VOLTERRA STIELTJES-INTEGRAL EQUATIONS
This Page Intentionally Left Blank
NORTH-HOLLAND MATHEMATICS STUDIES
16
Notas de Matemgtica (56) Editor: Leopoldo Nachbin Universidade Federal do Rio de Janeiro and University of Rochester
Volterra Stieltjes-Integral Equations Functional Analytic Methods; Linear Constraints
CHAIM SAMUEL HONIG lnstituto de Matema'tica e Estatistica, S o Paulo, Brazil
1975
NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM OXFORD AMERICAN ELSEVIER PUBLISHING COMPANY, INC. - NEW YORK
0 NORTH-HOLLAND
PUBLISHING COMPANY
- 1975
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.
North-Holland ISBN .for this Series: 0 1204 2100 2 North-Holland ISBN for this Yolume: 0 7204 2117 7 American Elsevier ISBN: 0 444 10850 5
Publishers :
NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY, LTD. - OXFORD Sole distributors for the U.S.A. and Canada:
AMERICAN ELSEVIER PUBLISHING COMPANY, INC. 52 VANDERBILT AVENUE NEW YORK, N.Y. 10017
PRINTED I N T H E NETHERLANDS
INTRODUCTION This work presents the results we obtained in the study of linear Volterra Stieltjes-integral equations with linear constraints i.e. in the study of systems of the form (K), (F) where
(F)
F[y]
= c.
These systems are studied in all their generality (see Remark 3 at the beginning of Chapter 111); we give a Banach space X, y,f E G(] a,b(,X) (the space of regulated functionssee the index for this and other definitions) and K:
] a,b(X)
a,b(
+ L(X) ,
that satisfies natural conditions defined in 81, Chapter 111.
FcL[G()
[ ,X>,Y] ,
a,b
where Y is a locally convex space, is called a linear constraint. In the item A of §1, Chapter 111, we show how linear differential equations, linear Volterra integral equations, linear delay differential equations, etc. are reduced to the type (K). As particular instances of linear constraints we have the initial conditions, boundary conditions, periodicity conditions, discontinuity conditions, multiple point conditions, integral conditions, interface conditions, conditions at infinite points etc. (see item B of 8 3 , Chapter 111). We give necessary and sufficient conditions for the existence of a Green function for the system (K), ( F ) i.e. a function G: )a,b(X)a,b( + L ( X ) such that for f continucus and c 0 the solution y of the system is given by
V
INTRODUCTION
vi
(see Theorem 3 . 2 8 of Chapter 111); we also characterize the Green function (see Theorem 3 . 2 9 of Chapter 111) and show that the solution y is a continuous function of f (and K). In order to obtain the representation (GI we have to solve preliminarily two important problems; I - Find a resolvent for the equation (K). I1 - Find integral representations associated to ( F ) .
I
-
The resolvent of (K) is a function
that satisfies
and such that the solution of ( K ) with tinuous is given by
y(to)
= x
and
f con-
(see Theorem 1.5 of Chapter 111). In the particular instance of an integro-differential equation r t
the existence of the resolvent (called harmonic operator in this case) was proved by Wall [W] and specially by Mac-Nerney [M] under the restriction that A is locally of bounded variation (and continuous). In this case Mac-Nerney also proved that there is a one-to-one correspondence between the space of coefficients A and the harmonic operators. We extend this correspondence to the general case (Theorems 2 . 1 and 2 . 3 of Chapter 111) and prove that it is bicontinuous in a natural way. The proof in the general case however is much more difficult than the proof given in [MI where one applies directly
v ii
INTRODUCTION
t h e Banach f i x e d p o i n t theorem. I n t h e g e n e r a l c a s e i n o r d e r t o prove t h e e x i s t e n c e of t h e r e s o l v e n t and s p e c i a l l y t h a t it s a t i s f i e s (R,)
we had t o r e p l a c e t h e n a t u r a l norm of
the
s p a c e of r e s o l v e n t s by an e q u i v a l e n t one (Theorem 1 . 1 2 o f Chapter 111) and g i v e a l a b o r i o u s p r o o f t h a t now w e can g e t a c o n t r a c t i o n . By t h e way, t h i s proof i s made d i r e c t l y f o r t h e r e s o l v e n t of (K) and t h i s g e n e r a l i z a t i o n e x p l a i n s why, f o r t h e r e s o l v e n t of (L), w e have t o prove f i r s t t h e s e m i v a r i a t i o n p r o p e r t i e s w i t h r e s p e c t t o t h e second v a r i a b l e and o n l y a f t e r wards w i t h r e s p e c t t o t h e f i r s t v a r i a b l e . T h i s g e n e r a l i z a t i o n a l s o keeps t h e symmetry between t h e e q u a t i o n s ( R " )
and (R,)
s a t i s f i e d by t h e r e s o l v e n t , a symmetry t h a t does n o t e x i s t f o r d i f f e r e n t i a l e q u a t i o n s or V o l t e r r a i n t e g r a l e q u a t i o n s when t h e y a r e w r i t t e n i n t h e i r u s u a l form. For e q u a t i o n s of t y p e
(K) w e a l s o prove t h a t t h e r e i s a n a t u r a l b i c o n t i n u o u s
respondence between t h e s p a c e o f k e r n e l s resolvents
R
K
cor-
and t h e s p a c e of
(Theorems 1 . 2 7 and 1 . 3 0 o f Chapter 111) and we
y of (p) i s a continuous f u n c t i o n of f , x and K . We mention t h a t p a r t of t h e r e s u l t s o f 8 2 o f C h a p t e r I11 on (L) have been extended by Maria I g n e z de Souza
show t h a t t h e s o l u t i o n
[S]
t o t h e c a s e where
A
a l l o w s d i s c o n t i n u i t i e s ; t h i s gener-
a l i z e s r e s u l t s of H i l d e b r a n d t [H-ie] I1
-
i n t h i s direction.
The i n t e g r a l r e p r e s e n t a t i o n a s s o c i a t e d t o
F
is
n e c e s s a r y e s s e n t i a l l y i n o r d e r t o p r o v e an i d e n t i t y of t h e form
t h i s i d e n t i t y ( t h e D i r i c h l e t formula) i s necessary i n o r d e r t o o b t a i n t h e Green f u n c t i o n f o r t h e system (K), (F)- i t e m D and E o f 63, C h a p t e r 111; i n t h e i t e m B w e do a f o r m a l ( a l g e b r a i c ) s t u d y of t h e system n o t u s i n g t h e i n t e g r a l r e p r e s e n t a tion for
F. Both f o r t h i s r e p r e s e n t a t i o n as for ( K ) w e need
t h e n o t i o n o f f u n c t i o n for bounded s e m i v a r i a t i o n .
The p r e s e n t work h a s i t s o r i g i n i n our a t t e m p t s t o e x t e n d
o u r r e s u l t s of [H-IME], where w e s t u d i e d systems o f t h e form
INTRODUCTION
Viii L[y](t) F[Y]
= y'(t>
f
A(t>y(t)
f(t>
t€
]a&(
= c
w i t h y ~ ~ ( l ) ( ) a , b ( , X ) ,f € G ( ) a , b ( , X ) , AEG()a,b[,L(X)) and F E L [G() a , b , X I ,Y] We wanted t o e x t e n d t h e r e s u l t s t o t h e
[
.
c a s e where t h e c o e f f i c i e n t A a n d t h e f u n c t i o n s f and y a l l o w d i s c o n t i n u i t i e s . I n i t i a l l y w e t r i e d t o work w i t h f u n c t i o n s t h a t were l o c a l l y o f
bounded v a r i a t i o n b u t i n t h i s case
w e had no i n t e g r a l r e p r e s e n t a t i o n f o r t h e l i n e a r c o n s t r a i n t F; t h e same w a s t r u e f o r o t h e r " n a t u r a l " c l a s s e s o f f u n c t i o n s . A f t e r w o r d s w e r e a l i z e d t h a t t h e r e g u l a t e d f u n c t i o n s , or t h e i r e q u i v a l e n c e classes ( s e e t h e end of 8 3 , C h a p t e r I ) , a r e t h e
a d e q u a t e o n e s s i n c e i n t h i s c a s e w e o b t a i n e d good r e p r e s e n t a t i o n theorems f o r t h e elements e t c . (Theorems 5 . 1 , merical case
5.6,
(X = Y = R)
FEL[E( ( a , b ) , X > ,Y] , F E L[G()a,b( , X I ,y]
6 . 6 and 6 . 8 of C h a p t e r I ) . I n tlie nu-
and f o r c l o s e d i n t e r v a l s t h i s
re-
p r e s e n t a t i o n i s due t o K a l t e n b o r n [K];
it requires t h e i n t e r i o r or Dushnik i n t e g r a l ( s e e §1, C h a p t e r I ) . We a l s o o b t a i n o t h e r r e p r e s e n t a t i o n theorems (see theorems 5.10, 5 . 1 1 , 6 . 1 0 , 6 . 1 2 and 6 . 1 6 of C h a p t e r I > ; Theorem 1 . 6 . 1 2 is a p a r t i c u l a r case o f more g e n e r a l t h e o r e m s on m e a s u r e s p a c e s ( s e e [D]). For t h e s e and o t h e r r e s u l t s w e need c o n v e r g e n c e t h e o r e m s of t h e H e l l y type (theorems 5.8, 5 . 9 ,
6 . 3 o f C h a p t e r I). O f f u n d a m e n t a l
i m p o r t a n c e t o o are t h e f o r m u l a s o f D i r i c h l e t a n d o f s u b s t i t u -
(101, (111, ( 1 2 ) and (13) o f C h a p t e r 11) which are deduced from Theorem 11.1.1; i n t h e n u m e r i c a l case ( i . e . X = Y = lR) and for c o n t i n u o u s f u n c t i o n s t h i s 'theorem i s e s s e n t i a l l y d u e t o Bray [B]. tion ((61,
All t h e s e r e s u l t s u s e a q u i t e c o m p l e t e s t u d y w e made i n C h a p t e r I of t h e f u n c t i o n s of bounded s e m i v a r i a t i o n ( f i r s t def i n e d by Gowurin, [GI), o f t h e i n t e r i o r i n t e g r a l ( d u e t o Dushn i k - see [ H - t i ] p . 9 6 ) and o f t h e r e g u l a t e d f u n c t i o n s . W e give much more r e s u l t s , s p e c i a l l y i n C h a p t e r I , t h a n w e n e e d i n t h e
r e s t o f t h e work. These a d d i t i o n a l r e s u l t s or o t h e r s t h a t may be r e a d o n l y i n t h e moment t h e y a r e a p p l i e d are g i v e n i n smaller p r i n t and/or i n appendices.
INTRODUCTION
ix
For o t h e r v e r s i o n s of t h e f o r m u l a s of D i r i c h l e t a n d of s u b s t i t u t i o n see [H-DS]. For a n u n i f i e d p r e s e n t a t i o n of t h e r e p r e s e n t a t i o n t h e o r e m s m e n t i o n e d a b o v e see [H-R] For a n abs t r a c t of t h e main r e s u l t s of t h e s e n o t e s see [H-BAMS2]. For r e l a t e d r e s u l t s see [ C a ] , [HI a n d [R].
.
The n o t a t i o n ( 1 1 1 . 2 . 5 )
r e f e r s t o 2.5 o f C h a p t e r 111; for
a r e s u l t i n t h e same c h a p t e r w e w r i t e o n l y
ized
2.5.
T h e s e n o t e s were w i t t e n f o r t h e A n a l y s i s M e e t i n g o r g a n by t h e S o c i e d a d e B r a s i l e i r a d e Matemztica a t t h e U n i v e r -
s i d a d e d e Campinas, f r o m 1 5 t o 25 J u l y , 1 9 7 4 . They r e p r o d u c e a n a d v a n c e d g r a d u a t e c o u r s e w e g a v e a t t h e I n s t i t u t o d e Matem z t i c a e E s t a t i s t i c a da U n i v e r s i d a d e d e Sao P a u l o d u r i n g t h e f i r s t semestrer of 1 9 7 4 . The a u d i e n c e of t h i s c o u r s e was v e r y stimulating. S p e c i a l t h a n k s are d u e t o my c o l l e a g u e P r o f . L.H.Jacy M o n t e i r o who t o o k i n c h a r g e t h e p u b l i c a t i o n of t h e s e n o t e s a n d w i t h o u t whose h e l p t h e y would n o t h a v e b e e n r e a d y for t h e Meeting.
C O N T E N T S INTRODUCTION
v
I
THE INTERIOR INTEGRAL
7
1 . The Riemann-StieL.
7 12 16 21 38 53
$0
NOTATIONS
-
-
§
52.
53. 94.
15.
§6.
/ e b i n t e g h a L and t h e i n t e h i o h inkeghue T h e Riemann i n t e g h a e and t h e Vahboux i n t e g h a e Regulated dunctionb FuMctiOnb 06 bounded B - v a h i a t i o n R e p h e b e n t a t i o n theonemb and t h e . t h e o h e m 06 Heely R e p h e b e n t a t i o n theohemb o n o p e n i n t e h v a l b
11- THE ANALYSIS OF REGULATED FUNCTIONS 5 1 . T h e theohem
06
Bhay and t h e 6ohmuLa 0 6 V i h i c h l e X
5 2 . E x t e n b i o n t o open i n t e h v a k h
111- VOLTERRA STIELTJES-INTEGRAL EQUATIONS WITH LINEAR CONSTRAINTS
06 a VoLtehha S t i e L t j e b - i n t e g h a e equation 8 2 . l n t e g ~ ~ u - d i 6 6 e h e n t i a eLq u a t i o n b and hahmonic opehatohb $ 1 . T h e htbO.tVent
5 3 . Equationb w i t h k i n e a h conhthaintb
69 69 79 82
85 116
124
REFERENCES
151
INDEX
157
SYMBOL INDEX
153
X
5 A
-
0
-
NOTATIONS
W e always c o n s i d e r v e c t o r spaces over t h e complex
f i e l d C, b u t a l l o u r r e s u l t s , w i t h obvious a d a p t a t i o n s , a r e v a l i d f o r real vector spaces. For i n t e r v a l s w e use t h e u s u a l n o t a t i o n , ]a,.[ , ( c , d ] e t c . l c , d l , where c < d , d e n o t e s any of t h e i n t e r v a l s ] c , d [ , ] c , d ) , [ c , d [ and [ c , d ) ; ( c , d ) denotes t h e i n t e r v a l ( c , d ) i f c s d and t h e i n t e r v a l [ d , c ) i f d s c. Given r e a l numbers s , t w e w r i t e s A t = i n d ( s , t ) and
--
s v t = 6LLP(S,t). h ( t , s ) E Y , f o r every Given a f u n c t i o n h: ( t , s ) E B x A t E B, ht d e n o t e s t h e f u n c t i o n S E A h ( t , s )E Y and f o r hs denotes t h e f u n c t i o n t E B - h ( t , s ) E Y. every S E A , Given a f u n c t i o n f : X v Y and A C X I f denotes t h e IA r e s t r i c t i o n of f t o A . Ix d e n o t e s t h e i d e n t i c a l automorphism of X . Given an A c X , xA denotes t h e c h a r a c t e r i s t i c f u n c t i o n of A: x ( x ) = 1 i f x E A and x A ( x ) = 0 i f x E X A and x @ A . Y : R -IR denotes t h e Heaviside f u n c t i o n Y =
x [ ~ , W~ e (d .e f i n e
sg: R
-
{-l,O,l}
by
sg t = 1 i f
= 0 f o r t = 0 and = -1 i f t < o . I f X and Y are t o p o l o g i c a l s p a c e s , E ( X , Y ) denotes t h e s e t of a l l c o n t i n u o u s f u n c t i o n s of X i n t o Y. I f a sequence xn converges t o x i n a t o p o l o g i c a l space x, w e t > O ,
write
x - xX n
x - x . n I f t h e sequence t n E R t e n d s t o t and i s d e c r e a s i n g w e w r i t e t G t ; i n an analogous way w e d e f i n e t n + t and 6 G O . For c~:~)a,b) X I a ( t - ) denotes t h e l i m i t a t t h e l e f t , when i t e x i s t s . I n an analogous way w e d e f i n e c r ( t + ) . where X i s a normed s p a c e , I l f ( 111 Given f : [ a , b ] - X I d e n o t e s t h e f u n c t i o n t E (alb] Ilf (t)II€ IR+ and u n l e s s o t h e r w i s e s p e c i f i e d If 11 denotes Aup (t)ll 1 a ,< t < b). The n o t i o n of summable series i s d e f i n e d i n t h e s e n s e of Bourbaki
-
.
or
-
{]If
NOTAT I O N S
2
Given a c l o s e d i n t e r v a l ( a , b ) c R
-
B
Id( = n
and
.. . < t n=b.
d: t 0=a < t l
i s a f i n i t e sequence
I
Ad = AUp{lti-ti-ll
a d i v i b i o n of
i = 1,2
We write
,..., Id[>. D(a,bb'
D , denotes t h e s e t of a l l d i v i s i o n s of
o r simply
> 0 w e w r i t e DE = { d E D i s a f i l t e r b a s i s on D. E
Given two d i v i s i o n s d i v i s i o n of
[a,b)
I
Ad <
€1;
dlld2E ID
write
d l < d 2 , i f every p o i n t of
w e say t h a t
U,={IDE
the class
o b t a i n e d by a l l p o i n t s of
Given
I
E
and d2.
<
i s an o r d e r r e l a t i o n on D t h a t makes it t e r e d on t h e r i g h t . For every d € D w e d e f i n e
relation
Dd = { d ' E D
vG
the class
= {Dd
I
d€D)
f i n e r than t h e f i l t e r b a s i s 0.1
-
I
> 0) the
d2.
dl, and
i s a p o i n t of
dl
or
d l v d2
dl
i s {Lneh t h a n
d2
(a,b]
w e denote by
dlld2EID
(a,b)
we The fil-
d,
i s a f i l t e r b a s i s on ID which i s V , and hence
L e t x b e a topoLogicaL bpace and f : D -X; the exibtence 0 6 L i m f ( d ) , t h a t i b t h e Limit o u c h t h e @Ad+O
t e h babia
VA, impLieb t h e exibtence 0 6
i b , t h e limit oveh t h e { i L t e h equal. If ACX
X
or
[ a , b) i = 1,2,.
U and
l a5 4=
..,Id1 . 0'
f:
f
WA(f) = b u p { l l f ( t ) - f ( S ) I I
V
VG , and b o t h
babin
i s a seminormed space and
we d e f i n e t h e o b c i l a t i o n of
Lim f ( d ) , t h a t dsID
on
I
(a,b]-
,...,5 I d / 1
with
X I for
A
s,tEA);
denotes t h e s e t of a l l p a i r s
(5,
ahe
( d , O where
CiE [ti-l,ti],
denotes t h z s e t of a l l p a i r s
(d,E')
NOTATIONS where
dED
5'
and
=
(5;
3
-
,...,5 'Id1 )
with
<~E)ti-llti(.
W e s a y t h a t a f u n c t i o n f: (a,b) X is a step f u n c t i o n , w e w r i t e f E E ( [ a , b ] , X ) , i f t h e r e exists a d e n s u c h t h a t f i s c o n s t a n t i n ) t t - l I t i [ , i = 1,2,. ,I d / .
..
A b i e i n e a h thipk?e (BT) i s a s e t of t h r e e v e c t o r spaces
-
C
F
mapping
+G; w e w r i t e
BT
by
ExF
B:
(E,F,G)B
BT (E,F,G) where
and
are Banach s p a c e s , w i t h a b i l i n e a r x - y = B ( x , y ) and d e n o t e t h e
E l F, G , where
G
(E,F,G). A X o p o e o g i c d BT i s
o r simply E
t o o i s a normed s p a c e and
nuous ; w e suppose t h a t
B
a
is conti-
11 B I I < 1.
E X A M P L E S - L e t W, X and Y b e Banach s p a c e s . 1. E = L ( X , Y ) , F = X I G = Y and B ( u , x ) = u ( x ) . 2. E = L ( X , Y ) , F = L(W,X), G = L ( W , Y ) and B ( v , u ) = v o u .
0.2
-
3.
E = Y, F = Y',
4.
E = G = Y,
G = C
F = C
and
and
B(y,yl) =(y,y*).
B(y,X) = Xy.
a ) E x . 1 i s a p a r t i c u l a r i n s t a n c e of E x . 2 :
take
b ) Ex.3 i s a p a r t i c u l a r i n s t a n c e of E x . 2 :
t a k e X = C and
w
= Y.
c ) Ex.4 i s a p a r t i c u l a r i n s t a n c e of Ex.2: Given a BT ( E , F, G ) B IIXllB =
f o r every
xEE
EB = E x E E
EB
w i t h t h e norm
l o g i c a l BT (EB,F,G) D
-
Let
d e f i n e d on
E E
I
we define
IIx\lB<m);
11 [ I B
and w e s a y t h a t t h e
topo-
i s a b b o c i a t e d t o t h e BT ( E , F , G ) .
b e a v e c t o r s p a c e and such t h a t
plI...,pm~
rE
b ~ p t P l , . . . r ~ m ] ErE.
rE
t a k e X = W = C.
IIYII .c< 1)
I
AuPE IIB(X,Y)ll
and
w e endow
W = C.
d e f i n e s a t o p o l o g y on
E: t h e sets
rE
a s e t of s e m i n o r m
implies
NOTATIONS
4
form a b a s i s of neighborhoods of 0 ; t h e s e t s xo+v form PIE a b a s i s of neighborhoods of xo€ E . Endowed w i t h t h i s topology E i s called a l o c a l l y convex space (LCS). A LCS E i s s e p a r a t e d i f and o n l y i f p ( x ) = 0 f o r implies x = 0. every P E r E A sequence xn of a LCS E i s c a l l e d a Cauchy beqUenCe i f f o r every P E TE and every E > 0 t h e r e e x i s t s an nE(p) such t h a t f o r n,m >,n,(p) w e have p(x,-x,) < E. A separated s e q u e n t i a l l y complete LCS (SSCLCS) i s a s e p a r a t e d LCS inwhich every Cauchy sequence i s convergent. A F r e c h e t space i s a SSCLCS whose topology can be d e f i n e d by a c o u n t a b l e s e t o f seminorms (and i s t h e r e f o r e m e t r i s a b l e )
.
EXAMPLES LCS 1 - Every normed o r seminormed space E i s a LCS. LCS 2 - I f X i s a LCS and K a compact space there i s a n a t u r a l s t r u c t u r e of LCS on E = & ( K , X ) : f o r every seminorm PE rx w e d e f i n e a seminorm p E r E by p ( f ) = b u p p [ f ( t ) ] , where
f E E = 6 ( K , X ) ; w e o b t a i n on
6(K,X)
tEK
t h e topology of
uniform convergence on K . I f X i s a Banach o r a F r e c h e t space, so i s 6 ( K , X ) . LCS 3 - L e t X be a normed space; E = 6 ( )a , b [ , X ) becomes a LCS when endowed w i t h t h e family of seminorms
where [c,d) runs over a l l c l o s e d i n t e r v a l s of ] a , b ( . I f X i s complete, i . e . a Banach space, E i s a F r e e h e t space; i t s topology may be d e f i n e d by t h e countable s e t of seminorms , n€m. I' "[a+:, b-
i)
LCS 4
-
Let
X
be a LCS; E = &(]a,b[,
X)
becomes
t u r a l l y a LCS when endowed with t h e family of seminorms P(c,d] where
PE
rx
and
[f]
= bup{p[f(t)]
[c,d]
C
] a , b [.
I
c < t ( dl
na-
NOTATIONS For LCS
and
X
Y,
5
d e n o t e s t h e v e c t o r s p a c e of
L(X,Y)
a l l c o n t i n u o u s l i n e a r mappings from
X i n t o Y ; i n o r d e r that a l i n e a r mapping f : X 4 Y be c o n t i n u o u s i t i s s u f f i c i e n t t h a t it i s c o n t i n u o u s a t t h e o r i g i n and hence f o r e v e r y q e r y
there is a every
PE
rX
X
i s a normed s p a c e and
a >0
and
such t h a t
q[f ( x ) ] 6 a p ( x )
for
xEX.
-
LCS 5
If
L(X,Y) we
a LCS, on
Y
c o n s i d e r t h e t o p o l o g y d e f i n e d by t h e seminorms p ( f ) = bUp{P(f
Y
If
I
(XI)
i s a SSCLCS s o i s
XEX,
L(X,Y).
-
I f X i s a LCS and f : [a,b) d e f i n e t h e o s c i l a t i o n s as i n B: f o r w
deD
and f o r w
qrA
q,i
IIxII G 1 1 ,
PE
ry. q € Tx w e
f o r every A C X we w r i t e
( f ) = bUp{q(f(t)-f(S))
X
I
tlsEAl
we w r i t e
(f) = w
(f)
(ti-1*ti)
W;lIi(f)
I
= w
q I ) ti-1 I t i
[ (f)
I
etc.
-
A t o c a e e y convex BT (LCBT) i s a s e t o f t h r e e v e c t o r E l F , G , where F i s a Banach s p a c e , G a SSCLCS,
spaces
w i t h a b i l i n e a r mapping E
-
B: ExF
G.
I n c h a p t e r I11 w e w i l l u s e the f o l l o w i n g
T H E O R E M 0.3
-
Let
X
i E I
te2
Ti:
X
that: 1)
-
b e a c o m p l e t e m e t h i c bpace and
p o t o g i e a l &pace. Foh ewehy
X
a&
I
be
huch
i6
LocaLty a unidahm c o n t h a c t i o n , i . e . , d o h evehy ioE I t h e h e k b a neighbohhood J and a c o n b t a n t c J < 1 buch t h a t (Ti)iEI
d[TiXr
doh
aeL
2 ) Foh e v e h y
x,yEX XE X
tinuoua. T h e n , id d o h evehy
TiyJ
S
cJd(xry)
and ewehy i E J . t h e d u n c t i o n i €I XEX,
xi
MT
ixEX
id
denotes t h e d i x e d p o i n t
con06
Ti
NOTATIONS
6
-
( w h i c h e x i b t d b y Banach c o n t h a c t i o n mapping t h e o h e m ] , t h e mapping i € I xi€ x i4 c o n t i n u o u b . P R O O F . Obviously i t i s enough t o prove t h a t t h e mapping i s continuous a t
i
0
. W e have
d(xi8xi
)
= d[Tixi
0
0
s
]
i
0
] +
d[Tixi
TiXio
s
cJd (xi
I
x
iO
d[Tixi
‘Ti 0
+ d[TiXi
0
‘Ti X i
hence d(xi8xi
) 0
s 1-c d[Tixi
t h a t by 2 ) goes t o zero when
i+io.
,T. 0
xi ]
lo
0
xi ]
0
0
0
]
0
THE
§I -
For
CHAPTER
INTERIOR
I
INTEGRAL
T h e R i e m a n n - S t i e t t j e A i n t e g h a l and t h e i n t e h i o h
in t eg h a t
Let (E,F,G) be a BT, a: (a,b) -+E (d,<)E 0 and (d,<’)E 0’ we write
f: [a,b]--,F.
and
and
We define
and
b
b
if these limits exist. The first one is called Riernann-Sfidt j e b i n t e g h a t and the second one, the P u b h n i k or i n a k h i o h i n teghat
.
1.1
-
Id
rda(t) .f (t) exibtA t h e n t h e h e exiAtA a b da(t) .f (t) *.da(t).f (t) = a a
\
P R O O F . Follows from
U'C
D
and 0.1.
Ib
.
a
THE I N T E R I O R INTEGRAL
THEOREM 1 . 2
-
-
(E,F,G)
Let
a : [a,b)
f: (arb]
E,
bounded duncXionh b u c h 2ha.t t h e h e t x i b t b a oh f i b c o n k i n u o u b t h e h e e x i b X b
Ib
da(t) *f(t) =
a
-
b e a t o p o l o g i c a l BT and
Ib -
F
J:
*da(t)-f(t); .id
.
.da(t) *f(t)
a
The proof is given in the appendix of this
-
THEOREM '1.3'
a : (a,b)
-
E
and
f: [a,b)
Ib
da(t) . f (t)
=
I
b
id and o n l y id t h e h e a
-
I n t e g r a t i o n by p a r t s
a
F
5.
G i v e n a BT (E,F,G), thehe e x i b t b
da(t) -f(t) a(t) .df (t) and t h e n we h a v e
exibfi
a(b) . f (b)
-
a(a) .f (a) -
PROOF. It follow5 immediately from
Ib a
a(t) -df(t).
F O R T H E I N T E R I O R I N T E G R A L THE I N T E G R A T I O N B Y P A R T S FORMULA I N G E N E R A L I S N O T
UNLESS
a
OR
f
IS
VALID,
CONTINUOUS ( C f .
T h e o r e m 1 .2). S e e a l s o T h e o r e m s 4.21 THEOREM 1 . 4
-
Given
and 4 . 2 2 .
c~)a,b( t h e n e
and o n l y i d t h e n e e x i b t \’-da(t).f(t) Ja
exibtb
and
Jb
.da(tl.f(t)
.id
a [b*da(t).f(t) JC
THE I N T E R I O R INTEGRAL
and t h e n we h a v e b (a) .da(t) -dt = -da(t).f (t) + a a
jC
Ib
C
9
*da(t).f (t).
P R O O F . The existence of the second member of ( a ) implies
the
existence of the first since the set of all divisions that contain c is cofinal with the ordered dED(a,b) of all divisions. The other implication filtered set D (. is trivial.
4
Even in the numerical case (i.e. E = F = G = IR) the analogous of Theorem 1.4 is not true for the Riemann-Stieltjes integral (unless a or € is continuous) as shows the examPIe and
ab= X(c.,b)
f
and
J da(t) .f(t) C
= 0
there exist
=
but
:1
da (t).f (t)=O
da(t) .f (t) does not exist.
APPENDIX THEOREM 1.2
-
(E,F,G)
Let
a: (a,b) - E ,
be a t o p o L o g i c a L B T , and
f: (a,b)
yF
bounded d u n c t i o n b buch t h a t thehe e x i b t b *da(t)-f(t); id la a oh f i b c o n t i n u o u b t h e h e e x i b t b b b da(t) .f ftf = =dcr(t)- f(t). J J a a PROOF.
Since there e x i s t s
there is a
for
d>dE
dE€
D,
w i t h Ad
6
d E : a = t: < t:
we h a v e
prove t h a t given
j I . d a ( t 1 - f [tl, f o r every
E
<
[ I U ~ , ~- U. d E , c E . / I < 20
there i s a
E > 0
... < t I dE
=
6 > 0
that for
E
E.
b. s u c h t h a t
Hence i t i s enough t o suc
dED
we h a v e
(a)
I
-
Let us f i r s t
c o n s i d e r t h e c a s e when
f
i s c o n t i n u o u s and
10
take Ad < 6
THE I N T E R I O R I N T E G R A L 6 > O
such t h a t
we d e f i n e
[ t j - 1 8"j) (61
E'=
[E;
,..., t i d [ )
llu;,;
- u;,;.
s i n c e we h a v e
6 > O
ij
d )d
=
J
Si
with
if
i h d
E'
II
4
E
i t follows that
a
i s continuous.
We
such t h a t
d E D
=
Si
,
we
i f
have
Since
6.
d E D
Iy).
Again f o r we t a k e
For
-
such t h a t
I1 - L e t us now c o n s i d e r t h e c a s e w h e n take
.
2 \ d E l * 2 1 1 ~ / l w ~ L5f l E .
d,S
[Yl
which implies
11 <
-
llu;,;
I IM
t h e n we h a v e
;
Let us define a
E
I
4 dE d v d E a n d we t a k e
d =
=
and t h e n ,
w6[fl 5
-
have
with
Ad <
(Ej-l,tj)
6 , we d e f i n e =
[ti-l,ti].
2
= d v d E and
Then b y
[a)
we
THE INTERIOR INTEGRAL
ti,:.,
Definition of
t.
[ i ) Let
i
:
d;
b e a p o i n t of
1,2,..., I d E 1 - l
=
-
and
11
i
t. J
'j
3
t.
if
# tf
J
-
f o r
t h e n we h a v e
'j+l
with
by
I f we e l i m i n a t e s u c h p o i n t s
[bl.
t.
land enumerate again
J
-
t
t h e r e m a i n i n g o n e s ) we w i l l h a v e t h a t i f 1,Z
i =
and
,...,I
'j+l
Liil
tj-l
t
tj-l,
=
"
t
t
tj-l < tj-l
-
E,; ~
ij
t
=
-
-
take
j-1-
j
t
( i i i ) If
and
We h a v e
j '
If
j-1
=
t:
It.-tj-ll 6 26. J = ij or t* J. =
Z tp
tj
slightly to t h e left".
=
E
-
t . = E, -1
j
';j € ) t j - l , t j ( . By
and
j
f o r every
such t h a t
and
# tp
for
-s j
we c a n n o t h a v e s i m u l t a n e o u s l y
dE]-l
=
j
tj '
i
and
t j - l > E,j-l
i.e.
ij
-
=
t
j
t h e n we t a k e
(a1 we h a v e
=
tj-1
we
[which i s p o s s i b l e
"we m o v e t h e p o i n t
i.
T h e n we h a v e
J-1
( i v l I n a n a n a l o g o u s w a y i f we h a v e t j z tp f o r e v e r y = t "we m o v e t h e p o i n t t slightly t o the j j r i g h t ''
i
and
.
By
cj
[ b l between any two p o i n t s of
o n e p o i n t of
cases i n w h i c h
-
d
dE
there is at
least
a n d t h e r e f o r e we h a v e c o n s i d e r e d a l l p o s s i b l e
Sj
is not an i n t e r i o r point o f
THE INTERIOR INTEGRAL
12 We h a v e
because i n t h i s
sum we h a v e
appeared i n ( i i ) i n ( i i i ) and
cldl
and
[ivl:
-
summands o f
the
t y p e that
summands o f t h e t y p e t h a t a p p e a r e d
t h i s completes t h e p r o o f of
(y'l.
$ 2 - T h e Riemann integ ha d and t h e Vahboux in te g h a L I n what f o l l o w s w e r e c a l l t h e p r o p e r t i e s of t h e Riemann and Darboux i n t e g r a l s f o r Banach s p a c e v a l u e d f u n c t i o n s . more d e t a i l s see [H-IME]; A
-
Let
appendix of c h a p t e r I .
b e a Banach s p a c e and
X
For
f:
[aIb)
X;
we
say t h a t € i s Riemann i n t e g h a b d e , and w e w r i t e € € R( (a,b) ,X)? i f there exists
Si
(where
[ti-lIti)).
We w r i t e 2.1
-
2.2
- If
-
2.3
R([a,b)l
R((a,b)
(a,b) , X I C R ( (a,b)
we h a v e
(1
(bf(tldtll
la If
f,E
R ( [a,b),Xl
then
and ,XI
+
Jb
a R[[a,b),X)
f:
f E R [ [a,b)
fn(tldt
Hence
,El.
,XI.
f E R[(a,b),Xl
I ) f n - f l )+ O ,
that
=
[a,b]
<
+X
[b-a)
11fll.
are
such
and
f(t)dt.
a
i s a B a n a c h s p a c e when endowed w i t h t h e
sup norm. However f
and
Ilf(
fER[(a.b).X)
111
does n o t i m p l y
[If[ ][I€
R((a,b));
may e v e n b e n o t L e b e s g u e i n t e g r a b l e a n d e v e n
n o t measurable:
EXAMPLE.
We t a k e t h e H i l b e r t s p a c e
t h e space o f a l l f u n c t i o n s
x:
[a,b)
X
= L,[(a,b)l. ---*
C
t h a t is,
such t h a t
THE INTERIOR I N T E G R A L
1
( x ( t I ( * <
13
m;
a
e
t and
d e n o t e s t h e element of et[s)
for
= 0
I): t
E (a,b]
be any bounded f u n c t i o n ; f ( t 1
fERc(a,b).
a) a 4 s <
-
such t h a t
f:
we d e f i n e
lti-ti-l/z<
Id1
1 lti-ti-l[2
<
(a,b]
,,"
~ , ( ( a , b ] ) ~ and
Let us g i v e the proof f o r
-
$ [ t l E C
f(a)da
t 4 b.
[because
et[tl
1
=
s # t. Let
$[t)et.
w
PROOF.
L2((a,b)l
s E [a,b),
s
I t -ti-llAd i
a
=
Q
=
and
e,[ ( a , b ) l
by
f o r any
t
b;
we
I
and
have
and t h e r e f o r e
(h-aIAd1 w h i c h i m p l i e s t h e r e s u l t .
i = l
b)
/If[
)I]$ R[(a,b))
because
,llf[t)ll
=
I$[tl
this
f u n c t i o n i s o n l y supposed t o be bounded and n o t n e c e s s a r i l y Lebesgue i n t e g r a b l e n o r measurable. If
is a t o p o l o g i c a l B T ,
[E.F.GI
gERc ( a , b ) , F I
f E R((a,b).E)
and
f - g E R( [ a , b )
does n a t n e c e s s a r i l y i m p l y t h a t
,GI
n o r does i t i m p l y
EXAMPLE.
a
a
a
We t a k e
E
=
B(x,yI
F
-
=
L2~(a,b)l,
(x(y1
-
1
G = C
function
f E R((a,b),El since
-
x[t)y(t),
a
t h e i n n e r product o f t h e H i l b e r t space
f.f@RI[a,b)l
and
e2[[a,b]l.
For t h e
o f t h e p r e c e d i n g e x a m p l e we may h a v e [ f - f l ( t l
= l$[t1I2
be any bounded p o s i t i v e f u n c t i o n .
and
11'
may
THE INTERIOR INTEGRAL
14 by
Also
of
different
- Given
a
&
s 4
6
f
that
f E D l (a,b)
f E R((a,b),Xl
4 t 6 b
B - Let say
o f t h e p r e c e d i n g example t h e f i r s t
member be
f r o m t h e f i r s t one.
2.4
for
a)
( a ] i s z e r o b u t t h e s e c o n d m e m b e r may n o t e x i s t o r may
X
and
take g ( t )
dense i n
S
[s,t)
be a Banach s p a c e and
i s Darboux i n t e g r a b l e ,
,XI
if f
satisfies
2.5
- D((a,b),XlCR([a,b).XI.
2.6
- If
X
= g(al
+
we h a v e
c X;
[a,b)
f:
and
we
we
write
t h e Darboux c o n d i t i o n :
i s f i n i t e d i m e n s i o n a l we h a v e D ( (a,b),X)
R ( [a,b)
=
,XI.
F o r Banach spaces o f i n f i n i t e d i m e n s i o n a Riemann
inte-
g r a b l e f u n c t i o n does n o t n e c e s s a r i l y s a t i s f y t h e Darboux condition.
E X A M P L E S . 1. We t a k e
X = .12aN)
(a,b);
enumeration o f t h e r a t i o n a l s o f fE R([a.b),Xl
by
is i r r a t i o n a l ;
f o r
2.
We t a k e
f [ t l
en
5
i f
a c s < t 6 b
X = L_((a,b)l
rl,r2,
and l e t
t
be
any
we d e f i n e
rn
=
...
and
f(tl = 0
i f t
we h a v e
and
fctl
=Xla,~),
t E [a,b);
we h a v e a)
fER[(a.b),L_[(a,b))l; d Sd
that for
we h a v e
Ilui,;[f)
b) f $ D C [a,b],L-[(a,b)lI;
C)
f
indeed,
i t i s easy
t o verify
- u d,S ( f l l l c Ad. indeed,
i s d i s c o n t i n u o u s a t a l l p o i n t s of
(a,b);
indeed.
THE INTERIOR INTEGRAL for
a < s < t < b
d) f
we h a v e
i s n o t measurable
gue i n t e g r a b l e ) ;
indeed,
t h e r e does n o t e x i s t ure
<E
Ilf[t)-f[s)ll
IIx
=
(and t h e r e f o r e
from c l
i t follows
K E C (a.b)
a compact
and s u c h t h a t
15
n o t Bochner-Leksthat
for
0
E >
w i t h L e b e s g u e rneas-
i s continuous.
flCKE
T h i s example i s i m p o r t a n t t h e i d e n t i c a l automorphism o f
since
6 [ [a,b)
f
i s used t o represent
1 : f o r e v e r y $Eb[[a,b)l
we h a v e $ ( t l d f ( t l =
4.
T h i s e x a m p l e a l s o shows t h a t t h e f u n c t i o n 3,. where I t j,[.tl = J a f [ s ) d s , t E a,b , i s a b s o l u t e l l y c o n t i n u o u s b u t
0
i s
n o t d e r i v a b l e a t any p o i n t : L
and i t i s easy t o see t h a t
2.7
-
2.8
-
6 [[ a , b ] fE
b llJabf[tidtl/
every
D[ ( a , b ) , X )
If
n E N
formely
implies
[If[ 1
/I€
-
are such t h a t
f , f n E D[(a.b).Xl
and
f n ( t l 3 fctl
+0
Ilfn(tl-f[tllldt
2.10
,XI. D[(a,b)l
and
a llf(t)lldt.
-
2.9
, X ) C D[ ( a , b ]
and
I f t h e sequence
t o the function
Jabllfn(t)-f(tilldt w i t h t h e sup norm
4
o
f:
f o r every
fn[tldt
f n E D [ (a,b),X)
Ilfnll"
Ib
t $ (a,b]
+
a
for
then
f(t1dt.
converges
uni-
f E D((a,b).X),
and
D[[a,b),X)
M
Endowed
is a Banach space.
THE INTERIOR INTEGRAL
16 2.11 and
- I f LE,F,G)
,F)
g E O ( (a,b)
imply
Ibd e n o t e s
If
i s a t o p o l o g i c a l BT, f * g E D ( (a,b)
fED((a,b),El
,GI.
t h e u s u a l u p p e r Riemann i n t e g r a l f o r po-
'a
sitive,
b o u n d e d n u m e r i c a l f u n c t i o n s we h a v e
2.12
- Given
f:
only i f f o r every fEE E ( [ a , b ] , X )
2.13
that
IlflI
-
E
[a,b)
> 0
t M
X
Jab
and
1
l]fn(tl-f(tll]dt
and
f E D((a,b),X)
6
llf(t)-f,(t)lldt
fnE D([a,b),X)
and
then
i f and
there i s a step function
such t h a t Let
--f
f:
-+
E.
+X
(a,b)
0,
then
be such
f E D((a,b),X)
5 3 - Regulated dunctionb
-
5
In t h i s
X denotes a Banach space. W e s a y t h a t a
t i o n f : (a,b) f E G ( [a,b) ,X) , i f
i s h e g u l a t e d , and w e w r i t e has only d i s c o n t i n u i t i e s of t h e
X
f
k i n d , i . e . , f o r every t E ( a l b ( t h e r e e x i s t s € o r every t E a,b) t h e r e e x i s t s f (t-)
1
T H E O R E M 3.1. G i v e n
f:
[a,b)
-
ahe e q u i v a l e n t a ) f i d t h e unidohm L i m i t
w
b ) f E G ( (a&) ,XI. c ) Fon evehy E > O p < E.
PROOF. a )
I b)
I1 f (tn) -f
. Given
(t,) II <
.
X
06
I) f (tn) -fE
first and
t h e dollowing phopehrtieb b t e p dunctionb.
thehe existb tn.C t E (a,b
f(t+)
func-
(
(tn) II +
d€D
buch t h a t
w e have
II f ,
( t n -f, ) ( t +11) +
+ ( J f E ( t + ) - f E (+t m llf,(tm)-f(tm)l1 )l( < ,< 2 E +
Ilf,(tn)-f,(t+)Il + Ilf,(t,)-f,(t+)ll
and t h i s i m p l i e s t h e e x i s t e n c e of f ( t + ) . b) c ) Given E > 0 , f o r t ~ ] a , b ( t h e e x i s t e n c e of
.
THE I N T E R I O R INTEGRAL f (t+) and
"1
that
6t > 0
f (t-) i m p l i e s t h a t t h e r e e x i s t s
[
(f) <
6b> 0
and
E
t - 6 t ,t there exists 6 a > 0
exists
17
a
I
0
(f
1<
E;
such
analogously
"1 a d + & , (( f ) <
such t h a t
such t h a t
(.
,t+6
w]
and t h e r e
E
[ ( f ) < E . The s e t s t+6 ] b-6b i b [
)b-6bIb
[, ] t - 6
form an open c o n v e r i n g of
I
[ I
[a,b]; i f
i s a f i n i t e subcovering w e t a k e d: t o = a < t < t < 1 2
...<
=
such t h a t
to = a ,
...,
si-SS
and w e h a v e
c)
s -6
i
t 2 = sl,
< t 1 < a+6,,
< t2i-l<
i-1
t2i
I
-
... Sit
. . . I
t
Id1
= b
wi(f)<E:.
+ a).
If
wi(f) <
and w e o b v i o u s l y have
COROLLARY 3.2. Given a ) Fok ewehy
E >
E
11 f - f d ,
we define
5.
E
E ( [ a h ) ,X)
by
11 s E .
f E G ( [a,b) , X I 0
fdls.
we have
-the b e t s
{ t E (alb(
1 [If
{t E ) a , b )
I 11 f ( t )-f
( t + ) -(t)II f a
E)
and
ahe 6iniZe.
(t-11) a 1
b ) T h e b e 2 06 dibcontinuitieb 0 6 f i b c o u n t a b l e . P R O O F . b ) f o l l o w s from a ) and a) f o l l o w s from c) o f Theorem 3.1.
THE INTERIOR INTEGRAL
18
- 6((a,b] , X ) C G ( [ a r b ) , X ) . 3 . 4 - BV( (a,b] , X I C G ( (a,b) ,X) . P R O O F . See [H-IME] , Theorem I . 2 . 7 . 3.3
a ) of Theorem 3.1 i m p l i e s
06
3 . 5 - T h e unido4m t i m i t gutated dunctian. T h e r e f o r e , i f w e endow
Ilfll
G ( (a,b) , X )
and
16 (E,F,G)
gE G ( [a,b) ,F)
T H E O R E M 3.8. G i v e n
agtsb
a Banach bpace; and
i b
t E [a,b)
f,g:
.
f . g € G( [a,b) , G )
impey
.
.
a t o p o e o g i c a t B T , t h e n f € G((a,b) ,E)
i b
a4e e q u i v a e e n t a ] f € G((a,b),X)
he-
a
w i t h t h e norm
G ( ( a h ) ,X) c D ( (a,b) , X I
3.7.
i b
nup Ilf(t)ll
=
w e have T H E O R E M 3 . 6 . G((a,b],X)
h e g u t a t e d dunctiond
+X
[a,b)
and
t h e 6oLtouring phopehtieb
g(t) = g(a)
t
+
f(s)ds
d o h eweny
Ja
b l F o h eueny
t E [a,b[
thehe
exibtb
g;(t)
= € ( t + )and
d o h euehy t E ] a , b ] thehe e x i a t b gL(t) = € ( t - 1 . and g i d a phimitiwe Od f (i.~., c ) € € G ( [a,b) , X ) g i b continuoub and o u t b i d e 0 6 a c o u n t a b t e b u b b e t 06 (a,b) thehe e x i 4 ; t o g ' ( t ) = f ( t ) I . PROOF. a) I b ) . We w i l l prove t h a t for to ( a , b ( w e have
.
g; (to)= f (to+)We have
-
l1i [ g ( t o + h ) - g ( t 0 ) ]
=
J
f ( t o )= 1
to+h
such that far to< s < to+& 3.2.a)
. By
f(s)ds
-
f ( t o +=)
[ € ( s ) - f (to+)]ds.
The r e s u l t follows becausk f o r every b ) +c)
I
to+h
b ) w e have
f
E
> 0
there is a
[I f (s)-f (to+)((<
w e have €
G ( (a,b] , X )
t h e subset of p o i n t s where w e have
E,.
S> O
and t h e r e f o r e by f ( t + )# f ( t ) o r
19
THE I N T E R I O R I N T E G R A L f ( t - ) # f ( t ) i s c o u n t a b l e ; a t t h e o t h e r p o i n t s w e have
then
.
g ' ( t ) = f ( t ) g i s obviously continuous.
c ) ==3a ) . By a ) of Theorem 3 . 1 t h e r e e x i s t s a sequence s t e p f u n c t i o n s f n E E ( (a,b) , X ) t h a t converges uniformly
of to
f. W e define
t
i,
+
gn(t) = g(a)
fn(s)ds;
i t i s immediate t h a t t h i s sequence
i where functions,
i(t)=
to
a)
S (a)
+
g(a)
= g(a),
['f
g,11
(s)ds. and g
'a
converges uniformly
-
g and g a r e continuous i s a p r i m i t i v e of f (by
9'
( t ) = g ' ( t ) outBy [C] 3.2.2 w e have
c ) )I t h e r e f o r e t h e r e e x i s t s
b)
s i d e of a c o n t a b l e s u b s e t of
(a,b)
.
= g.
then
Given
f:
(a,b) 4 X
every E > 0 t h e .set is obvious t h a t 3.9
-
THEOREM 3 . 1 0 . G i v e n ahe e q u i v a l e n t :
f:
i b
and
b ) fEG((a,b),X)
and and
c ) fEG((a,b) ,X) f €
IIf (t)ll 2
-
if
for
is finite.
E)
It
G ( (a,b) ,X).
a ck!obed b u b b p a c e a d
(a,b)
a ) fEG([a,bj,X)
d)
I
{ t € (a,b]
co( [a,b] ,X)
fe c o ( [a,b) , X )
we w r i t e
t h e d o l t o w i n g pkopehttieb
X
1;'
f(a)da = 0
f(t-) = 0 f ( t + )= 0
d o h dl
all doh a t e
s,tE
[a,.>.
t€)a,b).
dok
t E [a,b'[.
co( [a&] , X I .
PROOF. I f w e t a k e
t g ( t ) = Iaf ( s ) d s
t h e equivalence of a ) , b)
and c) follows f r o m t h e equivalence of a ) I b ) and c) of theo-
r e m 3.8; i t i s obvious t h a t d ) i m p l i e s b) and c) ; by c ) Theorem 3 . 1 b) and c) imply d )
of
.
DEFINITION.
G-((a,b),X)
= tfEG([a,bj,X)
1
f(a) = 0
f ( t ) = f (t-) f o r I f we r e c a l l t h a t the operators
@a: f E G ( ( a , b j , X )
d f (a) E X
f E G ( ( a , b ) ,X)
f ( t ) - f ( t - ) €X ,
and
at:
-
and
t ~]a,b)}.
THE I N T E R I O R I N T E G R A L
20
t ~ ) a , b, ) a r e continuous and G- ( ( a r b )
8x1
n
=
;
actgb
hence
-
3.11
G-([a,b) , X )
i b a cLabed b u b b p a c e
06
G((a,b) , X I .
(I-f ) ( t ) = f (t-) i f
D E F I N I T I O N . f E G ( (a,b] ,X): we d e f i n e and (I- f ) ( a ) = 0 .
t .]a,,)
T H E O R E M 3 . 1 2 . We have a ) I- i6 a continuoua p n a j e c t i a n G- ( [ a t b )
8x1
*
b ) The kehneL c ) G- ( [a,b) , X I
06
+
+
onto
c o ( [ a 8 b ) 8x1. = (01
Co( k t b ] r x )
w d
= G ( [arb]
8x1
;
m u g be w h i t t e n u f i i ~ u e L y W h e J ~ e f-E G-((a,b) ,X) a n d f o E cd(a,b) I X ) ;
muhe p h e c i d e l g evehy f = f-
id
nco([a,b) , X I
G- ( (atb) 8x1 ab
I-
G((a,b) ,XI
06
fo
€ € G ( (a,b) , X )
f- = I - f and fo = f - I - f . P R O O F . a ) L e t us prove t h a t I-f i s r e g u l a t e d : f o r every ( I - f ) ( t + )= f ( t + ) because i f t E (a,b( w e have
we have
I f (t+)-f
f o r every
s ~ ] t , t + 6[
(s)ll
t h e n also
<
E
IIf ( t + ) - f (s-111
<
E
i.e.
€1
t , t + 6 [. I n an analogous f o r every s (I-f) (t-) = f (t-) = ( I - f ) ( t ) f o r Hence I-f E G- ( ( a t b ) ,X) I t is immediate t h a t 1- is t a,b) a p r o j e c t i o n ( i . e . 1-(1-f) = 1 - f ) 8 i s continuous ( ) ) I - f ) ) < )If))) ( s i n c e I-f = f i f and only i f and i s o n t o G - ( (a,b> , X I f E G- ( (atb] 8 x ) ) b) I t follows from t h e equivalence of b) and d ) i n Theor e m '3.10. c) It follows immediately from a) and b ) . )If ( t +-)(1-f) ( s ) 1) 4
E
1
way w e prove t h a t
.
If
G ( (a,b)
denotes t h e Banach q u o t i e n t space
,XI
G( (ab)
/co ( (atb)
8x1
I
i t follows from Theorem 3.12 t h a t 3-13
-
G([a,b),X)
id
i4UmetJLiC
t U
G-([a,b),X).
21
THE I N T E R I O R I N T E G R A L
06 bounded
54 - F u n c t i o n 6 A
-
Given a BT
B-vahiation a: [a,b] - + E ,
( E , F , G ) ~ and
f o r every
w e define
d€D
= S B (a,b)
SBd[a]
=
Id1
= 6 Up{ll
[a ( t i )-a (ti-l)] ’Yi i=l
1
1 1
Y i E F I / I Yill
and = SB
SB[a]
( a 4
La] = dup{SBd[a]
i s t h e ~-vaaiationof
sBl.1
I
deD);
a ( , o n ( a , b ) ) . W e say t h a t a i s and w r i t e a S B ( ( a , b j , E l I
a d u n c z i o n o d bounded B - v a h i a t i o n , if
SB[a] <
m.
REMARK 1 . If
c1
i s a f u n c t i o n of s e v e r a l v a r i a b l e s
and w e c a l c u l a t e t h e B - v a r i a t i o n w i t h r e s p e c t instance, we w r i t e
S B ( ~ )C a ( s , t ,
to
s,t,.
..
t, for
...)I.
The f o l l o w i n g p r o p e r t i e s a r e immediate:
4.1
-
a€SB([a,b) ,El i b
a beminoam. 4.2
a) The dunction
t
t o n i c a t y i n chead i n g ;
DEFINITION.
La]
E
we h a v e (a,b) c3 SB a
( 1
SB a , c
SBo([a,b),E)
THEOREM 4 . 3 . Let
t o t h e BT
SB[c1]6 R+
a E SB((a,b) ,El
- Foh
b , SB(aIb)
-
i a a v e c t o h dpace and
SB( (a,b) , E l
[ a ] ~ lR+
[a] + SB(c,,] [a]
= {a€SB([a,b],E)
(EBIF,G)
(E,F,G)
I
i d
mono-
d o h e v e k g CE]a,b(.
I
a(a) = 01.
b e t h e t o p o t o g i c a t 81 a b d o c i a t e d
( b e e 5 O . C ) ; we h a v e
SBo ( (a&) ,EB) = SBo ( (a,b) , E )
and t h e d U n C t i 0 n b a SBo( (a,b) , E ~ ) ahe bounded. PROOF. Given a E SBo ( (a,b) , E ) w e have
since
a ( a ) = 0 . The rest i s obvious s i n c e t h e d e f i n i t i o n of
SBrci]
depends on no topology on
E.
T H E INTERIOR INTEGRAL
22
and
B
-
qe
If
rG
(E,F,G) is a LCTB and we define
and
SB [a] = Aup{SB 9
9 Id
a: [a,b) -E,
I
[a]
for d e n
deD}
is, by definition, the q-B-vahiation of a. We say that a is a ,junction 06 bounded B-vahiation, and we write if for every
REMARK
qE
rG
a
SB( [a&)
we have
I
SBq [a] <
m.
2 . Unless otherwise specified, all the results of this or, more generally, of this work are valid if we replace the BT (E,F,G) or its particular instances (see item C) by a LCBT (E,F,Z) or its particularisations; for this purpose we replace in the proofs the norm of G by the seminorms
5
qE
rz.
C
-
Examples
Ex. SV( (a,b) ,L(X,Y)) - Given a normed space X and a Banach space Y we consider the BT (L(X,Y),X,Y) (see ex. 1 of 50,C) ; then we write S V [ a ] instead of SBIa] and SV( [a,b) ,L(X,Y)) instead of SB((a,b] ,L(X,Y)). The elements of SV( [a,b) ,L(XIY) are called ,junctionA 06 bounded Aemiv ahiation
.
Ex. BV([a,b),Y’) - If we consider the BT (Y,Y’,C) (see ex.3 of 50,C) we write Via] instead of SB[a] and BV((a,b) ,Y’) instead of SB( b,b) ,Y I ) . We say that the elements of BV( [a,b) ,Y1) are 6unctionA 0 6 bounded vahiation. Obviously we have
THE I N T E R I O R INTEGRAL
23
and w e o b t a i n t h e r e f o r e t h e u s u a l n o t i o n of f u n c t i o n of bounded v a r i a t i o n , i . e . , a f u n c t i o n c1 such t h a t i t s v a h i a t i o n V[a] = b U p Vd[a] i s f i n i t e . Of c o u r s e t h i s d e f i n i t i o n d€D may be g i v e n f o r any normed s p a c e . For r e a l f u n c t i o n s w e obtain t h e usual notion, i . e . ,
functions t h a t a r e t h e d i f f e r -
ence of two monotonic o n e s .
REMARK 3 . I t i s immediate t h a t SV( ( a b ) , L ( X , C ) 1 = B V ( [a,b] ,XI)
X
REMARK 4 . I f
i s a Banach s p a c e w e have
have
g ( t ) = g(a)
V[g]
c B V ( [a,b] ,X)
( [a,b] , X f
R(”
i.e. i f
+
I,
(E,F,G)
BW[[a,b),YJ
S0,C)
-
and
I f we c o n s i d e r t h e
we w r i t e ,Y 1
REMARK 6 .
W[a]
SB([a,b],Y).
i n s t e a d of BWI [a,b]
E
R([a,b) , X ) , w e
i s a t o p o l o g i c a l BT w e have
BV( [a,b] , E ) C SB( [a,b] , E )
of
f
f ( s ) d s , where
< (b-a)l(f [ l ; i n d e e d
REMARK 5 . I f
Ex.
.
i n s t e a d of We s a y
SB[o.) BT
IIBIIV[ol].
5
[Y,C;YI
SBca]
and
(see
ex.
BW[[a,b],YI
t h a t t h e e l e m e n t of
a r e f u n c t i o n s o f weak bounded v a r i a t i o n .
S V I (a,b]
,L[C,YI
1 = BW[ [ a , b ] , Y 1
obviously.
REMARK 7 . I t i s i m m e d i a t e t h a t SV[(a,b].L(X,YllC
THEOREM 4.4.
§O,C, whehe
G i u e ~.the BT W #
PROOF. It i s enough we h a v e
IL[x,YI,L(W,X),LIW,Y11
1 0 1 , we have
S B [ [a,b],L(X,Yll
dED;
BWI ( a , b ) . L [ X , Y 1 1 .
06 ex.2,
= SV([a,b],L[X,YII.
t o show t h a t
SBd[ct]
= SVd[ct]
for every
4
THE INTERIOR INTEGRAL
24
Reciprocally,
llxi\\ < 1
x i € X.
given
U i E LIW,Y)
there exist =
IIUill
i = 1.2
IIxill
and
[ b y t h e theorem o f Hahn-Banach)
WEW
Ui ( w )
and
,...,I =
dl,
with
such t h a t
xi
and t h e r e f o r e
SVd[a]6
SBd[a],
hence t h e e q u a l i t y .
4.5 - Let we have [a.y)'(tl
PROOF.
D
b e a BT; f o r a ~ S B ( ( a , b ] , E l and y E F and W [ a . y ] ~ s B [ o ~ ] I ( y I ( , where
(E,F,G)
a-yEBW[[a.b].Gl = act)-y.
For
-
dED
t E (a,b). we h a v e
(E,F,G) be a BT.
Let
Given
THEOREM 4.6.
a ) Foh e v e h y b
Fa(f) =
a~ S B ( ( a , b ) ,E) we h a v e
fE
6 ((a,b] ,F) t h e h e
da(t1.f (t)
a b ) F a E L [ 6 ( [ a h ) ,El ,G]
c ) Foh evehy b
1J
a
(d,C)
E
and
IIFa(f)\l
and IIF,II 0 we have
da(t)-f(t)-U,,E(f;a)
exibtb
(1
, I
s SB[a]\lflI.
, I SB[a].
SB[a]wAd(f)
By Theorem 1 . 2 , Theorem 4.6 f o l l o w s f r o m T h e o r e m 4 . 1 2 b e l l o w ; f o r a d i r e c t p r o o f o f Theorem 4 . 6 s e e [H-IME], Theorems 1.15 and 11.1.1.
-
THE I N T E R I O R INTEGRAL 4.7 a ( t ) = ci
a(b)
-
a: (a,b]
16
id
tc)ti-l,ti(,
Cldl+lt
jb
a 4.8
where
- If
E
i b
a b t e p ,junction w i t h
i = 1,2
f
d o h euehy
25
,..., ( d l
b([a,b),F)
and
thehe
a(a) = co,
exibtb
ldl+l
1
d a ( t ) .f ( t ) =
a
i=l
[ci-ci-lpf
i.e.,
D'll([a,b),E).
then
B E D [ [a,b] ,El,
a
S B ( [a,b)
(ti-1).
act1 = acal
+
l.i
B[slds
and f o r e v e r y
,El
we have
f E D([a,b),FI
b
b
(11
a
P R O O F . B y t h e r e m a r k s 3 ) a n d 4 ) a n d b y 2 . 5 we h a v e SB([a,b],El
and b y 2 . 1 1 t h e second i n t e g r a l e x i s t s .
have
SiE
where
[timl,ti).
f E O ( (a,b]
Since
follows the existence o f
,F1,
jabda(t)-f[t,
REMARK 8 . M o r e g e n e r a l l y [ l ) i s v a l i d i f and
f
E D [ [a,b] , F l ,
or, i f
a
D'l)[
[a,b)
from
as w e l l as
a ,El
(1).
R(l)[[a,b),El and
We
THE INTERIOR INTEGRAL
26
However,
f €R((a,b),F).
(1) i s not v a l i d i f
ceeds 2.4, f E R [ [a,b)
PROOF.
I
a€R'')[(a,b),E)
pre-
and
,F).
- Let
4.9
as i s s h o w n by t h e e x a m p l e t h a t
b e a Banach s p a c e :
X
BW((a,b),XJc
R((a,b),X).
b
a ( t 1 d t = ba(b1
-
acc(a)
-
a
By 4 . 5
4.10
tda(t1. Jab
and 4.9
- For
a
we h a v e
and
SB( (a,b) .El
YE F
we h a v e
a - y E R ( ( a , b ) ,GI. By t h e r e m a r k s 5 a n d 7
4.11
-
B V ( [a,b],L[X,Y) CBW( [ a , b ]
E
-
a n d b y 4 . 9 we h a v e
1
C S V ( ( a , b ) ,L[X,Y))c
,L(X,YI
1 C R ( [a,b] .L[X,YI I .
The f o l l o w i n g theosem i s fundamental:
THEOREM 4 . 1 2
-
Let
(E,F,G)
f E G ( ( a , b ] ,F) :
P R O O F . a ) For e v e r y
be a B T ,
a
S B ( ( a , b ) ,E)
and
rb
d€ID
we define
t h e s e s e t s form a f i l t e r b a s i s and i t i s enough t o show t h a t
w e have a Cauchy f i l t e r b a s i s because by d e f i n i t i o n t h e l i m i t
THE INTERIOR INTEGRAL c) of Theorem 3.1) t h e n
diam C
z>d
enough t o show t h a t f o r
27
c 2 ~ ;f o r t h i s purpose i t i s d w e have I l u z , ~ . - u d , < . I( < E :
SB [a] u i ( f 1 where
i (j) denotes t h a t
(Ej-l,tj)
i
E
{1,2,
c [ t i - l , t i ) ; from ( a ) and t h e hypothesis
E
u i ( f ) ,<
SB 1 c.
follows t h e conclusion.
c) From
/(Fa ( f ) l ( s S B [ a l Ilf 11.
and a) follows t h a t F,
is f i n i t e since hence i f w e t a k e
= { t E [a&]
For
E
> 0
t h e set
I 11 f (t)ll2 I I f - l l + E )
f-f-E c o ( ( a , b ) , F ) by c ) of Theorem 3.12; dElD such t h a t d 3 F E w e have ‘d
and t h i s i m p l i e s c).
,5 11 s SB [a] (Ilf-ll
b) follows from c ) because i f have F a ( f l - f 2 ) = 0 by c ) .
+E)
I
fl-f2 E c o ( [ a , b ] ,F)
we
d ) follows from c ) . e ) follows from ( a ) because
E X A M P L E . Given have
a =
u € E f o r T E [ a , b [ and a = - x [ ~ , ~ [ u w e b fa - d a ( t ) .f ( t ) = u - f (T+) and f o r T E ) a , b ) and
-X[,,,]U
w e have
j:.da(t)
- f ( t ) = u * f (T-)
.
THE I N T E R I O R I N T E G R A L
28
PROPOSITION 4.13. L e t f E G ( (a,b) , F l ;
be a BT,
[E,F,GI
for e u e r g
we d e f i n e
t E (a,b]
1
and
aESB((a,b),El
t
gf(t)
=
*da(slf(sl.
a
We hatre
ff
PROOF. For
E
BW( [a,b]
d € D
By 4.9
, G I C R ( [a,b] , G I
and
w e have
we h a v e
&(If] < SB[ol] IlfII.
y f € R[(a,b].G].
PROPOSITION 4.14. W i t h t h e n o t a t i o n s o f t h e p r e c e d i n g P r o p o s i t i o n we h a v e : a ) Given
t h e r e e z i s t s j f [ t o + l for e v e r y f E G( [a,b),F) if and onZg if f o r e u e r g y E F t h e r e e z i s t s a[to+)y = Lim a C t 1 - y ; t h e n we have t o €( a , b [
t+to
Yf[tO+1 - ff[tO1
=~alto+)-altol]f~to+l.
there e z i s t s f f ( t o - l f o r every if and o n l y if for e v e r y y E F t h e r e e z i s t s f E G I [ a , b ) ,F1 u ( t o - l y = L i m c t ( t 1 - y ; t h e n we have b ) Given
toE)a,b)
t+to jf(tO1
c) I f i8
j f j f [ t o - =l [ d t o 1 -
(to-l]f[to-l.
is EB- c o n t i n u o u s on t h e r i g h t ( l e f t ) a t
to
so
jf. d)
if
a
-
a
PROOF.
ff
ie r e g u l a t e d f o r e v e r y is weakly r e g u l a t e d .
i f and on&
I n o r d e r t o show t h a t t h e
I t is enough t o p r o v e a l .
c o n d i t i o n i s n e c e s s a r y we t a k e
f E G( [a,b),Fl
f
:y .
The r e s t follows f r o m
29
THE I N T E R I O R INTEGRAL
i f we r e c a l l t h a t
W)to,to+E((fl
goes t o zero with
since
E
f
is regulated.
P R O P O S I T I O N 4 . 1 5 . L e t ( E , F , G I b e a B Y , a < S B o ( [ a , b ) , E l and f E G ( (a,b) ,F), t h e n a - f E R( [ a , b ] , G I . PROOF.
B y 4 . 3 we h a v e
a~ S B o ( [ a . b ) , E B I
Theorem 3 . 1 t h e r e e x i s t s
By a ) o f
( ( f n - f ( l3 0 .
Since
I I a m f n - a * f l+ l 0;
B:
J
that
i s c o n t i n u o u s we h a v e
it follows that
b e u BP, a €
a-fnE R((a,b),G)
SBol [a,b),E)
and
t
b
a(tl-f(tldt
a
PROOF.
such
a - f E R ( [a,b),G).
THEOREM 4.16. L e t (E,F,G) f E G ( [ a , b ) , F l ; we have (21
f n E E[(a,b),F)
E s x F c+ G
from 4.5
h e n c e b y 2 . 3 we h a v e
and
a(tI-dt[l
=
a
By P r o p o s i t i o n 4 . 1 5
flslds].
a
the first integral i n
and i s a continuous f u n c t i o n of
(21 exists
f:
a
On t h e o t h e r h a n d s i n c e t h e f u n c t i o n
g
i s continuous, where
t g[t) =
fcslds,
i t f o l l o w s from Theorem 4.6 t h a t t h e r e e x i s t s
~ a b d a ~ t ) - g ( t la n d u s i n g i n t e g r a t i o n b y p a r t s we h a v e
30
THE I N T E R I O R I N T E G R A L
Hence t h e i n t e g r a l o f
t h e s e c o n d member o f
a continuous function
of
i t i s enough t o p r o v e i t f o r Y E F
and
s i n c e t h e s e t of by a1 o f
G([a.b),F)
( 2 1 e x i s t s and i e
[21
f . Therefore i n order t o prove f
=
where
X I d , G I Y
these functions
Theorem 3 . 1 .
But f o r
c E [a,b)
i s total f
=
x
i n
la,clY
(21
i s tri v i a l .
REMARK 9 . One c a n p r o v e t h a t 1 2 1 i s s t i l l v a l i d i f U E
R([a,b).EBI
and
f EDI(a,b),F),
see
APPENDIX I n this
[H-DS],
1
we w i l l p r o v e a t h e o r e m t h a t
appendix
the existence o f the i n t e r i o r i n t e g r a l f o r i s not obvious
at
Theorem 6 . 8 .
since i f
a l l
not n e c e s s a r i l y complete while t h e ordered set
ID
This result
i s a LCBT,
[E,F.G)
but only
LCBT.
implies
sequentially
h a s no c o u n t a b l e
G
i s
complete
cofinal
subset.
THEOREM 4 . 1 7 . L e t (E,F,GI b e a L C B T ; f o r any c o u n t a b l e s u b s e t A of [a,b] we d e n o t e b y G A ( [ a , b ) , F l t h e s u b s p a c e of e l e m e n t s of G [ [a, b ] , F 1 t h a t h a v e no d i s c o n t i n u i t i e s o u t s i d e A. L e t dnE ID, n E m , b e s u c h t h a t
a)
U d n > A
n€N
bl
Adn
-
and a
T h e n for any
d n n A C dn+lnA;
0.
and any
SB((a,b),EI
f E GA( (a,b),FI
we
have :
PROOF.
A:
If
there exists have
F C d E
f E GA( ( a , b ) , F ) ,
dcE
D
where E
such t h a t
by c l
of
Theorem 3.1
ui ( f ) < E
E
f o r
and t h e r e f o r e
E
> 0 we
THE INTERIOR INTEGRAL
f
u{t
I
(a,b(
We d e f i n e
(*I
&E
d € D
dE
t:E
I
(lf[t+l-f(tl((>
€1
= ifld{It’-t’’l
I
with
Indeed: point
FE = { t € ) a , b )
d3FE
any i n t e r v a l
dE
IlfLtl-f(t-lIl>
I
u{tE)a,b(
l / f ( t + l - f ( t - l ( ( >€
FE, t ’ #
t’,t”E
and
EIU
t”};
of
]ti-l,ti[
d
I
w l t i - l a t i
)ti-l,ti(
of
d
( f l
that
c o n t a i n s no o t h e r p o i n t o f
< w
1.
we h a v e
w i ( f l < 4 ~ .
Ad<&€ i m p l i e s
that
contains
]t:-l,tE(
i s c o n t a i n e d i n some i n t e r v a l
and t h e r e f o r e
interval
31
no
of
t c ( f l < E . And any k( c o n t a i n s some p o i n t t‘c dE
lti-1.
A d < 6 E l and
dE [ s i n c e
j
t i L FE;
hence
8 : We w i l l now p r o v e t h a t t h e s e q u e n c e
i s a Cauchy sequence and i s t h e r e f o r e a SSCLCS.
I t i s enough t o
quence i s a Cauchy s e q u e n c e : take f o r
n
such t h a t
r,s a n
we h a v e
have a q-Cauchy
i(jl
given and
q[odr,S.-
sequenceli
s h o w t h a t if d = d r
[where
dn>FE
and
convergent since
show t h a t f o r E >
0
uds.ll
.]
qErG
by a)
the
i s
G
se-
a n d b l we c a n
We w i l l p r o v e t h a t
Adn<
<
e E s ~[a] q
( h e n c e we
f o r t h i s p u r p o s e i t i s enough t o
;I = d r v d s we h a v e
denotes t h a t index
i
such t h a t
but t h i s follows from the definition of C.
any
SBq[a]
I n order t o prove t h a t t h e r e e x i s t s
and f r o m
[*I.
32
THE I N T E R I O R INTEGRAL
and t h a t we h a v e .da[tl-f[tl
= Limod
n [i.e.,
i t is
21)
e n o u g h t o show t h a t f o r a n y
q crG there exists
>
dE.
n.6'
dEE
ID
and
d = d
E.>
and a n y
0
such t h a t f o r every
n
we have
(**I For
t h i s p u r p o s e i t i s enough t o t a k e
and
Adn < tiFE; t h e n ,
a s i n B we
COROLLARY 4 . 1 8 . L e t
f o r any
there e x i s t s
(E,F,Gl
n
(**I
have
such t h a t i f
2 d
dn3FFE d
=
n
.
be a LCBP;
a E SB[ [ a , b ] , E l
f E G[ ( a , b ] ,F)
and any
J:.da(ti-f[ti.
PROOF. The r e s u l t f o l l o w s f r o m t h e p r e c e d i n g t h e o r e m i f w e A
take as [Cf.
t h e s e t of
a l l p o i n t s where
APPENDIX
6
2
THEOREM 4 . 1 9 . G i v e n a t o p o Z o g i c a 2 BT a:
is discontinuous
f
b l o f C o r o l l a r y 3.2).
[a.b]
exists PROOF.
E
such t h a t f o r e v e r y then
da[tl.f(tl [H-INE]
See
,
[E,F,GI
and
f €&[a,b),Fl
a ESB[(a,b],El.
T h e o r e m I. 1.11.
I n t h i s a p p e n d i x we e x t e n d T h e o r e m 4 . 1 9
t o the interior
integral.
TH-EOREM 4 . 2 0 . G i v e n a BT
[E,F,GI
@ ( a 1 = 0, such t h a t f o r any
PROOF. A : (Cf.
a : [a,b)
and
f E G[ [ a , b ] , F l
Let us f i r s t prove t h a t
50,C)J
there
i t i s obvious t h a t i f
-
E
with
t h e r e emists
a
takes i t s values i n
XE
E,
x@EB
then there
EB
THE INTERIOR INTEGRAL exists
y n E F.
hence
x-yn
that
nEN,
We may h a v e
I
i f
-,
tE]a,b]
such
c = b
1.
s E [a,t]
f o r a l l
[ I n t h i s case
cr(bl$!
EB
t < bl.
a ( c l € EB
CASE 1. I f
s Cc w i t h
t h e r e e x i s t s a sequence
and a sequence
0
Yn
IIa[sn)-Ynll hence
IIx-ynII +
but
0
If there i s a
a ( s 1 E EB
o r even
c = a
a c t 1 E EB
a [ s n l $ EB
--f
we d e f i n e
= b l l p { t E [a,b]
c
yn
does n o t converge.
a [ t l $ EB
but
such t h a t
33
such t h a t
-,
~ r ( s ~ 1 - y d o e s n o t c o n v e r g e . I n t h i s c a s e we d e f i n e n = yn, n E N , and f ( s l = 0 i f s % sn, n = l , Z , . . .
f[sn+ll
f E G [ [a,b] ,Fl
O b v i o u s l y we h a v e
.
but
r - d a i t l .f [ t l does n o t e x i s t s i n c e f o r any that
ti-l
-
s
n +1
= s i f we t a k e 6;' n' such t h a t f [ q i * l = 0
nk.
and
there i s a
t[
and
c
=
d E D
a(snlyn
does n o t converge,
d
such
for
i%k,
-
0
= 0;;'
then
t h a t d o e s n o t become a r b i t r a r i l y s m a l l s i n c e but
d' 2
a[clyn
hence
t l .f t l
[*da does n o t e x i s t .
-
CASE 2 .
F
yn
f
such t h a t
We d e f i n e
verge. s
0
Sn+l* nE
;I -
-
d
-
take
6;
that
f[h.p11
we t a k e
a(snl.yn
f[sn+ll
=
y,,
s
- 0
n€N,
such t h a t
ni'
if =
0
i<
t
f(sl = 0
124
= s
-
n
If
b u t then! dEm
161-1 and
s
a[clyn
and
f E G([a,b],Fl
e EB 1 a n d n does n o t con-
[hence
+c
n and
does n o t e x i s t s i n c e f o r any
and
ci;lr = s
tidl ~
there ( a 4 = c a n d i f we
-
a+n d ~
ni;ll
we h a v e
IIu;I,E. that,
EB
!t
N. We h a v e
Jac.da[t).f[tl i s a
a[cl
If
-
0d -n n
.I)
- 11
[aCcl-aCsn1]yll
a s i n C a s e 1, d o e s n o t b e c o m e a r b i t r a r i l y
small.
such
THE INTERIOR INTEGRAL
34
a : [a,b)
8: Next l e t us prove t h a t
i s bounded.
i s n o t bounded t h e r e e x i s t s a m o n o t o n i c sequence t
I f
a
for
instance
tn4c,
such t h a t
and t h e r e e x i s t s a sequence
is n o t c o n v e r g e n t . n€N,
+ EB
and
f ( t l
f E G ( [a,b],Y).
give
E
dn:
a
for
a l l
0
> 0
t
0
=
at
0
F
yn
We d e f i n e
f ( t )
1
<
...
n'
since
such t h a t
i f
= y,
t < t n'
tn-lC
obviously
Jac-da(t~.fit)
nEN
< t n< c
p 21, because
0
a l l other points;
L e t u s show t h a t there exists
< t
I I a ( t n l l l B > 2'",
such t h a t
does n o t
exist:
for the division
we h a v e
f(t1
-
i f
yi
t€)ti-l,ti(,
i€m.
Hence
w h i c h becomes a r b i t r a r i l y b i g w i t h
11 a [ c l - a ( ti becomes a r b i t r a r i l y s m a l l w i t h C:
bounded.
Theorem 1 . 2
(EB.F,G) f o r any
n +P
-
increasing since y
p
--i,
n+P
0.
a
i s by
a:
f E b ( [a,b)
daltl.f(t1
Ib a
hence b y Theorem 4.19
111 ' Y
because
i s a t o p o l o g i c a l BT a n d t h e r e f o r e
H e n c e we p r o v e d t h a t But
n
-
Ib
[a,b]
,F1
EB
and t h a t
there exists
. d a ( t l .f ( t
I,
a we h a v e
f o l l o w s s i n c e by Theorem 4.3
a
SBo( (a,b),EB)j
we h a v e
the result
aESBo~[a,b),E].
THE INTERIOR INTEGRAL APPENDIX
3
I n t h i s a p p e n d i x we g i v e a m o d i f i e d formula
[a,b]
a
G‘(
i n t e g r a t i o n by p a r t s
for the interior integral.
G i v e n a BT
a:
35
+E
[a,b],El,
(E,F,G) i s
iff o r
yE F
t E [a,b]
,El
THEOREM 4.21. G i v e n a ,Fl,
-
every
the function a(tI.yE G
Definition:
G*SB[ ( a , b )
f E G [ [a,b]
a function
w e a k l y r e g u l a t e d , a n d we w r i t e
a-y: i s regulated.
we s a y t h a t
=
G[
BT
[a,b) , E l
(E,F,Gl,
n s B ( (a,b) , E l .
a~ G ‘ S B ( [ a , b ) , E )
and
there exists
and we h a v e
+
c
[ f [ t + l - f ~ t l ] - [ a : u ( t l - a [ t - l ][ f [ t l - f [ t - l ] l
C[a[t+l-a(tl]
astcb
where
h(a-l
PROOF.
a[t+hly,
A:
Let
3.2
US
f i r s t prove that
for
h = a,f,
and
i.e.,
i s finite;
t h e s e c o n d member o f
t h a t t h e s e r i e s i s summable.
[al i s
By a1 o f Co-
the set
E t
FE =
€
[a,b)
1 \ l f ( t + l - f [ tI l\ > € 1
g i v e n any f i n i t e s u b s e t
0 < h
hence
h [ b + ) = h(b1,
etc..
hJ.0
w e l l defined, rollary
and
= h(a1
lim
a(t+)y =
I
t ’ , t ” E
F’,
F’C
t’ % t”}
[a,b[
r l cFB, for
we h a v e
THE INTERIOR INTEGRAL
36
Therefore by the Cauchy criterium there exists
1
ast6b
[a[t+l-a(t)]
Cf(t.1-f
(t1-J.
For the other series the proof i s analogous. 8 : In order to prove n o w that
exists and that we have (0.1 E >
0
d E ID
there exists
-f( ti - 1
11
-
-
such that f o r
d
E
<
Id1
I:
in1
we have
d
[a (t 1 -a[ ti- I] [f [ ti 1 -f (ti- I]
-
11 11
The sum inside
it is enough to show that f o r any
I I1 ,<
E
.
is e q u a l to
[acti-l-a[S;l]
Id1
1 [a(ti1-a[6;l]
i=l
[fLtil-f(ti-l] [f (ti-l-f
-
+
The norms of the first and third sums i n ( y 1 a r e cSB[a]w;(fl hence if
d’
they are
6
is such that
4E for a l l
d 2 d’.
THE INTERIOR INTEGRAL
37
L e t u s now c o n s i d e r t h e s e c o n d sum i n ( y l : 3.2
rollary
is f i n i t e ; d”€ID
the set
l e t
b e t h e number o f i t s e l e m e n t s
kE
u;,, [ a - y l 6
be such t h a t
where
t h e n we h a v e f o r
t ETE;
,<
k
E
2-
f o r svery
A
2 + SB[a] 8kE
we h a v e ( 8 1 .
and l e t = f(t1-f(t-1
2 d”:
d
BSB [a]
=
4 4 .
d”’EID
t h e n o r m o f t h e l a s t sum i n ( y ) i s ,<
d >, d ’ v d ” v d ” ’
y
BkE
I n a n a n a l o g o u s way t h e r e e x i s t s d >, d ” ’
b y a 1 o f Co-
such t h a t f o r
$
hence f o r
Q.E.O.
Reciprocally
-
THEOREM 4 . 2 2 . a:
[a, b ]
Given a BT ( E , F , G I and a bounded f u n c t i o n such t h a t t h e r e e z i s t s
EB
I,“.a[t
f o r every
f
E G ( (a,b),F1
P R O O F . By t h e s y m m e t r i c a l l o g i c a l BT [EB,F,GI for
1.df[ t )
then
a € G‘SB(
o f Theorem 1.2
(a,b] ,El.
applied t o t h e topo-
IY& ( [ a , b ] , F 1
every
there exists
and
a
a
Hence u s i n g i n t e g r a t i o n b y p a r t s we s e e t h a t e x i s t s f o r every u E SB( (a,b]
,El.
fE &([a,b],Fli
by Theorem 4.19
we h a v e t h e n
THE INTERIOR INTEGRAL
38
I n order t o p r o v e t h a t we t a k e
YE F
and any
t h e r e exists
f
a € G'([a,b),E)
= ~ ] , , ~ ) Ey G ( [ a , b ] , F l ;
Jab.,[t)-df(t)
[
.a(t)-df(t)
f o r any
T
E)a,b)
by h y p o t h e s i s
and
- Bim
cr(s')y
= a ( ~ - ) y .
E'+T
I f we t a k e T E [a,b[ t h a t t h e r e exists
and
=
we h a v e a n a l o g o u s l y
'(-r,b('
b *a(tl.df(tl.
CI(T+)Y =
a
EXAMPLE.
q u e n t i a l l y complete,
i s r e f l e x i v e o r w e a k l y se-
Y
One c a n show t h a t i f
a13 functions of
SV[ (a,b) ,L(X,YI
1 are
regulated.
-
55
RepheAenkatian theohemb and t h e theohem a6 tfctLy
In Theorem 4.12 we saw that the functions of bounded B-variation define naturally linear continuous operators. The next theorems shows us an important situation where all linear continuous operators are represented by functions of bounded semivariation. A
-
THEOREM 5 . 1 . Let
X
and
Y
SVo((a,b) ,L(x,y))
be Banach Apaceb; t h e mapping c--*
i d an i b o m e t h q ( i . e . [ ( F a [ (= SV[a] dpace o n t o t h e becond whehe d o h f Fc,w =
Jr.a.(t) -f(t);
w e have
Fa
L[G-((atb)j,X
1
E
06 t h e .
tY]
6.ihb.t Banach G- ( (a,b],X) we dedine
a(t)x =
-
~ c x i xa,t)xl* l
Q the mapping 01 Fa. a) By Theorem 4.12 the mapping is well defined and is
PROOF. Let us denote by
.
obviously linear and continuous (1) Fa )I 5 SV [a] ) b) Q is one to one: if Q # 0 there exist and x X such that Q(T)X f 0; we take f = x)~,,Ix G-([a,b] ,XI
T c
]a,b]
39
THE I N T E R I O R I N T E G R A L and w e have
# 0,
Fa(f)
i.e.
Fa
# 0
since
b Fa(f) = c) Q
(t)x
*da(t)x
l a 4
a i s onto: given
= a(T)x.
[a,b) , X ) ,Y]
F E L[G-(
by a ) w e know
t h a t i f t h e r e e x i s t s an
such t h a t F=Fa c1 E S V o ( [ a , b ] , L ( X , Y ) ) and XEX; a ( ~ )= x F ( X I ~ , , I X ) for a l l T c)a,b)
t h e n w e have
l e t u s t a k e t h i s a s a d e f i n i t i o n ; we m u s t prove ( i ) sv[aJ
6
(ii) F
IIFII
a
= F.
i)
ii) W e have F = Fa
F , F a E L[G-
( [ a , b ] , X ) ,Y] ; i n o r d e r t o show t h a t
i t is enough t o prove t h a t t h e y t a k e t h e same v a l u e since these elements
on t h e elements of t h e form form a t o t a l s e t i n
x)a,T)x
(by a ) of Theorem 3 . 1 ) ; w e
G- ( [ a , b ] , X )
have b
COROLLARY 5 . 2 .
Fan: evekg
a
S v ( [a,b) , L ( X , y ) )
we have
b SV[a]
= bup{Ilj - d u ( t ) . f ( t ) l l
I
fEG-((a,b],X),
Ilf11s1).
a
REMARK 1 . I f w e t a k e
Y = C , by Remark 3 of $ 4 w e have
G- ( [ a h ),XI
REMARK 2 . I f w e t a k e
'
=
BVo( [ a h ) ,X’)
.
X = C , by Remark 6 of 5 4 w e have
L [G- ( (a,b]hYI
=
BWo ( [ a , b ) , Y )
.
EXAMPLES 1. Take
Y = X,
t o €] a , b )
t h e a r r e s p o n d i n g element
a
€
and
F ( f ) E f ( t o ) ; then f o r
SVo ( [a,b] ,L ( X ) )
w e have
T H E INTERIOR INTEGRAL
40
a ( t ) x = F [ X ) ~ , ~ ) X ]=
x ] ~ , ~( t )o ) x =
(to,b) ( t ) x
a = X[to,b)lX.
hence
2 . Take
t o €[ a , b ]
Y = X,
and
F(f)
f ( t o + ) ; then w e
have a ( t ) x = F[x l a , t l x l
= Xla,t) (to+)x = x]to,b] (t) x
= X]to,b)lX*
i.e.,
3. Take Y = G-([a,b),X) and F ( f ) p f ; then f o r t h e corresponding element a c SVo( [a,.) , L ( X , G - ( ( a , b ] , X ) ) ) w e have a ( t ) x = F [ x ] ~ , ~ ) x ]= x ) , , ~ ) X E Y
u
and f o r
Since UE
-E
[a,b)
w e have
= f
J:-da(t).i(t)
[a,b]
= G-((a,b] ,XI
f o r every
f ~ ~ - ( [ a , ,bX )I ,
for
w e have b
5. Take CIE SVo (
hence
[a,b] ,L ( X I
and
b F ( f ) = i f ( T ) d T ; w e have
and
b
a ( t ) = (t-a)IX. 6. Z
fox
Y = X
is a
Banach s p a c e ,
€€G-([a,b],G([a,b],Z))
X = G([a,b] , Z ) ,
w e define
Y = 2
and
F ( f ) (0) = f ( a ) ( u ) ,
THE I N T E R I O R I N T E G R A L
41
u c [ a , b ] . Then a SVo([a,b),L[G([a,b],Z),Z]) g c G ( ( a , b ) ,Z) and u E ) a , b ) we have
where
[a(t)g]
[ a ( t ) g ] (a) = 0 .
and
7 . Take every Then
[x)~,~) (a)g]
( u ) = F [ x ] , , ~ ) ~ ]( 0 ) =
Y = c,((a,b),X)
U E (a,b[,
and
=
(0)
a SVO((a,b],L(X,co((a,bj,X)))
4
f , i.e.,
for
F(f)(b) = -f(b).
and
and
x [u ,b) ( t )
-
F ( f ) = f,
F ( f ) ( o ) = f(u+)-f(u)
and f o r
C (a,b(
for
Q
-
XIalt]
we
have
[a(t)x] (a) = F ( x )
-
(0)
X]u,b] ( t ) x
-
= X)a,t)
(U+)x
(a)x =
X ( u , b ] ( t ) x = -XIa} ( t )x
and [ a ( t ) x ] b = F[x 8 . Take
for
1-1
( b ) x = -x{b} ( t ) X .
u c R ( ( a , b ] , L ( X , ~ ) ) and
f E G - ( ( a , b ) , X ) . Then
a
i.e.
X] ( b ) =
b F(f) = Jau(t).f(t)dt
aESVo([a,b],L(X,Y)) b
a
and
THE INTERIOR INTEGRAL
42
b
6 -
Let
X
S
be a normed space and
Given a f u n c t i o n
u:
+L(X,Y)
(a,b)
Y
a Banach space.
f o r every
dED
we
define
and SCU]
sru]
I
= 4Up{sd[u]
dED}.We
write
THEOREM 5.3. PROOF.
.LLX,Y 1 1
s ( (a,b)
w i t h t h e norm
i f
u
+ s [u]
.
is a Banach s p a c e when endowed
One c a n g i v e a d i r e c t p r o o f o f T h e o r e m 5 . 3
sult also f o l l o w s f r o m Theorem 5.5
REMARK 3 . of
u~s[(a,b),L(X,Yll
a.
<
[a,b];
I n the definitions hence
we r e p l a c e
EXAMPLE 1.
(a,b)
If
Y
a b o v e we d o n o t u s e a n y s t r u c t u r e
may b e r e p l a c e d b y a n y s e t
by t h e f i n i t e subsets
dED
C
=
but the re-
bellow.
F
of
I).
I
[and
we g e t
absol u t e l y summable s e r i e s w i t h i n d i c e s i n
E X A M P L E 2.
If
X
-
C
o n e c a n show t h a t
11 1
IIyIIc = bup yill) i.e., FCI i€F m a b l e s e r i e s w i t h i n d i c e s i n I. [where
T H E O R E M 5.4. L e t and
UE
t h e space o f Y
b e a normed s p a c e , S [ I , L ( X , Y ) ) ~ tJe have X
I.
Y
-valued
sum-
a Banaah s p a c e
THE INTERIOR INTEGRAL PROOF.
a)
mable,
b y t h e Cauchy
every
E
1 u(i)xi
I n o r d e r t o show t h a t t h e s e r i e s
> O
subset
i€F o b v i o u s if s[u]
U(i1Xill i f
0;
=
4
such t h a t
we h a v e
E .
s[u]
# 0,
since
xEco[I.X1.
the set
> 0
E/S[U]
’
F E C I
F’nFE = 0
F’C I with
11 1 This i s
i s sum-
iE I
c r i t e r i u m i t i s enough t o p r o v e t h a t f o r
t h e r e e x i s t s a f i n i t e subset
f o r any f i n i t e
given
43
FE = { i E
is f i n i t e ,
and f o r
F’nFE
0
b l I t i s immediate that
we h a v e
is l i n e a r and t h a t
Fu
rUiI I ~ I.I
llFu(x)Il hence c ) .
The n e x t t h e o r e m c o m p l e t e s t h e p r e c e d i n g o n e .
THEOREM 5 . 5 .
Let
X
b e a normed s p a c e and
t h e mapping UE
s(I,L(X,Y)l
i s an i s o m e t r y ( i . e . llFU/I o n t o t h e s e c o n d , zjhere f o r
FUE L[c,[I,Xl,Y]
o f t h e f i r s t Banach s p a c e we d e f i n e
= s[u], XE
=
F,[XJ
-
a Banach space;
Y
co(I,Xl
1 u(ilxi; i EI
and x o E X tje h a v e u ( i l x o = F u ( e x I t j h e re e i i o i s t h e eZem e nt of c o [ I ) t h a t t a k e s t h e v a t u e 1 a t i and is z e r o a t a22 o t h e r e Z e m e n t s of 1). for
i E I
L e t us d e n o t e by
PROOF.
u
t h e mapping
Fu
b ) The m a p p i n g
i s injective i.e.
F u # 0; that
0
a 1 By T h e o r e m 5 . 4
indeed,
u(ilxo
# 0;
0
u #
i f
0
there exist
0
Fu.
u # 0
i E I
and
I I F u I I 4 s[u]. implies
xoE X such
[e x 1 = u c i l x # 0. u i o i s surjective: given F E L[co[I,Xl,Y]
t h e n we h a v e
cl T h e m a p p i n g
C,
i s w e l l d e f i n e d and
F
44 we w a n t t o s h o w t h a t
F = Fu fine
If
I N T E R I O R INTEGRAL
THE
and
there exists
IIFII = s [u],
UE
s(I,L(X,YII
i€ I and
For every
u[i)x0 = F ( ~ ~ X ~ u I ; i i ) L~[ X , Y I
J
6
s [u]
hence
IIFII.
F = Fu
7
because b o t h o p e r a t o r s a r e
t i n u o u s and t h e y a r e e q u a l on t h e elements which form a t o t a l subset o f
-
T H E O R E M 5.6. L e t [a,u)
we d e -
since
r
to
such t h a t
xoE X
F =
and
X
,L(X,Y)lxs[
S V o [ [a,b]
(I L[G-[
,Xl,Y]
L[G[ [a,b)
.
1 0’
~ i E I,x o E X,
be Banach s p a c e s ; t h e mapping
Y
from
F,+FU
e
co(I,XI.
con-
[a,b)
,Xl,Y]xL[co~
[a,b)
[a,b]
,L(X,YII
,XI,Y]
1
is
a b i c o n t i m o u s i s o m o r p h i s m of t h e f i r s t Banach s p a c e o n t o t h e
s e c o n d , where for e v e r y
f E G [ (a,b) b
we d e f i n e
,XI
and Fu[f)
1
=
u[t).[f[t)-f(t-l)
(f[a-)=Ol;
act
o e have
and
a ( t 1 x = F[xJ.,~)x]
t E [dab)
and
PROOF. By
Theorem 3.12
fc
X E
for every
u c t l x = F[x{,lx]
x.
G[ [ a , b ] , X l
t h e mapping C,
( 1 - f , f - I - f ) €G ~ ~ ( a , b ) , X I ~ c o ~ [ a , b ] , X l
i s a b i c o n t i n u o u s i s o m o r p h i s m o f t h e f i r s t Banach space o n t o t h e second. mapping
F
Y
Hence f o r any Banach s p a c e e *
(F1,F2)
from
L[G[(a.b),Xl,Y]
-
L I G ~ ~ ( a . b ) . X l . Y ~ ~ L ~ c o ~ ( ~ . b ] . Xwl h, e Y r~e
F2[fI = FIf-I-fl and,
F2(f-)
-
[hence 0
since
Fl[f-I-f) f--I-f
we h a v e t h e n a t u r a l
=
01
0
t o
Fl(f)
= F(f-1
and
since
(f-1-f)-
= 0,
which i s a l s o a bicon-
45
THE I N T E R I O R I N T E G R A L
t i n u o u s i s o m o r p h i s m o f t h e f i r s t Banach s p a c e o n t o t h e second; so t h e r e s u l t f o l l o w s f r o m t h e Theorems 5.1
REMARK 4 . I n t h e n u m e r i c a l c a s e ( i . e .
-
X = Y
=
RI
t h i s theo-
[K].
rem i s due t o K a l t e n b o r n C
and 5.5.
The t h e o r e m o f H e l l y o f t h i s i t e m i s f u n d a m e n t a l i n
t h i s work.
THEOREM 5 . 7 . L e t a
x
and
b e Banach s p a c e s and
Y
E SVo~[a,b),L~X,Yll,~~N s u, o h t h a t f o r e v e r y
- &krn I
there e x i s t s F [ f l
n+w
then a ) There e x i s t s b ) There e x i s t s
t E (a,b]
and
PROOF.
We d e f i n e
.dan(t).f(tl,
a
s M f o r a l l ncN. a € SVo( (a.b) , L ( X , Y I I such t h a t
J
=
x E X.
SV[an]
b .da[tl.f(tl
a z d we h a v e
fEG([a,b],Xl
every
b
suah t h a t
M > 0
Fcfl
for every
f E G-[(a,b,),X)
-
an[tl.x
a[tl.x
for
1
rb
4.12
we h a v e
. d a n [ t l * f ( t ) ; by d l of Theorem a F n E L[G-((a,b),X],Y], hence by t h e theorem o f
Banach-Steinhauss
all
n€:N
F E L[G-[
Fn[fl
=
there exists
(and t h e r e f o r e
[a,b) , X I ,Y].
M z 0
SV[an]
such t h a t
By T h e o r e m 5 . 1
IIFn(I s M
b y T h e o r e m 5.11
s M
f o r
and
there exists
a~SVo[(a.b),L~X,Yll such t h a t F(f)
=
Jb
.daltl.fltl
a
f o r every
fEG-((a,b),Xl.
If we t a k e t h e n
f
=
x]a,Tlx
we
have an[T1x
b
-(
*dctn(t)'f[tl
--*
F [ f l
= \-da[tlX]a,T][t)~
a
= a ( ~ ) x
and t h i s c o m p l e t e s t h e p r o o f o f b l .
I n what f o l l o w s
WE
g i v e a r e c i p r o c a l o f Theorem 5.7.
THE I N T E R I O R INTEGRAL
46
THEOREM 5.8. T H E THEOREM O F HELLY - G i v e n a BT (E,F,GI and a sequence a n S B ( (a,b] ,El w i t h SB[an] 6 M f o r e v e r y n :N and such t h a t t h e r e e x i s t s a: [a,b] E with an[tly a[t)y f o r e v e r y t E [a,b] and aZZ Y E F , t h e n 2 ) aESB([a,b],El and SB[a] 6 M . 2) F o r e v e r y f E G ( [a,b] , F 1 we have
-
-
Jb a
a
-
.dan[t).f(tl
- -
In t h e numerical case ( i . e . , E
n
F
G = R
- hence
are functions of bounded variation) this theorem
the
was
proved by Helly f o r t h e usual Riemann-Stieltjes integral. We
will obtain Theorem 5 . 8 as a particular case of the
THEOREM 5 . 9 . L e t [ E , F , G I b e a B T , 9 a f i Z t e r on a s e t L and f o r e v e r y , E L Zet b e a, SB((a,b),El su c h t h a t a) *here e x i s t L o € 2 and M > 0 suoh t h a t S B [ a h ] < M for all , E Lo;
g;m tE[a,b)
f o r aZZ
-
a: (a,b)
b ) there exists
a,(tl.y
E
su c h t h a t
= act)-y
~ E F .
and aZZ
Then we have S B ( [a,b] ,El
1) a 2)
eim
J
’ Y a
f E
G [ [a,b] ,F).
PROOF. F o r have
we
b
d
and
.da,(t).f[t)
D
and
yiE
=
F
SB[a]
b!
,< M ;
-da(t).f(tl
with
IIyill
6
f o r aZZ
.
1, i = 1,2,. , , I d ( ,
THE INTERIOR INTEGRAL By a )
the f i r s t
1,2,
i
...,I
summand i s
(M
A € Lo. By b ) f o r e v e r y
i f
there exists
dl
47
3
LiE
A € Li
such t h a t f o r
We
have
-
i
where
i.e.
-
we have
1).
By d l
2)
of
hence,
Theorem 4.12
II
6 SBbJ A for /IFa I I S M A
IFa IIFall,
Lim
[xJ,~,IY]
Fa
=
; c A =
... n L I d 1
X E L o n Lln
i,i - 1 . H e n c e f o r
Lim
3
aA(r).y
-
alrl-y
IIFall
A € Lo:
4 a I ’
b y b l we h a v e
b
Lim
.daA(tl.x],,,)(tly
=
a
jb
=da(tl.x
=
).,.I( t ) Y
Fa[x 1 a , T l ~ l .
=
a
e’m
F
and s i n c e
-
and
$
This implies that f E E([a,b],FI
we h a v e
= Fa[f]
If] ‘A
IIFaAII s M
f o r every f o r
A € Lo
we h a v e
l i m Fa [ f l Fa(f) por a l l f E G([a.b],F) i.e. ; ’ P A b y a1 o f Theorem 3 . 1 t h e r e e x i s t s fgE E([a,b],F)
11 f - f E11
6
3M , E
IIFa(f)-Fa
( f l
11
f E €
EL ( a , b ] . F l
LE€
3
such
such t h a t
(f-fE)l\,<
,< ( I F a ( f - f E ) ~ ~ + I ~ F a ( f E l -IFf a E ] ) )+ ! \ F a
A
llf-fEll
+
IIFa(fg)-Fa
cM
t h e f i r s t summand i s t h i r d one I f
indeed:
hence
A
IIFall
2);
A E Lo;
E E = 3M
h
(f,]
II
+
A IIFa
A
II Ilf-fE.ll;
a n d t h e same i s t r u e f o r t h e
s i n c e we j u s t p r o v e d t h a t f o r
tim
we h a v e
that f o r
J
AELE
11 s E
F
(f
1
= Fa(fg),
t h e s e c o n d summand t o o
A E Lo
hence
11 F a ( f I - F a
REMARK
5. We w i l l u s e t h e e x t e n s i o n a b o v e w i t h
x
[ fI
for
there exists I s < 3
n LE. L
a topolo-
,
THE INTERIOR INTEGRAL
48
3
g i c a l space and
t h e system of
neighborhoods o f a p o i n t o f
L.
We g i v e now some e x a m p l e s t h a t s h o w t h a t theorem of
H e l l y cannot
--
- There e x i s t
Ex.1
a(t1
an(tl f:
[0,1]
'
V[a]
-b
-
Ex.2
sen
=
t
Jol
* f[ t 1 d a ( t
f:
with
4 0
[hence
f
We h a v e
where
A
but
such t h a t
for
haus,
1.2.13
v[an-j
an
u
[H-IPlE)l
and such
$
1 -
[$s
s]-
+
2"
is s u c h t h a t
an ~ b B V [ ( a , b ] l m
then there exists
fE
bC ( a , b ) 1
i s not convergent.
-
then,
M > 0
If
F,(~I
is c o n v e r g e n t
by t h e theorem o f Banach-Stein-
such t h a t
IIFnll d
M
i s a c o n t i n u o u s f u n c t i o n we h a v e
- -. of
=
n=l 2
b Jaf(t1dan(tI.
b ( (a.b) I
there exists
REMARK 6 . that
fE
~ , ( f )
2
bounded
-1.
-
V[aJ
f[t)da,[t)
Jab Define
every
Since
-
xA
- I f t h e sequence
Ex.3
PROOF.
=
\ol*f(tldan[tl
+0
llanll
f
174
i s not regulated): m
,
a n = x11,2nl
=x
an
V[aJ
-I3
[O,l]
I
take
.
an€ BV[[O,l])
and t h e r e e x i s t s
*f(tldan[t)
take
and
and t h e r e e x i s t s
r l
that
Q 1
V[an]
i s not regulated):
f
f[t1
There e x i s t
0
11
exists but
(hence
and
a = X)O,l]
5
with
bounded such t h a t
J:*i[t)dan[tl
does n o t e x i s t
an(t)
an€ BV[[O,l))
[hence
R
i n general the
be improved.
f o r a l l
))Frill
nEN.
= V[an]
i n contradiction t o t h e hypothesis
[Cf.
that
By a n a r g u m e n t o f c a t h e g o r y i t i s e a s y t o p r o v e
Jabf[t)dan[t)
does n o t converge f o r " a l m o s t "
continuous functions
f
(i.8.
f o r a dense
b u t i t i s v e r y d i f f i c u l t t o g i v e an e x p l i c i t continuous f u n c t i o n
f
such t h a t
G6
of
all
6
[(a,b)Il
example o f a
49
THE I N T E R I O R I N T E G R A L
Jabf( t i cia,
d o e s not c o n v e r g e ,
1:
already
b y parts.
-
D
that
b e c a u s e if only
f(tldan[tl
-
Let
and
X
Y
SVo( [a,b] , L ( X , Y ) )
a
t h e norm
SVla].
0
simply
is a Banach space when endowed w i t h Theorem 5 . 7 and 5.9 s u g g e s t s t i l l an-
-
a1
for a l l 02
-
-
3
SVo ( [ a , b ] , L ( X , Y ) )
on
a O E SVo([a,b) , L ( X , Y ) )
a
have
we
b e Banach s p a c e s ; Theorem 5.1 shows
W e say t h a t a f i l t e r U
f 6BV((a,b)1
as one can s e e using integration
o t h e r n o t i o n of convergence on
uehged t o
tI
.
SVo((a,b] , L ( X , Y ) )
, and
we w r i t e
a
u-cona, or
"f-
a0’ i f t h e following c o n d i t i o n s a r e s a t i s f i e d
There e x i s t
HE
3
and
M >0
such t h a t
SV[a]
<M
a€H.
t i m a ( t ) x = ao(t)x for a l l
tcz (a,b)
3
SV: ( ( a ,b) ,L (X , Y 1
W e denote by
, the
SVo( [ a h ] , L ( X , Y )
and
XEX.
space
1
endowed w i t h t h i s n o t i o n of convergence.
REMARK 6 . Obviously t h e a-convergence can be d e f i n e d on f o r any BT (E,F,G).
SB((a,b],E)
REMARK 7 . By Theorem 5.7 w e see t h a t t h e d e f i n i t i o n above is H E 3 that is
e q u i v a l e n t t o saying t h a t t h e r e e x i s t s an bounded i n
SVo ( (a,b] , L ( X , Y ) )
1
lirn ' f o r every
a
* d a ( t ). f ( t ) =
f E G ( [a,b) ,X)
Ib
and t h a t
b
-dao(t).f (t)
a
.
W e w i l l now g i v e a r e p r e s e n t a t i o n theorem f o r t h e ele-
ments of
L[G- ( ( a , b ) ,XI , G ( (c,d)
THEOREM 5 . 1 0 .
Let
X
and
Y
8Y)].
be Banach & p a c e d ; we h a v e
L[G-([a,b\],X) , G ( ( c , d ) , Y ) ] = G ( [ c , d ) ,sVg((a,b) 8 L ( x # y ) ) ) .
Mohe p h e c i b eLy, Xhe. mapping
THE I N T E R I O R I N T E G R A L
50
Banach Apace o n t o t h e Aecond, whe.he ioh evehy we d e d i n e G- ( [a,b) , X ) .the
06
fE
dihdt
b
a t E [c,d];
a
w e have
E (a,b),
FAkla,,) XI( t )
J ( t )( a ) x =
doh
t E (c,d),
X.
XE
5
PROOF. L e t us f i r s t o b s e r v e t h a t
( f ) ( t ) is w e l l defined
J ( t )E SVo( [ a , b ) , L ( X , Y ) and f E G ( [ a , b ) , X I . The funci s r e g u l a t e d s i n c e by t h e d e f i n i t i o n o f t h e aconvergence on SVo( [ a , b ] , L ( X , Y ) 1 and Remark 7 , t n + t E ( a , b ( since
tion
FA ( f )
implies t h a t
)
( a ) - f ( a ) is c o n v e r g e n t , i . e .
5
( f ) (t,)
i s convergent; t h e same a p p l i e s i f w e c o n s i d e r t n + t ] a , b ] . L e t us now d e n o t e by @ t h e mapping d C, FA ; @ i s
i s i n j e c t i v e since i f w e take A # 0 t o €( c , d ] such t h a t oh (to)# 0 , hence a E]a,b] and x € X such t h a t J ( t o ) (u)x # 0,
obviously l i n e a r . @
then there exists a there exist
I n o r d e r t o prove t h a t t h a t f o r every
A
i s s u r j e c t i v e w e have t o show
@
[a,b] ,X) , G ( [c,d] , Y ) ]
F E L[G-(
E G ( [c,d] , S V o ( (a,b) , L ( X , Y ) 1 ) such t h a t
see t h a t i f t h e r e e x i s t s such an
u h ( t ) (a)x for
tE[c,d),
f i n i t i o n of
4
aE[a,b)
F = Fd
d w e have
and w e w i l l prove t h a t
llFj
( i l l CA ( t )( u ) E L ( X , Y )
(a) w e
x € X ; we take t h i s a s the
and
(ii) F = FA.
. By
= F[X]~,~]X ( t] )
( i )c h E G ( ( c , d ) , S V z ( ( a , b ) , L ( X , Y ) ) )
W e w i l l a l s o show t h a t
t h e r e e x i s t s an
(1
=
llJll.
since
and
de-
THE I N T E R I O R INTEGRAL
and s i n c e
( t )(u)
51
i s obviously l i n e a r d€ ID
and
is regulated, i.e.,
for
( i "A ) ( t )E SVo ( [ a , b ] ,L ( X , Y ) ) ; i n d e e d f o r X ~ E X , IIxill ~ 1 ,i = 182,.. , [ d l , w e have
.
A
( i " ' )L e t u s prove t h a t
stances, t h a t vergent i n
tn+t E(c,d(
implies t h a t
d
(t,)
is
in-
o-con-
S V o ( [ a , b ) , L ( X , Y ) ) : by ( 8 ) w e have
sv [A
(',)I
II F II
f o r e v e r y n , i . e . t h e c o n d i t i o n a 1 i s s a t i s f i e d ; w e have also a2 i . e . t h e sequence A ( t n )( S I X i s c o n v e r g e n t f o r e v e r y s E [a,b) and X E X s i n c e by d e f i n i t i o n w e have
A and
h)a,s] x]
G-((a,b)
8x1
s i n c e both are l i n e a r continuous o p e r a t o r s into
G ( ( c , d ) ,Y)
and t h e y t a k e t h e
v a l u e on t h e e l e m e n t s of t h e form X E X , i . e . on a t o t a l s u b s e t of G-(
BY ( B ) w e h a v e
I(F(f)ll =
a , b ,XI.
Ild 11 < IlFll; w e a l s o have
IIFII = h U P { [IF ( f ) and
(tn)
F ~ ) a 8 s ) x ] E G ( [ C , d ) ,X). (ii)F = FA
from
(tn) ( s )x = F
1 I
f EG-
( [ a t b ] 1x1 8
E ( a * b ]8
IIFI s lloh 11
I( f l l
,<
1)
6 u p IIF(f) (t)II and ccttd b
I ( F ( f ) (t)II = I I I - d u A ( t ) ( a ) * f ( a ) l (s
a
same
sv[A(t)]IIfll.
since
THE I N T E R I O R I N T E G R A L
52
REMARK 8. From now on w e w r i t e of
-
A ( t , a ) = J ( t )( a ) ; i n t h e proof
(it")w e s a w t h a t t h e c o n d i t i o n t h a t
J : [c,d]
SvZ([a,b),L(X,Y))
i s r e g u l a t e d is e q u i v a l e n t t o s a y t h a t f o r every S E [a,b] As i s weakly r e g u l a t e d (see t h e Appendix 3 of
the function
5 4 , Chapter I ) . O r s t i l l ,
(c,d)x(a,b) c h a r a c t e r i z e d by t h e f o l l o w i n g p r o p e r t i e s : A:
-
is
L(X,Y)
(SVu) A i s u n i f o r m l y of bounded s e m i v a r i a t i o n as a f u n c t i o n of t h e second v a r i a b l e ( i . e . , f o r e v e r y t E [c,d) w e have
A t ~ S V O((a , b ] , L ( X , Y ) ) (GO)
A
and
b u p SV[At] <
c-
a).
i s weakly r e g u l a t e d a s a f u n c t i o n of t h e f i r s t
v a r i a b l e ( i . e . , f o r every
SE
w e have
[a,b)
[ , ,
,
AS€ Ga ( c d ] L ( X Y 1 1 1
.
i s a bounded f u n c t i o n s i n c e
A
(Aa i s weakly r e g u l a t e d , hence f o r e v e r y 6 u p IIAa(t)xll < m and t h e p r i n c i p l e of uniform wtsd boundedness i m p l i e s t h a t IIAall = 6uP I I A a ( t ) l l < -1. cstsd IIAaII
XE
X
being f i n i t e
w e have
From now on w e w r i t e a l s o FA i n s t e a d o f ’ ? I i s t h e element t h a t c o r r e s p o n d s t o F.
and
AF
E X A M P L E S . Using Theorem 5.10 it i s e a s y t o p r o v e 1
-
FEL[G-([a,b]),G((c,d])]
F ( f ) b 0 i f and o n l y if f o r e v e r y i s monotonic i n c r e a s i n g .
i s such t h a t t E [c,d),
f > O
implies
At~BVo((a,b])
2 - F ~ L ( G - ( ( a , b ) ) , G ( ( c . d ) ) l i s such t h a t f is c r e a s i n g i m p l i e s F ( f ) >, 0 i f and o n l y i f % :0 and f o r every t E [c,d)
.
inAt
<0
3 - F E L [ G - ( ( a , b ) ) , G ( ( c , d ) ) ] i s such t h a t f i s i n is c r e a s i n g i m p l i e s F ( f ) i s i n c r e a s i n g i f and o n l y i f %
a c o n s t a n t f u n c t i o n and
As
i s decreasing for every
%[a,b).
53
THE I N T E R I O R I N T E G R A L
-
4
that
F€L[G-([a,b)) , G ( [ c , d ) ) ]
F(€)
i s such t h a t
€>,
i s i n c r e a s i n g i f and o n l y i f f o r any
c \ <1t< t 2 s d
and
o
implies
a < s l <s2< b
w e have
-
A(t2,S2)
A(tl,s2)
A(t2,S1)
-
A(tlts1)
*
I n an analogous way as Theorem 5.10 on p r o v e s t h e
THEOREM 5 . 1 1 .
x and
Let
be Banach bpuceb and
Y
K
a com-
p a c t b p a c e ; we huve L[G-((a,b),X),
e(K,Y)]
=&[K,SVz((a,b] , L ( X , Y ) ) ] .
-
Mohe p h e c i b e e y , t h e mapping &E b [K,SVz( [ a , b ) ,L ( X , Y ) I ]
SE
L [G- ( [ a l b ) ,XI
i b o m e t h y ( i . e . 11% 11 = IIJll w i t h IldII 6 i h b . t Banach bpace o n t o t h e becond w we dedine f E G- ( [ a , b ] ,XI
i d
UM
0 6 the
t (K,Y)]
= sup s v l d ( t ) ] J
h
t€K
doh
b
( t ) = j.dscA(t) ( s ) .f ( s ) I a t E K ; We have A ( t ) ( S ) x = [ x ) ~ , ~ ) x(]t ) , t E K , X E
SE(a,b),
x.
REMARK 9 . I n t h i s case, i n an o b v i o u s way, a p p l y analogous c o n s i d e r a t i o n s as t h o s e made i n t h e p r e c e d i n g remark.
REMARK 1 0 . I n an analogous way o n e c a n g i v e r e p r e s e n t a t i o n theorems € o r t h e s p a c e s of l i n e a r c o n t i n u o u s mappings of c o ( ( a , b ) ,XI
G ( (c,d] ,Y) o r 6 (K,Y) working w i t h endowed w i t h an o b v i o u s a-convergence.
into
s ( [a,b] ,L ( X , Y ) 1
THE I N T E R I O R I N T E G R A L
54
96
-
Rephcdentation theohemd
A - I n this
doh
open i n t e h u a d d
I t e m we e x t e n d t h e r e s u l t s o f
554 a n d 5
to
SSCLCS.
T H E O R E M 6.1. f E G I [a,b)
Let
.
,F1
la
Fa(fl
=
d e p e n d s o n l y on
b) Fa(f]
a
*da(tl-f[tlEG.
o r on t h e cZass of
f-
.F1.
c ) For e v e r y
and
S B ( [a,b),E)
b
a) There e s i s t s
G [ (a.b)
b e a LBCT',
[E,F,G)
q E
r G we have
q [Fa[f
11
5
SBq[a]
in
f
I(fII -
and q[Fa] < SBq[a]. and e v e r y q E r G we have
d ) F a € L[G([a,b).F),G] e ) For e v e r y [ d , S ' l E l ) ' b
- u d,C
*da(tl.f[t) q[
.(f;al]
6 SBq[a]ui(fl.
a
t h e s t e p s o f t h e p r o o f o f T h e o r e m 4.12.
The p r o o f f o l l o w s We r e c a l l t h a t
G
for
was d e f i n e d
SB[(a,b],E)
SSCLCS,
I n
B o f 54 a n d t h a t t h e e x i s t e n c e o f
the item
Jab d a ( t
-
I f
[t
I
was p r o v e d i n Corollary 4 . 1 6 .
THEOREM 6.2. Let
X
b e a Banaoh s p a c e and
-
mapping aESVO([a,b),L(X,Yl)
Y
a SSCLCS,
the
Fa€ L[G-[[a,b),Xl,Y]
is a l i n e a r
b i c o n t i n u o u s i s o m o r p h i s m o f t h e f i r s t SSCLCS o n t o t h e seoond where f o r f E G - ( [ a . h ) , X ) we d e f i n e
I, b
Fa[fl
we have
a(tlx =
Fa
[XI
a, t
11'
. d a ( t l . f (t.1
J
The p r o o f f o l l o w s t h e s t e p s o f t h e p r o o f o f Theorem 5.1. We r e c a l l t h a t seminorms
SVo~(a,b),L~X,YI)
a 4
svq[a].
is endowed w i t h t h e s e t o f where
q(F)
0. LCSS 5 1 .
-
dup{q[F[f)]
I s endowed w i t h t h e s e t o f
-
q c r y , and t h a t seminorms
I
F
fEG-[[a,b).X).
L[G-((~.~).xI.Y] q[F],
IIfll 6
q E r y
1)
,
[see 50,
55
THE I N T E R I O R I N T E G R A L
REMARK 1 . W i t h t h e o b v i o u s a d a p t a t i o n s we h a v e t h e a n a l o g o u s of
and 5 . 6 .
t h e Theorems 5 . 5
The Theorem o f H e l l y e x t e n d s t o o :
THEOREM 6 . 3 . L e t (E,F,G) be a LCBT and a f i Z t e r on a s e t L and f o r e v e r y XE L l e t a X E S B ( ( a , b ) , E ) be such
that a ) F o r e v e r y q E r G t h e r e e x i s t L q ~3 and s u c h t h a t SBq [aX] 6 M q for e v e r y X E L 4 b ) There e x i s t s a : [a,b] E such t h a t
-
Lim
3
aX(tl.y
f o r a22 t E [ a , b ) and a22 T h e n we have 2 ) a E S B ( [a,b] , E l and
I
b
2) Lim
J
f E G( [a,b)
-daX[t)*f(tl
a.
.
Mq> 0
= a (t1.y
~ E F .
SBq [a)
-[
< M
for e v e r y
4
qE TG.
for e v e r y
.da(t).f[t)
,FI.
The p r o o f f o l l o w s t h e s t e p s o f t h e p r o o f o f Theorem 5.9.
X
If
is a B a n a c h s p a c e a n d
t h e o-convergence a s was d o n e i n
qE
ry
0
on of
there exist
for a l l
aEH
THEOREM have
6.4.
. 4
Y
a
SVo( [a,b) .L[X,Y
1)
SSCLCS
55; t h e c o n d i t i o n 01
Hq€
3
and
M
4
> 0
we d e f i n e
i n a n a n a l o g o u s way becomes:
such
for
t h a t SV
every
11x3s 4
M
4
T h e n we h a v e
Let
x
be a Banach s p a c e and
Y
a S S C L C S ; we
More p r e c i s e l g ; t h e mapping a , b ] , X I ,G[ [ c , d ) , Y )
is
Q
l i n e a r b i c o n t i n u o u s isomorphism ( i . e .
o n t o t h e s e c o n d , where for Fa(f)[t) =
J a
f E G( [a,b)
,XI
b
*dud(tl(o).f[ol,
4ChI
1
= 4 p ] for o f t h e f i r s t SSCLCS
we d e f i n e
T H E INTERIOR INTEGRAL
56 t E [c,d]; X E
we
have
tt)(o)x
REMARK 2. 10 o f
for
tE(c,d],
l a 4
x.
5.11
x](tl
=
I n a s i m i l a r way we h a v e t h e a n a l o g o u s o f T h e o r e m
and o f t h e r e p r e s e n t a t i o n t h e o r e m m e n t i o n e d in r e m a r k 15.
-
B In this item we extend the previous results t o open intervals. Let (E,F,G)B be a BT; we say that a: >a,b( + E is a (normalized) dunctiun ad buundLd B-uahiation and campact duppoht, and we write a SBo0()a,b[,E) if a has the f o l lowing properties 1) There exist [.,6)c )a,b( and c E E such that a(t) = 0 for t < a and a(t) = c for t>G. 2) a SB( [z,';] /E)
.
The smallest closed interval called the nuppoht of a.
[ g J 5 ] with property 1) is
Let (E,F,GlB be a LCBT; we say that a: )a,b( d E is a (normalized) function of bounded B-variation and allmost compact support, and we write. a € SBoo()a,b[,E), if a satisfies the following properties 1) For every q E rG there exist kaq,bq] c)a,b( and c E E such that €or every Y E F we have q [ a ( t ) y ] = 0 if 9 t
b q q q 2 ) a SB ((aq,bq) 3 ) .
.
9
The smallest interval (aq,bq) is called the q-buppuht 06 a.
with the property of
In the case of the LCBT (L(X,Y),X,Y) particularize in an obvious way.
1)
these definitions
Let F be a Banach space; we say that a function f: )a,b[ + F is JreguLated, and we write f G ( a b ,F), if f has only discontinuities of the first kind; this amounts to say that for every [c,d) C )a,b( we have
1"
57
THE I N T E R I O R INTEGRAL
-
f-(t) = f(t-)
W e define
for
tE)a,b(.
G()a,b[,F)
is a
F r e c h e t space when endowed with t h e f a m i l l y of seminorms ~ ~ f ~ ~ [[c 8 d~ ) 8 d ] a] , b~( *
THEOREM 6.5. f
E
Let
-
b e a L C B T , ~ E S B o o ( ) a , b ( , E ) and
(E,F,G)
G()a,b(,F). a ) Thehe e x i ~ t d
I
b
* d a ( t ). f (t) a whe4.e anSar bn4b. Fa(f) =
d8f
bn
- i i m \n
* d a ( t )* f ( t )
an
6 ) F a ( f ) depeMdA ofiLg O n f-. C ) Foh evehy q E rG we h a v e
d ) Fa€L[G()a8b(,F) t G ] P R O O F . a ’ ) For every
n
-
ibn
there exists
*da( t ). f ( t ); indeed:
an
f o r any
qE
rG
w e have
a
if
SBq ( (an,,bn) r E )
(anlbnl
I.,
3
tbql
and a f o r t i o r i f o r a s m a l l e r i n t e r v a l ; hence by Theorem 6 . 1 the integral exists. a ” ) There e x i s t s
le
r n * d a ( t ). f ( t ); indeed: s i n c e
G
an i s a SSCLCS i t i s enough t o prove t h a t t h e sequence j b : d a ( t ) - f( t )
an i s a Cauchy sequence and t h i s f o l l o w s from t h e f a c t t h a t f o r every q E S G w e have q[J
bn * d a ( t ) - f ( t )-
-.
an
if
(,an,bn]
3 (aq8bq)
bq *da(tl.f(t)] = a
4
( s i n c e then
SB
b) F o l l o w s from t h e d e f i n i t i o n o Thereom 6 . 1 .
o
9r
(an aq I
Fa(f)
and from b) of
THE I N T E R I O R INTEGRAL qE such t h a t
d) W e have t o prove t h a t f o r every [cld)
r G ( (a,b) , F )
c >0
and
q[Fa(f)] f o r every
‘‘llf
rG
there e x i s t
Il(c,d)
f € G()a,b(,F): w e take
= (aq,bq)
(c,d)
then w e
have
hence w e proved a l s o c ) .
THEOREM 6 . 6 .
Let
x
a € SVoo()a,b[,L(X,Y)
1
-
Fa
an i n j e c t i v e Linean a p p L i c a t i o n 0 6 t h e o n t o t h e decortd, whehe d o h f € G - ( ) a , b ( , X ) Fci(f) =
jb
a
a SSCLCS; t h e
L[G-()a,b(,X) ,Y]
i b
w e have
Y
be a Banach bpace and
mapping
dihAt
v e c t o h Apace
we d e d i n e
= d a ( t )- f ( t ) ;
ci(t)x = F , [ x ) ~ , ~ ) x ] .
PROOF. By Theorem 6.5
F,(f)
i s w e l l d e f i n e d and
Fa€ L[G-()a,b(,X) ,Y].
L e t u s denote by
0
t h e mapping
a
@
F a ; @ i s obviously
linear.
a ) @ is i n j e c t i v e , i . e .
a # 0 i m p l i e s Fa # 0 ; indeed: # 0 t h e r e e x i s t t E ) a , b ( and x E X such t h a t a ( t ) x # 0 ; hence i f w e t a k e f = x ) ~ , x~~)G - ( ) a , b ( , X ) w e have F,(f) # 0 s i n c e if
ci
(*I because f o r every
Fa(~)a,t]x) = a ( t ) x
qE
rY
w e have
THE INTERIOR INTEGRAL
since
q[a(an)x]
o
=
an < a
for
9
b) I n o r d e r t o prove t h a t
(1
59
a(t)x] =
o
. i s s u r j e c t i v e w e have t o
@
[
t h e r e i s an L [Ga , b , X ) ,Y] such t h a t F = Fa. By ( * ) w e know t h a t SVoo()a,b(,L(X,Y)) for i f t h e r e e x i s t s such an a w e have c c ( t ) x = F[X]a,tjx] a l l t ~ ) a , b ( and a l l X E X ; l e t u s t a k e t h i s a s t h e d e f i n i -
show t h a t f o r every
F
t i o n of a. i) a ( t ) E L ( X , Y ) ;
q[a(t)x-a(b
XEX
)XI = 9
nuous, f o r every
indeed, f o r every
w e have
9
0
if
qEry
t >b
€or
t < a
for
t > b q (iii) ~ E S V( ( a b
qi
indeed, s i n c e
F
is conti-
there e x i s t
f ~ ~ - ( ) a , b ( , X i) f; w e t a k e
f = xlart]x
w e have
and
9
xi€ X ,
qEry
q E r y t h e r e i s an [aq,bq) c ] a , b [ such w e have q [ a ( t ) x ] = 0 i f t < a and
ii) For every that for a l l
E
.
I(xi((\< 1, i =
) , L ( X , Y ) ) ; indeed: 1 , 2 , ...,I dl w e have
q t 9
For
d€m,
(aq,bq] and
THE I N T E R I O R INTEGRAL
60
Hence by ( i ) ,(ii)and (iii)w e have a~ Svo0()a,b(,L(X,Y) 1 .
( i v ) Fa = F from
because b o t h a r e l i n e a r continuous operators
into
G-()a,b(,X)
t h a t by ( * ) t a k e t h e same v a l u e
Y
on t h e e l e m e n t s of t h e form a t o t a l s u b s e t of Let
G-
X] a , t]
(1 a , b [ , X ) .
be a Banach space and
X
and t h e s e elements form
x E c ~ O C ( ) a , b ( , X ) i f f o r every
x: ] a , b [
(c,d)
C
)a,b(
-
X; we w r i t e
w e have
co([ctdltx)
(c,d]
REMARK 3 . The analogous of Theoram 3.12 i s t r u e i f w e r e p l a c e r e s p e c t i v e l y by G ( (a,b) ,X) , G- ( [ a , b ) , X I , co ( [ a h ] ,X) G(]a,b(,X) Let
u: ) a , b (
, G-(]a,b[,X) , cAoC(]a,b[,X).
X
be a Banach space and L(X,Y)
we w r i t e
UE s
following p r o p e r t i e s a r e s a t i s f i e d : 1) For every
f o r every
THEOREM 6 . 7 .
mapping
ry
w e have
XEX
2 ) sq[u] <
qE
a SSCLCS; given
Y 00
()a,b[,L(X,Y))
there e x i s t s q(.(t)x]
= 0
a.
Let
X
b ] such t h a t La9, 9 if t $ (aq ,bq) *
be a Banach dpace and
-
i f the
Y
a SSCLCS; t h e
u ~ s ~ ~ ( ) a , b ( , L ( X , Y ) ) FUE L[col o c (>a,b(,X) ,Y]
an i n j e c t i v e l i n e a h a p p l i c a t i o n o d t h e d i h 4 . t v e c t o h dpace o n t o t h e decond, whehe d o h x E c A o c ( ) a , b ( , X ) we dedine
i d
we have
u ( t ) x o = FuLltlxo]
d o h evehy
t E)a,b[
The proof follows t h e s t e p s of t h e Theorem 6 . 6 t h e Theorems 5.5 and 5 . 4 ) .
and
X ~ X E
.
(see a l s o
I n a n analogous way a s from t h e Theorems 5.1 and 5.5 follows t h e Theorem 5 . 6 , from t h e Theorems 6 . 6 and 6.7 lows t h e
fol-
61
THE I N T E R I O R I N T E G R A L
Let
THEOREM 6.8.
be a Banach bpace and
X
Y
a SSCLCS; t h e
mapping ( a , 4 E SVoo()a,b[,L(X,Y))
soo()a,b[,L(X,Y))
x
[
F = Fa+FUE L [G () a , b ,X) ,Y]
-
(1
(= L [G- (> a ,b [ ,x) ,YI x L [cAoc a , b [ , X ) ,Y] ) i b an i n j e c t i v e eineah a p p e i c a t i o n 0 6 t h e 6 i h A X v e c t o h s p a c e o n t o t h e s e c o n d , whehe d o h evehy f ~ G ( ) a , b [ , X ) w e d e d in e
b -
Fa(f)
=
* d a ( t ) * f(t)
and
t €)a,b(
and
and
Y = G(R,X),
F(f) (t) = f(t+p) w e have
=
1
u ( t ) [ f ( t ) - f (t-111;
u ( t ) x = Fhtt1x]
do& eVehy
XEX.
+
= f (a-)
2. Take
FU(f)
actcb
a we have a ( t ) x = F L
-
p > 0
f ( t ) for
a ( t ) x = F[x)a,t)x]
[f ( a ) - f (a-I]
.
and F E L [ G W , X ) ] fcG@t,X). For t e R
E GOR,X)
d e f i n e d by
and
XEX
and
u ( t ) x = FIXIt}x] E G C R , X )
hence f o r
UER
THE INTERIOR INTEGRAL
62 w e have
The Theorem of Helly extends too:
T H E O R E M 6.9. Let
(E,F,G)
be a LCBT
SBoo()a,b[,E)
and ao: ] a , b (
01)
q E
F O h eVLLhy
~
buch t h a t a l l bame
intehval 021
E
3
and
2
a d i l t e h on
buch t h a t
H E 9
t h e h e e.Xi6.t
3
and
M > 0 q
H have t h e i h q-buppoht contained i n t h e
[aq,zq]
lim a ( t ) y
rG
+E
c)a,b
(
with
= a o ( t ) y doh
SBs r [ a Ibq)
aLl
Mq
and
t~]a,bf
*
y€F.
T h e n we h a v e poht
f
E
1 ) ao~SBoo()a,b[,E) and doh e v e h y q E r G t h e q - b u p .a i b contained i n (aq,bq) with
06
G()a,b(,F). The proof follows t h e s t e p s of Theorem 5.9. The theorem
s u g e s t s t h e following d e f i n i t i o n
Let a filter
X
3
b e a Banach space and on
a
Y
SSCLCS; w e say t h a t
SVoo()a,b[,L(X,Y)) 0-convehgeb
a E SVoo()a,b(,L(X,Y)), and w e w r i t e
a
0
p e r t i e s u l ) and 0 2 ) are s a t i s f i e d .
U * ao, f
to i f t h e pro-
The following theorem has a proof analogous t o t h a t of Theorem 5.10
THEOREM 6.10. Let x
be a Banach b p a c e and
Y
a SSCLCS;
WQ
have
L [G-
(1a ,b (,XI ,G
moae p h e c i ~ e l y
()
c ,d [ ,Y 13
d~G(]c,d[,SV&(]a,b(, L ( X , Y ) ) ) i b
= G [] c ,d [ ,SVzo (1a ,b [ ,L ( X , Y ) ) ]
-
Fd
E
an i n j e c t i v e lineah a p p L i c a t i o n
onto t h e becond, w h e u doh
f E G-
L[G-(]a,b(,X) ,G(]c,d(,Y)] 04
t h e d i h b t vectoh bpace
(1a , b [,XI
we d e d i n e
63
THE I N T E R I O R I N T E G R A L
.
(t)
XI
REMARK 4 . We define
A(t,a) = J,(t)(a); it is easy to see that +L(X,Y) is characterized by the fol-
then A: )c,d[x]a,b[ lowing properties: (SVu) - A is locally uniformly of bounded semivariation in the second variable (i.e. for any
[z ,a] x [z ,5]
c
] c ,d [x)
we have AtE SV ( [ i , g ) ,L(X,Y)) every q c ry we have -bup- SV csttd
a ,b
[
-
(G') A is weakly regulated as a function of the first variable (i.e. for every s~)a,b[ aLd X E X the function t )c,d( A(t,s)x€Y is regulated, that is, has only discontinuities of the first kind). I-+
REMARK 5 . Still apply the coments of Remark 2 .
REMARK 6. In Chapter I11 we will apply Theorem 6.10 with Y=X. APPENDIX
(i.e.
Let 1
P
X +
1
-
P'
and =
Y
1 < p <
be B a n a c h s p a c e s ,
11. For
f E G((a.b),Xl
a n d i t is i m m e d i a t e t h a t t h e m a p p i n g
i s a n o r m . We d e n o t e b y
-
( (a,b>
,XI
m
and
we d e f i n e
fEG-[(a.b).Xl t h e space
GLP endowed w i t h t h i s norm3 t h i s s p a c e i s n o t k o m p l e t e p l e t i o n is t h e space
o f functions
Lp([a,b),Xl
p'=
W
G - ( [a,b)
P-1
IIfllp .XI
( i t s com-
o f t h e equivalence classes
t h a t a r e p - i n t e g r a b l e i n t h e sense o f Bochner-
Lebesguel. I n t h i s a p p e n d i x we e x t e n d t h e m a i n r e s u l t s o f 1 5 4 , 5 6 t o t h e spaces For
a:
[a,b)
+L(X.YI
we d e f i n e
and
THE I N T E R I O R I N T E G R A L
64
+ L(X,Y) I
S V ~ ’ ~ ( a , b ) . L [ X , Y I l = ~ a : (a,b)
THEOREM 6.11. For
a € S V E ’ I( a , b )
PROOF. a 1 F o r
F
dED
and
SV[a]6
x E X
i
with
I)xi\I
we h a v e
The c o n t i n u i t y o f
follows from
a
Ila[t)-a(sl\/ c b)
/t-sIP
F o l l o w s f r o m Theorems 4 . 1 2
cl For
Id,clE
D
we h a v e
hence t h e r e s u l t f o l l o w s
[a]<
m}
f E G ( [a,b] , X I
Ib-aIPSV
P’
[a].
b ( =~ J Ia d a ( t l . f [ t I .
~
and
and
,L(X,YlI
P’
-1
ue have a) a ~ b S v ( a~ , b( ) , L ( X , Y I )
b) There e x i s t s
a ( a l = O and S V
from
d l I t f o l l o w s f r o m c).
s v P l [a]. and 1 . 2 .
c 1, i = l , Z ,
...,I
dl
THE I N T E R I O R I N T E G R A L THEOREM 6 . 1 2 .
65
The mapping
a E SV~'((a,b],L(X,YIl
Fa€L[G-
([a,b),XI,Y]. LP
is an i s o m e t r y ( i . e . 11 Fa 11 = S V p space o n t o t h e second, where f o r Fa[fl
we h a v e
actlx
=
F,(fl
t h e mapping
@
F E L[G-
hence
((a,b)
Q
i s w e l l defined.
14111.
i = 1,2 , . . . , I d ]
i s s u r j e c t i v e we p r o v e t h a t S V E ' ( (a,b)
,L(X,YIl
a(t)x = F[x)~,~]x].
since
I I a [ t ) x l l = IIFCX a t
( i i l a E S V E ' ( [a,b]
CJ
I n t h e u s u a l way
( s e e Theorem 5 . 1 1 .
t h e r e i s an a
, X I ,Y]
( i l a ( t 1 E LLX,YI
[a]
by Theo-
((a,b],XI,Y]
is i n j e c t i v e
0
LP s u c h t h a t F = F a ; we d e f i n e
P'
Fa;
a
P
b l I n o r d e r t o show t h a t
SV
t)e d e f i n e
Fa[x)a,t)~].
\ / F a l l <SV[a]1
hence
,XI
i s w e l l d e f i n e d a n d we h a v e
one p r o v e s t h a t
every
of t h e first Banach
f E G( [a,b)
da(tl-f(t1;
F a € L[G, with
[a]
1."
=
PROOF. a1 L e t u s d e n o t e b y rem 6 . 1 1
I
-1
l l ~ l l l l x ) a , ~ ~ l =l pI I F l l ( t - a l P
,L(X,YII:
for
d E D
and
xi€
IIXII
X,
we h a v e
<
IIFII.
( i i i l Fa = F
since both are l i n e a r continuous
t h e same v a l u e o n t h e e l e m e n t s
t E [a,b),
and t a k e x E X.
which form a t o t a l s e t i n L e t u s show t h a t
t h e theorem above extends a s i m i l a r
THE I N T E R I O R INTEGRAL
66
theorem o f Bochner and T a y l o r rem 6.14 If
given for
[B-T]
i s a B a n a c h s p a c e i n [B-T]
Z
-
V p ' ( (a,b),Zl
{a:
is given the follow-
+Z I
(a,b)
V
P ' [a]
<
m)
1
Id1 l I a ( t , l - a [ t
=
w &D [ i c= l
V:'((a.b),Zl
Iti-ti-l =
{a
THEOREM 6 . 1 3 . V E ' ( [ a , b ) , X ' l = SVPl
i-ll;pjF'
a(a1 =
01.
and
SV~'([a,b),L(X,ClI
C1.'
by t h e H d l d e r i n e q u a l i t y ;
hence
V
[a]
P'
SV P'
Reciprocally,
hence
I
Vp'[(a,b),Z) =
=
IP'-
PROOF. I t i s e n o u g h t o show t h a t
have
C [Theo-
=
bellow:
ing definition
v P ’ [.I
Y
we r e c a l l t h a t f o r
= SV
P'
[a].
We h a v e
[a] < V P l [ a ] .
"i, . . . , x i
ldlE
X'
we
67
THE I N T E R I O R I N T E G R A L
V
hence
P’
[a] c S V p
Theorems
THEOREM 6 . 1 4 .
6.12 G-
[a]. and 6 . 1 3
[[a,b).Xl’
LP
F o r t h e spaces
imply 1 V:’([a,b),X*l.
SV~((a,b),L(X,Yll
t h e analogous o f
the
Theorem o f H e l l y i s t r u e :
L e t 2 be a f i Z t e r on S V ~ ~ ( ( a , b ) , L ~ X , Y l l and such t h a t -+ L ( X , Y l 0 1 ) There e x i s t s H€$ and M > 0 w i t h S V [a] 6 M f o r
THEOREM 6 . 1 5 . a o : (a,b)
P’
a € H. 02) eim a ( t ) x = a o [ t ) x
for a l l
J
t E (a,b)
and a22
xEX.
Then we have
f E G ( (a,b)
.XI.
The p r o o f
follows the steps o f the proof of
We s a y t h a t a f i l t e r
verges t o
3
on
SV~((a,b),L[X,YlI
aoE SV~’((a,b],L[X,Y11,
a n d we w r i t e
t h e p r o p e r t i e s 011 a n d a21 a r e s a t i s f i e d . denotes t h e space vergence.
SVE’C ( a , b ) , L ( X , Y I l
S V E ”‘(
a
O-E-
+
(a,b)
ao, i f
.L[X,YII
endowed w i t h t h i s c o n -
We h a v e
THEOREM 6 . 1 6 . L[Gi
Theorem 5 . 9 .
Let
((a,b).XI,G(
X
and
[c,d],YI]
P
more p r e c i s e l y , t h e mapping
Y
be Banach s p a c e s ; we have
’ G~[~.d).SV~”‘~(a.b],L~X,Yl~l
68
THE I N T E R I O R I N T E G R A L
of t h e f i r s t Banaoh s p a c e o n t o t h e s e c o n d , w h e r e f o r e v e r y
Q
we d e f i n e
f E G-([a.b],Xl
JA(tl(ulx
( f l c t l
=
5
0
for
t E (c,d),
T h e p r o o f f o l l o w s t h e s t e p s o f t h e p r o o f o f T h e o r e m 5.10.
REMARK 7 . I n a n a n a l o g o u s way a s was d o n e i n R e m a r k 8 we fine
A:
(c,d)x(a,b)
+L(X)
by
A(t,ol
-J[tl[ol;
A
dei s
characterized by the following properties:
-
[SVu 1 P' a function
we h a v e [G'l
A
i s u n i f o r m l y o f bounded p ' - s e m i v a r i a t i o n
o f t h e second v a r i a b l e ,
At€
-
i s weakly
f o r every
as
t E (c,d)
bup
SV [At] < m. c x t ~ d r e g u l a t e d as a f u n c t i o n o f t h e f i r s t
SV~'((a,b),L(X,Yl)
A
i.e.,
with
variable.
REMARK 8. I n a n a n a l o g o u s way o n e g i v e s r e p r e s e n t a t i o n t h e o r e m s for
L[GL
L [GiP( stc.
(.,El
((a.b),XI,G(K,Y)]
, X I .G( ( c , d ) . Y
where
11,
for
K i s a compact space, f o r -1oc L [GL ( ) a , b , X I . G o c . d (.Y I] P
[
CHAPTER
I1
The Analysis o f Regulated Functions 5 1 - T h e theohem 0 6 %hay and t h e 60xtnuLa A
-
X
Let
be a normed space and
06
UihiCkdCt
a Banach space;
Y
given a f u n c t i o n h:
we w r i t e
[c,d]
x
(a,b]
+L(X,Y)
he GU((c,d)x(a,b), L ( X , Y ) )
if
i s regulated
h
a f u n c t i o n of t h e f i r s t v a r i a b l e ( i . e . , hsE G ( ( c , d ) , L ( X , Y ) ) S E ( a , b ) ) and
f o r every
as
i s uniformly of bounded semivarwe i a t i o n i n t h e second v a r i a b l e (i.e., f o r every t E [c,d) have ht€ S V ( ( a , b ] , L ( X , Y ) ) and 6 u p SV[ht] < m ) ; hence h is h
cGtbd bounded (see Remark 8 of 55 of Chapter I )
.
T H E O R E M 1 .l. T h e t h e o r e m o f B r a y Let x be a nohmed 6 p a c e and Y , Z Banuch 6 p U C e 6 . Given a t S V ( [ c , d ) , L ( Y , Z ) ) , h GU((c,d)x(a,b), L ( X , Y ) ) and g € G ( [ a , b ) , X ) 10h w e have gE G ( [a,b) , L ( X ) I]
-
(1)
J
b
a
d
*..[I
1
d
*da(t)-h(t,s)).g(s) =
c
[I
b
*da(t)
C
*dsh(t,s).g(s)]
a
I n o r d e r t o prove t h e theorem of Bray w e need two lemmas.
L E M M A 1.2. W i t h t h e S E (a,b)
we dedine
FIE SV( (a,b)
,L(X,Z)
1
hypothe6i6
E(s)
06
Theoarem 1 . 1 ,
d
= Jc *dcr(t). h ( t , s ) ;
d o h euehy
t h e n we huue
and
SV[iiI
4 SV[a]
b u p SV[ht]. c
PROOF. By Theorem 1.4.12
K ( s ) i s w e l l defined s i n c e
h E S V ( (c,d) , L ( Y , Z ) )
and
hsE G (
,Y)
.
70
T H E A N A L Y S I S OF R E G U L A T E D F U N C T I O N S
[ I
For d € D a , b have
xi€ X
and
06
LEMMA 1 . 3 . U i t h t h e h y p o t h e b i b t E [c,d]
g(t)
we d e d i n e
iEG((c,d),Y)
[oh
t l , i = 1,2,.
Theohem 1 . 1 ,
.. ,I d ( w e
doh e v e h y
= / I * d s h ( t , s ) - g ( s ) ; t h e n we h a v e
g€G((c,d),L(X,Y))]
IlSll
(4)
IIxill
with
and
b U P SVtht1 11411. cstsd
PROOF. By Theorem 1 . 4 . 1 2 g ( t ) i s w e l l d e f i n e d s i n c e h t E SV ( [a,b) ,L ( X , Y ) 1 and g € G ( (a,b] ,X) [or g E G ( (a,b) ,L(X)); c f . Theorem 1 . 4 . 4 1 . I n o r d e r t o prove t h a t g i s r e g u l a t e d
we w i l l
show t h a t i f
t,+tE
g(t+)
(c,d(
= Lim
n
there exists
g(tn)i
for i n c r e a s i n g sequences w e have an analogous r e s u l t .
By t h e
hypothesis made on h i n Theorem 1.1, f o r every S E (c,d> t h e r e e x i s t s h ( t + , s ) = L i m h ( t n , s ) and t h e r e e x i s t s M such n t h a t SV[htn) ( M f o r every n; hence by t h e Theorem of
Helly (1.5.8) w e have SVbt+] ( M 1 g € G ( (a&) J ) [g G ((a,b) , L ( X ) 1
-g ( t n )
= (*dshtn(s) . g ( s )
a
+
and f o r every
Ib
-dsh t+ ( s ) . g ( s ) =
g(t+).
a
( 4 ) follows from c) of Theorem 1 . 4 . 1 2 .
of
PROOF OF THEOREM 1 . 1 . We w i l l prove t h a t both members (1) are w e l l d e f i n e d and a r e l i n e a r continuous €unctions
of g [a) and b) bellow]. Afterwards [c) bellow] i t w i l l be enough t o prove (1) i f g = Lor xla,aluJ xla,alx where a € (a,b) and xEX CUE L(X)] s i n c e the set of t h e s e
THE ANALYSIS functions is total i n
OF REGULATED FUNCTIONS
G ( [a,b) ,X)
[G ( ( a , b ) ,L(X))]
71
.
a ) From Lemma 1 . 2 i t f o l l o w s t h a t t h e f i r s t m e m b e r of (1) i s w e l l d e f i n e d anddepends c o n t i n u o u s l y on g s i n c e b
d
b
a
a
C
b) From Lemma 1 . 3 i t f o l l o w s t h a t t h e second m e m b e r o f (1) i s w e l l d e f i n e d and depends c o n t i n u o u s l y on g b e c a u s e w e have d
b
I l J * d a ( t )[ J - d s h ( t , s ) . g ( s ) ] C a
(2)
1)
SV[a]llgll
4
c ) L e t us c a l c u l a t e b o t h s i d e s o f (1) for
a
C
C
g = ~l,,~lx:
C
a
C
b o t h second members a re o b v i o u s l y e q u a l .
REMARK 1 . If i n Theorem 1.1 w e r e p l a c e t h e h y p o t h e s i s "regul a t e d " for h and g by f t c o n t i n u o u s ' f w e may r e p l a c e J* by
J
and i n t h e n u m e r i c a l c a s e ( i . e . X
Y
Z
IR) t h e
cor-
r e s p o n d i n g theorem w a s proved by Bray [B].
COROLLARY 1 . 4 . W i t h t h e h y p o t h e b i b 04 Theohem 1 . 1 we t a k e [c,d] [a,b) and d o h S E (a,b) we d e d i n e
I, S
fi(s) = We h a v e
fiE
SV( [a,b) , L ( X , Z ) )
*da(t).h(t,s).
and
72
whehe
THE ANALYSTS (Ih((h=
OF REGULATED FUNCTIONS
bup llh(t,t)\l.
a
ho(t,s)
p r o p e r t i e s as
i n Theorem 1.1 and
h
svrh:i
Y(s-t)h(t,s);
Ilh(t¶t)ll
+
"(t,b)
The r e s u l t f o l l o w s from Lemma 1 . 2 s i n c e REMARK 2 .
ho
Thtl h
may b e n o t r e g u l a t e d even when
continuous ( s e e however Theorem 1.13).
same
has t h e
*
KO. a
or
P R O O F . I t f o l l o w s immediately from t h e d e f i n i t i o n of
h
is
I"*
Ja THEOREM 1 . 6 . W i X h Xhe h y p o t h e d i d 06 T.heohem 1 . I we t a k e [c,d) (6)
(6’)
(7)
= (a,b].
W e have
THE ANALYSIS
OF REGULATED FUNCTIONS
PROOF. W e define
ho(tys)
p r o p e r t i e s of
i n Theorem 1.1. Hence w e r e p l a c e
h
Y(s-t)h(t,s).
ho
73
h a s t h e same h
by
i n (1) and a p p l y 9 ) o f Lemma 1 . 5 i n o r d e r t o o b t a i n ( 6 ) .
get (6')
ho We
i n an a n a l a g o u s way. (7) f o l l o w s immediately from
(6) i f w e a p p l y ( 2 ) .
If we w r i t e
and a p p l y r e s p e c t i v e l y (7) and ( 2 ) t o t h e s e two i n t e g r a l s w e obtain ( 8 ) .
(9)
COROLLARY 1 . 7 .
G E SV( [a,b)
ltj
so
i s a m a j o r a t i o n o f (8).
h(s)
16
,L(X,Z))
a
WQ
IS
*da(t).h(t,s)
=0
and d o h e v e h y
have
[.,6)c
then
(a,b)
we h a v e
74
THE ANALYSIS
OF
REGULATED F U N C T I O N S
P R O O F . The proofs follow immediately from the Corollary 1.4 and from (8!, ( 9 ) and ( 7 1 , respectively, if we recall that by 1.5.2 we have
I, t
COROLLARY 1 . 8 . a] 16 gl(t) = haw e
i1e
G ( (a,b] ,Y>
b) Id
[or
g2(t)
g2= G ( [a,b)
,Y)
[or
-dsh(t,s)-g(s)-h(t,t)g(tt)
i1e G ( [a,b) ,L(X,Y))].
i,"
dsh(t,s).g(s)
g2E
+ h(t,t)*g(t-) we have
G( (a,b) ,L(X,Y))I.
P R O O F . We take T C E (a,b( and Then by (6’) there exists
B =
xla,.r(
IyE SV( [a,b] ,L(Y) 1.
but
In an analogous way one proves the existence of g-2(T+) and E 2 ( ~ - ) .
E’(T-),
-1 -2 REMARK 3 . The summands of g and g are not necessarily regulated functions since ht is not regulated in general.
PROPOSITION 1.9. T h e formula o f s u b s t i t u i t i o n a and
(10)
SV([a,b)
g~ G ( [a,b) ,XI
!,"*ds
,L(Y,Z)),
[ oh
[ j:*da(t)h(t)
g
1
hEG((a,b)
G ( (a,b) ,L(X))
.g(s)
c
-
16
,L(X,Y))
3
we have
=da(t).h(t
)g(t).
P R O O F . The result follows from (6) if we take there
h(t,s) E h(t).
T H E A N A L Y S I S OF REGULATED FUNCTIONS
The f o r m u l a o f D i r i c h l e t
THEOREM 1 . 1 0 .
06 Theohem 1 . I we t a k e t h e n we h a v e
[[
(11)
J:mda(t)
PROOF. Since b lads[
g
I,
(c,d]
= (a,b)
-
With t h e hypothedin and g COntiflUOUb;
1
.h(t,s) dg(s) = [-do(t)
1
[[h(t,s)dg(s)
i s c o n t i n u o u s , b y (1) a n d by 1 . 1 . 2 w e h a v e
b-da(t)h(t,s)]g(s)
\:*da(t)
obtain
j:-da(t).h(t,s)
I
[ [dsh(t,s)*g(s) 1 i n both i n t e g r a l s w e
and u s i n g i n t e g r a t i o n by p a r t s i n
I[
75
dg(s) = l I * d a ( t )
[ j:h(t,s).dg(s)
1.
If w e t a k e h o ( t , s ) = Y ( s - t ) h ( t , s ) t h e n ho h a s t h e same p r o p e r t i e s as h i n Theorem 1.1; h e n c e , w e may r e p l a c e h by ho
i n t h e l a s t e q u a l i t y and w e g e t
(11).
REMARK 4 . Theorem 1 . 1 0 may a l s o b e p r o v e d by u s i n g (6) and i n t e g r a t i o n by p a r t s . C O R O L L A R Y 1 . 1 1 . W i t h t h e h y p o t h e n i d 06 Theohem I . 1 0 we d e d i n e
then
id
hegulated.
P R O O F . I t f o l l o w s from b ) o f C o r o l l a r y 1 . 8 u s i n g i n t e g r a t i o n by -2
p a r t s i n t h e i n t e g r a l t h a t appears i n t h e d e f i n i t i o n of
g -
rb REMARK 5 . If t h e f u n c t i o n
g is only regulated, may n o t e x i s t (see Theorem 4 . 2 2 o f C h a p t e r I ) . COROLLARY 1 . 1 2 . W i t h t h e h y p o t h e b i d [c,d] = [a,b]; t h e n we have
P R O O F . We d e f i n e
06
t
1,- h ( t , s ) d g ( s )
Theohem 1 . 1 we t a k e
k(t) = j a g ( s ) d s . By C o r o l l a r y 1 . 4 and 1.4.16
t h e f i r s t i n t e g r a l i n (12) i s e q u a l t o
76
THE A N A L Y S I S OF R E G U L A T E D F U N C T I O N S
Again by 1 . 4 . 1 6 t h e second i n t e g r a l i n (12) i s e q u a l t o jab*da(t) [ / z h ( t , s ) d k ( s )
1.
Hence t h e r e s u l t f o l l o w s from Theorem 1 . 1 0 s i n c e t inuous
.
k
i s con-
THEOREM 1 . 1 3 . W i t h t h e h y p o t h e b i b 06 T h e o h e m I . I w e (c,d) [a,b); we d u h t h e h b u p p o b e ,that
By (8) ( w i t h
-
a = s1
and
s,)
take
and from a) and b ) follows
t h a t 6 i s c o n t i n u o u s . L e t us now prove (13) : S i n c e ht , t E [a,b) , are c o n t i n u o u s f u n c t i o n s (6) becomes JIds
[\I
da(t)-h(t,s)]g(s)
h,
\Ida(t) [h(t,t)g(t-)
+ /Idsh(t,s)*g(s)
a and
+
1.
Using i n t e g r a t i o n by p a r t s i n b o t h i n t e g r a l s (13).
Ids
we obtain
THE A N A L Y S I S OF
77
REGULATED FUNCTIONS
C O R O L L A R Y 1 . 1 4 . W i t h t h e Aame h y p o t h e d i b a6 i n Theohem I . 1 3 we d e d i n e
We have a)
i
i b kegutated;
ContinuouA id
i b
rt
(14)
h
ib
continuoub.
(14’) b) L A hegueated; c o n t i n u o UA ;
t
continuoud i d
i b
and
g
h
ahe
~~dSh(t+."*g(s).
The frrst and the second integrals go to zero when e+O, respectively by the Theorem of Helly (1.5.8) and by the hypothesis b) of Theorem 1.13; hence (14). In an analogous way one proves (14’). (14) and (14’) show that is continuous if h is continuous. b) Using integration by parts we have hence (a)
z(t)
h(t,t)g(t)
g(t+> = h(t+,t).g(t+)
-
h(t,a)g(a)
-
-
h(tt,a).g(a)
i(t),
-
i(tt).
Using again integration by parts, the expression for g( tt 1 becomes
78
THE A N A L Y S I S
O F REGULATED F U N C T I O N S
and i f w e compare ( a ) and ( B ) w e o b t a i n (15). I n an analogous
way we o b t a i n (15’). (15) and (15’) show t h a t i f g and h are c o n t i n u o u s .
i s continuous
-
COROLLARY 1 . 1 5 . W i t h t h e aume h y p o t h e a i d ab in Theohem 1 . 1 3 t h e dunction h A : t E [a,b) h ( t , t ) E L(X,Y) LA h e g u e a t e d . P R O O F . W e t a k e g = I X E G( [a,b] , L ( X ) ) ; h e n c e , w i t h t h e n o t a -1 t i o n s o f C o r o l l a r y 1.8.a) and 1 . 1 4 w e have hb = g - g hence t h e r e s u l t s i n c e g and g1 are r e g u l a t e d .
-
REMARK 6 . One c a n , o b v i o u s l y , g i v e an e l e m e n t a r y d i r e c t proof o f C o r o l l a r y 1 . 1 5 or, more g e n e r a l l y , one can prove d i r e c t l y (a,b)x(a,b) t h a t t h e r e s t r i c t i o n of h t o any segment of ( i . e . , t h e f u n c t i o n t w h ( t o + t c o s 0 , so+t s i n e ) ) i s r e g u lated.
REMARK 7 . I t i s e a s y t o see t h a t a l l t h e r e s u l t s o f t h i s § are s t i l l v a l i d i f w e r e p l a c e t h e h y p o t h e s i s g c G( (a,b) , L ( X ) ) by PEG([ a b , L ( W , X ) ) where W i s a normed s p a c e . ¶
]
REMARK 8. I t is n o t d i f f i c u l t t o see t h a t a l l t h e r e s u l t s o f t ' h i s § a r e s t i l l v a l i d i f 2 i s a SSCLCS (working w i t h t h e seminorms q~ rz and t h e c o r r e s p o n d i n g s e m i v a r i a t i o n s ) . REMARK 9 . More g e n e r a l l y t h e r e s u l t s o f t h l s I a r e v a l i d i f instead o f L(W,XI ( o r L ( X 1 o r X I and L ( X , Y I and L I Y , Z l we c o n s i d e r s y s t e m s o f s p a c e s w i t h b i l i n e a r mappings r e l a t e d i n an a s s o c i a t i v e way ( s e e [ H - D S ] ] .
REMARK 1 0 . F o r g : [a,b) + X t h e n , w i t h obvious adapt a t i o n s , a l l r e s u l t s of t h i s § b u t c o r o l l a r i e s 1 . 8 , 1.11 and 1 . 1 5 a r e s t i l l v a l i d if we suppose o n l y t h a t h i s weakly r e g u l a t e d as a f u n c t i o n of t h e f i r s t v a r i a b l e (and s a t i s f i e s (SVU 1); i n t h i s case, f o r i n s t a n c e , i n Lemma 1 . 2 (and i n Theorem 1.1 e t c . ) t h e i n t e g r a l
jd C
- d a ( t ) . h ( t ,s)
T H E A N A L Y S I S OF R E G U L A T E D F U N C T I O N S is defined in the weak sense, i.e., f o r every exists
Id
E(t)x
C
-
etc.
XE
79 X
there
*da(t).h(t,s),
g: [a,b] L(X) [or g: (a,b) * L ( W , X ) ] all the results of this 8 are still valid if we replace everywhere the property "regulated" by "weakly regulated". For
- E x t e n b i o n t o open
52
-
A
Let
intekvatb
be a normed s p a c e and
X
given a function h: we w r i t e
(.,a]
]c,d[
X]a,b(
hEGU()c,d[X)a,b(,
x (i,b]C]c,d(
L(X,YII
a Banach
space^
L[X,YI
i f f o r every
we h a v e
x)a,b[
hE
-
Y
Gu[(c,G)
X
(:,El,
The p r o o f s o f Theorem 2 . 1
L(X,Yll.
t o Corollary 2.5 that follow
are a n a l o g o u s t o t h e p r o o f s o f t h e c o r r e s p o n d i n g r e s u l t s o f
$1.
T H E O R E M 2.1. 2
Let
b e a normed s p a c e , Y
X
a SSCLCS. G i u e n
g E G[)a,b(.
a
SVoo[)c,d(,
and
L[XlI]
L[Y,ZlI,
hE Gu()c.d(
a Banach s p a c e and
[or
g E G[)a,b[,XI
X)a,b[,
L[X,YII
that
Satisfie8
(;,:I
for every (c,d) C ]c,d( there exists (i,b)C such t h a t f o r t E we h a v e h [ t , s l = 0 s and h ( t , s ~ = ~ [ t , b i~ f s > b
(00)
]a,b[
if
t h e n we h a v e
a
gioen
[i.b]
C
rz
[;,dl
and correspond t o q E
C
(;,dl
a
o o n t a i n i n g t h e q - s u p p o r t of b y (00) t h e n
a, i f
THE A N A L Y S I S OF REGULATED FUNCTIONS
80
LEMMA 2 . 2 . f o r every
W i t h t h e h y p o t h e s i s and n o t a t i o n s o f Theorem 2 . 1 , s E ] a , b we d e f i n e
(
COROLLARY 2 . 4 . W i t h t h e h y p o t h e s i s o f Theorem 2 . 1 we t a k e c o n t < n u o u s ; t h e n we h a v e
a
--c
PROOF. S i n c e rb
by
Ja ds;
C
g
g
a
is c o n t i n u o u s w e may r e p l a c e
rb
Ji
ds
in (11
t h e r e s u l t f o l l o w s using i n t e g r a t i o n by parts.
REMARK 1 . T h e preceding r e s u l t s a r e s t i l l valid if w e r e p l a c e ]a,b[ b y a closed i n t e r v a l [ a , b ) . In t h i s c a s e i t i s e n o u g h L(X,YII, i.e., t h a t f o r t o s u p p o s e t h a t h e GU((c,i)X (a,b), every ( C , i J C )c,d( w e have h E G U t ( c , i ) X ( a , b ) , L[X,YII. COROLLARY 2.5. )c,d( = ]a.b[
W i t h t h e h y p o t h e 8 i s of Theorem 2 . 1 we t a k e and f o r e v e r y s ~ ] a , b [ we d e f i n e
G(SI
-
S
J-du[tl.h[t,s). a
We haue SVoo()a,b(, L(X.211; g i v e n qE c o n t a i n i n g t h e q - s u p p o r t of a, i f (aq,bq) (aq,bq) by ( 0 0 ) ( w i t h c a and b > b
a9
9
9
9
rz )
and corresponds t o then
THE A N A L Y S I S OF REGULATED F U N C T I O N S
81
vhere
06 Dihichtet
B - T h e dohrnuca
T H E O R E M 2 . 6 . W i t h t h e h y p O t h e 8 i 8 of Theorem 2 . 1 we t a k e )c,d[ )a,b( and g c o n t i n u o u s ; t h e n we have
-
b
s
J [ J-da[tl.h[t.s)
[71
a
ho[t,sl
same p r o p e r t i e s a s
THEOREM 2 . 7 . G i v e n a
SVoo[)a,b(,
g e e (]a,b[,Xl
I[ s
a
X,
L(Y,Z)I,
[or
t
b h[t.s)dg[sl]
then
ho
has t h e
H e n c e we may r e p l a c e
a s i n Theorem 2 . 1 ,
Z
h E G U ( ] a , b ( X ]a,b(,
ge C ( ) a , b ( ,
L(XI1I
1
u
a
=
x ] a,
daltl[
h
REMARK 2 . The e x t e n s i o n
by
ho
1
h[t,u)dg(ol
t
h
Z
i n T h e o r e m 2.6.
i n [ 7 1 a n d we g e t
o f the other results o f
c a s e o f open i n t e r v a l s and
I.
(t,~lY(o-tlh[t,a)
s a t i s f i e s t h e same p r o p e r t i e s a s
H e n c e w e may r e p l a c e
and
S E )a,b(
S
a
s] x ] a, s)
L(X.YI1
for every
S
J - d a [ t ~ . h [ t , u l dg(u1 =
ho(t,ul hD
a Y[s-t)h[t,s)
=
and
Y
PROOF. If w e t a k e
then
J
i n Theorem 2 . q .
h
we have (81
j*da[tl[
i n C o r o l l a r y 2.5 and we g e t ( 7 1 .
ho
by
b
-
a
P R O O F . If we t a k e h
dg(s)
(81.
$1 t o the
a SSCLCS i s n o w o b v i o u s .
CHAPTER
Vol t e r r a
Stieltjes-Integral
with Let
X
I11
Linear
Equations
Constraints
b e a Banach s p a c e and
Y
a SSCLCS; i n t h i s
c h a p t e r w e c o n s i d e r systems of t h e form
[
y , f E G (>a ,b ,X) ,
where
F E L ( G o a ,b ,X) ,Y)
K: ) a , b ( x ) a , b (
[
and
L(X)
i s a c o n t i n u o u s f u n c t i o n which s a t i s f i e s t h e p r o p e r t y (SV uo d e f i n e d on 8 1 . I n 61 w e show t h a t t h e r e i s a r e s o l v e n t a s s o c i a t e d t o K ; f o r t h i s purpose
K
need n o t be c o n t i n u o u s b u t o n l y regulated
as a f u n c t i o n of t h e f i r s t v a r i a b l e ; by Remark 1 0 of 81
of
Chapter I1 t h e r e s u l t s of t h i s 8 may even be extended t o t h e c a s e where K i s o n l y weakly r e g u l a t e d as a f u n c t i o n of t h e f i r s t variable. I n 8 2 t h e r e s u l t s o f 6 1 are a p p l i e d t o t h e case of a S t i e l t j e s I n t e g r o - D i f f e r e n t i a l E q u a t i o n and new p r o p e r t i e s o f t h e r e s o l v e n t are found.
I n 6 3 w e s t u d y t h e system (K), (F)
and f i n d i t s Green
function.
REMARK 1 . We w i l l see a l o n g t h i s c h a p t e r t h a t t h e e x t e n s i o n of t h e r e s u l t s t o t h e case o f c l o s e d i n t e r v a l s t o m a t i c and i n 81 w e go t h e o t h e r way around.
[c,d)
i s au-
REMARK 2 . I n o r d e r t h a t (K) makes a s e n s e it i s o b v i o u s l y s l r f f i c i e n t f o r K t o be d e f i n e d o n l y on t h e s e t
r
= { ( t , u >~ ) a , b ( x ) a , b ( 1 t ( u & to or
to& u Gt)
a3
STIELTJES-INTEGRAL EQUATIONS and t h e same a p p l i e s t o t h e r e s o l v e n t
when w e c o n s i d e r
R
t h e e q u a t i o n ( p ) o f 81. I n o r d e r t o s i m p l i f y t h e n o t a t i o n s w e extend
r
from
K
to
)a,b(x)a,b(
or even t o
)a,b(xIR
by
defining K(t,a)=
lK(t,t)
u a t %to
if
1 K ( t ,-to) if If i n
r
K
u s tos
K(t,t)
if
u < t < to
K(t,u)= lK(t,to)
f
if
u>to3 t
i s r e g u l a t e d as a f u n c t i o n o f t h e f i r s t v a r as a f u n c t i o n o f t h e s e c o n d v a r i -
i a b l e and s a t i s f i e s (SVUo)
a b l e ( s e e d e f i n i t i o n b e l l o w or Theorem 1.13 of C h a p t e r 11:
(SVUo) = b ) ) it i s o b v i o u s t h a t t h e e x t e n d e d f u n c t i o n s t i l l s a t i s f i e s (SVuo) and it f o l l o w s i m m e d i a t e l y from 1 1 . 1 . 1 5 that it i s a l s o r e g u l a t e d as a f u n c t i o n o f t h e f i r s t v a r i a b l e ; t h i s would n o t b e t r u e i f w e had o n l y (SV'); more p r e c i s e l y , i f K A : t E ) a , b ( H K ( t , t ) E L(X) w e r e not regulated.
REMARK 3 . E q u a t i o n s o f t h e t y p e ( K ) o c c u r q u i t e n a t u r a l l y ; indeed :
a ) For d i f f e r e n t i a l and i n t e g r a l e q u a t i o n s it i s n a t u r a l
t o work n o t w i t h f u n c t i o n s b u t w i t h e q u i v a l e n c e classes o f f u n c t i o n s : two f u n c t i o n s
y1
and
y2
are e q u i v a l e n t i f w e
have
for a l l
s
and
t ; i . e . , i n s t e a d of w o r k i n g , f o r i n s t a n c e ,
w i t h G ( ) a , b [,XI w e c o n s i d e r t h e q u o t i e n t s p a c e i() a ,b [,XI ( s e e C h a p t e r I, 8 3 ) or t h e s p a c e G - ( ) a , b ( , X ) isometric t o
it (1.3.13).
T h e r e f o r e , as a g e n e r a l i z a t i o n of l i n e a r i n t e g r a l o p e r a t o r s it is n a t u r a l to c o n s i d e r o p e r a t o r s L E L[G-()a,b
t h e n , by 1 . 6 . 1 0
[,XI ,G()c,d[,Y)]
;
[, SVEo (1 a ,b [,L(X ,Y)) )
there e x i s t s a kernel
KEG such t h a t f o r every
(1c
,d
f € G-()a,b[,X)
w e have
84
S T I E L T J E S - I N T E G R A L EQUATIONS b g ( f ) ( t > = ja*dGK(t,~).f(U),
where
K(t,a)x
l k ) a , u ) x ] (t),
t ~ ) a , b [ ,U E ] c , d ( ,
X.
XE
b ) If we m1n.t f u r t h e r t h e o p e r a t o r k? t o have p r o p e r t i e s s i m i l a r t o t h o s e of V o l t e r r a i n t e g r a l o p e r a t o r s , i . e . , t h a t X and t h a t t h e r e e x i s t s a p o i n t t o E ) a , b ( )c,d[ = )a,b(, Y such t h a t f o r e v e r y t E ) a , b ( , L ( f ) depends o n l y on f
f
then t h e o p e r a t o r
l t a k e s t h e form
Now however i n g e n e r a l k ( f ) i s n o t anymore a r e g u l a t e d f u n c t i o n u n l e s s w e impose f u r t h e r r e s t r i c t i o n s on t h e k e r n e l K. Furthermore, w e a l s o want K t o have a r e s o l v e n t and f o r t h i s purpose i t i s n e c e s s a r y f o r K t o b e r e g u l a t e d as a f u n c t i o n of t h e f i r s t v a r i a b l e and f o r t h e f u n c t i o n KA: t E ) a , b (
C,
K(t,t)E
L(X)
t o be r e g u l a t e d ; indeed: i n o r d e r t o c o n s i d e r t h e r e s o l v e n t
I+
e q u a t i o n we have t o work w i t h i n t e g r a l s o f t h e form t d u K ( t , a ) o U(o) where U € G ( ) a , b [ , L ( X ) ) ; s i n c e t h i s i n t e g d - c
0
do n o t change i f w e r e p l a c e K ( t , u ) by K ( t , u ) - K ( t , t o ) suppose f o r a moment t h a t K ( t , t o ) = 0 . Then f o r - r a t0 t a k e U = X ) ~ , ~ ) I ~ € G ( ) ~ , ~ ( , L ( X )w)e ; g e t
I n an analogous way f o r get
T
s to w e t a k e
U
xkyb[Ix
we we
and w e
STIELTJES-INTEGRAL EQUATIONS T
85 k(U)
i s regul a t e d f o r e v e r y U t h e n K i s r e g u l a t e d as a f u n c t i o n o f t h e f i r s t v a r i a b l e and K A i s r e g u l a t e d t o o . Also i n o r d e r t h a t ( K ) h a s a r e s o l v e n t i t i s n e c e s s a r y
Hence, s i n c e
i s a r b i t r a r y we see t h a t i f
f o r t h e equation r t
t o have a unique s o l u t i o n . However i f K s a t i s f i e s t h e nec e s s a r y conditiom;we j u s t found and i s l o c a l l y u n i f o r m l y of bounded s e m i v a r i a t i o n and s a t i s f i e s even (SV3) ( i >does n o t have a unique s o l u t i o n ( s e e t h e Example a f t e r 1 . 3 ) . However t h e c o n d i t i o n
KEGUo
d e f i n e d i n 61 w i l l a s s u r e
t h a t a l l t h i s n e c e s s a r y c o n d i t i o n s are s a t i s f i e d and t h a t
K
has a resolvent.
51 - T h e h e d o t v e n t eq u a t i a n of
06
a V a t t e h h a StieLtjed-integhat
A - L e t X be a Banach s p a c e , R , n o t n e c e s s a r i l y bounded, and
the Volterra Stieltjes-integral
where
y , f EG()a,b[,X)
and
) a , b [ and open i n t e r v a l to E a b We c o n s i d e r
. 1 " equation
K: ) a , b [ x ] a , b [
+L(X)
satis-
f i e s the properties (GI
(SVuo) exists a
-
K i s r e g u l a t e d as a f u n c t i o n of t h e f i r s t v a r i a b l e .
For e v e r y (c,d)c ) a , b ( and e v e r y 6 > 0 such t h a t for a l l s , t E (c,d]
(svUo)e x p r e s s e s t h e s e m i v a r i a t i o n of goes u n i f o r m l y t o 0
E
>0
there
w e have
t h a t i n every
K on an i n t e r v a l o f t h e second v a r i a b l e
with t h e length o f t h e i n t e r v a l , i . e .
STIELTJES-INTEGRAL EQUATIONS
86
It i s e a s y t o see t h a t 1.1. T h e p h o p e h t y
and
(SV')
(sv"): -
(SVu>
that
i m p t i e b t h e phOpe&,tieb
(SVUd)
UP
c
Foh evehy
SV[cyd] [Kt] - Foh
(SVd)
evehy
buch
thehe CXibtb M > 0
[c,d) C ] a , b (
<M. we h a v e
s,tE)a,b(
= 0.
[Kt]
6C0
We r e c a l l t h a t (SV'> s a y s t h a t l o c a l l y K i s uniforml y of bounded s e m i v a r i a t i o n as a f u n c t i o n o f t h e s e c o n d v a r i able.
1.2.
I{
[
Kt
t E) a , b
K has Xhe p h o p e h t y (SVo) LA a c o n t i n u o u b { u n c t i o n .
then
{oh
evehy
bo,t]
S i n c e Kte SV( ,L(X)) t h e i n t e g r a l i n ( K ) i s w e l l d e f i n e d and by II.1.14a) w e h a v e 1.3.
Let
K
A a t i b { Y ( G I and
(SVUO), t h e n
t
It
a ) The { u n c t i a n t € )a,b [ e d,K(t ,a> . y ( a > E X ~ e uL g at e d 0 b l Id K i b continuoub t h e { u n c t i o n
.
t )a,b(
It
ib
t
H
c o n t i n u o u b and a b o t u t i o n onty i d f i b continuoub.
ib
d,K(t,o).y(a)E 0
y
06
X
( K ) i b continuoub
h a s the p r o p e r t i e s (GI (SV’") t h e n f o r e v e r y X E X ( K ) h a s o n l y one s o l u t i o n t h a t y ( t o > = x (Theorem 1 . 6 ) . If however K s a t i s f i e s t h e p r o p e r t i e s (GI, (SV') a n d (SV d 1 t h i s i s no l o n g e r as i s shown by t h e We w i l l p r o v e t h a t when
K
and
and such only true,
STIELTJES-INTEGRAL EQUATIONS E X A M P L E . We t a k e ) a , b ( = 0 and f o r t >
K(0,s)
]-1,1[,
to
87 X = IR. W e take
0,
we define
0
and for t < O w e t a k e K ( - t , a ) K ( t , a ) . Then f o r y ( t o > = 0 t h e equation t y(t) + daK(t,u)y(a) o h a s two s o l u t i o n s ,
= 0
if
t = 0,
y 3 0
y ( t ) = Ag t
and
(= 1
f = 0 and
if
t > O ,
t (1).
= -1 i f
and w e want t o p r o v e t h a t for f G ( ) a , b [ , X ) XE X t h e r e i s one and o n l y one y E G ( ] a , b ( , X ) s o l u t i o n of ( K ) and s u c h t h a t y ( t o ) = x. O b v i o u s l y it i s s u f f i c i e n t t o p r o v e t h e same r e s u l t f o r any c l o s e d i n t e r v a l [c,d) C ) a , b (
In this
§
t h a t contains tosince i f the solution i n tion i n
[;,a)
3
w e have
[c,d)
s o l u t i o n s on t h e i n t e r v a l s I
(.
in )a,b ( R * ) , (R*)
is t h e s o l u t i o n i n
y
[c,d)
’7;
dl ,d)
(c,d)
and
by t h e u n i c i t y o f t h e s o l u y , h e n c e w e can u s e t h e C
1
a,b
[
t o get the solution
The same r e a s o n i n g a p p l i e s o b v i o u s l y t o e q u a t i o n s and o t h e r s considered bellow.
F R O M NOW O N W E W I L L C O N S I D E R A F I X E D I N T E R V A L (c,d) C ) a , b [ C O N T A I N I N G to We d e n o t e by G
( [c ,d] x [c ,d) , L ( X ) ) , or
s e t o f a l l bounded f u n c t i o n s
U:
[c,d]x[c,d)
s i m p l y by G
+L ( X )
, the that
s a t i s f y ( G I , i . e . , a r e r e g u l a t e d as f u n c t i o n s o f t h e f rst v a r i a b l e , t h a t i s , U s e G ( (c ,d] , L ( X ) 1 f o r e v e r y s G (c ,d] i s a Banach s p a c e when endowed w i t h t h e norm
G
UC6
6 IIUII
= bup{llutt,s)ll
1
.
s,t€(c,d]~.
W e d e n o t e by G' t h e vector subspace o f G formed by t h e f u n c t i o n s t h a t s a t i s f y (SVU). GU i s endowed w i t h t h e
norm
IIIUIII
IIUII
+ SVu[Ul
where w e r e c a l l t h a t
STIELTJES-INTEGRAL EQUATIONS
88
T H E O R E M 1.4. G U111 111 i b PROOF. L e t
a Banach Apace.
G u y n E N , b e a Cauchy s e q u e n c e . Then
UnE
uniformly convergent t o a function there exists
n
t t SV [Un-Um]
for e v e r y
<E
t t s sv[un-u
such t h a t f o r
for e v e r y
n,m> n
Guo
R E M A R K 4. I f
KE
w e have
and
E
[c,d)
n >n Un
f o r every
E
. Hence
GU
UE
Gu.
i n t h e norm o f
G' formed by t h e functions W e w i l l show ( P r o p o s i t i o n
i s a closed subspace of
Guo,
0
t
denotes t h e subspace of
Guo
E >
and t h i s i m p l i e s immediately
t h a t s a t i s f y t h e p r o p e r t y (SVuo). 1.14) that
E
is
Un
and f o r e v e r y
t E [c,d)
i s t h e l i m i t of t h e sequence
U
and
E
E
UEG
t E (c,d]
G'. w e have o b v i o u s l y
re-
hence t h e e q u a t i o n ( K ) d o e s n o t change i f e v e n t u a l l y w e
p l a c e K by K - K A y i . e . K ( t , o ) by K ( t , u ) - K ( t , t ) , that is, w e suppose t h a t K i s normalized: K ( t , t ) = 0 . Furthermore, s i n c e K E Guo, by 1 1 . 1 . 1 5 KA i s r e g u l a t e d and t h i s i m p l i e s i m m e d i a t e l y t h a t K-KAE Guo; n o t h i n g o f t h e k i n d would b e t r u e i f w e had o n l y K E G U . B
-
We g i v e now 4 i m p o r t a n t examples o f a n e q u a t i o n ( K ) .
EXAMPLE A
-
W e consider t h e Stieltjes integro-differential
equation
y'
(L')
where ( L ' )
t
A'sy
f'
is a n a b r i d g e d way o f w r i t i n g t h a t w e have
JS
for all
I (.
s , t E a,b
W e suppose t h a t
y,f€G()a,b[,X)
and
AEtSV1oC(]a,b[,L(X) 1
(i.e.
A
i s a c o n t i n u o u s f u n c t i o n a n d f o r e v e r y [c,d) c > a , b (
w e have A € SV( (c,d) ,L(X) 1 ) . I n t h i s case t h e c o n d i t i o n ( SVuo 1 becomes s i m p l y
STIELTJES-INTEGRAL EQUATIONS [A]
f o r every
0
S E
1a b4 .
The e q u a t i o n (L) i s e q u i v a l e n t t o y(t)-y(to) +
dA(u).y(u) = f ( t ) - f ( t o )
f o r every
tE)a,b(
I:t s i n c e it i s o b t a i n e d as t h e d i f f e r e n c e o f i t s v a l u e s f o r and s ; hence ( L ) i s a p a r t i c u l a r i n s t a n c e o f (K).
t
We r e c a l l t h a t (L) or ( L ’ ) c o n t a i n as a p a r t i c u l a r case
t h e o r d i n a r y l i n e a r d i f f e r e n t i a l e q u a t i o n s ; (L) w i l l a l l o w discontinuous s o l u t i o n s ( f o r f discontinuous).
EXAMPLE
B
-
We c o n s i d e r t h e V o l t e r r a i n t e g r a l e q u a t i o n r t
If w e d e f i n e U
K(t,o) = ItB(t,s)ds 0
t h e e q u a t i o n ( V ) t a k e s t h e form ( K ) ; h e r e w e suppose t h a t f o r every t E ) a , b [ t h e f u n c t i o n Bt i s Darboux i n t e g r a b l e (or Bochner-Lebesgue i n t e g r a b l e ) . I n o r d e r for
K
t o be regulated
as a f u n c t i o n o f t h e f i r s t v a r i a b l e it i s s u f f i c i e n t t h a t for every t E ) a , b ( t h e r e e x i s t f u n c t i o n s Btt and Btsuch w e have t h a t for e v e r y s E ) a , b [
and
I n o r d e r t h a t (K) s a t i s f i e s t h e p r o p e r t y (SVuo)
[
s u f f i c i e n t t h a t f o r e v e r y (c,d] c ) a , b t h e r e e x i s t s 6 > 0 such t h a t f o r every S+6
bup ccttd
1
IlB(t,o)l)da <
S-6
it i s and e v e r y E > 0 s E [c,d) w e have E
STIELTJES-INTEGRAL EQUATIONS
90 s i n c e by 1 . 5 . 2
w e have
S+6
These c o n d i t i o n s a r e o b v i o u s l y s a t i s f i e d i f
i s a conti-
B
nuous f u n c t i o n or, more g e n e r a l l y , a l o c a l l y b o u n d e d h e a s u r a b l e ) f u n c t i o n which as a f u n c t i o n o f t h e f i r s t v a r i a b l e i s
regulated ( f o r almost a l l
E X A M P L E C.
s~ ) a , b ( ) .
W e consider t h e d i f f e r e n t i a l equation
A ~ ( A ~ Y )t ' BY = g ' loc
where gEBV ()a,b[,X), BEG()a,b[,L(X)) a n d Ao, A1 s u c h t h a t t h e r e e x i s t and a r e r e g u l a t e d t h e f u n c t i o n s
If w e m u l t i p l y t h e e q u a t i o n by tain A1 ( t) y (t1-A1 ( s y ( s 1 t
Ist.
L(X)
Ai(t)-'E
t E ]a,b(
Ail
are
1,2.
i
a n d i n t e g r a t e i t w e ob-
( a ) - l B ( a ) y (a1da
=
Is
t -Ao ( a 1 - l . dg ( a 1
t €]a&(
a n d t h i s i s t h e meaning t h a t must b e g i v e n t o t h e o r i g i n a l z(t> = A (t)y(t) 1 i n t h e form of t h e p r e c e d i n g examples:
e q u a t i o n . I f w e make
z(t> where
-
Z(S)
f
w e o b t a i n an equation
A ( a > z ( o > d o= f ( t )
-
f(s)
STIELTJES-INTEGRAL EQUATIONS E X A M P L E D. We w i l l
91
show t h a t a l i n e a r d e l a y d i f f e r e n t i a l
e q u a t i o n may b e reduced t o a p a r t i c u l a r case o f e q u a t i o n
T h i s example i s due t o Jos6 C a r l o s Fernandes de O l i v e i r a .
(K).
be a Banach s p a c e , t l > t o and 0 < r < t l - t o ( t h e d e l a y ) . Given y E G ( [to-r,tl) ,XI f o r e v e r y t E [toytl) a ) Let
w e define
X
,X)
y t € G( [-r,O)
yt(s> = y ( s + t > ,
by
SE
(-r,O).
A l i n e a r d e l a y d i f f e r e n t i a l e q u a t i o n i s an e q u a t i o n o f t h e form
(D)
+ g(t>
y ' ( t ) = cA(t,Y,)
where
YE G(
(to-rytl),XI ,
a:
gE G(
(toytl)xG(
(to,tl),X)
[-r,O)
,XI
4
and
x
has t h e following p r o p e r t i e s :
1) J t E L [ 6 ( [ - r , 0 ) , x ) ~ x J f o r e v e r y t E (to,tl), i . e . , as a f u n c t i o n of t h e second v a r i a b l e i s l i n e a r and continuous. 2)
SI,
f o r every
a
~ ( b
,tl] ,x) f o r e v e r y f E f E G ( T - r a O ) ,XI t h e f u n c t i o n
E
t E
(to+)
G ( [ - r , ~,XI ] ,
-+J(t,f)€
i.e.
,
x
i s r e g u l a t e d . Hence by 1 . 3 . 1 3 and 1 . 5 . 1 we have J t EL[G-((-r,O) L e t us d e n o t e by
responding t o
At
SVo([-ryO) , L ( X ) ) .
,X>,X]
At t h e element o f SVo((-ryO) ,L(X)) c o r , i . e . , for e v e r y f E G - ( [-r,O) ,XI w e have
Furthermore i f w e d e f i n e
5 ( f 1 ( t1 dt ( f 1 , by
the
hyp o t h e s i s above w e have Fd € L [ G ( [ - r , O ) ,X) , G ( (to,tl],XI] hence by Theorem 5 . 1 0 of C h a p t e r I and Remark 8 t h a t follows i t
-
t h e r e e x i s t s one and o n l y one f u n c t i o n A:
(toytl)x[-ry~)
L(X)
t h a t h a s t h e p r o p e r t i e s (SVu) and ( G a l o f t h e remark w e ment i o n e d and i s such t h a t f o r e v e r y f E G ( (-P,o) Y X ) we have
STIELTJES-INTEGRAL EQUATIONS
92
Hence (D) t a k e s t h e form
b ) But f o r Y E G ( (to-r,tl],X) t h e f u n c t i o n e r a l i s n o t anymore r e g u l a t e d , where
9
i n gen-
A ~ ~ U o ( ( - r , O ) x ( t o , t l ) ,L(X)) t h e n it f o l l o w s t h a t f o r e v e r y Y E G ( (to-r,tl],X) t h e f u n c t i o n 7 i s r e g u l a t e d ; indeed: w e have
However i f w e s u p p o s e t h a t
y(t)
=
-
rt d,A(t,s-t)’y(S) Jt-r
and by remark 6 of 51 o f C h a p t e r I1 t h e f u n c t i o n
B , where
B ( t , s ) = A ( t , s - t ) ( w i t h t h e e x t e n s i o n made a c c o r d i n g t o remark 2 ) s t i l l b e l o n g s t o G U o , i . e . s a t i s f i e s t h e h y p o t h e s i s
o f Theorem 1 . 1 3 o f C h a p t e r 11; h e n c e t h e r e s u l t f o l l o w s from a ) o f 11.1.14. T h e r e f o r e i f A € Guo, e v e r y r e g u l a t e d s o l u t i o n y o f (b) h a s a r e g u l a t e d d e r i v a t i v e y ’ , h e n c e y i s c o n t i n u o u s (for
t E [to,tl] 1
.
c ) For (D) or giving a function Y E G( (to-r,tl),X)
(6) t h e
i n i t i a l v a l u e problem c o n s i s t s i n 4~ G ( (-r,o) ,XI a n d l o o k for a f u n c t i o n t h a t i s a s o l u t i o n of (D) or (6) f o r = 4.
t E (to,tl) and s u c h t h a t
YtO
W e w i l l show t h a t t h i s problem may b e r e d u c e d t o a p a r t i c u l a r case of (K). ( 5 ) i s e q u i v a l e n t t o y’(t> =
I
t
d s A ( t , s - t ) ey(s.1 t g ( t ) t-r
We r e c a l l t h a t w e s u p p o s e t h a t x R taking A ( t , s ) = A(t,O)
bo,tl]
= A(t,-r)
if
A if
s < - r ; t h e n w e may w r i t e
t E (to,tl).
h a s been extended t o s> 0
and
A(t,s)
=
STIELTJES-INTEGRAL EQUATIONS
For
SE
(to-r,to) g(t)
w e have
g(t) +
we obtain
W e recall t h a t
y(to) = $(O>
ro
93
y ( s > = $ ( s - t o > ; i f we t a k e dsA( t
,S - t I*$( s -to
t 0-r
and w e t a k e
we get
A s w e s a w i n b)
= A(t,s-t)
B(t,s)
satisfies the
hy-
p o t h e s i s o f Theorem 1 . 1 3 o f Chapter I1 and a f o r t i o r i o f Theorem 1.1 o f t h a t c h a p t e r hence we may a p p l y (6’) o f 1 1 . 1 . 6 and w e o b t a i n
t
If w e make
A
K(t,s)
i n such a way t h a t finally obtain
where
= - J s A ( - r Y s - ~ ) d . c and i f w e n o r m a l i z e A(t,O)
0
i n s t e a d of
A(t,-r)
= 0 we
STIELTJES-INTEGRAL EQUATIONS
94
1 [\ t
d s A ( ~ , s - ~ > O ( s - t o ) + g dT (~) to to-r
f(t)
(and
y(t)
C
-
1
to
@(t-to) for
t E [to-r,to)),.
The main theorem of t h i s 8 i s t h e f o l l o w i n g
T H E O R E M 1.5.
we h a v e
K E Guo
Given
RE G , t h e h e -
I - Thehe e x i b t b o n e and ondg o n e e l e m e n t K, buch t h a t
b o l v e n t ad (R”)
f o r all
Ix- d a K ( t , a ) c R ( o , s ) Jst
R(t,s)
I 1 - R€GU0
and
I 1 1 - F o h euehg
= Ix
R(t,t)
fEG([c,d) ,XI
d o h aLl
and
s , t E (c,d).
t E (c,d].
t h e bybtem
x E X
y(to) = x hub o n e and ondg o n e b o t u t i o n
Y E G ( [c,d)
, X I ; t h i b bolution
by
i b given
t
(PI
R(t,to)x +
y(t)
I,
t E [c,d)
R(t,s)df(s)
0
and dependb c o n t i n u o u b l y on
IV
- 16
K
i 6
R(t,s)
(R,)
Ix
x
and
nohmalized ( i . e .
+
Jst
R
i b
KE Guo
od a L l
buch t h a t
buch t h a t R(t,t)
K).
K(t,t) = 0
K E Guo K(t,t)
d o h euehy
f o r all
s,tE(c,d).
adbociateb i t b
i n j e c t i v e and b i c o n t i n u o u b
t h e b e t od a d l REGUo
(and
R(t,o)odoK(a,s)
U - T h e mapping t h a t t o evekg heboluenf
f
( n o t l i n e a h ] dhom
E 0
onto t h e b e t
Ix.
REMARK 5 . The really d i f f i c u l t p a r t o f t h i s theorem i s t h e
proof of 11; t h e proof o f I i s q u i t e s i m p l e . However I1 i s
STIELTJES-INTEGRAL EQUATIONS
95
n e c e s s a r y i n o r d e r f o r t h e i n t e g r a l s i n ( p > a n d (R,) defined, t o prove t h a t
to
be
g i v e n by ( p ) s a t i s f i e s ( K ) a n d t o
y
prove V.
W e w i l l now p r o v e many p a r t i a l r e s u l t s till w e c o m p l e t e t h e proof o f Theorem 1 . 5 .
T H E O R E M 1 . 6 . Given K E G U o , euehg X E X t h e equation
dotr
euehy
duK(t,u>.y(a>
f(t)
and
f E G((c,d),X)
-
f(to)
tE(C,d)
0
hub at t?IOAk one A o e u t i o n YE G ( [ c , d ] ,XI p m v e d in CuhoLLahg I . 1 6 ) . P R O O F . I f y1 a solution of
and
(the exiAtence
a r e two s o l u t i o n s t h e n
y2
and w e w i l l p r o v e t h a t
0, hence
z
y1
E
i A
z = y2-y1
y 2 . For
t > t o we
have
t
and i f w e t a k e
Since
1
> t w e have
s a t i s f i e s (SVuo> t h e r e e x i s t s
K
t l >to
such
that
Aup
SV( to,t&Kt]
< 1
t a t l 0‘
hence
z(t>
for
0
t: and w e have z(t)
o
for
td, t E
t E
(to,tl).
W e define 03
= AUp { t > t d
and h e n c e
(to,tA)
z
zI
(toYd) satisfies
0s
= 0 ; indeed s i n c e
STIELTJES-INTEGRAL EQUATIONS
96
and t h e n , as above w e prove t h a t t h e r e e x i s t s t l > t0' such that z ( t ) 0 f o r a l l t E [to,tl) i n c o n t r a d i c t i o n t o t h e d e f i n i t i o n of t:. I n an analogous way one p r o v e s t h a t
for
z(t) = 0
c g t c t0
COROLLARY 1 . 7 . G i v e n
.
KEGUo, t h e hCbOt.Vent
t&d i e b (R")
R(t,s)
= Ix
-
t ~sduK(t,o)oR(a,s)
REG
for a l l
that
ba-
s , t E (c,d)
i n u n i q u e ( t h e e x i b t e n c e i a phoued i n Theohem I . 9 1 . P R O O F . For e v e r y
S E (c,d)
= Ix
Rs(t)
-
w e have R s E G ( (a,b) ,L(X)) t d,K(t,a)oR,(G) j
and
js
t h e r e s u l t f o l l o w s immediately from t h e Theorem 1 . 6 i f w e c o n s i d e r y ( t > = R s ( t ) x where X E X . THEOREM 1 . 8 . G i v e n
R(t,s)
(R")
w c haue a ) Fon cuehy
i n the botution
and
KEGUo
= Ix
-
batiddying
R€GU0
t ~sduK(tyo)oR(oys)
f E G ( [c,d] ,X)
and
XE
X
t h e dunction
06
y(to) = x.
may b e w h i t t e n a6
= f ( t 1+ R ( t ,to1 [x- f ( to13 -
and
y dependa continounLy on
x
and
PROOF. a) It i s enough t o prove t h a t i f t v ( t ) = \ t R ( t y . s ) d f ( s ) , t E [c,d), w e have 0
( t,s 1 f ( s )
t E (c ,d]
f. u(t)
R(t,to)x
and
STIELTJES-INTEGRAL EQUATIONS
97
r t
and r t
t h e f i r s t e q u a l i t y i s immediate i f w e a p p l y ( R " ) take
s
x
to
and
t o . I n o r d e r t o prove t h e second one w e have t o
show t h a t
t R(t,s).df(s) Jt
U
t
JtR(o,s)df(s)]
= f(t)
-
f(to).
0
If w e r e p l a c e t h e e x p r e s s i o n o f
R from ( R " )
i n the first i n -
t e g r a l w e have t o p r o v e t h a t
i.e.
and t h i s i s t h e formula of D i r i c h l e t (Theorem 1 . 1 3 o f Chapter 11).
b) ( P I ) follows from ( p > u s i n g i n t e g r a t i o n by p a r t s and t h e c o n t i n u o u s dependence i s a l s o immediate s i n c e ( 0 ' ) i m p l i e s
T H E O R E M 1.9. Foh e v e h y K E Guo R E G Auch t h a t (R")
R(t,s)
= Ix
PROOF. F o r e v e r y
-
UEG
theae e x i ~ t do n e a n d o n l y o n e
t
d,K(t,u)oR(u,s)
w e define
for a l l
3 ' U = gKU
by
s , t E [c,d].
STIELTJES-INTEGRAL EQUATIONS
98
By 1.4.12 and 1.4.4 t h e i n t e g r a l i s w e l l d e f i n e d s i n c e a n d s i n c e w e h a v e U s € G ( (c,d) , L ( X ) ) ; K t € G ( [c,d] ,L(X))
( r U I s € G((c,d] , L ( X ) )
II.1.14.a) w e have
II(rU)(t,s)IIs 1 +
sv
Is
4
II 7 UII i.e.
.
7UEG Hence a n e l e m e n t
[Kt]
6 1
REG
I(UII
by
a n d s i n c e w e have
it f o l l o w s t h a t
SVUCK3 IIUIIY
+
t h a t s a t i s f i e s (R")
point of t h e transformation
is a fixed
7 o f G . I n o r d e r t o prove t h e
e x i s t e n c e and u n i q u e n e s s of t h i s f i x e d p o i n t w e w i l l i n t r o d u
ce a norm i n G e q u i v a l e n t t o i t s n a t u r a l norm a n d show t h a t w i t h r e s p e c t t o t h i s new norm 7 i s a c o n t r a c t i o n . L e t us t a k e X > O ; f o r U E G we define I(U(IX
dup{((U(t,s)e-XIt-slI(
I
s , t € (c,d)l;
it i s immediate t h a t w e h a v e I I U I I X < IIU(1 s e X(d-c) II U l l h , h e n c e t h e norms 1) 1) and 1 ) I I X on G a r e e q u i v a l e n t . W e w i l l now prove t h a t t h e r e e x i s t s
X> 0
7
such t h a t
i s a contraction;
i t i s enough t o p r o v e it f o r t h e linear t r a n s f o r m a t i o n where
(~oU>(t,s>=
J:
duK(t,a)oU(a,s),
L e t u s f i n d a n u p p e r bound for t a k e 6 > 0:
s , t E (c,d).
Il(CI',U)(t,s)e
1) For
It-sl 4 6
w e have
For
lt-sl 2 6
l e t us suppose t h a t
2)
tt6 (s s d
5
-1 I t - s
c <s 6t-6;
t h e c a l c u l a t i o n s are a n a l o g o u s . W e have
II1 ; w e
if
STIELTJES-INTEGRAL EQUATIONS
99
and l e t us f i n d u p p e r bounds f o r t h e s e i n t e g r a l s : a)
s
b)
Hence
Hence w e have
Since SV6 [K]
then
K
< 1
s a t i s f i e s (SVuo) w e may t a k e 6 > 0 s u c h t h a t and a f t e r w a r d s w e t a k e X > 0 s u c h t h a t
i s a contraction of
6
I1 Ill
REMARK 6. I n t h e case o f t h e example (L) w e w i l l show i n t h a t f o r a l l s , t E (c,d) w e have R(t,s)E Isom X ( i . e .
52
R(t,s) i s a b i c o n t i n u o u s l i n e a r i n j e c t i o n from X o n t o X) and w e have even R ( t , s ) - ‘ R ( s , t ) . I n t h e g e n e r a l case t h i s
i s n o t t r u e ; w e h a v e a l w a y s R ( t , t ) = I X E Isom X a n d i f K : (c,d)x[c,d) + L(X) i s a c o n t i n u o u s f u n c t i o n s o i s R ( b y Theorem 1 . 2 5 ) s
hence w e have t h e n
R(t,s)E Isom X
buddicien.tk!g ctobe. I n g e n e r a l however
n o t be i n j e c t i v e .
doh t
R ( t , s ) E L(X)
and
may
STIELTJES-INTEGRAL EQUATIONS
100
E X A M P L E . I n o r d e r t o prove t h a t
R ( t 1 ,t0 1 i s n o t i n j e c t i v e it i s enough t o show t h a t t h e r e e x i s t s an x # 0 s u c h t h a t R(tl,to)x = 0. I f we define y ( t ) R ( t , t o ) x , t E c d , then y satisfies
($1
r t
and w e have t o prove t h a t y ( t l ) = 0 . We t a k e X = R , to 0 and c o n s i d e r t h e e q u a t i o n )a,b( = )-n,n(,
i t s solution is the function 71 a t tl 2 .
y(t)
x
1,
c o s t which h a s a z e r o
D - W e w i l l now b e g i n t h e proof t h a t t h e r e s o l v e n t uo in G
is
.
P R O P O S I T I O N 1.10. 1 6
TUE G'
'2Vehf.j UE Gu w e have denoted t h e than6 dohmation dedined b y
whehe 7
(JU)(t,s)
KEGUo,
= Ix
-
doh
j:duK(t
s,t
,c?)oU(~,s)
E
P R O O F . I I . 1 . 1 4 . a ) i m p l i e s t h a t f o r e v e r y S E [c,d) ( 7 U I s € G( [c,d) ,L(X) ; 7 U i s bounded s i n c e
hence every
K
(c,d].
w e have
IlTUll 6 1 + SV['K] . I I U ( \ . Fram 1 1 . 1 . 4 i t f o l l o w s t h a t for w e have (yUltC SV( (c,d) ,L(X) 1. We s t i l l
t E [c,d]
have t o prove t h a t ' f U is u n i f o r m l y of bounded s e m i v a r i a t i o n as a f u n c t i o n of t h e second v a r i a b l e : by ( 9 ' ) of §1 of Chapt e r I I w e have
hence
SV’
[TU]
<
SVu [K]
*
[I1
U1(+2SVu[U]]
.
R E M A R K 7. The proof above a l s o shows t h a t the a f f i n e
formation
7
i s continuous i n
@.
trans-
STIELTJES-INTEGRAL EQUATIONS 1.11
LEMMA
IS
Let
x
and
Y
sV( ( a y b ) , E ( X , Y ) )
101
b e Banach 6paceh;
and
A E BV( (a,b] 1.
W e have SVCAa] c SV[AJ
llall
+
IIAIIsv [a]
*
PROOF. W e r e c a l l t h a t B V ( [a,b] 1 = SV( (a;b) , L ( C ) ) w i t h SV[A] V[A]. For d E D and xiE X , i = l y 2 , . . . y l d l w i t h I(xill < 1
we have
hence t h e r e s u l t .
We r e c a l l (Theorem 1.9) t h a t t h e r e s o l v e n t i s a f i x e d
p o i n t o f t h e t r a n s f o r m a t i o n 3’. If
'Y w e r e a c o n t r a c t i o n of GU w e would have proved t h e e x i s t e n c e of t h e r e s o l v e n t i n G'. I n g e n e r a l however 3’ i s n o t a c o n t r a c t i o n w i t h r e s p e c t t o t h e norm of G U . But w e w i l l show t h a t w e can i n t r o d u c e i n Gu a norm e q u i v a l e n t t o 111 111 and s u c h t h a t J i s a cont r a c t i o n i n t h i s new norm.
DEFINITION. Given fine
where
and
with
k > O
and
6 > 0
for e v e r y
UEGU
we
de-
STIELTJES-INTEGRAL EQUATIONS
102
where, w e r e c a l l , SV(') [ Z ( t , s > ]
denotes t h e semivariation
calculated with respect t o the variable
It i s immediate t h a t
PROPOSITION 1 . 1 2 .
In
G"
111 111X,6
s.
i s a norm on G
t h e nohm
111 111
U
M
~
U
.
111 111X,6
Uhe
equiuaeent.
P R O O F . We w i l l show t h a t f o r e v e r y 1
7
IIIuII1~~4 IIIUIII
6 4e
UE
X(d-c)
a ) I t is immediate t h a t
GU
w e have
111 UII 1 1,6
l l U l I X y 6 < I1UII s e bl) Lemma 1.11 i m p l i e s t h a t
X(d-c)
llull
and a n a l o g o u s l y
hence
and t h e r e f o r e
11 Ulll g 6
4 4 lllUlll
.
b 2 ) Again by Lemma 1.11 we have
< svA Y 6 For a l s o have
[uIeX'd-c'
SV[
, )rut]
t+6 d
+
h(d-c) IIUIIX,6e
w e have an analogous m a j o r a t i o n ;
we
S T J E L T J E S - I N T E G R A L EQUATIONS
103
and t h i s completes the p r o o f .
THEOREM 1.13.
Tkehe
exist
a c o n t h a c t i o n o d G~
Ill
X
> 0
and
d > 0
buck t h a t
7
ib
111Xy6
P R O O F . Obviously it i s enough t o prove t h e same r e s u l t f o r the l i n e a r transformation wherc f o r U E G' w e define
Ist
(JoU)(t,s) =
daK(t,5)oU(a,s)
L e t us f i n d an upper bound for I
-
We b e g i n w i t h
a ) For
It-s
14
6
t , s E [c,d].
)11~oulllX,6-
1170ul156. w e have
11 ('TOU> ( t, s ) 11
(1
t
d a K ( t , a > o U ( a, s )
11 <
S
b) F o r have
It-sl 9 6 , l e t u s suppose t h a t
c4s
st-6;
we
STIELTJES-INTEGRAL EQUATIONS
104
t+6 t s t d
and when
we have
analogous bounds. a ) and b )
imply t h a t
I1
-
I n o r d e r t o f i n d an upper bound f o r
w e w i l l look s e p a r a t e l y t h e 4 t e r m s of t h e d e f i n i t i o n of
svA ,6 ;t
[r
0UJ:
a ) I f we a p p l y (8’)
s
0
o f Chapter I1 ( w i t h
-
a = t-6
and
= t ) and a f t e r w a r d s u s e Lemma 1.11 w e g e t
b ) For u p p e r bound.
SV[T:6
,dl [(?'oU)t(s)e
w e have t h e same
STIELTJES-INTEGRAL EQUATIONS c > By ( 7 ' )
105
o f Chapter I1 w e have
hence
By ( a ) and ( B ) we have
S i n c e K s a t i s f i e s (SVuo) t h e r e e x i s t s 6 > 0 such t h a t 1 7SV6 [K] < 7 ; w e f i x ' such a 6 > 0 , t&w there e x i s t s 2, > 0 s u c h t h a t 5e-"SVU[K] < 1 , hence 7, i s a c o n t r a c t i o n i n
G"
111 IIIX ,6
The p r e c e d i n g theorem i m p l i e s t h a t t h e r e s o l v e n t R , sol u t i o n o f ( R " ) , i . e . t h e f i x e d p o i n t o f 7 , i s an element o f G'; however w e want t o prove t h a t REGUo; for t h i s purpose we w i l l show t h a t Guo i s a c l o s e d subspace o f G' and t h a t ?'GuoC
Guo
.
P R O P O S I T I O N 1.14. Guo PROOF. L e t
U
i b
u c t o b e d bubebpace
be i n t h e c l o s u r e o f
t h e r e e x i s t s U E E Guo s u c h t h a t 111 t t t E c d . w e have SV(c,d) [U 4
(4
-UEl
06
G".
Guo; t h e n f o r e v e r y E > 0 U-UEII( < E hence f o r e v e r y E.
Let
6 >0
b e such t h a t
STIELTJES-INTEGRAL EQUATIONS
106
sv6[uE3E
i.e.
t h e n we have for a l l
sv (s-6 ,s+6) Cut] hence
for a l l
y s - 6 , s + 6 ) [U;]&E
6
s , t E [c,d]
sv (s-6
s , t E (c'd];
that
,st6)
UEGUo.
P R O P O S I T I O N 1.15. T h e t ~ a n s , j o h m a t i o n 'Y o d GU t a k e b
Guo
P R O O F . O b v i o u s l y i t i s enough t o p r o v e t h e same r e s u l t
for
cue.
into
7,.
If
UE
Guo
w e h a v e by (8’) o f C h a p t e r I1 t h a t
+ sv
hence t h e r e s u l t s i n c e
K
and
U s a t i s f y (SVuo).
By Theorem 1 . 1 3 and P r o p o s i t i o n s 1 . 1 4 and 1 . 1 5 w e h a v e immediately
C O R O L L A R Y 1.16. T h e h i x e d p o i n t R 06 7 i d i n Guo, i . e . . d o h K E Guo t h e m i b o n e and onLy o n e R E G U o t h a t b a t i A & a (R*); we h a v e a ) a n d 6 ) 0 6 Theohem 1 . 8 .
rK
Given K E GUo l e t u s d e n o t e f o r a moment by the t r a n s f o r m a t i o n - d e f i n e d by K , a n d by RK i t s r e s o l v e n t i . e . t h e fixed p o i n t of
K. L e t u s p r o v e t h a t t h e mapping K E
Guo
c,R K E
Guo
i s continuous. b e t h e norm of Guo s u c h t h a t 7 I n d e e d : l e t 111 111 i s a c o n t r a c t i o n i n t h i s norm w i t h c o n t r a c t i o n c o n s t a n t cK g i v e n by ( y ) of Theorem 1 . 1 3 cK = 5e-"SVU[K]
t
7SV6[K]
< 1
.
STIELTJES-INTEGRAL EQUATIONS
107
I t i s immediate ( C f . t h e proof o f P r o p o s i t i o n 1 . 1 4 ) t h a t i f
KEGUo t h e n f o r a l l i? s u f f i c i e n t l y c l o s e t o K w e a l s o have c~ < 1 , hence t h e r e i s a neighborhood V o f K such
(yk)kEv
t h a t t h e f a m i l l y of c o n t r a c t i o n s f o r every
UE
GUo
KE
Guo
111 2'KUlll <
i s continuous (
i s uniform; s i n c e
t h e mapping cj)
TKU€ Guo
111 U 111
SVu[K]
: w e have t r i v i a l l y
svu[Kl gull
I17KuII
and by ( 3 ) o f Chapter I1 w e have
<
SVu[TKU]
SVu[K]
f o l l o w s from Theorem 0 . 3 t h a t t h e f i x e d p o i n t t i n u o u s f u n c t i o n o f K , i . e . , we have t h e
C O R O L L A R Y 1.17. The mapping t h a t t o each i t d
( R'4
hedoevent
1
RE
Guo,
bOlUtiOn
= Ix
-
R(t,s)
i b a c o n t i n u o u b duncttion.
KE
RK
Guo
it
SV'[U]
)
is a
con-
abbociaten
06
I:
s , t E (0)
dUK(t,a)oR(U,s)
b ) of Theorem 1 . 8 and C o r o l l a r y 1 . 1 7 imply t h e
C O R O L L A R Y 1.18.
bolution
Foh
KEGUo,
YE G ( (c,d)
y(t)
-
x
,X)
I:,
elements
X
f € G ( ( c , d ) ,XI
and
duK(t,o).y(o)
.t
dependb continuoudLy on Let
XE
06
K,
and
x
= f(t)
-
the
f(to)
f.
now p r o v e t h a t i f w e c o n s i d e r o n l y n o r m a l i z e d
US
( i . e . with
KEGUo
K(t,t)
0 ) t h e n t h e mapping o f
Corollary 1 . 1 7 i s i n j e c t i v e . Indeed: L e t resolvent
K1 , K 2 E G uo
R . Given
By Theorem 1 . 8
b e n o r m a l i z e d and have t h e same
Y E G ( (c,d]
,XI w e d e f i n e
y ( t ) = R(t,to)y(to) +
R(t,s)dfl(s)
It-
f ies y(t>
-
Y(to)
t
satis-
STIELTJES-INTEGRAL EQUATIONS
108
f2 hence
and t h e same a p p l i e s t o
f l = f2
f . Hence by
subtraction w e obtain t h a t
I, t
du (K2(t ,a)-Kl(t ,u)) . y ( a )
for all
YE T E
XEX,
G( [c,d) , X )
t
and e v e r y
(to,t) and
y
-
for a l l b i t r a r y , or by Remark 2 , w e have Kl(t,-c)
XEX
i s a r b i t r a r y imply
K2
-
to i s ar-
i . e . w e proved t h a t
K1,
Guo R E Guo e l e m e n t s , i. e . duch t h a t
when hebXhicted to nonmatized K ( t , t ) Z O , i6 i n j e c t i v e .
-
= 0.
T E ( t o , t ) ;s i n c e
C O R O L L A R Y 1 . 1 9 . The continuoud mapping
E
If w e t a k e t h e n
[K2(t,r)-Kl(t,r)]x
The n o r m a l i z a t i o n and t h e f a c t t h a t K2(t,T)
[c,d).
= xfTYt)x w e o b t a i n
[K2(t,t)-Kl(t,t)JX
that
E
= 0
KE
W e w i l l now complete t h e p r o o f o f Theorem 1 . 5 .
T H E O R E M 1.20. Given
KE
duch Xhut
Guo
K(t,t)
5
0 and
R
iXb
h e d o e v e n t , we have
t
(R*) (R**)
R(t,s)
= Ix + ~ s R ( t , u ) o d u K ( o , s ) f o r a l l = R(t,s)
.K(t,S)
-
s,t€(c,d)
Ix + lstd0R(t , ~ ) o K ( u, s >
for a l l
s,tE
d . (c 4
P R O O F . L e t u s f i r s t remark t h a t t h e i n t e g r a l i n (R,) makes sense because R t ~SV( (c,d ,L(X) 1 ( s i n c e R E Guo by Coroll a r y 1.16) and Ks€ G ( c , d , L ( X ) ) . By ( R * > w e have I t R ( t ,o)odaK(u,s> =
’S
K(t,s)
(D)
-
= K(t,s)
Ist[ -
0 j:[Ix
-
I
lutdTK(tyT)QR(',o) oduK(u,s)
[dTK(t,r)oR(r,o)
I
od,,K(U,s)
(.D1
=
t Js d T K ( t , r ) o [ JsrR(r,a)oduK(o,s)
1
=
=
STIELTJES-INTEGRAL EQUATIONS (D)
where i n
w e applied 11.1.13.
I
109
Hence w e proved t h a t t h e
function T
S(T,S)
Ix + ~ R ( ~ , u ) o d ~ K ( u , s )
s a t i s f i e s the equation = Ix
S(t,s)
-
[dTK(t,r)oS(r,s),
i.e.,
it
R ; t h e r e f o r e w e have S = R , i . e . ( R i t ) . We g e t (R,tb) from ( R * ) u s i n g i n t e g r a t i o n by p a r t s . ( R 1, whose o n l y s o l u t i o n i s
T H E O R E M 1.21. G i v e n a n d o n L y one
K€GU0
(R")
= Ix
R(t,s)
-
RE Guo with
i:
w i t h R ( t , t ) z Ix t h e u K ( t , t ) 1 0 buch t h a t
duK(t,u)oR(u,s) R E Guo
a n d t h e ( n o n Lineah) m a p p i n g
for all
M KE
Guo
Lb
s,tE
one
[c,d)
i b cowXnuoub.
P R O O F . The u n i c i t y o f K s a t i s f y i n g ( ? ) f o l l o w s from Coroll a r y 1 . 1 9 . L e t us prove i n i t i a l l y t h a t t h e r e i s one and o n l y one
KE
Guo w i t h
K(t,t)
2 0
such t h a t ( % , I
o r , equivalent-
lY
(&*)
i . e . such t h a t
mation
= R(t,s)
K(t,s)
Q,
K
-
Jc
+ ~stduR(tyu)oK(u,s)
i s t h e f i x e d p o i n t of t h e a f f i n e t r a n s f o r UEGUo w e d e f i n e
where f o r
The l i n e a r p a r t o f R h anabgcms to To d e f i n e d i n Theorem 1 . 1 3 and P r o p o s i t i o n 1 . 1 5 ; hence a p p l y t h e same c o n c l u s i o n s o f these theozems tD t k t r a n s f o r m a t i o n A ( t h a t i s , t h e analogous of C o r o l l a r i e s 1 . 1 6 and 1 . 1 7 ) . b) We s t i l l have t o p r o v e t h a t K d e f i n e d i n t h i s way, i . e . , s a t i s f y i n g trt, a l s o s a t i s f i e s (R* : u s i n g i n t e g r a t i o n by p a r t s i n (R")
we obtain
STIELTJES-INTEGRAL EQUATIONS
110
By (€$&I w e have
and it i s s u f f i c i e n t t o p r o v e ( F?") . T K ( t ,u ) od,R(
JS
Q
t
t
s1
t
[.(
s
U)
- 3 + Ju dT R ( t ,T 1
OK
( 'I ,U
I
1
0 duR ( 0 , s
).
If i n t h e s e c o n d i n t e g r a l w e u s e i n t e g r a t i o n by p a r t s f o r t h e f i r s t two summands a n d a p p l y 11.1.13 t o t h e t h i r d w e o b t a i n rt
hence i f w e d e f i n e
-%
S('I,S)
+ R('I,s)
- ['IK( JS
w e have j u s t p r o v e d t h a t -S(t,s)
-
Ix + R ( t , s ) =
'I
u 1oduR (a, s )
-I:
dTR(t,T)oS(T,s)
i . e . S satisfies t h e equation (R-1 whose o n l y s o l u t i o n (by p a r t a > ) i s K; hence S = K i . e . w e have (R**). QED I f w e d e n o t e by that satisfy
K(t,t)
that satisfy
R(t,t) r e s u l t s w e have
GZo E 0
=
t h e subspace o f t h o s e a n d by
$ y
GYo
KEG''
t h e subspace o f t h o s e
t h e n i f w e group the preceding
T H E O R E M 1 .22 - The mapping t h a t t o euehg K E G': abbociateb i t a hebolvent REG? LA one t o one and b i c o n t i n u o u b dhom
onto GYo; i n evehy one 06 t h e equationb ( R 1 and ( R * I Y K detehmined u n i q u e l y R and R detehmined u n i q u e l y K. 2%
GE0
T H E O R E M 1 .23. I I Rs i b d i b c o n t i n u o u b t o t h e l e d t ( I r i g h t ) a t t h e p o i n t t o n l y i d d o h home U E { s , t ) Ku i b d i b c o n t i n u oub t o t h e l e d t ( h i g h t ) a t t . 2 ) y , b o l u t i o n 06 ( K ) i d dibcontinuoua t o t h e L e d t ( I r i g h t ) a t t h e p o i n t t onLy i d f i b dibcontinuoub t o t h e L e d t ( h i g h t t ) a t t , oh d o h borne S E (to,tl) K s ( o I r R s ) i b d i b c o n t i n u o u b t o t h e l e 6 t (bight) a t t . PROOF. 1) By ( R * ) and by (15’) o f C h a p t e r I1 w e h a v e Rs(t-) hence
Ix
-
duK(t-,a)oRs(U>
STIELTJES-INTEGRAL EQUATIONS
111
and t h i s i m p l i e s 1). 2)
By ( p ' ) o f Theorem 1 . 8 w e have
t h e n (15’) of C h a p t e r I1 i m p l i e s t h a t
hence
.f(s) R; f o r
K
it f o l l o w s
P - W e w i l l now prove t h a t i f t h e k e r n e l
K
satisfies
which i m p l i e s t h e a s s e r t i o n i n 2 ) f o r from 1).
certain additional properties the same i s true f o r
R
and
reciprocally.
DEFINITIONS. W e d e n o t e by & 6( (c,d)X(c,d) ,L(X 1 ) t h e c l o s e d subspace of G formed by t h e c o n t i n u o u s f u n c t i o n s ( i . e . 6 = &([cad)X[c,d) ,Lo( = G U ( (c,d)X(c,d) , L ( X ) ) deU formed by t h o s e e l e m e n t s of n o t e s t h e c l o s e d subspace of G
Gu t h a t ar e c o n t i n u o u s f u n c t i o n s . GUo = 6 u r \ G u o . bCo de n o t e s t h e subspace o f t h o s e e l e m e n t s UE Guo t h a t have t h e property
STIELTJES-INTEGRAL EQUATIONS
112
(SF).
hence t h e c o n t i r u i t y of K f o l l o w s from (SVc) and I n o r d e r t o prove t h a t ECo i s a c l o s e d subspace of buo
it i s enough t o prove t h a t e v e r y element of
GCo
is
KEG
go
&
belongs t o
&"
GC0; i f
such t h a t
KE
K
of t h e closure
for e v e r y E S i n c e w e have
111 K-KE 111 < E .
7
0
there
the r e s u l t follows.
if
REMARK 8. I n t h e Appendix o f t h i s U
s a t i s f i e s (SVc) and (SVo>
T H E O R E M 1 .25. G i v e n 1 . 1 0 , doh eVehy
§
w e w i l l prove t h a t (SVUo>.
it s a t i s f i e s
K E S U 0 , w i . t h .the n o t a t i o n d
UG&
We have
qU€&.
06
Ptropob&n
PROOF. We have
by I.5,9 t h e f i r s t summand goes t o
0
if
t2
-
tl
since w e
have SV[Kt] < SV['K] f o r a l l t and K ( t 2 , a ) ----* K ( t l , a ) t h e c o n t i n u i t y o f K ; t h e second summand i s bounded by
s v t s l+ 2 1
[Kt2]
IIUll
which goes t o
0
if
s2
+ s1
since
s a t i s f i e s (SVuo); f o r t h e f o u r t h summand w e have analogous SV'[K]lIUs -Us21 1 which goes t o 0 i f s 2 + s1 s i n c e U i s c o n t i n u o u s .
r e s u l t ; t h e t h i r d summand i s bounded by
Hence w e have ( Y U ) ( t 2 ' s 2 ) _$ ( 7 U ) ( t l , s , > if (t2,s2) ( t l , s l ) , i . e . , 7 U is c o n t i n u o u s .
by
K
STIELTJES-INTEGRAL EQUATIONS
113
By Theorem 1 . 2 5 and P r o p o s i t i o n 1 . 1 5 w e have
COROLLARY 1 . 2 6 . T h e t h a n d ~ o h m a t i o n 7
GUo
tahed
GUo.
into
It f o l l o w s t h a t i f K E GUo t h e n t h e f i x e d p o i n t o f , i . e . , t h e r e s o l v e n t R i s i n G U 0 t o o and Theorem 1 . 2 1 shows t h a t r e c i p r o c a l l y i f KE Guo and i t s r e s o l v e n t i s i n
EUo t h e n
KE
buo.
W e define
& ':
&n G:O
and &
yo
= 6n G
yo
t h e n by
Theorem 1 . 2 2 w e have
T H E O R E M 1 . 2 7 . T h e mapping d e d i n c d i n Theohem 1 . 2 2 when bthicted
to & ':
&yo.
onto
id
i n j e c t i v e and b i c o n t i n u o u d dhom & ':
t h i s i s o b v i o u s f o r t h e f i r s t summand s i n c e
TU
i s a contin-
uous f u n c t i o n . For t h e second summand w e have
By
he-
(9’) and ( 3 ) of Chapter I1 t h e f i r s t and second summands
a r e bounded r e s p e c t i v e l y by SV [Kt2-Kt1]
which go t o (SVc)
and
0
[llUll
+ 2SVu[U]]
if
t g + tl
(SVuo).
and since
QED
By C o r o l l a r y 1 . 2 6 w e t h e n have
svIt, K
[K' st23
1 ' sv'
[u]
has t h e p r o p e r t i e s
114
S T I E L T J E S - I N T E G R A L EQUATIONS
COROLLARY 1 . 2 9 .
Zd
We define
&zo
KE GCo t h e n
&ConGEo
and
GUo i n t o GCo.
taheb
& ;o
& ’ O n
then in the same way as Theorem 1.27 one
G;O
;
proves the
&zo
THEOREM 1.30. T h e mapping d e d i n e d i n Theohem 1 . 2 2 when d t h i c t e d t o 6zo i b i n j e c t i v e and b i c o n t i n u o u n dhom to & FIo e
he-
on-
REMARK 9 . One can still impose other restrictions on K and prove that R satisfies the same restrictions and reciprocal-
ly. For instance, we denote by
-
GBYUo GIBYUo( (c,d] X (c ,d) ,L(X))
the space of all functions U: (c,d)X(c,d) L ( X ) that are regulated as a function of the first variable and which as functions of the second variable satisfy
(BVuo) V(s-6
-
F o r every
,s+6) [Ut]
<
E
there exists f o r all s ,t E (c,d) E
> 0
.
6 > 0
such that
if and only if R E G ~ ~ Y O ; Then we have that KEG~Y:' this correspondence is bicontinuous with respect to the obvious natural norms. The same is true if we consider the restriction to the subspace b6Yu0 of those functions of G63YUo that are continuous. In an analogous way we can define eevco,etc..
REMARK 1 0 . As we explained at the beginning of this item B, we did reduce the study of the solutions of the equation(K)
in ]a,b( to their study in closedintervals (c,d)cJa,b(. In this way all the results for the existence and unicity of the solutions of (K), of the resolvent etc. are true for ]a&[. The topological results, i.e., the results that use the topology defined on the spaces of functions over (c,d) or [c,d)X[c,d> are easily extended to ]a,b[ if we introduce in the corresponding spaces the topology defined by the corresponding seminorms on the intervals (an ,bn] where anfa we consiand bn+b. F o r instance in GUo(] a,b[X] a,b ,L(X)
[
STIELTJES-INTEGRAL EQUATIONS
115
d e r t h e l o c a l l y convex t o p o l o g y d e f i n e d by t h e sequence of seminorms
((1 111 (a
of t h e s p a c e s n 'bnl
Guo( [an,bn]X(anybn) ,L(X)). The l o c a l l y convex s p a c e s w e o b t a i n i n t h i s way a r e F r e c h e t s p a c e s and it i s immediate t h a t t h e c o n t i n u i t y and b i c o n t i imply t h e (c,d) c o n t i n u i t y and b i c o n t i n u i t y i n t h e c o r r e s p o n d i n g theorems on
n u i t y of t h e mappings i n t h e theorems on
APPEND1 X
THEOREM 1.31. 16
K:
(c,d]X(c,d)
pehtieb
t'lltSVIKt-K
tl
+ L(X)
]]
= 0
doh
batib6ieb
eueny
t h e pho-
t l € [c,d).
t+t
P R O O F . For e v e r y
a) V6
6 >O
we c o n s i d e r t h e f u n c t i o n
i s upper semicontinuous i . e . i f we have < c
V6(tl'S1)
( t l y s l ) t h e same i s t r u e f c r a l l p o i n t s (t,s> of a neighborhood of ( t l y s l ) . Indeed: i f f o r some p o i n t
t h e n by ( S V O ) t h e r e e x i s t s
E~
>0
such t h a t
STIELTJES-INTEGRAL EQUATIONS
116
> 0 such t h a t f o r It-tll < E~ €[K2 t ] < c ; i f ls-sll < E ~ lt-tll , < E*
and by (SVc) t h e r e e x i s t s we have sv[s1-6-E1 ,S1+6+E1]
w e have
(s-6 , s + 6 )
c
( ~ ~ - 6 ,s1+6+c1) - c ~
b ) By (SVo) we have
i . e . given w e have
E
> O
there exists
V6(t,s) c
for all
E
if
V6(t,s)+0
hence by t h e theorem of D i n i
V6
and t h e r e f o r e
6+0
f o r every ( t , s ) ;
converges u n i f o r m l y t o 6€> 0
0
such t h a t f o r 0 < 6 < 6 €
s , t E (c,d>.
Q.E.D.
REMARK 1 1 . I n an analogous way one p r o v e s t h a t
Vg
i s lower
s e m i c o n t i n u o u s , hence c o n t i n u o u s .
0 2 - I n t e g h o - d i , j , j e & e n t i a l equationd and hahrnonic
0peha.tOhb I n t h i s 8 w e w i l l s t u d y t h e example A o f 8 1 i . e . t h e i n tegro-differential equation y(t>
(L)
-
Y(S)
+
I:
dA(U)*y(O)
y,f E G()a,b(,X),
where
i s c o n t i n u o u s and satisfies (SVO)
and
f(t>-f(S)
[A)
]a,b (
A E ~ S V ~ ' ~ ( ) ~ , ~ [ , L ( (Xi .)e) .
A € SV( (c,d) , L ( X ) )
Cim 6 + 0 sv(s-6
s,tE
0
f o r ' every
f o r every
A
[c,d)c)a,b[)
s€)a,b(.
,s+6)
W e d o n ' t know if e v e r y element has t h i s p r o p e r t y ; i f
X
AEQSVl°C()a,b(,L(X)) i s r e f l e x i v e t h i s is t r u e .
We d e n o t e by A = J \ ( ) a , b ( , L ( X ) ) AE6SVioc(]a,b(,L(X))
t h e s e t of a l l
t h a t s a t i s f y (SVo).
A - We r e c a l l t h a t ( L ) i s a p a r t i c u l a r i n s t a n c e of ( K ) from 8 1 , w i t h K ( t , s ) A ( s ) or K ( t , s ) = A ( s ) - A ( t ) , if K i s normalized ( i . e . K ( t , t ) Z 0 ) and t h e r e f o r e a l l t h e r e s u l t s of P 1 a p p l y t o (L). K d e f i n e d by A o b v i o u s l y h a s t h e prop e r t i e s (SVuo> and (SVC) on e v e r y i n t e r v a l ( c , d ) c ) a , b [ (see Theorem 1 . 3 1 ) and by Theorem 1 . 3 0 w e have
STIELTJES-INTEGRAL EQUATIONS
&yo
RE
= &Po()a,b[X)a,b(,L(X)),
is t h e resolvent associated t o
R
where
D E F I N I T I O N . For U:
117
)a,b(X)a,b(
4
L(X)
A. we c o n s i d e r t h e
following properties:
For e v e r y (c,d) c ) a , b e x i s t s 6 > 0 such t h a t
[
-
(SVuo)
SV (SVo) (SVc)
b-&,t+6)
s
[Us]
-
L i m SV(t-6,t+6)[Us]
-
For e v e r y
E
= 0
and e v e r y
for a l l
E
> 0
there
s , t E (c,d>
for all
.
s,tE)a,b[.
6+0
[c,d]c]a,b[
SE
for all
w e have
d . Ic 4
The p r o p e r t i e s (SVuo), (SVo) , (SVc)
are t h e analogous f o r t h e f i r s t v a r i a b l e of U of t h e p r o p e r t i e s ( S V U o ) , ( S V O ) , (SVC) which a r e f o r m u l a t e d w i t h respect t o the 2nd v a r i a b l e of U. I n a n a n a l o g o u s way w e d e f i n e ( S V u > , e t c . . The fundamental r e s u l t s o f t h i s 0 are c o n t a i n e d i n t h e Theorems 2 . 1 and 2 . 3 .
T H E O R E M 2 . 1 . G i v e n AEQI i . e . A€.&SV1oC()a,b(,L(X)) d u L i b d y i n g (SVo) we h a v e : I - T h e h e i b one and o n l y one R E 6, t h e h e b o h e f i t 0 6 A, buch t h a t
(R")
1 - R
(E*) I1
Ix
R(t,s)
-
R
Ix.
11'
-
R
111
-
Foh
equation
= R(-c,s) i.e.
RE&;' I
I:
bazibdieb
R(t,s)
R(t,t)
-
datibdieb
evehy
-
dA(u)oR(u,s)
i:
doh a l l
dA(u)oR(o,s)
bUti4dieb
(SVc)
doh
all
s,T,tE)a,b[.
a n d (SVuo), a n d ,
(SVuo) and (SV 1.
toE)a,b(,
s,tE)a,b[.
fEG(ga,b[,X)
and
XEX
the
STIELTJES-INTEGRAL EQUATIONS
118 y(t)
(L)
-
+
Y(S)
I:
dA(o).y(a) = f ( t )
- f(s)
hub one and o n l y one b o k u k i o n y € G ( ) a , b ( , X ) y ( t o ) = x; t h i b b o l u t i o n i b g i v e n b y R(t,to)x +
y(t) (P)
buch t h a t
i:,
R(t,s)df(s)
and dependb c o n t i n u o u b e y on f and x (and A ) ; y and oney i d f i b c o n t i n u o u b . I V - R(t,T)oR(-c,s) = R ( t , s ) and R ( T , t ) R(t,T)-’
tinrtoub i d s ,T ,t
V
1
Foh
-
a,b
VI - R
we have
u,v~]a,b[
:1
-
A(v)
Ist
R(t,-r)dA(r)
=
sE)a,b(.
doh
alL
dtR(t,s)oR(s,t)
bdiddieb
(Ra)
R(t,s)
= Ix
(R,)
R(t,s)
= R(t,a) +
-
PROOF. I and I11 follow.
doh a l l
R ( t , r ) d A(T)
s,tE)a,b(
doh ale
S , U , ~ E
immediately from t h e analogous
s u l t s o f 81 ( s e e I and I11 of Theorem 1 . 5 and 1.3.b);
lows from I ; S E
con-
(. A(u)
do& any
i b
?
refol-
I1 w a s proved a t t h e b e g i n n i n g of t h i s i t e m . 11 : L e t us t a k e k , d ) ~ ) a , b ( , c c t < t 2( d and 1 (c,d). By (R*) w e have
sv h By 1 . 5 . 2
t 2 1 [R,]
SVp:,t2)[
and 11.1.9 w e have
[dA(oloR(o,s)
I.
STIELTJES-INTEGRAL EQUATIONS If w e t a k e
[ t l y t 2 )= [ t - & , t + 6 )
by
and t a k e
RS
Rs+&-Rs
h e n c e (SVc) s i n c e
119
w e p r o v e ( S V o ) . If w e replace
(tlyt2)
we obtain
(c,d)
i s c o n t i n u o u s . By Theorem 1 . 3 1 w e
R
have
then (SVuo). IV:
(R")
t
point
(R")
of t h e s o l u t i o n of
T
s. A t the point
at the point
ue
R(t,s)
and ( L ) show t h a t
i s t h e value at
the
which t a k e s t h e v a l u e
Ix
t h i s solution takes t h e val-
R ( T , ~ ) . On t h e o t h e r hand i f w e a p p l y ( p ) t o f u n c t i o n s
w i t h v a l u e s in
f : 0 , to = T
L(X), with
x = R(T,s)
and
we
see t h a t R ( t , T ) o R ( r , s ) i s t h e value a t t h e point t of t h e s o l u t i o n o f (A") which t a k e s t h e v a l u e R ( - c , s ) a t the point T. Hence t h e f u n c t i o n s
t s a t i s f y t h e same e q u a t i o n R(.r,s),
at
and t c--j R ( t , - c ) a R(.r,s) and t a k e t h e same v a l u e ,
R(t,s)
I-+
(E")
T. By t h e u n i c i t y
o f t h e s o l u t i o n w e have
R ( t , T ) ~ R ( T, s >
R ( t ,s).
= t i n t h i s e q u a l i t y and i f w e recall t h a t R ( t , t ) = Ix w e g e t R ( t , ' c ) o R ( T , t ) = I x j a n a l o g o u s l y w e have R(T,t)oR(t,.r) = Ix hence R ( T , ~ ) R ( t , - r ) - ' . If w e t a k e
V:
s
If w e Apply s u c e s s i v e l y (R")
fV
rV
-Iu
11.1.9 and I V w e h a v e
r
1
V
=
,
dA(t)oR(t,s)oR(s,t)
=
-Iu"
d A ( t ) = A(u)
-
A(v).
V I : I t f o l l o w s from I V of Theorem 1 . 5 ( w e r e c a l l t h a t K i n I V o f Theorem 1 . 5 i s n o r m a l i z e d and t h e r e f o r e w e h a v e t o
take
K(u,s) = A ( s )
-
A(u)).
B - O b v i o u s l y ( L ) d o e s n o t change i f w e r e p l a c e A by A + c , where c E L ( X ) ; h e n c e w e may f i x a p o i n t o E ) a , b ( and s u p p o s e t h a t A(;) 0. W e write = { A € & A(;) = 0 ) .
A,
W e s a y t h a t a mapping
I
R: ]a,b(X)a,b[ 4 L(X) i s huhR s a t i s f i e s (svUo),tsvC),
monic o r an hamtonic opeautoh i f
STIELTJES-INTEGRAL EQUATIONS
120 (SVuo), (SVc) (0)
R(t,t)
and
= Ix, R ( t , T ) o R ( ’ I , s )
= R(t,s)
for all
(.
s , ~ ,E t) a , b Then w e h a v e o b v i o u s l y R ( . r , t ) R(t,‘I)-’. W e d e n o t e by 3-1 = J - t ( ] a , b [ X ) a , b ( , L ( X ) ) t h e s e t of harmonic o p e r a t o r s .
T H E O R E M 2.2. 1 6
R: )a,b(X)a,b(
RE^ a n d
(SVo) t h e n
R
i b
-
-3
L(X)
batiddied
t h e heboLuent o d
0
A(u) = i d t R ( t , s ) o R ( s , t )
PROOF. R
(0)
and
A, whehe
,
0 6 Zhe paaticuLaa
t h e d e d i n i t i o n being i n d e p e n d e n t
all
SE
)a,b[.
i s c o n t i n u o u s as a f u n c t i o n o f t h e f i r s t v a r i a b l e
s i n c e i t s a t i s f i e s (SV 1. R i s a l s o c o n t i n u o u s as a f u n c t i o n 0
of t h e second v a r i a b l e because i f
( t , s n ) 4 ( t , s > t h e n by
( 0 ) w e have
,s)ll
IIR(t ,sn)-R(t
l1R(sn,t)-l-R(s
and t h i s e x p r e s s i o n g o e s t o z e r o when
-
n
-+
,t)-’Il OJ
because
R
is
c o n t i n u o u s i n t h e f i r s t v a r i a b l e and t h e mapping R(u,T)
R(u,T)-’
i s continuous. ilence w e have R s e & SVlo
() a ,b [, L ( X )
and
[
R‘E 6 (>a ,b ,L(X)
and t h e r e f o r e
-
A ( u ) = j u0d t R ( t , s ) o R ( s , t ) i s w e l l d e f i n e d . By ( 0 ) w e h a v e 0
A (u
i d t [R ( t
,T
i . e . t h e d e f i n i t i o n of SE
]a,b[. From
O R ( ‘I,s >] O R ( s ,t 1 A
f d t R ( t ,T 1oR( T ,t 1
i s i n d e p e n d e n t of t h e p a r t i c u l a r
STIELTJES-INTEGRAL EQUATIONS
121
it f o l l o w s t h a t A s a t i s f i e s ( S V O ) . We w i l l now p r o v e t h a t R s a t i s f i e s (R") i . e . R i s t h e r e s o l v e n t of A and i s t h e r e f o r e harmonic. By 11.1.9 we have
-
QED
i s d e f i n e d by t h e
W e r e c a l l t h a t t h e t o p o l o g y on seminorms
A where
(c,d)
-
IIIA1ll [c ,d ] = IIAll
(cyd)
+
sv(cyd]
LA]
r u n s o v e r a l l c l o s e d s u b i n t e r v a l s of
i s a F r e c h e t s p a c e and
4,
>a,b(.,A
i s a c l o s e d subspace o f 4 .
d e n o t e s 3-1 w i t h t h e t o p o l o g y induced by bCo or i . e . w i t h t h e t o p o l o g y d e f i n e d by t h e seminorms
3jco
Guo
where, w e r e c a l l ,
We d e n o t e by
Gc0
t h e s e t of a l l
U : ]a,b[X)a,b(
4 L(X)
t h a t s a t i s f y (SVc) and (SVo) (and hence (SVu0) by a r e s u l t analogous t o Theorem 1 . 3 1 ) . d e f i n e d by t h e seminorms
On
bco w e c o n s i d e r t h e t o p o l o g y
STIELTJES-INTEGRAL EQUATIONS
122
= {UEGco
We d e f i n e &:o
the set
I
U(t,t)
J j w i t h t h e t o p o l o g y i n d u c e d by
Ix).
3Cc0 d e n o t e s
Gc0.
T H E O R E M 2 . 3 . On Jd t h e t o p o L o g i e b 06 3-tco and Jjc0 coinc i d e and t h e mapping AEJ; H R E 34 i b i n j e c t i v e bicon-tinuoud ( n o n Lineah) dhom t h e 6 i h d . t pace o n t o t h e hecond. P R O O F . We d e n o t e by
RA
t h e resolvent associated t o
A
and
R E 3.1 w e d e n o t e by AR t h e e l e m e n t o f 4 0 d e f i n e d i n The r e s u l t w i l l f o l l o w from t h e f o l l o w i n g f a c t s t h a t w e s h a l l prove s u c e s s i v e l y :
for
Theorem 2 . 2 .
A
1) For e v e r y A E J ; w e h a v e KAE Gco and t h e mapping KA i s o b v i o u s l y l i n e a r a n d c o n t i n u o u s .
&
GCo
2 ) KAE GCo I A € J,} i s a c l o s e d v e c t o r s u b s p a c e of and t h e mapping A c,KA is b i c o n t i n u o u s .
I n d e e d , w e have
{K€ Gc0
1
K(t,s)
= {KEGco
I
= K(o,s)-K(o,t)
@ t , s( K )
for a l l for all
Os(K)-Ot(K)
s,te)a,b(} = s,te)a,b(},
Q (K) = K ( t , s ) and Q o ( K ) = K ( 0 , a ) ; t h e and t,s t ,s a r e l i n e a r c o n t i n u o u s o p e r a t o r s and t h e r e f o r e t h e v e c t o r aO s u b s p a c e d e f i n e d above i s c l o s e d . The mapping A cj KA i s o b v i o u s l y one-to-one and c o n t i n u o u s ( b y 1)) hence b i c m t i n u o u s
where
by t h e i n t e r i o r mapping p r i n c i p l e . 3 ) The mapping
KE&Zo
i s i n j e c t i v e , bicon-
RE&;o
t i n u o u s and o n t o . I n d e e d , t h i s w a s p r o v e d i n Theorem 1 . 3 0 .
From 2 ) , 3) and Theorem 2 . 2 i t f o l l o w s t h a t 4 ) The mapping
t i n u o u s and o n t o . 5 ) The mapping
AEJ-
0
RENcO
&
RAEJ-\co
HAREA
0
i s i n j e c t i v e , biconi s i n j e c t i v e a n d con-
tinuous. I n d e e d , i n Theorem 2 . 2 w e saw t h a t t h e mapping i s i n j e c -
t i v e . L e t u s p r o v e t h a t i t i s c o n t i n u o u s . For w r i t e A1 A and A AR. We have R1
R1,RE
I-[
we
STIELTJES-INTEGRAL EQUATIONS
123
hence
which i m p l i e s
I n t h e same way one p r o v e s
hence
A
AAO
__j
6 ) The mapping
A1 AEA;
PROOF. a ) By 4 ) t h e mapping
if
R RA€
AEd;
"O
>Ico
i s continuous.
++ RAc 6 i s
b) We s t i l l have t o prove t h a t g i v e n ficiently close t o
> R1.
Al€J;
for
A1
continuous. AEA;
suf-
becomes a r b i t r a r i l y SVu ,[c ld) [R1-R] s m a l l . I n t h e proof o f 11’ of Theorem 2 . 1 w e s a w t h a t
"(c
,d]
ERsI ' ''(c ,d) CAIllKsII(c ,d)
and if we proceed as in 5) we have
STIELTJES-INTEGRAL EQUATIONS
124
-
by a > w e h a v e
A +A1
and t h e r e f o r e , s i n c e f o r
11 R1-RII (c ,d) it f o l l o w s t h a t
[Rl-R]
By 5 ) and 6 ) t h e mapping
+0
h e n c e b).
-
RAE>[co
AEd
0
i s injective,
b i c o n t i n u o u s a n d o n t o and w i t h 4 ) t h i s shows t h a t
31
7 ) On
t h e topologies of
>Ico
and >[co
coincide.
T h i s c o m p l e t e s t h e p r o o f o f t h e theorem.
-
13
Equationd w i t h tineah conbthaintd
I n t h i s 8 w e s t u d y t h e s o l u t i o n s of t h e s y s t e m ( K ) ,
(F)
(see t h e i n t r o d u c t i o n o f t h i s c h a p t e r ) when w e h a v e u n i c i t y o f t h e s o l u t i o n s and w e f i n d t h e Green f u n c t i o n . W e recall F i s c a l l e d a l i n e a r c o n s t r a i n t . I n A w e g i v e examples of t h e main l i n e a r c o n s t r a i n t s We s u p p o s e t h a t K i s conKE &uo) ; i n B w e make a p r e l i m i n a r a l g e b r a i c tinuous (i.e.
that
.
s t u d y where i t i s enough t o s u p p o s e t h a t
The a n a l y t i c
KE G u o .
r e s u l t s of C w i l l allow us t o transform t h e formulas of B
in
f o r m u l a s o f t h e Green f u n c t i o n t y p e (D and E l . A
-
I n what follows w e g i v e t h e main examples o f l i n e a r
c o n s t r a i n t s t h a t a p p e a r i n A n a l y s i s , i . e . , of o p e r t a t o r s
F E L[G()a,b( ,X) ,Y] 1
Fb]
-
F E L[G( (a,b) ,X) ,Y]
I n i t i a l conditions: we take
.
Y = X
and
to~)a,b(j
=
y(to). W e r e c a l l t h a t when w e have a l i n e a r d i f f e r e n t i a l equa-
t i o n of order
(N)
or
N[z]
n
:z ( n )
where, f o r i n s t a n c e ,
+
a l ( t ) z (n-l) ZE
t
O(")C)a,b(,Z)
... t
a,(t)z
and
= b(t)
6
(1
= cn
,
b ,aiE
with i n i t i a l conditions z(to> = then we take
C1’
X = Zn
z'(to) = and
C2'
yi(t)
..., z - ) ( t o )
a ,b ,Z I ,
= z (i-1)( t ), i = 1 , 2 , . .
[
. ,n,
STIELTJES-INTEGRAL EQUATIONS
125
and the n-order equation is transformed into the system
................. n
that is, of the form y’(t>
t
A(t)y(t)
= f(t),
y(to)
c.
Boundary conditions: we take Y X and ( a 4 ; 3 Ay(a) + By(b) where A , B E L(X). We recall that if we have the n-order equation (N) and boundary conditions
Fb]
2
-
where oij, B . . E L(Z), by the transformation given in 1 we =I get an example of the type 2. given
3
-
Periodicity conditions: we take )a,b( p > 0 (the p e h i o d ) we define Fb](t)
Fb]
4 5
5
-
We give
t E IR.
y(t+p) - y(t>,
Left discontinuity: We take Y (y(t,) ,y(t,-) 1
-
-
= IR, Y=GCR,X);
X 2 , to
€1 a,b [
and
Multiple point conditions (the Nicoletti problem): tl tmE)a,b( and A1 ,Am E L(X,Y); m FLY] E 1 Aiy(ti). i=l
,...
,...,
If for the n-order equation (N) we give Fi[z]
3
m
n
1 aijhz (h-l)(t.I ) 11 h=l j=
.
i=l,.. ,n, aijh L(Z)
the transformation of example 1 gives us an example of type 5.
STIELTJES-INTEGRAL EQUATIONS
126
-
6 t n E
(a,b)
Conditions at i n f i n i t e p o i n t s : W e g i v e a sequence
,n
= lYZy...
and u = ( u ~ ) s a~N , ~L ( XE, Y ) ) Fb] uny(tn). nc N
- I n t e g r a l c o n d i t i o n s : We g i v e
7
and
Fb]
(see B
1
o f 8 5 o f C h a p t e r I > and
a
SVoo()a,b(,L(X,Y))
:I f d a ( t ) . y ( t ) . a
-
8
I n t e r f a c e c o n d i t i o n s : We g i v e
A, A_, A+€ L(X,Y);
-
9
~ [ j r J:A - y ( t o - ) + equations: W e take
Integral
toE)a,b(
Ay(to) + A+y(to+). Y
= G()c,d[,Z)
A E G ( ) ~ , d ( , S V ~ o ( ) a , b ( , L ( X y z ) ) ) , F[y] ( t ) : (see (1.6.10)
B
and
and
duA(t,U).y(a)
>-
-
We w i l l now make a n a l g e b r a i c s t u d y of t h e r e s o l u h n o f t h e s y s t e m (K), ( F ) ; w e r e c a l l t h a t K E G U o and hence by I1 o f Theorem 1 . 5 w e h a v e R E Guo h e n c e f o r e v e r y R s € G ( ) a , b [ , L ( X ) ) . Given FE L[G()a,b(,X),Y] 1 . 6 . 8 w e have F = Fa + Fu. We r e c a l l t h a t
SE
w e have
and Fu continuoub mapping4 d h o m 3.1.
F , F,
PROOF. Given
1a 4 b
by
have naZuhaL e x t e n b i o n b ah Cineah G()a,b(,L(X)) i n L(X,Y).
U E G()a,b(,L(X))
f o r every
we define and h e n c e Flux] is XGX
F[U]x F[Ux]. We h a v e U x E G ( ) a , b ( , X ) w e l l d e f i n e d and depends o b v i o u s l y l i n e a r l y a n d c o n t i n u o u s l y on x . For q & ry t h e r e e x i s t (c,d)c)d,b( and c > O s u c h 9 and h e n c e t h a t q [F ( f )] G cq((f (1 'dl
I.
-
sCFCUIJ 4
i*e. t h e mapping proofs
.
U
Cq
which p r o v e s t h e c o n t i n u i t y of llUl!(c,d) 3 FLUJ. For Fa and F, w e have a n a l o g o u s
DEFINITION. F o r e v e r y = F t [ R ( t , s ) ] = F[Rs], By 3 . 1 w e h a v e
sc)a,b(
we define
J C r ( s ) Fa[Rs],
JU(s)
Js = J ( s ) =
Fu[Rs].
STIELTJES-INTEGRAL
and
3.3. Ja€ SVloC(]a,b(,L(X,Y))
60h
ewelry
SE ]a,b(
and
qE
127
EQUATIONS
rY.
P R O O F . By d e f i n i t i o n w e h a v e
[
q E ry, let ]a b c o n t a i n t h e q - s u p p o r t of f a ; by 9’ 9 ( 3 ) of 81 o f C h a p t e r I1 ( a n d Remark 8 of t h a t 5 ) w e h a v e
given
which i m p l i e s a l l t h e a s s e r t i o n s i f w e r e c a l l t h a t K i d c o n t i n u o u b we h a v e J = Ja and i s c o n t i n u o u s so is R s , h e n c e J u [ R s ]
3 . 4 . 16 PROOF. I f K
THEOREM 3 . 5 .
eq ua t i o n J(t)
P R O O F . By
R E Guo.
Foh t h e equation (L) J
- J(s)
ti?,>
-
I:
J(a)dA(a)
0
butibdieb
doh
0.
0.
the adjoint
s,tE)a,b(.
o f Theorem 2 . 1 w e have R(T,t)
-
R(T,s)
=
i.'
R(T,U)dA(a),
h e n c e , i f w e r e c a l l t h a t by 3 . 4 w e h a v e
J(t)
aLe
Ju
-
J(s)
j:da(T)o[
J = Ja, w e o b t a i n
/:R(r,u)-dA(o)
1
=
where w e d i d a p p l y ( 5 ) o f 51 o f Chap. I1 a n d Remark 1 of t h a t 8 .
We now d e f i n e
STIELTJES-INTEGRAL EQUATIONS
128
Kb]
and we w r i t e
f
K[y](t)
if
= f(t)
-
f(to).
We d e f i n e
THEOREM 3 . 6 . Given t h e b y b t e m ( K ) ,
(F) t h e 6 o t l o w i n g
PhOpCh-
t i e s ake e q u i v a l e n t : ( i 1 y : 0 i4 t h e o n l y b o l u t i o n 06 K[y] : 0 , Fly] = 0 . (iil F o h evehy C E Yo t h e b y b t e m K[yJ f 0 , F b ] = c had exactly one b oeution (iiil T h e m a p p i n g YE K - l t O ) Yo i d one-to-one
.
Fb]
onto. UOUb
(iul J ( t o ) :X -+Yo 1.
o n e - t o - o n e onto ( b u t n o t b i c o n t i n -
i b
+ ( i i ) .Given
Yo
w i t h K[yl] E 0 i f t h e r e were a y 2 # y1 w i t h K[y2] E 0 and F[y2] = c t h e n y = yl-y2 # 0 would be a s o l u t i o n of K[y] :0 , F [ ~ J = 0 i n PROOF.
(i)
c = F[YJE
contradiction t o (i). (ii) ( i )i s o b v i o u s . ( i i ) W (iii) i s immediate. (iii) ( i v ) . L e t yx be t h e s o l u t i o n of K[y] :0 , y ( t o > = x (by I11 of Theorem 1.5). Hence t h e mapping XE
X
yX€ K - l ( O )
i s a Banach s p a c e isomorphism. T h e r e f o r e t h e mapping Y E K"(0)
is one-to-one xE X
c-,Fry]€
Yo
o n t o i f and o n l y i f t h e composed mapping F[yx]
= F[R
x] t0
J ( t o ) x E Yo
i s one-to-one o n t o .
R E M A R K 1 . I n t h e case of t h e example (L) o f 1 2 w e may t a k e as t any p o i n t s E ) a , b [ and t h e n t h e p r o p e r t i e s above a r e a s t i l l e q u i v a l e n t t o t h e f o l l o w i n g ones: (iv') For every s E ) a , b ( , J ( s ) : X + Y o i s one-toone o n t o .
-
S T I E L T J E S - I N T E G R A L EQUATIONS
(v ) There exists is one-to-one onto.
-
s~)a,b(
such that
129
J(s):
X
+
yo
NOW ON W E SUPPOSE T H A T THE E Q U I V A L E N T P R O P E R T I E S O F THEOREM 3.6 ARE S A T I S F I E D FROM
F o r every
t E) a,b(
we define
j(t) = R(t,tQ)oJ(to)-l: 3.7. a ) j(t>
t i ve.
6 ) J(t)
i d
c ) z(t)
i d
Yo + X.
i f l o t COntiflUOUd i f l g e n e h a t ) . i n j e c t i v e i d a n d onLg . i d R(t,to) i d i n j e c i d Cineah
carntinuoub i d J(to)-l i 6 continuous. d ) 16 J(to)-l i d c o n t i n u o u d , Yo i d a Banach dpace and i d c e o d e d i n Y. el I n t h e example (L) 0 6 2 2 we have R(t,s) = J(t>-i J ( s ) a n d S(t) J(Z)- . 4 ) I n t h e exampee (L) 04 2 2 , j(t) i d b i j e c t i v e and id 3(t> id cona2nuoud d o h dome t )a,b( it i d c o n t i n u o u d doh evehg t E)a,b(. PROOF. a > , b) and c) are obvious by the definition of
z(t).
d) If J(to)-l is continuous then J(t ) is bicontinous, 0 hence Yo is isomorphic to the Banach space X and therefore complete, hence closed in every separated LCS. e) By Remark 1 for every tE)a,b( there exists J(t1-l and in order to prove that R(t,s) = J(t)-loJ(s) it is enoupj~ to show that J(t)oR(t,s) J(s): by 0 of Theorem 2.1 we have
J(s) = F ~ [ R ( T , s ) J = FTIR(T,t)oR(t,s)]
= F, [R(T ,t ) ] oR(t
,s
= J( t)oR(t , s 1.
The second assertion follows from
f) follows immediately from el.
=
130
STIELTJES-INTEGRAL 3.8.
Foh evehy
-
EQUATIONS
t h e dunction
csYo tE)a,b(
i b a e g u L a i e d ( c o n t i n u o u d id
z ( t > c EX
.LA c o n t i n u o u d ) ,
K
z(t>c = R(t,to)J(to)-lc; followsfrom t h e fact t h a t the f u n c t i o n (continuous i f K i s continuous). P R O O F . We have
T H E O R E M 3 . 9 . T h e dunc-tion
a) ?(t>c- j(to)c CE
Yo, t E a , b ( . b ) Ft[j(t)c]
PROOF. W e have 1 . 5 w e have
= c
t
:tI
5:
had t h e
hence t h e r e s u l t t0
doLLowing p h o p e h t i e d :
d,K(t,o).j(a)c
d o h euehy
-
= 0
d o h euehy
c€Yo. by ( R " )
;(t>c= R(t,to)J(to)-'c;
R(t,to)
i s regulated
R
t Ix t I t d u K ( t , u )
o f Theorem
R(u,to)
0
0
and i f w e a p p l y t h i s t o
we get a).
J(to)-'c
BY Ft[z(t.)c]
w e have b )
= Ft[R:R(t , t o ) * J ( t o ) - l c ] =
.
C O R O L L A R Y 3 . 1 0 . T h e d o L u t i o n yc 0 6 K[yl : 0 , F[y] c€Y0 i4 g i v e n b y y c ( t > j(t)c, t ~ ) a , b ( .
b ) T h e Lineah m a p p i n g
t inuoud id a n d onLy id i d bicontinuoud)
.
CE
Yo
G()a,b(,X)
r-,
J ( t o ) - lLA continuoud
= {(f,c)EG()a,b(,X)XY such that
'K,F
{ ( g , c ) E G()a,b(,X)XY such t h a t
13 y ~ G ( ) a , b ( , X )
K[y]
K[y]
f,
I
F[y]
c}
YE G(]a,b(,X)
g,
Fry]
i d con-
( a n d hence J ( t o )
DEFINITIONS 'K,F
c whehe
= c)
STIELTJES-INTEGRAL EQUATIONS
131
I n t h e case o f t h e example (L) of S 2 w e w r i t e
Given
(f,c)E S
K,F o f Theorem 1 . 5 w e h a v e
if
= f
K[y]
and
Fry]
= c
SL,F and by ( p )
r t
For
fEG()a,b(,X)
we define
'
t0
tE-)a,b[; F(f)
by b) o f 1 1 . 1 . 1 4 w e h a v e
i s w e l l d e f i n e d . I f we a p p l y c = Fry]
? ~ G ( ] a , b [ , X l , hence F t o (1) w e o b t a i n
= J(to)y(to)
t
F[f],
hence y ( t o ) = J(to)-l[c
-
F(?)]
and i f w e r e p l a c e t h i s v a l u e i n (1) w e o b t a i n y(t> = R(t T h i s p r o v e s t h e f i r s t p a r t of
T H E O R E M 3.11.
Foh euehy ( f , c ) E S K,F K r y ] = f , Fry] = c i b g i v e n b y u
khe b o e u t i o n y
06
(2)
b ) ReciphocaLLy, i d
(f,c)E G()a,b(,X)XY
c - F ( f ) € Yo t h e n t h e b y s t e m K[y] = f , F[y] y g i v e n by ( 2 ) ( h e n c e ( f , c ) E SKyF1. Proof o f b : immediate s i n c e w e may
LA s u c h t h a t c hub a b o t u t i o n
"go back" t h r o u g h
t h e t r a n s f o r m a t i o n s w e made i n t h e proof of a ) .
R E M A R K 2. I n ( 2 ) w e c a n n o t w r i t e j(t)[c-F(f)]
J ( t > c-
because, i n g e n e r a l , w e d o n ' t have and
j{t)FC?) If
K
J(t)F(g)
c , F ( ? ) E Yo
hence
z(t)c
are n o t d e f i n e d .
i s c o n t i n u o u s so i s
R
h e n c e by b ) of 11.1.14
STIELTJES-INTEGRAL EQUATIONS
132
i s c o n t i n u o u s if g by 3 . 8 w e t h e n have
i s c o n t i n u o u s and t h e r e f o r e
F(g)=Fa(g);
THEOREM 3 . 1 2 . Let K b e c o n t i n u o u b . a) F o h ( g , c ) E S' t h e b o t u t i o n Y E G()a,b(,X) 06 K,F K [ ~ ] = g , Fly] = c i d a conttinuoud d u n c t i o n and i d g i v e n b y (3)
y(t>
It
t
=
R ( t , a ) d g ( a ) + j(t)[c-l,bda(T)[
jTR(.r,o)dg(u)]]. t0
0
b ) R e c i p h o c a L L y id
-
c
-the d y h t e m
( g , c ) E ~ ( ) a , b ( , X ) X Y i d duch t h a t
0
= g , F[y]
K[y]
I
] ~ R ( ~ , ~ ) d g (EoYo )
/:da(T)[
= c
had a d o e u t i o n g i v e n b y ( 3 ) .
U s i n g i n t e g r a t i o n by p a r t s i n (1) w e o b t a i n
I:
d u R ( t ,a) * f ( a ) .
f ( t ) + R ( t , t o ) ~ y ( t o ) - f(to)]-
y(t>
(4)
0
t For
w e define
fEG()a,b[,X)
r(t)
ItdUR(t,o).f(u), 0
and a b , and by a ) o f 11.1.14 w e have ?EG()a,b(,X) f i s c o n t i n u o u s if K ( a n d h e n c e R ) i s c o n t i n u o u s ; t h e r e f o r e F(g) i s w e l l d e f i n e d . If w e a p p l y F t o ( 4 ) w e o b t a i n c F[y] F [ f l t J ( t o ) b ( t o ) - f ( t o ) ] - F ( Z ) , hence
t E
1"
-
y(to)
f (to) = J ( t o ) - ' [ c - F ( f ) + F ( f ) ]
and i f w e r e p l a c e t h i s e x p r e s s i o n i n ( 4 ) we g e t
i.e.
THEOREM 3 . 1 3 . a ) Foh e v e h y K[y]
= f , F[y]
(5)
y(t)
c
i 4
f(t)
-
(f ,c)E S
given b y
6,
KYF
daR(t,a)*f(o) +
the batution
z ( t )[c-F(f)+F(r)].
b ) R c c i p h o c a L t y , i $ (f , c ) € G()a,b(,X)XY
c LZ
06
y
i d
duch t h a t
- F ( f ) + F ( ? ) € Yo t h e n t h e byd.tem K b ] = f, F[y] b o L u t i o n givefi b y ( 5 ) (hence (f ,C)E sK,F),
c
had
STIELTJES-INTEGRAL EQUATIONS .-
f
133
i s c o n t i n u o u s , s o i s R and t h e n by a ) o f 11.1.14 i s c o n t i n u o u s t o o , hence F ( f ) F , ( f ) ; t h e r e f o r e w e have If
K
Let
3.14.
y
bokution
be continuoub. Foh evehy
K
= f , F[y]
K[y]
06
= c
i b
( f , c ) E S K Y Ft h e
given by
r t
(6)
(6) i s a hegul?ahizing 60hmuta s i n c e a l l f u n c t i o n s of t h e second member, b u t f
, are
c o n t i n u o u s (by 3 . 8 and b e c a u s e
f"
is
y and f have t h e same kinds of d i s c o n t i n u i t i e s and a t t h e same p o i n t s .
c o n t i n u o u s ) ; hence we see t h a t
C
-
The theorem t h a t f o l l o w s w i l l a l l o w us t o make
fur-
t h e r t r a n s f o r m a t i o n s of t h e f o r m u l a s (21, (31, ( 5 ) and ( 6 ) .
W e recall t h a t i f and
X
uEL(X,Y), f o r every
i s a Banach s p a c e , qE
ry
Y
a
SSCLCS
we d e f i n e
L E M M A 3.15. G i v e n B E SVoo()a,b[,L(X,Y)), qE ry and a ~ ] a , b ( buch t h a t doh evehy X E X we h a v e q[B(t>x] 9 doh
pS)
0
t < a then q’ q[
doh euehy
.dg(s)
g~&()a,b(,X).
PROOF. It i s immediate s i n c e for
because
q[B(ci)l
= 0
if
Ei-s a
T H E O R E M 3 . 1 6 . G i v e n K€GUo,
R
J ( s ) = F[Rs] we d e d i n e
si-16
ci(
si’< a
9' i t b
h e b u l u e n t and
= F,[Rs]
9
w e have
STIELTJES-INTEGRAL EQUATIONS
134
la
S
H ( t ,s>
da(r)oR(r ,s>
- Y(s-t)J(s);
w e have
a ) Ht E SVoo()a,b(,L(X,Y))
t E ) a ,b
[.
b ) J ~ d a ( r ) l r t R ( r y s ) . d g ( s )=
and
H(t,b-)
0
J:
d o h evehy
d o h evehy
H(t,s).dg(s)
gE t ( ) a , b [ , X ) .
t
doh a l l PROOF. b
+ Y(s-t)J(s) +
H(t,s)
C)
+ Y ( u - t ) J ( u ) ] d U K ( u y s ~= a ( s )
\:[H(t,a)
s,t E)a,b(. a ) We want t o show t h a t for e v e r y such t h a t :
1c)a,b[ 9
( i ) For e v e r y
w e have
x€X
or i n c r e a s e (aq
b
9
= 0
qlHt(s)x]
of Ht i n s u c h a way t h a t t E [a
( i )We t a k e t h e q - s u p p o r t
q c Ty
(aqybq]
there is a
if
sg a
a
and decrease b
9’ 4
1.
4
Then f o r
we have 'a
and
for e v e r y s >, b 9 Ht(s)
XE
X
since
[a]
SV
= 0 . Analogously
for
w e have
= l asd a ( ~ ) o R ( r , s ) -
da(r)oR(r,s) =
and
f o r every
x
since
SV
9 Y (bq ’b)
[a]
0.
-Isb
da(r>oR(r,s)
9
STIELTJES-INTEGRAL EQUATIONS
135
( t i ) By 1 . 6 . 2 we have
ra Hence
I f we a p p l y ( 7 ) o f 11.1.6 and r e c a l l t h a t obtain
b) From t h e d e f i n i t i o n of
H
R(t,t)
z Ix
,
we
it f o l l o w s t h a t
b
H ( t ,s)
= J * d a ( r ) o s g ( t - r ) xf T , t ) ( s ! R ( ~ , s ) a
hence
W e define
a a h(.r,s) = sg(t--c)x
h
s a t i s f y t h e h y p o t h e s i s of Theorem 2 . 6 of Chapter
a
and
g
f. 4 ( s ) R ( ~ , s ) ; t h e
functions
a,
I1 h e n c e , by (7) of t h i s theorem, t h e l a s t i n t e g r a l i s e q u a l to
jbli -da(-c)
a
c ) By t h e d e f i n i t i o n of
R(T , s ) d g ( s ) .
'I
H
w e have
STIELTJES-INTEGRAL EQUATIONS
136
H(t
y
+) Y ( a - t ) J ( a ) =
~
f
a
da(T)oR(T
,a>j
by Theorem 2 . 7 o f C h a p t e r I1 w e have
and by (R,)
IS
of Theorem 1 . 5 we h a v e
T
R ( T , o ) o d U K ( o , s > = Ix
-
R(T,s);
if w e r e p l a c e t h i s i n t h e second member of D
-
(ak)
we obtain c).
We g i v e now a first form of t h e i n t e g r a l f o r m u l a s of
Green f u n c t i o n t y p e .
THEOREM 3.17.
Foh K E & " we h a v e t h e h e i b o n e and o n l y o n e d o a ) Foh e v e h y ( g , c ) E SE l u t i o n y 0 6 K[y] = g , F[yj = c; t h e b o l u t i o n y i b c o n t i n u o u b and i b g i v e n b y . (7)
c
then the by (7).
byb.tem
KEY]
t
b i H ( t o , u ) d g ( u ) E Yo
= g , Fry] = c
had a d a l u t i o n
y
given
P R O O F . It f o l l o w s i m m e d i a t e l y from (3) by b) of Theorem 3 . 1 2 .
I n t h e case of t h e example (L) of 8 2 f o r e a c h w e t a k e to = t i n (7):
T H E O R E M 3.18.
L[y]
(7')
g , F[y]
Foh
eveny c
( g , c ) E F,:S
%he b o t u t i a n i b c o n t i n u o u b and i b g i v e n b y
tE)a,b( y
06
STIELTJES-INTEGRAL EQUATIONS
f , Fry] = c
t h e n t h e AyAtem b y (8).
K[y]
P R O O F . K[y]
may b e w r i t t e n as
= f
hub a d o L u t i o n
137
y
given
where r t
a n d by a ) o f 11.1.14 w e have
gE b ( ) a , b ( , X ) ; h e n c e by Theorem
3 . 1 7 w e have
We have
F[y-f] /ttR(t,o)do[ 0
c
-
F[f]
and w e s t i l l h a v e t o p r o v e t h a t
]
ltudTK(u,T)*f ( T ) 0
[:TR(tyT)'f(T).
I n d e e d , u s i n g f i r s t i n t e g r a t i o n by p a r t s i n t h e f i r s t i n t e g r a l a b o v e , t h e n a p p l y i n g ( 6 ' ) of C h a p t e r I ' I ( a n d r e c a l l of Theorem i n g t h a t K ( t , t > :0 ) a n d u s i n g a f t e r w a r d s ( R * , ) 1.20 we obtain
STIELTJES-INTEGRAL EQUATIONS
138
REMARK 3. ( 8 ) i s a r e g u l a r i z i n g formula (see t h e comment a f t e r 3.14). I n t h e c a s e of t h e example ( L ) of 8 2 for each
t ~ ) a , b (
t ; w e r e c a l l t h a t i n Theorem 3 . 1 9 K i s normalized hence w e have K ( u , s ) = A(s)-A(u) and w e o b t a i n
we may t a k e
Theorem 3.20 - Foh e v e h y F[y] c hub a b o l u t i o n
E
( f , c ) E S L Y F t h e AyAtem y given b y
Ley] =
f,
- I n t h i s item w e give conditions i n order t h a t t h e
s o l u t i o n s of t h e problem K[y] g , Fry] = c may b e w r i t t e n i n t h e form g~b()a,b(,X)
with
(9)
We w i l l show t h a t t h e n y depends c o n t i n u o u s l y on g. W e e x t e n d t h e s e r e s u l t s t o t h e g e n e r a l problem K[y] f, F[y]=c.
THEOREM 3.21. Let K and F be Auch t h a t I ) T h e b o . t u t i o n y 0 6 K[yI = g , F[y] c whehe may b e w h i t t e n i n t h e 40nm ( 9 ) . g~t()a,b(,X) 2 ) Foh any c € Y 0 and g ~ Q ( ) a , b ( , X ) , y g i v e n b y ( 9 1 i d t h e d o e u t i o n 0 4 K[y] = g, FLY] = C. T h e n : a ) SFYF 6()a,b(,X)XYo
b ) FIG()a,b(,X)]
= Yo
STIELTJES-INTEGRAL EQUATIONS
139
P R O O F . a ) If ( g , c ) E S6 i s such t h a t t h e s o l u t i o n y of K,F g , F b l = c may b e w r i t t e n i n t h e form ( 9 ) t h e n c h a s K[y] t o be i n t h e domain of d e f i n i t i o n o f J ( t ) , i n p a r t i c u l a r o f j ( t o ) = J(to)-’, i . e . , C E Y o , h e n c e by 2 ) w e have t h e o t h e r i n c l u s i o n . b) W e h a v e
K-l(O)C
S ~ y F c e ( ) a , b ( , X ) x Y o and
O()a,b[,X),
Yo = F[K-’(O)]
C
hence
F[b(]a,b[,X)]
a n d by 2 ) w e h a v e t h e o t h e r i n c l u s i o n .
D E F I N I T I O N : Ya
Fa[G()a,b(,X)].
I n what f o l l o w s w e w i l l p r o v e t h a t i f Y a = Yo t h e n w e h a v e 1) and 2 ) o f Theorem 3.21. The example 3 a t t h e end o f t h i s 5 shows t h a t b ) o f Theorem 3 . 2 1 d o e s n o t n e c e s s a r i l y imply t h a t
=
Y,
THEOREM 3 . 2 2 .
*
16
Yo t h e n
Y,
PROOF. I t i s i m m e d i a t e t h a t
l y , given
SEYF = ~()a,b[,X)XYo.
$ , F C b ( ) a , b ( ,X)XYo; r e c i p r o c a l ( h , d ) E ~ ( ] a , b [ , X ) X Y o w e want t o p r o v e t h a t t h e
h , F[y] = d h a s a s o l u t i o n . By Theorem 1 . 5 there exists a G()a,b(,X) s u c h t h a t K[y] h and by a > system
K[y]
GE 7 -
i s c o n t i n u o u s , h e n c e F[y] = For[?]€ Yo and t h e r e f o r e d Fa[?]€ Yo; t h e n by b) of Theorem 3 . 1 6 , app l i e d t o g : 0 and c d - Fa[?] , t h e r e e x i s t s
of Theorem 3 . 1 2
z ~ G ( ] a , b ( , X ) , s o l u t i o n o f K[z] take y z t w e h a v e K[y] Fb]
= F[z]
= 0 , F[z] K[y] = h
+ F[-] = d
-
FaL]
d and
-
+ Fa[?]
Fa[-];
if we
= d. QED
3.23. eXidtA
16
Ya = Yo
t h e n doh euehy
gt6()a,b(,X)
thetre
I + b H ( t o y s ) . d g ( s ) E Yo.
PROOF. By Theorem 3.22 w e h a v e r e m 3.17 t h e s o l u t i o n of K[y]
( g , O ) € S E Y F h e n c e , by Theog , F[y] = 0 i s g i v e n by
140
S T I E L T J E S - I N T E G R A L EQUATIONS
t h i s i m p l i e s t h e r e s u l t if w e t a k e
t = t
Yo
J(to) =
i s t h e domain of d e f i n i t i o n of
0
and r e c a l l t h a t
J(to)-l.
J ( t o ) i s a ( c o n t i n u o u s ) l i n e a r b i j e c t i o n from X w e m a y u s e it t o t r a n s f e r t o Yo t h e Banach s p a c e norm of X . We d e n o t e by Yx t h e v e c t o r s p a c e of Y 0 endowed w i t h t h i s new norm, i . e . , for c e Y X w e d e f i n e -1 IICIIX IIJ(to) cu Since
onto
Yo
-
Obviously
z(t> =
f o r every
t ~)a,b[.
R(t,to)
o J(to)-': Y x
3 . 2 4 . 16 Yk = Yo t h e n d o h a l l ai H ( t , s > E L ( X , Y o ) .
6) H ( t , s )
+X
i s continuous
s,t E)a,b(
w e have
E L(X,Yx).
P R O O F . a) W e have
For e v e r y
x€X
w e have
H ( t , s ) x = F a b S y t x ] E Fa[G()a,b(,X)] hence
Yay
H ( t , s ) E L(X,YJ.
b ) By a) t h e graph of H ( t , s ) i n XXYo is closed, hence a f o r t i o r i t h e graph i s c l o s e d i n X X Y x j t h e n w e have b ) by t h e c l o s e d g r a p h theorem.
STIELTJES-INTEGRAL EQUATIONS
have
Ht E SVoo()a,b(,L(X,YX)).
have
Ht,
ib
= 0
H(t,s)
that
PRO0 F. a ) By
Y,
d o h aLL
= Yo
s < at
141
on
SV
()a,b[,L(X,Yo)).
( a t , b ~ ~ c ) a , b [d u c h
s >bt.
Fa L[G()a,b(,X),Yc] ; hence
w e have
i s c l o s e d ana a f o r t i o r i t h e graph of F a i n Gf)a,b[,X)XYo it i.s c l o s ed i n G()a,b(,X)XYX; t h e r e s u l t f o l l o w s from t h e c l o s e d graph theorem. b ) f o l l o w s from a ) . c ) f o l l o w s from
a
that
a~ SVoo()a,b(,L(X,Y))
takos i t s values i n
d ) By b ) of 3 . 2 4 w e have
and t h e f a c t
Yo. H ( t , s ) € L(X,Yx)
f o r every
s ~ ] a , b [ hence t h e r e s u l t f o l l o w s from a ) o f Theorem 3 . 1 6 a p p l i e d t o t h e Banach s p a c e Yx ( i n s t e a d of Y) s i n c e by b )
w e have O E SVoo()a,b(,L(X,YX)). e ) f o l l o w s d i r e c t l y from a ) of Theorem 3 . 1 6 . f ) f o l l o w s from a ) of Theorem 3 . 1 6 and from d ) . 3.26.
16
Y,
= Yo
t h e n d o h evehy
g ~ G ( ) a , b ( , X ) thehe
eXibtb
a n d .the 6.ihb.t
i n t e g h a t exid.tt6
boxh i n
Yx
and
Yo.
P R O O F . By d ) of Theorem 3 . 2 5 t h e f i r s t i n t e g r a l e x i s t s i n Yx ( h e n c e i n Yo s i n c e Yx C, Yo i s continuous) t h e r e f o r e t h e f i r s t member i s w e l l d e f i n e d . Again by d ) o f Theorem 3 . 2 5 and since
J ( t ) E L(Yx,X)
w e have
hence t h e second i n t e g r a l e x i s t s . The e q u a l i t y f o l l o w s from t h e c o n t i n u i t y of
J(t)
in
Yx.
STIELTJES-INTEGRAL EQUATIONS
142
F R O M N O W O N W E SUPPOSE T H A T DEFINITION. For every G(t,s)
we w r i t e
s,tE)a,b(
= J(t)oH(to,s)
t
Y a = Yo
[Y(s-to)-Y(s-t)]R(t,s)
i s c a l l e d t h e G h e e n dunction o f t h e s y s t e m ( K ) , ( F ) . By b) o f 3.24 a n d s i n c e z ( t ) E L ( Y x , X ) (and R ( t , s ) E L ( X ) ) and
G
w e have 3.27.
G ( t , s ) E L(X)
doh a l l
s , t E)a,b(.
R E M A R K 4. The t h e o r e m s t h a t f o l l o w a r e t h e f u n d a m e n t a l t h e o rems o f t h i s 5 . We d o n ' t know i f t h e y a r e t r u e w i t h o u t t h e h y p o t h e s i s Ya Yo, i . e . w e ignore i f t h e necessary condit i o n s 1) and 2 ) o f Theorem 3 . 2 1 imply t h a t Ya a € BV1Oc()a,b{,L(X,Y)) t h e necessary condition
T H E O R E M 3.28.
K
a) The dybtem
and K[y]
i b
given b y
Yo.
F a h e b u c h t h a t Ya = Yo t h e n = g , Fry] c hub a b o e u t i o n
y ~ b ( ) a , b ( , X ) id a n d onLy id
tthib b a L u t i o n
Ya
implies t h a t
( g , c ) ~ t i ( ) a , b [ , X ) X Y ~ t; h e n
eveay ( f , c ) E sK,F t h e b y b t e m hub o n e and onLy o n e b o l u t i o n g i v e n b y b)
If
= Yo
F[G()a,b(,X)] ( s e e Theorem 3.21)
Yo.
FOJL
P R O O F . a ) By ( 7 ) and 3.23 z(t)c rb
and
are w e l l d e f i n e d and if w e r e c a l l t h a t
K[y]
= f , F[y]=
c
STIELTJES-INTEGRAL EQUATIONS the result follows from the definition of b) We may write y(t)
-
143
G.
duK(t,o)[y(a)-f(~)]
f(t) +
g(t)
where rt
is continuous and if we apply a) we have
By a) of 11.1.14 g
hence the result. THEOREM 3.29. T h e Gheen 6 u n c t i o n
G: ]a,b[X)a,b(
hub t h e 6oLLowing p h o p e h t i e d (Go)
F[Gs]
(G1)
Gs(t)-Gs(to)
(G2)
= 0
I:
doh e v e h y t
4
L(X)
:
sE)a,b(.
doK(t,u)oGs(u)
0
[-Y(s-t)+Y(s-to)]IX s ,t
G(t,s) + Y(s-t)R(t,S)
t
€1a,b(.
Y(s-to> [j(t)J(s)-R(t,s)]
(Gg) Foh e v e h y s~)a,b( Gs i b c o n t i n u o u b a t Le6t-continuoub a t t s.
t # s
t
and
(G4) Foh evehy tE)a,b( Gtc SVoo()a,b(,L(X)) and Gt(s)= 0 id 5 < i n 6 [t ,to,aJ oh s > d u [t,toybJ whehe (ao,bo) den o t e b t h e b u p p o h t 06 J(to)- X G i d eocaLLy u n i d o h m l y 0 6 bounded b e m i v a h i a t i o n i n t h e b e c o n d v a h i a b l e .
PROOF. (Go). By the definitions of G G(t,s)
-
Y(s-to)J(t)oJ(s)
z(t>
and
da(T)oR(T,s)
+ Y(s-to)R(t,s)
-
H we have
Y(s-t)R(t,s),
STIELTJES-INTEGRAL EQUATIONS
144
and by Theorem 3 . 9 w e have
ho-
and by a ) o f Theorem 3 . 9 t h e f i r s t summand s a t i s f i e s t h e
mogeneous e q u a t i o n . For t h e s e c o n d summand w e have t o p r o v e that
= [Y
(S-t
1-Y (s-to)]Ix.
fto,t)
since then everything i s which i s o b v i o u s f o r s $! zero; f o r t o ( s < t t h e equation reduces t o
i . e . , t o t h e e q u a t i o n of t h e r e s o l v e n t ( ( R " ) and a n a l o g o u s l y f o r t <s < t 0
.
o f Theorem 1 . 5 )
( G 2 ) f o l l o w s i m m e d i a t e l y from c ) of Theorem 3 . 1 6 and f r o m t h e d e f i n i t i o n of G . (G3)
(G,+).
f o l l o w s from t h e d e f i n i t i o n o f
G.
By d ) of Theorem 3 . 2 5 w e h a v e lit,€
SVoo(] a , b ( , L ( X , Y x ) )
and t h e r e e x i s t s (aoybo) C ) a , b ( s u c h t h a t H ( t ,s> = 0 for s < a o or s > b o ; t h e same i s t r u e for J ( t ) o Ht o O, h e n c e it f o l l o w s from t h e d e f i n i t i o n of G t h a t G ( t , s ) 0 for or s
s >bup[t,to,b
J .The
REMARK 5 . I n t h e case of example (L) of 8 2 form
rest i s obvious. (G2)
takes
the
STIELTJES-INTEGRAL EQUATIONS
145
Indeed i n t h e case of example (L) w e have
z(t)J(a> -
R(t,b)
(by c ) o f Theorem 3 . 9 ) ; f o r e v e r y
-
K(u,s) = A ( s )
w e have
s
0 we may t a k e
to
s and
A(u).
REMARK 6 . (G1) s a y s t h a t Gs s a t i s f i e s t h e e q u a t i o n EdK ( G ~ ) = ~ ( ~ ] of D i s t r i b u t i o n s i . e .
i n t h e s e n s e o f Theory
d G (t)t dt s dt
t
ft
dUK(t,u)oGs(u>
~5(~)(t).
0
T H E O R E M 3 . 3 0 . a ] T h e mapping gcC i d
9gE 6 0 a,b [ , X )
() a ,b [,X 1
continuoub, whehe
b (gg)(t) = jaG(t,s)dg(s)
b l T h e mapping whehe
CE
Yx
d
,
t€)a,b(.
y , ~O ( ) a , b [ , X )
i b
continuoub,
yc(t> = i(t)c.
cl T h e d o t l o w i n g phopehtieb ahe e q u i v a t e n t : (il T h e mapping C E Yo HycczG(]a,b(,X) tinuoud. liil J(to)-’: Yo 4 X i b continuoub. (iiil Yo i b a Banach b p a c e . P R O O F . By ( G 4 )
Gt
id
con-
h a s compact s u p p o r t , hence rb
The c o n t i n u i t y of
where
a
9
= inb[cyto,aJ
f o l l o w s from
and
6 =
bup[d,to,bJ
( c f . (G4)).
b ) Follows from b) of C o r o l l a r y 3 . 1 0 a p p l i e d t o
Yx. c) Follows from b ) o f C o r o l l a r y 3 . 1 0 and d ) o f 3.7.
STIELTJES-INTEGRAL EQUATIONS
146
T H E O R E M 3.31. T h e mapping f E G() a,b[
,XI
i h conkinuouh whehe
P R O O F . The mapping
f
-
f
Q,fE@
c,gK€
() a , b [ , X >
i s t h e c o m p o s i t i o n of t h e con-
t i n u o u s mappings
fEG()a,b(,X) and g€Q()a,b(,X)
-
t-,kf€e()a,b[,X) SgEe()a,b[,X),
where rS
9
and
EXAMPLES
i s d e f i n e d i n Theorem 3.30.
1. W e take
X = Y = R
y'
t
and c o n s i d e r t h e e q u a t i o n A'y = f ' ,
more p r e c i s e l y t h e i n t e g r o - d i f f e r e n t i a l e q u a t i o n (L)
and A€GBV1""(]a,b(). y,f E G()a,b[) The r e s o l v e n t of (L) is R ( t , s ) = exp[-A(t)+A(s)] t h e g e n e r a l s o l u t i o n of (L) i s
where
y ( t ) = y(s)exp[-A(t)+A(s)]
t
JI
exp[-A(t)+A(a)] * d f ( U ) .
If w e t a k e now a l i n e a r c o n s t r a i n t (F)
and
FCYI = c
FE G ( ) a , b [ ) '
STIELTJES-INTEGRAL EQUATIONS
147
a BVoo()a,b() and U E s o o ( ) a , b [ ) i s z e r o o u t s i d e a n i n t e r v a l [:,6) c ) a , b ( and 1) such t h a t
by 1 . 6 . 8 t h e r e e x i s t
(i.e. UE
,
u
l,( [.,5]
We h a v e
hence
The c o n d i t i o n f o r t h e e x i s t e n c e o f t h e Green
is
J(s) # 0 , i.e. / abe - A ( t ) d a ( t )
If
function
J(s) # 0
# 0.
t h e Green f u n c t i o n i s g i v e n by
hence t h e s o l u t i o n
y
of t h e p r o b l e m a ( L ) ,
rb 2 . Y = X2 (K) w e h a v e
and
Ya
(F)
i s g i v e n by
rS
Fry)
= (y(to),y(to-));
Yo = Ax = { ( x , x ) E X
2
I
f o r any e q u a t i o n X E XI
STIELTJES-INTEGRAL EQUATIONS
148
hence if J(to) is injective (i.e., if y 0 is the only solution of the system K[y] :0 , Fry] = 0 - see Theorem 3.6) the problema (K), (F) has a Green function (and J(to) is bicontinuous). 3.
Y = X2
and
F[y]
(y(to),y(to+>); then we have
=I
a(t>x = F[XJ~,~]X]= (XIa,t] (to)x~X]ayt](to+)x =
u(t)x
= F[x{~~x]
(x,x> (x,O) (0,O)
if if if
t > to t = to t < t0
(x~~)(~~)x,x{~)(~~+x)) =
(o,o)
hence
if
t
+
to
and
for any
K.
If we take now
R(t,s) = Ix and J(s)x We
L[y]
= F[Rsx]
5
y
we have the resolvent
= (Rs(to)~,Rs(tOt)~) = (x,x>.
have da(T)oR(r,s)
since
= F a [ ~ ~ a y S ] R s ]6 L(X,Yo)
STIELTJES-INTEGRAL EQUATIONS
H ( t , s ) g L(X,Yo)
hence
and t h e r e cannot e x i s t t h e Green
(L), (F).
f u n c t i o n of t h e problem 4. We t a k e
149
pi,
)a,b( =
Y = G(R,X)
= y(o+l)
F[y](u)
-
and a€
y(a>,
n.
W e have Fa[f] = F [ I - f ) , hence Ya = G - (R,X) which i s a Frec h e t s p a c e and thus (by t h e c l o s e d graph theorem) h a s no finer Banach s p a c e t o p o l o g y hence f o r no K can we have Y a = Yo, so t h e r e n e v e r e x i s t s a Green f u n c t i o n w i t h t h e p r o p e r t i e s of Theorem 3 . 2 9 .
Hence f o r any
K E GU0(RXR,X)
t h e r e never
e x i s t s a f u n c t i o n G : RXlR + L(X) with t h e p r o p e r t i e s ( G o ) t o (G4) s u c h t h a t t h e c o n t i n u o u s p e r i o d i c s o l u t i o n s of period 1 of y(t)
-
t Y(to> +
daK(t,a)*y(a) Ito
g(t)
-
g(to>
are e x a c t l y t h e f u n c t i o n s o f t h e form
L W
y(t) X = Y
5. We t a k e
G(t ,s> * d g ( s ) .
= G ( ( a , b ) ,Z) where
Z
i s a Banach
s p a c e and d e f i n e 0
F[f](o) f o r every
f E G ( [a,b] ,X>
= laf(T)(T)dT,
[a&)
Y
G( [ a , b ) , G ( ( a , b ) , Z ) > .
a) I n o r d e r t o show t h a t
prove t h a t t h e f u n c t i o n
0 E
T
F(f)
i s w e l l defined w e w i l l i s regulated; 0 < E < 6 and T E [a,,-,]
E ( a , b ] w f ( . r ) ( . c )E Z
t h i s f o l l o w s from t h e f a c t t h a t f o r
w e have
d
11 f ( T + 6 )
11 f ( T + 6 ) ( T + 6 ) - f ( T i - € ) ( T + 6 ) - ( T + € ) (T+6 11 + 11 f( T + E )
b llf(T+6)-f(T+E)l\
since
f
and
,<
(T+E>II
(T+6
+ [lf(T+E>(T+6> Ia rb) f(‘C+E) are r e g u l a t e d .
1-f
-
(T+E) (T+E)
f(TSE)(T+E)ll
11
\<
S T I E L T J E S - I N T E G R A L EQUATIONS
150
u ( t > x = F(x { ) x )
Fu = 0 :
b ) We h a v e F = FCi
where
x E X ;hence
[ ( x i t i ( ~ ) x j ( ~ ) d r=
F(xItIx](a)
= j aUq t ) ( T ) X ( T ) d T =
0;
F = Fa.
t h e r e f o r e w e have
c ) We h a v e
Yo
I
G L l ) ( ( a , b ) , Z > = { g E G ( l ) ( [ a , b ) ,Z>
g ( a > = 0)
Y = G ( [a,b] , Z >
t h a t i s n o t a c l o s e d subspace of
but t h a t
a l l o w s a f i n e r Banach s p a c e norm g i v e n by
d ) If w e t a k e
Ilgll(l)
=
L[y]
yt
IIgll
+
f
E
= X , t h e space
L-’(O)
= x)
yo = F [ L - ’ - ( O ) ] indeed: given
*
w e have
(T
of c o n s t a n t f u n c t i o n s
Ilg’II
and
= ya; we take
G ( [ a , b ] ,G( ( a , b ) , Z ) > XfE X = G ( [ a , b ] ,Z>
such t h a t function
-
= f(a)(a) for all ~ , u ~ ( a , b h) e,n c e t h e i s constant ( 2 f ( ~ l > = S f ( ~ 2 ) f o r any
;,(T)(U>
xf
T ~ , T ~( aE, b
L[y]
and w e h a v e
Yo
and
F[cf]
= F[f].
= 0 and F[y] = 0 imply y = 0 ; i n d e e d : i f w e have y = 2 a c o n s t a n t f u n c t i o n , hence
e > L[y]
= 0
0
-
f o r every J(s):
F[Gf]
X
F[y](a)
=
I,
a ~ [ a , b ] implies
Yo
Yo
U
y ( T ) ( T ) d T = fa:(T)dT
S(T)
0
i.e.
2
0 . Therefore
i s i n j e c t i v e c o n t i n u o u s and o n t o b u t n o t
b i c o n t i n u o u s ; if however w e c o n s i d e r on Yo t h e Banach s p a c e s t r u c t u r e d e f i n e d i n c ) J(s) becomes b i c o n t i n u o u s . f ) We h a v e
R(t,s)
Ix and
J(s)(u)
(u-a)IX ;
REFERENCES
[ B]
H. E. B R A Y , Elementahy phopehtieb
-
06
Stieetjeb integhal,
Ann. of Math., 2 0 ( 1 9 1 8 - 1 9 1 , 1 7 7 - 1 8 6 .
S . B O C H N E R a n d A.E.TAYLOR,
-
[B-T]
c e h t a i n dpaced
06
L i n e a h dunctionald on a b d t h a c t l y - v a l u e d dunctiond , Ann.
of Math. 3 9 ( 1 9 3 8 ) , 9 1 3 - 9 4 4 . [C]
- H.CARTAN,
C.S. C A R D A S S I , PependEncia d i d e h e n c i a v e l das d o l u ~ 6 e n
-
[Ca]
C a l c u l D i f f g r e n t i e l , Hermann, P a r i s ( 1 9 6 7 ) .
de e q u a ~ o e d iflt~~g hO-d id CKe flC iUeiA m e d p a ~ o d de-Banach, Master T h e s i s , I n s t i t u t o de Matematica e E s t a t i s t i c a da U n i v e r s i d a d e d e S . P a u l o , 1975.
[D] - N . D I N C U L E A N U , Vector M e a s u r e s , P e r g a m o n P r e s s , Oxford ( 1 9 6 7 ) . [GI
-
[H]
-
M . G O W U R I N , fibetr d i e S t i e l t j e b I n t e g h a t i o n a b d th a h te h Funktionen, F u n d . M a t h . , 2 7 ( 1 9 3 6 ) , 2 5 4 - 2 6 8 . S.Z. H E R S C O W I T Z , C e a d d e d d e d u f l ~ o e d adbociadab p e l a i n t e g h a l d e Riemann-Stie&jeb, Master T h e s i s , I n s t i t u t o d e Matemztica e E s t a t T s t i c a d a U n i v e r s i d a d e de S . P a u l o ,
1975.
[H-ie]
T.H.HILDEBRANDT, O n dybtemd 06 l i n e a h d i 6 6 e h e n t i o S t i e l X j e d i n t e g h a l e q u a t i o n & , I l l i n o i s J .Math. ,
-
3(1959),352-373.
p-ti] -
T.H.HILDEBRANDT,
p-BAMS]
-
I n t r o d u c t i o n t o t h e t h e o r y of i n t e g r a t i o n , Academic P r e s s , 1 9 6 3 .
C.S.HbNIG, T h e Gheen d unc tio n 0 4 a l i n e a h didbehent i a l equation w i t h a t a t e h a l condition, B u l l . h e r .
Math. SOC., [H-IME]
-
79(1973),587-593.
C.S.HoNIG, T h e a b d t a a c t R i e m a n n - S t i e l t j e d i n t e g h a l
and i t b a p p l i c a t i o n 4 t o Lineah V i6 6 e h e n tia L Equations w i t h g e n e a a l i z 5 d boundahy c o n d i t i o n d , Notas do I n s t i t u t o i de Mctematica e E s t a t z s t i c a da U n i v e r s i d a d e de S . P a u l o , S e r i e Matemgtica n 0 1 , 1 9 7 3 .
[H-BAMS2]
-
c.s . H O N I G , V o l t e h h a - S t i e t t j e d intc2gha.t e q u a t i o n 6 w i t h l i n e a h condthaintd and d i n continuoud b o l u t i o n d , B u l l . Am. Math. SOC. 8 1 ( 1 9 7 5 ) .
152
[H-DS]
REFERENCES
-
C.S.HbNIG,
tion
The dohmuhA
06
V i h i c h L e t and 0 6 S u b b t i t u i n Banach ~ p a c e A ,
oh R i e m a n n - S t i e t t j e d integha&A
T o appear.
[H-OP]
-
Open phobLemA i n t h e t h e o h y o h diddehentiae e ~ u a t i o n d w i t h t i n e a h COnAthaintA, C o l e c a o A t a s ,
C.S.HdNIG,
vol. n Q 5 ( 1 9 7 4 ) , 1 6 1 - 1 9 9 , Sociedade B r a s i l e i r a de Matemstica, Ri-o de J a n e i r o . [H-RJ-
[K]
-
[MI [R]
-
[S]
-
H U N I G , An u n i d i e d h ep h e d e nt a t i o n t h e o h y d o h L i n e a h continuoub opetratohb between dunction bpaceb , To appear.
C.S.
H . S . K A L T E N B O R N , Linealr duncti0na.t o p e h d t i o n ~ on dunctiond having d i d c o n t i n u i t i e d 0 4 t h e 6 i h A . t k i n d , Bull. h e r . Math. S O C . , 4 0 ( 1 9 3 4 ) , . 7 0 2 - 7 0 8 .
J . S . M A C - N E R N E Y , S t L e t t ' e d i n t e g h a l b i n l i n e a h Apace4 A n n . of Math., 6 1 ( 1 9 5 5 3 , 3 5 4 - 3 6 7 .
,
G . C . da ROCHA F I L H O , l n c o m p a t i b i l i t i e d i n getzezat RiemUnfl-Sti&tjeA i f l i e g h a t i o n th e o hi e b T o a p p e a r .
.
M. I . de S O U Z A , EquaC6eA d i d c h e n c i o - i n t e g a a i ~ d o s i p 0
Riemann-StieLtjeb em e d p a ~ o d de Banach com A $ . ~ U C . O ~ AdeAconztl'nuad, Master t h e s i s , I n s t i t u t o de M a t e m a t i c a e Es-
t a t i s t i c a da U n i v e r s i d a d e d e Sao Paulo, 1 9 7 4 .
[W]
- H .S .WALL,
Concehning kahmonic m a t hi c e & , A r c h . Math.
5(1954),160-167.
,
SYMBOL
A
116
Jb
119
~~"()a,b[x]a,b(,L(X))
6Z0 GU
3
BT
B V ( [a,b) ,X)
BW( (a,b) ,Y)
G(X,Y) c o ( [a,b)
c
'
0
(1a ,
111 111
&F
23
113
&yo
1
19
113 20
f-
60
[
b ,X)
61
F a y FU
85
d
2
(GI
Id1
2
(G")
Ad
2
G o a ,b ,F)
52
56
[
G ( [a,b)
16
,XI
dl 6 d 2
2
D y ’[a,b)
2
G - ( b , b ) 9x1
14
E(
D( (a,b) , X I
', "'
EB (E,F,G)
E( [a,b) , X >
3
G(t,s)
3
6,
GU
2
( E B ,F , G )
&, &( (c,d)
(a,b> ,X)
3 X (c,d)
20
35
G"SB( (a,b) ,E)
2
"(a,b]
19
Ga( [a,b) ,E)
2
'(a,b)
,L(X))
bCO
111
L g 0
114, 117
111
117
114
hUO
22
,X)
INDEX
G((c,d]
35 142
x
[c,d) ,L(X))
69, 87
GO;
110
G :o
110
rE H(t,s)
3
134
a7
154
SYMBOL INDEX
I-[, H () a
b (x) a b
JICO
121
li C O
122
1
IX
1-
20
J
127 127
Jcl
127
JU
J(to)
1 22
7
129 84
KA (K)
85
K LYI (L'),
127
116
(L)
LCBT
5
LC s
4
Lim
Ad-tO
Lim dell
[,L ( X ) )
2
(SVJ
2
( SVU)
117 52,
86
155
SYMBOL I N D E X
3
II I I B
Ilfll 'I
1
[c ,d)
1 4
This Page Intentionally Left Blank
157
INDEX 3
associated topological BT bilinear triple B-variation
Riemann-Stieltjes integral
3
21
Darboux integrable
support 75
8
linear constraint
12 4
q-support
56
variation
23
Volterra Stieltjesintegral equation
4
22
regularizing formula
3
uniformly of bounded semivariation 52,69
7
q-B-variation
46, 55, 6 7
topological BT
interior integral locally convex space
69
7.4 Theorem of Helly
142
integration by parts
56
Theorem of Bray
formula of substitution
7
22
semivariation
L4
formula of Dirichlet Green function
1 6 , 56
regulated function
weak variation 133
weakly regulated
85
23 35, 63
This Page Intentionally Left Blank