.3 214.3
314.0 249.0 197.5
280.9 222.8 176.7
258.2 204.8 162.4
18 19 20
40.30 35.89 31.96
4.91 7 3.899 3.092
203.4 256.5 323.4
170.0 134.8 106.9
156.6 124.2 98.50
140.1 111.1 88.1 1
128.8 102.1 80.99
21 22 23
28.46 25.35 22.57
2.452 1.945 1.542
407.8 514.2 648.4
84.78 67.23 53.32
78.1 1 6 1.95 49.13
69.87 55.41 43.94
64.23 50.94 40.39
24 25 26
20.10 17.90 15.94
1.223 .9699 .7692
817.7 1031. 1300.
42.28 33.53 26.59
38.96 30.90 24.50
34.85 27.64 21.92
32.03 25.40 20.15
27 28 29
14.20 12.64 11.26
.6100 .4837 .3836
1639. 2067. 2607.
21.09 16.72 13.26
19.43 15.41 12.22
17.38 13.78 10.93
15.98 12.67 10.05
30 31 32
10.03 8.928 7.950
,3042 .2413 .1913
3287. 4145. 5227.
10.52 8.341 6.614
9.691 7.685 6.095
8.669 6.875 5.452
7.968 6.319 5.011
33 34 35
7.080 6.305 5.615
.1517 ,1203 .095 42
6591. 8310 10 480.
5.245 4.160 3.299
4.833 3.833 3.040
4.323 3.429 2.719
3.974 3.152 2.499
36 37 38
5.000 4.453 3.965
.075 68 .OGO 01 .047 59
13 210. 16 660. 21 010.
2.616 2.075 1.645
2.411 1.912 1.516
2.156 1.710 1.356
1.982 1.572 1.247
39 40
3.531 3.145
.037 74 ,029 93
26 500. 33 410.
1.305 1.035
1.202 .9534
1.075 .8529
Gage
lb/(1000ft)
ft/lb
(= 68°F)
(= 122'F)
(= 167'F)
(contiwed)
SMITHSONIAN PHYSICAL TABLES
20°C
0°C (= 32°F)
50°C
75°C
.9886 .784
410 T A B L E 420.-WIRE
T A B L E , S T A N D A R D A N N E A L E D COPPER (concluded)
American wire gage Gage
No.
0000 000
Diameter in mils. a t 20°C
(B. & S.). English units Ib/ohm
ohm/lb 20'C (= 68'F)
0°C (=32'F)
c
50'C (= 122°F)
20'C (= 68°F)
.OW 070 51
00
460.0 409.6 364.8
.000 1121 .OOO 1783
.OOO 076 52 .OW 1217 .OOO 1935
.000 085 54 .000 1360
.OW 2163
13 070. 8219. 5169.
0 1 2
324.9 289.3 257.6
.OOO 2835 .OOO 4507 .OOO 7166
.OOO 3076
.000 4891 .000 7778
.OW 3439 .OW 5468 .OOO 8695
3251. 2044. 1286.
3 4 5
229.4 204.3 181.9
.001 140 ,001 812 ,002 881
.001237 ,001 966 .003 127
.@I1 383 ,002 198 ,003 495
808.6 508.5 319.8
6 7 8
162.0 144.3 128.5
,004 581 .007 284 .01158
,004 972 .007 905 .012 57
,005 558 .008 838 .014 05
201.1 126.5 79.55
9 10 11
114.4 101.9 90.74
,018 42 .029 28 ,046 56
.019 99 ,031 78 ,050 53
,022 34 .035 53 .056 49
50.03 3 1.47 19.79
12 13 14
80.81 71.96 64.08
.074 04 ,1177 .1872
.080 35 .1278 .2032
.089 83 ,1428 ,2271
12.45 7.827 4.922
15 16 17
57.07 50.82 45.26
,2976 ,4733 .7525
.3230 .5136 ,8167
.3611 S742 .9130
18 19 20
40.30 35.89 31.96
1.197 1.903 3.025
1.299 2.065 3.283
1.452 2.308 3.670
.7700 ,4843 .3046
21 22 23
28.46 25.35 22.57
4.810 7.649 12.16
5.221 8.301 13.20
5.836 9.280 14.76
,1915 .1205 .075 76
24 25 26
20.10 17.90 15.94
19.34 30.75 48.89
20.99 33.37 53.06
23.46 37.31 59.32
.047 65 .029 97 .018 85
27 28 29
14.20 12.64 11.26
77.74 123.6 196.6
84.37 134.2 213.3
94.32 150.0 238.5
.01185 .007 454 .004 688
30 31 32
10.03 8.928 7.950
312.5 497.0 790.2
339.2 539.3 857.6
379.2 602.9 958.7
.002 948
33 34 35
7.080 6.305 5.615
1256. 1998. 3177.
1364. 2168. 3448.
1524. 2424. 3854.
36 37 38
5.000 4.453 3.965
5051. 8032. 12 770.
5482. 8717. 13 860.
6128. 9744. 15 490.
,000 1824 .OW 1147 .OOO 072 15
39 40
3.531 3.145
20 310. 32 290.
22 040. 35 040.
24 640. 39 170.
.OOO 045 38
SMITHSONIAN PHYSICAL TABLES
3.096 1.947 1.224
.001 854 ,001 166 .000 7333
.ooo 4612
.Ooo 2901
.OOO 028 54
T A B L E 421.-WIRE
T A B L E , S T A N D A R D A N N E A L E D COPPER
411
American wire gage ( 6 . & S.). Metric units
Gage
No.
Diameter in mm at 20°C
0000 000 00
11.68 10.40 9.266
0 1
Crqss section in mmz at 20°C
ohm/km A
0°C
20°C
50°C
75°C
107.2 85.03 67.43
.1482 .1868 .2356
.1608 .2028 .2557
,1798 2267 .2858
.1956 .2466 .3110
2
8.252 7.348 6.544
53.48 42.41 33.63
,2971 .3746 .4724
,3224 ,4066 ,5127
.36OA .4545 .5731
.3921 .4944 ,6235
3 4 5
5.827 5.189 4.621
26.67 21.15 16.77
S956 .75 11 .9471
.6465 .8152 1.028
.7227 .9113 1.149
.7862 .9914 1.250
6 7 8
4.115 3.665 3.264
13.30 10.55 8.366
1.194 1.506 1.899
1.296 1.634 2.061
1.449 1.827 2.304
1.576 1.988 2.506
9 10 11
2.906 2.588 2.305
6.634 5.261 4.172
2.395 3.020 3.807
2.599 3.277 4.132
2.905 3.663 4.619
3.161 3.985 5.025
12 13 14
2.053 1.828 1.628
3.309 2.624 2.081
4.801 6.054 7.634
5.211 6.571 8.285
5.825 7.345 9.262
6.337 7.991 10.08
15 16 17
1.450 1.291 1.150
1.650 1.309 1.038
9.627 12.14 15.31
10.45 13.17 16.61
11.68 14.73 18.57
12.71 16.02 20.20
18 19 20
1.024 ,9116 .8118.
.8231 .6527 S176
19.30 24.34 30.69
20.95 26.42 33.31
23.42 29.53 37.24
25.48 32.12 40.51
21 22 23
.7230 .6438 ,5733
.4105 ,3255 .2582
38.70 48.80 61.54
42.00 52.96 66.79
46.95 59.21 74.66
51.08 64.41 81.22
24 25 26
,5106 ,4547 ,4049
.2047 .1624 .1288
77.60 97.85 123.4
84.21 106.2 133.9
94.14 118.7 149.7
102.4 129.1 162.9
27 28 29
.3606 .3211 ,2859
.lo21 .080 98 .064 22
155.6 1%.2 247.4
168.9 212.9 268.5
188.8 238.0 300.1
205.4 258.9 326.5
30 31 32
.2546 ,2268 ,2019
.050 93 .040 39 ,032 03
311.9 393.4 496.0
338.6 426.9 538.3
378.5 477.2 601.8
411.7 519.2 654.7
33 34 35
.1798 .I601 .I426
.025 40 .020 14 .015 97
625.5 788.7 394.5
678.8 856.0 1079.
758.8 956.9 1207.
825.5 1041. 1313.
36 37 38
.1270 .1131 .lo07
.012 67 .010 05 .007 967
1254. 1581. 1994.
1361. 1716. 2164.
1522. 1919. 24 19.
1655. 2087. 2632.
39 40
.089 69 .079 87
.006 318 .005 010
2514. 3171.
2729. 3441.
3051. 3847.
3319. 4185.
(continued)
SMITHSONIAN PHYSICAL TABLES
412 T A B L E 421.-WIRE
T A B L E , S T A N D A R D A N N E A L E D COPPER (continued)
American w i r e gage (B. & S.). M e t r i c u n i t s m/ohm
Diameter In mm at 20°C
kdkm
m/g
000 00
11.68 10.40 9.266
953.2 755.9 599.5
.001049 .001323 .001 668
0 1 2
8.252 7.348 6.544
475.4 377.0 299.0
3 4
237.1 188.0 149.1
.005 318
5
5.827 5.189 4.621
6 7 8
4.114 3.665 3.264
118.2 93.78 74.37
,008 457
.010 66 .013 45
9 10 11
2.906 2.588 2.305
58.98 46.77 37.09
12 13 14
2.053 1.828 1.628
15 16 17
Gage
75°C
20'C
50°C
6749. 5352. 4245.
6219. 4932. 3911.
5563. 4412. 3499.
5113. 4055. 3216.
.002 103 .002 652 .003 345
3366. 2669. 2117.
3102. 2460. 1951.
2774. 2200. 1745.
2550. 2022. 1604.
,004 217
1679. 1331. 1056.
1547. 1227. 972.9
1384. 1097. 870.2
1272. 1009. 799.9
837.3 664.0 526.6
771.5 611.8 485.2
690.1 547.3 434.0
634.4 503.1 399.0
.016 96 ,021 38 ,026 96
417.6 331.2 262.6
384.8 305.1 242.0
344.2 273.0 216.5
316.4 250.9 199.0
29.42 23.33 18.50
,034 00 ,042 87 ,054 06
208.3 165.2 131.0
191.9 152.2 120.7
171.7 136.1 108.0
157.8 125.1 99.24
1.450 1.291 1.150
14.67 11.63 9.226
.068 16
,085 95 ,1084
103.9 82.38 65.33
95.71 75.90 60.20
85.62 67.90 53.85
78.70 62.41 49.50
18 19 20
1.024 .9116 .8118
7.317 5.803 4.602
.1367 ,1723 2173
51.81 41.09 32.58
47.74 37.86 30.02
42.70 33.86 26.86
39.25 31.13 24.69
21 22 23
.7230 ,6438 .5733
3.649 2.894 2.295
,2740 ,3455 .4357
25.84 20.49 16.25
23.81 18.88 14.97
21.30 16.89 13.39
19.58 15.53 12.31
24 25 26
S106 .4547 .4049
1.820 1.443 1.145
.5494 .6928 .8736
12.89 10.22 8.105
11.87 9.417 7.468
10.62 8.424 6.680
9.764 7.743 6.141
27 28 29
.3606 .3211 ,2859
.W78 .7199 S709
1.102 1.389 1.752
6.428 5.097 4.042
5.922 4.697 3.725
5.298 4.201 3.332
4.870 3.862 3.063
30 31 32
.2546 .2268 .2019
.4527 .3590 .2847
2.209 2.785 3.512
3.206 2.542 2.016
2.954 2.342 1.858
2.642 2.095 1.662
2.429 1.926 1.527
33 34 35
.1798 .I601 .I426
.2258 .I791 .1420
4.429 5.584 7.042
1.599 1.268 1.006
1.473 1.168 .9265
1.318 1.045 ,8288
1.211 .9606 .7618
36 37 38
.1270 .1131 .I007
,1126 .089 31 ,070 83
8.879 11.20 14.12
.7974 ,6324 so15
.7347 ,5827 .4621
.6572 ,5212 .4 133
.6041 ,4791 .3799
39 40
.089 69 .079 87
,056 17 .044 54
17.80 22.45
.3977 .3154
,3654 .29M
,3278 .2600
,3013 .2390
No.
OOOO
.006 706
0°C
( c o n tintred)
SMITHSONIAN PHYSICAL TABLES
413 T A B L E 421.-WIRE
T A B L E , S T A N D A R D A N N E A L E D COPPER (concluded)
American wire gage (B. & S.). Metric units Gage No.
Diameter in mm at 20°C
0°C
20°C
50°C
0000 000 00
11.68 10.40 9.266
.000 155 4 .OOO 247 2 .om393 0
.OOO 188 6
0 1 2
8.252 7.348 6.544
.OOO 624 9 .OOO 993 6
,001 580
.OW 168 7 .OOO 268 2 .000 426 5 ,000 678 2 .001078 .001715
.001206 .001917
927 300. 583 200.
3 4 5
5.827 5.189 4.621
.002 512 ,003 995 .006 352
,002 726 .o04 335 .006 893
,003 048 .004 846 .007 706
366 800. 230 700. 145 100.
6 7 8
4.115 3.665 3.264
,010 10 ,016 06 ,025 53
.010 96 .017 43 .027 71
.012 25 .019 48 ,030 98
91 230. 57 380. 36 080.
9 10 11
2.906 2.588 2.305
,040 60 ,064 56 .lo26
.044 06 ,070 07 .1114
,049 26 ,07833 ,1245
22 690. 14 270. 8976.
12 13 14
2.053 1.828 1.628
,1632 .2595 .4127
.1771 .2817 .4479
.1980 .3149 .so07
5645. 3550. 2233.
15 16 17
1.450 1.291 1.150
,6562 1.043 1.659
,7122 1.132 1.801
.7961 1.266 2.013
1404. 883.1 555.4
18 19 20
1.024 ,9116 .8118
2.638 4.194 6.670
2.863 4.552 7.238
3.201 5.089 8.092
349.3 219.7 138.2
21 22 23
.7230 ,6438 .5733
10.60 16.86 26.81
11.51 18.30 29.10
12.87 20.46 32.53
86.88 54.64 34.36
24 25 26
,5106 .4547 .4049
42.63 67.79 107.8
46.27 73.57 117.0
5 1.73 82.25 130.8
21.61 13.59 8.548
27 28 29
.3606 .3211 ,2859
171.4 272.5 433.3
186.0 295.8 470.3
207.9 330.6 525.7
5.376 3.381 2.126
30 31 32
.2546 .2268 .2019
689.0 1096. 1742.
747.8 1189. 1891.
836.0 1329. 2114.
1.337 .8410 5289
33 34 35
.1798
.1601 .1426
2770. 4404. 7003.
3006. 4780. 7601.
3361. 5344. 8497.
3326 .2092 .1316
36 37 38 39 40
.1270 ,1131 .lo07
11140. 17710. 28150.
12090. 19220. 30560.
13510. 21480. 34160.
.082 74 .052 04 .032 73
.089 69 ,079 87
44770. 71180.
48590. 77260.
54310. 86360.
.020 58 .012 94
ohm/kg
SMITHSONIAN PHYSICAL TABLES
.OOO 299 9 .OOO 476 8 .OOO 758 2
1 474 000.
414
TABLE 422.-WlRE
TABLE, ALUMiNUM
Hard-drawn aluminum wire at 20°C (680F) American wire gage (B.& S.). English units Gage Diameter No. in mils
Cross section Circular mils
in.2
ohm 1000 f t
0000 000 00
460. 410. 365.
212 OOO. 168 000. 133 000.
.166 .132
.lo5
,0804 .lo1 .128
0
1 2
325. 289. 258.
106 000. 83 700. 66 400.
,0829 .0657 .0521
.161 .203 .256
3 4 5
229. 204. 182.
52 600. 41 700. 33 100.
.0413 ,0328 .0260
6 7 8
162. 144. 128.
26 300. 20 800. 16 500.
9 10 11
114. 102. 91.
12 13 14
_Ih_ 1000 f t
Ib/ohm
ft/ohm
2420. 1520. 957.
12 400. 9860. 7820.
97.0 76.9 61.O
602. 379. 238.
6200. 4920. 3900.
.323 ,408 .514
48.4 38.4 30.4
150. 94.2 59.2
3090. 2450. 1950.
.0206 .0164 .0130
.648 ,817 1.03
24.1 19.1 15.2
37.2 23.4 14.7
1540. 1220. 970.
13 100. 10 400. 8230.
.0103 .008 15 .006 47
1.30 1.64 2.07
12.0 9.55 7.57
9.26 5.83 3.66
770. 610. 484.
81. 72. 64.
6530. 5180. 4110.
.005 13 ,004 07 ,003 23
2.61 3.29 4.14
6.00 4.76 3.78
2.30 1.45 ,911
384. 304. 241.
15 16 17
57. 51. 45.
3260. 2580. 2050.
.002 56 .002 03 ,001 61
5.22 6.59 8.31
2.99 2.37 1.88
.573 .360 .z7
191. 152. 120.
18 19 20
40. 36, 32.
1620. 1290. 1020.
.00128 .00101 .OOO 802
10.5 13.2 16.7
1.49 1.18 ..939
.143 .0897 .0564
95.5 75.7 60.0
21 22 23
28.5 25.3 22.6
810. 642. 509.
.OOO 636 .000 505 .ooo 400
21.0 26.5 33.4
.745 .591 .468
.0355 .0223 .0140
47.6 37.8 29.9
24 25 26
20.1 17.9 15.9
404. 320. 254.
.OOO 3 17 .OW252 ,000 200
42.1 53.1 67.0
,371 .295 ,234
.008 82 .005 55 .003 49
23.7 18.8 14.9
27 28 29
14.2 12.6 11.3
202. 160. 127.
.OOO 158 .000 126 .OOO 099 5
84.4 106. 134.
.185 .147 .117
.002 19 .00138 .000 868
11.8 9.39 7.45
30 31 32
10.0 8.9 8.0
101. 79.7 63.2
.OW 078 9 ,000 062 6 .OOO 049 6
169. 213. 269.
.0924 .0733 .0581
.000 546 .om 343 .000216
5.91 4.68 3.72
33 34 35
7.1 6.3 5.6
50.1 39.8 31.5
.000 039 4 .OOO 031 2 ,000 024 8
339. 428. 540.
.0461 .0365 .0290
.000 136 .000 085 4 .OW053 7
2.95 2.34 1.85
36 37 38
5.0 4.5 4.0
25.0 19.8 15.7
.OOO 019 6 .OW015 6 .OOO 012 3
681. 858. 1080.
.0230 .0182 .0145
.OOO 033 8
.Ooo 021 2 .OOO 013 4
1.47 1.17 .924
39 40
3.5 3.1
12.5 9.9
.ooo 007 77
.000 009 79
1360. 1720.
.0115 .OO91
.om 008 40 .ooo 005 28
.733 ,581
SMITHSONIAN PHYSICAL TABLES
195. 154. 122.
TABLE 423.-WIRE
415
TABLE, A L U M I N U M
Hard-drawn aluminum wire at 20°C (68°F) American wire gage (B. & S.). Metric units
NO.
Diameter in mm
0000 000 00
11.7 10.4 9.3
107. 85.0 67.4
.264 .333 .419
289. 230. 182.
1100000. 690 000. 434 000.
3790. 3010. 2380.
0 1
8.3 7.3 6.5
53.5 42.4 33.6
.529 .667 .841
144. 114. 90.8
273 000. 172 000. 108 000.
1890. 1500. 1190.
3 4
5
5.8 5.2 4.6
26.7 21.2 16.8
1.06 1.34 1.69
72.0 57.1 45.3
67 900. 42 700. 26 900.
943. 748. 593.
6 7 8
4.1 3.7 3.3
13.3 10.5 8.37
2.13 2.68 3.38
35.9 28.5 22.6
16 900. 10 600. 6680.
470. 373. 296.
9 10 11
2.91 2.59 2.30
6.63 5.26 4.17
4.26 5.38 6.78
17.9 14.2 11.3
4200. 2640. 1660.
235. 186. 148.
12 13 14
2.05 1.83 1.63
3.31 2.62 2.08
8.55 10.8 13.6
8.93 7.08 5.62
1050. 657. 413.
117. 92.8 73.6
15 16 17
1.45 1.29 1.15
1.65 1.31 1.04
17.1 21.6 27.3
4.46 3.53 2.80
260. 164. 103.
58.4 46.3 36.7
18 19 20
1.02 .91 181
,823 ,653 .518
34.4 43.3 54.6
2.22 1.76 1.40
64.7 40.7 25.6
29.1 23.1 18.3
21 22 23
.72 .64 .57
.411 .326 .258
68.9 86.9 110.
1.11 .879 .697
16.1 10.1 6.36
14.5 11.5 9.13
24 25 26
.51 .45 .40
.205 .162 .129
138. 174. 220.
.553 ,438 .348
4.00 2.52 1.58
7.24 5.74 4.55
27 28 29
.36 .32 .29
.lo2 ,0810 .0642
277. 349. 440.
,276 .219 ,173
,995 .626 .394
3.61 2.86 2.27
30 31 32
.25 .227 .202
,0509 ,0404 ,0320
555.
700. 883.
.138 .lo9 .0865
.248 .156 .0979
1.80 1.43 1.13
33 34 35
.180 .160 .143
,0254 .0201 ,0160
1110. 1400. 1770.
,0686 .0431
,0616 .0387 .0244
.899 .712 .565
36 37 38
.127 .113 .lo1
.0127 ,0100 ,0080
.0342 ,0271 .0215
.0153 .009 63 .OM06
.448 .355 .282
39 40
,090 ,080
.0063 .0050
‘230. 2820. 3550. 4480. 5640.
,0171 .0135
,003 81 .002 40
.223 .177
Gage
2
Cross section in mmp
SMITHSONIAN PHYSICAL TABLES
ohm/km
kg/km
.0544
dohm
m/ohm
416 T A B L E 424.-AUX!LlARY
T A B L E FOR C O M P U T I N G W I R E RESISTANCES
For computing resistances in ohms per meter from resistivity, p, in microhm-cm (see Table
+
+ +
386, etc.). e.g., to compute for No. 23 copper wire when p = 1.724: 1 m = 0.0387 .0271 .0008 ,0002 = 0.0668 ohms ; for No. 11 lead wire when p = 20.4 : 1 m = 0.0479 .0010 = 0.0489 ohms. The following relation allows computation for wires of other gage numbers: resistance in ohms per m of No. n wire = 2 x resistance of wire No. ( n - 3) within 1 percent: e.g., resistance of m of No. 18 = 2 x No. 15.
+
p
1
Gage No. 0000 00 1 3 5 7 9 11
13 15 17 19 21 23 25 27 29 31 33 35 37 39 40
Diam. in Section mm mm2 , 11.7 107.2 .0,933 9.27 ,03148 67.43 42.41 7.35 ,09236 5.83 ,03375 26.67 4.62 ,03596 16.77 3.66 ,03948 10.55 2.91 6.634 .02151 4.172 .02240 2.30 1.83 2.624 ,02381 1.45 1.650 .02606 1.15 1.038 .On963 .912 .6527 .0153 ,723 .4105 ,0244 .573 2582 ,0387 .455 .1624 ,0616 .lo21 ,0979 .361 ,286 .0642 ,1557 ,227 .0404 .2476 .0254 ,3937 ,180 .0160 ,6262 ,143 .0100 ,9950 .113 .0063 1.583 .090 .080 .0050 1.996
2
in microhm-cm 5
4
3
6
7
8
9
10
Resistaoce of wire 1 m. long in ohms A
,03187 ,08297 .03472 ,03750 ,02119 .02190 .02301 ,02479 .Oz762 ,0121
.0193 ,0306 ,0487 ,0775 .1232 .I959 .3114 ,4952 .7874 1.252 1.990 3.166 3.992
.03280
,03445 ,09707 .02112 ,02179 ,02284 .02452 .02719 ,0114 ,0182
.0289 ,0460 .0731 ,1162 .la47 ,2938 ,4671 .7428 1.181 1.879 2.985 4.748 5.988
,03373 ,03593 ,03943
.02150
.02239 .02379 .0z603 .02959 ,0152
,0242 ,0385 .0613 .0974 ,1549 .2463 ,3918 .6228 ,9904 1.575 2.505 3.980 6.331 7.984
.03466 ,08742 .02118 .0z187 ,02298 .02474 ,02754 ,0120 ,0191 .0303 .0482 ,0766 .1218
,1936 ,3079 .4897 .7786 1.238 1.968 3.131 4.975 7.914 9.980
,03560 .03653 .08746 ,08890 .02104 ,02119 ,02141 .Oa165 .02189 .02225 ,02262 .02300 ,02358 .02417 ,02477 ,02569 ,02664 ,02758 ,0121 ,02904 ,0106 .0192 ,0144 ,0168 ,0305 ,0229 .0267 ,0485 ,0364 .0424 ,0771 .0578 .0674 ,1226 ,0919 .lo72 ,1949 ,1462 ,1705 ,3098 ,2324 ,2711 .4926 ,3695 .4310 ,7835 ,5877 ,6856 1.246 ,9343 1.090 1.981 ,486 1.733 3.150 ,362 2.756 5.009 ,757 4.383 7.960 ,970 6.965 12.66 ,497 11.08 15.97 13.97 I .98
-
.038401 .02133 .%212 .Ox337 .02537 ,02853 .0136 ,0216 ,0343 .0545 ,0867 .1379 .2192 .3486 3542 .8815 1.401 2.223 3.543 5.636 8.955 14.25 17.96
.05933 .02148 .0~236 ,02375 .0a596 .02948 .0151 ,0240 .0381 .0606 ,0963 ,1532 ,2436 .3873 .6158 ,9794 1.557 2.476 3.937 6.262 9.950 15.83 19.96
T A B L E 425.-SAFE C U R R E N T - C A R R Y I N G C A P A C I T Y OF COPPER W I R E , FOR D I F F E R E N T CONDITIONS, I N A M P E R E S P E R CONDUCTOR * Varnish cambric insuiators
Wire
A”;;rG
14 10 6 3 2
0 OOOO
Single wire in free air
Not more than three conductors in raceway or cable
30 54 99 155 179 245 383
23 38 68 104 118 157 237
Rubber insulators in enclosed and exposed conduit
Impregnated paper insulation Single conductor cable in air
Three conductor cable in underground duct
57
98
78
101 i 33 203
173 234 352
134 177 264
A
Single conductor
Three conductor
23 40 71
19 33
127 i 67 256
These values are for voltases in the range up to 5,000 or 7,000 and for 75 to 100 percent time load, ambient temperature 30°C and copper temperature 75-80°C. Adapted from Publication No. P-29-226 of the Insulated Power and Cable Engineers’ i\ssociation. For other values see these tables.
SMITHSONIAN PHYSICAL TABLES
417 T A B L E 426.-THE
C A L C U L A T I O N OF T H E H I G H - F R E Q U E N C Y R E S I S T A N C E OF C O N D U C T O R S *
The resistance of a conductor to high-frequency alternating currents is not the same as it offers to direct or low-frequency currents. The linkages of flux with the inner portions of the conductor are more numerous than with the outer portions. That is, the reactances of the inner filaments are greater than those of the outer filaments. Consequently, the current density decreases from the outside toward the center of the conductor. This tendency of the current to crowd toward the outer portions of the cross section becomes more pronounced the higher the frequency, and at very high frequencies the current density is sensibly zero everywhere except in the surface layer of the conductor. This phenomenon is called the “skin effect.” It causes an increase in the effective resistance of the conductor over its resistance to a direct current. What is of interest in the calculation of the high-frequency resistance is the resistance ratio, the quotient of the resistance a t the given frequency by the direct-current resistance. The resistance ratio depends upon the distribution of current density in the cross section, and this is a function of the frequency and the shape of the crnss section. In general,
dZ
-, in which f is the frehowever, the resistance ratio is a function of the parameter quency, and Ro is the direct-current resistance per unit length. I n what follows Ro will be taken as the direct-current resistance per 1000 ft of conductor. The distribution of current in the cross section is affected by a neighboring conductor carrying high-frequency currents. This @oximity efect finds an explanation in that the value of the mutual inductance of any filament A of one conductor on a filament B of the other conductor depends upon the positions of A and B in their respective cross sections. The proximity effect may be very appreciable for conductors nearly in contact ; falling off rapidly as their distance increased, it is negligible for moderate ratios of distance apart to cross sectional dimensions. In such cases the resistance is sensibly the same as for an isolated conductor. Besides the spacing factor of the conductors, the proximity effect depends upon the frequency, and in lesser degree upon the shape of the cross sections. Quantitatively, the proximity effect may be expressed by the proximity factor, which is the quotient of actual resistance of the conductor by the resistance which it would have if removed to a great distance from the disturbing conductor, both values of resistance being referred to the same frequency. That is, if Ro= the direct current resistance Rt = the resistance of the conductor when isolated, frequency f R2= the resistance in the presence of the disturbing conductor at frequency f then the proximity factor is
P=-,R and the resistance ratio2,R in the presence of the Ri - RO
disturbing conductor, is obtained from the resistance ratio
K
RO
when isolated by the rela-
R Ri tion 2 - P - Resistance ratio may be obtained in any case if the resistance ratio RoRo
when isolated is known, together with the value of the proximity factor. Formulas for the high-frequency resistance ratio have been developed in only a few simple (but important) cases, and even then very complicated formulas result. For practical work, tables are necessary for simplifying the calculations. The following tables cover the most important cases. Formulas have been derived for the high-frequency resistance ratio of single-layer coils wound with round wire. Generally, these differ from one another and from measured values, because simplifying assumptions are made which are not sufficiently realized in practice. No tables of values for coils such as are met in practical radio work are available As a rough guide, the high-frequency resistance ratio for a single-layer coil is often from two to five times as great as the resistance ratio of the same wire stretched out straight and carrying current of the given frequency. The experimental work available indicates that this factor is due to the coiling of the wire, that is, the total proximity effect of the turns of the coil is largely dependent upon the frequency and the ratio of wire diameter to pitch of winding, and in lesser degree to the ratio of length to diameter.
.
Prepared by F. W. Grover, Nat. Bur. Standards.
(continued)
SMITHSONIAN PHYSICAL TABLES
418 T A B L E 426.-THE
C A L C U L A T I O N O F THE H I G H - F R E Q U E N C Y R E S I S T A N C E O F C O N D U C T O R S (continued)
P a r t 1.-Resistance
ratio
“F” f o r isolated round wires
Resistance ratio F of isolated round wire, as a function of the square root of the frequency divided by the direct current resistance per 1000 ft of conductor. V f X
0
20
10
30
50
40
60
70
90
80
100
1.000 1.000 1.0005 1.0025 1.008 1.019 1.038 1.069 1.114 1.173 1.247
F V f x
100
F
120
140
1.247 1.427 1.631 Part 2.-Values
;
180
200
250
300
400
350
500
2.036 2.231 2.715 3.201 3.688 4.176 5.152
o f resistance ratio for isolated tubular conductors
t, thickness
- = 0.01
160
1.836
of wall oi tube; d, outer diameter of tube
0.02
0.03
0.G5
0.06
0.07
o.on
0.09
0 50 100 150
1.000 1.000 1.001 1.001
1.om 1.000 1.001 1.003
1.ooo 1.000 1.002 1.006
1.000 1.001 1.002 1.011
1.000 1.001 1.004 1.017
1.000 1.001 1.008 1.024
1.000 1.001 1.007 1.033
1.ooo 1.001 1.009 1.044
1.000 1.001
200 250 300 350 400 450 500
1.002 1.005 1.011 1.020 1.032 1.051 1.079
1.008 1.020 1.042 1.076 1.127 1.198 1.30
1.019 1.046 1.095 1.167 1.27 1.41 1.57
1.034 1.081 1.163 1.285 1.44 1.63 1.86
1.053 1.125 1.25 1.42 1.66 1.87 2.14
1.076 1.176 1.34 1.56 1.81 2.08 2.34
1.104 1.233 1.44 1.70 1.99 2.28 2.56
1.134 1.296 1.55 1A 3 2.13 2.44 2.73
1.167 1.365 1.65 1.97
0.12
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
-t = 0.10
0.04
...
1.056
2.28
2.60 2.88
0.10
1.000 1.001 1.014 1.070 1.204 1.440 1.75 2.09 2.42 2.74 3.03 Solid
0 50 100 150 200 250
1.000 1.001 1.014 1.070 1.204 1.44
1.000 1.001 1.021 1.102 1.294 1.585
1.000 1.002 1.032 1.155 1.42 1.79
1.000 1.004 1.063 1.266 1.65 2.11
1.000 1.006 1.094 1.39 1.845 2.32
1.000 1.008 1.132 1.51 1.995 2.45
1.000 1.012 1.175 1.60 2.095 2.536
1.00F 1.015 1.202 1.68 2.15 2.64
1.000 1.017 1.224 1.71 2.20 2.68
1.000 1.019 1.247 1.733 2.231 2.715
300 350 400 450 500
1.75 2.09 2.42 2.74 3.03
1.94 2.33 2.66 3.00 3.33
2.19 2.57 2.92 3.27 3.62
2.51 2.90 3.27 3.66 4.07
2.735 3.15 3.58 4.00 4.42
2.90 3.35 3.80 4.25 4.69
3.03 3.495 3.96 4.43 4.90
3.12 3.59 4.07 4.55 5.03
3.17 3.66 4.14 4.63 5.12
3.201 3.688 4.176 4.664 5.152
(c .ontiwed)
SMITHSONIAN PHYSICAL TABLES
419 T A B L E 426.-THE
CALCULATION O F T H E HIGH-FREQUENCY RESISTANCE O F CONDUCTORS (concluded)
Part 3.-Coefficients
in formula for proximity factor of equal parallel round wires
The proximity factor of two equal parallel conductors may be calculated by the formula P = 1 [G.d2/~*I/[F(1 - Hd'/J)l
+
in which the coefficient F is to be obtained from Part 1 for the given value of V m E d the coefficients G and H are to be taken from the table below for the given value of VflRa. In the table below the values of H apply to currents in the same direction; in the case of currents in opposite directions H' is to be used. In the above formula d is the diameter of the wires and s their axial spacing. The proximity factor for two equal parallel tubular conductors does not differmuch from the value for two solid wires with the same axial spacing and a value of Vf/Ro one-half the value for two solid wires of the same diameter, except for conductors very close together.
V f X 0 25 50 75 100 125 150 175
VflRO
G
.0036 .0519 .1903
+.0417 .0395 +.0109 --.0659
+.0417 .0443 .0798 .I838
200 250 300 350
.8491 1.0959 1.340 1.585
-.I904 -.2017 -.2093 -.2149
.5530 S932 .6200 .6389
,3562 .4914 .6096 ,7277
-.1379 --.1685 -.1776 -.la39
.3112 ,4114 ,4787 S228
400 450 500
1.830 2.073 2.319
--.2191 -.2224 --.2231
.6530 .6639 .6722
H
G
0
T A B L E 427.-RATIO
H'
H
H'
O F A L T E R N A T I N G TO DIRECT C U R R E N T RESISTANCES F O R COPPER W I R E S
This table gives the ratio of the resistance of straight copper wires with alternating currents of different frequencies to the value of the resistance with direct currents. Diameter of wire in mm
.05 .1 .25 .5 1.o 2.0 3. 4.
5.
7.5 10. 15. 20. 25. 40. 100.
Frequency A
r
100
60
__ __ ___ -__ __ __ 1.001 1.003 1.Of 6 1.044 1.105 1.474 3.31
--
-----
-.oo1
--
1
,002 .008 ,038 ,120 ,247 ,842 ,I9
1000
__ __ __
--
1.001 1.006 1.021 1.047 1.210 1.503 2.136 2.756 3.38 5.24 13.7
f= 10,000
__ -_
*1.001 1.008 1.120 1.437 1.842 2.240 3.22 4.19 6.14 8.10 10.1 17.4 39.1
100,000
-_
*1.001 1.003 1.047 1.503 2.756 4.00 5.24 6.49 7.50 12.7 18.8 25.2 28.3
-
1 ,000,000
*1.001 1.008 1.247 2.240 4.19 8.10 12.0 17.4 19.7 29.7 39.1
-
-
-
Values between 1.000 and 1.001 are indicated by *1.001. The values are for wires having an assumed conductivity of 1.60 microhm-cm; for copper wires a t room temperatures the values are slightly less than as given in table. The change of resistance of wire other than copper (iron wirecxcepted) may be calculated from the above table by taking it as proportional to dVf/p where d=diameter, f the frequency (cycles/sec) and p the resistivity. If a given wire be wound into a solenoid, its resistance, at a given frequency, will be greater than the values in the table, which apply to straight wires only. The resistance in this case is a complicated function of the pitch and radius of the winding, the frequency, and the diameter of the wire, and i s found by experiment to be sometimes as much as twice the value for a straight wire. SMITHSONIAN PHYSICAL TABLES
420 T A B L E 428.-MAXIMUM
FrequencytlV Wavelength, m
D I A M E T E R O F W I R E S FOR H I G H - F R E Q U E N C Y RESISTANCE R A T I O O F 1.01
....
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.5
2.0
3.0
.....
3003
1500
750
500
375
300
250
200
150
100
Diameter in cm Material
Copper . . . . . . . . . .0356 Silver . . . . . . . . . . . 0345 . Gold . . . . . . . . . . . . .0420 Platinum . . . . . . . . .1120 Mercurv . . . . . . . . .264 Mangakn . . . . . . .1784 Constantan . . . . . . .1892 German silver . . . .1942 Graphite . . . . . . . . 765 . Carbon ......... 1.60 Iron
.0251 .0177 .0145 .0125
.0112 .0109 .0133 .0354 .0836 .0564 .0598 .0614
-.
.0102 .0092 .0079 .0065
.0089 .0077 .0063 .0108 .0094 .0077 .0290 .0250 .0205 .0936 .0683 .0591 .0483 .0631 .0461 .0399 .0325 .0946 .0664 .0488 .0423 .0345 .0970 .0692 .0500 .0434 .0354 .383 271 .197 .171 .140 1.13 .801 .566 .414 .358 .292 p = 1000. . . . .00263 .00186 .00131 .00108 .00094 .00083 .00076 .00068 .00059 .00048 p = 500 . . . . . .00373 .00264 .00187 .00152 .00132 .00118 .00108 .00096 .00084 .00068 p = 100 . . . . . . 00838 .00590 .00418 .00340 .00295 .00264 .00241 .00215 .00186 .00152
SMITHSONIAN PHYSICAL TABLES
.0244 .0297 .0793 .187 .1261 .1337 .1372 .541
.0172 .0210 .0560 .132 .0892
.0141 .0172 .0457 .1080 .0729 .0772 .0792 .312 .654
.0122 .0149 .0396
.0099 .0121 .0323 .0763 .0515 .0546 .0560 .242 .221 SO6 .462
421
TABLES 429-452.-SOME
CHARACTERISTICS OF DIELECTRICS
TABLE 4 2 9 . P T E A D Y POTENTIAL DIFFERENCE I N VOLTS REQUIRED T O P R O D U C E A S P A R K I N A I R W I T H B A L L E L E C T R O D E S ( R A D I U S R) Spark length, cm
.02 .04 .06 .08
.1 .2 .3 .4 .5 .6 .8 1.o 1.5 2.0 3.0 4.0 5.0
R=O Points
372G 4680 5310 5970 6300 6840 8070 8670 9960 10140 11250 12210 13050
K = 0.25 cm
R
= 0.5
R=lcm
cm
5010 8610 11140 14040 15990 17133 18960 20670 22770 24570 28380 29580
R=2cm
1530 2430 3240 3990 4560 8490 1i340 14340 17220 20070 24780 27810 37260 45480
1560 2460 3300 4050 4740 8490 11460 14310 16950 19740 23790 26190 29970 33060
2340 3060 3810 4560 8370 iii9O 14250 16650 20070 25830 29850
R=3cm
4500 7770 10560 ~.... 13140 16470 19380 26220 32760
R=CO Plates
4350 7590 10650
13560
16320 19110 24960 30840
T A B L E 430.-ALTERNATING-CURRENT P O T E N T I A L R E Q U I R E D T O PRODUCE A SPARK I N AIR W I T H VARIOUS BALL ELECTRODES
The potentials given are the maxima of the alternating waves used. Frequency, 33 cycles per second. Spark length cm
= 1.92
R=S
.08 .10 .15 .20 .25
3770 4400 5990 7510 9045
= 7.5
R=lO
R=15
4380 5940 7440 8970
4330 5830 7340 8850
4290 5790 7250 8710
4245 5800 7320 8760
4230 5780 7330 8760
.30 .35 .40 .45 .SO
10480 11980 13360 14770 16140
lo400 11890 13300 14700 16070
10270 11670 13100 14400 15890
10130 11570 12930 14290 15640
10180 11610 12980 14330 15690
10150 11590 12970 14320 15690
.6 .7 .9 1.o
18700 21350 23820 26190 28380
18730 21380 24070 26640 29170
18550 21140 23740 26400 28950
18300 20980 23490 26130 28770
18350 20990 23540 26110 28680
18400 21000 23550 26090 28610
1.2 1.4 1.6 1.8 2.0
32400 35850 38750 40900 42950
34100 38850 43400
33790 38850 43570 48300 -
33660 38580 43250 47900 52400
33640 38620 43520
33620 38580
.8
R=lcm
SMITHSONIAN PHYSICAL TABLES
R
R
422 T A B L E 431.-POTENTIAL NECES S ARY T O PR OD U C E A S P A R K IN A I R B E T W E E N M O R E W I D E L Y S E P A R A T E D ELEC TR OD ES
!
Steady potentials
d
I
-5
Ball electrodes
Cup electrodes
Steady potentials
Projection
Ball electrodes
&
-? P
R=
R=
1 cm
2.5 cm
4.5 mm
1.5 mm
17620 23050 31390 36810 44310 56000 65 180 71200 75300 78600 81540 83800 -
31400
11280 17420 22950 31260 36700 44510 56530 68720 81140 92400 103800 114600 126500 135700
v1
.3
-
.7 1.o 1.2 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
17610 30240 33800 37930 42320 45000 46710 49100 50310 -
.5
5.5
, i
i
i f
+;
22 cm
; ;
T A B L E 432.-EFFECT
, -A- ,
56500 80400 101700 -
6.0 7.0 8.0 10.0 12.0 14.0 15.0 16.0 20.0 25.0 30.0 35.0
61000 67000 73000 82600 92000 101000 119000 140600 165700 190900
R=
R=
1 cm
2.5 cm
-
86830
-
90200 91930 93300 94400 94700 101000
52000 52400 74300
-
The specially constructed electrodes for the columns headed “cup electrodes” had the form of a projecting knob 3 cm in diameter and having a height of 4.5 mm and 1.5 mm respectively, attached to the plane face of the electrodes. These electrodes give a very satisfactory linear relation between the spark lengths and the voltage throughout the range
O F T H E P RES S URE O F T H E A I R O N T H E D I E L E C T R I C STRENGTH
Voltages are given for different spark lengths 1. Pressure, cmHg
1 = 0.04
1 r 0.06
I = 0.08
I = 0.10
1 = 0.20
I = 0.30
I = 0.40
l = 0.50
483 582 771
567 690 933
648 795 1090
744 1015 1290 1840
939 1350 1740 2450
1110 1645 2140 3015
1266 1915 2505 3580
1110 1375 1640
-
1060 1420 1820 2150
1280 1725 2220 2660
1490 2040 2615 3120
2460 3500 4505 5475
3300 4800 6270 7650
4080 6000 7870 %20
4850 7120 9340 11420
1820 2040 2255
2420 2720 3035
3025 3400 3805
3610 4060 4565
6375 7245 8200
8950 10210 11570
11290 12950 14650
13455 15470 17450
-
-
2 4 6 10
-
15 25 35 45
-
55
65 75
T A B L E 433.-POTENTIALS Spark length cm
.I .2 .3 .4
,
I N V O L T S T O P RODU C E A SPA R K I N K E R O S E N E
Electrodes balls of diam. d A
0.5cm
1 cm
2cm
3cm
3800 7503 10250 11750
3400 6450 9450 10750
2750 4800 7450 9100
2200 3500 4600 5600
SMlTHSONlAN PHYSICAL TABLES
Spark length cm
.5 .6 .8 1.0
Electrodes balls of diam. d 0.5cm
lcm
2cm
3cm
13050 14000 15500 16750
12400 13550 15100 16400
11000 12250 13850 15250
6900 8250 10450 12350
423 STRENGTH OF MATERIALS
T A B L E 434.-DIELECTRIC
Potential necessary for puncture expressed in kilovolts per centimeter thickness of the dielectric Kilovolts per em
Substance
Kilovolts per cm Thickness
Substance
Ebonite .......... 300-1100 Oils : Emtire cloth .... 80-300 Ca$or .2m,p paper .... 450 1.0 Fiber ............ 20 Cottonseed ........... Fuller board ..... 200-300 Lard .2 " Glass ............ 300-1500 " 1.0 " Granite (fused) ... 90 Linseed, raw .2 " Guttapercha ..... 80-200 " 1.0 " " boiled .2 " Impregnated jute . 20 1.0 4 1 Leatheroid ....... 30-60 Linen, varnished. . 100-200 Lubricating .......... Liquid air ....... 40-90 Neafsfoot .2 " 1.0 " Mica : Thickness Mairas .1 m,m 1600 Olive .2 " (8
1 .o .1 1 .o C a y d a .1
::
Beyal
300
1.o
snn ___
1 0 -. . n a t y a l .2 "
1500 400
"
" "
1.0 '' .2
Turwntine
T A B L E 435.-Dl
6'
Payffin
700 1500
South America. Micanite .......
61
.2
';:
215 1.0 '' 160 Sperm, mineral .2 '' 180
2200
1:
1.0
190 130 70 140 40 185 90 190 80 50 200 90
1.0
" "
85 _.
Kilovolts per cm
Substance
Papers : Beeswaxed .. 770 Blotting ..... 150 Manilla 25 Paraffined'::' 500 Varnished ... 100-250 Paraffin: Melted ...... 75 Melt. point
Solid '( " "
43" 47" 52' 70"
Presspaper .... Rubber ........ Vaseline .......
350 400 230 450 45-75 160-500 90-130
Thickness
Xyfi1"?? .o
140 80
195 90 160 110
E LECTRIC CONSTANT (SPEC1F I C I N D U C T I V E CAPACITY) O F GASES
Atmospheric pressure Wavelengths of the measuring current greater than 10000 cm
"C
Gas
Air NHa
CS,
co* co
C~HI
0 20 0 100 0 0 0
Dielectric constant P Vacuum= 1 Air=1
1.000588 1 .OO718 1.00290 1.00239 1 .OOO966 1.000692 1.00138
1 .OOOOOO 1.00659 1 .OO231 1.00180 1 .OO0377 1.000104 1.00079
T A B L E 436.-VARIATION
Dielectric constant
Gas
"C
HCI
100 0
H,
CHI 0 Na0 0 S Oa 0 H ~ 0 , 4 a t m 145
F Vacuum= 1 A i r = l 1.00258 1.00199 1.000264 ,999676 1.000948 1.000360 1.00108 1.00050 1.00993 1.00934 1.00705 1.00646
O F T H E DIELECTRIC CONSTANT W I T H T H E TEMPERATURE
If KO= the dielectric constant a t the temperature 0°C of the above table, Kt at the temperature t"C, and a and p are quantities in the following table, then Kt = KO- a ( t - 0 ) p (t-
+
w.
Ammonia .................... Sulfur dioxide ............... Water vapor .................
a
= 5.45 X lod 6.19 X lod 1.4 X lo-'
6 = 2.59 X lo-' 1.86 x 10"
....
Range, 15-110°C
0-110 145
The dielectric constant of air at 76 cmHg and varying temperature may be calculated since K - 1 is approximately proportional to the density. See Table 4.37.
SMITHWNIAN PHYSICAL TABLES
424 T A B L E 437.-VARIATION
Pressure atm
"C
Air
OF T H E D I E L E C T R I C C O N S T A N T OF GASES W I T H T H E PRESSURE
. . . . . . . . . . . 19' ........... ........... ........... ........... ........... 11 ........... ........... ' ........... ........... '
1.0108 1.0218 1.0330 1.0439 1.0548 1.0101
20 40 60 80 100 20 40 60 80 100
"
T A B L E 438.-DIELECTRIC
i.oiW
1.0294 1.0387 1.0482
K
.. . .
....
Density
COz
NzO 'I
'
. . . . . . . . . . 15 .......... ' .......... . . . . . . . . . . 15 .......... ' ..........
2.69 3.02 3.28 3.45
1:29 1.46 1.58 1.66
4.08 5.17 .988 6.00 1.047 6.94 1.465 4.87 1.525 5.05 1.558 5.16 1.705 5.62 . 5.95 1.004 4.90 1.038 5.12 1.065 5.28 1.152 5.88 . . . 6.29 .812 8.55 .861 9.32 .937 10.42 . .. 11.15
.74 .87 .94 1.00 1.40 1.46 1.50 1.65 1.76 .96 1.00 1.03 1.13 1.20 .78 .84 .92 .99
..
1:92
...
Danforth, Phys. Rev., vol. 38, p. 1224, 1931.
SMITHSONIAN PHYSICAL TABLES
10 20 40
30°C
0"
p
Density
2.11 2.22 2.31
:.911 &Y
1.0579 1.0674 1.0760 1.0845 1.008 1.020 1.060 1.010 1.025 1.070
40 ._
75'C
K
... . .. . .. ... ...
.613 .701 .796 .865 .907 1.241 1.332 1.487 1.601 1.689
120 140 160 180 10 20
........... ...........
7 + -
1 1.82 CsHn .... .. 1000 l.% Pentane 4000 2.12 8000 2.24 12000 2.33 1 2.61 CS, . .. . 1000 2.82 Carbon 4 0 0 3.11 bisulfide 8000 3133 12000 3.52 1 4.15 (CsHs)iO . 1000 4.88 Ethyl 4000 6.05 ether 8000 6.93 12000 7.68 1 5.22 GHsBr 500 5.36 Bromolo00 5.47 benzene 4000 5.88 8000 ... ' 1 5.41 GHoCI 500 5159 Chlorobenzene lo00 5.75 4000 6.33 8000 GHmOH .. 1 12.90 lo00 13.54 Hexyl 4000 15.06 alcohol 8000 ... 148
. . . . . . . . . . . 11 ...........
Air
C O N S T A N T O F LIQUI'DS ( K ) . PRESSURE E F F E C T la
30°C
p
atm
Pressure atm
'C
CzHjOH Ethyl alcohol
..
C,H,OH i-butvl alcbhol
..
CSHBO,. . . . Glycerine
atm
1 1000 8000 12000 1 1000
8000 12000 1 1000 4000 8000
r-----+r----+
K
Density
27.8 29.4 35.3 57.6 21.1 22.9. 26.8 28.2 49.9 51.9 56.4 61.1
,806 .864 1.031 1.082 219 .877 1.031 1.080 1.272 1.305 1.367 1.429
K
23.2 25.3 31.7 33.7 17.3 18.7 22.8 23.9 42.8 44.8 49.1 53.8
Density
,781 .844 1.019 1.073 .806 -856 l:Oi8 1.069 1.254 1.287 1.349 1.410
Anomalous dispersion 247000 cycles e
Isobutyl-alcohol : 0°C p : ... 1. 2900 5810 K : . . . 21.1 24.4 25.9 Glycerine . P 1 1940 0°C . . . . .K 49.9 53.4 Eugenol . . P 1 2960 30°C .. . . K 9.42 10.79
9680 27.4 4290 55.6 5081 11.09
10830 27.2 6330 52.2 5680 10.57
12130 26.4 8490 40.1 6300 6.05
T A B L E 439.-DIELECTRIC
CONSTANT O F LIQUIDS
A wavelength greater than loo00 cm is designated by TFmp.
C
Substance
Alcohol : A z y l ..........
' "
frozen
.......... -100 .......... -50 .......... 0 .......... .......... 18 .......... frozen
00 "
+::
.......... .......... -120 .......... -80 .......... -40 .......... 0 .......... .......... .......... .......... .......... Metby1 ........ frozen ........ -100 Ethyl
Wavelength, Dielectric cm constant
200 73 co "
+;;
.......
........
-50
I'
C'
"
......
...... Amy1 acetate ..... Amylene ......... Aniline .......... "
"
Bey01 (beyene) . .
..
Bromine ......... Carbon bis$fide . .
..
...... ...... Decane .......... Decylene ........ Et,$yl e t b y ...... ...... ...... ChlorEform
...... ......
......
co
03
0
........ +20 ........ 17 Prqpyl ........ -120 ........ -60 0 ........ ........ ........ Ac:tone ......... -80 0 ......... ......... 15 ......... 17 18 Acqjic aEid ...... 'I
200 75 53 4 .4
15 17 19 19 16 18 18 19 23 20 17 18 17 14 17 -80 -40 0 18 20 60
SMITHSONIAN PHYSICAL TABLES
75 00
75 00
'
1200 73 bo
1200 200 75 00
00
73 84 co
73 00
73 00
'
00
"
2.4 30.1 23.0 17.4 16.0 10.8 4.7 2.7 54.6 44.3 35.3 28.4 25.8 24.4 23.0 20.6 8.8 5.O 3.07 58.0 45.3 35.0 31.2 33.2 46.2 33.7 24.8 22.2 12.3 33.8 26.6 21.85 20.7 9.7 10.3 7.07 6.29 4.81 2.20 7.316 2.288 2.26 3.18 2.626 2.64 5.2 4.95 1.97 2.24 7.05 5.67 4.68 4.368 4.30 3.65
T$mp. Substance
Ethyl etter "
'I
...... ...... ......
C 100 140 180
' 4
'I
'I
........ ........
........ ........ ..........
Hexane Hydrogen peroxide 46% in K O Kerosene ........ Meta-xylene .....
}
Nitrobenzol
'
......
...... ...... ...... ...... ...... ...... ..........
Octane Oils : Almond ....... Castor ......... Colza .......... Cottonseed ..... Lemon ........ Linseed ........ Neatsfoot ...... Olive .......... Peanut ........ Petroleum ..... Petroleum ether. Rape seed ...... Sesame ........ Sperm ......... Turpentine ..... Vaseline ....... Phenol .......... To1:ene ......... 'I
3.12 2.66 2.12
83 73
1.53 4.35 19.0
17 l8 18 17
75 -
-
00
00
..... (frozen)
6'
'
15 15
I'
'I
"
1200 73 1200 200 75 8.5 .4
"
"
Wavelength, Dielectric cm constant
Crit. temp.
...... 192 ...... 18 Formic acid ...... +2 (frozen) ...... 15 ...... 16 Glycerine ........ 15 "
425
00.
......... ......... ...........
Water (for temp. coeff, see Table 440.)
73
-10
00
-5
0
"
18 17 17
"
+:: 20 11 20 14 21 13
-
20 11.4
-
20 16 13.4 20 20
"
'
73
34.0 1.949
00
2.83 4.67 3.11 3.10 2.25 3.35 3.02 3.11 3.03 2.13 1.92 2.85 3.02
I
" " "
'
" '1
"
2000 00 '1 'I
"
-
48
73
18 17 17 17
9.9 42.0 41.0 37.8 35.1 36.45
00
"
$;
62.0 58.5 56.2 39.1 25.4 4.4 2.6 1.880 84.7 .2 2 37 2.37
0
'
73 00
200 74 38
3.17
2.23 2.17 9.68 2.51 2.33 2.31 81.07 80.6 81.7 83.6
T A B L E 440.-DIELECTRIC
426
CONSTANT O F LIQUIDS
Temperature coefficients of the formula : KO= Ktll Substance
_-
........... .0024 ................ .00351 .00106 ........ .000966 ........ .000922 Chloroform ............ .00410 Ethyl ether ............ .00459 Methyl alcohol ......... ,0057 Oils : Almond ......... .00163 Castor ........... .01067 Olive ............ ,00364 Paraffin ......... .000738 Tolfene ............... .OW921 1'
.0000087
-
-
.00000060
20-181 22-181
.000015
-
-
-
.000026 -
__
-
.0000072 -
.00000046
0-13 2G181
.oooO117
0-76
-
20-181
-
5-20
-_
'
........... .000817
T A B L E 441.-DIELECTRIC
-
-10-40
-
............... .ooo977 ................. .004474 ................. .004583 ................. .00436
Meta-xylene
Tempb range, C
B
a
Amy1 acetate Aniline Benzene ............... C a 5 w bisy!fide
WaAer
- a ( t - 9 ) + ,8(t - 9)*1
4-25
CONSTANT O F LIQUEFIED GASES
A wavelength greater than 10000 crn is designated by
w.
s
E LE-
T$mp.
C
Substance
.............. -191 .............. Ammonia ........ -34 ........ 14 Ca;- diozide ., , -5 ... 0 _ _ _ +in ... +is ... Chlorine ......... -60 ......... -20 ' ......... 0 ' ......... +I; ......... ' ......... Cyanogen ........ Hydrocyanic acid . 21
&B 3"
Air
"
00
75 75 I30 OCI
'
6
"
"
"
'
'
"
.
.
100 84
10
Dielectric constant
1.431 1.47-1.50 21-23 16.2 1.608 1.58, 1.540 1.52s 2.150 2.030 1.970 1.940
00
50 90
5.93 4.92 3.76
T A B L E 442.-DIELECTRIC
Material
Wavelength, cm
Chalk, middle Devonian . . . . . Coral dolomite . . . . . . . . . Granite . . . . . . . . . . . . . . . .
Dielectric constant, range
8.0-9.0 8.0-9.0 7.0-9.0
For reference, see footnote 45, p. 136. SMITHmNIAN PHYSICAL TABLES
$5
Nitrous oxide
.
NzO
. .
-88
a?
-5 +5
. +15
Oxygen .......... -182
.......... ... ... ' ... ' . .. .. . ... ' ... ' ... ' ... ..........
Sulfur dioEide "
"
1.88 2.52 about 95
Tfmp. C
Substance
2.08
+;:
HydrEgen sul$de
6%
"
Critical
'
14.5 120 a? 20 40 " hn ..
80
loo
120 140 154.2
Dielectric constant
1.933 1.630 1.573 1.520 1.491 1.465 13.75 14.0 12.5 10.8 9.2 7.8 6.4 4.8 2.1
CONSTANT O F ROCKS *
Material
Wavelength. cm
Limestone . . . . . . . . . . . . . Marmorized limestone 3x10' Mica schist . . . . . . . . . . . . Sandstone, variegated ...
Dielectric constant, range
8.0-12.0 15.2 16.0-17.0 9.0-11.0
T A B L E 443.-DIELECTRIC WaveCondi- length, tion cm
Substance
..........
-
Asphalt Barium sulfate ... Caoutchouc ...... Diamond ........ Ebonite
-
........
.......... .......... ..........
00
75 00 "
75 00
lo00
Glass Density Flint 4.5 00 (extra heavy). Flint (very light). . 2.87 " Hard crown .... 2.48 " Mirror ........ ........ ........ - 600 Lead (Powell). . 3.C-3.5 co Jena " Boron ....... Barium ...... Borosilicate . . Gutta percha .....
Dielectric constant
2.68 10.2 2.22 16.5 5.50 2.72 2.86 2.55
.......... ..........
Iodine (cryst.) ... Lead chloride (powder). nitrate " sulfate ...... " molybdenate . Marble (Carrara) . Mica ............
C
-5 -18 -190 23
C
-
........
9.90 6.61 6-96
6.44-7.46 5.37-5.90 5.42-6.20 5.4-8.0 5.5-8.1 7.8-8.5 6.4-7.7 3.3-4.9
............
'I
T A B L E 444.-E
56.2
Phosphorus : Yellow ........ Solid .......... Liquid ......... Porcelain : Hard (Royal B:l'n) . Seger " .. Figure " " .. Selenium ........
-
-
-
..... 1) fikys
..... 1 ........... (1 "
...........
L E CT ROST R I C T l ON
2.16 2.25
7s
3.60
80 80
4.1
00
5.73
3.85
1
75
3.98 3.80 4.22 4.05 3.95 3.60 3.90
00
3.42
00
75
..... ..... C y t , s f d ....... ....... near '1 Liquid .......{melting- mint Strontium sulfate . Thaliium carbonate nitrate . . O;k
61 61
6.61 6.84 7.44 75 6.60 00 6.13 1000 6.14 00 3.10 " 2.95-3.73 '' 3.67 2.86
-
1'
wood REd beech
2.46
"
'
........ ........ ........ Shq!lac .......... .......... ' .......... Amber .......... Sulfur Amo:yhous .... .... C y t , fr;sh ..... "
2.0
2.0-2.5
.-
"
42 16 28 24 8.3 5.66-5.97 5.8M.62 2.5-3.43.9-5.5 4.4 2.8 4.2 4.2-4.7 3.0 5.9 2.21
Madras, brown . ' green . . ruby .. Bengal, yellow . white . . ' ruby .. Canadian amber. South America . Ozokerite (raw) ..
'( "
........ point 44-46 ........ 5456 ........ 7476 ........ 47.6"C
1200 2.85 3.16 5000 75 1.761.88 75 4.00
......
I'
Wavelength, Dielectric ern constant
Condition Tbmp.
Substance
P a y r (telephone). (cable) .... Paraffin ......... Melting
T:mp.
Ice
427
CONSTANT OF SOLID S
,'
8 "
75 00
75 75 75
11.3 17 16.5
dried 00 "
"
"
"
"
4.83-2.51 7.73-3.63 4.22-2.46 6.843.64
*
Electrostriction is a change in the dimensions of a dielectric proportional to the square of an applied electric field. The effect is very small except for bodies of very high dielectric constant or high mechanical compliance."* Typical values forGI asse s
0.1 to 0.7x10-' transverse
.
",
Rubber
7 x 10-o
longitudinal
Prepared by Hans Jaffe, Brush Development Co., Cleveland, Ohio. Letters refer to references, p. 431.
SMITHSONIAN PHYSICAL TABLES
Barium titanate pol ycrystalline
100 x ' 0 1
cm'/statvolt longitudinal
428 T A B L E 4 4 5 . P T A N D A R D SOLUTIONS FOR T H E C A L I B R A T I O N O F APPARATUS FOR T H E M E A S U R I N G OF D I E L E C T R I C C O N S T A N T Ethyl alcohol in water at 19.S"C
Did.
Acetone in benzene at 19°C A
*?Ek
Substance
Benzene .............. Meta-xylene .......... Ethyl ether ........... Aniline .............. Ethyl chloride ........ 0-nitro toluene ....... Nitrobenzene ......... Water (conduct. lod)
I
A
Percent
by weight
A=oO
2.288 2.376 4.36' 7.298 10.90 27.71 36.45 . 81.07
0 20
.885
40 60 80 100
,847 .830 .813 .797
.866
.797 .856 9 3 .940 .973 .999
100
T A B L E 446.-DIELECTRIC
For reference, see footnote 45.
T A B L E 447.-THE
.I% .3 .4
2.26 5.10 8.43 12.1 16.2 20.5
20.5 31.5 43.5 57.0 70.6 80.9
Percent by weight
Dielectric constant
100
26.0 29.3 33.5 38.0 43.1
90 80 70 60
.5
.5
.6 = 75 cm .6% .5
.5
.5
.5 .4
CONSTANT OF MINERALS
*
Dielectric constant
Wavelength, cm
Asphalt ................... Beryl ................. co Coal, anthracite ........... Fluorite .................. Glass, flint ex. heavy . . . . . . Glass, hard crown ......... Glass, Jena barium . . . . . . . . Glass, lead (Powell) ....... Gypsum .................. Ice (-2°C) .............. Iceland spar ........... 75 Quartz, fused ............. Sulfur, amorphous .........
X=aO
cm
Dielectric Temp. constant coefficient
Water in acetone at 19'C A
0 20 40 60 80
Material
Density 16°C
= 75
iaxis ...
Range
2.7
...
I1 axis
... ... ... ... ... ... ... ... ... 8.00 ... ...
7.85
6.05
5.6-6.3
6.8 9 .9 ...
... ...
7.0 7.8-8.5 5.48.0 6.3 93.9
...
...
8.50
... ...
3.5-3.6 3.9
p. 136.
D I E L E C T R I C PROPERTIES OF NONCONDUCTORS
Results of tests at unit area and unit thickness of dielectric At 1000 cycles
Max. breakdown volts per cm.. ........ Svecific induc. capacity. ............... Max. absorbable energy, watts-sec/cm*. 90O-angle of lead.. .................... Equiv. resistance (ohm-cm) X 10" ..... Conductivity, l/(ohm-cm) X loern ..... Percent change in cap. per cycle X lo'. . Percent change in resistance per cycle. ..
Mica
1.MX100 4.00 .198 0" 57' 3.91 2.56 2.18 258
Paper
Celluloid
.71x10e 1.05x108 13.26 4.90 .640 .lo8 3"40' 2" 10' 48.3 9.84 ,207 1.02 14.31 30.7 .I46 .lo6
Ice
.001X10~ 86.40 .00040 13" 39' 1400 .00722 70.0 .127
At 15 cycles
Specific inductive capacity. ............ 4.09 Max. absorbable energy, watt-sec/cm'. . 203 Percent change in capacity per cycle.. .. .OO On direct current
Conductivity, 1/ (ohm-cm) SMITHSONIAN PHYSlCAL TABLES
............
2.42Xlo-''
5.77 ,126 .306
18.60 .90 1.74
2.27Xlo-''
71%
429.0 .002
1.59
lo-''
163.10-"
429 T A B L E 448.-VALUES O F D I E L E C T R I C C O N S T A N T FOR S E V E R A L E L E C T R I C INSULATING MATERIALS A T RADIO FREQUENCIES Material
. ... . . .. . . . . . .. . . . . . . . . .. . . . flint .. . .. . . ...
Frequency Dielectric constant Lc
30
Glass cobalt crown
.. plate . . . . . .. .. Pyrex . . . . . . . . Marble .. . . . . . . . . . photographic
100 1700 500 30 500 44 80-650 1400
Mica
. . . . . . . . . . . . .loCriOOO
Frequency Dielectric constant kc
Material
5.1-7.9 7.3 6.3 6.2 7.0 7.0 7.5 7.4 6.8-7.6 4.8 4.9-5.8 8.4 9.2-1 1.P 7.3 5.8-8.7
Phenolic insulation : laminated . molded Rubber, hard
. . .. . . . .. . . ......
Wood : bay . . ... birch . .. maple . . ..... oak .
. . ...... .. . . . . . . . . .. .
190 1000 190 lo00 135 210 1126
300 425
635 1060
Range of 10 samples of various kinds of marble.
t
5.0-7.4 4.7-7.0 4.3-7.6 4.9-7.0 3.7 3.0 3.0-3.7 3.8 5.2 4.4 3.1 t-6.7 3.3 3.0t-6.5 3.3
After drying sample for 48 hours at 80°C.
T A B L E 4 4 9 . 4 O M P A R I S O N O F ELECTRICAL PROPERTIES O F I N S U L A T I N G M A T E R I A L S A T ROOM T E M P E R A T U R E ** Intrinsic dielectric strength
*
Material
Cellulose acetate
. . . . . . . ... . ..
Volume resistivit (ohmsmf
2300t
5.5
10-
4800* 3loo* 4500*
4.8 8.2 7.0
We 1014 10"
3000-8200f
7.3
10"
2600-3300i
(Kv/cm)
.025-.12
Glass : borosilicate No. 7740 (Pyrex) .10 soda lead . . .. .. . .. . .. .... .. .10 soda lime .................. .10
. . . . .020-.10 Phenolic resin . . . . . . . . . . . . . . . . .012-.04 Porcelain, electrical . . . .. . . . . . Porcelain; steatite-low loss . . Silica, fused .............. .... Rubber, hard . . . .. . . . . . . . . . . . . .10-.30 Mica, muscovite clear ruby
Dielectric constant
Thickness (mm)
7.5
10"
380t
4.4-6.8
10"
500t
6.0-6.5
10"
sow*
3.5
10'8
2150t
2.8
10"
* * Table from Corning Glass Works publication on Properties of Selected Commercial Glasses (B-83). *Values of P. H. Moon and A. S. Norcross, Trans. Amer. Inst. Electr. Engr., vol. 49, p. 775 (1930).
t
Values of S . Whitehead. World Power, p. 72, September 1936.
Intrinsic dielectric strength can be realized only under test conditions and is very much higher than the working dielectric strength attainable in ordinary service. These data are listed for purposes of comparison.
SMITHSONIAN PHYSICAL TABLES
T A B L E 450.-DIELECTRIC
430
CONSTANT O F CRYSTALS *
cgs system, Kv.euum =1 The dielectric constants,? K, given here have usually been determined at low field strength (order of 1 volt/cm). Unless specifically noted, the frequency is between 60 cycles/sec and 5 megacycles/sec. Homogeneous crystals show little dispersion in this frequency range unless they are strongly piezoelectric or have very high dielectric constant. For some strongly piezoelectric crystals, the notation “free” appears in the frequency column. Dielectric constants so noted hold for the mechanically unconstrained condition which is usually fulfilled for frequencies below the principal mechanical resonances of the test body. The dielectric constants for the “clamped” crystal are smaller than for the “free” crystal. The difference does not exceed 10 percent except for K , of Rochelle salt (see fig. 16) and KII of barium titanate. K., Ka, and K Ofor orthorhombic crystals refer to electric field parallel to the crystallographic a, b, and c axes. For monoc!inic crystals, Ka refers to electric field parallel to the b axis which is the symmetry axis; K , to field parallel to the c axis accepted by crystallographic convention; and K. to an electric field perpendicular to the b and c axes.
t All
Tables 444, 450, and 451 prepared by Hans Jaffe, Brush Development Co., Cleveland, Ohio. data refer to room temperature unless otherwise noted.
Cubic crystals Name
... AgCl ... AgBr .. L i F .. NaCl
Silver chloride Silver bromide Lithium fluoride Sodium chloride Potassium chloride Barium oxide ....
Name
Composition
KCI BaO
Authority 14@
K
12.3 13.1 9.00 5.90 4.68 34.
g g
f f g
o
Sphalerite ....... Sodium chlorate . . Sodium bromate . . Magnesium oxide . Potassium bromide Thallium chloride.
Uniaxial crystals KI K II 4.5 4.6 8.78 8.29 8.6 10.5 86 170 200 4400 7.5 8.2 8.1 6.91
Composition
Quartz ............... S i 0 2 Calcite ............... CaC03 Sapphire .............. Atz03$ Rutile ................ T i O J Barium titanate ....... BaTiOs Tourmaline .............. Magnesite ............ MgCOa
Composition
Name
Dihydrogen phosphates and arsenates : “ADF”’ ............ NHLH~POI 56 46 “KDP” ............ KH~PO. “ADA” ............ N H ~ H ~ A s O I75 52 “KDA“ ............ K H I A s O ~
ZnS
8.8 NaCIOa 5.7 NaBrOs 5.7 MgO 9.65 KBr 4.90 TIC1 31.1
Frequency
Composition
Sulfur ................ S Celestite .............. Barite ................ Anglesite ............. Epsomite ............. Ammonium oxalate .... Potassium pentaborate . Iodic acid .............. HI03
Authority
... ...
d h d d
free free free free
149
Ka
Kh
K.
3.75 7.7 7.65 27.5 6.5 8.2 4.6 7.5
3.95 18.5 12.2 54.6 7.9 5.5
4.45 8.3 7.7 27.3 6.9 6.0 4.5 8.1
For authorities, see references, p. 431.
t Synthetic, Linde Air Products Company.
(continued)
SMITHSONIAN PHYSICAL TABLES
5.5
g
lozii& 1O6-1 oo ?-lo’
15.4 22 14 22
12.4
e h h f f
...
Orthorhombic crystals Name
Authority
K
Frequency
AuYhority
lO’X108 f 4x10’ g 4x10’ g 5XlV- -lo8g
...
free free free
k k d h
431 T A B L E 450.-DIELECTRIC Name
Tartrates : Ro$elle s;!t
C O N S T A N T O F C R Y S T A L S (concluded)
........ NaKC4H4Oe.4H20
30°C 5 .
.
KE
Kb
K.
Composition
...
8.0 300 NaNH;C4H40a.4Hz0 9.0 LiKC4H40e.H,0 5.84 LiNH4C4H,0e*Hz0 7.2
Frequency
...
9.4 8.9 7.32 8.0
2.5x10'0 free free free free
9.6 10.0 7.4 6.9
Authority
h c, j h h h
Monoclinic crystals Lithium sulfate ........ Tartaric acid ......... Potassium tartrate .... Ammonium tartrate ... Ethylene diamine tartrate (EDT) .....
LizS04.Hz0 C4H,0R K2C4H40s-jH20 (NH4)zC4H40e
5.6 4.3 6.44 6.45
10.3 4.3 5.80 8.2
6.5 4.5 6.49 6.0
free free free free
h h h
CzN1Ha.GHeOe
5.0
8.22
6.0
free
h
h
8 See also figure 16. REFERENCES: a, Bechmann, H., and Lynch, A. C., Nature vol. 163 p. 915 1949. b, Cady, W. G., Piezoelectricity, McCraw-Hill, New York, 1946. c, Hablitzel, J. Helvet. Phys. Acta vol. 12. p. 489, d. Taffe. H.. The Brush Develooment co. Reoort to U.5. Sirrnal Corm on kvnthetic watersoluble piezoelectric crystals April I 1948. e, Jaffe' H. personal cGmmunication. f Laboratory for Insulation Research, Mlssachuseks Inst. Techn. Tables 6 Dielectric Materials I11 1948. and perg, Landolt Bornstein Tables, 5th ed. sonal communication. h, Mason, W. P., Pie&electr& crystals and their application to ultrasonics, Van Nostrand Co., New York, 1950. i, M e n , W. J., Phys. Rev., vol. 75. D. 687. 1949. i , Mueller. H.. Phys. Rev.. vol. 47. I). 175, 1935: vol. 58. D. 565. 1940. k. I,, S itzer, F., Dissertation, m t t h g e n , 1938. m; Naval Research Laboratory, Crystal Section. Standards on piezoelectric crystals, Proc. Inst. Radio kng., vol. 37, p. 1378, 1949. n, International 0, Bever and Sproul, Phys. Rev., vol. 53, p. 801, 1951. Critical Tables, vol. 6. 1939.
~
10
- 60
-40
-20
20 temper.1ure
40
60
or
FIG.16.-Dielectric constant K. of Rochelle salt. Curve A : free condition (audio frequency) ; curve B : clamped condition (radio frequency).
SMITHSONIAN PHYSICAL TABLES
432
T A B L E 451.-PIEZOELECTRICITY
In this table are listed piezoelectric strain coefficients * d,, which are ratios of piezoelectric polarization components to components of applied stress a t constant electric field (direct piezoelectric effect) and also ratios between piezoelectric strain components to a p lied electric field components at constant mechanical stress (converse effect). The subcripts n = 1 to 3 indicate electric field components, m = 1 to 6 mechanical stress or strain components. These components are referred to orthogonal coordinate axes. For correlation of these to crystallographic axes, we follow Standards on Piezoelectric Crystals.”’ In the monoclinic system, indices 2 and 5 refer to the symmetry ( b ) axis, in distinction from the older convention relating indices 3 and 6 to the symmetry axis. Crystal classes are designated by international (Hermann-Mauguin) symbols. A dot in place of a coefficient indicates that it is equal by symmetry from another listed coefficient ; a blank space indicates that the coefficient is zero by symmetry. If the sign of a coefficient is not given it is unknown, not necessarily positive.
3
1
Unit for d., = lo-’ statcoulomb/dyne = i< lo-” coulomb/newton 3 1 = 10.’ cm/statvolt = x lo-’’ meter/volt 3 . T h e coefficient d14 of Rochelle salt is extremely dependent on temperature and on amplitude. The ratio of d14 to dielectric constant K (for the latter see figure 16) i s , however, nearly constant; 4 u d d K = old = 6.4X10-1 statvolt cm/dyne. m Letters refer to references, p. 431.
Cubic and tetragonal crystals Name
Composition
Sphalerite ............ Sodium chlorate ....... Sodium bromate ....... “ADP” ............... “KDP” ............... “ADA” .............. “KDA” ..............
Class
Authority“O
dsa
dl4
b 1 1 d
9.7
43m 23 23 42m g m 42m 42m
ZnS NaCIOa NaBrOa NH4HzPO I< HzPO4 NH4H2As04 K HASO,
5.2 7.3 +48.0
- 1.5 1.3 +41 +23.5
+
+31
+22
d
Trigonal crystals Name
Class
dii
Quartz ............... 32 Tourmaline ........... 3m
+6.9
dis
dl4
d2z
dR3 Authority
dal
-2.0 +11.0
-.94
+.96
$5.4
b b
Orthorhombic crystals Substance
Class
Epsomite ............. 222 Iodic acid ............. 222 Rochelle salt (30°C) ... 222 NaNH. tartrate ....... 222 LiK tartrate .......... 222 LiNH, tartrate ....... 222 (NH.)z oxalate ....... 222
d 25
dir
-6.2 57 1500* +56 9.6 13.2 50
-8.2 46 -160 -150 33.6 19.6 11
+
dai
dir
4 6
K pentaborate ......... mm
9.5
1.7
dso
Authority
-11.5 70 +35 +28 22.8 14.8 25
1 h b b h h e
da?
fi23
0
-5.4
Authority
d
+5.6
Monoclinic crystals (Class 2) d14
Substance
Lithium sulfate ........ t 1 4 . 0 Tartaric acid .......... +24.0 Kz tartrate ( D K T ) .... -25 +9.3 (NH.), tartrate E D T ................. -31.1 (Ethylene diamine tartrate) Cane sugar ........... -3.7
.......
dle
dn
dT1
-7.2
+4.4 -10
(continued)
SMITHSONIAN PHYSICAL TABLES
d2,
dZG
d,
-12.5 +11.6 -45.0 -5.5 +16.5 -26.4 +15.8 -2.3 -6.5 -6.3 $1.1 -32.4 +6.5 -2.2 +8.5 -10.4 -22.5 +29.4 -8.5 +17.6 -26.2 +1.8 -5.9 -14.0 -36.5 +30.6 +6.6 -33.8 -54.3 -51 +2.2
-2.6
-1.3
dss Authority
+10.0 +35.0 -66.0 +5.6 -56.9
h h h 1
+1.3
b
a
T A B L E 451.-PIEZOELECTRICITY
433
(concluded)
Polarized polycrystalline substance dis
Barium titanate ceramic
K = 1700
...... .... 750
dsl
-235
&a
Authority
+570
e
T A B L E 452.-VALUES FOR P O W E R FACTOR I N P E R C E N T F O R S E V E R A L ELECTRICAL INSULATING MATERIALS A T RADIO FREQUENCIES
From the range of values given, an approximate figure can be taken for a particular material and its relative position with respect to other materials seen. Data of this kind are much affected by the condition and past treatment of the samples and by the conditions of the tests. The power factor and dielectric constant of dry air may be taken as 0 and 1.00. Fused quartz has the lowest power factor among the solid insulating materials, and is used for supporting the insulated plates of standard air condensers. Material
Fre uency R C
Amber . . . . . . . .
187.5 300 600 1000 30 Glass . . . . . . . . . . 600 500 cobalt ... .. 500 flint . . . . . . . 890 100 photographic 235 1700 14 plate . . . . . . 100 500 635 1000 14 Pyrex .... 30 100 420 500 750 80-650 Marble .. . .. 600 Mica . . . . . . .
.
Power factor
.459 .476 .495 .514 .35 - 2.98* .040- .653t .70
Material
Paraffin
.... ...
Phenolic insulation : laminated 11
.
Frequency kC
14 100 500 1070
.74 .h7 4.72z .93f
.
bay . . . . . . birch . . . . . . maple . .. . . oak . . . . . . .
.042 .017.026 .034
.031
625 710 1000 1085 1126
2.62 - 8.0 3.85 - 6.65 1.64 -10.9 1.56 - 8.4 .68 .70 .62 .70 .88 .68 .74 1.05
870 500 500 300 635 1060
3.76 6.48 3.33 - 3.63 2.948-13.8 3.24n-10.1 4.20
190 1000 190 1000 135 315
600
.58 .50 .42 .68 .35 ,007-
Power factor
f Range of a number $ Range of 10 samples. Range of 9 samples. t Range of 27 samples. 8 After drying 48 hours at 80'C. 11 Range of several samples. of samples from different localities.
SMITHSONIAN PHYSICAL TABLES
434
TABLES 453-465.-RXDIO
P R O P A G A T I O N DATA
*
Antenna a r r a y s (figs. 17-19).-The basis for all directivity control in antenna arrays is wave interference. Ey providing a large number of sources of radiation, it is possible with a fixed amount of power greatly to reinforce radiation in a desired direction by suppressing the radiation in undesired directions. The individual sources may be any type of antenna. The radiation patterns of several common types of individual elements are shown in figure 17. The expressions hold for linear radiators, rhombics, vees, horn radiators, or other complex antennas when combined into arrays, provided a suitable expression is used for A,the radiatidn pattern of the individual dir.cltriy
<""."I dislribullon
Iyp. of radiolor
horizontal Fi8 ClOl
Holl-wov dipole
= fOS
(5
K
I,"
0)
c3s 0
Shortene< dipole
Lengthene dipole
Horizonic loop
FM
z KIII
101 = K
cos @
Horizontc turnstile
i,and i2 phased 9 0'
0 = horizontal
angle measured from perpendicular bisecting plane
@ = vertical angle measured from horizon
K and K' are constants and K' 2 0.T
FIG.17.-Radiation patterns of several common types of antennas. antenna. The array expressions are multiplying factors. Starting with an individual antenna having a radiation pattern given by A,the result o f combining it with similar antennas is obtained by multiplying A by a suitable array factor, thus obtaining an A' for the group. The group may then be treated as a single source of radiation. The result of combining the group with similar groups, or, for instance, of placing the group above ground, is obtained by multiplying A' by another of the array factors given. The expressions given here assume negligible mutual coupling between individual antennas. When coupling is not negligible, the expressions apply only if the feeding is adjusted to overcome the coupling and thus produce resultant currents that are of the amplitude and relative phases indicated.
* Data arranged by Newbern Smith and Marcella Phillips, Central Radio Propagation Laboratory, National Bureau of Standards. (continued)
SMITHSONIAN PHYSICAL TABLES
435 One of the most important arrays is the linear multielement array where a large number of equally spaced antenna elements are fed equal currents in phase to obtain maximum directivity in the forward direction. Figure 18 gives expressions for the radiation pattern of several particular cases and the general case of any number of broadside elements. In this type of array a great deal of directivity may be obtained. A large number df minor lobes, however, are apt to be present, and they may be undesirable under some conditions, in which case a type called the binomial array may be used. Here again all the radiators are fed in phase but the current is not distributed equally among the array elements, the center radiators in the art'ay oonnourwion
A
A
[
* a
sin 0)]
cos
A
+ 2A [cos Iso sin 011
sin (m
m radiators
A
(general case)
A
c
ti
e)
sin
e)
1 for horizontal loop, vertical dipole cos
A=
sin
sin
sin
(2
e
C O ~
e
)
for horizontal dipole
so = spacing of successive elements in degrees
FIG.18.-Linear
multielement array broadside directivity.
being fed more current than the outer ones. Figure 19 shows the configuration and general expression for such an array. I n this case the configuration is made for a vertical stack of loop antennas in order to obtain single-lobe directivity in the vertical plane. If such an array were desired in the horizontal plane, say n dipoles end to end, with the specified current distribution the expression would be
The term binomial results from the fact that the current intensity in the SUCcessive array elements is in accordance with the binomial expansion (1 I)''-', where n is the number of elements.
+
(continued)
SMITHSONIAN PHYSICAL TABLES
436
I
'0
of loops in the array
FIG.19.--Development of binomial array.
C O N S T A N T O F N O N P O L A R GASESlM
T A B L E 453.-DIELECTRIC
at 0°C and 76cmHg ~
Gas
(K-l)xlOB
........ 69.2 Neon .......... 134.1 Argon ......... 554.2 Helium
Gas
(K-I) x 10%
Gas
(K-1) xlOe
Hydrogen
Carbon dioxide.. 988
Oxygen
...... 272 ........ 532.5
Air (COZ free). . 570
Nitrogen
....... 580
*m Jelatis, J. G., Journ. Appl. Phys., vol. 19, p. 419, 1948; Hecter, L. G., and Woernley, D. C., Phys. Rev., vol. 69, p. 101, 1946.
SMITHSONIAN PHYSICAL TABLES
437 T A B L E 454.-DIELECTRIC
C O N S T A N T A N D LOSS T A N G E N T O F DIELECTRIC M A T E R I A L S 15'
The following table presents values of dielectric constant,' e' (relative to that vacuum € 0 ) and loss tangent, tan 8, for various substances at the frequencies and temperatures indicated. The loss tangent, tan 6, is identical with the power factor, cos 0 (or sin a), for low loss substances. The table shows it multiplied by lo'. Part 1.-Solids Tzmp. C I
Materials
A. Inorcanic 1. Crystals Ice'* ......................... Sodium chloride*
-12
...............
2. Ceramics a. Steatite bodies AlSiMag 211'
25
25
............... lo5 ............
26
.....
25
............ ... Corning No. 1990' .............. Foamglas' ..................... Fused quartz" .................
20
Mycalex K
Porcelain, dry process" 3. Glasses Corning No. 790'
Melmac resin 592"
........
d. Urea-formaldehyde Plaskon urea, natural"
I
E'/B
d/eo
24 23 25
25
5.90 <1
6.00 92
5.98 34
5.97 5
5.96 4
5.4
5.4
5.4
5.4 25 d / ~ o 9.5 tan6 170 e'/eo 5.50 tan6 220
6
3
9.3 125 5.36 140
9.0 26 5.08 75
3.85 d / ~ o 3.85 6 tan6 6 d / ~ 8.40 8.38 tan6 4 4 d / ~ o 90.0 82.5 tan6 1500 1600 3.78 d/eo 3.78 7.5 tan 6 8.5
3.85 6 8.30 5 17.5 3180 3.78 2
2.85 19
2.85 3
5.05 190 5.23 230
4.87 160 5.15 165
4.72
4.64 160
d/eo
25
a'/€,
tan6 26 27
e'/e
tan6 E'/Q
tan6
.....
24
e. Hexamethylene-adipamide Nylon 610" ...............
25
Nylon 610" ............... 90% humidity ...........
25
d/~o
tan6 d/eo
tan6 d/~o
tan6
11.3**
40 5.04 78
4.74 156
3.78 1
4.60 340
4.62 56 4.04 570
4.52 82 3.59 700t
4.55 137
4.37 62
4.30 77
4.25 124
6.15 400 6.70 590
6.00 119 6.25 470
5.75 115 5.20 347
5.5 200 4.70 360
4.59 434
7.1 380
6.7 280
6.0 310
5.2 500
4.65 782
3.60 155 4.5 650
3.50 186 4.2 640
3.14 218 3.2 380
3.0 200 3.0 220
~'/g
tan6
2
5.90 14
3.82 9.4 7.94 42 5.49 455 3.78 1
tan 6 d/eo
3.17 7 5.90 5
5.90 <1
d/eo
tan6 26
1x100 1x108 1x1010
4.15 1200 5.90 <2
-
tan6 24
1x103
e'le,,
tan 6
tan6
B. Organic, with or without inorganic components 1. Crystals Naphthalene" .............. 25 2. Plastics a. Phenol-formaldehyde Bakelite BM-169811a ....... (powder preheated) ..... Formica XX" ............ (field 1 t o laminate) .... b. Phenol-aniline-formaldehyde Resinox 7013" ............ (preformed and preheated) c. Melamine-formaldehyde Formica grade FF-41m (sheet stock) ............
ixio*
tan6
.............
b. Miscellaneous Ruby mica'
Frequency, cycles per second
72
8.20 9
m These data were selected from Tables of Dielectric Materials, volume 3, Laboratory of Insulation Research, Massachusetts Institute of Technology Cambridge Mass. June 1918. a c is used for dielectric constant in' this table 6 the piace of K. Numbers refer to notes at end of table. ** Not corrected for variations of density. t Rod stock in HLI (TE11) made of circular wave guide.
(continued) SMITHSONIAN PHYSICAL TABLES
438 TABLE 454.-DIELECTRIC
CONSTANT AND LOSS T A N G E N T O F DIELECTRIC MATERIALS (continued) Frequency, cycles per second
Temp.
oc ,
Materials
f. Cellulose derivatives (1) Acetates Tenite I1 205A Hz". . (cellulose acetate) (butyrate) . . . . . . . . (2) Nitrate Pyralin" . . . . . . . . . . .
(3) Ethyl cellulose Ethocel No. 2840n
26
25
D C 2101*' ...... ..........
25
3.28 178
3.05 190
10.8 6400
8.4 1000
6.6 640
5.2 1030
3.90 75
3.80 210
3.40 275
3.20 240
2.9 70
2.9 56
2.9 45
2.9 45
2.26 <2 3.18 130 o 4.88 800 3.20 620 2.56 <.5
2.26 <2 3.10 185 4.65 630 2.84 440 2.56
2.26 <2 2.88 160 3.18 570 2.63 145 2.56 .7
2.85 81 2.82 180 2.58 67 2.55
2.4 18 2.60
2.4 50 2.47 120 2.52 95 2.35 10 3.4 1600
d / ~ n
h. Polyvinyl resins Polyethylene DE-3401m . . .
25
€'/€a
tan6
g. Silicone resins
. .. . . . . , Saran B-11Y ............. Lucite HM-11920 . . . . . . . . . . Polystyrenen . . . . . . . . . . . . . (commercially molded) Sheet stock ............... Vinylite QYNA"
3. Elastomers Hevea rubberZs . . . . . . . .
20 23 23 25
. . . . . . . . ... . .. . . . GR-S (Buna S)'" . . . . . . . .. . .. .. compound GR-I (Butyl rubber)" . . . . . . . . . . Neoprene GR-M8* . . . . . . . . .. . . . .
25 26 25 26 25
Shellac, natural XL"
28
. . .. . .. .. .. ..
25
6. W axes Apiezon wax "W"sB ............
22
Field
. . . . . . . . . . . . . .. Ceresin, whites8 . . . . . . . . . . . . . . . . Paraffin wax" ................. 132" A S T M Sealing wax'" . . . . . . . . . . . . . . . . . .
25
..
26
Fir, Douglas, plywood Z
25
Mahogany Z
. . . . . .. .. . . . . . . . . .. .. . . . . . , .
25
1 to
d/c, e'/s
23 25 25
3 32 1310
2.26 3.6 2.70 51 2.57 49 2.54 4.3
2.38 35 6.5 860
2.4 18 2.53 42 2.56 120 2.35 10 5.7 950
d / b 2.7 t a n 6 12.5 E'/E~ 3.86 tin6 65
2.7 18 3.81 74
2.65 56 3.47 310
3.10 300
2.48 2.48 35.5 25.5
2.47 15
2.35 6.8
2.39 60 2.3 4 2.25 <2 3.2 120
2.35 48 2.24 6.5 2.24 2.1
1.30 135
1.20 83
2.07 320
1.7 210
€'/so
tan6 d/co E'/E,
tan6 E'/E~
d / ~ o 2.48 tan 6 43.9 E'/E~
tan6 E'/E~
tan6 €'/€a
tan6 tan6 E'/E~
tan 6 E'/E~
tan6 El/€"
tan6 €'/€a
tan6
grain.
(continued) SMITHSONIAN PHYSICAL TABLES
<.5
1x10'0
2.4 28 2.61 5 2.66 7 2.39 34 7.5 8000
€'/so
tan6
tan6
. . .. ... . . . . . .. . . . .
Red express 7. W oods Balsa . . . . . . . . . . . . . . . . . . . . . . .
d / ~
tan6
tan6
4. Natural resins Amber" . . . . . . . . . . . . . . . .
Beeswax, white"
€'/€a
tan6
tan6
25
5. Asphalts and Cement Plicene cement= . ..
€'/€a
tan6
tan6
. . ... .. . .
Gutta-percha"
E'/s~
tan6
1x108
3.50 107
tan6
..
1x10~ lX l0B
3 54 78
€'/€a
tan6
27
,
A
1x102
4
2.66 9
2.75 186 2.65 140 2.3 8 2.25 <2 3.68 249
2.69 120 2.63 118 2.3 6 2.25 <2 3.52 150
2.63 25 2.43 84 2.3 4 2.25 <2 3.29 80
1.4 50 2.1 115 2.42
1.4 40 2.1 105 2.40 120
1.37 120 1.90 230 2.25 250
86
2.38 50 2.44
50 2.35 8
439 T A B L E 454.-DIELECTRIC
C O N S T A N T A N D LOSS T A N G E N T O F D I E L E C T R I C M A T E R I A L S (continued) Part 2.-Liquids Tzmp. C r
Materials
A. Inorganic Water, conductivity"
Frequency, cycles per second A
1x10s
. . . . . .. . . . .
1.5 25 45
€'/€a 87.0 tan6 1,900 d / ~ o 78.2 tan 6 4,000 €'/€a
tan 6 65
C'/Q
tan 6 B.
Organic 1. Aliphatic Methyl
. . . . . . . . . . . .. . . . Ethyl . ... . .... ... . ... . n-Propyl alcohol" . . . . . . . . . . . . . . Carbon tetrachloride" . . . .. . . . . .
2. Aromatic Nitrobenzene"
Styrene N-IOO"
. . . . . . . . . . .. . .. .. . . . . . . . . . ... . . ..
3. Insulating oils Bayol" . . . . . . . . . . . . . . . . . . . . . . .
. Fractol" . . . . . .. . . . . . . . . . . . . . .. Marcel'' .. . . . . . . . . . . . .. . . . . . . .. Primol-Dm . . . . . . . . . . . . . . . . . . . . Cable oil 5314''
................
85
c'/E~ 58 tan6 12,400
25
d/~o tan 6
1x102
25
d / ~ o
25
tan 6 d/~o tan 6
25
c'/E~
tan6 25 22 24
d/~o tan 6 €'/a 2.40 tan6 38 B'/S
tan6 26
€'/6
tan6 24 24 25 80
1x10s
2.17 8
31 380 23.7 620 19.0 2000 2.17 <2
2.40 5
36 80 2.40 <3
2.14 2 2.17 <1 2.14
2.16 3 2.76 .4 2.76 .8
2.16 2 2.76 .4 2.76 .4
Halowax oil
25
. . . . . .. . . .. . . . . . .. . . . . .
25
Silicone fluid No. 500," 100 cs. at 25°C . . . . . .. . .. . . . Silicone fluid No. 200,M 100 cs. at 25°C . . .. . .. . .. . . . ..
22
d/eo
23
tan6 €'/a tan6
S'/S
tan6
80.5 38 3,100 10,300 76.7 55 1,570 5,400 70.7 59 1,060 4,000 64.0 59 765 3,200 56.5 54 547 2,600
31 2,000 24.5 900 20.1 180 2.17 <.4
2.25 <.4 2.18 4 4.40 3 4.77 50
25
86.5 320 77.5 160 71.0 105 64.5 84 57 73
1x10s l x l o a
2.14 tan6 1 d / ~ o 2.17 tan6 <1 S'/S 2.25 tan6 3 d / ~ o 2.18 tan6 38 d / ~ o 4.40 tan6 36 d / ~ o 4.80 tan6 490
. . . . . . . . . . .. . . . . . 1000" .............
..
2.14 12.6 2.17
S'/S
Pyranol 1467"
4. Lubricants Vaseline
2.17 60
87.0 190 78.2 400 71.5 590 64.8 865 58 1.240
2.17
<
8.9 8,100 1.7 680 2.3 900 2.17 16
2.36 58 2.14 18 2.16 11.3 2.14
2.14 <2 2.17 <2
11.2
2.16 10.6 2.22 22
4.40 190 4.77 <2
4.04 1300
2.65 750 2.99 1850
2.16
2.16 <4
2.16 10 2.72 240 2.70 320
NOTES:1, From conductivity water. 2, Fresh crystals (Harshaw). Audio frequency loss decreases with time. For a discussion of low-frequency dispersion in ionic crystals see R. G. Breckenridge, Bull. Amer. Phys. SOC.,vol. 23, p. 33, 1948. 3, Magnesium silicate (American Lava). 4, Muscovite. 5 , Mica, glass, TiOl (Mycalex). 6 Knox. 7, 96% S O 2 . 8. Iron sealing glass. 9, Soda-lime (Pittsburgh-Corning). 10, S O 2 (Gene;al Electric). 1.1, Eastman, Kodak; recryst. and resubl. Lab. Ins. Res. 12, Mica-filled (Bakelite). 13, 5% paper laminate (Formica). 14, 58% mica, 2% misc. (Monsanto). 15, 55% filler (Formica). 16, Mineral filler (American Cyanamid). 17, a.cellulose (Libhey-Owens-Ford). 18, DuPont. 19, 5.15% plasticizer, pigments, dyes (Tennessee Eastman). 20 25% camphor (DuPont). 21, 2, Cross-linked organo siloxane 'polymer (Dow Corning). 2.73 ethoxy groups/glucose, plast. (Dow). 23.
(continued)
SMITHSONIAN PHYSICAL TABLES
440 T A B L E 454.-DIELECTRIC
CONSTANT AND LOSS T A N G E N T O F DIELECTRIC MATERIALS (concluded)
1% antioxidant Bakelite). 24, 10% polyvinyl chloride (Bakelite). 25 Polyvinylidene and vinyl chlorides (Dew). 26, holymethyl methacrylate (DuPont 27 For sheet stock, 'various samples used for different frequencies; for rod stock, E'/<,, is the same as tbr sheet'stock. (Plax) 28, Pale crepe (Rubber Research 30, 160 pts GR-S, 1 pt stearic acid, 5 pts 29, Palaquium Oblongifolium (Hermann Weher). Cor ). K a z x , 5 t s Captax, 3 pts sulfur (Rubber Research C o y ) . . 31, Copolymer of 98.99% isobutylene, 1.2% k p r e n e (lubber Research Corp.). 32,Poly-2-chlorobuta iene 1, 3 stabilized with Methyl Tuads (DuPont). 33 Fossil resin (Amber Mines). 34. Contains ca. 3.5% wax (Zinsser). 35, Central Scientific. 36, Sdell Oil. 37 Bromund. 38, Vegetable and mineral waxes (Kuhne-Libby). 39, Mainly C n to C20 40, Dennison. 41, Research Laboratory aliphatic, saturat)ed hydrocarbons (Standard Oil New Jersey). of Physical Chemistry Massachusetts Inst. Techn. 42 Absolute Analytical Grade (Mallinckrodt). 43 44, Eastman ' Kodak. Dried and refractionated, Lab. Ins. Res: Absolute (U. S. Inddstrial Chemicals). 45 Purified Lab. Ins. Res. 46, Dow. 47, 72.0% arrffins, 28.0% naphtlienes (Stanco). 48, 57.4% a r 50, 49.47 ara&ns: 49, 72.4% parafkns,' 27.6% naphthenes (Stanco). a&, 42.6% naphthenes (Stanco). 52, EhPorinated 50.6% naphthenes (Stanco). 51, Aliphatic and aromatic hydrocarbons (General Electric). $3, 6 P , mono-, 40% di- and trichloronaphthalenes (Bakelite). benzenes and di henyls (General Electric). 54, Methyl. or e t h siloxane polymer (Dow Corning). cs., centistoke.
.
T A B L E 455.-DIELECTRIC
CONSTANT AND CONDUCTIVITY O F SOILS
Measurements of samples of soil taken from different depths at various sites in England
Geological classification
Lower lias
....
Depth ft
Surface 1 2 3
.... Surface 1
Chalk.
2
Moisture content 7% by weight 1 kc
Description of sample
Dark fibrous loam.. . Loam and clay.. .... Clay and sand.. .... Blue clay ..........
.
60 33 26 25
Fibrous loam . ..... 21 Chalky loam ....... 21 Chalk ............. 24
Upper greensand Surface Fibrous loam ...... 37 Brown, sandy clay.. 19 1 Brown sand ........ 15 2 Upper
lias
.....
Red mark.
Devonian
Granite
.
...
Surface 1 2 5
Fibrous loam ...... Sandy loam ........ Brown sand ........ Sand and sandstone..
28 16 14
Boulder clay .... Surface Fibrous loam ...... 38 Clay and loam ..... 19 2 Dark grit and clay.. 18 3
3.9X1O86.OX1O8100 95 9.0 7.0 105 12.0 8.0 95 11.0 9.5
43 48
1.4 .95 .61
39 41 28
23 25 21
5.0 3.8 3.3
80 39 33
49 19 19
1.6 .61 .46 .22
48 20 20 14
30 17 14 9
2.3 2.5 3.6
46 50 80
32 33 45
.95
.85
.28
26
.38
2.7 2.2 1.8
.85
1.5 1.5 2.6
.12 .00090 .00070
.55
1.1 .60
3.4 2.4 2.0 .95 .34 29 .090
4.0 2.4 2.1 .1 .40 .33 .12
1.7 1.7 2.I3
.8 .8 3.1
1.5 .030
2.5 1.8 .060 .040 .0092 .046
.0025 .I2 .MI70
.0050 .65 1.1 .70
Smith-Rose, Journ. Inst. Electr. Eng., London, vol. 75, p. 221, 1934.
SMITHSONIAN PHYSICAL TABLES
10 Mc
.90 .55
Surface Black fibrous loam.. 21 1.3 Loam and slate ..... 9.0 .026 1 10 Slate .............. - .00026 Gritty loam ........ 18 1 3 to 10 Granite ............ 3 to 10 Granite ............ -
'1.2 Mc
1.2Mc 1 0 M c
.85
.55
h '
100kc
3.OX1O8 3.4XlOS 7.0. 6.5 8.0 7.5 9.0 8.0
.34 29 8.5 .075
Surface Reddish-brown loam. 23 Reddish-brown clay. 20 1 Reddish-brown clay. 18 2
Dielectric constant
Conductivity (in esu) at 20°C
.16 ,028 .019 .75 1.2
.so
.18 .ll .095 1.1 1.7 1.2
55
46
90 65 12 10 9.5 8.0 22 15 12 8.5 10.0 7.5 50 60 50
20 21 19
T A B L E 456m-ELECTRIC
441
DIPOLE MOMENTS
The dipole moments are given in Debye units (1 Debye unit = 1 X lo-" esu). The moments listed were obtained from gaseous measurements. The data are taken from Tables of Electric Dipole Moments, April 1947, compiled by L.G. Wesson, Laboratory for Insulation Research, Massachusetts Inst. Techn., Cambridge, Mass. Where several sources were given, a study was made to select the best value. Reference to original sources can be made from the above tables. P a r t 1.-Inorganic
substances Electric dipole moment
Electric dipole moment
1x10-=
Substance
esu
Ammonia ..... . ............... 1.46 Argon . . . . . . . . . . .. . . . . .. . . .. . .O Arsine . . . . . . . . . . . . . . . . . . . . . . . .16 Boron fluoride . . . . . . . . . . . . . . . . .O Deuterium chloride . . . . . . . . .. . 1.089 Helium . . . . . . . . . . . . . . . . . . . . . .O Hydrogen . . . . . . . . . . . . . . . . . . . . . .O Hydrogen fluoride . . . . . . . . . . . . . 1.91 Hydrogen iodide . . . . . . . . . . . .. . . .38 Krypton . . . . . . . . . . . . . . . . . . . . .O Neon . . . . . . . . . , . . .. . . .. . . . . . .. .O
.
.
.
..
..
Part 2.-Organic Electric dipole moment 1x10-u esu
Substance
Phosgene CCLO (carbonyl chloride) . . . . . . . . . 1.18 Thiophosgene CCLS . . . . . . . . . . .28 Carbon tetrachloride CCI, . . . . . . .O Chloroform CHCI, . . . . . . .. . . . . 1.02 Hydrogen cyanide CHN ....... 2.94 Formaldehyde CHzO .. . . . . . . . . . 2.27 Formic acid CH2O2 . . . . . . .. . . . , 1.51 Methyl bromide CHaBr ........ 1.79 Methyl chloride CHIC1 .. ... ... 1.86 Methyl iodide C H d . . . . . . . . . . . . 1.64 Formamide C H 3 N 0 ........... 3.22 Nitromethane CH,NO, . . . . . . . . . 3.49 Methane CH, ................. .O Methyl alcohol CH.0 . . . . . . . . . . 1.69 Carbon monoxide CO . . . . . . . . . . .11 Carbon dioxide CO, . . . . . . . . . . . . .O Carbon disulfide CS, . . . . . . . . . . . .O Acetylene C2Hz . . . . . . . . . . . . . . . . .O Ethylene G H , . . . . . . . . . . . . . . . . .O Acetaldehyde C,H,O . . . . . . . . . . 2.71 Acetic acid CzH,Oz . . . . . . . . . . . 1.73 Ethyl bromide C2H,Br .... ..... 1.96
. .
.
SMITHSONIAN PHYSICAL TABLES
1x10-"
Substance
. .. . . . . .. .. .
esu
Nitric oxide . . . . . . . . . .. . . . . . . . .1 Nitrogen . . . . . . . . . . . . . . .. . .O Nitrogen dioxide . . . . . . . . . . . . .3 Oxygen . . . . . . . . . . .. . . . . . . . . .O Phosphine . . . . . . . . . . . . . . . . . . .55 Potassium chloride . . . . . 6.3 Silane, SiH, .................. .O Sodium iodide ................ 4.9 Sulfur dioxide . . . . . . . . . . . . . . . .1.7 Water . . .. . . . . . . . . . . . . . . . 1.84 Xenon . . . . . . . . . . . . . . . . . . .O
.
. . .
.
. .. .. .
. . . .. . . . ..
substances Electric dipole moment 1x10-"
Substance
csu
.
Ethyl chloride CtH,CI . . . . . . . . . 2.00 Ethyl fluoride CzH,F . . . . . . . . . . 1.92 Ethyl iodide C,HJ . . . . .. .. .. . . 1.87 Nitroethane C2H,NOs . . . . . . . . . 3.70 Ethane CZH, . ................. .O Ethyl alcohol CzH,O ....... .... 1.68 Methyl sulfone CzH40zS. . . . . . 4.41 Dimethylamine CzHIN . . . . . . . . . .99 Cyanogen CtNz . . . . . . . . . . . . . . . . .O Propene (propylene) C3H4 , . . . . . .35 Acetone C3H,0 . . . . . . . . . . . . . . . . 2.85 Methyl acetate CaHaOz .. ..... .. 1.67 Ethyl ether C,HloO ............ 1.14 Ethyl sulfide CeHiaS . . . . . . . . . 1.51 Diethyl carbonate C.nHiaOs . . . . . 1.06 Bromobenzene C4H5Br . . . . . . . . 1.74 Chlorobenzene GH,CI . . . . . . . . . 1.69 Fluorobenzene C4HoF . . . . . . . . . . 1.57 Nitrobenzene C6HsNOz . . .. . . . . 4.23 Benzene C.H4 . . .. . . . . . . . . . . . . . .O Phenol CaHsO ................ 1.40 Aniline CaHIN ................ 1.48 Toluene C7Hs . . . . . .. .. . . . . .37
.
.
. . ..
. .
442 T A B L E 457A.-ATTENUATION C O E F F I C I E N T S FOR V E R Y LOW F R E Q U E N C Y RADIO PROPAGATION
F o r very low frequencies (100 kc and under), a n empirical transmission formula of the form
has been found useful (Austin-Cohen; Austin ; Espenschied, Anderson, and Bailey), where F = received field intensity, in p vinz h = effective height of transmitting antenna, in km I = transmitting antenna current, in amp 0 = transmission distance, in radians d = transmission distance, in km X = wavelength, in km Values of a and x were found t o vary somewhat. Since theoretical justification for the Austin-Cohen value of x = f has been given by Watson (Proc. Roy. SOC.London, A, vol. 95, p. 546, 1919), data furnished by the above observers have been reevaluated, assuming validity of the relationship --ad
and the resulting values of a presented in the accompanying table, together with their relative weights estimated from the number of observations used in their determination. a varies notably with frequency, time of day, and the type of ground along the transmission path, and less definitely with season, solar activity, and the location of the transmission path. The values presented here a r e for conditions where the entire transmission path, at the height of the ionospheric reflecting layer, lies in daylight or in darkness. For conditions of sunrise or sunset on the transmission path, a has generally been found to lie between day and night values, but under certain circumstances, t o far exceed these values. Transmission path Day weight
Night weight
Transmitter Ground location Sea water Bordeaux, France
Receiver location Washington, D. C.
Observations by Austin
f . kc
a
12.8
.59X10-'97
17.13
.66
22.9
1.49
59
Land San Diego, Calif.
Washington, D. C.
Austin
23.4
1.01
97
Sea water Nauen, Germany
Washington, D. C.
Austin
24.05
.61
93
Belfast, Maine
Espenchied Andersoh, Bailey
112
a
.32X10-
48
"
.25
7
"
Rocky Point, N . Y. New Southport, England
Leafield, England
24.05
.80
42
.46
2
"
Riverhead, L. I., N . Y.
24.05
.81
52
.44
1
"
Greenharbor, Mass.
25.7
.76
104
.29
42
''
Marion, Mass. Northolt. England
52
1.45
29
.60
15
"
52
1.40
75
.84
21
''
54.5
1.49
45
.89
30
"
57
1.48
112
.55
48
,,
SMITHSONIAN PHYSICAL TABLES
New Southgate, England Riverhead, L. I., N . Y. Belfast, Maine Green Harbor, Mass.
Rocky Point, N . Y. Npw Southgate, England
Espenchied Andersoh, Bailey
443 T A B L E 457B.-ATTENUATION
I N HIGH FREQUENCY PROPAGATION OVER LONG DISTANCES
At high frequencies and distances where the radiation is chiefly received by means of sky-wave transmission, reference is given to the methods for calculation of received field intensities presented in Chapter 7, National Bureau of Standards Circular 462, “Ionospheric Radio Propagation.” For long transmission paths (over 4000 kni),
+
F = Fo f l o g P - S o J Q d F = log of the received field intensity, in
where
PLV m
F , = log of the ionospherically unabsorbed field intensity, in EZ‘ , for 1 kw m effective radiated power
= 1.6 - 1.44 [log d - 3.601
d = transmission distance, in units of 1000 km P = effective radiated power, in kw log S o = 0.502 - 1.916 (log j - 0.477) f = frequency, in Mc
Q = 1 +0.005 R
R_= sunspot number K = average K for the transmission path K = 0.142 0.858 cos 1c. 1c. = solar zenith angle D‘ E d = 0.142 D’ ( K , K 1- 0.284) tan 2R D’= the length of the path in the region where K is not equal to zero, in where units of 1000 km K1 and K,= values of K at transmitting and receiving stations R = radius of the earth in units of 1000 km
+
+
+
seasonal variation factor. I has the values 1.0, 1.3, 1.15, respectively, if both terminals of the transmission path lie in summer, winter, or equinoctial regions. If one terminal lies in a summer region, the other in winter, I = 1.15.
I=
T A B L E 458.-E-LAYER M A X I M U M USABLE FREQUENCIES I N MC FOR 2,000-km TRANSMISSION DISTANCE
Local time of day: 00
June 04
*
08
Equinox 12
16
20
Sunspot number = 0 Latitude N.80” 7.5 9.7 11.3 40 13.6 0 12.3 40 8.3 s.80
N.80”
40
0 40
s.80
11.8 11.3 16.2 13.6 15.6 12.3 12.0 8.3
SMITHSONIAN PHYSICAL TABLES
04
12
08
Sunspot number
9.7
Sunspot number = 125 9.8 11.2 13.4 14.0 13.4 11.2 17.4 20.2 17.4 16.3 20.8 16.3 10.7 15.4 10.7
For December, use reversed latitudes.
00
8.2 11.7 13.2 11.4 7.3
16
=0
10.0 8.6 14.4 12.2 16.8 13.0 14.2 11.9 8.7 7.5
Sunspot number = 125 8.9 10.3 8.7 15.1 18.6 14.7 17.0 21.3 16.4 13.5 16.8 13.3 8.3 9.6 8.1
20
444
T A B L E 459.-TRANSMlSSlON
FACTORS'"
Norton calculated from Van der Pol's and Bremmer's theory and checked at broadcast frequencies the following results for vertically polarized ground-wave propagation. I n many cases ionospheric waves will be much stronger than is indicated for ground-wave propagation in these tables. Some indication of when ionospheric waves may be expected IS given. Factor A for transmission over sea water e = 80, ( a = 5 Freq. Ivlc
X mhos/m)
2 10 50 200
150 km
100 k m
50 k m
1.o 1.o .71 .025 ,00075
.5
.90
.96
.72 .33 .0016
.77 .46
.0050
__
--
Factor A for transmission over good ground e = 15, u = lo-* mhos/m Freq. Mc
5 km
.I .5 2.0
1.00 .98
50 .026 .0030
10
50 300
.00046
10 km
1.oo
.93 .30
1 5 km
.90 .2 1
.0072
,011
,0015
25 km
1.o .73 ,095
1.o
,0096
,0036 .00040
50 km
100 km
150 km
.90 .48 .018
,00054
.87 .35 ,0092 .00020
50 km
100 km
150 km
.85 .096 ,0050 00048
.73 ,038
.64 ,022 .00093
1.o .68 ,049 ,0018 ,00017
__
__
,00013
.00021
Factor A for transmission over poor ground E
Freq. h k
5 km
1-
.5 2.0 10 50 100
1.0 .
.64 .056
0059 ,0012 .00080
10 km
-99 .45 ,027 .0030 ,00055 .00026
= 5, u = 15 km
mhos/m 25 km
-9.5
.92
.35 ,018 ,0019 ,00036 ,00016
.22 .010 ,0011
,00022
__
__
__
,0018 ,00013
__
__
___ __
CRITICAL F R E Q U E N C I E S A N D M A X I M U M USABLE F R E Q U E N C I E S FOR RADIO T R A N S M I S S I O N RY REFLECTION FROM THE E A N D IONOSPHERE
Fz L A Y E R S O F T H E
Values of ionospheric critical freqcencies and virtual reflection heights for all ionospheric layers ( E , F,,F,. E.) observed at a large number of stations are regularly distributed by the Central Radio Propagation Laboratory of the National Bureau of Standards to lahoratories cooperating i n ionospheric research. The values presented in Tables 458 and 461 are synthesized from the trends of these data. Values are not given here for the F , and E , layers since their trends are much less accurately estahlished than those of the E and F2 layers. Tahle 458 presents E-layer maximum usahle frequencies for a transmission distance of 2,000 km, the maximum practical distance for 1-hop transmission by means of E-layer reflection. Table 461 presents Fz-layer ordinary-wave critical frequencies, and maximum usahle frequencies for a transmission distance of 4.000 km, the maximum practical distance for 1-hop transmission by means of P2-layer reflection. 153 Norton, K. A.. T h e calculation of ground wave ficld intensity over a finitely conductins spherical earth, Proc. Inst. Radio Eng., December 1941 ; V a n der Pol. Balth, and Rremmer, H., Philos. Mag.. vol. 24, p. 141, 1937; vol. 24, p. 825, supi)lement. Novemher 1 9 3 7 .
(rontiitzlcd) SMITHSONIAN PHYSICAL TABLES
445
FACTORS (concluded)
T A B L E 459.-TRANSMISSION
Latitudes and local times are those of the ionospheric reflection points. The Fz-layer zones ( W , I , and E ) are those chosen for practical description of longitude effect by the International Radio Conference of April-May 1944. The W and E zones are centered on 70"W. and 1lO"E.longitude, respectively; the two I zones a r e intermediate between these. Values are presented for sunspot numbers of 0 and 125. Since both critical frequencies and maximum usable frequencics show approximately linear variation with sunspot number, values for any other sunspot number, X, may be obtained by interpolation. [World-wide charts of predicted M U F , three months in advance, for both E and Fz layers, are regularly published in Central Radio Propagation Laboratory Series D reports, "Basic Radira Propagation Prediction."] E - L a y e r o r d i n a r y - w a v e c r i t i c a l frequencies.-These may be obtained by dividing the E-layer 2,000 km M I J F by 4.78, since the minimum virtual height of reflection is nearly constant for this layer. E x t r a o r d i n a r y - w a v e c r i t i c a l f r e q u e n c i e s , f" (or zero-distance IMUF).-The ordinary-wave critical frequency ,'f the extraordinary-wave critical frequency f", and the gyrofrequency f h are related by the equation
(f")'= The gyrofrequency, given by
fh,
(f" -+
fh)
f"
varies with the intensity of the earth's magnetic field, H , and is f
e H
h
=
S
where e and m are, respectively, the electronic (or ionic) charge and mass, c the velocity of light in free space, and H is given in gauss.
Ion density.-The number of ions per cm3 at the reflection point may be obtained from the value of the ordinary-wave critical frequency, f " , by the equation
N=-
ez
7rm
(f")'
1
where m and e are, respectively, the ionic mass and charge. M i n i m u m v i r t u a l h e i g h t s of reflection.-The maximum usable frequency at any transmission (except for those nearly equal to zero) is equal to M U l ; = f " sec 9 where 9 is the angle of incidence of the wave upcn the ionospheric reflecting layer. 9 is approximately given by sin f 8 9 = tan-' 1 ( h / R )- cos f 8 '
+
where 8 is the angular distance of the transmission path, h the virtual height of reflection, and R the radius of the earth. (Cf. Smith, N., Proc. Inst. Radio Eng., May 1939, p. 232.) M a x i m u m usable f r e q u e n c i e s f o r o t h e r t r a n s m i s s i o n distances.-These may be obtained from the M U F of Table 461 by using the factors and procedure presented in Table 462. S k i p distances.-The M U I ; for a given distance is the frequency for which that distance is the skip distance.
T A B L E 460.-ATTENUATION OF M I C R O W A V E S BY W A T E R VAPOR I N T H E A T M O S P H E R E (in d b / k m )
Measured at 45°C a t atmospheric pressure Wavelength (cm) Frequency (kmc)
.75 cm 40.2
.%
31.2
1.16 25.8
1.28 23.5
1.37 21.9
1.69 17.8
Water vapor density (g/m8)
10 30 50
.lo3 db/km .408 .84
,081 .321 .665
,149 .495 .90
.230 .69 1.15
Adapted from Becker and Autler, Phys. Rev., vol. 70, p. 303, September 1946. SMITHSONIAN PHYSICAL TABLES
.224 ,672 1.12
.049 .18 .355
446 TABLE 461.-F,-LAYER CRITICAL FREQUENCIES AND M A X I M U M USABLE FREQUENCIES FOR 4,000-km TRANSMISSION DISTANCE liN Mc
E zone
Latitude
Tune
Sent.
F2-4000 f"Fz MUF
F2-4000 f"F2 MUF
Dec.
June
Sevt.
F2-4000 f ° F 2 MUF
Fs-4000 f"F2 MUF
Ah------
Local time of N.80" 4.1 40 4.18 0 3.5 40 2.7 S. 80 2.4
day: 00 14.2 13.9 11.4 9.2 8.8
N.80" 40 0 40 S.80
16.3 24.9 27.0 12.8 13.8
5.2 8.6
8.8
4.1 4.4
3.9 3.8 4.0 3.0 2.8
FI-4000 f ° F 2 ML'F
Sunspot number = 0 13.9 3.4 12.6 9.6 12.9 2.9 14.7 4.9 16.5 10.3 4.3 14.7 9.9 3.9 13.5
Sunspot number = 125 5.6 17.8 6.1 18.8 3.5 10.8 7.0 21.3 10.9 38.8 8.2 25.9 5.9 18.2 8.2 24.7 5.4 17.5 5.4 16.5 Sunspot number = 0 3.0 10.8 12.9 9.9 12.3 2.9 9.9 8.5 3.0 8.9 6.9 2.6 3.8 13.3 8.7
Local time of N.80" 3.9 40 3.7 0 2.3 40 2.9 S.80 2.4
day : 04 13.0 11.8 8.1 10.1 8.5
3.6 3.7 2.3 2.0 2.5
N.80" 40 0 40 S. 80
15.4 23.3 15.3 12.8 12.9
Sunspot number = 125 5.5 17.5 4.4 14.0 6.3 18.8 3.6 10.9 7.2 23.5 6.2 20.0 4.6 14.1 6.0 17.8 5.2 16.5 5.6 16.5
Local time of N.80" 4.0 40 5.8 0 7.4 40 3.9 S. 80 2.4
day : 08 13.0 19.4 22.5 14.1 8.8
4.0 5.7 7.8 4.3 3.4
N.80" 5.3 40 9.4 0 12.7 40 7.5 S. 80 4.3
15.4 28.2 35.5 26.0 13.6
5.2 8.0 4.9 4.1 4.1
Sunspot number = 0 14.3 3.4 12.5 20.9 5.2 19.4 25.3 6.7 20.6 15.9 5.0 17.4 11.8 4.3 14.7
Sunspot number = 125 6.7 21.2 5.0 15.8 10.0 33.2 8.2 29.4 13.5 38.2 12.0 34.7 8.1 28.1 7.4 21.4 5.9 19.3 6.2 17.6
Time: 12 4.2 13.9 5.8 19.0 9.0 25.6 5.0 18.8 3.3 11.9
5.4 9.0 14.0 10.8 6.0
16.0 25.6 32.7 36.4 19.8
Time: 16 4.5 14.8 5.6 18.2 8.4 24.2 5.0 18.2 3.0 10.9
5.6 9.0 14.0 10.4 5.4
16.3 26.5 34.0 35.3 17.4
Time: 20 4.2 14.3 5.5 18.8 4.5 14.7 2.7 9.6 2.5 9.3
5.5 8.6 11.0 5.5 4.4
16.7 26.0 28.2 17.6 13.9
4.4 6.1 8.6 5.6 3.6
Dec. f"F2
MUF
Sunspot number = 0 15.4 3.7 13.4 21.4 6.8 24.7 24.7 8.2 24.5 19.5 5.9 19.4 12.9 4.5 14.9
Sunspot number = 125 5.4 17.6 6.7 21.2 11.4 35.3 11.1 36.4 12.7 30.2 15.5 38.8 8.3 22.7 10.5 34.1 6.2 19.8 6.2 17.6
4.5 5.6 9.0 5.1 3.7
Sunspot number = 0 3.9 14.2 15.9 20.0 5.0 18.3 8.6 28.1 27.0 5.9 19.9 18.3 12.7 4.3 14.3
Sunspot number = 125 5.4 17.3 6.5 20.0 8.8 28.8 10.9 33.2 16.2 41.2 12.2 29.6 9.8 32.3 8.2 25.9 6.7 21.9 6.0 17.3
4.4 5.1 8.2 4.0 3.3
Sunspot number = 0 3.7 13.3 15.8 2.7 9.6 18.2 25.9 7.2 23.5 13.9 5.4 19.4 11.4 4.4 14.9
Sunspot number = 125 6.6 20.8 5.2 16.7 4.3 14.1 8.0 25.9 14.0 34.2 10.0 25.9 8.4 25.9 7.9 24.7 6.0 17.6 6.3 20.6
I zone Local time of N.80" 3.9 40 3.8 0 5.2 40 2.9 S. 80 2.4
day : 00 13.6 12.9 16.9 9.8 8.8
N.80" 5.2 40 6.4 0 9.0 40 4.1 S. 80 4.4
16.9 18.6 28.2 12.7 13.8
3.6 3.0 6.3 2.6 2.8
Sunspot number = 0 12.9 2.7 9.8 10.1 3.0 9.8 23.3 5.0 16.5 8.9 5.4 17.9 9.9 3.9 13.5
Sunspot number = 125 5.8 18.2 4.8 15.3 5.0 15.3 3.3 10.3 10.0 32.8 10.0 31.8 5.8 18.2 8.4 24.7 5.4 17.5 5.4 16.5 (continued)
SMITHSONIAN PHYSICAL TABLES
Time: 12 4.0 13.5 5.2 17.2 6.2 17.6 4.7 17.9 3.3 11.9
5.3 7.9 10.4 11.5 6.0
15.6 21.9 24.8 38.7 19.8
3.7 5.5 6.5 5.2 3.6
Sunspot number = 0 13.2 3.4 12.5 19.4 6.8 25.9 18.8 7.8 22.9 18.3 6.6 21.9 12.9 4.5 14.9
Sunspot number = 125 5.4 17.3 5.9 18.7 11.0 37.7 10.2 31.9 11.0 28.6 10.9 25.6 9.4 26.5 10.8 34.7 6.2 17.6 6.2 19.8
-
-
447
T A B L E 461.-FgLAYER CRITICAL FREQUENCIES AND M A X I M U M USABLE FREQUENCIES FOR 4,000-km TRANSMISSION DISTANCE IIN Mc (continued) Latitude
June
Sept.
F2-4000 f"F2 MUF
Ff "2F -z 4M0 U0F0
Local time of day: 04
N.80" 40 0 40
Dec.
--GiG
f"Fz MUF
Fs-4000 f"F2 MUF
Sunspot number = O 12.2 2.7 9.9 9.9 2.9 10.0 11.6 3.3 10.3 7.5 3.5 11.9 8.7 3.8 13.3
Time: 16 4.0 13.2 5.2 17.0 6.8 19.8 4.6 17.2 3.0 10.9
3.7 3.1 3.2 2.8 2.4
12.8 10.7 11.0 9.6 8.5
3.4 2.9 3.0 2.2 2.5.
N.80" 4.8 40 5.3 0 6.9 40 4.0 S.80 4.1
15.4 15.3 21.8 12.5 12.9
Sunspot number = 125 3.9 12.2 5.7 17.4 3.4 10.6 4.6 14.2 7.2 22.9 5.4 17.6 4.2 12.6 6.2 18.5 5.2 16.5 5.6 16.5
S. 80
5.2 7.8 10.8 10.0 5.4
4.8 6.2 3.5 2.4
16.5 18.6 12.9 8.8
N.80" 40 0 40 S. 80
5.1 7.6 8.9 7.7 4.3
15.0 21.2 24.9 26.5 13.6
5.0 5.6 4.3 3.4
18.8 17.9 15.9 11.8
5.0 7.4 5.6 4.3
15.6 22.6 26.8 33.5 17.4
Time: 20 3.8 13.2 5.2 17.9 6.0 20.8 2.7 9.5 2.5 9.3
Local time of day : 08 Sunspot number = 0 3.0 10.9 3.6 13.2 12.8 N.80" 3.9
40 0 40 S. 80
Sent.
June
18.8 22.9 19.4 14.7
Sunspot number = 125 4.3 13.5 5.9 18.8 7.8 29.4 8.6 28.8 11.6 33.0 10.3 29.3 8.8 25.6 8.6 29.4 6.2 17.6 5.9 19.3
5.1 7.5 9.4 5.4 4.4
16.0 21.4 23.4 17.6 13.9
7
-
Dec. h
Fz-4000 f"Fz MUF
3.6 5.5 8.2 4.8 3.7
y J L ,
F2-4000 f"Fz MUF
Sunspot number = 0 12.6 3.4 12.1 19.8 5.6 20.6 24.6 9.4 30.0 17.0 6.4 21.8 12.7 4.3 14.3
Sunspot number = 125 5.9 18.8 5.2 16.6 9.7 30.6 9.8 33.9 12.5 31.8 12.4 35.0 10.4 33.5 9.2 27.3 6.7 21.9 6.0 17.3
3.6 3.6 7.0 3.4 3.3
Sunspot number = 0 12.8 3.1 11.5 12.9 2.7 8.8 21.6 7.6 24.9 11.8 6.7 22.2 11.4 4.4 14.9
Sunspot number = 125 5.8 18.3 4.9 15.5 6.7 21.6 3.7 12.7 10.2 25.9 10.5 27.0 7.4 24.3 9.2 26.8 6.3 20.6 6.0 17.6
W zone Local time of day : 00
N.80" 3.9 40 3.0 0 4.4 40 2.3 S. 80 3.0
13.6 10.5 14.6 7.9 10.8
N.80" 5.2 40 6.6 0 10.5 40 3.4 S.80 5.1
16.9 20.6 31.8 10.6 16.3
3.6 2.0 5.5 3.4 3.2
Sunspot number = 0 12.9 2.7 9.8 6.8 2.3 7.8 20.6 3.6 12.0 11.8 5.0 16.5 11.3 4.2 14.8
Sunspot number = 125 4.8 15.3 5.8 18.2 4.6 14.5 5.6 17.0 9.0 28.3 12.2 39.2 9.9 29.3 7.2 22.6 5.9 17.5 6.2 20.0
Local time of day : 04
5.3 7.1 11.7 11.0 5.7
Sunspot number = 0 12.2 2.7 9.9 5.8 2.6 8.9 12.8 2.3 7.8 10.0 4.7 15.9 8.9 4.2 14.6
N.80" 40 0 40 S. 80
3.7 2.1 3.2 2.0 2.9
12.8 6.8 11.0 6.8 10.5
3.4 1.7 3.5 2.9 2.5
N.80"
4.8 4.9 7.0 3.2 4.6
15.4 15.6 22.1 9.9 14.7
Sunspot number = 125 3.9 12.2 5.7 17.4 4.4 13.6 4.1 12.5 4.9 14.5 6.2 21.5 9.4 27.6 5.8 17.6 5.6 16.7 5.2 16.7
40 0 40 S. 80
T i m e : 12 4.0 13.5 5.2 16.8 7.6 21.8 5.0 18.9 3.4 12.5
(continued)
SMITHSONIAN PHYSICAL TABLES
15.6 20.8 28.2 37.6 18.3
Time: 16 4.0 13.2 5.2 17.2 9.2 26.9 4.4 16.5 3.2 11.8
5.2 7.4 11.8 8.5 5.2
15.6 21.8 29.4 30.0 16.6
3.7 5.2 10.6 6.7 3.6
Sunspot number = 0 13.2 3.4 12.5 6.5 24.5 18.6 8.6 26.5 30.3 8.4 28.1 24.1 4.6 15.0 12.8
Sunspot number = 125 5.9 18.7 5.4 17.3 9.3 29.3 12.3 40.3 14.9 37.0 14.1 33.3 13.9 44.7 12.1 33.9 7.6 24.7 7.0 19.8
3.6 5.3 10.2 5.0 3.8
Sunspot number = 0 3.4 12.1 12.6 5.7 21.0 19.0 8.6 27.3 31.5 18.5 7.2 24.5 4.5 14.9 13.3
Sunspot number = 125 5.9 18.8 5.2 16.6 9.3 28.8 11.2 36.3 14.0 37.5 13.8 34.3 11.4 37.4 11.0 32.9 6.9 22.2 6.5 18.7
448 T A B L E 461.-F,-LAYER CRITICAL FREQUENCIES A N D M A X I M U M USABLE F R E Q U E N C I E S FOR 4,000-km T R A N S M I S S I O N D I S T A N C E I” M c (concluded) Tune
Latitude
Sent.
F2-4000 f”F2 M U F
f’F2
MUF
Dec.
June
Sept.
Dec.
F2-4000 f“P2 M U F
Fn-4000 f D F ? MIJF
F2-4000 f”F, MUF
faF2 MUF
Sunspot number = 0
Local time of day : 08
N.80” 40 0 40 S. 80
3.9 4.8 5.8 4.4 3.1
12.8 16.2 17.4 15.9 11.3
3.6 4.6 7.5 5.9 3.0
N.80” 40 0 40
5.1 6.4 9.4 8.1 5.0
15.0 20.2 27.0 27.6 15.9
5.9 8.3 11.3 10.6 6.8
13.2 17.4 24.1 21.8 11.0
3.0 4.5 7.6 6.6 4.5
10.9 17.6 22.9 22.9 15.3
3.8 5.4 6.8 2.2 2.9
13.2 18.7 22.3 7.8 10.6
3.6 4.0 8.4 2.9 3.5
5.1 7.6 10.7 3.8 4.9
16.0 23.5 27.6 12.9 15.8
5.8 7.4 13.5 7.8 6.5
S.80
4.3 8.5 14.5 11.0 6.7
13.5 29.4 42.4 31.8 18.9
12.8 14.5 26.0 10.1 12.2
3.1 2.6 5.7 6.4 4.5
11.5 9.0 19.0 21.6 15.5
Sunspot number = 125
Sunspot number = 125
18.8 27.0 34.1 36.4 22.1
Sunspot number = 0
Time: 20
18.3 23.5 34.0 25.6 20.6
4.9 6.7 11.9 10.7 6.5
15.5 21.2 30.1 32.8 19.3
T A B L E 462.-FACTORS F O R O B T A I N I N G F,-LAYER M U F , A N D C O M B I N E D E, F,-LAYER M U F A T O T H E R D I S T A N C E S , F R O M F,-4,000 k m M U F A N D E-2,000 k m M U F
- ~ .which ~ l r the 2,000 E-layer T h e accompanying table presents (a) factors, F I W O ~ by maximum usable frequencies may be multiplied in order to obtain values of maximum usable frequencies by combined E- and Fl-layer transmission for other distances, and (b) factors, F , M O F ~ by - F ~which , 4,000-km Fz-layer maximum usable frequencies may be multiplied in order to obtain values of F2-layer maximum usable frequencies at other transmission distances. These factors become less accurate with decreasing transmission distance. For obtaining the maximum usable frequency for practical radio transmission, the following procedures may bc used : 1. One-hop transmission:-Obtain both the combined E-, F1-layer, and F2-layer maximum usable frequencies pertinent t o the midpoint of the transmission path. T h e higher of the. two will be the M U F for the path, neglecting possible transmission by sporadic-E ionization. 2. Long-path transmission:--For transmission paths exceeding 4,000 km, the following procedure generally affords a sufficiently good value for practical use: (a) Determine the 2,000-km E-layer M U F for a point 1,OOO km along the transmission path from the transmitting station. Determine the 4,000-km F2-layer M U F for a point 2,000 k m along the transmission path from the transmitting station. Select the higher of two values, for comparison with a value to be later obtained in procedure (b). (b) Determine the 2,000-km E-layer M U F for a point 1,000 km along the transmission path from the receiving station. Determine the 4,000-km Fz-layer M U F for a point 2,000 km along the transmission path from the receiving station. Select the higher of these two values, for comparison with the value obtained in procedure (a). (c) Compare the values obtained in procedures (a) and (b) above. The lower of the two will be the M U F for the transmission path, neglecting possible transmission by sporadic-E ionization. F o r more detailed and accurate procedures, and for inclusion of sporadic-E layer effects, reference is given t o National Bureau of Standards Circular 462, “Ionospheric Radio Propagation,” and t o reports of the Central Radio Propagation Laboratory, Series D, “Basic Radio Propagation Prediction.” Distance
km
F~WE-E,FI
200 400 600 800 1000 1200
.25 .36 .48 .62 .72 .82
i 600
.95 .98 1.oo
141K)
1800 2000
88
SMITHSONIAN PHYSICAL TABLES
FiornFrFp
.35 .36 .38 .41 .46 .51 57 .63 69 .74
Distance
km
2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
F-E-E,F,
... ... ... ... ... ... ...
...
...
...
Florn~r~z
.79 .83 .86 .90 .92 .95 .97 .98 .99 1.oo
449 ATTENUATION OF MICROWAVES BY RAIN (db/km)
T A B L E 463.-CALCULATLD
Wavelength (cm) Rate of rainfall (.m m / h r ) I
1.25
,
2.46 .................. 6.0 (moderate) ....... 22.6 (heavy) .......... 43.1 (cloudburst) .....
3
.193 db/km .615 2.40 6.17
.049 .192 .728 1.64
5
10
.004 .012 .053 .165
.0007 .0017 .0070 .016
Adapted from article by L. Goldstein in Summary Technical Report of the National Defense Research Committee, Committee on Propagation, vol. 2, p. 164, published by Academic Press.
T A B L E 464.-ATTENUATION
Atteniiation Wave. coeffi. length cient (mm) (db/km)
.05
6.34 5.76
1.0
1m Lamonc,
O F M I L L I M E T E R W A V E S BY ATMOSPHERIC O X Y G E N (db/km) lJB
Attenuation Wavecoeffilength cient (mm) (db/km)
5.60 5.28
Attenuation Wavecoeffilength cient (mm) (db/km)
5.19 5.13
1.8 10.2
12.7 15.7
5.10 5.04
13.9 14.5
Attenuation Wavecoeffilength cient (mm) (db/km)
4.96 4.48
14.7 .4
H. R., Proc. Phys. SOC.London, vol. 61, p. 562, 1948
T A B L E 465.-EXTRATERRESTRIAL
RADIO FREQUENCY RADIATION
P a rt 1.-Discrete Source Cygnus ......... Cygnus A
Attenuation Wave- coeffilength cient (mm) (db/km)
.......
......... Cygnus ......... Cygnus ......... Ursa Major ......
Cygnus
*
sources
-
20"O'"
6 +43-
Reported by LW Hey, Parsons, Phillips'
Remarks Approx. position; X
1 9 59
+41°41'
Boltona
Uncertainty of position about 1'. Observed on 100 Mc/s.
19h58m478f10"
+41'41'+7'
Bolton and Stanleyf
Observed on 100, 60, Mc/s.
a
5m.
85, 200
19h56"'.5
+3 9' 50'
Ryle and Smithd
Observed on 80 Mc/s.
2 0 30
4-38"
Hey, Parsons, Phillips g
Observed on 64 Mc/s; position very uncertain.
12 18.2
+58'00
Ryle and Srnithd
Observed on 80 Mc/s.
Taurus A
.......
5 13
+28O
Bolton.
Angular width < 30" ; uncertainty of position about 1'. Observed on 100 Mc/s.
Taurus A
.......
51'31"'00s~30" + Z Z ' O l '
Bolton, Stanley, Sleeb
Intensity measured a t 100 Mc/s.
Taurus A
.......
5 31 20 +.30
+22'02'+.8'
Bolton, Stanley
Observed on 100 Mc/s.
Cassiopeia
.......
+58°10'
Ryle and Smithd
Observed on 80 Mc/s.
23"17"'.5
+46'11' +57 14
Ryle Ryle Coma Berenices A .
Hercules A
Virgo A
.........
Centaurus A
-
......
.....
Obsered on 8 0 Mc/s.
12 04
f20'30'
Bolton a
Angular width < 15'; uncertainty of position about .'1 Observed on 100 Mc/s.
1 6 21
+15
Bolton a
Angular width < '1 ; uncertainty of position about 1'. Observed on 100 Mc/s.
121'28"'06"k378 f 1 2 " 4 1 ' ~ 1 0 ' Bolton, Stanley, Sleeb
Intensity measured at 100 Mc/s.
Bolton, Stanley, Sleeb
Intensity measured at 100 Mc/s.
13 22 20 k 6 0
-42'37'+.8'
Prepared by C. R. Burrows. For references, see p. 450.
ls7
(continued) SMlTHSONlAN PHYSlCAL TABLES
S319Vl lV'31SAHd NVINOSHIIWS
TABLES 466-494.-MAGNETIC
45 1 PROPERTIES OF MATERIALS
*,
T A B L E 466.-DEFINITIONS BASIC EQUATIONS, A N D G E N E R A L DISCUSSION
+
B , flux density (magnetic) induction, = @/A = 4rZ H ; unit the gauss, maxwell per cm. Diamagnetic substances, p< 1, K negative. Most diamagnetic substance known is Bi, P = .998 K = - 14)<10-'. Ferromagnetic substances, p very large, K very large : Fe, Ni, Co, Heusler's alloy (see Table 476), magnetite and a few alloys of Mn. p for Heusler's alloy, 90 to 100 for B = 2,200; for Si sheet steel 350 to 5,300. H , field strength, = No. of lines of force crossing unit area in normal direction ; unit = gauss = one line per unit area. Hall effect (galvanomagnetic difference of potential), Ettinghausen effect (galvanomagnetic difference of temperature), Nernst effect (thermomagnetic difference of potential) and the Leduc effect (thermomagnetic difference of temperature), see Tables 519 and 521. Hysteresis is work done in taking a cm' of the magnetic material through a magnetic cycle = $H d l = (1/4r)J'HdB. Steinmetz's empirical formula gives a close approximation to the hysteresis loss; it is aB" where B is the max. induction and a is a constant (see Table 482). The retentivity ( B , ) is the value of B when the magnetizing force is reduced to zero. The reversed field necessary to reduce the magnetism to zero is called the coercive force ( H e ) . I , intensity of magnetization or pole strength per unit area, = M/V = m/A where A is cross section of uniformly magnetized pole face, and V is the volume of the magnet. 47rnf/A = 4 r 1 = No. of lines of force leaving unit area of pole. J , specific intensity of magnetism, = Z / p where p = density, g/cm'. J A , JM, similarly atomic and molecular intensity of magnetization. K , susceptibility ; permeability relates to effect of iron core on magnetic field strength of coil; if effect be considered on iron core, which becomes a magnet of pole strength m and intensity of magnetism I , then the ratio I / H = ( p - 1)/47r is the magnetic susceptibility per unit volume and is a measure of the magnetizing effect of a magnetic field on the material placed in the field. p = 47r~ 1. M, magnetic moment = ml, where 1 is length between poles of magnet. Magneto-strictive phenomena : Joule effect: Mechanical change in length when specimen is subjected to a magnetic field. With increasing field strength, iron and some iron alloys show first a small increment A l / l = (7 to 35) X lo", then a decrement, and for H = 1600. A l / l may amount to -(6 to 8) X 10". Cast cobalt with increasing field first decreases, Al/l = - 8 X lo-', H = 150, then increases in length, A l / l = 5 X lo", H = 2,000 ; annealed cobalt steadily contracts, A1 11 = - 25 X lo-", H = 2000. Ni rapidly then slowly contracts, AI/l = - 30 X lo-", H = 100 ; -35 X lo", H = 300 ; -36 X lo-", H = 2,000. A transverse field generally gives a reciprocal effect. Villari effect; really a reciprocal Joule effect. The susceptibility of an iron wire is increased by stretching when the magnetism is below a certain value, but diminished when above that value. Wiedemann effect : The lower end of a vertical wire, magnetized longitudinally, when a current is passed through it, if free, twists in a certain direction, depending upon circumstances. A reciprocal effect is observed in that when a rod of soft iron, exposed to longitudinal magnetizing force, is twisted, its magnetism is reduced. p, magnetic permeability, = B / H . Strength of field in air-filled solenoid = H = (4r/!0) ni in gausses, i in amperes, n, number of turns per cm length. If iron filled, induction increased, i.e., No. of lines of force per unit area, B , passing through coil is greater than H;p=B/H. Paramagnetic substances, P> 1, very small but positive, K = lo-' to lo-": oxygen, especially a t low temperatures, salts of Fe, Ni, Mn, many metallic elements. (See Table 486.) Paramagnetic substances show no retentivity or hysteresis effect. Susceptibility independent of field strength. The specific susceptibility for both para- and diamagnetic substances is independent of field strength. 9, magnetic flux, = 4rm H A for magnet placed in field of strength H (axis parallel to field). Unit, the maxwell. Unit pole is of such strength that it will repel another unit pole with a force of one dyne ; at unit distance in free space, 47r lines of force radiate from it. m, pole strength ; 4 r m lines of force radiate from pole of strength m. x, specific susceptibility (per unit mass) = K / P = J / H . X A , atomic susceptibility, = x x (atomic weight) ; X M = molecular susceptibility.
+
+
+
.
See pages 16-18.
SMITHSONIAN PHYSICAL TABLES
452 PROPERTIES O F VARIOUS TYPES AND STEEL
T A B L E 467.-MAGNETlC
OF I R O N
From tests made a t the National Bureau of Standards. B and H are measured in cgs units. Values of B
2000 4000
Annealed Norway iron. . H p
. . . . . . . . .H
Cast semi-steel
p
Machinery steel
. .. ... .. H I.L
6000 8000 10,000 12.000 14,000 16,000 18,000 20,000
A1 1.15 1.60 2.18 3.06 4.45 7.25 23.5 2470 3480 3750 3670 3270 2700 1930 680
-
2.00 2.90 4.30 6.46 9.82 15.1 24.9 50.5 135. 325. 1000 1380 1400 1240 1020 795 563 317 133 62. 5.0 8.8 13.1 18.6 25.8 35.8 50.5 76.0 400 455 460 430 390 340 280 210
Very pure iron . . . . . . .H 3.30 4.48 6.35 as received u 606 945 ... . .~~~ ~.. 893 .. . .. Annealed in va&o} . . . .H .46 .60 .80 from 900°C /.G 4350 6670 7500
}
116. 150
~
As received.. . . . .. . . . .. . . . HVn,, 150, After annealing ......... .. Hmaz 150,
T A B L E 468.-MAGNETIC
9.10 13.0 18.9 28.8 47.0 880 770 635 486 340 1.02 1.36 2.00 3.20 11.3 7840 7250 6000 4380 1420
Bmas 18,900, B,,, 19,500,
B , 7,650, Ha .53
-
142. 127
-
103. 175 .. . 72.0 250
240. 83 194. 103
H, 2.8.
PROPERTIES O F ELECTRICAL SHEETS
From tests made at the National Bureau of Standards. B and H are measured in cgs units. Values of B
Dynamo steel
. . . . . . . . . .H p
2000 4000
6000
.60 .87 1.10 } . .. . . . . 1.1H 3340 4600 5450 High silicon trans.50 .70 .90 } ""':4000 5720 6670 former steel
Ordinary transformer steel
T A B L E 469.-MAGNETIC
8000 10,000 12,000 14,000 16,000 18.000 20,000
114. 158
-
1.48 2.28 3.85 10.9 43.0 5400 4380 3120 1280 372
149. 121
-
1.28 1.99 3.60 9.80 47.4 6250 5020 3340 1430 338
165. 109
-
1.00 1.10 1.43 .ZOO 3.10 4.95 9.20 34.0 2000 3640 4200 4000 3220 2420 1520 470
PROPERTIES O F IRON I N VERY WEAK FIELDS
The effect of very small magnetizing forces has been studied by C . Baur and by Lord Rayleigh. The following short table is taken from Baur's paper, and is taken by him to indicate that the susceptibility is finite for zero values of H and for a finite range increases in simple proportion to H. H e gives the formula k = 15 100H, or Z = 15H IOOH'. The experiments were made on an annealed ring of round bar 1.013 cm radius, the ring having a radius of 9.432 cm. Lord Rayleigh's results for an iron wire not annealed give k = 6.4 5.1H, or Z = 6.4H 5.1H2. The forces were reduced as low as 0.00004 cgs, the relation of k to H remaining constant.
+
+
+
First experiment r
H
k
41580 ..__ .03081 ,07083 .I3188 .23011 .38422 ~
~
+
16.46 17.65 23.00 28.90 39.81 58.56
SMITHSONIAN PHYSICAL TABLES
Second experiment I
2.63 5.47 16.33 38.15 91.56 224.87
H
k
,0130 ,0847 .0946 .I864 .2903 .3397
15.50 18.38 20.49 25.07 32.40 35.20
v)
5 -I
I
0 v)
TABLE 470.-TYPICAL
z
DATA F O R MAGNETIC MATERlALS15'"
Part 1.-High-permeability
2 b
materials
01 z
0 r
Approximate percent composition *
I-b
Material
.
Form
Cold roiled steel . . . . .Sheet Iron . . . . . .. . . . . . . . .Sheet Purified iron . . . . . . . . .Sheet 4% Silicon-iron . . . . .Sheet Grain oriented* . . ..Sheet 45 Permalloy . . . . . . . .Sheet 45 Permalloyt . . . . . . .Sheet Hipernik . . . . . . . . . . .Sheet Monimax . . . . . . . . . . .Sheet Sinimax . . . . . . . . . . . . .Sheet 78 Permalloy . . . . . . . .Sheet 4-79 Permalloy . . . . . .Sheet Mu metal . . . . . . . . . . .Sheet Supermalloy . . . . . . . . . Sheet Permendur . . . . . . . . . .Sheet 2V Permendur . . . . . . .Sheet Hiperco . . . . . . . . . . . . Sheet Insulated 2-81 Permalloy ..... powder Insulated Carbonyl iron ...... powder Sintered Ferroxcube I11 . . . . . powder
.
. .
.
.
.
Fe
Ni
98.5 99.91 99.95 96 97 54.7 54.7 50
-
-
-
21.2 16.7 18 15.7 49.7 49 64
Co
45 45 50
-
78.5 79 75 79
+
+
-
-
17
81 -
Other
950 Anneal 950 Anneal 1480 Hz + 880 800 Anneal 800 Anneal 1050 Anneal 1200 HZAnneal 1200 Hi Anneal 1125 Hz Anneal 1125 Hz Anneal 1050 + 600 Q** - .3 Mn 4 .3Mn 1100 Q - 2 C r , 5 C u 1175 H2 1300 H2 Q 5 .3Mn 800 Anneal - .3 Mn 800 Anneal - 2v 850 Anneal Cr
-
99.9
Mo
Typical heat treatment "C
-
2
-
-
-
MnFez04+ZnFe10,
650 Anneal -
I
- -
Permeability B= at 20
Maxipermemum
gausses
ability
2,000 5,000 180.000
Saturaation density flux
B . gausses ergs/cms
180 200 5.000 '500 1,500 2,500 4,000 4,500 2,000 3,000 8.000 20,000 20,000 100,000 800 800 650
30,000 25,000 50,000 70,000 35,000 35,000 1OO.OOO lO0;OOO 100,000 800,000 5,000 4,500 10,000
21,000 21,500 21.500 19;700 20,000 16,000 16,000 16,000 15,000 11,000 10.700 81700 6,500 8,000 24,500 24,000 24,200
125
130
8,000
55
132
-
1,000
1,500
2,500
7;OOO
R. A. Cbegwidden, Bell Telephone System Monogr. B-1605, Metal Progress, vol. 54, p. 705, 1948. Properties in direction of rolling. t Similar properties for Nicaloi, 4750 alloy, Carpenter 49, Armco 48. $ At saturation.
m a Compiled by
ResisHysterCoertivity esis loss, Wh t force cive H $ C crohmMiDensity,
-
"E
3,500
-
1,200 -
220
-
200 200
-
12,000 6,000
oersteds
cm
g/cms
1.8
10 10 10 60 47 45 45 50 80 90 16
7.88 7.88 7.88 7.65 7.67 8.17 8.17 8.25 8.27
1 .o
.05 .5 .15
.3 .07 .05 .1 .05 -05
.05 .002 2.0 2.0 1.o
-
** Q, quench
.I
-
62 60 7 26 25
8.60 8.72 8.58 8.77 8.3 8.2 8.0
55
loe
7.8
-
7.86
10'
5.0
or controlled cooling.
(cotttinued)
R
G,
v)
f
I
zz
D
T A B L E 470.-TYPICAL
2
-s
-0 I
D A T A FOR M A G N E T I C M A T E R I A L S (concluded)
Part 2.-Permanent
d
r
Percent composition (remainder Fe)
-I
> m m r v)
Material
. .. . . . . .
Carbon steel . .. . . . . . . . . . Tungsten steel . . . . . . . . . Chromium steel . . . . . . . . . 17% Cobalt steel . . . . . . . . 36% Cobalt steel . . . . . . . . Remalloy or Comol . . . . . . . Indalloy (sintered) . . . . . . Alnico I . . . . . . . .. . . . . Alnico I1 . . . . . . . . . . . . . . Alnico I1 (sintered) . ... Alnico IV . . . . . . . . . . . . . . Alnico V . . . . . . . . . . . . . .
1 Mn, 0.9 C 5 W, 0.3 Mn, 0.7 C 3.5 Cr, 0.9 C, 0.3 Mn 17 Co, 0.75 C, 2.5 Cr, 8 W 36 Co, 0.7 C, 4 Cr, 5 W 17 Mo, 12 Co - Mo, - Co 12 At, 20 Ni, 5 Co 10 At, 17 Ni, 2.5 Co, 6 Cu 10A1, 17 Ni, 2.5C0, 6Cu 12 At, 28 Ni, 5 Co 8 Al, 14 Ni, 24 Co, 3 Cu
. . . . 50 Cu, 21 Ni, 29 Co
Vectolite . . . . . . . . . . . . . . . . Silmanal . . . . . . . . . . . . . . . Platinum-cobalt . . . . . . . . . . Hyflux . . . ... .. . . . _ ... . ..
.
30 FetOs, 44 Fe30r, 26 C20, 86.8 Ag, 8.8 Mn, 4.4 A1 77 Pt, 23 Co Fine powder
*Value given is intrinsic H c . CR-Cold rolled or drawn. M-Machined.*
Heat treatmett (temperature, C)
QaQ : 830 -
Q 950 Q 1200, B700
A 1200, B 700 A 1200, B 600 A 1300 Q 1200, B 650 A F 1300, B600 B 600 CW+B600 CW+B600 Q 1200, B 650 -
magnet alloys Magnetizing Coercive Residual force force induction Hmoz. HO B. oersteds oersteds gausses
300 50 300 70 300 65 1,000 150 1,000 240 1,000 250 1,OOO 240 2,000 440 2,000 550 2,000 520 3,000 700 2,000 550 3,000 750 3,000 950 1,000 300 2,000 510 2,400 550 3,200 660 3,000 1,000 20,000 6,000 15,000 3,600 2,000 390
10,000 10,300 9,700 9,500 9,500 10,500 9,000 7,200 7,200 6,900 5,500 12,500 10,OOO
5,800 8,800 10,OOO 5,400 3,400 1,600 550 5,900 6,600
uenched in oil or water. A-Air cooled. B-Baked. F-Cooled in magnetic field. ‘E;pMust he ground. P-Punched. C-Cast. Sn-Sintered. $ M-Hard. B-Brittle.
Energy
gA%:. X 10“ .20 .32 .30 .65 .97 1.1 .9 1.4 1.6 1.4 1.3 4.5 3.5 1.5 1.0 3.5 1.5 30 .60 .075 6.5 .97
Me$od of fabrication t
HR, M , P HR,M,P HR,M,P HR,M,P HR.M. P HR;M:P HR,M,P C, G C, G Sn G Sn; C, G C, G C, G C, G C,CR,M,P C,CR,M, P C, CR, M, P C,CR,M, P Sn, G C, CR, M, P C,CR,M -
Mechan.ical Properties $
H,S H, S H,S H. S H; S H H H, B H, B H H H, B H, €3 H. B D’ D D, M D.M W D. M D’ -
Weight Ib/in.s
.280 .292 .280
-
.296 .295 .290 .249 .256 .249 .253 .264 .268 .26 .295 292 .311 .300 .I13 .325 .176
CW-Cold worked. t HR-Hot rolled or forged, S-Strong. D-Ductile. M-Malleable. W-Weak.
T A B L E 471.-MAGNETIC PROPERTIES O F SO-ME ALLOYS B & H MEASURED IN cgs U N I T S ~
*
455
~
Induction data 6000
8000
10000
12000
14000
Carbon steel ..............H 33 .9 C, .5 Mn, .2 Si, Bal F e . . p 60
50
80
61 98
72 111
93 108
155 77
290 48
Chrome ..................H 32 Bar, 3.5 Cr, 0.9 C. ......... p 63
48 83
61 98
75 107
100 100
175 69
-
Chrbme ..................H Sheet, 5.75 Cr, 1.25 C . . .... p
44 91
52.5 114
62 129
75 133
155 104
Values of B
2000
Chrome ..................H Sheet, 5.75 Cr, 10 C . . ...... p
30 67
4000
16000 18000
6 0 0 27
-
-
-
-
235 60
-
-
-
-
-
-
-
-
-
36 56
47.5 84
64 94
80 100
122 82
Tungsten steel ............H 35 0.6 C, 5 W, 0.5 Mn, 0.2 Si.. p 57
52.5 76
63 95
70 114
81.5 123
115 104
195 72
195 72
500 32
413 29
649 22
-
-
-
Cobalt .................... H 140 Bar, 36 Co, 3.5 Cr, 3.0 W . . . p 14
203 20
240 25
269 30
313 32
Coma1 1 ..................H 134 12 Co, 17 Mo, Bal Fe ...... p 14.9
201 19.9
237 25.3
258 31
290 34.5
Alnico 1 ..................H 280 7.1 12 Al, 20 Ni, 5 Co, Bal F e . . p
478 400 10.0 12.6
Alnico 2 ..................H 360 Cast, 10 Al, 17 Ni, 12.5 Co.. p 5.6
560 7.1
668 9.0
Alnico 2 ................ . . H 340 Sintered, 10 Al, 17 Ni.. .... p 5.9
515 7.8
Alnico 3 ..................H 305 12 Al, 2.5 Ni, Bal Fe.. ..... p 6.6 Up to 5/8x5/8" cross section
369 32.5 582 910 1820 6.6 13.8 11.0
-
605 9.9
473 8.5
565 10.6
698 1035 2000 6.0 11.5 9.7
-
Alnico 3 .................. H 279 7.2 Cast, 12 Al, 25 Ni, Bal Fe.. p 5/8x5/8" cross section and over
395 10.1
478 12.5
575 940 1910 13.9 10.6 6.3
-
Alnico 4 ................. . H 500 Cast, and sintered ......... p 4.0 12 Al, 28 Ni, 5 Co, Bal Fe
850 1075 1350 1890 5.3 4.7 5.6 5.9
Alnico 5 ..................H 468 Cast, 8 Al, 14 Ni, 24 Co, 3 Cu, Bal Fe ............p 4.3
560
Alnico 6 ..................H 430 Cast, 8 Al, 15 Ni, 24 Co, 4.7 3Cu, 1.25 Ti, Bal Fe.. . . . . p
675
7.1 5.9
10.3 770 7.8
580 13.8 845 9.5
598 16.7 940
Silmanal
..................
-
-
640
945
10.8
Alnico 12 ................. H 610 1000 1300 1600 2000 3000 Cast, 6 Al, 18 Ni, 35 Co, 8 Ti, Bal Fe ............. p 3.3 4.0 4.6 5.0 5.0 4.8 645 845 Cunife ................... .H 530 Under .155" dia. 60 Cu, 6.2 7.1 20 Ni, Bal Fe ......... p 3.8 Cunico .................. .H 590 1000 1630 3200 4.0 3.7 2.5 3.4 50 Cu, 21 Ni, 29 Co. ....... p Vectolite ................ .H 1110 2050 3700 30 Fe201, 44 Fer04, 26 CoaOi ............... p 1.8 2.0 1.7 -
-
-
1110
10.6
-
-
18.8
148 1700 8.2
-
-
-
-
-
-
-
-
Maximum
p
-
1.111
Much of the data on magnetism was corrected by W. E. Ruder, of the General Electric Co.
SMlTHSONlAN PHYSICAL TABLES
-
651 1355 2571 21.5 11.8 7
785 1020 1680 10.2 9.8 7.1 760 1200 1800 6.7 10.5 8.3
580
-
456
T A B L E 472.-SPECIAL
TRANSFORMER S H E E T
Low induction values Special Hi silicon steel, (44% Si), .014" sheet
H,annealed 875°C Values of H Values of B Values of p
Values of H Values of B Values of p
0.001
0.002
0.004 3.0 750
0.006 5.0 833
0.008 0.010 0.012 0.014 0.018 0.020 7.0 10.0 13.0 16.0 21.0 24.0 875 1000 1083 1143 1167 1200
Nickel-iron alloy 48% Ni, 52% Fe, .014" sheet Allegheny electrical alloy 4750 Treatment 1100°C 6 hr p.d. Hz cooled to room temp. 5 hr 0.001 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.018 0.020 7.0 15.0 32.0 49.0 67.0 88.0 108.0 132.0 185.0 215.0 7000 7500 8000 8165 8375 8800 9ooo 9430 10280 10750
Permalloy strip, 79% Ni, 21% Fe Treatment H, 1100°C 4 hr f. c. 625°C in air Values of H 0.001 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.018 0.020 67.0 115.0 180.0 260.0 365.0 458.0 683.0 805.0 Values of B 15.0 30.0 Values of p 15000 15000 16750 19160 22500 26000 30420 32710 37940 40250
Values of H Values of B Values of p
Monimax 47% Ni, 3%Mo bal Fe, strip .004 Treatment annealed 2 h r 1150°C p.d. H, 0.001 0.002 0.004 0.006 0.008 0.010 0.012 21 26 - 2100 2160
0.014 32 2'290
0.018 0.020 42 50 2340 2500
Mumetal strip .014", 77.2 Ni, 4.8 Cu, 1.5 Cr, 14.9 Fe Treatment annealed in p.d. H2at 1100°C .4 hr f. c. Values of H 0.001 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.018 0.020 50.0 158.0 300.0 443.0 600.0 758.0 923.0 1253.0 1420.0 Values of B 20.0 Values of p 20000 25000 39500 50000 55375 60000 63160 65930 69610 71000
Values of H Values of B Values of p
Cold rolled 3% Si, strip (oriented) .014" Annealed ill H, 980°C 0.001 0.002 0.004 0.006 0.008 0.010 7 15 33 24 42 - 3500 3750 4000 4100 4200
T A B L E 473.-MAXIMUM
0.012 52 4300
0.014 63 4500
0.018 85 4700
0.020 100 5000
CORE LOSSES I N ELECTRICAL STEEL S H E E T S Watts per Ib for 60 cycles
Designation
Thickness, in.: .0140
015s
,0170
,0185
,0220
.0250
.0280
,0310
1.98 1.70 1.30 1.10 .97
2.23 1.94 1.44
2.50 2.17 1.60
5.30 4.40 3.40 2.80 2.40
5.85 4.95 3.70
6.50 5.50 4.10
At 10,000 gausses
Armature A I S I M-43 _ . . . . . _ 1.30 _ Electrical A I S I M-36.. . . . . . . 1.17 Motor A I S I M-27 ........... 1.01 Dynamo A I S I M-22.. ... . . .. .82 Transformer 72 AISI M-19.. .72 Transformer 65 A I S I M-17.. .65 Transformer 58 AISI M-15.. .58 Transformer 52 A I S I M-14.. .52 Transformer 100 A I S I M-10.. Transformer 90 A I S I M-9.. .
1.38 1.23 1.05 .86 .76 .68 .61
1.46 1.29 1.09 .90
Armature A I S I M-43 ._......4.30 Electrical A I S I M-36. . . . . . . . 3.60 Motor AISI M-27 ........... 2.65 Dynamo A I S I M-22.. .... ... 1.85 Transformer 72 A I S I M-19.. 1.65 Transformer 65 A I S I M-17.. 1.50 Transformer 58 A I S I M-15.. 1.40 Transformer 52 AISI M-14.. 1.00 Transformer 100 A I S I M-10.. .90 Transformer 90 AISI M-9.. . .80
4.37 3.67 2.75 2.23 1.93 1.72 1.57
4.44 3.74 2.85 2.31 2.02 1.80 1.65
.80
.72 .65
1.55 1.35 1.14 .94 .83 .75 .68
1.75 1.50 1.22 1.02 .90
At IS,OOO gausses
SMITHSONIAN PHYSICAL TABLES
4.50 3.80 2.95 2.40 2.10 1.88 1.73
4.80 4.10 3.20 2.60 2.25
T A B L E 474.-MAGNETIC Nickel at 0" and 100°C
H
S
I
PROPERTIES OF M ETALS
Cobalt at 0" and 100°C
w
B
100 35.0 309 3980 200 43.0 380 4%6 300 46.0 406 5399 500 50.0 441 6043 700 51.5 454 6409 1000 53.0 468 6875 1500 56.0 494 7707 2500 58.4 515 8973 4Ooo 59.0 520 10540 6000 59.2 522 12561 9000 59.4 524 15585 12000 59.6 526 18606 At 0°C this specimen
H
S
I
B
Magnetite
w
H
500 loo0 2000 12000
39.8 24.8 18.0 12.1 9.1 6.9 5.1 3.6 216 2.1 1.7 1.5
200 106 848 10850 300 116 928 11960 500 127 1016 13260 700 131 1048 13870 1000 134 1076 14520 1500 138 1104 15380 2500 143 1144 16870 4000 145 1164 18630 6000 147 1176 20780 9000 149 1192 23980 At 0°C this specimen
54.2 39.9 26.5 19.8 14.5 10.3 6.7 4.7 3.5 2.6
gave the following results : 12300 67.5 595 19782 1.6
7900 154 1232 23380
3.0
I
457
. B
325 4580 345 5340 350 6400 350 16400
w
9.16 5.34 3.20 1.37
gave the following results :
These results are given by Du Bois for a specimen of magnetite. I = Magnetic moment per cms.
S = Magnetic moment per gram.
Professor Ewing has investigated the effects of very intense fields on the induction in iron and others metals. The results show that the intensity of magnetization does not increase much in iron after the field has reached a n intensity of 1000 cgs units, the increase of induction above this being almost the same as if the iron were not there, that is to say, d B / d H is practically unity. For hard steels, and particularly mangapese steels, much higher forces are required t o produce saturation. Hadfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of 10,000. The following tables, taken from Ewing's papers, illustrate the effects of strong fields on iron and steel. T h e results for nickel and cobalt do not differ greatly from those given above. Lowmoor wrought iron
Hadfield's manganese steel
Vicker'q
tool steel
H
H
I
B
p
3080 6450 10450 13600 16390 18760 18980
1680 1740 1730 1720 1630 1680 1730
24130 28300 32250 35200 36810 39900 40730
7.83 4.39 3.09 2.59 2.25 2.13 2.15
6210 9970 12120 14660 15530
I
B
1530 1570 1550 1580 1610
25480 29650 31620 34550 35820
w
H
4.10 2.97 2.60 2.36 2.31
1930 2380 3350 5920 6620 7890 8390 9810
I
B
T A B L E 475.-EFFECT O F T E M P E R A T U R E ON P E R M E A B I L I T Y O F N I C K E L - I R O N A L L O Y (47-50 Ni) 1%
Test Temp. 'F
390 190 80 32 - 42 -100 1%
B (gausses) at 30 H (oersteds)
11500 11850 12000 12000 12200 12300
Maximum permeability (B/H)
79000 59000 49000 44000 34000 30000
B (gausses) at maximum permeability (B/H)
4600 4400 4700 5200 6000 7000
Permeability (B/H) at 100 gausses
8000 7000 6100 5600 4500 4200
Hicks, Laurence C., Nickel-iron alloys for magnetic circuits, Electrical Manufacturing, January
1946.
SMITHSONIAN PHYSICAL TABLES
p
55 2620 1.36 84 3430 1.44 84 4400 1.31 111 7310 1.24 187 8970 1.35 191 10290 1.30 263 11690 1.39 396 14790 1.51
458
T A B L E 476.-HEUSLER
M A G N E T I C ALLOYS
Several alloys have been experimented with that, although all the constitutents are nonmagnetic or very weakly magnetic materials, have quite definite magnetic properties. Among these are Nos. 1-3 below, Heusler magnetic alloys. Some alloys made up for the most part of magnetic elements are nonmagnetic or very weakly magnetic, i.e., No. 4 below.
1. 61 Cu, 25 Mg, 14 Al magnetic with a permeability of 33. 2. 75.6 Cu, Mn 14.3, Al 10.1, P b magnetic B , = 480, H , = 3.8, max = 80.
T A B L E 477.-PERMEABILITY
3. Cu 61.5, Mn 23.5, A1 15 B,=2550, H,=7.3, /I m a x = 236. 4. Cu 78, Fe 12, Mg
p
nonmagnetic.
p
O F SOME SPECIMENS O F IRON A N D S T E E L
This table gives the induction and the permeability for different values of the magnetizing force of some of the specimens in 'Table 493. The specimen numbers refer to the same table. The numbers have been taken from the curves given by Hopkinson and may therefore be slightly in error ; they are the mean values for rising and falling magnetizations.
7 ?
H
1 2 3 5 10 20 30
7
10050 12550 14550 15200 15800 16ooo 16360 16800 17400 17950
40 ..
50 70 100 150 200
' B
P
100 2010 1255 727 507 395 320 234 168 116 90
A S T M 20 medium (as cast)
H
7 ? 7 1300 3400 5250 6200 6950 7500 8300 9100 10150 11050
i.n. 20 30
40 50 70 100 150 200
B
P
276
205 149 105 80
100 200 400 700 lo00 1200 +
180.0 194.5 208.0 215.5 218.0 218.5
600 2550 4450 5450 6100 6700 7600 8600 9800 10650
' B
265 700 1625 3000 5000 6000 6500 7100 7350 7900 8500 9500 10190
U
265 350 542 600 500 300 217 177 149 113 85 63 51
ASTM 40 electric furnace (as cast)
120 255 222 181 152 134 108 86 65 53
B
P'
1750 4100 5950 6950 7600 8250 9100 10050 11100 11900
350 410 297 231 190 165 130 100 74 59
Soft iron at 100°C
B
U
1408 1521 1627 1685 1705 1709
17790 19310 20830 21870 22120 22670
177.9 96.5 52.1 31.2 22.4 18.9
SMITHSONIAN PHYSIC4L TABLES
Specimen 3 (cast iron)
P R O P E R T I E S O F SOFT IRON A T 0" and 100°C
It
Magnetic moment per grain.
150 ~~. 165 294 329 290 240 191 145 105 80
7-7?
Soft iron at 0°C S'
-
750 1650 5875 9875 11600 12000 13400 14500 15800 16100
300 900 575 422 332
A S T M 30 medium (as cast)
260 340 262 206 173 150 118 91 67 55
T A B L E 478.-MAGNETIC
H
P
-
1525 9000 11500 12650 13300 13x00 .._.. 14350 14900 15700 16100
Magnetiring force
5
Specimen 9 (same as 8 tempered)
Specimt:n 8 (annealed steel)
Specimen 1 (iron)
Magnetiring force
H
100 200 400 700 1000 1200
t Magnetic moment per cma.
S
I
B
180.0 194.0 207.0 213.4 215.0 215.5
1402 1511 1613 1663 1674 1679
17720 19190 20660 21590 22040 22300
s 177.2 96.0 51.6 29.8 21.0 18.6
459 T A B L E 479.-MAGNETIC
P R O P E R T I E S O F S T E E L A T Oo and 100°C
.
Steel a t 0°C
Steel at 100°C
r
I
H
St
I$
B
100 200 400 700 1000 1200 3750*
165.0 181.0 193.0 199.5 203.5 205.0 212.0
1283 1408 1500 1552 1583 1595 1650
16240 17900 19250 20210 20900 21240 24470
H
LL
162.4 89.5 48.1 28.9 20.9 17.7 6.5
100 200 400 700 1000 1500 3000 5000
S
165.0 180.0 191.0 197.0 199.0 203.0 205.0 208.0
I
1278 1395 1480 1527 1543 1573 1593 1612
B
16170 17730 19000 19890 20380 21270 23020 25260
5
,
161.7 88.6 47.5 28.4 20.4 14.2 7.7 5.1
The results in this and other tables for forces above 1200 were obtained from a small piece of the metal rovided with a polished mirror surface and placed with its polished face normal to the lines of force getween the poles of a powerful electromagnet. Th; induction was then inferred from the rotation of thk plane of a polarized ray of red light reflected normally from the surface. (See Kerr's Constants, Tables 516 517 520.) :! Magnetic moment per cma. t Magnelic mLment per grain.
T A B L E 480.-ENERGY
LOSSES I N T R A N S F O R M E R S T E E L S
D. C. Hysteresis data From Bmaz= 10.000 rrausses Br gausses
oersteds
HcXBr
.0140 ,0140 ,0185 .0250
-.20 -.24 -.31 -.42 -.43 --.SO
4800 5050 5200 6200 5050 5300
2.03 1.94 2.16 2.19 2.58 2.72
960 1210 1610 2610 2170 2650
,0140 .O 185 .0250
-.51 -.53 -.59
6650 5500 5750
2.30 2.85 2.87
3400 2920 3400
.0140 ,0185 .0250
-.55 -.58 -.63
6350 6700 6900
3.33 2.80 2.99
3500 3890 4350
,0140 .0285 .0250
-.62 -.61
-.68
7700 8100 8250
2.52 2.16 2.26
4770 4950 5610
,0140 ,0185 ,0250
-.64 -.68 -.72
8350 8300 8230
2.30 2.20 2.26
5350 5650 5940
Thickness in.
Grade
.... . .. . . .. .. . .. . ... . .., .... . . .. . . . . . .. . . . Dynamo . . . . . . . . . . . . . . Dynamo . . . . . . . . . .. . . . Dynamo . . .. . . . . . . . . . . Motor . . . . . . . . .. . . . . . . Motor . . . . . . . . . . . . . . . . Motor . . . . . . . . . . . . .. . . Electrical . . . . . . . . . . . . . Electrical . . . . . . . . . . . . . Electrical . . . ... . . . . . . . Armature .. .. . . . . . . . .. Armature . . . . . . . . . . . . . Armature . . . . . . .. . .. . .
Transformer Transformer Transformer Transformer Transformer Transformer
52 58 65 72 72 72
.0140
,0140
T A B L E 481.-ENERGY
Ha oersteds
Hm.Z
LOSSES IN T R A N S F O R M E R S T E E L S
a c core losses Watts/lb for 60 cycle at 10,000 gausses Thickness in.
Designation
Transformer 52 . . .. . .. Transformer 58 . . . . . . Transformer 65 . . . . . Transformer 72 .. . . . . . Dynamo . . . . . . . . . . . . Motor . . . . . . . . . . . . . . . Electrical . . . . . . . . . . . . . Armature . . . . . . . ... . . Oriented C . R. strio. . . .
..
..
.
.
,0134 ,0137 ,0136 .0136 .0137 ,0140 ,0137 ,0139 .0140
SMITHSONIAN PHYSICAL TABLES
Gage
29 29 29 29 29 29 29
29 29
Eddy current loss
.149 .163 .I93 .205 218 245 262 .486 .164
Hysteresis
.345 .38S .426 .450 .572 .709 352 .741 236
Total
494 .548 .619 .675 .790 ,954 1.114 1.227 .40
T A B L E 482.-DISSIPATION OF E N E R G Y I N T H E C Y C L I C M A G N E T I Z A T I O N O F VARIOUS SUBSTANCES
C. P. Steinnietz concludes from his experiments that the dissipation of energy due to hysteresis in magnetic metals can be expressed by the formula e=uB'.', where e is the energy dissipated and u a constant. H e also concludes that the dissipation is the same for the same range of induction, no matter what the absolute value of the terminal inductions may be. His experiments show this to be nearly true when the induction does not exceed k 15000 cgs units per cm'. I t is possible that, if metallic induction only be taken, this may be true up to saturation; but it is not likely to be found to hold for total inductions much above the saturation value of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula, is also subject to verification. T h e following table gives the values of the constant a as found by Steinmetz for a number of different specimens. The data are taken from his second paper. Kind of material
Iron
Description of specimen
Norway iron . . . . . . . ................. Wrought bar . . . . . . Commercial ferrotype plate Annealed Thin tin plate ...... Medium-thickness tin Soft galvanized wire Annealed cast steel . Soft annealed cast st Very soft annealed cast steel.. . . . . . . . . . . . . . . . . . . . Same as 8 tempered in cold water.. . . . . . . . . . . . . . . . Tool stzel glass hard-tempered in water tempered in oil ....................... " " annealed ............................. Same as 12, 13, and 14, after having been subjected to an alternating m. m. f. of from 4 000 . ..... ampere turns for demagnetization ... I Gray cast iron ................................. " " containing i"/o aluminum . . . . . . . . .
.................
................. ................. .........
Steel
................. . . . . . . . . ......... ................. ......... ........ ......... ........ . . . . . . . . . ........ ......... ........ . . . . . . . . . ........
. . . . . . . . ......... ......... ....... ................ ......... .......
1
Cast iron . . . . . ........
. . . . . ........ ..... ........
Cobalt
'1
"
1 A square rod 6 cm2 section and 6.5 cm long,
............
Magnetite Nickel
I'
"
the Tilly Foster mines, Brewsters, Putnam County, 1 New York, stated to be a very pure sample ............... ............
2 e Z Z ............... F Ewing's experiments ...................... ............... Hardened, also from Ewing's experiments ... Rod containing about 2'70 of iron, also calculated ................ from Ewing's experiments by Steinmetz .........
Iron filings
I
.......... sheet ........
Nickel alloy Electrical
...........
SMITHSONIAN PHYSICAL TABLES
Consisted of thin needle-like chips obtained by milling grooves about 8 mm wide across a pile of thin sheets clamped together. About 30% by volume of the specimen was iron. 1st experiment, continuous cyclic variation of m. m. f. 180 cycles per second ......................... ... 2d experiment, 114 cycles per second . . 3d " 79-91 cycles per second ... Permalloy .......................... ... Hipernik ...................................... Silicon steel 4.5'7 Si ............... Silicon steel 4.5% Si . . . . . . . . . . . . . . . . . . Silicon steel 4.4% Si ............................ Silicon steel 3.5'70 Si ............................ Silicon steel 2.5'70 si . . . Silicon steel 1.0% Si ... Silicon steel 0.5% Si ... Low carbon sheet ........ Cast steel annealed ............................. Cast iron annealed ..............................
Value of a
.00227 ,00326 .00548 .00458 ,00286 .00425 ,00349 ,00848 ,00457 ,00318 .02792 ,07476 ,02670 .01899 ,06130 .02700 .01445 .01300 .01365 .01459 ,02348 ,0122 ,0156 .0385 ,0120
.0457 ,0396 ,0373 ,0001 ,00015 ,00046
.ooO51 .OW56 ,00065 .00081 .OOOS8 .001
,003 ,005 .012
T A B L E 4 8 3 . 4 U R I E C O N S T A N T A N D T E M P E R A T U R E FOR PARAMAGN E T l C SUBSTANCES
461
The relation deduced by Curie that x = C / T , where C is a constant and T the absolute temperature, holds for some paramagnetic substances over the ranges given in the following table. Many paramagnetic substances do not obey the law. See the following table. Substance
Oxygen . . . . . . . . . . Air .......... . . .. Palladium .... .... Magnetite . . . . . . . Cast iron .. . ... . .
X 100 Range "C 33,700 20" to450'C 7,830 - - 1,520 20 to1370 28,000 850 " 1360 38,500 850 " 1267
C
C X 108
RangeOC
21,000 11,000 17,000 30,000
-259" to 17 -259 " 17 -208 " 17 -258 " 17
Substance
Gadolinium sulfate.. Ferrous sulfate . . . . Ferric sulfate . . . . . . Manganese chloride.
T A B L E 484.-TEMPERATURE E F F E C T ( " C ) ON S U S C E P T I B I L I T Y O F DIAMAGNETIC E L E MENTS * No effect:
B C C Si
Cryst. 400 to 1200" Diamond, 170 to200" "Sugar" carbon Cryst.
+
P white S Crvst. ; p i k Zn -170 to 300" As -
Se Br -170 to 18" Zr Cryst. -170 to 500" Cd -170 to 300"
Sb Cs Hg Pb
-170t050~ and Au -39 to 350" 327to600"
+
Increase with rise i n temperature:
Be B Cryst.
-
C Diamond, 200 to 1200" Ag -
+ 170 to 400"
Decrease with rise in temperature:
C Amorphous C Ceylon graphite
cu
Zn
Gd Ge Zr Cd
-
+ 300 to700"
-179to30' -170 to 900" 500to1200' 300to700"
I n -I70to15O0 Sb 50 to 631" Te I 114 to 200"
+ +
+
+
I -170to114" H g -170 to -30" TI Pb -170 to 327" Bi -170 to 268"
-Tables 484 and 485 are from Honda and Owen.
T A B L E 485.-TEMPERATURE E F F E C T ( " C ) ON S U S C E P T I B I L I T Y PARAMAGNETIC E L E M ENTS No effect:
Li Na -170to97" A1 657 to 1100"
K -170 to 150" Ca -170 to 18" V -170to500"
Cr -170to500" Mn -170 to 250" Rb -
Increase with rise in temperature:
Cr 500 to 1100" Mo -170 to 1200"
T i -40 to 1100" V 500to 1100"
Ru Rh
+ 550-to 1200"
W 0 s
OF
-
-
Ba -170 to 18" Ir and T h
Decrease with rise in temperature:
(0) AS -170 to 657" Mg -
T i -180 to -40" M n 250 to 1015" (Fe) -
SMITHSONIAN PHYSICAL TABLES
Ni 350to800" Co above 1150" Nb -170 to 400"
Pd and T a Pt and U Rare earth metals
462
SUSCEPTIBILITY OF SOME MATERIALS
TABLE 486.-MAGNETIC
If I is the intensity of magnetization produced in a substance by a field strength H then the magnetic susceptibility K = I / H . This is generally referred to the unit mass ; italicized figures refer to the unit volume . The susceptibility depends greatly upon the purity of the substance. especially its freedom from iron . The mass susceptibility of a solution containing p percent by susweight of a water-free substance (susceptibility K) is K* = (p/100)~ (1 - p / 1 0 0 ) .~ ~( K ~ = ceptibility of water.)
+
Substance
Ag ................ AgCl .............. Air. 1 Atm ......... A1 ................ At&( S0.).24H.O . . A. 1 Atrn ........... As ................ Au ................ B ................. BaCL ............. Be ................ Bi ................ Br ................ C. arc-carbon ...... C. diamond ........ CH.. 1 Atm ........ CO.. 1 Atm .........
csz ...............
CaO .............. CaCL ............. CaCOa. marble ..... Cd ................ CeBrs ............. Cb. 1 Atm .......... COCll ............. CoBr. ............. COI................ c o s o , ............ Co(N0a)z ......... Cr ................ CSCl .............. c u ................ CUClZ ............. c u s o , ............ c u s ............... FeCh .............. FeCI, ............. FeSO, ............. Fez(NO& ......... He. 1 Atm .......... Hz. 1 Atm ......... Hz. 40 Atm ......... Hz0 .............. HCl ............... HA04 ............ HNOs ............. H g ................
.................. I n ................ I r ................. K ................. KC1 ............... KBr .............. KI ................ KOH ............. KzSO. ............. KMnO. ........... KNOa ............. Kc03 ............. I
xx 106 -.19 -28
+.024
+.65 -1.0 -.lo -.3 -.15 -.71 -.36 +.79 -1.4
-.38 -2.0 -.49 +.a01 +.002
-.77 -.27
-.40 -.7 -.17 +6.3 -.59 +90 . +47 . 4-33 .
+57 . +57 . t3.7
-.28 -.09 12. +I0 . +.16 +90 . +90 . +82 . +50 . -.002 .000 .000 -.79
+
-20
+.78 -.70 -.19 -.4 .1 2 +.15 +.40 -.50 -.40 -.38 735 -.42 +2.0 -.33 -.50
SMITHSONIAN PHYSICAL TABLES
T:mp
C
.
Re-
marks
18 15 18 0
Cryst .
S:n!'
Powd . Sol'n Sol'n Powd . Sol'n
0
16 16 20 20 20 20 20 20 18 18 20 20 20 20 22 Sol'n 20 20 20
h'x1oe
Li ................ +.38 Mo ............... .04 Mg ............... +.55 MgSO, ............ -.40 Mn ............... +11 . MnCL ............. +122 . MnSO. . . . . . . . . . . . . +loo . Nz, 1 Atm .......... .001 N H3 .............. -1.1 Na ... . . . . . . . . . . . . . +.51 NaCl .............. -SO Na2C0. . . . . . . . . . . . -.19 NazC03-10 HzO ... -.46 Nb ................ +1.3 NiCI, .............. +40 . NiSO, ............ +30 . 0.. 1 Atm .......... +.120 0 s ................ +.04 P. white ........... -.90 P. red ............. -.50 Pb ................ -.12 PbClz ............. -25 Pd ................ +5.8 PrCb ............. 13. Pt ................ +1.1 .0 Rh ................ +1.1 -.48 -.30 -.94 -.32 Si ................ -.12 -.44 -Glass ............ 75% +.03 S n ................ -.42 SrCL .............. T a ................ +.93 -.32 +.18 +3.1 v . . . . . . . . . . . . . . . . . +1.5 +.33 Zn ................ -.15 ZnSO, ............ -.40 Zr ..... 745 -.73
+
18 18 18 20 75 Powd . 18 18 18 18 16 16 18 16 P:wd . 19 18 18 16 18 18 18 19 18 18 18 18 20 20 17 18 18 20 18
Substance
Sol'n
+
'17emp. Re"C marks
18 18 18 18 Sol'n 18 " 16
18 20 17 17 18 18 20 20 20 20 20 20 15 18 18 18 22 18 18 16 18 18 18 20
18
Sugar ............. Paraffin . . . . . . . . . . . Petroleum ......... Toluene ........... Wood ............. Xylene . . . . . . . . . . . .
-.58 -.78 +1.1 -64 -.57 -.58 -.91 -.77 -2-5 -.81
20
22
.
Sol'n "
Powd . Sol'n
Sol'n
Cryst .
20 20 Sol'n 18 20 18 18 18 20 18
-.80 -230 -.60
P:.wd
463 T A B L E 487.-TEMPERATURE V A R I A T I O N O F RESISTANCE O F B I S M U T H I N TRANSVERSE MAGNETIC F I E L D ("C)
Proportional values of rcsistance
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 25000 30000 35000
.40 1.16 2.32 4.00 5.90 8.60
.60 .87 1.35 2.06 2.88 3.80
10.8
4.76
12.9 15.2 17.5 19.8 25.5 30.7 35.5
5.82 6.95 8.15 9.50 13.3 18.2 20.35
.70 .86 1.20 1.60 2.00 2.43 2.93 3.50 4.11 4.76 5.40 7.30 9.8 12.2
1.42 1.43 1.46 1.51 1.57 1.62
1.00 1.08 1.18 1.30 1.43 1.57
1.25 1.26 1.31 1.39 1.46 1.54
1.94
1.71
1.08 1.11 1.21 1.32 1.42 1.54 1.67 ..
. .~
1.62
1.67 _.
2.16 2.38 2.60 2.81 3.50 4.20 4.95
1.87 2.02 2.18 2.33 2.73 3.17 3.62
1.80 1.93 2.06 2.20 2.52 2.86 3.25
1.70 1.79 1.88 1.97 2.22 2.46 2.69
1.73 1.80 1.87 1.95 2.10 2.28 2.45
.88 .96 1.10 1.29 1.50 1.72
1.79 1.80 1.82 1.85 1.87 1.89 1.92 i.94 1.96 1.99 2.03 2.09 2.17 2.25
T A B L E 488.-lNCREASE O F RESISTANCE O F N I C K E L D U E T O A TRANSVERSE MAGNETIC FIELD, EXPRESSED AS yo O F RESISTANCE A T O°C AND H = O H
0 1000 2000 3000 4000 6000 8000 10000 12000 14000 16000 18000 20000 25000 30000 35000
-190"
-75"
+O
0 .23 +.16 -.05 -.15 -.20 -23 -27 -.30 -.32 -.35 -.38 -.41 -.49 -.56 -.63
+.20 +.17
.oo
-.17 -.19 -.19 -.18 -.18 -.18 -.17 -.17 -.16 -.14 -.12 -.lo
+
0"
4-18"
0
0
+ .07 + .03
- .34 - .60 - .70 - 76 - .82 - .87 - .91 - .94 - .98 -1.03 -1.12 -1.22 -1.32
+18Z0
+loo0
0
0 .96 .72 - .14 - .70 -1.02 -1.15 -1 2 3 -1.30.. -1.37 -1.44 -1.51 -1.59 -1.76 -1.95 -2.13
+ .07 + .03
+ .04
+ +
- .36 - .72 - .83
- .90 - .95 -1.00 -1.04 -1.09 -1.13 -1.17 -1.29 -1.40 -1.50
- .07
- .60 -1.15 -1.53 -1.66 -1.76 -1.85 -1.95 -2.05 -2.15 -2.25 -2.50 -2.73 -2.98
~
T A B L E 4 8 9 . P H A N G E O F RESISTANCE O F VARIOUS M E T A L S I N A TRANSVERSE MAGNETIC F I E L D
(Room temperature) Metal
Field strength in gausses
.. ...... . . . . . .. . . . . . ... . . . . . .. .. Cobalt . . . . . . . . Cadmium . . . . . Zinc . . . . . . . . . . Copper . . . . . . . Silver . . . . . . . . Gold . . . . . . . . . Tin . . . . . . . . . . Palladium ... . Platinum . . . . . NicFl " "
Percent increase
10000
-1.2 -1.4
6000 10000
-1.0 -1.4 - .53
SMlTHSONlAN PHYSICAL TABLES
+ .03 + .01 + ,004 + .004 + ,003 + .002 + ,001 + .0005
Metal
Field strength
Percent
+ + + + + +
.0004 Lead . . . . . . . . . 10000 Tantalum ... .. " .0003 Magnesium . . . 6000 .01 Manganin .. .. " .01 Tellurium . . .. .02 to .34 .> Antimony .. .. .? .02to .16 Different specimens show very divers'e results, Iron . . . . . . . . usually an increase in weak fields, a decrease .. in strong. behave similarly to Nickel steel . Aljoys iron.
1
464
PROPERTIES OF IRON AND STEEL
T A B L E 490.-MAGNETIC
Electrical sheets Electrol.ytic iron
Good cast steel
Poor cast steel
,024 ,004 ,008
,044 ,004 .40 ,044 .027
.56 .18 .29 .076 ,035
C Chemical composi- si tion in percent Mn
,008 ,001
Coercive force
1.51 1.371
. . . . . . ..
Cast iron
Steel
.40 .04 .07
3.11 3.27 .56 1.05 .06
16.7 (52.4)
11.4 C4.61
.99
.I0
7.1 (44.3)
.036
[94001
[9850]
I600
[32701
[6130]
16700 (11700)
10400 I110001
[182001
[175501
19800 (18000)
16400 I168001
r205001 [192601
. . . . . . .. . . . {
13000 (7500)
5100 [5350
{ B for H = 150 ........ { 4 ~ for 1 saturation.. . . . {
1850 114400
I148001
700 (170)
375 (110)
19200 I189001
18800 I191001
17400 (15400)
21620 I216301
21420 I214201
20600 (20200)
3550
.036
[.77]
10600 10500 I 110001 (10500)
Maximum permeability
Silicon steel
11.301
11400 I10800
Residual B
O r dinar y
240
B racke ts indicate annealing a t 800OC in vacuum. Parentheses indicate hardening by quenching f r o m cherry-red
T A B L E 491.-CAST
IRON I N INTENSE FIELDS
Soft cast iron
H a r d cast iron
A
7
H
B
114 172 433 744 1234 1820 12700 13550 13800 15100
9950 10800 13900 15750 17300 18170 31100 32100 32500 33650
I 782 846 1070 1200 1280 1300 1465 1475 1488 1472
c
I1
142 254 339 684 915 1570 2020 10900 13200 14800
87.3 62.8 32.1 21.2 14.0 10.0 2.5 2.4 2.4 2.2
T A B L E 492.-CORRECTIONS
B 7860 9700 10850 13050 14050 15900 16800 26540 28600 30200
I 614 752 836 983 1044 1138 1176 1245 1226 1226
c 55.4 38.2 30.6 19.1 15.4 10.1 8.3 2.4 2.2 2.0
FOR RI NG SPECIMENS
I n the case of ring specimens, the average magnetizing force is not the value at the mean radius, the ratio of the two being given i n the table. The flux density consequently is not uniform, and the measured hysteresis is less than it would be for a uniform distrihution. This ratio is also given for the case of constant permeability, the values being applicable for magnetizations in the neighborhood of the maximurn permeability. For higher magnetizations the flux density is more uniform, for lower it is less, and the correction greater. Ratio of radial width t o diameter of rin g s
1/2 1/3 1/4 1/5 1/ 6 1/7
1/8
1/10 1/19
Ratio of average H to H a t mean radius
Ratio of hysteresis for unif or m distribution to actual hysteresis
A
Rxtangular cross section
Circular cross section
1.0986 1.0397 1.0216 1.0137 1.0094 1.0069 1.0052 1.0033 1.0009
1.0718 1.0294 1.0162 1.0102 1.0070 1.0052 1.0040 1.0025 1.0007
SMITHSONIAN PHYSICAL TABLES
Rectangular cross section
1.112 1.045 1.024 1.015 1.010 1.008 1.006 1.003 1.001
Circular cross section
1.084 1.033 1.018 1.011 1.008 1.006 1.004 1.002 1.001
T A B L E 493.-COMPOSITION
A N D M A G N E T I C PROPERTIES O F IRON A N D S T E E L
This table and Table 477 are from a paper by Dr. Hopkinson on the magnetic properties of iron and steel. The numbers in the columns headed “magnetic properties” give results for the highest magnetizing force used, which is stated i n the paper to have been 240. The maximum magnetization is not tabulated; but as stated by Hopkinson it may be obtained by subtracting the magnetizin,rr force (240) from the maximum induction and then dividing by 4r. ”Coercive force” is the magnetizing force required to reduce the magnetization to zero. The “demagnetizing force” is the magnetization force which had to be applied in order to leave 110 residual magnetization after previous magnetization in the opposite direction to the “maximum induction” stated in the table. The “energy dissipated” was calculated from the formula : Energy dissipated = coercive force X maximum induction divided by r, which however, was only found to agree roughly with the the results of the experiment. Chemical analysis I
Description of specimen
Temper
Wrought iron ............. Annf.aled Malleable Fast iron.. ....... Gray cast iron ............. Bessemer steel . . . . . . . . . . . . Whit%orth m,i)d steel. ...... AnyFaled ‘(
‘1
“
“
“
‘I
....... ....... ....... Annealed .......{Oil-hardened
Hadfield’s manganese steel Manganese steel ........... As forged < “ ........... Annealed “ .......... Oil-hardened ,L ‘‘ ........... As forged ‘ ........... Annealed “ ........... Oil-hardened Silicon steel ............... As forged I‘ “ ............... Annealed
.{ {
Total carbon -
Manga. nese
-
Sulfur
Silicon
Phosphorus
-
,045 ,090 ,320
-
-
,200 ,153 .438
.030 ,016 .017
No,;ie
,042
,040 ,042 ,035
,890
.165
,005
.081
.019
1.005 .674
12.360 4.730
.038 .023
,204 .608
,070 .078
8.740
,024
.094
.072
<
<
1.298
, .685
‘
It
.694
‘ “
I‘
3.438
,I
(continued)
“
,123
Specific electrical resistance
Marnetic Dronerties hlaxj-
Residual induction
100
mum in. duction
13.78 32.54 105.60 10.50 10.80 14.46 13.90 15.59 16.95 65.54 53.68 39.28 55.56 69.93 63.16 70.66
18251 12408 10783 18196 19840 18736 18796 16120 16120 310 4623 10578 4769 747 1985 733
7248 7479 3928 7860 7080 9840 11040 10740 8736
61.63 6 1.85
15148 14701
11073 8149
x
2202 5848 2158 540 -
Cper.. cive force
2.30 8.80 3.80 2.96 1.63 6.73 11.00 8.26 19.38 23.50 33.86 27.64 24.50
Demagnetizing force
I
I
Energy dissipated per cycle ergs
13356 34742 13037 17137 10289 40 120 65786 42366 99401
37.13 46.10 40.29
34567 113963 41941
-
-
50.39
15474
-
-
9.49 7.80
12.60 10.74
45740 36485
E2
-
ln
TABLE 493.-COMPOSITION
P 4 i
ln 0
AND MAGNETIC PROPERTIES O F IRON AND S T E E L (concluded)
z
Chemical analysis
2 P
I 0
< 2 0 I D
+ D W
rln m
Magnetic * properties
<
Description of specimen
Total carbon
Manga. nese
Sulphur
Silicon
Phosphorus
.685 .532 '
.694 .393
.024 .020
3.438 220
.123 ,041
.687 As forged Annealed .......... ..b{ Oil-hardened 1.357 TunEsten st:el ...........c As forged ...........c Annealed Hardened " ...........c.; in cold water Hardened " ........... c / in tepid water '' (French). . d { ~ ~ ~ ~ r d .511 ,855 '' ...........e Very hard 3.455 Gray cast iron ............ f 2.581 Mottled ca$ 5' :". ........g 2.036 White .......... 4.510 Spiegeleisen .............. Silicon steel .............. Annealed .03 C. R. silicon steel (oriented). Annealed .01 Ingot iron ...............h Hot rolled H2 annealed
.028
.134
,043
.043
,047
Temper.
{yA;Frd-
Silicon steel ............... Chrome steel ............a " ............a '' ............a 1'
{
I'
'I
"
'1
.I
'I
1'
............b .......... . . b
Other substances present-a
As forged Annealed TLLFrd-
.036
Nye
Specific electrical resist. ance
Max!mum induction
Residual induction
Coer. cive force
Demagnetizing force
14696 15778 14848 13964 14680 13233 12868 15718 16498
8084 9318 7570 8595 7568 6489 7891 10144 11008
12.75 12.24 8.98 38.15 18.40 15.40 40.80 15.71 15.30
17.14 13.87 12.24 48.45 22.03 19.79 56.70 17.75 16.93
59619 61439 42425 169455 85944 64842 167050 78568 80315
22.74
-
-
-
-
-
22.49
15610
9482
30.10
34.70
149500
36.04 44.27 114.0 62.86 56.61 105.20 65 5G 15 15
14480 12133 9148 10546 9342 385 10000 15000 19400 19400
8643 6818 3161 5108 5554 77 6500 10750 5500 loo00
47.07 51.20 13.67 12.24 12.24
64.46 70.69 17.03 20.40 -
216864 197660 39789 41072 36383
x 108 61.95 20.16 19.42 27.08 17.91 18.49 30.35 22.49 22.50
'
.625 .312 ,173 .610 .386 7.970
None ,042 .lo5 ,467 Trace
,021 .151 2.044 1.476 .764 .502 4.5 3.25
.028 .089 .151 .435 .458 ,128 .01
.o 1
7
Energy dissipated per cycle ergs
-
-
3.5 2.9 2.9 1.5
.621 Cr, b 1.195 Cr, c 4.649 W, d 3.444 W, e 2.353 W, f 2.064 graphetic carbon, g 1.447 graphetic carbon, h 99.75 Fe.
467
FACTORS FOR RODS
T A B L E 494.-DEMAGNETIZING
H = true intensity of magnetizing field, H' = intensity of applied field, Z = intensity of magnetization, H = H' - NI.
Shuddemagen says: The demagnetizing factor is not a constant, falling for highest values of 4 s I) less than 1000, N is approximately constant; using a solenoid wound on an insulating tube, or a tube of split brass, the reversal method gives values for N which are considerably lower than those given by the step-by-step method; if the solenoid is wound on a thick brass tube, the two methods practically agree. Values of K X 10' are given where B is determined by the step method and H = H' - KB.
I to about 1/7 the value when unsaturated; for values of B (=H
+
Values of N X 10' Cvlinder Ballistic step method Ratio of length to diameter Ellipsoid
5 10 15 20 30 40 50 60 70 80 90
400
7015 2549 1350 848 432 266 181 132 101 80 65
4.5
MagnetoUniform metric magneti- method zation (Mann)
-
630 280 160 70 39 25 18 13 9.8 7.8
.39
SYlfHSONlAN PHYSICAL TABLES
6800 2550 1400 898 460 274 182 131
99 78 63
-
Dubois
Shuddemagen for range of' practical constancy Diameter
,
Values of K X 10' r
0.158 cm0.3175 cm 1.111 cm 1.905 cm
2160 1206 775 393 238 162 118 89 69
55
2.8
-
388 234 160 116 88 69 56
350 212 145 106
1960 1075 67 1 343 209 149 106
66
63
~
Diameter 0.3175 cm
-
30.9 18.6 12.7 9.25
-
5.5 -
Diameter 1.1 to 2.0 cm
85.2 53.3 27.3 16.6 11.6 8.45
-
5.05
468
*
TABLES 495-512.-GEOMAGNETISM TABLE 495.-ELEMENTS
OF THE EARTH'S MAGNETIC FIELD
The elements commonly used to describe the natural geomagnetic field are : Symbol
Name
Remarks
D
Magnetic declination
I H X
Magnetic dip or inclination Horizontal intensity North intensity East intensity Vertical intensity Total intensity
Y Z F
Rearing of magnetic north with respect to geographic north, counted positive from north around by east Positive when Z has downward direction Positive regardless of direction Referred to geographic north Referred to geographic east Positive when downward Positive regardless of direction
For a given time and place, the field is completely described by specifying the values of three magnetic elements, provided they include one from the group D , X , Y, and one from the group, I , Z , F . The ways in which the magnetic elements are interrelated may be seen from figure 20 and the formulas below. The formulas in the right-hand group are ZENITH
t
,/'
\ FIG.20.-Interrelation
of the magnetic elements.
obtained from the others by differentiation; they are useful when dealing with small increments, such as those which describe annual and daily changes and minor local anomalies of the geomagnetic field. The formulas pertaining to values of AD and AI are expressed in minutes of arc. X = H cos D AX = cos D AH - H sin D sin 1' AD Y = H sin D A Y = sin D AH H cos D sin 1' AD Y=XtanD AF = cos I 4 H sin I AZ
+ +
H = V W H = FcosI
AI =
Z= H t a n I Z = F sin I
F=VH'+Z2
.
A2
H A Z - Z AH H Z sect I sin 1'
= t a n l AH
+ H sec2 I
AI sin 1'
F= VX'+ Yz+Z'
Prepared by E. H. Vestine, Carneaie Institution of Washington, and David G. Knapp, U. S. Coast and Geodetic Survey. 1m For references, see bibliography following Table 511, p. 501.
(copitinued) SMITHSONIAN PHYSICAL TABLES
469 OF T H E EARTH'S MAGNETIC FIELD (concluded)
TABLE 495.-ELEMENTS
For purposes of mathematical analysis, it is convenient to recognize that the magnetic intensity or field strength (like other vector fields) is derivable from a scalar function or potential. If V be the potential corresponding to the geomagnetic field, we may write I; = - grad V , whence any of the magnetic elements may be expressed as functions of the potential. In polar coordinates ( r , 8, A ) with origin at the earth's center, we have 00
v = a n=l z
{ (r/a)" T"" +
(a/r)n+'
}
Tn' = v" + V ' ,
where a denotes the earth's mean radius (6.37 X 10'cm) (see Table 827). m
T.
z
(9."' cos m A
m=O
+ h."
sin m A)
p."
(0).
Here 0 is the colatitude and A the east longitude, and the affixes e and i refer to portions respectively of external and internal origin. The function
where
Z(21t
- 1)
Magnetic surveys of portions of the earth have been made by means of observations at many thousands of stations, the elcments usually observed being D , H , and I . Such surveys are repeated in part every few years in populated areas, and at intervals of one or more decades in most areas, because of a substantial and usually unpredictable change in the earth's field known as geomagnetic secular change. These changes are most accurately measured at fixed magnetic observatories to the number of about one hundred. The U. S. Coast and Geodetic Survey operates magnetic observatories at Cheltenham, Md. ; Tucson, Ariz.; Sitka, Alaska; Honolulu, T. H.; and San Juan, P. R. Other nations conduct similar measurements. Magnetic surveys by airplane will no doubt be commonplace in future years. The part of the earth's field having external origin does not exceed a few percent, and its existence has never been inditated with much certainty hy the spherical harmonic analyses. If the distinction between contributions of external and internal origin in the first formula is disregarded, the accompanying tables give the values of the principal harmonic terms at various epochs. The magnetic moment of the earth as given by the centered dipole approximation for 1922 was 8.04 x 10'' cgs. The axis of this dipole intersects the earth's surface at points called the geomagnetic (axis) poles, located in 1922 a t latitude 78?5 N., and longitude 270?0 E.; and at latitude 78?5 S., and longitude 111" E. In comparison with these currently adopted values, the analysis of Vestine and Lange for 1945 shows only slight change that may have taken place since 1922. The dipole part of the earth's field diminishes with height h approximately as (1 - 3h/a). Values for 1945 have been estimated in tabulation to heights as great as h = 5000 km for spherical harmonic terms up to degree six.? The magnetic north and south poles of popular interest are those defined by H = 0, or by I = 2 90". As H changes with time, owinq to secular change, these poles must move with time, except in the unlikely event that the lines of zero change of X and Y both happen to pass through the poles. There are a principal north magnetic pole and a principal south magnetic pole, which undergo substantial change in position with time. I n addition there are undoubtedly local (secondary) magnetic poles near each principal pole. These secondary poles occur only in pairs. Of each pair, one pole has the character of a potential focus (like the corresponding principal pole), while the other is a "false pole" or node of the equipotential lines. The secondary poles do not individually undergo large-scale migration, since they are associated with localized magnetic materials in the earth's crust. These occur when such materials succeed in reducing the changing value of H to zero, as the principal migrates. The principal north and south magnetic poles are not diametrically opposite, each being about 2,300 km from the antipodes of the other. t See bibliography, reference SMITHSONIAN PHYSICAL TABLES
g. p. 501.
470 T A B L E 496.-THE F I R S T E I G H T GAUS S C O E F F I C I E N T S O F THE E A R T H ' S M A G N E T I C P O T E N T I A L ( V ) E X P R E S S E D I N U N I T S O F lo-' cgs Source
Epoch
Gauss .... ... ..... . .. 1835 Erman-Petersen . . . . . 1829 Adams .............. 1845 A-dams ...... ........ 1880 Fritsche . . . . . . . . . . . . . 1885 Schmidt .. . ... ....... 1885 Dyson and Frirner.. . . 1922 Afanasieva . . . . . . . . . . 1945 Vestine and Lange.. . . 1945
g10
91'
-3235 -3201 -3219 -3168 -3164 -3168 -3095 -3032 -3057
-311 -284 -278 -243 -241 -222 -226 -229 -211
hi'
h2'
gzo
92'
- 49 - 35 - 50 - 89 -125 -127
+292 +257 +284 +297 +286 +278 +299 +288 $296
+ 51 - 8 + 9
+625 +60l +578 +603 +591 +595 +592 +590 +581
+ 12
922
h22
- 2 +I57 - 4 - 14 +146 - 10 4 +I35 - 75 61 +I49 - 75 68 +I42 - 71 65 +I49 -124 +I44 84 -146 +I50 48 +I64 54 -166
+ + + +
+ + +
T A B L E 497.-SPHERICAL H A R M O N I C C O E F F I C I E N T S OF T H E A V E R A G E A N N U A L S E CUL AR V A R I A T I O N E X P R E S S E D I N U N I T S O F lo-& cgs Source
Epoch
9 1 '
Dyson-Schmidt ....... 1922-1885 Bartels .... ........... 19220-1902 Carlheim-Gyllenskold .. 1920-1902 1912.5 Vestine and Lange ..... 1922.5 1932.5 1942.5
+20
+42 0 +25 +28 +23 +9
91'
- 1 -9 +I3
+ + + +
hi'
az0
-10 +I2 - 7 +4 0 1 -7 -7 4 - 7 -10 1 - 5 -14 2 + 1 -18 -
1
92'
hzl
92
+6
-14 -25 -12 -9 -14
+21 +I3 +I3 +24 +I7 +10 2
$8
-4
-1 +I +I 0
-18
-20
+
h2' -18
-8 -17 -17 -17 -14 -14
The magnetic moment of the earth (epoch 1922) = 8.06 X 10%cgs. Latitude 78.6 N. Geomagnetic north pole. . . . . . . . . . ILongitude 289.9 E. Latitude 78.6 S. Geomagnetic south pole. . . . . . . . . . Longitude 109.9 E.
T A B L E 498.-COORDINATES Date or eDoch
North latitude 0
1
West lon i tuL0
OF NORTH MAGNETIC POLE
Authority
Observer
,
1831.4
78 05.4
96 53.5 J. C . Ross
1904.5
70.5
96.5
1912.5 1922.5 1932.5 1942.5
70.9 71.4 71.9 72.6
%.8 97.2 97.6 97.9
1948.0
73.0
100.0
A. Nippoldt
0
R. Amundsen
....
....
....
....
P. H. Serson et al.
Vestine et aLr-"
I
Vestine et a1.t
R. G. Madill, Arctic, vol. 1, p. 8, 1948.
.For authorities see bibliography p. 501. t Based on the above position for i904.5 with reduction for secular change.
SMlTHSONlAN PHYSICAL TABLES
T A B L E 499.-COORDINATES Date or eooch
South latitude 0
Easf Ion I tut' D
1
Authority
Observer
*
l
1841.1
7500
15345 J.C.Ross
C. C. Farr '
1909.0
72 25
155 16 D. Mawson
C. C. Farr '
0
471
OF SOUTH MAGNETIC POLE
0
1912.5
71.2
150.7 E. N. Webb
1922.5 1932.5 1942.5 1945.0
70.2 69.0 68.3 68.2
149.2 148.1 146.2 145.4
Vestine et al.""
I
.... .... .... ....
Vestine et a1.t
For authorities see bibliography p. 501. on the above position for'1912.5 with reduction for secular change.
t Based
T A B L E 500.-DIP
OR I N C L I N A T I O N , U N I T E D S T A T E S
This table gives for the epoch January 1, 1950, smoothed values of the magnetic dip, I, corresponding to the longitudes, A, west of Greenwich in the heading and the north latitudes, %, in the first column. The remarks about smoothing, in Table 502, apply to this table as well. +\A
0 21 23 25 27 29
65"
70"
0
0
31 33 35 37 39
... ... ... ... ... ... ... ... ... ...
41 43 45 47 49
72.3 73.4 74.4 75.5
75"
105'
1100
1150
120"
0
0
0
0
85"
90"
95"
0
0
0
0
56.6 58.8 61.0
52.7 55.2 57.6 59.8
53.9 56.3 58.5
52.6 55.0 57.2
51:4 53.7 56.0
63.9 65.9 67.7 69.5 71.1
63.0 64.9 66.8 68.6 70.4
61.8 63.8 65.8 67.6 69.4
60.6 62.6 64.7 66.6 68.5
59.4 61.5 63.6 65.5 67.4
72.6 74.0 75.5 76.9 78.4
72.0 73.6 75.0 76.6 78.1
71.2 72.5 74.4 75.9 77.3
70.2 71.9 73.6 75.1 76.5
69.2 70.9 72.6 74.1 75.5
62.9
56.3 58.5 60.8 62.8
57.6 59.9 62.0
64.5 66.2 67.8 69.4 70.7
64.8 66.5 68.2 69.9 71.3
64.7 66.5 68.2 69.9 71.4
72.0 73.2 74.4 75.6 76.6
72.6 73.9 75.2 76.3 77.4
72.8 74.2 75.6 76.8 78.0
... ... ...
100"
80"
0
0 54.7 57.0 59.2 61.1 63.0
55.o 5i.i
T A B L E 501.-SECULAR
...
si.4 50.i
1250
0
...... ...... 50.3 52.6 si.6 54.8
53.8
... ... ... ... ...
58.2 60.4 62.4 64.4 66.2
57.0 59.0 61.1 63.0 64.9
55.9 58.0 60.0 61.8 63.6
... ... ... 62.7
68.0 69.6 71.3 72.8 74.4
66.7 68.4 70.0 71.6 73.0
65.4 67.1 68.8 70.4 71.9
64.3 65.9 67.5 69.2 70.7
...
...
C H A N G E O F DI'P, U N I T E D S T A T E S
Smoothed values of the magnetic dip for the indicated places for January 1 of the years stated. The degrees are given in the third colunin and in the succeeding column. The remarks about smoothing, in Table 502, apply to this table as well. Lat.
Long.
1930 1935 1940 1945 1950
Lat.
25" 25 25 31 31 31
80" 55'
90 53 100 51 80 62 90 60 100 58
179' i8s 162 137 163 153
173 161 178 157
43 is 43 90 73 43 100 71 43 110 69 43 120 67
76 39 67 50 20
80 43 69 50 16
31 37 37 37 37 37
110 57 80 68 90 67 100 65 110 63 120 61
72 77 77 75 71 102 113 122 118 114 92 101 108 102 97 98 104 107 101 96 89 91 93 88 82 61 59 62 57 51
47 70 75 17 80 76 49 90 78 49 100 76 49 110 74 49 120 71
49 61 23 46 35 68
46 60 22 45 32 62
202' 214' zio 2% 176 178 154 166 178 185 162 165
SMITHSONIAN PHYSICAL TABLES
213' 210
2i6 176 164 181 161
Zis
Long.
so
1930 1935 1940 1945 1950
i46s so 40 70 51 18
63 45 14
12' 74 33 56 39 7
49 62 21 43 31 62
44 57 15 37 26 58
36 50 7 31 21 53
472
SMITHSONIAN PHYSICAL T A B L E S
SMITHSONIAN PHYSICAL TABLES
473
SMITHSONIAN PHYSICAL TABLES
SMITHSONIAN PHYSICAL TABLES
475
FIG.ZS.-World
isodynamic lines, epoch 1945 (lines of equal total intensity, F, in cgs).
477 C H A N G E O F M A G N E T I C D E C L I N A T I O N I N THE U N I T E D STATES
T A B L E 502.-SECULAR
Smoothed values of the magnetic declination for the indicated places for January 1 of the years stated. The degrees are given in the fourth column, together with the indication E (east) or W (west); the minutes are given in the succeeding columns. The pattern depicted by this table for any date is highly smoothed and corresponds with that shown on “datum charts” discussed in current publications of the U. S. Coast and Geodetic Survey, such as those cited.** The latter contain more detailed secular-change tables, as well as current magnetic charts which may be consulted for values reflecting a greater amount of local information than it is possible to show in tabular form. ** See bibliography, references d, e, Locality At sea Maine Canada A t sea Conn. N. H.
Lat. 44’ 46 48 40 42 44
Long. 1920 1930 1940 68’ 13’W 319’ 357’ 377’ 68 16 W 269 299 312 68 19 W 241 263 269 72 6 W 311 356 382 72 7 W 355 400 425 72 9 W 349 392 413
Canada At sea N. C. Md. Pa. Pa.
46 34 36 38 40 42
72 76 76 76 76 76
11 W
N. Y. At sea At sea At sea At sea
44 26 28 30 32 34
76 80 80 80 80 80
5 W 0 E 0 E
Va. Pa. Pa. Canada Fla.
36 38 40 42 44 30
80 80 80 80 80 84
Ga. Ga. Tenn. KY. Ohio Mich.
32 34 36 38 40 42
84 84 84 84 84 84
0 E
Mich. Mich. Ala. Ala. Ala. Tenn.
44 46 30 32 34 36
84 84 88
Ot Ot
88
Ind. Ill. Ill. Wis. Mich. Mich.
38 40 42 44 46 48
88 88 88 88 88 88
3 E 2 E 2 E
La. La. Ark. Ark. Ma. Ma.
30 32 34 36 38 40
92 92 92 92 92 92
6 6 6 6 6 6
s. c. N. c.
Iowa Minn. Minn. Minn. At sea Tex. Tex. Okla. Okla.
I
Kans. Iowa
Minn. Minn. Minn.
42 44 46 48 28 30 32 34 36 38 40 42 44 46 48
p. 501.
Ot
0 W 1 W 2 W 3 W
Ot
Ot Ot
Ot
Ot Ot
0 W 1 W 2 E 1 E 1E
Ot
Ot
88 88
1
E
Ot
5 5 4 4 7 7
92 92 92 92 96 96 96 96 96 96 96 96 96 96 96
E E E E
0 E
8 8 8 9 9 9
E E E E E E E E E
E E E
8 E 8 E 8 E
-
* East declination.
E E E E E E
393 283 351 367 389 420
409 298 366 382 403 434
401 306 372 385 404 432
357 402 72 77 39 40 4* 0 33 43 81 96
415 75 37 3 46 98
409 59 25 11 51
132 191 255 326 352 28
153 218 289 365 396 31
157 221 293 371 403 39
157 219 288 365 394 35
59 23 44 5 18* 24 55 77 114
66 30 50 0 52 113
66 32 54 6’ 44 105
62 32 59
Ot
4 4 4 3
357 260 324 333 350 376
1950 377’ 307 258 387 426 410
101
141 212 42 28 12 54
183 260 50 30 7 42
187 270 64 42 18 53
178 263 64 44 22 58
34 70 41 70 87 35’
14 41 6 28 37 20
23 47 8 25 28 35
29 52 12 27 26 42
47 44 39 40 39 34
57 49 37 29 20 8
74 64 51 38 27 12
74 66 55 42 29 12
50 28 64 37 119 123
49 22 53 21 115 121
67 70 71 12 12 11
66 69 69 9 6 2
87 76 128 116 85 96
52 35 79 60 101 107
48 61 75 27 38 48 120 134 154
54 61 66 10 13 16 81 88 100
t Values
SMITHSONIAN PHYSICAL TABLES
70 69 71
57 50 48
Locality Mexico Tex. Tex.
I.at. Long. 1920 1930 1940 1950 28” 100’ 8 E 112’ 127‘ 142’ 135’ 98 92 85 9 E 75 30 100 9 E 98 103 114 108 32 100
34 Tex. 36 Okla. 38 Kans. 40 Kans. 42 Nehr. S. Dak. 44
100 100 100 100 100 100
in E
N. n a k . N. Dak. Tex. Tex. N. Mex. N. Mex.
100 100 104 104 104 104
12 12 10 11 11 12
E E
46 48 30 32 34 36
63 89 52 74 99 129
63 82 38 52 71 94
69 83 35 47 62 79
63 76 25 34 46 59
63 94 100 69 97 66
40 64 110 76 100 65
16 34 100 66
E
105 143 91 65 98 72
E E E E E E
45 78 118 107 98 154
33 60 94 76 61 110
26 49 79 57 37 79
12 31 58 31 6 44
95 74 111 90 69 56
100 75 109 84 59 40
108 79 109 80 51 26
95 65 95 63 32 5
10 E 11
E
11 E 11 E 11 E
E
E E
YO
52
Cola. Colo. Nebr. S. Dak. N. Dak. N. Dak.
38 40 42 44 46 48
104 104 104 104 104 104
13 13 13 14 15 15
Mexico N. Mex. N. Mex. N. Mex. Colo. Colo.
30 32 34 36 38 40
108 108 108 108 108 108
11 E
12 12 13 14 15
E E
wyo. wyo. Mont. Mont. Ariz. Ariz.
42 44 46 48 32 34
108 108 108 108 112 112
15 16 17 18 12 13
E E E
111 113 114 117 125 107
90 86 81 78 125 104
73 66 56 47 126 103
47 35 21 8 112 86
Ark. Utah Utah Utah Idaho Mont.
36 38 40 42 44 46
112 112 112 112 112 112
14 15 16 17 18 19
E
E
91 80 76 79 84 96
84 70 62 61 61 67
78 60 49 44 41 41
60 39 25 16 9 5
Mont. Mexico Calif. Calif. Nev. Nev.
48 32 34 36 38 40
112 116 116 116 116 116
19 E 12 E 13 E 14 E 15 E 16 E
163 164 151 141 137 138
Nev. Idaho Idaho Mont. At sea Calif.
42 44 46 48 34 36
116 116 116 116 120 120
17 18 19 21 13 14
E E
Calif. Calif. Calif. Oreg. Wash Wash.
38 40 42 44 46 48
120 120 120 120 120
15 16 17 18 19 21
E E E
At sea Calif. Calif. Oreg. Orex. Wash.
38 40 42 44 46 48
15 16 17 18 19 20
E
120
124 124 124
124 124 124
E
E
E
E E E E E
E E
E E E E
E
E E
E
E E
E
E
on this line are west, except those marked (*).
129 99 59 162 163 148 146 144 128 134 128 109 127 118 97 89 126 113
140 124 152 133 168 143 119 90 189 184 184 ‘177
109 114 120 61 180 171
81 83 85 23 163 152
182 180 184 200 213 168
1/2 168 169 181 192 142
163 156 154 163 172 116
143
213 211 215 229 241 256
202 199 201 212 222 234
194 187 187 194 203 210
175 167 164 170 175 179
13.2
129 135 140 80
DEPARTURE OF MAGNETIC DECLINATION FROM NORMAL*
T A B L E 503.-HOURLY
478
The daily variation is not predictable in detail since it fluctuates in form and amplitude from day to day. However, the variations shown in this table appear with considerable regularity when the data are averaged over several months or years. Values ar e based on the 10 leastdisturbed days of each month of the interval 1918-1928, using photographic registrations obtained at three of the magnetic observatories listed in Table 510. A plus sign signifies that east declination is greater, o r west declination less, than the mean for the day. January, February, November, December Hour, local mean time
2 a.m. 4 a.m. 6 a.m. 8 a.m. 10 a.m. Noon
Sitka, Alaska
Chelten- Tucson, ham, Md. Ariz.
.o - .2 ++ .2.7 ++ .8.2 -+ .2.2 +1.9 +1.8 +2.5
- .3
+2.5 -2.0
+1.7 - .2
-1.5 2 p.m. -1.6 4 p.m. 6 p.m. - .9 8 p.m. - .3 10 p.m. .O Midnight - .1
+2.3
-1.1 -2.2 -1.0
-3.2 -1.5 - .2
.O
++ .5.6 ++ .32 + .2 - .1
March, Aoril. September, October Sitka, Alaska
Cheltenham, Md.
May, June. July, August
Tucson, Ariz.
.o + .4 + .1 +1.0 ++2.4.5 +2.3 ++1.5.3
+4.8 $3.6 - .6 -2.9 -3.2 -2.3 -1.3 - .8 - .3
+4.7
+4.0 +1.4 -2.3
$2.2 -3.7
-2.8 -1.4 - .6 - .2 - .1
-4.7 -2.2 - .6
.o
++ .3.4
.o
Sitka, Alaska
- .9 .6 +4.9 +7.7 +4.8 -1.8
+
-5.2 -5.1 -2.5 -1.0 -1.0 -1.1
Cheltenham, Md.
+ .3 +1.0
Tucson, Ariz.
+4.1 +5.9 +1.3 -4.7
-5.4 -2.5 - .2 - .4
.o
+ .2
+ .1 + .6 +2.6 +4.7
+ .4 -4.2 -3.2 -1.4
- .3 - .4 - .2 - .1
Expressed in minutes.
T A B L E 504.--HORIZONTAL
MAGNETIC INTENSITY, UNITED STATES
This table gives for the epoch January 1, 1950, the smoothed horizontal intensity, H , expressed in cgs units, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column. The remarks about smoothing, in Table 502, apply to this table as well.
+\' 21' 23 25 27 29 31 33 35 37 39 41 43 45 47 49
65"
70"
75"
232
267 262 254 ,246 236
222 212
215
...... ...... ...... ......
... ... ... ... ... ... ...
.165 .156 .145 .134
105'
110"
115'
120'
125"
250
,257 246 234 ,222 ,210
,262 252 241 229 ,217
265
256 ,246 236 ,224
267 259
250 240 230
269 261 253 244 234
... ... ...
.194
,239 ,227 ,214 201
238
.181 .167 .153 .140 .126
,188 ,174 .160 .146 .133
.196 .182 .168 .154 .140
,204 ,191 .177 ,164 .150
219 207 .195 .182 .170
,224 ,214 ,202 .190 ,178
230 219 208 .197 .185
90"
.26?
.274
,259 ,251 241
266 ,257 ,247
,282 273 264 .254
237
244 ,232
,201 .188 .176 ,162 ,149 .135 ,122
.192 .181
,204 .193 .181
.171 .161 .151 .140 .129
.170 .160 ,148 .137 .126
.171 .160 .148 .135 .123
SMITHSONIAN PHYSICAL TABLES
100"
85"
2 31 220 208 .196 .184
202
226
95."
80'
225 213
220 20:
..................... 288 293 296 ......... ,278 ,284 288 ,290 290 ...... ,270 ,276 280 ,282 ,282 282 ... 260 266 ,271 273 274 276 ...
212
200
.186 ,174 .160
...
479 T A B L E 505.-SECULAR
OF H O R I Z O N T A L I N T E N S I T Y , UNITED S T A T E S
CHANGE
Smoothed values of horizontal intensity in cgs units at the indicated places for January 1 of the years stated. The remarks about smoothing, in Table 502, apply t o this table as well. Lat. Long.
25" 25 25 31 31 31 31 37 37 37 37 37
Lat. Long.
1930
1935
1940
1945
1950
90 100 80 90 100
.2653 .2801 .2908 .2361 .2494 .2622
.2612 .2761 .2878 .2325 ,2461 .2595
.2589 ,2741 .2861 .2303 .2442 .2578
.2586 2735 .2851 ,2304 .2441 .2573
.2587 .2731 ,2843 .2306 .2438 .2567
43" 43 43 43 43 43
110 80 90 100 110 120
,2698 2003 .2111 ,2262 2389 ,2473
,2677 .1974 .2084 ,2239 ,2372 .24a
.2662 ,1954 .2068 .2226 .2361 .2449
2656 .1958 .2071 .2227 .2359 .2446
.2648 .1960 .2070 .2223 .2355 .2442
47 70 47 80 49 90 49 100 49 110 49 120
80"
T A B L E 506.-VERTlCAL
1930
1935
1940
1945
1950
70" .1627 ,1613 . l a 1 ,1608 .1613 80 .1621 ,1604 .1589 .1595 .1598 90 .1693 .1675 .1664 .1671 .1671 100 .1838 .1822 .1814 .1820 .1820 110 .2015 .ZOO2 .1W4 .1997 .1996 120 .2154 .2143 .2135 .2136 .2136 .1405 .1362 .1256 .1406 .1601 ,1783
,1398 .1352 .1249 .1398 .1592 .1775
.1389 .1342 .1243 .1394 .1587 .1771
.1398 .1350 .1253 .1403 .1594 ,1775
.1403 ,1353 .1255 .1405 .1597 .1777
MAGNETIC INTENSITY, U N I T E D STATES
This table gives for the epoch January 1, 1950, the smoothed vertical intensity, 2, expressed in cgs units, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column. The remarks about smoothing, in Table 502, apply to this table as well. 4\'
65'
21" . . . 23 ... 25 . . . 27 . .. 29 . .. 31 33 35 37 39 41 43 45 47 49
...
.. . ... ... ...
.sii
.521 .521 ,518
70"
75"
80"
85"
90'
... ... ... ...
...
.399 .422 ,448 .468
...
.39i .419 ,442 .465
...
.389 .414 .435 .458
.3iS .36i .is4
.454
.378 .402 .425 .445 .463
.401 ,426 .447
,390 .413 .434
,376 ,399 .421
.362 .383 .404
,348 .368 .389
.356 .376
.465 .480 .493 SO9 S18
.480 ,494 ,511 .526 .536
.488 SO5 .552 .536 .545
.484 SO3 .520 .536 ,548
.478 .495 .513 .529 .545
,467 ,487 SO5 ,521 .536
.456 .477 SO5 ,514 .531
,442 .464 .485 SO2 .521
.427 ,449 .471 .491 SO9
.411 .432 .453 .473 .491
.398 ,418 .437 .456 .473
.461
,527 ,534 ,541 .546 .542
.544 .554 .561 .563 .565
.557 .566 .573 .578 .581
,559 .569 .575 .583 .595
2158 .566 .576 335 .596
.55 1 s63 ,572 .583 .591
.546 .558 .571 .581 .586
.536
.524 .538 .550 ,559 ,570
SO9 .523 .536 ,548 .556
.490 so6 ,521 ,533 .543
,476 .490 ,503 .518 ,527
SMITHSONIAN PHYSICAL TABLES
95"
100"
10.5'
.ssi
.564 .576 .581
110'
...
115'
...
120"
.. . ... ...
125'
... ... ... ... ... . .. .. . ... ...
480 CHANGE O F VERTICAL INTENSITY, U N I T E D STATES
TABLE 507.-SECULAR
Smoothed values of vertical intensity in cgs units at the indicated places for January 1 of the years stated. The remarks about smoothing, in Table 502, apply to this table as well. Lat , Lona.
Lat. Long.
1930
1935
1940
1945
1950
25" 80"
.4243 .4174 .3959 .4902 .4835 .4644
.4240 .4171 .3952 .4889 .4823 .4624
.4236 .4162 .3933 .4887 .4810 .4603
.4228 .4148 .3914 .4881 .4794 .4582
.4222 .4139 .3896 .4875 .4778 .4559
43 43 43 43 43 43
.4307 .4292 9 ~ 3 7 8 S370 S332 S312 S189 S167 .4961 .4938 .4612 .4591
.4268 S356 S287 S137 .4908 .4564
47 70 47 80 49 90 49 100 49 110 49 120
25 90 25 100 31 80 31 90 31 100 31 37 37 37 37 37
110 80 90 100 110 120
.4351 -541s ._ .. S368 ,5236
.4332 ~38 .5341 SO7 SO05 .4977 .4654 .4623
TABLE 508.-TOTAL
70" 80 90 110 120
1945
1950
S417 S382 S370 ,5365 .5754 S719 ,5698 S687 S771 S734 ,5715 .5702 S618 S486 S451 S434 S413 ,5158 S115 S104 SO85
.5343 ,5660 ,5659 5579 5381 5061
1930
S559 S907 .6110 S979 3306 S531
1935
S511 5356 .6067 ,5937 S754 S474
1940
S496 5328 .6029 ,5905 S729 S461
S498 S824 .6024 ,5897 S722 ,5452
5464 .5784 ,5964
3360 ,5701 5431
MAGNETIC INTENSITY, U N I T E D STATES
This table gives for the epoch January 1, 1950, the smoothed total intensity, F , expressed in cgs units, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column. The remarks about smoothing, in Table 502, apply to this table as well. 65"
31 33 35 37 39
.. ... .,. ,.. . .. ... ... . .. ... ...
41 43 45 47 49
,543 .543 .541 ,535
21" 23 25
27 29
,
... ... ... ...
70"
75"
80"
85"
.463 .4so ,495
.is0
,477
.510
.520
.515 .525 ,533 .544 ,549
.530 .539 S O .561
.554
.570 ,576 .581
.558 .562 .564 .557
.495 .514 ,526
,508
.566
100"
105'
.iSi ,475 ,469 .46i
.496 ,509 .524
,489 ,504 .518
.482 .497 ,509
,473 ,487 ,501
.539
,539
,552
,536 .547
.530 .543 ,535 ,564 .572
,523 ,536 ,549 .560 ,571
,514
,550
.562 .570 .575
,562 .572 .579
.558
,582
,586 ,591 .594
336 .590
,599
.601 .609
.592 .594 ,594
,579
95"
,496 ,512 .526
.588
.580
90"
TABLE 509.-SECULAR
.607
,568 .578
5%
,582
,589 .594 .601 ,606
,580
.587 .595 .602 ,603
.528
,541 .552 ,564 .574 333 ,591 .599 ,600
110"
...
115"
.. . .. .
,464 .453
120'
.. .
... ...
125"
. .. . .. . .. . .. . .. . .. .. . ...
.. .
.476 .488
.464 .476
.454 ,466
.502 ,517 ,531 .544 .556
,490 SO3 S18 ,530 .542
.480 .493 SO5 .518
,528
,519
.566 .574 .581
,554 ,563 .571 .577 .581
.539 2149 559 .565 .572
,529 .537 .545 .554 .559
33.5 .592
CHANGE O F T O T A L INTENSITY, U N I T E D STATES
Smoothed values of total intensity in cgs units at the indicated places for January 1 of the years stated. The remarks about smoothing, in Table 502, apply to this table as well. 1930
1935
1940
1945
80" 90 25 100 31 80 31 90 31 100
,5004 SO26 .4912 S441 S441 ,5332
,4980 SO02 .4889 S414 S415 S303
.4964 .4984 ,4864 S402 S394 ,5276
,4956 ,4968 ,4843 ,5398 ,5380
110 80 90 100 110 120
,5120 S773 .5768 S703 .5546 S271
SO92 ,5739 S733 S668 S513 S237
SO64 S722 S719 S647 ,5494 S222
,5047 ,5716 S701 ,5626 ,5473 ,5202
Lat. Long.
25" 25
31 37 37 37 37 37
SMITHSONIAN PHYSICAL TABLES
1950
,4951 .4959 .4823 ,5393 S364 9 5 5 ,5232 SO23 ,5703 S677 ,5597 ,5444 S176
Lat. Long.
1930
1935
1940
1945
1950
43" 70" 43 80 43 90 43 100 43 110 43 120
,5656 ,5978 .6014 ,5985 ,5845 ,5589
,5619 S940 S974 S944 3307 S545
,5604 S915 S952 S923 ,5788 ,5532
S601 ,5907 S942 S906 ,5770 S516
.558!
3381 S901 ,5869 S740 S493
70 80 90 100 110 120
,5734 ,6062 .6237 .6142 ,6022 ,5812
,5686 ,6010 .6194 .6099 ,5970 ,5754
S669 S981 ,6156 .6067 ,5945 ,5741
S673 S979 ,6153 ,6061 ,5940 ,5734
342 S940 ,6095 .6026 S920 S715
47 47 49 49 49 49
T A B L E 510.-MEAN
A N N U A L V A L U E S O F M A G N E T I C E L E M E N T S A T OB SER VA TOR IES
**
The usual conventions are followed a s explained in connection with Table 502. In addition to permanent geomagnetic observatories, there are given the numerous series of magnetic records obtained for the better part of a year by special expeditions, as, for example, those obtained during the two International Polar Years of 1882-83 and 1932-33; all are listed in decreasing order of north latitude. Generally, values are from continuous magnetograph records for all days, and are for mean of year. The many special notes applying to individual observatories have been omitted in the tabulation; these may be obtained from the references cited below if desired. However, the following general types of notes should be taken cognizance of : * = Observatory so marked is in a region of local magnetic disturbance., -_ = A break occurred between the preceding and following years due to change in procedure, method, standard, or site. a ) = Means quoted here are f o r all days, and may differ slightly from previously published means for 10 quiet days, given in official publication of U. S. Coast and Geodetic Survey. Components of intensity
r
Latitude (+ = N ,
Observatory
Teplitz Bay (Camp Abruzzi). ....... Alger Island ...................... Bay Tikhaya (Calm Bay) ..........
- = S) +81"48' +80 22 +8O 20
........ +78 Cape Thordsen (Spitsbergen) ....... +78 Sveagruvan (Spitsbergen) ......... +77 Chelyuskin ......................... +77 Thule ............................ +76 Refuge Harbor (Greenland)
Point Barrow
...................+73
.....................
** For references, see bibliography,
t Y = 10-5 cgs.
Longitude east
57"59' 56 06 52 48
32
287 37
28
15 42
54 17
16 45 104 17
32
291 06 95 08 19 14 80 25
Jekman Island ..................... +76 26 Bear Island (Bjornoya) ............ +74 29 Dickson .......................... +73 30 Matochkin Shar
Horizontal
16
56 24
$71 23
203 43
Declination
Inclination
g};
+22"42!0 +20 28.4 +21 07.3 $23 07.7 -99 49.5
:;$}
Year
1904 1905 1933 1941
;;)
1935 1940 1933 1939
;;}
1933 1941 1938 1940
:;:}
D
H
__ - * North
X Y
East
Y Y
~~
Vertical Z
Total'
Y
Y
F
+83"12!4 +82 45.8 +83 06.3 $83 22.4 +8S 47.1
Y+ 6766 7161 6605 6355 4136
6242 6709 6159 5844 706
+2611 +2505 +2380 +2496 -4075
+56798 $56395 +54616 54699 +56118
+
57200 56848 55000 55067 56270
- 5 54.6
+81 12.4
8187
8144
- 843
$52926
53555
-4 +25 +24 -81 $29 -1 +28 +29 +22 +22 +28
+80 59.4 $86 '00.4 +8b 12.0 +85 18.9 +8S 11.6 +79 34.1 +83 05.0 +83 24.5 +80 39.6 +80 40.9 +80 41
8328 4024 3850 4570 4799 9498 697 1 6614 8935 8902 9223
8298 3631 3490 687 4188 9493 6125 5772 8263 8213 8086
- 711
+52524 +57649 +57972 +55757 +57070 +51588 +57430 +57229 +54325 +54251 +56219
53180 57789 58100 55944 57271 52455 57852 57610 55055 54977 56971
53.7 32.1 57.5 21.2 14.2 53.9 31.6 14.0 21.9 41.1 45
I
+1734 +1625 -4518 +2344 - 315 +3329 +3230 +3400 $3433 +4436
p. 501.
P
(continued)
s
TABLE 510.-MEAN
v,
ANNUAL VALUES O F MAGNETIC ELEMENTS A T OBSERVATORIES (continued)
% p3
Components of intensity 0 VI
~
;c
Latitude
D z
(f -
P
5 G
i; D r ~
Observatory
Jan Mayen ........................ Scoresby Sund (Greenland) Tromso ..................
=N ,
=S) +70°59
Horizontal Longitude east
351'40' 338 02 18 57
D
W
r m
v,
..
Petsamo ...
+69 32 . . . . . . . . . . . . +69 18 ............ +69 14
Godhavn ....
31 15 14 25 306 29
King Point ................ Gjohavn ................... Sodankyla .................
+69 07 +68 37 +67 22
221 52 264 07 26 39
Kandalaksha ...................... Wellen ...........................
+67 09 +66 10
32 26 190 10
..................... ....................
+65 37 $64 52
322 22 212 10
Bowdoin Harbor (Baffin Island). . . . . $64 24
282 08
Angmagssalik College . .
Chesterfield Inlet Fort Rae Srednikan Dombh Yakutsk
.................. +63
.........................
......................... ................. .... ..........................
Julianehaab
.......................
20
269 18
+62 50 +62 26
243 56 152 19
$62 05
9 06
$62 01
129 43
+60 43
313 58
Year
}:zi
1933
1930 1942 1944 1933 1934 1930 1938 1906 1905 1930 1942 1932 1933) 1939 1941 1933 1942 1944
:;}
}:;i
:;} 1939 1945 1940 1946 1940 1945 1933
Vertical
Y
Y
F Y
10890 8710 11537 11236 11207 11284 12172 4398 4634 6237 746 12194 11847 12233 13196 13213 8215 10910 10926 2894
-4340 -5998 833 - 427 - 373 1-1140 -1215 -6953 -6734 +5698 - 80 f 556 f 915 +I444 1-3706 +3695 -6864 +6267 $6249 -3731
+SO352 +51063
51699 52147
+SO424
+SO647 +SO838 +49555 +55564 +55193 59061 +60434 +49202 +49630 +SO118 +53460 +53478 $51699 $55323 +55395 +59824
51662 51698 52088 5 1042 56 170 55795 59662 60439 50693 51033 51609 55189 55210) 527% 56736) 56807) 60010
3834
3742
- 836
+60762
60883
7734 16147 16393 13900 13837 14500 14524 11616.
6135 15945 16180 13792 13754 13857 13844 8447
+4709 -2545 -2634 -1726 -1510 -4272 -4393 -7973
+59956 +54169 +54179 +47250 +47450
60453 56524 56605) 49252) 49426)
+52989
54247
Inclination I
H Y
-21"43!8
+76"5315 +78 17.9 28.4 25.5 08 34.7 34.5 51.6 17.3 04.0 32.2 11.7 37.2 36.7 18.1 11.2 11.9 29.2
11726 10576 11567 11244 11213 11341 12233 8227 8174 8448 750 12207 11882 12318 13707 13720 10705 12582 12587 4722
-34 -4 -2 - 1 +5 -5 -57 +42 -6 +2 4
+
33.2 07.7 10.6 ~. 54.3 46.2 42 41.1 28.0 25 06 36.5 25.1
+15 (+15 -39 (+29 (+29
44'0 41.2 37.5 52.9 52.4 46.J
-52
12.1
+77 +77 +77 +76 +81 +81 +81 +89 +76 +76 +76 +75 +75 +78 +77 +77 +85
-12
36.1
+86 23.4
~
-55
~
+37 30.7 - 9 04.1 (- 9 14.8 (- 7 08 (- 6 16 -17 08.0 (-17 36.4 -43 20.8 (covtinued)
$82 +73 +73 +73 $73 +77
25:s
39.0 24.1 09.9 36.4 44.6
....
3i.i
North
Totai
East
Declination D
X Y
Y
-
Z
+
....
....
....
T A B LE 510.-MEAN
A N N U A L VALUES
OF M A G N E T I C E L E M E N T S A T OBSERVATORIES (continued) Components of intensity
Latitude
(+= N ,
Observatory
..........................
Lerwick
.................
- =S) +60"08'
358"49'
+59 55
10 43
Slutsk (Pavlovsk, succeed Leningrad) +59 41
30 29
Oslo (Christiania)
LOVO
Sitka"
............................. ...........................
Declination
Longitude east
+59 21
17 50
+57 03
224 40
1930 1944 1946 1929 1930 1939 1941 1940 1946 1920 1930 1945 1947 1899 1929 1931 ~
Sverdlovsk (Katharinenburg) Vyssokaya Dubrava (succeeding Sverdlovsk)
......
+56 50
......... $56
60 38
44
61 04
Rude Skov (succeeding Copenhagen) +55 51
12 27
Zaimishche (new site of Kasan). .... +55 50
48 51
............................
+55 47
49 08
Kutchino .......................... Copenhagen ....................... Eskdalemuir ......................
+55 46 +55 41 +55 19
37 58 12 34 356 48
Gross Raum
$54 50
20 30
Flensburg
...................... .........................
+54 47
9 26
Kasan
1940 1944 1930 1944 1946 1940 1945 1909 1913 1927 1900 1930 1946 1925 1935 1903
Inclination
D
Year
-14"112 -11 39.3
-11 21.3 - 8 07.0 - 7 58.9 5 04.9 5 16.8 - 1 28.1 - n 42.4 +30 28.5 +30 15.6 +29 30.2 (+29 22.6 9 59.6 +10 57.2 +10 54.6
+ +
+
+I2 57.2 +13 03.0 - 6 00.4 - 3 51.0 - 3 34.8 9 27.5 (+ 9 40.9 8 05.1 8 10.9 6 36.1 -10 12.2 -14 47.1 -12 05.9 - 2 18.3 - 0 43.1 -11 28.0 (corttirtued)
+ + + +
Horizontal
H Y
I
+72"4I:6 $72 58.0 +73 00.2 +72 +72 +71 +72 +74 +74 +74 +74 +70 +72 +72
18.2 52.6 03.2 22.3 22.8 15.4 15.8 42.0 20.3 26.9
14527 14381 14364 15934 15929 15260 15228 15317 i 5231 15568 15449 15513 15503 17795 16285 16200
+72 +72 +69 +69 +69 +71 +71 +69 +69 +68 +68 +69 +69 +68 j-68
31.9 40.0 19.0 45.6 49.3 10.5 21.7 09.1 18.2 59.5 39.0 43.2 54.0 01.9 33.5
16085 16030 16893 16710 16680 16651 16560 18118 17959 17875 17513 16585 16517 17771 17530
....
1i.i
....
~~~~
....
North
X Y
East
Vertical
Y
Y
Y
Z
Totai
F Y
14084 14084 14083 15774 15775 15200 15163 15312 15230 13417 13344 13501 13510 17525 15988 15907
-3561 -2905 -2828 -2250 -2212 +1352 +1401 - 393 - 188 +7896 +7785 +7640 +7605 +3088 $3094 +3066
$46624 +46937 +46990
49136
+4763i +47725 +46979 +47024 +55655 f55256 f55029 +55016 +50815 +51145 +51220
50016 50096 49241 49429 57791 57375 57174 57159) 53840 __. 53676 53721
15676 15616 16800 16672 16647 16425 16324 17938 17776 17756 17236 16036 16150 17757 17529
+3606 +3620 -1768 -1122 -1041 +2736 +2785 +2548 +2556 +2055 -3102 -4232 -3462 - 715 - 221
+51116 +51360 +44747 +45318 +45386 +48441 +49096 +47575 +47535 +46545 +44803 +44881 +45134 +44055 +44636
51601 51814) 50908 50815 59859 48104 47847 48061 47504 47955
....
....
....
....
48835
49091
.... ....
-
....
E
-
T A B L E 510.-MEAN
Ln
L
A N N U A L V A L U E S O F M A G N E T I C E L E M E N T S A T O B S E R V A T O R I E S ( o tinued) Components of intensity
-I
I ln
0 2
Latitude (f= N ,
D 2
V
5
!L? 0 D l~
g vI
Observatory
Meanook
.......................
He1 ............................. Neufahrwasser . . . . . . . . . . . . . . . . . . . Barth ........................... Wustrow . . . . . . . . . . . . . Rostock .............. Stonyhurst . . . . . . . . . . . Wingst .........................
-
=S)
Horizontal Longitude east
+54"37'
246"40'
+54 +54 +54 +54 +54 +53
18 18 12 12 12 357
36
25
22 21 06
51
48 39 45 24 08 32
+53 45
9 04
Stettin-Zabelsdorf . . . . . . . . . . . . . . . . +53 27 Witteveen ........................ +52 49
14 34 6 40
Zuy (new site of Irkutsk)
. . . . . . . . . . +52
Potsdam (succeeding Berlin)
28
104 02
+52 23
13 04
Declination
D
Year
1920 1942 1934 1903 1903 1903 1903 1920 1943 1939 1946 1901 1940 1946 1899 1930 1945 1899 1920 1927
+27"38!6 +25 33.6 - 2 35.5 - 7 13 - 9 52.9 -10 08 -10 08 -15 52.9 -11 30.5 - 5 59.1 - 4 59.7 - 8 43 - 7 09.2 - 6 14.7 2 08.8 (+ 0 17.7 (- 0 47.7 -10 00.7 - 7 29.4 - 6 09.1
+
North X
East
Vertical
Totai
Y
Y
Y
F Y
I
H Y
+77"5316 +77 51.8 +68 25.2
12923 12729 17553
11445 11482 17535
+5996 +5492 - 794
+60246 +59188 +44384
61617 60541 47729
+67 37.6
18261
17990
-3134
+44i6i
47974
Inclination
....
....
.... ....
....
....
....
Y
.... .... ....
Z
....
.... .... ....
+68 43.5 +68 54.5 +68 +68 21.2 12.0
17303 17166 17636 17601
16640 16820 17540 17534
-4734 -3425 -1839 -1532
+44429 +44504 +44092 +44347
47679 47699 47488 47712
+67 +67 +70 +71 +71 +66 +66 +66
17959 17946 19948 19019 19028 18818 18606 18489
17820 17840 19934 19019 19026 18531 18447 18383
-2236 -1952 747 98 - 264 -3271 -2425 -1981
+43686 +43867 +56220 +56380 +57109 +43133 +42912 +43002
47233 47396 59654 59500) 60196) 47060 46772 46809
39:2 45.0 27.8 21.5 34.4 25.7 33.5 44.0
....
....
....
+
+
....
The Potsdam Observatory was set up in 1889 but electric-tram disturbances beginning in 1906 forced transfer of registration t o Seddin, which, in turn, for the same reason had to be transferred in 1932 t o Niemegk.
............................
+52 17
13 01
Irkutsk (old site) . . . . . . . . . . . . . . . . . . $52 16
104 16
Seddin
...........................
+52 07
21 15
DeBilt (succeeding Utrecht) ........ +52 06
5 11
...... +52 04
12 40
Swide;
Kiemegk (succeeding Seddin).
1920 1931 1910 1920 1930 1943 1930 1938 1940 1944
- 7 31.2 - 5 28.9 1 47.0
+
+
1 02.8
1 -0 - 9 -8 -4 (- 3 -
57.3 16.7 26.3 04.6 09.6 38.1
(continued)
+66 +66 +70 +70 +67
30.6 49.8 36.0 51.9 01.1
18645 18450 19824 19458 18476
18485 18365 19814 19455 18465
-2440 -1762 617 355 - 630
+4289y +43106 +56293 +56081 +43565
46776 46888 59682 59360 47310
+67 00.4 +67 09.3 +67 00.1
18282 18226 18434 18411
18034 18045 18386 18374
-2998 -2561 -1337 -1167
+43084 +43263 +43431
46801 46945 47182
....
....
....
+ +
....
....
....
. . . .)
T A B L E 510.-MEAN
v)
5
A N N U A L V A L U E S OF M A G N E T I C E L E M E N T S A T OB SER VA TOR IES (continued) Components of intensity
4
I
0 VI
z
D z
P
5 z? c)
D
I-
+ g E v)
Latitude (f= N ,
Observatory
=S) +51"56' -
Valencia Cahirciveen
.......
....... Bochum .......................... Kew ................ Greenwich ..... Nizhnedevitsk
Hermsdorf
1930 1937 1935 1940 1934 1910 1924 1920 1925 1940 1946 1910 1941 1927 1929 1934 1911 1942 1932 1899 1912 1899 1926 1913 1933 1899 1907
-17"27!6 -16 11.7 5 33.6 5 54.0 - 7 52.4 -16 03.2 -13 45.1 -14 08.6 -13 09.9 -10 43.0 - 9 51.1 -13 22.2 - 8 02.4 - 4 29.3 - 4 10.6 - 4 42.5 - 5 48.0 - 7 06.6 - 2 28.0 -18 32.7 -17 24.2 - 9 11.9 - 5 27.7 - 5 03.3 + 0 06.4 -17 03.7 +16 27.4
+67"59!8 +67 58.0 +67 34.7
....
17813 17802 18588 18472
16992 17096 18501 18374
-5345 -4965 $1801 +1899
+44081 $43987 +45060
47546 47453 48743
58.7 56.5 53.6 51.4 43.9 45.4 00.8
18503 18392 18450 18410 18533 18469 19028
17781 17865 17890 17930 18210 18295 18512
-5117 -4372 -4510 -4190 -3446 -3177 -4400
+43546 +43205 $43250 +43080 $43099 +43235 $42764
47313 46957 47020 46850 46915 47054 46807
.... ....
.... ....
....
$64 'G.4 +64 50.9 +65 49.4 +65 34.5
20110
....
20110
....
....
2 30
1900
-14
$64 53.5
19738
19087
2 01
1930 1936 1940 1942
-10 59.3 - 9 56.7 - 2 35.6 - 2 20.9 (continued)
$64 +64 +63 +63.
1%31 19647 20473 20467
19271 19351 20452 20450
349"45'
7 14 359 41
4 21
+SO 44 +SO 21 +SO 18 $50 09 +SO 09
........................... $50 CraFow ....... .............. $50 Janow ........ .............. +49 St. Helier (Jers .............. $49 Prague
Vienna (Auhof)
16 14 13 58 18 55 5 41 18 54 354 55
05
14 25
94 54 12
19 58 23 44 357 54
Parc St. Muir (superseded by Val Joyeux) Val Joyeux (succeeding P a r c St. M u i r ) . ...... $49 49
.................. +48 13
F Y
Y
....... . . . . +SO 48 ........................ +SO 46
Tellnitz ........................... Beuthen .......................... Manhay (succeeding Uccle) ......... Beuthen-Miklow .................. Falmouth .........................
Totai
Z Y
I
359 37
Uccle (Brussels)
Vertical
Y Y
X Y
0 00
... +51
East
Inclination
11
Abinger (succeeding Greenwich).
North
Declination
Longitude east
38 22 $51 29
Horizontal H
16 14
Year
D
+ +
45.4
+66 +66 +66 +66 +66 +66 +66
.... ....
....
....
....
....
....
....
....
....
....
.... .... ....
....
....
.... .... .... ....
.... ....
.... .... .... .... .... 46810 ....
+65 54.6
19106
18959
-2365
+42733
+66 48.7 +66 26.6
18663 18799 19926
17694 17938 19670
-5936 -5623 -3185
$43569 +43118
+"3i
+42830
47316
-5028
$42120
46515
-3742 -3393 - 926 - 839
+41529 $41668 +41634 +41732
45936 46067 46395 46481
....
42.0 45.4 48.9 52.5
....
.... ....
....
.... ....
....
....
.... ....
....
.... ....
.... ....
47398 47038
.... ....
....
.... ....
E2
T A B L E 510.-MEAN
A N N U A L V A L U E S O F M A G N E T I C E L E M E N T S A T OB SER VA TOR IES (continued) Components of intensity
Observatory
Latitude (+= N , - = S)
......................... +48"12' Furstenfeldbruck .................. +48 10 Munich ........................... +48 09 Maisach
Longitude east
ll"15' 11 17 11 36
Kremsmiinster .................... +48 03 Chambon-la-Foret (Succeeding Val Joyeux) ......... +48 01
14 08
................. +47 O'Gyalla (Stari Dila). ............. +47 +47 Nantes ........................... Toyohara ......................... +46 Toyohara (new site) ............... +46 Stepanovka (succeeding Odessa). ... +46 +46 Otomari .......................... Odessa ............................ +46 +44 Pola .............................. +44 Castellaccio ....................... +43 Agincourt ........................
52
18 12
52 15
18 11 358 27
58 57 47 39 26
142 45 142 45 30 53 142 46 30 46
O'Gyalla (Pesth)
2 16
52
13 51
26
8 56
47
280 44
+43 43 +43 37
7 16
Mai-Tun (succeeding Vladivostok) . . +43 15
132 20
Nice ............................. Toulouse .........................
Perpignan
.........................
+42 42
1 28
2 53
Year
Declination
D
Horizontal
North
East
Vertical
I
Y
Y
Y
Y
F 7
20314 20299 20314 20638
20168 20188 20259 20353
-2432 -2118 -1497 -3415
+40813 +41005 +41578 +40750
45593 45754 46275 45678
Inclination
H
X
Y
Z
Totai
1927 1932 1944 1910 1920 1926 1904
- 6'5215 - 5 59.3 - 4 13.6 - 9 31.5 - 8 03.8 - 6 54.7 - 9 02.4
+63"32!5 +63 39.8 $63 57.7 +63 08.4
+63 02.3
20730
20475
-3257
+4075i
45721
1936 1946 1910 1918 1937 1940 1947 1940 1944 1938 1941 1923 1925 1899 1922 1940 1943 1940 1942 1899 1900 1905 1941 1944 1899 1910
- 9 28.9 - 8 01.0 - 6 34.5 - 5 21.1 (- 2 16.8) -10 26.2 - 9 25.3 - 9 18.2 - 9 29.5 0 35.4 - 9 03.6 - 1 52.9 - 1 36.4 - 9 31.7 - 6 25.3 - 6 07.2 - 5 43.2 - 7 32.3 - 7 31.4 -12 04.0 -14 17.7 -13 59.7 - 8 40.9 - 8 43.9 -13 42.5 -12 44.8
+64 11.3 +64 15.6 +62 31.2
....
20011 20085 21076 20917
19737 19889 20937 20826
-3296 -2801 -2413 -1951
+41374 +41658 +40521
45959 46247 45674
+63 +63 +60 +60 +62
41:5 42.3 41.1 37.9 55.0
20299 20383 25067 25191 21413
19963 20 108 24737 24846 21412
-3677 -3337 -4052 -4154 220
+41058 +41250 +41875
45802 46011 51199 51365 47032
+63 +63 +60 +60 +60
i'i.9
21267 21213 22120 22049 22137 22196 15290 15303 22390 21913 22013 26826 16913 224 18
21256 21205 21815 21911 22011 22086 15158 15171 21895 21235 21360 26519 2660 1 21779
+42098 +42206 +38899 +38690 +38818
47165 47237 44748 44532 44686
+56503 +56460 +39087 +39408 +39498 +44579 +44662 +38829
58535 58497 45046 45091 45218 52028 52144 44836
+
(continued)
....
18.9 22.5 19.3 18.3
$74 si.5 $74 50.0 +60 11.7 +60 55.4 +60 52.1 +58 57.7 +58 55.6 +60 00.0
....
.... ....
....
....
....
....
....
....
....
....
.... ....
....
+
.... - 698 - 595
-3662 -2466 -2360 -22 12 -2006 -2004 -4681 -541 1 -5324 -4049 -4086 -5313
....
....
....
.... ....
.... ....
....
....
....
VI
T A B L E 510.-MEAN
A N N U A L V A L U E S O F M A G N E T I C E L E M E N T S A T OB SER VA TOR IES (continued) Components of intensity
i;
Latitude (f = N .
2
-0
I
k?
2 r m
c:
.- = S)
Observatory
Dusheti (succeeding Karsani) ....... +42"05'
Horizontal Longitude east
44'42'
Karsani (succeeding Tiflis).. ....... $41 50 Tiflis (succeeded by Karsani) ....... +41 43
44 42 44 48
Keles (succeeding Tashkent) ........ +41 25
69 12
Tashkent ......................... Capodimonte ......................
69 18 14 15
+41 20 +40 52
Tortosa (Ebro)
49
0 30
Coimbra
................... +40 .......................... +40
12
351 35
Baldwin
..........................
+38 47
264 50
.....................
+38 44
283 10
Cheltenham *)
Lisbon ............................ Athens ...........................
+38 43 +37 59
350 51 23 42
San Miguel (Ponta Delgada). ...... +37 46
334 21
............................ Sail Fernando .....................
+37 30
126 38
+36 28
353 48
Kakioka (succeeding Tokyo) ........ +36 14
140 11
Zinsen
Year
1940 1945 1934 1899 1905 1936 1945 1900 1899 1921 1905 1947 1899 1940 1944 1901 1909 1901 1930 1941 1947 1900 1900 1908 1911 1947 1918 1941 1899 1930 1946 1913 1947
Declination
D
+ 4"56!2 (+ 5 00.8 + 4 26.0 + 2 11.0 + 2 41.6 + 5 23.5
(+ 5 03.2
+
6 02.0 - 9 15.8 -13
....
56.9 (- 7 56.1 -17 24.2 -12 34.0 -12 02.3 8 21.9 8 34.0 - 5 05.0 - 6 56.0 (- 7 04.8 (- 7 04.3 -17 17.5 - 5 42.3 - 4 53.0 -19 56.0 -16 58.3 - 5 41.1 - 6 17.0 -16 02.8 -12 32.8 -10 30.4 - 5 10.1 - 6 13.0
+ +
(CfJ%tinUt?d)
North
East
Vertical
Total
Y +40749 +41161 $40390 +37785 +37799 +44276 +44854 +42171 +36304
47364 47715) 47276 45652 45569 51024 51614) 49956 43578
+37359 +36879 +38549 +36463
43993 43851) 44748 43308
+55890 +55908 +56586 +54402 +53953 +53852 +37530 +33514 +33613 +41456 +39333 +40170 +40301 +35487 +33881 +33644 +34851 +35014
60038 59951 60081
X Y
Inclination
H Y
+59"2113 +59 36.9 +58 41.2 +55 52.1 +56 02.8 +60 11.9 +60 20.7 +57 34.0 +56 25.0 +56 11.8 +58 07.6 +57 14.8 +59 28.9 +57 30.7
24142 24135 24570 25614 25451 25359 25537 26780 24105
24052 24043 24496 25599 25423 25247 25438 26632 23791
Y +2078 +2109 $1899 976 1196 $2383 +2249 $2815 -3880
23230 23724 22724 23368 23449 21931 21644 20 194 18583 18176 18221 23518 26063 26197 22993 23830 29978 30167 24594 25072 25525 29749 29916
22545 23497 21684 22808 22933 21698 21403 20115 18447 18037 18082 22455 25934 26102 21615 22792 29831 29986 23636 24473 25097 29628 29741
-5600 -3275 -6797 -5084 -4891 +3190 3224 -1789 -2243 -240 -2243 -6990 -259 1 -2230 -7839 -6956 -2970 -3302 -6978 -5447 -4654 -2680 -3239
I
+68 +68 +70 +71 +71 +71 +57 +52 +52 +60 +58 +53 +53 +55 +53 +52 +49 +49
34.5 50.2 21.6 08.4 22.9 18.4 55.6 07.7 11.7 59.1 47.4 16 11.0 16.6 29.9 48.8 30.9
29.3
....
....
Y
+ +
....
+
z
F
7
....
....
57448
56932) 56851) 44290 42455 42616 47405 45989 50123 50341 43176 42149 42231 45822 46054
e
In
3
T A B L E 510.-MEAN
=i
A N N U A L V A L U E S O F M A G N E T I C E L E M E N T S A T OB SER VA TOR IES (continued)
I In 0
Components of intensity
z
z D -0
< I
z0 ? -I D W
r
In m
Latitude
Observatory
Tsirigtao
..........................
............................ Ksara ............................ Tuscon'' ......................... Tokyo
(+ = N , - = S)
Longitude east
Year
+36"04'
120"1 9
I908
+35 41
139 45
+33 49
35 53
$32 15
249 10
Lukiapang (succeeding Zikawei) . . . . +31 19
121 02
.......................... Z6-si. .............................
+31 12
121 26
+31 06
121 11
Dehra Dun .......................
+30 19
78 03
Helwan ...........................
+29 52
31 20
Zikawei
Taihoku .......................... +25 02 Minarnitori Shirna ................. +24 17 Tamarasset ....................... +E 48
...................... (succeeding Hongkong) ....
121 31 153 58 5 32
Barrackpore
+22 46
8 22
Au Tau
+22 27
114 03
Hongkong (superseded by Au Tau). . +22 18
114 10
1930 1936 1899 1912 1940 1945 1920 1940 1947 1908 1933 1899 1908 1920 1940 1947 1910 1930 1937 1920 1930 1940 1944 1940 1941 1938 1940 1910 1914 1930 1939 1900 1928
Declination
D
- 3"43I6 - 4 32.8 (- 4 37.6 - 4 33.7 - 5 03.4 1 59.9 2 09.4 +13 48.0 +13 48.2 (+l3 35.3 - 2 56.2 - 3 35.4 - 2 20.3 - 2 35.4 - 3 10.7 - 3 25.7 (- 3 26.8 + 2 31.9 1 11.9 0 51.6 - 1 23.7 - 0 14.0 0 27.8 0 40.1 - 2 09.4 0 15.3 - 7 33.1 - 7 21.5
+ +
+ +
+ + +
+ 0 55.5 + 0 32.2
- 0 43.6 - 0 38.0 0 18.5 - 0 33.3
+
(continued)
North
East
Vertical
Inclination I
Horizontal H Y
Y
Y
7
+52"21!5 +52 06.6 +52 06.1 +49 02.7 +48 53.7 +48 21.2 +48 36.1 +59 27.9 (+59 40.6 +59 36.2 +45 35.2 +45 23.7 +45 47.6 +45 35.4 +45 38.4 $45 29.7 +45 27.3 +43 54.8 +45 34.5 +45 39.9 +41 12.8 +41 43.0 +42 09.5 +42 20.2
30766 30868 30935 29856 29996 28668 28780 26894 26136 26034 33173 33329 32825 33078 33066 33372 33588 33257 32963 33223 29956 30078 30438 30572
30701 30771 30834 29761 29879 -. -. . 28651 28760 26117 25381 25305 33129 33263 32798 33044 33016 33312 33527 33225 32956 33219 29947 30078 30438 30570
....
+29 +29 +30 +30 +30 +30 +31 +30
'3i.s 24.0 42.2 58.9 37.3 24.8 24.7 36.3
....
X
....
3i924 +3ik;47 32013 +31749 37329 37324 37403 37401 37485 37482 37705 37703 36728 36727 37319 37317
Y
-2000 -2447 -2495 -2374 -2644 . +lo00 +lo83 +6416 +6236 +6117 -1700 -2087 -1339 -1495 -1833 -1995 -2019 +1469 + 689 499 - 730 - 122 246 357
+
+ +
....
....
-4 196 -4100 603 350 - 475 - 417 198 - 361
++
+
Z
+39890 +39667 +39741 +34400 +34379 +32236 +32646 +45594 +44684 +44380 +33879 +33791 +33747 +33766 +33813 +33954 t34125 +32019 +33631 +34003 +26236 +26814 +a560 +27854
....
+18084 +18039 +22168 +22459 +22187 +22133 +22430 +22075
Total
F
7
50376 50262 50361) 45549 45625 43139 43521 52935 51766) 51452) 47416 47462 47078 47268 47293 47609 47882) 46165 47091 47539 39821 40295 41061 41358
....
....
36690 36746 43415 43628 43559 43721 43036 43359
T A B L E 510.-MEAN
A N N U A L V A L U E S OF M A G N ETIC E L E M E N T S A T OBSERVATORIES (continued) Components of intensity 1,atitude
Observatory
Honolulu
a'
.......................
(+ = N. - =S)
Longitude east
+21"19'
201"56'
Honolulu (new site) ............... +21 18 Teoloyucan ....................... 19 45
201 54 260 49
+
Toungoo
+18 56
96 27
Colaba
.......................... (superseded Alibag) ........
+18 54
72 49
........
+18 38
72 5-3
(superseding Vieques) ... +I8 23
293 53
Alibag (succeeding Colaba) San Juan Vieques
')
(succeeded San Juan).
.... $18 09
..... +14
294 33
36
121 10
Manila (succeeded by Antipolo). .... $14 35
120 58
........................
77 28
Antipolo (superseding Manila).
Kodakanai
Palau (Parao) .................... Yaluit ............................ Mogadiscio .......................
+I0 14
+ 7 20 ++ 52 02 55
134 29 169 39 45 21
Year
1902 1920 1940 1946 1947 1922 1940 1946 1905 1923 1899 1906 1904 1930 1937 1930 1945 1947 1910 1924 1930 1938 1900 1904 1910 1923 1941 1941 1932 1933)
Declination
D
+ 9"19:1 + 9 53.2
(+lo (+I0 (+11 9 9 +9 +0 -0 0 0
21.5 28.2 35.3 09.9 41.8 37.6 48.4 31.9 26.6 13.2 1 09.4 - 0 08.0 - 0 21.8 (- 4 50.6) - 6 10.6 (- 6 18.2 - 2 20.6 - 4 15.0 0 26.7 0 36.2 0 52.1 0 51.4 0 55.0 - 2 00.7 2 07.1 7 54.0 9 55.8
+ +
+ + +
+ + + +
-
+ + +
(continucd)
Horizontal
North
East
Vertical
z
Total'
Inclination
H
I
Y
Y
Y
Y
+40" 1415
29254 28838 28459 28346 28659 32160 30825
28868 28410 27995 27874 28075 31749 30385 70192 38671 39205 37440 37393 36853 37253 37651 27398 27238 27264 28804 27490 38252 38354 35025 38211 37480 37927
+4737 $4951 +5117 +5151 +5757 +5122 +5192 4-5116 544 - 364 290 144 744 - 87 239 -2321) -2948 -3012 -1177 -2n4n
4-24758 +23712 +23158 +23146 +22935 +33903 +33235 +32884 +I6394 416725 +14558
38324 37335 36691) 36596) 36706) 46730' 45329 44934 42006 42625 40172
+15150 4-15578 +I7777 i17906
40345 40018 41277 41693 45197 45102 45024) 44731' 44480 39752 39859 39614 39756 37566 38077
qm7
+39 +39 +38 +46 +47 +47 +22 +23 +21
08.2 14.0 40.2 30.7 09.3 02.4 58.3 06.1 14.8 +Z03.4 +22 54.6 +25 30.6 +25 26.0 +52 31.9 +52 35.7 +52 28.0 +49 52.4 +51 42.2 +€5 47.0 +15 47.2 +16 15.9 +16 00.2 + 3 45.2 + 4 41.3
.... ....
-16
38.2
38675 39207 37441 37393 36861 37253 37652 (27494 27397 27430 28828 27566 38253 38356 38029 38215 37485 37950
.... ....
33142
X
.... ....
33138
Y
+
++ +
-
+-298
+ 404 + 576 + 571 - 600 -1332
.... ....
- 538
+35872
+35827 +35704 +34203 in4908
4iosi3
$10844 4-11095 +lo960 2459 3112
+ +
.... ....
- 9904
F
Y
.... ....
34590
In
r
T A B L E 510.-MEAN
2
Components of intensity I
t
(+= N , Latitude
2 P
V
< I
K
Observatory
Batavia-Buitenzorg
-IP
- 6"11'
-4
Batavia-Kuyper
Longitude east
Declination
106"49'
1902 1926
+ 1'0214
+ 0 51.6
X
East
Y Y
Vertical
z
Total
F
-30"20!2 -32 09.6
36717 36826
36711 36822
+ 666 + 553
-21487 -23154
42542 43500
magnetograph records at Kuyper (Latitude - 6" 02', longitude 106"44') reduced to Batavia ; in a letter dated November 15, 1941, the Director of the Observatory stated that the published values of 1928-35 (see Preface of "Report on magnetic observations in Batavia," 58B, 1935) are subject to correction because of previous errors in the scale-values and that revised values will be supplied later.
+ 1 20.3
106 49
1940 1944
(+ 1 31.1
Dar-es-Salaam .................... - 6 49 St. Paul de Loanda ................. - 8 49
39 18 13 13
..................... .........................
1898 1910 1918 1933 1945 1922 1944 1946 1930 1940 1946 1910 1941 1899 1930 1940 1945 1920 1933 1915 1942 1944
- 8 18.1 -16 12.3 -15 03.5 - 9 32.1 - 8 55.4 8 07.6 6 34.8 + 6 26.7 +10 34.2 +10 54.5 +11 14.0 - 9 01.3 - 9 38.5 - 9 32.9 -12 05.5 -13 58.9 -14 51.5 6 03.3 4 16.7 -10 28.1 -13 58.8 -14 12.7
Elisabethville
-11
40
27 28
Huancayo
-12 03
284 40
-13 48
188 14
......................
.......................... Mauritius* ........................
Tanarive
LaQuiaca
H
North
................... From
- 6 11
Samoa, Apia
Inclination
Horizontal
- =S) Year D I Y Y Y 7 ................ From magnetograph records at Buitenzorg (Latitude - 6"35', longitude 106'47') reduced to Batavia ; recording at Batavia discontinued April 1, 1899, because of electric-car disturbances.
P 0) r
D
A N N U A L V A L U E S O F M A G N E T I C E L E M E N T S A T OBSERVATORIES (continued)
........................
-
55
47 32
06
57 33
-23 07
294 25
-18 -20
Vassouras (succeeding Rio de Janeiro) -22
24
316 21
+ + I
~
+ +
(continued)
-32 -32 -36 -35 -36 -46 -46
32.0 31.6
56.8 32.2 04.2 01.3 53.9 0 37.5 2 10.3 2 06.6 -30 07.9 -30 38.1 -30 38.5 -53 58.9 -53 54.3 -54 16.8 -52 39.6-53 06.9 -53 23.1 -12 39.6 -12 21.2 -14 44.1 -18 57.8 -19 22.2
+ + +
37035 37145
37025 37133
28966 28662 20125 19325 19917 .... 23801 23472 23286 23004 29735 29436 29367 29174 29074 29259 34598 35195 34238 34868 34172 34839 22306 22585 21082 20784 23854 23524 22697 22193 22419 21755 22389 21640 2621 26472 __.~ _ 26223 26150 24700 24289 23683 22982 23563 22842
+ 865 + 984
-23624 -23689
43928 44055)
-4182 -5616
-21875 -14374
36244 24732
-3943 -3612 +4203 +3365 +3284 +6456 +6598 +6787 -3542 -3531 -3957 -4753 -5417 -5741 +2808 +1956 -4488 -5721 -5785
-24665 -24883 324 1114 1078 -20428 -20650 -20683 -31065 -28916 -33171 -29750 -29876 -30131 - 5979 - 5743 - 6496 - 8138 - 8284
34276 34079 29737 29388 29279 40694 40524 40493 38407 35785 40857 37420 37352 37539 27284 26845 25540 25042 24977
....
....
+ + +
....
T A B L E 510.-MEAN
A N N U A L V A L U E S O F M A G N E T I C E L E M E N T S A T OB SER VA TOR IES (continued)
-
Components of intensity Latitude (+= N ,
0bserv atory
-
= S)
Longitude east
Rio de Janeiro (superseded by Vassouras) ........ -22"55'
316"49'
.........................
19
115 52
-31 40
296 07
-33 27
289 18
Watheroo Pilar
-30
.............................
Santiago (new station)
............
Cape Town (superseded by Hermanus). ....... -33
57
18 28
Hermanus (succeeding Cape Town). -34
25
19 14
-37 32
145 28
Toolaiigi (succeeding Melbourne).
..
Melbourne (superseded by Toolangi) . -37
50
144 58
Amberley (succeeding Christchurch) -43
10
172 44
Christchurch (superseded by Amberley)
32
172 37
25 39
69 53 295 51
43
315 13
........ -43 Kerguelen ........................ -49 New Year's Island (Staten Island). . -54 Laurie Island
.....................
-60
Year
1900 1906 1919 1930 1945 1905 1940 1944 1899 1909 1933 1941 1940 1946 1919 1930 1944 1899 1920 1929 1940 1945 1902 1930 1902 1902 1914 1916 1905
Declination
Inclination
Horizontal H
I
Y
X Y
- 7"55!7 - 8 55.3 - 4 22.8 - 4 08.0
-13"17!1 -13 57.2 -63 51.4 -64 17.7 -64 25.4 -26 03.0 -26 30.0 -26 48.1
25040 24772 24925 24623 24767 25894 24137 23884
24801 24472 24852 24559 24734 25511 24029 23794
D
-2 9 5 4 +14 +13
North
East Y
Vertical
Y
Z Y
-3454 -3842 -1904 -1775 -1281 +4435 +2278 +2077
- 5912 - 6169 -50780 -51151 -51746 -12657 12034 -12066
Total' F
Y
25729 25529 56567 56769 57368 28822 26971 26759
57.9 51.7 24.9 59.3 59.5 57.9
-29 57.2
.... ....
-24 39.9 -24 13.1 -23 54.5 -23 46.4 + 8 12.7 8 20.8 9 07.4 8 25.1 8 00.8 +17 45.0 +18 30.2 (+19 01.7
-63 09.2 -63 42.6 -63 59.0 -64 17.5 -67 36.0 -67 51.5 -67 51.0 -67 23.1 -67 55.1 -67 57.8 -68 03.4 -68 04.8
15050 14357 14328 13875 23071 22872 22884 23323 22874 22365 22248 22215
13677 13094 13098 12697 22834 22630 22594 23072 22651 21301 21098 21001
-6281 -5889 -5807 -5594 +3295 $3320 +3628 +3414 +3189 +a19 +7060 +7243
-29733 -29061 -29352 -28819 -55974 -56208 -56215 -55989 -56384 -55252 -55220 -55203
33325 32413 32663 31985 60542 60683 60694 60653 60847 59607 59533 59506)
-67 40.8 -68 18.3 -70 25.3 -50 13.8 -49 43.4 -49 39.4 -54 31.0
22694 22108 16243 27306 26878 26771 25667 23928
21787 21049 12978 26254 25941 25854 25558 23892
+6351 +6760 -9768 +7505 +7034 +6947 +2360 +I307
-55277 -55570 -45672 -32808 -31719 -31520
59754 59806 48474 43685 41575 41355
+ + +
+ + + +
+16 +17 -36 +15 +15 +15 5 3
+
+
15.1 48.3 58.0 57.3 10.3 02.4 16.6 07.8
(co 91 titwed)
....
....
.... ....
.... ....
-
.... ....
.... ....
....
....
....
P W
h,
T A B L E 510.-MEAN
A N N U A L V A L U E S O F M A G N E T I C E L E M E N T S A T OB SER VA TOR IES (concluded) H Horizontal
Latitude
(+ =N, - =S)
Observatory
Winter Station, Gauss.. ............ -66'02' Cape Denison ..................... -67 00 -77 38 Cape Evans ....................... Little America (111) ............... -78 29 Little America Little America
(11) ................ (I) .................
Longitude east
89'38' 142 40 166 24 196 09
-78 34
196 04
-78 35
1%
12
Year
1902 1912
:;:)
):;i i;::} i;}
Declination
Components of intensity North X East Y Vertical Z
I
Y
Y
-62"22!6 - 6 36.8 +154 46.4 54.0
-77"07!2 -87 21.3 -86 27.0 -81 22.4
13309 3112 4227
6171 3091 -1802
+lo6 34.7
-81 53.5
+lo6 49.1
-82
D
18.7
7
Total
F
Inclination
10038 -2581 9445 -2695 8983
-2599
7
Y
-11792 358 +3824
-
-58206 -67349 -68146
59708 67421 68277
+9700 +9053
-66166 -66296
66%3 66966
+8599
-66541
67145
Y
-2
T A B L E 511.-GEOMAGNETIC
I
a2
-a z 0
COORDINATES OF PO SITIO N ON T H E E A R T H R E F E R R E D T O THE G EOMAGNE TIC A X I S P O L E O F 1922, FOR PO IN TS IN VARIOUS GEOGRAPHICAL LOCATIONS
Part 1.-Geomagnetic
latitudes of points on the earth in various geographic latitudes and longitudes
2 D
-D I
2 ..
Geographic east longitude in degrees
G O -
graphic latitude
+88"
+
'
A
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
79 79 78 75 73 69 66 62 58 55
78 77 75 72 69
78 76 74 71 67
77 74 70 66 62 58 55 51 47 43 39 37 35 33 31 29
77 73 69 65 62 58 54
76 73 69 65 61 57 53 49 45 41 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 -1
77 73 69 65 61 57 53 49 45 41 37 35 33 31 29 27 25 23 21 19 17 15 13
77 73 69 65 61 57 53 49 45 41 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7
77 73 70 66 62 58 54 50 47 43 39 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1
77 74 70 67 63 59 55 52 48
68
69
30 28 26 24 22 20 18 16 14 12
77 73 69 65 61 57 53 49 45 41 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9
77 73 70 65 61 57 54 50
32 30 28 26 24 22 20 18 16 14
77 73 69 65 61 57 53 49 45 41 37 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 -1
78 75 72
64 60 56 53 49
77 75 71 68 64 61 57 53 49 45 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4
77
65 62 58 55 51 47 45 43 41 39 37 35 33 31 30 28 26 24 22 20 I8 16 14 12
78 75 73 69 66 62 58 55 51 47 43 41 39 37 35 34 32 30 28 26 24 22 20 18 16 14 12
77 74 71 67 63
51 49 47 45 43 41 39 37 35 33
79 78 76 74 71 67 64 60 56 53 49 47 45 43 41 39 37 35 33 32
10
45 43 41 39 37 35 33 31 30 28 26 24 22 20 18 16 14 12 10 8
+ = North latitude, - = south latitudes.
10
8 6
60 56 52 48 44 40 38 36 34 32 30 28 26 24 22 20 18 17 15 13 11 9 7 5 3
27
25 23 21 19 17 15 13 11 9
7 5
3 1
50
46 42 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0
7 5 3 1 -1
11
9 7 5 3 1 -1
5
-1
3 1
46 42 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0
44 40
38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
75 71
64 60 57 53 49 45 41 39 37 35 33 31 30 28 26 24 22 20 18 16 14 12 10 8 6 4
65 62 58 54 51 47 43 41 39 37
35 33 31 29
27
25 23 21 I9 18 16 14 12 10 8 6 P
(con timed)
%
ul
?i
s
e S
G
c I -
4
P
?
ul m
TABLE 5 1 1 . 4 E O M A G N E T I C COORDINATES O F POSITION ON T H E E A R T H R E F E R R E D T O T H E GEOMAGNETIC A X I S P O L E O F 1922, FOR P O I N T S I N VARIOUS GEOGRAPHICAL LOCATIONS (continued) Geographic east longitude in degrees
Geo-,
graphrc latitude
+ 8"
+ 6 + 4 + 2 0 -2 -4 -6
-8
-10
A
'
0
10
20
30
40
50
60
12 10 8 6 4
10 8 6 5 2
8 6 4 2 0
6 4 2 0
4 2 0
2 0
1
2 0 -2 -4 -6
0 -
-2
-2 -4
-2 -4 -6
70
-1
80
90
-1 -3
-3
-2 -4 -6
-8
-7
-7 -9
-10
-7 -9 -11
-5
-5
- 3
-5
100
110
-4 -6 -8 -10 -12
-6 -8 -10 -12 -14
-8 -9 -11 -13 -15
-9 -11 -13
-11 -13 -15 -17 -19
-12 -14 -16 -18 -20
-13 -15 -17 -19 -21
-13 -17 -19 -21
-13 -15 -17 -19 -21
-15
160
170
180
0
2 0
4 2 0
-7 -9 -11
-13 -15 -17 -19 -21
-13 -15 -17 -19 -21
-12 -14 -16 -18 -20
-11 -13 -15 -17 -19
-9 -11 -13 -15 -17
-10 -12 -14 -16
-8
- 6 -8 -10 -12 -14
- 7 -9 -11
-2 -4 -6 -8 -10
150
-2 -4 -6 -8
-7 - 9 -11
-5
- 3
-5
-3
140
-1 -3 -5 -7 -9
-7 -9 -11
-5
130
-2 -4 -6 -8 -10
-3
2 4 6 8
-15 -17
120
-3
-5
-2 -4 -6
-2 -4
-12 -14 -16 -18 -20
-8 -10 -12 -14 -16
-10 -12 -14 -15 -17
-12 -14 -15 -17 -19
-14 -16 -17 -19 -21
-15 -17 -19 -21 -23
-17 -19 -21 -23 -25
-19 -21 -23 -25
-21. -23 -24 -26 -28
-22 -24 -2.6 -28 -30
-23 -25 -27 -29 -31
-23 -25 -27 -29 -31
-23 -25 -27 -29 -31
-23 -25 -27 -29 -31
-23 -25 -27 -29 -31
-22 -24 -26 -28 -30
-21 -23 -25 -27 -29
-19 -21 -23 -25 -27
-18 -20 -22 -24 -26
-16 -18 -20 -22 -24
-24 -28 -32 -36 -4u
-19 -23 -27 -31 -35
-21 -25 -29 -33 -37
-23 -27 -31 -35 -39
-25 -29 -33 -37 -41
-27 -31 -35 -39 -43
-29 -33 -37 -41 -45
-31 -35 -39 -43 -47
-32 -36 -48
-34 -38 -42 -46 -50
-35 -39 -43 -47 -51
-35 -39 -43 -47 -51
-35 -39 -43 -47 -51
-35 -39 -43 -47 -51
-35 -39 -43 -47 -51
-34 -38 -42 -46 -50
-33 -37 -41 -45 -48
-31 -35 -39 -43 -47
-29 -33 -37 -41 -45
-28 -32 -35 -39 -43
-44
-39 -43 -47 -51 -54
-41 -45 -48 -52 -56
-43 -47 -50 -54 -58
-45 -49 -52 -56 -60
-47 -50 -54 -58 -62
-49 -52 -56 -60
-50
-53 -57 -61 -65 -69
-55 -58 -62 -66 -70
-55 -59 -63 -67 -71
-55
-59 -63 -67 -71
-59 -63 -67 -71
-55 -59 -63 -67 -71
-54 -58 -62 -65 -69
-52 -56 -60 -64 -68
-51 -55 -58 -62 -66
-49 -53 -57 -60 -64
-47 -51 -55
-64
-52 -56 -60 -64 -67
-55
-54 -58 -62 -66
-58 -62 -65 -69 -72
-60 -63 -67 -70 -73
-62 -65 -69 -72 -75
-63 -67 -70 -73 -76
-65 -69 -72 -75 -77
-67 -71 -74 -77 -79
-69 -73 -76 -79 -81
-71 -75 -78 -81 -82
-73 -77 -80 -83 -84
-74 -78 -82 -85 -86
-75 -79 -83 -86 -87
-75 -79 -83 -87 -88
-75 -79 -83 -87 -88
-74 -78
-85 -86
-73 -77 -80 -83 -84
-72 -75 -78 -81 -83
-70 -73 -76 -79 -81
-68 -71 -75 -77 -79
-66 -69 -73 -75 -78
-75 -78
-76 -78
-77 -78
-78 -79
-79 -79
-80 -79
-81
-80
-82 -80
-83 -80
-84 -80
-84 -80
-84 -80
-84 -80
-84 -80
-83 -80
-82 -80
-81
-80 -79
-79 -79
-48 -52 -56 -60
-64 -68 -72 -76 -80 -84
-88
-n
-40 -44
(continued)
-&?
-80
-58
-62
2
vI
2
I 2
T A B L E 511.-GEOMAGNETIC COORDINATES O F P O S I T I O N O N T H E E A R T H R E F E R R E D T O T H E GEOMAGNETIC A X I S P O L E O F 1922, FOR P O I N T S I N V A R I O U S GEOGRAPHICAL LOCATIONS (continued) Geo-. graphic latitude'
Geographic east longitude in degrees I
A
~~
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
78 76 73 70 67
78 77 75 72 69
79 78 76 73 70
79 79 77 75 72
79
80
80
81 81 79 76
80 84 87 86 83
80 84 88 87 83
80 84 88 87 83
80 84 86 85 82
80 83 85 83
80
80 84 86 85 82
80 82 83 81 78
80 81 81 79 76
79
80
80 82 82 81 79
79 79 78 75 73
63 60 56 52 48
65 62 58 54 50
67 63 60 56 52
69 65 62 58 54
71 67
75 71 67
78 74 70 66 62
79 75 71 67 63
79 75 71 67 63
79 75 71 67 63
78 74 71 67 63
77 73 69 65 62
64 60
73 70 66 62 58
71 68
64 60
77 73 69 65 61
75 72 68
60 56
73 69 66 62 58
60 57
69 66 62 58 55
45 43 41 39 37
47 45 43 41 39
49 47 45 43 41
50 49 47 45 43
52 51 49 47 45
54 52 50 48 47
56 54 52 50 48
57 55 53 51 50
58 57 55 53 51
59 57 55 53 51
59 57 55 53 51
59 57 55 53 51
59 57 55 53 51
58 56 54 52 50
56 54 52 50 48
55 53 51 49 47
53 51 49 47 45
51 49 47 45 43
35 33 31 29 27
37 35 33 31 29
39 37 35 33 31
41 39 37 35 33
43 41 39 37 35
45 43 41 39 37
46 44
48 46
49 47 45 43 41
49 47 45 43 41
49 47 45 43 41
49 47 45 43 41
48
42 40
49 47 45 43 41
42 40
46 45 43 41 39
45 43 41 39 37
43 41 39 37 35
41 39 37 35 33
25 23 21 19 17
27 25 23 21 19
29 27 25 23 21
31 29 27 25 23
33 31 29 27 25
35 33 31 29 27
36 34 32 30 28
38 36 34 32 30
39 37 35 33 31
39 37 35 33 31
39 37 35 33 31
39 37 35 33 31
39 37 35 33 31
38 36 34 32 30
37 35 33 31 29
35 33 31 29 27
33 31 29 28 26
32 30 28 26 24
15 14 12 10 8
17 15 14 12 10
19 17 16 14 12
21 19 17 15 14
23 21 19 17 15
25 23 21 19 17
26 24 23 21 19
28 26 24 22 20
29 27 25 23 21
29 27 25 23 21
29 27 25 23 21
29 27 25 23 21
29 27 25 23 21
28 26 24 22 20
27 25 23 21 19
25 23 21 19 17
24 22 20 18 16
22 20 18 16 14
79 77 74
64
42 40 38
83 84 83
44
(continued)
80
46
44
80 79 77 75
64
u)
5
I cn
z
0
5 P 0 I
<
2
r D
4 D m I-
cn m
TABLE 5 1 1 . 4 E O M A G N E T I C COORDINATES O F PO SITIO N ON THE E A R T H R EFER R ED T O THE GEOMAGNETIC A X I S P O L E O F 1922, FOR P O I N T S I N VA R IO U S GEOGRAPHICAL LOCATIONS (continued)
ceq
Geographic east longitude in degrees
graphic latitude* '190
++ 68"
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
8 6
10 8 6 4 2
12 10 8 6 4
13 11 9 8 6
15 13 11 9 7
17 15 13 11 9
18 16 14 12 10
19 17 15 13 11
19 17 15 13 11
19 17 15 13 11
19 17 I5 13 11
19 17 15 13 11
18 16 14 12 10
17 15 13 11 9
15 13 11 9 8
14 12 10 8 6
12 10 8 6 4
0
2 0
4 2 0
5 3 1
7 5
8 6 4 2 0
9 7 5 3 1
9 7 5 3 1
9 7 5 3 1
9 7 5 3 1
9 7 5 3 1
8
7 5 3 1
6 4 2 0
4 2 0
2 0
4
+:
-2
-12 -14 -16 -18 -20
210
6
+ 4 -2 -4 -6 -8 -10
1
200
2 0
-4
4
2 0 -2 -4
-8 10 -12
-
-8 -10
-
-14 -16 -18 -20 -22
-12 -14 -16 -18 -20
-10 -12 -14 -16 -18
- 6
-ti
2 4 6 8
-2 -4 -6
-8 -10
-12 -14 -16
-2 -4
-1 -3
-5
-7 -8 -10 -12 -14
-7 -9 -11 -13
3
-1
1
-1
-2
- 4 -6 -8
-2 -4
-2 -4 -6
-6 -8 -10 -12 -14
- 8 -10 -12 -14 16
-9
-8 -10
-13 -17 -21 -25 -29
-13 -17 -21 -25 -29
-14 -18 -22 -26 -30
-15 -19 -23 -27 -31
-16 -20 -24 -28 -32
-18
-22 -26 -30 -33
-19 -23 -27 -3 1 -35
-1 -3 -5 -7 -9
- 1 -3
-1 -3
- 5 -7 -9
-5
-9 -11
-1 -3 -5 -7 -9
-7 -9
-15 -19 -23 -27 -3 1
-14 -18 -22 -26 -30
-13 -17 -21 -25 -29
-13 -17 -2 1 -25 -29
-13 -17 -21 -25 -29
-7
4 2 0
-3 - 5 -7 -9 -11
-2 -4 -6 -8 -10
-3 -5
6
- 1
-3 -5 -7
- 2 -4 -6
-10
-12
-
-24 -28 -32 -36 -40
-26 -30 -33 -37 -41
-24 -28 -3 1 -35 -39
-22 -26 -30 -33 -37
-20 -24 -28 -32 -35
-18 -22 -26 -30 -34
-17 -20 -24 -28 -32
-44 -48 -52 -56
-a
-45 -49 -53 -56 -60
-43 -47 -51 -55 -58
-41 -45 -49 -53 -56
-39 -43 -47 -51 -55
-38 -42 -45 -49 -53
-36 -40 -44 -48 -52
-35 -39 -43 -47 -51
-34 -38 -42 -46 -50
-33 -37 -41 -45 -49
-33 -37 -41 -45 -49
-33 -37 -4 1 -45 -49
-33 -37 -41 -45 -49
-33 -37 -41 -45 -49
-34 -38 -42 -46 -50
-35 -39 -43 -47 -50
-36 -40 -44 -48 -52
-37 -41 -45 -49 -53
-39 -43 -47 -51 -54
-64 -68 -72 -76 -84
-64 -69 -71 -74 -76
-62 -67 -69 -72 -75
-60 -65 -67 -71 -74
-57 -62 -64 -68 -71
-56 -61 -63 -67 -71
-55 -60 -62 -66 -70
-54 -58 -62 -65 -69
-53 -58 -61 -65 -69
-53 -57 -61 -65 -69
-53 -57 -61 -65 -69
-53 -57 -61 -65 -69
-53 -57 -61 -65 -69
-54 -57 -61 -65 -69
-54 -58 -62 -66 -70
-55 -59 -63 -67 -70
-57 -60 -64 -68 -71
-58 -62 -65 -69 -72
-84
-78 79
-77 -78
-76 -78
-58 -64 -66 -69 -73 -75 -78
-75 -77
-74 -77
-74 -77
-73 77
-73 -77
-73 -77
-73 -76
-73 -77
-73 -77
-73 -77
-73 -77
-74 -77
-75 -77
-75 -78
-88
-
-
(con thrued)
$ a
v,
: I
T A B L E 511.-GEOMAGNETIC COORDINATES O F POSITION ON THE E A R T H R E F E R R E D T O T H E GEOMAGNETIC A X I S POLE O F 1922, FOR P O I N T S I N VARIOUS GEOGRAPHICAL LOCATIONS (continued)
0 v)
z
Part 2.-Geomagnetic
longitudes of points on the earth in various geographic latitudes and longitudes
h
I W
3-
: +
fi
Geographic latitude
4-88" +84 +80 +76 4-72
Geographic east longitude in degrees A
0
10
20
40
50
60
70
80
90
100
110
120
130
:I70
30
140
150
160
170
149 I30 116 106
170 150 134 122 113
170 152 138 128 121
170 154 142 134 128
171 157 147 140 135
172 160 151 146 141
173 163 156 151 148
174 166 161 157 154
175 169 165 163 160
177 173 170 168 167
178 176 175 174 173
180 180 180 179 179
181 183 184 185 186
183 187 189 191 192
184 190 194 1% 198
186 193 198 202 205
187 197 203 208 21 1
188 200 208 213 217
99 93 89 87 84
107 103 99 96 94
116 111 108 106 103
123 120 117 115 112
131 128 125 123 121
138 135 133 131 130
145 143 141 140 138
152 150 149 148 147
159 158 157 156 155
166 165 164 164 163
173 172 172 171 171
179 179 179 179 179
186 186 187 187 187
193 194 194 195 195
200 20 1 202 203 204
207 208 210 211 212
214 216 217 219 220
221 223 225 227 :228
82 81 80
92 91 90 90 89
102 101 100 99 99
111 110 109 109 108
120 119 118 118 117
129 128 127 127 126
137 137 136 136 135
146 145 145 144 144
154 154 153 153 153
162 162 162 162 162
171 171 171 171 170
179 179 179 179 179
187 188 188 188 188
196 196 196 196 197
204 205 205 205 205
213 213 213 214 214
221 222 222 223 223
230 230 231 231 232
88
98 97 97 96 96
107 107 106 106 105
117 116 116 115 115
126 125 125 124 124
135 134 134 134 133
144 143 143 143 142
153 152 152 152 152
161 161 161 161 161
170 170 170 170 170
179 179 179 179 179
188 188 188 188 188
197 197 197 197 197
206 206 206 206 207
214 215 215 215 216
223 224 224 225 225
232 233 233 234 234
95 95 94 94 93
105 104 104 103 103
114 114 113 113 112
124 123 123 122 122
133 133 132 132 132
142 142 142 141 141
151 151 151 151 151
161 161 160 160 160
170 170 170 170 170
179 179 179 179 179
188 188 188 188 189
198 198 198 198 198
207 207 207 207 208
216 216 217 217 217
225 226 226 226 227
235 235 235 236 236
93 92 92 91 91
102 102 102 101 101
112 112 111 111 111
122 121 121 121 120
131 131 131 130 130
141 141 140 140 140
150 150 150 150 150
160
169 169 169 169 169
179 179 179 179 179
189 189 189 189 189
198 198 198 199 199
208 208 208 208 209
217 218 218 218 218
227 227 227 228 228
236 237 237 237 238
80
79 78 77 77 76 76 75 75 74 74 73 73 72 72 72 71
88
87 86
86 85 85 84
84 83 83
82 82 82 81
160 160
159 159
(continued)
180
,
T A B L E 511.-GEOMAGNETIC COORDINATES OF P O S I T I O N O N THE E A R T H R E F E R R E D T O THE G E O M A G N E T I C A X I S P O L E O F 1922, FOR P O I N T S IN V A R I O U S GEOGRAPHICAL LOCATIONS (continued) Geographic latiiude
Geographic east longitude in degrees A
<
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
+ 4 + 2 0
71 71 70 70 69
81 80 80 80 79
91 90 90 89 89
100 100 100 99 99
110 110 109 109 109
120 120 119 119 119
130 129 129 129 128
139 139 139 139 138
149 149 149 149 148
159 159 159 159 159
169 169 169 169 169
179 179 179 179 179
189 189 189 189 189
199 199 199 199 199
209 209 209 209 210
219 219 219 219 220
228 229 229 229 230
238 238 239 239 240
-2 -4 -6 -8 -10
69 69 68 68 68
79 78 78 78 77
89
98 98 98 97 97
108 108 107 107 107
118 118 117 117 117
128 128 128 127 127
138 138 138 137 137
148 148 148 148 147
158 158 158 158 158
169 169 169 168 168
179 179 179 179 179
189 189 189 189 190
199 200 200 200 200
210 210 210 210 211
220 220 220 221 221
230 230 230 231 231
240 240 241 241 241
-12 -14 -16 -18 -20
67 67 66 66 66
77 76 76 76 75
87 86
96 96 95 95
106 106 105 105 105
116 116 116 115 115
126 126 126 125 125
137 136 136 136 135
147 147 147 146 146
158 157 157 157 157
168 168 168 168 168
179 179 179 179 179
190 190 190 190 190
200 200 201 201 201
211 211 211 211 212
221 221 222 222 222
231 232 232 232 233
242 242 242 243 243
-24 -28 -32 -36 -40
65 64 63 62 61
74 73 72 71 70
84 83 82 81
94 93 92 91 89
104 103 102 100 99
114 113 112 111 109
124 123 122 121 120
135 134 133 132 131
146 145 144 143 143
156 156 156 155 154
168 167 167 167 167
179 179 179 179 179
190 190 191 191 191
20 1 202 202 203 203
212 213 213 214 215
223 224 225 226 227
234 235 235 237 238
244 245 246 247 248
-44 -48 -52 -56 -60
60 58 57 55 53
69 67 66 64 62
78 77 74 73 70
88 86 84 82 79
98 96 94 92 88
108 106 104 102 .99
119 117 115 112 109
130 128 126 124 121
142 140 139 137 134
154 153 151 150 148
166 166 165 164 163
179 179 179 179 178
191 192 192 193 194
204 205 206 207 209
216 217 219 22 1 223
228 229 231 233 236
239 24 1 243 245 248
250 252 254 256 259
-64 -68 -72 -76 -80
51 48 44 39 32
59 55 51 45 37
67 63 58 51 41
76 71 65 57 45
85 80 73 63 49
95 89 81 70 53
105 99 90 77 56
117 111 101 59
130 124 114 95 61
145 140 130 108 59
161 158 151 131 49
178 178 177 175 7
196 198 204 223 316
212 217 226 249 302
227 233 243 263 299
241 247 256 273 300
253 259 268 281 303
263 270 277 289
-84 -88
23 9
25 9
28 10
30 10
31 10
32 9
31 9
30 8
26 6
20 4
12 2
1 0
350 358
341 356
335 354
331 353
329 352
++ 68"
88 88 87 87 86
85 85
80
%
84
(coatinued)
306
180
V)
5
I
5
g
T A B L E 511.-GEOMAGNETIC COORDINATES OF P O S I T I O N ON T H E E A R T H R E F E R R E D T O T H E GEOMAGNETIC A X I S P O L E O F 1922, FOR P O I N T S I N VARIOUS GEOGRAPHICAL LOCATIONS (continued) Geographic latitude
Geographic east longitude in degrees 7
~
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
189 203 212 219 224
189 205 217 225 231
190 208 22 1 231 238
190 210 225 237 245
190 211 229 243 253
189 212 233 250 261
189 211 236 257 270
188 210 239 264 281
186 206 241 275 294
184 200 239 288 310
182 192 229 311 331
180 181 187 355 357
178 170 136 43 24
176 161 122 69 46
174
155 I19 83 63
173 151 120 93 76
172 149 123 101 88
171 148 126 109 97
170 149 130 116 106
228 231 233 235 237
235 239 242 244 246
243 247 250 253 254
25 1 256 259 262 264
260 265 268 272 274
269 275 279 282 284
279 285 289 292 295
291 297 301 304 306
304 310 314 317 319
320 325 328 330 331
338 341 343 344 345
358 358 358 359 359
18 16 14 13 12
37 32 29 27 26
53 47 43 41 39
67 61 56 53 51
79 73 68 65 63
89 84 79 76 74
99 93 89 87 84
238 239 240 240 241
247 248 249 250 250
257 258 258 259 260
266 267 268 269 269
276 277 278 278 279
286 287 288 289 289
297 298 299 299 300
308 309 310 311 311
320 321 322 322 323
333 333 334 334 334
346 346 346 346 347
359 359 359 359 359
12 11 11 11 11
25 24 24 24 23
37 37 36 36 35
49 49 48 47 47
61 60 59 58 58
72 71 70 69 68
82 81 80 80 79
242 242 243 243 243
25 1 25 1 252 252 253
260 261 26 1 262 263
270 271 27 1 272 272
280 280 281 282 282
290 291 29 1 292 292
301 301 302 302 303
312 312 313 313 314
323 323 324 324 325
335 335 335 336 336
347 347 347 347 347
359 359 359 359 359
11 11 11 11 10
23 23 22 22 22
35 34 34 33 33
46 46 45 45 44
57 57 56 55 55
68 67 67 66 66
78 77 77 76 76
244 244 245 245 246
253 254 254 255 255
263 263 264 264 265
273 273 274 274 275
283 283 284 284 285
293 293 294 294 295
303 304 304 305 305
314 314 315 315 315
325 325 326 326 326
336 336 336 337 337
347 348 348 348 348
359 359 359 359 359
10 10 10 10 10
22 21 21 21 21
33 33 32 32 32
44 43 43 43 42
55 54 54 53 53
65 65
75 75 74 74 73
246 246 247 247 248
256 256 256 257 257
265 266 266 267 267
275 276 276 276 277
285 285 286 286 287
295 296 296 2% 297
305 306 306 306 307
316 316 316 317 317
326 327 327 327 327
337 337 337 338 338
348 348 348 348 348
359 359 359 359 359
10 10 10 10 10
21 21 20 20 20
31 31 31 31 31
42 42 41 41 41
53 52 52 51 51
63 62 62 62 61
(conhared)
64 64 63
73 72 72 72 71
P
\o
W
e5 v)
t
T A B L E 511.-GEOMAGNETIC COORDINATES O F P O S I T I O N ON T H E E A R T H R E F E R R E D T O T H E GEOMAGNETIC A X I S P O L E O F 1922, FOR P O I N T S I N V A R I O U S GEOGRAPHICAL LOCATIONS (continued)
71
I -c
v)
B D
I -
2 F
z
Geographic latitude
Geographic east longitude in degrees r
A.
-.
180
190
200
219
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
248 248 249 249 249
258 258 258 259 259
267 268 268 269 269
277 278 278 278 279
287 287 288 288 289
297 297 298 298 299
307 308 308 308 308
317 318 318 318 318
328 328 328 328 328
338 338 338 333 339
348 349 349 349 349
359 359 359 359 359
9 9 9 9 9
20 20 20 19 19
30 30 30 30 30
41 40 40 40 40
51 50 50 50 50
61 61 60 60 60
71 71
-2 -4 -6 -8 -10
250 250 25 1 25 1 25 1
260 260 260 26 1 26 1
269 270 270 271 271
279 280 280 280 281
289 289 290 290 29 1
299 299 300 300 300
309 309 309 310 310
319 319 319 319 320
329 329 329 329 330
339 339 339 339 339
349 349 349 349 349
359 359 359 359 359
9 9 9 9 9
19 19 19 19 19
29 29 29 29 29
39 39 39 39 38
49 49 49 48 48
59 59 58 58 58
69 69 68
-12 -14 -16 -18 -20
252 252 252 253 253
262 262 262 263 263
271 272 272 273 273
281 282 282 282 283
291 29 1 292 292 292
301 30 1 301 302 302
310 311 311 311 312
320 320 32 1 321 321
330 330 330 330 331
339 340 340 340 340
349 349 349 349 350
359 359 359 359 359
9 9 9 9 9
19 18 18 18 18
28 28 28 28 28
38 38 38 37 37
48 47 47 47 47
57 57 57 56 56
67 67 66 66 66
-24 -28 -32 -36 -40
254 255 256 257 259
264 265 266 268 269
274 275 276 277 279
284 285 286 287 288
293 294 295 296 297
303 304 304 305 306
312 313 314 314 315
322 322 323 323 324
331 331 332 332 333
340 341 341 341 342
350 350 350 350 350
359 359 359 359 359
8 8 8 8 8
18 18 17 17 17
27 27 26 26 25
37 36 35 35 34
55 55 54 53 52
-44 -48 -52 -56 -60
260 262 264 267 269
270 272 274 276 279
280 282 283 286 288
289 291 292 295 297
298 300 301 303 305
307 309 310 31 1 313
316 317 318 320 321
325 326 327 328 329
333 334 335 336 337
342 342 343 344 344
351 351 351 351 352
359 359 359 359 359
8 7 7
16 16 15 15 14
25 24 24 23 22
33 33 32 31 30
46 45 45 44 43 42 41 40 39 37
+ 8" $6 f 4 + 2
0
7 7
51 50 48 47 45
70
70
69
68
68
65
64 63 62 61
60 58
57 55 53
Q < I
2
TA BL E 511.-GEOMAGNETIC
c D -I La
-
rn v)
COORDINATES O F POSITION ON T H E E A R T H R E F E R R E D T O T H E GEOMAGNETIC AXIS POLE
OF 1922, FOR P O I N T S I N VARIOUS GEOGRAPHICAL LOCATIONS (concluded) Geoaraohic _ . east longitude in degrees
cro-
gr&ic latitude* -64_ .
7
150
190
27.1 _. -
-28.1 __
-68 -72 -76 -80
279 286 296 310
287 293 302 314
-84 -88
329 350
330 350
200
21G
220
230
240
250
270
280
290
300
310
320
330
340
350
360
352 .. 353 353 354 355
359
6
332 334 337 341
338 . . ~34s 339 346 340 347 343 348 345 350
359 359 359 360
6 6
14 i3 12
21 20
36 34 31
4
9
23
43 41 37 33 28
51 48
16 14
28 27 25 22 18
39 32
346 354
349 355
356 358
360 360
3 1
3
7
10 4
13 6
17 7
20 8
23 9
300 ._. .m ___
.?is
323
3.30 ___
296 301 308 318
303 308 314 322
311 315 320 327
318 321 326 331
325 328 331 336
332 350
334 350
337 351
340 352
343 353
_291 _
_._.__
260
353 357
~
5
11
~~
18
28
44
BIBLIOGRAPHY: a, Chapman, S., and Bartels, J., Geomagnetism vols. 1 and 2 Oxford, 1940. b Flcming J. A., ed., Terrestrial magnetism and electricity, Physics of the earth series, vol. 8, McGraw-Hill New York 1939. c, Lud; Albert K., aAd Herbert Howe, H.,’ Magnetiim of the earth U.S. Coast and Geodetlc Survey, SeriaZ 1Y45. d. Drel, Sakuel A,, MLgnetic declination’in the United States 1945 idem Serial 664. 1946. e, beel, Samuel A, and Herbert Howe, H.. United States magnetic tables and magnetic charts for 1945, idem, Serial 667, 1948. f, Vestin;, E. H., Laporte, L.,Lange, I., Cqoper, C., and Hendrix, W. C., Descripg Vestine E. H. Lange I. Laporte L. and tion of the earth’s main magnetic field and its secular change 1905-1945, Carnegie Inst. Washington Puhl. No. 578, 1947. h ’ Macht, ’H. G . , ‘Das erdm;gnetisch ’Fe16 der Scott, W. E., The geomagnetlc field, its description and analysis. Carnegie Inst. Washington Publ. No. 580, 1947. Polargebiete. Zeitschr. Meteorol., vol. 1. pp. 259.297 1947. I. Elsasser, W. M., Phys. Rev., vol. 60, p. 876, 1941; ;ol. 69, p. 106, 1946; vo?. 70. p. 202, 1946. j, Bullard,, E. C., The magnetic field within the e a r t i , Proc. Roy.,Soc. London, A, vol. 197, p. 433, 1949. k, Blackett, P. M. S., Nature, vo!. 159. p. 658, 1947. (Gives recent review, theories of earth’s field.) I, Journal of Geophysical Research vol. 56, p. 283 1951 Baltimore. m Nippoldt, A,, Prussla-Meteorologrshes Institut, Bericht uber die Tatigkeit des Preuss. Met. Inst. im Jahre 1929: Veriioffentlichuhgen Nr. 372, p. 137, 1530. n, Wasser~all,Terr. Mag., vol. 44, p. 263, 1939. 0, Australian Antarctic Research (B.A.N.Z.A.R.) Expedition 1929-31 (D. Mawson, ed.), Reports,- Ser. A, vol. 4, p. 1, Adelaide, 1944. p, Terr. Mag., vol. 48, pp. 97-108, 171-182 and 237.242, 1943: vol. 49, pp. 47-52, 109-118, 199.205, and 267-269. 1944; and vol. 33, p. 199.240. 1945. Se; (a) above for sunspot numbers and international character-figures C, 1890-1937: also for C, 1905-1942; geomagnetic indices C and K for 1940-1947 are given in H. F. Johnston W. E. Scott, and Ella Balsam, Internat. Union Geod. and Geophys., Terr. Mag. Electr., Bull. Nos. 12 and 12a, Washington, 1948. For current values, see ( l ) , Forecasts of keomagnetic activity, .National Bureau of Standards. World isomagnetic charts are issued by U.S. Hydrographic Office: for the United States and possessions, by U.S. Coast and Geodetic Survey. 663 Washington
(4
502 T A B L E BlP.--MAGNETIC
A N D ELECTRIC DATA FOR S U N A N D E A R T H
(Chapman, Cosmical magnetic phenomena, Nature, vol. 124, p. 19, 1929.) Sun's magnetic field too small to be measured by direct effects on earth; measured by Zeeman effect on spectrum lines. Earth's magnetic axis inclined 12" to rotation axis. Earth's field rotates at same speed as nearly rigid earth. Earth : Polar intensity of field j gauss. Sun : Intense local fields frequent, 3000 gauss. The magnetic field of spots reverses each cycle (Proc. Astron SOC.Pacific, vol. 41, p. 136, 1929). The polarity of leading spot in a bipolar group in the Northern Hemisphere is opposite that in the Southern Hemisphererelationship reverses each new sunspot cycle . complete magnetic cycle is double sunspot cycle. Specific resistances : Earth Sun (Chapman, loc. cit.) Heaviside layer, 10" Reversing layer, 3 X 10" Dry earth, 10" to 10'' Photosphere, lo8,T , 10000°K. Sea water, 2 x 10" Center, 3 x 108, T , 4 x 10' 200-600 m deep, 3 X 10" Further characteristics of spots : (Milne, Monthly Notices, Roy. Astion. SOC.,vol. 90, p. 487, 1930.) Umbra (dark center), 800 (very small) to 80,000 km across: penumbra may reach 240,000 km. Generally short-lived. A few last several (3) rotations, very rarely 6 ; one in 1840, 18 months. Most occur in 2 belts 5" to 40" N. and S. latitudes, often occur in pairs (see above). Umbra temperature 4000" K. Evershed gives velocity of outburst from spot 2 km/sec.
.
SMlTHSONIAN PHYSICAL TABLES
TABLES 513-52l.-MAGNETO-OPTIC
EFFECTS
503
Faraday discovered that, when a piece of heavy glass is placed in magnetic field and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization of the beam is rotated. This was subsequently found to be the case with a large number of substances, but the amount of the rotation was found to depend on the kind of matter and its physical condition, and on the strength of the magnetic field and the wavelength of the polarized light. Verdet’s experiments agree fairly well with the formula
where c is a constant depending on the substance used, 1 the length of the path through the substance, H the intensity of the component of the magnetic field in the direction of the path of the beam, r the index of refraction, and A the wavelength of the light in air. If H be different, at different parts of the path, 1H is to be taken as the integral of the variation of magnetic potential between the two ends of the medium. Calling this difference of potential v, we may write 6 = Av, where A is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant A has been called “Verdet’s constant,’’ and a number of values of it are given in Tables 514-517. For variation with temperature the following formula is given by Bichat : R = R, ( 1 - 0.00104t - 0.000014tZ), which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wavelength the following approximate formula, given by Verdet and Becquerel, may be used :
where p is index of refraction and A wavelength of light. A large number of measurements of what has been called molecular rotation have been made, particularly for organic substances. These numbers are not given in the table, but numbers proportional to molecular rotation may be derived from Verdet’s constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formulas are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance, or substances, separately ; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation produced by a salt, may be inferred from the table. For example, if a solution of a salt in water gives Verdet’s constant less than 0.0130 at 20°C, Verdet’s constant for the salt is negative. As a basis for calculation, Verdet’s constant for carbon disulfide and the sodium line D has been taken as 0.0130 at 20°C.
SMITHSONIAN PHYSICAL TABLES
T A B L E 513.--blSPERSION
504
.5r
Wavelength
Steel ............... -111 Cobalt .............. - 9.5 Nickel . . . . . . . . . . - 5.5
OF KERR EFFECT
1.oc
2.08
1.58
2.58
-9i0 -6.5 . ... +3.0 Field intensity = 10,000 cgs units. (Intensity of magnetization = about 800 in steel, 700 to 800 in cobalt, about 400 in nickel.) -161 -11.5 - 4.0
T A B L E 514.-VERDET'S
-14: - 9.5 0
-1 1: -11. 1.75
+
CONSTANT
Part 1.-Solids
Suhstance
Formula
Amber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Blende . . . . .......... . ... ... ................ ZnS Diamond ..... .. ... ... .. . .. ........ ......... C Lead borate ... ............ .... .... ......... PbBzO, Selenium . .. ... ... ............ ..... ... ...... Se Sodium borate . . . . . , . . . . . . . . . . . . . . . . . . . . . . . NaJ3,0, Cu20 Ziqueline (Cuprite) . . . . . . . . . . . . . . . . . . . . . . . . . . Fluorite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CaF,
.
Glass : Jena, medium phosphate crn ....................... ..... heavy crown, 01143.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0451 .... .... ... ... .... . . ... ... ... . light flint, heavy fli;it, 0500 ........ ............ .......... S163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zeiss, ultra;yiolet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...................................... ...................................... Quartz, along axis, i.e., plate cut 1 to axis . . . . SiOa
Rock salt
. ....... ... .................. ......
NaCl
Sugar, cane: along axis IIA .................. CiaHz,On axis IIA' Sylvite
.................
... . .. . . .. . . . . . . . . ... . . . . . .. . . . .. . .. .
(continued) SMITHSONIAN PHYSICAL TABLES
KCl
Wavelength B
.589 ' I'
.687 .589 .687 .2534 .3655 .4358 .4916 .589 1.oo 2.50 3.00 .589 'I
"
,313 .405 .436 .2194 .2573 .3609 .4800 S892 .6439 ,2599 .3100 .4046 .4916 .6708 1.oo 2.00 4.00 .451 .540 .626. .451 .540 .626 ,4358 S461 .6708 .90 1.20 2.00 4.00
Verdet's constant in min
.0095 2234 .0127 .0600 .4625 ,0170
5908
.05989 ,02526 .01717 .01329 .00897 .00300 .00049 .00030 .0161 .0220 .0317 .0608 .0888 .0674 .0369 .0311 .1587 .1079 .04617 .02574 .01664 .01368 ,2708 .1561 .0775 .0483 ,0245 .01050 .00262 .00069 .0122 .0076 .0066 .0129 .0084 .0075 .0534 .0316 .02012 .01051 .00608 .00207
.0w54
T A B L E 514.-VERDET'S
Substance
Acetone ........................... Acids : Formic ..................... Acetic ...................... Hydrochloric ............... Hydrobromic ............... Hydroiodic ................. Nitric ....................... Alcohols : Methyl .................. Ethyl ................... Benzene ........................... Bromides : Methyl .................. Ethyl ................... Carbon bisulfide .................... Chlorides : Carbon ................. Chloroform ............. Ethyl .................. Iodides : Methyl .................... Ethyl ..................... Nitrates : Methyl ................... Ethyl .................... Paraffins : Pentane ................. Hexane ................. Toluene ........................... Water = 2 4 9 6 ~................... 275 ..................... .4046 .................... ,589 ..................... 1.000 ..................... 1.300 ..................... Xylene ............................
T A B L E 515.-VERDET'S
505
C O N S T A N T (concluded)
Part 2.-Liquids
(for
= 0.589 p ) Density in g per cm3
Chemical formula
-7947 112273 1.0561 1.2072 1.7859
C3HsO CHzOz CsH,Oz HCI HBr HI HNOa CHaOH CzHsOH CsHe CH3Br CzHsBr
Verdet's constant in min
Temp. "C
.0113 . ~ _ . 20 15 .0105 21 .0105 15 .0224 .0343
'
13 20' .8786 1.7331 1.4486 1.26 1.60 1.4823 .9169 2.2832 1.9417 1.2157 1.1149 .6332 .6743 8581
csz
CCI, CHCL CzHECI CHaI CzHsI CHaO * NO, CzHsO. NO,
.... .... ....
.... .... .... .... ....
.... .... ....
.8746
CsHm
.0297 .0205 .0183 ,0420 .0321 .0164 .0138 .0336 .0296 .0078 .0091 .0118 ,0125 ..0269 .I042 .0776 .0293 .0131 .00410 .00264 .0263
'
0 15 18 15 20 6 15 '
'
" " 'I
28
..
.. .. .. .. ..
27
C O N S T A N T FOR S O L U T I O N S O F ACIDS A N D S A L T S I N W A T E R (X=O.589p)
Chemical formula
Density g per cms
Verdet's cpnstant in min
HBr ........ 1.3775 HCI . . . . . . . . 1.1573 " ........ 1.0762 H I .......... 1.9057 .......... 1.1760 HNOJ . . . . . . 1.3560 NH3 ........ ,8918 NHIBr ...... 1.2805 BaBr. ....... 1.5399 CdBr? ....... 1.3291 CaBrz ....... 1.2491 KBr ........ 1.1424 " ........ 1.0876 N$3r ....... 1.1351 ....... 1.0824 KzC03 . . . . . . 1.1906 NalCOl ..... 1.1006 NH,CI- ...... 1.0718 BaCL ....... 1.2897 CdCL . . . . . . . 1.3179 " ......... 1.1732 CaCL ....... 1.1504 ' ....... 1.0832 FeCL ....... 1.4331 ' ....... 1.1093 I'
SMITHSONIAN PHYSICAL TABLES
,0244 ,0204 .0168 ,0499 .0205 .0105 .0153 .0226 .0215 ,0192 ,0189 .O 163 .0151 .0165 .0152 .0140 .0140 .0178 .O168 .0185 ,0160 .0165 .0152 .0025 .0118
Temp. "C
20"
Chemical formula
FezCle '' "
15 20
"
"
15 20
15 '
Verdet's cpnstant in mrn
....... 1.6933 -2026
....... 1.5315 ....... 1.1681 ....... 1.0864 ....... 1.0232 HgClz ....... 1.0381 NiCL ....... 1.4685 ' ....... 1.2432 KCI ........ 1.6000 NaCl ........ 1.0418 SrCL ........ 1.1921 SnCL ....... 1.3280 ZnCL ....... 1.2851 N H J ....... 1.5948 ' ....... 1.2341 K I .......... 1.6743 .......... 1.1705 KNOI ....... 1.0634 N a N 0 3 ...... 1.1112 UzOsNzOs ... 2.0267 . . . 1.1963 BaSo. ....... 1.1788 KzSOd ...... 1.0475 NazSO, ..... 1.0661 "
,'
Density g per cm3
-.1140 -.0015 .0081
.om
.0137 .0270 .0196 .0163 .ni44 .....
.0162 .0266 .0196 ,0396 .0235 .0338 nl Q?
Temp. "C
15" " " " "
16 15 " " (6
"
'' "
" " I'
."I"-
.0130
20
,0131 "___
0053 0115 0134 0133 0135
" " " " "
506
T A B L E 516.-VERDET'S
C O N S T A N T FOR S O M E GASES
Du Bois shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and Du Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit area, which controls the amount of rotation of the beam. Some data on the Verdet constant of gases by Ingersol (*) and by de Mallemann ( t ) for wavelength 5780A, pressure 760 mmHg, and at temperature 0°C : Verdet cpnstant in nun
Substance
Hydrogen t ... Hydrogen* ... Deuterium* ... Nitrogen* ....
Verdet cpnstant in min
Substance
6.29 X lod Helium * ..... .51 X 6.26 Oxygen* ..... 5.55 6.21 Oxygen? ..... 5.69 6.30 A r g o n t ....... 9.36
Substance
Methane t ..... Ethylene+ .... Ethylene* .... Carbon dioxide *
Verdet constant in min
17.4 X lo-' 34.4 34.6 9.25
The de Mallemann values are from numerous papers in Comptes Rendus, 1929 to date (See in particular R. de Mallemann, F. Suhner, and J. Grange, C. R., vol. 232, p. 1094, 1915. See also P. Gabiano Ann. d. Physique, vol. 10, p. 68, 1933.). The Ingersoll values are from an O N R preliminary report (October 1952). The probable error of the de Mallemann and the Ingersoll values is of the order of 1 percent. The dispersion of the rotation for most gases, except oxygen, is roughly as the inverse square of the wavelength.
Atmospheric air ....................... Carbon dioxide ........................ Carbon disulfide ....................... Ethylene ............................. Nitrogen ............................. Nitrous oxide ......................... Oxygen .............................. Suffur dio'Tide ........................
........................
T A B L E 517.-VERDET'S
Verdet's cpnstant
Pressure
Temp.
Atmospheric
Ordjnary
74 cmHg Atmospheric
70°C Ordinary
Substance
-
in m m
1'
246cmHg
20°C
6.83 X lo-' 13.00 23.49 34.48 " 6.92 " 16.90 " 6.28 " 31.39 " 38.40 "
::
A N D K U N D T ' S C O N S T A N T S FOR SOME M A T E R I A L S
The following short table is quoted from Du Bois's paper. The quantities are stated in cgs measure. circular measure (radians) being used in the expression of "Verdet's constant" and "Kundt's constant."
Name of substance
Magnetic susceptibility
-
Cobalt .............. Nickel .............. Iron ................ Oxygen: 1 a t m . . .... +.0126 X Sulfur dioxide ...... -.0751 Water .............. -.0694 Nitric acid .......... -.0633 Alcohol ............. --.0566 Ether .............. --.0541 Arsenic chloride ..... -.0876 Carbon disulfide ..... --.0716 Faraday's glass ..... --.0982
SMITHSONIAN PHYSICAL TABLES
!pP " " " " " " "
Verdet's constant 7 -
Number
-
Wavelength of light in cm
6.44 x 10.'
,000179 X lo-' .302 ,377 ,356 ,' ,330 ,315 1.222 1.222 1.738
:: ::
6.56 5.89
'' I'
"
"
'I
Knudt's constant
3.99 3.15 2.63 ,014 - 4.00 - 5.4 - 5.6 - 5.8 - 5.8 -14.9 -17.1 -17.7
507
T A B L E 5 1 8 . V A L U E S OF KERR'S CONSTANT
Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant K. H e calls this constant K, Kerr's constant for the magnetized substance forming the magnet. Co!or of light
Red Red Yellow Green
Blue
Violet
Spectrum line Li a
Kerr's constant in minutes per cgs unit of magnetization
Wavelength
-
.677 I.( .620
F G
.517 .486 .43 1
I
.589
D b
T A B L E 519.-TRANSVERSE
Cobalt
Nickel
Iron
Magnetite
-.0208 -.0198 -.0193 -.0179 -.0180 -.0182
-.0173 -.0160 --.0154 -.0159 -.0163 --.0175
-.0154 -.0138 --.0130
+.0096 +.0120 +.0133 +.0072 +.0026
-.oiii
-.0101 --.0089
-
GALVANOMAGNETIC A N D THERMOMAGNETIC EFFECTS
Effects are considered positive when, the magnetic field being directed away from the observer, and the primary current of heat or electricity directed from left to right, the upper edge of the specimen has the higher potential or higher temperature. E = difference of potential produced ; T = difference of temperature produced ; I = primary current; = primary temperature gradient ; B = breadth, and D = thickness, dX
of specimen; H = intensity of field, cgs units. Hall effect (galvanomagnetic difference of potential), E = R-HI
D Nernst effect (thermomagnetic
"
"
temperature), T = P-H I D potential), E = Q H B ~
Leduc effect (
"
'I
temperature), T = S H B -dt
Ettingshausen effect (
"
'I
'I
dx
dX
Substance
Values of R
+
Tellurium ............. 400 to 800 Antimony .............. +.9 " 2 2 Steel .................. +.012 " .033 Heusler alloy .......... +.010 I' .026 Iron ................... +.007 " .011 Cobalt ................. +.0016 " .0046 Zinc ................... Cadmium .............. +.o0055 Iridium ................ +.o0040 Lead .................. +.00009 Tin ................... -.oooo3 Platinum .............. -.0002 Copper ................ -.o0052 German silver .......... -.00054 Gold .................. -.00057 to .00071 Constantin ............. -.0009 Manganese ............ -.00093 Palladium ............. --.0007 to .0012 Silver ................. -.o008 " .0015 Sodium ................ -.0023 Magnesium ............ -.00094 to .0035 Aluminum ............. -.00036 " .0037 Nickel ................. -.0045 " .024 Carbon ................ -.017 Bismuth ............... - UP to 16.
SMITHSONIAN PHYSICAL TABLES
P X 108
+zoo
+2 -.07 -.06 +.01
-
QXlW
+ 3 m +goo0 to 18000
-700 +1600 -1000 +I800
-54
" " I' 'f
"
1700 7000 1500 2240 240
up to -5 0 -5.0 ( ?) -4.0 ( ?)
-
-90 to 270
-2 -18
-j-50to 130 -46
+.04 to .19
+5.
+3 to 40
+zoo0
+
"
430
-3 -41
"
9000
-45
+loo
UP
to 132000
-200
T A B L E 520.-DISPERSION
508
Field Mirror
Iron ................ Cobalt .............. Nickel .............. Steel ............... Invar ............... Magnetite ..........
.41~
cgs
21,500 20,000 19,000 19,200 19,8CO 16,400
T A B L E 52l.-VARIATION
-25 -.36 -.16 -27 -22 -.07
OF K E R R E F F E C T
.44p
-.26 -.35 -.15 -28
-.23 -.02
.52p
.56&
-.31 -.35 -.13 -.35 -23 +.06
-.36 -.35 -.14 -.38 -23 +.08
,481~
-28 -.34 -.13 -.31 -24 +.04
H
1000 2000 3000 4000 5000 6000
-iwc 62.2 55.0 49.7 45.8 42.6 40.1
.64p
.66p
-.44 -.35 -.14 -.44 -.23 +.04
-.45 -.36 -.14 -.45 -23 +.03
OF H A L L CONSTANT W I T H T H E T E M P E R A T U R E
Bismuth r
,601~
-.42 -.35 -.14 -.40 -22 +.06
Antimony
-900
-23"
+1i.s0 +loo0
28.0 25.0 22.9 21.5 20.2 18.9
17.0 16.0 15.1 14.3 13.6 12.9
13.3 12.7 12.1 11.5 11.0 10.6
r
7.28 7.17 7.06 6.95 6.84 6.72
H
-186°C
1750 3960 6160
-79"
,263 ,249 ,252 ,243 ,245 235
+Zl.S'
+58"
.217 211 ,209
,203
Bismuth
' H
890
+14.5'C
+104'
125'
5.28
2.57
2.12
* Melting point.
SMITHSONIAN PHYSICAL TABLES
1890
zizo
1.42
1.24
z w 1.11
259"
269"
270"
.97
.83
.77*
509 GLASS AND OPTICAL CRYSTALS
TABLES 522-555.-OPTICAL
Optical glass and optical crystals are in general described by giving their indices of refraction for standard wavelengths, such as the D , A , C, F , etc., lines and their v values = ( n D - l)/(nF - n c ) . Also, the spectral transmission and some other physical constants may be given. In addition, many crystals have different optical properties in different directions which require some consideration of their optical axes. For glasses used as filters the spectral transmission is an important item. A table of wavelength units and some data on various types of optical glass and crystals follow. T A B L E 522.-RADIATION
Radio meter
Radiation micron
Colorimetry millimicron
WAVELENGTH UNITS
Spectroscopy angstrom
X-rays X-ray units
Y rays microangstrom
Powers-of-10 eauivalent of units listed in column 1 Units Name
Symbol p mp
Micron ............. Millimicron ......... 4ngstrom ........... A X-ray unit .......... X p Microangstrom ...... p A
p
1
lo-"
IO-~ lo-'"
nip
A
XU
pA
103 1 1O-l
10' 10 I
107
loio lo7 10" 10s 1
lo-'
lo' 10"
lo9
lo-''
1 lo-'
cgs unit cm
mm
m
lo-' lo-'
lo-* 10.' lo-' 10-10 lo-"
10-0 lo-' lo-'' 10-18 lo-''
10" 10-11
lo-"
The X-ray unit as originally used referred to the measurement of x-wavelengths using a cClcite crystal. Such results are in error by a factor of 1.00203.
OPTICAL GLASS
T A B L E 523.-CHA
R A C T E R l S T l C S O F A M E R ICAN-M A D € OPT1C A L GLASSES IB0
Crown glasses-crown (CO), light barium crown (LBC), dense barium crown (DBC). extra dense barium crown (EDBC) Name Type f i
no' nc Y
................. C -BL 518/596 ~ ............... 1.51750 ............... 1.52886 ............. 1.52393 ................ 1.51524 ................ 59.6 ..................
LBC -BL 573/568
DBC -CG 612/595
DBC -CG 620/603
DBC -CG 638/555
1.57250 1.58538 1.57962 1.56954 56.8
1.61160 1.6246 1.61880 1.60852 59.5
1.62030 1.6332 1.62750 1.61722 60.3
1.63840 1.6532 1.64650 1.63500 55.5
EDBC -BL 617/539
1.61700 1.63171 1.62511 1.61367 53.9
Flint glasses-crown flint (CF), light flint ( L F ) , short flint (SF), extra light flint ( E L F ) , light barium flint (LBF), barium flint (BF), dense barium flint (DBF), dense flint ( D F ) , extra dense flint ( E D F )
.............
............. 526/546 XD ............... 1.52560 no' ............... 1.53793 t~i+................ 1.53239 nc ................ 1.52277 Y ................ 54.6
LBF-BL 548/537
BF-BL 570/481
DBF-BL 617/385
DBF-CG 670/472
ELF-BL 541/475
1.54770 1.56081 1.55491 1.54471 53.7
1.57040 1.58575 1.57880 1.56695 48.1
1.61700 1.63811 1.62843 1.61242 38.5
1.66990 1.6882 1.67990 1.66572 47.2
1.54140 1.55618 1.54949 1.53809 47.5
........... E 559/455 LF-BL
SF-CG 613/442
LF-BL 575/429
DF-BL 596/397
EDF-BL 751/277
1.55850 1.57447 W F ................ 1.56722 nc ................ 1.55495 Y ................ 45.5
1.61300 1.6308 1.62280 1.60893 44.2
1.57510 1.59263 1.58464 1.57122 42.9
1.59560 1.61538 1.60632 1.59130 39.7
1.75060 1.78716 1.77009 1.74302 27.7
Name Type lza'
CF-BL
.................. ............... ................
Adapted from data from Bausch & Lomb ( B L ) and Corning Glass Works (CG). F . A. Molby, West Virginia University assisted in selecting and arranging these data. For reference see Molby, Journ. Opt. SOC.Amer., k . 39, p. 600, 1949. SMITHSONIAN PHYSICAL TABLES
cn w
In
5
t
D
z
T A B L E 524.-CHARACTERISTICS Name
.................
511/635
517/645
BSC
BSC 536/645
512/605
............... 1.511 ................ 63.5
1.517 64.5
1.536 64.5
1.5125 1.523 60.5 58.6
W
I 1
Nominal
!r4l
ND
F
v
BSC
0
OF S O M E O P T I C A L GLASSES M A D E A T T H E N A T I O N A L B U R E A U OF S T A N D A R D S * LC
LC 523/586
LC
BaC
BaC
BaC
528/580
541/599
5725/574
574/577
1.528 58.0
1.541 59.9
1.5725 1.574 57.4 57.7
BaC
BaC
BaC
BaC
CF
611/588
617/550
620/600
529/516
1.6109 1.611 57.2 58.8
1.617 55.0
1.620 60.0
1.5286 51.6
6109/572
-4
E In h
Typical glass
nn no’ np
nc v
............... 1.51070 1.51728 1.53598 1.51310 1.52300 1.52882 1.54111 1.57283 1.57353 1.61118 1.61107 1.61727 1.61935 ............... 1.52086 1.52736 1.54645 1.52385 1.53433 1.54035 1.55259 1.58549 1.58623 1.62484 1.62425 1.63169 1.63257 ............... 1.51635 1.52289 1.54182 1.51906 1.52928 1.53520 1.54747 1.57984 1.58055 1.61873 1.61837 1.62523 1.62667 ................ 1.50829 1.51489 1.53349 1.51049 1.52037 1.52613 1.53843 1.56991 1.57060 1.60802 1.60801 1.61398 1.61626 ................ 63.4 64.7 57.7 57.6 57.0 59.0 54.9 59.5 64.4 60.6 58.7 58.3 59.9
Composition (batch)
....Percent
50, ............. 68.8 PbO ............. BaO ............. BzOa ............. 8.5 NazO ............. 7.8 KZO .............. 14.7 A S 2 0 8 . . . . . . . . . . . . .2
sbzoa ............ ZnO .............
Be0 ............. SrO .............. Li20 ............. CaO .............
c1 ................ so. .............. A1202 ............ ZrO. .............
1.52900 1.54225 1.53628 1.52600 51.4
Percent
Percent
Percent
Percent
Percent
Percent
Percent
Percent
Percent
Percent
Percent
Percent
Percent
66.3
63.4
71.9
70.2
68.3
58.8
45.2
47.4
13.0
5.0 14.7 5.0
1.5 14.0 2.5
1.5 14.0 2.5
1.2
1.2
28.7 6.2 1.4 7.0 .3 .7 7.5
30.0 4.9 .9 7.0 .3 .5 7.5
37.3 1.4 44.8 4.4 .2 .4 .3 .7 5.6
65.j 10.0 .2
1.2
19.9 3.8 2.8 10.3 .3
38.3 .2 42.8 10.7
37.8
12.5 7.5 12.0 .5
38.25 .2 42.85 6.7
1.2
6.2 .4 2.0 10.0 5.0
2.2
9.4 .7 .5
4.1
11.3 .7 .5 3.0
.4 .2
.4 .2
4.2
44.2 11.35 .3 .2 2.3
2.3
4.5
4.9
2.9
3.6 4.9
25
Data furnished by L . W . Tilton. National Bureau of Standards.
(continued
13.2 5.6 .2 1.8 3.6
In
I + I
0 Lo
T A B L E 524.-CHARACTERISTICS
5
O F SOME OPTICAL GLASSES M A D E A T T H E N A T I O N A L BUREAU O F STANDARDS (concluded)
z P V
I
<
P 2 Frn
Name
.................
Nominal
no Y
?$F
F
F
F
F
F
F
F
F
F
F
BF
BF
BF
5795/410
605/381
617/366
620/362
649/338
666/324
672/322
689/309
720/295
754/277
584/460
588/534
604/435
1.754 27.7
1.584 46.0
1.588 53.4
1.604 43.5
............... 1.5725 ................ 42.5
Typical glass no
na'
F 572/425
............... ............... ...............
1.57184 1.57942 1.60490 1.58950 1.59800 1.62590 1.58146 1.58951 1.61630 1.56796 1.56536 1.60030 42.4 40.9 37.9
................ ................ Composition (batch) .... Percent SiO, ............. 55.1 PbO ............. 31.7 BaO ............. 1.0 BzOa ............. Na10 ............. 5.0 Kz0 .............. 6.9 AsiOs ............ .3 SbOS ............ ZnO ............. B e 0 ............. SrO .............. LLO ............. CaO ............. CI ................ so3 .............. ALOa ............ ZrO, ............. IZC Y
1.5795 1.605 41.0 38.1
Percent
Percent
1.617 36.6
1.620 36.2
1.649 33.8
1.61699 1.62042 1.64903 1.63936 1.64311 1.67470 1.62907 1.63268 1.66285 1.61217 1.61556 1.64356 36.5 36.2 33.7 Percent
Percent
1.666 32.4
1.6725 1.689 32.2 30.9
1.720 29.5
1.66600 1.69335 1.68069 1.66021 32.5
1.67210 1.68884 1.70003 1.71851 1.68710 1.70475 1.66619 1.68259 32.1 31.1
1.72037 1.75410 1.75349 1.79106 1.73808 1.77380 1.71345 1.74644 29.2 27.5
1.58386 1.58835 1.60030 1.60249 1.59283 1.59614 1.58019 1.58513 46.2 53.4
1.60420 1.62240 1.61410 1.60020 43.4
Percent
Percent
Percent
Percent
Percent
Percent
Percent
Percent
Percent
53.1 35.5 .6
47.6 40.9
45.6 43.2
45.6 45.2
41.2 51.1
39.3 54.4
38.8 55.4
37.0 58.1
34.1 62.4
31.2 66.2
49.8 18.8 13.4
45.7 23.3
.4 9.6 .3 .5
2.2 8.8 .5
4.6 6.1 .5
3.0 5.7
.7 6.5 .5
6.0 .3,
5.5 .3
4.6 .3
3.2 .3
2.3 .3
1.5 8.2 .5
45.8 10.0 25.9 8.8 .8 6.7 .5
.5
7.8
14.3
8.2 .4 8.1
1.5
5 12 T A B L E 525.-INDEX
O F R E F R A C T I O N OF E A S T M A N K O D A K CO. N O N S l L l C A GLASSES (1949) Pa rt 1
Type
..................
Index
EK-110 (EK-110 -5328)
.............. .............. .............
1.71786 1.71227 IZF 1.70554 nD ............. . 1.69680 ( 1.6973) nc . . . . . . . . . . . . . . ‘1.69313 ~ Z A ‘ .... . ... . . .. . 1.68877 t ~ h
np
EK--210
EK-310
1.75861 1.75201 1.74413 1.73400
1.77301 1.76538 1.75638 1.74500
1.72979 1.72484
1.74033 1.73491
EK-325 (EK-32 -2641)
EK-330 (EK-33 -2734s)
EK450 (EK-45 -29)
1.77288 1.76518 1.75607 1.74450 (1.7442) ‘1.73973 1.73417
1.78280 1.77532 1.76643 1.75510 (1.7555) ‘1.75043 1.74499
1.83767 1.82832 1.81738 1.80370 (1.8016) ‘1.79814 1.79180
Type numbers and %D values in parentheses are 1947 descriptions of E K glasses for which expansion data appear in Table 550. !rsion o f glasses
P a rt 2.-Dispe Index
nD
...
1.69680 1.73400 (1.6973) 1 ..... 56.15 51.18 (56.0) nc .01434 ..... ,01241 (.O 1246) .01013 ... ..... ,00874 (.00877) . . . ..... ,00673 .00788 (.00677) ,00559 .00660 (.00562) ,00916 ... ..... ,00803 (.00806)
1.74500 46.42
.00900 .00763 .01009
T A B L E 526.-TRANSMISSION
1.74450 (1.7442) 45.56
(.01153) .00911 (.00913) .00770 (.00776) .01033 (.01018)
Cut-off in T at 360 380 400 460 500 800 1000 2000 3000 Cut-off in
mp .... 300 900 mp..
.. m f i . .. . 98.0 m p . . .. 99.5 m f i . .. . 99.5 99.5 m p . . .. m p . . .. 99.5 m p . . .. 99.5 m p . . .. 88.8 m p . . .. .5 mp. .. . 3200
BSC -2
C
-1
LBC -2
.
~
~~~
O F O P T I C A L GLASS
Thickness 10 mm, reflection deducted BSC -1
1.75510 1.80370 (1.7555) (1.8016) 47.19 41.8 (47.2) (40.9) .O 1924 .01600 (.01959) ( .O 1602) .01368 ’.01133‘ (.01394) (.01133) .01094 .00889’ (.01118) (.00890) ,00935 ,00748 (.00959) (.00750) .01190 ’.01011’ (.O 1014)
DBC -1
DBC -3
* CF -1
BF -1
DF -2
EDF -3
296 301 306 328 320 310 316 326 350 47.5 82.5 97.0 72.5 6.5 22.0 94.0 84.0 76.0 84.5 47.0 98.5 99.0 98.0 97.2 92.5 96.8 95.0 99.5 99.5 99.5 99.5 99.4 90.5 70.0 99.5 99.3 99.5 99.5 99.4 99.5 99.5 97.0 96.2 99.3 99.5 99.5 99.5 99.4 99.3 99.5 98.9 99.3 99.5 99.5 99.2 99.4 99.4 99.5 99.5 99.5 99.5 98.5 99.3 97.2 96.6 99.4 99.5 99.5 99.5 99.5 94.5 99.3 99.5 99.5 90.5 65.0 80.5 70.0 88.5 85.0 95.0 .O .O .9 .9 6.0 3.0 .6 .O 17.5 3000 4000 3200 2900 2850 3350 3250 3500 4100
Abbreviated from a list of results of measurements on freshly polished samples of Bausch & Lomb glasses. Data supplied by the Bausch & Lomb Optical Co.
SMITHSONIAN PHYSICAL TABLES
513 T A B L E 5 2 7 . 4 H A N G E S W I T H T E M P E R A T U R E I N ABSOLUTE I N D E X R E F R A C T I O N (n) A T 20°C FOR A N U M B E R O F GLASSES t
*
Borosilicate crown BSC-1
ttD
4360A.. .... 4801A.. .... 5087A.. .... 5462A ...... 5894A ...... 6440A. .
.
Light barium crown
Dense barium crown LBC--1 DBC-3 An/ 'C
Crown C-1
...
...
...
.199 .171 .159 .150 .131
.lo1 ,087
...
.059 .050
Crown flint CF-1
...
...
Barium flint BF-1
Dense flint DF-2
...
.586 .492 .450 .405 .370 .334
.085 .072
.305 .276
.261 .244
246 .218
.036 ,025
256 .237
205 .184
.162 ,140
...
...
...
OF
For references, see footnote 160, p. 509. units of the fifth decimal place.
t In
OF R E F R A C T I O N OF GLASSES M A D E B Y S C H O T T A N D
T A B L E 528.-INDEX
GENOESSEN, J E N A
The following constants are for glasses made by Schott and Genoessen, Jena : nA, nc, % D , n ~ no, , are the indices of refraction in air for A = 0 . 7 6 8 2 ~C~ = 0.6563p, D = 0.5893, F = 0.4861, G' = 0.4341, Y = ( n ~ l)/(nB - a,). Catalogue type = Designation z
58 a $
3
g
M <
2
-.-
M
0 546 Zinccrown 1092 60.7
0 381 Hiqher dis-
persion crown 1151 51.8
0 184 Light silicate flint 451 41.1
0 102 Heavy silicate flint 469 33.7
-
0 165 Heavy silicate flint 500 27.6
s 57 Heaviest silicate flint 163 22.2
.2763p ,2837 2980 .3403 .3610
1.56759 1.56372 1.55723 1.54369 1.53897
1.57093 1.55262 1.54664
1.65397 1.63320 1.61388
1.71%8 1.70536
1.85487 1.83263
.4340p .4861 Na 5893 H .6563 K .7682
1.52788 1.52299 1.51698 1.51446 1.51143
1.53312 1.52715 1.52002 1.51712 1.51368
1.59355 1.58515 1.57524 1.57119 1.56669
1.67561 1.66367 1.64985 1.64440 1.63820
1.78800 1.77091 1.75130 1.74368 1.73530
1.94493 1.91890 1.88995 1.87893 1.86702
1.5103 1.5048 1.5008 1.4967 -
1.5131 1.5069 1.5024 1.4973
1.5659 1.5585 1.5535 1.5487 1S440
1.6373 1.6277 1.6217 1.6171 1.6131
1.7338 1.7215 1.7151 1.7104
1.8650 1.8481 1.8396 1.8316 1.8286
Cd Cd Cd Cd Cd
H H
-
-
-
-
-
Percentage composition of the above glasses : 0 546, SiO,, 65.4; KzO, 15.0; NazO, 5.0; BaO, 9.6; ZnO, 2.0; Mnz03, 0.1 ; AszOa, 0.4; BzOs, 2.5. 0381, SiO,, 68.7; PbO, 13.3; NazO, 15.7; ZnO, 2.0; Mn02, 0.1; AszOs,0.2. 0 184, SiOz, 53.7; PbO, 36.0; KzO, 8.3; NazO, 1.0; Mnz03, 0.06; AszOs, 0.3. 0 102, SiOz, 40.0; PbO, 52.6; KzO, 6.5; NazO, 0.5; Mnz03, 0.09; AszOs, 0.3. 0 165, SiOz, 29.26; PbO, 67.5; KzO, 3.0; Mn203,0.04; Asz03, 0.2. S 57, SiO,, 21.9; PbO, 78.0; AszOs,0.1.
T A B L E 529.-CHANGE
O F I N D I C E S O F R E F R A C T I O N FOR l ° C I N U N I T S O F T H E F I F T H DECIMAL PLACE
No. and designation
S 57 Heavy silicate flint.. .... 0 154 Light silicate flint. ...... 0 327 Baryt flint light.. ....... 0 225 Light phosphate crown.. .
SMITHSONIAN PHYSICAL TABLES
Mean temp
C
D
F
58.8" 58.4 58.3 58.1
1.204 225 -.008 -202
1.447 ,261 .014 -.190
2.090 .334 .080 -.168
-An
GI
2.810 .407 .137 -.142
I00 n
.0166 .0078 .0079 .0049
T A B L E 530.-TRANSMISSION
514
OF R A D I A T I O N B Y J E N A GLASSES Part 1
Coefficients, a, in the formula II = l o a t , where lo is the intensity before, and II after, transmission through the thickness t. Coefficient of transmission, a
0 0 0 0 0
= 1 dm
' .375& 340, Ordinary light flint. ...... .388 .456 .614 .569 .680 334 ,880 ,880 102, Heavy sili;ate f l i p . . ...... - ,025 .463 SO2 .566 .663 .700 ,782 93,Ordi?ary ', ........ - - - - .714 307 .899 371 203, crown.. ..... 333 .583 .695 .667 ,806 322 .860 372 - _ 598, (Crown) ................ - .797 .770 .771 .776 U nit t
3908 ,4008 ,4348 ,4368 ,4558 ,4778 .503p .580p ,6778
Unit t = 1 cm S 204, Borate crown ............ S 179, Medium phosphate crown. 0 1143, Dense borosilicate crown. . 0 1092, Crown .................. 0 1151, " .................. 0 451, Light fli$ ............... 0 469, H y y ,I ............... 0 500, ............... S 163, " " ...............
1.48
1.78
.99 .94 .90 - .98 .95 .90 .98 - .97 .99 .96 .95 .99 .98 - .99 .99 .99 1.00 .98 1.00 1.00 1.00 .98 1.00
.85 .84 .95
0.78
0.958
1.18
1.00
2.08
2.38
.81 .67 .93 .% .91 .98 .94 .98 .95 .99 .98 1.00 .99 -
.69 .49 .90 22
2.58
.43 .87 .84 .71 .% .79I .92 .84 .98 .97 1.00 .99 .99 --
378 .939 3 2 8 .794 .903 .943 .872 ,903 318 .860
2.7p
2.98
.29
.18
.71 .47 .60 .48 ..7s - .45 .78 .54 .XI .66 .92 .74 .94 .78
.18
3.lp
-
.n 29 .32 .34
.so
.53 .60
Part 2
R is reflection factor yellow light for two surfaces. Values of transmission are for 1 mm thickness. Ordinary figures refer to wavelengths in p, .281 to .775, black-faced infrared. Glass durability
Density
U G I
2.77
B G 1
2.50
3
.915
B G 4
2.41-
%
5 B G 10
%
V G 2 G G 3 G G 2 G G 2 R G 2
.911
.921
2.60 .916
l
2.93
2
2.58
4
2.73
11
2.54
2
2.74
R G 5 2 N G 5 1
R
.905 .916 .913 .913 .913
2.74 .913
2.42 .919
.281 .850
.302
.so
,334 1.15
,366 1.30
,436 1.60
.480 2.00
,546 2.20
.578 2.40
,644 2.60
.700 2.80
.04
.06
.11
.15
.19
.17
.04
.05
.01
.51
.94
.69
.74
.17
.69
.85
.oo
22
.ll
.05
.04
.03
.04
.40
.93
.97
.44
.93
.76
58
.86 .40
.50
59
.74
37
.53
.01
.12
.14
21
.45
59
.64
.93
.95
.94
.88
31
.47
.55
.56
58
.02
.47
.77
27
.47
.65
.64
.99
.oo
.97
.oo
.12
.oo .31 .oo .05 .oo 1.00 .oo .99 .oo .97 .oo .98
.oo
.98
.oo .61
.oo .04 .11 .13 .oo .14 25 26 .oo .oo .09 .18 .oo .oo 1.00 1.oo .oo .03 .99 .99 .oo .oo .96 .96 .oo .oo .98 .98 .oo .oo 98 .99 .oo .oo -59
.61
.oo
.oo
.oo
.oo
.oo
.o 1
,775 3.00
.34
.75
55
.07
.13
.63
.45
.40
.75
.62
.42
.55
.47
A6
.56
.12
.06
.04
.71
.76
.77
.69
1.00
1.00
1.00
1.00
.o1
.oo
55
1.oo
1.oo
.96
.99 .64
1-00
1.oo
.99
.99
.98
.94
.01
.67
.92
.97
.96
.94
.99
.99
99
.99
.98
.94
.24
.99
.99
.99
.99
.98
.99
.96
.97
.97
.95
.91
.82
.66
.92
.98
.98
.98
.98
.98
.97
.95
.92
81
.65
.02
.96
.98
97
.92
.79
58
.68
.70
.70
.65 .40
.o1 .ooi .oo
.oo
.00
.oo
-99 ...
.99
.29
.59
.65
.73
.oo
.oo
.oo
.oo
.99
.98
.63
.66
.78
-78
.oo
.oo .76
.69
84 .85
58
.70
U G 1 dark purple (uv., extreme red). B G 1 blue (uv.. extreme red),. B G 4 blue ( ir.) . B G 10, light blue green, ir. absorption. V G 1 yellow-green. G G 2 colorless, uv. absor tion G G 4 almost colorless, strong UV. absorption. G G 1 1 dark yellow for contract filters. R G 2 pure red. I! G 5 dark red. N G 5 light neutral.
OPTICAL CRYSTALS
Not so many years ago physicists had to depend upon natural crystals for their various optical instruments. Now, owing to a great deal of work in this field, it has been found possible to grow artificial crystals of various materials for this purpose. Data on some of these artificial crystals are given in the following tables and the spectral transmission of some of them is shown in figure 26.
SMlTHSONlAN PHYSICAL TABLES
In
r
3
T A B L E 531.-SOME
ARTIFICIAL OPTICAL CRYSTALS *
t z D
Part 1 Size grown Type of crystal
Material
Diameter
Length
190 mm
125 mm 13 k g
190 95
125 125
16 4.5
125
100
5.0
Potassium bromide (KBr)T.. cubic Potassium iodide (K1)T.. . . . . cubic
190 190
125 125
16 16
... .. cubic Thallium bromide-iodide . ... . . cubic (KR S-5) 7 Barium fluoride (BaF,) . .. . .. . cubic Cesium bromide (CsBr) ... . . .. cubic Potassium iodide (KI) .. . . .. .. cubic (thallium activated) Sodium iodide (Na I ) . . . . . .. .. cubic
150
120
6
Practical, 15 to 25p Long wavelength infrared, trans. 2 cm thickness, 50% at 32.8~ Practical, 1to 5.0p
. . . .. cubic Potassium chloride (KCI)S.. .. cubic Silver chloride (AgCl) ........ cubic (optical)# Calcium fluoride (&Fa) 11 .. . .. cubic Sodium chloride (NaCl)?.
-4D
F UI rn
I
.. .
Lithium fluoride (LiF)I..
WeiKht
Transmission ranne
.2 to lSp, practical, 8.5 to 15p .38 to 21p Infrared to 30p .125 to 9.op
125
87.5
6.8
20 to 37p
125 190 190
100 125 126
6.0 35 16
upto 12p to 42p
190
125
16
Uses
Ultraviolet, visible, and infrared spectroscopy, as lens elements for uv. and ir. About the same as NaCl Windows and prisms for uv. and ir. spectroSCOPY Windows and prisms uv., v., and ir. Lens parts Prisms and lenses for far infrared Prisms and windows for far infrared
Reference
a, b c, d e c,f b, c, e d, h
Windows and prisms for uv. and ir., and as b,g lens components Prisms and windows, ir., lens parts e, i Infrared windows, prisms Windows, prisms Scintillation counters Scintillation counters
(thallium activated)
These crystals were grown by the Harshaw Chemical Company, Cleveland, Ohio, and t h e data were furnished by H. C. Kremers of that company. For index of refracI1 Table 539.1 Part 2- of thts &ble. K_RS--5 con&s Of about 42 percent TiBr-and 58 percect TII. t Table 536. 5 Table 538. tion see: t Table 534. 23 1947. b, Kremers, H. C., Journ. Ind. Ong. Chem., vol. 32 p. 1478 1940 and Journ. Upt. References: a. Gore. R. C., et al., Journ. Opl:. Sac. Amer vol. 37 d, Sawyer, c, Harrison, G. R. Lord R:’C and’l!kfbburow J. R. Practical s ectroscopy Prentice-Hall Inc. Nbw York’ 1948: SOC. Amer vol. 3 p 337 1947. f, Stockbarger, e. Plyler. ’E. K.,’Nat. Bur. {tandards journ. Res., v d . 41,’p. 125, 194b. K. A.. Ex&imen;al ’swcthscoov. Prentice-Hall. Inc.. h e w $ark. 1’9’44. 1. Ovt. Sac. Amer., Val. 39. D. 731. 1949. g, Wright, .. Nat. Bur. Stand-
T:
(continued)
516 TABLE 531.-SOME
A R T I F I C I A L OPTICAL CRYSTALS (concluded) Part 2 Index of refraction
'
Material
KBr
KI
LiF
.. ... . . . . . . .. . .. . . . . . . . . . . . . . . . . .
. .. ......... . ...... .. . .. . .. . . .. . . ..
. . .. . . . . .... .. . .. .. . . . .. ..... .. . ..
Thallium bromide-iodide (KRS-5)**.
T A B L E 532.-nD,
...
A
1st sample
.486p .589 .656 to infrared ' f l ~
c, b, e
I
nD
1.68755 1.6670 z588 to infrared (1-2Op) 1.64, 1.62
d, h
It
.4861 1.394810 f 2 x lo-' 3393 1.392057 .6563 1.390862 Na3, 2.629; la, 2.45; 4p, 2.4; lop, 2.39; 35p, 2.30
n, n,, for D
0 225 Light phosphate crown. .. 0 802 Borosilicate crown . . . . .. U V 3109 Ultraviolet crown . .. 0 227 Barium-silicate crown . 0 114 Soft silicate crown.. . . 0 608 High-dispersion crown .. UV 3248 Ultraviolet flint . . . . .. 0 381 High-dispersion crown 0 602Baryt light flint.. .. . . . S 389 Borate flint , .. . . . . . . .. 726 Extra light flint.. . . . . . .. 154 Ordinary liEht flint.. . . .. " 184 " .... 748 Barvt flint . . . .. . . . 0 102 Heavy flint . . . . . . . 0 41 " ............ 0 165 " " . .. .. . ... S386Heavy flint ............ S 57Heaviest flint ..........
.
.
. .. ... . .
SMITHSONIAN PHYSICAL TABLES
.
Reference
b, g i, e
DISPERSION A N D D E N S I T Y O F JENA GLASSES
No. and type of Jena glass
.. .
2d sample
1.57181 1.57194 1.55986 1.55997 1.55503 1.55524 (1-101~) 1.54 to 1.53 .
1.5159 1.4967 1.5035 1.5399 1.5151 1.5149 1.5332 1.5262 1.5676 1.5686 1.5398 1.5710 1.5900 1.6235 1.6489 1.7174 1.7541 1.9170 1.9626
-
1
Specjfic gravity
y=-
- nc ,00737 0765 0781 0909 0910 0943 0964 1026 1072 1102 1142 1327 1438 1599 1919 2434 2743 4289 4882
nF
nF - nc
70.0 64.9 64.4 59.4 56.6 54.6 55.4 51.3 53.0 51.6 47.3 43.0 41.1 39.1 33.8 29.5 27.5 21.4 19.7
.00485 0504 0514 0582 0577 0595 0611 0644 0675 0712 071 1 0819 0882 0965 1152 1439 1607 2451 2767
.00515 0534 0546 0639 0642 0666 0680 0727 0759 0775 0810 0943 1022 1142 1372 1749 i 974 3109 3547
2.58 .00407 2.38 0423 2.41 0432 2.73 0514 2.55 0521 2.60 0543 2.75 0553 2.70 0596 3.12 0618 0629 2.83 0669 2.87 3.16 0791 3.28 0861 3.67 0965 3.87 1180 1521 4.49 ~.~~ 1730 4.78 2808 6.01 3252 6.33
30
40
FIG.26.--Spectral transmission of a number of infrared materials. Curves : 1, Fluorite, CaFz, 1 cm thick. 2, Rocksalt, NaCl, 1 cm. 3, Silvite, KCI, l cm. 4, KBr, l cm. 5, Crystal quartz, S O z , l cm. 6, Fused S O z , 1 cm. 7, Thallium bromide, K R S J , 4 mm thick. Taken from Baird Associates, Engineering Research Development Laboratories, Rep. W-44-009 Eng. 473, 1949.
wl
C-L
v
518
T A B L E 5 3 3 . 4 N D E X O F R E F R A C T I O N O F Q U A R T Z (SiO,),
Wavelength in air at 15"
no
Quartz
mu
n Vitreous
nr Quartz
1.67578 1168997 1.65999 1.67343 1.65842 1.64557 1.63039 1.64262 1.62992 1.61818 i.61139 1.60032 1.59813 1.58752 1.576955 1.58720 1.577385 1.56747 1.55813 1.56772 ~.~~~ 1.553963 i.563405 1.551027 1.560368 1.548229 1.557475
185.467 193.583 202.55 214.439 226.503 250.329 274.867 303.412 340.365 396.848 434.047 467.815 508.582
~
~
1.57436 1.55999 1.54727 1.53386 1.52308 . ~ 1.50745 1.49617 1.48594 1.47867 1.47061 1.46690 1.46435 1.46191 ~
Wayelength In air at 15" mfi
533.85 579.066 589.29 643.847 . 667.815 ~ ~ 706.520 794.763 1000.00 1200.00 1400.00 1600.00 - ...... 2058.20 2500.00 3000.00
15"Cmm. n Vitreous
nc Quartz
no Quartz
1.546799 1.544667 1.544246 1.542288 1.541553 1.540488 1.538478 1.53503 1.53232 1.52972 1.52703 1.51998 1.51156 1.49962
1.46067
1.555996 1.553791 1.553355 1.551332 1.550573 1.549472 1.547392 1.54381 1.54098 1.53826 1.53545 1.52814 1.5195 1.5070
....
1.45845 1.45674
....
1.45517 1.45340
.... .... .... .... ....
~~
la*
Sosman, Robt. B., The properties of silica, p. 591, Chemical Catalog Co., NewYork, 1927.
T A B L E 534.-lNDEX
.185409 .204470 .291368 .358702 .441587 .486149 "
.58902 .58932 .656304 .706548 .766529 .76824 .78576 .88396
1.89348 1.76964 1.61325 1.57932 1.55962 1.55338 1.553406 1.553399 1.544340 1.544313 1.540672 1.540702 1.538633 1.536712 1.53666 1.536138 1.534011
O F R E F R A C T I O N O F ROCK S A L T IN A I R
.88396 ,972298 .98220 1.036758 1.1786
IS34011 1.532532 1.532435 1.531762 1.530372 1.530374 .. 1.528211 1.527440 1.527441 1.526554 1.525863 ~
1.555137 1.7680 2.073516 2.35728
1 ECIEQA
. " , I
5.0092
1.51895
5.8932 " 6.4825
'
7.0718 7.6611 7.9558 8.8398 10.0184 11.7864 12.9650 14.1436 14.7330 15.3223 15.9116 20.57 22.3
1.516014 1.515553 1.513628 1.513467 1.511062 1.508318 1.506804 1.502035 1.494722 1.481816 1.471720 1.460547 1.454404 1.447494 1.441032 1.3735 1.340
Talbot's bands (18°C) lBZ A(LL)
18.1 18.7 19.4 20.0 20.7
n
. . . . . . 1.413 ...... 1.403 . . . . . . 1.394 .. .. . . 1.381 . . , . . . 1.368
where a*= 2.330165 MI= .01278685 Xi*= .0148500 Mt = .005343924
X(LL)
21.3 . . . . . . 22.8 .. 23.6 . . . 24.2 . . . . . 25.0 . . . . . .
. . .. . .. .
At'
n
1.352 1.318 1.299 1.278 1.254
= .02547414
k= h=
.0009285837 .000000286086
n
25.8 26.6 27.3
b'=
...... 1.229 . . . ... 1.203 ......
1.175
5.680137
= 12059.95 xi' = 3600.
MI
Baird Associates, Infrared optical materials, Engineer Research and Development Laboratories, Fort Belvoir, Va.
SMITHSONIAN PHYSICAL TABLES
519
T A B L E 535.-INDEX O F REFRACTION O F S Y L V I T E ( P O T A S S I U M C H L O R I D E ) I N AIR n
A(&)
n
X(P)
1.82710 1.71870 1.64745 1.58125 1.55836 1.54136 1.52115
.185409
"
1.7680
8.8398
'
12.965
1.46092 1.45672 1.45673 1.44919 1.44941 1.44346
14.144 15.912 17.680 20.60 22.5
1.3882 1.369
"
10.0184
2.35728 2.9466
"
' '
4.7146 5.3039 1.483282 1.481422 1.480084
5.8932
n
A(&)
11.786'
1.47394 1.473049 1.47304 1.471122 1.47129 1.470013 1.47001 1.468804 1.46880
3.5359
.67082 .78576 .88398 .98220
n
A(P)
8.2505
1.478311 1.47824 1.475890
1.1786
'
At 18°C1Bp A(&)
18.2 18.8 19.7 20.4 21.1
a'
. . . . . . 1.409 ...... 1.401 . . . . . . 1.398 . . . . . . 1.389 .. .. . . 1.379
22.2 23.1 24.1 24.9 25.7
= 2.174967
AtP=
T A B L E 536.-lNDEX
.4047 .4358 .4861 .5086
.5461 S876
n
.. . . . . 1.300 . . . .. . 1.275 .. . . . . 1.254 ...... 1.226
bP= 3.866619 Ma = 5569.715 XI'
= 3292.47
O F R E F R A C T I O N O F P O T A S S I U M B R O M I D E * (22'C)
Index
Wavelength
. . . . . . 1.589752 ...... 1.581479 ...... 1.571789 . . . . . . 1.568475 . . . . . . 1.563928 , . . . . . 1.559%5 . . . . . . 1.555858 . . . . . . 1.552447 . .. . . . 1.54408 . .. ... 1.54258
......
26.7 27.2 28.2 28.8
.0255550 k = .000513495 h = .000000167587
.0119082 .00698382
Wavelength
h(U) .. .
n
1.374 1.363 1.352 1.336 1.317
A?=
Mi = .008344206
n/il =
.. . ... .. .. . . .. . . .. .. .... . . . . ..
Index
1.7011 ..... 2.440 . . . . . . 2.730 . . . . . . 3.419 ...... 4.258 ...... 6.238 ...... 6.692 . . . . . . 8.662 . . . . . . 9.724 . . . . . 11.035 ...... 11.862 ......
.
1.54061
Wavelength
Index
14.29 ...... 1.51505 14.98 ...... 1.51280 17.40 ...... 1.50390 18.16 . . . 1.50076 19.01 ...... 1.49705 19.91 _ . _ 1.49288 _ ... _ 21.18 1.48655 21.83 ...... 1.48311 23.86 ...... 1.47140 25.14 1.46324
1.53901 1.53733 1.53693 1.53614 1.53523 1.53288 1.53225 1.52903 1.52695 1.52404 1.52200
. ..
......
......
Prepared by Stephens, Plyler, Rodney, and Spindler, National Bureau of Standards, March 1952.
T A B L E 537.-INDEX
O F R E F R A C T I O N O F N I T R O S O - D I M E T H Y L - A N I L I N E (WOOD)
A
n
x
n
x
n
h
.497 SO0 SO6 SO8 516
2.140 2.114 2.074 2.025 1.985
.525 .536 .546 .557 .569
1.945 1.909 1.879 1.857 1.834
.584 .602 .611 .620 .627
1.815 1.7% 1.783 1.778 1.769
.636 .647 .659 .669 .696
U
1.647 1.758 1.750 1.743 1.723
A
n
.713 .730 .749 .763
1.718 1.713 1.709 1.697
Nitroso-dimethyl-aniline has enormous dispersion in yellow and green, metallic absorption in violet.
520 T A B L E 538.-REFRACTIVE
I N D E X O F S I L V E R C H L O R I D E (AgCI) A T 23.9"C
*
Tenths of microns Wavelength
2
1
0
6
7
2.06385 2.00931 2.00351 2.00078
2.04590 2.00833 2.00318 2.00054
5
4
3
9
8
fi
2.09648 0.. I . . 2.02239 2.01865 2.01582 2.oijij z.oii89 2.01047 2 . . 2.00615 2.00559 2.00510 2.00465 2.00424 2.00386 3.. 2.00230 2.00203 2.00177 2.00151 2.00126 2.00 102 Wavelength
Wavelength
Wavelength n
P
2.02239 2.01047 2.00615 2.00386 2.00230 2.00102 1.99983 1.99866 1.99745 1.99618
1
1.5 2 2.5 3 3.5 4 4.5 5
5.5
-
P
n
P
6 6.5 7 7.5 8 8.5 9 9.5 10 10.5
11 11.5 12 12.5 13 13.5 14 14.5 15 15.5
1.99483 1.99339 1.99185 1.99021 1.98847 1.98661 1.98464 1.98255 1.98034 1.97801
2.03485 2.00750 2.00287 2.00030
2.02752 2.00678 2.00258 2.00007
Wavelength n
P
1.97556 1.97297 1.97026 1.96742 1.96444 1.96133 ~ ... . .. 1.95807 1.95467 1.95113 1.94743
16 16.5 17 17.5 18 18.5
is-
19.5 20 20.5
3%
1.94358 1.93958 1.93542 1.93109 1.92660 1.92194 1.91710 1.91208 1.90688 1.90149
Prepared by Leroy W . Tilton, Earle K. Plyler, and Robert E. Stephens, National Bureau of Standards.
T A B L E 539.-INDEX
O F R E F R A C T I O N O F F L U O R I T E (CaF,) I N A I R Part 1
.1856 .I9881 .21441 ,22645 2.5713 .32525 .34555 .39681 .48607 .58930 .65618 .68671 .71836
1.50940 1.49629 1.48462 1.47762 1.46476 1.44987 1.44697 1.44214 1.43713 1.43393 1.43257 1.43200 1.43157
1.43101 1.42982 1.42787 1.42690 1.42641 1.42596 1.42582 1.42507 1.42437 1.42413 1.42359 1.42308
.76040 ,8840 1.1786 1.3756 1.4733 1.5715 1.6206 1.7680 1.9153 1.9644 2.0626 2.1608
2.2100 2.3573 2.5537 2.6519 2.7502 2.9466 3.1430 3.2413 3.5359 3.8306 4.1252 4.4199 4.7146
1.42288 1.42199 1.42088 1.42016 1.41971 1.41826 1.41707 1.41612 1.41379 1.41120 1.40855 1.40559 1.40238
5.0092 5.3036 5.5985 5.8932 6.4825 7.0718 7.6612 8.2505 8.8398 9.4291 51.2 61.1
1.4308799 1.4303704 1.4291954 1.4283523 1.4279924 1.4278658 1.4265842 1.4256500
1.734047 1.767893 2.034339 2.184308 2.312063 2.357191 2.544951 2.575402
m
1.39898 1.39529 1.39142 1.38719 1.37819 1.36805 1.35680 1.34444 1.33079 1.31612 3.47 2.66 2.63
Part 2laS
.404658 .407785 ,435836 .447150 .472219 .480525 .486138 .501570
1.4415099 1.4412890 1.4394944 1.4388656 1.4376377 1.4372742 1.4370381 1.4364325
SO8585 .546077 .579016 .589298 .636238 .643850 .656286 .706523
1.4361735 1.4359584 1.4341020 1.4338304 1.4328439 1.4327050 1.4324825 1.4316947
2.03882 .0062183 A,'= .007706 e = .0031999
where a'=
M,=
,770688 ,819115 .%lo49 1.092154 1.156031 1.178596 1.441574 1.638231
f = .000002916 b3 = 6.09651 M z = .0061386 Xuz= .00884
1.4252000 1.4250359 1.4237262 1.4229318 1.4222226 1.4219705 1.4208398 1.4206797
M 3 = 5114.65 hr2= 1260.56 A. = .0940p h, = 35.5p
Change o f index o f refraction of fluorite for 1°C in units of the 5th decimal place
C line, -1.220;
D, -1.206;
F, -1.170;
G, -1.142.
Schonrock, Zeitschr. Instrumentenkunde, vol. 4 0 , p. 94, 1920; vol. 41, p. 104, 1921. SMITHSONIAN PHYSICAL TABLES
521 INDICES O F L I T H I U M FLUORIDE A T 23.6"C *
T A B L E 540.-REFRACTIVE
Tenths of microns Wavelength
1
2
3
1.38631 1.37774 1.36512 1.34740 1.32399
i.38ss.i 1.37669 1.36359 1.34533 1.32131
i.3ij4ii 1.37560 1.36201 1.34319 1.31856
0
0.. 1.. 2.. 3.. 4..
i.38iii 1.37875 1.36660 1.34942 5. . 1.32661 6.. 1.29745
.. ..
1.3~400 1.37446 1.36037 1.34100 1.31575
7
8
9
1.39017 1.38153 1.37075 1.35514 1.33408 1.30692
1.38896 1.38064 1.36942 1.35329 1.33165 1.30384
1.38797 1.37971 1.36804 1.35138 1.32916 1.30068
6
5
4
IL
1.39430 1.39181 1 . 3 ~ 2 0 1.38238 1.37327 1.37203 1.35868 1.35693 1.33875 1.33645 1.31287 1,30993
Prepared by Leroy W. Tilton and Earle K. Plyler, National Bureau of Standards.
T A B L E 541.-INDEX X (c)
.198 .200 208 ,226 .298 .340 .361 .410 .434 .486
no
U<
1.9028 1.8673 1.8130 1.7230 1.7008 1.6932 1.6802 1.6755 1.6678
1.5780 1.5765 1.5664 1.5492 1.5151 1.5056 1.5022 1.4964 1.4943 1.4907
-
O F REFRACTION O F ICELAND SPAR (CaCO,)
(c) SO8 .533 .589 .643 .656 .670 .760 .768 .801
X
.905
T A B L E 542.-lNDEX
.-2
no
n.
X (P)
no
n-
1.6653 1.6628 1.6584 1.6550 1.6544 1.6537 1.6500 1.6497 1.6487 1.6458
1.4896 1.4884 1.4864 1.4849 1.4846 1.4843 1.4826 1.4826 1.4822 1.4810
.991 1.229 1.307 1.497 1.682 1.749 1.849 1.908 2.172 2.324
1.6438 1.6393 1.6379 1.6346 1.6313
1.4802 1.4787 1.4783 1.4774 1.4764
1.6280 1.6210
1.4757
-
-
1.4739
e, Index of refraction fur the Fraunhofer lines
6
B
a
17-28 7-17 14-15 7-21 15-25 15-20 10-23
E
D
C
Aluminum alums RAl(S0I)z
Na 1.667 NHs(CHs) 1,568 1.735 K Rb 1.852 Cs 1.961 NHI 1.631 TI 2.329
-
O F REFRACTION FOR VARIOUS ALUMS
B
R
I N AIR
b
F
--
C
+ 12Hz0
1.43492 1.43563 1.43653 .45013 .45062 .45177 ,45226 .45303 .45398 .45232 .45328 .45417 .45437 .45517 .45618 ,45509 .45599 .45693 ,49226 .49317 .49443
1.43884 ,45410 .45645 .45660 .45856 .45939 .49748
Chrome alums RCr(S0,)z
+ 12H20
1.44185 1.44231 1.44412 1.44804 ,45691 ,45749 ,45941 .46363 .45934 .45996 .46181 ,46609 .45955 .45!499 ,46192 .46618 .46141 .46203 .46386 .46821 .46234 .46288 .46481 .46923 SO128 SO209 SO463 22076
Cs K Rb NH, TI
2.043 6-12 1.817 6-17 1.946 12-17 1.719 7-18 2.386 9-25
1.47627 1.47732 1.47836 1.48100 1.48434 1.48491 1.48723 1.49280 .47642 ,47738 .47865 .48137 .48459 .48513 .48753 .49309 .47660 .47756 .47868 .48151 .48486 .48522 .48775 .49323 .47911 .48014 .48125 .48418 .48744 .48794 .49040 .49594 .51692 .51798 .51923 .52280 3 7 0 4 .52787 ,53082 .53808
K Rb
1.806 7-11 1.916 7-20 2.061 20-24 1.713 7-20 2.385 15-17
1.47639 .47700 ,47825 .47927 ,51674
Iron alums R F e ( S 0 d z
Cs
NHI TI
+ 12Hz0
1.47706 1.47837 .47770 .47894 .47921 .48042 ,48029 ,48150 .51790 ,51943
R stands for the different bases given in the first.column.
1.48169 1.48580 ,48234 .48654 .48378 .48797 .48482 ,48921 S2365 .52859
For other alums see references on Landolt-Bornstein-Roth Tabellen. SMITHSONIAN PHYSICAL TABLES
1.48670 .48712 .48867 .48993 .52946
1.48939 .49003 ,49136 ,49286 .53284
1.49605 .49700 .49838 .49980 .54112
522 T A B L E 5 4 3 . 4 N D E X O F REFRACTION O F SELECTED MONOREFRINGENT OR ISOTROPIC MINERALS
The values are for the sodium D line unless otherwise stated and are arranged in the order of increasing indices Selected by Edgar T. Wherry from a private compilation of E. S Larsen, of the U. S Geological Survey
.
.
.
.
Villiaumite ........................... Cryolithionite ......................... Opal ............ .................... Fluorite .............................. Alum ................................ Sodalite .............................. Cristobalite ........................... Analcite .............................. Sylvite ............................... Noselite .............................. Hauynite ............................. Lazurite .............................. Leucite ............................... Pollucite ............................. Halite ................................ Bauxite .............................. Pharmacosiderite ...................... Spinel ................................ Berzeliite ............................. Periclasite ............................ Grossularite .......................... Helvite ............................... Pyrope ............................... Arsenolite ............................ Hessonite ............................ Pleonaste ............................. Almandite ............................ Hercynite ............................. Gahnite .............................. Spessartite ............................ Lime ................................. Uvarovite ............................ Andradite ............................ Microlite ............................. Nantokite ............................ Pyrochlore ........................... Schorlomite ........................... Percylite ............................. Picotite .............................. Eulytite .............................. Cerargyrite ........................... Mosesite ............................. Chromite ............................. Senarmontite ......................... Embolite ............................. Manganosite .......................... Bunsenite ............................. Lewisite .............................. Miersite .............................. Bromyrite ............................ Dysanalite ............................ Marshite ............................. Franklinite ........................... Sphalerite ............................ Perovskite ............................ Diamond ............................. i.
NaF 3NaF.3LiF.ZAIFa SiOl*nHtO CaFa K i 0 .AIzOs*4SOa.24Hz0 3Naz0- 3 A I z 0 ~6Si02-2NaCI * SiO, Naz0.A1zOa.4Si0,.2Hz0 KCI 5Na,0.3A1z0r.6Si0,.2SOa Like preceding CaO 4Na20.3AIz0.. 6SiOz. NarSa KO*Al.O~*4SiOa 2Cs10 *2AI.Oa*9SiO.* H. 0 NaCl AlaOa * nH.0 3FeiOa.2AszOlr.3KzO * 5HzO MgO*AIzOa 3(Ca. Mg. Mn)O.AszOs MgO 3Ca0 * A1,0s.3 SiOi 3(Mn, Fe)O*3BeO.3SiOz-MnS 3MnO*AIiOa*3SiOz Asz08 3Ca0 . (Al. Fe)z0~.3SiOn (Mg. Fe)O*AlrOa 3Fe0-AlzOs.3SiO2 FeO *AlZOs ZnO * AlzOs 3MnO-AIzOa*3SiOa CaO 3Ca0.CrZOa.3Si0~ 3Ca0 * FezOa .3 s i o z 6Ca0.3TazO8*NbOFa CUCl Contains CaO. Ce.08. TiO.. etc. 3CaO.(Fe, Ti)zOa*3(Si.Ti)Oz PbO * CuCla .Ha0 (Mg. Fe)O.(Al, Cr)zOa 2BlzOa*3SiO. AeCl Contains Hg. NH.. C1. etc. FeO CrzO SbiOa Ag(Br. C1) MnO NiO~5Ca0*2TiOz*3Sb20s CuI -4AgI AgBr Contains CaO. FeO . TiOz etc.
+
.
.
~
.
C (continued)
SMITHSONIAN PHYSICAL TABLES
Index of refraction
A
Formula
Mineral
= 0.589s 1.328 1.339 1.406 1.434 1.456 1.483 1.486 1.487 1.490 1.495 1.496 1.5002 1.509 1.525 1.544 1.5702 1.676 1.7202 1.727 1.736 1.736 1.739 1.745 1.754 1.763 1.7702 1.778 1.8002 1.8052 1.811 1.838 1.838 1857 1.925 1.930 1.960 1.9802.050 2.0502 2.050 2.061 2.065 2.070 2.087 2.1502 2.160 2.18 * 2.200 2.200 2.253 2.330 2.346 2.360* 2.370 2.380 2.419
523 T A B L E 543.-lNDEX
O F REFRACTION OF SELECTED MONOREFRINGENT OR ISOTROPIC M I N E R A L S (concluded)
Mineral
Eglestonite ........................... Hauerite .............................. Alabandite ........................... Cuprite ...............................
Index of refraction X = 0.589s
Formula
HgO-2HgCI MnS, MnS Cur0
2.490* 2.690* 2.700* 2.849
Li line.
T A B L E 5 4 4 . 4 N D E X O F REFRACTION O F MISCELLANEOUS MONOREFRINGENT OR ISOTROPIC SOLIDS Spectrum line
Substance
Albite glass ............ Amber ................. Ammonium chloride .... Anorthite glass ......... Asphalt ...............
D D D D D 'I ................ .67Op Bell metal ............. D Boric acid, melted.. ..... C " " 'I ....... D " " ....... F Bo:ax, me$ed .......... C .......... D ............ F CamEhor .............. D 1'
.............. D Canada balsam ......... D Ebonite ................ red Fwfisin ............... A ............... B ............... c ............... G
"
'
...............
T A B L E 545.-INDEX
H
Index ,of refraction
1.4890 1.546 1.6422 1.5755 1.635 1.621 1.0052 1.4623 1.4637 1.4694 1.4624 1.4630 1.4702 1.532 1.5462 1.530 1.66 2.03 2.19 2.33 1.97 1.32
Substance
Spectrum line
Nel.son no. 1 .... D various ........ D G;m ArrfPic ........... red ........... red Obsidian ............... D Phosphorus ............ D Pitch .................. red Potassium bromide ..... D " chlorstannate. D iodide ....... D Resins: Aloes .......... red Canada balsam red Colophony ..... red Copal ......... red Mastic ........ red Peru balsam ... D Selenium .............. A I' .............. B I' Gel:tin,
.
"
.............. c .............. D
Sodium chlorate ........ D Strontium nitrate ...... D
Index .of refraction
1.530 1.516-1.534 1.480 1.514 1.482-1.496 2.1442 1.531 1.5593 1.6574 1.6666 1.619 1.528
1.548 1.528
1.535 1.593 2.61 2.68 2.73 2.93 1.5150 1.5667
O F REFRACTION O F MISCELLANEOUS U N I A X I A L CRYSTALS Index of refraction Crystal
Ammonium arseniate NH4H2AsO, ............... B e n d (C,HKO)2 .............................. Corundum, A1203, sapphire, ruby ................. Ice at -8°C .................................... I'
"
"
'I
....................................
Ivory ......................................... Potas:ium arseniate KH,AsO,. .................. " "
'
1'
'
................... ...................
Socljum arseniate NasAsO,. 12HBO. .............. nitrate NaNOa ......................... " phosphate NaaPO1.12H20 ............... Nickel sulfate NiSO,;fH,O.. ...................
' Strychnine sulfate
..................... ..................... .............................. '
SYITHSONIAN PHYSICAL TABLES
Spectrum line
Ordinary ray
Extraordinary ray
c
1.5766 1.6588 1.769 1.308 1.297 1.539 1.5762 1.5674 1.5632 1.457 1.586 1.447 1.5173 1.5109 1.5078 1.614
1.5217 1.6784 1.760 1.313 1.304 1.541 1.5252 1.5179 1.5146 1.466 1.336 1.453 1.4930 1.4873 1.4844 1.599
D D D D Li D F D D D D F D
c
D
524 TABLE 546.-lNDEX
OF REFRACTION O F SELECTED U N I A X I A L MINERALS
The values are arranged in the order of increasing indices for the ordinary ray and are for the sodium D line unless otherwise. indicated . Selected by Edgar T . Wherry from a private compilation of Esper S. Larsen. of the U . S. Geological Survey . Uniaxial positive minerals Index of refraction Mineral
Formula
Ordinary Extraordinary ray ray
Ice .............. Sellaite .......... Chrysocolla ...... Laubanite ........ Chabazite ........ Douglasite ....... Hydronephelite ... Apophyllite ...... Quartz .......... Coquimbite ...... Brucite .......... Alunite .......... Penninite ........ Cacoxenite .. .. .. Eudialite ........ Dioptase ......... Phenacite ........ Parisite ........... Willemite ........ Vesuvianite ...... Xenotime ........ Connellite ........ Benitoite ........ Ganomalite ...... Scheelite ......... Zircon ........... Powellite ........ Calomel ......... Cassiterite ....... Zincite .......... Phosgenite ....... Penfieldite ....... Iodyrite ......... Tapiolite ........ Wurtzite ........ Derbylite ........ Greenockite ...... Rutile ........... Moissanite ....... Cinnabar ........
HzO 1.309 MgFz 1.378 CuO .SiO2.2H2O 1.460% 2Ca0 * A l ~ 0 3 ~ 5 S i 0 ~ ~ 6 H ~ O 1.475 (Ca. N ~ Z ) O ~ A I ~ O ~ * ~ S ~ O ~ ~ ~ H1.4802 ~ O 2KCI * FeCIa-ZHZO 1.488 2Naz0.3 A l ~ 0.36SiOz.7 H z 0 1.490 KzO.8Ca 0 .16SiOz.16Hz0 1.535% SiOz 1.544 FeZO,.3SO3.9HzO 1.550 MPO’HSO 1.559 Kza .3Alz03*4S03.6Hz0 1.572 5(Mg. F e ) 0 - A l z 0 3 ~ 3 S i 0 z ~ 4 H z 0 1.576 2Fez0.. Pz05-12H20 1.582 6Naz0.6(Ca. Fe)0.20( Si. Zr) O2*NaCl 1.606 CUO.SiOz.Ha0 1.654 2Be0 .SiOz 1.654 2CeOF . CaO.3CO. 1.6762 2Zn0 .SiO. 1.691 2(Ca. Mn,-Fe)O.(Al, Fe) (OH. F)0.2SiO2 1.7162 Yzo3’ Pzo. 1.721 20CuO .S0,.2CuCI,.20H,O 1.724 1.757 1.910 1.918 1.9232 CaO .MOO 1.974 .. HgCl 1.973 SnOz 1.997 ZnO 2.013 PbO .PbCIz .COz 2.114 PbO .PbCIz 2.130 2.210 AgI FeO*(Ta. N ~ ) z O G 2.270 ZnS 2.356 6 F e 0 - Sbz03.5TiOz 2.450 CdS 2.506 TiO, 2.616 CSi 2.654 2.854 HgS
Chiolite ......... Hanksite ........ Thaumasite ...... Hydrotalcite ..... Cancrinite ....... Milarite ......... Kaliophilite ...... Mellite .......... Marialite ........ Nephelite ........ Wernerite ....... Beryl ........... Torbernite ....... Meionite ......... Melili te ..........
2NaF.AIF3
.
1.313 1.390 1.5702 1.486 1.482Ifi 1.500 1.502 1.5372 1.553 1.556 1.580 1.592 1.579 1.645 1.611 1.707 1.670 1.757 1.719 1.721 1.816 1.746 1.804 1.945 1.934 1.968% 1.978 2.650 2.093 2.029 2.140 2.210 2.220 2.420 (Li line) 2.378 2.510 (Li line) 2.529 2.903 2.697 3.201
Uniaxial negative minerals
Me.Ma. 2 3Be0 .AlzO3.6SiO2 C ~ 0 . 2 l J O zPz06.8HzO . “Me” = 4Ca0*3AIzO3.6SiO1 Contains NazO. CaO. AlzOa. SO.. etc. (continued)
SMITHSONIAN PHYSICAL TABLES
1.349 1.481 1.507 1.512 1.524 1.532 1.537 1.539 1.539 1.542 1.578 1.5812 1.592 1.597 1.634
1.342 1.461 1.468 1.498 1.496 1.529 1.533 1.511 1.537 1.538 1.551 1.5752 1.582 1.560 1.629
525 T A B L E 546.-lNDEX
OF REFRACTliON O F SELECTED U N I A X I A L MINERALS (concluded)
Uniaxial negative minerals (continued) Index of refraction Formula
Mineral
Apatite .......... Calcite .......... Gehlenite ........ Tourmaline ...... Dolomite ........ Magnesite ....... Pyrochroite ...... Corundum ....... Smithsonite ...... Rhodochrosite ... Jarosite ......... Siderite ......... Pyromorphite .... Barysilite ........ Mimetite ........ Matlockite ....... S tdzi te ......... Geikielite ........ Vanadinite ....... Wulfenite ........ Octahedrite ...... Massicotite ...... Proustite ........ Pryargyrite ...... Hematite ........
Ordinary Extraordinary ray ray
9Ca0.3P20a.Ca(F. C1)2 CaO * CO. ~ca0~Alb3~~io2 Contains Na20. FeO. AbO3. B.03. 50.. etc. CaO .MgO .2CO. MeO.CO2 ZnO .CO, MnO .CO, K. 0 K20-3Fez03.4S03*61 320 Fe0.C02 9Pb0.3PzOs. PbC1, 3Pb0.2SiOZ 9 P b 0 .'3AszO 3 5 . PbClz PhOPhO .PbCL PbCIz PbO'WOa (Mg. Fe)O.TiO, 9 P b 0 *3V.O. .PbCIz PhO * MooI Ti02
1.634 1.658 1.669 1.6692 1.681 1.700 1.723 1.768 1.818 1.818 1.820 1.875 2.050 2.070 2.135 2.150 2.269 2.310 2.354 2.402 2.554 2.665 2.979 3.084 3.220
1.631 1.486 1.658 1.6382 1.500 1.509 1.681 1.760 1.618 1.595 1.715 1.635 2.042 2.050 2.118 2.040 2.182 1.950 2.299 2.304 (Li line) 2.493 2.535 (Li line) 2.711 " " 2.881 " " 2.940 " "
T A B L E 547.-INDEX O F REFRACTION O F MISCELLANEOUS LIQUIDS (see also Table 551). L I Q U E F I E D G A S E S . OILS. FATS. A N D W A X E S Substance
TFmp C
Liquefied gases : Brz . . . . . . . . . . . CIZ ...........
15 14 coz . . . . . . . . . . 15 CzNz ......... 18 C.H. ......... 6 HzS . . . . . . . . . . 18.5 Nz ............- 190 NH, ......... 16.5 NO ........... 90 Nz0 .......... 15 0, ............. 181 so, .......... 15 HCI .......... 16.5 HBr .......... 10 HI . . . . . . . . . . . 16.5 Oils : Almond . . . . . . . 15.5 Castor ........ 15 Citronella ..... 20 Clove .......... 20 Cocoanut ...... 15.5 Cod liver ...... 15 Cotton seed ... 15.5 Croton ........ 27 Eucalyptus . . . . 20 Lard ......... 15.5 SMITHSONIAN PHYSICAL TABLES
Index for D 0.589~.
1.659 1.367 1.195 1.325 1.180 1.384 1.205 1.325 1.330 1.194 1.221 1.350 1.252 1.325 1.466 1.4728-1.4753 1.4799-1.4803 1.47 -1.48 1.5301-1.5360 1.4587 1.479~-1.4833 1.4737-1.4757 1.4757-1.4768 1.460 -1.467 1.4702-1.4720
Substance
Oils : Lavender ..... Linseed ....... Maize ........ Mustard seed . . Neat's foot .... Olive ......... Palm . . . . . . . . . Peanut ........ Peppermint .... Poppy. . . . . . . . . Porpoise ...... Rape (Colza) . . Seal .......... Sesame ....... Soya bean ..... Sperm ........ Sunflower .... Tung ......... Whale ........ Fats and Waxes: Beef tallow .... Beeswax ...... Carnauba wax . Cocoa butter . . Lard .......... Mutton tallow . .
TFmp C
Index for D 0.589~.
20 15 15.5 15.5 15 15.5 60 15.5 20 15.5 25 15.5 25 15.5 15.5 15.5 15.5 19 40
1.464 -1.466 1.4820-1.4852 1.4757-1.4768 1.4750-1.4762 1,4695-1.470s 1.4703-1.47 18 1.4510 1.4723-1.4731 1.464 -1.468 1.4770 1.4677 1.474S1.4752 1.4741 1.4742 1.4760-1.4775 1.4665-1.4672 1.4739 1.503 1.4649
40 75 84 40 40 60
1.4552-1.4587 1.4.398-1.4451
1.4510
526 TABLE !%&-INDEX
OF REFRACTION OF $ELECTED BlAXlAL MINERALS
The values are arranged in the order of increasing 3, index of refraction and are for the sodium D line except where noted. Selected by Edgar T. Wherry from private compilation of Esper S Larsen. of the U S. Geological Survey
.
.
.
Biaxial positive minerals
. Index of rei'raction
7
Formula
Mineral
"a
.
Stercorite ........ NazO*(NH. ).O P.O.*9H. 0 1.439 1.459 Aluminite AlzOa*S01.9HaO Tridymite ........ SiOz 1.469 1.464 Thenardite ....... NazO.SOa Carnallite ........ KC1 .MgCI. .6 H z 0 1.466 Alunogen ........ ALOa.3SOs*16Hz0 1.474 Melanterite ...... FeO.SOs.7HaO 1.471 Natrolite ........ NazO.AI~Os*3SiOz*2H~O 1.480 Arcanite ......... KzO'SOa 1.494 Struvite ......... (NH,)zO.2MgO* P205-12Hz0 1.495 1.498 Heulandite ....... Ca0~Al2Os-6SiOZ.3H20 Thomsonite ...... (Naz. C a ) 0 ~ A 1 2 0 a ~ 2 S i 0 z ~ 3 H z 0 1.497 (Kz. Ba)O.A120a.SSiOa.5HzO Harmotome 1.503 Petalite ......... Li20 AL03*8SiOa 1.504 Monetite ......... 2Ca0.PzOs*Hz0 1.515 Newberyite ...... 2MgO.PaOa.7HzO 1.514 Gypsum ......... C a 0 . S 0 3 * 2 H z 0 1.520 Mascagnite ...... (NH,)20.SOa 1.521 Albite ........... "Ab" = Naz0.AlzOa.6SiOz 1.525 4Mg0.3COz*4HzO Hydromagnesite 1.527 Wavellite ........ 3AI.O.*2PzO. 12(H20. 2HF) 1.525 Kieserite ........ M g 0 . S 0 3 . H z 0 1.523 Copiapite ........ 2FezOs.5SOa. 18Hz0 1.530 Whewellite ...... CaO-Cz03-Hz0 1.491 Variscite ........ AlzOa .Pa08 4HzO 1.551 Labradorite ...... AbzAn3 1.559 Gibbsite ......... A120s*3Hz0 1.566 Wagnerite ....... 3Mg0.P206-MgF2 1.569 Anhydrite ....... CaO*SOa 1.571 Colemanite ...... 2Ca0.3B~O3.5H~O 1.586 Fremontite ....... N a z 0 * A 1 ~ 0 ~ - P(HzO. ~ 0 6 *2HF) 1.594 Vivianite ........ 3FeOsP20.. 8 H z 0 1.579 Pectolite ......... NaaO *4CaO.6SiO2 H2O 1.595 Calamine ........ 2ZnO*SiOz.H20 1.614 1.604 Chondrodite 4Mg0.Si02*Mg(F,OH)2 O Turquoise ....... C U O . ~ A ~ ~ O ~ * ~ P Z O ~ . ~ H ~1.610 Topaz ........... 2AIOF.Si02 1.619 1.622 Celestite SrO.SOs Prehnite ......... 2CaO*AlzOa*3SiO~*Hz0 1.616 1.636 Barite ........... BaO*SOs 1.633 Anthophyllite .... MgO.Si0. 1.638 Sillimanite ....... AlzOs.Si02 1.635 Forsterite ........ 2Mg0*SiO1 1.650 Enstatite ........ MgO*SiOz Euclase .......... ~ B ~ O . A ~ Z O ~ * ~ S ~ O Z . H ~ O 1.653 Triplite ......... 3MnO.PZOs-MnFz 1.650 1.660 Spodumene ...... LizO~AlzOs~4SiO2 Diopside ......... CaO.Mg0.2SiOz 1.664 1.662 Olivine .......... 2(Mg. Fe)O*Si02 1.688 Triphylite ....... Liz0.2(Fe, M n ) 0 . P z 0 5 1.700 Zoisite ........... 4Ca0-3Al2Os*6SiO2.HZ0 Strengite ........ Fe.0, .P z ~ .4Hz0 . 1.708 Diaspore ......... AlzOa-H20 1.702 Staurolite ........ ~ F ~ O . ~ A I Z O S . ~ S ~ O Z . H ~ O 1.736 1.747 Chrysoberyl ..... B e 0 - A1203 1.730 Azurite .......... 3Cu0.2COz.HzO Scorodite ........ FezOs*As~Os*4H~0 1.765
.......
......
.
..
.
.
.
.....
.........
(contkued) SMlTHSONIAN PHYSICAL TABLES
np
1.441 1.464 1.470 1.474 1.475 1.476 1.478 1.482 1.495 1.496 1.499 1.503 1.505 1.510 1.518 1.519 1.523 1.523 1.529 1.530 i.534 1.535 1.550 1.555 1.558 1.563 1.566 1.570 1.576 1.592 1.603 1.603 1.604 1.617 1.617 1.620 1.620 1.624 1.626 1.637 1.642 1.642 1.651 1.653 1.656 1.6.60 1.666 1.671 1.680 1.688 1.702 1.708 1.722 1.741 1.748 1.758 1.774
9 1.469 1.470 1.473 1.485 1.494 1.483 1.486 1.493 1.497 1.500 1.505 1.525 1.508 1.516 1.525 1.533 1.530 1.533 1.536 1.540 1.552 1.586 1.592 1.650 1.582 1.568 1.587 1.582 1.614 1.614 1.615 1.633 1.633 1.636 1.636 1.650 ... 1.627 1.631 1.649 1.648 ~
1.657
1.653 1.669 1.658 1.673 ..... 1.672 1.676 1.694 1.699 1.692 1.706 1.745 1.750 1.746 1.757 1.838 1.797
527 T A B L E W.--INDEX
O F REFRACTION O F SELECTED B l A X l A L M I N E R A L S (continued)
Biaxial positive minerals (continued) Index of refraction P na
n,9
1.772 1.877 1.900 1.871 1.950 2.200 2.170 2.240 2.270 2.240 2.260 2.310 2.310 2.380 2.374 2.370 2.583 2.510
1.810 1.882 1.907 1.920 2.043 2.217 2.220 2.240 2.270 2.270 2.320 2.360 2.370 2.390 2.404 2.500 2.586 2.610
9 1.863 1.894 2.034 2.010 2.240 2.260 2.320 2.530 (Li) 2.300 2.310 2.430 (Li) 2.460 (Li) 2.660 (Li) 2.420 (Li) 2.457 2.650 (Li) 2.741 . 2.710
1.394 1.407 1.405 1.430 1.433 1.340 1.447 1.457 1.476 1.483 1.410 1.420 1.494 1.334 1.494 1.444 CaO .AlzOa .3SiOz .3 H 2 0 1.512 CaO .AIzOa*4SiOz . HzO 1.513 KzO-AlZOs.6SiOz 1.518 Same as Drecedinz 1.522 (Na. K)zO.AlzOa'6SiOz 1.523 NazO.CaO-2SOs 1.515 4(Ma Fe)O*4AIzOa*10SiO2*H2O 1.534 . . . CLOYSOa 5HzO 1.516 Ab4An 1.539 Naz0 - 2 B e0 *P2O5 1.552 AlzOa *2SiOz * 2HzO 1.561 Kz0.4(Mg, F e ) O ~ 2 A 1 z 0 3 ~ 6 S i 0 z ~ H1.541 z0 CaO * 2 U0 8P.O. * .8 H z 0 1.553 "An" = Ca0*A1z0a.2SiOZ 1.576 1.520 LazO. .3coz '9HzO AI2O9.4SiO~-H20 1.552 1.539 1.572 1.561 1.579 AlzOa .Pz05*2LiF Al.0. * 3SiO.. 2 ( K . Li) F 1.560 1.562 1.600 (continued)
1.396 1.414 1.425 1.452 1.455 1.456 1.470 1.480 1.480 1.487 1.492 1.495 1.498 1.505 1.505 1.516 1.519 1.524 1.524 1.526 1.529 1.532 1.538 1.539 1.543 1.558 1.563 1.574 1.575 1.584 1.587 1.588 1.589 1.590 1.590 1.593 1.598 1.606 1.616
1.398 1.415 1.440 1.458 1.461 1.459 1.472 1.484 1.483 1.486 1.542 1.518 1.500 1.506 1.516 1.523 1.519 1.525 1.526 1.530 1.531 1.536 1.540 1.546 1.547 1.561 1.565 1.574 1.577 1.588 1.613 1.600 1.589 1.590 1.594 1.597 1.605 1.606 1.627
Mineral
........ ........ ......... ....... ........... ........
Olivenite Anglesite Titanite Claudetite Sulfur Cotunnite Huebnerite ...... Manganite ....... Raspite Mendipite ........ Tantalite Wolframite Crocoite Pseudobrookite Stibiotantalite .... Montroydite ..... Brookite ......... Massicot .........
.......... ........ ...... ......... ...
Formula
4CuO * ASzOs' HzO PbO*SOa CaO*TiOz* SiO, AszOa
S
PbCL
2 ........ P b 0 * PbC1. (Fe, Mn ) O- Taz0 5 (Fe, Mn)O*WOa PbO CrOJ 2FezOa .3TiOz Sbz03*Ta205 HgO TiOz PbO Biaxial negative minerals
Mirabilite ........ Thomsenolite Natron Kalinite ......... Epsomite ........ Sassolite ......... Borax ........... Goslarite ........ Pickeringite ..... Bloedite ......... Trona ........... Thermonatrite Stilbite Niter ............ Kainite .......... Gaylussite ....... Scolecite ......... Laumontite ...... Orthoclase Microcline ....... Anorthoclase Glauberite ....... Cordierite Chalcanthite ..... Oligoclase Beryllonite ...... Kaolinite ........ Biotite ........... Autunite ......... Anorthite Lanthanite ....... Pyrophyllite Talc Hopeite ......... Muscovite ....... Amblygonite ..... Lepidolite ........ Phlogopite ....... Tremolite ........
.... ..........
... ..........
....... ..... ..... .......
........ ..... ............
Na.0. SO.. 10H20 NaF * CaFi- Al Fa .HZO NazO.COz-10HzO KzO * AIzOa*4SOs.24H,O MzO .SO 1 7 H_2 0B,& .HzO NazO* 2Bz0a * 10HzO ZnO SO, .7 H 2 0 MgO *AI~Oa*4SOa.22HzO NazO h f g o '2SOa' 4HzO 3Naz0.4COz.5Hz0 Naz0 . C 0 2.H 2 0
.
. .
SMITHSONIAN PHYSICAL TABLES
.
'
528 T A B L E 548.-lNDEX
O F REFRACTION O F SELECTED B l A X l A L MINERALS (concluded)
Biaxial negative minerals (continued) Index of refraction
Mineral
Actinolite . . . . . . . . Wollastonite Lazulite Danburite Glaucophane Andalusite Hornblende Datolite Erythrite ........ Monticellite ...... Strontianite ...... Witherite ........ Aragonite ........ Axinite .......... Dumortierite ..... Cyanite ......... Epidote .......... Atacamite ....... Fayalite Caledonite ....... Malachite ........ Lanarkite ........ Leadhillite ....... Cerusite ......... Laurionite ....... Matlockite ...... Baddeleyite Lepidocrocite .... Limonite ........ Goethite ......... Valentinite ...... Turgi te .......... Realgar ......... Terlinguaite ..... Hutchinsonite Stibnite ..........
..... ......... ....... ..... .......
...... .........
.........
......
....
-
Cit0*3(Mg. . Fe)O-4SiOz 1.630 1.614 C a u * >iuZ 1.632 1.620 1.634 1.612 (Fe. Mg) 0 * Al.0. P.O.. H 10 Ca0.Bz03.2SiOz 1.634 1.632 Na10 -2Fe0 * A1.03 .6SiOz 1.621 1.638 AIzO3*SiOz 1.638 1.632 Contains NazO. MgO. FeO. SiOz. etc. 1.634 1.647 2Ca0-2SiOZ.B~O3.HzO 1.625 1.653 3CoO .AszO.. 8Hz0 1.626 1.661 CaO .Mg0.SiOZ 1.651 1.662 sr- -1.520 1.667 BaO*CO 1.529 1.676 1.531 CaO.CO, 1.682 6(Ca. Mn) 0 ~ 2 A 1 z 0 ~ ~ B z 0 3 ~ 8 S i 01.678 z ~ H z 0 1.685 1.678 8 A 1 z 0 . ~ B z 0 ~ ~ 6 S i 00z ~ H . 1.686 Al2OZ.SiO, 1.712 1.720 4CaO.3(Ai, Fe)z03.6Si0z.Hz0 1.729 1.763 3CuO * CuCIz.3HzO 1.831 1.861 2Fe0 .Si0, 1.864 1.824 2( Pb. CU)O*SO3'HzO 1.866 1.818 2CuO.COz.HzO 1.875 1.655 2 P b 0 * so3 1.930 1.990 4 P b 0 .SO,.2CO,*H,O 1.870 2.000 P h 0 . C 0 2 ...... 1.804 2.076 PbCIz .PbO .HzO 2.077 2.116 PbO .PbClz 2.040 2.150 ZrOz 2.130 2.1W Fe.0 .. H. 0 1.930 2.210 ZFLO, ~ 3 ~ in 2 0part 2.170 2.290 Fe203.HZO 2.210 2.350 Sb. 0 s 2.180 2.350 2FezO3.H~Oin part 2.550 2.450 ASS 2.460 2.590 HgzOCl 2.350 2.640 (TI. Ag)zS*PbS.ZAszS3 3.078 3.176 SbzSs 3.194 4.303
SMITHSONIAN PHYSICAL TABLES
.
.
1.641 1.634 1.643 1.636 1.638 1.643 1.652 1.669 1.699 1.668 1.667 1.677 1.686 1.688 1.689 1.728 1.780 1.880 1.874 1.909 1.909 2.020 2.010 2.078 2.158 2.150 2.200 2.510 2.310 2.350 (Li) 2.350 2.550 (Li) 2.610 (Li) 2.660 (Li) 3.188 4.460
529
T A B L E 5 4 9 . 4 N D E X OF REFRACTION O F MISCELLANEOUS BI A X I A L CRYSTALS Index of refraction Crystal
Ammonium oxalate, (NH,)zC20,*HZ0.. .... Ammonium acid tartrate, (NH,)H(C,H,Oa) ...................... Ammonium tartrate, (NH,)zC,HiOa., ...... Antipyrin, CuHlzNOz ..................... Citric acid, C E H ~ O T - H .................. ~O. Codein, Cl,Hz1N03*H~0.................. Mag::sium carbonate, MgCO3.3H20....... sulfate, MgSOI*7Hz0 .........
....................... ....................... Potassium bichromate, KzC1-207 ............ chymate, K2Cr04 ............. ........................ ' nitrate, KNOI ................. sulfate. KZS 0, ................. ........................ ........................ Racemic acid, GHeOa.Hz0. ............... Resorcin, CeHeOZ ........................ "
"
Sodium bichromate, NazCrzO7-2H20. ....... " acid tartrate, NaH(C,H,Oe) -2H20.. Sugar (cane), C,zHtzOll. ..................
............................ ............................. Tartaric acid, C'HaOa (right-), ............ Zinc sulfate, Z n S 0 4 . 7 H z 0 . ................ " .............................. ..............................
flu
D
1.4381
D D D D D D D Cd, 226p H, .65& D D red D F D
1.5188
C
yellow D D red TI D Li D
F D
1'
I'
C
1'
T A B L E 55O.-SPECIFIC
511635 5 17645 523586 529516 573574 580410 584460 605381 611572 611588 617366 617550 620362 649338 720293
................. ................ ................. ................. ................. .................
................ ................. ................. ................. ................. ................. .................
................. .................
-
1.5697 1.4932 1.5390 1.495 1.432 1.4990 1.4307 1.7202
-
1.6873 1.3346 1.4976 1.4932 1.4911 -
-
1.6610 1.5422 1.5397 1.5379 1.4953 1.4620 1.4568 1.4544
"B 1.5475
9 1.5950
1.5614 1.581 1.6935 1.4977 1.5435 1.501 1.455 1.5266 1.4532 1.7380 1.7254 1.722 1.5056 1.4992 1.4946 1.4928 1.526 1.555 1.6994 1.5332 i.568~ 1.5667 1.5639 1.5353 1.4860 1.4801 1.4776
1.5910
-
1.7324 1.5089 1.526 1.461 1.5326 1.4584 1.8197
-
1.7305 1SO64 1SO29 1.4980 1.4959
-
1.7510 1.5734 1.5716 1.5693 1.6046 1.4897 1.4836 1.4812
GRAVITY, COEFFICIENT O F EXPANSION, A N D S T A I N CLASS O F OPTICAL GLASS *
5T----BL CG 2.48 2.53 2.53 2.73 3.21 3.27 3.31 3.49 3.57 3.58 3~64 3.66 3.67 3.91 4.51 ~
~~
Melt No. EK-110-5328 .................... EK-32-2641 ..................... EK-33-2734s .................... EK-45-29 .......................
... ... ... ... 3.21 ...
2.53
3.47 3.56 3.40
A
I
- 40" to 0"
4.1 4.5 4.7 4.6
0" to 40'
0" to 100" 0" to 300"
BL
BL
BL
73.0 62.0 75.8 70.2 74.2
77.0 65.2 80.2 73.0 78.0
79.6 67.5 83.0 74.5 80.0
76.2
80.0
81.9
57.8 60.8 70.8
61.2 61.0 73.0
73.5
58.0 57.8 53.5 57.0
...
... ...
...
Stain class for
Cofficient of expansion mean values X 107
Specific gravity
Glass type
7
Spectrum line
...
... ...
..
80
.. ..
...
99
...
64.1 66.9 74.2
86 70 71 89
75.2
77.3
..
61.2 61.2 57.0 60.5
63.5 63.9 59.4 63.4
... ... ... ...
... ...
... ...
BL
CG
.. 1
B L Bausch 8. Lomh Optical glass. E K , Eastman Rodak glass. CG, Corning glass. Th; first 15 glass types in column 1 are described in Table 524 of N B S glasses. *Types of glass in class 1 or 2 are not likely to stain even when used a s exposed surfaces in tropical climates. Glasses in class 5 are liable to stain when exposed to rain, moisture condensation, or fingerprints in any climate. Other glasses are intermediate in stain resistance. SMITHSONIAN PHYSICAL TABLES
530 TABLE 551.-lNDEX
OF REFRACTION O F SOME LIQUIDS RELATIVE TO AIR
. Indices of refraction Substance
Density
Acetaldehyde. C H 3 C H 0 ......... .780 20 Acetone. CH3COCH3 ............ .791 20 Aniline. CsHs.*NHz .............. 1.022 20 Alcohol. methyl. CH3.OH ........ .794 20 ethyl. CzH5.0H ........ .808 0 .................... .800 20 " dnldt .............. 20 n-propyl C3H7.0H ...... .804 20 Benzene CaHa .................. .880 20 CsHa dn/dt ............ . 20 Bromnaphthalene. CloHiBr ....... 1.487 20 Carbon disulfide CS, ............ 1.293 0 " . . . . . . . . . . . . . . . . . . . 1.263 20 tetrachloride. CCl. ....... 1.591 20 Chinolin. CoH7N ................ 1.090 20 Chloral. CC13.CH0 ............. 1.512 20 Chloroform. CHCL ............. 1.489 20 Decane. CloHz2 ...................728 14.9 Ether. ethyl. C,H~*O.C.Hs. . . . . . . .715 20 dn/dt ............. . 20 Ethyl nitrate. C 2 H 5 * O - N 0 3...... 1.109 20 Formic acid. H*CO,H ............ 1.219 20 Glycerine. C3H803............... 1.260 20 Hexane. CH3(CHz).CH3 ... !. . . . . .660 20 Hexylene. CH3(CH,)3CH.CHz . . . .679 23.3 Methylene iodide CH.1. ........... 3.318 20 dn/dt .......... . 20 Naphthalene. CloH8 . . . . . . . . . . . . . . .962 98.4 Nicotine. GOHI.N. ............... 1.012 22.4 Octane. CHs(CHz)aCH3 . . . . . . . . . .707 15.1 Oil. almond ...................... 92 0 anj;e seed ...................99 15.1 ........................ 99 21.4 bitter almond ............... 1.05 20 cassia ...................... - 10 ....................... - 22.5 23.5 cinnamon .................. 1.05 olive ....................... 0 .92 . rock ....................... 0 turpentine .................. .87 10.6 ................... .87 20.7 Pentane. CH3(CH&CH3 ......... .625 15.7 Phenol. CeHsOH ................ .060 40.6 .......................... 02 1 82.7 Styrene. CeH5CH.CHz . . . . . . . . . . .910 16.6 Thymol. CloH1.0 . . . . . . . . . . . . . . . . 982 . Toluene. CH3.CaHs . . . . . . . . . . . . . . .86 20 Water. HzO .................... - 20 . 0 ' .......................... . 40 .......................... . 80 ..........................
. . . .
.
.
.
.
SMITHSONIAN PHYSICAL TABLES
0.397r
H
.
. . 1.3399
.
.
. . .
.
1.7289 1.7175 1.6994
.
. .
1.463
. . .
.
. . . .
1.8027
. . . . .
1.6084
.
.
1.7039 1.6985
. . .
1.4939 1.4913
.
.
. . . .
1.3435 1.3444 1.3411 1.3332
0.4341
G'
0.4861
F
1.3394 1.3359 1.3678 1.3639 1.6204 1.6041 1.3362 1.3331 1.3773 1.3739 1.3700 1.3666 --.0004 -4004 1.3938 1.3901 1.5236 1.5132 --.OW7 -.om 1.7041 1.6819 1.6920 1.6688 1.6748 1.6523 1.4729 1.4676 1.6679 1.6470 1.4679 1.4624 1.458 1.4530 1.4200 1.4160 1.3607 1.3576 --.0006 --.0006 1.395 1.392 1.3804 1.3764 1.4828 1.4784 1.3836 1.3799 1.4059 1.4007 1.7692 - -BOO7 1.6031 1.5439 1.4097 1.4046 1.4847 1.5743 1.5647 1.5775 1.5623 1.6389 1.6314 1.6508 1.4825 1.4644 1.4817 1.4793 1.3645 1.3610 1.5684 1.5558 1.5356 1.5816 1.5659 1.5386 1.5170 1.5070 1.3404 1.3372 1.3413 1.3380 1.3380 1.3349 1.3302 1.3270
0.589fi
D
0.656~
C
1.3316 1.3298 1.3593 1.3573 1.5863 1.5793 1.3290 1.3277 1.3695 1.3677 1.3618 1.3605 -.0004 -.0004 1.3854 1.3834 1.5012 1.4965
-.0006
--.o006
1.6582 1.6495 1.6433 1.6336 1.6276 1.6182 1.4607 1.4579 1.6245 1.6161 1.4557 1.4530 1.4467 1.4443 1.4108 1.4088 1.3538 1.3515 --.0006 -.0006 1.3853 1.3830 1.3714 1.3693 1.4730 1.4706 1.3754 1.3734 1.3945 1.3920 1.7320 i.7417 -.0007 -.0006 1.5823 1.5746 1.5239 1.5198 i14007 1.3987 1.4782 1.4755 1.5572 1.5508 1.5475 1.5410 1.5391 1.6104 1.6007 1.6026 1.5930 1.6188 1.6077 1.4763 1.4738 1.4573 1.4545 1.4744 1.4715 1.4721 1.4692 1.3581 1.3570 1.5425 15369 1.5174 1.5485 1.5419 1.5228 1.4955 1.4911 1.3330 1.3312 1.3338 1.3319 1.3307 1.3290 1.3230 1.3213
53 1 T A B L E 552.-lNDICES
O F REFRACTION FOR SOLUTIONS O F SALTS A N D ACIDS R E L A T I V E T O AIR Indices of refraction for spectrum lines Temp Density
Substance
"C
A
D
F
1.37936 _. .35050 .44279 .39652 .37369
1.38473 .35515 A938 .40206 .37876
1.40817 .39893 .40052 .34087 .34982 .35831
1.41109 .40181 .40281
1.41774 .40857 .40808
1.41071 .37562 .35751 .34000
1.41334 - ~ . . 1.41936 .37789 .38322 .35959 .36442 ,34191 .34628
C
H,
H
Solutions in water
....... 1.067 27.05 ....... .025 29.75 Calcium chloride .......... .398 25.65 ' .......... .215 22.9 .......... .143 25.8 Hydrochloric acid ......... 1.166 20.75 Nitric acid ................ .359 18.75 Potash (caustic) .......... .416 11.0 Potassium ch1:ride ........ normal solution ........ double normal ........ triple normal 21.6 Soda (caustic) ............ 1.376 Sodium chloride ........... .189 18.07 ........... .035 ,109 18.07 18.07 ........... Sodium nitrate ............ 1.358 22.8 Sulfuric acid .............. 3 1 1 18.3 .............. .632 18.3 .............. .221 18.3 .............. .028 18.3 26.6 Zinc chloride .............. .359 .............. .209 26.4 Ammonium chlyide
"
'I
1.37703 .34850
.44ooo .39411 .37152
-
1.39336 .36243 .46001 .41078 .38666 1.42816 .41961 .41637
-
1.35049 .35994 .36890 ~
-
1.42872
1.38746 .36823 .34969
1.38283 .43444 .42227 .36793 .33663
1.38535 .43669 .42466 .37009 .33862
1.39134 .44168 .42967 .37468 .34285
1.39977 .37292
1.40222 .37515
1.40797 .38026
-
1.36395 .35986 .361 .3705
-
-
-
-
1.40121 .44883 .43694 .38158 34938 1.41738 .38845 1.37094 .36662 .3759 .3821
Solutions in ethyl alcohol
............. ..............
Ethyl alcohol
.
Fuchsin (nearly saturated). Cyanin (saturated) ........
789 932
-
25.5 27.6 16.0 16.0
1.35971 .35372 .3918 .3831
1.35971 .35556 .398 -
NoTE.-cyanin in chloroform also acts anomalously ; for example, Sieben gives for a 4.5 percent solution PA = 1.4593, PS = 1.4695, PF (green) = 1.4514, PO (blue) = 1.4554. For a 9.9 percent solution he gives P A = 1.4902, PP (green) = 1.4497, PO (blue) = 1.4597. Solutions of potassium permanganate in water 9
g .687/1 .656 .617 .594 .589 .568 .553 .527 .522
9
mp' B C -
D
-
E
-
c-
Y
E N c (
crr,
CI
cv
U
1.3328 1.3342 1.3382 .3335 .3348 1.3365 .3391 .3343 .3365 .3381 .3410 .3354 .3373 .3393 .3426 .3353 .3372 .3426 .3362 .3387 .3412 .3445 .3366 .3395 .3417 .3438 .3363 .3362 .3377 .3388 -
SMITHSONIAN PHYSICAL TABLES
.516/1
.so0 .486 .480 .464 .447 .434 .423
-
F -
U
U
1.3368 1.3385 .3374 .3383 1.3386 1.3404 .3377 .3408 .3381 .3395 .3398 .a413 .3397 .3402 .3414 3423 .3407 .3421 .3426 3439 .3417 3452 .3431 .3442 .3457 3468 I
-
-
-
T
532
T A B L E 553.-INDEX
O F RE FRACTIO N O F A I R (15"C, 76cmHg)
Corrections for reducing wavelengths and frequencies in air (15'C, 76 cmHg) to vacuo
+
The indices were computed from the Cauchy formula ( $ 1 - l ) l O T = 2726.43 12.288/(A2 X lo-') 0.3555/(A4X lo-'"). For 0°C and 76 cmHg Ihc constants of the equation become 2875.66, 13.412 and 0.3777 respectively, and for 30°C snd 76 cmHg 2589.72, 12.259 and 0.2576. Sellmeier's formula for but one absorption band closely fits the observations : it2 = 1 0.00057378A2/(A2595260). If n - 1 were strictly proportional to the density, then ( n - l)o/(n - 1)t would equal 1 at where a should be 0.00367. The following values of a were found to hold:
+
+
+
0.55~ 0.75~ 0.65~ 0.45~ 0.35~ 0.25~ 0.003678 0.003674 0.003685 0.003700 0.003738 0.003872 The indices are for dry air (0.05 'jh Cot). Corrections to reduce to dry air the indices for moist air may be made for any wavelength by Lorenz's formula, 0.000041(m/760), where m X a
0.85~ 0.003672
*
+
is the vapor pressure in mm. The corresponding frequencies in waves per cm and the corrections to reduce wavelengths and frequencies in air at 15°C and 76 cmHg pressure to vacuo are given. E.g., a light wave of 5000 angstroms in dry air at 15"C, 76 cmHg becomes 5001.391 A in vacuo; a frequency of 20,000 waves per cm correspondingly becomes 19994.44. F ~ ~ . Vacup
F ~ ~ .Vacup
Wavelength, A ang-
nuencv correction ~, per for in air cm A 1
Dry air
Vacuo (n - 1) correction x 107 for x in air
stroms
76cmHg
add
in air
2000 2100 2200 2300 2400
3256 3188 3132 3086 3047
.651 ,670 ,689 ,710 .731
2500 2600 2700 2800 BOO
3014 2986 2962 2941 2923
3000 3100 3200 3300 3400
cm
correction in air X
add
X in air
subtract
(Iuency . .
Wave- D r y air Vacuo length, ( n - 1) correction x x 107 for A inair ang-
15°C
(nX - X)
per for
'
-
subtract
strorns 76cmHa
50,000 47,619 45,454 43,478 41,666
16.27 15.18 14.23 13.41 12.69
5500 5600 5700 5800 5900
277 1 2769 2768 2766 2765
1.524 1.551 1.578 1.604 1.631
18,181 17,857 17,543 17,241 16,949
5.04 4.94 4.85 4.77 4.68
,754 ,776 ,800 324 ,848
40,000 38,461 37,037 35,714 34,482
12.05 I 1.48 10.97 10.50 10.08
6000 6100 6200 6300 6400
2763 2762 2761 2760 2759
1.658 1.685 1.712 1.739 1.766
16,666 16,393 16,129 15,873 15,625
4.60 4.53 4.45 4.38 4.31
2907 2893 2880 2869 2859
.872 397 ,922 .947 .972
33,333 32,258 31,250 30,303 29,411
9.69 9.33 9.00 8.69 8.41
6500 6600 6700 6800 6900
2758 2757 2756 2755 2754
1.792 1.819 1.846 1.873 1.900
15,384 15,151 14,925 14,705 14,492
4.24 4.18 4.11 4.05 3.99
3500 3600 3700 3800 3900
2850 2842 2835 2829 2823
.998 1.023 1.049 1.075 1.101
28,571 27,777 27,027 26,315 25,641
8.14 7.89 7.66 7.44 7.24
7000 7100 7200 7300 7400
2753 2752 275 1 2751 2750
1.927 1.954 1.981 2.008 2.035
14,285 14,084 13,888 13,698 13,513
3.93 3.88 3.82 3.77 3.72
4000 4100 4200 4300 4400
2817 2812 2808 2803 2799
1.127 1.153 1.179 1.205 1.232
25,000 24,390 23,809 23,255 22,727
7.04 6.86 6.68 6.52 6.36
7500 7600 7700 7800 7900
2749 2749 2748 2748 2747
2.062 2.089 2.116 2.143 2.170
13,333 13,157 12,987 12,820 12,658
3.66 3.62 3.57 3.52 3.48
4500 4600 4700 4800 4900
27% 2792 2789 2786 2784
1.258 1.284 1.311 1.338 1.364
22,222 21,739 21,276 20,833 20,406
6.21 6.07 5.93 5.80 5.68
8000 8100 8250 8500 8750
2746 2746 2745 2744 2743
2.197 2.224 2.265 2.332 2.400
12,500 12,345 12,121 11,764 11,428
3.43 3.39 3.33 3.23 3.13
5000 5100 5200 5300 5400
2781 2779 2777 2775 2773
1.391 1.417 1.444 1.471 1.497
20,000 19,607 19,230 18,867 18,518
5.56 5.45 5.34 5.23 5.13
9000 9250 9500 9750 10000
2742 2741 2740 2740 2739
2.468 2.536 2.604 2.671 2.739
11,111 10,810 10,526 10,256 10,000
3.05 2.96 2.88 2.81 2.74
SMITHSONIAN PHYSICAL TABLES
T A B L E 5 5 4 . 4 N D E X O F RE FRACTIO N O F GASES A N D VAPORS
533
A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is n l - 1 =! -% where n r is the index of refraction for temperature t, 1za for 1+at'760' temperature zero, a the coefficient of expansion of the gas with temperature, and j the pressure of the gas in millimeters of mercury. For air see Table 553. Indices of refraction (n - 1 ) 1 0 s
Wavelength
0
Air
N
H
,
Wavelength
(n - 1 ) 105
Air
0
M
H
2971 .2937 2918 .2881 2888
.2743 2704 .2683 .2643 .2650
C O ~
.4506 .4471 .4804 .4579
.1418 .1397 .1385 .1361 .136l
P
fi
.4861 S461 S790 .6563
2951 2936 ,2930 2919
2734 2717 2710 2698
.3012 2998 2982
.1406 .1397 .1393 .1387
,4360 S462 .6709 6.709 8.678
The values are for 0°C and 760 mmHg Kind of light
Substance
Acetone . . . . . . . . . D Ammonia . . . . . . . white
.
... . . . ..
D
Argon ........... D Benzene .. . . . . . . D
.
Bromine ......... D Ca$on dioxide . . white
.
...
Carbon disulfide.
{
D
Indices of refraction
1.001079-1.001100 1.000381-1.000385 1.000373-1.000379 1.000281 1.001700-1.001823 1.001132 1.000449-1.000450 1.000448-1.000454 f$~~~-l.oo1485
$$: ::$:$!
Carbon monoxide{ Chlorine . . . . . . . . . white ' D Chloroform . .. . . . D
1.000772 1.000773 1.001436-1.001464
. . . . . . . . white ... ..... D Ethyl alcohol . .. . D Ethyl ether . . . . . . D Helium ... ....... D
1.000834 1.0007841.000825 1.000871-1.000885 1.001521-1.001544 1.000036
Hydrochloric acid . . . . . . ..
1.000449 1.000447
.........
Cyarfpgen
.{
SMITHSONIAN PHYSICAL TABLES
Kind of light Indices of refraction
Substance
. . . . . . . white
Hydfpgen
..... .. D
Hydrogen sulfide.
{
. . . . . . . . . white (' ... . .. ... D Methyl alcohol . . . D Methyl ether . . . .. D Nitric oxide . . . . . . white << ...... D Nitregen . . . . . . . . white ........ D Nitrous oxide . . . . white .... D Oxygen . . . . . . . . . white .. . ... .... . D Pentane . . . . . . . . . D Sulfyr dioxide . . . white ... D Water ........... white .... . . .. . . . D Methane
'I
"
"
"
1.000138-1.000143 1.000132 1.000644 1.000623 1.000443 1.000444 1.000549-1.000623 1.000891 1.000303 1.000297 1.000295-1.000300 1.0002961.000298 1.000503-1.000507 1.000516 1.000272-1.000280 1.000271-1.000272 1.001711 1.000665 1.000686 1.000261 1.000249-1.000259
TABLE 555.-PHYSICAL
tilass
Composition
Fused quartz .................... SiOz Pyrex (7740) ................... SO,, 80: Bz03,14 NazO,4 : AIZO3,2 Vycor (7900) ................... S O 2 ,96: B,O,, 3: other oxides S O z ,68 : PbO. 15 : Lead glass ...................... NazOJ,10 : KzO,6 : CaO, 1 Soda lime glass.. ................ SiO,, 72: NazO, 15: CaO, 9 : MgO, 3 : AlzOz, 1 Diameter P
Quartz fibers t:
..................
PROPERTIES O F SOME SPECIAL GLASSES Coefficient of thermal expansion cgs
Density g/cma
Young's modulus kg/mmz
2.20 2.35
7100 6900
2.18
6800
8x10-T
4.26
5400
2.47
6900
Breaking strength
Thermal conductivitY
Softening points Electric Dielectric "C resistance t constant
cat cmsec'C
Specific heat
.0033 ,0027
.18 2.5
1660 775
10.48 6.6
4.1 4.5
.0022
...
1500
8.1
3.8
91x10-'
...
...
580
9.7
9.5
92XW
...
. ..
695
5.1
7.2
5.5~10-~ 32x10-'
Young's modulus
Torsion coefficient
Al/! for failure
units - dynes/cm2
1.5 3.0 5.0 10.0 30.0
t Log R (microhm-cm) for 350°C. Approximately. fibers the tensile strength varies from 6-20 times these values.
.9oxlou .65 .48 .30 .145
x
11.i 9.8 8.5 7.1
... 1011
6.6X10" 5.8 4.8 3.5
$ T h e tensile strength as measured from rods about 5 or 6 mm in diameter is about 5 kg/mmz.
.059 .049 .035 .020 For quartz
TABLES 556-573.-TRANSMISSION
OF RADIATION
535
TABLE 5 5 6 . 4 O L O R SCREENS
Although only the potassium salt does not keep well, it is perhaps safer to use freshly prepared solutions. Thickness mm
Color
Red Ye!Fw "
Gr:en Bright
Dark
i
Water solutions of
20 20 20 15 15 20 20 20 20 20 20
Grams of substance in 100 cma
Crystal-violet, 5BO Potassium monochromate Nickel sulfate, NiSO1.7aq Potassium monochromate Potassium permanganate Copper chloride, CuCL.2aq Potassium monochromate Double-green, SF Copper sulfate, CuS04.5aq Crystal-violet, 5BO Copper sulfate, ~ u ~ 0 , . 5 a q
.005 10. 30. 10. .025 60. 10.
.02 15.
.005 15.
ODtical center of hand II
.6659 S919 S330
.4885 482
{
Transmission
begins about .718~. ends sharp at . 6 3 9 ~ . .614-.574p,
.540-.505fi 52G.494 and :494-.458~
{
.478-.410~
The following list is condensed from Wood's Physical Optics : Methyl violet, 4R. (Berlin Anilin Fabrik) very dilute, and nitroso-dimethyl-aniline transmits 0.365~.Methyl violet + chinin-sulfate (separate solutions), the violet solution made strong enough to blot out 0.4359~,transmits 0.4047 and 0.4048, also faintly 0.3984. Cobalt glass aesculin solution transmits 0.4359~. Guinea green B extra (Berlin) chinin sulfate transmits 0.4916~. Neptune green (Bayer, Elberfeld) chrysoidine. Dilute the latter enough to just transmit 0.5790 and 0.5461 ; then add the Neptune green until the yellow lines disappear. Chrysoidine eosine transmits 0.5790~. The former should be dilute and the eosine added until the green line disappears. Silver chemically deposited on a quartz plate is practically opaque except to the ultraviolet region 0.3160-0.3260 where 90 percent of the energy passes through. The film should be of such thickness that a window backed by a brilliantly lighted sky is barely visible. In the following those marked with a * are transparent to a more or less degree to the ultraviolet. * Cobalt chloride : solution in water, absorbs 0.50-.53~; addition of CaCL widens the band to 0.47-.50. It is exceedingly transparent to the ultraviolet down to 0.20. If dissolved in methyl alcohol water, absorbs 0.50-.53 and everything below 0.35. In methyl alcohol alone 0.485-0.555 and below 0 . 4 0 ~ . Copper chloride : in ethyl alcohol absorbs above 0.585 and below 0.535; in alcohol f 50 percent water, above 0.595 and below 0 . 3 7 ~ . Neodymium salts are useful combined with other media, sharpening the edges of the absorption bands. In solution with bichromate of potash, transmits 0.535-.565 and above 0.60p, the bands very sharp ( a useful screen for photographing with a visually corrected objective). Praseodymium salts: three strong bands at 0.482, .468, .444. In strong solutions they fuse into a sharp band a t 0.43S.485~.Absorption below 0.34. Picric acid absorbs 0.36-.42~,depending on the concentration. Potassium chromate absorbs 0.40-.35, 0.30-24, transmits 0 . 2 3 ~ . * Potassium permanganate : absorbs 0.555-SO, transmits all the ultraviolet. Chromium chloride: absorbs above 0.57, between 0.50 and .39, and below 0 . 3 3 ~ .These limits vary with the concentration. Aesculin : absorbs below 0.363p, very useful for removing the ultraviolet. * Nitroso-dimethyl-aniline : very dilute aqueous solution absorbs 0.49-.37 and transmits all the ultraviolet. Very dense cobalt glass dense ruby glass or a strong potassium bichrornate solution cuts off everything below 0.70 and transmits freely the red. Iodine : saturated solution in CS, is opaque to the visible and transparent to the infrared.
+
+
+
+
+
SMITHSONIAN PHYSICAL TABLES
+
F I L T E R S , N A R R O W S P E C T R U M REGIONSla
T A B L E 557.-LIGHT
536
Filters from the following components : Distilled HZ0 ; As. sol. CuSO.-SHZO ; NiSO,. 7 H z 0 ; Glasses, Corning G 986A, G 586, G 980A ; dyed gelatin, Wratten filters 88A, 25, 61, 49. Solution
concen-. tration
Filter and absorbent
88A ......................... 88A, HzO . . . . .. . . . . . . . . . . 88A, G 986A * . . . . . . . . . . . . . . . 25. CUSOI*SHZO. . . . . .. . . . . . . . .. . . .. . . . . . . 61;
..
. .
.. . . . . . . . . . . .
:
. . . .. .. . . . . . . 25*g,jf G 986A, NiS04*7Hz0 . . . . . . . . 1%
ness
.. ..
.. .. . . ..
.... .. . .
2cm
5% 5% 5%
2cm 2cm 2cm 2cm lcm
10%
50%
Wavelengths limits
Transmission atmax
Max
...
.720-1.400 .720-1.380 .720-1.020 .590- .690 .490- .690 .380- ,500 ,330- .430 .260- .360
.80 .72 .35 26 .52 .26 .69
.800 .770 .630 .530 . .. . .460 .380 .310
.so
Tones, L. A , , Journ. Opt. Soc. Amer., vol. 16, p. 259, 1928. Thickness .32 cm.
B A N D PASS F I L T E R S *
T A B L E 558.-NARROW
C.S. 5- 74 ............. 5- 76 ............. 5- 75 .... ......... 4104 . . . . .. . . . . . . . 4-117 . ...... ......
.............
4-105
4-102 ....... ...... 4-115t ........... 3-110 . .. .. . .. . 3-120 ... ....... ... 2- 77 ............. 2- 78 ... . . . . . . . . .. 2- 79 ............. 7- 84 ... .......... 7- 85$ ........... 7- 86 .. . . . . . .. . .. . 4- 17 .............
. . ..
.
Wavelength limits
Max
.402-.480/~ .400-.483 ,395-,495 .467-.530 .466-.580 .483-.570 .528-.573 .530-.575 S61-.620 .565-,670 .585-.705 .612-.760 .665-.780 ,710-,900 .800-1.101 1.200-2.800 1.700-2.800
.430p .430 .460 .485 .495 .515 .550 .555 .580 .590 ,610 .640 .715 ,750 .9m 2.100 2.400
Thickness range
Filter
5. - 7.5mm 5 . - 5.8 3.2- 5.7 6. - 8.5 7. -12. 9. -12.5 9. -13.5 10. -14. 5. - 9. 6. -10. 6.5- 9.5 4. - 7. 8.8-12. 10. -13. 5. - 6. 7. - 8. 5.5-10.
t Second max at 2.55 with transmission at 5.0 percent Corning Glass Works. at ,605 with transmission at 1.0 percent.
T A B L E 559.-TRANSPARENCY
Transmission at max
14.5 percent 27.5 12.5 5.3
3.0 19.5 11.5 16.0 9.5 15.0 25.0 45.0 21.0 $ Second max
OF WATER
---
; t in cm ; lo,I, intensity before and after transmission through disValues of a in I = tilled water at 20°C; wavelength X in p. ~
b
c
7
x
a
x
.1829 .I854 .I862 .1878 .1916 .I935
4.7 1.11 .86 .48 .20 .I2
.20 .24 .28 .30 .34 .38
v a
.08 .0135 .0077 .0064 .0028 .0013
d
d
e
x
a
x
a
x
a
.40 .42 .44 .48 .SO .52
.00080 .00061 ,00046 ,00037 ,00038 .00040
.54 .58 .60 .62 .64 .68
,00044 .00084 ,00197 ,00265 ,00292 ,00406
.70 .75 .80 .85 .90 .95
.0058 .028 ,024 ,027 .06 .3
l a b , Tsukamoto, K. Rev. d’Optique, vol. 7 89 1929. c Dawson L. H., and Hulburt, E. O . , Journ. d,’€f;lbirt, E. O . , Jburn. Opt). Soc. Amer., vol. 35, p. 698, 1945. Opt. Soc. Amer., vol. ’24, p. 175, 1934. e, Collins, J. R., Phys. Rev., vol. 26, p. 771, 1925.
SMITHSONIAN PHYSICAL TABLES
BAUSCH & L O M B L I G H T F I L T E R S *
T A B L E 560.-SOME
537
Percent transmission for a number of wavelengths. All values are for a thickness of 3.5 mm unless otherwise noted. The values given include surface reflection losses. AH glasses except the sharp cutting reds and yellows will meet the standard value at 3.5 mm within a thickness range of 3.0 to 4.0 mm. The sharp cutting reds and yellows will meet the standard value at 3.5 within a thickness range of 2.0 to 6.0 mm. Filter
. ..
. . .
N-1 . . . . . . . . . N-2 . . . . . . . . . . N-3 . . . . . . . . . N-6 t . . . . . . .. . R-1 . . . . . . . . . . . R-2 . . . . . . . . . . . R-5 . . . . . . . . . . . R-6 . .. . . . . R-7 . . . . . . . . . . . Y-4 . . . . . , . . , . . Y-9 . . . . . . . . . . Y-10 . . . . . . . . . G- 1 . . . . . . . . . G-9 . . . . . . . . . . . BG-1 . . . . . . . . . . B-1 . . . . . . . . . . B-2 . . . . . . . . . . . B-4 . . . . . . . . .. . B-8 . . . . . . . . . . . B-10 . .. . .. . .
.so .55 .60 64 69 69 68 25 33 36 35 7 12 13 12 .02 .15 .11 .08 .. .. . . 28 .. .. 1 69 .. ,. .. 2 .. .. .. 84
AS
.7o
68 38 13 .16 86 85 87 86
79 76 52
..
.45
.4Op
80 58 36
.. .. ..
.. .. ..
. . .. ..
..
. 27 . .. . . .. .
.
.
56 1 3 1 64 82 59 11 86 84
..
36 87 82 42 91 84
.. ..
..
..
89 84 90
89
74 73 7 23 68 46 7
68 82 87 1 54 41 33 2
22 11 14
6 2 15
63 59
53 44
35 23
..
..
..
..
..
85 89
..
Remarks
..
0 at .43p; 9.8 at .68p 0 at .58p 0 at .54u . ,: 35 at .59rr. 0 at .59p 54% at .58p 44% at .67p 0 at .51p
87 84 89 83 81 89 86 87
0 at .44p 0 at .41 and .56p 0 at .43p 0 at .69p
..
8
..
..
68 39
38 19
81 36
0 at .58 and .66a 0 at .48p
..
Adapted from data furnished by J. W . Forrest, Bausch & Lomb Optical Co.
t t = 2.0 mm.
T A B L E 561.-SPECTRAL
Glass
T R A N S M I S S I O N O F SOME R E D P Y R O M E T E R GLASSES
Thickness , mm .60 .61
Jena 4512 ..... .... 2.93 Iena 2745.. . . . . . . 3.2 Corning high transmission red: 150 percent.. . 5 50 percent.. . 5 28 percent.. 6
.
.. ..
..
.8
Wavelengths p 7
.62
2:s
.63
.64
.65
.66
.67
.68
.70
.72
.74
.76
1.8 25.0 57.0 67.4 72.3 75.5 78.5 80.5 81.0 81.5 6.5 10.5 13.8 18.0 22.3 26.0 33.5 39.5 44.5 47.5
.1 4.7 38.5 64.3 72.2 76.5 79.3 80.8 87.5 80.8 78.5 77.0 75.0 .1 5.5 44.5 66.5 74.2 76.5 77.8 77.5 76.3 75.5 74.1 . . . . 2.0 24.0 67.0 73.8 76.8 76.2 75.1 73.2 71.8
.. .. .. ..
T A B L E 562.-THE E F F E C T I V E W A V E L E N G T H A, O F C O R N I N G 50-PERCENT R E D P Y R O M E T E R G L A S S * 5 mm T H I C K FOR SOME T E M P E R A T U R E I N T E R V A L S 188 Temperature interval
1300-1 700”K 1300-2100 1300-2500 1300-2900 1300-3300 2300-1300 2300-3300
A.
,6602~ .6599 .6596 ,6594 .6592 .6596 ,6581
Temperature interval
x.
1827-1300°K 1827-1500 1827-2100 1827-2500 1827-2900 1827-3300 1827-3600
.6601p .6598 .6593 ,6589 .6587 .6585 .6584
* See Table 77. 188 “Temperature, Its Measurement and Control,’’ a symposium prepared by the American Institute of Physics, p. 1 1 1 5 , Reinhold Publishing Co.
SMITHSONIAN PHYSICAL TABLES
538 TRANSPARENCY O F ATMOSPHERIC COMPONENTS
T A B L E 563.-ULTRAVIOLET
I =I0
,
Oxygen
* .1900p a=.0014 .1920 .0007 .1929 .0022 .0007 .1947 .1950 .0021 .1955 .00075 .1962 .0020 .1970 .0007 .2000 .00043 .2050 .OM3 .2100 .OW2
d in cm O’C, 760 mmHg.
Oxygen
“
Ozone
A
.186p .193
h
a=.OO89 .0015
.2378p .2482 .2537 .2652 .2804 2967 .3125 .3341
O,,air Air .186p
a=.0019
100.5 141 148.8 123 45.6 6.9 .96 .07
”
Water .1875p a=.0055 .1900 .0026 .1950 .0012 .2000 .0007
Ozone
.230p
240
.250 .260 .270 .280
50 95 120 120 91 46
.290p 16.6 .300 4.6 ,310 1.23 .320 .35 .330 .093 .340 .024
,
Nitrogen .186 = .000478
Air a t sea level (Washington), 400 m practically no absorption h > .3p; < .28p about that due to molecular scattering. Air transmission reduced by 1/100: 22 km at .28p; 5 a t 2%; 0.57 at .22p; 20 km a t ,205~. Atmospheric transparency for ultraviolet
Wavelength, p . . . . . . Percent transmitted .
. .
.29
0
.30
.9
.31 9.
.32 20.
.33 27.
.34 33.
.35 38.
.37 46.
.39 51.
.41 56.
T A B L E 564.-TRANSMISSION O F D Y E S T U F F SOLUTIONS “A DJ U S T E D” CO NC E NT R A T I0 N S
*
.43
.45
60. 64.
OF
The table gives the percentage transmittances (column 5 ) at various wavelengths, of the dye solutions, dissolved or buffered as indicated in the third column. All solutions are adjusted to that concentration which gives unit density (10-percent transmittance) at the wavelength of maximum absorption, except for those solutions (marked * in column 4) that have the maximum absorption in the ultraviolet range. The wavelength of maximum absorption is given in column 2. In column 3 is given the serial number of the dye as listed and described in the Colour Index of the British Society of Dyers and Colorists (1924). Dyes having no Colour Index number are listed by the “prototype number” (abbreviated Pr.) of the 1949 Technical Manual and Year Book of the American Association of Textile Chemists and Colorists, p. 147. The names assigned to the dyes are not the names used by the individual American manufacturers but are older names assigned by the Year Book to each Colour Index number, p. 237; or to the “foreign prototype,” p. 261. I n column 4, A stands for acid buffer ( g H =4.6), K for alkaline buffer (pH=9.3). In this column, E stands for ethanol (ethyl alcohol) used as solvent, and Bz for benzene. Where A or K are used, the solvent was water. N stands for “no buffer,” with water as solvent. In some cases two or more sets of transmissions correspond to a given Colour Index number and name. For example, C.I. No. 326 corresponds to 62 dyestuffs listed as on the American market in 1939, and these may be classified as of several distinct types of Benzo Fast Scarlets and Benzo Fast Qranges. In less striking cases, the different types result from uncontrollable variations i i manufacture. In such cases, the transmissions should be considered as representative rather than as specifications of the dye. No manufacturer would guarantee the transmissions within a narrow range, though all data are accurate measurements on actual representatives of a t least one manufacturer’s products. Transmissions vary somewhat with the exact gH of the buffer and with the characteristics of the instrument used for measurement, especially with the slit width. The present data obtained with the General Electric recording spectrophotometer, which has a 10-micron slit width. From the data of the table, approximate data for stronger solutions, whose transmission a t the wavelength of maximum absorption is only 1 percent, may be readily obtained by means of a table of squares. Such solutions are twice as concentrated as those of the table. Their transmissions at any given wavelength are approximately the squares of the tabulated transmissions. These relations depend on the validity of Beer’s Law for the solution in question. Data furnished by I. H. Godlove, General Aniline & Film Corporation. SMITHSONIAN PHYSICAL TABLES
(continued)
T A B L E 564.-TRANS
M ISSl O N O F D Y E S T U F F SO LUTl O N S O F “ADJUSTED” CON C E N T R AT1 O N S (continued) Wavelength (microns)
.
C.I. No Name
Primuline .................... Celliton Fast Yellow G ........ Milling Yellow 0 ............. Amido Azo Toluol ............ Milling Orange .............. Diamine Green G ............. Diamine Catechine G .......... Naphthol Yellow S ............ Supramine Yellow 3GL ........ Mikado Yellow ............... Chrysophenine ............... Fastusol Yellow W G .......... Mikado Yellow .............. Diamine Fast Orange EG ...... Benzo Chrome Brown G ...... Thioflavine T ................ Sun Yellow .................. Sun Yellow .................. Sulphon Orange G ............ Fastusol Orange LGGL ....... Azosol Fast Yellow CGG ...... Resorcin Brown .............. Benzo Fast Brown 3GL ....... Auramine .................... Euchrysine 2G ............... Pryazol Orange .............. Celliton Fast Brown 3R ....... Benzamine Brown 3G0 ........ Trisulfon Brown B ............
h Max
.
343 356 373 379 380 383 (615. 647) 389 391
(;g) 392 392 394 397 408 408 410 410 413 414 415 426 428 430 431 434 443 445 447 450
Or
.
.
Pr No
812 P r . 242 Pr . 139 17 274 594
Buffer
.40
N*
8
21 15 14 18 14 12
49 36 29 35 24 18
6 11
8 10
13 12
3 3
6 6 8 4 6 11 11 12 11 10 10 10 10 10 10 12 14
18 18 12 20 17 16 13 35 20 17 13 13 12 10 10 12 11
13 10
10 10
69 10
K* A*
P r . 474 622 365 P r . 99 622 P r . 72 Pr . 365 815 620 620 Pr . 186 Pr . 276 Pr 215 234 Pr 28 655 797 653 Pr . 230 596 561
A*
E*
A* BZ* A*
K* K* K* K* K K N N K A K E A
K A A K E K K
.62 .64
.66
.68
.70
Transmittances (oercent)
K
. .
.46 .48 .50 .52 .54 .56 .58 .60
or
0 3 2 0 2 4
Pr .
.42 .44
5
1 4 10 10 11 11 11 11 11 17 13 12 29 30 15 23 10 12
4 7 7 3
7
29
87 90 78 72 61 40
92 96 91 88 80 44
20 30
30 70
41 94
51 60 68 76 84 89 93 95 96 97 99 100 100 100 100 100 100 100 100 100
49
20 57 47 24 17 82 41 33 16 19 30 14 13 35 28
82 82 37 90 78 36 24 98 70 57 15 29 69 24 18 80 72
11 10
16 15
96 99 100 100 94 98 98 99 62 79 86 89 99 100 100 100 92 97 98 99 53 71 86 94 32 42 53 65 99 100 100 100 89 96 98 99 75 86 93 97 17 24 40 74 46 68 86 95 95 99 99 100 39 59 79 91 26 38 53 68 97 99 100 100 94 98 99 99 45 S i 91 97 24 37 55 72 24 39 58 74 22 28
50
73 70 56 53
40
ii io iz 22
(continued)
95 98 96 96 92 39
96 97 97 98 98 99 99 99 99 99 99 100 100 100 100 100 97 98 98 98 99 99 99 99 99 100 100 100 100 100 100 100 97 98 99 99 99 99 99 99 29 19 12 10 10 12 29 65
100 99 89 100 99 98 77 100 99 99 94 98 100 96 79 100 99 99 85
100 100 100 100 100 100 99 99 99 100 100 100
89
89
89
89
89
85
100 100 100 100 99 99 99 99 100 100 100 99 99 99 99 99 100 100
87 100 99 99 99 98 100 99 87 100 100 99 93 84 90 32 38
92 100 99 100 100 99 100 99 92 100 100 100 97 94 46
95
98
99
100 100 100 100 100 100 100 100 100 99 99 99 100 100 100 100 100 100 94 95 % 100 100 100 100 100 100 100 100 100 99 99 99 96 97 98 56 68 78
100 100 100 99 100
97
100 100 100 100
100
97 100 100 100 100
98 86
g I”
T A B L E 564.-TRANSMISSION
O F D Y E S T U F F SOLUTIONS
OF “ADJUSTED” C O N C E N T R A T I O N S (continued)
-.
Wavelength (microns) <
C.I. No. Name
Bismarck Brown R ........... Congo Orange R .............. Polar Orange R .............. Sudan I ..................... Orange I1 ................... Celliton Scarlet B ............. Orange R ................... Supramine Red 2G ............ Victoria Blue B Base .........
X Max .
455 466 (<400) 475 (<400) 478 485 486 490 490
(it%)
v;) GG .........
Celliton Fast Red Celliton Fast Rubine B ........ Congo Red .................. Palatine Fast Red R N ......... Benzo Fast Scarlet (S) ....... Paper Red A Extra ........... Fast Red A . . . . . . . . . . . . . . . . . . Cochineal Red A ............. Benzo Fast Scarlet (S) . . . . . . . Crocein Scarlet 3BX .......... Azo Eosine G .................
494 495 498 499 500 504 506 509 510 510 <400) 511 Polar Red ................... <400) 512 Anthralan Red B-CF ......... Diamine Scarlet B ............ 5 12 (<400) Guinea Fast Red BL .......... 515 Alizarine Rubinol 3G . . . . . . . . . . 515 (<400)
OK
.
Pr. No
.40
.42
Buffer or solvent r------
.44
.46
.48
.50
.52
.54 .56
.58
.60
.62
.64
.66
.68
88 99
93 99
95
96 97 99 100
.70
Transmittances (percent) 7
332 459
A K
20 13
14 16
11 13
10 10
12 10
18 13
28 21
42 46
56 79
69 94
80 98
Pr . 152
A
27
23
14
10
10
13
21
45
77
93
98 100 100 100 100 100
24 151 Pr . 244 161 P r . 194
Bz A E A A
23 40 58 43 50
17 35 37 38 48
16 28 21 33 32
12 16 13 20 18
10 10 10 11 11
14 12 11 11 11
29 26 19 16 18
85 75 38 46 44
98 96 66 87 83
99
99 100 100 100 100 99 99 99 100 100 95 99 99 100 100 100 100 100 100 100 100 100 98 99 99 99 99 99
729
Bz
31
28
26
17
11
11
16
29
46
62
74
E E
66 67 42 45 42 43
24 24 25 30 31 43 39 45 42 45 59
15 14 17 19 22 26 28 49 31 31 48
11 11 12 12 13 14 16 15 19 17 20
10 10 10 10 10 10 10 10 11 11 12
14 14 14 13 12 13 13 12 11 11 10
27 27 26 21 21 26 21 22 16 19 13
50 51 50 41 52 62 37 53 27 47 35
75 76 75 73 86 90 64 88 59 81 80
91 97 99 91 97 99 91 96 97 91 96 97 98 100 100 98 99 100 88 97 99 98 100 100 89 98 100 96 99 100 96 98 99
P r . 236 P r . 238 370 P r . 327 326 Pr . 148 176 185 326 183 114
99 86 98 96
99
99
99
81
86
91
94
97
I< A A
61 54 56 57
43 43 34 40 36 46 46 53 48 51 65
430
A
24
29
32
25
16
11
11
15
25
43
63
72
Pr . 210 382
A K
50 29
47 35
40 40
29 31
17 17
11 11
11 10
18 19
38 48
70 83
90 96
97 99 100 100 100 99 100 100 100 100
Pr . 101 P r . 361
A A
61 84
59 78
49 60
34 38
20 21
12 12
10 10
15 15
40 42
81 81
96 96
99 100 100 100 100 98 99 99 99 99
N
N K A A
*
55
74
99 99 100 100 100 100 98 98 99 98 98 98 100 100 100 100 100 100 99 99 99 100 100 100 100 100 100 100 100 100 100 100 100 75
76
76
x!
6
v)
5
T A B L E 564.-TRANSMISSION
OF D Y E S T U F F S O L U T I O N S OF “ADJUSTED” C O N C E N T R A T I O N S (continued) Wavelength (microns)
D
z 0
x <
2 Z ,
+ D w
r
g
A M a x.
Name
Eosine G .................... Fast Red B .................. Oxamine Brilliant Red B ...... Sudan Red BB ............... Diamine Scarlet B ............
. . .
C.I. N o or Pr N o
.40
Buffer or solvent
.48
.50
A .
.52
.54
.56
.58 .60
.62
.64
.66
.68
.70
Transmittances (percent) h
v
10 10 10
13 16
10 10
13 14
25 22
56 43
89 72
98 100 100 100 100 91 97 99 99 99
57 31
36 31
13 16
28
15
80 42
97 70
99 95
99 99 99 99 99 99 100 100 100 100
51
33
20
12
12
15
29
79
96
93 43
85 40
68 30
42 19
25 13
12 10
67 12
99 100 100 100 100 100 100 23 69 92 96 96 96 96
69
83 97 71
65 96 71
47 93 62
34 82 46
28 58 29
18 25 17
10 10 10
35 15 12
78 26 21
A E
93 84
91 86
90 87
84 84
69 70
45 47
28 26
14 12
30 18
93 100 100 100 100 100 100 66 92 97 99 100 100 100
842 1080 749
N A A
92 79 92
85 74 93
75 60 96
65 45 95
51 32 84
33 22 63
18 15
40
11 11 19
11 10 15
27 14 75
66 24 98
91 44 99
748
A
92
93
96
94
84
66
40
24
10
41
93
99 100 100 100 100
710
A
82
85
84
77
62
41
23
13
I0
11
16
26
A A
Phloxine B .................. Palatine Fast ................ 535 Claret BN ................. (562) Fuchaine .................... 538 Formyl Violet S4B ............ 543 Brilliant Benzo ............... 546 Violet B .................. (<400) Rose Beneale B ............... S48 Azosol F i s t Red 3B ........... 548 (<400) Methylene Violet ............. 551 Anthraquinone Violet ......... 551 Rhodamine B ................ 553 Sulpho Rhodamine B ..........
-
.46
99 100 100 100 100 100 100 100 26 46 74 92 98 100 100 100 34 66 86 95 98 99 100 100 28 70 94 98 99 99 100 100 25 54 84 96 98 100 100 100
768 88 P r . 393 P r . 182 382
(;;I
.44
74 15 15 13 13
517 518 518 519 522 (<400) Amaranth ................... 523’ 523 Supra Light Rubine BL ....... (<400) 527 Erythrosine Bluish ........... 531 Azosol Brilliant Red B ........ (492?) 531 Celliton Fast Pink B .......... ~
.42 92 59 44 45 34
88 53 41 39 43
74 39 32 31 37
46 22 20 20 23
27 13 12 13 13
11
K
93 61 47 46 26
184 P r . 188
A A
63 57
59 59
52 56
40 46
23 29
773 P r . 363
A E
92 58
90 50
88 40
79 33
P r . 234
E
88
83
71
778 P r . 394
N A
95 53
94 48
677 698 P r . 35
A N K
92
%
779 P r . 213
K Bz
10
94 35 32
98 58 51
98
99 81 72
99
99 95 87
99
99
99 99 99 100 95 98
98 99 99 100 68 85 95 98 99 100 100 100
(<400)
562 (<400) Brilliant Sky Blue 5G . . . . . . . . . . 564’ (<400)
(continrrcd)
38
51
63
72
VI
T A BL E 564.-TRANSMl6SlON
O F D Y E S T U F F S OLU TI ON S O F “ A D JU S TE D ’ CONCENTRATIONS (continued) Wavelength (microns) r.40
C.I. No. A Max.
Name
Benzo Azurine G.............
Or
Pr. No.
.42
.44
.46
.48
.SO
Buffer or solvent.-,
.52
.54
.56
.58
.60
.62
.64
.66
.68
.70
Transmittances (percent) v
565 (422) 566 566
502
K
909 Pr. 143
A A
70 21
23
60 26
57 28
29
31 27
19 20
13 14
10 10
12 11
20 12
30 19
56 38
85 62
95 82
97 91
568 570 570
512 208 Pr. 189
K A A
70 81 25
68 80 28
66 73 27
64 63 24
53 52 22
41 39 22
27 25 19
16 15 13
11 11 10
11 11 11
15 16 14
22 29 20
30 51 28
45 72 39
64 87 55
81 94 72
24 680 865
K A
35 97 34 96 72
30 92 33 92 69
27 83 29 83 62
25 67 25 68 54
24 48 20 50 45
20 30 16 31 34
14 20 13 20 22
11 15 11 15 14
10 10 10 10 10
13 17 11 16 12
19 55 13 52 20
29 86 16 86 30
44 95 21 96 41
63 98 26
99
71
A A K
42 98 35 97 73
406 681 682 681 1088 583
K A A A A K
72 99 98 98 50 17
71 97 97 65 20
70 96 % 95 82 22
67 90 93 89 85 27
59 88 84 78 75 34
47 61 66
60 61 37
32 39 43 39 44 34
20 24 23 24 28 25
13 19 16 19 18 16
10 12 13 13 11 12
11 13 11 13 10 10
23 46 36 44 11 12
51 83 75 82 15 17
78 97 92 95 31 30
90 95 99 100 98 99 99 100 61 84 53 74
729 520 Pr. 379
E K K
88 78 41
95 76 41
95 74 37
94 71 35
91 65 31
84 56 26
70 43 22
47 29 18
24 18 14
13 12 11
10 10 10
12 11 11
20 18 14
44 40 19
72 70 26
89 34
Benzo Green 2B ..............
Pr.
29
K
21
24
28
32
36
42
42
36
25
15
10
11
15
24
42
68
Indigetin IA .................. 608‘ Palatine Fast Blue B N . . ...... 612 (573.
1180 Pr. 318
A A
90
88 51
86
43
55
85 54
85 53
80 47
68 34
48 23
30 13
18 11
11 11
13 11
34 31
69 66
91 88
97 95
New Blue R .................. Neolan Black W A . . .......... Benzo Blue RW .............. Sulphon Acid Blue R ......... Supramine Black B R . . ....... Benzo Fast Black L . . ........ Methyl Violet B. ............. Nigrosine P ................. Methyl Violet B .............. Diamine Fast Blue F F B . . ....
1<400) _.._,
69
67
69
64
53
38
24
14
10
12
19
28
37
53
70
84
64
46
~
Pr. (<2 583
Benzo Blue BB ............... Crystal Violet ............... Ethyl Violet ................. Crystal Violet A P X . . ......... Alizarine Sky Blue B . ........ Chlorazol Dark Green.. .......
583 585 586 (<400) 587 590 592 592 594 600
Victoria Blue B Base.. ....... ... ~Benzo Sky Blue .............. Fastusol Gray LVGL .........
603 605
(
680
Pr.
99
(continued)
80 32
99 100 55
69
89
ln
5 f z
O F DYESTUFF SOLUTIONS O F "ADJUSTED" CONCENTRATIONS (continued)
TABLE 564.-TRANSMIdSION
I
In
Wavelength (microns) A
W
C.I. No.
Buffer
I <
Or
or
!0 !
p -4
5 Im v,
Name
.................. Victoria Blue B ............... Cyananthrol R ...............
A
Pr. No.
Max.
' .40
.42
.44
.46
.48
.50
.52
.54
.56
.58
.60
.62
.64
.66
.68
.70
Transmittances (percent) A
solvent,
3
613
663
A
75
82
95
96
93
88
78
63
45
30
14
12
45
84
97 100
615
(
729
A
86
95
94
91
84
73
57
38
24
16
12
10
24
55
79
91
1076
A
56
68
82
82
73
59
42
27
16
ll
ll
10
21
55
82
92
<%I
246
A
59
62
60
60
60
56
48
35
23
14
11
10
20
54
84 95
657
A
77
64
71
92
97
94
86
73
52
35
19
10
30
72
94
99
Pr. 227
E
71
83
89
87
81
70
55
40
26
18
16
10
22
27
28
60
Diamine Green B .............
593
K
27
31
35
36
39
44
45
40
30
20
13
10
11
15
27
52
Brilliant Green
662
A
77
66
74
93
97
95
90
79
59
41
24
10
22
63
91
98
658
A
77
75
87
94
93
91
86
76
60
41
28
13
14
49
85
%
144
A
48
58
67
67
65
62
54
39
28
17
14
13
11
34
77
94
Pr. 207
A
82
91
93
88
81
70
55
37
25
15
10
12
10
23
59
84
673
A
79
81
96
99
99
97
94
87
74
53
36
19
11
37
80
95
Setocyanine
(An<\ ,.".,I
(582,
Naphthol Blue Black Malachite Green
..........
.............
Celliton Fast Blue FR.. .......
(<2) 618 (%)
(673, 580,
.............. (<2 )2;( Setoglaucine ................. 2'(:; Pr. Neeland Blue GG ............. Alizarine Supra Sky R
........
Xylene Blue A S . . ............
(593. <4ooj 635 (595. <4ooj 637 (412)
(confinued)
wl
2
T A B L E 564.-TRANSMIQSION
OF D Y E S T U F F S O L U T I O N S O F “ADJUSTED” CONCENTRATIONS (concluded) Wavelength (microns) .40
C.I. No. Name
Wool Green S ................
X Max.
Pr. No.
637 (<W,
Xylene Blue V S . . ............
Alizarine Astrol B. . . .
. ..... . .
Alkali Fast Green 10G ........
642’ (607, <400) 662 (437)
Buffer or solvent
or
Pr.
.42
.44
.46
.48
.SO
.52
.54
.56
.58
.60
.62
.64
.66
.68
.70
Transmittances (percent) r-p
v
737
A
85
86
86
88
90
92
89
80
65
47
34
17
11
41
82
96
672
A
81
82
96
99
99
97
93
86
72
52
38
20
10
38
80
95
913
A
87
86
87
89
91
87
76
57
36
18
10
11
10
18
52
78
1078
A
24
23
35
55
69
68
57
41
28
18
11
10
10
13
30
59
1075
.4
51
56
74
87
86
75
61
42
28
17
11
11
10
17
43
75
13
A
72
64
60
74
89
93
92
86
76
61
42
26
15
10
15
38
922
A
97
98
97
96
93
92
91
86
75
59
36
28
20
11
29
80
5
A
12
18
25
40
56
64
70
74
71
59
42
28
18
14
M
10
T A B L E 565.-TRANSPARENCY
O F VARIOUS SUBSTANCES
545
Alum: Ordinary alum (crystal) absorbs the infrared. Metallic reflection at 9.05~ and 30 to 40p. R o c k salt: Rubens and Trowbridge give the following transparencies for a 1 cm thick plate in percent:
9 10 12 13 14 15 99.5 99.5 99.3 97.6 93.1 84.6
16 17 18 19 20.7 23.7~ 66.1 51.6 27.5 9.6 .6 0. Pfluger gives the following for the ultraviolet, same thickness : 280pp,95.5percent; 231. 86 percent ; 210,77 percent ; 186,70 percent. Metallic reflection a t O.llOp,0.156,51.2,and 87p. Sylvite: Transparency of a 1 cm thick plate : A 9 10 11 12 13 14 15 16 17 18 19 20.7 23.7~ % 100. 98.8 99.0 99.5 99.5 97.5 95.4 93.6 92. 86. 76. 58. 15. Metallic reflection at 0.114p,0.161,61.1,100. F l u o r i t e : Very transparent for the ultraviolet nearly to 0.1~. Rubens and Trowbridge give the following for a 1 cm plate : 10 9 X 8p 11 12p % 84.4 54.3 16.4 1.0 0 Metallic reflection a t 24p,31.6,40p. Iceland s p a r : Merritt gives the following values of k in the formula i = i d r d ( d in cm) :
A
To
For the ordinary ray : A
k X
k
1.02
1.45 1.72 2.07 2.11 2.30 2.44 2.53 2.60 2.65 2.74~ .O .03 .13 .74 1.92 3.00 1.92 1.21 1.74 2.36 2.83 2.90 2.95 3.04 3.30 3.47 3.62 3.80 3.98 4.35 4.52 4.83~ 1.32 .70 1.80 4.71 22.7 19.4 9.6 18.6 00 6.6 14.3 6.1 .O
For the extraordinary ray : A
k
2.49 2.87 3.00 3.28 3.38 3.59 3.76 3.90 4.02 4.41 4.67~ .14 .08 .43 1.32 .89 1.79 2.04 1.17 39 1.07 2.40 X 4.91 5.04 5.34 5 . 5 0 ~ ~ k 1.25 2.13 4.41 12.8
Q u a r t z : Very transparent to the ultraviolet; Pfliiger gets the. following transmission values for a plate 1 cm thick : a t 0.222p,94.2percent ; 0.214,92; 0.203,83.6; 0.186,67.2 percent. Merritt gives the following values for Iz (see formula under Iceland spar) : For the ordinary ray: h
k
2.72 2.83 2.95 3.07 3.17 3.38 3.67 3.82 3.96 4.12 4.50~ .20 .15 1.26 1.61 2.04 3.41 7.30 20 .47 .57 .31 For the extraordinary ray :
2.74 2.89 3.00 3.08 3.26 3.43 3.52 3.59 3.64 3.74 3.91 4.19 4.36~ k .O .ll .33 26 .11 .51 .76 1.88 1.83 1.62 2.22 3.35 8.0 For A > 7 p, becomes opaque, metallic reflection at 8.50p, 9.02,20.75-24.4p, then trans-
X
parent again.
T A B L E 566.-TRANSPARENCY Wavelength
Steam
.95p 1$9 cm 1.13 1.36 1.84 2.64
Absorption
7% 14 75 84 100
SMITHSONIAN PHYSICAL TABLES
Wavelength
OF W A T E R VAPOR (steam)
Steam
6.5p 32.4cm 11 104 13 104 15 104 18 32.4
Absorption
8Wo
15 35 55 55
Wavelength
2Op 22 26 30 34
Steam
32.4 " "
Absorption
8040
22 30 50
80
546 T A B L E 567,TRANSMISSION
O F R A D I A T I O N T H R O U G H M O I S T AIR (percent)
The values of this table are of use for finding the transmission of energy through air containing a known amount of water vapor. An approximate value for the transmission may be had if the amount of energy from the source between the wavelengths of the first column is multiplied by the corresponding transmission coefficients of the subsequent columns. The values for the wavelengths greater than 188 are tentative and doubtful. Range of wavelengths P
Precipitable water in cm
.001
C
.75 to 1.0 1.0 1.25 1.25 1.5 1.5 2.0 *2 3 3 4 *4 5 5 6 6 7 7 8 8 9 t9 10 11 12 12 13 *13 14 *14 15 *15 16 16 17 17 :8 00 18
+l
.003
-
-
96 95 92 95 85 94 100 100 100 1w ~ . 100
100
.006
-
87 84 76 75 SO 76 100 100 100 100 100
92 88 83 82 54 84 100 100 100 . 100 100 100
100
96
-
89
.01
.03
100
99 9 9 9 9
96 98 84 78 71 68 31 68 99 100 100 100 100 99 93
92 97 77 72 65 56 24 57 98 100 100 100 99 97 80 70
-
-
-
-
82
45
.06
.10
99 98 84 94 70 66 60 51 8 46 96 100 100 99 99 94 75 55 50 25 0
98 97
25
80
88 64 63 53 47 4 35 94 100 100 98 97
90 50 40 20 10 0
97 95 66 79
-
35 3 16 65 100 100 96 86 ..
80 15 0
.so
1.0
95 92 57 73
93 89 51 70
-
-
0 2
2
10
-
-
100 100 95 82 60 0
100 100 93
-
0 0 0
0 0 0 0
0 0 0
0
0
2.0
6.0
10.0
90
83 74 31
78 69 28 57
85 44 66 -
-
0 0 100 100 -
-
0 0 0 0 0
60 -
-
0 0 -
-
0
-
0 0 0
0
0
0 -
0 0 0 0 0
These places require multiplication by the following factors to allow for losses in COa gas. Under average sea-level outdoor conditions the COz (partial pressure = 0.003 atm) amounts to about 0.6 g/cm*. Paschen gives 3 times as much for indoor conditions. 2~ tp 3 ~ fy , ?, 5 :i 2 2 p:th (95) ; f: I?! 5 ;i nf p?!h (93) ; 4 5 (93) ; (70); more Cot no further effect; 13 '' 14, slight allowance to be made; 14 " 1 5 , g in *: p:,th redEces eneLgy p z y o ; 1 5 " 16, " " t These places re uire multi lication by 0.90 and 0.70 respectively for one air mass and 0.85 and 0.65 for two air masses to allow lor ozone agsorptioii when the radiation comes from a celestial body.
! !
T A B L E 568.-bNFRARED T R A N S M I S S I O N OF VARIOUS SUBSTANCES (percent) Irn 2Op
Fused quartz . . . .. 'I
"
.....
Crystal " ..... Sulfur, rhombic . . Paraffin . . . .. . . . . Mica . . . . . . . . . . . Cellophane . . . . . Celluloid . . . . . . . . Black paper . Camphor soot .. . Pfund Bi black ... Lampblack, water glass
. .. .. ... . ....
.2 m,m 1.0 1.0 " .9 " 2.0 " 68 4oP 1P .1 mm
* t
.8
30
0
(1)
'"Barnes, Phys. Rev., vol. 39, p. 562, 1932. On celluloid l p thick.
SMITHSONIAN PHYSICAL TABLES
40
50
60
0 2 20 35 0 0 0 0 0 o 0 1 7 42 57 30 40 10 6 39 19 35 42 51 .~58 6 18 50 53 46 0 16 22 23 24 92 93 95 96 96 2 .. 5 60 76 79 80 81 30 40 44 48 50 (3)
7
12
70
80
90
100
110
53 o 5 62 59 37 52 64 65 57 50 24 23 97 97 13 19 82 84 40 45
52 .. 6 i 8 30 72 71 78 58 51 56 7s .85 79 21 27 50 23 29 30 98 98 99 22 23 26 85 86 87 58 60 57
21
26
51
20
30
25
120
130p
22 70 58 76 (55) 30 99 28 89 60
27 72 38 70
..
30
..
(2;) 99 30 90 63 30
547 T A B L E 5 6 9 . 4 N F R A R E D T R A N S M I S S I O N , IN P E R C E N T , O F A N U M B E R O F MATERIALS
Magneslum oxide
Lead Thick- chloride
,
Thallium chloride
Sapphire ..
Ceaium bromide
1.17
7
6
6
8
6
.. ..
.. ..
..
..
.. ..
.. ..
.. ..
..
73 76 77 79 80
.. .. ..
.. .. .. .. ..
.. .. .. ..
86.5 89.0 89.2 82.5 50.0 4.0
..
88 87 89 90 89 84 78 11
.. .. .. .. .. .. .. .. .. ..
..
iB
82 82
24
77 69 52 19
80
26 28 30 32 34 36 38
*
6
..
18 20 22
Thallium ( 5 W I . bromide 4% Br)
.47
.. ..
14
Silver chloride
Thallium bromideiodide
6
.. .. .. .. .. ..
1 2 3 4 5 6 7 8 10 12
P?tassturn chloride
*.
..
..
..
..
.. ..
..
..
..
.. .. .. .. .. ..
..
.. .. .. .. ..
80 80
80 80
80
..
82 82 78 62 46 27
87 72 37 12
.. .. .. .. .. .. ..
.. .. .... ..
..
..
.. ..
.. .. .. .. .. ..
.. .. .. .. .. .. .... .. .. ..
.... .. ..
61 61
60
66 62 61 58 54 51
57 50 39 33 26
..
.. .. .. .. .. .. .. .. .. ..
71.5 77.8 79.8 82.0 82.0 82.0 82.0 82.0 83.0 83.0 83.5 84.0 84.5 85.0 85.0 85.0 85.0 84.0 84.0 83.0 83.0 83.0 82.0 80.0 76.0
.. .. .. .. .. ..
.. .. .. .. .. .. ..
57 38 18 6
.. ..
..
.. .. ..
..
Data from E. K. Plyler, Nat. Bur. Standards, Journ. Res., vol. 41, Bureau of Standards, private communication. Cesium bromide data by
..
.. ..
1948, and E. K. Plyler, National 8;K.125,Plyler and F. A. Phelps.
T A B L E 5 7 0 . 4 N F R A R E D T R A N S M I S S I O N O F GASES (percent)
lm
Length of cell, 4 inches. Material
Pressure
6.7s
NHa ...... 760mmHg 24 95 CaHa 760 Has ....... 760 97 98 so1 ....... 760 CeHa 96 65 -. - ...... CCL 114 95 CSa ....... 361 30 CHCIS ..... 200 93 17 (CsHt.)aO 526
......
....... ..
8.78
20.75s
26 92 98 5 97
79 93 99 101 98 97 7 58 102 99 ~.~ 97 99 100 86 99 98 61 45
99
98 90 6
22.98
27.38
29.4s
32.8s
83
82
101
100
62 98 83 96 95 .91 96 97 61
90 100 98 99
92
100
100 99 98 98 69
_..
99
97 71
lmStrong, Phys. Rev., vol. 37, p. 1565, 1931, Restrahlung.
T A B L E 571.-INFRARED Material
T R A N S M I S S I O N O F SOLIDS (percent)
Description
zk.55~thickness lop thickness Opaque to visible lo+ thickness 3p thickness 25s thickness Deposit from burning Mg ribbon ZnO ................ Deposit from Zn arc Lacouer film ........ ___ -----Mica ............... Soot on lacquer.. .... Quartz, fused ....... Glass ............... Cellouhane .......... MgO- ............... 1---
SWTHSONIAN PHYSICAL TABLES
6 . 7 ~ 8.7s
96 83 25 86 93 33
20.758 2 2 . 9 ~ 27.38
93 22 22 02 07 04
97 19 67 01 12 04
88
86
99
80
04 15
98
2 9 . 4 ~ 32.8s
99
42 67 55 51 25
-1 _0_
53 03 14 01
99 35 60 51 48 20
02 05
90 93
93 79
87 80
00
44 60 68 56 26
T A B L E 572.-INFRARED
548
R E F L E C T I O N OF SOLIDS (percent)
Description of reflector
22,911
Deposit of MgO from burning Mg ribbon.. ...................... Reflection p M g O ............................................. Mica ......................................................... Parafin ...................................................... Pencil mark on paper .......................................... Soot coating ............................... Silver covered with MgO coating .............................. ZnO coating .............................. Optical black .............................. Gold foil blackened with bismuth.. .............................. KBr 1.5p CaFl deposited by evaporation.. ..................... KI 1 . 5 ~CaF2 deposited by evaporation.. ......................
+ +
i
0
80 32 04
09 43 08 01 31 >19 10 13
32.8~
0 33
..
.. ..
48 91 52
.. ..
..
T A B L E 573.-ABSORPTION O F V A R I O U S M A T E R I A L S U S E D FOR B L A C K E N I N G R E C E I V E R S FOR MEASURIING R A D I A T I O N O F DIFFERENT WAVELENGTHS
Soot from a candle, acetylene, or camphor flame has been used and was found by Pfund to be very good to wavelengths about 1 . 2 ~ ;beyond this to longer wavelengths the soot becomes transparent until at about 1lp, for a film about as thick as will work satisfactorily, it transmits about 50 percent of the incident radiation. Very finely powdered metal such as zinc (4 parts Zn and 1 part Sb) and platinum were found to be very good. Even for wavelengths of about 14p the Zn powder absorbed over 98 percent of the radiation and out to 51p the absorption was about 85 percent. For longer wavelengths powdered NaCI, KBr, TICS, and some other salts were found to be very good, as shown in the table. The figures given in the table for radiation absorption are relative, those with the highest values being the blackest. For instance, India ink and tellurium powder are the best absorbers for radiation shorter than 5p while for longer wavelengths than 5Op powdered glasses and CuSO, are probably the more nearly black. The absorptive power is an integrated effect over the entire far infrared. Litharge, powdered glass, white lead, copper sulfide, celestite, and red phosphorus were the best absorbers beyond 50p. A very thin coat of the absorbing material in most cases was an inefficient absorber of the extreme infrared waves. A very poor absorbing material in most cases such as copper or platinum will absorb if the surface is sufficiently rough. For radiometers, the absorbing material is better when mixed with turpentine and alcohol and painted on the vanes. For thermocouples, the absorbing material is better if it is mixed with lacquer. Sixty-fold sensitiveness and better steadiness comes from evacuation. The high absorption of glass in the near infrared suggests its use as a source of radiation. Two P t wires separated by 4 mm and covered with glass were heated by an electric current ; the hot portion of the glass between the wires served as a source of extreme infrared radiation. A convenient method of filtering out the near infrared is to grind the windows with emery so that the pits are about 4p deep. The apparatus may be adjusted with visible light by covering the rough surface with turpentine.
Suhstance
Litharge .............. Ground glass ........... Powdered glass ... White lead 2 Pb CO,.Pb(OH)z ....... White lead in lacquer.. . Red phosphorus . . . . . . . . Red phosphorus from a match box.. ........ Cefestite, powdered SrSO. .............. Brucite, powdered M g ( 0 H ) s ........... Angelsite, powdered PbSO, .............. Copper sulfide . Copper oxide ..........
Radiation absorbed for x>s0!4
h<Sp
10.8 11.9 11.7
4.3 4.7
14.9 14.3 18.3
4.9 4.4
17.7
5.1
14.7
4.6
11.4
4.2
14.2 17.1 13.8
4.2 5.2 4.4
5.0
5.0
Substance
Radiation abnorbed for X<5# x>5o/.l
Silver sulfide .......... 12.8 Copper sulfate crystals from solution ........ 15.0 Wellsbach mantle material ............. 8.9 Platinum black ........ 18.2 Tartaric acid and sugar ............... 16.0 Talc .................. 12.5 Water glass ........... 12.1 Tellurium, powdered ... 19.2 India ink .............. 18.8 Lacquer ............... 8.6 Castor.oil .............. 8.8 Glycerine .............. 11.2 Turpentine ............ 8.1 Clean receiver ......... 2.9
4.4 4.1 31 4.4 3.9 3.8 3.7 33 3.8 3.0 28 3.1 .2 .2
Cartwright Phys Rev. vol 35 415, 1930; Pfund, Rev. Sci. Instr., vol. 1, p. 397, 1930, and Journ. Opt. Soc: Arne;., vo1.’23, p. 3 > e 1933. ShllTHSONIAN PHYSICAL TABLES
549 TABLES 574-592.-REFLECTION AND ABSORPTION OF RADIATION According to Fresnel, the amount of light reflected by the surface of a trans1 sin2 ( i - r ) tan2 ( i - r ) ;4 . is ttir parent medium = 3 ( A B ) = 2 sin2 (i + r ) tan2 (i r ) amount polarized in the plane of incidence ; B is that polarized perpendicular to this ; i and r are the angles of incidence and refraction.
+
{
+ }
+
T A B L E 574.-RADIATION REFLECTED W H E N j = O " OR I N C I D E N T L I G H T I S N O R M A L T O SURFACE ( n - l)'/(n I)'
+
(percent)
1 .oo
.oo
1.02 1.05
.01 .06
11
-2.3
1.2 1.3
33 1.70
1.4
1.5 1.6 1.7 i.8 1.9
2.78 4.00 5.33 6.72 8.16 9.63
r
0
0 .o 3 13.4 625.9 9 36.7 1244.8 15 49.3 1849.1 21 43.1 24 30.0 27 8.5 29 37.1 31 54.2 33 58.1 35 47.0 37 19.1 38 32.9 39 26.8 39 45.9 39 59.6 40 3.6 40 6.7 40 8.9 40 10.2 40 10.7
0
5 10 15
20
25 30 35
250 55
60 65 70 75 80 8230 85 0 86 0 87 0 88 0 89 0 90 0
2.5
2.75 3. 4.
5. 5.83 10. 100. cx
44.44 50.00 66.67 96.08 100.00
-A
i
11.11 14.06 18.37 22.89 25.00 36.00
R E F L E C T E D W H E N n = 1.55
T A B L E 575.-RADIATION
___
2.0 2.25
t
B
dA
4.65 4.61 4.47 4.24 3.92 3.50 3.00 2.40 1.75 1.08 .46 .05
.I30 .131 .135 .141
dB
t
t(A
+B)
A-B" A+B
,
4.65 4.70 4.84 5.09 5.45 5.95 6.64 7.55 8.77 10.38 12.54 15.43 19.35 24.69 31.99 42.00 55.74 64.41 74.52 79.02 83.80 88.88 94.28 100.00
.I2 1.13 4.00 10.38 23.34 34.04 49.03 56.62 65.32 75.31 86.79 100.00
Angle of total polarization
.I50
.I61 .I75 .191 ,210 .233 .263 .303 ,342 .375 .400 .410 .370 .320 .250 209 .163 .118 ,063 ,000
= 57"
.I30 .I29 ,126 .121 .I14 .lo5 .094 ,081 ,066 .049 .027 ,007 -.013 -.032 --.050 --.060 --.069 -.067 --.061 -.055 -.046 -.036 -.022
-.ooo
10'.3, A
4.65 4.65 4.66 4.66 4.68 4.73 4.82 4.98 5.26 5.73 6.50 7.74 9.73 12.91 18.00 26.19 39.54 49.22 61.77 67.82 74.56 82.10 90.54 100.00
.O
1.0 4.0 9.1 16.4 25.9 37.8 51.7 66.7 81.2 92.9 99.3 98.8 91.2 77.7 61.8 41.0 30.8 20.6 16.5 12.4 8.3 4.1 .O
= 16.99
This column gives the degree of polarization. t Columns 5 and 6 furnish a means of determining A and B for other values of n. They represent the change in these quantities for a change of n of 0.01.
SMITHSONIAN PHYSICAL TABLES
550 F A C T O R O F P O W D E R S (WHITE L I G H T )
T A B L E 576.-REFLECTING
(percent)
Various pure chemicals, very finely powdered and surface formed by pressing down with glass plate. White (noon sunlight) light. Reflection in percent. Rochelle salt ....... ........... .. Salicylic acid . . . . . . . Sodium carbonate . . . . . . . . . Sodium chloride . . . . . . . . . . . Sodium sulfate . . . . . . . . . . . . Starch ........................ Sugar . ..... .................. Tartaric acid .. .. . .. ... .. .. . .
Aluminum oxide .............. Barium sulfate . . . . . .. Borax ........................ Boric acid . . . . . . . . . . . . . . . . . . . . Calcium carbonate . . . . . . . . . , Citric acid ... ................. Magyesium car!mate ... .... ...
83.6 81.1 81.6 83.2 95t 81.5 86.6 (block) .. 94-97t Magnesium oxide (6 mm. thick). 98*t
.. . . . . . .. . . .
.. .. . . .. . .. . .. . . .. .. . .
.
..
79.3 81.1 81.8 78.1 77.9 80.3 87.8 79.1
The smoke of magnesium turnin s freely burning in air and deposited on a satisfactory base forms a uniform fine-grained diffusing surface of high reflectance. This oxide should he deposited 90 as not to he affected by the heat from the burning Mg. A satisfactor base may be Al silver- lated Cu block porcelain. The oxide adheres better to depolished surfaces. {urfaces of high And uniform refle'ctance t Revised values. throughout the spectrum are best.
T A B L E 577.-VARIATION O F R E F L E C T I N G FACTOR O F SURFACES W I T H ANGLE ( R E L A T I V E VALUES)
Illumination at normal incidence, 14-watt tungsten lamp, reflection at angles indicated with normal. Angle of observation
0"
1'
3'
5"
10"
15"
Magnesium carbonate block.. . . . .. .88 - - .88 .88 .87 Magnesium oxide ............... .80 - - .80 .80 .80 - - .78 .78 .78 Matt photographic paper ......... .78 White blotter ... .. ... .. .. .. ... . .76 - - .76 .76 .76 Pot opal, ground. . . . ... . , . . . . . , . .69 .69 .69 .69 .69 .69 Flashed opal, not ground.. . .. . . . . 11.3 11.3 11.3 .31 .22 21 Glass, fine ground.. . . . . . . . . . . . . . . 2 9 2 9 .29 .29 2 7 2 0 Glass, coarse ground . . . . . . . . . 2 3 2 2 21 2 0 .19 .16 Matt varnish on foil.. . .. .. . . . . .. .83 - .78 .72 .62 .49 - 4.55 3.86 3.03 Mirror with ground face ......... 4.9
. .
. . . .
30"
45"
60"
.83 .77 .78 .73 .68
.72 .75 .76 .70 .66
.68
.66
.72 .67 .64 2 0 2 0 .18 .14 .13 .12 .ll .ll .12 2 8 .21 .16 .78 .42 .35
The following figures, taken from Fowle, Smithsonian Misc. Coll., vol. 58, No. 8, indicate the amount of energy scattered on each side of the directly reflected beam from a silvered mirror; the energy at the center of the reflected beam was taken as 1OO,OOO, and the angle of incidence was about 3".
..
Angle of reflection, 3" 2 . . . . 0' Energy .... .................. 100,000
8' 600
10' 244
15' 146
20' 107
30' 66
45' 33
Wavelength of max. energy of Nernst lamp used as source about
T A B L E 578.-ULTRAVIOLET
'7'
.250p .300 .45 28 .37 .38 .31 26
.350 .54 .34 .44 .45 .44
.32
.400 .62 .41 .50 .52 .46
.450 .68 .46 .53
.60 .46
Cohlentz, Stair, Nat. Bur. Standards Journ. Res., vol. 4, p. 189, 1930,
SMITHSONIAN PHYSICAL TABLES
11
2p.
R E F L E C T I N G FACTOR O F S O M E M E T A L S *TI
. . . . .43 . 21 . . . . .. . .30 . . .33 . .. 2 4 .. . .20
Aluminum, cast polished. .. . . rolled . . . . . ... . . . .. . Rhodium . . . . . . .. ... . ... . Tin, polished .. . . . . . . . . . . . . . . . . D u r $ m i n . . . . . . . . . . . ... . .. . tarnished to. . . . . . . .
60' 100' 22
SO0 .72 .SO .57 .67 .46
.550
.73 .53 58 .72
.46
.600 .74 .56 59 .73
.46
551 T A B L E 579.-PERCENTAGE
..
REFLECTION FROM METALS, V I O L E T E N D O F SPECTRUM IT*
.. . .
Wavelength in p . . . . . . . . . . .. . .05 $G electroplated ................. .. vac. fused ... .. . .. ... .. . .. Ag (min. 7%, 33p) ............... .. Stellite (Co, Cr, Mo) ............ .. Stainless steel, 13% Cr. .. . . . . . .. Cobalt .......................... .. Speculum . . . . . . . . . . . . . . . . . Beryllium (98.7%) .............. 46 Chromium on steel.. . ... .. . .. ... 69
. .. .
. .
'"Coblentz,
.lo
... .
.. .
.15
.2O
.. .. . . .. .. .. .. .. .. .. .. .. ..
.. ..
.25
.30
48 30
42 16 49 47 46 41 87 82
40
46 40 43 31 84 78
.. .. ..
53 63
6i
79 71
65
44
.35 51 45 71 55 52 52 50
.40
86
88
.SO 56 62 92
53 52 88 60 56 58 56
.60
(6J) (94)
64
(68) (60)
59 62
60
(67) (aj
..
..
..
..
Stair, Nat. Bur. Standards Journ. Res., vol. 2, p. 343, 1929.
T A B L E 580.-PERCENTAGE
REFLECTING FACTOR O F D R Y POWDERED PIGMENTS
The total reflecting power depends on the distribution of energy in the illuminant and is given in the last three columns for noon sun, blue sky, and for a 7.9 lumens/watt tungsten filament.
Spectrum color Wavelength in p
.
Vio- Blue Green let .44 .46 .48 .50 .52 .54
Yellow
--+-.56
Orange
p :G. g$ a
Red
R
8S' E
.58
.60
.62 .64
.66
.68
.70
Z
39 24 18 18 20
61 30 22 22 23
66 32 23 23 24
65 32 24 24 25
14 12 12 11 10 13 11 10 12 10 9 11 11 9 13
6 5 8 7 5
6 6 8 7 6
9 7 8 7 9
11 12 12 11 14
24 19 16 15 18
Raw sienna ......... Golden ochre .... .... Chrome yellow ochre.. Yellow ochre ........ Chromeyellowmedium
12 13 13 13 18 22 22 23 27 40 8 9 7 7 10 20 20 21 24 32 5 5 6 8 18
26 53 19 42 48
35 63 30 53 66
43 71 46 63 75
46 46 45 44 45 43 33 30 37 75 74 73 73 73 72 58 55 63 60 62 66 82 81 80 33 29 40 64 61 60 59 59 59 49 46 53
Chrome yellow light.. Chrome green light Chrome green medium Cobalt blue Ultramarine blue
13 13 10 7 58 54
82 23 17 15 6
88 20 13 11 4
89 90 89 88 87 85 84 17 14 11 9 8 7 6 11 9 7 6 6 6 5 10 10 10 11 15 20 25 3 3 4 5 7 10 17
American vermilion.. Venetian red ........ Tuscan red .......... Indian red ........... Burnt sienna ........
8 5
7
8 4
6 5 7 7 4
... 10 7 .......... 59 ..... 67
5 5 7 7 4
18 14 10 49 38
5 5 8 7 4
30 23 21 35 21
56 26 21 23 10
53 28 20 20 21
78 79 81 81 81 81 54 50 63 76 19 14 16 7
70 19 14 18 10
T A B L E 581.-I N FR A R E D DI F F USE PERCENTAGE REFLECT1NG FACTORS O F DRY PIGMENTS
.60* .95' 4.4 8.8 24.0
3 4 14 13 6
- 27 52 26 74 70 84 86 82 86 85 86 88 85 76 68 24 45 - 41 - - 88 - 86 - 84 93 89 79 72 15 33 51 30 34 41 21 47 8 16 22 23 29 11 526 4 1 1 520 7 3 2 4 510 4 - 4 8 1 0 910 7 6 1 0 5 9 6 5 7 9 - -'
-
' Nonmonocheomatic means from Coblentz. A surface of plate glass, ground uniformly with the finest emery and then silvered used at an angle . 100 for longer waves only 10 at l p iess than 5 in the of 75", reflected 90 percent at 4 ~ approached visible red and approached 0 for shorter waves. Similar results we& obtained with'a late of rock salt for transmitted energy when roughened merely by breathing on it. In both cases the iner the surface. the more suddenly it cuts off the short waves. SYlTHSONlAN PHYSICAL TABLES
82 18 12 13 6
552
T A B L E 582.-REFLECTING
FACTOR O F M E T A L S
Perpendicular incidence and reflection
(See also Tables 578, 579, 589)
The numbers give the percents of the incident radiation reflected.
.251 .288 .305 .316 .326 .338 ,357 .385 .420 .450 SO0
.550 .6Qo
.650 .700 300 1.0 1.5 2.0 3.0 4.0 5.0 7.0 9.3 11.0 14.0
-
67.0 70.6 72.2
-
-
35.8 37.1 37.2
-
-
75.5
39.3
-
-
29.9 37.8 37.7 42.7 41.7 44.2
-
32.9 35.0 37.2
-
-
40.3 24.9
-
-
-
45.2 46.5 51.0 48.8 53.1 49.6
-
-
81.2 43.3 83.9 44.3
85.7 86.6 88.2 88.1 89.1 89.6
83.3 83.4 83.3 82.7 83.0 82.7 83.3
47.2 56.4 56.6 49.2 60.0 59.4 49.3 63.2 60.8 48.3 64.0 62.6 47.5 64.3 64.9 51.5 65.4 66.6 54.9 66.8 68.8
-
84.3 84.1 85.1 86.7 87.4 88.7 89.0 90.0 90.6 90.7 92.2
63.1 69.8 79.1 82.3 85.4 87.1 87.3 88.6 90.3 90.2 90.3
-
-
-
70.5 75.0 80.4 86.2 88.5 89.1 90.1 92.2 92.9 93.6
69.6 72.0 78.6 83.5 88.7 91.1 94.4 94.3 95.6 95.9 97.2
T A B L E 583.-LONG-WAVE
-
-
48.8 53.3 59.5 83.5 89.0 90.7
-
-
-
-
-
-
-
-
25.9 33.8 38.8 24.3 38.8 34.0 25.3 39.8 31.8
-
_
34.1 21.2 9.1 4.2 14.6 55.5 74.5 81.4
-
_
45.0 47.8
27.3 43.4 28.6 45.4
28.6 27.9 27.1
-
51.9 54.4 54.8 54.9 55.4 56.4 57.6
32.7 51.8 29.3 37.0 54.7 33.1 43.7 58.4 47.0 47.7 61.1 74.0 71.8 64.2 84.4 80.0 66.5 88.9 83.1 69.0 92.3
-
86.6 90.5 91.3 92.7 92.6 94.7 95.4
58.0 63.1 70.8 76.7 83.0 87.8 89.0 92.9 92.9 94.0 96.0
88.6 90.1 93.8 95.5 97.1 97.3 97.9 98.3 98.4 98.4 97.9
94.9 97.3 96.8 96.9 97.0 98.3 98.0 98.3 97.9
-
96.8 97.0 98.2 97.8 98.1 98.5 98.1 98.5 98.7 98.8 98.3
-
-
41.4
-
70.3 72.9 77.7 80.6 88.8 91.5 93.5 95.5 95.4 95.6 96.4
-
-
91.0 93.7 95.7 95.9 97.0 97.8 96.6 -
ABSORPTION BY GASES
Unless otherwise noted, gases were contained in a 20-cm long tube. PercentageA absorption
Percentage absorption A
r
Long X. H g lamp
Long A, H g lamp
Filtered,
llO&
Gas
..... 76 Clz .... 76 100 Bra .... 20 100 ... 76 22.6 CO, ... 76 100 co .... 76 100 HzS ... 76 99.6 Nz0 ... 76 100 NO ... 76 (CN )z . 76 100 Hz
so2
t
100 100 99.6 99.5 100 100 76.9 12.7 100 100 94.1 100 11.6 5.4 96.8 98.4 94 99 97.8 100
314~
100 ~ . .100
98.5 97.6 100 100 fi 4.8 lor, 100 92.1 91.6 10.3 21.4 93.3 90.8 87.3 85.5 99.3 -
Gas
a"
2 3 ~ 52p
NH, . . . CH; . . . CzHz .. CzHi . . .
76 76 76 76 csz ... 26 CzHeO . 6 GHmO. 51 CsHxz .. 46 CHsCl . 14 HzO+ . 76
Steam 100°C passed through tube 40 cm long, 150°C; 0.06 cm ppt. H20. Pentane vapor, pressure 36 cmHg.
SMITHSONIAN PHYSICAL TABLES
83.1 91 99.5 99 97.8 85.4 26.8 66 98 39.6
.5 94.3 87.4 96.4 100 5.4 46 44.5 100 .7
Filtered,
ll0p
99.2 99.2 97.3 92.8 100 58 34 88.8 100 19.6
314~
43.3 100
66.7 .. . 100
97.9 100
100
100
99.5 100 52.4 49.9 21.8 10.7 87 84.2 95.4 94.7 33.6 49.2
T A B L E 584.-REFLECTING
553
FACTOR O F BUlLDllNG MATERIALS
The radiation used to measure the reflecting factors for the wavelengths given was obtained from the sun’s radiation transmitted through selected filters . T h e radiation from a “pointalight” transmitted through a thin gold filter may be used in place of the sun .
.
-
Gold Description
(1.78~) 0 4 8 )
63
.99
Dutch: light red ........................... 68 Machine-made : red ....................... 72 red ........................ 55 lighter red . . . . . . . . . . . . . . . .52 . dark purple . . . . . . . . . . . . . . . .22 Hand-made : red ........................... 60 red brown .................... 55
.66
Magnesium carbonate
......................
(.61~)
.98
Computed
(.SOP)
film
.21
.57 .38 .34 .34
.52
.19 .40 .31
.38 .33 .33 .18 .39 .31
.96
.96
..
CLAYTILES
.42 .38 .40 .22 .47 .33
.56 .34 .31 .32
.19 .37
28
.11 .11
.13 .13 .12 .13
CONCRETE TILES
.15 .13
.09 .10
.35 .15 .12 .09
.33 .13 .11 .08
.11 .09 .11 .13 .10 .12
.11 .10 .10 .12 .14 .13 .21
.10 .10 .10 .13 .13 .15 .20
.41 .52 .24 .19 .20 .35 .09 .78 .13 .14 .12 .62 .11 .21
.39 .26 .52 .25 .19 23 .35 .09 .74 .13
.64 .44 sa .41 .44 .32 .23 .15 .11 .08 .54 .29.
.61
.36
08 06
.38 .17 .13 .09
Dark gray : smooth ........................ 09 fairly rough ...................10 09 rough ......................... Greenish gray : rough ...................... 16 Mauve ................................... 14 Blue gray ................................ 20 Silver gray (Norwegian) ..................22
.11 .11 .10 .11 .16 .16 .21
.11
.42 .33 .53 .34 .26
.41
Uncolored ................................ Brown ................................... Brown: very rough ........................ Black ....................................
37 13
.09
27
.09
SLATES
.10 .11 .12 .13 .13 .21
.19
OT HE R ROOFING MATERIALS
Asbestos cement : white .................... 35 red ..................... 33 Enamelled steel : white ..................... 35 green .................... 26 red ....................... 24 blue ...................... 23 Galvanized iron : new ....................... 58 very dirty . . . . . . . . . . . . . . . .10 whitewashed . . . . . . . . . . . . . 63 . Special roofing sheet : brown. . . . . . . . . . . . . . .20 . green ...............13 Bituminous felt ............................ 10 Aluminized felt ........................... 67 Weathered asphalt ........................ 12 Roofing lead : old ........................... 46
27 30 .09 .79 15 .20 .12 .60 12 .20
.
.
.
.29
.53 .17
.18 .17 .34 .09 .79 .12 .12 .11 .61 .11 .19
.36 .14 .57 .13 .08 .18 .34 .O 9. .76 .07 .12 .11 .57 .09 .15
.31
.15
.11
.60 .11 .23
BRICKS Gault : cream ............................. 74 Stock : light fawn .......................... 56 Fletton : light portion ....................... 67 dark portion ...................... 54 Wire cut: red ............................. 56 Sand-lime : red ............. Mottled purple ............. Stafford: blue ..... ................... 21 Lime-clay (French) ....................... 57
SMITHSONIAN PHYSICAL TABLES
.69 .47 .61 .46 .48 .37 .26 .12
.63
.64 .38 .57 .37 .41 .30 22 .11 .52
.43 .19 .35 .15 .15 .11
.39 .52 .37 .39 .30 .23 .12 .49
554 T A B L E 585.-REFLECTION A N D TRANSMISSION O F VARIOUS MATERIALS FOR V E R Y LONG W A V E L E N G T H S
With quartz, 1.7 cm thick : 60 to 80p, absorption very great ; 63p, 99 percent ; 82p, 97.5 ; 97p, 83. Percentage reflection Iceland spar Marble
Wavelength
...... -
X=82p* A=108pt
.....
-
47.1
43.8
Rock salt
Sylvite
KBr
KI
Fluorite
Glass Water Alcohol
25.8 20.3
36.0 19.3
82.6 31.1
29.6 35.5
19.7 20.2
19.2
Percentage transparency Uncorrected for reflections Solid
Paraffin ............ Mica ............... Hard rubber ........ Quartz 11 axis.. ...... Quartz, amorph ..... Rock salt ........... Fluorite ............ Diamond ............ Quartz 1 axis ....... “
‘I
“
‘I I‘
“ “
“
“
“
“
‘I
Transparency
Thickness
3.03
.055 .40
2.00 3.85 .21
0
21.5 5.3 45.3 81.3 66.4 49.8 35.5 29.0
.59 1.26 2.00 4.03 7.26 11.74 14.66
....... ....... ....... .......
Liquid
Benzene ....... Ethyl alcohol .. Ethyl ether ... Water ........ Water ........
57.0 16.6 39.0 62.6
Thickness
1.00 ,158 .158 .029 .044
Vapors : Alcohol ..... 2.00 Ether ....... 2.00 Benzene . . . . . 2.00 Water ...... 4.00 co, .......... 2.00
-
9.6 11.6
1.6
Thicknegs precipitabje Transliquid parency
-
56.8 7.9 37.1 25.8 13.6
.023 .350 ,063 .2 1
88 33.5 100 19.6 100
-
-
t Isolated with quartz lens.
Restrahlung from KBr.
T A B L E 586.-TRANSPARENCY
O F BLACK ABSORBERS
(percent) Black silk paper,, ,025 mm thick
Method and wavelength
Spectrometer
...........
Fluorite “reststrahlen” ... Rock salt “reststrahlen” . Quartz lens isolation. ....
.
.3 .4 .8 2.6 7p
... 8 ... 25 ... 33 .... 31 ........... 48
to .4p to .8p to 2.6p to 7p
0
4 6 12 26 52 108
T A B L E 587.-RELATlVE
Main: sand
5
15 40
40 50 53 28
..
..
Plaster
White paper
Snow
of parls
35 40 15 18 26
40 53
8 30
60
30
63
15
Hulburt. Journ. Opt. SOC.Amer.. vol. 17. p. 23, 1928. Yellow-white grains of many kinds. t Very white.
..
..
111
SMITHWNIAN PHYSICAL TABLES
mg
.5
8.6 16.0 37.6 76.7 91.3 91.5
R E F L E C T I V I T Y O F S N O W , SAND, A N D O T H E R M A T E R I A L S 1’3 Crushed quartz
30
Candle lampblack,
10 cm2 = 1.8
0 0 0 0 0 0 1.6
0 0 0 1.4 32 15.1 33.5
.9 1.7 8.2 24.2 46.0 61.5
Florida sand t
50
Black cardboard .llmm thick .4 mm thick
bl ac O r qpaner, ue
$ Anhydrous.
Sodium $ Sodium carbonate chloride
14 28 35 18
..
38 49 54 55
..
9 Handkerchief.
White cotton cloth 5
26 42
40 20
..
555 T A B L E 588.-P E R C E N T A GE DI F F U S E R E F L E C T l O N F R O M MI SCE L L A N E O U S SU BSTANC E S
.60 .95 4.4 8.8 24.0
3.2 3.4 1.3 1.1 .6 3.2 1.3 .9 .8 3.8 1.3 1.2 4.4 3.0 4.0 2.1
25. 1.3 1.2 1.6 5.7
1.1 1.4 2.1 4.2
52. 84. 82. 89. 15. 1.8 14. 30. 88. 86. 75. 93. 21. 51. 21. 8. 18. 29. 3.7 26. 2. 3. 5. 11. 2.7 12. 10. 6. 5. 7.
T A B L E 589.--INFRARED REFLECTIVITY O F TUNGSTEN (Temperature variation)
Three tungsten mirrors were used-a polished Coolidge X-ray target and two polished flattened wires mounted in evacuated soft-glass bulbs with terminals for heating electrically. Weniger and Pfund, Journ. Franklin Inst.
Wayelength In P
Absolute reflectivity 2t room temperature in percent
.67 .80 1.27 1.90 2.00 2.90 4.00
51 55 70 83 85 92 93
,
T A B L E 590.-RESTRAHLUNG
Percent increase in reflectivity in going from room temperature to
1377°K
1628°K
+6.0
+7.4
-
-
.o
.O -8.2 -9.3 -9.4
-6.6 -7.5
-7.7
-
-
*
1853°K
+ 8.7 -
.O
- 9.6 -10.9 -11.1
-
2056°K
+ 9.8 + 8.2
.o
-11.0 -12.3 -12.5 -12.5
BANDS F R O M V A R I O U S M A T E R I A L S '" (percent)
Number of reflections
Crystal mirrors
Filter mm paraffin (fn each case)
Wayelength In P
Frequency in .- /cm
1 cm KCI 5 mm KCI
20.7 23
483 435
2 ...... 4 ...... 3 ...... 1 ...... 3 ......
3 mm KBr
27.3 29.4 32.8
366 340 305
41 *
244
4 4 4
2 mm,'quartz
52 63 83 94 117 152 22.5
192 159 120 106 85 66
4 3
1
1
4 4
4
...... Quartz ...... Fluorite . . . . . . Metal
Fluorite Calcite Fluorite Metal Aragonite ...... Metal ...... Wac1 ...... KCl ...... KBr ...... KI ...... TlBr
...... TI1
Magnesium oxide
.4 mm quartz 1.2 mm K B r .4 mm quartz
' "
'
"
444
?Strong, Phys. Rev., vol. 38, p. 1818, 1931. The use of a paraffin win4ow about 3 mm thick stops the short wavelength restrahlung of quartz at 8 . 7 ~and of calcite at 6.7~. Weak reflection at 418.
SMITHSONIAN PHYSICAL TABLES
556 T A B L E 591.-lNFRARED
R E F L E C T I N G FACTOR O F V A R I O U S M A T E R I A L S
(percent)
-
A = 2ofi / c m = 500
................. ................. ................. Galena ...................... Zincite ...................... p magnesia, fused.. ........... Stibnite ..................... Sphalerite ................... Corundum ................... R o y h br;?ss 'I
I'
Cuprite
.
......................
67 24 12 31 50 80 21 10
25 400
334 300
50 200
663 150
100 100
661
70 33 14 30 35 60 20 15
78 42 17 21 18 34 4 29 26 47
83 58 21 51 21 30 39 20 31 42
92 68 25 73 18 30 48 19 29 41
96 81 40 76 20 30 52 18 24 42
100 99 82 76 15 30 39 17 22 46
(2) :;
15Op
For reference, see footnote 174, p. 5 5 5 .
T A B L E 592.-INFRARED
TRANSMISSION OF VARIOUS MATERIALS
..........................
x = 20p
500
25 400
KBr K1 ............................ Amorphous SiOz ............. 3 CCI, liquid ................... );;( KCI ........................
61 83 27 63 97
/cm=
.
For reference, see footnote 174, p. 555.
SMITHSONIAN PHYSICAL TABLES
334
50
663
300
200
150
100 100
46 76
3 12 63 74 93
.. ..
..
64
50 96
62 74 80
..
70 );;(
* 15Op 664
.. ..
87
..
..
*
TABLES 593-597.-ROTATION T A B L E 593.-TARTARIC
557 OF PLANE OF POLARIZED LIGHT
ACID, C A M P H O R , S A N T O N I N , S A N T O N I C ACID, C A N E SUGAR
A few examples are here given showing the el'fect of wavelength on the rotation of the plane of polarization. The rotations are for a thickness of one decimeter of the solution. The following symbols are used : fi = number grams of the active subs!ance in 100 g of the solt$on. " " c= solvent q= " active " " cm' Right-handed rotation is marked left-handed -. .___ -
+,
Line of spectrum
B C
D E bi bz
F e
Wavelength
6867 A 6562 5892 5269 5183 5172 4861 4383
Tartaric acid, C4HeOo. dissolved in water. q = 50 to 95. temp = 24°C
Camphor,,CmHd. dissolved in alcohol. q = 50 to 95. temp = 22.9"C
Santonin, CiIHl~03. dissolved in chloroform q = 75 to 96.5, temp = 2O'C
+ .09446 q + .13030 q + + .17514 q - .i32 + .i9i47 -3.598 + ,23977 q -9.657 + ,31437 q
38?549 - .0852 51.945 - ,0964 q 74.331 - .1343 u
-140'?1 . . -149.3 -202.7 -285.6 -302.38
+2:748 +1.950 .153
~
79.348 - ,1451 q 99.601 - .1912 q 149.696 - .2346 q
-365.55 -534.98
Smtonin, ClaHiROa
,
A
B
C D E bi
bi F
e
G g
Santonin,.CI5HlaOl, dissolved in alcohol. c = 1.782 temp = 20°C
dissolved in alcohol. c = 4.046 temp = 20°C
dissolved in chloroform. c = 3.1-30.5 temp = 20°C
-1 10.4" -118.8 -161.0 -222.6 -237.1
442 504 693 99 1 1053 1323 2011 2381
484" 549 754 1088 1148 1444 2201
6867 6562 5892 5269 5183 5172 4861 4383 4307 4226
-
-261.7 -380.0
-
-
+ .20850 i:isssG
~
+ .3086q + .5820a + .6557 q + .8284 9 + 1.5240 q
Santonic acid. dissolved ClKHloO4,in chloroform. c = 27.192 temp = 20°C
- 49"
- 57 - 74 -105 -112
-
-137 -197 -230
-
2610
Values obtained at the National Bureau of Standards for the rotation of sucrose are given below. Light source
Li 6708 Cd 6438 Na 5892.5 Hg 5780 Hg 5461 Ag 5209 Cd 5086 Cd 4800
Rot X
Rot A = 5461 A
.644 .711 .84922 .8854 1.oooo 1.108 1.167 1.323
Cal2? 50.45 55.70 66.529 69.36 78.342 86.80 9 1.43 103.65
Light source
Rot A Rot X = 5461
Cd 4678 Hg 4358 A g 4208 Hg 4047
1.403 1.644 1.786 1.95
Degrees per dm. The above values are for a near normal solution, i.e., approximately 26
100 cma.
SMITHSONIAN PHYSICAL TABLES
"x" * 109.9 128.8 139.9 152.8
g
of sucrose per
558
T A B L E 594.-SODIUM
Sodium chlorate h
Spectrum line
a B C
D E F G G
H L
Wavelength
7164A 15.0 6870 17.4 6563 20.6 18.3 16.0 11.9 10.1
4308 4101
M
N P
3361 3287 3180 3021 T Cdir 2747 Cdia 2571
B
14.5 13.3
14.0 10.7 12.9 12.1 11.9 13.1 12.8 12.2 11.6
Sb
Cd
Rotation per mm
P
Rotation per mm
Spectrum line
7604 7164 6870
W668 14.304 15.746
N
17.318 21.684 21.727
Cd,,
D2
6563 5896 5890
E F G
5270 4862 4308
27.543 32.773 42.604
h H K
4102 3969 3934
47.481 51.193 52.155
L M
3820 3728
55.625 58.894
A
2"68
2.318 2.599 3.104 3.841 4.587 5.331 6.005 6.754 7.654 8.100 8.861 9.801 10.787 ii.921 12.424 13.426 14.965
a
B C
Di
Graphite Ir
Co
Wavelength
Spectrum line
T A B L E 595.-REFLECTING Wavelength A l
Quartz
--
\
T yp C
CHLORATE; QUARTZ
Wavelength
Rotation per mm
3609 3582 3465 3441
63Y628 64.459 69.454 70.587
3401 3360 3285 3247
72.448 74.571 78.579 80.459
Cdii Cdia CdD
3180 2747 2571 2312
84.972 121.052 143.266 190.426
Cd, Cds Cdm
2264 2193 2143
201.824 220.731 235.972
Cds
Cdio 0 -
P Q
Cdn
R
FACTOR O F M E T A L S (See Table Mg
Mo
Pd
Rh
Si
Ta
584) Zn
Te
Sn
W
Va
22 - 72 46 - 76 34 38 - 24 - 73 48 - 77 32 45 49 - 25 - 74 52 - 81 29 64 48
-
49
57 58 60 61 80 69 92 79 97 88 98 - 98 - 99
Percents
. 5 - - - . .6 - 53 .8 - 54 1.0 71 55 2.0 82 60 4.0 92 68 7.0 96 71 10.0 98 72 12.0 98 -
-
72 87 96 98 98 99
67 72 81 93 97 97
27 35 48 54 59 -
78 87 94 95 96 96
74 77 84 91
-
-
58 82 90 93 94 95
72 81 88 94 97 97
84 28 91 28 92 28 94 28 95 28
-
-
51 56 78 50 54 62 90 52 61 85 93 57 72 93 94 68 81 95 - - 84 96 95 - 85 96
The surfaces of some of the samples were not perfect so that the corresponding values have less weight. The followin more recent values are given for tungsten and stellite, an exceedingly hard and untarnishable alloy of Co, Er, Mo, Mn. and Fe (C. Si, S, P ). Wavelength, Tungsten, Stellite,
p,
.IS
.SO
- -2 0 _.30
.32
.42
.SO
.50
.64
T A B L E 596.-OPTICAL
.75 1.00 2.00 3.00 4.00 5.00 9.00 .52 ,576 ,900 ,943 ,948 .953 .67 ,689 ,747 ,793 .825 ,848 ,880
CONSTANTS O F METALS
Two constants are required to characterize a metal optically, the refractive index, n, and the absorption index, k, the latter of which has the following significance : the amplitude of a wave after traveling one wavelength, Xi measured in the metal, is reduced in the ratio 1 : exp (-2rk) * or for any distance a' 1 : exp (-2ra'k/X'), for the same wavelength measured in air this ratio becomes 1 : exp ( - ZrdnklX'), nk is sometimes called the extinction coefficient. Plane polarized light reflected from a polished metal surface is in general elliptically polarized because of the relative change in phase between the two rectangular components vibrating in and perpendicular to the plane of incidence. For a certain angle, 7 (principal inzidence) the change is 90" and if the plane polarized incident beam has a certain azimuth $ (principal azimuth) circularly polarized light results.
k = t a n 24 (1 -cot );*
sin 5 tan and n = (1 + k')* (continued)
SMITHSONIAN PHYSICAL TABLES
7 (1 + 4c o w .
T A B L E 596.-OPTICAL
C O N S T A N T S OF M E T A L S (concluded)
For rougher approximations the factor in parentheses may be omitted. R percentage reflection.
559
= computed
(The points have been so selected that a smooth curve drawn through them closely indicates the characteristics of the metal.)
Metal
Cobalt
Copper
Gold
Iridium
Nickel
Platinum
Silver
Steel
x P
.231 .275 .500 .650 1.00 1.50 2.25 .231 .347 .500 .650 .870 1.75 2.25 4.00 5.50 1.oo 2.00 3.00 5.00 1.oo 2.00 3.00 5.00 .420 .589 .750 1.00 2.25 1.oo 2.00 3.00 5.00 226 293 .316 .332 .395 .500 .589 .750 1.OO 1.50 2.25 3.00 4.50 .226 .257 .325 .so0 .650 1.50 2.25
7 64"31' 70 22 77 5 79 0 81 45 83 21 83 48 65 57 65 6 70 44 74 16 78 40 84 4 85 13 87 20 88 00 81 45 85 30 87 05 88 15 82 10 84 40 85 40 87 20 72 20 76 1 78 45 80 33 84 21 82 00 84 45 86 00 87 15 62 41 63 14 52 28 52 1 66 36 72 31 75 35 79 26 82 0 84 42 86 18 87 10 88 20 66 51 68 35 69 57 75 47 77 48 81 48 83 22
See footnote 5, P. 7.
SMITHSONIAN PHYSICAL TABLES
-
lb
29"39 29 59 31 53 31 25 29 6 26 18 26 5 26 14 28 16 33 46 41 30 42 30 42 30 42 30 42 30 41 50 44 00 43 56 43 50 43 25 29 20 28 10 26 40 24 00 31 42 31 41 32 6 32 2 33 30 30 30 29 40 28 50 27 00 22 16 18 56 15 38 37 2 43 6 43 29 43 47 446 442 43 48 43 34 42 40 41 10 28 17 28 45 30 9 292 27 9 28 51 30 36
Comouted tt
1.10 1.41 1.93 2.35 3.63 5.22 5.65 1.39 1.19 1.10 .44 .35 .83 1.03 1.87 3.16 .24 .47 .80 1.81 3.6 6.0 8.0
12.5 1.41 1.79 2.19 2.63 3.95 3.4 5.7 7.7 11.5 1.41 1.57 1.13 .41 .16 .17 .18 .17
24 .45 .77 1.65 4.49 1.30 1.38 1.37 2.09 2.70 3.71 4.14
k
1.30 1.52 1.93 1.87 1.58 1.29 1.27 1.05 1.23 2.13 7.4 11.0 11.4 11.4 11.4 9.0 28.0 26.7 24.5 18.1 1.60 1.48
1.37 1.13 1.79 1.86 1.99 2.00 2.33 1.82 1.70 1.59 1.37 .75 .62 .38 1.61 12.32 17.1 20.6 30.7 29.0 23.7 19.9 12.2 7.42 1.26 1.35 1.53 1.50 1.33 1.55 1.79
nk
1.43 2.14 3.72 4.40 5.73 6.73 7.18 1.45 1.47 2.34 3.26 3.85 9.46 11.7 21.3 28.4 6.7 12.5 19.6 33. 5.8 8.9 11.0 14.1 2.53 3.33 4.36 5.26 9.20 6.2 9.7 12.3 15.7 1.11 .97 .43 .65 1.91 2.94 3.64 5.16 6.96 10.7 15.4 20.1 33.3 1.64 1.86 2.09 3.14 3.59 5.75 7.41
% 32. 46. 66. 69. 73. 75. 76. 29. 32. 56. 86. 91. 96. 97.
54. 62. 70. 74. 85.
18. 17. 4. 32. 87. 93. 95. 97. 98. 98. 99. 35. 40. 45. 57. 59. 73. 80.
560 T A B L E 597.-OPTICAL Metal
x .589 .589 white ,589 .579 .579 257 .441
I crys
.589 .579 257 .441 .589
R
.57
,589 ,579 .326 .441 .589
1.44 3.04 2.26 1.13 2.97 1.80 .92 1.18 .47 3.34 2.13 1.01 1.28 1.51 2.01 .37 2.49 .68 1.01 1.62
4.87 .88 1.37 1.63 3.48 4.42 3.89 2.26 3.42 4.41
83 70 85 70 41 28 42 82 30 75 16 28 33 62 93 64 66 74 75
,668
2.91
3.66
59
.589 .~
339 .. ~
Solid.
k
n
B
A1 * Sb * Bi t t Cd * Cr * Nb * Au t I r '* Fe 8
C O N S T A N T S O F M E T A L S (additional data)
t Electrolytic.
t
5.32 4.94
-
5.01 4.85 2.11 1.14 1.85 2.83
Prism.
SMITHSONIAN PHYSICAL TABLES
Metal
Ni *
Rh * Se
*
x 275 .441 .589 .579 .400
.490 .589 .760 .589 Si * 1.25 2.25 N a (liq) .589 Ta * ,579 Sn * .589 W* .579 V* ,579 Zn * ,257 .441 .589 ,668
$ Deposited as film in vacuo.
n
k
R
1.09 1.16 1.30 1.54 2.94 3.12 2.93 2.60 4.18 3.67 3.53 .004 2.05 1.48 2.76 3.03 .55 .93 1.93 2.62
1.16 1.23 1.97 4.67 2.31 1.49 .45 .06 .09 .08 .08 2.61 2.31 5.25 2.71 3.51 .61 3.19 4.66 5.08
24 25 43 78
I(
44 35 25 20 38 33 31 99 44 82 49 58 20 73 74 73
561 TABLES 598-601.-MEDIA FOR DETERMINATIONS OF REFRACTIVE INDICES WITH THE MICROSCOPE T A B L E 598.-LCQUIDS,
n,
= 1.74
(0.589,)
t o 1.78
I n 100 parts of methylene iodide at 20°C the number of parts of the various substances indicated in the following table form saturated solutions having the refractive indices specified. When ready for use the liquids can be mixed to give intermediate refractions. Commercial iodoform (CHIs) powder is not suitable, but crystals from a solution of the powder in ether may be used, or the crystallized product may be bought. A fragment of tin in the liquids containing the S n L will prevent discoloration. CHI.
Snl,
35
S
at
12
25 25 30 ~. 27 27 31 31
40
SbIs
Asla
12
T A B L E 599.-RESINLIKE
6
1.820
10 10
1.826 1.842 1.853 1.868
(0.589,)
= 1.68 t o 2.10
7
13 16 14 16
20°C
1.764 1.783 1.806
8 8
SUBSTANCES, n,
Piperine, an inexpensive alkaloid, comes in very pure straw-colored crystals. Melted, it dissolves the tri-iodides of Sb and As very freely. The solutions are fluid at slightly above 100" and when cold, resinlike. Three parts antimony iodide to one part of arsenic iodide with varying proportions of piperine are easier to manipulate than one containing either iodide alone. In preparing, the constituents, in powder of about 1 mm grain, should be weighed out and then fused over, not in, a low flame. Three-inch test tubes are suitable. Percent iodides
00
10
20
40
30
50
60
80
70
Index of refraction.. . . . . 1.683 1.700 1.725 1.756 1.794 1.840 1.897 1.968 2.050
T A B L E 600.-PERMANENT STANDARD RESINOUS MEDIA, n, ( 0 . 5 8 9 ~ )= 1.546 t o 1.682
Any proportions of piperine rosin form a homogeneous fusion which cools to a transparent resinous mass. On account of the strong dispersion of piperine the refractive indices of minerals apparently matched with those of mixtures rich in this constituent are 0.005 to 0.01 too low. T o correct this error a screen made of a thin film of 7 percent antimony iodide and 93 percent piperine should be used over the eyepiece. Any amber-colored rosin in lumps is suitable. Percent rosin
Index of refraction
00
10
20
30
60
70
80
90
100
. . . . . 1.683 1.670 1.657 1.643 1.631 1.618 1.604 1.590 1.575 1.560 1.544
T A B L E 601.-SUBSTANCES, U
n-Heptane Octylene Cyclohexane d-Limonene p-Xylene Chlorobenzene
50
40
1.39 1.41 1.44 1.47 1.50 1.53
SMITHSONIAN PHYSICAL TABLES
n,
= 1.39 to 1.75 n
U
Eugenol Nitrobenzene Anethole o-Toluidine o-Bromophenol Bromoform
1.54 1.55 1.56 1.57 1.58 1.59
Quinaldine Iodobenzene a-Chloronaphthalene a-Bromonaphthalene a-Iodonaphthalene Methylene iodide
1.61 1.62 1.63 1.66 1.69 1.75
TABLES 602-609.-PHOTOGRAPHY
562
T A B L E BOP.-SENSITOMETRI~C
*
CONSTANTS O F T Y P E P L A T E S AND FILMS, DEFINITIONS
Density (D).-Density is a measure of the degree of blackening of an exposed film or plate after development. Density is defined in general terms as the logarithm of the ratio of the radiant flux, Po, incident on the sample to the radiant flux, Pr, transmitted by the sample.
-
3.0
-
-
I.o
2.0
0.0
1.0
Log exposure (mcs)
FIG.27.-Typical characteristic curve. Ordinates are diffuse transmission density (D) : abscissae, logs of exposure (log E). A-C = toe, C-E = straight line, E-F = shoulder, B = s p e d point, B-D = Alog E = 1.50. T a n a = y, Tan b = p , T a n a = 0.38. D =log
(g)
E x p o s u r e (E).--E = It (expressed in meter-candle seconds). I = illumination (metercandles, mc) incident on the photographic material during exposure, t = exposure time in seconds. Gamma (y).-Gamma is defined as the tangent of the angle alpha (a) (fig. 27) which the straight-line part of the characteristic curve makes with the log-exposure axis. Gamma infinity ( y m ) . - - y ~ is defined as the limiting value to which gamma a p proaches as development time is increased. T i m e of development f o r t h e half g a m m a infinity (tY = -yJ2).-A convenient practical specification of development rate of significance in comparing developers. T i m e of development for g a m m a of unity ( t Y = l.O).-A convenient practical specification of development rate of significance in comparing photographic materials. Comparisons must be confined to materials in the same developer. Inertia (i).-i =the value of exposure where the straight-line portion of the characteristic curve (fig. 27) extended cuts the log E axis. Speed (S,).--S,=I/E, where E is the exposure corresponding to point B on the D-log E curve in figure 27. This point is located in the following manner : A log exposure range of 1.50, represented in the figure by the distance along the log exposure axis between B and D, is selected in a region where the slope of the curve at the low end of the range is 0.30 of the average slope over the entire range. When the slope, or tangent of angle a, is 0.30 of the tangent of angle b, the point B , a t the low end of the exposure range, represents the exposure value (E) from which the speed of the material is derived. The material on photography was prepared by L. A. Jones, of the Eastman Kodak Co. SMITHSONIAN PHYSICAL TABLES
T A B L E 603.-FORMULAS
563
FOR DEVELOPERS
I n the determination of the values given in Table 604, developing solutions made up according to the following formulas were used (temperature, 20°C) : Developer A : Monomethyl para-aminophenol sulfate *. ........................ Sodium sulfite (anhydrous). .................................. Hydroquinone ............................................... Sodium carbonate (anhydrous). ............................... Potassium bromide ........................................... Air-free distilled water to make.. .............................. Developer B : hfonomethyl para-aminophenol sulfate *. ........................ Sodium sulfite (anhydrous). ................................... . Hydroquinone .......... .................................... Borax ....................................................... Potassium bromide ........................................... Air-free distilled water to make. ............................... Developer C : Water, about 125°F (50°C) .................................... Monomethyl para-aminophenol sulfate *. ....................... Sodium sulfite (anhydrous). ................................... Hydroquinone ............................................... Sodium carbonate, monohydrated. .............................. Potassium bromide ........................................... Air-free distilled water to make.. ..............................
2.0 gr$ms 50.0 4.0 '' 6.0 .75 1.0 liter
..
2.0 grtms 80.0 4.0 4.0 .5 " 1.0 liter
::
500.0 cc 2.2 gr;ms 96.0 8.8 " 56.0 " 5.0 " 1.0 liter
Sold under such trade names as Metol, Elon, Rhodol, and Pictol.
T A B L E 604.-SENSITOMETRIC
Material
CONSTANTS O F T Y P E PLATES A N D FILM
Developer
, y
t,=ym/a
t,= 1.0
Reciprozal inertia (S4)
21.5 13.0 10.8 .9 .7
2300 1700 600 25 5
400
5.2 4.2 6.3 9.9 5.7
2500 1700
500 400 200 200 100
6.6 5.7 4.2
2500 1300 400
400
.8 .7 1.7
60 60 35
... ... ...
Speed (So)
Motion-picture films
............ B
Fast panchromatic Medium-speed panchromatic ... Fine-grain panchromatic ...... Positive (regular) ............ Positive ( fine-grain) ..........
B
B C C
1.30 1.70 2.00 3.35 4.30
10.2 9.8 10.8 1.5 1.4
250 100
... ...
Sheet films and plates Fast panchromatic ............ Fast orthochromatic .......... Medium-speed panchromatic . . Medium-speed orthochromatic. . Blue-sensitive ................
A A A A A
1.45 1.50 1.50 1.25 1.35
2.6 2.o 3.6 2.7 2.7
840
850 430
Amateur roll films Fast panchromatic ............ A Fast orthochromatic .......... A Fine-grain panchromatic ...... A
1.28 1.25 2.50
2.9 2.2 5.5
200 100
Process films and plates Panchromatic ................ C Orthochromatic .............. C Blue-sensitive ................ C
6.90 5.00 4.00
3.3 2.00 2.7
Sc = 1 O / i where i is the inertia value at y = 1.0. Reci rocal inertia was originally ro scd hy Hurter and 6riffield as a sensitometric measure of the speec! of photographic materials. I t E a r s no direct relation to their effective spccd as determined by camera exposures, however. It is useful for comparing different types of materials which have no common basis of application in practice.
SMITHSONIAN PHYSICAL TABLES
564 T A B L E 6 0 5 . 4 O M P A R I S O N OF NUCLE AR A N D OP TI C A L E M U LS I ON S
Nuclear track plates differ markedly in physical composition and general characteristics from the ordinary photographic materials (optical type) as shown in the table, where a number of properties of optical and nuclear emulsions are compared. Property
Optical type
............ .47 :53 .......................... AgBr : gelatin (vol) .............15 :85 ......................... Grain diameter .................. .5 to 3p.. ....................... Emulsion thickness ............. . l o p ............................ Emulsion wt mg/cm'. ............ 2 - 4 .......................... Sensitivity to light.. ............ .Very high ..................... Response to a-particles ...........High ........................... Response t o p-particles.. .........Moderate ....................... Response to 7-rays.. .............Low .......................... AgBr : gelatin (wt)
T A B L E 606.-RESOLVING
Nuclear type
.80 :20 .45 :55 .1 to .4p .25 - 300p .10 - 80 .Low Individual tracks Individual tracks .Very low
P O WE R A N D EDGE GR A D I E N T V A LU E S ''l Part 1.-Definitions
resolving power of a photographic material is broadly Resolving power (I?).-The defined as the ability to record fine detail distinguishably. Any quantitative evaluation depends on the type of detail, and for convenience parallel lines separated by spaces whose width is equal to the common width of the lines are almost universally used?'" Values are usually given as the number of lines per millimeter that can be resolved visually under adequate magnification. Resolving power increases with increasing exposure to a maximum and then decreases, It is relatively unaffected by the type of developer, although developers that markedly reduce the grain size improve resolution. As the development time increases from zero, resolving power rises rapidly to a maximum, decreases slightly, and then remains sensibly constant for all practical development times. It increases in a roughly exponential manner as the contrast in the test object increases from zero, becoming substantially constant for contrasts exceeding about 1OO:l. Its dependence on wavelength is less well known, but in general it increases as wavelength decreases because of the increasing opacity of the emulsion. Although resolving power tends to increase as granularity decreases, this is by no means always the case. The values given in Table 608 apply when the ratio of brightness of the light to the dark lines is 1000: 1 and the test object is photographed with an especially well-corrected f/5 lens in tungsten light with the optimum exposure : the materials were developed for practical times in the developer for which the data are given in Table 604. As thus specified, resolving power is a threshold phenomenon and is not a criterion of the clearness with which gross details will be reproduced. Furthermore, it is of questionable value when the image is to be scanned with a physical photometer because the effect of granularity depends upon the design of the instrument. Edge gradient (G).-The appearance of sharpness produced by a photographic image probably depends, among other factors, upon the rate of change of density across the edge of the image with distance measured normal to the boundary. The curve of density vs distance resembles the H and D curve, and its gradient, called edge gradient to distinguish it from the gradient of the H and D curve, passes through a maximum with respect to distance. The values of this maximum for the respective materials in density units per micron are given in Table 608. These values were determined with a test object consisting of an extremely sharp, clear line in an opaque background on a high-resolution plate. This test object was pressed firmly against the sample with a contact liquid between and the combination was exposed to light from an f/5 lens. The resulting image was scanned with a physical microphotometer having a comparatively narrow slit. The determinants of edge gradient have been less studied than have the determinants of resolving power, but it is known that the maximum gradient has a maximum with respect to exposure. It would be expected that the maximum gradient would increase in gamma, but present knowledge indicates that it increases less rapidly. The dependence on wavelength has not been studied with modern techniques, but older studies indicate that gradient increases with decreasing wavelength. The values in Table 608 are for y ~ / and tungsten light at the optimum exposure. Both resolving power and edge gradient are inherent properties of the emulsion and are relatively inflexible. It is possible to improve them by bathing the material in dye that absorbs the light to which the emulsion is sensitive, but this is rarely p r a c t i d because of the concomitant reduction in speed. 1m Mces, C. E. K., The theory of the photographic process, chap. 21, Macmillan, 1942. "eMees, C. E. K., Proc. Roy. SOC.London, vol. 83, p. 10. 1909. SMITHSONIAN PHYSICAL TABLES
(contittucd)
2
565 T A B L E 606.-RESOLVING
POWER A N D EDGE GRADIENT VALUES (concluded)
Part 2.-Values Resolving power
Material
Motion-picture films : Fast panchromatic ................................... 95 100 Medium-speed panchromatic .......................... Fine-grain panchromatic ............................. 100 Positive (regular) ................................... 105 Positive (fine-grain) ................................. 130 Professional sheet films : Fast panchromatic ................................... 85 Fast orthochromatic ................................. 100 Medium-speed panchromatic .......................... 75 Medium-speed orthochromatic ........................ 75 Blue-sensitive ....................................... 90 Amateur roll films : Fast panchromatic ................................... 95 Fast orthochromatic ................................. 100 105 Fine-grain panchromatic ............................. Process films and plates : 125 Panchromatic film ................................... Orthochromate film ................................. 130 Blue-sensitive plates ................................. 110 High resolution plates :........................... .approx. 2,500 *
Edge gradient (X 10-9
8
9 10
18 22 11 10 10
11 10 10
11 12 22 23
18
* This value was obtained by direct exposure to a line interference pattern. With conventiqnal meth-
ods of measurement, the value is limited by the optical system rather than by the characteristics of the emulsion.
T A B L E 607.-RELATIVE
Source
PHOTOGRAPHIC EFFICIENCY O F I LLUM I NANTS Color temperature rating
Sun ................................... Zenith blue sky.. ....................... Carbon arc, white flame.. ................ Mercury arc, H-1....................... Mercury arc, H-4 ....................... Mercury arc, H-6 ....................... Fluorescent, standard warm white. ....... Fluorescent, daylight ................... Incandescent tungsten ............... 2848" Argon glow lamp. ......................
PhotonraDhic . . Er" - . eticiencv. /
Blue sensitive
Orthochromatic
Panchromatic
100 700 440 135 225 340 70 125 40 21,000
E v = relative photographic efficiency of source evaluated on basis of equal visual intensities.
SMITHSONIAN PHYSICAL TABLES
566 T A B L E 608.-SPECTRAL
SENSllTlVlTY OF PHOTOGRAPHIC MATERIALS
Spectral sensitivity is normally expressed in terms of the reciprocal of the energy (ergs/cm') at various wavelengths required to produce a given density under given conditions of development. The curves in figure 28 are shown for a scale of relative sensitivity values, with a value of 10 assigned to the point of maximum sensitivity. The curves should be regarded only as representative of the type of sensitizing for which they were determined and are not suitable for quantitative use. In figure 29 spectral sensitivity data are presented in a different form. Here the wavelengths to which classes of spectroscopic plates are sensitive are shown in a block diagram. No indications are given of the way in which sensitivity varies with wavelength. A solid portion of the block diagram indicates the spectral region for which the class is especially valuable, i.e., where the sensitizing is most effective.
-.'. '.
4 *_----
_.--
_/--
,
I
500
400
600
700
BOO
'. I( 0
900
WAVELENGTH IN MILLIMICRONS
FIG.28.-Spectral sensitivity curves for typical films : 1, blue sensitive ; 2, orthochromatic ; 3, panchromatic ; 4, infrared sensitive.
A
3000
4000
sow
6000
7000
8000
9000
too00
11ow
12000 CLASS 2 M
L
R K
N U F E C B
0 1
G
-
A 30W
J 0
4000
Sow
6OOO
7000
BOO0
po00
IMXX)
11000
12ow
TOTAL sENstrtvtry SPECTRAL REGION F O R WHICH CLASS IS ESPECIALLY VALUABLE *CLASS 0 REPRESENTS UNUODIFIEO SPECTRAL SENSITIVITY OF SILVER HALIDE
FIG.29.-The range of spectral sensitivity of kodak spectroscopic plates.
SMITHSONIAN PHYSICAL TABLES
D 2 I 0
< I?
T A B L E 609.-NUCLEAR
c-
TRACK P L A T E SPECIFICATIONS
I-
4
D
Nuclear track plates are designed to register the paths of charged particles. The choice of plate depends up011 the type of particle to be studied. Nuclear emulsions in general have about the same chemical composition and therefore have fairly uniform stopping power characteristics. The types of nuclear track plates can be divided broadly into four classes, depending upon the purposes for which they are to be used. A general classification of such emulsions for use in nuclear research is listed in the table. The emulsions are classified under the headings, A, B, C, and D, in terms of the maximum energy particle that they are capable of registering.
B
A Nuclear particles recorded
Sensitivity to light Emulsion thicknesses available Percent weight of AgBr in dry emulsion
200 Mev 10 Mev 20 Mev
a-particles Protons Deuterons
LOW
25, 50, and loop
81
400 Mev 50 Mev 100 Mev .05 Mev
a-particles Protons Deuterons Electrons
Moderate 10, 50, 100, 150, and
81
2OOp
C* a-particles of any energy Protons 750 Mev Deuterons 1500 Mev nmesons 110 Mev p mesons 85 Mev .4 Mev Electrons
D Nuclear fission fragments of high ionizing power
High
Very low
10, 25, 50, 100, 150,
20 and 5Op
81
65
and 2OOp
Specially fast hatches of the general type of plate can he made that register singly charged particles at the minimum of the ionization curve and thus will register particles of any energy value whatsoever.
568 TABLES 610-625A.-STANDARD WAVELENGTHS 177-102 AND S E R I E S RELATIONS I N ATOMIC SPECTRA * P r i m a r y standard of wavelength.-The red radiation, 6438.4696 A, emitted by a cadmium lamp of Michelson type was first chosen in 1907 by the International Union for Cooperation in Solar Research 177 as a primary standard of wavelength and definition of the angstrom as a unit of wavelength measurement. This primary standard was adopted in 1922 by the International Astronomical Union and in 1927 by the International Committee on Weights and Measures179with the statement that the wavelength of this radiation is 6438.4696 x l P o meters when the light is propagated in dry air at 15°C (hydrogen thermometer) at a pressure of 760 mmHg, gravity being 980.665 cm/sec2. Specifications for the standard cadmium lamp were last revised in 1935 ; I8O they designate that the lamp must be Michelson H-type with internal electrodes, excited with continuous or alternating current of industrial frequency, maintained at a temperature near 300°C (never exceeding 320°C) and contain air under a pressure between 0.7 and 1.O mmHg at that temperature. The constriction must not be less than 2 mm diameter and the current must not exceed 7 milliamps/mm2. A summary of nine directly measured values of the wavelength of the red radiation of cadmium in terms of the meter has been given by H. Barrel1 181 as in Table 612. 1TT-182
For footnotes 177-192, see p. 578. by W. F. Meggers, National Bureau of Standards.
* Data furnished and arranged
T A B L E 610.-PRELIMINARY V A L U E S O F Hg'" W A V E L E N G T H S I N ANGSTROMS N.B.S. (U.S.A.)
N.P.L. (England)
I.B.W.M. (France)
Mean
5790.6628 5769.5985 5460.7531
5790.6630 5769.5986 5460.7533
5790.6629 5769.5985 5460.7532
International secondary standards of wavelength f r o m neon, krypton, and iron spectra.-Spectroscopic secondary standards of wavelength are derived from the primary standard (Cd 6438.4696 A) by means of the Fabry-Perot interferometer. The existing international secondary standards represent the mean of three or more independent, concordant values adopted by the International Astronomical Union. All values of secondary standards of wavelength are valid for normal air (15°C and 760 mmHg). The most precisely determined secondary standards of wavelength have been obtained from discharge tubes of the Geissler t y p containing neon or krypton gas at a pressure not exceeding 15 mmHg. In 1935 the International Astronomical Union laS adopted 8-figure values of 20 neon wavelengths with the reservation that they apply only to the conditions under which they were determined, viz, with interferometers of high resolving power but plate separations not exceeding 40 mm. For reference, see
p. 578.
T A B L E 611.-NEON
5852.4878 5881.8950 5944.8342 5975.5340 6029.9971
SECONDARY S T A N D A R D W A V E L E N G T H S I N ANGSTROMS
6074.3377 6096.1630 6143.0623 6163.5939 6217.2813
6266.4950 6304.7892 6334.4279 6382.9914 6506.5279
6532.8824 6598.9529 6678.2764 6717.0428 7032.4127
New values of 20 krypton lines as secondary standards of wavelength were adopted in 1935 by the International Astronomical Union.'" See Table 614. mi For reference, see p. 578.
SMlTHSONIAN PHYSICAL TABLES
569 T A B L E 612.-VALUES OF T H E W A V E L E N G T H OF T H E C A D M I U M RED LINE IN T E R M S O F T H E I N T E R N A T I O N A L M E T E R ( U n i t = 1 m)
x
Date of determination
1892-93 1905-06 1927 1933 1933 1934-35 1934-35 1937 1940
Original values
Observers
Michelson and Benoit (B.I.P.M.) Benoit, Fabry and Perot (B.I.P.M.) Watanabe and Imaizumi (Tokvo) Sears and-Barrel1 (N.P.L.) Kosters and Lampe (P.T.R.) Sears and Barrel1 (N.P.L.) Kosters and Lampe (P.T.R.) Kosters and Lampe (P.T.R.) Romanova. Varlich. Kartashev. and Batarchukova (Leningrad)
Corrected and adjusted values in normal air
Differences from mean 10-10 m
Parts per 106
6438.4722
6438.4691
-.0005
-.08
6438.4696
6438.4703
+.0007
+.I1
6438.4685
6438.4682
-.0014
-.22
6438.4711
6438.4713
+.0017
+.26
6438.4672
6438.4689
-.0007
-.11
6438.4709
6438.4709
+.0013
+.20
6438.4685
6438.4690
-.0006
-.09
6438.4700
6438.4700
+.0004
+.06
6438.4677
6438.4687
-.0009
-.14
Mean
6438.4696
2.0009
2.14
The values originally reported (column 3) are corrected (column 4) to take account of subsequent conclusions (a) regardiag the values to be attributed to the standards of length employed, and adjusted (b), so far as the available information permits, to uniform standard conditions of dry air at 15°C and 760 mmHg pressure, containing 0.03 percent CO,. The statistical mean deviation associated with the average value of 6438.4696 X lo-" m derived from these nine determinations amounts to & 0.0010 X lo-'' m. The recent production of purer monochromatic radiation (than the cadmium red line) suggests that eventually another wavelength from a single heavy isotype of even mass number may be adopted as the primary standard of length. Thus, since 1945 many milligrams of Hg'" have been made by transmutation of gold in chain-reacting uranium piles. Electrodeless lamps containing Hgle8have been made and distributed by the National Bureau of Standards. When excited by ultra-high frequency (> 100 megacycles) and water cooled these lamps emit with high intensity ideally sharp mercury lines. Preliminary measurements, relative to Cd 6438.4696 A, of the yellow and green lines of Hg'= have been reported by the National Bureau of Standards, by the National Physical Laboratory, and by the International Bureau of Weights and Measures, as in Table 610. For reference, see p. 578.
la*
T A B L E 613.-RESULTANT Numher of electrons
1 2 3 4 5 6 7 etc.
SMITHSONIAN PHYSICAL TABLES
S
S VALUES AND TERM MULTIPLICITIES Term multiplicities
Doublets Singlets, triplets Doublets, quartets Singlets, triplets, quintets Doublets, quartets, sextets Singlets, triplets, quintets, septets Doublets, quartets, sextets, octets
570 TABLE 614.-KRYPTON
4273.9700 4282.9683 4286.4873 4300.4877 43 18.5525
SECONDARY STANDARD WAVELENGTHS I N ANGSTROMS
4319.5797 4351.3607 4362.6423 4376.1220 4399.9670
4453.9179 4463.6902 4502.3547 5562.2257 5570.2895
5649.5629 5870.9158 5993.8503 6421.029 6456.291
Neon and krypton secondary standards are used extensively for interference measurements in metrology and spectroscopy, but their spectral range and distribution does not make them generally suitable for wavelength measurements by interpolation in prismatic or in grating spectra. For the latter purpose a system of secondary standards should consist of lines of comparable intensity distributed as uniformly as possible throughout the entire range of wavelengths commonly observed in optical spectra. An approach to such a system is found in the internationally adopted secondary standards derived from the spectrum of the iron arc. The source for iron secondary standards is specifiedm as the "Pfund arc operated between 110 and 250 volts, with 5 amperes or less, at a length of 12-15 millimeters used over a central zone at right angles to the axis of the arc, not to exceed 1.0-1.5 millimeters in width, and with an iron rod 6-7 millimeters diameter as the upper pole and a bead of oxide of iron as the lower pole. As the secondary standards to the red of 6000 A are all stable lines, and as the exposures with the above-mentioned arc may b5,rather long, it is recommended that the 6 mm, 6 ampere arc be retained for this region. The list of iron secondary standards adopted by the International Astronomical Union consists of 306 7-figure values ranging from 2447.708 to 6677.933 A, thus covering a little more than one octave. Internal evidence from the combination principle as well as the agreement between independent observers indicates that the average probable error in these standards is 20.001. A. Preliminary values of long-wave iron lines (6750.158 to 10216.351 A ) have been suggested.m Additional ultraviolet iron lines (2100.794 to 3383.980 A) have been suggested 188 and only one or two confirmatory observations are required to extend the secondary standards over a range of more than two octaves. m-188For
references, see p. 578.
T A B L E 6 1 5 . 4 VALUES FOR L E V E L S I N TERMS HAVING ODD AND E V E N MULTlPLlClTlES Values of J for -
*
Terms kinglets
s P
D
F
G
o 1 2 3 4
Doublets Triplets
1/2 1/2,3/2 3/2,5/2 5/2,7/2 7/2,9/2
0
1 2 3
1 1 2 3 4
2 3 4
5
Quartets
Quintets
Sextets
3/2 1/2.3/2,5/2 1/2,3/2,5/2,7/2 3/2,5/2,7/2,9/2 5/2,7/2,9/2,11/2
2 2 2 3 4
5/2 3/2,5/2,7/2 1/2,3/2,5/2,7/2,9/2 1/2,3/2,5/2,7/2,9/2,11/2 3/2,5/2,7/2,9/2,11/2,13/2
1 0 1 12 2 3
3 3 4 4 5 56
etc.
T A B L E 616.-TERMS
FROM NONEQUIVALENT ELECTRONS Terms (omitting J values)
Electrons 5s
SP
'S,
' P BP
sd
df
ff
etc.
SMITHSONIAN PHYSICAL TABLES
"G,
57 1 TABLE 6 1 7 . 4 R O N SECONDARY STANDARDS O F WAVELENGTH IN ANGSTROMS
2447.708 3175.447 2584.536 3178.015 2635.808 3184.896 2679.062 3191.659 2689.2 12 3196.930 2699.107 3200.475 2723,577 3205.40u 2735.475 3215.940 2767.523 3217.380 2778.221 3222.069 2804.521 3225.789 2813.288 3226.223 2823.276 3239.436 2832.436 3244.190 2838.120 3257.594 2851.798 3271.002 2869.308 3284.588 2912.158 3286.755 2929.008 3298.133 2941.343 3340.566 2953.940 3347.927 2957.365 3370.786 2965:255 3396.978 2981.446 3399.336 2987.292 3401.521 2999.512 3407.461 3037.388 3413.135 3047.605 3427.121 3057.446 3443.878 3059.086 3445.151 3067.244 3465.863 3075.721 3476.704 3083.742 3485.342 309b.578 3490.575 3116.633 3497.843 3134.1 11 3513.820 3157.040 3521.264 3160.658 3558.518
3565.381 3767.194 3576.760 ._ 3787.883 .. -. . . - ~ 3581.195 3790.095 3584.663 3795.004 3585.320 3797.517 3586.1M 3798.513 3589.107 3799.549 3608.861 3805.345 3617.788 3815.842 3618.769 3824.444 3621.463 3825.884 3631.464 3647..844 3827.825 3834.~~25 3649.508 3651.469 3669.523 3676.314 - -. -.- - . 3677.630 3679.915 3687.458 3695.054 3704.463 3705.567 3719.935 3722.564 3724.380 3727.621 3732.399 3733.319 3734.867 3737.133 3738.308
3839.259 3840.439 3841.051 3843.259 - - .- .--. 3846.803 3849.969 3850.820 3856.373 3859.913 3865.526 3867.219 3872.504 3873.763 3878.021 3878.575 3886.284 3887.051 3888.517 3895.658
3763.790 3765.542
3917.185 3920.260
3922.9 14 3927.922 3930.299 3935.815 3940.882 3942.443 3948.779 3956.681 3966.066 3967.423 3969.261 4005.246 4014.534 4045.815 4063.597 4066.979 4067.275 407 1.740 4107.492 4114.449 4118.549 4121.806 4127.612 4132.060 4134.681 4143.871 4147.673 4156.803 4170.906 4175.640 4184.895 4202.031 4203.987 4213.650 4216.186 4219.364 4250.790 4260.479
4267.830 4271.764 4282.406 4285.445 4294.128 4298.040 4305.455 4307.906 4315.087 4325.765 4337.049 4352.737 4358.505 4369.774 4375.932 4383.547 4390.954 4404.752 4408.419 4415.125 4422.570 4427.312 4430.618 4442.343 4443.197 4447.722 4454.383 4459.121 4461.654 4466.554 4489.741 4494.568 4517.530 4528.619 4531.152 4547.851 4592.655 4602.944
4647.437 4667.459 4678.852 4691.414 4707.281 4710.286 4733.596 4641.533 4745.806
5270.360 5307.365 5328.534 5341.026 5371.493 5397.131 5405.778 5429.699 5434.527
4878.218
5506.782
I r o n tertiary standards of wavelength.-The iron tertiary standards derived from diff raction-grating interpolation between secondary standards, and formerly adopted," have all been superseded by interferometer, or grating interpolated, values published in the M.I.T. Wavelength Tables (John Wiley & Sons, New York, 1939). E x t r e m e ultraviolet standards of wavelength.-Provisional standards of wavelength in the extreme ultraviolet, measured relative to secondary and tertiary iron standards in overlappinq spectral orders, have been published ; they include 57 carbon lines (1930.900 to 858.091 A), 23 nitrogen lines (1745.246 to 775.966 A), 25 oxygen lines (1306.038 to 580.974 A), and 10 argon lines (1066.660 to 871.099 A). Standard solar wavelengths.-The International Astronomical Union '"has adopted 7-figure standards of wavelength in the solar spectrum when two or more accordant values have been reported. These values have resulted mainly from interferometer measurements of solar-absorption wavelengths relative to neon or to iron secondary standards. The standards represent integrated solar light, are corrected for Doppler-Fizeau displacement, and are valid for standard air at 15°C and 760 mmHg pressure. In the long-wave region many of the solar spectrum standards originate in the terrestrial atmosphere as absorption by oxvgen or water vapor. In Table 618 the sign following the symbol of an element indicates ionization; a symbol like Fe -, solar line too strong to be due to iron alone; Fe, Co, coincidences of like order ; Fe Co, coincidence closer for preceding element ; F e - Co, F e wavelength smaller, Co larger than solar line; an italicized element indicates a more prominent contribution and boldface a decidedly predominant element.
+
18D-101
For references, see p. 578.
SMITHSONIAN PHYSICAL TABLES
572 T A B L E 618.-STANDARD
X Solar
Origin Intensity
3592.027 v+ 3635.469 Ti 3650.538 3672.712 Fe 3695.056 Fe 3710.292 Y+ 3725.4% Fe 3741.065 Ti 3752.4 18 Fe 3760.537 Fe 3769.994 Fe 3781.190 Fe 3793.876 Cr Fe 3804.0 15 Fe 3821.187 Fe 3836.090 T i + C r V ? 3843.264 Fe Fe3897.458 3906.752 Fe 3916.737 Fe Fe 3937.336 3949.959 Fe Fe3953.861 Fe3960.284 3%3.691 Cr Fe 3977.747 3991.121 C r - Z r + 4003.769 Fe-Ti Fe 4016.423 4029.642 F e - Z r + 4030.190 Fe 4037.121 4053.824 T i + F e 4062.447 Fe Fe 4073.767 4079.843 Fe 4082.943 Mn 409iW Fe 4094.938 Ca 4107.492 Fe 4120.212 Fe 4136.527 Fe 4139.936 Fe 4154.814 Fe 4163.654 Ti+Cr-Fe 4168.620 F e F e + ? 4178.859 Fe 4I84.900 Fe, Cr Fe 4 191.683 Fe 4198.638 Fe 4208.608 4220.347 Fe 4233.612 Fe Fe 4241.123 4246.837 Sc+ 4257.661 Mn Fe 4266.968 F e Ti 4276.680 Fe 4282.412 Fe 4291.472 4318.659 Ca T i Ni 4331.651 Ti+ 4337.925
+
; 2 3 5 3 3 4 3 4 4 3 2 3 4 2 4 4 3 4 3 5 3 3 3 6 3 3 2 5 2 22 5 4 3 4 3 4 5 4 3 4 4 5 2 3 4 3 3 3 3 6 2 5 2 3 2 5 2 4 2 4
SOLAR W A V E L E N G T H S MEASURED IN AIR A T 15OC A N D 1 ATMOSPHERE PRESSURE X Solar
X Solar
4348.947 4365.904 _.... 4389.253 4398.020 4416.828 4425.444 4430.622 4439.888 4451.588 4454.388 4459.755 4470 485 448 1.616 4502.221 4508.289 4512.741 4517.534 4525.146 4531.631 4534.785 4541.523 4547.853 4548.770 4550.773 4563.766 4571.102 457 1.982 4576.339 4578.559 4587.134 4589.953 4598.125 .. 4602.008 4602.949 4607.654 4617.276 4625.052 4630.128 4635.853 4637.510 4638 017 4643.470 4647.442 4656.474 4664.794 4678.172 4678.854 4683.567 4690.144 4700.162 4704.954 4720.999 4728.552 4733.598 4735.848 4736.783 4741.535 4745.807 4772.823 4788.765 4789.658 4802.887 4824.143
4832.7 19 4839.551 4939.694 4983.260 4994.138 5002.798 5014.951 5028.133 5079.745 5090.782 5109.657 5150.852 5159.065 5198.718 5225.534 5242.500
3:::: 5288.533
5300.751 5307.369 5322.049 5332.908 5348.326 5365.407 5379.581 5389.486 5398.287 5409.799 5415.210 5432.955 5445.053 5462.970 5473.9 10
5487ij55
5501.477 5512.989 5525.552 5534.848 5546:514 5590.126 5601.286 5624.558 5641.448 5655.500 5667.524 5679.032 5690.433 5701.557 5731.772 5741.856 5752.042 5760.841 5805.226 5809.224 5816.380 5853.688 5857.459 5859.596 5862.368 5866.461 5867:572 5892.883 (continued)
SMITHSONIAN PHYSICAL TABLES
Origin Intensity
Ni - Fe: Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Cr Fe Fe Fe Cr Fe Fe Fe Fe Cr Fe Fe Fe Fe Fe Fe Fe Ca Fe Fe Fe Ca Ca Fe V Fe Fe Fe Fe Si Fe Fe Fe Fe Ni Ni Fe Fe Ba
-
+
ca
3 3 3 3 4 2 3 2 4 5 2 4
2 3 2 3 2 3 2 2 3 3 4 4 4
5
2 A
3
2 3 3 4 2 2
4 2 4 4
+
Fe Fe T_ i . Ca Ni
3 2 4
573 T A B L E 618.-STANDARD SOLAR W A V E L E N G T H S MEASURED IN AIR A T 15°C A N D 1 ATMOSPHERE PRESSURE (continued) X Solar
5898.166 5905.680 5916.257 5919.054 5919.644 5927.797 5930.191 5932.092 5934.665 5946.006 5952.726 5956.706 5975.353 5976.787 5983.688 5984.826 6003.022 6008.566 6013.497 6016.647 6024.068 6027.059 6042.104 6065.494 6078.499 6079.016 6082.718 6085.257 6086.288 6089.574 6490.216 6093:649 6096.671 6102.183 6102.727 6111.078 6116.198 6122.226 6127.912 6128.984 6136.624 6137.002 6137.702
6154.230 6157.733 6161.295 6 162.180 6165.363 6166.440 6169.564 6170.516 6173.341 6175.370 6176.816 6180.209 5186.717 6187.995 6191.571 6200.321
Origin Intensity
Atm 4 Fe 4 Fe3 Atm 5 Atm 7 Fe 3 Fe 6 Atm 5 Fe 5 Atm 3 Fe 4 Fe 4 Fe 3 Fe 4 Fe 5 Fe 6 Fe 6 6 Fe Mn 6 Mn 6 7 Fe Fe 4 Fe 3 Fe 7 Fe 5 Fe 3 Fe 1 Ti - Fe 2 Ni 2 2 Fe 2 V 2 Fe Fe 3 Fe 6 9 Ca 2 Ni Ni 3 Ca 10 Fe 3 Ni 1 Fe 8 Fe 3 Fe 7 Ba+-Fe 7 Si 2 Fe+ 2 Fe 4 Na 2 Fe 5 Ca 4 Ca 15 Fe 2 Ca 5 Ca 7 Fe-Ni 4 Fe 5 Ni 3 Ni 5 Fe 5 Ni 2 -Fe 4 Fe 9 Fe 6
A Solar
6213.437 6215.149 6216.358 6219.287 6226.740 6229.232 6230.736 6232.648 6240.653 6244.476 6245.620 6246.327 6247.562 6252.565 6254.253 6256.367 6258.110 6258.713 6265.141 6270.231 6279.101 6279.896 6280.393 6280.622 6281.178 6281.956 6283.796 6289.398 6290.221 6292.162 6292.958 6295.178 6295.960 6297.799 6299.228 6301.508 6302.499 6302.764 6305.810 6306.565 6309.886 6315.314 6315.814 6318.027 6322.694 6327.604 6330.852 6335.337 6336.830 6344.155 6355.035 6358.687 6378.256 6380.750 6393.612 6400.009 6400.323 6408.026 6411.658 6419.956 6421.360 6430.856 6449.820
Origin Intensity
Fe Fe
V
Fe Fe Fe Fe-V Fe Fe Si Sc Fe Fe + Fe SiFe FeNi Ti Ti Fe Fe Atm 0 Atm 0 Atm 0 Fe Atm 0 Atm 0 Atm 0 Atm 0 Atm 0 Atm 0 Atm 0 Atm 0 Atm 0 Fe Atm 0 Fe Fe AtmO AtmO AtmO AtmO Fe Fe Fe Fe Ni Fe Fe Fe Fe Fe Fe Ni Fe
+
Fe
Fe Fe Fe Fe Fe Fe Fe Ca
(continued)
SMITHSONIAN PHYSICAL TABLES
6 3 1 6 1 1 8 4 3 2 1 7 2 7 5 6 3 3 5 2 3 2 2 3 1 2 1 1 2 2 3 3 3 5 3 7 5 2 2 2 2 3 2 6 5 2 2 7 7 4 4 6 2 4 7 8 2 5 7 4 7 7 6
X Solar
6455.605 6456.391 6471.668 6475.632 6482.809 6493.788 6494.994 6498.945 6499.654 6516.083 6518.373 6569.224 6592.926 6609.118 6643.638 6677.997 6717.687 68Io.267 6858.155 6870.946 6879.928 69 18.122 6919.002 6923.302 6924.172 6928.728 6934.422 6959.452 6961.260 6978.862 6986.579 6988.986 7022.957 7023.504 7027.478 7034.910 7122.206 ~. 7568.906 7574.048 7586.027 7595.770 7599.462 7602.995 7611.194 7616.980 7619.214 7621.802 7625.354 7638.306 7647.202 7649.553 7651.963 7657.606 7665.944 7671.669 7676.565 7677.619 7682.758 7683.802 7690.218 7695.838 7696.869 7714.310 ~~~
Origin Intensity
Ca Fe+ Ca Fe Ni Ca Fe Fe Ca Fe+ Fe Fe
_ .
Fe Fe Ni Fe Ca Fe Fe AtmO AtmO AtmO AtmO AtmO AtmO AtmO AtmO Atm Atm Fe Atm Atm Fe Atm Atm Si Ni Fe Ni Fe Ah02 Atm0; AtmO; Atm02 Ni Ni AtmO. Atm0; AtmOz Atm 0, Atm02 Atm02 ME Atm"O2 AtmOr Atm02 Atm02 Atm02 Atm02 AtmO. AtmO; Atm02 Ni
2 3 5 2 1 6 8 1 4
2 2 4 6 5 6 8 6 2 4 13 10 8 8 6 6 5 3 9 11 6 8 8
4
5 5 5 7 5 5 8 12 0 0 0 8 4 0 1 3 1 -1 0 9N 10 10 9 9 8 8 6 4 4 6
574 T A B L E 618.-STANDARD SOLAR W A V E L E N G T H S ' MEASURED IN AIR A T 15°C AND 1 ATMOSPHERE PRESSURE (continuod) A Solar
7727.616 7748.284 7751.116 7780.568 7788.933 7797.588 7807.916 7832.208 7836.130 7864.437 7885.014 7887.117 7893.512 79 12.870 7915.634 7920.666 7928.618 7937.150 7941.096 7945.858 7958.492 7971.522 7984.342 7994.488 8000.300 8012.940 8036.460 8039.600 8045.530 8046.058 8047.625 8063.286 8075.158 8096.580 8103.165 8107.842 8118.910 8125.445 8133.209 8139.718 8146.213 8147.188 8165.337 8169.386 8177.932 8178.491 8181.848 8194.836 8200.694 8207.749 8212.132 8218.114 8221.553 8225.688 8229.762 8233.906 8234.628 8237.341 8239.132 8239.924 8248.137 8248.802 8252.727
Origin Intensity
Ni Fe Fe
Fe - _ Ni Ni Fe?-Fe Fe A1 Atm Atm Ti Atm Atm Fe Atm Atm Atm Fe Fe . Fe Atm Atm Atm Fe Atm Atm Atm Atm Atm Fe Fe Atm Fe Atm Atm Atm Atm Atm Atrn Atm Atrn Atm Atm Atm Atm Atm Atm
Na Atm Fe Atm Atm Atm Atm Atm Atrn Atm Atm Fe Atm Fe
0
Atm
5 6 2
8
5 5
4 9 4N 2 1
3 4 2 3 7 7 7 2 7 7 4 4 3 6 4 3 3 3 8 4 2 2 3 1 4 2 3 2 3 5
5
3 6 7
4
9 12 N 6 4
5
10 6 5 8 8 3 5 2 4 4 4
6
SMITHSONIAN PHYSICAL TABLES
A Solar
Origin Intensity
8259.692 Atm Atm 8263.445 8272.042 Atm Atm 8279.600 Atm 8300.408 Atrn 8304.300 Atm 8311.956 Atm 8316.224 8327.061 Fe 8329.682 Atm 8333.584 Atm 8342.290 Atm 8349.162 Atm 8357.040 Atm 8362.302 Atm 8367.331 Atm 8376.381 Atm 8394.020 Atm 8397.152 Atm 8426.514 Ti 8434.968 Ti 8439.581 Fe 8468.418 Fe 8471.744 Fe 8514.082 Fe 8515.122 Fe 8526.676 Fe 8556.797 Si 8571.807 Fe 8582.271 Fe 8595.968 Si 8598.836 Fe 8611.812 Fe 8613.946 Fe 8616.284 Fe 8648.472 Si 8674.756 Fe 8699.461 Fe 8713.208 Fe 8717.833 Mg? 8747.438 Fe 8773.906 A1 8784.444 Fe 8790.454 Fe Si 8793.350 Fe 8824.234 Fe 8866.943 Fe 8868.444 Fe 8876.030 Fe 8879.316 Atm 8917.506 Atm 8927.392 Ca 8930.270 Atm 8946.878 Atm 8950.744 Atm 8958.402 Atm 8963.492 Atm 8969.030 Atrn 8976.424 Atm 8993.043 Atm 9047.412 Atm 9052.974 Atm 9060.434 Atm (continued)
+
8 7 8 9 10 6 6 5 10 8 5 3 4
6 5 6 4 3 2 2 4 5 9 2 7 5 3 8N 2 6 3N 3 7 1
2 10N 7 4 3 7N 0 6 1 6 6 10 9 3 1 4 1
7 4 4
1
4 4 0
1
0 2 7 6
A Solar
9073.134 9074.306 9092.482 9105.399 9118.009 9132.443 9140.457 9150.800 9175.249 9178.534 9181.203 9190.208 9192.568 9205.584 9225.006 9232.750 9251.100 9254.347 9275.072 9289.856 9301.910 9311.734 9314.006 9320.768 9321.650 9348.382 9361.227 9363.334 9374.280 9400.094 9406.904 9444.4 12 9463.992 9472.418 9476.754 9478.884 9483.970 9486.042 9504.434 9507.742 9512.630 9533.411 9549.958 9550.362 9558.836 9575.680 9587.126 9598.870 9601.170 9624.496 9629.997 9643.105 9651.932 9664.646 9686.386 9694.588 9700.139 9708.922 9730.638 9755.979 9765.495 9768.637 9776.818
Origin Intensity
Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atrn Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atrn Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm Atm
1 7 5 7 5 3 1 1 5 3 3 3 5 3 6 3 6 1 2 2 5 6 4 7 0 2 6 3 1 7 6 5 3 1
4 0 1 7 3 1 5 4 2 2 2 3 5 7 3 3 1 3 2 6 3 0 2 6 4 0 4 2 3
575 TABLE 618.-STANDARD SOLAR WAVELENGTHS MEASURED I N A I R A T 15°C AND 1 ATMOSPHERE PRESSURE (concluded) X Solar
9779.406 9787.146 9791.006 9795.288 9799.476
h Solar
Origin Intensity
Atm Atm Atm Atm Atm
5 3
Origin Intensity
Atm 9803.241 Atm 9821.754 9831.960 A t m - T i Atm 9835.758 Atm 9840.092
7 1 7
-1
3 3 4 1
X Solar
9843.978 9850.524 9873.638 9878.200 9889.050
Origin Intensity
Atm 2 Atm -1 Atm 4 Atm Fe 1 Fe 5
Prominent lines i n simple spectra of elements.-The more prominent lines, in simple spectra, easily excited with high intensity, are universally employed in spectroscopy, refractometry, polarimetry, spectrophotometry, interferometry, and metrology either to calibrate the wavelength scales of dispersing instruments or to make optical measurements at various wavelengths. A brief tabulation of the wavelengths most commonly used for these purposes is given in Table 619, where numerical. values of wavelengths and approximate relative intensities by elements are followed by graphical presentation (fig. 30). The spectral range is restricted to that easily observed photographically in air (2000 to 10000 A). Values of wavelengths are quoted from the M.I.T. Wavelength Tables (John Wiley & Sons, New York, 1939) and relative intensities in individual spectra are estimated from arc spectrograms made a t the National Bureau of Standards. TABLE 619.-WAVELENGTHS ( I N ANGSTROMS) AND R E L A T I V E INTENSITIES O F PROMINENT LINES I N SIMPLE SPECTRA Wavelength
Intensity
H 6562.849 6562.725 4861.327 4340.465 4101.735 3970.074
200 100 40
H e 7065.188 6678.149 5875.618 5015.675 4921.929 4713.143 4471.477 4026.189 3888.646 3203.14 3 187.743 2945.104 2733.32 2511.22 2385.42
40 75 500 45 25 25 40 20 500 25 50 25 25 10 5
Li 8126.52 6707.844 6103.642 4971.990 4602.863 4132.29 3232.61 2741.31
30 900 60 5 10 3 4 2
Na 8194.811 8183.270 5895.923 5889.953 5688.224 5682.657 3302.988 3302.323
30 15 500 900 10 6 10 20
15 5 1
Wavelength
Intensity
Mg 5183.618 5172.699 5167.343 3838.258 3832.306 3829.350 2852.129 2802.695 2795.53
75 45 15 75 50 20 500 400 800
A1 3961.527 3944.032 3092.713 3082.155 2660.393 2652.489 2575.100 2567.987
500 250 100 50 5 4 10 5
A 8521.441 8424.647 8408.208 8264.521 8115.311 8103.692 8014.786 8006.156 7503.867 7067.217 6965.430 6871.290 6752.832
200 250 300 150 400 200 80 60 150 300 500
6677.282 4200.675 4158.590 4044.418 3948.979
80
Cu 8092.634 7933.130
30 15
(continued) SMlTHSONlAN PHYSICAL TABLES
100 100 -..
50 50
20 20
Wavelength
Intensity
Cu 5782.132 5218.202 5153.235 5105.541 4651.134 4586.954 4062.698 4022.657 3273.962 3247.540 2961.165 2824.369 2766.371 2618.366 2492.146 2406.665 2392.627 2293.842 2263.079 2246.995 2230.084 2225.697 2199.583 2192.260 2135.976
30 100 30 15 10 8 25 20 400 800 4 8 15 30 5
Zn 4810.534 4722.159 4680.138 3345.572 3345.020 3302.941 3302.588 3282.333 3075.901 2138.56 206 1.91 2025.51
100 60 20 15 80 15 40 20 10 950 15 30
5
20 15 10 8 4 6 5 4 4
1'-
I
5
H.
577 T A B L E 619.-WAVELENGTHS (IN ANGSTROMS) A N D R E L A T I V E I N T E N S I T I E S O F P R O M I N E N T L I N E S IN S I M P L E SPECTRA (concluded) Wavelength
Intensity
Ne 9665.424 9326.52 9300.85 9201.76 9148.68 8853.866 8783.755 8780.622 8654.383 8377.607 7438.899 7245.167 7032.4127 6929.468 6678.2764 6506.5279 6402.246 6382.9914 6266.4950 6163.5939 6143.0623 6096.1630 6074.3377 5944.8342 5881.8950 5852.4878 5400.562
100 60 60 60 60 80 100 120 150 80 80 200 300 300 400 600
Rb 7947.60 7800.227 7757.651 7618.933 7408.170 6298.327 6206.309 6070.751 5724.453 4215.556 4201.851
400
800
500 400 250 600 400 300 400 250 800 50 800 50 50 20 40 30 10 20 100 200
IVavelength
Intensity
.\g 8273.519
30 15 50
7687.779 5471.551 5165.487 5209.067 3382.891 3280.683 2437.791 -7413.184
50 400 800 4 2
K 7698.979 7664.907 6938.98 691 1.30 4047.201 4044.140 3446.722
400 800 8 4 4 8 3
Ca 8662.140 8542.089 6439.073 6162.172 5588.748 4226.728 3968.468 3933.666
40 80 40 60 50 200 400 800
Cd 6438.4696 6099.18 5085.824 4799.918 3612.875 3610.510 3467.656 3466.201 3403.653 3261.057 2288.018 2265.017 2144.38-7
200 50
T A B L E 620.-WAVELENGTHS
100
100
60 20 100 20 55 25 20
\Vavelength
Kr 9856.24
9751.759 .. - -.. -.
8928.692 8776.749 8508.870 8298.108 828I.049 8263.240 8190.054 8112.902 8104.364 8059.504 7854.821 7694.539 7685.246 7601.544 7587.413 5870.9158 5570.2895 4463.6902 4376.1220 4319.5797 4318.5525 4273.9700 Hg 5790.654 5769.59 5460.740 4358.35 4046.561 3650.146 3131.833 3131.546 3125.663 2967.278 2536.519
Intensity
50 200 200
600
300 500 150 300 300 600 400 150 80 120 100 400 400 300 200 20 50 80 40 40 10 10 75 50 25 50 10 10 15 30 600
‘900
100 200
OF FRAUNHOFER LINES
For convenience of reference the values of the wavelengths corresponding to the Fraunhofer lines usually designated by the letters in the column headed “Index letter,” are here tabulated separately. The letters .I-. y, and 2 were assigned by Abney.‘B2 Except for Ds, the rest have been taken from Higg‘s map of the normal solar spectrum. The data in columns 2, 3, and 4 are from the following sources :
> 6600, Babcock, H. D.. and Moore, C. E., Carnegie Inst. Washington Publ. 579, 1947. For X 3062-6600, Revised Rowland Table, St. John, C . E., et al., Carnegie.1ns.t. Washington Publ. 396, 1928, with additions and corrections by C . E. Moore, unpublished (1949). For X < 3062, Babcock, H. D., Moore. C. E., and Coffeen, hi. F., Astrophys. Journ., vol. 107, p. 287, 1948 (Mount \Vilson Contr. S o . 745).
For X
102
For reference, see
p. 578.
(cotititiited)
SMITHSONIAN PHYSICAL TABLES
TABLE 620.-WAVELENGTHS Index letter
Y 2-4
%a %a 2-1
z
A a
B
C a
DI Da Di E bi
ba br bd
F J!
Identification
Solar wavelength
OF FRAUNHOFER LINES (concluded)
Solar intensity
8987.65 8806.775 8662.170 ca+ 8542.144 Ca 8498.062 Ca 8226.962 Atm Atm Oa 7593.695* Atm 7184.526 Atm O2 6867.187 * 6562.808 H. Atm 0, 6276.607* Sa 5895.940 Na 5889.973 5875.650 t 5875.618 t Ca 5270.388 5270.268 5269.550 Mg 5183.619 5172.698 5169.050 5168.908 5167.508 5167.328 4861.342 HB 4340.475 H,
Index letter
10 14 23 25 20 (20) 10 8 4 40
Atm
xi!
++
2d
20 30
[!##
G It
H K L ;I i A’ 0
P
Q R r
4 3 8D 30 20 4 3 5 15 30 20N
{Z+ {Eg
S l
Identi. fication
{E; T i + Ca Ha Ca+ Ca+ F e ~. Fe Fe Fe Ti Fe CCa ICa
+ + + {;: +
i:{
Fe S 2
S
T t
Fe I Fe
Fe Xi
Solar wavelength
Solar intensity
4307.912 4307.747 4226.740 4101.748 3968.492 3933.682 3820.436 3727.634 3581.209 3441.019 3361.193 3286.772 3181.276 3179.342 3 143.996 3143.764 3 101.895 3101.574 3100.682 3100.325 3099.987 3099.896 3047.614 3021.077 3020.656 3020.490 2994.436
6 3 20d 405 700 lo00 25 4
30 15 8 7N 3 5d? 2 4 3 4s 3 4x 3 3 35 30 40 20 40
Band lines due to molecular oxygen in the earth’s ntmosphere. The wavelength of the first line of the hand is recorded here. t 1.ahoratory wavelengths listed. H e IiEes are conspicuous ,in the spectrum of the chromosphere. $ Rowland assigns the index letter “g to this line.
R E F E R E S C E S F O R STASD.\RD
IVAVELESGTHS
’“Trans Int. Union Coop. S o h i Res. vol. 2 p. 142, 1907. “BTrans. Int. Astron. Union vol. 1 35. (922. 159 Pro& Verhaux Comiti IAt. Poi& et Mesures, Ser. 2, rol. 12, p. 67 , 1927. Ihid., vol. 17, p. 91, 1935. ‘81Proc. Roy. Soc. London vol A186 164, 1946. m* Journ. Opt. SOC.Amer.,’ vol: 38, p: 1948; vol. 40, p. 545, 1950. Comptes Rendus, vol. 228, p. 964 1949. 1611 Trans.’ Int. Astron. Union, vol. 5, p. 86, 1935. 1M Ihid vol. 5, p. 87, 1935. Ie-3 Ihid:’ vol 1, p. 36 1922. 1sa Ihid.’ vol’ 3 p 86’ 1928. vol. 4 p. 234, 1932; \ol. 6, p. 79, 1938. Ihid.: vol: 5: 84, 1935’; vol. i, p. 146, 1949. Ihid., vol. 6, p. 80, 1938. Ihid., vol. I , p. 41, 1922; vol. 2, p. 42, 1925. 1MPhys Rev vol 47 653, 1935. -1 Trans. Ini.’Asiron.’ bnion. vol. 3, p. 93, 1928; vol. 6, p. 90, 1938. laz Philos. Trans., vol. 177, p. 457, 1886.
6.
?;
i.
S e r i e s relations in a t o m i c spectra.-The analysis of atomic spectra began in 1889 when J. R. Rydberg first found that the wave number (number of waves per cm) of a spectral line could be represented as the difference between two numerical quantities that he called spectral terms. From the data of alkali and alkaline-earth spectra Rydberg R sorted singlet, doublet, and triplet terms that formed sequences of the form ___ (12
+
P
y
where R is Rydberg’s constant, I t is an integer, and a fraction. Rydberg also distinguished between sharp, principal, and diffuse terms; the initial letters s, p. and d survive in spectroscopic notation today. To distinquish between successive terms of a series. cardinal numbers (n) were prefixed to the literal symbols, and to distinguish between the components of doublet and triplet terms numerical subscripts were arbitrarily attached.
SMITHSONIAN PHYSICAL TABLES
579 Thus the wave numbers of the yellow doublet of sodium were represented symbolically: - 2p1,2. More than 30 years passed before these arbitrary symbols could be given any atomic interpretation. The concept of atomic energy levels was first clearly stated in 1913 by S. Bohr who postulated (1) that stationary atomic states exist, and (2) that the frequency of atomic radiation is proportional to the difference between two atomic energy states, hu = (El E d , the proportionality factor being Planck's constant, h . By 1919 the accumulation of singlet, doublet, and triplet terms found in arc and spark spectra barely sufficed to suggest two general laws of spectral structures: ( 1 ) the alternation law which states that even and odd multiplicities alternate in successive columns of the periodic chart of the atoms, and (2) the displacement law which states that the spectrum of an ionized atom resembles that of the preceding atom but the analogous lines are displaced toward higher frequencies. Term multiplicities of atoms or ions are thus determined solely by the number of electrons in the atoms, whereas the atomic charge controls the position of the spectrum. These two facts suggested that electrons and protons were involved in the exegesis of atomic spectra. The more complex spectra rtsisted all attempts a t interpretation until 1922 when M. A. CatalPn deliberately set out to discover a new or more general principle in spectral structure. H e found in the arc spectra of chromium and manganese terms having five or six levels which combined to produce groups of lines that he called multiplets. I n a few years thousands of terms were found in atomic and ionic spectra, and contemporaneously the present quantum theory of ztomic encrgy levels was developed. As a result of these developments the arbitrary symbols that empirical spectroscopy devised for the yellow doublet of sodium were replaced by the following : u = 3 =sw- 3 =PO$$, I$$ Each and every item of this spectroscopic notation now has definite physical meaning in terms of a vector model of the Rutherford-Bohr atom which is assumed to consist of a minute but massive nucleus (composed of protons and neutrons) with one or more electrons circulating about it. The normal number of electrons in any atom is equal to the atomic number, Z : identical with the number of protons in its nucleus. Spectral lines result from changes in atomic energies defined by the positions of one or more optical electrons in successive shells and by their orbital and axial momenta, each of which is associated with an appropriate quantum number. In general, the first large change in atomic energy occurs when an electron jumps from its normal shell, represented by the principal quantum number n, to another shell. These principal quantum numbers identify the successive shells of the periodic system and serve as coefficients to the spectral term symbols S,P, D, F , etc. If an electron is moved from its lowest value of n to n =a the atom is ionized, and the voltage necessary to remove this electron is called the ionization potential. This ionization energy is expressed in wave number (cm-') or in electron volts (ev) as in Tables 623 and 624. Increasing atomic energies are exhibited in absorption spectra, decreasing energies in emission spectra. After that due to a change in n, the next largest change in atomic energy is usually one associated with orbital angular momentum symbolized by an azimuthal quantum number 1 having integral values 0, 1, 2, 3, - - - corresponding respectively to the empirical term symbols S , P , D, F , - - -. Electrons with l = O are called s-electrons, those with 1 = 1, #-electrons, etc. These four 1 values and the first seven n values suffice to describe the normal electron configurations of all possible atoms and ions. When two or more optical electrons are present, their individual orbital momenta 11. 12 ---are added vectorially to form a resultant L which is restricted by quantum theory to integral values ranging in the case of two electrons from lI 12 to I ll - 1, I. The types of spectral terms resulting from various simple configurations of electrons are shown in Table 621. u = 1s
+
T A B L E 621.-L
VALUES AND SPECTRAL T ERM S RESULTING FROM T W O ELECTRONS
L 0
Electrons
ss
Terms
1
o 1 0 1 1 2 0 1 2
i 2 2 3 3
2 3 3 4 4 5 4 5 6 (continued)
SMITHSONIAN PHYSICAL TABLES
S P S P P D S P D
S P P n E F F
D F F G G H G H l
580 T A B L E 621.-L
V ALUE S A N D SPECTRAL T E R M S R E S U LTI N G FR OM T W O E LE CTRO NS (concluded)
A third contribution to the total energy of an atom or ion comes from the rotation of each electron about its own axis. This axial angular mon~entuniis the same for all electrons; it is represented by the spin quantum number s = When two or more electrons are present the individual spin vectors s,, s,, - - - combine with each other to yield a resultant S, but (like L ) the resultant spin 5' can take only certain discrete values, the maximum being obtained when all the individual spins are parallel, and the minimum being either one-half or zero according as the number of electrons is odd or even. Electron spins account for the splitting of most spectral terms into two or more components (called levels) and give a physical meaning to the subscripts attached to these levels. These subscripts are called inner quantum numbers: they are symbolized by J to represent the vector sum of L and S. The largest and smallest values of J result from simple addition and subtraction of L and S and all intermediate values of J that differ by integral amounts are allowed : J = ( L +s>, ( L s- 11, when L S the number of permitted J values is 2 s 1, which fixes the term multiplicity R and underlies the alternation law, since the maximum multiplicity will be even or odd according as the number of electrons is odd or even. The S values and spectral-term multiplicities associated with numbers of optical electrons are displayed in Table 613. Because s = for each electron the total angular momentum J of an atom or ion will have integral values for levels belonging to odd multiplicities, and half-integral values for levels if the term multiplicities are even, as shown in Table 615.
s.
+
>
T A B L E 622.-TERMS Electrons
s9
+
FROM E Q U I V A L E N T E LE C TR ON S Terms (omitting J values)
'S 'S, 'D,'P ' P . 'D.'.C
'c,
P
'S:'5: 'P,'F 'P,'0, '0, 'F, 'G,' H , 'P,'F 'S, 'D,'G,'I,'P,"F,' H
etc.
The actual types and multiplicities of terms arising from various configurations of optical electrons depend on whether the electrons are equivalent or nonequivalent, that is, have the same or different values of ~t and 1. I n any atom the maximum number of equivalent electrons is 2(2I+ I) , and no shell can contain more than two s electrons (?), six P electrons (PO)), ten d electrons (SO)or fourteen f electrons (f"). In simple cases the spectral terms arising from nonequivalent electrons may be obtained from the L values of Table 621 and the S values of Table 613, as shown in Table 616. When the optical electrons are equivalent, the Pauli exclusion principle introduces simplifications, some of which are evident by comparing Tables 616 and 622. An important consequence of the Pauli principle is that closed shells, in which the maximum number of equivalent electrons is present, have L = 0 and S= 0 and therefore may be ignored in deriving the terms given by any electron configuration. Furthermore, any subgroup that lacks one or more electrons to fill the group behaves spectroscopically as if the lacking electrons were present, except that the terms are, in general, regular (smallest J level has least energy) when the group is less than half filled but inverted when more than half filled. Each configuration (excluding single eiectrons and closed shells) yields many energy states, and the object of swctrum analysis is to determine (1) the numerical values of the energy levels, ( 2 ) the quantum numbek that characterize them, and (3) the electron configurations from which they arise. The wave number of each observed spectral line measures the energy difference between two quantized states of an atom or ion, but, because the same level can in general combine with many others, the number of levels is usually much smaller than the number of classified lines. The combining properties of atomic energy levels are governed by simple rules. Thus all terms or levels of a given atom fall into two groups of different parity called even and odd according as the arithmetical sum of the I values of the optical electrons is even or odd (distinguished by the sign and by
SMITHSONIAN PHYSICAL TABLES
581 level value in italics), and normally spectral lines are permitted only when terms of different parity combine. Furthermore, an overwhelming majority of the transitions between atomic energy levels obey the following rules : AR= 0 AL= f l AJ = 0, 2 1, excepting 0 to 0. I n complex spectra, especially of heavy elements, intersystem combinations are observed for AR = & 2, & 4. Likewise, transitions for AL = 0 give strong multiplets, and transitions for which AL = & 2, & 3 are observed but usually only faintly. Violations of theA/ rule are extremely rare. Assignment of L values and electron configurations to energy levels implicitly assumes that LS coupling or interaction exists among the individual vectors. This means that the individual 1 vectors are strongly coupled to produce resultant L values of different energies, and the individual s vectors are also strongly coupled to produce resultant S values. These L and S resultants are then less strongly coupled with each other to produce resultant J values. Other types of coupling such as J J or JL are sometimes met with and in such cases L loses all or most of its significance. Also when the levels of two like-parity configurations overlap or dovetail, it is practically impossible to distinguish the two configurations or choose the levels that belong to each. However, because LS coupling holds for all the higher elements, predominates in many others, and is either accurately or approximately valid for the ground states of all atoms and ions, it is basic for the standardized notation for spectral terms. Thus, any atomic energy level or spectral term is symbolically represented by four quantities. (1) its principal quantum number ?L written as a coefficient of the term-type symbol ; (2) its type-S, P, D, F , etc.where the capital letters stand for azimuthal quantum numbers or orbital angular momenta L = 0, 1,2,3, etc., respectively ; (3) its inner quantum number or total angular momentum J = L S , written as a subscript to the term-type symbol ; and (4) its multiplicity number, R = 2 s 1, written as a superior prefix t o the term-type symbol. In addition the parity, if the sum of p and f electrons is odd, is indicated by the sign attached like an exponent to the term-type symbol. For any given spectrum in which energy levels have been established, and in which LS coupling exists, it is possible to assign notation as well as electron configuration without ambiguity. Relative values of J are readily determined from the combining properties of the levels and the selection rule, AJ = 0 2 1. In terms of odd multiplicity the absolute value of J is fixed by the absence of the transition 0 to 0 which is forbidden. I n other cases the absolute value of J can often be deduced from the sum rule (the sum of the intensities of all the lines of a multiplet that belong to the same initial or final state is proportional to the statistical weight 2J 1 of the initial or final state respectively), or from the interval rule (the interval between two successive components, J and J 1, of a polyfold term is proportional to J 1). The most decisive determination of J and L (excepting singlet terms) results from the observation of completely resolved Zeeman patterns since an external magnetic field causes each energy level to be split into 2J 1 sublevels and the splitting factors indicate L values. It is a consequence of atomic structure that long series of spectral terms of the same parity, L, S, I , but increasing n, are observed only in one-electron spectra, as for example to n = 79 in the first spectrum of sodium. Five- six- or seven-electrons provide so many configurations and competing levels that it is often exceedingly difficult to detect the second or any higher members of a spectral series. Quantum principles having thus specified the various spectral terms arising from certain electrons, it became possible in 1925 to determine from identified terms the electron configurations of all atoms and ions. By 1950 the ground states of 82 species of neutral atoms and 75 singly ionized atoms had been uniquely determined from spectral structure. Besides disclosing the ground level and normal electron configuration of each atom or ion, the discovery of series relations in atomic spectra has given exact values for many ionization potentials which measure the forces with which the optical electrons are bound to atoms and ions. Furthermore, since the most intense radiations are usually associated with the largest L and J values of low-lying levels, the analysis of spectra has aided in selecting the strongest spectral lines characteristic of atoms and ions. I n general, the strongest lines result from s@p electron transitions, but do not necessarily end on the ground state. Because these data are of great importance in spectroscopy, atomic physics, chemistry, and astrophysics, they are collected for neutral atoms in Table 623 and for singly ionized atoms in Table 624.'"
+ +
+
+
+
+
For more detailed discussions of atomic spectra and complete compilations of atomic energy levels, see the list of references, page 585.
SMITHSONIAN PHYSICAL TABLES
582 T A B L E 623.-SPECTROSCOPIC
P R O P E R T I E S O F N E U T R A L ATOMS
The wavelengths of strongest lines exceeding 2000 A are valid for standard air, the remainder for vacuum. Period n
1 2
Neutral atom
1 2 3 4
H He Li Be
5B
3
4
5
6 C 7 N 8 0 9 F 10 Ne 11 Na 12 Mg 13 A1 14 Si 15 P 16 S 17 C1 18 A 19 K 20 ca 21 s c 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 37 Rb -38 S r 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd
Normal electron configuration
1's 1s2 2s' 2.P
Ground level
2so
1,4
'So
?SO% 'So
2s2 2p'
2P00*,4
2 2 2p2 z S 2 2p3
'Po 'Sols
2 9 2p4 2s22p5 2s22pe
3s' 3s2 3 3 3p' 3 2 3p2 3s23p3 3s' 3p4 3 2 3p5 3 2 3pe 4s' 42 3 6 4s2 3d24s' 3 842 3 8 4s' 3d64s2 3 8 4s2 3 6 4s' 3dR4s' 3B4.8 49 4s' 4p' 4s24p= 4 2 4p3 4 2 4p' 4s24p5 4 2 4pe 5s'. 59 4d' 5s2 4d25s' 4d45.8 4d" 5s' 4 8 5s2 4 6 5Sl 4ds 5s' 46O 5s' 5s2
3P2 ZPOlX,j
'So 2so.A
'So 2P00.A
8Po 4SOl',4
3P2 2P013,4
'So 2sow
'So 2D1.A 'Fz 'F~H ?S3 S
W
'D4
'F4w 'F4 2soo.A
'So 2POOW
'Po 'SO'%
'Pa 2P01W
'So
'Sou 'So 'D1s
'Fz
'Do% 5
3
eSlW "6
' F 4
u
'So 2Sas
'So
(continued)
SMITHSONIAN PHYSICAL TABLES
Ionization potential volts
Strongest line, A
13.595 24.580 5.390 9.320 8.296 11.264 14.54 13.614 17.418 21.559 5.138 7.644 5.984 8.149 10.55 10.357 13.01 15.755 4:339 6.111 6.538 61818 6.743 6.74 7.432 7.868 7.862 7.633 7.724 9.931 6.00 7.88 9.81 9.750 11.84 13.996 4.176 5.692 6.377 6.835 6.881 7.131 7.23 7.365 7.461 8.33 7.574 8.991
1215.66 584.33 6707.85 2348.61 2497.73 1657.01 1134.98 1302.19 954.80 735.89 5889.95 2852.13 396 1.53 2516.12 1774.94 1807.31 1347.2 1048.22 7664.91 4226.73 5671.80 4981.73 4379.24 4254.35 4030.76 3581.20 3453.50 3414.76 3247.54 2138.56 4172.06 265 1.18 1890.43 1960.91 1488.4 1235.82 7800.23 4607.33 5466.47 4687.80 4058.94 3798.25 3636.10 3498.94 3434.89 3404.58 3280.68 2288.02
583 T A B L E 623.-S
P E C T ROSCOPI C P ROP E R T I ES 0 F N E U T R A L A T O M S
(concluded) Period n
6
7
Neutral atom
Normal electron configuration
49 In 50 Sn 51 S h 52 Te 53 I 54 x e 55 c s 56 Ba 57 La 58 Ce 59 P r 60 Nd 61 Pm 62 Sm 63 E u 64 Gd 65 T h 66 Dy 67 Ho 68 Er 69 T m 70 Yb 71 Lu 72 Hf 73 T a 74 w 75 Re 76 0 s 77 I r 78 P t 79 Au 80 Hg 81 T1 82 Ph 83 Bi 84 Po 85 At 86 Rn 87 F r 88 Ra 89 Ac 90 T h 91 P a 92U 93 Np 94 P u 95 Am 96 Cm 97 Bk 98 Cf
SMITHSONIAN PHYSICAL TABLES
Ground level 'POO%
8P0 4SOxw
3P* 'PO1%
'So 'SO%
'So 'DIW ..I
4f36s' 4f' 6 2 4is'ds'
4f 6s' 4f 5d' 6s'
... ...
... 4P6P 4f"6s2 5 8 6s' 56 6s' 5d36s' 5d46s' 5dG6s' 5d" 6 2 5 6 6s' 5d" 6s' 56'6s' 6s' 6s' 6p' 6s' 6p' 6s' 6pq
...
626pn
...
...
410,~~
%
...
'F.
hSO,% "DO2
... ... ... ...
'F0at,4 'SO
'D~Y, 'F2
GD" S
H
GD. 'Fx 'Ds 'SO% lS0
'P0"t,4
=Po
4SDll,4
... ... lS:, ...
7s' 6d' 7s' 6 8 7s'
'Dl%
55"6d' 7s'
"O,I
... ... ... ... ... ...
'S"
'F2
...
... ... ... ... ... ...
Spectral multiplicities
2,4 1,3 2,4 A3,5 2,4 1,s 2
43 2,4
... 4 5
...
Ionization potential volts
5.785 7.332 8.64 9.01 10.44 12.127 3.893 5.210 5.61
... ...
... ...
7,9 6, 8, 10 7,9, 11
5.6 5.67 6.16
...
... ... ... ...
... ... ...
2 1,3 2 1,3,5 4,6 5,7 4,6,8 3,5,7 4,6 1,3,5 2 1, 3 2 1,3 2,4
...
Strongest line, A
4511.32 3175.04 2068.38 2142.75 1830.4 1469.62 8521.10 5535.55 6249.93 5699.23 4951.36 4924.53 4296.75 4594.02 4225.85
... ... ...
6.2 5.0 5.5 7.7 7.98 7.87 8.7 9.2 8.96 9.223 10.434 6.106 7.415
s+ ...
56ji.83. 3987.99 45 18.57 3682.24 2647.47 4008.75 3460.47 2909.06 2543.97 2659.44 2427.95 1849.68 5350.46 4057.82 3067.72 2449.99
10.745
ij86.07
43 2 3,s
5.277
482i.91
5,7
4 2
59ii.40
... ... ... ... ...
... ... ... ...
...
... ... 43 ... ... ...
...
... ... ... ... ..I
... ...
... ... ... ... ...
584 T A B L E 624.-SPECTROSCOPIC
P R O P E R T I E S O F S I N G L Y - I O N I Z E D ATOMS
The wavelengths of strongest lines exceeding 2000 A are valid for standard air, the remainder for vacuum. Period n
1 2
Ionized atom
1 2 3 4
Normal electron configuration
H'
He+ Li' Be+
5 R'
6 C+ 7 N+
8 0' 9 F'
3
4
5
10 N e + 11 Na' 12 Mg' 13 A l + 14 Si' 15 P ' 16 S ' 17 Cl+ 18 A + 19 K ' 20 Ca' 21 s c + 22 Ti+ 23 V + 24 Cr' 25 M n + 26 F e + 27 Co' 28 N i Y 29 CU' 30 Z n + 31 Ga' 32 Ge+ 33 As' 34 Se' 35 B r + 36 K r + 37 R b + 38 S r + 39 Y + $0 Z r + 41 N b + 42 Mo+ 43 Tc+ 44 Ru' 45 Rh' 46 P d + 47 Ag: 48 Cd 49 I n + 50 S n ' 51 S b + 52 Te' 53 I + 54 Xe'
SMITHSONIAN PHYSICAL TABLES
...
Ground level
...
1s' 1sz 2s' 2s2 2s' 2p' 2s' 2pz 2s' 2pJ 2sz 2p4 2s' 2p' 2s' 2po 3s' 3s' 3sz 3p' 3s' 3p' 3s' 3pJ 3sz3p4 3s' 3p6 3s' 3po 4s' 3 6 4s' 3d24s' 3d4 3d' 3d' 4s' 3 8 4s' 3ds 38 3d" 4s' 43 4s' 4p 4 2 4p' 4s' 4p3 4s24p: 4s24p 4s' 4p0
'Po'% S 'O
5s'
3 0 %
5sz
4d' 5s' 4d4 4d6 4d' 5s' 48 4d8 4d8 4d" 5s' 52
5p; 5s' 5 p 5s' 5p' 5s'
5s25p4 5s' 5p"
=SO% 'So %O%
'So ZP0O% JPO
'So1% 'POllA
'So ZSO%
S 'O ZPOOlA
JPo 4S01%
JPZ 2POl%
'So 5 0 %
'Di 'F1u 'Do as*% 3
3
QL)4% 'F4
'DZH 'So =SOH
'SO 'POOW
8Po 'SO'lh JP2
'So 'F1% 'Do eszw 7SS
'F4% 'F4
ZD2% S 'O %OH ' S O
ZPOO%
8Po 4S'#
aPz ZPOl% (continued)
Ionization potential volts
54.403 75.6193 18.206 25.149 24.376 29.605 35.146 34.98 41.07 47.29 15.03 18.823 16.34 19.65 23.4 23.80 27.62 31.81 11.87 12.80 13.57 14.65 16.49 15.64 16.18 17.05 18.15 20.29 17.96 20.51 15.93 20.2 21.5 21.6 24.56 27.5 11.026 12.233 12.916 13.895
... ... ... ...
19.9 21.5 16.90 18.86 14.6 19 21.5 19.0 21.2
Strongest line, A
30j.78 1.99.26 3130.42 1362.46 1335.71 1085.74 834.47 606.81 460.73 372.07 2795.53 1670.81 1817.0 1542.32 1259.53 1071.05 919.78 600.77 3933.67 3613.84 3349.41 3093.11 2835.63 2576.10 2382.04 2286.14 2216.47 2135.98 2025 51 1414.44 1649.26 1266.36 1192.29 1015.42 917.43 741.4 4077.71 3710.29 3391.98 3094.18 2816.15 2543.24 2402.72 2334.77 2296.53 2246.41 2144.38 1586.4 2152.22 1606.98 1161.52 1233.97 1100.42
585 T A B L E 624.-SPECTROSCOPIC
Period n
6
Ionized atom
Normal electron configuration
55 c s +
56 57 58 59
60 61 62 63
64
Ba+ La+ Ce+
Pr+ Nd+ Pm+ Sm+ Eu+ Gd+ Tb+
65 66 Dy+ 67 Ho+
68 Er+
7
5dl
4f 6s' 4$6s' 4f6 6s' 4f66s' 4f" 6s' 4f 6s' 4f 6s' 5 6
... ... ... ...
69 T m + 70 Yb+ 71 Lu+ 72 Hf+ 73 Ta+ 74 w + 75+Re + 76 O s +
4y6s' 4P6.Y' 66 5 6 63 5 8 6s' 5d' 6s' 5 8 6s'
78 P t + 79 Au+
58 56O 6s' 66 6 6 6p' 6s'6p'
ii Ir+ 8
5sp 5 p O 6s'
82 83 84 85 86 87 88 89
Pb+ Bi+ Po+ At+
Rn+
Fr+ Ra+ Ac+ 90 T h + 91 P a + 92 U + 93 N p + 94 P u + 95 A m + 96 Cm+ 97 B k + 98 Cf
... ...
... ... ... ...
7s' 76
w 7s' ... 5 f 7s'
... ... ... ... ...
...
PROPERTIES O F SINGLY-IONIZED ATOMS (concluded) Ground level
'So 5 0 %
*Fa 'HIS
T, %%
...
'Fan '5, OD0 2%
... ... ... ...
'F", 'Sow 'So
'Dl%
"1
"Do%
'SS
... ...
*Da% 'So
=so% 'So
'POL?% 'Po
... ... ... ...
Sbectral multiplicities
1.3 2 1,3 2,4 3,s 4,6,8
23.5 10.00 11.43
68 7,g 6,8,10
11.2 11.24 12 2
...
...
... ... ...
1,3 2 1,3 2,4 1,3,5 4,6 5,7
... i;i 1 2,4 193 3 4
... ... ... ...
'Fl %
2 1,3 2,4
4~o,%
4, 6
'SOW
'So
... ... ... ... ...
...
...
Ionization potential volts
...
... ... ... ... ... ...
... ...
... ...
... ... ... I . .
...
12.10 14.7 14.9
... ... ... ... ...
18.54 20.5 18.751 20.42 15.03 16.7
...
Strongesr line, A
926.75 4554.04 3949.10 4186.60 4179.42 4303.57 3568.27 4205.05 3422.47
... ... ...
38i8.02 3694.20 2615.43 2641.41 2685.17 2204.49
... ...
iiii.09 1740.47 1649.% 1908.64 1726.75 1902.41
... ...
... ... ...
10.14
38ii.42
...
... ... ... ... ... ,.. ... ... ...
...
4019.14 3ii6.29
... ... ... ... ... ...
References for series relations in atomic spectra: Meggers, W: F.. Journ. Opt. SOC. Amer., vol. 31, Pauling L., and Goudsmrt S. The structure of line spectra, 44 1941. vol 31 p. 606 1941 kcG;aw-Hiil Book c o . , N e i York, 1930. White H. E. Intrdduchon to atomic spectra McGrawHill Book Co., New York, 1934. Herzberg, G., Atomic ipectra and atomic structure, Dov'er Publieations, New York, 1944. Condon E U and Shortley G. H., The theory of atomic s ectra, Macmillan Co New York 1935 Bacher 'R.' F "and Goudsmh S., Atomic energy states, dcGraw-Hill Book Co:: New York: 1932: Moore,'C. E.:' Atomic energ; levels, Nat. Bur. Standards Circ. 467, vol. 1. 1949; vol. 2, 1952.
SMITHSONIAN PHYSICAL TABLES
586 T A B L E 625.-MOLECULAR
CONSTANTS O F DIATOMIC MOLECULES
*
The energy, E, oi a molecule is the sum of three contributions, the electronic energy, E,, the vibrational energy, E,, and the rotational energy, E,, i.e., E= Ea Eo Er (1) The electronic energy, E., gives the largest contribution and is entirely similar to the energy of atoms. Similar to S, P, D states of atoms, one distinguishes Z, II, A, . states of diatomic molecules depending on whether the electronic orbital angular momentum about the intei nuclear axis is 0, 1, 2 . . . in units of h/27r. Just as for atoms the resultant electron spin 5 determines the multiplicity ( 2 s 1) of the electronic state which is added
+ +
..
+
to the term symbol as a left superscript. Z states are designated 2' or Z- depending on whether their eigenfunctions remain unchanged or change sign upon reflection a t a plane through the internuclear axis. For molecules with idpntical nuclei (such as Nz, Hz, Oa, .) a subscript g or u indicates whether the eifenfunction upon reflection a t the center remains unchanged or changes sign (e.g. 'Xu+,. Xu+,'nu, . . .). In each electronic state the molecule may have various amounts of vibrational energy. Quantum mechanics shows that for diatomic molecules the vibrational energy is given by
..
& hc - G ( v ) = w e ( V + 3) -
w e ~e
(V
+ f) * +
where '(I is the vibrational quantum number which can assume the values 0, 1, 2, . . . and where w. is the (classical) vibrational frequency (in cm-') for infinitesimal amplitudes. The constant w e x s is small compared to w s and is due to the anharmonicity of the vibration. If the vibrational energy is increased more and more, a point is reached at which the two atoms fly apart, that is, the molecule is dissociated. The dissociation energy, DO, corresponds to the maximum of the function G ( v ) and can in many cases be determined from the spectrum. In each vibrational level the molecule may have various amounts of rotational energy. For diatomic molecules, in the simplest case ( ' Z state), the rotational energy is given by
_-
..
E'-F(I)=B"I(J+l)-. hc
(3)
.
where I is the rotational quantum number which may take the values 0, 1, 2, . . and where B, is the so-called rotational constant which is slightly different for different vibrational levels of a given electronic state: one has Bv=B,-aa,(v++) .. (4) Here a , is small compared to the rotational constant B e which refers to the equilibrium position. For B e one finds h (5)
+.
Here
/L=
ml ma is the reduced mass of the molecule with ml and r n ~the masses of mi ma
~
+
the two atoms, and re is the internuclear distance in the equilibrium position. The product pr.' is the moment of inertia of the molecule; in other words, B e , apart from universal constants, is the reciprocal moment of inertia. Each electronic state of a diatomic molecule is characterized by a certain set of values for the vibrational and rotational constants w e , w.xs, . . , , Do, re, B e , a., . . These constants have been determined for a large number of diatomic molecules in various electronic states from the analysis of band spectra. A comprehensive and up-to-date table may be found in "Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules," by G. Herzberg (Van Nostrand. New York, 1950). The following table is an excerpt from the compilation just mentioned, but brought up to date, 1953. Here only the constants w e , Doo,and re for the ground states are listed and the type of the ground state is given. From re the rotational constant B , can be obtained according to the formula (5) given above. Do0 corresponds to dissociation into normal atoms. The values are given in ev (electron-volts) where 1 ev corresponds to 8068.3 cm-'. The numbers on the element symbols give the mass numbers of the isotopic species to which the constants refer.' When no mass number is given the data refer to the ordinary isotopic mixture. With the exception of the hydrogen molecule in each case only the data for one isotopic species are listed. More detailed explanation of the underlying theory, the methods of determination of these constants and references for each individual molecule may be found in the book already quoted.
. .
.
Prepared by G. Herrberg, National Research Council of Canada.
SMI'I'HSONIAN PHYSICAL TABLES
587 T A B L E 625A.-MOLECULAR CONSTANTS FOR T H E GROUND STATES O F DIATOMIC MOLECULES The following symbols are used: ( ) Constants and symbols in parentheses are uncertain or of low accuracy. [ I Constants in brackets refer to the lowest vibrational levels rather than to the equilibrium position. Such a value under w e is the first vibrational quantum A Gl/a= G (1) - G (0)= w e 2wsxa+ . under re it is the effective value ro in the lowest vibrational level ( v = O), that is, it has been obtained from Bo rather than Be. An asterisk in the column "Type of state" indicates that it is doubtful whether the state whose constants are given is the ground state of the molecule. t A dagger after a value under r e indicates that it has been obtained from electron diffraction rather than from the spectrum of the molecule. { I n a few cases several values of the dissociation energy are compatible with the available data. These values are grouped together by braces.
...
Molecule
Ag'OgBrm Ag'Tl" AgH' Ag'"Iln Ago" AlnBP A1"CI" APF'O AlnH' (AlnH') + APIm APO" As< + (A% ) As"N'~ AS'^^'^ Au'"'Cln A$"H' B, BaBr"' BamC1" BaF'O BaH' BaO" Bas B"BP BW" BeQCIM BeOF'O Be'H' (Be"H')+ Be"" BllFlO B"H' ( B1'H1)+ Bitrn Bi"Br" Bi"CIm BiPQDF'O Bi"H' Bi"Im Bi"0" BllNl& BllOle BPBP BrO" C1" CaBr"' CaCY Ca'OF" Ca'OH'
w (cm-1)
DOo(ev)
247.72 343.6 1760.0 206.18 493.2 378.0 481.30 814.5 1682.57 (1610) 316.1 978.2 429.44 314.8 1068.0 967.4 382.8 2305.01 1051.3 193.8 279.3 468.9 1172 669.8
2.6 3.1 2.5 2.98 (1.8) (2.4) (3.1) (2.5) < 3.06
684.3 1 839.12 846.58 1265.6 2058.6 2221.7 1487.32 1400.6 (2366) (2435) 172.71 209.34 308.0 510.7 1698.9 163.9 702.1 1514.6 1885.44 323.2 E4301 673 713 1641.35 285.3 369.8 587.1 1299 (continued)
SMITHSONIAN PHYSICAL TABLES
(2.9) (C3.75) 63.96 (2.4) (6.5) 65.0 (3.5) 3.1 (3.6) (2.8) (2.7) (3.8) 61.82 4.7 (2.3) (4.1) (4.2) (4.3) (5.4) (2.2) (3.2)
{ g:;; (4.3) <3.51
1.70 2.74 (3.0) (3.2) (2.7) (2.7) (2.9)
(5.0)
(9.1) 1.971 2.138 2.16 (2.2, (3.6) (2.9) 62.76 43.15 L1.70
re
(2)
1.617 2.295 2.14 1.6459 1.602 1.6176
1.5237 1.589
2.2318 1.940 1.89 1.716 (1.7) 1.3614 1.3431 1.'3122 1.3308 1.262 1.2325 [ 1.21461
1.809 1.281 1.2049 2.284 1.75555 1.3117 ( 1.86s) ( L2.021)
2.0020
588 T A B L E 625A.-MOLECULAR CONSTANTS FOR T H E GROUND STATES O F DIATOMIC MOLECULES (continued) Molecule
(Ca"H')+
CaIM Ca"0'" CaS C"CI" Cda CdBr CdCI" CdF" CdH' (CdH')' CdIm CdS CdSe CeO" CF C"H' (C"H')+
Type of state
g'+ *
(;a+ I: 'I: '2
+
* =II
'II 'Z 'I:.+ '11 * 'I: +
(a¶")+ CI"F" CIO" C"N14
*
21:+
C 1 2 0 ' "
'Z
(C"01,) COCl CoH' COO" C"P= CrO" C"S" csam CPBr CPCl C"Se CsF' CPH' CPIM CsRb CU¶ Cu"BP CU"C1" Cu"F" Cu"H' (.Cu=H')+ CU"Irn +
cuw
Farn FeCl" FeO'" Ga-BP GamClm Ga'OF' Ga-P GaO'" GdO'" GeBr Ge7'Clm GeF'
' Z
242.0 732.1
+
*
+
n=4
* ' Z *
+
'I: 'Z.+ ' Z ' Z+ 'Z +
+
+
'Z
+
'2
+
'I: + (;I:.? I: '2
+
'I: ' 'I: +
'2 (;" Z@ "I: * +
'Z 'Z
+
+
'Z + '2 ' Z +
*
'II
'II
~ ~ 7 4 0 1 6
'11 'I:
Ge7'SP
'Z
+
+
230.0 330.5 (535) 1430.7 1775.4 178.5 865.0 1308.4 2861.6 12739.541 564.9 645.3 786.3 (780) 2068.70 2170.21 2214.24 421.2 (1890) (850) 1239.67 898.8 1285.1 41.990
(2;)
(2.8) 5.0 45.2
1.822
.087 (3.3) (2.8) .678
(2.0) (1.6) 43.9 43.2 (7 7) (4.8) 3.47 3.6 2.475 (4.4) 2.616 1.9
{
11.108 9.844 9.605 (9.9)
1.762 1.667
1.27 1.1198 1.13083 1.988 1.891 1.62813 1.1718 1.1282 1.1151 11.5421
(6.9) 4.4 (7.8) .45 k3.9 (6.8) 5.67 (1.9) 3.377
160
( .17) (2.5) (3.0) (3.0) <2.89
314.10 416.9 622.7 1940.4 118741 264.8 628 1892.11 406.6 880 263.0 365.3 623.2 216.4 767.69 841.0 296.6 406.6 665.2 985.7 575.8
red)
11.731
1036.0 (270) 890.7 142 49.4
(continued)
SMlTHSONlAN PHYSICAL TABLES
Doo(ev)
846
2II
a¶"
ws(cm-1)
(3.0) 4.9 <1.63 L4.24 (2.7) 45.0 (6.3) 62.88 (2.9) (5.9) (3.0) (4.0) (4.9) (6.9) (5.6)
1.562 1.534 13.141 t 2.88 2.34 2.494 13.411
1.743 1.463 12.271 1.418 t
12.211
1.651
589 T A B L E 625A.-MOLECULAR CONSTANTS FOR T H E GROUND STATES O F DIATOMIC MOLECULES (continued) Molecule
Type of state
Ge"Seso Ge:Telm H2 H'H2 H'H' HzZ H'H8 H,8 (€I{)+ H Br
'Z + 'I:
+
'I:,+ 'Z,+ 'Z0+
'I:,+ 'Z,+ 'Z,+ 'Z0+
'2 'Hl '2
+
+
'
'I:,+
%+ '2
Hg', Hg Brm HgCl" HgF" HgH' (HgH')' HgIW HgS HgSe HgTl H'P
+
'Z,+
p+ I: ('la Z+ 'Z
+
('2)
'I:
w e (cm-1)
Doo(ev)
406.8 323.4 4395.2 3809.7 2853.8 3118.5 3608.3 2553.8 2297 2649.67
(4.1)
2989.74 2675.4 unstable 11627.21 4138.52 (36) 186.2 292.61 490.8 1387.09 2033.87 125.6 26.9 2309.5
+
2u1
1Z.f
'Z '2
'Z '2
InTI" InlmFB ItPH' Iniiqin InO"
'I: ' Z 'Z 'Z
+
+
+
+
+
+
+
+
vI:;
Imo'6
K,' KBr KCI KF" KmH' Kiln L?;mo'e LI? LiBr LiCl Li7Csm LiF'O
*
'Z,+ '2 'Z
'Z 'Z
'I:
+
+
+
+ +
'2
'I:,+ 'Z
214.25 268.4 384.18 610 22 1.o 317.4 534.7 1474.7 177.1 703.09 687 92.64 23 1 280 (390) 985.0 212 811.6 351.43
+
'2 '2
LFHI
LiP Li K LiRb Luo'B MgZ4Br" MgP'CI" Mg"F'' Mg"H' (Mgl'H') MgP +
'I: 'Z 'I: 'Z )(;+ : '2 2Z
'2 ('2
+
+
+
+
+
+
+
+
+
7
(167) 1405.65 450 (207) (185) 841.66 373.8 465.4 717.6 1495.7 1695.3 L3121 (contiwed)
SMITHSONIAN PHYSICAL TABLES
(:::$I5 4.5 11 4.570 4.554 4.524 4.588 2.648 3.75 3.5 4.430 4.48 (3.1) 5.8 .060 .7 1.o (1.8) .376 (2.3) .36 42.8 62.7 (.031) 3.056 3.11 < 3.8 1.5417 1.817 2.152 1.98 63.3 44.54 (5.7) 42.48 62.7 (1.3) (1.9) .514 3.96 4.42 45.9 1.& 3.33 (9) 1.03 4.5 5.1 66.6 (2.5) 3.6 (5.3) 43.35 (3.2) (4.2) 42.49 (2.1)
r d )
.7416e .7414, (0.7416s) (.7416s) (.7416e) (.7416~) 1.06 1.414 11.4591 1.27460 1.3153 1.08 .9171 3.3 12.233 t 1.7404 1.594
1.604
11.351 2.667
2.32070 L2.571 t 2.32 1.8376 12.861 t 3.923 12.941 12.791 12.551 2.244 L3.231 2 672
1.5953
11.751 1.7306 1.649
590 TABLE- 625A.-MOLECULAR CONSTANTS FOR T H E GROUND STATES O F DIATOMIC MOLECULES (continued) Molecule ~ ~ 2 4 0 1 6
MgS Mn"Brcw, MnW MnMF" MnMH' Mn"Im Mn"0" Nz" (N 2 4 r Naz NanBr NaTI NaZaCs1" NaZ8F'" Na"H' Na"Iln NaZnK NanRb N"Br N"H' NiBr NiCl NiH' NiO" ~ 1 4 0 1 6
(~l~ole)+ NUS82 O1'e 02'
0"H' ( O;'H')+
P, Pbz PbBr" PbCl" PbF'" PbH' PbIln PbO" PbP8Sa2 PbSe PbTe P"H' palN14 p"0" pr141~l.l
Rbi" RbBr RbCl RbCP RbF'" RbH' RbSR S2=
Sbi SbBiSbCI" SbF'O SbN" SbO" ~ ~ 4 5 0 1 6
we
(cm-1)
785.1 525.2 289.7 384.9 618.8 [ 1490.581 (240) 840.7 2359.61 2207.19 159.23 315 380 (98) 1172.2 286 123.29 106.64 693 (3300) 334 419.2 [ 1926.61 (615) 1903.85 1220.0 1580.36 1876.4 3735.21 [29551 780.43 256.5 207.5 303.8 507.2 1564.1 160.5 721.8 428.14 277.6 211.8 (2380) 1337.24 1230.6 818.9 57.28 (253) 49.41 340 936.77 725.68 269.85 220.0 369.0 614.2 942.0 817.2 971.55
(Continued)
SMITHSONIAN PHYSICAL TABLES
Doo(ev)
5.2 (2.9) (2.9)
8;;
< (2.4)
(4.4) 9.756 8.724 .73 3.85 3.58 65.3 (2.2) 3.16 .62 (.57) (3.0) (3.8) (7.3) 63.1 64.2, 6.49 10.6 (5.9) 5.080 6.48 4.35 r4.4 5.031 (.7) 3.0 3.1 3.5 61.59 2.8 (4.2) (4.7) (4.7) (3.5)
7.d) 1.749
1.73075 1.094 1.116 3.079 r2.641 t L2.511 t 1.8873 r2.901 t
1.038 1.475 1.1508 1.20740 1.1227 .9706 1.0289 1.894
1.839 1.922 2.395
(6.3) (6.2)
11.4331 1.4910 1.447
.49 3.9 >3.96
r2.891 t
5.4,
(;:% 64.4 (3.7) (3.0) (4.6) (4.2) (4.8)
%?
2.367 r3.261 f 1.889
591 T A B L E 625A.-MOLECULAR CONSTANTS FOR T H E GROUND S T A T E S O F DIATOMIC MOLECULE'S (concluded) Molecule
ws(cm-1)
Seam SeO" Si2 SiBr Si"C1" SimF" Si"H' SimN" STO'" ( Si"O'")+ SimSm Si*Se Si"Te SnBr SnCP SnF" SnH' SnO'" SnS SnSe SnTe
391.77 907.1 (750) 425.4 535.4 856.7 (2080) 1151.68 1242.03 (851) 749.5 580.0 481.2 247.7 352.5 582.9 (1580) 822.4 487.68 33 1.2 259.5 1123.7 216.5 302.3 500.1 1206.2 173.9 653.5
szzoie
SrBP SrCI" SrF" SrHl SrIln SrO" SrS Tez TeO" Ti"C1"
~i480ie
TlBr" TlCI" TIF" TlH' TIIm
V61016
YbCl
Y"o'e Znz ZnBr ZnC1" ZnF" ZnH: +
(;;glL ZnO ZnS ZnTe Zr"0"
SMITHSONIAN PHYSICAL TABLES
25 1 796.0 456.4 1008.26 192.1 287.47 475.00 1390.7 150 1012.7 293.6 852.5 (220) 390.5 (630) 1607.6 1916 223.4
937.2
(A)
Dd(ev)
re
43.55 (5.4)
2.16
(3.7) (4.0) (4.8) (4.5) 7.2 (6.6) (5.8)
C1.6031 1.520 1.572 1.510 1.504 1.929
(5.5)
(3.0) (3.6) (3.9) < 3.2 5.7 63.0 (4.6) (4.2)
{E: (2.8)
(3.0) (3.5) 4.68 (2.2) (4.5) 62.7 63.18
{::% (1.0) (6.9) 63.19 3.75 4.72 62.18 42.64 (6.4) (1.2) (9) (.25)
11.7821 1.838 (2.06) 1.4933
2.1455 1.921 12.591 t
1.620 12.681 t K2.551 t 1.870 12.871 t 1.899
(3.0) .851 (2.5) (2.0) 44.0 44.4 42.2 (7.8)
1.5945 1.515
(1.416)
TABLES 626-630.-THE
ATMOSPHERE
The atmosphere, with a total mass of about 5.3 x 1021g (about one-millionth the mass of the earth), extends 7,000-60,OOO miles above sea level (depending upon the definition of the top) and for purposes of discussion may be divided into several regions or layers. From sea level up to about 10-15 km (the troposphere), about the next 30 km above this (the stratosphere), and the entire region above this (i.e., above about 40 km) is spoken of as the upper atmosphere. At heights above 80 km in the upper atmosphere strong ionization is found and thus this region is called the ionosphere. Again the ionosphere may be divided into three or four layers ; first, the E layer (about 100 km) moderately ionized ; next the F , layer (at about 200 km) more strongly ionized; the F , layer (about 300 kin) much more strongly ionized. Above this, there is some recent evidence indicating an additional ionized region, the G layer (400-700 km). The following tables give some characteristics of the atmosphere as a function of the height above sea level. T A B L E 6 2 6 . 4 O M P O S I T I O N O F T H E AIR NEAR GROUND LEVELl8' Molecular weight
Gas
Nitrogen ....................... Oxygen ........................ Argon .......................... Carbon dioxide .................. Neon ........................... Helium ......................... Krypton ........................ Hydrogen ...................... Xenon .......................... Ozone .......................... Radon .......................... Water vapor .................... 1 9 ' Regener, F Command, W&t
0 50 83
Percent per volume
78.09 20.95 .93 100.00 .02 - .04 18 x lo-' 5.3 x 10-4 1.1 x lo-' .5 x 10-4 .08 x 10-4 .02 x increasing with altitude 7 X lo-", decreasing with altitude .2 - 4, variable
The structure and composition of the stratosphere, No. 509, Headquarters Air Materiel Field, Dayton, Ohio, April 1946.
T A B L E 627.-COMPOSITION
Altitude km
28 32 40 44 20.2 4 83 2 130 48 222 18
Composition, 1 percent volume
21 Oz,78 N,, .93 A 18 0,,82 Ns 18 02,82 Nz
O F T H E ATMOSPHERE U P T O T H E L A T I T U D E 45" le6 Molecular weight of mixture, M
28.9 28.66 28.66
Altitude km
Composition 1 percent volume
120 300 ( F z layer)
30.5 0,69.5 N , 30.5 0,69.5 Nz
F, LAYER, Mo!ecular weight of mixture, M
24.35 24.35
led Grimminger, G., Analysis of temperature, pressure and density of the atmosphere extending to extreme altitudes, p. 18, Rand Corporation, November 1948.
SMITHSONIAN PHYSICAL TABLES
T A B L E 628.-STANDARD
593
ATMOSPHERE
A standard atmosphere is defined by an altitude-temperature-pressure relation. It is an aeronautic necessity in valuating the performance of airplanes and for the calibration of instruments. The followinrr standard has been officiallv adoDted bv the Armv Air Corns. National Bureau of Stanaards, National Advisory Commiitee for A e r o n a u h , and ihe Weather Bureau. See Table 343. Pressure
Altitude Meters
0
760.0
1000
674.1
2000 3000 4000 5000 6000
596.2 525.8 462.3 405.1 353.8 307.9 266.9 230.4 198.2 169.7 145.0 124.0 106.0 90.6
7000
8000 9000 10000 11000 12000 13000 14000 15000
Density
inHg
SMITHSONIAN PHYSICAL TABLES
29.921 26.54 -- 23.47 20.70
18.20 15.95 13.93 12.12 10.51 9.07 7.80 6.68 5.71 4.88 4.17 3.57
Ib/fts’ kdm*
Temkerature C
1.2255
.07650
15:0
1.0068 .9094 3193 .7363 .6598 396 S252 .4664 .4127 .3614 .3090 .2642 .2259 .1931
106286 .05678 .05115 .04597 .04119 .03681 .03279 .02912 .02577 .02256 .01929 .om9 .01410 .01206
+ 2.0 - 4.5
1.1120 - ____
.n6942
8.5
-11.0 -17.5 -24.0 -30.5 -37.0 -43.5
-50.0
-55.0 -55.0 -55.0 -550 -55.0
v)
2
I v) 0
zD2
TABLE 629.-YALUES
O F ATMOSPHERIC TEMPERATURE, PRESSURE, AND DENSITY U P T O T H E
Latitude 45", pa = 1014 mb,t p.
-
I 0
<
= 1223 x 10- g/cma, d
FZ
LAYER*
(diameter of particle) =3 X 10' cm
in
c)
g 4
D
B Ln in
Height, h
' h n
0
i .524
3.048 6.096 9.144 10.769 13.716 16.764 22.860 27.432 32.000 39.624 50.000 60.Ooo 68.581 78.000 83.OOo
92.965 100.58 120.00 152.40 213.36 259.08 300.00
mi
Appprmt, gravity, B em/&
T.K"P
Pressure, fi millibars
0 .947 1.894 3.788 5.682 6.629 8.523 10.417 14.205 17.045 19.884 24.621 31.068 37.282 42.614 48.466 51.573 57.765 62.500 74.564 94.697 132.58 160.98 186.41
980.69 980.22 979.74 978.80 977.87 977.37 976.46 975.52 973.66 972.26 970.87 968.54 965.40 962.39 959.81 957.00 955.51 952.55 950.30 944.60 935.20 917.88 905.21 894.09
288.0 278.1 268.2 248.4 226.6 218.0 218.0 218.0 218.0 218.0 218.0 276.0 355.0 355.0 300.2 240.0 240.0 276.4 304.2 375.0 505.5 751.O 9352 1100
1014 843.5 697.5 466.8 302.3 236.2 149.2 92.88 36.14 17.89 8.901 3.148 1.054 4.136 X 10" 1.740 j( io-l 5.469 x 10-2 2.752 x lo-* 7.938 x lo4 3.526 x lo-' 6.677 x 10' 8.67 x lod 5.99 x lod 1.40 x lod 4.84 x 10-7
For referense, see footnote 195, p. 592. t 1 millibar (mb) = 101 dynes/crn*= 0.750 mmHg.
Density, p g/cma
1.223 x loJ 1.055 x 10" 9.047 x 10' 6.537 X lo-' 4.601 10" 3.768 X lo4 2.381 X 10" 1.482 x lo-' 5.761 X lo* 2.849 X lod 1.415 x lod 3.946 x lod 1.024 X lod 4.019 X lo-' 2.000 x lo-? 7.860 x 10' 3.956 x lo4 9.507 X 10' 3.713 x 105.218 x lo-'' 5.02 x lo-'' 2.33 X lo-" 4.38 x lo-" 1.29 x lo-"
Number density, n particles/cma
2.568 X 10' 2.213 x 10"' 1.898 x 10" 1.371 x 10" 9.652 X 10" 7.905 2 i@ 4.995 x 10" 3.109 X 10"' 1.210 x 10" 5.989 10'' 2.979 X 10" 8.323 x 10" 2.166 x 10'" 8.501 X loi5 4:230 X lou 1.663 x 10" 8.367 x 10" 2.096 x 10" 8.459 2 10" 1.299 X 10" 1.25 x 10" 5.83 X 10" 1.09 x 10O ' 3.21 x 10'
Mean particle speed. v cm/sec
4.590 x 10' 4.511 4.432 4.264 4.090 3.996 3.996 3.9% 3.996 3.999 4.002 4.508 5.118 5.118 4.706 4.209 4.209 4.612 4.916 5.708 6.63 8.07 9.01 9.78
Mean free path, L cm
9.744 x lod 1.130 X lo* 1.318 X lod 1.825 x 10" 2.592 X lod 3.165 X lod 5.010 x lod 8.048 x lod 2.069 X lo-' 4.178 X 10" 8.399 X lo-' 3.006 X 10" 1.155 x lo-' 2.943 x lo-' 5.915 x lo-* 1.505 x 10" 2.990 x lo-' 1.194 2.958 1.926 X 10 2.00 x lo* 4.29 x l V 2.29 x 10' 7.79 x 104
Mean collision freq. v I/SCC
4.712 X 10' 3.991 X 10' 3.362 X 10' 2.337 x 10' 1.578 X lo0 1.262 X 10' 7.976 X lo* 4.965 x 108 1.931 X 1oB 9.572 x lo7 4.765 X lo7 1.499 x lo7 4.430 x 10' 1.739 X l@ 7.956 x 106 2.797 .X 106 1.408 X 106 3.862 X 10' 1.662 X 10' 2.964 x l(r 3.32 X 10' 1.88 x 10 3.93 x 10 1.25 X 10
Speed of sound, c cm/see
3.410 X 10' 3.351 3.291 3.167 3.038 2.967 2.967 2.967 2.968 2.970 2.972 3.348 3.802 3.802 3.496 3.126 3.126 3.443 3.686 4.322 5.02
....
....
TABLE 630.-VALUES
O F TEMPERATURE, PRESSURE, AND DENSITY ABOVE T H E
F, LAYER
(CALCULATED)
Latitude 45", pa = 1014 mb, pa = 1.223 X 10" g/cm3
-
dt Percentage composition by mass
Height, h Atomic oxygen
?mi)
km
mi
300 400 500 600 700 900 1000 1500 2000 4000 6000 10,000 20,000 30,000 40,000 50,000 60,000 70,000
186.4 248.5 310.7 372.8 435.0 559.2 621.4 932.0 1234 2485 3728 6214 12,427 18,641 24,855 31,068 37,282 43,496
K
894.09 867.75 842.75 819143 795.40 752.29 732.04 642.07 567.73 370.01 260.i i 148.58 57.28 30.12 18.53 12.54 9.05 6.83
1100 1500 1900 2300 2500 2500 2500 2500 2500
2500 2500 2500 2500 2500 2500 2500 2500
....
....
Atomic helium
22.22 77.78 1.i9XlO-4 20.20 79.80 2 . 6 2 lo-' ~ 18.70 81.30 4.29)<10-' 82.47 6.53X10-' 17.53 15.48 84.52 1.41x lo-' 14.57 85.43 2.03x 10.' 10.92 89.06 1.loxlo-, 91.54 4.84%in+ 8.397 3.392 89.32 3.887' S616 26.86 23.13 3 . 3 8 10-3 ~ .3451 13.12 4.85%10-' 1.20X10" 3.847 2.47% 10" 9.12Xio-6 2.152 4.52x lo-' 2.10x10-' 1.541 1.51Xlo-' 8.11x10-e 1.241 7.02x 10-o 3.92x10-' 1.067 3.99x 10" 2 . 5 6 lo-' ~ .9536 ~~
For reference see footnote 195, p. 592. particle.
t d = diameter bf
Atomic nitrogen
Atomic hydrogen
= ZXIO-scm
7
Mean mol wt Pressure, p M millibars
24.35 14.40 14.36 14.33 9.34x10-5 14.31 1.17x lo-' 14.28 1.88X lo-' 14.26 1.67 X 14.19 1.13X10'' 14.11 9.14 3.402 1.76 49.44 1.12 86.53 96.23 1.04 97.85 1.02 98.46 1.02 1.02 98.76 98.93 1.02 99.05 1.02
Number Density, p density, n g/cmS I iarticles/cm'
3 4.84~ lo-' i . 2 9 ~ 1 0 - ~3.21X1Oo 9.70~ lo-' 1.12x 10-1' 4.72210' 1.56><10' ~ 4.06x10-' 3 . 6 9 1045 2.05x10-8 1.54x 10-15 6.49X10' 1 . 1 6 10" ~ 8 . 0 0 lo-'' ~ 3.39x 10' 4.01x10-0 2.75x lo-'' 1.17x 10' 2.41 x 10-o 1.65x10-1a 7.03X1O0 2.31 x 1O-Io 1.58xlO-'' 6.73x lo5 2.96)<10-11 2 . 0 1 ~ 1 0 -8.62K10' ~~ 9 . 7 5 lo-'' ~ 4 . 2 9 ~ 1 0 -2.84xio2 ~ 7.52x 10 2 . 5 8 ~ 1 0 - ~2.18)<10-= ' 4.61X10 1.58x lo-" 8 . 5 2 101" ~ 9.82x lo-% 4.90~10-" 2.86)<10 7.90~10-~'3.94)<10-" 2 . 3 3 ~ 1 0 7.11 x 10"' 3.49); lo-" 2.08x10 ~ 1.93X10 6.60~ 10-15 3 . 2 3 lo-" 3.06x lo-" 133x10 6 . 2 7 10-15 ~ 6.03x lo-'' 2.94~10-" 1.76x10
Mean particle speed u cm/sec
*
Mean free path, L cm
Mean collision freq, Y l/sec
9.78x10' 1 . 7 6 ~ 1 0 5~. 5 6 ~ 1 0 - ~ ~ 1.48x lo5 1 . 2 0 ~ 1 0 1~ . 2 4 10-l 1.67X105 3.63x10a 4.62x10-' 1.84X105 8.69X10a 2.12X10-' 1.92X10' 1.f35~107 i . i 6 x i 0 - ~ 1.93x lo5 4.81X10' 4.00X10-' 1.93X105 8.01)<107 2.41X10-' 1.93X 10' 8.36X10' 2.31x10-' 1.94)<105 6.52X1O0 2.97X10-' 2.41 X 10' 1.98x 10" 1.22x lo-' 5 . 4 8 105 ~ 7.49X101' 7.32X104 6.87~ lo5 1 2 2 x 1 0 ~5~6 2 x i 0 - ~ 7.14X1O5 1.96X1013 3.64X104 2.98X104 7 . 1 9 ~ 1 02.41X10" ~ ~ 7.20x lo5 2 . 7 1 ~ 1 0 ' 2.66x10-' 7.21 X 10' 2.92X 10" 2.47X 10" 7.22xlO' 3.08x 10" 2.34x lo-' ~~ 7.22X105 3 . 2 0 ~ 1 02.26x10-'
596
TABLES 631-640.-DENSITIES AND HUMIDITIES OF MOIST AIR*88 T A B L E 631.-RELATIVE D E N S I T Y O F MOI,ST AIR FOR D I F F E R E N T PRESSURES A N D H U M I D I T I E S
Part 1.-Values
of
h -, 760
from h = 1 to h = 9, for the computation of different values
of the ratio of actual t o normal barometric pressure
This gives the density of moist air a t pressure h in terms of the same air a t normal atmosphere pressure. When air contains moisture, as is usually the case with the atmossphere, we have the following equation for pressure term : h = B - 0.378p, where p is the vapor pressure, and B the corrected barometric pressure. When the necessary psychrometric observations are made the values of p may be taken from Table 640 and then 0.378p from Table 632, or the dew point may be found and the value of 0.378p taken from Table 632. Examples of use of the table T o find the value of
A 760
h
h = 700 g i s s .92105 50 .065789 " .005263 4 .3 " .000395
.OO 13158 .0026316 .0039474
1
2 3
.0052632 .0065789 ,0078947
4
5 6 8 9
---
----
754.3 -
,992497 h
when h = 5.73 To find the value of h = 5 gives .0065789 .7 '' .0009210 .03 " .0000395
.0092105 .0105263 .0118421
7
h F~ when h = 754.3
h
of the logarithms o f - f o r values of h between 80 and 800 760
Part 2.-Values
Values from 8 to 80 may be got by subtracting 1 from the characteristic, and from 0.8 to
8 by subtracting 2 from the characteristic, and sc on.
h Values of log 760
h
0
1
2
3
5
4
6
7
8
9
80 i.02228 i.02767 i.03300 i.03826 1.04347 1.04861 1.05368 i.05871 1.06367 1.06858
90 .07343 .07823 .08297 .08767 .09231 .09691 .I0146 .lo596 .I1041 .11482 loo. 1.11919 i.rz351 i . i n 7 9 i.13202 i.13622 i.14038 i.14449 1.14857 i.15261' 1.15661 110 120 130
140
.I6058 .I9837 23313 26531
.I6451 20197 23646 26841
.16840 ,20555 .23976 27147
.I7226 20909 .24304 27452
.I7609 21261 24629 .27755
.17988 ,18364 .I8737 ,21611 21956 22299 24952 .25273 25591 .28055 28354 28650
.19107 22640 25907 .28945
.I9473 22978 ,26220 29237
150 i.29528 1.29816 i.30103 i.30388 1.30671 i.30952 i.31231 i.31509 1.31784 1.32058
.33667 .36222 .38636 .40922
.33929 .36470 .38870 .41144
.34190 .36716 .39128 .41365
.34450 .36961 .39334 .41585
.34707 .37204 .39565 .41804
1.42022 1.42238 i.42454 1.42668 i.42882 1.43094 ~ 4 1 4 1 -44347 . 4 4 w -447.57 .449m .45162 220 :46iBi 148358 :46554 :4$iib %543 147i37 230 .48091 .48280 .48467 .48654 .48840 ,49025 240 .49940 ,50120 .SO300 .50479 .SO658 .SO835
i.43305 .45364 147329 ,49210 .51012
1.43516 .4.5565 14752i .49393 .51188
1.43725 .45764 i477i2 .49576 .51364
1.43933 .45963 i47902 .49758 .51539
160 170 180 190
.32331 .34964 .37446 .39794
.32601 .32870 .35218 .35471 .37686 .37926 .40022 .40249
.33137 .35723 .38164 .40474
.33403 .35974 .38400 .40699
200 210
'"The tables on densities and humidities have been adapted from the sixth edition of the Smithsonian Meteorological Tables, which see for more extensive data.
(continued) SMITHSONIAN PHYSICAL TABLES
597 T A B L E 631.-RELATIVE D E N S I T Y O F M O I S T A I R FO R D I F F E R E N T P R E S S U R E S A N D H U M I D I T I E S (continued) P a r t 2.-Values
h
for values o f h between 80 and 800 760 (continued)
of the logarithms of-
h
Values of log 760 h
250
260 270 280 290 300
310 320 330 340 350
360 370 380 390 400
410 420 430 440 450
460 470 480 490 500
510 520 530 540 550
560 570 580 590 600
610 620 630 640
0
1
2
5
4
3
1.51713 1.51886 1.52059 is2231 i.52402 1.52573 .53416 .53583 .53749 .53914 .54079 ,54243 .55055 .55216 .55376 .55535 .55694 .55852 .56634 .56789 .56944 .57097 .57250 .57403 .58158 .58308 .58457 .58605 .58753 .58901 1.59631 759775 i . 5 ~ 1 9 1.60063 i.60206 1.60349 .61055 .61195 .61334 .61473 .61611 .61750 .62434 .62569 .62704 .62839 .62973 .63107 163770 .63901 .64032 .64163 ,64293 .64423 .65067 .65194 .65321 .65448 .65574 .65701 1.66325 1.66449 i.66573 1.66941 .67549 .67669 .67790 .68148 .68739 ,68856 .68973 .69090 .692Q6 .69322 .69897 .70011 .70125 .70239 .70352 .70465 .71025 .71136 .71247 .71358 .71468 .71578 1.72125 i.72233 i.72341 i.72449 i.72557 i.72664 .73197 .73303 .73408 .73514 .73619 .73723 .74244 .74347 .74450 .74553 ,74655 ,74758 .75265 .75366 .75467 .75567 .75668 .75768 .76264 .76362 .76461 .76559 .76657 .76755
i.77240 i.77336 i.77432 i.77528 ,78194 .78289 .78383 .78477 .79128 .79221 .79313 .79405 .80043 .80133 .SO223 .80313 .80938 NO27 .81115 .81203 1.81816 1.81902 1.~1989i.82075 ,82676 .82761 32846 .82930 .83519 .83602 .83686 .83769 .84346 .84428 .84510 .84591 .85158 .85238 .85319 .85399 1.85955 1.86034 1.86113 i.86191 .86737 .86815 .86892 .86969 .87506 .87582 .87658 .87734 . .~~ .88261 .88336 .88411 .88486 .89004 .89077 .89151 .89224 189734 1.89806 .%I452 .90523 .91158 ~~~. .91228 .91298 .91367 .91853 .91922 .91990 .92059 .92537 .92604 .92672 92740
i.77624 i.77720 .78570 .78664 .79496 ,79588 .80403 .80493 .81291 .81379
6
7
8
9
is2743 is2912 is3081 .54407 .54570 .54732 .56010 .56167 .56323 .57555 .57707 .57858 .59048 .59194 .59340
1.53249 .54894 .56479 .58008 .59486
1.60491 .61887 .63240 .64553 .65826
i.60632 i.60774 .62025 .62161 .63373 .63506 .64682 .64810 ,65952 .66077
1.60914 .62298 .63638 .64939 .66201
i.67064 ,68267 .69437 .70577 .71688
i.67185 i.67307 i.67428 .68385 .68503 .68621 .69553 .69668 .69783 .70690 .70802 .70914 .71798 .71907 .72016
.
i.72771 i.72878 i.72985 1.73091 .73828 .73932 .74036 .74140 .74860 .74961 .75063 .75164 .75867 ,75967 .76066 .76165 .76852 .76949 ,77046 .77143 i.77815 i.77910 1.78005 i.78100 .78757 .78850 ,78943 .79036 .79679 .79770 .79861 .79952 30582 .80672 .80761 .80850 .81467 .81554 .81642 .81729
i.82162 i.82248 i.82334 i.82419 i.82505 1.82590 .83015 ,83099 .83184 .83268 .83352 .83435 .83852 .83935 A4017 .84100 .84182 .84264 34673 .84754 .84835 24916 34997 .85076 ,85479 .85558 .85638 .85717 .85797 .85876 i.86270 i.86348 .87047 ,87123 .87810 .87885 .88560 38634 .89297 39370 .91437 .92128 .92807
.90806 .91507 .92196 .92875
i.86426 i.86504 i.86582 m200 . 8 7 m . m s 3 .8796i .88036 .&ii .88708 .88782 .88856 .89443 .89516 .89589 .90877 .91576 .92264 .92942
.90947 .91645 .92333 .93009
.91017 .91715 .92401 .93076
i.86660 .8743n .88i86 .88930 .89661 .91088 .91784 .92469 .93143
650 i.93210 i.93277 i.93343 i.93410 i.93476 1.93543 i.93609 793675 i.93741 - .._ - i.93sn7 _____
660 670 680 690
.93873 .94526 .95170 .95804
700
1.96428 .97044 .97652 .98251 .98842
710 720 730 740
.93939 .94591 .95233 .95866
.94004 .94656 .95297 .95929
.94070 .94720 .95361 .95992
,94135 .94785 .95424 .96055
.94201 .94849 ,95488 .96117
.94266 .94913 .95551 .96180
1.96490 i.96552 i.96614 i.96676 i.96738 i.96799 .97106 .97167 .97228 .97288 .97349 -97411) .97712 .97772 .97832 .97892 ,97951 .98012 .98310 .98370 .98429 .98488 .98547 .98606 .98900 .98959 .99018 .99076 .99134 .99193 (conti1aurd)
SMITHSONIAN PHYSICAL TABLES
.94331 .94978 .95614 .96242 i.96861 -97471 198072 .98665 .99251
.94396 .95042 .95677 .96304 i.96922 -975.71 ._. ___ .98132 .98724 .99309
.94461 .95106 .95741 .96366 1.96983 -97592 ._. ___ .98191 .98783 9367
598 T A B L E 631.-RELATIVE D E N S I T Y O F M O I S T AIR FOR D I F F E R E N T PRESSURES A N D H U M I D I T I E S (concluded)
h for values of h between 80 and 800 of the logarithms of -
Part 2.-Values
760 (concluded)
A
Values of log 760
h
r
1
0
2
3
4
5
6
750 1.99425 1.99483 i.99540 1.99598 1.99656 i.99713 1.99771
760 770 780 790
.00057 .00624 .01184 .01736
.OOOOO .00568 .01128 .01681
.00114 .00680 .01239 .01791
.00171 .00228 .00737 .00793 .01295 .01350 .01846 .01901
,00285 .00342 .00849 .00905 .01406 .01461 .01955 .02010
7
8
9
i.wm
i.99886 ,00455 .01017 .01571 .02119
1.99942 .00511 ,01072 .01626 ,02173
.00398 .00961 .01516 .02064
O F M O I S T AIR, V A L U E S O F 0 . 3 7 8 ~
T A B L E 632.-DENSITY
h This table gives the humidity term 0.378p, which occurs in the equation 6 = 6o -=
760 B - 0.378p for the calculation of the density of air containing aqueous vapor at pres760 sure p ; 80 is the density of dry air at normal temperature and barometric pressure, B the observed barometric pressure, and h = B - 0.378p, the pressure corrected for humidity. h For values of -, see Table 631. Temperatures are in degrees centigrade, and pressures 760 80
in mmHg.
P
P
Dew point OC
-50
-45 -40 -35 -30 -25
24 23 22 21 -20
19 18 17 16 -15
14 13 12 11 -10
9 8 7 6 - 5
4 3 2 1 0
Vapor pressure (ice) mmHg
.029 .054 .096 .169 .288 .480 .530 .585 .646 .712 .783 362 .947 1.041 1.142 1.252 1.373 1.503 1.644 1.798 1.964 2.144 2.340 2.550 2.778 3.025 3.291 3.578 3.887 4.220 4.580
0.378p mmHg
.o1
.02 .04 .06 .ll .18 .20 .22 .24
.n
.30 .33 .36 .39 .43 .47 .52 .57 .62 .68 .74 .81
.88 .%
1.05 1.14 1.24 1.35 1.47
iio
1.73
SMITHSONIAN PHYSICAL TABLES
new point
"C
0
1 2 3 4 5
6
7
8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
Vapor pressure (water) mmHg
4.58 4.92 5.29 5.68 6.10 6.54 7.01 7.51 8.04 8.61 9.21 9.85 10.52 11.24 11.99 12.79 13.64 14.54 15.49 16.49 17.55 18.66 19.84 21.09 22.40 23.78 25.24 26.77 28.38 30.08 31.86
P
0.378p mmHg
Dew point
"C
1.73
30
2.00 2.15 2.31
31 32 33 34
i.86
3 48 3.72 3.98 4.25 4.53 4.84 5.16 5.50 5.85 6.23 6.63 7.06 7.50 7.97 8.47 8.99 9.54 10.12 10.73 11.37 12.04
40
41 42 43 44 45
46 47 48 49 50
51 52 53 54 55
56 57 58 59 60
Vapor pressure (water) mmHg
0.378p mmHg
31.86 33.74 35.70 37.78 39.95 42.23 44.62 47.13 49.76 52.51 55.40 58.42 61.58 64.89 68.35 71.97 75.75 79.70 83.83 88.14 92.6 97.3 102.3 107.3 112.7 118.2 124.0 130.0 136.3 142.8 149.6
12.0 12.8 13.5 14.3 15.1 16.0 16.9 17.8 18.8 19.8 20.9 22.1 23.3 24.5 25.8 27.2 28.6 30.1 31.7 33.3 35.0 36.8 38.6 40.6 42.6 44.7 46.9 49.1 51.5 54.0 56.5
599 T A B L E 633.-MAINTENANCE
O F AIR A T D E F I N I T E H U M I D I T I E S
-
The relative humidity and vapor pressure of aqueous vapor of moist air in equilibrium conditions above aqueous solutions of sulfuric acid are given below. Density of acid sol
Relative humidity
1.00 1.05 1.10 1.15 1.20 1.25
100.0 97.5 93.9 88.8 80.5 70.4
Vapor pressure - -A- ,
20°C mm
30°C mm
17.4 17.0 16.3 15.4 14.0 12.2
31.6 30.7 29.6 28.0 25.4 22.2
T A B L E 634.-PRESSURE
Density of acid sol
Relatiye humidity
1.30 1.35 1.40 1.50 1.60 1.70
58.3 47.2 37.1 18.8 8.5 3.2
Vapor pressure
mm
mm
10.1 8.3 6.5 3.3 1.5 .6
18.4 15.0 11.9 6.0 2.7 1.0
O F AQUEOUS VAPOR IN T H E A T M O S P H E R E
For various altitudes (barometric readings) The amount of water vapor in the atmosphere may be determined by the use of the wet-bulbdry-bulb hygrometer. The first column gives the depression of the wet-bulb temperature ti below the air temperature t. The value corresponding to the barometric height at the altitude of observation is to be subtracted from the vapor pressure corresponding to the wet-bulb temperature taken from Part 3, Table 635. The temperature corresponding to this vapor pressure taken from Part 3, Table 635 is the dew point. The wet bulb should be ventilated about 3 meters per second. For sea-level use Table 640. Example : t = 35", tt = 30", barometer 74 cmHg. Then 31.83 - 2.46 = 29.37 mm = aqueous vapor pressure ; the dew 'point is 28.6"C. Barometric pressure in cmHg t-tl
oc
1" 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ~~
f
74
72
70
68
66
64
62
60
58
56
54
52
50
48
mm
mm
mm
.50 .98 1.47 1.97 2.46 2.95 3.45 3.95 4.44 4.94 5.44 5.94 6.45 6.95 7.46 7.96 8.47
mm
mm
.48 .96 1.43 1.91 2.39 2.87 3.36 3.84 4.32 4.81 5.30 5.78 6.27 6.76 7.26 7.75 8.24
.47 .93 1.39 1.86 2.32 2.79 3.26 3.73 4.21 4.68 5.15 5.62 6.10 6.58 7.06 7.54 8.02
.46 .90 1.35 1.81 2.26 2.71 3.17 3.63 4.09 4.54 5.00 5.46 5.92 6.39 6.85 7.32 7.79
.44 .88 1.32 1.75 2.19 2.63 3.08 3.53 3.97 4.41 4.86 5.30 5.75 6.20 6.65 7.11 7.56
mm
mm
mm
mm
mm
mm
mm
mm
.38 .75 1.12 1.49 1.86 2.24 2.61 2.99 3.37 3.74 4.12 4.50 4.88 5.26 5.64 6.03 6.41
.36 .72 1.08 1.44 1.80 2.16 2.52 2.88 3.25 3.6i 3.97 4.34 4.70 5.07 5.44 5.81 6.18
.35 .69 1.04 1.38 1.73 2.08 2.43 2.78 3.13 3.48 3.83 4.18 4.53 4.88 5.24 5.60 5.95
.34 .67 1.03 1.33 1.66 2.00 2.33 2.67 3.00 3.34 3.68 4.02 4.36 4.70 5.04 5.38 5.72
mm
SMITHSONIAN PHYSICAL TABLES
.43 .85 1.28 1.70 2.13 2.55 2.99 3.42 3.85 4.28 4.71 5.14 5.57 6.01 6.45 6.89 7.33
.42 .82 1.24 1.65 2.06 2.47 289 3.31 3.73 4.14 4.56 4.98 5.40 5.83 6.25 6.68 7.10
.40 .80 1.20 1.60 1.99 2.39 2.80 3.20 3.61 4.01 4.42 4.82 5.23 5.64 6.05 6.46 6.87
.39 .77 1.15 1.54 1.93 2.32 2.71 3.10 3.49 3.88 4.27 4.66 5.05 5.45 5.85 6.24 6.64
.32 .64 .. .96 1.28 1.60 1.92 2.24 2.56 2.88 3.21 3.53 3.85 4.18 4.51 4.84 5.17 5.50
600 T A B L E 635.-PRESSURE OF S A T U R A T E D W A T E R VAPOR FOR VA R IO U S CO NDI TI O N S OF T E M P E R A T U R E A N D SU R R O U N D IN G S
Pressure in mmHg, temperature in "C Part 1.-At Temp
-60 -50 -40 -30 -20 -10 0
2
1
0
.0081 .0295 .0962 2855 .7740 1.945 4.580
,0371 .0261 .0858 2560 .7030 1.783 4.219
.0054 .0203 .0681 2075 ,5780 1.486 3.565
0
1
2
3
4
1.983 4.260
1.832 3.968
1.690 3.672
1.556 3.410
0
Temp
G
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Temp
4.580 4.922 5.289 5.680 6.095 6.535 7.01.0 7.509 8.039 8.605 9.200 9.835 10.518 11.225 11.980 12.776 13.625 14.530 15.460 16.460 17.525 18.650 19.820 21.050 22.365 23.750 0
20 17.53 30 31.82 40 55.30 50 92.50 60 149.4 80 355.2 90 525.5 100 767.0
4.648 4.998 5.365 5.761 6.182 6.535 7.106 7.613 8.149 8.726 9.325 9.965 10.655 11.375 12.140 12.945 13.801 14.710 15.660 16.680 17.745 18.880 20.060 21.320 22.630 24.030 2
1
18.65 33.70 58.35 97.25 369.7 546.5 786.5
384.8 567.0 815.5
.0157 .0540 .1675 .4790 1.239 3.010
9
8
.0026 .0023 .0106 .0094 .0377 .0333 ,1205 .lo78 .3500 .3160 .9360 ,8510 2.322 2.128
6
7
8
1.319 2.930
1.215 2.712
1.109 2.510
5
1.434 3.160
4.712 5.065 5.442 5.842 6.270 6.724 7.204 7.720 8.260 8.838 9.455 10.100
11.750 12.217 13.025 13.895 14.800 15.760 16.790 17.855 19.000 20.185 21.450 22.763 24.200
11.525 12.295 13.110 13.985 14.895 15.960 16.900 17.965 19.110 20.310 21.580 22.905 24.345
i0.7is io.790
3
21.05 37.71 64.85 107.1 171.7 265.9 400.6 588.5 845.0
.5
.4
.3
4.685 5.030 5.404 5.801 6.125 6.679 7.155 7.666 8.205 8.782 9.390 10.032
4.750 5.105 5.482 5.885 6.314 6.770 7.254 7.772 8.315 8.900 9.520 10.170 10.858 11.600 12.375 13.195 14.075 14.990 15.960 17.000 18.080 19.225 20.430 21.710 23.050 24.490 5
4
22.37 39.15 68.30 113.0 179.4 275.2 416.5 610.8 875.1
23.75 42.20 71.90 118.0 187.6 289.1 439.8 634.0 906.0
(cuntiikued)
SMITHSONIAN PHYSICAL TABLES
7
.0030 .0121 .0425 .1337 .3880 1.029 2.531
9
1025 2.321
temperatures 0" to 374" over water
.2
.1
4.615 4.960 5.328 5.720 6.139 6.582 7.058 7.560 8.095 8.670 9.263 9.901 10.580 11.300 12.060 12.860 13.710 14.620 15.560 16.570 17.635 18.765 19.940 21.190 22.500 23.900
6
.0035 .0138 .0479 .1502 .4290 1.130 2.765
low temperatures over water
0
Part 3.-Fcr
0 1 2 3 4 5
.047 .0178 .0607 .1865 ,5240 1.359 3.280
2.148 4.580
Temp
5
. .0041
4
3
.0062 .0222 .0766 2308 .6380 1.630 3.880 Part 2.-At
-10
low temperatures over ice
.7
.6
4.784 5.140 4.525 5.930 6.358 6.816 7.306 7.823 8.370 8.960 9.580 10.240 10.928 11.677 12.455 13.280 14.165 15.085 16.060 17.100 18.195 19.345 20.580 21.840 23.190 24.640 6
25.21 44.60 75.65 123.9 196.1 301.5 450.8 658.0 937.8
4.820 5.175 5.566 5.972 6.401 6.862 7.356 7.875 8.425 9.020 9.645 10.308 11.ooo 11.755 12.538 13.365 14.255 15.172 16.160 17.210 18.310 19.460 20.690 21.970 23.310 24.790 7
.9
.8
4.855 5.212 5.602 6.014 6.445 6.910 7.408 7.929 8.482 9.080 9.707 10.375 11.075 11.829 12.620 13.450 14.345 15.270 16.260 17.315 18.425 19.580 20.800 2.100 23.450 24.935 8
4.888 5.250 5.642 6.055 6.490 6.960 7.460 7.984 8.542 9.140 9.770 10.445 11.150 11.905 12.698 13.540 i4.440 15.375 16.360 17.425 18.540 19.700 20.930 22.230 23.600 25.080 9
26.74 28.32 30.03 52.45 47.04 49.70 83:OO 88.00 79.55 129.9 136.2 142.6 205.0 214.1 223.8 314.2 327.3 340.9 468.6 487.0 506.0 .. . -... 707:0 733.0 682.0 970.5 1004.2 1038.8
601 T A B L E 635.-PRESSURE O F S A T U R A T E D W A T E R VAPOR FOR V A R I O U S C O N D I T I O N S O F T E M P E R A T U R E A N D S U R R O U N D I N G S (concluded) 1 5 6 7 8 9 Temp 0 2 3 4
110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370
1074 1489 2025 2709 3568 4632 5936 7513 9404 11650 14290 17370 20950 25060 29770 35130 41200 48040 55710 64300 73870 84500 96290 109300 123700 139600 157000
1111 1536 2086 2786 3665 475 1 6080 7688 9612 11890 14580 17710 21330 25500 30280 35700 41840 48760 56530 65210 74880 85630 97530 110700 125200 141200 158800
1149 1585 2149 2866 3763 4873 6228 7865 9823 12140 14870 18050 21720 25950 30790 36280 42500 49500 57360 66130 75910 86760 98790 112100 126800 142900 160700
T A B L E 636.-WEIGHT
T:mp
c o -20 1.074 -10 2.358 - 0 4.847 0 4.847 +10 9.399 +20 17.30 +30 30.38
+
1187 1227 1636 1687 2214 2280 2947 3030 3967 3864 5123 4997 6532 6378 8046 8230 10040 10260 12400 12650 15160 15470 18740 18390 22120 22520 26410 26870 31830 31310 37470 36870 43840 43160 50250 51000 59040 58190 67060 68000 77990 76940 87910 89070 100060 101350 113500 114900 128300 129900 144600 146300 162600 164400
1268 1740 2347 3115 4072 5252 6688 8417 10480 12920 15770 19100 22930 27340 32360 38070 44520 51770 59890 68960 79050 90250 102640 116300 131400 148100 -
1397 1310 1353 1907 1794 1850 2416 2487 2559 3201 3290. 3381 . ~ . . 4402 4180 4290 5654 5383 5518 7174 6847 7009 8999 8608 8802 11170 10700 10940 13180 13450 13730 16720 16080 16400 19450 19820 20190 24 190 23350 23770 27810 28290 28780 34000 32900 33450 38680 39300 39920 46600 45200 45900 52540 53320 54110 62510 60750 616zi 71870 69920 70890 82290 80120 81200 91430 92630 93840 103950 105280 106600 117800 119200 120700 133000 134600 136300 149800 151600 153400
-
1442 1965 2633 3473 4516 5794 7342 9200 11410 14010 17040 20560 24620 29270 34560 40560 47320 54910 63400 72860 83390 95060 108000 122200 137900 155200
-
I N GRAMS O F A CUBIC M E T E R O F S A T U R A T E D AQUEOUS VAPOR
1
2
3
4
5
6
7
8
9
.988 2.186 4.523 5.192 10.01 18.34 32.07
.909 2.026 4.217 5.559 10.66 19.43 33.83
.836 1.876 3.930 5.947 11.35 20.58 35.68
.768 1.736 3.660 6.360 12.07 21.78 37.61
.705 1.605 3.407 6.797 12.83 23.05 39.63
346 1.483 3.169 7.260 13.63 24.38 41.76
.592 1.369 2.946 7.750 14.84 25.78 43.96
.542 1.264 2.737 8.270 15.37 27.24 46.26
,496 1.165 2.541 8.819 16.21 28.78 48.67
For higher temperatures see Table 166.
T A B L E 637.-WEIlGHT
Tym F
-20 -10
-0 + O 10 +20
+
+50 +60 70 80
++ +90
+loo +I10
O
1
2
.219 .355 .563 .563 370 1.318 1.961 2.862 4.105 5.805 8.060 11.06 14.96 19.96 26.35
.208 .339 .540 .587 .908 1.375 2.038 2.970 4.256 6.000 8.325 11.40 15.41 20.55 27.12
,198 .323 .5 17 .614 .947 1.431 2.118 3.081 4.410 6.195 8.600 11.76 15.98 21.15 27.90
SMITHSONIAN PHYSICAL TABLES
I N GRAINS OF A CUBIC F O O T O F S A T U R A T E D AQUEOUS VAPOR 3
.188 .308 .492 .642 .~ .988 1.488 2.200 3.195 4.565 6.410 8.880 12.12 16.34 21.75 28.62
4
5
.179 .293 .469 .671 1.030 1.548 2.285 3.315 4.722 6.628 9.165 12.50 16.84 22.35 29.40
.170 ,280 .448 .701 1.074 1.612 2.375 3.438 4.890 6.855 9.460 12.87 17.32 23.05 30.20
6
.161 .266 .428 .732
i.ii9
1.676 2.466 3.563 5.060 7.080 9.765 13.27 17.82 23.65 3 1.OO
7
8
9
.153 .254 .408 .768 1.166 1.746 2.558 3.691 5.235 7.317 10.075 13.70 18.34 24.32 3 1.85
.146 .242 ,390 .799 1.215 1.815 2.656 3.822 5.420 7.560 10.390 14.09 18.90 24.98 32.68
.138 .230 .372 .834 1.265 1.886 2.755 3.965 5.608 7.810 10.720 14.52 19.39 25.68 33.55
602 TABLE 638.-RELATIVE H U M I D I T Y FOR VARIOUS PRESSURES AND DRY-BU L B TEMPERATURES
Vertical argument is the observed vapor pressure which may be computed from the wet-bulb and dry-bulb readings through Tables 634 or 640. The horizontal argument is the observed air temperature (dry-bulb reading). Vapor pressure- ( mmHg 0 -1
.25 SO .75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50
45
51 56 61 67 72 78
Vapor pressure mmHg '
.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 ~~
5.5
6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 11.o 12.0 13.0 14.0
15.0 16.0
17.0
Vapor pressure mmHg
1 2 3 4 5 6
7
8
7 13 19 25 31 37 43 48 54 60 66 72 78 84
6 12 17 23 29 35 40
Air temperatures, dry bulb, 0C
--5
-2
-3
-4
7 14 20 27 33 40 46 52 59 65 71 78 84 90
8 15 22 29 36 43 48 56 63 70 76 83 90 97
8 9 16 17 24 25 32 34 39 42 46 49 53 57 60 65 68 73 75 81 81 87 88 94 96 ..
-7
-6
10 18 27 36 45 53 62 70 79 88 94 99
-8
10 11 19 21 29 32 39 42 48 52 57 61 66 71 75 81 84 91 94 100
. . .. .. .. .. .. .. . . . . .. ..
-9
13 15 23 26 34 37 45 49 56 60 67 71 77 82 87 94 98
1
2
12 24 35 46 56 67 78 91 99
11 23 33 43 52 63 73 85 93
11 21 31 40 48 58 68 79 87
.. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
3
4
10 20 29 37 45 54 63 74 81 95 89 .. 96
9 18 27 35 42
..
.. .. .. .. ..
6
7
8
9
9
8 16 23 30 36 44 52 61 67 73 81 88 93
8 15 21 28 34 41 48 57 62 68 75 82 89 94
7 14 20 27 32 38 45 53 58 64 70
7 13 19 25 30 36 43 50 55 60 66 72 78 82 88 94 98
25 32 39 50 47 59 55 69 65 76 71 83 78 91 86 1w 94 .. 99
..
15 28 40 53 65 77 87 97
76 83 88 94
10 1 1
1M
.. .. .. .. .. ..
.. .. ..
..
-15
17 34 50 67 82 97
16 31 46 61 76 90 98
-20
18 28 37 55 54 81 72 87 .:
.. .. ..
.. ..
..
O C
6 13 18 23 28 34 40 47 52 56 62 68 72 77 83 88 92 97
6 12 17 22 26 32 38 44 49 53 58 64 68 72 77 83 86 91 97
12 13
14 15
16
5 9 13 17 21 25 29 35 38 41 45 50 52 56 61 65 68 72 75 79 87 94
4 9 12 16 19 23 28 32 36 39 42 46 49 52 57 61 63 67 71 74 82 89 96
6 11 16 21 25 30 35 41 46 50 55 60 64 68 73 77
5 5 10 10 15 14 20 18 23 22 28 26 33 31 39 37 43 40 47 44 51 48 56 53 60 56 64 60 68 65 73 68 si 76 72 86 81 76 91 85 80 95 89 84 96 92
.. .. .. .. .. . . 1w .. .. .. .. .. 100 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ., .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
..
15 29 43 57 70 83 92
-14
7
5
ii
-12-13
.. .. .. . . .. .. mmHg 00 -1 -2 -3" .. .. .. 3.50 78 84 90 97 .. .. .. 3.75 84 90 96 .. . . . . . . 4.00 90 96 * . .. .. .. .. 4.25 96 .. .. .. . . .. . . 4.50 m .. ..
Air temperatures, dry bulb,
0
-
-
-10-11
17 18 19 20
4
4
8
8
15 18 22 26 30 33 36 40 43 46 49 54
14 17 20 24 29 31 34 37 40 44 47 51 54 57 60 63 66 72 79 85 93 97
ii
57
60 64 67 70 77 84 90 98
i i 16 13 16 19 23 27 29 32 35 38 41 44 48 51 53 56 59 62 67 74 80 88 91
.. .. .. .. .. .. .. .. .. .. .. 1w .. .. .. .. .. ..
Air tempevatures, dry bulb, 0C
-
3 7 10 12 15 18 22 25 28 31 33 36 39 42 46 48 51 53 56 59 64 70
92 98
-7
A
7
3
7
20 21 22 23 24 25 26 27 28 29 30 31
32 33
34 35
36 37 38 39 40
7 12 18 25 30 36 42 48
3 6 9 12 15 18 21 24
3 6 8
3 5 8
14 17 19 22
14 16 18 21
3 5 7 10 13 15 17 20
6 11 17 23 28 34 39 45
6 11 16 22 27 32 37 42
6 10 15 20 25 30 35 40
5 10 15 19 24 29 34 38
5 9 14 18 23 27 32 36
5 9 13 17 22 26 30 34
5 8 12 16 20 24 28 32
4 8 12 15 19 23 26 30
4 7 11 15 18 21 25 29
4 7 11 14 17 20 23 27
(continued)
SMITHSONIAN PHYSICAL TABLES
4 7 10 13 16 19 22 26
3 6 9 12 15 17 20 23
i i ii
2 5 7 10 12 14 16 19
2 5 7 9 11 13 16 18
2 4 6 9 11 12 15 17
2 4 6 8 10 12 14 16
603 T A B 1.E 638.- - R E L A T I V E H U M I D I T Y FOR VARIOUS PRESSURES A N D DRY-BU LB T E M P E R A T U R E S (continued) Vapor pressure r mmHg
9 10 11 12 13 14 15 16 17 18 19 20 -. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 ..
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 Vapor pressure mmHg
5 10 15 20 25 30 35 40 45 50
Air temperatures,
--
bulb,
A
0C
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 46
53 59 64 70 75 81 86 92
50 56 61 66 71 76 82 87 92
iw
.. .. .. .. ..
100
47 52 57 62 67 72 77
44 50 53 59 63 68 72 77 .. 82 86 99 93 .. 96
.. .. ..
.. .. .. .. .. ..
.. ..
.. .. .. .. ..
.. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. .. .. ..
. .. ..
..
..
.I
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
,
.. .. .. .. .. .. .. .. .. ..
.. ..
.. .. .. .. .. ..
.. ..
41 47 50 56 60 64 68 73 77 82 86 90 99 94 98
..
.. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. .. ..
39 44 48 53 57 61 ti5 69 73 77 81 85 89 93 97
37 42 45 50 53 57 61 65 69 73 77 80 84 88 92 .. 96 .. 100
.. .. .. .. .. .. ..
.. ..
..
.. .. .. .. .. ..
,. .. .. .. .. .. .. .. .. .. . . .. .. .. .. . . .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. .. ..
.. .. .. ..
35 40 43 47 50 54 56 62 65 69 73 76 79 83 87 90 94 97
33 37 41 44 48 51 54 58 .. 62 65 69 72 75. 79 82 85 89 92
31 29 27 35 34 32 38 36 35 42 40 38 45 43 41 49 46 44 52 49 46 55 52 49 ~. .~ 58 55 52 62 58 55 65 61 58 68 65 61 72 68 ._ 64 75 71 67 78 74 70 81 77 73 84 79 75 87 83 78 ~
.. . . . . 96 Gi . . . . 99 94 .. .. .. 97 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . .. .. . . .. .. . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . .. .. .. .. .... .. .. .. .. .. .. .. . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . .. . . .. ..
.. .. .. ..
.. .. .. . . .. .. .. .. .. .. .. .. .. .. .. .. ..
47
56 66 74 82 91
87 90 93 95 98
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . .. .. .. ..
.. .. .. .. .. . . .. .. .. .. .. .. .. .. .. .. .. .. . . .. .. .. .. .. . . . . .. .. .. .. .. .. .. .. .. ..
..
.. .. .. .. .. .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. ..
icm ..
..
.. .. .. .. ..
0 9 9 8 18 17 16 26 25 24 35 33 31 43 41 39 51 49 46 59 57 53 67 64 60 75 71 68 82 79 75
8 8 7 7 7 15 14 14 13 13 21 20 19 23 27 26 25 30 37 33 32 31 44 40 38 36 si 46 44 42 58 55 52 50 48 65 61 58 56 53 71 68 65 62 59 ~~
21 23 25 28 30 32
20 22 24 26 28 30
36 38 40 42 45 47 49 51 53
34 36 38 40 42 44 46 48
19 21 23 25 27 29
34 32 Ji
33 34 36 38 40 42 44 46 50 48
18 20 22 24 26 27 Z9 31 33 35 36 38 40 42 44 46
SS 55 5i SO 4s
60 57 54 52 49
62 64 67 70 71 73 76 79 81 82 84 86 88 90 92 94 97
59 61 63 66 68 69 72 75 77 78 80
82
84 86 88 90 92
56 53 51 58 55 53 60 57 54 62 59 56 64 61 58 66 63 60 69 65 62 72 68 65 73 69 66 74 70 67 76 72 69 78 74 70 80 76 72 82 38 74 83 80 76 85 83 81 77 87 79
99 94 90 96 91 . 98 93 .. 95 .. 97
.. .
.. ..
.. ..
85 86 88 90 92 99 94 . . 96 .. 98 99
-
81 82 84 86 88 89 91 92 94 97 98 1w
1
50 51
52 53 54 55 56 57 58 59 60
6 12 18 24 29 35 40 45 51 56
6 11 16 22 27 32 37 41
(continued)
SMITHSONIAN PHYSICAL TABLES
22 24 26 29 32 33 36 38 40 42 45 47 49 51 54 56
.. .. .. .. .. .. .. .. .. .. .. . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
oc ---
--
40 41 42 43 44 45 46 47 48 49
1 19 28 37 45 53 62 70 78 87
sz85
Air temperatures, dry bulb, A
10 20 29 38
Si
89 92 95 98
26 25 24 23 30 28 27 26 33 31 29 28 36 34 32 31 38 36 35 33 41 39 37 35 44 42 40 38 47 45 42 40 49 47 45 42 52 50 47 45 55 52 50 47 58 55 52 50 61 58 55 52 63 60 57 54 66 62 59 57 69 65 62 59 71 68 64 61 74 70 67 63 78 73 69 65 82 77 71 68 83 78 74 70 85 81 77 73 88 83 79 75 90 86 81 77 95 89 85 80 98 93 88 84 100 95 89 85 .. 97 91 86 .. 98 94 89 96 91 .. 98 93 .. ioo 95 .. .. .. 97
6 12 17 23 28 33 38 43 48 53
6 11 16 20 25 30 35 39 46 44 51 49
5 5 10 10
iS ill
19 24 29 33 38 42 47
18 23 28 32 36 40 45
5 9
14
18 22 27 30 35 39 43
5 9 13 17 21 25 29 33 37 41
5 8 12 16 20 24 28 32 35 39
4
4
12 15 19 22 26 30 34 37
11 15 19 21 24 28 32 35
S i
604 T A B L E 638.-RELATIVE H U M I D I T Y FOR VARIOUS PRESSURES AND DRY-BU L B TEMPERATURES (concluded) Vapor pressure, mmHg
55 60 65 70 75
80 85 90 95 100 105 110 115 120 125
Air temperatures, d r y bulb, 40
41
42
43
44
45 46
95 90 86 82 78 74 . . . 97 93 88 84 80 . . . . . . . % 91 87 . . . . . . . . . 98 93 . . . . . . . . . . . 100
iw
48
49
50
51
52
53
71 77 83 89 95
68 73 79 85 91 96
65 70 75 81 86 91 97
62 67 72 77 83 87 92 96
59 64 69 74 79 83 88 92 97
56 61 65 70 75 80 84 89 93 99
54 58 62 67 72 76 81 85 89 94 98
. . . . ................ .................. ...... ............
.. mmHg57'58 59 .. 125 96 92 88 .. 130 iw 96 92 .. 135 .. 99 95 .. 140 . . . . 99 .. 145 . . . . . . .. 150 . . . . . .
T A B L E 639.-RELATIVE
60" 84 88 91 94 97 iw
O C
47
54 55
51 55 60 64 69 73 77 81 85 89 94 98
49 53 57 61 66 69 74 78 82 86 90 94 97
.......... ............ .............. ................ .................. .................... ......................
56
57
58
59
60
47 51 55 59 63 66 70 74 78 82 86 89 93 97
45 49 52 56 60 63 67 71 75 78 82 85 89 93 96
43 47 50 54 58 61 64 68 71 75 78 82 85 89 92
41 45 48 52 55 58 62 65 68 72 75 78 82 85 88
39 43 46 49 53 56 59 62 65 69 72 75 78 82 84
H U M I D I T Y , W E T AND DRY THERMOMETERS
This table gives the relative humidity direct from the difference between the reading of the dry (t"C) and the wet (f,'C) thermometer. It is computed for a barometer reading of 1000 mb. The wet thermometers should be ventilated about 3 meters per second. Changes due to different pressure can be calculated from the data given in Tables 634 and 640. Temperatures of dry thermometer, t o - tl") .2 .4 .5 .6 .8 1.0 1.2 1.4 1.5 1.6 1.8 2.0 2.5 3.0 3.5 4.0 4.5 5 6 7
(to
-15
92 84 80 76 68
60 52 43 39 35 27 18
.. ..
..
-10
-5
94 89 86 82 77 71 65 59 56 53 49 41 27 10
95 91 89 88 83 78 74 72 67 65 61 56
..
46
35 24 12
0
5
96 92 91 90 87 83 80 76 74 73 69 65 58 50 41 33 25 16
97 95 93 92 89 86 84 81 SO 78 75 73
.. .. .. . . . . .. . . . . .. . . . . . . .. . . . . . .
SMITHSONIAN PHYSICAL TABLES
66
60 53 47
40 34 21 8
(to -
tl")
.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 24
10
15
20
25
30
35
40
94 89 83 77 72 67 61 56 51 46 36 26 15 5
95 90 86 81 76 72 67 63 58 54 46 38 29 21 13 5
96 92 88 83 80 75 72 68 64 60 53 46 39 32 25 19 13
96 93 89 85 82 78 75 71 68 65 58 52 46 40 34 30 23 18 13 8
97
97 94 91 88 85 82
97 94 91 89 86 83 81 78 76 73 68 63 59 54 50 46 43 38 34 31 28 24 21 18 14 11 9
..
.. .. . . .. . . .. .. . . . . .. . . ..
.. . . .. . . .. __ . . . . .. . . ..
..
.. .. .... ....
. . . .
.... ....
93 90 86 83 80
ii 79
74 71 68 62 57 51 46 41 36 31 28 25 19 13 9 5 3 2
76 73 71
65 60
55 51 46 42 37 33 29 25 21 18 14 10 7
. . . . . . . . . . .
605 OF AQUEOUS VAPOR IN T H E ATMOSPHERE:
T A B L E 640.-PRESSURE
SEA L E V E L
This table gives the vapor pressure corresponding to various values of the difference t - f l between the readings of dry-bulb and wet-bulb thermometers and the temperature tl of the wet-bulb thermometer. The difference t - tl is given by two-degree steps in the top line, and tl by degrees in the first column. Temperatures in Centigrade degrees, vapor pressures in millimeters of mercury are used throughout the table. The table was calculated for barometric pressure R equal to 76 cmHg. A correction is given for each centimeter at the top of the columns. Ventilating velocity of wet thermometer about 3 meters per second. t tl
- t1 = 00
Corrections for B per cmHg
1.96 2.14 2.34 255 2.78 3.02 3.29 3.58 3.89 4.22 4.58 4.92 5.29 5.68 6.10 6.54 7.01 7.51 8.04 8.61 9 5 9.85 10.52 11.24 11.99 12.79 13.64 14.54 15.49 16.49 17.55 18.66 19.84 21.09 22.40 23.78 25.24 26.77 28.38 30.08 31.86 33.74 35.70 37.78 39.95 42.23 36 _.44.62 37 47:i3 38 49.76 39 52.51 40 55.40
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
2"
,013 -97 .. .
1.15 1.35 1.56 1.78 2.03 2.29 2.58 2.89 3.22 3.58 3.92 4.29 4.68 5.09 5.53 6.00 6.50 7.03 7.60 8.20 8.83 9.50 10.22 10.97 11.77 12.62 13.52 14.46 15.46 i6.52 17.64 18.82 20.06 21.37 22.75 24.20 25.73 27.34 29.04 30.82 32.70 34.66 36.73 38.90 41.18 43.57 4h.m
48X 51.46 54.35
4'
6 '
8'
,026
.040
,053
.16 .35 .66 .79 1.03
-
-
i.29 1.58 1.89 2.22 2.57 ~. 2.92 3.28 3.67 4.08 4.52
7.18 7.81 8.49 9.20 9.95 10.75 11.60 12.49 13.44 14.44 is.50 16.61 17.79 19.03 20.34 21.71 23.17 24.70 26.31 28.00 29.78 31.66 33.62 35.69 37.86 40.14 42.53 45.04 47.66 50.41 53.30
SMITHSONIAN PHYSICAL TABLES
-
.03 .29 .58 .88 1.21 1.57 1.91 2.27 2.66 3.07 3.51 3.98 4.48 5.01 5.57 6.17 6.80 7.47 8.18 8.93 9.73 10.58 11.47 12.42 13.41 14.47 15.58 16.76 18.00 19.31 20.68 22.14 23.66 25.27 26.97 28.75 30.62 32.58 34.65 36.82 39.10 41.48 43.99 46.61 49.37 52.25
-
-
.21 .57 .91 1.27 1.66 2.07 2.51 2.97 3.47 4 00 4.56 5.15 5.78 6.45 7.16 7.91 8.71 9.95 10.45 11.39 12.39 13.44 14.56 15.73 16.97 18.27 19.65 21.10 22.63 24.24 25.93 27.71 29.58 31.54 33.61 35.78 3805 40.44 42.94 45.57 48.32 51.20
10"
12"
14'
16"
18'
20'
Differ-
,132
0. i'rin t - tl
ence
.966
.079
.092
.lo6
.119
Example t=17.2; ti: = 10.0; B = 74.5 cmHg t - t i = 7.2 From table : 6.17 - 12 x 0.050 = 5.57 For B, 1.5 x .048 = .07 = 5.64 Hence p -
-
-
.26 .65 1.06 1.50 1.96 2.46 2.98 3.54 4.14 4.77 5.44 6.14 6.90 7.69 8.53 9.42 10.37 11.36 12.42 13.53 14.70 15.94 17.24 18.62 20.07 21.60 23.20 24.89 26.67 28.54 30.50 32.57 34.73 37.01 39.40 41.90 44.52 47.27 50.15
.05 .49 .95 1.45 1.97 2.53 3.12 3.75 4.42 5.13 5.88 6.67 7.51 8.40 9.34 10.34 11.39 12.50 13.67 14.91 16.21 17.59 19.04 20.56 22.17 23.86 25.63 27.50 29.46 31.53 33.69 35.97 38.35 40.85 43.47 46.22 49.10
_ -
-
-
-
.43 .96 1.52 2.11 2.73 3.40 4.11 4.86 5.65 6.49 7.38 8.32 9.31 10.36 11.47 12.64 13.88 15.18 16.56 18.00 19.53 21.13 22.82 24.60 26.46 28.42 30.49 32.65 34.92 37.31 39.81 42.43 45.17 48.05
-
- _ _ - _ _ _ _ -
-
-
-
.50 1.09 1.72 2.38 3.09 3.84 4.63 5.47 6.36 7.30 8.29 9.34 10.45 11.62 12.85 14.15 15.52 16.97 18.49 20.10 21.78 23.56 25.42 27.38 29.44 31.61 33.88 36.26 38.76 41.38 44.12 47.00
.08 .70 1.37 2.07 2.82 3.61 4.45 5.33 6.27 7.26 8.31 9.42 10.59 11.82 13.12 14.49 15.94 17.46 19.06 20.75 22.52 24.38 26.34 28.40 30.57 32.83 35.22 37.71 40.33 43.08 45.95
-
-
-
-
.35 1.05 1.80 2.59 3.43 4.31 5.25 6.24 7.29 8.39 10.57 10.79 12.09 13.46 14.90 16.42 18.02 19.71 21.48 23.34 25.30 27.36 29.52 31.79 34.17 36.67 39.29 42.03 44.00
,050 .050 .050 ,050
::::
.050 .050 ,050 .050 .050 .050 .050
.oso
,050 ,050
.oso
.050 .050 .050 .050 .051 .051 .051 .051 .051 .051 .051 .051 .051 .051
.nsi
.05l ,051 .051 .052 .052 .052 ,052 .052 ,052 ,052 .052
.osz
,052 .052 .052 .052 .052 ,052 .052
606
TABLES 641-WS.-THE
BAROMETER lQ7
O F COLUMNS OF MERCURY A N D W A T E R
T A B L E 641.-PRESSURE
British and metric measures. Correct at 0°C for mercury and at 4°C for water. Metric measure
British measure
A
Pressure g/cmz
Pressure Ib/in.a
13.5954 27.1908 40.7862 54.3816 67.9770 81S724 95.1678 108.7632 122.3586 135.9540
.193367 .386734 S80101 .773468 .966835 1.160204 1.353566 1.546936 1.740303 1.933670
Pressure g/cm2
Pressure Ib/in.2
1 2 3 4
.0142234 .0284468 .0426702 .0568936 .0711170 .0853404 .0995638 .1137872 .1280106 .I422340
cmHg
1
2 3 4
5 6
7 8 9 10 cm of
Hz0
1
2 3 4 5
5
6 7 8 9 10
6
7 8 9 10
Pressure g/cm*
Pressure Ib/in.2
34.532 69.065 103.597 138.129 172.662 207.194 241.726 276.259 310.791 345.323
.491152 .982304 1 A73457 1.964609 2.455761 2.946918 3.438058 3.929286 4.420370 4.911522
Inches of H20
Prcssure g/cm2
Pressure Ib/im2
1
2.54
2 3 4 5
5.08
,036127 .072255 .lo8382 .144510 .180637 .216764 .252892 .289019 .325147 361274
inHg
1
2 3 4
5 6
7 8 9 10
7.62 10.16 12.70 15.24 17.78 20.32 22.86 25.40
6
7 8 9 10
The tables on the barometer have been adapted from the Smithsonian Meteorological Tables, sixth edition.
T A B L E 6 4 2 . 4 O R R E C T I O N O F T H E BAROMETER FOR CAPILLARITY
*
Metric measure Height of meniscus in millimeters
Diameter Of tube In mm
A
4
10 12 14 16
.4
.6
.8
1.1 .73 .47 .33 .24 .I8 .12 .07 .04 .02
1.7 1.06 .71
2.1 1.34 .91 .63
.48
.46
.35 .27 .I8 .I0 .06 .04
.35 .24 .13 .08 .05
1.0
1.2
1.4
1.6
1.8
2.4 1.55 1.08 .76 .55 .41 .30 .16 .I0 .06
2.6 1.76 1.21 .86 .63 .47 .35 .20 .I 1 .07
1.30 .96 .70 .53 .40 .22 .I3 .09
1.37 1.03 .77 .57 .44 .25 .15
1.43 1.08 .82 .61 .47 .27 .17
so
.11
Corrections to be added in millimeters.
T A B L E 643.-VOLUME
O F MERCURY MENISCUS I N mma Diameter of tube in mm
Height of r 14 meniscus mm
1.6 1.8 2.0 2.2 2.4 2.6
291
15
16
17
18
19
20
338
214 244 278 313 350 388
245 281 319 358 400 444
280 320 362 406 454 503
318 362 409 459 511 565
356 407 460 515 573 633
SMITHSONIAN PHYSICAL TABLES
21
22
23
24
444 507 571 63I 708 782
492 560 631 704 781 862
541 616 694 776 859 948
607 T A B L E 644.-CONSTANT
a F O R R E D U C T I O N O F BAROMETRIC H E I G H T T O
STANDARD T E M P E R A T U R E *
~
Brass scale and English measure
*
a in inches for temp "1;
15.0
.00135 .00145 .00154 .00158 .00163 .00167 .00172 .00176
20.0
20.5 21.0 21.5 22.0 22.5 23.0 23.5
.00181 .00185 .00190 .00194 .00199 .00203 .00208 .00212
24.5 25.0 25.5 26.0 26.5 27.0 27.5
.00217 .00221 .00226 .00231 .00236 .00240 .00245 .00249
28.0
.00254
28.5 29.0 29.2 29.4 29.6 29.8 30.0
.00258
24.0
30.2
30.4 30.6 30.8 31.0 31.2 31.4 31.6
Glass scale and metric measure 1
Height of barometer in inches
16.0 17.0 17.5 18.0 18.5 19.0 19.5
Brass scale and metric measure
.00263 40265 .00267
.00268 .00270 .00272 .00274 .00276 ,00277 .00279 .00281 .00283 .00285 .00287
Height of barometer in mmHg
a in mm for temp "C
400
.0651 .0668 .0684 .0700 .0716 .0732 .0749 .0765 .0781 .0797
410 420 430 440 450 460 470 480 490 500
510 520 530 540 550 560 570 580 590 600
610 620 630 640 650 660 670 680 690 700
710 720 730 740 750 760 770 780 790 800
Height of barometer in mmHg
a in mm for temp "C
50
.0086 .0172 .0258 .0345 .0431 .0517 .0603
100 150 200 250 300 350 400
450 500 520 540 560 580
.0813 .0830 .0846
.0862 .Of378 .0894 .0911 .0927 .0943 .0959
600
610 620 630 640 650 660
.0975 .0992 .loo8 .lo24 .lo40 .lo56 .lo73 .lo89 .1105 .1121
670
680 690 700 710 720
730
.1034 .1051 .1068 .1085 .1103
.1120 .1137
.1154 .1172 .1189 .1206 .1223 .1240 .1258
750 760 770 780 790 800
.1275 .1292 .1309 .1327 .1344 .1361 .1378
850
.1464
740
.1137 .1154 .1170 .1186 .1202 .1218 .1235 .1251 .1267 .1283 .1299
.0689 .0775 .0861 .0895 .0930 .0965 .0999
900 950 1000
.1551 .1639 .1723
.The height of the barometer is affected by the relative thermal expansion of the mercury and the glass, in the case of instruments graduated on the glass tube and by the relative expansion of the mercury and the metallic enclosing case, usually of brass, in t i e case of instruments graduated on the brass case. This relative expansion is practically proportional to the first ower of the temperature. The above tables of values of the coefficient of relative expansion will be f a u n a t o give corrections almost identical with those given in the International Meteorolocical Tables. The numbers tabulated under a are the values of a in the equation H t = H I ' - a (t' - t ) where H I is the height at the standard temperature Ht' the observed height at the temperature t' and a (t' t ) the correction for temperature. The stan'dard temperature IS 0°C for the metric system a'nd 28:s F for the English system. The English barometer is correct for the temperature of melting ice at a temperature of approximately 28.5 F. because of the fact that the brass scale is graduated so as to be standard at 6Z°F, while mercury has the standard density at 32-F. EXAMPLE.-Abarometer having a brass scale gave H = 765 mm at 25°C; required, the corresponding reading at 0°C. Here the value of a is the mean of .1235 and 1251, o r .1243; a (t' - t ) y.1243 x 25 = 3.11. Hence Ho= 765 - 3.11 = 761.89. Nom.-Although a is here given to three and sometimes to four significant figures, it is seldom worth while to use more than the nearest two-figure number. I n fact, all barometers have not the same values for a, and when great accuracy is wanted the proper coefficients have to be determined hy experiment.
-
.'.
SMITHSONIAN PHYSICAL TABLES
608 T A B L E 645.-REDUCTION
O F BAROMETER T O S T A N D A R D G R A V I T Y FOR DIFFERENT HEIGHTS
Free-air altitude term. Correction t o be subtracted.
The correction to reduce the barometer to sea level is [(gi - g)/gl X B where B is the barometer reading and g and g1 the value of gravity at sea level and the place of observation respectively. The following values were computed for free-air values of gravity g1 (Table 802). It has been customary to assume for mountain stations that the value of gi = say about 3 the free-air value, but a comparison of modern determinations of g1 in this country shows that little reliance can be placed on such an assumption. Where .91 is known its value should be used in the above correction term. (See Tables 803-805.) Similarly for the latitude term, see succeeding tables ; the true value of g should be used if known ; the succeeding tables are based on the theoretical values, Table 802.) Height above sea level g1 - g meters
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 -
.031 .062 .093 .123 .I54 .I85 .216 .247 ,278 .309 .339 .370 .401 .432 .463 .494 .525 .555 .586 .617 .648 .679 .710 .740 .771 ,802 .833 264 .895 .926 .957 .988 1.019 1.049 1.080 1.111 1.142 1.173 1.204 1.235 -
-
-
-
-
Ohserved height of harorneter in mmHg L
400
450
500
550
600
650
700
750
800
Correction in mmHg to be sub.02 .02 .02 tracted for height above sea level .04 .05 .05 in first column and barometer read.07 .07 .07 .10 .10 ing in the top line. .09 - - - - - - . l l .12 .13 - - - - .12 .13 .14 - - - - - - .14 .15 .16 - - .16 .18 .19 - - - - - - .18 .20 .22 - .24 - .20 22 .19 .18 - - - .19 .21 .22 .24 - - - .2 1 .23 .24 .26 - - - .22 .24 .26 .29 .26 .24 .28 .31 - - .24 .26 .28 .30 .33 - - .25 .28 .30 .32 .34 - - - .32 .27 .30 - - .28 .31 .34 .36 - - ,020 .0463 - - .30 .33 .36 .39 - - ,019 .0447 .41 - .021 .019 .0432 .28 .31 .38 .34 - .30 .33 .36 .40 .021 .018 .0416 - - .020 .017 .0401 .4 1 .31 .35 .38 - .32 .36 .40 .43 - .021 .019 .017 .03% - .021 .018 .016 .0370 .38 .34 .42 .45 .020 .018 .015 .0355 .47 .39 .35 .31 .43 - - ,021 ,019 .017 .015 .0339 .37 .41 .33 - - .020 .018 .016 .014 .0324 .42 .34 .38 - .019 .017 .015 .013 .0308 .44 .40 .35 .36 .41 .46 .020 .018 .016 .Ol5 ,013 ,0293 - .019 .017 .016 .014 ,012 .0278 .42 .38 .47 - - .018 ,016 .015 .013 - .0262 .44 .39 .46 .40 .017 .015 .014 .012 - .0247 - .017 .016 .014 .013 - - .0231 .47 .42 - ,0216 .48 .43 .016 .015 ,013 ,012 - .0200 .49 .015 .014 .012 .011 .44 .45 .014 .013 .011 .OM - .0170 .46 .013 .012 .011 .48 .0154 .012 .011 .011 .010 .49 .0139 ,011 .010 .010 .so - .010 .009 ,009 .0123 .008 .008 .007 .007 Corrections in in. to .0092 .006 .005 .005 .004 - be subtracted for height .0062 - above sea level in last .0031 ,003 .003 .003 column and barometer reading in bottom line. 7
30
28
26
24
22
"
20
18
Observed height o t harometer in inches
SMITHSONIAN PHYSICAL TABLES
16
14
gl- g
-
-
15000
14500 14000 13500 13000 12500 12000 11500 11000 10500 10000 9500 9000 8500 8000 7500 7000 6500 6000 5500 5000 4500 4000 3000 2000 1000 feet Height above sea level
609 O F BAROMETER T O STANDARD GRAVITY
T A B L E 646.-REDUCTION
*
METRIC MEASURES
From latitude 0" to 45", the correction is to be added algebraically. Latitude
520
mm
540 mm
560 mm
580 mm
600 mm
620
640
660
680
700
720
740
760
780
mm
mm
mm
mm
mm
mm
mm
mm
mm
0
-1.39 -1.45 -1.50 -1.55 -1.61 -1.66 -1.71 -1.77 -1.82 -1.87 -1.93 -1.98 -2.04 -2.09
5
-1.37 -1.42 -1.48 -1.53 -1.58 -1.64 - 1.69 -1.74 -1.79 -1.85 -1.90 -1.95 -2.00 -2.06 1.36 1.42 1.47 1.52 1.57 1.63 1.68 1.73 1.78 1.83 1.89 1.94 1.99 2.04 1.35 1.40 1.46 1.51 1.56 1.61 1.66 1.72 1.77 1.82 1.87 1.92 1.98 2.03 1.34 1.39 1.44 1.49 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.91 1.96 2.01 1.33 1.38 1.43 1.48 1.53 1.58 1.63 1.68 1.73 1.78 1.84 1.89 1.94 1.99
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24
-1.31 -1.36 -1.41 -1.46 -1.51 -1.56 - 1.61 -1.66 -1.71 -1.76 -1.81 -1.86 -1.92 -1.97 1.29 1.34 1.39 1.44 1.49 1.54 1.59 1.64 1.69 1.74 1.79 1.84 1.89 1.94 1.27 1.32 1.37 1.42 1.47 1.52 1.57 1.62 1.67 1.72 1.76 1.81 1.86 1.91 1.25 1.30 1.35 1.40 1.45 1.50 1.54 1.59 1.64 1.69 1.74 1.78 1.83 1.88 1.23 1.28 1.33 1.38 1.42 1.47 1.52 1.56 1.61 1.66 1.71 1.75 1.80 1.85 -1.21 -1.26 -1.30 -1.35 -1.40 -1.44 - 1.49 -1.54 -1.58 -1.63 -1.67 -1.72 -1.77 -1.81 1.19 1.23 1.28 1.32 1.37 1.41 1.46 1.50 1.55 1.60 1.64 1.69 1.73 1.78 1.16 1.20 1.25 1.29 1.34 1.38 1.43 1.47 1.52 1.56 1.60 1.65 1.69 1.74 1.13 1.18 1.22 126 1.31 1.35 1.39 1.44 1.48 1.52 1.57 1.61 1.65 1.70 1.10 1.15 1.19 1.23 1.27 1.32 1.36 1.40 1.44 1.48 1.53 1.57 1.61 1.65 -1.07 -1.11 -1.16 -1.20 -1.24 -1.28 - 1.32 -1.36 -1.40 -1.44 -1.49 -1.53 -1.57 -1.61 1.04 1.08 1.12 1.16 1.20 1.24 1.28 1.32 1.36 1.40 1.44 1.48 1.52 1.56 1.01 1.05 1.09 1.13 1.16 1.20 1.24 1.28 1.32 1.36 1.40 1.44 1.48 1.51 .98 1.01 1.05 1.09 1.13 1.16 1.20 1.24 1.28 1.31 1.35 1.39 1.43 1.46 .94 .98 1.01 1.05 1.08 1.12 1.16 1.19 1.23 1.27 1.30 1.34 1.37 1.41
26 27 28 29
- .90 .87 .83 .79 .75
30
- .71 - .74 - .76 - .79 - .82 - .85 -
25
.94 .90 .86 .82 .78
.97 -1.01 -1.04 -1.08 - 1.11-1.15 -1.18 -1.22 -1.25 -1.29 -1.32 -1.36 .93 .97 1.00 1.03 1.07 1.10 1.13 1.17 1.20 1.23 1.27 1.30 .89 .92 .96 .99 1.02 1.05 1.08 1.12 1.15 1.18 1.21 1.24 .85 .88 .91 .94 .97 1.00 1.03 1.06 1.09 1.12 1.15 1.18 .81 .84 .86 .89 .92 .95 .98 1.01 1.04 1.07 1.10 1.12
.67 .62 .58 .54
.69 .65 .60 .56
.72 .67 .63 .58
.74 .70 .65 .60
.77 .72 .67 .62
.SO .74 .69 .64
.87 - .90 - .93 - .95 - .98 -1.01 -1.04 -1.06 .82 8.5 .87 .90 .92 .95 .98 1.OO .77 .79 .82 .84 .86 189 .91 .94 .72 .74 .76 .78 .SO .83 .85 .87 .66 .68 .70 .72 .74 .76 .79 .81
36 37 38 39
- .49 .45 .40 .36 .31
.51.46 .42 .37 .32
.53 .48 .43 .38 .33
.55 .SO .45 .40 .34
.57 .52 .46 .41 .36
.59 .53 .48 .42 .37
.61.55 .49 .44 .38
40
- 2 6 - 2 7 - 2 8 - 2 9 - .30 - .31-
31 32 33 34 35
41 42 43 44 45
.2 1 .17 .12 .07
22 .I7 .~ .12 .07
23 -18 .I3
.OS
24 .19 .13 .08
25 .19 .14 .08
26
20
.I4 .08
- .02 - .02 - .03 - .03 - .03 - .03 -
.980.665
.63 .57 .51 .45 .39
.64 .58 .52 .46 .40
.66 .60 .54 .48 .42
.32 - .33 27 26 21 21 .15 .15 .09 .09
.34 28 22 .16 .09
.35 - .36 - .37 - .38 .30 .30 .31 29 22 23 2.~4 24 . .16 .16 .17 .I7 .10 .10 .10 .I0
~
~
.70 .64 .57 .5 1 .44
.72 .65 .59 .52 .45
~~
.74 .67
.60 .53 .46 .39 .32 2.~5. .18 .ll
.03 - .03 - .03 - .03 - .03 - .03 - .03 - .04
cm sec-2
(continued)
SMITHSONIAN PHYSICAL TABLES
~~
.68 .62 .56 .49 .43
610 T A B L E 646.-REDUCTION
OF BAROMETER T O S T A N D A R D G R A V I T Y (concluded) METRIC MEASURES
From latitude 46" to 90", the correction is to be added algebraically.
kik 45
46 47 48 49 50 51
52 53 54 55 56
57 58 59 60 61
62 63 64 65 66 67 68 69 70 71
72 73 74 75 76
77 78 79 80
520
540
560
580
600
620
640
660
680
mm
mm
mm
mm
mm
mm
mm
mm
mm
- .02 - .02 - .03 - .03 - .03 - .03 -
700
mm
720
740
760
780
mm
mm
mm
mm
.03 - .03 - .03 - .03 - .03 - .03 - .03 - .04
+ .02 + .03 + .03 + .03 + .03 + .03 + .03 + .03 + .03 + .03 + .03 + .03 + .04 + .04 .08 .08 .n8 .ox .09 .09 .09 .09 .lo .lo .lo .lo .II .07 .12 .I7 22
.12 .17 .Z
.I3
.13 .18 23
.14
.14 .19 25
.19 24
.15 .2 1 27
.15 .2 1 26
20 26
.I6 22 28
.17 23 .30
.I6 23
29
.I7 24 .3 1
.18
.18
.31
.32
25
25
+ 2 6 + 2 7 + 2 8 + 2 9 + .30 + 31 + .32 + .33 + .34 + .35 + .36 + .37 + .38 + .39 '
.31 .36 .40 .45
'
.32 .37 .42 .46
'
.33 .38 .43 .48
'
.34 .40 .45 .50
'
.36 .41 .46 .52
,
-~
.37 .42 .48 .53
'
.38 .44 .49 .55
'
.39 .45 .5 1 .57
'
.40 .46 .52 .58
.42 .48 .54
.60
'
.43 .49 .56 .62
'
.44 .51 .57 .64
'
.45 .52 .59 .65
'
.46 .53 .60 .67
+ .49 + .51 + .53 + .55 + .57 + .59 + .60 + .62 + .64 + .66 + .68 + .70 + .72 + .74 .80 .54 .56 .58 .60 .62 .64 .66 .68 .70 .72 .74 .76 .78 .58 .62 .66
.60 .65 .69
.62 .67 .72
.65 .69 .74
.67 .72 .77
.69 .74 .79
.7 1 .77 .82
.74 .79 .84
.76
.81 37
.78 .84 89
.80 .86 .92
.82 .89 .94
+ .71 + .73 + .76 + .79 + .81 + .84 + .87 + .89 + .92 + .95 + .98 +1.00 .74 .78 .82 .86
.77 .81 .85 .89
.80 .85 .89 .93
.83 .88 .92 .96
+ .90 + .93 + .97 +1.00 .93 .97 1.00 1.03
.97 1.00 1.04 1.07
1.00 1.04 1.08 1.11
1.04 1.08 1.11 1.15
.85 .91 .95 .99
.88 .94 .98 1.03
.91 .97 1.01 1.06
.94 1.00 1.04 1.09
.97 1.03 1.08 1.13
1.00 1.06 1.11 1.16
1.02 1.09 1.14 1.19.
1.05 1.12 1.17 1.22
.85 .9 1 .97
37 .93 1.00
+1.03 +1.06 1.08 1.11 1.15 1.18 1.20 1.23 1.26 1.29
+1.04 +1.07 +1.10 +1.14 +1.17 +I21 + I 2 4 +1.28 +1.31 +1.35 1.08 1.11 1.15 1.18 1.22 1.25 1.29 1.33 1.36 1.40 1.11 1.15 1.19 1.23 1.26 1.30 1.34 1.37 1.41 1.45 1.15 1.19 1.23 1.27 1.31 1.34 1.38 1.42 1.46 1.50 1.19 1.23 1.27 1.31 1.35 1.39 1.43 1.47 1.51 1.55
+1.06 + l . l O +1.14 +1.18 +1.22 +1.26 1.09 1.13 1.17 1.22 1.26 1.30 1.12 1.16 1.20 1.25 1.29 1.33 1.14 1.19 1.23 1.28 1.32 1.36 1.17 1.21 1.26 1.30 1.35 1.39
+ 1.31 +1.35
+1.39 +1.43 +1.47 +1.51 f1.55 +1.59 1.42 1.47 1.51 1.55 1.59 1.63 1.46 1.50 1.55 1.59 1.63 1.67 1.50 1.54 1.58 1.63 1.67 1.72 1.53 1.57 1.62 1.66 1.71 1.75
+1.19 + I 2 4 +1.28 f1.33 +1.37 f1.42 1.21 1.26 1.31 1.35 1.40 1.45 1.23 1.28 1.33 1.38 1.42 1.47 1.25 1.3U 1.35 1.40 1.45 1.49 1.27 1.32 1.37 1.42 1.47 1.51
+ 1.47 +1.51
+1.56 +1.60 +1.65 +1.70 +1.74 +1.79 1.59 1.63 1.68 1.73 1.77 1.82 1.61 1.66 1.71 1.76 1.80 1.85 1.64 1.69 1.73 1.78 1.83 1.88 1.66 1.71 1.76 1.81 1.86 1.90
1.34 1.37 1.41 1.44
1.49 1.52 1.54 1.56
1.38 1.42 1.45 1.48
1.54 1.57 1.59 1.61
82 83 84 85
+ I 2 9 +1.33 +1.38 +1.43 +1.48 +1.53 +1.58 +1.63 +1.68 +1.73 +1.78 +1.83 +1.88 +1.93 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 1.31 1.36 1.41 1.46 1.51 1.56 1.61 1.67 1.72 1.77 1.82 1.87 1.92 1.97 1.32 1.37 1.42 1.48 1.53 1.58 1.63 1.68 1.73 1.78 1.83 1.88 1.93 1.98 1.33 1.38 1.43 1.49 1.54 1.59 1.64 1.69 1.74 1.79 1.84 1.90 1.95 2.00
90
+1.35 +1.41 f1.46 +1.51 +1.56 +1.61
81
SMITHSONIAN PHYSICAL TABLES
+ 1.67 +1.72
+1.77 +1.82 + I 3 7 +1.93.+1.98
+2.03
611 T A B L E 647.-REDUCTION
OF BAROMETER T O STANDARD GRAVITY
*
ENGLISH MEASURES
From latitude 0" to 45", the correction is to be added algebraically. Lati-
19
tude
Inch
20
21
22
23
24
25
26
27
28
29
Inch
Inch
Inch
In-h
Inch
Inch
Inch
Inch
Inch
Inch
0
--.051 -.054
5
-.050
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29
35
--.062 --.064
--.067 -.070
-.072
-.075
-.078
-.080
-.053 --.055 -.058 -.061 -063 -.066 -.069 -.071 --.074 -.077 -.079 .050 .052 .055 .058 .060 .063 .066 .068 .071 .073 .076 .079 .065 .073 .075 .078 .049 .055 ,057 .060 .062 .068 ,070 .052 .064 .049 .052 .059 ,062 .054 .057 .067 .070 .072 .075 .077 .064 .048 .051 ,054 .059 .061 .074 .076 .056 .066 ,069 .071
-.048 --.0.50 --.055 --.0.58 --.060 --.063 -.066 -.068 -.071 -.073 -.076 ... --.053 .... .~~ .062 .070 .072 .075 .047 ,057 ,060 .065 .067 ,050 .052 .055 .059 ,061 .047 .05 1 .054 .056 .064 .066 .069 .071 .074 .049 .060 .055 .058 .036 .063 .065 .068 .070 .072 .048 .051 .053 .059 .071 ,045 .050 .052 .055 ,057 .066 .069 .047 .062 .064 ~~~
-.044 -.047 --.049 -.051 --.053 -.056 -.058 --.060 --.063 -.065 -.067 -.070 .066 .068 ,052 ,055 .057 .059 .062 .064 .OSO .043 .046 .048 .065 .067 .042 .053 ,056 .045 .047 .049 .051 .058 ,060 .062 .052 ,054 .041 .044 .057 ,059 .061 .063 .065 .050 .046 .048 .05 1 .053 .064 .040 .042 .045 .047 ,049 ,055 ,057 .059 .062 -.039 -.041 --.043 -.045 -.047 -.050 -.052 -.054 -.056 -.058 -.060 -.062 .050 .058 .060 .038 .046 .048 .052 .054 .056 .040 .042 .034 .037 .047 .050 .052 .054 .056 .058 .039 .041 ,045 ,049 .043 .047 .036 .038 .043 .045 .054 .056 .039 .041 .049 .05 1 .053 .034 ,038 .040 .042 .043 .045 .047 .049 .051 .052 .054 .036 -.042 --.043 --.045 -.047 -.049 --.050 --.052 --.033 -.035 -.037 --.038 -.040 .050 .038 ,040 .042 .043 .045 .047 .048 .035 .037 .032 ,033 .046 .048 .038 .040 .037 .041 .043 .045 ,033 .035 .030 .032 .046 .038 .043 .044 .035 .036 .039 .041 .033 .030 .032 .029 .042 .043 .033 .035 .036 ,037 .040 .030 ,032 .039 .027 ,029
30 -.026 31 .024 32 .023 .021 33 .020 34 36 37 38 39
--.056 -.059
30
Inch
-.On -.029 .026 .024 .022 ,021
-.030 -.031 -.033 --.034 -.035 -.037 -.038 -.OM --.041 ,031 ,032 .030 .033 .035 .036 .037 .038 ,028 .029 .030 .031 ,032 .034 ,035 .036 .028 .025 .026 ,028 ,029 .030 .031 .032 .034 .027 .025 .026 .023 .027 .028 .029 ,025 .026 .024 .030 .031 .022 .023 .027
-.018 -.019 -.020 --.021 -.022 -.023 -.024 -.025 -.026 .021 ,022 .022 .023 .018 .019 .020 .016 .017 .019 .019 .020 .021 .O 15 .O 15 .O 16 .O 17 .018 .017 .016 ,016 .018 .018 .015 .014 .014 .013 .014 .015 .016 ,012 .013 .014 .015 .011 ,012
-.On -.027 .024 .022 .019 .017
--.028 .026 .022 .023 .020 .020 .017 .018
.025
41 42 43 44
--.010 -.010 --.011 -.011 -.012 --.012 -.013 -.013 --.014 -.014 -.015 -.015 .012 .010 .010 .012 .012 .011 .011 .009 .008 .008 ,009 .009 .009 .009 .010 .008 .008 .008 .009 .007 .007 .006 .007 .006 .007 .007 .006 .006 .006 .006 .005 .005 .004 .005 .005 .005 .004 .004 .004 .003 .003 .004 .004 .003 .003 .003 .003 ,003
45
-.001
40
.
-.001
-.001
-.001
-.001
--.001 -.001
32.17 in. sec-2
SMITHSONIAN PHYSICAL TABLES
(continued)
0,01
-.001
-.001
-.001
-.001
612 T A B L E 647.-REDUCTION
O F BAROMETER T O STANDARD GRAVITY (concluded) ENGLISH MEASURES
From latitude 46" to 90", the correction is to be added algebraically. Lati-
19
tude
Inch
45
20
21
22
23
24
26
26
27
20
29
30
Inch
Inch
Inch
Inch
Inch
Inch
Inch
Inch
Inch
Inch
Inch
--.001 -.001
-.001
-.001
-.001
-.001
-.001
-.001
-.001
-.001
-.001
46 +.001 +.001 +.001 +.MI +.001 +.001 +.001 +.MI +.001 +.001 +.001
47 48 49 50
.003 .004 .006 .008
.003 .005 .006 .008
.003 .005 .007
.009
.003 .005 .007 .009
.003 .005 .007
.003 .006 .008 .O 10
.010
.003 .006 .008 .010
.004 .006 .008 .011
.004 .006 .009 .012
.004 .006 .009 .012
-.001
+.001
.004 .007
.004 .007 .009 .012
.010
.012
+.010 +.010 +.011 +.011 +.012 +.012 +.013 +.013 +.014 +.014 +.015 +.015 52 .011 ,012 .012 .013 .014 .014 .015 .015 .016 .016 .017 .018 .~ .014 .015 .016 .016 .017 .018 .018 .019 53 .020 .020 .013 .014 .019 .023 .019 .OM .021 .022 .022 .O 15 .015 .016 .O 17 .018 54 .026 .021 .021 .022 .023 .024 .025 55 .016 .017 .O 18 .019 .020
51
56
+.018 +.019 +.020 +.021 +.022 +.023 +.024 +.024 +.026 +.026 +.027 +.OB .020 .021 .022 .023 .024 .025 ,026 .027 .028 .029 .030 .031 .033 .026 .027 .028 .029 .030 .031 .032 .02 1 .022 .023 .025 .029 .030 .023 .024 .025 .026 .028 .031 .032 .033 .035 .036 .038 .031 .032 .033 .034 .036 .037 .024 .026 .027 .028 .029
61
+.026 +.027 +.028 +.030 +.031 .027 429 .032 .030 .033 .032 .033 ,035 .029 .030 .036 .032 .033 .035 .030 .03 1 .033 .035 .036 .038
57 58 59 60 62 63 64 65 66
67 68 69 70 71
72 73 74 75 76
77 78 79 80
+.033 +.034 +.036 +.038 +.040 .036 .038 .039 .041 .034 .039 .041 .043 .035 .037 .042 .044 .040 .036 .038 .042 .044 .046 .038 .040 +.039 +.041 +.043 +.045 +.047 .046 .048 .040 .042 .044 .043 .045 .047 .049 .041 .048 .051 .044 .046 .042 .047 .049 .052 .043 .045 +.OM +.046 +.048 +.050 +.053 .054 .044 .047 .049 .051 .045 .047 .050 .052 .055 .046 .048 .051 .053 .055 .054 .051 .056 .046 .049
+.047 +.049 +.052 +.054 .052 .047 .050 .055 .048 .050 .053 .056 84 .048 .051 .053 .056 .049 .051 .054 .056 85 81
82 83 90
+.049 +.052 +.055 +.057
SMITHSONIAN PHYSICAL TABLES
+.033 ,034
+.034 +.035 +.037 +.038 +.039 +.041 .039 .036 .037 .043 ... . ..~ .040 .042 .038 .039 .041 .042 .044 .036 .045 .041 .043 .044 .038 .040 .046 .047 .040 .041 .043 .045 .050 .OM .048 +.041 +.043 +.045 +.047 +.050 +.052 - - +.048 .047 .048 .050 .052 .043 .045 .054 .048 .056 .050 .052 .054 .045 .046 .058 .046 .048 .050 .052 .054 .056 .048 .050 .059 .052 .053 .055 .057 I
+.049
.050 .052 .053 .054
I
+.053 +.055 +.057 +.059 + M I .054 .057 .059 .063 .061 .062 .056 .058 .060 .064 .055 .057 .059 .062 .064 .066 .056 .058 .061 .063 .065 .067
+.051
.052 .054
+.055
.069 +.057 +.MO +.062 +.064 .066 .058 .061 .063 .065 .056 .068 .070 .069 .057 .059 .062 .071 .064 .066 .058 .060 .063 .065 .067 .070 .072 .059 .061 .063 .066 .068 .071 .073 +.057 +.059 +.062 +.064 .067 +.069 +.072 +.074 .075 .072 .067 .070 .060 .062 .065 .057 .06 1 .063 .066 .073 .076 .058 .068 .071 .061 .059 .066 .069 .071 .074 .076 .064 .061 .064 .067 .069 .077 .074 .072 .059 .062 +.065 +.068 +.070 +.073 +.075 +.078 +.060
+
+
613 OF HEIGHTS BY T H E BAROMETER
TABLE 648.-DETERMINATlON
Bo- B Formula of Babinet : 2 = C -
[
C (in feet) = 52494 1
+
[+
C (in meters) = 16OOO 1
T I + ')
metric measures.
I n which Z=difference of height of two stations in feet or meters. Bo, B =barometric readings at the lower and upper stations respectively, corrected for all to,
sources of instrumental error. t = air temperatures a t the lower and upper stations respectively. VALUES OF C
..
Metric measures
English measures I
t(to+t)
c
Log
\
c
+ "C
1 (to
"F
Feet
10
49928 50511
4.69834 .70339
-10
25
51094 51677
4.70837 .71330
- 4
30
52261 52844
4.71818 .72300
40
53428 54011
4.72777 .73248
15 20
35 45 55
55 178
54595
4.73715 .74177
60
55761 56344 56927 57511
4.74633 .75085 4.75532 .75975
95
58094 58677 59260 59844
4.76413 .76847 4.77276 .77702
100
60427
4.78123
50
65 70
75
80
85 90
SMITHSONIAN PHYSICAL TABLES
t)
C
15360
15488
-8
-6 -2
0
+: 6 8
10
i56i6 15744 15872 16000 16128 16256 16384 16512 16640
30
17280 17408 i7536 17664 17792 17920
32 34 36
18176 18304
20 22 __
24 26 28 ~~
Log
c'
Meters
ko48
4.18639 .19000 .i9357 .19712 .20063 4.20412 .20758 .21101 .21442 .21780 4.22115 .22448 .22778 .23106 .23431 4.23754 .24075 :24393 .24709 .25022 4.25334 .25643 .25950 .26255
TABLE 649.-TH
U N D E RSTORM ELECTRIC I T Y 'un
(Lightning strokes consist of current peaks and continuing currents.)
5 z I V
3o
?-
5
=
-I
Quantity discharged
b? single current peaKs.. .........................................
Maximum
total stroke .................................................. >300 coulombs Current amplitude i t current peaks ........... ............... 2 X lo5 amp 1000 amp continuing currcnt discharges.. ....................................... Number of current peaks in strokes ................................. ............... 42 Time interval between successive current peaks. ............................................. .5 sec 50/yr Variability in number of strokes (Empire State Bldg.). ..................................... Number of strokes per square mile per year a t an average isokeraunic level of 2 7 . . ............. Wave shapes of current peaks : Fronts ................................................. .... Tail-time to half value. ................................................................ Effective rate of rise of current.. ................. ................................. Polarity of lightning strokes to ground from cloud (approximately) .......................... Cloud potential (estimated). ...................................................... Energy (depends on voltage and current in channel-estimated) .............................. Potential gradient at earth's surface beneath a thundercloud (estimated). ...................... Number of lightning discharges over entire earth each second. ............................... Lightning channel : Current density during formation.. Probable diameter
...................................................... .....................................................................
Minimum
5 coulombs
3x IO-'sec 3/yr
50 V/cm to
3 X 10' amp/ cm
5 cm
.2 coulombs 18 coulombs lo' amp 100 amp 2 .04 sec 21hr 10 - 20 1 . 5 ~sec 38 psec
10s sec >120p sec 4.5 x 10' amp/p sec 20 x lon volts to
Average
1.2 x 104 amp/p sec
95% 10" volts
-
10'' ergs
1000 V/cm 100 1100 amp/cm2
M r
M
c)
4
Cloud-to-ground s t r o k e characteristics.-First discharge in a stroke progresses from cloud to ground as stepped leaders (average velocity, 1 foot per microsecond). After contacting earth a return stroke progresses toward the cloud (velocity, 65-450 feet/p sec; average, 100 feetlp sec). fi c3 Subsequent discharges progress from the cloud as continuous leaders (average velocity, 10 feetlp sec) and again a return stroke is formed. In case of tall objects (skyscrapers) stroke leaders may start from the building toward the cloud. In such a case no thunder or very little thunder 4 is heard unless initial discharge is followed by current peaks. McEachron, K. B., "Lightning and Lightning Protection," Encycl. Brit., vol. 14, June 1948. Used by permission.
T A B L E 650.-ELEMENTS
A N D CONSTANTS O F ATMOSPHERIC ELECTRICITY
*
615
The elements of atmospheric electricity show variations, both regular and irregular. Over land the irregular variations are very pronounced and the regular variations differ notably from place to place, in marked contrast to the corresponding characteristics over the ocean. Therefore, and because of the wider and more uniform geographical distribution of ocean observations, it seems best to give the greater weight to the ocean data when attempting to arrive a t values characterizing world-wide conditions. Because of the wide variation from place to place in the means from land stations, due to local factors, a general mean of these is of questionable significance. Hence it seems better to indicate the extremes of station means in the case of elements for which the data are sufficiently abundant. Certain disparities, which will be found between published tables of ocean data, arise largely from the inclusion of more recent data. Of the atmospheric-electric elements the potential gradient has been the most extensively observed. The sign of the average gradient is everywhere such as to drive positive ions toward the earth. The periodic variations in this element are of great interest because of their apparent relation with cosmic phenomena. Thus the potential gradient apparently increases with increase in sunspot numbers and varies throughout the year. The maxima in monthly means occur everywhere, with few exceptions, a t the time of northern winter, and the corresponding minima occur at the time of northern summer. The diurnal variation observed over the weans is everywhere in phase when considered on a common-time basis, except for a minor phase-shift that depends upon the season. This diurnal variation derived from observatories made on the Carnegie during 1915 to 1921, given by the Fourier expression A P / P = 0.15 sin ( 6 1S6") 0.03 sin ( 2 6 237") where 0 is reckoned a t 15" per hour beginning at Oh Greenwich mean civil time, is in close agreement with that obtained from 1928-1929 observations. No general expression that will approximately characterize the diurnal variation over land can be given. These variations determined by local factors are apparently superimposed upon a variation of the same world-wide character as that found to prevail over the oceans.
+
+
+
Tables 650-653 prepared by G . R. Wait, Department of Terrestrial Magnestism, Carnegie Institution of Washington.
T A B L E 651.-lONIC
EQUILIBRIIUM I N T H E A T M O S P H E R E
+
+
Equilibrium for atmospheric ionization occurs when q = a d qlNon q2Nn, where n and N are the number of pairs of small and large ions of one sign and N Othe number of uncharged nuclei ; a, vl, T ~ are , coefficients of recombination of small ions with small ions, with uncharged nuclei, and with large ions. If for both small and large ions the positive and negative are equally abundant, then hi,/N = qZ/ql, When n / N B 2 4 a , the equilibrium-condition is expressed by q = pn ; p is designated the diminution-constant ; 1/p = 8 is the "average life" of a small ion in air which contains an abundance of large ions; 8 varies inversely as N . a: 1.6 X lo-' cm:[sec 5 x lo-# 'I1 : 6 x lo-' '* 82. Over land, Average, 30 sec Extremes, 10 to 60 sec Over sea, 230 sec N : Over land, 500 to 50,000 ions/cms Aitken nuclei, number per cm8: Over open country,-up to 10' Over midocean, about 800 In free air, 5 km 50 Altitude 1km 6,000 3 k m 200 8.5kmabout5
e
T A B L E 652.-CHARGE
ON RAIN AND SNOW
Specific net charge on precipitation : Average, 0.5 esu/g Maximum observed, 20 esu/g Specific charge on individual raindrops or snowflakes : 2.7 to - 3.2 esu/g Rain, Snow, 11.6 to - 8.1 esu/g
+
+
SMITHSONIAN PHYSICAL TABLES
616
T A B L E 653.-ATMOSPH Element
Symbol
Air-conductivity total ........... X = A+
Ratio of positive to negative conductivity
....
Means
+ X-
X+/X-
esu X lo-' Variations determined chiefly by local factors Sea : 2.6 " " Variations small and chiefly irregular Free air ................. .Ratio of value at various altitudes to that at surface Okm 1 6km20 3 " 8 9 " 38 Land: Sea:
..
+
........
p=n,/n-
SMITHSONIAN PHYSICAL TABLES
Variations
Land : 1 to 5
Air-earth current density ........ i = XP/30000 Land: Sea: Density of small ions : Positive n+ Land: Sea: Negative. nLand: Sea: (n+ n-)/2 Free air Ratio of positive to negative ionic density
Units
Range Percent of mean Land: 64 to 317 volfs/m Annual 22 to 145 Diurnal 35 to 120 Sea: 128 Annual 13 Diurnal 35 Free air .................. Percentage of surface values at various altitudes OkmlOO 6km8 3 " 17 9 " 4
P
Potential gradient.
ERIC-ELECTR IC D A T A
Land: Sea:
1.12 1.26
7.0 11.0
esu X 10.'
750 600 650 500
ionslcm' '1
'I
................. .Values at various
1.23 1.23 (continued)
altitudes 2 km 1300 4 " 1900 5 " 2300
TABLE 653.-ATMOSPHERlC-ELECTRlC EI ement
Space-charge, over land. .
Symbol P
Means
x lo-''
(For h = height in km)
Mobility of small ions : Positive .............
k , = X+/300 en+ k+
............
k-
Rate of formation of ion-pairs .............
9
Negative
At surface: * 1900 Free air:
- 2000 to p = - (%/1.2~)
0 to 3 km 3to6 6to9
+
P
9.0 0.9 0.4
Land : 0.9 Sea : 1.6 Land : 1.o Sea : 1.7 Over land: Ra and Th products in air a rays 4.6 B rays 0.2 Y rays 0.15 Radioactive matter in the earth's crust B rays 0.1 Y rays 3.0 Penetrating radiation 1.5 Total 9.55 At sea: Penetrating radiation 1.5 ( ? ) .07 Total 2.2
The sign and magnitude of surface values are exceedingly variable from place to place.
SMITHSONIAN PHYSICAL TABLES
617
DATA (concluded) Units
lO-'O esu/cma
" 'I 'I
cm sec-I volt-' cm-' "
" II
ions cm-' sec-' " '6
' 'I '6
618 TABLES 654-659.-ATOMIC
AND MOLECULAR DATA
Just ri few years ago it was held that the universe was made up of 92 elements and that probably these elements were made of two elementary particles. While most of these 92 elements had been identified and their properties studied, there were several that had not been identified and thus very little was known directly about their properties. As a result of a great amount of study and investigation, during the past few years the number of known elementary particles has been extended to seven or eight (see Table 720), and all the elements missing from the periodic table (see Table 658) have been identified and some of their properties studied.1g9 In addition to this, the number of elements has been extended to five or six beyond uranium and some of the properties of these elements have been studied. (See Table 658.) It is now generally considered that the elements are made up of electrons, protons, and neutrons. Each element now has three designations : the name ; the atomic number, 2 , i.e., the charge on the atomic nucleus and the mass nuniher, A,which is the number of protons and neutrons that make up the nucleus of the atom and extends from 1 for hydrogen (or the neutron) to 246 for the isotope of californium. This mass number is not too definite since, in many cases, several atoms have isotopes of the same mass number. Atoms of number greater than 83 and certain isotopes of eight atoms of lower atomic number, are unstable in that they break down into other isotopes, i.e., they are radioactive. (See Table 732.) There are in all about 1,220 different isotopeslggthat have been identified and have had some of their properties studied. Of these only 274 are stable. A number of atoms ( 2 = 43, 61, 85, 93, 94, 95, 96) are so unstable that they are not now found on the earth. Two of the isotopes, A = 5, and 8, have so short a life that it is almost impossible to detect them. A radioactive material with a life shorter than about sec and longer than about 10 l4 years will be unobservable as such. The values given for certain physical dimensions of molecules, atoms, or nuclei depend upon the definition of the particular dimension and the method used in its calculation. Diameters may be calculated from Van der Waal's equation, from viscosity, and from certain force relations. Some values are the results of assuming the atom or nucleus to be a sphere. While these various methods give results that do not differ too much, neither are the results in good enough agreement for one to feel that the answer is final. The following tables give some results of physical dimension obtained by various means of calculation. Seaborg and Perlman, Rev. Mod. Phys., vol. 20, p. 585, 1948. mBethe, H. A,, Elementary nuclear theory, John Wiley & Sons, Inc., 1947. Reprinted by permission. 188
T A B L E 654.-CONVERSION Units
FACTORS FOR U N I T S O F MOLECULAR E N E R G Y
Erg/molecule
1 erg/molecule = 1 1 joule/mole = 1.660349X10-'T 1 cal/mole = 6.94690 XIO-' 1 electron-volt/ molecule = 1.601992)<10-'2 1 wave.No (cm-') = 1.985776)<10-'e
Joule/mole
Cal/mole
Electron-volt/ molecule
(cm-1)
t
6.02283X101e 1.43491XIOIR 6.2422 X10" 5.03581x10" 1 239006 1.036427x10-6 8.36121~10-~ 4.1840 1 4.33641 lo-' .349833
x
96.4853)<10' 11.95999
2.30605)<10' 1 2.85851 1.239567x lo-'
This tahle adapted from data furnished by the National Bureau of Standards. where the values given are for Y = unity
SMlTHSONlAN PHYSICAL TABLES
Wave No
*
t This
8.06734X10' 1
means hv/molecule
TABLE 655.4NTERNATIONAL ATOMIC WEIGHTS At
Element
Symbol
Actinium ........ Ac Aluminum ....... A1 Americium ....... Am Antimony ........ Sb Argon ........... A Arsenic .......... As Astatine ......... At Barium .......... Ba Berkelium ....... Br Beryllium ........ Be Bismuth ......... Bi Boron ........... B Bromine ......... Br Cadmium ........ Cd Calcium ......... Ca Cf Californium Carbon .......... C Cerium .......... Ce Cesium .......... Cs Chlorine ......... C1 Chromium ....... Cr Cobalt ........... Co Copper .......... Cu Curium ........... Cm Dysprosium Dy Erbium .......... E r Europium ........ Eu Fluorine ......... F Francium ........ F r Gadolinium Gd Gallium .......... Ga Germanium ...... Ge Gold Au Hafnium Hf Helium .......... H e Ho Holmium Hydrogen ........ H Indium .......... In Iodine ........... I Iridium .......... Ir Iron ............. Fe Krypton ......... Kr Lanthanum ...... La Lead ............ Pb Lithium ......... Li Lutetium ........ Lu Magnesium ...... Mg Manganese ...... Mn Mercury ......... H g
.....
......
......
............ ........ ........
No 89 13 95 51 18 33 85 56 97 4 83 5 35 48 20 98 6 58 55 17 24
27
29 % 66 68 63 9 87 64 31 32 79 72 2 67 1 49 53 77 26 36 57 82 3 71 12 25 80
Atomic weight
..
227 26.98 [2431 121.76 39.944 74.91 [2101 137.36 U451 9.013 209.00 10.82 79.916 112.41 40.08 12463 12.010 140.13 132.91 35.457 52.01 58.94 63.54 r2433 162.46 167.2 152.0 19.00 12231 156.9 69.72 72.60 197.2 178.6 4.003 164.94 1.0080 114.76 126.91 193.1 55.85 83.80 138.92 207.21 6.940 174.99 24.32 54.93 200.61
.
Element
Symbol
Molybdenum ..... Mo Neodymium ...... Nd Neon ............ Ne Neptunium ...... NP Nickel ........... Ni Niobium ......... Nb Nitrogen ........ N Osmium ......... 0 s Oxygen ......... 0 Palladium ....... Pd Phosphorus ...... P Platinum ........ Pt Plutonium ....... P u Polonium ........ P o Potassium ....... K Praseodymium ... Pr Promethium ..... Pm Protactinium ..... P a Radium ......... R a Radon ........... Rn Rhenium ......... Re Rhodium ........ Rh Rubidium ........ Rb Ruthenium ....... Ru Samarium ....... Sm Scandium . . . . . . . . Sc Selenium ........ Se Silicon .......... Si Silver ........... Sodium .......... Strontium ....... Sr Sulfur ........... S Tantalum ........ T a Technetium ...... T c Tellurium ........ T e Terbium ......... T b Thallium ........ TI Thorium ......... T h Tliulium ......... Tm Tin ............. Sn Titanium ........ T i Tungsten ........ W Uranium ........ U Vanadium ....... V Xenon ........... Xe Ytterbium ....... Yb Yttrium ......... Y Zinc ............. Zn Zirconium ....... Zr
AN",
619 At
Atomic weight
42 60 10 93 28 41 7 76 8 46 15 78 94 84 19 59 61 91 88 86 75 45 37 44 62 21 34 14 47 11 38 16 73 43 52 65 81 90 69 50 22 74 92 23
95.95 144.27 20.183 [2371 58.69 92.91 14.008 190.2 16 105.7 30.975 195.23 12421 210 39.100 140.92 [1451 231 226.05
No
m
186.31 102.91 85.48 101.7 150.43 44.% 78.96 28.06 107.880 22.997 87.63 32.066 t 180.88 [991 127.61 159.2 201.39 232.12 169.4 118.70 47.90 183.92 238.07 50.95 131.3 173 0 1 88.92 65.38 91.22
%
39 30 40
Y W i c h e r s Edward Journ. Amer . Chem Sac vol . 74. p . 2447 1952 . A value &en in brackets denotes the mass ';umber of the isdtope of longest known half life t Because of natural variations in the relative abundance of the isotopes of sulfur, the atomic weight of this element has a range of k.003.
SMlTHSONlAN PHYSICAL TABLES
.
620 1 Hydrogen 2 Helium 3 Lithium 4 Beryllium 5 Boron 6 Carbon 7 Nitrogen 8 Oxygen 9 Fluorine 10 Neon 11 Sodium 12 Magnesium 13 Aluminum 14 Silicon 15 Phosphorus 16 Sulfur 17 Chlorine 18 Argon 19 Potassium 20 Calcium 21 Scandium 22 Titanium 23 Vanadium 24 Chromium 25 Manganese 26 Iron 27 Cobalt 28 Nickel 29 Copper 30 Zinc 31 Gallium 32 Germanium 33 Arsenic
TABLE 6MI.-ATOMIC
H
34 Selenium 35 Bromine 36 Krypton 37 Rubidium 38 Strontium 39 Yttrium 40 Zirconium 41 Niobium 42 Molybdenum 43 Technetium 44 Ruthenium 45 Rhodium 46 Palladium 47 Silver 48 Cadmium 49 Indium 50 Tin 51 Antimonv 52 Tellurium 53 Iodine 54 Xenon 55 Cesium 56 Barium 57 Lanthanum 58 Cerium 59 Praesodymium 60 Neodymium 61 Promethium 62 Samarium 63 Europium 64 Gadolinium 65 Terbium 66 Dysprosium
He Li Be
B
C N
0 F
Ne Na
%Si
P S C1 A K Ca sc Ti V Cr Mn Fe co Ni cu Zn Ga Ge As
NUMBERS
Se Br Kr Rb Sr
Y
Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te
I
Xe cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb DY
67 Holmium 68 Erbium 69 Thulium 70 Ytterbium 71 Lutetium 72 Hafnium 73 Tantalum 74 Tungsten 75 Rhenium 76 Osmium 77 Iridium 78 Platinum 79 Gold 80 Mercury 81 Thallium 82 Lead 83 Bismuth 84 Polonium 85 Astatine 86 Radon 87 Francium 88 Radium 89 Actinium 90 Thorium 91 Protactinium 92 Uranium 93 Neptunium 94 Plutonium 95 Americium 96 Curium 97 Berkelium 98 Californium
Ho Er Tm Yb
Lu Hf Ta
W
Re
0s Ir Pt Au Hg TI Pb Bi Po At Rn Fr Ra Ac Th Pa U NP Pu Am Cm Bk Cf
Given below by atomic numbers are some foreign or obsolete names for certain of the elements. 4 Glucinium, GI 11 Natrium 13 Aluminium 19 Kalium 26 Ferrum
41 43 47 50 51
Columbium, Cb Masurium, Ma Argentum Stannum Stibium
SMITHSONIAN PHYSICAL TABLES
61 71 72 75 79
Illinium, I1 Cassiopeium Celtium Bohemium Aurum
80 82 85 86 87
Hydragyrum Plumbum Alabamine, Ab Emanation, niton Virginium, Vi
TABLE 657.-PERIODIC
z *z
I1
I
SYSTEM
IV
111
OF T H E ELEMENTSm
V
VI
VII
VIII I
~
I V
3
I
5
-I
lm n
I1
3 Li 6.940
I11
11 Na 22.997
12 Mg 24.32
IV
19K 39.100
20 Ca 40.08
4 Be 9.013
29 Cu 63.54
V
f
37Rb 85.48
30 Zn 65.38
a
\
A
b 2 He 4.003
a
~
87Fr 223
7N 14.008
80 16
9 F 19.00
10 Ne 20.183
13 A1 26.98
14 Si 28.06
15 P 30.975
16 S 32.066
17 C1 35.457
18 A 39.944
31 Ga 69.72
22 Ti 47.90
32 Ge 72.60
40 Zr 91.22 49 I n 114.76
80 H g 200.61
57 La 138.92 58 to 71 Rare earths 81 TI 204.39
56 Ba 137.36 79 Au 197.2
6C 12.010
48 Cd 112.41
VI 55 c s 132.91
21 sc 44.96
5B 10.82
39 Y 88.92
38 Sr 87.63 47 Ag 107.880
VII
b
1H 1.0080
0
?-
~
V 23 50.95
33 A s 74.91
41 Nb 92.91 51 Sb 121.61
50 S n 118.70
82 Pb 207.21
42 Mo 95.95
34 S e 78.96
52 T e 127.61
74 w 183.92
73 Ta 180.88
72 Hf 178.6
24 C r 52.01
83 Bi 209.00
25 Mn 54.93 43 T c [991
26Fe 55.85
27Co 58.94
28Ni 58.69
44Ru 101.7
45Rh 102.91
46Pd 106.7
35 Br 79.916
54 Xe 131.3
53 I 126.91 760s 190.2
75 Re 186.31 84 P o 210
85 At 12101
68Er 167.2
6 9 T m 70Yb 169.4 173.04
ax Meggers, W. P., Science, vol. 105, p. 514, 1947; G. T. Seaborg, private communication.
Rare earths: 57La 58Ce 138.92 140.13
t Actinide
59 P r 140.92
60 Nd 144.27
rare earths: 90Th 91 Pa 232.12 231
92U 238.17
61 P m 6 2 S m 11471 150.43 93 Np
94Pu
63Eu 152.0 95 Am
64Gd 156.9 96Cm
I%.? 97Bk
67Ho I%.? 164.94 ; 98Cf
771r 193.1
78Pt 195.23 86 Rn 222
89 Ac 227 90-103 Actinide rare earths t
88 Ra 226.05
36 Kr 83.80
71 Lu 174.99
622 T A B L E 658.-ELECTRON
K
CONFIGURATIONS O F T H E ELEMENTS, NORMAL STATES
*
L
M
N
d
1H 2 He 3 Li 4 Be SB 6 C 7 N 8 0 9 F 10 Ne 11 Na 12 Mg 13 A1 14 Si 15 P 16 S 17 C1 18 A 19 K 20 Ca 21 s c 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 37 Rb 38 S r 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd
Is
2s
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2P
3s
3d'
3P
A-
45
4p
1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6
4d
0 -
55
1
1 2 3 4
5
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 2 3 4 5 6 6 6 6 6 6 6 6
6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6
6 6 6
1 2 3
5 5 6
7 8 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10
See column 3, Table 623. G. T. Seaborg, private communication.
(continued)
SMITHSONIAN PHYSICAL TABLES
1 2 4 5 5 7 8 10
1 2 2 2 1 1
623
-
T A B L E 658.-ELECTRON C O N F I G U R A T I O N S O F THE E L E M E N T S , N O R M A L S T A T E S (concluded)
K
L
M
A
47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 531 54 Xe 55 c s 56 Ba 57 La 58 Ce 59 P r 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb
75 Re 76 0 s 77 Ir 78 P t 79 Au 80 H g 81 TI 82 Pb 83 Bi 84 Po 85 A; 86 Rn 87 F r 88 Ra 89 Ac 90Th 91 Pa 92U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf
)
1s
2s
2;
5,
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
SMITHSONIAN PHYSICAL TABLES
N
L
,
P
0 h
n
3P
3d
'45
4€5
4d
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
4f'
2 3 4
5 6 7 7 9 10 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
5s
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2
5P
5d
5f
6s
6p
6d
7s
1 2 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2
1 2 3 4
5
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
1
1
2 2 2 2 2 2 2 2 2
1 2 3 4 5 6 7 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1
1
2 3 4 5 6 7 8 9
1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6
1
624 T A B L E 659.-RADll,
L
K
EIem ent
H He Li Be B C N 0 F Ne Na Mg
A1 Si
P
S C1 A
K Ca sc
Ti V Cr Mn Fe co Ni cu Zn Ga Ge As Se Br Kr PQP
Is
.53 .30 .20 .143 .112 .090 .080
.069 .061 .055 .050
.046 .042 .040 .037 .035 .032 .031 .029 .028 .026 .025 .024 .023 .022 .021 .020 .019 .019 .018 .017 .017 .016 .016 .015 .015
-
I N ANGSTROM U N I T S , O F T H E E L E C T R O N I C ORBITS O F LIGHTER ELEMENTS
2s
1.50 1.19 .88 .67 .56 .48 .41 .37 .32 .30 .27 .24 .23 .21 .20 .19 .18 .16 .16 .150 .143 .138 .133 .127 .122 .117 .112 .lo6 .lo3 .lo0 .097 .095 .092
.ow
M
2P
.85 .66 .53 .45 .38 .32 .28 .25 .23 .21 .19 .18 .16
.155 .145 .133 .127 .122 .117 .112 .lo6 .lo1 .O%
.090
.085
.081 .078 .076 .073 .071 .069 .067
3s
3P
3d
N 7 -
45
1.55
1.32 1.16 .98 .88
.78 .72 .66 .60 .55 .52
.48 .46 .43 .40 .39 .37 .35 .34 .32 .31 .30 .29 .28 .27 .25
1.21 1.06 .92 .82 .75 .67 .63 .58 .54
.so
.47 .44 .41 .39 .37 .36 .34 .32 .31 .30 .29
.28 .27 .25
.61 .55 .49 .45 .42 .39 .36 .34 .32 .30 .28 .27 .25 .24 .23 .22
2.02 2.03 1.80 1.66 1.52 1.41 1.31 1.22 1.14 1.07 1.03 .97 .92 .88
34 .81 .76 .74
Slater, J. C., Introduction to chemical physics, 1939. Courtesy of McCraw-Hill Book Co.
SMlTHSONlAN PHYSICAL TABLES
4P
1.13 1.06 1.01 .95 .90
36
T A B L E 660.-ELEMENTAL
625
OF ELEMENTS
TABLES 660-668.-ABUNDANCE
IN T H E U N I V E R S E 2oL
ABUNDANCE8
(Atoms per 10,OOO atoms of Si *) Z
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Element
Ht
He t
Li
Be B C N
0 F
Ne Na Mg A1 Si
P
Abundance
3.5 x lo8 3.5 x 107 1 .2
Source
s s
1I
.L
80,000 160,000 220.000 90 9,000-24,000 4 6 2 k 36 8,870 f 250 882 f 81 10.000
S S S P P, SC
M M
M
M
S c1 A:
K Ca 5 sc Ti V Cr Mn Fe co Ni
Z
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
95
M
47 48 49 50 51 52 53 54 55 56 57
Ele. ment
cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd
ti In Sn Sb Te I Xe t cs Ba
La
Abundance Source
4.6 1.6 .65 2.5 4.8 .25 .42
M M M M M M M
.071 .4 1 .10 1.5 .009 .19
M M M M M M
z 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 ’78 79 80 81 82 83 90 92
... ..
...
..
.093 M .035 M .032 M .027 M .026 M M .01 M .62 .017 M
..
?
.02
...
.001 .039 .021
.. .. M M M M
Element
Abundance Source
Ce Pr Nd Pm Sm Eu Gd Tb
.023 .0096 .033
M M M
.012 .0028 .017 .0052 .020 .0057 .016 .0029 .015 .0048 .007 .003 1 .17 .0041 .035 .014 .087 .0082
M M M M M M M M M M M M M M M M M M M M
DY
Ho Er Tm Yb Lu Hf Ta
W
Re 0s Ir Pt All Hg
T1 Pb Bi
Th
U
...
? ?
.27 .0021 .012 .0026
..
M
M M M
Brown and Harrison, Rev. Mod. Phys., vol. 21, p. 625, 1949. t The hydrogen-helium ratio and the ratio of hydrogen Silicon is 12.3 percent by weight in meteorites. and helium to the “oxygen group” elements (C N 0 Ne Fe) are those com uted by J. Greenstein and reported t See Tabfe 663. 9 Stellar and meteorific by M Harrison Astroph s. Journ. vol. 108’ p.’ 3iO i940. value; have been’ combinei by equalizing the lalcium dbundances. I1 The letters S, P, Sc, Pe, and M d e s w nate the sources chosen (solar, planetary nebulae, 7-Scorpii, 7 Pegasi. or meteoritic).
T A B L E 661.-ABUNDANCE OF E L E M E N T S IN OUR P L A N E T G I V E N IN PERCENTAGE BY W E I G H T
*
Element
0
S CO
Cr
Earth crust
46.6
... ... ...
Earth
24.4
1.08 .26 .22
Lithosphere, t hydrosphere, atmosphere
49.38
.07 .002 .03
Element
Earth crust
Lithosphere, t hydrosphere, Earth atmosphere
P C C1 H
... ... ...
.17 .07 .05 .04
.12
As Ba F N Zr V Sr
... ... ... ... ... ...
.o1 ... ... ... ... ... ...
...
...
...
.04 .04 .03 .02 .02 .02
This table was selected from several sources including the report by Brown (see footnote 204) and t The lithosphere 10 miles of earth data furnished by Ingerson of the U. S. Geological Survey. crust, makes up 93 ercent, the hydrosphere makes up 7 y t , and the atmosphere makes up 0.03 percent of the part oPthe earth considered. Proc. Nat. Aca Sci., vol. 8, p. 114, 1922.
.
SMITHSONIAN PHYSICAL TABLES
626 T A B L E 662.-CHEMICAL
C O M P O S I T I O N O F EARTH-METEORITES SOLAR A T M O S P H E R E
AND
*
The table gives log N H , where N H =the number of atoms, neutral and ionized, per cm8. Constants added to data of Russell and Brown to give order of magnitude agreement with Unsold. : indicates less accuracy; ? origin doubtful. H and He are about 97 percent of the total solar mass, the oxygen group 2.7 percent, the metals 0.3 percent; and by numbers of atoms 99 percent, 0.9 percent, and 0.1 percent respectively. The level of ionization in the solar atmosphere is such that atoms of ZP = 8.33 ev are 50 percent ionized ; ionization temperature = 5676°K ; electron pressure 32 bar ; 85 percent of free electrons come from Mg, Si, Fe, according to Unsold.
-
Element
1 2 3 4
H He Li Be
5 B
6 C 7 N 8 0 9 F 10 Ne 11 Na 12 Mg 13 A1 14 Si 15 P 16 S 17 C1 18 A 19 K 20 Ca 21 s c 22 T i 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 37 Rb 38 Sr 39 Y 40 Zr
Sun t
Sun 0
Element
Earthmeteorite
22.1 20.6? 13.6: 13.4 16.6 : 19.1 19.6 : 20.6 17.6 :
24.13
41 Nb 42 Mo 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 sn 51 Sb 53 I 55 c s 56 Ba 57 La 58 Ce 59 Pr 60 Nd 62 Sm 63 E u 64 Gd 65 T b 66 Dy 67 Ho 68 Er 69 T m 70 Yb 71 Lu 72 Hf 73 T a 74 w 75 Re 76 0 s 77 Ir 78 P t 79 Au 82 P b 83 Bi 90 T h 92 U
13.05 14.38 14.07 13.64 13.61 13.53 13.52 13.10 14.89 13.33 13.35 12.10 13.69 13.42 13.46 13.08 13.62 13.18 12.55 13.33 12.82 13.40 12.85 13.30 12.56 13.28 12.78 12.94 12.59 14.33 12.71 13.64 13.25 14.04 13.01 14.53 12.42 13.18 12.51
Earth; meteorite t
18.04
....
14.91 14.23 14.72 17.22 15.01 19.64 15.48
....
...
....
.... .... ....
19.91 20.23 20.35
.... ....
17.76 19.05 18.04 19.10 17.21 17.98 16.63
18.8 18.9 18.0 19.1 15.6 : 17.3 :
17.90 19.13 17.95 18.91
16.94 17.93 14.36 16.52 15.50 17.80 16.99 19.37 17.10 18.23 15.76 15.30 14.91 15.50 15.78 14.50 14.72 13.95 14.71 14.10 15.28
18.4: 18 3 15.2 16.8 16.6 17.3 17.5 18.8 17.2 17.6 16.6 16.5 13.6 : 14.6
16.82 17.85 14.95 16.58 15.67 17.20 17.08 19.34 16.65 17.57 15.85 16.40
....
... ...
... ... ...
13.3 : 14.9 14.2 14.1
.... .... ....
18.54
.... .... .... .... .... ....
14.97 14.83 13.99
t
P
Sun $
Sun
12.6: 13.0 13.3 12.1 12.7 12 6 13.8: 11.6 : 12.81 12.4 :
....
13.40
.... .... .... ....
....
.... .... .... .... .... 14.57 .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... 14.2 .... .... ....
... ?
14.9 13.4 14.0 12.2 : 13.6 13.1 13.0 : 12.7 :
...
13.2 :
...
11.7: 12.1 : 12.6: 12.6 : 12.0 11.6: 11.8
...
12.1 : 11.4? 13.2
...
12.8
... ... ...
*Prepared by B. Bell. Brown, Rev. Mod. Phys.. vol. 21, p. 625, 1949; Russell-Dugan-Stewart, Astronomy, vol. 2, p. 503, 1938: UnsKld, Zeitschr. f. Astrophys., vol. 24, p. 307, 1948. t Brown. $ Russell. $Unsold.
T A B L E 663.-COSMIC
ABUNDANCES O F T H E RARE GASES*
As estimated by interpolation of the abundance curves (abundances in atoms per 10,OOO atoms of silicon). Gas
Ne A
Isotope used Estimated for inter- ahundance polation of isotope
NeZ1 A%
100 1000
Estimated ahundance of element
Gas
37,000 1,000
Kr Xe
For reference, see footnote 204, p. 625. SMITHSONIAN PHYSICAL TABLES
Isotone used Estimated for inter- ahundance of isotope polation
Kran Xe181
.I ,004
Estimated ahundance of element
.87 .015
K N O W N E L E M E N T S IN T H E SUN’S A T M O S P H E R E *
T A B L E 664.-66 P a r t 1.-Approximate
Neutral atoms A
Disk
q ? a 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 19 20 21 22 23 24 25 26 27 28 29 30 31 32 37 38 39 40 41 42 44 45 46 47 48 49 50 51 56
-
Ht He11 LiI Be1 BS CI NI
He
a
5
--
Disk
No. lines
A
B 3
9 1 2 2
c
2
;
S
.-C
B
5
G
3
1-
e 5
s
x
c
E
x
10 -2 1
21 55 22 156 6 PI 31 SI 4 KI 108 CaI 43 SCI Ti1 687 272 VI C ~ I 776 Mn1 185 4164 FeI 501 COI 617 Ni1 14 CUI Znr 9 1 Gar GeI 5 Rbr 1 13 Srl 17 YI ZrI 59 4 NbI MOI 8 RUI 15 RhI 8 PdI 8 Ag1 3 Cdr 1 1 In1 2 Snr 1 SbI BaI
6 4 5 29 1 10 3 21 14 264 133 305 73 877 209 180 3 3 1
30 (200) 20
70? 30 25 12
Na1
2 10 41 2 6 5 3 7
2 1
5
(8):
8 12 20 2 7 4 10 7 40 6 25 10 3 1 3 -3 1 0 0 -1 -2 -1 -2 0 0 -1 -2
-2 -3 N
3
Gi
3
-3 -3 12 -1
Mg1 A11 SiI
8
5
5
7 6 1
FZ
c
251
40
41 8 12
01
-
Singly ionized atoms
spot
No. lines ** Y
627
counts of atomic lines identified in solar and sunspot spectra
15 134 53 23 1 2
1 2 2
7
2 20 40 7 10 8 12 12 35 6 9
1
2
1
Mg 11
12
2 (1000)
Si 11
4
2
2
Ca 11
26 ii9 103 133 11 140 7 8
1000 6 12 5 6 6 6 0 3
9
7
c o I1 Ni 11
25 57 255 160 216 16 371 6 13
4 3 3 3
Sr 11
8
2
Rh II?
3
2
Ba 11
6
3
1 2 1 6 12 41
Be 11
s c I1
T i 11
v I1
Cr 11 Mn 11
Fe 11
-2
-1 1
1
8
PreDared by Charlotte E. Moore. National Bureau of Standards. The sources used are as follows: Babcock, H. D., Moore, C. E., and Coffeen, M. F., Astrophys. Journ., vol. 107, p. 287, 1948 (Mount Wilson Contr. No. 745). St. John, C. C., and othem, Revised Rowland Table, Carnegie Inst. Washington Publ. 396, 3062A-6600A.. 1928, with unpuhlished corrections and revisions hy C. E. Moore (September 1949). Bahcock H. D and Moore C. E:. Carnegie InSt. Washington Puhl. 579, 1947. 6600.\--13495A T h e counts inc
(conti1ttred) SMITHSONIAN PHYSICAL TABLES
628 T A B L E 664.-66
K N O W N E L E M E N T S I N T H E SUN'S A T M O S P H E R E (concluded) Neutral atoms Disk
Disk
'7G&--
h
<
Singly ionized atoms Spot
No. lines
' NO. lines r-+
57 L a 1 58 59
-2 N
1
60
62 63 64 65 66 68 69 70 71 72 73 74 76 77 78 79 82 90
EUI
2
YbI
2
HfI TaI? WI OSI IrI PtI Aur Pbr ThI
1
1 8 4? 4
-3 -2 -1 -2
0
1
1 13
20 81 16 72 63 4 20 2 25 5 2 4 5
1 0 -1 1 0 1 0 -1 1 -1 -1 3) -3 -1
-1 -1
2
-3 -2 -1
-2
in t h e sun-18
Mg H C! TI 0
OH NH 0,
1
0
3 13 2 2 3 1 2 1
Part 2.-Molecules
-1
44 106 11 74 82 10 29 2 29 2 6
La 11 Ce11 Pr II NdIr SmrI Eu II Gd 11 T b II? Dy11 Er II Tmn? Yb 11 Lu 117 Hf II
present (either disk or spot spectrum, o r both)2m
sc 0 A1 O ? Zr 0
CH Cn Si H
Mg 0 Ca H BH
Y O Mg F Sr F
Babcock, H. D., Astrophys. Journ., vol. 102, p. 154, 1945 (Mount Wilson Contr. No. 708).
T A B L E 665.-ABUNDANCES
OF L I G H T E L E M E N T S I N E A R L Y T Y P E STARS
The table gives the number of atoms per 1000 atoms oxygen fcr 7 Scorpii, spectrum dBo,": 10 Lacertae, 0 ; 2oQ; y Pegasi, B2.5 IV,?O";mean for 8 B-stars, weighted mean by Aller,m the last 3 columns from letters to the editor, 1950. : less certain. Element
1 2 6 7 8 10 12 13 14 15 16 17 18
H He C N 0 Ne Mg A1 Si P S
C1 A
sco
10 Lac
Y Peg
10x10~ 1.8X10' 170 380 1000 1100 59 3.7
20x10~ 1.68XlOs 200 220 1000 880 62
87x10' 5.5X10': 120 200 1000
7
64
.... .... .... ....
.... 82
.... .... ....
Zeitschr. f. Astrophys., vol. 21. p. 1, 1941. am Aller, Astrophys. Journ., vol. 104, p. 34i, 1946. 108 Unsald,
SMITHSONIAN PHYSICAL TABLES
....
310 11 90 1.1 40 20 : 100 :
8 B-stars
150 230 1000
....
93 4.2 38
.... 22 .... ....
Mean
20x105 1.7X106 160 250 ~. . 1000 1000 120 6 60 1.1 30 20 : 100 :
T A B L E 666.-GASES
, I N I N T E R S T E L L A R SPACE
629
*no
The gases that have been detected are listed together with the means of detection and approximate abundances. Both the observations and the application of ionization theory introduce considerable uncertainty in the determination of abundances. Values given are the best current estimates. I n general, the composition of the interstellar gas appears to be the same as for the stars.
Gas
Density in clouds atoms/cma
Hydrogen Oxygen Carbon
10
Calcium Sodium Iron
2)<10-' 4)<101s
Detection
Emission lines Emission lines Molecular absorption lines Absorption lines Absorption lines Absorption lines Mean gas density.
.01 .003
...
Density in clouds atoms/cma
Gas
Titanium Nitrogen
10" t
Potassium Sulfur
...
Detection
Absorption lines N emission, CN absorption lines Absorption lines Emission lines Absorption lines Absorption lines
...
t
CH CN .... .3>(lo-'' g/cma
lo-' t lo-@t
The interstellar gas is strongly concentrated in clouds as evidenced by the multiplicity of interstellar absorption lines. Stromgren suggests density between clouds is about 1% of that in clouds. Pre ared by B Donn *10Acfarns, Astripbys. Journ., vol. 109, 1949; Publ. Astron. Soc. Pacific, vol. 60, p. 354, 1948; Dunham, Proc. Amer. Philos. Soc. vol. 81, p. 277, 1939. Ledoux, Pop. Astr.. vol. 49, p. 513, 1941. Stromgren, Astrophys. Journ., vol. 108, p."242, 1948. Struve, Journ. Washington Acad. Sci., vol. 31, p. 217, 1941; Astrophys. Journ., vol. 89. p. 517, 1939. t Values for apparently abnormally dense cloud.
T A B L E 667.-THE
ABUNDANCE O F C E R T A I N E L E M E N T S I N T H E N E B U L A E "
(Given as the exponent of 10) Element
Abundance Element
...... 11H e ...... 10 Li .... ..<8Be ......<8B .......<9 H
211
Abundance Element
....... ....... 0 ....... F ....... Ne ......
C N
9 99
Abundance Element
......=z7+ ..... 7+ ......<8......=z9 .......<8-
Na Mg A1 Si
6
8
P
Abundance Element
....... ...... ....... ....... Ca ...... S
C1 A K
8 7+
7
6+
7-
Abundance
......<6+ ...... <7V ....... <8 Cr ......<7 Mn ..... <7 Fe ...... 7+ Sc Ti
Bowen and Wyse, Lick Obs. Bull., vol. 19. D. 1. 1939.
T A B L E 668.-MATTER
I N I N T E R S T E L L A R SPACE *n'
The interpretation of the interstellar absorption curve and of absorption by dark clouds requir.es the presence of small grains with radii ranging around lo-' cm. Polarization of starlight indicates that some, if not all, grains are elongated. Composition, from absorption curve and scattering appears to be mainly dielectric. Density of matter Solid grains : Uniform region, abs 0.5 m/kpc.. ................................. Large cloud, abs 1 mag (10 m/kpc) .............................. Dense condensation, abs 5-10 m (1000 m/kpc) ..................... Mean density, gas and grains. ..................................... Oort limit (Max density, stars plus diffuse matter). ................. Mean space density of stellar matter.. .............................
10-2"g/cma lo-= g/cma lo-" g/cma 3)<10-Ug/cmS 6)<10-%g/cma 3)<10-" g/cm8
Prepared by B. Donn. 21' Greenstein, Harvard Circ. 422, 1938. Spitzer, Astrophys. Journ.. vol. 93 p 369 1941. Van de Hulst, Rech. Astron. del'Obs. d'utrecht, vol. 11, pt. 1, 1946, pt. 2, 1949. Schal;n, PLbl. of Uppsala Oliservatory, 1930 on. Oort. Astron. Inst. Netherlands Bull. No. 283, 1932.
SMITHSONIAN PHYSICAL TABLES
TABLES 669-682.-COLLOID S
630
Colloidal science originally dealt with that large field of small particles, but now it has been extended to cover also those materials that are small in one or two of the three dimensions. Thus, this field now includes chain molecules and films as well as the fine particles. The diameters of atoms range from 2 to 3 A (angstroms) while diameters of ordinary inorganic molecules extend from about 7 to 10 A. Organic molecules are much larger and their dimensions may extend to 20 A or larger. It is sometimes stated that colloid particles range in diameter from 20 A to a much larger value but it must be remembered that it is difficult to fix such dimensions. Many of the properties of colloids are due to their relatively very great surface as compared with their volumes. Some of the newer experimental tools, i.e., ultracentrifuges, X-rays, and the electron microscopes, have been a great help in studying these particles and their reactions. Several tables follow that give properties and characteristics of colloids and colloidal particles. T A B L E 669.-B
ROW N 1,AN M O V E M E NT
The Brownian movement is a microscopically observed agitation of colloidal particles. I t is caused by the bombardment of them by the molecules of the medium and may be used to determine the value of Avogadro's number. Perrin, Chaudesaignes, Ehrenhaft, and De Broglie found, respectively, 70, 64, 63 and 64 X 10'' as the value of this constant. The following table indicates the size and the dependence of this movement on the magnitude of the particles. Material
Dust particles ................ Gold ........................ Gold ........................ Gold ........................ Platinum .................... Platinum .................... Rubber emulsion ............. Mastic ...................... G a m k g e ....................
....................
Diameter x 106cm
2.0 .35
.I .06
.4 to .5 .4 to .5
10. 10. 4.5 2.13
Medium
C
Velocity X 106 cm/sec
20?
none 200.
Trmp
W7:er "
280.
'
Acetone Wtter
'
700. 3900. 3200. 124. 1.55 2.4 3.4
18
20 17 20 ? 20
The movement varies inversely as the size of the psrticles; in water, particles of diameter greater than 4p show no perceptible movement; when smaller than .lp, lively movement begins, while at lOmp the trajectories amount to up to 20mp.
T A B L E 670.-PARTICLE
SIZES O F S OME I N D I V I D U A L DUSTS ""
Dust
Milk powder (by evaporation of fine spray) ..................... Fine powder (300 mesh) e.g., cement.. .......................... Smelter fumes ................................................ Atmosphere, fog particles. ..................................... Cement kiln flue dust. ......................................... mist from concentrators.. ............................... NH.Cl fumes ................................................ Oil smoke .................................................... Resin smoke .................................................. Tobacco smoke ...............................................
Diameter, cm
1.4XlO-'- .7X10-' lXlO-'- .7X10-' lXlO-'-- 1X10-6 1.4X 10-'-3.5X lo-' 6XlO-'- .8X10-' l.lX10~'--1.6X10~' lXIO-'- lXlO-' lXIO-'- 5X10-' lXlO-'1x10" 1.5X10-5- 1x10"
Alexander, J., Colloid chemistry, vol. 2, Chemical Publishing Co. Used by permission.
SMITHSONIAN PHYSICAL TABLES
T A B L E 671.-PROTEIN
631
M O L E C U L E S ZI*
M . molecular weight ; f/fo. dissymmetry constant ; a. short diameter ; b. long diameter . M
Substance
35000 Zein .................................... 15600 Cytochromec C .......................... 26000 Gliadin .................................. 27500 Hordein ................................. 31400 Erythrocruorin (chironimzrs) .............. 67100 Serum albumin. urea denatured ............ 17500 Lactalbumin a ............................ 17100 Erythrocruorin (lampetra) ................ 37700 Bence- Jones p ........................... 17200 Myoglobin ............................... 30000 Crotoxin ................................ 42000 Concanavalin B .......................... 32000 Tuberculin protein ....................... 41800 Lactoglobulin ............................ 35500 Pepsin .................................. 40900 Insulin .................................. 40500 Egg albumin ............................ 69000 Hemoglobin (horse) ...................... 67100 Serum albumin (horse) .................... 82800 Yellow ferment .......................... 113000 Canavalin ................................ 167000 Serum globulin .......................... 72000 Diphtheria toxin ......................... 157000 Antipneumococcus serum globulin (rabbit) . Antipneumococcus serum globulin (man) ... 195000 96000 Concanavalin A .......................... 33600 Erythrocruorin (arc a ) .................... 35000 Bence- Jones a ............................ 248000 Catalase ................................. Antipneumococcus serum globulin (horse) . . 920000 Phycoerythrin (seramiurn) ................ 290000 329000 Amandin ................................ 628000 Tyroglobulin ............................ 309000 Edestin .................................. 294000 Excelsin ................................ 483000 Urease .................................. Hemocyanin (pulinurus) .................. 446000 Tobacco mosaic virus ..................... 60000000 Legumin ................................ 208000
.
.
.
b/a
f/fo
2.0 1.3 1.6 1.6 1.6 1.98 1.2 1.2 1.3 1.1 1.2 1.3 1.2 1.2 1.08 1.13 1.1 1.24 1.2 1.2 1.3 1.4 1.2 1.4 1.5 1.1 1.0 1.0 1.3 2.0 1.2 1.3 1.5 1.2 1.1 1.2 1.2 3.0 1.02
20.1 5.8 11.1 11.1 11.1 19.4 4.3 4.3 5.8 2.9 4.3 5.8 4.3 4.3 2.7 3.3 2.9 4.8 4.3 4.3 5.8 7.5 4.3 7.5 9.2 2.9 1 1 5.8 20.1 4.3 5.8 9.2 4.3 2.9 4.3 4.3
. .
a
(4 16 18 18 18 19 20 21 22 25 24 25 26 26 28 31 31 32 32 34 36 36 37 34 37 37 43 43 43 46 47 54 51 54 55 62 64 62
b (A)
322 98 1% 196 208 356 91 94 144 70 109 149 112 122 84 102 91 155 145 152 207 280 145 274 338 124 43 43 297 950 232 291 498 237 179 274 268
.
2mNeurath. Journ. Amer . Cbem SOC.,vol 61. p. 1841. 1939
T A B L E 672.-lNFLUENCE
Material
O F P A R T I C L E S I Z E U P O N S O L U B I L I T Y *I4
Size of particles /I
............. 2.0 ..................................... .3 ..................................... B a S 0 4 ............. 1.8 ..................................... .1 ..................................... H g O ............... Coarse red powder ....................... CaSO,
Very fine yellowish powder ...............
Solubility at 25°C
2.085 g per liter * 2.476 g per liter 2.29 mg per liter * 4.15 mg per liter 50 mg per liter * 150 mg per liter
214 Thomas. Arthur W., Colloid chemistry. McCraw-Hill Book Co., 1934. Used by permission of the author These are the permanent saturated solutions The more concentrated solutions. obtained from contact with the more finely ground particles. slowly revert to the normally saturated solutions and the particles grow to 2 p in size
.
.
.
SMITHSONIAN PHYSICAL TABLES
T A B L E 673.-HEAT
632
O F SORPTION
*
(In small calories) Fuller's earth
Substance
Amylene ............................. 57.1 Water ............................... 30.2 Acetone .............................. 27.3 Methyl alcohol ........................ 21.8 Ethyl acetate ......................... 18.5 Ethyl alcohol ......................... 17.2 Aniline ............................... 13.4 Amy1 alcohol ......................... 10.9 Ethyl ether ........................... 10.5 Chloroform ........................... 8.4 Benzene .............................. 4.6 Carbon disulfide ...................... 4.6 Carbon tetrachloride ................... 4.2 Hexane .............................. 3:9
.
For reference. see footnote 214. p 631
T A B L E 674.-EFFECT
Kaolin
...
78.8
... ...
27.6
...
20.4
...
14.0 11.1 8.4 13.9 8.9
15.7 9.9 9.9 9.4 7.2
Adsorption Granular mg CClr/(g C) density
22 30 1160 11 1480 18 47 630 30 640 2715
.96 .89
.72 .46 .30
1.20 .96 .84 1.09 .89 .31
Physical character
Fibrous. hard Hard Hard. friable. granular Firm. fibrous Soft. friable Hard Hard Hard Firm Firm Friable. grmular
. Reprinted by permission.
O F ADSORPTION O F VAPORS ON C H A R C O A L *
Vapor
CzHaCl ............................... CSz .................................. CHsOH .............................. CzHsBr ............................... C2H51 ................................ CHCI. ............................... HCOOCzH. .......................... CeHa ................................. C;H;OH ............................. CCIr ................................. (C&)zo .............................
.
reference. see footnote 215. above
SMITHSONIAN PHYSICAL TABLES
... ... ... .90 36 .39 ... .27 .22
24.5
... 10.6 ...
Weiser. H . B., Colloid chemistry. 2d ed., John Wiley & Sons. Inc., 1949 Further activation reduces the granules to a fine powder.
' For
1.54 2.82 1.72 1.60 1.05
...
18.5 19.3 17.6 16.5 16.5
O F A C T I V A T I O N ON T H E ADSORBING P O W E R O F CHARCOAL zls
Ironwood ............................. Primary ironwood charcoal ............. Activated ironwood charcoal ............ Commercial wood charcoal .............. Highest activated wood charcoal * ...... Cocoanut shell ........................ Primary cocoanut charcoal ............. Activated cocoanut charcoal ............. Lignite semi-coke ..................... Good activated lignite charcoal .......... Highest activated lignite charcoal * .....
T A B L E 675.-HEATS
Dispersive power percent
.
Substance tested
2'6
Bone charcoal
Inteqral heat of adsorption. h cal/mole
Heat of liquefaction.
Q
cal/mole
Net heat of adsorption. h-Q cal/mole
h-Q/ml cal/mole
12330 12630 12950 14330 14250 14930 15420 15170 14980 16090 16090
6220 6830 9330 6850 7810 8000 8380 7810 10650 8000 6900
61 10 5800 3620 7480 6440 6930 7040 7360 4330 8090 9190
86.4 99.1 90.8 102.0 81.5 87.5 90.1 85.0 76.8 85.6 80.3
633 C O E F F I C I E N T S , S, OF ORGANIC L I Q U I D S O N WAT E R A T 20°C*
T A B L E 676.-SPREADING
S=
Spreading liquids
Butyric acid ................ Ethyl ether ................. Isoamyl chloride ............ Heptaldehyde ............... Nitromethane ............... Mercaptan .................. Oleic acid ...................
w. - w.t 45.66 45.50 33.88 32.22 26.32 24.86 24.62
Spreading liquids
s= W . - W e
Heptane .................... Ethyl bromide ............... Chloroform ................. Anisole ..................... Phenetole ................... p-Cymene ................... Isopentane ..................
22.40 17.44 13.04 11.76 10.66 10.10 9.44
S = W s - Wo Liquids which form lenses Ethylene dibromide ......... .- 3.19 Carbon disulfide ............ .- 6.94 Monoiodobenzene ........... .- 8.74 Bromoform ................ .- 9.58 Liquid petrolatum ...........--13.64
t Wa, work
For reference, see footnote 215, p. 632.
T A B L E 677.-HEATS
adhesion; W C , work of cohesion.
O F ADSORPTION OF GASES BY CHARCOAL218
Argon ............ 3636 Nitrogen ......... 3686 Carbon monoxide.. 3416
1504 1250 1410
Carbon dioxide .... 7300 Ammonia ........ 7200
4180
37is
2540 5000
6100 7120
218 Lewis, Squires, and Broughton, Industrial chemistry of colloidal and amorphous materials, Macmillan Co., 1942. Used by permission of the publishers.
T A B L E 678.-BOND
Intermolecular cohesion
Covalent bonds
-C
C-
>C = C< +C-C+ +C - 0-
123 100 59 70
E N E R G I E S * I N KILOCALORIES P E R MOLn'
>C=O
*.
>C=O +C-H
H-N<
H-0.. HOCt * *
HZO .. H-0-H -NOz:OzN-
10-16 7-10 14 5 7
59 -COOR:ROOC54 -HC=O :O=CH64 -a: c142 -CH3:H3C-
+C-N< +C-S-S-S+Si-Sit
Intermolecular cohesion
Covalent bonds
+Si-0Ionic bonds Na', C1- (dry) -NH3+. -COOin water
Intermolecular cohesion
Covalent bonds
90 128 4.5
0 2
:0
2
-0-:-0-CHZ:-CH2Hz :Hz
2 1.6 1.0 .25
For the energy per atom, divide these values by the Avogadro number, 6.023 X lorn. Pauling, Linus. The nature of the chemical bond. Used by permission of the author.
SMITHSONIAN PHYSICAL TABLES
6 5 3 2
634 T A B L E 679.-lGNITION
A N D PROPAGATION T E M P E R A T U R E S O F DUSTS I N AI.R*
Degrees Centigrade
Dust
Sugar ................ Dextrin .............. Starch ............... Cocoa ................ Flour
'For
Propagation temperature
Ignition temperature
540 540 640 620
805 940 1035 970 995 (1265)
................ 630 .
reference. see footnote 214. p 631
Propagation temperature
Ignition temperature
Dust
Cork ................. 630 Rice ................. 630 Mustard .............. 680 Wheat elevator . . . . . . . . . . . Oat and corn elevator . . . . . Oat hull .................
1000 970 1050 (1295) (995) (1020)
.
T A B L E 680.-LOWER
EXPLOSIVE LI M I TS *
Milligrams per liter of air
Dust
Glowing Pt wire
Arc
7.0 10.3 10.3 7.0
10.3 10.3 10.3 13.7
Starch .......... Corn elevator .... Wheat elevator .. Sulfur ..........
.
Induction spark
13.7 13.7
...
13.7
.
For reference. see footnote 214. p 631
T A B L E 681.-SOME Pressure generated. Ib/in.2
Dust
Lycopcdium ..... Dextrin ......... Wheat starch .... Tanbark dust .... Wood dust ......
17.5 14.6 14.0 13.3 12.8
Glowing Pt wire
Sugar .......... 10.3 Aluminum ...... 7.0 Coal ............ 17.2
17.2 7.0 24.1
34.4 13.7 No ignition
.
Dust
Pressure generated. Ib/in.2
Cornstarch ...... Wheat elevator . Sugar ........... Linseed meal .... Pittsburgh coal .
12.7
. 12.5 .
12.2 11.7 10.1
Pressure generated. 1b / in.2
Dust
Cocoa .......... Sulfur flour ..... Rice-bran dust ... Ground-cork dust .
9.9 8.8 8.7 7.4
.
S T A B I L I T Y RANGE OF SOME P R O T E I N S *
Protein
Source
Amandin .................... Almonds ............................. Bence-Jones ................. Pathological urine ..................... Edestin ...................... Hempseed ............................ Egg albumin ................. Hens' eggs ........................... Erythrocruorin .............. Blood of Areiiicola marina .............. Erythrocruorin .............. Blood of Lumbricus terrestris ........... Excelsin ..................... Brazil nuts ............................ Hemocyanin .................Blood of Helix p m t i a ................. CO-hemoglobin ..............Horse blood hemoglobin plus CO ....... Insulin ...................... Beef pancreas ......................... Legumin .................... Vetch ................................ Phycocyan ...................Ceramium rubrum .................... Serum albumin .............. Horse blood .......................... Serum globulin .............. Horse blood .......................... For reference, see footnote 214, p 631
SMITHSONIAN PHYSICAL TABLES
Induction spark
Arc
M E A S U R E M E N T S O F EXPLOSION PRESSURES *
For reference. see footnote 214. p. 631
T A B L E 682.-pH
Dust
.
Stable in the
OH range of
4.3 3.5 5.5 4.0 2.6 2.6 5.5 4.5 6.0 4.5 5.0 1.5 4.0 4.0
to to to to to to to to to to to to to to
10.0 7.5 9.7 9.0 8.0 10.0 10.0 7.4 9.05 7.0 9.0 8.0 9.0 8.0
TABLES 683-689.-ELECTRO T A B L E 683.-ELECTRON
N
E M ISSION *
635
EMISSION FOR H O T SOLIDS
The electron emission from a solid varies with the temperature T (OK) in accordance with the Richardson-Laue-Dushman equation I = AT2 [exp (-b,/T)I (1) where Z = current in amps cm-', and A and b, are constants, characteristic of the material. The constant b. is ordinarily expressed in terms of electron volts (Go) where = 8.620 X lo-' b, or b. = 1.160 X lo' Oo (2) The values of A and b. (or k) are customarily derived from a plot of log (ZIT?) versus 1/T, where b. log I = log A + 2 log T - (3) 2.303T and log = log to base 10. Hence, Go = 1.986 X lo-' (b,/2.303) (4) Theoretically, %, as determined from thermionic emission data, should be identical with the "work function" from contact potential measurements, and +e, the work function determined by means of Einstein's equation Ve= h ~ - + ~ where Y = frequency for photoelectric emission, V = retarding potential, e = charge. on the electron, and h = quantum constant.
+,,
Prepared by Saul Dushman, General Electric Research Laboratory, Schenectady, N . Y.
T A B L E 684.-ELECTRON
EMISSION CONSTANTS FOR M E T A L S AND CARBON
The table gives emission constants (see preceding equations) for metals and carbon. For other values and comprehensive data on this topic see references in footnote 218. Element
A
Barium ............. 60 Calcium ............ 60 Carbon ............. 30 Cesium ............. 162 Chromium .......... 48 Cobalt .............. 41 65 Copper .:. Hafnium ........... 15 Iron ............... 26 Molybdenum ........ 60 30 Nickel Niobium ............ 37 60 Palladium Platinum ........... 32 Rhenium ........... 200 Rhodium ........... 33 Tantalum ........... 55 Thorium ............ 60 Tungsten ........... 60 Zirconium .......... 330
. .........
............. ..........
10-4b.
2.47 2.60 5.03 2.10 5.34 5.12 5.08 4.10 5.20 5.07 5.35 4.65 5.79 6.17 5.92 5.57 4.86 3.89 5.24 4.79
IT
4.41 4.38 3.53 4.48 4.37 4.61 4.01 4.99 5.32 5.1 4.80 4.19 3.35 4.52 4.13
1.5x lo-' 2 . 9 lo-' ~ 1.4~10-~ 2.5 x lo-" 3.8XlO-* 1.3)<10-' 5.6x10-n 2.8~10-~ 6 . 8 lo-'' ~
1 . 8 1~0 - ~ 1.ox lo-' 1.1x lo-' 6 . 2 10-3 ~ 4.3X10-3 1 . 0 0 10-3 ~ 8.5x10-6
T"K
500 1500 1500 1000 1600 1000 2000 1500 2000 1600 1600 2000 2000 2000
1600 2000
%
2.48-2.51 2.71 4.82 1.91 4.37 ... ...
4.46
...
4.63 4.12 4.92
4.92 4.05 3.3-3.6 4.3-4.5
1600
218 Herring C and Nichols M. H., Rev. Mod. Phys., vol. 21, p. 185, 1919. Rrimann, A. L., Thermionic emissio;, JAhn Wiley & 'Sons, Inc., 1934. Dushman, S.,Rev. Mod. Phys., vol. 2, p. 381, 1930.
SMITHSONIAN PHYSICAL TABLES
636 EMISSION ( I = amp/cmz) A N D NUMBER O F MATERIALSns
T A B L E 685.-ELECTRON
(W= watts/crnz)
FOR A
The table gives emission data for a range of temperature, for the most frequently used metals and for thoriated tungsten (ThW). Values of A and 0 . used in calculation of I (amp/cm*) are those given in Table 684. For ThW, the values used are A = 3.0 and = 2.72, b, = 3.15X10'.
+,,
Molybdenum
Tungsten
TOK
' I
W'
1000 ... ... 1200 ... ... 1400 ... 1600 9.27XlO-? 7.74 1800 4.47x10-6 14.2 2000 1 . 0 0 ~ 1 0 - ~24.0 2200 1.33X 10.' 38.2 .116 57.7 2400 .716 83.8 2600 2800 3.54 117.6 3000 14.15 160.5
...
... ... ...
...
Niobium
Tantalum
W'
I
2.39Xlo-B 6.30 l.OSXlO-' 11.3 2.15x10-8 19.2 2 . 5 9 ~ 1 0 - ~30.7 .215 47.0 1.29 69.5 6.04 98.0 23.28 116.0
W'
'I
...
...
...
...
3.32><10-' 13.3 6.21X10-* 21.6 6.78)<10-' 34.2 SO9 51.3 2.25 75.4 105.5 12.53 144.4 45.60
...
Ty'
...
1.73x10" ... 3.95x lo-' ... 2.O3x1Od 6.40 4.06x10" 2.i9xio-5 .428 11.4 6.95x10-' 18.5 2.864 1.16x lo-' 29.9 .115 45.3 .800 67.0 5.20 130.6 60.67
...
2'0 Dushman, Saul, T h e scientific foundations of vacuum technique, John Wiley & Sons, Inc., 1949. Reprinted by permission. ' Layer of thorium on tungsten.
T A B L E 686.-P
H O T O E L E C T R IC E F F E C T
A negative charged body loses its charge under the influence of ultraviolet radiation because of the escape of negative electrons freed by the absorption of the energy of the radiation. The radiation must have a wavelength shorter than some limiting value XO characteristic of the metal. The emission of these electrons, unlike that from hot bodies, is independent of the temperature. The relation between the maximum velocity u of the expelled electron and the frequency v of the radiation is (+)ntd = hv - P (Einstein's y u a tion) where h is Planck's constant (6.62 X erg sec), hv, the energy of a "quanta, P, the work which must be done by the electron in overcoming surface forces. (f)ni?3 is the maximum kinetic energy the electron may have after escape. Richardson identifies the P of Einstein's formula with the +e of electron emission of Table 683. The minimum frequency Yn (corresponding to maximum wavelength An) at which the photoelectric effect can be observed is determined by hv = P. P applies to a single electron, whereas w applies to 96,500 coulombs (6.02 X 10" electrons) ; therefore zc.?= N P = .00399~nergs. = (12.4 X IO-')An volts.
+
T A B L E 687.-THE
Metal
ELECTRON A F F I N I T Y O F T H E ELEMENTS, I N VOLTS Photoelectric and Photoelectric Contact Thermionic contact (Henning) (Langmuir) (Millikan) (Richardson)
Tungsten ........... Platinum ........... Tantalum ........... Molybdenum ........ Carbon ............. Silver .............. 4.05 Cppper ............. (4.0) Bismuth ............ Tin ................ 3.23 Iron ................ 3.86 Zinc ................ 3.46 Thorium ........... Aluminum .......... 3.06 Magnesium ......... 2.63 Titanium ........... Lithium ............ Sodium ............. SMITHSONIAN PHYSICAL TABLES
4.52
-
4.31 4.3 1 4.14 -
-
-
4.3 -
-
2.4i -
-
-
4.04
-
3.2 i 3.36
Singleline spectra
-
-
2.8 3.2
4.35
2.35 1.82
-
1.85 2.11
-
2.1
-
Adjusted mean
4.52 4.4? 4.3 4.3 4.1 4.1 4.0 3.7 3.8 3.7 3.4 3.4 3.0 2.7 2.4 2.35 1.82
637
T A B L E 6 8 8 . 4 O N T A C T (VOLTA) POTENTIALS
There has been considerable controversy over the reality and nature of the contact differences of potential between two metals. At present, owing to the studies of Langmuir, there is a decided tendency to believe that this Volta difference of potential is a n intrinsic property of metals closely allied to the phenomena given in Tables 684 to 688 and that the discrepancies among different observers have been caused by the same disturbing surface conditions. The values are for freshly cut surfaces in vacuo. Freshly cut surfaces are more electropositive and grow more electronegative with age. That the observed initial velocities of emission of electrons from freshly cut surfaces are nearly the same for all metals suggests that the more electropositive a metal is the greater the actual velocity of emission of electrons from its surface.
... ....
Contact potential with Ag.. Relative photosensitiveness SiO, Glass
......
..... W
Ag
Pi
Fe
Cu
+2.22 +1.15
+1.99 +1.15
+1.60
+
Cu
Brass
Fe
Sn
Al
Zn
Mg
0 .05 .I9 21 .27 .59 .99 1.42 50 60 65 45 70 80 500 1000 Al
Mg
+1.60 +1.42 +.93 .58 + .58 + .58 +.14
Au
+.93 +.14
............................
Ag
Cu
+.08
Cr
+.11
Zn
+.45 -.29 Mo
Ta
-.38
-.21
Ph
+.I6 -.60
Sn
- .30 -1.14
Ni
-.17
From the equation w = R T log (NAINB),where w is the work necessary per grammolecule when electrons pass through a surface barrier separating concentrations N A and NB of electrons, it can be shown that the Volta potential difference between two metals should be 1 w2-WI ~ i - ~ z = - { ~ z - ~ i R T I o ~ ( N A / N B )=) ~ = 4 2 - 4 1
+
F
(see Table 686 for significance of symbols), since the number of free electrons in different metals per unit volume is so nearly the same that R T log (NAINB)may be neglected. The contact potentials may thus be calculated from photoelectric phenomena. They are independent of the temperature. The following table gives a summary of values of @ in volts obtained from the various phenomena where an electron is torn from the attraction of some surface. In the case of ionization potentials the work necessary to take an electron from an atom of metal vapor is only approximately equal to that needed to separate it from a solid metal surface.
T A B L E 689.-E
LECT RO D E POTENT1A LS
It should not be assumed that all the emf of an electrolytic cell is contact emf. Its emf varies with the electrolyte, whereas the contact emf is an intrinsic property of a metal. There must be an emf between the two electrodes of such a cell dependent upon the concentration of the electrolyte used. The following table gives in its first line the electrode potential eh of the corresponding metals (in solutions of their salts containing normal ion concentration) on assumption of no contact emf at the junction of the metals. The second line, 4 - en - 3.7 volts, gives a n idea of the electrode potentials (arbitrary zero) exclusive of contact emf. Metal
er
Ag
.................. +.80
+-e&-3.7
........ -40
SMITHSONIAN PHYSICAL TABLES
Cu
Bi
+.34 +.04
+.20 +.20
Sn
-.lo -20
Fe
-.43 -.43
Zn
-.76 -.46
Mg
Li
-1.55 -3.03 - .55 -1.65
Na
-2.73 - .85
638
THEORY OF GASES *
TABLES 690-696.-KINETIC T A B L E 690.-PRESSURE
A N D NUMBER O F MOLECULES
1. Units of Pressure
A , = normal atmosphere
= 760 mmHg at OPC and 45"
latitude
= 1.01325 x 100 microbars 1 dyne cm-* = 1 microbar = 0.75 micron 1 micron = lo-' mmHg = 1.333 microbars
= 1p P,, = pressure in mmHg Pp = pressure in microns = lo-' P m m Ppb = pressure in microbars = 1.333 X lo-' PPnn,
2. Number of molecules per unit volume For ideal gas, PV = ROT Where V = volume per gram-molecular weight P = pressure T = absolute temperature in degrees Absolute (OK) = degrees Centigrade 273.16
+
For ideal gas at 0°C and A , = 1, V = V , = 22,414.6 cm' Hence R, = 62.364 mm liter, deg-' K g mole-' = 8.3146 .X. 10'ere dee-' K EI mole-' D = densitv of eas/e/cm'
- -
-
Where M = molecular weight in grams n = number of molecules per cm8 = 7.244 X Ppb/T = 9.656 X 10" P,,/T 3. The number of molecules per cm8 for different temperatures and pressures
T("K) Pwb Pmm n 273.16 1.0133)<106 760 2.687X10" 298.16 " " 2.462X10'D 273.16 1.333 X108 1 3.536XlO"
T' P&b P mm 298.16 1.333X10' 1 273.16 1.000 7.50~ 298.16 "
n
3.240X10'" 2.653~ 2.430x 10"
Prepared by Saul Dushman, General Electric Co. T h e formulae and calculations in this section a r e based on a more comprehensive discussion in chapter 1 of his "Scientific Foundations of Vacuum Technique" (John Wiley 8: Sons, New York, 1949).
T A B L E 691.-MEAN F R E E P A T H S , L, M O L E C U L A R D I A M E T E R S , 6, A N D R E L A T E D D A T A FOR W A T E R A N D M E R C U R Y V A P O R S * t"C
H,O
Hg
0 15 25 219.4 1500 100.0 25.0
.o
Pmmx*
4.58 12.79 23.76 31.57 2.807 .2729 .0018
....
iozq0
8.69 9.26 9.64 46.66 39.04 33.56 25.40 16.2(J)
103~~1
LIP
1086:
10-"N1
2.90
6.34X104
4.68
5.27
3.37 6.28 4.87 3.93 2.66
1.iiXio-4 1.99x10-~ 1.74x10-' 1.44x10-* 1.45
...
...
....
...
...
4.27 4.50 4.70 5.11 6.26(J)
t
...
...
6.32 5.70 5.22 4.42
...
:*For reference, see footnote 219. p. 636. Pwm = vapor pressure at P C . t N. = number of molecules/cmz f o r monomolecular layer. I n the case of H20, for which the values of L (path length) and 6 (diameter) for a series of temperatures are given in the table, the Sutherland relation was used with C = 650 and qla = 926x10-6 cgs units. I n the case of H g the values of (viscosity) used are based on t=219.4'C. Values at other temperatures were derived by means of xutherland's relations, with C = 942.2
SMITHSONIAN PHYSICAL TABLES
T A B L E 692.-MOLECULAR
639
VELOCITIES A N D ENERGIES
P a r t 1.-Discussion
Let a denote the niost probable velocity, va, the average velocity and v,, the mean velocity (the square root of the mean square). Then
-
a = V2ReT/Al = 12,895 V l / M cm &s v.= (2/V7r) a = 1.1284 a = 14,55XT/M cm sec" vr = V e a = 1.225 a = 15,794 V T / M cm sec-'
The probability of a random velocity v = ca is f o= ( r / G ) c ' [exp - C'I The fraction of the total number of molecules, N , which have a random velocity equal to or less than v = ca is
P a r t 2 of this table gives values of f. and of y for a series of values of c. The third column gives values of A y , which is the fraction of the total number that have values of c between that given in the same horizontal row and that in the preceding row. From the relation for f. we obtain the relation for the probability that a molecule possesses the translational energy E. Let x = E / ( k T ) where x is a dimensionless quantity. Then fi = 2 ~ (exp 3- .-) and the average kinetic energy is E,. I(3/2)k7 where k = Boltzmann constant = 1.3805 lo-'' erg deg-' K The last two columns in Part 2, below, give values of fa for a series of values of X .
x
P a r t 2.-Values
of functions for application o f distribution laws
f.
C
0
0
.2 .3 .5 .7 1.o 1.3 1.6 1.8 2.0 2.2 2.5 3.0 4.0 5.0
.0867 .1856 .4393 .6775 .8302 .7036 .4464 .2862 .1652 .0867 .0275 .0025 4.1X10" 7.8X 10-l0 P a r t 3.-Rates
Y
0
m.59 .0193 .0812 ,1939 .4276 .6634 3369 9096 .9540 .9784 .9941 1 - 4.2X 1 - 5.1X10" 1 - 7.9X1O-l1
AY
.0059 .0134 .0619 .I127 .2337 .2358 .1735 .0727 .0444 .0244 .0157
.?
0 .1 .2
.5
.7 1.o 1.4 1.8 2.2 2.5 3.0 3.5 4.0 5.0 6.0
f= .3229 -4131 . ~.~ .4839 .4688 .4152 .3294 .2502 .1855 .1464 .0973 .0637 .0413 .0170 .0069
of incidence and o f evaporation of molecules
The rate a t which molecules strike a surface is given by Y = ( 1 / 4 ) ~ cm-' , sec-' = 2.635 X 10" ( P # b ) / ( e )cm-'sec-' = 3.513 lo2' Pmm/VMT cm-'sec-' G= mass of gas of molecular wt, M , = 1.6604 lo-'' MY = 4.375 x lo-' (Ppt,)( V M f g cm-' sec-' = 5.833 lo-' (Pmm) (VM/T) g cm-' sec-' If we assume that the accommodation coefficient for condensation is unity, then the rate of evaporation is equal to the rate of condensation and the vapor presswe, P m m , is given by the relation P,, = 17.14G V T / M
x x x
-
-
SMITHSONIAN PHYSICAL TABLES
640 TABLE 693.-MASSES,
Y,
vY
VELOCITIES, AND RATES OF INCIDENCE O F MOLECULES
*
= rate of incidence of molecules per cm2 per sec, a t 0°C and 1 microbar. = rate of incidence of molecules per cm' per sec, at 0°C and 1 mm.
G, = mass of gas corresponding to v1 ( g cm-' sec-'). Glt = mass of gas corresponding to YX, (g cm-' sec-I). rn = mass of molecule in grams = 1.66035 X lo-" M ; M = molecular weight ; = density ( g cm-9 of gas at 0°C and 1 microbar. v, = average velocity (cm sec-I).
plo
1 0 4 x wn Gas or vapor
10"m
fit
2.016 4.003 16.04 17.03 18.02 20.18 28.01 28.02 28.98** 32.00 39.94 44.01 50.49 64.06 70.91 83.7 100.2 131.3 153.8 200.6
Hz He CH, NH3 HzO Ne
co
Nz Air 0 2
A
coz CHJCI so,
CIZ Kr GHio Xe CCI, Hg +
.3347 .6646 2.663 2.827 2.992 3.351 4.651 4.652 4.811 5.313 6.631 7.308 8.383 10.64 11.77 13.90 16.63 21.80 25.54 33.31
10'0p10
'0°C
25°C '
.8878 16.93 1.7631 12.01 7.063 6.005 7.498 5.829 7.936 5.665 8.886 5.355 12.34 4.543 4.542 12.34 12.77 4.468 14.09 4.252 17.59 3.805 19.38 3.624 22.23 3.385 28.21 3.004 31.23 2.856 36.85 2.629 44.12 2.403 57.82 2.099 67.72 1.939 (88.33) 1.698
17.70 12.56 6.273 6.089 5.919 5.594 4.746 4.745 4.668 4.442 3.976 3.787 3.356 3.139 2.984 2.747 2.510 2.193 2.026 1.774
10-17~~
11.23 7.969 3.981 3.865 3.756 3.550 3.012 3.011 2.962 2.819 2.523 2.403 2.244 1.992 1.893 1.743 1.593 1.392 1.286 (1.126
10-%1'
14.97 10.63 5.308 5.152 5.007 4.733 4.0 16 4.015 3.950 3.758 3.363 3.204 2.991 2.656 2.524 2.324 2.123 1.856 1.714 1.501
1OSG,
102G:
.3759
5297
1.060 1.092 1.124 1.190 1.402 1.402 1.425 1.497 1.675 1.756 1.881 2.118 2.229 2.422 2.650 3.034 3.283 3.750
5012 .7062 1.414 1.456 1.498 1.586 1.868 1.868 1.900 1.996 2.230 2.342 2.508 2.825 2.973 3.229 3.533 4.044 4.377 4.998)
For reference, see footnote 219, p. 636. p (density) = 1.293 X 10-8 at 0°C and 760 mmHg. Since the vapor pressure of mercury at 0°C is 1.85 X 10-'mmHg (=0.247pb), the values given in parentheses have no Dhysical significance. Actual values at 0°C. corresponding to saturation pressure, are as follows: p = 21.79 x 10-10; Y = 2.777 X 10'6; G = 9.249 X 10-0.
** Calculated from the value
t
TABLE 694.-MOLECULAR
Gas
.
. . .
Hydrogen . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . Helium . , . . . . . . . . . . . . .'.. . . . . . . . . . . . . . . . .. . . Water vapor ................................ Neon . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . Carbon monoxide ........................... Nitrogen . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . Ethylene . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . Nitric oxide ................................ Oxygen . .. . .. . Argon ..................................... Carbon dioxide . . . . . . . . . . . . . . . . . . . . . . . . . . Nitrous oxide . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . Krypton . . . . . . . ..... . . . . . . . . . . . .. .. . . . . Xenon ...................................... Mercury vapor .. .. . . . . . . . .. . . .. .. .... .. . . ... Air ........................................ Ammonia . . . . . . . . . . . .. .. . . . .. . .. . . . . . . . . . . .
. . .
.
. .. . .. ... ... . ... ..... ...... .... . .. .. . .. .
Z%I-
VELOCITIES
220
C Root mPan square velocities. N T P
Average velocities, N T P
18.38)<10'cm/sec 13.11 6.15 5.84 4.93 4.93 4.93 4.76 4.61 4.13 3.93 3.93 2.86 2.28 1.84 4.85 6.33
16.93X10' cm/sec 12.08 5.65 5.38 4.54 4.54 4.54 4.38 4.25 3.80 3.62 3.62 2.63 2.10 1.70 4.47 5.82
C
Newman and Searle, The general properties of matter, Edward Arnold & Co., London.
SMITHSONIAN PHYSICAL TABLES
T A B L E 695.-MEAN
F R E E P A T H S O F MOLECULES
641
Let L = mean free path, 6 = molecular diameter. Then
and when
q
= O.499pv0L
q
= coefficient of
p
= density of gas at given pressure and temperature
viscosity
Unit of q is the poise= g cm-' sec-' Hence
and q,
as a function of T,-is given by the relation
where qo = value at T o .q = value at T and c' is known as the Sutherland constant. For short ranges of temperature, the expoiicntiul relation is used, of the form (7T/V0) = ( T / T , ) " (7) In Tables 691 and 696, which give values of L, 6 and related data for a number of gases and vapors, q15= coefficient of viscosity at 15°C 70 = " "0°C and 725 = " " 25°C x = value of exponent in equation (7) L.'= value of mean free path (in cm) at 0°C and 1 mmHg value of mean free path (in cm) a t 0°C and 760 mmHg LZ2= value of mean free path (in cm) a t 25°C and 1 mmHg L2s?m= value uf mean free path (in cm) at 25°C and 760 m m H g 6 = value of molecular diameter (in cm) at 0°C N . = 1.154/8*= of molecules per cm2 to form a monolayer (assuming that the spacing is that of close-packed or face-centered lattice) w = collision-frequency at 25°C and 760 mmHg = v,,/Lzsi* For the vapors of H z O and H g (Table 691), P = vapor pressure in mmHg at the temperature t, and Lt and 8, denote the values of the mean free path and diameter, respectively, at this temperature. For H 2 0 vapor, C = 650 and qls = 9.26 X lo-'. For Hg, C = 942.2 and value of q at t = 219.4"C was used. The values of q o and 6, for Hg at 0°C are those given by Jeans.
SMITHSONIAN PHYSICAL TABLES
642 TABLE 696.-VlSCOSITY, 7, M E A N F R E E PATHS, L, MOLECULAR DIAMETERS, 6, AND RELATED DATA FOR A NUMBER OF GASES* Gas: Characteristic
Hz
He
Ne
Air
0 2
A
COZ
Kr
Xe
.69 .64 .79 31 .95 .85 .92 .67 .86 10‘x718 t 1796 2003 1943 87 1 3095 2196 243 1 1448 2236 1878 i 722 107x~00 839 2097 1918 1377 2372 2129 2986 1845 2261 2059 1496 3166 1 0 ~ ~ 892 ~ ~ ~i986 0 2502 2308 lO’XL,~’ t 13.32 4.54 8.39 4.81 4.71 2.95 3.69 2.64 9.44 11.04 17.53 6.33 5.98 6.20 12.42 3.88 4.85 3.47 1o*xL,O’ 14.72 5.40 3.34 4.06 2.98 5.09 9.3 1 10.45 5.31 10ex~,07~ 12.26 6.67 6.69 7.10 4.40 19.36 13.75 5.34 3.93 108x6 2.75 2.18 3.74 3.64 3.67 4.65 4.15 4.91 2.60 c 84.4 142 112 125 80 56 254 188 252 15.22 8.24 8.71 24.16 17.12 8.54 5.34 6.69 4.78 7.16 14.45 6.98 6.26 8.61 1.68 5.70 6.48 5.71 X -
For reference, see footnote 219, p. 636. ** I from relations ?jT = UP. t C = a measure of strength of the attraction forces (in dynes) between
molecules. t Loo1 = mean free path at 0°C and -1 mmHg, etc. D N . = number of molecules/cm2 for monomolecular layer. 7 w = collision frequency (sec-*) at 25°C and 760 mmHg.
SMITHSONIAN PHYSICAL TABLES
643 TABLES 697-712.-ATOMIC
AND MOLECULAR DIMENSIONS
T A B L E 697.-EFFECTIVE
ATOMIC RADII
Goldschmidt, on the basis of reasonable though empirical assumptions, has calculated effective radii of atoms in various charged conditions; Pauling, on the basis of wave mechanics, has presented theoretical values for most of the elements, the two series agreeing well in many cases. The latter values are printed in boldface type ; the values considered nontypical are in parentheses ; e.g., for silicon we have : Si" (0.22-) 0.39-0.41, Si" (1.1%) 1.18, W4 (1.98) ; 2.71, signifying silicon, carrying 4 charges, has apparent radius between 0.22 and 0.41 ; but the lower values relate to compounds where the atoms appear to be deformed ; so Goldschmidt gives 0.39 as most significant. Wave mechanics yields 0.41. Neutral, the radius ranges from 1.2, in abnormal compounds, to 1.18 in those typical ; when carrying 4 - charges, the value is 1.98, according to calculations deemed faulty, 2.71 according to theory. In applying the data to replacements, halides and oxides are usually ionized, and the values in the outer columns apply. Thus in fluorite the value for Cat* should be added to that for F-', giving between 2.32 and 2.42, or 2.37 as a mean ; and the observed Ca-F distance in the crystal is 2.36 angstrom units. In the remaining types of compounds the atoms appear t o be largely neutral and the first column should be used.
+-
.. 0
0
z&.
5:-
e
.I!
&E
Radius neutral atom angstroms
32
.c V
Radius positively charged ion angstroms
1H 2 He 3 Li 4 Be SB
1
6C 7N 8 0 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 CI 18 A 19 K 20 Ca 21 s c 22 T1 23 V
( (
24 C r 25 Mn Mn Mn 26 F e Fe 27 c o co 28 Ni Ni 29 Cu
( 1 . 1 7 4 1.25 (-1.54) (1.17-) 1.29(-1.59)
V
cu
30 Zn 31 Ga 32 Ge 33 As As
34 Se 35 Br 36 K r 37 Rb 3.3 S r 39 Y 40 Z r 41 Nb Nb
.45-) .65-) .60(67
.77 .71 .65)
(i:iZ) ( 1.77-) (1.42-)
1.86 1.62 ( 1 . 1 6 ) 1.43 (1.~~-)1.18 1:6??-1.04 1.05-1.07 (1.54) (2.07:)2.23 (1.7&)1.97 1.51 (1.4&) 1.49(--1.53) 1.32(--1.43)
(1.21-)
1.26(--1.45)
1.26(--1.39) 1.24(--1.39) (1.22-)1.27(--1.37) 1.31-1.34 1.3 3 (-1.4 5 ) 1.22 I1.04-) 1.I 6 (-1.26) ( 1.28-)
1.13-1.17 1.19 (1.69) (2.25-)2.36 1.95 1.60-1.62 1.43(--1.50)
2 3 4 5 6
7
1
2 3 4 5 6 7
?
u 1H
6C 7N 8 0 9
F
-1
-4 -3
-2 -1
.82)
.96- .9R(--1.09) .66- .78(.85) -60- .57f.66)
1.22-) . , .39- .41 .a4 .29- .31 -26
1 1.33(--1.84) 2 .99-1.66(--1.50) 3 -81- .83 4 (.58-) .64- .68 5 69 4 .69- .61 6 .62- .65 7 .46 4 .60- .52 2 .80- .91 3 (.49-) .67 2 -76- .R3 '3 .29- .47 2 .72- .82 7< 3 2 .69- .78 I
2 .PO 1 (.58-)
2 3 4 5
3 6 7
.96
-71-.83 .62 .44.47 .69
.&a
.42
.39
0
Radius neqative ion
(1.27);2.08 2.60 1.71 1.32-1.40 1.33-1.86
14 Si 15 P If, S 17C1
SMITHSONIAN PHYSICAL TABLES
F
Radius neyative
V -4
ion
-3
(1.98); 2.71 2.12 1.74-1.84 1.81
-1
< u
42 Mo Mo 44 R u 45 Rh 46 P d 47 AK 48 Cd 49 In 50 Sn 51 S b Sb 52 T e Te 53 I I 54 Xe 55 c s 56 Ba 57 L a 58 Ce
Ce
59 PI Pr 60 Nd 62 Sm 63 E u 64 Cd 65 T b 66 Dy 67 Ho 68 EI 69 T m 70 Yb 72 Hf 73 T a 74 W
w
al
Radius neutral atom angstroms 1.36 1.27-1.34 1.34-1.35 1.37 (1.17-) 1.44 (1.47-) 1.49(-1.60) 1.45-1.62 (1.27-) 1.40 (1.22-) 1.34 (-1.44) 1.33-1.43 1.36-1.40 (1.90) (2.37-) 2.10
2.55
1.82-1.83
T1
82 P b Pb 83 Bi 90 T h 92 u -NH.
F Radius positively c
u
6 4 4 3
1.66 1.42- .44 1.37
1.74 (-1.90) (1.34-) 1.46(-1.55) 1.80-1.82
2
F
Radius negative
V
ion
3 2 G e -4 33 A~ -3 34 S e -2 35 B r -1
2.72 2.28 1.91-1.98 1.96-1.96
charged ion angstroms .62 .66(.83) .63- .65 .69
1 (.79-) 1.13-1.26 2 ( . 7 8 - ) .97-1.03 .81- .92 3 4 (.64-) -71(--.81) 5 .62 ,., 3 .sn 6 .66 4 -81- .89 7 .60 5 .94 1 1.65-1.69(-1.75)
2 3 4 3 4 3 3 3 3 3
al
2 -2
e
EE $2
1.30- .34 76 0 s 1.35 77 I r 1.38(--1.43) 78 P t 1.40-1.44 79 Au 80 H g 1.46-1.49 81 TI (1.71-)1.99(-2.25)
1 1.48-1.49(--1.88) 2 1.13-1.27 (-1.45) 3 .sai.06 4 (.68--) .SO- .89 5 .69- -70 4 37- .69
u
2
- 6 6 .78(.31- .34 -20 .16 .11 -09 A7
.o
3 3 3 3 3 3 6
4 4 4 1 2 3 1 4 2 5 4 4 1
1.35-1.43 (-1.49) 1.16-1.22 1.01-1.02 1.18 -92-1.00 1.16 1.15 1.13 1.13 1.11 1.09
1.07 1.05 1.04 1.04 1.00 .R8 ... .66- .68 .66- .67
34- .66
1.37 1.10-1.12 .96-1.05 1.44-1.51 .84 (.98-)1.21-1.32 -74 1.02-1.10 .97-1.05
1.42-1.59
t*
B 50 Sn
51 Sb 5 2 Te
53 I 82 P b
-4 -3 -2 -1 -4
Radius negative ion
(2.15); 8.94 2.46 2.03-2.81 2.16-2.20 2.16
644 T A B L E 698*.-DIFFUSION
-
COEFFICIENTS O F GASEOUS IONS A T N T P Dry gas
Gas
.
Air . . . . . . . . . . . . . . . . . . . . . . . . Oxygen ..................... Carbon dioxide . . . . . . . . . . . . . Nitrogen . . . . . . . . . . . . . ... . . Hydrogen . . . . . . . . . . . . . .
.
. . ..
. .. .
,028 ,025 ,023 ,029 .123
Moist gas
v .032 .035
.043 .0396 .026 ,0414 .I90
.0288 .0245
.0358 .0255
.I28
.142
...
...
*Tables 698-700 and 702 prepared by J. D. Cobine. General Electric Co., Schenectady, N. Y. mCoh~ne, J. D., Gaseous conductors, 2d ed., McGraw-Hill Book Co. Used by permission of the publishers.
T A B L E 699.-DIFFUSION
Gases
.
..
A - He . . . . . . . . . Air- Cot ......... Air - 0, . . . . . . . . . . CO - COz . . . . . . CO - HzO . .. . . . . . CO - Oz . . . . . . . . . COZ- Air , . . . . . . . . COz - HzO . . . . . . . . He - A . . . . . . . . . H t - Air . . . . . . . . . .
.
..
.. .
.
. ..
.
COEFFICIENTS O F N E U T R A L GASES A T O'C AND 760 m m H g *
D **
mt
... ...
.706 .134 .I78 .136 .642 .I83 .134 .528 .641 .661
... ...
2.00
1.75
... ...
1.75 1.75
Gases
Hz - CO . . . . . . . . . . . Hz - COz . . . . . . . . . . Hz - Nz . . . . . . . . . . . . H: - NZ0 . . . . . . . . . . Hz - 0 2 . . . . . . . . . . . . H 2 0- Air . . . . . . . . . Hg - Air . . . . . . . . . . . .. . . . . .. .. 0 2 - Air Oz - H2 . . . . . . . . . . . 0: - CO . . . . . . . . . . Oz - CO, . . . . . . . . . .
.
D **
mt
.651 .534 .674 .535 .679 .220 ,112 ,178 .722 .I85 .136
1.75 1.75 1.75 1.75 1.75 1.75
...
1.75
...
1.75 2.00
For reference see footnote 221 above. t D = D o ( f / T o ) m ( p 0 / f i ) , where D O is the value of D in the table, T o = O"C,
** D in cmZ/se'c.
PO = 1 atm.
T A B L E 700.-MOBILITIES
O F POSITIVE IONS I N NOBLE GASES A T 760 mmHg AND O°C*
(cm/sec per volt/cm) Ion
He
Gas t
20.1 24.2 22.7 21.5 20.1 18.4
. . . . . . . . . . .. . .. . . . .. . . .. Li .......................... Na . . . . . . . . .. . . . . . . . . . . . . . . . . K- .......... ... .. ............ Rb . . . . . . . . .. . . . ... . .. . . . . .. . Cs .......................... .
.
Ne
5.85 11.87 8.16 7.51 6.75 6.10
A
Kr
Xe
1.81 4.68 3.03 2.64 2.24 2.10
.88 3.72 2.20 1.86 1.49 1.33
.61 2.84 1.69 1.35 1.03 .91
' For
t
reference, see footnote 221, above. Ions same as gas.
TABLE 701.-MOLECULAR Gas From v t Argon . . .. 2.87)<1O-'cm Krypton 3.15 Xenon .... 3.50 Helium . . . . 1.91 Oxygen 2.96
.
..
...
DIAMETERS, 6, FOR ATTRACTIVE SPHERES *
From b
t
2.87)(10-scm 3.16 3.45 1.97 2.91
For reference, see footnote 220, p. 640. t Van der Waal's equation.
t Viscosity.
SMITHSONIAN PHYSICAL TABLES
Gas From 1) t Hydrogen . . 2.38)(10-8cm Nitrogen . . 3.13 Air .. . . .. 3.11 Carbon dioxide . . 3.23 .. 3.30
.
From b
t
2.53x10-scm 3.56-3.10 3.32 3.22 3.42
645 T A B L E 702.-MOBILITY
*
O F SINGLY-CHARGED GASEOUS IONS A T 760 mmHg A N D O°C**
(cm/sec per volt/cm) Gas
.................... .................... c1z .......................... CCI. ........................ co ......................... CO. (dry) ................... Hz .......................... H1 (pure) ................... HC1 ......................... H z O (at 100°C) .............. HzS ......................... H e .......................... He (pure) ................... Hg in H e .................... Hg in Nz ..................... K r .......................... Nz .......................... biz (pure) .................... N HZ ........................ N H J in Nz.................... NzO ........................ Ne .......................... .......................... so2 ......................... Air (dry) A (pure)
0 2
K = K o p o / p . where
PO
(E
t
. 1)
K.-
.000585
K
2.2 206.0 .74 31 1.14 .98 8.15 7900.0 .62 .95 .56 6.3
.00056 ....
.
.0030 .00070 .00098 .00028 .... .0046 .... .0040 .000074 .... .... .0007685
.30
1.10
.84
5.9 13.8
.53 1.1 .62 5.09 21.4 13.4 2.02 .94 1.27 2.51 .56 3.06 .82 5.64
500.0
... ... ...
.00058
1.84 145.0 .66
.0072 .... .00113 .0001231 .00051 .0095
.+
1.6 1.81 .74
~~
... .90 ... 1.8 .41
1.31 .41
is the gas density at NTP and p is the density at which K is desired . 0.235
(7) ml+m t
K=
-
(P/PO)(€ 1)oMo where m l = mass of ion m2= mass of gas particle. e = dielectric constant. ( E 1 ) q is calculated for N T P . , M = molecular &eight of gas Values of mobility in this table may not be absolute. but are of orienting value . ** For reference. see footnote 221. 644. t International Critical Tables; Tabris Annuelles Internationales de Constants
.
-
.
.
T A B L E 703.-MOLECULAR
Gas
DIAMETER (BRAGG)
*
From crystal measured in 2d
From viscosity rl
Ratio. Wrl
1.30X10-scm 2.05 2.35 2.70
2.35x lo-" cm 2.87 3.15 3.50
.771
Neon ........................ Argon ...................... Krypton ..................... Xenon .......................
.553 .714 .746
For reference. see footnote 220. p. 640.
T A B L E 704.-NUMBER OF MOLECULES (PER cmp A T 0°C) OF MONOLAYER AND E Q U I V A L E N T VOLUME (cm3) *
Gas
No molecules x 10-1'
Hz ......... 15.22 H e ......... 24.16 A .......... 8.54 Nz ......... 8.10 0 2 ......... 8.71
Vol gas at 760 mmHg and 2O'C x 10s
6.08 9.65 3.41 3.24 3.48
.
.
* For reference. see footnote 219. p 636 SMITHSONIAN PHYSICAL TABLES
Gas
No molecules x 10-14
Vol gas at 760 mmHg and 20°C .x. 105
8.07 5.34 5.23 4.56 5.27
3.23 2.13 2.09 1.82 2.11
........ coz ........ CH, ....... N H j ....... HzO ....... CO
646
T A B L E 7 0 5 . 4 R O S S S E C TI O N A N D L E N G T H S O F SO M E ORGANIC M O L E C U L E S
According to Langmuir, in solids and liquids every atom is chemically combined to adjacent atoms. I n most inorganic substances the identity of the molecule is generally lost, but in organic compounds a more permanent existence of the molecule probably occurs. When oil spreads over water evidence points to a layer a molecule thick and that the molecules are not spheres. Were they spheres and an attraction existed between them and the water, they would be dissolved instead of spreading over the surface. The presence of the -COOH, -CO or -OH groups generally renders an organic substance soluble in water, whereas the hydrocarbon chain decreases the solubility. When an oil is placed on water the -COOH groups are attracted to the water and the hydrocarbon chains repelled but attracted to each other. The process leads the oil over the surface until all the -COOH groups are in contact if possible. Pure hydrocarbon oils will not spread over water. Benzene will not mix with watcr. When a limited amount of oil is present the spreading ceases when all the water-attracted groups are in contact with water. If weight w of ail spreads over water surface A , the area covered b y each molecule is A M / w N where M is the molecular weight of the oil (0 = 16j, N , Avogadro's constant. The vertical length of a molecule I = M / a p N = W / p A where p is the oil density and a the horizontal area of the molecule. Cross section in cm2 X 10'8
Substance
Palmitic acid Cl,H31COOH............................ Stearic acid CllH3,COOH ............................. Cerotic a.cid C,,H,,COOH. . . . . . . . . . . . ........... Oleic acid C,:H33COOH. ............. ........... Linoleic acid Cl1HslCOOH.. .......................... Linolenic acid CI7H2,COOH........................... Ricinoleic acid CIIHXZ(OH)COOH., ................... Cetyl alcohol CjeH3,0H ............. Myricyl alcohol C30He10 ............. Cetyl palmitate C15H3,COOCleH33.. .................... Tristearin (ClnH,502)3C,H5.... ............. Trielaidin (C18H3302),C,H, .... ............. Triolein (ClaH330~)sC3H5...... ............... Castor oil (C17H:42(OH)COO)3C ............... Linseed oil (C,7H31C00)3C3H5. ........................ ~~~
T A B L E 706.-VOLUMES
I in cm (length) x 108
24 24 25 48 47 66 90 21 29 21 69 137 145 280 143
19.6
21.8 29.0 10.8 10.7 7.6 5.8 21.9 35.2 44.0 23.7 11.9 11.2 5.7
11.0
~~
O F I N E R T GAS A T O M S * Volume ionrc radius
b volume
Volume
b
3.33 8.6 12.5 18.8
17.1 32.2 39.7 50.8
5.1 3.8 3.2 2.7
16.7 28.1 38.9 47.5
from
Gas
Neon ................................. Argon ................................ Krypton .............................. Xenon ................................
.
For reference, see footnote 203, p. 624.
SMITHSONIAN PHYSICAL TABLES
of
liquid
T A B L E 707.-LATTICE ro
Material
observed A
ro
calculated A
SPACINGS O F I O N I C C R Y S T A L S
Melting point. "C
ro
observed A
Material
*
ro
calculated A
647 Melting ptint.
C
Sodium chloride structure LiF ......... 2.01 LiCl ........ 2.57 LiBr ........ 2.75 LiI ......... 3.00 NaF . . . . . . . . 2.31 NaCl ....... 2.81 NaBr ....... 2.98 NaI ......... 3.23 K F ......... 2.67 KCI ......... 3.14 KBr ........ 3.29 K I .......... 3.53 RbF . . . . . . . . 2.82 RbCl ........ 3.27 RbBr ....... 3.43 RbI ......... 3.66 CsF ......... 3.00 NHiCl ...... 3.27 NHiBr ...... 3.45
2.10 2.60 2.75 3.00 2.35 2.85 3.00 3.25 2.65 3.15 3.30 3.55 2.80 3.30 3.45 3.70 3.05 3.25 3.40
CsCl ........ 3.56 CsBr ........ 3.71 CSI ......... 3.95 NH, CI ...... 3.34
3.55 3.70 3.95 3.25
CuCl ........ 2.34 CuBr ...... 2.46 CuI ......... 2.62 BeS ......... 2.10 BeSe ........ 2.18 BeTe ....... 2.43 ZnS ........ 2.35 ZnSe ....... 2.45
2.30 2.45 2.70 2.10 2.20 2.40 2.35 2.45
870 613 547 446 980 804 755 651 880 776 730 773 760 .. 715 682 642 684
Cesium chloride 646 636 621
....... 3.62 AgF- ........ 2.46 AgCl ....... 2.77 AgBr ....... 2.88 M a 0 ....... 2.10 M& ........ 2.60 MgSe ....... 2.73 CaO ........ 2.40 CaS ......... 2.84 Case ........ 2.96 CaTe ....... 2.97 SrO ........ 2.58
NH.1
SrS ......... 3.01 .. SrSe ........ 3.12 SrTe ........ 3.33 BaO ........ 2.77 BaS ........ 3.19 Base ........ 3.30 BaTe ....... 3.50
structure NHIBr ...... 3.51 N H J ....... 3.78 TIC1 ........ 3.33 TlBr ........ 3.44
Zincblende structure 422 ZnTe ....... 2.64 504 CdS ......... 2.52 605 CdSe ........ 2.62 CdTe ....... 2.80 HgS ........ 2.53 HgSe .... .. 2.62 1800 HgTe ....... 2.79
.
Wurtzite structure (first distance is that to neighbor along axis. second to same layer) NHiF ...... 2.63,2.76 2.75 ZnS ......... 2.36,2.36 B e 0 ........ 1.64,1.60 1.65 2570 CdS ........ 2.52,2.56 ZnO ........ 1.94,2.04 1.90 CdSe ....... 2.63,2.64
'For
.
reference. see footnote 203. p 624.
SMITHSONIAN PHYSICAL TABLES
3.65 2.30 2.80 2.95 2.15 2.60 2.70 2.40 2.85 2.95 3.15 2.60 3.05 3.15 3.35 2.75 3.20 3.30 3.50
3.40 3.65
2.65 2.50 2.60 2.80 2.50 2.60 2.80
435 455 434 2800 2572
2430 882 1923
430 460
1750
three neighbors in 2.35 2.50 2.60
1850 1750
T A B L E 708.-lONIC
645
RADII
*
(Angstroms) Be++ .20 Mg" .70 Cat+ .95 Sr++ 1.15 Ba++ 1.30
Li' .80 Na' 1.05 K' 1.35 Rb+ 1.50 CS' 1.75 NH.' 1.45
F1.30 CI1.80 Br1.95 I2.20
O-1.45
S-1.90 Se-2.00 Te-2.20
Zn++ .45 Cd"
.a
CU'
.so
Ag' 1.oo
Hg++
.60
For reference, see footnote 203, p. 624.
T A B L E 703.-CRYSTAL
S T R U C T U R E A N D I N T E R A T O M I C D I S T A N C E S FOR M E T A L S (Angstroms) **
Abbreviations : b.c., body-centered cubic ; f.c., face-centered cubic ; hex, hexagonal ; di, diamond ; *, other structures. Li b.c. 3.03 Be hex 2.28 2.24 B
Na b.c. 3.72 Mg hex 3.20 3.19 A1 f.c. 2.85
K bs. 4.50 Ca f.c. 3.93
Rb b.c. 4.86 Sr f s . 4.29
Cs b.c. 5.25 Ba b.c. 4.35
sc
Y 3.58 Zr hex 3.23 3.18 Nb
La hex, f.c. 3.72,3.73 Hf hex 3.32 3.33 Ta b.c. 2.88 W b.c. 2.73
Ti hex 2.95 2.90 V b.c. 2.63 Cr b.c. 2.49 Mn * 2.50 Fe f.c. 2.57,2.48 Co hex, f.c. 2.71 Ni f.c. 2.49 c u f.c. 2.55 Zn hex 2.65 2.94 Ga * 2.56 Ge di 2.43 As * 2.50 Se * 2.32
Si di 2.35
** For reference, see footnote 203,
SMITHSONIAN PHYSICAL TABLES
p. 624.
Mo b.c. 2.72
_-
Ru hex 2.69 2.65 Rh f.c. 2.69 Pd f.c. 2.74 Ag f.c. 2.88 Cd hex 2.97 3.30 In * 3.24,3.33 Sn di 2.80 Sb * 2.88 Te * 2.88
0 s hex 2.71 2.67 Ir f.c. 2.70 P t f.c. 2.76 Au f.c. 2.87 Hg * 2.99
T1 hex, f.c. 3.45,3.43 P b f.c. 3.49 Bi * 3.10
TABLE 710.-GREATEST
v)
E I 4
Z2
BINDING ENERGY O F AN ELECTRON-NEUTRAL
i: I -0
<
%?
0 P
l-
4 D m r m v)
ATOMS P 1 l o
The binding energy has been calculated by multiplying the absolute value of the appropriate energy level (in cm-'), referred to its proper limit. by the factor 0.00012395, to express it in electron volts. A dash indicates that no such term exists. Brackets denote an estimated value. Element 1s H I 13.59 He I 24.58 Li I Be I ... R ,_ CI NI 01
FI
Ne I Na I Mg I Al I Si I PI SI CI I AI
... ... ... ... ... ... ... ... ... ... ...
... ... ... ...
2s 3.40 4.77 5.39 9.32
... ... ... ... ... ... ... ... ... ... ... ... ... ...
KI Ca I sc I Ti I VI Cr I Mn I Fe I
... ... ...
Ni I cu I Zn I Ga I Ge I
... ... ... ... ... ...
... ... ... ... ... ... ... ... ...
... ...
... ...
co I
As I
Se I Br I Krr Rb I Sr I 1 'I Zr I Nb I
...
... ... ...
... ... ... ... ... ... ... ...
...
... ... ...
... ... ... ... ... ...
...
...
2P 3.40 3.62 3.54 6.60 8.30 11.26 11.54 13.61 17.42. 21.56
... ... ... ...
... ... ... ... ...
... ... ... ... ... ... ...
... ... ... ...
... ... ... ... ...
...
... ...
... ... ...
3s 1.51 1.87 2.02 2.86 3.33 3.79 4.22 4.47 4.72 4.94 5.14 7.64
3d ._
3P 1.51 1.58 1.56 2.03
... ... ... ... ...
...
2.73 2.95 2.88 3.05 3.18 3.04 4.94 5.98 8.15 [ 10.5SIb 10.36 13.01 15.76
... ... ... ... ... ...
... ... ... ... ... ...
... ... ... ... ...
...
... ... ...
... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ...
.85 .99 1.05 1.32 1.48 1.58 1.70 1.78 1.85 1.90 1.95 2.54 2.84 3.23 3.62 3.83 4.09 4.21
1.91
BS
At 1.67 2.97 3.38 4.23 2.38 4.05 4.45 5.81
-
-
3.59 5.13 6.02 6.80 8.25 5.32 7.04 7.85 8.65 10.44
...
... ... ... ...
... ... ... ...
...
... ... ...
...
... ... ...
... ...
...
4b .85
4s
1.51 1.51 1.51 1.63 1.51 1.64 1.58 1.54 1.54 1.54 1.52 1.89 1.96 2.28 1.83 1.94
.as
.87 11.151 1.33 1.35 1.33 1.38 1.41 1.39 1.71 1.90 2.29 2.45 2.49 2.74 2.85
A 4.34 5.28 5.73 6.13 6.48 6.76 7.09 7.27 7.43 7.61 7.72
B
-
-_
6.11 6.56 6.83 7.06 7.29 7.43 7.90 8.28 8.67 9.05 9.39
... ... ... ... ... ...
... ... ... ... ...
A 2.73 3.37 3.56 3.66 3.68 3.87 4.03 4.03 3.89 4.09 3.94
B
4.23 4.62 4.87 5.03 5.15
5.15 5.50
5.35 5.48 5.61 5.39
6.00 7.88 9.81 9.75 11.84 14.00
... ... ... ... ...
5P
4d .85 .85 .85 .90 .86 .91 .89 .86 .87 .86 .86 1.06 1.16 1.43
5s .54 .62 .64 .77 .84 .87 .93 .96 .98 1.00 1.02 1.21 1.31 1.43
1.06 1.15 1.07
[IS91
A
-
1.44
1.49 1.96 1.73 1.65 1.66 1.64 1.66 1.65 1.65 1.66 - 1.65 1.69 1.87 2.03 1.89
1.51 1.53 1.53 1.55 1.55 1.54 1.56 1.53
2.00
A. . 1.78 3.89 4.58 5.36
B
-
3.44 5.27 6.35
A 1.73 1.92 1.96 2.10 2.14 2.19 2.24 2.30 2.31 2.35 2.38
B
-
2.20 2.30 2.38 2.43 2.49 2.54 2.59 2.62 2.67 2.71 - 2.74 2.92 3.24 3.53 3.78 3.98 4.08
A 4.18 6.16 6.67 6.77
1.20 1.30 1.30
.66 .72 .66
.75
1.69
B
94. ._
.74 .78 .a0 .79 .92 .99 1.15
5d .54 .54 .54 .57 .55 .58 .57 .55 .55 .55 .55 .66 .75 .83
.54 .56 .55 1.691
B
-
5.69 6.63 6 95 6.92
Moore Charlotte E. and Russell Henry Norris Nat. Bur. Standards Journ. Res., vol. 48 p. 61 1952. ' A , Lidin, K., .\rk f: Fys. (Stocdholm), vol. 1. b. 260, 1949. B , Finkelnburg, W., and d e r n F: Phys. Rev., vol. 77, p. 303, 1950. A , limit is lowest level of configuration 3d"-1 (K I C u I ) , 4d"-1 (Rb I - Nh I ) in the singly ;onLed atom. See column 6, Table 623. ration 3d"-2 4s (K I - Cu I), 4dn-2 5s (Rb I Nb I) in the singly ionized atom.
A 1.28 1.45
B
-
1.58
A .60 .a1
B
-
.81
.90 .90
1.65 .85
1.53
.90
1.73 1.59 1.60
-
1.73 1.80
.87 .86
.92 .89
-
.92
.94 1.02
2.09 2.28 2.41 2.59 2.70
A 2.62 3.37 3.96 4.34 4.04
1.03 1.13
B
A
-
.99
3.92 4.78 5.12
B
-
1.39 1.86 2.00
4.99
222
t
-
-
X B , limit is lowest of configu-
$!
TABLE 711.-GREATEST BINDI,NG ENERGY O F A N ELECTRONSINGLY-IONIZED ATOMS t
650
*
Element
H e 11 Li 11 Be 11
B
II
N
11
0 F
I1
c I1 II
Ne 11 Na II Mg 11
Al
11 Si 11 P I1 I1
s
CI I1 A 11
K
Ca sc Ti
v
11 11
I1 11
I1
Cr 11 Mn 11 Fe 11 c o I1 Ni 11 c u I1 Zn 11 Ga 11 Ge 11 As II Se 11 Br 11 Kr 11 R b II Sr II
Y
I1
Zr 11 N b 11
2p
2s
is
54.40 13.60 75.62 16.61 .... 18.21 .... 25.15
.... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... ....
....
13.60 14.35 14.25 20.52 24.38 29.61 35.15 34.98 41.07 47.29
.... .... .... .... .... ........ ........
........ ........ ........ ........ ........ ........ ........
3P
3s
6.04 6.86 7.27 9.06 9.93 11.15 12.19 13.08 13.91 14.45 15.03 18.82
.... ....
.... .... .... ....
3d
4s
6.04 6.04 3.40 6.27 6.05 3.73 6.25 6.05 3.89 7.30 6.48 4.53 8.05 6.33 4.89 6.49 5.24 9.20 9.87 6.48 5.57 9.86 6.33 5.81 10.55 6.47 6.12 10.95 6.32 6.20 10.61 6.17 6.38 14.19 6.98 7.51 16.34 6.51 8.22 6.81 8.92 19.65 9.75 9.82 23.4 23.80 10.13 10.43 27.62 11.22 10.98 31.81 11.55 11.67 10.18 11.87 .... 12.20 12.80 13.46 13.57 .... 14.65 14.33 .... 16.49 15.01 13.86 15.64 .... 15.95 16.18 .... 17.05 16.64 18.15 17.11 .... 20.29 17.57 .... 17.96 .... 20.51
.... .... . . . . . . . . .... . . . . . . . . .... .... . . . . . . . . .... . . . . . . . . .... . . . . . . . . .... .... . . . . . . . . .... ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........
....
.... .... .... .... .... .... .... .... .... .... .... .... .... .... ....
4p
4d
5s
3.40 3.49 3.49 3.89 4.23 4.55 4.68 4.40
3.40 3.40 3.40 3.57 3.54 3.62 3.60 3.49 3.60 3.47 3.47 3.77 3.82 4.16 4.57 4.63 4.85 5.11 4.82 5.42 5.53 5.67 5.76 5.78 5.91
2.18 2.34 2.42 2.73 2.89 3.05 3.20
5.04 5.76 6.28 6.86 7.85 7.86 8.40 9.10 8.75 9.56 9.91 10.36 10.69 10.88 11.41 11.45 11.76 12.05 11.95 14.64 15.93 20.2 21.5 21.6 24.56 27.50
........ ........ ........ ........ ........ .. .... .... . . . . . . . . .... .... . . . . . . . . ....
.... .... .... .... ....
Sp
5d
2.18 2.18 2.22 2.18 2.22 2.18 2.26 2.65 2.25 2.25 2.80 2.27
3.50 3.53 2.95 3.94 3.24 4.20 3.47 4.36 4:78 3.06 4.93 5.11 4.05 5.46 5.40 4.36 5.66 5.87
6.24 6.39 4.991 6.53 5.35 6.64 6.77 6.09 6.90 5.40 5.95 7.00 5.39 7.16 7.75 5.83 5.91 8.20 6.14 9.2 10.4 8.4 9.70 7.50 7.65 9.94 7.37 8.95 10.58 7.% 10.97 8.38 9.22 11.03 8.09 11.40 12.29 9.15 13.71 14.03 10.56
2.21 2.36 2.41 2.41
~~
2.75 2.28 2.85
3.25
3.39 3.34 3.51 3.52
.... ....................................
4.36 4.32 4.63 4.67 4.42 5.14 4.87
See column 6 Table 623. see footnote 222. p . 649.
t For referenc;.
T A B L E 712.-CONSTANTS
O F DIATOMIC MOLECULES *
The attractive force between atoms varies with the distance between centers. When this distance = re. the sum of the two radii. the force changes from an attraction to a repulsion . The force. D. at this distance. re. is thus the force necessary to pull the two atoms apart . The energy of separation is generally given .
.
Substance
Hz ........ C H ....... N H ....... O H ....... HCI ...... NO .......
Oz
N,
........
........
.D
,D
D kgcal mole
electron volts
103 81 97 102 102 123 117 170
4.454 3.5 4.2 4.4 4.40 5.3 5.09 7.35
re
A
.75
1.12 1.08 .96 1.27 1.15 1.20 1.09
For reference. see footnote 203. p . 624 .
SMITHSONIAN PHYSICAL TABLES
Substance
kgcal mole
CO . . . . . . . 223 Cz ........ 128 CI, ........ 57 Brz ....... 46 I2 ......... 36 Li, ........ 26 Naz ....... 18 Kz ........ 12
D electron volts
7
9.6 5.6 2.47 1.96 1.53 1.14 .76 .51
1.13 1.31 1.98 2.28 2.66 2.67 3.07 3.91
TABLES 713-730.-NUCLEAR
PHYSICS
65 1
Nuclear physics may be divided into three fields : radioactivity, cosmic rays, and artificial disintegration. The third division-artificial disintegration-is today the most active single experimental (and theoretical) problem of the physicist. This new branch of physics has introduced a number of terms, some of which are defined in Table 716. There is hardly a major physical laboratory that does not have at least one of the devices listed in Table 718 for producing high-energy particles of one kind or another. The study of nuclear physics started more than 50 years ago with the discovery of radioactivity. This was a study of natural disintegration up to about 1919 when Rutherford produced and studied artificial disintegration by bombarding nitrogen with swift =-particles from RaC'. However, he had to depend upon nature for the high-speed particles that he used. The value of the speed and energy of the a-rays from natural radioactive materials (Table 732) shows the nature of the particles then available. It was not until about 10 years later that a start was made on the development of the various devices for producing the regulated high-speed and high-energy particles listed in Table 718. By bombarding different materials with one of the high-speed particles produced by various devices it has been found possible to produce one or more radioactive isotopes of each of the 92 elements and, in addition, to produce 6 elements beyond uranium-each with a number of isotopes.* There are now 9 or 10 known fundamental particles (Table 720), 5 or 6 of which are used in the bombardment of isotopes for the production of new reactions. Some examples of reactions thus brought about by the use of different ones of these high-speed particles together with the minimum energy of the particles necessary to produce the reactions are given in Table 726. The relative masses of the isotopes vary from 1.0081374 for H' to about 242.14152 for Cmzrz. The actual mass in grams for H1is 1.67339 x grams, and thus the mass, in grams, of any atom may be determined from its g. The radius of atomic weight. The mass of the neutron is 1.67473 x a nucleus, r, is given approximately by 1.4 x lO-lSAllS cm, A being the atomic mass number. These values give for the density of the nucleus about 1014 g/cm3 (see Table 872). The atomic weight, the magnetic moment, and the spin of a number of isotopes are given in Table 719.
* For reference, see footnote 199, p. 618. T A B L E 713.-MASS,
Energy Mev
very small .018
.05 .1
.5 1 5 7 10 20 100 lo00 10000
ENERGY, AND VELOCITY RELATIONS FOR T H E ELECTRON
Electron mass I
'
L
g
9.1066~10-~ 9.42X10-p8 10.00x10-" 10.9ox 1018.02x10-" 26.93><10-" 98.24x lo-" 1 3 3 . ~ 1n-m 9~ i87.38xiO43 3 6 5 . 6 4 ~10'" 1791.8 x10-" 17839~10~" 178160X10-28 ..
See Tables 27, 28. and 714.
SYITHSONIAN PHYSICAL TABLES
mo
>
1.035 1.10 1.20 1.98 2.96 10.8 14.7 20.6 40.1 196.6 1960 19580
B
.25 .42
,548 .863 .94 .996 .9976 .9988
.w2 .9998
Velocity cm/sec
.75 X10'0 1.26 x10'" 1.65 x10'" 2.585X1010 2.818XlO'" 2.985 x 10" 2.990X 10" 2.994x 10" near the velocity of light n e y t k velq3ty c ~ light f
.999999 .9999999
'I
"
I'
I'
I'
652
T A B L E 714.-PARTICLE
ATTRACTION, VELOCITY, AND MASS
The neutrons and protons are held together in a nucleus by attractive forces (nuclear force) which have a range of only about 2 x lo-'$ cm but are stronger than the electric Coulomb forces at distances less than this range. The energy which would be required to separate a nucleus into its constituent protons and neutrons (collectively denoted by nucleons) is called the nuclear binding energy. According to Einstein's mass-energy relation this binding energy is equal to cz times the difference between the nuclear mass and the mass in the free state of the nucleons contained in the nucleus. The binding energy per nucleon is of the order of magnitude of a few MeV, its actual amount depending on various factors. Starting at about 1 Mev for the deuteron (nucleus of heavy hydrogen) the binding energy per nucleon increases on the average with increasing atomic weight A reaching a maximum of about 10 Mev for A about 50 ;as A increases further the Coulomb repulsion between the constituent protons becomes more and more important and the binding energy per particle decreases again. In addition to this general trend there are individual variations in stability, a notable example being the great stability of the a-particle (nucleus of He4) with a binding energy of more than 7 Mev per nucleon. The theory of relativity shows that energy and mass are related and that mass may be converted into energy, giving an amount of energy in ergs = mc2, where c is the velocity of light expressed in cm/sec and m the mass in grams. This theory also shows that the velocity of light is the upper limit for the velocity for any particle. I t is to be noted that this theory tells us nothing as to the method of converting mass to energy ! The mass m of a fast-moving particle depends upon its velocity v , thus, m
mo
where p = v/c. The kinetic energy of a particle v1 -P' moving with a velocity near that of light (at velocity v ) =
KE
moc2
or
(V l 1- p z - 1)
m=mo+-
~
KE C2
Some calculated results of the above relations are shown in Table 713. This theory, together with nuclear physics, shows that each moving particle has a wavelength that is given thus: the wavelength, A = h/mv for a particle of mass m with a velocity v. (See Table 722.) T A B L E 715.-TWO
INTERESTING RESULTS OF ARTIFICIAL DISINTEGRATION *
Different results from the same materigl
For reference, see footnote 224,
SMITHSIMIAN PHYSICAL TABLES
p. 665.
Different ways of producing the same materials I Z M R ~zHe4+lsAI" + lH1 l A n iH*+isAI" ,H' nA!" od+irAl" + hr MSI" oft1+ irAl" + lH1 lap'' OW' +I ~ A l s ,He'
++ + + +
+
+
653 TABLE 716.-DEFINITIONS
OF SOME TERMS USED I N NUCLEAR PHYSICS
Alpha-particle.-A helium atom, stripped of its outer electrons, that is expelled from a radioactive material. Artificial disintegration.-Breaking down of an atom by a controlled experiment. Atom.-The smallest particle of any material substance that can exist as such. Atomic bomb.-A bomb depending upon atomic energy. ( U or P u fission.) A t o m i c energy.-Energy due to some breaking down of an atom. Atomic m a s s unit, aim.-( 1) The mass of a unit atomic weight (see Dalton). ( 2 ) An energy unit equal to the mass energy (mc') of a unit atomic mass (1/16 mass 0") = 1.4921 x IO+ergs = 931.3 MeV. Atomic number.-The value of the positive charge of the atom. This determines the chemical properties. A t o m i c weight.-Chemical : The relative weight of an atom taking the oxygen atom, found in nature, as having a weight of 16. Physical : The relative weight of an atom taking the oxygen isotope 16 as having a weight of 16. This makes the ratio of physical to chemical scale = 1.000272 & .000005. Barn.-Unit area cross section of nucleus = lo-'' cm'. Baryton.-See Table 720. See meson. Beta-ray.-An electron expelled from a radiozctive material. Betatron.-See Table 718. Binding energy.-The energy due to the packinz of an element assuming that the element is made up of protons, electrons, and neutrons. B u r s t s (cosmic ray).-A very great output of particles due to a cosmic-ray encounter with an atom. Cathode rays.-Electrons that are driven from the negative electrode (the cathode) of a discharge tube. (See Table 758.) Chain reaction.-A reaction in which one or more of the products of the reaction keeps it going, i.e., such as the fission of 92 U'". C o m p t o n effect.-The change in wavelength due to the scattering of radiation by a material substance. Cosmic rays.-A radiation that falls upon the outer atmosphere, generally thought to come from outer space. (See page 710.) Cosmos.-The entire universe. Cross section, u.-The proportionality constant between the beam intensity and the number of particles, considered, that strike a target. It has the dimension of an area. See ~
Barn - _ _...
Cyclotron.-See Table 718. De Broglie wavelength.-For a particle of mass m and velocity v , the De Broglie wavelength A = h / m v . Delta-rays.-Electrons that are emitted from certain materials due to a-ray bombardment. Deuterium.-See deuteron. Deuteron.-This isotope of hydrogen that has twice the atomic weight of the proton. Electron &.-The smallest particle of electricity that can exist. Positron, electron. (Charge 4.8025 X lo-"' esu.) Negatron, - electron. (Charge - 4.8025 x lO-"esu.) Electron shell.-The shell that is used to describe the location of the outer electrons of an atom. These are K, L, M , N , 0. (See Table 658.) Energy units.-See Table 654. E r g : ev-The energy equal to that of an electron moving under an emf of 1 volt = 1.602 X lo-" ergs. MeV-The energy equal to that of an electron moving under an emf of loa volts. amu-The mass-energy of a unit mass of atomic weight = 1.492 >( 1W3ergs. Mass unit-Energy value of one gram = 8.987 X 10" ergs. Fission.-The breaking down of a heavy atom into two parts of about equal mass. (See page 706.) Gamma-rays.-Radiation of very short wavelength that results from some radioactive breakdown. (See Tables 747-752.) H-rays.-Hydrogen atoms that are emitted from certain materials due to a-ray bombardment. h.-Planck constant. See quantum. h or f;= h/2*. Isobar.-One of two or more nuclei that have the same weight but different atomic numbers.
+
+
(con t irturd)
SMITHSONIAN PHYSICAL TABLES
654 TABLE 716.-DEFINITIONS
O F SOME TERMS USED I N NUCLEAR PHYSICS
(concluded) Isomer.-As applied to an isotope, it is one of two or more that have the same atomic number and weight but different radioactive properties. of two or more atomic nuclei that differ in weight but have the same Isotope.-One atomic number, thus the same chemical characteristics. eh Magnetic moment.-Nuclear unit of = -= 5.05 x lo-'' erg/oersted where M = 4rMc mass of proton. eh Magneton (Bohr).-The magnetic moment of the electron = - 9.27 x lo-" M.2rc erg/oersted. Mass-energy ratio.-The relativistic relation between mass and energy, i.e., E = mc'. Mass, rest.-The mass of a particle M . when at rest. See Table 714. Mass-velocity ratio.-The variation of mass with velocity. v = velocity, then M e = ___ Mo c = velocity of light. (See Table 714.)
-
+q 27'
Meson (Mesotron).-See Table 720. Maximum velocity.-The highest velocity for any material substance, i.e., the velocity of light. MeV.-A unit of energy ; an electron moving under an emf of 10' v. (1.603 X lo-' ergs). See energy units (Table 654). Molecule.-An aggregate of two or more atoms of a substance that exists as a unit. Momentum, angular of nucleus, measured in units H = A = h/2r. Negatron.-See negative electron. (Sometimes spelled negaton.) Neutrino.-See Table 720. Neutron.-A neutral particle with a mass about the same as the proton. See Table 720. Nucleon.-General name for protons and neutrons. Nucleus.-The central part of an atom, i.e., what is left of an atom after all the outer electrons are stripped off. MI-A Packing fraction.-Related to the mass lost when the atom was formed = A where M is the atomic, weight of the atom and A the atomic number. Photon.-The quantum of radiation = hv. Proton.-The nucleus of the smallest unit mass, the smallest isotope of the hydrogen atom. Positron.-See electron. (Sometimes written positon.) Q u a n t u m = hv, a so-called atom of energy. h = Planck constant. See photon. Radioactivity.-Natural breakdown of atoms. (See page 672.) distance it can move through different media. Range of a particle.-The R e s t mass.-The mass of any particle at rest. Shower.-(Cosmic rays.) See Bursts. Showers may extend a very great distance, i.e., several hundred meters, and have about ev energy. Spin.-Unit of nuclear spin = H = A = h / 2 r . Synchrotron.-See Table 718. Tritium.-See Triton. Triton.-The isotpe of hydrogen that has three times the atomic weight of the proton. Ultimate particle.-See Table 720. Valence electrons.-The electrons of an atom, in the outer shell that determines its chemical valency. V a n d e Graaff generator.-See Table 718. Volt-electron, ve.-A unit of energy equal to that of an electron moving under an emf of 1 volt = 1.602 X lO-"ergs. X-rays.-A radiation of very short wavelengths that results when an electron is stopped (or started) very quickly, as when striking a metal target. (See page 692.)
SMITHSOMIAN PHYSICAL TABLES
OF ISOTOPES *
T A B L E 717.-TABLE Atomic number
Z
Element
Isotopes (total number)
Naturally radioactive isoto es (numter)
Artificially radioactive isoto es (numler)
1
1 2 3 4 5 6 7 8
Hydrogen Helium Lithium Beryllium Boron Carbon Nitrogen Oxygen
3 3 3 4 3 5
9 10
Fluorine Neon
4 5
11 12
Sodium Magnesium
5 5
4 2
13 14
Aluminum Silicon
5
5
4 2
15 16
Phosphorus Sulfur
5 7
4 3
17 18
Chlorine Argon
7 7
4
19 20
Potassium Calcium
9 10
21 22
Scandium Titanium
10 9
23 24
Vanadium Chromium
5 7
25 26
Manganese Iron
6 8
4
27 28
Cobalt Nickel
9 10
8
29 30
Cppper Zinc
10 12
8 7
31 '32
Gallium Germanium
10 14
8 9
33 34
Arsenic Selenium
9 16
8 10
35 36
Bromine Krypton
14 22
12 16
37 38
Rubidium Strontium
16 14
39 40
Yttrium Zirconium
11 12
10
41
Niobium
15
14
1 1 3
1 3
5
6
5
KO '
6 4
5 5
Rb"
14 10 7
*For reference see footnote 199 p. 618. t Numbers following symbol indi'cate names of isotopes of that element.
(continued)
SMITHSONIAN PHYSICAL TABLES
655
Relative abundance of natural isotopes
H' t : H*= 99.9844 : .0156 He* : He' = 1.3X lo-' : 99.9999 Lie : Li' = 7.39 : 92.61 Be' = 100.00 B'O: B" = 18.83 : 81.17 C" : C18= 98.9 : 1.1 N" :N" = 99.62 : .38 0": 0": 0" = 99.757: .039: 204 F1° = 100.00 Nem: NeZ1: New = 90.51: .28: 9.21 Na" = 100.00 Mg": Mg": Mg" 78.60: 10.11: 11.29 ~1~~ = IOO.OO Si": Si": Si" =92.28: 4.67: 3.05 P" = 100.00 s:z: s:a: ~ 8 '. . S" = 95.06: .74: 4.18: .016 CI" : Cl" = 75.4 : 24.6 AS': A 8 : A'' = .307: .Om: 99.633 KsO:I?": K" = 93.3: ,011 : 6.7 Cam: Cad'. Ca": Ca": Cam: Gals = 96.96: .64: .15: 206: .0033: .19 S C d 5 = 100.00 Ti*': Ti'?: Ti's: Ti40: Ti" = 7.95 : 7.75 : 73.45 : 5.51 : 5.34 VG1= 100.00 CrW: Crs': C P : CrM = 4.49: 83.78 : 9.43 : 2.30 Mn" = 100.00 FeM: Fe": FeG': Fe" = 5.81 : 91.64: 2.21 : .34 CO" = 100.00 Nim: Nim: Ni"': Ni": Ni" = 67.76: 26.16: 1.25: 3.66: 1.16 Cum: Cum = 69.09 : 30.91 Zn": Znm: Zn": Zn": Zn" = 48.89 : 27.81 : 4.07 : 18.61 : .620 Ga" : Ga" = 60.2 : 39.8 Ge": Ge'2: Ge73: Ge": Ge" = 20.55 : 27.37 : 7.61 : 36.74 : 7.67 AS" = 100.00 Sell :TO :77 :?R :La :h2 = .87 : 9.02 : 7.58: 23.52: 49.82: 9.19 Br70: BrR' = 50.5 : 49.5 Kr" :80 :" := :& :RB = .342 : 2.223 : 11.50: 11.48: 57.02: 17.43 RbsJ: Rbs7= 72.8 : 27.2 Sr84.M.R7."B . . - .56: 9.86: 7.02: 82.56 Y" = 100.00 ZrsO :01 .82 .04 .DB = 51.46: 11.23: v.ii : i7140: 2.80 NbW= 100.00 ,
T A B L E 717.-TABLE
656 Atomic number
z 42
Flement
Isotopes (total number)
O F ISOTOPES (continued)
Naturally radioactive isoto es (numger)
Artificially radioactive isoto es (numfer)
Molybdenum
12
5
44
Technetium Ruthenium
19 13
19 6
45 46
Rhodium Palladium
11 12
10 6
47 48
Silver Cadmium
14 16
12 8
49 50
Indium Tin
15 27
13 17
51 52
Antimony Tellurium
19 26
17 18
53 54
Iodine Xenon
17 22
16 13
55 56
Cesium Barium
16 19
15 12
57 58
Lanthanum Cerium
12 12
10 8
59
60
Praseodymium Neodymium
7 12
NdlM
6 4
61 62
Promethium Samarium
8 13
Smm2
8 6
63
64
Europium Gadolinium
11 11
9 4
65 66
Terbium Dysprosium
7 10
6 3
67 68
Holmium Erbium
7 10
69 70
Thulium Ytterbium
8 10
71 72
Lutetium Hafnium
7 9
73
Tantalum
9
Relative abundance of natural isotopes
9.62
43
LU'70
8 (continued)
SMITHSDNIAN PHYSICAL TABLES
5 3
.............................. RuWl . . .lo1 .la = 5.68: .88 .88 ,100
.1M
2.22 : 12.81 :* i2.70 : 16.98 : 31.34: 18.27 RhIm= 100.00 pdla .1M . .,106 ..lo8 .,108 ..110 - .8: 9.3: 22.6 : 27.2 : 26.8 : 13.5
24.07 : 12.26: 28.86 : 7.58 In"' : In"' = 4.23 : 95.77 Sn112.114 . ..11K.1lU.117.1l8.110 .120.122.124 = .90: .6l:' .35 : 14.07:' 7.54 : 23.98: 8.62: 33.03: 4.78: 6.11 Sb"' : Sh'" = 57.25 : 42.75 T p l W . 1 2 2 . 123. 121. 126. 120. 1 2 8 . lSl -.09i : 2.49: .i39:. 4.83 : .7.oi : 18.72: 31.72: 34.46 __.
.094: .088: 1.90: 26.23: 4.07: 21.17: 26.96: 10.54: 8.95
CS'" = 100.00
- .101: .097 : 2.42 : 6.59 : '7.81 : 11.32: 71.66 La'" : LaIm = .089 : 99.911
~aim.i".i~.~86.im.im.i88
Prlrl = 100.00
- 27.13 : 12.20 : 23.87 :'8.30: '17.18 : 5.72 : 5.60 .............................. S m 1 4 4 .147 .I48 2 4 0 ,160 .I62 .161 . . - 3.16: 15.07: 11.27: ' 13.84: 7.47: 26.63: 22.53 Eul" : Eu'" = 47.77 : 52.23 Gdl62 :161 :IS :I68 :IS? :la .I80 - .20: 2.15: 14.78: 20.59: 15.71: 24.78: 21.79 Tb'" = 100.00 D,,I68 ,168 ,180 ,161 .1U2 .I- .I% - .0524 : ,0962 : ' 2.294 : ' 18188 : 25.53 : 24.97 : 28.18 Holm = 100.00 Er1@:lU4 .100 . 1 U 1 .188 .I70 - . l : 1.5: 32.9: 24.4: 26.9: 14.2 Tm'" = 100.00 ybl" .I70 .171 ,112 .173 . .I14 . .17U = .06: 4.2i : ' 14.26: 2 i h : 17.02: 29.58: 13.38 Lu176.. LU'" = 97.5 : 2.5 Hf174 .I70 ,171 ,178 .I78 ,180 -.18: 5.30: 18.47 :' 27.10: i3.84: 35.11 Tala' = 100.00 Ndl42.lls.144.146.14U.148.160
Naturally radioactive isoto e s (numger)
Artificially radioactive isoto es (numb'er)
Atomic number Z
Element
Isrtopes (total number)
74
Tungsten
10
75 76
Rhenium Osmium
11 10
77 78
Iridium Platinum
6 11
4 6
79 80
Gold Mercury
13 13
12 6
81
Thallium
15
82
Lead
14
83
Bismuth
13
T A B L E 718.-DEVICES
657
O F ISOTOPES (concluded)
TABLE 717.-TABLE
Re'"
TIm(AcC") TIm(ThC") TIno(RaC") PbZ1'(RaD) PbZ"(AcB) PbYThB) Pb2l4(RaBj Biz'"( RaE) BiZ1'(AcC) Biz"( ThC) Biz"( RaC)
5
Relative abundance of natural isotopes w 1 m :I82 .lea .w.1m - .122:
9 3
oSi= :m..I" ..lea .m . .m . .lea . -~
10
14.24 :' 30.68: 29.17 ReIM:Re'" = 37.07 : 62.93
25.77:
.018:
1.59: 1.64: 13.3: 16.1: 26.4 : 41.0 Ir'" : Ir'- = 38.5 : 61.5 pt10z .lW .lMl .loa ,188 - .78: 32.8 : 33.7 : 25.4 : 7.23 AdB?= 100.00 Hg1W .lo8 .108.200 .Po1 .POL - .15 : 1o.i: i7.0 : 23.3 : '13.27 29.6 : 6.7 TIm :TIm = 29.1 : 70.9 .pW
6
Pbm :208 :m:20s = I .5 : 23.6 : 22.6 : 52.3
8
Bim = 100.00
FOR PRODUCING HIGH-ENERGY PARTICLES
*t$
I m p u l s e generator. T r a n s f o r m e r rectifier.-Max about 2 MeV. Electrostatic generator, belt type.-Originated by R. J. Van de Graaff at M.I.T. Developed for use in nuclear physics a t M.I.T. by Van de Graaff and a t Carnegie Institution in Washington by M. A. Tuve. About 1-3 MeV. Performance improved at Wisconsin, by enclosing equipment in pressure chamber (with freon added to air), up to 4-5 Mev (under pressure) 100 Ib/in.2 This device can accelerate any kind of charged particle. Under construction (M.I.T., Los Alamos) 12 MeV. at Berkeley by E. 0. Lawrence. For accelerating any heavy Cyclotron.-Originated charged particles (not electrons). 44 Mev alpha-particles, 22 Mev deuterons, 9.5 Mev protons. Betatron.-Originated at Illinois by D. W. Kerst. For accelerating electrons. 300 MeV, Illinois ; 100 MeV, General Electric Co. Synchro-cyclotron.-Developed at Berkeley. 390 Mev alpha-particles, 400 Mev protons, 195 Mev deuterons. Synchrotron (electron).-Berkeley, 335 Mev electrons ; General Electric Co., Cornell, Michigan, Perdue, Berkeley, about 300 MeV; Harvard, 125 MeV. Linear accelerator.-Berkeley, 32 Mev protons ; Stanford, 5.7 Mev electrons (under construction, 1000 MeV) ; M.I.T., 20-30 Mev electrons. Proton synchrotron.-Berkeley, 3-6 Mev (under construction) ; Brookhaven, 3 Mev (under construction). Some of the smaller cyclotrons at various laboratories have been converted to F. M. cyclotrons. There are now in use, or under construction in this country, over 100 devices for producing particles of over 1 Mev energy. -This list was prepared by R. G . Herb, University of Wisconsin, and W . W. Brobeck, University of California. See Brookhaven National Laboratory Publication BNL-L-101 Particle accelerators 1948. t High-speed neutrons cannot, of course, be produced directly by any of 'these devices. Neutrdns are produced by bombarding certain materials with one of the high-speed particles produced by these devices. If heryllium, boron, or lithium are bombarded by a-particles neutrons are produced thus: ,Be0 2 He'+sC" 'n1 sB1l 2 He'+N14 l H Z hv+,H1 $ Machines up to about 6 Mev now produced commercially.
+++
SMITHSONIAN PHYSICAL TABLES
+ ++
658 T A B L E 719.-ATOMIC
W E I G H T S A N D O T H E R C H A R A C T E R I S T I C S O F ISOTOPES Part 1.-The
Z
Element
0 1
H
2
He
3
Li
n
4
Be
5
B
6
C
7
N
8 9
0
F
Isotope
1 1 2 3 3 4 6 7 8 7 8 9 10 9 10 11 12 13 14 13 14
15
16 17 18 19
neutron t o fluorine
Atomic mass
(I
Magnetic moment 9
-1.91280 3-9 +2.79254 Z O .85735229 +2.978624228 (-)2.12741423
1.008977 1.0081374 2.0147 19 3.016971 3.01695 1 4.0039 10 6.0 17043 7.018242 8.025031 7.0 19169 8.007916 9.015098 10.016774 9.016246 10.016173
+
......
+ .82189 2 4
+3.25586 211
...... ...... ...... (-).7849XI*-t5 ...... .. .. .. ......
+1.8004 &7 +2.68858 2 2 8
......
...... ...... ......
12.003900 13.007554 14.007733 13.009941 14.007565
+ ,70225 2 1 4
17.004515
......
+(.02) -t2 ...... ...... ...... .....
......
+.06&4 +.0322
...... ......
...... ......
...... ......
I <.021
27
123 References and other footnotes at end of table, p. 663. Superior letters in footnote.
Part 2.-Fluorine
I <9x 1 0 - 4 I
+.02
,28299 2 3
+2.6285
19.004486
...... ...... ...... ......
+.002766*25
+ ,40365 2 3
-
...... ......
Quadrupole moment **
(10-2' cm2)I
(a, 0 ,
......
......
1<4X10dl
......
etc) refer to authorities cited
to thallium
Z 10
11
12
Magnetic moment g
Element
Isotope
Atomic mass
Ne
18 19 20 21
(18.0114) 19.00781 19.99877 20.99963
22 23 21 22 23 24 25 22 23 24 25 26 27
2 1.99844 23.0013 21.0035 21.9999 22.99618 24.9975 24.9967 22.0062 23.0002 23.9925 24.9938 25.9898 26.9928 24.9981 25.9929 26.9899 27.9903 28.9893 (29.9954) 26.9949 27.9866 28.9866
Na
29
(continued) SMITHSONIAN PHYSICAL TABLES
...... .....
Quadrupole moment t I
-0
.....
+1.74582
+2.21711+25
"0
..... ..... ..... .....
.fO
- .9627 GO . . ..... .....
+3.6408 -4 ... ... ...
.... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... ....
+ .156-+3 . . i .
.... .... -0 -0
....
659 TABLE 719.-ATOMIC
Z
15
1B
17
18
19
Element
P
S
c1
A
K
W E I G H T S AND OTHER CHARACTERISTICS (continued) Isotope
30 31 32 29 30 31 32 33 34 31 32 33 34 35 36 37 33 34 35 36 37 38 39 35 36 37 38 39 40 41 37 38 39
40$ 20
Ca
21 22
Ti
sc
23 24
V Cr
25 26
Mn Fe
27 28
co
Ni
29
cu
30
Zn
41 40 42 43 45 46 47 48 49 50 51 51 51 52 53
55 54
56 57 59 58 60 61 62 64 63 65 64
SMITHMNIAN PHYSICAL TABLES
Atomic mass
29.9832 30.9862 (31.9849) '28.9919' 29.9873 30.9843 3 i 9827 32.9826 33.9826 30.9899 31.98089 32.98M .......
Magnetic moment 0
Spin 0
(0)
... ... ... ...
112
... ...
...
...
0 312 (0, 3/2
33.97710 34.9788 (0) 35.978 36.982 ... 32.9860 33.9801 34.97867 3/2 35.9788 2 36.97750 3/2 37.981 (38.9794) 34.9850 35.98780 (0) 36.9777 ... 38.974 ... (38.9755) ... 39.9756 (0) 40.9770 ... (36.9830) 37.9795 ... 38.9747 "2 39.9760 40.974 3/2 (0) 39.97530 41.9711 ... 42.9723 44.9669 ... 45.9661 46.9647 ... 47.9631 48.9646 49.9621 ... 50.5887 50.9577 i;i 50.958 51.956 ... 52.956 54.957 i;i ... 53.957 55.9568 ... 56.957 58.94 57.9594 ... 59.9495 ... 60.9537 ... 61.9493 ... 63.9471 62.957 3;i 64.955 3/2 63.955 (0) (cont i m e d )
...
... ... ...
.....
..... ..... ..... +1.ijiis k 2 0 ..... ..... ..... ..... .....
(+)(.3+.2, .9)
..... .....
..... .....
+ .82i9i+22 + .6841&24 ..... ..... ..... -0 ..... ..... ..... -0
...
i;i
.....
..... .....
.391+1 -1.2912 4 - .21521
-0
..... .....
-4.7556-tlO
... ...
..... .....
...
iii
+3.Gii14
.....
-0
.....
+4.6482
..
-0
..... .....
+~.ii6ii+36 +2.3845+4 -0
OF ISOTOPES Quadrupole moment t 0
-0
....
.... .... .... .... .... - .08
I <2><10-*l
+ .06
< .01 .... - .Oi9S+-5 - .0172k4 - .062lkS ....
....
.... ....
.... .... ....
....
.... .... .... .... .... .... .... .... .... .... .... ....
.... .... .... .... .... .... .... .... .... .... .... .... ....
- .26+10 - .14210
....
660 T A B L E 719.-ATOMIC
z
Element
31
Ga
32
Ge
33 34
As Se
35
Br
36
Kr
37
Rb
38
Sr
39 40 41 42
Y Zr
W E I G H T S AND O T H E R CHARACTERISTICS O F ISOTOPES (continued) Isotope
66 67 68 70 69 71 70 72 73 74 76 75 74 76 77 78 80 82 79 81 82 83 84
86
43 44
Nb Mo
85 87$ 86 87 88 89 91 93 92 94 95 96 97 98
Atomic mass
65.954 66.954 67.955 69.954 68.952 70.952
.....
..... ..... ..... ..... 74.91 ..... ..... .....
..... ..... ..... .....
..... .....
..... ..... ..... ..... ..... ..... ..... ..... ..... ..... .....
.....
93.945 94.946 95.944 96.945 97.943
Magnetic moment 0
Spin
(0) 5/2
(0)
...
312 3/2 (0) (0) 9/2,> 9/2 (0) (0) 3/2 (0) (0) 7/221,(1/2)
-0
....
-0
...
+ .9 +z.oi67lii
+2.5614+10
..... .....
..... ..... +1.4
-0 -0
45
Rh
46
Pd
47
Ag
48
Cd
49
In
50
Sn
96 98 99 100 101 102 102 103 102 104 105 106 108 110 107 109 110 111 112 113 114 116 113 115
115
SMITHSONIAN PHYSICAL TABLES
.....
.....
..... ..... ..... ..... ..... .....
114.940
+ .2318223 + ,1461215
<7~10-~l <7~10-~l - .21+10 <7x lo-' I < 7 x 10-'1 .322
+
<2X'i0-3 I <2 x 10-8I < 2 x 10-3 I < 2 x 10-81
....
+ ,2628 + .21+7 ..
+ .15....
.... .... ....
.....
....
-1.1 -0 - .14
.....
+6.165+32 -0 -0
-0
.....
-0
.... .... .. .... .... .... ....
-0
.....
95.945 97.943 98.944 99.942 100.946 101.941 102.941 101.941 103.941 104.942 105.941 107.941 109.941 106.945 108.944
..... ..... ..... .....
-0 +2.10576237 +2.26%+5 -0 - .9704 -0 -0 +1.3532&4 +2.7501+5
Tc Ru
Quadrupole moment t 0
.....
.... ....
..... ..... ..... ..... .....
.... .... ....
..... ..... ..... .....
- ,086
- .160
-0 - .59492*8 -0 - .6223828 -0 -0 +5.48623 +5.50023 - .9177*2
....
.... .... .... ....
....
1.144 1.161
661 T A B L E 719.-ATOMIC
W E I G H T S A N D O T H E R C H A R A C T E R I S T I C S O F ISOTOPES
(continued) Z
Elemenl.
51
Sb
52
Te
53
I
54
Xe
55
cs
56
Ba
57 58 59 60
La Ce Pr Nd
61 62
Pr
63
Eu
64
Gd
Sm
.[sotope 116 117 118 119 120 122 124 121 123 123 125 126 128 130 127 129 129 131 132 134 136 133 135 137 134 135 136 137 138 139 141 i45 146 148 150:
Ho Er Tm Yb
71
Lu
72
Hf
73 74
Ta W
Tb
DY
115.939 116.937 117.937 118.938 119.937 121.945 123.944
..... ..... ..... ..... ..... ..... ..... 126.92 ..... ..... ..... ..... ..... ijzbi'
..... .....
..... .....
.....
..... .....
138.953
(0) 1/2 (0) 1/2 (0)
...
...
5/2 7/2 1/2 1/2 (0) (0) (0) 5/2 7/2 1/2 3/2 (0) (0) (0) 7/2 71'2 7/2 (0) 3/2 (0) 3/2 (0) 7/2
5/2
..... ..... .....
(>1/2) (>1/2) 5/2 5/2
153.971 154.971 155.972 i56.973 157.973 159.974 159.2
165
164.94
169 171 173 175 176 t 177 178 179 180 181 182 183
169.4
.....
... ...
... ... ._. ... ... iii
....
+3.359i15 +2.546525
.....
-0 -0 -0 +2.808628 (+)2.74214h - ,776621 .7 -0 -0 -0 +2.577129 +2.727 1233 +2.8397 2 3 0 -0 .8346*25 -0 ,9351,227 -0 +2.7769228
+
....
- .59220 - .43*15
.... I < .I1
.... ....
I< .31 .... ....
.... ... .... .... #O
.... .... .... .... ....
+4.5938
..... ..... .....
..... .....
.....
+3.4 +1.5
.....
....
$1.2 +2.5
.... .... .... .... .... .... .... .... .... ....
.....
..... ..... .....
..... .....
..... .....
+ .45 +2.6 +3.8
-0
..... .....
-0 +2.1
..... .....
.... .... .... ....
+ -+
- .65
.....
- .3*2 -1.2*2
.....
712
180.88
.... .... .... .... .... ....
-0
..
..... ..... ..... ..... ..... ..... .....
Quadrupole moment t g
- ,999722 -0 -1.045922 -0
... ...
.....
..... (continued)
SMITHSONIAN PHYSICAL TABLES
Magnetic moment 9
Spin
140.95 i44.w 145.962 147.962 149.964
147 149 151 153 154 155 156 157 158 160 159 ~~
65 66 67 68 69 70
Atomic mass
+3.924 +5.9 +7+1
....
.... .... .... +6
....
....
662 T A B L E 719.-ATOMIC
W E I G H T S A N D O T H E R C H A R A C T E R I S T I C S O F ISOTOPES (continued)
Z
75
Element
0 s
77
Ir
78
79 80
Isotope
Pt
Au
Hg
....
.....
(0)
(0,) 5/L 5/2 5/2 1/2
+3.3
.....
....
(+2.8)
....
(>iii)
..... ..... ..... ..... .....
(312) (0) 1/2 (0)
-0 - ,6059228 -0
.....
189.04 190.03 192.04 191.04 193.04 194.039 195.039 196.039 198.05 197.04
Quadrupole moment t g
Magnetic moment 0
Spin
..... ..... ..... .....
184 186 185 186 1871: 189 190 192 191 193 194 195 196 198 197 198 199 200 201 202 204
Re
76
Atomic mass
+3.3
...
.....
P a r t 3.-Thallium
.... .... ....
....
.... .... ....
.....
f 20
-n
(0) 1/2 (0) 3/2 (0) (0)
.... .... ....
.....
3;i
..... ..... ..... ..... .....
$2.6
SO413213 -0
+
+ .5590k1
-0 -0
.... .... .... .5
....
....
to curium (1950)
§
The masses have been derived as outlined by Stern.d The mass of the a-particle is assumed to be 4.00389 mass units and the mass of Pbm is 206.04519 mass units. The masses of thallium, lead, and bismuth isotopes are determined from the following neutron binding energies (in MeV) : Pbm . . . . 3.87k0.05 Pbm .... 8.15 k0.05 TIm ..... 6.5220.03 Bim . . . . . 7.44k0.05 Pbm .... 6.719*0.016 TI" 7.4820.15 Pbm . . . . 7.38 k0.008 Biz'' . . . . . 4.6220.015 Tlm 6.3020.03 The decay energies are taken from a paper by W a p s t r a " except for two corrections. The decay energy of RaZ3 is taken to be 170 Kev higher than that given by Wapstra as was assumed by Stern. Also, it is assumed that the decay of Razz' is 700 Kev, and the masses based on this assumption are in parentheses. A few other disintegration energies not given by Wapstra were taken from Perlman, et al.'
..... .....
z 81
82
83
A
T1
Pb
Bi
203 204 205 206 207 208 209 210 204 205 206 207 208 209 210 211 212 214 208
M-A
Spin
,04187 1/2 .04385 .ow0 .04702 ... .04854$ ... .05339$ ...
0
Nuclear magnetons
Z
0
+1.611 4 2 3
83
A
Bi
iii +1.6272k3
.05690
.06261$ .04291 .044% ,04519 .04696 ,04802 .05285 .05619$ .06117$ .06457$ .07353* .05114 209** .05213 210 .05614
.... .... .... ....
...
...
(0)
-0
iOj
-0
1/2 (0)
...
... ... ... ...
9;2
...
84
Po
85
At
....
....
+ .589421 -0
.... ....
.... .... ....
+4.OSOi 2 5
....
86
(continued)
SMlTHSONlAN PHYSICAL TABLES
Rn
211 212 213 214 208 209 210 211 212 213 214 215 216 218 212 214 215 216 217 218 216
M-A
.05968* .06394$ ,06720 .07252$ ,05244 ,05425 ,05488: .05899$ ,06152: ,06586 ,06548: ,07312: .07587: ,083982 ,06138 ,06964 .07232$ ,07636: .07877 .083652 .07424
Spin
...
... ...
...
... ... . .. ... ... ... ... ... ... ... ... ... ... ... ...
...
...
g
Nuclear magnetons
.... .... .... .... .... .... .... .... .... .... .... .... .... .... .... ....
.... .... ....
.... ....
0
663 T A B L E 719.-ATOMIC
Z
86
87
88
89
90
A
Rn
Fr
Ra
Ac
Th
W E I G H T S A N D O T H E R C H A R A C T E R I S T I C S OF ISOTOPES (concluded)
M-A
Spin
216 .07424 ... 217 .07822 ... 218 .08015 ... 219 .08447$ ... 220 .08663f ... 222 .09387f ... 218 .08211 . . . 219 .08420 ... 220 .08756 ... 22 1 .08955 ... 223 .0%08f ... 220 .08632 ... 221 .08944 . . . 222 .09116 . . . 223 .09479f ... 224 .09673f . . . 225 (.10053) ... 226 .10300f ... 228 .10928f ... 222 .09361 ... 223 .09535 . . . 224 .09819 ... 225 ,09978 . . . 227 .10539f ... 228 .10926f ... 224 ,09808 . . . 225 .loo51 . . . 226 ,10193 . . . 227 .10528f ... 228 .10655f ... 229 (.10992) ... 230 .11201f ... 231 .11505 ... 232 .11751f . . . 233 (.12095) . . . 234 ,12381f ...
0
Nuclear magnetons
.... .... ....
91
..
....
....
.... ....
92
....
....
.... .... ....
.... ....
.... .... ....
93
94
.... ....
.... ....
A
Z
96
226 227 228 229 231f 232 233 234f 228 U 229 230 232 233 234f 23.9 237 2383 239 NP 231 233 235 237 238 239 P u 232 234 236 238 239 241 Am 239 241 242 Cm 238 240 242 Pa
M-A
Spin
0
.lo494 ... .lo631 ... .lo874 ... .lo988 .11479 jii .11767 (.11966) .12317 ... .lo931 .11142 ... ,11222 ... .11624 ... (.119O8) . . . .12110 .12392 (:5;2,7/2) (.129D) ... .13226 ... .13606 ... .11696 ... .11985 ... .12421 ... (.12874) 5 / 2 .13248 ... .13470 ,12039 .12283 .12641 ... .13099 . . . .13343 ... ( ,13864) . . . .13440 . . . (.13862) .... .14206 . . . .13382 .13713 .14152
Nuclear magnetons
.... .... ....
....
....
.... .... .... .... .... .... .... .... .... .... .... .... .... .... ....
.... .... .... .... .... .... ....
Z23References: a, Tollestrup, Fowler, and Lauritsen, Phys. Rev. vol. 78 p. 372 1950. 11, n e t h e H. A. Elementary nuclear theory. John Wilev & Sons, Inc., 1947; Rasetti,' F.. Elements oi nuclear physics. Prenticec , Harvey. J. A.. Bull. Amer. ,Phys. Soc., Hall. Inc.. 1936; Poss, H. L., Phys. Rev.. vol. 75. D. 600, 1949. vol. 25, D. U4, 1950. d. Stern. M. 0.. Rev. Mod. Phys.. Anril 19.49. e, W a p s t r a , A. H.. Phvslca, vol. 16, p. 33, 1950. f , Perlman, I., Ghiorso, A., a n d Seaborg, G. T. Phys. Rev., vol. 77, p. 26 1950; Kinsey R . B.. et al., Phys. Rev.. vol. 78, p. 77 1950; also private communications; Hanson. et al.. Phys.' Rev., vol. 76,'p. 578, 1949. K, Ramsey, Norman, Lxperimental nuclear physics (forthcominpl, John Wileu & S r n s . Inc. should be taken as Note added in proof, 1953.-Because of recent mass measurements, the mass of PI, 206.03859. All mass values should be lowered 0.00660 mass units. See Stone, Martin O., Rep. Univ. California Radiation Lab., Ap:iI 1952. I = spin. Quadrupole moment = -0.4. t (10-24 cmr). $ Radioactive series. P Prepared by J. A. Harvey, Massachusetts Institute of Technology (see footnote 223, above, reference c).
SMlTHSONlAN PHYSICAL TABLES
664 TABLE 720.-SOME
F U N D A M E N T A L PARTICLES
OF MODERN PHYSICS *
Electron.-A negatively charged stable particle. The negative charge surrounding the nuclei in all neutral atoms consists entirely of electrons. Positron.-A particle of the same mass, Me,as an ordinary electron. It has a positive electrical charge of exactly the same amount as that of an ordinary electron (which is sometimes called negatron). Positrons are created either by the radioactive decay of certain unstable nuclei or, together with a negatron, in a collision between an energetic (more than one MeV) photon and an electrically charged particle (or another photon). A positron does not decay spontaneously but on passing through matter it sooner or later collides with an ordinary electron and in this collision the positron-negatron pair is annihilated. The rest energy of the two particles, which is given by Einstein's relation E = mc' and amounts to 1.0216 Mev altogether, is converted into electromagnetic radiation in the form of one or more photons. Proton.-This is the nucleus of an ordinary hydrogen atom. It has a positive charge of exactly the same amount as that of an electron and a mass M P which is 1837 times larger than M e and is a stable particle. No experimental evidence of negative protons has been found as yet. Neutron.-An electrically neutral particle of mass only very slightly greater (by a factor of 1.0013) than that of the proton. Neutrons are produced in various nuclear reactions. In the free state a neutron I S unstable, decaying spontaneously with a half-life of about 10 minutes into a proton, and electron and (presumably) a neutrino. When passing through matter a neutron can also be captured by atomic nuclei. Deuteron.7-Nucleus of H2. a-particle.?-Nucleus of He'. Meson.-Two types of particles of mass intermediate between that of the electron and proton have been discovered in cosmic radiation and in the laboratory. The one particle with mass about 215 me is called p-meson, the other with about 280 me r-meson. Mesons of both positive and negative charge have been found and there is now reasonably good evidence for neutral mesons. Both types of mesons decay spontaneously. Some evidence exists for a meson of mass aboqt 1000 ~ i i ~ . Neutrino.-An electrically neutral particle of mass very much smaller than that of the electron and possibly zero. There exists as yet no direct experimental evidence for the existence of neutrinos since they interact extremely weakly with matter (e.g., only a small fraction of neutrinos passing through a body of solar mass would be absorbed). There exist, however, extensive measurements on the momentum and energy of the parent and daughter nucleus and of the emitted ,!?-particle in a ,!?-decay process. These measurements show that energy and momentum (as well as spin and charge) in such a process can be conserved i f , and only if, a light neutral particle such as the neutrino is emitted together with the P-particle. Photon.-A photon (or y-ray) is a quantum of electromagnetic radiation which has zero rest mass and an energy of h (Planck's constant) times the frequency of the radiation. Photons are generated in collisions between nuclei or electrons and in any other process in which an electrically charged particle changes its momentum. Conversely photons can he absorbed (i.e., annihilated) by any charged particle. There have been some reports of other particles than those listed above.
Mass (9)
Electron, negative (negatron) e - . .. Electron, positive (positron) e + .. . Proton, p ....................... Neutron, II. ...................... Deuteron, d ..................... a-particle .......................
Name
++-meson p--meson r+-meson rI-meson r -meson photon$ neutrino
.
Symhol
Rest mass (electron Spin mass) (20
9.1066X10~2R 9.1066X10~28 1.6725X10-2' 1.6747x10-" 3.34486XIO-*' 6.6442X10-2' Charge esu
+4.8025x10-10 209 1/2 -4.8025X10-10 209 1/2 275 Oor 1 +4.8025X10-'0 r+ 275 Oor 1 -4.8025X10-'0 r0 ro 265 0 0 Y 0 integral 0 v <.005 1/2 p+ p-
P r q n r e d by E. E. Salpeter and W . K. H. Wolfgang. quantum). hv: Y: value (A = . 6 p ) = 3.310X10-'* ergs. $MITHSONlAN PHYSICAL TABLES
Spin
(W
Magnetic moment (nuclear magnetons)
Charge (esu)
1/2
-4.8025X10-10 +4.8025x lo-'' 1/2 +4.8025X10-10 none 'I 1 2 +4.8025X10-'" none +9.6050X10-10
...
Mean life (set)
2.15)<10-6 2.15XlO-' 2.96XlO-* 2.96x 10.' <5x lo-"
......
......
Mode of decay
pt+e++2v
.... ....
2.7926 -1.9135 ,8565 0
Mode of capture
......
p---+e-+Zv r'-w++v
p-+P+n.+
r-+fi-+v
r-+p-W
r"+Zr
...... ......
t Not fundamental.
t The
y
...... ......
......
photon (radiation
T A B L E 721.-NUCLEAR
REACTIONS *
665
If a neutron or proton (or a light nucleus) approaches a nucleus at a distance less than the range of nuclear forces it may interact with the nucleus in various ways. If the kinetic energy of the incident particle is not more than a few Mev it is usually first captured by the nucleus, forming a compound nucleus. This compound nucleus is in an excited state (having an excess energy due to the extra binding energy of the additional particle as well as its initial kinetic energy) and in a short time either (a) makes a transition to its groundstate releasing the excess energy in the form of photons, (b) re-emits the incident particle returning to the ground-state or an excited state of the original nucleus (elastic or inelastic scattering), or (c) emits some other particle (neutron, proton, deuteron or a-particle usually). A neutron does not experience any Coulomb repulsion on approaching a nucleus and hence can react with a nucleus however low its kinetic energy. However, if the incident particle is a proton or deuteron (and even more so if it is an a-particle) it has to overcome an energy barrier due to the electrostatic Coulomb repulsion of the nucleus. For a proton incident on a light nucleus (small 2 ) this barrier is a few hundred Kev and increases almost proportionately with 2. If the kinetic energy of an incident proton is larger than this barrier it can react about as easily as a neutron. If its energy is lower it can still react due to a purely quantum phenomenon called barrier penetration, but the probability of such a reaction's taking place decreases extremely rapidly as the kinetic energy is decreased relative to the barrier. Nuclear processes in stars.-There are no free neutrons in stellar interiors (any produced are quickly captured by nuclei), but there is a large proportion of ionized hydrogen and helium (protons and a-particles). At a stellar temperature of, say, 2x10' "C the mean thermal kinetic energy of a proton is less than 2 Kev which is appreciably less than the Coulomb barrier of even light nuclei. This means that the reaction rate for protons being captured by a nucleus in stars is in general low and decreases very rapidly with increasing charge 2 of the nucleus, reactions with nuclei of 2 greater than 8 (oxygen) being negligible for practical purposes in stars. Two different cycles (the carbon and proton-proton cycle respectively) are of importance in connection with nuclear energy production in stars. In each of these cycles four protons are captured, separately, by certain light nuclei, two of the compound nuclei thus formed, beta-decay, emitting a positron and neutrino. Each positron subsequently finds an electron and the pair is annihilated, accompanied by the emission of photons. The net effect in each of these cycles is that four protons and two electrons have disappeared, an a-particle has appeared in their place and two neutrinos have been emitted. The energy generated is the total binding energy of an a-particle plus the rest-energy of two electrons which amounts to about 29 Mev per cycle. About 7 percent of this energy is lost in the form of kinetic energy of neutrinos, which escape without interacting any further. The remaining 93 percent of the energy is converted into thermal kinetic energy and radiation. The photons created in the original nuclear processes are absorbed after traversing only a short distance in the star and a larger number of photons of lower frequency are emitted, etc., so that the radiation finally leaving the star has approximately the spectral distribution of blackbody radiation. The rate a t which these cycles take place and hence the rate of energyproduction increases very much for even a small increase in the stellar temperature. -Prepared by E. E. Salpeter.
T A B L E 722.-THE T H E O R E T I C A L D E BROGLIE W A V E L E N G T H S ASSOCIA T E D W I T H VARIOUS P A R T I C L E S A N D BODIES O F GROSS M A T T E R m
0 = h / ( m4 1 Particle
............. ............
Mass in
g
Velocity cm/sec
1 Slow electron 9.1 xlO-= 9.1 xlO-= I-volt-electron 5.9 XI07 100-volt-electron .......... 9.1 xIO-" 5.9 X108 10,000-volt-electron ........ 9.2 X ~ O - ~ ~ 5.0 x l o e HImolecule at 200°C.. ..... 3.3 x10-= 2.4 x10" 100-volt proton ............ 1.67 lo-" 1.38 10' 6.94x 10" 100-volt a-particle ......... 5.6 xlO-" 2.1 XIOO a-particle from radium. .... 6.6 xlO-" 1.9 32.000 22 rifle bullet .............. 3,000 Golf ball .................. 45 2,500 Baseball .................. 140
x
x
Energy ergs
De Broglie wavelengths A
4.5 x10-m 7.3X108 1.G XIO-'~ 12. 1.6 ~ 1 0 - ~ O 1.2 1.6 x10-8 .12 9.5 x10-14 .82 1.6 x10-0 .029 1.6 XlO-'* ,0143 1.45xlo-' 6.6x lo-' 9.5 X108 1.1 x lo-= 2.0 X108 4.9x10-" 4.4 x108 1.9x lo-"
Used by permission of .pl Stranathan, J. D., The particles of modern physics, Blakiston Co., 1942. the publishers. SMITHSONIAN PHYSICAL TABLES
666 TABLE 723.-RATES O F NUCLEAR REACTIONS IN S T A R S A N D O F ENERGY PRODUCTION AT VARIOUS T E M P E R A T U R E S * m Reaction
Temnerature: iOXl0' 6~1010yr 15 sec ,;X,l;yr
H1+H1-+H2+e+ H2+Hl-+He3+y HeS+He'+Be'+y Be'-+Li'-cTi7+H+He'+He' Mean l i f e o f hydrogen Energy production in ergs/ ( g sec)
10 hr 6XlO'Oyr
.75
15x10' 1.2XlO"Jyr 2 sec 1.5XlOgyr 70 days 50 min 3X10Dyr
17.5XlOe 6X10gyr 1 sec 1.2X108yr 70 days 50 sec 1.5X108yr
40
80
P a r t 2.-Carbon Temperature: 10x10~ C1z+H1-+N13+y 2XlODyr NlJ-+C'3+e+ 10 min C'"+H'-+N"+y <5X108yr
20X10° 4XlOayr .5 sec 1.5X107yr 70 days 15 sec lXIODYr 120
25x10' 2X109yr .2 sec 5X106yr 70 days 2 sec 5X10'Yr 250
30XlO' 1XlO'Yr .1 sec SXl(rYr 70 days .4 sec 3X10*Yr 400
cycle, t e m p e r a t u r e s in " K
Reaction
Relative alnmdances of N": 5,000: 200: 50: 1.
15x100 1XlOayr 10 min <2.5X106yr
17.5X100 6XlO'yr 1 0 mln 51.5XlO'yr
20x100 7XlOSyr 10 min <1.5XlOSyr
25x100 200 y r 10 min 5 5 0 yr
30X10' 15 Y'. 10 min 5 3 yr
C'2: C'3: N'" at a temperature of 17.5X100 "K a r e in the approximate ratios of
Note that the energy-production for the carbon cycle increases much more rapidly with temperature than for the proton-proton cycle. At very "low" temperatures (
Tables 723 and 724 prepared by E. E. Salpeter. 226 Hethe, Phys. Rev., vol. 5 5 , p. 434, 1939; Astrophys. Journ., vol. 92 118, 1940. Gamow and CritchFowler, W. A,. and field, Theory of atomc nucleus and nuclear energy sources, Oxford Univ.' bress, 1940. Hall, R. N., Phys. Rev., vol. 77, p. 197, 1950, and private communication. Christy, R. F., and O'Reilly, J., unpublished work.
TABLE 724.-TIMES Reaction
Li'+ He'
R E Q U I R E D FOR SOME O T H E R REACTIONS
Temperature:
. .
15x100 "K 5x10" yr 1x10' yr 5x 10l8yr 5>< 10" yr 2x10" vr
20XlP'K
30x10' "K
1X lo7 yr 5x10' yr 2XlO"yr 5x 10'' yr 2 X 10" vr 1x lomr;
5x108yr 5x10' yr 1x10' yr 5x10' yr 2XlO"yr 2XlO"yr
All mean reaction times are proportions1 to the density p of the stellar material and to CII, the percentage by weight of hydrogen (except the reactions in which one of the colliding nuclei is He' instead of H' in which case Cne replaces Crr). The figures in the above tahles are for CW= 67 percent, Crl. = 30 percent, and for p = 160 g/cm3. T h e calculations of Christy and O'Reilly* for the interior of the sun give these values for Crl, Crr, and p as well as a concentration of 1.5 percent for carbon, nitrogen, and oxygen combined and of 1.5 percent for all other elements combined. Their calculations predict a temperature of about 17X lo" "K i n the interior of the sun. The mean life of all the hydrogen now present and the total energy production due to the proton-proton cycle and the carbon cycle are also given in Table 723. For the carbon cycle the mean life of hydrogen and the enerqy production depend on the concentration of the isotopes of carbon and nitrogen. These elements play the role of a "catalyst" controlling the speed of the reaction and are reproduced at the end of each cycle. The figures in Part 2 of Tahle 723 are for a concentration of 1 percent by weight for N". * For reference, see footnote 225 above. SMITHSONIAN PHYSICAL TABLES
667 T A B L E 7 2 5 . P L O W N E U T R O N PRODUCED R A D I O A C T I V I T I E S OF LONG HALF-LIFE *
Half-life
12.1 vr 12.1 ;r 12.1 yr 2.7X10a yr 5700 yr 5700 y r 14.8 hr 170 min 14.3 d 87.1 d 2 x 10'yr 37.5 min 1.83 hr 12.4 hr 152 d 2.5 hr 85 d 72 d 26.5 d 2.59 hr
zr
4; 5.3 y r 2.6 hr 12.8 hr 250 d 13.8 hr 57 min 14.1 hr 40 hr 11.4 d 89 min 12 hr 26.8 hr 127 d 58 min 4.4 hr 34 hr 34 hr 4.5 hr 9.4 yr 74 min 19.5 d 2.7 hr 55 d 62 hr 65 d 17 hr 6.7 hr 67 hr 6.6 hr 2.8 d 41 d 4 hr 35 hr 13 hr 26 rnin 225 d 7.5 d 48.6 miii
Max energy 0-particles emitted Mev
Max energy y-fays emitted Mev
.O 179 .0179 .0179 .6 .156 .156 1.39 1.8 1.72 .169 .64 4.94 2.55 3.5 .260 2.3 1.49 .36 capture 2.81 capture .46 .3 1.9 .66 .4 I.T. 1.o 3.17 1.2 capture 1.2 2.0 3.0 capture I.T. I.T. .47 .9 .94 .74 4. 1.8 I.T. 1.5 2.35 1.o 2.1 3.7 1.5 I.T. capture .67 1.35 .78 1.1 3.5 .59 1.o I.T.
none none nme none none none 2.76 none none none none 2.15 1.37 1.5 none .8 1.12 1.o .32 2.06 .07 1.30 1.3 1.1 1.35 1.14 .44 none 2.5
K K
K
K
K
.... .32
.... ....
1.2
.5
.10 .049 1.35 .2 .37 none
....
1.08 .386 none none .92 .8 1.6 .75 .136 .23 .55 .76 .3 none
....
1.40 none .247
Thermal neutron cross section in barns
53. .6 1.2 1.o .63 .2 22. .04 16.2 12.8 2.1 .32 22.5 2.6 4.3 .51 .09 .9 3.4 .073 .45 .60 .085 4.6 24. .03 3.0 2.25 .27 .96 .06 .06 .72 1.3 .005 1.2 .1 .L
.37 from Momdecay .01 1.2 .67
Percent abundance of parent nucleus
.016 7.5 1.2x lo-' 100. 99.6 1.12 100. 3.05 100. 4.15 75.4 24.6 99.6 6.6 2.06 .19 100. 5.34 4.49 100. 5.8 .28 100. .88 69.1 50.9 17.4 17.4 39.8 21.2 21.2 36.7 7.7 100. .87 49.8 50.6 49.4 .34 57. 57. 17.4 72.8 9.9 82.6 100. 17. 2.8 15.9 24. 5.7 31.3 18.3 27. 13.5 48.7 12.8
Revised hy Jacoli I*. Rhodes 1.niversity of Pennsylvania. Ste hens, W. E.. (editor),'Nuclear fission and atomic energy, Science Press. Used by permission of the elitor.
(continued) SMITHSONIAN PHYSICAL TABLES
668 T A B L E 725.-SLOW
N E U T R O N PRODUCED R A D I O A C T I V I T I E S O F LONG H A LF-L I F E (conc I uded)
Half-life
43 d 2.33 d 2.8 hr 48 d 53.9 min 105 d 2.8 d 60 d 9.3 hr 72 mln 25 min 8 d 5.27 d 3.1 hr 2.3 yr 11.7 d 85 min 40 hr 30 d 33 hr 19.3 hr 11.0 d 1.7 hr 47 hr 25 min 9.2 hr 7 Yr 18 h r 3.9 hr 75 d 2.5 hr 27.2 hr 9.4 d 7.5 hr 127 d 33 d 4.1 d 2.1 hr 3.7 hr 6.6 d 46d 120 d 73 d 24.1 hr 90 hr 18 hr 15 d 32 hr 70 d 19 hr 3.3 d 18 hr 31 min 2.7 d 51.5 d 3.5 yr 3.32 yr 5.0 d 138 d 23.5 min 25 d 23.5 min 2.3 d
SMITHSONIAN PHYSICAL TABLES
Max energy &particles emitted Mev
1.7 1.13 1.7 I.T. .85 .080 1.94 2.37 .70 1.8 2.02 .687 .35 2.4 .66 K capture 2.27 2.12 .6 1.35 2.14 .90
1.5 .78 1.9 1.88 .9 .95
....
.88 1.2 1.6 .33 1.5 .98 K capture SO 1.2 1.15 .47 .46 .53 .43 1.33 1.05 2.05 .I42 1.2 .67 2.2
...
.7 1.8 .96 .21 .87 .68 1.17
... .
1.6 23 1.20 1.18
Max energy y-rays emitted Mev
.5 .55
....
.I9 2.32 ,085 .57 2.06 none .8 ,428 .37 .085 .7 1.40 1.2 .163 2.3 .2
.5
1.9 .58
....
.61 .3 ,725 1.2 .38
....
1.15 .8
....
none .81
.83(?) .4 .35
....
none .2 .47 1.22 none .69 none 1.43 .I29 1.58
.a7
1.4
.... ....
.411 .3 none none none
Thermal neutron cross section in barns
.14 1.1 1.4 61. 56. 1.1 6.8 2.5 .78 .13 6.8 from Telal decay .2 .016 26. 24. .5 9. .95 .31 11. 1.5 2.4 280. 6. 1530. 1000. 1.1 11. 22. 2700. 67.
....
7. 118. 18,000. 50.
5.
30. 3200. 10. 20.6 2.1 37.2 101. 75. 3.4 3.9 740. 130. 4.5 1.1 3.9 96. 2.4 7.5 .00045
.015
from Bizlodecay none .30 from T€?' decay .076 .27 from Ug decay
Percent abundance of parent nucleus
28. 28. 7.3 4.5 95.77 1.1 57. 44. 18.7 31.8 100. 26.9 100. 100. .09 71.7 99.9 88.5 11.1 100. 16.5 6.8 26.6 22.5 49.1 52.2 24.8 100. 100. 27.3 100. 27.1 14.9 100.
.I4 31.8 12.7 97.5 2.5 35.1 100. 30.7 29.2 38.2 61.8 26.4 41.0 38.5 61.5 25.4 25.4 7.2
100.
29.6 29.2 52.3 100. 100. 99.
T A B L E 726.-ARTIFICIAL
669
DISINTEGRATION
When various materials are bombarded with the high-speed particles produced by one of the devices given in Table.718, disintegrations, or the building up of elements higher in the atomic table, result. Some examples of these reactions are given in the table. P a r t 1.-Some
values of the energy of artificial disintegration for different isotopes and for different reactions
- 2.320 Mev .764
Neutron bombardment - 9.57 Mev
- 2 8 Mev .60 -15.6 - 2.31 1.73 - 4.10 .626 -11.43 - 9.97
2.6 6.69
- 2.9
- .so - 1.63 - 7.43 -18.68 - 3.94
4.785 1.98 2.79 .22 .20
- 6.66
Proton bombardment ,558 8.70
5.53 Mev 4.021 - 1.645 17.21 17.28 559 6.49 - 1.84 2.125 Mev
- 5.2
1.146 8.57 - 2.762 15.96
'I4
3.00 4.92 1.92 7.56 2.96 8.113 3.84 2.455
Deuteron bombardment Li*(d,a) He' Lie(d,n) Bee Lin(d,p)Li7 LP(d,n) Be7 Li'(d,a)He' Li7(d,p) Lie LP(d,a)He" B'"(d,a) Bes,Bes a B lo( d,p ) B 11,B" a B"'(d,n)C''
Bes(a,a')Besfn Bes(a,a')Bee Bee(a,a')HeB a 'Bee(a,a')%a n LiO(a,p)Bea
8.03 Mev 13.78
22.23 Mev 3.54 5.012 3.34 22.29 - .193 14.3 17.81 9.24 6.53
- 1.63 - 1.63
Mev
- 2.4 ++ - 1.58 2.12
5.99 Mev 13.50 8.57 5.1 - 4.36 6.16 7.62 3.07
.4
-
7:09 4.53 4.52 2.726 .279 5.10
a-ray bombardment - 2.78 Mev
LiT(a,n)B'o,B'O Blo( a,d) C'2 B'O(a,p)C'S,C'' B'o(a,n) N18 %e~(a,n)CIZ,CIZ
1.44 4.14 1.18 5.75
Bes(a,a')BeO. B"(a,n) N14 B''(a,p) C" C'2(a,n) 0 1 6
- 1.63 Mev .28 .88
- 8.4
PnHornyak, W. F., and Lauritsen, T., Rev. Mod. Phys., vol. 20, p. 191, 1948; Phys. Rev., vol. 78,
p. 372, 1950.
P a r t 2.-Photo-nuclear 2.20f .05 Mev 1.63f .3 9.0 + .5 18.7 i l . 0 10.65k .2 16.2 f .3 il.5 fl.0 14.0 f l . 0 14.0 f .4 16.8 f .4 12.35f .2 14.8 f .4 13.2 f .2
reactions, threshold' values 15.9 f .4 Mev 13.8 f .2 10.15f .20 10.9 +- .2 10.2 f .2 11.8Of .20 9.20f .20 10.7 f .20 10.2 f .20 12.48f .15 7.20f .40 13.28f .I5 7.10k .30
228
6.442 6.51k 8.5Of 9.252 9.3 2 9.40-C 7.402 7.7 +8.OOf 6.25f 7.38f 6.85f 7.45k
. I 5 Mc!V .15 .I5 .2 .2 .10 .20 .2
.I5 .20 .15 .20 .2
ma McElhinney, J., Hanson, A. 0..Becker, R. A,, Duffield, R. B., and Diven, B. C., Phys. Rev., vol. 75,
p. 542, 1949.
SMlTHSONlAN PHYSICAL TABLES
670 O F PRODUCING E L E M E N T S BEYOND URANIUM ppo
T A B L E 727.-METHODS
The heavier elements, Np, Pu, Am, Cm, Bk, and Cf may be produced by artificial transformation of U, followed by radioactive breakdown. A few examples follow :
ozu= +
O d
-+
For quantity production : 84PUZW o d + "4PU"O + y
+
+ ,,,,Cine'' + WPU"O
prPurn
+ ?He'
011'
3 WPU"'
S~PU''' +u2Amar1 + pj
or
+ + on1+
+y
o~t'
For quantity production : 05Am2'1 on'+ llsAm"2 y u,Am212* +,,Cm"'
+ + +p SjAm'" + z H e ' j , K B ~+ * ' ~ + on' d m * ' 2 + 2He' + ,,Cf"'+ "n' + G . T. Seahorg, private communication. 100-year isomers. Sixteen-hour
+
T A B L E 728.-PlLE
YIELDS OF SOME ISOTOPES*
Calculated for 10 liters of material exposed to 10" neutrons cm-' sec-' Cross section in units of
Radioactive isotope
H3 Be"
Ca'5 Fe5' ZIP As'" BrH2 Rb" Sr" Ag"' IIPm Taloz Biz10
10-2' cmy Density times relative of material isotope abundance g/cmS
10-7 ,0086 1.7 .4 .23 .066 .012 .oo1 .26 4.6 1.12 .52 .0041 1.1 2.74 20.6 .015
1 1.85 1.6 .97 2.2 .86 1.54 4.86 7.14 5.7 3.12 1.53 2.6 10.5 7.3 16.6 9.8
Half-life in hours
Atomic weight of material
1.1~105 9 2.4X1010 9 4x10' 30 14.8 23 343 31 12.4 39 3650 40 1110 56 6000 65 26.8 75 34 80 469 85 1770 88 5400 108 1150 115 2800 181 120 209
Revised by J. L. Rhodes. For reference, see footnote 226, p. 667.
SMITHSONIAN PHYSICAL TABLES
Mean free path cm
7 x 10' 570 12 60 60 680 2220 7000 65 2.86 22.8 106 8000 .41 5.7 .48 1420
Yields mc/hr
10-7 7 x lo-* 2x10-s 1100 45 120 .12 .1 4.5 1300 1300 20 .I
200 150 680 6
67 1 T A B L E 7 2 9 . P O M P A R A T l V E PROPERTIES O F ORDINARY A N D HEAVY WATER*
H20
Hz0
Property
Specific gravity at 25°C relative to ordinary water at 25°C ...................................... 1.0000 Temperature of maximum density. ............... 4.0"C Dielectric constant ............................. 81.5 Surface tension ................................ 72.75 dynes/cm Viscosity at 10°C.. ............................. 13.10 millipoises Melting point .................................. .OOO"c Boiling point (76 cmHg pressure). ............... 100.OO"C Heat of fusion.. ................................ 1436 cal/mole Heat of vaporization at 25°C.. .................. 10484 cal/mole Refractive index at 20°C for N a D line.. .......... 1.33300
1.1079 11.6"C 80.7 67.8 16.85 3.802"C 101.42"C 1510 10743 1.32828
* For reference, see footnote 224, p. 665.
T A B L E 730.-THE Wavelengths, cm
7500x104)
M E C H A N I C A L E F F E C T S OF R A D I A T I O N 230
Nature of radiation
Visible radiation
3750~10-~ 25ox
lo-*
X-rays
5x10-0 Soft y-rays 10-9
4x10-"
y-rays of RaB
5><10-11 Hardest y-rays 4.5x10-" ? 2X10-12 1.3x lo-"
zm Nat.
Highly penetrating ?
Res. Council Bull. 80; 1931.
SMITHSONIAN PHYSICAL TABLES
Effect on atom
Disturbs outermost electrons Disturb inner electrons
Temperature, O K
7700 115,000
...... Building of H e atom out of H Disintegrates nuclei Annihilation or creation of proton and accompanying electron
Stellar atmosphere Stellar interiors Central regions of dense stars
Strip off all or nearly all electrons Disturb nuclear arrangements
Where found
720,000,000 5 8 x 10' 64x10'
15x 10'0 22x10"
?
672
TABLES 731-758.-RADIOACTIVITY
*
A number of elements (12 ; 43 isotopes) of high atomic weight, now found in the earth, and one of the isotopes of each of six lighter elements (Table 732) are unstable in that they spontaneously break down into other elements, emitting a, p or rays. The study of artificial radioactivity shows some other types of breakdown. Some of the artificial radioactive nuclei break down by the emission of positive electrons or of neutrons ; a K electron may be captured (designated by K ) ; some internal conversion of electrons may take place ( e - ) or there may be some isomeric transition of the nucleus (I.T.). The characteristics of the three rays-a, p, and y-are quite different. A 3 Mev a-particle has a velocity of about 1/25 that of light, a range in air of 1.7 cm, and produces some 4,000 ion pairs per mm in air at 760 mmHg at 15°C. A 3 Mev &ray has a velocity of nearly 99 percent of that of light and a range in air of about 13 meters, and produces only about 4 ion pairs per mm in air. The energy of a y-ray, which is very short-wavelength radiant energy, is E = hv, and it has the velocity of light. Thus a 3 Mev y-ray has a wavelength of 4.1 XU. However, the y-rays given by the natural radioactive materials have much less energy than this (4 MeV) , generally about 1 MeV. [Sonie artificial radioactive materials emit y-rays with very high energy (See Tables 750-752.) .] The wavelengths of the y-rays from natural radioactivity particles range from about 4.5 to about 4,000 XU. y-rays have a very long range. A y-ray produces directly no ions along its path but spends almost its entire energy in producing a photoelectron. Rutherford says that the p r a y s are about 100 times as penetrating as the a-rays, and the 7-rays 10 to 100 times as penetrating as the P-rays. Today it should be stated that, in general, the radioactive isotopes (about 43 in number) of these 12 elements change into other isotopes, either smaller or of the same weight, depending upon the type of breakdown. The nucleus of the resulting isotope may be smaller in weight by about four units and have a charge two units smaller than the parent due to the emission of an a-particle, or it may be of almost the same weight and have a charge one unit greater due to the emission of a p r a y . There are several changes in both the weight and charge that may take place for some of the artificial radioactive nuclei. The character of these changes varies with the element and seems to be determined by some probability law. It does not seem possible, by any ordinary physical or chemical means, to change these characteristics. (See artificial disintegration, Table 726.)
* For
reference, see footnote 199, p. 618. E., Chadwick, J., and Ellis, C. D., Radiation from radioactive substances, Cambridge Univ. Press, 1930. *mO. Rutherford,
T A B L E 731.-UNITS
FOR T H E R A T E O F R A D I O A C T I V E D I S I N T E G R A T I O N
The curie, the adopted unit of the rate of radioactive decay, is defined as the number of disintegrations of 1 gram of radium (3.61)(10") in 1 second. As a working value for the curie the National Bureau of Standards some years ago adopted the value 3.700X10" disintegrations per second. The rutherford (abbreviated r d ) = 10" disintegrations per second, has been suggested as a smaller working standard. Then, 1 millirutherford ( m r d ) = 10' disintegrations per second and 1 microrutherford ( p r d ) = 1 disintegration per second. The rate of disintegration of an isotope that emits gamma-rays may be determined by a measure of the 7-ray emission in roentgens. A committee of the National Research Council recommended that the curie be defined as 3.70X10'0 disintegrations per second; the rutherford ( r d ) as just given. For quantitative comparison of radioactive sources emitting gamma-rays, for which disintegration rates cannot be determined, the roentgen per hour at 1 meter (rhm) is recommended. Physics Today. vol. 3, p. 5 , 1950.
SMITHSONIAN PHYSICAL TABLES
T A B L E 732.-NATURAL
v)
;
RADIOACTIVE MATERIALS
v) I
Energy of radiation in Mev &
P 5 z
Atomic number
Material
I -u
92 92 92 91 91 91
Uranium Uranium Uranium Protactinium Protactinium Protactinium
234 235 238 231 234 234 m
Uranium I1 Actinouranium Uranium I Protactinium Uranium Z Uranium X2
90 90 90 90 90 90 89
Thorium Thorium Thorium Thorium Thorium Thorium Actinium
227 228 230 231 232 234 227
Radioactinium Radiothorium Ionium Uranium Y Thorium Uranium XI Actinium
89 88 88 88 88 87 86 86 86 85 85 85 84 84 84 84 84
Actinium Radium Radium Radium Radium Francium Radon Radon Radon AsLatine Astatine Astatine Polonium Polonium Polonium Po1onium Polonium
228 223 224 226 228 223 219 220 222 215 216 218 210 211 212 214 215
Mesothorium 2 Actinium X Thorium X Radium Mesothorium 1 Actinium K Actinon Thoron Radon Ast:tine
84
Polonium
216
<
z! ? 0
-I
D
aI rn
Isotope
Radioactive name
Decay constant
Half-life
a or
2.5X106yr 8.9XlO"yr 4.5XlO'yr 3.3X104yr 6.7 hr 1.1 min 1.2 min 18.7 ~. . d 1.90 yr 8.1x 10' y r 25.6 hr . 1.39XlO"vr 24.1 d ' 21.7 yr
2.8x10" yr -' 7.8XlO-'O yr" 1.54x lo-'' yr-' 2.1X10-6yr-' .lo3 hr-' .63 min-' .58 min-' 3.710-2d-1 ... ~..36 yr-' 8.510'yr-' 2.710.' hr" 5.Ox lo-'' yr-' 2.9x10-2d-' 3.2x10-' yr"
.11 hr-' 6.2x lo-' d-' .19 d-' 4.3x 10" yr-' 8.101 yr-' 3.3)(10'* min-' .18 sec" 1.28X 10.' sec-' .181 d-' 7x10' sec-' 2.3X 10" sec-'
P-;r
Radium F Actinium C' Thorium C' Radium C' Actinium A
6.1 hr 11.2 d 3.6 d 1620 yr 6.7 yr 21 mm 3.9 sec 54.5 sec 3.83 d -lO-'sec 3X1O4 sec several sec 139 d 5)<1O-'sec 3.2X lo-' sec 1.5XlO'sec 1.8XlO-'sec
5.oxio-~d-1
a;Y
Thorium A
.16 sec
v)
< -
1.4X102sec-' 2.2x loEsec-' 4.6X 10" sec-' 3.9x loz sec-' 4.3 sec-I
B
4.76 4.5 4.2 5.0 1.2 2.3 5.8 5.3 4.7 .2
a;Y
P'
a a
a a a a a a
a a
Pa
8-
1.5 5.7 5.6 4.8 .5 1.2 6.8 6.3 5.5 8.0 7.7 6.7 5.3 7.4 8.8 7.7 7.4 6.7
Y
...
90 U Y 231 90 ux,-234 .25 89 Ac 227 92 Uir 234 .70 .&I 92 Uir 234 92 U Z 234 ... 88 AcX 223 88 T h X 224 ... 88 Ra 226 ... .04 91 Pa231 88 MiThi 228 91 UX, 234m 87 AcK 223 90 RaAc 227 ... 90 RaTh 228 86 An 219 86 T n 220 ... .19 86 Rn 222 89 MsTh. 228 ... .09 88 ACX 223... 84 AcA 215 ... 84 ThaA 216 ... 84 RaA 218 83 AcC 211 ... ... 83 T h C 212 83 RaC 214 ... .75 82 P b 206 ... 82 AcD 207 82 T h D 208 ... 82 R a D 210 ... 82 At 211 ... 85 AcB 215 82 ThB 212 ... 85 At 216 .17
...
...
Many of these radioactive isotopes were known as radioactive decay products before it was known that they were isotopes of other elements.
(confkiued)
90End 10product 230
B
G,
B P
T A B L E 732.-NATURAL
R A D I O A C T I V E M A T E R I A L S (concluded) Energy of radiation in &lev
2
Atomic number
rn
84
Polonium
218
Radium A
3.1 min
2 2 min-'
a
83
Bismuth
210
Radium E
5 d
.14 d-'
PP-
83
Bismuth
21 1
Actinium C
2.16 min
.32 m i d
83
Bismuth
212
Thorium C
r m v)
Material
Isotope
Radioactive name
Half-life
Decay constant
Radiation
6.0 1.2 4.8 6.6
a
83 82 82 82 82 81 81 81 75 71 62 60 37 19
Bismuth Lead Lead Lead Lead Thallium Thallium Thallium Rhenium Lutetium Samarium Neodymium Rubidium Potassium
214 210 211 212 ._ ~
214 207
208
210 187 176 152 150 87 40
Radium C Radium D Actinium B Thorium B Radium B Actinium C" Thorium C" Radium C" Rhenium Lutetium Samarium Neodymium Rubidium Potassium
60.5 min 19.7 min 22 yr 36.1 rnin 10.6 hr 26.8 min 4.76 min 3.1 min 1.32 min 4 X 10" yr 7.3XlO'O yr l.OX10"yr -5X 10" vr 6.3X 10" yr 1.6XlO'yr
1.14x10~* min-' 3.5x10-' min-' 3.2y 10.' yr-' 1.92><10-'min-' 6.5X 10-' hr-' 2.59x10-* min-' ,145 min-' 2 2 m/nP .52 mm-' 1.7X10-'3 yr-' 9 . 5 x lo-'* yr-' 6.9x 10-'syr" 1.4XlO-" yr-' 1.1x lo-" yr" 4.3>(10-'O yr-'
a or
a
Pa
Pa
5.5
1.8
P-
.01
P-;Y P-;Y P-;Y
P';
Y
P-;Y
PPP-;Y
P- ; Y ; e8-;Y
... ...
a
P-;Y
...
6.1 3.1 .026 1.o .36 .65 1.5 1.75 1.8 .04 .2 1 2.1
P-
Y
... ...
.15 1.7
... .045 .8
...
... ... 2.6
... ...
26
... ... .1 1.5
End product
82 85 84 81 81 84 81 84 81 84 83 83 83 83 82 82 82 76 72 60 61 38 20
RaB 214 At 218 Po 210 TI 206 AcC" 207 AcC' 211 ThC" 208 ThC' 212 RaC" 210 RaC' 214 R a E 210 AcC 211 T h C 212 RaC 214 Pb 207 Pb 208 RaD 210 0 s 187 Hf 176 Nd 148 P m 150 S r 87 Ca 40
675 ORIGINAL N A M E S OF C E R T A I N RADIOACTIVE MATERIALS
T A B L E 733.-THE Radioactive name
Actinium Actinium A
89 84 82 83 84 81 82 87 88 92 91
B
"
~~
c
"
c ' ,-*
" "
L
D K
" "
x
"
Actinouranium Brevium (see Uranium X,) Emanation Meso$orium I Niton Radioactinium Radiothorium Radium Radium A B
~
c
"
C' C"
" "
Actinium 227 Polonium 215 Lead 211 Bismuth 211 Polonium 21 1 Thallium 207 Lead207 Francium 223 Radium223 Uranium 235 Protactinium 234m
"
Rad)m "
~
Element and isotope
D E F G
Radon t Actinon Emanation Niton Thoron Thorium Tho$m A
86 Radon222 88 Radium228 89 Actinium 228 86 Radon222 90 Thorium227 90 Thorium 228 88 Radium226 84 Polonium 218 82 Lead 214 83 Bismuth 214 84 Polonium 214 81 Thallium 210
I1
I'
Radioactive name
Element and isotope
" Ii
" "
~~~
*
82 Lead210 83 Bismuth 210 84 Polonium 210 82 Lead206 86 Radon222 86 Radon219 86 Radon222 86 Radon222
B C' C" D
x
Thoron Urarfium I
I1
"
x*
"
XZ
"
Y
"
z
Uranium lead
91 Protactinium 2341x1
90 Thorium231 91 Protactinium 234 82 Lead206
.
At ti.mes the prefix cca was used to designate the element following certain elements either in the periodic table or in radioactive series. t At one time all these materials were called Emanation, i.e., RaEm, AcEm, ThEm.
T A B L E 734.-THE
FOUR RADIOACTIVE F A M I L I E S
The radioactive isotopes of the heavy materials arrange themselves into four families, or series, that are known either by the parent of the family or by the member of the series with the longest life. Before the various isotopes had been established some of the different members of the families had special names. (See Table 733.) These families or series are also designated by the numerical relation of the particular isotopes of the family involved and the number 4. Thus the four families or series are: (1) Thorium, or 4n series; (2) Neptunium,, or 4n 1 ; (3) Uranium, or 4n 2 ; (4) Actinium, or 4n 3. Generally, tables of these families show the type of radiation emitted, the energy of the radiation, the end product, and two or three factors that describe the time characteristics of the disintegrations; i.e., T the half-life (that is, the time it takes for one-half of the given material to disintegrate, which can be accurately measured T,, the average life, and A, the decay constant. From the law of disintegration which radioactive materials have 0 693 been found to follow, the three constants are shown to be related as follows : A = 1 T and T , =ha There are a number of isomers *'* in the series as shown in Table 742, as for instance, see Uranium XI, Radium C, Actinium, etc. As a result of recent work on the artificial production of radioactive isotopes many more isomers could be given. Also, the first member of some of the series might be different. Thus, the 4 n + 3 series (the Actinium group) might start in this manner :
+.
Element
92 Uranium 239 93 Neptunium 239 94 Plutonium 239
Rays and end products
P-, NPp-, Pua , Urn
+
+
(half-period)
T
Decay constant sec-'
23.5 min 2.3 days 2.4X 10' yr
4.9x 3 . 5 10-7 ~ 9 . 2 lo-" ~
T o be sure, any trace of such members of this family would no longer be found in the earth. Almost all the isotopes of this family are artificial products and are not now found in the earth. Sergi, Emilio, and Helmholtz, A. C., Rev. Mod. Phys., vol. 21, p. 271, 1949.
2q2
(continued) SMITHSONIAN PHYSICAL TABLES
T A B L E 734.-THE
ln
F O U R R A D I O A C T I V E F A M I L I E S (continued)
5
z D
6
Atomic number
Element
Isotope
90 88 89 90 88 86 84 82 83
Thorium Radium Actinium Thorium Radium Radon Polonium Lead Bismuth
232 228 228 228 224 220
84 81 82
Polonium Thallium Lead
212 208
216 212 212
208
Radioactive name
Thorium Mesothorium 1 Mesothorium 2 Radiothorium Thorium X Thoron Thorium A Thorium B Thorium C Thorium C' Thorium C" Thorium D
Rays and end product MsTh a
.\tomic number
Element
Isotope
94
Plutonium t
241
95 92 93 91 92 90 88 89
Americium Uranium Neptunium Protactinium Uranium Thorium Radium Actinium
241 237 237 233 233 229 225 225
t Not
T (half period)
1.39X 10" yr 6.7 yr 6.13 hi1.90 yr 3.64 days 54.5 sec .158 sec 10.6 hr 60.5 min
1
pMsTh 2 p - , ~ RaTh ThX Tn ThA ThB a F,-Y T h C ThC" a p-,y ThC' a ThD F,T T h D Stable a,y a a
P a r t 2.-Neptunium
Am U
a,T NP P, c - , y NP
a
Pa c' Th Ra
a
Fr
a p-97, ca, y, c-
6-
3XlO-'sec 3.10 min
series (4 n
Rays and end product
pa
%
series (4 n)
P a r t 1.-Thorium
Ac
isolated from ores, artificially produced by bombarding uranium with a-particles.
(contintred)
Decay constant X sec-1
Energy of radiation in Mev
a or B
1.58x10-'8 3 . 2 8 lo-" ~ 3.14~10-5 1.16x 10.' 2.2ox10-0 1.27x10-* 4.4 1.8 ~ 1 0 - 3 1.91~10-~
4.0
2.3 x10-* 3.72x
8.8 1.7
.05 1.5 5.4 5.7 6.3 6.8 .36 6.1
Y
2.6
+ 1) T (half period)
-10
yr
500 y r 6.7 days 2.6x 10' yr 27.4 days 1.63X103yyr 7000 yr 14.8 days 10 days
Decay constant X sec-1
2.2 X W D 4.40x lo-" 1.20x lod 8.4 x 1 0 - ~ ~ 2.93~ 1.34x lo-'' 3.1 >
Energy of radiation in Mev
a or 8
.01-.02 5.46 .23 4.7 .4 4.8 5. .2
5.8
Y
.06 .2 .3
.3
-
v)
5
T A B L E 734.-THE
F O U R R A D I O A C T I V E F A M I L I E S (continued)
I 0 v)
zDz V
I <
2
Atomic number
87 85 83
Element
Francium Astatine Bismuth
Rays and end product
Isotope
22 1 217 213
a a
p-
0
r D -I
D m
-Irn v)
84 81 82 83
Polonium Thallium Lead Bismuth
a a
213 209 209 209
pj3-
P a r t 3.-Uranium Atomic number
Element
Isotope
Radioactive name
90
Uranium Thorium
238 234
Uranium I Uranium XI
91 91
Protactinium
92
88 86 84
Uranium Thorium Radium Radon Polonium
234 m 234 234 230 226 222 218
Uranium X2 Uranium Z Uranium I1 Ionium Radium Emanation Radium A
82 83
Lead Bismuth
214 214
Radium B Radium C
84 81 82 83 84 82
Polonium Thallium Lead Bismuth Polonium Lead
214 210 210 210 210 206
Radium C' Radium C" Radium D Radium E Radium F Radium G (uranium lead)
92
90
At Bi Po TI Pb Pb Bi Stable series (4
Rays and end product a 6-97
I.T.
UX 1 ux 2 UZ
RaR pAc pRaC a,y RaC" pRaC' a RaD 6- RaD F,-Y R a E @RaF a,y RaG Stable a
(continued)
T
(half period)
5 min .021 sec 46 min 4.2x10-' scc 2.2 min 3.3 hr
Decoy X sec-' constant
2.3 X I O - ~ 33. 2.5 x 1 0 1.6 K10"
5.2
5.8
xlO-'
Energy of radiation in hIev a or ,9 Y
6.31 7.0 1.3 5.8 8.4 1.8 .70
-
-
-
-
+ 2) (half period)
Decav constaiit X sec-'
4.5XIO"yr 24.1 days
4.9 XlO.'fi 3.3 x10-'
4.2 .15
.09
1.01K 10.:
2.0 1.o 4.7 4.7 4.8
.8 .70 -
T
1.14 min 6.7 hr 2% 10; yr 8.0X 10' yr 1620 y r 3.825 days 3.05 min 26.8 min 19.7 min
1.5X lo-' sec 1.32 min 22 pr 5.0 days 138 days
2.10XlO-~ 3.S5x lo-? 4.3 Xlo-' 5.85x10-' 4.5 X lo3 9.8 ~ 1 0 . ' 1.0 x10-0 1.6 x10-0 5.35x10-s
Energy of rodintion in >lev a or ,9
5.5
6.0 .65 5.4 3.1
7.7 1.80 .025 1.17 5.3
7
-
.19 1.8 -
-
-
.05 .77
% u
T B L E 734.-THE
F O U R R A D I O A C T I V E F A M I L I E S (concluded) P a r t 4.-Actinium
.4tomic number
Element
Isotope
Radioactive name
92 90 91 89
Uraniuni Thorium Protactinium Actinium
235 23 1 23 1 227
Actinouranium Uranium Y Protactinium Actinium
90 87 88 86 84
Thorium Francium Radium Radon Polonium
227 223 223 219 215
Radioactitiium Actinium K Actinium X Act inon Actinium A
85 82 83
Astatine Lead Bismuth
215 21 1 211
Astatine Actinium B Actinium C
Polonium Thallium Lead
211 207 207
Actinium C' Actinium C" Actinium D
+ 3) T
Rays and end product
a,y
P-,7 , 0a.7 @-
a a,y
F,-r a,y a
a
Pa F,y
@-,r a
84 81 82
series ( 4
a
P-,Y
(half period)
UY Pa Ac RdAc AcK AcX AcX An AcA AcB At AcC AcC AcC' A d ." _ ~ AcD AcD Stable
Decay constant A sec-'
Energy of radiation in hIev a or B Y
8 X 10" yr 25.6 hr 3.4x 10' yr
3.1 xlO-" 7.52 X lo-' 6.5 X ~ O - ' ~
21.7 y r 18.6 days 21 inin 11.2 days 3.9 sec 1.8XW sec
1.01x lo-" 4.3 x10-' 5.5 x10-4 7.2 x10-7 .17S 3.9 X10'
sec 36 niin 2.2 min
6.9 XIOx 3.2 Xlo-' 5.2 x10-3
1.5
6.6
.8 -
1.4 X102 2.4 x10-3
7.4 1.5
-
4.6 .2 5.0 4.9
.16 .04 .3 .04
6.0 1.2 5.7 6.8 7.4
.1 -
8.
-
_
5X10-3 sec 4.8 min
679 T A B L E 735.-VARIATIONS
I N T H E ISOTOPIC COMPOSITION O F C O M M O N L E A D
*
Relative isotope abundances Source of lead
Locality
.
Geological age
.
‘ 204
206
207
208
Galena . . . . . .Great Bear Lake, Canada. . . Pre-Cambrian . . . . . . 1.000 15.93 15.30 35.3 Galena . . . . . . .Broken Hill, N.S.W . . . . . . . Pre-Cambrian . . . . . . . 1.000 16.07 15.40 35.5 Cerussite . . . . .Broken Hill, N.S.W. . . . . . . Pre-Cambrian . . . . . . . 1.ooo 15.92 15.30 35.3 1.000 15.93 15.28 35.2 Galena . . . . . . .Yancey Co., N. C . . . . . . . . . .Late pre-Cambrian . . 1.000 18.43 15.61 38.2 Galena . . . .. Nassau, Germany . . . . . . . . .Carboniferous . . . . . . . 1.000 i8.10 15.57 37.85 Cerussite . . . . Eifel, Germany . . . . . . . . . . Carboniferous . . . . . . . 1.000 18.20 15.46 37.7 Galena I . . . . . .Joplin, Mo. . . . . . . . . . . . . . . .Late Carboniferous . . 1.000 21.65 15.88 40.8 Galena I1 . . . . .Joplin, Mo. . . . . . . . . . . . . . . .Late Carboniferous .. 1.ooo 21.60 15.73 40.3 1.ooo 21.65 15.75 40.45 Galena . . . . . . Metalline Falls, Wash. . . . . . Late Cretaceous . . . . . 1.000 19.30 15.73 39.5 Cerussite . . . .Wallace, Idaho . . . . . . . . . . . Late Cretaceous . . . . . 1.om 15.98 15.08 35.07 1.Ooo 16.10 15.13 35.45 Wulfenite and Vanadinite . .Tucson Mts.. Arizona. . . . . .Miocene . . . . . . . . . . . 1.000 18.40 15.53 38.1 Galena . . . . . Saxony, Germany . . . . . . . . . . . . . . . . . . . . . . . . 1.000 17.34 15.47 37.45 1.000 17.38 15.44 37.3
.. . .
..
.
..
* For reference, see footnote 45, p. 136.
T A B L E 736.-LEAD Mineral
Locality
Geologic age
Age ratio in loe years
Samarskite . . . . . . Glastonbury, Conn. . . . , . . . . . . . . . . . , .Pre-Triassic . . . . . . . . . . . . , . Pitchblende . . . . . . Jachymov, Bohemia . . . . . . . . . . . . . . . .Late-Paleozoic . . . . . . . . . . . . Thorite . . . . . . . . . .Brevig, Norway . . . . . . . . . . . . . . . ..... Permian ( ? ) . . . . . . . . .. . . . . Kolm . . . .Gullhogen, Sweden . . . . . . . . . . . . . .Latest Cambrian . . . . . . . . . Broggerite . . .. . Karlhus, Raade, Norway . . . . . . . . . . . . Pre-Cambrian . . . . . . . . . . . Cleve.ite . . . . . . . . . Aust-agder, Arendal, Norway. . . . . . . . Pre-Cambrian . . . . . . . . Uraninite . . . . . . . . Keystone, S. Dak. . . . . . . . . . . . . . . . . . . Pre-Cambrian . . . . . . . . . . . . Uraninite . . . . . . . . Sinyaya, Pala, Carelia, Russia. . . . . . . Prc-Cambrian . . . . . . . . . . .
.. . .. .. .
’ For
.. .
OF T H O R I U M C” ( T H A L L I U M 208) BETA-RAY SPECTRUM
$g
’5$
1
V.S.
2 3 4 5 6 7 8 13 12 19 14 21 16 22 17
. . .. .. .
270 220 230 400 900 1000 1500 1850
reference, see footnote 45, p. 136.
T A B L E 737.-ANALYSIS
8%
*
R A T I O S OF S E L E C T E D R A D I O A C T I V E M I N E R A L S
S.
m. V.S.
m. S.
m. f. f. m.s. m.f. ms. m.f. ms. f. m.
Energy of &ray line +ahsofption energy In Mev
Energy of ?-ray Mev
I- I .0?52+ ,0158 .0259+.0152 I II .0278+.0133 LIII .0369+ ,0038 MI M” ,0380 ,0025 .0398+.0009 Nr N I or 0 .0404+.0001 K .0577+.0875 LI .1283+.0158 K .1231+.0875 .1954+.0158 I I K .1458+.0875 .2165 .O 158 Ll K .I661+.0875 .2369+.0158 LI K .1706+ .0875
,0410 ,0411 .0411 ,0407 ,0406 ,0407 .0405 ,1452 ,1441 2106 ,2112 .2333 ,2323 .2536 ,2527 ,2581
c
‘5
g
’”
+
+
zas
E’
g%
5
23 18 25 20 26 29 30 31 30 33 35 36 40 41 42
m. V.S. m.s. S.
m.s. V.S. V.S.
m.f. V.S. m.s. m.f. f.
’C .-
6 LI K LI K LI K LI MI
K Ll K LI
S.
K
m. f.
LI MI
Energy of 8-rav line +ahsoytion energy in Mev
Energy of y-ray M ev
.2446+.0158 .1915+.0875 .2640+.0158 .2042+.0875 :256+ 0158 .4281+.0875 .5025+.0158 .5 150+.0038 .5025+.0875 .5729+.0158 .6990+.0875 .770 +.0158 2.558 +.0875 2i63.5 +.0158 2.646 +.0034
.2604 2790 .2798 .2917 ,2914 S156 S183 .5188 ,5900 S887 ,786 .786 2.646 2.651 2.649
Rutherford, E., Chadwick, J., and Ellis. C. D., Radiation from radioactive substances, Cambridge University Press, 1930. SMITHSONIAN PHYSICAL TABLES
680 SPECTRA O F SOME N A T U R A L R A D I O A C T I V E MATERIALS
T A B L E 738.-ALPHA-RAY
It is sometimes stated that all alpha-particles from any one source are emitted with the same energy or velocity. This is in the main true for most of the particles but careful measurements have shown that this is not always the case. For some time it was known that occasionally an alpha-particle had a range much longer than average, which, of course, means a high initial velocity. -
Atomic
No.
92
91 90
Element and isotope
Uranium 238 (Uranium I) Uranium 234 (Uranium 11) Protactinium 231 Thorium 232 Thorium 230 (Ionium) Thorium 228 (Radiothorium) Thorium 227 (Radioactinium)
a-ray
Velocity (cm/sec) x lo-"
a-ray energy Mev
Disintegration energy Mev
2.92
1.420
4.20
4.28
....
....
3.5
1.515
4.76
4.85
....
....
3.8 2.90 3
1.553 1.390 1.500
5.01 4.00 4.66
5.11 4.75 4.67
....
..
... ....
1.6150 1.6020 1.7063 1.7021 1.6979 1.6948 1.6885 1.6806 1.6729 1.6558 1.6627 1.6589 1.6524 1.520 1.492 1.653
5.418 5.335 6.049 6.019 5.990 5.986 5.924 5.870 5.817 5.766 5.744 5.719 5.674 4.793 4.612 5.681
5.517 5.431 6.159 6.127 6.097 6.075 6.030 5.975 5.921 5.869 5.847 5.822 5.776 4.879 4.695 5.786
0 ,086 0 .32 .62 .84 1.29 1.84 2.38 .290 .312 .337 .383 0 .184
5.719 5.607 5.533 5.486
5.823 5.709 5.634 5.58867
0
4.3
1.6589 1.6424 1.6316 1.626
4.967
1.7387
6.2872
6.3995
5.655 (5.308) 5.147 4.9
1.8117 1.7763 1.7593 1.700
6.824 6.561 6.436 6.00024
6.953 6.683 6.556 6.11239
5.601
1.8054
6.774
6.420
1.8824
6.870 7.755
1.9220 1.9550 2.0729 2.0876 2.1157 2.1356 2.1543 2.1678 2.1817 2.2001 2.2079 2.2274 2.2466 1.59715
....
.... .... .... .... .... .... ....
.... .... .... 88
Radium 226 Radium 224 (Thorium X) Radium 223 (Actinium X )
86
84
Radon 222 (Emanation) Radon 220 (Thoron) Radon 219 (Actinon) Polonium 218 (Radium A ) Polonium 216
.... ....
3.5 3.4
.... .... ....
....
9.00
....
....
.... .... ....
.... .... ....
Polonium 213
SMITHSONIAN PHYSICAL TABLES
Energy differences from main Relative number of group Mev particles
Mean ranpe in air, cm
11.47 3.805
....
.114 ,186
5 1 80 15 100 15 5 10 5 80 15
60 10
.... ....
.... 6 4 1
....
....
....
....
,270 .397
10 1 1
6.9038
....
....
7.368
7.508
....
....
7.68300 8.280 8.941 9.068 9.315 9.492 9.660 9.781 9.908 10.077 10.149 10.329 10.509 5.3006
7.82934 8.437 9.112 9.242 9.493 9.673 9.844 9.968 10.097 10.269 10.342 10.526 10.709 5.4033
0
....
0
,608 1.283 1.412 1.663 1.844 2.015 2.138 2.268 2.439 2.513 2.697 2.880
....
loe .43 (.45) 22 .38 1.35 .35 1.06 .36 1.67 .38 1.12 23
....
681 SPECTRA O F S O M E N A T U R A L R A D I O A C T I V E M A T E R I A L S (concluded)
T A B L E 738.-ALPHA-RAY
Atomic NO.
Element and isotope
a-ray
~olonium-212 (Thorium C')
83
Polonium 211 (Actinium C') Bismuth 214 (Radium C) Bismuth 212 (Thorium C)
Mean Fange in air, cm
Velocity (cm/sec)
8.533 9.687 11.543 6.518 (4.039) (3.969) f . . .
.... .... .... ....
Bismuth 211 (Actinium C)
5.392 4.947
a-ray energy Mev
Disintegration energy Mev
2.05405 2.1354 2.2501 1.8911
8.7783 9.4912 10.5418 7.434
8.9476 9.6736 10.7447 7.581
1.630 1.620 1.7108 1.7053 1.665 1 1.6446 1.6418 1.7832 1.7356
5.5068 5.4458 6.081 6.044 5.762 5.620 5.610 6.619 6.262
x
10-0
Energy differences from main Relative group number of Mev particles
0 .726 1.797
1oe 34 190
0
94 113 27.2 69.8 1.80 .16 1.10 100 19
....
5.6117 5.5495 6.20069 6.16069 5.8729 5.7283 5.7089 6.739 6.383
.062
0
.0400 .3278 .4724 .4918 0 .356
....
T A B L E 7 3 9 . 4 H A R A C T E R I S T I C S O F S O M E HIGH-SPEED A L P H A - P A R T I C L E S F R O M N A T U R A L R A D I O A C T I V E SOURCES * Atomic NO.
Element
Isotope
92
Uranium
91
Protactinium Thorium
234 235 238 23 1 227 228 230 232 227 223 224 226 219 220 222 215 216 218 210 211 212 214 215 216 218 211 212 214
90
89 88
Actinium Radium
86
Radon
85
Astatine
84
Polonium
83
Bismuth
For reference, see footnote 199. 11. 618. in air (from curve).
t Approximate range
SYITHSONIAN PHYSICAL TABLES
Common name
Uranium I1 Actinouranium Uranium I
....
Radioactinium Radiothorium Ionium Thorium Actinium Actinium X Thorium X Radium Actinon Thoron Radon
Polonium Actinium C' Thorium C' Radium C' Actinium A Thorium A Radium A Actinium C Thorium C Radium C
Velocity
1.516X1O0 1.483 1.43 1.555
....
1.616 1.500 1.498 1.537 1.660 1.657 1.520 1.814 1.729 1.628 1.%4 1.937 1.802 1.599 1.894 2.058 1.925 1.886 1.805 1.701 1.787 1.713 1.630
Energy Mev
4.76 4.56 4.18 5.01 6.05 5.42 4.66 3.98 4.94 5.72 5.68 4.79 6.82 6.28 5.49 8.00 7.79 6.72 5.30 7.43 8.78 7.68 7.37 6.77 6.00 6.62 6.08 5.51
Range cm
3.4 3.2 2.9 3.7 4.8 4.1 3.3 2.7 3.6 4.4 4.4 3.5 5.8 5.1 4.2 7.4 7.1 5.7 4.0 6.6 8.7 7.0 6.5 5.8 4.8 5.6 4.9 4.2
t
682 T A B L E 740.-CH
Atomic
NO.
A R A C T E R ISTICS 0 F SOM E H IG H-SPEE D A L P HA-P A R T I C L E S F R O M A R T I F I C I A L RADI'OACTIVE SOURCES * Element
Isotope
..... . . ... ......... 238
96
Curium
95
Americium
94
Plutonium
. . . ... . . . . . . . . .. . . . . . . . . . . . . .. . . .
240 241 242 239 241 232 234 236 238 239
93 92 230 91
90
Thorium
..................
89
Actinium
. . . . . . . . . . . .. . . . . .
87
Francium
....,.............
86
Radon . . . . . .
85
Astatine . . . .
84
Polonium
224 225 226 227 229 222 223 224
88
83
t
Bismuth
.......... . . . . . ....
218 219
206 213 197 198 199 200
Velocity cm/sec
1.77)<10e 1.74 1.71 1.72 1.67 1.62 1.78 1.73 1.66 1.63 1.57 1.57 1.73 1.56 1.51 1.80 1.76 1.68 1.81 1.76 1.71 1.66 1.86 1.78 1.74 1.71 1.56 1.83 1.79 1.73 1.67 1.90 1.80 1.77 1.65 1.94 1.88 1.80 1.74 1.97 1.93 1.85 1.67 1.65 1.69 2.06 1.84 1.57 1.61 1.58 2.01 1.73 1.68 1.62 1.58
Energy Mev
Range in air,t cm
6.50 6.26 6.08 6.1 5.77 5.48 6.6 6.2 5.75 5.51 5.15 5.1 6.2 5.06 4.77 6.72 6.42 5.85 6.81 6.46 6.09 5.69 7.20 6.57 6.30 6.05 5.02 6.96 6.64 6.17 5.80 7.49 6.71 6.51 5.68 7.85 7.30 6.69 6.30 8.07 7.74 7.12 5.76 5.66 5.89 8.78 7.02 5.14 5.35 5.2 8.34 6.20 5.83 5.47 5.15
5.4 5.1 4.9 4.9 4.5 4.2 5.5 5.0 4.5 4.2 3.8 3.8 5.0 3.8 3.4 5.7 5.3 4.6 5.8 5.4 4.9 4.4 6.3 5.5 5.1 4.8 3.7 6.0 5.6 5.0 4.5 6.7 5.6 5.4 4.4 7.2 6.4 5.6 5.2 7.6 7.1 6.2 4.5 4.4 4.6 8.4 6.1 3.8 4.0
3.9 8.0 5.0 4.6 4.1 3.8
For reference see footnote 199, p. 618. Approximatel;, from curve.
T A B L E 741.-VAPOR
PRESSURE O F T H E R A D I U M E M A N A T I O N I N cmHg
Temperature "C . . . . . . . .-I27 -101 -65 -56 -10 +I7 +49 +73 +lo0 +lo4 (crit) .9 5 76 100 500 1000 2000 3000 4500 4745 Vapor pressure ......... SMITHSONIAN PHYSICAL TABLES
683 T A B L E 742.-BETA-RAYS FROM RADIOACTIVE M A T E R I A L S - B O T H ( M A R K E D W I T H *) A N D A R T I F I C I A L Atomic
Element
NO.
Atomic NO.
76 75 74 73 71 70 69 68 67 65 64 63
62 61
60 59 58 57 56 55
95 93
Americium Neptunium
92 91
Uranium Protactinium
90 89 87 83
Thorium Actinium Francium Bismuth
82
Lead
81
Thallium
Mercury Gold
78
Platinum
77
Iridium
Isotope
242 m 239 238 239 234 m* 230
_2.1.1 __
228* 223* 213 210* 211* 209 209 208* 207* 206 204 205 200-202 198 199 197 194 192 ~~
80 79
Element
Radioactive name
Isotope
Energy in Mev
.... u r a i i u h ~2
....
....
Mesothorium 2 Actinium K Radium E Actinium B
....
Thd&m C" Actinium C"
.... .... .... .... .... .... ....
....
....
193 1.5 188 2.5 186 1.07 Tungsten 187 .63 1.o 182 Tantalum 176m 1.15 Lutetium 170 1.7 B+ 177 1.3 Ytterbium 1.o 170 Thulium Erbium 171 1.49 Holmium 166 1.8 162-161 2.0 b+ 154 2.6 p' Terbium 161 1.5 Gadolinium >154 -2.5 Europium 157 -1. 154 .9 152 1.88 155 1.9 Samarium 153 .78 1.1 149 Promethium 2.5 148 1.7 2.0 149 1.6 Neodymium 141 .78 p' 3.2 Praseodymium 145 3.0 144 2.5 p' 140 Cerium 143 1.36 Lanthanum 141 2.9 <139 2.1 1.05 Barium 140 2.27 139 Cesium 138 2.6
Osmium Rhenium
(continued) SMITHSONIAN PHYSICAL TABLES
Energy in Mev
....
Atomic No.
NATURAL
.8 .68 1.39 1.20 2.32 -1.1 1.2 1.55 1.20 -1.3 1.17 1.40 .7 1.8 1.82 1.47 1.70 .8 1.62 2.5 .96 1.8 .65 2.2 .67
Element
54
Xenon
53
Iodine
52
Telluriym
51
Antimony
50
Tin
49
Indium
48 47
Cadmium Silver
46
Palladium
45
Rhodium
44
Ruthenium
Isotope
Energy in Mev
4.0 .93 6.5 1.4 1.4 1.59 1.8 .76 2.8 3.2 2.37 1.36 1.53 8' 3.1 p' 1.8 -2.2 2.6 1.73 2.8 1.98 1.5 2.2 p+ 1.8 115m 2.2 113 3.6 112 2.6 11c 2.8 108 2.04 p' 106 3.5 111 2.3 p' 101 3.55 106 2.3 104 -4. 107 1.4 105 1.1 p+ 95
137 135 136 135 133 128 129 127 126 124m 124 122 120 '118 >120 125 123 117 116 114 112
684 T A B L E 742.-BETA-RAYS F R O M R A D I O A C T I V E MATERIALS-BOTH ( M A R K E D W I T H *) A N D A R T I F I C I A L (concluded) Atomic No.
Element
43
Isotope
Technetium
42
Molybdenum
41
Niobium
40
Zirconium
39
Yttrium
38
Strontium
37
Rubidium
36
Krypton
35
Bromine
34
Selenium
33
Arsenic
32
Germanium
31
Gallium
30
Zinc
29
Copper
101 100 95 94 92 101 99 93 97 96 92 97 89 93 92 91 90 88 91 89 88 86 81 87 85 85 84 80 78 76 75 83 83 m 81 78 74 72 77 m 77 71 73 70 68 66 69 63 66 62 61 60
T A B L E 743.-RELATIVE
air . .. . .. . . . . 1 Oz .......... 1.07 Hz . . . . . . . . . .21 H e . . . . . . . . . . .17
1.3 2.3 1.3 2.47 B' 4.3 p+ 2.0 1.3 2.65 'p 1.4 1.8 1.38 2.2 1.07 p' 3.1 3.5 1.5 2.35 .83,9+ 1.3 1.5 4.6 1.8 .9 p + -4. 1.o 2.5 5.3 2.0 2.3 p' 3.15 'p 1.6 p' 1.5 3.4 1.5 1.4 1.3 2.78 p' 2.8 2.0 1.2 p+ 1.4 1.68 1.9 p' 3.1 'p 1.o 2.3 2.9 2.6 p" 1.2 p + 1.8 p'
Element
28
Nickel
27
Cobalt
26 25
Iron Manganese
24 23
Chromium Vanadium
22
Titanium
21
Scandium
20 19
Calcium Potassium
18
Argon
17
Chlorine
16
Sulfur
15
Phosphorus
14
Silicon
13
Aluminum
12 11 10
Magnesium Sodium Neon
9
Range in substance Range in air
1
.
Al
~
2.94
Atomic No.
Fluorine
8
Oxygen
7
Nitrogen
6 5 3 2
Carbon Boron Lithium Helium
Isotope
Energy in Mev
65 57 62 56 52 52 m 51 49 52 47 51 m 45 49 44 41 49 42 40* 38 41 35 38 34 33 37 31 34 32 30 29 31 27 29 28 26 23 24 23 19 20 17 19 14 17 16 13 -10 12 8 6
1.9 .67'p 2.5 1.5 'p .55 p: 2.66 p 2.0 8' 1.45 p' 2.05 1.9 pi 1.6 1.2 p+ 1.8 1.5 p+ 4.94.B' 2.3 2.04 1.9 2.5 p+ 1.18 4.4 p+ 1.19 2.5 p' 4.1 'p 4.3 3.85 p' 5.1 1.7 3.0 'p 3.6 8' 1.8 3.74 p+ 2.5 3.0 3.0 p' 2.82 8' 1.4 4.1 2.2 p+ 5.0 2.1 8 ' 4.5 1.8 p' 3.7 3.5 1.24p+ 2 6' 12 12 3.7
STOPPING P O W E R O F S E L E C T E D SUBSTANCES FOR a-PARTICLES ~ 3 '
Relative stopping power
Substance
Energy in Mev
NATURAL
.93 4.77 5.88
.. . . ..
Substance
Relative stopping power
Range in substance Range in air
.62 .98 1.52 1.98
1.61 1.02 .66 .50
Ne . . . . . . . . . . A . . . . . . ... . . K r . . . ... .. . . Xe . . .. .. . ... 1700.00.. . . . . . . . .5.8510-' ~
Rasetti, Franco, Elements of nuclear physics. Copyright 1936 by PrenticeHall, Inc., New
SMITHSONIAN PHYSICAL TABLES
York.
O F THE BETA-RAY S P E C T R U M O F R A D I O A C T I N I U M
T A B L E 744.-ANALYSIS
( T H O R I U M 227)
$3 L
'g2
,z .s i;
g% 5 20
1 3
20
15 10
6
7 9 10 11 12 4 5 8 16 14 19 17 20 21
15 30 20
15 50 20
25 10 40 20 90 70 50
Lr LIrI Mr MII Mv
NI Nvr
..
LI LII LIII
MI
Lr MI
LI 611 Nr
Energy of @-ray line 4-absorption Energy energy of y-ray Mev Mev
+
.O 125 .O 192 .0160+.0154 .0262+.0048 .0271+.0044 .0290+.0031 .0299+.0012 .0305+.0003 ,0320 .0246+.0192 .0255+.0185 .0281+.0154 .0388+.0048 .0340+.0192 .0486+.0048 ,0425 .O 192 .0567+.0048 .0598+.0012
+
.0317 .0314 .0310 .0315 .0321 .0311 .0308 .0320 .0438 .0440 ,0435 .0436 ,0532 .0534 .0617 .0615 .0610
*
i:
x
.-c
5
.=
'6 .-
6
29 30 18 35 36
B 40 30 30 100 80 30
28
50
K
38 40 37 46 47 39 48 41 49
30
Lr
20 60
MI
zo 26
40 30
60 20 50
20
Lr MI NI
K
Lr MI
K
LI MI
K
LI
K
Lr
Energy of @-ray line absorption energy Mev
Energy of y-ray Mev
.0813+.0192 .0965+.0048 .0990+.0012 .0454+.1035 .1305+.0192 .1445+.0048 .0936+.1035 .1753+.0192 .1899+.0048 .1501+.lo35 .2348+.0192 .2488+.0048 .1796+.1035 .2618+.0192 .1976+.1035 .2800+.0192
.lo05 .lo13 .lo02 .1489 .1497 .1493 .1971 .1945 .1947 .2536 2540 2536 2831 2810 .3011 2992
+
For reference, see footnote 233, p. 679.
T A B L E 745.-ANALYSIS
.-cx
1
g
;:
5
6
100
2
85
3 4
65 45
5
6
6
4
The M and by
11 12 13 14 8 17
35 25 22
6 50
20
O F BETA-RAY S P E C T R U M O F M E S O T H O R I U M 2 ( A C T I N I U M 228)
*
Energy of @-ray line allsorption energy Mev
+
Lr .0381+.0204 LIII .0416+.0162 MI .0523+.0052 .0566+.0013 Nr Lr .0593+.0204 LrIr .0631+.0162 N lines would be masked the intense lines 8 and 9. Lr .1093+.0204 LiIr .1129+.0162 MI .1245+.0052 Nr .1279+.0013 .0749+.1092 K Lr .1644+.0204
~~
Energy of @.ray line ahsorption energy Mev
+
Energy of y-ray Mev
.0585 .0578 .0584 .0579 .0797 .0793 exactly
,1297 ,1291 .1297 .1292 .1841 .1848
18 16
6
Mr K
20
19 21
18 8 16 6
22
2
LI K Lr Nr
2
Lr Mr
2
LI
2
Lr
23 24 25 26 28 27 29
8 4 6 3
K
K
K
.1782+.0052 .1406+.1092 .2291+.0204 .2099+.1092 ,299+.0204 .318 +.001 .352 +.lo9 .442 +.020 .458 +.005 ,804+.lo9 .897 +.020 ,861 +.lo9 .949 t . 0 2 0
Energy
of y-ray
M ev
.1834 2498 2495 .319 .319 .319 .461 .462 .463 .913 .917 .970 .969
~
For reference, see footnote 233, p. 679.
T A B L E 746.-ANALYSIS
O F THE BETA-RAY S P E C T R U M O F P R O T A C T I N I U M
x L u 42
22
.r:
g 5
1
60
2
40 40
3 5 9
100 60
.=
'ij,
2 LI Lrrr Mr
K
Lr
+
Energy of #-ray line alisorption energy Mev
.0753+.0198 .0788+.0158 .0905+.0050
.1896+.1064 .2746+.0198
For reference, see footnote 233, p. 679.
SYITHSONIAN PHYSICAL TABLES
Energy of y-ray Mev
.0951 .0946 .0950 .2%0 .2944
8E.; g
:.2
.-.=M
30 70 40
MI
,g% 2 10 6
11 12
20
2 K
Lr Mr
*
Energy of &ray line +absorption energy Mev
Energy of y-ray Mev
.2869+.0050 .2194+.1064 .3016+.0198 .3182+.0050
.2919 .3258 .3214 .3232
686 T A B L E 747.-GAMMA-RAY
E N E R G Y O F S O M E H E A V Y ISOTOPESt N A T U R A L AND ARTIFICIAL
___ Element
ISOtOllt.
y.r;is energy Mev
95 94 93
,41nericiuni Plutonium Neptunium
92 91
240 239 238 234 233 234
Uranium Protactinium (Uranium 2 * ) (Uranium X2*)234m 2.32 230 Astatine * 210 Polonium 210 (Radium F) 207 206
1.3 .42 1.2 1.9 .31 .70
Atomic NO.
~~
85 84
Atomic
Element
NO.
83
Bismuth 214 (Radium C *) 206 Lead 211 (Actinium B *) 204 m Thallium 208 (Thorium C") 199 198 Mercury 198 m
82
81
.81 1.05 .Y4
80
1.0 .77
w a y energy Mev
Isotope
1.8 .74
.8 1.1 2.62 1.5 1.3 .4
1.3 .8
* N a t u r a l radioactive source
T A B L E 748.-THE
GAMMA-RAY SPECTRUM OF T h C " *
These differences of energies, or velocities, of the a-ray from thorium C a r e sometimes explained on the energy-level basis of the nucleus. T h e aq-eement with the energies of the y-rays emitted from ThC", the daughter of T h C , and these apparent differences of disintegration energy of a-ray of T h C , given in the tahle show one agreement with this theory.
Transitions between levels
Apparent difference of disinterration Energy of ohserved energy of a - r a y groups of y-rav ThC f r o m ThC"
L. , - ~. I>, 1-3 - L , L, - L1 1.; - L, L , - L2
,040 .328 ,473 ,492 ,288
Transitions between levels
L,. -
,040 ,327 ,471
Apparent difference of disintep-ration Enerp-y of energy of a - r a y ohserved groups of ?-ray ThC from ThC"
,433 ,452 ,145 ,164 ,019
L2 .
L, - I., 1-4 - L, L, - L , 1.5 - L,
...
,287
.432 .451
... ...
...
* For refereme. see fuotnate 2 2 5 . p. 666.
T A B L E 749.-DANGER R A N G E S FOR PERSONS W H O A R E W O R K I N G W I T H R A D I U M , FOR D I F F E R E N T A M O U N T S O F R A D I U M , P R O V I D I N G T H E R A D I U M 1's E N C L O S E D I N N O T L E S S T H A N 1 mm L E A D OR I T S E Q U I V A L E N T Daily exposure (in hours) 1
Amount of radium element milligrams
100 200 400 1000
............................. ............................. ............................. .............................
SYITHSONIAN PHYSICAL TABLES
2
4
8
16
1)anrer range (in meters)
.9 1.3 1.8 2.9
1.3 1.8 2.5 4
1.8 2.6 3.5 5.7
2.5 3.6
5
8
3.6 5.1 7.1 11.3
687 T A B L E 75O.-GAMMA-RAY ENERGY O F SOME A R T IF IC IA L RADIOACTIVE ISOTOPES O F L O W A T O M I C W E I G H T .
Atomic
Element
NO.
4 7 8
1 sotolle
7 15 14 19 20 22 24 27 28 37 34 38 41 38 40 42 47 48 43 44 48 51 52 52 m 56 59 60 62 65 60 64 66 65 75 72 76 82 81 82 86 91 88 93
Beryllium Nitrogen Oxygen
9 11
Fluorine Sodium
12 13 16 17
Magnesium Aluminum Sulfur Chlorine
18 19
Argon Potassium
20
Calcium
21
Scandium
*
22 23 25
Titanium Vanadium Manganese
26 27
Iron Cobalt
28 29
Nickel Copper
30 32 33 35
Zinc Germ an ium Arsenic Bromine
37
Rubidium
38 39
Strontium Yttrium
.
y-ray energy hfev
.49 6.7 2.3 1.6 2.2 1.3 1.38 1.o 1.80 2.6 3.4 1.60 1.37 2.15 1.54 1.4
Atomic NO.
Element
40 41
Zirconium Niobium
42 43 45
Molybdenum Technetium Rhodium
47 48 49 50 51
Silver Cadmium Indium Tin Antimony
52 53
Tellurium Iodine Xenon Cesium
1.o 1.46 1.46 2.06 1.10 1.16 1.3 1.1 1.5 1.35 1.32 1.11 1.1 2.4
1.08 i .3 2.76 .7
58 59
Barium Lanthanum Cerium Praseodymium
61 63 65 67 69 71 72 73
Promethium Europium Terbium Holmium Thulium Lutetium Hafnium Tantalum
75 76
Rhenium Osmium Iridium Platinum Gold Thallium Lead Bismuth
82 83
Tsotope
y-ray energy Mev
95 92 96 93 92,93 100 106 110 107 116 126 118 124 119 135 136 127 136 138 140 140 139 142 146 143 -156 154 162 166 170 175 176 182 182 193 194 193 192 198 204 m 206
1.o 1.0 1.6 2.4 1.2 1.25 1.40 .84 2.32 1.2 1.5 2.04 1.4 1.6 2.9 .9 1.2 1.2 .53 1.63 1.8 I .9 1.4 .67 2.0 1.4 1.1 1.5 1.5 1.5 1.7 1.2 1.5 1.58 1.35 1.5 2.3 1.3 1.1 .74
.73
Natural radioactive source.
T A B L E 751.-TOTAL
Wavelength A
C
.1 .2 .3 .4 .5
.15 .16 .19 .25 .35
M A S S ABSORPTION C O E F F I C I E N T , p / p , FOR 7-RAYS I N V A R I O U S E L E M E N T S ( I N CMZ/G)
SMITHSONIAN PHYSICAL TABLES
A1
.16 .28 .47 1.1 2.0
c11
.36 1.5 4.3 9.8 19.
Az
Pb
1.4 5.6 17. 38. 71.
3.8 4.9 14. 31. 54.
6% SPECTRUM FOR SOME RADIOACTIVE BREAKDOWNS *
TABLE 752.-GAMMA It Y
(Mev)
A.4
hv (Mev)
Conversion oliserved
y-rays of 89 Actinium 228-90 Thorium 228 (MsThx) (RaTh) .0581 213 LILI~IMINI ,0795 LIMIII .156 .1294 LiLriiM~Ni .096 ,1841 .067 K LIMI ,2497 .050 K Li .319 KLrNr .039 .338 ,037 observed in Jexternnl .408 .030 \photoeffect K LiMr .462 ,027 ,915 ,0135 KLi ,970 ,0128 K Li y-rays of 90 Thorium 227-88 Radium 223 (RdAc) (AcX) ,0315 .390 LiL~iiMiMiiNvi .0437 .284 LILIIL~~~MI .0533 .237 Lidlr .0614 ,207 LiMrNi .lo07 .123 L~MINI ,1493 .083 KLiMr .1954 ,063 K LiMi ,253 ,049 K LIMI 282 .044 K Li .300 ,041 K LI y-rays of 88 Radium 223-86 Radon 219 (AcX) (An) .1435 .086 K LIM~ ,153 .081 K L~MINI .157 ,079 K LIM~ ,200 .062 K Li ,269 K LI ,046 vr - r--,a w nf -90 Thorium 228-88 Radium 224 (RaTh) (ThX) ,0848 .146 LiMi ,0881 .141 LIM~
. 88 Radium
v-ravs of -~ --<-
226-86 Radon 222 .169 ,066 K I*rMi y-rays of 82 Lead 210+83 Bismuth 210 (Ran) (RaE) LILI~LII~MINI ,0472 ,026 y-rays of 91 Protactinium 231-89 Actinium 227 ,0949 .0130 LiL~iiMr ,294 .042 K LiMi .323 .038 K LiMi y-rays of 82 Lead 214-83 Bismuth 214 (RaB) ( RaC ) L I L I I I . I I I M I M I IiiiNiO M .0529 ,0235 ,2406 .052 KCiiMr ,2571 ,048 K LI .2937 ,042 KLi .3499 .035 K L~MINI
'For reference, see footnote 234, p. 684
(continued)
SMITHSONIAN PHYSICAL TABLES
h .-I
Conversion oliserved
y-rays of 84 Polonium 210-82 Lead 206 (RaF) (RaG) ,202 . ,062 K ' ,798 ,0156 K 1.068 ,0116 K y-rays of 83 Bismuth 211-81 Thallium 207 (AcC") (Ad) 7-rays of 84 Polonium 211-82 Lead 207 (AcC') (AcD) .354 ,035 K LIMI ,460 .027 K LI .480 KLr ,026 y-rays of 83 Bismuth 214-84 Polonium 214 (RaC) ( RaC') ,020s K L I M I N ,6067 ,766 .0162 K ,933 ,0133 K 1.120 ,0112 K L I M I 1.238 ,0100 K L r 1.379 ,0090 K ~1.414 ,0088 K L i M r 1.761 ,0071 K L I 2.198 ,0056 K L y-rays of 82 Lead 212-83 Bismuth 212 (ThB) (ThC) ,1147 .0108 LrLiiMrNi ,1757 ,0071 K ,2379 ,0052 K L I L I I L I ~ ~ M I N I ,2494 ,0049 K .2990 ,0041 K L I M I y-rays of 83 Bismuth 212-84 Polonium 212 (TcC) (ThC') ,726 ,0171 K 1.623 ,0076 K 1.882 .0066 K v-ravs of ' 8f Bismuth 212+81 Thallium 208 (ThC) ( T h C" ) ,399 ,0036 LrLrrLirrMr A411NrO ,287 ,0043 K L I ,298 ,0042 K ,327 ,0039 K ,432 ,0287 Ii .451 427.5 IC .471 .0263 k. .617 ,0201 K y-rays of 84 Polonium 212-82 Lead 208 (ThC') (ThD) K L~LIII 2765 ,045 ,5100 .0243 K L i M i ,5523 ,0224 K L I M I 2.620 .0047 K L I M I
689 T A B L E 752.-GAMMA
SPECTRUM FOR SOME RADIOACTIVE BREAKDOWNS (concluded)
7-rays" from 82 Lead 210+83 Bismuth 210 (RaD) (RaE) y-ray line
(2) B C
E (kev)
65 46.7 43 37
y-ray line
2 5 f .1
D E F
a1
E (kev)
32 + 1 23.2 f .6 7.3 f .7
f l
zm San Tsiang Tsien. Phys. Rev., vol. 69, p. 38, 1946.
T A B L E 753.-THE
ENERGY RADIATED BY A N U M B E R O F RADIOACTIVE MATERIALS
*
Energy of radiation in Mev
Disintegrations No g"sec-'
Radiation Mev g-lsec-1
1.23x10'
5.2 xi04
4.1 X10' 3.6 XlO'O 5.7 x10n 3.5 X10"
1.70X10' 1.8OX10" 3.1 x10" 2.2 X10"
4.8 XlO"
3.3 x10"
..
..
1.93x101' 1.30x 10"
1.50Xlo= 1.0 x10m
8.776
..
6.4 XIOn
5.6 XIOps
7.434
..
3.9 X10"
2.9 XIOu
.77 1.8
B-
5.3 5.5 1.8
1.57X 10'" 1.65)<10" 2.51x 10"
1.2 X10'6 3.0 x1P 4.5 xi019
8- Y
1.7
2.6
1.08X 10"
4.7 xi019
..
7.1 x10"
1.O4X1O1'
1.9 2.9 1.54
4.28x 10" 235x10" 1 . w 105 ~
8X 10" 8x10" 3.9 x1v
h
Material
Half-life
92 Uranium 238 4.5x 10' yr (Uranium I) 90 Thorium 232 1.39X1010yr 88 Radium 226 1620 yr 86 Radon 222 3.825 d 86 Radon 220 54.5 sec (Thoron) 3.92 sec 86 Radon 219 (Actinon) 86 Radon 217 lod sec 84 Polonium 214 l.SXlO-'sec (Radium C') 3.1XlO-'sec 84 Polonium 212 (Thorium C') 5 ~ 1 0 -sec * 84 Polonium 211 (Actinium C') 138 d 84 Polonium 210 19.7 min 83 Bismuth 214 1.32 min 81 Thallium 210 (Radium C") 3.1 min 81 Thallium 208 (Thorium C") 4.76 min 81 Thallium 207 (Actinium C") 19.3 hr 59 Praseodymium 142 1.8 min 53 Iodine 136 19 Potassium 40 *c 1.8XlO"yr
Radiation a
'aorS
a
a
4.1 4.79 5.486 6.282
a
6.824
a a
7.74 7.680
Q
a
a
a? a7
4.2
B- Y
1.47
B- Y B- Y B- Y
2.1 6.5 1.9
Y
.. .. .19 .. .. ..
..
' For reference see footnote 199 p 618 **The radiatidn from potassiuxh may 'seem to be too intense as compared to that from thorium 232 or uranium 238 but it must be remembered that the active isotope of potassium constitutes only .01 percent of ordinary potassium while the active isotopes of uranium and thorium constitute about 100 percent of the material. I t is also to he noted that the active isotope of potassiuni has more disintegration than either uranium or thorium, in part due to its greater number of atoms per gram. T A B L E 7 5 4 . P A F E WORKING DISTANCES FOR D I F F E R E N T EXPOSURE T I M E S T O D I F F E R E N T AMOUNTS O F RADIUM Daily exposure milligram-hr
Safe distance meters
100 200 400
SMITHSONIAN PHYSICAL TA6LES
1 13 2
Daily exposure milligram-hr
800 1600 3200
Safe distance meters
23
690 T A B L E 755.-COMBINATION O F L E A D S H I E L D T H I C K N E S S A N D DISTANCE FOR A D E Q U A T E P R O T E C T I O N FOR EXPOSURES T O D I F F E R E N T A M O U N T S O F R A D I U M , N O T E X C E E D I N G 8 HOURS PER D A Y
Workers with radioactive materials must observe certain precautions to avoid being burned by the emitted radiations. Tables 749, 751, 754, 755, taken from the National Bureau of Standards Handbook H 23 on Radium Protection, give some of the necessary precautions. These precautions are for radium ; if some other radioactive product is being worked with, care must be taken to increase these precautions if the materials are more active than radium. See Table 732. The a-rays are much more easily stopped than the p- or y-rays. The most energetic a-rays are stopped by an ordinary sheet of paper or a sheet of aluminum .06 mm thick. The p r a y s are stopped by a few millimeters of aluminum, while many of the y-rays will penetrate a block of lead a number of inches thick. Amount of radium milligrams
Thickness of lead cm
Distance cm
10 .......... .5 .......... 70 1 .......... 60 2 .......... 45 100. ......... 1 ......... .I85 2 ..........140 3 ..........lo5
T A B L E 756.-CONSTANTS
Amount of radium milligrams
Thickness of lead crn
1000 .......... 1 3 6 5000. ......... 4 6 10
Distance cm
..........570
......... .340
..........I60
......... ,550 ......... .I60
..........220
FOR CATHODE-RAY SPEEDS I N M A T T E R
Cathode rays whose direction of motion is perpendicular to the direction of a uniform magnetic field ( H ) describe a circular path of radius ( r ) according to the formula corrected for relativity change of mass of electron. Hr = 1704 [ p (1 - p2)-’’*l where H is expressed in gauss and r in cm. When cathode r a y s impinge on m a t t e r they are deflected from their original direction of motion. These deflections grade all the way from 180” “reflections” to the “diffusion” corresponding to deflections through very small angles. The large-angle deflections are ordinarily comparatively infrequent. However, when the substance struck by the cathode rays is crystalline, certain directions may be preferred by the deflections. Here the beam of cathode rays behaves as though it consisted of a train of waves of wavelength A. = 0.02426/& where A, is in angstroms. The preferred directions for the “reflected” cathode-ray beams may be calculated from the Brae% formula (see Siegbahn’s “X-ray Spectroscopy”). The simple Bragg formula is quite limited in application here, however, since refraction in the crystal is very appreciable for the cathode-ray beams. In general, the cathode rays which have been deflected bv matter will have lost speed, but the rays which have undergone these “preferred” deflections remain of the same speed as the primary cathode beam. Cathode r a y s lose speed on penetrating matter. The losses of speed by individual cathode particles grade from complete stoppage to no loss of speed. The maiority of the cathode particles, however, lose speed according to the relation (Thomas-WhiddingtonBohr law) &’-p’=ax
where PO is the initial speed, and p the speed after traversing a path length x in the material ( x to be measured in cm along the actual curved path). and a is a constant roughly equal to 6 . 5 ~where p is the density of the material in g/cm8. A convenient form for the expression is the following. Note that the two forms are not equivalent except at very low speeds (experiment has not yet decided between the two) : vo2- V Z= bx where V Oand V are the initial and final “equivalent voltages” (see above) of the cathode rays, in kv, and b is a constant roughly equal to 40 x 1O‘p. A tabulation of experimental values of a and b for various materials follows : Material
a
......... 12. ......................... 56. ......................... 66. Gold ................................................ 138. Moist air, 76 cmHg 18” C . . ............ .. .0062 SMITHSONIAN PHYSICAL TABLES
b
.75 x loe 1.1 “ 3.6 “ 4.2 9.0 “ .44 x loa I‘
691 TABLE 757.-ENERGY I N CALORIES/HR DEVELOPED BY ONE GRAM RADIUM IN EQUlLliBRlUM W I T H ITS PRODUCTS *
OF
Enerrv radiation in Mev Material
.............. 222 ................
88 Radium 226 86 Radon
84 Polonium 218 82 83 84 81 82 83 84
.............
Radiation
ay a 0
(Radium A ) Lead 214 ................. B- 7 (Radium B) Bismuth 214 .............. a(.04%)j3-y (Radium C) Polonium 214 ............. a (Radium C') Thallium i (Rat Lead (Radium Bismuth 2 (Radiun Polonium (Radium F )
'
B
a
.... ....
....
2.3sx10'0
....
.69X1OU
.... ....
11.46
.... 6.50
....
27.70
....
6.50
.17
.09
....
4.22
2.78
Radiation totals in MeV. .................. 105.99X 10" Energy due to recoil of atom.. ............. 3.71 Alpha rays and recoil
'y
17.3% 10" 19.80 21.64
24.62x 10'"
10.14)<1010
..................... 109.70X1010
Total energy radiated (a,p-, y iri MeV) = 144.46X10'o = 199 cal/hr. The total heating effect developed by one gram of radium in equilibrium with its products in 199 cal/hr. ~~
~
~
~
For reference, see footnote 199, p. 618.
TABLE 758.-CATHODE
RAYS
Owing to the growth of the subject, electrons are treated under three separate headings ; cathode rays, the swiftly moving electrons from the cathode in a discharge tube ; beta rays, from radioactive breakdown ; and the general field, electrons. The velocity of the cathode rays (electrons) depends upon the applied voltage. At comparatively low pressures the cathode rays have a nearly uniform velocity. Free electrons are emitted from hot bodies (Table 683-489), especially if the heated substance is coated with barium, calcium, or strontium oxide (Wehnelt cathode). These electrons can be given any desired speed, always less than that of light, if the heated substance (usually in the form of a wire) be enclosed in a n evacuated tube and the difference of potential ( V ) applied between the wire (cathode) and another electrode (anode, anticathode, or target). The speed of the electron and also its kinetic energy is often designated by giving the applied voltage, i.e., a 10 kv electron has a speed of 10 kv, about .2 that of light, and a n energy of 10,000 ev, or 1.602 X lO-'ergs. (See Table 713.) The speed (v) of the cathode rays, expressed as a fractional part ( p ) of the speed of light ( B = v/c, where c is the speed of light), .whFn they have fallen through the entire potential difference, is given by the formula (which 1s corrected for the relativity change of mass)
V z S 1 0 . 8 [ ( l -flz)-l'z-ll where V is in kilovolts. A tabulation of the corresponding values of V (kilovolts) and p follows.
.40 .SO .548 .60 .80 ~
~
SMITHSONIAN PHYSICAL TABLES
46.5 79.0 100. 127.7 340.4
.. -
.942 .95 .98
la. 1085. 2045.
692
TABLES 759-784.--.X-RAYS
X-rays, which are short wavelength (.06 - 1020A) radiant energy, are, in general, generated whenever swiftly moving electrons are suddenly stopped by striking any material substance. The electrons may come from a cold cathode (gas-filled tube) and the current increased by ionization of the gas in the tube, or they may come from a hot cathode (Coolidge tube) in a tube of very low gas pressure. Soft and hard X-rays are terms applied to X-rays produced by low or high applied voltage respectively. Two types of X-rays are generated when the electrons hit the target-continuous spectrum (over a limited wavelength) and the radiation that is characteristic of the material of which the anode is made. The continuous X-ray spectrum has a very definite short-wave limit that depends upon the voltage applied to the tube. Thus Voe = hv, = hc/A, If V , is given in volts, this wavelength A,, will be in angstroms if the other units are properly chosen. 12395 A. (in A ) = -
YO
The characteristic spectra are designated K , L , M , N, 0, etc., where these letters refer to the various electron shells (Table 658). X-rays, like any type of radiant energy, have two characteristics ; intensity (i.e., the rate of energy transfer), and wavelength. These two quantities are connected thus: the energy E = hv = hc/A. This, of course, assumes monochromatic radiation or the energy for a narrow wavelength interval, which is not always the case ; all electrons do not hit the anode with the same energy nor do all materials react alike to electron bombardment. Some of the characteristics of X-rays and the reaction of X-rays to various materials are given in the following tables. T A B L E 759.-X-RAY
PRODUCTION
Quantity of X-rays emitted by a tungsten-target tube per kilowatt of energy in cathode-ray beam.*
100 200 500 1000 2000
Power in total X-rays from focal spot watts
Effective wavelength (unfiltered) angstrom units
2.5 3.5
.56 .40 .28 .14 .056
S. _.
10. 25. 48. 95.
Roentgens ( r ) per second at 1 meter from target (unfiltered)
1.2 .62 .34 .39 1.1 2.1 4.0
.028
.014
Clark,, George L., Applied X-rays, McGraw-Hill Book Company, Inc., 1940. Used by permission of the publishers. *Compiled by A. H. Compton.
T A B L E 76O.-CRITICAL
12 13 17 24 26 29
Mg ....... 9.5112 A1 ........ 7,9470 C1 ........ 4.3938 Cr ........ 2.0663 Fe ........ 1.7405 Cu ....... 1.3780
ABSORPTION W A V E L E N G T H S (A),
35 40 42 47 53 56
........ ........ ....... ....... I ......... Ba ........
Br Zr Mo Ag
*For reference, see footnote 236, above. SMITHSONIAN PHYSICAL TABLES
.9182 .6874 .61842 .4852 .3738 ,3308
74 78 79 82 92
W Pt
Au Pb
U
K
SERIES *
........ ........ ....... ........ ........
.17807 .1581 .I534 .I410 .lo75
693 T A B L E 761.-RELATIVE
I O N I Z A T I O N PRODUCED I N V A R I O U S GASES B Y H E T E R O G E N E O U S X-RAYS
*
Ionization relative to air = 1
Density relative to air = 1
Gas or vapor
Hydrogen, H, ........................... Carbon dioxide, CO,. ..................... Ethyl chloride, CZH~CI .................... Carbon tetrachloride, CCI,. ................ Nickel carbonyl, Ni(CO), ................. Ethyl bromide, CzHIBr.................... Methyl iodide, C H J . . ..................... Mercury methyl, Hn(CR,),. ...............
*
r
Soft X-rays
.o 1 1.57 18.0 67 89 72 145 425
.07 1.53 2.24 5.35 5.90 3.78 4.% 7.93
\
Hard X-rays
.18 1.49 17.3 71 97 118 125
...
For reference, see footnote 236, p. 692.
T A B L E 762.-WAVELENGTHS
O F FLUORESCENT RADIATION EXCITED BY X - R A Y S *
Fluorspar ........................................... Fluorspar and iron spar ............................... Scheelite (Ca tungstate) ............................... Zinc sulfide .......................................... K platinocyanide ..................................... Ba platinocyanide .................................... Ca platinocyanide .................................... U NH, fluoride.. ..................................... X-ray tube glass.. ....................................
' For
Position of maximum
Region A
Material
A
2840 2800 4330 4500 4500 4800 4800 4100 3750
3640-2400 3900-2310 4800-3750 5090-4120 4900-4120 5090-4420 5090-4550 4400-3800 5090-3000
reference, see footnote 236, p. 692.
T A B L E 763.-THE
ABSORPTION O F X-RAYS
The absorption of X-rays by materials follows the same law as the absorption of radiant energy, i.e., I = loX e+= where I, is the initial intensity and I the intensity after a distance x , and p the absorption coefficient. p / p is the mass absorption (p density) of the material. p / p is really the sum of two coefficients--s/p the true or fluorescent X-ray mass-absorption coefficient-and u / p the mass-absorption due to scattering. For light elements u /p has a practically constant value of 0.17 independent of the wavelength for intermediate ranges. The following relations may be written PIP = -s/p ./P = K A' U/P The constants for this absorption equation for several materials follow : *
+
KK KL KK/KL
.
7'4 (10-n)
+
Mo 42
A g 47
S n 50
w
375 50 7.5 13.3
545 70 7.8 11.0
595 90 6.6 8.90
1870 330 5.65 3.19
74
Au 79
Pb 82
2230 395 5.65 2.57
2570 476 5.40 2.37
For reference, see footnote 236, p. 692.
T A B L E 764.-APPROXIMATE L E A D THICKNESS REQUIRED T O REDUCE R A D I A T I O N DOSAGE R A T E T O 5 P E R C E N T O F U S E F U L B E A M m
Kilovolts .............. 50 Lead thickness, mm.. ... .1 ~
~
75 .3
100 .4
150 .7
200 1.0
250 1.3
400 3.0
500 7
1000 32
2000
~
i?m National Bureau of Standards Handbook 41, Medical X-ray protection up to two million volts.
SMITHSONIAN PHYSICAL TABLES
50
694 T A B L E 765.-MASS-ABSORPTION C O E F F I C I E N T S FOR A N U M B E R O F M A T E R I A L S FOR D I F F E R E N T W A V E L E N G T H S
*
Wavelength angstroms
,010 .015 ,020
.064 .072 .098 .130 .175
.zoo .280
.417 .497 ,631 .710
C
A1
cu
Sn
,061 ,073 .081 .088 .097 .lo8 .117 .130 .136 .142 .152 .163 .175 .188 ,256 .315 .474 .605
.059 .070 ,078 ,085 .094 .lo4 .113 ,130 ,143 .156 .186 .228 .270 ,402 1.18 1.90 3.73 5.22
.056 .067 .076 .085 .097 .120 ,150 ,198 .232 ,325 .45 1.12 1.59 3.25 11.4 18.9 37.2 51.0
.054 .067 .082 .102 .130 .M4 .32 .49 ,614 1.17 2.15 4.50 6.10 12.8 45.5 11.8 23.0 34.0
For reference, see footnote 236. p. 692.
T A B L E 766.-EXPONENTIAL F O R M U L A E FOR T H E T O T A L MASS-ABSOPPT l O N V AL UES , p / p , FOR S E V E R A L E L E M E N T S * h (A)
Absorber
A1 . . . . .1 to .4 Al . .. .4 to .7 F e .... .1 to .3 Co . . .1 to .3 Ni . . . . .1 to .3 Cu . . . .1 to .6
.
..
.
PIP
+ +
14.45X As 14.30X X8 110 X h a + 124 X X8 145 X A'+ 147 X A'+
For reference, see footnote 236,
+
p.
Absorber
.15 .16 .I8 .18 .20 .5
Mo . . . . Mn . . . Ag . . . . Ag . . . . P b ....
X (A)
PIP
+ .4 603 X As + .7 86 X ha + .6
.1 to .35
450 X ha
51.5 X h a + 1.0
> X K . ~ ~
.1 to .4 >XK,~,
510 x A s +
=.'XK.,,~
.75
692.
T A B L E 766A.-X-RAY
DOSAGE U N I T S
The international unit of quantity or dose of X-rays (and gamma-rays), one roentgen, r, is obtained from that X-ray (or gamma-ray) energy which, when the secondary electrons are fully utilized and secondary radiation from the walls of the chamber avoided, under standard 'conditions 0°C and 760 mmHg, produces in a cubic centimeter of atmospheric air such a degree of conductivity that the quantity of electricity, measured at saturation, equals 1 esu.
T A B L E 767.-PROTECTIVE
POWERS O F MATERIALS R E L A T I V E T O L E A D *
A lead screen is very effective in protecting against X-rays. The data in the table show the thickness of lead is as effective as 1 mm of certain other materials that are in common use for protection against X-rays generated by a 100,000-volt Coolidge tube. Lead glass . . . . . . . . . . . . . . . . .12to .20 Lead rubber . . . . . . . . . . . . . . . .25to .45 Bricks and concrete.. . . . . . . .01 For reference, see footnote 236. p. 692.
SMITHSONIAN PHYSICAL TABLES
Woods . . . . . . . . . . . . . . . . . . . . ,001 Barium sulfate plaster. . . . . . .05to .13 Steel . . . . . . . . . . . . . . . . . . . .15
.
.
695 T A B L E 768.-THE M I N I M U M T H I C K N E S S O F L E A D R E C O M M E N D E D FOR P R O T E C T I O N FOR V A R I O U S I N T E N S I T I E S O F X-RAYS X-rays generated by peak voltage not i n excess of (kilovolts) :
Minimum equivalent thickness of lead millimeters
1.o 1.5 2.0 2.5 3.0 4.0
75 100 125 150 175 200
X-rays generated by peak voltage not in excess of (kilovolts) :
Minimum equivalent thickness of lead millimeters
225 300 400 500 600
5.0 9.0 15.0 22.0 34.0
The National Bureau of Standards Handbook 41 on X-ray protection gives as the permissible dosage rate 0.3 r per week. On the basis of a 48-hour week of uniform exposure the permissible dosage rate is 0.00625 r per hr (6.25 m r per hr). This booklet also gives safety rules for operating X-ray equipment and the thickness of lead or concrete necessary for protection against X-ray tubes operated at various intensities. T A B L E 769.-DISTANCE
PROTECTION *
Distance t for various applied voltages (kilovolts) Target current ma
75
100
150
200 feet
250
400
500
1000
2000
20 50 115 185 250 300
20 60 145 235 330 390
25 60 145 245 350 420
25 65 165 270 390 480
25 70 170 285 420 510
25 70 170 295
30 75 200 340
90 220 460 6?0
195 400 850
50
,005 ....... 15 .05 ....... 40 .5 ....... 85 ....... 120 2.5 10 ....... 160 25 ....... 195
... . . . . . . . . . . . . . . . . . . . . . . . .
For reference. see footnote 237. p. 693. t These distances were computed by taking into account distance and air absorption. T h e air absorption was determined hy assuming the radiation was monochromatic and of double the minimum wavelength of the polychromatic radiation given off by the tube a t the indicated potential.
T A B L E 770.-PRI M A R Y PROTECT1VE-BARRI E R R E Q U I R E M E N T S FOR 10 M I L L I A M P E R E S A T T H E P U L S A T I N G POTENTLALS * A N D DISTANCES I N D I C A T E D t
Target distance ft
2 ( .61 m) 5 ( 1.52 m) 10 ( 3.05 m)
Lead thickness with peak kilovolts of-
. 150
100
75
200
250
mm
2.2 1.7 1.3
3.4 2.7 2.2
4.3 3.6 3.0
6.7 11.8 5.5 9.6 4.5 8.1
Target distance ft
20 ( 6.1 m ) 50 (15.2 m)
Lead thickness with peak kilovolts of-
75
100
150 mm
200
250
1.0
1.7 1.1
2.4 1.7
3.6 2.4
6.4 4.3
S
Direct-current potentials require the order of 10 percent greater thickness than those given here for pulsating potential. t For reference, see footnote 237, p. 693.
T A B L E 771.-PRIMARY PROTECTIVE-BARRIER R E Q U I R E M E N T S FOR 400-KILOVOLTS P E A K P U L S A T I N G P O T E N T I A L W I T H REFLECTION TARGET * Lead thickness with target current of-
Lead thickness with target current ofTarget distance ft
5 ( 1.52m) 10 ( 3.05m)
'For
i
m
a
16.5 12.5
3 m mm
a
20 15.5
22 17.0
reference, see footnote 237, p. 693.
SMITHSONIAN PHYSICAL TABLES
a
Target distance ft
20 ( 6.1 m) 50 (15.2 m)
m
9.5 5.5
mm
11.5 8.0
a
13.0 9.0
696 T A B L E 772.-P R I M A R Y PROTECT1VE-BA R R I E R R E Q U I R EM E N T S FOR 1000-KILOVOLT C O N S T A N T P O T E N T I A L W I T H TRANSM115SION T A R G E T
*
Barrier thicknesses with target current of1 ma
Target distance ft
- L mm
5 ( 1.52 m)
123 107 91 53
10 ( 3.05 m) 20 6.1 m) 100 (30.5 m)
3 ma
2 ma
in.
Lead mm
Concrete in.
30.5 27.0 23.0 15.0
131 115 99 61
32.5 28.5 25.0 17.0
e
mm
in.
136 120 103 66
33.5 29.5 26.0 18.0
For reference see footnote 237 p. 693. concreie thicknesses a r e 'for a concrete density of 147 pounds per cubic foot.
t These
T A B L E 773.-FILTERS
Target
Chromium Iron Copper Molybdenum Silver
FOR O B T A I N I N G M O N O C H R O M A T I C X-RAYS
Lowest approximate voltage for K series kilovolts
x for K n doublet
Filter
6 7 9 20 25
2.287 1.935 1.539 .710 .560
Vanadium Manganese Nickel Zirconium Palladium
Thickness. millimeters
*
g/cma
.0048
.0084 ,0075 .0085 .037 .03
.0055
.0076 .024 .036
For reference, see footnote 236, p. 692.
T A B L E 774.-CRlTlCAL
Element
47 53 56 74
LI
LII
(Lid
(L,)
..... 3.2474 I ....... 2.3839 Ba ..... 2.0620 W ...... 1.0205 Ag
' For
=I11
(L,)
3.5067 2.5475 2.1993 1.0713
3.6908 2.7139 2.3568 1.2116
Element
78 P t 82 Pb
92 U
..... ..... ......
SERIES
*
L, (LId
(Ln)
(L,)
.8921 .7806 S687
.9321 .8136 S920
1.0709 9500 .7216
LII
LIII
reference. see footnote 236, p. 692.
T A B L E 775.--CRITICAL Element
W Bi
L
ABSORPTION W A V E L E N G T H S ( A ) ,
MI
.... 4.38 .... 3.100
MII
ABSORPTION W A V E L E N G T H S ( A ) , MIV
Mv
4.83 5.45 6.62 6.85 3.342 3.889 4.574 4.763
Element
M~
... 2.338 U .... 2.228 Th
M
SERIES
M~~
*
M ~ v Mv
2.571 3.058 3.552 3.721 2.385 2.873 3.326 3.491
For reference, see footnote 236, p. 692.
T A B L E 7 7 6 . F H A R A C T E R l S T l C E M I S S I O N W A V E L E N G T H S (A). Element
24 26 28 29 42 45 47 74 78
Cr Fe Ni cu Mo Rh Ag W Pt
r(i32)
........ 2.0667 (as) ........ 1.74O80(85) ........ 1.48561 ........ 1.37824 ....... .61%98 ....... .533% ........ .486030 '
.17899 t .I5887
a 2.0806 1.753013 1.49705 1.38935 ,630978 .54449 .49m .18397 .16370
For reference. see footnote 236 p 692 t 6 = 0 . 1 7 8 0 3 , 6p=O.17917 (Du&, 19j3). SMITHSONIAN PHYSICAL TABLES
82
.... 1.75646 ....
....
.631543 .54509 .49665 .18477
..
ax
2.28503 1.932076 1.65450 1.53739 .707831 ,61202 .55828 20860 .18523
K
SERIES
*
a2
2.28891 1.936012 1.65835 1.54123 .712105 ,61637 .56267 .21341 .19004
697 T A B L E 777.-WAVELENOTHS I N ANGSTROMS OF K-SERIES L I N E S REPRES E N T I N G TRANSITIONS I N T H E ORDINARY X-RAY ENERGY L E V E L DIAGRAM * ALLOWED BY THE SELECTION PRINCI,PLES= Siegbahn Sommerfeld transition
4 Be 5 B 6 C 7 N 8 0 9 F 11 Na 12 Mg 13 A1 14 Si 15 P 16 S 17 C1 19 K 20 Ca 21 sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 c u 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe
55
cs
56 Ba 57 La 58 Ce 59 P r 60 Nd 62 Sm 63 Eu
115.7 67.71 44.54 31.557 23.567 18.275 11.885 9.869 8.3205 7.1 1106 6.1425 5.3637 5.3613 4.7212 4.7182 3.73707 3.73368 3.35495 3.35169 3.02503 3.02840 2.74317 2.74681 2.50213 2.49835 2.28891 2.28503 2.10 149 2.09751 1.936012 1.932076 1.78919 1.78529 1.65835 1.65450 1.541232 1.537395 1.43603 1.43217 1.34087 1.33715 1.25521 1.25130 1.17743 1.17344 1.10652 1.10248 1.04166 1.03759 .9821 .9781 .92776 92364 .87761 .87345 233132 .82712 .7885 1 .78430 .74889 .74465 .712105 .707831 .675 .672 .64606 .64174 .61637 ,61202 .58863 .58427 .56267 .55828 .53832 .53390 .5 1548 3106 .49402 .48957 .47387 .46931 .45491 .45037 .43703 .43249 .417 .40411 .39959 .38899 .38443 .37466 .37004 .36110 .35647 .34805 .34340 .33595 .33125 .31302 .30833 .29790 .30265
11.594 9.539 7.965 6.7545 5.7921 5.0211 4.3942 3.4468 3.0834 2.7739 2.5090 2.2797 2.0806 1.90620 1.753013 1.61744 1.47905 1.38935 1.29255 1.20520 1.12671 1.05510 .99013 .93087 A767 32749 .82696 .78183 .78130 .73972 .73919 .70083 ,70028 .66496 .66438 .631543 .630978 .601 .57193 .57131 .54509 .54449 9947 .52009 .49665 .4960 1 .47471 .47408 .45423 .45358 .43495 .43430 .41623 .39926 .38315 .38292 .360 .35436 .35360 .34089 .34022 .32809 .32726 .31572 .31501 .30439 .30360 .29351 .29275 .27325 .27250 .26386 .26307
48.561 .37824 28107 .1938 .11459 .04281 .97791 .91853 3643 31476 .76921 .72713 .68850 ,65280 .619698 .56051
.533% 50918 .48603 .*4m .44408 .42499 40710 .39037 .37471 .34516 .33222 .31966 .30770 .2%25 . ~ . .28573 .26575 .25645
This criterion cannot he strictly applied to the K a line from 4 Be to 9 F, nor to the K & line from 11 Na to 29 Cu as reported in this table. zm Compton, A. H., and Allison, S. K., X-rays in theory and experiment, D. Van Nostrand Co., Inc., New York, 1935. Courtesy of the publishers.
SMITHSONIAN PHYSICAL TABLES
698 T A B L E 777.-WAVELENGTHS IN ANGSTROMS O F K-SERIES L I N E S REPRES E N T I N G T R A N S I T I O N S I N T H E ORDINARY X-RAY E N E R G Y L E V E L DIAGRAM A L L O W E D BY T H E S E L E C T I O N P R I N C I P L E S (concluded) Siegbahn Sommerfeld transition
.25394 .24551 .23710
.25471
.29261 .28286 .27375 .26499 .25664 .24861 .24098 .23358 .22653 .21973 .21337 .20131 .19550 .19004 .18483 .17466 .17004 .16525 .13095
64 Gd 65 T h 66 D; 67 Ho 68 Er 69 T m 70 Yb 71 Lu 72 Hf 73 Ta 74 w 76 0 s 77 Ir 78 P t 79 Au 81 T1 82 P b 83 Bi 92 U
.24629 .23787
.27820 .26903 .26030 .25 197 .24387 .23628 .2282 .22173 .21488 .20856 .I9645 .19065 .18Z3 .179% .i6980 _. .16516 .lo41 .12640
.24762 .23912 .23128
....
.21671
....
.20322 .19649 ,19042 .18452 .I7906 .I6875 .I6376 .15887 .15426 .14539 .14125 .I3621 .lo842
.I5011 .14606 .14205 .I1187
T A B L E 778.-WAVELENGTHS,
TUNGSTEN
L
SERIES
* 1.2208 1.2354 1.24191 1.26OOO 1.27917 1.2871 1.29874 1.3344 1.4177 1.47348 1.48452 1.67505
1.02647 1.0439 1.05965 1.06584 1.0720 1.079 1.09553 1.1292 1.2021 1.2034 1.2094 1.2125 For reference, see footnote 236, p. 692.
T A B L E 7 7 9 1 T Y P I C A L SAFE RATINGS O F DIAGNOSTIC X-RAY T U B E S ~
General Electric Company Benson-type X-ray tube Effective focal area
Full wave kv+ ma
Half wave kv* ma
Stationary target : 1 second 1.5 mmz 110 20 110
3.7 5.2
110
5.2
72 104
90
Rotating target:
80
80
60 150 1/60 second 500 ... ... 350 . .. . .. 1 second 280 ... ... 1/60 second 540 ... ...
Peak kilovolts. ~~~
15 95 50 100 100
~
SMITHSONIAN PHYSICAL TABLES
Self-
rectified kv" ma
...
78
..
i00
... ... ... ... ... ...
... ...
Westinghouse Corporation WL-355 tube Effective focal area
Full wave Half wave kv ma kv ma
Stationary target : 1 second 1.5 mm' 2770 2025
2.1 2.6 3.0 4.2 4.2
4830 6500 7680
Selfrectified kv ma
3410 4730 5915 11900 9650 1/60 second 25000 ...
1520 2570 3400 4150 6870
...
699 TABLE 7800.-WAVELENGTHS O F T H E MORE PROMINENT L-GROUP LINES I N ANGSTROMS *
16 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 37 38 39
S Ca sc
Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se
Br Rb Sr Y
40 41 42 44 45 46 47 48 49 50 51 52 53
Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te I
56 57 58 59 60 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta
55
cs
w
Re 0s
Ir Pt Au
....
.... ....
36.27 31.37 27.37 24.31 21.53 19.40 17.57 15.93 14.53 13.306 12.229 11.27 10.415 9.652 8.972 8.358 7.3027 6.8486 6.4357
.... .... .... 23.28 ....
6.610 6.2039
7.822
7.506 7.0310
5.8236 5.4803 5.1665 4.6110 4.3640 4.1373 3.9266 3.7301 3.5478 3.3779 3.2184 3.0700 2.9309 2.6778 2.5622 2.4533 2.3510 2.2539 2.1622 1.9936 1.9163 1.8425 1.7727 1.7066 1.6435 1.58409 1.5268 1.4725 1.42067 1.3711 1.32423 1.27917 1.23603 1.19490 1.15540 1.11758 1.08128
5.5742 5.2260 4.9100 4.3619 4.1221 3.9007 3.6938 3.5064 3.3312 3.1686 1 3.0166 2.8761 2.7461 2.5064 2.3993 2.2980 2.2041 2.1148 2.0314 1.8781 1.8082 1.7413 1.6790 1.6198 1.5637 1.51094 1.4602 1.41261 1.36731 1.3235 1.28190 1.24203 1.2041 1.16884 1.13297 1.09974 1.06801
5.3738 5.0248
....
.... ....
21.19 19.04 17.23 15.63 14.25 13.027 11.960 11.01 10.153 9.395 8.718 8.109
....
6.057 5.718 5.401 4.8437 4.5956 4.3666 4.1538 3.9564 3.7724 3.60 151 3.4408 3.2910 3.1509 2.8956 2.7790 2.6689 2.5651 2.4676 2.3756 2.2057 2.1273 2.0526 1.9823 1.9156 1.8521 1.79202 1.7339 1.67942 1.6270 1.57704 1.52978 1.48438 1.4410 1.39866 1.3598 1.32155 1.28502
5.7120 5.3950 4.8357 4.5878 4.3585 4.1456 3.9478 3.7637 3.59257 3.4318 3.2820 3.1417 2.8861 2.7696 2.6597 2.5560 2.4577 2.3653 2.1950 2.1163 2.0419 1.9715 1.9046 1.8410 1.78068 1.7228 1.66844 1.61617 1.56607 1.51885 1.47336 1.42997 1.38859 1.34847 1.3 1033 1.27377
For reference, see footnote 238, p. 697.
(contirmcd) SMlTHSONlAN PHYSICAL TABLES
83.75 40.90 35.71 3 1.33 27.70 23.84 22.34 20.09 18.25 16.66 15.26 13.97 12.89 11.922 11.048 10.272 9.564
.... ....
19.76 17.86 16.28 14.87 13.61 12.56 11.587 10.711 9.939 9.235
....
....
4.1728 3.9357 3.7164 3.5149 3.3280 3.1553 2.99494 2.8451 2.7065 2.5775 2.3425 2.2366 2.1372 2.0443 1.9568 1.8738 1.7231 1.6543 1.5886 1S266 1.4697 1.4142 1.3611 1.3127 1.26512 1.21974 1.1765 1.13558 1.09630 1.0587 1.02296 ,98876 ,95599 .92461
700 T A B L E 780.-WAVELENGTHS OF T H E M O R E P R O M I N E N T L-GROUP L I N E S IN ANGSTROMS (concluded) Siegbahn Sommerfeld transition
80 81 82 83 90 91 92
a
a B
A
2
L111-Mv
LIiMV
L I i N V
L1I.NIV
a1
1.24951 1.21626 1.18408 1.15301 ,96585 .9427 .92062
Hg
T1
Pb Bi' Th Pa U
1.23863 1.20493 1.17258 1.14150 .95405 .9309 .90874
T A B L E 781.-WAVELENGTHS Transition MIIOIV
MINIII MIINIV MIIIOV MIIIOI MIINI
73 Ta
74 W
75 Re
.....
.
5.620
...
76 0 s
77 Ir 78 Pt
79 A u
81 TI
82 Pb
83 Bi
....
90 Th
2.613 i.86.i 3.732 2.938 . . . . . . . . .... 4.45i 4.iSi 3.829 3.006 4.770 4.590 4.424 4.110 3.964 .... 4.944 . . . . . . . . 4.859 4.682 4.514 4.207 4.063 3.926 3.124 ........ 4.235 4.0% . . . . ........
4.005 ....
....... i.ic00 4.650 .... 5.309 s.ij5 4.815 4.665 5.iis 5.670 5.490
........ 6.299 . . . .6.076 ... MIIINV MIIINW 6.340 6.121 5.919 5.712 5.529 5.346 7.083 6.794 . . . . . . . . .... MIVOII 6.984 6.718 .... 6.233 6.009 5.796 B' MIVNVI 7.008 6.743 6.491 6.254 6.025 5.8168 ........ ....... . . . . 5.975 h!VOIII a 7201 6932 6440 6215 5.997 .............. 7.219 6.948 .... 61459 6% 6:oii a' MVNVII 7.237 6.969 6.715 6.477 6.249 6.034 . . . . . . . . . . . . 6.262 6.045 MVNVI 7.596 7.346 . . . . . . . . 6.653 6.442 MIIINI .... 8.559 8.222 .... 7.629 7.356 MIVNIII MVNI~I 9.297 8.943 8.612 8.293 8.002 7.722 9.311 8.977 8.646 8.344 8.048 7.774 MIVNII
r'
.8946 ,86571 .83801 ,81143 .65176 .6325 .61359
O F M - S E R I E S L I N E S I N ANGSTROMS FROM 73 T a T O 92 U *
. . . . . . . . . . . . . . . . ....
.... 5.163 5.558 5.342
1.03770 1.00822 .98083 .95324 .79192 .7721 .75307
1.04652 1.01299 .98083 .95002 .76356 .7407 ,71851
.
4.506 4.522 5.175 4.855 4.705 4.560 4.813 5.595 5.20 5.045 4.881 5.239 5.065 4.899 5.612 5.755 5794 5.416 5.239 5:Sii 5.433 5.256 5.087 5.828 5.450 5.274 5.108 5.842 5.461 5.288 5.119 6.241 5.870 5.694 5.526 7.086 .... 6.371 6.149 7.451 6.960 6.726 6.508 7.507 7.017 6.788 6.571
92 U
3.661 3.672 3.710 3.804 3.924 3.934
2.440 2.745 2.813 2.941 3.114 3.322 3.463 3.473 3.514 3.570 3.698 3.708
4.112 4.130 4.143 4.554 4.901 5.229 5.329
3.886 3.902 3.916 4.322 4.615 4.937 5.040
....
~~
E. Lindberg, Dissertation, Uppsala (1931). I n addition to the values listed here, measurements have been
made in the range from Ce 58 to 72 H f . The wavelengths may be found in the dissertation, or in Siegbahn, Spektroskopie der Rthtgenstrahlen (1931). For reference, see footnote 238, p. 697.
T A B L E 782.-X-RAY
T E R M S FOR VARIOUS E L E M E N T S *
YI'Rvalues ; Y in cm-', R Term
13 Al
20 Ca
29 Cu
K
10.71
297.4
2.30 2.30
25.8 25.5
661.6 81.0 70.3 68.9 8.9 5.7 5.7 .4 .4
LI LII
,...
LIII
....
MI
M,,__ ..
MI11
MIV MV
NI NII NIII NIV Nv NVI NVII 01
011 0111
OlVOV
PIIPIII
.63 .63
....
.... ....
.... ....
1.9 1.9 .4 .4
....
....
.... .... .... .... ....
.... ....
.... ....
.... .... .... .... .... .... .... .... ....
For reference, see footnote 238. p. 697. SMlTHSONlAN PHYSICAL TABLES
.... .... .... .... .... .... .... .... .... .... ....
= 109,737 cm-'
42 Mo
1473.4 211.3 193.7 186.0 37.5 30.5 29.2 17.3 17.1 5.1 2.9 2.9 .4
.... .... .... .... .... .... ....
47 Ag
1880.9 282.7 260.9 248.6 54.4 46.7 44.4 29.2 28.8 8.7 6.5 6.5 1.1 2.0
.... .... ....
.... .... .... ....
74 W
92 IJ
5120.7 890.8 849.9 751.3 207.3 189.3 167.5 137.5 132.9 43.3 36.0 31.0 18.7 17.6 2.3 2.0 5.4 2.9 2.9
8474 1602.6 1542.7 1264.2 408.5 381.5 316.8 274.2 261.2 106.0 93.5 76.6 57.5 54.3 28.5 27.6 23.7 18.3 13.9 7.0 .8
.... ....
T A B L E 7 8 3 . 4 R I T I C A L ABSORPTION W A V E L E N G T H S IN ANGSTROMS
IA
5
I
--
I
K
0 v)
3 t D I V
2
0 P r
4
D W r
v) m
1 H 2 He 3 Li 4 Be 5B 6C 7N 8 0 9 F 10 Ne 11 Na 12 Mg 13 A1 14 Si 15 P 16 S 17 Ci 18 A 19 K 20 Ca 21 s c 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se
*
.- . ~
LI
=I1
4 1 1
MI
MI1
MI11
MIV
MV
Longer wavelengths
504.29
....
1329.89
....
255.77
64.3 43.5 31.1 23.5 18.0 9.4962 7.9356 6.7310 5.7749 5.0088 4.3838 3.8657 3.4310 3.0643 2.7517 2.4912 2.2630 2.0659 1.8916 1.7394 1.6040 1.4839 1.3774 1.2805 1.1902 1.1164 1.04263 .97773
i; 2.4
i;4.9
...
....
.... .... ....
181 126 96.4 75.7 60.9 50.1
....
....
35.63
1621.48
124.03
78.0
'E 6.8
...
..
..
NI 2028.20
....
27.29
..
..
12.9
....
13.15
..,
....
For reference. see footnote 238, p. 697.
(continued)
708.18
722.08
Nl 1319.84
T A B L E '83.-CRITICAL
35 Br 36 Kr 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe 55 c s 56 Ba 57 La 58 Ce 59 P r 60 Nd 61 P m 62 Sm 63 Eu 64 Gd 65 T b 66 Dy 67 Ho 68 Er 69 T m 70 Yb 71 Lu
ABSOR PTION W A V E L E N G T H S IN A N GSTR OMS (co tinued) LIII MI mi1 mi11 MIV MV
K .91809 A6372 ,81410 ,76837 .7255 ,68738 .65 158 .61848
5.9854 5.5713 5.2216 4.8574 4.5717 4.2897
.5584 .53303 .50795 .48448 .46313 ,44298 .42394 .40609 .38926 ,37344 .35777 .34404 .33070 .31814 .30626 .2951 28458
3.61860 3.4206 3.2474 3.0773 2.9194 2.7696 2.6317 2.5039 2.3839 2.2691 2.1605 2.0620 1.9689 1.8856 1.808 1.7317
4.1648 3.9340 3.7512 3.5067 3.3192 3.1395 2.9723 2.8219 2.6793 2.5475 2.4241 2.3073 2.1993 2.0989 2 0067 1.9197 1.8391
4.3577 4.1212 3.9005 3.6908 3.4963 3.3155 3.1493 2.9907 2.8457 2.7139 2.5872 2.4678 2.3568 2.2537 2.1579 2.0727 1.9907
1.5954 1.5333 1.4740 1.4181 1.3648 1.3146 1.2660 1.21% 1.1764 1.1362
1.6991 1.6228 1.5587 1.4981 1.4414 1.3869 1.3349 1.2849 1.2381 1.1945
1.8408 1.7717 1.7062 1.6453 1.5870 1.5322 1.4796 1.4299 1.38264 1.3377
,2644 .2548 .2462 .2376 .2301 .22264
....
.2085 .2016 .1951
LI
....
....
=I1
.... ....
6.1621 5.7373 5.3659
....
6.8413 6.3620 5.9444
....
....
....
....
....
.... .... ....
....
....
....
....
....
....
.,.. ....
....
u 0
N
Longer wavelengths
NII 845.42 Or 2177.46
NIII 855.63
....
4.7120
.... ....
....
.... .... ....
.... ....
30.82
31.14 28.13
NIV 1412.92 N" 678.28
24.28 19.66
....
{ ....
011, 111
1022.13 PI
15.56
(continued)
15.89
2379.29
N V
1487.30 Nvr 705.23
01 1378.57
T A B L E 7 8 3 . 4 R I T I C A L ABSORPTION W A V E L E N G T H S IN ANGSTROMS (concluded) -I
Er C:
K
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
Hf Ta
w
Re
0s Ir Pt
Au Hg T1 Pb Bi Po At Rn Fr Ra Ac Th
Pa
u
LI
=I1
LIII
.1901 .I836 .17822 .1735 .16755 .16209 .15770 .15320 .14893 .14441 .14049 .13678
1.097 1.057 1.Om5 .9873 .9558 .9223 A914 23622 .8342 .SO72 .7812 .7559
1.1515 1.1102 1.0713 1.0354 .9998 .9654 .9321 .9009 .8708 .8419 .8143 .7878
1.2930 1.2517 1.2116 1.1755 1.1390 1.1038 1.0710 1.0382 1.0075 .9778 .9492 .9221
....
....
....
....
....
.670
.802
.I1270
.6039
.6293
.7600
.I0658
.5680
,5913
.7208
MI11
MIV
Mv
4.800
5.427
6.487
6.702
4.412 4.270 3.738 4.085
.... .... .... ....
5.027 4.851 4.676 4.508 4.340 4.184 4.034 3.893
5.975 5.754 5.544 5.330 5.139 4.936 4.747 4.568
6.194 5.961 5.746 5.529 5.331 5.136 4.945 4.762
....
....
2.388
2.571
3.062
3.550
3.722
2.228
2.385
2.877
2.327
3.491
MI
MI1
4.365 4.037
....
3.603 3.742
.... .... .... ....
....
____.
Longer wavelengths
OIV
742.22
PIX, I11
1153.52
ov
835.47
P I
1187.95
TABLE 784.-CALCULATED
u)
5
MASS ABSORPTION COEFFICIENTS 298
1
K series
I
0 v)
-z Z I
Q
I
<
-4
g
E
t
1-
Material
,010
1 Hydrogen
2 Helium 3 Lithium 4 Beryllium 5 Boron 6 Carbon 7 Nitrogen 8 Oxygen 9 Fluorine 10 Neon 11 Sodium 12 Magnesium 13 Aluminum 14 Silicon 15 Phosphorus 16 Sulfur 17 Chlorine 18 Argon 19 Potassium 20 Calcium 22 Titanium 24 Chromium 26 Iron 28 Nickel 29 Copper 30 Zinc 32 Germanium 34 Selenium 35 Bromine 36 Krypton 37 Rubidium 38 Strontium 2"'8
-
.1134 .0571 .0494 .0506 ,0528 .0571 .0571 ,0571 .0541 ,0566 ,0546 .0563 ,0551 ,0570 .0553 .0570 .0548 .0515 .0555 ,0570 ,0525 ,0528 .0533 .0546 ,0523 .0526 ,0506 .0494 .0503 .0494 .0498 .0499
,020
.040
.080
.15
.25
.1577 .0794 .0687 .0705 ,0734 .0794 .0794 .0795 .0753 .0788 ,0760 ,0784 .0767 .0794 .0771 .0795 .0765 .0719 .0776 ,0798 ,0736 .0741 ,0750 ,0771 .0739 ,0745 .0719 ,0706 ,0721 ,0710 .0717 .0721
,2083 .lo49 .0910 .0933 ,0973 .I052 ,1053
.2628 .1325 ,1147 .I 176 ,1228 .I331 .I335 ,1342 ,1278 .1347 ,1312 .I367 ,1353 ,1417 .I399 ,1470 ,1442 S388 .I537 ,1623 .1593 .1720 .1880 ,2101 .2102 ,2215 2342 2527 ,2703 ,2794 .2959 .3121
,3081 ,1553 .1347 ,1389 .1455 .1592 ,1621 .I659 ,1619 .1757 .I771 .I920 .1985 ,2167 ,2255 ,2506 2607 .2664 .3131 ,3512 ,3871 ,4664 S634 .6888 ,7180 ,7862 3909 1.0204 1.1212 1.1875 1.2866 1.3520
,3366 .1702 .I489 .1560 .I662 ,1884 ,2013 .2189 ,2292 .2686 ,2938 .3461 ,3882 .4532 ,5096 ,6082 .6754 ,7318 ,9065 1.0651 1.2683 1.6220 2.0502 2.5938 2.7412 3.0375 3.5078 4.0731 4.4985 4.7850 5.2015 5.6184
.lo55
.loo0 ,1047 .lo12 .I046 .lo24 .lo62 .lo34 .I069 .lo31 .0973 .lo54 ,1088 ,1014 .lo34 ,1061 ,1110 ,1073 .lo92 .lo77 ,1082 .1118 ,1116 A142 ,1164
.40
.3559 .I841 .1660 .1838 206 1 .2588 .3111 .3827 .4513 S896 ,7092 .9060 1.0876 1.3335 1.5725 1.9568 2.2446 2.4967 3.1592 3.7759 4.6098 5.9875 7.6376 9.7000 10.265 11.376 13.113 15.161 16.696 17.698 19.160 20.609
Private communication from John A. Victoreen, T h e Victoreen Instrument Co., Cleveland, Ohio.
(contirrued)
.80
1.50
,3854 ,4318 .3657 .2171 ,6731 2417 1.3939 ,3552 2.2131 .4864 4.2565 ,8119 6.9494 1.2266 1.7915 10.591 2.3963 14.512 3.4280 21.036 27.180 4.4007 5.8930 36.469 7.3182 45.240 9.1794 56.745 11.052 68.006 13.914 85.069 16.105 97.676 18.014 108.25 22.859 135.88 27.341 160.57 33.257 189.78 42.804 235.77 53.860 284.05 67.243 70.389 77.110 360.33 86.581 97.059 105.02 109.22 115.74 121.84
2.50
,5916 .9970 2.4945 5.7894 9.5170 18.768 30.958 47.288 64.669 93.298 119.74 159.30 195.61 244.02 288.75 355.96 402.03 437.17 537.16 619.41 689.33
4.00
1.2080
3.4658 9.644i 22.972 37.995 74.928 123.19 186.85 253.16 361.06 457.04 598.22 720.70 889.43 1037.1 1230.5 1343.4
6.00
3.1420 11.194 31.927 76.193 125.84 246.27 401.64 601.92 803.50 1125.3 1393.5 1775.8 2072.3 2507.0 2766.9 ~~
~
T A B L E 784.-CALCULATED
MA SS A B SOR PTION C O E F F I C I E N T S (concluded)
K series
::
0
2 7
C:
Material
,010
.020
,040
.080
.15
,1269 ,1364 .1411 .1466 ,1492 .1570 .1587 .1661 .1685 .1785 2 0 13 2508 2575 2878 ,2973 ,3049 .3210 .3320 .3406 .3612
.3873 .4680 .497 1 S581 .5950 .6397 .6606 .7190 7332 .7959 ,9689 1.3152 1.3614 1.5647 1.6253 1.6759 1.7806 1.8491 1.8609 1.9814
1.8412 2.3331 2.5023 2.8718 3.0958 3.3434 3.4660 3.7952 3.8080 4.1654 5.0766 6.7235 6.9253 7.7673 8.0105 8.1957
,1052 .1170 .1151 .I201 .1133
.1337
.1643 ,1819 -1747 .-. .. .1806 .l708
42 Molybdenum 46 Palladium 47 Silver 50 Tin 52 Tellurium 53 Iodine 54 Xenon 56 Barium 58 Cerium 60 Neodymium 65 Terbium 73 Tantalum 74 Tungsten 78 Platinum 79 Gold 80 Mercury 82 Lead 83 Bismuth 90 Thorium 92 Uranium
.0505
.0500 .0505 .0490 .0475 .0488 ,0481 .0478 .0486 .0490 .0485 .0488 .0488 .0490 .0493 .0493 .0492 .0496 .0488 .0490
.0740 .0743 .0755 .0743 .0728 .0752 .0746 .0750 .0762 .0778 .0798 .0858 .0865 .0903 .0917 .0925 .0944 .O% 1 .0964 .0992
Air
.0570 .0634 .0624 ,0651 .a614
.0793 .0882 .0869 .OW6 ,0854
Water Nylon Polyethylene Polystyrene
.I486
.1457 .I517 .1431
2 5
7.4923 9.4481 10.110 1 1.493 12.287 13.207 13.621 14.743 14.536 15.620
.40
.80
1.50
2.50
4.00
6.00
26.879 32.893 34.886 38,467 40.150
8.5986
2123 2321
-2084
.2097 .1999
.3561 .3801 2921 2733 .2666
1.5759 1.6341 .9573 .7506 .7788
9.1109 9.4547 5.0960 3.7066 3.9958
40.027 42.061 22.460 16.155 17.358
154.59 166.08 89.240 64.330 69.209
534.90 291.00 211.31 277.40
706
T A B L E S 785-793.-FISSION
Artificial disintegration is generally considered in two parts : the first when the bombarded atom suffers a change not greater than the loss (or gain) of an alpha particle, and the second when the change in the bombarded atom is much greater-the bombarded atom being at times split into two nearly equal parts. This latter is called fission : the former, artificial disintegration. Fission was at first brought about by bombardment with neutrons but it can be caused by bombardment by almost any particle with the proper energy (see Table 726). This effect can be produced in a number of isotopes of the heavier atoms such as Np, U, Pa, Th, Pb, Sn, Eu, and Ni. Some other atoms such as Bi, Rb, TI, Hg, Au, Pt, W, and many others show no fission; at least if such an effect exists it is less than 1/1000 that of Th. There are a great many products of fission as shown by a paper by scientists of the Plutonium One example of fission is 92U235 $- on1+ 4oZr97 52Te137 + on1 + on1 There is a considerable release of energy when fission takes place. Complete data are not available but such as are available give values of about 200 Mev per fission per atom of the heavier elements. (See Table 790.) It is also to be noted that there are two neutrons given as a result of the above reaction ; thus, it is self-sustaining.
+
Journ. Amer. Chem. SOC.,vol. 68, p. 2411, 1946.
"O
T A B L E 785.-FISSION Target substance
02u=6
Compound nucleus .................. ozU2" Threshold energy for fast neutron fission, in Mev.. .................... 0 Energy released per fission, in Mev.. . 200 Energy of fission neutrons, in Mev.. . <3.5_ (Ave 1) Average number of neutrons released per fission ....................... 2.3 (2 to 3.5) Average number of neutrons released 1.4 per thermal neutron absorbed, q.. .. For reference, see footnote 226,
I).
s&? i: s E'
-
o o ThZs2 mThm u1Pa2p s1Paw3 slPaw .LJs2um
dJ=
5.402.22 Mev 1.10-f.05 -1
<6.9 -8 5.18-C.27 5.3 12.25
mPuz^p e3Pu240
0
I I
g.2
25
V
THRESHOLDS
*
-
c"l
*'
% ;
gz 22
V
n n
P
d
s4Pu2'0
.oc
0 . .
Threshold energy exciting forfission
5.08*.15 Mev 1.0 2 . 1
y
Y Y
Estimated to be same as for w U ' ~
V
2
O C
Threshold energy for exciting fission
*
667.
T A B L E 786.-FISSION V
DATA
%.z
V 2
;
Y
n slow n
P
d Y
slow n
slow n ~
Revised by J. L. Rhodes, University of Pennsylvania. For reference, see footnote 226, p. 667.
SMITHSONIAN PHYSICAL TABLES
u3
t e
M5
$2
707 T A B L E 787.-ESTIMATED V A L U E S O F THE N E U T R O N B I N D I N G E N E R G Y O F T H E DIVI'DING N U C L E U S * Compound nucleus
Neutron binding energy
Neutron binding energy
6.2 Mev 5.2 6.4 5.4 6.5 5.4 6.4
5.2 Mev 6.1 5.1 -6.3 -5.3 -5.4 -6.4
* For reference, see footnote 226,
p. 667.
T A B L E 788.-THE
C R I T I C A L E N E R G Y FOR F I S S I O N
*
The experimental values of the critical energy for fission of a number of isotopes have been determined by Koch, McElhinney, and Gasteiger *" who give the following photo'fission threshold energies. (The work of Shoupp and Hill '" on the fast neutron fission energies for Thza2and U" was used for the values given for ThW and UwO.) Compound nucleus
E.
wTh"2 . . 5.402.22 Mev wThm .. 6.3 =Urn ... 5.18a.27
Compound nucleus
Compound nucleus
Ec
ozU235. . . 5.312.25 Mev 92uws . . . 5.082.15
muw0. . . 6.1
E.
MPum . . 5.312.27
MeV
Prepared by J. L. Rhodes, University of Pennsylvania. Phys. Rev., vol. 77* p. 329, 1950. Phys. Rev., voI. 75, p. 785, 1949.
211
242
T A B L E 789.-HALF-LIVES
F OR S P O N T A N E O U S F I S S I O N '"
These half-lives are calculated on the basis of a half-life of 10l6 years for Urn Element
Z
Half-life
10l6years
, . . . . . 1.4X10" . . . . . 7.62 loi3
..... .....
6.8 x 10" 7.7x 1014
A
. . ... MPurj0 .. . . . W P u z m .. . .. 05AmU3 . . . . osAmZ'l ' . . . . MPU'"
Half-life
8.0x 10'' years 1.3X10" 1.6X1011 6.6x 10" 1.4X1010
Z'STurner, Rev. Mod. Phys., vol. 17, p. 292, 1945.
T A B L E 790.-THE
E N E R G Y R E L E A S E D B Y F I S SION O N D I V I S I O N O F SOME ATOMS I N T O E Q U A L P A R T S *
Original
2WNia1 ~OSn"' eaEr'a' aPbm B2UZ3"
Two products
,,Si". 31 Mn", SU
-11 Mev 10 94
4,Nb103,104 4,,Pd11u,
For reference, see footnote 226, p. 667.
SMITHSONIAN PHYSICAL TABLES
Energy released on division
120 200
Energy released in subsequent beta decay
2 Mev 12 13 32 31
708
T A B L E 791.-FISSION
PRODUCTS O F L O N G H A L F - L I F E
*
-u
E.5
z
,Ex uy g5 'h
9
s6"
9.4 yr .74 19 d 1.82 55 d 1.5 25 y r .65 62 h r 2.35 61 d 1.6 65 d 1.0 35 d .15 90 hr I.T. 67 hr 1.5 41 d .67 1.0 yr -.03 7.5 d 1.0 43 d 1.7 43 d 1.7 130 d 1.3 2.7 yr .7
'Revised by J.
?e
.-
E.5
:: 2 2 b
z$-
... Xu 25
-5
.92 .77
...
.75 .55
none none
...
.5 .39 .6
E.5
-
.-;:
m"
2
z'
2"
.24 .00016 4.6
93 hr 90 d 32 d 77 hr 8 d 5.3 d 13 d 37 yr 12.8 d 30 d 275 d 13.8 d 11 d 3.7 yr 2 yr 15.4 d
1.2 I.T.
.-
... 5.9 6.4
... ...
6.2 3.7
.5
.018
.oms
.0008
...
x u mc
.8
1.05 .6 .35 1.0 .90 .23 .2 2.4
m $.
M ; Gal
2:
v C uf
x c m u
ClC
a'-
...
.72
... ...
I.T.
.28 687 .35 .28
0 .*
22
L
r:
ClC
1.08
2. zg E.9 .-
0 u
v uO G
none
:>
$2
+3
3
none none none none
.-.u
0
,033 .19 3.6 2.8 6
.22 .37
,085
1.2 .008 .75 -6 .53 6.1 .2 5.7 none 5.3 6 none 2.6 .58 2.6 none .03 .084 .013 2.0
.02
L. Rhodes, University of Pennsylvania. For reference, see footnote 226, p. 667.
T A B L E 792.-CROSS
SECTIONS O F F I S S I O N A B L E N U C L E I FOR N E U T R O N S (IN U N I T S OF cm2) * Cross section for energy ranges
Target substance
szu= MUrn
Ordinary uranium
Process
fission scattering fission scattering absorption (resonance) fission scattering absorption (resonance) fission scattering fission scattering absorption fission scattering fission scattering
Thermal
420+100
Resonance
Fast
30
2.4 6
t
.5
6 0
3 (ave) 17 3
.2 (ave) 17 5000
')assumed same as for wlUz" 0 0
17 8.3 0 17 0 17
6
.5
0
17
.1 6
0 17 0 17
3 6 .3
..
..
6
For reference, see footnote 226 p. 667. t Most of the scattering of fast 'neutrons is inelastic scattering, resulting in large energy, losses (as much as 90 percent). $ T h e resonance peak for Urn occurs at approximately 5 ev and IS taken to have an effective width of 0.16.
SMITHSONIAN PHYSICAL TABLES
709 T A B L E 793.-CROSS
S E C T I O N S O F S O M E F I S S I O N PRODUCTS FOR THERMAL NEUTRONS* Isotope (in units of 10-l2 cmZ) “Average nucleus”
.Absorption Total a0 at
Atomic number
Element
35
Br
36
Kr
.1
27
37
Rb
.7
12
38
Sr
1.5
11
39
40
Y Zr
1.1 .4
15
41 42
Nb Mo
1.o 3.9
6.9 7.9
51
Sb
4.7
9
52
Te
5
10
53 54
I
6.1
Xe
...
9.4 35
56 57 62 63
Ba La
64
Gd
Sm EU
7
9.5
1.25 9 8000 2500 38,000
...
9.25 25
... 4500
...
Mass number
79 81 78 84 86 85 87 86 88 89 90 91 92 94 96 93 95 97 98 100 121 123 126 128 130 127 132 136 138 139 149 151 153 155 157
Absorption aa
12 2.25 .27 .16 .061 .724 .135 1.3 .005 1.1 .12 1.54 .27 .53 1.07 1.o 13 2.3 .37 .23 6.8 2.5 .88 .2
.n
6.1 .2 .15 .56 9 53,000 5200 240 50,000 180,000
Relative natural abundance
50.6 49.4 .34 57.0 17.4 72.8 27.2 9.8 82.56 100 51.5 11.2 17.1 17.4 2.8 100 15.7 9.5 24.1 9.25 56 44 18.7 31.86 34.52 100 26.9 8.9 71.66 99.9 15.5 49.1 50.9 14.8 15.7
Hevised by J. L. Rhodes, University of Pennsylvania. For reference, see footnote 226, p. 667.
SMITHSONIAN PHYSICAL TABLES
710
T A B L E S 794-80l.-COSMIC R A Y S 244 Cosmic rays are an ionizing radiation that has been discovered in the atmosphere of the earth. As generally discussed these rays are divided into primary and secondary cosmic rays, the primary rays being the high-energy particles that fall upon the outer atmosphere of the earth. I n general, the intensity of cosmic radiation is given as the number of rays per cm' per second. The intensity (i.e., number of particles per cm2) increases for about the first onetenth of the atmosphere where it is about 5 times the initial intensity and from there down to sea level the intensity decreases. These primary rays appear to come from all directions from outer space and to consist almost entirely, if not altogether, of particles charged positively 2 4 5 (i.e., protons, alpha-particles, and probably other nuclei). Several theories have been advanced for the origin of this primary radiation: (1) Annihilation of matter; (2) speeding up of stripped atoms in outer space either by electrical fields o r by changing magnetic fields; ( 3 ) from some activity in stars in distant space; o r even (4) that it is radiation remaining from the original explosion some lo9- 10" years ago when the present known universe was started. These assumptions are based upon the theory that this radiation comes from the cosmos or outer space. Some '''ipresent arguments for the sun as the source of the cosmic rays and argue that the magnetic field of the sun traps at least a part of the radiation from the sun, which give the results as now found on the earth. There are seemingly very great difficulties to explain away in establishing any one of these theories. Owing to the effect of the earth's magnetic field there is less of this energy that reaches even the outer atmosphere at or near the magnetic equator than in higher latitudes, the lower-energy particles being screened off by the strong magnetic fields of the earth near the magnetic equator. The energy of the cosmic-ray particles that strike the upper atmosphere extends from about loo to 10'' ev, or even higher, with a maximum numher for ahout 6~ log ev. T h e average energy of all particles entering the atmosphere a t the equator is about 3 x 10'O ev and for geomagnetic latitudes above ahout 40 the average is about 6 x lo9 ev. In Tables 794 and 797 are given some data on the primary radiation reaching the outer atmosphere for different geomagnetic latitudes. "'Rev.
Mod. Phys., vol. 21, p. 1, 1949; Stranathan, T h e "particle" of modern physics,
D. Blakiston Co. ; Montgomery, D. J. X., Cosmic ray physics, Princeton University Pr ess ; Johnson, T. R., Rev. Mod. Phys., vol. 10, p. 193, 1938; Swatin, W. F. G., Reports on progress in physics, vol. 10, p. 1, 1946. '"Korff, Physics Today, vol. 3, p. 9, 1950. 246Teller,Edward, Physics Today, vol. 2, p. 6, 1949
T A B L E 794.-PROBABLE CHARACTERISTICS O F COSMIC RAYS FALLING UPON T H E T O P OF T H E ATMOSPHERE A T VARIOUS MAGNETIC LATITUDES
All energies a r e given in electron volts. Ceornnjinetic latitude r -
Energy falling per sec un each cmz of the atmosphere.. Tota l number of ions formed per sec below each cm2 of the upper surface of the atm o sp h er e.. . . . . . . . . . . . Low energy limit of oncoming particles imposed by the earth's magnetic field.. ........................... Average energy per particle striking the atm o sp h er e.. Probable number of particles striking each cm2 of outer surface of the atmosphere per m i n . . . . . . . . . . . . . . . . .
SMITHSONIAN PHYSICAL TABLES
30
39-
5'0
1x10"
1.7X10°
3 2 XIOo
3x10'
54x10'
7.4 X10'
15X10" 3x10''
8x10" 1.6X10"'
2x10'' .88X10'0
1.9
6.5
21.8
711
T A B L E 7 9 5 . 4 E C O N D A R Y COSMIC R A Y S
The secondary cosmic rays, which are due to the ionization and other actions of the highenergy particles of the primary cosmic rays, have been studied by various methods for various positions with respect to the geomagnetic latitude on the earth's surface and for different elevations up to such heights that only about 0.5 percent of the atmosphere, by weight, is above the measuring instrument. The secondary rays consist of all sorts of particles such as electrons, both positive and negative ; protons, and other heavy particles ; mesons ; neutrons, traveling with various speeds, and radiant energy of very short wavelength. A t the surface of the earth (sea level) the cosmic rays are of such intensity that they produce 1.63 ion pair cm4sec-'. The intensity is about constant, within a very few percent, for geomagnetic latitudes higher than above 40 and from this point to the equator the intensity drop-off is about 9 percent. The ionization increases with altitude up to about 16,000 m for geomagnetic latitudes >40,, where it is about 150-200 times as large as at sea level. Above this altitude the intensity of ionization drops off until, at an elevation where the amount of the atmosphere above the measuring instrument is only about 0.5 percent (35,300 m), the intensity is about 0.2 percent of that at the maximum, or about the same as that observed at 0.4 atmosphere above the earth. The variation with altitude is much less at the geomsgnetic equator. Cosmic rays react with the atoms of the atmosphere and produce a variety of effects; the production of a simple ion pair, the production of neutrons and electrons, the production of mesons, the production of extensive showers, where the released energy is so great that the cosmic ray must be only the cause of some explosion or some artificial disintegration. Mesons are particles that may have a unit positive or negative charge or they may be neutral as to charge. The mass of the meson is about 200 times that of an electron; it is very penetrating and is radioactive, with a life of about 2><10-esec. Some evidence exists for mesons with a mass of about 1000 me. Thus, there are formed bursts, an extensive production of ionization, and stars when a group of particles have a common origin as shown by cloud-chamber pictures. Stars are probably so named because these pictures show a number of tracks that have a common origin. These tracks vary from 2 to 10 with an average of about 4. The number of stars increases with the elevation above sea level. At an elevation of about 4,500 m the average energy ionization star particle was about 12 MeV. Cosmic-ray showers, extensive ionizations of exceedingly complex reactions taking place in the atmosphere, extend over distances up to several hundred meters. These showers contain millions of particles and represent a total of about 10'' ev. These secondary rays may be roughly divided into a hard and a soft component. The separation is generally made by filtering out the soft component with about 10 to 12 cm of lead. The hard component consists of mesons, a small number of protons, possibly some fast-moving electrons, and short-wavelength photons. The soft component consists of electrons, photons, and some slow-moving mesons, protons, and neutrons. The number of rays of the hard component does not reach a maximum with height but seems to increase to as great a height as measurements have been made, i.e., up to a height where the pressure is above 0.8 mmHg, where it is about 15 times as intense as at sea level. The soft component increases in intensity down from the top of the atmosphere to a pressure of 75 mmHg, then decreases to sea level, where the intensity is about 1 percent of that at its maximum. At its maximum intensity the soft component is about 5 times that of the hard component, in the vertical direction. At the earth's surface this hard component makes up about 75 percent of the cosmic radiation and a much smaller part a t high altitudes. This hard component is very penetrating, since it will pass through many meters of water or lead. Cosmic rays have been detected in a mine at a depth of 384 meters, and by tipping the apparatus, the thickness through which the cosmic rays passed was equivalent to 1,408 meters of water (about 124 meters of lead!). Another observer detected this radiation in a coal mine at a depth of 610 meters, which is equivalent to 1,600 meters of water! In this case, the intensity measured at the depth corresponding to 1,600 meters of water was only about 1/20000 of that a t the surface! These highly penetrating rays are thought to be mesons, produced by the primary cosmic rays.
T A B L E 796.-MEAN
I O N I Z A T I O N E N E R G Y OF -/-RAY NECESSARY T O PRODUCE AN ION P A I R *
(See Table 799.) Gas
Hz He
ev
....... 33.0 ....... 27.8
Gas
Na Oa
For reference, see footnote 203, p. 624.
SMITHSONIAN PHYSICAL TABLES
ev
........ 35.0 ........ 32.3
Gas
Ne A
ev
....... 27.4
........
25.4
712 T A B L E 797.-THE CRITICAL E N E R G Y * A N D T H E T O T A L ENERGY O F COSMIC R A Y S E N T E R I N G T H E A T M O S P H E R E A T F O U R LOCATIONS
"
0
.-U
..
c
u
% 2.2 $1
q:
<$
c)xg
'C tQ-.
-z>
" 6 2
p g
San Antonio ... 38" Madras ....... 3"
2.36 2.25
%
* I.
0
1.4 2.9
U
0 0
0 .-
Location
Saskatwn ..... 60" Omaha ........ 51"
-.-
-
m
&;;
6.7 17.0
1.81 .94
T h e e n e r g y of a cosmic ray which enables i t t o e n t e r t h e earth's atmosphere.
T A B L E 798.-ESTIMATED
COSMIC R A Y I N T E N S I T I E S A T 50" G E O M A G N E T I C L A T l TU DE
In this table are given some data on cosmic rays for various altitudes for geomagnetic latitudes of 50"
Altitude
meters
0 2,000 4,500
10,000 16,100 30,000 a w
= solid
atm
1.000 .784 .570 .261 .lo0 .0115 0
Total intensity
n
Omnidirectional
Vertical
Latitude effect
narticle seccms
particle seccmzw
percent
,020 ,035 .I0 .7 1.5
,015
10 15 25 45 75 85 90
^ _ _ -
.5 .3
.025 .07 .3 .5 .15 .1
S o f t comoonent
H a r d component
P ,
bmnidirectional
Vertical
Latitude effect
particle particle per-~ cent seccm2 seccmp w
,013 .018 .03 .10 .25 .4 ?
.009 ,012 .020 .05 .08 .13 ?
10
15 25
30 ? ?
?
bmnidirectional ~
Vertical
Latitude effect
particle particle see cm2 sec cm2 w
percent
,007 ,017 .07 .6 1.25 .06 ?
.006 .013 .05 .25 .42 .02 ?
10 15 25
30 80
;?
angle.
T A B L E 799.-SOME
COSMIC-RAY D A T A
Total number of rays at top of the atmosphere.. ........ 8x10" sec-' Total energy carried to earth per second (outer atmos...................... 9x10'' Bev/sec, 1.4X10' watts rged this stream gives a current of *. .... .. .. . Average number of r f atm .......... .16 cmP sec-' Average energy of all incident particles, latitude >40.. . . 7 Bev Average energy of all incident particles, all areas, about. . 11 Bev
1 cm2 in cross section extending to top of atmosphere at 60 N geomagnetic latitude.. ...................... Thus in this column there ar ... This means about .......... ... Total number of rays at sea 1 ons.. ... Cosmic ray at sea level prod ... Total cosmic energy reaching earth per second at sea level. Radiant energy flux reaching earth from all stars.. .....
3.8X10-' erg cm'* sec-' 7.4x 10' ion pairs 90 ion pair, cm-' sec-' 1.2 ray min-' cm-' 1.63 ion pair, cm-' sec-' 40 joules 3.02XlO" erg cm-' sec-'
t The If t h e r e were no compensating effects t h e potential of t h e e a r t h would increase about lBOV/sec. n u m b e r varies with t h e geomagnetic latitude. being about 0.33 particles cm-2 sec-' a t high latitudes ( > 4 0 " ) a n d ahout 0.032 particles cm-2 sec-1 a t the equator. T h i s d a t a is based upon a n energy of 3 2 e v necessary t o produce one ion pair. ? T h u s t h e average r a y e n t e r i n g t h e cm3 a t sea level h a s a n energy of about 10' ev. ~~
SMITHSONIAN PHYSICAL TABLES
713 T A B L E 800.-RADIATION A T E A R T H ' S SURFACE, MASS A N D R A D I A T I O N D E N S I T Y I N O U R G A L A X Y , A N D IN T H E U N I V E R S E
Our galaxy: Total number of stars... .................................. Average mass of stars.. ................................... Total mass of galaxy ..................................... Total volume ............................................ Diameter (disk) ......................................... Average mass density.. ................................... Total mass energy. ....................................... Total kinetic energy ...................................... Average mass-energy-density ............................. Average kinetic energy-density ............................ -. Universe : Mass density ............................................ Mass-energy-density ..................................... Radiant-energy-density ................................... Cosmic ray energy-density ................................ A t earth's surface (top of atmosphere) : Total radiant energy from all stars.. ....................... Total radiant energy density (our galaxy).. ................ Total. radiant energy (sun directly overhead)*. .............. Cosmic ray energy ....................................... Cosmic ray energy-density.. ...............................
30x10; 2x10 q4 3.27X10 g 1 P cm3 5x10" cni 3X10-" 8 cm-' 2.95X10 ergs 1.6x1OBDergs 3X 10- erg cm4 1.6X 10" erg cm" 3)<10-= g cm4 3)(10-' erg cm-a 6 x lo-'' erg cmd 1.7XlO-" erg cm4 1.78)(10a erg cm-' sec-' 5.8x10-" erg cmd 1.2~10"erg cm-' sec-' 3.8X10-' erg' cm-* sec-' erg cm-'
Astrophysical data.
T A B L E 8 0 1 . 4 O M P O S I T I O N O F COSMIC R A D I A T I O N A T G E O M A G N E T I C L A T I T U D E 30" a ' ~
Nuclei
H
He 6<2<8
Sun
.... ....
3200
Relative No. of particles 7 T Sco Cosmic rays
1.6x10" 2.9XlV 2500
1.6x10" 4.0X10' 14OOO
a ' Brsdt and Peters, Phys. Rev., vol. 77, p. 54, 1950.
SMlTHSUNlAN PHYSICAL TABLES
Relative No. of particles Nuclei
dun
11<2<14 16<2<20 Fe
157 28 150
T
sco
Cosmicrays
215
-2600 -.lo00
5
...
-
400
TABLES 802-S07.-GRAVITATION
714
T A B L E 802.-ACCE
*
L E R A T l ON 0 F G R A V I T Y
For sea-level and different latitudes. Calculated from the International Gravity Formuia : g = 978.0490 [ 1 0.0052884 sin' @ - 0.0000059 sin' 2 $1
+
Latitude
g
@
cm/sec2
0" 5 10 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
978.0490 .0881 .2043 .2716 .3504 978.3940 .4404 ,4893 .5409 S951 978.6517 .7107 ,7721 A357 ,9015 978.9694 979.0394 .1113 ,1850 .2606 979.3378 ,4165 ,4968 ,5785 .6614 979.7455 2308 .9170 980.0041 .0919 980.1805 .2696 .3591 .4490 S391 980.6294 ,7197 ,8098 ,8998 ,9894
Latitude
9
ft/secz
log 9
2.9903607 .9903780 .99042% .9904594 904944 9905138 .9905344 S905561 .9905790 .9906031 .9906281 .9906543 .9906815 .9907098 .9907390 .9907691 .9908001 .9908321 .9908648 .9908983 .9909325 .9909674 .9910030 .9910392 910760 ,9911133 .9911511 ,9911893 .9912279 .9912668 .9913060 .99 13455 ,9913852 ,9914250 ,9914649 ,9915049 ,9915449 ,9915848 .9916246 ,9916643
T A B L E 803.-FREE-AIR
.10
9
cm/secz
log 9
ft7secz
54
981.0786' .1673 ,2554 .3427 ,4291 981.5146 .5990 ,6822 .7642
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 73 78 79 80 81 82 83 84 85 86 87
98 1.9239 982.0015 .On3 .1515 ,2238 982.2941 .3624 ,4287 ,4927 .5545 982.6139 .6709 ,7254 .7774 ,8267 982.8734 .9173 ,9585 .9968 983.0322 983.0647 ,0942 .1207 .1442 .1645 983.1818 .1960 ,2071 ,2150 983.2213
2.9917038 917431 .9917821 .9918207 9918589 9918968 .9919341 ,9919709 ,9920072 .9920428 .9920778 9921 122 .9921457 ,9921785 .9922105 ,9922415 .9922718 ,9923010 923293 .9923567 9923829 ,9924081 .9924322 ,9924552 .9924769 .9924976 .9925170 ,9925351 .9925521 ,9925678 ,9925821 .9925951 .9926068 .9926172 ,9926262 .9926338 ,9926402 .9926450 .9926485 ,9926513
32.19 .19 .19 .20 .20 32.20 .20 -.21 .21 .21 32.21 .22 .22 .22
,8448
.11 .ll .ll .12 32.12 .12 .12 .12 .13 32.13 .13 .14 .14 .14 32.14 .15 .15 .15 .15 32.15 .16 .16 .17 .17 32.17 .18 .18 .18 .18 ~~
88
90
.n
32.23 .23 -23 .23 .24 32.24 .24 .24 .24 .24 32.25 .25 .25 .25 .25 32.25 .25 .25 .25 .26 32.26 .26 .26 .26 .26
CORRECTIlON O F ACC ELER A TION O F G R A V I T Y FOR A L T I T U D E
To reduce log g (cm per sec per sec) to log 8.5159842 - 10.
g
(ft per sec per sec) add log 0.03280833 =
The standard value of gravity, used in barometer reductions, etc., is 980.665. I t was adopted by the International Committee on Weights and Measures in 1901. I t corresponds nearly to latitude 45" sea-level. -0.0003086 cm sec-2 m-* when altitude is in meters. -0.000003086 ft s e c 2 ft-' when altitude is in feet. Altitude
Correction
Altitude
200 m 300 400 500 600 700 800 900
--.0617 cm/sec2 ,0926 .1234 .1543 .1852 ,2160 ,2469 ,2777
200 ft 300 400 500 600 700 800 900
Correction
-.000617 ft/sec2 .000926 ,001234 .OO 1543 ,001852 .002160 ,002469 .002777
I'reiiared under the direction of K . T. Adams, U. S. Coast and Geodetic Survey. SMITHSONIAN PHYSICAL TABLES
71 5 T A B L E 804.-ACCELERATION
OF GRAVITY, VARIOUS WORLD STATIONS Gravity. cm/seca
Name
Latitude
Santiago. Chile ................. 33"27!1 S Rio. Brazil ..................... 22 53.7 S Tacna. Peru .................... 18 01.0 S Chala. Peru .................... 15 49.0 S Lima. Peru ..................... 12 01.1 S Minkindani. E Africa ............ 10 16.6 S Timor Sea ...................... 9 36 S Trujillo. Peru .................. 8 07.0 S Mafia. E. Africa ................. 7 54.9 S Indian Ocean ................... 7 35 S Kaliwa. E Africa ................ 5 04.2 S Banda Sea ...................... 1 45 S Limuru. E. Africa ............... 1 07 S Marigal. E. Africa ............... 0 28 N Kanifuri. India .................. 5 Z.2 N Indian Ocean ................... 7 56 N Punalur. India .................. 9 01.0 N Pacific Ocean ................... 9 52 N Pacific Ocean ................... 13 35 N Dharwar. India ................. 15 27.6 N Musmar. E. Africa ............... 18 13.0 N Tacubaya. Mexico ............... 19 24.3 N Pacific Ocean ................... 19 58 N Atlantic Ocean .................. 20 44 N Santiago. Cuba ................. 22 30.9 N Atlantic Ocean .................. 23 21 N Key West. Fla ................... 24 33.6 N Dholpur. India .................. 26 42.0 N Nagasaki. Japan ................. 32 44.7 N Mount Wilson. Calif .............. 34 13.4 N Batna. Algeria .................. 35 33.0 N Atlantic Ocean .................. 36 23 N Sevilla. Spain ................... 37 23.0 N 39 406 N Denver. Colo.................... 42 57.1 N Buffalo. N . Y .................... Atlantic Ocean .................. 43 14 N Ottawa. Ontario ................. 45 23.6 N Miichen. Germany ............... 48 09 N Greenwich. England ............. 51 28.6 N 52 07.8 N Saskatoon Saskatchewan Vladimirskaja. Siberia ........... 54 57 N Tomsk. Siberia .................. 56 28 N Oslo. Norway ................... 59 54.7 N St. Michael. Alaska .............. 63 28.5 N Arctic Red River N . T ........... 67 26.6 N Whales Point. Spitzbergen ........ 77 30.4 N Hellwald. Spitzbergen ........... 78 44.1 N Ile deRosse .................... 80 49.6 N Arctic Ocean ................... 81 48 N
.
.
.
........
.
Longitude
70"39:8 W 43 13.4 W 70 15.0 W 74 18.5 W 77 02.3 W 40 07.6 E 128 07 E 79 02.3 W 39 39.4 E 106 55 E 31 47.5 E 126 57 E 36 40 E 35 59 E 73 19.2 E 68 46 E 76 55.8 E 132 46 E 95 27 W 75 00.2 E 35 58 E 99 11.7 W 164 56 W 65 37 W 80 30.4 W 47 05 w 81 48.4 W 77 54.8 E 129 52.? E 118 03.4 W 6 10 E 26 43 W 5 59.5 w 104 57.1 W 78 49.3 W 19 36 W 75 43.0 W 11 37 E 0 00.3 E 106 38.1 W 85 59 E 84 57 E 10 43.5 E 162 02.4 W 133 44.3 W 20 58.8 E 20 50.2 E 20 20.6 E 19 25 E
Reducedtd sea level
Elevatio? meters Observed
541.3 -29.0 557.1 14.0 143.6 3 . 340 29.4 5 . 230 1080 -1390 2193 1036
979.429 978.805 978.298 978.452 978.289 978.224 978.233 978.095 978.168 978.292 977.783 978.058 977.412 977.664 1 978.107 978.102 -4390 978.107 34 978.212 -6050 978.360 -3870 978.18 728 978.399 493 977.941 2299 978.660 -4960 978.704 -5510 978.826 67 978.880 -3550 978.973 1 978.999 176 979.594 30 1719.4 979.253 979.468 1050 979.890 -3610 979.965 11 1639.5 979.612 980.363 210 978.520 -4100 980.622 83 980.733 525 981.189 47 981.138 497 981.424 265 981.582 125 981.927 28 982.197 1 982.438 41 982.897 458 982.871 660 983.145 31 983.096 -3402
979.596 978:814 978.470 978.456 978.333 978.225 978.233 978.104 978.169 978.292 978.1 16 978.058 978.089 977.984 978.107 978.102 978.117 978.212 978.360 978.407 978.551 978.650 978.660 978.704 978.847 978.880 978.973 979.054 979.603 979.783 979.792 979.890 979.%8 980.118 980.428 978.520 980.648 980.895 981.204 981.291 981.506 981.621 981.936 982.197 982.451 983.038 983.075 983.155 983.096
*For sea stations. the depth is recorded in this column; the observations were made in submarines and reduced to sea level
.
SMITHSONIAN PHYSICAL TABLES
716 T A B L E 805.-ACCELERATION
OF G R A V I T Y
(8) I N T H E UNITED STATES
.
The following table is abridged from the table of Principal Facts in U S. Coast and Geodetic Survey Special Publication No . 244. Pendulum Gravity Data in the United States. The observed values depend on relative determinations and on an adopted value of 980.118 for the Commerce Building Base in Washington. D . C . There are also given two types of gravity anomalies . The free-air anomaly is the difference between the observed value of gravity and the theoretical values of gravity for the latitude of the station corrected for the elevation of the station . The isostatic anomaly is the difference between the observed values of gravity and the theoretical value of gravity for the latitude of the station corrected for the elevation of the station. topography and isostatic compensation in the earth's crust to a depth of 113.7 kilometers.
Station
Latitude
Atlanta. Ga ..................... 33"45!3 Austin. T e x. (university) ........ 30 17.2 Baltimore. Md ................... 39 17.8 Beaufort. N C................... 34 43.1 Birmingham. Ala ................ 33 30.8 Bismarck. N . Dak ................ 46 48.5 Boise. Idaho .................... 43 37.2 Boston. Mass .................... 42 21.6 Burbank. Okla ................... 36 42.2 Calais. Maine ................... 45 11.2 Cambridge. Mass................ 42 22.8 Charleston. S. C .................. 32 47.2 Charlottesville. Va . . . . . . . . . . . . . . 38 02.0 Chicago. Ill ...................... 41 47.4 Cincinnati. Ohio ................. 39 08.3 Cleveland. Ohio ................. 41 30.4 Cloudland. Tenn . . . . . .. . . . . . . . . . . 36 06.2 Colorado Springs. Colo........... 38 50.8 Columbus. Ga ................... 32 27.0 Columbus. Ohio ................. 39 57.8 Denver. Colo.................... 39 40.6 Duluth. Minn .................... 46 47.0 Durham. N . C................... 36 00.2 El Paso. Tex .................... 31 46.3 Empire State Building. N . Y ...... 40 44.9 Eugene. Oreg. . . . . . . .. . . . . . . . . . . 44 02.7 Fort Dodge. Iowa ................ 42 30.8 Grand Canyon. Ariz .............. 36 05.3 Grand Canyon. Wyo .............. 44 43.7 Grand Rapids. Mich .............. 42 58.0 Green River. Utah ............... 38 59.4 Iowa City. Iowa ................. 41 39.6 Ithaca. N . Y ..................... 42 27.1 Key West. Fla ................... 24 33.6 Knoxville. Tenn ................. 35 57.7 Lancaster. N . H .................. 44 29.5 Las Vegas. N . Mex ............... 35 35.8 Little Rock. Ark ................. 34 44.9 Madison. Wis ................... 43 04.6 Memphis. Tenn .................. 35 08.7 Miles City. Mont ................. 46 24.2 Minneapolis. Minn ............... 44 58.7 Mitchell S. Dak .................. 43 41.8 Mount Hamilton. Calif ............ 37 20.4 New Orleans. La ................. 29 56.9 New York. N . Y ................. 40 48.5 Oberlin. Ohio ................... 41 17.5 Philadelphia. P a ................. 39 57.1 Pike's Peak. Colo................. 38 50.4 Pittsburgh. Pa................... 40 27.4 Prestonsburgh. Ky ............... 37 40.6 Princeton. N . J ................... 40 21.0
.
.
Longitude
84"23!5 97 44.2 76 37.3 76 39.8 86 48.8 100 47.1 116 12.3 71 03.8 96 41.0 67 16.9 71 07.8 79 56.0 78 30.3 87 35.9 84 25.3 81 36.6 82 07.9 104 49.5 84 57.6 82 59.4 104 57.1 92 06.4 78 56 106 29.0 73 59.2 123 05.6 94 11.4 112 06.8 110 29.7 85 39.5 110 09.9 91 32.2 76 29.0 81 48.4 83 55 71 34.3 105 13.1 92 16.4 89 24.0 90 03.3 105 50 93 13.9 98 01.8 121 38.6 90 04.3 73 57.7 82 13.2 75 11.7 105 02.5 80 00.6 82 45.6 74 39.5
(to1ntinued)
SMITHSONIAN PHYSICAL TABLES
Elevation m
324.0 189 30.5 1.5 179 514.4 822.0 22 345 38 14 6.1 166 182 245 210 1890 1841.8 73.5 231.0 1639.5 215.8 126 1146.0 16.2 129 340.1 847.0 2386.0 235.8 1243 212.3 246.9 1 280 261.8 1959.6 89.0 270 80.3 718 256.1 408 1281.7 2.4 38.1 248 15.8 4293.1 235 193 64.0
Observed gravity gal
Free-air anomaly
979.527 979.286 980.1 14 979.732 979.539 980.628 980.215 980.399 979.788 980.634 980.401 979.549 979.941 980.281 980.007 980.244 979.386 979.493 979.526 980.092 979.612 980.761 979.838 979.127 980.269 980.493 980.314 979.466 979.902 980.375 979.639 980.250 980.303 978.973 979.715 980.489 979.207 979.724 980.368 979.743 980.542 980.600 980.378 979.663 979.326 980.270 980.208 980.199 978.957 980.121 979.884 980.181
-.014 -.016
gal
+.005
+.011 -.027 -.006 -.036 +.014
+.003
.000
+.012 --.010 -.015 -.003 7022 -.006 +.129 -.017 +.015 --.014 -.034 +.037 .046 +.002 +.027 --.010
+
+.014
--.111 +.033 .002 --.068
+
--.013 -.020
+.034 -.027 -.014 +.015 +.027 -.005 +.010 +.008 +.052 -.003 +.112 -.007 +.029 -.011
+.028 +.203 -.027 --.032 -.011
Isostatic anomaly gal
-.030 --.017 +.002 -.026 -.038 --.001 +.010 .002 --.001 -.008 + .001 -.026 -.017 -.004 -.024 -.006 -.001
+
-.008
+.014 -.014 -.016 +.048 +.034 +.009 .020 +.005 +.Oll -.014 -.002 --.004 --.025 -.012 -.022 --.011 --.026 -.014 -003 .028 -.008 +.008 +.028 +.055 --.002 -.004 -.020 +.019 -.013 +.OM +.018 --.027 -.028 --.025
+
+
717 T A B L E 805.-ACCELERATION
Station
... .... ... ......
O F GRAVITY ( 8 ) I" (concluded)
Latitude
Richmond, Va. . . 37"32!2 St.Louis, Mo. ................... 38 38.0 St. Petersburg, Fla. . .. .. .. . ... . . . 27 48.9 Salt Lake City, Utah.. . . . . . . . 40 46.1 SanFrancisco. Calif. ............ 37 37.5' Seattle, Wash. (university).. 47 39.6 Sheridan., Wvo. . ... _ 44_4_ 8.0_ I . _ . . . _ . . _ . .. Smith College, Mass ... .. . .. ... . . 42 19.0 State College, Pa.. . . . . . . . .. . . 40 47.9 Terre Haute, Ind .... ... . ......... 39 28.7 Traverse City. _ .Mich. . . .. ... .. 44 45.8 Wallace, Kans. .................. 38 54.7 Washington, D. C.: Geophysical Laboratory ....... 38 56.6 National Bureau of Standards.. . 38 56.5 Smithsonian Institution . . .. ... . 38 53.3 40 04.0 Wheeling, W. Va ... .... . .. . Winnemucca, Nev. .............. 40 58.4 Worcester, Mass. . . .. . . . . . ... . .. 42 16.5 Wright Field, Ohio .............. 39 46.6 Yuma, Ariz. .............. . .... . 32 43.3
. .. . .....
. . . .. . ..
......
T A B L E 806.-LENGTH
Lat
Length cm
0" 5 10 15 20 25 30 35 40 45
99.097 99.101 99.113 99.132 99.158 99.190 99.228 99.269 99.313 99.359
Lonnitude
1.996061 1.996078 1.996131 1.996215 1.996329 1.996469 1.996633 1.996814 1.997006 1.997205
Elevation m
29.9
Observed gravity gal
Free-air anomaly gal
Isostatic anomaly gal
-.007 +.006 +.006 -.022 -.095 +.010 +.006 -.014 -.011 +.001 -.016
77">6!1 90 12.2 82 40.2 111 53.8 122 25.7 122 18.3 106 58.7 72 38.2 77 51.8 87 23.8 85 37.2 101 35.4
153.9 15 1322 114.3 58 1149.9 54.6 357.8 150.9 180.1 1005
979.963 980.004 979.191 979.806 979.968 980.736 980.244 980.376 980.127 980.075 980.553 979.758
+.009 -.008 +.025 -.035 +.018 -.I15 -.012 +.005 -.014 -.013 +.001 -.016
77 03.4 77 03.9 77 01.5 80 43.3 117 43.8 71 48.5 84 05.9 114 37.0
88.1 95.1 10.4 205 1311 170.0 247.8 53.9
980.104 980.100 980.118 980.088 979.847 980.328 980.094 979.532
+.044 +.042 +.039 --.035 -.016 --.003 +.010
--.007
.OOO
+.036 +.034 +.038 -.032 -.012 7022 +.008 .006
+
O F SECONDS P E N D U L U M A T SEA L E V E L AND FOR DIFFERENT LATITUDES Length
Log
T H E U N I T E D STATES
in.
Log
Lat
Length cm
Log
Length in.
Log
39.014 39.016 39.020 39.028 39.038 39.051 39.066 39.082 39.099 39.117
1.591221 1.591243 1.591287 1.591376 1.591488 1.591632 1.591799 1.591977 1.592166 1.592366
50" 55 60 65 70 75 80 85 90
99.404 99.449 99.490 99.527 99.560 99.586 99.605 99.618 99.622
1.997404 1.997597 1.99778 1.997942 1.998084 1.998198 1.998283 1.998335 1.998352
39.135 39.153 39.169 39.184 39.1% 39.207 39.214 39.219 39.221
1.592565 1.592765 1.592943 1.593109 1.593242 1.593364 1.593441 1.593497 1.593519
Calculated from Table 802 by the formula 1 = g/2. For each 100 ft of elevation subtract 0.000953 cm or 0.000375 in. or 0.0000313 ft. This table could also have been computed by either of the following formulas derived from the gravity formula a t the top of Table 802. I = 0.990961 ( 1 + 0.0052884 sinx@ - 0.0000059 sill' 2 @ ) meters. I = 0.990961 + .0052406 sin' @ - 0.0000058 sin2 2 @, meters. 1 = 39.014135 ( 1 + 0.0052884 sin2@ - 0.0000059 sin22 6 )inches. I = 39.014135 0.2063214 sin' @ - 0.0002302 sin' 2 @, inches.
+
S M I T H W I A N PHYSICAL TABLES
T A B L E 807.-SOME
718
PLACES O F ANOMALOUS GRAVITY
The departures are from values of gravity normally expected, from Table 802.
Latitude
$9'2918 N 19 42.2 N 19 25.4 N 23 47.0 N 32 21 N 37 30.0 N 38 06.7 N 42 55.8 N 37 11.0 N 45 50 N 45 57.5 N 45 59.5 N 67 53.6 N 33 48.5 N 51 48 N 35 44.5 N 40 38 N 23 06.1 N 42 08 N 46 21.9 N 56 08.0 N 8 14 S 30 19.5 N 50 30.2 N 1 50 N 750 S 5 12 N 40 26 N 848 S 26 41.8 N 2 09 N 10 17 N 0 29 S 536 S 19 32 N
Longitude
155"34!8 W 155 27.9 W 155 15.7 W 166 12.5 W 6440 W 2 45.0 W 3 04.5 W 0 08 E 3 36.0 W 652 E 7 48.9 E 7 42.7 E 13 02.0 E 74 33.3 E 10 37 E 15 39.5 E 17 57 E 74 58.5 W 41 42 E 9 07.6 E 91 18.0 E 30 35 E 78 03.4 E 116 03.4 W 31 19 E 120 48 E 94 12 E 50 00 E 128 26 E 88 24.8 E 126 59 E 126 41 E 125 59 E 131 08 E 6646 W
Elevation meters *
Gravity cm/sec2
3970 2030 1211 2 2 858 805 2877 669 4807 2797 2582 19 3338 1140 - 460 16 2 3 1030 339 783 683 828 623 -5140 -2555 57 -2120 118 -2200 -8740 -2390 -7330 -8040
978.096 978.504 978.673 979.201 979.806 979.669 979.792 979.779 979.669 979.401 980.019 980.080 982.622 978.752 981.O 15 979.926 980.337 978.941 980.317 980.374 981.435 977.835 979.063 980.767 977.753 978.024 977.962 980.065 978.019 978.887 977.877 978.013 977.833 977.843 978.284
Departure from values of table
Place
+698 +495 +428 +315 +282 +265 +248 +224 +206 f 180
Mauna Loa Kalaieha Kilavea East Island St. Georges Baza Villacarrillo Pic du Midi Granada Mont Blanc Betempshiitte Schwarzsee Sorvaagen Korag Brocken Mediterranean Sea Brindisi Clarence Town Poti Augio Kosulka Moliro Dehra Dun Invermere Butiaba Java Sea Indian Ocean Surachany Timor Sea Siliguri Celebes Sea Philippine Sea Celebes Sea Banda Sea Atlantic Ocean
% +I42 +133 +129 +118 107
+
zl;
- 61 - 70 - 78 - 89 -100 -109 -121 -129 -136 -151 -166 -179 -200 -216 -255 -341
~
Heiskanen W., Catalogne of the isostaticall reduced gravity stations, Helsinki, 1939, For sea stations. the depth is recorded in t l i s column; the observations were made in submarines and reduced to sea level.
SMITHSONIAN PHYSICAL TABLES
TABLES 808-824.-SOLAR T A B L E 808.-THE
RADIATION *
719
SOLAR C O N S T A N T
A long series of measurements has been made *" a t widely separated, selected stations by the astrophysicists of the Smithsonian Institution on both the total intensity of the solar radiation and the spectral distribution of this radiation. One result of these measurements is the value of the solar constant, that is. the total solar radiation (cat cm-' h n - l ) at normal incidence outside the atmosphere a t the mean solar distance. As a result of the work up to 1913 the solar constant was found to be 1.9408 ly. min-' (langley; see Table 2, Part 2). .Later investigations showed that the standard used in these measurements was somewhat in error. Observations showed that the correction employed for the unmeasured ultraviolet radiation was too :ow ; also solar radiation in the infrared region beyond about 2.5 p introduced some error. As a final result of all the corrections it was found that this 1913 value of the solar constant was very good. I t should be pointed out that there is evidence'" that the solar constant fluctuates as much as.% 1.5 percent. In addition, the varying distance between the sun and earth (see Table 827) produces a change in the actual solar radiation at the top of the atmosphere of about f 3.5 percent from the mean value. Now in 1951 the value of the solar constant (amount of energy falling a t normal incidence on one square centimeter per minute on body a t earth's mean distance) = 1.946 calories = mean 6430 determinations 1924-47. Subject to variations, usually within the range of 2.8 percent, and occurring irregularly in periods of a week or 10 days. New data on the ultraviolet and infrared corrections to the solar constant given by F. S. Johnson (in press) indicate that the value 1.946 should be increased by 2.6 percent. Johnson's best value is 2.00 2 2 percent. Computed effective temperature of the sun: from form of blackbody curves, 6000" to 7000" Absolute ; from Amax T = 2930 and max = 0.470p, 6230" ; from total radiation, J = 76.8 x lo-'' x T', 5830: Sun radiates ................................. 3.8 X 10merg/sec 6.25 x 10"' erg sec-' cm-' 1.72 x 10" erg/sec strikes the earth. of this ....................................... Prepared by L. B. Aldrich and W. H . Hoover,, Astrophysical Ohservatory, Smithsonian Institution. Abbot, C. G . , Solar radiation and weather studies, Smithsonian Misc. Coll., vol. 94, No. 10. 1935. Aldrjch, L. B., and Abbot, C. G . , Smithsonian pyrheliometry and the standard scale of solar radiation, Smitbsonian MISC. Coll., vol. 110, KO. 5, 1948. See also Annals, Smithsonian Astrophysical Observatory, vol. 7, ch. 3 (in press). 248
260
T A B L E 809.-AT Wave. length
MOSP H E R I C T R A N S M I SS I 0 N CO E F F l C I E N T S
Montezuma, Chile
P
High
Low
.34 .35 .36 .37 .38 .39 .40 .45 .50 .55 .60 .65 .70 .75 .80
.620 .656 .687 .714 .738 .759 .778 .848 .890 .900 .913 .936 .963 ,972 .980 .984 ..985 .986 .987 .989 .994 .997 .996 .988
.568 ,600 .630 .657 .681 .703 .722 .792 .838 .849 .863 .884 .924 .936 ,945 .9S2 .. _ _ .956 .957 .958 .960 .965 .970 .975 .970
-8.5
.90 .95
1.oo
1.25 1.50 1.75 2.00 2.25
Table Mt., Calif. & High Low
.605 .641 ,672 .701 .~ .726 .749 .769 .840 ,883 .890 ,905 .933 ,961 .970 .978 ,983 .984 .985 .986 .989 .994 .997 996 .987
.552 .585 .615 .643 .668 .692 .712 .783 .831 .838 .854 .880 .922 .934 .943 ,950 .954 .956
-957 ...
.959 .968 ,970 ,974 .965
Miami, Fla. High
Low'
.5I2 .541 .567 .593 .617 .642 ,662 .755 .818 .850
.464 .492 .519 .545 .57I ,595 .615 ,709 ,763 .788
'954 .957 .960 ,962 -964 .. - . ,969 ,973 ,969 .955
,917 ,922 .925 ,928 ,933 ,942 ,946 .945 ,930
High transmissions are for every clear day and low precipitable water, 2 mm for Montezuma and Table Mt., and 3.5 mm for Miami. Low transmissions are for very hazy days and high precipitable water, 10 mm for Montezuma and Table Mt., and 25 mm for Miami. Transmission coefficients in the rang-e .70 - 2.25 A are all smooth-curve values drawn over the tops of the water-vapor bands. Unit air mass. SMITHSONIAN PHVSICAL TABLES
720 SOLAR CONSTANT, M O N T H L Y A N D Y E A R L Y M E A N S *
T A B L E 8lO.-THE Jan.
Feb.
Mar.
Apr.
May
June
July
Sept.
Aug.
Oct
Nov
Dec.
Yearly mean
1920 1.945 1.950 1.953 21 1.957 1.955 1.949 1.947 1.950 I .939 1.950 1.943 1.950 55 57 52 1.950 22 47 46 21 36 30 14 30 25 18 17 26 24 28 29 23 42 32 31 34 36 45 28 53 44 43 38 36 41 24 46 44 47 42 52 47 48 51 50 52 53 50 46 55 25 47 49 48 48 48 50 50 49 48 49 46 26 38 46 42 45 40 38 40 38 41 43 36 37 40 27 43 44 42 39 44 40 39 44 43 46 48 46 43 42 42 41 28 46 44 44 48 43 43 49 42 46 47 29 48 41 43 41 39 42 43 41 39 37 43 46 40 44 1930 44 49 47 50 46 50 48 43 52 42 47 46 47 48 47 48 47 31 47 46 46 46 47 51 49 45 41 41 44 39 45 42 41 32 46 41 39 39 39 39 43 46 41 49 50 43 49 33 42 50 40 48 46 50 47 48 48 48 34 47 50 43 45 44 47 44 51 51 47 47 47 48 47 35 47 51 46 45 49 47 45 50 48 49 47 49 36 44 51 46 46 47 47 47 48 52 44 49 47 37 48 51 41 48 46 46 46 43 43 48 49 47 43 38 48 51 44 46 45 47 44 44 46 52 47 41 44 47 43 42 44 44 42 42 39 46 51 40 49 48 46 47 47 48 49 47 1940 48 49 45 43 45 49 51 49 48 41 48 48 47 48 50 50 51 52 50 44 44 49 42 48 48 45 48 46 45 44 47 48 43 42 43 48 44 46 46 49 46 48 43 43 51 45 47 46 46 45 44 44 46 44 45 43 43 48 44 52 40 43 44 42 47 44 47 48 46 41 42 47 39 45 44 54 53 48 48 48 51 46 52 46 39 50 46 53 38 54 53 50 49 47 51 49 49 52 47 47 50 53 45 55 53 56 52 57 49 56 51 53 53 56 48 52 51 54 50 52 44 50 49 47 49 56 47 49 49 51 55 49 49 51 49 49 52 47 50 49 47 47 45 1950 56 46 46 42 44 47 40 46 43 47 48 55 50 52 1951 47 43 40 43 42 43 40 47 44 41 1952 46 36 45
.
Calories per cm per min.
T A B L E 811.-AIR
MASSES
T h e transmission, both total and spectral, of the atmosphere depends upon several varying factors besides the actual air masses, that is, the length of the path of the rays in the atmosphere ; thus, corrections must always be determined for different tests. Values of the transmission of the atmosphere for any position of the sun except when it is directly overhead are calculated from measurement when the sun is in the zenith, i.e., em= eoamwhen em is the intensity of the radiation at air mass m, eo the intensity for the sun in the zenith, and a the transmission for unit air mass. m is unity when the sun is in the zenith and approximately equals the secant of the zenith distance for the other positions. Besides values derived from the pure secant formula, the table contains those derived from various other more complex formulas, taking into account the curvature of the earth, refraction, etc. The most recent is that of Bemporad. Zenith dist
00
200
40°
Secant Forbes i3oueuer LapLce Bemporad
1.00 1.00 1.00 1.00 1.00
1.064 1.065 1.064 ---
1.305 1.306 1.305 ---
SMITHSONIAN PHYSICAL TABLES
60°
2.000 1.995 1.990 1.993 1.995
700
750
800
850
880
2.924 2.902 2.900 2.899 2.904
3.864 3.809 3.805 ---
5.76 5.57 5.56 5.56 5.60
11.47 10.22 10.20 10.20 10.39
28.7 18.9 19.0 18.8 19.8
721 T A B L E 812.-THE A M O U N T O F S O L A R R A D I A T I O N IN D I F F E R E N T S E C T I O N S O F THE S P E C T R U M , U L T R A V I O L E T , V I S I B L E , AND INFRARED
Smithsonian scale of 1913
Calories, min-'cm-',
Montezuma, Chile Air mass
Miami, Fla. Air mass Wavelength
7
0
fi
.OO to .400 ,400 to ,770 ,770 to 4, .OO to"
1
2
3
.151 .070 .036 ,925 ,740 .591 ,874 .606 .517 1.950 1.416 1.144
4
,018 .476 .450 .944
.
.OlO .386 .398 .794
L
,
5
1
.005 ,314 .359 .678
2
3
5
4
.094 .061 .041 .028 ,019 .813 ,734 .664 .603 .549 .742 ,695 .657 .630 ,608 1.649 1.490 1.362 1.261 1.176
Average clear day a t Miami, Fla. (sea level) precipitable water about 2.00 cm. Average clear day at Montezuma, Chile (altitude 9,000 feet) precipitable water 0.25 cm.
T A B L E 813.-SPECTRAL
D I S T R I B U T I O N O F SOLA R R A D I A T I O N O U T S I D E THE A T M O S P H E R E
On the bases of the Smithsonian and other observations, Moon"' in 1940 proposed a spectral solar-radiation curve at normal incidence outside the atmosphere a t the mean solar distance and also a like curve for solar radiation a t the earth's surface for air mass 2 (Table 815). More recently a rocket observation'662 has given a direct measurement (at 55 km) of the ultraviolet spectrum of the sun at wavelengths below 0 . 3 4 ~ . Since less than 1 percent of atmospheric ozone is above this level, this observation should be closely representative of ultraviolet solar radiation at wavelengths above 0.22 p at the top of the atmosphere. Moon's values for wavelengths above 0 . 3 3 ~and data from the rocket observation for wavelengths below 0 . 3 3 ~were used in constructing the table. P a r t 1.-Intensity Wavelength P
.220 .230 .240 .250 .260 ,265 .270 ,275 .280 .290 .295 .300 .310 .320 .330 ,335 .340 .345 .350 .360 ,370 .380 .390 .400 ,405 ,410 .413
Intensity Relative units
14 33 .~ 40 55 126 174 162 136 145 378 418 386 538 621 796 826 . ~ . 856 886 916 976 1046 1121 1202 1304 1427 1728 1803 ~~
~
o f solar radiation outside the atmosphere
Wavelength P
.420 .424 .430 .44 .45 .46 .47 .48 .49
.so
.51 .52 .53 .54 .55 .56 .57 .58 .59 .60 .61 .62 .63 .64 .65 .66 .67
Intensity Relative units
Wave. length
Intensity Relative units
Wavelength
P
1766 1742 1788 1939 2036 2096 2119 2127 2103 2061 2000 1954 1912 1894 1878 1861 1841 1819 1795 1762 1727 1690 1653 1616 1579 1543 1508
.68 .69 .70 .71 .72 .73 .74 .75 .80 .85 .90 .95 1.o 1.1 1.L 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4
1473 1439 1405 1371 r337 1304 1270 1236 1097 976 871 781 706 590 488 395 319 260 214 177 148 124 105 89 76 66 57
2.5 2.6 2.7 2.8 2.9 3.O 3:1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
251Moon P. Journ. Franklin Inst. vol. 230 p. 583 1940. z5z Hulbirt, E. O., Journ. Opt. Soc: Amer., bol. 37, 'p. 405, 1947.
(c0nti;zzued) SMITHSONIAN PHYSICAL TABLES
P
Intensity Relative units
50 43 38 33 30 26 23 21 19 17 15 14 12 11 10 9 8 8
7
722 T A B L E 8 1 3 . 4 P E C T R A L D I S T R I B U T I O N OF SOLAR R A D I A T I O N O U T S I D E T H E A T M O S P H E R E (concluded) Part 2.-Energy Wavelength interval
c
.22-.23 23-.24 .24-.25 25-26 26-.27 .27-.28 .28-.29 .29-.30 .30-.31 .31--;32 .32-.33 .33-.34 .34-.35 .35-.36 .36-.37 .37-.38 .38-.39 .39-.40 .40-.41 .41-.42 .42-.43 .43--.44 .44-.45
Energy cal cm-2 min-1
.0004 ,0006 .oo 10 .OO 11
.0025 .0021 .0029 .0059 .0067 .0085 .0107 .0121 .0130 .0138 .0149 .0159 .0171 .0184 ,0212 .0262 .0256 .0276 .0292
distribution of solar radiation outside the atmosphere Wavelensth Energy interval cal cm-2 c min-1
.45-.46 .46-.47 .47-.48 .48-.49 .49--.50 .50-.51 .51-S2 .52-.53 .53-.54 .54-.55 .55-.56 .56-S7 .57-.58 .58-S9 .59-.60 .60-.61 .61-.62 .62-.63 .63-.64 .64-.65 .65-.66 .66-.67 .67-.68
.0303 .0309 ,0312 ,0311 .0306 .0299 ,0290 .0283 .0279 .0277 .0274 .On1 .0268 .0264 .0260 .0255 .0251 .0245 .0240 .0234 .0229 .0224 .0219
Wavelength interval
c
Energy cal cm-2 min-1
Wavelength interval P
Energy cal cm-2 min-1
.68-.69 .$9-.70 ./0--.71 .71-.72 .72-. 73 .73-.74 .71-.75 .75-.76 .76-.77 .77-.78 .78-.79 .79-.80 .80-.81 .81-.82 .82-.83 .83-.84 .84-.85 .85-.86 .86-.87 .87-.88 .88-.89 .89-.M) .90--.91
.0213 .0208 ,0203 .0198 .0194 .O189 .0183 ,0179 ,0175 .0171 .0167 .0163 .O159 ,0155 ,0152 .0148 ,0145 ,0142 .O 138 .0135 .0132 .0129 .0126
.91-.92 .92-.93 .93-.94 ,94795 .95-.96 .96-.97 .97-.98 .98-.99 .99-1 .O 1.o-1.1 1.1-1.2 1.2-1.3 1.3-1.4 1.4-1.5 1.5-1.6 1.6-1.7 1.7-1.8 1.8-1.9 1.9-2.0 2.0-3.0 3.0-4.0 4.0-5.0
.O123 .0121 .0118 ,0116 ,0113 .0111 .0109 ,0107 .0105 .0948 ,0792 ,0643 .0518 .0424 ,0348 .0288 ,0240 .0197 ,0168 .0719 .0227 ,0084
T A B L E 814.-DISTRIBUTION O F I N T E N S I T Y (RADIATION) O V E R SOLAR DISC
Fraction of radius Wave-* length
c
.3149 .3518 .3665 .4030 .4487 S186 S485 .6151 .6980 .8384 .9920 1.1973 1.5397 1.7093 2.0664 2.2870 3.5 8.3 10.2
.oo 1.000 1.000 1.OOO 1.000 1.OOO 1.OOO 1.000 1.000 1.000 1O . OO 1.OOO 1.000 1.OOO 1.000 1.000 1O . OO 1.ooo 1.000 1.000
.30
.959 .977 .980 .959 .977 .975 .967 .980 .983 .984 .987 .988 993 .994 .994 .995 .996 .998 .998
.so .857 .895 ,881 ,877 .912 ,929 .919 .936 .946 .952 .957 .965 .973 .980 .980 .980 .988
99.2 994
.60
.70
.80
.90
.95
,975
.760 .841 .841 .859 ,859 .877 ,884 .900 .916 .926 .933 .944 ,960 .967 .970 .968 .980 .990 .991
.721 .785 .787 .767 .804 .832 .832 .853
.607 .679 .703 .664 .720 .759 .756 .790
,446 ,524 ,546 .533 .594 .644 .650 .687
.955 .953 .969 .986 .988
.929 .931 .952 .977 .982
,888 ,891 .928 ,960 .966
,337 .407 .437 ,423 .500 .551 .565 .600 ,644 ,695 .727 ,758 .811 .832 .849 ,850 .902 .942 .953
251 ,328 ,359 .346 ,389 .466 ,487 ,528 ,574 ,640 ,670 .702 .763 ,786 .811 ,814 ,875 .928 .946
*Values .3149 through .4487c from Cavanaggia and Chalonge Ann. d'Astrophys., vol. 9, p. 143, 1946: ,5186 through 10.2 fi from Pierce, McMath, Goldberg. and Mohler, Astrophys. Journ., vol. 112, p. 289, 1950.
SMITHSONIAN PHYSICAL TABLES
723
T A B L E 815.-SOLAR IRRADIATION A T SEA L E V E L W I T H SURFACE PERPENDICULAR T O SUN'S RAYS m = 2 *
(Watts per square meter per micron) -
A microns
.295 ,296 .297 .298 .299 .300 ,301 .302 .303 .304 .305 .306 .307 .308 .309 .310 .311 .312 ,313 ,314 .315 .316 .317 .318 ,319 .32 .33 .34 .35 .36 .37 .38 .39 .40 .41 .42 .43 .44 .45 .46 .47 .48 .49
.so
.51 .52 .53 .54 .55 .56 .57 .58 .59
-
A'
microns
2.09 a 2.35 2.87 9.87 .0346 .0810 .177 .342 .647 1.16 1.91 2.89 4.15 6.11 8.38 11.0 13.9 17.2 21.0 25.4 30.0 34.8 39.8 44.9 49.5 54.0 101 151 188 233 279 336 397 470 672 733 787 911 1006 1080 1138 1183 1210 1215 1206 1199 1188 1198 1190 1182 1178 1168 1161
.60 .6 1 .62 .63 .64 .65 .66 .67 .68 .69 .70 .71 .72 .73 .74 .75 .76 .77 .78 .79 .80 31 .82 .83 .84 .85 .86 .87 .88 .89
.90 .91 .92 .93 .94 .95 .96 .97 .98
.99
1.oo 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14
J,
1167 1168 1165 1176 1175 1173 1166 1160 1149 978 1108 1070 832 965 1041 867 566 968 907 923 857 698 80 1 863 858 839 813 798 614 517 480 375 258 169 278 487 584 633 645 643 630 620 610 601 592 551 526 519 512 5 14 252 126 69.9 98.3 164
For reference, see footnote 251, p. 721. .X 1 0 4 b X 10-
SMITHSONIAN PHYSICAL TABLES
x
x
x
microns
1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64
microns
JA
216 27 1 328 346 344 373 402 43 1 420 387 328 311 381 382 346 264 208 168 115 58.1 18.1
.660
... ... ... ...
1.91 3.72 7.53 13.7 23.8 30.5 45.1 83.7 128 157 187 209 217 226 22 1 217 213 209 205 202 198 194 189 184
1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2 .oo 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14
JA
173 163 159 145 139 132 124 115 105 97.1 80.2 58.9 38.8 18.4 5.70 ,920
... ... ... ...
...
... ... ... ... ...
.705 2.34 3.68 5.30 17.7 31.7 37.7 22.6 1.58 2.66 19.5 47.6 55.4 54.7 38.3 56.2 77.0 88.0 86.8 85.6 84.4 83.2 20.7
...
724 T A B L E 816.-T
Month
H E BI 0 LOG I CA L L Y E F F E C T I V E C O M P O N E N T 0 F U L T R A V I0L E T , SOLAR, A N D S K Y RADIATbON P E R M O N T H P E R C M2 ( U V Q I N W A T T M I N U T E S ) A N D T H E T O T A L SOLAR A N D S K Y R A D I A T I O N ( Q I N CAL OR I ES P E R M O N T H P E R CM2) I N C I D E N T I" W A S H I N G T O N , D. C., 1941-1946, M O N T H L Y A V E R A G E
UVQ. watt min month-' cm-2
Jan. .......... Feb. .......... Mar. ......... Apr. ......... May ......... June .........
,112 209 .466 .692 390 1.108
Q
cal month-' cm-2
July .......... Aug. ......... Sept. ......... Oct. . . . . . . . . . . Nov. ......... Dec. .........
4,982 6,987 10,847 12,916 15,203 16,019
Q
UVQ watt min month-' cm-2
Month
cal month-' cm-2
1.091 1.012 .72 1 .406 .177 .087
15,239 14,470 11,158 8,767 6,085 4,690
WCohlentz, W. W., Bull. Amer. Meteorol. SOC.,vol. 28, p. 465, 1947.
T A B L E 817.-DURATION A prox decKnation o f s u n : -23"27' Approx date: Dec. 22 Latitudehm
0"
10" 20" 30" 40"
50" 55"
60" 65" 70" 80"
12 07 11 32 10 55 10 12 9 20 8 04 7 10 5 52 3 34
-15" Feh. 9 Nov. 3 h m
-10" Feb. 23 Oct. 19 h m
-5" Mar. 8 Oct. 6 h m
Mar. 21 Sept. 23 h m
12 07 11 45 11 23 10 58 10 26 9 43 9 15 8 36 7 42 6 14
12 07 11 53 11 38 11 21 11 01 10 35 10 16 9 53 9 21 8 32 3 10
12 07 12 00 11 52 11 44 11 35 11 23 11 14 11 03 10 50 10 29 8 46
12 07 12 07 12 07 12 08 12 09 12 12 12 12 12 15 12 17 12 21 12. 38
0'
O F SUNSHINE *
May 1 Aug. 13 h m
May20 July 24 h m
12 06 12 21 12 37 12 54 13 16 13 47 14 08 14 35 15 14 16 13
12 06 12 29 12 53 13 19 13 53 14 39 15 11 15 54 16 58 18 44
12 07 12 37 13 08 13 45 14 32 15 37 16 24 17 30 19 16
12 07 12 14 12 22 12 31 12 43 12 59 13 11 13 25 13 45 14 14 16 44
+15O
f23'27' June 21
+20"
+lo" +5" Apr. 3 Apr. 16 Sept. 10 Aug. 28 h , m h m
h
m
12 07 12 43 13 21 14 05 15 01 16 23 17 23 18 53 22 03
Prepared by G. M. Clemence U. S. Naval Observatory. F o r more extensive tables, see "Tables of Sunrise, Sunset, and Twilight," Supplemint to the American Ephemeris, 1946.
T A B L E 818.-RELATIVE DI S T RI BUT I I ON I N N O R M A L S P E C T R U M O F S U N L I G H T AND SKY LIGHT A T MOUNT WILSON
Zenith distance about 50" This table is abstracted in modified form from the Annals of the Smithsonian Astrophysical Observatory. The observations, which were visual, made on October 17, 1906, probably represent the most ideal sky conditions on Mount Wilson. Place in spectrum ( p ) ......... .422 Intensity sunlight ............. 186 Intensity sky light.. .......... 1194 Ratio at Mount Wilson ........ 642 Ratio computed by Rayleigh.. . Ratio observed by Rayleigh. . . . -
SMITHSONIAN PHYSICAL TABLES
.457 232 986 425 -
,491 227 701 309 -
.566 211 395 187 -
,614 191 231 121
-
.660 166 174 105 -
C
D
b
F
102 102 102
143 164 168
246 258 291
316 328 369
725 T A B L E 819.-lLLUMINATION DUE T O D I R E C T S U N L I G H T , SKY L I G H T , A N D T O T A L O N HORIZONTAL AND VERTICAL PLANESm
*
Direct sunlight
Solar altitude h
m
3 5 7 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Ipd
Ihd
Air mass
15.36 10.39 7.77 5.60 3.82 2.90 2.36 2.00 1.74 1.55 1.41 1.30 1.22 1.15 1.10 1.06 1.04 1.02 1.01 1.oo
-
Skylight
,L---
Total
Ip;
I$
~
ft -c &
f t -c &
ft --c /-
19.6 100 252 590 1310 2130 2980 3820 4650 5440 6170 6850 7450 8000 8470 8860 9160 9380 9510 9570
256 325 395 49 1 629 750 856 945 1020 1090 1160 1210 1270 1310 1350 1390 1420 1440 1460 1480
277 425 647 1080 1940 2880 3840 4760 5670 6530 7330 8060 8720 9310 9820 10250 10580 10820 10970 11050
374 1150 2050 3350 4910 5860 6J90 6620 6640 6490 6170 5750 5220 4620 3950 3230 2450 1650 833
00
The solar altitude, h, is expressed in The subscripts p and h designate the (facing the sun) and horizontal planes. direct sunlight, sky light and total light
587 746 848 953 1070 1140 1180 1210 1220 1220 1220 1200 1180 1150 1090 1020 930 834 728 615
961 1900 2900 4300 5980 7000 7570 7830 7860 7710 7390 6950 6400 5770 5040 4250 3380 2480 1560 615
angular units, the illumination, I, in foot-candles. evaluation of illumination on the perpendicular The additional subscripts, d, s, and t, designate (direct sunlight plus sky light).
='Jones, L. A., and Condit, H. R., Journ. Opt. Soc. Amer., vol. 38, p. 147, 1948.
T A B L E 820.-MEAN I N T E N S I T Y J FOR 24 H O U R S O F SOLAR R A D I A T I O N O N A H O R I Z O N T A L S U R F A C E A T THE T O P O F THE A T M O S P H E R E A N D T H E SOLAR R A D I A T I O N A, I N T E R M S O F THE SOLAR R A D IA TIO N , A,, A T E A R T H ' S M E A N D I S T A N C E F R O M T H E S U N Motion of the, sun in longitude
Date
Jan.
Feb. Mar. Apr. May June July
1 1 1 1 1 1 1 1 1 1 1 1
Aug. Sept. Oct. Nov. Dec. Year . .
0: 99
3 1.54 59.14 89.70 119.29 149.82 179.39 209.94 240.50 270.07 300.63 330.19
J Relative mean vertical intensity Ao Latitude north A
7
Oo
100
200
30°
400
500
600
.303 ,312 .320 ,317 ,303 .287 ,283 .294 .310 ,317 ,312 .304 ,305
265 .282 ,303 ,319 ,318 .315 ,312 ,316 .318 .308 286 .267 .301
.220 .244 279 .312 .330 .334 ,333 ,330 ,316 ,289 ,251 ,224 ,289
.169 .200 .245 ,295 ,329 .345 .347 .334 ,305 ,261 .211 ,175 .268
.117 .150 .204 .269 .320 .349 .352 .330 ,285 .225 .164 .124 241
.066 .lo0 .158 235 .302 .345 .351 ,318 ,256 ,183 .114 .072 .209
.018
,048 ,108 .195 .278 ,337 ,345 .300 ,220 .135 .063 ,024 .173
70°
.006 .056 .148 .253 .344 .356 ,282 .180 .084 .018 .144
SOo
.013 ,101
255
,360 .373 .295 .139 ,065 .133
\
900
.082 .259 .366 .379 ,300 ,140
.126
A Ao
1.0335 1.0288 1.0173 1.0009 .9841 .9714 .9666 .9709 .9828 .9995 1.0164 1.0288
Average annual solar energy received per square dekameter of horizontal surface in kilowatt hours. U. S. : Lincoln, 160,906; Mount Weather, 148,824 ; Washington, 145,403 ; New York, 106,460; Chicago, 97,856. Other countries : Toronto, 139,523; Johannesburg, 175,696 ; Davos Platz, 174,043 ; South Kensington, 78,569 ; Stockholm, 79,267.
SMITHSONIAN PHYSICAL TABLES
T A B L E 821.-MEAN
726
M O N T H L Y A N D Y E A R L Y TEMPERATURES, "C
Mean temperatures of a few selected American stations, also of one station of very high and two of very low temperature, and one of very great and one of very small range of temperature. Jan. Feb. Mar. Apr. May 1 Hebron-Rama (Labr.). -20.7 -20.9 -15.6 - 6 9 .2 + i 3 i-10.9 2 Winnipeg (Canada) . . -21.6-18.8-11.0 4.8 +12.6 3 Montreal (Canada) . . -10.9 - 9.1 - 4.3 1.2 7.3 +13.6 4 Boston . . . . . . . . . . . .. . - 2.8 - 2.2 -. 4.8 5 Chicago . . . . . . _ _ _ _ . . - 2.9 + 1.2 + 7.9 +13.4 8.3 +13.6 6 Denver . . . . . . . . . . . . . - 2.1 + . I + 3.8 2.1 5.2 +11.7 1-17.7 7 Washinqton . . . . . . . . . + .7 8 Pikes Peak .......... -16.4 -15.6 -13.4 -10.4 - 5.3 +13.4 +18.8 9 St. Louis . . . . . . . . . . . 1 +12.6 t 1 3 . 7 10 San Francisco . . . . . . . f21.0 +25.1 11 Yuma .............. 1-20.6 t 2 3 . 7 12 New Orleans . . . . . ... +29.0 +31.1 13 Massaua . . . . . . . . . . -25.3 -10.0 14 Ft. Conger (Greenl'd). -13.7 2.0 1 5 Verkhoyansk . . . . . . . . 16 Batavia ............. f25.3 f 2 5 . 4 1 2 5 . 8 +26.3 +26.4
+
.
+
+
+
+
+
+
.
..
+
June July
+
45c 7 6 +17:i +lS:G f18.3 +20.5 +19.1 +21.8 +19.7 +22.2 f19.1 +22.1 f22.9 +24.9 .4 4.5 f24.0 +26.0 +14.7 +14.6 +29.4 f 3 3 . 1 +26.8 +27.9 +33.5 +34.8 .4 2.8 +12.3 + 1 5 . 5 f 2 6 . 0 f25.7
+
+
+
+
+
Aug. Sept. Oct. Nov. Dec. Year 8.0 4.5 - .8 - 6.2 -16.2 - 5.2 .6 4.1 - 7.6-15.7 +11.6 27 1 + 5.s +19.3 +14.7 + 7 8 92 f 2 0 . 6 16.9 + i i 3 + 4:83.61.5 9.1 +21.6 +17.9 +11.1 3.3 .O 9.7 +21.2 +16.6 +10.3 6.9 2.3 f 1 2 . 6 +23.7 f19.9 +13.4 3.6 - .3 - 5.8 -1 1.8 -14.4 - 7.1 +24.9 +20.8 +14.2 6.4 2.0 f 1 3 . 1 f14.8 +15.8 f15.2 +13.5 +10.3 +13.2 +32.6 +29.1 +22.8 +16.6 +13.3 f 2 2 . 3 +27.5 +25.7 +21.0 +15.9 +13.1 +20.4 +34.7 +33.3 +31.7 +29.0 +27.0 +30.3 1.0 - 9.0 -22.7 -30.9 -33.4 -20.0 f10.1 2.5 -15.0 -37.8 -47.0 -16.7 +25.9 +26.3 +26.4 +26.2 +25.6 +25.9
+
+ 17.6
+
+
+
+
+
+
+ + + +
+ +
.:S + + +
+
+ +
+ +
Lat., Long., Alt. respectively: (1) 58:5, 63:O W, - ; (2) 49.9, 97.1 W, 233m; (3) 45.5, 73.6 W, 57m; (4) +42.3, 71.1 W, 38m; (5) +41.9, 87.6 W, 251m; (6) +39.7, 105.0 W, 1613m; (7) 38.9. 77.0 W. 34m: (8) 38.8. 105.0 W. 4308m; (9) 38.6, 90.2 W, 173m; (10) 37.8, lZZ.SW, 47m; (11) +32.7, 114.6 W, 43m; (12) + 3 0 0 , 90.1 W, 16m; (13) +15.6. 37.5 E, 9m; (14) +81.7, 64.7 W , - ; (15) +67.6, 133.8 E, 140m; (10)-6.2, 106.8 E, 7m.
+
+
Note.-Highest recorded temperature in world = 57°C in Death *Valley, California, July 10, 1913. Lowest recorded temperature in world = - 68°C a t Verkhoyansk, Feb. 1892.
T A B L E 822.-TEMPERATURE
VARIATION OVER EARTH'S SURFACE (HANN)
Maximum values for month in italics.
Latitude
North pole +80° 70
60
50 40 30 20 10 Equator -10 20
+
-30-
40 50 60 70 80
South pole
,
Temperatures "C Jan.
Apr.
-41.0 -32.2 -26.3 -16.1 - 7.2
-28.0 -22.7 -14.0 - 2.8 5.2 13.1 20.1 25.2 27.2 26.6 25.9 24.0 18.7
+ 5.5
14.7 21.9 25.8 26.5 26.4 25.3 21.6. _. 15.4 8.4 3.2 - 1.2 (- 4.3) (- 6.0)
+
SMITHSONIAN PHYSICAL TABLES
iZ.5
5.4 -
July
1.0 2.0 7.3 14.1 17.9 24.0 27.3 28.0 27.0 25.7 23.0 19.8 14.5 8.8 3.0 - 9.3 -21.0 (-28.7) (-33.0) -
+
Oct.
Year
-24.0 -19.1 - 9.3
-22.7 -17.1 -10.7 - 1.1 5.8 14.1 20.4 25.3 26.8 26.3 25.5 23.0 18.4 11.9 5.4 - 3.2 -12.0 (-20.6) (-25.0)
-I- 6:; 15.7 21.8 26.4 26.9 26.5 25.7 22.8 18.0 11.7 4.8
-
-
+
Range
40.0 34.2 33.6 30.2 25.1 18.5 12.6 6.1 1.4 .9 3.4 5.5 7.1 6.6 5.4 12.5 19.8 (24.4) (27.0)
Mean ocean temp
Land surface
- 1.7 - 1.7 .7 4.8 7.9 14.1 21.3 25.4 27.2 27.1 25.8 24.0 19.5 13.3 6.4
20 53 61 58 45 43.5 31.5 24 22 20 24 20 4 2 0 71 100 (100)
+
+
.o
- 1.3
-
%
727
V A R I A T I O N W I T H DEPTH
T A B L E 823.-TEMPERATURE
Table illustrates temperature changes underground at moderate depths due to surface warming (read from plot for Tiflis, Lehrbuch der Meteorologie, Hann and Suring, 1915). Below 20-30 m (nearer the surface in Tropics) there is no annual variation. Increase downward a t greater depths, 0.03 "C per m (1" per 35 m) 1. c. A t Pittsburgh, 1524 m, 49.4", ,0294 per m ; Oberschlesien, 2003 m, 70", .0294 per m ; or West Virginia, 2200 m ; 70", ,034" per m (Van Orstrand). Mean value outflow heat from earth's center, 0.00000172 g cal cm-' sec", or 54 g cal cm-* yr-' (39 Laby). Open ocean temperatures: Greatest mean annual range (Schott) 40" N., 4.2"C ; 30" S., 5.1' ; but 10" N., only 2.2" ; 50" S., 2.9: Mean surface temp. whole ocean (Kriimniel) 17.4"; all depths, 3.9:. Below 1 km nearly isothermal with depth. I n Tropics, surface 28"; at 183 m, l l " , 80 percent water less than 4.4". Deep-sea (bottom) temps. range -0.5" to 2.6". Soundings in South Atlantic: 0 km, 18.9"; 2.5 km. 1 5 " ; .5 km, 8.3"; 1 kin, 3.3"; 3 km, 1.7"; 4.5 km, 0.6".
*
+
Maximum values in boldface.
0
Temperature " C
,
Depth, m
.5
Jan.
Feb.
Mar.
.2pr.
May
June
July
Aug.
1
4 4
10 9
14 13 12 11 11
21 18
29 23 20 -. 18 16 14 13 13 14
32
32
26 24 21 19 16 14 14 14
28 26 23
4 6 9 11 14 15 15
.o
1. .
1.5 2.0 3.0 4.0 5.0 6.0
15
6
10 12 13 14 14
8-
9 10
12 12 13 14
T A B L E 824.-WOLF'S
1.5
._
~~
14 13 13 12
11 12
13 14
13
14
21 17 16 14 14
Sept.
Oct.
NOV. Dec.
24 24 23 22
16 18 18 18 18
9 12 14 15 16 17 17
21
18 16 15 14
18 17
16 15
16
15
SUNSPOT NUMBERS, A N N U A L MEANS *
4 6 10
12 14 15 16 16 15
255
+
Sunspot number = !i (10 X number of groups and single spots observed total number of spots in groups and single spots). k depends on observer and telescope, equaling unity for Wolf with 3-in. telescope and power of 64. Wolf's numbers a r e closely proportional to spotted area on sun, 100 corresponds to about 1/600 of visible disk covered (umbras and penumbras). Periodicity : successive outbursts about 11 years apart, extremes 7.3 years and 17.1 years. See references for daily and monthly values. Smoothed monthly numbers are formed from monthly means of observed number by weighting the sixth months preceding and following 1, all 11 intervening months 2. Smoothed monthly sunspot numbers, annual means Maximum and minimum values for period in boldface Year
0
1
2
3
1750 1760 1770 1780 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950
83.1
52.2
45.9 60.1 65.7 38.7 59.8 44.1 4.5 4.0 26.3 23.0 52.8 61.1 99.7 58.1 70.0 5.7 3.4 13.0 12.1 30.3
28.9 48.5 39.7 22.5 47.3 43.0 12.1
64.7 98.5 89.2 90.6 15.0 .O
16.6 67.2
61.9 69.8 94.5 131.8
31.6 8.4 8.8 21.0 36.9 38.8 66.8 83.9
80.2
86.7 66.5 67.6 33.7 1.7 6.6 50.5 38.5 63.2 77.7 113.8 54.4 37.7 3.4
6.5 27.0 21.1 50.5 69.4
4
13.5 36.7 27.5 10.3
38.5 46.8
2.2 6.3 5.9
15.5 8.3 13.3 17.7 21.0 45.2 43.1 63.3 79.1 44.1 11.8 16.8 9.4
15.3
11.1
2.6 9.4 13.2
38.6 45.4 67.9 65.4 83.7
23.0
5
9.3
21.4 8.8
26.7 24.0 42.5 35.1 16.9 59.1 38.4 7.7 31.4 18.9 51.3 61.5 58.7 46.4 43.7 36.5 36.4
6
12.2 14.2
21.7 81.2 15.6 27.3 46.1
35.3 121.1 59.7 5.2
14.7 11.7 25.1 43.1 60.3
59.1 66.5 79.6 91.7
7
8
9
31.9 35.9 92.2 128.2 6.5 11.6 39.8 51.6
47.2 66.8
54.5
137.0
97.3 23.0 8.8
11.0 12.6 28.1 56.0 96.2
70.0 113.2 145.6
151.3 133.3 4.6
7.6 30.0 62.1 103.4 125.0
56.3 36.9 3.9
7.0 24.6 51.2 83.1 74.5
103.9 141.2
103.4
123.4 117.0 6.9 3.1 23.4 67.1 83.4 95.4 90.3 78.6 7.7 6.3
13.8 40.6 65.5 62.0 89.6 134.7
* Prepared hy .411an 1;. Cook 11. 2ss Astron. Mitt. Zurich No. 115. 1935. Tljurn. Gronh:,s. R e s . . vol. 54. p. 317. 1 9 4 9 ; Wnldmeier, M.. Ast:o,n. Mitt Zurich; Ter;. Mae.; J o u r n . ' Geophys. Res.. Trans. Tnt. Astron. ,I.nion Quart. Bull. Solar Activity : American Sunspot Numlier Rerluctions, Central Radio Propagation Laboratory, National n u r e a u of Standards. SMITHSONIAN PHYSICAL TABLES
AND ASTROPHYSICS *
728 TABLES 825-884.-ASTRONOMY
Astronomy, including astrophysics, is a study of the geometry and physics of the heavenly bodies and the material in the intervening space. This experimental science requires some very special apparatus-in general, used in connection with large telescopes. Table 825 gives a list of the larger telescopes that are now (1949) in active scientific use. Some definitions and standards and other data on astronomy follow. *These tables were prepared under the supervision of D. H. Menzel, of Harvard University, and Edith Janssen Tebo, of Harvard College Observatory.
T A B L E 825.-THE
LARGEST TELESCOPES IN A C T I V E SCIENTIFIC USE
(1949)
t
Reflectors (60-inch mirrors and larger) Hale Telescope, Palomar Mountain, Calif., U. S. A.. ........................ Hooker Telescope, Mount Wilson, Calif., U. S. A.. ........................... MacDonald Observatory, Mount Locke, Tex., U. S. A.. ....................... Radcliffe Observatory, Pretoria, South Africa. .............................. David Dunlap Observatory, Richmond Hill, Ontario, Canada. ................ Dominion Astrophysical Observatory, Victoria, B. C., Canada.. ............... Perkins Observatory, Delaware, Ohio. U. S. A.. ............................. Wyeth Reflector, Harvard 3bservatory, Oak Ridge, Mass., U. S. A ............ Southern Station of the Harvard Observatory, Bloemfontein, South Africa.. ... Mount Wilson Observatory, Mount Wilson, Calif., U. S. A... ................. Cordoba Observatory, Bosque Alegre, Argentina. ............................
200-inch 100-inch 82-inch 76-inch 74-inch 72-inch 69-inch 61-inch 60-inch 60-inch 60-inch
Refractors (30-inch lenses and larger) Yerkes Observatory, Williams Bay, Wis., U. S. A ............................ Lick Observatory, Mount Hamilton, Calif., U. S. A.. ......................... Astrophysical Section, Observatory of Paris, Mundon, France. ................ Allegheny Observatory, Pittsburgh, Pa,, U. S. A.. ............................ University of Paris Observatory, Nice, France. ...............................
40-inch 36-inch 33-inch 30-inch 30-inch
Schmidt-type telescopes (of large aperture) 48-inch correction plate, 72-inch mirror, Palomar Observatory, .Calif., U. S. A. 24-inch correction plate, 36-inch mirror (Burrell Telescope), Warner & Swasey Observatory, Case Institute of Technology, Cleveland, Ohio, U. S. A. 24-inch correcting plate, 33-inch mirror (Jewett Telescope) Harvard Observatory, Oak Ridge, Mass., U. S. A.
t
Prepared by J. J. Nassau, Case Institute of Technology.
T A B L E 826.-APPROXIMATE
EQUATION OF T I M E
**
The equation of time in this table is to be added algebraically to local apparent solar time to obtain local mean solar time. Accurate values of the equation of time may be obtained from the American Ephemeris and Nautical Almanac. min
inin
Jan. 1 11 21 Feb. 1 11 21 Mar. 1 11 21
** Prepared
+3 + 8
Apr. 1
+I3
May 1 11 21 June 1 11 21
+ll +14 +14 +14
+10 8
+
;:
+4
2- ;3 -
+
4 4 2 1 1
by G. M. Clemence, U. S. Naval Observatory.
SMITHSONIAN PHYSICAL TABLES
min
July 1 11 21 Aug. 1 11 21 Sept. 1 11 21
++ 45
+6 +6 +5 +3
0 -3 -7
min
Oct. 1 11 21 NOV.1 11 21 Dec. 1 11 21
-10 -13
-15 -16 -16 -14 -11 -7 -2
-
T A B L E 827.-MlSCELLANEOUS
ASTRONOMICAL DATA *
729
A b e r r a t i o n constant.-20!'47 (conventional value ; work of Doolittle, Spencer Jones, and others, indicates a value of 20'.'50). Aphelion.-Point where earth is farthest from sun = 1.520 X 10" cm. Astronomical unit (A. U.)-Distance : mean distance earth to sun, 149,500,000 km. (Conventional value, solar parallax 8!'79 would give 149,700,000.) Mass : the combined mass of the sun and earth which means, practically, the sun's mass = 1.987 X 10" g. Color index.-Ordinary stellar magnitudes are supposed to correspond to observations with the normal eye. This is by no means easy to define, for the brightness of a red star compared with a white, appears greater when the amount of light entering the eye is increased for both in the same ratio (Purkinje effect) for low brightness. Owing to differences in the actual distribution of the energy with wavelength, the relative brightness of stars of different temperatures and colors measured with receptors sensitive to different spectral regions vary greatly. On ordinary photographs, red stars appear much fainter than to the eye. If the measures are calibrated so that the visual and photographic magnitudes average the same for spectral class A , the difference for any other group of stars is called color index. This ranges from about -0"'.3 to 1.8 for class &f and reaches 5" for the reddest stars of class N . The difference in color index between the two standard types, e.g., A 0 and K O is called the color-equation. It varies over a wide range with the spectral sensitivity of the receiver, very large and positive for the violet and ultraviolet and negative for the red and infrared. Photoelectric devices, combined with screens and measurable transmission have at last provided standard systems for stellar photometry of at least approximately definite physical significance for spectral regions ranging from the ultraviolet t o the infrared. Kndiometric magnitudes correspond to the measures of the whole observable energy radiition. Bolometric magnitudes are supposed to represent the total energy radiation of all wavelengths, and must be found bv calculation. Date line.-Established by convention not far from the 180th meridian from Greenwich. Where the line runs across a group of islands, the change of the date line is diverted to one side so that the group has the same day. Ships crossing from the east, skip a day ; going east, count the same day twice. Dav.-Mean solar day = 1.440 minutes = 86.400 seconds = 1.0027379 sidereal day. Sidereal day (ordinary, two successive transits of vernal equinox, might be called equinoctial day) = 86,164.09054 mean solar seconds = 23 hr, 56 min. 4.09054 sec mean solar time. Two successive t r a n s i t s of s a m e fixed star = 86,164.09967 mean solar seconds. Declination.-If 6 = declination, t , hour angle measured west from meridian, h, altitude, @, latitude and A , azimuth measured from S. point through W. Then
+
++
sin h = sin @ sin 6 cos @ cos 6 cos t cos h cos A = - cos @ sin 6 sin @ cos 6 cos f given 6, t, @ cos 6 sin t cos h sin A = sin6= sin @ sin h -cos @ cos h cos A cos 6 cos t = cos @ sin h sin cos h cos A given h, A, @ cos 6 sin t = cos h sin A
+
} }
Delaunay's y = sin 1/2 I = 0.04488716 (Brown). Dip of horizon.-In minutes of arc = V elevation in ft (anproxivately). r = 6.3712XlO' cm. Equatorial diameter = 12,756.78km ; polar diameter Earth.-Mean = 12,713.82 km. Area = 5.101 x 10" cm2. Angular velocity = 72.9X 10" radians/sec. Volume = 1.083X10" cm8. Mass = 5.975X1On g. Density = 5.517 g/cm8. Mean distance to sun = 1.495)<10"cm. Distance to the moon = 3.844XlO'O cm. Light traverses mean radius of earth's orbit in 498.6 sec. Semimajor axis orbit = 1.4950X1018cm ; semi ninor axis = 1.4948X10'8 cm. Viscosity = 10.9X10'' cgs. Velocity of equatorial point on earth, because of rotation: 1,050 mi/hr = 1,550 ft/sec = 1,650 km/hr = 460 m/sec. I n orbit : 18/5 mi/sec = 30 km/sec. See Tables 831 and 833. Rotational energy =2.16X10merg. Earth's orbital velocity = 18.5 miles/second. 1,550 ft/sec (rotation at Equator). E c c e n t r i c i t y of earth's o r b i t = e = 0.01675104 - 4.180X10-' ( t - 1900) - 1.26)<10-" ( t - 1900)'. E c c e n t r i c i t y of moon's o r b i t = el = 0.05490056 (Brown). Gal.-Unit of gravity acceleration = 1 cm sec-'. General precession (westward movement of the equinoxes) = 5072564 07000222 ( t - 1900) per year (Newcomb). Probably requires correction of about -{- 0701. See Table 838. Gravitation constant = (6.670 2 0.005) X lo-* dyne cmzg-* (Heyl, 1930). Gravity, acceleration due to, g = 978.0495 cm sec-' (conventional value at sea level at equator. See Table 802). Unit, gal = 1 cm sec-'.
+
.
Prepared by G. M. Clemence, U. S. Naval Observatory.
(continued) SMITHSONIAN PHYSICAL TABLES
730 T A B L E 827.-MISCELLANEOUS
ASTRONOMICAL DATA (continued)
H e a t index.-Radiometric (heat or bolometric), zero taken to agree with Class AO, (radiometric - visual magnitude) = heat index, for red stars. Horizon.-Distance at sea is approximately, miles = d (3/2) height in feet. Local refraction (mirage) may introduce large percentage changes in either direction for observations from altitudes of 30 feet or less. Inclination of moon's o r b i t = I = 5O843.5" (Brown). Julian period, 1950= 6663.-January 1, 1950, Julian-day number = 2433283. L a t i t u d e variation.-The direction of the axis of the earth in space changes approximately 20'.'5 per year owing to precession. The change is roughly periodic in 25,800 years with an amplitude of 23". This does not affect terrestrial latitudes, but a variation in them is caused by a shift of the earth's body about this axis. The two ascertained components of the polar motion have periods of 1.00 and nearly 1.20 years (the annual and Chandlerian components, respectively), so that the oscillations in X and Y, as well as the resultant total motion have variations in amplitude with a "beat period" of about 6 years. In contrast to the annual terms, Chandler's term shows striking variations in am litude. There is, further, a variation in the period of the Chandlerian term (1.18, 1.20, 1.17, 1.15, 1.19 years) which appears nearly proportional to the corresponding amplitude variations according to the relation P = 0.185 A +1.128, where P is the period in years and A the amplitude in 0'.'01 units. (See T. Nicolini, appendix to Commission 19 Report, Trans. Int. Astron. Union, Zurich, 1948.) Light, velocity of.-(Mean value) in vacuo, 299773 rt 10 km sec-' (Dorsey). 299792.5 k 0.8 km sec-' (Bearden). 299776 0.00004 km sec-' (Birge). Light year.-The distance light travels in 1 year = 9.5 X 10" kilometers = 5.9 X 10" miles. Light traverses mean radius of earth's orbit in 498.6 sec. L u n a r inequality of earth = L = 6.454:' L u n a r n o d e d = daily motion = - O"52954. L u n a r parallax = 3422.70" (Brown). L u n a r perigee, daily motion = 0?111404. Lunar-solar precession = p' = 50.3714" per year (De Sitter, 1927). Of this 0.0191", Einstein, orbital motion earth. Magnitudes.-The observed intensity of light received on the earth from astronomical bodies ranges over a factor exceeding 10". I t is therefore expressed on a logarithmic scale-the system of stellar magnitudes. This system, which was adopted by Hipparchus more than 2,000 years ago, is closely represented by the equation m = 2.5 loglo ( l o / l ) where 1 is the observed light and 10 a standard value corresponding roughly to the light of Arcturus or Vega. Decrease of light by a factor of 100 increases the stellar magnitude by 5.00 ; hence the brightest objects have negative magnitudes. (Sun : - 26.8 ; mean full moon : - 12.5 ; Venus at brightest : - 4.3 ; Jupiter at opposition : - 2.3 ; Sirius : - 1.6 ; 2.1). The faintest stars visible to the naked eye on a clear dark Vega : 0.2 ; Polaris: night are of about the sixth magnitude (though on a perfectly black background the limit for a single luminous point approaches the eighth magnitude). The faintest stars visible with a telescope of aperture A (in inches) is one approximately of magnitude 9 5 log,o A. The magnitude of the faintest stars which can be photographed with the 200-inch 22.7. The apparent magnitude of a standard candle at a distance of telescope is about 1 meter is - 14.2. Absolute macnitude, M, is that which the body would exhibit if placed at a distance of 10 parsecs, and corresponds to its actual luminosity. For a star of magnitude m, and parallax p , in seconds of arc M = m 5 5 log$ For the sun, M = 4.7. The brightest stars probably exceed M = - 7 and the faintest observed value is M = 18, a range of 10". The full moon (could it be observed without interference from the standard distance) would have M = 32 and a standard candle 72.8. M e a n distance earth t o moon = 60.2678 terrestrial radii. = 384,411 kilometers = 238,862 miles. (See Table 834.) M e a n distance earth to sun = 149,500,000 kilometers = 92,900.000 miles. (See Astronomical unit.) See Table 833. Month.-Sidereal = 27.321661 days, synodical (ordinary) = 29.530588 days (Brown). Nutation constant (periodic motion of celestial pole) = 9.21". conventional value ; 9.207:' Principal in long = A 6 = (-17.234" - .017" T) sin 0 ; principal term in obliquity = A o = (+9.210 . O W T) cos 0 (Newcomb). T centuries from 1900. Obliquity of ecliptic = 23"27'8.26" - 0.4684 ( t - 1900)" (Newcomb).
+
*
+
+
+
+
+
+
+ +
+
+
+
+
(continwd) SMITHSONIAN PHYSICAL TABLES
73 1 T A B L E 827.-MISCELLANEOUS
ASTRONOMICAL DATA (concluded)
Parallactic inequality m o o n = Q = 124.785" (Brown.) of star whose parallax is 1 sec = 31 X lo'* km = 19.2 X 10" miles Parsec.-Distance = 3.263 light years. Perihelion.-Point where earth is nearest sun = 1.4700 X lo" cm. P l a n e t a r y precession = X = 0.1247" (Newcomb). Pole of M i l k y W a y = R. A., 12 hr 48 min; Dec., 27: t"F)I tan 2,where 2 = Refraction.+ in. (") = [983 X (barometer in in.)/(460 zenith distance. Error < l", 2 < 75", ordinary t and pressure. Solar diameter = 864,408 miles. Solar parallax = 8230 (conventional value), 8Y79 (Newcomb, Spencer Jones). Sun.--r = 6.965 x 10" cm. Area = 6.093 X lomcm'. Volume = 1.412 X 10" cm'. Mass = 1.987 x 10mg. Density = 1.41 g/cmS. Mean distance to earth 1.495 X 10"cm. See Table 831. Twilight.-There are three definitions of twilight : civil, nautical, and astronomical. Civil twilight lasts until the sun is about 6" below the horizon, after which motor-car lights must be turned on. Nautical twilight lasts until the sun is about 12" below the horizon. This is the limit for observations of stars with the sea horizon. Astronomical twilight is considered to end when the sky is dark in the zenith. It lasts until the sun is about 18" below the horizon. For latitudes > 50" there is a faint twilight at midnight in midsummer. Year.-Anomalistic (two successive passages of the perihelion) = 365.25964134 3.04 x lo-' ( t - 1900) days. Eclipse (time taken by sun to pass from a node of the moon's orbit to the same node) = 346.620031 3.2 X lo-' ( t - 1900) days. Sidereal (from given star to same star again) = 365.25636042 + 1.1 x lo-" ( t - 1900) days. Tropical (ordinary) (two successive passages of vernal equinox by sun) = 365.24219879 - 6.14 X lo-' ( t - 1900) days.
+
+
+
+
T A B L E 828.-ELEMENTS
O F SOLAR MOTION
*
Because of the asymmetry in stellar motions (Table 876), determinations of the speed and direction of the sun's motion are very sensitive to the selection of stars to which it is referred. Ideally we wish to refer the sun's motion to the circular velocity with respect to the galactic center; this may be called the basic solar motion. It is possible to determine this basic solar motion from detailed studies of the distribution of motions among nearby stars and it is found that such a determination made from the giant K stars is in excellent agreement with an independent determination from the A stars (Janssen and Vyssotsky). This value is given in the last line of the table. The figures listed for the first five groups are smoothed values obtained from a combination of the best observational results.m The values for the next four groups come from investigations made at Leiden, Mount Wilson, an& McCormick Observatories. The solar motion with respect to B stars, c-stars, and Cepheids is difficult to determine satisfactorily because of uneven distribution in space, very small proper motions, etc. Coordinates of the apex Stellar group of reference
B8 to A3. ................. A5 to F2 .................. F5 to GO .................. KO to K 2 . . ................ gK5 to gM8 ............... dK8 to dM5 ............... Irregular var .............. Long-period var ........... Cluster-type var .......... Basic solar motion .........
Solar velocity
16 km/sec 17 18 20 22 23
35 54 130 15
RA
263" 266 269 273 276 275 265 : 295 297 260
Prepared by A. N. Vyssotsky, University of Virginia. Astron. Journ., vol. 53. p. 87, 1948.
SMITHSONIAN PHYSICAL TABLES
Dec
+zoo +23 +26 +29 +31 +44 +38 : +46 +52 +17
Gal long
11 0 15
Gal lat
+24" 22 18 +21 23 +19 27 +17 39 22 +28 : 30 : 47 +10 53 12 +25 7 -~~
+
+ +
732
T A B L E 829.-PERPETUAL
CALENDAR *
This calendar gives the day of the week for any known date from the beginning of the Christian Era down to the year 2400. Dominical letters Century Year
Julian Calendar 100 800 1500t
200 900
300 1000
400 1100
500 1200
600 1300
DC B A G FE D C B AG F E D CB A G F ED C B A GF E D C BA G F E DC
ED C B A GF E D C BA G F E DC B A G FE D C B AG F E D CB A G F ED
FE D C B AG F E D CB A G F ED C B A GF E D C BA G F E DC B A G FE
GF E D C BA G F E DC B A G FE D C B AG F E D CB A G F ED C B A GF
AG F E D CB A G F ED C B A GF E D C BA G F E DC B A G
BA G F E DC B A G FE D C B AG F E D CB A G F ED C B A GF E D C BA
CB A G F ED C B A GF E D C BA G F E DC B~ A G FE D C B AG F E D CB
0
1 29 57 85
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
58 86 59 87 60 88 61 89 62 90 63 91 64 92 65 93 66 94 67 95 68 96 69 97 70 98 71 99 72 73 74 75 76 77 78 79 80 81 82
83 84
FE
D C B AG
1500$ 1600 2000
-_ F E D CB A G F ED C B A GF E D C
-_ -_ -_
1700 2100
BA G F E DC B A G FE D C B AG F E D CB A G F ED C B A GF E D C BA
C B A G
FE D C B AG F E D CB A G F ED C B A GF E D C BA G F E DC
1800 2200
E D C B AG F E D CB A G F ED C B A GF
E D C BA G F E DC B A G FE
1900 2300
G
F E
D CB A G F ED C B A GE E D C BA G F E DC B A G FE D C B AG
Dominical letter
Month
June Aug. Sept., Dec. 1 8 15 2 9 16 3 10 17 4 11 18 5 12 19 6 13 20 7 14 21
Gregorian Calendar
0 700 1400
22. 29 23 30 24 31 25 26 27 28
F
A D G B E C
B E A C F D G
C F B D G E A
D G C E A F B
Mon. Tues. Wed. Thurs. Fri. Sat.
Sat. Sun. Mon. Tues. Wed. Thurs. Fri.
Fri. Sat. Sun. Mon. Tues. Wed. Thurs.
Thurs. Fri. Sat. Sun. Mon. Tues. Wed.
F Sun.
G C F A D B E
B E G C A D Wed. Thurs. Fri. Sat. Sun. Mon. Tues.
Tues. ~. Wed. Thurs. Fri. Sat. Sun. Mon. ~
Mon. Tues. Wed. Thurs. Fri. Sat. Sun.
T o find the calendar for any year of the Christian Era, first find the Dominical letter for the pear in the upper section of the table. Two letters are given for leap years ; the first is to be used for January and February, the second for the other months. I n the lower section of the table, find the column in which the Dominical letter for the year is in the same line with the month f o r which the calendar is desired ; this column gives the days of the week that are to be used with the month. E.g., in the table of Dominical Letters ,ve find that the letter for 1951 is G ; in the line with July, this letter occurs in the first column; hence July 4, 1951, is Wednesday. Prepared by G . hf. Clemence, U. S. Naval Observatory. and after 1582, Oct. 15 only.
SMITHSONIAN PHYSICAL TABLES
t On
and before 1582, Oct. 4 only.
$On
TABLE 8 3 0 . 4 U L l A N DAY CALENDAR
*
733
Days are numbered consecutively, beginning with the number 0, from Greenwich mean noon on Jan. 1, 4713 B.C. The number of days since that time that have elapsed at Greenwich mean noon on any given date is the Julian Day Number of that day. For A.D. 0 to A.D. 1580 inclusive, the Julian Day Numbers in this table are the days elapsed at Greenwich mean noon up to January 0 of the Julian Calendar in each leap year. For 1584 t o 2096 inclusive, the Julian Day Numbers are for January 0 of the Gregorian Calendar, except that in 1700, 1800, and 1900, which were not leap years, they are for January - 1. A.D. 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96
AD 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96
100 1757582 17 59043 1760504 1761965 1763426 1764887 1766348 1767809 1769270 1770731 1772192 1773653 1775114 1776575 1778036 1779497 1780958 1782419 1783880 1785341 1786802 1788263 1789724 1791185 1792646
200 1794107 1795568 1797029 1798490 1799951 180 14 12 1802873 1804334 1805795 1807256 1808717 1810178 1811639 1813100 1814561 1816022 1817483 1818944 1820405 182 1866 1823327 1824788 1826249 1827710 1829171
300 1830632 1832093 1833554 1835015 1836476 1837937 1839398 1840859 1842320 1843781 1845242 1846703 1848164 1849625 1851086 1852547 1854008 1855469 1856930 1858391 1859852 18613 13 1862774 1864235 1865696
400 1867 157 1868618 1870079 1871540 187300 1 1874462 1.875923 1877384 1878845 1880306 1881767 1883228 1884689 1886150 1887611 1889072 1890533 1891994 1893455 1894916 1896377 1897838 1899299 1900760 1902221
500 1903682 1905143 1906604 1908065 1909526 19 10987 1912448 1913909 10 15370 191683 1 1918292 1919753 1921214 1922675 1924136 1925597 1927058 1928519 1929980 1931441 1932902 1934363 1935824 1937285 1938746
600 1940207 1941668 1943129 1944590 1946051 1947512 1948973 1950434 195 1895 1953356 1954817 1956278 1957739 1959200 1960661 1962122 1963583 1965044 1966505 1967966 1969427 1970888 1972349 1973810 1975271
1100 1000 2086307 2122832 2087768 2124293 2089229 2125754 2090690 2127215 20921 5 1 2128676 2093 6 12 2130137 2095073 213 1598 2096534 2133059 2097995 2134520 2099456 2135981 2100917 2137442 2102378 2138903 2103839 2140364 2105300 2141825 2106761 2143286 2108222 2144747 2109683 2146208 21 11144 2147669 2112605 2149130 2114066 2150591 2115527 2152052 2116988 2153513 2118449 2154974 2119910 2156435 2121371 2157896 2451544 2000 2453005 2004 2454466 2008 2455927 2012 2457388 2016
1200 2159357 2160818 2162279 2163740 2165201 2166662 2168123 2169584 2171045 2172506 2173967 2175428 2 176889 2178350 2179811 2181272 2182733 2184194 2185655 2187116 2188577 2190038 2191499 2192960 2194421 2020 2024 2028 2032 2036
1300 2195882 2197343 2198804 2200265 2201726 2203187 2204648 2206109 2207570 2209031 22 10492 2211953 2213414 2214875 22 16336 2217797 2219258 2220719 2222180 2223641 2225102 2226563 2228024 2229485 2230946 2458849 2460310 2461771 2463232 2464693
1400 2232407 2233868 2235329 2236790 2238251 2239712 2241173 2242634 2244095 2245556 2247017 2248478 2249939 2251400 2252861 2254322 2255783 2257244 2258705 2260166 2261627 2263088 2264549 2266010 2267471 2040 2044 2048 2052 2056
1500 2268932 2270393 2271854 2273315 2274776 2276237 2277698 2279159 2280620 2282081 2283542 2285003 2286464 2287925 2289386 2290847 2292308 2293769 2295230 2296691 2298152$ 22996035 2301064 2302525 2303986 2466154 2467615 2469076 2470537 2471998
1600 1700 2305447 234197 1t 2306908 2343432 1308369 2344893 2309830 2346354 2311291 2347815 2312752 2349276 2314213 2350737 2315674 2352198 2317135 2353659 2318596 2355120 2320057 2356581 2321 5 18 2358042 2322979 2359503 2324440 2360964 2325901 2362425 2327362 2363886 2328823 2365347 2330284 2366808 2331745 2368269 2333206 2369730 2334667 2371191 2336128 2372652 2337589 2374113 2339050 2375574 2340511 2377035 2060 2473459 2064 2474920 2068 2476381 2072 2477842 2076 2479303
0 1721057 1722518 1723979 1725440 1726901 1728362 1729823 173 1284 1732745 1734206 1735667 1737128 1738589 1740050 1741511 1742972 1744433 1745894 1747355 1748816 1750277 1751738 1753199 1754660 1756121
700 1976732 1978193 1979654 1981115 1982576 1984037 1985498 1986959 1988420 1989881 1991342 1992803 1994264 1995725 1997186 1998647 2000108 2001569 2003030 2004491 2005952 2007413 2008874 2010335 2011796
800 2013257 2014718 2016179 2017640 2019101 2020562 2022023 2023484 2024945 2026406 2027867 2029328 2030789 2032250 2033711 2035172 2036633 2038094 2039555 204 1016 2042477 2043938 2045399 2046860 2048321
900 2049782 2051243 2052704 2054165 2055626 2057087 2058548 2060009 2061470 2062931 2064392 2065853 2067314 2068775 2070236 2071697 2073158 2074619 2076080 2077541 2079002 2080463 2081924 2083385 2084846
1800 2378495t 2379956 2381417 2382878 2384339 2385800 2387261 2388722 2390183 239 1644 2393105 2394566 2396027 2397488 2398949 2400410 2401871 2403332 2404793 2406254 2407715 2409176 2410637 2412098 2413559 2080 2084 2088 2092 2096
1900 2415019t 2416480 24 17941 2419402 2420863 2422324 2423785 2425246 2426707 2428168 2429629 2431090 2432551 2434012 2435473 24 369 34 2438395 2439856 2441317 2442778 2444239 2445700 2447161 2448622 2450083 2480764 2482225 2483686 2485147 2486608
Days to be added to reduce to the beginning of each month: For dates from 1582 October 15 to 1583 December 31, inclusive, Gregorian Calendar, dimitzish all numbers in this table by 10. I n 1700, 1800, and 1900, Gregorian Calendar, f o r January 0 use the number 1 instead of the tabular value 0, and for February 0 use 32 instead of 31. Year
Jan. 0
Feb. 0
Mar. 0
0 i 2 3
0 366 731 1096
31 397 762 1127
60 425 790 1155
Apr.0
*Prepared by G. M. Clemence,
p Gregorian Calendar. SMITHSONlAN PHYSICAL TABLES
91 456 821 1186
u.
May 0
June 0
121 486 851 1216
152 517 882 1247
JULY 0 Aug. 0 Sept. 0 182 213 244 547 578 609 912 943 974 1277 1308 1339
S . Naval Observatory.
t
For January
Oct. 0
- 1.
274 639 1004 1369
Nov. 0 Dec. 0
305 670 1035 1400
335 700 1065 1430
$ Julian Calendar.
734 T A B L E 831.-PHYSICAL
DATA; P L A N E T S A N D PRINCIPAL SATELLITES
( F r o m unpublished compilation by G. P . Kuiper and I). L. Harris, Yerkes Observatory.) Planet or satellite
Mass (Earth = I )
,0543 Llercury . . . . . . . . . . . . . . ,8136 Venus . . . . . . . . . . . . , . . . . 1.0000 Earth _ . , . . _ . . . , . . . , . l f a r s . . . , . . . . . . . . . . . ... ,1009 _luniter . . . . . . . . . . . . . . . . . 318.35 Saturn .~. . . . . . . . . . . . . . 95.3 1-Jranue . . . .. . . . . . . . .. .. . . . 14.58 Neptune , . . . . . . . . . . . . . . 17.26 Pluto . . . . . . , . ... . . . . . . . < . l ? Moon , . . . . . . . . . . . . . . . . ,0123 Jupiter I . . . . . . . . . . . . . . ,0121 luniter _ . I 1 . . . . . . . . . . . . . . ,0079 Iuni ter I I I . . . . . . . . . . . . . ,0261 Jupiter I V . . . . . . . . . . . . . ,0160 ,0235 Titan . . . . . . . . . . . . . . . . . . ,022 Triton . . . . . . , . . . . . . . . . . ,
hrean diameter t (E = I)
HeO = 1
( E = 1)
Surface gravity
Velocity of escape km/sec
.38 ,967 1.000 ,523 10.97 9.03 3.72 3.38 .45 ,273 ,255 ,226 ,394 ,350 ,371 .35
5.46 4.96 5.52 4.12 1.33 .71 1.56 2.47 <5.5? 3.33 4.03 3.78 2.35 2.06 2.54 2.8i
.38 .87 1.oo .39 2.65 1.17 1.05 1.23
4.3 10.4 11.3 5.1 61.0 36.7 22.4 25.6 <5.3? 2.4 2.5 2.1 2.9 2.4 2.8 2.8?
l
’
Mean density
<.5?
.16 .19 .16 .17 .13 .17 .18?
Rotation period (days)
88.0 15-30? 1.oo 1.03 .41 .43 .45
.66
?
27.3 1.77 3.55 7.15 16.69 15.95 5.88
* Mass of the E a r t h is 5.975 X lo ” g r a m s ; of the S u n 332.488 ( 1 & 0.00013) E = 1.987 >: 1Om g r a m s ; of the t Equatorial diameter of the E a r t h = 12,756.78 k m ; Moon (0.012289 f 0.000004) = 7.313 X 10’5 grams. polar diameter 12,713.82 k m ; niean diameter” 12,742.46 km. See Table 827
6F
T A B L E 832.-PLA
N E T A RY T E M P E R A T U R ES Calculated 7,4-----
A
Measured
Mercury (sunlit side). . . . . . . . . . . . . . . . . . . . . . . . . . . 690” K Veilus (dark side). . . . . . 250 330 (bright side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . E a r t h (mean) . . . . . . . . . . . . . . . . . . . . . . . . . 287 400 Moon (center of illuminated hemisphere) 285 M a r s (warmest portions). . . . . . . . . . . . . . . . . . . . . . . . Jupiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Saturn . . . . . . . .. 120 Uranus . . . . . . . . . ......................... less than 90 __ Neptune .......................................
631” K
327 277 277 222 122 90 63 51
464 392 392 316 ~~. 273 128 89 72
__
~~~
B
445” K
__
~
All temperatures a r e given on the absolute scale. T o change to centigrade, slihtract 273. T h e column headed “measured” presents values determined by Coblentz and Lampland, and by Pettit and Nicholson. T& column headed “A” gives black sphere temperatures; “B” gives these multiplied by d 2 or the calculated maximum temperatures of the center of the illuminated hemisphere of atmosphereless black planets. T h e observed values lie, a s expected, between A and B in nearly -.zry case. T A B L E 833.-PLANETARY Mean distance to Sun Body
A I.
Mercury . . . . . . _ . . . . . .387 ,723 Venus . . . . . . . . . . . . . . E a r t h . . . . . . . . . . . . . . 1.000 M a r s . . . . . . . . . . . . . . . 1.524 Jupiter . . . . . . . . . . . . . 5.203 Saturn . . . . . . . . . . . . . 9.539 Uranus . . . . . . . . . . . . . 19.191 Neptune . . . . . . . . . . . . 30.071 Pluto . . . . . . . . , . . . . . . 39.457
km
57.9 t 108.1 149.5 227.8 777.8 1426.1 2869.1 4495.6 5898.9
ORBITS
’
zfiT
Sidereal period
vI Mean days
Tropical years
Inclina. tinn
Eccen. tricity
87.97 224.70 365.26 686.98 4332.58 10759.20 30685.9 1 60187.60 90469.27
.241 ,615 1.000 1.881 1 1.862 29.458 84.015 164.788 247.697
7:004 3.a94 ~. ,000 1.850 1.306 2.490 ,773 1.774 17:143
,2056
,0086 .2485
* Prepared G. P. Kuiper. Y r r k e s 0l)scrvatory. .lmerican Eiihemeris a n d Nautical Almanac for 19.50. x 100 t >lean distance in km c?mputcil f r o m earth’s equatorial radius (6378.388 k m ) and solar parallax of 8.”80. Recent determinations by Spencer Jones (Monthly Notices. Roy. Astron. Soc.. vol. 101, p. 356, 1941) a n d Rahe (ilstron. Journ., vol. 55, p. 112, 1950) give 8.”790 k 0.”001 a n d 8.”7984 0.”0004, respectively. zm
t
SMITHSONIAN PHYSICAL TABLES
T A B L E 834.-SATELLITE Mean disrance from planet (km)
Body
Earth Moon ............ Mars Phobos ........... Deimos ........... Jupiter
v ..............
I I0 ............ I1 Europa ...... I11 Ganymede ... .. IV Callisto ..... .. V I ............. VII ............
..
x ..............
..
Sidereal period (days)
*
735
vjs magnitude at mean opp
Direction of motion t
384,400
27.322
9,400 23,500
,319 1.262
11.5 13.0
D D
,498 1.769 3.551 7.155 16.689 250.6 259.6 260. 739. 758. 692.
13.0 5.0 5.3 4.6 5.6 13 7 16. 17.8 16. 17.6 17.4
D D D D D D D D R R R
.942 1.370 1.888 2.737 4.518 15.945 21.277 79.330 550.48
12.1 11.6 10.5 10.7 9.7 8.2 13.0 10.1-1 1.8 16.
D D D D D D D D R
1.413 2.520 4.144 8.706
16.8
D
5.877 368.
13.5 18.5
R
181,200 421,400 670.500 1,069;500 1,881,200 11,500,000 11,750,000 11,750,000 23,500,000 23,700,000 22,500,000
VIII ........... IX ............. XI ............. Saturn 185,500 Mimas ........... 238,000 Enceladus ........ 294.600 Tethys ........... Dione ............ 377;300 Rhea ............. 526.900 Titan ............ 1,220;800 Hyperion ......... 1,482,000 Iapetus ........... 3,558,000 Phoebe ........... 12,950,000 Uranus Miranda .......... 129,700 Ariel ............. 190,700 265,700 Umbriel .......... Titania ........... 435,800 Oberon ........... 582,800 Neptune 353,700 Triton ............ Nereid ............ 5,580,000
....
ORBITS
Compiled hv D. L. Harris, Yerkes Oliservatory. direct motion, R = retrograde motion.
-12.7
D
?
t With respect to rotation
of planet.
D=
T A B L E 835.-NUMBER O F STARS [@(M)] P E R C U B I C PARSEC N E A R T H E SUN W I T H A B S O L U T E ( P H O T O G R A P H I C A N D V I S U A L ) M A G N I T U D E S M - 1/2 T O M 1/2 * 258
+
log 6 I
M
- 6.0 - 5.0 - 4.0
3.0 - 2.0 - 1.0
-
.O
+ 1.0 + 2.0 + 3.0 + 4.0
+ 10
+
(M) Phot
2.10 3.07 3.65 4.25 4.75 5.07 5.68 6.34 6.77 6.86 7.19
Ion 6 ( M ) 10
Visual
1.63 2.77 3.58 4.12 4.71 5.32 5.98 6.59 6.71 6.98 7.29
M
Phot
Visual
+10.0
7.35 7.49 7.53 7.46 7.49 7.64 7.81 7.97 8.01 8.06
7.40 7.45 7.45 7.55 7.75 7.84 7.99 8.02 8.05
+ 5.0 + 6.0 + 7.0 + + 8.0 9.0
+11.0 +12.0 +13.0 $14.0
Prepared by S. W . McCuskey. Case Institute of Technology. van Rhijn, Groningen Puhl. No. 47, 1936.
p68
SMITHSONIAN PHYSICAL TABLES
...
736
AND T E R R E S T R I A L CRATERS *
T A B L E 836.-LUNAR
Relationship between diameter and depth of terrestrial explosion craters, terrestrial meteoritic craters and lunar craters. (All explosions occurred slightly belo-.v the surface.) D = 0.1083 d2 0.6917 d 0.75 where D = log diameter (feet) d = log depth (feet) Examples :
+
+
Observed depth
Diameter
Shell crater ........................
Calculated depth
10 ft 3 ft+ 2.20 ft Arizona meteorite crater.. ........... 4150 ft 700 ft (originally) 732 ft Lunar crater Moretus .............. 77 mi 14,600 ft 16,900 ft Relationship between diameter of crater and rim height above ground level for terrestrial explosion craters, terrestrial meteoritic craters, and lunar craters. E = -0.097 D' 1.542 D - 1.841 where E = log rim height (feet) D = log diameter (feet) Examples :
+
Observed
Shell crater ........................ 10 ft Arizona meteorite crater. ............ 4150 ft Lunar crater Cleomedes
.............
Calculated rim height
rim height
Diameter
.4 ft -c .40 ft 165 ft (Dast erosion 295 ft neglected) 5200 ft 5830 ft
80 mi
Terrestrial meteoritic craters
Diameter (ft)
Present de th
(8,
Original denth (ft)
American craters : Arizona ......................... 4150 570 700 Odessa 1, near Odessa, Tex ........ 550 14 130 Odessa 2 ........................ 70 shallow 17 At least one other small crater identified nearby . . . . . . . . . . . . . . . . . . ... ... Brenham crater (near Brenham, Kans., also called Haviland crater) ........................ 56x36 shallow >10 Chuhb (Quebec) ................. 24 mi filled-ice-covered lake Sohth American craters : Campo del Cielo, Argentine ; many ... 20 to 254 ... craters ........................ Australian craters : Henbury 1, near Henbury cattle station ........................ 75 shallow ... 2 ................................ 90 shallow ... 3 .................. . . . . . . . . . 135 18
...
... ... ...
... 12 ............................... 13 ............................... Boxhole crater, 200 miles N. E. of Henbury ...................... Dalgaranga crater ................
.
Discovered
165 12 0
1891 1921 1921
...
..
0 550
... 0 0
...
low
...
... 10
12 low
600 230
50 16
... ...
prominent
(continued)
1930 1930
4
12 high high
...
3
1933 1950 Pits known since 1576
2
60 30
Prepared hy R. B . Baldwin. Oliver Machinrry Co., Grand Rapids, Mich.
SMITHSONIAN PHYSICAL TABLES
Present rim height
...
1930 1930 1930 1930 1930 1930 1937 1923
Present de th
Diameter (ft)
...
50
...
25
... ...
... ... ...
100 65 35 120x175
... ... ...
................................
328 130X180
40 30
At least two smaller craters nearby. Great Siberian craters. About 200 in number ..................... 30-175 Silkhote-Alinsk, U.S.S.R., about 100 craters ........................
Present rim height
(&)
200
3 ................................ 4 ................................ 5 ................................ 6 (probably double), ..............
At least three small craters nearby. . Wabar 1 in Rubhlkhali of Arabia..
Original de t h
(8,
Wolf Creek ...................... 3700 Eurasian craters : Kaalijarv, on Baltic Island of Oesel . 300-360 Oesel 2 .......................... 120
2
737
A N D T E R R E S T R I A L C R A T E R S (concluded)
T A B L E 836.-LUNAR
100
...
Discovered
1947
1827 1827 1827
high high
...
...
...
Formed June 30,1908 Formed Feb. 12,1947
The 1947 meteorite probably disintegrated high i n the air. The 1908 meteorite exploded violently either just before striking the ground or immediately after a ricochet. All others seem to have struck the ground, penetrated a short distance, and then exploded. I t will be noticed that there is a tendency for several craters to be formed simultaneously as if the meteorites traveled in clusters. Only authenticated craters are here listed. Possible or doubtful c a w have been omitted.
T A B L E 837.-A
Object
Moon ........... Mercury . . . . . . . . Venus . . . . . . . . . . . Mars . . . . . . . . . . . . Jupiter . . . . . . . . . . Saturn .......... Uranus .......... Neptune . . . . . . . . . Pluto . . . . . . . . . . . .
m
-12.66 - 2.20 - 5.12 - 1.88 - 2.53 .76 + 5.55 7.80 +14.74
+ +
U
.29 - .14 -4.41 -1.39 -9.23 -8.80 -7.17 -6.91 -1.17
2740 3.34 8.50 4.60 95.19 78.95 32.4 29.7
+
L B E DOS
4.0
P
,104 .080 ,630 ,133 .424 .416 ,548 ,514 .I46
4
,694 .72 1.20 1.11 1.2: 1.2: 1.2: 1.2: 1.1:
Visual albedo
.072 .058 .76 ,148 .51 SO
.66 .62 .I6
Color index
+ .75 +1.00 + .62 +1.00 + .67 + .90 + .42 + .42 + .67
Photographic albedo
.059 ,038 .70 .088 .45 .36 .73 .68 .14
Table compiled hy 11. L. Harris on the basis of measures by G. Miiller and E. S. King antl reduced to the Iiiternational Photovisual System. Long-period variations of the outer planets have been suspected by W. Recker "!' hut a r e suhjzct to confirmation. The albedo, according to Rond. is defined as follows: Let a sphere .'? be exposed to I)arallcl light. Then its alhetlo is the ratio of the whole amount reflected from S to the whole amount of light incident 011 it." In the above table, rrz = the stellar magnitude at nieau opposition: = magnitude it would have at full phase and unit distance from earth and sun ; u = assumed mean semidiameter at unit distance ; p = ratio of observed brightness at full phase to that of a flat disk of sanlc size and same position, illuminated and vicwcd normally antl rcflectiiig all the incitlent light according to Lanihert's law ; 9 depends on law of variation of light with phasc ; albetlo = pq. Albedo of the earth : 0.39.'"' ?m3 Itecker, W . , Astrrrn. Nnchs.. vol. 277. 1,. 2oa
Il:inJnn, .\nn. S l r a s l m u r ~ vol. . 3, lit. 3,
SMITHSONIAN PHYSICAL TABLES
65. 1949. 11.
168, 1937.
738
I Y rn rr
a w >
0 Ln
w
L1.
0
Z
0 rn rn w 0 W
I
w n
d m
w A rn
I-
a
SMITHSONIAN PHYSICAL TABLES
T A B L E 839.-CHARACTERISTICS Part 1.-Density
O F EARTH’S INTERIOR
*
739
and pressure
T h e density distribution in the earth’s interior is obtained by a series of approximations made t o conform with known data as boundary conditions. These known facts, with which any density distribution must harmonize, include the following : (1) The average density is 5.522, obtained by comparing the attraction of the earth with that of a known mass. Dr. Heyl’s value for the constant of gravitation is used, 6.664 X lo-* dyne cm2 ,9-’ (Table 27). (2) Th,e precession constant and other astronomic and geodetic data (Table 827) give the earth s moments in inertia. I = 0.33344 Er2 where I is the moment of inertia about the polar axis, r the equatorial radius, and E the mass of the earth ; further
where a is the polar semi-axis and p = f (a, Y ) , the density. If the earth were a homogeneous sphere its moment of inertia would be 0.4 M r 2 and density 4.6. (3) The known flattening of the earth from geodetic data is 1/297. If the earth were homogeneous the flattening would be larger. These should be sufficient t o give a unique density distribution but, as Lambert of the Coast and Geodetic Survey pointed out, a distribution satisfying condition (2) also satisfies condition (3). (4) T h e last boundary condition results by comparing the elastic behavior at various depths with the known elastic constants of rocks. Time-distance curves of earthquake inipulses enable one to calculate the velocities of the compressional, V,, and distortional, V,. waves at various depths in the earth. Assuming isotropy there are simple relations between K , R, E (moduli of compression, rigidity, Young’s respectively), u (Poisson’s ratio), V , and, V s such that if the density and any two of them are known the others can be had. The Variation in elastic constants for different rocks is small but sufficient to permit discrimination when compared with the elastic properties a t different depths computed by means of the eauations
The uncertainties result from extrapolating low pressure and temperature laboratory data to high pressures and temperatures. Whence we deduce: “granitic” material to a depth of 10 to 30 k m ; below this the rock is denser, about 3.0, and corresponds to a basalt or gabbro. A t about 45 km depth a discontinuity occurs ; the change in elastic properties corresponds with a transition to peridotite, density 3.4. From this depth to 1,600 km the variation is uniform, the density increasing slowly with pressure. From 1,600 to 2,900 km the earthquake velocities remain somewhat constant and could be accounted for by a slow addition of iron and nickel t o the material, the density changing from 3.4 to 9.0. Below 2,900 km V, begins t o decrease slightly and the assumption is that this core consists of’ nickel-iron with a density at the center of about 10.7. Depth
Density
0 km 10
.m __
60 120 400 800 1200 1700 2000
’Compiled
2.7 c/cms 2.7 3.0 3.4 3.5 3.75 4.0 4.25 4.4
Pressure
Rock type
Granitic
‘>
5.8
Basaltic Peridotitic
.30 .47 .h8
.84 1.135 1.5 1.7 2.8 3.1
by R. W. Goranson.
SMITHSONIAN PHYSlCAL TABLES
(continued)
Transition layer Ni-Fe core
710 T A B L E 839.-CHARACTERISTICS P a r t 2.-Elastic Bulk modulus
x
constants of earth’s interior
Rigidity
x
O F E A R T H ’ S I N T E R I O R (concluded)
km
dynes/cmz
dynes/cmZ
Depth km
0 0-20 20-45 45-120 120400
.415 .5 f .05 .7 f .1 1.4 f .2 1.6 f..2
.26 .3 f .05 .4 f .1 .6 f..1 1.0 f .2
1200 1700 2850 2900 6370
Depth
lo-“
10-12
Part 3.-Velocities
Ilulk modulus
x
Rigidity
x
10-12
dynes/cmn 3.6 f .3 4.2 f .3
10-12
dynes/cmz 2.2 f. .3
2.7 f .3 8 f 2 4.0 f 1.0 7 f 1 Smaller than at 12 f 10 ? surface, perhaps zero.
o f earthquake waves
V , is the velocity in km/sec of the primary or condensational wave, V 8 ,of the secondary or distortional wave. Turner speaks of them as the push and shake waves. Layer
V p , km/sec
0 t o 20 f 10 km depth, depending on locality 20 f 10 to 45 f.10 km depth, depending on locality Between 45 f.10 and 2900 km depth: 45 f 10 1300 2400 <2900 Core, 2700 to 6370 km (center) : >2900 6000
T A B L E 840.-BULK
V.9,
km/sec
5.4 to 5.6, depending on locality. May reach 6.1 6.25 to 6.75, depending on locality
3.5 f .3
8.0 f .1 12.5 f .1 13.5 f .1 13.5 f .1
4.4 f..2 6.9 f .2 7.5 f..2 7.4 -c .2
8.7 f .2 10.9 f .2
7
3.2 f .3
?
M O D U L I O F ROCK-FORMING M I N E R A L S *
The bulk modulus, K , of a compact holocrystalline rock can be obtained with a fair degree of accuracy except for low pres’sures by adding the proportionate bulk moduli of the constituent minerals. Pressure, P , and K X lo-’ are in bars. Pressure in hars Mineral
Feldspar : Orthoclase .............................. Oligoclase, AbTRAnD2 ..................... Labradorite, AbrBAnsz . . . . . . . . . . . . . . . . . . . Pyroxene : Orthorhombic ......................... DioDside .............................. Augite ................................ Hornblende : Actinolite ............................ Mica : Phlogopite ................................. Quartz ........................................... Calcite ........................................... Magnetite ........................................ Corundum ........................................ Tourmaline ....................................... Rutile ............................................ ~~
.
Compiled by R . W. Goranson.
SMITHSONIAN PHYSICAL TABLES
‘ 1
,527 .582 ,654 1.00 .935 .981 .769 .431 ,373 .736 1.818 2.44 1.22 1.72
2,000
10,000
,538 ,592 ,671 1.oo ,935 .981 .769 .451 ,383 .741
.603 .641 .758 1.oo .935 .981 .769 .516 ,437 .758
-
1.852
-
-
T A B L E 841.-ELASTIC
C O N S T A N T S O F ROCK
*
741
P (pressure), and K , R. E (bulk, rigidity, and Young's moduli resp), are given in bars (1 bar
= 10' dyiies/cm*). Vp and V , (compressional and distortional wave velocities respectively), are in kni/sec. u is Poissoii's ratio acid p is the dcnsity. p is in g/crnS. Dynamically determined elastic constants are surroundcd by parentheses (single parenthesis represents seismic data) ; the others are static determinations. Italicized figures are calculated. I n places where insuflicient data were present to complete the calculations, figures in square brackets have been assumed. 111 the "P" column m.s. denotes mean stress. The hasis of this table includes data of L. H. Adams and Williamson, F. D. A d a m and Coker, Bridgman and others. Name
KX
P
...............
10-0
xx10-0
EX10-6
p
(.32) .23
(.W .20
(.46)
1.281 I.281
.26
2.62 2.62
( .30 )
(.22)
0
1 m.s. 350 2000 10000 Basalt . . . . . . . . . . . . . . . . . 200 2000 10000
(.439) .303
Gahhro, norite. diabase. .
,538 .654 ,606
I.281 F.281 24
(.641)
(.27) -
Granite
4
,472 .552
(.476)
-
600 2000 loooo
.641 ,700 ,714 .736 -
m.s. 350
,741
Olivine diahase, olivine gabbro . . . . . . . . . . . . . .
600
-
t.271 c.271 28 28 C.281 L.281 c.271 r.271 r.271 .17 -
,752
2nn0 - _ _ .,806
10000 1 2000 10000 1 2000 10000 2000
,826 1.064 1.191 1.265 .345 ,352 ,352
Cryst limestone, parallel bed ................. m.s. 350
,690 ,437
Peridotite dunite Obsidian
.......
...............
Basalt glass
............
loo^}
Quartzitic sandstone
+
....
{
7000 1 1 1 2000 10000
-
{ 1.271 .26
,715 (.439) ,402
.374 ,383 ,437
L.281 (.29) .26
.21 L.271
.29
.28 .34
.50
.62 .73 (.58) .71 .86
2.67
2.91 2.91 2.95
.35 (.35) .38 .39
.38
-
.37 .42 .43 .58 .65 .69
-
.37
24
VP
V.
(5.05)
(2.62)
5.53 5.91
3.05 3.26
(5.06)
(2.72)
5.59 6.11
3.08 3.38
(6.22) -
(3.49)
-
-
3.65 3.67
-
-
-
.97 .99
2.85 2.R9
6.50 6.54
(t:90;5)) .95
3."? 3.00
6.46
3.57
1.06
1.09
3.01 3.08
1.47 1.64 1.74
3.28 3.29
6.7 6.7 7.5 7.9 8.15
3.7 3.7 4.2 4.4 4.57
3.28
((.682)) 2.34 2.35 2.41 2.85 .95 2.89 .61 -
.37 .94 ( ~ 7 ) (.55) .57 .23 .65 .27
-
-
.24
.60
-
6.4
-
2.71
6.68
2.71 2.69 2.64 2.70
(5.2) 5.3 5.4
-
-
3.6 3.69 (2.81)
-
1.9
2.9
Compiled by R . W. Goranson.
T A B L E 842.-AGE
O F E A R T H , MOON, A N D S T R A T A
The age of the earth is probably from (1.3 t o 3) x lo8 years (radioactive data). Its liquefaction was probably complete within 5,000 years, solidification within 15,000 years from start. The age of the earth'5 crust may be taken as roughly 2,000 million years. Ages of geologic strata
.
Late Oligocene . . . . . . . . Cretaceous ( ? ) . . . Permian-Carboniferous . Permian to Devonian.. .
SMITHSONIAN PHYSICAL TABLES
.
37,000,000 yr 59,000,000 204,000,000 " 239,000,000 t o 374,000,000 y r
.
Late pre-Cambrian ( ? ) . 587,000,000 yr Upper pre-Cambrian . . . 640,000,000 Middle P r e c a m b r i a n . . 987,000,000 to 1,087,000,000 yr Lower pre-Cambrian ... 1,800,000,000
.
OF THE S U N
T A B L E 842A.-ECLIPSES
742
The diagram, figure 31, prepared by the U. S. Naval Observatory, shows the paths of total and total-annular eclipses i n the Unitcd States during the twentieth century. The following data for total United States solar eclipses between 1950 and 2000 are taken from the complete table of eclipses from A.D. 1900-A.D. 2000, given by D. H. Menzel.20z
* Beeinnine
Date
June 30, 1954.. . . . . . . . . . October 2, 1959. . . . . . . . . July 20, 1963. . . . . . . . . . . March 7, 1970.. ........ February 26, 1979. . . . . . .
Latitude
Longitude
+42" +42 +4:
-I- 99"
+ 72 -143
+47
+149 +I40
-
"Noon"
End
'Lati-. tude tude
tude
tude
+62" +23 +62 +25 +61
4- 5"
+ 6 +I26
+ 88 -t 77
+26" 7 +33 +55 +77
+
Maximum duration
2" 3 1 3 3
-74" -56 +44 +23 +34
40'
.. .. .. ..
m* Menzel, D. H . , Our Sun, p. 260, Harvard Univ. Press, 1949. T'sed by permission
FIG.31.-Curves
showing the paths of solar eclipses during the twentieth century.
T A B L E 843.-SPECTRUM Limits of p m
O
!'00 to '.'02.. . . . . . . . . . . . . . . . . 13 .02 to .04.. . . . . . . . . . . . . . . . . 6 .04 to .lo. ................. 1 .10 to 2 0 . . . . . . . . . . . . . . . . . . . . 20 to .45.. . . . . . . . . . . . . . . . . . . .45 to 3 0 . . . . . . . . . . . . . . . . . . . . .80 to 2.00 . . . . . . . . . . . . . . . . . . . . Over 2:'OO . . . . . . . . . . . . . . . . . . . Mean p m . . . . . . . . . . . . . . . . . ('22 Percentage of stars with p > '(20 ................. 0
CLASS A N D PROPER MOTlONS
*
B
A
F
G
K
M
N
238 164 88
706
107 91 168 70 56 20 19 6 :'18
218 327 393 242 88 23 13 6 '(12
48 54 99 27 8 1
:'03
97 115 231 245 168 46 12 1 !'17
3 4 2 1
.. ..
392 533 476 160 31 1 1
5
25
18
10
..
1
.. .2
..
.. ....
_.
'rO7 r!04 4
0
'This table, after Boss, gives the numher of stars in his catalox hrighter than 6"'.S which have proper niotions between given limits. For reference, see footnote 272, p. 746.
SMITHSONIAN PHYSICAL TABLES
T A B L E 844.-SOLAR
Class
1
7
FLARES *
Mean area in 10-8 of sun’s hemisphere
Mean duration
Class
217 570
17 xnjn 29
3 3+
743
Mean area in 10-8 of sun’s hemisphere
Mean duration
62 min
1266 2350
3 hr
The following paragraphs are reprinted from F. Hoyle, “Some Recent Researches in Solar Physics,” p. 36, Cambridge Lniversity Press, 1949.t Flares a r e a particular class of bright reversal characterized by sudden commencements. T h e properties of flares a r e : ( a ) They are roughly classified in order of increasing importance as 1, 2, 3, and 3 The area of the flare, seen in projection against the solar disk, is, at present, used as the criterion of importance. Flares of class 3 are rare, occurring on an average only once or twice per year. A t the other extreme, flares oi class 1 occur every few hours during periods of marked solar activity. (b) The effective line width in H a at peak intensity varies between 1.75 A and 16 A . being approximately proportional to the importance of the flare. If p , H y show lesser widths, but the data for these are somewhat meager. ( c ) The contour of the bright emission is iieur!y symmetrical about the normal position of H a and is independent of the position of the flare upon the disk (there is invariably a greater extension in the red wicg than in the blue wing, which increases with the importance of the flare, reaching 0.7 A for those of the greatest intensity). Doppler displacements of the contour indicating large-scale turbulence of the emitting material in the line of sight have not been observed in excess of -C- 10 km/sec. ( d ) , Flares are associated with sunspots, and i n particular with complicated spot groups. The size of a sunspot, however, is not always a criterion of flare activity, some large spots being relatively inactive. The emitting material is mainly situated either in the reversing layer or the lower chromosphere. and the emission occurs i n a region with fixed position relative to the position of the spot group. The areas of flares projected on the solar disk vary from a few hundred millionths up to the values exceeding 10,000 millionths of the area of the disk. The duration of a flare is usually of the order of an hour or less, but 5 hours occasionally occur. lifetimes ( e ) Flares are strongly correlated with a number of terrestrial effects. Radio fadeouts, due to increased ionization in the U-layer, occur simultaneously with the visible appearance of intense flares. Great magnetic storms are associated with flares of classes 3 and 3 The magnetic disturbances commence about 26 hours after the appearance of the flare, and are most marked when the flare is near the center of the disk. Finally, there is a growing body of evidence that the sun emits exceptionally high intensities in the radio meter wave-band during flares.
+.
+
>
+.
Prepared by Edith J. Tebo, Harvard College Observatory.
T A B L E 845.-CO
...
Andromeda 4nd Antlia ........ Ant Apus ......... Aps Aquarius ..... Aqr Aquila ........Aql Ara ..........Ara . . . .Ari .... Aur Roiites .......Boo .... Cae alis.Cam Cancer .......Cnc Canes Venatici. CVn C$s Major . . CMa Minor . . C M i Capricornus ...Cap Carina ........ Car Cassiopeia .... Cas Centaurus ..... Cen Cepheus ...... Cep Cetus ......... Cet Chamaeleon ... Cha
t Used with permission
of the author.
N S T E L L A T l ON A BBR E V I AT1 O N S ( Astron. Union, 1922)
Circinus ......Cir Columba . . . . . . Col Coma Beren ..Corn Corona Aust . . CrA Corona Ror . . . CrB Corvus . . . . . . . Crv Crater .. . Crt C r u x ... .Cru Cygnus ....... Cyg Delphinus . . . . Del Dorado ....... Dor Draco . . . . . . . . Dra Equuleus . . . . . Equ Eridanus Eri Fornax For Gem Gemini Grus . . . . . . . . . Gru Hercules ..... H e r Horologium .. H o r Hydra . . . . . . . . H y a Hydrus ....... Hyi Indus . . . . . . . . Ind
SMITHSONIAN PHYSICAL TABLES
Lacerta . . . . . . L a c Leo . . . . . . . . . . L e o LMi Leo Minor Lep Lepus . . . . Libra . . . . . . . . . L i b Lupus . . Lup Lynx . . Lyn Lyra . . Lvr Mensa . .Men Microscopium . Mic Monoceros . . . . Mon Musca . . . . . . . . Mus Norma . . . . . . . N o r Octans . . . . . . . Oct Ophiuchus Oph Orion ... Ori Pavo . . . . Pegasus . . . . . . P e g Perseus ..... . P e r Phoenix Phe Pictor .. Pisces . . . . . . . . Psc
Pisces Austr . . P s A Puppis ...... . P u p Pyxis .... Reticulum Sagitta ... Sagittarius . . . . S g r Scorpius . . . . . . Sco Sculptor Scutum . Serpens . . . . . . Ser Sextans . . . . . . Sex Taurus . . . . . . . T a u Telescopium . . Tel Triangulum ... T r i “ Austr ... T r A Tucana ....... T u c Vela ......... Vel Virgo . . . . . . . . V i r Vol Vulpecul Vul
TABLE 846.-EMISSION
744
L I N E S IN T H E SOLAR CORONA*
The following table was taken from Edlkn's paper.m I t summarizes the results of the identification of 19 of the coronal lines caused by forbidden transitions. F e X, XI, XIII, XIV, X V ; Ni XII, XIII, XV, X V I ; Ca XII, XIII, X V ; A X,XIV. Two of these identifications, namely A 4359 attributed to A XIV and A 5694 attributed to Ca XV, are somewhat questionable and therefore these two identifications are given with a ( ? ) in the table. All these identified lines are caused by magnetic dipole radiation. The first column gives the wavelengths of the coronal lines taken from Mitchell's compilationw and reduced values from later work by Lyot.zna The second column gives the corresponding wave numbers. The third and fourth columns give the intensities as measured by Grotrian and Lyot respectively. The proposed identification is given in column five and the transition probabilities in column six. The seventh and eighth columns give the excitation potential and ionization potentials of the next preceding ionization stages. A
cm-1
3 3 3 3 3 3 3 4 4 4 4 4 5
328 388.1 454.1 601.0 642.9 800.8 986.9 086.3 231.4 311 359 567 116.03 5 302.86 5 536 5 694.42 6 374.51 6 701.83 7 059.62 7 891.94 8 024.21 10 746.80 10 797.95
A ))I sec-1
EP
IP f
488 87
3.72 5.96
589 325
Ni XVI 3s23p 'P1sh ; 'PH Ni XI11 3s' 3p4'D, - PI
193 18
3.44 5.82
455
F e XI 3s23p' ID' - 3P, Ca XI11 2s22p' 'PI - 3Pz Ni XI1 3s' 3p''Pah -'P1%
9.5 319 237
4.68 3.03 2.93
261 655 318
? A XIV2sZ2p 'PI,
108
2.84
682
2.42 Ni XI11 3s'3p"P1 - 'P, 60 2.34 Fe XIV 3s23p 'Pl,h - 'Px 2.24 A X ~ s ' ~ ~ " P I ~ - ~ '106 P~I~ 95 2.18 ? Ca XV 2s2Z~''P4- Po 69 1.94 57 1.85 Ni XV 3s23~3i'1''-'Pu ... 31.7 Fe XV 3s 3p 'P,-'P, 1.57 Fe XI 3 ~ ' 3 p ' ~ P ~ - ~ P ~44 3.39 Ni XV 3 ~ ' 3 p ' ~ P ~ - ' P ~ 22 14 1.15 Fe XI11 3s' ~D"P,- 'PO 9.7 2.30 Fe XI11 3s23 2 'Pi - 'PI
355 42 1 814 233 422 390 26 1 422 325 325
Identification
Intensity
30 039 i~n 29 507 16 28 943 2.3 27 762 2.1 .. 27 443 26 303 .. .. 25 075 .7 24 465 1.0 23 626 2.6 23 190 .. 22 935 .. 21 890 1.1 19 541.0 4.3 2.2 18 852.5 100 100 18 059 .... 17 556.2 1.2 15 683.2 8.i 18 14 917.2 5.4 2.0 2.2 14 161.2 12 667.7 13 .5 12 458.9 9 302.5 55 9 258.5 35
........ ........
. .. .. ...
--'Psh
........
...
...
isi
350
...
...
...
...
jso
I.
~
Prepared by Edith J. Tebo, Harvard College Observatory. 285 Zeitschr. Astrophys., vol. 22, p. 30, 1943. 324, 1929; vol. 7, p. 401, 1936 2M Handhook d'Astro hys , vol. 4 , 285 Monthlv Notices. &ov.'Astron. koc.. vol. 99. n. 580. 1939. t The io nkitio n potenthl refers to the next lower stage.
TABLE 847.-THE
.O .2 .4 .6 .8 1.0
F2.5 F 5.5 F 7.5 G0 G2 G4
- .31 - .68 -1.01 -1.33 -1.66 -2.02
CEPHEID PERIOD-LUMINOSITY CURVE
- .85 -1.26 -1.74 -2.25 -2.74 -3.26
* Prenared hv H . Shaoley, Harvard University.
Shapley Harvard Bull. vol. 861 1928. *'Shanley: Proc. Nat. A c h . S c i . . ;"I. 26. D. 544. 1940 Astrophys. Journ.. vol. 88, p. 453, 1938.
188 Kuiper,
SMITHSONIAN PHYSICAL
TABLES
1.2 1.4 1.6 1.8 2.0
C6 G8
iY .5
K2.5 11/10
-2.39 -2.80 -3.25 -3.73 -4.24
*
-3.77 -4.31 -4.99 -5.87 -7.52
TABLE 848.-A
A
H I 4340.5 4861.3 6562.8 He I 3888.6 4471.5 5015.7 5875.6 6678.1 H e I1 4541.6 4685.8 5411.6 c I1 4267.2 N I1 5755.0 6548.4 6583.9 01 6300.2 0 I1 3726.2 3729.1 7319.0 7330.4 0 I11 4363.2 4959.5 5007.6 Ne I11 3868.7 3967.5 Ne I V 4714.1 4719.7 Ne V 3345.8 3425.8 s I1 4068.5 4076.5 6717.3 6731.5 A IV 4711.4 4740.3 Fe XI 3871.9
LIST O F NEBULAR LINES*
Classification
Excitation potential
745
Intensity + 7027 7662
2 *S, P - 5 ' S , P, D 2 'S, P -4 'S, P, D 2 'S, P - 3 ' S , P, D
13.0 12.7 12.0
34 100 580
40 100 500
2s ' S - 3p 'P 2~ 'P - 4d 'D 2s ' S - 3p 'P 2p 'P - 3d 'D 2p 'P - 3d 'D
22.9 23.6 23.0 23.0 23.0
<13
<25 5
4 'S,P,D,F-9 'S,P,D,F,G 3 ' S , P, D - 4 'S, P, D, F 4 'S,,P, D, F - 7 ' S , P, D, F, G
53.5 50.8 53.1
4 39 25
3 60 10
3d 'D-4f
20.9
3
1
[2pZ1D-2p2'S1 [Zp' 'PI - 2p' 'Dl [2p2'P2 - 2p' 'D1
4.0 1.9 1.9
30 150 260
...
12p' 'PZ- 2p' 'D1
2.0
50
1
[2pz'S-22p"ZD~hl [2p' 'S - 2p8' D z ~ l r2p82~pU - 2p3'PI r2pa2~ ~2p32~1 ~~
3.3 3.3 5.0 5.0
20
11 P P
8 5
... ...
[2p2'D-22p2'S1 [2p2'P, - 2p2'Dl [2p2'P, - 2p' 'D1
5.3 2.5 2.5
23 430 1200
19 350 1000
[2p' 'P, - 2p' 'D1 t2p' 'PI - 2p"DI
3.2 3.2
95 24
7.7 7.7
<< 6 ...
<80 <: 10 ...
3.8 3.8
43 109
P P
3.0 3.0 1.8 1.8
<8
2.6 2.6 4.7
<6 10 << 95
'F
12p2'PI - 2p2'Dl I2p''P2 - 2p' 'Dl
t3p"Pi - 3p"DI
6 54 50 8
5 1 9
... 30 6
5+: 102
80
<3 .5 5
<10 10 <<80
The above table, containing most of the strongest and/or imrmrtant lines under nebular conditions, is taken from a more complete list.'"'" The brackets t I about a.classification indicate a forbidden transition. These wavelengths are in all cases except Ne 111 and Ne V the values calculated from series analyses of the ions concerned. The last two columns give the observed intensities in the objects NGC 7027 and 7662. P indicates the line is present but out of the range covered by the observations and intensity estimates; < represents a blend with a line classified otherwise, transition indicated probably an appreciable contributor ; G is also a blend with a line classified otherwise, transition indicated probably is not a n appreciable contributor. * Prepared hy Edith J. Teho. Harvard College Observatory. Bowen, I. S., and Wyse. A. B.. 1,ick 01,s. null., vol. 19, p.
209
SMITHSONIAN PHYSICAL TABLES
1, 1939.
T A B L E 849.-STE
746
LL A R S Y S T E M S
The s o l a r n e i g h b o r h o o d distance of 50 light-years, explored chiefly through the motions of nearby stars. A large majority a r e of less than solar luminosity, most below naked-eye visibility. Only 40 percent of the stars known to be nearer than 16 light-years a r e brighter than the sixth magnitude. Exploring the solar neighborhood therefore involves a search for telescopic dwarf stars. Any body 1/100 of sun’s mass within 1,000 astronomical units (.015 light year) would be detected by its disturbance on Neptune and Uranus even if invisible (Russell). Nearest known star is 4 light-years distant ( P r o x i m a Centauri, m = 11, M = 15.5). R e g i o n of b r i g h t e r s t a r s extending SO0 li!/ht-years. T h e great majority of naked-eye stars lie in this region, though some of unusually high intrinsic luminosity a r e farther away. I t includes probably 500,000 telescopic stars. Studied by proper motions, trigonometric and spectroscopic parallaxes, and photometry. T h e M i l k y W a y with a radius of about 50,000 /i(qhf-years. T h e stars within 5,000 light-years of the sun are a trifling part of thc galactic system outlined by the globular clusters and Milky W a y clouds. T h e stars a r e so remote that proper motions and spectroscopic analyses hopelessly fail. Statistical counts a r e of some help in the nearer parts. But most of our knowledge comes from eclipsing binaries, long-period variables, and Cepheids. T h e pcriod-luminosity relation for Cepheid variables i s the key to practically all distances a few 1,000 light-years. T h e C l o u d s of M a g e l l a n , nearly 100,000 light-years distant, nearest of all external galaxies and the most easily studied. Great advantage, all of its varied manifestations a r e seen a t practically the same distance. These phenomena include gaseous nebulae, star clusters, giant and supergiant stars, some 1,500 known Cepheids in the Larger Cloud. I n this cloud 750 stars brighter than - 5.0 abs mag and over 200,000 brighter than the 0.0 have been estimated. T h e SuDernalaxies. 1.000.000 t o 500.000.000 liciht-wars distant. Comnosed of clusters of extragakic& nebulae. T h e relative diameters ”and brightnesses have ‘heen determined for some of the supergalaxies. The most conspicuous is the Coma-Virgo cloud A , a stream of several hundred bright spiral, spheroidal, and irregular galaxies, about lo’ light-years distant ; its greatest length about one-half this. One of the richest and most distinct supergalaxies is in Centaurus.
>
’
T A B L E 850.-STELLAR
SPECTRA A N D R E L A T E D CHARACTERISTICS *
T h e o n e - d i m e n s i o n a l classification system.-The spectra of almost all the stars can be arranged in a continuous sequence, the various types connected in a series of imperceptible gradations. W i t h two unimportant exceptions, the sequence is linear. According to the now generally accepted Harvard (or Draper) system of classification, certain principal types of spectrums a r e designated by letters-P, W . 0,B , A , F , G . K , M, R , N, and S-and the intermediate types of suffixed numbers. A spectrum halfway between B and A is denoted by B 5 while those differin:: slightly from class A in the direction of Class B a r e called B 8 or B 9. Classes R and N apparently form one side chain, and class 5’ another chain, both branching from the main series near class K . T h e t w o - d i m e n s i o n a l classification system.-In addition to the larger characteristics used to determine the spectral class (temperature differences) there a r e smaller luminosity effects that depend mainly on differences in densities in the atmospheres of the stars. T h u s one can distinguish hetween dwarfs, giants, and supergiants. A t Harvard, in 1897, Miss Maury was actually the first to denote certain stars hy prefixing the letter “c” t o the spectral class. These stars a r e now known t o he supergiants. Mount Wilson observers still use this letter “c” to denote supergiants. “g” for giants, and “d” for dwarfs. T h i s d M 5 denotes a dwarf star of spectral type hf 5 (see Table 874). Morgan, Keenan, and Kellman have extended the clsssification even further.”’ Their luminosity classes include not only giants (111) and dwarfs (V)hut subgiants (IV) and several classes of supergiants ( I : Ia. and Ih) and intermediates (11). Almost all the stars can he classified on the above system. I n addition t o individual peculiar stars there are. howcver, groups of stars that cannot be given specific classifications, such as the A-type spectrum variables I”’ and the “metallic-line” stars.“’ T h e colors of the stars, the degree to which they a r e concentrated into the region of the sky, including the Milky W a y (Table 854). and the average magnitudes of their peculiar velocities in space (Tables 828 and 876) all show important correlations with spectral type. I n the case of colors, the correlation is so close a s to indicate that both spectrum and color depend almost entirely on the surface temperature of the stars. T h e correlation in the other two cases, though statistically important, is by no mean so close.
.
Prepared hy Edith J. Teho. H a r v a r d College Observatory. An Atlas of Stellar Slrectra. 1 - n i v e r s i t y of Chicaso Press. 193.7. Deutsch. .\stmphys. Journ., vol. 105, n. 383. 1947. 2iz Roman. Morznn. and Eggen, Astrophys. Journ., vol. 107, p. 107. 1948. Journ.. vol. 107, p. 151, 1948; vol. 109, p. 121. 1919. p7n 211
SMITHSONIAN PHYSICAL TABLES
Greenstein. i\stroi,hys.
T A B L E 851.-STELLAR P a r t 1.-The
SPECTRA
*
747
H a r v a r d spectrum classification ~
Principal spectral lines (absorption unless otherwise stated)
Class
P W
0 B
A F G
K M S
R
N
Q
Class
BO B5 A2 FO F8
Example
Gaseous nebulae. Emission lines and bands of H , H e I and 11, and 0 11. Wolf-Rayet objects divided into two sequences: carbon, WC, have emission lines attributed to H e I and 11, C 11, 111, and IV, and 0 11, 111, IV. V, and V I ; nitrogen sequence, WN, have emission lines attributed to H e I and 11, and N 111, IV, and V. Lines of H. H e I and 11, 0 I1 and 111, and N I1 and 111. Xeutral H and He, N 11, and 0 11, and a few ionized lines of metals. H series at maximum, Ca I1 ( H and K), and weak ionized metallic lines. Ca I1 ( H and K) strong, H lines fainter, metallic lines more abundant. H lines faint, Ca I1 ( H and K) strong, many fine metallic lines. Ca I1 ( H and K) very strong, many neutral metallic lines. Spectrum faint in the violet. Molecular bands of TiO, lines of Ca I and 11, and other metals. Long-period variables have emission H lines. ZrO bands and metallic lines. Longperiod variables have emission H lines. Bands of C,, CN, and C H ; many metallic lines. Bands of C2, CN, and C H ; very little violet light. Novae. Rapid spectral changes from early supergiant type near maximum, through nebular stage, and finally to a Wolf-Rayet type. Part 2.-Prototypes Supergiants c Ori 67 Oph a Cyg a Lep y Cyg
Giants K
Ori
6 Per h UMa
Leo 1 Com
Main sequence
l Oph Hya ( Vir p Cap fi Vir K
Number brighter than 6.25, mag
....
Percent in galactic region
....
5
100
5 Puppis
20
100
Orionis
696
82
Sirius
1885
66
Canopus
720
57
The sun
609
58
Arcturus
1719
56
Antares
457
54
r;, Gruis
0
....
BD -10”5057 19 Pisciym
0
63
8
87
Velorum
y
c
....
....
for luminosity classification ns Class
Supergiants
G5 K2 M1 M5
9 Peg 56 Ori a Sco a Her
Giants
y Hya
Oph 75 Cyg 56 Leo K
Main sequence
Cet Eri B D 42.2296 BD 4.3561 K
++
For description of classification of Wolf-Rayet stars see reference, footnote 274. The “galactic region” here means the zone between galactic latitudes f 30”, and including half the area of the heavens. 96 percent of the stars of known spectra belong to classes A , F, G, K, 99.7 percent including B and iM (Innes, 1919). Henry Draper Catalog, 9 vols., i918-24, and H. D. Extension, 2 vols., 1925-49, givc positions, magnitudes, and spectra of nearly 360,000 stars. See also Yale Zone Catalogs, and the Bergedorf and Potsdam Spectral-Durchmusterungen. * Prepared by M. W. Mayall, Harvard College Observatory. m3Trans. Int. >\stron. Union, vol. 7 , p. 408, 1950. n*Trans. Int. Astron. Union, vol. 6 , p. 248, 1938.
SMITHSONIAN PHYSICAL TABLES
748 T A B L E 852.-PERCENTAGE
B A ( B O to B 5 ) ( B 8 to A 3 )
Visual magnitude
< 2.24 2.25 to 3.24 3.25 t o 4.24 4.25 to 5.24 9.5 to 10.4 Photographic magnitude
8.5 9.5 10.5 11.5 12.5
to to to to to
G
K
M
( F 5 to G O )
7 10 7
10 12 12
15 22 35
12 12
9
28 19 22 27
1
16
12
24
38
9
( A 5 to F 4)
( F 5 to C 4)
( B 0 to B 5) ( B 6 to A 4 )
2 1 1 0 0:
9.5 10.5 11.5 12.5 13.5
F
( A 5 to F 2 )
28 25 16
*
O F STARS O F V A R I O U S S P E C T R A L CLASSES
31 24 17 10 3:
16 16 13 13 10 :
24 31 40 47 58 :
K2) ( K 5 to M 8 )
( C 5 to
(C 5 to
8
K 4)
(K5
24 26 27 26 26 :
to
Mc)
3 3 3 3 2:
The data are taken from the publications of the Harvard, McCormick, and Bergedorf Observatories. The discontinuity in trend appearing between the visual and photographic groupings is in the sense to be expected. Ninety-nine pcrcent of the stars brighter than magnitude 8.5 belong to the six classes listed; less than one percent have spectra of classes P, W R , 0 , R, N , S, and Peculiar, and such stars are even more uncommon among the fainter groupings. Among stars brighter than sixth magnitude the percentages of dwarfs are as follows (6pik et at.) :
F5 75
GO 50
F8
60
G5 15
KO 5
K2 3
M 0
K5 2
A limited sampling in the Milky Way yields the following percentages of dwarfs among fainter stars (Nassau and McCrae) : Photographic magnitude
F 8 to C 2
8 to 10 10 to 11 11 to 12
75 77 82
c5 G 8 to K 3 23 7 31 8 42 10 I n higher galactic latitudes the percentages of dwarfs are higher ; thus in latitudes 31" to 90" dwarfs constitute about 17 percent of the K 0 and K 2 stars of visual magnitude 10.4 (Janssen and Vyssotsky). Among the MO and M 8 stars of all latitudes between visual magnitudes 8.5 and 10.5 3 percent are dwarfs (Dyer and Vyssotsky). Prepared by A. N. Vyssotsky, University of Virginia.
T A B L E 853.-THE
Member
Type
Our galaxy ......... Sb M 31 ..... ........ . S B L M C .............. I M 33 . . . . .. . . . .. . . . S C
S M C .............. I M 32 .. . . . .. . . . .. . . k 2 Fornax system . . . . . . E NGC 205 .......... 5P NGC 6822 . .. .. ...
. ..
;
... ......... I Sculptor system , . . . . E NGC 185 ...... ..... El NGC 147 ........... E IC 1613
LOCAL F A M I L Y O F GALAXIES"' Distance Modulus t (corrected & for Ohs Corr lat effect)
22.4 17.1 22.3 17.3 22.4 21.0 : 22.4 21.6 22.0 19.4 22.4-C 22.42
21.8 16.7 21.9 17.0 21.8 20.8 : 21.8 21.0 21.8 19.2 21.5-C 21.52
231 kpc 22 239 25 23 1 142 : 231 161 225 69 204C 2042
Diameter
Mpg
-17.9 -15.9 -14.9 -14.5 -12.9 -11.9: -11.5 -10.8 -10.8 -10.6 -10.6 -10.3
+ Apparent Linear 3.2" 12" 62' 8"
...
50' 15!8 20 17' 45'
i415
1411
24 kpc 12.9 4.6 4.3 3.6
..
2.1 : 1.1 .94
1.1 .90 .86 .83
ms Baade Walter Astrophys. Journ. vol. 100, p. 150. 1944. t Modulds in steilar magnitude is m'- M = 5 (log d - l ) , where d is distance in parsecs and M is absolute magnitude.
SMITHSONIAN PHYSICAL TABLES
749 T A B L E 8 5 4 . 4 A L A C T I C C O N C E N T R A T I O N O F S T A R S OF V A R I O U S S P E C T R A L CL ASS E S *
of stars per 100 square degrees
P art 1.-Number Spectrum Visual magnitude
< 6.0
6.0 7.0 8.5 9.5
to- 7.0 to 8.25 to 9.4 t o 10.4
B
G
F
A
M
K
Galactic latitude 00 to So
4.5 6.3 19 46 a2
6.0 15 76 190 610
1.7 3.4 14 85 240
2.1 3.0 21 96 310
3.5 12 54 200 490
1.3 2.6 14 57 150
180 460 940
19 42 140
PhotogFaphic magnitude
9.5 to 10.5 10.5 t o 11.5 11.5 to 12.5
38 87 100
150 430 1200
510 970 1390
Galactic latitude 600 to
Visual magnitude
< 6.0
6.0 7.0 8.5 9.5
?
. ' d
to- 7.0 to 8.25 to 9.4 to 10.4
220 720 1960
0 0 0 0
2.6 3.8 7.4 X 8
20
170
210
16
32 27 34
120 290 680
75 160 270
9 12 26
Photographic magnitude
9.5 t o 10.5 10.5 to 11.5 11.5 t o 12.5
0 0 .9
9 10 14
The data are taken from the publications of the Harvard, McCormick, and Bergedorf Observatories. The spectral groupings are the same as in the preceding table. Absorption accounts for the apparent discrepancy in low latitudes between the numbers of early type stars in the last line of the visual magnitudes and those in the first line of the photographic magnitudes. A measure of apparent galactic concentration may be found from the ratios of the star numbers in low latitudes t o those in high latitudes. W e obtain the figures given in P a r t 2 : P art 2.--lndex Visual magnitude
< 6.0
6.0 7.0 8.5 9.5
to to to to
7.0 8.25 9.4 10.4
Photographic magnitude
9.5 to 10.5 10.5 to 11.5 11.5 t o 12.5
B 22
..
..
.. ..
..
of apparent galactic concentration
F
G
K
M
2.8 4.0 10 24 76
2.3 1.9 1.5 4.2 12
2.1 1.2 1.3 1.2 1.8
1.2 1.5 1.7 2.7 2.3
1.9
56 97 99
4.8 16 35
1.8 2.5 2.9
2.4 2.9 3.5
A
3.7 2.2
9 2.1 3.5
5.5
The irregularities here are attributable in part to inadequate sampling. Among the stars of the main sequence the true concentration increases with the stellar mass; the true concentration of the red giants is relatively low. The W , 0, and N stars show high apparent concentration to the Milky Way as do the Cepheids, and planetary nebulae; on the other hand, the long-period variables show little concentration and the cluster-type variables even less. *Prepared by A. N. Vyssotsky, University of Virginia.
SMITHSONIAN PHYSICAL TABLES
T A B L E 855.-MEAN
750
of given visual magnitude and galactic latitude
P a r t 1.-Stars Mag
0"--20"
3.0 4.0 5.0 6.0 7.0 8.0
7027 ,020 ,015 ,011 ,0080
,0059
A N N U A L P A R A L L A X FOR S T A R S *
20'-40"
'.'036 ,025 .017 .012 .0086 ,0062
40"-90"
Mag
"0036 ,027 .020
9.0 10.0 11.0 12.0 13.0 14.0
,015 ,0117
.0092
no--w '.'0043 ,0032 ,0023 ,0018 ,0014 ,0011
4n0-900
2n0-4n0
YO047 ,0037 ,0030 ,0024 ,0020 ,0016
'(0073 .0057 .0045 ,0034
.OOn
.0021
These tabular values have been obtained by combining and smoothing the secular parallaxes derived at Groningen and McCormick together with mean parallaxes for fainter stars derived a t Leiden. To obtain annual parallaxes from secular parallaxes a solar velocity of 19 kilometers per second has been assumed. Similarly the Leiden figures rest on certain assumptions as to the peculiar motions of faint stars. Recent studies of the space motions of stars more than 500 parsecs from the plane of the galaxy indicate that the annual parallaxes listed here may well be systematically too large for stars fainter than tenth magnitude in the higher latitudes. Some idea of the dependence of the mean parallaxes on the spectral type may he gained from P a r t 2. H e r e the probable error of a secular parallax is approximately 0'.'001. P a r t 2.-Mean
parallaxes according t o spectral class for stars o f visual magnitude 10.0 (latitude 0" to 90")
Spectral
.
class
Secular parallax
L38 to A 3 A 5 to F 2 1 ; s t o GO KO to K 2 Y M O to g M 8
'.I007 ,011 ,022 .014 ,005
Solar velocity
Annual parallax
,0011
22
Prepared by .2. N. Vyssotsky, University of Virginia.
T A B L E 856.-SPECTRUM
C L A S S E S A N D T E M P E R A T U R E S OF S T A R S *
-
Observed T e m p e r a t u r e hy several methods, " K b r H e a t Water-cell H e a t index index :ilrsorption Water-cell ('"lor Ioniza Mag Mag X 0.555 p A 0.529 fi absorption index m tion
--'-
I? 0 . . . . . . . . . . . . . . . . . .
.05
A 5 ................. I; 0 . . . . . . . . . . . . . . . . . .
.OZ .15 F 5 ............ . .30 dG 0 . . . . . . . . . . . . . . . . . .32 dG 5 . . . . . . . . . . . . . . . . . .39 DKO . . . . . . . . . .55 dK5 . ......... 1.10 d M O . . . . . . . . . . . . . . . . 1.40 d M 2 . . . . . . . . . . . . . . . . 2.1 gG 0 . . . . . . . . . . . . . . . . .47 yG 5 . . . . . . . . . . . . . . . . 6 5
................ 1.86 g M 2 . . . . . . . . . . . . . . . . 2.2 g M 4 . . . . . . . . . . . . . . . . 3.1 g M 6 . . . . . . . . . . . . . . . . 4.2 gM0
{Jh'I8 . . . . . . . . . . M c Max . . . M r Lfin
20 23 26 .30 .36 .41 -42 .47 S4 .76 37 1.14
,so
.60 .70 .93 1.01 1.14 1.30 1.46 1.62 1.5 2.2
6750" 5760 5700 5350 4820 3720 3400 2870 5000 4550 4020 3240 3030 2810 2400 2050 1780 1990
7300" 6160 0100 5750 5100 3980 3650 3060 5450 4870 4300 3480 3250 3000 2590 2200 2000 2160
* Prepared Ily S. 1%. Xichnlson, Mount Wilwn Olrservatory. Ruiper. G. I'., i t s t r o p h y s . Jniirn., vol. 88. 11. 4 6 4 , 1938. l'aync, Stellar atmospheres, 1925. t Interpolated.
t
SMITHSONIAN PHYSICAL TABLES
7500" 6200 5450 5350 4920 4460 355n 3200 2780 4700 4140 3750 3130 2980 2810 2550 2390 2250 2350 1830
25000" 1.5500 10700 8530 7500 6470 GOO0 5360 4910 4150 3600 3200 5200 4620 4230 3580 3400 3200 2930 2750
20000 15000 10000 8400 7500 7000
5600 5000 4000 3000 3000
75 1 T A B L E 857.-STARS
K N O W N T O BE W I T H I N 5 PARSECS O F T H E S U N *
K A 1950 Dec h
a
Cen A
a Cen B a Cen C
mu
SP
m
. . . . . . . . 14 36.2-60"38
........ 14 36.2-60 38 . . . . . . . . 14 26.3-62 29
+4: 3561 . . . , .... 17 55.4+ 4 33 W 359 . . . . . . . . . . 10 54.1+ 7 19 L 726-8 A ...... 1 36.4-18 13 L 726-8 F, . . . . . . 1 36.4-18 13 +36: 2147 A t . . . 11 00.6+36 18 a C M a A . . . . . . . 6 42.9-16 39 a C M a B ....... 6 42.9-16 39 R 154 . . . . . . . . . . . 18 46.7-23 54 R 248 ........... 23 39.4+43 55 e E r i . . . . . . . . . . . . 3 30.69 38 61 Cyg A . . . . . . . 21 04.7+38 30 61 Cyg B . . . . . . . 21 04.7+38 30 T Cet . . . . . . . . . . . 1 41.7-16 12 a CMi A ....... 7 36.7+ 5 21 a CMi B ........ 7 36.7+ 5 21 L 789-6 ......... 22 35.7-15 36 e Ind . . . . . . . . . . . 21 59.6-57 00 R 128 .......... 11 45.1+ 1 07 +59: 1914 A . . . . 18 42.2+59 33 +59: 1915 B . . . . 18 42.2+59 33 +43: 44 A t ..... 0 15.4+43 44 +43: 44 B . . . . . . 0 15.4+43 44 -36: 9694 . . . . . . . 23 02.6-36 09 -44: 612 ........ 5 109.7-45 :00 5 : 1668 ....... 7 24.7+ 5 28 -39: 8920 . . . . . . . 21 14.3-39 04 +56: 2783 A .... 22 26.6+57 26 +5G: 2783 B . . . . 22 26.6+57 26 R 614 AB ..... 6 26.8- 2 46 -12: 4523 ....... 16 27.5-12 32 vMa 1 . . . . . . . . . . 0 46.6+ 5 10 W 424 A ....... 12 30.8+ 9 18 W 424 B . . . . . . . . 12 30.8+ 9 18 C0-46: 11540 . . . 17 24.9-46 51 -37 : 9435 . . . . . . . 0 02.5-37 36 +68: 946 . . . . . . . . 17 36.7+68 23 +SO: 1725 . . . . . . . 10 08.3+49 42 -49: 11439 . . . . . . 21 30.3-49 14 -15: 6290 . . . . . . . 22 50.7-14 31 CO-44: 11909 . . . 17 33.4-44 16 a Aql . . . . . . . . . . . 19 48.3+ 8 44 L 145-141 . . . . . . . 11 42.7-64 34 +43 : 4305 . . . . . . . 22 44.7+44 05 02 E r i A . . . . . . . . 4 13.0- 7 44 02 E r i B . . . . . . . . 4 13.0- 7 44 CP Eri C . . . . . . . . 4 13.0- 7 44 Grwf79: 3888 . . . 11 45.4+78 58
+
P
M
. /L
8
4.7 6.1 16.0 13.1 16.8 15.4 15.9 10.5 1.3 11.4 13.2 14.7 6.2 8.0 8.7 6.0 2.8 13.1 14.6 7.0 13.3 11.2 12.0 10.3 13.0 9.5 11.1 12.2 8.8 11.8 13.2 13.6 11.9 14.2 14.5 14.5 11.5 10.2 10.8 8.4 10.6 11.8 12.1 2.5 13.6 11.6 6.0 10.9 12.6 12.5
3.68 3.68 3.85 10.26 4.70 3.38 3.38 4.78 132 1.32 .74 1.82 .97 5.21 5.21 1.92 1.25 1.25 3.27 4.69 1.39 2.28 2.28 2.90 2.90 6.91 8.74 3.76 3.46 .86 .86 1.00 1.18 2.98 1.80 1.80 1.04 6.07 1.31 1.45 .81 1.11 1.1s .66 2.68 .86 4.08 4.08 4.08 .87
281' 281 282 356 235 80 80 187 203 203 106 176 271 52 52 296 214 214 46 123 153 324 324 82 82 79 131 171 251 246 246 131 182 155 279 279 147 113 197 249 185 123 217 55 97 237 213 213 213 57
N
.3 1.7 11.5 9.4 13.8 12.4 12.9 7.5 -1.6 8.5 10.5 12.2 3.8 5.6 6.3 3.6 .5
10.8 12.3 4.7 11.0 8.9 9.7 8.1 10.8 7.3 9.0 10.1 6.6 9.8 11.2 11.6 9.9 12.3 12.7 12.7 9.7 8.5 92 6.7 9.0 10.2 10.5
.9
12.1 10.1 4.5 9.4 11.1 11.0
dG 3 dK2 dM : dM5 dM6 tlM 6r dM 6e dM 2 A0
F
dM 5 dM 6 dk' 2 dK5 dK7 dG 7 dF 4
dM 6 tlh' 5 dM 5 dM 3 dM 4 dM 3 sdM 4c dM 1 sdM 0 dM 5 dMO dM 4 dM 6 d M 6e dM 4 I1 F diM 7 dM 7 dM 3 dM 3 dM 3 dK8 dM 2 dill 5 dhl 5
A4 I )A dM 5 dK 0 DA d i l l 5r dM 4
.755 .755
.778 .544 .402 .4 : : .4 . : .390 .378
.378
.354 .318 .301 .298 .298 .298 .294 .294
.293
.288 .288 .285 .285 .279 .279 .277 .262 262
.257 .256
.256
.256 .253 .245 .225 .225 .224 .222 .218 .218 .212
.2 11 .210 .206 .204 .203
.200
.200 .200 .200
V d
.22 .22
....
-110 +13 +30
5
::
- 8 - 8
0 .81
t.64 ;: .16 - 4 - 4 .60 .40 .12
+ 2 + 2 + 8 + 8 +10 +242 +27
31 .24 +25: .18 +238
- 5 - 5
;;
. +
.27
....
+10
....
.26
22 .42 .42 -120
T h e stars have been designated by their R I1 or C P D numbers and only if neither of these was available. by their Cordoba Durchmusterung numbers : for very faint stars the discoverer's numbers have had to be used . p = parallax. p = proper motion. 17% = magnitude. M = absolute magnitude. Vrn..= radial velocity. S p = spectrum. 8 =position angle. * Prepared by W . I.uyten. LJniversity of Minnesota .
SMITHSONIAN PHYSICAL TABLES
t These stars have invisible companions
.
752 T A B L E 858.-MASSES
O F S T A R S FOR B I N A R I E S W I T H I N 10 PARSECS FROM T H E SUN*
This table contains all visual binary stars within 10 parsecs for which the orbital elements and parallax are well determined. The sum of the masses follows from the harmonic relation :
where a is the semimajor axis of the relative orbit, expressed in astronomical units, P the period in years ; the masses are referred to the sun's mass as unit. For the majority of these binaries the mass-ratio is known, thus permitting a determination of the masses of the individual component. ~~
P vears
a
Star
Para11ax
AU
Cas ................. !'I84 p Eri. .................. ,161 02 E r i B, C ............ ,202 Sirius ................. ,381 Procyon ............... ,287 5 UMa ................ .129 a Cen A, B ............ ,756 6 Boo ................. .I42 { H e r ................. .I02 -SO4352 ............... ,148 F u 46 ................. ,155 H R 6416 . . . . . . . . . . . . . . .I32 H R 6426 .............. ,147 p H e r B, C ............ ,109 7" Oph ................ ,197 61 Cyg ................ 294 Krii 60 ................ .256
_. -
526 251 248 49.94 40.65 59.86 80.09 149.95 34.42 1.72 13.12 242 42.2 43.0 87.85 720 44.52
67.9 52 34.1 20.0 15.8 19.7 23.2 34.4 13.24 1.28 4.58 37.4 12.5 11.8 23.14 83.5 9.23
7
Sum of masses M. 4- M.
1.13 2.22 .64 3.21 2.37 2.13 1.92 1.81
~
Separate masses
,--
M,
MZ
.69
.44
.44 2.15 1.74 .98 1.06 .96 1.12
20 .06 .63
.31
.25
..
..
1.96
.I5 .86 .85 .84
..
.. .. .. ..
.70 .56 .89 1.09 .87 1.61 1.12
.40
..
.. .72 .43 .I4
.89 .69 .26
Prepared by Peter van de Kamp, Swarthmore College.
T A B L E 859.-THE
Name
F I R S T - M A G N I T U D E S T A R S ARRANGED I N ORDER O F BRIGHTNESS * R
I\
1950
h m
Sirius+ ............... 6 42.9 Canopus .............. 6 22.8 a C e n t a u r i t $ .......... 14 36.2 V e g a f ................ 18 35.2 Capella 11 .............. 5 13.0 Arcturus .............. 14 134 Rigel t I/ .............. 5 12.1 Procyon t ............. 7 36.7 Achernar .............. 1 35.9 p Centauri t /I ......... 14 00.3 Altair f ............... 19 48.3 Betelgeuse 1I f .......... 5 52.4 Atdebarant ........... 4 33.0 a Crucis t II .......... 12 23.8 Spica 11 ................ 13 22.6 Pollux 0 ............... 7 42.3 Antares t .............. 16 26.3 Fomalhaut ............ 22 54.9 Deneb f ............... 20 39.7 Regulus t $ ............ 10 05.7 p Crucis I1 ............. 12 44.8
Dec
mu
Sp
m
-16"39'--1.6 -52 40 - .9 -60 38 .I +38 44 .1 +45 57 .2 +19 27 .2 - 8 15 .3 5 21 .5 -57 29 .6 -60 08 .9 8 44 .9 724 .9: +16 25 .8 -62 49 1.1 -10 54 1.2 +28 09 1.2 -26 19 1.2 -29 53 1.3 +45 06 1.3 +12 13 1.3 -59 25 1.5
+
+ +
A0 cFO dG3 A0 GI KO cB8 dF4 B7 B3 A4 M2 K5 B1 B2 G8 M 1 A3 cA2 B8 B1
P
0
1!'32 .02
203" 47 28 1 36 168 209
3.68 .34 .44 2.28
.oo ...
1.25 .10 .04 .66 .03 .20 .04 .06 .62 .03 .37 .GO .25 .05
214 110 217 55 75 160 235 230 265 200 116
270 235
V km/s
P
"378 ,012 ,755 .122 .073 .09 1 - 5 ,002 : .294 19 .032 -12 : .036 : -26 ,206 .013 +21 54 ,058 - 8: .03 : 2: .011: .loo .020 : .145 + 6 : ,002 - 5: 3 : .042 .006 : +20 -8 +20 -22 -14 +30
'4
+ +
+
2: +
Mabs
+1.3 -5.5 +4.5 .5 - .5
+
.o
-8. : +2.8 -1.9 -1.3 : +2.5 -3.5 - .4 -1.5 -2.6 : +1.2 -2.3 : +2.1 -7. : - .6 -4.4 :
Prepared by W. Luyten, University of Minnesota. t Visual binary. $ Has distant companion. 8 Has an ontical companion. The magnitude shown is the combined visual magnitude. 11 Spectroscopic binary. m = magnitude, Sp = spectrum, p = proper motion, B = position angle, V = radial velocity, p = parallax, M = absolute magnitude. SMITHSONIAN PHYSlCAL TABLES
T A B L E 860.-STELLAR Main sequence
SP
mu
p Centauri ......
.9 P Scorpii ........ 4.3 p Aurigae A . . . . 2.8 a Lyrae ......... .I a Can Maj A ....-1.6 .9 a Aquilae ....... a Can Min ...... .5 a Centauri A .... .1 70 Ophiuchi A .. 4.3 61 Cygni A ..... 5.6 Kriiger 60 A .... 9.8 Barnard's Star ... 9.4 Giants a Aurigae A a Bootis ........
.... a Tauri ......... p Pegasi ........ a Orionis ........ a Scorpii A ..... White dwarfs a Can Maj B
.2 .2 .8
2.2 .9 1.2
... 8.5 40 Eridani B .... 9.4 van Maanen's Star. 12.3
B3 B3 A0 A0 A0 A4 dF4 dG 3 dKO dK5 dM 4 dM 5
T E M P E R A T U R E S A N D DIAMETERS
T
M"
P !'036 .009 .034 ,122 .378 206 294 .755 .192 298 256 .544
--1.3
21,000" K 2 1,000 10,700 10,700 10,700 8,800 6,100 5,850 5,740 4,300 3.180 31020
-- .8 .6
.5
1.3
2.5
2.8 4.5 5.7 8.0 11.8 13.1
gG 1 gK 0 9K 5 gM 3 cM 2 CM 2
.073 ,091 ,058 .oi6 .017 .0095
F A F
.378 .200 .245
- .5
R
d
- .4
-1.0 -4.0 -3.5
11.4 10.9 14.2
P
753 P
!'001 (25) ,018 11 .0003 (5.2) .16 3.2 .0008 2.2 .13 2.4 .I1 .003 2.4 (3.0) .42 2.4 1.8 .006 .6 .003 1.4 (1.7) 1.1 .16 1.9 .006 1.1 1.1 .007 1.o .9 .9 .002 1.o .7 .003 (.45) 1.3 9. .26 .34 .0008 .I6 .0008 (.IS) 45:
5,150 12 4,620 30 3.940 70 3;390 160 3,060 480 3,060 380
.O
*
.007
4.2
.025 .048 .042
(35) (22)
::?:!!{ (6j
.034 .00012 .96 ,018 .00004 .44 .009: .oooO2 (.14)
7,500 11,000 7,500
.0024 .OW3 1.4X104 1.5~10~ 3x10-' 5X10-7 5x10' 7x10' lo"-lOe
Many of the data were taken from the reference given in footnote 277. The spectra, magnitudes, radii, parallaxes, and densities have been revised for some of the stars. Th e letters A and D denote the brighter and fainter components, respectively, of binary stars. Apparent (visual) magnitude is denoted by mu, spectral class by Sp, parallax in seconds of arc, p , absolute (visual) magnitude by Mu, radius in terms of the sun by R, apparent diameter in seconds of arc by d, mass in terms of the sun by p, and density by p (in g/cm*). Prepared hy Edith J. Teho Harvard College Observatory.
m Russell, Dugan, and StewArt, htronomy, p. 740, Ginn & Co., 1926. Used by permission.
T A B L E 861.-SPECTRUM T Y P E AND M E A N VISUAL ABSOLUTE MAGNITUDE
*
~~
Type
Main sequence
0 BO B1 B2 B3 B5 B8 B9 A0 A2 A3 A5 A8 FO FZ
-3.8 -3.1 -2.6 -2.2 -1.7 -.8 +.2 C.4 +.7 +1.2 +1.5 +1.7 t.2.3 +2.6 +3.1
For Type R,
Super. gian:s
..
-5.4 -5.4 -5.3 -5.3 -5.2
-5.0
-5.0 -4.9 -4.8 -4.8 -4.7 -4.5 -4.4 -4.3
Type
Main sequence
Giants
Supergiants
+ 7.1
+++1.2.8.6 +++ .5.6.5 ++ .5.5 + .2
-4.2 -4.0 -3.8 -3.6 -3.2 -2.8 -2.6 -2.3 -2.0
+ 3.7 + 4.1 + 4.4 + 4.7 + + 5.1 5.5 + 5.9 + 6.3
F5 F8 GO G2 G5
G8
KO K2
K5 K8 MO MI M2 M3 M4 M5
+ 7.7 + 8.4 + 9.0 + 9.6 +10.4 -
+11.5 +13.6
= -0.5; and for Type N , M = -2.0.
* Prepared hy R. E. Wilson, Mount Wilson Ohservatory.
SMITHSONIAN PHYSICAL TABLES
.O
- .2 .. .. .. ..
..
.. -4.5 .. .. .. .. ..
Subgiants
..
.. ..
+3.0
+3.0
..
.. .. .. .. .. .. ..
754 T A B L E 862.-REDUCTION
OF VISUAL T O BOLOMETRIC MAGNITUDE *
The bolometric corrections ( R C) given in the table are added algebraically to visual magnitudes. From tables by G. P. Kuiper,"' slightly revised for 0 and B stars by same author. The (effective) temperature, Te, scale of the 0 and early B stars is still to be regarded as provisional. The corrections for 0, - Fo stars are based on the stellar temperature scale and on theoretical spectral-energy curves. For F,-MM, stars they are based on radiometric observations by Pettit and Nicholson. Giants
Main seq
Type
0 5 0 6 0 7 0 8 0 9 BO
ni
B2 B3 B4 B5 B6 B7 B8 B9 A0 A1 A2 A3 A5 A7 FO * E'
'
BC
Te
-5.3 : 100,000 : -4.8 70,000 : -4.3 50,000 -3.9 41,600 -3.5 35,000 -3.0 28,500 -2.8 26,300 -2.5 23,000 -2.3 21,000 -2.1 19,300 -1.9 17,800 -1.6 15,600 -1.4 14,300 -1.2 13,100 - .9 11,600 - .7 10,700 - .6 10,150 - .5 9,600 - .4 9,000 8,500 - .3 - .2 7,900 6,500 - .o
Supergiants ( M = -4)
( M = 0)
Main seq
J c
n
JI
Type
F0 F2 F5 F8 GO G2
G5 G8
I< 0 K2 K3 I< 4 K5 K6 MO 44 1 M2 M3 M 4 44 5
BC
T,
.04 .04 - .05 - .06 - .07 - .10 - .I0 - .ll - .15 - .31 - .55 - .85 -1.14 -1.43 -1.70 -2.03 -2.4 : -2.7 : -3.1 :
6500 6100 6100 6050 6000 5900 5770 5770 5740 5580 5070 4600 4300 4100 3880 3700 3540 3320 3180 3020
.o
-
' BC
.o
- .04 - .08 - .17 - 25 - .31 - .39 - .47 - .54 - .72 - .89 -1.11 -1.35 f
.
.
RC
Te
6500 6100 5850 5500 5240 5070 4880 4720 4620 4420 4260 4120 3940
.o
.04 - .12 - .28 - .42 - .52 - .65 - .so - .93 -1.20 -1.35 -1.56 -1.86 -2.2 -2.6 -3.0 : -3.6 :
3420 3230 3060 2840 :
-
.
-1.55 -1.72 -1.95 -2.26 -2.72 -3.4 :
3800 3680 3560 3390 3160 2920 :
T.'
6500 6100 5720 5150 4830 4650 4480 4330 4240 4060 3940 3780 3590
....
....
Prepared by G. P. Kuiper. Yerkes Observatory. Astrophys. Journ., vol. 88, p. 446, 1938.
T A B L E 862A.-R
U S S E L L - H E RTZSP R U N G D I A G R A M *
Absolute magnitudes (ordinates) of 3,915 stars of different spectrum types (abscissae) determined by the spectroscopic method by W. S. Adams and his associates (courtesy of Mount Wilson Observatory, 1932). The diagram shows distinctly the division of types G, and later, into giants (high-luminosity stars) and dwarfs (low-luminosity) with few intermediate stars. The curve simulates the mirror image of the figure 7, and with the addition of much new material confirms fully that first drawn by Russell in 1913. The majority of the stars may be divided into dwarfs, giants, and supergiants (a few stars do appear to have luminosities intermediate between these classifications). The luminosity of the dwarfs decreases reqularly with advancing spectral type (reduced surface temperature); it drops abruptly for the coolest. Among the giants the luminosity decreases until about class F 5 and then increases with decreasing temperature at least as far as the early subdivisions of class M. For supergiants, the luminosity does not appear to change appreciably with spectral class. In the diagram, the concentration into vertical columns is purely an effect of rough snectral classification. Most of the stars on this diagram belong to Population Type I (Table 874). The white dwarfs occupy the lower left corner (Table 872). Kuiper ~ 7 ' has more recently derived the empirical mass luminosity relation for (1) the visual binaries. (2) some selected spectroscopic binaries, and (3) Trumpler's massive stars in clusters. His diagram is reproduced in figure 33. Morgan, Keenan, and Kellman 2M have presented a preliminary calibration of their luminosity classes in terms of visual absolute magnitudes, which includes B stars 2s well as subclasses (intermediates between giants and dwarfs and between giants and supergiants). Prepared by Edith J. Tebo, Harvard College Observatory. Astrophys. Journ. vol. 88 p. 472 1938. An atlas of stella; spectra', p. 34,' University of Chicago Press, 1943.
SMITHSONIAN PHYSICAL TABLES
755
FIG.32.-The Russell-Hertzsprung Diagram
SMITHSONIAN PHYSICAL TABLES
756 T A B L E 863.-LOG (NO. STARS)/(SQ. D E G R E E ) B R I G H T E R T H A N P H O T O G R A P H I C M A G N I T U D E , m, A T S T A T E D G A L A C T I C L A T I T U D E S * Ratio
Ratio N o s .
successive magnitudes I
,.Ap-.
m
+90'
+40"
+ZOO
5.0 8.15 8.24 8.37 6.0 8.59 8.72 8.85 7.0 9.02 9.18 9.31 8.0 9.44 9.62 9.77 9.0 9.86 .05 2 1 10.0 2 5 .47 .65 11.0 .63 .87 1.08 12.0 1.01 1.26 1.50 i3.n 1.63 . . . . . .1.38 ..... . . . .1.9~) . 14.0 1.70 1.97 2.28 15.0 1.98 2.30 2.66 16.0 2.26 2.61 3.02 17.0 2.53 2.90 3.36 18.0 2.79 3.15 3.67 19.0 20.0 21.0
+loo
0'
8.49 8.95 9.41 9.87 .33 .77 1.21 1.64 2.05 2.45 2.85 3.25 3.64 3.97
8.77 9.22 9.64 .09 .55 1.02 1.49 1.95 2.39 2.82 3.22 3.60 3.96 4.32
-10'
8.65 9.10 9.51 9.93 .37 .82 1.26 1.70 2.14
--40" -90"
-20"
8.50 8.94 9.35 9.79 23 .67 1.11 1.54 1.95 2 3 2.34 2.99 2.72 3.39 3.07 3.76 3.40 4.10 3.68
8.25 8.71 9.16 9.60 .04 .47 .89 1.29 i.08 2.03 2.34 2.64 2.92 3.18
8.07 8.62 9.08 9.50 9.92 .32 .72 1.12 1.48 i.78 2.02 2.26 2.48 2.70
Seares.. ..
+90"
2.8 2.7 2.6 2.6 2.5 2.4 2.4 2.3 2.1 1.9 1.9 1.9 1.8 1.6 1.5 1.4
Nos. at 0" & 90'
0" -90"
2.8 2.6 2.8 2.9 3.0 3.0 2.9 2.8 2.7 2.5 2.4 2.3 2.3 2.0 1.9 1.9
3.5 2.9 2.6 2.6 2.5 2.5 2.5 2.3 2.0 1.7 1.7 1.7 1.7
i.__
+90"
4.1 4.3 4.1 4.5 4.9 5.9 7.2 8.7
in
ij
17 22 27 34
-90"
5.0 4.0 3.6 3.9 4.3 5.0 5.9 6.8 8.1 11 16 22 30 42
(Characteristic 8. or 9. means, of course, -2. or -1.) Fo r values averaged over all galactic longitudes see reference, footnote 281. An excess of stars, relative to the averages, between longitudes 230" and So", and a deficit elsewhere, reflect the eccentric position of the sun within the stellar system, which, in a first approximation, may be regarded as a greatly flattened spheroid. For more detailed values for both longitude and latitude see references, footnote 282. The Groningen numbers are generally larger than the Mount Wilson values, notably so in low galactic latitudes. This defference arises partly from the irregular influence of the highly complex structure of the stellar system and especially of the obscuring dust clouds in and near the Milky Way. Mount Wilson results were derived from counts of stars in small areas at and north of declination -15" ; Groningen results from sample counts over the whole sky. The Groningen magnitude scale for faint stars south of declination -15" is, however, somewhat in doubt and may also affect the totals. Prepared by F. H . Seares, Mount Wilson Observatory. van Rhijn Groningen Publ. No. 43, Table 6 , 1929. Rhijn: Groningen Publ. No. 43, Table 10; Seares and Joyner, Mount Wilson Contrihutions Nos. 346, 347; Astrophys. Journ., vol. 67, p. 24, 123, 1928; Publ. Astron. SOC.Pacific, vol. 40, p. 303, 1928. 281 van
T A B L E 864.-STARS
+
4 : 3561 ..... -44: 612 ...... +38: 2285 .. , . . -36: 9694 ..... -37: 9435 ..... R 619 ......... 61 Cygni ...... -+36:2147 ..... W 359 ......... c Indi ......... +44: 2051 ..... o2 Eridani .....
9.4 dM 5 1 0 2 6 9.0 SdMO 8.74 6.4 d G 6 7.04 7.3 dM 1 6.91 8.5 dM 3 6.07 12.6 d M 6 5.40 5.6 d K 5 5.21 7.5 d M 2 4.78 13.8 d M 6 4.70 4.7 d K 5 4.69 8.7 dM 1 4.49 4.5 d K O 4.08
OF L A R G E PROPER M O T I O N * 356" 131 145 79 113 167 52 187 235 123 282 213
W 489 ........ Proxima Cen ... 5:1668 . . . . . p Cassiowiae . . a Centauri . . . . . -15:4041/2 ... -39: 8920 ..... L 7268 ....... L 789-6 . . . . . . . R 451 . . . . . . . . . -43: 354 ...... R 578 . . . . . . . . .
+
3'.'92 14.8 DC 11.5 d-M : 3.85 10.1 d M 5 3.76 5.3 dG 5 3.75 .3 d G 3 3.68 9.3 sdG6 3.68 6.6 d M 0 3.46 12.4 d M 6 r 3.38 12.3 d M 6 3.27 12.7 d K 8 3.20 d G 5 3.15 4.3 14.1 s d M 2 3.06
252" 282 171 115 281 235 251 80 46 174 76 152
m = magnitude, Sp = spectrum, fi = proper motion, 0 = position angle. Stars have been identified with their B.D. or C.P.D. numbers. I n case of multiple stars the magnitudes and spectra of the brightest component are given. For further information on stars possessing large proper motions see references, footnote 283. Prepared by W. Luyten University of Minnesota. =Lick Obs. Bull. No. 344; Harvard Circ. 283; Publ. Cincinnati Obs. LO 18; Publ. Astronomical Ohs. Univ. Minnesota, vol. 3, No. 1. SMITHSONIAN PHYSICAL TABLES
T A B L E 865.-NUMBERS
Photographic magnitude m
-1.6 - .9 .O .o- 1.0 1.0- 2.0 2.0- 3.0 3.0- 4.0 4.0- 5.0 5.0- 6.0 6 0- 7.0 70- 8.0
N u m b e r of stars
Sirius a Carinae a Cinta u r i
8 24 66 188 767 2.000 5,360 14,800
AND EQUIVALENT LIGHT OF T H E STARS*
Equival e n t no. 1st mag Totals stars tomay (photogr) m
11 6 2 14 15 17 19 31 32 34 37
I'hotographic magnitude
m
8.0- 9.0 9.0-10.0 10.0-1 1.0 11.0-12.0 12.0-13.0 13.0-14.0 14.0-15.0 15.0-16.0 16.0-17.0 17.0-18.0 18.0-x
11 17 19 33 48 65 84 115 147 181 218
757
Equival e n t no. 1st mag Totals stars to m a g (photogr) m
N u m b e r of stars
40,600 116.000 304:OOO 789,000 2,000,000 4,950,000 11.500.000 25,400,000 56.000.000 115;000,000
40 46 48 50 50 50 46 40 35 29 48
......
258 304 352 402 452 502 548 588 623 652 700
This tahle derived from van Rhijn's counts (Tahle 7 of reference 281) shows that t o photographic magnitude 18.0 the total of starlight received is equivalent t o 652 stars of photographic magnitude 1.0. If all the remaining stars a r e included, the equivalent addition is only 48 lst-magnitude stars, giving a total of 700, equal to ahout a hundredth part of full moonlight. T h e corresponding total of stars of visual magnitude 1.0 would he ahout 1,320, which agrees reasonably well with the equivalent total of 1,440 stars (zenith) found hy van Rhijn from direct measurement of the visual brightness of the s k y ; or 1,074 stars outside the earth's atmosphere. Density of stellar radiation = 0.8 X erg/cm'. Cosmic radiation density = 1.3 X erg/cm3 (near the e a rth). T h e number of stars in each magnitude interval is still increasing rapidly at in = 18, but the run in the iiumhers in the second coluinn of the tahle indicates t h at somewhere ahout w z = 30 the numhers hegin to decrease and eventually to approach zero as the limit of the stellar system is reached. T h e extrapolated total number of stars in the system 'given by different investigations ranges from 30 to 100 billion. Th e great inherent uncertainty of this total is f u r t h er increased by the unknown influence of interstellar ahsorption. Practically all the stars visihle to the naked eye lie within 1,000 parsecs of the sun, and most of them a r e more than 100 parsecs distant. In the vicinity of the sun, the majority of the stars lie within 200 or 300 parsecs of the galactic plane; hut along this plane the star-filled region extends far beyond 1,000 parsecs in d l directions, and may reach 30,000 parsecs in t h e g r eat southern star clouds (Shapley). * P r e p a r e d hy F. 1%. S e a r e s , M o u n t Wilson Ohservatory.
T A B L E 866.-BRIGHT
OR W E L L - O B S E R V E D N O V A E
Duratwn 3 mags +y decline >lax >Iin day\ .\pparent magniturles
S n v a a n d year
Aquilac T Aurigae Carinae T Coronae B Cygi?i Geminorurn IIQ Herculis CP 1-acertae KS Ophiuchi Persei Rfi Pictaris CP Puppis KT Serpentis T Pyxidis Tauri
1918 -1.1 10.8~ 8 +2.6 1:'o 430 -9.3 1891 3.8 14.8 100 800 -5.3 +5.7 .12 1843 - .8 7.9 6000: 170 I' - 7 : 1 + 1 . 7 : ,. 1946' 3.0 11 :v 9 +1: .. 850 -7.0 +4.6 .09 1470 -8.9 1920 2.0 15.5 16 1912 3.5 14.7 . . -6.4 +4.8 37 790 +7.5 27 1934 1.4 15 :v 100 230 -5.5 1936 2.1 15.3 9 1350 -8.6 +4.6 25 .. 1933' 4.3 1 1 . 0 ~ 9 1150" -8.01 -1.3 1901 .2 13:v -8.4 +4:v .4 13 470 +4.2 .17 1925 1.2 12.7 150 500 -7.3 1942 .4 117 7 .. 500 : - 8 : r t s . 5 1909" 10.5 [I0 8000: 3300 " 1 3 . 6 ' ' .. .. .. 1944' 6.4 13.6 130 1370 I' -5.4'' t 1 . 6 1054'-5: 15.9 . . . 1180 -16 t 4 . 3 20
*
Expansion velocities in k m / s e c (ahsorntion lines) Prin. cilia1
Diffuse enhanced
Orion
+1500" -2200 -4000 - 400 - 870 -1200
-iio6
....
-4360 - 725 -1400 - 800 -1400 - 318 - 800 -1500t -3200 Note
-1300 - 320 -1000 small
- 94.0 -1100
....
.... -2500 -2100 -1100 -3800
-3566 -
-3760 750 -1500
....
. . ..
-iioo -is00 ....
.. ..
* P r e p a r e d 1,y D. R . JlcI.aunhlin. C-nivcrsitv of Michigan. a. .\lisorption velocities increased with t i m e : N .\ill, t o -1700 k m / s r c ; C P I a c , to --2500.km/wc. 11, i2lriolute magnitu
75s
T A B L E 866A.-MASS
LUMINOSITY RELATION
*
T h e mass-luminosity relation is shown in figure 33, which is based on data by G. P. Kuiper.'" Dots and open circles represent visual and spectroscopic binaries, each component being shown separately. Crosses represent several visual binaries in the cluster of the Hyades. Squares represent the white dwarfs. T h e symbol 0 stands for the sun. Prepared by 0. Struve, University of California, Berkeley. zm Astrophys. Journ., vol. 88, p. 472, 1938.
t
m
-. - 2
*I0
m
..
.*
I
o,
,,I
I/?
'0
2
5
'0
20
y1
WOWl
w
"All
FIG.33.-The
mass luminosity relation for stars.
T A B L E 867.-CLASSIFlCATlON
OF NEBULAE Symbol
I Galactic nebulae-
A Planetaries . . . . . . . . . . . . . . . . . . B Diffuse ...................... (1) Predqfninantly luminous. (2) obscure . (3) Conspicuously mixed . . .
(2) Spirals ( a ) Normal spirals . . . . . (1) Early . . . . . . . . . (2) Intermediate . . . (3) Late .......... (b) Barred spirals . . . . . (1) Early . . . . . . . . . (2) Intermediate . . . (3) Late . . . . . . . . . . B Irregular .................... Extragalactic nebulae too faint to be classified, "Q"
SMITHSONIAN PHYSICAL TABLES
P
e . 8.
N.G.C. 7662
L)
DL DO DLO
S Sa Sb Sc SO
SBa SBc SBc Irr
N.G.C. 6618 Barnard 92 N.G.C. 7023
N.G.C. 4594 2841 " 5457 ' I
N.G.C. 2859 " 3351 l1 7479 N.G.C. 4449
T A B L E 868.-STELLAR
RADIATION MEASUREMENTS
*
759
Radiometric magnitude of any star = visual (or photographic) magnitude of a spectral class A" star giving the same radiometric deflection. If v i r , n t p l . , and ltzpg are, respectively, radiometric, photovisual, and photographic magnitude, then Color Index, C I = (?itprT M ~ , ;~ )heat index, HI,, = i i i p l i - iiz, ; HI,, = w i P g - m,. Spectral class : Henry Draper, revised by 1). Holteit ( D H ) ; by W . W. Morgan ( W W M ) . All measures reduced to zenith at Mount Wilson ; two reflections from fresh silver ; zinc-antimony black thermojunction; rock salt window. Stars of known or suspected variability are rejected from this list. All the stars were in both the Mount Wilson and Harvard observing programs.% The reduction of the Mount Wilson and Harvard data to a common basis has been rather difficult. The following are the principal factors that differ between the Mount Wilson and Harvard observations. (1) The Atmosphere.-There was more water vapor over Oak Ridge than Mount Wilson ; hence, early-type stars would be too faint at Oak Ridge. (2) The thermocouple blacking.-Probably the surfaces were equally "black" in the ultraviolet and visible regions ; the Harvard surfaces were blacker in the infrared; hence, late-type stars would be too faint at Mount Wilson. (3) The cell window.-Rock salt was used at Mount Wilson; fluorite was used at H a r vard. These are equally good throughout the ultraviolet, visible, and infrared to the region of 6 to 8 microns. For longer wavelengths, rock salt is better. The effect of this differelice is in the opposite direction to the thermocouple blacking in (2) above. However, the very small percentage of stellar energy beyond 8 microns and absorption bands in the earth's atmosphere means that the difference in the cell windows has a very much smaller effect than the thermocouple blacking and, therefore, (2) above dominates. A systematic difference exists between the Mount Wilson and Harvard observations which follows a pattern predicted in accordance with factors (1) and (2) above. Therefore, corrections which are usually less than 0.1 magnitudes have been applied. T h e largest, 0.16 magnitudes, is for 51 Gem. This correction brings the two sets of data into better agreement but there remains an apparent difference in zero-point of about 0.13 magnitudes. Since it is impossible to determine which of these two sets of observations is in error, the mean of the Mount Wilscn and Harvard data has been taken, corrected as indicated for factors (1) and (2) above. These mean values are the data given in the m, column. Magnitude *-r
Star
mpv
a And
2.11 2.34 3.00 2.07 2.54 1.78 2.90 77 .14 1.68
P Cas y Peg
p And Cet Per 7 Tau a Tau a Aur p Tau a a
Spec.ral ciass
M agnitude
--7&
my0
m,
2.08 2.12 2.82 2.11 2.67 2.83 3.94 28 4.47 .53 2.43 1.47 2.92 2.86 2.70 -.80 1.03 -.53 1.52 1.66
WWM
B, F, B, K, M, F,
.. .. F, I11 . ...
R5: Ks G, Bs
Spectr al class
+ L -
DH
K, I11 M,, I11 FJ I
. .. .
K, I11 G, I
. . ..
Star
51 Gem a CMi
p Gem
Leo r Leo p UMa a UMa a Cyg p Peg a Peg e
m,,
mpo
m,
4.85 .40 1.13 2.96 4.52 2.34 1.70 1.24 2.25 2.56
...
2.17 .10 .37 2.44 2.77 2.50 1.02 1.17 .ll 2.59
.83 2.31
...
. ..
2.40 309 1.40 4.39 2.53
&
DH Ma
WWM
KO GO M, A; G,
KO 111 G, I1
Fa
....
R V .. ..
.. . . . . .. M, .... A, , . ..
KO 111
* P r e p a re d Iiy I<. M . Emherson, Research a n d Development B o a rd, Washington, D . C . *M P e t t i t a n d Nicholson, Astrophys. Journ., vol. 56, p. 295, 1 9 2 2 ; vol. 68, p. 279, 1928; vol. 78, p. 320, 1933. S t e r n a n d Emherson, i\strophys. J o u rn . , vol. 94, p. 412, 1941.
T A B L E 869.-NONGALACTIC
NEBULAE
Some 400 considered. Distribution of magnitudes appears uniform throughout sequence. For each stage in the sequence the total magnitude ( M T ) is related to the max diameter ( d ) by the formula: M T = C-5 log d. When minor diameter is used, C approx constant throughout sequence ( C = 10.1). Mean absolute visual magnitude -15.2. The statistical expression for distance in parsecs is log I1 = 4.04 0.2 M T . Masses appear to be of the order of 2.6 X 10" X our sun's. Apparently nebulae as far as measured are distributed uniformly in space, one to 10" parsecs3 or 1.5 x lo-'' in cgs units. Corresponding radius of curvature of the finite universe of general relativity is of order of 2.7 X 10" parsecs, about 600 times the distance at which normal nebulae can be detected with the Mount Wilson ]@-inch reflector.
+
SMITHSONIAN PHYSICAL TABLES
760 T A B L E 870.-VARIABLE
STARS, G E N E R A L C H A R A C T E R I S T I C S
* ''"
T h e task of cataloging and naming variable stars was delegated in 1946 by the lnternational Astronomical Union to the Sternberg Astronomical Institute i n Moscow. T h e 1948 General Catalogue lists 10,912 variable stars ; a supplement lists 265 additional variables discovered in 1948. Several thousands of variable stars in glohular clusters, in the Magellanic Clouds, and in the nearest galaxies a r e not included in this catalog, nor a r e thousands of stars whose variability has been announced, hut which a r e not officially recognized pending confirmation. T h e total number of variable-star discoveries announced until 1950 probably amount to 20,000. Classification.-Variable stars, with the exception of eclipsing binaries (see Tahle 879), can he divided roughly into three major groups: (1) Piilsating sfars. T h e variables of this group a r e all giants, located above the main sequence in the Russell diagram. (2) Explosive stars. T h e variables of this group are, as f a r a s is known, dwarfish; located below the main sequence in the Russell diagram. (3) Erratic variables, whose light, fluctuations, mostly of an erratic nature, a r e produced by external causes (nebulosity) or by peculiar phenomena in their atmospheres. P u l s a t i n g stars.-CCcphcids. Usually- divided into cluster-type variables, with periods shorter than one day, and classical Cepheids, with periods longer than one day, although at least five subgroups are indicated. Cluster-type variables belong t o Population 11, have spectra ranging from A to I;, absolute magnitudes close t o zero : most variables found in qlohular clusters belong to this group. Periods range from Od.061 ( C Y Aquarii) to l'l.35 ( a star in the w Centauri cluster), with the greatest concentration around 01.53. Typical variable : R R Lyrae (7".1 - 8".0 ; period O"S7 ; spectrum .4 2 - F O)., About 1,700 galactic objects and 600 stars in globular clusters a r e known to belong to thls group. Classical Cepheids belong t o Population I, have spectra ranging from F to K , with marked dependence on period, and intrinsic luminosities increasing with the period (periodto -3M (ahsolute visual magnitudes). Periods range from luminosity law) from -0".5 ld.13 ( B Q Coronae Austrinae) to 45".2 (SV Vulpeculae), with the greatest concentration around 2'.7. Typical variable : 6 Cephei (3".8 - 4".6, period S'I.37, spectrum F 5 - G 2). About 500 galactic stars and 2,500 stars in the Magellanic Clouds and other extragalactic systems a r e known to belong to this group. For both cluster-type and classical Cepheids the shape of the light curve is a function of the period; the rise to maximum is always faster than the decline. Avcrage visual amplitude 0".75 ; photographic amplitudes 50 percent larger. Radial-velocity curves a r e in phase with light curves (maximum approach at maximum light) ; Average amplitude 30-40 krn/sec. Long-period varia6lcs. Typical variable : o ( M i r a ) Ceti ( P . 0 - 10"l.l : period, 331"; spectrum J 4 6 c ) . Characterized by very large amplitudes (from 4 to 10 magnitudes, visual), S,X,N ) with bright hydrogen emission lines near maximum light, unlate spectra ( M , stable light curves and periods ranging from 120" ( W Puppis) t o 1379' (BX Monocerotis). Greatest concentration of periods around 275". Long-period variables seem to fall into two major groups, whose periods overlap to a great extent. Stars of the first group have nearly symmetrical light curves with moderate amplitudes and periods ranging from 120" to 450"; they seem to belong to Population 11. Stars of the second group have strongly asymmetrical light curve (rise faster than decline), large amplitudes and periods upward of ZOOd; they seem t o belong to Population 1. T h e enormous visual (and photographic) amplitudes a r e accounted for by a shift in the effective wavelength of the radiation with phase and by the formation of strong absorption hands at minimum light in the visilal region of the spectrum. T h e total (bolometric) radiation has an amplitude of only one magnitude. Absolute bolometric magnitudes near -4. About 2,600 stars are known to belong to this group. Scnzivcyrlar rcd variahlrs. Typical variables : Af Cygni (6m.3- 8"I.O ; period 89' ; spectrum M 6). Spectra similar tc. those of long-period variables, except for much weaker, o r entirely absent, hydrogen emission lines. Amplitude mostly comprised between 1 and 3 magnitudes (both visual and photographic). Light curves very irregular, often erratic ; periods ranging from 42d ( T X Tauri) t o 810" (S Persei), hut mostly comprised between 100' and 200"; several unrelated periods often occur in the same star and for many variables periods have only a statistical significance. Then mean brightness often changes slowly, with cycles of 1,000-2,000 days. Absolute visual magnitudes high, between 0 and -4. Their galactic distribution suggests Population 11. Total number of recognized variables 600. RV Tazrri sfars. Typical variable: RV Tauri ( P . 7 - 11"'.8; period 39'.3; spectrum K I V ) . Spectra Cepheid-like, hut light curves similar to those of the preceding group. Deep and shallow minima often alternate. Periods (intervals between two successive
.
Prepared Iiy 1.. Tacchia Massachusetts Institute of Technoloxy. 288 Kukarkin. B. V.. and 'Parenago. P. P.. Fiziceskie Peremennye Zvjozdy, 1937; Gaposchkin, C. P., a n d Gaposchkin, S., Vnriahle stars, 1938; Campbell, I.., and Jacchia, I.., T h e story of variable stars, 1941.
(contiriitrd) SMITHMNIAN PHYSICAL TABLES
76 1 T A B L E 870,VARIABLE
STARS, G E N E R A L C H A R A C T E R I S T I C S (concluded)
minima, irrespective of principal and secondary) range from 16‘S (SX Centauri) to 73’ (R. Scuti). Galactic distribution suggests Population I. Only 60 stars can be safely assigned to this group. Gentiiiorzim stars. Typical variable : U Geminorum (8”.8 E x p l o s i v e stars.--li 14”.0 ; average cycle 97‘). Characterized by long permanence at minimum light, interrupted by brief, sudden explosions which bring the star almost always t o the same maximum magnitude; the time between explosions might vary as from 1 to 4 for an individual star, but the average length of cycles over long periods of time are constant for each star. Average cycle length ranges from 13” ( A B Draconis) to 340’ ( A W Geminorum). A few stars undergo temporary spells of continuous, irregular fluctuations. The amplitude increases from 3 magnitudes for short-cycle stars to 5 magnitudes for long-cycle stars. Spectra are of early type and peculiar ; hydrogen lines in emission at minimum in absorption a t mnximum galactic concentration low for short-cycle variables, greater for long-cycle ones. Group numbers about 70 stars. 2 Camelopardalis stars. Typical variable : 2 Camelopardalis (10”’.5 - 13“.3 ; average cycle 22”.1). Similar to the preceding, but with shorter minima and smaller amplitudes; erratic variation is the rule rather than the exception : Less than a dozen stars are known of this type. Novae, repeating novae, and novaelike stars. Novae a r e stars that suddenly blaze up with startling rapidity and then gradually fade out again. For data on bright or wellobserved novae see Table 866. A repeating (or recurrent) nova, such as T Pyx, has several outbursts, any one of which would have identified it as a nova. A novalike star, e.g., 2 Andromeda, from time to time shows novalike characteristics with the formation of a shell spectrum and displaced absorption lines and later emission lines. Nebular lines are often associated with these objects. E r r a t i c variables.-R Coronae Borealis stars. Supergiants with G and R spectra and an abnormal abundance of carbon i n their atmospheres. For long periods of time (often years) the light remains constant at maximum. At entirely irregular intervals the light is dimmed, probably by a carbon veil, with resulting fluctuations which may reach 9 or 10 magnitudes. Typical stars : R Coronae Borealis (variable from 5”.8 to lSm.O), RY Sagittarii (variable from S”I.9 to 15”’.0 and probably fainter). Only 23 stars are known to belong to this type. Variables assorintrd z&th nchulosities. Stars in gaseous nebulae of the diffuse or of the cometary type, or even in dark nebulae, often show erratic variations with various amplitudes and speeds. At least three subtypes are indicated, typified by the following stars: T Orionis (9“’.6 - 11”.9 ; rapid ; often constant at maximum) ; R Monocerotis (10”’- 14” : slow) ; R W Aurigae (9”I.O - 13”’.5; very rapid, no constant light at any time). About 200 stars can be attributed to one or the other of these groups. P Cyg~iiand Be Stars. These early-type giants are normally quiescent, but occasionally some of them undergo slow fluctuations of moderate amplitude (1” - 4“) which last over a series of years. Typical : P Cygni (3”’ - 6”), active in the 17th century ; 7 Cassiopeiae (lm.6- 3”.0), active after 1936. T A B L E 871.-VISUAL
BINARY STARS
*
A. Visual binary stars are cafaloqrd as follows: 1. “New General Catalog of Double Stars within 120” of the North Pole” (abbreviated: A D S = Aitken Double Stars), by R. G. Aitken, Carnegie Inst. Washington Publ. 417, 1932 (2 vols.) ; contains 17,180 objects. 2. ADS is the successor to BIIS= “A General Catalog of Double Stars within 121” of the North Pole,” by S. W. Burnham, Carnegie Inst. Washington Publ. 5, 1906 (2 vols.) ; this catalog contains 13,665 pairs. About one-third of these (mostly wide objects) are not repeated in A D S . 3. SD.S or “Southern Double Star CataloQ,” from -19” to -90” declination, by R. T . A. Innes, B. H. Dawson, and W. H. van den Bos, Union Observatory, Johannesburg, South Africa, 1927 (4 vols.). 4. Many zctidc double stars of interest are contained in “Measures of Proper Motion Stars,” by S. W. Burnham, Carnegie Inst. Washington Publ. 168, 1913. B. A full discussion of niass dctcrmbiations of visual binary stars is found in “The Masses of the Stars with a General Catalog of Dynamical Parallaxes,” by H. N. Russell and C. E. Moore, Univ. Chicago Press, 1940. C. OrOits of visual binaries are listed in W. H. Finsen, “Second Catalog of Orbits of Visual Binary Stars,” Union Obs. Circ. 100, 1938. Supplementary orbits are found in later Union Observatory Circulars and in the Astronomical Journal. Prepared hy G . P. Kuiper. Yerkes Observatory. SMITHSONIAN PHYSICAL TABLES
762
T A B L E 872.-WHITE
DWARFS AND DEGENERATE STARS
*
7
Star
.
CI
m
V M a 1 . . . . . . . . . . . . 12.3 Eridani B . . . . . . . 9.4 Sirius B . . . . . . . . . . . 8.5 H e 3 ............... 12.0 LDS 275 A ........ 14.7 LDS 275 B ........ 15.0 L 39-44 ............ 17.2 W 489 ............. 14.8 LDS 678 A . . . . . . . . 12.0 o1
P
B
MU
c=l
cgs
14.7 10.9 11.4 11.1
.009: ,018 .034 .002:
...
.012: .005: .012: .014
105--10a 7x10' 5x10' 106--10' 105--106 1O6-IO" loa 106--108 105
m
m
+.69 .O:
DF DA DF DB DC DC
..
-30 +.15
+.I5 +.2:
...
DC DA
+.77 -.14
2!'98 4.08 1.32 .90 .35 .35 .57 3.92 .20
"245 ,200 ,378 ,066
...
... ...
,129
15.4
... ...
...
.ou:
...
p = parallax,
p = proper motion, S p = spectrum, m = magnitude, M = absolute magnitude. A representative selection of white dwarfs is given above, including the two stars for which the masses a r e known ( o p Eri B and Sirius B ) , the bluest white dwarf ( H e 3), the reddest degenerate star ( W 489), the only known double white dwarf (LDS 275), the faintest known white dwarf (I, 39-44) and a typical example of a white component of red-white dwarf double (LDS 678 which has a red component of 13.7 vis with a color index of 1.81). T h e values given for the radii and the densities ( P ) are in most cases very uncertain estimates based o n very approximate parallaxes and estimated masses.
+
* Prepared by W . Luyten, University of Minnesota.
T A B L E 873.-LOW-DENSITY
Star
Type
Orionis . . . . . . . . . . . . . Scorpii A ........... p Pegasi .............. a T a u r i ............... a a
STARS, G I A N T S
*
Visual ahs mag
Density sun = 1
Radius sun= 1
Mass sun= 1
-4.0 -3.5 -1.0 - .4
3 x 10.' 5x10-' 1.5x 1.4x
480 380 160 70
(35)
cM 2 cM2 gM3
gK5
(22) ( 6) ( 5)
* Prepared by W . S. Adanis, Mount Wilson Observatory.
T A B L E 874.-GIANT
AND DWARF STARS*
T h e table gives a list of typical supergiznts, giants, and main-sequence stars. T h e relations between the absolute magnitudes and spectral types of the stars a r e conspicuous and complicated. Along the main sequence iM (visual) falls very rapidly from about -4 for class 0 to + I 4 for M 6 . For identical spectra, the scatter about the mean is of the order of Aln'. T h e normal giants form a sequence with M ranging from about 0 for class G 2 to -1.5 for M 8 with a somewhat greater scatter. Supergiants, with M from -4 t o -7, are found sparingly in all spectral classes. T h e white dwarfs, of which nearly 100 a r e now known, form a widely separated g r o u p with spectra from A (or perhaps B ) t o G and with AB from + l o to +IS. Subgiants, one or two magnitudes fainter than the normal giants, a r e recognizable and the existence of other sequences is indicated by recent precise work. T h e above discussion applies to stars of Population T y p e I, which is found in many parts of the galaxy, the arms of spiral nebulae, and other regions where absorbing interstellar material is present. Population 11, in regions far from such matter, includes no supergiants or hright hlue stars and the relation of the sequences a r e different. This type is found in the globular clusters, the elliptical nebulae, and the central regions of spiral nebulae and the galaxy. Both types occur near the sun. T h e majority of the stars visible to the naked eye a r e giants, since these, being brighter, can be seen a t much greater distances. Classes I; and G comprise the greatest percentage of dwarf stars among those visihle to the eye. T h e dwarf stars of classes K and M a r e actually much more iiumerotis per unit of volume, hut a r c so faint that few of the former, and none of the latter, a r e visible to the naked eye. Prepared by R . E. Wilson, Mount Wilson Ol)servatory, and E. M. Janssen, Harvard College Observatory,
(continued)
SMITHSONIAN PHYSICAL TABLES
T A B L E 874.-GIANT
763
A N D D W A R F S T A R S (concluded)
Typical supergiants, giants, and main-sequence stars Mount Wilson
1950
Star
type
Boss
A
Vis mag h
cB 0
e
3;
K
:
dB 3 cB 5
3cB ; 58
,2; 9"
.9A 0 dA 1 cA2 dA2 gA 5 d'4 5
% ; .9F 2
dF 3 cF5 Df 5 cF8 gF 8 dF 8 dG 0 gG 1 cG 2 sG 5 dG 5 cG 8 .9K 0 dKO cK5 sK 5 dK6 dM 0 .9M 0 cM 1 cM 2 sM 2 dM 2 cM 5 .df 5 dM 5
q q 7
6 7
B
p
a
6 a a a
Ori Ori Ori Aur CMa Per Her Ori Tau Peg CYg Lyr
CYg
CMa
p Tri p Ari Y Roo y Vir
p Cas CMi Per Ser CYg e Hya p Vir 6 Tri a Aur a a y 7
GC 10756 e
Hya Cet Gem
a
Boo
Y K
70 Oph
5 CYg a
Tau
61 Cyg A 61 Cyg B
p And a
Sco
a Ori a
Cet
GC15183 a Her
56 Leo GC %3
1370 1435 1301 1204 1934 838 4162 1250 1304 5944 5048 4722 5320 1732 482 428 3722 3307 12 2008 772 4055 5229 2354 3105 514 1246 2099 3449 752 1717 3662 4571 5431 1077 5433 5434 259 4193 1468 69 1 2935 4373 2915
....
T A B L E 875.-TEMPERATURE
1.8 2.2 3.4 3.3 2.4 3.1 3.9 .3 1.8 2.6 3.O .1 1.3 1.6 3.1 2.7 3.0 2.9 2.4 .5 1.9 3.9 2.3 3.5 3.8 5.4 .2 4.4 3.3 5.0 3.3 .2
4.3 3.9 1.1 5.6 6.3 2.4 1.2 .9 2.8 7.6 3.6 6.0 9.2
5 73; 5 45.4 5 22.0 5 03.0 7 22.7 3 39.4 16 18.2 5 12.8 5 23.1 23 02.3 19 43.4 18 35.2 20 39.7 6 42.9 2 06.6 1 51.9 14 30.1 12 39.1 0 06.5 7 36.7 3 20.7 15 54.1 20 20.4 8 44.1 I1 48.1 2 14.0 5 13.0 7 54.7 13 16.2 3 16.7 6 40.8 14 13.4 18 02.9 21 03.1 4 33.0 20 04.7 20- 04.7 1 06.9 16 26.3 5 52.5 2 59.7 11
A
17 12.4 10 53.4 15 16.9
- l"14' - 9 41
- 2 26 +41 10 -29 12 +47 38 +46 26 - 8 15 +28 34 +14 56 +45 00 +38 44 +45 06 -16 39 +34 45 +20 34 +38 42 - 1 11 +58 52 5 21 +49 41 +15 49 +40 06 h 36 2 03 +34 00 +45 57 -22 45 -22 55 3 11 +25 11 +19 27 f 2 31 +43 44 +16 25 +38 30 +38 30 +35 21 -26 19 7 24 3 54 +36 18 +14 27 6 27 - 7 32
+
+ +
+
+ +
+
IN I N T E R S T E L L A R SPACE
*
2[n
Because interstellar matter is far from being in thermodynamic equilibrium, the temperature of space will depend on the measuring process used. Temperature from energy density of starlight. ........ Color temperature of starlight.. .....................
3°K 10,000 - 15,000"K dilution factor 10-l'
Temperature of gas (kinetic) H I region (hydrogen neutral) ................ 60°K H I1 region (hydrogen ionized) ................ 10,000"K Temperature of grains (internal energy) . . . . . . . . . . . . . 20°K
SMITHSONIAN PHYSICAL TABLES
T A B L E 876.-MOTIONS
764
OF T H E S T A R S *
The motions of the stars show various well-marked features, of which the ellipsoidal distribution and the asymmetry are a consequence of the rotation of the galaxy; the significance of certain other features is not yet fully understood. If we assume the circular velocity around the galactic center (Table 828) as our origin, and plot the individual motions of the stars of any group as vectors from this origin, the ends of these vectors do not form a spherical distribution (as they would if the motions of the stars were at random) but rather an elongated distribution which is more or less asymmetrical and in which the area of highest concentration of the vector points is centered about the origin. If for the moment we ignore the asymmetry, the distribution may be characterized as roughly ellipsoidal and the approximate extent and shape of the distribution may be inferred from the dispersions of the velocity components along each of the three principal axes, u.,, U b , and uc, in km/sec. Spectral group 288 (main sequence)
A 0 to FO to F 5 to GO t o K 8 to
A9 F9 GO K6 M5
UG
Ub
UC
zuoz
(km / sec)
;32? 37
12 16 17 16 25
84 123 134 164 17
180 250 240 270 170
231 27
17 19 :
20 19 :
1300 1800 :
17
(Giant branch)
KO to K 9 M O to M 9
The direction of the a-axis is called the direction of the preferential motion; the two opposite points on the sky at the extremities of this axis are called the vertices. The a-axis for any group of stars is always nearly parallel to the plane of the galaxy. In the case of most groups of stars fainter than eighth magnitude, it appears that the a-axis is directed approximately toward the galactic center a t longitude 325: Among stars brighter than sixth magnitude the direction deviates from the direction of the galactic center toward greater longitudes and the deviation is most marked in the case of the A stars, for which the longitude of the vertex is close to 350: In every case the c-axis is directed toward some point close to the galactic pole. The asymmetry referred to above characterizes the distribution of the components parallel t o the 6-axis. I t is relatively slight when the dispersions are small as with the A stars, but becomes very pronounced in the case of groups with large dispersions, there being practically no large motions in the direction of the galactic rotation (longitude 55"). The last column in the table contains the product of the mean stellar mass (in terms of the sun's mass) and the square of the dispersion along the c-axis. This quantity (analogous to kinetic energy) is practically constant for the various groups of the main sequence but is much larger for the giant branch. The dispersions of velocities for the B stars, the c stars, and the Cepheids are of the order of 10 km/sec and difficult to determine accurately. For long-period variables the dispersions average about 50 km/sec and for the cluster-type variables 90 km/sec. A general card catalog of radial velocities is kept at Mount Wilson Observatory. I t now contains approximately 14,000 entries and will be published in the near future. The proper motions of all stars brighter than magnitude 7.0 and of many fainter stars may be found in the Albany General Catalog. The Transactions of the Yale Observatory contain the proper motions of many thousands of stars down t o magnitude 9.5 and north of declination -30" and two catalogs of the Cape Observatory contain 40,000 proper motions in the zone -40" to -52: * Prepared by A. N. Vyssotsky, University of Virginia. 288Astron. Journ., vol. 53. p. 94, 1948.
SMITHSONIAN PHYSICAL TABLES
765 TABLE 877.-STARS W I T H LARGE SPACE VELOCITY GREATER T H A N 20.0 km/scc. BASED ON PARALLAXES 2 YO05 p80
*
Star
20 C 1321 ..... 20 C 879 ...... H D 134439 . . . . . H D 104800 . . . . . H D 111980 . . . . . H D 177095 ..... H D 160693 . . . . . H D 224618 . . . . . 18 C 560 . . . . . . H D 179626 . . . . . H D 6755 ....... H D 64090 . . . . . . 20 C 825 . . . . . . H D 230409 ..... H D 222766 . . . . . 18 C 3002 . . . . . H D 103095 . . . . . 18 C 2348 ..... H D 113083 ..... H D 33793 . . . . . . 20 C 58 . . . . . . . H D 134113 . . . . . H D 193901 ..... 18 C 756 ...... H D 5223 . . . . . . . H D 148816 ..... H D 219175 ..... H 1) 102158 ..... H D 74000 ...... H D 25329 . . . . . . H D 140283 ..... H D 219962 ..... H D 219617 .....
.
Vis mag
Spec
Par
10.8 10.2 9.4 9.3 8.3 9.4 8.4 9.0 8.9 9.3 7.8 8.2 10.2 10.0 9.7 8.4 6.5 9.1 8.2 9.2 12.3 8.7 8.2 9.2 8.8 7.4 8.3 8.0 9.4 8.6 7.3 6.4 9.0
dG 1 dG 2 dG 2 dG 0 dl: 6 dG 3 dF8 dG 6 dA 8 dF4 dG 0 sdC 0 sdA 4p dG 4 dG 4 dK 0 sdG 5 dl; 1 dF4 sdK 2 sdF 3 dF8 dl.' 5 dF8 R3 dF7 dF5 dG 0 dF5 dKO sdA 5 p gK1 shA 8p
?005 .008 .040 .006 .009 .009 .011 .014 .007 .007 .018 .038 .009 .009 .009 .023 .108 .008 .014 .262 .243 .009 .027 .031 .019 .029 .011 .014 .005 .047 .033 .006 .030
Rad vel km/sec
-178 -138 +295 4- 11 +144 78 40 . 44 +338 . 71 -325 -242 -164 . 19 . 98 . 26 . 98 -240 +227 +242 +263 . 60 -179 -191 -234 . 52 . 32
++
$2:;
. 30 -170 23 + 6
+
..
Revised by H . E . Wilson Mount Wilson Observatory *m Micraika. G., Astron . dachs., vol . 271. p . 265. 1940
SMITHSONIAN PHYSICAL TABLES
.
1
163" 190 273 286 296 246 299 178 187 264 248 294 289 288 188 162 299 23 1 242 243 97 197 34 1 307 275 256 173 162 238 229 179 161 293
Apex ba
-29" +13 - 3 -17 -26 -6 +1;
.
++ 1070
-15 -18 -1 + 1 -10 -12 + 2 +18 -8 -66 +2 1 -13 +I2 +41 -16 -13 +21 +13
2! -10 -6
Vel kmjsec
699 546 521 488 472 433 432 388 380 358 352 345 324 316 307 304 296 276 275 273 264 263 258 243 235 223 223 221 215 214 214 210 202
T A B L E 878.-STARS
766
Star
Spec
Mag
CD -29"2277 ..... 11.5 V X Her . . . . . . . . . . 1 0 5 H D 209621 ........ 8.8 T U Per ........... 1 2 . 1 ~ GC 24145 .......... 6.9 GC 5108 . . . . . . . . . . . 9.1 AR Her ........... 1 0 . 4 ~ sz Gem ........... 1 1 5 H D 6755 .......... 7.8 AC +25"67928 ..... 10.6 GC 20393 . . . . . . . . . . 9.9 20 c 993 ......... 11.5 S Lib . . . . . . . . . . . . 8 . 5 ~ GC 20394 .......... 9.4 S Car . . . . . . . . . . . 6 . 9 ~ BD +30"2611 . . . . . . 8.8 20 C 491 . . . . . . . . . 11.4 BD +72"94 . . . . . . . . 10.1 20 C 58 .......... 12.3 20 C: 1263 ........ 13.4 AC +64"4188 . . . . . . 12.8 20 c 1206 . . . . . . . . 8.5 Luy Ye 24 . . . . . . . . . 12.5 H D 6833 . . . . . . . . . . 7.1 GC 6369 . . . . . . . . . . . 8.5 H D 64090 . . . . . . . . . 8.2 18 C 2348 ........ 9.1 R Z L y r ........... 1 1 . 9 ~ HD 5223 .......... 8.8 R D -17"484 ....... 9.4 GC 17670 . . . . . . . . . . 8 2 LPM 661 . . . . . . . . . . 11 0 H D 26 . . . . . . . . . . . . 8.2 H D 74000 . . . . . . . . . 9.4 R Pic ............ 6 . 7 ~ 1
W I T H RADIAL VELOCITIES GREATER T H A N 200 k m / s e c *
sdl; 6 A6 R3 A5 A4 dA 8 A5 A6 dl: 5 sdF 0 sdC 9 sdG 1 M 2e sdG 2 K 9e dG 2 sdC 6 sdF 2 sdF 3 sdM 1 sdA 8 dF 5 dM 0 dG 5 dK2 dF8 dF1 A2 R3 r: 1 dF 4 sdF 8 SJIG2P dA 9 M Oe
A (1950) h m
5 26.9 16 28.5 22 02.1 3 05.4 17 44.6 4 11.6 15 59.0 7 50.8 1 06.5 20 22.6 15 07.5 16 26.8 15 18.5 15 07.5 10 07.8 15 04.8 8 47.8 1 42.9 0 46.5 21 07.1 13 17.7 20 23.8 21 26.7 1 06.8 5 09.7 7 50.4 17 36.1 18 41.8 0 51.6 2 29.1 12 58.8 17 53.2 0 02.8 8 38.5 4 44.8
D
-29"56' +18 28 +20 48 t 5 3 00 +25 46 +22 14 +47 04 +19 24 +61 17 +24 54 -16 13 +44 48 -20 13 -16 08 -61 18 +30 13 7 49 +73 13 5 10 +59 33 +64 26 9 18 +11 58 +54 28 -45 00 +30 46 +18 35 +32 45 +23 48 -17 13 -27 06 -16 23 8 30 -16 09 -49 20
+ +
+
+
Proper motion
"4 1 .05 .0 1 .05 .06 .54
..
.. .62 3.69 .74 .05 3.68 .12 .02 .67 .25 2.98 2.14 .33 .56 .57 .05 8.72 1.98 1.35 .03 .14 .43 .55 .60 26 .63 .05
Radial velocities km/sec
+540 -390 -381 -380 -362 +338 -335 +330 -325 -319 +306 -301 +294 +292 +289 -279 +276 -266 +263 -260 +252 -247 -247 -244 +242 -240 -240 -240 -234 +233 +226 -216 -213 +204 +204 -~ . .
' Prepared by R . E. Wilson.
SMITHSONIAN PHYSICAL TABLES
Mount Wilson Observatory .
ECLIPSING BINARIES *
TABLE 879.-SPECTROSCOPIC
Mass
Radius Star
Period days
V 444 Cyg ... 4.212 A 0 Cas ...... 3523 y Cyg 2.996 S Z Cam ..... 2.698 AH Cep ..... 1.775 6 Ori ........ 5.733 V 478 Cyg ... 2.881 VV Cep ...... 7430 V Pup ....... 1.454 V 470 Cyg ... 1.873 1.446 p' s c o ........ TT Aur ..... 1.333 EO Aur ..... 4.066 2.051 u Her ........ 2.729 CW Cep ..... 2.029 A G P e r ...... 1.210 SX Aur ...... E Aur ........ 972.15 3.452 U CrB ....... 1.677 U Oph ....... 1.849 V 599 Agl . . . z Vul ........ 2.455 1.950 6 Agl ........ 3.063 T X UMa . . . . p Per ........ 2.867 4.135 AR Aur ..... p Lyr ........ 12.908 3.381 U Sge ....... .718 GO Cyg ...... 3.960 p Aur ........ 1.813 TV Cas ...... 1.779 RX Her ..... 1.677 MR Cyg ..... 3.378 W X Cep . . . . . 2.060 T X Her ..... 1.605 CM Lac . . . . . 5.905 UX Mon ..... 12.208 RX Gem ..... 2.525 WW Aur . . . . ,648 S Aut . . . . . . . . 3.993 Z Her ....... 4.798 R S CV . . . . . . 2.904 V Z H y a ..... .334 WUMa . . . . . . 4.183 W Z Oph ..... U V L e o ..... ,600 R T And ..... .629 t Boo ........ .268 4.630 WW Dra . . . . 1.983 A r L a c ...... 5.074 R T Lac ...... .408 A H V i r ..... ,814 Y Y Gem .....
........
2 L
SP 1
Ri
SP
2
m
8.4 5.8 7.0 7.0 6.6 2.4 8.9 6.6 4.5 8.7 3.0 8.1 7.6 4.6 7.6 6.5 8.2 6.6 7.6 5.8 6.5 7.0 5.0 6.8 2.2 5.8 3.4 6.4 8.3 2.1 7.3 7.1 8.5 9.1 8.3 8.3 8.7 8.5 5.7 8.8 7.2 8.0 9.2 8.3 9.7 8.5 9.0 6.6 8.8 7.3 8.8 9.7 8.6
06 0 8.5 0 9 BO BO BO B .5 B B1 B2 B3 8 3 B3 B3 B3 B3 B 3.5 B6 8 5 B5 B5 B3 B8 B8 B8 B9 cB 9 B9 B9 A0 A0 A0 A0 A2 A2 A2 A3 A4 '47 A8 P2 F4 E5 E8 GO GO GO
G2
gG 2
G5 G9 KO M1
WN6 0 8.5 0 9 ;( );
(E
2!5 cM 2 B3 B2 B6
B3 B4 B 3.5 cK4
'.;z
);
B8
...
B8 "F 2
A0
... G2 ...
A0
...
A0 ( A 0) ( A 5) A2 A8 G2 KO A7 A8 ;( );
F3 F8 GO G2 K1 G2
""K K1 KO M1
( i n 0)
13 16 5.9 12.7 6.1 17 7.1 13 6.1 6.0 5.2 3.8 13 4.4 4.5 2.7 5.1
3:3.1:
7.8 4.6 3.6 2.1 2.7 1.8 47 4.5 2.0 2.6 2.4 2.3 3.2 3 1.6 1.3 1.8 2.2 2.2 1.4 1.5 1.6 1.3 .8 1.3 1.1 .8 .7 4.8 1.8 4.9 1.3 .6
767
R? (in
0)
...
10 5.9 5.6 6.1 10 7.1 1200 5.5 7.2 5.7 3.4 16 4.4 4.0 2.6 4.4 200 5.5 3.0 4.4 4.3 3.6 3.4 2.8 1.8 31 5.8 1.4 2.6 2.5 1.8 3.6 3 1.6 1.7 6.6 5.5 2.2 1.1 3.1 5.3 1.o .6
1.2 1.2 1.4 .6 8.3 3.0 4.9 .8 .6
(ifb)
(i,M6,
Ref
35 31 17.4 36 16.5 26 15.4 33 16.6 13 14.0 6.7 27 6.8 10.0 5.0 10.7 10 6.4 5.3 12 5.3 6.8 2.8 2.3 2.6 52 6.7 1.6 2.4 1.7 2.1 3.0 1.0 2.0 2.0 3.4 3.1 2.2 1.o 1.5 1.9 1.2 1.o 1.4 I .3 1.5 1.o 3.5 1.4 1.o 1.4 1.o
20 29 17.2 10.3 14.2 10 15.2 47 9.8 11 9.2 5.3 27 5.4 9.8 4.4 5.6 22 2.4 4.6 6.4 2.4 5.4 .9 .6 2.3 43 2.0 1.3 2.4 1.0 1.9 2.6 1.o 1.8 1.5 1.5 .6 1.9 .9 1.3 1.7 1.1 .9 1.3 1.2 1.0 .5 2.5 1.4 1.9 .6 .9
a
180
b C
d e f
s
h
t
I
k 1 m
! 1
0 P q
r
S
t U
V W
C W X
Y Z
a1 bl cl d l el
fl gl 11 1 r il 9
L:
11 ml nl 01 P l q l
kl rl sl t l
Prepared by Z. Kopal Harvard College Observatory. h, Wood, Astrophys. Keferences: a , Keep'ing, Pub!. Dominion Astrophys. Obs., vol. 7 , p. 349, 1947. C , Dugan, Princeton Contr., No. 12, 1931. d, Kopal (unpublished). e, Journ., vol. 108, p. 28, 1948.
(coirtiitued)
SMITHSONIAN PHYSICAL TABLES
768
T A B L E 879.-SPECTROSCOPIC ECLl PSI NG BI N A R l ES (concluded)
Huffer and Eggen Astrophys. Journ., vol. 106, 313 1947. f Luyten-Struve-Morgan Yerkes Publ. vol. 7 4, 1939. h, Geodicke, Michigar; g,'McDonald, Publ. Dominion .Pstrophys. Obs., vbl. 7, p. 135, 1949. ubl., vol. 8. No. 1. 1939. I , Popper, Astrophys. Journ., vol. 97, p. 394, 1943. j, Gaposchkin, Astron. Tourn.. vol. 53. n. 112. 1948. k. Stihbs. Monthlv Notices. Rov. Astron. SOC..vol. 108. n. 398. 1948. 1. Tov
gt.
~~
Astrophys. Journ. vol. 105, p. 217, -1917. 6 , Kopal, Astrophys. Journ., vol. 93, p. 92, 1941. x. Joy, Astronhvs. Tourn..' vol. 71. n. 336. 1930. v. Pierce. Astron. Tourn.. vol. 48. 0. 113. 1939. z. Piotrowski. As!rophks. sourn.; vol. 1 0 8 , ' ~ . 510, 1918; Sm.ith. Astrophys. JoGrn., v d . 108. p. '504, 1948. a 1, McDiarmid; Princeton Contr. No. No, 7, 1924. t) 1, Wood, Astrophys. Journ., vol. 110, p. 465, 1949. c 1, Fracastaro, Arcetri Pulil.. v h . 55, 37, 1937. d 1, Sahade and Cesco, Astrophys. Journ., vol. 102, p. 128, 1945. g 1, Struve, f 1, Wachmann. e 1. Baker, Laws Bull., 31, 1921. Wachmann, Astron. Journ., vol. 259, p. 323, 1936. 946. h 1, Gaposchkin. Astrophys. Journ., vol. 104, p. 376, 1946. Astrophys. Journ. vol. 106, p. 255, 1947. Ii I , JOY, Joy, AstrophGs. Journ., vbl. vol. 64, p. 293, 1926. 1 1, Sitterly, Princeton n Contr.. Contr., No. 11,-1930. 11, 1930. k 1. k1. Wood, Princeton Contr.. No. 21. 1946. 1946 11. Huffer. Astroohvs. Tourn.. vol. 79. n. 369. 1934.. m 1. GaDoschn 1,' Gaposchkin, Asirop,ys. Journ., voi., 104, p. 370 1946. . p 1, kin H a r v a r d Bull. Nb. 907 '1938. E d e n , iktrophys. journ., vof. 108. p. 15. 1948. q 1, Plant, ISS. Leiden, 1939. r 1 Fowier Astrophys. s 1, Chang, .\strophys. Journ., vol. 107, p. 96, 1948. t i, Kuipe;, Astrophys. p r n . , vol. 52, p. 261, 1920. ourn., vol. 88, p. 456, 1938.
&.
T A B L E 880.-SPECTROSCOPIC
BINARY STARS
*
These binary systems were di>covered and investigated by measuring the Doppler displacements of the spectrum lines. All except the widest systems are too close t o each other to he observed a s double stars through the telescope. T h e data given a r e from J. H. Moore's "Fifth Catalogue of Spectroscopic Binaries." 2u1 In the table a designates the semimajor axis of the orbit in kilometers and refers to the center of gravity of the system; i is the inclination of the orbit plane t o the plane of the s k y ; and llz designates the mass of each component. W h e n both components of a binary system are bright enough to record their spectral lines, individual mass functions can be derived and these a r e shown in column 8. When only the spectrum of one star is visible a more complicated mass function is obtained involving the total mass of the system and the mass ratio. Several systems in the table a r e eclipsing stars and for them the inclination is nearly 90: Hence for them the quantity sin' i in columns 8 and 9 is nearly equal t o 1. a sin i 100 km
i
m2s sin3 i
Period days
Eccentricity
.1 .7 .6 .3 .4 .02 .OO .3
M1
2.08 6.91 y r 29.6 y r 27.1 vr 973 104 1.49 120 4.0 4.39 2.93 9.21 340 y r .81
V Puppis . . . . . . . . . . . 4.1
B1
1.45
.OO
W Ursae Majoris . . . 8.3
F8
.33
.oo
. . . . . . . . . . 1.2
B2
4.01
.1O
e Aquilae . . . . . . . . . . . 3.4
8 9
17.12
.61
:::: { -..j i:;"6 { %: { ::: ::; ... !:;: { :::: ...
Y Cygni . . . . . . . . . . . . 7.0
09
3.00
.14
... ...
Star
Mas
13 Ceti A . . . . . . . . . . 5.6 13 Ceti A B . . . . . . . . . 5.2 a U r s a Minoris . . . . . 2.5 e Aurigae . . . . . . . . . . 3.1 [ Turigae . . . . . . . . . . . 4.9 a Aurigae .......... .2 VV Orionis ah . . . . . 5.3 VV Orionis a h c . . . . . . . . p Aurigae . . . . . . . . . . 2.1 29 Canis Majoris . . . . 4.5 ' a Geminorum . . . . . . 2.8 'a Geminorum . . . . . . 2.0 ' a a2 Gem . . . . . . . . . Y Y Gem . . . . . . . . . . . 9.0
t!r
+
a Virginis
Class
F7
...
1: 7 F2 K 4+B G1 R2
... A0 07 A8 A3
...
.oo .O6 .oo .SO .43 .OO
Prepared by 0. Struve, University of California, Berkeley. Lick Obs. Bull. No. 521, 1949.
t System of Castor.
SMITHSONIAN PHYSICAL TABLES
1.06
.... 466 2014 294
(43;
2.7 20.5 5.9 13.0 1.28 1.42
....
m, sjn3
m2 sins i ( m 1 - t m - 2
....
.... .... ....
(i:d$ .... .... .._. .... .... ....
.04 3.34 1.03
... ...
.36 .02 2.21 4.60 ,010
...
...
... ... ... ... ... ...
{
...
1
{ 1;:;
.o 1
...
{ :$
...
769 T A B L E 88I.-PROPERTIES
A N D C L A S S I F I C A T I O N O F STAR C L U S T E R S *
Star clusters fall into two distinctly different types: Globular.-Typical, Messier 13 ; open, Messier 4 ; elongated, Messier 19. Have strong central condensations, rich in faint stars. Scattered widely in latitude, restricted in longitude. Many variables-nearly 1,300 in 62 clusters. Radial velocities > 100 km/sec. All more than 5,000, and one-third more than 50,000 light-years away. Very few new ones found-about 100 known. Very definitely part of galaxy. Although concentrated toward its plane, only 2 within 4" of it (obstruction by interstellar dust clouds). Diameters about 35 parsecs. Many stars, tens and hundreds of thousands. Many giants and supergiants with maximum luminosity about -2.5. Galactic.-Very varied : rich, M 11 ; irregular, M 35 ; nebulous, Pleiades ; accidental, M 103. Almost exclusively in Milky Way, all longitudes ; apparently no variables. Radial velocities rarely > 40 km/sec, generally less. Almost all less than 4,000 light-years distant. Almost exclusively in galactic region devoid of globulars. Tens and hundreds, rarely thousands of stars. Hyades type, yellow stars as dominant as A type. Pleiades type, almost all B's and A's, on Russell's main sequence. Prepared hy H . Shapley, Harvard University.
Part 1.-Globular
star clusters
This table contains those with galactic latitudes 5 20", for which space absorption can be evaluated and distance correctly estimated (also the giant cluster Omega Centauri in lower latitude)."* Galactic NGC
104 (47Tuc) . 288 . . . . . . . . . . 362 . . . . . . . . . . 1261 .......... 1851 . . . . . . . . . . 2419 . . . . . . . . . . 4147 . . . . . . . . . . 4590 ( M 68) . . . 5024 ( M 53) ... 5053 . . . . . . . . . . 5139 ( w Cen) . . 5272 ( M 3) . . . . 5466 . . . . . . . . . . 5634 .......... 5694 . . . . . . . . . . 5897 . . . . . . . . . . 5904 ( M 5 ) . . . . 6205 ( M 13) ... 6218 ( M 12) . . . 6229 .......... 6254 ( M 10) . . . 6341 ( ~ 9 2 j. . . 6752 . . . . . . . . . . 6809 ( M 5 5 ) . . . 6864 ( M 75) ... 6934 . . . . . . . . . . 6981 ( M 72) ... 7006 . . . . . . . . . . 7078 ( M 15) ... 7089 ( M 2 ) . . . . 7492 ..........
RA h
(1900) m
0 19.6 0 47.8 0 58.9 3 9.5 5 10.8 7 31.4 12 5.0 12 34.2 13 8.0 13 11.5 13 20.8 13 37.6 14 1.0 14 24.4 14 33.8 15 11.7 15 13.5 16 38.1 16 42.0 16 44.2 16 51.9 17 14.1 19 2.0 19 33.7 20 .2 20 29.3 20 48.0 20 56.8 21 25.2 21 28.3 23 3.1
Dec
-72"38' -27 08 -71 23 -55 36 -40 09 +39 06 +I9 06 -26 12 +I8 42 +18 13 -46 47 +28 53 +29 00 - 5 32 -26 36 -20 39 + 2 27 +36 39 - 1 46 +47 42 - 3 57 +43 15 -60 48 -31 10 -22 12 7 04 -12 55 +15 48 +11 44 - 1 16 -16 10
+
I.(inx
272" 157 268 237 212 148 226 269 305 310 277 8 8 310 299 312 332 27 344 40 343 36 303 336 347 20 3 32 33 21 22
I.at
Apparent Distance (kilomagniparsecs) tude
-45" -88 -47 -51.5 -34.5 +26 +79 +36 +79 +78 +15 +78 +72.5 t48.5 +29 +29 +46 +40
(4.5) 8.96 8.0 9.5 7.72 11.51 11.01 9.12 8.68 10.9 (4.7:) 7.21 10.39 10.8 10.87: 9.61 7.04 6.78
-4-22 +35 -26.5 -25 -27 -20 -34 -21 -28 -36 -64
1;: 7.64 7.30 7.2: 7.08 9.50 10.01 10.24 11.45 7.33 7.30 12.33
2:
7.6 14.5 10.0 22 14 56.2 20.0 13.5 20.2 17.4 6.8 12.2 17.0 32 33.1 13.8 10.1 9.5 8.3 30 8.3 10.3 5.8 5.8 42 18 16.6 44 11.5 13.8 25.1
Ahsolute magnitude
No. of vanables
-10.2 8 - 6.8 2 - 7.3 14 - 7.2 0 - 8.1 3 - 7.7 36 - 5.5 4 - 6.8 28 - 7.8 42 - 5.3 10 -10: 168 - 8.2 186 - 5.8 18 - 6.7 7 - 7.1 : 0 - 6.5 0 - 8.0 97 - 8.1 15 - 7.3 1 - 7.1 21 - 7.6 2 - 7.8 16 - 7.4: 1 - 7.7 2 - 8.9: 11 - 7.0 51 - 6.6 31 - 7.3 20 - 8.3 66 - 8.5 17 - 4.7 9
ma Shapley, Proc. Nat. Acad. S c i . , vol. 30, p. 63, 1944; Pop. Astron., vol. 5 7 , p. 9, 1949. For numher of variables see Sawyer, Helen I%., Puhl. David Dunlap Obs., vol. 1, p. 388, 1947.
(continued)
SMITHSONIAN PHYSICAL TABLES
770 A N D CLASSIFICATION O F STAR CLUSTERS (concluded)
T A B L E 881.-PROPERTIES
P a r t 2.-Galactic
star clusters
Columns 2 through 6 from Shapley."* Distances from R. J. Trumpler, unpublished. Linear diameters computed on basis of revised distances. 1 kiloparsec = 31x00" km = 3X107 light-years. Galactic % *r-
NGC
RA (1900) h m
663 . . . . . . . . 1 39.2 869 . . . . . . . . 2 12 884 . . . . . . . . 2 15.4 Pleiades . . . 3 41 Hyades . . . . 4 14 1960 . . . . . . . 5 29.5 2099 . . . . . . . 5 45.8 2632 . . . . . . . 8 34.3 Me1 111 . . . . 12 20 6705 . . . . . . . 18 45.7 7654 . . . . . . . 23 19.8 ~3
Dec
+60"44' +56 41 +56 39 +23 48 +15 23 +34 04 +32 31 +20 20 ;t26 40 - 6 23 +61 03
Long
Lat
98" 102.5 103 134.5 147 143 145 173.5 200 355 80.5
.4" - 3.1 - 3.1 -22.3 -22.6 2.4 4.5 +34.0 +85.4 - 4.2 .5
+ +
+
Diameter & Ayg L inear pc
11 36 36
5.8 15.7 15.7
Distance (kiloparsecs)
No.
star s
80
..
... ... ...
12 20
3.5 5.8
60 150
..
..
... ...
3.8 4.9
200 120
.. ..
..
10 12
..
1.8 1.5 1.5 .15 .04 1.0 1.0 .15 .07 1.30 1.40
..
..
S t a r clusters, p. 228, McCraw-Hill, 1930.
T A B L E 882.-OUR
GALAXY, I T S CENTER AND R O T A T I O N *
The center of the galaxy apparently lies among the dense Milky Way clouds in Sagittarius, at a distance of about 9,000 to 10,000 parsecs from the sun. About this center the sun revolves with a period of some 200 million years at an orbital speed of nearly 300 km/sec. The amount of matter within the sun's orbit is probably more than 200 billion times the sun's mass. In the table, A is the differential orbital radial velocity per kiloparsec of distance from the sun, rA is the maximum group velocity for a distance r , and 1, is the longitude of the galactic center. The sun is about 33 parsecs above the galactic plane.""
Stars
No.
0-M . . . . . . . . . . . . . . . 210 0 - B 7 . . . . . . . . . . . . . . 849 Interstellar . . . . . . . . . 261 R-I< . ..... .. . . . . . 3786 . . . . .... .. ... . P G C and 18 C . . . . 4233 K . . . . . . . . . . . . . . . . . . 392 Plan Neb . . . . . . . . . . . 110 Cenheids . . . . . . . . . . . 156 0 B. Cenh. c. e a s . . . . . . . c . . . . . . . . . . . . . . . . . . . 205 05-I3 5 . . . . . . . . . . . . 957 Irreg var ........... 116 1
~
.
l
Y I
Vis mag limit
8.0 7.5 8.6
.. ..
7.5 ..
14.1 8.4 6.4
..
Max
Distance k pc
.2.2.4-
A km/sec km sec-' kpc-1 rA
1.1 1.4 1.2
35 22.2 13.5
.2 .5--12.0 .4- 2.3 2--10.0 .2- 1.3 .3- 1.1 .5
264 39.4 39.6 26.6 18.8 9.5
... ...
...
...
19.0 15.0 16.6 15.0 15.0 17.0 14.0 20.9 17.7
... ... ...
10
Dist to center kpc Source
324 324.4 331.7 324
6.3 10.0 .. 6.5 8.8
17 333.0 325.3 326.0 324.4
9.4 10.0 9.4
325.7
..
....
2(15
a
b c d
.. ..
..
k 1
-
PI-el>are(l11:) A . H . Joy. Mount Wilson Ollservatory. Gerasimif, T.uyten, Proc. Na t . Acad. Sci., vol. 13, p. 180, 1927. n l s a , Oort. ISull. Astron. Inst. Netherlands, vol. 4, p. 83, 1927. 1). Plaskelt, Pearce. Publ. Dominion 167, r , Plaskett, Pearce, Puhl. Dominion Astrophys. Obs.. vol. 5, Astrophys. 0l)s.. vol. 5. p. 241, 1936. e, Wilson, R., k t r o n . d. I.indl)lail, Monthly Notices, Roy. Asti-on. SOC., vol. 90, p. 503, 1930. 1933. g, Ber man, f , Retlman. Puhl. Dominion Astrophys. Ohs.. vol. 6 . p. 27, 1931. Tourn.. vol. 40, 1). 121. 1930. h. Jov. Astr-ophys. Journ.. vol. 89. p. 356, 1939. 1, Wilson, 1,ick 01,s. Dull.. vol. 18, p. 57, 1937. k. Wilson, Astrophys. Jour n., vol. 94. p. 12, 1941. I , Wilson, Astrophys. Tourn.. vol. 93. p. 212. 1941. Astrophys. .lourn., vol. 96, p. 371, 1942. "1
SMITHSONIAN PHYSICAL TABLES
OF S T A R S *
T A B L E 883.-ROTATION
771
The maximum component ( v sin i) along the line of sight of the equatorial velocity v of rotation is found from the distortion of a n absorption line produced by differential Doppler effect across the observed hemisphere. For stars in the following groups, v 50 km/sec very rarely, and 'J 50 km/sec usually : supergiants, giants ; main-sequence stars later than 1; 5 and not close spectroscopic binaries. For main-sequence stars of early type, and not spectroscopic binaries or cluster members, the distribution function f ( v ) is found to be well represented by the formula f (v) = ( j / G ) { exp r-j' (v- vl)'l exp 1-j (v vl)'l 1, where the parameters j-', vl, and V have the following values :
>
<<
+
+
Spectral t y p e
j-' (km/sec) vl (km/sec) 5 (km/sec)
Be
0-B
A
FO-FZ
70 350 348
63 95 94
107
90 0 51
107 112
In an idealized Roche model, rotational instability sets in a t v = 560 km/sec. The Be stars are surmised to he rotationally unstable B's. Number of B 8's per B 8e = 123; number of ( B 0-B 5)'s per ( B Oe-B 5 e ) = 15. In the Pleiades and in h and x Persei, v for B's IS 2 X 5 for noncluster B's. For 13 Pleiades earlier than B 9, number of B's per Be = 3. In many close spectroscopic binaries of both late and early types, the components rotate with the orbital period. In some eclipsing systems, the sense of rotation is found from the Doppler shift of an absorption line at partial phrase. The sense is always that of the orbital motion. For the sun, v = 2.1 km/sec.
-
.
P r e p a r e d by A. J. Deutsch, H a r v a r d University.
T A B L E 884.-TRANSMISSION
O F L I G H T T H R O U G H SPACE
*
The obscuring matter in space is too irregularly distributed to be described by a mean extinction coefficient for the galaxy. For bright Milky Way regions a minimum value of 0.2 m/kpc has been found.n4 Photoelectric measurements by Stebbins and Whitford indicate that the wavelength dependence of the interstellar extinction is essentially the same throughout the galaxy. Their results are given with the table. See references to Oort and Strohrneier for possibility of variations in bright and obscured regions.
3200 3550 4220 4 880
3.12 2.83 2.37 2.05
1.307
1.18
1.oo .81
5700 7190 10300 21000
1.75
1.39 .97 .48
.64 .35
.oo
--.25t
An unknown constant must be added to these values to give the actual extinction. T h e scale has been adjusted arbitrarily to give 1 mag differential extinction between h 4200 and 10,300. A value of 4 for the ratio of total photographic absorption to international color excess IR = Arrm/(Alroo - A,,,,) I is obtained by extrapolation of the above table to l/X = 0. Most observational determinations are between 3 and 5."O Light from distant stars shows polarization up to 5 percent, approximately proportional to reddening. Plane of polarization variable hut generally perpendicular t o galactic plane."' P r e p a r e d Iiy B. Donn, H a r v a r d University. t P r e l i m i n a r y values, c u r r e n t l y u n d e r investigation by W h i t f o r d . .. Stebbins, Huffer, a n d W h i t f o r d , Astrophys. Journ., vol. 96, p. 209, 1939; Bok, Pop. Astron., vol. 5.2. p. 261, 1Y44.
' 8 2 Stehhins a n d W h i t f o r d , Astrophys. Journ., vol. 98, p. 323, 1943; W h i t f o r d . Astrophys. Journ., vol. 107, p. 102, 1948. O o r t , A n n . d'Astrophys., vol. 1, p. 91, 1938. 28Q Strohmeier Zeitschr. Astrophys. vol. 1 7 p. 83 1939. 90 Greenstein,' Astrophys. Journ., &I. 87, p.' 151, i 9 3 8 ; O o r t , Bull. Astron. Inst. Netherlands, vol. 8, p. 308, 1938; Stelihins. ilstrophys. J o u r n . , vol. 90, p. 209, 1939; v a n R h i j n , Groningen Puhl. 51, 1916; W e a v e r Astrophys. Jourii. vol. 110 p. 190 1949. 801 Hail, Science, vol. 106, p. 166,' 1949; H i l t n e r , Science. vol. 109, p. 165, 1949, Astrophys. Journ.,
1949.
SMITHSONIAN PHYSICAL TABLES
*
TABLES 885-899.-OCEANOGRAPHY
772
T A B L E 885.-SOME
D A T A O N THE E A R T H A N D I T S S U R F A C E P a r t 1.-Dimensions
'The earth is a great oblate spheroid with the oceans making up about 71 percent of the area. T h e dimensions of the earth are as follows : Equatorial radius ............ Polar radius . . . . . . . . . . . . . . . . . Area of surface. . . . . . . . . . . . . . . Volume of geoid ..............
6378.388 km 6356.912 km 510,100,934 km2 1,083,319,780,000 kma
The surface consists of: Oceans and seas.. ............ 351.059X10" km2or 70.8 percent 148.892X10"km20r29.2percent Land ........................ The land surface is of various elevations above sea level, the mean being about 840 m, while the average depth of the three great oceans and adjacent seas is about 3800 m (Table 886). The highest elevation and the lowest elevation in each continent are given in P a r t 2. P a r t 2.-Area Area 100 km2
Africa ............ North America . . . . South America . . . . Asia . . . . . . . . . . . . . . Europe . . . . . . . . . . . Australia .........
298 21.5 17.6 44.0 9.7 7.7
T A B L E 886.-SEA-WAVE
Wind duration in hours
and elevation o f continents
Highest mountain
Height
Kiho McKinley Aconcagua Everest Elhrus Korciusko
5970 6150 6960 8880 5640 2230
133 85
Libian Desert Death Valley Sea level Dead Sea Caspian Sea Lake Eyre
...
392 28 12
H E I G H T I N F E E T FOR V A R I O U S W I N D V E L O C m l E S AND DURATIONS Wind velocity in knots n
6 12 24 48
Depth m
Lowest point
m
10
20
30
40
50
2
5 7
10 13 17 22
14 20 30 35
20 30 40 45
2 2 2
9 10
60
25 35 55 70
Waves consistently higher than the values given are not found because stronger winds blow the tops of the waves off. Isolated waves up to 80 feet are due to the addition of two or more crests. One of the longest swell periods recorded was 23 seconds. Accordinq to the relations given, its length in deep water would equal 2,650 feet, and its velocity 69 knots. A 28-second swell has been recorded near Cape of Good Hope. Its length must have been almost three-quarters of a mile and its speed 84 knots. T A B L E 887.-APPROXIMATE H E I G H T O F S W E L L I N F E E T A T VARIOUS DISTANCES F R O M T H E STORM AREA Distance from storm area in nautical miles 0
500
5
2
1000
1
2000
.5
3000'
-
Tables 888 to 894, and 897 prepared by R . H . Fleming, U. S. Hydrographic Office. SMITHSONIAN PHYSICAL TABLES
773 T A B L E 888.-AREA,
VOLUME, A N D M E A N D E P T H OF OCEANS AND SEAS:" Area
10" km2
82.441 165.246 73.443 321.130 14.090 4.319 American Mediterranean ........... 2.966 8.143 29.518 ................................ ,422 1.232 .438 ,239 2.331 31.849 ,575 .......................... .075 .lo3 .238 ,798 2.268 1.528 1.008 1.249 ......... Gulf of Californ ......... .162 ,075 8.079 39.928 106.463 179.679 74.917 361.059
Volume 108 kma
323.613 707.555 291.030 1.322.198 16.980 9.573 4.238 9.873 40.664 .023 ,158 .215 ,006 ,402 41.066 .054 ,004 ,006 ,030 .694 3.259 1.279 1.361 .235 .132 .005 7.059 48.i25 354.679 723.699 291.945 1,370,323
Mean depth m
3.926 4;282 3,963 4,117 1;205 2.216 11429 1,212 1.378
55 128 491 25 172 1,289 94 54 60 127 870 ,437 838 ,350 188 813 70 874 1,205 3,332 4,028 3,897 3,795
Mean elevation of land = 840 m Mean depth of oceans = 3,800 m = 2,440 m Mean sphere depth Continental shelves extend out with small gradients to depths of about 100 to 150 m. Average width about 30 miles but varies from zero to several hundred. Continental slopes have about 2" to 3" inclination. Volcanic islands, fault scarps, etc., may have slopes as steep as similar features on land. Greatest depths known are in the Pacific Ocean--10,800 m Deepest sounding in the Atlantic Ocean is 9,200m Deepest sounding in the Indian Ocean is 7,450m Greatest depths occur in troughs or trenches paralleling mountainous coasts and insular arcs. These areas are centers of seismic and volcanic activity. Topography of the ocean floor is in general similar to major features found on land. Submerged features such as the Mid-Atlantic Ridge are comparable in size and extent to the combined Rockies and Andes Mountains. In the Pacific are hundreds of isolated guyots, flat-topped seamounts rising thousands of feet from the ocean bed with minimum depths of 1,000-2,000m. Many isolated seamounts rise more than 3,000m from the sea floor. Continental and insular shelves and slopes are not regular but generally show topographic relief such as shoals, terraces, canyons and valleys. Certain areas such as the Mediterranean, Black Sea, Sea of Japan, Red Sea, etc., are isolated at depth by ridges separating the deep water from the adjacent sea or ocean. 802 Reprinted by permission of the publishers from The oceans; their physics, chemistry, and general biology, by H . U. Sverdrup, Martin W. Johnson, and Richard H . Fleming. Copyright 1942 by PrenticeHall, Inc.
SMITHSONIAN PHYSICAL TABLES
774 T A B L E 889.-PERCENTAGE
AREA OF D E P T H ZONES I N T H E O C E A N S *
~~
Depth interval (m)
0- 200 200-1000 1000-2000 2000-3000 3000-4000 4000-5000 5000-6000 6000-7000 >7000
Excluding adjacent seas
Including adjacent seas A
Atlantic
13.3 7.1 5.3 _ . 8.8 18.5 25.8 20.6 .6
...
Pacific
Indian
5.7 3.1 3.9 5.2 18.5 35.2 26.6 1.6 .2
4.2 3.1 3.4 7.4 24.0 38.1 19.4 .4
...
All oceans
7.6 4.3 4.2 6.8 19.6 33.0 23.3 1.1 .1
7
Atlantic
Pacific
I ndian
5.6 4.0 3.6 7.6 19.4 32.4 26.6 .8
1.7 2.2 3.4 5.0 19.1 37.7 28.8 1.8 .3
3.2 2.7 3.1 7.4 24.4 38.9 19.9 .4
...
.. .
All oceans
3.1 2.8 3.4 6.2 20.4 36.6 26.2 1.2 .1
F o r reference., see footnote 302, p. 773.
T A B L E 890.-PHYSICAL
P R O P E R T I E S O F SEA W A T E R (Fig. 34)
T e m p e r a t u r e s in the sea range from -2" to 30°C. The lower limit is set by the formation of ice and the higher limit by the balance between incoming radiation, back radiation, and evaporation. P r e s s u r e s in the sea vary from zero at the sea surface to about 1,000 atm in the greatest depths (10,000 m ) . Standard unit is the bar = 10' dynes/cm2. Approximately 10 m of sea water = 1 atm. C o n c e n t r a t i o n of the dissolved constituents varies from nearly zero in river mouths to 40"/,, (parts per thousand) in isolated seas in arid regions. In most ocean waters the total solids are between 33 and 37"/,,. In addition, sea water contains dissolved gases, dissolved organic matter, and variable amounts of particulate material of biological or terrigenous origin. S a l i n i t y is defined as the total amount of solid material in grams in one k g of sea water when all carbonates are converted to oxides, the bromine and iodine replaced by chlorine, and all organic matter completely oxidized. C h l o r i n i t y , determined by titration with A g N 0 3 , is essentially equal to the amount of chlorine in grams in one k g of sea water when all the bromine and iodine have been replaced by chlorine. Salinity = 0.03 1.805 X Chlorinity D i s t r i b u t i o n of t e m p e r a t u r e and s a l i n i t y is most variable in the surface layers. Low temperatures occur in high latitudes with relatively low salinities. In the Tropics surface temperatures and salinities are high. The great Ocean basins are filled with highdensity water produced in high latitudes during the winter when ice forms or when water of high salinity is cooled. Deep temperatures are therefore generally between 0" and 2°C. Convection and wind mixing produce a stirface layer in which uniform conditions prevail. This may be as thick as several hundred meters. Immediately beneath this there is a rapid change in temperature called the tlzermoclinr. Diurral variations of temperature at the surface rarely exceed 1°C. Annual variations of surface temperature are greatest in midlatitudes (about 10°C). Annual variations diminish with depth and rarely extend below 200 m. D e n s i t y of sea water is a function of salinity as well as temperature and pressure. The range in values is from 1.00 to about 1.04 g/cm3. Most of the other properties a r e functions of temperature, salinity, and pressure. The difference from the values for pure water depends then on the effects of the dissolved organic compounds. Light absorption and color will also be primarily determined by suspended or dissolved debris. Processes of heat conduction, diffusion, and transfer of momentum are dominated by turbulent water movements and consequently the laboratory coefficients of conductivity, diffusion, and viscosity have to be replaced by "eddy" coefficients of vastly greater magnitude. A b s o r p t i o n of light.-Water is essentially opaque t o electromagnetic radiation except in the visible spectrum. Below several hundred meters, even in the clearest water, all the solar radiation is absorbed. (See Tabie 891 and fig. 35.) In coastal waters that contain suspended debris, the radiation may be absorbed in only a few meters. The rapid absorption of radiation limits photosynthesis t o the surface layers. Evaporation.-The principal source of heat is radiation from sun and sky. The chief heat losses are due to long-wave radiation to space and evaporation. Evaporation is greatest when the air is dry and colder than the water. Regional variations are generally between 50 and 150 cm/year.
+
SMITHSONIAN PHYSICAL TABLES
775
FIG. 34.-Osomotic pressure, vapor pressure, of sea water, relative to that of pure water, freezing point, and temperature of maximum density as functions of chlorinity and salinity.
TABLE 891.-PERCENTAGE O F RADIATION OF GIVEN WAVELENGTH T R A N S M I T T E D BY 1 M O F W A T E R * Wavelength (c) T y p e of water
..................... highest .......... Oceanic water highest .......... average ......... P u r e water
{
.46
98.5 96.4 91.8 85.1 average ......... 80.0 .......... 64.7 lowest .......... 60.0
For reference, see footnote 302, p. 773.
SMITHSONIAN PHYSICAL TABLES
.48
,515
.53
,565
.60
.66
98.5 97.5 92.7 85.7 79.4 71.6 63.5
98.2 96.6 92.5 86.7 82.6 75.9 67.1
97.9 96.3 91.8 86.9 84.5 76.4 70.6
96.8 92.9 89.8 84.5
88.3 81.8 75.9 71.6 68.7 64.6 61.4
75.9
... ... ...
...
... ...
62.0 53.6 46.7
FIG.35.-Extinction
Wavelengths in microns. coefficients of radiation of different wavelengths in pure water and in different types of sea water.
T A B L E 892.-COMPOSITION
OF SEA W A T E R
*
The major ions present (over 99.9 percent of dissolved solids) are given in the table
for Cl= 19.00 Ion
CI-
~ / O O
....... 18.9799
..... HCO,-- .. Br- . . . . . . F- ........ SO,-
o/oo.
H3BOa
....
2.6486 .1397 ,0646 .0013 .0260
Cl-ratio
Equiv/kg
.99894 .1395 .00735 .00340 .00007 .00137
.5353 .0551 ,0023 .0008 .0001
....
I on
O/OO
...... 10.5561 . . . . . 1.2720 ..... .4001 K' ....... .3800 Na' Mg' Ca' Sr'
+
+
+
.....
.0133
C1-ratio
Equiv/kg
.5556 .06695 ,02106 .02000 ,00070
.4590 .lo46 .0200 .0097 ,0003
___ S936
I -
.5936
Salinity .=34.325 o/oo. Total solids = 34.48 "/.. . The CI-ratios are constants for oceanic waters except for HCOJC- and Ca++which are affected by biological activity. Ratios are not valid in areas of river dilution. +
For reference,see footnote 302, p. 773.
T A B L E 893.-GEOCHEMISTRY
O F T H E OCEANS
The oceans contain about 5 x 10" metric tons of dissolved solids. The amount in tons of any element can be estimated by multiplying the values in Table 894 by 1.42 X 10". Rivers each year add about 2.7 X 10" metric tons.
SMITHWNIAN PHYSICAL TABLES
777 TABLE 894.-ELEMENTS
PRESENT I N SOLUTION I N SEA W A T E R *
Elements present in solution in sea water in terms of Cl= 19 o / o o are listed in order of abundance in the table. Adding the dissolved gases HI, Nn, Oz,He, and A, a total of some 49 elements are known to occur. Ranges are indicated for Si, N, P , As, Fe, Mn, and Cu. The distribution of these elements, present in small quantities, is affected by biological activity. Lower values are usually near surface. All atmospheric gases are found in the sea. Their solubility decreases with increasing temperature and salinity. At O"C, Cl= 19 o / o o , surface water contains 8.08 m l / l of 0, and 14.40 m1/1 of Nz. At 20°C corresponding values are 5.38 and 9.65. Distribution of dissolved NZ is determined by temperatures and salinity. Oxygen at middepths is reduced, but only in the waters of isolated basins such as the Black Sea is there stagnation and H S present. Plant activity near the surface may increase 0 2 above saturation values. Carbon dioxide is present in large quantities (about 50 n t l / l ) chiefly as HCOs- and CO,-balanced against basic cations. Strong acid must be added to drive off all CO,. The pH in the sea varies between 7.4 and 8.4 depending upon the OZP COz changes due to respiration or phdtosynthesis. (Dissolved gases not included) mg/ku
Element CI = 19.00 o / o o Chlorine ................... 18980 Sodium .................... 10561 Magnesium ................ 1272 Sulfur ..................... 884 Calcium ................... 400 Potassium ................. 380 Bromine ................... 65 Carbon .................... 28 Strontium .................. 13 Boron ..................... 4.6 Silicon .......... Fluorine ......... Nitrogen t .................01 - .7 .5 Aluminum ................. Rubidium .................. .2 Lithium .................... .1 Phosphorus ............... ,001- .10 Barium .................... .05
.05
Arsenic ................... .01 - .02 Iron ...................... ,002- .02 Manganese ................ ,001- .01 t
CI
Element
Cppper ...................... Zinc ........................
mu/ku
= 19.00 .OO1-.01
O / m
.005
Thorium .................... Cerium ..................... Silver ...................... Vanadium . . . . . . . . . . . . . . . . . .
.0005 .0004 .0003
,0003
.............. ,0003 Nickel ...................... .0001 Scandium ................... .00004 Mercury .................... .00003 ...... .000006 .... .2-3)<10-'" Cadmium . . . . . . . . . . . traces Chromium .................. traces ........... traces
For reference, see footnote 302, p. 773. Computed.
T A B L E 895.-WAVE
VELOCITY I N V E R Y SHALLOW W A T E R
-
. -
Sliced
Ikpth of water feet
of wave knots
15 10
13 ..
11 8
5
T A B L E 896.-VELOCITY O F EARTHQUAKE WAVES W I T H DEPTH O F WATER
Depth in feet .................... 500 Velocity in knots. ............... 70
1,000 100
2,000 150
5,000 240
10,000 340
15,000 420
I f a large swell or an earthquake wave approaches a shoreline great damage may be done before the energy of the moving water is absorbed. SMITHSONIAN PHYSICAL TABLES
778
T A B L E 897.-OCEAN
CURRENTS
The permanent currents of the Ocean are maintained by differential heat and cooling and by the indirect effects of the wind. They may extend to depths as great as 1,000 m and their speed is usually less than 50 cm/sec. In the Gulf Stream and Kuroshio, speeds may exceed 250 cm/sec. Volume transparents of the large current systems exceed 50 million tons/sec. Wind-driven currents induced by the drag of the wind are generally shallow, less than 100 m, flow with speeds about 2 percent of wind, and deviate about 30" from the wind direction, to the right in the Northerti Hemisphere and to the left in the Southern Hemisphere. Tidal currents follow elliptical orbits during each tidal cycle. Motion probably extends to the bottom. In restricted coastal channels the currents are reversing and sometimes exceed 250 cm/sec. WAVES A T S E A *
Whenever the wind blows over the water, the surface is formed into waves which grow under the influence of the wind and form a most irregular surface known a s a sea. Such waves traveling out from a storm area are called swells. As waves break near the shore surfs are formed. Waves may also he formed by earthquakes, fault movements, submarine landslides, or volcanic eruptions beneath the sea. The height of a wave, H , is the vertical distance from crest t o trough. The length, L, is the horizontal distance between adjacent crests. The wave period, P , is the time interval between passage of successive crests at a fixed point. The velocity, V , of a wave is the speed with which the wave travels along the sea surface. The following relations hold for depths greater than one-quarter wavelength with good approximation :
L=5P',
V=3P
where the wavelength, L , is in feet, the period, P , in seconds, and the velocity, V , in knots. The waves move along the surface of the water hut the water, on the other hand, advances very little-about one percent only of the wave velocity. The height of the sea is determined by three factors : Wind velocity, average speed of wind over fetch. Fetch, distance over wind blows. Wind duration, how long the wind blows. Tables 886 and 898 show the wave heights for some conditions. * Ahstracted from an article prepared for the Encyclopedia Britannica, by Walter Munk, Scripps Institute of Oceanography. Used by permission.
T A B L E 898.-WAVE
Fetch in nautical miles
10 20 50 100 500 1000
H E I G H T I N F E E T FOR VARIOUS W I N D V E L O C I T I E S AND FETCHES Wind velocity in knots 10
20
30
40
50
60
2 2
3 4
5 7
7
9
10
2 2
10 10
20
31 35
14
22
30
21
(See also Tables 886, 887, and 895.)
SMITHSONIAN PHYSICAL TABLES
45 50
-~
55 70
TABLE 899.-TlDES,
SEA LEVEL, LEVEL NET
779
(Nat. Res. Council Bull. 78, 1931.) S p r i n g tides.-When moon (new or full) is in line with sun (large tide). N e a p tide.-When moon is in quadrature with sun (small tide), Generally two high and two low each day. Variation in heights of two high and two low = “diurnal inequality.” River-type tide, steep short-period graph for flood, more inclined and longer for ebb. Extreme case = “bore,” tide rises so rapidly it assumes form of wall several feet high. Most famous bores, Tsientang Kiang, China; Turnagain Arm, Alaska; Severn and the Wye, England ; Seine in France ; Hoogly, India ; Petitcodiac, Canada. Mean sea level (geodetic).-The equipotential surface which the oceans woud assume if undisturbed by the tides and effects of wind and weather. Starting with mean sea level at any given initial point the geodesist can determine by precise spirit leveling, the equipotential surface. Mean sea level (geographic) .-Determined by averaging actual tidal heights over a sufficient period. It is a local or geographic va!ue. It is much disturbed by prevalent winds and local contours. Note difference between average of hourly readings (mean sea level) and half-tide point (because of the shape of the tide height as related to time). On Atlantic coast 3 tide level lies below mcaii by about 1/10 f t : on Pacific above by 1/20 ft. Mean tide near rivers varies with rainfall. Nineteen years’ observation used for full tide cycle. A fundamental level net has been connected with mean sea level at Portland, Me., via Boston, Mass., Ft. Hamilton, N. Y., Sandy Hook and Atlantic City, N. J., Old Point Comfort and Norfolk, Va., Brunswick, Ga., Fernandina, St. Augustine, and Cedar Keys, Fla., Biloxi, Miss., Galveston, Tex., San Diego, San Pedro, San Francisco, Calif., Ft. Stevens, Oreg., and Seattle, Wash. The accuracy of high precision leveling is measured by the correction necessary to close circuits, about 0.00063 foot/mile. Mean sea level difference indicated by special adjustment of leveling network in 1929: Portland, Maine, 9 cm higher than Ft. Hamilton ; Vancouver, 2 cm higher than Seattle ; Galveston, 27 cm higher than St. Augustine; San Diego, 33 cm higher than Galveston ; Fort Stevens, 26 cm higher than San Diego; Isthmus of Panama, Pacific coast, 20 cm higher than Atlantic ; Death Valley, 280 ft (84.1) below sea level ; Mount Whitney, 14,495 ft (4418.1 m) above.
SMITHSONIAN PHYSICAL TABLES
780 T A B L E 900.-THE
EARTH'S ROTATION:
ITS VARIATION
From observations, Spencer Jones (Monthly Notices, Roy. Astron. SOC.,vol. 99, p. 541, 19.39) deduces as the best value of the apparent solar acceleration 2S"/(century)'. Lunar theory predicts 12.0"/(century)2 leaving part attributable t o tidal friction IO"/(century)*. Estimates of tidal friction losses (Jeffreys, Philos. Trans., A , vol. 221, p. 239, 1920) :
... .6X10:: 1.1
Irish Sea . . . . . Eng. Channel North Sea ..... Yellow Sea . . . .
1.7 1.1
erg/sec "
"
I'
"
"
So. China S e a . . -XlO:: Okhotsk Sea . . . . 4 Bering Sea .... 15.0 Malacca Str. . . 1.1
.
erg/sec " " "
"
''
.
Hudson Str. . . .ZXlO:: er,!sec Hudson Bay . . . Fox Strait ..... 1.4 " " Bay Fundy . . . .4 " "
.
Other contributions are small. Total for spring tides 22 X 10'' erg/sec. 1.1 X 10" erg/sec average, corresponding to about 7" secular acceleration per century per century. If 52 is earth's angular velocity of rotation, dO/dt = - 2.5 X 10-"/sec2. O = 7.3 X lo-' rad./sec. S2 changes by lo-' of its amount in 3 X 10" sec or 10' years. The day should have lengthened by 1 sec in 120,000 years. The fluctuations in the earth's rate of rotation indicated by astronomical evidence are of a quite greater order of magnitude. Moreover the changes vary in sign whereas frictional effects should not. The observations come from deviations of the sun and moon frcm their gravitational orbits, the transits of Mercury, and eclipses of Jupiter's satellites. Changes in the speed of rotation of the earth rotation seem the only explanation. This may be due to shifts of matter within or on the earth. The following figure by Brown indicates that in 1928 the earth was about 25 sec ahead of its average rotational motion during the last three centuries. The greatest apparent change in the loss or gain of one sec in a whole year. (1 part in 30,000,000.)
FIG.36.-Irregularities
in the earth's rotation derived from the moon's motions.
Tidal friction should make the earth rotate more slowly and the moon recede from the earth. The rate of dissipation of energy by friction is about 1.4 X 10" erg/sec. The earth's rotation from this cause should have slowed by 4 hours during geologic time. The moon should continue to recede until its period of revolution and that of the earth's rotation are equal to 47 of our present days. The moon should then gradually approach the earth, ultimately coming within Roche's limit (about twice the earth's radius) breaking up possibly into a ring like Saturn's. W J
Jeffreys. The earth, Macmillan, 192Y; Innes. Changes in the length of the day, Scientia, vol. 42, 1927. Jo lrn. Roy. Astron. SOC. Canada, vol. 24. p. 177, 6. M. Cl&mence. U. S. Naval Observatory.
p. 69. 1917. llrown Nature vol. 119 p. 200
1930. Keviied by
S M I T H M N I A N PHYSICAL TABLES
T A B L E 9 0 1 . 4 E NE R A L C O N V E R S I O N F A C T O R S
Density
Area (See Tables 31-33) Multiply
acre are cir mils ft'
in.'
barrel tushei
chaldrons (US., dry) firkin ftS ft' gallon
hogsheads liter Ib of HzO pt (liquid) qt (dry) qt (liquid)
by
40.47 1.60X lo2 4.356X 10' 1OJ 5.067X1Od 9.290x loz 6.452
Multiply
to obtain
g/ft' g/liter g/cm' g/cm' lb/1000 ft' Ib/ft' Ib/in? siug/ft'
are rodZ ftZ mz cmz cm2 cm2
Capacity units (See Tables 31-33) 31.5 gal 1.244 f t' 2.1504X 10' in.'
amu
cat erg 36 9 7.48 28.32 3.7854XlO' .1337 2.31 x 10' 3.7853 8 4 8.423 63 1.000028X10' 1.602x lo-' 27.72 .1200 28.88 67.20 57.75 1.164
cm' ft'
electron-volt ft'-atm ft-lb
in?
liter pt (liquid) qt (liquid) ft' gal cm' ft' of HzO in.' of H 2 0 gal in.' in.' in.' qt ( d r y )
In this table the calorie = 4.185 jilules and the Btu
= 252
ft-poundal g-cm hp-hr
calories (See Table 7 ) .
(continued)
by
35.31 8.345X10d 62.43 1.94 1.602 1.602x10-* 27.68 ,5153 32.17
to obtain
g/m' Ib/gal Ib/ft' slug/ft' kg/ 100 ma dcm' g/cm' g/cm2 Ib/ft'
Electrical units (See Tables 6-8) 9.32XlO' Mev 1.492X10d ergs Energy units (See Tables 7, 654) 4.185x 10' erg 9.4801x10-" Btu * 2.389x10-' cal * 1.O197X1O6 g-cm 7.376X 10" ft-lbs 2.373x10-0 ft-poundals 624x10' Mev 1.602x lo-'' erg 28.32 liter-atm 1.356X10' ergs 3.766>(10-' kw-hr .3238 cat 32.17 ft-poundal 1.285X loJ Btu 4.214)<10' ergs 3.108~10-* ft-lb 9.806X lo2 erg 2.684x 10" ioule 2.545X 10' Btu 6.413X1OZ kg-cal .7457 kw-hrs
T A B L E 901.-G
E N E R A L CON V E RSI 0 N FACTORS (continued)
Energy units (copttiitued) Multiply
by
joule
kg-cm Iw-hr 3Iev pound-foot poundal-foot quantum (A = .6 p )
107 9.48ZX , .10" 23.73 ,7376 3.021X10'8 9.807x 105 7.233x 3 . 6 ida ~ 3.414X 10' 8.602x lo" 1 . 6 0 210.' ~ 1.3553XlO' 4.2130 x 10' 3.310X10-'*
Heat flow units (See Tables 129-130) to obtain
Heat content (See thermal units)
ergs Btu ft-poundals ft-lbs quanta ( A = .6 p ) ergs ft-lb joule Btu cal ergs ergs ergs ergs
Illumination (See Tables 71-72) Multiply
lu/ft'
aal!rnin liter/min
dyne newton t pound (see lb) poundal pound (weight) gram (weight)
Flow 4.720x 10' ,1247 .4720 2 . m 10-3 ~ 5.885X lo-' 4.403x Force 7 . 2 3 3 10-5 ~ 2.248x 10-o 1.0197x 105 1.3827x 10' 4.448X lo5 9.81 x 10'
cm3/sec pal Iser --0
-
~
-
to obtain
f t -candles
Linear units (See Tables 31-33, 522) 1 10-10 m 1x cm 1 x 10-4 barleycorns 1/3 rn. cubits 1.5 ft ells 45 Ill. 1.143X1O2 cm ft 30.48 Cm 12 in. ft ,3048 m.. . 1/3 yd 6 fathom ft furlong .125 mile 2.20x102 yds hand 4 in. league 1 /3 nautical mile light yrs 9.4602~ 1017 cm line 1/12 in. m 39.37 in. mil 10.~ in. mile (statute) 5.280x 10' ft mile (nautical) 6.08O2x1O3 ft micron ( p ) 10-3 mm 10-4 cm parsec 3.1X10's cm span 9 in. A
Energy flow (See Tables 129-130)
f t3/min
by
1
1
liter/sec ft3/sec ft3/sec gal/sec poundal poundweight kg weight dyne dyne dyne dyne
Gravitational
micro milli
cm/sec2 ft/sec2 iThe unit of force in the M K S system.
(continued)
x
Metric system prefixes (See Tables 31-33) .000001 .oo1
T A B L E 901.-G E N E R A L CO NVE RSI 0N FACTORS (continued) Pressure units (continued)
Metric system prefixes (coiltiilrrrd) Multiply
by
centi deci _..~ deka hecto kilo myra
.01
....
Multiply
to obtain
atm
.1
i.n.
1.oox 10' 1.00x10: 1.oox10
......
mega
1.00X10"
reams
Paper measure 5.00X 10'
bar sheets
Photometric units (See Tables 66 and 69-74) Btu/min cal/min ft-lb/sec
hP
Power units 12.96 1.758)<10-' 5.145X10-z 6.975X lo-' 1.82XlO-* 42.43 .7457 5.50X 10'
m o .. -.
kw
atm
10.69 7.457X10' 1oJ 1.341
barye
f t-lb/sec kw f t-lb/see kw hP Btu/min
cmHg
kw ft-lb Btu Isec kq c'al/min watts watts hP
dynes/cmz
by
1.01325x 10" 33.90 1.0332X103 1.0332X10' 76x10-' 7.6OX1O2 2.1168)<103 .9869 7.5O1x1O2 1.0197X loa 1.O 197x 10' 1O6 10" 1.0197 1.00 9.869X lo-' 7.50~10-' 1.316)<10-* ,4461 1.3596Xloz 27.85 .1934 1.333X lo' 1 . 4 5 0 5lo-' ~ 2.0888x lo-' 9.869x lo-' 10"
2.953K10-'
Pressure units (See Table 260) 1.033X10a g/cm' Ib/in.' 14.70 cmHg (0°C) 76 Tor 7.60X 10' kg/cmz 1.0332 in. H g (0°C) 29.921 1.01325XlO" dynes/cm2 1.01325 bar
ft of water
in. Hg
(corttinued)
.8826 3.048K10' ,. 62.43 .4335 3.342XlO-* 3.386X lo'
to obtain
barye ft water (4°C) cm water (4°C) Wm' PHg mmHg Ib/ftz atm mmHg
g/cm' kdm' dynes/cm2 barye kg/cm2 dyne/cm' atrn mmHg atm ft of H,O kg/m2 Ib/ft2 lb/in.* dynes lb/in.2 Ib/ft2 atm bar in. H g (0°C) kg/m2 mmHg atm in. H g kp./mZ lb7ft' Ib/in.2 atm dynes
T A B L E 901.-GENERAL
C O N V E R S I O N FACTORS (continued)
Pressure units (c .ontinued)
kg/m' kg/cm2 kips/in.' lb/ft2 lb/in.l
1.133 3.453X10' 70.74 . . .4913 2.458x 7.355x10-2 25.40 ,5808 5.203 3.613~10-' 1.422x 10.9681 .7030 10s 4.725X104 6 . 8 0 3 ~10'' 7.03x10-' 7.03X lo-'
m.zn .
mmHg
psi Tor
ohms-cm
Temperature (See Table 1)
to obtain
by
1.3332X 10' 1.3158X 1029.97 1.3595 1.3595X1Od 1 1 1 1/760
Resistivity 6.016x loa
Multiply
ft of water kdm' Ib/ft2 Ib/in.' atm in. Hg kg/m' oz/in.' Ib/ft' Ib/in.' lb/in.' atm kg/mmz 1b:in.l atm atm kg/cm' Wmm' g/cmZ dynes atm Ib/mz g/cm' kg/cm' Tor lb/in.P mmHg atm
deg F/in. deg C/cm Btu
Btu/lb Btu/fta Btu/(lb cal
ohms-mil-ft t
Speed knot
1 1
T This means the resistance
nautical mile/hr 6080.2 ft/hr of a wire 1 f t long and 1 mil in diameter.
year 5 day 9 Tropical year.
(continued)
O F )
by
2187 4.572
to obtain
"C/cm "F/in.
Thermal (heat) units (See Tables 1, 7) 2.52X102 cal 7.782k 10' ft-lb 3.929x io-. hphrs 2.929)<10-' kw-hrs 2.5026XlO' ft-poundals 1.0546x 10s joules 1.0754x 10' kg-m 10.41 liter-atm ,5556 cal/g 8.898x Wa cal/cm* 8.898 kp. cal /ma 1 C&(g "C) .4267 kg-m 4.185 joule 4.185x10' ergs 4.130~ liter-atm 3.968x lo4 Btu 3.088 ft-lb 1.559x lo-" hp-hrs 1.163 X 10" kw-hrs 1.264x 10'' quanta (k = .6 a) 1.8 Btu/lb 3.968 Btu lo3 cal 1 cal cm-' min-' 1/60 cal cm-* sec-' 6.97x lo-' watt/cm' Time (See Tables 3, 729) 3.155715XlO' sec 8.64X10' sec
T A B L E S(il.-GENERAL
CONVERSION FACTORS (concluded)
Weight (mass) units
Volume units (See Table 31) Multiply
in.' f ta
ft'//sal ga1/(1000 ft')
s/100 kg e/m'
gaI/ton
by
to obtain
16.387 2.8317><10'
cm' cms
Volume capacity 7.482 13.37 .02 ,437 .4172
ms/kl ]/lo0 ma lb/ton grains/fts liter/( 100 kg)
Weight (mass) units (See Table 31) 3.168 grains carat (1877) 2.053)<10' mg 2.00x 1v carat (metric) mg 1.772 drams (av) g 02 6.25~ 9.807)<102 dynes g
Multiply
kips Ib Ib (troy) slug
slug (metric)
fts of gas/lb fts of water (4°C)
by
15.43 1 x lo-' 1 os 3.527~10-' 2.205x 10103 7.00x 1oJ 4.536X1OZ 16 ,8229 1 32.17 9.80X lo2 Weight per volume 6.243 62.43
to obtain
02
lb
Ib
grains g 02
lb (av) gee Ib lb
msof gas/100 k g
lb.
Index terms
Links 10 56 743 10 729 20 20 20
Abampere Abbreviations: common units of measurement constellations Abcoulomb Aberration constant Abfarad Abhenry Absolute units (see under name of unit) Absorption (see also Transmission): for air (atmosphere) components moist for crystals for filters for gases, long wavelengths for glass red pyranometer various for mass: γ-rays X-rays for materials for blackening receivers for radiant energy for screens, color for various materials for water of gases by liquids of vapors by liquids of various radiations: alpha rays beta rays cathode rays gamma rays radiant energy X-rays critical Abundance (see Elements, chemical): elements isotopes Abvolt Acceleration: angular gravity (see Gravitation) linear Acoustics (see also Sound) architectural attenuation coefficient definition of terms hearing differential sensitivity distribution of hearing losses sensitivity of ear reverberation time calculations optimum
538 538 546 517 535 552 512 537 512 687 694 548 517 535 535 536 360 360 672 672 672 672 549 693 701 625 655 12 4 714 6 309 315 315 315 314 314 315 314 315 315 316
787
20
20
546
545 536 537
535-546
684 690 690 687 694 701 626 627 628 629 20
Index terms
Links
Acoustics, Continued room type sound type Actinium Beta-ray spectrum Activity (power) Adsorption, heats of charcoal Aeronautics air flow compressible force, parameters illustrations isentropic formulas normal-shock formulas oblique-shock parameters (force) and Mach numbers speed vs. pressure supersonic types vs. Mach number vs. Reynolds number bodies moving through a liquid forces on angle of attack aspect ratio depends upon for air: attitude to wind center of pressure drag coefficient lift coefficient Mach number and flow paramcters pressure, dynamic vs. air speeds Reynolds number critical shape of body speed surface, roughness turbulence of air sample bodies: airfoils air flow around angle of attack Mach number Reynolds number surface roughness flow parameters
788
317 317 228 685 4 632 632 337 337 348 337 349 348 348 348 348 348 350 338 348 339 349 349 337 337 339 339 337 337 339 339 339 337 342 338 358 337 341 337 338 337 337
633 633 349 343
352
349 352
340 342 340 350
353 352 352 352 352 352 353 353
Index terms
Links
Aeronautics, Continued vs. Mach number force coefficients illustrations cylinders, nonrotating drag coefficient aspect ratio Mach number Reynolds number inclination of axis to wind direction flat plates, thin force coefficients angle of attack drag lift Mach number Reynolds number local skin friction moment thickness skin friction laminar flow Reynolds number turbulent flow miscellaneous bodies drag coefficient Reynolds number various bodies forces on spheres drag coefficient Mach number Reynolds number forces on pressure coefficient Reynolds number critical sphere size standard atmosphere for basis of characteristics of extension of properties ratio specific heats velocity of sound in viscosity kinematic Age, earth moon radioactive materials strata universe
789
353 353 352 340 340 340 340 340 341 339 339 339 339 339 340 340 343 344 343 343 343 343 343 343 343 343 343 341 341 342 342 342 342 341 341 341 345 345 347 347 347 345 347 347 347 741 741 679 741 710
341 341 342 341
340
345
344 344
348
Index terms
Links 592 599 605 592 592 265 596 269 69 69 337 348 163 592 602 602 604 599 601 604 532 546 278 592 720 720
Air (see also Atmosphere) aqueous vapor, pressure in atmosphere sea-level composition, ground level up to F2 layer compressibility density of moist air dry, thermal properties effects on weighing corrections flow (see under Aeronautics) compressible heat capacity height humidity, relative determination dry-bulb temperature maintenance various vapor pressures wet and dry temperature index of refraction infrared transmission Joule-Thomson effect in mass different values with direction of sight moist: density, calculated relative transmission saturated water vapor pressure weight sound, speed in thermal conductivity thermal properties dry transmission of radiation components ultraviolet viscosity, kinematic weight Albedos (see Astronomy) Alcohol: compressibility Density, mixtures with water melting point, with pressure vapor pressure viscosity Alloys: alnico aluminum Babbitt
596 598 546 600 600 601 306 142 270 269 538 538 538 345 592 737 282 302 118 370 320 454 192 226
790
597 598 270
603 604
720
594
270 546
220
Index terms
Links
Alloys: alnico, Continued brazing carboloy conductivity, electrical super thermal copper density Heusler latent heat of fusion low melting point composition magnetic alnico Heusler permalloy silmanal superpermalloy melting points low miscellaneous resistivity soldering special purpose thermal emf vs. lead thermal expansion invar low expansion special purpose Alnico Alpha particles (see also Radioactivity) charge characteristics high-speed, artificial radioactive sources natural radioactive sources ionization mass range in air relative stopping power of selected substances velocity Alpha-ray spectra, artificial radioactive substances natural radioactive substances Altitude, by barometer Aluminum: alloys, properties atomic weight boiling point conductivity mechanical properties melting point
223 224 390 394 138 198 293 458 165 125 125 458 454 458 453 454 453 125 125 217 384 223 220 379 149 221 221 220 454 664 50 672 682 681 672 49 672 684 672 682 681 613 192 619 117 404 192 117
791
391
225 225
672 680 680 681
684
Index terms
Links
Aluminum: alloys, properties, Continued oxide solder wire Alums index refraction American candle (see Photometry) after 1948 Ammonia: compressibility hydrolysis latent heat of vaporization pressure variation liquid, density heat content latent heat pressure variation pressure effects properties specific heats thermal properties Ampere Ampere-turn units Amu Angle Angstrom Angular acceleration Angular momentum Angular velocity earth Antenna arrays Antifreeze solutions Aphelon API scale Apostilb Apothecary mass unit Aqueous solutions density diffusion into water Arcs (see under name of) Area Argon: compressibility melting point vs. pressure parameters volume-pressure Artificial disintegration bombardment alpha-ray deuteron neutron photonuclear products
162 223 414 521 521 94 94 266 399 167 167 178 162 178 178 167 167 178 178 162 20 18 21 4 4 63 4 4 4 729 434 135 729 290 93 63 64 300-305 300 -305 354 4 264 117 117 118 653 669 669 669 667 669 669
792
66
118
669 706 670
669
Index terms
Links
Artificial disintegration, Continued proton interesting results methods of producing elements beyond uranium parts pile yields results of Artificial radioactivity slow-neutron-produced Asbestos, thermal conductivity Astronomical units Astronomy albedos planets calendars equation of time Julian day perpetual clouds of Magellan constellation abbreviations craters lunar terrestrial data, miscellaneous day (see also under Definitions) definitions change of earth age strata diameter dimensions distance, to moon to sun interior, characteristics density with depth elastic constants rocks pressure temperature velocity, earthquake waves mass orbit physical data precession for 50 years quake waves velocity in ocean rigidity rotation
669 652 669 670 706 670 666 667 667 139 729 728 737 737 728 728 733 732 746 743 736 736 736 729 729 729 780 734 741 741 729 729 730 730 739 739 739 740 740 739 727 739 729 729 729 738 739 777 740 729
793
667 668 669 670
732 733
741
734
741
740 734
780
Index terms
Links
Astronomy, Continued variation satellites strata temperature various places velocity, earthquake waves viscosity galaxies, local family our galaxy center rotation stars, mass number interstellar space matter temperature Magellanic clouds moon (see also Moon) nebulae (see also under stars), classification nebulae lines novae, well observed orbits, planets planets albedos distance to sun orbits period physical data satellites orbits temperature precession for 50 years rotation, earth our galaxy stars Russell-Hertzsprunging diagram Satellites, orbits physical data planets solar constant variation solar corona, emission lines solar eclipses solar flares solar motion, elements of stars: binary mass of, within 10 parsec of sun spectroscopic spectroscopic eclipsing visual
780 734 741 734 726 739 729 748 713 770 770 770 713 713 771 629 771 763 746 741 758 745 757 734 734 737 730 734 734 734 735 735 734 738 780 770 771 754 735 734 735 735 719 720 744 742 743 731 752 768 767 761
794
Index terms
Links
Astronomy, Continued brighter than magnitude m Cepheids period-luminosity curve clusters, classification galactic globular properties concentration near sun constellations, abbreviations near sun degenerate diameters dwarfs degenerate density white equivalent light from explosive first magnitude galactic concentration magnitude galaxies local family our galaxy center rotation stars, number giants low density magnitude absolute bolometric first, and brightness per cubic parsec number and brightness near sun per square degree photographic radiometric reduction to visual spectrum type visual, absolute to bolometric mass, total our galaxy mass-luminosity masses, binaries motion of large velocities
756 760 744 769 769 769 769 749 751 743 751 762 753 762 763 762 762 762 757 761 752 749 749 746 748 748 770 770 770 770 762 762 730 730 754 752 735 756 735 756 735 749 730 754 753 753 754 713 758 752 764 756 765
795
Index terms
Links
Astronomy, Continued near sun masses nebulae, brightness classification nongalactic variables with novae brightness well observed characteristics classification Milky Way nongalactic number of and galactic latitude and light and magnitude log. No. per sqnare degree near sun per cubic parsec our galaxy universe various classes within 5 parsec of sun within 10 parsec of sun of large proper motion parallax, mean annual magnitude 10 rotation of Russell-Hertzsprung diagram spectrum classes galactic concentration proper motion temperatures and diameters visual magnitude spectrum types magnitude temperatures and diameter variables: Be stars classification Cepheids period-luminosity curve erratic explosive general characteristics long period luminosity curve nebulosities
796
751 752 757 758 759 760 757 757 757 757 758 746 759 757 756 757 756 756 735 735 713 713 748 751 752 756 750 750 771 754 748 749 742 750 753 753 753 750 750 753 761 760 760 744 760 760 760 760 744 761
752
751 752
750 753
753 754
Index terms
Links
Astronomy, Continued novae
761 761 760 761 760 760 760 760 750 766 761
repeating pulsating P Cygni red RV Tauri semi-irregular red semiregular temperature with large radial velocities Z Camelopardalis stellar (see stars) stellar diameters stellar radiation measurements stellar spectra: classes dwarf galactic concentration luminosity classification percentage various classes proper motion related characteristics systems brighter stars clouds of Magellan Milky Way supergalaxies temperature types and magnitudes strata, age sun (see Sun), eclipses telescopes, largest in use temperature, interstellar space time, calendars equation transmission of light through space Astrophysics Atmosphere (see also Air) aqueous vapor pressure, sea level characteristics, above F2 layer up to F2 layer density, above F2 layer up to F2 layer vs. height, 594 electricity (see Lightning) extent of humidity maintenance pressure relative, dry-bulb temperature
753 759 748 762 749 747 748 742 746 746 746 746 746 746 753 753 741 742 728 763 732 728 771 728 592 599 605 595 594 595 594 595 614 592 596 599 602 602
797
750 753 763
754
733
Index terms
Links
Atmosphere (see also Air), Continued temperature vapor pressure wet-dry thermometer ionic equilibrium layers: ionosphere E layer F1 layer F2 layer G layer stratosphere troposphere upper atmosphere mass and solar altitude path through (radiation) potential gradient pressure, above F2 layer up to F2 layer vs. height regions standard basis characteristics above F2 layer height ratio specific heats up to F2 layer density extension of properties stratosphere temperature, above F2 layer harmonic mean up to F2 layer vs. height transmission of radiation components ultraviolet with direction troposphere unit of pressure viscosity water-vapor pressure saturated, weight Atmospheric electricity charge rain snow space
602 602 604 615 592 592 592 592 592 592 592 592 592 725 720 614 595 594 594 592 4 345 347 595 594 345 594 347 347 347 592 595 346 594 594 538 538 538 720 592 4 345 600 601 615 615 615 615 615
798
595 47 345
595 349
595 546
347 605
Index terms
Links
Atmospheric electricity, Continued conductivity, air current density ions equilibrium life of mobility rate of formation lightning (see also Lightning) potential gradient, air Atom angular momentum Bohr bomb composition data diameters elements diffusion coefficient gaseous ions neutral gases dimensions effective radii electric orbits electron configuration elements neutral atoms ionization potential normal states singly ionized ionization potential elementary particles energy heat, elements ionized singly isotopes mass mass units molecular data names foreign obsolete neutral, electron binding energy spectroscopic properties number periodic system radii effective radioactive
615 614 614 615 615 615 617 615 614 614 653 579 579 653 618 582 643 643 644 644 644 618 643 624 622 622 582 582 622 584 584 618 579 160 584 584 654 50 654 618 620 620 620 649 582 620 621 643 643 672
799
618-624
664 653
51
650
673
Index terms
Links
Atom, Continued specific heats spectra (see also Series relations) spectroscopic properties neutral singly ionized susceptibility volume (elements) inert gas weights international physical to chemical units Atomic (see Atom) Attenuation coefficient, radio waves Avogadro’s number Avoirdupois
160 582 582 583 584 585 582 584 451 160 646 47 619 619 47 47 653 442 443 4 47 51 54 62 63 64 66 226 152 4 277 653 606 606 606 613 607 606 606 606
Babbitt metal, physical properties Bakelite Bar Barn Barometer capillarity, correction for metric units determination of heights expansion, correction for mercury meniscus, volume pressure: columns of mercury columns of water reduction: barometric height to standard temperature to standard gravity (different heights) English units metric units temperature correction Barye mega Baryton Batteries composition emf standard cells Baumé scale: density of cane sugar specific gravity of Bel Beta particles Beta rays (see also Radioactivity) characteristics from radioactive materials energy
607 608 611 609 607 4 6 653 377 377 377 378 305 289 309 651 653 651 683 683
800
277 664
653 691 672 683 691 685 684
Index terms
Links
Beta rays (see also Radioactivity), Continued isotopes spectrum: actinium protactinium thallium thorium Betatron Binding energy of electron, neutral atoms singly-ionized atoms Blackbody brightness calculated values changes due to changes in C2 precautions in using C1 constants (radiation) value of c2 at different times crova wavelength efficiency of radiation luminous equations Planck Stefan-Boltzmann Wien displacement laws lumens/cm lumens/watt luminous efficiency temperature luminous intensity spectral vs. temperature mechanical equivalent of light plane, lumens per unit solid angle radiant energy calculated values: effect of change in c2 short method spectral temperature spectral intensity vs. temperature spectral luminous intensity standard radiator symbols total radiation calculated values Blackening receivers of radiation Body moving through a liquid (see also under Aeronautics) Bohr atom magnetic moment
683 228 685 679 227 653 649 650 7 95 81 86 80 80 80 96 96 93 7 7 7 79 80 7 93 93 93 96 93 95 96 80 80 79 86 85 82 82 95 95 79 79 81 81 548 337 581 49
801
684 685
685 657 652 653 79 96 82
79 79 80
79 96 96
80 85
95 104
Index terms
Links
Bohr atom, Continued magnetron radius first orbit Boiling points: elements inorganic compounds metals with pressure organic compounds pressure salts in solution rise in water pressure effect rise of boiling point due to salts in solution Boltzmann’s constant Bond energies Bougie decimal Brass, mechanical properties Brazing alloys brass iron steel Brazing flux Brightness blackbody blue and candlepower, various materials candle flames fluorescent lamp lamps, acetylene filaments molybdenum moon Nernst glower oxides sky sun tantalum temperature correction to true materials various illuminants tungsten units of various materials Welsbach mantle Brinell hardness British Imperial system of weights and measures metric equivalents British Thermal Unit, btu Brix degrees
49 52 51 117 120 119 122 119 131 133 133 118 169 133 49 633 92 195 223 223 223 223 223 93 94 104 104 104 110 104 104 103 104 104 104 104 104 103 7 100 104 104 102 93 104 104 187 64 64 7 305
802
52
54
54
96
21
60
80
Index terms
Links 197 630 7 21 229 231 231 230 152 230 230 231 229 230 230 230 230 230 229 229 553 231 231 231 653
Bronze, mechanical properties Brownian movement Btu Building materials brick masonry strength bricks: characteristics of coefficient of expansion water absorption weighted average strength characteristics concrete: compressive and tensile strengths elastic properties strength effect of quantity of mixing water compressive, effect of entrained air tensile masonry mortars reflection factor stone: American stiffness ultimate strength Bursts (cosmic ray)
80 80 80 569 568 733 732 48 48 48 48 48 515 7 8 93 91 94 93 94 92 93 94 94 93 95 95
c1 c2 at different times Cadmium red line lamp Calendar, Julian day perpetual Calcite: density grating space molecular weight ratio grating vs. Seigbahn structural constant Calcium fluoride Calorie international Candle footinternational meter 1948 old spherical Waidner-Burgess color Candlepower distance inverse square law
803
21 60 94
60
Index terms
Links
Candlepower, Continued disk line Capacitance Capacity, electric physical Carat metric Carboloy, characteristics Carbon arc light output cycle energy lamps untreated Carbon dioxide, compressibility Joule-Thompson effect values of pv Carcel unit Castor oil, density viscosity Cathode rays (see also Electron) constants for speed impinge on matter ionization path speed in matter three headings velocity and voltage voltage Cells (batteries), composition emf standard Celsius temperature scale Centigrade temperature scale Centipoise Centistoke Cgs Chain (Gunter) Chain reaction Charcoal: adsorbing power activation increased by treatment heats of gases vapors physical properties types of
95 95 11 16 60 4 4 224 105 105 105 666 666 104 105 105 265 280 285 92 322 322 653 691 690 691 690 672 690 690 691 691 691 691 377 377 378 8 8 318 321 15 62 653 632 632 632 632 633 632 632 632
804
Index terms
Links 47 49 615 615 10 626 626 627 185 4 32 4 181 181 181 8 630 633 630 632 632 633 632 630 634 634 634 630 634 630 632 630 630 631 631 630 631 631 631 631 634 633 630 729 729 103 535 8
Charge, electron hydrogen atom rain snow unit Chemical composition, earth meteors sun (atmosphere) Chemical energy data Circular area Circular functions Circular inch Coal analysis heats of combustion Coefficient of thermal expansion Colloids bond energies Brownian movement charcoals, adsorbing power effect of activation heats of adsorption, gases vapors dimensions dusts, explosion limits, lower explosion pressures ignition temperatures particle size propagation temperature field heat of sorption particle size dusts influence of solubility protein molecules properties due to solubility proteins: characteristics molecules pH stability range spreading coefficients, organic liquids types Color, equation index of light emitted by various sources screens temperature blue brightness and candlepower, various materials illurninants materials, various
104 104 103 104
805
Index terms
Links
Color, equation, Continued minus brightness temperature, carbon Combustion, constants (some substances) flame temperatures heats of, carbon carbon compounds coals gases liquid fuels miscellaneous compounds peat petroleum (crude) various sources solids sugars values, fuels woods Common units of measurement, spelling and abbreviations Compressibility: ammonia carbon dioxide compounds crystals elements ether gases low temperature under high pressure glasses liquids mercury metals, high pressure petroleum oils quartz rocks rubber solids sulfur dioxide water Compton effect Concrete (see Building materials) Conductance electrolytic temperature effects Conduction (see also Thermal conduction): gases heat across air space high temperature Conductivity (see also Resistivity): acid solutions air alloys temperature coefficient
104 179 179 179 180 179 181 182 181 180 181 182 182 181 182 181 181 56 266 261 286 287 285 282 267 264 265 288 289 282 282 286 284 288 288 235 237 283 266 283 49 52 11 12 397 397 115 114 115 398 616 384 390 390
806
55
Index terms
Links
Conductivity (see also Resistivity): acid solutions, Continued bases, solutions calculating dielectrics electrical electrolytic solutions molecular temperature coefficient equivalent vs. temperature ions separate solutions: acids bases salts glass high-frequency metals molecular (specific) nonconductors oxides plastics pressure effects rocks salts (solutions) soils solids solutions specific molecular super alloys compounds metals tellurium temperature coefficient tension effects thermal (see Thermal conductivity) Conductor, resistance of Cones in eye (see also under Eye) Constants: critical gases mathematical physical (see also Units) Bearden and Watts Birge DuMond and Cohen radiation Constellations, abbreviations Contact potentials: liquids solids various metals Continents area
807
398 417 395 11 12 397 398 397 397 399 399 400 400 400 396 396 384 389 398 428 395 239 388 395 398 395 440 395 397 398 394 394 394 394 380 390 391 387 11 90 276 25 47 51 54 54 47 51 80 743 376 376 379 380 381 772 772
Index terms
Links
Continents, Continued highest point lowest point Convection of heat air cooling by gases pressure temperature Conversion factors Centigrade to Fahrenheit dimensional formulas Fahrenheit to Centigrade formulae methods of calculating units: ampere turns to ordinary area atomic mass to MeV British imperial to metric capacity changing conduction of heat density API Baumé electrical equivalents former electricity international to 1948 National Bureau of Standards to international three systems energy flow molecular gage pressure (lb./h.2) to atmosphere gas laws gaseous states (thermal) general gravitational heat flow for different gradients illumination length linear magnetic quantities mass metric, to British to U.S.A. Mev to atomic mass
808
772 772 114 114 112 115 115 114 115 2 57 iv 2 58 59 iv 57 2 57 18 60 781 54 67 60 62 781 57 137 290 289 20 22 10 20 20 20 17 781 618 267 260 268 781 782 58 136 137 93 60 60 16 60 64 61 21
20 781
20
21
267 785 784
94 782 18 66 63 53
54
Index terms
Links
Conversion factors, Continued miscellaneous molecular energy paper measure photometric photometry brightness illumination pressure radiation resistivity speed temperature per area thermal time U.S. customary to metric volume wavelength weight per volume Cooling: by convection by radiation effect of pressure platinum wire Copper (see also under Wire) alloys, properties freezing point high conductivity mechanical properties resistance standards wire annealed characteristics medium hard ratio, ac-dc resistances resistance, to compute temperature coefficient safe carrying capacity soft specification values standard annealed Core losses, electric steel sheets Cosines Cosmic rays bursts characteristics top atmosphere critical energy composition at geometric latitude 30°
809
63 618 783 93 93 93 93 277 136 784 784 784 784 784 784 61 60 509 785 785 112 112 112 113 198 198 72 404 198 404 208 208 408 208 419 416 406 416 208 208 408 456 32 653 711 711 710 712 713
781 785
94 783
783
62 785
63
409 410 411 412 413 414
710
Index terms
Links
Cosmic rays, Continued data earth's magnetic field energy critical total entering atmosphere hard component ionization intensity 50° geometric latitude sea level top atmosphere meson origin penetration variation with latitude primary characteristics source radiation, composition and latitude earth's surface our galaxy universe reaction, atmosphere secondary hard, characteristics intensity and altitude earth's surface (sea level) latitude soft showers soft component source stars theories total energy variation, latitude Cosmos Cotangents Cotton, thermal conductivity Craters (see also Astronomy) Critical constants: gases light hydrocarbons Cross section (particle) fission products fissionable nuclei organic molecules Crova wavelength Cryostats, liquids for (noninflammable) viscosity
712 710 710 712 712 712 711 710 711 710 712 711 710 711 710 711 712 710 710 710 712 712 713 713 711 711 711 711 711 710 711 711 711 710 711 710 710 710 653 32 33 139 736 276 293 653 709 708 646 96 183 183
810
34
35
36
Links 515 529 515 287 430 430 431 430 516 520 516 517 126 647 648 522 648 648 515 430 126 515 152 126 126 517 515 517 515 430 515 148 154 233 153 153 153 4 672 461 12 375 653
Index terms Crystals: artificial (optical) biaxial characteristics compressibility cubic dielectric: constant monoclinic strength index of refraction temperature infrared transmission (spectral) inversion ionic, lattice spacing radii isotropic minerals metals, interatomic distances structure optical orthorhombic phases size thermal expansion transitions, reversible pressure transmission range spectra1 types uniaxial uses Cubical expansion (thermal): elements gases leather liquids organic water Cubit Curie (unit radioactive decay) Curie constant for paramagnetic substances Current, electric effect on human body Cyclotron
811
529
518 525 529 523 527 545
516 517 518 519 520 521 432
545
20 657
Index terms
Links 5 1 37 37 37 38 38
Dalton Data, experimental treatment of average deviation errors equations for: least squares solutions linearly related quantities quadratic and other related quantities indexes of precision least squares: relations solutions terms, even odd tables methods of averaging modulus of precision precision constants average deviation probable error reciprocal modulus of precision relation of standard deviation Date, international line Day (see Astronomy) change of De Broglie wavelength Debye unit various particles Decibel Declination magnetic Definitions: astronomy atomic physics blackbody electric: international units 1948 units electromagnetic gas laws geomagnetism geometric heat illumination magnetic magnetism mechanical nuclear photography photometry
38
39 37 37 38 39 42 42 41 42 37 37 37 37 37 43 37 37 37 37 729 729 780 653 665 441 441 309 729 468 729 653 79 10 20 20 10 259 468 469 4 7 93 10 451 451 4 653 562 93
812
39
40
39
40
43
Index terms
Links
Definitions: astronomy, Continued physical properties radiation temperature viscosity Degeneration (see Artificial disintegration) Delaunay’s γ Delta rays Demagnetization factor for rods Denier Density air moist alloys API aqueous solutions alcohol, ethyl methyl cane sugar Baumè and Brix degrees sulfuric acid Baumè scale Brix calcite castor oil critical earth variation with depth elements liquids solids ethyl-alcohol mixtures gases (various units) gasolene glycero1-water hydrocarbons inorganic compounds kerosene leather liquids methyl alcohol and water solutions cane sugar sulfuric acid mercury and volume minerals, artificial natural organic compounds photographic planets plastics
187 79 9 319
70
729 653 467 242 5 291 269 270 598 293 290 300 302 304 304 305 304 305 305 48 322 276 48 739 291 291 291 302 269 322 321 329 120 295 233 295 304 304 304 299 299 294 294 122 562 734 238 239
813
Index terms
Links
Density, Continued reduction in air to vacuum salts satellites solids, various cgs English stars, high low sugar: Baumè degree Brix solutions sulfuric acid and water solutions sun vapors water air-free and volume woods Derivatives and integrals Deuterium Deuteron Developers, photographic Deviation in experimental data (see under Data), average standard Diamagnetic elements, temperature effect Diamagnetic substance susceptibility temperature effects Diatomic constants Diatomic molecules energy: electronic rotational formula vibrational formula level states molecular constants Dielectric constant (specific inductive capacity) air pressure alcohol ceramics crystals clamped free elastomers gases liquefied
69 531 734 292 292 292 753 753 305 305 304 304 731 269 295 296 298 246 23 653 653 563 37 37 461 451 451 461 586 586 586 586 586 586 586 589 586 587 10 423 422 424 437 437 430 430 438 423 426
814
762 762
305
296
258
589 423 424 424
424
Index terms
Links
Dielectric constant, Continued nonpolar pressure temperature glasses guttapercha ice insulating materials at radio frequencies kerosene liquids formula pressure temperature coefficient wavelengths, long loss tangent of dielectric materials lucite materials (various) dielectric oils organic pressure effects silicone soils Vaseline mica minerals nonconductors radio-frequencies paper paraffin plastics quartz (fused) quartz crystals rochelle salt rock salt rocks rubber artificial shellac soils solids standard solutions sulfur unit water woods Dielectric materials (dielectric constant and loss tangent): amber ceramics
436 424 423 427 427 427 429 429 425 425 426 424 426 426 426 437 438 427 437 425 425 424 438 440 439 427 428 428 429 427 427 437 428 430 431 430 426 438 438 427 440 427 428 430 10 425 438 438 437
815
428 426
438
423 430
Index terms
Links
Dielectric materials: amber, Continued crystals frequency glasses guttapercha liquids inorganic organic lucite nylon oils paraffin plastics rubber shellac solids temperature Vaseline water waxes woods Dielectric properties of nonconductors Dielectric strength air electrodes spacing potential pressure voltage for spark: ac voltage for spark: dc materials (various) glass guttapercha kerosene voltage for spark liquid air mica oils paper paraffin rubber unit Diffusion: aqueous solutions into water coefficients gaseous ions gases, neutral constants, water vapor through leather gases ions, positive, mobility in noble gases metals into metals vapors
437 437 437 438 439 439 439 438 437 439 438 437 438 438 437 423 439 439 438 438 428 421 421 421 421 422 421 422 421 421 422 423 423 423 422 422 423 423 423 423 423 423 423 354 644 644 232 356 644 356 355 356
816
Index terms
Links 143 5 2 57 2 58 3 2 58 58 59 57 58 58 58 59 58 58 58 57 5 730 468 441 441 441 441 441 421 421 421 421 422 421 422 422 651 653 669 669 95 509 80 79 80 732 220 220
Diffusivities for materials Digit Dimensional equations examples Dimensional formulas use of Dimensional formulas of units derived dynamical electrical fundamental geometrical heat light magnetic mechanical photometric thermal use of Diopter Dip: horizon magnetic Dipole moment inorganic organic unit Debye Discharge in air ac dc effect of electrode shape effect of pressure length of gap voltage required Disintegration, artificial types Disk source Dispersion, glass Displacement constant (Wien) Displacement law (Wien) Dominica1 letter Dowmetal Duralumin Dusts (see under Colloids) Dyestuffs, transmission of radiation Dyne
538 5 308 314 728 741 780
Ear (see also under Sound) Earth (see also under Astronomy) age angular velocity
817
Index terms
Links
Earth, Continued area
729 772 772 592 734 625 729 738 48 739 773 729 729 729 740 502 625 772 729 714 739 739 739 772 740 502 470 729 739 772 729 729 729 729 734 729 729 729 729 740 729 741 726 774 726 726 726 726 726 729
land oceans and seas atmosphere (see also Atmosphere) characteristics composition constants, various craters density vs. depth depth, oceans dimensions distance to moon distance to sun earthquake waves, velocity electrical data elements, percent elevation, mountains energy, rotational gravitation (see also Gravitation) interior characteristics: density elastic constants pressure land area liquefaction magnetic data magnetism (see also under Geomagnetism) mass moment of inertia oceans and seas orbit dimensions eccentricity general precession obliquity physical data radius equatorial polar rigidity rotational energy solidification temperature: depth oceans surface highest lowest selected stations variation velocity: in orbit
818
772
739 772 739
772 773 774 730 730
774
734 734 772 734 734
727
Index terms
Links
Earth, Continued
729 729 740 537 105 187 105 18 11 375 441 11 17 11 11 17 13 13 11 10 10 19 20 16 375 12 390 390 18 10 375 22 13 17 429 393 456 10 456 18 16 18 20 10 10 10 22 16 19 19
rotation volume Earthquake waves (see also under Astronomy) Effective wavelength, red pyrometer glass Efficiency, lamps Elastic limit Electric arcs capacity current effect on human body dipole moment field intensity inductance potential difference power quantity standards surface density units definitions 1948 relative values, three systems Electrical capacity characteristics of materials conductivity alloys metals conversion factors definitions effect on human body equivalents, former fundamental standards inductance properties of insulating materials resistivity, metals sheets, magnetic properties standards steel sheets, core losses units: ampere turn basis of each capacity conversion factors electromagnetic electrostatic unit quantity former international prior to 1948 new (1948) absolute
819
110 109
12 12
20
19 15 15
16 20
380
20 15
19
459 20
20 20
19
20
Index terms
Links
Electrical capacity, Continued how maintained relation to electromagnetic relation to electrostatic relation to international (prior to 1908) old practical relation of three systems Electricity: atmospheric constants charge on rain charge on snow elements ionic equilibrium lightning piezo quantity specific heat thunderstorm characteristics unit quantity Electrochemical equivalents iodine normal solutions silver Electrode potential Electromagnetic properties Electromagnetic systems Electromagnetic units definitions difference of potential between metals in solutions of salts Electrolytes solutions vs. temperature Electron affinity, elements angular momentum atomic weight binding energy neutral atoms singly-ionized atoms charge specific configuration neutral atoms normal states singly ionized atoms emission
820
19 20 20 20 22 20 20 614 615 615 615 615 615 614 432 16 20 379 614 614 10 397 48 397 48 637 451 10 11 10 451 10 378 397 397 397 653 664 636 580 49 649 650 649 650 47 50 47 622 582 622 584 635
12
13
51
54
Index terms
Links
Electron, Continued carbon equation hot solids materials, various metals temperature photoelectric effect potentials contact (volta) electrode solids, hot formula energy levels energy relations energy-velocity mass mass-velocity relations negatron positron shell terms: from equivalent electrons from nonequivalent electrons velocity relations volt weight work function Electronic charge orbits Electrostatic capacity definitions generator units Electrostriction Elementary particles alpha particle deuteron electron negative positive meson (several types) neutrino neutron photon proton Elements: atomic: heats numbers radii volume weights
635 635 635 636 635 635 636 637 637 637 635 635 579 651 651 651 651 654 654 622 580 580 651 49 50 635 47 624 12 11 657 10 427 651 664 664 664 664 664 664 664 664 664 664 160 620 643 160 619
821
636 636
653 581
54 654 51 54 51
664
54
Index terms
Links
Elements, Continued beyond uranium production binding energy: neutral atoms singly-ionized atoms boiling point chemical: absorption wavelength abundance: atmosphere early type stars earth earth-meteorites gases, interstellar space matter, interstellar space meteorites nebulae rare gases, cosmos sun sun’s atmosphere universe composition compressibility configuration density diameters electrochemical equivalents electron configuration neutral atoms normal states radius of orbits singly-ionized atoms electron emission emissivities energy levels, x-ray energy units evaporation hardness, relative heat: capacities evaporation fusion ionization potential: neutral atoms singly-ionized atoms isotopes abundance atomic mass radioactive K-wavelength series L-wavelength series latent heat of fusion latent heat of vaporization mass absorption mechanical properties
623 651 663 670 649 650 117 701 592 625 628 625 626 629 629 626 629 626 627 628 626 625 618 285 622 291 643 403 622 582 622 624 584 635 98 697 618 653 363 228 155 157 165 157 582 584 654 655 655 658 655-663 697 698 157 165 704 189
822
Index terms
Links
Elements, Continued melting points standards number 1952 optical constants (metals) periodic system physical properties Poisson’s ratio radii, electronorbits resistivity temperature coefficient specific heat formula for true spectroscopic properties: neutral atoms singly-ionized symbols thermal conductivity thermal expansion: crystals cubical linear vapor pressure Emf (thermal), alloys vs. lead alloys vs. platinum aluminum vs. platinum batteries cadmium vs. platinum low temperature metals, in solution of salts vs. platinum vs. silver alloys vs. zinc solutions nickel, vs. copper vs. platinum platinum-rhodium vs. platinum vs. lead zinc vs. platinum Emissivity spectral alloys correction to brightness temperature liquids materials metals and oxides at melting point out-gassed molybdenum solids tantalum tungsten total: glass
117 9 651 558 621 189 227 624 384 384 155 157 157 582 584 117 138 145 148 145 362 379 381 376 377 383 381 378 381 381 377 381 389 381 379 390 8 8 99 99 98 98 101 98 99 103 100 103 99 100
823
117
160
363
387
98 98
101 102 102
Index terms
Links
Emissivity, Continued materials metals at low temperatures oxides relative Emu Energy blackbody radiation bond conversion factors cosmic ray dissipation in cycle (magnetism) electron-volt levels losses, magnetic radiant radiated by a number of radioactive materials temperature for 1 ev transformer steel (losses) units conversion factors Enthalpy Entropy Equation of time Erg Erichsen value Error, probable Esu/emu Ether, volume-pressure Ethylene Ettinghausen effect Eutectic mixtures Ev Evaporation of metals formulas constants (various metals) rate of Expansion (thermal) cubical linear Experimental data (see also under Data) Explosives analysis chemical properties ignition temperatures physical properties pressures time of heating Exponential formulas for mass absorption values, elements
100 101 101 101 100 20 5 79 633 20 712 460 49 581 459 9 689 55 459 21 21 8 8 728 5 187 37 48 283 265 507 130 618 363 363 364 363 145 148 145 37 183 184 184 183 184 634 183 694
824
17 85
21 96
21
460 79
653 618 618 270 270
653
38
634
39
40
Index terms
Links 43 562 87 90 89 90 90 91 89 90 91 88 87 88 90 89 90 90 87 89 87 87 87 90 91 88 88 90 92
Exponential functions Exposure, photographic Eye: as measuring instrument for radiation blind spot contrast sensibility diameter of pupil and flux density distribution coefficients glare sensibility I.C.I. standard observer distribution coefficients instantaneous thresholds luminosity factors and brightness macula lutea minimum energy to produce sensation miscellaneous data physical properties Purkinge effect rate of adaptation relative luminosity factors various brightnesses sensitivity standard observer distribution coefficients thresholds various field brightness vision, persistence of visual range for white light
91
88 89
89
51 54
54
26 26
Factorials log of Factors, conversion (see Conversion factors) Fahrenheit temperature scale conversion to Centigrade Farad Faraday constant Fathom Ferromagnetic substances Fibers: artificial acetate glass nylon polyethylene quartz rayon resin characteristics miscellaneous
8 iv 20 47 47 62 451 243 244 244 244 244 534 243 243 242 244
825
Index terms
Links
Fibers, Continued natural cotton flax hemp jute linen ramie silk spider wool properties of rope various kinds Filaments, incandescent, heat loss from temperature Filters (see also Color, screens), for obtaining monochromatic x-rays light narrow spectrum region Fine structure constant First radiation constant units Fission binding energy cause critical energy for cross section of fissionable nuclei for neutrons cross section of fission products for thermal neutrons data elements energy critical released by examples neutron-binding energy of divided nucleus produced elements products of long life spontaneous, half-life thresholds (Mev) Fixed points, temperature scale, primary secondary Flame temperatures Flash lamps Flash tubes Fluidity Fluorescent lamps, characteristics of Fluorescent powders, characteristics of
242 242 242 242 242 242 242 242 242 242 241 243 245 245 116 102 116 696 537 536 49 51 80 80 653 706 707 706 707
54
708 708 706 706 706 707 707 706 707 706 706 708 701 706 71 72 179 182 183 110 111 5 318 110 107
826
Index terms
Links 515 520 93 93 93 5 21 5 5 18
Fluorite Flux (see under type o f ) Foot-candle Foot-lambert Foot-pound Foot-poundal Force magnetic Formulas (see under name of) Fourier Fraunhofer lines, wavelengths Freezing mixtures anti, for radiators Freezing point, lowered by various salts in solution water-prcssurc effect Fresnel formula, reflection of light Friction, different materials interior, at low temperatures Frictional electric series Fuels (see also under Combustion) coal analysis gas gravity heat values liquid gravity petroleum density woods analysis Fundamental particles alpha-particles deuteron electron negatron positron meson: µ (charge +, - ) Π (charge +, -, O ) neutrino neutron photon proton Fundamental standards maintenance of primary qualities of secondary selection of standards of, international temperature scale length
144 577 134 135 131 118 549 336 227 375 180 181 181 182 182 180 181 181 182 182 181 181 664 664 664 664 664 664 664 664 664 664 664 664 1 14 13 13 13 1 14 14
827
13
14 14 2 70
Index terms
Links
Fundamental standards, Continued mass temperature Celsius scale (Centigrade) Fahrenheit Kelvin scale Reaumur thermodynamic time Fundamental units (see under Units) Fusion, latent heats of alloys metals substances, various
14 14 14 8 9 9 9 14 157 165 165 165 267 405 5
Gage pressure to atmospheres Gages, wire Gal Galvanometric effects (see under Magnetic) Gamma (photography) Gamma infinity (photography) Gamma-rays absorption, mass characteristics of energy, of artificial radioactive isotopes, low atomic weight of heavy isotopes artificial natural to produce ion pair ionization energy mass absorption various elements spectrum, radioactive breakdowns Thorium “C” total mass absorption coefficient Gas, absorption by liquids abundance, cosmic combustion values compressibility (various gases and vapors) low temperature under high pressure conduction of heat by conductivity, thermal constant convection of heat by critical points definition of laws densities critical dielectric constant
562 562 653 686 687 672 687 688 687 686 686 686 711 672 687 687 686 686 687 360 626 182 264 264 267 115 142 49 259 115 276 259 163 276 423
828
Index terms
Links
Gas, absorption by liquids, Continued liquefied gases nonpolar variation, with pressure with temperature diffusion coefficient neutral gases energy fuels heat, absorption capacity combustion helium hydrogen ideal gas state ideal in interstellar space inert, atomic volume infrared transmission ions (see also Ions), diffusion coefficient Joule-Thompson effect kinetic theory calculations collision frequencies discussion incidences ratios of mass mean free path molecular diameters energies mass mean free path number velocities average distribution law pressure, units laws simple value of R different conditions units long-wavelength absorption mean free path mixtures ignition temperature mobility, of positive ions of singly charged ions mol molecules:
829
426 436 424 424 356 644 259 182 633 164 182 260 260 638 261 629 646 546 644 278 638 638 641 638 640 640 641 640 638 639 640 638 638 639 639 639 638 259 259 259 259 259 532 641 259 186 644 645 6
644
261 261 268
640
259
Index terms
Links
Gas, absorption by liquids, Continued diameters attractive spheres Bragg number per cm3 velocities neon perfect volume pressure critical high temperature Van der Waal’s equation constants volume with vapors properties saturated correcting factor temperature, critical thermal expansion thermal properties Van der Waal’s equation constants of (imperfect gases) velocity of sound in Verdet’s constant viscosity liquefied gases volume: conversion factor (Z) correction factor saturated gas ideal gas inert gas atoms pressure relations relative with pressure weight Gasoline, density viscosity Gauss Gaussian system of units Gem lamps, color temperature General physical constants discussion of tables according to Bearden and Watts Birge Du Mond and Cohen General precession
638 644 644 645 638 639 262 264 261 47 54 268 276 260 263 261 262 261 260 259 263 263 276 154 259 261 262 306 506 331 642 329 259 260 260 260 263 47 54 646 263 265 263 264 265 266 267 259 322 322 18 15 104 46 46 54 47 51 738
830
Index terms
Links
Geographical data (see also under Astronomy and Oceanography) Geologic strata, ages Geomagnetism coordinates north magnetic pole position on earth south magnetic pole earth, asadipole geomagnetic coordinates of position magneticaxis characteristics data dip in U.S.A. disinclination, hourly departure from normal isogonic secular change in U.S.A. field, elements of horizontal intensity (isodynamic) inclination (isoclinic) intensity, horizontal, U.S.A. total, U.S.A. vertical, U.S.A. moment pole (earth) potential, Gauss coefficients spherical harmonic coefficients surveys United States, dip or inclination horizontal magnetic intensity secular change of dip secular change of horizontal intensity secular change of magnetic declination secular charge of total intensity secular change of vertical intensity total magnetic intensity vertical magnetic intensity values of magnetic elements at observatories variations world isoclinic lines world isodynamic limes horizontal intensity total intensity vertical intensity world isogonic lines
831
728 772 741 468 468 470 493 471 469 493 502 502 502 471 477 478 472 479 468 474 473 478 480 479 480 470 470 471 470 470 469 471 478 471 479 478 480 480 480 479 481 469 473 474 474 476 475 472
Index terms
Links
Geomagnetism, Continued sun, magneticdata Geometrical units definitions Geophysical data Giga Gilbert Glass, compressibility emissivity at low temperatures optical characteristics, American made foreign made National Bureau of Standards coefficient of expansion index of refraction change with temperature nu values temperature physical properties, special glasses specific gravity stain class physical properties transmission red pyrometer, effective wavelength transmission reflection, Fresnel formula resistivity special, physical properties stain expansion specific gravity vessels, volume viscosity Glycerol-water Gram Gram-centimeter Gram-mass Gram-molecule Gravitation acceleration of gravity at different latitudes free-air correction for altitude log United States various world stations anomalous gravity, some places of constant length of seconds pendulum Gravity, specific unit API scale Specific, Baumé scale
502 4 3 4 739 740 741 5 18 22 289 100 509 509 514 510 529 509 513 509 513 534 529 529 529 512 514 535 537 537 549 396 534 529 529 529 68 330 321 5 5 21 21 5 714 714 714 714 716 715 718 5 47 717 5 5 729 290 289
832
Index terms
Links 8 62 27
Graybody Gunter’s chain, length Gyration, radius of
653 653 653 507 508 451 187 227 187 228 239 228 227 227 188 314 315 314 7 160 160 163 157 163 179 114 115 162 169 114 115 7 186 2 57 8 169 136 136 137 185 186 730 165 167 165 165 165 175
h ħ or ħ H-ray Hall constant variation with temperature Hall effect Hardness Brinell Relative, of elements of plastics of various materials Poisson’s ratio scale of Shore scleroscope Hearing (see also Sound), differential sensitivity distribution of hearing losses (population) sensitivity of the ear Heat atomic of elements capacity, gases materials, various vapors combustion (see also Combustion, heats of) conduction, across a i r spaces at high temperatures (gases) content, ammonia steam convection in air at high temperature definitions dilution of H2SO4 dimensional formulas entropy steam flow conversion factors of units different gradients formation compounds ions index latent formula for fusion elements materials, various steam
833
58
59
Index terms
Links
Heat, Continued vaporization elements liquids formulas loss, effect of pressure from incandescent filaments from platinum wires mechanical equivalent neutralization Peltier radioactive materials specific elements gases liquids mercury solids vapors water Thomson units values, fuels Hefner unit Height, determination by barometer Helium: abundance, early type stars nebulae sun’s atmosphere universe atomic numbers atomic weights boiling point compressibility high pressure conductivity, thermal density critical dielectric constant electric dipole moment electron configuration expansion, thermal heat, latent heat capacity index of refraction ionization, energy for production of ion pair isotopes Joule-Thomson effect magnetic susceptibility melting point molecular data
166 166 166 167 113 116 116 8 186 383 689 691 155 155 163 161 161 159 163 161 383 7 8 181 92 613 628 629 627 625 620 47 619 117 264 267 142 269 291 276 436 441 582 154 166 163 533 711 655 278 462 117 640
834
Index terms
Links
Helium, Continued diameter velocities molecules, number of percent in air physical properties pressure, critical resistivity, thermal Rydberg constant temperature, critical Van der Waal’s constant vapor pressure velocity of sound in viscosity volume conversions relative Henry Heusler magnetic alloys High-energy particles Horizon dip Horsepower Horsepower-hour Human body, electrical resistance of Humidity and density relative, and vapor pressure water-vapor pressure at sea level wet- and dry-bulb thermometer Hydrocarbons, physical properties (light) viscosity Hydrogen: abundance early type stars earth interstellar space meteorites nebulae sun universe atomic number atomic weight Bohr atom boiling point charge on one gram combustion constant compressibility factor high pressure low temperature
644 640 645 592 189 276 144 48 276 261 360 306 331 260 261 17 451 657 730 729 5 5 375 596 597 602 605 605 602 293 329
51 262
20 458
21
604
604
625 628 625 629 626 629 626 627 625 620 619 579 622 117 49 179 264 264 267 264
835
54
Index terms
Links
Hydrogen, Continued cycle De Broglie wavelength density critical dielectric constant doublet separation electric dipole moment electron configuration heat, latent heat capacity heavy index of refraction ions, diffusion coefficient ionization energy necessary for production of ion pair ionizing potential mobility isotopes deuteron triton long-wave absorption magnetic susceptibility mass relative to mass of proton mass absorption coefficient melting point molecular, properties of molecules, diameter mass mean free path number of rate of incidence velocity percent in air physical properties pressure, critical radii of electronic orbit Rydberg constant Schrődinger constant temperature, critical thermal conductivity thermal properties thermal resistivity Van der Waal’s constant velocity of sound in viscosity volume, relative with pressure Hydrolysis, ammonium acetate Hysteresis Losses, Steinmetz constant
666 665 276 291 276 423 55 441 582 584 166 163 54 653 655 533 644 711 53 644 655 653 654 552 462 50 50 704 117 268 642 643 640 642 645 640 640 592 189 276 624 48 54 51 54 276 142 268 144 261 262 306 642 261 264 267 399 451 460
836
Index terms
Links 119 47 71 119 521 545 90 91 634 186 104 104 104 565 93 93 93 94 91 91 94 657 116
Ice crystals, modifications of Ice point effect of pressure Iceland spar I.C.I. standard observer distribution coefficients Ignition temperature: dusts in air gas mixtures Illuminants (see also Lamps): brightness brightness temperature color temperature photographic efficiency Illumination expressions on surface symbols units, relative magnitudes conversion factors Impulse generator Incandescent filaments, heat losses Incandescent lamps (see also Lamps): efficiency of, 1878 to date efficiency of tungsten miniature photoflash sealed-beam temperature of tungsten Inclination: magnetic (see also under Geomagnetism) moon’s orbit Index of refraction: air alums crystals artificial fats fluorite calcium lithium gases liquefied glasses: change with temperature foreign-made nonsilica Iceland spar isotropic materials monorefringent liquefied gases liquids relative to air lithium fluoride media for determination with microscope
105 106 107 110 108 106 471 735 532 521 515 515 525 520 520 521 533 525 513 513 512 521 522 522 525 530 530 521 561
838
529 530
520
545
Index terms
Links
Iceland spar, Continued minerals, biaxial monorefringent uniaxial nitroso-dimethyl-aniline oils plastics potassium bromide potassium chloride formula potassium iodide quartz reflection vs. 549 rock salt formulas silver chloride silvite solutions, acids, relative to air salts, relative to air thallium bromide-iodide vapors waxes Inductance (electrical) mutual selfstandards Inertia: moment of photography Infrared reflectivity: solids tungsten Infrared transmission air, moist crystals gases solids various substances Inorganic compounds: boiling point density melting point solubility and temperature Insulating materials: electrical properties values: of dielectric constant of power factor Integrals Intensity: magnetic (see also under Geomagnetism) of magnetization Interior friction at low temperatures International date line International electrical units Interstellar gases
526 522 524 519 525 240 519 519 519 516 518 518 518 520 519 531 531 516 533 525 17 13 13 17 27 562 548 555 545 546 545 547 547 546 547 120 120 120 357 357 429 429 433 23 478 12 227 729 16 629
839
Index terms
Links 629 763 95 647 615 648 711 711 582 582 584 399 615 399 644 644 645 186 644 645 644 571 452 464 452 458 209 458 384 571 79 653 654 654 655 658 655 686 679 667 658 658 662 655 670 658 655 655 655 658 655
Interstellar matter Interstellar temperature Inverse square law (photometric), disk or source Ionic crystals, lattice spacings Ionic equilibrium, atmospheric Ionic radii Ionization: energy, production of ion pair gamma rays potentials, elements neutral singly ionized water Ions: equilibrium in atmosphere equivalent conductivity gaseous, diffusion coefficient mobility, positive singly charged heat of formation mobility, in noble gases of singly charged positive, mobilities Iron: arc lines magnetic properties cast, in intense fields in very weak fields soft mechanical properties permeability resistivity spectral lines Irradiancy Isobar Isomer Isotope abundance, relative atomic weight characteristics gamma-ray energy lead life magnetic moment masses nuclear magnetron number pile yields of quadrupole moment radioactivity: artificial natural number spin table of
840
453 454 455 456
655
658 687
658 658
Index terms
Links 513 5 8 278 278 279 280 278 280 281 279 733 733 730 734
Jena glasses Joule Joule's equivalent Joule-Thomson effect air argon carbon dioxide helium mixtures, of helium arid argon of helium and nitrogen nitrogen Julian day: calendar number (days) period Jupiter
20 47
49 52 697 9 14 295 425 422 422 322 507 504 508 5 21 318 6 638 638 638 640 638 642 639 639 639 640
K. Boltzmann constant K-wavelength series (see also under X-rays) Kelvin temperature scale Kerosene: density dielectric constant dielectric strength discharge in viscosity Kerr constant Kerr effect, dispersion Kilodyne Kilowatt-hour Kinematic viscosity Kinetic energy Kinetic theory mercury vapor: mean free paths molecular diameters molecular constants molecular diameters molecular distribution laws molecular energies molecular velocities molecules: gases: mean free path molecular diameters viscosity masses mean free path number of pressure rate of evaporation rate of incidence velocities Kundt's constant
638 638 642 640 641 638 638 639 639 640 640 506
841
54
Index terms
Links 696 93
L series (see also under X-rays) Lambert Lamps (see also Illuminants): arcs, carbon mercury automobile carbon carbon arcs coiled-coil color of light CX early (incandescent) efficiencies filaments, coiled-coil temperature flash tube fluorescent gem incandescent (see Incandescent lamps) large mercury arcs miniature photoflash photoflood photographic projection sealed-beam (all glass) small street series tungsten characteristics efficiency, 1968-1948 temperature different types efficiency various Langley Latent heat fusion alloys beeswax ice metals vaporization ammonia liquid elements formulas liquids metals substances, various
105 109 107 105 105 106 111 106 105 105 106 106 111 110 105 106 109 107 110 106 106 106 108 107 106 106 106 106 106 106 106 106 9 9 165 615 165 165 165 167 165 167 167 167 165 167 166 165 366 165
842
Index terms
Links
Latent heat, Continued total heat Latitude variation Lead: age ratios, radioactive materials atomic weight common, isotope variation isotopes composition, locality protective thickness, X-rays materials relative to Least squares solutions tables for Leather: diffusion constant density elongation physical properties and humidity tensile strength thermal conductivity thermal expansion cubic types of Leduc effect Length, unit of, standard Light: color, various sources defined definitions filters, red pyrometer glass mechanical equivalent minimum minimum energy for polarization, rotation plane quantity reflected scattering of sources and source materials characteristics standards of intensity symbols transmission through space velocity visual range of white white year Lightning channel diameter constants current data peaks interval between
167 730 679 619 679 657 662 679 693 695 694 37-44 40-47 232 233 232 232 233 232 233 233 232 507 14 104 87 93 537 93 93 89 557 94 549 3 102 103 102 103 92 94 94 771 47 51 92 96 731 614 614 614 614 614 614 614 614
843
60
54
80
Index terms
Links
Lightning, Continued polarity potential cloud gradient, air beneath cloud quantity of electricity discharged single current peak total stroke strokes: cloud to ground polarity potential gradient energy number strokes per mile2 number strokes per year thunder velocity Light-year Lime-alumina-silica compounds eutectic mixture melting point transformation Linear acceleration Linear accelerator Linear expansion: alloys elements materials, various Linear measurements Linear units wavelength Liquids: absorption of gases by Combustion, heats of compressibility conductivity, thermal contact difference of potential cubical expansion, thermal density dielectric constant pressure effect temperature coefficient expansion, thermal fuels index of refraction latent heat of evaporization magnetic susceptibility media for determining refractive indices with microscope melting temperatures vs. pressure noninflammable, for cryostat
614 614 614 614 614 614 614 614 614 614 614 614 614 614 614 614 730 130 130 130 130 6 657 149 145 152 62 62 509 509 360 181 282 143 376 153 295 424 425 424 426 153 181 530 166 462 561 118 118 183
844
Index terms
Links
Liquids: absorption of gases by, Continued organic: spreading coefficient vapor pressure viscosity potential difference vs. other materials specific heat surface tension thermal conductivity thermal expansion vapor pressure velocity of sound in Verdet’s constant viscosity pressure effect Liter Liter-atm Lithium fluoride, index refraction Logarithms Loschmidt number Lubricants for cutting tools Lumen Luminosity factors field brightnesses Luminous efficiency Luminous flux Luminous intensity spectral Lunar craters inequalities Lunar node Lunar orbits Lunar parallax Lunar parigee Lunar solar precession Lux
633 368 323 376 161 361 143 153 371 307 505 319 323 326 328 333 6 47 61 21 515 520 521 28 29 30 31 6 49 51 54 335 335 93 93 87 93 88 93 93 93 95 736 730 730 735 730 730 730 93 696 337 454
M series (see also under X-rays) Mach number Magnet, permanent Magnetic (see also Magnetism)data, earth sun definitions effects (galvanometric) Ettinghausen Hall temperature hysteresis Joule
470 502 502 451 451 451 507 451 508 508 451 451
845
Index terms
Links
Magnetic, Continued Laduc Nernst Villari Weidemann field strength (intensity) flux Maxwell force hysteresis energy lost Steinmetz constant induction intensity moment permeability and temperature iron steel pole strength unit pole poles, of earth (see also under Geomagnetism) potential properties of materials: alloys alnico comal Heusler nickel-iron nonmagnetic permalloy permanent magnet composition atomic susceptibility basic equations cobalt composition correction to ring specimens demagnetization factor for rods dissipation of energy Steinmetz constant earth (see under Geomagnetism) electrical sheets energy loss high permeability iron annealed cast composition intense field
451 451 451 451 12 12 18 12 451 451 460 12 12 12 451 457 453 458 12 10
507 507
451 451 451 451 460 17 451 18 451 451 458 459 451
470 471 12 455 454 455 455 458 457 458 453 454 454 451 451 457 453 464 467 460 460 470 502 456 460 453 452 457 458 464 465 452 464 465 464
846
Index terms
Links
Magnetic, Continued
452 461 452 452 457 4.57 457 457 456 456 456 454 465 456 458 156 459 459 456 459 454 12 13 451 462 451 451 461 16 18 18 18 18 451 461 18 467 451 461 460 460 451 451 460 451 451 451 461 12 463
soft temperature very pure weak fields magnetite metals nickel-iron alloy temperature sheets (electrical) core losses steel carbon composition electrical sheets permeability sheets temperature transformer core loss (ac) energy loss tungsten steel reluctance susceptibility atomic materials molecular specific temperature effects units Gauss Gilbert Maxwell Oersted pole Magnetism (see also Magnetic): Curie constant definitions demagnetization factor for rods diamagnetic substances susceptibility vs. temperature dissipation of energy energy losses ferromagnetic substances hysteresis Steinmetz constant magnetic substances moment paramagnetic substances susceptibility vs. temperature quantity of and resistance (see Resistance)
847
458 453
461
18
18
451 461
460
461
465
Index terms
Links
Magnetism: Curie constant, Continued resistance effects: bismuth nickel various metals Steinmetz constant susceptibility vs. temperature terrestrial (see under Geomagnetism) Magnetization intensity energy loss, various materials specific: atomic molecular Steinmetz constant Magnetizing force Magnetomotive force Magneton, Bohr Magneto-optic rotation definitions Faraday effect Verdet constant (see also Verdet constant) Magneto-strictive effects: Joule Villari Weidemann Magnets, permanent Magnitudes (stellar): absolute bolometric Mass: electron H1 H1 to electron neutron rest standard units of Mass-energy ratio Mass-velocity ratio Mathematical tables: constants derivatives exponentials factorials log of formulas: moment of inertia radius of gyration weights integrals least squares logarithms moment of inertia radius of gyration series trigonometric functions weights
463 463 463 460 462 461 468 12 18 460 451 451 460 12 451 12 18 49 54 654 503 503 503 504 451 451 451 454 730 759 50 50 50 654 664 654 14 16 14 654 654 25 23 43 26 26 27 27 27 23 42 43 44 28 29 30 27 27 24 31-36 27
848
45 31
Index terms
Links 654 18 451 641 4 2 1 1 2 1 8 93 8 93 94
Maximum velocity Maxwell Mean free path Measurements (see also Data): definitions derived two factors units choice of Mechanical equivalent: definition heat light Mechanical properties (see also Physical properties) Alloys, miscellaneons special purpose aluminum Babbitt metal brass bronze building materials (see also under Building materials) carboloy concrete (see also under Building materials) copper (see also Wire) alloys wire hard-drawn soft definitions elements fibers (see also under Fibers) artificial miscellaneous natural quartz ropes iron leather (see also Leathers) masonic mortars (see also under Building materials) plastics ropes special-purpose alloys steel wire experimental value plow rope tungsten white metal (Babbitt) woods, hard
187 217 220 192 226 195 195 229 224 229 198 198 208 208 208 187 189 241 243 244 242 534 245 209
229 239 245 220 209 215 216 215 215 225 226 246
849
96
Index terms
Links
Mechanical properties, Continued soft zinc Mechanical units Megabarye Melting point: alcohol vs. pressure argon, with pressure compounds, inorganic organic effect of pressure elements inorganic compounds lime-alumina-silica compounds liquids, as a function of pressure low-melting-point alloys metals, mixtures pressure nitrogen, with pressure organic compounds salts in solution standard secondary water vs. pressure Melting temperatures: elements eutectic mixtures lime-alumina-silica compounds metals standard Meniscus, volume of mercury Mercury: arcs, characteristics types atomic: heat radius volume weight boiling point pressure compressibility conductivity, super critical points density and volume diffusivity electrochemical equivalents electron configuration entropy evaporation expansion, cubical linear
254 225 4 6 118 117 120 122 119 117 120 130 118 125 125 119 118 122 131 8 725 119 118 117 130 130 72 8 606
187
118
225
14
70
119
14
109 109 160 643 160 619 117 119 282 394 276 48 177 299 299 143 403 582 583 622 177 365 153 147
850
71
72 117
Index terms
Links
Mercury, Continued freezing point heat: content latent fusion vaporization of formation of ions specific isotopes magnetic susceptibility mean free path melting point effect of pressure meniscus, volume molecular diameter optical constants planet physical properties pressure, columns resistance resistivity pressure effect specific gravity specific heat and temperature surface tension at solidifying point temperature of equilibrium with vapor thermal conductivity thermal emf thermal properties thermal resistivity thermometers: corrections stem vapor: mean free path molecular diameter pressure at low temperature pressure vs. temperature properties of velocity of sound in viscosity effect of pressure volume and temperature of glass vessel from weight of Hg wavelength, Hg198 Meson Mesotron Metals: boiling points compressibility crystal structure diffusion of, into metals
72 177 165 166 186 156 657 462 638 72 334 606 638 560 734 177 606 389 385 389 48 161 299 362 362 72 138 378 177 144 73 73 638 638 369 372 177 307 328 119 299 161 68 568 654 654 119 285 648 356
851
160 161
119
331 332
664
286
Index terms
Links
Metals: boiling points, Continued electrical conductivity emf vs. platinum emmissivities evaporation equations for constants rate of friction, interior interatomic distances magnetic properties melting temperature of mixtures molten, viscosity optical constants reflecting factor resistance, with pressure effect of tension on temperature, high and low resistivity rigidity vs. temperature superconductivity thermal conductivity vapor pressure variation of volume with pressure Meteorology (see also Air and Atmosphere) Meteors, composition Meter candle Metric slug Metric system: conversion to British Imperial conversion to U.S. prefixes values in British Imperial Mev MicroMicron Microscope, media for determination of refractive index Mil Mile nautical statute Milky Way pole MilliMillilambert Milliphot Minerals: density dielectric constant electrical resistivity
384 376 98 363 363 363 363 227 648 453 125 327 558 558 388 387 393 384 226 227 394 138 363 286 592 626 6 93 337 64 61 782 64 21 6 6 561 6 6 62 6 746 731 6 93 93 294 428 395
852
390 381 364 365 366 367
457 458 459 460 461
559 560 389
61
66 783
782 63
63 62 62
Index terms
Links
Minerals: density, Continued index of refraction biaxial monorefringent uniaxial rock-forming, bulk moduli specific heat MKS system of units Mobility of ions Modulus of elasticity Modulus of rupture Mol (mole) Molecular constants of diatomic molecules energy conversion factors dissociation electronic rotational states characterized designated electronic for ground state intermolecular distances equilibrium position moment of inertia Molecule diameter diatomic constants ground state dimensions evaporation masses mean free path formula number of monolayer and equivalent volume pressure temperature organic cross section length pressure, gases (units) protein rates of incidence velocity formula value volume, inert gas atoms Molybdenum, radiation and other properties
526 522 523 740 162 15 644 6 188 6 586 586 618 586 586 586 587 586 586 586 587 586 587 586 618 638 586 587 586 631 639 640 641 641 638 645 638 638 646 646 646 638 631 639 639 639 640 646 103
853
645 189
587
654 642 644 645
587 644
640
Index terms
Links 27 6 654 730 741 737 736 734 734 735 729 730 730 731 734 734
Moment of inertia of various bodies Momentum Angular, of nucleus Month Moon: age albedo craters dimensions mass orbit eccentricity general precession inclination parallactic physical data temperature Mortars (see under Building materials) Mountains Musical instruments (see also under Sound) peak power Musical scales Mutual inductance
772 310 311 310 312 13 745 734 264 568 451 103 104 186 664 654 667 667 6 101 101 457 625 626 628 47 117 264 267 142 269 276 436 356 441 582 584 622 154
Nebulae (see also under Astronomy), lines Neptune Neon, compressibility standard wavelengths Nernst effect Nernst glower Neutralization, heats of Neutrino (see under Particles, fundamental) Neutron slow to produce radioactive isotopes radioactivity Newton Nickel, radiation from soot covered Nickel-iron alloy, temperature effects Nitrogen, abundance atomic weight boiling point compressibility high pressure conductivity, thermal density critical dielectric constant diffusion, coefficient of electric dipole moment electron configuration expansion, thermal
854
Index terms
Links
Nitrogen, abundance, Continued heat, latent heat capacity index of refraction ionization energy for production of ion pair isotopes Joule-Thomson effect magnetic susceptibility melting parameters melting point pressure molecular diameter molecular velocity molecules, number of percent in air percent in atmosphere physical properties pressure, critical solubility in water temperature, critical thermal properties (molecular) Van der Waal’s constant vapor pressure at low temperatures relations velocity of sound in Verdet’s constant viscosity volume, conversions pressure relation relative Nitroso-dimethyl-anilene Noise (see also Sound) Novae (see also under Astronomy) Nuclear physics artificial disintegration produced binding energy cosmic rays definition of terms fields mass-energy mass-velocity particles attraction fundamental high-energy, device for producing mass formulas velocity and mass radioactivity
166 163 533 711 655 658 279 462 118 117 119 643 640 638 642 592 592 190 276 358 276 272 262 360 360 119 306 506 331 260 119 261 519 309 757 651 651 651 653 653 653 651 654 654 652 652 664 657 654 654 654 654
855
Index terms
Links 665 665 666 666 666 666 666 665 666 666 666 652 654 654 651 730 730 244
Nuclear reaction barrier penetration cycles, carbon proton-proton temperature energy produccd rates stars carbon cycle proton-proton cycle time required Nucleon Nucleus mass Nutation constant Nylon
730
Obliquity of ecliptic Observatories, magnetic values (see also Geomagnetism) Oceans area area vs. depth currents depth and velocity volume transported depth, greatest mean dissolved, material earthquake waves, velocity geochemistry greatest depth, Atlantic Indian Pacific physical data topography, ocean floor volume waves (see Waves at sea) Oersted Ohm Oils, index of refraction petroleum, compressibility thermal expansion viscosity Optical constants, metals crystals (see also Crystals) glass (see dso Glass) pyrometry brightness temperature correction to true calibration of pyrometer
481 772 773 773 774 778 778 778 773 777 777 776 773 773 773 773 773 773 18 20 530 284 284 334 558 509 513 509 510 511 512 513 514 97 7 97 99 97
856
Index terms
Links
Optical constants, metals, Continued effective wavelengths emissivity monochromatic screen effective wavelengths true temperature wavelength used Orbits, planets Orchestral instruments, frequency range Organic compounds, boiling point density liquids, dielectric constant spreading coefficients vapor pressure melting point solubility vs. temperature Osmium filament, color temperature Oxides, brightness blue brightness electrical resistivity molten, viscosity percentage emissivities Oxygen, abundance atomic weight boiling point combustion constant compressibility conductivity, thermal density critical diameter dielectric constant diffusion, coefficient of electric dipole moment electrochemical equivalents electron configuration entropy expansion, thermal factor to ideal gas heat capacity index of refraction ionization energy for production of ion pair isotopes magnetic susceptibility melting point molecular data molecular diameter molecular velocity molecules, number of percent in air percent in atmosphere
97 98 97 97 97 97 734 311 122 122 424 633 368 122 358 104 104 104 395 326 101 625 47 117 179 264 142 48 276 644 436 356 441 403 582 274 154 48 163 533 711 655 462 117 274 644 640 642 592 592
857
99 537
439
619
584 622
658
Index terms
Links
Oxygen, abundance, Continued physical properties point pressure, critical solubility in water temperature, critical thermal properties (molecular) Van der Waal’s constant vapor pressure at low temperatures velocity of sound in Verdet’s constant viscosity volume, relative volume conversions
190 71 276 358 276 274 262 360 360 306 506 331 642 261 260 654 72 451 461 461 63 731
Packing fraction Palladium point Paramagnetic substances Curie constant temperature Parsec Particles attraction range De Broglie wavelength elementary force, attractive range fundamental alpha particle characteristics deuteron electron negative positive meson neutrino neutron production photon positron proton high-energy, devices for producing mass and velocity range various, De Broglie wavelength velocity Peltier effect (see also Emf, thermal) coefficient of iron-constantan
652 652 653 651 664 652 652 664 664 664 664 664 664 664 664 664 664 664 664 664 664 657 652 654 665 665 13 379 13 381
858
Index terms
Links
Peltier effect, Continued metals vs. lead nickel-copper Peltier heats, pressure effects Pendulum, length of seconds vs. latitude Pentane candle Perihelion Periodic system Permalloy Permeability iron nickel-iron steel Petroleum (see also Oil): combustion values compressibility density thermal expansion viscosity pH sea water Phot Photoelectric effect equation Photoflash Lamps, characteristics Photographic materials range of Photography characteristic curves comparison of nuclear and optical emulsions definitions developers (formulas) edge gradient values formulas for developers illuminants, relative photographic efficiency lamps for nuclear track plates emulsions nuclear specification optical emulsions photoflash lamps range of spectral sensitivity resolving power edge gradient value sensometric constants for type plates and films spectral sensitivity films range
380 381 382 717 717 92 731 621 453 10 457 456 458 182 284 284 284 284 634 777 93 636 636 110 563 566 562 562 564 562 563 564 563 565 110 567 567 567 567 564 110 566 564 564 565 563 566 566 566
859
457 458
566
111
Index terms
Links 92 94 94 92 95 94 93 92 94 94 94 87 93 95 93 93 94 94 93 94 89 90 90 91 93 93 89 93 57 93 87 88 91 93 93 93
Photometric standards candle color temperature international low brightness standard of 1948 units, definitions obsolete Waidncr-Burgess standard color value Photometry apostilb apparent candlepower with distance brightness candle Waidner and Burgess conversion factors definitions and units equivalents eye as measuring instrument effect of color Fechner law foot-candle flux, luminous radiant glare, effect on sensibility illumination light lumen luminosity factors vs. field brightness lux mechanical equivalent of light phot photon relation, instantaneous threshold to field brightness vs. field brightness spherical candle standards (see Photometric standards) obsolete Waidner-Burgess stilb symbols and definitions units Photon Physical constants (see also under name of ) relations
94
93 94 79
93
88 90 90 93 92 94 92 94 93 94 93 94 93 654 20 46 46
860
Index terms
Links
Physical properties of materials (see also Mechanical properties) alloys: aluminum Babbitt metal bearing metal beryllium brass brazing bronze carboloy copper Dow metal hardness iron low expansion low melting magnetic alnico Heusler permalloy superpermalloy mirror miscellaneous resistance sealing to glass soldering special purpose steel stainless tungsten wire strength with lightness thermocouples white metal bearing aluminum concrete (see under Building Materials) copper crystals definitions: elastic limit Ericksen values hardness Brinell Shore sceleroscope modulus of elasticity Young’s proportional limits ultimate strength compression tension elements fibers (see Fibers)
187 192 226 226 220 195 223 195 224 198 220 187 209 221 225 455 454 458 453 453 222 217 221 220 223 220 209 213 214 215 220 221 226 192
224
455
221
224
222
198 515 529 187 187 187 187 188 188 188 188 188 188 188 189
861
Index terms
Links
Physical properties of materials, Continued glass special hardness elements, relative measuring units interior friction iron isolated tubular conductors leather light hydrocarbons masonic mortars plastics optical Poisson’s ratio rigidity modulus temperature effects rope rubber artificial compression natural rupture, modulus steel strength, ultimate tungsten wood zinc Pi (values) Piezoelectricity crystals strain coefficient unit Pile yield of isotopes Planck’s constant Planck’s law Planetary precession Planets (see also under Astronomy) orbits physical data satellites temperature Plastics, characteristics dielectric constant dielectric strength elasticity index refraction optical properties specific gravity
534 534 187 228 187 187 227 228 418 232 293 229 239 240 227 226 227 245 234 236 237 235 188 228 188 225 246 225 6 432 432 432 432 670 49 7 731 734 734 734 735 734 239 239 239 239 240 240 240 239
862
25
51 79
54
79
80
Index terms
Links
Plastics, characteristics, Continued thermal conductivity thermal expansion Platinum, color temperature cooling by radiation emissivity freezing point thermocouples Pluto Poise Poisson’s ratio Polarized light, rotation of plane various materials Pole, Milky Way North South Positron Potassium bromide Potassium chloride, index refraction Potassium iodide Potential difference, contact alloys aluminum vs. platinum electrode metals in solution of salts solids vs. liquids voltaic cells Potential excitation Pound (see under name of) Pound weight Poundal Power factor insulating materials radio frequency Precession Pressure, boiling point columns of mercury and water conversion factors freezing point of water gases, critical melting point units of Van der Waal’s equation volume relation (see also Compressibility): argon compounds gases metals nitrogen
239 239 103 116 98 72 75 734 318 227 557 557 731 470 471 651 515 516 515 515 516 376 379 376 637 376 378 380 378 376 377 745 6 6 6 17 433 433 433 738 119 606 267 119 276 119 4 638 262 118 286 261 286 119
863
22
Index terms
Links
Pressure, boiling point, Continued solids Probable error Propagation temperature, dust Proportional limit Proteins (see also Colloids) Proton mass molecules pH stability synchrotron Pyrometer, optical (see also Optica lpyrometer) glass Pyron
286 287 288 289 37 634 188 631 50 654 664 50 631 634 657 97 537 9
Quantity of electricity Quantity of light Quantum Quartz, crystal compressibility dielectric constant fibers, characteristics fused index of refraction physical properties relative, volume with pressure resistivity rotation of plane of polarized light transparency
10 11 20 94 21 89 654 517 518 287 428 430 534 518 518 534 289 396 558 517 546
864
Index terms
Links 6 79 79 517 535 546 79 50 80 50 54 80 50 50 54 80 80 79 50 52 80 54 80 112 79 50 79 93 94 79 79 671 101 549 549
Radian Radiancy Radiant energy absorption (see also Absorption) blackbody constants first (c1) density second (c2) different values definitions Stefan-Boltzmann constant Wien displacement constant cooling by definitions density flux density intensity of source mechanical effects nickel reflection, formula light solar (see Solar radiation) spectral standard radiator (see also under Blackbody) symbols temperature total, earth’s surface our galaxy universe transmission, various substances units wavelength units Radiation, alpha ray beta ray cathode constants cosmic earth’s surface electromagnetic (see Radiant energy) extraterrestrial gamma mechanical effects our galaxy radioactivity receivers solar over disk spectral, outside atmosphere sea level
79 79 79 70 713 713 713 535 36 509 653 653 653 50 54 80 651 653 710 713 449 653 672 671 713 654 672 548 721 723 722 721 723
865
Index terms
Links
Radiation, alpha ray, Continued universe Radioactivity actinium family alpha rays artificial long life slow neutron produced atoms (natural) number beta rays (see also Beta rays) breakdown: character decay constant rate units of, Curie Rutherford danger from range disintegration units for rate of elements, number emission characteristics three rays energy of radiated families (natural) artificial additions characteristics actinium (4n+3) neptunium (4n+1) thorium (4n) uranium (4n+2) gamma rays (see also Gamma rays) isotopes characteristics neutron produced life range for determination materials age alpha-ray spectrum beta-ray spectrum energy emitted by radium in equilibrium isotopes number natural characteristics spectra original names of neptunium family
713 654 678 680 682 667 667 672 672 672 672 673 672 672 672 686 686 672 672 672 672 672 672 689 675 675 675 678 676 676 677 653 672 667 667
672
680 680
675
689 689
672
618 673 675 679 680 683 689 691 675 672 673 673 680 675 676
866
Index terms
Links
Radioactivity, Continued protection, distances lead, thickness other materials radiation: alpha rays (see also Alpha rays) beta rays (see also Beta rays) gamma rays (see also Gamma rays) ionization radium in equilibrium thorium family uranium family Radio propagation antenna array direction control formula pattern attenuation coefficient constant formulas ground low frequency formula oxygen (atm) rain sea water water vapor formulas frequency: critical different layers high low maximum usable (muf): 2000 km, E-layer 4000 km, F2-layer factors for calculating F2-layer muf other distances path length layers reflection different layers frequency ion density layers minimum height skip distance Radio radiation directivity extraterrestrial patterns reflection
686 689 600 690 684 672 672 672 672 691 676 677 434 434 434 435 434 443 442 442 443 444 442 442 449 449 444 445 443 444 445 448 446 442 445 448 446 448 448 448 448 444 444 444 445 445 445 445 434 434 449 434 444
867
Index terms
Links
Radio radiation, Continued atmosphere layers transmission factors over ground bad good over sea water Radium: danger ranges for persons working with Ra amounts of radium emanation, vapor pressure (cmHg) energy emitted by 1 g Ra in equilibrium protection for 8 hours per day exposure distance thickness of lead safe working distance Radius: atomic gyration ionic molecules Range of particles Rankin temperature scale Rayon Reaumur temperature scale Receivers for radiation blackening Reflection factor: angle building materials diffuse formula long wavelengths materials for metals ultraviolet pigments, dry powders sand snow surfaces, with angle tungsten Refraction, index of (see also Index of Refraction) Refractive indices with microscope materials for Reluctance Resilience Resistance (electric) alternating to direct current diameter wire for ratio 1.01 average pressure coefficients for metals bismuth, temperature variation, transverse
444 444 444 444 444 444 444 686 690 682 691 686 686 690 689 643 27 648 645 654 9 243 9 548 548 549 553 551 549 554 554 550 550 551 550 554 554 550 555 509 561 561 18 6 11 419 420 389
868
689 690
644
550 555 555 555 556 552
551
532
Index terms
Links
Resistance (electric), Continued magnetic field change of: metals, transverse magnetic field nickel high-frequency, conductors calculation of resistance ratio temperature human body increase of, due to transverse magnetic field, nickel manganin, under pressure mercury, under pressure metals, effect of tension pressure nickel, magnetic field of conductor pressure coefficient proximity factor ratio, wire diameters, ac to dc resistances skin effect standard annealed copper temperature high low tension tubular conductors frequency variation with pressure (metals) Resistivity (see also Conductivity) alloys aluminum at high and low temperatures copper temperature coefficient dielectrics (solid), surface volume elements glass vs. temperature mercury vs. pressure metals vs. pressure vs. temperature minerals, miscellaneous oxides plastics pressure effect rocks sea water soils
463 463 463 417 418 419 417 418 418 393 375 463 389 389 387 388 463 11 388 389 419 419 417 16 19 404 393 393 387 418 418 388 12 13 384 390 404 393 404 406 395 395 384 387 396 389 384 388 385 395 395 239 388 395 396 395
869
19
Index terms
Links
Resistivity (see also Conductivity), Continued solutions (electrolytic) surface, solid dielectric temperature: coefficient low thermal volume, of solid dielectrics water, natural sea (high-frequency) Resolving power (photography) Rest mass Restrahlung bands, various materials Reverberation time optimum room type Reynolds number Rigidity modulus, number of materials and temperature Ring (magnetic) specimens, corrections for Rock salt: index of refraction transmission Rocks: bulk modulus (rock forming materials) dielectric constant elastic constants electrical ‘resistivity specific heat Rods, demagnetizing factor Rope fiber wire plow specification steel values Rotation of plane of polarized light Rubber: artificial physical properties comparison compressibility natural physical properties strength Rupture, modulus Rutherford Rydberg constant deuterium helium hydrogen infinite mass
397 395 384 393 44 395 396 396 564 654 555 315 316 317 337 226 227 464 518 517 740 426 740 741 395 162 467 245 245 215 215 215 215 215 557 236 236 237 237 235 235 235 188 672 48 48 48 48 48
870
51 51 51 51
54 54 54
Index terms
Links 52 734 735 51 188 108 773 774 50 80 80 717 13 24 578 579 579 570 579 581 578 569 580 580 581 581 580 579 580 582 584 579 578 654 48 520 32 725 6 337 554 550 531 719 720 720 720 744 744 743
Sackur-Tetrotle constant Satellites (see also under Astronomy) Saturn Schrődinger constant Screens (woven wire ) Sealed-beam lamp Seas, physical data (see also Oceans) Sea water (see also Water ) Second radiation constant precaution for use value Seconds pendulum, length vs. latitude Self-inductance Series, mathematical Series relations in atomic spectra Bohr atom energy levels, designations J values L values quantum principle Rydberg constant S values symbols spectral designation quantum principles spectral levels Pauli principle spectral terms means of identification spectroscopic properties, neutral atoms singly-ionized atoms terms from electrons wave numbers Showers, cosmic rays Siegbahn, wavelength scale Silver chloride Sines Sky, illumination due to Slug metric Snow reflection factors Sodium carbonate Sodium chloride Solar constant monthly means 1920-1952 yearly means Solar corona emission lines flares
871
735 54
80
580
581
580 579 54
337
550
Index terms
Links 723 725 720 731 731 731 719 720 720 719 724 720 744 722 743 725 725 725 721 725 721 721 724 724 724 721 722 723 724 725 724 719 719 725 727 223 223 223 223 223 223 223 223 223 223 223 223 223 286 637 427 635 636 548
Solar irradiation at sea level latitude monthly Solar motion elements Solar parallax Solar radiation air masses vs. sun’s elevation atmospheric transmission biological effective component constant corona emission distribution over disk flares illumination sky sun intensity outside atmosphere mean intensity relative intensity spectral distribution Mount Wilson outside earth’s atmosphere sea level sunlight, distribution over Mount Wilson illumination due to sunshine, duration total to earth variation with time and latitude Wolf’s sunspot number Solder flux hard, for aluminum for brass for copper for gold for iron soft, for brass for copper for gold for iron for lead for zinc Solids, compressibility contact difference of potential dielectric constant electron emission infrared reflection
872
Index terms
Links
Solids, compressibility, Continued infrared transmission specific heat velocity of sound in Vcrdet’s constant Solubility gases in alcohol gases in water (tcmperature variation) inorganic salts (temperature variation) organic salts (temperature variation) organic solvents pressure effect vapors alcohol water Solutions, density molecular conductivity Solvents, organic boiling point Sound (see also Acoustics) acoustics, architectural attenuation coefficient vs. humidity reverberation time and frequency as function of volume calculated optimum and volume of room bel consonants, frequency of occurrence power, relative decibel ear sensitivity to: binaural differential frequency range monaural threshold fundamental frequency, female voices male voices hearing acuity: and frequency loss by groups thresholds levels, various locations musical: power peak, various instruments range frequency, orchestral instruments scales cent equally tempered frequency and piano key numbers frequency ratios, two scales intervals
873
547 155 306 504 357 360 358 357 358 359 359 360 360 360 300 398 359 359 309 315 316 315 317 317 315 316 317 309 309 309 309 314 314 314 314 314 310 310 314 315 314 309 310 311 312 312 312 313 312 312
156 157 158
360
301 302 303 304 305 399
314
Index terms
Links
Sound, Continued just semitone noise levels, various locations pressure levels pressure unit sensitivity of ear speech: consonants frequency of occurrence relative power power men women pressure field around head vowels, frequency of occurrence relative power resonance values velocity: in air for various densities and heights in gases in liquids in sea water in solids in vapors Spark in air, voltage required vs. distance ac dc Specific gravity API Baumé scale Specific heat aluminum oxide ammonia, liquid saturated at fusion atomic electricity elements formula for (true) gas ratio hydrocarbons, light liquids, various materials, various mercury metals minerals rocks
874
312 312 309 309 309 314 309 309 309 309 310 310 313 309 309 311 306 594 306 307 307 306 306 421 422 423 421 421 291 290 289 9 155 162 162 162 157 160 379 155 157 163 164 293 161 158 161 157 162 162
Index terms
Links
Specific heat, Continued silicates solids, various true temperature vapor water Specific inductive capacity (see Dielectric constant) Specific intensity of magnetization Specific luminous radiation Specific susceptibility Spectra: alpha ray artificial natural atomic, series relations energy state beta ray blackbody Bohr atom Catalán's analysis Classes, stars emissivities energy levels quantum numbers rotation of electron Rydberg constant spinning electron terms symbols X-rays Spectral intensity Spectral luminosity factors Spectral luminous flux Spectral luminous intensities blackbody at various temperatures brightness of blackbody crova wavelength mechanical equivalent of light Spectral radiant energy Spectral radiation Spectral sensitivity (photographic) Speech (see Sound) Speed (photography) Spherical candlepower Spin Spreading coefficient (see Colloids) Square statute mile Standard atmosphere Standard observer, 1931 I.C.I. Standard temperature
164 158 157 157 163 161 11 461 93 451 681 682 680 681 578 581 653 95 579 579 746 747 753 8 98 99 100 101 102 103 581 579 580 578 580 579 580 579 699 79 82 85 87 90 93 95 95 96 96 93 96 79 79 566 562 93 580 62 47 345 593 90 9 71
875
Index terms
Links 568 569 575 577 571 577 578 568 568 568 568 568 569 570 571 571 570 568
Standard wavelengths cadmium red line, value of elements, prominent lines in simple spectra extreme ultraviolet standards Fraunhofer lines, wave lengths preliminary values of mercury198 primary standard cadmium mercury secondary standards iron krypton neon simple spectra, wavelengths and relative, intensities solar wavelengths tertiary standards, iron Standards, fundamental Stars (see also under Astronomy) Statahenry Statampere Statcoulomb Statfarad Statohm Statute mile Statvolt Steam: saturated, properties superheated, properties Steel, composition of high speed magnetic properties mechanical properties permeability stainless transformer, energy losses wire specifications wire rope specifications Stefan-Boltzmann constant Stellar system (see also under Astronomy) Steradiancy Stilb Stoke Stone (see under Building materials) Strain Stress Sugar, combustion values Sugar solutions: density
575 571 571 13 728 20 11 20 20 20 63 11 169 176 465 224 452 209 457 213 459 215 215 215 216 50 728 79 93 321 7 7 182 304
876
577 572
746 20
20 175
457 458
80 746
Index terms
Links
Sugar solutions, Continued Baumé degrees Brix degrees specific gravity Sulfur dioxide compressibility Sun (see also under Solar): area brightness calculated density diameter distance to earth eclipses 1950-2000 electric data illumination due to magnetic data mass orbit matter within radiation at sea level biological effective over surface radius shine, duration latitude time spots annual means volume Sun and sky illumination Mount Wilson Superconductivity Surface tension liquids miscellaneous metals at solidification point salts in water solutions of salt and water various materials water plus alcohol Sylvite Synchro-cyclotron Synchroton
305 305 305 266 266 731 92 92 731 731 731 742 502 725 502 731 770 770 719 720 721 722 723 724 725 723 724 722 731 724 724 724 727 727 731 725 724 394 361 361 362 361 362 361 361 362 361 519 657 654 657
Tangents Tantalum: physical properties radiation characteristics Telescopes, largest in use Temperature brightness
32 98 103 103 728 7 97
877
Index terms
Links
Temperature, Continued correction to true variation with c2 color and brightness carbon various substances conversion tables correction to true corrections to mercury thermometer critical (gas and vapors) definition in different ranges earth: highest lowest selected stations surface variation with depth electron volt, equivalent fixed points: °C 1948 primary gold point ice point oxygen point silver point steam point sulfur point secondary flames ice point international temperature scale of 1927 and older scales international temperature scale of 1948 and 1927 scale interpretation for different ranges Wien's equation interstellar space measurement correction for emergent mercurial thread old thermoelectric scales planets reduction to gas scale reduction to thermodynamic scale reference tables for thermocouples scales Celsius Centigrade Fahrenheit gas to thermodynamic international: 1927
878
99 86 8 104 104 104 iv 99 72 276 70 726 726 726 726 727 21 54 71 71 72 71 47 71 71 71 71 71 70 72 182 293 47 73 70 74 71 74 74 72 763 71 72 72 73 74 734 73 73 75 75 8 8 8 73 70
71
72
73
87
97
Index terms
Links
Temperature, Continued 1948 comparison with 1927 scale Kelvin old radiant Rankin Reaumur thermodynamic secondary points (1948) standard standard fixed points (see also Fixed points) thermocouple data true less brightness various places (monthly means) Wien equation, corresponding temperatures on 1948 scale Tenth-meter Terrestrial magnetism (see Geomagnetism) Thallium brome-iodide Thermal capacitance Thermal conduction vs. temperature Thermal conductivity alloys cork cotton fireclay fourier various materials gases insulating materials leather liquids: as a function of pressure organic materials, various metals organic liquids plastics rocks, various rubber salt solutions substances, various water salt solutions woods wool Thermal emf (see Emf) Thermal expansion, coefficient of alloys crystals
70 71 9 74 9 9 9 9 70 71 8 75 99 99 726
72
71
72 7 515 9 114 9 138 139 139 141 144 144 142 139 233 143 142 136 139 141 138 142 239 136 140 140 136 136 141 142 136 140 140 8 145 149 152
879
Index terms
Links
Thermal expansion, coefficient of, Continued cubical elements gases leather liquids metals miscellaneous materials plastics rubber Thermal properties: gases liquid ammonia saturated steam saturated water superheated steam Thermal resistivity in fouriers Thermochemistry, various materials heat of formation Thermocouples, reference tables for chromel-alumel, °F iron-constantin, °C-°F platinum to platinum 10 percent, °C-°F Thermodynamic laws Thermodynamic temperature Thermodynamics Thermoelectric effect properties at low temperatures vs. copper vs. lead alloys metals pressure effect temperature vs. platinum alloys aluminium cadmium
148 153 145 154 233 153 145 152 239 235 259 178 168 169 175 168 176 144 185 186 74 75 76 78 76 77 75 9 9 14 9 13 379 381 379 379 379 379 382 387 381 376 383 376-390
metals nickel zinc Thermomagnetic effects Thermometry: correction for emergent thread mercury thermometers reduction, gas thermometer to thermodynamic scale corrections for various gas thermometers Thomson effect, microvolt per degree Thomson heats pressure effects temperature
389 390 508 72 72 73 73 382 382 383 382 383
880
77
78
Index terms
Links 614 779 779 779 779 779 779 728 14 7 130 130 1 657 126
Thunderstorm electricity (see also Lightning) Tides: height at various places mean sea level geodetic geographic neap spring Time, equation of unit Torque Transformation: eutectic mixtures lime-alumina-silica compounds of units Transformer rectifier Transitions, crystals Transmission of radiation: air components moist alum atmospheric transparency for ultraviolet cesium bromide color screens crystals dyestuff solutions gases glass Jena lead chloride optical red pyrometer glass effective wavelength light filters: Bausch and Lomb Corning glass narrow band pass spectral regions Wratten light through space long wavelength magnesium oxide optical crystals red pyrometer glass rock salt sapphire silver chloride solids substances, various sylvite thallium bromide thallium bromide-iodide thallium chloride
538 538 546 545 538 547 535 515 538 547 512 514 547 512 537 537 537 536 536 536 536 771 545 547 517 537 517 547 547 547 546 517 517 517 547
881
57
517
547 545 545
547
Index terms
Links
Transmission of radiation, Continued various materials water Transparency: atmospheric, for ultraviolet substances, various, infrared various, for long wavelengths ultraviolet, for atmospheric components water water vapor (steam) Transverse galvanomagnetic and thermomagnetic effects Treatment of experimental data (see under Data) Triboelectricity, series vs. silica Trigonometric functions cosine cotangent sine tangent Tritium Triton Troy measurements Tnngsten (Wolfram), characteristics color temperature emissivity lamp melting point pressure radiation Twilight
554 556 536 538 546 555 538 536 545 507 375 375 32 32 32 32 32 654 654 63 64 102 102 103 99 106 72 119 102 731
66
654 657 187 188
Ultimate particles strength, materials Ultraviolet, transparency for atmospheric components Uniform point source Unit pole United States system of weights and measures metric to to metric Units: absolute ampere turn capacity carrying copper wires electrical mechanical physical specific inductive cgs changing
538 92 451 60 60 60 2 18
61 61 62
416 16 60 60-67 11 15 57
882
63
Index terms
Links
Units: absolute, Continued choice of common abbreviations spelling conversion (see Conversion factors) cubic defined (see under name of unit) derived dimensions electrical and magnetic geometric and heat different systems absolute, electric and magnetic (1948) relation to international (1927) ampere turns cgs electrical dimensional equations equivalents of discarded systems relative value of 3 systems Gaussian heat dimensional equation flow international electrical magnetic units ampere turn Gauss Gilbert Maxwell Oersted ordinary pole practical some proposed MKS dimensional formulas use of dimensions electric absolute (1948) maintained vs. international electromagnetic practical electrostatic energy established extensive former electrical equivalents
883
1 56 56 56 63 2 58 58 59 58 15 19 20 18 15 20 10 11 59 22 20 15 58 58 136 19 451 18 18 18 18 18 18 12 16 15 15 2 58 59 2 57 58 59 10 15 19 19 20 12 16 12 17 618 653 2 1 22
Index terms
Links
Units: absolute, Continued fundamental area capacity choice of dielectric constant dimensions heat length magnetic permeability mass number of temperature scale of 1948 time volume Gaussian system geometrical heat intensive legal definitions linear list of magnetic mass measurements numeric unit mechanical metric MKS number of numerically different photometric proposed systems radiant energy radiant wavelength relations among wire size units resistivity square transformation of Universe: abundance of elements cosmic rays mass density radiant energy Uranium: elements beyond americium berkelium californium
1 56 60 60 2 1 57 58 58 1 60 10 451 60 2 1 14 70 14 2 60 15 4 7 1 60 60 56 18 451 60 1 1 1 4 61 62 15 2 15 94 15 136 509 404 11 60 1 57
60
59
70
625 713 713 713 619 619 619 619
884
623 670 670 670 670
Index terms
Links
Uranium, Continued curium methods of producing neptunium plutonium radioactive properties Uranus
619 670 619 619 676 734
Valence electrons Value of e Van de Graff generator Van der Waal’s equation constants for different gases Vapor pressure: alcohol, ethyl methyl argon critical diffusion elements (some) ethyl alcohol gases (low temperature) hydrocarbons, light liquids organic mercury metals rate of evaporation methyl alcohol organic liquids rate of evaporation solutions of salts in water temperature effects Vaporization, latent heat of ammonia elements formula for liquids pressure variation water Vapors: density diffusion molecules mass velocity Velocity maximum of light in different materials (see under name of material) of sound: in gases
885
654 47 654 261 262 370 370 117 276 354 362 370 360 293 371 368 372 362 362 370 368 362 373 368 167 167 165 167 166 167 167 269 354 640 640 640 7 654 47
306
670 670 670 677
51
54
355
371 363 363
369
51
54
Index terms
Links
Velocity, Continued liquids sea water solids vapor Verdet’s constant: acids gases liquids salts in water solids Viscosity air alcohol-water mixtures boron trioxide castor oil temperature centipoise coefficient constants Couette correction definition equations dimensions dimethyl-siloxane polymers diopside-albite-anorthite fluids formulas gases and vapors pressure and temperature gasoline, with temperature glasses, with compositions with temperature glucose thermal effect glycerin-water mixtures glycerol in aqueous solution with temperature heavy water hydrocarbons pure ice glacier kerosene, with temperature kinematic unit liquefied gases and vapors liquids miscellaneous pressure effects pure lubricants oils, crank case
307 307 306 306 505 506 505 505 504 318 331 320 326 322 322 319 318 331 318 318 318 318 325 327 319 319 331 331 322 330 330 321 321 322 321 321 320 329 329 319 322 318 321 329 328 328 333 333 334 334
886
505 506
320 321 322 323 324 332 332
321
333 334
Index terms
Links
Viscosity, Continued metals, molten methods of measuring equations Meyer’s formula, constants molten metals oxides number of gases oils pressure organic liquids, temperature effect orthoclase-albite oxides, molten pitch pressure effects liquids silicon dioxide sodium silicates (temperature) solids equations Southerlands formula specific stoke temperature variation units of poise vapors Venice turpentine water: at high temperatures at low temperatures heavy water pressure water-alcohol mixture wax, shoemaker’s Volt Voltaic cells composition emf standard Volt-electron Volume gas, correction factor relative at various pressures glass vessel pressure relation: argon compounds gases metals nitrogen
327 318 318 331 327 326 331 328 328 323 325 326 319 328 328 325 324 319 319 331 318 321 322 318 318 319 319 320 319 320 334 320 319 20 377 377 377 378 654 60 260 261 68 117 286 261 119 118
887
319
334
333
323 324 325 326 321 319
286
Index terms
Links
Water:
360 360 606 71 169 283 153 295 296 298 296 48 297 302 302 304 425 439 354 143 396 119 161 632 671 320 602 602 530 399 167 462 638 118 302 304 638 119 119 606 671 295 296 283 168
absorption, gases vapors barometric pressure, column of water boiling point with pressure compressibility cubical expansion density free from air maximum water and alcohol ethyl methyl dielectric constant dielectric loss tangent diffusion of aqueous solution into diffusivity electrical resistivity freezing point, effect of pressure heat capacity heat of sorption heavy water, comparative properties viscosity humidity and wet-dry bulb temperature index of refraction ionization latent heat of vaporization, formula magnetic susceptibility mean free path melting temperatures, effect of pressure mixture, with alcohol, density molecules, diameter phases freezing point pressure of columns properties, heavy ordinary pure, free from air relative volume, different pressures saturated, thermal properties sea: absorption of light with wavelength chlorinity composition concentration of dissolved material density elements in evaporation
774 776 774 776 774 774 777 774
888
Index terms
Links
Water, Continued geochemistry osmotic pressure pH physical properties absorption of light chlorinity concentration pressure, osmotic vapor salinity transmission of radiation pressure resistivity salinity solids dissolved amount of yearly addition specific heat temperature vapor pressure vaporization velocity of sound in solubility: of gases in of salts in inorganic organic solution of salts in specific heat spreading surface tension thermal conductivity thermal properties total heat of vaporization transmission of radiation transparency vapor: coefficient of diffusion density diffusion of heat capacity index of refraction mean free path molecular diameter molecular velocities pressure in atmosphere at sea level saturated: pressure temperature weight transparency variation of dielectric constant
776 775 777 775 775 774 774 775 775 774 775 774 396 774 776 776 776 161 774 775 774 307 358 357 358 358 300 161 633 362 136 142 168 169 775 538 356 276 355 163 533 638 638 640 599 605 600 600 601 545 423
889
Index terms
Links
Water, Continued velocity of sound in viscosity weight of wet-dry bulb vapor pressure of salts in velocity of sound in Verdet's constant for viscosity effect of pressure effect of temperature volume, and density and temperature at temperature of maximum density free from air influence of pressure of glass vessel from its weight in water Watt Wavelength: cadmium red line conversion factor De Broglie elements, prominent lines in simple spectra extreme ultraviolet Fraunhofer lines Mercury198= primary standards sample spectra of some elements secondary standards (international) iron krypton, neon solar lines standard cadmium mercury tertiary standards, iron units ultraviolet Wave number absolute volt electron volt moment of inertia and band spectra one volt Waves at sea: earthquake fetch height vs. fetch vs. wind duration vs. wind velocity length deep water shallow water
306 332 601 602 373 307 505 319 334 319 298 298 297 296 297 68 20 569 509 665 577 571 577 568 568 577 570 571 570 572 568 569 568 571 509 571 578 50 54 49 50 777 778 778 778 772 772 778 777 777
890
581
778
778 778 778
Index terms
Links
Waves at sea: earthquake, Continued sea surf swell height vs. distance from source vs. wind velocity: deep water shallow water Weighing: effect of the air reduction to vacuo Weight, calculated, various bodies Wet-dry bulb temperature and humidity Wien displacement constant Wien displacement law Wire (see also Copper): aluminum, properties of mass resistivity copper, properties of annealed characteristics of electric carrying capacity (safe) mass resistivity resistance, computing resistance to standard temperature temperature coefficient of resistance electrical and mechanical characteristics gages, comparison of high-frequency resistance calculations of conductors maximum diameter for high-frequency resistance ratio of 1.01 ratio of alternating to direct current resistance rope steel tables, comparison (gages) for computing resistances tubular conductors, resistance Wolf’s sunspot number Wolfram (see Tungsten)
778 778 778 772 778 777 777 69 69 27 602 80 80 415 404 406 408 408 408 416 404 417 407 404 408 405 417 417 419 417 419 420 419 216 216 405 416 418 727
654 693 693 693 693 692 696 696
X-rays absorption coefficients formulas constants critical K series L series
891
692 694
698 699
Index terms
Links
X-rays, Continued M series mass absorption calculated elements materials formula wavelengths, critical elements voltage characteristics, intensity wavelength dosage units lead thickness to reduce rate emission, characteristic, materials K series energy, radiated filters for obtaining monochromatic fluorescence, excited by materials wavelength generated ionization gas and vapors mass absorption formula nature production quantity protection against concrete distance vs. voltage lead materials vs. minimum thickness vs. intensity requirement vs. voltage for 400 kv pulsating for 1000 kv pulsating for 10 ma pulsating thickness vs. voltage quantity, tungsten target safe rating of tubes spectrum limit terms, various elements tubes, safe operating types characteristics continuous spectrum wavelength limit
892
696 704 704 695 696 693 692 697 692 692 692 694 695 695 696 696 692 696 693 693 693 692 693 693 694 694 692 692 692 693 694 695 695 694 693 693 695 696 695 695 692 698 692 692 698 698 692 692 699 692
697
693 693
694 695
695
Index terms
Links
X-rays, Continued
X-unit
692 692 701 693 696 697 699 700 698 700 697 692 509
Year: anomalistic light sidereal tropical Yearly means: magnetic characteristics solar constant sunspots temperature Yield point (materials) Young’s modulus
731 730 731 731 481 719 727 726 188 7 188
Zeeman effect Zero, absolute Zinc, physical properties
50 9 225
wavelength characteristic critical absorption for elements fluorescent K series, elements L series, elements M series (72Ta to 92 U) tungsten L series various elements various transitions voltage and
893
47
73