Lecture Notes in Economics and Mathematical Systems
593
Founding Editors: M. Beckmann H.P. Künzi Managing Editors: Pr...
33 downloads
506 Views
5MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Lecture Notes in Economics and Mathematical Systems
593
Founding Editors: M. Beckmann H.P. Künzi Managing Editors: Prof. Dr. G. Fandel Fachbereich Wirtschaftswissenschaften Fernuniversität Hagen Feithstr. 140/AVZ II, 58084 Hagen, Germany Prof. Dr. W. Trockel Institut für Mathematische Wirtschaftsforschung (IMW) Universität Bielefeld Universitätsstr. 25, 33615 Bielefeld, Germany Editorial Board: A. Basile, A. Drexl, H. Dawid, K. Inderfurth, W. Kürsten, U. Schittko
Jens Rubart
The Employment Effects of Technological Change Heterogenous Labor, Wage Inequality and Unemployment
With 54 Figures and 21 Tables
123
Jens Rubart Darmstadt University of Technology Institute of Economics Residenzschloss 64283 Darmstadt Germany
Library of Congress Control Number: 2007923239
ISSN 0075-8442 ISBN 978-3-540-69955-2 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 2007 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Production: LE-TEX Jelonek, Schmidt & V¨ ockler GbR, Leipzig Cover-design: WMX Design GmbH, Heidelberg SPIN 11979166
88/3100YL - 5 4 3 2 1 0
Printed on acid-free paper
!!" # $% & ' ( ) * + , - &
. * ' ,
/ 0 & / ' , 1' ' 20 3 !!45 1 ' * 2* 6 !!45 7 * / / 2 . 8 !! 5 !!9 3 / 3 21: , !!95 ; ,
2 !!<5 ;/ 6 , & 2/ 6 !!<5 4! * / / 2 !!"5 4 * * = 2& !!"5 !!" 3 * 3 2. 3 !!"5 > # 3 0 # *
% / ? = # # # : ; ; @ = ?
0 ; A /: : ; 3 ;: % , 6#
/ # , 3 ;:
; B ( A = !!7
44 / 4 A 49 3 # ;
4 4 7 C
* = & / 3 94 / 9 ;
44 44 4C D D 9 E9
4 9
E
94 9 = 99 F 3 994 99 ' ( 9E
E7 E7 EC <7 <7 "4 "C
3 / ' / = ( 6 3 EE4 = , > EE *
! " # $
E4 E E9 EE E< %
& #
<4 < <9 <E << '
79 79 7< D! D4 D4 DE C9
C< C< / C7 ( , 4!" 6 3 4!C <E4 * 4!C <E ; 3 444 4 ! 4 9 & / # 4 9 ) / ' 4 < # & 49 "94 3 ; % 8 =8 # 499 "9 ( , 49" "99 * 49D # / ' 4EE , 3 4ED & ; # ) 4<E 4"!
(
"4 " "9
"E "< "" "7
)
4"9 74 , 4"9 7 A 47!
* +, - * - .
47<
47C
*$ / 0 , + " - -12+/
4D9
4D7
/ 4C4 (
!9
!"
#
!C
@ B G @ = / * 4CC! H 4D !4C49 4C494C
/ > 3 G ) 4D"< 4C4 * 2 !!E5
! "# # $ # %&' # # # # () * " + ( ,# -
= * 2 !!E5 C!I4! E!J
H )
( 4CC! ) B
? @ / 24CC 5 3 ? @ ? 24CCD5 ? @ 24CCD 4CCC5 ? @ 3 24CCC5 3 * KL #M 24CCC5 G B 3
23 24CCD55 3
. / )" # #0 )" 0 ) # # )" # #0 # ! % 0 # # # 1 #
0# "#
"2 # 3 ! # # # # ! # 0 # ' 44 5 0" +-
,
=@ 24CCC5 ? @ 24CCC5 ? @ 3 24CCC5 * 6 2 !! 5 # 2 !!<5 =
) G
2 G , , 2 !!<55 ? A ;KL; . 2 !!!5 & ( 2 !!E5 ' G > ( 3 24CCD5 / ;
; 24CCD5 ? A ;KL; . 2 !!!5 3 2 !! 5 ; , 2 !!E5 % > G )
=@ 24CCC5 * 6 2 !! 5
# 2 !!<5 = ) & / # 24CCC5 # / 24CCC5 %
(
6 0 24CC<5 @ (
= 6
0 24CC< 4CC"5 % ,( 3 24CCC5 / # 24CCC5 3 . 2 !! 5 2 !! 5
) ' 3 24CCC5 )
( = , # 24CC"5 @ @ ) G
) ) @ ) 3 @
6 .#
7
4 -8 $ 0 # # 0 # # # # #" 9 ! #! 0 # : 8 &#"# -
2 &B( , 24CCD55 G % ( G G %
( ) / # 24CCC5 ) % ( / # 24CCC5 2 !! 5 ( = > (
# , 2 !!9 !!E5 & ( 2 !!E5N ) # , 2 !!9 !!E5
G 3
& ( 2 !!E5 (
G O 4D<" * @ ? ) ?@ , > ( ! 3 G , 8
G 3 /
24CC45 O
2 /
24CC45H 4!D5 $; 0 *- 2;0*5 / ? # 24CD 5 ? #
; 24CDD5 @ )
@ G O ;0* G % 24CD<5 * 24CC 5 % G ;0* 24CC!5 Æ & 24CC<5 /@ 24CC<5 3 24CC"5
;0* 3 ) , 2 !!!5 , 0 2 !!"5
,# 6 - #
( G ;0* OG
% O @
)
) 2 ,5 =
) )
>
A*
* > ) =
2.3;5 )
9
)
) ( ( E , ( 2,5 > , ,( < " G
6 3 E % * " G H ( =
!
) G * 7 >
3 A* 2 4 5 =
%
, ? 2 G =@ 24CCC5 # 2 !!<55 G G ) % G )
0 .3;
) G > , = > )
)
0 (
"
G (
A* 0 9 ( G ) 0 G )
=
G )
% > )
!
"
# $ ! %&
( , 4C9! > ) $ - 4C"! 4C7! ) 3 )
A* 4CD! 4
@ ? , = @
9! N )
; # ! # ! # < )" #9 # # "# 0! =
#$ %&' ( )
( 3, G , ?
= ( 2 , 24CC75 3 2 !! 55
3 4 G
49 !J 4CDD !!E A 49 "J ? , = 9 <J % G 3, G
#$ * $* % & + % , &' )& & -
# %% %%" # %% %%"
# %% %%"
# %% %%"
$ "% %!
$ $
$# # $
$"
! !! #! %#
$ %
" "# ##
#% %! ! # # " $$
#
"
" " " !
$ ! "
" ## ## # #$
%
# #% # #$
!% !% !!
! # $ "
% %% % %#
$%! $# $$
# $#
!
"# #$ $% !
$ ! "#
# # %"
## $ # #$
%# "
! %% $
"! # $!# $!
$ #
# "
! %
"
" " !% !% %
$! $ $
% !
"
%
$$ # "% % !!
%
" # #% #"
$$ %%
& ' ( )
( *%%"+( , - *$+( ./0 *( !( $( %%"( %%$+( ./0 *%%!+( %%$ 1 2
0 G G
G O ( 3 G 3 2 !! 5
#$ %&' ( )
#
3 G
( G =
, > > 4
.* ( ) &' )& $ /0 1&)
. > # # ?" # # # # 5= & # & # # # #0 # # 7
#$ * $* % & +
=
2> 4 5 = O ( 2> 4 5 !4C4J 2, H !<<75N , !7"9J 2, H !4E5 3 ( G ,
$
- , # 24CC"5
@ ) @ G @ O O 2/ 24CD"5 445 3 G , # 24CC"5 O
= # # # #9 0 # 0! @36A 5) #" # # ") # # # )# ?#" $# ; 0" (# '0 - # # # # # & ! 0 ) # <# # + # 0 ! ### # # =
#$ %&' ( )
> = 9 ) ) >
,
0- '2 &' )& , 1&), !3""
# = & # ?#" # !; 0! 7 # 7 A # 8 $ (! % # B 0# 7 " & < < 7 0 # # # 7 #
#$ * $* % & +
0- '2 &' )& , /0, !!3""
=
% G ) ) = G 3 3 . 2 !!45 G
3, G %
A* ! 2 9 5 @ > = , ? 2 E5 =
#$ %&' ( )
) > O 0 ( # 1 2 !!45 B
>
3 2 #5
A* > =
, ? 2 5 =
, ? 2 4 5 % =
%6& # " # # # ) ! 6 6 # !
#$ %&' 45 -
!
# # & * < < (! $ & % (A= C + 4 44 - 8 4 +8 4 4 - 8 %6& % 4 - 4 8 + 4 4 88 88 8 4
& 02 2 *%%+( ./0 3 / 4 %%#
! " #
@ 6 24CC75 0 ' 2 !!!5 % 2 !!95
B % A* 2 45
# # "# 0! 7 (# ;;# 8 ) #" #"## # ) # 5) 0 #"## # " ! # # ! #Æ #
"
#$ %&' ( )
G 0 G 3 G G B 8 > 8 ( = E < 0 ,
6* , 1&), !3""
& @36A ,# 3# %#
#$ %&' 45 -
6* , /0, !3""
' 0 ,
> 2> E5 G B ( 8 0 ' 2 !!!5 % 2 !!95 3
@ G
#$ %&' ( )
3 6 2 !!95 H >
2 5 G OG > G A* > H 4 9 E <
3 6 , Æ 3
G G
3 @ "4 "9
> @ > Æ 25 >8 = ( > )
# .#
+ 7 : # #" 0 # # # # # # 3 ! =## 8
#$ %&' 45 -
3 >
0 ? 2 !!45 G 3 G
A* H >
G
, ) 9 G
> > OG G
A 7 ( #" # # ## # ## )" ##" )" # #0 #
#$ %&' ( )
5 &- * < < (! $ 3 ! = # 84 4 8 4 84 - 4 D D D D 7"##" 6 " + 4 4 -+ 4 - 8
< < (! $ <# # ! 8 4 84 4 8+ 8 7? ' ' 8- 88 8 + 8 4 + 8 4
,## :" 8 8 - 44 4
+ 8 -8 - - -
+ -+
& ,( , 5 ( .2( 6 *%%!+( - 2 5 '7
*+( *$+( ./0 *+( / 2 4 8 89 : 9 0 */4).+( - ( - ;( 8 *%%#+( %%$ 1 2
7
3 2 9 5 = A , ? , 4CC< = G , ? 0 >
#$ %&' 45 -
= > 3, G 3 9 > E A* /&' )& 52 =! (! C (! 8C # $ +4C < $ ' < 4C
, 0? A # , 0? A # # < A ! ! # < A ! ! 8 -4
##
+ E --+ -E
## E ## ## E
& ./0 *%%+ 7
9
9( ; ' *
9+ 2 9 7
2 ./0 2 8 , 2 2 ' 2 < 2 =
5 4> 2 2 27 2 98 8 92 722
? 2 7 < ' 722
@
%%# 1 8 ( ; ( 28 A 9 *%%"+(
E > A* = > "! 8 B 3
#$ %&' ( )
G > > ' , ? = 0 ) 0 G > A* H
%&' )& ' &' )&
#$ %&' 45 -
= > > " % 3
&& * - &' )& 3 > 7 A*
& # ! ! F , = " ! & ") # & ! # # # 0 # # # 0 0! .#
.;# @ G# ## 8 # # "# # # #0 # & # # # 0! @ H H 4-4- H 4 I # # #
#$ %&' ( )
3
= =
= 2 45 $
33
@ ) )
=@ 24CCC5 % (
G = 6 0 24CC< 4CC"5 G
& ## )" ! @36A + )
@36A $ # " 0! 3%'@ 0 # # 1,## :" # 3 2 # 0 &
! + (! % ) ! 8 - # ! $ ! ) #
) # ? # @36A # # ! ) ) ! # " & # # ?" + # 0! @ H H +8+ H +- I # # # $# ;0"
%&' )
!
( ( ) >
3 @ ( 2.3;5 0 ) 2 5 = .3; & @ ( N G .3; 2,.3;5
PQ
Q Q
Q
2 45
(
G Æ
2 45 =
2 45
# # # J' "! 0 # B 8 5# -
"
#$ %&' ( )
@ G 2 45 .3; 2 45H P Q
Q Q
Q
25
P P P
2 95 2 E5 2 <5
P 4
2
5P!
2 5 P
!
2 "5
P
2 75
2 5 > G .3; 2 45 Æ A&,N
G 3 .3; 2./35 G
6 5# - 8+ 5# - 4 9
%&' )
, 24CD!5 @ .3; M (
M
./3 .3; 2 5 P M M 2 D5
G M ( B Q M P M = M P 2M M 5 P 2 5 G Æ > 2M 5 * G 3 * G >
G
G
P P
2 C5
6 5# - 8 6 5# - 8 . # # I K # # ! K # " #; # # ) ## )# # 0 #
I I 5# - 8
#$ %&' ( )
) 0 8 @
G M )
33 /
(
) P 25 25
= / ;
; 24CCD5 ; , 2 !!E5 *, H
P P 4 2 4!5 > G ) ; 2 4!5
H 2 445 R P R Q 2 5R 4 R
&# # # ! '0
%&' )
R P 2 5 R P 2 5 R P 2 5 2 5 .
( 2 445 G G ? @ / 24CC 5 ? @ 3 24CCC5 ? A ;KL; . 2 !!!5 ( 2 445 .3; > ' )
= O 3 .3; ( 2 445
R R R R P Q 2 4 5 R R R R ! 4 P 4 ! ! Æ 6 ! (
, = G
, 2 !!"55
% G (
#$ %&' ( )
G G * =# 2 =# P = # 5 3
.3; G 3 O < > ) = " B 3 G , , ' 24CC!5 .3; 2 ( 2 4 55
3
& 0 ) # )" # ! )
@36A # # 6 # @36A 3# @ 4 # # # # # # 0 # # 7 J' # # ## 0 # # 0 # *# - % # # # # J' 0 >) 0 # 7 A# 7 # ,# # % # ! L0 # L0 # !# # # @36A # 3 4 8 ## # #" J' #
%&' )
.3; , 2 " 5
# *
< +(! +4 A ## # A$ A ## # A$ J#0 & " & # # & " & # # 84- 84- -844 88 -84 44 8++ -4++ + 444 4- +- + + 44 +- 4+ 8- 484 - 88 4+ -+ 8
3B 0 > & C # C % C 8 !$ !" !! ? !"! $ #
# # # #? # 0 # B 8 B -
# # )
0 # # # #" # 0 0 B ;#" -
#$ %&' ( ) '2 J#0 # # # # < +(! +4
% # # #
%6 $=3 5G 6
140& 1 4 0 D /& /
D =6& = 6 D 0& 27
5 0
= ( .3; >
% SF 2%F5 , @ 2,*5 3 .3; @ * G 3 , 24CD!5 3 3 24CCD5
3 24CCD5
6 " 4+
%&' )
=
"
G G
" 3 " 2
5
3
> B 0
(
7 D 3 > , 4C7D 4CCD , 4C7 4C7D
= #"#? C 0 + )# # 0
#$ %&' ( ) % & , /0 !3!! J#0 A ## # & !
3" "" J#0 +8 "
# !
#$%
#"!""
!
4
8
$"
#"!
4-
#"""
#
# $ ""
%!
# " !
#$!
!
2 9< & %C& $#D #C& % * 3( ' ( - *"+ ##$+
= , 7 > ( % G
> "
> ) > A G
2 D 5 3 , >
%&' )
!
= ( %
> ) G
@ > 0 $ B- B
% & , 1&) !3""" J#0 A ## # & + # "
3" "" J#0
#$$
# $$$
# %
44 # !
%
#
8
4
-
-
+
#$!
#%"%$
!"
#$
#$$
#%!
!
#
2 9< & %C& $#D #C& % * 3( ' ( - *"+ ##$+
) #
> )
"
#$ %&' ( )
= D C 4! ,
&' 3 ' , /0 ! 3 !!
= # # # # # # & # ) 4C ? # 0 # # #0 7 # #0 # # # $ " # #0 # J' #"# # #9 # 0 # #
%&' )
&' 3 ' , /0 ! 3 !! > ,
( 2> D
C 5 = 4C7 4 4CCDE 2 D
5 % 4C7D4 4CCDE
>
( G 3 )
% > >
#$ %&' ( )
2 5 2 5 , G 3 24CCD5 $ )- = .3; > 4!
&' 3 ' , 1&) ! 3 """ , ( 2> 4! 5
* ) )
7
, %
2> 4!5 ) , G B ( ( > 3 ( )
, ,
2
5 ) G ( & ( 2 !!E5 % &
@ ( ) A* , # 24CC"5
G > O ( = O 2 5 > >
#$ %&' ( )
% 4 G > 0
, )
3 9 E ) > 0 3 .3;
' .3; 3 3 24CCD5
% ) ( .3;
" 7 : ! # 0
# # # # 3 ! $ ! 0! L"K # " 4 !9 " ! # #" ! # 3
7
G >
3 .3; ( ( G N
> G
$
'
( ) !
*
!
' +
! , - . /0
#
3 > )
A* # ) 2 G 3 * KL #M
24CCC5 ? @ 3 24CCC5 5 % (
= G =@ 24CCC5 # 2 !!<5 ( %
&
( G
#$ * $*, $ 45 - , .* ( )
) = G ; , 2 !!E5 , ) , ) ( 6
> 3 3 3 . 2 !!45 = / # 24CCC5 # /
24CCC5 % )
/ # 24CCC5 A @ G
)
#$ +& -
!
> (
B
) ) =
G , @ 9 ( 99 , 9E "
>
> # ! ! #" # 6 M! 00" - ) # 0 # 0 0! =##
"
#$ * $*, $ 45 - , .* ( )
= 2 5
2 5 0 P Q 2 5 25 P B G = 2 5 B B ' B % )
= % 2 !!95 = ( > H
#
T # #
T #
H . P H . P H . > B P H . B P
= # # # #
)#" &) # 0! ( # =# 8 # #
) #" #
) ! ) #
L0 ) )#
) # 4 0 ) # 0 # )! # # =# 8
#$ +& -
B $ 0 > > > ) B B > T 2 5 Q #T 2 5 # 2 5 Q # 2 5 #
>
G
B >8 > B 8 > % #T > 24 % 5# / G
#
P & 2$ 5 Q
T % # Q 24 % 5#
2945
& 25 %
B G B G # G B 24 % 5
#$ * $*, $ 45 - , .* ( )
B >
T #
P ' 2" 5 Q (2 5# Q 24 (2 55#T
29 5
' 2" 5 B 2" 5 ( 2 5 > B = P ) = 8 B
#
P Q
T % # Q 24 % 5# N
2995
T #
P* Q
( 2 5#
Q 24 ( 2 55#T
29E5
* >
0 @ > B #T P ! > B 29 5
' 2" 5 P ( 2 5# 24 Q )5' 2" 5 # P ( 2 5
29<5
# # 0 #0 ## # 0! #" # 7
K # # ## # # ! 0! #" 7
K # 0 # A## =#! - 4 & ; ? # #
) # K# #0# ? #
? # # #" ) L0 )# # # ; =##
#$ +& -
3 B ( G @ >8 2 # 2 !!!5H 4 5 B > ( 29<5 2945 4 Q ) ' 2" 5 ! 29"5 # P & 2$ 5 Q 24 24 % 55 ( 2 5 ( 29"5 B G G > O
P % + 2 " 5 2975
> ( 2 5 P + 2 " 5
( 2975 ( G B %
B
P % Q % ( 2 5 29D5 2 # 2 !!!5 *
1 2 !!E55
. # ## # # 0! # #" # # # "N 00# # ! L0 0 ?
# # # "# 0!H I I # ! #" # 0 # = " =##
#$ * $*, $ 45 - , .* ( )
> '
B @ 8 > > & , N H
P G2# 5
2# #T 5
29C5
, 29C5
G H
#T P ,
#
# Q # #T 5
294!5
0 29C5 ( 2945 2995 29E5
P * Q , 2& 2$ 5 * Q ' 2 55
29445
3 *
? ) L"K # " 4+N
)#" # #
O I !
I
!
$ # ! ! )
"
P"
O I # P
! $ !
O K
7! !#" 0 # # )# K # 8 88 8- )" ! % )
) # K # 8
#$ +& -
> , G > ' 2 5 0 B 29"5 ( 29445
B B ( > 94
%(5& * &- *$
$ 3 $ 5 &- G ) > > 94 )
#$ * $*, $ 45 - , .* ( )
0 >
G
B
I " ( B >
6* 5 &- (5& = 94 9 )
B ( 3
8 )
+ ( )
3
> B B 2 B > 945
2 + > 9 5 % ' B ( 2 - > 945 ( + - > 9 ,
' $ 33 -
3 G B @ ( B
G
#$ * $*, $ 45 - , .* ( )
> ? A ;KL; . 2 !!!5
) ( / ;
; 24CCD5 ) > / ;
; 24CCD5 ; , 2 !!E5 G ) G ) -
P
U$ 2 5V
Q 24 5 U$ V
294 5
$ . ! P
G ) = ' ! / 0 4 0>
* P - N G
> H * P M* * P 24 M5* M U! 4V 3
29E5 > ) > B
8 )
!
= G > ! 4 G (
= 9!J , = EJ 7!J G 4<J !< P 4E = , P , P !< > 99
% " !# # # # # # ! 0 #" ?#" ! # #0 0! =## & # ?#" # # 0! # = 0! ##
0 ## )# # !# " K# #0# ) " 5 &0
"
#$ * $*, $ 45 - , .* ( )
45 &- & * 52 ')& 3 > 99 2305 ( = ( G >I# A 2 5 B ( > 99 2*5
B
2> 99 *5 > > B
8 )
A >
) O @ , ( > ( 2,5 A >
B
B 2 45 33 -
3 ) > ,
) % = @ ) @ (
( G G @ 2
#$ * $*, $ 45 - , .* ( )
5 0 /@ 24CC<5 ( > 8 >8 =
) = 8
( 8 > H
5 P 42 43 43 29495 G@ H 1 2
Q ' 2 5 P Q
294E5
' 2 5 ) B 3 8 H
#
P 1 2 5 Q ' 2 5
294<5
3 ( 294<5
# # # # Q ?Q ##; # 0 # "# # # 4 = ) 0 # # ## ! # # 3K # 84 # 0 # # # # 0! #" # # Q ##; # 0 )# & &
8 )
> = '2 5 B 0 294 55 >8 B 8 BH
#
P & 2$ 5 Q 4( 24 % 5
294"5
( 294"5 >
0 ( 294<5 294"5 6 29C5 H 1 25 P % & 25 Q 4 Q 24 % 5 ' 2 5 29475
P%
& 25 Q 4
Q 24 % 5
1 5 25
5
' 2 5
294D5
29475 294D5H
P
% & 25 Q 4
% & 25 Q 4
Q 24 % 5 Q 24 % 5
' 2 5 ' 2 5
294C5
= ( H
P 4
6
(# '0 -
7
29 !5
#$ * $*, $ 45 - , .* ( )
* ( 294C5 29 !5 G ( G ) )
) % ( 294C5 29 !5 ( @ % 4 B
> 3 G ( Æ @ O G @ O G
/@ 24CC<5 % & 24CCD5 =
B B > 4 = " G ( ) W
8 )
8 . 4 = G
& *
' ( (
4 4
)
8 * & & 4
> ( ) 2 5
) ( 3 > 9E @ ) A ) ( ) ) 5 3 ) ( 3 > 9E ) ( % > 9E G ) G (
)
& # ?" 8- 0 # # # K # 8
#$ * $*, $ 45 - , .* ( )
.* ( ) 5) )* 9
:
' )
( = 9< ) ) % (
) . !
8 )
.* ( ), * 5**, )* = 9< ( * > 9< > > N @ 2 5 ( 3
) 94
#$ * $*, $ 45 - , .* ( )
.* ( ) )* 5** ' 3 G ( ) % 8 '
) (
294C5 % % > 9" H 1 25 .! & Q 4 Q ' 2 5 . 29 45
%
%
/!
&
5 Q 4 Q ' 2 5 . 1 5 25
29 5
A 8 G 8
7
!
% &
G ) ( 0 ) )
G ) ( ) 0 @ 9 > H
B ) G 0 2 45
( > 94 G B 3
G Æ G ( ) > > 9
"
#$ * $*, $ 45 - , .* ( )
E >
2 > 995 G O
@ '
G G ) 2 > 9E5 3 > 9< 9"
O G ) 3 ( G =@ 24CCC5 # 2 !!<5 ( 3 24CCD5 / ;
; 24CCD5 ? A ;KL; . 2 !!!5 % )
7
= G ( ( ) )
! " # $% 1
!
! 2 ! $ 3 #. 4 50 55
% #
0 ) (
( ) ( ( ) ( ) B > 3 ) 3 ( 8
( ) %&' )& ; 6 +& -
) G = ( ( =
) )
) ( ? # 24CD 5 G ? 24CDE 4CC<5 G ) 0 ? 24CDE5
> > G@
= ? 24CDE 4CC<5 G ) G )
= % &
24CCD5 ; 24CCC5 @
. $ - +
0 G )
; , 2 !!E5 ? A ;KL; . 2 !!!5 & ( 2 !!E5 , E ( 2,5 E9 ( = EE E< % ( "
> = > >G N ( G 8 A
( ) %&' )& ; 6 +& -
8
G ;KL; 24CC<5 > > =
> = , & 24CDC5 ! 4 8
( 3 ( 4
3
=
# ## # " " 0 # 'RS'
4 $ # "# # " " 0 # 'RS'
! 8 # &# # # #? !# # # )# #
) 0 #
)# # # ) K $ ! )# #" ## ) )# # #" " # @( ) 0 # 5 &0
. $ - +
@ Q P 4 P P 4 P 24 5 P 24 5 =
I
= 1 )
1 25 P 1 25 P 1 25 P
1 25 P 1 25 P ! 1 25 P
) > H
= ) )! # # # H # # # ! # ! # "" # 0! 6) + % # 0 %
)
( ) %&' )& ; 6 +& -
G
1
2E45
B Q P ) Q Q P 24 Æ 5 Q
2E 5 2E95
2E 5 8 2E95 = > ! Æ 4
8 ( 2E45 2E95
& H G P
1 2
5
Q5 Q Q) Q 24 Æ5
2EE5
> 1 25 P 5 1 25 P 5 1 25 P 5 4 P 11 2255 24 Q )
Æ 5
2E<5 2E"5 2E75 2ED5
24 Q ) Æ5 ) Æ = 5 & 8
= 0# P # # #
. $ - +
!
#
@ 4 > > G@ )
G
9
P2
B
& 2
) 5
$ 5
2EC5 2E4!5
* & 2 $ 5 ) G >
& 25 P & 25 P & 25 P
& 25 P & 25 P & 25 P !
= $ > $
P :$ Q
2E445
; 2! 5 : U! 4V >8 @ 2( 2EC5 2E4!55
(
! #0 ?Q 0 K # ##; # 0 6 ! 4
"
( ) %&' )& ; 6 +& )
P & 25 P & 25 P & 25
2E4 5 2E495 2E4E5
% ) * !
= , & 24CDC5 ( @ 2) 5
2 5 >
2 5
4 2 5 G@ > ( 2EC5 2E4!5 2 5 8 2<C5 2<445 9 P P P Q P
= > >8 @ 2 ( 2E<52ED5 2E4 52E4E5 H 1 25 P 1 25 & 25 1 25 P 1 25 & 25 4 P 11 <
2E4<5 2E4"5 2E475
= # #; ! #0 # ! 6 ! 4
<& )
< P & 25 Q 4 Æ
Q P
Q
Q)
2E4D5
= #
P
$
2E4C5
( 2E95 2E4!5 2E445 ( 2E4<5 2E4D5 = G
H )
%% + $ 3 3 # * .
G (
(
0 G
, #
! ! # ? ? # ! !# K #
)#" # # ) ! # H I I O # # ) ? ! !# " K# #0# ! #
! 0 # < #" 5 , 4
( ) %&' )& ; 6 +& -
0 8 > H
5 P 4 2 4 3 4 3 2E !5 2 3 3 ! 2 3 3 > G ) % &
24CCD5H 1 2
& 25 P $
= 2$
5 Q 24 52$ 5 !
!
Q 24 =5 !
2E 45 > > . !
! / = / 4 = ) N G ) . ! ; , 2 !!E5 !
<& )
? A ;KL; . 2 !!!5 & ( 2 !!E5 = ) H $ $X $M $X
$M & 25 P $
= 2X $ 5 Q 24 52M $ 5 Q 24 =5
!
!
!
2E 5 0
?
?
P $
P 24 5$
!
?
?
!
?
!
?
P = 2$ 5 Q 24 52$ 5 P 2$ 5 Q 24 52$ 5
!
!
2E 95
!
2E E5
!
!
Q 24 =5 2E <5 2E "5 !
)
( 2E 95 ( 2E E5H M
P
P 4
$ !
$
!
2E 75
> M
P
2E D5
( ) %&' )& ; 6 +& -
3 3
8
@ # 8 ( 2E95 2E4!5 2E445 2E4<5 2E4D5 > 2E !5 2E 45 2E 75
2E D5 ( 3 @
( > G
24CC"5
* 2 !!45
6; Y63; G E4
% " 6
F#
#" &! # # # $ # 0 # # " ? # # # 0# # # A*.'3 # "# # # A
<& ) & * + '
- 4 4
Æ
, ( ( -
4 4 8
- . . /
- 4
= P !"E 8
( <J , DJ !! 2 45 Æ 2 3 3
( @ * ? / 2 !!!5 > 4E % &
24CCD5 * G ) E!J ;
, 2 !!E5
6 5 &0
( ) %&' )& ; 6 +& -
> @
0,0025 skill augmenting low skill augmenting neutral
0,50
% dev. from steady state
0,0020
0,40 0,0015 0,30 0,0010 0,20
0,0005 0,10
0,00
% dev. from steady state (neutral shock)
0,60
0,0000 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
' ' = $ *) $ - 3
%
G 4! ! 3
0 G 0 (
& # # # # #
<& )
= E E9 )
)
0,00005 wi_neutral relemp_neutral
% dev. from steady state
0,00003
0,00000
-0,00003
-0,00005 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
' $ *) $ 3 > E 3
2 5 )
)
(
( ) %&' )& ; 6 +& -
3 > 2> E9 5 G ( 3 2 5
( 2 5
( G
B ) 3 ( = EE
B
<& )
0,04 wi_skill_aug wi_low_skill_aug relemp_skill_aug relemp_low_skill_aug
% dev. from steady state
0,03
0,02
0,01
0,00
-0,01
-0,02 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
' -3 3 -35 $ - 0,020
0,00013
0,016
0,00010
0,012
0,00008
0,008
0,00005
0,004
0,00003
0,000
0,00000 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
%&' )& '
3 - -
% dev. from steady state (neutral shock)
% dev. from steady state
skill augmenting low skill augmenting neutral
!
!"
( ) %&' )& ; 6 +& -
3 G 4 > # 2 !!<5 > 4CD! 2> EE5
= ( E > , 2 I9 #5 = O , 2E! / C!5 3
)
H
, 2!4" / !D 5 =
>
<& )
6
) < - 6 # @0 J#0
0 % 0 %
' # J # # ! 0 % D 4 8 8+ 88 ++ +4 4 - + - 8 8 8 44 + + 4- -4 8 -+ 8 4 + 4 4 (! +8 D + +8 - 8 - 4 -+ 8 + + 8 88 88 + -4 4 8 + + + + 8
!
!
( ) %&' )& ; 6 +& -
3 G ' % G 6
) ' ' $ 6 3 )' &
0 %
' # 6 # # J#0 J # # ! 0 % D + - 8 - - 8 -4 8 8 +4 + 4 4 +8 + ++ 8 + + 8+ +
84 -
* > = > = % (
7
!
%, &
G / ;
; 24CCD5 ? A ;KL; . 2 !!!5 3 24CCD5 % Æ ( 3 9 ( G % > E4 + EE
(
G ) = >
% 2 > EE5 ' Æ 2 E < 5
G
0 # # " ) # )" #K # ! 0# )# # # 0 & ! # # )" # 0!
4 ) ## )# # #
# ! < A
!
( ) %&' )& ; 6 +& -
G )
G
3 G ? # 24CD 5 ( G
G ( G
(
& ' $
16- ! 4 7 /8
!
,
! ! !
!
!
9
! - : 0%
, #
3 24CCC5 / # 24CCC5
% ? . 2 !!<5 %
2 3 24CCC55 ( / # 24CCC5 Æ
= G O ( ) )
!
( ) %&' )& / 45 - +
( G
@
2 9 5 G *G # # 24CC"5 &B( , 24CCD5 /
# 24CCC5 3 . 2 !! 5 2 !! 5 # , 2 !!95 G 2 !! 5 # , 2 !!95 8
G
) 2 !! 5 # , 2 !!95 2 /
# 24CCC55 B > % 2 !!95
G
G
#$
!
,
@ , < <9 ( , <E <<
, *
/@ 24CC<5 & 24CC<5
* 1 2 !!E5
; , 2 !!E5 ) > ( > @ @ B G ! / % / 4 P % / % =
6 M! 00" -
!
( ) %&' )& / 45 - +
> B B
8 @ & @ P P 4 P @ Q @ @ P Q
P 24 % 5 Q + P 24 % 5 Q +
2<45 2< 5
% 2! 45 G B + B 6 B + P + 2 " 5 2<95
3 B ( <9 > > B H
(
P 24+ 5 P+ "
2<E5
2<<5
#$
!!
P 24 " 5 P 24 " 5
2<"5
2<75
' > @ P Q M P @ M P @ M P 4 M 2<D5
4 *
' @ G@ % > ) 8 G@
H
1
P G
1 2
B
Q) P Q Q
' 2
5
2<C5
524 5
2<4!5
24 5 24 5
2<445 2<4 5 2<495
P 24 Æ5 Q P 24 % 5 Q
P 24 % 5 Q
) = %
""
( ) %&' )& / 45 - +
B
> B
B ' 2 5 B 2 5 = )
2 /@ 24CC<5 795 =
25 > 8 G@ ( 2<C5+ 2<495
& H
G P
Q5
1 2
5
Q 24 Q ) Æ5
' 2 5
Q 24 % 5
Q 24 % 5
2<4E5
24 5 24 5
> 8 @ H
#$
"
1 25 P 5
' 2 55 P ' 2 55 P
5
5
P 5 24 Q ) Æ5
P 1 25 5 Q ' 2
Q 24 % 5
P 1 25 5 Q ' 2
Q 24 % 5
5
2<4C5
2<4<5 2<4"5 2<475 2<4D5
5
2< !5
&
0 *
= /@ 24CC<5 > " 4 G@
> = @ )
6 > * F
24CCC5 0 ' 2 !! 5 3 ) > 2 & 24CC<55 0
"
( ) %&' )& / 45 - +
>8 H G
"
2< 45
59
B
P 24 % 5 Q ( P 24 % 5 Q (
2< 5 2< 95
" "
5 > O > 9 P & 2
9
$
5
)
4 "
2< E5
6 $
H $ P :$ Q 2< <5
; 2! 5 ! : 4
) 0! " 4 ##" # # !# " ? )# 0 )#
½
½ T
- 2 3 T & ##" # >) ? # #" # # # ? # 4 3 $ ?Q
1
-T2
I
# # ! # # ! # Q # # )# & "# # 0 ) ##" "" # # Q 0" # #
-T
-T
I
* *
" 4 4 # #" ! #9 #
) 0! ,; 4 ,; 4 5) ,; 4 " 4 K# # ##" # K # 4 -T # 0! * & ? ! Q # #
#$
"
>8 > 2< 95 2< E5 & >8 G P
"
59
QA
QA
24 % 5 ( 24 % 5 (
"
"
2< "5
A A & >8 >
& 25 P ) A
A
P 5( 4
2< 75 2< D5
P 5( 4
2< C5
A P 5 2& 25
A P 5 & 25
A 24 Q % 5 2<9!5
A 24 Q % 5 2<945
*
9 3
6 > B > B
&# 0"##" # 0! # =## 6 M! 00" - # # # . 0"##" 0 # 7# '0# # : # !
"
( ) %&' )& / 45 - +
B > = > B A >8 > B )
8 >8
>
>8 8 @ & 2 ( 2<4E5 2< "55 ' 2 5 # P Q ' 2 5 1 2 5 Q 24 % 5
6 8 G > #
P & 25 Q (4 24 % 5
6
P G
#
#
2<9 5
, H
! " # $ %
& =## 4 & # # # 0 # 0! # # # )# & "" # K # 4- 4
&
#$
P
, & 2 $
5Q
1 25 24 , 5 5 ' 2 5
4
"
Q
2<995
3 /@ 24CC<5
)
P
, & 25 Q 4
, & 25 Q 4
Q 24 , 5 Q 24 , 5
' 2 5 ' 2 5
2<9E5
= 2 E 75 ( H
P 4
2<9<5
* ( 2<9E5 2<9<5 ( G ) ) 3 ( , >8 = ( 2<9E5 2<9<5 , 4
"
( ) %&' )& / 45 - +
0 8 (
( 2 5 8 ,
, * ! -
3 & 24CC<5 ( H > B 6 ,
% G ' # 0 @
4 (2 5 > > 4 (2 5 > B 3 (
#
P
( ( +
+ " " ) $ $X $M
8 >8 (
= > 8 G@ ( 2<4<52< !5 (
H
6 " 4 + 6 =## +
%(5& 0
1 2 5
' 2 5 5
24 Q ) Æ5 P 4 2<9"5 1 2 5
Q ' 2 55Q
1 2 5 Q 5 2
24 %
5 2<975 2 55 P !
'
1 2 5 Q 5 2
' 2 5 5
"
Q ' 2
24 %
55Q
5 2<9D5 2 55 P !
'
6 5 & 8 @ 0 > >8 ( 2< 752<945 (
H
5 4 & 25
5 ( 5 4
& 25
5 (
Q (4
& 25 )
P ! 2<9C5 24 % 5 P ! 2<E!5
Q ( 4 24 % 5 P ! 2<E45
( > 8 >8 ( 2<9"52<E45 ( 2<45 2< 5 2<95 2<E5 2<<5 2<"5 2<75 2<D5 2<445 2< <5 2<995
Q Q ' 2 5 Q ' 2 5 Q 4 " Q 4
"
P
2<E 5
"
( ) %&' )& / 45 - +
8
5 P 4 2 4 Q 3 4 Q 3 ' 2 5 P ' T ' 2 5 P ' T
1 2
2<E95 2<EE5 2<E<5
E9 ( 2E 45H & 25 P $
= 2$
5 Q 24 52$ #
5
#
Q24 =5
#
2<E"5 ) 2<E"5 & 25 P $
= 2X $
5 Q 24 52M$
#
5
#
Q24 =5
#
2<E75 $X $M
$
> /@ 24CC<5 # , 2 !!95 + +
>
>
U! 4V
K # -
P " 2 5 P " 2 5 !
!
!
!
2<ED5 2<EC5
<& )
"!
,% + $ %3 3
/@ 24CC<5 # , 2 !!95 > G
3 ( B 9EJ B 2 4 J5 # > ;
0 2 !!95 B 4 J
) M
4 H P M % & 24CCD5 4E = 4 G ) > ;
, 2 !!E5 8 ,
&# # # #" # 0 L0 >) 7" B 0# :M8/7
"
( ) %&' )& / 45 - +
>
B ( @ = & * O&
&O OT OT 5O 5OT 5OU + 4 6O 4 O Æ , ' 7 ( ( $O 4 4 4 4 $O 8 8 ) ) -
$ 8 + +
! ! / / / 9 9 9 4 4 4 4 4 +
3 EE
6; Y63; > G
3 ) , B ) ( )
<& )
, %3 3 5/ +
3 EE )
G
G ) ) = <4
& )# ! # "! # #
( ) %&' )& / 45 - +
1,40 neutral skill augmenting low skill augmenting
1,20
% dev. from steady state
1,00
0,80
0,60
0,40
0,20
0,00 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
' ' )&& $ *) $ - > <4 G > ;0* 2 G > E45 B > ,
B
> <4
<& )
3 > <
.3; 9 )
B G
= >
G G
G , 2 > 5 ) >8 > <9 <E 0,015 0,010
% dev. from steady state
0,005 0,000 -0,005 -0,010 -0,015 -0,020
relemp_neutral relem_skill_aug. relemp_low_skill_aug
-0,025 -0,030 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
Quarters
' &' )&
35
37
39
( ) %&' )& / 45 - +
1,60 neutral skill augmenting low skill augmenting
1,40
% dev. from steady state
1,20 1,00 0,80 0,60 0,40 0,20 0,00 -0,20 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
) - - 3 > <9
3
> <4
2 >5 =
>
B ) 2 > <E 5
<& )
3,50 neutral skill augmenting low skill augmenting
3,00
% dev. from steady state
2,50
2,00
1,50
1,00
0,50
0,00 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
) 3 - - 3 2 > <9 <E5 B G B
> <<
( ) %&' )& / 45 - +
0,025
neutral skill augmenting low skill augmenting
0,020
% dev. from steady state
0,015
0,010
0,005
0,000
-0,005
-0,010
-0,015 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
.* ( ) =
=
2 > E95 =
G
! ( 2> 5 3
G
2 > D 4!5 ,
<& )
> <" 0,10 neutral skill augmenting low skill augmenting
% dev. from steady state
0,08
0,06
0,04
0,02
0,00
-0,02 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
' 3 - &' )& ' 2 > <E 5
>8 2G 5 > = 8 G ) 3 ) = > <" ;0* )
( ) %&' )& / 45 - +
;0*
N 0
G ( ( 8 < 6
) ' ' $ & $ $
0 %
' # 6 # # J#0 J # # ! 0 % D + + 8 - - 8 4 4 8 ++ 8 4 4 4 + + 4 + ++ 8 8 8 + + -
, % Æ = ( 0
<& )
!
, 3 G % <9
7)&
< (! '76 #K# -
:" #K # ! P P P- - 8 4 + - +- 8 8 8 8 + + /
< (! '76 #K# -
' # ! P P P 8 8 + 8 - 4 + 8 /
3 <9 (
> Æ Æ = ( ( Æ
"
( ) %&' )& / 45 - +
Q9 3
( Q QE ( 0 > ( ' > , & ( 2 !!E5 , ,, &
( ;0* )
G (
H
B
> 2 # 2 !!<55
2 > <"5 ;0* 2 EE > EE5
7
3 @ ) B 8 @
( G 0 B
B
( E
@ OG N G % @
@
)
( )
;
,!
< !
+
!
2
* 4 /&
.
! "
) )
(
% >
) < G H
3
B ) ' )
%>
) = @ ( ) ( 3 > , 2 !!E5 % 2 !!9 !!<5 # , 2 !!9 !!E5 % 2G # , 2 !!9 !!E55 >G 3 )
>G >G
( 2 45 =
) $ - (
> O > B G ,
%&' )& %= && .*
# 24CC"5 ? 2 !!!5 G 2 !!95 O
> " > $> G- B
> 8 B . $ / (
3 O % 2 !!9 !!< 5 % G
>G ) 2 G 4 95 0 # , 2 !!9 !!E5 G 8 3
< <9 (
%>
2<995 H
P B
2"45
B U! 4V <E * B P !E E!J
E B
0 B % P !!4 % P !!E
0 4 #" & )#" " #0 L0 # # 8- 0 )# #" < # #" (! '# 7" 8
%&' )& %= && .*
0,006
hu_(flex) hu_(mw)
% Dev. from Steady State
0,004
0,002
0
-0,002
-0,004
-0,006 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
4 3 - &' )& -35 $ *) $ 3 G # 2 !!<5 > 4CC!8 <E
% > 2 > "4 5
OG * > "4
%>
2> " 5 0,01
% dev. from steady state
0
-0,01
relemp (flex) relemp (minw)
-0,02
-0,03 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
&' )& -35 $ ) 2> "95
%&' )& %= && .*
!
0,12 low skill augm. (flex) low skill augm. (minw) neutral (flex) neutral (minw)
% dev. from steady state
0,08
0,04
0,00
-0,04 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
4 3 - &' )& , 3 - *& * $ 3
*) $ -
0 )
4! ( 2 < 5 * > )
"
%>
6
) ' ' $ &
0 % & &
' # 6 # # J#0 J # # ! 0 % & & D ++ 8 ++ - 8 - +8 - - 4 4 D
% >
3
Æ G
%&' )& %= && .*
7)& ' # ! P P P< 8 8 (! + 8 - '76 4 > )" + # )" - 4 4
( O @
""
2> "4D5 % > A
% G 2B 7!J5 >
8
%>
. $
3
@ > @ ) > > > > G ,
>
0
Æ O ( ( G 2 !!95 ( > G ) < > B * B
B B 0 0 0 24CC!5 % ; 24CC95 , # 24CC"5 ? 2 !!! !! 5 G 2 !!95 G >
0
6 A # 8 4
%&' )& 4*
' 2 !! 5 3 ) > ) = ( G '33 + / , 4 6 # 6 0
3
@ P G@ % > ) 8 G@
H
1
B
Q Q
' 2
P G
524 5 P
1 2
5
2" 5
5Q)
2"95
Q
24
P 24 Æ5 Q P 24 % 5 Q
P 24 % 5 Q
2"E5 24 5 2"<5 24 5 2""5
G 24 5 > = ( 2" 52""5 &
%>
G P
1 2
Q5
Q
5 24
5Q)
' 2 524 5 2"75
Q 24 % 5 24 5
Q 24 % 5 24 5
> 1 25 P 5
' 2 55 P ' 2 55 P
P 5 24 Q ) Æ5
P 1 25 5 Q ' 2
Q 24 % 5
P 1 25 5 Q ' 2
Q 24 % 5
5
2"D5 2"C5 2"4!5 2"445
2"4 5
2"495
>8
( 2< 45 2< E5 > >8 > > 9
P & 25
)
$ %
4 "
2"4E5
% > > B 3 < > @ H
$
%&' )& 4*
G
"
2"4<5
59
B P 24 % 5 Q ( P 24 % 5 Q (
"
"
2"4"5 2"475
&
G P
"
59
QA
QA
24 % 5 ( 24 % 5 (
"
"
2"4D5
> & 25 P ) A
A
P 5( 4
2"4C5 2" !5
P 5( 4
A P 5 2& 25
A 24 Q % 5
A P 5 & 25
A 24 Q % 5
$
%
$
%
2" 45 2" 5 2" 95
= > G ( > ( H
$ %
P
24 5
2" E5
%>
' 6 < 2 2<9955
P,
& 25 Q
4
25
Q24 , 5
5
$
%
' 2 5 Q
2" <5
# > ( ) = > 8 % > 8 $
'33 *
<9 ( #
P
( ( +
+ " " ) $ $M $X
8 >8 (
= > 8 G@ ( 2"D52"495 (
%&' )& 4*
1 2 5
24 Q ) Æ5 P 4 2" "5 1 2 5
Q ' 2 55Q
1 2 5 Q 5 2
' 2 5 5
24 %
' 1 2 5 Q 5 2
' 2 5 5
Q ' 2
24 %
5 2 55 P ! 2" 75
55Q
' 2
5 55 P ! 2" D5
6 5 & 8 @ 0 > >8 ( 2"4C52" 95 (
5 4 5 (
& 25 )
P!
2" C5
Q ( 4 24 % 5 P !
2"9!5
& 25
5 4
5 (
$
& 25
$
Q ( 4 24 % 5 P !
2"945
( > 8 >8 ( 2" "52"945 ( 2<45 2< 5 2<95 2<E5 2<<5 2<"5 2<75 2<D5 2<445 2<E75 2< <5 2" <5
Q Q ' 2 5 Q ' 2 5 Q 4 " Q 4
"
P
2"9 5
%>
= > 2" E5 '33
< 0
> > G > H 5 2*
#
& : I : I : I & : I : : I : : I
3 "9 ) > G
, >
>N > ( ) > G > > 3 > G
=
(
0 4
%&' )& 4*
24
5 P 4
24
5 P 4
!
$ %
2"995 $ %
3 = "E )
> 1,40 neutral skill augmenting low skill aug. firing costs = 0.5 x respective wage
1,20
% dev. from steady state
1,00
0,80
0,60
0,40
0,20
0,00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Quarters
' ' 2*
0 >
>
) 2 5
"
%>
<E >
(
< =
0,015
neutral skill augmenting low skill aug.
0,010
% dev. from steady state
0,005 0,000 -0,005 -0,010 -0,015 -0,020 -0,025 -0,030 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
Quarters
&' )& 2*
37
39
%&' )& 4*
0,025
neutral skill augmenting low skill aug.
% dev. from steady state
0,020
0,015
0,010
0,005
0,000
-0,005
-0,010
-0,015 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
.* ( ) 2*
3 > "< "" ( ) ) > > 8 >8 O
B
B OG
)
%>
0,007
firing cost=1 x a_s firing cost=2 x a_s firing cost=0.5 x wage
0,006
% dev. from steady state
0,005 0,004 0,003 0,002 0,001 0,000 -0,001 -0,002 -0,003 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
4 - &' )& = "7 > B % ) ( > B > 3 >
B
( <
0 0 24CC!5
%&' )& 4*
2 0 0 24CC!5
9D 5 6
) ' ' $ & $ 2*
0 % & & & &
' # 6 # # J#0 J # # ! 0 % D 8 +4 + - + + 8 4 4 4 4 + 8 + 8 8 8 8 + + -
> 8 = > E 3 > G ( = " ! ) ( 3 G > G ) ( %
%>
.% $ (
G > 2 "95 = P B B P !E >
> 2 > "4"95 % > 2 > " "<5
$
$
%&' )& && .*
0,015 neutral skill augmenting low skill aug.
0,010
% dev. from steady state
0,005
0,000
-0,005
-0,010
-0,015
-0,020
-0,025 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
&' )& 2*
&&& * 3 > "C OG
B > 2 ( 5 > )
%>
0,008 Minimum Wages Firing Costs F.Costs+Min. Wage
% dev. from steady state
0,006
0,004
0,002
0,000
-0,002
-0,004
-0,006 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
4 3 - &' )& 2*
&&& * ' $ & $ 2*
&&& *
0 % & & & &
' # 6 # # J#0 J # # ! 0 % & & & & D 4 - 8 + ++ - 44 + + + 4 -+ 4 8
3 "<
%&' )& && .*
Æ > E9"4
> 2 E 5 &' )& ' # ! P P P< 8 8 (! + 8 - '76 4 > )" + # )" - 4 4 # )"P ?#" +4 + + #K# - 8 /
3 Æ > 3 $ - > A & ( 2 !!E5 Æ G , % ;0* G
%>
., - $ $
'
)
G 0 ,
G > % @ > ) > G
) > G B ) > = "4! "49 ) > G 3 > "4! > G C!J 8
0 ) )
!
−3
x 10 6 5
% dev. from steady state
4 3 2 1 0 −1 −2 −3 0 0.5 Firing Tax 1
0
5
10
15
20
25
30
35
40
Quarters
0 ) ) , &' )&
> G G > B > > G
%> −4
x 10
2
% dev. from steady state
0
−2
−4
−6
0 0.2 0.4 0.6 Firing Tax
0.8 1
10
5
0
15
20
25
30
35
40
Quarters
0 ) ) , $ )
0.25
0.2
% dev. from steady state
"
0.15
0.1
0.05
0 0 0.2 0.4 0.6 Firing Tax
0.8 1
0
5
10
15
20
25
30
35
Quarters
0 ) ) , )
40
0 ) )
−3
x 10 5
4
% dev. from steady state
3
2
1
0
−1 0 0.2 0.4 0.6 Firing Tax
0.8 1
0
5
10
15
20
25
30
35
40
Quarters
0 ) ) , ? 5 & $ A ) B
B 0 G 2 5 B
0 ) B % G !<< 2!"5
G
B B 0 !D > )
. # # ## )" (! # 0 0 8 -
%>
B B ) B > = "4E "47 ) −3
x 10 1
0
% dev. from steady state
−1
−2
−3
−4
−5
−6
−7 1
0.8
0.6
Ratio of Minimum Wages
0.4
0.2
0
0
5
10
15
20
25
30
Quarters
0 ) ) , &' )&
35
40
0 ) ) −5
x 10 15
% dev. from steady state
10
5
0
−5 1 Ra tio
0.8 of M in im
0.6 um
0.4 W
ag
0.2
es
0
10
5
0
15
20
25
30
35
40
Quarters
0 ) ) , $ )
0.2
% dev. from steady state
0.15
0.1
0.05
0
−0.05 1 Ra
tio
of
Mi
0.5
nim
um
Wa
ge
s
0
0
5
10
15
20
25
30
35
Quarters
0 ) ) , )
40
%> −4
x 10 8 6
% dev. from steady state
4 2 0 −2 −4 −6 −8 −10 1 0.8
Ra
tio
0.6
of M
inim
um
0.4
Wa
ges
0.2 0
0
5
10
15
20
25
30
35
40
Quarters
0 ) ) , ? 5 & $
.. $ /
% ( )
= > 8 ) G 3 > @
) = "4D
4 * ) %=
% >
2.8 2.75 2.7 2.65 2.6 2.55 2.5
1.4
2.45
1.2 1
2.4 0.8
2.35 1
S Pa ubs ra titu m ti et on er
Steady State Employment, Low Skilled Workers, hu
2.85
0.6 0.9
0.8
0.4 0.7
Ratio of Minimum Wages
0.6
0.5
0.2 0.4
0.3
0.2
0
%&' )& = * ' 3 - -
A
%
%>
G 2B 7! J5 >
2.2
Employment Skilled Workers, hs
2.15
2.1
2.05
2
1.95
1.9 1.5 1 Substitution Parameter
0.5 0
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Ratio of Minimum Wage
%&' )& = * ' - - 0 > G
2 > " ! 5
4 * ) %=
Low Skilled Employment
2.5
2.45
2.4
1
1 0.8
0.8 0.6
0.6 0.4
0.4 0.2
0.2
Substitution Parameter
0
Firing Tax
0
%&' )& = 2* > 3 - - > 2> "4C5
8 0 > 8 H C
P 1 2
5 Q 1 2
5
2"9E5
1 25 8 > ( 2E !5 3 > " 4 >
G D!J 8 = > " 4
%>
60 50 40 30
Welfare
20 10 0 −10 −20 1.5 −30 −40 1
1
0.9
0.8
0.7
0.6
Ratio of Mininum Wage
0.5
0.4
0.3
0.2
ra
n
0
tio
pa
itu
st
b su
er
et
m
0.5
. = &&& * 0 G
( ) > G
> G 2> " 5
)
) 3 ) 2 > " " 95 >
4 * ) %=
!
270
265
Welfare
260
255
250
245
240 0
0 0.2
0.5 1
0.4
0.6
Minimum Wage Rate
0.8
1.5 1
Firing Tax
2
. = &&& * 2* > 3
2> " 95 14.7
14.6
14.5
Minimum Wage Model
Steady State Output Level
14.4
14.3
14.2
14.1
14 Firing Tax Model
13.9
13.8
13.7
0
0.1
0.2
0.3
0.4 0.5 0.6 0.7 Firing Tax, Ratio of Minimum Wages
0.8
0.9
&' ) '
1
"
%>
6 )
>
) .0 &
G
> "4 " "D ) = >
> G B ( % ) > ) 3 ) ) > " E
7
0,016 Search Model Wage Rigidity Firing Costs (1/2xwage) RBC-Model
0,014 0,012
% dev. from steady state
0,010 0,008 0,006 0,004 0,002 0,000 -0,002 -0,004 -0,006 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
4 3 - &' )& ; &' ) G 8 3 , = "< G ) G
B 2> "4"5 3 B
> B
%>
= ) 3 ) 2 > " 4 " 95 G >
*
= 2 > ! ! .
Æ
. 1 8???
0 -$
4CCE # ? N
! "
B 8 G , 25 ) G > 4CC! 2 45 G
B , ? 24CCE5 G %
G 3 6 " - 8+
24CCD5 / ;
; 24CCD5 3 2 !! 5
% A B G ( G
=@ 24CCC5 * 6 2 !! 5 # 2 !!<5 3 G
3 &B( , 24CCD5 3 24CCC5 / # 24CCC5 ' 3 24CCC5 G / # 24CCC5 N O 8 = ( G )
( , G
)
0&&)
0 G
, > > , # 24CC"5 ) 2 45 = > ) > 0 .3; G ( 3 > G 3 2 > D+ 4!5
,
3 24CCD5
)
% ,
) %
( = )
)
$ - H
>
( G
) 2 9 995 ( ( > G ) (
B > % 9
G
B
B O B
0&&)
$ - ( E < > ? 24CDE 4CC<5 ( G 0 , ;0* 3
& ( 2 !!E5 ) ( @ ,
E )
( E 0 & 24CC<5 /@ 24CC<5 3 24CC"5 G ; 0 * <
G / # 24CCC5 ;0* G 0 ) ( G 0 & ( 2 !!E5 > G ,
N = < ( O " = G
B G
B
&# # # # " # ! # # 9 ! #! ( 8 ( '0 % # # 0! ( &#"# 0# # . 0"##" )# "" )"
0&&)
!
=
2 G ? @
3 24CCC55 0 # , 2 !!9 !!E5 % 2 !!< 5 G , > G 3, G = 2 > " E5 0 > > )
< = G )
> 8 3 ;0* G )
0
> B >
"
> B
% O
0 ) G = 8 G B 8 )
B OG > = > G
> B
B OG = "" )
>
A ) ( 0 "
3
@
-
% (
B G = $? % -
0 > ) > O , = 3
; 0 * G ) % (
< ! # -H )H 4C A H 44C $# H C $H C (!H 8C 3 ( '"# # # 8/4 . .#
.;# @ G# ## # ) A ! #" ! #
= G = G %
; ' 2 !!!5 B G @ , % 2 !!<5 , 2 !!<5 % ) = > B Æ G
N )
) Æ $
- B = G > %
= G G B & ( ) B B B % (
-
( ) G A %
(
+ , + -
)
; , 2 !!E5 G ( 0 < ) 3 ; , 2 !!E5 G Z, H & 25 P $
= 2$
5 Q 24 52$ 5
!
!
Q 24 =5
$ / $
P >$
Q
!
2345
2! 5
= . ! G ) E4 3
0)&& #$ *
) ' G
2> 3 5 ( ) G
0,010 Symmetric Technology Asym. Technology 0,005
% dev. from steady state
0,000 -0,005 -0,010
-0,015 -0,020 -0,025 -0,030 -0,035 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
&' )&
G ) = G ) . =
0)&& #$ *
)
0,010 Symmetric Technology Asym. Technology 0,008
% dev. from steady state
0,006
0,004
0,002
0,000
-0,002
-0,004 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Quarters
.* ( )
G
= )
0)&& #$ *
0,14 Symmetric Technology Asym. Technology 0,12
% dev. from steady state
0,10
0,08
0,06
0,04
0,02
0,00
-0,02 1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
%&' )& - - Quarters
37
39
# . , ./
# H
# A* A !!< A* 0 2 4C"E4 4CCCE5 # !!! & H ; 2A*
>5 0 > 0 > # G >G A* A !!< H , 0 & , 25 $1 =-
"
6 7 , 0 72
: 3 0 2305 2 5 ( B A* / !!< H 0 , ( = ,
, 0 * 24CCD5 # $% & '
# ' (
! * # ; #"!
!9 ' * , 4CCD , 0 * 2 !!!5 * # ; #"! !C # ) ! * +,,, , # AÆ ' * = = , A > - + ./ " / 01+ ! 2 /@ # '
4C7D - +3 4/ 5/ 11 1+ /@# '
4C7D , ; , 2 !!E5
H 4CD! I 4CDC 2 A* 24CC95H 47 5 !! 2 <"E5 3
6 7 , 0 72
!!4 2 A* 2 !!955 ( 4 9 '
H ' % =@ 24CCC5 = , * # , 2*#,5 ( 4 9
,% 0 -
, G H [ P =T Q = [ Q 24 =5 @[ Q 2*45 @ ( A* 0 , 4C"E4 4CCCE P 24 Æ5 Q <J ( # = ;
, 2 !!E5 G H P 2Æ Q DT 5 D ' ( Æ P !! < = A&,
, H %
%
0 45 ) =
H ! C2!! 5
=
H ! 92!! D5
0 >
, A&, ( D
P Q
D
Q
2* 5
6 D D , = > = , H
P !C!D2!!9E5
<
P !D9<
P !D7E2!!D!5
<
P !E7"
= 0 # ( # # #? # # # # # @ "#
0 45 )
> *4 H
45 ' ) $ 0
. + # . .12+0
Y36; /3 &30 ,*&30 + H 6 / Y63; 9!"E Y63;
> G
I , G 0 2 5 Y63; H
&2
N 5
P !
= # ! A*.'3 0 0! L# # A 70 # #
7 6 7 ' 7@< %
H H G U V P ! U V P H
G G
( P T Q R
Q
R P T ' T
= ( ( 8 >8 @ G
Y63; ;0* 2 E5
G
!" #$ #$ %& %% & &'
(
&
7 6 7 ' 7@< %
" & *+ *+ &
( ) * ( *+
, -* .'-*. , -.'-*./-* .'- '--./'. /-- *.# .,-* .'--./'. /-- *.# .. /- ' # *. -* .'#-*. /-*. '--,./-*.'-,-,.* .. -*./-* .'-./-,'- *.# .' '- '--./'./-- *.# . ,-* .'--./'./-- *.# .. /- ' #- *.*.'/-*# . -*./-* .'-./-,'- *.# . '-* .'- '--./'. /-- *.# . ,-* .'--./'./-- *.# .. /- ' #- *.*.'/-*# . *-*./-*. /-*.' *-*./-*. /-*.' #-* .'-./--*.'- *.# . '-#./-*# . '-*., 0! " $ -*. $+ % & & - . 0/ - " ! .
!
0
24CCD5H $' 6 *
, \ * ' ( - 6 2
" 4492E5 4!<<+4!DC 24CCC5H $* ' ( H 3 3 , - 6 2 " DC 4
!
# $ "%
& " 24CCD5H $* ( H % * * & / - 6 7 4492E5 44"C+4 49 &! ' ( 2 !!45H $ A* - " E< 49<+4"< & & 24CC!5H $= * & H % 0
- " ! <7 9D4+E! & " ' ) !* 24CD"5H $ 6 0 , / - 472 5 47"+4DD & + 24CDC5H $ 0 *- . ( 2 4 4+7" & + $ ,%% 2 !!95H $/ ; & / 7 44D295 D7C+C!7 & + ) 2 !!!5H $ ; , ; H 3 - 6 44!245 *4+*99 & $ ( " 24CCC5H $ & & / - 8 4 A 3 * 93 49CC+4E"4 3 , 0. 2 !!45H $ )
# - 60; ' # 6 D !! * / & - & . ' , 2 !!<5H $3 A* , H # ;- A* # 6 E C # / & ( ( ) 2 !! 5H $* & / ( # 0 *- 5 " 9245 4+ E /* 2 !!E5H 4 / # * / - 2 !! 5H $, 0 * ; ' ( H , # #@@ 4 !2E5 799+7D9
"
!
' ( 2 !!!5H $, # / 0 *H * * / , # #\- "D 44<4 + 447C 0 1 2 !!E5H $ *
' , , ;H / / 4D"<4C4 - 13 # 6 4 D< 0 , 2 24CC75H 9 AG # AG 6 Y ( 24CC 5H $* ; 0 * 3 & / = 2 " D 295 E9!+E
0 * #@@- " 9E 4 7<+49!4 . $ 24CC"5H $3 - " E! E C+EED . 2 !!95H $ > - " 9 " "<4+"74 # ) '* ) 2 !!!5H $ # , - 2 " C!295 ED +ECD . ' *! 24CCE5H ) # # # 6 4 ) 24CC<5H 2 6 ! ' S , 6 Y 4
!
) 2 !!"5H $& / A* *- / A* #
0B 6 , 6 Y ) &!, 2 !!"5H $F , ;- * 0 ' # , 6 """ = I/ 3 $ % & 24CCC5H : 2 ! 5 ; 2 2 : 5 # . % 2 !! 5H $ , G
/ % ' - "C 4+E! ! ' 2 !!95H < / / 6 S % 0 ! ' ' 2 !!"5H $ ; /
0 * / , ' * - 6 )'-2) # E2 5 < +7 ( 0 2 !!"5H $ = , 6 ' 0 - / 6 Y ; 0 3 $ "% 24CCD5H $ A , * - 7 449 "C9+79 24CCC5H $ ; , 3 , *- 60; ' # 6 74 " * / / ) 2 !!!5H $; 0 * ( & / H 3 * , - * / ' # 6 < 0 3 ' 2 !!!5H $ 6 / # \- ( 4E2E5 7<+CC 0 . 2 !!45H $& / ; * ' ( ? , - 60; ' # 6 DE49 * / 3 ! ( # 2 !!95H $ # * ' 6 - 4 42 5 EEC+E74
!
!
0 ( 24CC75H $*6 * ( - 4 9< "99+"D7 2 ( 4! 24CC75H $4C7E- ' ' ! ( ( E" EC+C< ' ) 2 !!E5H $ ( H 3
, - # "2E5 # # # 3 ; = ,@ / ' 9<7+9C9 # 6 # # #! 0 24CCD5H $G ; ' ( H G ( / & % 3- " 9 4 4+
!
#1 * #
' ' 24CC95H $ # H 3 ( 3 - ( 4!42<5 C4<+C9D # " 2 !!<5H $ ; # = H 3 6 ( ;- 2 92<5 4!!7+ 4!<7 ( 24CC"5H $Y63;H 3 G - *#;/3# ' # 6 C"! # "% $ 24CCC5H $*
( - 8 4 A 3 * 4E"9+4<<< 3 , 0. "% $ " ( (1 * 24CC 5H $* ; ' 4C"94CD7H , = - 6 7 4!7 9<+7D "* ( 24C9"5H 6 5 6 ) # % 0 S ' 6 Y " ' ' 24CDD5H $# 0 *H 0 6 / - # 4 4C<+ 9 " 2 !!!5H $) , & = * / / + 3 G / # 24CCE5- 13 # 6 4!E 0 2 !! 5H 7 9 2 # & = I / "5% ( 2 !!E5H $ , - 2 6 ! % &: / ?: @ DC+9!! * 6 Y * # " 24CCE5H $# # * % - - . = ' " E 9+E9
" + ''
2 !!!5H $* , * ( H 3 / 3 - "D2<5 4! C+4!<9
!
"* $ 24CDE5H $& = % 0
*- ' ' ! ( ( 4 479+ !D 24CC<5H $0 * 3 & / =
- - . ' = * 4 "+4<" # 6 # # "* $ 24CD 5H $ 0 3 = -
* ' ' ! ( (
&
24CCC5H $ , H ) ; , - 6 ; & !4+ 9! & / # & 24CCC5H $' ( , 4CD!H ; = / ' - 7 44E C77+4! 9 6 ( 2 !!E5H $* ( - " 9 7295 <4C+<E! 76, 0 24CCD5H $ - ( 4!"295 <4E+<
6 Y 3 5!1 # 24CC95H ) # 6 ! 2 , . 0 % 2 !!E5H $. 3 . * / - 2 6 ! % &: / ?: @ D"+4
!
( 24CC45H 9 - ' 9 * 2 4 ' ? "
6 Y
AG # AG
( , 24CD"5H $ ; = -
6 * ; 0 ; & , 6 4C7+ 47 AG 6 Y 0 0 (% ( 24CC<5H $, & / ; 0 *- # 9" "C+9!! ( ( $ * & 24C7E5H ) 6 ! / % 9 ( 0 24CCC5H $ ; W, 0 8 , H ; & / #- 6 4!C E + "< (1 * " ) ' ' 24CCD5H $' , , *
- 5 ( 6 5" % D9+9!C * / / # - ! 24CC75H $ & / ; H 6 3 - ( 44295 <<+7E - ! & & 24CC<5H $ * 3 A*- @> " ( 44245 E!+" 24CC"5H $* ' A* *- 2 " ( ( D"2 5 9! +9!D - ! -% ) + 3 2 !!45H $ 0 * ' A* 4C"! 4CC!- / * # & 2 !!95H $ 0 * ' A* 4C"! 4CC!- =" ) > # # # 3 ; = ,@ / ' 9CE+E94 # 6 # # + 24CDC5H @ +,A, A* # # 24CC95H @ +,,B A* # # 24CC"5H @ +,,3 A* # #
!!
24CC75H $A* , ? & # /A* & / , # A # 6 C # 2 !!!5H @ 1%%% A* # # 2 !!95H 5 1%%B A* # # 2 !!E5H @ 1%%0 A* # # 2 !!"5H @ 1%%3 A* # # & ( ( 24CCC5H $, / A* *- "" 4D4+ !7 & 2 !!45H $& 0 0GH 3 , / =- 4 9C 9C!+E94 1 / 2 !!45H $, 0- ( 4"29 5 D<+4 " + # ' 2 !!95H $&, 0 , * - 13 # 6 7DE 0 / 2 !!E5H $0 , ' ; &, - 6 0 60 ' # 6 ! 3 2 !!!5H 6 / # * / 2 !!45H $ - 4 D 494+ 4
# 64<"
6 ' ( ) 24C<<5H $ A ' ) - 2 " E<2<5 D99+D< ' 24C445H ( ( 6> / S , & 6 Y ' , & 2 !!95H $/ & / =H 3 ** * - 2 4245 E+ EE
""
'' 24CC<5H $/ % 3- - . '
= * CD+ 4 < # 6 # # 24CCC5H $* ( - ' # ! 9 ; / 3 , 9D+ "E AG AG # '2 ' 24CCC5H $ - ' 9 E49+< E ' 2 !!"5H $% & & / = ) * , -
# 6 4
6 24CC"5H 9 4 # / # * / ' 2 !!E5H $ *( ; ' , / - 60; ' # 6 4!9 " * / = 2 !!<5H $ * 0 (
. - 2 " C<245 <+EC 24CD!5H $/ ; - ED245 4+ED # ! ( ) ) 24CC!5H $ & , / , ;-
"
0 24C7E5H $,
A & =
7 47+ " 0 2 !!E5H $( = O - * 0 ' # , 6 9!E = 8 # 24CCC5H $3 - ' # ! 9 ; / 3 , 9!+"4 AG AG # ) 2 !!95H $& / , / , 9 # 2 , 3 *
* 6 E<4+ED" 6 Y * * # 4 , 2 !!E5H $/ # & & / =- " ED
)
6* , ", , )3&' )& , , 6
) , 6
) ' ' , !", , ", , 6
) #$ ), <
* $ & , 5 , , "!, &' 3 ' , , , , ' 3 - &'& ), , 7 5 &- , 7)& , !, , 7), %&' )& , , , , , ! 4 3 - - , , !", , , , !, %&' )& , &' )& , , , , , , , ", 0- - , , %(5& &' )& , 1 (5& &' (5&, ", ", , , !
& , # , A 5 , , " A 5 , A 5 & $ , , 0$ ), !, ) , , , !, 45 &- (5&, 45 &- &' , 45 &- , , ! 7 &
' , %&' )& ' , , , , , , , +*
, , , # , /&' )& 52 , , 45 &- ' , $* , , " && .*, && * , < $ 5**, , " 0$ & $* , , , !, ! 0 $ *, " 0 ) ) ,
" > 0-35 $ * $*, , , , , , ! 0 , , 0 ) , , , ! #$ *) $ -, , ! 4 3 - 5 , !, , , ! < , 0-35 , , !, , , !, # ' ) 9#+:, # ')& , /&' )& , , , , !! 4 3 -, *
9 :, ! $ -) &'
,
&' 3 ' , , &, /
, .* , .* ( ), , , , , , , ", , , .* 5 , .* ', , , , .* && * , , , * , ! .* > , .* ' , .* * , , . . , .
,
4 9 E < " 7 D
* 3 > .3; > , 4C7D44CCDE 4C7<4 !!!4
49 4C E < 9< 9" 9D 9C
94 # "< E4 # D< E 0 C4 E9 0 ;0* C <4 # 44! < 0 44D <9 44C "4 " "9 "E "<
0 49! 494 * > 49D 0 > 4E9 # > 4E" "" 3 4E7
$
4 ' ( ,
, > 4C7<E !!EE 9 , > , 4CC94 !!EE E 0 4C"<4 !!<9 < 0 , 4C"<4 !!<9 " 7 / D , 4C7 4 4CCDE C , 4C7D4 4CCDE 4! 4C794 !!!4
4" 47 ! 4 " 7 E! E4 E
94 ( 9 0 ( 99 & > 9E ' ( 2 5 9< ' ( % 9" ' (
<< <" "! "" "7 "D
E4 E E9 EE
D" D7 DC DC
A ) ; ;
4E
<4 A 44
"
4 +*
< <9 <E << <"
; 449 . 44E . 44< ' ( 44" ; 447
"4 & 4 7 " ; 4 D "9 &
4 C "E A > 49C "< ; > 4E! "" ' ( > 4E4 "7 & 4E "D ; > 4E< "C & > 4E" "4! , 4EC "44 , 4 G 4<7 " 4 ' ) 4 G 4
4
34 ; 47"
4 +*
"!
3 ' ( 477 39 47D *4 & , 4D<
Lecture Notes in Economics and Mathematical Systems For information about Vols. 1–500 please contact your bookseller or Springer-Verlag Vol. 501: M. Fleischmann, Quantitative Models for Reverse Logistics. XI, 181 pages. 2001.
Vol. 522: C. Neff, Corporate Finance, Innovation, and Strategic Competition. IX, 218 pages. 2003.
Vol. 502: N. Hadjisavvas, J. E. Martínez-Legaz, J.-P. Penot (Eds.), Generalized Convexity and Generalized Monotonicity. IX, 410 pages. 2001.
Vol. 523: W.-B. Zhang, A Theory of Interregional Dynamics. XI, 231 pages. 2003.
Vol. 503: A. Kirman, J.-B. Zimmermann (Eds.), Economics with Heterogenous Interacting Agents. VII, 343 pages. 2001. Vol. 504: P.-Y. Moix (Ed.), The Measurement of Market Risk. XI, 272 pages. 2001. Vol. 505: S. Voß, J. R. Daduna (Eds.), Computer-Aided Scheduling of Public Transport. XI, 466 pages. 2001. Vol. 506: B. P. Kellerhals, Financial Pricing Models in Continuous Time and Kalman Filtering. XIV, 247 pages. 2001. Vol. 507: M. Koksalan, S. Zionts, Multiple Criteria Decision Making in the New Millenium. XII, 481 pages. 2001. Vol. 508: K. Neumann, C. Schwindt, J. Zimmermann, Project Scheduling with Time Windows and Scarce Resources. XI, 335 pages. 2002. Vol. 509: D. Hornung, Investment, R&D, and Long-Run Growth. XVI, 194 pages. 2002. Vol. 510: A. S. Tangian, Constructing and Applying Objective Functions. XII, 582 pages. 2002. Vol. 511: M. Külpmann, Stock Market Overreaction and Fundamental Valuation. IX, 198 pages. 2002.
Vol. 524: M. Frölich, Programme Evaluation and Treatment Choise. VIII, 191 pages. 2003. Vol. 525: S. Spinler, Capacity Reservation for Capital- Intensive Technologies. XVI, 139 pages. 2003. Vol. 526: C. F. Daganzo, A Theory of Supply Chains. VIII, 123 pages. 2003. Vol. 527: C. E. Metz, Information Dissemination in Currency Crises. XI, 231 pages. 2003. Vol. 528: R. Stolletz, Performance Analysis and Optimization of Inbound Call Centers. X, 219 pages. 2003. Vol. 529: W. Krabs, S. W. Pickl, Analysis, Controllability and Optimization of Time-Discrete Systems and Dynamical Games. XII, 187 pages. 2003. Vol. 530: R. Wapler, Unemployment, Market Structure and Growth. XXVII, 207 pages. 2003. Vol. 531: M. Gallegati, A. Kirman, M. Marsili (Eds.), The Complex Dynamics of Economic Interaction. XV, 402 pages, 2004. Vol. 532: K. Marti, Y. Ermoliev, G. Pflug (Eds.), Dynamic Stochastic Optimization. VIII, 336 pages. 2004.
Vol. 512: W.-B. Zhang, An Economic Theory of Cities.XI, 220 pages. 2002.
Vol. 533: G. Dudek, Collaborative Planning in Supply Chains. X, 234 pages. 2004.
Vol. 513: K. Marti, Stochastic Optimization Techniques. VIII, 364 pages. 2002.
Vol. 534: M. Runkel, Environmental and Resource Policy for Consumer Durables. X, 197 pages. 2004.
Vol. 514: S. Wang, Y. Xia, Portfolio and Asset Pricing. XII, 200 pages. 2002.
Vol. 535: X. Gandibleux, M. Sevaux, K. Sörensen, V. T’kindt (Eds.), Metaheuristics for Multiobjective Optimisation. IX, 249 pages. 2004.
Vol. 515: G. Heisig, Planning Stability in Material Requirements Planning System. XII, 264 pages. 2002. Vol. 516: B. Schmid, Pricing Credit Linked Financial Instruments. X, 246 pages. 2002. Vol. 517: H. I. Meinhardt, Cooperative Decision Making in Common Pool Situations. VIII, 205 pages. 2002. Vol. 518: S. Napel, Bilateral Bargaining. VIII, 188 pages. 2002. Vol. 519: A. Klose, G. Speranza, L. N. Van Wassenhove (Eds.), Quantitative Approaches to Distribution Logistics and Supply Chain Management. XIII, 421 pages. 2002. Vol. 520: B. Glaser, Efficiency versus Sustainability in Dynamic Decision Making. IX, 252 pages. 2002. Vol. 521: R. Cowan, N. Jonard (Eds.), Heterogenous Agents, Interactions and Economic Performance. XIV, 339 pages. 2003.
Vol. 536: R. Brüggemann, Model Reduction Methods for Vector Autoregressive Processes. X, 218 pages. 2004. Vol. 537: A. Esser, Pricing in (In)Complete Markets. XI, 122 pages, 2004. Vol. 538: S. Kokot, The Econometrics of Sequential Trade Models. XI, 193 pages. 2004. Vol. 539: N. Hautsch, Modelling Irregularly Spaced Financial Data. XII, 291 pages. 2004. Vol. 540: H. Kraft, Optimal Portfolios with Stochastic Interest Rates and Defaultable Assets. X, 173 pages. 2004. Vol. 541: G.-y. Chen, X. Huang, X. Yang, Vector Optimization. X, 306 pages. 2005. Vol. 542: J. Lingens, Union Wage Bargaining and Economic Growth. XIII, 199 pages. 2004.
Vol. 543: C. Benkert, Default Risk in Bond and Credit Derivatives Markets. IX, 135 pages. 2004.
Vol. 570: J. Woo, The Political Economy of Fiscal Policy. X, 169 pages. 2006.
Vol. 544: B. Fleischmann, A. Klose, Distribution Logistics. X, 284 pages. 2004.
Vol. 571: T. Herwig, Market-Conform Valuation of Options. VIII, 104 pages. 2006.
Vol. 545: R. Hafner, Stochastic Implied Volatility. XI, 229 pages. 2004.
Vol. 572: M. F. Jäkel, Pensionomics. XII, 316 pages. 2006
Vol. 546: D. Quadt, Lot-Sizing and Scheduling for Flexible Flow Lines. XVIII, 227 pages. 2004. Vol. 547: M. Wildi, Signal Extraction. XI, 279 pages. 2005. Vol. 548: D. Kuhn, Generalized Bounds for Convex Multistage Stochastic Programs. XI, 190 pages. 2005. Vol. 549: G. N. Krieg, Kanban-Controlled Manufacturing Systems. IX, 236 pages. 2005. Vol. 550: T. Lux, S. Reitz, E. Samanidou, Nonlinear Dynamics and Heterogeneous Interacting Agents. XIII, 327 pages. 2005. Vol. 551: J. Leskow, M. Puchet Anyul, L. F. Punzo, New Tools of Economic Dynamics. XIX, 392 pages. 2005. Vol. 552: C. Suerie, Time Continuity in Discrete Time Models. XVIII, 229 pages. 2005. Vol. 553: B. Mönch, Strategic Trading in Illiquid Markets. XIII, 116 pages. 2005. Vol. 554: R. Foellmi, Consumption Structure and Macroeconomics. IX, 152 pages. 2005. Vol. 555: J. Wenzelburger, Learning in Economic Systems with Expectations Feedback (planned) 2005. Vol. 556: R. Branzei, D. Dimitrov, S. Tijs, Models in Cooperative Game Theory. VIII, 135 pages. 2005. Vol. 557: S. Barbaro, Equity and Efficiency Considerations of Public Higer Education. XII, 128 pages. 2005. Vol. 558: M. Faliva, M. G. Zoia, Topics in Dynamic Model Analysis. X, 144 pages. 2005. Vol. 559: M. Schulmerich, Real Options Valuation. XVI, 357 pages. 2005. Vol. 560: A. von Schemde, Index and Stability in Bimatrix Games. X, 151 pages. 2005. Vol. 561: H. Bobzin, Principles of Network Economics. XX, 390 pages. 2006. Vol. 562: T. Langenberg, Standardization and Expectations. IX, 132 pages. 2006. Vol. 563: A. Seeger (Ed.), Recent Advances in Optimization. XI, 455 pages. 2006. Vol. 564: P. Mathieu, B. Beaufils, O. Brandouy (Eds.), Artificial Economics. XIII, 237 pages. 2005. Vol. 565: W. Lemke, Term Structure Modeling and Estimation in a State Space Framework. IX, 224 pages. 2006. Vol. 566: M. Genser, A Structural Framework for the Pricing of Corporate Securities. XIX, 176 pages. 2006. Vol. 567: A. Namatame, T. Kaizouji, Y. Aruga (Eds.), The Complex Networks of Economic Interactions. XI, 343 pages. 2006. Vol. 568: M. Caliendo, Microeconometric Evaluation of Labour Market Policies. XVII, 258 pages. 2006. Vol. 569: L. Neubecker, Strategic Competition in Oligopolies with Fluctuating Demand. IX, 233 pages. 2006.
Vol. 573: J. Emami Namini, International Trade and Multinational Activity. X, 159 pages, 2006. Vol. 574: R. Kleber, Dynamic Inventory Management in Reverse Logistics. XII, 181 pages, 2006. Vol. 575: R. Hellermann, Capacity Options for Revenue Management. XV, 199 pages, 2006. Vol. 576: J. Zajac, Economics Dynamics, Information and Equilibnum. X, 284 pages, 2006. Vol. 577: K. Rudolph, Bargaining Power Effects in Financial Contracting. XVIII, 330 pages, 2006. Vol. 578: J. Kühn, Optimal Risk-Return Trade-Offs of Commercial Banks. IX, 149 pages, 2006. Vol. 579: D. Sondermann, Introduction to Stochastic Calculus for Finance. X, 136 pages, 2006. Vol. 580: S. Seifert, Posted Price Offers in Internet Auction Markets. IX, 186 pages, 2006. Vol. 581: K. Marti; Y. Ermoliev; M. Makowsk; G. Pflug (Eds.), Coping with Uncertainty. XIII, 330 pages, 2006. Vol. 582: J. Andritzky, Sovereign Default Risks Valuation: Implications of Debt Crises and Bond Restructurings. VIII, 251 pages, 2006. Vol. 583: I.V. Konnov, D.T. Luc, A.M. Rubinov† (Eds.), Generalized Convexity and Related Topics. IX, 469 pages, 2006. Vol. 584: C. Bruun, Adances in Artificial Economics: The Economy as a Complex Dynamic System. XVI, 296 pages, 2006. Vol. 585: R. Pope, J. Leitner, U. Leopold-Wildburger, The Knowledge Ahead Approach to Risk. XVI, 218 pages, 2007 (planned). Vol. 586: B.Lebreton, Strategic Closed-Loop Supply Chain Management. X, 150 pages, 2007 (planned). Vol. 587: P. N. Baecker, Real Options and Intellectual Property: Capital Budgeting Under Imperfect Patent Protection. X, 276 pages , 2007. Vol. 588: D. Grundel, R. Murphey, P. Panos , O. Prokopyev (Eds.), Cooperative Systems: Control and Optimization. IX, 401 pages , 2007. Vol. 589: M. Schwind, Dynamic Pricing and Automated Resource Allocation for Information Services: Reinforcement Learning and Combinatorial Auctions. XII, 293 pages , 2007. Vol. 590: S. H. Oda, Developments on Experimental Economics: New Approaches to Solving Real-World Problems. XVI, 262 pages, 2007. Vol. 591: M. Lehmann-Waffenschmidt, Economic Evolution and Equilibrium: Bridging the Gap. VIII, 272 pages, 2007. Vol. 592: A. C.-L. Chian, Complex Systems Approach to Economic Dynamics. X, 95 pages, 2007.